
HAL Id: tel-01058803
https://theses.hal.science/tel-01058803v1

Submitted on 28 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Techniques for security configuration management in
distributed information systems

Matteo Maria Casalino

To cite this version:
Matteo Maria Casalino. Techniques for security configuration management in distributed information
systems. Other [cs.OH]. Université Claude Bernard - Lyon I, 2014. English. �NNT : 2014LYO10124�.
�tel-01058803�

https://theses.hal.science/tel-01058803v1
https://hal.archives-ouvertes.fr


NO D’ORDRE 124-2014 ANNÉE 2014

THÈSE

APPROCHES POUR LA GESTION

DE CONFIGURATIONS DE SÉCURITÉ

DANS LES SYSTÈMES D’ INFORMA-
TION D ISTRIBUÉS

Présentée devant :
L’Université Claude Bernard Lyon 1

Pour obtenir :
Le grade de Docteur

Spécialité :
Informatique

Formation doctorale :
Informatique

École doctorale :
Informatique et Mathématiques (InfoMaths)

Par :
Matteo Maria CASALINO

SOUTENUE PUBLIQUEMENT LE 2 JUILLET 2014 DEVANT LE JURY COMPOSÉ DE :

Mohand-Saïd HACID, Professeur des Universités, Université Claude Bernard Lyon 1 Co-directeur de thèse
Romuald THION, Maître de Conférences, Université Claude Bernard Lyon 1 . . . . . . . .Co-directeur de thèse
Henrik PLATE, Chercheur, SAP Labs France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Co-encadrant
Frédéric CUPPENS, Professeur des Universités, ENST Bretagne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rapporteur
Ernesto DAMIANI, Professeur, Université de Milan – Italie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Rapporteur
Salima BENBERNOU, Professeur des Universités, Université Paris V . . . . . . . . . . . . . . . . . . . . . . . . .Examinateur
Luc BOUGANIM, Directeur de Recherche, INRIA Paris-Rocquencourt . . . . . . . . . . . . . . . . . . . . . . . .Examinateur

LABORATOIRE D’INFORMATIQUE EN IMAGE ET SYSTÈMES D’INFORMATION





SERIAL NUMBER 124-2014 YEAR 2014

THESIS

TECHNIQUES FOR SECURITY CON-
FIGURATION MANAGEMENT IN D IS-
TRIBUTED INFORMATION SYSTEMS

Presented to:
Université Claude Bernard Lyon 1

In order to obtain:
The degree of Doctor of Philosophy

Domain:
Computer science

Doctoral studies:
Computer science

Doctoral school:
Informatique et Mathématiques (InfoMaths)

Candidate:
Matteo Maria CASALINO

DATE OF THE DEFENCE 2ND OF JULY 2014. COMMITTEE IN CHARGE:

Mohand-Saïd HACID, Professor, Université Claude Bernard Lyon 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . Co-advisor
Romuald THION, Associate Professor, Université Claude Bernard Lyon 1 . . . . . . . . . . . . . . . . . . . . . Co-advisor
Henrik PLATE, Senior Researcher, SAP Labs France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Co-supervisor
Frédéric CUPPENS, Professor, ENST Bretagne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reviewer
Ernesto DAMIANI, Professor, University of Milan – Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reviewer
Salima BENBERNOU, Professor, Université Paris V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examiner
Luc BOUGANIM, Research Director, INRIA Paris-Rocquencourt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Examiner

LABORATOIRE D’INFORMATIQUE EN IMAGE ET SYSTÈMES D’INFORMATION





Preface

Acknowledgments

I owe my sincere gratitude to Mohand-Saïd Hacid, Romuald Thion and Henrik Plate
for the kindness, the support and the guidance, without which the work presented in
this thesis would not have been possible. It has been a great pleasure working with
you over the past three and half years, during which I had the chance to learn a lot
and to truly enjoy doing research. I would also like to thank Prof. Stefano Paraboschi,
Dr. Aldo Basile, for the support and encouragement, and Prof. Antonio Lioy, who
first persuaded me into starting a Ph.D. I am grateful to all the members of the jury:
Prof. Frédéric Cuppens, Prof. Ernesto Damiani, Prof. Salima Benbernou and Dr. Luc
Bouganim, for agreeing to be reviewers and examiners. In particular, I would like to
thank the two reviewers for their insightful comments.

A special thanks to the colleagues and friends at SAP for the collaboration, the dis-
cussions and all the fun moments. In particular the PoSecCo team: Henrik, Serena,
Wihem, Theodoor; the fellow Ph.D. students: Giancarlo, Corentin, Gabriel, Samuel,
Jörn, Ahmad, Mehdi; and all the following people: Sylvine, Jean-Cristophe, Michele,
Volkmar, Slim, Luca, Antonino, Francesco, Anderson, Jakub, Stuart, Anne, Antonella,
Akram, Stephane, Amine, Johann. Thanks to Florian, Xavier and all the friends of the
big coloc for the memorable times spent together on the French riviera.

Last, but not least, I would like to thank my parents Franco and Laura, my girlfriend
Alice and all my closest friends for the love, the constant encouragement and for shar-
ing the joy of the happy moments as well as enduring my bad mood during the tough
ones.





iii

Résumé

LA sécurité des services informatiques d’aujourd’hui dépend significativement de la
bonne configuration des systèmes qui sont de plus en plus distribués. Au même

temps, la gestion des configurations de sécurité est encore fortement basée sur des ac-
tivités humaines, qui sont coûteuses et sujettes à erreurs. Au cours de la dernière dé-
cennie, il a été reporté à plusieurs reprises qu’une partie significative des incidents de
sécurité et des pertes de données a été causée par des configurations incorrectes des
systèmes.

Pour résoudre ce problème, plusieurs techniques ont été proposées pour automati-
ser les tâches de gestion des configurations. Beaucoup d’entre elles mettent l’accent sur
les phases de planification et de mise en œuvre, où les exigences et les politiques de
sécurité abstraites sont conçues, harmonisées et transformées dans des configurations
concrètes. Ces techniques nécessitent souvent d’opérer sur des politiques formelles ou
très structurées qui se prêtent à un raisonnement automatisé, mais qui sont rarement
disponibles dans la pratique. Cependant, moins d’attention a été consacrée aux phases
de gestion de suivi et de changement des configurations, qui complètent les étapes pré-
cédentes en détectant et en corrigeant les erreurs afin d’assurer que les changements de
configuration n’exposent pas le système à des menaces de sécurité.

Les objectifs et les contributions de cette thèse se concentrent sur ce deuxième point
de vue, de façon pragmatique sur la base des configurations de sécurité concrètes. En
particulier, nous proposons trois contributions visant à analyser et à vérifier des confi-
gurations de sécurité :

1. Nous nous concentrons d’abord sur la validation syntaxique des configurations
de sécurité, c’est-à-dire, la vérification de l’état d’un système basé sur l’exécution
de vérifications syntactiques appelées checks. Les approches existantes fixent im-
plicitement la portée des checks à une seule machine ou système d’exploitation et
elles ne séparent pas clairement l’expression des checks de la description des sys-
tèmes cibles. Par conséquent, ces techniques ne sont pas appropriées à la détection
des problèmes qui sont dûs à la mauvaise configuration simultanée de plusieurs
composants d’un système distribué. Notre première contribution étend les tech-
niques de validation de configuration existantes, pour les rendre applicables aux
systèmes d’information distribués et les intégrer avec les normes et les pratiques
actuelles de l’industrie. Plus particulièrement, nous étendons le standard Open

Vulnerability and Assessment Language (OVAL) afin de séparer clairement la spéci-
fication des checks de l’identification des composants à vérifier et des mécanismes
de collecte des configurations. Nous décrivons une implémentation preuve de
concept d’un interpréteur du langage étendu. Nous discutons de l’intégration de
ce prototype dans différents scénarios qui différent selon l’origine des checks à
effectuer, leurs objectifs et les modalités de leur exécution.
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2. Quand l’écart entre la syntaxe et la sémantique d’un langage de configuration de
sécurité augmente, les contrôles syntaxiques devient de moins en moins aptes à
exprimer des conditions ou des invariants intéressants, ainsi il devient difficile de
prévoir l’impact sur la sécurité résultant d’une différence entre deux configura-
tions. L’étude de cette question est notre deuxième contribution. En particulier,
nous considérons le problème de l’évaluation de l’impact du changement des
configurations de contrôle d’accès dans les applications Web par rapport à leur
permissivité, qui malgré l’omniprésence des technologies Web, n’a pas encore été
explicitement abordé. Nous proposons une sémantique dénotationnelle du lan-
gage de contrôle d’accès des applications web JEE (Java Enterprise Edition), à
partir de laquelle nous définissons une procédure pour comparer deux configura-
tions vis-à-vis de leur permissivité. Nous implémentons et évaluons notre modèle
en comparant la sémantique formelle que nous proposons à l’implémentation ac-
tuelle des conteneurs JEE existants. La batterie de tests automatisés pour réaliser
cette évaluation est explicitée. D’une part, nous avons remarqué que notre inter-
prétation formelle modélise les implémentations réelles de façon satisfaisante, et
d’autre part, nous avons pu identifier une erreur d’implémentation du contrôle
d’accès dans le serveur Apache Tomcat JEE jusqu’ici inconnue.

3. Raisonner sur la sémantique de la configuration d’un seul système de contrôle
d’accès n’est pas assez dans le cas des systèmes distribués, où le changement de
la configuration d’un composant peut affecter le comportement des autres. Bien
que cette problématique ait été largement étudiée dans les domaines de la compo-
sition des politiques et de la détection de conflits dans les couches applicatives ou
les couches réseaux séparément, le traitement des interactions inter-couches est
toujours considéré comme un problème ouvert. Ainsi, notre dernière contribution
porte sur la gestion du changement des configurations à des niveaux différents.
Nous proposons une technique pour réorganiser (refactoring) des politiques inter-
couches, c’est-à-dire de réécrire une collection de politiques de contrôle d’accès
appartenant à des niveaux architecturaux différents de sorte que : (i) la permis-
sivité de la politique globale est préservée, (ii) le principe du moindre privilège
est garanti, (iii) les interactions inter-couches inutiles sont supprimées. À cet effet,
nous proposons un modèle générique de contrôle d’accès qui prend en compte
les interactions entre les autorisations exprimées à des niveaux différents. Sur ce
modèle, nous définissons la composition de politiques de contrôle d’accès et nous
montrons que son inverse, la décomposition, fournit, quand elle existe, une so-
lution au problème de la réorganisation. Enfin, nous proposons des algorithmes
pour tester si des politiques sont effectivement décomposables, et le cas échéant,
calculer la décomposition. Notre principal résultat théorique est une caractéri-
sation des conditions qui garantissent qu’une telle décomposition est possible.
Cette contribution s’appuie sur des résultats issus de la théorie des bases de don-
nées relationnelles et les étends à nos besoins, suggérant ainsi l’intérêt des ré-



v

sultats de ce domaine pour la résolution de problèmes concernant les politiques
de sécurité. Nous évaluons la faisabilité de notre approche en conduisant une
évaluation expérimentale des algorithmes sur des politiques de contrôle d’accès
synthétiques dont nous faisons varier plusieurs paramètres. Les résultats expéri-
mentaux donnent des performances comparables à celles obtenues par d’autres
algorithmes pour l’analyse statique de configurations de sécurité proposés dans
la literature.

Cette thèse a été financée avec SAP AG sous la convention CIFRE no. 154/2011
(http://www.anrt.asso.fr/fr/espace_cifre/accueil.jsp) et par le projet
européen FP7-ICT-2009-5 no. 257129 : “PoSecCo : Policy and Security Configuration
Management” (http://www.posecco.eu).
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Abstract

THE security of nowadays IT services significantly depends on the correct configura-
tion of increasingly distributed information systems. At the same time, the man-

agement of security configurations is still heavily centered on human activities, which
are costly and prone to error. Over the last decade it has been repeatedly reported
that a significant share of security incidents and data breaches are caused by inaccurate
systems configuration.

To tackle this problem, several techniques have been proposed to increase the
automation in configuration management tasks. Many of them focus on planning
and implementation, i.e., the phases where abstract security requirements and poli-
cies are elicited, harmonized, de-conflicted and transformed into concrete configura-
tions. As such, these techniques often require formal or highly structured input policies
amenable to automated reasoning, which are rarely available in practice. In contrast,
less attention has been dedicated to the monitoring and change management phases,
which complement the above steps by detecting and remediating configuration er-
rors and by ensuring that configuration changes do not expose the system to security
threats.

The objectives and contributions of this thesis take the latter perspective and, as
such, they pragmatically work on the basis of concrete security configurations. In par-
ticular, we propose three contributions that move from more concrete syntax-based
configuration analysis towards increasingly abstract semantic reasoning.

1. We first focus on configuration validation, i.e., the evaluation of the security state
of a system based on the execution of syntactic configuration checks. Existing ap-
proaches often implicitly fix the checks’ scope to a single machine or operating
system and they do not clearly separate the description of the check logic from
that of target systems. Hence, such techniques are not suitable for detecting issues
that are due to the simultaneous misconfiguration of distributed system compo-
nents. Our first contribution extends standard-based syntactic configuration val-
idation techniques to make them applicable to distributed information systems
and to integrate them with current industry standards and practices. Specifically,
we extend the Open Vulnerability and Assessment Language (OVAL) to intro-
duce a clear separation between the specification of check logic, the identification
of targets and the mechanisms for collecting to-be-checked configurations. We
describe a proof-of-concept implementation of both the language and its inter-
preter. We discuss their integration in several scenarios that differ in terms of
purpose and authorship of configuration checks and modality of invocation of
the configuration validation process.

2. As the gap between syntax and security semantics of a configuration language
increases, syntactic checks become less suitable to express interesting conditions
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or invariants, because different syntactic discrepancies may have more or less rel-
evant security impact. Studying this issue is our second objective. In particular,
we consider the problem of evaluating the change impact of access control config-
urations of web applications with respect to their permissiveness, which, despite
the pervasiveness of web technologies, has not been explicitly tackled so far. We
provide a denotational semantics for the access control configuration language
of JEE (Java Enterprise Edition) web applications, on top of which we define a
procedure to compare access control configurations with respect to their permis-
siveness. We implement our model and evaluate it with respect to the operational
semantics of existing JEE container implementations through automated software
testing. The findings include not only positive results supporting the correctness
of our semantics, but also evidence of discrepancies that led to the discovery of a
previously unknown implementation error in the Apache Tomcat JEE container.

3. Reasoning on the semantics of the configuration of a single access control sys-
tem is not enough in the case of distributed systems, whereby different compo-
nents’ configurations may affect each other’s behaviour. While this issue has been
largely investigated in the domains of either network or application layer policy
composition and conflict detection, the treatment of inter-layer interactions is still
considered an open problem. Thus, our last objective focuses on the change man-
agement of configurations specified on different architectural layers. We propose
a technique to perform multi-layered policy refactoring, i.e., to rewrite a collection
of access control policies belonging to different architectural layers such that: (i)
the global permissiveness is preserved, (ii) the least privilege principle is enforced
and (iii) superfluous inter-layer interactions are removed. To this end, we embed
a generic access control system into a structure that keeps track of the interac-
tions among authorization decisions taken on different layers. We then define
the semantics of composition of such access control layers and show that its in-
verse, namely decomposition, provides (when it exists) a solution to the problem
of refactoring. Finally, we provide algorithms to test for decomposability, as well
as to compute (de)composition. Our main theoretical result is the proof of correct-
ness of the decomposability condition for access control layers, which leverages
and extends existing results in database dependency theory, and provides novel
evidence that the study of database dependencies can be fruitfully applied to help
solve security problems. To assess the feasibility of our approach, we evaluate the
algorithms with respect to various properties of input policies. The results show
comparable performances with previous work on the static analysis of network
security configurations.

This thesis has been funded by SAP AG under the CIFRE convention no. 154/2011
(http://www.anrt.asso.fr/fr/espace_cifre/accueil.jsp), and by the EU
funded project FP7-ICT-2009-5 no. 257129: “PoSecCo: Policy and Security Configura-
tion Management” (http://www.posecco.eu).
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The mantra of any good security engineer is: “Security is a not a product, but

a process.” It’s more than designing strong cryptography into a system; it’s

designing the entire system such that all security measures, including cryptog-

raphy, work together.

—Bruce Schneier

1
Introduction

⊲ At the beginning of each chapter we propose a summary of its main contributions. The table of content
of the chapter is presented on the following page.

This chapter is the introduction of the thesis. We first introduce the notion of distributed informa-
tion system. In this context, we describe the principles of security configuration management and we
analyze the problems and challenges within this subject. We then motivate and position the objectives
and contributions of the thesis with respect to existing approaches and techniques. To illustrate how
our contributions integrate in a common security configuration management framework, we introduce
the European research project PoSecCo (Policy and Security Configuration Management), that supports
the management of policies and configurations from the point of view of a service provider operating a
distributed system infrastructure. In conclusion, we outline the structure of the manuscript. ⊳
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MODERN information systems are more and more constituted by assembling mod-
ular off-the-shelf components, the behaviour of which has to be customized by

the means of proper configuration. From the system security standpoint, while in-
creased modularization and reuse lead, on the one hand, to the easier implementation
of smaller and better tested — hence less vulnerable — components, on the other hand
they make the deployment, administration and management tasks more challenging
and security-critical.

In particular, over the last decade, the management of security configurations has
become increasingly complex and prone to human error, which has made security mis-
configuration become one of the topmost causes of security incidents and data breaches.
Before discussing the reasons that lie behind this problem, we first introduce the notion
of distributed information system and we review the basis of nowadays common secu-
rity configuration management practices.

1.1 Distributed Information Systems

Over the past half century, from the beginning of the modern computer era to nowa-
days, computer systems underwent an incredibly fast and unprecedented evolution.
Two aspects are typically recognized as the main drivers of this process: the exponen-
tial1 increase in the transistors density of integrated circuits on one side, leading to
the development of cheaper microprocessors, and the development of increasingly fast
digital telecommunication technologies on the other.

One fundamental consequence of the combination of these two factors is that bigger
and bigger amounts of individual computers became easily available and could be con-
nected in networks to share information even at large distances. As such, distributed
systems rapidly emerged as a more flexible and scalable paradigm in contrast to that of
previous centralized systems (or mainframes).

Tanenbaum and Sten provide the following rather generic definition of distributed
systems [Tanenbaum2002]:

A distributed system is a collection of independent computers that appears to its

users as a single coherent system.

Moreover, as anticipated earlier, a distinguishing characteristic of a distributed sys-
tem consists of having its independent components connected through a network and a
distribution middleware, enabling computers to coordinate their activities and to share
the resources of the system.

1According to Moore’s law.
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Different classes of distributed systems can be distinguished, depending on the
main goal they are meant to achieve. An important category is, for instance, that of
high-performance computing systems, such as computer clusters or grids, that are de-
signed to tackle complex computational problems by distributing subproblems to many
independent nodes in parallel. Another noteworthy type of distributed systems is con-
stituted by pervasive systems, such as sensor networks or home devices (e.g., smart-
phones, tablets, smart TVs, wearable devices, etc. . . ), for which distribution is not a
design choice but rather an intrinsic feature.

The category which is of central interest in the scope of this thesis is that of dis-

tributed information systems. Information systems are collections of hardware and
software that allow people and organizations to collect, manage and process data rep-
resenting information. Well-known applications of such systems include, e.g., enter-
prise resource planning, office automation, electronic commerce, search engines, deci-
sion support, transaction processing, database management, etc. Originally developed
as monolithic single-tier systems, they progressively evolved towards multi-tier archi-
tectures, where data presentation, processing (i.e., the implementation of the business
logic) and persistency became physically separated functionalities deputed to indepen-
dent specialized components. Even more fine-grained separation was introduced with
the widespread of service oriented paradigms, whereby tighter machine-to-machine in-
tegration is envisaged even across organizational boundaries and over public networks,
such as the Internet.

Compared to high-performance computing systems, distributed information sys-
tems are constituted by more heterogeneous components which handle the whole data
lifecycle (instead of only the processing part) and need to be configured consistently

to comply with a collection of security policies, which are ultimately concerned with
securing protect-worthy information. Moreover, unlike pervasive systems that are typ-
ically designed for self-adaptability, they are directly under human administrative con-
trol, which, as we will argue in the remainder of this chapter, is costly and prone to error.
For these reasons, distributed information systems constitute the context wherein the

techniques proposed in this thesis are meant to apply.

1.2 Security Configuration Management

Over the years, several common practices and standards have been adopted by or-
ganizations and individuals to structure and facilitate the management of IT related
risk. One of the best known such practices is the PDCA (Plan-Do-Check-Act) cy-
cle [Moen2010], also known as the Shewhart or Deming cycle, that was made popular
by Dr. W. Edwards Deming as a means to constantly improve the quality of generic
processes and services. Deming’s plan and do phases correspond respectively to the set-
ting of objectives and their subsequent implementation. The check and act steps serve



Section 1.2. Security Configuration Management 5

instead to identify changes and deviations with respect to the planned objectives and
to react accordingly.

A prominent example application of the PDCA cycle to the management of infor-
mation security in the IT industry is provided as part of the Information Technology
Infrastructure Library (ITIL). ITIL is a set of processes and best practices to guide the
management of the full lifecycle of IT services and it is widely accepted as the de facto
standard for the management of IT systems. Its latest version, ITIL v3, provides pro-
cesses and functions covering the full lifecycle of services. The lifecycle of a service
comprises the various stages through which the service passes and, in ITIL, it is de-
scribed from the point of view of the service provider. The service lifecycle consists of
5 stages which are guided by best practices, namely service strategy, design, transition,
operation and continual improvement.

Several processes are defined to structure management activities throughout such
stages. Of particular interest from the point of view of security is the information secu-

rity management process, which gained increasing attention in the latest version of ITIL.
This process is part of the service design phase and its purpose is to provide a focus for
all aspects of IT security and manage all IT security activities. As stated in [ITIL2007],
it “ensures the confidentiality, integrity and availability of the organization’s assets, in-
formation, data and IT services” and it is actually a customization of the four PDCA
phases for the management of information security [OGC2007]. In particular, as de-
picted on the left-hand side of Figure 1.1, the plan phase is dedicated to the elicitation
of security requirements and policies, which typically result from a risk analysis phase
and define the organization’s attitude on security matters. The do phase, here named
implementation, involves putting in practice all the measures that are necessary to en-
force the policies, e.g., configuring network and application security features and es-
tablishing appropriate access rights, but also training the employees and preventing
unauthorized physical access to the premises. The effectiveness of such measures is
constantly monitored in the evaluate (corresponding to Deming’s check) phase, by the
means of internal as well as external audits. Any detected potential issue, as well as
actual security incident, is analyzed and appropriate countermeasures are taken in the
maintain (corresponding to Deming’s act) phase.

To support administrators in the implementation of this process, as well as other
related ones, ITIL introduces the concept of Configuration Management System (CMS),
which comprises the “set of tools and databases that are used to manage an IT ser-
vice provider’s configuration data”. An essential part of the CMS is the Configuration
Management Database (CMDB) that stores the information about all manageable sys-
tem components, such as their attributes and relationships, together with their config-
uration data [ITIL2007]. Several major software vendors, such as SAP, IBM, and HP,
nowadays complement their product portfolio with configuration management tools
that offer many of the functionalities of ITIL’s CMS and CMDB.
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NIST Security Configu-
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Figure 1.1: Comparison of PDCA cycles: dashed (resp. dotted) lines highlight the cor-
respondences between Deming’s and ITIL’s (resp. NIST’s) phases.

Within ITIL’s high-level guidelines and recommendations we observe several ref-
erences to the concepts of security policies and configurations. Moreover, it becomes
clear that the proper management of security configurations is crucial for the effective
administration of information security in IT systems. In the remainder of this section
we provide a more precise description of these concepts, while illustrating their in-
volvement in a second, more specific, instance of the PDCA cycle, which constitutes
the core of the Security Configuration Management (SCM) process.

We rely on the description, given by the U.S. National Institute of Standards and
Technology (NIST) in [Johnson2011], which defines SCM as:

the management and control of secure configurations for an information system to

enable security and facilitate the management of risk.

In a nutshell, SCM is again structured as a closed-loop cycle composed of the four
following phases (cf. right-hand side of Figure 1.1):

CM1) Planning;

CM2) Identifying and implementing configurations;

CM3) Controlling configuration changes;

CM4) Monitoring.

During the planning phase (CM1), the security goals of the information system are
identified and expressed in the form of a collection of security policies. Several different
definitions of the concept of policy have been given in literature. In this context, and
throughout all this thesis, a policy denotes:

a definite goal, course or method of action to guide and determine present and future

decisions. [Westerinen2001]
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In particular, a security policy concerns specifically security goals, such as ensuring the
confidentiality and integrity of sensitive data or enforcing proper access control over
the network and within the different applications that collaboratively deliver business
services. Policies are most commonly expressed in prose language as a sequence of
informal mandatory statements.

The purpose of phase (CM2) is twofold. First, a collection of security mechanisms
suitable to (cost effectively) enforce the policies resulting from phase (CM1) are iden-
tified. Next, security configurations specifying the intended behaviour of such mecha-
nisms must be devised accordingly and deployed to the system. More precisely, by the
term configuration, we name:

the set of parameters in network elements and other systems that determine their

function and operation. [Westerinen2001]

Security configurations are those that specifically affect the security-relevant behaviour
of systems.

Configurations must have a machine-readable representation, as they have to be
interpreted by a system to adapt its runtime behaviour accordingly. Moreover, as they
are meant to be provided by system administrators, they can be most often expressed in
a format that is understandable to humans as well, that is, they respect a well-defined
syntax which we refer to as configuration language. A configuration language can feature
simple constructs, such as key-value pairs to configure a set of enumerable settings, or
may involve more complex expressions like, e.g., to associate a specific behaviour to all
the system’s states that match a given pattern, or to configure a complex behaviour as
a result of the composition of simpler statements. For instance, the SSLRequireSSL
directive [ASF2014b] is an example key-value security configuration of the Apache web
server that precludes any access to one or more URLs unless a secure channel (HTTPS)
is established between client and server. A firewall ruleset is instead a more complex
example of network access control configuration, whereby network packets are either
allowed or blocked according to the action specified by the first rule that matches to
a given set of packets’ features (e.g., IP source and destination addresses, transport
protocol, TCP/UDP ports, etc.).

The last two phases, (CM3) and (CM4), are necessary to handle, respectively, fore-
seen and unforeseen changes in the system’s configuration. Due to the dynamicity of
nowadays information systems, changes are likely to occur for several reasons, e.g., in-
stallation or replacement of technical equipment, restoration of broken functionalities,
handling of patches and upgrades, etc. In principle, any change in the security con-
figurations could break the compliance with the desired security policies, hence it is
essential to carefully plan, test and document changes, which is precisely the purpose
of phase (CM3). Crucial to this phase is the ability to anticipate the impact of configu-
ration changes on the global security properties guaranteed by the system.
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Even if substantial effort is spent in managing and controlling changes, the risk
for unplanned deviations to occur is not negligible in reality. Therefore appropriate
configuration monitoring activities should also be put in practice, as prescribed by
phase (CM4). In this phase, the actual state of the entire system configuration needs to
be periodically compared to the desired state, which was determined in phase (CM2).
Moreover, it is important to detect all possible misconfigurations which, although not
explicitly violating any policy, still expose the system to unforeseen security vulnera-
bilities. Finally, even if the system does not expose known vulnerabilities, it is highly
recommendable to check whether configuration guidelines and best practices, which
are typically released by software vendors and security experts, are correctly followed,
in order to harden the system and minimize the risk of incidents. It is worth noting
that not every discrepancy between the actual and desired state of the system configu-
ration necessarily constitutes a source of problems. This can become an issue especially
in large systems, where handling every single discrepancy alert may rapidly become
impractical. It becomes then crucial to assess the severity of misconfigurations that is
to determine their potential impact on the overall system security in order to prioritize
remediation actions.

Note how phases (CM1) and (CM2) closely relate to Deming’s plan and do ones re-
spectively. Deming’s check and act phases cover instead two aspects that are common to
both phases (CM3) and (CM4): namely (i) the detection of either undesired deviations
or evolving security needs, and (ii) the implementation of changes for remediation and
improvement. Other than tailoring these concepts to the domain of security configura-
tion management, the NIST’s definition factorizes them differently, by distinguishing
the task of handling planned changes from that of dealing with unplanned ones.

1.3 Problems and Challenges in SCM

Nowadays, configuration management activities still largely rely on human-centric
processes, often involving the collaboration of multiple stakeholders with different do-
mains of expertise. Over the last decade, however, researchers and analysts have shown
that this practice does not cope adequately with the increasing scale and complexity
of modern IT infrastructures. At the same time, numerous data breach reports and
surveys revealed that a significant share of security vulnerabilities and, consequently,
incidents are due to the improper configuration of existing defense mechanisms.

1.3.1 Managing Distributed Systems’ Configurations is Complex and Error-prone

Already in 2003 the results of a study conducted by Oppenheimer et al. [Oppen-
heimer2003b] on the main causes of failures in three large-scale Internet services
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showed that (i) errors committed by human operators are the first cause of service
failure and (ii) systems misconfiguration constitutes the largest category of such errors.

A 2002 survey conducted by the Yankee group [Kerravala2004] yields similar con-
clusions for what concerns network configuration management, that is shown to be
affected by human error in the 62% of cases. Furthermore, given the increasing critical-
ity of the services offered over computer networks, the cost of downtime is estimated to
grow substantially, motivating the need for more effective configuration management
techniques.

Likewise, a more recent paper published in 2008 by Juniper Networks reports that
different studies attributed from 50 to 80 percent of network outages to human er-
rors [Juniper2008]. In particular, it is pointed out how such errors are mainly due to
the “system complexity with multiple components and many types of interactions”,
that “creates an environment where the relationship between actions and outcomes is
not always obvious”.

On the same line [Oppenheimer2003a] argues that operator errors are caused by the
poor understanding of the existing configuration, which is hindered by the increasingly
distributed nature of nowadays systems. The authors state in fact that, in a distributed
system, “[. . . ] due to the possibility of cascading failures, configuration options that
control cross-component interactions are more likely to have global effects than are
single-component ones”.

A further confirmation of the above findings comes from a recent study involving
support data of both commercial and open-source software deployed at thousands of
customers, reporting that configuration issues cause the largest percentage (31%) of
high-severity support requests [Yin2011]. Moreover, the complexity of configuring dis-
tributed systems is again remarked as a major issue: “[. . . ] still a significant portion
[of misconfigurations] (21.7%~57.3%) involve configurations beyond the system itself
or span over multiple hosts”.

1.3.2 Misconfiguration is a Major Security Threat

Being configuration management such a complex and challenging task, it is not surpris-
ing that the security of IT systems, that tightly depends on the correct configuration of
many different hardware and software components, is severely threatened by the risk
of misconfiguration. Indeed, as reported by Forrester [Kark2006], organizations often
either cannot prove that system configurations correctly enforce their security policies,
or “it is prohibitively expensive to do so”. This fact has been most recently confirmed
by a sample of over 900 IT professionals who, when surveyed in 2012, ranked the task
of enforcing security policies as the second most difficult IT security challenge after that
of managing the complexity of security [Davis2012].
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As a matter of facts, configuration errors have been repeatedly found to be among
the causes of data breach incidents and cyber-attacks, the cost of which has been (and
still is) steadily increasing [Ponemon2013b; Ponemon2013a]. For instance, a study re-
leased by British Telecom and Gartner in 2004 concluded that up to 65% of successful
cyber-attacks were directly related to configuration errors [BT2004]. Four years later,
the american CSIS (Center for Strategic and International Studies) Commission on Cy-
bersecurity, which was instituted to provide findings and recommendations to secure
cyberspace in the 44th United States Presidency, reported that “inappropriate or incor-
rect security configurations were responsible for 80% of United States Air Force vulner-
abilities” [CSIS2008].

Several data breach reports revealed similar findings too. Both in 2009 and 2010
the Verizon Data Breach Investigation Report showed that misconfiguration was the
leading category of errors contributing to data compromise and explicitly stated that
“contributory error is almost always involved in a breach” [Verizon2009; Verizon2010].
Accordingly, the 2010 UK Security Breach Investigation Report attributed the 30%
of analyzed security breaches to inaccurate server or network filtering configura-
tion [7Safe2010].

Server misconfiguration has also been the most prevalent category of security vul-
nerabilities reported recently by a 3 years long penetration testing study conducted on
web applications: “in all three years [2010 to 2012], insecure server configuration and
information leakage accounted for the highest number of vulnerabilities identified”.
Moreover, “the server configuration category is the only category which saw consistent
increases each year” [Tudor2013].

As a further confirmation of the severity of the risks stemming from improper se-
curity configuration management, security experts and analysts progressively adapted
their recommendations and best practices to mention it as an important issue. As of
2010 security misconfiguration appears among the top 10 most critical web applica-
tion security risks according to OWASP [OWASP2010; OWASP2013]. In 2011, Gartner
considered secure configuration management as a must-have rather than a nice-to-have
control, ranking it first on the list of server protection priorities [MacDonald2011]. Most
recently, in 2013, SANS [SANS2013] lists secure configuration for systems, servers and
end points as a third critical control, and secure configuration for network and security
devices as a tenth critical control.

1.3.3 Research Challenges

In order to improve the effectiveness of current configuration management practices,
it is convenient to identify the dimensions of complexity that characterize this prob-
lem. As mentioned earlier, several authors identify in human error the main cause of
misconfiguration issues [Oppenheimer2003b; Kerravala2004], but why is this the case?
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What makes configuration management tasks prone to error? To answer these ques-
tions we decline the problem’s complexity into five main challenges, according to the
categorization proposed by [AlShaer2011].

Semantic gap. Security configurations are typically expressed according to a respec-
tive configuration language with well-defined syntax. The semantics of this lan-
guage is ultimately given by the behaviour of the configured system at runtime.
As a matter of fact, the gap of abstraction which lies between a security config-
uration and the corresponding enforced policy is not dissimilar, conceptually, to
the difference between a program’s source code and the behaviour realized by an
interpreter while executing it.
Configuration authors need to have a thorough understanding of the interpre-
tation semantics of syntactic constructs, so that they can configure the system
behaviour exactly according to the policy they want the system to enforce. Un-
fortunately, such a semantics is often described in prose language within lengthy
documents such as user manuals or technical specifications, which can lead to am-
biguities and misinterpretation. Several authors [Ni2009; Ramli2011; Kassab1998;
Cuppens2004; Bishop2006] argue that this is dangerous and advocate for the need
of providing formal semantics to configuration languages, that, on top of remov-
ing ambiguity, enables automated reasoning and verification.

Large scale and heterogeneous. Configuration files can be very large in size (e.g., up to
several thousand rules for largest firewall rulesets [Wool2010]), and hence hard to
be consumed and fully understood by system administrators. The heterogeneity
of the various configuration languages that, in practice, often coexist in the same
environment complicates even more this issue.
Furthermore, as argued in [Bellovin2009], “managing the configuration of 100
machines is a different problem than managing one or two; managing 1000 is dif-
ferent still”. Here, qualitative rather than merely quantitative difference is meant:
in many cases the processes that work for small-scale systems are simply not ap-
plicable to large-scale ones. For instance, it is well known that, due to budget
constraints, auditors are often forced to resort to sampling techniques, thereby
limiting their analysis to a small sample of an organization’s assets [Hall2002]. In
the context of an IT audit, where the effectiveness and compliance of technical
controls (e.g., configuration settings) with respect to the control objectives (e.g.,
security policies) have to be assessed, this means that potentially dangerous mis-
configurations may remain overlooked.

Distributed yet interdependent. IT systems typically rely on the cooperation of a vari-
ety of components, lying on different architectural layers, to deliver services. For
instance, network-layer components such as switches, routers, firewalls, VPN gate-
ways ensure and regulate connectivity; platform-layer components like operating
systems, application servers, virtual machine hypervisors provide execution envi-
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ronments suitable for more or less specific purposes; application-layer components
implement the actual services: email, database, web, etc. It is widely recognized
that such a strong inter-component interaction necessarily influences the security
properties of the system as a whole. Therefore security configurations cannot be
only considered individually for each component, but need to take into account
the context as well.
For example, a firewall configuration must be consistent with that of other fire-
walls lying upstream or downstream in the network to avoid anomalies such as
conflict, redundancy or shadowing [AlShaer2005; Alfaro2008; Basile2012]. Traf-
fic encryption (e.g., via IPSec) does not allow packet inspection, hence intrusion
detection systems and layer-7 firewalls must be placed and configured accord-
ingly [Fu2001].
Not only it is necessary to account for interactions among components on the
same layer (e.g., network), but inter-layer interactions often play a crucial role too.
According to Sloman and Lupu [Sloman2002], the study of the interdependencies
among multiple levels of policies constitutes a relevant research topic in policy
and configuration management, and entails some interesting open questions and
issues. For instance, “an application-specific policy may be more efficiently in-
terpreted within a network component, or an application may need to adapt its
behaviour as a result of adaptation within the network”.

Dynamic nature. IT systems evolve over time, driven by changing requirements on the
one side and evolving technology on the other. As a consequence, configurations
need to change accordingly in order to ensure a correct operational behaviour.
Ensuring that configuration management processes are able to flexibly cope with
such dynamics is a challenging issue.
Furthermore, in many cases configurations have to change and adapt depend-
ing on the context. One prominent example is given by the need of dynamic
policy enforcement in context-aware access control models [Covington2002;
Thomas2004; Wullems2004], whereby authorization is affected, for instance, by
spatiotemporal constraints that can be enforced by dynamically reconfiguring the
system according to the user’s context.
Finally, there are situations where it is necessary to model a system as if the state of
its configuration evolved according to rules that are themselves part of the config-
uration. This is typically the case, for example, of stateful firewalls [Gouda2005],
where some rules may (or may not) apply to a given traffic flow depending on
whether previous packets triggered other rules in the past. Expressive access
control models that support delegation and the assignment of permissions about
permissions constitute another example. Several interesting and difficult prob-
lems exist in such cases, like that of checking that an adversary could never gain
unauthorized access to certain resources [Guelev2004].

Multiple stakeholders. Guaranteeing the consistency among independently-specified
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security policies in large distributed systems is a well-known problem that
attracted the attention of several researchers in the past years [Moffett1994;
Lupu1999; Hamed2006; Satoh2008; Uszok2003; Davy2008a]. Although different
authors focus on different kinds of security areas (e.g., authorization, obliga-
tion, network filtering, data protection) and on different abstraction layers (e.g.,
policies vs. configurations), their works share similar motivations: if multiple
stakeholders are involved in the authoring of distributed security policies, there
exist a substantial risk of introducing conflicts or anomalies that must be detected
and resolved.
This problem is even more exacerbated in the context of emerging service deliv-
ery paradigms such as those proposed in cloud computing; namely infrastruc-
ture, software and platform as a service. In fact, in such scenarios it is common
for different stakeholders (e.g., cloud or platform provider, service provider and
service consumer) to control and interact with different parts of the same IT in-
frastructure. Therefore consistent configuration management is required not only
within individual organizations, but also across them. Misconfiguration in cloud
environments, according to [Behl2012], is “very critical with multi-tenancy, where
each tenant has its own security configurations that may conflict with each other
leading to security holes”.

1.4 Objectives and Contributions

In order to tackle the issues affecting current configuration management practices, a
variety of techniques have been proposed by researchers that aim at supporting system
and security administrators throughout the different SCM phases.

The activities involved in phases (CM1) and (CM2) mainly concern (i) the elicita-
tion of security requirements (what needs to be protected and why) as well as cor-
responding policies (how shall the system behave to be secure), and (ii) the config-
uration of suitable enforcement mechanisms to implement such policies. Substantial
effort has been dedicated to structure, formalize and partially automate these tasks.
For instance, the requirement engineering community proposed several approaches,
nicely surveyed in [Fabian2010; Mellado2010], to integrate non-functional and, more
specifically, security requirements into modeling techniques for software and system
engineering (mostly based on the UML standard). Many security policy languages
have been proposed in literature, as summarized in [Sloman2002; Vimercati2007; Bon-
atti2009; Han2012]; most of them allow to express authorization and some support
more advanced features like obligation or delegation.

Some of the approaches for security requirement and policy specification have for-
mal foundations and therefore are amenable to various kinds of automated reason-
ing. For instance, the composition of policies [Bonatti2002; Wijesekera2003] — possibly
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specified in different languages — and the detection of conflicts within policies [Mof-
fett1994; Lupu1999; Uszok2003; Davy2008a] are useful in phase (CM1), to obtain a
consistent and harmonized policy specification. Transformation, or refinement, tech-
niques [Lodderstedt2002; Davy2008b; Craven2010; Preda2010; Zhao2011] support in-
stead especially phase (CM2), by automating the translation of high-level security re-
quirements or policies to low-level configuration settings to be deployed in the system.
Furthermore, complementary configuration analysis approaches [Fu2001; AlShaer2005;
Satoh2008; Alfaro2008; AlShaer2009; Basile2012] can be used to ensure that configura-
tions, no matter whether manually authored or automatically refined from more ab-
stract specifications, enjoy desirable properties, such as consistency, conflict-freeness,
non-redundancy, etc.

Note how the majority of the above techniques strongly rely on the availabil-
ity of formally-specified security policies and requirements. It is often recognized,
however, that formal policies are yet unlikely to be adopted in industry, either be-
cause of exceeding complexity or lack of flexibility. In fact, no actual configuration
management tool supports policy languages with formal foundations [Han2012]
and industrially-accepted languages, such as the eXtensible Access Control Markup
Language (XACML) [OASIS2003], tend to be very expressive and hard to formal-
ize; for instance, several works provide formal semantics for different subsets of
XACML [Bryans2005; Kolovski2007; Ni2009; Ahn2010; Ramli2011], but not for the
full specification. At the same time, the emergence of standards such as the Security
Content Automation Protocol [NIST2009] and the increasing availability of products
implementing the functionalities of ITIL’s Configuration Management System (CMS)
and Database (CMDB) concepts, constitutes evidence of an increasing interest of the
IT industry in topics related to configuration validation and change management,
which so far received comparably less attention from researchers. Moreover, in many
cases, administrators are “reluctant to define a whole security policy from scratch” [Al-
faro2007] each time a change is necessary, and they rather prefer to directly modify
existing configurations to cope with evolving security needs. For these reasons, in

this thesis we tackle the challenges of security configuration management from an

opposite and complementary perspective to that of techniques, mostly applicable

to phases (CM1) and (CM2), that require input high-level formal policies. Instead,
by pragmatically working on the basis of low-level security configurations, we tar-
get primarily phases (CM3) and (CM4). More specifically, we first focus on purely
syntactical approaches for configuration validation (CM4) and we then move to-
wards increasingly semantics-aware analysis techniques for managing configuration

change (CM3).
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1.4.1 Syntactic Configuration Validation for Distributed Systems

Syntactic configuration validation is a technique whereby configuration checks, au-
thored either by security experts or by system administrators, assess whether a system
configuration complies with a given security policy or ensure it does not expose the
system to security vulnerabilities. As such, it constitues a powerful tool to perform sys-
tematic monitoring, as required by phase (CM4). Standards [NIST2009] and tools [Nes-
sus] implementing this concept have been increasingly adopted and have rapidly led
to the growth of a knowledge base of machine-readable security checks [NVD]. How-
ever, these approaches limit the scope of checks to single hosts or operating systems,
which makes it difficult to detect security issues that are due to the simultaneous mis-
configuration of distributed system components. Our first objective is therefore focused
on overcoming this drawback, to improve the applicability of automated configuration
validation practices to distributed information systems.

Objective 1:

Extend the expressiveness of standard-based syntactic configuration validation lan-

guages to integrate configuration validation in the management of distributed in-

formation systems’ security.

To achieve this objective we propose the following contribution. Because of (i) the
heterogeneity and the potentially large number of configuration settings in real sys-
tems, and (ii) the explicit focus on distributed but interdependent misconfigurations,
this contribution targets respectively the second and third challenges of the list pre-
sented in Section 1.3.3.

Contribution 1:

We elicit requirements for a syntax-based configuration validation language, and

a corresponding interpretation engine, suitable to be employed in distributed en-

vironments and to be integrated with current configuration management practices

and standards.

We then propose an extension (in terms of syntax and evaluation semantics) to

standard-based configuration validation languages that fullfils such requirements

and, specifically, improves the state of the art by allowing for a clear separation

between the specification of check logic, check targets and the mechanisms for col-

lecting to-be-checked configurations.

We describe a proof-of-concept implementation of both the language and its in-

terpreter and discuss their integration in several scenarios that differ in terms of

purpose and authorship of configuration checks and modality of invocation of the

configuration validation process.
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1.4.2 Formalization and Change Impact Analysis of JEE Authorizations

One of the advantages of purely syntactical configuration analysis is that it applies to
virtually any kind of configuration independently from its semantics, as the actual set-
tings — interpreted as simple common data types, e.g., strings, integers, booleans, etc.
— are directly compared with the expected desired (or undesired) values by the means
of a fixed set of operators. This is especially true when the gap between the configura-
tion language’s syntax and semantics is small, whereas, as the language expressiveness
increases, it becomes more and more difficult to express syntactic checks that encode
interesting semantic conditions. For instance, a rule-based access control configuration
may contain rules with complex and mutually overlapping conditions: while a syntac-
tic check looking for the exact same sequence of rules would be semantically sound, it
may not be complete, i.e., different configurations that enforce the same policy would
produce an alert despite being semantically equivalent. Moreover, different syntactic
changes may have substantially different security implications, which in turn deter-
mine the severity of the misconfiguration and thus shall be taken into account when
prioritizing remediation actions. For instance, all the changes that make the access con-
trol policy more restrictive may be considered less severe. The ability of semantically
assessing the impact of configuration changes is not only useful to complement syn-
tactic validation in phase (CM4), but it is also an important what-if analysis tool for
phase (CM3), where changes are planned. In this case it can prevent inexperienced ad-
ministrators from introducing unforeseen side effects by anticipating the result of their
modifications.

In order to reason about the semantic properties of security configurations, we shall
restrict to those that have a well-defined formal characterization, which is a prerequisite
to provable soundness and completeness. Various security properties have been shown
to correspond to safety or liveness conditions on labelled transition systems [Schnei-
der2000; Ligatti2009]; however this characterization requires a model of the behaviour
of the system, which may not be available in practice. Access control, in its most gen-
eral formulation, is one of such properties, belonging specifically to the class of those
enforceable by a system execution monitor [Schneider2000]. However, in many prac-
tical cases, it can be decoupled and modeled independently from the behaviour of the
monitored system [Tripunitara2007; Habib2009; Crampton2012b].

The second objective of this thesis is therefore focused on evaluating the semantic
impact of syntactic changes in access control configurations. In particular, unlike pre-
vious works in this area [Fisler2005; Liu2007], we aim at studying the formal semantics
of authorization policies for hierarchical resources (like URLs) that are crucial to se-
curing web applications, which have been employed more and more extensively as a
lightweight front-end for business services in distributed information systems.
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Objective 2:

Investigate the benefits of assigning formal semantics to an access control config-

uration language for web applications, especially when evaluating the impact of

syntactic configuration changes.

As it aims at bridging the gap between security configurations’ syntax and seman-
tics, the main challenge concerning this objective is the first one (semantic gap) listed in
Section 1.3.3, which we address in the following contribution.

Contribution 2:

We provide a denotational semantics for the access control configuration language

of the JEE (Java Enterprise Edition) framework, one of the most widespread web

application frameworks currently available. On top of this, we define a procedure to

compare access control configurations with respect to their permissiveness and we

prove its correctness.

Finally, we implement our model and evaluate it with respect to the operational

semantics of existing JEE container implementations through automated software

testing. The findings include not only positive results supporting the correctness

of our semantics, but also evidence of discrepancies that led to the discovery of a

previously unknown implementation error in the Apache Tomcat JEE container.

1.4.3 Multi-Layered Access Control Policy Refactoring

Although providing formal semantics for access control configuration languages is of-
ten enough to support interesting configuration analysis tasks for individual system
components, it is well known that, in a distributed system, inter-component interac-
tions have to be modeled too, because changes in the configuration of one component
can easily affect the behaviour of other components. Previous works on anomaly de-
tection in distributed firewalls and VPN gateways [Fu2001; AlShaer2005] address pre-
cisely this issue in the domain of network-layer access control. However, access control
is pervasive within several different layers of IT infrastructures, e.g., network filtering
and application-layer authorization policies are different forms of access control that
typically cooperate in real scenarios. The access control process is distributed across
several IT components, each one potentially operating on different architecture lay-
ers and residing on different hosts. For instance, a classical network firewall is able
to take allow/deny decisions for network requests, having parameters such as IP ad-
dresses and TCP/UDP ports. A Web server instead handles a different kind of requests
that rather belong to the application ISO/OSI layer, e.g., having parameters such as
the requested URL. Moreover, the separation between network and application lay-
ers is typically not as neat. For example, many common services (e.g., the Apache



18 Chapter 1. Introduction

Web server, the MySQL database server or the anti-spam features of the sendmail mail
server), perform access control based not only on application-specific parameters (e.g.,
respectively, URLs, tables, mail addresses), but can overlap with the lower layer (e.g.,
by filtering on the IP address of the requester). Conversely, modern firewalls are more
and more capable of inspecting application-layer fields.

While such an inter-layer overlap allows for greater expressiveness, in practice, as
argued in Section 1.3, more complexity increases the risk of misconfiguration and also
contributes to the increase of IT management costs observed during the last decade(s).
Hence, the last objective of this thesis is about studying how inter-layer relationships
can be incorporated with the formal description of access control configurations to sup-
port a form of inter-layer access control policy refactoring, i.e., the task of finding the least
permissive rewriting of a collection of policies that belong to different layers such that
the global composed policy remains identical.

Policy refactoring is a means to accomplish several tasks that conceptually belong
to phase (CM3), such as: (i) checking whether local policies can be simplified without
changing the global one, in order to reduce management overhead, (ii) enforcing the
least privilege principle in multi-layered policy-based access control systems, and (iii)
adapting to changing security capabilities of single components.

Objective 3:

Assuming formal semantics is available for the access control configuration of dis-

tributed components lying on different architectural layers in a system, we aim to

answer the following questions: Is there a notion of inter-layer policy overlap? Is

there a refactoring of the components’ configuration that removes such an overlap

by preserving the global permissiveness?

As fulfilling this objective requires dealing with independently-authored and dis-
tributed security configurations, both the third and fifth challenges of Section 1.3.3 are
concerned. In particular, the modeling and exploitation of inter-layer policy interac-
tions, identified as an open research problem in [Sloman2002], constitute key elements
of our contribution.

Contribution 3:

We formally define the problem of multi-layered access control policy refactoring

and we develop a necessary and sufficient condition to determine whether it admits

a solution, together with a provably correct procedure to compute it.

To this end, we embed a generic access control system into a structure that keeps

track of the interactions among authorization decisions taken on different layers.

We then define the semantics of composition of such access control layers and show

that its inverse, namely decomposition, provides (when it exists) a solution to the
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problem of refactoring. Finally, we provide algorithms to test for decomposability as

well as to compute (de)composition. Our model is inspired from database theory: we

borrow key concepts from the literature on both constraint databases [Revesz1995]

and provenance [Karvounarakis2012]. To prove the correctness of the decompos-

ability condition, we extend a previous result of dependency theory, linking lossless

join decomposition with so-called multivalued dependencies, to larger-than-boolean

relations.

To assess the applicability of our approach in practice, we evaluate the algorithms

with respect to various stochastic properties of input policies. The results show

comparable performances with previous work on network security configuration

analysis.

1.5 The PoSecCo Project

The work presented in this thesis has been carried out in the context of the European re-
search project PoSecCo (Policy and Security Configuration Management)2 [Posecco2011].
PoSecCo aims at enabling service providers (i) to achieve, maintain and prove com-
pliance with security requirements stemming from internal needs, 3rd party demands
and international regulations and (ii) to cost-efficiently manage policies and security
configuration in operating conditions. Service providers are organizations that operate
a distributed information system in order to deliver services to consumers. As such,
they need to properly manage the security configuration of their infrastructure, which,
as argued in Section 1.3, is a challenging task. To tackle the challenges of security
configuration management, PoSecCo proposes to establish and maintain a consistent,
transparent, sustainable and traceable link between high-level, business-driven secu-
rity and compliance requirements on one side and low-level technical configuration
settings of individual services on the other side. In the remainder of this section we
first provide an overview on PoSecCo and then position our contributions with respect
to the project’s framework.

PoSecCo supports the entire security configuration management process (cf. Sec-
tion 1.2) by the means of automated techniques where possible and by offering decision
support where human interaction is inevitable. This is achieved through the combina-
tion of two complementary approaches:

The top-down approach (corresponding to phases (CM1) and (CM2)) comprises a col-
lection of techniques that take as input the various laws, regulations, best prac-
tices and standards for security and compliance, capture them in the form of secu-

2Co-funded by the European Community under the Information and Communication Technologies
(ICT) theme of the 7th Framework Programme for R&D (FP7) with grant agreement number 257129.
http://www.posecco.eu.
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Figure 1.2: PoSecCo’s architecture and work packages [Posecco2011].

rity policies, i.e., more detailed descriptions of security and compliance goals, and
translate them into system-level configurations. All the top-down policy transla-
tion steps are recorded and structured in the so-called policy chain, which links
high-level security policies and requirements with low-level configuration set-
tings.

The bottom-up approach (corresponding to phases (CM3) and (CM4)) serves two
main purposes. At policy design time, it builds a model of the service provider’s
system infrastructure, to be used as input by the top-down policy refinement
tasks. This is done by interfacing and collecting information from existing net-
work and configuration management software. At run time, it monitors the state
of the system to detect discrepancies in either (i) the value of configuration set-
tings, when found different from those derived by the top-down process, or (ii)
in the behaviour of the system, when it is not compliant with the policies. When
a discrepancy is detected, the information contained in the policy chain is lever-
aged to go back up to the linked high-level security requirements, which allows
system administrators to better estimate the impact on security and compliance
and to plan remediation actions.

The above description is summarized in Figure 1.2, which also depicts the organi-
zation of PoSecCo’s work packages. The top-down tasks are split between work pack-
ages 2 and 3. The former handles the gathering of prose-specified security requirements
and the formalization thereof in security policies referring to an abstract description of
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systems and security properties. The latter transforms such policies into concrete con-
figurations by supporting the user in progressively refining and enriching them with
system and technology-dependent details. Where necessary, in order to choose among
several possible alternative configurations, the user is asked to trade off cost with se-
curity level; e.g., to choose whether to enforce a channel confidentiality policy through
network or application-level encryption. Such an evaluation is based on the cost mod-
els that are provided by the work package 5. Finally, the work package 4 is responsible
for the bottom-up approach, whereby the system infrastructure is monitored to (i) pro-
vide other work packages with an up-to-date model of the system, and (ii) to detect
deviations in either the configuration or the behaviour of the system. This is done by
leveraging syntactic configuration validation techniques as well as ad-hoc log and pro-
cess mining-based verification.

As it comprises the task of validating the security configurations of an entire service
provider’s (distributed) system infrastructure, the work package 4 constitutes a natural
use case for our first contribution, where we propose a language to express configu-
ration checks for distributed systems. The same work package also covers the task of
assessing the impact of a misconfiguration with respect to the high-level security poli-
cies. This is aligned with our second contribution, which includes a provably correct
procedure to compare different access control configurations for Web applications with
respect to their permissiveness. Our third contribution is instead positioned at the in-
terface between work packages 3 and 4. At the end of the top-down policy refinement
process it is necessary to configure the systems according to the policies. Depending
on the capabilities of the available security mechanisms, this may require configuring
consistently multiple devices belonging to different architectural layers: for instance, a
layer-3 firewall would not be sufficient to enforce an access control policy that involves
application-layer parameters (such as URLs). Our third contribution allows to deter-
mine whether or not an access control policy can be enforced by the collection of policy
decision points available in the system.

1.6 Structure

The rest of this manuscript is organized as follows.

Chapter 2 introduces a concrete example of distributed information system that is
used to illustrate the different phases of security configuration management and that
will constitute a common use case scenario for the contributions presented in the fol-
lowing chapters.

Chapters 3, 4 and 5 present respectively the three main contributions of the thesis.
They all have a similar structure: first, they introduce and detail the respective tech-
nique; next, they describe its implementation and provide elements of evaluation; the
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relevant related work is then presented and compared with the chapter’s proposition;
finally, a discussion, providing concluding remarks and observations, is presented and
a synthesis concludes the chapter with a short summary of contributions and results.

Chapter 6 draws the conclusions and provides an outlook on future work and per-
spectives.



You know you have a distributed system when the crash of a computer you’ve

never heard of stops you from getting any work done.

—Leslie Lamport, “Security Engineering: A Guide to Building Dependable
Distributed Systems”

2
Scenario

⊲ In order to concretely illustrate the security configuration management process, this chapter presents
an example of a distributed information system built on top of a common, off-the-shelf open-source soft-
ware architecture and thereby prototypic for many real-life scenarios. We consider the case of an imag-
inary service provider which is inspired by one of the use cases of the PoSecCo project. We introduce
example policies reflecting internal as well as external security requirements. We then detail the service
provider’s system infrastructure from a technical standpoint. Finally, we describe how the various system
components have to be configured in order to enforce the policies. Each of the remaining chapters of the
thesis will make use of this scenario to exemplify in detail the chapter’s objective and related contribution.
⊳
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THE imaginary service provider ACME operates a system infrastructure accessible
through the Internet and offering some custom functionalities developed as web

applications. Among the services are offered by ACME, we consider the “ACME DEx”
(Document Exchange) service, which allows customers to exchange EDI (Electronic
Data Interchange) documents with their business partners through the Internet.

EDI is a standard defining the structure of messages suitable for the exchange of
business documents — such as cheques, invoices or bills of landing — directly between
computer applications (most commonly ERP systems) and without intermediary hu-
man involvement. The entities, typically different organizations, exchanging EDI doc-
uments are referred to as trading partners. Trading partners can either interact directly
with each other, according to a peer-to-peer model, or rely on third parties, often named
value-added networks, which provide additional services such as document transfor-
mation between different formats.

The ACME DEx service is an example of EDI value-added network. The applica-
tion front-end for managing customers’ trading partners and exchanging documents is
implemented as a JEE web application. The application is split into two main parts: an
administration console that lets customers manage the list of their trading partners, and
a partner area exposing a web service interface for exchanging documents. Instances
of this web application, each dedicated to one customer, are deployed in the Tomcat
application server, under customer-specific context roots.

In the remainder of this chapter we describe the outcome of the first two phases
of the configuration management process on the ACME scenario. As these steps lie
outside the scope of this thesis, we assume that they are performed either manually
or by (semi-)automated techniques such as the PoSecCo’s top-down policy refinement
(cf. Section 1.5). We first formulate a small yet illustrative set of example security poli-
cies (CM1). We then provide a technical overview of ACME’s infrastructure, in terms
of functionalities and system architecture, with a particular emphasis on the security
mechanisms available in the system. Finally, we discuss how such mechanisms have to
be configured in order to enforce the policies (CM2).

2.1 ACME’s Security Policies

ACME faces a variety of security requirements coming from different sources and ad-
dressing different kinds of security needs. Generally, the possible sources of such re-
quirements can be many, e.g., (inter)national legal or regulatory requirements, contrac-
tual agreements, best practices and standards, prioritized risk mitigation, etc. In this
example we consider two such categories that are particularly relevant to ACME’s sce-
nario: service level agreements and internal risk mitigation. Considering that the
involved stakeholders are (potentially large) organizations, the type of service offered
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by ACME is likely to be regulated by a detailed service level agreement. We therefore
consider both generic and customer-specific security aspects that may be part of such
an agreement. Furthermore, as ACME operates an IT infrastructure that is constantly
exposed to the Internet, the need of mitigating the risk of intrusion and data breaches
constitutes a second major security concern. A subset of ACME’s security policies that
address examples of such requirements is presented in Table 2.1.

Client authentication.

Through the DEx service, interested parties exchange documents carrying information
that is valuable to conduct their business and that is typically confidential. Client au-
thentication, i.e., ensuring that senders’ as well as recipients’ identities are properly
established, is therefore a crucial property that has to be guaranteed. Without authenti-
cation it would not be possible to ensure that messages are delivered only to the inter-
ested parties (thereby breaking confidentiality) or that message authorship cannot be
rejected (non-repudiation). Authentication is also a fundamental part of access control,
which is needed to ensure that only authorized actions are performed in the system.
As such, a policy requiring client authentication is part of the DEx generic service level
agreement.

Client authorization.

ACME’s authorization policy for the DEx service is expressed according to the Role-
Based Access Control (RBAC) paradigm, whereby users are assigned to roles which
in turn refer to the permissions they are granted. For each customer there exist two
roles, namely dex-mgr and dex-tp, representing respectively users belonging to the
customer’s organization and to those of its trading partners. The management console
must be accessible only by members of the dex-mgr role, as it allows to administer
customer-specific information, such as the list of its trading partners. Members of either
the dex-mgr or dex-tp roles are instead allowed to exchange EDI documents through
the web service interface available in the partner area.

Data integrity and confidentiality.

As EDI documents carry sensitive business information, it is important to ensure that
no malicious third party can either access or temper with such information. This re-
quirement is particularly critical whenever communications occur on untrusted chan-
nels which are not under the control of the interested parties. This is indeed the case for
ACME, that offers its services over the public Internet. A policy specific to this purpose
is therefore stated, which mandates the use of cryptography to guarantee the integrity
and confidentiality of data transiting on untrusted networks.
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Security Purpose Policy Source

Client authentica-
tion

The functionalities of the DEx service shall be available only prior to authentication

Client
authorization

Access to the DEx management console is granted only to members of the customer-
specific dex-mgr role DEx generic

service level
agreement

Only members of either the dex-tp or dex-mgr roles can access the partner area
where they can exchange EDI documents

Data integrity and
confidentiality

Cryptography shall be employed to protect sensitive information, such as EDI docu-
ments as well as confidential information about customers’ business partners, when
transiting on untrusted networks

Geographic-based
service restriction

Customer A has trading partners from all over the world except country Y, from
which access is denied

Customer-
specific
service level
agreement

Customer B exclusively operates in country X, access to the service is denied from
elsewhere

Network access
filtering

Customer A shall access the management console exclusively from its network that
has a pool of assigned public IP addresses

Customer A’s
service level
agreement

A De-Militarized Zone (DMZ) is configured, being be the only network location
directly reachable from the Internet where no sensitive assets shall be located Internal risk

mitigationThe only host in the DMZ reachable from the Internet is a reverse proxy relaying the
protocols required by the DEx service

Table 2.1: Excerpt of ACME’s security policies.
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Geographic-based service restriction.

On top of the above generic policies that apply to all DEx users, premium customers
with specific security requirements motivate the need of dedicated custom policies.
For instance, as part of the agreement with its trading partners, customer A commits
to never let document exchange occur with trading partners from country Y, which is
considered untrusted. Customer B, instead, being part of country X’s public adminis-
tration, requires the access to the service to be restricted to country X’s clients only.

Network access filtering.

Finally, we consider some example network access filtering policies stemming partially
from customer A’s service level agreement and partially from the risk mitigation plan
put in place by ACME as a result of a risk analysis process. In order to minimize the
risk of unauthorized access to the management console, customer A explicitly requires
that access to the console shall be granted only to clients that are located within its
own organization. A portion of the network named De-Militarized Zone (DMZ) is
distinguished, where all the hosts that shall be reachable from the Internet are located.
Sensitive assets such as database or application servers must be located in a different
subnetwork, not directly reachable from the Internet. A second policy specifies that the
DEx service should be accessible through a reverse proxy relaying the traffic to backend
servers.

2.2 ACME’s System Infrastructure

An overview of ACME’s network topology and installed software components is
shown in Figure 2.2. ACME’s IP address space is split into two portions: the lower half
of the interval of addresses (1.1.1.0/25) is assigned to the DMZ, hosting internet-facing
services; the upper half (1.1.1.128/25) is the internal subnetwork where more sensi-
tive and protect-worthy assets are located. A firewall (identified as FW in the picture)
regulates the network traffic among these two subnetworks and the Internet.

Furthermore, in order to later help illustrate the enforcement of some of Table 2.1
policies, Figure 2.2 highlights three blocks of IP addresses within the Internet public
address space: two are those assigned to all the ISPs belonging to respectively country
X and country Y and the third one represents the address range assigned to ACME’s
customer A (simple and contiguous ranges have been chosen for the sake of concise-
ness).

Tomcat instances run inside the internal subnet, and are proxied by the Apache
HTTP Server installed on the machine having address 1.1.1.1 within the DMZ. Re-
quests for a customer-dedicated sub-domain of acme.com are forwarded by the
reverse-proxy, with help of the module mod_proxy, to the respective customer-
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Figure 2.2: ACME’s landscape.

dedicated instance of the web application via the Apache JServ Protocol (AJP). For
brevity, we will only consider three such instances: one specific to customer A, de-
ployed into the application server running on machine 1.1.1.129, and two others,
specific to customers B and C respectively, both deployed on machine 1.1.1.130. Re-
quests directed to, for instance, https://cust-a.acme.com/ are dispatched to
ajp://1.1.1.129:8009/cust-a/ and likewise for other customers.

The reverse proxy also terminates incoming TLS connections thanks to the Apache
module mod_ssl. The unencrypted HTTP requests, encapsulated in the AJP protocol,
traverse then the firewall and reach the appropriate Tomcat instance where they get
served.

The JEE web application implementing the DEx service is developed and main-
tained by ACME. It is divided into three main parts:

1. a static part welcoming users and providing them with public information, which
is directly accessible from the web application context-root (e.g., for customer A,
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/cust-a/);

2. a management console, reachable under the path /manager/ relative to the root
(e.g., /cust-a/manager/), that allows authenticated customers to manage the
accounts of their trading partners;

3. a trading partner area organized as follows:
(a) the /partner/ location provides trading partners with information about

exchanged documents and other partners;
(b) the /partner/edi/ location exposes a RESTful web service that allows

trading partners to retrieve (via the HTTP GET method), submit (HTTP
PUT), modify (HTTP POST) or delete (HTTP DELETE) incoming or outgoing
EDI messages.

Role-based access control is performed at the level of the application servers by
leveraging the appropriate declarative mechanisms standardized in the JEE servlet
specification [Coward2003]. In order to authenticate users consistently across the differ-
ent Tomcat instances, their credentials are looked up and matched in a central LDAP di-
rectory, that also provides Tomcat with the association between users and roles. Once a
user is authenticated and his/her role established, an authorization check is performed
to determine his/her access rights, according to the web application access control con-
figuration.

The LDAP directory service for the management of user accounts is provided by an
instance of OpenLDAP installed on another machine (1.1.1.254) harbored in the internal
network. The same server hosts a MySQL database as well, used by the application
servers for persistency.

2.3 ACME’s Security Configurations

In this section we describe how the different system components appearing in Fig-
ure 2.2 can be configured to enforce the security policies listed in Table 2.1. We first
describe in detail authorization (Section 2.3.1) and filtering (Section 2.3.2) configura-
tions as these two categories constitute the focus of our second and third contributions
(Chapters 4 and 5). For completeness, we then briefly cover authentication and encryp-
tion (Section 2.3.3). Overall, it will become evident that implementing a single policy
often requires configuring consistently more than one component. This issue will be
particularly relevant to illustrate our first contribution (Chapter 3), where we propose
to increase the expressiveness of current configuration validation languages to allow
the specification of checks spanning over multiple system components.
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1 <security-constraint>

2 <web-resource-collection>

3 <web-resource-name>Forbidden Methods</web-resource-name>

4 <url-pattern>/manager/*</url-pattern>

5 <http-method>DELETE</http-method>

6 <http-method>PUT</http-method>

7 </web-resource-collection>

8 <auth-constraint/>

9 </security-constraint>

10 <security-constraint>

11 <web-resource-collection>

12 <web-resource-name>Management Console</web-resource-name>

13 <url-pattern>/manager/*</url-pattern>

14 </web-resource-collection>

15 <auth-constraint>

16 <role-name>dex-mgr</role-name>

17 </auth-constraint>

18 </security-constraint>

19 <security-constraint>

20 <web-resource-collection>

21 <web-resource-name>Partner Area</web-resource-name>

22 <url-pattern>/partner/*</url-pattern>

23 </web-resource-collection>

24 <auth-constraint>

25 <role-name>dex-mgr</role-name>

26 <role-name>dex-tp</role-name>

27 </auth-constraint>

28 </security-constraint>

Figure 2.3: Security constraints in the deployment descriptor (web.xml).

2.3.1 Authorization

To enforce the authorization policy for ACME’s DEx service, it is sufficient to include
the snippet presented in Figure 2.3 in the deployment descriptor of each DEx web applica-
tion. The deployment descriptor is a configuration file written according to a standard
XML-based language whose syntax and (informal) semantics are defined by the JEE
servlet specification [Coward2003]. It allows to configure several aspects of a web ap-
plication, such as the mappings from URL patterns to the corresponding Servlets, the
default error pages, etc. Security features, which are in the scope of this thesis, are
among such aspects. In particular, this chapter introduces, by the means of examples,
authorization and authentication configuration settings.

To configure authorization, three so-called security constraints, constraining the ac-
cess to all the URL paths prefixed by either /manager/ or /partner/ (lines 4, 13
and 22), are specified. Access privileges are granted by listing authorized roles in the
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auth-constraint tag within each security constraint. In this case only dex-mgr

members can access the management console, while both dex-mgr and dex-tp mem-
bers are granted access to the partner area (lines 15–17 and 24–27 respectively). If the
auth-constraint tag is empty, then the access to the corresponding resources is
forbidden to anyone. This is used to prevent any access to the management console
through the PUT and DELETE HTTP methods that are not implemented by the web
application (lines 4–6 and 8).

Note that different security constraints may be specified for the same URL or for
overlapping URL patterns, in which case the actual policy is determined according to
a set of composition rules that are informally described in the JEE Servlet specifica-
tion. For instance, a denial constraint (cf. lines 1–9) always takes precedence on other
constraints for the same URL pattern (cf. lines 10–18).

When authoring or modifying security constraint configurations, system adminis-
trators may commit mistakes due to disattention or misinterpretation of the language
evaluation semantics. In Chapter 4 we will show how, in fact, minor configuration
changes can yield unpredicted and sometimes counterintuitive outcomes. To prevent
this issue, we will provide a formal semantics for the language of security constraints
which is suitable for static verification tasks, such as determining the impact on per-
missiveness of a change in the configuration.

2.3.2 Network and Geographic-based Filtering

Network filtering policies are typically enforced either by dedicated network equip-
ment (usually routers equipped with firewall functionalities) or at the endpoint hosts,
e.g., by the operating system, or by a personal firewall, or even directly within the client
or server application.

In ACME’s scenario, the different filtering policies are enforced by two distinct com-
ponents: namely the Internet-facing firewall and the reverse proxy. The system infras-
tructure presented in Figure 2.2 features a common layer-3 firewall, that is, a network
filtering device incapable of inspecting and tracking protocols (e.g., HTTP, FTP, SMTP,
etc.) lying above the transport layer in the ISO/OSI stack. As noted in [AlShaer2004],
configurations for such a firewall can be conveniently expressed in a generic format
that is vendor-independent yet specific enough to be translatable with minimum effort
to most vendor-specific firewall configuration languages. Such generic configurations
are constituted by sets of rules of the form:

<order> <protocol> <ip_s> <ip_d> <port_s> <port_d> <action>

where <protocol> identifies a transport protocol (e.g., TCP or UDP), <ip_s> and
<ip_d> are respectively IP source and IP destination (either single addresses or subnet-
works), <port_s> and <port_d> identify either TCP or UDP ports, and <action>
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1 ord proto ip_s ip_d port_s port_d action

2 1 TCP any 1.1.1.1 any 80 accept

3 2 TCP any 1.1.1.1 any 443 accept

4 3 TCP 1.1.1.1 1.1.1.129 any 8009 accept

5 4 TCP 1.1.1.1 1.1.1.130 any 8009 accept

6 5 any any any any any deny

(a) Firewall configuration expressed in generic format [AlShaer2004].

1 <VirtualHost *:443>

2 ServerName cust-a.acme.com

3 <Location /partner>

4 Order Allow,Deny

5 Allow from All

6 Deny from 4.0.0.0/8

7 </Location>

8 <Location /manager>

9 Order Deny,Allow

10 Deny from All

11 Allow from 2.2.2.0/24

12 </Location>

13 </VirtualHost>

(b) Apache web server IP-based access restriction (httpd.conf).

Figure 2.4: Network and geographic-based filtering configuration.

is either accept or deny. For every network packet, the firewall interprets the rules
by ascending values of the <order> field and executes the action associated to the first
rule that matches to the packet. The ruleset shown in Figure 2.4a, interpreted according
to the above informal semantics, enforces the general (i.e., not customer-specific) net-
work filtering policies of Table 2.1. In fact, the reverse proxy (1.1.1.1) is the only host
reachable from the Internet on the standard HTTP(s) ports. Moreover, from the DMZ
to the internal network, only communications coming from the proxy on the AJP port
(TCP 8009) are allowed, which is needed to relay the HTTP requests to the backend
application servers. All other packets are dropped by default (cf. rule no. 4).

To enforce customer-specific filtering policies, such as the geographic-based re-
strictions in Table 2.1, it is instead necessary to discriminate network-layer as well as
application-layer protocol features; for instance communications directed to different
customers are distinguishable only if HTTP requests are inspected. In our example this
can be done by the reverse proxy, prior to redirecting requests. For every customer-
specific filtering policy, there exists a configuration similar to the one expressed for cus-
tomer A in Figure 2.4b. Note how this configuration enforces all customer A’s network
filtering policies. Trading partners can access from everywhere except from country Y
(lines 5–6) and only clients from customer A’s network can access to the management
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o=acme
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o=cust-c
ou=groups

cn=dex-tp

cn=dex-mgr
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ou=groups ACME roles. . .

ou=people ACME employees. . .

Figure 2.5: ACME’s LDAP directory structure.

console (lines 10–11). The Order Allow,Deny and Order Deny,Allow directives
implement respectively a blacklist and whitelist access control behaviour (line 9).

Note that there exists a partial overlap between the firewall and the reverse proxy
policies. In particular, all requests directed to the IP address of the proxy (1.1.1.1) will
be filtered a first time by the firewall and a second time by the proxy itself. The overlap
consists in the proxy being able to also inspect the network part of the request, namely
the client’s IP address, which has already been inspected by the firewall. Maintaining
a consistent network filtering policy distributed across different system components,
however, requires more effort and it is more prone to error than managing it in a cen-
tralized point. In Chapter 5 we will contribute to address this issue by developing a
theory that allows to model inter-layer policy interactions and to refactor policies by
removing (when possible) unnecessary overlap without changing the global permis-
siveness.

2.3.3 Client Authentication, Data Integrity and Confidentiality.

Clients need to be authenticated prior to serving their requests. According to the JEE se-
curity model, web applications shall delegate this task to the application server, which
must implement mechanisms to let the user prove his/her identity by exhibiting the
appropriate credentials and, once established, associate the user’s identity to a session
which will be the context of all subsequent requests from the same user.
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1 <Context debug="0" reloadable="true">

2 <Realm className="org.apache.catalina.realm.JNDIRealm"

3 connectionURL="ldap://1.1.1.254:389"

4 userPattern="uid={0},ou=people,o=cust-a,ou=customers,o=acme"

5 roleBase="ou=groups,o=cust-a,ou=customers,o=acme"

6 roleName="cn"

7 roleSearch="(uniqueMember={0})"

8 />

9 </Context>

(a) Configuration of context-specific LDAP authentication realm (context.xml).

1 <login-config>

2 <auth-method>FORM</auth-method>

3 <form-login-config>

4 <form-login-page>/login.html</form-login-page>

5 <form-error-page>/error.html</form-error-page>

6 </form-login-config>

7 </login-config>

(b) Configuration of authentication method (web.xml).

Figure 2.6: Configuration of authentication in Tomcat.

There are two authentication-related features that have to be configured in any JEE
application server: (i) the specification of a method to verify users’ credentials, as well
as to associate them with the roles they are granted, and (ii) the selection of an authen-
tication protocol for each web application. The former is mostly not standardized, i.e.,
different products feature different vendor-specific configuration directives, whereas
the latter is defined as part of the JEE servlet specification.

In our example user accounts and roles are maintained in a centralized LDAP repos-
itory. This is a common practice whenever authentication information has to be avail-
able to several distributed components, which is the case of ACME’s multiple Apache
Tomcat instances. The structure of ACME’s LDAP directory is shown in Figure 2.5. Ev-
ery path in the tree, from any node to the root, uniquely identifies an entry in the direc-
tory, for instance the path uid=usr1, ou=people, o=cust-a, ou=customers,

o=acme identifies the user usr1 of customer A’s dedicated application. Some entries
can represent groups of other entries, which is used to model roles. For example,
the entry cn=dex-tp, ou=groups, o=cust-a, ou=customers, o=acme repre-
sents the dex-tp role for customer A’s users (associated to both users usr2 and usr3).

In order to instruct the application server to make use of the LDAP as a source of
authentication information, one must provide the appropriate queries to search the di-
rectory for a user and her/his roles. In the case of Tomcat, such queries are provided in
the so-called realm configuration. A realm represents any source of authentication in-
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1 <VirtualHost *:443>

2 ServerName cust-a.acme.com

3 ProxyPass / ajp://1.1.1.129:8009/cust-a/

4 ProxyPassReverse / ajp://1.1.1.129:8009/cust-a/

5 SSLEngine on

6 SSLCertificateFile /path/to/acme.com.cert

7 SSLCertificateKeyFile /path/to/acme.com.key

8 <Location />

9 SSLRequireSSL

10 SSLCipherSuite HIGH:!aNULL:!MD5

11 </Location>

12 </VirtualHost>

Figure 2.7: TLS configuration of an Apache virtual host in reverse proxy mode
(httpd.conf).

formation. The configuration excerpt in Figure 2.6a illustrates how the realm specific to
LDAP directories (JNDIRealm) is configured for customer A’s web application. Such a
configuration is included in the context.xml file bundled with each web application.
The choice of which authentication method to use is instead specified in the deploy-
ment descriptor of each web application. As shown in Figure 2.6b, the chosen authen-
tication method makes use of an HTML form to collect users’ credentials; the name
of the pages that respectively display the form to the users and report login errors are
configured by lines 4 and 5. Of course this configuration assumes that the underlying
channel guarantees confidentiality between client and server, which is indeed explicitly
required by ACME’s policies.

The natural way to enforce the policy requiring the integrity and confidentiality of
data in transit is to force clients to establish a secure transport channel with the server.
In ACME’s scenario the reverse proxy is implemented by an Apache web server, which
can be configured to enforce such a policy as shown in Figure 2.7. The snippet sets up
a virtual host on TCP port 443 (lines 1–2) dedicated to customer A such that: (i) TLS
(Transport Layer Security) is enabled and configured to rely on a given server certifi-
cate and a corresponding private key to perform cryptographic operations (lines 5–7),
and (ii) any request can be only served if TLS is enabled (line 9) and the selected ci-
phersuite meets some minimum security requirements1 (line 10). Moreover, requests
directed to the customer-specific subdomain are dispatched to the appropriate dedi-
cated web application deployed in one of the backend Tomcat application servers (lines
3–4). A comparable configuration is provided as well for the other customers, with the
ServerName and ProxyPass directives adapted accordingly.

1In particular, the use of the NULL encryption algorithm, which transmits data in plaintext, is forbid-
den as well as the use of MD5 hashing to compute message authentication codes, which is often considered
dangerous as more and more prone to collision.



We know that the only way to avoid error is to detect it and that the only way

to detect it is to be free to inquire.

—J. Robert Oppenheimer, in L. Barnett, “Life”, Vol. 7, No. 9, International
Edition (24 October 1949), p.58

3
Syntactic Configuration Validation for

Distributed Systems

⊲ Configuration validation is a key activity of the security configuration management process which al-
lows to detect security vulnerabilities caused by system misconfiguration. Existing tools and approaches
that automate this task typically perform a syntactic comparison between the actual system configura-
tions and description of an expected state, which is provided in the form of a collection of configuration
checks expressed in a machine-readable language. Existing configuration validation languages, how-
ever, implicitly fix the scope of checks to entire machines or operating systems, which makes it hard and
sometimes impossible to express configuration checks for distributed, fine-grained software components.

In this chapter we elicit requirements for a configuration validation language, and a corresponding
interpretation engine, suitable to be employed in distributed environments and to be integrated with
current configuration management practices and standards. We then propose an extension (in terms of
syntax and evaluation semantics) to standard-based configuration validation languages that fullfils such
requirements and, specifically, improves the state of the art by allowing for a clear separation between the
specification of check logic, check targets and the mechanisms for collecting to-be-checked configurations.
We describe a proof-of-concept implementation of both the language and its interpreter and discuss their
integration in several scenarios that differ in terms of purpose and authorship of configuration checks and
modality of invocation of the configuration validation process. ⊳
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SYSTEM misconfiguration, as argued in Chapter 1, is a major cause of security in-
cidents, which motivates the need to continuously monitor the configuration of

security-critical system components. This activity is often referred to as configuration

validation and it is common to several practical use cases. First, configurations shall be
checked for compliance with respect to high-level security policies. Moreover, even
though policy-compliant, a system may still expose critical security vulnerabilities,
which in many cases can be mitigated by proper configuration. For this reason software
vendors issue an increasing number of security advisories, but system administrators
often struggle to understand if a given vulnerability is exploitable under their partic-
ular conditions and requires immediate patching. Finally, as a means to preventively
increase system security, it is often recommendable to check whether configurations
conform to the best-practices and guidelines that are typically provided in the form of
prose documentation by security experts.

Performing above tasks manually is clearly (i) time-consuming, which may require
to restrict the scope of analysis through sampling, and (ii) hindered by the fact that
many essential pieces of information, such as policies, security advisories and best
practices, are expressed in prose, which can be too broad or ambiguous and there-
fore subject to misinterpretation. Recent trends aim at mitigating this issue by promot-
ing standards for security automation, e.g., the Security Content Automation Protocol
(SCAP) [NIST2009], provided by the National Institute of Standard and Technology
(NIST), whose specifications receive a lot of attention in the scope of the configuration
baseline for IT products used in U.S. federal agencies. Among other specifications,
SCAP comprises the Open Vulnerability Assessment Language (OVAL) [Baker2012]
that allows to specify machine-readable security checks to facilitate the detection of
vulnerabilities caused by misconfiguration. While this represents an important step to-
wards the standardization and exchange of security knowledge, OVAL focuses on the
granularity of single hosts and operating systems, and as such cannot be easily applied
to fine-grained and distributed system components.

To address these limitations and make the advantages of SCAP applicable to dis-
tributed system infrastructures, this chapter proposes a OVAL-based language for the
declarative specification and execution of configuration checks targeting collections of
fine-grained components in a distributed environment. This approach improves the
state of the art in that it clearly separates the checks logic from the specification of
their target systems and from the retrieval of the to-be-checked configuration settings,
for which it integrates with existing system management procedures and technologies,
e.g., Configuration Management Databases (CMDB) as defined in the IT Infrastructure
Library (ITIL).

The rest of the chapter is structured as follows: Section 3.1 describes a set of use case
scenarios for configuration validation, exemplified with configuration checks that are
applicable to ACME’s distributed system introduced in Chapter 2. From the analysis
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of such use cases, we derive requirements for a configuration validation language to
describe checks for distributed systems. Section 3.2 introduces the main SCAP specifi-
cations and highlights their limitations with respect to the requirements. Section 3.3
presents a formal language that builds on and extends the OVAL standard where
checks’ target can be specified intensionally as queries over the properties of distributed
software components. Section 3.4 defines the interpretation of such intensional targets
on the basis of a data source providing extensional information about the components
of a system infrastructure. Section 3.5 describes the implementation of both the lan-
guage and its interpretation semantics in a tool that relies on an external CMDB as
data source and that integrates configuration validation with state-of-the-art system
and configuration management technologies. Section 3.6 compares our proposal with
related work on configuration validation. In conclusion, Section 3.7 presents a discus-
sion of some key technical issues and Section 3.8 synthesises our contribution.

3.1 Motivating Scenarios and Requirements

Use case scenarios for configuration validation differ in terms of periodicity, validation
scope and authorship of configuration checks. In this section, we describe four exam-
ples of such scenarios that pose challenges to the automatic validation of configurations
in distributed environments. From these premises, we then drive requirements for the
design of a configuration validation language suitable to express configuration checks
for distributed systems.

3.1.1 Scenarios

Vulnerability Assessment (S1).

Upon the disclosure of a new security vulnerability of end-user applications or software
libraries, system administrators need to investigate the susceptibility of their system.
First, they need to check for the presence of affected release and patch levels. Second,
they need to check whether additional conditions for a successful exploitation are met.
Such conditions often concern specific configuration settings of the affected software,
as well as the specific usage context and system environment. The automation of both
activities with the help of machine-readable vulnerability checks decreases time and
effort required to discover a system vulnerability and, at the same time, increases the
precision with which the presence of vulnerabilities can be detected.

As an example, [CVE-2011-3190] reported a vulnerability in the AJP connector im-
plementation of several Apache Tomcat releases, which, however, only applies under
certain conditions, e.g., if certain connector classes are used, and reverse proxy and
Tomcat do not use a shared secret. A machine check looking at the Tomcat release level
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and related configuration settings could be easily provided by the application vendor
(Apache Software Foundation). An example for a critical security bug in a software
library is [CVE-2012-0392] which describes a vulnerability in Apache Struts, a common
framework to support the Model-View-Controller paradigm in JEE web applications.
The detection of this vulnerability is made more problematic by the fact that end-users
typically do not know if applications installed in their environment make use of such
a library, and they cannot rely on the presence of a well-established security response
process at each of their application vendors. Thus security bugs may be dormant in
libraries without the end-user being aware.

Configuration Best-Practice (S2).

This scenario focuses on establishing if best practices are followed. During operations
time, system administrators need to periodically check whether the system configu-
rations follow best-practices, for single and distributed system components. Today,
these are often described in prose and evolve over time thus requiring continuous hu-
man intervention. Typical examples for best-practices are the Tomcat security guide
from OWASP [OWASP2007], and the SANS recommendations for securing Java de-
ployment descriptors [SANS2010]. Configuration best-practices may also cover a set of
distributed components, e.g., the how-to about Apache HTTP server as a reverse proxy
for Apache Tomcat [ASF2014a].

Compliance with Security Policy (S3).

This scenario focuses on the periodic validation of landscape specific configurations
implementing the designed policy. A configuration policy specifies a set of mandated
configuration settings that an organization expects to be active in its system, namely
a golden configuration. As discussed in Chapter 1, such a configuration is typically the
result of a top-down refinement process, which started at system design time with the
elicitation of security requirements and the specification of high-level policies, and ends
with a selection of security mechanisms whose behavior depends on the said configu-
ration.

Configuration checks aiming to assess the compliance with a given security policy
strongly reflect a particular system and environment, and are therefore authored by the
end-user organization rather than by externals, as in the previous scenarios. Moreover,
they target specific software component instances (e.g., a particular application server
running on a specific machine), rather than generic predicates over software compo-
nents (e.g., all the application servers in the network).

Prevention of insecure application execution (S4).

While the previous scenarios assumed that configuration validation happens periodi-
cally, we now consider the need of applications to automatically check configurations at
runtime. In this scenario configuration validation becomes a preventive security con-
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trol, in that the detection of insecure or non-compliant system states is linked to an
application’s runtime. Upon startup or invocation of a given application functionality,
the application checks its own configuration as well as that of all other components that
compose its software stack or with which it interacts (operating system, database, etc.)
and behaves accordingly.

By using any of the above-discussed types of configuration checks, it is possible to
check if the entire system and application stack comply with an expected state before
allowing the execution of critical functionalities. An online shop application, for in-
stance, could prevent any purchase in case the TLS configuration of the web server is
incorrect, in order to protect customers from man-in-the-middle attacks.

Example 3.1: Example Checks

This example illustrates different configuration checks for some of the above scenarios
instantiated on the ACME distributed system, which was introduced in Chapter 2.

SANS recommendations.

In [SANS2010], SANS recommends to configure the cookie-based session handling for
JEE web applications such that (i) session cookies are marked as http-only, hence the
browser won’t allow malicious Javascript code to steal them, and (ii) they are transmitted
over a secure (encrypted) channel. Moreover, in order to hinder session hijacking, the
session timeout should be set to a value greater than 0 (which means infinite) and less
than a maximum amount (e.g., 15 minutes).

To achieve this, the following configuration snippet has to be included in the deployment
descriptor of the web application:

1 <session-config>

2 <cookie-config>

3 <http-only>true</http-only>

4 <secure>true</secure>

5 </cookie-config>

6 <session-timeout>15</session-timeout>

7 </session-config>

In particular, the cookie settings are an example of recommendation that only applies
to web application containers that comply with the most recent releases of the Servlet
specification (i.e., ≥ version 3.0).

A corresponding best practice check (cf. Scenario (S2)) that verifies whether cookies
and sessions are properly secured should then be structured as follows:

Check Content SANS best practices are followed if all the below conditions are true:
1. access to session cookies is prevented (<http-only> set to true),

2. cookies are transmitted securely (<secure> set to true),
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3. session timeout is configured (<session-timeout> comprised between 1
and 15).

Check Target tests no. 1 and 2 apply to JEE web applications deployed in a container that
supports a version of the Servlet specification greater than or equal to 3.0, whereas
test no. 3 applies to JEE web applications deployed in any container.

ACME access control configuration.

As shown in Section 2.3, a golden configuration that enforces ACME’s access control policy
embraces configuration settings of several distributed system components, i.e., the realm
definition of each Tomcat instance, as well as the deployment descriptor of each Java web
application instance.

The following is the description of a policy compliance check (cf. Scenario (S3)) for
customer A’s access control policy. Note how its target refers to a specific system compo-
nent, as opposed to the previous check that applies to all components that satisfy certain
conditions.

Check Content ACME’s access control policy for customer A is satisfied if both the follow-
ing conditions are true:

1. the security constraints in the deployment descriptor grant the access to all
URLs matching to the pattern /manager/* to the role dex-mgr, whereas both
dex-mgr and dex-tp roles have access to the /partner/* sub-hierarchy,

2. the authentication realm refers to the LDAP server located at 1.1.1.254 and
fetches users/roles information under the path o=cust-a, ou=customers,

o=acme.

Check Target both tests apply to customer A’s dedicated instance of the DEx web appli-
cation, deployed on the application server running on the machine 1.1.1.129.

Synthesis.

Table 3.1 summarizes the characteristics of each scenario. Note that a given config-
uration check may be processed in the context of several scenarios. For example, a
best-practice check recommended by a software vendor and considered during system
design, may be later adapted and integrated into an organization’s policy. A recom-
mendation related to the session timeout of web applications, for instance, would be
refined by an organization to reflect its particular policy. Furthermore, the different
configuration checks described in the context of scenarios (S1) to (S3) are likely to be
combined in reality to form complex checklists, which produce reports on the security
status of an entire IT infrastructure. Checklists are mainly useful to help humans under-
stand, score and prioritize checks results. The execution of such checklists can be either
performed manually by system administrators or can be part of the automated provi-
sioning lifecycle of the software components managed by a Configuration Management
Systems (CMS). In contrast, in the context of scenario (S4), an application executes sin-
gle specific configuration checks in order to establish whether critical functionalities
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Validation goal Check
authors1

Trigger &
periodicity

Scope Check
struct.

S1 Detect whether sys-
tem components
are susceptible to a
known vulnerability

External2 Upon vul-
nerability
disclosure

All instances of
a given software
component

S2 Check whether con-
figurations follow
best-practices

External2 Periodical Single system com-
ponents or a set of
related ones

Checklist

S3 Check whether a con-
figuration policy is in
place

Internal3 Periodical Single or multiple
system compo-
nents according to
a given policy

S4 Prevent execution in
case of misconfigura-
tion

Any At runtime Any None

1 From the perspective of an end-user organization
2 E.g., researchers, software vendors
3 E.g., security administrators

Table 3.1: Summary of scenarios’ characteristics

need to be disabled due to system misconfiguration. As no human is directly involved
in this process, there is no particular need to organize and structure check results in a
checklist.

3.1.2 Requirements

We elicit requirements for a configuration language whose purpose is to allow the spec-
ification of unambiguous, machine-readable checks that can be used to validate config-
uration settings of distributed system components. Key requirements include the pos-
sibility of associating checks with abstract target systems (i.e., described by a query on
their properties) as well as concrete ones, and the separation between the checks’ logic
and the retrieval of configuration settings.

(RL1) The language must support the definition of configuration checks for diverse soft-
ware components (e.g., network-level firewalls or application-level access control
systems) and diverse technologies.
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(RL2) The language must be expressive enough to cover new technologies or configura-
tion formats without requiring extensions. This would avoid the need to update
the language interpreter every time a new extension is published.

(RL3) It must be possible to specify target components by defining conditions over
properties such as name, release, and supported specification, or over the exis-
tence of relationships between components. This is necessary in cases where ex-
ternally provided checks must be applied to all instances of the affected software
components (scenarios S1 and S2).

(RL4) Motivated by scenario S3, it must be possible to specify target components by
referring to specific instances of a software component.

(RL5) It must be possible to validate the configurations of different, potentially dis-
tributed system components within one check.

(RL6) Checks must be uniquely identifiable, declarative, standardized and certifiable,
to support trusted knowledge exchange among security tools and stakeholders,
e.g., software vendors, security experts, auditors, or operations staff.

(RL7) The language must support parametrization in order to adopt externally pro-
vided checks to a specific configuration policy.

(RL8) The specification of checks must be separated from the description of the mecha-
nisms to collect the involved configuration settings from the actual system infras-
tructure. This separation of concerns is required in situations (e.g., scenarios S1
and S2) where the roles of check authors and system administrators are separated.

(RL9) It must be possible to collect, structure and prioritize checks to facilitate human
consumption of large collections of checks and related results.

3.2 Security Content Automation Protocol

The Security Content Automation Protocol (SCAP) [Waltermire2011; NIST2009] is a
suite of specifications that support automated configuration, vulnerability and patch
checking, as well as security measurement. Among other specifications, SCAP com-
prises a language for the definition of checklists (XCCDF), a language that allows the
specification of security checks to detect misconfiguration (OVAL), and a language for
defining classes of platforms (CPE).

3.2.1 Extensible Configuration Checklist Description Format

The Extensible Configuration Checklist Description Format (XCCDF) [Ziring2008] is an
XML-based language to represent a structured security checklist. An XCCDF document
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consists of Rules, each of which corresponds to a recommendation in a piece of guid-
ance. The other structures in XCCDF, namely Groups Profiles and Values, serve to orga-
nize and refine Rules. In addition to supporting the structuring of prose guidance and
compliance documentation, XCCDF Rules also contain Check elements, which support
the automated validation of systems, by referencing or encapsulating machine-readable
check specifications.

When processing such checks, an XCCDF interpreter invokes the appropriate ex-
ternal interpreter, according to the language each check is expressed with. The latter
performs the check and returns a result value. Combining the results of all individ-
ual rules, the XCCDF interpreter returns Pass if the recommendation has been followed
and Fail if not. Thus, an XCCDF document serves not only for documenting the desired
security state of a system, but it can be actively used to evaluate the system with respect
to the security guidance. For the latter case, though, it is necessary to rely on some ex-
ternal language that XCCDF check structures can reference and which describes how to
evaluate compliance with recommendations in an automated way. The language that
serves this purpose within SCAP is OVAL.

3.2.2 Open Vulnerability Assessment Language

The Open Vulnerability Assessment Language (OVAL) [Baker2012] is an XML-based
community standard to promote open and publicly available security content. OVAL
checks for the presence of vulnerabilities or desired configuration on a computer sys-
tem. It defines three XML schemas:

OVAL System Characteristics: it represents configuration information of systems for
testing;

OVAL Definition: it encodes the check logic to test for a specific state of the configura-
tion (vulnerability, policy-compliance, patch level, etc.); and

OVAL Results: it reports the results of the assessment, i.e., the output of a comparison
of an OVAL Definition against an OVAL System Characteristics instance.

OVAL allows to define how to check for misconfigurations by means of the fol-
lowing constructs: definitions, tests, objects, and states. An OVAL definition defines a
boolean combination of tests. Each test defines an evaluation over an object and (op-
tionally) a state. The OVAL object represents the configuration information that has
to be collected from a system and then evaluated against the expected values defined
within the state. The OVAL test can require to assess if the object exists in the system
under analysis and/or how many of the collected objects satisfy the state. For each
platform supported by OVAL, a schema extension defining tests, objects, and states
detailing the properties to examine have to be provided. This either requires tool ven-
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dors supporting the OVAL to constantly update the language interpreter, or leads to a
fragmented market where tools only support a subset of the language.

3.2.3 Common Platform Enumeration

The Common Platform Enumeration (CPE) [Buttner2009; Cheikes2011; Parmelee2011]
is an XML-based standard for the specification of structured names (CPE names) for
identifying IT systems, software, platforms, and packages. It consists of four modular
specifications: CPE Naming, CPE Language, CPE Dictionary and CPE Matching.

CPE Naming [Cheikes2011] is the base specification defining the format of CPE
names, which are represented as URIs. Each name consists of the prefix cpe: fol-
lowed by up to seven different parts used to compose consistent and unique names.
The parts are: platform (one of [h]ardware, [o]perating system, or [a]pplication), ven-
dor, product name, version, update level, edition, and language associated with the
specific platform. As an example, cpe:/o:microsoft:windows_2000::sp4:pro
represents an operating system developed by Microsoft (Windows 2000, service pack
4, professional edition).

To identify more complex platform types, the CPE Language offers boolean opera-
tors to combine different names, e.g. the AND operator allows to identify a platform
with a particular operating system AND a certain application. In this way the CPE
Language enables the CPE name for the operating system to be combined with the CPE
name for the application.

CPE names are collected within the CPE Dictionary. Its purpose is to provide a
source of all known CPE names as well as to bind descriptive prose and diagnostic
tests to a CPE name. These metadata include a title, notes, and an automated check to
determine if a given platform matches the CPE name. The automated checks can be
expressed in OVAL.

Finally, the CPE Matching specification [Parmelee2011] includes an algorithm to
establish if two names are equal, if one of the names represents a subset of the systems
represented by the other, or if the names represent disjoint sets of systems.

3.2.4 Analysis of SCAP Specifications

SCAP represents a comprehensive effort to standardize the representation of security
knowledge in order to foster the collaboration of security practitioners and tool inter-
operability. As explained below, however, several factors limit its applicability to dis-
tributed environments, in particular with regard to fine-grained targets such as soft-
ware libraries, Web applications or Web services. Furthermore, SCAP specifications
do not leverage standards and technologies in the area of system and configuration
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management, in order to, for instance, separate check logic and information about con-
figuration retrieval.

The CPE specifications are promising candidates to express the target systems of
configuration checks. However, while the CPE Naming and CPE Matching specifica-
tions allow the definition and comparison of single software components according to
properties such as vendor or product name, the CPE Language specification does not
meet (RL3) with regard to the need to express relationships among software compo-
nents. It supports the specification of a complex platform through a logical condition
over several CPE Names, but the semantics of their relationship is not explicitly de-
fined. The typical interpretation used in many CVE entries is that a complex platform
condition is met as soon as all software components are installed on the same machine.
This interpretation, however, is in many cases not sufficient to state that a vulnerability
exists. The vulnerability described by [CVE-2003-0042], for instance, is only exploitable
if Tomcat actually uses a given JDK version, the mere presence of both components on
the same system is not sufficient. This interpretation is even more misleading if vul-
nerabilities are caused by combinations of client-side and server-side components, e.g.,
[CVE-2012-0287]. A special kind of relationship is the composition of software compo-
nents, e.g., in the case of Java libraries. Today, a vendor of an application that embeds
a vulnerable library cannot encode such information in a standard machine-readable
format, as CPE is insufficient to detect the use of a given library in an application. For
instance, the recent disclosure of the so-called heartbleed vulnerability [CVE-2014-0160]
in the OpenSSL library, forced vendors to publish lengthy prose security advisories,
with no machine-readable counterpart, providing the list of the affected products (e.g.,
Oracle published a list of more than 300 products [Oracle2014] distinguish vulnerable
from non-vulnerable ones).

The XCCDF and OVAL languages, combined together, allow to specify unambigu-
ous executable configuration checks that can be structured in checklist documents that
support prioritization, scoring and human-consumable reporting of results. Moreover,
several open source as well as proprietary interpreter implementations exist for both
languages [Ovaldi; McAfee; OpenSCAP; OpenVAS]. Although they fulfill some impor-
tant requirements such as (RL6), (RL7) and (RL9), they do not cope well enough with
all of them.

With regard to (RL1), it is difficult, sometimes impossible, to write configuration
checks for fine-grained system components independently from their computing envi-
ronment. The reason is that generic OVAL objects from the so-called independent schema

(e.g., textfilecontent54_object) are relative to a machine’s file system, which
varies from one system to another. In the case of a JEE web application, for instance,
the filesystem location of the deployment descriptor (containing its configuration pa-
rameters) depends on the Servlet container and may not even be stored on the filesys-
tem, if the web application is, e.g., persisted in a database. The definition of container-
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specific objects (e.g., spwebapplication_object for Microsoft Sharepoint), on the
other hand, restricts the use of checks to dedicated environments. Requirement (RL2)
is not fulfilled as OVAL requires the extension of several schemas to support new soft-
ware components.

With regard to (RL3), (RL4) and (RL5) it is impossible in XCCDF/OVAL to specify
a target for checks that look at distributed components, since the execution of a set of
OVAL definitions and their tests are meant to be executed on a single machine. Finally,
OVAL does not clearly separate the check logic from the retrieval of the actual con-
figuration values (RL8), herewith missing to leverage industry efforts in the area of IT
service and application management. A configuration item can be retrieved by several
means and potentially from different sources (the actual component, or a configura-
tion store with copies). The mixture of these concerns makes the authoring of checks
difficult and error prone, as one cannot focus only on the check logic (e.g., the session
configuration of a deployment descriptor), but also needs to care for the retrieval of
configuration values (e.g., the identification of the file path depending on installation
directories and environment variables).

3.3 Configuration Validation Language

The configuration validation language allows the definition of security configuration
checks for collections of potentially distributed software components and addresses the
requirements devised in Section 3.1. Since OVAL already fulfills some of these require-
ments, it is to a good extent based on OVAL concepts. According to SCAP design goals,
in fact, OVAL supports standardized, unambiguous, and exchangeable representations
of configuration checks (RL6) as well as variables for parametrization (RL7). However,
a significant limitation is that OVAL checks (like CPE) work on the granularity of in-
dividual machines (computer systems), which hinders their applicability to distributed
systems.

This section introduces all the constructs the language and defines the extensions
we carried out over the OVAL standard. As such, the presentation will mainly focus on
the parts of OVAL which are extended by our proposal, providing a formal description
of their abstract syntax. Figure 3.2 shows the main concepts of the configuration valida-
tion language. The concepts are organized into three main areas. The Check and Target
areas concern the definition of the configuration checks and of the affected software
components, respectively, the System area contains elements corresponding to actual
configurations and components of a managed domain.
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Figure 3.2: Configuration validation language class diagram

3.3.1 Check Area

The Check area (top left of Figure 3.2) concerns the definition of checks in the form of
tests comparing an expected with an actual configuration value. This area largely relies
on the OVAL standard [Baker2012]. The concepts we borrow and extend are shown in
Figure 3.2 and prefixed with “OVAL”. In a nutshell, an OVAL definition is characterized
by a boolean combination of tests and a test defines an evaluation involving an object
(possibly containing a set of other objects) and zero or more states.

We introduce a new OVAL object, called XML Config Object, that (i) is generic
enough to apply to a wide range of configurations of different software compo-
nents (RL1), (ii) flexibly adapts to arbitrary (XML-based) configuration languages with-
out requiring changes in the interpreter (RL2) and (iii) is independent from the location
where configurations are stored (RL8). The XML Config Object is characterized by
three attributes: type denoting a type of configuration relevant for a software com-
ponent, schema denoting the format (i.e., XML grammar) in which the configurations
are represented, and query expressing how to identify the to-be-checked object within
the configuration. This object applies to XML-based configurations, however the same
approach can be used to define analogous objects for different common representations
(e.g., key-value).
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The XML Config Object is inspired from the standard XML File Object from
the OVAL independent schema, which can be analogously used to check any XML-
based configuration. However, while the standard object requires the filesystem path
of the to-be-checked configuration file, our object is independent from both the location
and the mechanism used to store the configuration. To provide these pieces of infor-
mation we will later introduce dedicated modular language constructs, namely targets

and collectors.

Example 3.2: Object, state, and test for http-only flag

The XML Config Object can be used to specify any of the test conditions that are intro-
duced informally in Example 3.1, as they all refer to XML-based configurations.

Consider, for instance, the http-only flag test which is part of the SANS secure cookie

recommendation. In the excerpt below, the type tag (line 2) indicates that the configuration
we consider is a web application deployment descriptor, the schema tag (line 3) refers to
the location of the schema that defines the syntax of deployment descriptors and the Xpath
query (line 4) points to the value of the http-only tag.

1 <xmlconfiguration_object id="oval:sans.security:obj:1">

2 <type>deployment descriptor</type>

3 <schema>http://java.sun.com/xml/ns/j2ee</schema>

4 <query>//session-config/cookie-config/http-only/text()</query>

5 </xmlconfiguration_object>

6 <xmlconfiguration_state id="oval:sans.security:ste:1">

7 <value_of operation="equals" entity_check="all">true</value_of>

8 </xmlconfiguration_state>

9 <xmlconfiguration_test id="oval:sans.security:tst:1">

10 <object object_ref="oval:sans.security:obj:1" />

11 <state state_ref="oval:sans.security:ste:1" />

12 </xmlconfiguration_test>

By creating a new object and modifying only the query element, the secure flag and
session timeout recommendations mentioned in Example 3.1 can be specified as well.
Moreover, by also modifying the type and schema, this object can be used for any other
XML based configuration.

The expected value for the configuration is specified in an OVAL state of type
xmlconfiguration_state stating that true is the expected value for the http-only

tag (line 7). This state is coupled with its corresponding object within the OVAL test
xmlconfiguration_test (lines 9–12).

OVAL definitions are boolean expressions where the atoms are OVAL tests. As we
do not change the evaluation semantics of OVAL definitions (i.e., the computation of
OVAL results), we do not need to provide here a formal description of their internal
structure. In the remainder of this section we will, however, need to refer to OVAL
tests and definitions in order to associate them with their corresponding target systems
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within a distributed environment. Hence, in the following definition, we only model
the relation that associates OVAL tests with the OVAL definition(s) they appear in.

Definition 1 (OVAL Test and Definition). Let T denote the domain of all possible OVAL

tests andD that of all OVAL definitions. The finite relation OD ⊆ D×T associates definitions

with the tests they are composed of.

For each OVAL definition d ∈ D we denote the set of associated OVAL tests as ODd. For-

mally ODd = {t ∈ T | 〈d, t〉 ∈ OD}.

Example 3.3: OVAL definitions

In this example, we introduce one OVAL definition for each of the informal checks that are
described in Example 3.1.

We denote with the symbol sans ∈ D the OVAL definition that checks for the SANS
recommendations. It comprises one OVAL test for each recommendation, i.e, ODsans =
{thttp−only, tsecure− f lag, tsession}. Similarly, the acmeA definition, checking the compliance with
customer A’s access control policy, has one test for authentication and one for authoriza-
tion: ODacmeA = {tauthc, tauthz}. The following excerpt exemplifies how such definitions are
expressed according to the OVAL syntax.

1 <definition id="oval:sans.security:def:1" class="compliance">

2 <criteria operator="AND">

3 <criterion test_ref="oval:sans.security:tst:1" comment="HttpOnly

flag"/>

4 <criterion test_ref="oval:sans.security:tst:2" comment="Secure flag

"/>

5 <criterion test_ref="oval:sans.security:tst:3" comment="Session

timeout"/>

6 </criteria>

7 </definition>

8 <definition id="oval:acme.cust-a.ac:def:1" class="compliance">

9 <criteria operator="AND">

10 <criterion test_ref="oval:acme.cust-a.ac:tst:1" comment="ACME

customer A authentication"/>

11 <criterion test_ref="oval:acme.cust-a.ac:tst:2" comment="ACME

customer A authorization"/>

12 </criteria>

13 </definition>

According to OVAL, a definition is a boolean combination of tests. As SANS requires
all recommendations to be followed, all the tests results are put in AND with each other in
order to raise an alarm whenever any of the recommendations is not followed (lines 1–7).
Likewise, the access control compliance check for customer A requires both authentication
and authorization settings to comply with the policy (lines 8–13).
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Name Description

product Product name, e.g., Struts
vendor Product vendor, e.g., Apache
release Product release, e.g., 2.3.1.1
sup_spec Supported specification
req_spec Required specification
unc_path UNC path for shared location
ctx_root JEE web application context root
ip_jmx IP address of JMX endpoint
port_jmx Port number of JMX endpoint

Table 3.3: Example Software Component Properties

The thttp−only test (line 3) is described in Example 3.2. All other tests can be analo-
gously defined.

3.3.2 Target Area

The Target area (top right of Figure 3.2) allows to specify targets for configuration
checks. A target definition is an abstract concept representing either a software com-
ponent or an association between a pair of either software components or other tar-
get definitions. A software component is characterized by a set of conditions on specific
properties of deployed software instances such as those listed in Table 3.3. An associ-

ation defines a relationship between software components. We distinguish three kinds
of associations. Static associations, i.e., “composed of”, which allow to represent the
internal structure of a software. Run-time associations, i.e., “deployed in” and “com-
municates with”, which allow to define relations among software components running
in a landscape. Finally, boolean associations (and, or) combine either static or dynamic
associations. Dynamic and boolean associations can be nested whereas the static ones
can only be applied to software components. These types of associations, combined
with the possibility to nest them, allow to specify arbitrarily complex target definition
expressions. An example target definition may, for instance, specify that a given soft-
ware component communicates with a second component which is in turn deployed
into a third one.

The above description is formalized by the following definitions.

Definition 2 (Condition and Software Component). A software component is a symbol

that identifies a set of conditions. Given sets P and V denoting respectively the domain of all

properties (cf. Table 3.3) and that of all constant values that can be taken by such properties, a

condition is a triple C = 〈p, θ, v〉, where:
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Name Description

∧ And: boolean conjunction
∨ Or: boolean disjunction
depl_in Deployed in: models a component installed in another
comp_of Composed of : represents the internal structure of applications

(e.g. linked libraries)
comm_with Communicates with: represents network communication
instr_set Instruction set: for either compiled (x86, x64) or interpreted

(Java Runtime) binaries

Table 3.4: Example Software Component Associations

– p ∈ P is a property,

– θ ∈ {=,<,>,≥,≤} is a comparison operator,

– v ∈ V is a value for the property.

Let C denote the domain of all possible conditions and S that of all software components. The

finite relation SC ⊆ S × C associates software components with the conditions they identify.

For each software components s ∈ S we denote the set of associated conditions as SCs.

Formally SCs = {C ∈ C | 〈s, C〉 ∈ SC}.

A target definition is either a software component or a pair of target definitions
related by an association. As formally stated in the next definition, this corresponds
to a binary tree where internal nodes are labeled by associations and leaf nodes by
software components.

Definition 3 (Association and Target Definition). LetA be the set of all possible associations

among software components. Some examples of such associations are listed in Table 3.4.

Let T D be the set of all target definitions, then:

1. If s ∈ S is a software component, then 〈〈〉, s, 〈〉〉 ∈ T D is a target definition;

2. If TDl , TDr ∈ T D are target definitions and a ∈ A is an association, then

〈TDl , a, TDr〉 ∈ T D is a target definition;

3. Nothing else is a target definition.

The function λ, mapping every target definition to the set of software components it is made

of, is inductively defined as follows:

λ : T D → 2S

〈〈〉, s, 〈〉〉 �→ {s},

〈TDl , a, TDr〉 �→ λ(TDl) ∪ λ(TDr).
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∨

depl_in

wapp30 cont30

depl_in

wapp20 cont20

Figure 3.5: Target definition TDsans for the SANS recommendation.

Example 3.4: Software component and target definition for SANS

The SANS recommendation applies to Java Web Applications developed according to one
of the releases of the Servlet specification and deployed in a web application container
supporting such a specification. In particular some of the recommendations in Example 3.1
are specific to the release 3.0, whereas others apply to previous ones as well.

According to Definition 2, a software component for the web application container can
be written as the set containing a single condition referring to the supported specification.
For instance software components cont20 and cont30 refer to web application containers
complying with, respectively, releases 2.0 and 3.0:

SCcont20 = {〈sup_spec,≥, Servlet_2.0〉},

SCcont30 = {〈sup_spec,≥, Servlet_3.0〉}.

As the recommendation applies to all web applications therein deployed, software com-
ponents wapp20 and wapp30 for web applications just refer to an empty set of conditions:

SCwapp20 = SCwapp30 = ∅.

Finally, the target definition for the SANS recommendations, according to Definition 3, is
TDsans which combines the above software components with an or association, as depicted
in Figure 3.5.

We extend the OVAL standard by associating each OVAL definition with a target
definition, i.e., a declarative intensional description of its targets (RL3). Such targets
are all the collections of distributed instances satisfying the conditions of the software
components in the target definition. To allow expressing checks over such distributed
targets (RL5) we also associate each OVAL test contained in the OVAL definition to a
particular software component appearing in the target definition. We name the result-
ing new artifact check definition. Note that this artifact is not represented by a single class
in Figure 3.2 but it involves several of the concepts therein presented and formalized
above. Definitions 1 and 3 provide the building blocks for the check definition.

Definition 4 (Check Definition). A check definition is a tuple CD = 〈d, TD, τ〉 where
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1. d ∈ D is an OVAL definition,

2. TD ∈ T D is a target definition,

3. τ : T → S is a function that maps every OVAL test included in the definition d into

the software component which it applies to, defined for the target definition TD. Hence,

τ(t) = s ⇒ t ∈ ODd ∧ s ∈ λ(TD).

Example 3.5: Check definition for SANS

Given ODsans and TDsans, defined in Examples 3.3 and 3.4 respectively, the check defini-
tion for SANS recommendations is

CDsans = 〈sans, TDsans, τsans〉,

where the http only and secure flag tests refer to web applications deployed in containers
that support the 3.0 Servlet specification, whereas the session timeout test refers to any
JEE web application (i.e., from version 2.0 of the Servlet specification, when it was first
officially released):

τsans = {tsecure− f lag : wapp30, thttp−only : wapp30, tsession : wapp20}.

3.3.3 System Area

The System area (bottom of Figure 3.2) contains the concepts characterizing systems
deployed in a distributed infrastructure and the related concrete configuration checks.

A system component represents a single deployment of a software component in a
distributed environment. As we aim at checking its configurations, a system compo-
nent is constituted by an assignment of values to the particular set of properties re-
quired to retrieve its configuration through a specific collection mechanism.

Definition 5 (System Component). A system component σ : P →⊥ V is a partial mapping

from properties to constant values.

A check definition (Definition 4) associates an oval definition with a target defini-
tion, specifying the set of inter-related software components which it applies to. In
general, many collections of system components will satisfy the target definition. We
associate to each such collections a new construct named system test. Analogously to
how system components are instances of the software components contained in a tar-
get definition, system tests are instances of a check definition. While, in a check defini-
tion, OVAL tests are mapped to abstract software components, in a system test they are
associated to the corresponding concrete system components.

Definition 6 (System Test). A system test is a triple ST = 〈Σ, d, TM〉 where
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Check Definitions,
Target Definitions

Internal/External
Auditor
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Administrator

OVAL Processor

Check Results

Figure 3.6: Language interpretation flow.

1. Σ is a set of system components,

2. d is an OVAL definition, ODd being its associated tests,

3. TM ⊆ T × Σ is a relation, which we call test mapping, defining which tests of the

definition apply to which system components. Hence, 〈t, σ〉 ∈ TM ⇒ t ∈ ODd ∧ σ ∈ Σ.

Check definitions, respectively target definitions, are system-independent (e.g., re-
ferring to any JEE application server), whereas system tests, respectively system com-
ponents, are system-specific (e.g., referring to a particular instance of Apache Tomcat
listening on specific IP address/port). Hence, as outlined in Figure 3.6, the latter can be
automatically derived from the former when given a complete description of a system
infrastructure. This task is performed by TD Evaluator module.

Target definitions represent queries over check targets which can be specified by
external and internal authors (from the perspective of an end-user organization), inde-
pendently from any particular system infrastructure. Embedded in check definitions,
they allow to express generic configuration checks (RL3) either for known vulnerabil-
ities affecting software components, as in Scenario (S1), or for best practices of single
or multiple software components, as in Scenario (S2). System components are the re-
sponses to the target definition queries which are embedded in system tests defining
which tests have to be executed on which concrete target. The system tests can also
be directly provided by system administrators, thereby bypassing the TD evaluation
phase, in case of checks for specific instances of software components (RL4), as in sce-
nario (S3). To produce system tests, the TD Evaluator relies on a data source: an au-
thoritative source of information about the software components installed in a system
infrastructure. The data source is the interpretation structure used to evaluate target
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definition queries. As it is not part of the configuration language, but rather of the
evaluation procedure implemented by the TD Evaluator, its formal definition will
be introduced in the next section.

An additional input to the TD Evaluator is the set of collectors, that specify which
properties of system components are necessary to collect the to-be-checked configura-
tions (OVAL objects). Recall that we explicitly left out this piece of information when
defining our OVAL object in Section 3.3.1. As such, check authors only need to care
for the check logic whereas system administrators, having the knowledge of the sys-
tem infrastructure, separately configure the available collection mechanisms (RL8). For
instance, one collector may specify that for all JEE web applications (software compo-
nent) it is possible to collect the deployment descriptor (object) by querying a specific
Mbean for the web application’s context root, through the JMX interface of its appli-
cation server. Hence, in order to collect the object, one needs to retrieve the values
associated to the following properties: (i) the context root, (ii) the IP address of the
application server and (iii) the port of the JMX service.

Definition 7 (Collector). A collector is a tuple K = 〈CS, PS, O〉 where: CS ⊆ C is a set of

software component conditions, PS ⊆ P is the set of properties required for collecting an OVAL

object, and O is a query selecting the concerned OVAL objects contained in OVAL tests. We

assume that a procedure exists to determine whether any OVAL test t ∈ T embeds an object

matching to O, written t |= O1. The set of all collectors is K.

Example 3.6: Collectors, system components and system tests

A collector for web applications deployment descriptors has to define the set of attributes
for retrieving the deployment descriptor of the web application installed in the landscape.

Several alternatives are viable, e.g., accessing a shared file system via the Universal
Naming Convention (UNC) or relying on the JMX interface of Tomcat. In particular, these
two alternatives can be encoded as the two collectors Kunc and Kjmx with same set of
conditions, as they apply to the same software component, and different sets of properties:

Kunc = 〈{〈req_spec,≥, Servlet_2.0〉}, {unc_path}, Owapp〉,

Kjmx = 〈{〈req_spec,≥, Servlet_2.0〉}, {ctx_root, ip_jmx, port_jmx}, Owapp〉.

The Owapp element is the following Xpath query that determines the applicability of the
collector to specific OVAL objects:

1 boolean(//xmlconfiguration_object[type="deployment descriptor" and

schema="http://java.sun.com/xml/ns/j2ee"])

1For the standard XML serialization of OVAL tests and objects any query expressed in XPath or XQuery
fulfills this requirement.
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In particular, it matches to all the XML Config Objects that refer to a JEE deploy-
ment descriptor, represented according to the syntax defined in the XSD schema names-
pace http://java.sun.com/xml/ns/j2ee .

The check definition CDsans = 〈sans, TDsans, τsans〉 defined in Example 3.5 originates
several system tests, one for each set of system components installed in the managed do-
main fulfilling the target definition TDsans. Suppose that there are two such sets of system
components Σa = {σwa} and Σb = {σwb

}, each one containing a single system compo-
nent corresponding to an instance of JEE web application that satisfies the target definition
TDsans. Also, suppose that for the first instance the Kjmx collector was applicable, whereas
Kunc could be used for the second instance (the use of collectors to determine system
components’ properties is further detailed and exemplified in Section 3.4). Then, the two
system components would provide values to different sets of properties, thereby reflecting
the different collection mechanisms:

σwa = {ctx_root : cust− a, ip_jmx : 1.1.1.129, port_jmx : 8059},

σwb
= {unc_path : \\1.1.1.130\path\to\web.xml}.

Recall that (Example 3.3) the OVAL definition sans refers to the tests ODsans =
{thttp−only, tsecure− f lag, tsession}. The corresponding system tests for, respectively, Σa and
Σb are then the following:

STa = 〈{σwa}, sans, {〈thttp−only, σwa〉, 〈tsecure− f lag, σwa〉, 〈tsession, σwa〉}〉,

STb = 〈{σwb
}, sans, {〈tsession, σwb

〉}〉.

Note that no system components for the web application containers (which are men-
tioned in the target definition TDsans) are included in the system tests, as no test applies to
them in the check definition (cf. τsans defined in Example 3.5).

Consider now the OVAL definition acmeA, which references the set of tests ODacmeA =
{tauthc, tauthz}. The fact that these tests are specific to customer A’s instance of the DEx
web application can be expressed by the system test:

ST′a = 〈{σta , σwa}, acmeA, {〈tauthc, σta〉, 〈tauthz, σwa〉}〉,

where σta denotes the system component corresponding to customer A’s tomcat instance
from which the authentication configuration has to be retrieved, to be then checked by the
test tauthc.

System tests are finally processed by the OVAL Processor module that interprets
the OVAL definitions therein contained and collects the objects defined for each system
component. The collected objects are named OVAL items. By comparing such items with
the expected state, according to the test, a boolean check result is produced. Differently
from the OVAL standard, our items may derive from different systems, however this
does not affect the evaluation algorithm defined in the standard and which we rely on
to compute check results. Each check result is the outcome of a single system test. As
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more system tests can be originated from a check definition, a single check definition
yields, in general, a set of check results. In the next section we describe how system
tests are instantiated from check definitions.

3.4 Language Interpretation

A key step of the workflow in Figure 3.6 is the generation of the system tests based on
the information contained in the data source. The evaluation of system tests is then
performed according to the rules already specified by the OVAL standard [Baker2012],
which we do not restate here. Instead, in this section, we focus on the first part of the
workflow. We first formally define the interpretation of target definitions with respect
to a data source, which provides information about the properties of software compo-
nents deployed within a managed domain, and we then describe how this leads to the
generation of system tests.

Informally, a data source can be seen as a particular instantiation of software com-
ponent properties (cf. Definition 2) and target definition associations (cf. Definition 3)
for a managed domain. Specifically, we hereby restrict to the set of properties (respec-
tively associations) reported in Table 3.3 (respectively Table 3.4). We assume a sin-
gle data source to provide information about several aspects of the managed domain,
ranging from the properties of installed software (e.g. product names and vendors),
or the internal structure of applications (e.g. linked libraries), up to architectural de-
tails on the deployment or the network interaction among different pieces of software.
Since such information is often scattered over several repositories within an organi-
zation (e.g., configuration management databases, dependency management systems),
the data source is a federated set of views over these repositories, which constitute the
interface to our language.

Let I be the domain of instances of software components, namely software compo-
nent identifiers, containing one unique symbol for each software component installed
in a given managed domain. The data source then maps every software component
identifier to the actual values of its properties and links it to the other software compo-
nent identifiers it is associated with.

Definition 8 (Data Source). A data source is the pair DS = 〈π, α〉 where:

– the partial function π : P × I →⊥ V , assigns values to the properties of software

component identifiers. By πp : I →⊥ V we denote its currying for a property p ∈ P ;

– the function α : A → 2I×I maps each association a ∈ A to the relation αa ⊆ I × I .
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i πvendor πproduct πrelease πsup_spec πunc_path

a Apache HTTPd 2.4.7 ⊥ ⊥
l OpenLDAP OpenLDAP 2.4.30 ⊥ ⊥
t1 Apache Tomcat 7.0.18 Servlet3.0 ⊥
t2 Apache Tomcat 6.0.25 Servlet2.5 ⊥
wa ACME DEx 1.0 ⊥ ⊥
wb ACME DEx 1.0 ⊥ \\1.1.1.130\path\

to\cust-b\web.xml

wc ACME Dex 1.0 ⊥ \\1.1.1.130\path\

to\cust-c\web.xml

(a) Instance of π for properties {vendor, product, release, sup_spec, unc_path}.

i πctx_root πip_jmx πport_jmx

a ⊥ ⊥ ⊥
l ⊥ ⊥ ⊥
t1 ⊥ ⊥ ⊥
t2 ⊥ ⊥ ⊥
wa cust-a 1.1.1.129 8059

wb cust-b ⊥ ⊥
wc cust-c ⊥ ⊥

(b) Instance of π for properties
{ctx_root, ip_jmx, port_jmx}.

αcomm_with αdepl_in

a t1 wa t1
a t2 wb t2
t1 l wc t2
t2 l

(c) Instance of α for
associations comm_with
and depl_in.

Figure 3.7: Example data source instance for ACME.

Example 3.7: Data source

Figure 3.7 depicts a tabular representation of the data source DSacme for the example ACME
system infrastructure. For the sake of conciseness, only a subset of the properties listed in
Table 3.3 and associations of Table 3.4 are considered.

The software component identifiers t1 and t2 correspond respectively to the Tomcat
instances running on machines 1.1.1.129 and 1.1.1.130, whereas a denotes the Apache
reverse proxy in the DMZ and l the OpenLDAP server storing the user accounts. Finally,
wa, wb and wc correspond to the instances of the DEx web application dedicated to cus-
tomers A, B and C respectively.

Note that the version of the Tomcat instance t2 is significantly older than that of t1, which
is also reflected in that t2 supports and older release of the JEE Servlet specification.

3.4.1 Target definition interpretation.

The conditions associated to a software component can be seen as a simple conjunctive
query ranging over properties of software deployed within a managed domain. The
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data source provides the necessary views on the managed domain to answer such a
query. The answer consists of the set of software component identifiers matching to a
set of software componentconditions. If it has no conditions, the answer is the entire
domain of software component identifiers I . This evaluation is performed by the data
source interpretation of software components, given by the mapping ⌈·⌉DS : 2C → 2I :

⌈∅⌉DS = I (3.1)

⌈{〈p, θ, v〉} ∪ X⌉DS =
{

i ∈ I | πp(i) θ v
}

∩ ⌈X⌉DS.

A target definition TD ∈ T D is instead a more complex selection predicate (cf. Defini-
tion 3) and there can be several sets of software component identifiers which satisfy it.
The interpretation of TD over a data source DS , �·�DS : T D → 22I , provides all such
sets for every target definition, as defined in (3.2).

�〈〈〉, s, 〈〉〉�DS =
{

{x} | x ∈ ⌈SCs⌉DS

}

�〈TDl , a, TDr〉�DS =

⎧

⎨

⎩

�TDl�DS ∪ �TDr�DS if a = ∨
{

X ∪Y | X ∈ �TDl�DS, Y ∈ �TDr�DS

}

if a = ∧
{

X ∪Y | X ∈ �TDl�DS, Y ∈ �TDr�DS, X ×Y ⊆ αa

}

otherwise
(3.2)

If the target definition is a simple software component s, then the function returns
the result of applying (3.1) to the corresponding set of conditions SCs. Otherwise, the
target definition is an association between two target definitions, which are first inter-
preted recursively. The sub-results are then combined differently depending on the
association:

– ∨ (boolean disjunction) yields the union of sub-results, as all the sets from either
sub-result have to be considered;

– ∧ (boolean conjunction) yields the set made by the pairwise union of all the sets
found in the respective sub-results;

– any other association a behaves like ∧, except the pairs of sets are filtered by
retaining only those for which all elements of one set are associated with those of
the other set by the relation αa in the data source.

Note that both (3.1) and (3.2) depend on the data source DS as it assigns values to
instance properties and associations.

Similarly, according to (3.3), the interpretation function �·�DS : T D → 2I×S maps
every target definition to a relation IS ⊆ I × S associating each software component
to all the software component identifiers that instantiate it (note that different software
components may instantiate the same software component identifier).

�〈〈〉, s, 〈〉〉�DS = {〈i, s〉 | i ∈ ⌈SCs⌉DS},

�〈TDl , a, TDr〉�DS = �TDl�DS ∪ �TDr�DS. (3.3)



Section 3.4. Language Interpretation 63

We are now in a position to define the evaluation function �·�DS of a target definition
TD ∈ T D over the data source DS, that maps it to the pair 〈I∗, IS〉, where I∗ is a
powerset of software component identifiers and IS a relation associating every i ∈

I ∈ I∗ to software components s ∈ λ(TD). As expressed in (3.4), the definition of
�·�DS relies on the aforementioned recursive interpretation functions of all the elements
within the target definition expression.

�TD�DS = 〈�TD�DS, �TD�DS〉. (3.4)

Example 3.8: TD interpretation

In this example we compute the interpretation of the target definition TDsans, introduced in
Example 3.4, with respect to the data source DSacme, shown in Figure 3.7 (Example 3.7).

According to (3.4), we need to determine

�TDsans�DSacme = 〈I∗sans, ISsans〉 = 〈�TDsans�DSacme , �TDsans�DSacme〉.

In order to obtain �TDsans�DSacme , according to (3.2), we start from the base cases,
i.e., the terms involving software components wapp20, wapp30, cont20 and cont30. Being
software components with empty sets of conditions, the first two terms instantiate all the
elements in I : �TDwapp20�DSacme = �〈〈〉, wapp20, 〈〉〉�DSacme = {{i} | i ∈

⌈

SCwapp20

⌉

DSacme
=

⌈∅⌉DSacme
} = {{i} | i ∈ I} = {{wa}, {wb}, {wc}, {t1}, . . .} = �TDwapp30�DSacme . The

third, respectively fourth, term yields instead only the JEE containers supporting version
2.0, respectively 3.0, of the Servlet specification: �TDcont20�DSacme = {{t1}, {t2}} and
�TDcont30�DSacme = {{t1}}.

The first and third terms are combined through the depl_in association yielding

�TD20�DSacme = �〈TDwapp20 , depl_in, TDcont20〉�DSacme

=
{

X ∪Y | X ∈ �TDwapp20�DSacme , Y ∈ �TDcont20�DSacme , X ×Y ⊆ αdepl_in}
}

=
{

{wa, t1}, {wb, t2}, {wc, t2}
}

and, by analogous reasoning, the second and fourth terms produce �TD30�DSacme =
�〈TDwapp30 , depl_in, TDcont30〉�DSacme =

{

{wa, t1}
}

.

Finally, the last two partial results are combined in the interpretation of the topmost
term I∗sans = �TDsans�DSacme = �〈TD20,∨, TD30〉�DSacme = �TD20�DSacme ∪ �TD30�DSacme =
{

{wa, t1}, {wb, t2}, {wc, t2}
}

. Figure 3.8 depicts the results of all recursive steps on the tree
structure of the TDsans expression.

Similarly, by applying (3.3), we obtain ISsans = �TDsans�DSacme = {〈wa, wapp30〉,
〈wa, wapp20〉, 〈wb, wapp20〉, 〈wc, wapp20〉, 〈t1, cont30〉, 〈t1, cont20〉, 〈t2, cont20〉}.
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∨ :
{

{wa, t1}, {wb, t2}, {wc, t2}
}

depl_in :
{

{wa, t1}
}

wapp30 :
{

{i} | i ∈ I
}

cont30 : {{t1}}

depl_in :
{

{wa, t1}, {wb, t2}, {wc, t2}
}

wapp20 :
{

{i} | i ∈ I
}

cont20 : {{t1}, {t2}}

Figure 3.8: Recursive computation of �TDsans�DSacme .

3.4.2 Generation of system tests.

As last step, the TD Evaluator needs to identify one or more system tests, mapping
each OVAL test to the system component carrying the information about how to collect
the object.

A check definition CD = 〈d, TD, τ〉 is defined for the target definition TD, being
interpreted over a data source resulting in a pair �TD�DS = 〈I∗, IS〉. Every I ∈ I∗ is
a set of software component identifiers satisfying the TD expression. Therefore one
system test has to be created for every such set I. When the TD Evaluator processes
a check definition, it must identify a matching collector K, among the set K of all the
ones defined for a given managed domain. This has to be done for every software
component identifier i ∈ I, as the collector provides the set of properties that represent
the information needed to collect the to-be-checked configurations for specific OVAL
objects from i. For this reason, every K ∈ K (cf. Definition 7) contains a set of conditions
CS to identify matching software component identifier and a query O, matching to the
OVAL objects it applies to. The conditions required to determine whether a collector
matches to a software component identifier are given by the following definition.

Definition 9 (Matching Collector). For a check definition CD = 〈d, TD, τ〉, let �TD�DS =

〈I∗, IS〉 be an interpretation of TD over DS.

We then say that a collector K = 〈 CS, PS, O〉matches to the software component identifier

i ∈ I ∈ I∗, iff the following three conditions hold

1. i ∈ ⌈CS⌉DS, i.e., i is indeed an instance matching all collector’s conditions CS;

2. ∀p ∈ PS, πp(i) �= ⊥, i.e., all the properties required by the collector are defined for i in

the datasource;

3. ∀t ∈ ODd s.t. 〈i, τ(t)〉 ∈ IS, t |= O, i.e., all the OVAL objects to be collected from i

match the collector’s Xpath query.

We now have all the ingredients that are necessary to derive the system tests that
have to be executed in order to check a given check definition. This is expressed by
the algorithm presented in Figure 3.9. Given the interpretation �TD�DS = 〈I∗, IS〉 of a
target definition within a check definition CD = 〈d, TD, τ〉, we associate each I ∈ I∗ to a
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Input: Check definition CD = 〈d, TD, τ〉

Input: Data Source DS = 〈π, α〉, with π : P × I →⊥ V and α : A → 2I×I

Output: Set of system tests STS

1 STS ← ∅;
2 〈I∗, IS〉 ← �TD�DS;
3 foreach I ∈ I∗ do

4 ΣI ← ∅;
5 TMI ← ∅;
6 foreach i ∈ I do

7 Choose K = 〈CS, PS, O〉 ∈ K s.t. K matches to i;

8 σi ←

(

p �→

{

π(p, i) if p ∈ PS

⊥ otherwise.

)

;

9 Ti ← {t ∈ ODd | 〈i, τ(t)〉 ∈ IS};
10 ΣI ← ΣI ∪ {σi};
11 TMI ← TMI ∪ {〈t, σi〉 | t ∈ Ti};

12 STS ← STS ∪ {〈ΣI , d, TMI〉}

13 return STS;

Figure 3.9: Evaluation algorithm: from check definition to system tests.

system test 〈ΣI , d, TMI〉. Every element σi ∈ ΣI is a system component, i.e., a mapping
assigning values to properties of the software component identifier i that will allow to
collect configuration information from it. The relation TMI associates instead every test
t ∈ ODd to one or more system components σi ∈ ΣI . To build the set ΣI we make use
of the collectors. For every i ∈ I we first (line 7) look for a matching collector K, accord-
ing to Definition 9, that carries a set of properties PS. These properties specify what
information is necessary in order to collect the configuration data from the software
component identifier i (e.g., IP address and port of the JMX service). We then fetch the
values of such properties from the data source DS to obtain the system component σi

(line 8). To know which tests are to be executed on which system components, we track
back all the tests that were mapped, in the check definition, to the software component
that instantiated i (line 9) and we associate each of them with σi in the TMI relation
(line 11).

Example 3.9: System tests generation

Let us consider the check definition CDsans = 〈sans, TDsans, τsans〉, introduced in Ex-
ample 3.5, and the data source interpretation of its target definition �TDsans�DSacme =
〈I∗sans, ISsans〉, which has been derived in Example 3.8.
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Three sets of software component identifiers satisfy the target definition, namely
I∗sans =

{

Ia = {wa, t1}, Ib = {wb, t2}, Ic = {wc, t2}
}

, hence three system tests will be
created. Among those, we shall only discuss, for brevity, the system tests STIa and STIb

,
related to Ia and Ib respectively, as Ic is analogous to Ib.

According to Definition 9 the collector Kjmx matches to the software component identi-
fier wa (and not to wb), as

1. wa ∈ ⌈{〈req_spec,≥, Servlet_2.0〉}⌉DS′acme
,

2. πctx_root(wa), πport_jmx(wa), πport_jmx(wa) are all defined in DS′acme (while this is
not the case for wb), and

3. it is true that thttp−only |= Owapp, tsecure− f lag |= Owapp and tsession |= Owapp.

From analogous reasoning it follows that Kunc matches to wb (and not to wa).

By applying Algorithm 3.9 we finally derive, as anticipated in Example 3.6, that:

STa = 〈{σwa}, sans, {〈thttp−only, σwa〉, 〈tsecure− f lag, σwa〉, 〈tsession, σwa〉}〉,

STb = 〈{σwb
}, sans, {〈tsession, σwb

〉}〉.

Note, in particular, that not all the tests of the OVAL definition are included in the test
mapping of STb. This is a consequence of the fact that 〈wb, wapp30〉 /∈ ISsans, therefore
all the tests that are specified for the release 3.0 of the Servlet specification (i.e., all t ∈
ODsans such that τsans(t) = wapp30) are excluded from the test mapping (lines 9 and 11 of
Algorithm 3.9).

3.5 Implementation

This section introduces COAS (Configuration Assessment as a Service): a prototype for
the automated validation of configuration settings in distributed information systems.
The tool implements the language and approach defined in Sections 3.3 and 3.4.

3.5.1 Language Implementation

Section 3.3 introduces the configuration validation language without providing a con-
crete syntax. As we now aim at implementing configuration validation, we need to
bind the language abstract structures to concrete machine-readable constructs that can
be authored by users and interpreted by a tool. Being the configuration language based
on OVAL, which is an XML language, we chose to use an XML representation too.

The first extension we proposed concerns the definition of the new OVAL XML

Config Object which customizes a base OVAL object according to the extensibility
rules of the OVAL standard. The XML schema of this object is included in Appendix A.1
and its use has already been shown in Example 3.2. The second extension is the in-
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troduction of the check definitions, which combine standard OVAL definitions with
information about the software components they apply to, i.e., the target definition. In-
corporating these additional concepts in OVAL would require forbidden modifications
to the OVAL schemas. In order to maximize the compatibility with the standard, we
chose to avoid this option and to specify check and target definitions in independent
XML documents whose grammar is reported in Appendix A.2.

Example 3.10: Concrete check and target definitions for SANS

The following snippet reports the XML representation of the target and check definitions for
the SANS recommendations, specified in Examples 3.4 and 3.5 respectively.

1 <target_definition id="td:sans.security:def:1">

2 <association name="or">

3 <association name="deployed_in">

4 <software_component id="sc:wapp20" />

5 <software_component id="sc:cont20">

6 <condition property="supported_specification" operator="

greater_eq" value="Servlet_2.0" />

7 </software_component>

8 </association>

9 <association name="deployed_in">

10 <software_component id="sc:wapp30" />

11 <software_component id="sc:cont30">

12 <condition property="supported_specification" operator="

greater_eq" value="Servlet_3.0" />

13 </software_component>

14 </association>

15 </association>

16 </target_definition>

17 <check_definition id="cd:sans.security:check:1"

18 od_ref="oval:sans.security:def:1"

19 td_ref="td:sans.security:def:1">

20 <target_mapping sc_ref="sc:wapp30">

21 <test test_ref="oval:sans.security:tst:1" comment="HttpOnly flag"

/>

22 <test test_ref="oval:sans.security:tst:2" comment="Secure flag" />

23 </target_mapping>

24 <target_mapping sc_ref="sc:wapp20">

25 <test test_ref="oval:sans.security:tst:3" comment="Session timeout

" />

26 </target_mapping>

27 </check_definition>

Lines 1 to 16 represent the target definition TDsans. The check definition CDsans is instead
encoded in lines 17 to 27. Here (line 18), the OVAL definition for SANS is referenced (cf.
Example 3.3), as well as (line 19) the above-specified target definition.



68 Chapter 3. Syntactic Configuration Validation for Distributed Systems

The interpretation of check definitions requires interpreting their target definitions,
in order to identify instances of the software components which they apply to. This step
requires the specification of a set of collectors K, which are language artifacts specific
to a given managed domain that carry information on how to collect the configuration
information from the actual systems. The XSD grammar for specifying a set of collectors
is defined in Appendix A.3.

Example 3.11: Concrete JMX collector

In Example 3.6 the collector Kjmx has been introduced, whose purpose is to collect the
deployment descriptor of JEE web applications via the JMX protocol. The following snippet
represents its XML representation.

1 <collectors>

2 <collector id="oval:jmx:col:1" type="com.sap.coas.collector.spi.jmx.

j2ee.J2EEJmxCollector">

3 <description>This collector will access JMX</description>

4 <platform>

5 <condition property="supported_specification" operator="

greater_eq" value="Servlet_2.0" />

6 </platform>

7 <oval_objects>

8 boolean(//xmlconfiguration_object[type="deployment descriptor"

and schema="http://java.sun.com/xml/ns/j2ee"])

9 </oval_objects>

10 <parameters>

11 <parameter name="jmx.conn.host" />

12 <parameter name="jmx.conn.port" />

13 <parameter name="jmx.j2ee.contextRoot" />

14 </parameters>

15 </collector>

16 </collectors>

Lines 4–6 and 7–9 determine the applicability conditions of the collector to, respectively,
specific software component instances and OVAL objects. Lines 10–14 encode instead
the parameters required by the collector. Note, moreover, the collector’s type attribute
specified in line 2. It points to the Java class implementing the behaviour specific to the
collector, which, in this example, corresponds to fetching a web application’s deployment
descriptor from an application server that supports JMX.

The artifacts resulting from the interpretation of target definitions are system tests
which specify the targets of each OVAL test, i.e., which system the to-be-checked con-
figurations shall be collected from. System tests can also be provided directly if the
check targets are known. As they map OVAL tests to target systems, their correspond-
ing XML constructs, defined in Appendix A.4, are named target-mappings.

We finally enrich the configuration validation language with the concept of checklist.
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Figure 3.10: COAS Component Diagram

A checklist defines the set of check definitions to be executed and allows to organize
them in groups. As groups can be included in groups themselves, a checklist allows to
define an arbitrary complex hierarchy of check definitions (RL9). Since this feature is
supported by the XCCDF standard (described in Section 3.2) we borrow entirely both
syntax and semantics of XCCDF checklists from the standard specification [Ziring2008].
The concept of checklist was not introduced in Section 3.3, where only the extensions
we carried out on OVAL, and which constitute the core contribution of this chapter,
were discussed. However, as mentioned in requirement (RL9), checklists are important
from a practical standpoint, in that they allow users to structure and prioritize checks.
Hence, they are introduced here were the implementation and use of the configuration
validation tool are discussed.

3.5.2 Tool Implementation

COAS is implemented as a JEE web application organized in different modules, as
shown in the component diagram depicted in Figure 3.10. The tool can be consumed
as a Web Service or through the COAS Web User Interface. This is represented by the
Client and WebUI components, respectively. As such, configuration validation can be
automatically triggered, e.g., periodically or upon some event occurring, or manually
executed. The fact that the tool is available as a service is a key feature as it allows
the validation of configuration settings of distributed systems within a single check or
checklist. Moreover, being application independent, it provides a centralized approach
for configuration validation that can be integrated into legacy tools, hereby establishing
consistency among tools that are run by different people and at different application
lifecycle phases within an organization.

The XCCDF Interpreter component implements the parsing of XCCDF check-
lists as prescribed in [Ziring2008]. The XCCDF rules that have an associated check
definition trigger the invocation of the OVAL Interpreter component. Every check
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definition references both an OVAL definition and a target definition. The former is
interpreted according to the standard specification [Baker2012], while the latter is han-
dled by the TD Evaluator component.

The TD Evaluator implements the algorithm presented in Figure 3.9 (cf. Sec-
tion 3.4). It processes input target definitions, represented in XML as described previ-
ously in this section, and produces output system tests.

The external CIM Server component implements the data source, which is re-
quired to instantiate target definitions according to a specific IT infrastructure. The
Common Information Model (CIM) [DMTF2000] is an information model developed
by the Distributed Management Task Force (DMTF) to support the integrated man-
agement of large IT infrastructures comprising systems, software, users, networks and
more. In order to conveniently explore the content of a CIM instance, the CIM Query
Language (CQL) has been defined [DMTF2007]. In a nutshell, the CQL is a subset
of SQL-92 with some extensions specific to CIM. The CIM Server component repre-
sents any software product capable of storing CIM instances and, in particular, that
implements a CQL query engine. Several configuration management products ful-
fill this requirement: both commercial (e.g., BMC Atrium, IBM Tivoli, HP Universal
CMDB, SAP Solution Manager) and open source ones (e.g., Open Group OpenPegasus,
Sun WBEM Services, IBM SBLIM). Moreover, we assume that the data model of the
CIM Server contains a CIM class named software_component having one attribute
for each property p ∈ P and one CIM (self-)association for each association a ∈ A. As
such, the data source structure of Definition 8 is implemented by simple CQL queries.
Each πp maps to a select query for instances of the software_component CIM class

projected on p. Each αa, instead, is a query for instances of the CIM association a.

Example 3.12: Data source CQL implementation

The following snippet shows two CQL queries that are issued to the CIM server as part of
the interpretation of the target definition TDsans computed in Example 3.8.

1 SELECT OBJECTPATH(software_component)

2 FROM software_component SC

3 WHERE SC.sup_spec >= "Servlet_2.0";

4

5 SELECT A.Antecedent, A.Dependent

6 FROM deployed_in A;

The first one (lines 1–3) allows to compute the term �TDwapp20�DSacme . The OBJECTPATH
operator is a CQL operator that returns the unique identifier of matching instances.

The second query (lines 5–6) is used when filtering for the membership to the relation
αdepl_in, e.g., when computing the term �TD20�DSacme . Note that each CIM association
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(a) Scenarios (S1) (S2) and (S3) (b) Scenario (S4)

Figure 3.11: COAS workflow per scenario (invariant flow for the OVAL interpreter).

always has two attributes, namely Antecedent and Dependent that hold the identifiers
the endpoint instances (in this example software components).

The Collector modules are implementations of the collector Service Provider In-
terface (SPI), which provides an extensible library of collection mechanisms for config-
uration data. We implemented a small library of collector modules that leverage com-
mon application or operating system remote management protocols, such as JMX, SMB,
SSH. New modules could be easily added to deal with specific technologies, e.g., SNMP
for network equipment or WS-Man for web services. As anticipated in Example 3.11,
every collector module has a corresponding collector specification that determines the
software components and OVAL objects it applies to, as well as the parameters that are
needed for the collection and whose values are fetched from the data source.

The external XML database is used by several COAS components to store and
access the variety of XML artifacts (e.g., checklists, checks, results) generated in the
course of a COAS execution. For instance, it allows the COAS Web UI to fetch, and
render to the user, the results of every past execution of the tool.

Figure 3.11 shows the execution flow of COAS in the context of the different sce-
narios introduced in Section 3.1. Figure 3.11a shows how COAS addresses scenarios
(S1), (S2) and (S3) or, in fact, any combination of the three. In this case COAS receives
the request to process an XCCDF checklist including an arbitrary collection of vulner-
ability, best practice or compliance checks. Figure 3.11b shows the usage of COAS for
the scenario (S4). In this case COAS is directly invoked by an application to evaluate
a collection of checks at runtime. Depending on the check results, the application may
decide to suppress critical functionalities.
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In both Figures 3.11a and 3.11b, the flow diagram of the OVAL interpreter is
the same and it depends on which artifacts were submitted. First the interpreter es-
tablishes if system tests are provided. This is the case of policy compliance checks (cf.
scenario (S3)), whereby the target systems are known a priori. If they are not available
(e.g., vulnerability and best-practice checks), COAS retrieves the information of which
systems have to be validated. This is done by the TD Evaluator that relies on the CIM
Server as data source. Once the target systems are identified, COAS checks whether
the configuration settings have already been provided. This is the case if the client that
invoked COAS manages the configuration information itself, like, for instance, a config-
uration management system or an application that aims at checking its own configura-
tion. If this is not the case, the Collector framework is used to retrieve configuration
settings from a configuration provider, such as a remote file system, a JMX endpoint or
even a CMDB storing replicated configuration items. Finally, the OVAL interpreter

computes the OVAL results by comparing the collected configuration items with the
expected OVAL states according to the OVAL specification. In case of compliance as-
sessment, a true result means that the compliance with the expected state is ensured. In
case of vulnerability assessment, a true result value states that a vulnerability is present.

3.6 Related Work

Existing standards and tools for configuration validation comprise several specifica-
tions out of the Security Content Automation Protocol (SCAP), namely CPE, XCCDF
and OVAL, as well as vulnerability and patch scanners that work on the basis of pro-
prietary languages to express vulnerability checks.

In Section 3.2 we introduced SCAP specifications and we highlighted their short-
comings with regard to expressing configuration checks for distributed systems. Our
target definitions are inspired from CPE Names in that we allow to express conditions
over properties of software components. However we explicitly allow for expressing
associations that carry specific semantics, e.g., depl_in to express that one component
is installed within another, which is not possible with the CPE Language. Standard
OVAL definitions are implicitly scoped by a single machine or operating system. In
contrast, we allow to specify generic check targets in terms of conditions that span
over multiple distributed software components. Finally, standard OVAL objects often
require system-specific information that depend on how and where to-be-checked con-
figurations are stored. To increase the separation of concerns and provide the flexibility
to choose among different mechanisms to access the configurations, we introduced the
concept of collector which we made independent from the language fragment that en-
codes the check logic. As such, check authors remain agnostic with respect to potential
configuration sources, which are instead cared for by system administrators who are in
charge of (and have the knowledge for) specifying suitable collectors.
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A category of software products called authenticated vulnerability and patch scan-
ners also perform configuration validation. Unlike unauthenticated or network vulner-
ability scanners that probe a target host over the network, these products require valid
credentials for the host under test in order to gather information relevant for given con-
figuration checks. As representative vulnerability scanner, we consider Nessus [Nes-
sus]: a widely adopted tool coming with a proprietary syntax for the definition of so-
called audit checks. The same considerations apply as well to open-source alternatives
like [OpenVAS]. Users can either write custom checks or subscribe to a commercial feed
to receive compliance checks tailored for a variety of standards and regulations. Hav-
ing comparable expressiveness, checks written in Nessus’ proprietary language can be
transformed into SCAP content. SCAP and Nessus’ language also have in common that
they focus on operating systems, which makes it difficult to specify checks on a more
fine-granular level, i.e., for objects which cannot be easily identified relative to the oper-
ating system. Analogously to standard generic OVAL objects, Nessus’ so-called custom

items for Windows and Unix require the specification of file paths. The so-called built-

in checks hide the configuration source from the check’s author, but instead of making
the source customizable, it is hard-coded. In contrast, our collectors allow to both de-
couple the configuration source from the check and to customize it for a given system
infrastructure. Checks considering distributed system components are not supported
at all (RL5). Nessus does also not allow to condition the applicability of the check on
the basis of component properties (e.g., release level) or component relationships (RL3)
but only on the basis of hard-coded keywords such as Unix.

So far we reviewed industry-adopted standards and products for configuration val-
idation; in the remainder of this section we discuss instead related research work.

Researchers have proposed several approaches to assess the overall security level
of systems by analyzing and reasoning about the potential combination of individual
vulnerabilities (exploits) by an adversary [Chen2008], [Ou2005]. Though referring to
SCAP specifications, these approaches do not look into the vulnerability specification
itself, but use the language and related tools merely for the discovery of individual
vulnerabilities.

In [Montanari2011], the problem of distributed configuration validation is tackled
from the scalability perspective. The authors propose an algorithm to dispatch the
evaluation of configuration checks to the nodes of a distributed infrastructure which
guarantees resiliency and scalability properties. As we focus mainly on the design of
the configuration language to maximize the integration with widely-accepted industry
standards and tools, our contribution is complementary to theirs, where the attention
is put on decentralizing the evaluation algorithm. They model both the system infras-
tructure and the configurations as RDF triples and they use Datalog-like rules to express
configuration checks. The structure of our data source can be also seen as a constrained
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RDF graph2, which we mapped to a CIM model since, unlike RDF, CIM is supported
by most existing CMDB products. Our check definitions have a richer structure than
Datalog rules, which allows to tailor the language expressiveness to the configuration
validation task (e.g., the specification of the checks’ logic is clearly separated from that
of checks’ targets).

The work that most closely relates to ours is that of [Barrere2012]. The authors agree
with our concerns about the lack of expressiveness of OVAL when considering config-
uration checks that apply to distributed systems. In particular, we share the require-
ment (RL3) of expressing conditions not only on individual components’ properties,
but on their relationships too. Accordingly, they propose to incorporate so-called re-
lationships into the language, which closely correspond to our associations. However,
unlike us, they view the components of a distributed system as individual network
hosts, whereas we consider fine-grained software instances. As such, their language
can express relationships between different network nodes (e.g., "communicates with")
but not between software components within the same node (e.g., "deployed in"). They
provide an algorithm to interpret extended OVAL checks which relies on the assump-
tion that the Cfengine tool [CFEngine] — a distributed agent-based system for the man-
agement of autonomic networks — is installed on every node of the system infrastruc-
ture and serves both for configuration collection and target resolution. In contrast, by
relying on existing management standards and technologies, our approach is agent-less
and not tied to a single collection mechanism, as we argue that the flexibility to choose
among several ones is crucial to achieve a better integration with current configuration
management processes.

3.7 Discussion

A key assumption underlying our proposal is the availability of a federated data source
that provides information on a variety of different aspects of an IT system: from the
internal architecture of applications to the network reachability of distributed compo-
nents. Unfortunately, in practice this information is often scattered over multiple repos-
itories, such as vendor-specific management systems, network administration tools,
dependency management systems, and encoded in different formats. Although all
these tools can be viewed as partial instances of the ITIL’s configuration management
database concept, which we used as reference for our data source, a single and fully in-
tegrated repository is yet unlikely to be available out of the box. In this case, additional
effort is required to create and maintain a federated data source. We have neverthe-
less reasons to believe that this effort will decrease with the evolution of configuration

2The function α : A → 2I×I defines a pseudograph whereA is the set of edges and I is that of vertices.
An RDF graph is also a pseudograph with the difference that the set of vertices includes not only instance
identifiers (URLs) but also literals and that edge labels are chosen from the set of vertices [Gutierrez2003].
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management systems. In fact, configuration data federation is to a large extent an engi-
neering and standardization problem which has recently started to receive the interest
of the IT industry, as proved by emerging standards such as the DMTF’s Configuration
Management Database Federation (CMDBf) specification [DMTF2010]. More concep-
tual are instead the issues connected to integrating the information coming from feder-
ated configuration data sources into a single data model. In Section 3.5.2, we bypassed
this problem by fixing the data model of the data source a priori. In reality, the data
model would be instead fixed by the context and in general there would be multiple
data sources. We argue, however, that this can be treated as an ortogonal problem,
which in fact has already been studied in literature on data integration [Ullman1997;
Lenzerini2002]. For instance, by applying a global as a view approach, we could define
our integrated data model as a view over multiple data sources.

The parallel with database techniques is not only superficial. Target definitions
within check definitions are effectively queries whose answers, namely system compo-
nents within system tests, are computed from the data source that act as the database
instance. This suggests the possibility of pushing the evaluation algorithm (cf. Fig-
ure 3.9) entirely to the data source instead of computing it externally based on the re-
sult of multiple individual queries that implement functions π and α. In the case of a
CIM-based data source (CMDB), this would translate to compiling target definitions to
CIM queries which, once executed, would directly return the same result of our current
evaluation algorithm.

The technique proposed in this chapter does not depend on the type of the to-be-
checked configurations, because checks isolate syntactic features of configuration set-
tings which are then directly compared to the expected states through a pre-determined
set of comparison operators (e.g., boolean, string, or integer comparison). As such, it
can be applied to check the correctness of the configuration of virtually any kind of
software functionality: from security features, as discussed and exemplified here, to,
e.g., quality of service parameters or application-specific functional requirements. On
the other hand, the adoption of a purely syntactical approach can sometimes limit the
expressiveness of check conditions, especially when checking configurations for which
the gap between syntax and semantics is substantial. Consider, for instance, the OVAL
definition acmeA, introduced in Example 3.3, which contains the test tauthz checking for
the compliance of the authorization configuration of the DEx web application dedicated
to ACME’s customer A. Expressed in its simplest form, such a test would compare the
XML configuration of the web application with the value mandated by the policy, i.e.,
the snippet presented in Figure 2.3 of Chapter 2. However, because of the flexibility
of the configuration language, there exist several other alternative ways of expressing
the same policy: for instance a security constraint that names two HTTP methods can
be equivalently expressed as two security constraints applying to one method each.
Clearly, a better formulation of the configuration check should treat all the alterna-
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tives as equal since they encode the same semantics, but authoring such a check is not
trivial, because it requires to incorporate the rules to interpret syntactic configuration
constructs into the check’s logic. Even harder would be to express weaker semantic
conditions, such as to determine whether a discrepancy in the configuration yields a
globally more or less permissive policy. Testing this kind of conditions constitutes a
crucial step towards the semantic assessment of misconfigurations, i.e., evaluating the
security impact of unexpected configuration settings in order to plan and prioritize re-
mediation actions. The next chapter will contribute to solve this problem by proposing
a formalization of the access control configuration of web applications.

3.8 Synthesis

This chapter presented a declarative language and a corresponding interpreter to un-
ambiguously specify and execute syntactic checks to detect misconfiguration issues
in distributed systems, e.g., situations where configuration settings do not comply
with high-level policies, or expose the system to known vulnerabilities, or do not fol-
low security best-practices. Our contribution builds on the SCAP specifications and,
specifically, extends the OVAL standard to allow the specification of security checks
for fine-grained components in a distributed environment and to separate the checks’
logic from the configuration retrieval. Our configuration validation language has been
adopted and validated in the scope of the PoSecCo project to support the Work Pack-
age 4 activities involved in the bottom-up configuration analysis approach (cf. Sec-
tion 1.5) [Ponta2012]. Furthermore, the extension of the OVAL language as well as its
interpretation semantics have been published in the proceedings of an international
security conference [Casalino2012a].

A prototype implementation has been presented to illustrate the feasibility of our
approach at the example of different configuration validation scenarios, using a CIM-
based configuration management database for resolving target definitions, and relying
on existing system management protocols, such as JMX, for the collection of configu-
ration settings. This prototype became the core of the PoSecCo’s focal prototype “Au-
dit Interface” [Bettan2012], which has been evaluated on realistic scenarios by the two
project’s use-case partners: an auditor and a service provider. The results [Demetz2013]
showed that the prototype helped to improve the coverage of the system under analy-
sis and to reduce the time required by configuration validation activities. Moreover, the
design and implementation of the COAS tool have been published in the proceedings
of an international workshop on security [Casalino2012b].



Nothing endures but change.

—Heraclitus, in: Diogenes Lærtius, “Lives of the Philosophers”

4
Formalization and Change Impact Analysis

of JEE Authorizations

⊲ Configuration validation techniques that are based exclusively on syntax are limited by the lack of
semantic awareness. This is especially the case for expressive configuration languages, such as access
control rulesets, for which it is hard to syntactically check interesting semantic conditions, e.g., testing
for inclusion or equivalence of configurations with respect to permissiveness.

In this chapter we tackle this problem for the access control configuration language of the JEE (Jave
Enterprise Edition) framework, one of the most widespread web application frameworks currently avail-
able. We provide a denotational semantics for this language, on top of which we define a procedure,
which we prove correct, to compare access control configurations with respect to their permissiveness.
Finally, we implement our model and evaluate it with respect to the operational semantics of existing
JEE container implementations through automated software testing. The findings include not only posi-
tive results supporting the correctness of our semantics, but also evidence of discrepancies that led to the
discovery of a previously unknown implementation error in the Apache Tomcat JEE container. ⊳
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AS argued in Chapter 1, human error is among the topmost causes of security mis-
configuration and it is often the consequence of system administrators failing to

predict the impact of configuration changes. Although syntactic configuration valida-
tion is a promising and widely-applicable approach for tackling this issue through con-
figuration change monitoring, it suffers, as pointed out in the conclusion of Chapter 3,
from the lack of semantic assessment capabilities, requiring human intervention to de-
tect false positives and prioritize remediation actions. We argue that this shortcoming
can be mitigated by developing automated techniques for semantic-aware configura-
tion comparison which: (i) support administrators in anticipating the impact of config-
uration changes and (ii) complement syntactic validation with richer change analysis
capabilities. Among all possible configurable security mechanisms, we focus on access
control, which has both substantially expressive (non trivial) corresponding configura-
tion languages and several well-studied formalizations.

More specifically, this chapter will restrict to the analysis of access control policies
for Web applications, the security of which has become more and more important as a
consequence of their increasing pervasiveness. For example, the failure to restrict URL
accesses and security misconfiguration are considered as top ten Web application se-
curity risks by [OWASP2010; OWASP2013]. Furthermore, although the change impact
analysis of access control policies already attracted researchers’ attention, existing ap-
proaches are not suitable to cope with some peculiarities of the authorization rules for
the Web, most notably the specification of patterns over hierarchical resources (URLs).

One of the most common frameworks for enterprise Web applications is the Java
Platform, Enterprise Edition (also abbreviated as Java EE or JEE). The front-end of JEE
Web applications is constituted of so-called Web Components, handling clients’ HTTP
requests and computing responses. The interface between the Web Components and
the application server, which provides their execution environment, is standardized in
the Java EE Servlet Specification [Coward2003]. This document establishes a contract
between application server implementations on one side and Web applications on the
other, prescribing, among others, a number of mechanisms to deal with security in JEE
Web applications. Such mechanisms belong to two categories: programmatic security

and declarative security. While the former describes functionalities which developers
can use through an API within their applications’ code, the latter refers to the enforce-
ment of security properties (such as HTTP-based access control) achieved not through
dedicated source code in the application, but through the declarative specification of
security configurations. In this case the enforcement of security at runtime is transpar-
ent to the Web application’s developer. In this chapter we focus on declarative security,
which defines the syntax of access control configurations and informally describes their
semantics. As depicted on the right-hand side of Figure 4.1, each Web application that
is deployed within a JEE application server is bundled with a configuration file, the
so-called deployment descriptor, where security and several other aspects of the runtime
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Figure 4.1: JEE framework (on the right) and chapter’s contribution (on the left).

environment are configured.

Unfortunately, the declarative security semantics of the JEE Servlet Specifica-
tion is defined in prose, which can lead to errors due to misinterpretation. Such
errors, as shown by documented misconfiguration vulnerabilities [CVE-2010-0738;
Polyakov2011], are among the causes of serious security issues. This motivates the
need for provably correct formal tools with which system administrators can verify
security properties of configurations. In line with related work on declarative access
control languages [Bryans2005; Kolovski2007; Ni2009; Ahn2010; Ramli2011], we argue
that it is important to equip JEE authorization configurations with formal semantics.
This constitutes both an unambiguous reference for the JEE specification and a basic
building block to support automated reasoning tasks, such as configuration change
impact analysis, which we discuss in this chapter.

The rest of the chapter is organized as follows. Section 4.1 details the declarative se-
curity mechanisms offered by the JEE framework and the language of so-called security

constraints, which allows to configure access control. In Section 4.2 we provide an inter-
pretation structure for security constraints, upon which we define the formal semantics
of corresponding access control policies (Section 4.3) and a comparison algorithm that is
compatible with the partial order of permissiveness on policies (Section 4.4). Together
with a prototype implementation, Section 4.5 compares our semantics with existing
Web container implementations. The motivation for this experiment is twofold: on the
one hand we empirically verify that the formal semantics complies with the informal
one in the JEE Servlet Specification and, on the other hand, we are able to find cases
where containers do not behave as expected. Experiments run on Tomcat and Glassfish
application servers have led to the discovery of implementation errors. The left-hand
side of Figure 4.1 shows how the different parts of our contribution interact with the
JEE framework. Section 4.6 compares our approach to related work on XACML, access
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〈ac〉 ::= ‘*’ | ‘<’ 〈rl〉 ‘>’

〈rl〉 ::= 〈empty〉 | role ‘,’ 〈rl〉

〈up〉 ::= 〈empty〉 | part | ‘*’ | part ‘/’ 〈up〉

〈upl〉 ::= 〈up〉 | 〈up〉 ‘,’ 〈upl〉

〈ml〉 ::= method | method ‘,’ 〈ml〉

〈wrc〉 ::= ‘{’ 〈upl〉 ‘}’ ‘[’ 〈empty〉 ‘]’ | ‘{’ 〈upl〉 ‘}’ ‘[’ 〈ml〉 ‘]’

〈wrcl〉 ::= 〈wrc〉 | 〈wrc〉 ‘,’ 〈wrcl〉

〈sc〉 ::= 〈wrcl〉 | 〈wrcl〉 〈ac〉

〈scl〉 ::= 〈sc〉 | 〈sc〉 ‘\n’ 〈scl〉

Figure 4.2: Shorthand syntax for security constraints.

control frameworks for Web-services and other security analysis tools for JEE applica-
tions. Section 4.7 discusses our proposal and outlines some further technical perspec-
tives. Finally, Section 4.8 concludes the chapter with a summary of our contribution
and results.

4.1 Security Constraints

The security-related fragment of the deployment descriptor is composed by the secu-

rity constraints XML tags. For the sake of conciseness, we provide in Figure 4.2 a BNF
grammar modeled from the XML grammar defined by the Servlet specification.

In a web application the to-be-protected resources are identified by URLs accessi-
ble via HTTP methods. Hence, the language offers a construct to specify URL patterns
(〈up〉), which are sequences of strings (URL parts) separated by ‘/’ and possibly ter-
minated by a wildcard (‘/*’). Patterns ending with such a wildcard identify the entire
hierarchy of URLs sharing the same prefix.

A web resource collection (〈wrc〉) consists then of a list of URL patterns (〈upl〉)
followed by a (possibly empty) list of HTTP methods (〈ml〉).

In a security constraint (〈sc〉), access control is configured by associating web re-
source collections with up to one authorization constraint (〈ac〉), that is the set of roles
allowed to access the mentioned resources. The special role name ‘*’ is a shorthand for
all the roles defined inside the deployment descriptor. The initial non-terminal symbol
〈scl〉 represents a list of security constraints.
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Example 4.1: Security constraints for ACME

The following snippet shows the example security contraints for one of ACME’s customers,
introduced in Figure 2.3 of Chapter 2, encoded according to the shorthand syntax of Fig-
ure 4.2.

1 {/manager/*} [DELETE, PUT] <>

2 {/manager/*} [] <dex-mgr>

3 {/partner/*} [] <dex-mgr, dex-tp>

The security constraint of line 2 grants the role dex-mgr access to the /manager/*

URL pattern with any HTTP method. At the same time, it specifies that no other role can
access URLs that match this pattern. Similarly, the constraint of line 3 ensures that only
the members of either dex-mgr or dex-tp roles are granted access to the /partner/*

URL pattern, with, again, any HTTP method.

The constraint of line 1 ensures instead that HTTP methods DELETE and PUT, not being
implemented by the web application, are never accessible within the manager console. This
is expressed by including an empty list of roles in the constraint.

Any other URL that does not match these two patterns is unconstrained. For instance,
the root / is accessible by any, possibly unauthenticated, user.

This example will be used throughout the rest of the chapter, with abbreviated identifiers
(e.g., m for manager, p for partner, etc.).

According to the informal semantics from [Coward2003], in order to have access
granted, a user must be a member of at least one of the roles named in the security con-
straint (or implied by ‘*’) that matches to her/his HTTP request. An empty authoriza-
tion constraint means that nobody can access the resources, whereas access is granted
to any (possibly unauthenticated) user in case the authorization constraint is omitted.
Unauthenticated access is also allowed by default to any unconstrained resources. It’s
worth noting that an intuitively insignificant syntactic difference, such as omitting the
authorization constraint instead of specifying an empty one, corresponds to a major
discrepancy in semantics, respectively allow all or deny all behaviours are obtained.

In case the same URL pattern and HTTP method occur in different security con-
straints, their authorization constraints have to be composed. If two non-empty au-
thorization constraints are composed, the result is the union of the two sets of allowed
roles. If one of the two allows unauthenticated access, the composition also does, con-
ceptually resulting again in a union. In contrast, if one of the sets of roles is empty, their
composition is empty. Constraints on more specific URL patterns (e.g., /a/b) always
override more general ones (e.g., /a/*).

If some HTTP methods are explicitly mentioned in a web resource collection, all the
other methods are unconstrained, whereas, if none is named, every method is implic-
itly constrained. Verb tampering attacks [CVE-2010-0738; Polyakov2011] exploit this
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behaviour to bypass the access control check in vulnerable web applications that (i)
handle requests on unimplemented methods (e.g., HEAD) as ordinary ones (e.g., GET)
instead of correctly returning an appropriate HTTP error to the client, and (ii) exhibit
a badly configured deployment descriptor that constrains only the implemented meth-
ods.

The peculiar handling of unconstrained methods, combined with the fact that most
specific constraints take precedence, leads to particularly counterintuitive behaviours,
as illustrated by the following example.

Example 4.2: Combination of security constraints

Assume that one of ACME’s customers, say customer A, decides to restrict the access
control policy of its dedicated instance of the DEx service in order to forbid trading partners
to submit EDI documents and let them only access the service to either retrieve or delete
the document they are recipient of.

To enforce this new policy, as the EDI exchange web service is available as a RESTful
API at the URL /partner/edi/ (cf. Section 2.2), ACME’s system administrators decide
to restrict the access rights of the dex-tp role for this location to the HTTP methods GET
and DELETE only.

To do so, they might modify the security constraints configuration of Example 4.1 as
follows:

1 {/manager/*} [DELETE, PUT] <>

2 {/manager/*} [] <dex-mgr>

3 {/partner/*} [] <dex-mgr>

4 {/partner/edi/*} [GET, DELETE] <dex-tp>

Note that, while lines 1 and 2 remained unchanged, lines 3 and 4 seemingly make
the configuration more restrictive, as dex-tp has now access only to a subset of HTTP
methods on a more specific URL pattern. However, with this new constraint, HTTP requests
such as (/partner/edi/123, PUT) and (/partner/edi/123, POST) are granted
to anyone, even unauthenticated users! Moreover, dex-mgr users cannot access any
more any URL matching to /partner/edi/* with methods GET and DELETE.

This is the case because /partner/edi/* is more specific than /partner/*, hence
line 3 is overridden by line 4. However the latter does not define behaviour for the PUT and
POST methods, so the default allow policy is applied.

A better formulation, which does not override the behavior imposed by line 3, requires
including the additional constraint: {/partner/edi/*} [] <dex-mgr>.
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4.2 Interpretation Structure

In this section we define a mathematical structure, named Web Access Control Tree
(WACT), that encodes authorization rules on hierarchical resources and we describe
how security constraints can be interpreted into such a structure. This step provides
the foundations for the definition of a denotational semantics of JEE access control con-
figurations.

A function �·�LIT is defined for each non-terminal symbol 〈lit〉 in the grammar given
in Figure 4.2. These functions derive from case analysis on the structure of the language.
Terminal symbols are interpreted within an associated domain of semantic objects. For
instance, role literals in ‘role’ are interpreted by the function �·�R : ‘role’ → R in
elements of the roles domain R. Likewise �·�M maps ‘method’ literals in the domain
of HTTP methods M, and �·�S interprets URL ‘part’s in an infinite domain of strings
S . The final interpretation function is �·�SCL, that is, the interpretation of initial symbol
of the grammar.

4.2.1 Authorization Constraints

The interpretation function of authorization constraints is given by the function �·�AC

defined in (4.1). This function maps every authorization constraint 〈ac〉 to an element
of the powerset of the role domain. The function �·�RL, defined by (4.2), folds roles into
a set.

�〈ac〉�AC =

{

R if 〈ac〉 = ‘*’,
�〈rl〉�RL if 〈ac〉 = ‘<’〈rl〉‘>’.

(4.1)

�〈rl〉�RL =

{

∅ if 〈rl〉 = 〈empty〉,
{�‘role’�R} ∪ �〈rl〉′�RL if 〈rl〉 = ‘role’‘,’〈rl〉′.

(4.2)

Fold, also known as reduce or accumulate, is a standard high-order functional oper-
ation on containers. It has an intuitive meaning: for instance, according to (4.2), the
syntactic role list “<dex-mgr>” (line 2 of Example 4.1) is turned into the subset of R =

{M, P} that contains only one symbol for the role dex-mgr: �<dex-mgr>�RL = {M}. We
use capital letters to denote semantic role symbols (i.e., M, P for dex-mgr and dex-tp

respectively) in order to distinguish them from the lowercase identifiers of URL parts
(i.e., m, p for manager and partner respectively).

Other similar fold functions that interpet syntactic lists into sets of semantic objects
are used throughout this section, namely �·�UPL, �·�ML and �·�WRCL for URLs, methods
and web resource collections respectively. Their definitions rest on the same principle
and hence are not reported here.

In order to capture the semantics of authorization constraints, a partial order ≤R

between sets of roles is defined. To take the case of unauthenticated users into account,
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the symbol ⊤ is added. The role lattice L is the complete lattice given by the powerset
of the role domain, ordered by set inclusion, and containing the additional element
⊤ /∈ 2R.

Definition 10 (Role Lattice). The (complete) role lattice is defined by the partially-ordered set

L = 〈2R ∪ {⊤},≤R〉, where RA ≤R RB iff RB = ⊤ or RA ⊆ RB.

The top element ⊤ semantically corresponds to the default allow all authorization
constraint implicitly associated with any non-constrained web resource. In contrast,
the bottom element ∅ represents a deny all authorization constraint.

Equation (4.3) formally captures the composition rules of different authorization
constraints mentioned in Section 4.1. The operator ⊗ : L× L → L performs composi-
tion by relying on the least upper bound lattice operator (

⊔

).

RA ⊗ RB =

{

∅ if RA = ∅ or RB = ∅,
RA

⊔

RB otherwise.
(4.3)

To illustrate the behaviour of this composition rule, we consider the following
equalities: {r1, r2} ⊗ ⊤ = ⊤, {r1, r2} ⊗ {r3, r1} = {r1, r2, r3}, {r1, r2} ⊗ ∅ = ∅ and
⊤⊗ ∅ = ∅. Note that this is consistent with the behaviour described in Example 4.1
for the composition of the security constraints: {/manager/*} [DELETE, PUT] <>

and {/manager/*} [] <dex-mgr>. For methods DELETE and PUT, the composi-
tion between the empty set of roles of the first constraint and the non-empty one of
the second yields an empty set: ∅⊗ {M} = ∅. This means that any URL matching the
pattern /manager/* will not be accessible via these two methods by any user (denial
takes precedence); not even by the members of the dex-mgr role.

4.2.2 Web Resource Collections

The resources being subject to access control in a web application are URLs. The URL
hierarchy must be taken into account while evaluating access control requests, since a
URL pattern ending with a wildcard matches every URL sharing its prefix. We there-
fore interpret URL patterns as a tree, where each node is a prefix-ordered sequence of
symbols.

Definition 11 (URL). A URL u ∈ U is a (possibly empty) sequence of symbols each one

belonging to S , and ending with at most one symbol belonging to the set E = {ǫ, ∗}1, where

S ∩ E = ∅ :

1. u = 〈〉 is an (empty) URL;

2. u = 〈s0, . . . , sn〉, with n > 0 and s0, . . . , sn ∈ S , is a URL;

1The symbol ǫ is used to differentiate files from folders, e.g., between /a/ and /a.
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〈〉

〈m〉

〈m, ∗〉

〈p〉

〈p, e〉

〈p, e, ∗〉

〈p, ∗〉

Figure 4.3: URL tree of ACME’s DEx web application.

3. u = 〈s0, . . . , sn, se〉, with n > 0, s0, . . . , sn ∈ S and se ∈ E = {ǫ, ∗}, is a URL.

For a given URL u = 〈s0, . . . , sn〉 its length, written |u|, equals n + 1; the length of
the empty URL being 0. The l-long prefix of u, written u≤l is the sequence 〈s0, . . . , sl−1〉,
with u≤0 = 〈〉. The ith symbol si of u is written ui. Equality of URLs is defined in the
traditional way. The URL concatenation operator ⊕ : U × U → U is defined as follows:

u⊕ v =

{

〈u0, . . . , u|u|, v0, . . . , v|v|〉 if u|u| ∈ S ,
undefined if u|u| ∈ E .

(4.4)

For instance, let S = {a, b, c} and u = 〈a, b〉. The following equalities hold: |u| = 2,
u≤1 = 〈a〉, v = u ⊕ 〈c〉 = 〈a, b, c〉, v2 = c, w = u ⊕ 〈ǫ〉 = 〈a, b, ǫ〉. Finally w ⊕ 〈c〉 is
not defined. This is indeed consistent with reality: since the URL w represents the file
/a/b, and not the directory /a/b/, any further concatenation is meaningless.

Definition 12 (URL Tree). A URL tree is a non empty, finite, partially ordered set 〈U,≺〉
such that:

1. U ⊆ U ;

2. U is prefix-closed, i.e., u ∈ U and |u| > 0 ⇒ u≤|u|−1 ∈ U, in particular the empty URL

〈〉 always belongs to U;

3. ≺ is the weak partial order defined as u ≺ v iff |u| ≤ |v| and u = v≤|u|.

The set U ∗ denotes all the possible URL trees.

Proposition 1. The relation ≺ is indeed a partial order for U . Moreover, for any URL tree

〈U,≺〉 the set of predecessors of any of its elements u↓= {p | p ≺ u} is well-ordered.

Proof. See Appendix B.1.

Proposition 1 ensures that a URL tree is indeed a tree according to the set-theoretic
definition. Figure 4.3 depicts the URL tree corresponding to the interpretation of all the
URL patterns in Example 4.1.
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Every URL pattern 〈up〉 is interpreted as a URL through the function �·�UP recur-
sively defined in (4.5). Intuitively, a URL is simply a sequence of identifiers (‘part’s)
separated by the ‘/’ character. For instance, the concrete URL pattern /p/e/* is
turned into the sequence �{/p/e/*}�UP = 〈p, e, ∗〉.

�〈up〉�UP =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈ǫ〉 if 〈up〉 = 〈empty〉,
〈∗〉 if 〈up〉 = ‘*’,
〈�‘part’�S〉 if 〈up〉 = ‘part’,
〈�‘part’�S〉 ⊕ �〈up〉′�UP if 〈up〉 = ‘part’‘/’〈up〉′.

(4.5)

The combination of URL patterns and HTTP methods into web resource collections
is done by performing the cartesian product of the two sets by means of the function
�·�WRC defined in (4.6). This definition is consistent with the Servlet specification, since
it states that naming no methods means that every method is constrained.

�〈wrc〉�WRC =

{

�〈upl〉�UPL ×M if 〈wrc〉 = 〈upl〉,
�〈upl〉�UPL × �〈ml〉�ML if 〈wrc〉 = 〈upl〉〈ml〉.

(4.6)

For instance, if we consider the constraint on line 4 from Example 4.2, then
�{/p/e/*}, [GET, DELETE]�WRC equals the set with two elements:

{〈〈p, e, ∗〉, GET〉, 〈〈p, e, ∗〉, DELETE〉}.

4.2.3 Security Constraints

Security constraints describe which roles are allowed to access to the nodes of a URL
tree. To encode this information, we enrich a URL tree with a labeling function that
maps nodes of the tree, i.e., URLs, and HTTP methods to a respective set of authorized
roles. We name the resulting structure Web application Access Control Tree.

Definition 13 (Web application Access Control Tree). A Web application Access Control

Tree (WACT) is a pair 〈U, ρ〉, where U ∈ U ∗ is a URL tree as defined in Definition 12 and

ρ : U ×M→ L is a partial function giving the set of roles allowed to access a pair 〈u, m〉. The

set of all WACTs is T .

A security constraint is interpreted as a WACT through the function �·�SC which
maps any constraint 〈sc〉 to the WACT �〈sc〉�SC = 〈U, ρ〉.

U = {w ∈ U | w ≺ u ∧ 〈u, ·〉 ∈ �〈wrcl〉�WRCL} (4.7)

ρ(u, m) =

⎧

⎨

⎩

⊤ if 〈sc〉 = 〈wrcl〉 ∧ 〈u, m〉 ∈ �〈wrcl〉�WRCL,
�〈ac〉�AC if 〈sc〉 = 〈wrcl〉〈ac〉 ∧ 〈u, m〉 ∈ �〈wrcl〉�WRCL,
undefined if 〈u, m〉 /∈ �〈wrcl〉�WRCL.

(4.8)
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As defined in (4.7), U ∈ U ∗ is given by the prefix-closure of every URL in the web
resource collections, for instance {〈〉, 〈p〉, 〈p, e〉, 〈p, e, ∗〉} is the prefix closure of 〈p, e, ∗〉.
The function ρ, according to (4.8), is defined only for the URL/method pairs contained
in the interpretation of the web resource collections. It maps all such pairs:

– to the ⊤ element of the role lattice, in case no authorization constraints are speci-
fied;

– to the set of roles given by interpreting the authorization constraints �〈ac〉�AC,
otherwise.

Several trees obtained from �·�SC have to be combined when a web applications’
deployment descriptor contains more than one security constraint. The union of two
WACTs 〈U1, ρ1〉 ∪̇ 〈U2, ρ2〉 is the tree 〈U1 ∪U2, ρU〉 where ρU is defined by (4.9). In the
case where both trees define a set of roles for a common pair 〈u, m〉, the corresponding
role sets are merged by using the operator ⊗ defined by (4.3).

ρU(u, m) =

⎧

⎨

⎩

ρ1(u, m)⊗ ρ2(u, m) if 〈u, m〉 ∈ dom(ρ1) ∩ dom(ρ2)

ρ1(u, m) if 〈u, m〉 ∈ dom(ρ1) \ dom(ρ2)

ρ2(u, m) if 〈u, m〉 ∈ dom(ρ2) \ dom(ρ1)

(4.9)

Finally, Equation (4.10) folds all the security constraints from a deployment descrip-
tor (〈scl〉) to produce a single WACT.

�〈scl〉�SCL =

{

�〈sc〉�SC if 〈scl〉 = 〈sc〉,
�〈sc〉�SC ∪̇ �〈scl〉′�SCL if 〈scl〉 = 〈sc〉〈scl〉′.

(4.10)

For instance, the two security constraints { /a, /a/b } [GET] <x> and
{ /a/b } [GET, POST] <y> turn into the WACTs t1 = 〈U1, ρ1〉 and t2 = 〈U2, ρ2〉

respectively, with ρ1(〈a〉, GET) = {x}, ρ1(〈a, b〉, GET) = {x}, ρ2(〈a, b〉, GET) = {y}

and ρ2(〈a, b〉, POST) = {y}. Their union is the WACT t1 ∪̇ t2 = 〈U1 ∪ U2, ρ〉, with
ρ(〈a, b〉, GET) = {x, y}, ρ(〈a, b〉, POST) = {y} and ρ(〈a〉, GET) = {x}.

4.3 Access Control Semantics

According to the Servlet specification [Coward2003, Section 12.8.3], when a container
receives a request, it shall determine the applicable security constraints and enforce the
role-based access control policy which results from their interpretation.

Each request is a triple 〈u, m, R〉 ∈ U ×M×L composed by (i) a URL identifying
the requested resource, (ii) a HTTP method and (iii) an element of the role lattice rep-
resenting either the set of roles assigned to the user who submitted the request or an
unauthenticated request in case R = ⊤. For any such request, enforcing access control
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requires determining whether to accept or deny the request, based on the policy ex-
pressed by the given security constraints. Formally, this is equivalent to implementing
the function

δ : U ×M×L → {0, 1}, (4.11)

where every request is mapped to either 0 (deny) or 1 (allow).

The rules to determine the behaviour of δ are informally described in [Coward2003,
Section 12.8.3] and may be summarized as “constraints on most specific URL patterns take

precedence”. In the remainder of this section we show how the hierarchical structure of
WACTs can be conveniently exploited to define δ.

Recall that the partial mapping ρ in the WACT associates URLs and method with
the corresponding sets of granted roles. However, a request may refer to a URL which
is not mapped by ρ, in which case the most specific constraint shall apply. In order to
capture this behaviour, for a URL tree U, we denote the set of ∗-predecessors of every
URL u ∈ U as u ↓∗. The elements of this set are all the immediate successors of the
ancestors of u, ending with the symbol ∗ ∈ E . Formally,

u↓∗ = {w⊕ 〈∗〉 | w ∈ U ∧ w ≺ u ∧ w⊕ 〈∗〉 ∈ U} .

Note that this set may be empty, in case u does not have any ancestor that satisfies
such a property. For instance, if U = {〈a〉, 〈a, b〉, 〈a, b, ∗〉, 〈a, b, c〉, 〈a, b, c, ∗〉, 〈a, d〉},
then 〈a, b, c〉 ↓∗ = {〈a, b, c, ∗〉, 〈a, b, ∗〉}, but 〈a, d〉 ↓∗ = ∅.

The ∗-predecessors of a URL u are all and the only URL patterns that match u.
Among them, we shall consider the most specific one, which is the closest one to u in
the hierarchy or, equivalently, the one having maximum length. Let max denote the
function that maps any set of URLs to the subset of them having maximum length. The
next proposition guarantees that in any (non empty) set of ∗-predecessors there is a
unique maximum element.

Proposition 2. Given a URL Tree U ∈ U ∗ and a URL u ∈ U, the set u↓∗ of ∗-predecessors of

u has at most one maximum element and it has exactly one element iff u↓∗ is not empty.

Proof. See Appendix B.1.

We are now in a position to formally express the aforementioned most specific applies

behaviour. This is done in the following definition, where the function ρ is extended to
the entire (infinite) domain of all possible URLs.

Definition 14 (Effective Roles). Given a WACT t = 〈U, ρ〉 the set of effective roles for each

couple 〈u, m〉 ∈ U ×M is given by the function ρ̂ : U ×M→ L

ρ̂(u, m) =

⎧

⎨

⎩

ρ(u, m) if 〈u, m〉 ∈ dom(ρ)

ρ(w, m) else if max(u↓∗) = {w} ∧ 〈w, m〉 ∈ dom(ρ)

⊤ otherwise

(4.12)
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Figure 4.4: WACT obtained from Example 4.2.

From Proposition 2 it follows that max(u∗ ↓) always contains at most one element,
thus (4.12) is well-defined.

The decision function δ is defined straightforwardly from the set of effective roles:
access to 〈u, m〉 is granted either if the user is unauthenticated and the resource accessi-
ble to unauthenticated users or if the user endorses at least one role in the set of effective
roles associated with 〈u, m〉.

Definition 15 (Decision Function). Every WACT 〈U, ρ〉 ∈ T has a corresponding access

control decision function δ : U ×M×L → {0, 1} defined as follows:

δ(u, m,⊤) = 1 if ρ̂(u, m) = ⊤

δ(u, m, R) = 1 if ρ̂(u, m)
�

R �= ∅ (4.13)

δ(u, m, R) = 0 otherwise.

Example 4.3: Effective roles and decision function

Let us consider the following security constraints, which we introduced in Example 4.2.

1 {/manager/*} [DELETE, PUT] <>

2 {/manager/*} [] <dex-mgr>

3 {/partner/*} [] <dex-mgr>

4 {/partner/edi/*} [GET, DELETE] <dex-tp>

When interpreted by �·�SCL, this set of constraints yields the WACT 〈U, ρ〉 represented in
Figure 4.4. The URL tree U is depicted on the left, while on the right appears the role lattice
L. The partial function ρ is represented by a set of labeled dashed arrows that map nodes
of the tree and HTTP methods to elements in the role lattice. For each of the following
example requests, we compute the set of effective roles and the corresponding access
control decisions:
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– ρ̂(〈p, x, y〉, GET) = ρ̂(〈p〉, GET) = {M} because the constraint on line 3 applies. Hence
δ(〈p, x, y〉, GET, {M}) = δ(〈p, x, y〉, GET, {M, P}) = 1, but δ(〈p, x, y〉, GET, {P}) = 0;

– ρ̂(〈m, z〉, GET) = ρ̂(〈m〉, GET) = {M} because the constraint on line 2 applies, but
ρ̂(〈m, z〉, DELETE) = ∅ because of the constraint on line 1. Hence δ(〈m, z〉, GET, {M}) =
1, but δ(〈m, z〉, DELETE, {M}) = 0;

– ρ̂(〈p, e〉, GET) = {P} because the constraint on line 4 applies, hence δ(〈p, e〉, GET, {P}) =
1. However, ρ̂(〈p, e〉, POST) = ⊤ because no security constraints apply, therefore
δ(〈p, e〉, POST, {P}) = δ(〈p, e〉, POST,⊤) = 1.

4.4 Change Impact Analysis

In the previous section we defined the semantics of security constraints in terms of the
permissiveness of their corresponding access control policy, i.e., the space of all granted
(respectively denied) permissions. We now extend the above reasoning to measure the
impact of syntactic changes in security constraints in terms of semantic changes in per-
missiveness. Such a characterization is intuitively useful to support the management
of configuration changes. For instance, one may wish to verify that the introduction
of a new security constraint leads to a more restrictive policy without yielding unde-
sired side-effects. Another example is refactoring: as an access control configuration
evolves in time, more and more rules may be introduced. At some point it may be
worth rewriting the whole set of constraints into a clearer and maybe shorter one, but
it must be ensured that the new policy behaves exactly the same as the old one.

In order to tackle this problem, we define a relation between pairs of WACTs and
show that it corresponds to a partial order on permissiveness that is compatible with
the semantics of access control decisions.

Intuitively, a WACT t1 is less permissive than t2, written t1 ≤T t2 if for any URL in
any of the two trees and for any method, the set of effective roles of t1 is included in
that of t2.

Definition 16 (Order of Permissiveness). For any pair of WACTs t1 = 〈U1, ρ1〉 and t2 =

〈U2, ρ2〉, we define the relation ≤T as follows:

t1 ≤T t2 iff ∀u ∈ U1 ∪U2, m ∈ M, ρ̂1(u, m) ≤R ρ̂2(u, m). (4.14)

The next proposition ensures the correctness of this definition, by stating that t1 ≤T

t2 is equivalent to δ1 granting access to all possible (infinite) requests only if δ2 does.

Proposition 3. The relation≤T is a partial order of permissiveness. That is, for WACTs t1, t2 ∈

T and corresponding decision functions δ1, δ2,

t1 ≤T t2 ⇔ ∀〈u, m, R〉 ∈ U ×M×L, δ1(u, m, R) = 1 ⇒ δ2(u, m, R) = 1.
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Input: WACTs t1 = 〈U1, ρ1〉 and t2 = 〈U2, ρ2〉

Output: t1 ≤T t2

1 foreach u ∈ U1 ∪U2 do

2 foreach m ∈ M do

3 if ρ̂1(u, m) �≤R ρ̂2(u, m) then

4 return false;

5 return true;

Figure 4.5: WACT permissiveness comparison.

Proof. See Appendix B.1.

Proposition 3 gives an effective method to check whether a configuration is seman-
tically more permissive than another. It is sufficient to verify if inclusion of roles holds
for each node in the WACT. If u /∈ U1 ∪U2, then ρ̂t1(u, m) = ρ̂t2(u, m) = ⊤ by (4.12),
thus only a finite set of URLs have to be checked.

The algorithm reported in Figure 4.5 performs this computation. As the cardinality
of the set of HTTP methodsM is finite and constant and ρ̂ can be precomputed for each
WACT, the algorithm runs linearly in the number of URL prefixes. As such, it is suit-
able for interactive applications. For instance, we can envisage a configuration editing
environment equipped with static analysis capabilities based on WACT, where the user
is informed instantaneously about the impact on permissiveness of each change in the
configuration.

Example 4.4: WACT comparison

Let us compare WACTs t1 and t2, obtained from the Examples 4.1 and 4.2 respectively.
The first tree, t1 = 〈U1, ρ1〉, is the result of interpreting the security constraints contained in
the next snippet.

1 {/manager/*} [DELETE, PUT] <>

2 {/manager/*} [] <dex-mgr>

3 {/partner/*} [] <dex-mgr, dex-tp>

The second tree, t2 = 〈U2, ρ2〉, corresponds instead to the following configuration.

4 {/manager/*} [DELETE, PUT] <>

5 {/manager/*} [] <dex-mgr>

6 {/partner/*} [] <dex-mgr>

7 {/partner/edi/*} [GET, DELETE] <dex-tp>



Section 4.5. Implementation and Evaluation 93

On the one hand ρ̂1(〈p, e〉, GET) = {M, P}, because the constraint of line 3 ap-
plies, and ρ̂2(〈p, e〉, GET) = {P}, because of the new constraint of line 7. Hence,
ρ̂2(〈p, e〉, GET) ≤R ρ̂1(〈p, e〉, GET). On the other hand, while ρ̂1(〈p, e〉, POST) = {M, P}, we
have that ρ̂2(〈p, e〉, POST) = ⊤, because no constraint applies. Hence ρ̂1(〈p, e〉, POST) ≤R

ρ̂2(〈p, e〉, POST).

Therefore, according to Definition 16, neither t1 ≤T t2 nor t2 ≤T t1 hold. As a conse-
quence, by Proposition 3, we conclude that the change in the configuration did not yield a
more restrictive policy, in contrast to the intuitive expectation of ACME’s administrators. The
new policy is in fact, at the same time, both more permissive and more restrictive, hence
not comparable according to ≤T.

4.5 Implementation and Evaluation

The implementation of the WACT model, defined in Section 4.2, rests on a trie data
structure, that is a prefix-ordered tree where the descendants of every node share a
common prefix, which constitutes a natural representation of URLs. Our prototype
contains an implementation of the �·�SCL interpretation function, compiling security
constraints into a WACT, as well as the decision function δ and the algorithm to com-
pute the partial order ≤T described in Sections 4.3 and 4.4 respectively.

To validate the correctness of our interpretation of the JEE Servlet Specification, we
conducted an experiment aimed at comparing our formal semantics to the operational
one of different JEE application servers that implement the specification, through auto-
mated software testing.

The flow diagram shown in Figure 4.6 illustrates the testing procedure. We first
generate a set of different configurations of security constraints (1) by exploring all the
main combinations of constructs allowed by the grammar (cf. Figure 4.2). This is done
by the GENSCSET procedure which can be found in Appendix C.1. Based on the gram-
mar, this procedure generates security constraint configurations from the finite input
sets of URLs U , HTTP methods M and roles R, ignoring repetitions due to the mu-
tual re-ordering of the XML constructs. Next, for every configuration c, we instrument
the JEE container under scrutiny by deploying a web application that includes c within
its deployment descriptor (2a). At the same time, the configuration is interpreted ac-
cording to the formal semantics (2b), yielding a WACT t with a corresponding decision
function δ. For every triple 〈u, m, R〉, where u ∈ U is a URL, m ∈ M a method and R

is an element of the role lattice L = 2R ∪ {⊤}, we then issue an HTTP request to the
application server (3) for the pair u, m from a user that is granted (4) precisely all the
roles in R, or from an unauthenticated user in case R = ⊤. Finally, we use the decision
function associated with the WACT as an oracle to test the behaviour of the container:
if the HTTP code of the server response is not consistent with the value of δ(u, m, R),



94 Chapter 4. Formalization and Change Impact Analysis of JEE Authorizations
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Figure 4.6: Compliance test for JEE containers.

we conclude that the container is not compliant with the formal semantics (5). Note
that this could mean that either the container’s implementation or our model misinter-
preted the specification. If we could not find any discrepancy, we conclude that the test
case was not able to disprove the container’s compliance (6).

We conducted our experiments on Apache Tomcat versions 6.0.35 and 7.0.29 and
Oracle Glassfish version 3.1.2, which are popular JEE application servers implementing
the Servlet specification that are widely employed in productive environments. As
reported in Table 4.7, we varied the values of the URL, method and role domains (input
to the GENSCSET procedure) in order to generate different test cases (one for each line
in the table) that explore interesting corner-cases of the language, e.g., overlapping URL
patterns with or without wildcards.

The results provide evidence that the implementations did not comply with the
formal specification for several tested configurations: Table 4.7 shows, for each test case,
the number of configurations generated by GENSCSET and for how many of those the
containers’ behaviour was not as expected. For what concerns Glassfish, we noticed
that all the configurations producing a misbehaviour follow a common pattern, where
one or more constraints apply to the context root “/” while other constraints are at the
same time defined over the URL pattern “/*”. An example of such configurations is
given by the pair of security constraints in Figure 4.8a, in which case Glassfish grants
any user access to the URL “/”, while it should be denied being the constraint of line
2 more specific. Note that this faulty behaviour was not verified in Tomcat, which,
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Domains No. of generated
configurations

No. of discrepancies

U M R Tomcat Glassfish

{/∗, /a} {GET, POST} {r1, r2} 9260 0 0
{/∗, /a/∗} {GET, POST} {r1, r2} 9260 152 0
{/, /∗, /a} ∅ {r1} 16383 0 5080

Table 4.7: Test results for Apache Tomcat v6.0.35 and Oracle Glassfish v3.1.2

however, did not appear fully compliant to the specification either. More precisely,
we found discrepancies in Tomcat’s interpretation of all the configurations where at
least two different constraints appear and (i) they are defined over overlapping URL
patterns ending in “*”, (ii) they name (or imply) different methods and (iii) one of
them contains a more specific URL pattern. An example is given by the two security
constraint reported in Figure 4.8b. In this case GET access to the URL “/a” should be
granted to anyone, as the more specific constraint on line 2 applies, but only mentions
the POST method. Tomcat, in contrast, was found to deny access to unauthenticated
users, whereas removing the seemingly unrelated constraint on line 1 would reinstate
the expected behaviour.

Further investigations revealed that the behaviour of Glassfish is a consequence of
additional rules included in the JAAC (Java Authorization Contract for Containers)
specification [Monzillo2013], prescribing how security constraints are translated into
so-called JAAC policies that are then enforced by a JAAC-compliant container. This
specification states (Section 3.1.3.2: “Translating security-constraint Elements”) that the
URL pattern ”/“ constitutes a special case in that it is always overridden by the path-
prefix pattern ”/*“ and the empty string pattern ”“ shall be used instead to specify a
security constraint applying only to requests that exactly match to the context root. We
argue that this exception should be made explicit in the standard Servlet specification
too, in order to uniform the behaviour of those JEE containers, such as Tomcat, that do
not implement the JAAC specification with those that do support it, like Glassfish.

Following up on the discrepancies that we found in Tomcat’s behaviour led instead
to the discovery of an implementation error due to an incorrect initialization of part of
the data structure used to represent security constraints in the application server. We

reported the issue to the developers who issued a patch that fixes the error [ASF2012]
and that has been included in the Tomcat official distribution as of release 7.0.30.
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1 {/*} []

2 {/} [] <>

(a) Example discrepancy in Glassfish 3.1.2.

1 {/*} [] <r2>

2 {/*, /a/*} [POST] <r1>

(b) Example discrepancy in Tomcat 6.0.35 and
7.0.29.

Figure 4.8: Example configurations for which JEE containers do not comply with the
formal semantics.

4.6 Related Work

Many proposals dealing with the formalization of industry standards can be found in
literature. A prominent example, concerning access control, is given by XACML [OA-
SIS2003], a standard for specifying and enforcing access control policies. Because of
its generality and high degree of expressiveness, it is able to capture a broad class
of access control requirements. However, XACML is quite a complex policy lan-
guage with informal evaluation semantics, so the development of tools complement-
ing testing with formal verification of XACML is difficult. To tackle this issue, differ-
ent formal semantics have been given to core concepts of XACML using for instance
process algebra [Bryans2005], description logics [Kolovski2007], answer set program-
ming [Ahn2010], specific algebraic variety [Ni2009] or ad hoc compositional seman-
tics [Ramli2011].

It is tempting to translate JEE security constraints into XACML and then rely on
cited works to benefit from a formal semantics. Unfortunately, some of the selected
subsets of the XACML language are incomparable and it seems there is no consensual
agreement on its formal semantics, see related work of [Ramli2011] for discussion and
examples. Moreover, we argue that a direct semantics for JEE security constraints from
its specification without intermediate rewriting provides valuable insights to the policy
developers.

Instead of working on a concrete language like XACML suffering from a lack of
formal foundations, researchers have proposed access control languages with formal
semantics. Several models have been proposed for specific domain of web services.
For instance, in [Bertino2006] the authors provided a model with identity attributes
and service negotiation capabilities as key features. Attribute-based models remove the
subject identification constraint in access control by allowing to specify who can access
a resource by means of attributes the subject must have [Yuan2005; Crampton2012a].
Such an approach is particularly well suited to open environments where the set of
all subjects cannot be known in advance. Those works are valuable as both sources of
inspiration for new features and theoretical foundations for next versions of the JEE
standard.
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In this chapter we considered another challenge: in order to provide formal ver-
ification tools for concrete problems of querying and comparison, we do not design
a language from scratch and give its formal semantics a priori, instead we analyse an
existing language and give its semantics a posteriori. As the semantics of JEE security
constraints is quite specific, it is not clear whether the language can be translated into
another one or not. For instance, the Malgrave System [Fisler2005] is a powerful change
impact assessment tool based on a restricted sub-language of XACML. However, hier-
archical resources such as URLs, which are the core of JEE security constraints and very
common in web oriented models, are not supported.

Related work on JEE access control configuration analysis [Naumovich2004;
Sun2008] share some of our motivations concerning, e.g., the likelihood that config-
uration authors are prone to commit mistakes, which leads to the need of automated
analysis tools. However, these approaches rather focus on checking the consistency of
programmatic access control with respect to the implementation of JEE components of
the business tier [Naumovich2004] or both business and web tiers [Sun2008], in order,
e.g., to detect accesses to EJB fields or methods inconsistent with the access control
policy. Our work focusing on declarative security is complementary: our formalization
supports other reasoning tasks, such as the comparison of different configurations.

4.7 Discussion

In this chapter we considered the version 2.4 of the Servlet specification [Coward2003].
However, recently, a new major release (3.x) has been released [Chan2013]. In this lat-
est revision, configuration authors are allowed to explicitly omit, i.e., deny access to
selected HTTP methods in a security constraint. Intuitively, assuming the set of HTTP
methods to be finite, we argue that there exists an equivalent rewriting for such con-
figurations towards the ones considered in this chapter, where selective negation on
methods is implemented through complement. Although this suffices to interpret the
security constraints of the new specification directly on our model without loss of gen-
erality, it would be nevertheless interesting to extend the model to incorporate explicit
prohibitions. Another useful extension would be to allow to explicitly state the default
access policy in the input configuration language, in order to cope with different access
control systems for the web that do not exhibit an implicit allow-by-default behaviour.
For instance, the Apache web server allows to specify, for each authorization rule in
the configuration, whether the default policy shall be allow or deny. These extensions
would go towards developing a formal role-based access control model for hierarchical
resources tailored to web applications. Having such a common formal interpretation
structure would allow, for example, to automatically compare or translate access con-
trol configurations among different web application frameworks.
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In Section 4.5 we proposed to validate our model against existing JEE containers
by comparing the respective interpretations of automatically-generated configurations.
We tested about 35000 configurations combining security constraints on overlapping
URL patterns with and without wildcards. Of course, as the entire space of possi-
ble configurations is infinite, our testing methodology cannot be exhaustive. How-
ever, larger experiments could be performed to gain increasing assurance on both the
model’s and containers’ correctness. To do so, as the number of generated configura-
tions grows exponentially with the size of URL, method and role domains, we believe
that some heuristic has to be developed to select smaller but interesting subsets of con-
figurations for testing. Alternatively, we could introduce additional assumptions on the
behaviour of JEE containers, under which a finite number of tests would be enough to
guarantee full coverage. For instance, in our experiment we only assumed that JEE con-
tainers are insensitive to the mutual ordering of XML tags in the configuration. How-
ever, introducing additional hypotheses of regularity, e.g., assuming that the behaviour
of the system under test can be described inductively with respect to the hierarchy of
URLs, could allow to obtain 100% coverage by testing only a finite set of base cases.

The technique we proposed in this chapter performs static analysis of concrete con-
figurations expressed in a specific language. By following a comparable approach, it
is possible to provide formal semantics for the access control configurations of a large
variety of common components of distributed information systems, e.g., web, mail, di-
rectory, database servers, but also network devices like firewalls. Although such access
control systems differ substantially in the structure of the resources they handle and
in the expressiveness of access rules, in many cases they ultimately abstract to imple-
mentations of particular decision functions [Crampton2012b; Ramli2011], such as the
function δ that we introduced for WACTs in Section 4.3 (Equation 4.11). The problem
of modeling the interactions among the behaviour of several such access control sys-
tems cooperating in the same environment is not trivial and yet largely unexplored. In
the next chapter we will tackle this problem in order to leverage such interactions to
support the refactoring of distributed access control policies.

4.8 Synthesis

In this chapter we proposed a formal framework able to effectively capture the seman-
tics of the declarative security fragment of the JEE Servlet Specification and efficiently
supporting the comparison of policies with respect to their permissiveness.

We equipped the language of security constraints, defined in the Servlet specifica-
tion, with a formal, set-theoretic interpretation structure. We highlighted key capabil-
ities of this structure, namely answering to access control requests and comparing the
permissiveness of security constraints. Such tools can help system administrators to
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increase the security of web applications by analyzing the impact of misconfigurations
or to prevent security vulnerabilities due to uninformed configuration changes.

In order to validate our interpretation of the Servlet specification, we compared the
behaviour of two major existing JEE container implementations with an oracle based on
our formal semantics. We showed that generating test configurations from a relatively
small number of resources (up to three different URLs and up to two methods and roles)
was sufficient to detect discrepancies. Since we could not find any configuration for
which our interpretation disagrees at the same time with both the containers under test,
we concluded that the formal semantics is correct for the tested configurations. This
was supported by the discovery of an bug in Tomcat and of an inconsistency between
different JEE specifications (namely Servlet versus JAAC) implemented in Glassfish.

This contribution has been partially integrated in the PoSecCo’s focal prototype
“Audit Interface” [Bettan2012] in order to provide semantics-aware assessment capa-
bilities. Moreover, it has been published in the proceedings of an international confer-
ence [Casalino2012c], in a book chapter [Basile2013a] and in another PoSecCo deliver-
able [Basile2013b].





Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in

Texas?

—Edward Lorenz, title of paper presented at the 139th “Annual Meeting of the
American Association for the Advancement of Science” (29 Dec 1979)

5
Multi-Layered Access Control Policy

Refactoring

⊲ In a distributed system, a change in one component’s configuration may affect other components’ be-
haviour. While this issue has been investigated in the domains of both network and application-layer
policy composition and conflict detection separately, the treatment of inter-layer interactions is still con-
sidered an open problem. Such interactions are a consequence of access control systems supporting poli-
cies that span over multiple architectural layers: Web servers, for instance, often support access control
on the basis of network-layer (IP) addresses other than application-layer (HTTP) fields. The resulting
flexibility comes, however, with increased management complexity and the risk of granting unnecessary
privileges due to the lack of global knowledge when authoring local policies in isolation.

To tackle this problem, we propose a technique to perform multi-layered policy refactoring, i.e., to
rewrite a collection of access control policies belonging to different architectural layers such that: (i) the
global permissiveness is preserved, (ii) the least privilege principle is enforced and (iii) superfluous inter-
layer interactions are removed. To this end, we embed a generic access control system into a structure that
keeps track of the interactions among authorization decisions taken on different layers. We then define
the semantics of composition of such access control layers and show that its inverse, namely decomposi-
tion, provides (when it exists) a solution to the problem of refactoring. Finally, we provide algorithms
to test for decomposability, as well as to compute (de)composition, that work on a constraint-based rela-
tional representation of access control policies. Our main theoretical result is the proof of correctness of
the decomposability condition for access control layers, which leverages and extends existing results in
database dependency theory, and provides novel evidence that the study of database dependencies can be
fruitfully applied to help solve security problems. To assess the feasibility of our approach, we evaluate the
algorithms with respect to various properties of input policies. The results show comparable performances
with previous work on network security configuration analysis. ⊳
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IN the previous chapter we focused on the management of configuration changes for a
specific access control system. In this chapter we consider the additional challenges

that arise in a distributed system, where a change in one component’s configuration
can affect the behaviour of other components.

The analysis of distributed access control policies and configurations is a largely-
explored research topic. Many existing approaches are tailored to a specific category of
system components that handle access control policies with a fixed and uniform seman-
tics. For instance, network-layer conflict analysis [AlShaer2005] focuses on the interac-
tions among distributed policies that filter on the basis of IP addresses and TCP/UDP
ports; application-layer conflict analysis [Lupu1999; Davy2008a] and policy composi-
tion [Bonatti2002; Wijesekera2003] instead reason on the interaction among access con-
trol systems based on the subject-object-action paradigm. In contrast, modeling and
reasoning on the interactions between such different architectural layers is still consid-
ered a rather open and challenging problem [Sloman2002; AlShaer2011].

The inter-layer overlap among access control policies is indeed more and more com-
mon in practice: for instance, many common applications, such as database, mail or
Web servers, can constrain access based on clients’ IP addresses, modern firewalls can
inspect application-layer request fields as well. While such inter-layer relationships can
be leveraged to increase the expressiveness of access control policies, it is hard to fully
exploit them when authoring the different policies individually, because all other lay-
ers’ policies shall be taken into account. Furthermore, it may be the case that the same
behaviour expressed by the collection of access control mechanisms of all layers can be
as well expressed by simpler policies where the inter-layer overlap is minimized and
the separation of concerns is increased.

We characterize this problem as the inter-layer refactoring of access control poli-

cies, i.e., the task of finding the least permissive rewriting of a collection of policies
that belong to different layers such that the global composite policy remains equiva-
lent. Policy refactoring is a means (i) to enforce the least privilege principle in multi-
layered policy-based access control systems, (ii) to reduce management overhead by
simplifying local policies and (iii) to adapt to changing security capabilities of single
components.

Example 5.1: Refactoring

In order to illustrate refactoring, we consider the ACME scenario introduced in Chapter 2.
Any access from the Internet to ACME’s network is mediated by a firewall performing
network-layer filtering and it is further regulated by a Web server that acts as a reverse
proxy and that filters both on the application (URLs) and network (clients’ IP address) layers.
If the policies of the two devices are written independently, some unnecessary privileges
may be granted by either of them. For instance, the firewall policy may be granting access



104 Chapter 5. Multi-Layered Access Control Policy Refactoring

to a larger portion of clients than actually allowed by the Web server policy or vice versa.
Through refactoring, we aim at exploiting the knowledge of the inter-layer interactions to
reduce such privileges to the minimum, by preserving the composite policy. As such, unau-
thorized access attempts are blocked as soon as possible, according to the least privilege
principle.

Suppose now that we are interested in replacing the Web server policy by a simpler one
that does not discriminate clients’ IP addresses while keeping the semantics of the global
composite policy unaltered. Intuitively, to do so we would need to transfer part of the Web
server policy to the firewall. Whether such a decomposition is possible, depends both on
the internal structure of the original policies and on the access control capabilities of the
devices. For instance, if the Web server policy prevents a given IP address from accessing
only some specific URLs, the firewall cannot enforce such a policy on its own unless it is
capable of HTTP header inspection. In this case refactoring consists in first determining if
the new desired access control layer’s layout can enforce the global policy and then finding
how the original policies are to be rewritten.

The structure of this chapter is the following: In Section 5.1 we define a model
that captures the access control behavior of a collection of policy decision points that
cooperate on different layers of the same IT infrastructure. In Section 5.2 we define
composition of inter-dependent policies as the operation that, given a pair of access
control decision functions, produces a composite decision function, decomposition be-
ing its inverse. In Section 5.3 we provide an intensional representation for our model
based on which we devise algorithms that compute policy (de)composition and that
we formally prove correct. In Section 5.4 we identify a criterion inspired from database
normalization theory which characterizes precisely when policies can be decomposed
and we show how it can be computed on our model. Finally, we show that our proposal
is suitable to solve the policy refactoring problem. In Section 5.5 we evaluate the per-
formance of our algorithms on synthetic policies and characterize their behaviour with
respect to different statistical properties of input datasets. In Section 5.6 we review and
compare our proposal with related work. Section 5.7 provides a technical discussion as
well as some theoretic perspectives. Finally, Section 5.8 concludes the chapter with a
synthesis of both the contribution and results.

5.1 Access Control Layers

In this section we lay the foundations of a model that captures the access control policy
implemented by the collection of policy decision points that operate at different lay-
ers within the same IT infrastructure (e.g., firewalls, application servers, Web servers,
database servers, etc.). In particular, we aim at characterizing each layer in terms of its
access control capabilities and its interface with the other layers.
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f Meaning dom( f )

Is IP source address Integers range [0, 232 − 1]
Id IP destination address Integers range [0, 232 − 1]
Ps Port source Integers range [0, 216 − 1]
Pd Port destination Integers range [0, 216 − 1]
H HTTP Host Header Dot-separated strings
U URL of HTTP Requests Strings complying with rfc1738
♯ Singleton field {�}

Table 5.1: Example of Fields and Related Domains

We rely on a classic and general description of access control systems, where a logi-
cal subsystem (usually called policy decision point) associates, for a given policy, a unique
decision to any possible access control request [Crampton2012b; Ramli2011].

Once we come to reason about the composition of layers, we need to consider rela-
tions between the different types of requests they handle. For instance, the IP and port
destination fields of the requests handled by a firewall are related to the IP addresses
and ports of available services (e.g., Web and application servers). Intuitively, a partic-
ular firewall, depending on its policy, either enables requests to be further processed by
other policy decision points or blocks them right away. Keeping track of these relation-
ships allows to determine how decisions taken by one layer’s policy decision points
influence the ones taken in other layers. In order to formalize the above concepts we
start from access control request fields and types.

Definition 17 (Request Field and Field’s Domain). The finite set F is the universe of all

request fields. Each field f ∈ F has a corresponding domain, written dom( f ), that is the set of

all possible values f can take in a request. There exists a total order on fields, denoted �.

Each set of fields identifies a particular type of access control requests, as stated in
the next definition.

Definition 18 (Request Type and Request Space). A request type is a finite subset of request

fields F ∈ 2F. The request space Q(F) associated with a request type F = { fi}
n
i=1 characterizes

all the requests existing over F. It is the Cartesian product of the domains of the fields in F,

taken according to �: Q(F) = dom( f1)× . . .× dom( fn)., with fi � f j for i ≤ j. The empty

request space is the singleton Q(∅) = {�}.

Example 5.2: Request Fields and Types

Table 5.1 presents some example request fields which we will refer to throughout the chap-
ter, together with their respective domains. The purpose of the special field ♯, associated to
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the fictitious singleton domain dom(♯) = {�}, is to characterize the bottom of the network
stack.

Example request types are Ff w = {Is, Id,Ps,Pd,Tp}, which characterizes requests han-
dled by firewalls, or Fws = {H,U} representing application-layer requests for a Web server
capable of filtering on the HTTP host and URL fields.

Other combinations are possible too: for instance Fws ∪ {Is} represents the type of re-
quests handled by a Web server capable of filtering on the clients’ IP address, whereas
Ff w ∪ {H,U} models the request type of a firewall that can inspect parts of the HTTP
header.

The definition of access control request follows directly from those of request type
and request space. We define two operations on requests: concatenation and projection.

Definition 19 (Access Control Request). An access control request of type F = { fi}
n
i=1 is an

element of the request space Q(F). The requests belonging to Q(F) are all the possible sequences

〈v1, . . . , vn〉 with vi ∈ dom( fi). The ith coordinate of q ∈ Q(F) is written q( fi) = vi.

Given the requests q1 and q2 having disjoint request types F1, F2, their concatenation is the

request q1 + q2 (also denoted q1q2) such that, ∀ f ∈ F1 ∪ F2, (q1 + q2)( f ) = qj( f ) if f ∈ Fj

(with j ∈ {1, 2}).

Given a request q, its projection on some subset P of its request type is denoted by q|P
and it is the restriction of the sequence q to the fields in P = {p1, . . . , pn}: it is defined by

q|P = 〈q(p1), . . . , q(pn)〉, with pi � pj for i ≤ j.

We are now ready to provide a formal description of access control layers. An access
control layer represents a collection of policy decision points that are all capable of
processing access control requests of the same type. It conveys essentially the following
three pieces of information:

– the type of access control requests that are in the layer’s scope, i.e., those which
the layer’s decision points are deputed to express a decision for;

– how the request type handled locally relates to that of requests handled within
other layers;

– which decision is taken, for every request, by any decision point in the layer ac-
cording to its policy.

Definition 20 (Access Control Layer). An Access Control Layer (ACL) is a triple 〈F, C, δ〉
where:

– F ∈ 2F is the layer request type;

– C ∈ 2F \ {∅} such that C ∩ F = ∅, is the (bottom) layer coupling type;

– δ : Q(C)→ (Q(F)→ D) is the access decision function with D the set of decisions.
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DMZ – 1.1.1.0/25

FW

INT – 1.1.1.128/25

Internet

Customer A Network 

2.2.2.0/24

Tomcat Server #1

1.1.1.129:8009 (AJP)

Reverse Web Server Proxy

1.1.1.1 :80 (HTTP)

                 :443 (HTTPs)

Country X – 3.0.0.0/8

ACME’s Network – 1.1.1.0/24

Tomcat Server #2

1.1.1.130:8009 (AJP)

Country Y – 4.0.0.0/8

Figure 5.2: Part of ACME’s network topology.

The coupling type C relates the ACL with the request type of the layer which lies
below it in the stack. In particular, it specifies which fields of the lower layer requests
are necessary to uniquely identify a policy decision point in the current layer. For exam-
ple, a Web server would “couple” with a firewall on the destination IP and port fields,
as they are both necessary and sufficient to determine which Web server the requests
going through the firewall are directed to, hence its coupling type is the set {Id,Pd}. Ev-
ery value in the coupling space c ∈ Q(C) identifies a policy decision point in the ACL,
e.g, the pair cws,443 = 〈1.1.1.1, 443〉 represents a Web server listening on the IP address
1.1.1.1 and port 443. The function δ(c) : Q(F) → D, mapping every request q ∈ Q(F)

to a unique decision, represents the policy of the policy decision point identified by c.

Not fixing a particular set of decisions in Definition 20 gives us some flexibility to
model different aspects of reality. This is illustrated in the next example by making
undefined behavior explicit, which leads to a form of partial knowledge reasoning. We
argue that this eases the applicability of our approach to real world scenarios, where,
even if it is not always possible to model every detail of the system, we still want to be
able to drive consistent and insightful conclusions.
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Example 5.3: Access Control Layers

In this example we model the system composed by the firewall and the reverse proxy of
ACME’s scenario (cf. Chapter 2, page 28). In Figure 5.2 we reported an excerpt of the
topology of ACME’s network. The firewall FW protects the access to the DMZ 1.1.1.0/25
where the reverse proxy is located, being implemented by a Web server WS listening on the
IP address 1.1.1.1 and TCP ports 80 and 443.

While FW filters on network fields only, WS supports access control based on both URLs
and IP addresses. Hence, the former belongs to the ACL La = 〈{Is, Id,Ps,Pd} , {♯} , δa〉,
whereas the latter belongs to Lb = 〈{Is,H,U} , {Id,Pd} , δb〉. The decision functions δa

and δb, encoding the access control policies of the two devices, are reported in Tables 5.3
and 5.4 respectively. Each row in the tables maps all the requests matching to the wild-
cards to the decision reported in the last column. The set difference symbol “\” represents
exceptions (e.g., ∗ \ 4.0.0.0/8 means every IP address except the subnet 4.0.0.0/8). The
ellipsis “. . . ” maps all the requests that do not match any other row to a “default” decision.
These tables are such that it is never the case that a request matches more than one row,
hence there is no ambiguity in this example and the mutual order of rows is irrelevant. Note
also that the graph of decision functions is in principle huge or even infinite (depending on
the fields’ domains). We will deal with this issue in Section 5.3 where we will formalize the
intuition behind the shorthand tabular notation introduced here.

Only a single policy decision point exists in the ACL La, namely the firewall FW. Its policy
δa allows any client to reach the reverse proxy WS (IP address 1.1.1.1, TCP ports 80 and
443) which in turn can reach the AJP connectors of the backend application servers (IP
addresses 1.1.1.129 and 1.1.1.130, TCP port 8009). The policy decision points within Lb

are uniquely identified by pairs in the coupling space Q({Id,Pd}) = dom(Id)× dom(Pd).
Only one such decision point is known within the DMZ, namely the reverse proxy WS iden-
tified by the pairs cws,80 = 〈1.1.1.1, 80〉 and cws,443 = 〈1.1.1.1, 443〉. Hence, δb(cws,80) and
δb(cws,443) are both completely definite functions that represents the policy of WS for, respec-
tively, HTTP and HTTPs requests. The HTTPs policy is the one introduced in Chapter 2:
customer A denies access to any partner from country Y (4.0.0.0/8) and allows managers
to connect exclusively from its own network (2.2.2.0/24), while customers B and C only ac-
cept incoming connections from country X (3.0.0.0/8). The HTTP policy instead only allows
access to the root URL, where clients are properly redirected to the encrypted channel.
The remaining part of the decision function δb maps instead any other request to ⊥ ∈ D:
δb(c) = Q({Is,H,U}) �→ ⊥ for all c /∈ {cws,80, cws,443}, meaning that every other decision
point yields an undefined decision for every possible request. This models situations where
either the topology is only partially known or some components of the system do not fit in
the ACL model, but it is nevertheless important to keep track of their presence. For instance,
the pair 〈1.1.1.129, 8009〉 represents a Tomcat AJP connector, which does not correspond
to any decision point as there is no associated access control policy; however, accounting
for its existence in δb will allow us to avoid errors when computing the composition with the
lower layer.

More layers could be added on top of Lb to incorporate other categories of policy de-
cision points. For instance, the JEE Web applications running on ACME’s infrastructure
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Is Id Ps Pd D

1.1.1.0/25 1.1.1.0/25 ∗ ∗ 1
1.1.1.128/25 1.1.1.128/25 ∗ ∗ 1
∗ \ 1.1.1.0/25 1.1.1.1 ∗ 80 1
∗ \ 1.1.1.0/25 1.1.1.1 ∗ 443 1
1.1.1.1 1.1.1.129 ∗ 8009 1
1.1.1.1 1.1.1.130 ∗ 8009 1

. . . 0

Table 5.3: Example Decision Function δa

Id Pd Is H U D

1.1.1.1 80
∗ ∗ / 1

. . . 0

1.1.1.1 443

∗ \ 4.0.0.0/8 cust-a.acme.com /partner/∗ 1
1.1.1.0/24 cust-a.acme.com /manager/∗ 1
2.2.2.0/24 cust-a.acme.com /manager/∗ 1
1.1.1.0/24 cust-b.acme.com ∗ 1
3.0.0.0/8 cust-b.acme.com ∗ 1
1.1.1.0/24 cust-c.acme.com ∗ 1
3.0.0.0/8 cust-c.acme.com ∗ 1

. . . 0

. . . ⊥

Table 5.4: Example Decision Function δb

would be coupled to a specific virtual host of the Web server and would perform access
control based on application-specific fields, such as users, roles and URLs. However, for
the sake of conciseness, in this chapter we limit the scope of our examples to layers La and
Lb.

Notice the use of the fictitious coupling type {♯} for La to encode that this is the
bottom layer of the stack. As the domain of ♯ is a singleton, there can be only a single
policy decision point in this layer (in our example, the firewall FW). The reason why
we do not model multiple firewalls is that the interest in analyzing distributed firewall
policies is about intra-layer dependencies, whereas we focus on (and reason about)
inter-layer dependencies. We believe that intra-layer reasoning of network filtering
policies is an orthogonal problem that, as argued in Section 5.6, has already been subject
of related work.
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Figure 5.5: Inter-Layer Composition

5.2 Composition and Decomposition

In this section we define composition as a binary operation between ACLs. In order to
compose access control layers, we first need a way to combine the decisions yielded by
their respective policies. To this end, we equip the set of decisions D with a suitable
algebraic structure named decision space.

The standard decision space is B = {0, 1} where 0 stands for prohibition and 1 for
authorization. Note that in this case the decision function δ : Q(F) → B simply tests
whether some request q ∈ Q(F) is a member of a set QAuth ⊆ Q(F) of authorized
queries. Many existing languages (e.g., [Ramli2011; Bruns2011; Ni2009]) assume that
the decision space is larger than B to include for instance undefined (⊥) or conflicting
decisions (⊤) to cope with modular specification of authorization policies. Similarly
to [Ramli2011], we equip the decision space with two operators, denoted ⊔ and ⊓, that
generalize standard boolean disjunction and conjunction.

Definition 21 (Decision Space). A decision space is a bounded distributive lattice 〈D,⊔,⊓〉,
where D is a non empty finite set of decisions and ⊔,⊓ are respectively the least upper bound

and greatest lower bound operators on D. The top and bottom elements of the lattice are denoted

respectively 1D and 0D.

Where no ambiguity arises we identify a decision space with its underlying set D.
Figure 5.5a shows the Hasse diagrams of the boolean decision space B and its extension
to undefined decisions B⊥, which we use throughout the rest of the chapter. Note that
⊔,⊓ behave exactly like standard boolean disjunction and conjunction for decisions 0
and 1. Undefined decisions constitute an intermediate level of permissiveness, e.g.,
⊥⊓ 1 = ⊥, but ⊥⊓ 0 = 0. In fact, the partial order associated with the lattice on D can
be interpreted as an order of permissiveness on decisions: for each x, y ∈ D, x is less
permissive than y, written x ≤ y, if and only if x ⊓ y = x.
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The key to ACL composition is the overlap of request types, because it implies
interdependency between decisions taken by different decision functions. Let L1 =

〈F1, C1, δ1〉 and L2 = 〈F2, C2, δ2〉 be two ACLs that act in composition, e.g., suppose L2

is over L1 in the network stack. Then, every upper layer policy decision point shall
match to some lower layer request, hence the upper layer coupling type C2 is included
in the lower layer request type F1. Furthermore, it may be the case that the two layers’
request types have some fields in common (e.g., layers La and Lb of Example 5.3 have
in common the IP source field Is). Figure 5.5b depicts this situation, where the double
hatched areas highlight the overlap between layers.

The union of the request types of L1 and L2 can then be thought as the request type
of a new ACL L, that we are going to define as their composition. The decision function
of L needs to depend both on δ1 and δ2. In case of a boolean decision space, we would
expect every lower layer request ql that agrees with an upper layer request qu to yield a
composite request that is allowed if and only if both ql and qu are allowed. In the follow-
ing definition we generalize this intuition by substituting the logic conjunction with the
greatest lower bound operator ⊓. The behaviour of ⊓ is consistent with the semantics
of composition not only for allow/deny decisions, but for undefined decisions too. Un-
defined can be interpreted as “either deny or allow”, hence its composition with allow
shall equal undefined (1 is the identity in the algebra of composition), whereas it shall
yield deny when composed with deny (0 is the absorbing element).

Definition 22 (ACL Composition). Given the ACLs L1 = 〈F1, C1, δ1〉 and L2 = 〈F2, C2, δ2〉
such that C2 ⊆ F1 and C1 ∩ F2 = ∅, their composition is the ACL L1 ⊗ L2 = 〈F1 ∪ F2, C1, δ〉,

where δ is defined as follows:

δ : Q(C1 ∪ F1 ∪ F2) → D

q �→ δ1(q|C1∪F1) ⊓ δ2(q|C2∪F2).
(5.1)

Example 5.4: Composition

We again consider the ACLs La = 〈{Is, Id,Ps,Pd} , {♯} , δa〉 and Lb = 〈{Is,H,U} , {Id,Pd} , δb〉
introduced in Example 5.3. As the coupling type of Lb (resp. La) is included in (resp. disjoint
from) the request type of La (resp. Lb), it follows, by Definition 22, that their composition is
defined. This equals La ⊗ Lb = Lc = 〈{Is, Id,Ps,Pd,H,U} , {♯} , δc〉, where the graph of δc

is represented in Table 5.6.

For instance, the request 〈2.2.2.1, 1.1.1.1, 12345, 443, cust-a.acme.com, /manager/〉
is authorized in Lc because La allows 〈2.2.2.1, 1.1.1.1, 12345, 80〉 and Lb allows
〈2.2.2.1, cust-a.acme.com, /manager/〉. However, the decision related to the request
〈1.1.1.1, 1.1.1.129, 12345, 8009, x, y〉 is⊥ for any x, y because 〈1.1.1.1, 1.1.1.129, 12345,
8009〉 is allowed in La, but there is no corresponding policy decision point in Lb.
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Is Id Ps Pd H U D

∗ 1.1.1.1 ∗ 80 ∗ / 1
1.1.1.0/25 1.1.1.1 ∗ 443 cust-a /manager/∗ 1
1.1.1.0/25 1.1.1.1 ∗ 443 cust-b ∗ 1
1.1.1.0/25 1.1.1.1 ∗ 443 cust-c ∗ 1
1.1.1.0/25 1.1.1.1 ∗ ∗ \ {80, 443} ∗ ∗ ⊥

1.1.1.0/25
1.1.1.0/25 \

{1.1.1.1}
∗ ∗ ∗ ∗ ⊥

1.1.1.1 1.1.1.129 ∗ 8009 ∗ ∗ ⊥

1.1.1.1 1.1.1.130 ∗ 8009 ∗ ∗ ⊥

1.1.1.128/25 1.1.1.128/25 ∗ ∗ ∗ ∗ ⊥

∗\ 4.0.0.0/8 1.1.1.1 ∗ 443 cust-a /partner/∗ 1
2.2.2.0/24 1.1.1.1 ∗ 443 cust-a /manager/∗ 1
3.0.0.0/8 1.1.1.1 ∗ 443 cust-b ∗ 1
3.0.0.0/8 1.1.1.1 ∗ 443 cust-c ∗ 1

. . . 0

Table 5.6: Example Decision Function δc

Given an ACL L = 〈F, C, δ〉 and sets F1, F2, C2 such that F = F1 ∪ F2, C2 ⊆ F1 and
C2 ∩ F2 = ∅, decomposition is the problem of finding ACLs L1 = 〈F1, C, δ1〉 and L2 =

〈F2, C2, δ2〉 such that L1 ⊗ L2 = L. As the request and coupling types of the candidate
decomposition are given, the problem amounts to computing δ1 and δ2 from δ. For
instance, for every request q′ ∈ Q(F1 ∪ C1), we want to compute δ1(q

′) from all the
values δ(q) corresponding to the requests q ∈ Q(F) that concern the layer L1, i.e., such
that q|F1∪C1 = q′. The same reasoning applies symmetrically for computing δ2.

In the case of a boolean decision space, the natural semantics we would like to
assign to such an operation is that of projection. For instance, let δ : Q(F) → B. Its
projection on P ⊆ F would be πP(δ) : Q(P) → B such that πP(δ)(q

′) = 1 if and only
if δ(q) = 1 for at least one q ∈ Q(F) that agrees with q′ on all the fields in P. Hence,
πP(δ) would map each q′ to the logic disjunction of all the δ(q) where q|F1∪C1 = q′.
In the next definition we generalize to larger decision spaces by replacing disjunction
with the least upper bound on decisions ⊔.

Definition 23 (Projection). The projection of a decision function δ : Q(F) → D over the set

of fields P ⊆ F is the decision function πP(δ) defined as follows:

πP(δ) : Q(P) → D

q �→
⊔

x∈Q(F\P)

δ(q + x). (5.2)
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As stated in the next proposition, decompositions obtained through projection are
always the least permissive among those that leave the composite decision function un-
changed. This result guarantees the least privilege principle for policy refactoring as
stated in the introduction of this chapter.

Proposition 4 (Least Privilege Decomposition). Let L = 〈F1 ∪ F2, C1, δ〉 such that L =

〈F1, C1, δ1〉 ⊗ 〈F2, C2, δ2〉. Then, ∀q ∈ Q(Fi ∪ Ci), πFi∪Ci
(δ)(q) ≤ δi(q) for i ∈ {1, 2}.

Proof. See Appendix B.2.

5.3 Intensional Representation

The request spaces we considered so far are, in general, infinite or very large in cardi-
nality. This follows from the fact that each field can have either an infinite (e.g. URLs)
or a very large (e.g. IP addresses) domain of values. In order to cope with this issue we
introduce a finite and compact representation for generic request spaces and decision
functions. We then show how (de)composition can be computed on instances of such a
representation.

5.3.1 Finite descriptors for decision functions

Every policy-based access control system provides administrators with a configuration
language whose expressiveness is tailored to the domain of access control policies for
such a system. For instance, the access control language of a web server will likely ex-
ploit the hierarchical order of URLs to allow constraining access on an entire subtree of
resources with a single rule. As we aim at integrating policies from different domains,
we want our approach to be independent from the different domain-specific policy lan-
guages. To this end, we will identify a class of languages having sufficient properties
to allow defining simple and generic (de)composition procedures.

We take inspiration from constraint database theory [Revesz1995], where database
relations are represented in intenso: each tuple is not a sequence of atomic values but
a sequence of subsets of values described by constraints. We use the same idea to en-
code the graph of decision functions. The basic building block is a constraint language
suitable to describe subsets of a field’s domain, which we name field descriptor.

Definition 24 (Field Descriptor). Given a request field f ∈ F, a field descriptor for f is

a structure
〈

Φ f , �·� f

〉

where Φ f is a language that allows to describe sets of elements in the

domain of f and �·� f : Φ f → 2dom( f ) is an interpretation function that maps every sentence of

the language to its extension, i.e., the subset of the field’s domain it describes.
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Furthermore, the language Φ f is assumed to be closed under the intersection of sentences’

extensions, namely ∀ϕ1, ϕ2 ∈ Φ f , ∃ϕ3 ∈ Φ f s.t. �ϕ3� f = �ϕ1� f ∩ �ϕ2� f . For every such

combination we call ϕ3 the conjunction of ϕ1, ϕ2, written ϕ3 = ϕ1 ∧ ϕ2.

Example 5.5: Field Descriptor of Integer Intervals

To illustrate the concept, we consider a field descriptor that allows to describe intervals
of positive integers. A bounded interval is described by a pair of integers representing its
minimum and maximum values; an unbounded one has its maximum value set to ∞. The
conjunction of two intervals is the (potentially empty) interval ranging from the maximum
of their lower boundaries to the minimum of their upper ones. E.g., if ϕ1 = [0, 100], ϕ2 =
[20, ∞] and ϕ3 = [200, 300], we have ϕ1 ∧ ϕ2 = [20, 100] and �ϕ1 ∧ ϕ3� = ∅, �ϕ1� =
{0, 1, . . . , 100}, �ϕ1 ∧ ϕ2� = {20, 21, . . . , 100}.

This descriptor is suitable for representing many of the fields introduced in Table 5.1
(i.e., Is, Id,Ps,Pd). For fields associated with large or infinite domains of strings (such as U)
we could analogously define a field descriptor where the sentences in Φ are arbitrary reg-
ular expressions, and their conjunction is the intersection of the corresponding automata.

When we arrange together a collection of field descriptors, we obtain an object suit-
able to describe sets of requests. This is formalized in the following definition, which
generalizes Definitions 18 and 19 to the language of field descriptors.

Definition 25 (Requests Descriptor). Let F be a set of fields and, for every field f ∈ F, let
〈

Φ f , �·� f

〉

be an associated field descriptor. We then define the requests descriptors space on

F = { fi}
n
i=1 as the product of all the languages Φ fi

: Ψ(F) = Φ f1 × . . .×Φ fn
. Every sequence

ψ = 〈ϕ1, . . . , ϕn〉 ∈ Ψ(F) is a Request Descriptor (RD) for the request space Q(F).

The concatenation ψ + ψ′ and the projection ψ|P⊆F from Definition 19 extend naturally to

RDs. Moreover, if ψ = 〈ϕ1, . . . , ϕn〉 , ψ′ = 〈ϕ′1, . . . , ϕ′n〉 are RDs on Q(F), we define their

conjunction as ψ ∧ ψ′ = 〈ϕ1 ∧ ϕ′1, . . . , ϕn ∧ ϕ′n〉.

The extension of a RD ψ, written �ψ�F, is the product of the extension of the sentences ϕi.

Formally: �ψ�F = �ψ( f1)� f1 × . . .× �ψ( fn)� fn
.

We are now in a position to define a finite descriptor for decision functions.

Definition 26 (Decision Function Descriptor). Given a set of fields F and a decision space

D, a Decision Function Descriptor (DFD) is a finite relation ∆ ⊆ Ψ(F)× D that covers the

entire request space Q(F).

The extension of ∆ is the decision function δ : Q(F) → D, written δ = ext (∆), defined as

follows:

δ(q) =
⊔

{d | 〈ψ, d〉 ∈ ∆ ∧ q ∈ �ψ�F} , ∀q ∈ Q(F). (5.3)
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Algorithm DFDCOMP(〈F1, C1, ∆1〉 , 〈F2, C2, ∆2〉)
1 W ← (F1 ∩ F2) ∪ C2;
2 U ← (F1 ∪ C1) \W;
3 V ← (F2 ∪ C2) \W;
4 ∆ ← ∅;
5 foreach 〈ψ1, d1〉 ∈ ∆1, 〈ψ2, d2〉 ∈ ∆2 do

6 if �ψ1|W ∧ ψ2|W�W �= ∅ then

7 ψ ← (ψ1|W ∧ ψ2|W) + ψ1|U + ψ2|V ;
8 ∆ ← ∆ ∪ {〈ψ, d1 ⊓ d2〉};

9 return 〈F1 ∪ F2, C1, ∆〉;

Algorithm DFDPROJ(∆, P)
10 return {〈ψ|P, d〉 | 〈ψ, d〉 ∈ ∆};

Figure 5.7: ACL Composition and Projection with DFD

Equation (5.3) associates each DFD with a unique decision function (namely its ex-
tension), which can be thought of as its semantics. The DFD extension maps every
request q to the least upper bound of all the decisions being associated, in the DFD,
with a request descriptor that matches q. Note how, given this semantics, it is not re-
strictive to require the complete coverage of the entire request space. In fact, this can
always be achieved by including in the DFD a default RD that (i) matches all the possi-
ble requests and (ii) is associated with the decision 0D. Moreover, whenever a concrete
policy language features a deny by default semantics (as it is typically the case, e.g., for
firewalls), the translation of such policies to DFD reduces to computing decisions for
all the possible overlaps among rules within the policy.

5.3.2 Computing (de)composition

Figure 5.7 defines two procedures that compute composition and projection on DFDs.
The correctness of the algorithms, as stated in Proposition 5, is ensured by showing that
the extension of the output DFDs equals the composition (Definition 22), respectively
projection (Definition 23), of the input ones.

Proposition 5 (Correctness of DFDCOMP and DFDPROJ). For every pair L1 =

〈F1, C1, ∆1〉, L2 = 〈F2, C2, ∆2〉, if DFDCOMP(L1, L2) = 〈F1 ∪ F2, C1, ∆〉, then we have

〈F1, C1, ext(∆1)〉 ⊗ 〈F2, C2, ext(∆2)〉 = 〈F1 ∪ F2, C1, ext(∆)〉. Moreover, for every DFD ∆, if

DFDPROJ(∆) = ∆′, then πP (ext(∆)) = ext(∆′).

Proof. See Appendix B.2.
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The algorithms’ complexity, for constant sets ot fields Fi, Ci (i ∈ {1, 2}) and input
DFDs of size n, is O(n) for DFDPROJ and O(n2) for DFDCOMP. More precisely, if n1

and n2 are the respective sizes of the input DFDs, the cost of computing DFDCOMP

is proportional to their product. Each of the n1 × n2 iterations has two contributions:
(i) the cost of intersecting two RDs restricted to the subset of fields W (line 6) and, if
such an intersection is not empty, (ii) the cost of concatenating the RDs and updating
the result DFD (lines 7-8). Note that the complexity of the former depends on how
many fields are contained in the set W and the latter contributes only if the extensions
of the current pair of RDs ψ1, ψ2 have a non-empty intersection when restricted to the
fields in W. The performance of the algorithm will be, therefore, influenced by both the
cardinality of W and the probability that any pair of RDs have a non-empty intersection
on W.

In order to perform refactoring, we need to determine whether a decomposition is
possible. This is equivalent to checking if a decision function, once projected and com-
posed back, equals itself. This translates into testing the equivalence of 〈F1 ∪ F2, C1, ∆〉
with 〈F1, C1, πF1∪C1 (∆)〉 ⊗ 〈F2, C2, πF2∪C2 (∆)〉, which, as different DFDs can have the
same extension, requires to compare the (possibly infinite) extensions of their DFDs. In
the next section we deal with this issue by developing an alternative criterion to test
decomposability.

5.4 Decomposability and Refactoring

Through decomposition, we aim at factorizing the complexity of some layer’s policy
into simpler ones. This means that the request type of any of the decomposed layers
shall be a strict subset of the one of the original (composite) layer. The next result shows
that it is not guaranteed that such a decomposition exists for a generic access control
layer.

Proposition 6. For all F1, F2, C1 where F1 ∪ F2 is a request type, C1 is a coupling type and

F2 �⊆ F1 there exists an ACL L = 〈F1 ∪ F2, C1, δ〉 that cannot be decomposed in any pair of

ACLs 〈F1, C1, δ1〉, 〈F2, C2, δ2〉.

Proof. See Appendix B.2.

The last proposition can be illustrated by the following counterexample.
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Example 5.6: Non-decomposability

Consider the decision function δc (Table 5.6) and let

q1 = 〈2.2.2.1, 1.1.1.1, 12345, 443, cust-a.acme.com, /manager/〉,

q2 = 〈3.0.0.1, 1.1.1.1, 12345, 443, cust-a.acme.com, /manager/〉 and

q3 = 〈3.0.0.1, 1.1.1.1, 12345, 443, cust-b.acme.com, /〉.

We can immediately see that the decomposition in the pair of ACLs 〈{Is, Id,Ps,Pd} , {♯} , δ1〉
and 〈{H,U} , {Id,Pd} , δ2〉, is not possible. In fact, as δc(q2) = 0, according to the rules of
composition (Definition 22), we need either δ1(〈3.0.0.1, 1.1.1.1, 12345, 443〉) = δ1(x) = 0
or δ2(〈1.1.1.1, 443, cust-a.acme.com, /manager/〉) = δ2(y) = 0. On the other hand, as
δc(q1) = δc(q3) = 1, both δ1(x) = 1 and δ2(y) = 1 must hold.

Intuitively, we see that in order to have decomposability, the decisions associated to
requests that satisfy a specific inter-field dependency cannot be chosen independently
one from another. The next definition formalizes this intuition.

Definition 27 (Inter-Field Dependency). For W and V non-empty and disjoint subsets of F,

we say that a decision function δ satisfies the Inter-Field Dependency (IFD) condition W →→ V,

written δ |= W →→ V, if and only if ∀q, q′ ∈ Q(F), q|W = q′|W ⇒ δ(q) ⊓ δ(q′) =

δ(q|F\V + q′|V) ⊓ δ(q|V + q′|F\V).

We are now ready to state the main result of this section: IFDs precisely characterize
when an ACL can be decomposed by projections without loss of permissiveness.

Theorem 1 (Decomposability). Given a generic ACL L = 〈F1 ∪ F2, C1, δ〉, the following

expressions are equivalent:

– L = 〈F1, C1, πF1∪C1(δ)〉 ⊗ 〈F2, C2, πF2∪C2(δ)〉

– δ |= (F1 ∩ F2) ∪ C2 →→ (F2 \ F1).

Sketch of the proof. (See Appendix B.2 for the full proof). Let W = (F1 ∩ F2) ∪ C2,
U = ((F1 \ F2) \ C2) ∪ C1 and V = F2 \ F1 and let q = wuv be a query. The sets W,
U and V form a partition of F1 ∪ F2 ∪ C1. For the first half, we need to show that
πW∪U(δ)(wu) ⊓ πW∪V(δ)(wv) = δ(q) for all q given that δ |= W →→ V. The proof
amounts to a sequence of equalities involving distributivity and absorption properties
of lattices. One of the key equality being the following:

δ(wuv) ⊔
⊔

u′∈Q(U)\{u}
v′∈Q(V)\{v}

(

δ(wuv′) ⊓ δ(wu′v)
)

= δ(wuv) (5.4)

For the second half, we suppose that δ(wuv) = πW∪U(δ)(wu)⊓πW∪V(δ)(wv) and that
δ(wu1v1) ⊓ δ(wu2v2) �= δ(wu1v2) ⊓ δ(wu2v1) for some queries. The key is to be able to
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Is Id Ps Pd D

∗ 1.1.1.1 ∗ 80 1
∗\ 4.0.0.0/8 1.1.1.1 ∗ 443 1
1.1.1.0/25 1.1.1.1 ∗ ∗ \ {80, 443} ⊥

1.1.1.0/25 1.1.1.0/25 \ {1.1.1.1} ∗ ∗ ⊥

1.1.1.1 1.1.1.129 ∗ 8009 ⊥

1.1.1.1 1.1.1.130 ∗ 8009 ⊥

1.1.1.128/25 1.1.1.128/25 ∗ ∗ ⊥

. . . 0

Table 5.8: Example Projection π{Is ,Id ,Ps ,Pd}(δc)

derive a series of inequalities of the form δ(wu1v2) ⊓ δ(wu2v1) ≤ δ(wu1v1) leading to a
contradiction with δ �|= W →→ V.

Theorem 1 gives an alternative criterion to test the decomposability of an ACL: we
need to check if its decision function satisfies the IFD (F1 ∩ F2)∪C2 →→ (F2 \ F1), for the
subsets F1, F2, C2 of its request type (with C2 ⊆ F1) that represent the new layers’ layout
we want to find a policy for.

Example 5.7: ACL Refactoring

Consider the ACL Lc = 〈{Is, Id,Ps,Pd,H,U}, {♯}, δc〉 that was introduced in Exam-
ple 5.4. As it is the result of the composition of ACLs La = 〈{Is, Id,Ps,Pd} , {♯} , δa〉 and
Lb = 〈{Is,H,U} , {Id,Pd} , δb〉, we naturally expect it to be decomposable for the very same
request types of La and Lb. It can be checked, by inspecting Table 5.6, that indeed δc |=

{Is, Id,Pd}→→{H,U}. Hence, if we name L′a =
〈

{Is, Id,Ps,Pd} , {♯} , π{Is ,Id ,Ps ,Pd}(δc)
〉

and

L′b =
〈

{Is,H,U} , {Id,Pd} , π{Is ,Id ,Pd ,H,U}(δc)
〉

, we know by Theorem 1 that Lc = L′a ⊗ L′b.

This is an example of refactoring that keeps the request type unchanged.

Moreover, because of Proposition 4, we expect the decomposed policies in L′a, L′b to
be equally or less permissive (more precisely the least possible permissive that still pre-
serves the equivalence of the composite policy) than the original ones in La, Lb. Table 5.8
represents the decision function π{Is ,Id ,Ps ,Pd}(δc). Notice that it is not in fact equal to the
original decision function δa of the ACL La (cf. Table 5.3). In particular, it is never more

permissive than the original; on the other hand it is, where possible and according to the
least privilege principle, more restrictive. For instance, requests coming from the 4.0.0.0/8
IP network (country Y) and directed to 1.1.1.1, which were allowed by the original policy,
are denied by the refactored version. This is consistent with the fact that such requests
were anyway always denied in Lb (cf. Table 5.4). On the other hand, the decisions for all
requests coming from 1.1.1.1 and directed to either 1.1.1.129 or 1.1.1.130 on port 8009,
are refactored to ⊥. This is a consequence of assuming partial knowledge of the Lb policy.



Section 5.4. Decomposability and Refactoring 119

Since additional information is required to decide on the usefulness of those permissions,
the choice is left to the user who can either trust the original policy, i.e., change ⊥ to 1, or
follow a more restrictive approach and change ⊥ to 0. In this example the right choice is of
course the former, which allows the reverse proxy to reach the backend application servers
as expected.

Let us now try to refactor La, Lb to a pair of ACLs that have smaller request types.
Suppose, for instance, to substitute the WS Web server of our scenario with one that does
not discriminate requests on the basis of the IP source address; this means that the field Is

does not belong any more to the request type of L′′b . However, as shown in Example 5.6, we
know that such a decomposition is not possible. This is because δc �|= {Id,Pd} →→ {H,U}.
Had all the requests with H = cust-a.acme.com in δc been mapped to 0, the IFD would
have been instead satisfied. In such a case we would have had a refactoring with a change
in request types that simplified the decision function δb.

Inter-field dependencies are defined directly on the graph of a decision function,
which suggests that they can be as well checked on the corresponding DFD. The IFD-
CHECK algorithm (Figure 5.9) computes this check and the next proposition ensures its
correctness.

Proposition 7 (Correctness of IFDCHECK). Let ∆ ⊆ Ψ(F)× D be a DFD and W, V non-

empty and disjoint subsets of F. Then, IFDCHECK(∆, W, V)=true ⇔ ext (∆) |= W →→ V.

Proof. See Appendix B.2.

The key ideas underlying the IFDCHECK algorithm are as follows. First, we rewrite
the RDs contained in ∆ to make them partition the entire request space (lines 2–6) such
that every request matches exactly one RD ψW + ψU + ψV . Second, for every ψW , we
consider all the pairs ψU , ψ′U and ψV , ψ′V (lines 7, 8) and we compute the greatest lower
bound of the decisions associated with all the pairs of requests matching respectively
ψW + ψU + ψV and ψW + ψ′U + ψ′V (line 9). We finally check if the latter equals the
greatest lower bound of all the pairs of requests matching ψW + ψU + ψ′V and ψW +

ψ′U + ψV (lines 10–14).

To partition the request space, we iteratively use the PARTITION procedure defined
in Figure 5.10 that computes a closure with respect to intersection and difference for the
portion of the RDs concerning the subset of fields X. Note that here, unlike for previ-
ous algorithms, we need to compute the set of RDs describing the difference between
two given RDs, formally DIFF(ψ1, ψ2) = {ψ∗i } such that

⋃

{�ψ∗i �F} = �ψ1�F \ �ψ2�F.
This is generally possible for the RDs composed of the field descriptors considered
in this chapter (e.g., intervals of integers). Figure 5.11 shows an example execu-
tion of PARTITION on a DFD composed of two bidimensional RDs, i.e., belonging to
the request space Ψ({ f1, f2}). The input DFD, depicted on the left, is the relation
{〈ψ1, a〉 , 〈ψ2, b〉} ⊆ Ψ({ f1, f2}) × D which contains two RDs ψ1, ψ2 associated to de-
cisions a and b respectively. We compute the partition of this DFD with respect to the
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Algorithm IFDCHECK(∆, W, V)
1 U ← F \ (W ∪V);
2 foreach 〈ψW , ∆W〉 ∈ PARTITION(∆, W) do

3 S ← ∅;
4 foreach 〈ψU , ∆U〉 ∈ PARTITION(∆W , U) do

5 S ← S ∪ {ψU};
6 PψU

← PARTITION(∆U , V);

7 foreach ψU , ψ′U ∈ S do

8 foreach 〈ψV , ∆V〉 ∈ PψU
, 〈ψ′V , ∆′

V〉 ∈ Pψ′U
do

9 d1 ←
⊔

{d | 〈·, d〉 ∈ ∆V} ⊓
⊔

{d | 〈·, d〉 ∈ ∆′
V};

10 foreach 〈ψ′′V , ∆′′
V〉 ∈ PψU

, 〈ψ′′′V , ∆′′′
V 〉 ∈ Pψ′U

do

11 if �ψ′V ∧ ψ′′V�V �= ∅ ∧ �ψV ∧ ψ′′′V �V �= ∅ then

12 d2 ←
⊔

{d | 〈·, d〉 ∈ ∆′′
V} ⊓

⊔

{d | 〈·, d〉 ∈ ∆′′′
V };

13 if d1 �= d2 then

14 return false;

15 return true;

Figure 5.9: Inter-Field Dependency check on DFD

Algorithm PARTITION(∆, X)
1 Y ← F \ X;
2 P ← ∅;
3 foreach 〈ψ, d〉 ∈ ∆ do

4 P ← P ∪ {〈ψ|X , {〈ψ|Y , d〉}〉};

5 while ∃ 〈ψ1, ∆1〉 , 〈ψ2, ∆2〉 ∈ P s.t. �ψ1 ∧ ψ2�X �= ∅ do

6 P ← P \ {〈ψ1, ∆1〉 , 〈ψ2, ∆2〉};
7 P ← P ∪ {〈ψ1 ∧ ψ2, ∆1 ∪ ∆2〉};
8 foreach ψ1\2 ∈ DIFF(ψ1, ψ2) do

9 if �ψ1\2�X �= ∅ then

10 P ← P ∪
{〈

ψ1\2, ∆1
〉}

;

11 foreach ψ2\1 ∈ DIFF(ψ2, ψ1) do

12 if �ψ2\1�X �= ∅ then

13 P ← P ∪
{〈

ψ2\1, ∆2
〉}

;

14 return P ;

Figure 5.10: DFD Partition
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Figure 5.11: PARTITION algorithm on bidimensional DFD.

singleton X = { f1}. First, we project all the RDs on the field f1 (line 4 in Figure 5.10),
obtaining ψ′1 = ψ1|{ f1}, ψ′2 = ψ2|{ f1}. Both the conjunction ψ′1 ∧ ψ′2 and the difference
DIFF(ψ′1, ψ′2) have non empty extensions, hence they both contribute to the result. The
former produces the DFD ∆1∧2 (line 7), whereas the latter produces the pair of DFDs
∆1\2, ∆′

1\2 (line 10). Note that DIFF(ψ′2, ψ′1) instead does not yield any contribution, as
the difference between ψ′2 and ψ′1 is empty. At the second iteration of the main loop
(line 5), the test returns false because there are not any more pairs of RDs that have a
non empty intersection on f1; hence the algorithm terminates.

Thanks to the IFDCHECK algorithm, we now have a correct procedure to compute
the refactoring of any given access control layer described in terms of a DFD. First we
test for decomposability by the means of IFDCHECK and then, in case of success, we
project (DFDPROJ) to obtain the desired decomposition.

5.4.1 Improving Request Space Partitioning

The generality of the PARTITION algorithm, with respect to the structure of field de-
scriptors, makes it hard to analyze its complexity. Intuitively, a key role is played by
the strategy used to choose which pair of items 〈ψ1, ∆1〉 , 〈ψ2, ∆2〉 have to be partitioned
at each iteration of the while loop (line 5), among all the candidates satisfying the con-
dition �ψ1 ∧ ψ2�X �= ∅. We illustrate this concept through the following example.

Example 5.8: Partition Strategy

Given an integer n, consider the set of n/2 concentric intervals {[i, n− i] | 1 ≤ i ≤ n/2− 1}.
By interpreting such intervals as single-field request descriptors ψi = 〈[i, n − i]〉, we can
collect them in a DFD ∆ = {〈ψi , di〉} ⊆ Ψ({ f })× D and partition the latter with respect to
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Figure 5.12: Optimal execution of PARTITION on a set of concentric intervals of integers.

the field f .

Note how, in this particular case, there is an obvious choice for the best items-selection
strategy, that consists of selecting, at each iteration, the two longest intervals with non-
empty intersection. Figure 5.12 depicts different iterations k of the algorithm implementing
such a strategy. As each iteration reduces by two the number of intervals that intersect
with all the others and increases by one the total number of intervals, the algorithm termi-
nates after n/2− 1 iterations, yielding n − 1 non-intersecting intervals. Applying different
strategies to the same input would necessarily require more iterations, as each step may
not decrease, or may even increase, the number of mutually-intersecting intervals. It shall
be noted however that this strategy, although optimal for this particular input, has in general
higher overall complexity. In fact, it is not guaranteed that the number of intersecting inter-
vals will be always reduced by two at each step. Moreover, searching for the two longest
intersecting intervals requires, at each step, to consider all the 2-choices among them,
depending quadratically on n.

It is indeed not trivial to determine a strategy that would be optimal in general, i.e.,
for every possible field descriptor and distribution of input RDs. On the other hand, it
is reasonable to assume that specializing the PARTITION algorithm for a particular type
of field descriptor would allow to improve it by leveraging specific properties of the
chosen data structure. To verify this assumption, let us restrict to the field descriptor
of intervals of positive integers (cf. Example 5.5). This descriptor is particularly inter-
esting as it naturally encodes many common rule-based firewall-like policy languages.
Hence, it is worthwhile exploring whether our algorithms can be optimized by taking
advantage of its structural properties.

We observe that a straightforward approach for determining how intervals overlap
with each other is to scan each point in the domain and keep track of which intervals it
is part of. In fact, as intervals represent convex sets, it is sufficient to check only in the
neighborhood of their endpoints. The algorithm PARTINTV, reported in Figure 5.13,
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Algorithm PARTINTV(∆, X)
1 Y ← F \ X;
2 foreach f ∈ X do

3 Q f ← PQCREATE() ; // Creates a priority queue associated to field f.

4 foreach i ∈ {1, 2, . . . , |∆|} do

5 〈ψ, d〉 ← ∆[i] ; // Assuming any total order on ∆, ∆[i] denotes its ith

element.

6 〈s, e〉 ← PARSEINTVFD(ψ( f ));
7 PQINSERT(Q f , s, 〈start, i〉) ; // Inserts element with priority s in Q f.

8 PQINSERT(Q f , e, 〈end, i〉);

9 P ← {〈〈〉 , {1, 2, . . . , |∆|}〉};
10 foreach f ∈ X do

11 foreach 〈ψ, I〉 ∈ PARTINTVSINGLEFIELD(Q f ) do

12 P ′ ← ∅;
13 foreach 〈ψ′ , I′〉 ∈ P do

14 if I′ ∩ I �= ∅ then

15 P ′ ← P ′ ∪ {〈ψ′ + ψ, I′ ∩ I〉};

16 P ← P ′;

17 R ← ∅;
18 foreach 〈ψ, I〉 ∈ P do

19 ∆′ ← ∅;
20 foreach i ∈ I do

21 〈ψ′ , d〉 ← ∆[i];
22 ∆′ ← ∆′ ∪ {〈ψ′|Y , d〉};

23 R ← R∪ {〈ψ, ∆′〉};

24 return R;

Algorithm PARTINTVSINGLEFIELD(Q)
25 〈p, 〈 f lag, i〉〉 ← PQEXTRACTMIN(Q); // Extracts the element with minimum

priority p from Q.
26 R ← ∅; I ← {i} ; s ← p; e ← 0;
27 while ¬PQEMPTY(Q) do

28 〈p, 〈 f lag, i〉〉 ← PQEXTRACTMIN(Q);
29 if f lag = start then

30 e ← p− 1;
31 if s ≥ 0∧ e ≥ 0∧ e ≥ s then

32 ψ ← 〈 NEWINTVFD(s, e)〉; // Creates a RD for the interval [s, e].
33 R ← R∪ {〈ψ, I〉};

34 I ← I ∪ {i};
35 s ← p;

36 else

37 e ← p;
38 if s ≥ 0∧ e ≥ 0∧ e ≥ s then

39 ψ ← 〈 NEWINTVFD(s, e)〉;
40 R ← R∪ {〈ψ, I〉};

41 I ← I \ {i};
42 s ← p + 1;

43 return R;

Figure 5.13: DFD Partition for the field descriptor of positive integer intervals only.
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precisely exploits this intuition. For each to-be-partitioned field, a priority queue is
created. Then, the endpoints 〈s, e〉 of all the intervals of that field are inserted in the
priority queue, together with the index i pointing to the current RD and a flag distin-
guishing start from end endpoints (lines 2–8). Next, each queue is processed by the
PARTINTVSINGLEFIELD procedure. Here, each endpoint is extracted from the queue
in ascending order and, distinguishing whether it is of type start or end, it is used
to keep the set I updated with all the indexes pointing to the intervals that are over-
lapping with the current one identified by endpoints 〈s, e〉. Next, a single-field request
descriptor ψ is created out of the current interval, it is then associated with the set I and
added to the result. The second part of the PARTINTV algorithm (lines 9–16) computes
the product among the results, one for each field, of PARTINTVSINGLEFIELD, by consid-
ering only the pairs 〈ψ, I〉 , 〈ψ′, I′〉 for which the sets of indexes I, I′ have a non-empty
intersection. Finally (lines 17–23), for each partitioned RD 〈ψ, I〉, the indexes i ∈ I are
resolved to the entries in the original DFD and associated to ψ.

It is straightforward to work out the complexity of the PARTINTVSINGLEFIELD al-
gorithm as it essentially amounts to extracting all the elements out of a priority queue,
that is well known to be a O(|Q| log(|Q|)) problem (being |Q| the size of the queue).
In our case, the size of the queue equals the total number of endpoints that are 2n for
n intervals; hence we obtain a complexity of O(n log(n)). The main loop of PARTINTV

iterates |X| times through the result of PARTINTVSINGLEFIELD, that is once for each
field in the set X. This yields the overall computational cost of O(|X|(n log(n) + n|X|)),
that will tend to behave like the O(n|X|) polynomial the more the cardinality of set X

will increase.

5.5 Experimental Evaluation

The algorithms presented in Sections 5.3 and 5.4 ensure that refactoring can be theoret-
ically computed over DFDs. In this section, we ought to investigate the computational
feasibility of our approach in practice. More specifically, we aim at evaluating the al-
gorithms’ performances and their sensitivity to various characteristics of input data, in
order to drive conclusions about the concrete applicability of our approach.

The ideal way to carry out such an evaluation would be to make use of real policies
to be given as input to the algorithms and measure the corresponding performances.
Unfortunately, publicly-available security policies are a scarce resource in nature, as
they constitute a private piece of information that system administrators would hardly
disclose. In fact, sensitive details about the security infrastructure of an organiza-
tion can be inferred from its policies, even when anonymization techniques are em-
ployed [Samak2009]. In order to evaluate the performance of our algorithms, given the
lack of a sufficiently large database of real-world policies, we then chose to generate
synthetic ones.



Section 5.5. Experimental Evaluation 125

As first step in this direction, we identify what characteristics of input policies are
expected to produce a relevant impact on performances. The purpose of this step is
twofold. Firstly, it is needed to design a methodology that allows to control such char-
acteristics while synthesizing datasets. Secondly, it allows to estimate the behaviour
of the algorithms for an arbitrary input, e.g., real world policies, from the analysis of
input’s characteristics. To this end, based on the analysis of the algorithms presented in
Sections 5.3 and 5.4, we formulate the following set of hypotheses.

(HP1) The size of input policies, i.e., the number of RDs they are made of once encoded as
DFDs, is the major contributor to the cost of all the algorithms.

(HP2) The number of fields that are in common between two access control layers im-
pacts the cost of composition (DFDCOMP) and inter-field dependency checking
(IFDCHECK): in particular its partitioning subroutine (PARTINTV1), where the
cardinality of the set of common fields influences the exponent of the polynomial
complexity.

(HP3) The average degree of overlap, i.e., the average number of RDs any RD overlaps
with, impacts the cost of inter-field dependency checking (IFDCHECK), but does
not significantly influence the cost of partitioning (PARTINTV). In fact, an increas-
ing probability of overlap in the input DFD (∆) yields in average bigger DFDs
(∆U , ∆V) as the result of each round of partitioning in IFDCHECK, which then re-
quire more time to be processed. In contrast, PARTINTV shows no dependency on
the average degree of overlap of input RDs.

(HP4) The average degree of overlap of the RDs of two different DFDs (on their common
fields) impacts the cost of computing their composition (DFDCOMP). This fol-
lows from the analysis of the DFDCOMP algorithm, where one cost component
is weighted by the probability of a pair of RDs to overlap on the common set of
fields.

Before proceeding we shall precisely define what we mean by the notion of average

degree of overlap and by that, strictly related to the former, of overlap density, for the set of
RDs that compose a DFD. To do that, we first define the overlap relation between RDs.

Definition 28 (Overlap of Request Descriptors). We say that two RDs ψ1, ψ2 overlap with

each other, denoted ψ1∼ψ2, when the extension of their conjunction is not empty, i.e., �ψ1 ∧

ψ2� �= ∅.

We immediately see, from the previous definition, that the overlap relation is bi-
nary and symmetric. Hence, it can be equivalently interpreted as the edge relation of
an undirected graph having a set of RDs as vertices. This interpretation is useful to

1We assume the PARTINTV algorithm being used for partitioning because, as shown in Section 5.4, it is
easy to work out its complexity.
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Algorithm GENINTV(n, M, ν)
Data: Number n of desired intervals
Data: Upper bound M of the domain of integers
Data: Variance coefficient ν

Result: Set of intervals S

1 Find points {ci}
n
1 partitioning the domain 0, . . . , M in n intervals of size M

n ;
2 forall the ci do

3 Generate a random integer di with log-normal distribution having
parameters µ = M

n and σ = ν× M
n ;

4 Add interval [max(0, ci −
di
2 ), min(M, ci +

di
2 )] to S;

5 return S;

Figure 5.14: Generation of a set of random intervals of integers with controlled
degree of overlap

characterize the concepts of density and average degree. We recall that, for an undi-
rected graph G = 〈V, E〉, the density is defined as 2|E|

|V|(|V|−1) and the average degree as
2|E|
|V|

. Combining these quantities with the notion of overlap yields the following defini-
tion.

Definition 29 (Overlap Density and Average Degree of Overlap). Given a set of request

descriptors S, we define its overlap density ρ and average degree of overlap k as follows2:

ρ =
2
∣

∣

∣

{

{ψ1, ψ2} ∈ (S
2) | ψ1∼ψ2

}∣

∣

∣

|S|(|S| − 1)
,

k =
2
∣

∣

∣

{

{ψ1, ψ2} ∈ (S
2) | ψ1∼ψ2

}∣

∣

∣

|S|
= (|S| − 1)ρ.

Note that, as the total number of 2-combinations in S (i.e., the cardinality of (S
2))

equals |S|(|S|−1)
2 , the overlap density ρ corresponds to the probability that two random

RDs in S overlap with each other. The average degree of overlap k is instead a measure
of how many RDs are expected to overlap, in average, with one chosen randomly. In
the following we will refer to either of the two quantities at convenience, knowing that
the other can be obtained by simply multiplying or dividing by the factor |S| − 1.

In order to validate our hypotheses, we aim at designing a procedure to synthesize
random DFDs by allowing to control (i) the number of therein contained RDs, (ii) the

2Throughout this chapter (S
k) denotes the set of all the combinations (choices) of k elements in the set S,

whereas (n
k) is the number of combinations of n elements.
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number of fields in each RD and (iii) the density of overlapping RDs. For the sake of
simplicity, we will use only field descriptors for intervals of integers (cf. Example 5.5).
As each interval is described by a pair of integers [x, y] with 0 ≤ x ≤ y, one can ran-
domly generate n × m such pairs to obtain n RDs with m fields each. Clearly, in or-
der to control the degree of overlap among such RDs, one has to carefully choose the
probability distribution of the randomly chosen pairs of numbers. We first introduce
a procedure to do so for unidimensional RDs, i.e., containing a single field with an as-
sociated domain of integers ranging from 0 to M. The algorithm GENINTV reported in
Figure 5.14 generates n intervals having deterministic equally-spaced centers {ci} and
random diameters {di}. The probability distribution of the diameters is log-normal (as
such, only positive values are possible): its mean equals the distance between two cen-
ters and its variance can be tuned via the parameter ν. In Appendix C.2.1 we describe
a procedure to empirically estimate the values of ν that allow to control the average
degree of overlap k of the generated RDs for different choices of n. Being a function of
both parameters, we denote such values as ν(k, n).

A (finite) multidimensional DFD is a relation ∆ ⊆ Ψ({ f1, . . . , fm}) × D having n

RDs over the set of fields { f1, . . . , fm}. To randomly synthesize such a DFD, we exe-
cute GENINTV once for each field f1 to fm and we arrange the generated intervals in a
n × m matrix. Each row (from 1 to n) of the matrix represents a m-dimensional RD to
be associated with a random decision in D. While we are able to control, through the
parameter ν(k, n) of the GENINTV algorithm, the average degree of overlap associated
to the single dimensions (corresponding to fields f1 to fm), we cannot directly control
the average degree of overlap of the entire m-dimensional RDs. The difference between
unidimensional and multidimensional degree of overlap is illustrated in Figure 5.15.
We consider four bidimensional RDs a, b, c, d (i.e., n = 4 and m = 2) and their unidi-
mensional projections on fields f1 and f2 (Figure 5.15a). The overlap relation among the
RDs projected on f1, respectively on f2, is represented by the edges of the graph in Fig-
ure 5.15b, respectively Figure 5.15c. The bidimensional RDs, as shown in Figure 5.15d,
overlap with each other if and only if both projections do simultaneously overlap. The
average degrees of these graphs are respectively k1 = 2, k2 = 2.5 and k1,2 = 1.5.

In order to control the multidimensional average degree of overlap, in Ap-
pendix C.2.2 we work out how it is related to the average degree of overlap of the
single dimensions. We also show how to obtain, on the basis of the GENINTV algo-
rithm, m sets of n unidimensional RDs having, for each set, (i) uniform probability of
overlap between any pair of RDs and (ii) the same expected value of average degree of
overlap k. We then argue that the expected value of average degree of overlap kmul of
the corresponding set of n m-dimensional RDs can be expressed as follows:

kmul =
km

(n− 1)m−1 . (5.5)

This follows from observing that, under the above assumptions, the overlap density of
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Figure 5.15: Unidimensional versus multidimensional degree of overlap.

the m-dimensional RDs (i.e., the probability of two random RDs to overlap with each
other) equals the product of the m unidimensional overlap densities ρmul = ρm. We
then substitute into the relation between ρ and k (Definition 29) to obtain (5.5).

Finally we recall that, according to Definition 26, it is necessary to ensure that the
generated DFD will cover the entire request space. As already mentioned in Section 5.3,
this can be easily achieved by adding a “default” RD that (i) ranges over the entire
domain [0, . . . , M] and (ii) is associated to the least upper bound decision in D. As the
default RD covers the entire domain, it will necessarily overlap with all the other n RDs.
Hence, the overlap measures will change as follows:

ρdef =
2
(∣

∣

∣

{

{ψ1, ψ2} ∈ (S
2) | ψ1∼ψ2

}∣

∣

∣
+ n

)

(n + 1)n
=

2
(

n(n−1)
2 ρ + n

)

(n + 1)n
=

(n− 1)ρ + 2
n + 1

, (5.6)

kdef =(n− 1)ρdef = (n− 1)
(n− 1)ρ + 2

n + 1
=

n− 1
n + 1

(k + 2). (5.7)

5.5.1 Experiments

Figure 5.16 illustrates the workflow of an experiment that is designed to evaluate the
performances of the different steps involved in the process of refactoring synthetic poli-
cies as a function of the parameters of our interest.

The first step consists in generating a pair of DFDs ∆1, ∆2 through the above-
described GENINTV algorithm. To simplify the interpretation of results we use the
same parameters n, m, k for generating both DFDs, respectively the number of RDs, the
number of fields (or dimensions) and the expected average degree of overlap. Next,
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GENINTV

GENINTV

〈n, k,m〉

〈F1, C1,∆1〉

〈F2, C2,∆2〉

W

∆1

∆2

Make ACLs DFDCOMP ∆C
IFDCHECK

×N1

×N2

Figure 5.16: Experiment workflow.

we place the two DFDs in two access control layers Li = 〈Fi, Ci, ∆i〉 (with i ∈ {1, 2})
in order to compute their composition, which requires generating corresponding re-
quest and coupling types. When doing so, we are left with one additional degree of
freedom, that is to decide which fields, out of the m available, will be in common be-
tween the request (resp. coupling) types of the two layers. We denote such a set of
common fields as W = (F1 ∩ F2) ∪ C2. In order for the composition to be well defined
(Definition 22), it is easy to check that the cardinality |W| must be comprised between
1 and (m− 1). Finally, we compute DFDCOMP(L1, L2) = 〈C1, F1 ∪ F2, ∆C〉 followed by
IFDCHECK(∆C, W, V), where V = (F2 ∪ C2) \ (F1 ∪ C1) = F2 \ F1

3 is the set of fields
belonging exclusively to the layer L2. In this process we measure the following time
intervals:

– time to compute DFDCOMP(L1, L2);

– time to compute IFDCHECK(∆C, W, V);

– time to compute PARTINTV(∆C, W) as invoked by the IFDCHECK algorithm.

Executing IFDCHECK directly on the output of DFDCOMP with respect to the set
of common fields W, is a precise design choice. In fact, the result of the composition is
surely decomposable with respect to W, hence (by Theorem 1) the IFD W →→ V neces-
sarily holds on ∆C. As a consequence, the IFDCHECK algorithm will never terminate
prematurely by returning false (line 14) and, as such, it will always be evaluated in the
worst case scenario.

In order to remove the noise due to CPU contention, the measures of the last step are
averaged over N1 = 25 executions of the algorithms with the same input DFDs. Fur-
thermore, for each choice of the parameters, we repeat the whole experiment (including
the DFD generation step) N2 = 25 times. This accounts for the inherent stochasticity
of the GENINTV procedure, that will produce results exhibiting the expected degree of
overlap k only in average over repeated executions. We executed the above experiment

3This equation holds because C2 ⊂ F1 and C1 ∩ F2 = ∅ (cf. Definition 22).
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n 10, 20, 30, . . .
k 1, 2, 3, 5, 10

m/|W| 2/1, 3/2, 4/3

Table 5.17: Experiment parameters.
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Figure 5.18: Evaluation of the DFDCOMP algorithm.

by varying the parameters n, k, |W| as reported in Table 5.17. In the remainder of this
section we discuss the results we obtained.

Figure 5.18 presents the trend of the execution time of the DFDCOMP algorithm
measured as a function of the size n of the input DFDs, with parameters k and |W|

varying independently. Each point in the graphs is the average execution time over
N2 experiments with constant parameters. Figure 5.18a confirms the hypothesis (HP4)
stated at the beginning of this section: increasing k yields, although not dramatically,
increased computational cost. Note that the measured impact is limited because only
the linear term of the quadratic fit is actually affected. To explain this fact, we recall that
part of the cost of each iteration of the algorithm is weighted by the probability of RDs
to overlap with each other, which is the same as the overlap density. As all generated
DFDs contain a default RD, the overlap density is given by (5.6). Hence, the overlap
probability expressed in terms of k equals p(k) = ρdef = kdef/(n − 1) ≃ (k + 2)/n,
with the last equality holding approximately for n ≫ 1. Substituting for k ∈ {1, 3, 10}
yields the ratios p(1)/p(3) = 0.6 and p(1)/p(10) = 0.25, which approximately match
the respective ratios among the linear coefficients of the experimental interpolations:
3.7/5.3 = 0.7 and 3.7/11.1 = 0.33. In Figure 5.18b, instead, we clearly see that the
quadratic coefficient is affected when the number of common fields increases, yielding
a more significant impact on the overall cost. At the same time, according to Equa-
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Figure 5.19: Evaluation of the IFDCHECK and PARTINTV algorithms.

tion (5.5), the actual average degree of overlap decreases, but the corresponding (lin-
ear) gain in performance cannot compensate the (quadratic) loss. Overall, this effect is
consistent with the hypothesis (HP2).

Figure 5.19 depicts the evaluation results of the IFDCHECK and PARTINTV algo-
rithms. Again parameters k and |W| were changed independently to measure their
influence on performances. In this case the algorithms’ execution time is plotted as a
function of the size of the composite DFD ∆C, which constitutes the input of the al-
gorithms. The graphs were obtained by filtering the experimental results through a
moving average window of size N2, to remove outliers due to the random nature of the
input DFDs synthesis procedure.

From the comparison of Figures 5.19a and 5.19b we conclude that a change in the
average degree of overlap definitely affects IFDCHECK, but has negligible impact on
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PARTINTV, thereby confirming (HP3). Note also the considerable variance of the results
with respect to the interpolating curve: this is due to the way samples were averaged.
In fact, as the algorithms’ input (∆C) is the result of composing two random DFDs,
its size is also randomly distributed. As a consequence, being the moving average
window of fixed size, there is a disparity in the number of samples that fall within
each window. Hence, some points in the graph are less accurate as they result from
averaging a smaller number of samples.

More significant is the sensitivity of both algorithms to increasing the number of
common fields, as shown in Figures 5.19c and 5.19d. These graphs show that, for k = 2
and when W contains two or more fields, the asymptotic complexity of IFDCHECK is
essentially determined by the partitioning subroutine PARTINTV. This is also very well
reflected in the fact that the results for |W| ≥ 2 do not almost exhibit any variance, as
PARTINTV, not being significantly influenced by the actual average degree of overlap,
dominates the overall complexity.

The worst-case runtime of our most complex algorithm, namely IFDCHECK, is of
the order of some minutes for input DFDs containing more than a thousand RDs. We
argue that this is reasonable for an offline policy analysis task. In fact, related work on
conflict detection in firewall policies [Basile2012] exhibits performances of comparable
order of magnitude.

5.6 Related Work

The pioneering work of Moffett and Sloman [Moffett1994] has opened a large avenue
for research on policy conflict analysis in distributed systems and has been refined,
classified and formalized in the network-level security field. For instance, Al-Shaer et

al. [AlShaer2005] or Basile et al. [Basile2012] have proposed techniques and algorithms
to automatically discover and manage inconsistencies between firewall rule sets. One
key point of these techniques is to turn rule sets into an intermediate policy repre-
sentation on which analysis is performed (e.g., ordered binary decision diagram [Al-
Shaer2005], intersection closed semi-lattice of subsets [Basile2012]). Other approaches,
e.g., [Alfaro2008], propose instead a more direct algorithmic solution that operates di-
rectly on firewall configurations. Although we do not focus on the detection of inconsis-
tencies, we share with these approaches the abstract definition of policy decision points
and the idea of policy composition, which we use to capture and analyze interactions
between different layers. These techniques may complete our approach by furnishing
a pre-processing procedure to remove local inconsistencies and help translate firewall
configurations into instances of our model. For instance, the output of Algorithm 4
in [Alfaro2008] is a rule set where the mutual order of rules is irrelevant, i.e., where any
overlap is removed. Hence, a corresponding DFD can be simply derived by computing
one RD per each rule, plus an additional one for the implicit deny-by-default rule.
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Network-level policy analysis is not limited to the detection of anomalies: another
interesting perspective is the inference of high level policies from the reverse engineer-
ing of firewall configurations [Mayer2000; Tongaonkar2007; Nelson2010; Martnez2013].
These works aim at extracting the access control semantics contained in one or more
firewalls’ configuration by abstracting away low-level details and peculiarities of the
different configuration languages. In contrast, we model the composition of policy de-
cision points on different architectural layers, which is an orthogonal problem. As such,
we could leverage these techniques to deal with intra-layer interactions between dis-
tributed firewalls, prior to performing our analysis. For instance, in [Martnez2013] a
model-driven approach is used to turn firewall configurations into Platform Indepen-
dent Models (PIMs). Next, such multiple PIMs are aggregated in a single one represent-
ing the global network access control policy of the system, which is what we require to
instantiate our network Access Control Layer.

There exists a substantial body of work on combination of policies not limited to
firewalls. Notably, several logical and algebraic approaches for composing and uni-
fying access control policies have been proposed quite recently [Ni2009; Ramli2011;
Bruns2011]. Different algebraic varieties have been used to combine rich decision
spaces, for instance, D-algebras [Ni2009], Belnap bilattices [Bruns2011] or XACML tai-
lored logic [Ramli2011]. One of the goals is to provide mathematical foundations to the
expressive XACML access control language and its many resolution strategies. The al-
gebraic structure chosen here for decision space is motivated by previous work which
have shown the need for expressive ones. However, the goal is not to capture resolu-
tion strategies but to find a structure both expressive enough and sufficient to define a
decomposition with good properties. The use of an expressive common pivot model
like XACML, logical frameworks or subject-target-condition rules [Zhao2011] is very
interesting. However, we chose a different perspective by sticking as closely as possi-
ble to the original policies. Algorithms 5.7 and 5.9 carry computation directly on the
original policies, with minimal prior normalization.

Our approach has a strong connection to the policy continuum model and the policy
refinement problem. Davy et al. [Davy2008b] model policies at different inter-related
abstraction layers in what they call policy continuum. Based on this model, they devise
a generic algorithm for policy authoring. Their notion of continuum level essentially
corresponds to a view on the policies at a particular abstraction level. In contrast, our
ACLs represent types of decision points that operate at different architectural layers,
but being at the same degree of abstraction (which roughly matches to the lowest pos-
sible continuum level). A similar argument applies to many existing works on policy
refinement [Craven2010; Craven2011; Zhao2011]. Another key difference is that we
start from interdependent concrete policies and we provide a device oriented decom-
position instead of starting from high level requirements which are ultimately refined
into operational policies. The refactoring problem studied in this chapter is bottom-up:
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the global policy is nothing but the composition of all devices interacting along the net-
work stack. By contrast, the policy refinement and deployment problem is clearly top-

down. Another problem which is closely related to refinement is that of policy deploy-
ment, where the focus is put specifically on determining how refined policies shall be
distributed among multiple policy enforcement points [Preda2010; Preda2011]. While
also concerned with the generic notion of policy decomposition, these techniques focus
on how to distribute network-layer policies either statically, according to the security
properties required for the different possible paths in the network [Preda2010], or dy-
namically, according to the current context [Preda2011]. In contrast, we tackle the prob-
lem finding a decomposition of the global policy which removes the overlap among the
request types of devices belonging to different architectural layers.

Our definition of access control layer is quite close to that of abstract access con-
trol systems [Tripunitara2007; Habib2009; Crampton2012b]. The first two references
formally compare the expressiveness of access control models with respect to the set of
decision functions they can produce. Interest is not brought on the configuration but on
the model itself, whereas we focus on the first. Regarding the model, a set of desirable
properties of abstract access control systems is identified. The question whether our
decomposition technique still applies in their case is left for future work.

Finally, we shall mention that the idea of decomposing policies according to their
structural properties for the purpose of facilitating their management is not new.
Perhaps the most notable example is given by role mining techniques [Molloy2009;
Frank2010], whose purpose is to decompose a direct users-to-permissions assignment
relation into a pair of users-to-roles and roles-to-permissions ones. The main difference
with our decomposition operation is that in role mining the total number of dimensions
grows (the role dimension is introduced on top of users and permissions), whereas we
aim at reducing the dimensionality (i.e., the request type’s cardinality) of refactored
policies in order to remove inter-layer overlap. However, we believe that the connec-
tion between the two problems deserves a deeper analysis. For instance, a substantial
body of work in the role mining domain has been dedicated to finding approximate
solutions that allow to reduce the number of mined roles at the expense of allowing
a discrepancy between the original and the recomposed policies (cf. the definitions of
δ-approximation and minimal-noise role mining in [Vaidya2007]). When discussing
policy refactoring, we showed that it is not always possible to find a decomposition
that preserves the permissiveness of the global policy, in which case we may want to
look for approximate solutions. A key issue, for which we could take inspiration from
the above mentioned role mining techniques, is to determine a meaningful metric to
characterize the error that we aim at minimizing.
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5.7 Discussion

In this section we discuss some additional technical issues and conclude with an out-
look on more theoretical perspectives.

In order to execute our algorithms, input policies need to be represented as DFDs.
We argued that, for rule-based access control languages, where rules are collections of
independent filters on fields, this can be done by leveraging existing techniques. Other
than most firewall configuration languages, the policy languages of many common net-
work services fit into this category, arguably because of its simplicity. For those that do
not, our approach can still be applied as long as the translation from the source lan-
guage to DFDs remains feasible.

Both the DFDCOMP and DFDPROJ algorithms can exploit the fact that the request
descriptors in a DFD are allowed overlap with each other, which allows to avoid com-
puting the disjunction or the complement of RDs (respectively the union and the differ-
ence of their extensions). Avoiding such operations is beneficial because their compu-
tation is expensive. This is a consequence of RD extensions being defined as Cartesian
products of sets: an operation that distributes with respect to intersection, but not to
union and difference. Hence, a number of RDs that grows linearly with the number of
sets involved in the product (namely the number of fields) is necessary to represent each
union or difference. The IFDCHECK algorithm, computing the inter-field dependency
check, is the most computationally-expensive. This is mainly due to the complexity of
the partitioning subroutine, where, unlike for previous algorithms, we cannot avoid to
compute the difference of RDs. We showed, however, that it is possible to trade off
the generality of the field descriptors’ constraint language with the complexity of the
partitioning algorithm: by restricting to the class of convex intervals of integers, we
obtained comparable performances to related configuration analysis algorithms, such
as conflict analysis on firewall rulesets [Basile2012].

We believe that it is important to further investigate up to which scale the results of
our analysis can still be consumable and insightful for users. This point is particularly
critical when non-decomposability occurs. In this case, the IFDCHECK algorithm pro-
vides the first counterexample violating the inter-field dependency that was found in
the partitioned DFD. However, it may be difficult to manually trace back the origin of
the issue in the input policies, especially if they are large in cardinality and/or have a
high degree of overlap. We believe that this problem can be mitigated by equipping the
algorithm with a root-cause analysis feature, which, e.g., isolates the fragment of the
policies that prevents decomposition.

Relational database experts may have recognized the syntactical resemblance be-
tween W →→ V of Definition 27 and so-called MultiValued Dependencies (MVD) intro-
duced in [Fagin1977]. The two concepts are related in the fact that Theorem 1 of [Fa-
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gin1977], linking lossless decomposition to MVDs, is a specific instance of Theorem 1 of
this chapter, when the decision space is reduced to the two-elements boolean algebra.
Since 2007, the generalization of the classical relational framework to “non boolean”
relations, coined as “provenance”, has received a lot of attention from the database
community [Karvounarakis2012]. Here we equipped the decision space with the struc-
ture of a distributive lattice, a more constrained algebraic variety than the semiring de-
scribed in [Karvounarakis2012], and we showed that MVDs and the lossless decompo-
sition property generalize to this structure. However, the generalization of the classical
dependency theory (e.g., MVDs or functional dependencies as well as more expressive
classes) to the provenance setting is still open.

We argue that our contribution provides novel evidence that database dependency
theory can be fruitfully applied to help solve security problems: an avenue that is yet
considerably unexplored if compared, for instance, to how the Datalog model, and
some of its many variants, have been used in the past to model and reason on access
control policies [Becker2006; Abadi2003; Bertino2003; Halpern2008]. We outline two
more related problems for which we believe that there exist a strong link with depen-
dency theory.

The first problem is about repairs. Assume an access control policy over several
fields cannot be decomposed into independent sub-policies: is there any canonical or
best way to update the policy such that it will become decomposable? For instance,
in Example 5.7 presented at the end of Section 5.4, one such possible modification is
proposed for the policy δc. Applying the many results for the repair problems (e.g.,
see [Bertossi2011]) to policies is not without difficulties. Basically, one has to general-
ize the relational framework to be able to capture generic definition of access control
systems and thus has to provide new results inspired from classical ones, as we have
done for MVD in some sense. Moreover, one has to find repair semantics meaningful
from the security point of view. Standard repair semantics are repair via insertions,
deletions or updates [Wijsen2005]. It is interesting to study how these semantics apply
to policy decomposition, the last one in particular. As mentioned in Section 5.6, related
work on role and policy mining may provide further insights to find candidate metrics
to characterize the quality of a repair.

The second problem is about the mining of dependencies. In the classical setting
of database normalization, the set of dependencies is known in advance and one tries
to provide the best structure fitting with the given constraints, as it is done in this pa-
per. The data-mining perspective reverses the approach: The goal is to discover new
dependencies by revealing the internal structure of relations. Savnik and Flach have
provided an efficient algorithm to discover MVD [Savnik2000], we envision to apply
their techniques to reverse engineer large policies. The idea is to find some “best set of
simplest access control systems” with the same authorized queries.
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5.8 Synthesis

This chapter proposed a formalization of the problem of inter-layer policy refactoring
and a solution based on policy (de)composition. The key concept that captures decom-
posability is the inter-field dependency condition given in Section 5.4 from which an
algorithm is derived. This algorithm and the other ones computing (de)composition
work on a constraint-based relational representation of access control policies. We for-
mulated qualitative hypotheses about the dependency of algorithms’ performances on
different characteristics of input policies and we confirmed our hypotheses through a
quantitative experimental evaluation. We obtained worst-case performances that are
comparable in the order of magnitude with those of related existing configuration anal-
ysis tasks.

Our main theoretical result (Theorem 1) proves that the decomposability of decision
functions holds if and only if the inter-field dependency condition is satisfied. This is ex-
tends the classical link between lossless join decomposition and so-called multivalued
dependencies [Fagin1977, Theorem 1] to larger-than-boolean relations: more precisely,
to a constrained variety of k-relations à la [Karvounarakis2012], where the algebra of
labels annotating tuples (i.e., our decisions) is a distributive lattice instead of a commu-
tative semiring.

This contribution is conceptually part of the PoSecCo’s enforceability analysis activ-
ities [Basile2013b]4, which aim at determining whether a collection of policy decision
points are suitable to enforce a given global policy. Furthermore, it has been published
in the proceedings of an international conference on networking [Casalino2013b] and
in those of a French national conference on databases [Casalino2013a].

4However, it has not been included in [Basile2013b], because the approach was not ready for publica-
tion at the due date of the deliverable.





I may not have gone where I intended to go, but I think I have ended up where

I needed to be.

—Douglas Adams, The Long Dark Tea-Time of the Soul

6
Conclusion

⊲ In this chapter we synthesize the three contributions of this thesis: namely (i) the proposal of a
standard-based configuration validation language for distributed systems, (ii) the formalization and
change analysis of authorization configurations for JEE Web applications, and (iii) the refactoring of
multi-layered access control policies. We then discuss how such contributions would be positioned in
an common integrated configuration analysis framework as well as how they relate to top-down policy
refinement techniques. Finally, we outline future perspectives about possible extensions of our approach
towards either solving different problems, such as policy conflict detection, or encompassing larger classes
of access control systems, such as stateful firewalls or history-based policy decision points. ⊳
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THIS thesis presented three contributions in the area of security configuration man-
agement that focus specifically on different aspects of the management of config-

uration changes in distributed information systems: from detecting and assessing un-
desired misconfigurations, to supporting the implementation of changes that preserve
security properties.

This chapter presents our conclusions, which consist of three parts. In Section 6.1,
we provide a synthesis going through our initial motivations and objectives, as stated
in the introduction of the thesis, and summarizing the techniques we proposed to meet
such objectives, as well as the results we obtained.

In Section 6.2, we present our contributions from an integrated perspective: instead
of viewing them as individual analysis tasks, we position them in an hypothetical inte-
grated configuration analysis framework. We discuss the feasibility of developing such
a framework by identifying possible criticalities and missing components. Further-
more, we highlight possible dependencies and integration perspectives with top-down

policy refinement and configuration synthesis techniques.

In Section 6.3 we conclude with an outlook on two future research avenues that we
believe are worthwhile exploring. The first concerns investigating the applicability of
our techniques to the problem of anomaly and conflict detection in security configura-
tions. The second is about generalizing the semantic analysis tasks proposed here to
a broader scope of systems including, for instance, stateful firewalls or history-based
access control.

6.1 Synthesis

6.1.1 Configuration Validation

We started from the observation that system misconfiguration constitutes a major
source of security incidents. Configuration validation is a technique which tackles this
problem through the execution of syntactic configuration checks that automatically de-
tect non-compliant or insecure configuration settings. Standardization efforts like the
SCAP initiative promoted the exchange and reuse of configuration checks leading to
the increasing adoption of this practice by the industry. However, having been con-
ceived primarily for the analysis of individual machines, SCAP specifications as well
as other configuration validation tools are not suitable for the validation of distributed
systems. Our first objective consisted in analyzing the reasons behind such a limitation
and investigating whether and how it can be overcome by building on top of the SCAP
standards. To meet this objective, in Chapter 3 we identified requirements for a config-
uration validation language to detect misconfigurations in distributed systems and we
argued that not all such requirements are fulfilled by the relevant SCAP specifications.
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Specifically, we found the most important missing features being (i) the possibility of
specifying generic (i.e., intensional) as well as specific (i.e., extensional) check targets
spanning over multiple inter-related system components, and (ii) the lack of clear dis-
tinction between the specification of to-be-checked configuration objects (which is a
matter for security experts) and the mechanisms to collect such objects from the sys-
tem (which should be provided by system administrators). We designed a formal lan-
guage based on OVAL that bridges the gap with the missing requirements and we de-
fined the semantics of intensional checks’ target definitions with respect to an external
data source containing the details about distributed system components (e.g., software
name, vendor, release, installation directories, IP addresses, etc.). We implemented
a proof-of-concept interpreter that uses the standard OVAL evaluation algorithm for
computing check results and that interprets their targets according to our formal se-
mantics, by relying on a CIM-based configuration managent database as a data source.
The tool collects configuration settings from the distributed targets by leveraging ex-
isting system and configuration management protocols and standards (e.g., JMX, SMB,
SSH, etc.). This tool became part of the suite of prototypes of the PoSecCo project [Bet-
tan2012]. The results of the project evaluation [Demetz2013] showed that it helped to
improve the coverage of the system under analysis and to reduce the time required by
configuration validation activities.

6.1.2 Formalization and Change Analysis of JEE Authorizations

A key feature of syntactic configuration validation is that the checks’ language itself
is agnostic with respect to the semantics of the configuration settings being checked.
We argued that, while on the one hand this broadens the domain of applicability of
the approach, on the other hand it hinders the verification of interesting semantic (e.g.,
security-relevant) properties of more expressive configuration languages. We consid-
ered the case of access control configurations, for which it is not generally trivial to
check for equivalence or inclusion, with respect to the permissiveness of the corre-
sponding policies, by the means of mere syntactic comparison. While this problem has
been already tackled in literature for some categories of access control languages (e.g.,
firewall rulesets [Liu2007] or constrained subsets of XACML [Fisler2005]), an approach
tailored to the specificities of authorization configurations for Web applications was
still missing. Our second objective focused on developing formally correct procedures
to interpret and compare the access control configurations of JEE Web applications with
respect to their permissiveness. To fulfill this objective, in Chapter 4 we equipped the
JEE access control language with a formal denotational semantics, interpreting config-
urations into a structure capturing authorizations over hierarchical resources (URLs).
On top of this, we developed an algorithm that computes the partial order of permis-
siveness between any pair of configurations. This result is useful both to complement
syntactic configuration validation with semantic comparison, for assessing the impact
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of potential misconfigurations, and to help implementing new changes by ensuring that
the modified configuration does not produce undesired side effects. Furthermore, our
formal semantics constitutes an unambiguous reference interpretation for the access
control language of JEE Web applications, so far only informally specified in the Java
Servlet Specification [Coward2003]. To evaluate its correctness, we instrumented an au-
tomated testing procedure that compares our interpretation of automatically-generated
configurations with the corresponding operational semantics of two popular JEE con-
tainers: Apache Tomcat and Oracle Glassfish. Our interpretation was never in dis-
agreement with both containers at the same time for any tested configuration, which
(although not constituting conclusive proof) argues in favour of its correctness. We
found nevertheless some discrepancies with respect to the interpretations of the two
containers individually. This led to the discovery of a bug [ASF2012] in Tomcat and of
an inconsistent behaviour in Glassfish mandated by the JACC (Java Authorization Con-
tract for Containers) specification [Monzillo2013], which is implemented by the latter
but not by the former.

6.1.3 Multi-Layered Access Control Policy Refactoring

The above technique is in fact a form of static configuration analysis of a specific access
control system, considered in isolation with respect to the surrounding environment.
The applicability of this kind of approach to a distributed system is therefore limited to
the analysis of the local configurations of different components, whereas global aspects,
such as the impact of changes in one component’s configuration on other components’
behaviour, are ignored. Inter-component interactions in access control systems have
been already studied in related work on policy composition and conflict detection. Less
attention has been instead dedicated to the treatment of the interactions across different
architectural layers, for instance, network filtering versus application-layer (e.g., HTTP)
authorization. Our third objective focused on investigating how such interactions can
be modeled to guide the change of local policies by preserving the permissiveness of
the global, composite policy. Specifically, we aimed at finding an equivalent rewrit-
ing that simplifies local policies by removing, where possible, inter-layer overlap and
that is consistent with the least privilege principle. To tackle this problem, which we
named inter-layer policy refactoring, in Chapter 5 we proposed to model policies as
decision functions, i.e., mappings from access control requests to decisions, embedded
in a structure that keeps track of how requests of different layers couple with each
other to yield composite decisions. We showed that solving the refactoring problem
amounts to computing the composition of such structures followed by a decomposi-
tion. Furthermore, we developed a criterion to test for decomposability and that allows
to check whether the problem admits a solution. We provided algorithms to compute
(de)composition, as well as to test for decomposability, that work on an intensional,
constraint-based representation of decision functions. Finally, we evaluated the algo-
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rithms on synthetic datasets as a function of the size as well as other characteristics of
the input. The most complex algorithm, namely the implementation of the decompos-
ability test, performed comparably to other policy analysis tasks that exist in literature.
The main theoretical result underlying this contribution is the proof of the equivalence
between the decomposability condition of decision functions and the alternative crite-
rion based on the concept of inter-field dependency, which we used in our algorithms.
This is in fact an extension of a previous result in database dependency theory, link-
ing lossless join decomposition with so-called multivalued dependencies [Fagin1977,
Theorem 1], to larger-than-boolean relations.

6.2 Discussion

6.2.1 An Integrated Perspective

The contributions of this thesis complement each other on different dimensions, thereby
covering, as depicted in Figure 6.1, various aspects of the spectrum of configuration
analysis activities. At the interface with the operational system, which is the target
of the analysis, lies syntactic configuration validation (Chapter 3). Here, the focus is
put especially on identifying single as well as distributed target systems, which to-be-
checked configurations have to be collected from. This is done by querying a Configu-
ration Management DataBase (CMDB), providing the structural details of the system,
and by fetching configurations directly through the management interfaces of system
components. Next, syntactic checks are executed to detect possible misconfigurations.
In order to deal with more expressive configuration languages, it is convenient to inter-
pret configurations according to some formal model that enables semantic reasoning.
In Chapter 4, we provided such an interpretation structure for the JEE access control
configuration language. On top of it (top-left corner of Figure 6.1), we developed a
comparison algorithm to determine whether a change in the configuration leads to a
more or less permissive policy. This analysis is local to individual system components,
namely JEE Web applications. In Chapter 5 we instead discussed inter-layer policy
refactoring, which is a global reasoning task (top-right corner of Figure 6.1) in that it
keeps track of how the configurations of components on different architectural layers
influence each other’s behaviour. Both local and global semantic reasoning work di-
rectly at the higher level of abstraction provided by the underlying language-specific
interpreters. This separation allows, e.g., to apply the same local reasoning task to dif-
ferent configuration languages sharing the same semantics, or, as we did in Chapter 5,
to integrate them in a global model by ignoring the syntactic differences. However,
implementing such an integrated analysis framework is not without difficulties. First,
more configuration interpreters are necessary: for instance, policy refactoring requires
firewall rulesets and Apache Web server authorizations (grey-filled boxes in Figure 6.1)
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Figure 6.1: Integration of thesis’ contributions (white-filled boxes) in configuration
analysis framework.

to be interpreted as decision functions. As argued in Chapter 5, we believe that, for sim-
ple rule-based configuration languages, this can be done with limited effort by leverag-
ing related work on policy and configuration analysis. However, existing approaches
rarely share a common interpretation structure, but rather employ models that are tai-
lored for the specific analysis task they support. Hence, it is not obvious to determine
whether a single or multiple pivot models (and which ones) should be used for each
class of configuration languages. Even more challenging would be to cope with config-
uration languages that have a radically different access control semantics, e.g., stateful
firewalls or history-based access control, which would necessarily require modifying
the global model. Furthermore, it would be interesting to explore whether our for-
mal framework could support more reasoning tasks. We will expand on these last two
points in Section 6.3.

6.2.2 Relations With Policy Refinement

As we discussed in the introduction of the thesis, all our contributions are meant to
support the management of configuration changes (corresponding to phases (CM3)
and (CM4) of the security configuration management cycle). We argued that the de-
sign and implementation phases (i.e., (CM1) and (CM2)) generally concern orthogonal
problems, which have been widely discussed in related work. However, it is possible to
identify cases where techniques developed for these two different contexts could ben-
efit from a tighter integration. One example is the exploitation of policy refinement to
support the automated generation of configuration validation checks. In Chapter 3 we
proposed a language for expressing such checks, which we assumed being authored by
security experts, product vendors, security auditors or system administrators. How-
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ever, it may not be always worthwhile to author checks manually. For instance, this
effort is more justified for checks that are generic in nature, e.g., security advisories or
best practices — which, written once, are adopted by potentially many users — than for
those that are specific to a particular system and policy, e.g., audit or policy compliance
checklists. For the latter kind, it is envisageable to adapt existing policy refinement
techniques, transforming high-level policies into concrete configurations, to automat-
ically generate corresponding configuration checks as well. This approach has been
explored, for example, in the context of the PoSecCo project (cf. Section 1.5), where the
result of the top-down refinement process is exploited to produce checks testing for syn-
tactic equivalence with respect to the golden (policy-mandated) configuration settings.
We argue that this approach could be improved by taking into account the semantics
of configurations while generating checks. For instance, if a minimum password length

policy refines to the configuration setting “min_length = x”, we would like to gen-
erate a check such as “min_length >= x?” (i.e., being aware of the minimum length

semantics), rather than testing for equality with a check like “min_length == x?”.
Semantic threat graphs, which have been shown to be suitable tools to formalize and
reason about vulnerability and best-practice descriptions [Foley2011], could be used as
a base framework to support such a top-down check generation process.

A similar argument applies as well to access control configurations, where compar-
ing semantic permissiveness is preferable to testing syntactic equivalence. This sug-
gests the possibility of applying some of the techniques proposed in the thesis to such
a problem: for instance, based on the model of Chapter 4, one could define a canonical
representative in each equivalence class of all JEE configurations that have the same se-
mantics (i.e., that interpret to the same decision function) and rewrite configurations to
this canonical form prior to testing their syntactical equivalence. Furthermore, it may
be worth to define such a canonical form in a way that it respects some criterion of opti-
mality (e.g., minimizing the number of authorization rules). As such, policy refinement
itself could benefit from incorporating our model to synthesize “optimal” configura-
tions. Note that this is similar to what we did, on a different abstraction level, in Chap-
ter 5, where we defined a rewriting (refactoring) for decision functions that minimizes
the permissiveness of local policies according to the least privilege principle. Although,
technically, such a rewriting is not canonical in general, it is unique for every choice of
coupling and request types that decompose the global policy.

6.3 Future Work

As future research directions, we discuss two extension perspectives concerning, re-
spectively, the opportunity of applying our techniques to other related problems and
that of generalizing the problems discussed in this thesis to a larger context.
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A related problem that attracted the attention of several researchers is the de-
tection of conflicts or anomalies in security policies [Moffett1994; Lupu1999; Us-
zok2003; Davy2008a] and configurations [Fu2001; AlShaer2005; Hamed2006; Al-
faro2008; Basile2012]. Many of these approaches classify binary or n-ary relations
among the authorization rules within a policy according to a taxonomy of conflicts:
e.g., rules matching to an overlapping set of resources yield a permit-deny conflict if
they mention opposite decisions, or a redundancy conflict if they mention the same one.
However, especially for concrete configuration languages, it is not always obvious to
determine whether a particular combination of rules constitutes an authentic anomaly
or whether it should be considered a reasonable use of the language. In Chapters 4
and 5, we bypassed this issue by providing methods that abstract away syntactic de-
tails and let users gain assurance about the actual semantics of configurations. It is
interesting to investigate whether such techniques could be used to detect conflicting
or anomalous configurations. For instance, our interpretation structure for JEE au-
thorizations (Chapter 4) is based on the hierarchy of URLs. We could leverage such
a structure to define criteria for anomaly detection: e.g., it is reasonable to assume
that authorization policies should be monotonically more restrictive according to the
URL hierarchy, i.e., children nodes should not be accessible by more roles than their
parents. We could apply a comparable reasoning to define a conflict semantics for
multi-layer policies (Chapter 5), by checking for monotonicity of permissions along the
stack of access control layers. It would be interesting to explore, more generally, which
other structural properties of the interpretation model are able to capture semantic
anomalies.

The semantics-aware configuration analysis techniques that we proposed in the the-
sis are restricted to the scope of access control configurations, as they constitute both
an interesting and non trivial class of configuration languages. The model we chose for
access control systems, namely authorization decision functions, is conceptually sim-
ple, yet substantially powerful. Indeed, as argued in [Crampton2010; Crampton2012b],
it can instantiate several well-known access control models, e.g., DAC (Direct Ac-
cess Control), MAC (Mandatory Access Control), RBAC (Role-Based Access Control),
ABAC (Attribute-Based Acces Control), as well as more complex and concrete frame-
works such as XACML. However, there are access control systems that do not fit this
model, two notable examples being stateful firewalls [Gouda2005] and history-based
access control frameworks which are needed, for example, to support delegation or to
enforce the well-known Chinese Wall policy [Brewer1989]. These systems have in com-
mon the fact that the authorization decision cannot be computed only from the current
state of the system (i.e., its configuration) and some access request, but it is necessary to
keep track of past authorization decisions too. Formally, this corresponds to a different
type for decision functions, which encodes this information as a state transition of the
system: δ : Q× Σ → D× Σ (with Q, Σ and D being respectively the spaces of requests,
states and decisions).
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Previous work has already been conducted in this area. For instance, in [Alfaro2013]
Alfaro et al. propose a comprehensive algorithmic approach to detect inconsistencies
between stateful firewall configurations and the specifications of session-oriented net-
work protocols, described as finite-state automata. Although abstracting away vendor-
specific details of firewall configuration languages, their model is still quite specific to
the network domain: it would be interesting to study whether their approach can be
extended to reason on generic decision functions. More generic stateful access control
systems are instead discussed in [Guelev2004], where model-checking techniques are
employed to detect whether malicious goals can be reached through the execution of
a sequence of actions (attacks) carried out by an intruder potentially acting in parallel
with legitimate users.

These approaches provide interesting models and techniques to reason on state-
changing access control systems. However, we believe that studying whether and how
some of the problems that we discussed in this thesis, e.g., change impact analysis or
policy refactoring, generalize to this setting is yet an open and challenging issue. Solv-
ing such problems would require complementing our approach with different formal
frameworks, e.g., temporal logics, that are more suitable to reason on state-transition
systems.



A
XSD Schemas

⊲ This appendix reports the XSD schemas defining the grammar of the XML languages that are
either defined as part of the thesis contribution or that are discussed in the scope of the thesis. ⊳
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A.1 XML Configuration Object, State and Test

1 <?xml version="1.0" encoding="utf-8"?>

2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns:oval="http://oval.mitre.org/XMLSchema/oval-common-5"

4 xmlns:oval-def="http://oval.mitre.org/XMLSchema/oval-definitions-5"

5 xmlns:ind-def="http://oval.mitre.org/XMLSchema/oval-definitions-5#

independent"

6 xmlns:sch="http://purl.oclc.org/dsdl/schematron" xmlns:coas-def="http://

oval.mitre.org/XMLSchema/oval-definitions-5#coas"

7 targetNamespace="http://oval.mitre.org/XMLSchema/oval-definitions-5#coas

"

8 elementFormDefault="qualified" version="5.8">

9

10 <xsd:annotation>

11 <xsd:documentation>The OVAL Schema is maintained by The MITRE

12 Corporation and developed by the public OVAL Community. For more

13 information, including how to get involved in the project and how to

14 submit change requests, please visit the OVAL website at

15 http://oval.mitre.org.

16 </xsd:documentation>

17 <xsd:appinfo>

18 <schema>COAS Definition</schema>

19 <version>5.10</version>

20 <date>9/15/2010 1:55:32 PM</date>

21 <terms_of_use>Copyright (c) 2002-2010, The MITRE Corporation. All

22 rights reserved. The contents of this file are subject to the terms

23 of the OVAL License located at

24 http://oval.mitre.org/oval/about/termsofuse.html. See the OVAL

25 License for the specific language governing permissions and

26 limitations for use of this schema. When distributing copies of the

27 OVAL Schema, this license header must be included.</terms_of_use>

28 <sch:ns prefix="oval-def"

29 uri="http://oval.mitre.org/XMLSchema/oval-definitions-5" />

30 <sch:ns prefix="coas-def"

31 uri="http://oval.mitre.org/XMLSchema/oval-definitions-5#coas" />

32 <sch:ns prefix="xsi" uri="http://www.w3.org/2001/XMLSchema-instance"

/>

33 </xsd:appinfo>

34 </xsd:annotation>

35 <xsd:element name="xmlconfiguration_test"

36 substitutionGroup="oval-def:test">

37 <xsd:annotation>

38 <xsd:documentation>

39 This test is for checking xmlconfigurations. Checked are Xpath

expressions. The xmlconfiguration_object does not contain information

about where the xml file is.

40 It extends the standard TestType as defined in the oval-definitions-

schema and one should refer to the TestType description for more

information. The required object element references an
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xmlconfiguration_test and the optional state element specifies the

data to check.

41 The evaluation of the test is guided by the check attribute that is

inherited from the TestType.

42 </xsd:documentation>

43 <xsd:appinfo>

44 <oval:element_mapping>

45 <oval:test>xmlconfiguration_test</oval:test>

46 <oval:object>xmlconfiguration_object</oval:object>

47 <oval:state>xmlconfiguration_state</oval:state>

48 <oval:item

49 target_namespace="http://oval.mitre.org/XMLSchema/oval-system-

characteristics-5#coas">xmlconfiguration_item</oval:item>

50 </oval:element_mapping>

51 </xsd:appinfo>

52 <xsd:appinfo>

53 <sch:pattern id="coas-def_xmlconfigtst">

54 <sch:rule context="coas-def:xmlconfiguration_test/coas-

def:object">

55 <sch:assert

56 test="@object_ref=ancestor::oval-def:oval_definitions/oval-

def:objects/coas-def:xmlconfiguration_object/@id">

57 <sch:value-of select="../@id" />

58 - the object child element of a xmlconfiguration_test must

59 reference a xmlconfiguration_object

60 </sch:assert>

61 </sch:rule>

62 <sch:rule context="ind-def:xmlconfiguration_test/coas-def:state"

>

63 <sch:assert

64 test="@state_ref=ancestor::oval-def:oval_definitions/oval-

def:states/coas-def:xmlconfiguration_state/@id">

65 <sch:value-of select="../@id" />

66 - the state child element of a xmlconfiguration_test must

67 reference a xmlconfiguration_state

68 </sch:assert>

69 </sch:rule>

70 </sch:pattern>

71 </xsd:appinfo>

72 </xsd:annotation>

73 <xsd:complexType>

74 <xsd:complexContent>

75 <xsd:extension base="oval-def:TestType">

76 <xsd:sequence>

77 <xsd:element name="object" type="oval-def:ObjectRefType" />

78 <xsd:element name="state" type="oval-def:StateRefType"

79 minOccurs="0" maxOccurs="unbounded" />

80 </xsd:sequence>

81 </xsd:extension>

82 </xsd:complexContent>

83 </xsd:complexType>
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84 </xsd:element>

85 <xsd:element name="xmlconfiguration_object"

86 substitutionGroup="oval-def:object">

87 <xsd:annotation>

88 <xsd:documentation>

89 The xmlconfiguration_object contains the information that is needed

to evaluate the system-characteristics file.

90 </xsd:documentation>

91 </xsd:annotation>

92 <xsd:complexType>

93 <xsd:complexContent>

94 <xsd:extension base="oval-def:ObjectType">

95 <xsd:sequence>

96 <xsd:choice>

97 <xsd:element ref="oval-def:set" />

98 <xsd:sequence>

99 <xsd:element name="cpe" type="oval-

def:EntityObjectStringType"

100 minOccurs="1">

101 <xsd:annotation>

102 <xsd:documentation>

103 Logical identifier of the XML configuration container.

Case sensitive. Only operation="equals" is supported.

104 </xsd:documentation>

105 </xsd:annotation>

106 </xsd:element>

107 <xsd:element name="representation" type="oval-

def:EntityObjectStringType"

108 minOccurs="1">

109 <xsd:annotation>

110 <xsd:documentation>

111 Contains a key to be understood by the collector, e.g

., "DeploymentDescriptor". Case sensitive.

112 </xsd:documentation>

113 </xsd:annotation>

114 </xsd:element>

115 <xsd:choice>

116 <xsd:element name="xpath" type="oval-

def:EntityObjectStringType"

117 minOccurs="1">

118 <xsd:annotation>

119 <xsd:documentation>

120 XPath expression for evaluating XML. Case sensitive.

Only operation="equals" is supported.

121 </xsd:documentation>

122 </xsd:annotation>

123 </xsd:element>

124 <xsd:element name="xquery" type="oval-

def:EntityObjectStringType"

125 minOccurs="1">

126 <xsd:annotation>
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127 <xsd:documentation>

128 XQuery expression for evaluating XML. Case sensitive

. Only operation="equals" is supported.

129 </xsd:documentation>

130 </xsd:annotation>

131 </xsd:element>

132

133 </xsd:choice>

134 <xsd:element ref="oval-def:filter" minOccurs="0"

135 maxOccurs="unbounded" />

136 </xsd:sequence>

137 </xsd:choice>

138 </xsd:sequence>

139 </xsd:extension>

140 </xsd:complexContent>

141 </xsd:complexType>

142 </xsd:element>

143 <xsd:element name="xmlconfiguration_state"

144 substitutionGroup="oval-def:state">

145 <xsd:annotation>

146 <xsd:documentation>

147 The xmlconfiguration_state element describes the desired (in case of

compliance checks) or undesired (in case of vulnerability checks)

value of the object.

148 </xsd:documentation>

149 </xsd:annotation>

150 <xsd:complexType>

151 <xsd:complexContent>

152 <xsd:extension base="oval-def:StateType">

153 <xsd:sequence>

154 <xsd:element name="cpe" type="oval-def:EntityStateStringType"

155 minOccurs="0" maxOccurs="1">

156 <xsd:annotation>

157 <xsd:documentation>

158 Logical identifier of the XML configuration container.

Case sensitive. Only operation="equals" is supported.

159 </xsd:documentation>

160 </xsd:annotation>

161 </xsd:element>

162 <xsd:element name="value_of" type="oval-

def:EntityStateAnySimpleType"

163 minOccurs="0" maxOccurs="unbounded">

164 <xsd:annotation>

165 <xsd:documentation>

166 May contain any simple value. The result of the Xpath

expression is checked against this value.

167 </xsd:documentation>

168 </xsd:annotation>

169 </xsd:element>

170 </xsd:sequence>

171 </xsd:extension>
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172 </xsd:complexContent>

173 </xsd:complexType>

174 </xsd:element>

175 </xsd:schema>

A.2 Check and Target Definition

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault=

"qualified" attributeFormDefault="unqualified">

3 <xs:element name="root">

4 <xs:complexType>

5 <xs:sequence>

6 <!-- Permit any of these tags in any order in any number -->

7 <xs:choice minOccurs="0" maxOccurs="unbounded">

8 <xs:element name="software_component" type="scType" />

9 <xs:element name="target_definition" type="tdType" />

10 <xs:element name="check_definition" type="cdType" />

11 </xs:choice>

12 </xs:sequence>

13 </xs:complexType>

14 </xs:element>

15

16 <xs:group name="tdGrp">

17 <xs:choice>

18 <xs:element name="association">

19 <xs:complexType>

20 <xs:sequence>

21 <xs:group ref="tdGrp"/>

22 <xs:group ref="tdGrp"/>

23 </xs:sequence>

24 <xs:attribute name="name" type="xs:string" use="required"/>

25 </xs:complexType>

26 </xs:element>

27 <xs:choice>

28 <xs:element name="software_component_ref" type="scRefType" />

29 <xs:element name="software_component" type="scType" />

30 </xs:choice>

31 </xs:choice>

32 </xs:group>

33

34 <xs:complexType name="tdType">

35 <xs:group ref="tdGrp"/>

36 <xs:attribute name="id" type="xs:string" use="required"/>

37 </xs:complexType>

38

39 <xs:complexType name="scRefType">

40 <xs:attribute name="sc_ref" type="xs:string" use="required"/>



156 Appendix A. XSD Schemas

41 </xs:complexType>

42

43 <xs:complexType name="scType">

44 <xs:sequence maxOccurs="unbounded">

45 <xs:element name="condition">

46 <xs:complexType>

47 <xs:attribute name="property" type="xs:string" use="required"/>

48 <xs:attribute name="operator" use="required">

49 <xs:simpleType>

50 <xs:restriction base="xs:string">

51 <xs:enumeration value="equals" />

52 <xs:enumeration value="less" />

53 <xs:enumeration value="less_eq" />

54 <xs:enumeration value="greater" />

55 <xs:enumeration value="greater_eq" />

56 </xs:restriction>

57 </xs:simpleType>

58 </xs:attribute>

59 <xs:attribute name="value" type="xs:string" use="required"/>

60 </xs:complexType>

61 </xs:element>

62 </xs:sequence>

63 <xs:attribute name="id" type="xs:string" use="required"/>

64 </xs:complexType>

65

66 <xs:complexType name="cdType">

67 <xs:sequence maxOccurs="unbounded">

68 <xs:element name="target_mapping">

69 <xs:complexType>

70 <xs:sequence maxOccurs="unbounded">

71 <xs:element name="test">

72 <xs:complexType>

73 <xs:attribute name="test_ref" use="required"/>

74 </xs:complexType>

75 </xs:element>

76 </xs:sequence>

77 <xs:attribute name="sc_ref" type="xs:string" use="required"/>

78 </xs:complexType>

79 </xs:element>

80 </xs:sequence>

81 <xs:attribute name="id" type="xs:string" use="required"/>

82 <xs:attribute name="od_ref" type="xs:string" use="required"/>

83 <xs:attribute name="td_ref" type="xs:string" use="required"/>

84 </xs:complexType>

85

86 </xs:schema>
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A.3 Collectors

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http:

//www.w3.org/2001/XMLSchema-Instance" xmlns:oval="http://oval.mitre.

org/XMLSchema/oval-common-5" xmlns:cm="http://www.sap.com/coas/xccdf/

collector-mapping" targetNamespace="http://www.sap.com/coas/xccdf/

collector-mapping" elementFormDefault="qualified" attributeFormDefault

="unqualified">

3

4 <xsd:element name="collector-mapping" type="cm:CollectorMappingType" />

5

6 <xsd:complexType name="CollectorMappingType">

7 <xsd:sequence>

8 <xsd:element name="collectors" type="cm:CollectorsType" maxOccurs="1

" minOccurs="1" />

9 </xsd:sequence>

10 </xsd:complexType>

11

12 <xsd:complexType name="CollectorsType">

13 <xsd:sequence>

14 <xsd:element name="collector" type="cm:CollectorType" maxOccurs="

unbounded" minOccurs="1">

15 <xsd:key name="collectorKeyId">

16 <xsd:selector xpath="cm:collector" />

17 <xsd:field xpath="@id" />

18 </xsd:key>

19 </xsd:element>

20 </xsd:sequence>

21 </xsd:complexType>

22

23 <xsd:complexType name="CollectorType">

24 <xsd:sequence>

25 <xsd:element name="description" type="xsd:string" maxOccurs="1"

minOccurs="0" />

26 <xsd:element name="platform" type="cm:PlatformType" maxOccurs="1"

minOccurs="0" />

27 <xsd:element name="oval_objects" type="cm:OvalObjectsType" maxOccurs

="1" minOccurs="0" />

28 <xsd:element name="parameters" type="cm:ParametersType" maxOccurs="1

" minOccurs="0">

29 <xsd:unique name="uniqueParamName">

30 <xsd:selector xpath="./cm:parameter" />

31 <xsd:field xpath="@name" />

32 </xsd:unique>

33 </xsd:element>

34 </xsd:sequence>

35 <xsd:attribute name="id" type="cm:CollectorIdType" use="required" />

36 <xsd:attribute name="type" type="xsd:string" use="required" />

37 </xsd:complexType>
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38

39 <xsd:complexType name="ParametersType">

40 <xsd:sequence>

41 <xsd:element name="parameter" type="cm:ParameterType" maxOccurs="

unbounded" minOccurs="0" />

42 </xsd:sequence>

43 </xsd:complexType>

44

45 <xs:complexType name="PlatformType">

46 <xs:sequence maxOccurs="unbounded">

47 <xs:element name="condition">

48 <xs:complexType>

49 <xs:attribute name="property" type="xs:string" use="required"/>

50 <xs:attribute name="operator" use="required">

51 <xs:simpleType><xs:restriction base="xs:string">

52 <xs:enumeration value="equals" />

53 <xs:enumeration value="less" />

54 <xs:enumeration value="less_eq" />

55 <xs:enumeration value="greater" />

56 <xs:enumeration value="greater_eq" />

57 </xs:restriction></xs:simpleType>

58 </xs:attribute>

59 <xs:attribute name="value" type="xs:string" use="required"/>

60 </xs:complexType>

61 </xs:element>

62 </xs:sequence>

63 </xs:complexType>

64

65 <xsd:complexType name="ParameterType">

66 <xsd:attribute name="name" type="xsd:string" use="required" />

67 <xsd:attribute name="value" type="xsd:string" use="optional" />

68 </xsd:complexType>

69

70 <xsd:complexType name="OvalObjectsType">

71 <xsd:restriction base="xsd:string" />

72 </xsd:complexType>

73

74 <xsd:simpleType name="CollectorIdType">

75 <xsd:restriction base="xsd:string">

76 <xsd:pattern value="oval:[A-Za-z0-9_\-\.]+:col:[1-9][0-9]*" />

77 </xsd:restriction>

78 </xsd:simpleType>

79 </xsd:schema>
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A.4 Target Mapping

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xccdf="

http://checklists.nist.gov/xccdf/1.2" targetNamespace="http://www.sap.

com/coas/xccdf/target-mapping" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-Instance" xmlns:tm="http://www.sap.com/coas/xccdf/target-

mapping"

3 xmlns:oval="http://oval.mitre.org/XMLSchema/oval-common-5" xmlns:cm="http:

//www.sap.com/coas/xccdf/collector-mapping" elementFormDefault="

qualified" attributeFormDefault="unqualified">

4

5 <xsd:annotation>

6 <xsd:documentation xml:lang="en">

7 This schema defines the Target-Mapping file used by the COAS

application. This is mapping file used to select on which target

systems a given collection of OVAL tests shall be executed. This file

can also be used to provide additional parameters to the collectors.

8 <version date="25 October 2011">0.1</version>

9 </xsd:documentation>

10 <xsd:appinfo>

11 <schema>Target mapping</schema>

12 <version>0.1</version>

13 <date>2011-10-25</date>

14 </xsd:appinfo>

15 </xsd:annotation>

16

17 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="../common/xml.xsd">

18 <xsd:annotation>

19 <xsd:documentation xml:lang="en"> Import the XML namespace because

this schema uses the xml:lang and xml:base attributes.

20 </xsd:documentation>

21 </xsd:annotation>

22 </xsd:import>

23

24 <xsd:import namespace="http://oval.mitre.org/XMLSchema/oval-common-5"

schemaLocation="../oval/oval-common-schema.xsd">

25 <xsd:annotation>

26 <xsd:documentation xml:lang="en"> Import the OVAL common schema

because we will reuse the defined id types.

27 </xsd:documentation>

28 </xsd:annotation>

29 </xsd:import>

30

31 <xsd:import namespace="http://www.sap.com/coas/xccdf/collector-mapping"

schemaLocation="../mappings/collector-mapping-schema.xsd">

32 <xsd:annotation>

33 <xsd:documentation xml:lang="en"> Import the collector mapping

schema because we will reuse the collector id type.
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34 </xsd:documentation>

35 </xsd:annotation>

36 </xsd:import>

37

38 <xsd:element name="target-mapping" type="tm:TargetMappingType">

39 <xsd:keyref name="targetInRuleRef" refer="tm:targetKeyId">

40 <xsd:selector xpath=".//tm:criterion" />

41 <xsd:field xpath="@target" />

42 </xsd:keyref>

43

44 <xsd:keyref name="targetInGroupRef" refer="tm:targetKeyId">

45 <xsd:selector xpath=".//tm:criterion" />

46 <xsd:field xpath="@target" />

47 </xsd:keyref>

48 </xsd:element>

49

50 <xsd:complexType name="TargetMappingType">

51 <xsd:sequence>

52 <xsd:element name="targets" type="tm:TargetsType" maxOccurs="1"

minOccurs="1">

53 <xsd:key name="targetKeyId">

54 <xsd:selector xpath="tm:target" />

55 <xsd:field xpath="@id" />

56 </xsd:key>

57 </xsd:element>

58 <xsd:element name="mappings" type="tm:MappingsType" maxOccurs="1"

minOccurs="1" />

59 </xsd:sequence>

60 </xsd:complexType>

61

62 <xsd:complexType name="TargetsType">

63 <xsd:sequence>

64 <xsd:element name="target" type="tm:TargetType" maxOccurs="unbounded

" minOccurs="1" />

65 </xsd:sequence>

66 </xsd:complexType>

67

68 <xsd:complexType name="MappingsType">

69 <xsd:sequence minOccurs="1" maxOccurs="unbounded">

70 <xsd:element name="target-mapping-rule" type="tm:TargetMappingType"/

>

71 </xsd:sequence>

72 </xsd:complexType>

73

74 <xsd:complexType name="TargetType">

75 <xsd:sequence>

76 <xsd:element name="description" type="xsd:string" maxOccurs="1"

minOccurs="0" />

77 <xsd:element name="parameters" type="tm:ParametersType" maxOccurs="1

" minOccurs="0">

78 <xsd:unique name="uniqueParameterName">
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79 <xsd:selector xpath="tm:parameter" />

80 <xsd:field xpath="@name" />

81 </xsd:unique>

82 </xsd:element>

83 </xsd:sequence>

84 <xsd:attribute name="id" type="tm:TargetId" use="required" />

85 </xsd:complexType>

86

87 <xsd:complexType name="ParametersType">

88 <xsd:sequence>

89 <xsd:element name="parameter" type="tm:ParameterType" maxOccurs="

unbounded" minOccurs="1" />

90 </xsd:sequence>

91 </xsd:complexType>

92

93 <xsd:complexType name="ParameterType">

94 <xsd:attribute name="name" type="xsd:string" use="required" />

95 <xsd:attribute name="value" type="xsd:string" use="required" />

96 </xsd:complexType>

97

98 <xsd:complexType name="TargetMappingType">

99 <xsd:element ref="tm:criterionTest" minOccurs="1" maxOccurs="unbounded

" />

100 <xsd:attribute name="ovaldef" type="oval:DefinitionIDPattern"

101 use="optional" />

102 </xsd:complexType>

103

104 <xsd:element name="criterionTest" type="tm:CriterionTestType" />

105

106 <xsd:complexType name="CriterionTestType">

107 <xsd:sequence>

108 <xsd:element name="test-mapping" type="tm:TestMappingType" maxOccurs

="unbounded" minOccurs="1"/>

109 </xsd:sequence>

110 </xsd:complexType>

111

112 <xsd:complexType name="TestMappingType">

113 <xsd:sequence>

114 <xsd:element name="parameters" type="tm:ParametersType" maxOccurs="1

" minOccurs="0"/>

115 <xsd:element name="tests" type="tm:TestsType" maxOccurs="1"

minOccurs="1"/>

116 </xsd:sequence>

117 <xsd:attribute name="target" type="xsd:string"/>

118 </xsd:complexType>

119

120 <xsd:complexType name="TestsType">

121 <xsd:sequence>

122 <xsd:element name="test" type="tm:TestType"

123 minOccurs="1" maxOccurs="unbounded"/>

124 </xsd:sequence>
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125 </xsd:complexType>

126

127 <xsd:complexType name="TestType">

128 <xsd:attribute name="id" type="tm:TestId" use="required" />

129 <xsd:attribute name="collector" type="cm:CollectorIdType"

130 use="optional" />

131 </xsd:complexType>

132

133 <xsd:simpleType name="TestId">

134 <xsd:restriction base="xsd:string">

135 </xsd:restriction>

136 </xsd:simpleType>

137

138 <xsd:simpleType name="TargetId">

139 <xsd:restriction base="xsd:string">

140 <xsd:pattern value="xccdf_[^_]+_target_.+" />

141 </xsd:restriction>

142 </xsd:simpleType>

143

144 </xsd:schema>



B
Proofs of the Propositions

⊲ This appendix provides the fully-detailed proofs of all the results stated in this thesis. ⊳
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B.1 Proofs of Chapter 4 Results

Proposition 1. We first show that ≺ is indeed a partial order for U , as it is a reflexive,
antisymmetric and transitive relation.

Reflexivity requires proving that |u| ≤ |u|, which is trivial, and u = u≤|u| which
follows directly from the definition of URL prefix.

Antisymmetry holds since, assuming u ≺ v and v ≺ u, it follows that |u| = |v| and
hence u = v≤|u| = v≤|v| = v.

For proving transitivity we first state a general property which follows from the
definition of URL prefix:

∀i, j : i < j ⇒ (u≤j)
≤i

= u≤i. (B.1)

In particular, given URLs u and v, s.t. u = v≤|u|, we can take the l-prefix of both sides

of the equality u≤l = (v≤|u|)
≤l

and conclude, by (B.1):

l ≤ |u| ⇒ u≤l = (v≤|u|)
≤l

= v≤l . (B.2)

Therefore, assuming u ≺ w and w ≺ v, we directly have |u| ≤ |w| ≤ |v| and w =

v≤|w| ⇒ w≤|u| = v≤|u| = u, hence u ≺ v.

To prove that u ↓ is well-ordered according to ≺, we shall prove that (i) ≺ is a total
order for u↓ and (ii) all its subsets have a least element.

For (i) we need to show that ∀v, w ∈ u↓: v ≺ w∨w ≺ v. Let |w| ≤ |v|. Since v ∈ u↓,
then v ≺ u, hence v = u≤|v|. As |w| ≤ |v|, we can write v≤|w| = u≤|w| = w (B.2), hence
w ≺ v. Assuming |v| ≤ |w| we would analogously obtain v ≺ w.

For (ii) we want to prove that ∀S ∈ ℘(u ↓) and ∀v ∈ S, ∃w ∈ S : w ≺ v. It is easy
to see that such element is the URL w having minimum length in S, because ∀v ∈ S we
have w ≺ u, v ≺ u and |w| ≤ |v|, hence w ≺ v.

Proposition 2. We rewrite u ↓∗ in terms of the set of u predecessors u ↓, as u ↓∗=

{w′ ⊕ 〈∗〉 | w′ ∈ u↓ ∧w′ ⊕ 〈∗〉 ∈ U}. We know from Proposition 1 that u ↓ is totally
ordered w.r.t. ≺, therefore ∀v, v′ ∈ u ↓ ⇒ v ≺ v′ ∨ v′ ≺ v. If we assume v �= v′, it
follows from Definition 12 that either |v| < |v′| or |v′| < |v| hold, hence:

v, v′ ∈ u↓ ∧ v �= v′ ⇒ |v| �= |v′|. (B.3)

We now observe that all the URLs v ∈ u ↓ with v �= u can’t end with the ∗ symbol
by definition. In fact, if such a URL w could exist, then we would have w = u≤|w| =

〈. . . , ∗〉, and therefore u = 〈. . . , ∗, . . .〉 which is not a URL according to Definition 11.
We can then write v ∈ u ↓ ⇒ v|v| �= ∗ leading, according to (4.4), to the following
conclusion:

v ∈ u↓ ⇒ |v⊕ 〈∗〉| = |v|+ 1. (B.4)
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From both (B.3) and (B.4) it follows that the URL length function, restricted to the
domain of ∗-predecessors |·| : u ↓∗→ N, is injective. Indeed ∀w = (v ⊕ 〈∗〉), ∀w′ =

(v′ ⊕ 〈∗〉) with v, v′ ∈ u ↓ (resp. w, w′ ∈ u ↓∗), if v �= v′ (equivalently w �= w′) then
|w| �= |w′|; formally:

w, w′ ∈ u↓∗ ∧ w �= w′ ⇒ |w| �= |w′|. (B.5)

Finally, recalling that max(u↓∗) = {v ∈ u↓∗ | ∀w ∈ u↓∗, |w| ≤ |v|}, we conclude:

1. if u↓∗= ∅ then max(u↓∗) = ∅, since ∄v ∈ u↓∗;

2. otherwise ∃! w ∈ max(u ↓∗) and w is the longest URL in u ↓∗. This follows since
every distinct element of u ↓∗ is mapped through the injective function |·| (B.5)
to a distinct element in a finite non-empty subset of N, which is a totally-ordered
set according to the natural ordering of integers, and hence it has exactly one
maximum element.

Proposition 3. For the only if direction, we assume t1 ≤T t2 and δ1 = 1. According
to definition of δ we have two cases. First case, r = ⊤ and ρ̂1(u, m) = ⊤, but as
t1 ≤T t2, ρ̂2(u, m) is⊤ too and δ2(u, m,⊤) = 1. Second case, r �= ⊤, so ρ̂1(u, m)

	
r �= ∅,

however, as L is a lattice,
	

is monotonic with respect to ≤R and ≤R ρ̂2(u, m)
	

r is not
empty either. In both cases we conclude that δ2(u, m, r) = 1.

For the if direction, we use proof by contrapositive. Assume we have some u and m

such that r1 = ρ̂1(u, m) and r2 = ρ̂2(u, m) with r2 ≤R r1 and r2 �= r1. We consider two
cases. If r1 = ⊤, then it suffices to look at the value for r = ⊤: δ1(u, m,⊤) = 1 and r2 is
different from ⊤ so δ2(u, m, r) = 0 by definition of δ. Otherwise r1 �= ⊤ thus r1 is some
subset of R and r2 ⊆ r1, so we consider an x ∈ r1\r2 which exists as the difference is not
empty. δ1(u, m, {x}) = 1 and δ2(u, m, {x}) = 0 as x is in r1 but not in r2.

B.2 Proofs of Chapter 5 Results

Lemma 1. Let 〈F1 ∪ F2, C1, δ〉 = 〈F1, C1, δ1〉 ⊗ 〈F2, C2, δ2〉, W = (F1 ∩ F2) ∪ C2, U =

((F1 \ F2) \ C2) ∪ C1 and V = F2 \ F1.

Then, {U, V, W} is a partition of (F1 ∪ C1 ∪ F2).

Proof. Recall that Fi ∩ Ci = ∅, i ∈ {1, 2} (Definition 20) and that C2 ⊆ F1, F2 ∩ C1 = ∅

(Definition 22).
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C2C1

F1 F2

F

U

W

V

Figure B.1: Request Types Partition

We then have the following equalities, which can be easily verified by inspection of
Figure B.1:

U ∪W = ((F1 \ F2) \ C2) ∪ C1 ∪ (F1 ∩ F2) ∪ C2 =

= (F1 \ F2) ∪ (F1 ∩ F2) ∪ C1 = F1 ∪ C1

U ∩W = (((F1 \ F2) \ C2) ∪ C1) ∩ ((F1 ∩ F2) ∪ C2) = ∅

V ∪W = (F2 \ F1) ∪ (F1 ∩ F2) ∪ C2 = F2 ∪ C2

V ∩W = (F2 \ F1) ∩ ((F1 ∩ F2) ∪ C2) = ∅

U ∩V = (((F1 \ F2) \ C2) ∪ C1) ∩ (F2 \ F1) = ∅

U ∪V ∪W = (F1 ∪ C1) ∪ (F2 ∪ C2) = F1 ∪ C1 ∪ F2.

Lemma 2. Let L be a finite bounded distributive lattice and f : X → L, g : Y → L two

generic functions having L as codomain. Then the following holds true:

⊔

x∈X

f (x) ⊓
⊔

y∈Y

g(y) =
⊔

x∈X∧y∈Y

f (x) ⊓ g(y). (B.6)

Proof. As L is finite, the image of f , L f , is finite too and, because of lattices’ idempo-
tence,

⊔

x∈X

f (x) =
⊔

L f =
⊔

{l ∈ L | ∃x ∈ X, l = f (x)} = l1 ⊔ . . . ⊔ ln1 ,

with finite n1 = |L f |. Likewise
⊔

y∈Y g(y) = l′1 ⊔ . . . ⊔ l′n2
, with n2 = |Lg|. By applying

n = n1 × n2 times the distributive law of ⊔ with respect to ⊓, we obtain:
⊔

x∈X

f (x) ⊓
⊔

y∈Y

g(y) =
⊔

l∈L f

l ⊓
⊔

l∈Lg

l′ =
⊔

l∈L f ∧

l′∈Lg

l ⊓ l′.

As there are up to n different pairs 〈l, l′〉, by idempotence we conclude the thesis.
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Proof of Proposition 4. Let L = 〈F1 ∪ F2, C1, δ〉 such that L = 〈F1, C1, δ1〉 ⊗ 〈F2, C2, δ2〉.

By Lemma 1, sets W = (F1 ∩ F2) ∪ C2, U = ((F1 \ F2) \ C2) ∪ C1 and V = F2 \ F1

partition F. Moreover F1 ∪ C1 = W ∪U (resp. F2 ∪ C2 = W ∪V).

By combining the definitions of projection (Definition 23) and composition (Defini-
tion 22) and using the distributive law we obtain, ∀q = wu ∈ Q(F1 ∪ C1) = Q(W ∪U),

πW∪U(δ)(wu) =
⊔

v∈Q(V)

δ(wuv) =
⊔

v∈Q(V)

δ1(wu) ⊓ δ2(wv) = δ1(wu) ⊓
⊔

v∈Q(V)

δ2(wv) ≤ δ1(wu).

Likewise we have, ∀q′ = wv ∈ Q(F2 ∪ C2) = Q(W ∪V), πW∪V(δ)(wv) ≤ δ2(wv).

Proof of Proposition 6. By hypothesis, we have F1 ∪ F2 ∈ 2F request type, with F2 �⊆ F1,
and C1 ∈ 2F \ {∅} coupling type. We need to show that, in general, it is not possible
to find L1 = 〈F1, C1, δ1〉 and L2 = 〈F2, C2, δ2〉 such that L1 ⊗ L2 = 〈F1 ∪ F2, C1, δ〉 (for
any C2 ⊆ F1). To do that, we show that, if we assume that such L1, L2 exist, it is always
possible to find a δ that leads to a contradiction.

Let F = F1 ∪ C1 ∪ F2. By Lemma 1, sets W = (F1 ∩ F2) ∪ C2, U = ((F1 \ F2) \

C2) ∪ C1 and V = F2 \ F1 partition F. As C1 �= ∅ (Definition 20), the set U cannot be
empty and, since F2 �⊆ F1, V is not empty either. Hence, the corresponding request
spaces are not singletons: namely Q(U) �= {�} and Q(V) �= {�}. Thus ∃ u1, u2 ∈

Q(U) and ∃ v1, v2 ∈ Q(V) such that u1 �= u2 ∧ v1 �= v2. Moreover, as W, U, V partition
F, there exist q1, q2, q3 ∈ Q(W ∪U ∪V) = Q(F) that can be expressed as follows (the
concatenations are well defined because W, U, V are disjoint):

q1 = w + u1 + v1

q2 = w + u2 + v1

q3 = w + u2 + v2.

Assuming now δ(q1) �= 0D ∧ δ(q2) = 0D ∧ δ(q3) �= 0D entails, according to Defini-
tion 22, the following contradiction:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δ1(q3|C1∪F1) = δ1(wu2) �= 0D

δ2(q1|C2∪F2) = δ2(wv1) �= 0D

δ1(q2|C1∪F1) = δ1(wu2) = 0D ∨ δ2(q2|C2∪F2) = δ2(wv1) = 0D.

Proof of Theorem 1. As stated in Lemma 1, it is possible to partition the decision space of
δ in the following three sets of fields: W = (F1 ∩ F2) ∪ C2, U = ((F1 \ F2) \ C2) ∪ C1 and
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V = F2 \ F1. A generic request q in such a request space can then be expressed as the
concatenation of sequences w ∈ Q(W), u ∈ Q(U) and v ∈ Q(V), i.e., q = wuv.

⇐. For the if direction we assume δ |= W →→ V and we show that ∀q ∈

Q(F), πF1∪C1(δ)(q|F1∪C1) ⊓πF2∪C2(δ)(q|F2∪C2) = δ(q).

First, notice that, as δ |= W →→ V, according to Definition 27 the following is true
∀w ∈ Q(W), u, u′ ∈ Q(U), v, v′ ∈ Q(V):

δ(wuv) ⊓ δ(wu′v′) = δ(wuv′) ⊓ δ(wu′v). (B.7)

We now have the following sequence of equalities.

πW∪U(δ)(wu) ⊓πW∪V(δ)(wv) =

=

⎛

⎝

⊔

v′∈Q(V)

δ(wuv′)

⎞

⎠ ⊓

⎛

⎝

⊔

u′∈Q(U)

δ(wu′v)

⎞

⎠ = by (5.2)

= δ(wuv) ⊔
⊔

v′∈Q(V)\{v}

δ(wuv′) ⊓ δ(wuv) ⊔
⊔

u′∈Q(U)\{u}

δ(wu′v) =

= δ(wuv) ⊔
⊔

v′∈Q(V)\{v}

δ(wuv′) ⊓
⊔

u′∈Q(U)\{u}

δ(wu′v) = by distributivity

= δ(wuv) ⊔
⊔

u′∈Q(U)\{u}
v′∈Q(V)\{v}

δ(wuv′) ⊓ δ(wu′v) = by (B.6)

= δ(wuv) ⊔
⊔

u′∈Q(U)\{u}
v′∈Q(V)\{v}

δ(wuv) ⊓ δ(wu′v′) = by (B.7)

= δ(wuv) ⊔
(

δ(wuv) ⊓
⊔

u′∈Q(U)\{u}
v′∈Q(V)\{v}

δ(wu′v′)
)

= by distributivity

= δ(wuv) by absorption.

⇒. For the only if direction we reason by contradiction.

Assume ∀q ∈ Q(F)

πF1∪C1(δ)(q|F1∪C1) ⊓πF2∪C2(δ)(q|F2∪C2) = δ(q), (B.8)

and δ �|= W →→ V. For instance, let

δ(wu1v1) ⊓ δ(wu2v2) �= δ(wu1v2) ⊓ δ(wu2v1), (B.9)

for some w ∈ Q(W), u1, u2 ∈ Q(U), v1, v2 ∈ Q(V).
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We know, from the first half of the proof, that we can rewrite (B.8) as

δ(wu1v1) = δ(wu1v1) ⊔
⊔

u′∈Q(U)\{u1}
v′∈Q(V)\{v1}

δ(wu1v′) ⊓ δ(wu′v1).

Now we take the greatest lower bound of the expression δ(wu1v2)⊓ δ(wu2v1) with both
sides of the equality. Then we recognize that the same expression is always a factor of
the series of least upper bound operations. This allows us to cancel out the series by
absorption:

δ(wu1v1) ⊓ δ(wu1v2) ⊓ δ(wu2v1)

= δ(wu1v2) ⊓ δ(wu2v1) ⊓
(

δ(wu1v1) ⊔
⊔

u′∈Q(U)\{u1}
v′∈Q(V)\{v1}

δ(wu1v′) ⊓ δ(wu′v1)
)

= δ(wu1v2) ⊓ δ(wu2v1) ⊓
(

δ(wu1v1) ⊔ δ(wu1v2) ⊓ δ(wu2v1) ⊔
⊔

u′v′∈Q(U\{u1}∪V\{v1})\
{u2v2}

δ(wu1v′) ⊓ δ(wu′v1)
)

= δ(wu1v2) ⊓ δ(wu2v1);

thus δ(wu1v2) ⊓ δ(wu2v1) ≤ δ(wu1v1).

By repeating the same reasoning on δ(wu1v2), δ(wu2v1), and δ(wu2v2) we conclude
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

δ(wu1v2) ⊓ δ(wu2v1) ≤ δ(wu1v1)

δ(wu1v2) ⊓ δ(wu2v1) ≤ δ(wu2v2)

δ(wu1v1) ⊓ δ(wu2v2) ≤ δ(wu1v2)

δ(wu1v1) ⊓ δ(wu2v2) ≤ δ(wu2v1),

that, as x ≤ y ∧ z ≤ w ⇒ x ⊓ z ≤ y ⊓ w, yields
{

δ(wu1v2) ⊓ δ(wu2v1) ≤ δ(wu1v1) ⊓ δ(wu2v2)

δ(wu1v1) ⊓ δ(wu2v2) ≤ δ(wu1v2) ⊓ δ(wu2v1).
(B.10)

By antisymmetry, the latter entails δ(wu1v1)⊓ δ(wu2v2) = δ(wu1v2)⊓ δ(wu2v1), in con-
tradiction with (B.9).

Proof of Proposition 5. Let 〈F1 ∪ F2, C1, ∆〉 = 〈F1, C1, ∆1〉 ⊗ 〈F2, C2, ∆2〉 and 〈F1 ∪ F2, C1, δ〉 =

〈F1, C1, δ1〉 ⊗ 〈F2, C2, δ2〉. We need to show that

δ1 = ext (∆1) ∧ δ2 = ext (∆2)⇒ δ = ext (∆) .

Let us denote W ∪ U ∪ V = F. Let wu ∈ Q(W ∪U) and wv ∈ Q(W ∪V). Then
consider all the pairs 〈ψ1, d1〉 ∈ ∆1 and 〈ψ2, d2〉 ∈ ∆2 such that wu ∈ �ψ1�W∪U ∧ wv ∈
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�ψ2�W∪V . Since all such ψ1, ψ2 guarantee w ∈ �ψ1|W ∧ ψ2|W�W , they surely fulfill the
condition of line 6. Hence, by lines 7 and 8, there exists 〈ψ, d1 ⊓ d2〉 ∈ ∆ such that
wuv ∈ �ψ�F. We thus have the following result:

〈ψ1, d1〉 ∈ ∆1 ∧ wu ∈ �ψ1�W∪U ∧ 〈ψ2, d2〉 ∈ ∆2 ∧ wv ∈ �ψ2�W∪V

⇔

〈ψ, d1 ⊓ d2〉 ∈ ∆ ∧ wuv ∈ �ψ�F.
(B.11)

We can now prove our thesis:

∀wuv ∈ Q(F), δ(wuv) = δ1(wu) ⊓ δ2(wv) =

= ext (∆1) ⊓ ext (∆2) = by Hypothesis

=
⊔

{d1 | 〈ψ1, d1〉 ∈ ∆1 ∧ wu ∈ �ψ1�W∪U} ⊓
⊔

{d2 | 〈ψ2, d2〉 ∈ ∆2 ∧ wv ∈ �ψ2�W∪V} =

by (5.3)

=
⊔

{d1 ⊓ d2 | 〈ψ1, d1〉 ∈ ∆1 ∧ wu ∈ �ψ1�W∪U ∧ 〈ψ2, d2〉 ∈ ∆2 ∧ wv ∈ �ψ2�W∪V} =

by (B.6)

=
⊔

{d | 〈ψ, d〉 ∈ ∆ ∧ wuv ∈ �ψ�F} . by (B.11)

Hence, by (5.3), we conclude δ = ext (∆).

Lemma 3. Let ∆ ⊆ Ψ(F) × D and X ⊆ F. Then, ∀q ∈ Q(F), ∃! 〈ψX , ∆X〉 ∈

PARTITION(∆, X) s.t.

q|X ∈ �ψX�X (B.12)

and

ext(∆)(q) = ext(∆X)(q|F\X) (B.13)

Proof. We recall that a DFD always covers the entire request space on which it is defined
(Definition 26). Formally:

⋃

{�ψ�F | 〈ψ, ·〉 ∈ ∆} = Q(F). (B.14)

The first result (B.12) follows by observing that the main loop of Algorithm 5.10 re-
moves all the possible overlaps among the X-projection of the RDs in ∆. Hence, at
most one ψX will exist that matches every possible q|X. More strongly, as consequence
of (B.14), exactly one such q|X must exist. The second result (B.13) follows by substitut-
ing the definition of DFD extension (5.3).

Proof of Proposition 7. ⇐. We obtain the first half by contraposition.
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PARTITION(∆, W) PARTITION(∆i
W , U) PARTITION(∆

j
U , V)

〈ψW , ∆W〉

〈ψU , ∆U〉

〈ψV , ∆V = {d1, . . . , dn}〉

〈ψ′′V , ∆′′
V = {d′′1 , . . . , d′′m}〉

. . .

〈ψ′U , ∆′
U〉

〈

ψ′V , ∆′
V =

{

d′1, . . . , d′l
}〉

〈

ψ′′′V , ∆′′′
V =

{

d′′′1 . . . , d′′′k

}〉

. . .

. . . . . .

. . . . . . . . .

Table B.2: Partitioned ∆

Assume that Algorithm 5.9 returns false (Line 14). Hence, there exist 〈ψW , ∆W〉 ,
〈ψU , ∆U〉 , 〈ψ′U , ∆′

U〉 , 〈ψV , ∆V〉 , 〈ψ′V , ∆′
V〉 , 〈ψ′′V , ∆′′

V〉 , 〈ψ′′′V , ∆′′′
U 〉 such that:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

〈ψW , ∆W〉 ∈ PARTITION(∆, W)

〈ψU , ∆U〉 , 〈ψ′U , ∆′
U〉 ∈ PARTITION(∆W , U)

〈ψV , ∆V〉 , 〈ψ′′V , ∆′′
V〉 ∈ PARTITION(∆U , V)

〈ψ′V , ∆′
V〉 , 〈ψ′′′V , ∆′′′

V 〉 ∈ PARTITION(∆′
U , V)

and (Line 11):
�ψ′V ∧ ψ′′V�V �= ∅ ∧ �ψV ∧ ψ′′′V �V �= ∅ (B.15)

and (Lines 9, 12 and 13):
⊔

d∈∆V

d ⊓
⊔

d′∈∆′V

d′ �=
⊔

d′′∈∆′′V

d′′ ⊓
⊔

d′′′∈∆′′′V

d′′′. (B.16)

Note that for all 〈ψ, d〉 ∈ ∆V (and likewise for ∆′
V , ∆′′

V , ∆′′′
V ), ψ must equal the empty

sequence 〈〉. This is a consequence of partitioning ∆U ⊆ Ψ(V)×D (resp. ∆′
U) on V. For

the sake of clarity, we abuse notation and simply write d for 〈〈〉 , d〉. According to (5.3),
we can then rewrite (B.16) as:

ext(∆V)(〈〉) ⊓ ext(∆′
V)(〈〉) �= ext(∆′′

V)(〈〉) ⊓ ext(∆′′′
V )(〈〉). (B.17)

The partitions of ∆ are represented in Table B.2.
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Because of (B.12) and (B.15) we can choose q, q′, q′′, q′′′ ∈ Q(W ∪U ∪V) such that:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q|W , q′|W , q′′|W , q′′′|W ∈ �ψW�W

q|U , q′′|U ∈ �ψU�U

q′|U , q′′′|U ∈ �ψ′U�U

q|V , q′′′|V ∈ �ψV ∧ ψ′′′V �V

q′|V , q′′|V ∈ �ψ′V ∧ ψ′′V�V

moreover, as a consequence of (B.13), we have:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ext(∆)(q) = ext(∆W)(q|U∪V) = ext(∆U)(q|U∪V |V) = ext(∆V)(q|U∪V |V |∅) = ext(∆V)(〈〉)

ext(∆)(q′) = ext(∆W)(q′|U∪V) = ext(∆′U)(q
′|U∪V |V) = ext(∆′V)(q

′|U∪V |V |∅) = ext(∆′V)(〈〉)

ext(∆)(q′′) = ext(∆W)(q′′|U∪V) = ext(∆U)(q
′′|U∪V |V) = ext(∆′′V)(q

′′|U∪V |V |∅) = ext(∆′′V)(〈〉)

ext(∆)(q′′′) = ext(∆W)(q′′′|U∪V) = ext(∆′U)(q
′′′|U∪V |V) = ext(∆′′′V )(q′′′|U∪V |V |∅) = ext(∆′′′V )(〈〉)

that allows to rewrite (B.17) as ext(∆)(q) ⊓ ext(∆)(q′) �= ext(∆)(q′′) ⊓ ext(∆)(q′′′),
which, by Definition 27, is equivalent to ext(∆) �|= W →→ V.

⇒. For the second half, we reason again by contraposition.

Assume ext(∆) �|= W →→ V. Then, there exist q, q′, q′′, q′′′ ∈ Q(W ∪U ∪V) such
that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

q|W = q′|W = q′′|W = q′′′|W

q|U = q′′|U ∧ q′|U = q′′′|U

q|V = q′′′|V ∧ q′|V = q′′|V

and
ext(∆)(q) ⊓ ext(∆)(q′) �= ext(∆)(q′′) ⊓ ext(∆)(q′′′). (B.18)

By (B.12) then, there is a unique 〈ψW , ∆W〉 such that q|W , q′|W , q′′|W , q′′′|W ∈ �ψW�W .

Let 〈ψU , ∆U〉 ∈ PARTITION(∆W , U). If q|U , q′|U ∈ �ψU�U , then q′′|U , q′′′|U ∈ �ψU�U

too, as q|U = q′′|U and q′|U = q′′′|U . Similarly, as q|V = q′′′|V and q′|V = q′′|V , there
exist two unique 〈ψV , ∆V〉 , 〈ψ′V , ∆′

V〉 ∈ PARTITION(∆U , V) such that q|V , q′′′|V ∈ �ψV�V

and q′|V , q′′|V ∈ �ψ′V�V . By (B.13), we then rewrite (B.18) as

ext(∆V)(〈〉) ⊓ ext(∆′
V)(〈〉) �= ext(∆V)(〈〉) ⊓ ext(∆′

V)(〈〉),

a contradiction. Hence it must be q|U ∈ �ψU�U and q′|U ∈ �ψ′U�U for some
〈ψU , ∆U〉 , 〈ψ′U , ∆′

U〉 ∈ PARTITION(∆W , U).

Let now 〈ψV , ∆V〉 , 〈ψ′′V , ∆′′
V〉 ∈ PARTITION(∆U , V) and 〈ψ′V , ∆′

V〉 , 〈ψ′′′V , ∆′′′
V 〉 ∈

PARTITION(∆′
U , V) such that:

{

q|V , q′′′|V ∈ �ψV�V ∧ q|V , q′′′|V ∈ �ψ′′′V �V

q′|V , q′′|V ∈ �ψ′V�V ∧ q′|V , q′′|V ∈ �ψ′′V�V .
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It is clear that such ψV , ψ′V , ψ′′V , ψ′′′V satisfy the condition of Line 11 of Algorithm 5.9.
Moreover, by applying (B.13), we can rewrite (B.18) as

ext(∆V)(〈〉) ⊓ ext(∆′
V)(〈〉) �= ext(∆′′

V)(〈〉) ⊓ ext(∆′′′
V )(〈〉),

which means that the condition of Line 13 is satisfied too. As a consequence, the algo-
rithm returns false (Line 14).



C
Synthesis of Experimental Input Datasets

⊲ This appendix provides details on the generation of the input datasets used for the experiments
described in Chapters 4 and 5. ⊳
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C.1 Generation of JEE Security Contraint Configurations

Algorithm GENSCSET(U ,M,R)
Input: Finite domains U ,M,R
Output: Set of configurations C

1 C ← ∅;
2 RM ← (℘(R) ∪⊤)× ℘(M) ; // ℘(X) denotes the set of subsets

(powerset) of X.

3 foreach U ∈ ℘+(℘+(U )) do // ℘+(X) is the set of non-empty

subsets of X.

4 foreach P ∈ perm(RM, |U|) do // perm(X, k) is the set of all

k-permutations of elements in X.

5 C ← C ∪ {GENSC(P, U)};

6 return C;

Algorithm GENSC(P, U)
Input: P = {〈Ri, Mi〉} set of pairs with Ri, Mi sets of roles and methods, and

U set of sets of URLs. Input sets have equal cardinality |P| = |U|.
Output: SC configuration composed of |U| security constraints.

7 SC ← "";
8 for i = 0 to |U| − 1 do

9 〈R, M〉 ← P[i];
10 SC ← SC + "{";
11 foreach u ∈ U[i] do

12 SC ← SC + u + ", ";

13 SC ← SC + "} [";
14 foreach m ∈ M do

15 SC ← SC + m + ", ";

16 SC ← SC + "] ";
17 if R �= ⊥ then

18 SC ← SC + "<";
19 foreach r ∈ R do

20 SC ← SC + r + ", ";

21 SC ← SC + "> ";

22 return SC;

Figure C.1: Generation of security constraint configurations.
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C.2 Synthesis of Decision Function Descriptors (DFDs)

C.2.1 Controlling the Average Degree of Overlap

Consider the procedure GENINTV reported in Figure 5.14. In this algorithm n intervals
are generated, having deterministic equally-spaced centers {ci} and random diameters
{di}. The probability distribution of the diameters is log-normal (as such, only positive
values are possible): its mean equals the distance between two centers and its variance
can be tuned via the parameter ν.

Intuitively, we expect increasing values of ν to yield, in average, an increasing
degree of overlap. To confirm this intuition, we measured the minimum, average
and maximum degrees of overlap as a function of the ν parameter. We repeated the
experiment for increasing values of n by keeping the domain upper bound fixed to
M = 10000.

The results of this experiment, depicted in Figures C.2a to C.2d, confirm the ex-
pected correlation between the variance coefficient and the degree of overlap of inter-
vals. Note that varying the value of M would only change the average interval size
(M/n), but it would not modify how frequently intervals overlap with each other, as
long as M is sufficiently greater than n to avoid integer division problems.

By inspecting Figure C.2, we observe that the more intervals are generated, the more
they tend to overlap with each other for the same values of ν. E.g., for ν = 10, each in-
terval overlaps in average with slightly more than 3 others, when n = 10, and slightly
less than 50, when n = 500. In order to control the average degree of overlap inde-
pendently from the number of generated intervals, we repeated the aforementioned
experiment for more fine-grained values of n. As such, we were able to empirically
determine the family of functions νk(n) with the following property: every νk maps a
number n to the variance coefficient needed to generate n intervals such that each one
will overlap with k others in average. Table C.3 reports the estimated values of such
functions for n ∈ {10, 20, . . . , 200} and k ∈ {1, 2, 3, 5, 10}.

Given a field f , with an associated domain of integers dom( f ) = [0, . . . , M], we
are now in a position to generate a random unidimensional DFD ∆synth ⊆ Ψ({ f })× D

containing n RDs with an average degree of overlap of k. To do so, it is sufficient to as-
sociate each interval generated by the procedure GENINTV(n, M, νk(n)) with a decision
selected randomly in the decision space D.

C.2.2 Multidimensional Overlap Density and Average Degree

It is convenient to think about the overlap between two RDs as a Bernoulli trial with
success probability pe, with 1 ≤ e ≤ (n

2). Note that the index e ranges over all the 2-
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Figure C.2: Minimum, average and maximum number of overlapping intervals as
a function of the variance coefficient ν when generating n intervals in the domain
0, . . . , 10000
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Table C.3: Estimated νk(n) functions for k ∈ {1, 2, 3, 5, 10}
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Figure C.4: Probabilities of overlap pe with e ranging over all the possible 2-choices of
the intervals generated by GENINTV (with and without shuffling).

choices of n RDs or, equivalently, all the possible edges of the graph having n RDs as
vertices.

The reason for distinguishing the success probabilities of the different trials, is that
we naturally expect them to distribute differently in a generic outcome of the GENINTV

algorithm. Indeed, as the generated intervals are centered on equally-spaced points, ad-
jacent intervals are more likely to overlap than those being far apart. In other words not
all the pairs of intervals have the same probability to overlap, hence each pair (equiva-
lently each edge of the graph) is associated with a different success probability pe.

If all the trials are independent, it is well known that the total amount of successes
over all trials follows a Poisson binomial distribution. Its mean equals the sum of all

individual probabilities µ = ∑
(n

2)
e=1 pe and, in our setting, represents the expected num-

ber of overlapping pairs of intervals (equivalently edges of the graph). It follows that
the expected overlap density of a set of n unidimensional RDs, as generated by the
GENINTV procedure, can be expressed in terms of the individual probabilities pe as:

ρ =
µ

(n
2)

=
2 ∑

(n
2)

e=1 pe

n(n− 1)
. (C.1)

Note that, if all the overlap probabilities equal each other, i.e., p1 = p2 = . . . =

p(n
2)

= p, the latter reduces to ρ = p. This means that, in this case, the overlap prob-
ability of each pair of RDs coincides with the overall overlap density. This situation
can be achieved by artificially shuffling the relative order of the intervals generated
by GENINTV. By depicting the result of the analysis of a large number of executions
of GENINTV, Figure C.4 shows how the pe probabilities tend to converge to the same
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value when shuffling is applied. The values have been estimated by counting the fre-
quencies of overlaps over 1000 executions of the algorithm with the following fixed
choice of parameters n = 20, M = 10000, ν = 3.

Let ψ = 〈ϕ1, . . . , ϕm〉 and ψ′ = 〈ϕ′1, . . . , ϕ′m〉 be two m-dimensional RDs. According
to Definition 28, they overlap with each other when the extension of their conjunction
is not empty. According to Definition 25, this is true if and only if �ϕi ∧ ϕ′i� �= ∅ for
1 ≤ i ≤ m, i.e., if all the m dimensions do simultaneously overlap.

We know that the event of a pair of RDs overlapping on each individual dimension
is determined by an independent Bernoulli trial. For the eth pair and the ith dimension
we denote the corresponding overlap probability as pe,i, with 1 ≤ e ≤ (n

2) and 1 ≤

i ≤ m. The probability of the eth pair overlapping on all dimensions simultaneously is
then equal to the product pe = ∏

m
i=1 pe,i. By substituting in (C.1) we obtain the overlap

density of a set of n m-dimensional RDs:

ρmul =
2 ∑

(n
2)

e=1 ∏
m
i=1 pe,i

n(n− 1)
. (C.2)

The last expression can be used in general to estimate the multidimensional over-
lap density (and therefore the average degree of overlap) from the statistical properties
of each dimension. In order to use it, however, one has to estimate the overlap prob-
ability pe,i for every dimension of every possible pair of RDs. This is not however
always necessary. Under specific circumstances it is in fact possible to reduce (C.2) to
a simpler expression. As first simplifying assumption we require all the dimensions
to be generated independently by executing GENINTV with the same fixed choice of
parameters. In this case, all the dimensions clearly need to exhibit the same statistical
behaviour. In particular, the overlap probabilities will be the same over all dimensions,
i.e., pe,1 = pe,2 = . . . = pe,m = pe. Moreover, as shown previously in this section, if we
shuffle each set of generated intervals, all the overlap probabilities pe tend to coincide
with the unidimensional overlap density ρ.

Under these assumptions, we can then rewrite (C.2) as:

ρmul =
2 ∑

(n
2)

e=1 pe
m

n(n− 1)
=

2(n
2)ρ

m

n(n− 1)
= ρm. (C.3)

As this latest expression only involves overlap densities, we can as well rewrite it in
terms of the respective average degrees of overlap:

kmul =(n− 1)ρmul = (n− 1)
(

k

n− 1

)m

=
km

(n− 1)m−1 . (C.4)
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