
HAL Id: tel-01058143
https://theses.hal.science/tel-01058143

Submitted on 26 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust French syntax analysis : reconciling statistical
methods and linguistic knowledge in the Talismane

toolkit
Assaf Urieli

To cite this version:
Assaf Urieli. Robust French syntax analysis : reconciling statistical methods and linguistic knowledge
in the Talismane toolkit. Linguistics. Université Toulouse le Mirail - Toulouse II, 2013. English.
�NNT : 2013TOU20134�. �tel-01058143�

https://theses.hal.science/tel-01058143
https://hal.archives-ouvertes.fr

THÈSETHÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : Université Toulouse 2 Le Mirail (UT2 Le Mirail)

Présentée et soutenue le 17 décembre 2013 par :

Assaf URIELI

Robust French syntax analysis: reconciling statistical methods and
linguistic knowledge in the Talismane toolkit

Analyse syntaxique robuste du français : concilier méthodes statistiques et connaissances
linguistiques dans l’outil Talismane

JURY

Alexis NASR Professeur d’Université Rapporteur
Eric WEHRLI Professeur Rapporteur
Marie CANDITO Maître de Conférences Examinateur
Nabil HATHOUT Directeur de Recherche Examinateur
Ludovic TANGUY Maître de Conférences HDR Directeur de Thèse

École doctorale et spécialité :
CLESCO : Sciences du langage

Unité de Recherche :
CLLE-ERSS (UMR 5263)

Directeur de Thèse :
Ludovic TANGUY

Rapporteurs :
Alexis NASR et Eric WEHRLI

Contents

List of abbreviations and acronyms 9

List of Figures 10

List of Tables 11

Introduction 13

I Robust dependency parsing: a state of the art 21

1 Dependency annotation and parsing algorithms 23
1.1 Dependency annotation of French . 23

1.1.1 Token and pos-tag annotations . 23
1.1.2 Dependency annotation standards . 24
1.1.3 A closer look at certain syntactic phenomena 28

1.1.3.1 Relative subordinate clauses 28
1.1.3.2 Coordination . 30
1.1.3.3 Structures not covered by the annotation scheme 32

1.1.4 Projectivity . 33
1.1.5 Standard output formats . 35

1.2 Dependency parsing algorithms . 35
1.2.1 Rationalist vs. empiricist parsers . 36
1.2.2 Graph-based parsers . 37
1.2.3 Transition-based parsers . 40

1.3 Discussion . 45

2 Supervised machine learning for NLP classification problems 47
2.1 Preliminary definitions . 47
2.2 Annotation . 51
2.3 Linguistic Context . 51
2.4 Features . 52
2.5 Training . 53
2.6 Analysis . 55

2.6.1 Pruning via a beam search . 55
2.7 Evaluation . 58
2.8 Classifiers . 59

3

4 CONTENTS

2.8.1 Converting non-numeric features to numeric values 60
2.8.2 Perceptrons . 61
2.8.3 Log-linear or maximum entropy models 64

2.8.3.1 GIS algorithm for maximum entropy training 65
2.8.3.2 Additive smoothing . 66
2.8.3.3 Inverting numeric features 66

2.8.4 Linear SVMs . 68
2.8.5 Classifier comparison . 69

2.9 Supervised machine learning project examples 70
2.9.1 Authorship attribution . 70
2.9.2 Jochre: OCR for Yiddish and Occitan 72
2.9.3 Talismane—Syntax analysis for French 73

2.10 Discussion . 73

II Syntax analysis mechanism for French 75

3 The Talismane syntax analyser - details and originality 77
3.1 Philosophy . 77
3.2 Architecture . 78
3.3 Problem definition for Talismane’s modules 79

3.3.1 Sentence boundary detection . 79
3.3.2 Tokenisation . 80

3.3.2.1 Tokenisation mechanism . 83
3.3.3 Pos-tagging . 85
3.3.4 Parsing . 86

3.3.4.1 Transition-based parsing algorithm 87
3.3.4.2 Measuring parser confidence 87
3.3.4.3 Applying a beam search to parsing 88
3.3.4.4 Incremental parse comparison strategies 88

3.4 Formally defining features and rules . 91
3.4.1 Using named and parametrised features 92
3.4.2 Defining feature groups to simplify combination 94
3.4.3 Features returning multiple results . 94

3.5 He who laughs last: bypassing the model with rules 95
3.6 Filtering the raw text for analysis . 97
3.7 Comparison to similar projects . 98
3.8 Discussion . 99

4 Incorporating linguistic knowledge 101
4.1 Training corpora . 101

4.1.1 Errare humanum est: Annotation reliability 102
4.1.2 French Treebank . 103
4.1.3 French Treebank converted to dependencies 107

4.2 Evaluation corpora . 108
4.2.1 Sequoia . 109
4.2.2 Wikipedia.fr discussion pages . 109

CONTENTS 5

4.2.3 Unannotated corpora . 112
4.3 External Resources . 113

4.3.1 Generalising features using external resources 113
4.3.2 Talismane’s definition of a lexicon . 114
4.3.3 LeFFF . 115

4.4 Baseline features . 115
4.4.1 Cutoff . 116
4.4.2 Sentence detector baseline features . 116
4.4.3 Tokeniser baseline features . 117
4.4.4 Pos-tagger baseline features . 119
4.4.5 Parser baseline features . 121

4.5 Baseline rules . 125
4.5.1 Tokeniser . 125
4.5.2 Pos-tagger . 125

4.6 Discussion . 126

IIIExperiments 127

5 Evaluating Talismane 129
5.1 Evaluation methodology . 129

5.1.1 Parse evaluation metrics . 131
5.1.2 Statistical significance . 131

5.2 Evaluating classifiers and classifier parameters 132
5.2.1 Evaluating classifiers for parsing . 132

5.2.1.1 Tuning perceptron parameters for parsing 132
5.2.1.2 Tuning MaxEnt parameters for parsing 134
5.2.1.3 Tuning linear SVM parameters for parsing 135
5.2.1.4 Comparing the best configurations for parsing 136

5.2.2 Evaluating classifers for pos-tagging 137
5.2.2.1 Tuning perceptron parameters for pos-tagging 138
5.2.2.2 Tuning MaxEnt parameters for pos-tagging 139
5.2.2.3 Tuning linear SVM parameters for pos-tagging 139
5.2.2.4 Comparing the best configurations for pos-tagging 139

5.2.3 Combining the pos-tagger and the parser 140
5.3 Experiments with system confidence . 142
5.4 Experiments with beam search . 145

5.4.1 Applying the beam to the pos-tagger 146
5.4.2 Applying the beam to the parser . 147

5.5 Experiments with beam propagation . 147
5.5.1 Using the parser and pos-tagger to correct tokenisation errors 148
5.5.2 Using the parser to correct pos-tagging errors 149
5.5.3 Using beam propagation to improve parsing 151

5.6 Comparison to similar studies . 152
5.7 Discussion . 153

6 Targeting specific errors with features and rules 157

6 CONTENTS

6.1 Features or rules? . 158
6.2 Using targeted pos-tagger features . 159

6.2.1 Identifying important pos-tagger errors 159
6.3 Improving the tagging of que . 161

6.3.1 Recognising que as a negative adverb 162
6.3.1.1 Development corpus error analysis 162
6.3.1.2 Feature list . 163
6.3.1.3 Results . 165

6.3.2 Recognising que as a relative or interrogative pronoun 165
6.3.2.1 Development corpus error analysis 165
6.3.2.2 Feature list . 166
6.3.2.3 Results . 172

6.3.3 Effect of targeted pos-tagger features on the parser 173
6.4 Using targeted parser features . 175

6.4.1 Parser coordination features . 175
6.4.1.1 Development corpus error analysis 177
6.4.1.2 Feature list . 179
6.4.1.3 Results . 182

6.5 Using rules . 184
6.5.1 Pos-tagger closed vs. open classes . 185
6.5.2 Pos-tagger rules for que . 185
6.5.3 Parser rules: prohibiting duplicate subjects 187
6.5.4 Parser rules: prohibiting relations across parentheses 190

6.6 Discussion . 191

7 Improving parsing through external resources 193
7.1 Incorporating specialised lexical resources . 194
7.2 Augmenting the lexicon with GLÀFF . 195
7.3 Injecting resources built by semi-supervised methods 197

7.3.1 Semi-supervised methods for domain adaptation 198
7.3.2 Distributional semantic resources . 200
7.3.3 Using the similarity between conjuncts to improve parsing for coordination201

7.4 Discussion . 206

Conclusion and perspectives 209

A Evaluation graphs 217

Bibliography 225

Acknowledgements

This thesis was not written in isolation, but rather within a strongly supportive context,
both inside the CLLE-ERSS linguistics research laboratory, and in my wider personal and
professional life. Before embarking on the subject matter itself, I would like to thank all of
those without whom this work would not have been possible.

First and foremost, I would like to thank my thesis adviser, Ludovic Tanguy. Ludovic gave
me his enthusiastic support from our very first meeting in his apartment, when the University
was closed down due to student strikes, a support that didn’t slacken even after I spilled beer
on him (twice!) in Amsterdam. His guidance throughout my studies, and especially after I
started writing my dissertation, has been priceless. He gave me the freedom to explore to
my heart’s content, all the while gently nudging me in the right direction. In hindsight I find
that his advice has always been thoroughly sound, no matter how dubitative I may have been
on first hearing it. And although his numerous revision marks and questions on my printed
thesis have been a challenge to decipher (“des pattes de mouche” as we say in French), they
were of countless help towards making this thesis worth reading. Where my writing is good
and clear, it is thanks to him. Where it leaves something to be desired, it is invariably because
I refused to listen!

I would also like to thank the members of the jury—Alexis Nasr and Eric Wehrli, for
accepting to write the detailed reports, and Marie Candito and Nabil Hathout, for accepting
to be oral examiners.

My gratitude goes out to the other members of the CLLE-ERSS lab, and especially those
of the NLP group in Toulouse with whom I was the most in contact. In alphabetical order
(as no other will do), these include Basilio Calderone, Cécile Fabre, Bruno Gaume, Lydia-Mai
Ho-Dac, Marie-Paule Péry-Woodley, and Franck Sajous. Franck, who never complained when
I asked him at the very last minute to construct yet another enormous resource, deserves a
special mention.

I also wish to thank my fellow doctoral students and post-doctoral researchers, and most
especially those who shared my office in room 617: Clémentine Adam, François Morlane-
Hondère, Nikola Tulechki, Simon Leva, Lama Allan and Marin Popan, as well as those from
nearby offices who often stopped in for a chat: Fanny Lalleman, Stéphanie Lopez, Aurélie
Guerrero and Marie-France Roquelaure. And especially Matteo Pascoli and Marianne Vergez-
Couret, who drove all the way down to Foix in the pouring rain to hear me sing in Yiddish.
Thanks to Marianne, my work on Yiddish OCR has taken an international turn, and expanded
to include Occitan.

As this thesis was unfinanced, it is only thanks to the understanding of my professional
colleagues and customers, allowing me to take time off for study, that I have been able to
progress. First of all, there is the team in Coup de Puce: Ian Margo, who welcomed me
in Toulouse twenty years ago and has accompanied me ever since, Estelle Cavan, who was

7

8

one of the first to test Talismane in a real work environment, and all of the others. In
the French Space Agency, Daniel Galarreta deserves my thanks for his trust and interest in
my work. At the Yiddish Book Center, I would like to thank Aaron Lansky, Katie Palmer
Finn, Catherine Madsen, Josh Price and Agnieszka Ilwicka for their support and enthusiasm
around the Jochre Yiddish OCR project. There are also my many former colleagues at Storm
Technology, Avaya, and Channel Mechanics: Karl Flannery, Brendan Walsh, Olivia Walsh
and Kenneth Fox, to name but a few. Finally, there are my recent colleagues at CFH, and in
particular Eric Hermann, thanks to whom I’ve managed to put natural language processing
at the heart of my working life.

With respect to Talismane itself, I need to thank Jean-Phillipe Fauconnier, for his excellent
work testing and documenting my software, and Marjorie Raufast, for accepting the arduous
task of correcting Talismane’s syntax analysis of Wikipedia discussion pages.

If I have taken an interest in computational linguistics, it is largely thanks to my family:
my father Izzi, for transmitting to me his love for computers and algorithms; my mother Nili
for transmitting to me her love for languages; my grandparents Lova and Miriam, may they
rest in peace, whose presence in my childhood has meant so much to me; and my sisters and
their families—Sharon and little Topaz, and Michal and Philip.

Last but not least, this thesis would never have been possible without the help and support
of my wife Joelle, and my two wonderful boys, Mischa and Dmitri. It is thanks to Joelle’s
insistence that I left my computer from time to time, to climb on my bicycle and go riding
through the surrounding countryside. Joelle and the boys have stood by me throughout these
years of study, and have made this life worth living. Thank you!

List of abbreviations and acronyms

• FTB: French Treebank

• FTBDep: French Treebank automatically converted to dependencies

• LAS: Labeled attachment score

• NLP: Natural Language Processing

• POS: Part Of Speech

• UAS: Unlabeled attachment score

• WSJ: Wall Street Journal

9

List of Figures

1.1 Graph-based MST parsing, step 1: fully connected digraph 39
1.2 Graph-based MST parsing, step 2: maximum incoming arcs 39
1.3 Graph-based MST parsing, step 3: cycles as nodes 39
1.4 Graph-based MST parsing, step 4: final graph 40

2.1 Classification through supervised machine learning 48
2.2 Pos-tagging through supervised machine learning 49
2.3 Supervised machine learning evaluation . 50
2.4 Classification using perceptrons . 61
2.5 Applying the kernel trick to a 2-class SVM: y → x2 69

5.1 Evaluation corpora LAS for a perceptron classifier using different values for itera-
tions i and cutoff . 133

5.2 Evaluation corpora LAS for a perceptron classifier using lower values for iterations
i and cutoff . 134

5.3 Training time and analysis time (FTBDep-dev) for a MaxEnt classifier using dif-
ferent values for iterations i and cutoff . 135

5.4 Training time and analysis time (FTBDep-dev) for a linear SVM using different
values for C and ǫ . 136

5.5 Parsing classifier comparison: LAS by corpus . 137
5.6 Pos-tagging classifier comparison: accuracy by corpus 140
5.7 Accuracy loss (LAS) from gold-standard pos-tags, with and without jackknifing . 142
5.8 Correct answers and remaining dependencies based on confidence cutoff, for the

FTBDep dev corpus . 144
5.9 Accuracy and remaining dependencies based on confidence cutoff, for various eval-

uation corpora . 144
5.10 Mean confidence vs LAS/UAS . 146
5.11 LAS with and without propagation for the FTBDep dev and FrWikiDisc corpora 151
5.12 LAS by beam size, with propagation . 152
5.13 LAS for all dependencies where distance <= n, at different beam widths, FTBDep

test corpus . 153

A.1 Parser evaluation corpora LAS for a MaxEnt classifier using different values for
iterations i and cutoff . 218

A.2 Parser evaluation corpora LAS for a linear SVM using different values of C and ǫ 219
A.3 Parser evaluation corpora LAS for a linear SVM using different values of C and

cutoff . 220

10

A.4 Pos-tagger evaluation corpora accuracy for a MaxEnt classifier using different val-
ues for iterations i and cutoff . 221

A.5 Pos-tagger evaluation corpora accuracy for a perceptron classifier using different
values for iterations i and cutoff . 222

A.6 Pos-tagger evaluation corpora LAS for a linear SVM using different values of C
and ǫ . 223

A.7 Pos-tagger evaluation corpora LAS for a linear SVM using different values of C
and cutff . 224

List of Tables

1.1 French tagset used in this thesis [Crabbé and Candito, 2008] 24
1.2 Dependency labels for verbal governors [Candito et al., 2011b] 26
1.3 Dependency labels for non-verbal governors [Candito et al., 2011b] 27
1.4 Additional more specific relations, currently reserved for manual annotation only

[Candito et al., 2011b] . 28
1.5 Sample Talismane output using the CoNLL-X format 35
1.6 The arc-standard transition system for shift-reduce dependency parsing 41
1.7 Sample transition sequence using the arc-standard shift-reduce transition system 42
1.8 Alternative parse using the arc-standard shift-reduce transition system 42
1.9 The arc-eager transition system for shift-reduce dependency parsing 43
1.10 Deterministic parse using an arc-eager shift-reduce transition system 44
1.11 Principle differences between transition-based and graph-based parsers 44

2.1 Beam search example—correct solution in bold 56
2.2 Classifier comparison . 69
2.3 Authorship attribution results . 71
2.4 Jochre Yiddish OCR results . 73
2.5 Jochre Occitan OCR results . 73

3.1 Incremental parse comparison strategies, labelled accuracy at different beams . . 90
3.2 Talismane feature syntax: operators . 92
3.3 Talismane feature syntax: a subset of generic functions 93
3.4 Examples of Talismane filters . 97

4.1 Top 30 common nouns in the French Treebank 106
4.2 Example sentence from the FTBDep corpus . 108
4.3 Sequoia corpus interannotator agreement (f-score average) from Candito et al. [2012]109
4.4 FrWikiDisc corpus inter-annotator agreement (Cohen’s kappa) 110
4.5 FrWikiDisc corpus characteristics . 111
4.6 FrWikiDisc corpus non-projective arc types . 112

11

12 List of Tables

4.7 FrWikiDisc corpus manual dependency label count 112

5.1 Baseline method vs. alternative method contingency table 131
5.2 Comparison of the best classifier configurations for parsing 138
5.3 Comparison of the best classifier configurations for pos-tagging 141
5.4 Pos-tagging and parsing accuracy combined, with and without jackknifing 142
5.5 Point-biserial correlation for system confidence to correct parses on the FTBDep

development corpus . 143
5.6 Point-biserial correlation by label for system confidence to correct parses on the

FTBDep dev corpus . 145
5.7 Pos-tagger accuracy at various beam widths for different classifiers, on the FTBDep

dev corpus . 146
5.8 Parser accuracy at various beam widths for different classifiers, for the FTBDep

dev corpus . 147
5.9 Beam propagation from the tokeniser to the pos-tagger 148
5.10 Testing tokeniser beam propagation on unannotated corpora 149
5.11 Pos-tagger accuracy at various beam widths for different classifiers, for the FTB-

Dep dev corpus, with and without propagation 150
5.12 Testing pos-tagger beam propagation on unannotated corpora 150
5.13 Change in precision, recall and f-score from beam 1 by label, for all corpora combined154
5.14 Comparison of the Talismane baseline to other parsers for French 154

6.1 Pos-tagger function word and number errors causing the most parsing errors in
the FTBDep dev corpus . 160

6.2 Baseline confusion matrix for que . 161
6.3 Confusion matrix for que with targeted negative adverb features 165
6.4 Confusion matrix for que with targeted relative pronoun features 172
6.5 Confusion matrix for que with all targeted features combined 173
6.6 Parsing improvement for using a pos-tagger model with targeted que features . . 174
6.7 Arc-eager transition sequence for coordination, with difficult decisions in bold . . 176
6.8 Parsing improvement for the relation coord using targeted features 182
6.9 Parsing improvement for the relation dep_coord using targeted features 183
6.10 Contingency table for coord with and without targeted features, at beam 1 . . . 183
6.11 Contingency table for coord with and without targeted features, at beam 2 . . . 183
6.12 Pos-tagging accuracy improvement using closed class rules 185
6.13 Confusion matrix for que with targeted features and rules 186

7.1 Coverage by lexicon (percentage of unknown words) 196
7.2 Number of word-pairs per corpus and confidence cutoff 203
7.3 Parsing improvement for coordination using distributional semantic features . . . 204

Introduction

Preamble

I’m often asked: why does a man nearing 40, with a comfortable career as a software engineer,
begin to study for a doctorate in linguistics? Before plunging into the heart of the matter,
I’ll attempt to answer this question by placing my thesis in its personal, local, and global
context.

A few months before starting my thesis, I was approached by the French Space Agency
CNES with a request: “can you give us a quote for an automatic bilingual terminology ex-
tractor?” I had completed my Master’s almost 15 years earlier, had worked for a few years as
a translator, and then as a software engineer for over ten years. One of my freelance software
projects had been Aplikaterm, a web application for terminology management, still used by
the CNES and its translators today. So, given what I knew of terminology, I answered “do
you have a budget for a few years of full-time development?”

Nevertheless, I decided to do some research and see what was available on the market.
Because of my relative strength in algorithms as opposed to statistics, I was attracted by a
more formal approach based on preliminary syntax analysis, as opposed to a more “naïve”
statistical approach based on collocation. My surprise was great when I discovered that a
syntax analyser, Syntex, had been developed in the nearby Université de Toulouse, by a
certain Didier Bourigault. A project started forming in my head: why not adapt this syntax
analyser, if it’s available, to bilingual terminology extraction? And, if not, why not build a
syntax analyser of my own? Finally, why not fund this project by fulfilling a longstanding
latent ambition of mine: to pursue a doctorate? Indeed, the daily humdrum of web and
database application development was beginning to bore me, and I was yearning for something
that would engage my intellect more fully. I wrote an e-mail containing a proposal for such a
doctorate to the Natural Language Processing section of the CLLE-ERSS linguistics lab, and
received an answer not long afterwards: the NLP section was interested in my proposal, and
would like to meet me in person to discuss it. That’s how I met Ludovic Tanguy, who was to
become my thesis adviser.

Professionally, I felt I was making a move in the right direction. We have only begun to
tap into the possibilities of information analysis offered by the vast quantities of multilingual
text available both on the Web and inside corporate intranets. Certainly, huge progress had
been made by the likes of Google, but this progress remained to a large extent locked behind
the walls of corporate intellectual property. I have been a consumer of open source software
for many years, and am convinced that this is one of the best paradigms for encouraging
innovation, both in academia and in private enterprise, especially in the case of smaller
companies without the muscle, time or money to enforce patents.

As it turned out, my proposal to write a robust open source syntax analyser had come

13

14

just at the right moment. The NLP section of the CLLE-ERSS lab needed just such an
analyser for many of their projects, but Syntex had been purchased by Synomia, and was no
longer available. On the other hand, I had no formal education in linguistics, and my passive
knowledge was limited to that of a man who speaks several languages and had worked as a
professional translator. What is more, there was no direct funding available for my thesis,
and so I would have to continue my daily job as a web and database application developer
while pursuing the doctorate. This situation was difficult to manage, but at the same time
it gave me far more freedom than that of a doctoral student funded by a company, forced to
examine only those problems directly affecting the company’s earning capacity, and to handle
only the technical corpora directly related to the company’s business.

Unbeknownst to me, as a software engineer with little prior knowledge of linguistics, I
embodied an ongoing debate within the NLP world [Cori and Léon, 2002, Tanguy, 2012]:
what was the role of the linguist in a field increasingly dominated by large-scale statistical
algorithms locked up in a “black box” of mathematical complexity? I myself had decided
to write a statistical, rather than a rule-bases system, both because I was convinced, after
reading the state of the art, that such a system would be more robust and simpler to maintain,
and because it would allow me to make the most of my algorithmic strengths. Over time,
I became aware of my privileged role in a linguistics laboratory as an experienced software
engineer who had helped to build many robust enterprise systems. Yet I would have to find
ways to make the most of an often contradictory situation: my statistical system left little
room for traditional linguistics in the form of rules and grammars; and yet, I wanted to allow
as many hooks as possible to the team of linguists surrounding me, so that I could make the
most of their contributions.

The end result is a thesis which explores neither computer science nor linguistics as a
field of study in and of itself. Rather, its feet are firmly anchored in software engineering
but its eyes are set on the practical applicability of statistical machine learning algorithms
to the large-scale resolution of linguistic ambiguity. My approach aims to be as didactic as
possible in those areas where I had to spend many months mastering a particular concept
or technique. I delve into the statistical methods used by machine learning algorithms to a
certain extent, but only as deeply as is required to gain insights into the effect of different
configurations on the final result. This thesis thus explores practical problems within natural
language processing, and possible solutions to these problems.

Overview

This thesis concentrates on the application of supervised statistical machine learning tech-
niques to French corpus linguistics, using the purpose-built Talismane syntax analyser. As
such, it is directly concerned with all the steps needed to construct a system capable of
analysing French text successfully: from corpus selection, to corpus annotation, to the selec-
tion and adaptation of machine learning algorithms, to feature selection, and finally to tuning
and evaluation. I had little control over some of these areas (e.g. selection and annotation of
the training corpus), and so will only examine the choices made by others and the effects they
had on my work. In those areas where I could exercise full control, I will attempt to convey
the possibilities that were available, the reasoning behind my choices, and the evaluation of
these choices.

The main achievements of this thesis are:

INTRODUCTION 15

• proposal of a practical and highly configurable open source syntax analyser to the scien-
tific community, with an out-of-the-box implementation for French, attaining state-of-
the-art performance when compared to similar tools using standard evaluation method-
ology;

• insights into which statistical supervised machine learning techniques can lead to sig-
nificant improvement in results, and on the limits of these techniques;

• creation of a flexible grammar for feature and rule definition, and insights into how
to write features that generalise well beyond the training corpus, when to use rules
instead of features, and what type of phenomena can be successfully analysed via the
introduction of highly targeted features;

• insights into the types of external resources that can be most effective in helping the
syntax analyser, whether manually constructed or automatically derived in a semi-
supervised approach; and into the best ways to integrate these resources into the analysis
mechanism.

The choice of French as a language of study was of course motivated by the preparation
of the doctorate in a French university. French is an interesting case, in that it has far fewer
linguistic resources available than English, but far more than many other languages. The
question of resources is thus central to the thesis. However, it is hoped that many of the
lessons learned can be applied to other languages as well, and can provide guidance on the
resources that can or should be constructed. Indeed, Talismane was designed to be usable with
any language, and anything specific to French has either been externalised as a configuration
file, or as a separate software package that implements interfaces defined by the main package.

Before starting, I wish to examine the angle from which this thesis tackles certain key
concepts, and the questions it will attempt to resolve.

Robust syntax analysis

In Bourigault [2007, pp. 9, 25], robustness is defined as the ability of a syntax analyser to
parse a large corpus in a reasonable amount of time. In a robust system, emphasis is thus
placed on practical usability as opposed to theoretical linguistic aspects. In this thesis, the
term robust is extended to include its accepted meaning within software engineering: a system
capable of functioning regardless of anomalies or abnormalities in the input. By “capable of
functioning”, we imply that the system should provide as complete an analysis as possible
within a reasonable amount of time. A full analysis is preferable to a partial one, and a partial
analysis is preferable to no analysis at all. Of course, “reasonable” depends on what you are
trying to do—a web-site may need a response within seconds, whereas it may be reasonable
to analyse a 100 million word corpus in a week. Because of the time constraint, robustness
implies compromises in terms of analysis complexity, which force us to select algorithms and
feature sets compatible with our computational resources.

Syntax analysis here falls under the tradition of dependency syntax [Tesnière, 1959]. It
involves finding a single governor for each word in the sentence, and a label for the dependency
relation drawn between the governor and the dependent. A distinction is made here between
syntax analysis, which is the full transformation of raw text into a set of dependency trees,
and parsing, which is typically the last step of syntax analysis, taking a sequence of pos-tagged
and lemmatised tokens as an input, and producing a dependency tree as output.

16

Supervised machine learning

Supervised machine learning is a technique whereby a software system examines a corpus
annotated or at least corrected by a human (the training corpus), and attempts to learn how
to apply similar annotations to other, similar corpora. One weakness in this definition is the
use of the word “similar”: how does one measure the “similarity” between two corpora, and
how does one measure the “similarity” between annotations? I am specifically interested in
statistical machine learning techniques, in which the linguist defines features, and the machine
learning algorithm automatically decides how much weight to assign to each feature, in view
of the data found in the annotated training corpus, by means of a probabilistic classifier.
Moreover, I concentrate on the re-definition of all linguistic annotation tasks as classification
problems. Supervised machine learning is covered in chapter 2, and its adaptation to the
specific problem of syntax analysis in chapter 3.

Corpus

According to Sinclair [2005]:

A corpus is a collection of pieces of language text in electronic form, selected
according to external criteria to represent, as far as possible, a language or lan-
guage variety as a source of data for linguistic research.

The notion of corpus is central to supervised machine learning, first and foremost through
the necessity for a training corpus, that should be as representative as possible of the type
of language that we wish to analyse, and of course as large as possible (following the adage
“There is no data like more data”, attributed to Bob Mercer of IBM). Moreover, the simplest
evaluation of success involves using the system to analyse a manually annotated evaluation
corpus and comparing system annotations to manual annotations. The degree of similarity
between the training corpus and each evaluation corpus is bound to affect the accuracy of
analysis results. One of the questions most central to this thesis is: what methods and
resources allow us to generalise beyond the information directly available in the training
corpus, so that the system is capable of correctly analysing text different in genre, register,
theme, etc.?

In addition to their use in the processing chain for a given application, tools such as
Talismane can be directly applied to corpus linguistics, enabling, for example, the syntax
annotation and subsequent comparative analysis of two corpora.

The corpora used by our present study are presented in chapter 4.

Annotation

In this thesis, annotation is the addition of meta-textual information to a corpus, which
indicates how to interpret ambiguities within the text. Because this thesis redefines linguistic
questions as classification problems, it is concerned with those annotations which can be
transformed into a closed set of pre-defined classes.

The areas we are specifically interested in are:

• Segmentation: segmenting raw text into sentences (sentence boundary detection) and
segmenting a sentence into minimal syntactic units (tokenisation). In terms of clas-

INTRODUCTION 17

sification, this is redefined as: is the border between two symbols separating or non-
separating?

• Classification: Assigning parts-of-speech to tokens (POS tagging). This is a classical
classification problem and needs no redefining.

• Relation: drawing governor-dependent arcs between tokens and labelling these arcs. In
terms of classification, this is redefined as: given two words in a sentence, is there a
dependency arc between them and, if so, what is the arc direction and what is the label?

For each classification problem, the degree to which the classes are coarse or fine-grained
will affect ease of annotation, ease of automatic classification and usefulness of the annotation
to downstream tasks. The needs of each of these three areas are often contradictory. Ill-defined
or badly chosen classes can either lead to a situation where the initial ambiguity cannot be
resolved by the classes available, or where classification forces a somewhat arbitrary choice for
an unambiguous case. Moreover, classification attempts to subdivide a problem into clear-cut
classes, whereas real data includes many borderline cases. The annotation conventions used
in this these are discussed in chapter 1.

Linguistic resources

A linguistic resource is any electronic resource (i.e. file or database) describing a particular
aspect of a language or sub-language (e.g. dialect, technical field, etc.), and organised in a
manner that can be directly interpreted by a software system. These resources can include
annotated corpora, lexical resources, ontologies, formal grammars, etc. It is fairly straightfor-
ward to make use of “generic” resources with pretence to cover the language as a whole rather
than a sub-language. A practical question in supervised machine learning is whether any use
can be made of resources specific to the sub-language of an evaluation corpus. If a resource
is not applicable to the training corpus, how can we take it into account in the learning pro-
cess? Resources are initially introduced in chapter 4. Experiments with the incorporation of
external resources are presented in chapter 7.

Applications

Only a subset of linguists are interested in syntax analysis as an end in and of itself—and these
are generally horrified by the approximate results provided by statistical machine learning
systems. Most others are only interested in syntax analysis as a means to an end: automatic
translation, automatic transcription of speech, terminology extraction, information retrieval,
linguistic resource construction, etc. In this thesis, an application refers to the “client” of
the syntax analyser, being the next step in the chain: the extraction of term candidates, the
construction of an automatic semantic resource, etc. A first question is: Does syntax analysis
produce better results than approaches which ignore syntax? This thesis, prepared in a
laboratory with a long tradition of syntax analysis using the Syntex software, will take this as
a given. A next question is: is the same type of syntax analysis required for all applications?
Some applications may only be concerned with verb predicate structure, others may not
be concerned at all with long-distance relations. Is it possible to tune the syntax analyser
to increase precision or recall for certain phenomena at the cost of others? Applications
also differ by their target corpora: terminology extraction, for example, typically concerns

18

technical domains and genres. To what extent can we tune the syntax analyser for these
corpora, in terms of methodology and resources? While we do not tackle these questions
directly in the present thesis, they guide us in terms of our system design, and the future
perpectives to which we would like it to open.

Thesis plan

This thesis is divided into three parts. Part 1, “Robust dependency parsing: a state
of the art”, contains the following chapters:

• Chapter 1: Dependency annotation and parsing algorithms. This chapter
presents the final annotation results we wish our system to reproduce, explaining how
to annotate certain complex syntactic phenomena in French. It then gives a brief history
of dependency parsing, and the various types of parsing algorithms that have been used,
concentrating on transition-based parsing used in the present thesis.

• Chapter 2: Supervised machine learning for NLP classification problems.
This chapter explains the formal concepts behind supervised machine learning, in terms
of training, analysis and evaluation, illustrated by the case study of part-of-speech
tagging. Finally, it gives an overview of the three major supervised machine learning
projects in which I was involved: Jochre (for OCR), authorship attribution, and the
Talismane syntax analyser.

Part 2, “Syntax analysis mechanism for French”, takes the concepts presented in
the previous chapters and shows how they are implemented in the current thesis. It is divided
into the following chapters:

• Chapter 3: The Talismane syntax analyser: details and originality. In this
chapter, we delve into the philosophy behind the Talismane syntax analyser, and its
general architecture. We examine how each of the steps performed by Talismane is
transformed into a classification problem within the four modules: sentence detection,
tokenisation, pos-taging and parsing. We examine the methods used to define features,
rules and filters. Finally, we compare Talismane with similar projects.

• Chapter 4: Incorporating linguistic knowledge. In this chapter we look into
the various methods and resources used to incorporate linguistic knowledge into the
syntax analysis mechanism. We also analyse the specific resources used for the default
French implementation of Talismane: the French Treebank (and a version automatically
converted into dependencies), various other evaluation corpora, and the LeFFF lexicon.
Finally, we describe the baseline features used by all four of Talismane’s modules, and
some of the reasoning behind the selection of these features.

Part 3, “Experiments”, takes the baseline system defined in the previous chapters,
evaluates it, and then attempts to improve on the initial evaluation results. It is divided into
the following chapters:

• Chapter 5: Evaluating Talismane. In this chapter we perform an evaluation of
Talismane with the baseline features from the previous chapter, using a variety of robust
probabilistic classifiers and parameters, in order to select the best baseline configuration.

INTRODUCTION 19

We also evaluate the contribution of the beam search and beam propagation, and explore
the concept of system confidence.

• Chapter 6: Targeting specific errors with features and rules. In this chapter,
we attempt to correct certain specific errors through the use of highly specific features
and rules that tackle specific linguistic phenomena.

• Chapter 7: Improving parsing through external resources. In this chapter, we
extend the study in the previous chapter, reviewing various ways for incorporating exter-
nal resources into the features and rules. We give a state-of-the-art for semi-supervised
approaches, describe distributional semantic resources, and present an experiment where
these resources are used to improve the parsing of coordination.

We finish the thesis with our conclusions and future perspectives.

Part I

Robust dependency parsing: a state
of the art

21

Chapter 1

Dependency annotation and parsing
algorithms

This chapter examines the basic nuts-and-bolts of dependency parsing. However, before we
begin to look at the parsing algorithms themselves, section 1.1 describes the end-result of the
parsing task: what annotations is our system meant to produce? Section 1.2 then examines
the various algorithms capable of producing such annotations, while leaving the statistical
machine learning aspects to the following chapter. Our analysis of parsing algorithms will be
colored by our primary objective: to maximize the amount of linguistic knowledge that can
be injected into the system without sacrificing maintainability or robustness.

1.1 Dependency annotation of French

1.1.1 Token and pos-tag annotations

Before delving into dependency annotation itself, we examine two preliminary annotation
tasks which are generally assumed as input to the parsing task: tokenising and pos-tagging.

A token is a single syntactic unit, which may or may not correspond to a single word as it
appears graphically on the page. In French, for example, the subordinating conjunction bien
que is a single token comprised of two separate words on the page, and known as a compound
word. The word duquel is an agglutinated form, composed of two tokens, corresponding to
the words de and lequel. Tokenisation is the task of automatically dividing a sentence into
tokens. This thesis follows the fairly standard convention of marking compound words with
an underscore (e.g. “bien_que”). The few existing aggultinated forms are not tokenised
in any specific way (e.g. empty token insertion), because of their non-productive nature in
French. Instead, they are assigned a compound pos-tag (P+D for “du”, P+PRO for “duquel”).

Pos-tagging is the task of assigning a part-of-speech (or POS) to each token. A tagset
is the full set of POS-tags used for annotation. The tagset used in this dissertation is as
per Crabbé and Candito [2008], with the exception of interrogative adjectives (ADJWH), which
have been assimilated with interrogative determiners (DETWH), and includes the tags shown
in table 1.1.

In our case, the pos-tagger also attempts to find a token’s lemma: its basic non-inflected
form that would be used as a dictionary entry, e.g. the infinitive for a conjugated verb, the
singular for a noun, and the masculine singular for an adjective. Furthermore, it attempts

23

24 1.1. DEPENDENCY ANNOTATION OF FRENCH

Tag Part of speech
ADJ Adjective
ADV Adverb
ADVWH Interrogative adverb
CC Coordinating conjunction
CLO Clitic (object)—A “clitic” is a pronoun always

appearing in a fixed position with respect to the
verb

CLR Clitic (reflexive)
CLS Clitic (subject)
CS Subordinating conjunction
DET Determiner
DETWH Interrogative determiner
ET Foreign word
I Interjection
NC Common noun
NPP Proper noun
P Preposition
P+D Preposition and determiner combined (e.g.

“du”)
P+PRO Preposition and pronoun combined (e.g.

“duquel”)
PONCT Punctuation
PRO Pronoun
PROREL Relative pronoun
PROWH Interrogative pronoun
V Indicative verb
VIMP Imperative verb
VINF Infinitive verb
VPP Past participle
VPR Present participle
VS Subjunctive verb

Table 1.1: French tagset used in this thesis [Crabbé and Candito, 2008]

to identify additional sub-specified morpho-syntactic information, such as the gender, num-
ber, person and tense. By “sub-specified”, we mean that each piece of information (gender,
number, etc.) is only provided when it is available—unlike the postag itself, which is always
provided.

1.1.2 Dependency annotation standards

Automatic syntax analysis generally generates either constituency and dependency repre-
sentations of a sentence, both of which represent the sentence as a tree. In constituency
representations (also known as phrase-structure representations), directly inspired by the
phrase-structure grammars found in [Chomsky, 1957], the intermediate nodes of the tree are

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 25

phrases whereas the leaf nodes are words. In dependency representations, first formalised by
Tesnière [1959], all of the tree’s nodes are words, with each word except for the central verb
governed by another word.

Example 1.1 shows a typical sentence in French, for which we have constructed a con-
stituency tree (left) and a dependency tree (right). In the dependency tree, note in particular
the addition of a root node, an artifact whose purpose is to guarantee that each word in the
sentence has a governor, including the central verb.

Example 1.1 Je décris les tas de lard.
(I describe the piles of bacon = I’m describing the piles of bacon.)

SENT

NP-obj

PP

NP

lard

de

tasles

VN

décris

NP-suj

je

ROOT

décris

tas

de

lard

[obj]

les

[det] [mod]

je

[suj] [obj]

However, it is far more common to visualise the dependency tree as a set of directed
labelled arcs above the sentence, and this convention will be used in the present dissertation,
as in example 1.2. Arcs will be directed from the governor to the dependent. When referring
to individual arcs within this tree, we’ll use the convention label(governor, dependent), as in
suj(décris, je) in the previous example. If a word appears more than once, we’ll add a numeric
index after the word, to indicate which occurrence is being referenced.

Example 1.2 Je décris les tas de lard.
(same sentence in typical dependency tree representation)

Je décris les tas de lard
CLS V DET NC P NC

root

suj det

obj

dep obj

Note that we can easily convert a constituency tree into a dependency tree, except that
a heuristic is required to determine the head of each phrase. Similarly, we can convert a
dependency tree into a constituency tree, except that a heuristic is required to determine the
phrase label.

In the above examples, the constituency tree uses structures defined for the French Tree-
bank [Abeillé et al., 2003], hereafter FTB, which is the manually syntax-annotated resource
most often used for training statistical French parsers. The dependency tree uses structures
from the automatic conversion of the French Treebank to a dependency treebank [Candito

26 1.1. DEPENDENCY ANNOTATION OF FRENCH

et al., 2010a], hereafter FTBDep. Indeed, except where otherwise indicated, all of the de-
pendency trees in this section directly follow the annotation guide at Candito et al. [2011b].
These labels are summarised in table 1.2, table 1.3, and table 1.41. In these three tables, the
dependent is shown in italics, whereas the governor is shown in bold.

Label Description Example
suj subject Il mange.
obj direct object Il mange une pomme.
de_obj argument introduced by de, non locative Je parle de lui.
a_obj argument introduced by à, non locative Je pense à lui.
p_obj argument introduced by another preposi-

tion
Je lutte contre les méchants.

ats predicative adjective or nominal over the
subject, following a copula

Il est triste.

ato predicative adjective or nominal over the
object

Je le trouve triste.

mod adjunct (non-argumental preposition, ad-
verb)

Je pars après lui.

aux_tps tense auxiliary verb Il a mangé.
aux_pass passive auxiliary verb Il a été renvoyé.
aux_caus causative auxiliary verb Je le fais corriger.
aff clitics in fixed expressions (including

refexive verbs)
Je me lave.

Table 1.2: Dependency labels for verbal governors [Candito et al., 2011b]

The dependency paradigm may thus be summarised as follows: for each word in the
sentence, draw an arc attaching it to a single syntactic governor2, and add a dependency
label to each arc from a set of predefined labels.

This approach is attractive for several reasons: first, it directly translates the predicate-
argument structure of verbs (and potentially other governors), by attaching the arguments
directly to their governor and adding labels to indicate what type of arguments they are.
Example 1.3 shows the predicate-argument structure for the verb “parler”.

1We differ from the manual annotations in Candito et al in one aspect: the mod_cleft relation for cleft

sentences marks the copula’s predicate, rather the verb être, as the governor for the subordinate clause verb.

In this respect, we annotate it identically to a normal relative subordinate clause.
2In this sense, the vast majority of modern dependency parsers differ from Tesnière’s original work, which

allowed multiple governors for each word

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 27

Label Description Example

root governs the central verb of a sentence by
an imaginary root node

[root] Je mange une pomme

obj objects of prepositions and subordinating
conjunctions

Le chien de ma tante. Il faut
que je m’en aille.

mod modifiers other than relative phrases Une pomme rouge

mod_rel links a relative pronoun’s antecedent to
the verb governing the relative phrase

La pomme que je mange

coord links a coordinator to the immediately
preceding conjunct

Je mange une pomme et une
orange.

dep_coord links a conjunct (other than the first one)
to the previous coordinator

Je mange une pomme et une
orange.

det determiners Je mange une pomme.
ponct relation governing punctuation, except for

commas playing the role of coordinators
Je mange une pomme [.]

dep sub-specified relation for prepositional de-
pendents of non-verbal governors (cur-
rently, no attempt is made to distinguish
between arguments an adjuncts for non-
verbal governors)

une tarte aux pommes

arg used to tie together linked prepositions Je mange de midi à 1h.

Table 1.3: Dependency labels for non-verbal governors [Candito et al., 2011b]

Example 1.3 A la réunion, j’ai parlé de vous à mon patron.
(At the meeting I have spoken of you to my boss = At the meeting, I spoke about you to my boss)

A la réunion, j’ ai parlé de vous à mon patron.
P DET NC CLS V VPP P PRO P DET NC

root

aux_tps

sujobj

det de_obj obj

a_obj

obj

det

mod

It is of course possible to include functional labels on the phrases in a constituency struc-
ture (as was done for suj and obj in example 1.1), mirroring the predicate-argument structure,
but their interpretation is less direct. Furthermore, in dependency structures, it is straight-
forward to represent these predicate-argument structures even when they cross other arcs,
as in example 1.4, where the root arc to the central verb devrais is crossed by the a_obj

argument of the verb parler.

28 1.1. DEPENDENCY ANNOTATION OF FRENCH

Label Description Example
p_obj_loc locative verbal arguments (source, desti-

nation or localistion)
Il y va. Il rentre chez lui.

mod_loc locative adjuncts Je mange à la maison.
mod_cleft in a cleft sentence, links the copula’s pred-

icate to the verb governing the relative
clause

C’est lui qui a volé la pomme.

p_obj_agt the preposition introducing the agent in
the case of passive or causative

Il a été mangé par un ogre.

suj_impers the impersonal subject il Il faut partir.
aff_moyen for the so-called “middle” reflexive con-

struction in French (“se moyen”)
Ce champignon se mange.

arg_comp links a comparative “que” with its adver-
bial governor

Il est plus grand que moi.

arg_cons links a consecutive phrase to its adverbial
governor

Il fait trop chaud pour sortir.

Table 1.4: Additional more specific relations, currently reserved for manual annotation only
[Candito et al., 2011b]

Example 1.4 A qui devrais-je parler à la réunion ?
(To whom should I talk at the meeting ?)

A qui devrais -je parler à la réunion ?
P PROWH V CLS VINF P DET NC

root

suj

objobj

mod

a_obj

obj

obj

det

Another advantage of dependency representations is the relative ease with which they can
be incorporated into machine learning algorithms. Indeed, the yes-or-no question of whether
or not an arc should be drawn between two nodes is more straightforward for a machine than
the open-ended question of where phrase frontiers start and end (see section 1.2 for algorithm
details).

1.1.3 A closer look at certain syntactic phenomena

We have now outlined the general nature of dependency annotation. The specifics of this
paradigm are best illustrated by applying it to several more complex syntactic structures.

1.1.3.1 Relative subordinate clauses

As mentioned previously, the vast majority of dependency parsers add a constraint (not in
Tesnière’s original work) that every word in the sentence can have only a single governor.
This affects, for example, encoding standards for relative pronouns. Since we cannot have

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 29

both the antecedent and the relative clause verb govern the relative pronoun, we have to
choose one or the other. Take, for example, the sentence “L’homme qui parle est mon oncle”
(“The man who’s speaking is my uncle”). If we were to allow more than one governor, we
might be tempted to annotate this sentence as in example 1.5, with both the antecedent and
the relative clause verb governing the relative pronoun qui. However, we still have to decide
who is to govern the central verb of the relative clause—the most likely candidate being the
antecedent.

Example 1.5 L’homme qui parle est mon oncle.
(The man who speaks is my uncle = The man who’s speaking is my uncle.)

L’ homme qui parle est mon oncle.
DET NC PROREL V V DET NC

root
suj

det antecedent

mod_rel

suj

ats

det

Now, one of the governors for qui has to be removed. Removing the arc suj(parle,qui)
would hide the argument structure of the verb parler. Instead, we decide to remove the
arc antecedent(homme,qui), so that the antecedent has to be inferred by following the arcs
backwards from qui until we reach the governor of the mod_rel relation. This solution is
shown in example 1.6.

Example 1.6 L’homme qui parle est mon oncle.
(The man who speaks is my uncle = The man who’s speaking is my uncle.)

L’ homme qui parle est mon oncle.
DET NC PROREL V V DET NC

root
suj

det suj

mod_rel ats

det

Relatives can easily give rise to crossed dependencies, whenever the relative pronoun is
the object of a verb other than the main verb of the relative clause. Example 1.7 gives an
example of such a sentence.

Example 1.7 J’ai trouvé un livre que je veux acheter.
(I have found a book that I want to_buy.)

J’ ai trouvé un livre que je veux acheter
CLS V VPP DET NC PROREL CLS V VINF

root

aux_tps

suj obj

det

mod_rel

suj obj

obj

Now, representing this sentence in a constituency tree would be a challenge, since the
verb phrase acheter que is discontinuous. It can be done only if we allow the leaf nodes of

30 1.1. DEPENDENCY ANNOTATION OF FRENCH

the constituency tree to violate the original word order. Moreover, the context-free grammars
which are most commonly used to generate constituency trees would be incapable of producing
such a tree, since they cannot generate discontinuous phrases.

1.1.3.2 Coordination

One syntactic structure which is inherently difficult to parse automatically is coordination.
Indeed, the first conjunct of a coordinated structure can typically only be identified by ex-
amining the rest of the sentence. Consider the following three sentences:

1. J’ai mangé une pomme rouge et mûre.

2. J’ai mangé une pomme rouge et une orange.

3. J’ai mangé une pomme rouge et Georges a bu du thé.

In these fairly simple cases, it is enough to examine the parts-of-speech immediately
following the coordinating conjunction in order to choose the correct conjuncts, except in
the last case, where we have to decide whether or not Georges gets eaten. Nevertheless, we
see that nothing preceding the coordinating conjunction can allow us to determine the first
conjunct.

Two options are typically used in dependency annotation schemes for coordination: either
we mark the coordinating conjunction as the head, or we mark the first conjunct as the head.
Example 1.8 shows the first scheme, which is logically more attractive, in that it puts both
of the conjuncts at the same level.

Example 1.8 J’ai mangé une pomme rouge et une orange.
(I have eaten an apple and an orange = I ate an apple and an orange)

J’ ai mangé une pomme et une orange.
CLS V VPP DET NC CC DET NC

root

aux_tps

suj

obj

det dep_coord

dep_coord

det

In example 1.9, we see an alternative annotation scheme, which is the one used by Candito
et al. [2011b], and hence the one used in this thesis. Here the head of the coordination struc-
ture is the first conjunct. While at first this is less logically appealing, it has a considerable
practical advantage over the previous annotation scheme: any governors or dependents of the
coordination as a whole are directly linked to the first conjunct (generally a content word),
rather than to the coordinating conjunction. Therefore, the same set of features is useful
regardless of whether the governor/dependent is a coordinated structure or a simple token.

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 31

Example 1.9 J’ai mangé une pomme rouge et une orange.
(same as previous example, different annotation)

J’ ai mangé une pomme et une orange.
CLS V VPP DET NC CC DET NC

root

aux_tps

suj obj

det coord

dep_coord

det

Consider the case shown in example 1.8. When trying to find the object of the verb manger,
a parser would need to decide between pomme and et. This would require it to decide whether
or not pomme is inside a coordinating structure, prior to identifying the object of manger.
If the parser works left-to-right, it would have to recognise the coordinating structure prior
to having constructed it. In the sentence J’ai mangé une pomme rouge et mûre, the parser
would need to recognise that et coordinates rouge and mûre before being able to take any
decision regarding the object of manger. The situation is far simpler in the first-conjunct
headed scheme shown in example 1.9. Regardless of whether pomme is coordinated or not,
it is always the object of manger. The decision as to what is coordinated by et can be taken
separately, and does not have non-local consequences to other dependencies in the sentence.

Now, let us consider the case of three or more conjuncts, where the coordinated structure
as a whole is modified by a dependent, as shown in example 1.10. In this case, there is an
unresolvable ambiguity as to whether the adjective mûres modifies the entire coordination or
the last conjunct only. In our annotation, we’ve assumed it modifies the entire coordination.
This solution is quite elegant, and makes it immediately clear which tokens govern or are
governed by the coordinated structure as a whole, and which ones are governed by a single
conjunct.

Example 1.10 J’ai trouvé des pommes, des oranges et des poires mûres.
(I have found some apples, some oranges and some pears ripe = I found some ripe apples, oranges and pears)

J’ ai trouvé des pommes , des oranges et des poires mûres.
CLS V VPP DET NC , DET NC CC DET NC ADJ

root

aux_tps

suj

obj

det

dep_coord

dep_coorddet det

dep_coord

dep

The same sentence is shown in example 1.11, but with Candito et al’s annotation scheme.
In this conjunct-headed coordination scheme, the conjunction itself is governed by the con-
junct immediately preceding it. Because the conjunction can have at most one governor, this
coordination scheme needs to make use of punctuation as soon as more than two conjuncts
are involved, in this case the coordinating comma (another option would have been to tie the
first two conjuncts directly with a dep_coord relationship). The question of how to attach
the final adjective (assuming it modifies the entire coordination) is left open in Candito et

32 1.1. DEPENDENCY ANNOTATION OF FRENCH

al’s guide. In our own manual annotation projects, we have decided to attach it to the first
conjunct as a fairly unambiguous sign that it is attached to the structure as a whole, just as
the governor of the coordinated structure is made to govern the 1st conjunct.

Example 1.11 J’ai trouvé des pommes, des oranges et des poires mûres.
(Same as previous sentence, different annotation scheme)

J’ ai trouvé des pommes , des oranges et des poires mûres.
CLS V VPP DET NC , DET NC CC DET NC ADJ

root

aux_tps

suj obj

det coord

dep_coord

det coord det

dep_coord

dep

The question of specific features that help make coordination decisions within the context
of the latter annotation scheme is handled in section 6.4.1.

1.1.3.3 Structures not covered by the annotation scheme

The surface annotation scheme described here is not capable of handling all syntactic con-
structs in French.

In particular, it is quite difficult to handle various elliptic structures (head-gapping, right-
node raising, left-subject elision). Example 1.12 shows a head-gapping example. Without
introducing an empty placeholder token after the conjunction et, there is no clear solution
to indicating the second conjunct of the coordinated structure. Moreover, we’d need to
show that the subject is governed by the coordination as a whole, whereas the direct and
indirect objects are distributed among the conjuncts. The annotation shown gives the most
satisfying solution on the assumption that empty placeholders are never introduced in surface
annotation. At least it has the merit of uniquely identifying this type of elliptic structure: a
verb with two arguments of the same type, separated by a coordinated conjunction with no
dependent conjunct.

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 33

Example 1.12 J’ai donné des pommes à Paul et des poires à Pierre.
(I have given some apples to Paul and some pears to Peter = I gave apples to Paul and pears to Peter)

J’ ai donné des pommes à Paul et des poires à Pierre.
CLS V VPP DET NC P NPP CC DET NC P NPP

root

aux_tps

suj obj

det

coord

a_obj

obj

a_obj

obj det obj

Other structures pose problems as well. Example 1.13 shows an example where we have
to decide whether to privilege the coordination or the subordinate clause, since otherwise the
verb fait has two governors. Neither solution is satisfying.

Example 1.13 C’est une ville jolie et où il fait bon vivre.
(It’s a town pretty and where it makes good to_live = It’s a pretty town where life is pleasant)

C’ est une ville jolie et où il fait bon vivre.
CLS V DET NC ADJ CC PROREL CLS V ADJ VINF

root

suj

ats

det dep coord

dep_coord

suj_impers obj

obj

p_obj_loc

mod_rel

Such phenomena are presumably quite rare in usage, and statistical systems are notori-
ously bad at correctly annotating rare cases, even if we did manage to define clear annotation
rules in such cases. In cases when no clearly correct annotation solution can be found, our
secondary annotation objective becomes to annotate in such a way that can be easily and
unambiguously identified when searching for these structures in a corpus.

This enables us to measure a phenomenon’s rarity in manually annotated corpora, even if
its rarity implies that our statistical parser is unlikely to annotate the phenomenon correctly.

1.1.4 Projectivity

A distinction can now be made between projective and non-projective dependency trees. A
projective dependency tree is one in which the dependency arcs can be drawn without any of
the arcs crossing. An alternative and equivalent definition is that for a projective dependency
tree, for any governor G and dependent D, all nodes lying between G and D are descendants
of G. Languages such as French and English are largely projective, although there are some
exceptions, as was already shown in example 1.4 and example 1.7.

Other typical cases of non-projectivity in French include the clitic en shown in exam-
ple 1.14, the comparative shown in example 1.15, and the relative pronoun dont shown in

34 1.1. DEPENDENCY ANNOTATION OF FRENCH

example 1.16, which is a similar structure to the previous example with que. Finally, we
have structures where the non-projectivity is optional and chosen by the speaker, as in exam-
ple 1.17.

Example 1.14 J’en veux trois.
(I of_them want three = I want three of them)

J’ en veux trois.
CLS CLO V DET

root

suj

obj

det

Example 1.15 Il est plus grand que moi.
(He is more big than me = He’s bigger than me)

Il est plus grand que moi.
CLS V ADV ADJ CS PRO

root

suj mod

ats
arg_comp

obj

Example 1.16 J’ai vu l’homme dont il est le frère.
(I have seen the man of_whom he is the brother = I saw the man whose brother he is)

J’ ai vu l’ homme dont il est le frère.
CLS V VPP DET NC PROREL CLS V DET NC

root

suj

aux_tps

obj

det

mod_rel

suj

ats

det

dep

Example 1.17 La réunion aura lieu sur la question demain.
(The meeting will take place on the question tomorrow)

La réunion aura lieu sur la question demain.
DET NC V NC P DET NC ADV

root

suj objdet

dep

obj

det

mod

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 35

1 Je je CLS cln n=s|p=1 2 suj
2 décris décrire V v n=s|p=1|t=pst 0 root
3 les le DET det n=p 4 det
4 tas tas NC nc g=m 2 obj
5 de de P P 4 dep
6 lard lard NC nc g=m|n=s 5 obj
7 . . PONCT PONCT 2 ponct

Table 1.5: Sample Talismane output using the CoNLL-X format

1.1.5 Standard output formats

With the advent of dependency parsing evaluation campaigns such as Nivre et al. [2007a],
most dependency parsers now propose a standardised output format derived from the CoNLL
X task. Table 1.5 shows sample Talismane output using the CoNNL-X output format, for the
sentence given in example 1.1.

In this structure, the columns are as follows:
1 Sequential index
2 Token
3 Lemma
4 Pos-tag
5 Grammatical category
6 Morpho-syntactic information
7 Index of governor (from column 1)
8 Dependency label

As can be seen, the individual dependency arcs can be extracted by taking columns 2 (depen-
dent) and 8 (label), and then referencing column 7 to column 1 for the governor. Let us say
we want to extract noun phrases for a terminology extractor: for a noun located on line n,
this comes down to finding all of the nodes where n appears in column 7, and then recursively
finding these nodes’ children in a similar manner.

Many works in areas requiring a large number of frequency-weighted features to charac-
terise a document take raw dependency arcs as input, typically in the form POS-label-POS,
accepting any artifacts introduced by the dependency annotation scheme without further
analysis. This includes applications such as document classification/comparison [Goldberg
and Orwant, 2013] and authorship attribution [Tanguy et al., 2011]. Other applications re-
quire the reconstruction of more or less complex relationships, including deep syntax (logical
subject, etc.) from the surface annotations. Our annotation scheme attempts to make it
possible to extract such information whenever possible.

1.2 Dependency parsing algorithms

Having examined the dependency annotation of French, we now turn to the algorithms used to
generate these annotations. In this chapter, we will concentrate on the non-probabilistic part
of the algorithm: the nuts and bolts used to construct the dependency tree, while abstracting
away the machine learning system which gives probabilities to each decision at each step of

36 1.2. DEPENDENCY PARSING ALGORITHMS

the algorithm. In chapter 2 we will examine the working of probabilistic machine learning
algorithms. Although there is a long tradition of constituency-tree generating algorithms,
ranging from PCFG (probablistic context-free grammar) parsers [Collins, 1999, 2003, Char-
niak, 2000, Petrov et al., 2006] to TAG (tree-adjoining grammar) parsers [De La Clergerie
et al., 2009], to parsers such as FIPS inspired by Chomsky’s generative grammar [Wehrli,
2007], we will limit ourselves to parsers which directly generate dependency trees. Certain
studies have automatically converted PCFG-generated trees to dependency trees [Candito
et al., 2010b], but we will not explore such parsers in the present work.

Will make two distinctions: a first one between rationalist and empiricist parsers, and a
second one, among empiricist parsers, between graph-based and transition-based parsers.

1.2.1 Rationalist vs. empiricist parsers

We follow Church [2011] in defining NLP techniques as either rationalist or empiricist. Al-
though Church does not discuss parsing in particular, the general definition is easily applica-
ble. In a rationalist parser, the linguist attempts to describe the language as completely as
possible via a set of rules, and the system uses this description to attempt to parse unknown
sentences. A rationalist parser can either use a formal grammar (CFG, HPSG, LFG, TAG,
etc.), or a series of heuristic rules. It can make use of statistics to make certain decisions, but
statistics are secondary, and are only called in to help when the built-in linguistic knowledge
is insufficient to make a decision.

Empiricist methods, on the other hand, are completely data-driven, and use machine
learning techniques to learn statistical probabilities from the data. They can be rules-based
(e.g. PCFG), but rules and rule probabilities are learned directly from the training data.
Linguistic knowledge can be incorporated into the system as features to describe the training
data, but is not used to constrain decisions.

I will take Syntex [Bourigault, 2007] as an example of a rationalist dependency parser,
in this case based on a series of heuristic rules. The choice of Syntex is motivated by that
fact that (a) it was developed in our CLLE-ERSS laboratory and (b) it was the best-scoring
parser in the EASY evaluation campaign for syntactic parsers of French [Paroubek et al.,
2006]. The EASY campaign came about at time when rationalist parsers were at their apex
for French, and empiricist parsers had not yet entered the arena, for the simple reason that
the first (and only) treebank for French—the French Treebank [Abeillé et al., 2003]—had
only just been completed. Indeed, one of the stated goals of the EASY campaign was the
automatic generation of a treebank.

Syntex is built of a series of modules, each of which examines a particular type of syntactic
relation (subject, direct object, etc.). It uses a waterfall approach, in which a sentence
is analysed iteratively by different modules, each one using the dependency arcs added by
the previous modules to make its decisions. In the first pass, local dependencies are added
(determiners governed by nouns, objects governed by prepositions). In the second pass,
unambiguous dependencies are added. In the third pass, ambiguous dependencies are resolved.
In each pass, the various modules use a series of heuristic rules to make their decisions. The
heuristic rules are coded within the modules, and no attempt was made to extract them into
any sort of formal grammar. The order in which modules tackle a sentence in each pass is
coded into the system as well. Thus, this system represents an attempt by a computational
linguist, with skills in both programming and linguistics, to encode a vast amount of linguistic
knowledge of French into a parser, thus enabling it to parse any sentence using this knowledge.

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 37

The fact that this system performed better than formal grammar driven parsers seems
to indicate that formal grammars are not flexible enough to encode the linguistic knowledge
required to parse a sentence correctly, or else that the grammars written for French had not
yet reached the required maturity.

Syntex also uses so-called “endogenous” statistics to attempt to resolve the most ambigu-
ous questions, e.g. identifying the governors of prepositional phrases and relative clauses.
Endogenous here refers to search inside the entire corpus being analysed for cases of unam-
biguous attachment using the same dependent and one of the potential governors. This use
of statistics is radically different to data-driven approaches, where the entire parsing model
is determined from annotated data in the first place.

There are two main criticisms that can be leveled against rationalist parsers.
First of all, by definition, a strictly rule-based system cannot be robust: all input is di-

vided into grammatical and ungrammatical sentences, and only grammatical sentences can
be parsed. To become robust, such systems need to include a principled method for relaxing
constraints. This is particularly true of formal-grammar-driven systems. It is much more
difficult to judge the robustness of heuristics-driven systems, since the lack of a formal gram-
mar means it is very hard to determine to what extent the system can analyse a particular
sentence.

The second and more important question is that of maintainability. Because of the com-
plexity of human language, a rationalist system has to encode a huge quantity of rules (whether
grammatical or heuristic). Making even a minor change, such as the order in which two rules
are applied, can have drastic consequences to parsing decisions, far beyond the capabilities of
a linguist to imagine ahead of time. Testing modifications can only be made through trial-
and-error on regression test suites, and thus, in the long run, the system is no less opaque
than a statistical model, and far more difficult to maintain.

1.2.2 Graph-based parsers

Purely empirical approaches started appearing in the 1990’s for English. They were first tested
on French in Candito et al. [2010b], following the availability of an annotated treebank [Abeillé
et al., 2003]. Unlike rationalist systems, which attempt to encode a linguist’s knowledge of the
language as a whole, empiricist systems are limited to those phenomena directly observable in
the training corpus. On the other hand, they tend to be robust, with no a priori concept of
grammaticality. Furthermore, they tend to be fairly easy to maintain: the linguistic knowledge
is encoded in a set of features, whose weights are determined automatically by the machine
learning algorithm. Thus, adding or modifying a given feature is not likely to have drastic
effects on the system as a whole.

We will follow Kübler et al. [2009] in dividing empiricist dependency parsers into two main
categories: graph-based and transition-based. Graph-based systems treat the dependency tree
as a graph, and apply algorithms originating in graph theory. Central to this type of parsing
is the notion of a graph score, typically calculated as a recursive function of the sub-graphs
forming the total graph. This type of parser was first introduced by Eisner [1996] for projective
sentences, and was considerably extended by McDonald et al. [2005] with an implementation
of an MST (Maximum Spanning Tree) parser for both projective and non-projective sentences.

The basic MST system is non-projective: it begins with a fully connected digraph between
all nodes (tokens) in the sentence, and attempts to remove arcs until it finds the best-scoring
directed tree that is spanning (e.g. connected to all nodes) and rooted in the root artifact.

38 1.2. DEPENDENCY PARSING ALGORITHMS

This system uses variants of the Chu-Liu-Edmonds algorithm [Chu and Liu, 1965, Edmonds,
1967] with a complexity of O(n2). The projective version, requiring the application of an
additional constraint, has a complexity of O(n3). The projective graph-based system is very
similar to PCFG-based systems described above, and uses variants of the Cocke-Kassami-
Younger (CKY) algorithm [Younger, 1967]. As per Kübler et al. [2009, p.90]:

[. . .] projective graph-based models are in fact just context-free dependency
grammars where the underlying grammar generates all possible strings [. . .] and
all possible trees [. . .]

Now, let us say we wish to parse the sentence in example 1.18 using the non-projective
MST algorithm described in McDonald et al. [2005], Kübler et al. [2009].

Example 1.18 Je mange la pomme ici.
I eat the apple here = I’m eating the apple here

Je mange la pomme ici.
CLS V DET NC ADV

root

suj det

obj

mod

The graph based system begins with a fully-connected digraph shown in fig. 1.1. A set
of features is then used to define a score for each directed arc. These can include the two
tokens on either end of the arc as well as the sentence containing them. Thus, assuming
the tokens have been pos-tagged and lemmatised prior to parsing, we can construct features
out of their pos-tags, lemmas, lexical forms, relative or absolute positions, as well as any
intervening tokens, etc. However, in this version of the algorithm where features are applied
to individual dependency arcs (known as a 1st order system), we cannot construct features
based on partial parses (e.g. the node’s most likely head or left/right dependents).

Dependency labels are handled very simply as follows: for each directed arc from a gov-
ernor G to a dependent D, we give a score to each label, and retain only the single highest
scoring label. Labels are thus chosen independently of one another. The scoring mechanism
itself is the responsibility of the machine learning algorithm, and will not be discussed in this
chapter.

Next, we eliminate all arcs except for the highest-scoring incoming arc for each node, as
shown in fig. 1.2. For the sake of illustration, we artificially assumed that the highest incoming
arc for mange is je, with a score of 50, even if this is an unlikely result in any real system.

If this creates a cycle, the group of nodes contained in the cycle is treated as a single node,
and we attempt to find the highest-scoring incoming arc for this entire group. In fig. 1.3, we
have transformed the cycle between je and mange into a single node. The highest-scoring
incoming arc into this single node now comes from root, with a score of 40.

Finally, we retain the highest-scoring incoming arc for the entire group, in this case root→
mange, removing the previous incoming arc into the dependent mange. This gives us the final
acyclic parse shown in fig. 1.4. We now have a maximum spanning tree for this sentence.

By starting the analysis from a fully-connected digraph, non-projective graph-based sys-
tems do not privilege short-distance relations over long-distance ones, except when the fea-

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 39

root

je mange

la

pommeici

Figure 1.1: Graph-based MST parsing, step 1: fully connected digraph

root

je mange

la

pommeici

50

80

60

9030

Figure 1.2: Graph-based MST parsing, step 2: maximum incoming arcs

root

je mange

la

pommeici

40

60

9030

Figure 1.3: Graph-based MST parsing, step 3: cycles as nodes

40 1.2. DEPENDENCY PARSING ALGORITHMS

root

je mange

la

pommeici

40

80

60

9030

Figure 1.4: Graph-based MST parsing, step 4: final graph

tures indicate that this is an important factor, nor do they privilege projective solutions over
non-projective solutions.

Note that it is possible to use larger sub-graphs as the unitary scoring element of the MST
algorithm. In the system described above, the unitary scoring element, for which features were
calculated, was a single arc connecting 2 nodes. This is known as a 1st order system. In a
2nd order system, the unitary scoring element is a group of 3 nodes connected by 2 arcs. This
allows us to take into account small partial tree structures, but at the cost of higher complexity.
In the case of the 1st order model, we need to consider (n− 1)k outgoing arcs for each node,
where n is the number of nodes and k is the number of labels, for a total of n(n−1)k unitary
scoring elements. In the 2nd order model, we need to consider 3n(n−1)(n−2)k2 partial trees,
for the configurations n1→n2→n3, n1→n3→n2 and n2←n1→n3. Moreover, we have to deal
with statistical dispersion in the training corpus, as each partial tree will be much more rare.
McDonald and Pereira [2006], show that the 2nd order algorithm is NP-hard, but that certain
reasonable assumptions can be made to reduce the complexity to O(n3). Considerable work
has been performed on graph-based systems for French by Mirroshandel et al. [2012]—this
will be discussed further in the final chapter, section 7.3.1, page 198.

1.2.3 Transition-based parsers

By contrast to graph-based systems, which learn how to produce the tree structure directly
from a graph, transition-based systems tackle the sentence indirectly, by attempting to learn
a series of transitions that will enable the system to construct the tree one step at a time.
This approach was explored in depth by Nivre et al. [2007b] in his freely available MaltParser.
We will explore this paradigm in greater detail than the others, as it is the paradigm on which
Talismane is based.

The basic data structure used for parsing can be represented as follows:

• σ: a stack, or ordered sequence of tokens which have been partially processed

• β: a buffer, or ordered sequence of tokens which have not yet been processed

• ∆: a set of dependency arcs of the form label(governor, dependent) that have already
been added

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 41

• τ : a sequence of transitions allowing us to reach the current state from an initial state

A subscript is used to indicate the position of a token on the stack or buffer, where the σ0

indicates the token most recently added to the stack (the “top” of the stack), always to the
right of the remaining tokens on the stack, and β0 indicates the next token on the buffer (the
“head” of the buffer), always to the left of the remaining tokens on the buffer. By extension,
σ1 represents the token just below the top of the stack (notation extensible to any σn), and
β1 represents the token just after the head of the buffer (notation extensible to any βn). At
each step in the algorithm, we need to determine whether a dependency exists or not between
σ0 and β0. We are said to “push” to the stack when we move the token at the head of the
buffer to the top of the stack, and to “pop” the stack when we remove the token currently on
top of the stack.

For a given sentence, the initial state is one where the stack contains only the root artifact,
the buffer contains all of the sentence’s tokens in their original order. A final state is one
where the buffer is empty, and no more transitions are possible.

Moving from state to state is performed via a transition system: a set of allowable
transitions from a shift-reduce style algorithm. In the simplest case, known as the arc-standard
transition system, these include the transitions shown in table 1.6.

transition effect precondition
left-arclabel Create the dependency arc

label(β0,σ0) and pop the stack
σ0 is not the root node.

right-arclabel Create the dependency arc
label(σ0,β0), remove the head
of the buffer, and place the top of
the stack at the head of the buffer

shift push the head of the buffer to the
top of the stack

Table 1.6: The arc-standard transition system for shift-reduce dependency parsing

We will now return to the sentence in example 1.18, and attempt to parse it using a
transition-based parser. Table 1.7 shows a sequence of transitions that will parse this sentence
correctly, as well as the stack, buffer, and dependency set after each transition.

Note that, unlike graph-based systems, not all word pairs are examined. For example, je
and pomme are never compared to each other. More specifically, it has been shown [Nivre
et al., 2007b] that, unlike graph-based systems, transition-based systems are only capable of
generating projective dependency trees, and, in a given transition sequence, only word-pairs
respecting this projectivity constraint will be examined for dependency. Furthermore, Nivre
shows that the transition system above is capable of generating all projective dependency
trees for this sentence.

Note also that when we first compare root and mange before step 3, we cannot yet generate
the dependency root(root, mange) between them, since this would remove mange from the
buffer before we attached its object pomme. We can only perform this attachment at step 7,
after all of the right-hand dependents of mange have been attached. In other words, we can
only attach a right-dependent to a governor after all of the dependent’s own right-dependents
have already been attached.

42 1.2. DEPENDENCY PARSING ALGORITHMS

transition stack buffer dependencies
added

0 root je, mange, la, pomme,
ici

1 shift root, je mange, la, pomme, ici
2 left-arcsuj root mange, la, pomme, ici suj(mange,je)
3 shift root, mange la, pomme, ici
4 shift root, mange, la pomme, ici
3 left-arcdet root, mange pomme, ici det(pomme,la)
4 right-arcobj root mange, ici obj(mange,pomme)
5 shift root, mange ici
6 right-arcmod root mange mod(mange,ici)
7 right-arcroot ∅ root root(root,mange)
8 shift root ∅

Table 1.7: Sample transition sequence using the arc-standard shift-reduce transition system

Other than this recursive restriction, the sequence of transitions to apply is not determin-
istic. A left-dependency can either be attached the first time the governor and dependent are
compared, when building up the stack, or at any other time they are compared, as the stack
is getting smaller again. The transition sequence in table 1.8 will also produce the correct
parse, albeit with a different attachment order.

transition stack buffer dependencies
added

0 root je, mange, la, pomme,
ici

1 shift root, je mange, la, pomme, ici
2 shift root, je, mange la, pomme, ici
3 shift root, je, mange, la pomme, ici
4 left-arcdet root, je, mange pomme, ici det(pomme,la)
5 right-arcobj root, je mange, ici obj(mange,pomme)
6 shift root, je, mange ici
7 right-arcmod root, je mange mod(mange,ici)
8 left-arcsuj root mange suj(mange,je)
9 right-arcroot ∅ root root(root,mange)
10 shift root ∅

Table 1.8: Alternative parse using the arc-standard shift-reduce transition system

When training a machine learning system, we will be given a correctly annotated sentence,
and will have to determine the correct transition sequence used to construct this parse. The
algorithm used for this translation will have some say in the order in which dependencies
are generated. In practice, however, these algorithms tend to attach a dependent as soon as
possible.

Regarding the restriction on right-dependent attachment order, Nivre suggests that we

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 43

replace the classical shift-reduce algorithm above with what he calls an arg-eager system.
This system contains four transitions, as shown in table 1.9.

transition effect precondition
left-arclabel Create the dependency arc

label(β0,σ0) and pop the stack
The reverse dependency
any(σ0,β0) does not exist. σ0

is not the root node.
right-arclabel Create the dependency arc

label(σ0,β0), and push the head of
the buffer to the top of the stack

reduce pop the top of the stack the head of the stack has a
governor

shift push the head of the buffer to the
top of the stack

Table 1.9: The arc-eager transition system for shift-reduce dependency parsing

This new transition system allows us to generate all dependencies the first time the gov-
ernor/dependent pair is found at the σ0/β0 position (or vice versa), as shown in table 1.10.
In fact, we have to create the dependency at this point, since, unlike the previous system,
items previously pushed to the stack are never popped back onto the buffer. We thus have a
deterministic transition system, with a guarantee that left dependencies will always precede
right dependencies for a given governor, and that dependencies will be created from the inside
out (the dependency closest to the governor is created before those farther away). This is the
equivalent to a sequential left-to-right creation order (in terms of dependents, not governors),
with the exception of multiple left dependents (e.g. “la grande pomme”), which are inversed.
To illustrate this last point, we added the adjective grande to table 1.10: if we read the last
word in each dependency arc - the sequence of dependents is identical to the original word
sequence, with the exception of la and grande. Note that the burden of determining whether
a word has any more right-dependencies has now been shifted from the right-arc transition
to the reduce transition.

Let us now look at the features, i.e. the information that can be brought to bear on
each parsing decision. In graph-based systems, we were limited to features concerning the
token itself and the sentence containing it. In transition-based systems, we can also draw
information from the partial dependency tree that has already been constructed and, if we
thought it might be useful, from the sequence of transitions already applied. Since we know
the order of dependency creation (mostly left-to-right for the arc-eager transition system), it
is fairly straightforward to imagine features that translate linguistic knowledge into partial
tree structures. We can write features that take into account a potential governor’s governor,
or its current left and right-hand dependents, as well as the dependency labels assigned to all
of these various dependencies. This opens the door to a whole slew of rich features aimed at
constructing complex syntactic structures one step at a time.

We return to our initial objective: to maximize the amount of linguistic knowledge that
can be injected into the system without sacrificing robustness. Transition-based parsers are
robust, in that they are linear in complexity (analysis time component of robustness) and
empirical (no a priori concept of grammaticality). Furthermore, they allow the injection of
considerable linguistic knowledge, in the form of features, when compared to graph-based

44 1.2. DEPENDENCY PARSING ALGORITHMS

transition stack buffer dependencies
added

0 root je, mange, la, grande,
pomme, ici

1 shift root, je mange, la, grande,
pomme, ici

2 left-arcsuj root mange, la, grande,
pomme, ici

suj(mange,je)

3 right-arcroot root, mange la, grande, pomme, ici root(root,mange)
4 shift root, mange, la grande, pomme, ici
5 shift root, mange, la,

grande
pomme, ici

6 left-arcmode root, mange, la pomme, ici mod(pomme,grande)
7 left-arcdet root, mange pomme, ici det(pomme,la)
8 right-arcobj root, mange, pomme ici obj(mange,pomme)
9 reduce root, mange ici
10 right-arcmod root, mange, ici ∅ mod(mange,ici)

Table 1.10: Deterministic parse using an arc-eager shift-reduce transition system

parsers.
On the other hand, the linear order of comparison means that short-distance dependencies

are always examined before longer-distance dependencies, and in practice such systems tend
to generate shorter-distance dependencies at the expense of longer ones. Furthermore, certain
word pairs are never examined for a relationship, because earlier decisions would make an arc
between these word pairs non-projective.

We are now in a position to summarise some of the main differences between graph-based
and transition-based parsers, shown in table 1.11.

Parser type transition-
based

graph-based

Complexity O(n) O(n2)
Projective Yes No
Token features Yes Yes
Sentence features Yes Yes
Partial tree features Yes No
Dependency distance preference Short Neutral
Examines all word pairs No Yes

Table 1.11: Principle differences between transition-based and graph-based parsers

The Talismane syntax analyser described in this thesis is directly inspired by Nivre’s work
on parsing, but places it organically within the context of full syntax analysis, from raw text
to parse trees, extends it from a purely deterministic system to a beam-search approach, and
introduces a rich syntax for feature and rule description. These differences will all be covered
in more detail in chapter 3.

DEPENDENCY ANNOTATION AND PARSING ALGORITHMS 45

1.3 Discussion

We have attempted in this chapter to examine some of the more interesting questions in
the dependency annotation of French, and to explain the annotation choices made, with the
objective of correctly annotating the syntactic structures if possible, and, if not, at least
unambiguously identifying certain rare structures.

The second half of the chapter discussed and compared various parsing algorithms and the
types of features that can be used in these algorithms, especially the shift-reduce transition-
based parser with which the rest of this thesis is concerned. At one extreme, we have ratio-
nalistic parsers, allowing the injection of a huge amount of linguistic knowledge, but at the
expense of less robustness and maintainability. On the other extreme, we have graph-based al-
gorithms, which tend to make few simplifying assumptions about possible sentence structures,
but allow the incorporation of minimal linguistic knowledge. The choice of a transition-based
parser for Talismane allows us to inject more linguistic knowledge in the form of features
covering partially constructed syntactic structures, all the while remaining robust in terms of
both time performance and grammaticality assumptions.

Placing a detailed discussion of annotation at the start of this thesis is not an accident:
it is a conscious effort to place the actual annotation at the heart of the thesis, rather than
purely statistical measurements. We will attempt, in chapter 6, to use our understanding of
both annotation difficulties and parsing algorithms to try to design specific features that are
well-adapted to tackle specific linguistic phenomena within the framework of transition-based
parsing. This will lead us to both a qualitative and a quantitative analysis of these phenomena
within our training and evaluation corpora. But first, we need to gain an understanding of
the supervised machine learning algorithms that handle these features.

Chapter 2

Supervised machine learning for
NLP classification problems

In the previous chapter we covered syntax dependency annotation for French, and the al-
gorithms capable of generating such annotations. However, these algorithms were assumed
to make attachment decisions based on an oracle which somehow always knows the correct
answer.

This chapter replaces the oracle with a supervised machine learning system, which learns
which answers are the most probable by studying a manually annotated corpus. Using pos-
tagging as a case study, it explains various concepts behind supervised machine learning,
including features, training and analysis algorithms and probabilistic classifiers. The main
purpose of the chapter is to understand the mechanics of a supervised machine learning system
sufficiently to enable a linguist to inject linguistic knowledge into the system in a way useful
to the internal decision-making process.

Finally, the chapter gives an overview of the three major supervised machine learning
projects in which I was involved: the PAN shared task for authorship attribution, the Jochre
OCR system for Yiddish and Occitan, and the Talismane syntax analyser central to the
present thesis.

2.1 Preliminary definitions

Supervised machine learning can be seen as a process whereby a machine learns how to make
decisions enabling it to automatically produce similar annotations to those in a set of reference
data, generally produced manually by a human. Mohri et al. [2012] define machine learning
as follows:

Machine learning can be broadly defined as computational methods using expe-
rience to improve performance or to make accurate predictions. Here, experience
refers to the past information available to the learner, which typically takes the
form of electronic data collected and made available for analysis. This data could
be in the form of digitized human-labeled training sets, or other types of informa-
tion obtained via interaction with the environment. In all cases, its quality and
size are crucial to the success of the predictions made by the learner.

47

48 2.1. PRELIMINARY DEFINITIONS

Mohri et al. [2012] then specify the supervised learning scenario as follows (emphasis
mine):

The learner receives a set of labeled examples as training data and makes
predictions for all unseen points.

The goal in supervised machine learning is thus to make predictions for unseen data that
imitate the labels used in the training set. The most typical scenario is classification, where
the labels are categories, drawn from a closed set of nominal items, and the predictions apply
the same set of categories to unseen data.

Supervised learning is defined in contrast to the unsupervised scenario, where the training
examples are unlabeled data points. In unsupervised learning, the most typical scenario is
clustering, where we attempt to group the unlabeled training data into clusters, each of
which contains data points with similar characteristics.

Figure 2.1: Classification through supervised machine learning

Figure 2.1 shows a schematic diagram for classification through supervised machine learn-
ing. In the training phase, a software module which we call the trainer constructs a model
from annotated data, known as the training set. In addition to the annotated data itself,
the trainer requires a set of features used to describe this data. This feature set enables the
trainer to transform the data into a format readable by classifier, which is an interchangeable
software module directly responsible for constructing a model that can be used to analyse
unannotated data. Each classifier will have its own type of model, with a particular inter-
nal structure suitable for this classifer, which is not interchangeable with another classifier’s
model. When constructing the model, the classifier attempts to detect regularities in the
training data which can be generalised to any set of data being analysed. In the analysis
phase, performed by a software module known as the analyser, unannotated data is automat-
ically annotated by the system. The analyser first takes the unannotated data, and converts it
into a format readable by the classifier using the same feature set that was used for training.

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 49

The classifier then uses the previously constructed model to make individual classification
decisions, which are applied by the analyser to produce the final annotated data.

Throughout this chapter, we will illustrate the concepts presented through the case study
of a pos-tagger, responsible for learning how to assign part-of-speech tags to words in a raw
corpus.

Figure 2.2: Pos-tagging through supervised machine learning

Figure 2.2 shows the same diagram as before, but instantiated for the case of pos-tagging.
The training corpus is one in which each word has been annotated with a pos-tag (either
manually, or automatically at first, and then manually corrected). The features used are
information useful for the pos-tagging task, such as the suffix of a word. These will be
discussed in far more detail in section 2.4 below. The pos-tagger trainer takes the pos-tagged
corpus, and uses the features to transform it into a format usable by the classifier. The
classifier in turn builds a model specific to this set of features, and to the pos-tagging task.
For example, the model could contain a set of rules, e.g. “If the word ends with emph-ion,
than it is a common noun.” With this model constructed, we are now ready to ask the system
to add pos-tags to a raw corpus. When analysing the raw corpus, the pos-tagger uses the same
set of features transform the raw data into a format usable by the classifier. The classifier,
with the help of the previously constructed model, tells the pos-tagger which pos-tag to assign
to each word in the corpus, thus producing the final pos-tagged corpus.

In order to judge the quality of the model constructed, we often perform another phase,
evaluation, as shown in fig. 2.3. In this phase, the analyser is applied to previously annotated
data (the test set) rather than unannotated data. In order to ensure that our system per-
forms well on unseen data, the test set is completely separate from the training set. Another
software module, the evaluator, measures the system’s accuracy by comparing the auto-
matic annotations produced to the original manual annotations in the test set, and produces
an evaluation report containing various evaluation measures. More detailed definitions for
evaluation measures are given in section 2.7. We can also measure the system’s efficiency:

50 2.1. PRELIMINARY DEFINITIONS

Figure 2.3: Supervised machine learning evaluation

the speed at which it can process data, regardless of the accuracy.
We will now turn to a more technical definition for supervised machine learning found in

Murphy [2012]:

In the supervised learning approach, the goal is to learn a mapping from
inputs x to outputs y, given a labeled set of input-output pairs D = {(xi, yi)}Ni=1.
Here D is called the training set, and N is the number of training examples.

We will call the set of inputs X and the set of outputs Y. In the learning systems described
in the present thesis, each x ∈ X is a linguistic context and each y ∈ Y is a nominal label
(or category). Each (x, y) pair is known as a single training example. For our pos-tagging
case study, we instantiate this definition as follows:

• linguistic context x: a single token within a sentence (described in more detail in sec-
tion 2.3 below)

• label y: a label from the tagset defined in table 1.1 (e.g. NC, V, ADJ)

• training set D: an annotated corpus, or a collection of sentences within which each token
has been assigned a single pos-tag by a human annotator, with a total of N tokens

The goal of machine learning is to learn some sort of function of the form:

φ : X → Y (2.1)

Various methods for defining the function φ and for estimating its associated parameters are
described in section 2.8 below.

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 51

2.2 Annotation

In the present thesis, our training set is a manually annotated corpus of text, known as the
training corpus. Any portions of the annotated corpus set aside for testing are known as the
test corpus or evaluation corpus. The actual training and evaluation corpora used in our
thesis will be described in chapter 4. In this section, we consider this annotated corpus from
the perspective of training and evaluation in a machine learning system. It is assumed that
this corpus is representative of the sub-language we wish to be capable of analysing, so that
inferences may be drawn which will allow our machine learning system to correctly annotate
unknown text. We use the term “sub-language”, because it is naive to assume that a training
corpus can help us correctly annotate any variant of a given language, be it edited (published
material), unedited (e.g. blogs, wikis), or an oral transcription, and extracted from different
domains: journalistic, technical, literary, etc. Thus, the training corpus can be viewed as a
sample from some larger population, and, following Sinclair [2005], we would like to assume
that the corpus has been selected using external criteria to be as representative and balanced
as possible with respect to the sub-language in question.

In reality, however, because of the immense effort required to produce annotated corpora
and the difficulty of obtaining large bodies of freely redistributable text, we often have little
control over the sub-language being represented. Indeed, all of the systems described in
the present thesis were trained using the French Treebank [Abeillé et al., 2003], a corpus
of journalistic text drawn from a single newspaper (Le Monde) over the period of seven
years, and yet attempts are made to evaluate these systems against a variety of genres and
domains. This thesis will describe certain basic methods for attempting to generalise beyond
the training corpus, including feature generalisation through the use of external resources
(see section 4.3.1) and feature selection by means of a cutoff (see section 4.4.1). However,
when analysing text clearly belonging to another sub-language, we can attempt to improve
our inferences via more advanced methods for domain and genre adaptation, which will be
described in more detail in section 7.3.1.

2.3 Linguistic Context

In our discussion of supervised machine learning, we introduce a concept we will call the
linguistic context, which is the precise definition of the linguistic entity being considered
for each classification decision. In our pos-tagging case study, we have chosen to design a
left-to-right sequential pos-tagger, which analyses one token at a time from the start of the
sentence to its end. Whereas a simple definition of pos-tagging might state that we want
to assign a pos-tag to each token in a sentence, this definition fails to take into account the
sequential nature of the pos-tagger, and the fact that we already know the pos-tags assigned
to all previous tokens in the sentence. We thus define our linguistic context as the pair (token,
history), where token is the next token to be analysed in the sentence, including information
about the lexical form of the token, its index within the sentence, and the lexical forms of
all other tokens in the sentence, and history is a list of pos-tags already assigned to previous
tokens in the sentence.

A precisely defined and delimited linguistic context enables the linguist to understand the
information available at any given moment in the task, on which the features can be based.
This brings us to an initial discussion of features.

52 2.4. FEATURES

2.4 Features

In Mohri et al. [2012], features are defined as:

The set of attributes, often represented as a vector, associated to an example.

We replace the term example above with our own term, linguistic context, defined in
section 2.3. Thus, we will define features as:

The set of attributes associated to a given linguistic context. In a supervised
machine learning system, these attributes are the sole representation of the lin-
guistic context available to the classifier.

In a biological study, these attributes might be the height, weight, age and sex of a person.
In other words, as far as the study is concerned, the person is reduced to a vector containing
exactly these four attributes.

These features can be boolean (providing a true or false answer), e.g. ends-with-ion:
“Does the current token end with the characters -ion?” They can be numeric, e.g. length:
“What is the length of the current token?” They can return a textual result (known as a
string): e.g. suffix3: “What are the last three letters of the current token?”.

In this thesis, we will use the term feature to refer to the type of information that is
being requested, and feature result to refer to the actual information extracted from a given
context. The feature set F is simply an ordered set of features. The feature vector is
thus a list of feature results, each of which corresponds in position to a particular feature f in
the ordered set F . For example, let us say our feature set is comprised of the three features
described in the previous paragraph (ends-with-ion, length, suffix3). For the context
“bavardage” (associated with any history of previously assigned pos-tags), the corresponding
feature vector will be (false, 9, “age”).

In order to be useful, features must satisfy the following two criteria:

• predictive: a feature must provide information that can help the system select the
correct label to apply. In other words, different feature results should generally be
coupled with different labels.

• generalisable: a feature should generalise well to other corpora. In other words, if a
feature result is associated with a given label in the training corpus, it should generally
be associated with the same label in other corpora.

Selecting features that are both predictive and generalisable requires linguistic intuition,
and is one of the main ways in which the linguist interacts with the machine learning system.
For example, when examining words with various parts of speech in French, our initial intu-
ition is that the word’s suffix can help us predict the part of speech. Indeed, words ending in
“ion” (e.g. éducation, situation) are more likely to be common nouns, while words ending in
“ait” (e.g. mangeait, parlait) are more likely to be verbs in the imperfect tense. This leads us
to define the suffix3 feature above, since the last 3 letters seem sufficient in many cases. We
can assume our suffix3 feature is generalisable as well: words ending with “ion” are likely
to be common nouns regardless of the corpus genre or domain. Now, it may well be better
to define a specific list of suffixes, rather than taking all possible 3-letter suffixes: thus, the
actual feature corresponding to this intuition can take on several forms, and sometimes only
trial and error allow us to select the best one.

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 53

Let us take another example: our linguistic intuition tells us that certain sequences of
parts-of-speech are more probable than others. For example, in the training corpus, we
can easily notice that determiners are often followed by nouns. This is known as an n-
gram/indexn-gram, a sequences of length n for a particular linguistic entity type, in our case
the pos-tag itself. Indeed n-gram models of language, despite their limitations (short-distance
sequential coverage only), can be highly informative when sufficient data is available. This
information is transformed into a predictive feature by using the n− 1 preceding pos-tags to
try to predict the nth postag. Thus, in the case of a 2-gram (or bigram) feature, knowing
that the previous token’s pos-tag is DET (determiner) helps predict that the current token’s
pos-tag is likely to be NC (noun) as opposed to V (an indicative verb). Similarly, the 3-gram
(or trigram) feature tells us that, if the previous two pos-tags were (DET, ADJ), the current
pos-tag is likely to be a NC and very unlikely to be another DET. Now, we may wish to define
another feature based on the trigram observation that a number preceded by an determiner
and followed by a noun is systematically tagged as an adjective (e.g. “les 3 mousquetaires”).
However, our linguistic context (token, history) is missing information required to construct
this feature: the system can check if the previous token was tagged as a determiner, and that
the current token is a number, but it has no idea what the next token’s pos-tag will be (one
option here is to use an external lexicon, and check if the next token is listed as a noun in
this lexicon).

Note that although the linguist may feel that the features he defined are likely to be
predictive, it is up to the classifier to determine which features are actually most important
in a given situation. This is particularly important because features can give contradictory
results. For example, in the sentence “Le lait est bon”, when analysing the word lait, the
suffix3 feature gives a high probability for a verb, whereas the bigram feature gives a high
probability for a noun, and only the classifier can decide between the two, based on the
evidence found in the training corpus.

2.5 Training

The purpose of training is to take an annotated training corpus, and generate a predictive
model which captures regularities in the training data and can be used to make decisions on
unknown data.

The training algorithm for pos-tagging first needs to transform the annotated training
corpus into a series of N contexts of the form (token, history), and then to convert them
into N training examples of the form (x, y), where x is a feature vector representing a single
context, and y is the pos-tag associated with this context.

The algorithm makes use of a classifier, whose responsibility it is to review the full sequence
of training examples, and learn how to translate feature vectors into labels, automatically
assessing the relative importance of various features or feature combinations. The actual
function φ mapping a feature vector x to a label y can take on various forms, described in
more details in section 2.8. After training, the classifier has constructed what is known as
the model, which contains the values of the parameters used to replace various unknowns in
the function φ. The set of parameters depends entirely on the classifier type, but the goal of
training is to attempt to maximise the accuracy provided by these parameters for the full set
of training examples in the training corpus. This accuracy is measured by using the model
to predict the label y associated with each linguistic context x, and to compare the guessed

54 2.5. TRAINING

label with the correct label.
We are not yet concerned in the present section with the internals of the model. As far

as we’re concerned, the classifier is simply a black box, with three interfaces:

• feed training example

• inputs: feature vector for context x, correct label y

• output: none

• calculate model (to be called after all training examples have been fed)

• inputs: none

• output: model α

• predict

• inputs: feature vector for context x, model α

• output: guessed label y

Input: training corpus reader, feature set F , classifier
Output: statistical model

1 while training corpus reader has more sentences do
2 S ← next sentence in reader ; // a list of pos-tagged tokens

3 history ← empty list;
4 foreach (token, postag) in S do
5 featureV ector ← empty list;
6 foreach feature in F do
7 featureResult← apply feature to (token, history);
8 add featureResult to featureV ector;
9 end

10 feed training example (featureV ector, postag) to classifier;
11 add (token, postag) to history;
12 end
13 end
14 return classifier.calculateModel();

Algorithm 2.1: Basic pos-tagging training algorithm

A training algorithm for pos-tagging, using the classifier interface described above, is
shown in algorithm 2.1. We tackle the training set one sentence at a time, using a “training
corpus reader” whose responsibility it is to read token/pos-tag pairs in whatever format the
training corpus was encoded in. The system next converts each context in the sentence into
a feature vector on lines 5 to 9. More specifically, each feature in the feature set is applied to
the context (token, history) on line 7, resulting in a featureResult which is then added to a
specific position corresponding to this feature in the feature vector. On line 10, the training
example (i.e. the feature vector and the resulting pos-tag) is fed to the classifier. For now, the
classifier simply stores this training example—it will only be used later, when constructing
the statistical model. On line 11, the pos-tagged token just processed is added to the history,

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 55

after which we tackle the next pos-tagged token in the sentence. Thus, the history variable is
empty for the first token, it contains {(token1,postag1)} for the 2nd token, {(token1,postag1),
(token2,postag2)} for the 3rd token, and so on. After all sentences have been processed, the
classifier is asked to do its internal magic, and calculate the statistical model based on the
full set of training examples that have been fed to it. Later, when analysing unknown data,
this model will allow the classifier to take a feature vector as input, and return the best label
(in our case, the best pos-tag) for this feature vector as output.

2.6 Analysis

After training has completed, the system has generated a model, and can analyse unknown
data using this model, on the condition that we use an identical feature set to describe the
unknown contexts as was used for the training contexts.

Input: tokenised sentence S, feature set F , classifier
Output: pos-tagged sentence

1 history ← empty list;
2 foreach token in S do
3 featureV ector ← empty list ;
4 foreach feature in F do
5 featureResult← apply feature to (token, history);
6 add featureResult to featureV ector;
7 end
8 postag ← classifier.classify(featureV ector);
9 add (token, postag) to history;

10 end
11 return history;

Algorithm 2.2: Basic pos-tagging analysis algorithm

An analysis algorithm for pos-tagging is shown in algorithm 2.2. The algorithm is similar
in many ways to the training algorithm, except that an input sentence is defined as a series
of tokens, rather than a series of pos-tagged tokens. On lines 3 to 7, the linguistic context
(token, history) is converted into a feature vector, exactly as it was in the training algorithm,
except that the history consists in our current list of best pos-tag guesses, instead of the
pos-tags read from a training corpus. On line 8, the classifier takes the feature vector, and,
based on the information found in the model, returns the most likely pos-tag for this feature
vector. We then add the guessed token/pos-tag pair to the history, and continue our analysis
with the next token to be classified.

2.6.1 Pruning via a beam search

In the algorithm described above, we always selected the single most likely pos-tag before
continuing the analysis. This type of system is known as a greedy search, since the system
immediately accepts the best solution provided at each analysis step. In practice, this means
that the system has no way of correcting a locally probable error (e.g. in a “garden path”
sentence). For example, in the sentence “la prison ferme ses portes” (“The prison is closing

56 2.6. ANALYSIS

1
la
DET 70 %
CLO 29
NC 1 %

2
la prison
DET NC 95 %
CLO NC 5 %

3
la prison ferme
DET NC ADJ 55 %
DET NC V 50 %
DET NC NC 4 %
CLO NC ADJ 1 %

4
la prison ferme ses
DET NC V DET 85 %
DET NC ADJ DET 15 %

5
la prison ferme ses portes
DET NC V DET NC 87 %
DET NC ADJ DET NC 10 %
DET NC V DET V 2 %
DET NC ADJ DET V 1 %

Table 2.1: Beam search example—correct solution in bold

its doors”), the locally most probable label for the token ferme could well be an adjective,
reflecting the expression “la prison ferme” (“prison sentence without parole”), and the system
would have no way of correcting this label to a verb as the analysis continues.

Now, let us assume that our classifier is a probabilistic classifier, which produces a proba-
bility distribution of pos-tags instead of the single most likely pos-tag.

In other words, the classifier’s predict interface is now redefined as follows:

• predict

• inputs: feature vector for context x, model α

• output: set of labels y, each associated with a probability prob, where
∑

prob = 1.

An alternative method can now be to keep the full probability distribution of pos-tags for
each token, and construct multiple contending analyses in parallel, retaining only the most
probable one at the end. However, this solution requires us to compare an exponential number
of solutions. Indeed, if a sentence contains n ambiguous tokens with 2 possible pos-tags each,
the number of solutions to be compared is 2n. To keep such a system tractable, dynamic
programming is required using lattice structures [Viterbi, 1967], but this limits the types of
features we can apply and, in particular, we can only use n-gram features for some small n
when analysing the history, and cannot look farther afield than this n when trying to make
specific decisions.

Thus, some sort of method is required to “prune” the search space and keep only the most
reasonable hypotheses at each step. In this thesis, we make heavy use of a middle-ground
approach, the beam search [Bisiani, 1987], or breadth-first search. This algorithm retains
only the k most probable analyses after each step of analysis, thus maintaining a linear time
analysis, where k is known as the beam width.

Table 2.1 shows how a beam search might be applied to the sentence “la prison ferme ses
portes” with a beam width of 2. The correct solution at each step is shown in bold. When
analysing the first token, “la”, the system finds 3 possibilities: DET, CLO and NC (the musical
note). Because of the beam width of 2, the 3rd possibility is discarded. When analysing the
3rd token, “ferme” the wrong choice, ADJ, is placed on top of the beam. Thus, without a beam

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 57

search (or equivalently, with a beam width of 1), the correct analysis V would be discarded.
When we reach the fourth token “ses”, the correct analysis for “ferme” has been restored
to the top, presumably due to n-gram features in the statistical model, thus permitting the
system to place the correct analysis on the top of the beam for the entire sentence.

Note that placing the wrong solution on top at step 3 assumes our system has no forward-
looking features, or that the forward-looking features’ weights are insufficient to place the
correct solution on top. Real systems could well contain a combination of backward- and
forward-looking features. The former have more information to draw from (since we know
the previously assigned pos tags), but this doesn’t stop us from looking at the word forms
of tokens to the right of the current token, and checking their possible parts-of-speech in an
external lexical resource.

When using a beam search, we are searching through a very small subset of the full possible
search space. As stated before, if a sentence contains n ambiguous tokens each with 2 possible
pos-tags, we would need a beam of width 2n to retain all of the ambiguities. Much narrower
beams are used in practice, which retain only the most ambiguous cases as the sentence gets
analysed.

Input: tokenised sentence S, feature set F , probabilistic classifier, beam width k
Output: pos-tagged sentence

1 beam← empty heap; // ordered by decreasing probability

2 history ← empty list;
3 add history to beam; // prime the initial beam

4 foreach token in S do
5 i← 0;
6 nextBeam← empty heap; // create beam for current token

7 while beam is not empty AND i<k do
8 history ← pop history from top of beam; // next most likely analysis

9 featureV ector ← empty list ;
10 foreach feature in F do
11 featureResult← apply feature to (token, history);
12 add featureResult to featureV ector;
13 end
14 postagsWithProbs← classifier.classify(featureV ector);
15 foreach (postag, probability) in postagsWithProbs do
16 newAnalysis← copy of history;
17 add (token, postag, probability) to newAnalysis;
18 add newAnalysis to nextBeam; // add analysis to beam

19 end
20 i← i+ 1;
21 end
22 beam← nextBeam;
23 end
24 return history on top of final beam;

Algorithm 2.3: Pos-tagging analysis algorithm with beam search

In algorithm 2.3, we introduce a beam search into the pos-tagging analysis algorithm. To

58 2.7. EVALUATION

this end, as we analyse each token in the sentence, we create a heap structure (line 6), which
is defined to automatically order the analyses by decreasing probability, where the probability
for a given analysis is assumed to be the product of the probabilities for component pos-tags.
In the loop beginning on line 7, we read only the k most probable analyses from the previous
token’s heap, where k is the beam width. For each of these k analyses, we analyse all of
the features against the context (token, history), where history is the next most probable
analysis currently on top of the beam. Since, in practice, feature analysis is generally the
most time-consuming aspect of the algorithm, this makes a beam search effectively k times
slower than a deterministic algorithm. In line 14, we return a full probability distribution
of postags rather than the single most probable pos-tag. We are now in a position to add
each pos-tag in the distribution to the current token’s beam, which in turn will automatically
place the most probable analyses on top. The algorithm completes when there are no more
tokens to analyse, and the most probable analysis on the final beam is then returned.

2.7 Evaluation

One critical aspect of supervised machine learning is evaluation, in which we attempt to assess
the accuracy of the predictions applied by the system using a statistical model trained with
a certain configuration.

The term accuracy refers to the percentage of correct labels out of the total label count.
Sometimes, we are also interested in performance improvements for a specific labal y. For a
given label y, we can thus measure the precision and recall, where precision indicates, for
all of the contexts automatically labeled with y, the percentage where y was the correct label
in the test corpus, and recall indicates, for all of the contexts where y is the correct label in
the test corpus, the percentage of that was automatically labeled with y.

More specifically, we call a true positive a context that is labeled with y both in the test
corpus and in the automatically annotated data (the correct result). We call a false positive
a context that was automatically labeled with y, when the expected label in the test corpus
was y′ (additional wrong result for y). We call a false negative a context was automatically
labeled with y′, when the expected label in the test corpus was y (missing result for y). For a
given label y, let tp be the total count of true positives, fp be the total count of false positives,
and fn be the total count of false negatives. Then:

precision =
tp

tp+ fp
(2.2)

recall =
tp

tp+ fn
(2.3)

The f-score (or f-measure) for y is the harmonic mean of precision and recall, defined as
follows:

fScore = 2 ·
precision · recall

precision+ recall
(2.4)

When training a system, there is always a danger of over-fitting the model to the training
set or to a particular test set. This is the case where the model describes the data set too
precisely, and assumes that phenomena in the set are linguistic regularities whereas in fact
they are anomalies. For example, a pos-tagging training set might contain the word “lead”
as a noun only (the metal), and never as a verb. If our only training feature is the word form

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 59

itself, we will assume that any occurrence of the word “lead” is a noun. Thus, over-fitting is
often directly related to the feature set. Over-fitting is always a danger with the training set,
but becomes a danger with a test set as we iteratively refine the feature set to get better test
results.

In order to avoid over-fitting to a particular test set, the manually annoated corpus is
often divided into three distinct parts:

1. Training corpus: the portion of the annotated corpus (typically 80%) set aside to
train the system.

2. Development corpus: a portion of the annotated corpus (typically 10%) set aside to
tune the training configuration. We are permitted to explore this corpus to our heart’s
content as we attempt to improve our system’s accuracy.

3. Test corpus: a portion of the annotated corpus (typically 10%) set aside to evaluate
the system. The goal is to completely avoid examining this corpus so that the evaluation
remains an accurate measurement of accuracy on unknown data.

In practice, however, manually annotated corpora are often very expensive to produce,
meaning that the resulting development and test corpora are too small to generalise reliably.
In this case, we often use an evaluation technique known as cross-validation, where the
corpus is divided into n equal portions, and we perform n evaluations, leaving out each time
1 of the portions for evaluation, and training on the remaining n− 1 portions. Our system’s
accuracy is then assumed to be the average accuracy of the n evaluations, and the standard
deviation gives a rough indicator of the system’s ability to generalise (or, more often, of the
training corpus’ homogeneity).

2.8 Classifiers

The classifier is the element which infers a model from a set of training examples, and
then uses this model to predict labels for arbitrary feature vectors. The precise nature of
the model—meaning its internal structure and the way in which this structure is used—is
determined by the classifier.

Up to now, the classifier was seen as a black box with an interface that can be used by the
training and analysis algorithms, defining internally some sort of function φ : X → Y. We
now peek into the black box to see how the classification algorithms actually work. Classifiers
come in many flavours—indeed, the open source Weka data mining software1 defines over
100 classifiers, including both symbolic classifiers (e.g. decision trees, defining a sequence of
decision making rules) and numeric ones (e.g. classifiers based on linear equations making
use of a matrix of calculated feature weights)

We have three requirements for our classifier:

• it must be able to handle large numbers of features (hundreds of thousands) and a large
number of training examples (several million).

• although training can be slow, it must be able to predict results for a given feature
vector and model very quickly

1http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

60 2.8. CLASSIFIERS

• because of our heavy reliance on beam search techniques (see section 2.6.1), it must
return a probability distribution for the different labels, rather than indicating the
single best label.

We are thus interested in probabilistic classifiers only, defined as classifiers which,
rather than mapping X → Y, takes on the following form:

φ : X → P (Y|X) (2.5)

We have selected three well known robust classification algorithms for comparison: the
perceptron algorithm, the log-linear or maximum entropy algorithm, and the linear SVM
algorithm. In cases where the default version of the algorithm does not meet the probabilistic
criterion, we present a version capable of presenting the results as a probability distribution.

These three classifiers are all “numeric” in that they all require us to convert features into
numeric values, typically normalised to values between 0 and 1, so that, formally, each context
x is transformed into a |F|-dimensional feature vector (f1, f2, . . . , fn), where each feature is
represented as a value from 0 to 1. We thus have a group of functions f in F such that:

f : X → [0, 1] (2.6)

Non-numeric string and boolean features are converted to numeric features using the
methods described below in section 2.8.1.

The insight behind numeric classifiers is that they enable us to solve the classification
problem mathematically, by constructing some form of equation around the feature vector,
and optimising the parameters (or unknowns) in this equation in a way that links features to
the correct labels.

2.8.1 Converting non-numeric features to numeric values

Since we are dealing with numeric classifiers, we have to somehow transform our non-numeric
boolean and string features into numeric values. This is achieved by transforming them into
multiple numeric features, as follows:

• Boolean features are converted into two separate features, one of which has a result of 1
and the other a result of 0. For example, the ends-with-ion feature described above will
be converted into two numeric features: ends-with-iontrue and ends-with-ionfalse.
If our feature set is comprised of these two features, then for the token “education”,
the resulting feature vector will be (1,0), whereas for “bavardage” it will be (0,1). This
may seem unintuitive: why duplicate the information? Is it not sufficient to generate
a single feature with they values 1 and 0 to represent the boolean true and false?
However, both the perceptron and the maxent algorithm handle a value of 0 exactly in
the same way as a non-existent feature result (it has a null effect on the model being
constructed), and we are forced to add a false feature if we want the “false” results to
be taken into account explicitly as potentially predictive information.

• String features are treated as a closed set of categories resulting in multiple features,
one per string result found in the training corpus. We would thus convert the suffix3

feature described above into a very large number of numeric features, one per three-
letter suffix found in the training corpus: suffix3ion, suffix3ait, suffix3ons, etc.

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 61

If our feature set is comprised of these three features, then for the token “eduction”,
the resulting feature vector will be (1,0,0), for “mangeait” it will be (0,1,0), and for
“bavardage” it will be (0,0,0).

• Numeric features are normalised to [0,1]. For example, in the case of length defined
above as the length l of a token, we can take length = 1 if l > 10, otherwise length =
l / 10.

2.8.2 Perceptrons

The perceptron learning algorithm, first defined by Rosenblatt [1958], has a long history
in artificial neural networks, and was made popular in NLP contexts by Collins [2002]. In
the present thesis, we use our own implementation of the perceptron algorithm, which can
be found in the Talismane source code. Although the artificial intelligence community has
developed much more complex neural networks, the perceptron algorithm used in robust
machine learning for NLP since Collins is the simple single-layer perceptron.

Figure 2.4: Classification using perceptrons

The basic intuition behind the perceptron algorithm is shown in fig. 2.4. The classification
problem is modeled here as an artificial neuron network, where a layer of neurons “activates”
the next layer of neurons by passing signals of various weights through the arrows (known as
synapses). In the single-layer perceptron, we have in fact two layers of neurons: the input
layer on the left, with one neuron per feature f , and the output layer on the right, with one
neuron per label y. The input layer of neurons is fully interconnected to the output layer
through synapses, and, critically, each synapse between the input layer and the output layer
has a weight assigned to it.

62 2.8. CLASSIFIERS

When analysing using single-layer perceptrons, we first project our feature set onto the
linguistic context being analysed. This returns a feature vector, typically containing a long
series of 1’s and 0’s. We then turn to the input layer neurons: any feature with a 1 is activated,
and any feature with a 0 is not. Activating a neuron in turn activates all output neurons to
a lesser or greater extent, depending on the synapse weights. We simply select the output
layer neuron activated by the highest sum of synapse weights. If we imagine activation as a
neuron lighting up, we would select the output layer neuron which flashes with the brightest
light. Since each output neuron is activated to a different extent, it is possible to interpret
these activations as a probability distribution, as will be shown further down in the present
section.

Training is only slightly more complex. We begin by assigning a weight of zero to all
synapses. Each training example in the training set will activate a different subset of input
neurons, depending on the features associated with this example. Each of these features will
in turn activate different output labels to a greater or lesser extent, depending on the current
synapse weight for each label. Again, the output neuron with the highest activation score,
depending on its total sum of activation by the full subset of features, is then selected. If
the label which activated the output neuron with the strongest signal is the correct label for
this training example, we do nothing. If it is incorrect, we react to this erroneous guess, by
updating the synapse weights between the input layer and output layer accordingly, adding
a weight of 1 to the synapse leading from each activated feature to the correct neuron, and
subracting a weight of 1 from the synapse leading from each activated feature to the incorrect
neuron. We then continue on to the next training example.

Having covered the basic intuition behind this technique, we now move on to the gory
details—which are, in fact, hardly any more complex than what has already been discussed.
We begin, as above, with a |F|-dimensional real-valued feature vector (f1, f2, . . . , fn) rep-
resenting a particular context x, where each f maps X → [0, 1]. These feature results are
combined into a simple linear equation ψ defined in terms of a large matrix of synapse weights
αf,y, one for each feature and label combination, as follows:

ψ(x, y) =
∑

f∈F

αf,y · f(x) (2.7)

In Collins [2002], the perceptron algorithm simply maps X → Y by taking argmaxy(ψ(x, y)).
Since we wish to define a probabilistic classifier mapping X → P (Y|X), we need to convert
ψ(x, y) to a conditional probability p(y|x). This is not a trivial conversion, since the αf,y
weights (and resulting sum) can be negative. We follow Titov and Henderson [2010] in defin-
ing the probability distribution as a normalised exponential:

p(y|x) = eψ(x,y)/absmax(x)/
∑

y′∈Y

eψ(x,y′)/absmax(x) (2.8)

where absmax is defined as the maximum absolute value of ψ(x, y) for all y:

absmax(x) = max
y∈Y

(|ψ(x, y)|) (2.9)

Now, ψ(x, y)/absmax(x) is in the range [-1,1], so eψ(x,y)/absmax(x) is in the range [1/e, e],
ensuring that the results for all y are positive, and enabling us to construct a structurally
valid probability distribution by dividing this term by the total sum for all y ∈ Y.

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 63

Input: training corpus D, feature set F , label set Y, iterations n
Output: statistical model α

1 α← |F| · |Y| matrix initialised to 0 ∀αf,y; // initialise statistical model

2 for i = 1 to n do
3 foreach (featureVector x, label y∗) ∈ D do
4 ψ ← vector of length |Y|; // vector to contain psi

5 foreach featureResult in x indexed by f do
6 foreach y ∈ Y do
7 ψy ← ψy + αf,y · featureResult ; // calculate psi

8 end
9 end

10 y′ ← y with max ψy; // guessed label = argmax psi

11 if y′ 6= y∗ then // have we guessed right?

12 foreach featureResult in x indexed by f do
13 αf,y∗ ← αf,y∗ + featureResult ; // update alpha weights

14 αf,y′ ← αf,y′ −−− featureResult;
15 end
16 end
17 end
18 end
19 return α;

Algorithm 2.4: Training algorithm for perceptron classification

The training algorithm for estimating the various α synapse weights is shown in algo-
rithm 2.4. The system iterates through through the entire training corpus k times. In each
training iteration, the system iterates in turn through all of the training examples in D, and,
for each training example, if the maximum ψ is not associated with the correct label y (line
11), adds all feature results f(x) to the αf,y weights for the correct label y (line 13), and
subtracts the same feature results f(x) from the αf,y′ weights for the incorrect label y′ (line
14).

Note that if a feature f co-occurs with one label y very often, and with another label
y′ very seldom, the feature is likely over time to get a positive αf,y and a negative αf,y′.
On the other hand, if the feature never co-occurs with y′′, αf,y′′ is guaranteed to remain at
0. Thus, f will penalise a relatively seldom co-occurring label more than one which never
co-occurs. There is no generally accepted method for correcting this phenomenon in the case
of perceptrons. The maximum entropy algorithm below solves this phenomenon by applying
additive smoothing, as described in section 2.8.3.2.

A now standard variant of this algorithm, the averaged perceptron, defined by Collins
[2002], maintains in memory the sum of each αf,y weight for all iterations, and returns at the
end the average weight for each αf,y by dividing this sum by n, rather than the final value
of αf,y. If the algorithm stabilizes before n iterations have completed (typically by checking
if the overall accuracy hasn’t changed by more than some tolerance over the previous m
iterations), the algorithm exits, so as to avoid adding a large number of identical α values and
biasing the average. The claim that this avoids overfitting the model to the data has been
substantiated by many studies, and this is the variant used in the present thesis.

64 2.8. CLASSIFIERS

Now, ever since Minsky and Seymour [1969], we have known that the single-layer per-
ceptron algorithm will never manage to correctly classify data that is not linearly separable.
Indeed, this is true of all three classifiers presented in this section (perceptrons, MaxEnt and
linear SVMs). In a two-dimensional space with two classes of data, a linearly separable data
set is defined as a set where one can draw a straight line such that one class of data will be on
one side of the line, and the other class on the other side. More generally, in an n-dimensional
space, linearly separable data is data where we can draw an n-1 -dimensional hyperplane that
separates the two classes. In practice, however, given the very high-dimensional spaces we
deal with in NLP problems (one dimension per feature), this tends not to be an issue, since the
higher the ratio of dimensions to data-points, the more likely it is that the data will be linearly
separable. Even if the data is not entirely linearly separable, we can still get reasonable re-
sults after applying sufficient training iterations. This explains why the NLP community can
make do with a single-layer perceptron, rather than having to use more complex multilayer
perceptron algorithms.

2.8.3 Log-linear or maximum entropy models

The maximum entropy (MaxEnt) algorithm was first defined by Jaynes [1957], and made
popular in NLP contexts by Ratnaparkhi [1998]. The term “maximum entropy” indicates
that we are trying to find the solution which maximises the information entropy for each
feature, given the constraints. The constraints in this case are our training examples. The
information entropy is a measure of the uncertainty as to which label to select: the more
equally distributed are the label probabilities for a given feature, the higher the entropy.
Stated more plainly, we assume, for each feature, that all labels are equally probable, except
to the extent that hard evidence (in the form of training examples) proves the contrary. As
can be seen from this definition, the maximum entropy algorithm is probabilistic by its very
nature.

In this section we follow Ratnaparkhi’s formal definition of the algorithm, but with some
difference of notation to keep it consistent with the other sections in the present chapter. In
the present thesis, we use the Apache OpenNLP2 implementation of the maximum entropy
algorithm, which is directly inspired by Ratnaparkhi’s work.

Like the perceptron algorithm, the function φ defining the conditional probability p(y|x)
is defined in terms of a large matrix of weights αf,y for each feature and label combination,
but this time they are combined as a product of exponents:

p(y|x) =
1

Z(x)

∏

f∈F

αf,y
f(x) (2.10)

The term Z(x) is simply a normalisation factor, used to ensure that we have a correctly
defined probability distribution such that

∑

p(y|x) = 1, and is defined as:

Z(x) =
∑

y∈Y

∏

f∈F

αf,y
f(x) (2.11)

2http://opennlp.apache.org/

http://opennlp.apache.org/

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 65

This is also known as a log-linear model of the data, because when αf,y
f(x) is replaced

with log(αf,yf(x)), we have the following linear equation:

p(y|x) =
1

Z(x)

∑

f∈F

log(αf,yf(x)) (2.12)

Note in eq. (2.10) that, since in most cases f(x) returns 0 or 1 (that is, for all boolean or
string features), αf,yf(x) will respectively return either 1, in which case the total product is
unchanged, or the weight αf,y.

Note also that this definition of conditional probability is arbitrary, and in order to attain
any sort of accuracy, the weight α associated with each (f, y) pair has to be carefully estimated
during training. Once we have the weights α, analysis for unknown contexts x′ is very simple:
we simply calculate all features f(x′) and then calculate p(y|x′) for all y ∈ Y as per eq. (2.10).

2.8.3.1 GIS algorithm for maximum entropy training

The most common algorithm for estimating these weights is the Generalised Iterative Scaling
algorithm (GIS) [Darroch and Ratcliff, 1972], in which the total co-occurrence counts for
each feature f with each label y in the training corpus (or more precisely, the sum of feature
results) are used to constrain the weights α so that eq. (2.10) above converges towards the
conditional probability actually observed in the training corpus. A detailed discussion of GIS
and a proof of its convergence is beyond the scope of the present thesis. Interested readers
are referred to Ratnaparkhi [1998]. Skipping the “why”, we now concentrate on the “how”,
and present the algorithm itself.

In the definitions below, we use the symbol p̃ to represent the observed probability of a
certain event in the training corpus D, and p to represent the model’s current probability of
the same event.

The GIS algorithm requires that the feature results for any x ∈ D sum up to a constant C.
In order to enforce this constraint, we define this C by calculating the sum of feature results
for each feature vector x in the training corpus D, and setting C to the maximum sum. We
then force all feature vectors to meet this constraint by adding to each vector a “corrective”
feature fC such that fC(x) = C −

∑

f∈F f(x).
GIS now defines the following iterative method for updating the weights α, where super-

script numbers in parentheses indicate the iteration number:

αf,y
(0) = 1 (2.13)

αf,y
(n+1) = αf,y

(n) ·

(

Ep̃(f, y)

Ep
(n)(f, y)

)
1

C

(2.14)

where Ep̃(f, y) is the observed expectation for each (feature, label) combination, defined
as follows:

Ep̃(f, y) =
∑

x

p̃(x, y)f(x) (2.15)

and Ep
(n)(f, y) is the model expectation for each (feature, label) combination, defined as

follows:
Ep

(n)(f, y) =
∑

x

p̃(x)p(n)(y|x)f(x) (2.16)

66 2.8. CLASSIFIERS

In eq. (2.15), p̃(x, y) refers to the observed probability of x with y, which is 1/|D| when
the linguistic context x appears with label y, and 0 otherwise. Thus, we are only including
those training examples in which the associated label is y. In eq. (2.16), p̃(x) refers to the
observed probability of the linguistic context x, which is always 1/|D|. Since all non-zero
terms in both equations are multiplied by the coefficient 1/|D|, these coefficients cancel out,
and we can rewrite the equations as follows:

Ep̃(f, y)∗ =
∑

x

f(x) where (x, y) ∈ D (2.17)

Ep
(n)(f, y)

∗
=
∑

x

p(n)(y|x)f(x) (2.18)

The term p(n)(y|x) was already defined in eq. (2.10).
We are now ready to examine the GIS training algorithm itself, as shown in algorithm 2.5.

We first calculate the constant C and add the corrective feature fC to all feature vectors.
After initialising all of the statistical model weights to 1, the observed expectation Ep̃(f, y)∗

is calculated as per eq. (2.17) on lines 7 to 12. We then begin our iterations. We first calculate
the conditional probability p(y|x) as per eq. (2.10) on lines 14 to 21. Next, we calculate the
new model expectations Ep(n)(f, y)

∗
as per eq. (2.18) on lines 22 to 27. Finally, we’re ready

to update the statistical model weights as per eq. (2.14) on lines 28 to 32. When all iterations
have completed, the statistical model is returned.

2.8.3.2 Additive smoothing

In eq. (2.10), we calculate the conditional probability for each label y ∈ Y, given a context x.
The weight α for a given feature f and label y will generally be > 1 for feature/label pairs
with high co-occurrence rates, and < 1 for feature/label pairs with low co-occurrence rates.
However, if a feature and label never co-occur in the training corpus, α necessarily remains
at its initial value of 1, and has no effect on the final product. Thus, as was the case with
perceptrons, a feature will penalise a relatively seldom co-occurring label more than a label
with which it never co-occurs.

In order to remedy this situation, we can apply additive smoothing: whenever a feature
occurs with a given label y′, we assume it also occurs with all other labels y ∈ Y a very small
number of times (e.g. 0.01). Thus, in the observed expectation matrix, the total co-occurrence
sum for every feature will be guaranteed to be positive for every label, and none of the α
weights in the statistical model will remain at their initial values of 1. This, however, can have
adverse affects as well: the very small α for never occurring feature/label combinations can
offset other strong indicators for the same label in a given context. In the present thesis, we
have attempted additive smoothing for several training scenarios, but have always achieved
better results without applying it.

2.8.3.3 Inverting numeric features

As was mentioned before, we tend to normalise all numeric features to [0,1].
Now, let us take a numeric feature, such as length giving the length l of a token, calculated

as was described above as length = 1 if l > 10, else length = l / 10. Let us assume that
long words have a higher probability of being common nouns (label NC) and short words have
a higher probability of being prepositions (label P).

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 67

Input: training corpus D, feature set F , label set Y, iterations k
Output: statistical model α

1 C ← 0 ;
2 foreach (featureVector x, label y) ∈ D do
3 if

∑

featureResult ∈ x > C then C ←
∑

featureResult ∈ x;
4 end
5 add corrective feature fC based on C to each feature vector x ∈ D ;
6 α← |F| · |Y| matrix initialised to 1 ∀αf,y; // initialise statistical model

7 observedExp← |F| · |Y| matrix ; // observed expectation of each (f,y)

8 foreach (featureVector x, label y) ∈ D do
9 foreach featureResult in x indexed by f do

10 observedExpf,y ← observedExpf,y + featureResult;
11 end
12 end
13 for i = 1 to k do
14 Π← |D| · |Y| matrix; // matrix to contain p(y|x)

15 foreach (featureVector x, label y′′) ∈ D indexed by d do
16 Πd,y ← 1 ∀y ∈ Y ;
17 foreach featureResult in x indexed by f do
18 Πd,y ← Πd,y · αf,y

featureResult ∀y ∈ Y; // calculate p(y|x)

19 end
20 Πd,y ← Πd,y/(

∑

Πd,y′ ∀y′ ∈ Y) ∀y ∈ Y; // normalise by 1/Z(x)

21 end
22 modelExp← |F| · |Y| matrix; // model expectation of each (f,y)

23 foreach (featureVector x, label y′) in D indexed by d do
24 foreach featureResult in x indexed by f do
25 modelExpf,y ← modelExpf,y ·Πd,y · featureResult ∀y ∈ Y ;
26 end
27 end
28 foreach feature f ∈ F do // update alpha weights in model

29 foreach y ∈ Y do
30 αf,y ← αf,y · (observedExpf,y/modelExpf,y)1/C ;
31 end
32 end
33 end
34 return α;

Algorithm 2.5: GIS algorithm for Maximum Entropy training

In eq. (2.10), this feature will have a high α for NC (say 10.0) and a low α for P (say 0.1).
This means that when a word is over 10 characters long and length=1.0, the feature will
multiply the conditional probability for NC by 101.0 = 10 and multiply it by 0.11.0 = 0.1 for P.
However, when the word is only 1 character long and length=0.1, the feature will still favor
the label NC, albeit to a lesser extent, multiplying the conditional probability by 100.1 = 1.26
for NC and by 0.10.1 = 0.79 for P. Thus, the feature is in itself incapable of giving a higher
probability for P even when the word is short.

68 2.8. CLASSIFIERS

If we want to enable the feature to increase the probability for P, we need to include an
equivalent inverted feature, calculated as 1-length+0.1. This will give 1.0 for a word that is
only 1 character long, and 0.1 for a word that is over 10 characters long. Such a feature can
now effectively increase the conditional probability of P at the expense of NC.

2.8.4 Linear SVMs

We will gloss over linear SVMs in far less detail than perceptrons and maximum entropy
models for, since the mathematical concepts behind them are far more complex than those
outlined above, and far too complex for a cursory discussion. However, because they give the
highest accuracy in certain of our experiments, we include them in our general discussion.

The basic idea behind SVMs [Vapnik, 1995], for a given |F|-dimensional dataset (consisting
of N feature vectors x), is to find an (|F| − 1)-dimensional hyperplane which separates the
vectors into two classes in such a way that maximises the distance from the hyperplane to
the closest vectors (the so-called “support vectors”). In order to allow for datasets which
are “almost” linearly separable, SVMs typically allow certain vectors to be misclassified, but
constrain the degree of non-classification through a so-called slack variable ξ. When training,
this slack variable is indirectly controlled through the so-called “soft margin” parameter C.
Without going into the gruesome details, a high value of C allows for less misclassified vectors,
and can lead to over-fitting by overusing the information in the feature vectors, whereas a
low value of C allows for more misclassified vectors, thus ignoring critical information in the
feature vectors [Alpaydin, 2004, p. 224]. If C=∞, we have a hard-margin SVM, allowing for
no misclassified vectors at all.

The other parameter used when training linear SVMs is ǫ. This parameter defines a
zone around the hyperplane (known as the ǫ-insensitive zone or insensitivity zone), in which
classification errors are completely ignored. The wider the zone, the less closely we need to
fit the hyperplane to the data.

Determining the correct values of C and ǫ is largely a matter of trial and error, for example,
by attempting various powers of 2 from 2−4 to 24 for C, and various powers of 10 from 10−4

to 10−1 for ǫ, and selecting the values giving the best accuracy for an evaluation corpus.
Once the best separating hyperplane has been found, unknown data is classified by iden-

tifying its location with respect to this hyperplane. We can then use the geometric distance
between a given vector and the closest point in the hyperplane as a representation of the
SVM’s confidence in its decision: the greater the distance, the higher the probability that
the vector is indeed in the correct classification. This allows us to use SVMs to construct a
probability distribution.

Much modern research has concentrated on the “kernel” trick, in which the data set
undergoes a non-linear transformation, by adding a dimension which is a non-linear function
of the other dimensions, prior to attempting to find the separating hyperplane. This allows
us to apply SVMs to data which is not linearly separable, as shown in the fig. 2.5 for finding a
separating line in 2-class data which is not initially linearly separable. However, the geometric
distance can no longer be interpreted as an accurate measure of confidence, since the non-
linear transformation has distorted the space on which the vectors lie. We thus concentrate
our research in the present thesis on linear SVMs only, which are the only ones capable of
mapping X → P (Y|X). Joachims [2006] gives the full mathematical and algorithmic details
for solving the linear SVM training problem in linear time. The implementation we use is a

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 69

−4 −2 0 2 4

0

5

10

15

−4 −2 0 2 4

0

5

10

15

Figure 2.5: Applying the kernel trick to a 2-class SVM: y → x2

Java port of LibLinear3 [Ho and Lin, 2012].
Like perceptrons and maximum entropy models, for a given feature f , SVMs penalise a

relatively seldom co-occurring label more than one which never co-occurs with f .

2.8.5 Classifier comparison

Although no classifier comparison can be complete without measuring accuracy on a test
data set, we nevertheless attempt a short comparison of the three classifiers presented in this
chapter.

Classifier: perceptron maxent linearSVM
Training time fast middle slow
Algorithm complexity simple middle complex
Training method incremental total total
Probabilistic non-trivial by nature non-trivial
Parameters iterations, cutoff iterations, cutoff C ǫ, cutoff
Parameter complexity intuitive intuitive complex

Table 2.2: Classifier comparison

The comparison shown in table 5.2 concentrates on several points which are important to
us from a practical perspective. Training time is important in an experimental framework,
because a faster training time simplifies the testing of multiple competing configurations.
Algorithm complexity attempts to capture the ease with which we can look into the black
box to explain and resolve analysis anomalies. The interest of an incremental training method,
where the model is updated one training example at a time, is critical in some cutting-edge
global learning approaches, where we mix training examples with other criteria to adapt the
model to a given application. By contrast, classifiers in which the model parameters are
based on the totality of training examples cannot easily incorporate anything other than the

3http://liblinear.bwaldvogel.de/

http://liblinear.bwaldvogel.de/

70 2.9. SUPERVISED MACHINE LEARNING PROJECT EXAMPLES

training data itself in the training process. However, we do not explore these global learning
possibilities in the present thesis. The probabilistic nature of classifiers is required for beam
search methods: successfully mapping the classifier results to a probability distribution is
critical to enable the beam search to increase accuracy. In section 5.4, we will thus compare
the accuracy of the various classifiers not only in the deterministic (or greedy) scenario, but
also with higher beam widths. Regarding parameters, the perceptron and maxent algorithms
both involve two fairly intuitive parameters: the number of training iterations and the feature
frequency cutoff. As we will see in chapter 5, these parameters behave in a fairly rational
manner, with easily interpretable curves. On the other hand, there is no intuitive meaning
to the C parameter in linear SVMs, forcing us to perform a grid search in order to find the
best SVM parameters for each machine learning problem.

2.9 Supervised machine learning project examples

Having presented a formal framework for supervised machine learning and defined certain
learning algorithms in detail, we now turn to some supervised machine learning projects
in which I was involved since the start of my doctoral studies. We will discuss their general
context, aims and results, and show how they instantiate the various formal concepts presented
in this chapter.

2.9.1 Authorship attribution

In 2011, the NLP group of the CLLE-ERSS laboratory decided to participate in the shared
task PAN (Plagiarism analysis, Authorship identification, and Near-duplicate detection). This
collaborative project involved Basilio Calderone, Nabil Hathout, Franck Sajous, Ludovic Tan-
guy and myself, with the suggestions and help of the entire NLP group [Tanguy et al., 2011].
The task was divided into three authorship attribution subtasks, centered around small sub-
sets of the Enron e-mail corpus4:

1. Authorship attribution: Indicate the author for each e-mail within a set of e-mails

2. Authorship attribution with unknown authors: Indicate the author for each e-mail
within a set of e-mails, with the possibility of marking the author as “unknown”

3. Authorship identification: Within a set of e-mails, identify those belonging to a partic-
ular author

The goal was thus, in all cases, to recognise the “style” of a particular author as opposed
to the styles of the others. In each case, the sub-task included a training set, a development
set, and a test set provided shortly before the result submission deadline. A large majority of
participants in this task used a linguistically “poor” approach: the only features used to char-
acterise the e-mails were character trigram frequencies. In other words, if the e-mail started
with the line “Hello Mom,”, the feature set would include: {“Hel”, “ell”, “llo”, “lo_”,
“o_M”, “_Mo”, “Mom”, “om,”}. This has the advantage of being completely language neutral,
and requiring no prior linguistic processing. Our team’s hypothesis was that linguistically
“rich” features can outperform a character trigram approach. These features included mor-
pholigical features (e.g. word counts with different morphological prefixes/suffixes), syntactic

4https://www.cs.cmu.edu/~enron/

https://www.cs.cmu.edu/~enron/

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 71

features (e.g. part-of-speech trigrams, average and maximum syntax tree depth), semantic
features drawn from the Princeton Wordnet [Fellbaum, 1998], and a variety of ad-hoc features
(e.g. stop-word usage, average sentence length).

Since each author in our team was responsible for generating a different set of features,
I developed collaborative machine learning software, csvLearner5, in which the features were
read from a set of CSV files. In addition to simply reading and combining the features for
each e-mail, this software makes it possible to normalise features (with respect to the max or
mean value of a single feature or of an entire group of closely related features), to discretise
features (converting a real-valued feature into a set of nominal categories), and to perform
various evaluation tasks such as cross-validation.

In terms of the formal machine learning framework presented in the present chapter, our
approach could be summarised as follows:

• linguistic context x: a single e-mail

• label y: an author’s numeric identifier

• training set D: a collection of e-mails, each tagged with an author identifier

• feature set F : the various features described above, as well as character trigram fre-
quencies and word frequencies. The vast majority of features were numeric.

• probabilistic classifier φ: maximum entropy

From a machine learning perspective, we validated the the advantage of normalising a
group of related features (e.g. word frequencies) with respect to the group max, instead of
the individual feature max, so as to avoid losing information on relative frequencies, as can
be seen in table 2.3.

Method Mean Accuracy Standard deviation
Discretisation 66.18% 2.75%
Normalisation (max) 67.08% 2.96%
Normalisation (mean) 67.21% 2.58%
Grouped normalisation (max) 69.74% 2.05%
Grouped normalisation (mean) 69.44% 2.17%

Table 2.3: Authorship attribution results

In the tasks involving unknown authors, the choice of a probabilistic classifier made possi-
ble a simple criterion for separating known and unknown authorship, in this case the classifier’s
confidence in its best guess. If the confidence was below a certain threshold, the author was
marked as unknown. This simple method proved quite efficient: we ranked first in both au-
thorship attribution tasks with unknown authors. Our overall 1st place ranking in authorship
attribution tasks seems to validate our hypothesis about linguistically rich features, although
subsequent tests indicate that the linguistically rich features tend to be more useful in small
data sets, and that for very large datasets character trigrams tend to be sufficient.

5https://github.com/urieli/csvLearner

https://github.com/urieli/csvLearner

72 2.9. SUPERVISED MACHINE LEARNING PROJECT EXAMPLES

2.9.2 Jochre: OCR for Yiddish and Occitan

In 2009 I began developing software for the optical character recognition of Yiddish using
supervised machine learning techniques: Jochre6 (Java Optical CHaracter REcognition).
This came about through a collaboration with the Yiddish Book Center, in Amherst, Mas-
sachusetts, which had collected 1.5 million Yiddish books throughout the world representing
18,000 unique titles, and had scanned 12,000 of them, published for the most part between
1870 and 1960 and freely downloadable online7.

In 2013, Marianne Vergez-Couret and myself decided to adapt Jochre to Occitan, in order
to perform a comparative OCR study of Yiddish and Occitan, both unnormalised languages
with a variety of dialects and spelling conventions [Urieli and Vergez-Couret, 2013]. We were
particularly interested in the reranking of OCR guesses by means of a lexicon.

Jochre performs OCR in three steps:

1. Segmentation: break up the image into paragraphs, rows, groups (representing words)
and shapes (representing letters) using ad-hoc statistical methods

2. Letter recognition: guess the letter corresponding to each shape via supervised machine
learning

3. Reranking: correct the guesses for each word with the help of a lexicon

In terms of the formal framework presented in the present chapter, our machine learning
approach for letter recognition could be summarised as follows:

• linguistic context x: a single shape, and the history of letters assigned to the previous
shapes in the current group

• label y: the letter or letters corresponding to the shape

• training set D: 95 pages of Yiddish and 80 pages of Occitan, selected to display a variety
of fonts (and dialects for Occitan), segmented by Jochre, and manually annotated with
the correct letters using the JochreWeb interface

• feature set F :

• letter bigrams and trigrams, as well as a feature indicating if the shape is the last
one in a group

• a relative brightness grid for each shape, in which the shape is broken up into a
5 × 9 grid, and each section is assigned a value from 0 to 1 giving its total pixel
darkness with respect to the darkest section (assigned a value of 1)

• vertical size, vertical elongation, distance from the baseline

• specialised binary features for Hebrew letters used to separate similar letters by
structural differences at a higher level of abstraction than the brightness grid

• probabilistic classifier φ: maximum entropy

6https://github.com/urieli/jochre
7http://www.yiddishbookcenter.org/books/search

https://github.com/urieli/jochre
http://www.yiddishbookcenter.org/books/search

SUPERVISED MACHINE LEARNING FOR NLP CLASSIFICATION PROBLEMS 73

We constructed a lexicon of inflected forms for Yiddish from an XML version of Niborski
and Vaisbrot [2002], provided by Harry Bochner, co-editor of the English translation of this
dictionary [Beinfeld and Bochner, 2013]. The Occitan lexicon was derived from works already
added to the BaTelÒc litarary corpus of Occitan [Bras, 2006]. Lexicon-based reranking was
performed by multiplying the score for unknown words by a configurable unknown word
coefficient in the range (0,1]. The main results are shown in table 2.4 for Yiddish and in
table 2.5 for Occitan.

Baseline features Inverse numeric
features

Hebrew alphabet
features

Words Letters Words Letters Words Letters
No lexicon 84.94% 95.61% 87.11% 96.31% 89.74% 97.09%
With lexicon 87.48% 96.28% 89.14% 96.84% 91.20% 97.44%

Table 2.4: Jochre Yiddish OCR results

Full corpus Languedoc dialect
corpus

Gascon dialect
corpus

Words Letters Words Letters Words Letters
No lexicon 91.54% 97.53% 92.08% 97.64% 90.99% 97.41%
Gascon lexicon 92.72% 97.81% 93.07% 97.85% 92.36% 97.78%
Languedoc lex-
icon

92.83% 97.86% 94.10% 98.15% 91.53% 97.56%

Full lexicon 93.13% 97.93% 94.08% 98.13% 92.16% 97.71%

Table 2.5: Jochre Occitan OCR results

This study highlights, among other aspects, the usefulness of inverse numeric features
given the preponderance of numeric features in OCR and similar signal processing type appli-
cations. Furthermore, we see the advantage of reranking the raw scores (letter probabilities)
using information only available at a higher level of abstraction (word inclusion in a lexicon).

2.9.3 Talismane—Syntax analysis for French

The final supervised machine learning project in which I was involved is the syntax analyser
Talismane, about which certain results have already been published with Ludovic Tanguy in
Urieli and Tanguy [2013]. Since this project is covered in detail in the remaining chapters of
this thesis, it will not be discussed in the present chapter.

2.10 Discussion

Our goal in this chapter was to gain a sufficient understanding of machine learning mechanisms
so as to enable us to apply them correctly and productively in the parsing process. To
this end, we presented a formal conceptual and symbolic framework for supervised machine
learning that will be used throughout the remainder of this thesis, as illustrated by the case
study of pos-tagging. Within this framework, the linguist needs a thorough understanding

74 2.10. DISCUSSION

of the algorithm selected to translate the original problem into a classification problem, of
the meanings of the various labels, and of the exact nature of the linguistic context to be
classified at each step of the task. Armed with this understanding, the linguist is now ready
to define specific features that are both predictive with respect to the information needed to
select a label, and generalisable with respect to other corpora in the target sub-language.

We presented various projects making heavy use of probabilistic classifiers, which map
X → P (Y|X) rather than X → Y, thus excluding the currently dominant current of kernel-
based methods. The use of probabilities for the beam search and for classifier confidence
measure is central to the rest of this thesis.

When comparing classifier types, we are not so much interested in overall classifier accu-
racy (although this is of course important), but also in their accurate estimation of proba-
bilities for the beam search (see section 5.4), and in the ease with which we can peek into
the statistical black box to understand anomalies and/or possibly manipulate the training
method to suit our needs. Although we did not present this methodology within the present
thesis, we found ourselves often examining the weights assigned to individual features in the
perceptron or maxent models in order to understand unusual behavior in a given context.

Many articles in machine learning circles concentrate on tuning of machine learning al-
gorithms via their parameters and other more complex manipulations. Our approach can
instead be said to be feature centered, in that we concentrate less on the choice of algorithm
in itself and the manipulations it undergoes than on the ease with which linguistic knowledge
is incorporated into a robust system, by means of features and rules. In the next two chap-
ters, we will thus explore the mechanisms for injecting linguistic knowledge more thoroughly.
Chapter 3 describes Talismane’s implementation of each of the four modules in enough detail
to enable us to understand the information available at each step in the process and the type
of decision being made. Chapter 4 gives details on where and how linguistic knowledge can
actually be incorporated, and on the types of resources that are currently available for French.

The reality, however, is that a good baseline configuration with respect to the pure machine
learning aspects is critical, and when selecting this baseline, the method providing significant
improvements in accuracy, in both the greedy and beam search scenarios, will always be
preferred to other methods. Experiments for finding the best baseline machine learning
configuration are presented in chapter 5. It is only when the baseline provided by different
methods shows no significant differences that we have the luxury to select a classifier based
on other criteria.

Part II

Syntax analysis mechanism for
French

75

Chapter 3

The Talismane syntax analyser -
details and originality

In this chapter, we delve into the philosophy behind the Talismane syntax analyser (sec-
tion 3.1), its general architecture (section 3.2), and its high-level implementation details. As
mentioned in the introduction, Talismane was designed as a highly configurable tool that
creates as many openings as possible for linguists to inject linguistic knowledge. Our main
purpose is to show enough of the inner workings of these modules to give the linguist the
necessary keys to designing useful features.

We thus begin by examining the problem definition for each of the four modules in sec-
tion 3.3, showing how their specific task is converted into a classification problem within the
formal framework presented in the previous chapter, and giving examples of typical ambigu-
ities that need to be resolved.

We then move on to the mechanics that will allow us to help resolve these ambiguities,
examining Talismane’s rich feature configuration syntax in section 3.4, along with various
specific aspects that make it simpler to define feature combinations, or to deal with features
that return mutliple values for the same linguistic context.

Another innovative aspect of Talismane is the ability to define rules that override the
statistical model in all four of the basic modules. The mechanism for applying these rules, as
well as the syntax used to define them, are described in section 3.5.

We then look briefly into filters (section 3.6), which enable us to determine which portions
of the raw text to parse, before comparing Talismane with similar projects in section 3.7.

3.1 Philosophy

TALISMANE stands for “Traitement Automatique des Langues par Inférence Statistique
Moyennant l’Annotation de Nombreux Exemples” in French, or “Tool for the Analysis of
Language, Inferring Statistical Models from the Annotation of Numerous Examples” in En-
glish.

It is an open source statistical syntax analyser for natural languages written in Java,
developed within the framework of the present doctoral thesis. With over 85,000 lines of code,
it covers a full range of functions needed for a successful NLP project, from machine learning
algorithms, to a feature syntax compiler, to the flexible incorporation of external resources,
to the training, analysis and evaluation of each task in the syntax analysis chain. Many

77

78 3.2. ARCHITECTURE

aspects of Talismane’s behaviour can be tuned via the available configuration parameters,
and indeed, one of the primary concerns was to include as many openings as possible for
resources and configuration files defined by linguists. Furthermore, Talismane is based on an
open, modular architecture, enabling a more advanced user to easily replace and/or extend the
various modules, and, if required, to explore and modify the source code1. It is distributed
under an open-source license in order to encourage its non-commercial redistribution and
adaptation.

Talismane should be considered as a framework which could potentially be adapted to
any natural language. The present thesis presents a default implementation of Talismane
for French, but the overall architecture was designed to clearly separate language-neutral
interfaces from language specific implementations. As long as a training corpus is available, it
can theoretically be adapted to many different languages out-of-the-box—although some may
require a completely new implementation for certain modules, such as Chinese tokenisation,
which is radically different to its French counterpart.

The portability offered by Java enables Talismane to function on most operating systems,
including Linux, Unix, MacOS and Windows.

Full documentation for the current version of Talismane is available at the Talismane home
page2, and the interested reader is encouraged to visit this page for details missing from the
present discussion.

3.2 Architecture

Talismane transforms raw text, i.e. a stream of characters, into dependency parse trees. It is
divided into four statistical modules:

• Sentence-boundary detection: marking the end of each sentence within the raw text

• Tokenisation: marking the boundaries between syntactic units (or tokens) in each sen-
tence, which may or may not correspond to graphical word boundaries.

• POS-tagging: part-of-speech tagging, in which each token is assigned a single part-of-
speech from the tagset.

• Dependency parsing: finding a governor for each token in the sentence, and assigning a
label to the dependency arc between the governor and dependent from a closed set of
dependency labels.

Talismane was designed to plug into a full processing chain without complicated adapta-
tion. To this end, Talismane can either read from an input file or from the standard input
stream, and can output to either an output file or to the standard output stream. Further-
more, Talismane can begin and end processing with any one of its four modules. There is a
default input and output format for each of the modules (CoNNL-X format for the parser),
but these can be overridden by configuration files to suit the needs of a particular processing
chain.

Each of the last three modules can be configured to use a beam search. Furthermore,
between modules, the system can be configured to be deterministic (or “greedy”), passing

1https://github.com/urieli/talismane
2http://redac.univ-tlse2.fr/applications/talismane.html

https://github.com/urieli/talismane
http://redac.univ-tlse2.fr/applications/talismane.html

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 79

only the best solution to the next module in the chain, or non-deterministic, where the entire
final beam is propagated on to the next module in the chain, allowing a higher-level module
to resolve ambiguities left open by a lower-level module. Experiments with beam propagation
are described in section 5.5, page 147.

3.3 Problem definition for Talismane’s modules

This section presents the abstract problem definition for each of the four modules in Talismane.
More concrete details, such as the actual training corpus and the baseline feature set used for
the French implementation will be presented in the chapter 4.

3.3.1 Sentence boundary detection

The Talismane sentence boundary detector takes a stream of raw unannotated text as input,
and breaks it up into sentences as output. Restating the problem as a binary classification
problem, the sentence detector’s role is to decide, for each sentence boundary candidate
(characters in the subset {., ?, !, ",)}), whether it is really a boundary or not.

In sentence detection, the main sources of ambiguity are:

1. Strong punctuation marks (., ?, !) followed by double quotes or parentheses, where
the actual sentence boundary can be pushed beyond the period to the next punctuation
mark:

a) No sentence break: He said “leave me alone[.]” Then. . .

b) Sentence break: I met him[.] “Leave me alone,” he said.

c) Possible features: spaces between strong and weak punctuation marks.

2. Abbreviations followed by a period and a space, especially when the following word is
capitalised:

a) No sentence break: “Mr[.] Smith is home.”

b) Sentence break: “I bought apples, oranges, etc[.] Then, I. . . ”

c) Possible features: Is the following word capitalised? Is the preceding word on a
list of known abbreviations? If so, is it typically followed by capitalised words (e.g.
“Mr.”)? If the word following the period is capitalised, is it known in the lexicon
as something other than a proper noun (e.g. “Then” is known, “Smith” is not)?

3. Strong punctuation inserted inside a sentence

a) No sentence break: “I saw Smith together with - can you believe it[?] - Jones.”

b) Sentence break: “I saw Smith together with Jones - can you believe it[?] Jones
said. . .

c) Possible features: Is the strong punctuation mark followed by other punctuation?
Is the following word capitalised?

4. Numbered lists inside a sentence

80 3.3. PROBLEM DEFINITION FOR TALISMANE’S MODULES

a) No sentence break: “The prizes were awarded to 1[.] Smith for outstanding work,
2[.] Jones for. . . ”

b) Sentence break: “It is obvious that 2 and 2 make 4[.]”

c) Possible features: is the sentence preceding the period a complete sentence? Are
there several related numbers in the same block of text? Is the number directly
preceded by weak punctuation (e.g. a comma)?

The decision is taken using a supervised machine learning approach. In terms of the
formal definition given in chapter 2, sentence boundary detection can be defined as follows:

• linguistic context x: a single boundary character, with access to the n characters to the
right and left of this boundary character

• label y: is the context x a true or false sentence boundary

• training set D: a corpus of text, where each true sentence break is followed by a para-
graph break

Most of the features described above are possible to encode within this context, although
some may require the use of external resources in the form of lists for known abbreviations, or
a lexicon to distinguish proper nouns from other words. In the last example, asking whether
the sentence preceding the number is a complete sentence is clearly not possible, since we
have no access to syntactic information at this point in the process. Similarly, trying to find
related numbers in the same block of text could be difficult, since it may require an arbitrarily
large number n of characters to the right or left of the current character. The actual baseline
feature set used by the sentence boundary detector is defined in section 4.4.2, page 116.

In Talismane’s design, sentence boundary detection is final: the decision taken cannot
be overridden by higher level modules. Any other design would introduce considerable com-
plexity, since we would have to analyse in parallel several potentially overlapping sentence
candidates and find a reliable algorithm for comparing the analyses and choosing the best
one. This means final decisions are taken with very little information: the n characters to
the right and left of a sentence boundary candidate. Luckily, highly ambiguous cases are
very rare in edited written text. The case of unedited text such as blogs or open discussion
pages is much more problematic, since authors are not necessarily careful about their spaces
and capitalisation. Indeed, most of the sentence detection errors in our own tests are due to
uncapitalised words after sentence boundaries. This illustrates our strong dependence on the
training corpus sub-language. We could of course attempt to ignore all capitalisation in our
features, but this is likely to considerably lower results for edited text.

3.3.2 Tokenisation

The Talismane tokeniser takes a sentence as input, and transforms it into a sequence of
tokens (or syntactic units) as output. The vast majority of tokens correspond to graphical
word boundaries, but certain polylexical units (or compound words) group several graphical
words into a single token. The tokeniser combines a pattern-based approach with a statistical
approach. The patterns are language specific, and ensure that only areas where any doubt
exists concerning the tokenisation are actually tested statistically.

Typical examples of tokeniser ambiguity in French include:

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 81

1. bien que

a) Joined = Subordinating conjunction: “Tu sais, bien_que je ne travaille pas le
dimanche, je ferai une exception.” (“You know, even though I don’t work on
Sundays, I’ll make an exception.”)

b) Separate = Adverb + subordinating conjunction introducing a direct object: “Tu
sais bien que je ne travaille pas le dimanche.” (“You know well that I don’t work
on Sundays.”)

c) Possible features: is bien que the first word in the sentence, and, if not, does it
follow a punctuation mark? Is the preceding verb on a list typically modified by
bien (e.g. savoir, aimer, . . .)? Does it sub-categorise que as a direct object?

2. quitte à

a) Joined = Preposition: “Quitte_à étudier, autant s’amuser.” (“If you must study,
at least have fun.”)

b) Separate = Verb + preposition: “Elle me quitte à cause de ma thèse.” (“She’s
leaving me because of my thesis.”)

c) Possible features: is quitte à the first word in the sentence, and, if not, does it follow
a punctuation mark? What is the part of speech of the word directly preceding it
(since clitics such as je or me are strong indicators for a verb)?

3. de la

a) Joined = partitive determiner: “Je mange de_la tarte.” (“I’m eating some pie”)

b) Separate = preposition + determiner: “Je parle de la chemise.” (“I’m speaking
about the shirt”)

c) Possible features: Is the preceding verb transitive? Does the preceding verb typi-
cally govern an object with the preposition de? What is the part-of-speech of the
previous word (e.g. “avec de la” always implies a partitive determiner)?

In almost all of these ambiguities, one variant is far more common than the other. For bien
que and quitte à, it is rare to find cases where the tokens are separate. The opposite is true for
de la, were the compound form is much rarer. This makes it difficult to disambiguate without
very strong signals. Also, almost all of the features discussed above require information which
is not available when tokenising: the part-of-speech of the preceding word, or being able to
recognise whether the preceding word is a verb and, if so, knowing its subcategorisation
frames. This information is available to Talismane only after the pos-tagging phase. We
can attempt to inject a certain amount of knowledge by basing our features on a lexicon, in
which we can look up the parts-of-speech associated with a given word form. If we are lucky
enough to have a lexicon with reliable subcategorisation frames, even more information can
be injected—otherwise, we may have to rely on the small subset of subcategorisation frames
which happen to occur in our training corpus. The actual baseline feature set used by the
tokeniser is described in section 4.4.3, page 117.

Example (2b) above is particularly interesting in that two potential compound words
overlap: quitte à and à cause de, of which the first is separate and the second is joined. We
would like a system that only allows three possibilities for this configuration: “quitte_à cause

82 3.3. PROBLEM DEFINITION FOR TALISMANE’S MODULES

de”, “quitte à_cause_de” and “quitte à cause de”, and does not allow “quitte_à_cause_de”,
unless the latter were a recognised compound in its own right. Furthermore, trying to de-
cide between the compounds quitte à and à cause de illustrates the importance of tokeniser
confidence measures: it may well be that both are considered more likely to be compound
than otherwise, because of the overwhelming statistics in favor of compounding when contex-
tual factors are ignored. In this situation, we want to select the compound with the higher
confidence measure, and reject the other one. We will see in the discussion of the techncial
mechanism below to what extent these goals are achieved.

The tokeniser begins by breaking the sentence up into atomic tokens. An atomic token
is defined as a contiguous character string which is either a single separator, or contains no
separators. The list of separators considered include all punctuation marks as well as the
various whitespace characters: the space bar, the tab character, the newline, etc. Thus, a
text such as the following: “A-t-elle mangé de l’autruche ?” (“Has she eaten any ostrich?”)
will be separated into the following atomic tokens:

[A][-][t][-][elle][][mangé][][de][][l][’][autruche][][?]

The expected output would be:
[A][-t-elle] [mangé] [de l’][autruche] [?]

Note that this approach is not language-neutral: it cannot yet handle a language in which
a single graphical word needs to be broken up into two or more tokens. This is the case, for
example, in Hebrew, where coordinating conjunctions, some prepositions, and definite articles
are directly prefixed to the following word. However, it could fairly easily be made to apply
to such languages if potential prefixes where all marked as atomic tokens. On the other hand,
languages such as Chinese, were word boundaries are not marked by a white space, may well
need a completely different approach.

Restating the problem as a binary classification problem, the tokeniser’s role is to de-
termine, for the interval between any two atomic tokens, whether it is separating or non-
separating.

By default, all separators will be considered to be separated from both the previous and
next atomic tokens. Punctuation marks can be configured to override this decision: for
example, in French, we can configure the system so that certain punctuation marks (e.g.
the dash in “vice-président”) are connected by default to both the previous and next atomic
tokens, and others (e.g. the apostrophe in “l’autruche”) are connected by default to the
previous atomic token, but separated from the next one.

Finally, we manually configure a set of patterns, by means of regular expressions, to indi-
cate sequences of atomic tokens that should be submitted to further testing by supervised ma-
chine learning. For example, we could define the pattern “(.+)-t-(elle|elles|il|ils|on)”,
indicating that an atomic token sequence such as “A-t-elle” may need to override the defaults,
in order to separate the initial dash from the atomic token preceding it. Similarly, a pattern
such as “de l’” would indicate that, in the atomic token sequence “de l’autruche”, we need
to test the space, in order to decide whether it separates the two atomic tokens “de” and “l’”
(preposition + determiner) or not (partitive determiner). The list of patterns is added as a
configuration file, and needs to cover all of the cases marked as compounds in the training cor-
pus, and can be extended to cover other potential compounds through the pattern grouping
mechanisms discussed below.

In terms of the formal definition given in chapter 2, tokenisation can be defined as follows:

• linguistic context x: the first pair of atomic tokens matched by a given pattern, with

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 83

access to the pattern in question, the full sequence of atomic tokens matched by the
pattern, and the full sequence of atomic tokens forming the sentence

• label y: is the atomic token pair connected or separate? Label set: join and separate

• training set D: a corpus of text, in which each compound word has been indicated via
some sort of mark-up

Note that the tokeniser doesn’t make any assumptions about the nature of compound
words, which is a field of research unto itself. It is entirely up to the corpus annotators to
decide which words are compound, and Talismane will recognise these decisions as long as they
are reflected in the pattern configuration file. However, Talismane does not currently support
split compounds, where another token is inserted in the midst of a compound token. For
example, the French verbal compound “tenir compte de” (“to take into account”) cannot be
marked as a compound within Talismane, because it is split in the negative expression “Je ne
tiens pas compte de. . . ”. Indeed, the shift-reduce algorithm for transition parsing, presented
in section 1.2.3 cannot natively handle split compounds even if we somehow accommodated
their representation in the tokeniser output. We could potentially handle such cases in post-
processing, but this would have to occur after the parsing phase is complete, and the output
format would have to handle such cases correctly as well (CoNNL-X, for example, has no
annotation for split compounds).

Since patterns may occur quite rarely in the training corpus, Talismane allows us to
manually group patterns together in the pattern configuration file. The goal is to create
groups for patterns which are likely to have similar compounding behavior based on their
context. For example, we might decide to group together compounds which are guaranteed
to be separate when found at the start of a sentence, such as bien que and alors que. We can
also cater for compounds missing from the training corpus, by including them in the same
group as a more common compound. Two levels of grouping are allowed: the pattern name,
which is used for patterns which are expected to behave identically, such as de l’ and de

la, and the pattern group, allowing a higher level grouping of patterns with similar behavior,
such as all patterns playing the roles of subordinating conjunctions (alors que, bien que,
jusqu’à ce que, etc.). When designing tokeniser features, we can then incorporate into
the feature the pattern group, the pattern name, or the actual word forms matched by the
pattern, thus allowing us to create features with varying granularities, in the hope of capturing
statistical regularities in the least granular features (those referring to the pattern group).

3.3.2.1 Tokenisation mechanism

While a token pattern can include any number of atomic tokens, the decision taken for the
interval between the first pair of atomic tokens determines the decisions to be taken for all
subsequent pairs. For example, let us take the pattern bien que, illustrated by the two
sentences in example 1 of the previous section.

This pattern is formed of the atomic tokens [bien][_][que]. If we decide that the first
atomic token [bien] is connected to the second one [_], as in sentence (a) above, it follows
that the second and third atomic tokens are connected as well. Similarly if the first two are
separated, as in sentence (b) above, the remaining atomic tokens are separated.

This allows us to perform a single statistical test per pattern, rather than one statistical
test per interval. The Talismane pattern definition syntax allows us to define portions of

84 3.3. PROBLEM DEFINITION FOR TALISMANE’S MODULES

the pattern to which this decision will not be applied, but which are required to give the
pattern its correct context. For example, in the case of the “de l’” described above, the final
apostrophe should be excluded from the decision process, because, even if we decide that the
de should be separated from the l’ in a particular case, the apostrophe should still follow the
default for apostrophes and be connected to the preceding l. We indicate this using the curly
brackets: “de l{’}”.

Testing each pattern as a whole, rather than testing each individual interval within the
pattern, allows us to avoid constructing non-existent compound words (especially deeper
down in the beam). However, we still have to deal with the case where a given atomic token
is contained in a number of overlapping patterns. Let us assume our French training cor-
pus considers the subordinating conjunctions “bien que” and “si bien que” as compound
words. Then any appearance of the sequence “si bien que” can be tokenised as follows:
“si_bien_que”, “si bien_que”, or “si bien que”. The current mechanism stops whenever it
hits an atomic token at the start of a pattern, in order to test it further. If the test result is
the same as the default decision for the first interval in the pattern (in this case separate),
the system makes a decision for the first atomic token pair only, and then continues testing
the remaining tokens. This allows it to test “bien que” as a separate pattern, even if it
determined that “si bien que” was separate. If, however, the decision is not the default for
the first interval in the pattern, the system applies the decision to the entire pattern, and
skips past the last token in the pattern for further testing. This means that if “si bien que”
was assumed to be joined, we won’t attempt to separate bien from que using the “bien que”
pattern. This method means different solutions in the beam could each involve a different
number of tokenisation decisions. In order to make them directly comparable, the score for
each tokenisation solution is taken to be the geometric mean of the probabilities for each
component decision.

If we now return to example (2b) from the previous section, we can see that we have met
our criteria for patterns which overlap with 2 or more atomic tokens, but not for patterns
which overlap with only one atomic token, as in the case of “quitte à cause de”. This is
because we are testing the intervals between atomic tokens, and in this case, the two patterns
share no intervals: the first pattern stops with the interval “[_][à]”, and the second pattern
starts with the interval “[à][_]”. We plan to extend our system to cover such cases in the
future.

The case is somewhat more complicated when two different patterns start on the same
atomic token. Take for example the patterns “plutôt que” (coordinating conjunction) and
“plutôt que de” (preposition introducing an infinitive). When we hit the atomic token
plutôt, both patterns will be tested, and each pattern will get a probability for each label, join

and separate. We need to consider the following possibilities: “plutôt que de”, “plutôt_que
de”, and “plutôt_que_de”. This is calculated as follows. Let P1, P2, . . . , Pn be the patterns
starting on a given token, ordered from shortest to longest. Let S1, S2, . . . , Sn be their
probabilities for the label separate, and J1, J2, . . . , Jn be their probabilities for the label
join. We need to consider the case π0 where all atomic tokens are separate, and the cases
πi for i = 1 to 10 where Pi is joined and the remaining atomic tokens are separate. The
probability for each case π is calculated by multiplying the individual probabilities compatible

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 85

with π:

πi =
i
∏

j=1

Jj

n
∏

k=i+1

Sk (3.1)

For π0, this will simply multiply all of the probabilities for separate, whereas for the
others, it will multiply a combination of join and separate probabilities compatible with
a given tokenisation scheme. We transform these values into a probability distribution by
dividing by the total sum.

3.3.3 Pos-tagging

The Talismane pos-tagger takes a sequence of tokens (forming a sentence) as input, and adds a
part-of-speech tag to each of these tokens as output, along with some additional sub-specified
information (lemma, morpho-syntactic details). It combines a statistical approach based on
the use of a probabilistic classifier with a linguistic approach via the possibility of symbolic
rules used to override the classifier. If beam propagation is applied (see section 5.5, the pos-
tagger could receive multiple possible tokenisation solutions from the tokeniser, possibly with
a different number of tokens. This would result in a different number of pos-tagging decisions
being applied to each pos-tagging solution, one per token. In order to make these different
pos-tagging solutions directly comparable as we apply a beam search, we compare solutions
having reached the same character index within the sentence, and use the geometric mean of
probabilities for individual pos-tagging decisions as the basis for comparison.

Talismane’s architecture makes it fairly straightforward to replace the tagset. This involves
several steps:

1. defining the new tagset in a file with a specific format, indicating which tags belong to
open classes and which tags to closed classes.

2. mapping the morpho-syntactic categories found in the training corpus to tags in the
tagset, using a file in a specific format. Note that this could be a many-to-many map-
ping.

3. mapping the morpho-syntactic categories found in the lexicon to tags in the tagset,
using a file in a specific format. Note that this is could be a many-to-many mapping.

4. rewriting pos-tagger features and/or rules to refer to the new tagset, if any of them
referred to specific tags

5. retraining the pos-tagger’s statistical model

6. rewriting parser features and/or rules to refer to the new tagset, if any of them referred
to specific tags

7. retraining the parser’s statistical model

After pos-tagging, the pos-tagger assigns lemmas and detailed morpho-syntactic informa-
tion. In the current version, this information is sub-specified, meaning it is only provided
when it is found in the lexicon. Talismane’s lexicon interface is described in more detail in
section 4.3.2.

86 3.3. PROBLEM DEFINITION FOR TALISMANE’S MODULES

Since pos-tagging was used as the case study for chapter 2, we will not dwell any further
on this module. The reader is referred to that chapter for a more formal definition of pos-
tagging, and to section 4.4.4, page 119, for more details about the baseline feature set used
by the pos-tagger.

3.3.4 Parsing

The Talismane syntax parser is a transition-based statistical dependency parser, in the tradi-
tion of the parser described by Nivre et al. [2007b], already presented in detail in section 1.2.3.

The parser takes a sequence of pos-tagged tokens (with additional sub-specified lemmas
and morpho-syntactic information) as input, and generates a dependency tree as output, or
a dependency forest if any nodes were left unconnected.

To recapitulate, the parser begins by transforming the sequence of pos-tagged tokens into
an initial parse configuration (all tokens except for the artificial root on the buffer), and
then applies a series of shift-reduce transitions until it reaches a terminal configuration, being
defined as a configuration whose buffer is empty. A parse configuration was already defined
in section 1.2.3 as follows:

• σ: a stack, or ordered sequence of pos-tagged tokens which have been partially processed

• β: a buffer, or ordered sequence of pos-tagged tokens which have not yet been processed

• ∆: a set of dependency arcs of the form label(governor, dependent) that have already
been added

• τ : a sequence of transitions allowing us to reach the current state from an initial state

In terms of the formal machine learning framework described in chapter 2, parsing can be
defined as follows:

• linguistic context x: a single parse configuration

• label y: the transition to apply to the current parse configuration, presented in table 1.9,
and based on the dependency labels presented in table 1.2, table 1.3, and table 1.4

• training set D: a corpus of text, typically in the CoNNL-X format presented in sec-
tion 1.1.5

The features are thus defined against a parse configuration, and can use information
from the partial dependency structures already constructed, in addition to the sequence of
pos-tagged tokens underlying the configuration. At each step in the algorithm, we need to
determine whether a dependency exists or not between the pos-tagged token found at top
of the stack σ0 and the one found at the top of the buffer β0. Features are thus centered
around these two tokens, as well as their existing governors and dependents, and the tokens
surrounding them and between them. The full set of baseline features for the parser can be
found in section 4.4.5, page 121.

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 87

Input: pos-tagged sentence S, feature set F , probabilistic classifier
Output: terminal parse configuration C

1 C ← initial parse configuration for S;
2 while buffer in C is not empty do
3 featureV ector ← empty list ;
4 foreach feature in F do
5 featureResult← apply feature to (C);
6 add featureResult to featureV ector;
7 end
8 // get a probability distribution for all transitions, ordered by

decreasing probability

9 transitionsWithProbs← classifier.classify(featureV ector);
10 foreach (transition, probability) in transitionsWithProbs do
11 if transition valid for C then
12 C ←apply transition to C ;
13 break out of for each loop ;
14 end
15 end
16 end
17 return C;

Algorithm 3.1: Basic transition based parsing algorithm

3.3.4.1 Transition-based parsing algorithm

Following on from the supervised machine learning definitions given in chapter 2, and the
formal definition for parsing above, we are now ready to define the basic shift-reduce parsing
algorithm.

Algorithm 3.1 is very similar to the pos-tagging analysis algorithm (algorithm 2.2, page
55). The only notable difference is that, since transitions have pre-conditions, not all transi-
tions are valid for a given parse configuration, for purely mechanical reasons. For example, in
the arc-eager transition system presented in table 1.9, we cannot perform a left-arc transition
if it would result in a circular dependency. We thus loop through all transitions until we
reach the first valid transition on line 11. In the greedy version of the algorithm, we apply
this transition to the configuration and continue, until the buffer is empty.

3.3.4.2 Measuring parser confidence

In the transition-based parsing algorithm presented above, we would like to measure the
parser’s confidence in each of the dependencies it has detected. This confidence measure
enables us to identify high and low confidence dependencies for various reasons:

• get a rough estimate of parsing quality (on the assumption that confidence is inversely
correlated to errors). This correlation is examined in section 5.3, page 142.

• get a rough estimate of corpus distance (on the assumption that average parser confi-
dence is higher for corpora similar to the training corpus)

88 3.3. PROBLEM DEFINITION FOR TALISMANE’S MODULES

• filter out low-confidence dependencies when automatically constructing linguistic re-
sources (e.g. resources injected into semi-supervised approaches). This approach is
examined in section section 7.3.3, page 201.

• select dependencies most likely to be erroneous, to be submitted to the user for validation
in active learning systems. This is one of our future perspectives, and has not been
explored further in the present study.

Although the parser gives us a direct estimate of its confidence in each transition applied
(via the probability distribution for transitions), there are two transitions, shift and reduce,
which do not generate dependency arcs. We would like to somehow include the probabilities
for these transitions in the dependency arc confidence measures. In Talismane, we have
decided to assign a confidence to each dependency as the geometric mean of the cumulative
product of individual transition probabilities since the last dependency was added3. In other
words, whenever a left-arc or right-arc transition is applied, we take the product of
probabilities for all transitions since the previous left-arc or right-arc, and assign its
geometric mean as the confidence measure of the dependency arc generated.

3.3.4.3 Applying a beam search to parsing

If instead of a greedy algorithm, a beam search is applied to parsing, comparing incremental
parsing solutions during parsing is not trivial, since different solutions may involve a different
number of transitions. Moreover, if beam propagation has been applied from tokenisation
onwards, the parser could receive as input pos-tagging solutions containing a different number
of tokens. Various solutions can be imagined for comparing incremental parses, and these are
detailed in the following section. The simplest solution is to compare parses one transition at
a time, and this is the solution used for illustration purposes in the present section.

The beam search parsing algorithm, shown in algorithm 3.2, is again very similar to the
pos-tagging beam search algorithm shown in algorithm 2.3, page 57. Rather than taking the
best transition and applying it to the current configuration, we apply all valid transitions to
the current configuration and add them to a heap on line 18. This heap is either the next
heap (non-terminal configurations), or the final heap (terminal configurations). The heap
automatically orders the configurations by decreasing score, where the score is the product
of individual transition probabilities. In the next iteration, we take the top k configurations
on the next heap, and apply the same analysis to each of these configurations. We continue
processing until the next heap is empty, meaning that the top k configurations on the previous
beam were all terminal. In the Talismane version (not shown here), we maintain multiple
heaps, and add the next solution to the heap corresponding to its comparison index, which
can be defined in various ways (e.g. the remaining buffer size). This method is described in
more detail in the following section.

3.3.4.4 Incremental parse comparison strategies

As mentioned in the previous section, comparing incremental parse configurations in a beam
is not a trivial task, since different parse solutions may apply a different number of transitions
before reaching the terminal solution. The most common solution [Sagae and Lavie, 2006]

3Note that we could have use the cumulative product directly rather than the geometric mean - however,

in testing, the correlation between confidence and correctness is much higher if we use the geometric mean

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 89

Input: pos-tagged sentence S, feature set F , probabilistic classifier, beam width k
Output: terminal parse configuration C

1 beam← empty heap; // ordered by decreasing score

2 C0 ← initial parse configuration for S;
3 add C0 to beam; // prime the initial beam

4 finalBeam← empty heap; // ordered by decreasing score

5 while beam not empty do
6 i← 0;
7 nextBeam← empty heap; // create next beam

8 while beam is not empty AND i<k do
9 C ← pop configuration from top of beam; // next most likely analysis

10 featureV ector ← empty list ;
11 foreach feature ∈ F do
12 featureResult← apply feature to (C);
13 add featureResult to featureV ector;
14 end
15 transitionsWithProbs← classifier.classify(featureV ector);
16 foreach (transition, probability) ∈ transitionsWithProbs do
17 if transition valid for C then
18 C′ ←apply transition to C ;
19 if C′ is terminal then
20 add C′ to finalBeam; // add analysis to final beam

21 else
22 add C′ to nextBeam; // add analysis to next beam

23 end
24 end
25 end
26 i← i+ 1;
27 end
28 beam← nextBeam;
29 end
30 return C on top of finalBeam;

Algorithm 3.2: Transition-based parsing algorithm with beam search

is to compare parses one transition at a time. Sagae and Lavie add an additional condition
to stop as soon as they have k terminal solutions, although this would advantage shorter
solution paths. Comparing parses by the number of transitions is a fairly arbitrary choice,
dictated by its simplicity. In Talismane, we decided to construct multiple comparison heaps,
and compare solutions using various comparison indexes. The simplest comparison index is
the number of transitions, which gives the same solution as described above. Another option
is to compare solutions with the same number of atomic tokens remaining in the buffer (on
the assumption that we use a transition system where the buffer never grows in size). If, after
applying a transition, the heap corresponding to the next solution’s buffer size is already being
processed (e.g. after applying a reduce transition, which only affects the stack), we create a
new separate heap for handling the resulting solutions. This heap will only be tackled when

90 3.3. PROBLEM DEFINITION FOR TALISMANE’S MODULES

the top k solutions on the existing heap have been processed. All terminal parses (with an
empty buffer) are assigned the same comparison index (the maximum possible integer value),
thus ensuring that they will all be compared to each other when parsing has completed. Even
when comparing by the number of transitions applied, we still allow all parses on the top k
of any given heap to continue parsing until their buffer is empty, rather than automatically
comparing the first k parses to complete. Thus, we avoid in all cases privileging shorter paths.

We tested four different parse comparison indexes:

• Transition count: this is identical to the majority approach since we compare parses
having applied the same number of transitions, except that we process all heaps, rather
than stopping as soon as k paths reach a terminal configuration.

• Buffer size: compare parses with the same number of items remaining on the buffer.

• Buffer and stack size: compare parses with the same number of items remaining on the
buffer and stack.

• Dependency count: compare parses having constructed the same number of dependen-
cies.

Table 3.1 shows the results for the various parse comparison strategies, in terms of labelled
accuracy for all of our evaluation corpora combined. Although the differences are fairly small,
the standard strategy of comparing parses having undergone the same number of transitions
is clearly not optimal. The buffer size strategy seems to give the best accuracy across the
board (except for beam 2, where dependency count has a slight edge). In terms of statistical
significance (see section 5.1.2), the difference between the standard transition count strategy
and our buffer size strategy is significant in beams 1, 2 and 5 (p-value < 0.02), but insignificant
for beams 10 and 20. Indeed, there is a greater difference in accuracy for lower beams than
for higher beams. This is probably because in the higher beams, regardless of the comparison
strategy, the correct dependency has a higher chance of being kept in one of the various
comparison heaps and therefore making it to the terminal heap, whereas in the lower beams,
it may get discarded.

Beam width
Strategy 1 2 5 10 20
Transition count 87.91 88.56 88.95 89.04 89.08
Buffer size 88.05 88.63 88.98 89.05 89.09
Buffer & stack size 87.96 88.58 88.95 89.03 89.07
Dependency count 87.99 88.65 88.96 89.03 89.05

Table 3.1: Incremental parse comparison strategies, labelled accuracy at different beams

We also calculated the accuracy when stopping as soon as k parses have reached a ter-
minal state, where k is the beam width [Sagae and Lavie, 2006]. This approach considerably
lowers scores, especially at higher beams. In view of these results, we use buffer size as the
incremental parse comparison strategy for the remainder of this thesis.

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 91

3.4 Formally defining features and rules

In order to open Talismane up to computational linguists, we need to find a way to allow them
to define complex features and rules to their heart’s content. In this section, we present the
feature definition syntax used to define both features and rules in declarative configuration
files. Although each module contains its own low-level feature functions, the syntax used for
specifying function parameters and combining these functions into features is common to all
four modules.

Indeed, the features to be defined often need to combine information in various ways. For
example, in parsing, it is clear that certain pos-tags combinations are more likely to create
certain types of dependencies. For example, if the top of stack σ0 is a determiner with pos-tag
DET, and the head of buffer β0 is a common noun with pos-tag NC, the dependency det(β0, σ0)
resulting from the transition left-arcdet is very probable. Thus, an obvious choice for a feature
is a combination of the two pos-tags. To this end, we define the concatenation operator ||.
Now, given that the parser has a built-in function PosTag(X), giving the pos-tag of a given
element in the parse configuration, we can define this feature as:

PosTag(Stack[0]) || PosTag(Buffer(0))

Similarly, we can imagine a feature that tests whether the word on the top of stack is a
verb, and already has a direct object assigned to it, so as to avoid assigning two direct objects
to the same transitive verb. However, verbs in our tagset have several different tags, one per
verb mood: V for indicative verbs, VINF for infinitive verbs, VIMP for imperative verbs, etc.
All of these moods can govern a direct object. We thus need a logical “or” operator | to test
for the various verb tags, a logical “and” operator & to combine these with the direct object
test criterion, and an equality operator == to check the number of existing direct objects.
Now, knowing that the parser has a built-in function DepCountIf(governor, condition),
returning the number of dependents of a given governor satisfying a given condition, and
another function DepLabel(), returning the dependency label governing a given token, we
can write this feature as:

PosTag(Stack[0])==“V” | PosTag(Stack[0])==“VINF” |

PosTag(Stack[0])==“VIMP” & (DepCountIf(Stack[0],

DepLabel()==“obj”)==1)

This could be restated in English as: the pos-tag of σ0 is an indicative verb, an infinitive
verb, or an imperative verb and it has exactly 1 dependent with the direct object label. If
this boolean feature returns a result of true, it should make it very unlikely for the system to
create the dependency obj(σ0, β0) resulting from the transition right-arcobj, since the verb at
σ0 already has a direct object.

The syntax thus supports certain operators listed in table 3.2, completing the operators
already presented above, and certain generic functions, some of which are listed in table 3.3,
enabling the linguist to define constructs such as “if condition then return result A else return
result B”.

Within each Talismane module, these generic functions and operators are used to combine
a set functions specific to the module’s internal mechanism, such as DepCountIf described
above for the parser. We will introduce these little by little, as required to describe specific
features used by our experiments. A full list of feature functions is given in the Talismane

92 3.4. FORMALLY DEFINING FEATURES AND RULES

user manual4.

Operator Result Description
+ number addition
- number subtraction
* number multiplication
/ number division
% number modulus (remainder after division)
== boolean numeric, string or boolean equality
!= boolean numeric, string or boolean inequality
< boolean less than operator
> boolean greater than operator
<= boolean less than or equal to
>= boolean greater than or equal to
& boolean boolean AND
| boolean boolean OR
|| string merges two or more string features by concate-

nating their results and adding a | in between.
(. . .) n/a grouping parenthesis
“. . . ” string encloses a string literal

Table 3.2: Talismane feature syntax: operators

One generic function to note is the OnlyTrue function. In a standard boolean function,
a false result will be considered as a valid result in the statistical model, and can be used to
make certain decisions more probable. If the OnlyTrue function is applied, a false result is
transformed to a null, which is simply discarded, and has no bearing on the statistical model.
This allows us to include features where the value false wouldn’t add much value and would
uselessly burden training. For example, in most corpora, the vast majority of tokens don’t
contain a number. Thus, knowing that a token doesn’t contain a number doesn’t really help
determine its part-of-speech. The pos-tagger defines a Regex function, testing whether the
token matches a certain regex. This function uses the Java regex syntax5, where \d represents
a digit, \D represents a non-digit, * indicates 0 or more occurrences of the previous item, and
+ indicates 1 or more occurrences of the previous item. We would write our feature something
like this: OnlyTrue(Regex(“\D*\d+\D*”)), in order to exclude the class of words which don’t
contain numbers from the model.

Now, many systems similar to Talismane provide a much simpler feature set. However,
it is one of our hypotheses that results for specific phenomena can be improved by means
of complex targeted features. A series of experiments applying complex language-specific
features to correctly annotate specific phenomena is given in chapter 6.

3.4.1 Using named and parametrised features

It is sometimes useful to re-use a particular feature as a component of many other features,
either through result concatenation, or through logical combinations. To this end, features

4http://urieli.github.io/talismane/
5http://docs.oracle.com/javase/tutorial/essential/regex/

http://urieli.github.io/talismane/
http://docs.oracle.com/javase/tutorial/essential/regex/

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 93

Function Type Description
ExternalResource (string
name, string keyElement1,
string keyElement2, . . .)

string Returns the category indicated in the named ex-
ternal resource for the set of key elements pro-
vided.

IfThenElse (boolean
condition, any thenResult,
any elseResult)

any If condition evaluates to true then return one re-
sult else return another result.

IndexRange (integer from,
integer to)

integer Creates n separate features, one per index in the
range going from "from" to "to".

Inverse (number) number Inverts a normalised double feature (whose values
go from 0 to 1), replacing result x with 1-x. If the
result is < 0, returns 0.

IsNull (any) boolean Returns true if a feature returns null, false oth-
erwise.

Normalise (number feature,
number minValue, number
maxValue)

number Changes a numeric feature to a value from 0 to 1,
where any value ≤ minValue is set to 0, and any
value ≥ maxValue is set to 1, and all other values
are set to a proportional value between 0 and 1.

Not (boolean) boolean Performs a boolean NOT: replaces true with false
and vice-versa

NullIf (boolean condition,
any feature)

any If the condition returns true, return null, else re-
turn the result of the feature provided.

OnlyTrue (boolean) boolean If the wrapped boolean feature returns false, will
convert it to null. Useful to keep the feature vec-
tors sparse, so that only true values return a re-
sult.

ToString (any) string Converts a non-string feature to a string.

Table 3.3: Talismane feature syntax: a subset of generic functions

in Talismane can be named, allowing them to be reused in any feature definition, and also
simplifying the interpretation of any output files referring to features, as the name will be used
instead of the full feature definition. In the feature configuration file, this is done by giving
the features a unique name, followed by a tab, followed by the feature itself. Furthermore,
parameters can be added to a named feature, making it possible to pass specific values as
arguments to the feature. For example, we may want to re-use the feature testing whether or
not a token is a verb through the various verbal mood pos-tags. We also want to be able to
test this feature on any token in the configuration - the top of stack, the head of buffer, etc.
To this end, we could redefine our feature from the previous section as follows:

IsVerb(X) PosTag(X)=="V" | PosTag(X)=="VINF" | PosTag(X)=="VIMP"

VerbHasObject IsVerb(Stack[0]) & (DependentCountIf(Stack[0],

DependencyLabel()==“obj”)==1)

We can then reuse this IsVerb feature, e.g. IsVerb(Buffer[0]) to test if the head of buffer
is a verb.

94 3.4. FORMALLY DEFINING FEATURES AND RULES

3.4.2 Defining feature groups to simplify combination

In NLP applications, we often try to provide useful feature combinations, since the robust
numeric classifiers presented in this thesis cannot automatically select combinations with high
information content. For example, when parsing, we may wish to define a full set of basic
features describing some aspect of the parse configuration, such as the word form, lemma or
pos-tag of the word at position β1, just after the head of buffer. This on its own may not
help us take any decision with respect to a dependency between the current σ0 and β0, but
may well be highly informative when combined with the word forms and/or postags of σ0 and
β0. For example, let us assume we have the phrase “une pomme rouge et mûre”. We reach a
point in parsing with σ0=rouge, β0=et, and β1=mûre, and are trying to decide whether rouge
is the first conjunct of et. Knowing that β1 is an adjective doesn’t necessarily help us make
any decision on its own, but knowing that both σ0 and β1 are adjectives is very important (to
differentiate from “une pomme rouge et une orange”). Thus, we may want to systematically
combine all of the basic features with (A) the pos-tags of σ0 and β0, and (B) the lemmas of
σ0 and β0.

To this end, the basic features can be grouped together, by adding an additional feature
group name separated by tabs from the feature name and the feature code. The following
feature definitions use the parser’s built-in functions WordForm, Lemma, and PosTag, and de-
fine a set of basic features as belonging to the BasicFeatures group:

WordFormBuffer1() BasicFeatures WordForm(Buffer[1])

LemmaBuffer1() BasicFeatures Lemma(Buffer[1])

PosTagBuffer1() BasicFeatures PosTag(Buffer[0])

We can systematically combine this basic features group with the σ0 and β0 pos-tag pair
and lemma pair, as follows:

BasicFeatures_P Concat(PosTag(Stack[0]), PosTag(Buffer[0]),

BasicFeatures)

BasicFeatures_L Concat(Lemma(Stack[0]], Lemma(Buffer[0]),

BasicFeatures)

3.4.3 Features returning multiple results

Sometimes a feature may need to return multiple results for a given linguistic context. For
example, we may want a feature that returns each of the different pos-tags assigned to a given
word form in the lexicon.

String collection features are a special kind of feature, which evaluates to a collection of
strings at runtime (instead of evaluating to a single result). They can be used anywhere a
regular string feature is expected. However, in order to avoid generating cross-product of all
instances of a given collection feature enclosed in the same parent feature, each collection
feature is evaluated prior to the parent feature, and a single value is then inserted at a time
to the parent feature. Any parent feature which refers to a string collection feature in its
definition will be converted at runtime into n separate features, one per string-collection
result.

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 95

3.5 He who laughs last: bypassing the model with rules

One of the primary innovations of Talismane is to allow the user to bypass the statistical
model for each of the modules through the definition of rules. It is all fine and dandy to
allow the model to take its decisions based on a statistical analysis of the training data, but
sometimes the robust statistical model makes a stupid error for a really obvious case, and
the computational linguist can’t help but wanting to have the final word: this is where rules
come in handy. Rules are applied when Talismane analyses new data, allowing the system to
override the statistical model and automatically assign or exclude a certain classification to
a certain phenomenon.

Rules thus add a symbolic dimension to the statistical approach. This makes it possible
for Talismane to adapt to certain specific cases which are either under-represented or not
represented at all in the training corpus. Indeed, the most typical use for rules is error
correction: the user reviews Talismane’s analysis, and discovers that certain rare phenomena
are misclassified. Rather than trying to write new features and retraining the model, which
is unlikely to succeed if the phenomenon is sufficiently rare, the user can add specific rules
to a configuration file, and re-analyse. These rules are applied during text analysis, and can
be configured differently for each analysis. Thus, as opposed to post-processing corrections,
rules are directly integrated into the analysis process, and affect contextual features (e.g. n-
gram features) for subsequent items. Any boolean feature can be transformed into a rule: if
the boolean feature returns true for a given context, the rule is applied, and the statistical
model’s decision is overturned. Rules are associated with either a positive classification (i.e.
the system must assign a given classification if the features returns true) or a negative
classification (i.e. the system cannot assign a given classification if the feature returns true).

Rules can be applied to all four modules. Sentence detector rules are assimilated to
filters and covered in section 3.6, and tokeniser rules are applied via regular expressions that
automatically tokenise an entire matching sequence as a single token (e.g. e-mail addresses
or website URLs).

Pos-tagger rules are more complex, and are configured as follows:

[postag|!postag] [boolean feature]

Negative rules, or constraints, are typically used around closed classes. The following con-
straint, for example, does not allow the pos-tagger to classify a word as a preposition if it
isn’t listed as such in the lexicon, so that new prepositions cannot be “invented”:

!P Not(LexiconPosTag("P"))

Alternatively, the following constraint ensures that a word which is listed only under closed
classes in the lexicon (such as “le” in French, listed as a determiner and object clitic) should
never be classified as a common noun:

!NC HasClosedClassesOnly()

Positive rules are typically used for very specific cases that are under-represented in the
training corpus, but which the linguist feels should always result in a certain classification.
For example, we can imagine a rule telling Talismane to classify as an adjective any cardinal

96 3.5. HE WHO LAUGHS LAST: BYPASSING THE MODEL WITH RULES

number, when preceded by a determiner and followed by a token which, according to the
lexicon, can be classified as a noun. This rule makes use to several built-in functions specific
to the pos-tagger: History(n) returning the pos-tagged token at position n with respect to
the current token, where n is negative, Offset(n), returning the token at position n with
respect to the current token, where n is positive or negative, Word(string...), returning
true if the current token matches any of the words on the list, and LexiconPosTag(token,

postag), returning true if the token in question is listed as having the pos-tag in question in
Talismane’s lexicon.

ADJ PosTag(History(-1)) == “DET” & Word(“deux”, “trois”, “quatre”,

“cinq”, “six”, “sept”, “huit”, “neuf”, “dix”) &

LexiconPosTag(Offset(1), “NC”)

The English interpretation of this rule would be: assign the pos-tag “adjective” if the previous
word was tagged as a determiner, the current word is either “deux”, “trois”, etc., and the
next word is listed as a common noun in the lexicon. Parser rules are similar to pos-tagger
rules, and are configured as follows:

[transitionCode|!transitionCode] [boolean feature]

For example, if the user notices that Talismane is erroneously assigning multiple left-hand
subjects to verbs, the following parser rule can prevent this from happening:

!LeftArc[suj] DepCountIf(Buffer[0], DepLabel==“suj”)>0

An English interpretation of this rule is: do not attach the top of stack as a subject of
the the head of buffer if the head of buffer already has at least one dependent with the label
“subject”. A more complex version of the same rule can be used to allow for valid double-
subject sentences such as “La dame a-t-elle trouvé son chien ?”, ensuring that if two subjects
are assigned, one of them is a subject clitic (CLS) and the other one is not ():

!LeftArc[suj] (DepCountIf(Buffer[0], DepLabel==“suj” &

PosTag==“CLS”)==1 & PosTag(Stack[0])==“CLS”) |

(DepCountIf(Buffer[0], DepLabel==“suj” &

PosTag!=“CLS”)==1 & PosTag(Stack[0])!=“CLS”)

!RightArc[suj] (DepCountIf(Stack[0], DepLabel==“suj” &

PosTag==“CLS”)==1 & PosTag(Buffer[0])==“CLS”) |

(DepCountIf(Stack[0], DepLabel==“suj” &

PosTag!=“CLS”)==1 & PosTag(Buffer[0])!=“CLS”)

An English interpretation of the first rule above would be: do not attach the top of stack as
a subject of the head of buffer, if either the head of buffer already has a clitic subject and
the top of stack is also a clitic, or the head of buffer already has a non-clitic subject and the
top of stack is also a non-clitic. The two rules in the above example could be replaced by a
single rule if we could replace LeftArc and RightArc by Arc, and Buffer[0] by Governor

(in the case of a LeftArc) or Dependent (in the case of a RightArc), and and Stack[0] by
Dependent (in the case of a LeftArc) or Governor (in the case of a RightArc). It is planned
to add such functionality in the future to ease rule writing. Regardless, rules, and the interac-
tions between them, are fairly cumbersome to maintain, so that the ease with which they can

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 97

be added to the system is offset by lower long-term maintainability. We present the baseline
rules included in the default French implementation in section 4.5, page 125, and experiments
using rules to tackle specific phenomena in section 6.5, page section 6.5.

3.6 Filtering the raw text for analysis

Sometimes, the raw input text cannot be analysed as is. For example, in XML, it may only
be necessary to parse text contained between certain tags, and to skip certain tags inside that
text. Certain tags might mark sentence breaks, and others are simply formatting tags within
a sentence. Talismane filters are used to prepare the raw input text for the first step in the
linguistic processing chain (usually sentence detection). They allow us to indicate sections
in input text that need to be parsed and other sections that should be skipped or replaced.
Furthermore, they allow us to include certain markers from the input directly in the output,
without processing.

Filter type Regular
expression

Task

SKIP <skip>.*</skip> Skip the XML tag <skip> and its
contents, so that it is excluded
from Talismane’s output.

INCLUDE (.*) Include the text inside the XML
tag , but not the tag itself

START <text> Start processing just after the
XML tag <text>

STOP </text> Stop processing just before the
XML tag </text>

OUTPUT <mark>(.*)</mark> Mark the text inside the XML tag
<mark> for output along with
Talismane’s analysis, excluding the
marker itself

SKIP, SEN-
TENCE_BREAK

<p> Mark the XML tag <p> as a
sentence break, and skip it.

REPLACE é→é Replace any occurrence of
é by é

Table 3.4: Examples of Talismane filters

Filters in Talismane are defined using regular expressions. Examples of typical filters are
shown in table 3.4. Talismane has been designed so that, after the filters have been applied,
we keep a trace of a token’s original position in the raw text (column number + row number),
and can include this information in Talismane’s output. This can be critical in applications,
such as candidate term extraction, in which the user needs to review the context of a given
phrase before taking a decision for a particular candidate term.

Note that SKIP and INCLUDE can be replaced by START and STOP, which is especially
advantageous when the portion of text to be skipped is large, and might go beyond Talismane’s
configurable input buffer size.

98 3.7. COMPARISON TO SIMILAR PROJECTS

3.7 Comparison to similar projects

Talismane differs from the parser in Nivre et al. [2007b], also used in the benchmarking study
for French by Candito et al. [2010b], in the following ways:

• it extends parsing from a purely deterministic system to a beam-search approach, with
different startegies for comparing incremental parses

• it places parsing organically within the context of full syntax analysis, from raw text
to parse trees. Specifically, the final pos-tagging beam, retaining the most ambiguous
cases from tokenising and pos-tagging, can be propagated to the parser, thus allowing
the parser to resolve ambiguities left open by the lower levels of abstraction.

• it introduces a very rich syntax for feature description, allowing the definition of ad-hoc
features specific to a given language and/or phenomenon

• it introduces symbolic rules as a means for overriding the statistical model’s decisions

• it provides a measure of the parser’s confidence in the dependencies constructed as
optional output

• it maintains traceability of each token’s column/row position in the raw text, even after
applying filters to parse annotated text (e.g. XML)

• it incorporates both standard (local) transition-based parsing and global learning pars-
ing as training/analysis options. Global learning is not covered in the present thesis.

Other systems extending transition-based parsing to non-deterministic case via a beam
search are described by Sagae and Lavie [2006], Johansson and Nugues [2006, 2007], Zhang
and Clark [2009], Zhang and Nivre [2011, 2012], Bohnet and Nivre [2012]. With respect to the
beam-search, Talismane differs from these systems mainly in that the beam search crosses
several levels of analysis (tokenising, pos-tagging, parsing), and in the method via which
the system determines which parses to compare while running the algorithm: these studies
maintain a single heap and privilege shortest path solutions, whereas Talismane constructs
multiple comparison heaps, allowing path-length neutral comparison. Talismane is also the
first system to apply these methods to French.

Zhang and Clark [2008] extended both the graph-based and the transition-based systems
using a beam search, and apply an identical perceptron-based learning algorithm to both sys-
tems. Finally, they create a highly competitive combined parser which again uses perceptron
methods to select the best parse from both parsers’ beams. Within the present thesis, we
seek instead to find ways to add information to a transition-based parser at different points
in the algorithm, so as to allow it to approach the accuracy of graph-based parsers while
maintaining linear processing time.

Talismane is similar in some ways to the Zpar system6 described in Zhang and Nivre [2011],
which also supports beam search and global learning, as well as supporting tokenisation (for
Chinese) and pos-tagging. However, Talismane places more emphasis on language-specific
features via its rich feature definition syntax, incorporates symbolic rules, and integrates the

6http://www.sourceforge.net/projects/zpar

http://www.sourceforge.net/projects/zpar

THE TALISMANE SYNTAX ANALYSER - DETAILS AND ORIGINALITY 99

various modules more tightly by enabling the propagation of the solution beam from one
module to the next.

Bohnet and Nivre [2012] integrate pos-tagging and parsing even more tightly in their
mate-tools system7, by performing them in a single step, and report improved state-of-the-
art for all languages. At first this seems counter-intuitive, since pos-tagging typically provides
97%+ accuracy, while parsing accuracy hovers around 90%. Thus, performing pos-tagging
ahead of time gives us more information when parsing: we know the pos-tags of all tokens to
the left and the right of the current σ0 and β0. However, their positive results indicate that
this is not necessarily a valid assumption. In Talismane, we accommodate this idea somewhat
by propagating the pos-tagger beam to the parser, thus allowing the parser to decide between
ambiguities left open by the pos-tagger. However, their tighter integration has the advantage
of not relying on a wider beam to consider different solutions, and would need to be explored
further.

3.8 Discussion

In this chapter, we set out to describe the mechanism behind the four Talismane modules
in sufficient detail to enable a linguist to inject linguistic knowledge in a way that is useful
to each module’s decision-making process. We described each module in terms of the formal
supervised machine learning framework presented in chapter 2. We then described the actual
configuration mechanism used to inject this knowledge, in the form of features, rules and
filters.

In the following chapter, we will examine the specific sources of linguistic knowledge avail-
able for French, and show how to incorporate this knowledge into the system via the baseline
features for each module. We will then be ready to begin describing our experiments, primar-
ily aiming to prove that this expressive configuration mechanism actually serves a purpose:
that specific features and rules can improve results for specifically targeted phenomena.

7http://code.google.com/p/mate-tools/

http://code.google.com/p/mate-tools/

Chapter 4

Incorporating linguistic knowledge

In the previous chapters, we covered our dependency parsing annotation scheme, the super-
vised machine algorithms needed to produce this scheme, and the specific implementation
of these algorithms within Talismane. We now turn to a critical question in NLP from a
linguist’s perspective: how do we incorporate linguistic knowledge into these algorithms to
help them in their decision-making process?

There are several levels in which this knowledge is incorporated:

• Training corpora, defining the scope of basic material from which the system will at-
tempt to learn useful generalisations. These are presented in section 4.1, along with the
specific training corpora used by Talismane for its French implementation.

• Evaluation corpora, allowing us to judge the extent to which a model built from a
particular training corpus and configuration is generalisable to other genres and/or
domains. They are presented in section 4.2, along with the specific evaluation corpora
used in our experiments.

• External resources, containing more or less comprehensive knowledge regarding a par-
ticular aspect of a language. We discuss these in section 4.3, describing the general types
of external resources that can be used, the manner in which they are incorporated, and
the specific resources actually used in our experiments.

• Features, which are the linguist’s attempt at capturing the most informative and gen-
eralisable aspects of a linguistic context with respect to the decision to be made. In
section 4.4, we present baseline features for each Talismane module, based on the ex-
pressive feature definition syntax described in the previous chapter.

• Rules, enabling the linguist to react to mistakes made by the statistical tool by overriding
its decisions in specific cases. Rules are one aspect of Talismane which is not typically
available in other statistical systems. The baseline rules used to override the statistical
model’s decisions for Talimane’s default implementation are presented in section 4.5.

4.1 Training corpora

The first source of linguistic knowledge for any supervised machine learning system is the
corpus on which the system is trained. Choosing the training corpus to be as representative

101

102 4.1. TRAINING CORPORA

as possible of the type of language we wish to analyse is critical, and involves many linguistic
criteria. A technical corpus, for example, is likely to be limited in both is vocabulary and in
its acceptable syntactic structures. An edited journalistic corpus from a national newspaper
concentrating on politics and economy will again have a limited vocabulary, and may be
entirely devoid of constructs more common in less formal writing, such as the second person
singular. Having selected a corpus, a large amount of linguistic knowledge is then injected
during the annotation process itself: at a high-level, via the choice of annotation scheme, and
at a lower level, via the annotation guide which gives criteria for annotating difficult cases.

4.1.1 Errare humanum est: Annotation reliability

Training corpora are never perfect, but the degree of their reliability is difficult to measure.
One way of attempting to measure reliability is by comparing annotations for identical sections
by different annotators.

There are several reasons behind differing annotations:

• Human error: by far the most common reason for disagreement in annotations is simple
human error. The majority of corpora nowadays are annotated by asking people to
correct the automatic annotations produced by a machine. Many errors are introduced
by simply overlooking an error made by the machine in the first place.

• Incomplete annotation guide: a large number of specific cases can only be consistently
annotated by human annotators if the annotation guide gives proper guidance with easy-
to-follow criteria. This is true even for cases where no semantic ambiguity is possible,
but where the correct choice is not clear, e.g. the governor for pourquoi in “C’est la
raison pourquoi je vous écris” (“It’s the reason why I’m writing you”). Is the governor
est, raison or écris ? There is no inherent ambiguity in the linguistic construct itself, in
that nothing semantic in the construct would make us choose the main verb in one case
and the subordinate verb in another. And yet, unless the annotation guide gives clear
instructions for this construct, annotators are at best likely to annotate it consistently
in their own annotations but inconsistently to the others, and at worse will annotate it
at random. Another obvious case is titles, which represent proper nouns, but contain
other parts of speech, e.g. “Il a lu La Peste de Camus” (“He read La Peste by Camus”).
Should anything in the title be marked as NPP? Again, there is no inherent ambiguity to
the construct, but unless the guide says otherwise, one annotator may annotate La/DET
Peste/NC and another La/NPP Peste/NPP, without either one being clearly right or
wrong.

• Annotation class granularity: in some cases, the categories from which we need to
choose are either too specific, too general or too vague to allow for a clear choice.
For example, the category ET (foreign word) clearly overlaps with other categories,
depending on the role played by the foreign word in the sentence, and puts into question
the usefulness of this category in the first place. An interesting case in parsing is the
border between prepositional arguments (de_obj, a_obj, p_obj) and adjuncts (mod)
which, as highlighted in Fabre et al. [2008], is a continuum rather than a clear-cut
dichotomy. If we take “voter pour moi”, “acheter pour moi”, “venir pour me voir”,
“mourir pour des idées” and “dormir pour oublier”, which are arguments and which are
adjuncts?

INCORPORATING LINGUISTIC KNOWLEDGE 103

• Undecidable ambiguity. Finally, there are some rare cases of undecidable ambiguity.
A sentence such as “I saw the man with the telescope” may be undecidable out of
context, but is almost never ambiguous in context, depending on the semantic levels
to which the annotators have access. Sometimes however, especially in unedited text
with spelling and grammar mistakes, it may be very difficult to elucidate the author’s
semantic intention for specific points.

In view of these possibilities for mismatches between two humans annotating the same
corpus, it would be naive to assume a computer system could do better at imitating a hu-
man annotation than two humans among themselves. This brings us to the measurement
of inter-annotator agreement, which, given an identical corpus that has been annotated by
two or more annotators without consultation among themselves, provides an indication of
the level of agreement between the annotators, and therefore of the inherent difficulty of the
annotation task. These statistics, highly useful as a quality indicator for an annotated cor-
pus, nevertheless cannot tell us whether the annotation task’s difficulty is due to the level of
expertise required to correctly annotate, the quality and comprehensiveness of the annotation
guide, the inherent ambiguity within the task which is not resolvable by the annotation classes
provided, or the annotator’s personality.

The most common measurement used for inter-annotator agreement of classification tasks
is Cohen’s Kappa [Carletta, 1996], which attempts to take into account the likelihood of two
annotators agreeing by random chance. In this statistic, neither annotation is assumed to
be a reference: we are simply comparing the level of agreement between them. This is the
statistic we use in the present study.

In the case of identification tasks, e.g. identifying all of the named entities in a given text,
the average f-score is used instead. In this case, we alternatively assume each annotator is
a reference (let’s call him annotator A), and calculate annotator B’s precision (what portion
of annotator B’s entities correspond to those identified by annotator A) and recall (what
portion of annotator A’s entities were found by annotator B) with respect to the reference.
We then take the average f-score of both annotators. This method can also be used for
syntax consituency annotation, where each annotator identifies the beginning and end of
phrases within the text.

4.1.2 French Treebank

The French Treebank [Abeillé et al., 2003], hereafter FTB, is an annotated journalistic corpus
comprised of extracts from the newspaper Le Monde of 1986 to 1993, containing 21,562 sen-
tences and 664,904 tokens including punctuation (605,277 when compound words are merged
into a single token). Annotations include morpho-syntactic categories, lemmas, and phrase
consituent structures. The treebank was subsequently enriched [Abeillé and Barrier, 2004]
with annotations for the verbal argument function of phrases (e.g. subject, direct object),
covering about half of the corpus for the version received in 2009 (10,097 sentences, 318,778
tokens, 289,901 when compounds are merged). The corpus is accompanied by three detailed
annotation guides [Abeillé and Clément, 2006, Abeillé et al., 2004, Abeillé, 2004], giving
instructions to the correctors of the initial automatic annotation.

104 4.1. TRAINING CORPORA

<SENT nb="20">

<NP fct="SUJ">

<w cat="N" lemma="m." mph="ms" subcat="C">M.</w>

<w cat="N" lemma="Teulade" mph="ms" subcat="P">Teulade</w>

</NP>

<VN>

<w cat="V" lemma="pouvoir" mph="P3s" subcat="">peut</w>

</VN>

<w cat="PONCT" lemma="," subcat="W">,</w>

<w compound="yes" cat="ADV" lemma="à juste titre">

<w catint="P">à</w>

<w catint="A">juste</w>

<w catint="N">titre</w>

</w>

<w cat="PONCT" lemma="," subcat="W">,</w>

<VPinf fct="OBJ">

<VN>

<w cat="V" lemma="considérer" mph="W" subcat="">considérer</w>

</VN>

<Ssub fct="OBJ">

<w cat="C" lemma="que" subcat="S">que</w>

<w cat="PONCT" lemma="\"" subcat="W">\"</w>

<NP fct="SUJ">

<w cat="D" lemma="le" mph="fs" subcat="def">la</w>

<w cat="N" lemma="crédibilité" mph="fs" subcat="C">crédibilité</w>

<PP>

<w cat="P" lemma="de">du</w>

<NP>

<w cat="D" lemma="le" mph="ms" subcat="def"></w>

<w cat="N" lemma="système" mph="ms" subcat="C">système</w>

<AP>

<w cat="A" lemma="conventionnel" mph="ms" subcat="qual">conventionnel</w>

</AP>

</NP>

</PP>

</NP>

<VN>

<w cat="V" lemma="être" mph="P3s" subcat="">est</w>

</VN>

<w compound="yes" cat="ADV" lemma="en jeu">

<w catint="P">en</w>

<w catint="N">jeu</w>

</w>

<w cat="PONCT" lemma="\"" subcat="W">\"</w>

</Ssub>

</VPInf>

<w cat="PONCT" lemma="." subcat="S">.</w>

</SENT>

code 1: XML sample from the French Treebank

Listing 1 shows an XML sample from the FTB for the following sentence: “M. Teulade

INCORPORATING LINGUISTIC KNOWLEDGE 105

peut, à juste titre, considérer que « la crédibilité du système conventionnel est en jeu ».” (“Mr.
Teulade can consider, and rightly so, that the conventional system’s credibility is at stake”).
Each word is assigned a grammatical category, sub-category, and additional morpho-syntactic
details (tense, mood, person, gender, number, possessor number), as well as a lemma. The
exception is compound word components, to which only the main grammatical category is
assigned. Empty tokens are inserted after all agglutinated forms, as in the case of “du” above,
representing a combination of the preposition de and the determiner le.

The corpus has several weaknesses as a training corpus for a general purpose French syntax
analyser. First of all, it has no published statistics on inter-annotator agreement. Thus, we
have no clear measurement of the corpus’ internal consistency or quality.

In terms of corpus content, the specialised nature of this journalistic corpus (politics,
economy, finance) is clearly outlined in table 4.1, showing the 30 most frequent common noun
lemmas. Indeed, none of the publications on the French Treebank indicate which criteria
were used to select the extracts in the first place. The corpus is thus representative of well-
edited journalistic French corresponding to these domains, but not easily transposable to
other genres or domains.

Furthermore, the corpus contains a very high proportion of compound words covering all
grammatical categories. All in all, 14% of the tokens in the corpus are contained in a com-
pound word. The annotation guide’s criteria for retaining compound words seem insufficient
for making a consistent decision in many cases. From a total of 34,476 compound words,
the largest category is common nouns (10,013), followed by adverbs (5,999), prepositions
(5,515), proper nouns (5,039) and cardinal determiners (3,843). The closed categories such
as prepositions are not problematic. Most compound adverbs are fairly generic as well, and
could apply to any text genre (e.g., d’abord, d’ailleurs, en effet, en revanche, sans doute).
However, certain adverbs are far more questionable: à l’eau, à l’étranger, au gouvernement,
dans l’air, dans le besoin, sur le terrain, en développement, purement et simplement. In view
of such a list, it would be difficult to define a criterion (other than the number of constituent
words, or the corpus-dependent criterion of frequency) for the exclusion of any prepositional
phrase acting as an adverbial.

The case of compound common nouns is even more problematic. The ten most common
compounds are: chiffre d’affaires, premier ministre, taux d’intérêt, pouvoirs publics, directeur
général, secrétaire général, conseil d’administration, projet de loi, conseil des ministres, main-
d’oeuvre. They are all highly specific to political or economic French, and tend to decompose
both syntactically and, to a great extent, semantically. Their status as compounds is however
clear if we use criteria such as the difficulty of insertion (directeur antérieur* général) and
lexical substitution (principal* ministre). In the corpus, there are no occurrences as non-
compounds, although one could of course imagine a non-compound case such as “Il est le pre-
mier ministre à avoir reconnu cette erreur”. However, the compound nouns in the corpus also
contain over 2,000 hapax (e.g. articles de toilette, bateaux de pêche, champ de pétrole, crise
économique et financière, hélicoptère de combat, jeunes femmes, langues étrangères, nouveaux
pays industrialisés, restaurants gastronomiques). The line between compound words and sim-
ple colocations becomes fuzzy, and it is difficult to imagine a hard and fast criterion which
would allow us to distinguish “articles de toilette” or “champ de pétrole” as compound words
from “articles de correspondance”, “articles de rangement”, “champ de vision” or “champ de
compétence”, all of which exist as non-compound phrases in the corpus.

In the case of many compounds such as nouns and adverbs, the difficulty of defining clear
criteria for compound identification makes it unrealistic to expect a syntax analyser to recog-

106 4.1. TRAINING CORPORA

Lemma Translation Count
% % 3554
franc French Franc 1490
M. Mr. 1209
entreprise company 808
groupe group 779
pays country 779
marché market 588
monsieur Mr. 537
gouvernement government 535
société company/society 535
prix price 529
président president 493
emploi employment/job 457
dollar Dollar 407
état state 382
production production 369
économie economy 344
accord agreement 342
salarié employee 330
travail work 324
capital capital 323
activité activity 319
taux rate 316
baisse decrease 314
banque bank 309
secteur sector 303
fin end 303
politique policy 292
action stock/action 290
mesure measurement 284

Table 4.1: Top 30 common nouns in the French Treebank

INCORPORATING LINGUISTIC KNOWLEDGE 107

nise these compounds automatically. In order to simplify evaluation, as well as generalising
analysis to other domains, I have applied the following modifications to the FTB:

• Compound words: only closed category compounds and a short list of generic adverbial
expressions and others without syntactic compositionality have been retained as com-
pounds. In order to avoid losing information, compound words that were not retained
are simply marked by changing the currently redundant attribute compound=“yes” to
compound=“no”, while retaining the compound components in all cases.

• Compound components: Full morpho-syntactic information has been automatically as-
signed to all compound components using the LeFFF (see section 4.3.3), and manually
corrected when any ambiguity existed. This concerned top-level part-of-speech tags
for 5,000 components with no grammatical information at all, and grammatical sub-
categories as well as additional morpho-syntactic characteristics for all 94,000 compo-
nents.

In keeping with the FTB distribution license, a compound-modified FTB corpus has been
sent to Anne Abeillé’s team, and can be requested from them.

Because of the impossibility of handling split compounds in Talismane (see section 3.3.2,
80), we decided to analyse the list of split compounds within the FTB. These represent
only 76 cases for all compound categories combined (0.22%). The most typical cases are
adverbs with intensifiers (e.g. à plus long terme, en grande partie), prepositions with inserted
adverbs (e.g. à cause notamment de, par rapport non seulement à), common nouns with
adjectival modifiers (e.g. ministre tchécoslovaque de l’intérieur) and various modified verbal
expressions (e.g. ne met pas forcément en cause, va d’ailleurs bon train). There is also
one interesting case of a compound clitic split by punctuation, in the sentence: “Un public que
l’« on ne changera pas par décret », comme le dit. . . ”. Of these, since we have not retained
compounds for nouns, verbs and most prepositional adverbials, we are only concerned with the
closed category cases: prepositions (15 cases) and the single split clitic. These prepositional
compounds are all syntactically compositional as prepositional phrases, and we don’t foresee
a problem handling them as a sequence of separate components.

Regarding the grammatical categories and sub-categories, Talismane supports the use of
a configuration file to map the categories, sub-categories and additional morpho-syntactic
details in the FTB training corpus to the the tagset being used. This file can be found in the
Talismane source code.

Despite the various issues outlined in this section, the FTB is the only syntactically
annotated corpus of French of sufficient size to be useful for supervised machine learning tasks,
and has, either directly or through a derivative work, been used to train all of the Talismane
modules in the default French implementation. When selecting the baseline features, we
divide the FTB into training (80%), development (10%) and test (10%) corpora for tuning
and evaluating the pos-tagger. For the sentence detector and tokeniser, because of the sparsity
of phenomena being tested, we systematically use 10-fold cross validation.

4.1.3 French Treebank converted to dependencies

The FTB’s annotations are directly usable by a phrase constituent structure parser, but
not by a dependency parser such as Talismane. Candito et al. [2010a] thus transformed
the FTB into dependency structures, hereafter FTBDep. The latter corpus is based on the

108 4.2. EVALUATION CORPORA

1 M. m. N NC g=m|n=s|s=c 3 suj
2 Teulade Teulade N NPP g=m|n=s|s=p 1 mod
3 peut pouvoir V V m=ind|n=s|p=3|t=pst 0 root
4 , , PONCT PONCT s=w 3 ponct
5 à_juste_titre à_juste_titre ADV ADV _ 3 mod
6 , , PONCT PONCT s=w 3 ponct
7 considérer considérer V VINF m=inf 3 obj
8 que que C CS s=s 7 obj
9 " " PONCT PONCT s=w 15 ponct
10 la le D DET g=f|n=s|s=def 11 det
11 crédibilité crédibilité N NC g=f|n=s|s=c 15 suj
12 du de P+D P+D s=def 11 dep
13 système système N NC g=m|n=s|s=c 12 obj
14 conventionnel conventionnel A ADJ g=m|n=s|s=qual 13 mod
15 est être V V m=ind|n=s|p=3|t=pst 8 obj
16 en_jeu en_jeu ADV ADV _ 15 mod
17 " " PONCT PONCT s=w 15 ponct
18 . . PONCT PONCT s=s 3 ponct

Table 4.2: Example sentence from the FTBDep corpus

portion of the FTB that was annotated with verbal argument functions. The authors give the
total size as 12,531 sentences (339,522 tokens with all compounds merged). Since FTBDep is
specifically designed as a training corpus, it has several advantages, such as a strict versioning
scheme, allowing publications to ensure they are referring to the identical training material.
The authors used heuristic rules to decompose compounds with syntactic regularity, and
to determine the head for each phrase. Since the original corpus was in constituency tree
structure, the conversion to a dependency structure resulted in a fully projective corpus with
no crossed dependency arcs. A small portion of the corpus was then manually annotated for
non-projective structures, including a corresponding annotation guide [Candito et al., 2011b].
When comparing the automatic and manual annotations, the authors found a difference of
1.22% in the UAS (unlabeled attachment score), giving an indicator of the percentage of non-
projective structures in French. The final corpus is available upon request, and is provided
in CoNNL-X format. An example of FTBDep annotation for the sentence from listing 1 is
given in table 4.2. The columns correspond to those given in section 1.1.5, page 35.

This thesis uses FTBDep version 6 exactly as is for parser training/evaluation. We kept the
same training, evaluation and test corpora divisions to keep our results directly comparable
to similar studies.

4.2 Evaluation corpora

The specialised nature of the FTB and FTBDep training corpora in terms of both genre
(edited journalistic text) and domain (political, financial, economic) cast into doubt the ability
of any parser trained on these corpora to handle out-of-domain or out-of-genre text. In order
to test parser performance on such texts, several smaller evaluation corpora are used in this

INCORPORATING LINGUISTIC KNOWLEDGE 109

Corpus Annotations A vs. B Annotation A vs. ref Annotation B vs. ref
FrWiki 83.96 91.59 88.64
Europarl 90.14 94.20 92.26
EstRépu 90.45 94.22 93.72

Table 4.3: Sequoia corpus interannotator agreement (f-score average) from Candito et al.
[2012]

thesis.

4.2.1 Sequoia

The Sequoia corpus [Candito et al., 2012] is a freely available French corpus annotated for
syntax, and consisting of 3,204 sentences (69,246 tokens) taken from the French Europarl,
the regional newspaper l’Est Républicain (EstRépu below), the French Wikipedia (FrWiki
below), and translated documents from the European Medicines Agency (EMEA below),
separated into a dev and test corpus for out-of-domain corpus evaluation. It is available in
both constituency and dependency formats, and follows the FTB annotation guidelines except
for compound words. It uses the same simplified tagset from Crabbé and Candito [2008] as the
present thesis. The dependency version was generated automatically from the constituency
version using the same automatic converter as FTBDep, and is therefore entirely projective
by default. However, the authors used lexical cues to identify and correctly annotate certain
extraction phenomena centered around wh-words (que, dont, etc.) and en [Candito and
Seddah, 2012]. This allowed them to identify a small number of non-projective phenomena:
a total of 42 for 69,238 tokens, or about 0.06% of all dependency arcs.

The Sequoia corpus comes with inter-annotator agreement scores, indicated as an average
f-score for the identified constituency structures, and reproduced in table 4.3. These include
agreement scores between the two annotators, and between each annotator and a reference
created by merging and validating the two annotations. The overall inter-annotator agreement
seems to place a fairly low upper bound on parser accuracy: no higher than about 90.5% if we
take the A vs. B scores as an indicator, since the reference corpus was constructed by merging
the two annotations, and presumably only reviewing those areas where the two annotators
differ, thus encouraging a higher overall agreement. The relatively equivalent scores between
each annotator and the reference imply that each annotator generated a different set of errors.

4.2.2 Wikipedia.fr discussion pages

The FrWikiDisc corpus is a freely available corpus annotated for tokens, pos-tags and syn-
tactic dependencies within the context of the present thesis, using the Brat annotation tool
[Stenetorp et al., 2012]. The corpus was taken from the discussion pages of certain arti-
cles on the French Wikipedia, selected because we felt the topics would engender considerable
debate: the Iraq War, the Algerian War, and genetically modified organisms. On these discus-
sion pages, users communicate on suggested or past modifications to the related encyclopedia
article, often in a heated and fairly informal manner. Within these pages, we manually ex-
cluded any extracts copied directly from the encyclopedic pages, in order to unify the corpus
genre to discussion only. From casual observation, the contributors seem to have a fairly
high level of education, and alternate long and complex arguments with shorter exclamatory

110 4.2. EVALUATION CORPORA

Test Cohen’s Kappa
Annotator A vs. Annotator B 0.864
Annotator A vs. Original 0.789
Annotator B vs. Original 0.835
Annotator A vs. Reference 0.971
Annotator B vs. Reference 0.880

Table 4.4: FrWikiDisc corpus inter-annotator agreement (Cohen’s kappa)

remarks. The corpus consists of approximately 300 sentences and 10,000 tokens, for which
two annotators corrected Talismane’s original automatic annotation. A third of the corpus
was annotated by each annotator separately, and a third by both annotators to estimate
inter-annotator agreement. For this last third, the annotations for the two annotators were
merged and corrected after consultation in order to generate a reference.

Table 4.4 shows inter-annotator agreement for this last third of the corpus in terms of
Cohen’s kappa. As can be seen, the A vs. B agreement is on par with agreement scores
for Sequoia. It is assumed that higher scores would be achieved if the same two annotators
continued to work on other corpora. It can also be seen that the merged corrected corpus uses
far more annotations from annotator A than from annotator B. However, the inter-annotator
agreement for A vs. B is considerably higher than each annotator’s individual agreement with
the original Talismane annotations, indicating some degree of consistency in interpreting the
annotation guide.

The annotation guide itself is based on Candito et al. [2011b], and has been extended to
cover any ambiguous cases encountered in the corpus. A copy of the extended guide can be
downloaded from the Talismane home page1. We included all of the manual dependency labels
from table 1.4, and, unlike the original FTBDep and Sequoia, we annotated all non-projective
dependency arcs as well, made simpler by the use of a dependency model directly, rather than
converting a constituency model to a dependency model. We chose not to annotate governors
for punctuation (which are generally arbitrary), with the exception of coordinating commas.

Table 4.5 shows the differences in certain characteristics between the FrWikiDisc corpus
and the FTBDep training and development corpus. On average, sentences are longer in
FrWikiDisc, and are far less equal in length: standard deviation is almost doubled. With
respect to syntax tree depth (dependency distance in hops from the root token to a given token
in the sentence), FrWikiDisc is considerably deeper both in terms of the mean for all tokens
(excluding punctuation), and of the mean of the maximum depth for each sentence. As can be
expected, the % of unknown words is significantly higher in the wiki discussion pages than in
the FTBDep development corpus. Here, unknown words refer to words that are not contained
in the FTBDep training corpus. This holds true for the lexicon of distinct raw inflected forms
(including punctuation), for the full list of raw tokens, for the lexicon of distinct alphanumeric
forms converted to lowercase (and excluding punctuation), and for the full list of alphanumeric
tokens converted to lowercase. There are significant differences in the proportions for certain
pos-tags (ignoring pos-tags with less than 100 occurrences in the smallest corpus), which give
some indication of the differences in style between the two corpora: in FrWikiDisc, there are
almost three times as many subject and object clitics for a roughly equivalent proportion of

1http://redac.univ-tlse2.fr/applications/talismane.html

http://redac.univ-tlse2.fr/applications/talismane.html

INCORPORATING LINGUISTIC KNOWLEDGE 111

FrWikiDisc FTBDep dev FTBDep train
Sentence count 301 1235 9873
Sentence length in words (mean) 34.41 30.56 29.14
Sentence length in words
(deviation)

28.50 16.10 16.57

Average syntax depth 5.06 3.86 3.78
Max syntax depth (sentence mean) 7.10 5.59 5.45
Data for inflected forms (incl. punctuation)
Lexicon size 2371 7220 24090
% unknown 28.76 22.59 —
Occurrence count 10055 36508 277833
% unknown 11.06 5.19 —
Data for forms converted to lowercase (excl. punctuation)
Lexicon size 2207 6902 22462
% unknown 26.37 21.67 —
Occurrence count 8633 31473 238963
% unknown 11.37 5.58 —
Selected part-of-speech data
% common noun 16.50 22.17 21.95
% proper noun 3.78 4.09 3.98
% adverb 7.68 4.29 4.70
% verb 6.94 5.53 5.55
% subject clitic 3.40 1.23 1.16
% object clitic 1.22 0.49 0.40
% subordinating conjunction 1.93 1.00 0.90
% coordinating conjunction 2.92 2.14 2.24
% relative pronoun 1.46 0.93 1.01

Table 4.5: FrWikiDisc corpus characteristics

verbs, probably indicative of a more personal, conversational style. There are also far more
conjunctions and relative pronouns, indicative of a certain degree of syntactic complexity. The
subordinating conjunctions, however, are due to a preponderance of constructions indicating
personal opinion, e.g. J’ajoute que. . . , Je vous indique que. . . , J’avoue que. . . , etc. There are
far more adverbs: typically connective adverbs at sentence start (e.g. ensuite, incidemment),
emphatic adverbs (e.g. complètement) or negative adverbs. The lower percentage of common
nouns is probably simply a question of mathematics, since they take up the space left when
other parts-of-speech have been removed.

Regarding non-projectivity, 30 non-projective structures were identified in the corpus,
amounting to about 0.3% of all arcs. This is proportionally 5 times higher than the non-
projective arcs annotated in the Sequoia corpus. The break up is shown in table 4.6. Com-
parative constructions account for 8 of the 30, en clitic extraction for 6, and relative pronouns
dependent on the object or 2nd verb in complex verbal structures (called “wh-object” above)
for 4. The remaining 12 cases are what we would call “voluntary” non-projective struc-
tures, where the non-projectivity could have easily been avoided by reordering the sentence
phrases, or by re-introducing an elliptical argument in coordination. Of these, only the en

112 4.2. EVALUATION CORPORA

Description Example Count
comparative . . . plus nombreuse que . . . 8
en-clitic . . . en font partie 6
wh-object ce que je veux exprimer 4
voluntary . . . en refaisant une modif à 16:39 que je

réannule
12

Table 4.6: FrWikiDisc corpus non-projective arc types

Label Description Count
aff_moyen “middle” reflexive construction 0
arg_comp comparative argument 8
arg_cons consecutive argument 1
mod_cleft cleft relative 6
mod_loc locative adjuncts 23
p_obj_loc locative verbal arguments 20
p_obj_agt passive or causative agent 32
suj_impers the impersonal il 65

Table 4.7: FrWikiDisc corpus manual dependency label count

clitics and wh-objects would have been annotated in Sequoia, accounting for only 1/3rd of
all non-projective structures in FrWikiDisc, and explaining the proportional difference in
non-projectivity between the two corpora.

Finally, we look at the manual dependency labels defined in table 1.4. Table 4.7 gives
counts for each manual dependency label (out of 8661 dependencies, since punctuation was
not annotated with a governor). The only manual label to exceed 0.5% is suj_impers, the
impersonal il.

4.2.3 Unannotated corpora

In addition to annotated evaluation corpora, we will often make use of much larger unanno-
tated corpora within the present thesis. This will allow us to run experiments which analyse
a given corpus with and without a certain modification (e.g. a new feature), and review
the differences between the two analyses. For this type of experiment, we have selected five
unannotated 1 million word extracts from the following corpora:

• Est Républicain: the regional newspaper Est Républicain from the year 2003, vailable
on the CNRTL website2

• Leximedia: a collection of newspaper articles concerning the 2007 French presidential
compaign, from the French national newspapers Le Monde, Libération and Le Figaro,
prepared by the CLLE-ERSS laboratory 3

• Frantext: French literary texts from the 20th century4

2http://www.cnrtl.fr/corpus/estrepublicain/
3http://redac.univ-tlse2.fr/applications/leximedia2007.html
4http://www.frantext.fr

http://www.cnrtl.fr/corpus/estrepublicain/
http://redac.univ-tlse2.fr/applications/leximedia2007.html
http://www.frantext.fr

INCORPORATING LINGUISTIC KNOWLEDGE 113

• Revues.org: a collection of scientific articles in the human and social sciences5

• Wikipedia.fr: a dump from the 2008 French Wikipedia, cleaned and reformatted into
simple text format by the CLLE-ERSS laboratory6

In some cases, we will also use full versions of these unannotated corpora to construct
linguistic resources.

4.3 External Resources

In addition to training and evaluation corpora, statistical NLP systems often make use of
external resources to attempt to complement the linguistic coverage of the necessarily limited
training material. In our cases, all external resources used are lexical, in that they provide
various characteristics of specific inflected forms or lemmas. After a general discussion of how
to incorporate external resources into the system, we will describe certain resources used in
our experiments.

4.3.1 Generalising features using external resources

We begin this section with an example: let us assume the training corpus contained the tokens
“mangez” and “mangiez” but not “mangeons”. Many syntactic characteristics are shared by
all three forms: they are all typically transitive verbs governing a direct object, the direct
object typically belongs to the semantic class “food”, etc. Considering both occurrences as
instances of the lemma manger thus allows the system to consider them as an equivalence
class, making generalisations with more statistical weight than when counting the occurrences
separately, as long as the individual occurrences really display similar behaviour. Moreover,
these generalisations can now be applied to the token “mangeons” as well, although it is
unknown in the training corpus, simply because it shares the same lemma.

Of course, the system would only know that “mangez”, “mangiez” and “mangeons” share
the lemma manger if it has a lexicon available giving lemmas for all inflected forms (or else
some sort of reliable heuristic, such as stemming, for deducing the lemma forms). Thus,
generalisations are often incorporated into features via the use of external resources such as
lexicons or ontologies. A semantic ontology could, for example, allow the system to group
“pomme”, “pain” and “salade” into a single a semantic class, food. With such a resource, we
are now able to recognise the fact that the direct object of a word whose lemma is manger is
most often a word whose semantic class is food, again generalising to any token found in our
ontology but absent from our training corpus.

As was discussed in chapter 2, the feature vector is the sole representation of a linguistic
context available to the machine learning system. The expert designing the system (in our
case a linguist) selects those features which he feels might be useful to selecting the correct
label, and, critically, which he feels will generalise well to unknown contexts.

As will be seen in the list of baseline features below, many of our baseline features group
together various bits of information, such as the word form of the token on top of the stack
concatenated to the word form of the token on top of the buffer. In order to incorporate gen-
eralisations from external resources such as those described above, the linguist can construct

5http://www.revues.org/
6http://redac.univ-tlse2.fr/corpus/wikipedia.html

http://www.revues.org/
http://redac.univ-tlse2.fr/corpus/wikipedia.html

114 4.3. EXTERNAL RESOURCES

features which, instead of using the word form, use the lemma or semantic class. Whether
these features should replace or simply complement the word-form features is a matter of
trial and error. However, given the fact that the training corpus necessarily contains only a
very small sample of possible linguistic constructs, the use of more comprehensive external
resources is critical to attaining better accuracy on evaluation corpora.

4.3.2 Talismane’s definition of a lexicon

The relatively small size of the FTB (when compared to the Penn Treebank for example)
implies a heavier reliance on lexical resources. Talismane defines a default interface for lexi-
cons, around which a wide variety of built-in features are based. This interface defines various
characteristics for each inflected form, as follows:

• word form: the actual word form encountered in corpora for words corrsponding to this
entry, e.g. volait

• lemma: the “dictionary entry header” corresponding to this entry, being the infinitive
for verbs, the singular for nouns, and the masculine singular for adjectives, e.g. voler.

• lemma complement: free text to distinguish homographic lemmas (e.g. voler “to fly”
and voler “to steal”)

• category: the main part-of-speech in the lexicon, used to map this entry to a pos-tag
from the tagset

• subcategory: finer part-of-speech in the lexicon, sometimes used to map this entry to a
pos-tag from the tagset

• gender: grammatical gender (e.g. feminine/masculine), often needed to identify agree-
ment between nouns and adjectives or past participles

• number: grammatical number (e.g. singular/plural), often needed to identify agreement
between nouns and verbs or adjectives

• tense: verb tense (often including mood)

• person: grammatical person (e.g. 1st, 2nd, 3rd), useful for identifying the precise
relationship between clitics and verbs

• possessor number: the grammatical number of the possessor (e.g. singular for French
mes, plural for notre)

• morphology: a combined representation of gender, number, tense, person and possessor
number, sometimes used to map this entry to a pos-tag from the tagset

• status: allows us to distinguish various levels of frequency or acceptance, enabling
Talismane to automatically select the most likely lemma in ambiguous cases (e.g. the
status of suis can be used to indicate that it is more likely to belong to the lemma être
than suivre)

INCORPORATING LINGUISTIC KNOWLEDGE 115

This information can be incorporated into features for any pos-tagged token, by mapping
the token’s word form and pos-tag to a set of lexicon entries with a corresponding category,
sub-category and morphology, and, if more than one entry is returned, using the entry’s status
to select the most likely entry. It can thus be used by the pos-tagger for any token already
analysed, and by the parser for any token in the parse configuration’s stack or buffer.

Furthermore, we can use this information in cases where the system has not yet guessed
the pos-tag, e.g. in order to return a list of possible pos-tags or lemmas for a given word
form. Such information can be incorporated into features for the tokeniser, and also for any
token that has not yet been analysed by the pos-tagger.

4.3.3 LeFFF

The main glossary used by Talismane for its default French implementation is LeFFF [Sagot
et al., 2006, Sagot, 2010]. This lexicon contains 404,483 distinct inflected forms, each of which
can correspond to several entries, one per associated lemma, for a total of 625,720 entries. The
lexicon was constructed semi-automatically, by scanning large corpora for possible additions.
It includes all of the information required by the Talismane lexicon interface except for status,
although we do not make use of the subcategorisation frames in the LeFFF. We added a
manual status to the small subset of LeFFF entries that include ambiguous lemmas for the
same inflected form and main grammatical category, based on our subjective judgement of
the more probable lemma.

We present experiments with limiting Talismane’s output based on closed class word forms
found in the lexicon in section 6.5.1. We present another experiment where we attempt to
replace or augment LeFFF with a crowd-sourced glossary in section 7.2.

4.4 Baseline features

We now turn to a description of the baseline features used by Talismane in its four modules.
By “baseline”, we mean the default core features giving us an acceptable accuracy score, that
we will later attempt to improve through various mechanisms.

Overall, our baseline features describe the linguistic context generically, leaving out fea-
tures that gather additional information when certain specific conditions are met. They were
constructed through linguistic intuition and a review of features used by other studies [Can-
dito et al., 2010b, Zhang and Nivre, 2011], and were tested and tuned on the FTB/FTBDep
development corpus only. The baseline features include both “atomic” features, providing
a single piece of information about the linguistic context, and combinatory features, which
combine two or more atomic features as a simple concatenated string. The need to combine
features by hand may seem contradictory to the spirit of robust classifiers, which are supposed
to handle a myriad of non-independent features and automatically extract the most pertinent
patterns and information. However, empirical tests have shown that scores for models with
combined features far outweigh those for models with atomic features only: in the parser,
for example, using atomic features only gives a labelled accuracy of 74.15%, whereas with
combinations we attain 87.78%. Also, since the number of possible combinations is an as-
tronomical figure—that is, n! for n atomic features, it is up to the linguist to identify and
test the most informative combinations. Automatic feature selection is a field of study in
and of itself, and out of scope for the present thesis. Nevertheless, we are not aware of any
methods for automatically selecting the most informative combinations—only of methods for

116 4.4. BASELINE FEATURES

identifying a small set of features which are most informative out of a much larger set . To our
knowledge, none of these methods scale up to considering n! possible feature combinations in
reasonable time, with n typically between 10 and 20, and each atomic feature in the set of n
typically resulting in thousands of separate feature values, each of which is considered as a
distinct entity with distinct information content by the model trainers.

Many studies do not give an exhaustive list of features and feature combinations used,
therefore making it difficult to compare results. We therefore list the full feature set for every
module: this may seem a needless amount of detail, but it should allow our results to be fully
reproducible by other teams if so desired.

In terms of methodology, the baseline features were selected by beginning with a very
small set of minimalistic features with obvious informative relevance for the task at hand,
such as the bigram and suffix features for pos-tagging. We then added additional features one
small subset at a time, where each subset contained a set of closely inter-related features, and
tested the accuracy change for each subset. If the accuracy increased the subset was retained,
and if it decreased or remained unchanged, the subset was either rejected or broken up into
smaller subsets and retested.

4.4.1 Cutoff

The baseline feature sets in the following sections result in a huge amount of very specific
information being gathered for each linguistic context. Take for example the parser feature
combining the lemmas of the top of stack σ0 and head of buffer β0. Every different σ0 and β0

pair will result in a different string feature result, converted by our training algorithms into a
separate numeric feature with its own weight per category. By Zipf’s law, the vast majority
of these pairs will appear only once in the training corpus, and are very unlikely to provide
useful generalisations.

One very simple method for generalising the statistical model constructed during training
is by applying a cutoff k [Ratnaparkhi, 1998]: a feature f is only included in training if it
appears with a non-zero result in at least k training examples. By only including features
which appear at least k times in the training corpus D, we hope to only keep those features
which represent linguistic regularity, and leave out those features which are highly specific to
the training corpus. This has the added practical advantage of vastly reducing the feature
space, resulting in quicker training and smaller models. In terms of the parser, for example,
moving from a cutoff of 1 to a cutoff of 2, for the FTBDep training corpus and our set of
baseline features, reduces the size of the feature set from 12,753,697 to 3,193,551.

There is, unfortunately, no accepted method for selecting the best value of k other than
trial and error with a good evaluation corpus. In our case, the cutoff varies from 1 to 10
depending on the module and the classifier. These cutoff tests are presented in section 5.2,
page 132.

4.4.2 Sentence detector baseline features

Recall from section 3.3.1, page 79, that the sentence detector tests each character representing
sentence boundary candidate, to decide whether or not it is an actual boundary. We define
the following baseline features for the sentence detector:

• x (string): the character being tested.

INCORPORATING LINGUISTIC KNOWLEDGE 117

• x? (boolean): is the candidate strong punctuation (“.”, “?” or “!”)?

• xA (boolean): is the next letter a capital letter? Capital letters typically indicate a new
sentence.

• (x) (boolean): is the candidate inside parentheses? It is unlikely for a sentence to end
inside parentheses.

• A. (boolean): is the candidate a period immediately following a capital letter? This
could indicate initials in a person’s name, rather than a sentence boundary.

• nx (string): what are the n characters preceding the candidate (where n goes from 1 to
4)

• xn (string): what are the n characters following the candidate (where n goes from 1 to
4)

• Tx (string): what are the n atomic tokens preceding the candidate (where n goes from
1 to 3)

• xT (string): what are the n atomic tokens following the candidate (where n goes from
1 to 3)

• surroundings (string): a string constructed of the n tokens to the right and left of
the candidate, replacing alphabetic tokens by “word”, alphabetic tokens starting with a
capital letter by “Word”, capitalised words with a length of 1 by “W”, capitalised words
with a length of 2 by “Wo”, numbers by “1”, and retaining white space and punctuation
(where n goes from 1 to 3). This is an attempt at capturing various patterns indicating
that a sentence either should or shouldn’t end—for example, the specific punctuation
sequence when quotes and strong punctuation are combined, the use of numbers to
indicate lists within a sentence, or the use of initials.

Because of the relatively small number of sentence boundary candidates in the FTB train-
ing corpus, 10-fold cross validation was used to tune the baseline feature set.

4.4.3 Tokeniser baseline features

Recall from section 3.3.2, page 80, that the tokeniser is based on a set of patterns correspond-
ing to possible compound words. For each sequence of atomic tokens matched by a pattern,
it tests the interval between the first two atomic tokens to decide if it is joined or separate,
and applies the result to all other intervals in the sequence. It has access to the tokens inside
the matched sequence and surrounding it, as well as to the pattern that was matched.

We define the following “intrinsic” atomic features around the pattern itself:

• πw: the full word form matched by the pattern. In other words, regardless of context,
is this word form likely to be joined or separate?

• πp: the pattern name. Again, regardless of context, is this pattern typically joined or
separate?

• πg: the pattern’s group name. Regardless of context, is this pattern group typically
joined or separate?

118 4.4. BASELINE FEATURES

We define the following “contextual” atomic one-token features, directly readable from
the sentence itself, which are each concatenated with πp above:

• W−1: the word form of the previous token.

• W1: the word form of the next token.

• 1st: is the pattern the first word in the sentence?

• 1stOrPunct is the pattern either the first word, or does it immediately follow punctu-
ation?

• 1st|πw: 1st concatenated to πw.

Furthermore, we define the following atomic “lexical” features, relying on an external
lexical resource, and concerning the matched sequence’s immediate context:

• P−1: each pos-tag associated in the lexicon with the previous token.

• P1: each pos-tag associated in the lexicon with the next token.

• L−1: the lemma corresponding to each pos-tag associated in the lexicon with the pre-
vious token.

• L1: the lemma corresponding to each pos-tag associated in the lexicon with the next
token.

• U−1: is the previous token unknown in the lexicon.

• U1: is the next token unknown in the lexicon.

• A−1: a concatenation of all of the pos-tags associated with the previous token in the
lexicon.

• A1: a concatenation of all of the pos-tags associated with the next token in the lexicon.

In terms of combinations, we then generate all possible two-token features based on the
five basic feature types above, W , P , L, U and A, for the token position combinations (-2,-1)
and (1,2). Each of these two-token features is concatenated with πp above. For example:

• W−2W−1: the word form of the token at a distance of 2 to the left of the current pattern
match, combined with the word form of the previous token.

• W−2P−1: the word form of the token at a distance of 2 to the left of the current pattern
match, combined with each pos-tag associated in the lexicon with the previous token.

• . . .

• W1W2: W1 combined with the word form of the token 2 to the right of the current
pattern match.

• W1P2: W1 combined with each pos-tag associated in the lexicon with the token 2 to the
right of the current pattern match.

INCORPORATING LINGUISTIC KNOWLEDGE 119

• . . .

Note that we initially planned to concatenate all features with the pattern group πg as well,
in order to be able to generalise to patterns with no or insufficient attestations in the training
corpus, thus enabling the classifier to find useful statistical generalisations at different levels
of granularity. However, this systematically lowered accuracy. This is unfortunate, since it
means that missing patterns have no contextual features to help decide if they are joined or
separate. The cause may be that our current pattern groups are too coarse (grouping together
all patterns of a given part-of-speech), and that finer groups are required. Further tests are
necessary to see if finer grouping can be made to yield better results.

As can be seen, the features make heavy use of the lexicon, since relying on the training
corpus alone would limit us to using the word forms only, leading to considerable data dis-
persion and unlikely to generalise well. With regards to the lexicons, we ignore all compound
forms contained within the lexicons, and concentrate on information for atomic forms only.
Information about the tokens at a distance of 2 from the current pattern match is only used
when concatenated to the token at a distance of 1: it is assumed that, for example, using the
potential pos-tags of the token at distance 2 without knowing anything about the token at
distance 1 is likely to create misleading generalisations.

Because of the sparsity of tokeniser pattern matches in the training corpus, 10-fold cross
validation was used to tune the baseline feature set. When using a MaxEnt classifier and a
cutoff of 3, this resulted in a mean accuracy of 92.06% for pattern matches (standard deviation
0.67%), and 99.75% for all other tokens (standard deviation 0.02%).

4.4.4 Pos-tagger baseline features

Recall from section 3.3.3, page 85, that the pos-tagger needs to assign a pos-tag to a single
token at a time, with access to the token itself (and all other tokens in the sentence), and the
pos-tags assigned to all previous tokens.

The pos-tagger baseline feature set contains the following “intrinsic” atomic one-token
features, directly readable from the token’s word form or its position in the sentence:

• W−1, W0, W1: the word form of the previous, current, and next token.

• Sfxn: the n-letter suffix of the current token, where n goes from 2 to 5.

• Pref n: the n-letter prefix of the current token, where n goes from 2 to 5. Although it may
seem strange from a morphological perspective that prefixes in French give a reliable
indication of the correct pos-tag, since the suffix is clearly far more informative for
pos-tag choice than the prefix, empirical test results show that this improves accuracy.

• First: whether the current token is the first in the sentence.

• Last: whether the current token is the last in the sentence.

• various regex features: whether the current token contains a space, a period, a hyphen,
whether it begins with a capital letter (followed by a lowercase letter), whether it is all
in capital letters, whether it is a number, and whether it ends with a period.

• two compound word features: the first word in a compound, the last word in a compound

120 4.4. BASELINE FEATURES

• First|W0: the current word form combined with the fact that it is the first token in the
sentence.

• First|P0: the current token’s possible pos-tags, combined with the fact that it is the
first token in the sentence.

We also make use of the following atomic “lexical” features, relying on an external lexical
resource. Note a critical difference between backward-looking lexical features (where index
< 0), which can base the lexical information on the single pos-tag already assigned, and
forward-looking lexical features (where index ≥ 0), which rely on the lexicon alone to provide
information for all possible pos-tags associated with this word form.

• P−1, P0, P1: the pos-tag assigned to the previous token, and the pos-tags associated
in the lexicon with the current and next token. Note that P−1 translates the standard
bigram feature (predicting the current pos-tag based on the previous pos-tag). P0 is
a feature which attempts to capture the extent to which the lexicon is an accurate
reflection of the training corpus: how likely it is that a token has a given pos-tag, if it
is listed in the lexicon as having this pos-tag.

• L−1, L0, L1: the previous token’s lemma, and the lemmas corresponding to each pos-tag
associated in the lexicon with the current and next token.

• A0, A1: all of the pos-tags associated in the lexicon with the current (or next) token,
concatenated together.

• U0, U1: whether the current (or next) token is unknown in the lexicon.

We now combine the atomic features above into the following two-token features:

• two-token features with (-2,-1):

• P−2P−1: the previous two tokens’ pos-tags. This translates the standard trigram
feature: predicting the current pos-tag based on the previous two pos-tags.

• P−2L−1, L−2L−1, L−2P−1: variants on the previous feature replacing one or both
of the pos-tags with the lemma.

• two-token features with (-1,0): P−1W0, L−1W0, P−1U0 and L−1U0.

• two-token features with (0,1): W0/U0 with W1/P1/L1/A1/U1.

Finally, we make use of the following three-token features:

• three-token features with (-2,-1,0): P−2P−1W0, P−2L−1W0, L−2L−1W0 and L−2P−1W0.

• three-token features with (-1,0,1): P−1/L−1 with W0 and W1/P1/L1.

• three-token features with (0,1,2): W0W1W2, W0A1A2, W0A1W2, and W0W1A2.

This feature set generates of course a huge number of hapax features, with very little
likelihood of being generalisable. This data dispersion is dealt with by applying a cutoff (see
section 4.4.1). When using a MaxEnt classifier with 100 iterations and a cutoff of 7, these
features give an overall accuracy of 97.59% on the FTB development corpus (10% of the FTB
corpus). If we use atomic features only, we have an overall accuracy of 97.03% for the same
configuration.

INCORPORATING LINGUISTIC KNOWLEDGE 121

4.4.5 Parser baseline features

Recall from section 3.3.4, page 86, that at each step of parsing, the parser is presented with a
parse configuration containing a stack of partially processed tokens and a buffer of unprocessed
tokens, and needs to decide whether a dependency exists between the top of stack σ0 and the
head of buffer β0.

We begin with a set of basic features describing σ0 and β0 themselves from various angles,
in the hope that there are some useful statistical generalisations to be made based on this
isolated information:

• pos(σ0): σ0’s pos-tag all on its own (on the assumption that certain pos-tags are more
likely to generate certain dependencies, regardless of the context).

• lem(σ0): σ0’s lemma all on its own. In this feature and all other features referring to
lemmas, we use the lemma if it was found in the lexicon, otherwise we use the word
form.

• pos|lem(σ0): pos(σ0) and lem(σ0) combined.

• pos(β0), lem(β0), pos|lem(β0): as above but for β0.

• pos(σ0|β0): the postags of σ0 and β0 combined. In other words, what dependencies (if
any) are most likely for this pos-tag pair.

• lem(σ0|β0): the lemmas of σ0 and β0 combined.

• pos|lem(σ0)pos|lem(β0): the pos-tags and lemmas of σ0 and β0 combined.

• pos|lem(σ0)pos(β0): the pos-tag and lemma of σ0 with the pos-tag of β0.

• pos(σ0)pos|lem(β0): the pos-tag of σ0 with the pos-tag and lemma β0.

• lex(σ0|β0): if either σ0 or β0 has a closed class pos-tag, then use the lemma, otherwise
use the pos-tag. In other words, lexicalise any closed classes. Note that this pair is
only used if one of the two has a closed class pos-tag, since otherwise it would duplicate
information in pos(σ0|β0).

• lexVerb(σ0|β0): if either σ0 or β0 has a closed class pos-tag or is a verb, then use the
lemma, otherwise use the pos-tag. In other words, lexicalise closed classes and verbs.
Note that this pair is only used if one of the two has a closed class pos-tag or is a verb.

To provide useful information about the potential dependency between σ0 and β0, other
baseline parser features described in this section are used both on their own, and in combi-
nation with the three σ0/β0 pair features pos(σ0|β0), lex(σ0|β0) and lexVerb(σ0|β0). The
intuition behind this can be seen by taking a feature such as lem(β1), the lemma of the token
on the buffer just after the head of buffer. Take the following example:

Example 4.1 Il veut protéger l’industrie de l’automobile de la libre concurrence.
(He wants to protect the automobile industry from free competition.)

122 4.4. BASELINE FEATURES

Now, assume we reach a configuration where σ0=protéger, β0=de2 (the 2nd occurrence of
de) and β1=concurrence. The feature lem(β1) now returns “concurrence”. On its own, this
information tells us next to nothing about the potential dependency between σ0 and β0. If we
combine it with pos(σ0|β0), we now have the feature result (V, P, concurrence), which might
be of help. Combining it with lex(σ0|β0) gives us (V, de, concurrence). Finally, combining
it with lexVerb(σ0|β0) gives us (protéger, de, concurrence), which definitely seems useful in
the present case for helping us to predict the dependency de_obj(protéger, de), but only if it
is attested a sufficient number of times in the training corpus.

We now turn to features gathering some additional information about σ0 and β0 them-
selves, used on their own and in combination with the three σ0/β0 pairs described above:

• gen(σ0|β0): grammatical gender for both σ0 and β0 (assuming this information is only
useful together, when it indicates agreement or lack thereof between nouns and adjec-
tives/past participles).

• num(σ0|β0): grammatical number (e.g. singular/plural) for both σ0 and β0 (assuming
this information is only useful together, when it indicates agreement or lack thereof
between nouns and verbs/adjectives).

• tense(σ0|β0): the verb tense of σ0 and β0 (e.g. for recognising auxiliary verbs)

• per(σ0|β0): the grammatical person (1st, 2nd, 3rd) of σ0 and β0 (e.g. to differentiate
reflexive clitics from direct object clitics).

• morph(σ0|β0): the full morphological details string of σ0 and β0, including gender,
number, tense, person, and possessor number.

• distance(σ0, β0): the distance between σ0 and β0, treated as a string rather than a
number, with any distance > 6 marked as “long”. This gives us a total of 7 nominal
classes. Only used in combination with the three σ0/β0 pair features (not on its own).
The intuition here is that certain dependencies (e.g. object of a preposition) will always
be short-range, whereas others (e.g. coordination between verbs) can be long-range.

We now turn to some contextual information from the partial dependency tree already
constructed, relating to the governor (or head) of σ0 (head), σ0 and β0’s left-most dependents
(ldep), and σ0’s right-most dependent (rdep). The intuition here is that adding another
dependency is often determined by the current outermost dependency. For example, when
trying to determine if a noun is the antecedent of a relative phrase, it is useful to know that
the current leftmost dependent of a verb is a relative pronoun. As presented in chapter 1,
the richness of transition-based parsers is based on such features, which are only available
in systems which tackle parsing sequentially, and therefore cannot be used in graph-based
parsers. Again, these features are used on their own and in combination with the three σ0/β0

pairs.

• dep(σ0): the dependency label governing σ0.

• pos(head(σ0)), lem(head(σ0)), pos|lem(head(σ0)), tense(head(σ0)), dep(head(σ0)):
the pos-tag, lemma, pos-tag and lemma combined, tense, and governing dependency la-
bel for the governor of σ0.

INCORPORATING LINGUISTIC KNOWLEDGE 123

• the same five features for ldep(σ0).

• the same five features for rdep(σ0).

• the same five features for ldep(β0). Note that in the arc-eager transition system,
rdep(β0) can never exist.

• valency(σ0), valency(β0): the current number of dependents for σ0 (or β0), treated
as a string rather than a number. Only used in combination with the three σ0/β0 pair
features (not on its own).

We now look a bit further down in the buffer. The intuition here is that items to the right
of the current head of buffer are often critical to determining the head of buffer’s governor.
This is the case, for example, when trying to determine the first conjunct of a coordinating
conjunction (see section 1.1.3.2). It is also the case in prepositional phrase attachment, where
knowing the object of a preposition helps us determine whether it is governed by the previous
noun or verb.

• pos(β1), lem(β1), pos|lem(β1): the pos-tag, lemma and both combined for the 1st
token after the head of buffer.

• pos(β1)pos(β2): the pos-tag of the 1st and 2nd tokens after the head of buffer

• pos|lem(β1)pos(β2), pos|lem(β1)pos|lem(β2): other combinations with the first two
tokens after the head of buffer

• pos(β1)pos(β2)pos(β3): the pos-tags of the first three tokens after the head of buffer

• pos|lem(β1)pos(β2)pos(β3), pos|lem(β1)pos|lem(β2)pos(β3): other combinations with
the first three tokens after the head of buffer

Similarly, we look a bit deeper into the stack. Our intuition is that a decision sometimes
needs to be made on attachment between the current top of stack and the items higher up in
the stack. In example 4.1, assume we reach a configuration where σ1=protéger, σ0=industrie,
β0=de2 and β1=concurrence. We have to decide whether to construct the phrase protéger
de concurrence (“protect from competition”) or industrie de concurrence (“the competition
industry”). Knowing that σ1 is a verb which tends to govern an object with de can help
us favor the first option, thus selecting the reduce transition, since industrie has no more
dependents. Similarly, in the configuration where σ2=protéger, σ1=industrie, σ0=automobile,
β0=de2 and β1=concurrence, we may need to look as far as σ2 to select the correct reduce

transition. The following features are only added in combination with the three σ0/β0 pairs
(not on their own):

• pos(σ1), lem(σ1), pos|lem(σ1): the pos-tag, lemma and both combined for token just
beneath the current top of stack.

• pos(σ2)pos(σ1): the pos-tag of the 1st and 2nd tokens beneath the top of stack.

• pos|lem(σ2)pos(σ1), pos|lem(σ2)pos|lem(σ1), pos(σ2)pos|lem(σ1): other combina-
tions with the first two tokens beneath the top of stack.

124 4.4. BASELINE FEATURES

We also include features that look further down the stack and buffer together. In exam-
ple 4.1, assume we reach two configurations, both with σ1=protéger, σ0=industrie. In the
first configuration, β0=de1 and β1=automobile, and in the second configuration β0=de2 and
β1=concurrence. A feature combining σ1 and β1 allows us to look at the verb protéger and
the prepositional object together, when deciding whether or not industrie governs de. With
sufficient semantic knowledge (or sufficient occurrences in the corpus), such a feature would
allow us to decide that in the first case industrie governs de, but in the second case it doesn’t.
The following features are only added in combination with the three σ0/β0 pairs (not on their
own):

• pos(σ1)pos(β1): the pos-tag of the 1st token beneath the top of stack and the 1st token
after the head of buffer.

• pos|lem(σ1)pos(β1), pos|lem(σ1)pos|lem(β1), pos(σ1)pos|lem(β1): other combina-
tions with the same two tokens.

In some cases, the tokens immediately to the left or right of a token in the sentence can
help decide whether it is dependent on a token farther away. This is particularly true of
punctuation—a comma, for example, can signal a break in syntactic continuity. We thus look
at the tokens immediately to the left of σ0 and β0 in the sentence, noted lseqn where n is
the distance from the σ0, the tokens immediately to the right of σ0, noted rseqn.

• pos(lseq1(σ0)), lem(lseq1(σ0)): the pos-tag and the lemma of the token immediately
to the left of σ0.

• pos(rseq1(σ0)), lem(rseq1(σ0)): the pos-tag and the lemma of the token immediately
to the left of σ0, except when this token is β0.

• pos(lseq1(β0)), lem(lseq1(β0)): the pos-tag and the lemma of the token immediately
to the left of β0, except when this token is σ0.

• pos(rseq1(β0)), lem(rseq1(β0)): the pos-tag and the lemma of the token immediately
to the right of β0.

• pos(lseq1(σ0))pos(rseq1(σ0)): the pos-tags of the tokens immediately to the left and
right of σ0.

• pos(lseq2(σ0))pos(lseq1(σ0)): the pos-tags of the two tokens immediately to the left
of σ0.

• pos(rseq1(σ0))pos(rseq2(σ0)): the pos-tags of the two tokens immediately to the right
of σ0.

• pos(lseq2(β0))pos(lseq1(β0)): the pos-tags of the two tokens immediately to the left
of β0.

In a system using a MaxEnt classifier with 100 training iterations and a cutoff of 7, and
using the gold standard pos-tags as input to the parser, these baseline features give an overall
labelled accuracy of 87.78% on the FTBDep development corpus, and an unlabelled accuracy
of 90.04%. Using atomic features only, we have a much lower labelled accuracy of 74.15%
and unlabelled accuracy of 77.85%. We compare the results attained by various configuration
options in the next chapter.

INCORPORATING LINGUISTIC KNOWLEDGE 125

4.5 Baseline rules

In section 3.5, page 95, we presented the concept behind rules, which override the statistical
model’s decisions, either imposing or prohibiting the choice of a certain category. There
are very few baseline rules used by Talismane, as rules are typically constructed after error
analysis to cover cases which are under-represented in the training corpus, as presented in
section 6.5, page 184.

4.5.1 Tokeniser

Tokeniser rules are used to force Talismane to group a certain sequence of atomic tokens
together as a single compound word. The tokeniser contains various rules for handling num-
bers, recognising sequences of numbers (written in either the decimal system or in full letters).
Thus, both “74 543,67” and “trente-deux mille cinq cent quatre-vingt treize” are tokenised
as a single token.

There is also a special filter to recognise e-mail and web-site addresses.
In addition to marking compound words, the tokeniser rules are used to replace the original

word forms by equivalence classes likely to follow the same usage patterns, and the feature
analysis process will only see the equivalence class label, rather than the original word form.

For example, in the case of numbers, we use the following labels:

• “deux”: any number written in full letters.

• “9.99”: any decimal number or number in scientific notation.

• “31”: any whole number from 1 to 31 (to capture dates in a single class).

• “1999”: any whole number from 1000 to 2999 (to capture years in a single class).

• “1999-2000”: any pair of numbers from 1000 to 2999 with a dash between them (to
capture year ranges in a single class).

• “999”: any other whole number.

Similarly, e-mail and web-site addresses are replaced by a generic placeholder, all “pretty”
quotation marks (e.g. guillemets) are replaced with standard quotation marks (for consistency
with the FTB), and all bullets or dashes at sentence start are skipped.

4.5.2 Pos-tagger

The pos-tagger comes with three types of baseline rules:

• Closed classes: for each closed class pos-tag (e.g. prepositions, conjunctions, pronouns,
etc.), only allow the pos-tagger to assign this pos-tag if it exists in the lexicon. This
prevents us, for example, from inventing new prepositions.

• Open classes: do not assign an open class pos-tag (e.g. common noun, adjective, etc.)
to a token if it is only listed with closed classes in the lexicon. This prevents us, for
example, from assigning a tag such as “common noun” to the token “le”.

126 4.6. DISCUSSION

• Ad-hoc: rules to assign the proper noun pos-tag (NPP) to e-mail and web-site addresses
already recognised by the tokeniser rules.

Regarding the used of closed-class rules, we present an experiment testing their usefulness
in section 6.5.1, page 185.

4.6 Discussion

In this chapter we covered the methods via which linguistic knowledge is incorporated into
statistical syntax analysis, and more specifically into Talismane for the the analysis of French.
We presented available training and evaluation corpora, as well as various available resources,
before turning to a list of baseline features and rules used by the four Talismane modules.
This concludes the four contextual chapters for this thesis, in which the general framework for
robust statistical French syntax analysis was presented. We are now ready to turn to a series
of experiments, starting with a general evaluation of Talismane using different configuration
parameters for the same set of features, and then moving on to specific experiments attempting
to improve on this baseline for various specific phenomena.

Part III

Experiments

127

Chapter 5

Evaluating Talismane

In the first two parts of this thesis, we presented the framework within which our experi-
ments in robust statistical syntax analysis are performed. We now turn to the experiments
themselves. Our first concern in section 5.1 is to define our general evaluation methodology
within this thesis. We then turn to a series of experiments whose purpose is vary the system’s
components and parameters in order to find the best baseline configuration from a purely
algorithmic perspective, using the set of baseline features defined in chapter 4:

• In section 5.2 we run a comparison of the various classifiers presented in section 2.8,
page 59, after selecting the best parameters for each classifier type.

• In section 5.3, we attempt to prove the usefulness of classifier confidence: is it correlated
to guessing correctly?

• In section 5.4 we look at the improvements provided by a beam search with various
beam widths, for the different Talismane modules.

• In section 5.5, we try to ascertain whether modules at a higher level of abstraction can
correct the errors of the previous modules, if the full beam is propagated from one level
to the next.

The main purpose of the chapter is to fix a baseline syntax analysis configuration, on
which further experiments will attempt to improve, as well as to gain certain insights into
what changes occur with different configurations, and how different corpora react to these
changes.

5.1 Evaluation methodology

It has become common practice in NLP to present evaluation in terms of overall accuracy
before and after applying a certain modification. While this statistic is useful for comparison
purposes, it hides a vast quantity of interesting details. Not all applications are interested in
correctly annotating the same linguistic phenomena. For example, some, such as terminology
extraction, may only be interested in short-range phenomena, while others, such as question
answering, may need the information provided by long-range dependencies.

129

130 5.1. EVALUATION METHODOLOGY

Therefore, depending on the experiment, we may look into some additional statistics.
Sometimes this will be cumulative accuracy by attachment distance, where we view the rel-
ative decrease in accuracy as we take longer distance dependencies into account. In other
cases, we may concentrate on specific phenomena only: a certain word, or a certain depen-
dency label, in which case precision, recall and f-score become meaningful (see section 2.7,
page 58 for details on these metrics). In highly specific cases, the overall accuracy may not
tell us very much. Instead, we state equivalent results in terms of the proportional reduction
in the remaining error count for a specific type of relation or a specific word.

Furthermore, for almost all experiments, we compare results for the FTBDep dev and test
corpora with results for other evaluation corpora, in order to ascertain to what extent the
method is generalisable.

Another point of interest is comparing the degree of agreement between two methods.
Two methods may both have an overall accuracy of 87%, but can differ in up to 26% of
their guesses. If methods tend to guess wrong at different places, we will call these methods
“orthogonal”: there is an opportunity of somehow combining their analyses in order to attain
a better score. Measuring agreement between two methods can be done using the same
kappa statistic presented in section 4.1.1, page 102 on inter-annotator agreement: instead of
comparing the annotations by two annotators, we compare the annotations by two methods.
A high kappa indicates the methods are parallel in their informative content: a low kappa
indicates they are orthogonal. However, we more often simply look at the number of new
corrections as opposed to the number of new errors—which are at the basis of the statistical
significance measures presented in section 5.1.2.

Many experiments isolate a single module (e.g. the parser), feeding it as input the so-
called “gold standard” annotations from the evaluation corpus, instead of guessing these
annotations using the previous module. In the case of the parser, for example, we judge its
performance on the assumption that it receives as input the exact set of pos-tags annotated
in the evaluation corpus. A more realistic test combines several modules in a chain, guessing
the pos-tags and passing the guessed pos-tags to the parser for evaluation. We attempt this
in several experiments, but not systematically, since it complicates the evaluation procedure.

Now, general statistics such as accuracy, based on the assumption the annotated corpora
represent a perfect “gold standard”, have to be treated with caution. The corpora’s internal
consistency, as reflected by the available inter-annotator agreement statistics (Cohen’s kappa
for classification tasks or average f-score for identification tasks), is rarely above 90%. This
leads us to consider more “qualitative” evaluation methods, reviewing and judging specific dif-
ferences in annotation between the baseline (control) method and the experimental method,
or often, when a reference “gold” annotation exists, as a three-way comparison between the
reference annotation, the baseline method and the experimental method. To this end, we
examine the first n differences meeting certain criteria in either annotated or unannotated
corpora. This is particularly useful when we aim at improving annotation for a rare phe-
nomenon, with a small number of attestations in annotated corpora. For example, if we add
a feature to help a pos-tagger distinguish the word que as a negative adverb or subordinating
conjunction, we can apply Talismane to an unannotated corpus with and without the fea-
ture, and view the first 100 differences, in order to see if the feature was useful from a more
qualitative perspective, and, in cases where it was not useful, to try to ascertain the reasons.

Still, even this qualitative evaluation makes the assumption that syntax analysis is an end
in and of itself, which is rarely the case: in most cases, it is simply a link in a chain for some
specific application. Measuring improvement for specific applications is, however, outside the

EVALUATING TALISMANE 131

scope of this thesis, and is left as a future perspective.
In terms of technology, all tests in this thesis were run on an Intel Xeon E3-1245 V2

machine, with a 3.4GHz clock speed, 4 cores, 8 threads, and 8 Mb cache, running the Ubuntu
12.04.2 LTS 64-bit operating system.

Throughout this chapter, we use the FTBDep training, dev and test corpora for all mod-
ules, so as to allow for consistent results when testing such aspects as beam propagation.
This means results are necessarily lower for pos-tagging than those presented in the previous
chapter, given smaller size of the training corpus.

5.1.1 Parse evaluation metrics

Dependency parses are typically evaluated using two overall metrics: the labeled attach-
ment score (LAS) is the accuracy of all arcs having the correct governor and the correct
label. The unlabeled attachment score (UAS) is the accuracy of all arcs having the correct
governor, regardless of the label. The syntax annotation guides provide no guidelines for
annotating punctuation, except in the case of coordinating commas. This results in selecting
fairly arbitrary governors for punctuation, rendering its evaluation meaningless. In all of our
experiments, we thus consider the LAS and UAS excluding punctuation.

5.1.2 Statistical significance

Although results may seem to improve over the baseline with a given method, we would like to
ensure that the improvement is due to the method itself, rather than random chance. To this
end, statistical significance tests are applied. In these tests, the so-called “null hypothesis”
states that the new method had no effect on the results, when compared to the baseline.
Typically, the significance tests will result in an abstract value, which can then be interpreted
as a probability that the null hypothesis is true, i.e. that any changes could have occurred by
random chance alone. This probability is known as the p-value.

Alternative
right label

Alternative
wrong label

Baseline
totals

Baseline
right label

a b a+ b

Baseline
wrong label

c d c+ d

Alternative
totals

a+ c b+ d a+ b+ c+
d = n

Table 5.1: Baseline method vs. alternative method contingency table

In this thesis, since we have restated all of our tasks as classification problems, we can
McNemar’s test [McNemar, 1947] which is applicable to dichotomous data: the dichotomy in
our case can be stated as the yes/no question: did method M assign the correct label y to
linguisitic context x. Assume we are comparing a certain alternative method to the baseline
method. We show the initial contingency table in table 5.1. This table is constructed by

132 5.2. EVALUATING CLASSIFIERS AND CLASSIFIER PARAMETERS

comparing the annotation of each linguistic context by each method to the gold annotation.
Under McNemar’s test, we approximate the χ2 statistic as follows:

χ2 ≈
(b− c)2

b+ c
(5.1)

The intuition behind this measurement is that only new corrections and new errors are
useful to comparing the two methods. The unaffected mass of items which are correct or
incorrect in both methods have no bearing on the actual improvement provided by the alter-
native method. By convention, we state that our results are statistically significant if the null
hypothesis probability is less than 5%, typically stated as p-value ≤ 0.05, which corresponds
to χ2 ≥ 3.841. For small test samples where b + c < 25 (e.g. when testing a very specific
phenomenon), since McNemar’s test no longer accurately approximates a χ2 distribution, we
switch to the binomial test, which gives an exact, rather than an approximate, p-value.

5.2 Evaluating classifiers and classifier parameters

Our first set of tests aims at comparing the various classifiers with different parameter values
for parsing and pos-tagging, in order to see to what extent the classifier choice affects our final
results. For each module, we first attempt to select the best parameters for each classifier
type (perceptron, MaxEnt, linear SVM), and then compare the various classifiers in their best
configuration.

5.2.1 Evaluating classifiers for parsing

We first evaluate the various classifiers on the isolated parsing task, using the gold standard
pos-tags as input. Each classifier has its own set of parameters, but one parameter is shared
for all three classifier types: the cutoff (see section 4.4.1, page 116), determining how many
times a feature must appear in the training corpus to be included when training the model.
Ignoring for now the accuracy attained by different values of cutoff, changes to this parameter
have considerable influence on model size and training time, as reflected by the number of
parsing features to be considered for different cutoffs in the FTBDep training corpus, shown
below:

Cutoff Feature count
1 12,753,697
2 3,193,551
3 1,758,253
4 1,223,314
5 939,264
7 644,556

10 442,408
12 367,306

5.2.1.1 Tuning perceptron parameters for parsing

For Perceptron classifiers (section 2.8.2, page 61), we have two main parameters: the number
of training iterations i, and the cutoff. An additional parameter, the tolerance τ , allows us

EVALUATING TALISMANE 133

to stop training if the perceptron model stabilizes at a certain accuracy, so as to avoid a bias
towards the weights of the final iterations (if they are all identical). In our case, we selected
a tolerance of 1e-5, which resulted in all iterations being performed. For information, at a
tolerance of 1e-4, the trainer breaks out after approximately 50 iterations, so the results are
similar to those for the 50 iteration test with τ = 1e− 5. We measured LAS, UAS, training
time and analysis time for iteration values in {50, 75, 100, 150, 200} and cutoff values in {1,
3, 5, 7, 10, 12}, where a cutoff of 1 implies no cutoff (all features retained).

0 2 4 6 8 10 12

85

86

87

88

cutoff

L
A

S

FTBDep-dev

i=50
i=75
i=100
i=150
i=200

0 2 4 6 8 10 12

85

86

87

88

cutoff

L
A

S

EstRépu

Figure 5.1: Evaluation corpora LAS for a perceptron classifier using different values for
iterations i and cutoff

The results for the FTBDep development and EstRépu corpora are shown in fig. 5.1, using
the baseline features and the gold standard pos-tags as input. All corpora except for EstRépu
follow the same general pattern as FTBDep development. UAS scores follow the LAS curves
fairly closely, but are about 2.2% higher. There are two surprising results here: first of
all, cutoff seems to systematically reduce accuracy scores—whereas for the other classifiers
below it will be a critical parameter. The only exception among the evaluation corpora is
the EstRépu corpus, with a slight peak at a cutoff of 3. This implies that perceptrons are
somehow able to “naturally” avoid over-fitting, selecting each feature to the extent that it
is generalisable. Secondly, scores diminish almost systematically as the number of training
iterations increases. This implies that the perceptron algorithm is able to do most of its
work in the early iterations—later iterations give a bias to the final weights in the averaging
mechanism, and lower the overall score considerably.

Still, it seems unlikely that this curve would continue ever upwards for fewer and fewer
iterations. We therefore ran a second test to observe its behavior in the low iterations and
low cutoff zones, with iteration values in {10, 20, 30, 40, 50} and cutoff values in {1, 2, 3, 4,
5}. The results are shown in fig. 5.2 for the same two corpora. Again, curves for all other
corpora followed that of the FTBDep development corpus. All corpora except for EstRépu
displayed a significant loss (≈ 0.5%) at a cutoff of 2. This confirms an ideal cutoff of 1, and a
stabilisation in the accuracy scores at iteration 20. This is very positive from the perspective
of training time, since it implies the perceptron model trains very quickly to its maximum

134 5.2. EVALUATING CLASSIFIERS AND CLASSIFIER PARAMETERS

1 2 3 4 5

86.5

87

87.5

88

cutoff

L
A

S

FTBDep-dev

i=10
i=20
i=30
i=40
i=50

1 2 3 4 5

86

86.5

87

87.5

cutoff
L

A
S

EstRépu

Figure 5.2: Evaluation corpora LAS for a perceptron classifier using lower values for iterations
i and cutoff

accuracy model.

5.2.1.2 Tuning MaxEnt parameters for parsing

For MaxEnt classifiers (section 2.8.3, page 64), we have two main parameters: the number of
training iterations i, and the cutoff. We measured LAS, UAS, training time and analysis time
for iteration values in {50, 75, 100, 150, 200} and cutoff values in {1, 3, 5, 7, 10, 12}, where
a cutoff of 1 implies no cutoff (all features retained). The results for the various evaluation
corpora are shown in fig. A.1, page 218, using the baseline features and the gold standard
pos-tags as input. UAS curves are not shown: they follow the LAS curves fairly closely, but
are approximately 2.3% higher.

The usefulness of cutoff as a means of avoiding over-fitting is clear: in all cases, a cutoff
of 3 is far superior to no cutoff at all (i.e. cutoff=1). This is a conspicuous difference
between MaxEnt and perceptrons, where cutoff was not useful. Other than this, a perfect
value for cutoff isn’t clearly visible. In the journalistic corpora closest to the training corpus,
ftbDep-dev and EstRépu, a cutoff of 7 gives the peak LAS. As we move to more distant
corpora, in the case of FrWiki (encyclopedic) and Europarl (parliamentary proceedings), we
seem to get slightly better results with cutoffs of 10 and 12, especially after more training
iterations (150/200). The higher cutoff seems logical, since at a more distant corpus, only the
features representing considerable linguistic regularity are likely to be useful. This seems to be
confirmed by the EMEA-dev corpus (official medicine evaluation reports), with a clear peak
at a cutoff of 10 for a high number of iterations. However, the FrWikiDisc corpus (informal,
unedited discussion pages), which we would assume to be quite distant from ftbDep, shows a
surprising peak at a lower cutoff of 5, followed by fairly flat statistics at higher cutoffs. One
perspective for post-thesis work would be to try to predict the ideal cutoff value based on
corpus characteristics (e.g. function word usage, sentence length, etc.).

Regarding the number of training iterations, it is clear that more iterations do not lead to
over-fitting. The 50 iteration scores are systematically well below the others. The scores from

EVALUATING TALISMANE 135

100 to 200 iterations are generally quite close to each other, tending to vary more for the more
distant corpora, especially at higher cutoffs: it would seem that more training iterations are
required to attain the best weights when more generic features are used (i.e. higher cutoff).
Overall, the best (iterations, cutoff) pairs seem to be (100, 7) for journalistic corpora, and
(150, 10) for more distant corpora.

0 2 4 6 8 10 12
0

50

100

cutoff

tr
ai

ni
ng

ti
m

e
(m

in
.)

Training time

i=50
i=75
i=100
i=150
i=200

0 2 4 6 8 10 12
0

100

200

cutoff

an
al

ys
is

ti
m

e
(s

ec
.)

Analysis time

Figure 5.3: Training time and analysis time (FTBDep-dev) for a MaxEnt classifier using
different values for iterations i and cutoff

Figure 5.3 shows model training time (in minutes) and analysis time (in seconds) for
FTBDep development corpus, for the same set of parameters. As was seen above, more
training iterations rarely lower the score: their main disadvantage is longer training time.
This disadvantage affects the team building the model only, as it takes longer to test minor
model updates. Surpisingly, more training iterations result in faster analysis - analysis time
after 200 iterations is approximately 85% of analysis time after 100 iterations. This is another
major advantage for higher iterations, since our definition of a robust syntax analyser included
the possibility of analysing large corpora in reasonable time. It is difficult to imagine a logical
reason for this unexpected speed-up. In our tests, we will thus use 100 or 150 training
iterations, but production models can easily use 200 or more.

5.2.1.3 Tuning linear SVM parameters for parsing

In the case of linear SVMs, we have three main parameters to tune: the soft margin parameter
C and the insensitivity zone width parameter ǫ (see section 2.8.4, page 68), and the feature
cutoff parameter which applies to all of the classifiers (see section 4.4.1, page 116).

Figure A.2 on page 219 shows the LAS results of a grid search between values of C in the
set {2−3, 2−2, . . . , 23} and values of ǫ in the set {10−4, 10−3, 10−2, 10−1}. The results concern
all of our evaluation corpora, with the baseline features, a cutoff of 7 and gold standard
pos-tags. Again, the UAS curves are not shown: they follow the LAS curves closely, but are
about 2.2% higher. The curves all follow the same general shape, first rising to a peak and
then falling. The peaks are almost always obtained with an insensitivity zone ǫ = 0.01 or
0.001. Since the former is much quicker to train, we retain this value for further testing. Note

136 5.2. EVALUATING CLASSIFIERS AND CLASSIFIER PARAMETERS

also that the curves for wider values of ǫ are far flatter than the curves at ǫ = 0.01 or 0.001.
Thus, selecting a narrow insensitivity zone requires us to carefully select the correct value of
the soft margin parameter C. In our case, a value of C = 2−2 gives the maximum LAS in
almost all cases, except for the Europarl corpus, where C = 2−1 is slightly higher.

2−4 2−2 20 22
0

50

100

C

tr
ai

ni
ng

ti
m

e
(m

in
.)

Training time

2−4 2−2 20 22
0

100

200

C

an
al

ys
is

ti
m

e
(s

ec
.)

Analysis time

ǫ=0.001
ǫ=0.01
ǫ=0.03
ǫ=0.1

Figure 5.4: Training time and analysis time (FTBDep-dev) for a linear SVM using different
values for C and ǫ

Figure 5.4 shows model training time (in minutes) and analysis time (in seconds) for
FTBDep development corpus, for the same set of C and ǫ parameters. The training time
increases with C and is higher for narrow insensitivity zones (ǫ). Analysis time on the contrary
decreases with C and is lower for narrow insensitivity zones, although the difference between
ǫ = 0.01 and ǫ = 0.001 is slight. Since there is no significant advantage to using a narrower
insensitivity zone, we use ǫ = 0.01 and C ∈ {2−3, 2−2, 2−1} as a basis for tests on cutoff.

The results for cutoff tests are shown in fig. A.3, page 220. Here we tested the FTB-
Dep development corpus, with a fixed value of ǫ = 0.01, C ∈ {2−3, 2−2, 2−1} and cutoffs
∈ {3, 5, 7, 10, 12}. The curves are not easily interpretable, since no single cutoff seems to
work for all corpora. Surprisingly, unlike MaxEnt, the ideal cutoff value does not seem re-
lated to the assumed corpus distance: although there is a definite preference for cutoff 5 in
the journalistic EstRépu corpus, the very distant FrWikiDisc and EMEA-dev corpora also
benefit from lower cutoffs. A cutoff of 5 with C = 2−2 seems to provide fairly good results
throughout, and it is the value retained for further comparison.

5.2.1.4 Comparing the best configurations for parsing

We have thus selected four configurations for comparison: the perceptron classifier with 20
iterations and a cutoff of 1 (Perceptron), the MaxEnt classifier with 100 iterations and a cutoff
of 7 (MaxEnt1), the MaxEnt classifier with 150 iterations and a cutoff of 10 (MaxEnt2), and
the linear SVM classifier with a cutoff of 5, C = 0.25 and ǫ = 0.01 (LinearSVM).

Figure 5.5 shows a comparison of LAS for the four configurations retained. Again, UAS
follows LAS curve shapes closely, but is approximately 2.2% higher. As can be seen, the linear
SVM model generally beats the two MaxEnt models by 1%, and the perceptron model by an

EVALUATING TALISMANE 137

FTB-dev FTB-test EstRépu Europarl FrWiki FrWikiDisc EMEA-dev
80

82

84

86

88

90

L
A

S

Perceptron MaxEnt1 MaxEnt2 LinearSVM

Figure 5.5: Parsing classifier comparison: LAS by corpus

average of 0.7%. Table 5.2 gives more exact comparison statistics. In terms of the basic setup,
the main advantage to the MaxEnt models is a fairly short training time, small model size,
and quick analysis time for small corpora. The perceptron model has quick training time as
well and slightly better accuracy, but is very slow in analysis, and the model size is about 20
times bigger. The linear SVM model is very slow to train (over an hour) and has a very large
model size—about 50 times bigger than the MaxEnt model. However, it performs analysis
fairly quickly, especially for larger corpora, since the actual parsing time is faster than any of
the other models.

Note that the model size can affect usability of the parser, in terms of RAM requirements.
Whereas a parser with a MaxEnt model can easily run on a small laptop with only 1 Gb
of availabe RAM, the LinearSVM model requires at least 16Gb of available RAM, and is
therefore reserved for powerhouse servers.

In terms of statistical significance, measured over the results for all evaluation corpora
combined, the differences between the two MaxEnt models are not significant. Between all
other models, the differences are very significant (p-value < 0.001).

In conclusion, unless model size or memory are an issue, the linear SVM model should be
preferred, as it is both more accurate and faster for larger corpora. When a very large number
of training sessions are required (to compare different training configurations), perceptron or
MaxEnt models can be used, however, when comparing different feature sets, the different
cutoff values mean not all features will be handled the same.

5.2.2 Evaluating classifers for pos-tagging

As mentioned at the start of the chapter, in order to keep the pos-tagging and parsing results
consistent, we perform all pos-tagger training and evaluation on the FTBDep corpus, although
far more pos-tag data is available in the original FTB corpus.

138 5.2. EVALUATING CLASSIFIERS AND CLASSIFIER PARAMETERS

Classifier Perceptron MaxEnt1 MaxEnt2 LinearSVM
Cutoff 1 7 10 5

Other parameters i = 20 i = 100 i = 150
C = 0.25
ǫ = 0.01

LAS (mean) 86.78 86.39 86.46 87.50
FTBDep-dev 87.98 87.80 87.66 88.84
FTBDep-test 88.51 88.23 88.19 89.35
EstRépu 86.94 86.55 86.54 87.61
Europarl 87.87 87.05 87.20 88.24
FrWiki 86.23 85.90 86.06 87.32
FrWikiDisc 83.57 83.42 83.46 84.60
EMEA-dev 86.33 85.76 86.13 86.57

UAS (mean) 89.20 88.94 89.05 89.95
FTBDep-dev 90.13 90.04 89.97 91.03
FTBDep-test 90.63 90.47 90.40 91.55
EstRépu 89.91 89.74 89.69 90.50
Europarl 90.68 90.11 90.29 91.05
FrWiki 88.24 88.13 88.36 89.43
FrWikiDisc 86.74 86.46 86.63 87.83
EMEA-dev 88.10 87.66 88.00 88.25

Training time 17m13s 23m59s 31m52s 1h08m10s
Analysis time 4m46s 1m48s 1m46s 4m19s

Setup time 1m29s 9s 9s 2m45s
Parsing time 3m17s 1m39s 1m37s 1m34s

Model size 243 Mb 15 Mb 11 Mb 491 Mb

Table 5.2: Comparison of the best classifier configurations for parsing

In terms of feature counts for various cutoffs (see section 4.4.1, page 116), the FTBDep
training corpus gives the following counts:

Cutoff Feature count
1 3,314,151
2 1,185,342
3 628,964
4 391,212
5 276,032
7 184,608

10 126,697
12 106,632

5.2.2.1 Tuning perceptron parameters for pos-tagging

As was the case for parsing, we have two main parameters to adjust: the training iterations
and the cutoff. We ran a test with iteration values in {10, 20, 30, . . . , 70} and cutoff values
in {1, 2, 3, 4, 5}. The results are shown in fig. A.5, page 222. As was the case for the parser,

EVALUATING TALISMANE 139

applying a cutoff to perceptron training systematically lowers the scores. On the other hand,
unlike parsing, the pos-tagger seems to attain better results with more training iterations,
with 70 iterations generally providing maximal results, except in the one case of the out-of-
domain EMEA-dev corpus, where 20 iterations give a max result, and 70 about 0.2% lower.
We thus select a cutoff of 1 and 70 iterations for the perceptron trainer.

5.2.2.2 Tuning MaxEnt parameters for pos-tagging

As was the case for parsing, we measured accuracy for iteration values in {50, 75, 100, 150,
200} and cutoff values in {1, 3, 5, 7, 10, 12}, for all evaluation corpora. The results are shown
in fig. A.4, page 221. Whereas the pos-tagger results confirm the need for as many iterations
as possible, in terms of cutoff/indexcutoff, we see a net difference between the FTBDep
development corpus and all other corpora. The development corpus reaches a maximum at
a cutoff of 3, and then tapers off as the cutoff increases. All other corpora show a preference
for higher cutoffs: 5 in the case of the fairly similar EstRépu journalistic corpus, and 10 or
12 for the most distant corpora, FrWikiDisc (informal discussions) and EMEA-dev (technical
medicine reports). Thus, as expected, the ideal cutoff value varies with corpus distance.
Although almost all of the curves have inexplicable troughs at certain cutoffs, we select a
cutoff of 10 with 200 iterations as most promising for the widest variety of corpora.

5.2.2.3 Tuning linear SVM parameters for pos-tagging

In the case of linear SVMs, as was the case for parsing, we have three main parameters to tune:
the soft margin parameter C and the insensitivity zone width parameter ǫ (see section 2.8.4,
page 68), and the cutoff.

Figure A.6 on page 223 shows the accuracy results of a grid search between values of C
in the set {2−4, 2−3, . . . , 23} and values of ǫ in the set {10−3, 10−2, 10−1.5, 10−1}. The
results concern all of our evaluation corpora, with the baseline features and a cutoff of 7. It
is difficult to draw any definite conclusions from these results: the curves for ǫ = 10−3, 10−2

and 10−1.5 are all fairly close, without any obvious winner. Similarly, the maximum value for
C typically lies between 2−3 and 21, but the curves are so completely different that it is not
easy to choose the best value for C.

We now turn to cutoff, retaining ǫ = 10−2, and testing C in the set {2−3, 2−2, 2−1, 2−0,
21} and cutoff in the set {1, 3, 5, 7, 10, 12}, in the hope that a clear winner will emerge.
The results are shown in fig. A.7 (page 224). While the graphs show less seemingly random
variation than the previous ones, we still have varying behaviour depending on the corpus,
with most graphs (except for the technical corpus EMEA-dev) showing a preference for lower
cutoffs. Generally, we seem to get near optimal results with ǫ = 10−2, C = 2−1 and a cutoff
of 3, and this is the model retained for comparison.

5.2.2.4 Comparing the best configurations for pos-tagging

We have thus selected three configurations for final comparison: the perceptron classifier with
70 iterations and a cutoff of 1 (Perceptron), the MaxEnt classifier with 200 iterations and a
cutoff of 10 (MaxEnt, and the linear SVM classifier with a cutoff of 3, C = 0.5 and ǫ = 0.01
(LinearSVM).

Figure 5.6 shows a comparison of accuracy for all evaluation corpora for the three config-
urations retained. The models are very close to each other, with different models getting the

140 5.2. EVALUATING CLASSIFIERS AND CLASSIFIER PARAMETERS

FTB-dev FTB-test EstRépu Europarl FrWiki FrWikiDisc EMEA-dev
90

92

94

96

98

100

A
cc

ur
ac

y

Perceptron MaxEnt LinearSVM

Figure 5.6: Pos-tagging classifier comparison: accuracy by corpus

highest score for different corpora, and no clear patterns. Table 5.3 gives more exact compar-
ison statistics. The results are indeed so close that we can ask if the difference is statistically
significant. Testing with McNemar’s test on all of the evaluation corpora combined, we find
significant differences between MaxEnt and both Perceptron and LinearSVM (p-value<0.001),
but insignificant differences between Perceptron and LinearSVM (p-value>0.20). In terms of
these results, we would tend to prefer the LinearSVM classifier, unless training speed and
model size are an issue. However, in the current thesis, we are particularly interested in the
model which gives the best results when combined with parsing. To this end, we now review
methods for combining the pos-tagger and parser in both training and analysis.

5.2.3 Combining the pos-tagger and the parser

In the above tests we trained the parser models using gold standard pos-tags. A potential
problem with this approach is that in real situations, only the pos-tags predicted by the pos-
tagger are actually available to the parser. In order to make the parsing model more robust
to the type of pos-tag it is likely to receive, we can attempt to train it on predicted pos-
tags rather than gold standard pos-tags. To this end, a 10-way jackknifing has become the
standard in many studies [Candito et al., 2010b, Zhang and Nivre, 2011]: the training corpus
is divided into 10 sections, and the pos-tags for each section are predicted using a pos-tagger
model trained on the nine remaining sections. We then use these predicted pos-tags, instead
of the gold standard pos-tags, as training input to the parser. Note that this implies that the
parser is being trained on “noisy” input: for example, if the pos-tagger mistakenly predicted
that a verb was a noun, the parser will be learning to attach subjects and direct objects to
nouns. The assumption is that this noise makes the parser more robust in real situations.

We run the following three tests:

1. Parsing accuracy based on gold standard pos-tag inputs. This is the ideal situation,

EVALUATING TALISMANE 141

Classifier Perceptron MaxEnt LinearSVM
Cutoff 1 10 3

Other parameters i = 70 i = 200
C = 0.5
ǫ = 0.01

Accuracy (mean) 96.23 96.18 96.28
FTBDep-dev 97.16 96.95 97.04
FTBDep-test 97.54 97.34 97.55
EstRépu 96.98 96.97 97.14
Europarl 97.08 97.38 97.31
FrWiki 95.66 95.83 95.88
FrWikiDisc 95.37 95.14 95.04
EMEA-dev 93.85 93.63 93.97

Training time 9m35s 5m11s 10m47s
Analysis time 40s 23s 50s

Setup time 22s 6s 33s
Tagging time 18s 17s 18s

Model size 51 Mb 2 Mb 117 Mb

Table 5.3: Comparison of the best classifier configurations for pos-tagging

giving a maximum possible score. It is assumed all other scenarios will get lower scores.

2. Parsing accuracy when trained on gold standard pos-tags, based on model-predicted
pos-tag input

3. Parsing accuracy when trained on jackknifed pos-tags, based on model-predicted pos-tag
input (jack-knifed pos-tags and pos-tagger use identical pos-tag training configuration)

All tests are run with the LinearSVM parser, as this gives the highest scores consistently.
Tests 2 and 3 are run for each of the three best pos-tagging configurations: Perceptron,
MaxEnt and LinearSVM.

Figure 5.7 shows the LAS loss per corpus and per method, with respect to the gold-
standard pos-tags. Looking at the relative scores for individual evaluation corpora showed
no clear winner. We therefore move to considering the total accuracy when all evaluation
corpora are combined, as shown in table 5.4. Although using a linear SVM pos-tagger with a
jack-knife trained parser gives slightly higher scores, the small difference between the methods
begs the question of significance. Indeed, when we compare all of the other methods to the
top-scoring method, none of them show significant differences. One thing is certainly clear:
although jack-knifing is used almost universally, it does not provide statistically significant
gains. In view of these results, we feel free to choose our winning combination based on other
criteria than accuracy. We select the MaxEnt pos-tagger, due to its quick training time,
its small size, and the ease with which we can explore the model, and combine it with the
LinearSVM parser, which clearly gives the highest scores by a significant margin.

Another important fact arises from this discussion: the considerable effect of pos-tagging
errors on the parsing score. Indeed, parsing LAS for all evaluation corpora falls by almost
3% when it is combined with pos-tagging. Since the pos-tagger scores are around 96.5%, we
are getting more-or-less one parsing error for every pos-tagging error. In section 6.2.1 we will

142 5.3. EXPERIMENTS WITH SYSTEM CONFIDENCE

attempt to identify the pos-tagging errors most responsible for parsing errors, so that we can
concentrate our effort in pos-tagging improvement on these errors.

FTB-dev FTB-test EstRépu Europarl FrWiki FrWikiDisc EMEA-dev
0

1

2

3

4

5

6

L
A

S

Pos Ptron Pos Max Pos SVM Jack Ptron Jack Max Jack SVM

Figure 5.7: Accuracy loss (LAS) from gold-standard pos-tags, with and without jackknifing

Method LAS UAS
Gold 88.05% 90.34%
Perceptron postags 85.15% 87.91%
MaxEnt postags 85.19% 87.91%
LinearSVM postags 85.10% 87.87%
Perceptron +
Jackknife

85.18% 87.91%

MaxEnt + Jackknife 85.21% 87.90%
LinearSVM +
Jackknife

85.25% 87.96%

Table 5.4: Pos-tagging and parsing accuracy combined, with and without jackknifing

5.3 Experiments with system confidence

Having evaluated the various machine learning parameters and selected the best configura-
tion, we now turn to experiments regarding the basic Talismane setup. Our first experiment
attempts to prove the hypothesis that system confidence (i.e. the probability assigned to
the best guess) is correlated to selecting the correct category. In other words, if the system
is confident in its best guess, is it more likely to be right? It may seem obvious that the
answer is “yes”, since otherwise, how would we be getting accuracy in the region of 80% to
90%, far above random guessing. Still, the degree of correlation is important to a properly

EVALUATING TALISMANE 143

functioning beam search, and may differ among classifier types. It is even more important
for the various other system-confidence related methods presented in section 3.3.4.2, page 87,
such as confidence-based filtering when constructing automatic resources. In this case, unlike
the beam search, we have no direct way of measuring success, nor of determining the correct
confidence cutoff value to use.

One way of measuring the degree of correlation is the point-biserial correlation [Tate,
1954], where the X variable is the system confidence, and the Y variable is 0 if the system
selected the correct category, and 1 otherwise. We are particularly interested in the relative
correlation for different classifiers, since, as was seen in section 2.8 (page 59), not all of the
classifiers are naturally probabilistic.

The point-biserial correlation is given by the following formula:

r =
M1 −M0

Sn

√

n1n0

n2
(5.2)

where M1 is the mean system confidence when it guesses correctly, M0 is the mean system
confidence when it guesses incorrectly, Sn is the standard deviation for system confidence,
n1 is the number of times the system guessed correctly, n0 is the number of times it guessed
wrong, and n is the total number of linguistic contexts. It results in a value from -1 to 1,
where -1 implies perfect negative correlation, 0 implies no correlation, and 1 implies perfect
positive correlation.

For now, we limit ourselves to parser’s confidence for the labeled dependency, ignoring
pos-tagger confidence. On the FTBDep development corpus, this correlation is shown on
table 5.5. Note that we also tested the correlation if the confidence measure is taken to be
the product of parser confidence and pos-tagger confidence for the dependent, or the product
of parser confidence, pos-tagger governor confidence, and pos-tagger dependent confidence:
the best correlation is attained by taking into account the parser’s confidence alone. The
results shown are encouraging for both the MaxEnt and LinearSVM parsers, and much lower
for the Perceptron parser, probably due to the fairly “flat” probability distribution which
results from the various methods for transforming perceptron scores into probabilities. For
now we are particularly interested in the LinearSVM parser, which gives the highest overall
accuracy, together with the MaxEnt pos-tagger which was selected in the previous section.
This combination also gives the highest confidence-to-correct parsing correlation: 0.4028.

Parser Perceptron MaxEnt1 LinearSVM
Perceptron pos-tagger 0.2043 0.3987 0.3982
MaxEnt pos-tagger 0.2062 0.3981 0.4028
LinearSVM pos-tagger 0.2077 0.4008 0.4016

Table 5.5: Point-biserial correlation for system confidence to correct parses on the FTBDep
development corpus

Perhaps even more interesting is the concept of a confidence cutoff, where we only take into
account dependencies whose confidence is above a certain value when constructing resources
from automatically annotated corpora. Figure 5.8 shows, in blue, the accuracy of dependen-
cies above a given confidence cutoff and, in red, the percent of dependencies remaining, for
the FTBDep development corpus, using a Linear SVM parser and MaxEnt pos-tagger. The
overall accuracy for this corpus 87.2%. If we apply a cutoff at a confidence of 70%, we get

144 5.3. EXPERIMENTS WITH SYSTEM CONFIDENCE

50 55 60 65 70 75 80 85 90 95 100
50

55

60

65

70

75

80

85

90

95

100

confidence cutoff

%
correct

remaining

Figure 5.8: Correct answers and remaining dependencies based on confidence cutoff, for the
FTBDep dev corpus

50 55 60 65 70 75 80 85 90 95 100
80

85

90

95

100

confidence cutoff

ac
cu

ra
cy

60 65 70 75 80 85 90 95 100
60

65

70

75

80

85

90

95

100

confidence cutoff

%
re

m
ai

ni
ng

FTBDep-dev

EstRépu

Europarl

FrWiki

FrWikiDisc

EMEA-dev

Figure 5.9: Accuracy and remaining dependencies based on confidence cutoff, for various
evaluation corpora

89.2% accuracy, with 95.6% of the original dependencies. At 80%, we have 90.6% accuracy
for 91.2% of the dependencies, at 90% we have 93.0% accuracy and 82.2% of the dependencies
and at 95% we attain 94.3% accuracy for 72.6% of the dependencies. In fig. 5.9, we see that
the graphs are similar for our various evaluation corpora, so that the concept of confidence
cutoff seems applicable to more distant corpora as well.

Table 5.6 shows the point-biserial correlation for system confidence to correct parses by
dependency label, as well as accuracy without applying a cutoff, and total count in the
FTBDep dev corpus. Correlation varies widely, with high scores for root, p_obj and suj, and

EVALUATING TALISMANE 145

Label Correlation Accuracy Count
Total 0.4028 87.27% 31616
a_obj 0.3132 70.47% 359
aff 0.2110 92.05% 239
arg -0.3170 29.41% 51
ato 0.0708 23.33% 30
ats 0.3171 76.32% 342
aux_caus -0.1566 46.67% 15
aux_pass 0.3509 93.00% 243
aux_tps 0.3554 96.86% 509
coord 0.0773 57.99% 826
de_obj 0.0716 75.26% 287
dep 0.2910 81.25% 3301
dep_coord 0.3857 81.63% 931
det 0.4121 96.69% 5190
mod 0.3616 82.89% 7584
mod_rel 0.3038 69.79% 331
obj 0.4153 94.02% 7920
p_obj 0.5359 54.72% 265
root 0.5782 92.05% 1183
suj 0.5278 87.99% 1998

Table 5.6: Point-biserial correlation by label for system confidence to correct parses on the
FTBDep dev corpus

relatively lower scores for de_obj and coord. The only relations with a negative correlation
are those which are extremely rare. This gives us an idea of the types of relations we are likely
to capture with more accuracy as we set the confidence cutoff higher. However, all relations
with a positive correlation will benefit somewhat.

A last point of interest with confidence is the ability to predict Talismane’s accuracy
for a given corpus. Figure 5.10 shows LAS and UAS as a function of mean confidence, for
the various available evaluation corpora. As can be seen, mean confidence is a reasonable
predictor, although the regression lines have a fairly high standard error of 0.44% for LAS
and 0.60% for UAS.

5.4 Experiments with beam search

The concept behind beam search was presented in section 2.6.1, page 55. Experiments with
the beam search were already presented in Urieli and Tanguy [2013]. We reran the same exper-
iments here with improved models, based on the baseline features from chapter 4. Moreover,
whereas the previous study concentrated on MaxEnt, we now compare the beam search re-
sults for different classifier types. Finally, whereas the previous study used pos-tags learned
from the full FTB corpus (minus the FTBDep evaluation corpora), we now limit ourselves to
training on pos-tags from the FTBDep training corpus, thus giving more realistic picture of
what is possible with a single training resource.

146 5.4. EXPERIMENTS WITH BEAM SEARCH

90 91 92 93 94 95 96 97 98 99 100
80

82

84

86

88

90

confidence

ac
cu

ra
cy

LAS
LAS slope

UAS
UAS slope

Figure 5.10: Mean confidence vs LAS/UAS

Regarding the tokeniser: a beam search on its own cannot affect tokeniser output, since
the tokeniser contains no features which consider the tokenisation decisions already made in
the current sentence. The only reason for using a beam search with the tokeniser is to attempt
to correct tokenisation errors at a higher level of abstraction, via beam propagation. This
will be explored in the following section. We therefore limit ourselves in the current section
to the pos-tagger and parser.

5.4.1 Applying the beam to the pos-tagger

Our first question is: does the beam improve the pos-tagger’s internal analyses, when the
module is considered in isolation from the others? Note that a beam can affect the analyses
through any features relating to decisions already made, especially through n-gram features.
In order to remain consistent to other results in this chapter, we consider the pos-tagger as
trained on the FTBDep training corpus, and tested on the FTBDep development corpus.

Beam width
Classifier 1 2 5 10 20
LinearSVM 97.04 97.07 97.07 97.07 97.07
MaxEnt 96.95 97.00 97.03 97.03 97.03
Perceptron 97.16 97.17 97.17 97.16 97.16

Table 5.7: Pos-tagger accuracy at various beam widths for different classifiers, on the FTBDep
dev corpus

As can be seen in table 5.7, accuracy increases slightly for the LinearSVM and MaxEnt
classifiers, and hardly at all for the Perceptron classifier, which has the highest score initially.

EVALUATING TALISMANE 147

Note that these are the results with a perceptron analyser which is converted to a probability
distribution using exponential normalisation, as presented in section 2.8.2. We also tested
with standard additive perceptron scoring, where each analysis is assigned the cumulative
sum of all individual decision scores, and with a linear normalisation, where all scores are
scaled so that minimum=1, and then converted to a probability distribution. In the latter
two cases, the accuracy decreases with the beam, and they will not be explored further.

The very minor increases for all classifiers beg the question: are these increases statisti-
cally significant? For the MaxEnt classifier (McNemar’s test), the changes are statistically
significant between a beam of 1 and 2, and between 2 and 5. Above 5, the output is strictly
identical to that of beam 5. For the SVM classifier, none of the changes from one beam width
to the next are significant. As was the case for the MaxEnt classifier, the output is identical
above a beam 5. For the Perceptron classifier, none of the beams provide significant changes.

5.4.2 Applying the beam to the parser

Our next question is, when the parser is considered as an isolated module, can the beam
improve results?

Beam width
Classifier 1 2 5 10 20
LinearSVM 88.84 89.14 89.42 89.42 89.48
MaxEnt 87.78 88.35 88.87 89.02 89.09
Perceptron 88.12 88.07 87.92 87.78 87.65

Table 5.8: Parser accuracy at various beam widths for different classifiers, for the FTBDep
dev corpus

The results are shown in table 5.8 for the FTBDep dev corpus. The LinearSVM classifier
improves by over 0.6% and the MaxEnt classifer by over 1.2% as we reach the higher beams.
The perceptron algorithm does not behave well in beams above 1, and accuracy reduces. In
terms of statistical significance (McNemar’s test), for LinearSVM and MaxEnt, all changes
from one beam to the next are signficant except for the LinearSVM from beam 5 to beam 10.

It is important to note that these improvements come with a price: the analysis speed is
almost directly proportional to the beam width, so that beam 2 analysis takes twice as long
as beam 1, and beam 20 takes 20 times as long.

5.5 Experiments with beam propagation

In most existing syntax analysers, each module provides the single best solution to the sub-
sequent module. Thus, the pos-tagger will only provide a single pos-tagging solution to the
parser. However, in some cases, the additional information available when parsing is neces-
sary in order to disambiguate between various pos-tagging choices. We have thus decided in
Talismane to enable beam propagation: when it is switched on, each module passes its
entire beam to the following module. This doesn’t mean we discard the scores assigned to
each pos-tagging solution when parsing: the scores for the partial parsing solutions are each
multiplied by the score for the underlying pos-tagging solution. Similarly, scores for partial
pos-tagging solutions are each multiplied by the score for the underlying tokenisation solution.

148 5.5. EXPERIMENTS WITH BEAM PROPAGATION

Experiments with the beam propagation were already presented in Urieli and Tanguy
[2013]. We reproduce the examples here for clarity. Furthermore, we now test beam prop-
agation with improved statistical models using the baseline features presented in chapter 4.
The tokeniser design has changed radically since the publication of this article as well, in the
hope that the new design can help in better populating the tokeniser beam.

Level n: Tokenisation
Elle pourrait même s’ ennuyer Score : 66%
Elle pourrait même s’ ennuyer Score : 34%

Level n+1 : Pos-tagging

Elle
CLS

pourrait
V

même
ADV

s’
CLR

ennuyer
VINF

Tagging
score

Tokenisation
score

Total
score

96% 99% 99% 88% 94% 95% 34 % 32%
Elle
CLS

pourrait
V

même s’
CS

ennuyer
VINF

Tagging
score

Tokenisation
score

Total
score

96% 99% 8% 24% 43% 66% 29%

Table 5.9: Beam propagation from the tokeniser to the pos-tagger

Table 5.9 shows an example of beam propagation for the sentence “Elle pourrait même
s’ennuyer” (“She might even get bored”), and a beam width of 2. In this example, the word
sequence même s’ is ambiguous between the contraction of the subordinating conjunction
même si (“even if”), which is tokenised as a single token, and the adverb même followed
by the contracted reflexive clitic se. The correct tokenisation result here is to separate the
two words. The tokeniser, however, makes the wrong choice, and assumes we have a single
token. If there were no beam propagation, this incorrect tokenisation solution would be the
only one available to the pos-tagger and parser. With beam propagation, the full beam is
passed on from the tokeniser to the pos-tagger. The pos-tagger manages to place the correct
solution on top of the beam, presumably because the sequence (V, CS, VINF), as reflected by
trigram features, is vary rare in the training corpus. Similarly, we can imagine a case where
the correct tokenisation solution is only placed on top when we reach the parser, or where
the parser reorders the pos-tagging solutions to place a correct pos-tagging solution on top.

5.5.1 Using the parser and pos-tagger to correct tokenisation errors

Our first question is: can the pos-tagger and parser correct errors made by the tokeniser,
when the correct response is placed by the tokeniser somewhere on the beam other than the
first position.

In order to test this, rather than performing 10-fold cross validation for tokeniser tuning
as was done in the previous chapter, we use the full FTB corpus corrected for tokenisation
as per section 4.1.2, from which we removed the sections corresponding to FTBDep dev and
train, which we save for evaluation. This allows us to attempt to correct tokenisation errors
using pos-tagger and parser models trained on the FTBDep training corpus, since they have
not seen any of the sentences in the tokenisation evaluation corpus. The resulting corpus has
81497 tokens, 3541 of which begin a potential compound word. For the tokeniser we limit
ourselves to a MaxEnt model with a cutoff of 3.

EVALUATING TALISMANE 149

The results on the FTBDep corpus are not conclusive. We concentrate on areas that
are identified by tokeniser patterns only, as these are the only ones likely to change in the
beam. Without propagation we attain an accuracy of 95.45%, whereas with propataion we
have an accuracy of 95.48% with at beam width 2 (12 errors corrected, 11 introduced) and
95.56% with at beam width 5 (10 errors corrected, 6 introduced). However, a review of the
errors shows that in most of the cases, the improved accuracy was due to an error in the
original annotation, which was corrected by the tokeniser without beam propagation, and
re-introduced by beam propagation. Indeed, of the respectively 12 and 10 errors corrected by
beams 2 and 5, only three in each case are valid corrections. This seems to imply that beam
propagation is not a good idea from the tokeniser.

To verify this tendency, we turn to the unannotated corpora described in section 4.2.3,
page 112. We analysed these corpora with and without tokeniser beam propagation, at a
beam width of 2 and 5, and examined the first 20 or so differences in each corpus (a total of
113 differences). In total, we have just under 1 difference per 1,000 words. The results are
shown in table 5.10.

Total No propagation Beam 2 Beam 5
113 89 35 41

Table 5.10: Testing tokeniser beam propagation on unannotated corpora

This experiment confirms the assumption that tokeniser beam propagation is not a good
idea: the best results by far are obtained without propagation. Indeed, almost all of the cases
where the pos-tagger or parser corrected tokenisation concern the fairly arbitrary cases il y
a and plus de. For il y a, it was decided in FTB to annotate it as a single token when we
have a time expression, e.g. “Il y a vingt ans. . . ”, and as multiple tokens when it indicates
existence, e.g. “Il y a vingt livres sur l’étagère”. For plus de, there seems to be no hard
and fast rule. Ideally, we would always mark it as a compound when it plays the role of a
determiner “Cette mesure est destinée à donner plus de sécurité juridique. . . ”, and only split
it in the case where plus belongs to a previous construct, e.g. “Mr Rocard n’a pas craint non
plus de dire des choses difficiles aux patrons.”. However, neither of the above sentences marks
it as a compound in the FTB: instead, the compound determiner is marked as compound
≈ 130 times, and as split ≈ 230 times, without any detectable reason for selecting one or
the other. Corrections of plus de can therefore only be seen as arbitrary. There are no cases
where the beam corrects a clearly ambiguous expression requiring careful contextual analysis,
such as bien que where bien is an adverb and que a subordinating conjunction.

It may well be that the types of ambiguities left open by the tokeniser in the beam are
not efficiently handled by a transition-based parser. They may require semantic information
unavailable to the parser with the current feature set, or, as in the case of bien que, the parser
may need to look at the total sentence structure to see if the preceding verb has a direct
object or not, whereas transition-based parsing makes decisions in a linear sequence and has
no direct visibility into the complete sentence structure until the parsing has completed.

5.5.2 Using the parser to correct pos-tagging errors

In this section, we look into the possibility of the parser correcting pos-tagging errors, via
the ambiguities left on the beam by the pos-tagger. In view of the pos-tagging beam results

150 5.5. EXPERIMENTS WITH BEAM PROPAGATION

from section 5.4.1, we will only consider the LinearSVM and MaxEnt classifiers for both the
pos-tagger and the parser.

Beam width
Classifier 1 2 5 10 20
PosSVM (no propagation) 97.04 97.07 97.07 97.07 97.07
PosSVM/ParseSVM 97.04 97.12 97.20 97.21 97.21
PosSVM/ParseMaxEnt 97.04 97.21 97.25 97.29 97.28
PosMaxEnt (no propagation) 96.95 97.00 97.03 97.03 97.03
PosMaxEnt/ParseSVM 96.95 97.04 97.12 97.12 97.13
PosMaxEnt/ParseMaxEnt 96.95 97.04 97.17 97.18 97.20

Table 5.11: Pos-tagger accuracy at various beam widths for different classifiers, for the FTB-
Dep dev corpus, with and without propagation

Table 5.11 shows pos-tagger accuracy for the FTBDep dev corpus, using various com-
binations of LinearSVM and MaxEnt classifiers for the pos-tagger and parser, with and
without propagation. As can be seen, the parser manages to correct far more errors with
beam propagation than the pos-tagger on its own. In terms of statistical significance (Mc-
Nemar’s/binomial test), going from one beam to the next higher beam, only the move from
1 to 2 and from 2 to 5 are significant, except for the LinearSVM pos-tagger with MaxEnt
parser, for which the move from 5 to 10 is significant as well. Between the identical beam
width with and without propagation, for beam widths ≥ 5, all of the propagation changes
are significant. At a beam width of 2, only the move from PosSVM (no propagation) to
PosSVM/ParseMaxEnt is statistically signficant.

We now turn to the unannotated corpora described in section 4.2.3, page 112. We analysed
these corpora with and without pos-tagger beam propagation, at a beam width of 2 and 5,
and examined the first 20 or so differences in each corpus (a total of 109 differences). In total,
we have 1.1 difference per 100 words at beam 2, and 1.3 differences per 100 words at beam
5. The results are shown in table 5.12.

Total No propagation Beam 2 Beam 5
107 29 53 71

Table 5.12: Testing pos-tagger beam propagation on unannotated corpora

This unannotated test amply confirms the usefulness of pos-tagger beam propagation:
beam 2 propagation almost doubles the number of correct responses, and beam 5 propagation
more than doubles them. A closer examination of results shows many corrections for the
less common adjective-noun word order (e.g. “le redouté bug informatique”) which would
probably not affect the overall parse immensely, but also many very important fixes, such as
recognising the verb in “cette nouvelle année réserve encore. . . ”, or the past participle in “un
habil feuilleton fait de dix épisodes”. There are also corrections for the negative que: “et ne
plus penser qu’à son bien-être”. Generally, as might be expected, the corrections take into
account information farther afield than the trigram available to the pos-tagger in the baseline
features.

EVALUATING TALISMANE 151

In terms of cost, propagation does not add significant time to analysis, over and above
the additional time taken by using a wider beam.

5.5.3 Using beam propagation to improve parsing

Having explored the extent to which tokenisation and pos-tagging errors are corrected by
downstream modules, we now turn to an overall evaluation of Talismane with and without
propagation. In other words, we see to what extent delaying the final pos-tagging decision
helps to improve the parsing accuracy. To remain compatible with other results in this chap-
ter, and also because it was already shown that beam propagation does not help tokenisation,
we consider the pos-tagger and parser only, and leave out the tokenisation step.

0 5 10 15 20

86.8

87

87.2

87.4

87.6

beam width

L
A

S

FTBDep dev

prop
no prop

0 5 10 15 20

80.5

81

81.5

beam width

L
A

S

FrWikiDisc

prop
no prop

Figure 5.11: LAS with and without propagation for the FTBDep dev and FrWikiDisc corpora

First, fig. 5.11 shows results at different beam widths with and without beam propagation
from the pos-tagger to the parser. We show the difference in LAS for the FTBDep dev and
FrWikiDisc corpora. We chose to show results for the two most distant corpora, but all other
corpora display similar behaviour. As can be seen, propagation systematically improves the
results.

Figure 5.12 shows LAS for the various evaluation corpora at different beam widths, with
propagation. The UAS curves are similar. Results tend to increase between 1% and 1.5%
overall, and stabilise more or less after a beam width of 5, with minor gains afterwards. For
FTBDep dev, the changes are significant (McNemar’s test) from beam 1 to 2, 2 to 5, and 10
to 20, but not from beam 5 to 10.

One of the known issues with transition-based parsers, as opposed to graph-based parsers,
is their propensity to erroneously privilege short-distance attachments, since the short-distance
possibility is always considered prior to a longer distance possibility, and the two are never
directly confronted. Using a beam helps overcome this propensity, by keeping attachment
ambiguities in the beam a bit longer into the parsing process, thus enabling the system to
compare shorter and longer distance possibilities in some cases. Figure 5.13 shows LAS for
all dependencies up to a certain distance, where adjacent tokens are considered to have a

152 5.6. COMPARISON TO SIMILAR STUDIES

0 2 4 6 8 10 12 14 16 18 20

80

81

82

83

84

85

86

87

88

beam width

L
A

S
FTBDep-dev

Europarl
EstRépu
FrWiki

EMEA-dev
FrWikiDisc

Figure 5.12: LAS by beam size, with propagation

distance of 1, for beams 1, 2, 5 and 10. Although the LAS lowers for all beams as the dis-
tance increases, the gap between the beams increases with the distance. Thus, the difference
between beam 1 and beam 10 is 0.8% at distance 1, but 1.1% at beam 20. The difference
between beam 2 and beam 10 is 0.29% at distance 1, but 0.38% at distance 20. Other corpora
all show similar behavior, to a more or less marked extent.

Finally, different labels behave differently as the beam size increases. Table 5.13 shows
the change in precision, recall and f-score, from beam 1 to beams 2 and 5, for each label
appearing at least 1000 times in all evaluation corpora combined. It is noteworthy that
precision generally increases only slightly, and all dramatic increases are in recall (changes
above 2% shown in bold), possibly due to the ability to search farther afield for governors.
The five relations benefiting the most from a wider beam are coord, dep_coord, mod_rel,
root and suj.

5.6 Comparison to similar studies

The main equivalent study for French is Candito et al. [2010b], giving scores for pos-tagging
and parsing combined for three radically different statistical parsers: the Berkeley parser
[Petrov et al., 2006] which is a consituent-based parser, the MSTParser [McDonald et al.,
2005], which is a graph-based dependency parser, and the MaltParser [Nivre et al., 2007b],
which is a transition-based dependency parser. Of the three, Talismane is directly comparable
to the MaltParser. For all this comparison, we have used Talismane with a MaxEnt pos-tagger,
a LinearSVM parser, and beam propagation activated.

Table 5.14 shows a comparison of Talismane to the parsers in this benchmarking study. As
can be seen, Talismane is slightly below the MaltParser scores at beam 1. As it turns out, there
is little difference between the two setups: in the study, MaltParser uses pos-tags as input

EVALUATING TALISMANE 153

0 2 4 6 8 10 12 14 16 18 20

87.5

88

88.5

89

89.5

90

90.5

91

maximum distance

L
A

S

FTBDep test

beam=1
beam=2
beam=5
beam=10

Figure 5.13: LAS for all dependencies where distance <= n, at different beam widths, FTB-
Dep test corpus

from the maximum-entropy trained MElt tagger [Denis and Sagot, 2012], and uses a linear
SVM classifier trained on jackknifed pos-tags, whereas Talismane uses its own maximum-
entropy trained tagger, and a linear SVM classifier trained on the gold pos-tags. As was
shown before, tests with jackknifed pos-tags showed no significant improvement. Although it
is not stated which final feature set has been used, most of the features considered are similar,
with the exception of word form cluster features [Candito and Crabbé, 2009]. It seems likely
that Malt Parser’s better results at beam 1 are due to these features.

As soon as we pass to the higher beams, Talismane’s scores climb above those for the
MaltParser, and approach the scores of the graph-based MSTParser. Although Talismane
maintains linear time complexity, this does not necessarily mean it is faster: the analysis
time is more or less multiplied by the beam width. Thus, Talismane can process ≈ 2 million
words an hour at beam 1 (using the server setup given at the start of this chapter), 1 million
words/hour at beam 2, and 400,000 words/hour at beam 5. Beyond beam 5, the accuracy
gains seem insufficient to justify the lower analysis speed.

5.7 Discussion

In this chapter, we performed an evaluation of Talismane using a wide array of configuration
parameters and methods. We explored different classifiers, system confidence measures, beam
widths, and beam propagation. As a result, we were able to identify the best machine learning
setup for our task (MaxEnt pos-tagger and linear SVM parser with appropriate parameters).

Regarding the classifiers, the MaxEnt classifier shows interesting behavior with respect to

154 5.7. DISCUSSION

Label Count ∆ precision ∆ recall ∆ f-score
Beam: 2 5 2 5 2 5
TOTAL 133631 0.65 1.02 0.65 1.02 0.65 1.02
a_obj 1496 -0.11 0.07 1.27 1.47 0.75 0.94
ats 1586 0.16 0.08 -0.37 -0.44 -0.15 -0.22
aux_pass 1327 -0.14 -0.12 0.68 1.58 0.28 0.76
aux_tps 2094 0.01 0.01 0.57 0.86 0.30 0.45
coord 3917 0.17 0.12 1.30 2.68 1.12 2.23
de_obj 1024 0.06 0.64 -0.10 0.00 -0.03 0.29
dep 13762 0.19 0.24 0.71 0.90 0.52 0.66
dep_coord 4239 0.13 0.23 0.59 1.88 0.41 1.24
det 21385 0.08 0.08 0.25 0.29 0.18 0.20
mod 31175 0.13 0.20 0.73 1.02 0.47 0.67
mod_rel 1410 0.31 0.53 0.99 2.62 0.78 1.95
obj 33000 0.03 0.03 0.42 0.58 0.23 0.32
p_obj 1325 0.18 0.20 0.22 0.37 0.24 0.37
root 5967 0.07 0.03 1.32 2.58 0.82 1.54
suj 8693 -0.15 -0.11 1.61 2.58 0.83 1.38

Table 5.13: Change in precision, recall and f-score from beam 1 by label, for all corpora
combined

Parser LAS Dev UAS Dev LAS Test UAS Test
Berkeley 86.5 90.8 86.8 91.0
MSTParser 87.5 90.3 88.2 90.9
MaltParser 86.9 89.4 87.3 89.7
Talismane beam 1 86.7 89.3 86.9 89.5
Talismane beam 2 87.2 89.7 87.5 90.0
Talismane beam 5 87.5 90.0 87.8 90.2
Talismane beam 10 87.5 90.0 87.9 90.4
Talismane beam 20 87.6 90.1 88.0 90.4

Table 5.14: Comparison of the Talismane baseline to other parsers for French

cutoff, for both the parser and pos-tagger, with a lower cutoff being better for corpora similar
to the training corpus, and a higher cutoff being better for more distant corpora. This seems
logical, as a higher cutoff only keeps those features which appear the most often, and are
therefore the most likely to be generalisable. Linear SVM classifiers do not seem to function
in the same way, and a full grid search is necessary to find the best parametrisation: however,
in parsing, they give the best results by a clear 1%. Perceptron classifiers give promising
baseline results, but do not seem to convert well to probability distributions, and do not
behave well in a beam.

We were able to show interesting results in terms of system confidence, which seems
especially promising as a means of constructing automatic resources. Performing a confidence
cutoff when constructing these resources allows us to reduce noise dramatically, at the cost

EVALUATING TALISMANE 155

of keeping only a portion of the dependencies identified by the parser.
In terms of the beam, it does not seem worthwhile to use a beam width above 5, given

the linear increase in time required for analysis, and the negligible gains in accuracy. Beam
propagation is useful between the pos-tagger and parser, but propagating the tokeniser’s beam
does not improve tokenisation results, probably because the type of ambiguities left open are
not resolvable with the information the transition-based parser has available.

We have now established a baseline setup for Talismane. In the remainder of this thesis,
we will attempt to see to what extent this baseline score can be improved using various meth-
ods for injecting additional linguistic knowledge using targeted features, rules and external
resources.

Chapter 6

Targeting specific errors with
features and rules

Having identified the best baseline configuration for Talismane, we now turn to a series of
experiments that target improvements in specific phenomena. This chapter is, in many ways,
at the very heart of the thesis: for the first time, we try to consciously inject linguistic
knowledge into the robust statistical process, and see to what extent the results are affected.

To this end, we use two very different mechanisms: targeted features which aim at im-
proving the statistical modelling of specific phenomena, and rules which bypass the statistical
model in specific cases. Our goal here is a difficult one: we would like to design targeted
features and rules that generalise well, but limit ourselves to exploring the training and devel-
opment corpus for guidance. Indeed, the methodology developed in this chapter is centered
around identifying errors in the development corpus, and then projecting features and rules
onto the training corpus. This means that the only guidance we have regarding the ability of
our features and rules to generalise is our knowledge of the language and the type of constructs
that are allowable in our targeted sub-languages.

One of our initial questions is: when should we use features, and when should we use
rules? This question is dealt with in section 6.1, along with an explanation of the significant
differences between the two.

Turning then to targeted features, we first tackle the pos-tagger in section 6.2, attempting
to identify the pos-tagger errors most responsible for parsing errors, and then concentrating
on the function word que (section 6.3). We then turn in section 6.4 to targeted parser features,
concentrating on coordination as a case study.

In section 6.5, we attempt to use rules to correct analysis errors in those cases where
it seems unlikely that features will help. We look at three different rule types: closed-class
constraints for the pos-tagger, specific pos-tagger rules around the function word que, and
parser rules for duplicate subjects and for phrases within parentheses.

We base all of our experiments on a baseline system with a beam width of 1. This allows
us to measure accuracy gain at the highest analysis speed. In some cases, we also compare the
results with those for beam 2, to ensure the gains are not lost in higher beams. We evaluate
all changes against both the annotated evaluation corpora and the much larger unannotated
corpora.

157

158 6.1. FEATURES OR RULES?

6.1 Features or rules?

Features and rules are defined similarly, but their behavior is radically different. Features
are used to define statistical tendencies: in the robust classifiers we use, there is no need for
features to be independent, and two co-occuring features can even contradict each other. For
example, one pos-tagger feature might state that, when the word que follows the word ne
earlier in the sentence, it is most often an adverb. Another feature might state that when
the word que immediately follows the word fait (e.g. “le fait que. . . ”) it is most often a
subordinating conjunction. Now, take the following sentence:

Example 6.1 Personne n’a remarqué le fait qu’Aziz n’était plus là.

Both features will activate for this sentence, and it is up to the classifier to weight them
correctly and take a decision.

Rules, on the other hand, are deterministic: if a positive rule applies in a certain case, it
will be applied to the exclusion of all other possible decisions. The order in which the rules
are defined can thus be critical. In terms of negative rules, which exclude a certain decision
in a certain context, the order is not important, but the decision is nonetheless absolute, and
therefore has to be defined with the utmost care.

One distinction between features and rules thus lies in their sensitivity to error. A feature
can be used to capture tendencies: if X is true, than the classification is somewhat more likely
to be Y than Y′. Rules, on the other hand, attempt to capture absolute truth: if X is true,
than the classifiction must (or else cannot be) Y.

In general, therefore, features offer many advantages over rules, in that they do not need to
define absolute truths, and we leave it to our classifier to make sure that their weights reflect
the reality of their occurrences and associated labels in the training corpus. They can thus
be made to apply to a much wider range of phenomena. However, there is no guarantee that
even the best-defined feature will affect the probability distribution of decisions sufficiently to
tip the scales in favor of the correct decision: features generally co-occur with a large number
and variety of other features, each of which affect the decision to a greater or lesser extent
in a certain direction. Trying to understand why a feature was not assigned enough weight
in a certain context is a question of such mathematical complexity, that even if we do fully
understand the mechanism via which the classifier calculated its weights, we still cannot give
a solid answer. The best we can do is attempt to design features that, when projected onto
the training corpus, cover as many occurrences as possible, and are as biased as possible in
favor of one or more target decisions at the expense of the others.

However, when projecting features on to the training corpus, we often realise that the
number of actual training occurrences is very small. It may be true that que after fait is
always a subordinating conjunction, but if there are only 11 occurrences in the FTBDep
training corpus, as opposed to hundreds of occurrences for other features (e.g. the pos-tag
n-gram feature where que directly follows a noun), is there any hope that this feature will
affect the final decision?

If, after analysing the remaining errors, we notice that the feature was not effective, and
if we feel that we are safe in making a deterministic decision, we can then turn to rules.
Rules can thus cover obvious cases that are insufficiently attested in the training corpus. In
addition, the type of user who can make use of rules is different from the type of user who
can make use of features. To make use of features, the user has to have access to the training
corpus, and must have a sufficient understanding of the toolset to train a new statistical

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 159

model. To use rules, the user need only understand the syntax for defining them, and the
mechanism inside of which they will be applied. Furthermore, rules can be defined for a
specific corpus. The simplest case would be a word list associated with pos-tags, to indicate
that a particular specialised word is always a noun or an adjective in a given corpus. But
one could easily imagine more complex cases, for example certain syntactic turns-of-phrase
in a legal text. Thus, whereas features allow us to make the most of the available training
material, attempting to extract generalisations that can be applied to other corpora, rules are
a means of going beyond the training material to inject our more comprehensive knowledge
of the language or of a specific corpus.

6.2 Using targeted pos-tagger features

We first look at targeted features for the pos-tagger. Our methodology for selecting features
is as follows:

1. Select phenomena worth studying. In the case of the pos-tagger, we decided to look at
the lemmas responsible for the highest number of parsing errors.

2. Examine specific cases of errors in the development corpus and imagine useful features.
We limit this examination to the phenomena identified previously.

3. Write features using the Talismane syntax, and project them onto training corpus. For
each feature result obtained (e.g. true or false for a boolean feature), we count the
number of times it appears with each pos-tag, and closely examine the training corpus
occurrences in the case of unexpected pos-tags. We then tune the features to eliminate
noise, trying to achieve the greatest possible imbalance between pos-tags counts while
retaining as many occurrences as possible. For difficult cases, this can require several
iterations.

4. Train a model using the training corpus and the tuned features, and evaluate. If neces-
sary, return to step 2.

Recall, however, that our best pos-tagging model has a cutoff of 10, so that any feature
we create must appear at least 10 times in the training corpus to be taken into account.

Furthermore, features need to capture information beyond what is already contained in the
baseline features. For example, in the case of que, recognising that it is always a subordinating
conjunction (CS) after autre is not useful as a new feature, since this is already captured by
the baseline feature L−1W0 (previous token lemma + current token word form). On the other
hand, any feature that looks farther afield than 2 tokens to the right or left of the current
token, or that groups tokens together into classes for more occurrences and more statistical
weight, has the potential to improve on baseline feature results.

6.2.1 Identifying important pos-tagger errors

Our first step above is selecting phenomena worth studying. In our case, we have thus decided
to identify those pos-tags which wreak the most havoc on the parser by provoking the most
parsing errors. To this end, we performed an automatic comparison of three versions of the
FTBDep development corpus: (A) the manually annotated reference version, (B) the corpus

160 6.2. USING TARGETED POS-TAGGER FEATURES

as analysed by the parser with gold pos-tags, and (C) the corpus as analysed by both the
pos-tagger and parser. We calculated a parse error count for each token with an erroneous
pos-tag in version C, measuring how many parse errors the pos-tag error provoked. This score
was calculated by examining the token’s governing arc (governor and label), and all of the
token’s dependent arcs (dependent and label), as well as the dependents’ dependent arcs when
all other pos-tags in the dependency chain were correct (thus implying the governor’s pos-tag
error propagated errors). We only included an arc in the parse error count if it was correct in
the version B with gold pos-tags but incorrect in the version C with guessed pos-tags—thus
implying that the parsing errors were provoked by the wrongly guessed pos-tags.

We then totaled the parse error counts by pos-tag pair (correct/wrong) and lowercase
word form (with the exception of numbers, which were grouped together), and looked at
the entries with the highest total scores. The results for the combinations causing the most
errors are shown in table 6.1, for function words and numbers only. The total number of
dependencies (excluding punctuation) was 31826, and the total number of errors was 4234,
of which 684 (16%) were provoked by pos-tag errors. Thus, 318 errors have to be fixed in
order to increase the FTBDep dev accuracy by 1%, and 42 errors have to be fixed to lower
the count of remaining parse errors by 1%.

Correct pos-tag Wrong pos-tag Word Parse error count
DET P+D des 31
P+D DET des 29
CS PROREL que/qu’ 20
DET P de/d’ 15
ADJ DET 123 14
P ADV + 13
CLO DET le/la/les/l’ 11
PRO DET 123 11
PROREL CS que/qu’ 10
DET ADJ 123 9
CLO P en 7
CS P comme 7
CS CC ainsi que 6
NC DET une 6
P CC c’est-à-dire 6
P DET de/d’ 6
ADV CS que/qu’ 6
CS ADV que/qu’ 5
CC P comme 5
CS ADVWH quand 4
DET P+D du 4

Table 6.1: Pos-tagger function word and number errors causing the most parsing errors in
the FTBDep dev corpus

The reason we decided to concentrate on function wors was that these seem easiest to
target and most likely to generalise across corpora. These include most notably the various

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 161

forms of de (des, du, de, d’), the various forms of le (le, la, l’, les), as well as que (que, qu’),
comme and en.

Among these, we selected the case of que as fairly representative of the process and
methodology to be followed for pos-tagger error fixing. It is assumed that a similar method-
ology could be applied for the other pos-tag errors related to function words.

6.3 Improving the tagging of que

The problems with tagging the word que have already been explored by others, in particular
Jacques [2005], who describes many different contexts in which que can be used, and proposes
a method for correcting the tagging through both local surface rules and syntax analysis.

To summarise in terms of the annotation standards of the FTBDep corpus, there are six
main possibilities for the token que (and its abbreviated equivalent qu’), annotated using 4
different pos-tags, as illustrated by the examples below:

1. Subordinating conjunction (CS): Je pense qu’il a trop bu.

2. Relative pronoun (PROREL): Il boit le vin que j’ai acheté.

3. Interrogative pronoun (PROWH): Que buvez-vous ?

4. Negative adverb (ADV): Je n’ai bu que trois verres.

5. Exclamatory adverb (ADV): Qu’il est bon, ce vin !

6. Comparative construction (CS): Il a plus bu que moi.

The baseline model confusion matrix for que in the full set of annotated evaluation corpora
(including both dev and test sections) is given below, where rows represent the correct pos-tag
and columns represent the guessed pos-tag:

Baseline ADV CS PROREL PROWH Total
ADV 58 40 1 1 100
CS 20 917 49 1 987
PROREL 0 58 196 0 254
PROWH 0 5 15 4 24

Table 6.2: Baseline confusion matrix for que

We thus have a total of 190 errors for 1,365 occurrences (for a total corpus size of 152,141
tokens excluding punctuation), giving an accuracy of 86.08%. Note in the confusion matrix
above two distinct squares: one concerning confusion between CS and ADV, and the other
concerning confusion between CS, PROREL, and PROWH. We begin by tackling each of these sep-
arately: first attempting to separate negative adverbs from subordinating conjunctions, and
then attempting to separate subordinating conjunctions from the various types of pronoun.

162 6.3. IMPROVING THE TAGGING OF QUE

6.3.1 Recognising que as a negative adverb

We first tackle the problem of distinguishing que as a negative adverb from que as a subordi-
nating conjunction. Following the methodology presented in section 6.2 above, the first step
is to analyse errors in the development corpus in order to identify potential features.

6.3.1.1 Development corpus error analysis

In the FTBDep dev corpus, most of the errors resemble the following cases, where que is
incorrectly tagged as a CS:

Example 6.2 . . . mais n’ayant de comptes à rendre qu’/ADV à la présidence commune.

Example 6.3 Mais cela ne représente dans cette mouture, pour un couple avec deux enfants,
qu’/ADV une prime maximale.

In such cases, recognising que as a negative adverb is a simple matter of searching for a
preceding occurrence of ne in the same sentence. There is no inherent limitation in distance,
as illustrated by example 6.3, where the que follows several prepositional phrases.

Clearly, however, another intervening negative particle can complete the ne, after which
the que is not generally an adverb, as in the following example:

Example 6.4 Pour cela, il n’est pas question que/CS le zloty, la monnaie polonaise, soit
"l’ancre de la stabilité" de l’économie polonaise.

We thus refine our feature to search for a preceding ne, but without any other intervening
negative particles (aucun/e, autre, guère, jamais, ni, nul, pas, personne, plus, point, que/qu’,
rien).

However, two errors remain labeled by Talismane as CS, which are not compatible with
the feature as it stands, since the intervening negative particle functions in combination with
the negative que:

Example 6.5 . . . ils ne sont plus, fin 1991, que/ADV 49 % à l’ affirmer.

Example 6.6 . . . qui, faute de volonté politique, ne fut jamais que/ADV la caricature du
système français.

This sort of negative combination is possible with the negative particles jamais, guère, pas,
personne, plus and rien, quite unlikely with aucun/e, ni and point, and impossible with autre
(which, by convention, governs que as a CS) or another que/qu’. The negative combination
construct is ambiguous by nature, as shown in the following two sentences:

• Elle ne pense pas qu’/CS il viendra.

• Elle ne pense pas qu’/ADV à lui.

Moreover, the ambiguity only exists for verbs which subcategorise a direct object with que,
such as dire or penser. However, the training corpus contains 226 different verbs matching
this criterion. In the case of a negative que, we decided not to make use of this information,
since ambiguous cases are quite rare.

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 163

6.3.1.2 Feature list

The next step involved writing the features in the Talismane syntax, and projecting them onto
the training corpus. After some refinement to increase feature scope and remove unwanted
cases, we ended up with the following feature list. The numbers in the itemised lists refer to
the number of occurrences for each feature result in the training corpus.

Unambiguous previous ne: return true if there is a preceding ne with no intervening
negative particle (or only one that cannot combine with a negative que), and which is not
itself preceded by a negative particle in the set {personne, rien, aucun/e, nul/le}. The latter
restriction excludes sentences such as “Personne ne sait que je suis venu.” Return false

if there is no preceding ne. Otherwise, meaning if there is a preceding ne combined with a
negative particle which renders the que ambiguous, we return nothing at all (thus not affecting
the decision one way or the other).

• Previous unambiguous ne exists (total in training corpus: 233)

• Pos-tag ADV (210).

∗ Sample: Très endettées, elles n’ont pu fonctionner durant des années que/ADV
par un accès facile au crédit[. . .]

• Pos-tag CS (21). Well over half of these are annotation mistakes. The remaining
cases are those where the particle ne is unaccompanied, following expressions such
as moin ADJ qu’on ne. . . or variants of the verb pouvoir.

∗ Sample: [. . .] l’Amérique, moins superficielle qu’on ne l’imagine parfois, a
entrepris une réflexion sur son identité bien avant que/CS [. . .]

∗ Sample: [. . .] ne peuvent ainsi éviter que/CS, en la matière, l’histoire ne se
repète.

• No previous unambiguous ne (total 1623)

• Pos-tag CS (1242).

• Pos-tag PROREL (360).

• Pos-tag PROWH (16).

• Pos-tag ADV (5). Of these, 3 are annotation mistakes, in which a comparative que is
annotated as an adverb, and 2 are exclamatory adverbs, as in the following sample.

∗ Sample: Mais pour parvenir à cela, que/ADV d’esprits à convaincre en France
et plus encore au-dehors !

We add two additional features to help the pos-tagger with cases involving negative particle
combinations.

Negative que possible: is there a preceding ne, ne pas or ne plus whether or not it is
followed by a negative particle, unless this particle excludes combination. This feature covers
all cases where a negative que is possible. It is a less exclusive version of the previous feature.

• Negative que possible (total 389)

• Pos-tag ADV (243). All occurrences of a negative que in the traning corpus.

164 6.3. IMPROVING THE TAGGING OF QUE

• Pos-tag CS (118). All cases of two negative particles, followed later in the sentence
by a que.

• Pos-tag PROREL (27). Same scenario as CS.

• Pos-tag PROWH (1). Same scenario as CS.

• Negative que impossible (total 1646)

• Pos-tag CS (1259).

• Pos-tag PROREL (366).

• Pos-tag PROWH (16).

• Pos-tag ADV (5). These are exactly the same five as returned by the previous
feature.

Nearby negative particle combination: this feature concentrates on the case where
there is a second negative particle which can combine with a negative que. We noticed in
the training corpus that cases of negative particle combination with que, there is generally
a short distance between que and the negative particle (≤ 6 tokens). We therefore return
true if there is a ne followed by a negative particle capable of combination at a distance ≤
6, false under the same circumstances but if the distance > 6, and nothing at all otherwise.

• Negative particle combination, short-distance (total 103)

• Pos-tag ADV (33). As can be seen, adverbs form almost 1/3rd of the cases for the
short-distance case, as opposed to no valid adverbs in the long-distance case.

∗ Sample: Les spéculateurs sont désormais certains que la dévaluation n’est plus
qu’/ADV une question de jours.

• Pos-tag CS (66).

∗ Sample: Il n’est pas exclu que/CS, d’ici là, ils fassent connaître leurs craintes
avec insistance.

• Pos-tag PROREL (6).

• Pos-tag PROWH (1).

• Negative particle combination, long-distance (total 77)

• Pos-tag ADV (1). There is another intervening ne here - this occurrence could be
excluded by further feature refinement.

• Pos-tag CS (51).

∗ Sample: Si cela n’était pas possible, les Onze poursuivraient leur chemin sans
perdre l’espoir que/CS cela se ferait plus tard.

• Pos-tag PROREL (25).

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 165

6.3.1.3 Results

This feature test gives excellent results when tested on the full set of evaluation corpora (dev
+ test). We show below the confusion matrix for que after applying the new features for a
negative que. Numbers in parentheses show the change from the original confusion matrix.

ADV CS PROREL PROWH
ADV 88 (+30) 11 (-29) 0 (-1) 1
CS 10 (-10) 926 (+9) 51 (+2) 0 (-1)
PROREL 1 (+1) 57 (-1) 196 0
PROWH 0 5 2 (-13) 17 (+13)

Table 6.3: Confusion matrix for que with targeted negative adverb features

We have reduced cases where an ADV is reported as a CS from 40 to 11, and where a CS
is reported as an ADV from 20 to 10. Some of the cases we have corrected are far beyond
the capabilities of an n-gram model, e.g. Ce dernier [. . .] n’avait, à ce moment, accepté de
finir son mandat de trois ans qu’/ADV à condition qu’un successeur lui soit désigné. Note
in passing that, without attempting to do so, we have also corrected a large number of errors
for que as an interrogative pronoun (PROWH).

For the word que viewed on its own, there are 62 new corrections for only 10 new errors.
Note, however, that features in robust statistical classifiers never act alone, and adding new
features necessarily affects the weights of all other features via the features with which they
co-occur (pos-tag n-grams, etc.). We therefore have considerable side effects on other tokens,
with a net positive influence: 166 new corrections outside of que, for 93 new errors. An
examination of these errors yields nothing systematic.

We also examined the 23 remaining errors for que as an adverb, to see which cases were
missed: 12 are naturally ambiguous negative particle combinations, 6 are simple negations
which we would expect to be resolved correctly by the new features, 2 are annotation mistakes,
and the rest are other rare cases. Regarding the 6 simple negations, the feature apparently
was not assigned enough weight by the training mechanism to enable correct annotation.
Questions such as feature weight are outside our control, and so this sort of problem can only
be handled by refining the existing features, by introducing additional evidence in terms of
more features, by identifying and removing other features which add noise, or by adding rules
(section 6.5.2 below).

6.3.2 Recognising que as a relative or interrogative pronoun

Unlike the case of the que as a negative adverb, where the presence of a previous ne gave a
very strong surface indicator, there is no simple surface indicator for distinguishing que as a
relative pronoun from que as a subordinating conjunction, given the information available to
the pos-tagger.

6.3.2.1 Development corpus error analysis

Following the methodology described in section 6.2 above, we first examine the development
corpus errors to attempt to identify useful features.

166 6.3. IMPROVING THE TAGGING OF QUE

Example 6.7 (. . .) la Commission des opérations de bourse (COB) a annoncé le 14 janvier
qu’/CS elle saisit la justice [. . .]

With the baseline model, this occurrence is annotated as PROREL instead of CS. Through a
cursory examination, we can imagine several features that can help us here: first of all, there
are only certain verbs which subcategorise with que as a direct object, and annoncer is one
of them. Secondly, the verb annoncer is transitive, but has no direct object prior to the word
que. Furthermore, the verb following que does have a direct object (justice), which would
not usually occur with a relative pronoun que, except in certain rare cases. Note also that
the ambiguity between PROREL and CS only exists when there is a noun between the main
verb (annoncé) and the que, in this case janvier. The nature of this noun as a month name
is another indicator: it would be quite rare for a month name to be modified by a relative
clause, and extremely rare for a month name to be a verbal argument rather than an adjunct.

Example 6.8 Les investisseurs étrangers [. . .] devront échanger leurs devises à un taux
que/PROREL le gouvernement veut situer entre 8 et 10 roubles [. . .]

In this case, the baseline model annotates the occurrence as CS instead of PROREL. Here
the opposite holds true: the main clause verb échanger already has a direct object, while the
relative clause verb situer does not. Also, échanger cannot subcategorise with que as a direct
object.

Example 6.9 Le fait qu’/CS ils aient accepté de reprendre les pourparlers est interprété de
façon positive.

Here we have some additional clues: certain nouns introduce subordinate clauses almost
systematically (e.g. fait), and the subjunctive form aient is generally indicative (no pun
intended!) of an independent subordinate rather than a relative clause.

Having identified some possibly useful indicators, we now need to translate them into
features using only the knowledge available to the system at the moment when the decision
has to be taken: the word forms of all tokens, and the pos-tags assigned to tokens to the left
of que.

To this end, we put together a list of verbs which can subcategorise with que as a direct
object. We took the full list of such verbs governing que as a subordinating conjunction in
the training corpus (226 verbs in all), and removed verbs unlikely to subcategorise with que
given our knowledge of French and an examination of the training contexts, leading to a final
list of 129 verbs. We did not make an attempt to recognise complex verbal structures: for
example, we accepted rendre on the list because of the expression rendre compte que. This
list includes both avoir (from expressions such as avoir peur que) and être (from expressions
such as toujours est-il que or il est probable que). Analysing complex verbal structures more
finely would allow us to refine this list and eliminate noise.

6.3.2.2 Feature list

At this point we were ready to write the features using the Talismane syntax and project
them onto the training corpus. We will not go into the full details of this iterative process,
but present instead its final results in terms of final features and category counts within

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 167

the training corpus. Note that while examining the training corpus sentences in attempt to
increase the imbalance between the different categories, certain additional features were iden-
tified not directly related to errors in the development corpus. The numbers in parentheses
below indicate the number of occurrences for each feature result in the training corpus. The
final feature list is thus as follows:

Coordinated structure: if the current que directly follows a coordinating conjunc-
tion, find the category assigned to the previous que. We also consider que directly following
a comma, as long as the next que in the sentence follows a coordinating conjunction. We’re
expecting in most cases for the current category to be the same as that of first conjunct’s
category, although in this case we can only guess that they are indeed coordinated, since
syntax analysis has yet to be applied.

• Previous conjunct annotated CS (total of 53 in the training corpus)

• Current conjunct annotated CS (51)

∗ Sample: Elle estime que/CS d’ici à l’an 2000 le spectateur aura accès à vingt
chaînes de télévision et quinze radios, et que/CS l’ audience [. . .]

• Current conjunct annotated PROREL (1)

∗ Sample: Encore faudrait-il que/CS, pour faire passer la pilule des réformes
nécessaires—et que/PROREL beaucoup d’Italiens, en dépit de leur enthousi-
asme, risquent, une fois au pied du mur, de trouver plus amère que prévu,
—qu’un gouvernement fort et surtout crédible se constitue.

• Current conjunct annotated PROWH (1)

• Previous conjunct annotated PROREL (total 5)—insufficient for cutoff

• Current conjunct annotated CS (1)

• Current conjunct annotated PROREL (4)

Has intervening noun: find the nearest “content” verb previous to que (or to the first
conjunct que in case of a coordination). The rules for recognising the previous content verb,
given the information available to the pos-tagger, are not as straightforward as they may
at first seem: we need to go backwards from the word que until we hit a verb (indicative,
subjunctive, infinitive, imperative, present participle), but cannot stop on a past participle,
since this could be a noun modifier, in which case it is systematically passive (e.g. 90% des
automobilistes controlés) and cannot take que as a direct object. Once we find this verb,
we need to check if it isn’t followed by a past participle, skipping certain intervening words
(e.g. n’a pas tout mangé), since in this case, the past participle is the content verb. Having
identified the previous content verb, we check whether any word between it and the following
que is a common noun, proper noun, pronoun or interrogative pronoun, excluding days of
week and month names. If this feature returns false, we are not expecting any relative
pronouns, since there is no antecedent for them to modify.

• Has intervening noun = false (total 1074)

• Pos-tag ADV (210)

168 6.3. IMPROVING THE TAGGING OF QUE

• Pos-tag CS (858)

• Pos-tag PROREL (4)

∗ Sample: Adidas était une affaire merveilleuse qu’il aimait beaucoup, que/PROREL
j’aimais beaucoup, mais je crois qu’il a compris ces derniers mois qu’il ne pou-
vait pas tout faire. In this case we do not recognise the coordination, because
there is no coordinating conjunction, and the comma is too ambiguous to be
used as an indicator of coordination on its own.

∗ The other 3 examples are all training corpus annotation errors: either que
should be marked CS, or the preceding noun was not marked as a noun.

• Pos-tag PROWH (1)

• Has intervening noun = true (total 685). This is the classic case of ambiguity which
needs to be resolved by other features.

• Pos-tag ADV (34)

• Pos-tag CS (386)

∗ Sample: C’est à ce prix/NC seulement que/CS l’Ukraine peut convaincre sa
population[. . .]

∗ Many of the cases are comparative expressions, which could be excluded from
this feature if it were further refined.

• Pos-tag PROREL (263)

• Pos-tag PROWH (2)

Que directly follows “explanatory” noun: We compiled a list of nouns found in the
training corpus to be typically governing que as a subordinating conjunction, often in a fixed
expression: doute (from nul doute que), enseigne (from à telle enseigne que), espoir, fait, idée,
point (from au point que), prétexte (from sous pretexte que), preuve, propos. We then checked
the pos-tag of the following que.

• Follows explanatory word (total 27)

• Pos-tag CS (26)

• Pos-tag PROREL (1)

∗ Sample: [. . .] pour l’idée qu’/PROREL ils se faisaient de leur journal[. . .].

As mentioned in the introduction to this chapter, this is a classic case where we allow
ourselves to be guided (or misguided) by the examples found in the training and development
corpora, in the hope that they will generalise well. The list of nouns that can govern que as
a subordinating conjunction is definitely much larger than this. While reviewing differences
in the unannotated corpora, we encountered by chance the example of impression, and there
are certainly many others. Nevertheless, out linguistic intuition tells us that the nouns on
this list, even if it is incomplete, and regardless of the corpus, are very likely to govern que
as a subordinating conjunction.

There are also considerable differences in behavior for some of these nouns: while it
would be quite difficult to imagine fait taking que as a relative pronoun outside of certain

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 169

fixed expressions (e.g. “L’état des faits qu’il a exposé. . . ”, it is easy to imagine espoir, idée,
prétexte or preuve as governing a relative clause. There are several consequences here: on the
one hand, by grouping these words together with fait, we allow them to gain statistical weight
from the many occurrences of fait, which is by far the most common of the lot. On the other
hand, this might put a false heavy weight in favor of the subordinating conjunction choice for
these words. It may well be that this particular feature serves no valid purpose, since fait on
its own is already covered by the baseline features, whereas the other nouns are not nearly
as systematic in their behavior. Or else, that the feature should be refined to group together
only certain fixed idiomatic expressions.

Que following comparative word: This is a set of several features trying to identify
que as part of a comparative structure (annotated CS by convention). We check for adjective
comparatives: whether it follows a comparative adverb at position n − 2 (e.g. plus, moins,
aussi, davantage, etc.) and an adjective or past participle at position n−1, giving the structure
plus ADJ que. We check for simple comparatives: whether it directly follows a comparative
word (list above + adjectives such as même, différent, tel, etc.), except for plus when there is a
preceding ne. Finally we attempt to identify more complex nominal comparative expressions,
such as autant de X que de Y and les mêmes X que Y.

• Adjective comparative (total 110)

• Pos-tag ADV (2)

∗ Sample: Aujourd’hui, le sobriquet n’est plus utilisé que/ADV tourné en ridicule.
The other example is a training corpus error.

• Pos-tag CS (108)

• Simple comparative (total 80)

• Pos-tag ADV (1) (annotation error)

• Pos-tag CS (76)

• Pos-tag PROREL (3). All three concern a variant of the expression tel que, and
could be considered annotation errors, although they are borderline cases. The
vast majority of similar tel que expressions are annotated as CS.

∗ Sample: Telle/ADJ qu’/PROREL elle existe, cette législation est inopérante.

• Complex comparative (total 56)

• Pos-tag ADV (1)—expression with “ne plus”, could be excluded if we refined the
feature further.

• Pos-tag CS (54)

∗ Sample: [. . .] plus préoccupés par leurs rivalités internes que/CS par les
attentes des médecins [. . .]

∗ Sample: [. . .] touche tout aussi bien la province québécoise que/CS les
populations indiennes.

∗ Sample: [. . .] qui produisent désormais trois fois plus d’eau que de brut.

• Pos-tag PROREL (1).

170 6.3. IMPROVING THE TAGGING OF QUE

∗ Sample: [. . .] conséquence de plus de vingt ans de déficits cumulés que/PROREL
n’ont pu effacer les profits récents. We could try refine the feature further by
ensuring that after plus de, the que is followed by de as well, yielding plus de
X que de Y, but would have to make exceptions for past participles, adverbs,
time-phrases etc. as in plus de X que prévu, plus de X qu’ailleurs, plus de X
que la semaine dernière.

Comparative expressions are among the most difficult to annotate correctly, both because
of their natural variety, and because they are not bounded in distance. An autant early in the
sentence can justify a que near the end. On the positive side, the que later in the sentence is
often mandatory, so that we are guaranteed to find at least one instance of que that completes
the comparative. We have not yet designed features that take this fact explicitly into account:
a much deeper study of comparative structures and their various surface manifestations would
be required to do so.

Previous verb sub-categorises que as direct object: For the previous “content”
verb found above, we check whether or not it is on our list of 129 verbs. To reduce noise,
we exclude que when it follows an explanatory noun, or any comparative word, since these
are cases where que does not directly depend on the preceding verb. We would expect no
subordinating conjunctions when this feature returns false.

• Previous verb does not sub-categorise que as direct object (total 280)

• Pos-tag ADV (110)

• Pos-tag CS (58). This number is much larger than expected, but contains a variety
of phenomena, from tokenisation errors to complex sentences.

∗ Sample: Il vaut mieux perdre un salarié compétent qui sera plus motivé dans
un autre projet professionnel extérieur qui lui tient à coeur que/CS d’avoir
des salariés frustrés ou aigris. In this case, the que depends on the distant
comparative verbal expression vaut mieux, rather than the nearest verb tenir.

• Pos-tag PROREL (112)

• Previous verb does sub-categorise que as direct object (total 934)

• Pos-tag ADV (102)

• Pos-tag CS (739)

• Pos-tag PROREL (92)

• Pos-tag PROWH (1)

We also combine the previous feature with the existence or not of an intervening noun,
further isolating the cases where PROREL is possible, and with the absence of a preceding ne,
to eliminate most of the ADV occurrences.

Clause contains subjunctive verb: is the que followed by an unambiguously subjunc-
tive verb? We remove cases where there is no preceding verb, and where the word que directly
follows an interrogative pronoun or determinant (e.g. Quelles que soient les. . .). For the re-
maining cases, we expect most of the positive responses to be subordinating conjunctions.

• Followed by subjunctive (total 48)

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 171

• Pos-tag ADV (1)

∗ Sample: L’effondrement de cette place n’est survenu qu’/ADV en février 1991,
et les émissions japonaises n’ont repris qu’à un rythme modéré ces derniers
mois. Note here the danger of look-ahead features: in this case we mistake the
noun émissions for the past subjunctive 1st person plural of the verb émettre!
Since tokens to the right have not yet been assigned a pos-tag, we need to rely
on the glossary to guide us in identifying which words can actually be verbs.

• Pos-tag CS (46).

• Pos-tag PROREL (1)

∗ Sample: [. . .] veiller à ce que/PROREL la croissance ne se fasse pas au
détriment de la qualité [. . .]. This should probably be considered an annota-
tion error. Despite the superficial appearance of a relative clause (given the
preceding pronoun ce), the que in expressions such as attendre à ce que and
veiller à ce que should probably be considered a subordinating conjunction,
since it plays no grammatical role in the subordinate clause.

Que directly followed by verb: while trying to identify direct objects in the subor-
dinate clause, we noticed that, in the case of relative clause, the verb and subject are often
inverted, so that the clause starts with a verb, and the subject is in the position typically
taken by the direct object. We thus expect the majority of cases where the clause starts with
a verb to be relative clauses. Here again, since in a lookahead feature we rely on the lexicon
alone, we had to exclude words with several grammatical categories, such as cela (demon-
strative pronoun and simple past of the verb celer) and entre (preposition and 1st/3rd person
singular present of the verb entrer).

• Directly followed by verb (total 114)

• Pos-tag ADV (2): both feature mistakes for ambiguous words, louanges (2nd person
singular present of the verb louanger) and hausse (1st/3rd person singular present
of the verb hausser).

• Pos-tag CS (14). Mostly intransitive verbs with subject inversion.

∗ Sample: [. . .] c’est évidemment là aussi que/CS réside une des causes des
pénuries..

• Pos-tag PROREL (95)

∗ Sample: [. . .] l’hymne à la croissance qu’/PROREL entendent célébrer les
Etats-Unis à Munich [. . .].

Direct object in subordinate clause: this was one of the features clearly identified
in the preliminary phase. Unfortunately, it is fairly difficult to implement, since recognising
a direct object in lookahead features can rely on the lexicon only. We first exclude clauses
starting with a verb (to exclude cases of subject inversion). We also leave out verbs with two
direct objects: appeler, nommer and designer. We then check if, following the verb of the
clause, we have a definite article (le, la, l’, les), followed by either a word that is listed as a
noun in the lexicon, or a pair of words that are listed as respectively an adjective and a noun.
We exclude the case of weekdays and month names. In hindsight, we could have extended

172 6.3. IMPROVING THE TAGGING OF QUE

this feature to the indefinite articles un and une as well as to cardinal numbers, but have to
exclude the indefinite articles de and des so as to exclude prepositional phrases.

• Direct object in subordinate (total 24)

• Pos-tag CS (24).

∗ Sample: [. . .] ont expliqué que/CS la crise qui frappe les journaux depuis la
fin de 1989 [. . .].

Although we have pos-tags to help us, identifying a direct object in the previous verb
turned out to be even more problematic, and was eventually left out. Perhaps it could be
re-introduced with further analysis and refinement.

No preceding content words: we noticed that if there are no preceding content words
(verbs, nouns, etc.), the que is likely to be either a subordinating conjunction or an interrog-
ative pronoun. There is also a single case of an exclamatory adverb in our corpus.

• No preceding content words (total 35)

• Pos-tag ADV (1).

∗ Sample: Qu’/ADV il était insouciant, le mois de janvier 1992.

• Pos-tag CS (22).

∗ Sample: Qu’/CS on ouvre immédiatement le guichet, ordonne-t-il..

• Pos-tag PROREL (1). In this case a broken sentence.

∗ Sample: Qu’/PROREL elle n’aime guère voir rapprocher de celui des so-
ciétés concurrentes.

• Pos-tag PROWH (11).

∗ Sample: Que/PROWH fait-il de l’excédent de ses revenus ?

Curiously, all sentences starting with interrogative pronouns end with question marks: a
fact we immediately seized upon and added as a feature to distinguish these from subordi-
nating conjunctions. We also added another feature for interrogative pronouns: the presence
of verb directly after que, which is quite unlikely in most other cases.

6.3.2.3 Results

The end results are positive, but not as impressive as those for the negative que, given the
amount of work required to define, test, and refine these features (approximately 3 full days).

ADV CS PROREL PROWH
ADV 75 (+17) 23 (-17) 1 1
CS 12 (-8) 934 (+17) 41 (-8) 0 (-1)
PROREL 0 49 (-9) 205 (+9) 0
PROWH 0 2 (-3) 3 (-11) 18 (+14)

Table 6.4: Confusion matrix for que with targeted relative pronoun features

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 173

If we ignore the considerable ancillary gains for adverbs, we see a delta of 17 correctly
identified subordinating conjunctions, 9 correctly identified relative pronouns, and a much
better categorisation of interrogative pronouns: 14 cases. All in all for que we have introduced
73 new corrections for 16 new errors, with a 30% improvement in the overall error rate.
Regarding other tokens, we have introduced 46 new corrections for 67 new errors. Again
nothing systematic is seen.

If we combine these features with the negative adverb features in a single model, we get
the following final confusion matrix:

ADV CS PROREL PROWH
ADV 91 (+33) 9 (-31) 0 (-1) 0 (-1)
CS 12 (-8) 934 (+17) 41 (-8) 0 (-1)
PROREL 0 48 (-10) 206 (+10) 0
PROWH 0 2 (-3) 2 (-13) 20 (+16)

Table 6.5: Confusion matrix for que with all targeted features combined

The overall picture is much cleaner than it was initially, with gains in all four categories,
and accuracy increasing from 86.08% to 91.65%, and the number of errors reducing from 190
to 114, a 40% reduction in the error rate. For a total of 1,365 occurrences in all corpora, we
have fixed 92 new cases for 16 errors introduced. There is of course considerable room for
improvement here, since there are 114 remaining errors, and we look at one way of improving
via rules in section 6.5.2. When we look at the total picture, the accuracy for all corpora
combined has increased from 96.51% to 96.59%. For the 150,776 tokens other than que (out
of a total of 152,141), we have corrected 163 other tokens, and introduced 121 errors. We
thus have a total of 255 new corrections and 137 new errors, for a delta of 118 additional true
positives, 76 of which concern the word que. An examination of the corrections and errors
outside of que again yields no obvious patterns—indeed, it is quite puzzling to see completely
unrelated words changing categories (for better or worse) without a single instance of que in
the sentence, but this is one of the prices to pay when using robust statistical methods.

Although the gain in accuracy for que is undeniable, the cost of all of these new features
in terms of performance is far from negligible. There are 22 new features over and above the
66 baseline features, and yet, for a one million word corpus, pos-tagger feature analysis alone
took 287 seconds (just under 5 minutes) in the baseline version, and 602 seconds (just over
10 minutes) in the targeted version. This accounts for about 1/6th of total analysis time for
the full processing chain, where the baseline parser features account for another 1/3rd.

6.3.3 Effect of targeted pos-tagger features on the parser

As presented at start of the present section, our goal was to identify and correct pos-tagging
errors responsible for the most parsing errors. To this end, we now look at the effect of the
corrections induced by the new targeted features on the parser, when the pos-tagger and
parser are chained in sequence. In other words, if we take the gold tokens as input, and then
apply the new pos-tagger model to select the pos-tags, and the baseline parser model to add
dependencies, what improvement in LAS/UAS do we get with respect to a setup identical in
all respects except that it uses the baseline pos-tagger model?

174 6.3. IMPROVING THE TAGGING OF QUE

LAS Beam 1 Beam 2
Baseline LAS 85.34 85.95
Que features LAS 85.42 86.01

Baseline UAS 88.03 88.58
Que features UAS 88.10 88.66

Table 6.6: Parsing improvement for using a pos-tagger model with targeted que features

We have a total of 133,643 dependencies in all of the evaluation corpora combined. For a
delta of 118 pos-tagger corrections, we have respectively 106 and 78 new labelled corrections
at beams 1 and 2, and respectively 103 and 106 new correct governors. In beam 1, we have
305 corrections for 199 new errors. In beam 2, we have 372 corrections for 294 new errors. For
the full set of corpora regardless of the beam width, all changes are statistically significant.

Of course, we were particularly intrigued by the large number of errors introduced. The
main question is, are they in any way related to the corrections or errors for que, or are they
related to the ancillary errors introduced for other tokens? To resolve this question, we looked
into the differences in the FTBDep dev corpus, but found nothing conclusive - indeed, a large
portion of differences did not occur in the vicinity of the word que, but rather concerned some
other word whose pos-tag had changed. Most corrections for the word que result in 2 or more
parsing corrections, and most errors for this word result in 2 or more parsing errors. Some
errors for other words result in 4 or more parsing errors, but nothing systematic appeared in
such a small sample.

We therefore decided to turn to the vaster unannotated corpora presented in section 4.2.3,
to see if any clearer patterns appear. We reviewed the first few differences in the Frantext,
Est Républicain, and Revues.org corpora. There was about one difference per 100 words. The
results are very much in favor of the new features. Of 50 cases reviewed, 8 had the correct
pos-tag in the baseline version, and 40 in the version with targeted features. This time, the
total parsing error count is even less telling: the pos-tag differences resulted in 100 errors in
the baseline version, and 44 errors in the version with targeted features.

One obvious culprit for introducing parsing errors in the unannotated corpora was the case
of comparative structures. These are almost systematically mishandled by Talismane, even
more so when the pos-tag is correctly annotated. According to the FTB annotation guide
[Abeillé and Clément, 2006], que should always be annotated as a subordinating conjunction
in the case of comparatives. In the FTBDep annotation guide [Candito et al., 2011b], since
a comparative que is justified by the preceding comparative adverb, it should depend on it,
generally introducing non-projectivity, since they are separated by the object being compared.
However, since Talismane currently uses a strictly projective version of the transition-based
parsing algorithm, and since the version of FTBDep used for training is strictly projective as
well, we must find an alternative governor for the comparative que—logically the object being
compared, which is the governor of the previous comparative adverb. This means, however,
that we have a different governor pos-tag for each type of comparative. Take the following
set of examples drawn from the training corpus and unannotated corpora, with the projective
governor and the object of que marked in bold:

1. Plus qu’un gadget, elle a été le remède miracle [. . .]

2. [. . .] accueilli aussi bien par le public que par la critique.

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 175

3. C’est peut-être pour ça que Suzanne est arrivée plus tôt que prévu !

4. [. . .] la Commission écarte autant la libéralisation complète du secteur postal que son
harmonisation totale.

5. [. . .] les hommes sont plus frappés par cette crise que les femmes.

There are several difficulties with these structures from Talismane’s perspective. The
first is the wide variety of pos-tags that can govern the que: in the above cases respectively
ADV, P, ADJ, NC and VPP. One of the primary clues currently used by Talismane to select the
correct governor is thus eliminated. Secondly, subordinating conjunctions typically govern
a verb. However, in the case of comparatives, the subordinate clause, while it is generally
possible to reconstruct one, is highly elliptic, and hardly ever contains a verb. In the above
cases, the dependent pos-tags are respectively NC, P, VPP, NC and NC. Therefore, Talismane
needs to look for other clues in order to select the correct governor and dependent—in the
case of the governor, the fact that it is immediately preceded by a comparative word, and,
in the case of the dependent, an analysis of the structure following the word que. The
current feature set is not well adapted to such clues but, even if it were, both the structural
variety and fairly reduced number of camparatives in the training corpus (approximately
230), especially when compared to the large number of similarly annotated subordinating
conjunctions (approximately 1150), means it may be difficult to generalise.

6.4 Using targeted parser features

We now turn to targeted features in the parser. Again, we wish to concentrate on those
areas where there is the most room for improvement. An obvious candidate is coordination,
which involves two dependencies, coord tying the coordinator to the previous conjunct and
dep_coord tying the next conjunct to the coordinator. In the FTBDep development corpus
with baseline model, coord has a precision of 99.59% (it is very unlikely to confuse coord

with anything else, given the strong indicator of a coordinating conjunction or comma), a
recall of 58.53% (given the difficulty of selecting the correct first conjunct), and an f-score
of 73.73%. As for dep_coord, we have a precision of 99.49% (again, because of the same
strong indicators), a recall of 82.21% (the 2nd conjunct is generally easier to identify than
the first, since it closely follows the conjunction), and an f-score of 90.62%. Since the case
of coordinating commas accounts for only 22 errors out of a total of 345, we decided to
concentrate on coordinating conjunctions.

6.4.1 Parser coordination features

As presented in section 1.1.3.2, page 30, it is generally impossible to correctly identify the
first conjunct without looking ahead beyond the coordinating conjunction, as illustrated by
the three sentences taken from that section:

1. J’ai mangé une pomme rouge et mûre.

2. J’ai mangé une pomme rouge et une orange.

3. J’ai mangé une pomme rouge et Georges a bu du thé.

176 6.4. USING TARGETED PARSER FEATURES

This implies that in order to correctly select the first conjunct we need to make a fairly
reliable guess at the identity of the second conjunct.

Furthermore, in the shift-reduce algorithm used by transition-based parsing, the deci-
sion as to which two elements are coordinated is split into multiple individual decisions, as
illustrated by table 6.7. In this table, we show the transition sequence during which the
coordination dependencies are added. The most difficult decisions are the reduce at n+1,
where we have to decide whether or not the 2nd conjunct coordinates with rouge, and the
reduce at n+2, where we have to decide whether or not the 2nd conjunct coordinates with
pomme. The right-arccoord decision at n+3 is trivial, since there is nothing else left to
coordinate with et at this point. Also, having recognised the 1st conjunct as mangé, it is
fairly straightforward to know that the 2nd conjunct should be a verb as well. Still, the shift

decision at n+4 needs to look at this 1st conjunct in order to make its decision, as well as
ensuring that the coordination is not elliptical (e.g. “J’ai mangé une pomme et Georges une
banane.”). The shift decision at n+5 has a bit of logic behind it as well, as it needs to
recognise that we have a composite past tense, rather than present tense verb avoir. At this
point the two left-arc decisions at positions n+6 and n+7 are natural consequences of the
previous two shift decisions, and the final right-arcdep_coord is trivial as well, since the
verb must necessarily be the 2nd conjunct.

transition stack buffer dependencies
added

n root, mangé,
pomme, rouge

et, Georges, a,
bu, du, thé

n+1 reduce root, mangé,
pomme

et, Georges, a,
bu, du, thé

n+2 reduce root, mangé et, Georges, a,
bu, du, thé

n+3 right-arccoord root, mangé, et Georges, a, bu,
du, thé

coord(mangé,et)

n+4 shift root, mangé, et,
Georges

a, bu, du, thé

n+5 shift root, mangé, et,
Georges, a

bu, du, thé

n+6 left-arcaux_tps root, mangé, et,
Georges

bu, du, thé aux_tps(bu, a)

n+7 left-arcsuj root, mangé, et bu, du, thé suj(bu, Georges)
n+8 right-

arcdep_coord

root, mangé, et,
bu

du, thé dep_coord(et,
bu)

Table 6.7: Arc-eager transition sequence for coordination, with difficult decisions in bold

We have thus recognised four difficult decisions in the present case. If we examine more
closely the information that can help us make the correct decision for the first two reduce

decisions, it is (A) correctly guessing the 2nd conjunct ahead of time and (B) examining the
elements deeper in the stack, to see which is most likely to coordinate with this 2nd conjunct.
Further downstream, when we reach the shift decisions, we already know which 1st conjunct

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 177

was selected, and so we now have to select the most likely 2nd conjunct by reviewing the
items on the buffer as far as the content verb bu.

However, correctly guessing the 2nd conjunct is not always as simple a task as in toy
examples like these. If the conjunction is directly followed by a verb, a preposition or a
relative pronoun, there is no ambiguity, with the 2nd conjunct being respectively the content
verb, the preposition itself, and the content verb of the relative clause. If, however, the
conjunction is followed immediately by a noun and a verb later in the phrase, we can only
decide by analysing the sentence as a whole. Take the following examples of 2nd conjunct
ambiguity, taken from the FTBDep development corpus, and showing the correct annotation,
with the two verbs in italics, the conjuncts underlined and the conjunction in bold.

1. Il s’agit ici d’un jour normal de la semaine et un inventaire scrupuleux exigerait que
l’on prenne également en compte l’offre accrue du mercredi.

2. Les chiffres parlent d’eux-mêmes : les Japonais occupent 30 % du marché américain et
leurs exportations représentent près de 75 % du déficit commercial global annuel.

3. A Lourdes, nous signale notre correspondant Jean-Jacques Rollat, la venue et la circulation
des pèlerins ont été très perturbées.

4. Le taux de salaire horaire ouvrier a progressé de 0,7 % au cours du troisième trimestre
1991, soit une croissance de 4,5 % en un an et un gain de pouvoir d’achat de 2 % sur
la même période, indique le ministère du travail.

5. Les émissions d’éveil qui ont fait la richesse des chaînes de service public entre 1975 et
1985 ont toutes disparu.

We identified the following rule: if the sentence contains a conjugated verb prior to the
conjunction, then the verb following the conjunction is the 2nd conjunct, unless it follows a
relative pronoun or subordinating conjunction. However, there are several exceptions that
have to be excluded from this rule: if the preceding or following verb is in a reporting clause
or comment clause (respectively signale in example 3 and indique in example 4), and if
the preceding verb is itself in a relative clause (as in example 5). With these exceptions,
the rule becomes almost necessary and sufficient: if these conditions are not met, the 2nd

conjunct cannot be the verb following the coordinating conjunction (although relative clause
and comment clause limits have to be carefully delimited).

Once the verb has been eliminated, there is little remaining ambiguity possible on the 2nd

conjunct: it must be the noun if there is one, otherwise an adjective if there is one, otherwise
an adverb. The remaining exception is the case of coordinated determiners (e.g. “un ou
plusieurs”), which we have not yet attempted to handle in the present study.

6.4.1.1 Development corpus error analysis

Having thus identified the 2nd conjunct, we now turn to the methodology already presented
in section 6.2 for selecting useful features. The first step is reviewing the errors in the de-
velopment corpus, in order to imagine features that are likely to be useful. In the examples
below, the reference annotation is in bold, and Talismane’s baseline guesses are underlined.

Example 6.10 Toutefois, les tarifs réduits progresseront moins que l’ inflation et même
diminueront, pour les jeunes [. . .]

178 6.4. USING TARGETED PARSER FEATURES

In this example, it is clear that the 2nd conjunct is a verb, since it follows the coordinating
conjunction without an intervening noun. The baseline model incorrectly selected the nearest
noun as the 1st conjunct. An obvious feature is one where we attempt to find a preceding
verb to coordinate with, if the 2nd conjunct is a verb as well.

Example 6.11 L’arrêté est sorti le 7 janvier et la circulaire est prête, indique le ministère
du travail.

In this example, the baseline model failed to recognise that the 2nd conjunct is a verb,
and therefore attempted to coordinate two nouns. Thus, features are required to recognise
when the 2nd conjunct is likely to be a verb, using the rules described earlier in the present
section.

Example 6.12 Dix millions de francs sont prévus pour les employés de particuliers et 190
millions pour les salariés des associations.

In this case, we have an elliptical construct, which is quite common with coordination.
The annotators have chosen to coordinate the main verb as the first conjunct with the subject
of the second conjunct, since the verb is omitted in the second construct. However, due to
the complexity and rarity of these structures, we will not attempt to identify them for now
via features.

Example 6.13 Hafnia, pour sa part, a perdu 800 millions de couronnes (696 millions de
francs) en partie à cause de sa participation de 33,7 % dans Baltica et dans le groupe
suédois d’assurances Skandia, numéro un en Scandinavie.

In this example, we see that we should encourage coordination with an identical preposi-
tion rather than a different one, if the choice is offered.

Two additional errors concern non-parallel coordination between clauses, where the gov-
ernor and dependent are not easy to identify:

Example 6.14 Les deux firmes ont la même caractéristique : elles ont depuis peu dans leur
tour de table, mais à des degrés différents, l’italien Agnelli.

Example 6.15 D’où son idée depuis de calmer le jeu sans perdre la face, et ce tour de
passe-passe serait destiné à y contribuer.

In the first case, the reference annotation seems correct: the preposition should be attached
to the nearest verb. In the second case, there is no clear first conjunct, but a better option
would probably be to coordinate the prepositional phrase as a whole, with d’où as the first
conjunct and destiné as the second.

There are also a very large number of annotation errors in the development corpus: 13
among the first 32 errors, or 41%. Among these, 12 concern multiple conjuncts, where the
FTBDep corpus incorrectly coordinates all of the conjuncts with the first conjunct, whereas
Talismane correctly coordinates each conjunct with the previous conjunct (as per the anno-
tation convention set out in chapter 1). The example below shows the type of error:

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 179

Example 6.16 L’application est large puisqu’elle couvre, aussi bien, l’embauche d’une femme
de ménage que la garde d’enfants en passant par l’aide aux personnes âgées, les travaux de
jardinage et le soutien scolaire, par exemple.

If this tendency is confirmed on the rest of the corpus, the initial accuracy needs to be
taken with a pinch of salt.

All in all, among the first 32 errors, we have:

• 12 annotation errors with multiple conjuncts, where Talismane annotated correctly

• 1 additional annotation error, incorrectly annotated both in the reference and by Tal-
ismane

• 8 cases where Talismane incorrectly coordinated two different parts of speech (typically
noun/verb, verb/noun or noun/preposition)

• 4 cases where Talismane didn’t find the correct 2nd conjunct, and coordinated two nouns
instead of two verbs. One of these cases concerns an adverbial comment starting with
selon immediately after the conjunction, which is mistaken for the 2nd conjunct.

• 7 cases that are less easy to classify: preposition mismatch, parallelism not respected
(coordination of X and B in “A pour X et B pour Y”), idiomatic structures not respected
(“entre A et B”), coordination with the helper verb instead of the content verb, ellipsis,
and non-parallel clause coordination.

6.4.1.2 Feature list

Having analysed the types of errors produced, we next translated these features into logical
constructs readable by Talismane, and refined them against the training corpus. We show
below the list of features obtained after refinement. These features use the same terminology
for the stack and buffer as the rest of the thesis, with σ0 representing the top of stack, σ1 the
previous item on the stack, etc., and β0 representing the head of buffer, β1 the next item on
the buffer, etc. When giving samples, we show both σ0 and β0 in bold, with σ0 by definition
to the left of β0. The two conjuncts are underlined. The vast majority of features concentrate
on identifying the relationship between the 1st conjunct and the coordinating conjunction, as
this is generally far more difficult than identifying the 2nd conjunct. When the coordinating
conjunction is immediately followed by a comma, we look for the 2nd conjunct after the
following comma on the assumption that we have an intervening adverbial.

Coordination between verbs: if the 2nd conjunct is a verb, is the 1st conjunct under
consideration a verb as well? Translated to the transition-based parsing paradigm, if β0 is a
coordinating conjunction and the 2nd conjunct is determined to be a verb, is σ0 a conjugated
verb as well? Conjugated verbs are considered to be any verb that is indicative, subjunctive
or imperative, as well as past participles if they govern a passive or tense helper verb, and
infinitives if they govern a causative helper verb. If the result is true (σ0 is a verb as well),
we’re expecting a transition of right-arccoord most of the time, and if the answer is false
(σ0 is not a verb) we’re expecting reduce most of the time.

• σ0 is a verb as well (total 635)

• Transition right-arccoord (583)

180 6.4. USING TARGETED PARSER FEATURES

∗ Sample: Le syndicat IG-Metall avait immédiatement protesté contre ce projet
et il a déclenché la grève.

• Transition reduce (48)

∗ Generally a coordination with three or more verbal conjuncts, where the an-
notation incorrectly coordinates the 3rd conjunct with the 1st one instead of
the 2nd. There are also a number of cases where the first verb is in a relative
clause—these ought to be removed from this feature by further refinement.

• σ0 is not a verb (total 1251)

• Transition reduce (1172)

∗ Sample: La priorité est à la reconstruction de l’Est et la plupart des min-
istères voient leur budget sérieusement amputé.

• Transition right-arccoord (28)

∗ Typically annotation mistakes or cases where our feature mistakenly identified
a comment clause or relative clause.

Mismatched prepositions: if the 1st and 2nd conjuncts under consideration are two
different prepositions, does the same preposition exist as a candidate earlier in the sentence?
Translated into the transition-based parsing paradigm, if β0 is a coordinating conjunction
immediately followed by a preposition as 2nd conjunct, and σ0 is a preposition as well, but a
different presposition from the 2nd conjunct, does the stack contain a preposition identical to
the 2nd conjunct? When comparing prepositions, we allow for cases of compound prepositions
which are later abbreviated, as in grace à X et à Y. We only consider the case when the answer
is yes. If this feature indicates a preposition mismatch with a better preposition on the stack,
we expect a preponderance of reduce.

• Mismatched prepositions = true (total 135)

• Transition reduce (132)

∗ Sample: Les gouvernements seront cependant prudents dans tous les domaines
qui touchent au niveau de vie de la population et à l’emploi.

• Transition right-arccoord (2)

∗ Sample: D’origine chinoise, il travaille dans un grand cabinet juridique français
installé à la fois à Pékin et dans la colonie britannique [. . .]

Avoid noun-preposition coordination: if the 1st conjunct under consideration is a
noun, and the 2nd is a preposition, is there a prepositional candidate earlier in the sentence?
Translated into the transition-based parsing paradigm, if β0 is a coordinating conjunction
immediately followed by a preposition as 2nd conjunct, and σ0 is a noun, does the stack
contain a preposition? We only consider the case when the answer is yes. In this case, we
expect a preponderance of reduce.

• Noun-preposition coordination proposal with preposition on stack (total 2134)

• Transition reduce (1942)

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 181

∗ Sample: L’exemple des banques et des assurances pourrait le démontrer.

• Transition right-arccoord (157)

∗ Amazingly enough for such a large number of cases, the first 30 cases on the
list were systematically annotation mistakes.

The very large number of annotation mistakes identified by this feature suggests another
possible use for feature projection and refinement, as a means of identifying and correcting
training corpus errors. However, the methodology and effect of such fixes has not been
explored in the present thesis.

Pos-tag mismatch: if the 1st conjunct under consideration has a different pos-tag from
the 2nd conjunct, does a candidate with the same pos-tag exist earlier in the sentence? Trans-
lated into the transition-based parsing paradigm, if β0 is a coordinating conjunction, σ0 has
a different pos-tag from the guessed 2nd conjunct, does the stack contain an item with the
same pos-tag? We only consider the case when the answer is yes, in which case we expect a
preponderance of reduce. We test this feature in two versions: one where we only look at
the item at σ1, and one where we search the entire stack for the identical pos-tag.

• Pos-tag mismatch with match at σ1 (total 3105)

• Transition reduce (2860)

∗ Sample: Nous n’avons pas de réserves de gaz, pas de réserves de pétrole et
l’exploitation du charbon diminue.

• Transition right-arccoord (163)

∗ There are a huge number of annotation mistakes, including all of the ones
from the previous feature. One correct sample is: Il y a, bien sûr, les films qui
défendent directement cette cause, ceux des catégories “causes charitables”
[. . .], ou encore l’impressionnant spot de Greenpeace sur la protection de
l’antarctique. In this case, we see a mismatch between PRO and NC—although
such cases should be excluded from mismatches by further feature refinement,
grouping together all pos-tags that act as nominal expressions.

• Pos-tag mismatch with match somewhere on stack (total 4763)

• Transition reduce (4255)

∗ Sample: [. . .] ses adversaires politiques ne proposent aucune solution alter-
native et considèrent, avec un bel ensemble, que la défense des intérêts des
malades [. . .]

• Transition right-arccoord (382)

∗ In addition to the annotation mistakes from previous features, there are sev-
eral valid cases of NPP/NC agreement, and PRO/NC agreement which should be
excluded by feature refinement.

Pos-tag match: if the 1st conjunct under consideration is the same pos-tag as the 2nd

conjunct, are there any other candidates with this pos-tag earlier in the sentence? Translated
into the transition-based parsing paradigm, if β0 is a coordinating conjunction, and σ0 has
the same pos-tag as the guessed 2nd conjunct, does the stack contain only items with a

182 6.4. USING TARGETED PARSER FEATURES

different pos-tag? We only consider the case when the answer is yes, in which case we expect
a preponderance of right-arccoord.

• Pos-tag match with no other match on stack (total 2424)

• Transition right-arccoord (2080)

∗ Sample: Aussi devrait-on revenir à un certain équilibre en termes d’offre et
de demande. Note that in this case, the preposition à has already been cor-
rectly removed from the stack by a previous reduce transition. This suggests
that we might also gain some ground by creating features that tackle coordina-
tion earlier in the process, when the coordinating conjunction is farther down
the buffer than position β0, in order to avoid or encourage a reduce transition
for a potential 1st conjunct.

• Transition reduce (319)

∗ Again, a very large number of annotation mistakes. No correctly annotated
cases were identified in the first 30.

2nd conjunct is content verb: this feature, unlike most of the others, concerns the
dep_coord relationship. We attempt to ensure that when there is a verbal kernel consisting
of multiple verbs, we coordinate with the content verb governing the structure rather than
the helper verbs. If the dependency label govering σ0 is coord, and the governor of σ0 is a
verb, is β0 a helper verb? If so, we’re expecting the shift transition.

• β0 is helper verb (total 45)

• Transition right-arccoord (1)

∗ This case is an error in the feature definition when identifying helper verbs
in the verbal phrase: [. . .] et les ignorer seraient alimenter abusivement le
pessimisme ambiant [. . .]

• Transition shift (42)

∗ Sample: La plupart sont très jeunes et ont trouvé là leur premier emploi.

6.4.1.3 Results

The results of these features across all evaluation corpora (dev+test) on the label coord are
as follows:

beam 1 beam 2
coord baseline targeted baseline targeted
true+ 2230 2262 2287 2320
false+ 25 27 27 31
false- 1687 1655 1630 1597
precision 98.89% 98.82% 98.83% 98.68%
recall 56.93% 57.75% 58.39% 59.23%
f-score 72.26% 72.90% 73.41% 74.03%

Table 6.8: Parsing improvement for the relation coord using targeted features

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 183

The results of these features on the label dep_coord are as follows:

beam 1 beam 2
dep_coord baseline targeted baseline targeted
true+ 3474 3479 3510 3523
false+ 36 36 36 37
false- 765 760 729 716
precision 98.97% 98.98% 98.98% 98.96%
recall 81.95% 82.07% 82.80% 83.11%
f-score 89.66% 89.73% 90.17% 90.34%

Table 6.9: Parsing improvement for the relation dep_coord using targeted features

In terms of significance, we have the following contingency matrix the label coord in beam
1 (p-value < 0.005):

coord beam 1 targeted true targeted false baseline totals
baseline true 2184 46 2230
baseline false 78 1609 1687
targeted totals 2262 1655 3917

Table 6.10: Contingency table for coord with and without targeted features, at beam 1

We have the following contingency matrix the label coord in beam 2 (p-value < 0.01):

coord beam 2 targeted true targeted false baseline totals
baseline true 2234 53 2287
baseline false 86 1544 1630
targeted totals 2320 1597 3917

Table 6.11: Contingency table for coord with and without targeted features, at beam 2

Thus, there are a total of 78 new correct answers for 46 new errors in beam 1, and 86 new
correct answers for 53 new errors in beam 2. The error rate for coord at beam 1 has only
reduced by 1.9%, from 1687 to 1655. These results are somewhat disappointing in terms of
the amount of effort required, and especially in view of the very large proportion of errors
which remain untouched in both beams. When we review the errors remaining in beam 1
and compare them to the first 32 errors analysed earlier in this section, we see that only 4
errors have been fixed: only 1 out of 8 pos-tag mismatches, 2 cases where the 2nd conjunct
was not correctly identified as a verb, and 1 complex coordination between clauses. The 12
manual annotation mistakes are still corrected. For these 32 errors, we have thus passed from
an accuracy of 37.5% to 50.0%. The small proportion of pos-tag mismatches corrected either
indicates that the pos-tag mismatch feature needs to be refined further, or that it is drowned
out by other features. To test this, we would first need to test the features on these 8 errors
to ensure they give the expected answers and, if so, see if anything can be done to widen the
scope of the features or refine them further to remove cases in the training corpus that do
not give the expected transition.

184 6.5. USING RULES

We also reviewed the first 40 of the errors introduced by the targeted feature model.
We found that targeted feature model tends sometimes to privilege, as a 1st conjunct, the
governor of a prepositional phrase rather than its dependent, and, more surprisingly, made
several errors where the 1st conjunct was marked as a verb and the 2nd as a noun. The
latter errors may be due to a mistake when guessing the 2nd conjunct during the 1st conjunct
annotation, which is not repeated when the 2nd conjunct is actually annotated. This implies
that the 2nd conjunct guessing heuristic is not sufficiently watertight. Finally, we have 3 new
fixes for reference annotation mistakes.

We turn once again to the unannotated corpora to see if any clear tendencies are high-
lighted. In the unannotated corpora, we found about 1 difference for every 200 words. We
checked the first 10 or so differences in each corpus: for a total of 55 differences, we noted
14 where the baseline was correct, 30 where the targeted features were correct, and 6 where
neither was correct. Most of the corrections concern mismatched pos-tags in the baseline cor-
pus, as shown in the example below, with the original annotation in bold and the corrected
annotation underlined:

Example 6.17 Les truquages ne sont pas ici pour leur illusion féerique, mais pour leur
réalisation mécanique ou leur matière optique.

6.5 Using rules

We now turn from features to rules. As discussed in section 3.5, page 95, rules are used
to impose or prohibit certain local decisions during the analysis process, thus bypassing the
statistical model. At each step of the analysis process, positive rules are applied first: if any
of them return true, a certain category is imposed, and the statistical model is not consulted.
Negative rules are applied after the statistical model has returned its probability distribution
for the various categories. If any rule returns true, the associated category is removed from
the distribution.

The methodology we typically use for rules is similar to that used for targeted features,
and can be summarised as follows:

1. Analyse errors in Talismane’s output—either automatically identified in reference eval-
uation corpora, or detected in unannotated corpora after manual review.

2. Identify errors that can be described with high precision, and for which the associated
rule is likely to be applicable systematically.

3. Convert these rules into boolean features using Talismane’s feature definition syntax,
and project them onto the training corpus, ensuring that the results always correspond
to expectations. Refine if necessary.

4. Analyse the evaluation corpora with the new rules applied, and ensure they function
correctly. If necessary, return to step 3.

5. Analyse unannotated corpora with the rules applied, and compare the analysis results
to the baseline analysis results, to ensure they function correctly. If necessary, return
to step 3.

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 185

6.5.1 Pos-tagger closed vs. open classes

Recall from section 4.5.2, page 125, that the default French implementation comes with a set
of baseline rules, which only allow us to assign a closed class pos-tag to a token if it is listed in
the lexicon as belonging to this closed class. This prevents us from inventing new closed-class
lexical forms. Similarly, we have a rule that does not allow us to assign an open class pos-tag
to a token if it is only listed with closed classes in the lexicon. This prevents us from using
function words as content words.

While this assumption sounds reasonable, the actual usefulness on real text has yet to be
proven. To this end, we tested the pos-tagger without these rules in place. The results are
shown below for all evaluation corpora:

Corpus baseline closed class rules
FTBDep dev 96.90% 96.98%
FTBDep test 97.27% 97.39%
EstRépu 96.63% 96.89%
Europarl 96.76% 97.12%
EMEA dev 93.03% 93.78%
EMEA test 95.59% 95.82%
FrWiki 95.62% 95.80%
FrWikiDisc 94.99% 95.26%
Total 96.30% 96.51%

Table 6.12: Pos-tagging accuracy improvement using closed class rules

There is a systematic improvement through the application of the rule, even for unedited
corpora such as FrWikiDisc where we would expect spelling mistakes and typos to render
such rules dangerous. In total, we have 445 new corrections for 127 new errors, with a total
error reduction rate of 5.7%, and a McNemar p-value < 0.001.

An examination of the first 50 new errors is telling as well: many of them concern numbers
in a non-standard French format (decimal marker using a period instead of a comma), and
others result from words that have not been correctly lower-cased, since they don’t appear at
sentence start or after punctuation (e.g. “Selon” as a preposition with a capital S). All of the
errors examined are valid, and most can be corrected by improving the lexicon or the token
rules for recognising numbers or lower-casing.

An examination of the new corrections is telling of the limits of unconstrained statistical
methods: in the unconstrained baseline version there are many cases of rare classes being
replaced by more common classes (e.g. DETWH being replaced by ADJ in the case of “quel”).
There are a considerable number of corrections for what would appear to be completely absurd
pos-tags: PONCT for proper nouns, or CLO for verbs.

6.5.2 Pos-tagger rules for que

In section 6.3, we attempted to improve performance for the ambiguous word que through the
use of features. In this section, we attempt to further improve the score using highly specific
rules.

186 6.5. USING RULES

As was seen in the section on features, certain cases were not corrected even though the
feature returned the correct result: the feature seemed to be drowned in the ocean of other
more generic features, thus preventing it from tipping the scales decisively in the favor of the
correct pos-tag.

We reviewed the remaining errors in the development corpus, and came up with the
following rules, to be added to the existing features:

• Assign PROWH if the sentence ends with a question mark, there is no content word prior
to que, and que is followed by an indicative or infinitive verb, or the clitics en or se
followed by an indicative or infinitive verb. Sample: Et que/PROWH se passera-t-il si
un seul syndicat signe un accord de ce type contre l’avis des autres ?

• Assign CS to que in any variant of attendre à ce que, veiller à ce que, n’empêche que,
avoir honte à ce que, le/du/au fait que, une fois que.

• Assign CS for any expression of the type être ADJ que, such as “il est probable que”,
unless the expression is preceded by a ne.

• Assign PROREL in quoi/qui/quel/quelle que ce soit and ceux/celui/celle/celles que.

• Assign ADV for any verbal expression where ne directly precedes the verb, que directly
follows the verb, and there is no instance of rien, personne, aucun, aucune, ni or jamais
earlier in the sentence.

• Do not assign PROREL if que is the first word in the sentence.

• Do not assign PROREL if que follows a verb either directly, or after a comment clause
surrounded by commas or dashes.

• Do not assign PROREL if que follows the word reprises, as in “Il a dit a plusieurs reprises
que. . . ” - this rule could of course be extended to other words and/or expressions, and
replace the similar targeted feature.

• Do not assign ADV unless there is a preceding ne, or que is the first word in the sentence.

Unsurprisingly, the results of the rules on the training corpus are all positive, and we gain
another 17 corrections for 0 new errors when compared to the targeted features only. When
comparing our targeted features + rules version to the baseline version, accuracy for que has
increased from 86.08% to 92.89%, and we have 49% decrease in the number of remaining
errors, down from 190 to 97. The final confusion table for que looks like this, with numbers
in parentheses giving the additional gains with respect to the version with targeted features
only.

ADV CS PROREL PROWH
ADV 93 (+2) 7 (-2) 0 0
CS 11 (-1) 945 (+11) 31 (-10) 0
PROREL 0 46 (-2) 208 (+2) 0
PROWH 0 0 (-2) 2 22 (+2)

Table 6.13: Confusion matrix for que with targeted features and rules

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 187

We tested the rules on unannotated corpora as well, comparing the version analysed by
targeted features for que only, with a version including both targeted features and rules, to
ensure that their effect was positive on a much wider span of text. We get about 1 change
per 10,000 words. For the first 47 changes, 40 are corrections and 7 are errors. Of the errors,
3 could be corrected by further rule refinement, 3 result from incorrect pos-tagging of the
surroundings (nouns pos-tagged as verbs), and 1 results from less formal text in a literary
corpus, in which a negative que is used without a preceding ne:

Example 6.18 J’en ai connu que des mâles bighorns. . .

6.5.3 Parser rules: prohibiting duplicate subjects

We now turn to parser rules, as presented in section 3.5, page 95. These are similar to pos-tag
rules, except that they allow us to impose or prohibit a certain transition, rather than a certain
pos-tag, in a certain context. They are, however, much more difficult to code than pos-tag
rules, since one must place oneself within the transition based parsing algorithm to imagine
the state of the stack and buffer in a given context, and to select the correct transitions.

The first rule we tackle is one which attempts to prohibit the creation of multiple subjects
for the same verb. It was coded in response to certain team members noticing duplicate sub-
jects, which is not allowable in French outside of certain very specific cases. It was initially
formalised as follows:

No duplicate subjects: Do not allow the creation of more than one suj dependency per
governor, except in the case of one clitic and one non-clitic. The last exception allows for the
case of clitic inversion in questions: “Jean a-t-il mangé la pomme ?

This initial coding of the duplicate subject rule led to some surprises. The majority
of dual subject errors result from an unrecognised coordination which uses a comma instead
of a coordinating conjunction. This is most often the case when there are three or more
conjuncts. The reason behind this is as follows: recall that left dependents are added from
the inside out. When Talismane encounters such structures, it will reach the first conjunct,
leave it on the stack, and then tackle the second conjunct. At this point, it generally does
not recognise it as a conjunct despite the intervening comma, and therefore does not create
the dependency. Talismane then reaches the coordinating conjunction and the 3rd conjunct,
both of which are coordinated correctly to the 2nd conjunct and removed from the stack. We
now find ourselves in a position with the 2nd conjunct at σ0, and the verb at β0. Naturally,
Talismane adds this conjunct as a subject and removes it from the stack. When it next
reaches the 1st conjunct, it is too late to recognise the coordination: so Talismane adds it as
another subject. With the new rule in place, Talismane can no longer do so (there already is
a subject), and so it typically adds it as a modifier of the verb instead.

188 6.5. USING RULES

Therefore, without the duplicate subject rule in place, we get the following result:

Example 6.19 Le loup, le renard et la belette dansaient.
The wolf, the fox and the weasel were dancing.

Le loup , le renard et la belette dansaient.
DET NC PONCT DET NC CC DET NC V

suj

coord

dep_coord

suj

With the rule, we get the identical result, except that the suj of the first conjunct (loup) is
replaced by a mod. Since in both cases, Talismane fails to recognise the coordination between
the first two conjuncts, the analysis with two subjects seems preferable, since at least we
recognise loup as a subject of dansaient.

However, the rule also corrects several cases of incorrect subjects, especially when Talis-
mane erroneously marked the antecedent as the subject of a relative clause as in the following
example (the governor for France is shown in bold without the rule, and underlined with the
rule):

Example 6.20 La France, qui a développé dans le cadre d’une politique de défense une
industrie structurée et performante, n’échappe pas à cette tendance lourde. . .

In this case, Talismane originally assigned France as the subject of développé. With the
rule in place, it correctly finds it as the subject of échappe. The word qui remains the subject
of développé in both cases.

Another common correction is one where a time adjunct preceding the verb is erroneously
marked as a subject, since these often appear outside of a prepositional phrase:

Example 6.21 Cet après-midi, au niveau 1 du centre commercial Les Nations, la MJC
accueillera les enfants.

In this case, Talismane originally marked both après-midi and MJC as subjects for ac-
cueillera. With the rule, après-midi was corrected to an adjunct, and MJC remained the
subject.

In the case of the Europarl corpus, there are multiple corrections for the vocative noun
phrases Monsieur le Président and Madame la Présidente surrounded by commas, as in the
following examples:

Example 6.22 Madame la Présidente, cette résolution me pose un problème majeur.

Example 6.23 Et comme vous le savez, Madame la Présidente, chers collègues, l’Union
européene en est arrivée là. . .

In both these cases, the rule corrected Madame to become an adjunct of the main verb,
instead of its subject. The correct subject (respectively résolution and Union) remained
annotated as such.

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 189

We therefore rewrote the rule to remove the majority of errors: the rule does not apply if
the existing subject is a governor of a coordination. This excludes all of the cases where the
subject consists of three coordinated conjuncts. However, even with this new modification in
place, the rule adds 42 new corrections for 48 new errors. The vast majority of errors concerns
coordination marked only by a comma, or in some cases clarification/specification, where an
item is first presented and then clarified between commas, without any other marker, as in
the following example (both annotated subjects marked in bold):

Example 6.24 De 24 dollars en moyenne en 1990, le prix du baril de Brent, le brut de
référence en mer du Nord, est revenu à 20 dollars en 1991. . .

In many cases, the parser, unable to attach a noun as a subject, performed a shift

transition instead, bringing the verb to the top of the stack. Note that in the arc-eager
transition system, a shift transition is only ever needed when the governor of β0 is further
to the right. This is necessary if we want to attach the noun to another verb further down the
buffer, but if there is no such verb, it prevents us from attaching the noun to anything at all,
and, with the noun stuck between the central verb and the root, prevents us from attaching
the central verb to the root. Thus, the single error in subject attachment provokes multiple
errors downstream.

We also turned our attention to unannotated corpora, to see if the net effect of the parser
rules on these corpora is positive. The results here were mixed, with one change every 250
words, and, for the first 57 differences, 22 induced corrections and 27 induced errors. The
biggest culprit in terms of errors is the duplicate subject rule. Indeed, in the Frantext literary
corpus, we often find numerous coordinated subjects without a conjunction, as in the following
example:

Example 6.25 La couleur des érables, la plainte de l’orignal, le vol des oiseaux dans le
ciel, tout cela entrait en moi, devenait moi, et moi tout cela.

When the duplicate subject rule worked correctly, most of the time it concerned time
adjuncts not preceded by a preposition, including noun phrases governed by a month name,
a weekday name, or other time-related nouns such as semaine, veille, soir, etc.

In our final version of the rule, we thus broke it up into three distinct, highly specific
cases:

• Time expression subjects: do not allow the nominal head of a time expression to be
a subject of a later verb if the two are separated by a comma or a dash. Time expression
nouns here include any noun that typically modifies a verb as an adjunct outside of a
prepositional phrase: time quantities such as semaine, month names, weekday names,
times of day (e.g. après-midi), and relative day referrers (e.g. veille, lendemain). When
projected onto the training corpus, this rule excluded one genuine subject, but also a
whole slew of possible errors.

• Antecedent subjects: do not allow a noun to be the subject of a verb if it already
has a relative pronoun subject.

• Monsieur le Président: do not allow Monsieur or Madame to be the subject of a verb
if it is in the expression Monsieur le Président or Madame la Présidente followed by a
comma or dash. This is an example of a targeted corpus-specific rule for the Europarl
corpus.

190 6.5. USING RULES

With these three rules in place, we get much cleaner results on the evaluation corpora.
We now have 20 new corrections for 3 new errors. Certainly, we have lost 22 of the original
42 corrections, but we have also reduced the errors from 48 to 3.

When reviewing changes in the unannotated corpora, we now found about 0.7 changes
per 1000 words. The vast majority concerned time expressions, with a few for the antecedent
subjects, and, not surprisingly, not a single case of Monsieur le Président. Among the 54
changes reviewed (approximately 10 per corpus), there were 45 corrections and 8 errors.
Most of the corrections were simple time expression changes, where the time expression was
correctly marked as an adjunct of the following verb instead of as the subject, as in the
following example, emblematic of the wide variety of subject matter found in the Wikipedia
corpus:

Example 6.26 Un jour, en se levant du siège des toilettes, il se rend compte que ses cuisses
ont grossies et saisi de tristesse, se met à pleurer.

There is one rather elegant correction for a relative clause in the Frantext literary corpus,
with three items corrected in one fell swoop:

Example 6.27 Et celui-ci, qui vole à la lisière, c’est le redwins black bird.

In the original annotation, we had both celui-ci and qui as the subjects of vole, and the
main verb est as a modifier for the subordiante verb vole. With the rule in place, celui-ci is
correctly marked as the subject of est and the antecendent of vole, and est is correctly marked
as a conjunct of the opening et. However, most corrections for antecedents simply marked
the antecedent as an adjunct of the subordinate verb instead of as its subject. This rule could
probably be replaced by a feature for more effect, since in the training corpus, 100% of the
cases concern those where σ0 indeed governs β0 as an antecedent.

Note in passing that the group of time-related nouns could probably be incorporated into
features as well, since its occurrences are numerous in the training corpus, and its behaviour
must be unusual in other contexts as well.

The remaining errors are a mixed bag: one that caught our attention, provoking 3 errors,
was the use of seconde as a pronoun (“the second one”) rather than a time expression. Such
ambiguous words should probably be removed from the rule, to avoid this sort of situation.

6.5.4 Parser rules: prohibiting relations across parentheses

Another error that we noticed when reviewing duplicate subject errors was the case of a
subject being erroneously marked within parentheses. Take the example below, with both
subjects and the verb marked in bold:

Example 6.28 Après huit réunions infructueuses avec le patronat de la sidérurgie à propos
des augmentations salariales de 1992 dans la Ruhr (le Monde du 15 janvier), le syndicat
de la métallurgie IG Metall a décidé [. . .].

This led us to imagine a rule where items in parentheses cannot have certain relations
with items outside of the parentheses, formalised as follows:

Relations across parentheses: Do not allow an item inside parentheses to govern an

TARGETING SPECIFIC ERRORS WITH FEATURES AND RULES 191

item outside the parentheses, and do not allow an item inside parentheses to be a verbal
argument of any type for a verb outside the parentheses, or to be a conjunct, unless the
coordinating conjunction is inside the parentheses as well.

Regarding the parentheses rules, once we modify the rule to exclude numbers in parenthe-
ses that indicate enumeration, the results are positive on the whole, with 51 new corrections
for 23 new errors, 4 of which are actually annotation errors. Most of the remaining errors
result from Talismane applying an erroneous shift transition inside the parentheses, after
which it is unable to perform attachments across the parentheses. It may be possible to
rework the rule to exclude certain shift transitions, but this has to be done with great care
and is likely to add considerable complexity, since shift transitions are still required inside
the parentheses anytime a word has a right-hand governor.

6.6 Discussion

In this chapter, we presented methods for injecting linguistic knowledge into the parsing
process intrinsically, that is, by defining targeted features and rules that describe typical
linguistic structures within the training corpus to help the parser make certain decisions.
In terms of features, targeted pos-tagger features provided very promising results, especially
after refinement against the training corpus. More complex features, such as the parser
coordination features, only managed to correct a small portion of remaining errors, even
after considerable refinement. Whether further feature refinement and/or training corpus
annotation corrections would allow them to be more effective is an open question. Our
experience, based on the more successful case of que, is that further refinement can indeed
eventually lead to clearly positive results. First of all, it takes a considerable imbalance in
the labels for a feature to have a preponderant effect. Secondly, cases where the feature
incorrectly grouped certain occurrences with a different equivalence class are particularly
dangerous, since during analysis such occurrences will be bunched together with the wrong
class and induce the parser to take the wrong decision. In such cases, adding the feature does
more harm than leaving the baseline features only.

Note that the actual importance assigned by the classifier to the features is outside of our
control in the present study. It often happens that even the most carefully designed features
are drowned out by the mass of other features, so that they do not affect probabilities suffi-
ciently to tip the balance in favor of the correct decision. This feature “drowning” is somewhat
expected. The vast majority of features in the model are baseline features with very low in-
formation content. They nudge the results in a certain direction, favouring certain transitions
slightly over others, but it’s only through the combination of a myriad of such features that
we get a final result that is fairly accurate. There is an inherent conflict between this huge
mass of low-information content features, necessary for getting fairly accurate results on the
mass of data without needing to explore the data itself deeply, and a few high-information
content features, capable of correctly determining a few specific cases.

Features thus allow us to play the game of machine learning as it was meant to be played:
the linguist attempts to give the classifier useful knowledge, but it is up to the classifier to
decide what to do with this knowledge based on the training data it has at its disposal. On
the other hand, rules allow us to tweak the system by bypassing the statistical model and

192 6.6. DISCUSSION

giving our own version of the truth. This may seem futile to a purist, but they do allow us
to target and correct unambiguous surface phenomena, especially when they are too rare to
be correctly handled by a statistical system. Moreover, in some cases, rules are successfully
applied with much wider coverage, e.g. in the case of constraints surrounding closed classes.

One advantage of rules is that the decision as to apply them or not is taken when analysing,
without requiring a model to be retrained. Thus, when analysing less formal text, the rule
for not assigning que as an adverb if it is not preceded by ne can be discarded.

The main difficulties with rules are:

• The need to define very specific unambiguous cases—by following the methodology
defined here, and refining the rules after examining results.

• Long-term maintenance is more difficult, as we could have hundreds of rules for various
specific cases.

• Rules can only cover a very small percentage of errors, where idiomatic usage guarantees
there will be little or no ambiguity.

Overall, parser rules were far more difficult to implement than pos-tagger rules, and
correcting a phenomenon locally often provoked other errors at a greater distance. The
difficulty of properly visualising the shift-reduce algorithm’s mechanism makes it difficult to
write rules correctly. Even rules that seemed obviously true, such as not allowing a verb to
have an object inside parentheses, often created problems, when the leftarcobj transition was
replaced by a shift transition, which blocked further dependencies across the parentheses.
Still, the net results for some of the rules are clearly positive, especially in the case of very
simple rules such as time expressions followed by commas, and lead us to believe that rules
can be applied successfully with a sufficient understanding of the shift-reduce algorithm, if
enough testing is performed to avoid undesirable side effects.

We do not pretend in this chapter to capture any sort of deep linguistic knowledge. The
rules are almost guaranteed to be close to the surface, in that delving any deeper into the
sentence structure is likely to bring about too much complexity to make unambiguous rules
possible. Our coordination features delve somewhat deeper than the others in this chapter,
by looking deeper into the stack, which is a reflection of the dependencies that have already
been constructed (and more specifically of words that have been eliminated as having no
more dependents). Still notions such as “surface” and “deep” are relative: we have indeed
delved far deeper than the baseline features, which are limited to n-grams and some top-level
partial dependency structures. In the next and final chapter, we attempt to extend the scope
of the exploration begun here, not by delving any deeper, but by introducing wide-coverage
external resources using similar mechanisms to the ones explored in this chapter, and seeing
if we achieve a more wide-ranging positive effect.

Chapter 7

Improving parsing through external
resources

In the previous chapter, we attempted to identify ways to improve the analysis results in-
trinsically, by defining better features or rules which attempted to capture more complex
regularities within the corpus itself than those captured by the baseline model. In this chap-
ter, we step outside of the training corpus, and see to what extent we can improve the analysis
through the use of external resources. In many ways, this chapter is a natural extension of
the previous chapter: the same methods are used to inject knowledge, but the knowledge is
gathered from far more extensive bases.

There are two primary reasons for the inclusion of external resources, each of which
requires a different type of resource, and especially a different methodology for constructing
it. The first reason is generalisation: an attempt to generalise our system’s applicability
beyond the specific data found in the training corpus, but without aiming at a particular
domain or genre. The second reason is domain adaptation: an attempt to improve a
system’s performance when applied to a specific domain that is clearly different from the
training corpus domain. In the first case, we will tend to use comprehensive resources for
“general” usage of the language, and to find ways to describe our training material in terms
of these comprehensive resources. In the second case, we need to find ways to cross the
domain bridge: somehow to create links between patterns found in the training material and
equivalent patterns found in the out-of-domain material.

In the first two sections of this chapter, we tackle the generalisation problem. In sec-
tion 7.1, we examine the question of incorporating knowledge from specialised structured
lexical resources, in which entries are grouped together by certain syntactic behaviour they
share. In section 7.2, we investigate whether improvements are attainable by retraining Tal-
ismane on a wider coverage lexicon.

Although we do not tackle domain adaptation directly in this thesis, there have been
numerous recent experiments in this area, and given our interest in terminology extraction as
an application for parsed text, experiments in a similar vein are one our primary future per-
spectives. Furthermore, most domain adaptation methods make novel uses of semi-supervised
approaches, i.e. approaches which gather information from automatically parsed corpora and
somehow feed it back into the parser to attempt to improve its out-of-domain results. Many
of the methods used can be applied to the generalisation problem as well, as long as the
corpora used are general language corpora. We therefore include a short state-of-the-art for

193

194 7.1. INCORPORATING SPECIALISED LEXICAL RESOURCES

semi-supervised domain adaptation in section 7.3, before attempting our own experiment
using a semi-supervised approach.

This experiment is described in section 7.3.3, presenting the construction of a distribu-
tional semantic resource from Talismane’s analyses, and using this resource to improve parsing
accuracy for coordination via targeted features.

7.1 Incorporating specialised lexical resources

The attempt to generalise typically comes down to assigning a word form in the training
corpus to some larger class of word forms that display similar syntactic behavior.

When defining the targeted features in chapter 6, we naturally attempted to make such
generalisations on a small scale. For example, in the case of que, we were led to create a list
of verbs which sub-categorise with que as a direct object, such as dire, penser, etc. Similarly,
we created another list of nouns which tend to govern que as a subordinating conjunction
directly, such as fait in the expression “le fait que. . . ”. Many other such possibilities exist
in the corpus and are yet to be explored: we already mentioned the need to redefine our list
of verbs governing que to include more complex verbal expressions, such as se rendre compte
que, since the expression rendre que does not exist. Similarly, when discussing parser rules
in section 6.5.3, our final version of the duplicate subject rule included a list of nominal time
expressions that are not introduced by a preposition, and yet typically act as adjuncts, such
as “la semaine dernière”.

In the previous chapter, the resources were gathered directly from the training corpus by
reviewing the occurrences in it, and generally augmented or restricted by our own knowlege
of the language. They were directly incorporated into features (and rules) by constructing
the feature around a true/false value indicating whether a given token belonged to the group
or not—instead of constructing the feature directly around the token’s word form or lemma.

Talismane provides three basic methods for representing the group within a feature. The
first is a boolean function checking if a particular item is in a particular set of words, all of
which are directly written into the declarative feature. This can be used for short lists, e.g.
for checking if the lemma of the head-of-buffer is in the set {être, avoir, faire}. The second
is a function which takes an external file in a specific format, containing a mapping from a
set of keys to a set of classes. For example, this file could be used to map a large number
of pos-tag/lemma pairs to semantic cluster identifiers. Thus, we could map NC/pomme and
NC/pain to the class food, or NC/voiture and NC/vélo to the class vehicle. This is then
incorporated into the feature as a string which replaces the original word, representing an
equivalence class for syntactic purposes. The final method is a file used for lexical affinity
or semantic similarity purposes: this file maps pairs of words to a numeric score. The score
can then be used within features, either as a threshold, or for comparison with the score of
another pair.

The latter two methods can be used with much larger resources. Indeed, there have been
several fairly systematic efforts in constructing resources that compile structured syntactic
information for French. One is Dicovalence1 [Van Den Eynde and Mertens, 2006], a dictionary
of verbal subcategorisation frames. It would be worthwhile to try to replace or augment the
list for que that we constructed from our training corpus with entries from Dicovalence.
Dicovalence does not include fixed nominal or adverbial complements, but does include some

1http://bach.arts.kuleuven.be/dicovalence/

http://bach.arts.kuleuven.be/dicovalence/

IMPROVING PARSING THROUGH EXTERNAL RESOURCES 195

fixed clitics (e.g. reflexive verbs). It has been used by others successfully for other features
as well, such as prepositional phrase attachment [Anguiano, 2013].

Another interesting resource to explore would be Verbaction2 [Tanguy and Hathout, 2002],
giving verb/noun couples where the noun is both morphologically related to the verb, and
indicates the action taken by the verb, such as zapper/zappage and zapper/zapping. An
interesting question here would be: do these nouns tend to take the same prepositional and/or
semantic arguments as the verbs? For example, the verb lutter and the noun lutte both take
an argument introduced by the preposition contre. In the case where one member of the pair
is much more common or has a known prepositional argument (e.g. from Dicovalence), we
could use this information to predict prepositional attachment on the related member.

The possibilities offered by such lists and resources are enormous in terms of targeted
features and rules, and are probably the most immediately promising prospects for improving
the linguistically motivated features/rules presented in the previous chapter.

7.2 Augmenting the lexicon with GLÀFF

Another opening Talismane gives for generalisation is through the lexicon interface, described
in section 4.3.2, page 114. We make considerable use of the lexicon within our baseline
features, both in the pos-tagger, when trying to guess the pos-tag of a word, and in the
parser, for various features based on the word’s lemma and others checking for matches in
the morphological aspects (gender, number, tense, etc.) of the two words currently being
considered for dependency.

Up until now, we only presented experiments using the LeFFF lexicon (section 4.3.3,
page 115). With the recent availability of an alternative wide-coverage lexicon in the CLLE-
ERSS laboratory, GLÀFF [Sajous et al., 2013], we became interested in the question of the
importance of the lexicon in our evaluations. GLÀFF (Gros Lexique À tout Faire du Français)
contains 1,425,848 inflected forms, as opposed to 404,483 in LeFFF, and is unusual in that
it was derived entirely from the crowd-sourced Wiktionary website for French3. It contains
detailed morpho-syntactic characteristics, lemmas, and phonological characteristics (which
are absent from LeFFF, but are not useful in the present thesis). With respect to LeFFF, it
is missing subcategorisation frames. We therefore decided to run an experiment in which we
alternatively replace and augment LeFFF with GLÀFF.

In addition to the difference in size, there is a difference in philosophy: LeFFF was built
by a small team semi-automatically, by analysing corpora for missing entries and applying a
common methodology to ensure quality, whereas the source material for GLÀFF was presum-
ably built by a large, unknown team, and there is no official methodology. One advantage to
GLÀFF is that the crowd-sourced resource is constantly being improved, so that new versions
can automatically be generated by downloading the resource and running the same derivation
rules.

Although it seems reasonable that a larger lexicon, if the quality is good enough, would
give better results, the quality of a crowd-sourced resource is yet to be proven. Moreover, the
size of the lexicon may not be very important after a certain critical mass has been reached,
covering the vast majority of words in most standard corpora.

2http://redac.univ-tlse2.fr/lexiques/verbaction.html
3http://fr.wiktionary.org

http://redac.univ-tlse2.fr/lexiques/verbaction.html
http://fr.wiktionary.org

196 7.2. AUGMENTING THE LEXICON WITH GLÀFF

Because of the critical nature of closed-class words to syntax analysis, we created our
own customised list of closed-class words, which replaced those of both LeFFF and GLÀFF
in our experiments. We are therefore only concerned with differences in open-class words:
common and proper nouns, adjectives, adverbs, verbs and, to a far lesser extent, interjections.
Our initial tests of the pos-tagger output showed interesting updates by GLÀFF, but many
errors when it came to geographical names, which are entirely missing from this lexicon.
We therefore extracted the large list of geographical names from the LeFFF (approximately
53,000 names), and ran a second test run of GLÀFF augmented by these names.

Table 7.1 below shows the lexicon coverage for each of the evaluation corpora, where the
three columns on the left show the % of unknown words among all token occurrences in the
corpus, and the three columns on the right show the % of unknown words in a lexicon compiled
from unique forms found in each corpus. The GLÀFF columns include the LeFFF geograph-
ical names. Unexpectedly, LeFFF has better coverage for all corpora, except for the two
crowd-sourced Wikipedia corpora: articles (FrWiki) and discussions (FrWikiDisc), perhaps
because of a similarity in lexical usage between the Wiktionary and Wikipedia communities!

% unknown occurrences % unknown word forms
LeFFF GLÀFF Both LeFFF GLÀFF Both

FTBDep dev 3.98 4.77 3.63 11.40 12.07 10.59
FTBDep test 3.36 4.00 3.02 9.79 10.24 8.69
EstRépu 3.97 4.35 3.55 9.94 10.52 8.85
Europarl 2.74 3.96 2.38 5.53 6.71 4.87
FrWiki 8.64 8.20 7.79 18.10 17.88 16.76
FrWikiDisc 5.12 4.50 4.31 12.79 11.15 10.54
EMEA dev 7.41 8.34 6.66 13.59 14.62 12.03
EMEA test 5.67 6.14 5.02 9.30 10.17 8.29

Table 7.1: Coverage by lexicon (percentage of unknown words)

When looking into the details for the FTBDep dev corpus, some of the words present in
GLÀFF but missing from LeFFF include a number of rare words or neologisms: herbagers,
privatisables, tripalium, eurosceptiques, hyperinflation, popularisation, ruralité, zappeurs, con-
cèderont and préfèreront. Words present in LeFFF but missing from GLÀFF include some
much more common words: nouvel, orthodoxes, terrestres, vraies, après-midi, assurance-
chômage, baby-sitter, cul-de-sac, coeur and manoeuvre (though the latter two exist with the
“official” spelling cœur and manœuvre, containing the ligature “œ”).

Despite these differences in coverage for the evaluation corpora, there are no significant
differences in the overall pos-tagging accuracy for the full set of corpora. Indeed, in individual
corpora, the coverage is not necessarily correlated to the scores. There are only four corpora
where the difference between LeFFF and GLÀFF are significant: EstRépu, EMEA dev,
EMEA test and FrWikiDisc. Among these, GLÀFF has better accuracy for EMEA dev
and EMEA test, where its coverage is lower, and worse accuracy for FrWikiDisc, where its
coverage is higher. In the EMEA corpora, the corrections concern mostly proper vs. common
noun differences, where the common nouns are highly specialised medical terms missing from
both lexicons. In FrWikiDisc, there are a majority of past participle/adjective differences for
known words, and proper/common noun differences for unknown words. These differences

IMPROVING PARSING THROUGH EXTERNAL RESOURCES 197

are among the least important for parsing, since they rarely result in a different governor or
label.

Although both lexicons contain compound words separated by either spaces or by dashes,
LeFFF coverage seems better. In our evaluation corpora, and especially FTBDep, there are
many compound words inherited from the FTB which are missing from both lexicons. In
analyses of unannotated corpora, there will be far fewer compounds, since Talismane only
recognises a small set of mostly closed-class compounds, all of which have been added to both
lexicons for these tests.

In terms of analysis results, the differences between LeFFF and GLÀFF are fairly or-
thogonal, with 693 new corrections for GLÀFF against 732 new errors. This is ≈0.5% of all
dependencies: a big proportion when we consider accuracy is already at around 96.5%. This
gives some hope for improvement when combining LeFFF and GLÀFF together, but unfor-
tunately the differences are even less significant and remain orthogonal, with the combined
lexicons introducing 530 corrections for 505 errors. Given the high level of ambiguity in the
typical categories for the differences (e.g. past participle vs. adjective), this is not surprising.

We then turned to a parsing result evaluation after applying a pos-tagger and parser pair
trained on the same lexicon. In this test, LeFFF significantly outperformed GLÀFF on its
own, with highly orthogonal results: GLÀFF on its own introduces 1,763 corrections for 2,553
errors, out of a total of 135,024 dependencies. Thus, new corrections account for 1.3% of all
dependencies. If we could somehow combine the two resources successfully, this represents
a huge gain. Unfortunately, when we combine LeFFF and GLÀFF, there is no significant
difference: a total of 723 new corrections for 774 new errors (p-value > 0.15). The only corpus
for which results vary significantly when combining the two lexicons is FrWiki, with 167 new
corrections for 100 new errors. A much more detailed analysis of the errors would be required
to see if we can somehow combine these resources usefully - but this is rendered difficult by
the fact that both errors and corrections often concern words unknown in both lexicons.

Overall, the tests with GLÀFF have not produced significant results. Although some of
the evaluation corpora contain a large percentage of unknown words, these words tend to be
unknown in both lexicons. Moreover, corpus coverage is not directly related to pos-tagging
accuracy. In parsing, it would seem that the crowd-sourced resource on its own does not
provide sufficient quality: however, an analysis of the specific errors is necessary to see if
the problems are truly related to lexicon quality, or rather to internal assumptions made
by Talismane, which was constructed for several years using LeFFF, and only tested with
GLÀFF near thesis completion. We have not yet been able to combine the two lexicons in
a way that takes advantage of the considerable orthogonality between the correct answers
provided by each lexicon.

7.3 Injecting resources built by semi-supervised methods

In the previous sections, we reviewed resources created by some external process, typically
involving some degree of manual input or supervision. We now turn to the injection of
information gathered directly from automatically parsed corpora. Using such information to
improve parsing is known as a semi-supervised approach.

As mentioned in the introduction, a lot of work with semi-supervised approaches concerns
domain adaptation, when we try to improve parser results for a corpus whose domain is

198 7.3. INJECTING RESOURCES BUILT BY SEMI-SUPERVISED METHODS

clearly different from that of the training corpus. We therefore begin with a state of the art
for semi-supervised methods in domain adaptation.

7.3.1 Semi-supervised methods for domain adaptation

Domain adaptation was first tackled at a fairly large scale in the CoNLL 2007 shared task
[Nivre et al., 2007a], which evaluated a corpus from the biomedical and chemical domains, in
a scenario with no available annotated resources. The results confirmed the difficulty of cross-
domain parsing: while unlabeled accuracy for general language text is often higher than 90%,
the best CoNLL 2007 unlabeled accuracy for out-of-domain texts was 83.58%, with labeled
accuracy as low as 81.06%. This score was achieved by Sagae and Tsujii [2007], who used
a semi-supervised approach in which two different parsers parse unannotated out-of-domain
texts, and identical parses are extracted and added to the training set for out-of-domain
parsing.

Using the same data from CoNLL 2007, Kawahara and Uchimoto [2008] used a similar
semi-supervised approach, but with only a single parser. They built a binary classifier for
unannotated out-of-domain parses which separated them into reliable and unreliable parses.
After parsing a large amount of unannotated out-of-domain text, they extracted all reliable
parses and added them to the training set. They managed to achieve an unlabeled accuracy
of 84.12%.

Yoshida et al. [2007] use a different approach to domain adaptation, based on the ob-
servation that it is cheaper to build a pos-tag training set than to build a parser training
set. They compared approaches which provided a single pos-tag to the parser and multiple
ambiguous pos-tags to the parser (with probabilities). They also compared pos-tags provided
by in-domain training vs. pos-tags provided by out-of-domain training. They concluded that
providing multiple ambiguous out-of-domain pos-tags significantly increases out-of-domain
parsing scores, coming very close to the use of the gold pos-tags found in the out-of-domain
parse evaluation corpus.

For genre adaptation, McClosky et al. [2006] and McClosky et al. [2008] describe a semi-
supervised approach in which both “re-ranking” and “self-training” are applied. Re-ranking is
a method by which the n best parses are examined in a post-processing phase and re-ranked
based on a rich set of features unavailable at parse-time. “Self-training” is a technique in
which unannotated data is parsed and added unfiltered to the original training data, after
which a new statistical model is trained. Their experiments use various parts of the Penn
Treebank. The original in-genre training data is the journalistic Wall-Street Journal corpus
(WSJ), whereas the out-of-genre evaluation data is the annotated portion of the Brown corpus,
consisting mostly of works of fiction. They report significant gains: the baseline version in
which a WSJ-trained parser is evaluated against Brown gives an accuracy of 83.9%, with
85.8% after re-ranking. Adding 2500k sentences from an unannotated news corpus raises
the post re-ranking score to 87.7%. The choice of an unannotated news corpus seems rather
odd—why not add results from an unannotated fiction corpus? Nevertheless, the results are
convincing.

Sagae [2010] worked on the same set of data for initial training and evaluation. There are
a few major differences: first, they apply simple self-training without any re-ranking. Second,
they self-train using data from fictional novels instead of news sources. Finally, they don’t
give any additional weight to the original, manually annotated data. Their intuition was that
correct parses would be systematic enough to help performance, whereas parse errors would be

IMPROVING PARSING THROUGH EXTERNAL RESOURCES 199

distributed more or less randomly. Their results after self-training show a slight decrease in f-
score on the original WSJ corpus (from 89.13% down to 88.06%), but a significant increase for
the fictional genre (from 83.56% up to 85.42%). Perhaps more significantly, when evaluating
semantic role labeling task using the parse output as input, their parses outperform McClosky
et al’s parses despite a lower parsing accuracy. Both of these studies used constituent rather
than dependency approaches.

Candito and Crabbé [2009] and Candito et al. [2011a] discuss a word clustering approach
for tackling domain adaptation. They construct word clusters that span both the source
and target domain using an unsupervised clustering algorithm [Brown et al., 1992]. The
clustering is constrained to minimize loss of likelihood on bigrams contained in the training
corpus. They then conduct experiments in which tokens are replaced by their cluster id,
and combine this with unfiltered self-training from the target domain. Their results show
maximal gain from self-training, with a more limited gain from word clustering. In Candito
et al. [2012], the Sequoia corpus, already presented in section 4.2.1 (page 109) and used for
evaluation throughout this thesis, is parsed using the same word clustering techniques. They
report significant parsing improvement.

Petrov et al. [2010] suggest a method similar in some ways to Sagae and Tsujii [2007], ex-
cept that they place the parsers in sequence, using a high-accuracy parser with O(n3) [Petrov
et al., 2006] to provide the in-domain training material to a transition-based linear-time
parser (a method they call “uptraining”). In their experiment, they evaluate performance
on the QuestionBank [Judge et al., 2006], and show initial loss of 20% accuracy for the
transition-based parser as compared to the WSJ corpus. After uptraining on 100K unan-
notated questions, transition-based parser LAS improves from 60.06% to 76.94%, and UAS
improves from 72.23% to 86.02%. If in addition to 100K automatically annotated questions,
the transition-based parser is given 2K manually annotated questions, LAS improves from
78.27% to 84.02%, and UAS improves from 83.70% to 88.38%.

Mirroshandel et al. [2012] suggest a semi-supervised approach for generalisation, rather
than domain adapataion. In their method, frequent lexical combinations from predicted
syntactic dependencies are automatically learned from a large parsed corpus, and used to
measure a “lexical affinity” score for word pairs. They then use the lexical affinity matrix
to help graph-based parsing of the FTBDep corpus via three different methods: traditional
training features, post-processing corrections, and double parsing where the combination is re-
introduced as a constraint and the sentence re-parsed. Rather than relying directly on parser
confidence to select high-quality lexical combinations, they rely on an ambiguity measure,
which checks whether the same dependency exists in all of the n-best parses produced by the
parser. They report a 7.1% relative decrease in the LAS. A similar method was tested in
Mirroshandel et al. [2013] to enforce verb sub-categorisation frame constraints.

Anguiano [2013] uses a similar approach using lexical affinity, but applied to a transition-
based parser, and reports statistically significant gains for prepositional phrase attachment
using a combination of sub-categorisation frames from Dicovalence [Van Den Eynde and
Mertens, 2006] and lexical affinity, as well as a new metric for calculating the affinity which
takes the context into account.

This variety of methods, using both raw and parsed corpora to attempt to improve pars-
ing, enables us to envisage parsing improvement without having to annotate new material
in expensive annotation campaigns. As Alexis Nasr quipped in a presentation he gave in
Toulouse in 2013, “Now we finally know what syntax analysers are good for: making better
syntax analysers.”

200 7.3. INJECTING RESOURCES BUILT BY SEMI-SUPERVISED METHODS

As already mentioned, many of the methods for using information in a semi-supervised
approach need not apply to domain adaptation only. We now turn to an experiment in a
similar vein, using automatically constructed distributional semantic resources to attempt to
learn generalisations from the training corpus data with respect to the semantic similarity of
conjuncts.

7.3.2 Distributional semantic resources

A word is known by the company it keeps. [Firth, 1957]

The quote above, taken from a linguistic article, echos Aesop’s fable: “I know what kind
of donkey he is because of the company he keeps”. It also happens to be the standard
English translation of a legal canon in Latin: Noscitur a sociis (literally “It is known from its
associates”)—which indicates that when a word in a legal document is ambiguous, its meaning
is derived from the surrounding words. This traditional legal canon was first articulated as a
linguistic theory by Harris [1954]. His distributional hypothesis states that similarity between
two words is proportional to the number of contexts that the two words share.

When applied to corpus linguistics, this theory is put into practice by constructing a
similarity matrix between the words of a corpus, based on the contexts they share. The
contexts can either be collocations (e.g. n words to the right and left, same paragraph, same
document) or identical syntactic dependency arcs gathered from automatic syntax analysis
of the corpus.

Following the method described in Turney et al. [2010], the first step in constructing the
similarity matrix is the construction of a large n×m matrix in which rows are words (or, more
often, the guessed pos-tag/lemma pair corresponding to the word), and columns are contexts.
In this thesis, the contexts are always taken to be syntactic dependency arcs. Thus, each
word is represented by a sparse vector, into which we enter the counts of its occurrences in
the analysed corpus as the governor or dependent of a particular syntactic triplet of the form
(governor, relation, dependent). Due to this vectorial representation of words, distributional
semantic resources are also known as vector space models.

For example, the word pomme might appear 20 times as the object of manger, 10 times as
the object of éplucher, 5 times as a dependent in tarte aux . . . , 3 times as the governor of the
phrase d’amour, and once as the subject of tomber. Each of these syntactic contexts would
have a column of its own, we would place the counts above into the corresponding columns for
the row associated with the word pomme. Other words with non-zero counts in the column
obj/manger might be pain and orange, and other words in the column obj/éplucher might be
orange and banane.

The next step is typically to weight each entry in the matrix by the amount of information
it contains. This is an attempt to give more weight to unusual combinations, which imply
a tendency to collocation, than to common ones, which could occur by mere chance. There
are a myriad of weighting methods, the most common of which is PMI (pointwise mutual
information), which takes into account the marginal counts of both the word and the context,
giving a higher weighted score to rare words (e.g. words with few contexts) occurring with
rare contexts (e.g. contexts that are not shared by many other words).

Finally, we measure the similarity between each different pair of word vectors, using a
variety of similarity measurements, the most common being the cosine, giving the cosine of
the angle between the two n-dimensional vectors. Each similarity measurement is entered

IMPROVING PARSING THROUGH EXTERNAL RESOURCES 201

into a large symmetric n × n matrix with the same list of words as both the rows and the
columns.

This information can then be used in place of a manually constructed semantic resource. It
has the advantage of giving a principled numeric measurement of word similarity, and of being
directly derived from actual word occurrences in a given corpus. On the down side, since the
similarity is entirely derived from shared contexts, it confuses literal and figurative usage, does
not take into account the different polysemic uses of a given word, and incorporates parser
analysis errors into the model. On the assumption that these errors are not systematic, they
are assumed to have minimal effect on the final resource.

Within the CLLE-ERSS laboratory, considerable work has been performed on distribu-
tional semantic resources, constructed using the Upéry software [Bourigault, 2002]. The
history of this work is presented in Fabre [2010], including the construction and use of the
resources, and various linguistic applications. Among these, Fabre uses measurements derived
from the original word-context matrix to attempt to correctly identify prepositional phrases
as verbal arguments or adjuncts. This is a problem directly applicable to the current thesis,
and it would be interesting to attempt to replicate this work within Talismane’s statisti-
cal framework. She also describes attempts to use the distributional semantic resources to
help segment a text thematically. This task is further expanded in Adam [2012], in which
filtered semantic similarity links are shown to significantly improve thematic text segmenta-
tion. Adam also uses distributional semantics to help distinguish between pairs of discourse
relationships having similar surface markers.

There is an inherent difficulty in evaluating the quality of distributional semantic re-
sources, outside of a given application. Given their method of construction, while they do
contain synonyms, antonyms, co-hyponyms, etc., they also contain a large number of non-
traditional relations that are more difficult to classify, and are therefore not directly compa-
rable to traditional semantic resources. In Morlane-Hondère [2013], an attempt is made to
compare distributional semantic resources to dictionaries of synonymy and other, less tra-
ditional crowd-sourced resources, and to highlight the type of relations that are likely to
appear. Unfortunately, the specific cases of co-hyponyms and co-meronyms are not evaluated
in this work, since these two relations are not treated as a separate category in the reference
resources. These relations interest us in particular, as they seem to be the relations most
likely to be found between conjuncts.

7.3.3 Using the similarity between conjuncts to improve parsing for
coordination

In this section, we attempt a semi-supervised improvement of Talismane’s analysis by re-
injecting a distributional semantic resource into the training model. The first question is how
to effectively incorporate such resources, giving the pairwise similarity of a large lexicon, into
the parsing process. The most straightforward approach is to group individual word forms
into semantic clusters, emulating a resource such as WordNet [Fellbaum, 1998]. We could
then design a feature which returns, for example, the lemma of a verb and the semantic
cluster of the noun which is a candidate for attachment to this verb. If the verb is manger
and the noun is found in a semantic cluster containing various types of food, we would expect
a direct object dependency.

However, the vocabulary of our training corpus lexicon is entirely in the journalistic genre
and largely limited to the domains of politics, economics and finance. If we take a distri-

202 7.3. INJECTING RESOURCES BUILT BY SEMI-SUPERVISED METHODS

butional semantic resource constructed from a large general-purpose corpus, and attempt to
construct semantic equivalence classes via clustering, we will end up with many classes having
no occurrences at all in the training corpus and, if they do, the occurrences may well be in
metaphors or fixed expressions with a skewed distribution. For example, the word “cheval”
appears more often in the FTB inside the expression “cheval de bataille” (a politician’s main
theme or argument) than as an actual animal. Most of the clusters will have so few oc-
currences as to not have the statistical weight required to affect the parsing correctly. One
corrective approach is to seed the clustering process with clusters built from the training
corpus alone, and then to add the words found in the larger corpus to the training corpus
clusters only. This is similar to the approach by Candito and Crabbé [2009], although they use
n-gram based clusters learned from raw corpora using the method described in Brown et al.
[1992], rather than distributional resources from parsed corpora. However, our experiments
attempting to construct classes from distributional resources by training class seeding have
so-far proved unsuccessful in improving accuracy significantly.

Another question of the clustering approach is how to handle polysemy: should a word
only belong to a single cluster, or should we allow it to belong to multiple clusters? If the
word is allowed to belong to multiple clusters, should the word’s membership in a cluster be
weighted to indicate its distance from the cluster’s centroid? Although our robust statistical
methods all represent features as numeric values, and could somehow incorporate weight into
the features, we have been unable to improve accuracy with either monosemic or polysemic
clustering approach

And yet, when examining the nearest neighbours of any given word subjectively, it is quite
clear that the resource contains a lot of semantic information, since the nearest neighbours are
all clearly semantically related. We therefore decided to turn to methods for integrating this
resource which rely purely on the distance between two given words, rather than on effective
clustering. This excludes most dependency types, since they combine different categories,
such as nouns and verbs, which would not be found to be similar in a distributional semantic
resource constructed from syntactic dependencies. The one exception is coordination. While
eat and apple may not be semantically similar in the sentence “I’m eating an apple”, apple
and banana may well be semantically similar in “I’m eating an apple and a banana”.

We thus make the hypothesis that coordinated words tend to be semantically closer to
each other than to other words of the same category in the sentence. Following the discussion
in section 6.4.1, page 175, we are particularly interested in comparing the correct coordinated
pair with other words which would be considered for coordination during transition-based
parsing: typically the series of nouns in a nested set of prepositional phrases prior to the co-
ordinating conjunction. Take, for example, the following example sentence from the FTBDep
dev corpus:

Example 7.1 Tokyo envisage différentes mesures destinées à faciliter les importations d’automobiles
: une révision de la procédure d’homologation des véhicules (acceptation des tests américains
pour les freins et des normes internationales pour les appuis-tête).

Structurally, it is clear that the second conjunct is the prepostion des governing the noun
normes. For the first conjunct, we have to select between the preposition governing tests
and the one governing freins. Ignoring other strong clues in the sentence (the use of identical
prepositions and their parallel structure des X1 pour Y1 et des X2 pour Y2), we would expect
tests to be semantically closer to normes than to freins.

IMPROVING PARSING THROUGH EXTERNAL RESOURCES 203

To perform our test, we first constructed a set of distributional semantic resources from
medium-sized corpora. The corpora selected are:

• Le Monde: all of the articles from the daily French national newspaper Le Monde over
a period of 10 years (1991-2000). 150 million words.

• Wikipedia: all of the articles from a snapshot of the French wikipedia taken in 2008.
250 million words.

We analysed the corpora using the baseline version of Talismane with a beam width
of 2 and beam propagation activated between the pos-tagger and parser. In Talismane’s
output, we included the parser confidence in each dependency. We then constructed multiple
distributional semantic resources as follows:

• From the corpus Le Monde, Wikipedia, and both combined.

• Applying a parser confidence cutoff (see section 5.3, page 142) of 70%, 80%, 90%, 95%
and 99%, as well as no cutoff at all

The resources were constructed by Franck Sajous (CLLE-ERSS laboratory) using the
Upéry software. We used the Lin score [Lin, 1998] to measure similarity, rather than the
more common cosine measure. The filters used to construct the resources were as follows:
each pos-tag/lemma pair must appear at least twice in the corpus, the item on each side of
the predicate must combine with at least 3 different items in the corpus, and the Lin score
must be >= 0.1. The table below shows the number of word pairs retrieved from each corpus
at each different confidence cutoff, using the above thresholds.

Cutoff LM10 Wikipedia Both
None 10,042,268 5,881,040 19,630,673
70% 8,875,324 5,191,657 17,295,300
80% 7,803,098 4,565,720 15,103,758
90% 5,931,717 3,508,455 11,314,324
95% 4,349,563 2,631,865 8,198,631
99% 1,050,686 362,950 1,994,874

Table 7.2: Number of word-pairs per corpus and confidence cutoff

In order to test our hypothesis, we first checked similarity scores for all coordination
parsing errors in the FTBDep development corpus. In the case of prepositions, we took the
object of the preposition as the basis for comparison, rather than the preposition itself. In
this initial test, we used four different semantic resources: Wikipedia 70 and 99, and Le
Monde 70 and 99. Resource coverage for the correct pair ranged from 15% (Wikipedia 99)
to 52% (Le Monde 70). For the incorrect pair it ranged from 9% (Wikipedia 99) to 39% (Le
Monde 70). Cases were both pairs were covered ranged from 3% (Wikipedia 99) to 30% (Le
Monde 70). We then looked at the difference between the similarity scores for the correct
pair and the incorrect pair, assuming any pair absent from the resource was given a score of
0, and counted the number of times the difference in Lin score was greater than n in favor
of the correct pair, versus the number of times the difference was greater than n in favor of
the incorrect pair, with n in {0.05, 0.1, 0.2, 0.3}. This gave us a ratio between two counts:

204 7.3. INJECTING RESOURCES BUILT BY SEMI-SUPERVISED METHODS

the best ratio of 1.5 was achieved for Le Monde 70 with a difference of 0.1—but all other
comparisons yielded ratios between 1.2 and 1.5, except for Wikipedia 70 at a threshold >
0.1 (ratio = 1.0). This indicated that there is a perceptible difference in similarity between
correct guesses and incorrect guesses, but the difference is not systematic enough to use in
a rule: rather, we decided to construct a targeted feature, which would favor a dependency
between similar conjunct candidates, without imposing it.

When designing this feature, we used the same heuristic for guessing the 2nd conjunct
as was presented in section 6.4.1. We then setup the following feature: for two coordination
candidates, check if an earlier 1st conjunct candidate exists with a higher similarity than the
current 1st conjunct candidate. Answers where the difference in score was below a certain
threshold were ignored. We tested this feature on all distributional semantic resources, and for
thresholds in {0.001, 0.05, 0.1, 0.2}. Again, for pairs absent from the distributional semantic
resource, we assumed a score of 0.

The results show a small, but significant gain for the use of distributional semantic features,
over the use of targeted features alone. We show the results for all evaluation corpora (dev +
test) on the label coord, using the mixed resource (Le Monde + Wikipedia) at a confidence
cutoff of 90%, and a score difference of 0.1 :

coord baseline targeted distSem
true+ 2230 2262 2281
false+ 25 27 27
false- 1687 1655 1636
precision 98.89% 98.82% 98.83%
recall 56.93% 57.75% 58.23%
f-score 72.26% 72.90% 73.29%

Table 7.3: Parsing improvement for coordination using distributional semantic features

When comparing the model with both targeted features distributional semantic features to
model with targeted coordination features only, we have 41 new corrections for 22 new errors
(p-value < 0.02). Thus, with targeted features and distributional semantic features combined,
we have reduced the error rate for coord by 3.0%, as opposed to 1.9% with targeted features
only.

The choice of corpus turned out to be critical, with results often descending even below
the baseline for the Wikipedia resource, and results for the Le Monde resource alone slightly
lower than for the two combined. Confidence threshold differences were significant for the
Wikipedia corpus on its own, with best results at a confidence threshold of 90%, but did not
significantly affect results for the Le Monde corpus or the two combined.

When reviewing the results in detail, we see, as usual for robust statistical methods, a
number of inexplicable corrections and errors, entirely unrelated to coordination. There are
also a number of corrections for part-of-speech mismatches. This are understandable, since
tokens with different parts-of-speech will generally have a similarity score of zero, whereas
those with the same part-of-speech are more likely to have a positive score. However, they are
not particularly interesting, as they ought to have been corrected by the targeted features.
Finally, we also see a number of interesting cases that clearly illustrate the expected behaviour.
For some of these cases, we show the results before the addition of semantic distributional
features (underlined) and after their addition (in bold).

IMPROVING PARSING THROUGH EXTERNAL RESOURCES 205

In the EstRépu corpus, these include:

Example 7.2 Si les réformes envisagées par le gouvernement pour les européennes et les
régionales sont adoptées telles qu’envisagées [. . .]

Example 7.3 (. . .) la loi favorise l’égal accès des femmes et des hommes aux mandats et
fonctions électives.

In the EMEA corpus, we have one surprising example, since it is highly unlikely that
mutagène and clastogène were found as semantic neighbors.

Example 7.4 Néanmoins, la bivalirudine ne s’est pas avérée mutagène ni clastogène dans
les tests standards.

We also have a much more reasonable example:

Example 7.5 Ne pas utiliser Aclasta après la date de péremption mentionnée sur la boîte
et le flacon.

The following are cases from the Europarl corpus:

Example 7.6 C’est pourquoi nous considérons que certaines questions soulevées par la
baronne Ludford et certains problèmes soulevés par Mme Boumediene-Thiery [. . .]

We also have a case of correction due to verbal similarity between comprendre and marquer,
although the reasons behind this similarity are not easy to comprehend:

Example 7.7 Ce pays n’est pas au centre de notre intérêt, mais il y a extrême urgence : ce
Parlement l’a compris et a marqué son soutien.

In the Wikipedia corpus, we have the following examples:

Example 7.8 Il fut l’objet de plus de 500 millions de dollars de commissions et rétrocommissions
qui ont nourri beaucoup de fantasmes [. . .]

In the FTBDep dev corpus, we have the following clearly understandable error, where
crime was considered more similar to complices than to drogue:

Example 7.9 (. . .) aussi désarmé qu’on l’était au XIX siècle devant l’imagination des cheva-
liers d’industrie, l’entregent des complices de la drogue et du crime ?

We also have the following correction:

Example 7.10 80000 francs (indemnités de changement de résidence et allocation de
mobilité du conjoint comprises) .

We close with the following example from the FTBDep test corpus:

Example 7.11 En revanche, l’analyse des enchaînements cycliques nous a montré l’importance
du volume d’épargne disponible et de son degré de liquidité dans les retournements cycliques.

Although the results above are statistically significant, they are quite modest. Certain
possibilities for improving them could be:

206 7.4. DISCUSSION

• Use a larger parsed corpus, such as FrWAC [Baroni et al., 2009]

• Construct the resources using different thresholds in terms of token count, productivity,
and minimum similarity.

• Evaluate with different weighting methods, which can affect the similarity scores consid-
erably. As already mentioned, the most common option is PMI (pointwise mutual infor-
mation) which can be normalised in various manners [Bouma, 2009]. Anguiano [2013] at-
tains better results for prepositional phrase attachment using a more context-dependent
measurement he calls neighborhood-based relative frequency NRF. Mirroshandel et al.
[2013] use a function that, like PMI, compares the count to the marginal counts of both
the word and the predicate, but uses the direct ratios rather than the logarithm of the
ratio.

• Evaluate with other similarity measures (e.g. cosine)

• Create a single feature combining the distributional similarity measures explicitly with
other, stronger indicators, such as pos-tag matching (to avoid noun/preposition matches)
and preposition matching (to avoid matching two different prepositions when the same
preposition exists), so that similarity is only compared when stronger indicators do not
exclude the comparison.

• Study the typical shift-reduce transition sequences for coordination carefully, and inject
other features at critical decision points, e.g. if the system tends to reduce the cor-
rect 1st conjunct too early, so that only the wrong candidate is actually presented for
coordination.

7.4 Discussion

In this chapter we have discussed several different methods for incorporating external resources
into the parsing process. Three main areas were discussed: the use of specialised structured
lexical resources, which group words together by their syntactic behavior; the use of large
coverage lexicons giving a part-of-speech and morphological details for each word; and the
incorporation of data attained directly from the parser’s own analyses in semi-supervised
approaches.

Of these, the first method is both the simplest and perhaps the most promising, since it
allows us to construct word lists based on the observation of any particular behavior within
our training corpus, to augment these lists with larger coverage resources built by others, and
to apply them directly to a particular parsing problem. These have already been shown to
be effective in the previous chapter, but we have only scratched the surface in terms of the
available possibilities.

Experiments with replacing or extending the large-coverage lexicon have not been conclu-
sive. Indeed, although the two lexicons reviewed were very different in size, their coverage
of our evaluation corpora was quite similar. Since we used the identical lists of closed-class
words in all tests, differences in the accuracy attained seem likely to depend more on the set
of categories for each open class word form, and possibly on the listing of closed class word
forms under open classes as well (e.g. moi listed as a common noun from its rare usage as

IMPROVING PARSING THROUGH EXTERNAL RESOURCES 207

“le moi” in psychological contexts). Further exploration is required to understand the differ-
ences between the results between the two lexicons, in cases where they are significant, and
especially to combine them effectively, since the corrections by each lexicon are orthogonal.

Both of the previously described methods do not take into account the relative frequency
of each equivalence class or entry in actual corpora. This is one of the advantages of semi-
supervised methods based on automatic corpus analysis: both in the case of unfiltered self-
training, and in the case of automatically constructed resources, the frequency in the corpus
is somehow brought to bear on the information fed back into the parser. However, while
self-training has been shown to allow considerable gains for out-of-domain corpora, our own
experiment with distributional semantic resources brought only modest gains. So far, we have
only applied these resources to a very particular phenomenon: the semantic similarity (or lack
thereof) between conjunct candidates in coordination. We have suggested various methods
for attempting to improve on the results of this experiment. It would also be interesting to
find ways to successfully use semantic clusters from distributional semantics to help parsing,
which would have a much wider scope of applicability—but then we have to overcome the
problem of cluster representativity within the training corpus.

Conclusion and perspectives

Overview

In this thesis, we have explored the robust statistical syntax analysis of French. Our goal, in
so doing, has been to see to what extent a user can open up the black box of robust statistical
methods to guide and hopefully improve the decision making process.

Another goal was to create a robust open-source tool capable of filling the gap left by
Syntex in the Toulouse NLP landscape. From this point of view, Talismane has been undeni-
ably successful: it is already being used in the CLLE-ERSS laboratory as a critical analysis
component in a wide variety of daily NLP tasks. Its open source philosophy allows us to hope
that it will open the door to collaboration with other laboratories in France and abroad.

Targeted users

Our stated goal is thus to enable the user to open up the black box. Ignoring for a moment
the success or failure of our results, a first key question is, who is this user? Our initial aim
was to open the system up to linguists, but is the profile of a typical linguist really adequate
for performing the type of manipulation presented here? What type of knowledge is the user
expected to master before he can safely proceed?

The answer may be found to some extent in the earlier chapters, in which we tried to
provide all of the keys necessary to begin fiddling. These included, in chapter 1, a description
of the dependency parsing scheme for French; in chapter 2, a high level description of robust
statistical classification and supervised machine learning; in chapter 3, a description of how
the two are combined in order to apply statistical machine learning classification to syntax
analysis; and in chapter 4, a description of the baseline features and external resources needed
to accomplish this task. At this point, it was assumed the reader would have an understanding
of the core concepts needed to design new features and/or rules, and to imagine new ways
in which external resources could be brought to bear on the syntax analysis process, be they
corpora, lexicons or automatically constructed syntactic or semantic resources.

However, there are many basic skills assumed here that are not in the palette of the typical
linguist, not the least of which is a thorough understanding of algorithms, and a sufficient
understanding of probability and statistics to get by. Perhaps there are really three different
types of users that need to be considered, each with their own needs: the machine learning
guru, who is unabashed in the face of mindbogglingly complex statistics and mathematics, and
for whom this thesis provides almost nothing of interest, except for an understanding of the
particular case study of French syntax analysis. Outside this small circle of users stands the
larger circle of computational linguists, who are eager to tweak the system in order to inject
their knowledge and/or resources or test their hypotheses, but need sufficient understanding

209

210

of the underlying mechanics to do so: this is the user the current thesis most often aims to
help. And finally, in the outermost circle, are the users of applications: users who want an
out-of-the-box system to give them an adequate result for their specific need, without delving
into how it works or why it doesn’t work in a specific case. Although our thesis does not
concentrate on evaluating Talismane within the context of applications, we have ensured that
Talismane is made available as an easy-to-use out-of-the-box open source system, with a clear
and detailed user manual. Our hope is that these users will now be able to take the matter
into their own hands directly, and test Talismane in a variety of applicative contexts.

So, concentrating on the computational linguists in the middle circle, one of our key guid-
ing principles in designing Talismane was to make the system as configurable as possible
through command-line options and declarative text files, enabling these linguists to incorpo-
rate their knowledge and resources into the system without the help of a software engineer. In
particular, we provided a feature definition syntax for defining declarative features and rules
in configuration files. In hindsight, the goal of opening the system to linguists has not been
entirely successful. The feature definition syntax, while highly expressive, becomes far too
complex for anybody other than than a programmer as soon as we tackle complex features,
while lacking the power of a true compiler. In fact, a programmer could write features far
more efficiently in a compiled language such as Java, debug them more easily using modern
development environments, and generate thousands of features in a single function, rather
than having to analyse similar information thousands of time through declarative features. A
better option would probably be to continue to support declarative features/rules, but also
to allow an opening for compiled features and rules, improving the system’s maintainability
and its analysis speed. Indeed, feature analysis at a beam width of 1 takes up over half of the
analysis time. At higher beams, it increases proportionally to the beam width. Pre-compiling
very complex features may well help to improve this.

Furthermore, especially in the case of parser rules, it has proven difficult to anticipate
the long-distance effects of a particular forced correction given the relative complexity of the
shift-reduce algorithm’s behaviour. Even when adding very specific pos-tagger features for a
single function word, we observe seemingly random changes to other, completely unrelated
words in sentences where the function word does not even appear. In some manners, robust
statistical systems seem to behave in a chaotic manner, a bit like the “butterfly effect” coined
by Edward Lorenz [Lorenz, 1963] in the context of atmospheric science, where a butterfly flap-
ping its wings one way or another can determine whether or not a hurricane forms thousands
of kilometers away and several weeks later. This is a direct result of the huge mathematical
complexity of weights being assigned to thousands of interdependent features based on thou-
sands of training occurrences. Nevertheless, we have shown that a systematic methodology
to feature and rule testing can indeed result in some degree of improvement in the expected
direction. Perhaps one of the most promising approaches would be to work in collaboration
with linguists: the linguists would imagine various dependency attachment indicators, and
myself (or another software engineer with sufficient mastery of the open source code and
interfaces) would code these indicators as compiled features and test them.

In relation to this question, one area we didn’t insist on enough in this thesis was the
importance of manually annotating our own small evaluation corpus: FrWikiDisc, the French
Wikipedia discussion pages. We did not, to our regret, attempt to capitalise on the dif-
ferences between this genre and the journalistic training corpus in our tests using rules or
through more advanced genre adaptation techniques. On the other hand, the very fact of
manually annotating a corpus raised many dependency attachment questions, and forced us

CONCLUSION AND PERSPECTIVES 211

to formalise the answers into dependency attachment indicators to be added to the annota-
tion guide. Moreover, placing ourselves in a similar position to a machine learning system
trying to annotate a text allowed us to gain a much better understanding of the nature of
the ambiguities encountered by this system. A very long sentence is all the more easy to
interpret if it contains surface level clues to guide the reader: clues such as parallel structures
and appropriate punctuation. It is no wonder that the most successful features and rules
capitalise on the same surface indicators to understand the structure of otherwise unwieldy
sentences. I personally do not believe that quality work is possible in a machine learning task
without first “delving into the data” and attempting manual annotation oneself.

Now, having discussed the difficulty of using declarative features and rules successfully,
I do not wish to intimate that such configurable features and rules are completely useless.
The toolkit provided seems perfectly adequate to enable a computational linguist to define
surface rules. These would include, for example, lists of idiomatic expressions that need to
be handled a certain way 99.9% of the time. For the tokeniser and pos-tagger, rules are fairly
simple to write and understand, and straightforward to incorporate. The current syntax,
however, gets very difficult to follow as soon as we tackle the transition-based parser, with
a fairly simple surface rule stretching over 2 or 3 lines with a confusion of logical operators
and parentheses. Research would be required into defining a more abstract, user-friendly
syntax, allowing the user to define rules at a higher level of abstraction than the individual
transitions of a shift-reduce parser. Perhaps trying to incorporate “deep” linguistic knowledge
into a statistical system is doomed to failure from the outset, because the deeper we delve
into the sentence structure, the more complicated it is to describe this structure in terms of
surface manifestations, and the more likely it is for its surface manifestations to overlap with
other phenomena, requiring semantic knowledge to differentiate them. In the latter case,
the statistical system is unlikely to draw any definite conclusions favoring one decision over
another: the information, if introduced as a feature, would almost certainly be drowned by
the mass of low-information-content features; if introduced as a rule, it would most certainly
be sufficiently complex as to introduce at least as many errors as it corrected.

It is important in any case to keep in mind the limits of robust statistical systems, and
use these systems where they are most effective. With a labeled accuracy hovering between
87 and 93%, such systems cannot be expected to deal well with rare or complex phenomena.
Keep in mind also that given the current state-of-the-art in annotation, the inter-annotator
agreement scores often hover around the same level, so that it is not clear how much farther
these systems can really be improved. They are best suited for applications which require a
large critical mass of parsed data, and where the quantity of the data at a reasonable quality
can drown out any noise introduced by the inevitable parsing errors. There are certain tricks
of the trade for improving the quality of the data produced: we introduced one such possibility
through the use of parser confidence cutoffs to include only those links where the parser is
fairly sure of its decision, and attempted to apply it to the automatic building of semantic
resources.

Targeted applications

This brings us to the types of applications to which statistical syntax analysis is indeed well
suited: the construction of distributional semantic resources being one such example, where
data mass is critical for success, and parse errors are hidden unless the identical error is
repeated often. Another application which was mentioned earlier in the thesis is authorship

212

attribution: trying to recognise an author’s style from the type of constructs he uses more
often, among other information. Yet another application where robust statistical parsing can
be useful was the original driving force for this thesis: terminology extraction.

Recall from the introduction that I first embarked upon this thesis after the French Space
Agency had asked me for a terminology extraction tool. As I write now, the Talismane
terminology extractor is built and is being used by space terminologists to construct their
knowledge bases. The use of robust statistical parsing seems justified, because it allows us to
analyse very large corpora, and only extract those terms which occur a sufficient number of
times - in other words, while parsing errors may well remove a few instances of a candidate
term here and there or introduce an incorrect candidate term elsewhere, they are unlikely
to do this systematically. Initially, I had hoped to include an evaluation of the Talismane
terminology extractor in the present thesis: but time constraints have forced me to lessen my
ambitions. This is definitely one of the immediate future perspectives. Many other questions
require exploration around this task: how well will a parser trained on a journalistic corpus
bear when evaluated against a technical corpus for space studies? And what methods can
be used to improve parsing for a specific corpus, genre or application? I have mentioned
some studies in domain adaptation in chapter 7, but have not yet explored the key issues
of domain adaptation in the present corpus, despite the availability of evaluation corpora
including a corpus from the medical domain, thanks to the Sequoia project [Candito et al.,
2012]. I have not at all mentioned work in application adaptation, but there are some very
interesting recent advances which would be worth exploring. For example, Hall et al. [2011]
use global learning through perceptrons in a way that makes it possible to optimise in parallel
against a training corpus (the intrinsic objective) and against any external measurement of
success (the extrinsic objective). The only constraint on the extrinsic objective is that, given
some sentence of its choice, it must be able to identify the single best parse among the k
currently most probable parses of this sentence. Could such a method be used to train a
parser specifically for terminology extraction?

Results and methodology

I return to the results in the present thesis. One of the goals of chapter 5 was to get the choice
of machine learning algorithm and configuration out of the way, so that we could concentrate
on more interesting linguistic questions. However, as it turned out, the improvements pre-
sented in this chapter far outweigh results presented in the later chapters in terms of overall
accuracy gain. The choice of classifier, for example, turned out to be critical in terms of
the parser, with a correctly configured linear SVM classifier consistently outperforming the
other classifiers by approximately 1%. The beam width and beam propagation between the
pos-tagger and parser also have a considerable global effect, with considerable global gains in
the lower beams: 0.5% or so at beam 2, and an additional 0.3% or so at beam 5, at the cost
of slower parsing speed.

The linguistic methods presented in later chapters provide, in contrast, a much more
modest gain. However, these methods have to be placed in perspective: our goal was not to
achieve global gains in all areas of parsing, but rather to prove the concept of targeted features
and rules for one particular phenomenon. For example, in chapter 6, when tackling the word
que, a combination of pos-tagger features and rules allowed us to decrease the remaining
error count by 46%. It can be hoped that similar efforts for other function words would yield
similar results. On the other hand, the more complex features, especially those regarding

CONCLUSION AND PERSPECTIVES 213

coordination, although their coding is extremely satisfying from an intellectual point of view,
yield little improvement in parsing accuracy, reducing the initial number of coordination parse
errors of 1687 by 33 only (a 1.9% improvement). The distributional semantic method for
attempting to recognise conjuncts on the assumption that they are semantically closer than
other candidates also produced fairly disappointing results: given the immense mechanics
required to parse large corpora, construct the semantic resources, and apply the data during
the parsing process in the form of complex features, the paltry improvement of only 40 new
corrections for 20 new errors has to be taken with a bit of humor. We are not yet, for all that,
ready to abandon ship: further tests are required to see if targeted coordination features, or
else coordination rules, with or without the help of semantics can somehow be made more
effective. Given the amount of room there is for improvement, we are confident that better
results could be attained with a bit of concentrated effort. Perhaps we need to rethink our
philosophy on rules, and rather than trying to find rules that work systematically, try to find
rules that work often enough to improve considerably on the unassisted parsing performance.

Indeed, there is only so much improvement that can be attained through purely statisti-
cal methods, without generating new reliable external resources, or annotating much larger
training corpora, and possibly embarking on a correction campaign for existing training ma-
terial. For instance, early on in the thesis, considerable work was put into constructing a
probabilistic tokeniser. The amount of effort required seems unjustified in view of the results:
given that ambiguous tokens typically have one preponderant solution and another very rare
solution, a probabilistic system is unlikely to favor the rare solution except on very strong
indicators, and we were unable to find these with the limited amount of information avail-
able to the tokeniser. Here again, a better solution might have been to use a deterministic
tokeniser, possibly augmented with surface rules. But in so saying, we are moving away from
a purely statistical approach, and more towards a mixed statistical and symbolic approach:
and considerable work has already been put into symbolic approaches for French and other
languages through parsers such as Fips [Wehrli, 2007] or FRMG [De La Clergerie et al., 2009].
The advantages of symbolic approaches are obvious in their ability to capture knowledge of
the language in a formal manner, but with this comes a lot of baggage: the difficulty of
maintaining a huge number of symbolic rules, the tendency to code only “correct” usage as
opposed to real usage, and lower overall robustness as it was defined for this thesis, in terms
of speed and the ability to cope with unexpected input. Perhaps systems such as Talismane
open the way to a middle ground: a strong statistical base that can grow stronger as more
training material and higher quality/coverage external resources becomes available, combined
with symbolic tweaks to help the system where empirical results show it to be weakest. But
can these tweaks ever hope to do more than a minuscule correction of a very specific error
type in very specific circumstances?

The question of reliable external resources is a critical one. In French, we are lacking freely
available high-quality and high coverage resources for semantics. The existence of resources
such as Dicovalence, giving verbal sub-categorisation framse, are certainly interesting, and
further experimentation is required to attempt to integrate them with Talismane. However,
more quality resources are required around selectional preferences of verbs especially, both
in terms of lexical and semantic preferences. I personally feel that such resources would go
far into enabling us to write better statistical parsers, incorporated either as features or as
some variant of rules. We attempted some experiments with lists of verbs that sub-categorise
with que as a direct object in section 6.2, with mitigated success. We only looked at the
verb itself, ignoring clitics and fixed noun complements (e.g. “se rendre compte que”). It

214

would be interesting to experiment with a much more detailed list for this type of preference
to see if better results can be achieved, either in features or in rules. Still, even the most
carefully constructed manual resource cannot take into account critical information regarding
frequencies: information that is only possible in resources automatically constructed from a
given corpus. To give a trivial example from pos-tagging: a lexicon may tell us that cela is
the simple past of the verb celer, but if we don’t accompany this knowledge by the fact that
99.9% of the time it is a demonstrative pronoun, the information is only partially useful, and
could easily induce errors.

So, in terms of the overall results, the methods we have presented here—and especially the
linguistic methods—admittedly provide only a very modest gain. On the positive side, the
methodology presented for testing targeted features and rules has already provided interesting
results: both in terms of highlighting targeted errors in the training or development corpora,
and in terms of enabling us to view the specific cases where an indicator which we thought
would be a strong disambiguating mark for a given decision resulted in a different decision
than the one expected. This allows us to explore the richness of the language, as we hone in
on the information that isolates a target decision. We have found Talismane to be a system
that begs to be explored further: our hope is that, with time, we will manage to improve the
methodology to the point where we improve results more radically in the final evaluation.
The intellectual curiosity and satisfaction made possible by our methods is one of the most
positive aspects of this thesis, and indeed, inspires us to imagine many new, different scenarios
to explore. This brings us to the our initial list of future perspectives.

Future perspectives

Remaining within the paradigm presented in the current thesis, we would like to push the
methodology presented even further, and see if we cannot get better results for several target
problems, including function word pos-tagging for many different ambiguous function words,
and targeted features/rules for coordination as well as prespositional phrase attachment.
For prespositional phrase attachment, we would like to test existing external resources for
subcategorisation frames such as Dicovalence, as well as building richer resources that include
nominal or adverbial complements, combined with automatically constructed lexical affinity
scores (for nouns) or verbal attachment propensity scores (for prepositions). Similarly, there
are several groups of words (e.g. time expressions) which display very specific behavior in
terms of dependency attachment labels: we would like to construct such groups and see to
what extent we can correct parsing for these groups through features and/or rules.

In terms of the transition-based parsing mechanism, there are several points we would like
to explore more deeply. One of the first is a new way of applying rules through constrained
dependencies. We have seen above that trying to write rules around specific transitions is
cumbersome. Moreover, the rules only kick in if the parse configuration follows a path that
leads to the situation envisaged. If we want to compare two items on the stack to see which
is more likely to attach with a preposition on the buffer, we are assuming both items are still
on the stack—but the system may well have reduced one of the items prior to reaching the
preposition, so that the rule cannot be applied. An alternative approach would be to analyse
certain aspects of the sentence ahead of time, and add constraints around the inclusion or
exclusion of certain dependencies. We then need to develop an alternate transition system
that can take these constraints into account, and refuse to apply a transition that violates a

CONCLUSION AND PERSPECTIVES 215

constraint or makes it impossible to meet it at a later stage. Certainly, we lose out on the
information relating to partial dependency trees already constructed—but this information is
not required for all rules, especially not for surface rules. This type of system would also allow
us to apply a similar experiment to Mirroshandel et al. [2012] to the case of transition-based
parsing, with linear complexity.

The idea of automatically constructed word clusters has been explored by Candito and
Crabbé [2009] for domain adaptation with mitigated results: the gains shown are equivalent to
those achieved by self-training. The idea of using automatically generated semantic clusters is
tempting, but there are several problems from a semantic point of view with such clusters: how
do we handle polysemy, and how do we handle figurative versus literal uses of a word, especially
when it may be used with figurative preponderance in some corpora, and literal preponderance
in others. We have attempted one experiment in this thesis using distributional semantic
resources. However, we have not yet been successful in semantic word clustering approaches
based on these resources, and so we have only tackled an area where the resource could
be used independently of semantic clusters: the semantic proximity of potential conjuncts.
However, we feel there is a lot of potential in these automatically constructed resources, both
for semantics and lexical affinity/selectional preferences, especially since they can take into
account frequency in their scores. We plan to continue attempts at successfully incorporating
these resources into transition-based parsing, especially in the area of out-of-domain parsing,
where rules/constraints may well be much more applicable than features, the latter being
particularly difficult to apply out-of-domain, since they are tied closely to the training corpus
material.

Beyond these perspectives for annotated corpus evaluation presented in the present thesis,
one of the main areas we have not yet explored is the evaluation and tuning of our parser in
view of its results for specific applications. We are especially interested in terminology ex-
traction: both inasmuch as it concerns out-of-genre and out-of-domain parsing, and inasmuch
as the constructs which interest us for terminology extraction are not the same as those used
for, say, question answering. We are rarely if ever interested in long-distance relationships
or in non-contiguous terms. Thus, a transition-based parser, which is fairly good at guessing
short-distance dependencies, may be the ideal candidate for such a task. Given the corpora
already analysed via Talismane at the French Space Agency, and the terms that have been
selected after automatic extraction and manual revision, it should be fairly straightforward
to construct an evaluation set.

Finally, we would like to see to what extent our targeted features and rules can work for
languages other than French. We are interested in minority languages, such as Occitan and
Yiddish, through our work with OCR on the Jochre project. It would be interesting to see to
what extent Talismane can be adapated to languages with even less resources than French.
Then of course, there is the case of English: it would be useful to adapt Talismane to English
not only for comparison with the vast body of work concerning the parsing of the Penn
Treebank corpus, but also to begin to experiment with methods for bilingual terminology
extraction, and see if parsing for the two languages in parallel can help extract better terms.

Closing remarks

This thesis was as much a question of personal career development as of scientific research.
As a freelance software engineer, I wished to develop expertise in areas which would allow

216

me to combine my interest in languages and algorithms, and veer my working life towards
areas that would use my mental faculties to their full capacity. This has to a large extent
already been accomplished: whereas my contracts at the start of the thesis were mostly
in project management for large intranet web sites managing company databases, the vast
majority of my contracts nowadays are in natural language processing. My thesis being
entirely unfinanced, it has been a constant struggle to find enough time for the research and
development directly related to the thesis, all the while having to earn a living and keep
customers satisfied. Bringing my contrasts closer in line with my thesis work has helped
immensely.

Nevertheless, the questions raised by this thesis, and in particular those related to incor-
porating linguistic knowledge into robust statistical methods for parsing, have become central
to my thinking, far beyond the concerns of career development. The prospects opened by
my plunge into the world of research are fascinating, and it is my hope that I will find the
opportunity to continue to collaborate with research laboratories in the future around the var-
ious future perspectives discussed here, as well as many other, unimagined, areas of research
surrounding syntax analysis. The improved state-of-the-art in robust parsing is undeniable,
made possible by the availability of annotated corpora such as the French Treebank, high-
quality external resources such as the LeFFF or GLàFF, and improved parsing technology
and methodology. It is only a question of time before parsed results will be fully usable in
applications such as statistical translation or statistical multilingual terminology extraction.
It has been a privilege to be able to play a small part in this adventure.

Appendix A

Evaluation graphs

217

218

0 2 4 6 8 10 12

86

87

88

cutoff

L
A

S

FTBDep-dev

i=50
i=75
i=100
i=150
i=200

0 2 4 6 8 10 12
84

85

86

87

cutoff
L

A
S

EstRépu

0 2 4 6 8 10 12

84

85

86

cutoff

L
A

S

FrWiki

0 2 4 6 8 10 12

85

86

87

cutoff

L
A

S
Europarl

0 2 4 6 8 10 12
81

82

83

84

cutoff

L
A

S

FrWikiDisc

0 2 4 6 8 10 12

84

85

86

cutoff

L
A

S

EMEA-dev

Figure A.1: Parser evaluation corpora LAS for a MaxEnt classifier using different values for
iterations i and cutoff

EVALUATION GRAPHS 219

2−4 2−2 20 22

87.5

88

88.5

89

C

L
A

S

FTBDep-dev

2−4 2−2 20 22

86.5

87

87.5

C
L

A
S

EstRépu

ǫ=0.001
ǫ=0.01
ǫ=0.03
ǫ=0.1

2−4 2−2 20 22

86.5

87

87.5

C

L
A

S

FrWiki

2−4 2−2 20 22

87

87.5

88

C

L
A

S
Europarl

2−4 2−2 20 22

83.5

84

84.5

C

L
A

S

FrWikiDisc

2−4 2−2 20 22

85.5

86

86.5

C

L
A

S

EMEA-dev

Figure A.2: Parser evaluation corpora LAS for a linear SVM using different values of C and
ǫ

220

0 2 4 6 8 10 12

88.4

88.6

88.8

89

cutoff

L
A

S

FTBDep-dev

C=0.125
C=0.25
C=0.5

0 2 4 6 8 10 12

87

87.2

87.4

87.6

cutoff
L

A
S

EstRépu

0 2 4 6 8 10 12

86.8

87

87.2

87.4

cutoff

L
A

S

FrWiki

0 2 4 6 8 10 12

88

88.2

88.4

88.6

cutoff

L
A

S
Europarl

0 2 4 6 8 10 12

84.2

84.4

84.6

84.8

cutoff

L
A

S

FrWikiDisc

0 2 4 6 8 10 12

86.2

86.4

86.6

86.8

cutoff

L
A

S

EMEA-dev

Figure A.3: Parser evaluation corpora LAS for a linear SVM using different values of C and
cutoff

EVALUATION GRAPHS 221

0 2 4 6 8 10 12

96

96.5

97

cutoff

A
cc

ur
ac

y

FTBDep-dev

i=50
i=75
i=100
i=150
i=200

0 2 4 6 8 10 12

96

96.5

97

cutoff
A

cc
ur

ac
y

EstRépu

0 2 4 6 8 10 12
95

95.5

96

cutoff

A
cc

ur
ac

y

FrWiki

0 2 4 6 8 10 12

96.5

97

97.5

cutoff

A
cc

ur
ac

y
Europarl

0 2 4 6 8 10 12

94

94.5

95

cutoff

A
cc

ur
ac

y

FrWikiDisc

0 2 4 6 8 10 12

93

93.5

94

cutoff

A
cc

ur
ac

y

EMEA-dev

Figure A.4: Pos-tagger evaluation corpora accuracy for a MaxEnt classifier using different
values for iterations i and cutoff

222

1 2 3 4 5
96

96.5

97

97.5

cutoff

A
cc

ur
ac

y

FTBDep-dev

1 2 3 4 5

96

96.5

97

cutoff
A

cc
ur

ac
y

EstRépu

i=10
i=20
i=30
i=50
i=70

1 2 3 4 5

94.5

95

95.5

cutoff

A
cc

ur
ac

y

FrWiki

1 2 3 4 5
96

96.5

97

97.5

cutoff

A
cc

ur
ac

y
Europarl

1 2 3 4 5
94

94.5

95

95.5

cutoff

A
cc

ur
ac

y

FrWikiDisc

1 2 3 4 5

93

93.5

94

cutoff

A
cc

ur
ac

y

EMEA-dev

Figure A.5: Pos-tagger evaluation corpora accuracy for a perceptron classifier using different
values for iterations i and cutoff

EVALUATION GRAPHS 223

2−4 2−2 20 22
96.2

96.4

96.6

96.8

97

97.2

cutoff

A
cc

ur
ac

y

FTBDep-dev

2−4 2−2 20 22
96.2

96.4

96.6

96.8

97

97.2

cutoff
A

cc
ur

ac
y

EstRépu

i=0.001
i=0.01
i=0.03
i=0.1

2−4 2−2 20 22
95.2

95.4

95.6

95.8

96

96.2

cutoff

A
cc

ur
ac

y

FrWiki

2−4 2−2 20 22
96.4

96.6

96.8

97

97.2

97.4

cutoff

A
cc

ur
ac

y
Europarl

2−4 2−2 20 22
94.4

94.6

94.8

95

95.2

95.4

cutoff

A
cc

ur
ac

y

FrWikiDisc

2−4 2−2 20 22

93

93.2

93.4

93.6

93.8

cutoff

A
cc

ur
ac

y

EMEA-dev

Figure A.6: Pos-tagger evaluation corpora LAS for a linear SVM using different values of C
and ǫ

224

0 2 4 6 8 10 12

96.8

97

97.2

97.4

cutoff

A
cc

ur
ac

y

FTBDep-dev

C=0.125
C=0.25
C=0.5
C=1
C=2

0 2 4 6 8 10 12

96.8

97

97.2

97.4

cutoff
A

cc
ur

ac
y

EstRépu

0 2 4 6 8 10 12

95.4

95.6

95.8

96

cutoff

A
cc

ur
ac

y

FrWiki

0 2 4 6 8 10 12

96.8

97

97.2

97.4

cutoff

A
cc

ur
ac

y
Europarl

0 2 4 6 8 10 12

94.6

94.8

95

95.2

cutoff

A
cc

ur
ac

y

FrWikiDisc

0 2 4 6 8 10 12
93.2

93.4

93.6

93.8

cutoff

A
cc

ur
ac

y

EMEA-dev

Figure A.7: Pos-tagger evaluation corpora LAS for a linear SVM using different values of C
and cutff

Bibliography

Anne Abeillé. Guide des annotateurs - annotation fonctionnelle, March 2004. URL http:

//www.llf.cnrs.fr/Gens/Abeille/guide-fonctions.new.pdf.

Anne Abeillé, Lionel Clément, and François Toussenel. Building a treebank for French. In
Anne Abeillé, editor, Treebanks. Kluwer, 2003.

Anne Abeillé, François Toussenel, and Martine Chéradame. Corpus le monde - annotations
en constituants - guide pour les correcteurs, March 2004. URL http://www.llf.cnrs.fr/

Gens/Abeille/guide-annot.pdf.

Anne Abeillé and Nicolas Barrier. Enriching a french treebank. In LREC, Lisbon, Portugal,
2004.

Anne Abeillé and Lionel Clément. Annotation morpho-syntaxique, 2006. URL http://llf.

linguist.jussieu.fr/llf/Gens/Abeille/guide-morpho-synt.06.pdf.

Clémentine Adam. Voisinage lexical pour l’analyse du discours. PhD thesis, Université
Toulouse le Mirail-Toulouse II, 2012.

Ethem Alpaydin. Introduction to machine learning. MIT press, 2004.

Enrique Henestroza Anguiano. Efficient Large-Context Dependency Parsing and Correction
with Distributional Lexical Resources. PhD thesis, Université Paris Diderot, 2013.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. The wacky wide
web: a collection of very large linguistically processed web-crawled corpora. Language
resources and evaluation, 43(3):209–226, 2009.

Solon Beinfeld and Harry Bochner. Comprehensive Yiddish-English Dictionary. Indiana
University Press, 2013.

Roberto Bisiani. Beam search. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence,
2nd edition, pages 1467–1468. Wiley-Interscience, 1987.

Bernd Bohnet and Joakim Nivre. A transition-based system for joint part-of-speech tagging
and labeled non-projective dependency parsing. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1455–1465. Association for Computational Linguistics, 2012.

Gerlof Bouma. Normalized (pointwise) mutual information in collocation extraction. In
Proceedings of the Biennial GSCL Conference, pages 31–40, 2009.

225

http://www.llf.cnrs.fr/Gens/Abeille/guide-fonctions.new.pdf
http://www.llf.cnrs.fr/Gens/Abeille/guide-fonctions.new.pdf
http://www.llf.cnrs.fr/Gens/Abeille/guide-annot.pdf
http://www.llf.cnrs.fr/Gens/Abeille/guide-annot.pdf
http://llf.linguist.jussieu.fr/llf/Gens/Abeille/guide-morpho-synt.06.pdf
http://llf.linguist.jussieu.fr/llf/Gens/Abeille/guide-morpho-synt.06.pdf

226 BIBLIOGRAPHY

Didier Bourigault. Upery: un outil d’analyse distributionnelle étendue pour la construction
d’ontologies à partir de corpus. In Actes de la 9ème conférence annuelle sur le Traitement
Automatique des Langues (TALN 2002), Nancy, pages 75–84. ATALA, 2002.

Didier Bourigault. Un analyseur syntaxique opérationnel: SYNTEX. Habilitation à diriger
des recherches en linguistique, Université de Toulouse le Mirail-Toulouse II, 2007.

Myriam Bras. Le projet teloc: construction d’une base textuelle occitane. Langues et Cité:
bulletin de l’observation des pratiques linguistiques, 8(9), 2006.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai.
Class-based n-gram models of natural language. Computational linguistics, 18(4):467–479,
1992.

Marie Candito and Benoît Crabbé. Improving generative statistical parsing with semi-
supervised word clustering. In Proceedings of the 11th International Conference on Parsing
Technologies, pages 138–141. Association for Computational Linguistics, 2009.

Marie Candito and Djamé Seddah. Effectively long-distance dependencies in french: anno-
tation and parsing evaluation. In TLT 11-The 11th International Workshop on Treebanks
and Linguistic Theories, 2012.

Marie Candito, Benoît Crabbé, and Pascal Denis. Statistical french dependency parsing:
treebank conversion and first results. In Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC 2010), pages 1840–1847, 2010a.

Marie Candito, Joakim Nivre, Pascal Denis, and Enrique Henestroza Anguiano. Benchmark-
ing of statistical dependency parsers for french. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters, pages 108–116. Association for Com-
putational Linguistics, 2010b.

Marie Candito, Enrique Henestroza Anguiano, and Djamé Seddah. A word clustering ap-
proach to domain adaptation: Effective parsing of biomedical texts. In Proceedings of
the 12th International Conference on Parsing Technologies, pages 37–42. Association for
Computational Linguistics, 2011a.

Marie Candito, Benoît Crabbé, and Mathieu Falco. Dépendances syntaxiques de surface pour
le français, May 2011b. URL http://alpage.inria.fr/statgram/frdep/Publications/

FTB-GuideDepSurface.pdf.

Marie Candito, Djamé Seddah, et al. Le corpus sequoia: annotation syntaxique et exploita-
tion pour l’adaptation d’analyseur par pont lexical. In TALN 2012-19e conférence sur le
Traitement Automatique des Langues Naturelles, 2012.

Jean Carletta. Assessing agreement on classification tasks: the kappa statistic. Computational
linguistics, 22(2):249–254, 1996.

Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the 1st North
American chapter of the Association for Computational Linguistics conference, pages 132–
139. Association for Computational Linguistics, 2000.

http://alpage.inria.fr/statgram/frdep/Publications/FTB-GuideDepSurface.pdf
http://alpage.inria.fr/statgram/frdep/Publications/FTB-GuideDepSurface.pdf

BIBLIOGRAPHY 227

Noam Chomsky. Syntactic structures. Mouton & co., The Hague/Paris, 1957.

Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Science Sinica,
14:1396–1400, 1965.

Kenneth Church. A pendulum swung too far. Linguistic Issues in Language Technology, 6,
2011.

Michael Collins. Head-driven statistical methods for natural language parsing. PhD thesis,
University of Pennsylvannia, 1999.

Michael Collins. Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the ACL-02 conference on
Empirical methods in natural language processing-Volume 10, pages 1–8. Association for
Computational Linguistics, 2002.

Michael Collins. Head-driven statistical models for natural language parsing. Computational
linguistics, 29(4):589–637, 2003.

Marcel Cori and Jacqueline Léon. La constitution du TAL : Étude historique des dénomina-
tions et des concepts. TAL, 43(3):21–55, 2002.

Benoit Crabbé and Marie Candito. Expériences d’analyses syntaxique statistique du français.
In TALN 2008- conférence sur le Traitement Automatique des Langues Naturelles. ATALA,
2008.

J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. The Annals
of Mathematical Statistics, 43(5):1470–1480, 1972.

Éric De La Clergerie, Benoît Sagot, Lionel Nicolas, Marie-Laure Guénot, et al. Frmg: évo-
lutions d’un analyseur syntaxique tag du français. In Journée de l’ATALA sur: Quels
analyseurs syntaxiques pour le français? ATALA, 2009.

Pascal Denis and Benoît Sagot. Coupling an annotated corpus and a lexicon for state-of-the-
art pos tagging. Language Resources and Evaluation, 46(4):721–736, 2012.

Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau of Stan-
dards, 71B:233–240, 1967.

Jason M Eisner. Three new probabilistic models for dependency parsing: An exploration. In
Proceedings of the 16th conference on Computational linguistics-Volume 1, pages 340–345.
Association for Computational Linguistics, 1996.

Cécile Fabre. Affinités syntaxiques et sémantiques entre mots: apports mutuels de la lin-
guistique et du TAL. Habilitation à diriger des recherches en linguistique, Université de
Toulouse le Mirail-Toulouse II, 2010.

Cécile Fabre, Josette Rebeyrolle, Lydia-Mai Ho-Dac, et al. Examen du statut des syntagmes
prépositionnels à la lumière de données issues de corpus annotés. CMLF 2008, pages 2484–
2494, 2008.

C. Fellbaum, editor. WordNet: An Electronic Lexical Database. The MIT Press, 1998.

228 BIBLIOGRAPHY

John Rupert Firth. A synopsis of linguistic theory, 1930-1955. In Studies in Linguistic
Analysis, pages 1–32. Blackwell, Oxford, 1957.

Yoav Goldberg and Jon Orwant. A dataset of syntactic-ngrams over time from a very large
corpus of english books. In Second Joint Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task, pages
241—-247. Association for Computational Linguistics, June 2013.

Keith Hall, Ryan McDonald, Jason Katz-Brown, and Michael Ringgaard. Training depen-
dency parsers by jointly optimizing multiple objectives. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 1489–1499. Association for
Computational Linguistics, 2011.

Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954.

Chia-Hua Ho and Chih-Jen Lin. Large-scale linear support vector regression. Journal of
Machine Learning Research, 13:3323–3348, 2012.

Marie-Paule Jacques. Que : la valse des étiquettes. In Actes de la 12ème conférence sur le
Traitement Automatique des Langues Naturelles (TALN’2005), pages 133–142, Dourdan,
France, 2005.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620,
1957.

Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 217–
226. ACM, 2006.

Richard Johansson and Pierre Nugues. Investigating multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computational Natural Language Learning, pages
206–210. Association for Computational Linguistics, 2006.

Richard Johansson and Pierre Nugues. Incremental dependency parsing using online learning.
Proceedings of the CoNLL/EMNLP, pages 1134–1138, 2007.

John Judge, Aoife Cahill, and Josef Van Genabith. Questionbank: Creating a corpus of parse-
annotated questions. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computational Linguistics,
pages 497–504. Association for Computational Linguistics, 2006.

Daisuke Kawahara and Kiyotaka Uchimoto. Learning reliability of parses for domain adap-
tation of dependency parsing. IJCNLP’08, 2008.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency parsing. Morgan & Claypool
Publishers, 2009.

Dekang Lin. An information-theoretic definition of similarity. In ICML, volume 98, pages
296–304, 1998.

Edward N Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20
(2):130–141, 1963.

BIBLIOGRAPHY 229

David McClosky, Eugene Charniak, and Mark Johnson. Reranking and self-training for parser
adaptation. In Proceedings of the 21st International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association for Computational Linguistics, pages
337–344. Association for Computational Linguistics, 2006.

David McClosky, Eugene Charniak, and Mark Johnson. When is self-training effective
for parsing? In Proceedings of the 22nd International Conference on Computational
Linguistics-Volume 1, pages 561–568. Association for Computational Linguistics, 2008.

Ryan McDonald and Fernando Pereira. Online learning of approximate dependency parsing
algorithms. In Proceedings of EACL, volume 6, pages 81–88, 2006.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective dependency
parsing using spanning tree algorithms. In Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural Language Processing, pages 523–530.
Association for Computational Linguistics, 2005.

Quinn McNemar. Note on the sampling error of the difference between correlated proportions
or percentages. Psychometrika, 12(2):153–157, 1947.

Marvin Minsky and Papert Seymour. Perceptrons. 1969.

Seyed Abolghasem Mirroshandel, Alexis Nasr, and Joseph Le Roux. Semi-supervised depen-
dency parsing using lexical affinities. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1, pages 777–785. Associ-
ation for Computational Linguistics, 2012.

Seyed Abolghasem Mirroshandel, Alexis Nasr, and Benoıt Sagot. Enforcing subcategorization
constraints in a parser using sub-parses recombining. In Proceedings of NAACL-HLT, pages
239–247, 2013.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learn-
ing. The MIT Press, 2012.

François Morlane-Hondère. Une approche linguistique de l’évaluation des ressources extraites
par analyse distributionnelle automatique. PhD thesis, Université Toulouse le Mirail-
Toulouse II, 2013.

Kevin P Murphy. Machine learning: a probabilistic perspective. The MIT Press, 2012.

Yitskhok Niborski and Bernard Vaisbrot. Yidish–frantseyzish verterbukh / Dictionnaire yid-
dish–français. Bibliothèque Medem, Paris, 2002.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan T. McDonald, Jens Nilsson, Sebastian Riedel,
and Deniz Yuret. The conll 2007 shared task on dependency parsing. In EMNLP-CoNLL,
pages 915–932. Association for Computational Linguistics, 2007a.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kubler,
Svetoslav Marinov, and Erwin Marsi. Maltparser: A language-independent system for
data-driven dependency parsing. Natural Language Engineering, 13(2):95, 2007b.

230 BIBLIOGRAPHY

Patrick Paroubek, Isabelle Robba, Anne Vilnat, and Christelle Ayache. Data, annotations
and measures in easy, the evaluation campaign for parsers of french. In In proceedings of the
fifth international conference on Language Resources and Evaluation (LREC 2006), pages
315–320, 2006.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting of the Association for Computational
Linguistics, pages 433–440. Association for Computational Linguistics, 2006.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and Hiyan Alshawi. Uptraining for accu-
rate deterministic question parsing. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 705–713. Association for Computational
Linguistics, 2010.

Adwait Ratnaparkhi. Maximum entropy models for natural language ambiguity resolution.
PhD thesis, University of Pennsylvania, 1998.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

Kenji Sagae. Self-training without reranking for parser domain adaptation and its impact
on semantic role labeling. In Proceedings of the 2010 Workshop on Domain Adaptation
for Natural Language Processing, pages 37–44. Association for Computational Linguistics,
2010.

Kenji Sagae and Alon Lavie. A best-first probabilistic shift-reduce parser. In Proceedings
of the COLING/ACL on Main conference poster sessions, pages 691–698. Association for
Computational Linguistics, 2006.

Kenji Sagae and Jun’ichi Tsujii. Dependency parsing and domain adaptation with lr models
and parser ensembles. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 1044–1050, 2007.

Benoît Sagot. The lefff, a freely available and large-coverage morphological and syntactic
lexicon for french. In 7th international conference on Language Resources and Evaluation
(LREC 2010), 2010.

Benoît Sagot, Lionel Clément, Eric de La Clergerie, Pierre Boullier, et al. The lefff 2 syntactic
lexicon for french: architecture, acquisition, use. In LREC, pages 1–4, 2006.

Franck Sajous, Nabil Hathout, and Basilio Calderone. Glàff, un gros lexique à tout faire
du français. In Actes de la 20e conférence sur le Traitement Automatique des Langues
Naturelles (TALN’2013), pages 285–298, Les Sables d’Olonne, France, 2013.

John Sinclair. Chapter 1: Corpus and text — basic principles. In Martin Wynne, editor,
Developing linguistic corpora: a guide to good practice. Oxbow Books, 2005.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and
Jun’ichi Tsujii. Brat: a web-based tool for nlp-assisted text annotation. In Proceedings
of the Demonstrations at the 13th Conference of the European Chapter of the Association

BIBLIOGRAPHY 231

for Computational Linguistics, pages 102–107. Association for Computational Linguistics,
2012.

Ludovic Tanguy. Complexification des données et des techniques en linguistique: contributions
du TAL aux solutions et aux problèmes. Habilitation à diriger des recherches en linguistique,
Université de Toulouse le Mirail-Toulouse II, 2012.

Ludovic Tanguy and Nabil Hathout. Webaffix: un outil d’acquisition morphologique dériva-
tionnelle à partir du web. Actes de TALN’02, 2002.

Ludovic Tanguy, Assaf Urieli, Basilio Calderone, Nabil Hathout, and Franck Sajous. A mul-
titude of linguistically-rich features for authorship attribution. In Notebook for PAN at
CLEF 2011, Amsterdam, 2011.

Robert F Tate. Correlation between a discrete and a continuous variable. point-biserial cor-
relation. The Annals of mathematical statistics, 25(3):603–607, 1954.

Lucien Tesnière. Eléments de syntaxe structurale. Editions Klincksieck, Paris, 1959.

Ivan Titov and James Henderson. A latent variable model for generative dependency parsing.
In Trends in Parsing Technology, pages 35–55. Springer, 2010.

Peter D Turney, Patrick Pantel, et al. From frequency to meaning: Vector space models of
semantics. Journal of artificial intelligence research, 37(1):141–188, 2010.

Assaf Urieli and Ludovic Tanguy. L’apport du faisceau dans l’analyse syntaxique en dépen-
dances par transitions : études de cas avec l’analyseur Talismane. In Actes de la 20e
conférence sur le Traitement Automatique des Langues Naturelles (TALN’2013), pages
188–201, Les Sables d’Olonne, France, 2013.

Assaf Urieli and Marianne Vergez-Couret. Jochre, océrisation par apprentissage automatique
: étude comparée sur le yiddish et l’occitan. In Actes de TALARE 2013 : Traitement
Automatique des Langues Régionales de France et d’Europe, pages 221–234, Les Sables
d’Olonne, France, 2013.

Karel Van Den Eynde and Piet Mertens. Le dictionnaire de valence dicovalence: manuel
d’utilisation. Manuscript, Leuven, 2006.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

Andrew Viterbi. Error bounds for convolutional codes and an asymptotically optimum de-
coding algorithm. Information Theory, IEEE Transactions on, 13(2):260–269, 1967.

Eric Wehrli. Fips, a deep linguistic multilingual parser. In Proceedings of the Workshop
on Deep Linguistic Processing, pages 120–127. Association for Computational Linguistics,
2007.

Kazuhiro Yoshida, Yoshimasa Tsuruoka, Yusuke Miyao, and Jun’ichi Tsujii. Ambiguous part-
of-speech tagging for improving accuracy and domain portability of syntactic parsers. In
Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, 2007.

232 BIBLIOGRAPHY

Daniel H Younger. Recognition and parsing of context-free languages in time n3. Information
and control, 10(2):189–208, 1967.

Yue Zhang and Stephen Clark. A tale of two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-search. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, pages 562–571. Association
for Computational Linguistics, 2008.

Yue Zhang and Stephen Clark. Transition-based parsing of the chinese treebank using a
global discriminative model. In Proceedings of the 11th International Conference on Parsing
Technologies, pages 162–171. Association for Computational Linguistics, 2009.

Yue Zhang and Joakim Nivre. Transition-based dependency parsing with rich non-local fea-
tures. In ACL (Short Papers), pages 188–193, 2011.

Yue Zhang and Joakim Nivre. Analyzing the effect of global learning and beam-search on
transition-based dependency parsing. In COLING (Posters), pages 1391–1400, 2012.

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 188 © ATALA

L’apport du faisceau dans l’analyse syntaxique en dépendances
par transitions : études de cas avec l’analyseur Talismane

Assaf Urieli et Ludovic Tanguy
(1) CLLE-ERSS : CNRS & Université de Toulouse 2

assaf.urieli@univ-tlse2.fr, ludovic.tanguy@univ-tlse2.fr

RESUME ___

L’analyse syntaxique (ou parsing) en dépendances par transitions se fait souvent de façon
déterministe, où chaque étape du parsing propose une seule solution comme entrée de
l’étape suivante. Il en va de même pour la chaîne complète d’analyse qui transforme un
texte brut en graphe de dépendances, généralement décomposé en quatre modules
(segmentation en phrases, en mots, étiquetage et parsing) : chaque module ne fournit
qu’une seule solution au module suivant. On sait cependant que certaines ambiguïtés ne
peuvent pas être levées sans prendre en considération le niveau supérieur. Dans cet article,
nous présentons l’analyseur Talismane, outil libre et complet d’analyse syntaxique
probabiliste du français, et nous étudions plus précisément l’apport d’une recherche par
faisceau (beam search) à l’analyse syntaxique. Les résultats nous permettent à la fois de
dégager la taille de faisceau la plus adaptée (qui permet d’atteindre un score de 88,5 %
d’exactitude, légèrement supérieur aux outils comparables), ainsi que les meilleures
stratégies concernant sa propagation.

ABSTRACT ___

APPLYING A BEAM SEARCH TO TRANSITION-BASED DEPENDENCY PARSING: A CASE STUDY FOR FRENCH WITH

THE TALISMANE SUITE

Transition-based dependency parsing often uses deterministic techniques, where each
parse step provides a single solution as the input to the next step. The same is true for the
entire analysis chain which transforms raw text into a dependency graph, generally
composed of four modules (sentence detection, tokenising, pos-tagging and parsing): each
module provides only a single solution to the following module. However, some ambiguities
cannot be resolved without taking the next level into consideration. In this article, we
present Talismane, an open-source suite of tools providing a complete statistical parser of
French. More specifically, we study the contribution of a beam search to syntax parsing. Our
analysis allows us to conclude on the most appropriate beam width (enabling us to attain
an accuracy of 88.5%, slightly higher than comparable tools), and on the best strategies
concerning beam propagation from one level of analysis to the next.

MOTS-CLES : Analyse syntaxique en dépendances, ambiguïtés, évaluation, beam search
KEYWORDS: Dependency parsing, ambiguities, evaluation, beam search

1 Introduction

L’analyse syntaxique par dépendances s’inspire de l’œuvre de Tesnières (1959), et connaît
un très grand engouement pour le développement d’analyseurs syntaxiques automatiques.
Les avantages les plus connus sont, sur le plan linguistique, la possibilité de créer des
dépendances croisées (arbres non projectifs) et l’expression efficace des structures

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 189 © ATALA

argumentales des verbes. Sur le plan informatique, ce mode de représentation se prête très
facilement aux méthodes d’apprentissage automatique supervisé, puisque la détection d’un
lien de dépendance entre deux mots et l’étiquetage de ce lien par une relation syntaxique
peuvent se ramener à des opérations de classification.

Il existe deux principales techniques pour l’analyse syntaxique statistique en dépendances :
l’analyse par transitions (Nivre, 2008) et l’analyse par graphes (McDonald, 2006). L’analyse
par transitions présente l’intérêt d’une complexité de calcul linéaire, en transformant le
problème d’analyse de syntaxe en un algorithme de type Shift-Reduce. Au cours de tests
effectués par Candito et al (2010) et McDonald et Nivre (2007), il a été démontré que,
comparée à l’analyse par graphes, l’analyse par transitions a des performances dégradées
pour une distance de rattachement supérieure à deux mots. Une façon de corriger cette
dégradation est d’y introduire une recherche par faisceau (beam search, cf. section 3.1).
Cette méthode a déjà été appliquée par Sagae et Lavie (2006), Johanssen et Nugues (2006)
et Johanssen et Nugues (2007), avec des résultats prometteurs pour une dizaine de langues,
mais parmi lesquelles le français ne figure malheureusement pas.

Dans cet article, nous présentons tout d’abord un nouvel analyseur syntaxique en
dépendances, Talismane (section 2), qui implémente de nouvelles fonctionnalités au niveau
du faisceau et une syntaxe très expressive pour décrire les informations utilisées pour
l’analyse. Cet outil est disponible librement et est directement opérationnel pour le français.

Dans la section 3, nous nous intéressons au mécanisme de la recherche par faisceau, à la
fois au niveau quantitatif et qualitatif. Nous apportons des précisions sur la façon
d’appliquer le faisceau à des problèmes où la comparaison des solutions intermédiaires
n’est pas triviale.

Dans la section 4, nous testons l’hypothèse selon laquelle, si on propage le faisceau à travers
les différents modules de l’analyse, un module de niveau plus élevé peut corriger les
erreurs d’un module de niveau plus bas. Plus précisément, nous nous intéressons aux
questions suivantes : le parseur est-il capable de corriger des erreurs de segmentation en
mots (notamment en ce qui concerne l’identification des locutions) et des erreurs
d’étiquetage morphosyntaxique ?

Dans la section 5, nous présentons une comparaison avec d’autres études similaires, et
notamment une mesure des performances globales de Talismane.

2 L’analyseur Talismane

L’outil Talismane1 est un analyseur syntaxique développé par Assaf Urieli dans le cadre de
sa thèse au sein du laboratoire CLLE-ERSS, sous la direction de Ludovic Tanguy. Il est écrit
intégralement en Java : il fonctionne donc sur tous les systèmes d’exploitation et est
facilement intégrable à d’autres applications.

Pour passer d’un texte brut à un réseau de dépendances syntaxiques, Talismane utilise une
analyse en cascade avec quatre étapes classiques pour ce type de tâche : le découpage en
phrases (non traité ici), la segmentation en mots, l’étiquetage (attribution d’une catégorie
morphosyntaxique), et le parsing (repérage et étiquetage des dépendances syntaxiques

1 Disponible sous licence GPL à cette adresse : http://redac.univ-tlse2.fr/talismane

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 190 © ATALA

entre les mots).

La tâche de chacun des modules est définie comme un problème de classification, et résolue
de façon statistique, en entraînant un modèle probabiliste sur un corpus annoté.

Chacun des modules est configurable à la fois au niveau des traits et des règles. Les traits
sont les informations sur les configurations rencontrées dont dispose l’algorithme pour
prendre chacune des décisions, alors que les règles sont des contraintes qui forcent (ou
interdisent) des décisions locales.

Le modèle par défaut proposé par Talismane utilise des traits classiques pour chacune des
opérations. Pour l’étiquetage, par exemple, sont calculés pour chaque mot des traits liés à
sa forme, aux étiquettes indiquées dans un lexique de référence, aux catégories des mots
qui l’entourent, etc. La syntaxe de définition des traits est suffisamment expressive pour
définir des traits plus complexes, par exemple le fait que le mot précédent soit situé entre
parenthèses.

Les règles, qui ne sont appliquées qu’au moment de l’analyse (et pas lors de
l’apprentissage), permettent de remplacer ou de contraindre les réponses fournies par le
classifieur probabiliste, quand un critère est rempli. Des règles définissables suivant une
syntaxe souple permettent d’éviter des résultats aberrants (comme l’attribution d’une
classe fermée à un mot inconnu du lexique, l’attribution de deux sujets à un verbe, etc.) soit
de respecter des contraintes propres à un corpus spécifique (en attribuant une catégorie
fixe à un mot donné, par exemple).

Pour le parsing, Talismane se base sur l’algorithme décrit par (Nivre 2008) avec certaines
modifications pour rendre possible la recherche par faisceau. Nous avons testé deux
algorithmes présentés par Nivre : l’algorithme « classique » et l’algorithme dit « arc eager ».
Le deuxième algorithme a fourni de meilleurs résultats globaux, et est le seul utilisé pour
les expérimentations présentées dans cet article.

2.1 Classifieurs

Les algorithmes de classification utilisables par chaque module sont interchangeables, et
trois classifieurs différents sont disponibles dans Talismane : un classifieur par entropie
maximale2, basé sur (Ratnaparkhi, 1998), un SVM linéaire3 (Ho et Lin, 2012), et un
classifieur par perceptrons multicouches (Attardi et al, 2009). Nous avons comparé les
résultats de ces trois classifieurs avec le même jeu de traits et en testant différentes
configurations pour leurs paramètres spécifiques. Le classifieur par entropie maximale
donne des résultats supérieurs où égaux à ceux du SVM linéaire, avec l’avantage d’un
algorithme d’entraînement plus rapide et une interprétation plus aisée des coefficients de
chaque paramètre. Nous avons donc opté pour cette option dans les expériences présentées
ici ainsi que pour le comportement par défaut de Talismane, et ce pour chacun des quatre
modules de la chaîne de traitement.

2 http://opennlp.apache.org/
3 http://liblinear.bwaldvogel.de/

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 191 © ATALA

2.2 Corpus d’entraînement et ressources externes

Le corpus d’entraînement pour les modules de segmentation et d’étiquetage est le French
Treebank (Abeillé et al, 2003). Pour la segmentation, nous avons retenu les mots composés
des catégories fermées (déterminants, pronoms, prépositions et conjonctions) ainsi que les
adverbes qui ne sont pas par ailleurs des syntagmes prépositionnels bien formés. Pour
l’étiquetage, le jeu de tags utilisé est celui de Crabbé et Candito (2008). Pour le parsing,
nous avons utilisé le French Treebank converti automatiquement en dépendances par
Candito et al (2010). Nous avons retenu leur division en corpus d’apprentissage, de
développement (dev, 10 % du total) et de test (10 % du total) pour pouvoir comparer nos
résultats directement.

A la différence des autres études, et grâce à l’expressivité syntaxique de Talismane, nous
avons utilisé un jeu de traits complexe et parfois spécifique au français. Du coup, notre
système n’est pas directement applicable à d’autres langues sans la création d’un nouveau
jeu de traits, qui serait construit sur la base de la connaissance des mécanismes de la
langue, de la disponibilité de ressources lexicales ou sémantiques, et des spécificités des
corpus d’entraînement et d’évaluation.

Nous faisons un usage massif, dans les traits, du lexique LEFFF (Sagot et al, 2006) à la fois
au niveau du segmenteur, de l’étiqueteur et du parseur. Comme dans Denis et Sagot (2009),
nous utilisons les catégories grammaticales du lexique LEFFF comme traits de l’étiqueteur,
en y ajoutant quelques contraintes (surtout au niveau des classes fermées). La liste
complète des traits utilisés pour construire le modèle proposé par défaut est consultable en
ligne4.

3 Le principe du faisceau dans Talismane

Nous présentons ici les détails techniques de la recherche par faisceau dans Talismane.

3.1 Fonctionnement général

Que ce soit pour la segmentation ou le parsing, un analyseur probabiliste doit envisager un
très grand nombre de configurations possibles pour une même phrase, en considérant
toutes les combinaisons de catégories que l’on peut affecter à chaque élément (caractère
pour la segmentation, mot pour l’étiquetage, paire de mots ou relation de dépendance pour
le parsing). Afin de trouver la séquence (de frontières de mots, d’étiquettes, ou de liens
syntaxiques) la plus probable, le système doit comparer théoriquement un très grand
nombre de cas possibles ; pour limiter cette explosion combinatoire seules les k
configurations les plus probables sont considérées à chaque étape du calcul. Le faisceau (de
largeur k) est donc la liste de ces configurations partielles. Un faisceau de grande largeur a
donc plus de chances de trouver la meilleure configuration, mais consommera également
plus de ressource, en nombre de traits à calculer et de comparaisons à effectuer.

Pour l’étiquetage par exemple, les mots sont traités dans l’ordre de la phrase, et à chaque
étape du calcul le faisceau contient les k séquences d’étiquettes les plus probables. Un
faisceau de largeur 1 devra alors attribuer définitivement la catégorie d’un mot au moment

4 http://redac.univ-tlse2.fr/talismane/features

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 192 © ATALA

où celui-ci est traité (ce qui ne veut pas dire qu’il le fait indépendamment des mots qui le
suivent, puisque ceux-ci sont pris en compte via des traits). Dans tous les cas, le faisceau
contient, à la fin de l’analyse d’une phrase, les k sorties les plus probables pour cette phrase.
Des exemples plus détaillés de ce mécanisme sont présentés en section 4.1.

3.2 Spécificités du faisceau dans le parseur

Dans le parsing par transitions, la situation est nettement plus complexe. Une
« configuration » (Nivre, 2008) est une structure qui contient une pile de mots
partiellement traités, un buffer contenant les mots non encore traités, et un jeu de
dépendances déjà générées. A cela on peut ajouter une liste de transitions qui ont permis
d’arriver à cette configuration à partir de la configuration initiale. La liste des transitions
possibles est un petit ensemble fermé. Par exemple, la transition « Shift » enlève le mot en
tête du buffer et le met en tête de pile, sans créer de dépendance entre les deux.
L’entraînement consiste donc à apprendre quelle transition il faut appliquer étant donné
une configuration. La configuration est considérée comme terminale quand le buffer est
vide.

Appliquer un faisceau au parseur n’est pas trivial, dans la mesure où il est difficile de
comparer des configurations qui ont créé un nombre différent de dépendances dans un
ordre différent. Sagae et Lavie (2006) ont utilisé une stratégie particulière qui implique un
certain nombre de biais, et Johanssen et Nugues (2007) ne donnent pas de précisions sur la
façon d’appliquer le faisceau. Nous avons fait le choix d’utiliser une moyenne harmonique
des probabilités individuelles, afin d’éviter de privilégier le chemin le plus court à une
solution, et de comparer entre elles les configurations ayant traité un même nombre de
mots.

3.3 Impact de la largeur du faisceau sur les performances globales

Nous avons tout d’abord évalué différentes largeurs de faisceau à l’intérieur de chaque
module, sans considérer leur enchaînement. Les mesures ont été faites sur le corpus de test
du French Treebank (10% du corpus, soit 32000 mots) en fournissant en entrée à chaque
module les données annotées qui s’y trouvent.

Pour le segmenteur en mots, vu qu’il n’y a pas de dépendances contextuelles entre les
décisions locales à différents endroits de la phrase, la solution la plus probable localement
reste toujours en tête de liste, si bien que la largeur de faisceau n’a aucun effet sur les
performances. A ce stade, le faisceau sert uniquement à fournir plusieurs segmentations
possibles aux modules suivants (voir section 4.1).

Pour l’étiqueteur morphosyntaxique, le faisceau apporte un gain non significatif. Sur le sous
corpus « test », on passe d’une exactitude de 97,81 % pour un faisceau de largeur 1 à une
exactitude de 97,83 % pour un faisceau de 20. On voit donc que, même sans recherche par
faisceau, le module d’étiquetage de Talismane se situe au niveau actuellement atteint par
d’autres outils pour le français (Denis et Sagot, 2009).

Pour le parseur, nous avons mesuré la f-mesure pour chaque étiquette de dépendance
(« sujet », « objet », …) à différentes largeurs de faisceau. Pour cette f-mesure, on considère
une réponse comme correcte uniquement si l’arc est correct (bon gouverneur) et bien

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 193 © ATALA

étiqueté (bonne relation). La TABLE 1 donne, pour le sous corpus « test », les f-mesures de
certaines étiquettes. Les f-mesures pour l’ensemble des relations syntaxiques augmentent
avec la largeur du faisceau, avec une relative stabilité à partir du faisceau 5. Notons au
passage que cette dernière information est très utile : le parseur consomme un temps
linéairement proportionnel à la largeur du faisceau, et ces données permettent donc de voir
qu’un faisceau large (plus de 5) n’est pas rentable. On observe généralement un gain de
précision minime, voir une perte légère, mais un gain de rappel important (pour la relation
« racine », par exemple, on observe un gain de rappel de 5,59 % entre les faisceaux 1 et 20).

Etiquette Nombre
de cas

Largeur de faisceau : Gain (f20-f1)

1 2 5 10 20 Préc. Rap F-mes

total5 31 703 87,7 88,5 88,8 89,0 89,1 +1,38

sujet 2 132 92,8 93,7 94,3 94,5 94,6 -0,25 +3,51 +1,82

racine6 1 235 91,9 93,5 94,5 94,8 95,1 -0,06 +5,59 +3,12

coordonné7 939 89,4 90,5 91,2 91,4 91,4 -0,25 +3,41 +1,94

coordonnant8 819 68,3 69,5 70,4 70,5 70,4 +0,32 +2,45 +2,12

relative9 379 78,4 79,9 80,5 80,9 81,1 +1,96 +2,91 +2,69

TABLE 1 : F-score par largeur de faisceau : valeur globale et détails pour certaines étiquettes
choisies

Pour le score total, les différences entre les différentes largeurs de faisceau sont toutes
significatives (test de McNemar, p<0,05). Pour les relations individuelles, on observe
globalement un gain non-significatif lorsque le faisceau dépasse une largeur de 5.

5 A l’instar d’autres études similaires, nous donnons l’exactitude totale hors ponctuation
6 Relation dont le dépendant est le verbe principal de la phrase, et le gouverneur et une « racine » artificielle
7 Relation dont le dépendant est un mot coordonné et le gouverneur est le coordonnant qui le précède
8 Relation dont le dépendant est une conjonction ou une virgule et el gouverneur est le coordonné qui la précède
9 Relation dont le dépendant est le verbe d’une subordonnée relative , et le gouverneur est l’antécédent du pronom
relatif qui introduit cette subordonnée (le pronom relatif lui-même sera rattaché au verbe par les relations « suj »,
« obj », …)

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 194 © ATALA

La FIGURE 1 donne l’exactitude en fonction des distances maximales de rattachement (en
nombre de mots séparant les mots reliés syntaxiquement). Chaque point de la courbe
représente donc l’exactitude pour tous les liens de dépendances dont la distance entre le
gouverneur et le dépendant est inférieure ou égale à une distance donnée. Alors que
l’exactitude baisse avec la distance maximale pour tous les faisceaux, l’écart entre les
faisceaux s’accroît : plus le faisceau est large, plus le parseur parvient à traiter correctement
les relations à longue distance.

4 Le faisceau entre les modules

Dans ce paragraphe, nous nous intéressons à la propagation du faisceau entre les modules.
Sans propagation, chaque module du début de la chaîne (segmentation ou étiquetage)
choisit la meilleure configuration possible et la transmet au module suivant (étiquetage ou
parsing). Si l’on active la propagation avec un faisceau de largeur k, le module fournit alors
k propositions qui vont être prises en considération (avec une probabilité associée). Au fur
et à mesure de l’analyse, certains choix du module précédent seront abandonnés (largeur
de faisceau oblige), alors que d’autres seront retenus, voire ramenés en haut de la pile.

Nous avons utilisé deux corpus d’évaluation : le premier est le corpus de test issu du French
Treebank, et permet d’avoir un aperçu quantitatif en comparant les résultats avec
l’annotation manuelle. Nous y avons ajouté un extrait du corpus Leximedia 200710 qui
contient des articles de presse de plusieurs quotidiens français relatifs à la précédente
campagne présidentielle. Dans ce corpus, nous avons analysé manuellement les 100
premières différences de traitement obtenues avec et sans propagation du faisceau, et ce
pour plusieurs largeurs, afin d’avoir une vision qualitative des phénomènes mis en jeu.

10 http://redac.univ-tlse2.fr/Leximedia2007/

FIGURE 1 : Exactitude par faisceau et par
distance maximale de rattachement

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 195 © ATALA

4.1 Impact de l’étiquetage et du parsing sur la segmentation : le traitement des
unités polylexicales ambiguës

Notre hypothèse est que le repérage des unités polylexicales peut être amélioré en prenant
en considération les informations morphosyntaxiques et syntaxiques. A notre
connaissance, tous les systèmes d’étiquetage effectuent un traitement systématique des
locutions et expressions figées (lorsqu’ils traitent ces cas) en projetant un lexique sans
condition. Si certaines locutions sont totalement non ambiguës (« parce_que »,
« d’ores_et_déjà » etc.) certaines occurrences peuvent correspondre à des configurations
syntaxiques particulières comme dans « Jean-Claude Brialy, qui nous quitte à 74 ans, avait
été un jeune premier éblouissant. ». Dans cet exemple extrait de notre corpus d’évaluation
(et correctement traité grâce à cette méthode), il est clair que « quitte_à » n’est pas une
préposition (mais un verbe suivi d’une préposition) quand on considère la configuration
globale de la phrase. Dans le cas d’une propagation, les deux solutions de segmentation
envisageables vont donc être soumises à l’étiqueteur qui pourra soit décider, soit
transmettre l’ambiguïté à son tour au parseur (en fonction des priorités et des autres
ambiguïtés qu’il ordonnancera dans son faisceau). La décision finale de segmenter ou non
sera prise à la toute fin du processus.

Pour comprendre le mécanisme interne, prenons la phrase « Elle pourrait même
s’ennuyer. » Au niveau de la segmentation, il y a une ambiguïté entre « même_si »
(conjonction de subordination) et les deux mots « même » (adverbe) et « se » (pronom
clitique réfléchi). On a appliqué ici une analyse avec un faisceau de largeur 2. La TABLE 2 ci-
dessous montre le faisceau terminal du segmenteur pour cette phrase, où la proposition
erronée d’un seul mot composé « même si » est privilégiée (la probabilité globale étant
supérieure).

Elle pourrait même s’ ennuyer . Score : 66%

Elle pourrait même s’ ennuyer . Score : 34%

TABLE 2 : Faisceau final du segmenteur pour la phrase « Elle pourrait même s’ennuyer. »

Sans la propagation, la proposition erronée est donc la seule transmise à l’étiqueteur. Avec
la propagation, les deux propositions sont transmises et analysées, tel qu’on le voit dans la
TABLE 3. L’étiqueteur arrive donc à trancher pour la bonne solution, car la séquence [verbe
indicatif, conjonction de subordination, verbe infinitif] est très peu probable dans le corpus
d’entraînement. Le parseur (détails non fournis) ne fera ici que confirmer ce choix.

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 196 © ATALA

Elle
CLS11

pourrait
V

même
ADV

s’
CLR

ennuyer
VINF

.
PONCT

Score
d’étiquetage12

Score de
segmentation

Score
total

96 % 99 % 99 % 88 % 94 % 94 % 95 % 34 % 32 %

Elle
CLS

pourrait
V

même s’
CS

ennuyer
VINF

.
PONCT

Score
d’étiquetage

Score de
segmentation

Score
total

96 % 99 % 8 % 24 % 83 % 43 % 66 % 29 %

TABLE 3 : Faisceau final de l’étiqueteur pour la phrase « Elle pourrait même s’ennuyer. »

Notons que le score associé à chaque étiquette représente sa probabilité dans une
distribution couvrant toutes les étiquettes morphosyntaxiques possibles. L’étiquette
choisie est celle dont la probabilité est la plus élevée dans cette distribution, et dont le choix
n’est pas interdit par les règles que l’utilisateur aura configurés.

Prenons un autre exemple : « Il y a plus grave. » L’expression « il y a » est de segmentation
ambiguë, car considérée comme une préposition (ex. « Je suis venu il y a trois ans. ») ou
comme une séquence de trois mots. La TABLE 4 ci-dessous montre le faisceau terminal du
segmenteur pour cette phrase, qui privilégie donc la locution prépositionnelle.

Il y a plus grave . Score : 55%

Il y a plus grave . Score : 45%

TABLE 4 : Faisceau final du segmenteur dans la phrase « Il y a plus grave. »

Le faisceau terminal de l’étiqueteur, montré dans la TABLE 5 ci-dessous, rapproche les
probabilités des deux solutions, sans pour autant en changer l’ordre.

Il y a
P

plus
ADV

grave
ADJ

.
PONCT

Score
d’étiquetage

Score de
segmentation

Score
total

67 % 99 % 94 % 98 % 88 % 55 % 49 %

Il
CLS

y
CLO

a
V

plus
ADV

grave
ADJ

.
PONCT

Score
d’étiquetage

Score de
segmentation

Score
total

97
%

95 % 99 % 98 % 94 % 98 % 97 % 45 % 44 %

TABLE 5 : Faisceau final de l’étiqueteur dans la phrase « Il y a plus grave. »

Ce sera ici le parseur qui permettra de corriger l’erreur. La FIGURE 2 montre le faisceau
terminal du parseur. Pour simplifier, nous avons attribué des probabilités aux arcs de
dépendance. En réalité, il y a une probabilité pour chaque transition, même celles qui n’ont
pas généré des arcs (ex. Shift). Nous avons intégré ces probabilités dans celles des arcs.

11 Etiquettes morphosyntaxiques de Crabbé et Candito (2008) : ADV = adverbe. CLO = clitique objet. CLR =
clitique réfléchi. CLS = clitique sujet. P = préposition. V = verbe indicatif. VINF = verbe infinitif.
12 Moyenne harmonique des probabilités individuelles.

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 197 © ATALA

Notons que dans le cas de « il y a » comme préposition composée, le parseur n’a pas trouvé
de racine (la phrase n’ayant pas de verbe), et du coup n’a pas rattaché la ponctuation non
plus (classiquement rattachée au verbe central). La TABLE 6 ci-dessous montre ce même
faisceau final du parseur avec les scores. Pour chaque mot, on a indiqué la probabilité de
l’arc qui gouverne ce mot. Le score total est la moyenne harmonique des probabilités de
chaque arc (ou plutôt, de chaque transition), multipliée par le score d’étiquetage. Le
parseur arrive donc à trancher pour la bonne réponse, quoiqu’avec une faible marge.

Nous passons maintenant aux évaluations globales. Pour la segmentation, la question ne se
pose que pour un ensemble de locutions prédéfinies. Sans propagation, le segmenteur
atteint déjà une exactitude de 94,9 % pour les séquences de mots correspondantes sur le
sous corpus de test (à peu près 2 000 bonnes réponses sur 2 100). Une étude des erreurs
montre que, sur les 50 premières erreurs, 60 % se révèlent en fait être des erreurs
d’annotation. Dans ce contexte, la propagation a très peu d’effet sur le score total. Entre les
faisceaux 1 et 2 il n’y a que 13 cas de différence (sur 2 100), dont 5 corrections et 8 erreurs
introduites. Les faisceaux plus larges ont le même comportement.

FIGURE 2 : Faisceau final du parseur pour la phrase « Il y a plus grave. »

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 198 © ATALA

Il
CLS
suj13

y
CLO
aff

a
V
root

plus
ADV
mod

grave
ADJ
ato

.
PONCT
ponct

Score
de
parsing

Score
d’étiquetage

Score
total

98 % 87 % 99 % 86 % 55 % 98 % 85 % 44 % 38 %

Il y a
P
NA

plus
ADV
mod

grave
ADJ
obj

.
PONCT
NA

Score
de
parsing

Score
d’étiquetage

Score
total

NA 89 % 68 % NA 75 % 49 % 37 %

TABLE 6 : Faisceau final du parseur dans la phrase « Il y a plus grave. »

De cette évaluation peu convaincante, nous passons au corpus non annoté Leximedia2007.
Ici , nous avons appliqué la segmentation, l’étiquetage et le parsing à un texte brut à
différentes largeurs de faisceau avec et sans propagation. Nous avons par la suite comparé
les segmentations de différents runs, et annoté manuellement les 109 premiers cas de
différence (on a observé 300 différences pour 1 million de mots). Comme attendu, dans les
essais sans propagation, la segmentation est restée identique (voir paragraphe 3.1 ci-
dessus). La TABLE 7 ci-dessous donne le nombre de bonnes réponses au niveau de la
segmentation par faisceau, quand la propagation est appliquée.

Faisceau 1 2 5 10 20

Bonnes réponses 69 46 50 45 49

TABLE 7 : Bonnes réponses de la segmentation avec propagation sur le corpus Leximedia,
pour les 109 premiers cas de différence entre les faisceaux

En règle générale, les faisceaux à partir de 2 dégradent les résultats, en séparant à tort des
locutions (45 cas pour le faisceau 2). On observe toutefois plusieurs cas (22 pour le faisceau
2) où la segmentation est effectivement corrigée, comme par exemple :

− « Villepin précise encore que, bien évidemment, il a fait procéder…»
− « Elle pourrait même s'être retournée contre les amis de M. Strauss-Kahn,

soupçonnés de l'avoir diffusée. »
− « Jean-Claude Brialy, qui nous quitte à 74 ans, avait été un jeune premier

éblouissant. »

Au vu de ce bilan global, il apparaît que notre hypothèse sur l’utilité de la propagation du
faisceau pour la segmentation est à rejeter en l’état.

4.2 Impact du parsing sur l’étiquetage

Pour cette seconde articulation entre deux modules, notre hypothèse est que certaines
ambiguïtés catégorielles ne peuvent être efficacement traitées qu’en considérant le niveau

13 Les étiquettes des arcs suivent le guide d’annotation de Candito, Crabbé et Falco : aff = clitique figé, ato =
attribut de l’objet, mod = modifieur, obj = objet de préposition ou objet direct du verbe, suj = sujet, ponct =
ponctuation, root = relation réliant le verbe central à une « racine » artificiel

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 199 © ATALA

syntaxique. Nous avons donc comparé, pour une même segmentation des deux corpus
d’évaluation, une analyse avec et sans propagation pour la même largeur de faisceau, de
façon à pouvoir isoler le gain apporté par la parseur à l’étiquetage morphosyntaxique.

Pour le corpus de test du French Treebank, comme vu précédemment, la largeur de
faisceau a très peu d’effet sur l’exactitude totale sans propagation. Le gain est bien plus
perceptible avec propagation, comme on le voit dans la TABLE 8 ci-dessous.

Faisceau 1 2 5 10 20

Sans propagation 97,81 97,82 97,83 97,83 97,83

Avec propagation 97,81 97,87 97,92 97,94 97,95

TABLE 8 : Exactitude total de l’étiqueteur morphosyntaxique, avec et sans propagation vers
le parseur, pour 5 largeurs de faisceau

En terme de significativité statistique (test de McNemar, p<0,05), les gains apportés par
l’élargissement du faisceau sans activer la propagation ne sont pas significatifs (première
ligne du tableau). Ils le sont par contre pour chaque largeur de faisceau lorsque l’on active
la propagation (pour chaque colonne du tableau) et également lorsque l’on compare les
différentes largeurs avec propagation (seconde ligne du tableau).

Dans les détails, les gains sont concentrés sur certaines catégories grammaticales (adjectif,
conjonction de subordination, déterminant, pronom, pronom relatif).

Pour le corpus non annoté de Leximedia2007, nous avons examiné 132 cas de différences
entre les configurations envisagées (on a observé globalement une différence tous les 100
mots), en identifiant manuellement la bonne réponse à chaque fois. La TABLE 9 donne le
nombre de bonnes réponses pour chaque largeur de faisceau, avec et sans propagation.
Nous observons ici un gain très net avec l’application de la propagation. Les erreurs ont par
contre tendance à croître légèrement à partir d’un faisceau de largeur 10.

Faisceau 1 2 5 10 20

Sans propagation 52 58 58 53 52

Avec propagation 52 71 72 71 69

TABLE 9 : Nombre de bonnes réponses de l’étiqueteur morphosyntaxique pour le corpus
Leximedia2007 avec et sans propagation (132 premières différences)

Nous n’avons pas pu isoler de régularités dans les types d’erreurs ainsi corrigées, qui
semblent couvrir les cas classiques d’ambiguïté catégorielle. Les cas suivants sont corrigés
avec un faisceau de 5 (et au-delà) avec propagation :

− « … a estimé "vraisemblable" qu'après l'élection de M. Sarkozy, un nouveau traité
soit achevé "au plus tard en décembre". » (conjonction de coordination → verbe
subjonctif)

− « … en soulignant "l'émotion" qu'il ressentait au cours de cette première visite
d'Etat … » (conjonction de subordination → pronom relatif)

− « Evoquant sous les applaudissements cette "place de France que je voudrais aussi

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 200 © ATALA

place de la paix", … » (conjonction de subordination → pronom relatif)

Pour le faisceau 2, on a observé 43 cas de correction, contre 24 cas de dégradation, comme
celui-ci-dessous :

− « Qui mieux que le peuple corse peut choisir librement son développement ? »
(pronom interrogatif → pronom relatif)

Au vu de ces résultats, il semble donc que les modifications apportées à l’étiquetage par
propagation du faisceau vers le parseur soient des améliorations.

5 Comparaison avec d’autres études

La TABLE 10 montre les exactitudes atteintes par Talismane par comparaison avec Candito
et al (2010). Pour pouvoir comparer nos résultats, nous donnons ici l’exactitude pour un
texte pré-segmenté en mots (les sous-corpus d’évaluation « dev » et « test » du French
Treebank), auquel on a appliqué l’étiqueteur morphosyntaxique et le parseur (avec
propagation du faisceau). Les trois premières lignes sont celles fournies par Candito et al,
(2010), pour leur meilleur jeu de traits. Pour le temps de calcul, Talismane a été évalué avec
une architecture semblable14.

Parseur LAS15
Dev

UAS16
Dev

LAS
Test

UAS
Test

Temps de calcul

Berkeley 86,5 90,8 86,8 91,0 12m46s

MSTParser 87,5 90,3 88,2 90,9 14m39s

MaltParser 86,9 89,4 87,3 89,7 1m25s

Talismane (faisc 1) 86,8 90,2 87,2 90,6 7m56s

Talismane (faisc. 2) 87,3 90,4 88,0 91,0 14m51s

Talismane (faisc. 5) 87,8 90,7 88,3 91,1 38m26s

Talismane (faisc. 10) 88,0 90,8 88,4 91,1 80m36s

Talismane (faisc. 20) 88,1 90,8 88,5 91,1 157m53s

TABLE 10 : Exactitude et temps de calcul par parseur

Du point de vue de son architecture, Talismane se rapproche surtout du MaltParser, qui est
lui aussi un parseur en dépendances par transitions. Avec un faisceau de 1, les scores sont
effectivement proches pour le score avec étiquettes (LAS), et Talismane est légèrement
meilleur pour les seuls gouverneurs (UAS). Par contre, le MaltParser est bien plus rapide.
Avec un faisceau de 2, Talismane est très proche des scores du MSTParser (parseur par
graphes) pour le LAS et l’UAS. Les scores pour les faisceaux plus larges sont légèrement

14 Intel i5 CPU 2.40 GHz
15 LAS : Labeled Attachment Score = l’exactitude en considérant à la fois l’identification du gouverneur et
l’étiquetage des arcs. La ponctuation n’est pas prise en compte.
16 UAS : Unlabeled Attachment Score = l’exactitude si on prend on compte uniquement les gouverneurs, et non les
étiquettes des arcs. La ponctuation n’est pas prise en compte.

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 201 © ATALA

meilleurs, mais au prix d’un temps de calcul bien plus élevé (comme dit précédemment,
l’impact de la largeur sur le temps est linéaire). Il reste bien entendu à comparer Talismane
avec des analyseurs basés sur une grammaire, notamment FRMG (Villemonte de la

Clergerie et al. 2009).

Pour l’étiqueteur morphosyntaxique, (Denis et Sagot, 2009) signalent un score de 97,7 %
sur une partie du French Treebank. Notre score de 97,8 % sans faisceau ni propagation est
donc tout à fait comparable. Après les corrections du parseur par propagation du faisceau,
le score de 97,9 % est légèrement supérieur.

6 Conclusions

Nous avons présenté l’outil Talismane et la chaîne complète d’analyse syntaxique que cet
outil propose, permettant de produire un arbre de dépendances à partir d’un texte brut.
D’après notre évaluation, cet un outil atteint (voire dépasse) les autres analyseurs
statistiques actuellement disponibles pour le français.

Nous avons étudié de plus près les effets de la recherche par faisceau entre les différents
modules d’analyse. Selon nos évaluations, si la propagation des ambiguïtés entre les
modules a peu d’intérêt pour la segmentation en mots, elle semble au contraire très
intéressante pour l’étiquetage morphosyntaxique, avec un gain significatif. Nous avons
modifié la dernière version disponible de Talismane en conséquence.

Nous avons étudié le comportement de chaque module avec différentes largeurs de
faisceau. Pour le parseur en particulier, un faisceau de largeur 2 ou 5 semble être un bon
compromis entre exactitude des résultats et vitesse d’analyse, une largeur plus grande
apportant très peu d’améliorations. Par contre, un faisceau large semble critique pour
traiter efficacement les relations syntaxiques à grande distance.

L’analyse qualitative des phénomènes syntaxiques mieux ou moins bien traités par chaque
configuration est encore à affiner. Cet aspect est important à plusieurs titres. Tout d’abord,
on sait que les évaluations globales d’un analyseur syntaxique ne sont au final pertinentes
qu’au vu d’une tâche particulière, qui peut accorder plus ou moins d’importance au
traitement efficace de tel ou tel phénomène syntaxique. Ensuite, une caractéristique
importante de Talismane est la souplesse de définitions de traits et de règles qui permet
précisément de cibler des phénomènes particuliers une fois ceux-ci identifiés, en gardant
une porte d’entrée linguistique dans un système statistique opaque par essence (Tanguy,
2012).

Remerciements

Nous tenons à remercier Marjorie Raufast pour son aide précieuse dans l’évaluation
détaillée.

Références

ABEILLE, A., L. CLEMENT, ET F. TOUSSENEL (2003). Building a treebank for French, in A. Abeillé
(ed) Treebanks , Kluwer, Dordrecht.

TALN-RÉCITAL 2013, 17-21 Juin, Les Sables d’Olonne

 202 © ATALA

ATTARDI, G., DELLORLETTA, F., SIMI, ET M., TURIAN J. (2009) Accurate Dependency Parsing with
a Stacked Multilayer Perceptron. In Proceedings of Evalita’09 at AI*IA, Reggio Emilia, Italy.

CANDITO M.-H., CRABBÉ B., ET DENIS P., (2010) Statistical French dependency parsing:
treebank conversion and first results, Proceedings of LREC'2010, La Valletta, Malta.

CANDITO M.-H., NIVRE J., DENIS P. ET HENESTROZA ANGUIANO E., (2010) Benchmarking of
Statistical Dependency Parsers for French, in Proceedings of COLING'2010, Beijing, China

CRABBE B. ET CANDITO M.-H. (2008), Expériences d'analyse syntaxique statistique du français,
in Actes de TALN 2008, Avignon, France.

DENIS P. ET SAGOT B., (2009) Coupling an annotated corpus and a morphosyntactic lexicon
for state-of-the-art POS tagging with less human effort, in Proceedings of the 23rd Pacific
Asia Conference on Language, Information and Computation (PACLIC), Hong-Kong.

HO C.-H. ET LIN C.-J. (2012), Large-scale Linear Support Vector Regression, Journal of
Machine Learning Research, 13, pp. 3323-3348.

JOHANSSON R. ET NUGUES P. (2006). Investigating multilingual dependency parsing. In
proceeding of CoNLL-X, New York.

JOHANSSON R. ET NUGUES P. (2007). Incremental Dependency Parsing Using Online Learning.
In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, Prague

MCDONALD, R. (2006). Discriminative Learning and Spanning Tree Algorithms for
Dependency Parsing. Ph.D. thesis, University of Pennsylvania.

MCDONALD, R. ET J. NIVRE. (2007). Characterizing the errors of data-driven dependency
parsing models. In proceedings of EMNLP-CoNLL 2007, Prague.

NIVRE J. (2008), Algorithms for Deterministic Incremental Dependency Parsing,
Computational Linguistics, 34(4), 513-553.

RATNAPARKHI, A. (1998) Maximum entropy models for natural language ambiguity
resolution, PhD Thesis, University of Pennsylvania, 1998.

SAGAE K. ET LAVIE A. (2006), A best-first probabilistic shift-reduce parser, in Proceedings of
the COLING/ACL joint conference, Sydney.

SAGOT B., CLÉMENT L., DE LA CLERGERIE E. ET BOULLIER P. (2006) The Lefff 2 syntactic lexicon for
French: architecture, acquisition, use, in Proceedings of LREC, Gênes.

TANGUY, L. (2012). Complexification des données et des techniques en linguistique :
contributions du TAL aux solutions et aux problèmes. Mémoire d’HDR, Université de
Toulouse.

TESNIERE, LUCIEN. (1959). Eléments de syntaxe structurale, Klincksieck, Paris.

VILLEMONTE DE LA CLERGERIE, E, SAGOT, B., NICOLAS L. ET GUENOT, ML. (2009). FRMG : évolutions
d’un analyseur syntaxique TAG du français Journée de l’ATALA sur « Quels analyseurs
syntaxiques pour le français ? ».

	List of abbreviations and acronyms
	List of Figures
	List of Tables
	Introduction
	Robust dependency parsing: a state of the art
	Dependency annotation and parsing algorithms
	Dependency annotation of French
	Token and pos-tag annotations
	Dependency annotation standards
	A closer look at certain syntactic phenomena
	Relative subordinate clauses
	Coordination
	Structures not covered by the annotation scheme

	Projectivity
	Standard output formats

	Dependency parsing algorithms
	Rationalist vs. empiricist parsers
	Graph-based parsers
	Transition-based parsers

	Discussion

	Supervised machine learning for NLP classification problems
	Preliminary definitions
	Annotation
	Linguistic Context
	Features
	Training
	Analysis
	Pruning via a beam search

	Evaluation
	Classifiers
	Converting non-numeric features to numeric values
	Perceptrons
	Log-linear or maximum entropy models
	GIS algorithm for maximum entropy training
	Additive smoothing
	Inverting numeric features

	Linear SVMs
	Classifier comparison

	Supervised machine learning project examples
	Authorship attribution
	Jochre: OCR for Yiddish and Occitan
	Talismane—Syntax analysis for French

	Discussion

	Syntax analysis mechanism for French
	The Talismane syntax analyser - details and originality
	Philosophy
	Architecture
	Problem definition for Talismane's modules
	Sentence boundary detection
	Tokenisation
	Tokenisation mechanism

	Pos-tagging
	Parsing
	Transition-based parsing algorithm
	Measuring parser confidence
	Applying a beam search to parsing
	Incremental parse comparison strategies

	Formally defining features and rules
	Using named and parametrised features
	Defining feature groups to simplify combination
	Features returning multiple results

	He who laughs last: bypassing the model with rules
	Filtering the raw text for analysis
	Comparison to similar projects
	Discussion

	Incorporating linguistic knowledge
	Training corpora
	Errare humanum est: Annotation reliability
	French Treebank
	French Treebank converted to dependencies

	Evaluation corpora
	Sequoia
	Wikipedia.fr discussion pages
	Unannotated corpora

	External Resources
	Generalising features using external resources
	Talismane's definition of a lexicon
	LeFFF

	Baseline features
	Cutoff
	Sentence detector baseline features
	Tokeniser baseline features
	Pos-tagger baseline features
	Parser baseline features

	Baseline rules
	Tokeniser
	Pos-tagger

	Discussion

	Experiments
	Evaluating Talismane
	Evaluation methodology
	Parse evaluation metrics
	Statistical significance

	Evaluating classifiers and classifier parameters
	Evaluating classifiers for parsing
	Tuning perceptron parameters for parsing
	Tuning MaxEnt parameters for parsing
	Tuning linear SVM parameters for parsing
	Comparing the best configurations for parsing

	Evaluating classifers for pos-tagging
	Tuning perceptron parameters for pos-tagging
	Tuning MaxEnt parameters for pos-tagging
	Tuning linear SVM parameters for pos-tagging
	Comparing the best configurations for pos-tagging

	Combining the pos-tagger and the parser

	Experiments with system confidence
	Experiments with beam search
	Applying the beam to the pos-tagger
	Applying the beam to the parser

	Experiments with beam propagation
	Using the parser and pos-tagger to correct tokenisation errors
	Using the parser to correct pos-tagging errors
	Using beam propagation to improve parsing

	Comparison to similar studies
	Discussion

	Targeting specific errors with features and rules
	Features or rules?
	Using targeted pos-tagger features
	Identifying important pos-tagger errors

	Improving the tagging of que
	Recognising que as a negative adverb
	Development corpus error analysis
	Feature list
	Results

	Recognising que as a relative or interrogative pronoun
	Development corpus error analysis
	Feature list
	Results

	Effect of targeted pos-tagger features on the parser

	Using targeted parser features
	Parser coordination features
	Development corpus error analysis
	Feature list
	Results

	Using rules
	Pos-tagger closed vs. open classes
	Pos-tagger rules for que
	Parser rules: prohibiting duplicate subjects
	Parser rules: prohibiting relations across parentheses

	Discussion

	Improving parsing through external resources
	Incorporating specialised lexical resources
	Augmenting the lexicon with GLÀFF
	Injecting resources built by semi-supervised methods
	Semi-supervised methods for domain adaptation
	Distributional semantic resources
	Using the similarity between conjuncts to improve parsing for coordination

	Discussion

	Conclusion and perspectives
	Evaluation graphs
	Bibliography

	Synthèse en Français

