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Summary 
 
CD8 T cells are essential for the elimination of intracellular pathogens and tumor cells. Understanding how naïve 
CD8 T cells differentiate into effector cells capable of eliminating pathogens and to generate adequate memory 
cells during immune responses is fundamental for optimal T cell vaccine design. 
In this PhD thesis work we addressed two central questions:  
       1) What are the mechanisms by which early effector T cells could act as pro-inflammatory effectors? And 
what is their role in the immune response?  
       2) How heterogeneous are CD8 responses? Could different pathogens modulate CD8 T cell differentiation 
programs and be responsible for CD8 cell-to-cell heterogeneity? Could they also generate memory cells with 
different protection capacities? 
To address these questions related to the diversity of CD8 T cell differentiation during immune responses, we 
used the single cell RT-PCR technique to detect ex vivo expression of mRNA in each individual cell, and Brefeldin A 
injected mice to detect ex vivo intracellular proteins. As experimental system to evaluate in vivo cell activation we 
used T cell receptor transgenic (TCR-Tg) CD8 T cells.  
 

 Since the use of TCR-Tg cells to study immune responses has been subjected to criticism (due to high frequency of 
naïve-precursor transfers), in a first Ms. we compared the behavior of TCR-Tg and endogenous (non-transgenic 
and present at low frequency) cells in the same mouse. We found fully overlapping behavior between these two 
cell populations, which reinforced the advantage of using TCR-Tg cells to study CD8 immune responses. In 
addition, we concluded that the frequency of naïve-precursors do not induce diversity on CD8 T cell 
differentiation patterns.  
 

In a second Ms. we evaluated the impact of different pathogens in the diversity of CD8 T cell properties during 
two different immune responses: OT1 TCR-Tg cells (specific for OVA antigen) in the response to LM-OVA (Listeria 
Monocytogenes expressing OVA) infection; and P14 TCR-Tg cells (specific for GP33 epitope) in the response to 
Lymphocytic choriomeningitis vírus (LCMV) infection. We found that OT1 and P14 cells had different properties. 
As this difference could also be attributed to the different TCR avidity between OT1 and P14 cells, we then 
compared the behavior of P14 and OT-1 cells in the same mouse, co-injected with LM-OVA and LM-GP33. Since no 
differences were then detected, these results demonstrated that priming with different pathogens generates CD8 
T cells with different characteristics that are not determined by TCR usage, but rather by the infection context. In 
addition, when looking for the protection capacity of endogenous CD8 memory cells generated in bacterial or viral 
context, we found that memory cells generated after LCMV priming were more efficient in responding to a second 
challenge, than memory cells generated after LM-GP33 priming. We also found that this better protection is 
associated with a T cell effector memory (TEM) phenotype associated with the LCMV infection, in contrast with a T 
cell central memory (TCM) phenotype generated after LM-OVA infection. These results demonstrate that different 
pathogens are responsible for diversity of CD8 T cell differentiation patterns and that even when distinct 
pathogens are efficiently eliminated during the primary immune response the quality of the memory generated 
may differ. 
 

In a third Ms. we studied the mechanisms by which effector CD8 T cells attracted other cell types in the early days 
of an immune response. We used two experimental systems: the response of OT1 TCR-Tg cells to LM-OVA 
infection; and the response of anti-HY TCR-Tg cells to male cells (“sterile”-non infectious context). In both cases 
we found that immediately after activation, CD8 T cells expressed high levels of pro-inflammatory cytokines and 
chemokines (such as TNFα, XCL1, CCL3 and CCL4). We also confirmed the expression of these earlier mediators in 
a small fraction of activated endogenous cells, which could still be identified by pMHC multimers. A local injection 
of CD8 pro-inflammatory effectors in the ear induced: hypertrophy of the draining lymph node (DLN); recruitment 
of several leucokytes (B, T, NK, Monocytes, PMNs and DCs) into the DLN; and increased S1P levels in the DLN 
responsible for a cell egress block. This inflammatory potential was also detected after intranodal injection of a 
physiological number of CD8 pro-inflammatory effectors. In contrast with the classic cytotoxic CD8 T cell 
functions, the pro-inflammatory mediator’s expression declined with cell division and when antigen was still 
abundant. The rapid loss of CD8 inflammatory effector functions was correlated with an extensive TCR down-
regulation at the cell surface, as well as with a down-regulation of the TCR signaling pathways (MAPkinases). 
These results demonstrated for the first time that CD8 responses involve two distinct effector phases with 
opposite rules (inflammatory and cytotoxic), and also that cognate antigen stimulation is sufficient to induce the 
CD8 inflammatory effector phase necessary for maximal screen of rare APCs first presenting the antigen.  
 

In conclusion, our studies revealed diversity on CD8 T cell functions (inflammatory and cytotoxic) during immune 
responses and that different pathogens induce distinct CD8 T cell differentiation patterns. These results are thus 
crucial to predict and to efficiently evaluate CD8 T cell responses. 
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I.    The Immune System 

  

 

A key feature of the immune system is the ability to induce protective immunity against 

pathogens while maintaining tolerance towards self and innocuous environmental antigens, and it 

has evolved to protect organisms from diseases. It allows the host to detect and eliminate a diversity 

of pathogenic organisms that are themselves constantly evolving (virus, bacteria, and worms) and it 

also helps the host to eliminate toxic or allergic substances, and tumor cells. To mobilize a response 

against these threats, the host’s immune system needs to distinguish self from non-self, needs to 

distinguish foreign and harmful from the own healthy cells. This discrimination is essential in order 

to efficiently eliminate the threat without an excessive damage of self-tissues. Classically, the 

immune system has been divided in two categories: the innate immune system and the adaptive 

immune system.   

 

 

1. Innate Immune System 

 

Innate immune system acts as the first line of resistance against pathogen invasion and includes: 

i) physical barriers such as epithelial cells layers, secreted mucus overlaying the epithelium in the 

respiratory, gastrointestinal and genitourinary tracts, and the epithelial cilia that sweep away the 

mucus layer; ii) soluble proteins constitutively present in biological fluids (complement proteins, 

defensins and ficolins) or those released from activated cells (cytokines that regulate the function of 

other cells, chemokines that attract inflammatory leukocytes, lipid mediators of inflammation, 

reactive free radical species, and bioactive amines and enzymes that contribute to tissue 

inflammation); iii) membrane bound and cytoplasmic receptors that are expressed broadly on a large 

number of cells. These receptors are encoded, in their mature functional forms, by conserved and 

limited germ-line genes of the host, which enable the recognition of molecular patterns shared by 

many invading environmental signals (Rahman et al. 2008; Cui et al. 2011).  

 

 

2. Adaptive Immune System 

 

Unlike innate system, the adaptive immune system has restrict recognition for its target 

antigens, and is based primarily on antigen-specific receptors expressed on the surfaces of T- and B-

lymphocytes. T cell receptors (TCR) and immunoglobulin (Ig) B cell receptors (BCR) are encoded by 

genes that are assembled by somatic rearrangement of germ-line gene elements. These 

rearrangements permit the formation of a vast diversity of receptors able to recognize virtually any 

type of antigen. The mechanisms governing the assembly and the selection of the B and T cell 

antigen receptors allows for a properly functioning repertoire of receptor-bearing cells.  Besides the 
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specificity, another hallmark of adaptive immune responses is the production of long-lived (memory) 

cells that persist and can rapidly express effector functions after a second time encounter with their 

specific antigen. 

 

In spite of being described as separate arms of the immune response, innate and adaptive 

systems act together with the innate response being the first line of host defense and the adaptive 

response becoming prominent after several days. Several components of the innate system 

contribute to acute inflammation induced by microbial infection or tissue damage, and also for the 

activation of adaptive antigen-specific cells essential for an effective immune response (Dutko and 

Oldstone 1983; Panus et al. 2000; Jang et al. 2009). 

 

 

3. Cellular elements of immune system 

 

3.1. Hemathopoiese  

 

An immune response includes contributions from many subsets of leukocytes. Different 

leukocytes can be discriminated morphologically and by differentiation antigens on their membrane 

surfaces, also named as cluster of differentiation (CD). 

 

All blood cells, including mature circulating lymphocytes, differentiate from the same progenitor 

cells, the hematopoietic stem cells (HSC), which are found in bone marrow, peripheral blood and 

placenta. These pluripotent HSCs are capable of self-renewal and multilineage differentiation, giving 

rise to all types of blood cells throughout an individual’s life by generating precursors of increasingly 

limited potential and lineage-bias. HSCs differentiate in multipotent progenitors (MPP), which have 

lost their self renewing capacity, and then further differentiate into common myeloid progenitors 

(CMP) or common lymphoid progenitors (CLP) (Fig. 1). 

CMPs give rise to erythrocytes, platelets, macrophages and to distinct forms of granulocytes. 

Granulocyte lineage cells include neutrophils, eosinophils/mast cells and basophils. CLPs further 

differentiate into mature lymphocytes: T cells, B cells, natural killer (NK) cells (Weissman and Shizuru 

2008). 
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3.2. T cell development: thymocytes 

 

The development of functional T cells is essential for mounting a protective immune response 

against diverse threats. Whereas the majority of hematopoietic lineages mature in the bone marrow, 

T cell development takes place in a specialized organ: the thymus. This primary lymphoid organ is 

responsible for the generation and selection of T cells bearing a diverse T cell receptor (TCR) 

repertoire: restricted to self-major histocompatibility complexes (MHC) and tolerant to self-antigens. 

Besides the differentiation of distinct T cells: CD4, CD8α/β and γδ T cells, the thymus also supports 

the differentiation of NKT cells, regulatory T cells (Treg), and intraepithelial lymphocytes (IEL) 

(Weinreich and Hogquist 2008).  

Due to the scope of this thesis in study CD8 T cell differentiation during immune responses (cells 

whose TCR is composed of an α and β chains: TCRαβ), only the TCRαβ-cell development will be 

described below, and in subsequent chapters, TCRαβ T cells will be simply designated as T cells.  

 

The thymus is colonized by hematopoietic progenitors derived from HSC cells that then become 

committed towards a T cell differentiation program. T cell differentiation relies on multiple signals 

provided by the thymic stroma that is composed of dendritic cells, macrophages, endothelial cells, 

fibroblasts and thymic epithelial cells (TEC). Those signals include: growth factors (c-Kit ligand, FLT3L 

Figure 1. Simplified scheme of 

hematopoietic differentiation.  

Pluripotent hematopoietic 

stem cells (HSCs) with long-

term reconstituting and self-

renewing capacity give rise to 

precursors with increasingly 

limited self-renewal, limited 

potential and lineage 

commitment (Weissman and 

Shizuru 2008). 
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and IL-7), chemokines (CCL25, CxCL12, CCL19 and CCL21) and cell surface receptor ligands (Notch 

ligand and peptide-MHC ligands) that sustain thymocyte survival, proliferation, migration and 

differentiation (Alves et al. 2009a). Among these, the cytokine IL-7, which is predominantly produced 

by TECs (Alves et al. 2009b), has a crucial role in promoting survival and expansion of early T cell 

precursors (Peschon et al. 1994).  

 

The identity of the cell progenitor, which initially seeds the thymus, is still open to debate, 

however it is established that the early T-lineage progenitor (ETP) is the most immature T-cell 

precursor within the thymus (Bhandoola et al. 2007; Benz et al. 2008). The majority of intrathymic 

precursors do not express CD4 nor CD8 surface markers, and hence, they are designated as double-

negative (DN) thymocytes (in addition, as they do not express CD3 either, they are also nominated 

as triple-negative (TN) thymocytes). DN thymocytes are subdivided into 4 subpopulations according 

the surface expression profiles of CD44 (an adhesion receptor) and CD25 (the α chain of IL-2 

receptor): DN1 (CD44+CD25-), DN2 (CD44+CD25+), DN3 (CD44-CD25+) and DN4 (CD44- CD25-) (Godfrey 

et al. 1993). Early thymocytes possess multilineage potential, which is progressively restricted as cells 

transit through the DN stages of T-cell development (Fig. 2). 

 

DN1 thymocytes constitute a heterogeneous population with different potential to generate T 

cells and different maturation and proliferation capacities. This population can be further subdivided 

according to the IL-7Rα and c-Kit expression, where CD44+ CD25- c-Kithi IL-7Rα- are the most 

immature thymocytes, also known as ETPs (Allman et al. 2003). The ETPs retain yet the potential to 

develop NK, DCs, B and some myeloid cells. They do not express the recombination-activating gene 

(Rag) or the CD3ε genes at detectable levels, and they do not have D-J rearrangements of TCRβ locus. 

However, they still keep a strong proliferative capacity. In contrast, the most mature DN1 

subpopulation expresses IL-7Rα and it expresses CD3ε and have D-J rearrangement of TCRβ locus 

(Porritt et al. 2004). 

DN1 cells become committed to the T lineage upon Notch1-Delta-like four (Notch1-DL4) 

interactions on the thymic stroma, resulting in transition to the DN2 stage, which is characterized by 

the upregulation of CD25. DN2 population has lost the B cell potential but some cells retain yet NK 

and myeloid potential (Balciunaite et al. 2005). During the DN2- DN3 stages, lymphocyte and T-cell-

specific factors such as Rag-1, Rag-2, pTα (pre-TCRα chain), CD3ε and IL-7R are up regulated (Taghon 

et al. 2005).  

 

DN3 thymocytes undergo intense V-DJ rearrangement of the TCRβ locus.  Those cells that have 

generated a functionally rearranged TCRβ chain associate it with the invariant pre-TCRα and CD3 

signaling molecules to assemble the pre-TCR on cell surface. This process is called β selection as 

thymocytes that fail to generate an in frame/functional TCRβ chain are not selected for further 

differentiation to αβ lineage and thus may die by apoptosis. Signaling through the pre-TCR promotes: 

proliferation, induce differentiation into DN4 cells, and inhibit further TCRβ rearrangement (allelic 
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exclusion) by negative regulation of Rag genes (reviewed in (von Boehmer et al. 1998; Ciofani and 

Zuniga-Pflucker 2007)).  

In contrast with DN2 stage where T cell precursors express IL-7Rα and c-Kit, in late DN3 stage 

both of these receptors are downregulated, rendering DN3 cells dependent on pre-TCR and Notch1-

DL signaling for survival (Ciofani and Zuniga-Pflucker 2005). 

In mice lacking CD3ε or Rag-2 gene (TCRs-V(D)J recombination abrogated), thymocytes do not 

develop beyond the DN3 stage (Shinkai et al. 1992; DeJarnette et al. 1998). When IL-7 signaling is 

impaired (caused by loss of either α or common γ chains of the IL-7R) there is an arrest in the 

development at the DN2 stage (Peschon et al. 1994; Cao et al. 1995; Moore et al. 1996). Moreover, 

absence of IL-7 induces apoptosis of DN1, DN2 and DN3 thymocytes, and IL-7 assures survival of 

these thymocytes by increasing the intercellular levels of anti-apoptotic Bcl-2 and reduction of pro-

apoptotic Bax (Kim et al. 1998). 

 

Following β selection, DN3 cells express CD27 and progress to the DN4 stage, characterized by 

the loss of CD25 expression. The expression of CD4 and CD8 coreceptors is initiated and these 

thymocytes become designed as double positive (DP): CD8+CD4+ cells. 

 

DP cells represent the majority of the thymocytes, they highly express Rag-1 and Rag-2, and they 

also initiate Tcrα gene rearrangements, resulting in the surface expression of TCRαβ/CD3 complexes. 

Due to the random nature of TCR α and β loci rearrangements, a vast diversity of TCRs is generated 

to cope with an immense variety of antigens. However, not all TCRs are capable to effectively 

interact with peptide-MHC (pMHC) complexes, while some will strongly recognize self-peptides. In 

order to generate useful and safe mature TCRαβ cells, DP thymocytes pass through a positive and 

negative selection processes. The fate of a DP cell is dependent on the signaling mediated by the 

interaction of the TCRαβ with self-peptides MHC class I and II, highly expressed by thymic ephitelial 

cells.  

 

Positive selection: DP thymocytes bearing TCRαβ that fail to productively interact with self 

peptide-MHC class I or class II complexes die by neglect within few days. Thus, only thymocytes that 

receive signals from the TCR engagement are selected (positive selection). The TCR engagement is 

responsible not only for the survival but also for the maturation of double positive (DP) thymocytes 

on single positive (SP) cells. Based on the appropriate degree of interaction between the TCR and the 

pMHC complexes expressed on thymic epithelial cells, and depending on the class of MHC molecule 

recognized, thymocytes are positively selected either to a CD4+ or to a CD8+ single-positive (SP) cell 

fate. CD4 and CD8 molecules are coreceptors that bind to MHC class I and class II, respectively, 

favoring CD8+ and CD4+ T-cell MHC restriction. Their cytoplasmic domain binds to the tyrosine 

kinase Lck that, when in close vicinity to the TCR complex, initiates TCR signaling. Therefore, CD4 and 

CD8 coreceptors provide yet an extra guard against the selection of non-MHC reactive cells 

(coreceptors not engaged) as they sequester the Lck far from the TCR complex. 
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Negative selection: SP thymocytes carrying TCRαβ with high avidity for self pMHC (strong TCR 

signaling) undergo TCR-induced programmed cell death. Thus, only thymocytes that do not express 

TCR with high affinity for self antigens are selected (negative selection). This involves the exposure of 

thymocytes to peripheral tissue-specific antigens ectopically expressed by thymic epithelial cells 

under the control of the transcription factor AIRE (autoimmune regulator). This selection leads to the 

elimination of self-reactive T cells (reviewed in (Takahama 2006; Carpenter and Bosselut 2010)). 

 

These selection processes ensure that only self-MHC-restricted and self-tolerant T cells survive 

and leave the thymus as mature T cells that continuously circulate between blood and lymph through 

secondary lymphoid organs in search of invading pathogens/cognate antigens interactions. Survival 

and homeostatic proliferation of individual naïve T cells in the periphery is dependent on 

continuous TCR signaling (interaction with self-pMHC ligands) (Tanchot et al. 1997) plus IL-7R 

signaling (Schluns et al. 2000), which occurs in secondary lymphoid organs. 

 

 
Figure 2. Overview of T cell development in thymus: from an ETP to a mature CD8 T cell. 

The earliest thymic precursors entering in the thymus derive from bone marrow hematopoietic stem cells (HSCs) and are 

designated as early T cell progenitors (ETPs). Expression of CD4 and CD8 defines DN (double negative) and DP (double 

positive) thymocytes. Expression of CD44 and CD25 defines four DN subtypes: DN1, DN2, DN3 and DN4. During the DN1-

DN4 progression, thymocytes lose their potential to develop dendritic (DC), natural killer (NK) or myeloid (M) lineages and 

gain specific characteristics of T cell lineage commitment. β selection engages TCRαβ commitment of DN3 cells, and TCRαβ 

signaling upon MHC class I recognition induces differentiation of DPs into mature CD8
+
 single positive (SP) cells, which are 

released into the periphery and join the pool of naïve CD8 T cells (Carpenter and Bosselut 2010). 

 

 

 

 

3.2.1.  Thymocytes as short-lived cells (a notion to reconsider)  
 

Surgical removal of the thymus demonstrated the requirement of this organ in the generation of 

T cells (Miller 1961). Likewise, thymus grafts have also been used to correct deficiencies of the 

thymus epithelium (Markert et al. 2007; Markert et al. 2011). However, they are not used to correct 

intrinsic T cell deficiencies, as it is believed that thymocytes are short-lived, and thus, continuous T 

cell differentiation in the thymus depends on constant supply of lymphocytes progenitors from bone 
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marrow (Berzins et al. 1998). This occurs even when the host is T cell deficient. Transplantation of 

wild-type thymi into hosts which are unable to generate mature T cells (SCID or Rag2-/- hosts) also 

show that, in the transplants, donor T cells are substituted by incompetent precursors from the 

host bone marrow within few weeks (Frey et al. 1992; Takeda et al. 1996). 

 

 

 

3.3. Innate and adaptive cells of the immune system 

 

Cellular elements of the innate system are: mast cells, basophiles, eosinophils, neutrophils, 

macrophages, dendritic cells (DC) and natural killer cells (NK). The major functions of the innate 

system cells include:  

 1)   the initial recognition of foreign substances; 

 2) the recruitment of additional immune cells to the sites of infection and inflammation 

though the production of inflammatory mediators;  

3) the elimination of microorganisms by phagocytosis, reactive oxygen species production, 

type I IFNs, or complement cascade activation;  

4) triggering of the adaptive immune system through antigen presentation.  

These cells bear pattern recognition receptors (PRRs) that recognize a broad molecular patterns 

found on pathogens: PAMPs (pathogen associated molecular patterns). 

 

Cellular elements of adaptive immune system are the T and B lymphocytes. Both of these cells 

recognize specific targets trough a vast diversity of receptors generated by genetic recombination of 

antigen receptor gene segments, associated to several other mechanisms, as reported above.  

 

Activated B cells are responsible for antigen-specific antibodies secretion and they provide an 

important line of defense against infection through the neutralization and/or elimination of 

extracellular pathogens or foreign substances. In addition, B cells also function as antigen presenting 

cells, they produce multiple cytokines and they can suppress inflammatory responses that occur 

during autoimmune diseases or that can be caused by unresolved infection. B cells recognize and 

capture external antigens through their B cell receptor (BCR), a cell surface immunoglobulin (Ig) 

receptor which recognizes antigens directly without need for antigen processing. Upon binding to the 

BCR, the antigen is internalized by receptor-mediated endocytosis and it is processed by degradation 

into peptides. These antigenic peptides are displayed by B cells on their surface MHC class II 

molecules, where they can be recognized by antigen-specific T helper cells. This B and T cell 

interaction (T cell-dependent (TD) activation of B cells) provides the co-stimulatory signal required 

for B cells to differentiate into high-affinity antibody-producing plasma cells and to develop into 

memory B cell populations. B cells can also be activated and produce antibodies in a T-cell 

independent (TI) mode through: signaling of their TLRs (Toll like receptors), BCR crosslinking, and 

help signals provided by bone-marrow-derived myeloid cells. However, the nature of antigens 
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recognized and the outcome of antibody responses are distinct between TD and TI B cell activation 

(Mauri and Bosma 2012; Vinuesa and Chang 2013; Yuseff et al. 2013). 

 

T cells are divided in two major subsets: CD8+ cytotoxic (CTLs) and CD4+ helper T (Th) cells.  

In general, CD8 T cells respond to intracellular infections with virus, protozoa and 

intracytoplasmatic bacteria, and also to tumor cells. Upon antigen recognition through interaction of 

the TCR and the processed pathogen/malignant-derived peptide bound on MHC class I of an APC, 

CD8 T cells specifically kill the infected or tumoral cells by production of cytotoxic molecules. They 

also produce cytokines, chemokines and microbicidial and anti viral molecules to combat infection 

(Harty et al. 2000). 

CD4 T cells play an important role in coordinating acquired immune responses. There are several 

Th cell subsets (Th1, Th2, Th17, Th21, Treg), and each of which has specialized functions to control 

immune responses. These subsets emerge from naïve CD4 T cells after specific recognition of 

antigen-derived peptide displayed on MHC class II molecules of APCs and B cells. Both the TCR-

mediated stimulation and the cytokine environment influence the fate decision of naïve CD4 T cells 

towards distinct Th subsets. Each Th cell subset expresses a unique set of transcription factors and 

produce hallmark cytokines that promote: CD8 T cell or B cell differentiation and memory 

establishment; enhance innate immune components’ action; or even suppress the immune response 

(Yamane and Paul 2013). 
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II.    Innate immune response 

 

 

The innate immune system not only monitors the host for microbes but also the health of the 

host’s own cells. In response to pathogens and cell injury, the innate immune system alerts the 

adaptive immune system to a potential problem in order to generate a specific response through 

antigen presentation. However, in parallel, the innate immune system also rapidly mobilizes innate 

defenses to the site of injury through the generation of an inflammatory response. 

 

 

1. Inflammation: the key component of innate responses  

 

Inflammation is an immediate response that is triggered by noxious stimuli and conditions, such 

as infection and tissue’s injury (classical acute or chronic inflammatory response), or such as tissue’s 

stress or malfunction (para-inflammatory response). The defining features of inflammation are 

redness, swelling, heat, pain, and loss of tissue function which have as physiological basis the local 

and transient: vasodilatation, leakage of plasma soluble molecules, and migration  of leukocytes out 

of blood vessels into the surroundings of the affected tissue. 

 

The physiologic purpose of inflammation is to restore the homeostasis, resulting in the 

elimination of the infectious agents and/or the repair of tissue injury. A typical inflammatory 

response consists of four components: i) the inflammatory inducers, ii) the sensors that detect them, 

iii) the inflammatory mediators induced by the sensors, and iv) the inflammatory effectors/target 

tissues that are affected by the inflammatory mediators (Fig. 3) (Nathan 2002; Medzhitov 2010). 

 

Inflammation is triggered when innate immune cells residing in tissues (macrophages, mast cells 

and dendritic cells) or non professional immune cells (epithelial cells, endothelial cells and 

fibroblasts), as well as circulating monocytes and neutrophils, recognize pathogen invasion or cell 

damage through their intracellular or surface-expressed pattern recognition receptors (PRRs). These 

receptors (inflammatory sensors), directly or indirectly detect inflammatory inducers like pathogen-

associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). DAMPs 

are nuclear or cytosolic host molecules that when released outside the cell, or exposed on cell 

surface following tissue injury or cell necrosis, can contribute to a sterile (noninfectious) 

inflammation. They include ATP, the cytokine IL1α, uric acid, calcium-binding proteins, DNA-binding 

nuclear proteins, amyloid β fibrils, heat shock proteins, defensins, phagocyte-specific proteins, etc. 

By contrast, PAMPs are exogenous molecules of both pathogenic and non-pathogenic origin; they are 

shared by a large group of microorganisms and are often conserved products essential for microbial 

survival. They include bacterial and viral nucleic acids, fungal β-glucan and α-mannan cell wall 

components, bacterial protein flagellin, components of the peptidoglycan bacterial cell wall, 

lipopolysaccharide (LPS) from Gram-negative bacteria, etc (Medzhitov 2008; Newton and Dixit 2012). 
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Inflammatory mediators are responsible for vascular alterations and for the recruitment of 

leukocytes. 

Vasoactive amines (histamine and serotonin) are produced in an all-or-none matter by mast 

cells and platelets degranulation, and they are responsible for increased vascular permeability and 

vasodilatation. Vasoactive peptides can be stored in an active form in secretory vesicles (like 

substance P) or generated by proteolytic processing of inactive precursors in the extracellular fluid 

(for example, kinins, fibrinopeptide and fibrin degradation products). Substance P is released by 

sensory neurons and promotes itself mast-cell degranulation. Other vasoactive peptides are 

generated through proteolysis by the Hageman factor, thrombin or plasmin and cause vasodilatation 

and increased vascular permeability. The Hageman factor activates the kallikrein-kinincascate 

resulting in bradykinin production which has a pain-stimulating effect. The complement fragments 

C3a, C4a and C5a (known as anaphylatoxins) are produced via several pathways of complement 

activation. C5a, in a higher extension than C3a and C4a, promote granulocyte and monocyte 

recruitment and induce mast cell degranulation, therefore affecting the vasculature. Lipid mediators, 

(such as eicosanoids and platelet-activating factors) are derived from phosphatidylcholine, a 

phospholipid present in the inner leaflet of cellular membranes. After activation by intracellular Ca2+ 

ions, cytosolic phospholipase A2 generates arachidonic acid and lysophosphatidic acid. Arachidonic 

acid is metabolized to form eicosanoids either by cyclooxygenases, which generate prostaglandins 

and thromboxanes, or by lipoxygenases, which generate leukotrienes and lipoxins. The 

prostaglandins PGE2 and PGI2 cause vasodilatation and PGE2 induce high sensitivity to pain and fever, 

and can stimulate DCs and promote IL-12 production, which is necessary for efficient antigen 

presentation and T ell activation. Lipotoxins (and dietary ω3-fatty-acid-derived resolvins and 

protectins) inhibit inflammation and promote resolution of inflammation and tissue repair. Platelet-

activating factors are generated by the acetylation of lysophospatidic acid and induce recruitment of 

leukocytes, vasodilatation and vasoconstriction, increase vascular permeability and platelet 

activation. Proteolytic enzymes (including elastin, chathepsins and matrix metalloproteinases) 

through degradation of extra cellular matrix and basement-membrane proteins are involved in host 

defense, tissue remodeling and leukocyte migration (reviewed in Medzhitov 2008). 

Inflammatory cytokines (tumor-necrosis factor-a (TNF-a), IL-1, IL-6 and many others are 

produced by many cell types, most importantly by macrophage and mast cells. They promote 

leukocyte extravasation by increasing the levels of leukocyte adhesion molecules on endothelial cells. 

In addition, they can have systemic effects. They induce hepatocytes to produce acute phase 

proteins such as C-reactive protein and coagulation factors, and they activate brain endothelium to 

produce PGE2. Activated dendritic cells, macrophages, and neutrophils, remove foreign particles or 

host debris by phagocytosis and they also secrete cytokines that shape the lymphocyte-mediated 

adaptive immune response. 

Depending on the type of infection (bacterial, viral, or parasitic), the sensors, mediators, and 

target tissues vary such that the appropriate type of inflammatory response is induced. For example, 

viral infections induce the production of type-I interferons (IFN-α and IFN-β) by infected cells and the 
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activation of cytotoxic lymphocytes, whereas infections with parasitic worms lead to the production 

of histamines, IL-4, IL-5, and IL-13 by mast cells and basophils. 

Chemokines (e.g. CCL2 and CXCL8) are produced by many cell types in response to inducers of 

inflammation and they control leukocyte extravasation and chemotaxis towards the affected tissues 

(reviewed in Medzhitov 2010; Newton and Dixit 2012). 

 
 

 
Figure 3. Simplified inflammatory pathway components.  

Inducers (infection or tissue damage) initiate the inflammatory response and are detected by sensors like Toll-like receptors 

(TLRs) which are expressed on sentinel cells, such us tissue-resident macrophages, dendritic cells and mast cells. They 

induce the production of mediators, including cytokines, chemokines, bioactive amines, eicosanoids, and products of 

proteolytic cascades, such us bradykinin. These inflammatory inducers act on several target tissues to elicit vascular 

alterations and circulating leuckocyte recruitment to the site of injury (Medzhitov 2010). 

 

 

 

 

 

2. Pattern recognition receptors (PRRs): innate immune recognition 

 

Pattern recognition receptors (PRRs) are not only involved in sensing pathogen invasion but also 

in sensing damaged cells. PPRs include Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I-like 

receptors (RLRs), and C-type lectin receptors (CLRs). 

 

 

2.1.  Toll-like receptors (TLRs) 

 

TLRs were the first PPRs family members to be identified and are one of the best-characterized. 

They are type I transmembrane proteins expressed either on cell surface or associated with 

intracellular vesicles. TLRs are characterized by N-terminal leucine-rich repeats on their ectodomain 

that mediate the recognition of a wide range of PAMPs, and also by a cytoplasmic Toll/IL-1R 

homology (TIR) domain that activate downstream signaling pathways. 
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Ten TLRs have been identified in humans and 12 in mice, with TLR1-TLR9 being conserved in both 

species. Mouse TLR10 is not functional because of a retrovirus insertion, and TLR11, TLR12 and TLR13 

have been lost from the human genome. Depending on their cellular localization and respective 

PAMP ligands, TLRs are divided in two subgroups: 1) TLR1, TLR2, TLR4, TLR5, TLR6 and TLR11, which 

are expressed on cell surfaces and recognize mainly microbial membrane components such as lipids, 

lipoproteins and proteins; 2) TLR3, TLR7, TLR8 and TLR9, which are exclusively expressed in 

intracellular vesicles (endoplasmic reticulum, endosomes, lysosomes and endolysosomes) and 

recognize microbial nucleic acids. (Kawai and Akira 2010).  

Different TLRs recognize different molecular patterns of microorganisms and self-components (Table 

1).  

 

 

Table 1. Pattern recognition receptors (PRRs): TLRs, RLRs, NLRs, CLRs, and their ligands (Takeuchi and Akira 2010).

 

 

 

 

TLR4 forms a complex with MD2, and together they serve as the main LPS -binding component 

(lipopolysaccharide, a component of the outer membrane of Gram-negative bacteria known to be a 

cause of septic shock). The formation of a receptor homodimer composed of two copies of the TLR4-

MD2-LPS complex (Park et al. 2009) initially transmits signals for the early-phase activation of NF-kB 

by recruiting the TIR domain-containing adaptors TIRAP (Mal) and MyD88 (MyD88-dependent 

pathway). The TLR4-MD2-LPS complex is then internalized and retained in the endosome, where it 

triggers signal transduction by recruiting TRAM and TRIF, which leads to the activation of IRF3 (for 

induction of type I interferon) and the late-phase NF-kB (TRIF-dependent pathway). Both early- and 

late-phase activation of NK-kB is required for the induction of inflammatory cytokines (Kawai and 

Akira 2010). In addition to binding LPS, TLR4 is involved in the recognition of respiratory syncytial 
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virus fusion proteins, mouse mammary tumor virus envelop proteins, Streptococcus pneumonia 

pneumolysin and the plant-derived cytostatic drug paclotaxel (Akira et al. 2006).  TLR4 is also 

involved in the recognition of viruses by binding to viral envelope proteins, and it modulates 

pathogenesis of H5N1 avian influenza virus infection by recognizing a DAMP rather than the virus 

itself (Imai et al. 2008). Concerning host cell ligands, TLR4 recognizes fibrinogen, hyaluronic acid, and 

heparin sulfate fragments, as well as several heat shock proteins (also secreted by bacteria) (Akira 

and Takeda 2004).  

 

TLR2 recognize lipopeptides from bacteria, peptidoglycan and lipoteichoic acid from Gram-

positive bacteria, lipoarabinomannan from mycobacteria, zymosan from fungi, tGPI-mucin from 

Trypanossoma cruzi, the hemagglutinin protein from measles virus, and HSP70 from host cells (Akira 

et al. 2006). TLR2 generally forms heterodimers with TLR1 or TLR6. Different lipid-binding pockets 

formed with TLR1 or TLR6 are responsible for the discrimination between lipoproteins. TLR2-TLR1 

heterodimer recognizes triacylated lipopeptides from Gram-negative bacteria and mycoplasma, 

whereas TLR2-TLR6 heterodimer recognizes diacylated lipopetides from Gram-positive bacteria and 

mycoplasma. Although it was believed that TLR2 agonists mainly induce the production of 

inflammatory cytokines and not type I interferon by macrophages and dendritic cells, it was also 

shown that it can trigger the production of type I interferon by inflammatory monocytes in response 

to infection with vaccinia virus (Barbalat et al. 2009). This suggests that cellular responses to TLR2 

ligands differ depending on the cell types involved.  

TLR2 and TLR4 engagement also results in recruitment of mitochondria to macrophage 

phagosomes and increased production of mitochondrial ROS that have been implicated in mouse 

macrophage bactericidal activity (West et al. 2011). 

 

TLR5 recognizes the flagellin protein component of bacterial flagella. CD11c+CD11b+ lamina 

propia DCs (LPDCs) in the small intestine have high expression of TLR5. Lamina propia DCs are unique 

in promoting the differentiation of IL-17-producing helper T cells (Th17 cells) and T helper type 1 

(Th1) cells, as well as the differentiation of naïve B cells into immunoglobulin A-producing plasma 

cells in response to flagellin (Uematsu et al. 2008). 

 

TLR11 is a relative of TLR5, it is expressed in mouse’s kidney and bladder, it recognizes 

urophatogenic bacterial components, and TLR11-deficient mice are susceptible to infection with 

these bacteria (Zhang et al. 2004). TLR11 also recognizes the profilin-like molecule derived from the 

intracellular protozoan Taxoplasma gondii (Yarovinsky et al. 2005). 

 

TLR3 recognizes a synthetic analog of double-strand RNA (dsRNA), poly I:C (polyinosinic-

polycytidylic acid), which mimics viral infection and induces antiviral immune responses. TLR3 

triggers antiviral immune responses through the production of type I interferon and inflammatory 

cytokines with an essential role in preventing virus infection. TLR3-deficient mice are susceptible to 

lethal infection with murine Cytomegalovirus (Tabeta et al. 2004), and TLR3 deficiency in humans is 
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associated with susceptibility to herpes simplex virus type 1 (HSV-1) (Zhang et al. 2007). In the 

endolysosome, TLR3 also recognizes the genomic RNA of reoviruses, dsRNA produced during 

replication of single strand RNA (ssRNA) and certain small interfering RNAs (Akira et al. 2006; Bell et 

al. 2006). Ligand binding dimerizes two TLR3 molecules (Choe et al. 2005). 

 

TLR7 was originally identified as recognizing imidazoquinoline derivates and guanine analogs  

such as loxoribine, which have antiviral and antitumor properties. It recognizes ssRNA derived from 

RNA viruses such as vesicular stomatitis virus, influenza A virus and human immunodeficiency virus 

(Kawai and Akira 2006). TLR7 also recognizes synthetic poly (U) RNA and certain small interfering 

RNAs (Hornung et al. 2005). TLR7 is highly expressed on plasmacytoid DCs (pDCs), which are able to 

produce large amount of type I IFN after virus infection, and cytokine induction that in response to 

RNA virus are totally dependent of TLR7 (Kawai and Akira 2006). In addition, TLR7 expressed on 

conventional DCs (cDCs) senses RNA from group B Steptococcus bacteria and induces type I IFN 

(Mancuso et al. 2009). TLR7 senses virus that are internalized and recruited to the endolysosomes, 

and also virus that enter the cytoplasm via autophagy (in which self-proteins and damaged organelles 

are degraded in double-membrane vesicles: autophagosomes). pDCs show constitutive autophagy 

formation, and pDCs lacking the autophagy-relate protein Atg5 show defects in the production of 

interferon-α after infection with vesicular stomatitis virus (Lee et al. 2007). 

 

TLR9 recognizes unmethylated 2’-deoxyribo CpG (cytidine-phosphate-guanosine) DNA motifs 

that are frequently present in bacteria and viruses but are rare in mammalian cells. Synthetic CpG 

oligodeoxynucleotides function as TLR9 ligands and directly activate DCs, macrophages, B cells, and 

drive strong Th1 responses  There is high expression of TLR9 in pDCs and it serves as a sensor of DNA 

virus infection (like murine cytomegalovirus, HSV-1 and HSV-2) (Akira et al. 2006). TLR9 also 

recognizes the insoluble crystal hemozoin, which is generated on the detoxification process after 

digestion of host hemoglobin by the malaria parasite Plasmodium falciparum (Coban et al. 2010). 

 

 

Individual TLRs trigger specific biological responses. TLR3 and TLR4 generate both type I 

interferon and inflammatory cytokine responses, whereas cell surface TLR1-TLR2, TLR2-TLR6 and 

TLR5 induce mainly inflammatory cytokines (Fig. 4). These differences are due to TIR domain-

containing adaptor molecules: MyD88, TIRAP, TRIF and TRAM, which are recruited by distinct TLRs 

and activate distinct signaling pathways. MyD88 was the first member of the TIR-family to be 

discovered and is universally used by all TLRs except TLR3, and activates the transcriptional factor NF-

kB and mitogen-activated protein kinases (MAPKs) to induce inflammatory cytokines. In contrast, 

TRIF is used by TLR3 and TLR4, and induces alternative pathways that lead to activation of the 

transcription factor IRF3 and NF-kB and the consequent induction of type I interferon and 

inflammatory cytokines. TIRAP is an adaptor that recruits MyD88 to TLR2 and TLR4, whereas TRAM is 

an adaptor that recruits TRIF to TLR4.  

TLR4 is the only TLR that recruits four adaptor proteins and activates two distinct signaling 

pathways: the MyD88-dependent and the TRIF-dependent pathways (Fig. 4). These two pathways 
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have different kinetics. TLR4 initially recruits TIRAP and MyD88, which recruits IRAKs, TRAF6 and the 

TAK1 complex, leading to early-phase activation of NF-kB and MAP kinases (ERK, JNK and p38). 

Signaling via the MyD88-dependent pathway leads to up-regulation of pro-inflammatory cytokines 

like IL-6, IL-12 and TNFα. TLR4 is then endocytosed and delivered to intracellular vesicles to form a 

complex with TRAM and TRIF. This complex then recruits TRAF3 and the protein kinases TBK1 (TANK 

binding kinase-1) and IKKi (Inducible inhibitor of NF-kB [ikB] kinase), which catalyze the 

phosphorylation of IRF3, leading to the expression of type I IFN. TRAM-TRIF also recruits TRAF6 and 

TAK1 to mediate late-phase activation of NF-kB and MAP kinases. Signaling via the TRIF pathway also 

leads to secretion of chemokines such as RANTES and IP-10 (Kawai et al. 2001; Hirotani et al. 2005) 

and up-regulation of costimulatory molecules (Hoebe et al. 2003; Yamamoto et al. 2003). Whereas 

activation of the TRIF-dependent pathway is sufficient for type I IFN induction, activation of both the 

MyD88- and TRIF-dependent pathways is required to drive robust NK-kB and MAP kinase activation 

and the subsequent induction of inflammatory cytokines (Table 2) (reviewed in Kawai and Akira 

2010; Kawai and Akira 2011).  

 

 

       
 

Figure 4. TLR trafficking and signaling. 

Individual TLRs initiate overlapping and distinct signaling pathways in various cell types such as macrophages (MP), 

convensional DC (cDC), plasmacytoid DC (pDC), lamina propia DC (LPDC), and inflammatory monocytes (iMO). PAMP 

engagements induce conformational changes of TLRs that allow homo- or heterophilic interactions of TLRs and recruitment 

of adaptor proteins such as MyD88 (universally used by all TLRs except TLR3), TIRAP, TRIF and TRAM. (LRO, lysosome-

related organelle) (Kawai and Akira 2011). 
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Table 2.  Functional outputs of some of the genes upregulated by TLR4 (Newton and Dixit 2012). 

 
 

 

 

 

2.2.   NOD-like receptors (NLRs) 

NLRs are a family of molecules that sense a wide range of ligands (PAMPs, non-PAMP particles 

and cellular stresses) within the cytoplasm of cells. This family comprises 23 members in humans and 

approximately 34 in mice. The NLR family is composed of three domains: a C-terminal leucine –rich 

repeats involved in the recognition; a N-terminal domain that harbors protein-binding motifs, such as 

CARD, a pyrin domain (PYD), and a baculovirus inhibitor repeats (BIRs) in most of NLRs; and an 

intermediate domain consisting of nucleotide-binding and oligomerization (NACHT) domains, which 

are required for ligand-induced, ATP-dependent oligomerization of the sensors and formation of 

active receptor complexes and consequent downstream signaling (Kanneganti et al. 2007; Kumar et 

al. 2011). 

 

NOD1 and NOD2 (also known as CARD4 and CARD15, respectively) are the best characterized 

NLRs and they comprise an N-terminal domain containing either one (NOD1) or two (NOD2) CARDs. 

These receptors are mainly expressed in the cytosol of various cells, however, their expression on the 

plasma membrane has also been reported (Barnich et al. 2005; Kufer et al. 2008). NOD1 and NOD2 

recognize structures of bacterial peptidoglycans. NOD1 recognizes γ-D-glutsmyl-mesodiaminopimelic 

acid (iE DAP) from Bacillus subtilis, Listeria monocytogenes, Echerichia coli, Pseudomonas 

aeruginosa, Helicobacter pylori, etc. NOD2 recognizes muramyl dipeptide (MDP) from Streptococcus 

pneumonia, Mycobacterium tuberculosis, Listeria monocytogenes, Salmonella typhimurium, etc. 

(Kumar et al. 2011). NOD2 is also important for the defense against pathogenic protozoal parasites, 

such as Toxoplama gondii (Shaw et al. 2009), and is involved in 5’-triphosphate RNA-induced type I 

IFN production and host defense against respiratory syncytial virus infection (Sabbah et al. 2009). 

PAMP recognition initiates oligomerization of these receptors, which subsequently recruit CARD-

containing adaptor protein known as RIP2 and activates NF-kB and MAP kinases to induce the 

transcription of inflammatory cytokines (Park et al. 2007).  NOD1 and NOD2 also have been shown to 

stimulate autophagy independently of RIP2 (Travassos et al. 2010). 
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Stimulation of macrophages and DCs with microbial PAMPs also initiates the assembly of a 

protein complex known as the inflammasome, which is composed of NLR members (e.g. NLRP3, 

NLRC4, NLRP1). Inflammasome initiates the proteolytic cleavage (or maturation) of various caspases, 

resulting in the maturation and production of inflammatory cytokines, such as IL-1β and IL-18, or 

initiates cell death. The NLRP3 inflammasome is the most widely studied and it recognizes ATP, uric 

acid crystals, heat shock proteins, viral RNA, bacterial DNA and bacteria muramyl dipeptide 

(Mogensen 2009; Kumar et al. 2011). 

 

 

3. Monocytes/Macrophages 

 

Monocytes are derived from precursors in the bone marrow and traffic via bloodstream to 

peripheral tissues. During both homeostasis and inflammation, circulating monocytes leave the 

bloodstream and migrate into tissues where, depending on local growth factors, pro-inflammatory 

cytokines and microbial products, they may differentiate into macrophages or dendritic cells 

populations. The ability of monocytes to mobilize and traffic to where they are needed is central for 

their pro-inflammatory and antimicrobial roles, and also for patrolling and tissue repair functions (Shi 

and Pamer 2011). 

In mice, expression of Ly6C and CD11b identifies a monocyte subset that expresses high levels of 

CC-chemokine receptor 2 (CCR2) but low levels of CX3-chemokine receptor 1 (CX3CR1). These 

granular and large monocytes are also called inflammatory or LY6Chigh monocytes, represent 2-5% of 

circulating white blood cells in uninfected mouse, and are rapidly recruited to sites of infection and 

inflammation.  

CCR2 has a crucial role in the trafficking of these monocytes as CCR2 deficiency reduces LY6Chigh 

monocyte trafficking to sites of inflammation. CCL2 and CCL7 chemokines (CCR2 ligands) mediate this 

recruitment. CCL2 is expressed by nucleated cells in response to activation by pro-inflammatory 

cytokines or stimulation of innate immune receptors by a range of microbial molecules. CCL7 is also 

induced by bacterial infection (Jia et al. 2008). During Listeria Monocytogenes (LM) infection in mice, 

bone marrow stromal cells which express TLRs, respond to very low concentration of TLR ligands by 

producing CCL2 (Shi et al. 2011).  In addition to MyD88/TLR signals, type I IFNs ligands also contribute 

to CCL2 induction. In the absence of either MyD88 or type I IFN receptor signaling, monocytes egress 

from bone marrow (monocytosis) and recruitment to infected spleen are maintained. However, the 

combined loss of MyD88 and IFNAR signaling results in a dramatic reduction in early monocyte 

recruitment from the bone marrow and also results in diminished accumulation of Tip-DCs (TNFα - 

and iNOS-producing DCs) in the infected spleen (Jia et al. 2009). Both TNFα and iNOS (inducible nitric 

oxide synthase) contribute to innate defense against LM and are produced by Tip-DCs, a cell 

population derived from LY6Chigh monocytes that are recruited to the foci of infection (Serbina et al. 

2003). Recruited NK cells in proximity of recruited LY6Chigh monocytes in the spleen produce 
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interferon-γ (IFNγ), and thus drive monocyte differentiation into Tip-Dcs by a MyD88 dependent 

pathway (Serbina et al. 2003; Kang et al. 2008). 

Monocytes also express CCR1 and CCR5 chemokine receptors (shared ligands: CCL3 and CCL5), 

but unlike CCR2, CCR1 and CCR5 are expressed by multiple cell types (Shi and Pamer 2011). 

Besides chemokines, integrins and other adhesion molecules are also involved in monocyte 

trafficking. LY6Chigh monocytes in mice express L-selectin (CD62L), P-selectin glycoprotein ligand 1 

(PSGL1), lymphocyte function-associated antigen 1 (LFA1); also known as αLβ2 integrin), macrophage 

receptor 1 (MAC1; also known as αMβ2 integrin), platelet endothelial cell adhesion molecule 

(PECAM1) and very late antigen4 (VLA4; also known as α4β1 integrin), which all contribute to 

leukocyte adhesion and migration (Ley et al. 2007). Following recruitment to the inflamed tissue, 

LY6Chigh monocytes up regulate CD11c and MHC class II and migrate to draining lymph nodes, where 

they can promote T cell proliferation, suggesting that this subset of monocytes differentiates into 

DCs. LY6Chigh monocytes have a short transit time in the bloodstream and are not recovered from 

peripheral tissues in the absence of inflammation, but instead home to the bone marrow (Geissmann 

et al. 2003; Serbina et al. 2008). 

A second subset of circulating monocytes in mice expresses high levels of CX3CR1 and low levels 

of CCR2 and Ly6C (also referred as CX3CR1high or LY6Clow monocytes), they are less prevalent than 

LY6Chigh monocytes and they circulate for long time periods. These monocytes adhere and migrate 

(patrolling process) along the luminal surface of endothelial cells that line small blood vessels and 

traffic into peripheral tissues under non inflammatory conditions. These cells give rise to tissue 

macrophages and DCs and are referred to as resident monocytes (Auffray et al. 2007; Shi and Pamer 

2011). 

 

Macrophages express many receptors that mediate their diverse function. The opsonic 

receptors include complement receptors (integrins) and Fc receptors (Ig superfamily), and they 

function in phagocytosis and endocytosis of complement- or antibody – opsonised particles, 

respectively. Another group of phagocytic/endocytic surface receptors are the non Toll-like receptors 

(NTLRs), which include the family of scavenger receptors and the C-type lectins. Scavenger receptors 

include CD36, SREC and LOX-1 and they have also been shown to collaborate with TLR to NF-kB 

induction (Gordon 2007).  

Following tissue injury or infection, the first-responder macrophages usually secrete TNFα (tumor 

necrosis factor) NO (nitric oxide) and IL-1, which participate in the activation of various antimicrobial 

mechanisms, including oxidative processes to kill invading organisms. Activated macrophages also 

produce IL-12 and IL-23, which influence the polarization of Th1 and Th17 cells. In addition to the 

innate pro-inflammatory role, phagocytic activity and role in antimicrobial immunity (M1 

macrophage response: triggered by LPS or IFNγ), macrophages also exhibit an anti-proinflammatory 

and wound healing response to restore tissue homeostasis (M2 macrophage response: following 

exposure to IL-4 and/or IL-13) by production of TGFb1 (transforming growth factor), PDGF (platelet-

derived growth factor), IL-10  and specific chemokines that recruit fibroblasts, Th2 and Treg cells 

(Murray and Wynn 2011). 
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4. Neutrophils 

 

Neutrophils are polymorph nuclear (PMN) leucocytes (together with eosinophils and basophils) 

and are the major effectors of acute inflammation. During inflammation the number of neutrophils in 

tissues increases and, with time, these cells die by apoptosis and are removed by macrophages and 

DCs (Stark et al. 2005). In humans, 50-70% of circulating leukocytes are neutrophils, whereas the 

representation of these cells in mice is only 10-25% (Mestas and Hughes 2004). 

Neutrophils are also considered the first leucocytes to be recruited to an inflammatory site after 

the initial detection of PAMPs and DAMPs by macrophages and patrolling monocytes. Endothelial 

cells near the inflammation site are stimulated by inflammatory signals (chemokines, lipid mediators, 

TNFa, IL-1b and IL-17, etc) to express adhesion molecules on their luminal site: P-selectin, E-selectins 

and ICAMs (intercellular adhesion molecules) (Borregaard 2010). On the surface of neutrophils, PSGL-

1 (P-selectin glycoprotein ligand-1) and L-selectin are constitutively expressed proteins that engage 

the P and E-selectins of endothelial cells, resulting in selectin-mediated rolling of neutrophils along 

the endothelium. Engagement of PSGL-1 and L-selectin on neutrophils activates a variety of kinases 

that change the neutrophil biology and lead to β2-integrins activation and clustering on the surface. 

β2 integrins (LFA-1 and Mac-1/CD11b) engage the endothelial ligand (ICAM-1 proteins) resulting in 

the firm adhesion state to prepare trans-endothelial migration. In the interstitial space, neutrophils 

follow a hierarchy of chemotactic gradients towards host- or pathogen- derived chemoattractants 

(reviewed in Amulic et al. 2012). 

Pro-inflammatory cytokines produced by macrophages, such as TNFα, IL-6, CXCL8 (IL-8), CCL3 

and CCL4 promote recruitment of neutrophils. A multitude of chemokines can direct neutrophil 

recruitment, through the two main chemokine receptors expressed on neutrophils, CCR1 and CXCR2. 

Proteases produced by neutrophils, macrophages and endothelial cells cleave and increase the 

chemotactic activity of CXCL1, CXCL8 and CXCL5, all ligands of the neutrophil receptor CXCR2 

(reviewed in Soehnlein and Lindbom 2010). 

Concomitantly, activation of pattern-recognition receptors (PRRs) contributes to further 

activation of neutrophils, e.g., induction of the oxidative burst. In neutrophils, all TLRs are 

constitutively expressed, except TLR3 (Sabroe et al. 2005). Other PRRs that induce neutrophil 

chemotaxis and functional activation is the N-formyl peptide receptor (FPR1). The production of 

formylated proteins is restricted to bacteria and mitochondria (Zhang et al. 2010). Leukotriene B4, a 

lipid mediator, synthesized by monocytes and macrophages, in addition to its chemotactic effect, it 

also induces secretion of neutrophil granule proteins and ROS (reactive oxygen 

species)(Schoenberger 2003). 

 

Neutrophils encapsulate microorganisms in phagosomes through Fc- and C3 complement- 

receptor’s engagement and kill them by NADPH oxygenase-dependent mechanisms (reactive oxygen 

species: ROS) or by antibacterial proteins (cathepsons, defensins, lactoferrin and lysozyme). Besides 

being released into phagosomes, the antibacterial proteins can also be released into the extracellular 

milieu, a process called degranulation. In addition, highly activated neutrophils can also eliminate 
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extracellular pathogens by releasing neutrophil extracellular traps (NETs): NETs are composed of 

decondensed DNA attached to histones, proteins (lactoferrin and cathepsins) and enzymes (elastase) 

that are released from neutrophil granules as an active form of cell death. NETs prevent spreading of 

pathogens through their immobilization and also facilitate phagocytosis of trapped microorganisms 

(Brinkmann et al. 2004). 

After the influx of neutrophils to the inflammation locus, neutrophils recruit monocytes by 

expressing CCL2, CCL3 (MIP-1α), CCL20 (MIP-3α), and CCL19 (MIP-3β) chemoattractants. Their 

granule proteins also induce monocyte extravasation (Scapini et al. 2001). Subcutaneous inoculation 

of Leishmaniasis major triggered a massive and rapid infiltration of neutrophils that secrete CCL3, 

recruiting DCs to the site of inoculation and initiating a protective Th1 response (Peters et al. 2008; 

Charmoy et al. 2010). Activated neutrophils can also induce DCs maturation in vitro (van Gisbergen et 

al. 2005). Infection of mice with Legionella pneumophila triggers production of IFNγ by NK cells, 

which is dependent on both neutrophil-derived IL-18 and DC-derived IL-12 (Sporri et al. 2008).  

Neutrophils can also regulate adaptive immune responses. In spleen, neutrophils release BAFF 

(B cell-activating factor) and CD40 ligand, and promote help to B cell secretion of IgM and IgG (Puga 

et al. 2012). After intradermal injection of modified vaccinia Ankara virus, neutrophils carry virus 

from the skin to the bone marrow, where they interact with resident myeloid APCs, resulting in an 

alternative source of primed CD8 T cells (Duffy et al. 2012). Moreover, Nets formed by neutrophils 

prime CD4 T helper cells by reducing their activation threshold. (Tillack et al. 2012). Neutrophils also 

produce IFNγ, often at early stages of Listeria infection, which promote adaptive immunity through 

effects on MHC expression and T helper cell development (Yin and Ferguson 2009). 

 

 
 

 

5. Natural killer cells  
 

Natural killer cells (NKs) survey host tissues for signs of infection, transformation or stress, and 

they kill target cells that have become useless or are detrimental to the host. NK cells have been 

classified as a component of the innate immune system, however, they also share some attributes 

with T and B cells of the adaptive immune system.  

NK cells are originated from a common lymphoid progenitor and depend on signals mediated by 

the common IL-2 receptor γ-chain (γc) for survival and homeostasis. In the mouse, the earliest 

lineage-committed precursors are characterized by the expression of IL-2R and IL-15Rβ. Next stages 

of maturation involve sequential acquisition of NK1.1 and CD94-NKG2 receptors and integrin αv 

subunit. NK cells then express Ly-49 and c-kit, followed by an NK cell expansion stage that is 

characterized by up-regulation of DX5.  

 

During basal homeostasis, mature peripheral NK cells reside in the blood, spleen, liver, lung and 

other organs. NK cells are found only at low frequency in the lymph nodes.  
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Although not fully characterized, many chemokines have been implicated in NK cells migration 

between the blood, lymphoid organs and non-lymphoid organs. These include CCL3 (MIP1α), CCL4 

(MIP1β), CCL5, CCL19, CXCL12, CXCL16 and CX3CL1. In addition, during NK cell development and 

homeostasis, the expression of α2, α4, and αMb2/MAC1 integrins and chemokine receptors (CCR1, 

CCR5, CCR7, CXCR3, CXCR4, CXCR6 and CX3CR1) are regulated.  

During infection, NKs become activated through the balance of inhibitory and activating 

receptor stimulation, and by pro-inflammatory cytokines (such as IL-12 and type I IFNs), and as a 

result they produce large amounts of IFNγ, perforin and granzymes. In addition, NK cells are an 

important source of inflammatory cytokines that regulate adaptive immune system in host 

protection from tumors and viruses, via their cross talk with APCs like DCs, monocytes and 

macrophages (reviewed in Kim et al. 2002; Degli-Esposti and Smyth 2005; Sun and Lanier 2011).  

 

 

 

6. Dendritic cells  

 

Dendritic cells (DCs) are designated as professional antigen-presenting cells (APCs) and comprise 

several subsets. Differences in location, life cycle, and intrinsic ability to capture, process and present 

antigens on their MHC class I and class II molecules – a prerequisite for T cell priming – enable each 

DC subset to have distinct roles in immunity to infection and in the maintenance of self tolerance.  

The most common method to generate mouse DCs in vitro involves culturing bone marrow or 

spleen precursors in medium supplemented with granulocyte/macrophage colony stimulating factor 

(GM-CSF), with or without IL-4. However, the DCs generated by this method are homogeneous and 

resemble monocyte-derived DCs, which almost do not correspond with any lymphoid-organ-resident 

DCs subsets found in vivo. This highlights the importance of analyzing the properties of DCs in vivo, 

where anatomical location of the DCs, the accessibility of the antigen to that location, and the effect 

of pathogens exerted on the DCs further influence their properties (Shortman and Naik 2007). 

 

There are two main subtypes of DCs in mouse secondary lymphoid organs: conventional DCs 

(cDC) and plasmacytoid DCs (pDC). cDC are short-lived cells expressing high levels of CD11c and are 

subdivided into resident DCs and migratory DCs. Resident DCs differentiate in the lymphoid organs 

from blood-born precursors and can be divided into CD8a-expressing DC (CD8+ DC) and CD8- DC. 

These subsets are the only ones found in the spleen. Migratory DCs develop from earlier precursors 

in peripheral tissues and travel through the afferent lymphatics to reach the local draining lymph 

nodes. This group of DCs is absent from the spleen and thymus and it includes epidermal Langerhans 

cells, epithelial cells, and their dermal counterparts. cDCs have an enhanced ability to sense tissue 

injuries, capture environmental- and cell-associated antigens and process and present phagocytosed 

antigens to T cells due to: i) their critical location in non-lymphoid tissues and in the spleen marginal 

zone in the steady sate, where they constantly acquire tissue and blood antigens; ii) their superior 

antigen processing and presentation machinery; iii) their superior ability to migrate loaded with 
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tissue antigens to the T cell zone LNs in the steady state and inflamed state; iv) their superior ability 

to prime naïve T cells responses. pDC are relatively long-lived cells, they circulate through the blood 

and lymphoid tissues, they express low levels of MHC class I and co-stimulatory molecules and low 

levels of the integrin CD11c in the steady state. They also express a narrow range of pattern-

recognition receptors (PRRs) that include TLR7 and TLR9 and are thus specialized to respond to viral 

infection. Upon recognition of foreign nucleic acids, they have the unique capacity to secrete large 

amounts of type I interferons and acquire the capacity to present foreign antigens (reviewed in 

Segura et al. 2007; Merad et al. 2013).  

 

When a microbe infects a tissue, immature DCs sense the microbe through the different types of 

pattern recognition receptors (PRRs) and then capture the microbe  or its products by the actin-

dependent process of phagocytosis (for particulate antigens) and receptor-mediated endocytosis or 

macropinocytosis (for soluble antigens). To be presented, the antigens have to access the 

compartments where proteolytic degradation generate peptide ligands for MHC class I or II 

molecules (peptide processing). Peptides derived from proteins degraded mainly in the cytosol by 

the proteasome are presented by MHC class I molecules, whereas peptides derived from proteins 

degraded in endosomal compartments by the cathepsins and other hydrolytic enzymes are 

presented by MHC class II molecules. Antigens can be classified as endogenous (when synthesized by 

the antigen-presenting cells themselves) or exogenous (when synthesized by other cells). Any 

endogenous polypeptide can occur in the cytosol as a functional protein or as a defective ribosomal 

product, so DCs continually present peptides that are derived from endogenous proteins on MHC 

class I molecules. Similarly, endogenous proteins that access endosomal compartments of DCs are 

efficiently presented on their own MHC class II molecules (like components of the endocytic 

pathway, membrane proteins and cytosolic proteins that are transferred into endosomes by 

autophagy). Therefore all DCs constitutively present peptides that are derived from their own 

components on MHC class I and II molecules. When cells become infected with virus, the 

endogenous viral antigens are incorporated into their antigen presentation pathways, and DCs are no 

exception. However, participation of DCs in antiviral responses can be compromised due to multiple 

viruses’ mechanisms to interfere with antigen-presentation pathways. The presentation of 

exogenous antigens relies on the ability of cells to deliver the antigens to the correct processing 

compartment. These antigens must be endocytosed by pinocytosis, phagocytosis or receptor-

mediated endocytosis in order for antigens to become readily accessible to endosomal proteases and 

so be presented by MHC class II molecules. In addition, some cells can present these antigens via 

MHC class I molecules, a process known as cross-presentation. This pathway is of particular 

relevance in DCs because they appear to be the main cell population that cans cross-present antigens 

in vivo. Among the lymphoid-organ-resident DCs, the CD8+ DCs are the most efficient in the 

phagocytose of dead cells and, consequently, at MHC class II presentation and MHC class I cross-

presentation of cellular antigens (Villadangos and Schnorrer 2007). 
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CD8+ DCs hold the machinery to efficiently cross-present antigens (present exogenous antigens 

on their MHC class I molecule). When purified DC subsets were cultured with antigen-specific CD8 T 

cells ex vivo, resident CD8+ DCs were shown to be the sole antigen cross-presenting cells after 

intravenous infection with LM, intravenous or intraperitoneal infection with LCMV (Lymphocytic 

choriomeningitis virus) (Belz et al. 2005), and after cutaneous infection with HSV (Allan et al. 2006). 

In addition to CD8+DCs, migratory lung and dermal DCs can cross-present antigen in vivo. CD8+ DC 

can also efficiently present antigens to CD4+ T cells during infection (Sponaas et al. 2006; Mount et al. 

2008) and they are the only subtype capable of presenting Toxoplasma gondii profilin-like molecules, 

owing to their unique expression of TLR11 (Yarovinsky et al. 2006). CD8+ DCs and CD103+ cDC 

(migratory lung epithelial subset) are the only cDCs with the double-stranded viral RNA sensor -TLR3. 

Both subsets express high levels of CD26 scavenger receptor, which binds to dead cells; high levels of 

C-type lectin Clec9A, which senses necrotic bodies; and the chemokine receptor XCR1) (Dorner et al. 

2009; Sancho et al. 2009; Davey et al. 2010).  

 

For productive immunity to occur, DCs must present not only peptide-MHC complexes but also 

additional costimulatory signals (such as molecules of the B7 family, including CD80 and CD86) to T 

cells. The interaction between CD80 or CD86 and CD28 on T cells results in the up-regulation of CD40 

ligand on T cells. The T cells may then engage CD40 on DCs and trigger a burst of cytokine expression, 

including IL-12, which induces IFN-γ in T cells. Signaling through CD40 also up-regulates numerous 

other co-stimulatory molecules, which may play distinctive roles in tuning the immune response 

(Banchereau and Steinman 1998; Pulendran et al. 2001).  
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III.   Acquired immune response 

 

CD8 T cell response 

 

CD8 T cells responses are necessary for the control of a variety of intracellular bacterial and viral 

infections, and tumors.  

Upon cognate antigen recognition through their TCRs, naïve CD8 T cells initiates multiple 

intracellular signals with complex molecular associations that lead to a cellular response. This 

includes changes in cell surface phenotype, extensive division, acquisition of effector functions (such 

as cytokine secretion and cytotoxicity) and altered survival requirements to constitute the memory 

pool.  

 

 

1. TCRαβ structure 
 

The antigen receptor of T cells (TCR) is a multimeric transmembranar complex -TCR/CD3 

complex - composed of six different polypeptide chains, organized into an eight-chain structure: a 

clonotypic and polimorphic heterodimer constituted by TCRα-TCRβ chains, responsible for specific 

ligand-binding; and three nonpolymophic signaling dimmers (CD3εCD3δ and CD3εCD3γ 

heterodimers, and ζζ homodimers chains), which are non-covalently bound to each other (Fig. 5). 

TCRα and TCRβ polypeptides consist of an amino-terminal variable (V) region and a carboxyl-

terminal constant (C) region. The diversity of the T cell repertoire is mostly determined by the 

complementary-determining regions (CDRs), on both TCR Vα and Vβ domains, which are generated 

by programmed rearrangement of germline [V-(D)-J] gene segments during T cell development. 

However, due to short cytoplasmic tails, TCR-α and -β chains lack inherent signaling activity. Thus, 

signaling activity is depending on their association with transducing CD3 and ζζ dimmers (the CD3 

complex).  

Unlike αβ chains, nonpolymorphic chains (CD3εCD3δ,  CD3εCD3γ and ζζ dimmers) have long 

cytoplasmic tails and are required for receptor assembly, cell-surface expression, and signaling 

transduction (Weiss and Stobo 1984).  

Assembly of TCRαβ/CD3 complex begins in the endoplasmic reticulum (ER) with formation of ζζ 

dimmers and the TCRαβ/CD3δεγε hexamer. In the absence of any individual component of the CD3 

complex, the other chains are synthesized at normal rates, but they are largely retained in the ER and 

degraded instead of being transported to the cell surface (Delgado and Alarcon 2005). All of the 

components are joined into a full octameric receptor in the Golgi compartment when a 

TCRαβ/CD3δεγε complex associate with ζζ dimmers (Minami et al. 1987b; Wegener et al. 1992; 

Dietrich et al. 1999). 
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The crucial regions on cytoplasmic domains of signaling 

chains are the immunoreceptor tyrosine-based activation motifs 

(ITAMs) that are phosphorylated upon TCR ligation. Each ζ chain 

has three ITAMs whereas each CD3 chain has only one ITAM 

(Weissman et al. 1988). When phosphorylated, CD3ε δ, ε γ, and 

ζζ chains serve as docking sites for recruitment of proteins with 

tyrosine kinase activity (PTK) that initiate a cascade of 

phosphorylation events (Weiss and Littman 1994) (Wang and 

Reinherz 2012).  

Hereafter, the term “TCR” is used to refer to the TCR αβ 

heterodimer /CD3 complex. 

 

 
 

 

2. T-cell co-receptor: CD8αβ 

 

CD4 and CD8 are transmembrane glycoproteins that bind to the TCR-engaged pMHC molecule 

and are involved in optimal TCR recognition and T-cell activation. 

CD4 co-receptor comprises four Ig-like domains, whereas CD8 co-receptor is a disulfite-linked 

heterodimer encoded by two distinct chains: CD8α and CD8β, each consisting of a single Ig-like 

domain. CD8α chain can also form homodimers (CD8αα) that may be expressed in several cell types: 

DC, activated CD4 and CD8 T cells, γδ T cells, NK cells and intraepithelial lymphocytes.  

CD8αβ heterodimer is only expressed in thymus derived 

CD8+ T cells, thus CD8β is commonly used as the marker to 

define thymus derived conventional CD8 T cells. 

 T-cell co-receptors CD4 and CD8 facilitate the 

adhesion/binding to the pMHC. CD4 binds to MHC class II 

molecules, whereas CD8 binds to MHC class I, which favor the 

CD4+ and CD8+ T cell restriction to their respective MHC (Doherty 

and Zinkernagel 1975). 

Besides favoring the trimeric interaction CD4 and CD8α also 

deliver the Lck (Lymphocyte-specific tyrosine kinase) in close 

vicinity to the TCR-pMHC interaction so that exposed ITAMs on 

CD3 complex-cytoplasmic tails can be phosphorylated on 

tyrosine residues, allowing Zap-70 recruitment and 

consequential downstream signaling (Fig. 6). (reviewed in Wang 

and Reinherz 2012). 

 

 

Figure 5. The TCRαβ/CD3 complex 

of T cells: it is composed of six 

different chains organized in eight-

chain structure (TCRα-TCRβ, 

CD3εCD3δ, CD3εCD3γ and ζζ chains) 

with 10 ITAMs (immunoreceptor 

tyrosine-based activation motifs). YY: 

tyrosine residues (Guy et al. 2013). 

 

Figure 6. TCR complex and CD8αβ 

heterodimer interactions with a 

pMHC class I molecule on an 

antigen presenting cell (APC): 

cooperative trimeric interaction 

(Wang and Reinherz 2012) 
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3. Immunological synapse and TCR triggering  

 

T cell activation occurs in the context of close contact between an APC and T cell, referred to as 

immunological synapse (IS). The IS is an organized structure composed of two concentric regions: the 

TCR-rich central supramolecular activation cluster (cSMAC), surrounded by the integrin-rich 

peripheral SMAC (pSMAC).  

Engagement of the TCR by pMHC triggers profound reorganization of the protein-lipid 

compositions of the IS, leading to the formation of signaling competent protein microclusters that 

contain TCR complexes associated with signaling molecules. These intracellular signaling clusters 

initiate: (i) actin cytoskeletal rearrangements that results in clusters translocation toward the cSMAC; 

(ii) polarization of T cell where the microtubular organizing center (MTOC) moves toward the T 

cell/APC contact side; and (iii) are responsible for subsequent signaling and activation of T cells, 

including the induction of a characteristic cascade of tyrosine phosphorylation events, Ca2+ release, 

and target gene expression (Fig. 7a) (Billadeau et al. 2007). 

 

How the ligation of the TCR is translated into the first intracellular signals remains controversial. 

Current models suggest that TCR aggregation, conformational changes within the TCR complex and 

exclusion of inhibitory molecules (segregation) are all required for signal initiation.  

Interestingly, in resting T cells, the CD3ζ  and/or CD3ε tails are tightly associated with the lipid-

rich inner leaflet of the plasma membrane, rendering them inaccessible to Lck phosphorylation but, 

after TCR ligation, they are released from the membrane and available to be phosphorylated (Xu et 

al. 2008).  

 TCR aggregation is supported by the existence of preformed TCR aggregates on nonactivated T 

cells and by the inability of soluble monomeric pMHC to activate T cells. Conformational changes 

after crosslinking of TCR/CD3 complexes with multimeric pMHC enables close contact and 

transphosphorylation between the CD3 tails and associated PTKs, and it also may result in 

competition for membrane lipids between the CD3 chains, resulting in dissociation of the cytoplasmic 

domains from the membrane and subsequent ITAM phosphorylation. It has also been demonstrated 

that short extracellular domains of adhesion molecules contribute to a close contact between an APC 

and T cells and that inhibitory phosphatases with long extracellular domains such CD45 are 

excluded from the contact zone because of their size, allowing TCR signaling (Davis and van der 

Merwe 2006; Smith-Garvin et al. 2009; van der Merwe and Dushek 2011). 
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4. TCR downstream signaling: MAPKs (Erk, p38, JNK), NF-kB, and AKT pathways  

 

 

Signal transduction pathways within cells rely on multiple and complex cascades of 

phosphorylation and desphosphorylation executed by kinases and phosphatases, which leads to the 

activation of several transcription factors that then guide gene transcription programs. MAP kinases 

are among the most ancient signal transduction pathways, and they are involved in many cellular 

programs such as cell proliferation, differentiation, movement and death. In immune responses, 

MAP kinases pathways are involved in the initiation phase of innate immunity (i.e. Toll like receptor 

signaling), activation of adaptive immunity (i.e. TCR signaling, cytokine receptors) and in cell death. 

MAP kinase family members are divided in three mains subgroups: ERK, p38 and JNK. 

The earliest step in intracellular signaling following TCR ligation is the activation of the Src-family 

kinase Lck which is associated to the CD8 or CD4 co-receptors. When activated, Lck phosphorylate 

the tyrosine residues (YY) in ITAMs on TCR/CD3 complex. Phosphorylated ITAMs promote the 

recruitment of the Syk-family kinase ZAP-70 (ζ-Associated Protein of 70-kDa) that are then able to 

phospholyrate the transmembrane LAT (Linker for Activation of T cells) and the cytosolic SLP-76 (Src 

homology 2 domain-containing leukocyte phosphoprotein of 76 kDa) adaptor proteins. These two 

adapters form the backbone of the proximal signaling complex (Fig. 7a) that organizes effector 

molecules in the correct spatiotemporal manner allowing activation of multiple distal signaling 

pathways (Fig. 7b) (Sommers et al. 2004).  

 

 

a) p44/p42 MAPKs and NF-kB phatways 

 

Phosphorylated LAT leads to the recruitment and activation of PLCγ1 (PhophoLipase C, gamma 

1) that hydrolyzes the membrane lipid PIP2, producing the second messengers IP3 (Inositol 1,4,5-

triphosphate)and DAG (dyacylglycerol).  

 

Production of DAG results in the activation of two major pathways involving Ras and PKCθ 

(protein kinase C).  

Ras is required for Raf-1 activation which initiates a mitogen-associated protein kinase (MAPK) 

phosphorylation activation cascade: Raf-1 is a MAPKKK that phosphorylates and activates MAPKKs, 

which in turn phosphorylate and activate p44 and p42 MAPK’s, also named extracellular signal-

regulated kinase (Erk1 and Erk2 respectively). When dually phosphorylated they enter into the 

nucleus and regulate the Fos and STAT3 (signal transducer and activator of transcription 3) 

expression. 

PKCθ is activated after DAG binding and regulates the IkB (Inhibitor of NF-kB) degradation and the 

release of NK-kB, resulting in NF-kB nuclear localization where it activates genes involved in the 

effector function, survival, and homeostasis of T cells. 
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IP3 stimulates Ca2+-permeable ion channel receptors (IP3R) on the endoplasmic reticulum (ER) 

membrane leading to the release of ER Ca2+ stores into the cytoplasm. Depletion of ER Ca2+ triggers a 

sustained influx of extracellular Ca2+ through the activation of plasma membrane CRAC (Ca2+ release-

activation Ca2+ channels).  Increase of intracellular Ca2+ levels results in activation of phosphatase 

Calcineurin and CaMK (Ca2+-calmodulin-dependent kinase). Then, calcineurin dephosphorylates 

members of the nuclear factor of activated T cells (NFAT) family leading to its translocation to the 

nucleus, where it forms cooperative complexes with a variety of other transcription factors resulting 

in different gene expression patterns and function outcomes, depending on the context of the TCR 

signal. The most well-studied interaction integrates Ca2+ and Ras signals (NFAT/AP-1) which results in 

IL-2 expression (Fig, 7b). (reviewed in Smith-Garvin et al. 2009).  

NFAT activity in the absence of AP-1 (Activator protein 1) activation induces a pattern of gene 

expression that results in T cell anergy and lack of IL-2 production (Macian et al. 2002). FOXP3 (the 

regulatory T cell lineage specific transcription factor forkhead box protein 3) also cooperates with 

NFAT and antagonizes NFAT/AP-1 gene transcription, resulting in Treg functional gene expression 

and lack of IL-2 production (Wu et al. 2006). NFAT family members can also cooperate with STAT 

proteins to induce either Th1 or Th2 differentiation through T-bet or GATA3 expression, respectively 

(Savignac et al. 2007). 

 

 

 

 

b) p38 MAPK pathway 

 

T cell signaling is mainly mediated by the specific pathway involving LAT activation, however 

there is an alternative pathway, linked to TCR signaling, that is independent of LAT and that 

circumvent, i.e. evade the classical MAPK cascade that it is also regulated by stress conditions. 

 In response to a variety of growth factors, cytokines and stress signals p38 kinase is activated by 

dual phosphorylation of a conserved Trh 180-X-Tyr182 motif through a MAPK cascade (MAPKKK-

MAPKK-MAPK pathway). 

In T cells, it has been generally assumed that p38 is regulated via the same MAPKKK-MAPKK 

pathway; however, it was demonstrated that after TCR ligation in CD28 coligation context, the ZAP-

70 kinase can directly phosphorylates p38 (Salvador et al. 2005). The directly phosphorylation of p38 

by ZAP-70 occurs on a previously unrecognized site, at Tyr323, that in turn induces p38 

autophosphorylation. Both T and B cells activate p38 but only the TCR activation induces p38 

autophosphotylation. It remains to be determined whether the two modes of p38 activation activate 

different targets and thus specifically regulate T cell functions (Rudd 2005). p38 MAP kinase signaling 

pathway controls IFN-γ production in both CD4 and CD8 T cells but only regulates apoptosis 

selectively in CD8 T cells and not in CD4 T cells (Merritt et al. 2000). 
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c) JNK MAPK pathway 

 

Three members of the c-Jun NH2-terminal kinase (JNK) family have been identified (JNK1, JNK2, 

and JNK3). JNK3 is primarily expressed in brain, heart, and testis, but not in hematopoietic cells. JNK1 

and JKN2 are expressed more ubiquitously, but their expression levels in T and B cells are very low 

prior to cell activation, being induced after antigen stimulation. JNKs are activated by dual 

phosphorylation on Thr183 and Tyr185 by MKK4 and MKK7.  

In vitro studies have shown that the loss of Jnk2 causes hyperproliferation of CD8 T cells, which 

is due to an increased production of IL-2. Accordingly, upon infection with LCMV, an increase in the 

expansion of antigen (virus)-specific CD8 T cell in Jnk2-/- mice has also been shown in vivo. Distinctly, 

the absence of Jnk1 seems to have the opposite effect on CD8 T cells. CD8 T cells that lack JNK1 are 

hypoproliferative in vitro due to impaired expression of IL-2Ra (CD25). Upon LCMV infection, Jnk1-/- 

mice have a decreased expansion of virus-specific CD8 T cells. Although no effect of JNK1 deficiency 

in the survival of CD8 T cells is reported in vitro, increased apoptosis of virus-specific CD8 T cells was 

found in vivo. (Conze et al. 2002) (Arbour et al. 2002) (Rincon and Davis 2009). JNK1 is required for 

expansion of CD8 T cells by regulating the levels of growth factor receptors as well as the sensitivity 

of these cells to activation-induced death. According, Jnk1-/- mice exhibit major defects in tumor 

immunosurveillance associated with a decreased cytotoxic T-cell function and a reduced expression 

of T-bet, eomesodermin, and perforin (Gao et al. 2005). 

 

                             

 

                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. TCR-mediated signal 

transduction after pMHC interaction: 

a) proximal signaling complex;  

b) TCR downstream signaling pathways.  

(Sommers et al. 2004) (Cell Signaling®) 

 

a) 

b) 
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d) AKT/CD28 co-stimulation pathway 

 

pMHC recognition through the TCR is not sufficient for full T cell activation, and a variety of co-

stimulatory ligand-receptor interactions are also required to provide additional positive or negative 

signals.  CD28 is one of the receptors expressed on T cells that provide positive co-stimulatory 

signals. In human T cell clones that express ~30000 TCRs, the threshold number of triggered TCRs 

necessary for T cell activation is reduced from ~8000 (in absence) to ~1000 TCRs in the presence of 

CD28-mediated co-stimulation. Thus, the role of CD28 co-stimulation is not to increase the number 

of triggered TCRs, but rather to amplify the signal transmitted in order that a cellular response can be 

achieved at lower number of triggered TCRs (Viola and Lanzavecchia 1996). CD28 enhances TCR 

signaling more robustly than other co-stimulatory molecules and it promotes T cell proliferation, 

cytokine production, cell survival, and controls cellular metabolism (Acuto and Michel 2003).  

Following the binding of CD28 to its ligands, CD80 or CD86 on APCs, the p85 regulatory subunit 

of PI3K (Phosphoinositide 3-kinase) associates with a pYMNM motif on the cytoplasmic tail of CD28. 

This regulatory subunit recruits the p110 catalytic subunit of PI3K, which converts PIP2 to PIP3 at the 

membrane. Localized PIP3 serves as docking site for PDK1 (3-phosphophoinositide-dependent 

protein kinase 1) and its target Akt (also known as PKB). TCR signaling has also been shown to 

synergize with IL-2 receptor, besides with CD28 receptor, to activate the PI3K-dependent kinase, Akt. 

Akt accomplishes this function by associating with CARM1 and facilitating the assembly of the 

CMB (CARD11-BCL-10-MALT1) complex, which is critical for NF-kB activation (Narayan et al. 2006). 

Activated Akt enhances the nuclear translocation of NF-kB, which induces the expression of 

prosurvival genes including Bcl-xl. Akt has also the ability to inhibit transcription factors that promote 

cell cycle arrest, which results in Akt-driven cell survival and proliferation. In addition, Akt also affects 

optimal transcription of NFAT-regulated genes, such as IL-2 (Beals et al. 1997). TCR/CD28 colligation 

also regulates T cell metabolism by increasing the cell surface expression of the insulin transporter 

Glut1, leading to increased glucose uptake and glycolysis, which is also mediated by Akt (Frauwirth et 

al. 2002; Jacobs et al. 2008). Another characteristic of CD28-mediated signaling is the enhanced Ca2+ 

flux after Lck binding to a CD28 tail motif (Heyeck et al. 1997). 

The magnitude of the response induced by TCR ligation is considerably augmented with CD28 

colligation; however, other costimulatory receptors can also influence immune responses: ICOS 

(inducible costimulator), OX40 and 4-1BB. Indeed, CD28 also promotes expression of these three 

costimulatory receptors that prolong and sustain an immune response by themselves. In the case of 

OX40 and 4-1BB, these co-receptors are also involved in memory T cell formation (Watts 2005). 

 

Activation of mTOR pathway (mammalian target of rapamycin), which is composed of mTORC1 

and mTORC2 complexes is another critical event during T cell activation and it is suggested to lie 

downstream of the kinase Akt, although it remains to be determined how exactly mTOR is activated 

downstream of the TCR. Both mTORC1 and mTORC2 are activated within minutes after TCR 

stimulation, and the magnitude of mTOR activation is directly correlated with the duration of the T 

cell-DC interaction and the dose of the cognate antigen. The activity of mTOR is further shaped by co-
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stimulatory signals: CD28-mediated co-stimulation is a classic activator of the PI3K-Akt pathway, 

which further upregulates the mTOR activity induced by the TCR to facilitate productive T cell 

activation. mTOR can also be activated by nutrient sensing and cytokine signals. mTOR complexes 

regulate a wide range of processes including autophagy, metabolism and the expression of 

transcription factors such as T-bet, Eomesodermin and FoxO. mTOR complexes control the switch 

from catabolic to anabolic metabolism in effector CD8 T cells, and the switch back to catabolic 

metabolism in memory CD8 T cells. In addition, mTOR pathways play a critical role in the activation of 

naïve CD8 T cells to effector cells and they also negatively regulate the development of CD8 memory 

T cells. (reviewed in Chi 2012; Powell et al. 2012). 

The use of a mTOR inhibitor, rapamycin, promotes the generation of protective T cell memory in 

models of infection with LCMV and LM. Mechanistically, this has been associated with the induction 

of a metabolic switch from glycolysis to fatty acid oxidation, in the presence of rapamycin (Araki et al. 

2009; Pearce et al. 2009). Akt-inhibited T cells reveal expression of  memory-associated genes 

including IL-7R, CCR7 and CD62L, while the expression effector-associated genes including IFNγ, 

granzyme B and perforin were reduced (Zehn et al. 2012).  

 

 

 

 

5. Negative regulation of TCR signaling        

 

Signaling through the TCR activate multiple effector pathways. To ensure that T cells respond to 

the appropriate ligands for the proper duration, activation of these pathways has to be regulated. 

Similar to the positive regulation of T cell activation, negative regulation is also mediated by TCR-

generated signals and other cell surface receptors.  

Even the most proximal TCR signaling events are actively regulated. For example, Csk (C-

terminal Src kinase) is responsible for phosphorylating Lck on its inhibitory tyrosine residue (Y505) 

and thus maintaining Lck in an inactive state (Vang et al. 2004). CD45 phosphatase also limits Lck 

activity by desphosphorylating its active site. However, CD45 is also able to dephosphorylate the 

inhibitory site of Lck, allowing for Lck autophosphorylation and activation. Whether CD45 negatively 

or positively impacts TCR signaling is likely to be controlled by CD45 proximity to TCR-stimulated 

effector molecules during TCR engagement and by its enzymatically favorable conformation (Vang et 

al. 2004). In the case of weak or antagonistic TCR ligation, SHP1 (SH2 domain-containing protein 

tyrosine phosphatase) desphosphorylates the active site of Lck, resulting in cessation of the TCR 

signal. On the other hand, in the presence of strong or agonistic TCR ligation, Erk is rapidly activated 

and phosphorylates Lck on Ser59. This activity is thought to prevent SHP1 binding, thus keeping Lck 

active to sustain TCR signals and further amplify Erk activity (Stefanova et al. 2003). However, the 

extent to which this regulatory loop operates in vivo on the context of agonist stimulation awaits 

further analysis.  
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TCR-generated regulatory signals are also aided by co-receptor signals. CTLA-4 (cytotoxic T 

lymphocyte antigen-4) and PD-1 (programmed death-1) are two examples of co-receptors that limit 

the expansion and activation of TCR-triggered T cells. These molecules are found on activated T cells 

with their peak of expression at 24-48h after stimulation. Genetic studies have also documented the 

importance of both for maintaining self-tolerance. 

 Both CTLA-4 (inhibitory co-receptor) and CD28 (costimulatory co-receptor) share the ligands 

CD80 (B7.1) and CD86 (B7.2) on APCs. One of the mechanisms to inhibit T cell responses by CTLA-4 is 

through the competition or sequestration of ligands, as a result of the high affinity of CTLA-4 for B7 

ligands (Thompson and Allison 1997; van der Merwe et al. 1997).  

PD-1 receptor belongs to the CD28/CTLA-4 family and negatively regulates TCR signaling upon 

engagement of one of its ligands PD-ligand 1 (B7-H1) and PD-ligand 2 (B7-DC) (Sharpe and Freeman 

2002). Mice deficient in PD-1 display multiple autoimmune defects and loss of peripheral tolerance. 

The ligands for PD-1 are members of the B7 co-stimulatory molecules family, and are expressed on 

APCs, endothelial and epithelial cells, and on activated lymphocytes (Latchman et al. 2001). PD-1 is 

transiently up-regulated in activated T cells during antigen presentation, and its ligation to PD-ligand 

1 recruits SHP1 and 2, that desphosphorylates effector molecules associated with TCR, leading to 

termination of TCR signal transduction (Chemnitz et al. 2004; Sheppard et al. 2004).  

During chronic infections, PD-1 is highly expressed on virus-specific CD8 T cells, and it is also 

correlated with an “exhausted” T cells phenotype that is reversed upon PD-1 neutralization (Barber 

et al. 2006). The PD-1 pathway can also compromise CD8 T cell responses during some acute 

infection and contributes to the functional impairment of “helpless” CD8 T cell (Brown et al. 2010). It 

was also shown that PD-1 impedes accumulation of TEM phenotype memory CD8 T cells by promoting 

their apoptotic death (Charlton et al. 2013).  

 

Cbl (Casitas B-lymphoma) proteins also play an important role as negative regulators of T cell 

signaling. Two family members, c-Cbl and Cbl-b, are immune modulators, as deletion of each gene in 

vivo leads to hypercellularity and, in the case of Cbl-b, spontaneous multiorgan infiltration. Both c-Cbl 

and Cbl-b facilitate the ubiquitination of proteins, targeting them to degradation. Following 

stimulation with antigen peptides, Cbl proteins mediate the downregulation of the TCR, and are also 

involved in the dissipation of the early signaling complex. (Murphy et al. 1998; Naramura et al. 2002; 

Balagopalan et al. 2007). 

 

  

 

6. TCR downregulation 

 

The capacity of T cells to develop and exert their function critically depends on signals mediated 

through the TCR. The TCR is a spontaneously cycling receptor (Krangel 1987; Minami et al. 1987a), 

and its cell surface expression level is the result of a dynamic equilibrium maintained by: the 
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membrane expression of newly synthesized TCR, the receptor internalization, the recycling to the cell 

surface, and its degradation (Geisler 2004). In steady state condition, a balance between the rate of 

internalization and recycling is tightly maintained. Following T cell activation and phosphorylation of 

the various TCR subunits, degradation of TCR is strongly favored leading to a decrease in recycling 

that results in downregulation of cell surface levels (D'Oro et al. 1997; Valitutti et al. 1997).  

 

TCR downregulation occurs in response to MHC/peptide stimulation, anti-TCR antibody binding, 

or to treatment of T cells with activators of protein kinase C (PKC) like phorbol esters. At least two 

distinct pathways exist to explain TCR downregulation. One pathway is dependent on tyrosin kinase 

activity (Lck) and leads to TCR ubiquitination and degradation. The other pathway is dependent on 

PKC-mediated activation of the di-leucine-based motif found in the CD3γ chain of the TCR and it 

leads to TCR recycling (Lauritsen et al. 1998). Recognition of the TCR subunit CD3γ by PKC, with 

subsequent phosphorylation of CD3γ, exposes the CD3γ leucine-based internalization motif to which 

AP-2 (a clathrin-coated vesicle adaptor protein) binds to promote TCR endocytosis (Dietrich et al. 

1997). The TCR complex has two different internalization motifs: tyrosin-based and dileucine-based. 

It is also proposed that ζ  chains have a major role in shielding the internalization motifs on CD3γ 

chains. Internalization motifs are also present on CD3δ, CD3ε and ζ chains (Szymczak and Vignali 

2005). Recently, it has been shown that the interaction between PD ligand 1 on DCs and PD-1 

receptor on CD8 T cells contributes to ligand-induced TCR downmodulation and that this is mediated 

via the up-regulation of Cbl-b E3 ubiquitin ligase in CD8 T cells. Accordingly, interference with PD-1 

signaling inhibits TCR downregulation leading to hyper-activated CD8 T cells (Karwacz et al. 2011).  

 

Conflicting data have been published on the downregulation and degradation rates of the 

individual TCR subunits, as well as several divergent models for TCR downregulation have also been 

suggested. Most studies found that TCR downregulation is caused by an increase in the endocytic 

rate constant after TCR triggering, however some other studies indicated that TCR ligation induces 

TCR downregulation by a reduction in the exocytic rate constant rather than by an increase in the 

endocytic rate constant. Divergent models indicated that the degradation rate constant increases 

after TCR triggering and that all TCR subunits are degraded in parallel, where others found that TCR 

triggering transiently deviates TCR-α and -β chains from degradation and that TCR subunits segregate 

and are degraded with distinct degradation rate constants (reviewed in Geisler 2004; von Essen et al. 

2004).  

Most of these studies have been done using T cell lines or primary cells activated in vitro. As is 

vitro activation conditions not always mimic in vivo environments, further research into in vivo 

systems is need in order to reach full consensus about the mechanisms that mediate TCR 

downregulation.  

 

Internalization of signal-transducing receptors is thought to produce a dual effect. First, it may 

contribute to signal transducing by favoring the encounter between receptor and intracellular 

signaling molecules. In addition, TCR internalization may play an important role during T cell 
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activation by allowing serial triggering of multiple TCR complexes by few pMHC complexes. Indeed, 

downregulation of unengaged TCR receptors has also been reported to occur with activation.  

Second, it may contribute to the termination of cellular responses by reducing the number of 

receptors at the cell surface or by uncoupling receptors from membrane-anchored signaling 

molecules (San Jose et al. 2000). 

 

 

 

 

7. Cell surface phenotypic modifications after T cell activation 
 

CD69 and CD44 

 

CD69 is a C-type lectin surface receptor, with unknown ligand. T cells rapidly express CD69 upon 

stimulation by TCR (Testi et al. 1989) hence, CD69 has been used as an activation marker (Ziegler et 

al. 1994) and it is known as the very early activation marker. CD69 is also up regulated in T cells by 

exposure to type I IFN (IFNα/β) and other inflammatory mediators within the first hours of T cells 

arriving in an inflamed LN (Shiow et al. 2006; Grigorova et al. 2010).  

CD69 also affects the migration of immune cells. It directly interacts with S1P1 receptor on the 

lymphocyte surface inducing down-regulation of S1P1 expression (a receptor required for 

lymphocyte egress in lymphoid organs). Consequently, CD69 mediates the retention of activated 

lymphocytes in the secondary lymphoid organs (Shiow et al. 2006). 

 

CD44 is a surface glycoprotein with multiple isoforms and it binds to a common component of 

extracellular matrixes (ECM): the hyaluronic acid (HA). The interaction between CD44 receptor and 

its ligand promotes cell adhesion and migration. Differential glycosylation of CD44 influences its 

binding to HA, and additional ligands include osteopontin, serglycin, collagens, fibronectin, and 

laminin. CD44 is found constitutively on the surface of many cell types, including resting T cells, 

which express the invariant or standard form. This molecule localizes in lipid rafts with TCR and is 

upregulated early after TCR engagement (DeGrendele et al. 1997b). Once upregulated on responding 

T cells, CD44 expression is sustained on effector cells (promotes T cell extravasation into 

inflammatory site) as well as on memory cells. Thus, CD44 is the most widely used marker to 

distinguish prior antigen-exposure cells (CD44high) from naïve cells (CD44low), although that this 

distinction is restricted to CD8 T cells in the B6 mice strain (DeGrendele et al. 1997a) 

 

 

 

CD62-L and CCR7  

 

CD62-L and CCR7 are homing receptors expressed by most naïve T cells as well as by a subset of 

previously activated T cells. 
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CD62-L is also known as L-selectin and it is a member of the selectin adhesion receptor family 

required for lymphocyte homing to peripheral lymph nodes. Ligands for CD62L are collectively 

referred to as peripheral node addressins (PNAd), and are highly expressed in the high endothelial 

venules (HEV) (Hemmerich et al. 2001). Upon cell activation, CD62-L is rapidly shed from 

lymphocytes  and neutrophils by L-selectin sheddase and metalloproteinases, which mediate the 

release of CD62L ectodomains from the cell surface (Preece et al. 1996). 

CCR7 is a chemokine receptor with significant role in the homeostatic trafficking of naïve T cells 

to secondary lymphoid organs (SLO). Binding of its ligands, CCL19 and CCL21 on the luminal surfaces 

of HEVs, mediates the entry of T cells into resting lymph nodes (von Andrian and Mackay 2000; 

Guarda et al. 2007).  

 

Naïve CD8 T cells move in a linear fashion from the blood to the lymph nodes, and then into 

lymphatics and back into the systemic circulation via the thoracic duct in order to survey the entire 

body for DCs presenting cognate antigens, which will result in their activation. Owing to the shear 

stress within vessels and the high avidity/low affinity nature of CD62-L – PNAd interactions, naïve 

CD8 T cells roll across the HEV endothelium. During this rolling process, CCR7 on T cells interact with 

CCL19 and CCL21 on the surface of the HEV and this induces conformational changes in LFA-1 (an 

integrin that function as adhesion molecule). The enhanced interaction between LFA-1 and ICAM-1 

expressed on HEV endothelium firmly attaches the T cells to the endothelium enabling it to 

transmigrate the HEV and enter the lymph node to screen for DCs presenting cognate antigens.  

After activation, CD8 T cells lose expression of both CD62-L and CCR7, which prevent these cells 

from gaining access to lymph nodes through the HEV. Instead, activated CD8 T cells gain expression 

of a new cohort of trafficking molecules to inflamed tissues.  

Following activation, extensive clone expansion, acquisition of effector functions and antigen 

elimination, the majority of effector CD8 T cells die and only 5-10% of the responding antigen-specific 

CD8 T cells persist as memory cells. As memory cells are formed, CD62-L and CCR7 are re-expressed 

and the percentage of cell expressing these receptors continues to increase over time. (reviewed in 

Nolz et al. 2011). 

 

The levels of CD62-L and CCR7 expression, along with other surface markers, have been used to 

distinguish naïve, effector and memory T cells. In particularly, CD62-L and CCR7 molecules have been 

used to sub-divide CD8 memory population into central memory (TCM) or effector memory (TEM).  

TCM and TEM subdivision was first described in human PBMCs according to their potential of 

migration, proliferative capacity, and effector function. TCM express CCR7, are predominant in 

secondary lymph nodes, produce IL-2 and proliferate extensively, and require previous re-stimulation 

to mediate direct effector functions. TEM do not express CCR7, have the capacity to migrate to 

inflamed tissues/peripheral compartments, are less proliferative and produce effector cytokines such 

as IFNγ. CD62-L analysis in these subpopulation revealed an enrichment of CD62-Lhigh cells in the 

CCR7+ central memory population (89% to 98% are CD62-Lhigh), and enrichment of CD62-Llow in the 

CCR7- effector memory population (16% to 20% are CD62-Lhigh). (Sallusto et al. 1999).  
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In mice, “TCM” and “TEM” were firstly named based on their location: lymphoid and non-lymphoid 

organs, respectively (Masopust et al. 2001); while others have named them based on the phenotype 

(Wherry et al. 2003). The attempt to report the clearly defined TCM and TEM populations in humans to 

the mice system has been extensive but, never fully and truly achieved. Indeed, several groups have 

analyzed murine “TCM” and “TEM” in different models, as defined by both location and CD62-L 

expression, and actually arrived to different conclusion regarding the functional properties of these 

subsets and/or the precursor-relationship between them. (Kaech and Ahmed 2001; Masopust et al. 

2001; Wherry et al. 2003; Kedzierska et al. 2007). Additionally, in humans TCM and TEM are considered 

disparate lineages, with no TEM TCM conversion, and with TCMTEM conversion only during TCM 

activation. In mice, both conversions are frequently seen in the course of the immune response, with 

the conversion kinetics of CD62-Llow
 CD62-Lhigh being used to characterize memory subsets. The 

kinetic of this conversion is highly variable between systems. Experimental factors like antigen load 

(Wherry et al. 2003), frequency of antigen-specific naïve cells (Marzo et al. 2005; Badovinac et al. 

2007; Wirth et al. 2009), and duration of the infection (Sarkar et al. 2007; Sarkar et al. 2008) 

influence this conversion. 

 

Thus, many controversial issues remain in the field of memory CD8 T cells, and conclusions of 

many studies in the field must be taken with caution because of: i) the different systems and models 

used; ii) the broad and imprecise definition of a “memory” T cell; iii) the possible existence of 

heterogeneous memory populations; and iv) the distinct markers/criteria used to define memory 

subtypes.  

 

 

 

 

 

IL-7R and KLRG1 

 

Earlier after antigen stimulation, different receptors have been shown to be differentially 

expressed in distinct subsets of CD8 T cells, such as IL-7R (Kaech et al. 2003), KLRG1 (Joshi et al. 

2007), CD27 (Hikono et al. 2007), and IL-2Rα (Kalia et al. 2010; Pipkin et al. 2010). (reviewed in Belz 

and Kallies 2010). 

IL-7 is an essential cytokine during lymphocyte development and it also modulates peripheral T 

cell homeostasis and memory cell generation. The IL-7 receptor consists of a common cytokine 

receptor γ-chain (γc) and a unique IL-7R α-chain, and IL-7R signaling results in the maintenance of cell 

survival by promoting a favorable balance of Bcl-2 family members (Schluns et al. 2000).  

Both naïve and memory T cells express high levels of IL7-R, and IL-7 is required for their survival. 

Following antigen stimulation, most of T cells downregulate IL-7R and only a subpopulation of these 

cells will regain IL-7R expression during the course of the response/transition to memory. The 

proportion of cells that downregulate IL-7R and the rate of IL-7R- + conversion also varies according 
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the system studied (Schluns et al. 2000; Bachmann et al. 2005; Huster et al. 2006; Badovinac et al. 

2007; Badovinac and Harty 2007; Sarkar et al. 2008; Pearce et al. 2009). 

IL-7Rhigh cells phenotypically resemble memory cells but they also express effector molecules 

such Gzmb and IFNγ, similar to their IL-7Rlow counterparts. However, IL-7Rhigh cells have a high 

potential to become long-lived memory T cells, indicating that the precursors of high-quality 

memory cell are among the IL-7R+ population. This was shown when collected IL-7R+ or IL-7R- cells 

(from primary responses) were injected into naïve hosts, and the former revealed increased survival, 

and enhanced proliferative and protective capacities upon re-infection. IL-7Rlow cells appear to 

represent end-stage effector CD8 T cells, which cannot progress into the memory compartment 

(Kaech et al. 2003; Huster et al. 2004). Thus, IL-7Rα expression has been used as a marker that can 

distinguish effector cells that are short lived from those that will develop into functional memory 

cells. However, it is not clear if IL-7R re-expression is directly implicated in the process of memory 

generation: ectopic expression of IL-7R was not sufficient to rescue the survival of short-lived 

effector T cells (Hand et al. 2007). In addition, non infectious contexts of T cell activation, like peptide 

immunization, can generate uniform IL-7R CD8 T cells, but many of these cells do not become long-

lived memory cells (Lacombe et al. 2005; Castellino and Germain 2007). 

 

 

The killer cell lectin-like receptor G-1 (KLRG-1) is a C-type lectin-like receptor that contains an 

ITIM (immunoreceptor tyrosine-based inhibition motif). KLRG-1 recognizes E-, N- and R-cadherins, 

which are transmembrane glycoproteins that mediate Ca2+ dependent cell-cell adhesion. E-cadherin 

is expressed on epithelial cells, Langerhans cells and on peripheral blood cells, notably on myeloid 

DCs.  

Following infection, KLRG-1 is strongly upregulated on murine effector CD8 and effector 

memory CD8 T cells (Robbins et al. 2003; Thimme et al. 2005). Expression of KLRG-1 by T cells is 

associated with attenuation of effector responses and with prevention of auto-reactivity during 

immune responses (Colonna 2006).  

The extent of KLRG-1 expression is linked to the amount of inflammatory cytokines such as IL-12 

and type I IFNs, and to T-bet expression, in a dose-dependent manner (Joshi et al. 2007; Keppler et 

al. 2009). Differences coming from this features may likely be responsible for differences in the 

frequency of KLRG-1+ CD8 T cells detected in different infection: LCMV, influenza virus and LM 

(Kallies et al. 2009; Keppler et al. 2009; Rutishauser et al. 2009). KLRG-1low cells show increased 

survival and proliferative potential (Joshi et al. 2007; Sarkar et al. 2008). In addition, CD8 T cells 

expressing low or intermediate levels of KLRG-1 also express low levels of IL-2Rα and display a higher 

capacity to give rise to CD62-Lhigh IL-7Rhigh memory cells. Accordingly, IL-2Rαhigh T cells express high 

levels of KLRG-1 and Annexin V, suggesting that these cells form terminally differentiated effector 

cells with increased apoptosis (Kalia et al. 2010). The KLRG-1’s ITIM motif mediates its effects 

through the recruitment of SHIP-1 and SHP-2 phosphatases that degrade PIP3 to PIP2, and thus 

contribute to a defect in Akt phosphorylation and proliferative dysfunction of high differentiated CD8 

T cells (Henson and Akbar 2009; Henson et al. 2009). 
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Heterogeneity in KLRG-1 expression has been suggested to identify effector CD8 T cells with 

distinct memory lineages fates. When associated with low expression of IL-7R, KLRG-1 has been used 

as marker of short-lived effector cells (SLECs). By contrast, KLRG-1low and IL-7Rhigh are considered as 

memory precursor effector cells (MPECs) (Joshi et al. 2007; Sarkar et al. 2008). 

 

 

 

8. Lymphocyte traffic 

 

An efficient  CD8 T cell response to infection conceptually relies on two primary goals: i) 

generation of large number of CTLs (cytotoxic effector T lymphocytes) to immediately eliminate the 

present infection, and ii) retaining a cell subset with enhanced longevity to protect against future 

encounters with the same pathogen. To achieve these goals, naïve CD8 T cells must encounter their 

cognate antigen. However, several factors limit that encounter:  

i) Pathogens generally enter the body at peripheral sites such as the skin, gastrointestinal 

tract or lung ephitelium areas, where naïve T cells are largely excluded; 

ii) Naïve CD8 T cells specific for a given cognate antigen are rare and continuously circulate 

all over the body into blood and lymph fluids;  

iii) Immediately after infection, APCs presenting cognate antigens are also rare. As an 

example, it was shown that immediately after aerosol infection with L50 of influenza 

virus, only four infectious particles were transmitted to the host (MacInnes et al. 2011).  

To maximize the encounter with foreign invaders, lymphocytes continuously survey secondary 

lymph organs (SLO) such as spleen, lymph nodes (LNs) and Peyer’patches (PPs) for the presence of 

foreign antigens. The spleen is specialized to present blood-borne antigens; whereas LNs filter lymph 

draining from skin or mucosal surfaces; and PPs obtain antigen by transepithelial transport from the 

intestinal lumen.  

To continue antigen surveillance, lymphocytes must enter, transit and egress SLO. The entry of 

lymphocytes into LNs occurs through high endothelial venules (HEVs), whereas in the spleen, as 

there are no HEV, lymphocytes directly pass from the blood to the red pulp, and subsequently 

migrate to the T cell zones (white pulp). The egress from spleen occurs into blood, whereas egress 

from LN occurs into lymph that carries cells back to the blood via the thoracic duct. 

 

 

 

8.1)   LN entry and transit 

 

The entry of lymphocytes into LNs trough HEVs is initiated by the lymphocyte homing receptor 

CD62L, a L-selectin that mediates tethering and rolling of lymphocytes along the HEV endothelial 

cells, which express mucin-like glycoproteins (CD62L ligands). Naïve B and T cells rolling HEV walls 

then enter lymph nodes trough a multistep adhesion and migration cascade that depends on 

chemokine-induced activation of integrins on lymphocytes’ cell surface.  
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Naïve T cells express CCR7 and CXCR4 chemokines receptors, whereas naïve B cells express 

CXCR5 in addition to the former two. The CCL21 chemokine (ligand of CCR7) is abundantly expressed 

by murine HEV endothelial cells, whereas CXCL12 (ligand of CXCR4) and CXCL13 (ligand of CXCR5) are 

produced by lymph node stromal cells and transcytosed to the luminal surface of HEV endothelial 

cells.  

Signaling through CCR7 together with the shear force of blood flow induces conformal changes 

in the LFA-1 (lymphocyte function-associated antigen1) integrin. LFA-1 then mediates firm biding to 

ICAM1 and ICAM2 adhesion molecules expressed on HEV endothelial cells, contributing for 

successful extravasations. (reviewed in Girard et al. 2012). 

 

After leaving HEVs, T cells rapidly migrate along the fibroblastic reticular cells (FRC) network 

and CCL21 and CCL19 chemokines regulate intranodal motility and migration velocity of T cells. 

CCL21 is abundantly expressed by T cells zone FRCs, and CCR7-deficient T cells exhibit a reduced 

motility in LNs. As CCR7-deficient T cells exit lymph nodes more rapidly than wt T cells, CCR7 and 

FCR-derived CCL21 and CCL19 are also crucial for retention and accumulation of T cells in LN’s 

paracortical T cell areas. Thus CCR7 is a master regulator of T cell trafficking in LN: it promotes T cell 

entry, motility, compartmentalization and retention.   

Although the main function of HEV is to recruit large numbers of naïve B and T cells into LNs, 

other cell types can use this path. In addition to naïve T cells, Treg, TCM cells, pDCs and pre-cDCs also 

enter LNs through HEVs in steady state conditions (entry also mediated by the expression of CD62L 

and CCR7). (reviewed in Girard et al. 2012) 

 

Effector memory T cells and DCs can also enter lymph nodes through afferent lymphatic 

vessels. The entry of DCs into terminal lymphatics, in both steady-state and inflammatory conditions, 

is dependent on CCR7 expression at their surface as well as the CCL21 secretion on terminal 

lymphatic vessels. (reviewed in Girard et al. 2012). 

 

 

 

8.2)    LN egress  

 

After exploring a given lymph node for several hours (approximately 8-12 hours for a naïve T 

cells, or 24 hours for a naïve B cell), naïve lymphocytes that do not encounter their target antigen 

leave the lymph node through efferent lymphatic vessels.  

In the past few years the S1P gradients (in blood and lymph), and the S1P-receptor 1 (S1P1) 

expressed on lymphocytes’ surface have been intensely explored as a mechanism required for: 

lymphocyte homing to lymphoid organs, and lymphocyte egress into blood and lymph (reviewed in 

Cyster 2005; Schwab and Cyster 2007; Rivera et al. 2008; Cyster and Schwab 2012).  

 

 

a) S1P and S1P-receptors 

 

S1P (sphingosine-1-phospate) is a sphingolipid metabolite and is derived from sphingosin, the 

backbone of most sphingolipids. Sphingolipids are essential plasma-membrane lipids and are 

concentrated in lipid rafts or cholesterol-enriched membrane microdomains. Following stimulation of 
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various plasma-membrane receptors (tyrosin-kinase, G-protein-coupled, cytokine and ITAM-bearing 

receptors) sphingolipids can be rapidly metabolized through the activation of enzymatic cascades, 

which convert spingolipids such as sphingomyelin to ceramide, and subsequently to sphingosine. 

Two sphingosine kinases then phosphorylate sphingosine to generate S1P: SPHK1 and SPHK2. 

(Spiegel and Milstien 2003; Chalfant and Spiegel 2005; Rivera et al. 2008).  

S1P is synthesized by SPHKs in most eukaryotic cells, and it can be exported, irreversibly 

degraded by intracellular S1P lyase, or dephosphorylated by S1P phosphatase. So, in most tissues, 

including lymphoid tissues, S1P levels are extremely low. Notable exceptions are the blood and 

lymph. 

 

 In blood, erythrocytes are the major source of plasma S1P: they generate S1P but lack S1P-

degrading enzymes (Ito et al. 2007; Pappu et al. 2007). In addition, platelets, which lack S1P lyase, 

contain large amount of S1P in microvisicles that can be released in circulation upon activation by 

trombin (Yatomi et al. 2001). It is also reported that mast cells secrete S1P when activated by IgE-

bounded antigen (Olivera et al. 2007). However, neither platelets nor mast cell seem to have a role in 

regulating the homeostatic levels of S1P in the blood. In addition, in vitro studies have shown that 

vascular endothelium can act as a source of plasma S1P through the actions of SPHKs in endothelial 

cells (Venkataraman et al. 2008). 

In lymph, S1P is not supplied by plasma, although lymph is essential transduced plasma, and the 

carriers of S1P (albumin and high-density lipoproteins) transit from plasma to lymph. Initially it had 

been shown that lymph S1P comes from a radio-resistant source, probably the endothelium (Pappu 

et al. 2007). Recently it has been demonstrated that lymphatic endothelial cells are an in vivo source 

of S1P. This study reported that mice with Lymphatic vessel endothelial hyaluronan receptor 1 (Lyve-

1) CRE-mediated ablation of Sphk1, and also lacking Sphk2, have a loss of S1P in lymph while 

maintaining normal levels plasma S1P (Pham et al. 2010). 

 

S1P has dual role. As intracellular signaling molecule regulates diverse biological functions, such 

as cell proliferation, survival and secretion. As extracellular signaling molecule is implicated in cell 

migration, angiogenesis, inflammatory responses by innate immune cells, and lymphocyte migration 

(reviewed in Spiegel and Milstien 2003). 

 

Secreted S1P signals through five members of the S1P-receptor family: S1P1-S1P5: These 

mediate diverse cellular functions through differential coupling of the receptor to heterotrimeric G-

proteins (αi, αq or α12/13), and through the heterogeneity in their constitutive and inducible expression 

(Sanchez and Hla 2004). S1P1 was originally identified in endothelial cells, and is expressed by most 

immune cells. T cells express S1P1 and S1P4, whereas mast cells and macrophages express S1P1 and 

S1P2. S1P5 is expressed by DCs and NK cells. (reviewed in Rivera et al. 2008).  

 

 

 

b) S1P and S1P-receptors in lymphocyte trafficking 

 

In the early 1990s, the involvement of a Gαi-coupled receptor in lymphocyte egress was 

suggested after a study showing that expression of the pertussis toxin catalytic subunit (Gαi 

inactivation) inhibited the export of mature T cells from the thymus (Chaffin and Perlmutter 1991). 
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The next critical insight indicating involvement of a G protein-coupled receptor emerged from natural 

products screening for immunosuppressive drugs. That search identified the fungal metabolite 

myriocin, and chemical modification of myriocin generated the FTY720 compound, which prevented 

skin allograft rejection. The FTY720 (Fingolimod) drug removed lymphocytes from blood and lymph, 

preventing them from reaching the skin graft (Brinkmann and Lynch 2002). FTY720-treated mice then 

showed that LN medullary sinus were emptied of lymphocytes, which suggested that cells could not 

access egress structures (Mandala et al. 2002). The breakthrough in the S1P and S1P-receptors 

mechanism involved in lymphocyte trafficking came with the realization that FTY720 was a 

sphingosine analogue that could be phosphorylated by sphingosine kinase to produce a S1P-receptor 

ligand with potent effects (such as S1P-receptor agonism (for S1P1, S1P3, S1P4 and S1P5), and 

downregulation of S1P-receptor expression) (Brinkmann et al. 2002; Matloubian et al. 2004).  

 

 

The steps involved in lymphocyte egress have been most completely defined in LNs. This reflects 

the fact that LN entry and exit sites are distinct, allowing the two processes to be measured 

separately, and that LNs are the most accessible lymphoid organs for intravital microscopy.  

 

 

 

c) S1P gradients and S1P1 in LN T cell egress 

 

S1P gradients are important for LN egress: i) sphingosine kinases inactivation in lymphatic 

endothelial cells markedly reduce S1P levels in lymph and impair lymphocyte egress from LNs (Pham 

et al. 2010); ii) the inhibition of S1P lyase (by treatment mice with THI) increases total levels of S1P in 

LNs, and results in LN-lymphocyte sequestration (Schwab et al. 2005).  

T cell egress from LN is also dependent on the receptor S1P1: i) upon adoptive transfer into a 

WT host, S1pr1-/- T cells enter LNs but cannot egress into lymph, and S1pr1+/- T cells exit more slowly 

than S1pr1+/+ T cells (Schwab and Cyster 2007; Pham et al. 2008); ii) one third of wt but not S1P1-

deficient T cells were able to crossed the lymphatic endothelium and entered the sinus at multiple 

locations (Grigorova et al. 2009).  

It was also shown that S1P1 signaling appears to act principally by overcoming retention 

mediated by Gαi-coupled receptors (like CCR7 and CXCR5). In the absence of S1P-S1P1 signaling, T 

cell treatment with pertussis toxin (which inactivates Gαi) restores their egress through cortical 

sinuses (Pham et al. 2008; Pham et al. 2010).  

 

Direct analysis of S1P1 receptor expression on recirculating lymphocytes revealed that S1P1 is 

downregulated in the blood, upregulated in the lymph node parenchyma (which contain low levels of 

extracellular S1P) and downregulated again in the lymph (Matloubian et al. 2004; Boscacci et al. 

2010). Associated with this, high levels of S1P are found in the blood and lymph, which have been 

shown to induce the rapid downregulation/internalization of S1P1 receptor (Lo et al. 2005). It is thus 

proposed that a cyclic ligand-induced modulation of S1P1 expression is required for lymphocyte 

recirculation: 

i) High levels of S1P in blood downregulate S1P1 expression in naïve lymphocytes allowing 

them to entry LNs through HEVs.  
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ii) Near the cortical sinus S1P1 signaling overrides CCR7-mediated retention in the T cell areas 

allowing T cells to cross the lymphatic endothelium and enter the lymph node sinus system 

(reviewed in Cyster and Schwab 2012; Girard et al. 2012). (Fig. 8) 

 

Recently, G protein-coupled receptor kinase2 (GRK2) has been shown to contribute to the 

downregulation of S1P1 on blood lymphocytes. GRK2-deficient T cells in the blood have high levels of 

S1P1 at cell surface and had a defect in homing to LNs, whereas no defect in LN entry of GRK2-

deficient or WT lymphocytes was observed in mice lacking blood S1P. This indicated that GRK2-

mediated downregulation of S1P1 on blood lymphocytes is required to overcome their attraction to 

S1P in the blood (Arnon et al. 2011).  

 

 

 
 

Figure 8. Model of events occurring during lymph node egress decision making. The T cell (green) express CCR7 and S1P1, 

and the relative signaling strength of these two Gi-coupled receptors in the different regions of the cell may dictate the 

cell’s egress into cortical sinus. (Cyster and Schwab 2012). 

 

 

 

 

8.3)   During inflammation 

 

During inflammation, many changes occur in lymph nodes.  

 

Early studies on the traffic within afferent and efferent lymphatic vessels, both in sheep and 

mouse, have already reported that local recruitment of antigen-specific cells was always preceded by 
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profound modification of cell migration affecting all lymphosytes. It was shown that shortly after 

antigen administration, the influx of cells in the draining LN increases affecting both antigen-specific 

and non-specific T cells, whereas egress was totally blocked for 1-3 days. This phenomenon was 

named as “non-specific trapping” or “lymph node shut-down phase”, and it was considered crucial to 

allowing every lymphocyte a chance to encounter their cognate antigen. (Hall and Morris 1965; Zatz 

and Lance 1971; Cahill et al. 1976).  

It was also demonstrated that following this “lymph-node shut down phase” of lymphocyte 

trapping, there was a sudden reestablishment of lymphocyte egress, where antigen-specific 

lymphocytes that interacted with antigen-presenting cells were retained in the draining LN, while 

cells with other specificities left. (Sprent et al. 1971; Sprent and Miller 1976). 

 

Recently, soon after the initial inflammatory challenge, it was shown that LNs undergo 

substantial remodeling, which includes increases in size, in cellularity, and in the expression of 

primary feed arterioles and HEV networks (von Andrian and Mempel 2003; Drayton et al. 2006; 

Bajenoff et al. 2007).  

The flow of afferent lymphatic vessels also increases, and large numbers of mature CCR7-

expressing DCs are transported to the inflamed lymph node (von Andrian and Mempel 2003; 

Lammermann et al. 2008).  

Pro-inflammatory cytokines up regulate cell adhesion molecules expression on HEVs (such as P-

selectin and E-selectin), and CCL2 and CXCL9 are also accumulated in the HEV lumen (von Andrian 

and Mempel 2003; Miyasaka and Tanaka 2004). As consequence, naïve B and T cells, activated T 

cells, NK cells and monocytes migrate through HEVs into inflamed LNs, strongly increasing the input 

of immune cells into the draining LN of an inflamed tissue.  

 

Some evidences support different mechanisms that may condition lymphocyte egress block 

from the inflamed LN during the shut-down phase of lymphocyte trapping (reviewed in Cyster and 

Schwab 2012): 

i) CD69 mediated (post-translational S1P1 regulation). CD69 associates with S1P1, it 

inhibits S1P1 signaling function and promotes protein complex internalization and 

degradation, limiting egress during immune responses (Shiow et al. 2006). CD69 is 

induced by TCR activation, by exposure to type I IFNs and a number of other 

inflammatory mediators (Grigorova et al. 2010). 

ii) Transcriptional S1P1 regulation. Within a day of activation in the LN, cognate T cells 

markedly downregulate S1P1 transcript levels (Matloubian et al. 2004). In T cells, KLF2 

binds and activates S1P1 promoter and promotes CD62L, CCR7 and β7-integrin 

expression (Carlson et al. 2006; Bai et al. 2007). In activated T cells, KLF2 transcripts are 

much reduced (Carlson et al. 2006). 

iii) Ligand distribution (S1P concentration). Many inflammatory stimuli increase the 

expression of Sphk1 in DCs and other myeloid cells (Jung et al. 2007; Hammad et al. 

2008; Puneet et al. 2010), and allergic stimuli can provoke S1P release from mast cells 

(Spiegel and Milstien 2011). However, whether these contributions result in significant 

increases in interstitial S1P concentration or in a change in lymphocyte retention 

remains to be tested in vivo. 
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Thereby, both the increase in cell entry and the blockade of cell egress contribute to the rapid 

accumulation of recirculating cells at the inflamed LN to ensure that a large and rare repertoire of 

antigen-specific lymphocytes will have enough time to move among resident cells until meeting the 

rare APCs first presenting antigen. It is also suggested that as many as 5000 naïve T cells can visit a 

single DC per hour (Bousso and Robey 2003; Miller et al. 2004). 

Cells that recognize the cognate antigen then need to be retained for longer periods to undergo 

clonal expansion and receive instructive signals before exiting as effector cells and travelling to the 

site of infection to mediate their protective functions  

 

 

 

 

 

9. Effector functions: cytolysis, chemokine and chemokine production 

 

CD8 T cells produce a range of effector molecules that mediate the defense against pathogens. 

Direct cytolysis of target cells (mediated by perforin and granzyme releases), and Fas signaling top 

that list. CD8 T cells also secrete cytokines such as tumor necrosis factor (TNFα) and interferon-γ 

(IFN-γ), which play important roles in the antimicrobial defense. In addition, pathogen-specific CD8 T 

cells also express chemokines that attract inflammatory cells to sites of infection. (reviewed in Harty 

et al. 2000; Wong and Pamer 2003). 

 

 

 

a) Cytotoxicity:  (FasL, Prf1 and Gzmb) 

 

The classical effector functions associated to CD8 T cells are the production of IFNγ and the 

cytotoxic activity (CTL). This cytolysis capacity of activated CD8 T cells occur by two distinct molecular 

pathways: i) receptor-mediated induction of apoptosis or ii) delivery of cytotoxic granules into target 

cells. (reviewed in Russell and Ley 2002) (Kagi et al. 1994c). 

 

i) Fas ligand (FasL) is a type-II transmembrane protein and it signals through Fas receptor (FasR), 

TRAILR or TNFRI expressed on target cells. The receptor-mediated pathway is initiated by the adaptor 

molecule FADD (Fas- associated via death domain) recruitment. Caspase-8 is then activated and the 

downstream pathway involves caspase-3 and CAD (caspase-dependent DNase) leading to DNA 

fragmentation and apoptosis. 

 

ii) The delivery of cytotoxic granules relies on the use of perforin (Prf1) to potentiate the traffic of 

granzymes (Gzm) into the target cells, where they consequently initiate cell death through several 

mechanisms, such as activation of caspase-independent mitochondrial and nuclear cell-death 

pathways, disruption of the plasma membrane, and damaging of DNA.  
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After TCR-mediated signaling, cytotoxic granules containing the pore-forming protein, perforin, 

and the serine proteases granzymes are delivered to the target cell at the synapse region. The 

change in [Ca2+] and pH activates perforin to form hydrophilic pores on target cell’s membrane and it 

favors activation of granzymes A and B. Granzyme B (Gzmb) can induce both caspase-independent 

and caspase-dependent death, and acts quickly by cleaving molecules like procaspase-3. Granzyme A 

(Gzma) induces cell death with a slower kinetics, and in a caspase-independent mechanism that 

induces DNA fragmentation and mitochondrial depolarization.  

Prf1-/- mice are dramatically sensitive to infection with ectromelia virus (Mullbacher et al. 1999), 

fail to clear LCMV infection long after WT mice do it (Kagi et al. 1994b; Walsh et al. 1994), and are 

unable to control T. gondii infection (Denkers et al. 1997). Perforin-deficient CD8 T cells are also less 

efficient than WT cells to clearing LM infection, although they may clear this pathogen through a 

mechanism independent from FasL, but requiring TNFα (Kagi et al. 1994a; White and Harty 1998).  

 

Both cytolytic pathways and IFNγ secretion are crucial to the main effector functions of a CD8 T 

cell -kill a target cell-, and these effector functions are induced after extensive division.  

 

 

 

 

b) Cytokines: (IFNγ, TNFα)  

 

 

IFNγ 

 

Besides modulating innate immune responses and CD4 T cell differentiation, IFNγ triggers direct 

antiviral mechanisms in many cells types (Boehm et al. 1997), and it is also considered to be a 

signature cytokine expressed by antigen-experienced CD8 T cells upon antigen re-stimulation 

(Murali-Krishna et al. 1998). Analysis of immune responses in IFNγ- or IFNγR-deficient mice, or under 

the influence of IFNγ-neutralizing antibodies have also shown the importance of IFNγ in the 

resistance to different pathogens (Plasmodium, Toxoplasmosis, Clamydia, Listeria (LM), LCMV and 

HBV).  

CD8 T cell-mediated protection to several infections has also been shown to be dependent of 

IFNγ. Transfer of activated CD8 T cell clones, or CD4-depleted splenocytes, from immunized mice 

were able to increase resistance to Plasmodium infection (Weiss et al. 1992), Toxoplasmosis (Suzuki 

and Remington 1990) and Clamydia (Starnbach et al. 1994), and that resistance was abrogated when 

injecting IFNγ-neutralizing antibodies.  

During LM infection, IFNγ is produced in the first few days following infection by NK and 

dendritic cells, and later, as adaptive immunity develops, IFNγ is produced by CD4 Th1 and CD8 T 

cells (Conlan et al. 1993; Busch et al. 1999; Frucht et al. 2001). 

As many cell types can produce IFNγ after infection, sometimes it is not clear if IFNγ production 

by CD8 T cells is required and essential to protect from infection. During LM infection, it was 
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demonstrated that WT CD8 T cells were more effective in clearing this intracellular bacteria than 

IFNγ-/- CD8 T cells, when compared on a per cell basis (Messingham et al. 2007). IFNγ also has an 

essential role in activating listericidal activity in macrophages at the early phases of the immune 

response (Portnoy et al. 1989). 

Production of IFNγ is also important for the control of LCMV infection, and the requirement of 

this cytokine in the clearance of acute infection is strongly influenced by the tropism and 

invasiveness of the infectious virus strain (Moskophidis et al. 1994; Nansen et al. 1999). 

It is also reported that IFNγ upregulates:  gene expression of several proteasomal subunits and 

proteasomal regulators implicated in antigen degradation; the TAP transporter proteins (transporter 

associated with antigen processing); and MHC class I molecules, rendering intracellular pathogens 

more susceptible to CD8 adaptive immune responses (Fruh and Yang 1999). In addition, IFNγ may 

influence the strength and/or duration of TCR signaling as it is involved in the upregulation of the 

CD8 molecule (Apte et al. 2008). 

 

 

 

TNFα  

 

TNFα is a cytokine produced by many cell types, including CD8 and CD4 T cells, NK cells, 

macrophages, dendritic cells and epithelial cells, and it also has a variety of effects on cells expressing 

one or both the TNF receptors, ranging from activation to death. 

As already stressed before in the Inflammation section (Chapter II), TNFα is a potent 

inflammatory cytokine and it functions to recruit and/or activate microbial activities of macrophages 

and neutrophils. 

 

TNFα binds to two receptors, TNFR 1 and 2, of which TNFR2 is the predominant receptor on CD8 

T cells. TNFα exists in two forms, a membrane bound form (mTNF) and a soluble form (sTNF). mTNF 

triggers TNFR1 and TNFR2, whereas sTNF has preferential effects in TNFR1 over TNFR2. (reviewed in 

Harty et al. 2000; Wong and Pamer 2003). 

The role of TNFα in CD8 T cell responses appears to be context dependent. In LCMV and 

influenza virus infections, absence of TNFα signaling has been shown to enhance CD8 T cells 

responses against these viruses (Turner et al. 2004; Suresh et al. 2005; Damjanovic et al. 2011). In 

contrast, in Listeria infection, TNF-and TNFRI-deficient mice are extremely susceptible to primary LM 

infection and, TNFα binding to TNFR2 is costimulatory for T cells and can prolong T cell responses 

(Kim et al. 2006).  

 

TNFα derived from CD8 T cells may also participate in antilisterial immunity by other 

mechanisms: i) it might contribute to the maximal activation of anti-microbial capacities of 

macrophages; ii) besides activation of proinflammatory genes, signaling through TNFR1 can also 

activate caspase cascasdes and induce apoptosis, suggesting a CD8 T cell-TNFα dependent death of 
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the infected cell (this would release LM to extracellular space in order to be available for 

macrophages and neutrophils phagocytosis); iii) TNFα is also able to up regulate adhesion molecules 

expression on endothelial cells, promoting recruitment of accessory cells to the infection site 

(reviewed in Harty et al. 2000; Wong and Pamer 2003).  

 

 

 

c) Chemokines: (CCL2, CCL3, CCL4, CCL5, XCL1)  

 

Chemokines are small heparin-binding proteins and were originally studied because of their role 

in inflammation. Nowadays chemokines and their receptors are known to play a crucial role in 

directing the movement of mononuclear cells throughout the body, contributing to the initiation of T 

cell responses. They are needed to: attract monocytes and immature dendritic cells (DCs) to the site 

of inflammation; to direct maturing antigen-presenting cells (APCs) to lymphatic vessels; to bring T 

cells and APCs together within the draining lymphoid organ; and they are also responsible for the 

homing of effector T cells to sites of inflammation.(Luther and Cyster 2001). 

Some chemokines are expressed constitutively and are involved in the organization of lymphoid 

tissue (homeostatic chemokines such as CCL19 and CCL21). Other are typically induced de novo in 

response to infection, and are responsible for effector-cells recruitment to the 

inflammation/infection site (inflammatory chemokines such as CCL2, CCL3, CCL4, CCL5 and XCL1). 

 

Chemokines have been classified in four main families: 

 

i) The largest family consists of CC chemokines, so named because the first two of the four 

cysteine residues in these molecules are adjacent to each other. The most thoroughly 

characterized member of the CC subfamily is the monocyte chemoattractant protein 1 

(MCP-1), also known as CCL2. Other CC chemokines include the macrophage inflammatory 

protein MIP-1α (CCL3) and MIP-1β (CCL4), and CCL5 (RANTES). 

ii) The CXC family is characterized by a single amino acid residue between the two canonical 

cysteines. Among several members, CXCL8 (IL-8) is the prototype, and it  attracts PMN cells 

to acute inflammation sites and induce their granule exocytosis. It also activates monocytes 

(phogocytosis) and recruits these cells to vascular lesions. CXCL8 acts through the receptors 

CXCR1 and CXCR2 expressed on neutrophils and monocytes.  

iii) The CX3C family only has one member: CX3CL1. This chemokine is both secreted and 

tethered to the surface membrane, serving as both chemoattractant and adhesion 

molecule. A TNFα-converting enzyme can cleave CX3CL1 from the cell membrane, freeing 

the cytokine to function as a soluble chemoattractant.  

iv) A fourth family is characterized by a single cysteine residue, and it includes only two 

members:  lymphotactin-α (XCL1) and lymphotactin- β (XCL2). (reviewed in Moser and 

Loetscher 2001;  and in Charo and Ransohoff 2006). 
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Chemokine expression is controlled by activation of transcription factors that depend on MAP 

Kinase signaling pathways. For example: HIV-1 up-regulates production of CCL2 via AP-1 (Lim and 

Garzino-Demo 2000); a virus infection of human bronchial ephitelial cells leads to expression of CCL5 

through a mechanism dependent on p38 and JNK (Hashimoto et al. 2000); CXCL8 is expressed during 

viral infection through an AP-1-dependent mechanism and in cooperation with NF-kB (Mori et al. 

1998); in DCs activated with proteins derived from bacterial cultures, CCL2, CCL5, and CXCL8 

production is dependent on NF-kB and MAPK-p38 and -JNK pathways (Bernatoniene et al. 2008); 

gp120 stimulated macrophages secrete CCL2 and CCL4 in a manner dependent of p38 and JNK (Del 

Corno et al. 2001); in monocytes activated by GM-CSF, CCL3 production is dependent on MAPK-

ERK1/2 (Wang et al. 2005). 

 

Chemokines exert their effects through the binding to G-protein-coupled receptors on cell 

surfaces, leading to cell activation and migration. Once activated, these receptors trigger IP3 

formation, intracellular calcium release and PKC activation that ultimately regulate directional 

motion of the cell. Chemokine-receptor binding also activates Rho family proteins, which are 

guanosine triphosphate-binding proteins with the capacity to influence cell motility through 

regulation of actin-dependent processes such as pseudopod formation and membrane ruffling. 

(O'Hayre et al. 2008). 

 

 

 

CCL2 and CCL5 

 

CCL2 is secreted by fibroblast, endothelial cells, vascular smooth muscle cells, monocytes, T cell, 

and other cell types that mediated the influx of cells to sites of inflammation. Thus, its expression has 

been observed in a large number of tissues during inflammation dependent disease progression 

(atherosclerosis, arthritis and cancer), where the influx of macrophages into these tissues has been 

suggested to exacerbate these diseases. CCL2 expression is regulated at the transcriptional level by 

stimulatory factors such as TNFα, IFNγ, PDGF and stress factors, and in many of these regulatory 

responses, the pro-inflammatory NF-kB transcription factor is a key mediator (Kumar and Boss 2000). 

CCL2 triggers chemotaxis recruitment of CCR2-expressing cells: CCR2 is mainly expressed by 

monocytes, but also by dendritic cells, memory T cells, and basophiles (Charo and Ransohoff 2006). 

CCL2-CCR2 interaction also induces upregulation of β2 integrin in monocytes (promoting adhesion of 

monocytes to extracellular matrix proteins), as well as degranulation of basophils and eosinophils 

(Melgarejo et al. 2009). In addition, CCL2-CCR2 also have a role in Th cell differentiation (Gu et al. 

2000) (Traynor et al. 2000) and memory CD8 T cell generation and function (Wang et al. 2008). 

 

CCL5 binds to CCR1, CCR3 and CCR5, and it mediates the trafficking and homing of T cells, 

monocytes, basophils, eosinophils, DCs, NK and mast cells. Increased CCL5 expression has been 

associated with a range of inflammatory disorders and pathologies including allogeneic transplant 
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rejection, atherosclerosis, arthritis, atopic dermatitis, delayed-type hypersensitivity reactions and 

asthma. In these pathologies, CCL5 is thought to act by promoting leukocyte infiltration to sites of 

inflammation (Charo and Ransohoff 2006). CCL5 also plays a key role in the immune response to viral 

infection. Virus-specific CD8 T cells degranulate CCL5 along with perforin and granzyme A (Levy 

2009). 

CCL5 is expressed by several cell types such as endothelial cells, epithelial cells, or monocytes 

within hours of exposure to proinflammatory stimuli like TNFα, IFNγ, viruses and LPS. In contrast, ccl5 

mRNA expression in naïve T lymphocytes is only appearing 3 to 4 days after priming. Unlike naïve, 

resting memory CD8 T cells produce CCL5 immediately after TCR triggering, which is associated to an 

increased half-life of its mRNA, as well as to a constitutively transcription of ccl5 gene (Marcais et al. 

2006). 

 

 

 

CCL3 and CCL4 

 

CCL3 and CCL4 are constitutively expressed at low levels in most mature haematpoietic cells 

including monocytes/macrophages, T, B and NK cells. After appropriated stimulation by LPS, IL-1, 

IFN-α or IFNγ, their expression can be induced in other cell types such as vascular smooth muscle 

cells and microglia (Zeremski et al. 2007).  

Both chemokines use CCR5 as their common receptor, whereas CCL3 also binds to CCR1. 

Through these receptors, MIP-1 family members orchestrate acute and chronic inflammatory 

responses at sites of injury or infection, by recruiting pro-inflammatory cells. MIP-1 chemokines are 

also involved in transendothelial migration of monocytes, DCs, and NK cells, and in promoting T-cell 

migration to inflamed tissues (Charo and Ransohoff 2006).  

CCL3 recruits IFNγ activated neutrophils, a small subpopulation of CCR1 expressing eosinophils, 

and it is critical for macrophages chemoattractant in cutaneous wound repair promoting healing, 

basophile chemotaxis, histamine release, and eosinophilia in a allergic asthma model (Maurer and 

von Stebut 2004).  

CCL3 and CCL4 gradients are also responsible for guiding naïve CD8 T cells to sites of CD4 T cell-

dendritic cell interactions in immunogen-draining LNs. This occurs by upregulation of the receptor for 

these chemokines (CCR5) on naïve CD8 T cells (Castellino et al. 2006; Bajenoff et al. 2007). 

Besides the chemoattractant function of MIP-1 chemokines, triggering of CCR1 and CCR5 by 

them also induce activation of immune cells, like degranulation of basophils (Kuna et al. 1992) and 

eosinophils (Alam et al. 1993), activation of T cells (Bacon et al. 1995), production of TNFα and 

radical oxygen intermediates by mononuclear phagocytes and neutrophils (Narni-Mancinelli et al. 

2007). In a model of murine listeriosis, MIP-1s, CCL5 and XCL1 chemokines  cooperate with IFNγ to 

the up-regulation of CD40, IL-12 and TNFα , which are central for macrophages effector function 

(Dorner et al. 2002). CD8 T cell-mediated protection against Listeria is also dependent on CCL3 

production (Narni-Mancinelli et al. 2007).  
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XCL1 

 

XCL1 is expressed by activated CD8 T cells (Dorner et al. 1997; Hedrick et al. 1997), CD4 T cells, 

NK cells, NKT cells, γδ T cells and thymic medullary ephitelial cells (reviewed in Lei and Takahama 

2012). It has been reported as being induced by stimulation through TCRs in Th1 cells, but not in Th2 

cells, and also co-secreted to a high degree with IFNγ by activated Th1 cells (Dorner et al. 2002). XCL1 

is yet secreted by islet-specific Th1 cells in autoimmune diabetes and detected in mononuclear cells 

of peripheral blood from patients with multiple sclerosis (Jalonen et al. 2002). 

XCL1 has originally been described as a chemoattractant for thymocytes and T lymphocytes 

(Kelner et al. 1994), ant it elicits its chemotactic functions by binding to its only receptor, XCR1. 

Early studies suggested that XCR1 mRNA was present in many cell types. In mice, it was detected 

in CD8+ cells, NK1.1+ cells, B cells, CD4+ T cells and neutrophils. However, these early detections of 

XCR1 mRNA seemed to include false-positive signals based on PCR primers designed within the exon 

2. Since a XCR1-specific mAb was not available at the time, the detection of XCR1 expression had 

been done by RT-PCR, assuming the existence of only a single-exon coding for XCR1 (a system prone 

to false positive results). Later on, it was discovered that the murine XCR1 gene contained two exons, 

and the use of an “intro-spanning” RT-PCR revealed that XCR1 mRNA is selectively expressed in 

conventional DCs, and not in resting or activated T cells, B cells, NK cells, or plasmocytoid DCs. A 

detailed analysis showed that only CD8+ DCs (70-85% of splenic CD8+ Dcs) and a small proportion of 

CD8-DCs express XCR1 mRNA (Dorner et al. 2009) (reviewed in Kroczek and Henn 2012; Lei and 

Takahama 2012). In addition, a reporter mouse with LacZ expression under the control of XCR1 

promoter showed that, in the spleen, XCR1 signal was associated with CD8+DCs in the red pulp and in 

T cell zones. In lymph nodes, XCR1 expression was identified in paracortical areas and subcapsular 

sinuses (Dorner et al. 2009). XCR1 expression has also been fund to be a universal marker specifically 

expressed by the CD8α+ -type DCs: ovine CD26+DCs, mouse CD8α+ DCs, and human BDCA3+ DCs 

(Crozat et al. 2010).  

Concerning the role of XCL1-XCR1 in cytotoxic immune responses, Ovalbumin (OVA)-specific OT-

1 TCR-transgenic CD8 splenic T cells produce XCL1 8-36h after encountering the OVA antigen 

presented by CD8+DCs, and the ablation of XCL1 (Xcl1-/- OT1 adoptively transferred and activated in a 

XCL1-/- host) reduces the proliferation, IFNγ secretion, and cytotoxicity of OT-1 cells in vivo (Dorner et 

al. 2009). It was also reported that Xcl1 mRNA is stored selectively in memory CD8 T cells, allowing 

them to rapidly produce high levels of these chemokine upon stimulation (Crozat et al. 2010). 

In XCL1-deficient mouse, CD8 T cell response to LM infection is decreased and there is a higher 

bacterial load early in the infection, indicating that XCR1 promotes the ability of CD8+ DCs to activate 

early CD8 T cell mediated defense against this intracellular pathogen (Crozat et al. 2010).  

Thus XCL1/XCR1 interaction has a crucial role in the cross-talk between CD8 T cells and cross-

presenting DCs, which is of major importance in the defense against viral and bacterial pathogens, 

and also in the recognition of tumor antigens (Huang et al. 1994). 
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10.  Transcription factors: the intrinsic controls 

 

Antigen-mediated activation of naïve CD8 T cells, though TCR stimulation, leads to the 

cooperation of essential transcription factors, as described previously: NFAT, AP-1, NF-kB, Fos and 

Jun. This results in the activation of multiple pathways, influencing cell cycle, survival, and expression 

of cytokines and cytotoxic molecules.  The final outcome of individual cell activation is complex, and 

the fate of CD8 T cell differentiation is influenced by different factor such as: strength and duration of 

the TCR-mediated signaling, nature of the APC and co-stimulatory molecules, cytokine environment 

and CD4 cell-mediated help.   

Other transcription factors have been implicated in the regulation of effector and memory CD8 T 

cell differentiation. These include: T-bet, Eomes, Bcl-6 and Blimp1. (reviewed in Belz and Kallies 

2010).  

 

 

 

10.1   T-bet and Eomes 

 

T-bet  and Eomes are members of a phylogenetically conserved family of genes that share a 

common DNA-binding domain - the T-box-, and their expression is induced after T cell activation. 

 

 

a) In CD4 T cells: 

 

T-bet (encoded by the Tbx21 gene) was originally described as a T cell transcription factor that 

regulates naïve CD4 T cell differentiation into T helper 1 (Th1) cell lineage commitment and controls 

IFNγ expression, a hallmark Th1 cytokine. 

 

T-bet is not expressed in naïve CD4 T cells but is quickly induced in response to TCR, IFNγR-

STAT1 and IL12R-STAT4 signaling pathways. TCR and IFNγR signaling induce the first wave of T-bet 

expression, which is independent of IL-12R signaling caused by the TCR-mediated inhibition of IL-

12Rβ2 subunit expression. Cessation of both TCR stimulation and IL-2R-STAT5 signaling induces IL-

12Rβ2 subunit expression, which thus enables IL-12R signaling. Via STAT4, IL-12 induces a second 

wave of T-bet expression required for the Th1 cell phenotype stabilization.  

 

Different mechanisms by which T-bet modifies chromatin state have been described.  T-bet-

mediated chromatin changes are primarily dependent on the ability of T-bet to recruit enzymes that 

generate chromatin modifications associated with either gene activation (histone H3 or H4 

acetylation, and H3 lysine 4 (H3K4) dimethylation) or gene repression (H3K27 trimethylation) to the 

T-bet-regulated gene loci. In addition, T-bet directly activates the Ifng gene by binding to the Ifng 

promoter and to multiple distal regulatory elements located upstream and downstream of the Ifng 
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gene (most of them serving as T-bet-dependent enhancers). T-bet-mediated transactivation of Ifng 

gene is further enhanced by HLX and RUNX3 transcription factors, which expression is induced by T-

bet. Another T-bet key regulatory role is the organization of the Ifng locus three-dimensional 

architecture, by enhancing occupancy of the transcriptional repressor CTCF between the boundaries 

of the Ifng locus. This configuration promotes robust Ifng expression in Th1 cells.  

 

In Th1 cells, 50% of the Th1 cell-specific genes are also directly activated by T-bet. This includes: 

Ifng, Tnf, Xcl1, Ccl3, Ccl4, Cxcr3 and Ccr5. T-bet not only regulates activation of Th1 cell-specific genes 

but also inhibit alternative Th cell differentiation pathways. T-bet interacts with GATA3 sequestrating 

it away from Th2 cell-specific genes (the Il4, Il5 and Il13 locus) and the T-bet-RUNX3 complex binding 

to the Il4 silencer prevents the expression of Th2 cell-specific cytokine genes in developing Th1 cells. 

T-bet expression in Th precursor cells also inhibits commitment of the Th17 cell lineage by blocking 

RUNX1-mediated induction of the Th17 cell-specific transcription factor RORγt. Thus, differentiation 

of Tbx21-/- CD4 T cells under Th17-skewing condition produces a higher frequency of Th17 cells with 

high expression of IL-17A, IL-17F and IL-21. (reviewed in Lazarevic et al. 2013). 

 

 

 

b) In C8 T cells:  

 

In CD8 T cells, the acquisition of effector functions (i) and the development of memory cells (ii) 

are both crucially dependent on transcription events that are regulated by T-bet and EOMES. 

 

(i) T-bet expression is rapidly induced by TCR and IL-12R signaling, and is required for the early 

production of IFNγ and Gzmb by antigen-specific CD8 T cells. EOMES is induced later in a RUNX3-

dependent manner, can substitute for T-bet to promote IFNγ and Gzmb expression, and together 

with STAT5 regulates perforin gene expression in CD8 T cells. (Takemoto et al. 2006; Cruz-Guilloty et 

al. 2009; Pipkin et al. 2010) 

CD8 T cells that lack either T-bet or EOMES show “minor” defects in their effector functions, 

which suggests that these two transcriptional factors have overlapping and partially redundant roles 

in establishing the differentiation programs on CD8 T cells. However, CD8 T cells deficient in both T-

bet and EOMES lose their IFNγ production and cytotoxicity, in response to LCMV infection. It is also 

reported that these cells aberrantly produce large amounts of IL-17A causing severe autoimmune 

pathology with excessive neutrophil infiltration (Intlekofer et al. 2005; Intlekofer et al. 2008). Thus, 

the concerned action of T-bet and EOMES results in the development of fully differentiated effector 

CD8 T cells that migrate to tissues and that secrete IFNγ, TNFα, and/or lyse infected cells by releasing 

cytotoxic granules that contain granzymes and perforin. (Takemoto et al. 2006; Cruz-Guilloty et al. 

2009; Pipkin et al. 2010). 
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(ii) During CD8 T cell priming, inflammatory signals define a T-bet-EOMES expression gradient, 

which consequently influence the fate of effector CD8 T cells. For instance, IL-12R signaling provides 

the instructive signal for the terminal differentiation of short-lived effector cell (SLECs) by enhancing 

and maintaining STAT4-mediated mTOR kinase activity, which function as a molecular switch to 

induce T-bet expression and to repress EOMES through the inhibition of FOXO1 transcriptional 

activity. Thus, T-bet expression is induced initially by TCR signaling, and amplified by IL-12-mediated 

signaling and mTOR activity in effector CD8 T cells, whereas Eomes expression is repressed by IL-12 

and mTOR. Eomes expression seems to be induced subsequently to T-bet, in part, through an 

inhibitory effect of FOXO1 on T-bet expression (Takemoto et al. 2006; Joshi et al. 2007; Rao et al. 

2010; Rao et al. 2012). 

 

As CD8 T cells acquire a memory phenotype, EOMES expression increases whereas T-bet levels 

decrease (Intlekofer et al. 2007; Banerjee et al. 2010; Joshi et al. 2011). Nevertheless, low levels of T-

bet are maintained in memory CD8 T cells, as T-bet and EOMES cooperate to sustain proper 

expression of IL-2Rβ (β-subunit of IL-2R and IL-15R) promoting the longevity and the homeostatic 

proliferation of memory CD8 T cells (Intlekofer et al. 2005). 

Mice with both T-bet and Eomes mutations virtually lack memory CD8 T cells and NK cells, a 

phenotype that results from a direct role of both transcription factors in regulating IL-2Rβ expression 

(which enables IL-15R signaling). As IL-15 (and IL-7) signaling are required for memory CD8 T cell 

homeostasis and survival, T-bet and Eomes promote CD8 memory T cell generation and maintenance 

(Pearce et al. 2003; Intlekofer et al. 2005).  

 

It is also reported that Eomes-deficient effector CD8 T cells, although efficiently generating 

KLRG1low IL-7Rhi memory precursor cells, they are unable to generate memory cells with normal 

expression of IL-2Rβ, CD62L, CXCR3 and CXCR4, which are involved in IL-15-mediated signaling and 

homing to lymph nodes and bone marrow. Thus, memory CD8 T cells lacking Eomes contain fewer 

TCM cells and have impaired homeostatic turnover and long-term persistence (Banerjee et al. 2010).  

Accordingly, it is also reported that T-bet represses IL-7Rα transcription driving differentiation of 

effector and TEM CD8 T cells at the expense of TCM cells (Intlekofer et al. 2007). 

Therefore, TEM cells express higher levels of T-bet and seem to be more differentiated than TCM. 

In contrast, the expression of EOMES is higher in TCM than in TEM.  

 

Interestingly, memory CD8 T cells that differentiate in the absence of CD4 T cells help (a 

condition that is associated with defective memory formation (Bourgeois et al. 2002b)) seem to be 

more TEM cell-like , as they are characterized by an overexpression of T-bet (Intlekofer et al. 2007).  

 

In conclusion, in acute infection, the ratio of T-bet to Eomes expression is highest at effector cell 

stages and lowest at memory cell stages, which influences the phenotype, function and long-term 

fate of effector CD8 T cells: how this ratio is regulated it is still under intense scrutiny, but the 

balance of FOXO1 activity and exposure to pro-inflammatory cytokines (such us IL-12, type I IFNs and 
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IL-2) and other factors (such as IL-4, IL-10, IL-21 and WNT signaling) during infection are involved. 

(Takemoto et al. 2006; Zhou et al. 2010; Rao et al. 2012; Wiesel et al. 2012). 

 

 

 

c) During chronic infections 

 

CD8 T cell responses, during chronic infections, are quite different from those observed during 

acute infections (above reported). When exposed to persistent antigenic stimulation, CD8 T cells 

become dysfunctional, exhausted and fail to differentiate into effective memory CD8 T cells. The 

exhaustion of CD8 T cells is accompanied by the upregulation of inhibitory molecules (such as PD1, 

lymphocyte activation gene 3 protein (LAG3) and B- and T-lymphocyte attenuator (BTLA)), as well as 

defective proliferation, cytokine production and cytotoxicity. (Blackburn et al. 2009; Virgin et al. 

2009). During chronic infection, it is also reported that T-bet expression decays over time in antiviral 

CD8 T cells as the degree of dysfunction and PD-1 expression increase. It was also shown that T-bet 

directly binds to Pd1 gene repressing its expression. Thus, T-bet deficiency leads to an increase in 

PD1 expression and a decrease in CD8 T cell function and survival (Kao et al. 2011). 

 

 

 

 

10.2   Bcl-6 and Blimp1 

 

Bcl-6 and Blimp1 are another pair of antagonistic transcription factors that function as genetic 

switches for cell fate decisions in B and T cells (Crotty et al. 2010). 

 

Bcl-6 (B-cell lymphoma 6) is a transcription factor that plays an important role in the late stages 

of CD8 T cell differentiation. Bcl-6-deficient mice are impaired in their ability to maintain CD8 T cell 

memory, while mice overexpressing it have increased numbers of memory cells, with Bcl-6 being 

crucial for the formation mature self-renewing of TCM (Ichii et al. 2002; Ichii et al. 2004). Bcl-6 has also 

been shown to suppress Gzmb expression, which is consistent with its positive role in memory T cell 

generation (Yoshida et al. 2006). IL-10 and IL-21, signaling through STAT3 (signal transducer and 

activator of transcription 3), are possible candidates for sustaining or even increase Bcl6 expression 

in memory CD8 T cells after acute infection (Cui et al. 2011).  

 

Blimp1 (B-lymphocyte induced maturation protein) is also a transcriptional factor that plays a 

crucial role in transcriptional networks guiding effector and memory T cell fates.  It is robustly 

expressed by effector CD8 T cells and, it promotes CD8 T cell terminal differentiation and repress the 

acquisition of central memory T cell properties (Kallies et al. 2009; Rutishauser et al. 2009). 
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In vivo studies demonstrated that Blimp1 is required for the generation of short-lived effector 

cells (SLECs) in response to LCMV infection. In Blimp1-deficient mice, antigen-specific CD8 T cells fail 

to downregulate IL-7R and show impaired KLRG1 expression, adopting a memory precursor 

phenotype rather than an effector phenotype. Accordingly, in Blimp1-deficient mice, antigen-specific 

CD8 T cells also show a reduced downregulation of IL-2 secretion, impaired Gzmb expression and 

reduced cytotoxicity. (Kallies et al. 2009; Rutishauser et al. 2009). 

Blimp1 also influences T cell localization in tissues by regulating the expression of several 

chemokines receptors including CCR7, CCR5 and CCR6. Thus, in the absence of Blimp1, antigen-

specific CD8 T cells failed to home to infected tissues, such as the lung, and accumulated in draining 

lymph nodes. Blimp1-deficient effector CD8 T cells express lower level of T-bet but higher levels of 

Eomes than WT-cells. (Kallies et al. 2009; Rutishauser et al. 2009). Thus, it is suggested that Blimp1 

and T-bet jointly regulate the terminal differentiation of effector T cells and also cooperate in the 

suppression of IL-2 production. 

 
 

 

 

11. Differentiation programs in B cells, CD4, and CD8 T cells  

 

The heterogeneity of T cell populations during infections provides a highly complex landscape 

for CD8 T cell differentiation studies. In parallel, a number of transcription factors have emerged 

with key roles in the differentiation of effector and memory T cells, and some of them also appear to 

fulfill similar roles in B cells. Thus, enlightening the transcriptional networks behind that diversity, in 

both T and B cells, is of major importance for a rational vaccine design, that should provide not only 

an efficient elimination of the pathogens at the first encounter, but also a lifelong protection for 

subsequent encounters.  

 

 

a) B cells 

 

Well established models for plasma cell and memory B cell differentiation have been supported 

by a series of stage-specific markers and well-defined transcriptional regulators that unambiguously 

define effector and memory B cell subsets: i) short lived plasmablasts, which secrete large amount of 

mostly low-affinity immunoglobulins (Igs); ii) long-lived isotype-switched plasma cells, producing 

high-affinity Igs for lasting protection; and iii) memory B cells, which upon Ag re-encounter rapidly 

proliferate and differentiate into Ig-secreting cells (reviewed in Nutt et al. 2007; Klein and Dalla-

Favera 2008). 

While many of the factors implicated in late B- and T cell-differentiation are lineage specific, a 

core group of transcription factors such as Blimp1, Bcl-6, and interferon regulatory factor-4, have 
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emerged as key players in plasmas B cell and memory B cell differentiation as well as in effector and 

memory T cell differentiation (Mittrucker et al. 1997; Calame 2006; Nutt et al. 2007). Blimp1 has long 

been implicated in the differentiation of B cells into plasmablasts and plasma cells (effector 

population of the B cell lineage) and, among B cells, its expression is restricted to this subpopulation 

of cells (Shapiro-Shelef et al. 2003; Kallies et al. 2004). Bcl-6, on the other hand, is an essential 

regulator of germinal center B cells, which are the principal precursors of memory B cells (Fukuda et 

al. 1997). 

 

 

b) CD4 T cells 

 

CD4 T cell differentiation into effector cells, with different characteristics and functions, is also 

well described, and each subset is distinguished by a specialized gene expression program that is 

under the control of a lineage-defining transcription factor.  

Resting naïve CD4 T cells are designed T helper (Th) cells, and they release very low level of 

cytokines. Early after stimulation by antigens and APCs, Th cells begin to produce IL-2 and are then 

designated Th0. As Th cells continue to respond to activating signals, they undergo clonal expansion, 

and progress to differentiate in well characterized Th1, Th2, Th17, T follicular help (TFH) or peripheral 

derived regulatory (Treg) cells. The type of Th fade is depending on the nature of the cytokines 

present at the site of activation, which then induce the expression of lineage-defining transcription 

regulators (reviewed in Sallusto and Lanzavecchia 2009).  

The CD4 T cells lineage-defining transcription factors are: T-bet for the Th1 cell lineage, GATA3 

for Th2 cell lineage, RORγt for the Th17 cell lineage, Bcl-6 for TFH cells, and FOXP3 for Treg cells. 

Accordingly, CD4 Th subsets are also defined by:  the cytokine signature expressed, their distinct 

homing properties, and their specialized effector function, which make them better prepared to 

target a particular class of pathogen (Fig. 9). 

 

Differentiation towards Th1 cells is induced by IL-12 and IFNγ produced by macrophages or NK 

cells, and results in IFNγ production and effective activation of macrophages microbicidal function 

against intracellular bacteria, protozoa and virus, with Th1 cells supporting cell mediated immune 

responses.  

 

Differentiation towards Th2 cells is induced by IL-4 produced by NK1.1+ T cells, basophiles, or 

mast cells, and Th2 cells produce IL-4, IL-5, IL-9, IL-13 and GM-CSF, which are required for the 

elimination of extracellular parasites. Th2 cells support humoral and allergic responses.  

 

Differentiation towards Th17 cells is induced by TGFβ and IL-6, and Th17 cells protect mucosal 

surfaces against extracellular bacteria and fungi through the production of IL-17A, IL-17F, IL-21 and 

IL-22. IL-17A is responsible for inducing a variety of proinflammatory mediators, such as IL-1, IL-6, 

TNFα, CXCL8 (IL-8, a neutrophil chemoatractant), granulocyte colony-stimulating factor (G-CSF), and 
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Figure 9. Differentiation of CD4

+
 T cells into different T helper (Th) subsets: instructed cytokines, lineage-defining 

transcription factors, and signature expressed cytokines. (Lazarevic et al. 2013). 

 

 

 

 

granulocyte-macrophage colony-stimulating factor (GM-CSF) by epithelial , endothelial, and other 

stromal cells, which ultimately leads to the recruitment and activation of neutrophils (Ouyang et al. 

2008). Thus, Th17 cells are induced early in the adaptive response to extracellular bacteria and help 

to recruit neutrophils to eliminate these pathogens. 

 

TFH cells support antiviral humoral immunity by promoting antibody class-switching and affinity 

maturation in germinal-center B cells. 

 

Another functionally distinct and differentiated subset of CD4 T cells is the subset of regulatory T 

cells (Treg). It is characterized by surface expression of CD4 and CD25, and by nuclear expression of 

the Foxp3 transcription factor that is essential for their development. These cells prevent 

inflammation-mediated tissue injury through the local secretion of suppressive cytokines such as IL-

10, IL-35 and TGFβ, or through the cell-cell contact-mediated inhibition of CD4+ effector cell 

proliferation. (reviewed in Sallusto and Lanzavecchia 2009; Lazarevic et al. 2013).  

 



70 
 

 

c) CD8 T cells 

 

In contrast to B and CD4 T cells, CD8 differentiation is less well characterized. It should be noted 

that several events after activation of T cells have been revealed in CD4 T cells and then extrapolated 

to CD8 T cells; that the vast majority of effector function are evaluated after in vitro reactivation with 

pathogen epitopes and that in vitro re-stimulations have also shown to considerably modify ex vivo 

readouts; that different infection models have been used to characterize CD8 T cell differentiation; 

and yet, that distinct systems/techniques used to evaluate CD8 T cell immune responses are not 

always the most accurate way to unveil the outcome of CD8 differentiation in vivo.  

 

Nevertheless, due to intense studies during the past decade in characterizing effector and 

memory CD8 T cell subsets, as well as the recent attention to the transcriptional circuits associated 

with them, a graded activity of transcriptional programs have been proposed to control effector and 

memory T cell differentiation (reviewed in Kaech and Cui 2012).  

 

This model postulates that, in response to different levels of signal input, the differentiation of 

antigen-specific effector CD8 T cells occurs along a continuum: from cells that have greater memory 

cell potential, longevity and proliferative potential; to terminally differentiated effector T cells (Fig. 

10a). These heterogeneous differentiation states of CD8 T cells can also be distinguished by the 

expression of several surface markers, such as KLRG1, IL-7Rα, CXCR3, CD62L and CCR7 (Fig. 10b).  

The transcriptional programs controlling terminal effector cell differentiation and memory cell 

potential are proposed to be based on a graded expression or activity of certain competing sets of 

transcription factors with: 

i) T-bet, BLIMP1, ID2 and STAT4 being associated with effector cells terminally 

differentiated, reduced proliferative capacity and longevity; 

ii) EOMES, BCL-6, ID3 and STAT3 preventing terminal differentiation of effector cells and 

helping to maintain memory cell properties (Fig. 10c). 

In addition, it is argued that this gradient model also provides a flexible way to manage the size 

and the quality of CD8 T cell populations during an infection. In particularly, by taking in 

consideration the unpredictable properties of an infection, which vary in intensity, tropism and 

duration. (reviewed in Kaech and Cui 2012). 
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Figure 10. Model of transcriptional programs controlling differentiation of antigen-specific effector CD8 T cells: graded 

activity of transcription factors. a) In response to different levels of signal input, CD8 T cells differentiate into cells with 

greater memory cell potential, longevity and proliferative potential or into effector cells terminally differentiated. b) 

Heterogeneous differentiation states of CD8 T cells can be distinguished by the expression of several markers. c) 

Transcriptional programs controlling terminal effector cell differentiation and memory potential seem to be based on 

graded expression or activity of certain competing sets of transcription factors. (Kaech and Cui 2012). 
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12.  Memory CD8 T cells and secondary immune responses 

 

 

a) Cytotoxic T lymphocyte (CTL) response to acute infection 

 

The development of CTL responses is necessary to control of a variety of bacterial and viral 

infections, and it is generally divided into four phases: 

i)  during effector phase, naïve CD8 T cell are primed, undergo dramatic expansion, acquire 

effector functions, travel to sites of infection, and mediate pathogen clearance by killing 

infected cells and secreting effector cytokines;  

ii)  during the contraction phase, most effector CTLs die, leaving behind 5-10% of the original 

burst size as long-lived memory cells; 

iii)  during the memory maintenance phase, memory CTL cells are maintained at stable levels 

through life;  

iv) the rapid recall response of memory CTL following re-exposure to the pathogen provides 

enhanced protection to the host. (Fig. 11) 

 

Thus, the primary goal of a CD8 T cell response is to simultaneously generate: i) an expendable 

pool of effector cells to combat the present infection, and ii) a pool of long-lived progenitors to 

combat future infections. These long-lived cells are designated as memory cells and are the base of 

the life-long acquired immunity after vaccination or infection. (reviewed in Williams and Bevan 

2007). 

 

 

b) Memory CD8 T cell definition 

 

The definition of a “memory” CD8 T cell has changed over time. Initially memory CD8 T cells 

were defined as primed cells persisting in vivo after antigen elimination and that only such cells 

would be capable of inducing long-term protection. However it was subsequently shown that at least 

two situations did not fit on this definition. First, there are CD8 T cells able to eliminate the antigen 

and also to persist in vivo, but which do not have the capacity to mount efficient secondary 

responses or to protect from re-infection (e.g.  when naïve CD8 T cells are primed in the absence of 

CD4 help). Secondly, this initial definition implies that CD8 T cells are “effectors” when antigen is 

present, and become “memory” when antigen is eliminated.  However, not only some effector 

functions persist after antigen elimination, but “memory” cells also persist in the presence of antigen 

(like in chronic infections situations). As the broader-initial definition included heterogeneous CD8 T 

cell populations, with different properties and originated under different contexts, it was clear that 

the memory CD8 T cell definition should not be based neither on the phase of the immune response 

when CD8 T cells are recovered, nor on the degree of antigen load present. Instead, it should take 

into account functional properties (division, survival, differentiation in effector function and cytokine 
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secretion capacity), and also the capacity to induce protection. (reviewed in Rocha and Tanchot 

2004a; Rocha and Tanchot 2004b). 

 

 

 

 

c) Efficiency of secondary immune responses 

 

Multiple mechanisms account for the efficiency of secondary immune responses. Prior to 

infection, the precursor frequency of CD8 T cells specific for particular antigen hovers in the range of 

1 in 100000, or from 50-1000 of a given specificity. Following Ag exposure, antigen-specific memory 

cells are more abundant than naïve cells (Busch et al. 1998; Murali-Krishna et al. 1998; Blattman et 

al. 2002). In vivo, memory CD8 T cells have less stringent requirements to survive than naïve cells, 

they can expand in absence of cognate antigen and have higher RNA content and expression of 

perforin and FasL effector molecules. Yet, upon in vivo Ag-exposure, memory CD8 T cells start to 

divide sooner and faster, and also have a reduced loss rate during division. Cytokines are also 

produced at much higher amounts and can be detected much sooner in memory CD8 T cells than in 

naïve cells. (Tanchot et al. 1997; Tanchot et al. 1998; Freitas and Rocha 2000; Veiga-Fernandes et al. 

2000; Veiga-Fernandes and Rocha 2004).  

In conclusion, upon re-exposure to antigen, secondary responses are quicker, have much higher 

amplitude, and thus should lead to an efficient protection, which are the basic principles behind 

efficient vaccination protocols. (reviewed in Sprent and Surh 2002; Rocha and Tanchot 2004a). 

 

 

 

 

d) CD4 T cell help to CD8 responses 

 

Yet, to generate CD8 T cells capable of efficient recall responses to antigen, CD4 T cell help is 

absolutely required. This requirement was demonstrated in several different models: in monoclonal 

CD8 T cells specific for male antigen (Bourgeois et al. 2002a; Bourgeois et al. 2002b), in CD8 

responses to cross-presented Ags or to a viral infection with LCMV (Janssen et al. 2003), in response 

to vaccine virus, expressing GP33 from LCMV (Shedlock and Shen 2003), and in response to LM 

expressing OVA or recombinant LCMV GP33 (Sun and Bevan 2003). In all these studies activation and 

differentiation of antigen CD8 T cells in the primary response did not require CD4 help but, CD8 T 

cells primed in the absence of CD4 help, performed poorly in secondary responses (lethargic cells).  

CD8 T cells primed in absence of CD4 help proliferate poorly when re-challenged with antigen 

(Bourgeois et al. 2002a; Janssen et al. 2003; Shedlock and Shen 2003; Sun and Bevan 2003); they 

secret low levels of cytokines similar to those secreted by naïve cells (Bourgeois et al. 2002a; 

Bourgeois et al. 2002b); and they are unable to compete with naïve cells of the same specificity in 
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secondary responses (Shedlock and Shen 2003; Sun and Bevan 2003). CD40-CD40L interactions are 

involved in CD4 help to CD8 responses, either by direct CD40 engagement on CD8 T cells (Bourgeois 

et al. 2002a; Rapetti et al. 2008) or indirect CD40 engagement on APCs. (reviewed in Rocha and 

Tanchot 2004a).  

 

 

 

 

e) Memory CD8 T cell subsets 

 

As previously mentioned, memory CD8 T cells have been broadly divided into central memory 

(TCM) and effector memory (TEM) subsets in humans, and caution should be taken when applying the 

same classification to mouse and to different infection models. The criteria associated with these 

subsets distinction are the phenotype, proliferative capacity, function, and migration capacity. 

Therefore, TCM are CD62Lhigh CCR7+, reside in secondary lymph nodes, have a greater proliferative 

potential and do not express immediate lytic function. In contrast, TEM are CD62low CCR7-, found in 

nonlymphoid tissue and constitutively display cytotoxicity effector functions. Interestingly, repetitive 

reactivation of memory CD8 T cells through vaccine boosters or successive infections cumulatively 

augments the effector-like properties of memory CD8 T cells and the frequency of TEM in the memory 

pool (Jameson and Masopust 2009; Nolz and Harty 2011) (Fig. 11 and Table 3). 

 

Recently, another subset of memory T cells has been proposed: tissue-resident memory T cells 

(TRM).  It has been described, that after infection had been cleared, there are memory cells that 

reside long-term in the brain and mucosal tissues (such as lungs, gut and skin) and that show limited 

levels of egress and recirculation. These memory cells have been designated tissue-resident memory 

T cells and have a characteristic CD103hiCD69hiCD62LlowCD27low phenotype (Gebhardt et al. 2009; 

Masopust et al. 2010; Sheridan and Lefrancois 2011). (Table 3).  

 

In contrast with memory CD8 T cells generated in response to infectious pathogens or in the 

presence of PAMP- innate signals, that mimic pathogens, it was also recently characterized a memory 

CD8 T cell subset generated under sterile inflammatory conditions designated as TIM (inflammatory 

memory T cells). These cells are identified by their CD44/CD122 (IL-2Rβ)intermediate phenotype. They are 

also present in unmanipulated wild-type mice and they display intermediate levels of several other 

memory traits (IFNγ, CCL5, T-bet and Eomes).  It is thought that in absence of stimulation, these 

memory cells with intermediate phenotype might be lost with time, and that the capacity of TIM cells 

to further differentiate and acquire high levels of CD122 are involved in the recall contact of 

hypersensitivity reaction. (Mbitikon-Kobo et al. 2009). 
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Figure 11. Different phases of a CD8 T cell response to an acute infection and heterogeneous CD8 T cell populations with 

different fates and memory potential. When a naïve CD8 T cell encounters an antigen, it undergoes a differentiation 

program that can be divided into three main developmental stages: clonal expansion and differentiation, contraction, and 

memory formation. Along with the immune response, heterogeneous CD8 T cell populations at the peak and memory 

stages can be distinguished: SLECs (short-lived effector cells), MPECs (memory precursor effector cells), TEM (T effector 

memory cells) and TCM (T central memory cells). (Lazarevic et al. 2013). 

 

Table 3.  Memory T cell subsets: TCM (T cell central memory), TEM (T cell effector memory) and TRM (tissue-resident memory 

T cells). (Kaech and Cui 2012) 

 

 

 

 

f) Early markers for memory precursor cells  

 

Concerning the identification of an early marker for memory precursor cells, as previously 

addressed, IL-7R and KLRG1 expression have been two strong candidates, however never absolute 

ones.  
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Another marker that has also been associated with memory T cell precursors is the CD8αα 

homodimer. This alternative complex of two CD8α molecules is induced in both CD4+ and CD8αβ 

activated T cells, and in the course of primary responses to LCMV, CD8αα is transiently expressed in 

antigen-specific T cells and lost thereafter. When antigen-specific CD8αα- and CD8αα+ were isolated 

at day 7 of LCMV infection and then injected into adoptive hosts, only CD8αα+ cell were able to 

generate secondary memory precursors. In E81
-/- mice that cannot generate CD8αα homodimers, it 

was also shown that transient expression of CD8αα is required for memory T cell generation 

(Madakamutil et al. 2004). However, identification of these CD8αα was performed by the use of TL-

tet (thymus leukemia antigen-tetramers), which were lately reported to be “non-specific” and to fail 

indentifying CD8αα cells (Peaudecerf et al. 2011). In this context, it is unclear what cell types were 

identified by this methodology.  

 

 

 

 

g) Models for effector and memory T cell heterogeneity generation 

 

How effector CD8 T cell differentiation is modulated to originate cells with various phenotypes, 

functions and short- or long-term fates is still an open question. Recently, Kaech and Cui have 

summarized some of the models put forward to explain how heterogeneous pools of effector and 

memory CD8 T cells arise during infection (Fig. 12) (Kaech and Cui 2012): 

 

a) Separate-precursor model: naïve T cells are pre-programmed to adopt certain differentiation 

states following activation based on information received during thymic development; 

b) Decreasing-potential model: effector T cells adopt a variety of different states according to 

the cumulative history of signals that they encounter during infection. Repetitive 

stimulations with antigen (signal 1), co-stimulatory molecules (signal 2), and pro-

inflammatory cytokines (signal 3) drive a greater effector cell proliferation and terminal 

differentiation state (which remain functional and cytotoxic, but lose memory cell properties 

such as enhanced longevity and proliferation potential); 

c) Signal-strength model: the formation of heterogeneous population is dependent on the 

overall strength of the signals 1, 2 and 3 that are encountered early during the T-cell priming 

(a strong signals select out T cells that are competent to form memory and cause terminal 

effector T cell differentiation); 

d) Asymmetric cell fate model: effector and memory T cell fates arise from a single precursor T 

cell through asymmetric cell division occurring as early as the first cell division after antigen 

stimulation (daughter cell that is closer to the APC/synapse contact adopts an effector cell 

fate). 
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Figure 12. Models for generating effector and memory T cell heterogeneity (Kaech and Cui 2012). 

  



78 
 

IV.    Methods and models to evaluate T-cell immune responses 

 

 

1. Fluorencent-labeled pMHC multimers 

 

T cells carry T-cell receptors (TCRs) recognizing specific MHC-peptide complexes displayed on 

the surface of antigen-presenting cells. By exploiting the specificity of this interaction, soluble 

multimeric forms of pMHC molecules (MHC multimers) have been designed to detect antigen-

specific T cells. 

As the affinity of an individual TCR for the peptide-loaded MHC is very low (when compared to 

the antibody-antigen interactions), the use of monomeric pMHC reagents to detect Ag specific T cells 

proved to be ineffective due to weak an transient binding. Thus, different ways of multimerizing 

pMHC complexes to improve their binding capacity were tried, and a site-specific biotinylation 

method, by which biotinylated pMHC complexes could be tetramerized with fluorescently labeled 

streptavidin molecules, has been widely adopted (Altman et al. 1996).  

Fluorescent-labeled MHC multimers provide a powerful tool to monitor T cell-mediated immune 

responses through direct detection and quantification of antigen-specific T cells without any further 

in vitro manipulation. These multimers allow the detection of specific cells present either in ex vivo 

fluid samples, by flow cytometry, or in situ samples. In addition, the use of multimers constitutes a 

dominant utensil for physical purification/isolation of Ag-specific T cells for their further functional 

characterization and manipulation. 

 

 

a) Improvements in multimers technology 

 

Improvements in multimers techonology have not only increased their scope of application but 

also simplified their production procedure. Major differences between MHC multimers are related 

to: (i) the valency/number of pMHC complexes, (ii) the expression system through which proteins 

are produced, and (iii) the peptide-loading strategy used to assemble a desired peptide on the MHC 

biding groove (Bakker and Schumacher 2005). 

To improve sensitivity of detection, both the valency of pMHC complexes and the valency of 

fluorochromes per molecule have been increased in order to augment the binding stability and 

brightness, respectively. The limited number of fluorophores available are circumvented by 

combinatorial staining strategies (e.g. stained with a mix of identical tetramers that are conjugated to 

different fluorophores) (Yi et al. 2010b) or by using streptavidin-coated with quantum dots (more 

stable than organic fluorochromes and with a narrow emission spectra) (Yi et al. 2010c). The use of 

two fluorophores to label the same epitope reduces the nonspecific staining (Hadrup et al. 2009).  

Concerning the peptide-loading strategy, exchangeable peptides for one single batch of 

prepared MHC protein revolutionized the diversity and the rapid production of specific p-MHC 
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multimers. Ultraviolet light has been used to dissociate UV-sensitive ligands from MHC class I 

molecules (UV-mediated peptide-exchange technology). In contrast with the low pH method, this 

system does not change MHC structures when generating these “conditional” MHC class I ligands 

(Toebes et al. 2006). 

 

 

 

b) Different types of MHC-peptide multimers 

 

There are different types of MHC-peptide multimers: dimmers (multimer:IgG construct), 

tetramers, pentamers, streptamers (reversible bound multimers), dextramers, octamers and also 

pMHC coated vesicles (Casalegno-Garduno et al. 2010). 

 

Tetramers: were first described by Altman et al. in 1996 for direct visualization and 

quantification of Ag-specific cytotoxic T cells; they are complexes of four biotinylated MHC molecules 

associated with a specific peptide that are tetramerized by a fluorescence-labeled streptavidin or 

avidin, which have the ability to bind four biotin molecules (Altman et al. 1996); due to the 

tetrahedral special configuration, no more than tree MHC-peptide complexes are available for TCR-

binding. 

 

Pentamers: were introduced in 2000 by ProImmuneR; they consist of five MHC-peptide 

complexes that are multimerized by a self-assembling coiled-coil domain; due to their planar 

configuration, all five MHC-peptide complexes are available for binding to complementary T cell 

receptors (higher avidity); each Pentamer also comprises up to five fluorescent or biotin tags 

(brighter signal).  

 

Dextramers: were first introduced in 2005 by ImmudexR and are the next generation of 

fluorescent MHC multimers, carrying more MHC-molecules and more fluorochromes than 

conventional MHC multimers. These features increase their avidity for the specific T cell and enhance 

their staining intensity, respectively. Stability of the dextramers is ensured by the dextran polymer 

backbone that stabilizes the conformation of attached MHC-peptide complexes and fluorochromes. 

Minimal background staining is ensured by a novel method of production concerning the peptide-

loading strategy. All these improvements significantly increase the detection resolution/sensitivity of 

T cell receptors with low affinity for MHC-peptide complexes, as well as the detection of extremely 

rare populations (Batard et al. 2006) (Jeannet et al. 2010). 
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c) MHC-peptide multimers applicability 

 

p-MHC multimers have been widely used: for high-throughput analysis of Ag-specific T cells 

during vaccine trials in microarrays (Yi et al. 2010b) (Zhou et al. 2010); for high throughput epitope 

discovery (Sondergaard et al. 2009); for detection and purification of human cytotoxic T lymphocytes 

directed against tumor-associated and viral antigens (Yi et al. 2009); to compare vaccination 

strategies for their ability to enhance the frequency of high avidity clones, by quantifying the relative 

off-rates for TCR (Kaka et al. 2009); for in situ imaging to localize tumor cell or pathogen infected cells 

(Yi et al. 2010a; Cox et al. 2011); and for observation of TCR polarization during immunological 

synapse formation in vivo (Spolski et al. 2009). 

Moreover, the use of MHC-peptide multimers has also been extended to enriching procedures. 

It overcomes limitations of techniques where cells that do not have proliferative potential or 

cytokine production could not be detected, allowing the detection of rare naïve or anergic antigen 

specific T cells (Parmigiani et al. 2011) (Monteleone et al. 2009).  

Since the introduction of pMHC multimers two decades ago, many improvements have greatly 

increased their capacities to detect, quantify, isolate and manipulate antigen-specific T cells (Bakker 

and Schumacher 2005; Davis et al. 2011). 

 
 
 
 
 
 
 
 

2. TCR Transgenic T cells      

         
The genetic introduction in T cells of TCR α and β genes with a defined specify was initially 

developed to study the mechanisms of repertoire selection in the thymus (Kisielow et al. 1988), and 

our laboratory introduced this strategy to study T cell peripheral responses. It allowed to 

demonstrate that T cells could become tolerant outside the thymus (Rocha and von Boehmer 1991) 

and that antigen-specific T cells could have different fates, depending on the amount of antigen they 

encountered (Rocha et al. 1993; Tanchot et al. 1998). Thus, adoptive transfer of TCR-Tg T cells has 

been extremely valuable to study T-cell activation and differentiation of antigen-specific T cells in 

vivo.  

 

 

a) HY specific TCR-Tg cells 

 

The mouse minor histocompatibility (H) male-specific antigens (Y) (HY antigens), are expressed 

in male tissues, and are derived from different genes located on the Y chromosome. The Smcy gene 

was the first gene identified as encoding an MHC class I-restrict HY epitope, whereas the Dby was the 

first one identified for an MHC class II-restrict male epitope (Brandt et al. 2003; Zeng et al. 2005). 
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Different HY epitopes/peptides derived from the same male protein have also been identified, and 

distinct TCR-Tg mouse strains have been genetically engineered to express the corresponding specific 

TCR. Two broadly used Tg mouse strains bearing TCRs specific for male antigens are the (i) HY and (ii) 

Marilyn mouse trains. (i) HY mice enclose CD8 T cells expressing a transgenic TCR (VαT3.70 Vβ8.2) 

that binds specifically to the Smcy antigen-derived peptide (KCSRNQYL) presented on H-2Db MHC 

class I molecules (Korn et al. 2007). (ii) Marilyn mice have CD4 T cells expressing a transgenic TCR that 

specifically recognize the Dby derived peptide (NAGFNSNRANSSRSS) presented on H-2Ab MHC class II 

molecules (Lantz et al. 2000). These models are particularly useful to study T cell differentiation in a 

“sterile” non-infectious context (where CD8 HY female cells are activated by male cells).  

 

 

b) OVA specific TCR-Tg cells 

 

The chicken egg albumin - Ovalbumin (OVA) - has also been widely used as an antigen model.  

Two broadly used Tg mouse strains bearing TCRs specific for OVA antigens are the: (i) OT-1 and (ii) 

OT-2 mouse strains. (i) The OT-1 mice harbor CD8 T cells expressing a transgenic TCR (Vα2 Vβ5) 

specific for the OVA257-264 peptide (SIINFEKL) presented in the context of H-2Kb MHC class I molecules 

(Nembrini et al. 2006). (ii) The OT-2 strain ports CD4 T cells expressing a transgenic TCR specific for 

the OVA323-339 peptide (ISQAVHAAHAEINEAGR) presented in H-2Ab MHC class II molecules (Bots et al. 

2005). 

 

 

c) GP33 specific TCR-Tg cells 

 

The LCMV has been extensively used as an infection model subject to selective pressures due to 

pathogen/host coevolution. The P14 mouse strain harbors CD8 T cells expressing a transgenic TCR 

(Vα2 Vβ8.1) specific for the LCMV glycoprotein peptide GP33-41 (KAVYNFATM) present in the context 

of H-2Db MHC class I molecules (Pircher et al. 1989; White et al. 1999).  

 

d) TCR-Tg mice in a Rag-/- background 

 

The absence of allelic exclusion in the expression of the TCR-α chain initially caused a trouble in 

using TCR-Tg mice. In these mice, the majority of TCR-Tg cells, besides expressing the transgenic TCR-

α chain, also co-expressed different levels of endogenous TCR-α chains (Bluthmann et al. 1988), 

resulting in different avidity for the antigen and complicating the readouts of the peripheral 

responses. To overcome this limitation, TCR-Tg mice were initially crossed to a Scid background, but 

this strategy was found inappropriate to evaluate peripheral responses (Rocha, personal 

communication): the inability of Scid cells to repair DNA prevented the peripheral expansion of TCR-

Tg cells. Our laboratory thus developed the strategy to cross TCR-Tg mice into the Rag-/--background 
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in order to abolish endogenous TCR rearrangements (Rocha et al. 1993). Thereby, these mice are a 

source of naïve monoclonal T cell population, which bears a single and defined TCR.  

 

A number of allelic variations of surface receptors (congenic markers) have been bred onto TCR-

Tg mice to discriminate donor T cells from recipient’s own cells. The most common congenic markers 

are the CD45 and CD90 and, different allelic forms of each, can be detected by specific antibodies. 

Alternative approaches to track donor TCR-Tg cells after adoptive transfer can be the use of: 

antibodies specific for TCR Vα or Vβ segments; CFSE (carboxyfluorescein diacetate succinimidyl ester) 

to distinguish donor cells in cases where they have not divided extensively; and pMHC multimers. 

(reviewed in Elsaesser et al. 2009). 

 

 

 

 

3. Models of infection: LM and LCMV 

The most commonly used models to study CD8 T cells differentiation rely on Listeria 

monocytogenes or LCMV infection.  

 

a) Listeria monocytogenes (LM) 

 

LM is a ubiquitous Gram-positive bacterium and it is a facultative intracellular pathogen able to 

infect a broad variety of mammalian cell types, including ephitelial cells, endothelial cells, 

hepatocytes, DCs and macrophages (Kayal and Charbit 2006).  

The natural route of infection with LM is through the gastrointestinal tract. It infects intestinal 

epithelial cells by interaction of internalin A (expressed on bacterial cell surface) with epithelial 

cadherin (E-cadherin), which is expressed at the surface of ephitelial cells (Gaillard et al. 1991). 

However, mice are relatively resistant to intestinal infection with LM due to a single amino-acid 

difference between human and mouse E-cadherin (Lecuit et al. 2001). After traversing the epithelial 

cell layer, bacteria disseminate in the bloodstream to other organs, such as the spleen and liver, 

where they are internalized by macrophages. In the liver, LM enters hepatocytes by expressing 

internalin B, which binds to a hepatocyte growth factor receptor (Shen et al. 2000). 

In laboratory studies to characterize immune responses, this pathogen is inoculated intravenous 

or intraperitoneal eliciting an immune response to systemic infection.  

 

After cellular invasion, LM rapidly escapes from the primary phagosome by membrane lysis upon 

secretion of listeriolysin O (LLO) and phosphoinositide specific phospholipase C (Bielecki et al. 1990). 
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Invasion of the cytosol is fundamental for virulence and for triggering innate and adaptive immune 

responses. LM stains that lack LLO do not induce protective immunity in immunized mice (Berche et 

al. 1987). 

 

Once in the cytosol, LM actively replicates and expresses other virulence factors such as ActA and 

SecA2.  

ActA is a surface-enchored actin-assembly-inducing protein that induce polymerization of actin 

filaments to propel bacteria through the cytoplasm and into neighbouring cells (Domann et al. 1992; 

Kocks et al. 1992). ActA-mutant LM strains are greatly attenuated. This mutant is used at higher 

doses, does not spread, it reaches higher density within infected cells, does not increase the number 

of infected cells throughout the infection, and it is cleared more quickly. However, it induces innate 

immune responses and prime protective T cell responses (Goossens and Milon 1992).  

SecA2 is involved in the secretion of a subset of proteins via the general secretory pathway (Sec 

system) (Lenz et al. 2003). SecA2-deficient LM does not induce protective secondary responses, 

although it generates normal numbers of Ag-specific CD8 T cells. These CD8 T cells also score 

normally when tested for cytolitic function and IFNγ, TNFα and GzmB production, but are unable to 

reduce the bacterial load. (Muraille et al. 2007; Narni-Mancinelli et al. 2007). Immunization with 

SecA2-deficient LM results in a defect in the CCL3 production by CD8 T cells. CCL3 is responsible for 

TNFα production by mononuclear phagocytic cells (MPCs), and CCL3 and TNFα are required for the 

production of reactive oxygen intermediates by MPCs and neutrophils (Narni-Mancinelli et al. 2007). 

 

LM elicits a strong innate immune response, namely by triggering TLR2 and TLR5, which is 

essential to controlling the infection in its initial phase. Both TLR2, which recognize bacterial 

peptidoglycan, lipoteichoic acid and lipoproteins; and TLR5, which recognizes bacterial flagellins have 

been implicated in the recognition of LM (Hayashi et al. 2001; Seki et al. 2002). MyD88, an adaptor 

that mediates TLR signals, is also essential for innate immune defense against LM. Mice that lack 

MyD88 are more susceptible to LM infection than mice that lack either IFNγ or both IL-12 and IL-18 

(Edelson and Unanue 2002; Seki et al. 2002). Mice lacking, TNFα, iNOS, or CCR2 are also more 

susceptible to LM infection (Pamer 2004).  

It was also shown that after systemic LM administration, DCs transport bacteria to the white-pulp 

areas of the spleen, where they initiate secretion of chemokines required for NK and monocytes 

recruitment. DCs undergo MyD88-dependent activation and secrete IL-12 and IL-18 that in turn 

activate newly recruited NK cells to produce IFNγ. Recruited cells are then organized in clusters: 

monocytes are positioned in proximity to infected cells, and NK cells form a cuff at the periphery, 

where NK-derived IFNγ induces monocyte activation. This leads to MHC class II and iNOS 

upregulation and subsequent differentiation of monocytes in TipDCs. TipDCs sense microbial 

infection in a MyD88-dependent manner and secrete TNFα and NO, leading to bacterial replication 

restriction. (Kang et al. 2008; reviewed in Serbina and Pamer 2008).  

Besides the MyD88-dependent pathway that emanates from the cell surface and phagosome 

leading to the expression of inflammatory and suppressive/regulatory cytokines such as TNF-α, IL-12, 
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and IL-10; two other innate pathways are induced by Listeria infection. A second pathway emanates 

from the cytosol and is dependent on STING (stimulator of interferon genes) and IRF3. STING is 

activated by cyclic di-AMP secreted by intracellular bacteria, and leads to the expression of IFN-β and 

coregulated genes. A third pathway is Caspase-1-dependent on inflammasome activation and results 

in the proteolytic activation and secretion of IL-1β and IL-18 and cell death. This pathway is known to 

be activated by LM trough the NLP3 (a NOD-like receptor that integrates the inflammasome 

complex). As mentioned before, Listeria also activates NOD1 and NOD2 (reviewed in Schuppler and 

Loessner 2010; and in Witte et al. 2012). 

Thus, the innate signaling in LM infection is complex and involves multiple mediators.  

 

Although LM has been widely used to investigate innate immunity to bacterial infection, it has 

been used even more extensively to characterize T cell-mediated immune responses. T cells mediate 

the clearance of LM after infection (McGregor et al. 1970), with humoral immunity providing only a 

small contribution to protective immunity. Among αβT cells, CD8 T cells provide a more substantial 

contribution to long-term protective immunity (Ladel et al. 1994). In vivo depletion of CD8 T cells 

impairs LM clearance both in primary and secondary responses (Mielke et al. 1988).  

LM derived MHCIa-restricted peptides are generated from secreted proteins, many of which 

contribute to bacterial virulence. LLO is one of the most antigenic secreted proteins in terms of 

specific-CD8 T cell induction. Another antigen that induces substantial CD8 T cell responses is p60, a 

hydrolase involved in bacterial septation. Both LLO and p60 are rapidly degraded by the proteosome 

of the host cell (reviewed in Pamer 2004). In the spleen, most of the bacteria are present in 

CD11bhighCD11c- cells, but CD11chigh cells are required for priming of CD8 T cells (Jung et al. 2002; 

Muraille et al. 2005). 

 

 

b) Lymphocytic choriomeningitis virus (LCMV) 

 

LCMV is a natural mouse pathogen and a prototypic member of Arenaviridae. It is an enveloped 

virus with helical nucleocapside, and is a negative-stranded RNA virus whose genome has two 

segments (small (S) RNA and large (L) RNA) encoding for only four proteins. The S RNA segment 

encodes the viral glycoprotein (GP) and nucleoprotein (NP), whereas the L RNA encodes the L and Z 

proteins (Sevilla et al. 2000). 

The outcome of LCMV infection in mice depends on a number of factors including the mouse 

strain, mouse age, strain of the viral isolate, dose of virus, and route of infection (Roost et al. 1988). 

Thus, differences in viral and host determinants have allowed for the development of distinct LCMV 

model systems for studying efficient responses leading to virus elimination, or viral persistence and 

immunosupression (reviewed in Humphreys et al. 2008): 
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(i) In the carrier state model, WT mice are infected at birth or in the uterus with LCMV and 

become lifelong carriers of the virus. This model is associated with clonal deletion of 

LCMV-specific T cells (chronic infection). 

(ii) Intravenous or intraperitoneal infections of adult WT mice with LCMV clone 13, or other 

highly virulent and fast growing LCMV strains, results in a vigorous expansion of virus-

specific CD8 T cells, however virus persists for 90-150 days in most organs. This infection 

is associated with virus-specific immunosupression (progressive deletion of virus-specific 

CD8 T cells, and destruction and functional disruption of APCs) 

(iii) WT mice being infected with slow growing isolates of LCMV, such the LCMV Armstrong 

strain, results in a robust CD8 T cell response, which mediates viral clearance from the 

spleen within 8-10 days. This infection model neither results in the attrition of virus-

specific CD8 T cells nor in a generalized immunosupression, and it leaves APCs largely 

intact and unaffected (acute infection).  

(It is worth to mention that unless stated differently, the term LCMV is always related to an acute 

infection, thus related to LCMV Armstrong infection, which actually is the strain subject of 

interest during this thesis). 

 

LCMV primarily infects macrophages, lymphocytes, DCs and glial cells, and it mainly infects cells 

through the α-dystroglycan (α-DG) receptor, which is a ubiquitous cellular receptor for proteins of 

the extracellular matrix. 

Armstrong 53b viral variant binds to α-DG with a lower affinity than Clone 13, and sequence 

comparison between these two variants showed that Armstrong 53b has an amino-acid substitution 

in the GP precursor, which is used for the virus binding to its cellular receptor. Armstrong LCMV 

infection is associated with: (i) viral replication in the red pulp of the spleen, (ii) minimal replication in 

CD11c+ and DEC-205+ splenic dendritic cells (among the immune system, these cells primarily express 

α-DG), (iii) a robust anti-LCMV CTL response that clears the acute infection.  

Infection with low doses of either LCMV WE or LCMV Armstrong strains has been used over the 

past decades to investigate effector and memory CD8 T cell differentiation upon acute and resolved 

viral infection. Acute infection of mice with LCMV results in rapid viral growth that causes little host 

damage since LCMV is a noncytophatic virus.  

The primary CD8 T cell response to LCMV Armstrong is not dependent upon the presence of CD4 

T cells or B cells, although neutralizing antibodies are necessary to prevent viral reemergence and 

CD4 T cell help is necessary for long-term memory CD8 T cell generation. The perforin-dependent 

pathway and the IFNγ production are crucial for the control of LCMV infection.   

The CD8 T cell response to LCMV infection is massive and, at the peak of the response, ~90% of 

activated splenic CD8 T cells are directed against 28 defined epitopes in H-2b mice. In C57BL/6 mice, 

three H-2Db-restrict epitopes are the major targets of the CTL response: GP33 (GP33-41), GP276 (GP276-

286), and NP396 (NP396-404). These peptides are present at different densities on the cell surface MHC 

class I molecules (GP33>NP396 >GP276), and their abundance correlates with the magnitude of CTL 

responses to these peptides following LCMV infection. (reviewed in Wong and Pamer 2003).  
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c) Pathogen induced cytokine milieu  

 

Inflammatory cytokines like IL-12 and type-I IFN (IFN-I) have long been known to promote early 

control of pathogens replication and to stimulate APC functions. However recent studies have 

demonstrated that inflammatory signals also act directly on T cells. 

Activation of CD8 T cells depends on three signals: TCR engagement (signal 1), costimulation 

(signal 2) and an inflammatory stimulus (signal 3) via cytokines such as IL-12 or IFN-I.   

In vitro, both IL-12 and IFN-I cytokines are involved in the expansion and effector function of CD8 

T cells (Curtsinger et al. 1999; Valenzuela et al. 2002; Curtsinger et al. 2003; Curtsinger et al. 2005).  

In vivo, expansion and survival of CD8 T cells is strictly dependent on IFN-I signaling during LCMV 

infection but less critical after vaccinia virus (VV) or LM infections (Kolumam et al. 2005; Aichele et al. 

2006; Thompson et al. 2006). On the other hand, direct IL-12 signaling is mandatory for T cell 

expansion after LM infection but not after viral infection with LCMV, VSV (Vesicular stomatitis virus) 

or VV (Keppler et al. 2009). It is also know that high levels of IFN-I suppress IL-12 production (Cousens 

et al. 1997). Indeed, absence of IL-12 is characteristic of LCMV, but not in other viral infection 

(Orange and Biron 1996; Cousens et al. 1997). 

Thus, using CD8 T cells lacking receptors for IL-12, IFN-I, or both, it was shown that CD8 T cell 

expansion depends on IFN-I for LCMV infection, IFN-I and IL-12 for LM and VSV infection, or is largely 

independent of the two cytokines for VV infection (Keppler et al. 2012). 

 In addition, CD8 T cells lacking IL-12 and IFN-I signals are impaired in cytokine production and 

cytolytic activity in the context of VSV and LM infection. These effector CD8 T cells fail to express 

KLRG1, thereby exhibiting a memory-like phenotype which correlate with the lower expression of T-

bet and higher Eomes expression (Keppler et al. 2009; Keppler et al. 2012). Indeed, in LM infection IL-

12 induces T-bet and represses Eomes (Takemoto et al. 2006).  

IFN-I receptor- deficient P14 TCR-Tg CD8 T cells adoptively transferred to WT hosts exhibit a 

severe defect in their ability to expand and generate memory populations after LCMV infection 

(Kolumam et al. 2005; Aichele et al. 2006). 

 

Overall, these results indicate that a variable interplay between IL-12 and IFN-I cytokines is 

mandatory for expansion, effector function or cell fate decision of CD8 T cells in the context of 

different infections.  
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Aims and experimental approaches  
 

During immune responses, naïve CD8 T cells are called on to develop multiple activities required 

to control antigen load, as well as to generate memory cells able to efficiently respond to 

rechallenge. Thus, addressing how naïve CD8 T cells undergo functional programming that 

determinates critical aspects of their differentiation at both effector and memory stages is of great 

interest to understand the establishment of successful immunity. 

Several approaches have been used to study CD8 T cell responses and technological advances in 

pMHC I multimers, intracellular staining protocols, TCR-Tg mice used for adoptive transfer studies, 

and gene profile analysis either by genetic arrays or at single-cell level have greatly contributed to 

uncover the phenotypic and function diversity within effector and memory T cell populations.  

When studying CD8 T cell differentiation in vivo, through the analysis of simultaneously 

expressed genes in each individual cell during immune responses (by single-cell multiplex RT-PCR 

technique), our laboratory detected that: i) individual effector genes had different kinetics of 

expression/down-regulation, and several effector genes were co-expressed stochastically, which 

revealed a cell-to-cell heterogeneity in CD8 responses; ii) shortly after activation, CD8 T cells were 

found to be inflammatory effectors rather than presenting cytotoxic functions. Thus, both the 

markedly cell-to-cell heterogeneity inside a responding population and the diversity of CD8 T cell 

effector functions acquired on immune responses led us to focus on the diversity of CD8 T cell 

differentiation occurring during immune responses: what signals modulate this diversity of CD8 T 

cells, which cell differentiation transcripts control different CD8 T cell behaviors? What type of 

effector and memory cells can be formed and maintained during a CD8 response? What roles do they 

play in protective immunity? 

 

The final outcome of individual T cell activation is complex and the fate of T cell differentiation is 

influenced by different factors such as: strength and duration of TCR signaling, nature of APCs and 

co-stimulatory signaling, and cytokine environment. Indeed, CD4 T cells differentiate into distinct 

effector subsets, and the fate of each subset is depending on the nature of the cytokines present at 

the site of activation, which then induce a coordinated co-expression of transcription factors and 

effector molecules. Thus, even if T cell activation is triggered by TCR engagement, the context in 

which antigen presentation occurs is also central for the final outcome of a T cell response. Thus, 

understanding how the diversity of CD8 T cells responses are induced and regulated to achieve 

different immune outcomes is fundamental for the designing of optimal T cell vaccines. Moreover, 

the impact of the early CD8 effector functions in generating protective response is still unknown.  

  

When studying CD8 T cell differentiation, it must be taken in account that a CD8 T cell response 

is part of an ongoing immune response involving several cells and components of the immune 

system. Thus, most infectious agents induce inflammatory responses by activating innate cells, and 

these inflammatory reactions have a major role in recruiting additional immune cells to the sites of 

inflammation or infection, in order to trigger lymphocyte’s activation and thus eliminate the 
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infectious agents. Thus, understanding which processes provide the properly encounter of naïve CD8 

T cells with cognate antigen is also fundamental for mounting an efficient CD8 T cell response.  

 

 

Therefore, the main scope of this thesis work was to characterize the diversity of CD8 T cell 

differentiation occurring during immune responses. In particularly we addressed the following 

questions:   

 

I. Does the frequency of naïve-precursor cells have an impact on the diversity of CD8 T cell 

immune responses? 

II. Can different pathogens modulate CD8 T cell properties and thus generate diversity on CD8 T 

cell responses? 

III. What is the diversity of CD8 T cell effector functions and what are their roles during an 

immune response? 

 

 

To answer these fundamental questions we used two main approaches: 

 

IV.  The adoptive transfer of TCR-Tg cells: a well established system to study in vivo T cell 

activation and differentiation; 

V. The sensitive single - cell multiplex RT-PCR method: to analyze the complexity and the 

diversity of CD8 T cell responses 

 

 

 

I. Does the frequency of naïve-precursor cells have an impact on the diversity of CD8 T cell 

immune responses? 

 

Antiviral CD8 T cells respond to only a minute fraction of the large potential peptide 

determinants encoded by viral genomes and therefore, immunogenic epitopes are ordered into 

hierarchies based on the magnitude of the cognate CD8 T cell responses generated after infection. 

Immunodominant epitopes have been shown to be critical in eliminating infected cells and in 

contributing to the memory T cell pool. However, the extent to which immunodominance (naïve 

precursor frequency) guides CD8 differentiation is still unclear. Relate to this subject is the question 

of whether information provided by adoptive transfers of TCR-Tg cells at a high precursor frequency 

(artificially induced immunodominance/precursors introduced at high frequencies) could be 

representative or not, of endogenous populations present at rare frequencies. 

 It has been suggested that CD8 TCR-Tg cells originated from precursor introduced at unnaturally 

high frequencies reveal altered differentiation during infection (Badovinac et al. 2007) and that initial 

T cell frequency influences memory generation (Marzo et al. 2005). As these conclusions were made 
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by direct comparison of TCR-Tg cells with endogenous cells in different mice, and as it had also been 

revealed that adoptive transfers using high levels of precursors cells interfere with the kinetics of 

pathogen clearance (Sarkar et al. 2007), it remained unclear if: 
 

A) The diversity of CD8 T cell behaviors attributed to the use of high precursor frequencies is 

the consequence of distinct differentiation pathways or merely the consequence of altered 

differentiation kinetics? So, what is the impact of the immunodominance in guiding the 

diversity of CD8 T cell responses? 

 

B) Information provided by adoptive transfers of TCR-Tg cells at a high precursor frequency 

(artificially induced immunodominance) are representative or not of endogenous 

populations present at rare frequencies ? 

 

 

To answer these questions we: 

 

1.1)  Evaluated if CD8 dominant and subdominant populations exhibit the same properties when 

generated from natural precursor’s frequencies. For this, we analyzed two dominant vs one 

subdominant CD8 T cell clones naturally generated in a mouse responding to acute LCMV 

infection. In all three endogenous populations, and at several time points of the infection, we 

analyzed: (i) the expression of CD8 T cell associated with cytokine and cytotoxic effector genes 

(by single-cell multiplex RT-PCR); (ii) the expression of surface proteins associated with CD8 T cell 

differentiation and memory generation (by Flow Cytometry).  

 

1.2)  Evaluated if the establishment of a more pronounced immunodominance hierarchy, between 

two populations responding to the same epitope, influences CD8 T cell differentiation into 

effector and memory cells. We adoptive transferred high number of TCR-Tg CD8 T cells (P14 cells, 

specific for GP33-41) into a host mouse and, after LCMV immunization, we studied both transgenic 

(P14) and endogenous GP33-specific populations (originated from abundant and rare precursor, 

respectively). We compared GP33-specific Tg and endogenous cells on the same infected mouse 

to guarantee the same kinetic of pathogen clearance for both populations. The same genes and 

surface markers as above were analyzed at several day post infection.  

 

1.3)  Evaluated the impact of TCR downregulation in pMHC-I multimer labeling at early stages of the 

immune response. As activated CD8 T cells strongly down regulate their TCRs, we compared the 

capacity of pMHC-I multimers vs congenic markers to track antigen-specific TCR-Tg CD8 T cells 

after their in vivo activation. In addition, we also analyzed multimer labeling capacity in CD8 

endogenous activated cells and correlated the intensity of the labeling with functional 

properties. 
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II. Can different pathogens modulate CD8 T cell properties and thus generate diversity on CD8 T 

cell responses? 

 

While studying differentiation of monoclonal TCR-Tg cell populations by evaluating the 

expression of 20 CD8 T cells associated genes at single cell level, our group noticed that, after in vivo 

activation, different genes had different kinetics of expression (were induced, transcribed and 

declined at different time points of the response), and that they were randomly associated. Thus, 

these results strongly emphasized a cell-to-cell heterogeneity among an activated population of CD8 

T cells responding to a given epitope (Peixoto et al. 2007). These cell-to-cell heterogeneity challenged 

the notion of a “single differentiation pathway” for CD8 T cells (classically defined as IFNγ/CTL 

differentiation pathway), and thus raised the possibility of the existence of multiple programs of CD8 

T cell differentiation and of the existence of CD8 T cells with different fates. 

In our previous study to evaluate the impact of immunodominance on the diversity of CD8 T 

cells properties, we excluded that such heterogeneity could be due to different clonal abundance 

(Munitic et al. 2009). In addition, it has been suggested that pathogen biology is critical in 

determining the specific requirement for signal 3 ( inflammatory cytokines) activation of antigen-

specific T cells (Haring et al. 2006). Thus, we wondered if: 

A) Different pathogens/infectious contexts can modulate CD8 T cell differentiation programs 

and therefore be responsible for CD8 cell-to-cell heterogeneity ?  

 

Relate to this subject is the question whether different pathogens may or may not generate 

identical memory T cell types after an efficient primary immune response. Clarifying this issue is 

important for optimal T cell vaccine design, and several hypothesis are possible: should vaccines used 

attenuated pathogens in order to recapitulate the behavior of the pathogen that it aims to control?; 

should vaccines guarantee the generation of as many memory cells as possible, with different 

pathogens originating identical memory cell types?; or should vaccines guarantee the generation of a 

peculiar memory type, with pathogens originating distinct memory types? Therefore, we wondered 

if: 

B) Different pathogens may generate memory T cell types with different capacities to confer 

protection ?  

 

The progress in vaccine design and in the evaluation of protection requires the use of reliable 

methods and systems, not only to induce adequate immune responses, but also to monitor these 

responses in vaccinated individuals. Thus, it is fundamental to use accurate models and systems to 

unveil the complexity of CD8 T cell effector functions and cell heterogeneity in vivo. 

In the majority of the cases the method used to access T cell effector functions is the in vitro T 

cell reactivation with pathogen epitopes. However, it has been demonstrated that in vitro re-

stimulation considerably modifies the ex vivo readouts (Panus et al. 2000; Veiga-Fernandes et al. 

2000), and also that in vitro readouts are unable to discriminate T cells that lead to abortive immune 
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responses from those leading to pathogen clearance and efficient memory generation (Tanchot et al. 

1997; Kassiotis et al. 2002).  

In addition, TCR-Tg cells have also been largely used as a system to study T cell differentiation 

during immune responses, but unfortunately also subject of severe criticisms, as already pointed out 

before. Thus, we wondered: 

C) What would be the most advantageous experimental strategies to study the diversity of 

CD8 immune responses? 

 

 

To answer these questions we: 

 

2.1) Compared the readouts obtained from different approaches: we evaluate the diversity of CD8 T 

cell properties as they are induced during in vivo responses by 

  (i) ex vivo evaluation of mRNA (single-cell multiplex RT-PCR),  

  (ii) ex vivo evaluation of protein in Brefeldin A injected mice  (Flow Cytometry),   

  iii) protein evaluation after in vitro re-stimulation (Flow Cytometry).  

 

2.2) Evaluated the impact of TCR down-regulation in the assessment of CD8 T cell immune responses 

diversity. We studied the level of TCR down-regulation in: several immunizing conditions of Ag and 

TCR-Tg cell doses; at several days of the response; and according to cell division state. 

2.3) Characterized CD8 T cell immune responses to two different infectious contexts. We compared 

OT-1 cells activated in the LM-OVA context vs P14 cells activated in the LCMV context (expression of 

several molecules involved in CD8’s differentiation, effector function and memory generation were 

evaluated). 

2.4) Excluded that possible differences between OT-1 and P14 cells (when activated under different 

infectious contexts) could arise from different TCR avidities between these two transgenic clones. We 

subsequently compared the response of OT-1 and P14 cells in the same infectious context (Listeria 

context): OT-1 and P14 cells were adoptively co-transferred into the same mouse that was 

subsequently immunized with LM-OVA and LM-GP33. 

2.5) Evaluated the capacity of pathogen elimination between memory CD8 T cells generated in two 

distinct infectious contexts. Previously LM-GP33 (i) or LCMV (ii) immunized mice were challenged two 

months later with a lethal dose of LM-GP33 bacteria, and 24h later the bacterial loads were 

determined in both groups of mice (i and ii). 
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III. What is the diversity of CD8 T cell effector functions and what are their roles during an 

immune response? 

 

While studying in vivo CD8 T cell differentiation, previous work in the lab has shown that early in 

the immune response (before the expansion peak) CD8 T cells did not expressed the classical CD8 

effector molecules, but rather, they expressed pro-inflammatory cytokines such as Tgfb and TNFα. In 

addition, these cells did not express TGFβ receptor subunits necessary for signaling (Tgfbr1 and 

Tgfbr2), suggesting that TGFβ could only act in trans, where it was described to be pro-inflammatory 

(Ludviksson and Gunnlaugsdottir 2003). Moreover, when transferred to normal mice, these early 

effector CD8 T cells, instead of killing antigen-loaded targets, they actually induced in vivo local 

retention of both antigen-loaded and non antigen-loaded targets at the site of effector’s CD8 T cell 

injection. These early CD8 effectors cells were then named as “inflammatory effectors”. Thus, these 

results suggested diversity on CD8 effector T cell properties during immune responses, where early 

CD8 effectors could be involved in cell recruitment events (Peixoto et al. 2007).  Thus we wondered: 

A) What are the mechanisms by which early CD8 effector T cells could act as pro-

inflammatory effectors and recruit other cells? 

B) What is the role of these pro-inflammatory effectors during an immune response? 

 

 

To answer these questions we: 

 

3.1) Characterized the pro-inflammatory role of CD8 T cells at early time points of the immune 

response: 

a) Identifying other pro-inflammatory mediators (chemokines) that could also be   expressed; 

b) Correlating the gene expression of pro-inflammatory mediators with cell activation and 

division status; 

c) Investigating the causes that restrict expression of pro-inflammatory mediator to early phases 

of the immune response;  

We used the adoptive transfer of OT-1 cells to track antigen specific cells at very early time points of 

the immune response, activated them in vivo with LM-OVA immunization, recovered OT-1 cells at 

several days after infection, and analyzed mRNA expression (by single cell multiplex RT-PCR) or 

intracellular protein expression of pro-inflammatory mediators (Fig. 13A). 

 

3.2 )  Examined if CD8 T cells also acquire pro-inflammatory effector functions in the absence of 

pathogen associated innate signals. We studied: i) anti-HY CD8 TCR-Tg cells after in vivo activation 

with male antigen (“sterile”/non infectious context); and ii) endogenous CD8 T cells from MyD88-

deficient mice (majority of innate signal abrogated) after Listeria activation. 

 

3.3) Determined the in vivo physiological role of pro-inflammatory CD8 effectors by:  

a) Testing if early CD8 effectors are able to induce “in vivo” cell recruitment into lymph nodes. 

We isolated pro-inflammatory CD8 effectors (OT-1 or HY), injected them in the braquial lymph 
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nodes (BRLNs) of a host mouse, and then evaluated leukocyte’s recruitment to that BRLN (Fig. 

13B). 

b) Testing if pro-inflammatory CD8 T cells are also involved in the blocking of LN egress.  

We injected pro-inflammatory CD8 effectors in a BRLN of a normal host, and check if they could 

modify local S1P concentrations. S1P levels were evaluated by measuring their capacity to 

induce internalization of the corresponding receptor in the WEH123 cell line, which express a 

FLAG-tagged S1P receptor (Flag-S1P1).  

 

 

              

Figure 13. Used protocols: (A) to generate in vivo effector CD8 T cells, (B) to test cell recruitment capacity of pro-

inflammatory effectors. 

 A) 10
6
 naïve OT1 cells were isolated from lymph nodes (LN) of CD90.2 Rag1

-/-
 CD8 TCR-Tg donors (OT1 mouse strain) and 

were intravenously injected into a host mouse with a different congenic marker (CD90.1 C57BL/6). OT1 cells harbor TCRs 

specific for OVA257-264 peptide, and one day later, the host mouse was immunized with 5.000 CFU of Listeria Monocytogenes 

expressing OVA (LM-OVA). The spleen was recovery on different days of the immune response to study pro-inflammatory 

(day 1 to 4) and cytotoxic (day 7) effector function on OT1 cells.  

B) Pro-inflammatory OT1 effectors isolated at day 2,5 post-infection were injected at numbers corresponding to expected 

physiological conditions (80 cells) or higher (600 cells) into a braquial lymph node (BRLN) of a host C57BL/6  mouse. 24h 

later, the presence of different types of leukocytes recruited to the BRLN was evaluated.  
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IV.    Adoptive transfer of TCR-Tg T cells system 

 

This system has several advantages. First, by transferring high numbers of antigen-specific cells 

into the host, it allows to study the diversity of specific T cells responses at early time points, when 

endogenous specific cells are rare and difficult to detect. Secondly, by using their congenic marker, it 

allows the identification of antigen-specific cells independently of TCR surface expression levels. 

Third, by bearing defined TCRs (monoclonal population), it ensures that putative heterogeneity that 

might arrive during immune response is generated independently of the TCR affinity differences, 

allowing to study the same clone in different infectious contexts.  

 

Two main TCR-Tg CD8 mouse strains were used to study the diversity of in vivo CD8 T cell responses: 

OT-1 and P14. Two different live pathogens were utilized to specifically activate them in vivo: the 

bacteria Listeria monocytogenes (LM) and the Lymphocytic Choriomeningitis virus (LCMV).  

 

 Briefly, certain numbers of naïve monoclonal TCR-Tg CD8 donor cells, recovered from LNs of 

OT-1 or P14 mice (on Rag-/- background), were intravenously injected into syngenic C57BL/6 

host mice, which expressed an allelic form of CD45 or CD90 distinct from the donor’s cells. 

Afterwards, mice that had received OT-1 cells (OVA257-264 TCR specific) were immunized with 

recombinant Listeria monocytogenes expressing OVA (LM-OVA), whereas mice that had 

received P14 cells (GP33-41 TCR specific) were immunized with LCMV (the glycoprotein GP33 is 

naturally expressed on this virus surface), or alternatively, they were immunized with 

recombinant Listeria monocytogenes expressing the LCMV’s GP33 epitope (LM-GP33).   

 

 

Additionally, we also used the anti-HY TCR-Tg CD8 mouse strain to investigate diversity of CD8 T cell 

responses in the absence of pathogen-derived innate signals (pathogen free or sterile immunization 

protocol).  

 

 In brief, monoclonal TCR-Tg CD8 cells or TCR-Tg CD4 cells specific for the male antigen were 

recovered from LNs of HY female mice (on  Rag-/- background) (donors). Together with CD4 

helper T cells (purified from a female C57BL/6), those TCR-Tg CD8 T cells (specific for male 

antigen) were intravenously injected into syngenic Rag2-/- female mice (hosts), which were 

previously reconstituted with a mix of female and male cells. These reconstituting cells were 

obtained from bone marrow of a female and male CD3-/- mouse, in which the male cells act 

as antigen providers/immunizing agent (Peixoto et al. 2007). 
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V.   Single - cell multiplex RT-PCR method 

 

 To monitor the complexity and the diversity of CD8 T cell responses to in vivo antigenic 

stimulation, we recovered CD8 T cells at several time points after infection, or male immunization, 

and we studied their gene expression profile by using the sensitive single-cell multiplex RT-PCR 

method developed in our laboratory. This method allows simultaneous quantification and 

comparison of the expression of 20 genes in the same cell, without further in vitro manipulation 

(Peixoto et al. 2004).  

 

 Briefly, single-cells are sorted, lysed and the mRNA is retrotranscribed using specific 

3’primers. A first round of PCR amplification follows in the presence of both the 3’ and 5’ 

primers for all 20 different genes in the same reaction (multiplex amplification). Amplified 

products are then split into individual wells, and a second seminasted real-time or qualitative 

PCR amplifies each individual gene separately (Fig. 14). To maintain the initial abundance 

relationships, this technique requires an accurate control of PCR-amplification’s efficiency 

and competition. The former, to guarantee maximal and uniform amplification for all genes. 

The later, to avoid inhibition between primers and/or amplicons during multigene 

amplification.  

 

Using this powerful technique we can determine the frequency of cells expressing each gene 

(evaluate cell heterogeneity inside a population), and also assess the gene co-expression in the same 

cell (indicative of their potential function). This technique is particularly useful when studying rare 

populations and when antibodies are not available for protein detection. Moreover, since this 

technique allows a precise quantification of the absolute number of mRNA molecules per cell, 

ranging from 2 to 1,28x109 for each individual gene, it permits a clearly discrimination between 

expressing and non-expressing cells when molecules are poorly expressed (clear cut between 

positive and negative cells for a given gene expression). 

 

                                         

Figure 14. Outline of the quantitative single-cell multiplex RT-PCR technique (Peixoto et al. 2004). 
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Epitope Specificity and Relative Clonal Abundance Do Not
Affect CD8 Differentiation Patterns during Lymphocytic
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To evaluate the impact of immunodominance on CD8 T-cell properties, we compared the functional prop-
erties of dominant and subdominant populations in the response to lymphocytic choriomeningitis virus
(LCMV). To improve functional discrimination, in addition to the usual tests of phenotype and function, we
used a sensitive technique that allows the screening of all CD8 effector genes simultaneously in single cells.
Surprisingly, these methods failed to reveal a major impact of clonal dominance in CD8 properties throughout
the response. Aiming to increase clonal dominance, we examined high-frequency transferred P14 T-cell
receptor transgenic (TCR Tg) cells. Under these conditions LCMV is cleared faster, and accordingly we found
an accelerated response. However, when Tg and endogenous cells were studied in the same mice, where they
should be subjected to the same antigen load, they showed overlapping properties, and the presence of P14 cells
did not modify endogenous responses to other LCMV epitopes or a perturbed immunodominance hierarchy in
the memory phase. Using allotype-labeled Tg cells, we found that during acute infection up to 80% downregu-
lated their TCR and were undetectable by tetramer binding, and that tetramer-negative and tetramer-positive
cells had very different features. Since Tg cells are not available to evaluate immune responses in humans and,
in many cases, are not available from the mouse, the tetramer-based evaluation of early immune responses in
most situations of high viremia may be incomplete and biased.

The lymphocytic choriomeningitis virus (LCMV)-induced
immune cell response in mice is particularly impressive in its
breadth, since at the peak of the response �90% of activated
splenic CD8� T cells are directed against 28 defined epitopes
in H-2b mice (23, 24, 27). The immunodominance hierarchy
then observed may be determined by a variety of parameters,
including epitope prevalence, antigen processing and/or its
binding affinity to major histocompatibility complex (MHC),
T-cell precursor frequency and/or recruitment, and T-cell re-
ceptor (TCR) affinity and avidity (55). However, the extent to
which this immunodominance guides functional performance
still is unknown. Related to this issue is the question of
whether the information generated from studies involving ar-
tificially induced immunodominance by the adoptive transfer
of TCR transgenic (Tg) cells at a high precursor frequency can
be generalized to endogenous cells, which are present in small
numbers (10�4 to 10�5) and consist of polyclonal T-cell sub-

populations with different avidities. It was suggested recently
that CD8� TCR Tg cells originating from precursors intro-
duced at unnaturally high frequencies exhibit altered differen-
tiation during infection, as they were shown to reexpress
CD62L and interleukin-7R (IL-7R) much sooner than endog-
enous cells (2, 26). However, it remains controversial whether
these findings reflect, as suggested, major differences in differ-
entiation pathways (2, 26) or whether the observed dissimilar-
ities are due to differences in differentiation kinetics (35).

Cytotoxic effector CD8� T cells generated in various infec-
tious models traditionally were regarded as uniform popula-
tions that could secrete gamma interferon (IFN-�) and tumor
necrosis factor alpha (TNF-�) upon in vitro restimulation and
exert cytotoxic effects (12). However, the current methods used
to study CD8 function during immune responses have several
limitations. Cells producing cytokines usually are not detected
directly ex vivo, because these proteins, once produced, are
immediately secreted into the environment and do not accu-
mulate inside the cell in amounts sufficient to be visualized by
intracellular staining. Therefore, cytokine production currently
is detected after in vitro restimulation, but under these condi-
tions antigen-experienced cells from a normal response (where
cells are not tolerized) all score very similarly, i.e., it is no
longer possible to distinguish the expansion phase, effector
peak, or memory cells’ cytokine expression capacities; these
tests similarly identify all antigen-specific cells throughout the
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response (29). Concerns were raised that the in vitro restimu-
lation necessary for revealing many functional traits could re-
sult in the erroneous overestimation of the number and quality
of effector cells present in situ at any given time. Indeed, it was
shown that in vitro restimulation could induce major alter-
ations in ex vivo readouts: IFN-� mRNA expression frequen-
cies of 10% evaluated ex vivo were shown to increase to 90%
(47), and TNF-� expression increased from �1 to 100% after
a 4-h peptide stimulation (31). These differences may be due to
the organ’s three-dimensional structure, which significantly
modifies CD8 responses (38). In addition, cytokine secretion
greatly depends on the strength of stimulation (16, 37). There-
fore, the in vitro environment may fail to reproduce the in vivo
cell interactions, the peculiar inflammatory environment in-
duced by the infection, and the local amount of pathogen-
derived peptides.

To monitor CD8 differentiation as it unfolds in vivo, we
recently developed a sensitive reverse transcription-PCR (RT-
PCR) method capable of measuring the expression of up to 20
genes simultaneously in the same cell without further in vitro
manipulation. We showed that this method allows a much
better discrimination of cell properties throughout the immune
response compared to that of more conventional approaches
(28, 32, 33). We could discriminate very different cytokine
mRNA expression profiles at different phases of the response.
These and other gene expression profiles predicted very dif-
ferent functional properties of CD8 T cells in early expansion,
response peak, or memory phase that were confirmed by in
vivo functional tests. Notably, we also found that the coexpres-
sion frequency of mRNAs coding for perforin and granzyme B
in the same cell directly predicted CD8 T cells’ cytotoxic ca-
pacity (32).

As the approach described above provided us with a more
detailed analysis of the behavior of CD8� T cells during im-
mune responses, we applied it together with other more con-
ventional approaches to study the influence of clonal domi-
nance in the behavior of CD8 T cells after infection. We
studied endogenous cells responding to immunodominant
(NP396 and GP33) and subdominant (GP276) LCMV
epitopes and found they had similar properties, suggesting that
the infectious environment rather than TCR specificity or rel-
ative clonal abundance had the major influence in shaping
T-cell properties. To amplify differences in relative clonal
abundance, we further compared high-frequency transferred
TCR Tg cells specific for the GP33 epitope (P14) to the en-
dogenous cells recognizing the same or other LCMV peptides.
Surprisingly, we found that previously reported differences in
Tg behavior (2) could be fully explained by differences in the
response kinetics, since they were not found when Tg and
endogenous cells were studied in the same mouse. Moreover,
P14 transfers did not modify the endogenous response to other
LCMV epitopes or the immunodominance hierarchy in the
memory phase. Finally, in these adoptive transfer studies we
could monitor the transferred Tg population by both allotype
labeling and GP33 tetramer binding. We found that during the
expansion phase, a substantial fraction of allotype-positive Tg
cells downregulated TCR expression and could not be recog-
nized by tetramer binding, and that tetramer-negative (tetneg)
and tetramer-positive (tetpos) cells had very different proper-
ties. These results reveal that the evaluation of the early im-

mune response in normal individuals by tetramer binding is
incomplete and may be very biased. Thus, TCR Tg cells, be-
cause of their ease of detection by allotype markers, may pro-
vide the only means of accurately characterizing the entire
spectrum of activated CD8 T cells in the early stages of the
immune response.

MATERIALS AND METHODS

Mice. CD45.2 Rag2�/� P14 TCR Tg mice (P14) expressing a TCR specific for
LCMV epitope GP33-41 (GP33) and backcrossed onto the C57BL/6 (B6) back-
ground were bred at the Centre de Distribution, Typage et Archivage (CDTA,
Orléans, France). B6.CD45.1 and B6.CD45.2 mice were purchased from Charles
River (Margate, United Kingdom) and the Jackson Laboratory (Bar Harbor,
ME). Animal studies were carried out according to United Kingdom Home
Office regulations or the University of Massachusetts Medical School, Depart-
ment of Animal Medicine, regulations and were approved by the site ethical
review committee.

Antibodies, MHC class I (MHC-I) tetramers, and other reagents. Labeled
antibodies to CD8, CD45.2, CD45.1, TCR��, CD69, CD3, Ly6C, CD25, CD27,
CD127, CD44, CD122, KLRG1, IFN-�, TNF-�, and IL-2 and isotype-matched
control antibodies were from either BD Biosciences (San Jose, CA) or eBio-
science (San Diego, CA). Granzyme B was from Caltag. GP33-41 H-2Db (GP33),
NP396-404 H-2Db (NP396), and GP276-286 H-2Db (GP276) tetramers were
obtained from Beckmann Coulter (Marseille, France). 5-(6)-Carboxyfluorescein
diacetate succinimidyl ester (CFSE) was obtained from Molecular Probes (Eu-
gene, OR).

Viral growth and titration and infection of mice. LCMV strain Armstrong
(clone 5.3b) was grown in BHK-21 cells, and infectious LCMV was quantitated
by plaque assay on Vero cell monolayers as previously described (9). B6 mice
were infected intraperitoneally with 2 � 105 PFU of LCMV Armstrong. Some
animals were inoculated with 5 � 103 or 5 � 105 TCR Tg cells (prepared from
the lymph nodes of P14 mice) 1 day prior to infection.

CFSE labeling, intracellular staining, and in vivo cytotoxicity assays. CFSE
labeling was done by incubating cells for 10 min at 37°C with 1 	M CFSE in
RPMI medium. Cells were labeled with CFSE by incubation for 10 min at 37°C
with 1 	M CFSE in RPMI. For intracellular cytokine staining, splenocytes from
LCMV-infected mice were incubated without peptide or with 0.2 to 0.4 	g/ml
NP396, GP33, or GP276 peptide for 5 h in the presence of 10 	g/ml of brefeldin
A, and then cytokine levels were determined. Granzyme B staining was per-
formed without restimulation. Intracellular staining was performed using the
Cytofix/Cytoperm kit (BD Biosciences, San Jose, CA) according to the manu-
facturer’s instructions. In vivo cytotoxicity assays were performed as previously
described (4). Briefly, a mixture of 107 GP33 or NP396 peptide-pulsed (1 	M)
CFSE-labeled and 107 nonpulsed nonlabeled splenocytes was injected intrave-
nously into LCMV-infected or control mice at 8 and 60 days postinfection.
Peptide-specific cytotoxicity was determined in the spleen 12 h later and was
calculated using the following formula: 100 � {100 � [(% peptide pulsed in-
fected/% peptide nonpulsed infected)/(% peptide pulsed control/% peptide non-
pulsed control)]}.

Single-cell purification and gene expression analysis. The purification and
single-cell sorting of CD8 T cells was described previously (32). P14 cells were
distinguished from endogenous GP33-specific cells by the expression of a con-
genic marker. Each individual cell was analyzed for the coexpression of mRNAs
coding for TGF-� (Tgfb1), TNF-� (Tnf), IL-2 (Il2), IFN-� (Ifng), perforin (Prf1),
granzyme A (Gzma), granzyme B (Gzmb), FasL (Fasl), and CD3ε (Cd3ε), the
latter to ensure CD8 sorting specificity. The accuracy and efficiency of the
method were described previously (33).

Immunosuppression protocol. Two months after LCMV infection, mice were
depleted of T cells by the intraperitoneal injection of 500 	g of anti-CD8�
antibody (clone 53.6.7) and 500 	g of anti-Thy1.2 antibody (clone 30H12) twice
per week for five consecutive weeks, and lung, lymph nodes, spleen, kidney,
testes, brain, liver, and bone marrow were harvested for the determination of
virus titers. Virus titers in spleen, serum, or other tissues were determined by
plaque forming (49).

Statistical analysis. Associations or dissociations between the pattern of ex-
pression of different genes and differences in the expression of individual genes
between different populations of cells were analyzed using a two-tailed Fisher’s
exact test. A P value of �0.05 was considered statistically significant.

Gene nomenclature. Abbreviations used for mRNAs were those recom-
mended by the International Committee on Standardized Genetic Nomenclature
for Mice.

11796 MUNITIC ET AL. J. VIROL.



RESULTS

Endogenous CD8� T cells with different epitope specificities
exhibit similar differentiation patterns after LCMV infection.
Although a reproducible response hierarchy is found during
LCMV infection in mice (15, 29), it still is unclear whether
dominant and subdominant T cells are functionally distinct
and/or whether their differentiation kinetics differ. To address
this, first we screened responding cells for the expression of 14
effector genes known to be expressed by T lymphocytes (32).
We found that during LCMV infection, only eight of these
genes were expressed. We evaluated the pattern of these
genes’ expression in CD8� T-cell populations specific for two
dominant LCMV epitopes (NP396 and GP33) and one sub-
dominant epitope (GP276) following the infection of mice with
LCMV Armstrong, which should cover all effector mediators
during this response. The ratio between the most and the least
abundant populations (NP396 and GP276 specific) was ap-
proximately 1:3 to 1:4, and the size of the GP33-specific pop-
ulation was between these levels (Fig. 1A), which is consistent
with observations made in previous studies (29). At days 4 to 5
postinfection, ex vivo cytokine gene expression was identical
between cells responding to all three epitopes, and approxi-
mately half of screened cells expressed Ifng and Tgfb1 (al-
though they were not always coexpressed), while Tnf was ex-
pressed in only a minority of cells (Fig. 1B). The frequency of
cells expressing effector molecules with direct cytotoxic poten-
tial (Gzma, Gzmb, and Prf1) was indistinguishable between
GP33- and NP396-specific populations. The only statistically
significant difference between the two dominant and the
subdominant population was that the latter expressed less
Gzma (Fisher’s exact test; P 
 0.0236 for NP396 versus
GP276 and P 
 0.0172 for GP33 versus GP276). However,
at day 8 the differences were abolished and all populations
expressed the individual genes with a similar frequency (Fig.
1B). At the same time, all of the cytotoxic effector genes
(Prf1, Fasl, Gzma, and Gzmb) reached the peak of their
expression. Due to a lack of suitably optimized antibodies to
evaluate native perforin, we could quantitate protein levels
of only granzyme B at the single-cell level. Intracellular
staining for granzyme B demonstrated that mRNAs were
actively translated into large amounts of protein, as the
percentages of cells expressing granzyme B mRNA and pro-
tein were approximately equal (Fig. 1C). To simplify the
analysis of gene coexpression (and to provide an estimate of
the cytotoxic potential of the cells in each population), we
determined the number of cells that coexpressed cytotoxic
genes (Prf1, Gzmb, Gzma, and Fasl) and calculated the
cumulative proportion of cells expressing all four of these
mRNAs, �3, �2, or �1 (Fig. 1D). On day 8 postinfection,
approximately 90% of all cells expressed at least one of
these cytotoxic effector genes, while 40 to 50% coexpressed
three or more.

We have shown previously that during maturation from the
effector to the memory phase, OT-1 and HY TCR Tg cells
markedly reduced effector gene expression and coexpression
(32). These findings were confirmed in all three endogenous
populations analyzed here. At day 60, the frequency of the
expression of the majority of effector genes was much lower
than that at the peak of cell expansion, and the cells showed a

low level of gene coexpression (less than 30% of cells ex-
pressed two or more genes together) (Fig. 1B and D). While a
similar proportion of NP396- and GP33-specific cells expressed
at least one of the cytotoxic effector genes, a slightly higher
proportion of GP276-specific did so (Fig. 1D). Importantly,
however, the percentage of cells expressing each individual
gene was not significantly different in memory populations of
different immunodominance. Overall, these results show that
dominant and subdominant populations do not show major
differences in effector gene expression patterns. Besides, cyto-
kine expression after T-cell activation previously failed to dis-
criminate between differences of cell populations recognizing
different LCMV peptides (29).

We next determined if differences in immunodominance
have an impact on the expression of cell surface markers
associated with CD8 differentiation. At the peak of the
response, LCMV-specific T cells had fully downregulated
CCR7, CD62L, and IL-7R and upregulated CD27 and
KLRG1 (Fig. 1E). While dominant NP396- and GP33-specific
cells scored similarly for all of these parameters, GP276-spe-
cific cells showed a slight decrease in CD27 expression and an
increase in KLRG1 expression. This difference could be due to
the delayed kinetics of GP276-specific cells we already de-
tected in our gene expression analysis and that disappeared in
the memory phase. As described previously, LCMV-specific
memory cells reexpressed CCR7, CD62L, and IL-7R, further
upregulated CD27, and downregulated KLRG1 (Fig. 1F) (41,
50). Since, in contrast to what is found in human T cells, CCR7
and CD62L are not necessarily coexpressed in mouse memory
cells (42), we evaluated the coexpression of these two markers.
Indeed, we found a significant fraction of CCR7� CD62Llow/�

cells in all LCMV-specific memory populations, i.e., these cells
could not be classified as either T-cell central memory (TCM)
or T-cell effector memory (TEM) (Fig. 1F). Besides, both
CCR7� and KLRG1� cells expressed IL-7R, in contrast to
what is found in human cells. Therefore, the overall phenotype
of LCMV-specific mouse memory cells contrasts to that found
in human populations, where TCM CCR7� cells express
CD62L and the loss of CCR7 and KLRG1 correlates with
IL-7R downregulation. It also must be noted that human TCM

and TEM populations have very different functional properties
and gene expression profiles even when studied using our sin-
gle-cell strategy (25, 28), while the gene expression of the
NP396-specific cell cohort, which had more CCR7� and
CD62Llow cells, was similar to that found in other cell types
(Fig. 1B). These results indicate that TCM and TEM human
memory populations have no direct equivalent in the mouse.

The comparison of memory cell phenotypes showed varia-
tions both between individual mice studied in the same exper-
iment and between experiments (see below). However, the
NP396-specific cohort frequently had higher frequencies of
CCR7� CD62L� cells and a slight reduction of CD27high rep-
resentation than cells with other LCMV specificities, but other
phenotypes were equivalent. These results confirm that cells
recognizing the NP396 epitope have a slower kinetics of
CD62L upregulation (35). However, the reduced expression of
CD62L in the dominant NP396-specific population contradicts
the notion that more abundant clones preferentially upregu-
late CD62L (30).
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Long-term gene expression at the memory stage is not due
to viral latency. As CD8� T-cell differentiation during LCMV
Armstrong infection resulted in the generation of a substantial
fraction of memory cells expressing mRNAs for at least one
cytotoxic effector component, we considered the possibility
that viral clearance is incomplete, and that although it is un-
detectable by plaque-forming assays, virus may be persisting at
low levels, as has been found to occur with more pathogenic
LCMV strains such as LCMV WE (7). CD8-deficient or CD8-
depleted mice are unable to contain the virus (11), so we
reasoned that if virus was latent, it would reappear if T cells
were depleted. We thus rendered a group of mice that had
resolved an acute LCMV infection immunodeficient by deplet-
ing them of T cells and tested them for the reemergence of
virus. Plaque-forming assays carried out on lymphoid tissues
and various peripheral organs (brain, kidney, testis, liver, and
lung) of T-cell-depleted animals were all negative (data not
shown), strongly arguing against the possibility that chronic
low-level stimulation by LCMV was provoking long-term gene
expression.

We have noted previously that the quantity of mRNA ex-
pression for each memory CD8 T cell was significantly below
the levels found at the peak of the response (32). Moreover,
memory cells did not express measurable levels of granzyme B
protein (Fig. 2A) and did not secrete IFN-� without restimu-
lation (data not shown), confirming previous findings (51).
Nevertheless, in contrast to naïve cells, they were capable of
performing peptide-pulsed target elimination after 12 h, which
was remarkably similar to target elimination by effector cells
(Fig. 2B). This analysis confirmed our previous findings that
mRNA profiles constitute sensitive means of predicting the
cytotoxic potential of CD8 cells (32).

Monoclonal TCR Tg cells and the endogenous cells of the
same specificity have identical differentiation patterns. As we
did not observe any striking differences in the expression pro-
files of several cytokine and cytotoxic effector molecules be-
tween the dominant and subdominant populations, we asked if
a more robust immunodominance hierarchy established upon
the adoptive transfer of high numbers of TCR Tg cells, in
which the latter would dominate the endogenous repertoire,
would reveal the differences in effector and memory cell

generation. We initially compared the functional properties of
LCMV-specific memory cells generated after the adoptive
transfer of large (5 � 105) and small (5 � 103) numbers of P14
cells. Given an estimated engraftment level of 10% (5), the
low-dose adoptive transfer likely would have resulted in a
precursor frequency approaching that of the endogenous
GP33-specific precursors, while the high dose likely exceeded it
by more than 100-fold (5, 24, 30). Importantly, memory P14
cells originating from large and small cell numbers had similar
IFN-� and TNF-� secretion potential upon in vitro restimula-
tion (Fig. 3A), arguing against the previously suggested idea
that a shifted CD8� T-cell maturation at the beginning of the
response has a long-term effect on memory T-cell func-
tions (2).

We next compared the early phases of the response. The

FIG. 1. Differentiation patterns of CD8 cells recognizing dominant and subdominant LCMV epitopes show marked similarity. B6 mice were
infected with 2 � 105 PFU of LCMV Armstrong. (A) The number of NP396-tet�, GP33-tet�, and GP276-tet� cells in the spleen was analyzed at
different time points after infection. The results shown are the means of values from three to six mice tested in two separate experiments, and the
error bars indicate one standard error above the means (SEM). (B) Individual cells of each epitope specificity were recovered at the indicated times
(days) postinfection from six individual mice in two independent experiments and were tested directly ex vivo for the coexpression of the indicated
effector mRNAs. Forty-five to 90 cells of each specificity were evaluated per time point. Only wells that were positive for CD3ε (indicating that
they contained a cell) were included in the analysis. Since we did not find significant variation between mice and between experiments, the data
were pooled. Each horizontal row represents the pattern of gene expression in the same single cell; representative results from 40 cells are shown.
Gene expression is indicated in black, and negative results are shown in white. Cells are ordered by the number of cytotoxic effector genes they
expressed. The percentages at the bottom of each column represent the frequency at which the indicated gene was expressed in the whole
population analyzed. (C) On day 8 postinfection, NP396-, GP33-, and GP276-reactive cells were identified by tetramer staining, and granzyme B
expression in each population was analyzed directly ex vivo by intracellular staining. The filled histograms represent granzyme B staining, and the
white histograms show the staining of the same populations with an isotype-matched control antibody. (D) The number of mRNAs for cytotoxic
effector genes (Prf1, Gzma, Gzmb, and FasL) coexpressed by each cell was calculated (0 to 4). The results are expressed cumulatively as the
percentage of cells specific for a given epitope that coexpressed mRNAs for �1, �2, �3, or 4 of these genes at the indicated times postinfection
(a cell expressing two genes would be included in both the �2 and �1 categories. Statistically significant differences (as determined using Fisher’s
exact test) are marked (�, P � 0.05). (E) Phenotypes of LCMV- specific T cells at day 8 after infection. Graphs are from one individual mouse
out of six mice studied in two independent experiments showing overlapping results. (F) Phenotypes of LCMV-specific memory cells. Results are
from one mouse out of seven studied in three independent experiments. We found considerable variation in the expression of CD62L.

FIG. 2. Long-term gene expression in memory cells is not due to
viral latency. B6 mice were infected with 2 � 105 PFU of LCMV
Armstrong. (A) Intracellular granzyme B expression was analyzed on
days 8 and 60 postinfection for the indicated epitope-restricted popu-
lations (black line). The isotype control staining of the same cell
populations also is shown (dashed line). The profile shown is repre-
sentative of results obtained from three individual mice. (B) An in vivo
cytotoxicity assay also was performed on days 8 and 60 postinfection,
and specific cytotoxicity is depicted; the results shown are the mean of
data from three individual mice, and the error bars indicate standard
errors of the means.
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differentiation of CD8� T cells initially present at either high
or low precursor numbers was analyzed previously in the dif-
ferent animals. However, adoptive transfers of �105 TCR Tg
cells accelerate the speed of viral clearance (10, 56). It there-
fore was possible that the observed differences in T-cell differ-
entiation kinetics (2, 26, 45) were attributable to the differ-
ences in the antigen clearance between mice left uninjected or
injected with high frequencies of naïve cells. We therefore
restricted our investigation to the comparison of P14 cells
transferred at high precursor frequencies to endogenous cells
present in the same mice to allow both populations to have an
equal exposure to the infectious environment. The gene ex-
pression analysis of naïve P14 cells showed that rare cells
expressed either Tgfb1 or Prf1 but none of the other effector
genes (data not shown). At days 4 to 8 of the response, TCR Tg
cells outnumbered endogenous GP33-specific cells by up to
30-fold (Fig. 3B), but the cytokine and cytotoxic effector genes

transcribed in both populations were similarly represented.
The resemblance between those populations also was apparent
on the analysis of cytotoxic gene coexpression (Fig. 3D). Most
importantly, memory TCR Tg and endogenous GP33-specific
cells had the same expression frequencies for all screened
genes (Fig. 3C and E). In summary, once putative differences
in antigen loads are avoided, both effector and memory GP33-
specific cells developing in the same mice from precursors
initially present at widely disparate numbers had equivalent
expression profiles for all genes tested.

It also was reported that high-dose naïve TCR Tg cell trans-
fers induced the precocious upregulation of CD62L and IL-7R
compared to that of equivalent populations injected at a low
frequency (2). To determine if these differences also were due
to accelerated response kinetics due to the faster resolution of
the infectious stimuli, we compared the expression of these
markers in normal mice and in P14-transferred mice infected

FIG. 3. Differentiation patterns of adoptively transferred TCR Tg cells and endogenous cells recognizing the same epitope in the same mice.
(A) B6.Ly5.1 mice were injected with 5 � 105 or 5 � 103 P14 Tg cells (Ly5.2�) and infected with 2 � 105 PFU of LCMV Armstrong. At day 90
postinfection, splenocytes were removed and restimulated in vitro with the GP33 peptide, and the proportion of P14 cells producing IFN-� and
TNF-� was analyzed by intracellular cytokine staining. The dot plots show representative results from one animal in each group and are gated on
P14� cells. The percentage of P14� cells secreting each cytokine is indicated within the dot plots. (B to E) B6.Ly5.1 mice were injected with 5 �
105 P14 Tg cells (Ly5.2�) and infected with 2 � 105 PFU of LCMV Armstrong. (B) The proportion of P14 and endogenous GP33-specific cells
in the spleen was analyzed over time in the same mice. The mean results from three individual mice are shown, and the error bars indicate standard
errors of the means. The inset shows a magnification of the endogenous cell graph. (C) Gene expression in individually sorted P14 and endogenous
GP33-specific cells was analyzed; the results are presented as described for Fig. 1B. (D) The pattern of the coexpression of cytotoxic effector
mRNAs also was analyzed and is presented as described for Fig. 1D. (E) The percentage of cells on day 60 expressing each of the indicated genes
(cytotoxic effector genes as shown in Fig. 3B) was analyzed and is shown for 90 individually sorted P14 and 70 endogenous GP33-specific cells. The
cells were obtained from three individual mice.
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simultaneously with LCMV. One week after infection, the en-
dogenous populations in normal mice had fully downregulated
IL-7R and CD62L expression, while P14 Tg cells expressed
higher levels of CD62L and IL-7R (Fig. 4A). However, this
upregulation was not peculiar to populations present in high
frequencies. In P14-injected mice, all LCMV-specific popula-
tions (either Tg or endogenous) also upregulated these mark-
ers. The abundant P14 and the rare GP33-specific endogenous
populations of P14-injected mice expressed similar levels of
IL-7R. Endogenous NP396- and GP276-specific cells also up-
regulated IL-7R expression, although they did so at slightly
lower levels than those found in GP33-specific T cells. The
CD62L expression was upregulated to equivalent levels in both
Tg and endogenous cells of all peptide specificities. These
results indicate that the precocious upregulation of these
markers described after high-frequency adoptive transfers is
not a property of dominant clones. Rather, it appears to be the
consequence of accelerated response kinetics that are known
to occur in these circumstances, since it affects all LCMV-
specific populations present in the same mouse. In addition, we
also failed to confirm that Tg memory cells expressed a pre-
dominantly CD62Lhi phenotype (Fig. 4B). Rather, we found a
significant variation in different mice studied in the same ex-
periment and between experiments.

Finally, we evaluated the impact of high-dose P14 adoptive
transfers on endogenous response. As reported previously (5)
and shown in Fig. 1, the absolute number of endogenous
GP33-specific cells was reduced in P14-injected mice com-
pared to that found in normal mice infected simultaneously
(Fig. 4C). Surprisingly, P14 adoptive transfers did not substan-
tially affect the T-cell responses to other LCMV epitopes (Fig.
4C and D). At both the response peak and at the memory
phase, the number of NP396- and GP276-specific cells deter-
mined either by tetramer staining or their capacity to secrete
cytokines after in vitro stimulation (Fig. 4D) was similar in
P14-injected and normal mice. We conclude that the injection
of P14 cells accelerates response kinetics, as shown by the
modifications of IL-7R and CD62L in all cells responding to
LCMV in P14 injected mice. Otherwise, it does not affect the
properties of LCMV-specific cells or influence the endogenous
responses to other LCMV epitopes.

TCR downregulation at the early stages of the response
masks the detection of Ag-specific cells. A potential drawback
to the use of tetramer staining to identify epitope-specific T
cells for functional profiling is the TCR downregulation that
follows T-cell activation. We tested whether tetramer staining
is a reliable marker of Ag-specific cells during the immune
response. The Tg cells that can be identified by an allotype
marker showed a substantial loss of surface tetramer labeling
during the expansion period. This effect was not immediate,
sparing the first 2 days of the response, when TCR-Tg cells
were activated but most had not divided (not shown). At day 3
of the LCMV response, we saw considerable mouse-to-mouse
variability, with 30 to 70% of P14 cells being undetectable by
tetramer labeling. By day 5, less mouse-to-mouse variation was
observed, yet 25% of P14 cells did not label with tetramers
(Fig. 5A). The comparison of tetneg and highly tetramer-posi-
tive (tethi) populations showed that the former did not express
CD3, confirming that the loss of tetramer binding was caused
by TCR downregulation (Fig. 5B, upper row). We further

tested if TCR downregulation could bias the evaluation of the
properties of antigen-specific cells during the response. In-
deed, tetneg and tethi cells on day 3 of infection differed in
CD69, CD27, CD25, and Ly6C expression levels (Fig. 5B,
lower row), while IL-7R, CD122, and CD44 were expressed
similarly (data not shown). To investigate if such downregula-
tion was just an artifact induced by high-frequency transfers or
could occur when antigen-specific naïve cells were present at a
physiologic number, we studied Tg cells injected at low fre-
quency. As expected, the kinetics of the Tg cell response was
much slower. At day 4, TCR downmodulation was evident but
Tg cells were very rare. We found a considerable TCR down-
modulation even at day 5 of the response, when more than half
of the Tg pool was failing to bind tetramers (Fig. 5C).

We aimed to investigate if TCR downregulation also could
bias the evaluation of the normal endogenous response. Since
tetneg endogenous cells cannot be visualized, we compared tethi

and tetramer-intermediate (tetint) cells in normal mice (Fig.
5D). Importantly, tetint cells had substantially higher granzyme
B expression than tethi cells (Fig. 5D), directly linking the
activation status measured by TCR downmodulation to a dif-
ferent effector profile. Thus, although we lack the means to test
for the endogenous cells that are completely tetneg (since these
cells do not express TCR they also should not score as IFN-�
producers after in vitro stimulation), our results strongly sug-
gest that our current methods of detection fail to identify a
substantial fraction of antigen-specific cells during the expan-
sion phase, and moreover, they introduce bias in the evaluation
of the properties of antigen-specific cells from normal mice.

Cytokine and cytotoxic effector gene expression are not syn-
chronized. As T cells do not reach lymphoid organs synchro-
nously and are exposed to highly varied microenvironmental
stimuli, cells at various differentiation stages are found at any
given time. Having established that TCR Tg cells allow us to
fully assess the early dynamics of the CD8 differentiation, we
further subdivided their progression steps by a combination of
CFSE and CD69 labeling. CFSE labeling allowed us to focus
on the majority of P14 cells (�95%) that have divided four or
more times by day 3 (Fig. 6A). The CFSE-low P14 population
was further subdivided into more recently and less recently
activated subsets on the basis of the differential expression of
an early and transient T-cell activation marker, CD69 (34); less
advanced CD69� and more advanced CD69� cells were
sorted. When gene expression patterns were analyzed, cytokine
gene expression was found to differ from the expression of
cytotoxic effector genes, and in general, cytotoxic effector
genes were transcribed longer than cytokine genes (Fig. 6B).
Cytokine expression consistently peaked early (on day 3 or
before), there was no difference between CD69� and CD69�

cells (Fig. 6B), and a highly significant drop of expression
occurred during the next day (Fig. 6C). On the other hand, the
transcription of cytotoxic effector genes varied: Gzmb and Prf1
peaked early, while Gzma and Fasl were present only in a
minority of CD69� cells, and a significant rise in their expres-
sion occurred as they progressed to the CD69� stage (for
Gzma, P 
 0.0001; for Fasl, P 
 0.002). Notably, the genera-
tion of Il2 mRNA was found rarely in ex vivo P14 cells (less
than 5% of total cells; data not shown) at any of the stages
tested (days 3, 4, 8, 15, 30, and 60). The latter finding casts
doubt on the physiological significance of reports that TCR Tg
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FIG. 4. Impact of high-dose naïve Tg transfers on the endogenous response. B6.Ly5.1 mice left untreated or were injected with 5 � 105 P14
Tg cells (Ly5.2�) and were infected simultaneously with 2 � 105 PFU of LCMV Armstrong and studied at days 8 and 60 after infection. (A) CD62L
and IL-7R expression in cells of with different peptide specificities at day 8 after infection. Histograms compare CD62L and IL-7R expression levels
of CD8 cells with the indicated peptide specificities in 1 P14 injected (inj.) (open graphs) and 1 noninjected B6 mouse (gray) of 12 mice studied
in two independent experiments. On the far left, P14 cells (open histogram) are compared to GP33-specific noninjected mice. (B) Variation of
CD62L expression in GP33-specific cells 2 months after infection. Graphs compare Tg cells (upper) to endogenous cells present in the same mouse
(middle). The lower graphs show endogenous cells in the mice that were not injected with P14 cells. (C) Absolute numbers of cells of different
peptide specificity at day 8 (left) and 2 months (right) after infection. Results show individual mice from one experiment out of two with equivalent
results. (D) IFN-� expression after in vitro stimulation with NP396 and GP276 peptides at day 8 (left) and 2 months (right) after infection.
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effector CD8 cells arising from high precursor frequencies are
more likely to secrete IL-2 upon in vitro stimulation (2). Il7r
downregulation (Fig. 6C) followed the kinetics previously de-
scribed on a protein level (19). Furthermore, we observed that
Ccr7 expression rapidly dropped between days 3 and 4, most
likely participating in the release of more mature Ccr7� cells
from T-cell-restricted areas of secondary lymphoid tissues. As
we have demonstrated that gene expression in LCMV-specific
cells evolves very fast over short periods of time and at defined
differentiation milestones (such as the CD69�3CD69� tran-
sition), the analysis of other markers of cell progression/fath
(17) is expected to provide us with an even richer picture of
gene differentiation dynamics and cell heterogeneity.

DISCUSSION

TCR Tg cells commonly are used in the assessment of the
properties of T cells. They are easy to manipulate and to
visualize. Their defined TCR expression allows one to monitor
the same clone throughout the immune response (39, 40). This
characteristic is fundamental to determine if the changes in
population properties throughout the response are due to the
selection of particular clones of antigen-specific cells. How-
ever, it was suggested recently that when TCR Tg cells are
present at high precursor frequencies, their intraclonal com-
petition for antigen leads to their suboptimal activation and
abnormal differentiation (2, 26, 45). Several reasons prompted
us to reexamine this claim in greater detail. First, several stud-
ies showed that a short-term contact with an antigen is suffi-
cient to trigger a complete CD8 differentiation program (18,
46), and that extensive CD8 expansion is not a prerequisite for
efficient memory generation (3). Second, in other studies ef-
fector CD8 numbers seem to hit a similar ceiling regardless of
initial variability in precursor numbers or specificity (22), ar-
guing for stimulation-tailored rather than T-cell-intrinsic dif-
ferentiation pathways. Finally, other data suggested alternative
explanations to the different behavior of high- and low-density
TCR Tg cell transfers. The adoptive transfers of �105 TCR Tg
cells have been shown to alter the kinetics of pathogen clear-
ance and the timing of peak CD8� T-cell expansion (10, 35,
56). Since high- and low-dose transferred populations were
studied systematically in different recipients where antigen
loads and antigen clearance are known to be different, alter-
ations in the course of infection could account for the different
population properties in mice that received different numbers
of TCR Tg cells.

FIG. 5. MHC-I tetramer labeling during the expansion phase.
B6.Ly5.1 mice left untreated or receiving Ly5.2� P14 Tg cells were
infected with 2 � 105 PFU of LCMV Armstrong and studied at dif-
ferent time points after infection. (A and B) Mice were injected with
5 � 105 Tg cells. (A) Results compare GP33 tetramer (tet) binding in
Ly5.2� P14 naïve cells and in P14 cells at on day 3 (top) and day 5
(bottom) after infection. Staining is from individual mice representa-
tive of four experiments with two to three mice per time point. (B) On
day three after infection, P14 cells were arbitrarily subdivided into
tetneg (gray) and tethi (white) subsets, and each population was tested
for the expression of the indicated cell surface molecules. Gates for
tetneg cells were established in noninfected B6 mice and for tethi in

naïve Tg cells. (C) B6 mice were injected with either 5 � 105 or 104

Ly5.2� P14 Tg cells and studied at days 4 and 5 after infection. Results
are for GP33 tetramer binding in P14 Tg cells. Naïve mice (upper left),
cells from mice injected with 5 � 105 naïve cells (upper right), and cells
from three individual mice injected with 104 naïve cells (lower graphs)
are shown. At day 4, very few Tg cells were detected in the latter mice.
(D) Granzyme B expression in cells expressing different tet binding
intensity in normal mice. CD8 cells were recovered 5 days after infec-
tion, labeled with GP276 tetramers, and subdivided into tetint and tethi

populations. Results show the gates used for such subdivision and
intracellular granzyme B staining for tetint (gray) and tethi (white)
populations; the dashed lines represent the staining of the same cells
with an isotype control antibody.
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Competition for antigen and clonal competition also occur
in normal immune responses and contribute to the immu-
nodominance hierarchy observed. A partial or complete com-
pensation for a loss of a particular epitope by other specificities
has been known to occur (1, 21, 24, 36, 44). In some circum-
stances it has been suggested that the cytokine-mediated active
suppression of dominant clones over subdominant ones (im-

munodomination) occurs (48, 52), but the existence of such
active immunosuppression still is disputed (24). Besides, al-
though immunodominance has been studied widely in many
infectious models, it still is unclear whether dominant and
subdominant populations diverge in their functional capacities
and protection capabilities (6, 20, 48). To address these issues,
in addition to conventional tests, we performed a powerful
single-cell multigene expression study of several antigen-spe-
cific populations during the course of LCMV infection in mice.
When studied in the same infectious context in the same mice
at the same time point of the response, the T-cell populations
of different specificities and present at different frequencies
showed remarkably similar features. Thus, except at the earli-
est stages of infection (days 4 to 5) when GP276-specific cells
expressed less granzyme A mRNA than NP396- and GP33-
specific cells, dominant and subdominant cell effector and
memory had remarkably similar cytokine (Ifng, Tnf, and Tgfb1)
and cytotoxic gene expression (Prf1, Gzmb, Gzma, and Fasl)
and coexpression profiles. Previous comparisons of cytokine
profiles after in vitro stimulation also failed to reveal major
differences (49), and we found that cell surface markers’ ex-
pression most frequently was overlapping. As an exception, the
subdominant GP276-specific population showed some delay in
CD27 upregulation and KLRG1 downregulation at day 8, but
these differences disappeared in the memory phase, when
these cells’ phenotypes were equivalent to those found in
GP33-specific cells. Conversely, the NP396-specific memory
cohort usually had a larger fraction of CCR7� CD62Llow cells
than cell populations with other peptide specificities, but oth-
erwise they expressed the same KLRG1 and IL-7R labeling,
and it was reported previously that this cell type eventually also
upregulates the expression of both of these ligands. Overall,
these data directly argue against the hypothesis that dominant
and subdominant populations follow disparate differentiation
pathways. These findings were confirmed even when major
differences in clonal abundance were introduced artificially by
the adoptive transfer of Tg cells.

The differentiation profiles of monoclonal T-cell popula-
tions recently have fallen under scrutiny, since several reports
suggested that the artificial introduction of TCR Tg CD8 cells
in numbers exceeding those of endogenous cells of similar
epitope specificity (5, 24, 30) resulted in the inadequate differ-
entiation of TCR Tg cells (2, 26, 45). These reports, however,
focused mainly on CD62L and IL-7R expression analysis, and
functional assays were performed only at a single time point of
the infection. These studies also did not take into consider-
ation possible differences in response kinetics that could result
from the introduction of a large cohort of naïve Tg cells.
Indeed, abundant and rare clone behavior always was studied
in different mice, where Tg cells could be submitted to different
antigen loads and abundant and rare clone accumulation
peaked at different time points (2). Supporting the notion that
previously reported differences between high- and low-dose
transfers can be explained by a different response kinetics,
adoptive transfers of �105 precursors were shown to acceler-
ate the kinetics of pathogen clearance and CD8 expansion (10,
35, 56).

Contrary to those studies, we compared TCR Tg and en-
dogenous cells of the same epitope specificity from the same
animals, where both faced exactly the same antigen exposure

FIG. 6. Rapid progress of CD8� T-cell differentiation during early
infection can be monitored using a combination of TCR Tg cells,
CFSE division profiles, and CD69 expression. B6.Ly5.1 mice were
injected with 5 � 105 P14 Tg cells (Ly5.2�) and infected with 2 � 105

PFU of LCMV Armstrong. (A) At day 3 postinfection, splenocytes
were stained with CD69, and division profiles were analyzed by the
evaluation of CFSE expression. Cells that had divided four or more
times were sorted into two subpopulations (CD69� and CD69�) based
on the indicated gates. (B) Gene expression in individually sorted
CD69� and CD69� P14 cells was analyzed on day 3 postinfection; the
results are presented in the same format as that used for Fig. 1B.
(C) The progression of gene expression in individually sorted P14 cells
was analyzed as the linear maturation of cells occurred (i.e., in the
following sequence: day 3 CD69� cells [white]3 day 3 CD69� cells
[grey]3 day 4 [black]). Statistically significant differences between
progressive differentiation stages are marked (�� and ���, P � 0.01
and P � 0.001, respectively.
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and showed similar response kinetics. Moreover, when Tg cells
are present, the endogenous GP33-specific population expands
very little, which should prevent any TCR downregulation
early in the response. We found that under these conditions,
Tg and endogenous GP33-specific CD8 cells retrieved from
the same mice always were remarkably similar. They not only
had initiated IL-7R and CD62L upregulation precociously at
day 8 but also showed similar phenotypes and gene expression
profiles at the response peak. The analysis of CD8 T cells with
other specificities in these transferred mice also supported the
notion that high-dose transfers only accelerate response kinet-
ics. Indeed, we found that in P14-injected mice both NP396-
and GP276-specific populations also had initiated IL-7R and
CD62L upregulation at day 8 after infection. Surprisingly,
these cells appeared to be otherwise unaffected by the presence
of high frequencies of TCR Tg cells. Their frequency and their
capacity to produce IFN-� was similar in mice left untreated or
receiving P14 Tg cells. These results demonstrate that high-
frequency adoptive transfers do not inhibit overall endogenous
responses but only influence the expansion of T-cell popula-
tions with the same TCR specificity.

Our results also do not support the notion that high-fre-
quency transfers induce major modifications in the properties
of memory cells. We demonstrated that memory cells on day
90 that arose from 5 � 103 and 5 � 105 P14 cells did not differ
in functional capacities such as stimulation-induced cytokine
secretion. We did not find evidence for the predominant gen-
eration of CD62L� Tg memory cells in high-frequency trans-
fers. In our hands, the GP33-specific endogenous memory cells
frequently expressed more CD62L than the Tg memory cells.
Differences between the present and previously published re-
sults (2, 26) could be due to mouse-to-mouse variability, as we
found in our experiments, or to the fact that we always evalu-
ated endogenous and Tg cells present in the same mouse. Our
results suggest that studies showing a preferential expression of
CD62L in high-frequency cells were not exhaustive, and that
the conclusion that these cells only generate CD62L� TCM (a
major argument to suggest abnormal differentiation) is unre-
liable.

Overall, these data suggests that high-frequency adoptive
transfers just accelerate response kinetics, and that Tg cells
only compete with the endogenous cells that share the same
TCR specificity. It is likely that such competition is greatly
influenced by the relative avidity/cross-reactivity of the TCR
Tg cells with respect to the average avidity/cross-reactivity of
the endogenous antigen-specific cells. Different Tg CD8s pop-
ulations were classified according to these parameters in the
hierarchy OT1 � P14 � anti-HY (13), which appears to cor-
relate directly with their inhibitory effect on endogenous re-
sponses. Indeed, the transfer of the high-avidity/cross-reactive
OT-1 clone virtually abrogates endogenous responses, while
P14 transfers have a smaller effect (2). In contrast, in high-
frequency anti-HY Tg transfers to normal mice, the endoge-
nous cells partially outcompete the Tg population. Both Tg
and endogenous responses show reduced amplitude and be-
come similarly represented in the overall anti-HY response
(47).

TCR downregulation is a rapid and dose-dependent corol-
lary of T-cell activation in vitro (43) but is rather transitory,
lasting for about 24 h. TCR downregulation also was detected

in acute infections in vivo (8, 54), but due to the lack of other
markers to identify antigen-specific cells, these previous stud-
ies could not evaluate fully the extent of this phenomenon.
Here, we established that Tg cells identified by an allogeneic
marker, even when present at physiologic frequencies, down-
regulated TCR expression, and a major fraction fully lost TCR
cell surface expression and failed to bind tetramers. This be-
havior is likely a common feature of CD8 immune responses,
since we also found it in other infectious models and in other
TCR Tg cells (P14 or OT-1 cells immunized with Listeria-
expressing GP33 [LM-GP33] or LM-OVA, respectively; un-
published data).

Several aspects of this phenomenon must be emphasized. In
contrast to the transient loss of TCR after in vitro activation,
in vivo responding populations could remain TCR negative
throughout a long time period during the expansion phase;
activation status and tetramer binding were inversely corre-
lated, allowing for the possibility that more activated cells
could be rendered completely invisible by prominent TCR
downregulation.

To summarize, the detailed analysis of CD8 T cells respond-
ing to different LCMV epitopes in the same infectious envi-
ronment showed that relative clone abundance or TCR spec-
ificity did not alter substantially the properties of effector and
memory cells. From this perspective, the current notion that
high-frequency transfers of naïve Tg cells induce abnormal
T-cell differentiation must be toned down. We found that dif-
ferences in Tg behavior can be explained by a different re-
sponse kinetics, that abundant Tg and rare endogenous cells
with the same peptide specificity had overlapping properties,
and that Tg cells did not affect the amplitude or the quality of
the endogenous response to other LCMV peptides. It also was
demonstrated recently that high-frequency transfers did not
affect the quality of the memory responses (53). In contrast,
the use of TCR Tg cells that can be recognized by allotype
markers revealed that during acute infection, when high viral
loads are present, a substantial fraction of responding cells
downregulate their TCR and fail to bind MHC tetramers, and
that tetpos and tetneg cells have different properties. Therefore,
TCR-Tg mice may be fundamental for the evaluation of the
entirety of the early immune response.

Finally, the important and long-lasting loss of TCR expres-
sion we found to occur during the expansion phase has major
implications for our capacity to study early events in the vast
majority of acute infections in the mouse (when Tg cells are
not available) and, more importantly, in humans. Studies based
on the tetramer binding identification and/or magnetic bead
purification of antigen-specific cells likely are incomplete and
biased (14, 30), since they select subpopulations with peculiar
properties that do not represent the overall characteristics of
the responding peptide-specific cohort. Moreover, it is at
present unclear if any of the methods currently used to identify
responding cells will be able to do so and in which circum-
stances. The failure to bind tetramers is due to TCR down-
regulation. It therefore is possible that the vast majority of
tetneg cells also are undetected through cytokine expression
after in vitro stimulation with specific peptides, since these
responses depend on the cell surface expression of the peptide-
specific TCR. Moreover, we found that TCR downregulation
increased when higher doses of virus were injected, suggesting
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that the higher the viremia the more incomplete will be our
assessment of the acute response. This important pitfall must
be taken into consideration: we may fail to detect a major
cohort of responding cells when high virus loads are present.
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Abstract 

 

Different pathogens likely represent distinct challenges to the host immune system, but 

if the same vaccination strategies are equally efficient at inducing protection against all 

pathogen types is unknown. Doubts have also been raised about the best methodology 

for immune response studies and identifying protection in vaccinated cohorts. Here, we 

show that CD8 T cell function can only be accurately evaluated by ex vivo approaches, 

as the current in vitro methods using T cell re-stimulation never mimic in vivo behavior. 

Major and persistent TCR down-regulation abrogates MHC-tetramer binding during 

the expansion phase, preventing the identification of a large fraction of endogenous 

antigen-specific cells. We also show that priming with different pathogens generates 

CD8 T cells with different characteristics that are not determined by TCR usage, but by 

the infection context. Finally, we report that two primary responses leading to complete 

pathogen elimination generate memory cells with different protection capacities, and 

that TEM cells are more efficient at conferring protection than TCM cells.  
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INTRODUCTION 

Different infections may represent very different challenges to the host immune system. To 

meet such challenges, CD4 T cells generate various effector types (e.g., TH1, TH2, and 

TH17). Although CD8 T cells may generate equivalent subtypes under appropriate in vitro 

conditions, CD8 effector cells arising in vivo are usually regarded as following a single Ifn-

γ/CTL differentiation pathway. The notion of “a single differentiation pathway” was 

challenged by our studies of the co-expression of multiple effector genes in several CD8 

immune responses in vivo. Instead of the coordinated expression of effector molecules, 

individual effector genes had different kinetics of expression/down-regulation. Moreover, 

when their co-expression was evaluated at the single-cell level, they associated randomly in 

both TCR-Tg (Peixoto et al. 2007) and endogenous  antigen-specific cells (Munitic et al. 

2009). This picture of CD8 differentiation diverges considerably from the coordinated co-

expression of transcription factors and effector molecules occurring during TH1/TH2/TH17 

CD4 differentiation and suggests that each individual effector gene may have independent 

regulatory mechanisms, which could result in flexible and quite heterogeneous CD8 T cell 

responses.  

Clarifying this issue is important for optimal T cell vaccine design. Several hypotheses are 

possible. First, each pathogen may induce a particular gene expression pattern that is optimal 

for the control of that infection and for the generation of efficient protection. In this case, each 

vaccine should recapitulate the behavior of the pathogen it aims to control as much as 

possible. The recent success of vaccination using a genetically attenuated malaria strain 

supports this hypothesis (Spring et al. 2013). Second, although gene expression patterns 

possibly differ in primary responses, different infections may generate identical memory T 

cell types with similar protection capacity. In these circumstances, all vaccination protocols 

should have identical efficiency, as long as they are able to generate abundant memory cells. 

Transcriptome analysis of different immune responses supports this hypothesis: it has shown 

different gene expression patterns in primary responses to different pathogens, but identical 

properties in all of the memory cells that are generated (Best et al. 2013). Third, different 

infections may generate memory cells with different capacities to confer protection. In the 

latter case, vaccination should aim to generate these protective memory types. This latter 

hypothesis is supported by recent success in inducing protection against and clearing the 

otherwise lethal SIV (Hansen et al. 2013). Immunization with RhCMV bearing SIV epitopes 

was able to confer protection and to clear the already established viremia. In humans, CMV 
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infection generates TEM cells co-expressing IFN-, perforin, and granzymes which, when 

present, efficiently control CMV (Ribeiro-dos-Santos et al. 2012).      

All of these possibilities raise a second issue of identifying the best method for following 

immune responses and determining protection. In the vast majority of cases, effector 

functions are evaluated after in vitro reactivation with pathogen epitopes, but doubts have 

been raised regarding whether these methods ever recapitulate in vivo cell properties. In vitro 

stimulation has clearly been demonstrated to induce considerable bias in humans (Almeida et 

al. 2009). In the mouse, in vitro re-stimulation has also been shown to modify ex vivo 

readouts considerably, with TNFα expression frequencies changing from <1% to 100% in the 

same populations after in vitro re-stimulation (Panus et al. 2000). Furthermore, in vitro 

readouts are unable to discriminate the properties of T cells in certain abortive immune 

responses from those leading to pathogen clearance and efficient memory generation (Tanchot 

et al. 1998; Kassiotis et al. 2002). Despite these data, in vitro re-stimulation tests have been 

argued to be reliable for scoring function because they always recapitulate the behavior of 

antigen-specific cells when directly confronted with the antigen in vivo, but this notion was 

never confirmed.  

  The relative reliability and possible biases of different experimental approaches to 

studying T cell differentiation during immune responses is also controversial. The use of 

monoclonal (Mo) TCR-Tg cells allows discrimination of any modification of T cell function 

during the immune response based on the selection of cells with particular TCR expression. 

However, TCR-Tg cells may not mimic the behavior of endogenous cells (Marzo et al. 2005; 

van Faassen et al. 2005; Badovinac et al. 2007). On the other hand, the study of endogenous 

responses may also have bias. TCR-Tg cells and endogenous cells down-regulate their TCR 

while responding to antigen (Valitutti et al. 1995; Drake et al. 2005; Xiao et al. 2007; Munitic 

et al. 2009), preventing their identification by MHC-peptide tetramers (Tet).  

Here we address the following questions: What is the best strategy for studying 

immune responses and evaluating protection? Do different pathogens induce different CD8 

differentiation programs? If so, can these differences be attributed to different TCR 

usage/affinity or to differences in infectious context? What is the best strategy for vaccinating: 

using the same atenuated pathogen or using methods that generate many memory cells or 

peculiar memory types?  
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RESULTS 

 

1° Question: What is the best strategy to study immune responses?  

a) Comparison of different strategies to evaluate T cell functionality  

First, we attempted to determine the best approach for evaluating CD8 T cell properties induced in 

vivo, by comparing three different appoaches. We compared the detection of protein after in vitro 

reactivation, with an RT-PCR assay allowing us to score up to 20 different mRNAs in each individual 

cell, and the protein detection ex vivo in brefeldine A injected mice.  

Protein detection after in vitro reactivation is the most frequently used strategy, allowing clear-cut 

discrimination between positive and negative cells. This method has been criticized as not reproducing 

in vivo cell behavior, with expression profiles being influenced by the in vitro re-stimulation 

conditions. However, in vitro reactivation tests are generally thought to reliably reproduce cell 

behavior when they encounter the antigen in vivo. RT-PCR has the advantage of studying cell 

properties ex vivo and obtaining considerable information from a reduced number of antigen-specific 

cells, such as those present in the early immune response. The method also clearly differentiates 

between positive and negative cells because it detects two mRNAs/cell for each tested gene. However, 

this method only detects mRNA and not protein. We also evaluated the detection of protein using 

specific antibodies to cell surface molecules and intracytoplasmic labeling for secreted molecules in 

mice previously injected with Brefeldin A, which blocks protein secretion. Similar to the RT-PCR 

method, antigen-specific cells were characterized ex vivo in the absence of further manipulation. This 

method detects proteins but may have reduced discriminative power when molecules are poorly 

expressed or when antibodies available have not enough quality. Moreover, the information available 

during early responses may be more restricted, as the number of cells required to obtain clear-cut data 

is relatively high and antigen-specific cells are infrequent in the beginning of the immune response.  

 

We compared these three approaches by evaluating the in vivo production of IFN-γ by OT-1 

Tg cells infected with live Listeria monocytogenes (LM) expressing ovalbumine (LM-OVA). Under 

our immunizing conditions, the CD8 response peaked 7 days after priming and declined thereafter. 

Maximum bacterial loads were reached 2-3 days after infection, and no antigen was detected by day 7. 

Protein expression ex vivo and after in vitro stimulation was measured in the same experiments. Ex 

vivo mRNA expression was measured in separate experiments.  

We did not find any major differences between ex vivo mRNA and protein detection. Slight 

experimental variations accounted for minor variations in the percentage of positive cells (Fig. 1A). 
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When protein expression was low, as on days 5 and 7 after infection, mRNA detection provided a 

better clear-cut separation between negative and positive cells. In contrast, in vitro reactivation did not 

mimic ex vivo expression profiles in regards to the percentage of positive cells or the amount of 

protein detected based on MFI (Fig. 1B). These parameters varied with in vitro re-stimulation 

conditions. After in vitro stimulation, up to 87% of cells were detected as IFN-γ producers, but the 

maximal percentage of positive cells ex vivo (on day 2, when LM-OVA load peaked) was 41%. These 

differences were not due to a failure of the ex vivo detection method to visualize ex vivo IFN-γ 

expression. When infected mice were further injected with the OVA peptide, the frequency of ex vivo 

IFN-γ protein detection in Brefeldin A-treated mice was similar to the frequency after in vitro re-

stimulation, and the protein amounts (MFI) were even higher (Fig. 1C). These data demonstrate that in 

vitro reactivation never recapitulates the behavior of T cells in vivo, even when these T cells are 

directly confronted with a high antigen dose.  

Next, we correlated ex vivo mRNA and protein detection for the different molecules we 

studied by comparing the results of different experiments, each using one of these two methods (Fig 

S1-3). In all cases, the discrimination between positive and negative cells was clear-cut when using 

mRNA results, but protein labeling could not be as discriminative. The Pearson correlation coefficient 

approched 1 for all molecules, i.e., significant identity was found between mRNA and protein 

detection (Fig. 2). 

We conclude that, for the molecules we studied, ex vivo mRNA detection correlates with ex 

vivo protein expression. Therefore, both these two methods reflect cell behavior in vivo. In contrast, 

methods involving in vitro reactivation do not recapitulate in vivo behavior, even when cells are in the 

presence of maximal antigen doses.   

 

1° Question: What is the best experimental strategy to study immune responses?  

b) Possible biases in the study of endogenous responses 

The study of immune responses requires the identification of antigen-specific cells, either by the 

adoptive transfer of allotype-labeled cells expressing a transgenic TCR of known specificity, or by 

recognizing endogenous antigen-specific cells using multimers of Class I molecules binding specific 

peptides. Mo TCR-Tg mice have the advantage that CD8 T cells use the same TCR throughout the 

response. Therefore, differences found in cell properties throughout the response cannot be attributed 

to differences in the repertoire of individual mice, or to the selection of cells with different TCR 

affinity. However, it was suggested that the behavior of TCR-Tg cells may be different from that of 

endogenous cells (Marzo et al. 2005; van Faassen et al. 2005; Badovinac et al. 2007), though this 

conclusion has been downplayed (Sarkar et al. 2007; Munitic et al. 2009). On the other hand it is 
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known that T cells down-regulate their TCR during immune responses, losing the capacity to bind 

MHC tetramers (Tet) (Valitutti et al. 1995; Drake et al. 2005; Xiao et al. 2007; Munitic et al. 2009). 

This down-regulation was found in OT-1 and P14 TCR-Tg cells and in endogenous cells after both 

bacterial and viral infection. Recently, we quantified the extent of this down-regulation by comparing 

the number of TCR-Tg cells recognized by a different allotype to the number of these cells that bound 

Tet during the immune response. We found that 60-80% of responding cells failed to bind Tet during 

the expansion phase. To better understand the possible impact of TCR down-regulation, we studied the 

level of TCR down-regulation in several immunization conditions. We transferred different numbers 

of CD45.2
+
 MoTg P14 cells into CD45.1

+
 hosts, which were subsequently immunized with different 

doses of LM-GP33. To evaluate the extent of TCR down-regulation, we determined the gate position 

for tetramer-positive cells in each experiment by using both Tg P14 naïve cells labeled with Tet-GP33 

(Fig. 3A, left) and total CD8
+
 cells from an immunized mouse labeled with all fluorescent Abs minus 

(FM)-Tet-GP33 to control for background fluorescence (Fig. 3A, middle). Under these circumstances, 

all responding cells can be recognized by the expression of a different allotype, which is expressed 

throughout the response (Fig. 3A, right).  

TCR down-regulation was inversely proportional to the number of transferred cells and 

increased with the antigen dose (Fig. 3B), suggesting that it was conditioned by the strength of antigen 

stimulation. Correlation of cell division with TCR expression/Tet binding showed that CD8 T cells 

lost TCR expression after division (Fig. 3C). Maximal Tg TCR down-regulation was present 2 days 

after infection, when LM concentrations peaked. Tg cells progressively regained Tet binding, but a 

significant fraction remained Tet
neg

 6 days after immunization (Fig. 3D). We conclude that allotype 

labeling of TCR-Tg allows the assessement of all CD8-responding cells, whereas tetramer binding 

fails to identify a substantial fraction.  

Overall, these results reveal pitfalls in the study of the endogenous response and suggest that, 

during early responses, a significant fraction of endogenous antigen-specific cells cannot be identified. 

As TCR down-regulation and the failure to bind tetramers persists throughout the expansion phase, the 

number and expansion rate of endogenous cells is underestimated. Because TCR down-regulation 

correlates to cell division, and cell division correlates to cell differentiation into effector functions, the 

study of the functional properties of endogenous cells is biased.  

 

2° Question: Do different pathogens induce different CD8 differentiation programs?   

If so, is this conditioned by different TCR usage?  

 

We selected two systems with similar kinetics for the immune response and pathogen clearance. In 

both cases, the immune response peaked 7 days after priming and the presence of the pathogen was no 
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longer detected at this time point (not shown). Compared to P14 Tg cells responding to LCMV, OT-1 

CD8 T cells responding to LM-OVA expressed higher frequencies of Tgfβ, Il10r, and Il21r throughout 

the response, and these cells reverted to the Ccr7
+
 TCM phenotype 2 months after priming. Roughly 

half of these memory cells expressed Prf1 and Fasl. In contrast, approximately 50% of LCMV-

specific cells exhibited persistent expression of Ifng; they maintained a relatively high frequency of 

Ifng expression at 2 months after priming, and most acquired a Ccr7
- 
TEM phenotype (Fig. 4).   

We attempted to determine whether these different characteristics were due to different TCR 

expression or to differences in the immunization context. Therefore, we co-transferred OT-1 and P14 

Mo Tg cells into the same mouse that was immunized with both LM-OVA and LM-GP33. In this 

context, both TCR-Tg populations behaved similarly, expressing relatively high frequencies of Il10r 

and Il21r and reverting to a TCM phenotype characteristic of the LM-OVA response (Fig. 5). The only 

significant difference between P14 and OT-1 was a slightly higher expression of IL-7R in P14. 

Because the avidity of OT-1 Tg cells is higher than that of P14 (Kassiotis et al. 2003; Hao et al. 2006), 

these results indicate that TCR-specificity and avidity has little impact on the pattern of CD8 

differentiation. These differentiation patterns are conditioned mostly by the 

characteristics/environment of the infection.  

 

3° Question: What is the best strategy to vaccinate: use the same atenuated pathogen?  use 

methods generating many memory cells? generate peculiar memory types?  

To compare the protective capacity of the memory cells generated after different infections, B6 mice 

were primed with LCMV, LM-OVA, or LM-GP33. Two months later, we studied their capacity to 

handle a lethal dose (10
6
 LM) of LM-OVA or LM-GP33. To validate these tests, we determined 

whether bacterial elimination requires the presence of antigen-specific memory cells. Indeed, this was 

the case: when boosted with LM-OVA, mice primed with LM-OVA had reduced bacterial loads, 

whereas mice primed with LCMV had bacterial loads identical to those of the naïve mice studied 

simultaneously (Fig. 6). Next, we compared the clearance of LM-GP33 in memory mice primed with 

either LM-GP33 or LCMV. We expected LM-GP33 priming to provide better protection than LCMV 

priming.  The number of GP33-specific cells in the spleen of LM-GP33-primed mice (average 2x10
6
 

cells) was slightly higher than that of LCMV-infected mice (average 1.6x10
6
). In addition to GP33-

specific cells, the memory pool of LM-GP33-primed mice should also include memory cells specific 

for other unknown LM epitopes. Moreover, mice primed with LM should have pathogen-specific 

antibodies that contribute to LM clearance (Shen et al. 2003) and are absent in LCMV-primed mice. 

Surprisingly, this putative increase in memory pool sizes, antibodies, or  pathogen-specific LM 

priming did not confer increased protection to LM-GP33-primed mice. Mice primed with LCMV 

eliminated LM-GP33 more efficiently than LM-GP33-primed mice (Fig. 6).  
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DISCUSSION 

 

Progress in vaccine design and the evaluation of protection requires the use of reliable methods to 

induce adequate immune responses and to monitor the presence of these responses in vaccinated 

individuals. The present study reports several pitfalls that must be taken into consideration. First, we 

show that the in vitro reactivation tests currently used to study functionality do not correlate with the 

in vivo behavior of CD8 T cells. The lack of correlation between in vitro reactivation and ex vivo 

readouts was described previously for both CD4 (Panus et al. 2000) and CD8 T cells in the mouse 

(Veiga-Fernandes et al. 2000), but despite these studies, the simplicity of in vitro reactivation methods 

and the possibility of using them in large cohorts still make these popular tests for identifying T cell 

function. It has been argued that although these in vitro read-outs may not reflect in vivo cell behavior 

at all time points of the response, they would always show how lymphocytes react when confronted 

with the antigen in vivo. However, we clearly show that this is not the case. By comparing ex vivo and 

in vitro read-outs when T cells are in the presence of very high bacterial loads, we found that in vitro 

reactivation tests always induce much stronger responses than those found ex vivo, suggesting that the 

peptide concentrations presented in vitro may be much higher than those presented in vivo. By 

studying human T cell clones with different avidity, it was also shown that the number and the type of 

effector functions induced after in vitro reactivation depends on both the TCR avidity and the peptide 

concentration used for re-stimulation. For high affinity clones, a low antigen concentration was 

optimal to reveal effector functions, whereas higher antigen concentrations were required in low 

affinity clones (Almeida et al. 2009). This limitation handicaps the study of polyclonal T cell 

populations found in different individuals, which likely harbor T cells with different TCR avidity. The 

reactivation tests used to study polyclonal populations of antigen-specific cells in mice and humans 

risk stimulating some cells and not others, to be optimal for a limited and unknown fraction of all 

antigen-specific cells. However, although functionality cannot not be evaluated by in vitro tests, these 

tests may remain useful for determining the number and peptide specificity of antigen-specific 

memory cells present in each individual. The majority of CD8 T cells recovered Tet binding capacity 

in the memory phase (not shown), and reactivation tests and tetramer binding have been reported to 

have identical frequency read-outs (Wherry et al. 2007). We conclude that more laborious ex vivo 

methods must be pursued for the study of T cell function after vaccination. Although the toxicity of 

Brefeldin A prevents its use in humans, the good correlation we found between ex vivo protein and 

mRNA expression indicates that the quantification of mRNA expression may be useful for studying T 

cell functionality in human cohorts. Supporting this notion, we quantified mRNA expression to 

evaluate CD8 T cell function in healthy donors and HIV-infected patients. The two cohorts were 

different, but within each cohort different donors had the same read-outs (Ribeiro-dos-Santos et al. 
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2012). These results indicate that the reported heterogeneous behavior of human CD8 T cells is largely 

artifactual due to the in vitro reactivation methodology currently used to evaluate their function.  

Though the identification of T cell functions may be improved by the use of ex vivo 

methodology, we could not find a better strategy for identifying endogenous antigen-specific cells 

during immune responses. As previously reported in both OT-1 and P14 Tg mice and in endogenous 

cells (Valitutti et al. 1995; Drake et al. 2005; Xiao et al. 2007; Munitic et al. 2009), we observed 

major TCR down-regulation and a loss of Tet binding throughout the expansion phase. We attempted 

to reverse this down-regulation by pre-incubating cells at 37°C, but this strategy did not improve Tet 

binding. Therefore, the number of endogenous antigen-specific cells, their expansion rates, the 

amplitude of the endogenous responses may be underestimated. The present study also showed that 

TCR down-regulation correlates with cell division and, after the transfer of low numbers of Tg cells 

(approaching the number of endogenous naïve cells), most cells have already divided and lost Tet 

binding by day 3. Because the differentiation of CD8 effector functions also increases with cell 

division, the effector cells generated during endogenous responses may also be underestimated.  

These results revive previous discussions on the relative merit of TCR-Tg and endogenous 

cells in immune response studies. It was claimed that TCR-Tg cells in general, and when used in high 

dose transfers in particular, did not mimic the behavior of endogenous cells. The cells have been 

argued to have poor survival rates and express different markers, particularly IL-7R and CD62L 

(Marzo et al. 2005; Badovinac et al. 2007). This data led to the current conclusion that immune 

response studies using TCR-Tg cells are artifactual. However, a more careful comparison of 

endogenous and TCR-Tg responses tones down this conclusion considerably. The presence of high 

frequencies of naïve Tg cells induced a slight acceleration in the immune response kinetics, leading to 

more rapid pathogen elimination (Sarkar et al. 2007). The reported differences in IL-7R and CD62L 

expression between TCR-Tg and endogenous cells were due solely to different kinetics, as these 

studies compared expression on the same day in different mice. At this time point, endogenous cells 

were yet expanding and thus yet lacked the expression of IL-7R and CD62L while Tg cells (IL-

7R+CD62L+) were already at the contraction phase. When Tg and endogenous cells were studied in 

the same mouse, their properties fully overlapped. In addition, when studied in the same mouse, Tg 

and endogenous cells generated the same number of memory cells with the same characteristics 

(Munitic et al. 2009). Overall, these results and the present data revise current notions on the relative 

merit of TCR-Tg versus endogenous T cell studies and reveal that important bias is also present in 

studies of the endogenous response, preventing the identification of a significant cohort of endogenous 

cells and underestimating effector cell numbers in the expansion phase. Therefore, a study of the full 

entity of an early immune response can only be achieved by following allotype- labeled TCR-Tg cells. 

Rather than being antagonistic, TCR-Tg and endogenous cell studies may both be required.  
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We also compared the impact of different infections on the properties of CD8 T cells. LM and 

LCMV infections induce the production of different innate cytokines, with LM responses being 

characterized by the production of IL-12, which is virtually absent in LCMV-infected mice (Orange 

and Biron 1996; Cousens et al. 1997). We were surprised to find no differences in IL-12R expression 

in these infections, and this cytokine may only influence early LM responses, as the expression of IL-

12R by CD8 T cells is lost by day 6 after priming. In contrast, the majority of unique characteristics of 

the LM responses can be attributed to an effect of IL-21, although, to the best of our knowledge, this 

cytokine was not previously implicated in LM responses. In contrast to the CD8 T cell response to 

LCMV, the majority of OT-1 Tg cells responding to LM-OVA express the Il21R receptor, which is 

maintained in 40% of memory cells. IL-21 favors the response to IL-10 (Spolski et al. 2009), the 

abrogation of IFN- production (Casey and Mescher 2007), and increased perforin expression 

(Parmigiani et al. 2011). Moreover, IL-21 favors the generation of TCM memory cells (Allard et al. 

2007; Kaka et al. 2009). Thus, IL-21 signaling may explain the unique features of the LM responses, 

specifically the rapid decline in IFN-expression, the relatively high expression of Il10R and Perf, and 

the generation of TCM memory cells. Another characteristic of the LM response is the very high 

expression of TGF-. This cytokine contributes to the generation of TH17 cells (Bettelli et al. 2006; 

Veldhoen et al. 2006), which are the major source of IL-21 (Wei et al. 2007).  

In regards to vaccination strategies, reproduction of the infectious context was not a pre-

requisite for efficient memory generation in the two systems we used. These data indicate that the use 

of attenuated vaccines, which likely reproduce the behavior of the pathogen more closely, is not 

always a pre-requisite for the induction of efficient protection. Nonetheless, more complex pathogens, 

such as parasites, that evolve through different cycles in the host and frequently implicate different 

protection mechanisms, may be controlled more efficiently by attenuated vaccination, as has been 

found for malaria (Nganou-Makamdop and Sauerwein 2013; Teirlinck et al. 2013). Our results also 

show that not all immunizations have an identical capacity to confer protection; after LCMV 

immunization, protection was more efficient than that induced by LM priming. We did not find 

evidence that this increased protection capacity was due to an increased number of memory cells in the 

lymphoid organs. After LCMV infection, the number of GP33-specific memory cells in the spleen was 

slightly lower (average 1.6x10
6
) than after LM priming (average 2x10

6
), and their TEM phenotype 

excludes them from the LNs. However, we cannot formaly exclude that GP33-specific memory cells 

are more abundant after LCMV immunization, as they may be dispersed in other tissues, where we 

cannot count them. However, we would expect that LM immunization should actually generate more 

memory cells and a more diverse repertoire than LCMV infection. In addition to GP33-specific cells, 

memory cells recognizing other LM epitopes should also be present, and LM immunization induces 

the production of specific Abs that would be absent in LCMV-primed mice. However, these putative 
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advantages of LM priming did not lead to an increased protection capacity, suggesting that the 

memory induced after LCMV infection is more efficient than those generated after LM priming.  

This increased protection capacity of the LCMV infection may be related to the generation of 

cells with a TEM phenotype. TEM, which localize in tissues and have higher expression levels of Tbet 

and Eomes and effector functions in both mice (Masopust et al. 2001; Pearce et al. 2003; Intlekofer et 

al. 2005) and humans (Monteiro et al. 2007), have been proposed to be more efficient than TCM in 

impairing pathogen replication at its earliest stage (Franchini 2009). This notion stems from the recent 

success in vaccination shedules inducing protection against and clearance of SIV (Hansen et al. 2009; 

Hansen et al. 2013). These vaccines use ShCMV bearing SIV epitopes. We and others previously 

showed that CMV infection generates TEM with the same characteristics as LCMV memory cells (6, 

45-46). Our present results, which confirm the higher protection capacity of TEM cells in a different 

species and a different infection, strongly support that TEM cells have a higher protection capacity. 

Comparisons of the protection capacity of TEM and TCM with the same specificity in other infections 

will be important to confirm and extend this notion. 

 

 

 

MATERIALS AND METHODS 

 

Mice and immunization protocols 

All mice had the C57Bl/6 (B6) background. B6.CD90.1
+
, B6.CD45.1

+
, Rag2

-
 Monoclonal (Mo) P14 

CD90.2
+ 

TCR-Tg mice expressing the CD45.1 or CD45.2 allotype were obtained from our breeding 

colonies at the Center for the Development of Advanced Experimental Techniques (Orleans, France). 

Rag1
- 

Mo OT-1 Tg mice were from the animal facilities of the Pasteur Institute, a kind gift from 

Antonio Freitas. In the majority of experiments, 10
6 

lymph node cells derived from Mo P14 Tg mice 

or Mo OT-1 Tg mice were adoptively transferred to sex-matched 6 to 8-week-old CD45.1
+
 or CD90.1

+
 

B6 mice. One day after this transfer, the mice were infected with LM or LCMV. The number of 

transferred Tg cells varied for some mice, and these cells could have been labeled with 5 µM CFSE 

(Molecular Probes, Eugene, OR) prior to injection. For immunization with LCMV, stocks of LCMV 

Armstrong 53b, a clone “triple plaque purified” from Arm CA 1371, were grown on baby hamster 

kidney cells and titers determined by plaque assay on Vero cells as described previously (Dutko and 

Oldstone 1983). Mice were infected intraperitoneally with 2 x 10
5
 PFU of LCMV Armstrong strain 

53b. LM-OVA or LM-GP33 were kind gifts from L. Lefrançois. For the LM infections, the bacteria 

were recovered during the exponential growth phase and the mice injected intravenously. Bacterial 

loads were evaluated one day after infection as CFU per spleen. All experiments were carried out 

according to the French Ethical Commission on Animal Experimentation.  
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Antibodies and tetramers for cytofluorometry and cell sorting 

The following Abs were used for the identification of cell surface molecules: anti-CD45.1 (A20), anti-

CD45.2 (104-2.1), anti-CD90.1 (OX-7), anti-CD90.2 (30-H12), anti-CD8β (H35-172), anti-CD69 

(H1.2F3), anti-CD360/IL-21R (4A9), and anti-CD212/IL-12Rβ1 (114) from BD Bioscience (San Jose, 

CA); anti-CD44 (1M781), anti-KLRG1 (2F1), anti-CD127/IL-7R (A7R34), and anti-CD197/CCR7 

(4B12) from eBioscience (San Diego, CA); and anti-CD210/IL-10R (1B1.3a) from BioLegend (San 

Diego, CA). Abs for intracytoplasmatic labeling were: anti-IFNγ (XMG 1.2) and anti-TNFα 

(MP6XT22) from BD Bioscience (San Jose, CA), and anti-granzyme B (16G6), anti-T-bet (4-B10), 

and anti-EOMES (Dan11mag) from eBioscience (San Diego, CA). All the above mentionated mAbs 

were directly coupled to FITC, PE, PerCPCy5.5, PECy7, APC, APCCy7, Pacific Blue, APC Alexa 

Fluor 780, or Alexa Fluor 647. Anti-TGFβ (56E4) (Cell Signaling Technology, Danvers, MA) was 

revealed with a goat anti-rabbit Alexa Fluor 488 secondary Ab (Invitrogen, Carlsbad, CA).  

Secreted cytokines were detected by intracellular staining as described previously (Lowsky et al. 

2005). For ex vivo detection, mice were injected with 0.25 mg of Brefeldin A (Sigma-Aldrich, St. 

Louis, USA) 4 h before detection. For in vitro reactivation, total spleen cells were incubated with the 

indicated doses of OVA peptide (SIINFEKL) (PolyPeptide Group, Strasbourg, France) and Brefeldin 

A. GP33 (KAVYNFATM) and OVA (SIINFEKL) loaded tetramers were obtained from Beckman 

Coulter (Marseille, France). Before tetramer labeling, spleen cell suspensions were depleted of non-

CD8 T cells using a cocktail of mAbs (TER119, CD19, Mac-1, GR1, CD4, B220) and Dynabeads 

(Dynal AS, Oslo, Norway).  

 

Evaluation of gene expression in individual cells 

The expression of multiple genes was analyzed in individual cells as described in detail previously 

(Peixoto et al. 2004). Notably, this method requires multiple validation steps that we previously 

performed and reported, and for each gene it detected two mRNA molecules/cell. The primers selected 

for PCR reactions are listed in Supplemental Table 1. 

 

Statistical analysis  

Potential differences in the expression of different genes were studied using the two-tailed 

Fisher's exact test. One-way ANOVA was used for bacterial loads. A P-value < 0.05 was 

considered significant. Potential differences between mRNA and protein expression in each 

response was evalated by taking into account all points and all experiments in which these 

two parameters were studied using the Pearson correlation coefficient (r). All statistical 
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analyses were performed using Graphpad Prism (GraphPad Software). Perfect correlation 

(i.e., full identity between the two read-outs) corresponded to r=1. The P-values correspond to 

significant similarities and not to significant differences. A P-value <0.05 was considered to 

signify overlapping responses.    

 

Gene nomenclature 

Genetic nomenclature was used according to the guidelines from the International Committee 

on Standardized Genetic Nomenclature for Mice (http://www.informatics.jax.org). In this 

nomenclature, genes and mRNA have the same abbreviation. The mRNAs studied were 

perforin (Prf1), granzyme B (Gzmb), FasL (Fasl), IFNγ (Ifng), TGFβ1 (Tgfb1), TNFα (Tnf), 

IL10R (Ilr10), IL21R (Ilr21), IL12Rβ2 (Il12rb2), IL7R (Il7r), CCR7 (Ccr7), KLRG1 (Klrg1), 

eomesodermin (Eomes), T-box 21 (Tbx21), programmed cell death 1 (Pdcd1), and CD3ε 

(Cd3e). 
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Figure Legends 

 

Figure 1. Comparison of IFN-γ expression ex vivo and after in vitro reactivation. CD90.2 MoOT-

1 Tg cells were transferred to CD90.1 syngeneic mice. After 24 h, these mice were infected with 5,000 

LM-OVA expressing both the OT-1 and OT-2 epitopes.  On different days (D) after infection, the 

expression of IFNγ by splenic CD90.2 Tg cells was determined using different methods. All 

histograms show intracytoplasmic staining with anti-IFN-γ Abs or an isotype control (gray) for one 

typical experiment out of the three performed. A) Ex vivo expression: IFNγ expression ex vivo in 

Brefeldine A injected mice, 4 h post- Brefeldine A injection. In brackets: the  frequency of Tg cells 

expressing Ifng, determined by single-cell RT-PCR (mean ± SEM of three experiments). B) In vitro 

expression: IFNγ expression by Splenic CD90.2 Tg cells re-stimulated  in vitro with the indicated 

doses of OVA peptide, in the presence of Brefeldin A for 4 h. C) Five days after infection, mice were 

injected with 5 µM OVA peptide and Brefeldin A and studied 4 h later.  

 

Figure 2. Comparison between ex vivo mRNA and protein read-outs. CD90.2 CD8
+
 Mo OT-1 Tg 

cells were immunized with LM-OVA, as described in Fig.1. At different days after infection, splenic 

CD90.2 Tg cells were either sorted as single cells to determine the expression frequency of different 

mRNAs, or labeled with different antibodies to evaluate protein expression. Results show mRNA 

(squares) and protein expression (circles). Each point represents the mean of two experiments or the 

mean ± SEM of three to five experiments. For all molecules, the Pearson correlation coefficient (r) 

was significant (*p<0.05, **p<0.01), indicating that the results overlap.  

 

Figure 3. TCR down-regulation during immune responses. The indicated number of CD45.2 CD8
+
 

MoP14 Tg cells labelled or not with CFSE were transferred to CD45.1 syngeneic receipients. One day 

later these mice were infected with the indicated doses (CFU) of live LM-GP33. A) Left and Middle 

panels: The controls used in each experiment to define the gates identifying Tet
+
 cells were Tet 

binding in naïve GP33-specific P14 Tg cells (left) and CD8
+
 cells from an immunized mouse labelled 

with all fluorescence Abs except Tet, defining background fluorescence (midle). Right panel: Allotype 

labeling of 5x10
5 
transferred TCR-Tg cells 3 days after infection.. B, D) Tet binding in gated CD45.2

+
 

P14 cells on days 2 (B) and 6 D) after infection. C) Correlation of Tet binding with division 3 days 

after infection.  
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Figure 4. Comparison of gene expression frequencies in antigen-specific cells after infection with 

LM-OVA or LCMV. CD90.2
+
 P14 or OT-1 MoTg cells were transferred to syngeneic CD90.1

+
 hosts. 

After 24 h, these mice were infected with 2x10
5
 PFU of LCMV-Armstrong or 5x10

3
 CFU of LM-

OVA, respecitvely. Spleens were recovered on different days after infection and activated TCR-Tg 

cells (CD69
+
 or CD44

+
) sorted as single cells. Each individual cell was tested for co-expression of the 

respective mRNAs. Point 0 corresponds to gene expression in naïve Tg cells. Data are frequency 

estimates calculated from 48 cells per time point/experiment/mouse and from 2-5 experiments in 

which 2-3 mice were studied). *p<0.05, **p<0.01, two-tailed Fisher's exact test. 

 

Figure 5. Comparison of gene expression frequencies in different CD8 T cells immunized in the 

same mouse. The same number of CD90.2
+
 CD45.1

+
 P14 and CD90.2

+
 CD45.2

+
 OT-1Tg cells were 

co-transferred to CD90.1
+
 CD45.2

+
 syngeneic receipients. After 24 h, these mice were infected with 

2,500 CFUs of LM-OVA and 2,500 CFUs of LM-GP33. Individual Tg cells were sorted at different 

time points after infection and studied as described in Figure 4. Data are presented as the mean ± SEM 

of three individual mice studied in two independent experiments. *p<0.05, two-tailed Fisher's exact 

test. 

 

Figure 6. The protection capacity of different of the memory generated after different infections. 

B6 mice were infected with either 2x10
5
 PFU of LCMV-Armstrong or 5x10

3
 CFU of LM-OVA or 

LM-GP33. Two months later, naïve mice or different types of memory mice were infected with a 

lethal dose (10
6
) of LM-OVA or LM-GP33 and bacteria loads studied one day later. Data are 

CFU/spleen, with each point representing an individual mouse studied in two independent 

experiments. *p<0.05, *** p<0.001, one-way ANOVA; ns, non significant.  
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Table S1: List of primer sequences for single cell multiplex RT-PCR. Three specific 
primers were designed for each gene. Reverse transcription reactions were carried out 
using B primers. For the first and second PCR reactions A B and B C primer pairs were 
used respectively. A and C are sense primers, B are anti-sense primers. 
 

Gene Primer Sequence  5’ --> 3’ 

 
Tgfb1 

A ACCATCCATGACATGAACCG 

B CAATCATGTTGGACAACTGC 

C GCTACCATGCCAACTTCTGT 

 
Tnf 

A AGCACAGAAAGCATGATCCG 

B AACCTGGGAGTAGACAAGGT 

C CCTCCCTCTCATCAGTTCTA 

 
Ifng 

A GCTCTGAGACAATGAACGCT 

B AAAGAGATAATCTGGCTCTGC 

C TGTTTCTGGCTGTTACTGCC 

 
Prf1 

A TCACACTGCCAGCGTAATGT 

B CTGTGGTAAGCATGCTCTGT 

C CACAGTAGAGTGTCGCATGT 

 
Gzmb 

A GTCAATGTGAAGCCAGGAGA 

B AGGATCCATGTTGCTTCTGT 

C GGGAGTGTGAGTCCTACTTT 

 
Fasl 

A TTCATGGTTCTGGTGGCTCT 

B GAGCGGTTCCATATGTGTCT 
C TGTATCAGCTCTTCCACCTG 

 
Klrg1 

A AGGGATTTGGTAGAGATGGC 

B GAGCCTTTGTCTGCACAGAA 

C ATTCAACACTAGAGCTGCCG 

 
Ccr7 

A AGGGAAACCCAGGAAAAACG 

B TATCCGTCATGGTCTTGAGC 

C TACGAGTCGGTGTGCTTCAA 

 
Il7r 

A GAGTCCAAGTTCTACCTTCG 

B CGGTTTGCACTGTGTACAGC 

C AACCTGTCGTATGGCCTAGT 

 
Il10r 

A AACAGTCAGTACTCCAACT 

B CTGCTCCGTCGTGATAAGTA 

C CGGCATCATCTATGGGACAA 

 
Il21r 

A CATTGTCAATGTGACGGACC 

B CTGCAGCTGGTAGCTAGAAT 

C CAGGACGCTATGATATCTCC 

 
Tbx21 

A AACCACCTGTTGTGGTCCAA 

B CCCTTGTTGTTGGTGAGCTT 

C AACCAGCACCAGACAGAGAT 

 
Eomes 

A CCCCTATGGCTCAAATTCCA 

B GGAGCCAGTGTTAGGAGATT 

C GGCACCAAACTGAGATGATC 

 
Pdcd1 

A AGGAAGAGGAGACTGCTACT 

B ACGGGTTGGCTCAAACCATT 

C AGGTACCCTGGTCATTCACT 

 
Il12rb 

A ATGAGTGCTCCTGGCAGTAT 

B TTCCAGTCCATTCGCAACTG 

C TGGCCCTGAGGACAATGTTT 

 
CD3e 

A ACCAGTGTAGAGTTGACGTG 

B TATGGCTACTGCTGTCAGGT 

C GCTACTACGTCTGCTACACA 
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Inflammatory reactions are believed to be triggered by innate signals and have a major
protective role by recruiting innate immunity cells, favoring lymphocyte activation and dif-
ferentiation, and thus contributing to the sequestration and elimination of the injurious
stimuli. Although certain lymphocyte types such as TH17 cells co-participate in inflam-
matory reactions, their generation from the naïve pool requires the pre-existence of an
inflammatory milieu. In this context, inflammation is always regarded as beginning with an
innate response that may be eventually perpetuated and amplified by certain lymphocyte
types. In contrast, we here show that even in sterile immunizations or in MyD88-deficient
mice, CD8 T cells produce a burst of pro-inflammatory cytokines and chemokines. These
functions follow opposite rules to the classic CD8 effector functions since they are gener-
ated prior to cell expansion and decline before antigen elimination. As few as 56 CD8+

inflammatory effector cells in a lymph node can mobilize 107 cells in 24 h, including
lymphocytes, natural killer cells, and several accessory cell types involved in inflamma-
tory reactions. Thus, although inflammation modulates cognate responses, CD8 cognate
responses also initiate local inflammatory reactions.

Keywords: CD8T cells, immune responses, effector functions, lymphocyte trapping, lymph-node shut-down-phase

INTRODUCTION
The main CD8 effector functions are believed to be the produc-
tion of IFN-γ and cytotoxic activity (CTL), which are induced after
extensive division. However, while studying CD8 T cell responses
at day 4 after priming we found that these cells had other prop-
erties. We named them “inflammatory effectors” because they
expressed abundant Tgfb, but none co-expressed TgfbR1 and R2,
indicating that TGF-β could only act in trans, where it is pro-
inflammatory [reviewed in Ref. (1)]. While testing their CTL activ-
ity (by co-injecting them with antigen-loaded and non-loaded
targets directly into the spleen), these effectors did not kill loaded
targets, but rather induced the local retention of both antigen-
loaded and non-loaded targets (2), mimicking the events described
in non-specific phase of lymphocyte trapping (3–5). Indeed, dur-
ing the first 2–4 days of an immune response all antigen-specific-
cells dispersed throughout the body are retained in the restricted
site where the antigen is first presented (a phenomenon named
lymphocyte trapping). Recent studies suggested that this local
retention was due to the formation of stable interactions between
antigen-specific T cells and the antigen-presenting cells (APCs).
These stable interactions would lead to T cell activation and
the subsequent down-regulation of the sphingosine-1-phosphate
(S1P) receptor S1P1 at the T cell surface, preventing antigen-
specific T cells to egress the lymphoid organ (6). It was also shown

that CD69 expression induced the down-regulation of S1P1 since
cells from CD69− mice failed to be retained (7, 8). However, these
events only explain why antigen-specific-cells remain in contact
with the APCs presenting the antigen. They do not explain how
all lymphocytes dispersed throughout the body are “screened” for
such binding capacity during a very short time-period after immu-
nization. This is particularly problematic since it was shown that
immediately after infection the number of APCs is very low: using
the dose L50 of influenza virus in aerosols only four infectious
particles were transmitted (9). In these circumstances, some cir-
culating antigen-specific-cells may fail to contact these rare APCs,
unless their transit time through the draining lymph node (DLNs)
is considerably modified.

Indeed, early studies on lymphocyte trapping revealed that
local recruitment of antigen-specific-cells was always preceded by
profound modifications of migration affecting all lymphocytes.
Elegant experiments in the sheep (3, 4) where the entry from the
blood and the traffic in afferent and efferent lymphatic vessels
were directly evaluated, as well as experiments in the mouse (5)
showed that shortly after antigen administration, the influx of both
antigen-specific and non-specific T cells into the DLN was much
increased (3, 5) whereas egress was totally blocked for 1–3 days
(3–5). This early reaction named “antigen non-specific trapping”
or “lymph-node shut-down-phase” was considered fundamental
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to allow every lymphocyte enough time to move among resident
cells until meeting the rare APCs first presenting the Ag. Early
studies proposed that such accumulation was due to an increase
in local blood flow (10), but other studies indicated that perfusion
rates were not modified: the apparent increase in blood flow was
only due to an increase in the size of the organ (11). Moreover,
an increase in the blood flow may explain the increase in lympho-
cyte input, but does not explain concomitant “shut-down-phase.”
Other studies reported that several inflammatory mediators could
modify cell egress. Interferons (12) and TNF were reported to have
these effects, but a detailed study of the effects of TNF injection
showed they did not mimic those induced by antigen (13).

We here describe that CD8 T cells express a burst of pro-
inflammatory cytokines immediately after cognate antigen stim-
ulation. These inflammatory effectors follow opposite rules to
classical CD8 functions, and are very potent effectors. They recruit
non-resident cells, 56 cells injected into a LN recruiting up to
107 cells in 24 h, including lymphocytes and multiple accessory
cell types involved in inflammatory reactions. They are generated
even in sterile immunizations. These results describe the charac-
teristics of a new CD8 effector differentiation phase. They show
that although local inflammation modulates T cell responses, CD8
cognate responses also initiate local inflammatory reactions.

MATERIALS AND METHODS
MICE AND IMMUNIZATION PROTOCOLS
C57BL/6 mice expressing the CD90.1 allotype marker (Ba mice)
and monoclonal (Mo) Rag2−/− mice expressing TCRαβ Tgs spe-
cific for the GP33 peptide of the LCMV (P14) or for the HY antigen
(HY) expressing different CD45 allotypes were obtained from our
breeding colonies at the Center for the Development of Advanced
Experimental Techniques, Orleans, France. CD3ε−/−CD45.1+

mice, and CD90.2+ Mo Rag2−/− mice expressing MoTCRαβ Tg
receptor specific for OVA peptides (OT1 or OT2) and MyD88-
deficient mice were gifts respectively from Antonio Freitas, and
from Mathew Albert and were bred at the Pasteur Institute’ animal
facilities. Listeria monocytogenesis (LM) (expressing both the OT1
and the OT2 OVA peptides: LM-OVA) or LM-GP33 were kind gifts
from L. Lefrançois – University of Connecticut Healthcare Center,
Farmington, CT. For immunization with LM, sex-matched 6–
8 weeks old CD90.1+ B6 mice were adoptively transferred with 106

lymph-node cells derived from either MoP14 Tg mice or MoOT-1
Tg mice. One day later, LM were recovered during the exponen-
tial growth phase, and mice were injected i.v. with 5000 CFU LM.
When specified in the text, naïve MoTg cells were labeled with
5 µM CFSE (Molecular Probes, Eugene, OR, USA) prior to injec-
tion. GP33-specific endogenous cells were obtained from wild
type or MyD88-deficient mice immunized with the 5,000 CFU
LM-GP33. Under both these infection conditions, bacterial loads
(determined as CFU per liver or spleen) peaked at post-infection
days 2–3, and the response peak was by day 8–10 after infection
(not shown). For the generation of CD8 HY-specific effector cells,
6–8 weeks Rag2−/− female mice were injected i.v. with a mixture
of 106 female and 105 male bone marrow cells from CD3ε defi-
cient mice (14). Two days later these mice were injected i.v. with
0.5× 105 CD4+ (Marilyn) and CD8+ Mo TCR-Tg cells specific
for the male antigen.

ANTIBODIES USED FOR FLOW CYTOMETRY ANALYSIS AND CELL
SORTING
The following monoclonal antibodies (MoAbs) used for flow
cytometry and cell sorting were obtained from BD Pharmin-
gen (San Diego, CA, USA): anti-CD3, anti-CD4, anti-CD8 (53-
6.7), anti-CD8b (H35-172), anti-CD11b/Mac-1 (M1/70), anti-
CD11c, anti-CD19, anti-CD44 (1M781), anti-CD45.2 (104-2.1),
anti-CD69, anti-CD90.2/Thy1.2 (53-2-1), anti-DX5, anti-NK1.1
(PK136), anti-Ly6G/Gr1 (RB6-8C5), anti-Ly6c, anti-PDCA-1.
All the above-mentioned mAbs were directly coupled to FITC,
PE, PerCP, PECy7, allophycocyanin or Pacific Blue, or con-
jugated with biotin. Biotinylated mAbs were revealed with
streptavidin-allophycocyanin (BD Pharmingen, San Diego, USA),
or streptavidin-Pacific Orange (Molecular Probes, Eugene, USA).
Innate cell populations present in brachial lymph node (BRLN)
after the injection of naïve or effector cells were defined as fol-
lowing: NKs: DX5+ NK1.1+; cDCs: CD11chighPDCA-1−; pDC:
CD11clowPDCA-1+; monocytes: CD11bhigh LyC6high; granulo-
cytes (PMNs): CD11bhighLy6Clow. For the ex vivo detection of
cytokines and chemokines, mice were injected with 0.25 mg of
Brefeldin A (Sigma-Aldrich, St. Louis, USA) and intracellular
staining performed 6 h later (15), with the following Abs: rat
anti-mouse CCL3 (clone IC450A, R&D Systems, Minneapolis,
MN, USA); rat anti-mouse TNF-α (clone 557644, BD Pharmin-
gen, San Diego, CA, USA), rat anti-mouse CCL4 (clone MAB451,
R&D systems). Antibodies for phosphorylated signal transduc-
tion molecules and the respective isotype controls were purchased
from Cell Signaling Technology (Danvers, MA, USA): Akt (Ser473,
clone D9E)-PE, NF-kB p65 (Ser536, clone 93H1)-Alexa Fluor
488, p44/42 MAPK (Thr202/Tyr204, clone E10)-Alexa Fluor 488,
p38 MAPK (Thr180/Tyr182, clone 28B10)-Alexa Fluor 647 and
SAPK/JNK (Thr183/Tyr185, clone G9)–PE. Cells were analyzed on
a FACSCanto system and sorted on a FACS Aria system (Becton
Dickinson, Franklin Lakes, NJ, USA).

QUANTIFICATION OF ANTIGEN-SPECIFIC ENDOGENOUS CELLS
All the individual steps of this method are required to achieve
optimal recovery and quantification of naïve cells. Organs were
totally cleaned of fat and other adjoining tissues and distributed
in 24-well plates in RPMI medium supplemented with 2% fetal
calf serum and HEPES buffer. Cell suspensions were obtained by
mechanical disruption with forceps followed by digestion with
0.5 mg/ml collagenase type IV (Worthington Biochemical Cor-
poration, Lakewood, NJ, USA) and 5 µg/ml deoxyribonuclease I
(Sigma-Aldrich, St. Louis, MN, USA) for 30 min at 37°C in 5%
CO2 with agitation. We found that this digestion step was critical,
since cell yields were much higher and the resulting cell suspen-
sions cleaner when compared with those obtained by mechanical
disruption alone.

For counting GP33-specific naïve cells, a known number of
LN Mo P14 Tg cells expressing different allotypes were added
directly to these suspensions prior to any further manipulation.
The cells were then washed and depleted of non-CD8 T cells
with a cocktail of MoAbs (TER119, CD19, Mac-1, GR1, CD4,
B220) and Dynabeads (Dynal AS, Oslo, Norway). All these Abs
were previously titrated to determine the binding efficiency and
the absence of non-specific binding/depletion. We found that
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this enrichment step was required to optimize the labeling and
discrimination of endogenous antigen-specific-cells. Cells were
labeled with PE- and APC-labeled multimers of MHC class I
loaded with GP33 peptide (Dextramers®, Immudex, Copenhagen,
Denmark) previously titrated on P14 Tg cells, and antigen-
specific-cells recovered by pull-down (16). In contrast to MHC
tetramers, these multimers associate a higher number of fluo-
rochrome and peptide-loaded MHC class I molecules, enabling
a better discrimination between antigen-specific and non-specific
endogenous cells. For counting antigen-specific-cells, the labeled
populations were diluted in 0.5–1 ml of FACS flow buffer and
acquired using the low-speed mode in a FACS-Canto. The use of
low-speed mode was also found important, since it reduced both
the cell loss during acquisition and the background non-specific
labeling.

CYTOKINE EXPRESSION. CORRELATIONS BETWEEN CELL
DIFFERENTIATION AND DIVISION “IN VIVO”
Assessment of the correlations between the expression of several
pro-inflammatory mediators and molecules involved in cytotoxi-
city with division in vivo was hindered by (i) the very low number
of cells present at each division at early time points of the response
and (ii) the small number of parameters than can be reliably used
with CFSE. In order to overcome these difficulties and study the
expression of several effector molecules simultaneously, we used
a single-cell multiplex RT-PCR technique previously developed
in our laboratory (17). This technique allows the simultaneous
detection of the expression of Tgfb1, Tnf, and cytotoxic genes
in each individual cell and we created compatible primers for
the simultaneously detection of chemokines (Figures S1 and S2
in Supplementary Material). Briefly, individual cells were sorted
and lysed and the mRNA reverse-transcribed by using specific 3′

primers for all genes. The 5′ primers are then added, and a first
15-cycle amplification step is initiated. The PCR products are then
split into different wells and a second, nested PCR is performed
for each gene separately. Given that the primers amplifying all the
mRNAs are present in the first PCR, the arrays have two major
requirements. Firstly, all PCRs should have the same efficiency, to
prevent preferential amplification. Secondly, neither the primers
nor the amplicons should compete during the first PCR reaction.
For new primers, validation of these two requirements are shown
in Figures S1 and S2 in Supplementary Material. Validation of the
other primers has been described previously (17).

The following primers were selected:

Xcl1: forward 5′-GAC-TTC-TCC-TCC-TGA-CTT-TC-3′, nested
forward 5′-GGA-CTG-AAG-TCC-TAG-AAG-AG-3′, and reverse
5′-TGC-CAT-CCA-CAG-TCT-TGA-TC-3′

Ccl3: forward 5′-AAG-GAT-ACA-AGC-AGC-AGC-GA-3′,nested
forward 5′-CCA-GTC-CCT-TTT-CTG-TTC-TG-3′, and reverse
5′-GAT-CTG-CCG-GTT-TCT-CTT-AG-3′

Ccl4: forward 5′-CCA-GCT-CTG-TGC-AAA-CCT-AA-3′,nested
forward 5′-GAG-CAA-CAC-CAT-GAA-GCT-CT-3′, and reverse
5′-GCT-CAG-TTC-AAC-TCC-AAG-TC-3′

28S: forward 5′-TAC-CGG-ACC-CTG-AAC-AGA-AT-3′, and
reverse 5′-GAT-GAT-CCT-CCG-GCA-TGT-TT-3′ (28S amplifi-
cation was used to test the plating efficiency).

We used two independent approaches to show that this method
can detect as few as two mRNA molecules per cell (17). NB: the
expression of all these effector molecules requires cognate antigen
stimulation. Naïve cells do not express these mRNAs. The infec-
tion milieu does not induce the expression of these mediators:
when mice are infected with LM that does not express OVA, OT-1
cells do not express these mediators.

Detection of cytokine proteins ex vivo was performed after
injection of Brefeldin A, as described (15).

THE INFLAMMATORY CAPACITY OF CD8 T CELLS IN VIVO
Sorted naïve or effector CD90.2 Tg T cells obtained from the spleen
2.5 days after immunization. In some experiments they were mixed
at 4°C with 50% “High Concentration” Growth factor-reduced
Matrigel (BD Biosciences, San Jose, USA), and injected subcuta-
neously in the ear of CD90.1 recipient mice. In other experiments,
the BRLN was accessed by a small vertical skin incision parallel
to medial border of the scapula in anesthetized mice. The same
cells were injected directly in the BRLN in a 10 µl volume using an
insulin syringe, and the skin incision was closed with one wound
clip. We aimed to inject 60 or 600 cells/mouse but variations in
cell numbers were to be expected after such high dilutions and
injection. To determine the actual number of cells present in the
BRLN after injection, we counted them in the final cell suspension
and in the BRLN of control mice shortly after injection.

To determine the best time point for studying the effect of these
effectors, we measured the weight of LNs at different times after
injection of effector T cells. For evaluation of S1P, LNs were stud-
ied 16 h after the injection of effectors, since their weight had not
yet increased at that time point. For the detection of cell accu-
mulation, LNs were studied between 24 and 30 h post-injection,
when they had already increased in size. For the detection of S1P,
we used the S1P bioassay described previously (18) with WEHI231
cells expressing Flag-S1P1 (a kind gift of J. Cyster). This method
was slightly modified to increase sensitivity. To concentrate the S1P
amounts recovered from the LN, we extracted S1P in a 50 µl vol-
ume, and reduced the reaction volumes to 40 µl and the number
of WEHI231 cells to 2× 104/well. To reduce background labeling
(variations of Flag-S1P1 expression in WEHI231 cells incubated
with medium alone) these cells were previously sorted to obtain
homogeneous populations expressing the same level of Flag-S1P1.

RESULTS
CD8+ INFLAMMATORY EFFECTOR T CELLS DO NOT FOLLOW THE RULES
THOUGHT TO GOVERN CD8+ DIFFERENTIATION INTO EFFECTOR CELLS
Since in the first 1–4 days after antigen administration cell input
to the DLN is much increased, we studied if CD8 T cells would
express mediators justifying this increase. When Mo TCR-Tg
cells were stimulated with LM expressing the OT1 and the OT2
epitopes, CD8 OT1, but not the CD4 OT2 cells abundantly
expressed a panoply of chemokines – Xcl1, Ccl3, and Ccl4 by day
2 after immunization, while this expression was lost before the
immune response peak (Figure 1A). OT1 cells also expressed Tnf
(Figure 1A), reported to increase HEV permeability and reduce
LN egress (19). Ex vivo detection of protein in Brefeldin A injected
mice confirmed that secretion of pro-inflammatory mediators
was restricted to the early response (Figure 1B). Production of
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Sung et al. CD8 inflammatory effectors

FIGURE 1 | Expression of inflammatory mediators by CD8T cells.
(A,B) Mo CD90.2 TCR-Tg cells were transferred to CD90.1 B6 mice, and
immunized with LM-OVA expressing the OT1 and OT2 epitopes. At
different time points after infection we determined: (A) The proportion of
OT1 and OT2 Tg cells expressing these mRNAs evaluated in 72 individual
cells by single-cell RT-PCRs. (B) The ex vivo intracellular expression of
pro-inflammatory proteins in Brefeldin A injected mice. Barriers to identify
positive cells were based on the labeling of the same cell suspension with
isotype control antibodies. The lack of suitable Abs prevented us from
evaluating XCL1 expression. (C) Mo CD90.2 P14 TCR-Tg cells were
transferred to CD90.1 B6 mice. 24 h later, these transferred mice, as well as
My88+ and MyD88− mice were immunized simultaneously with LM-GP33.

(Continued)

FIGURE 1 | Continued
CD8+ CD69+ GP33-specific-cells were sorted from these three mice types
at days 2 and 3 after priming. For that purpose, spleen cell suspensions
were depleted of non-CD8 T cells. The P14 Tg cells were identified by their
co-expression of CD90.2 and CD8β. Endogenous cells from MyD88+ and
MyD88 B6− mice were identified by triple co-expression of CD8β, and APC,
and PE labeled GP33-Dext. Results show the levels of these mRNAs in
CD69+ GP33-specific-cells 2 (upper graphs) and 3 days (lower graphs) after
immunization, evaluated by qRT-PCR.

these mediators was dependent on the recognition of the Ag by
antigen-specific-cells. When these mice were injected with LM
not expressing OVA, OT-1 cells did not express any effector func-
tion. Mo CD8 anti-HY TCR-Tg cells but not Mo CD4 anti-HY
Marilyn TCR-Tg immunized with male cells also produced a sim-
ilar cytokine/chemokine burst, although Ccl3 and Ccl4 levels were
lower than found in OT1 CD8 cells (not shown).

Since the above results were obtained with TCR-Tg cells we
wished to evaluate if endogenous cells shared the same properties.
Moreover, since immunization with male cells does not involve
obvious innate signals we wished to study the impact of such sig-
naling in inflammatory effector functions. We compared by qRT-
PCR the expression of the mRNAs coding for these mediators by
different types of CD69+ GP33-specific CD8 T cells, immunized
with LM-GP33. We found equivalent expression in TCR-Tg cells
from P14 mice and in endogenous cells from MyD88+ or MyD88−

B6 mice (Figure 1C). These results show that endogenous and
TCR-Tg cells share the same properties. Moreover, such properties
are not affected by the abrogation of the MyD88 pathway.

The kinetics of expression of these mediators was surprising,
since it is generally believed that all CD8 effector functions increase
with cell division, and decline when antigen is eliminated (20,
21). Correlation of cell division with differentiation (Figure 2A)
confirmed that the expression of cytolyic effector molecules does
follow these rules: they increase with division (lower panel), and
we previous confirmed that they decline only after antigen elim-
ination (2). In contrast, inflammatory mRNAs were expressed in
CD69+ cells before any division, declining with division. While
effector functions are believed to decline only when antigen is
eliminated, inflammatory effectors also contradicted this rule, as
they were lost by day 4 after immunization (Figure 2A), when we
previously showed that antigen concentrations were still (2).

We next wished to determine the cause for this early decline.
Given that the expression of these mediators requires MAPK
activation, we looked at whether such activation could be inter-
rupted during the early phases of the CD8 response. Indeed, both
OT-1 TCR-Tg cells and endogenous cells down-regulated their
TCR (Figures 2B,C) and CD3ε (not shown) losing the ability to
bind peptide-loaded dextramers (Dext: MHC multimers with a
higher number peptide – MHC complexes than tetramers). The
MAPK activation declined progressively and was fully abrogated
before the immune response peak (Figure 3), restricting CD8s’
inflammatory profile to the first days after priming.

Overall, these results demonstrate that the classic description of
the sequential steps of CD8 responses (activation, expansion, dif-
ferentiation into effector functions, antigen elimination, effector
function loss) must be revised. CD8 T cells actually undergo two
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Sung et al. CD8 inflammatory effectors

FIGURE 2 | (A) Correlation between CD8 division and differentiation.
(A) CFSE-labeled Mo CD90.2 OT-1 Tg cells were transferred to CD90.1
B6 mice and studied at different time points after infection with
LM-OVA. Left: CFSE dilution and the gates used to sort individual cells
at each division. Right: expression frequency, as evaluated in RT-PCRs in
96 individual cells. (B,C) TCR expression after immunization with
LM-GP33. (B) TCR-Tg cells. 5,000 Mo CD90.2+ P14 TCR-Tg cells were

injected into CD90.1+ B6 mice prior to infection. Results show
APC-Dext-GP33 binding in CD90.2+ CD8+ Tg T cells in naïve (upper
graph) and infected mice, at different days (D) after immunization.
(C) Endogenous cells. CD90.1 B6 mice were immunized with LM-GP33.
Results show Dext-GP33 PE and APC double-labeling in gated CD8
spleen cells in naïve mice (upper graph) and primed mice at different
days (D) after infection.

independent differentiation phases, governed by opposite rules.
Immediately after activation they differentiate into inflammatory
effectors, but then lose their pro-inflammatory properties as they
divide and gradually differentiate into CTLs.

THE PHYSIOLOGIC ROLE OF CD8+ INFLAMMATORY EFFECTOR T CELLS:
I. QUANTIFICATION OF THEIR NUMBER
Since the generation of inflammatory effectors is restricted to the
first three-four divisions, their number should never exceed that of
naïve cells by more than a factor of eight. It is difficult to envisage
that such low effector number has any major role in the immune
response, since the number of naïve cells for a single GP33 epitope
was described to average 200 cells/mouse (16). However, this num-
ber is known to be an underestimate (16). Indeed, from the 50 LN
reported to be present in the mouse, only nine were included in

this calculation. The identification of the naïve cells after tetramer
pull-down was not controlled for the efficiency of tetramer binding
nor for losses during purification.

We revised these estimates by treating individual organs with
collagenase/DNase (increasing substantially total cell recovery),
and adding a known number of antigen-specific “reference pop-
ulations” (RP) to these cell suspensions. These RP bind the same
tetramers as endogenous cells and therefore can be used as con-
trols for the efficiency of tetramer binding. Since they undergo the
same purification steps, their recovery rate can be used to control
non-specific cell losses during purification. We also used the more
efficient Dext instead of tetramers for the purification of antigen-
specific-cells. Using these combined approaches, we evaluated the
total number of naïve cells for the LCMV response. This evalua-
tion can only be determined for this response, since this calculation
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Sung et al. CD8 inflammatory effectors

FIGURE 3 |TCR signaling transduction at different time points after
immunization. Mo CD90.2+CD45.1+ OT-1 TCR-Tg cells were transferred into
CD90.1+ CD45.2+ B6 hosts and infected with LM-OVA. The figure shows the

expression of phosphorylated signal transduction molecules in CD90.2+

CD45.1+ CD8+ Tg cells at different time points after priming. The labeling with
isotype controls is shown in gray.

requires the identification of all antigen epitopes and their relative
representation in the response. These data are only available for
the LCMV response, where it is known that the GP33 specificity
corresponds to 10% of the LCMV specific-cells (22).

When two RP of monoclonal P14 TCR-Tg LN T cells (104

CD90.2 CD45.1 and 103 CD90.2 CD45.2 P14 cells) were added
to BRLN of CD90.1 CD45.2 mice, endogenous CD90.1 CD8 T
cells could be easily differentiated from CD90.2 RP populations
(Figure 4A: left). Both RP (CD45.1 and CD45.2) were fully labeled
with GP33-Dext, demonstrating that Dext binding of the suspen-
sion was efficient (not shown). Moreover, CD45.2 and CD45.1
RP populations maintained the same relative representation after
purification (10:1) demonstrating that less abundant cells were not
preferentially lost (Figure 4A, middle). Within CD90.1+ endoge-
nous CD8 T cells, Dext+ cells were clearly visualized (Figure 4A,
right), the number of GP33-specific-cells in the BRLN averag-
ing 60. Similar results were obtained for the number of epitope
HY-specific or SIINFEKL – OVA specific naïve CD8+ cells.

To calculate the number of naïve cells/mouse identical studies
were performed in the spleen and in 39 other LN. In the three inde-
pendent experiments we performed we found about 3,800 naïve
GP33-specific-cells (Figure 4B). Since the GP33 specificity corre-
sponds to 10% of the LCMV response (22), total number of naïve
cells responding to LCMV should be about 3.8× 104, and the total
number of inflammatory effectors could reach 3.04× 105. It must
be noted that this number is still an underestimate, since we only
managed to recover 39 LN of the 50 LN described, and naïve cells
present in the blood and bone marrow were not counted. How-
ever, it is likely that the number of naïve cells would not be much
higher since the LN we did not harvest were described as relatively
small, and the BM harbors mostly antigen-experienced cells.

THE PHYSIOLOGIC ROLE OF CD8+ INFLAMMATORY EFFECTOR T CELLS:
II. CHEMOKINES CAN ATTRACT CELLS AT DISTANCE
A role of the chemokine burst produced by CD8 T cells in the
increase in cell input during antigen-non-specific trapping would

imply that these chemokines should create a gradient able to
recruit cells located out-side the DNL. However, it is yet unclear
if chemokines only modify the migration of resident cells (23). To
test if CD8 inflammatory effectors attract cells at distance, they
should be isolated from the in vivo inflammatory milieu, trans-
ferred to a normal mouse and retained in a particular site where
non-resident cells would not migrate, and their effect studied at
distance. We found that this was possible when sorted effectors
were immobilized subcutaneously in the ear with the collagen-
laminin matrix Matrigel. Matrigel is liquid at 4°C but solidifies
after injection, and is frequently used to promote viability of tumor
cell lines injected subcutaneously. When injected with Matrigel,
effectors remained viable and at the injection site and could be
recovered and from the Matrigel plug, but were absent in the
auricular LN (ALN) (Figure 5A) and other organs (not shown)
24 h later. When 5× 104 naïve OT-1 were immobilized in the ear,
naïve cells did not modified the number or cellular composition
of the ALN as compared to non-injected mice (not shown). In
contrast, when similar numbers of OT1 inflammatory effectors
were retained, the ALN increased in size, accumulating both T
and B lymphocytes (Figure 5B). We also observed a preferential
accumulation of NK cells, CD11b+Ly6Chi inflammatory mono-
cytes, cDCs, and CD11b+Ly6Clow PMNs (Figures 5B,C) reflecting
the production of MIP-1 and XCL1 chemokines by these CD8
T cells. Similar effects were observed when the effector number
was reduced 20-fold. These results show that CD8 inflammatory
effectors are able to recruit non-resident cells.

When immobilized in the ear, HY naïve cells had no effect,
while HY-specific inflammatory effectors induced a major accu-
mulation of XCR1 expressing cells (24, 25): T and B lymphocytes,
NK cells, and CD11b+Ly6Chi inflammatory monocytes. Indeed,
upon injection of HY effectors the ALN could triple in size, i.e.,
LN hypertrophy was more marked than that found after injec-
tion of OT-1 effectors. Accordingly to their lower expression of
MIP-1 chemokines, DCs and PMNs that are recruited by MIP-
1 chemokines (26, 27), were less affected (Figure 6). Thus, CD8
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Sung et al. CD8 inflammatory effectors

FIGURE 4 | Quantification of the naïveT cell pool. (A) Quantification of
antigen-specific naïve cells in the BRLN. Reference populations (RPs: 104

CD90.2 CD45.1 cells and 103 CD90.2 CD45.2 P14 cells) were added to
collagenase/DNase digests of the BRLN from CD90.1 B6 mice. Cell
suspensions were depleted of non-CD8 T cells, and antigen-specific-cells

purified by Dext pull-down. Left: the gates used to identify CD90.2+ RP and
CD90.1 endogenous cells. Middle: CD45 allotypes distribution in RPs. Right:
GP33-Dext labeling in CD90.1 endogenous CD8 T cells. (B) Estimation of the
size of the naïve GP33-specific T cell pool. Results show the number of
Dext-GP33-specific-cells recovered/mouse in three independent experiments.

inflammatory effectors generated after a sterile immunization are
also able to recruit non-resident cells at distance.

THE PHYSIOLOGIC ROLE OF CD8+ INFLAMMATORY EFFECTOR T CELLS:
III-LOCAL MODIFICATIONS AFTER INTRA-NODAL INJECTION OF
PHYSIOLOGIC NUMBERS
Since at the beginning of a natural infection the inflammatory
effectors should only be the rare resident cells already present in a
lymphoid organ, we aimed to study the role of such effector num-
bers after intra-nodal injection. We first selected the target LN used
for injection, which should be relative large (facilitating calcula-
tion of the number of naïve resident cells) and giving easy access to
injection. We studied the positions and sizes of several superficial
LNs and the best procedure to access them and found the BRLN
suitable in both respects. After collagen and DNase digestion it
harbors 5–8× 106 cells. It can be reproducibly accessed through
a very small skin incision near the scapula. Since in this node
the number of naïve cells specific for the GP33 epitope averages
60 cells (Figure 4A), the number of naïve LCMV specific-cells
should be 600, since the GP33 specificity corresponds to 10%
of the LCMV response (22). Therefore the total number of res-
ident effectors should be lower than 4,800. Remarkably, even a
much lower number of OT-1 (Figure 7A) or anti-HY inflamma-
tory effectors (Figure 7B) injected directly in the BRLN induced a

major local recruitment. Again, the type of recruited cells reflected
the chemokine profile expressed by each effector type.

We were surprised that as few as 56 effectors could attract up to
107 cells to a LN in 24 h (Figure 7B), and wondered whether other
mediators could be involved. Given that (i) LN egress is totally
blocked during early trapping (3, 4) and (ii) S1P gradients con-
trol this egress (18), we hypothesized that inflammatory effectors
could increase local S1P concentrations and thus contribute to the
local retention. Indeed, since inflammatory mediators induce the
release of S1P by certain resident cell lines in vitro (28, 29), it was
hypothesized that local inflammation could induce S1P release by
tissue-resident cells and thus contribute to cell accumulation at
the inflammatory site (30). This attractive hypothesis could not be
confirmed experimentally since previous methods did not allow
S1P measurements in small tissue fragments. We modified these
methods to increase sensitivity and found that intra-nodal injec-
tion of inflammatory effectors induced the up-regulation of S1P
in tissue extracts from that BRLN 16 h later (Figure 7C). By com-
parison with a known concentration of standard, synthetic S1P,
the amounts of S1P recovered from BRLNs injected with effectors
ranged from 1422 ng/g to about 2800 ng/g, i.e., 2.4- to 5-fold higher
than the value reported after direct extraction of S1P from a large
LN pool (18). This value is likely an underestimate, since the S1P
levels in BRLNs injected with 56 effectors were 10-fold higher than
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Sung et al. CD8 inflammatory effectors

FIGURE 5 | Inflammatory effector CD8T cells recruit non-resident
cells. Sorted Mo CD90.2+ OT-1 naïve cells or inflammatory effectors
(recovered 2.5 days after LM-OVA infection) were injected with matrigel
subcutaneously in the ear of CD90.1+ mice. (A) Recovery of injected cells
from the matrigel plug (left) and the auricular LN (ALN) (right) 24 h after

injection. (B,C) Cell populations recovered in the ALN of injected mice,
24 h after injection. (B) Results show cell numbers and are mean±SEM of
three independent experiments. (C) Results show the gates used to
identify different cell types and are from one representative experiment
out of the three we performed.

in BRLNs injected with a 600 naïve cells, studied simultaneously
(Figure 7C). Since a twofold increase in the S1P concentrations is
enough to induce major changes in lymphocyte egress (6) the S1P
amounts detected here justify the blockage of LN egress.

DISCUSSION
Our present results characterize an important function of CD8
T cells, which modifies the actual paradigms on: (i) when CD8
cells acquire and lose effector functions; (ii) the roles that CD8
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FIGURE 6 | CD8+ inflammatory effectorT cells generated in sterile
immunizations also recruit non-resident cells. Sorted Mo CD90.2+

HY-specific CD8 naïve cells or inflammatory effectors (recovered at
2.5 days after immunization with male cells) were injected with
matrigel subcutaneously in the ear of CD90.1+ mice. (A) Results
show the number of different cell types recovered in the ALN of

injected mice, 24 h after injection and are the mean±SEM of three
independent experiments. Cell populations were identified as
described in Figure 5. (B) Major accumulation of inflammatory
monocytes in the ALN of mice injected with inflammatory effectors.
Results are from one representative experiment, out of the three
performed.

cells have in immune responses; and (iii) how inflammation and
cognate immune responses interact.

It is generally believed that after antigen stimulation CD8 T
cells effector functions increase with division and decline once the
antigen is eliminated. Our results allow comparing the differen-
tiation into killer or inflammatory functions by the same CD8
population throughout divisions/throughout time. While cyto-
toxicity follows the “classic” rules of CD8 differentiation, opposite
rules govern CD8 inflammatory functions. These are induced
before division, decrease while cells divide and decline at the
time point of the response when we previously showed antigen
concentrations to be quite high (2). The shortness of this inflam-
matory burst is likely due to extensive TCR down-regulation,
which abrogates MAPK activation preventing the expression of
these mediators.

The loss of TCR surface expression after in vitro T cell acti-
vation is well documented, but it was shown to reverse by 24 h
(31). Down-regulation of the TCR was also reported after in vivo
immunization (32, 33). However, we were now able to quan-
tify this phenomenon. By visualizing Mo TCR-Tg cells recogniz-
able by a different allotype, present in frequencies equivalent to
those of endogenous antigen-specific-cells, we found that 80%
lost their TCR expression by day two after priming. Moreover,
this down-regulation persisted for several days: by day 4 after
immunization 50% of the responding cells yet fail to express
the TCR. Comparison of Dext labeling in naïve and primed

endogenous cells also shows considerable down-regulation during
these time points. These results identify a major limitation to the
study of endogenous CD8 responses. They show that the majority
of endogenous antigen-specific-cells cannot be identified during
early responses.

While it is generally believed that the major CD8 effector func-
tions are γ-IFN production and cytotoxicity, we now describe in
detail a new CD8 effector phase: the secretion of a major burst
of pro-inflammatory mediators shortly after activation which
directly or indirectly promote the recruitment of lymphocytes
and accessory cells types to the location where antigen is present.
These cells are likely involved in the “antigen non-specific/shut-
down-phase” of lymphocyte trapping-a process proposed to have
a fundamental role in allowing rare APCs at a restricted loca-
tion to screen the total lymphocyte pool in 24–48 h, in order
that all antigen-specific-cells dispersed throughout the body may
be selected for APC binding. Elegant experiments performed 4–
5 decades ago identified a major increase in cell input shortly
after antigen stimulation, and a total block in cell egress, which
retained both antigen-specific and non-specific T cells at the loca-
tion where antigen is first presented (3–5). It was proposed that
these modifications were induced by an increase in blood flow
(10), but our previous measures of blood flow during trapping
indicated that the reported increases were due to an increase in
organ size. Indeed, when the blood flow was related to the organ
weight, perfusion rates were not modified (11). In contrast, our
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FIGURE 7 | Effects of intra-nodal injection of physiologic numbers of
CD8+ inflammatory effectorT cells. (A,B) The indicated number of sorted
CD90.2+ naïve or inflammatory effectors (recovered 2.5 days after priming)
were injected into the BRLN of CD90.1+ B6 mice. The BRLNs were
removed 24 h later and the different cell types identified as shown in
Figure 5. Results compare cell recovery in mice injected with naïve CD8+
T cells or inflammatory effector CD8+ T cells (A) Mice were injected with

OT-1 Tg cells. (B) Mice injected with HY Tg cells. Similar results were
obtained after injection of P14 Tg cells. (C) The BRLNs were injected with
500 naïve cells, 80 OT-1 effectors or 56 HY effectors. Results show of S1P
amounts in LN lysates 16 h later, compared with known amounts of a
synthetic S1P. Gray bars represent the Flag-S1P1 expression of WEHI231
incubated with medium alone. Results are representative of the seven
experiments we performed.

results implicate the chemokine burst produced by inflamma-
tory effectors in this recruitment. This burst is able to mobilize
non-resident cells. Importantly, the cell types recruited either at
distance or after the intra-nodal injection of inflammatory effec-
tors correlate with the chemokine profile of effector cells: HY
effectors which express mainly XCL1 recruiting predominantly

inflammatory monocytes and lymphocytes, while OT-1 effectors
secreting CCL2 and CCL3 also promoting DC and granulocyte
recruitment. Inflammatory effectors also secrete TNF, known to
participate in DC and T cell recruitment besides having other
functions in DC stimulation, T cell co-stimulation and survival
[review in Ref. (19)].

Frontiers in Immunology | T Cell Biology December 2013 | Volume 4 | Article 452 | 10

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sung et al. CD8 inflammatory effectors

When we first detected these early effector functions we were
unconvinced that they would have any relevant role in immune
responses, since the number of these effectors should be very low.
Surprising, they are very potent effectors since 56 present in a LN
harboring 5–8× 106 cells are able to recruit up to 107 cells in 24 h.
It must be noted that the different cell types recruited to the DLN
may co-participate in this recruitment, since they are also able to
secrete these mediators. In particular, injection of antigen-loaded
DCs was shown to increase LN cellularity, which was potentiated
by co-injection of TNF (34). However, it was not established if
this effect was direct, or mediated by the recruited antigen-specific
T cells. In spite of the possible contribution of other cell types,
the time course of cell recruitment and LN “shut-down” phase
overlaps that of the CD8 inflammatory burst, indicating that the
latter has a fundamental role in the overall regulation of these
phenomena.

Besides secreting inflammatory mediators, the intra-nodal
injection of very low effector numbers also induced a 10-fold
increase in S1P recovery from the injected LN, as compared to
LN injected with eightfold more naïve cells. S1P up-regulation
precedes LN hyperplasia, since it is already detected at 16 h after
effector injection, and thus may also contribute to the local cell
accumulation by immobilizing recruited cells. The kinetics of S1P
up-regulation also mimics the CD8 inflammatory burst, since it
is stable at 24 h and declines by days 2–3 after effector injec-
tion (data not shown). It must be noted that we studied both
intracellular and secreted S1P, since it is not possible to dis-
criminate soluble S1P from tissue samples (J. Pereira, personal
communication). However, it is likely that part of this S1P is
secreted, being involved in the LN “shut-down” phase of lym-
phocyte trapping, since (i) a twofold increase in secreted S1P was
found sufficient to modify lymphocyte migration (6); and (ii) the
injection of FTY720 (which is rapidly phosphorylated in vivo gen-
erating an SIP analog) mimics the DLN shut-down-phase (23).
Part of the S1P may also be intracellular, where it was shown to
have important functions, by co-participating in TNF signaling,
activating NF-Kb, and contributing to the anti-apoptotic role of
TNF (35).

Concerning the production of S1P, we confirmed that T cells
do not secrete it (23). We failed to detect this molecule in super-
natants of activated T cells in vitro. Quantitative evaluation of
Sphk1 and Sphk2 showed equivalent ex vivo expression levels in
naïve and inflammatory effectors. The S1P recovery was similar
in LN injected with 56 or 1,000 effectors (not shown). There-
fore, as described in all the systems studied so far, tissue-resident
cells likely produced this mediator (23). In contrast, our data
does not support the general believe that the TNF/SIP pathway
is always responsible for S1P production and cell recruitment
during inflammation. This notion issued from the demonstra-
tion that TNF induces the up-regulation of Sphk1 expression
in certain cell lines in vitro. We could not confirm the role of
this pathway in lymphocyte trapping, since blockage of TNF
activity by Abs did not modify S1P recovery in LN injected
with inflammatory effectors (not shown). A detailed comparison
between the effects of TNF versus antigen injection on lym-
phocyte migration also reported that TNF does not recapitulate

the effects of antigen (13). The complexity of sphingolipids role
and the regulatory mechanisms governing their metabolism is
yet being revealed, but these studies are yet seriously handi-
capped by the low sensitivity of the methods for sphingolipids
detection.

We were surprised that CD4 T cells reportedly producing MIP-
1 chemokines to recruit CD8 T cells to provide help (36) had no
equivalent functions. It is possible that the relative roles of CD4
and CD8 T cells in recruitment depend of the immunization con-
text. MIP-1+ CD4 T cells were detected after immunization with
peptide and complete Freund’s adjuvant, whereas we here stud-
ied CD8-dependent responses. Moreover, it should be noted that
MIP-1 chemokines only attract previously activated T cells (37)
and thus are unlikely to be involved in the recruitment of naïve
cells during trapping.

Our results also modify perspectives on the putative relation-
ships between inflammation and immune responses. Inflamma-
tion is generally regarded as starting with an innate immune
response that is mediated by tissue-resident cells (38, 39) and
may eventually be perpetuated and amplified by certain T cell
types (such as TH17 cells). However, Th17 cells cannot initiate
inflammatory reactions since their generation requires a previ-
ously inflammatory milieu (40). We did not fully block innate
signaling in LM infection, since this signaling is complex and
involves multiple mediators [reviewed in Ref. (41)]. However, the
elimination of the MyD88 pathway reported to be the most impor-
tant in LM infection (42) did not modify the pro-inflammatory
burst. The strong inflammatory bursts of CD8 T cells after ster-
ile immunizations with male, sheep red blood or allogeneic cells
indicate that CD8 cognate interactions are also able to initiate
inflammatory reactions. This feature may have an important role
in a number of “sterile” responses to tissue antigens (such as in
transplantation) or in responses to self-antigens or tumor anti-
gens. Thus, while inflammation modulates cognate responses,
CD8 cognate responses may also initiate local inflammatory
reactions.
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During immune responses, naïve CD8 T cells face the great challenge of developing multiple 

activities required to control antigen load and to generate memory cells. All these functional 

activities are initiated by TCR triggering occurring within a very limited time frame, but several 

other signals (like co-stimulatory or cytokine signals) do also drive effector cell proliferation and cell 

differentiation fates. Addressing how these differentiation programs (modifications of multiple 

genes expression, which define new cell properties) are established is of great interest to 

understand the establishment of successful immunity and vaccination protocols.  

Thus, in this work we attempted to characterize the diversity of CD8 T cell behavior 

(differentiation programs) during immune responses. We hope that this could lead to a better 

understanding on: (a) the generation of effector CD8 T cells responsible for an efficient and quick 

elimination of the pathogen in primary responses, where rare specific-naïve CD8 T cells should 

quickly meet APCs presenting the cognate antigen; (b) the generation of long lived and competent 

memory T cells to counter pathogens in future encounters and to engender efficient immunization 

protocols . Unraveling the complexity of the adaptive immune response requires the study of T cells 

in vivo, and thus in this thesis work we also attempted to revise the strengths and pitfalls of some 

of these strategies to accurately monitor the diversity of CD8 T cell immune responses (c). 

 

 

 

 

I. Experimental strategies to monitor the diversity of CD8 T cell immune responses: Single cell 

multiplex RT-PCR technique, in vitro reactivation method, and adoptive transfer of TCR-Tg 

cells system 

 

The study of in vivo CD8 T cell differentiation requires the use of reliable methods, not only to 

induce adequate immune responses mimicking pathogen infections or diseases, but also to monitor 

and/or predict the outcome of diseases or immunizing protocols. 

 

In vitro reactivation tests, currently used to test T cell function, have been shown to not 

correlate with the in vivo behavior of T cells for both CD4 (Panus et al. 2000) and CD8 (Veiga-

Fernandes et al. 2000) cells in mice.  However, this method is still frequently used to access T cell 

function and it has been argued that in vitro readouts reflect how T cells react once they encounter 

the antigen in vivo. On the other hand, it has been shown that the three-dimensional structure of 

organs significantly modifies CD8 responses (Surh et al. 2006) and that cytokine secretion greatly 

depends on the strength of stimulation (Itoh and Germain 1997; Slifka and Whitton 2001). 

Therefore, the in vitro environment may fail to reproduce the in vivo cell interactions, the peculiar 

inflammatory environment induced by infections, and CD8 T cells may never meet the peptide or 
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cytokine concentrations used to differentiate them in vitro. Indeed, using human T cell clones it was 

shown that the number and the type of effector function induced after in vitro reactivation 

depends on both TCR avidity and the peptide concentration used. Low antigen concentration was 

optimal to reveal effector functions in high affinity clones, whereas higher antigen concentration 

was needed for low affinity clones (Almeida et al. 2009).  

 

To overcome these in vitro reactivation limitations, we monitored in vivo CD8 T cell 

differentiation by ex vivo evaluation of mRNA expression, using the single-cell multiplex RT-PCR 

technique. Compared to other methods to assess gene expression, which most rely on population 

analysis, this technique allows us to evaluate the frequency of expressing cells (evaluation of cell 

heterogeneity inside a population), and the gene co-expression (indicative of the cell function 

potential). To correlate mRNA expression with protein expression levels, we evaluated protein 

expression either by ex vivo analysis of surface proteins or intracellular protein secretion in 

Brefeldin A injected mice (secretion blocked); and further, we evaluated protein expression after in 

vitro reactivation.  

 

Comparing these three approaches to monitor the diversity of CD8 T cell immune responses, it 

was clear that when studying the same population of cells (recovered from the same immunized 

mice), further in vitro restimulation with two peptide concentration ranging 5000x never 

recapitulated the ex vivo protein readouts. Indeed, neither the percentage of expressing cells, nor 

the intensity of the expression (MFI) obtained after in vitro restimulation correlated with ex vivo 

mRNA or protein analysis. Thus, ex vivo methods to access in vivo diversity of CD8 properties should 

definitely be preferred to in vitro restimulation procedures. 

 

We additionally performed a detailed correlation between ex vivo mRNA and ex vivo protein 

detection for different molecules associated with CD8 T cell function and differentiation. The 

results were clear, a maximal correlation and a significant identity was observed between these 

two approaches. Although the toxicity of Brefeldin A prevents its use in humans, due to the 

maximal correlation between ex vivo protein and mRNA expression, the quantification of mRNA 

expression by single-cell multiplex RT-PCR constitutes a powerful method to access the diversity of 

T cell properties occurring in vivo. The use of ex vivo mRNA detection also has additional 

advantages: due to their sensitivity, it allows a better discrimination between poor expressing and 

non expressing cells; it is particularly useful when antibodies are not available or do not have 

enough quality; and it is extremely valuable to use when studying rare populations like infrequent 

antigen-specific cells present at early time points of the immune response.  
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In conclusion, these results reinforced the powerful of using single-cell ex vivo methods, over 

in vitro reactivation ones, to access the diversity of CD8 T cell differentiation occurring after in vivo 

activation. Moreover, single-cell multiplex RT-PCR is the sole approach allowing to assess CD8 T cell 

properties at the very beginning of an immune response, when antigen-specific CD8 T cells are 

infrequent. Pointing out the strengths of these two ex vivo techniques (single-cell multiplex RT-PCR, 

and Brefeldin A injected mice) was of major importance to answer to the other two main question 

of this thesis, where both prediction of heterogeneous CD8 T cell behaviors and analysis of very 

rare CD8 population were required.  

 

 

 

 After having chosen an accurate method to access the diversity of in vivo CD8 T cell 

properties, it was also imperative to chose an appropriate system to track antigen-specific cells 

during CD8 T cell immune responses. 

 A major goal in studying CD8 T cell differentiation is to understand the developmental 

progression of antigen-specific T cells from naïve precursors to activated effectors and long-lived 

memory cells. The achievement of this goal requires tracking distinct populations of T cells through 

the course of an immune response. This tracking can be accomplished by pMHC multimers labeling, 

which allows the identification of antigen-specific cells T cells by their TCRs, or by using allelic 

variation of surface receptors (congenic markers) to discriminate donor T cells from recipient’s own 

cells.  

During CD8 immune responses, the endogenous repertoire of antigen-specific cells is 

polyclonal. As potential heterogeneity of the response could be attributed to TCR diversity of cells 

specific for a given antigen, Rag-/- TCR-Tg cells are frequently used to guarantee the study of the 

same clone. Thus, the adoptive transfer of TCR-Tg cells has been an experimental system frequently 

used not only to: i) study specific T cell responses at early time points when endogenous specific 

cells are difficult to detect (by transferring high frequency of antigen-specific precursors); but also 

ii) to study putative heterogeneity that might arrive during immune responses independently of 

TCR affinity differences (by studying the same clone in different contexts). Thus, the use of TCR-Tg 

cells to study heterogeneity/diversity on CD8 T cell differentiation during immune responses was 

crucial to achieve this thesis’ aims.  

However, several studies have criticized the use of TCR-Tg cells as experimental approach to 

study T cell differentiation during immune responses. It has been argued that TCR-Tg cells may not 

mimic the behavior of endogenous cells due to a possible bias in T cell differentiation of responding 

cells generated from artificial-high numbers of naïve precursors (Marzo et al. 2005; van Faassen et 

al. 2005; Badovinac et al. 2007). On the other hand, the study of endogenous CD8 immune 

responses may also be affected by TCR down-regulation occurring after antigen stimulation 
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(Valitutti et al. 1995), which prevents the use of pMHC multimers to detect antigen-specific cells by 

their TCRs.  

TCR-down regulation has been mainly studied in TCR-Tg cells and after in vitro activation, and 

has only rarely been studied after in vivo infections (Drake et al. 2005; Xiao et al. 2007). Drake et al. 

despite of showing TCR downregulation in vivo, did not study TCR downregulation in endogenous 

cells, and  Xiao et al. reported TCR downregulation on endogenous cells only on later days after 

infection (day 5 and 7 after VV-OVAp infection). In both studies, the correlation of TCR 

downregulation with CD8 T cell responsiveness was assessed after in vitro restimulation of TCR-Tg 

cells and never assessed in unmanipulated endogenous CD8 cells. In addition, correlation of TCR 

downregulation with antigen dose was also analyzed after in vitro stimulations. Thus, we further 

evaluated the impact of TCR downregulation in the assessment of CD8 T cell immune responses. 

Taking advantage of the congenic markers to track antigen-specific TCR-Tg cells, we showed a 

marked TCR downregulation occurring at the very early time points of the immune responses, and 

that it occurs after cell division. In a 5x105 P14 adoptively transferred mouse (high frequency of 

naïve precursors transferred), at day 2 after LM-GP33 infection, we showed that 51% of Tg cells 

were unable to bind pMHC multimer. At day 3 after LCMV infection, 40-60% of Tg cells were also 

unable to be identified by pMHC multimers. Importantly, we also showed that in vivo TCR 

downregulation is inversely proportional to the number of adoptively transferred cells and directly 

proportional to the antigen doses, suggesting that it is conditioned by the strength of antigen 

stimulation. This is particularly relevant to endogenous-specific cells present in the first days of 

infection, where they are present at low numbers and where pathogen levels are high. Applying a 

modified tetramer pull down technique, we could also observe a strong TCR downregulation on 

specific-endogenous CD8 T cells in the early days after infection. Moreover, when accessing ex vivo 

granzyme B expression of multimerhigh and multimerlow labeled endogenous cells, we observed that 

multimerlow cells expressed higher levels of granzyme B, suggesting that cells that received the 

highest level of stimulation, and are highly responsive, are in fact the ones that render “invisible” by 

TCR-multimer identification.  

In an attempt to quantify the extension of TCR downregulation occurring in specific-

endogenous cells (that are rendered indistinguishable from other specificities upon TCR 

downregulation), we analyzed TCR downregulation in TCR-Tg cells present at a frequency 

equivalent to those of endogenous antigen-specific cells. In this condition, at day 2 post infection, 

80% of TCR-Tg cells have lost their capacity to be identified by pMHC-dextramers. Moreover, we 

also observed that lost of TCR surface expression persists for several days after infection in contrast 

to faster TCR re-expression occurring after in vitro studies. 
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In conclusion our observations have particular importance for multimer-based techniques 

currently used either to monitor T cell-mediated immune responses through direct detection and 

quantification of endogenous-specific T cells, or to isolate/purify antigen-specific cells for further 

manipulation and adoptive T cell therapies. Thus, conclusions based on procedures using pMHC-

multimers should be taken with caution as this approach is not appropriated for an accurate 

analysis of the entire (early) immune response, not only because it prevents the accurate 

identification and enumeration of responding cells, but also because it selects non-representative 

cell subsets, which bias endogenous T cell studies. Therefore, we reinforced the merit of using TCR-

Tg cells versus endogenous cells to study in vivo CD8 T cell differentiation. 

 

 

 

 

II. Impact of naïve-precursor frequency on the diversity of CD8 T cell immune responses 

 

It has been suggested that artificially induced immunodominance leads to an intra-clonal 

competition of high precursor cells resulting in their suboptimal cell activation, and also, that the 

presence of high frequency naïve precursors out-competed with the polyclonal endogenous 

response (Marzo et al. 2005; van Faassen et al. 2005; Badovinac et al. 2007). These experiments 

were mostly performed with adoptive transfer of different numbers of naïve TCR-Tg CD8 T cells into 

naïve host mice, and their behavior were studied after immunization. These studies showed that 

the fold expansion of T cells present at high frequency was lower than what was observed in low 

frequency clones, and also, that high frequency clones reached the peak of the expansion earlier. 

Despite these observations suggesting differences in the kinetic of the response, the phenotype of 

effector cells differentiating from high and low frequency precursor were directly compared in 

distinct mice, for the same time point. This comparison also revealed differences in the expression 

of IL-7R and CD62-L and, the kinetics of re-expression of these receptors started earlier when a high 

number of precursors were transferred than when fewer cells were transfer.  

Additional reasons prompted us to reexamine the impact of the naive-precursor frequency on 

the diversity of CD8 T cell properties. Competition for antigen also regularly occurs in natural 

infections, where dominant populations are reported to suppress the expansion of subdominant 

ones (Yewdell and Bennink 1999). Moreover, adoptive transfers of more than 105 precursors have 

been reported to interfere with: the kinetics of pathogen clearance; the magnitude of the 

inflammatory responses; and the peak of CD8 T cell expansion (Ehl et al. 1998; Zimmermann et al. 

1999; Sarkar et al. 2007; Wirth et al. 2009). Thus, we investigated if immunodominance can 

interfere with CD8 T cell differentiation programs by studying both dominant and subdominant 
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populations in the same mice. This procedure ensured comparison of cells with different initial 

precursor frequencies in the same infectious context/antigen load. 

Our results showed no differences between the gene expression profiles of two dominant 

(GP33 and NP396) vs one subdominant (GP276) antigen-specific endogenous population, which are 

naturally generated in mouse responding to an acute LCMV infection. We screened the expression 

of cytokine and cytotoxic effector molecules, as well the expression of molecules associated with 

CD8 T cell effector and memory differentiation. As a result, we observed a fully overlapping 

behavior between these populations at early time points of the immune response, at the peak of 

the response, and at the memory phase. We further forced a pronounced immunodominance 

hierarchy between two populations responding to the same epitope. We adoptively transferred 

high numbers of P14 cells into a host mouse and compared both P14 and endogenous GP33-

specific cells in the same mouse. We observed that both effector and memory cells generated from 

either abundant or rare precursors (P14 or endogenous GP33+ cells, respectively) had strikingly 

identical differentiation patterns. Moreover, we also found that the presence of high frequencies of 

naïve P14 cells did not affect the frequency nor the functional properties of endogenous CD8 T cells 

recognizing other LCMV epitopes.  

 

 

In conclusion, these results showed that both high and low frequencies of naïve CD8 T cells 

follow the same rules and differentiate in equivalent effector and memory CD8 T cells. Thus clonal 

abundance does not affect CD8 T differentiation, nor is immunodominace responsible for diversity 

in CD8 T cell responses. These results also indicated that high frequency of TCR-Tg transfers do not 

have an impact on CD8 T cell properties, and thus they further support the merit of TCR-Tg cells to 

study in vivo CD8 T cell differentiation.  

 

 

 

 

III. Distinct pathogens and diversity of CD8 differentiation programs 

 

The previously reported cell-to-cell heterogeneity and the stochastic association of the 

different effector genes raised the possibility for the existence of multiple programs of 

differentiation giving rise to CD8 T cells with different fates. This putative plasticity would then 

allow CD8 T cells to adapt to different challenges. Thus, we wondered if different pathogens, by 

providing different infectious contexts, could induce such heterogeneity in CD8 T cell properties. 

We therefore compared OT1 cells responding to LM-OVA with P14 cells responding to LCMV. 

Specifically, we analyzed the expression of: effector molecules involved in inflammation and 
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cytotoxicity (TGFβ, TNFα, IFNγ, Prf1, Gzmb, FasL); transcription factors involved in CD8 T cell 

function and memory differentiation (Tbet and Eomes); receptors of molecules involved in the 

responsiveness to environmental cues: IL-10R, IL-12Rb1 and IL-21R; inhibitory molecules such as 

KLRG1 and PD1 (associated with terminal differentiation and exhaustion, respectively); the 

chemokine receptor CCR7, involved in secondary lymphoid organs trafficking and in the 

characterization of TCM subtype of memory population; and the cytokine receptor IL-7R involved in 

cell survival and in the classification of memory precursor effector cells (MPECs). We found that in 

the response of P14 to LCMV infection, the frequencies of cells expressing TGFβ, IL-10R and IL-21R 

throughout the response were significantly lower than in the response of OT1 cells to LM-OVA 

infection. We also found that P14 responding to LCMV reverted to a CCR7- TEM phenotype at the 

memory stage in contrast to a CCR7+ TCM phenotype found on OT1 cells responding to LM-OVA. 

Accordingly, the frequency of IL-7R expression, defining memory precursor effector cells, was 

higher in OT1 cells. In addition, although at the memory phase of the OT1/LM-OVA response half of 

CD8 T cells expressed Prf1 and FasL, these cells almost scored negative for IFNγ. In contrast, P14 

cells responding to LCMV showed ~50% of cell expressing IFNγ at the memory stage. However, the 

above observed differences between the 2 systems (OT1/LM-OVA vs P14/LCMV) could be due 

either to infectious context (LM-OVA vs LCMV) or to clone-specific TCRs (OT1 vs P14). To clarify this, 

we then compared the gene expression profile of OT1 and P14 cells throughout the response to 

LM-OVA and LM-GP33 in the same animal. This approach ensured that both populations were 

primed and differentiated in exactly the same environment and bacterial load. In this context, the 

gene expression profiles of OT1 and P14 cells did not showed statistically significant differences, 

showing that under the same circumstances, OT1 and P14 cells behave similarly. Thus, the previous 

differences in these two clones in response to Listeria and LCMV can be attributed to the infectious 

context in which these cells were stimulated and not to TCR-specificity and avidity. In sum, these 

results showed diversity in the differentiation patterns in vivo, according to the environment of the 

infection. 

 

One of the striking differences between the innate response to Listeria and LCMV is the 

significant IL-12 production in the Listeria responses (virtually absent in LCMV infections) (Orange et 

al. 1994; Cousens et al. 1997; Way et al. 2007). Surprisingly, we did not find differences in the IL-

12R expression in these two infections and the presence of IL-12 may only influence early LM 

responses, as cells lost IL-12 receptor by the peak of the response. However it must be noted that 

we only detected IL-12Rβ1, which is a component of two distinct heterodimeric receptors: it 

associates with IL-12Rβ2 to bind IL-12, and can also associate with IL-23R to bind IL-23. Thus, it 

would be highly informative to analyze IL-12Rβ2 too, as IL-12 responsiveness in CD4 T cells is made 

via IL-12Rβ2 modulation (Szabo et al. 1997).  
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In contrast, we found that most of the differences between Listeria vs LCMV responses can be 

attributed to IL-21. The receptor for this cytokine was more frequently expressed in OT1 than in 

P14 cells. In the memory phase, 40% of OT1 cells expressed IL-21R against only 8% of P14 cells.  

It has been shown that IL-21 favors the response to IL-10, a regulatory cytokine that restricts T 

cell responses. IL-21 increases IL-10 expression in TCR-stimulated naïve CD4 and CD8 T cells and 

TCR priming in the presence of IL-21 results in accumulation of CD8 T cells with immunosuppressive 

activity that is dependent on IL-10 signaling (Spolski et al. 2009). This could explain the 

synchronized differences found between OT1 and P14 cells for both IL-21R and IL-10R.  

IL-21 has also been implicated in abrogation of IFNγ production: OT1 cells stimulated with 

artificial APCs displaying Ag and B7-1 on their surface in the presence of IL-21 were unable to 

produce IFNγ (Casey and Mescher 2007). This is in agreement with our results that showed no IFNγ 

expression on memory OT1/LM-OVA responding cells, which actually also had a high percentage of 

cells expressing IL-21R. Accordingly, P14 in response to LCMV exhibited high precentage of cells 

expressing IFNγ and low percentage of IL-21R expressing cells. 

Moreover, ex vivo treatment of purified CD8 T cells from HIV-infected donors with IL-21 

increases perforin expression (Parmigiani et al. 2011). We also observed that cells expressing IL-21R 

(OT1/LM-OVA) also expressed perforin, in contrast with P14/LCMV responses, which do not 

expressed either of these molecules at the memory phase. However, as we did not observe a 

difference in granzyme b expression between OT1 and P14 cells, it cannot be argued that 

differences in perforin would lead to differences in the cytotoxic function, as both molecules are 

needed to achieve the target cell killing.  

Importantly, it has been described that IL-21 favors the generation of TCM memory cells. Over-

expression of IL-21 in mice results in an increase of the memory CD8 T cell population, implicating 

this cytokine in the development and/or maintenance of memory cells (Allard et al. 2007). IL-21 

signaling during the priming phase limits the effector phase and leads the majority of responding T 

cells to express a TCM phenotype (Kaka et al. 2009). Accordingly, we also associated a TCM phenotype 

with cell expressing IL-21R (OT1/LM-OVA response).  

Another characteristic of the LM response was the high percentage of cells expressing TGFβ. In 

the appropriate context (namely in the presence of IL-6), TGFβ contributes to Th17 differentiation, 

which are a major source of IL-21 cytokine (Wei et al. 2007). 

 

Currently, not only it remains a challenge to understand how different cytokines (such as type I 

IFNs, IFNγ, IL-2, IL-12 and IL-21) regulate the gene expression in effector CD8 T cells, but also how 

distinct innate signals are induced by different pathogens. In the case of LM and LCMV infections it 

must be noted differences concerning: the route of infection, the type of infected cells, the 

localization/organ of pathogen replication, the type of PRRs receptors activated, the amount and 
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the diversity of host damage sensed by innate cells, and the maturation state and nature of 

costimulatory signals  provided by APCs.   

Concerning the route of infection, intravenous for LM and intraperitoneal for LCMV, it 

determines the type of cells firstly sensing the pathogen (with phagocytic capacity or not) and 

consequently it determines the first line of defense available to counter the pathogen before 

dissemination. Besides being able to infect a broad variety of mammalian cell types, Listeria quickly 

disseminates to splenocytes and hepatocytes, whereas LCMV uses a ubiquitous receptor to infect 

cells. In systemic LM administration, DCs transport bacteria to the white-pulp areas of the spleen 

where they form clusters with NK cells and monocytes. DCs secrete IL-12 and IL-18 that activate 

recruited NK cells to produce IFNγ, which in turns induces monocyte activation leading to MHC II 

and iNOS upregulation, and to monocyte differentiation into TNFα and NO secreting cells (TipDCs: 

CD11b+Ly6C+CD11c+) (reviewed in Serbina and Pamer 2008). In contrast, LCMV infection is 

associated with viral replication in the red pulp of the spleen, and with minimal replication in 

CD11c+ and DEC-205+ splenic DCs (reviewed in Humphreys et al. 2008). Concerning the type PRRs 

activated by LM and LCMV, LM elicits a strong innate response by triggering TLR2 and TLR5, 

whereas viral infection induces large amounts of type I IFN secretion through TLR7 and TLR9 

activation on pDCs (Segura et al. 2007; Merad et al. 2013). TLR3 is also used to recognize dsRNA 

produced during replication of ssRNA like LCMV. Additionally to the type of TLR used to sense LM 

and LCMV, the type of adaptor molecules used in TLR signaling also affects the outcome of innate 

responses. TLR3 and TLR4 signaling (through TRIF-dependent pathway) generate both type I IFN 

and inflammatory cytokine expression, whereas TLR1-TLR2, TLR2-TLR6 and TLR5 signaling (through 

MyD88-dependent pathway) induce mainly inflammatory cytokines (reviewed in Kawai and Akira 

2010; Kawai and Akira 2011). It has also been suggested that type I IFN response to TLR2 ligands 

differs according on the cell type involved (Barbalat et al. 2009). Since PRRs can also sense damage-

associated molecular patterns (DAMPs) [in addition to PAMPs], the amount of host damage sensed 

by innate cells may also modulate the innate context generated in LM or LCMV infection. Indeed, 

LCMV is a non cytophatic virus, whereas LM infection is characterized by a massive activation of 

macrophages and TipDCs responsible for the production of reactive oxygen species, which are 

mediators of necrosis. It would also be worthwhile to directly investigate the maturation state and 

the co-stimulatory ligands expressed on APCs in both LM and LCMV infection, as the co-receptors 

OX40 and 4-1BB are also involved in memory T cell formation (Watts 2005).  

 

As we found that different pathogens modulate CD8 T cell differentiation programs, creating a 

diversity in CD8 properties, we wondered if those distinct differentiation patterns between Listeria 

and LCMV infections (as described above) could also be responsible for a diversity in the protection 

capacity of memory cells. Clarifying this issue is important for optimal T cell vaccine design, as 

several hypotheses can be put forward for the generation of an efficient T cell memory pool. Should 
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vaccines use attenuated pathogens in order to recapitulate the behavior of the pathogen that it 

aims to control? Should vaccines guarantee the generation of as many memory cells as possible and 

do different pathogens induce different memory cell numbers with identical memory cell types? 

Should vaccines guarantee the generation of a peculiar memory type and do different pathogens 

originate distinct memory subtypes?  

To answer these questions, we immunized one group of mice with LM-GP33 and other with 

LCMV, and two months later both groups were challenged with a lethal dose of LM-GP33. We 

found that memory cells induced after LCMV priming could faster eliminate the pathogen in a 

secondary response, than those generated after LM-GP33 priming. Although in LM-GP33 primed 

mice we were inducing a secondary response to other LM epitopes too (when rechallenging them 

again with LM-GP33), this hypothetical favorable condition did not favor a faster protection in 

these mice compared to the LCMV primed mice. In addition, a slightly higher number of memory 

cells present in LM-GP33 primed mice did not confer a faster protection too.  

Thus, reproduction of the infectious context is not a pre-requisite for efficient memory 

generation and not all immunizations have an identical capacity of protection.  

 

In conclusion, these results demonstrated that different pathogens modulate CD8 T cells 

differentiation programs, ensuring a considerable heterogeneity/plasticity of CD8 T cell responses 

that could then result in memory cells with different capacities to confer protection. In particular, 

LCMV infectious context promoted memory differentiation into a TEM subtype, which was 

associated with a higher protection capacity upon rechallenging. In addition, these cells did not 

respond to IL-10 and IL-21 and ~50% of them were able to secrete IFNγ. 

 

 

 

 

IV. Diversity of CD8 T cell effector functions 

 

Inflammation is a key component of innate responses and has a major role in protecting the 

host against infectious agents by recruiting additional innate cells to the injury site. These recruited 

cells contribute not only for the first line of pathogens elimination, but also for lymphocyte 

activation and differentiation. By recognizing pathogen invasion or cell damage through pathogen-

recognition receptors (PRRs), several innate cells such as mast cells, monocytes, macrophages, NK 

cells, neutrophils and DCs, as well endothelial cells are regarded as initiators of inflammation that 

will then result in antigen presentation augmentation to trigger T and B cell responses. In this 

perspective T cells are not generally believed to be initiators of a pro-inflammatory response. 

Although Th17 cells do co-participate in inflammatory reactions, their differentiation into effectors 
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cell producing pro-inflammatory mediators does require the presence of a pre-existent 

inflammatory milieu (TGF-β, IL-6, IL-21 and IL-23). Thus, in contrast with this view, where 

inflammation is initiated by innate signals that are recognized by innate cells, we showed for the 

first time that: i) shortly after antigen recognition, CD8 T cells can initiate an inflammatory response 

by secreting pro-inflammatory cytokines and chemokines (contrasting with the classical cytotoxic 

function of CD8 T cells) ; ii) that these pro-inflammatory molecules are also secreted in apparent 

absence of pathogen innate signals (in “sterile” immunizations with male cells, or in MyD88-/- mice).  

 

We had previously noted a potential pro-inflammatory role by CD8 T effector cells present at 

early time points of immune responses and have named these early effectors cells as inflammatory 

effectors. This designation was based in two observations. First, CD8 T cells earlier after priming 

highly expressed TGF-β but did not co-express the TGF-β receptor subunits necessary for signaling. 

Secondly, these early effectors were able to promote local retention of both specific and non-

specific target cells, instead of showing the classical killer function. Thus, in this thesis, we 

characterized the diversity of CD8 T cell effector functions and investigate their role during immune 

responses.  

 

Using two experimental systems: the response of OT-1 TCR-Tg cells to LM-OVA and the 

response of anti-HY TCR-Tg cells to male cells, we found that immediately after activation CD8 T 

cells expressed other pro-inflammatory mediators such as XCL1, CCL3 and CCL4, in addition to TNFα 

and TGF-β. Moreover, at the peak of the response, CD8 T cells were no longer producing these pro-

inflammatory mediators and instead expressed cytotoxic molecules. Although it was shown that 

OT-2 CD4 T cells may produce CCL3 and CCL4 after s.c. immunization with admixture of pOVA and 

CpGs in alum or with peptide pulsed DCs administration (Castellino et al. 2006), we did not detect 

CCL3 neither CCL4 expression on OT-2 cells when activated in vivo with i.v. LM-OVA expressing both 

OT-1 and OT-2 peptides. Differences in the context of immunization as well differences in the route 

of administration may explain the different outcomes. Additionally, we also confirmed absence of 

CCL3 and CCL4 expression on Maryrin cells (CD4 male-specific cells).  

 

Similarly to the expression of these pro-inflammatory mediators in the absence of pathogen 

innate signals (male immunization) we also detected their expression in OVA-specific endogenous 

cells of MyD88-/- mice after LM-OVA administration.  

Although LM infection elicits a strong innate immune response, and MyD88-/- mice do not 

completely abrogate all innate signals that could be sensed by other PAMPs or DAMPs (namely by 

TLR4 through TRIF adaptor, or by NOD1 and NOD2 receptors), several studies report MyD88 

adaptor as essential for the innate immune defense against LM (Pamer 2004).  It was also shown 

that in LM infection, DCs undergo MyD88-dependent activation and secrete IL-12 and IL-18 to 
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recruit NK cells to produce IFNγ. NK-derived IFNγ induces monocyte activation and MHC II and iNOS 

upregulation and subsequent differentiation of monocytes into TipDCs. TipDCs also sense infection 

in a MyD88-dependent manner, and are responsible for TNFα and NO secretion leading to bacterial 

replication restriction (Kang et al. 2008; Serbina and Pamer 2008). Our results using MyD88-/- mice 

showed that even in the absence of the major pathway sensing LM innate signals, CD8 endogenous 

do also express these pro-inflammatory mediators. Thus, together with anti-HY results, these 

results support the conclusion that CD8 cognate interactions are sufficient to induce CD8 T cell 

differentiation into inflammatory effectors. In addition, when MyD88-/- and WT cells are directly 

compared for the expression of pro-inflammatory mediators, it seems that MyD88-/- cells express 

higher levels than WT cells. This could be due the fact that MyD88-/- mice are more susceptible to 

LM infection, and hence have higher antigen levels, which further supports the notion that cognate 

stimulation are sufficient to induce a burst of pro-inflammatory mediators.  

 

When comparing the rules leading to differentiation of CD8 T cells into inflammatory effectors 

or cytotoxic effectors, we observed that expression of inflammatory effector genes is induced even 

before cell division, decreases while the cell divides, and declines when Ag concentration is still 

high. These features are completely the opposite of what occurs in the classical acquisition of 

cytotoxic effector functions: after Ag stimulation cytotoxic functions increase with division and 

decline once Ag is eliminated.  

 

As expression of pro-inflammatory genes is restricted to early days of the immune response, 

when antigen loads are still high (such as on days 2 and 3), and as the expression of pro-

inflammatory genes is dependent on MAPkinase pathways, we correlated the restriction of pro-

inflammatory mediators expression with the TCR downregulation phenomena massively occurring 

in early days after priming. We further supported this correlation by showing that several TCR-

signaling pathways were completely abrogated from day 2 to day 5 post infection. We detected a 

decrease in the expression of MAPkinases proteins when dual phosphorylated (active form that 

enters the nucleus and regulates gene transcription). The expression of phosphorylated NF-kB and 

phosphorylated Akt (CD28 co-stimulation pathway) also decreased from day 2 to day 5.  

 

Related to the rules that govern the diversity of CD8 effector functions (inflammatory vs 

cytotoxic) is also the question of why pro-inflammatory genes are immediately expressed after 

activation while cytotoxic genes are not. Unfortunately, nowadays not much can be argued beyond 

broad differences in: transcription factors availability, transcription factor networks and chromatin 

accessibility. Indeed, it is known that association of different transcription factors leads to different 

patterns of gene expression: NFAT/AP1 induce IL-2 expression (Macian et al. 2002); NFAT/Foxp3 

antagonize IL-2 expression and results in Treg functional gene expression (Wu et al. 2006); 
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NFAT/STATs induce Th1 or Th2 gene expression (Savignac et al. 2007). In addition, it is also known 

that different modes of activation can occur on p38 MAP kinase: in response to a variety of growth 

factors, cytokines and stress signals p38 kinase is dual activated through a MAPK cascade, while in T 

cells TCR ligation lead to direct phosphorylation of p38 with further autophosphorylation in a MAPK 

cascade independent mechanism (Salvador et al. 2005). p38 MAPK signaling pathways through TCR-

triggering can also selectively regulate functions in CD8 and CD4 cells: p38 MAP kinase signaling 

pathway controls IFNγ production in both CD4 and CD8 T cells, but only regulates apoptosis 

selectively in CD8 T cells and not in CD4 T cells (Merritt et al. 2000). Directly concerning MAPKinase 

and inflammatory chemokines expression, different cell types can use different families of 

MAPkinases to express the same chemokine (reviewed in the chemokines section of introduction). 

  

Concerning the question related to the physiologic role of diverse CD8 effector properties and, 

in particular, the role of pro-inflammatory CD8 effectors in immune responses, we tested if these 

effectors were able to induce “in vivo” cell recruitment, which is a characteristic of inflammatory 

reactions. Thus, we isolated pro-inflammatory effectors at day 2,5 of the response (when the 

percentage of cell expressing pro-inflammatory mediators is higher) and immobilized them 

subcutaneously either in the ear or in a braquial lymph node (BRLN) of a host immunocompetent 

mouse. In both cases, there was a massive leukocyte recruitment, either into the auricular draining 

lymph node or into the injected BRLN, 24h upon effector’s immobilization. Likewise, we also 

observed a LN hypertrophy associated with this massive cell recruitment. Using both OT1 and anti-

HY effectors, we observed that 80 or 56 pro-inflammatory effectors were able to recruit up to 107 

cells in 24h. When compared with immobilization of naïve CD8 T cells, intra-nodal injection of 

physiologic numbers of CD8 inflammatory effectors revealed higher numbers of B, T, NK, cDCs, 

pDCs and PMN cells presented in the injected LN. Thus, the new CD8 effector phase secreting a 

burst of pro-inflammatory mediators shortly after activation promote the recruitment of 

lymphocytes and accessory innate cells to the local where antigen is present. This massive cell 

recruitment into LNs occurring at early time points of the response may thus provide a rapid screen 

for the maximum number of naïve-specific circulating throughout the body, and thus assure a 

proper encounter of T cells with cognate antigens. 

It must be noted that the different cell types recruited to the draining LNs may also co-

participate and amplify to this massive recruitment, since macrophages, neurophils and DCs are 

also able to secrete these mediators. It has also been shown that after the initial inflammatory 

challenge LNs undergo substantial remodeling, including the expression of the primary feed 

arterioles and HEV networks, and that the flow of afferent lymphatic vessels also increases (von 

Andrian and Mempel 2003; Drayton et al. 2006; Bajenoff et al. 2007; Lammermann et al. 2008). So, 

even that other cells may also participate on the recruitment and also be responsible for LN 

remodeling, it must be noted that naïve cells immobilized in the LN do not induce LN hypertrophy 
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and that OT1 cells responding to wild type LM do not express these inflammatory mediators. Thus, 

these features are dependent (directly or indirectly) on CD8 cognate antigen interaction. 

 

As we were surprised that as few as 80 or 56 pro-inflammatory effectors could attract up to 

107 cells in 24h, we wondered if other mediators could be involved in the accumulation of such 

number of cells in a LN. Given that LN egress is totally blocked during early trapping (for 1-3 days) 

and that S1P gradients control LN egress, we tested if pro-inflammatory effectors could increase 

local S1P concentrations. We observed that 16h after intra-nodal injection of CD8 effectors, S1P 

levels increased by 10x on LN extracts. Since a twofold increase in the S1P concentration is reported 

to induce major changes in lymphocyte egress (Pham et al. 2008), the S1P levels detected in the 

presence of inflammatory effectors justify the contribution of these effectors to the blockage of LN 

egress and to the massive retention of cells on LNs at early time points of immune responses.  

 

Thus, both the increase in cell numbers and the blockage of cell egress contributed to a rapid 

accumulation of recirculating cells at the inflamed LN to ensure that a large and rare repertoire of 

antigen-specific lymphocytes will have enough time to move among resident cells until they meet 

the rare APCs first presenting cognate antigens. 

 

In conclusion, the diversity of CD8 T cell effector functions during immune responses 

contributes:  

i) Initially: for a quick and proper encounter of naïve CD8 T cells dispersed throughout the 

body with their cognate antigens, in order to activate a maximum repertoire of naïve CD8 T 

cells;  

ii) Later on: for a potent elimination of the pathogen by killing infected cells.  

These features might be relevant for “sterile” responses to tissue antigens, such as in 

transplantation, in response to self-antigens, as well as in response to tumor antigens. Promoting or 

dampening the differentiation of CD8 inflammatory effectors could then bring new perspectives on 

tumor combat or in anti-inflammatory therapies and transplant rejection. 

 

 

 

Overall, this thesis work shows that the frequency of naïve-precursor cells do not have an 

impact in the diversity of CD8 T cell responses, that different pathogens are able to modulate CD8 

T cell properties and thus generate diversity on CD8 T cell behaviors, and that during CD8 immune 

responses there are two distinct effector phases governed by distinct rules: inflammatory (at the 

early days of the response) and cytotoxic (on later days). Moreover, cognate interactions seem to 

be sufficient for CD8 T cell differentiation into inflammatory effectors.   
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 In future work it would be interesting to study if different infectious contexts (shaped by 

different pathogens innate signals) also impact the CD8 T cell differentiation into pro-inflammatory 

effectors. In particular, assessing the expression of pro-inflammatory mediators using the viral 

infection model LCMV, and then comparing it with the LM model. P14 TCR-Tg CD8 T cells 

responding to LCMV (expressing GP33) could be used to analyze the pro-inflammatory profiles in 

viral context.  

As during secondary responses, memory CD8 T cells have a more rapid exertion of effector 

functions, it will be interesting to investigate if memory CD8 T cells could also generate pro-

inflammatory effectors faster and more extensively.  

Since pro-inflammatory CD8 T cell effectors produce a large amount of TGFβ and do not 

express the corresponding receptor subunits, it would be relevant to address the question if CD8 T 

cell derived TGFβ could be a source of CD4 differentiation into Treg or Th17 cells. By injecting pro-

inflammatory CD8 T cells subcutaneously in the ear, the percentage of CD4+CD25+ T cells and IL-17 

producing cells could be analyzed in the draining lymph node. 

As IL-21 signaling seems to have a relevant role in the diversity of CD8 T cell differentiation in 

efficient memory cells, it would be interesting to directly assess the impact of IL-21 on CD8 T cell 

differentiation modulation. Thus, by adoptive transferring IL-21R-/- P14 TCR-Tg (CD45.2+) and WT 

P14 TCR-Tg (CD45.1+) cells into a CD45.2+ CD45.1+ B6 host mouse and by studying the response of 

both clones to LM-GP33 infection, we could investigate if in the absence of IL-21 signaling, CD8 T 

cells are able to adopt a TEM phenotype (characteristic of the LCMV infection). 
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Brief Definit ive Report

T lymphocytes are fundamental for the control 
of infection. In rare cases, T cell deficiencies 
are congenital, caused by mutations preventing 
the expression of any gene required for T cell 
generation. However, in most cases they are 
induced in the adult either by infections such as 
AIDS, by aggressive anticancer therapies, or by 
aging. In the current clinical practice, these sit-
uations have become frequent, rendering the 
reconstitution of the peripheral T cell pool an 
important clinical goal. In children who do not 
yet have competent thymus epithelia, T cell 
reconstitution may be achieved by the trans-
plantation of a competent BM. However, because 
BM precursors must transit through the thy-
mus to generate T cells, the peripheral T cell 
reconstitution is delayed by many months, during 
which time patients are very susceptible to infec-
tions (Parkman and Weinberg, 1997; Holländer, 
2008; Cavazzana-Calvo et al., 2009; Reimann 
et al., 2010). In addition, BM transplantation 

cannot correct T cell deficiencies once the thy-
mus atrophies in adults.

Thymus transplants could constitute an 
advantageous alternative or complementary 
therapy; these grafts could be a source of both 
a functional thymus epithelia and functional 
T cells, and thus might correct T cell deficien-
cies in both children and adults. They would 
not necessarily require the conditioning of the 
patient and should export mature T cells im-
mediately, overcoming the long lag-time re-
quired for thymus T cell generation after BM 
transplantation. However, although thymus grafts 
were successful in correcting deficiencies of the 
thymus epithelium, as found in the complete 
DiGeorge syndrome (Markert et al., 2007) or 
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Thymus transplants can correct deficiencies of the thymus epithelium caused by the com-
plete DiGeorge syndrome or FOXN1 mutations. However, thymus transplants were never 
used to correct T cell–intrinsic deficiencies because it is generally believed that thymocytes 
have short intrinsic lifespans. This notion is based on thymus transplantation experiments 
where it was shown that thymus-resident cells were rapidly replaced by progenitors origi-
nating in the bone marrow. In contrast, here we show that neonatal thymi transplanted 
into interleukin 7 receptor–deficient hosts harbor populations with extensive capacity to 
self-renew, and maintain continuous thymocyte generation and export. These thymus 
transplants reconstitute the full diversity of peripheral T cell repertoires one month after 
surgery, which is the earliest time point studied. Moreover, transplantation experiments 
performed across major histocompatibility barriers show that allogeneic transplanted thymi 
are not rejected, and allogeneic cells do not induce graft-versus-host disease; transplants 
induced partial or total protection to infection. These results challenge the current dogma 
that thymocytes cannot self-renew, and indicate a potential use of neonatal thymus trans-
plants to correct T cell–intrinsic deficiencies. Finally, as found with mature T cells, they 
show that thymocyte survival is determined by the competition between incoming progeni-
tors and resident cells.
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Mechanisms involved in autonomous thymocyte renewal
Several possibilities could explain the persistence of resident 
thymocytes in the thymus transplants grafted into IL-7R–
deficient hosts. We excluded contamination by circulating 
hematopoietic stem cells, thereby ensuring continuous graft 
colonization. The host BM did not contain CD45.1+ precur-
sors derived from the graft; the only precursors present were 
CD45.2+ ; LSK, Lineage Sca-1+c-Kit+ BM precursors (LSKs) 
from the host, as it is characteristic for Rag IL-7R or Ragc

 
mice (Fig. 1 C). Thymocyte persistence was also not caused by 
any mechanism preventing the colonization of the graft by 
the host BM: all grafts were colonized by host BM-derived 
progenitors, which progressed through differentiation as char-
acteristic of each set of host mice: WT BM generating all 
Lineage CD4CD8CD3 triple-negative thymocytes 
(TN) precursor types, Rag2 BM-derived cells arresting their 
differentiation at the TN3, and IL-7R or Ragc

 BM at 
the TN2 differentiation stage (Fig. 1 D; Egerton et al., 1990; 
Mombaerts et al., 1992; Di Santo et al., 1999). Finally, Ly5.1+ 
thymocytes of graft origin could have stopped dividing, but 
this was not the case (Fig. 2): we concluded that the persis-
tence of a conserved CD4+/CD8+ profile in the trans-
planted thymi indicated the presence of one or several 
populations with self-renewal capacity.

We first considered that CD4+CD8+ double-positive 
thymocytes(DP) cells might continuously renew in the ab-
sence of any intake from more immature precursors, although 
their BrdU incorporation was similar to that of DP cells from 
a normal thymus (Fig. 2 A). To address this possibility, we 
investigated DP cells’ TCRA repertoires, as the continuous 
division of the same cohort of DP cells should reduce diver-
sity and/or switch TCRA repertoires to the preferential usage 
of 5 V and 3 J genes (Guo et al., 2002; Pasqual et al., 
2002; Krangel et al., 2004). However, the high-throughput 
analysis of 107 TCRA chains expressed by normal DP thymo
cytes and 8 × 106 TCRA chains expressed by DP cells from 
transplanted thymi showed no modifications of TCRA 
repertoires (Fig. S1). Diversity was maintained because sam-
ples had equivalent number of unique in-frame CDR3s 
(Fig. S1 A), and VA and JA usage were also comparable 
(Fig. S1 B). Therefore, DP differentiation was not modified, 
indicating that maintenance of DP cells in these grafts should 
be ensured by more immature progenitors.

Analysis of CD45.1+ TN cells revealed the persistence of 
T cell progenitors of graft origin. Resident ETPs and TN2s 
declined rapidly (Fig. 2 B), likely substituted by the hosts’ 
TN precursors (Fig. 1 D). CD45.1+ TNs were progressively 
enriched in CD44+CD25low TN1–TN2 transition cells, with 
a CD44+ Sca-1+ c-kit+ IL-7Rlow, Fl3L+/ phenotype (Fig. 2, 
B and C). We previously studied this population in detail in 
the WT thymus and showed that it is more abundant in neo-
natal than in adult thymi (Peaudecerf et al., 2011) and is 
mostly T cell but not / lineage committed, yet may 
generate few NK cells. Moreover, these cells are capable of 
considerable expansion, generating all thymocyte sets as well  
as the gut nonconventional TCR/ gut intraepithelial 

in FOXN1 mutations (Markert et al., 2011), they were never 
used to correct intrinsic T cell deficiencies, as it is generally 
accepted that the thymus does not harbor precursors with self-
renewal capacities. Indeed, in thymus transplants, resident 
thymocytes generate a single wave of mature T cells because 
precursors originating from the BM rapidly replace resident 
cells (Berzins et al., 1998). Moreover, this occurs even when 
the host cannot generate mature T cells. When WT thymi are 
transplanted into SCID or Rag2-deficient hosts, the compe-
tent thymocyte populations from the graft are rapidly re-
placed by the incompetent precursors from the host BM 
(Frey et al., 1992; Takeda et al., 1996), and mature T cell ex-
port fails by 3 wk after surgery. Based on these data, the cur-
rent dogma postulates that all thymocyte subpopulations are 
short-lived, with their maintenance being strictly dependent 
on the continuous input of BM-derived progenitors.

In contrast, we describe that the neonatal thymus harbors 
populations with self-renewal capacity that maintain the thymo
cyte populations independently of any input from the BM, 
rapidly reconstitute the peripheral T cell pools, and the ca-
pacity to clear infections in T cell–deficient mice. Moreover, 
these transplants function across histocompatibility barriers, 
recalling early studies on the susceptibility of neonatal cells to 
become tolerant to alloantigens (Billingham et al., 1953). 
These results highlight a possible application of thymus trans-
plants in correcting intrinsic T cell deficiencies.

RESULTS AND DISCUSSION
The fate of thymus transplants in IL-7R–deficient hosts
When searching for thymocyte populations able to generate 
gut intraepithelial lymphocytes (Lambolez et al., 2006;  
Peaudecerf et al., 2011) we found that thymus transplants be-
haved differently when transplanted into Ragc

 hosts. Indeed, 
as described previously (Berzins et al., 1998), when a single 
neonatal CD45.1+ thymus lobe is grafted into WT CD45.2+ 
hosts, the transplant is rapidly invaded by precursor cells de-
rived from the host BM; 1 mo later, only rare mature T cells 
from the graft remain (Fig. 1 A). This substitution occurs 
even when the host cannot generate mature T cells (Frey 
et al., 1992; Takeda et al., 1996); when CD45.1+ thymi are 
transplanted into CD45.2+ Rag2- or CD3-deficient mice 
(not depicted) thymocytes of graft origin are also substi-
tuted by incompetent CD45.2+ precursors from the host 
BM (Fig. 1 A). In contrast, we were surprised to observe that 
this substitution did not occur when the hosts could not re-
spond to IL-7; in CD45.2+ Rag2 IL-7R or Rag2c

 hosts, 
the vast majority of thymocytes residing in the graft were 
CD45.1+ cells of graft origin (Fig. 1 A). These resident cells 
persisted and maintained a normal CD4/CD8 profile up 
to 7 mo after transplant, the latest time point studied (Fig. 1 B). 
However, from 4 mo after transplantation onwards, thymus 
cellularity usually declined, with 25% of the grafts undergo-
ing full atrophy by 4 mo, and 50% by 7 mo after surgery. This 
decline may be caused by age-related hormonal influences be-
cause the host mice were 6–9 mo old. Alternatively, resident 
thymocytes might have exhausted self-renewal capacity.
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restricted to T cell lineages because 
we could not visualize other hemato-
poietic populations of thymus graft 
origin in transplanted mice (unpub-
lished data). Up to 5 mo after trans-
plantation, TN3 and TN4 populations 
were also present, with TN3 division 
rates increasing by 3 mo after surgery. 
Coinciding with transplant atrophy, 
the TN3 and TN4 populations even-
tually disappeared (Fig. 2 B). The 
characteristics of such precursors ex-
plain the overall aspects of our data. 
They ensure that TCR rearrangements 
will follow relatively normal kinetics, 
justifying the transplants’ DP unbiased 
TCRA repertoires (Fig. S1), and the 
unbiased TCRB and TCRA reper-
toires found in the periphery (Fig. S2). 
They also explain why thymocytes 
from the transplanted thymi are only 
able to persist in hosts that cannot 
respond to IL-7. In other hosts, the  
BM will have the capacity to gener-
ate such cells, and thus substitute res-

ident TN1–TN2 populations. In contrast, IL-7R– and 
c-deficient hosts cannot generate these cells, explaining why 
TN1–TN2 transitional cells from the transplanted thymi per-
sist in these hosts. Overall, these results showed that T cell 
production in the thymus is not necessarily dependent of a 

lymphocytes (Lambolez et al., 2006; Peaudecerf et al., 2011). 
Similar to neonatal TN1–TN2 cells, resident progenitors ex-
pressed all the molecular markers of T cell–committed pro-
genitors (Notch1, Gata3, Bcl11b, and Rag1) and a constant 
small fraction divided; however, differentiation potential was 

Figure 1.  CD45.2+ B6 mice were trans-
planted with a single thymus lobe from 
1-d-old CD45.1+ B6 mice. (A and B). Frequen-
cies (histograms) and CD4/CD8 phenotypes (dot 
plots) of CD45.1+ donor thymocytes persisting 
in the thymus graft. (A). Hosts were WT, Rag2, 
Rag2c, or Rag2 IL-7R–deficient, studied 1 mo 
after transplantation. (B) Hosts were Rag2c-
deficient, studied at different time points 
after transplantation. Similar results were 
obtained when hosts were Rag2 IL-7R–defi-
cient. Results are from 1 experiment repre-
sentative of 8 WT, 12 RagIL-7R–deficient, and 
45 Rag2c-deficient grafted mice, studied 
from 2 wk to 7 mo after grafting. (C) Stem 
cell precursors in the BM of host Rag2c

 
transplanted mice, 3 mo after grafting.  
Results show Ter119GR1Mac1 cells of 
graft (CD45.1+) and the host (CD45.2+), and 
are representative of 5 individual mice studied 
in two experiments. (D) Repopulation of the 
transplanted thymi in different host mice. 
The CD44/CD25 phenotypes of CD45.2+ TN 
thymocytes derived from the host BM, 1 mo 
after grafting. They are representative of 
three experiments.
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export of naive T cells (see Martins et al. 
in this issue). These results formally 
demonstrate that thymus transplants 
reconstitute the peripheral T cell pools 
much earlier than BM-derived pre-
cursors. Moreover, they also show that 
the kinetics of BM reconstitution is 
not modified by the presence of a thy-
mus graft, and that when competent 
BM precursors are present, resident thy-
mocytes are substituted even in IL-7R–
deficient hosts.

To further evaluate the quality of 
the mature T cell repertoires generated by thymus transplan-
tation, we analyzed the spleen T lymphocytes of Ragc

-
transplanted mice. High-throughput sequencing of 107 
TCRB and TCRA chains showed the same number of 
unique CDR3s as found in normal mice (Fig. S2 A). VB/JB 
and VA/JA usage was also very similar (Fig. S2 B). In contrast 
to Martins et al. (2012), we did not find clonal expansions. In 
the rare cases when some V genes were used at slightly higher 
frequency (for example TCRB V12-2 or TCRA V12D-3 in 
the grafted spleen; Fig. S2 C) the analysis of these apparent 
“expansion peaks” showed that each corresponded to multi-
ple T cells using the same V gene but otherwise differing in 
both TCRBJ usage and CDR3 composition. We conclude 
that thymus transplants already reconstitute the diversity of 
the peripheral T cell repertoires 1 mo after grafting.

Peripheral pools generated by thymus  
transplants in different conditions
IL-7R–deficient hosts are but a small minority of potential 
candidates for thymus transplantation, and fully histocompat-
ible fetal thymi would not likely always be available for trans-
plantation. For a wider therapeutic use, thymus grafts should 
also be beneficial in other conditions, i.e., partial histocom-
patibility match between the host and the donor thymi, and 
in hosts able to respond to IL-7, where thymus substitution 
by BM precursors occurs. We found a substantial reconstitu-
tion of the peripheral pools in Ragc

 B6 mice transplanted 
with (BALB/c x B6) F1 thymi, although the frequency of 
CD8+ naive T cells but not of naive CD4+ cells was slightly 

continuous input from the BM. In certain conditions, the 
thymus may be self-sufficient, continuously generating 
mature T cells.

The capacity of thymus transplants to reconstitute  
the peripheral T cell pools
After BM transplantation in the mouse, mature T cells were 
reported to start leaving the thymus by 4 wk, and peripheral 
pools were found to be fully reconstituted only 2.5–3 mo 
later (Almeida et al., 2001). To directly compare the kinetics 
of peripheral reconstitution after BM or thymus transplants, 
sublethally irradiated CD45.2+ Ragc

 mice were injected 
simultaneously with 2 × 104 CD45.1+ LSKs and transplanted 
with one CD45.1+x CD45.2+ neonatal thymus lobe. 2 wk 
later, the progeny of the injected LSKs had barely reached the 
graft, most having the CD44+CD25 TN1 phenotype, whereas 
resident thymocytes maintained a normal CD4+CD8+ 
profile (Fig. 3 A). The spleen of these mice, however, already 
harbored a substantial pool of naive T cells of graft origin, al-
though CD44+s were enriched (Fig. 3 B). In contrast, 1 mo 
later, LSK-derived cells had replaced most resident thymo-
cytes in the graft (Fig. 3 C), but had not yet exported mature 
T cells. Virtually all T lymphocytes present in the spleen were 
still of grafted thymus origin (Fig. 3 D). Compared to the 
CD4 and CD8 naive cells found in normal mice, the fre-
quency of the naive CD4+ pool was equivalent and the 
frequency of CD8+ naive pool was slightly lower in mice 
receiving thymus transplants (Fig. 4, A and B), supporting the 
observation that peripheral reconstitution is caused by the 

Figure 2.  The phenotype and division 
rates of the grafts’ thymocytes. Grafts 
were performed as in Fig. 1 B. At different 
time points, mice were injected with BrdU 1 h 
before sacrifice. (A) BrdU incorporation in DP 
cells in 1 out of 8 experiments with similar 
results. (B) The phenotype of CD45.1+ TN donor 
thymocytes at different time points after 
grafting. The percentage of cells incorporating 
BrdU in is italicized and in brackets. Results 
are from one out of 15 equivalent experi-
ments (C) The phenotype of CD45.1+ TN1–TN2 
thymocytes. Results are from one of five 
identical experiments.
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protection to infections (Markert et al., 
2007, 2011). We investigated if the 
same phenomena would occur when 
Ragc

 B6 hosts were transplanted 
with a fully allogeneic BALB/c neona-
tal thymus. As expected, these grafts 
were less efficient in reconstituting the 
periphery: naive cells, which require 
the recognition of the same MHC that 
induced their positive selection in the 
thymus to survive (Tanchot et al., 1997), 
were absent in these mice (Fig. 4 E). 
However, these mice were healthy, not 
showing any signs of GVH, indicating 
that the neonatal T cells exported by 
these thymi became tolerant to the host 
MHC. These results recall early studies 
(Billingham et al., 1953) reporting that 
neonatal T cells were easily tolerized. 
This was attributed to the neonatal en-
vironment, peculiar circulatory charac-
teristics of neonatal mice promoting 
the extensive migration of T cells through-
out nonlymphoid tissues (Arnold et al., 
2005), or/and a putative immaturity of 

neonatal dendritic cells (Ridge et al., 1996) favoring toler-
ance induction. Because we transplanted adult mice, both 
of these mechanisms can be excluded, indicating that the 
properties of neonatal cells (do Canto et al., 2008) rather 
than their environment are responsible for tolerance in-
duction. Besides the induction of T cell tolerance, early 
studies also described tolerance to fetal thymus tissue. 
When nude mice were transplanted into each kidney cap-
sule with fetal thymi expressing different MHCs, neither 
thymus was rejected (Zamoyska et al., 1989). To investi-
gate if a neonatal thymus epithelium would be tolerated, 
sublethally irradiated immunocompetent B6 mice were 
grafted with neonatal (B6xBALB/c) thymus and followed 
up for 2 mo after surgery. These transplants were invaded 

reduced when compared with syngeneic transplants (Fig. 4, 
B and C). When a single thymus lobe was transplanted into 
IL-7-competent, CD3-deficient mice a substantial periph-
eral T cell pool was generated and naive T cells were present, 
although, as expected, CD44+ cells were enriched by ho-
meostatic proliferation (Fig. 4 D). These results recall early 
studies reporting that 10% of a normal thymus export is suf-
ficient to reconstitute the peripheral T cell pools (Almeida 
et al., 2001).

Thymus transplants in children lacking thymus epithe-
lium were reported to ensure peripheral reconstitution 
across full histocompatibility barriers, T cells selected in 
these thymi neither inducing graft-versus-host (GVH) re-
actions nor rejecting the transplanted tissue, and conferring 

Figure 3.  The kinetics of peripheral recon-
stitution after BM or thymus grafts. CD45.2+ 
B6 Rag2c

 mice were sublethally irradiated (600 
rads) and grafted simultaneously with 2 × 104 WT 
CD45.1+ LSKs, and a single thymus lobe from 
CD45.2+xCD45.1+ WT B6 neonatal mice and stud-
ied for 2 wk (A and B) and 1 mo later (C and D). 
(A and C) Percentages (histograms) and the pheno
types (dot plots) of thymus graft–derived (right) 
and BM-derived (left) cells in the grafted thymus. 
Top dot plots showing the CD4/CD8 profile, 
and bottom dot plots show TN cells. (B and D) 
Percentages (histograms) and CD44 expression 
(dot plots) of CD45.2+ T cells of thymus graft 
origin in the spleen. Results are from one mouse 
at each time point representative for the four 
mice studied.
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Ragc
 mice transplanted with syngeneic or semiallogeneic 

thymi, or even in IL-7R–competent CD3 mice transplanted 
with semiallogeneic thymi, where besides a partial MHC 
mismatch the thymus transplants originated a single wave 
of T cell export. These results indicate that thymus transplants 
may have wide applications as they are capable of precocious 
T cell generation and confer the capacity to clear infections 
even in IL-7R+ adult mice. Bacterial clearance was less effi-
cient in mice transplanted with fully allogeneic BALB/c 
thymi, but even these mice were able to reduce bacterial 
loads (Fig. 5).

To summarize, the present data and also those from 
Martins et al. (2012) show that in contrast to the current 
dogma, maintenance of thymocyte populations does not 
depend on the continuous input of BM-derived progeni-
tors. The thymus harbors populations with self-renewal 
capacities that are capable of maintaining apparently nor-
mal CD4/CD8 profiles for several months. However, 
our combined data show that autonomous thymocyte re-
newal may be achieved by different mechanisms. In our 
experiments, the unbiased TCRA repertoires of DP cells 
indicate a major contribution of early TN thymocyte 
progenitors, which are indeed present and persist for long 
time periods. In contrast, Martins et al. (2012) did not 
detect these progenitors, with the TCRA repertoires 
generated having reduced diversity and showing several 

by BM-derived precursors from the host, but the thymus 
tissue was not rejected (unpublished data). The capacity of 
the thymus tissue to be tolerated, and the relative “indif-
ference” of neonatal T lymphocytes issuing from trans-
planted thymi to MHC mismatches contrasts with the 
frequent GVH reactions induced by mismatched BM trans-
plantation. It is tempting to speculate that this behavior may 
have evolved to prevent the possibly ill effects of MHC 
mismatches during pregnancy/delivery and that the use of 
fetal hematopoietic precursors for BM transplantation may 
minimize/prevent GVH reactions.

The capacity of thymus transplants to confer protection
To determine the capacity of different types of transplanted 
mice to deal with infection, we studied the T cell–dependent 
response to Listeria monocytogenes (LM). We first determined 
the kinetics of LM elimination in WT mice in the conditions 
we used. We found that bacterial loads reached the highest 
levels by 2 d after infection. Bacteria elimination varied  
in individual mice, but by day 5, LM was still detectable in 
all mice (Fig. 5), whereas by day 6 several infected mice had 
already fully eliminated LM (not depicted). We thus selected 
day 5 after infection as the best time point to compare 
bacterial clearance between different transplanted mice. We 
found that transplants conferred protection to infection in all 
mice: LM was cleared with similar kinetics in normal mice, 

Figure 4.  Peripheral reconstitution after thymus transplantation in different conditions. Different host mice were transplanted with neonatal 
thymi and studied 1 mo later. Top dot plots show the distribution of CD4/CD8 T cells, and bottom dot blots show the ratio of naive and CD44+ activated 
cells in the spleen, in one out of five equivalent experiments.
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MATERIALS AND METHODS
Mice, transplantation procedures, and infection with LM. BALB/c 
mice were purchased from Charles River, and all other mice were obtained 
from our breeding colonies. Host mice were 6–8-wk-old CD45.2+ and 
were transplanted under the kidney capsule with a single thymus lobe from 
1-d-old mice. CD45.1+ B6, Rag2, Rag2 IL7R, or CD3 mice re-
ceived a lobe from CD45.1+ or CD45.1xCD45.2 donor mice. For alloge-
neic transfers, CD45.1+ Rag2c

 mice were transplanted with a lobe from 
CD45.2+ Balb/c donors. Fully allogeneic transplants were performed 
in Rag2c

 CD45.1+ hosts, grafted with one thymus lobe from 1-d-old 
CD45.2+ BALB/c mice. When mentioned mice were injected with 5 × 103 
live LM. Bacterial loads were evaluated at different time points after infec-
tion as CFU per spleen. Experiments were approved by Comitié d’ethique 
pour l’experimentation animale, licence # CEEA34.BR.020.12.

Cytofluorometry analysis. For surface staining, the following mAbs ob-
tained from BD were used: anti-CD45.1/Ly5.1 (A20-1.7), anti-CD45.2/
Ly5.2 (104–2.1), anti-CD3 (145-2C11), anti-CD11b/Mac1 (M1/70), anti-
CD25 (PC-61), anti-CD117/c-kit (2B8), anti-TCRb (H57-597), anti-GR1 
(8C5), anti-erythroid cells (TER-119), and anti–Sca-1 (E13-161.7). Anti-
CD4 (GK1.5), anti-CD8 (H35-172), and anti-CD127/IL7-R (A7R34, a 
gift from Dr S.-I. Nishikawa, Kyoto University, and Institute of Physical and 
Chemical Research Center, Kyoto, Japan) were purified and conjugated in 
our laboratory. Anti-CD44 (1M781) was obtained from eBioscience. All of 
the aforementioned mAbs were directly coupled to FITC, PE, PerCP-
Cy5.5, PECy7, APC, APC-Alexa Fluor 750, and Pacific blue or conjugated 
with biotin. Biotinylated mAbs were revealed with PECy7-streptavidin 
(BD), PE-Alexa Fluor 750-streptavidin (Invitrogen), Pacific blue–streptavi-
din (Invitrogen), or Pacific orange–streptavidin (Invitrogen). Cells were ana-
lyzed in a FACSCanto and sorted in a FACSAria (BD). For the determination 
of cell division, each mouse received a 1-h pulse of 1 mg of BrDU i.p., and 
BrDU incorporation was determined using a BrdU Flow kit (BD).

High-throughput sequence analysis. The populations analyzed were 
sorted from the thymus or the spleen of transplanted mice or age-matched 
controls. Deep sequence analysis of the TCRA and TCRB repertoires was 
performed as described previously (Wang et al., 2010).

Analysis of gene expression in the progenitors persisting in the thy-
mus graft. B6 CD45.2 Ragc-deficient mice were transplanted with a 
single neonatal thymus lobe from CD45.1 syngeneic WT mice. 1 mo after 
surgery, TN1–TN2 populations were sorted as 10 or single cells into indi-
vidual wells and tested for the expression of Gata3, Notch1, Bcl11b, Rag1, and 
a housekeeping gene by single-cell seminested RT-PCR, using the ap-
proach we described and validated previously (Peixoto et al., 2004). In total, 
we studied 23 wells recovered from three different transplanted mice, with 
similar results. The primers pairs used are listed in Table S1.

Online supplemental material. Fig. S1 shows the CD4+CD8+ (DP) 
populations persisting in the grafts. Figure S2 displays the repertoire of the 
peripheral T cell pools 1 mo after grafting. The primer sequences used for  
single-cell genetic profiling are listed in Table S1. Online supplemental material 
is available at http://www.jem.org/cgi/content/full/jem.20120845/DC1.
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clonal expansions even at early points after transplanta-
tion, indicating that autonomous thymocyte renewal in 
their conditions is instead ensured by the continuous di-
vision of the same cohort of DP cells. Importantly, the 
outcomes of these two types of autonomous renewal are 
also very different. While our mice survive, are protected 
from infection, and transplanted thymi eventually atro-
phy, the continuous division of the same DP cells likely 
favors genetic instability because a large fraction of them 
develop T cell lymphomas later in life. The reasons be-
hind these differences are yet unclear, but our combined 
data provide an unbiased and complete perspective on 
the advantages and possible dangers of thymus transplan-
tation. Thymus transplants may pose a risk when used 
alone in the therapy of congenital IL-7R deficiencies. 
However, thymus transplants rapidly export T cells, function 
across histocompatibility barriers, and confer rapid pro-
tection to infection even in IL-7R–competent hosts where 
the thymocytes from the graft are substituted by precur-
sors originated in the host BM. Therefore, thymus trans-
plantation may be of major therapeutic value for the 
rapid correction of other T cell deficiencies, either 
when used alone or in combination with simultaneous 
BM transplantation.

Figure 5.  The capacity of thymus transplants to protect from  
infection. WT B6 and BALB/c controls and the transplanted mice described 
in Fig. 4 were injected i.v with live LM. The dotted line shows the number 
of injected LM. Results show bacteria loads evaluated as LM CFU/spleen 
at day 2 and 5 after infection, each point showing an individual mouse. 
T denotes the genotype of donor thymus.

 on June 17, 2013
jem

.rupress.org
D

ow
nloaded from

 
Published July 9, 2012

Sara
Rectangle

http://www.jem.org/cgi/content/full/jem.20120845/DC1
http://jem.rupress.org/


1408 Autonomous thymocyte renewal | Peaudecerf et al.

Markert, M.L., J.G. Marques, B. Neven, B.H. Devlin, E.A. McCarthy, I.K. 
Chinn, A.S. Albuquerque, S.L. Silva, C. Pignata, G. de Saint Basile, 
et al. 2011. First use of thymus transplantation therapy for FOXN1 de-
ficiency (nude/SCID): a report of 2 cases. Blood. 117:688–696. http://
dx.doi.org/10.1182/blood-2010-06-292490

Martins, V.C., E. Ruggiero, S.M. Schlenner, V. Madan, M. Schmidt, P.J. 
Fink, C. von Kalle, and H.-R. Rodewald. 2012. Thymus-autonomous 
T cell development in the absence of progenitor import. J. Exp. Med. 
209:1409–1417.

Mombaerts, P., J. Iacomini, R.S. Johnson, K. Herrup, S. Tonegawa, and 
V.E. Papaioannou. 1992. RAG-1-deficient mice have no mature B 
and T lymphocytes. Cell. 68:869–877. http://dx.doi.org/10.1016/ 
0092-8674(92)90030-G

Parkman, R., and K.I. Weinberg. 1997. Immunological reconstitution fol-
lowing bone marrow transplantation. Immunol. Rev. 157:73–78. http://
dx.doi.org/10.1111/j.1600-065X.1997.tb00975.x

Pasqual, N., M. Gallagher, C. Aude-Garcia, M. Loiodice, F. Thuderoz, J. 
Demongeot, R. Ceredig, P.N. Marche, and E. Jouvin-Marche. 2002. 
Quantitative and qualitative changes in V-J  rearrangements during 
mouse thymocytes differentiation: implication for a limited T cell recep-
tor alpha chain repertoire. J. Exp. Med. 196:1163–1173. http://dx.doi 
.org/10.1084/jem.20021074

Peaudecerf, L., P.R. dos Santos, A. Boudil, S. Ezine, N. Pardigon, and B. 
Rocha. 2011. The role of the gut as a primary lymphoid organ: CD8 
intraepithelial T lymphocytes in euthymic mice derive from very imma-
ture CD44+ thymocyte precursors. Mucosal Immunol. 4:93–101. http://
dx.doi.org/10.1038/mi.2010.47

Peixoto, A., M. Monteiro, B. Rocha, and H. Veiga-Fernandes. 2004. 
Quantification of multiple gene expression in individual cells. Genome 
Res. 14:1938–1947. http://dx.doi.org/10.1101/gr.2890204

Reimann, C., L. Dal Cortivo, S. Hacein-Bey-Abina, A. Fischer, I. André-Schmutz,  
and M. Cavazzana-Calvo. 2010. Advances in adoptive immunotherapy 
to accelerate T-cellular immune reconstitution after HLA-incompatible  
hematopoietic stem cell transplantation. Immunotherapy. 2:481–496. 
http://dx.doi.org/10.2217/imt.10.36

Ridge, J.P., E.J. Fuchs, and P. Matzinger. 1996. Neonatal tolerance revisited: 
turning on newborn T cells with dendritic cells. Science. 271:1723–1726. 
http://dx.doi.org/10.1126/science.271.5256.1723

Takeda, S., H.R. Rodewald, H. Arakawa, H. Bluethmann, and T. Shimizu. 
1996. MHC class II molecules are not required for survival of newly 
generated CD4+ T cells, but affect their long-term life span. Immunity. 
5:217–228. http://dx.doi.org/10.1016/S1074-7613(00)80317-9

Tanchot, C., F.A. Lemonnier, B. Pérarnau, A.A. Freitas, and B. Rocha. 
1997. Differential requirements for survival and proliferation of CD8 
naïve or memory T cells. Science. 276:2057–2062. http://dx.doi.org/ 
10.1126/science.276.5321.2057

Wang, C., C.M. Sanders, Q. Yang, H.W. Schroeder Jr., E. Wang, F. 
Babrzadeh, B. Gharizadeh, R.M. Myers, J.R. Hudson Jr., R.W. 
Davis, and J. Han. 2010. High throughput sequencing reveals a com-
plex pattern of dynamic interrelationships among human T cell sub-
sets. Proc. Natl. Acad. Sci. USA. 107:1518–1523. http://dx.doi.org/ 
10.1073/pnas.0913939107

Zamoyska, R., H. Waldmann, and P. Matzinger. 1989. Peripheral tolerance 
mechanisms prevent the development of autoreactive T cells in chimeras 
grafted with two minor incompatible thymuses. Eur. J. Immunol. 19:111–
117. http://dx.doi.org/10.1002/eji.1830190118

REFERENCES
Almeida, A.R., J.A. Borghans, and A.A. Freitas. 2001. T cell homeostasis: 

thymus regeneration and peripheral T cell restoration in mice with a 
reduced fraction of competent precursors. J. Exp. Med. 194:591–599. 
http://dx.doi.org/10.1084/jem.194.5.591

Arnold, B., T. Schüler, and G.J. Hämmerling. 2005. Control of periph-
eral T-lymphocyte tolerance in neonates and adults. Trends Immunol. 
26:406–411. http://dx.doi.org/10.1016/j.it.2005.06.002

Berzins, S.P., R.L. Boyd, and J.F. Miller. 1998. The role of the thymus and recent 
thymic migrants in the maintenance of the adult peripheral lymphocyte pool. 
J. Exp. Med. 187:1839–1848. http://dx.doi.org/10.1084/jem.187.11.1839

Billingham, R.E., L. Brent, and P.B. Medawar. 1953. Actively acquired toler-
ance of foreign cells. Nature. 172:603–606. http://dx.doi.org/10.1038/ 
172603a0

Cavazzana-Calvo, M., I. André-Schmutz, L. Dal Cortivo, B. Neven, S. Hacein-
Bey-Abina, and A. Fischer. 2009. Immune reconstitution after haematopoi-
etic stem cell transplantation: obstacles and anticipated progress. Curr. Opin. 
Immunol. 21:544–548. http://dx.doi.org/10.1016/j.coi.2009.08.001

Di Santo, J.P., I. Aifantis, E. Rosmaraki, C. Garcia, J. Feinberg, H.J. 
Fehling, A. Fischer, H. von Boehmer, and B. Rocha. 1999. The com-
mon cytokine receptor gamma chain and the pre-T cell receptor pro-
vide independent but critically overlapping signals in early alpha/beta 
T cell development. J. Exp. Med. 189:563–574. http://dx.doi.org/ 
10.1084/jem.189.3.563

do Canto, F.B., C. Lima Junior, I.A. Teixeira, M. Bellio, A. Nóbrega, and 
R. Fucs. 2008. Susceptibility of neonatal T cells and adult thymocytes 
to peripheral tolerance to allogeneic stimuli. Immunology. 125:387–396. 
http://dx.doi.org/10.1111/j.1365-2567.2008.02855.x

Egerton, M., K. Shortman, and R. Scollay. 1990. The kinetics of imma-
ture murine thymocyte development in vivo. Int. Immunol. 2:501–507. 
http://dx.doi.org/10.1093/intimm/2.6.501

Frey, J.R., B. Ernst, C.D. Surh, and J. Sprent. 1992. Thymus-grafted SCID mice 
show transient thymopoiesis and limited depletion of V beta 11+ T cells.  
J. Exp. Med. 175:1067–1071. http://dx.doi.org/10.1084/jem.175.4.1067

Guo, J., A. Hawwari, H. Li, Z. Sun, S.K. Mahanta, D.R. Littman, M.S. 
Krangel, and Y.W. He. 2002. Regulation of the TCRalpha repertoire 
by the survival window of CD4(+)CD8(+) thymocytes. Nat. Immunol. 
3:469–476. http://dx.doi.org/10.1038/ni791

Holländer, G.A. 2008. Lymphoid reconstitution following hematopoietic 
stem cell transplantation. Of mice and men: progress made in HSCT 
immunobiology. Semin. Immunopathol. 30:369–370. http://dx.doi.org/ 
10.1007/s00281-008-0139-y

Krangel, M.S., J. Carabana, I. Abbarategui, R. Schlimgen, and A. Hawwari. 
2004. Enforcing order within a complex locus: current perspectives on 
the control of V(D)J recombination at the murine T-cell receptor alpha/
delta locus. Immunol. Rev. 200:224–232. http://dx.doi.org/10.1111/
j.0105-2896.2004.00155.x

Lambolez, F., M.L. Arcangeli, A.M. Joret, V. Pasqualetto, C. Cordier, J.P. 
Di Santo, B. Rocha, and S. Ezine. 2006. The thymus exports long-lived 
fully committed T cell precursors that can colonize primary lymphoid 
organs. Nat. Immunol. 7:76–82. http://dx.doi.org/10.1038/ni1293

Markert, M.L., B.H. Devlin, M.J. Alexieff, J. Li, E.A. McCarthy, S.E. Gupton, 
I.K. Chinn, L.P. Hale, T.B. Kepler, M. He, et al. 2007. Review of 54 
patients with complete DiGeorge anomaly enrolled in protocols for 
thymus transplantation: outcome of 44 consecutive transplants. Blood. 
109:4539–4547. http://dx.doi.org/10.1182/blood-2006-10-048652

 on June 17, 2013
jem

.rupress.org
D

ow
nloaded from

 
Published July 9, 2012

Sara
Rectangle



JEM S1

T
h

e
 
J
o

u
r
n

a
l
 
o

f
 
E

x
p

e
r
i
m

e
n

t
a

l
 
M

e
d

i
c

i
n

e

 SUPPLEMENTAL MATERIAL 

 Peaudecerf et al., http://www.jem.org/cgi/content/full/jem.20120845/DC1 

 [ID]FIGS1[/ID] 
 [ID]FIGS2[/ID] 
 [ID]TBLS1[/ID] 

   

  

  Figure S1. The CD4 + CD8 �  �  +  (DP) populations persisting in the grafts.  6–8-wk-old CD45.2 +  B6 Rag2 �  c  
 �   mice were grafted with a single thymus 

lobe from CD45.1 +  B6 WT neonatal mice. 2 mo later, DP cells from the graft or from age-matched controls were sorted and the TCRA repertoires were 

analyzed. (A) Numbers of cells sorted and of unique CDR3 regions identifi ed. (B) TCRAV and TCRAJ usage in two controls (C, top graphs) and one trans-

planted thymus (G, bottom graph) from the four transplanted mice studied.   
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  Figure S2.   The repertoire of the peripheral T cell pools 1 mo after grafting.  6–8-wk-old CD45.2 +  B6 Rag2 �  c  
 �   mice were grafted with a single 

thymus lobe from CD45.1 +  B6 WT neonatal mice. At different time points after surgery, 2 × 10 4  CD8 T cells were sorted from their spleen or from the 

spleen of age-matched controls and TCRB and TCRA repertoires were analyzed. (A) Numbers of unique CDR3 regions identifi ed in the spleen. (B) TCRVB 

and TCRBJ usage (C) TCRVA and TCRJA usage in two WT mice (C, top graphs) and one transplanted mouse (G, bottom graph) at 1 mo after grafting. 4 

mice were studied at different time points with the equivalent results.   
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  Table S1.  Primer sequences used for single-cell genetic 

profi ling 

Genes Primer sequences

 Bcl11b A: GGCGATGCCAGAATAGATGC

B: TTGTCCAGGACCTTGTCGTA

C: TTGTCCCAGAGGGAACTCAT

 Gata3 A: TCGGCCATTCGTACATGGAA

B: TGGATGGACGTCTTGGAGAA

C: ATCGATGGTCAAGGCAACCA

 Notch1 A: GCTACGAATGTGCCTGTGAA

B: CATACGTAGCCACTGGTCAT

 C: CAACGAGTGCAACAGTAACC

 Rag1 A: CAACCAAGCTGCAGACATTC

B: CTACTGGAGACTGTTCTAGG

 C: GCAGACATTCTAGCACTCTG

All primer sequences are in 5 � → 3 �  direction. B primers are anti-sense, and were 

used for gene-specifi c reverse transcription. This was followed by a fi rst RT-PCR 

associating primers A and B. A second, seminested PCR was performed by adding 

primers B and C. Primers for the house keeping gene were as described ( Peixoto et 

al., 2004 ).

 REFERENCE 
   Peixoto ,  A. ,  M.   Monteiro ,  B.   Rocha , and  H.   Veiga-Fernandes .  2004 .  Quantifi cation of multiple gene expression in individual cells .   Genome Res.    14 : 1938 –

 1947 .  http://dx.doi.org/10.1101/gr.2890204   
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equivalents in human, a sub-group of DC that possesses specialised

properties including a unique propensity to phagocytose dead cell

debris and to crosspresent exogenous antigens to CD8+ T cells. DNGR-

1 signalling via Syk in DC regulates the retrieval and crosspresentation

of dead cell-associated antigens and impacts CTL responses to infec-

tion. The study of DNGR-1 helps build a picture of the receptors and

signalling pathways that regulate DC responses to self alterations and

has applications in immunotherapy of cancer and infectious diseases.

S066
Control of B cell function by the Kinasel Phosphatase Equillibrium

M. Reth, D. Medgyesi, A. Alsadeq, K. Klaesener, J. Yang & E.

Hobeika

Department of Molecular Immunology Faculty of Biology, University of

Freiburg, Freiburg, Germany

The early steps of B cell activation involve the dissociation of an auto-

inhibitory oligomeric B cell antigen receptor (BCR) complex and the

exposure of the cytosolic tails of the Ig-a/Ig-b BCR signaling subunit to

kinases that initiated several intracellular signaling pathways. The

activation of kinases and the time of their association with the opened

active BCR is tightly controlled by counteracting phosphatases. We

have generated mice with a B cell specific deletion of phosphatases such

as SHP-1 and PTP-1B and show these deletions result in aberrant

extended B cell activation. Using substrate-trapping mutants of these

phosphatases, we have identified several intracellular targets and

identified critical signaling pathways which are regulated by these

phosphatases. Interestingly, the B cell specific deletion of these phos-

phatases results in the generation of autoimmune antibodies. This

finding lead us to the study of the phosphatase expression in human B

cells where we found a down-regulation of phosphatases and hyper-

active kinase activity in B cells of autoimmune disease patients. The

molecular details of this regulation are currently under study.

We also generated mice with a B cell specific and inducible deletion

of the spleen tyrosine kinase Syk. The analysis of these mice showed

that Syk is required for B cell development but not for the survival of

B2 B cells in the periphery. On contrast, B1 B cells are critical

dependent on Syk expression.

S067
Cancer Therapy by targeted polymeric drugs evokes activation of

the host’s immune system

B. Rihova,* M. Šı́rová,* M. Kovár,* T. Etrych,� V. Subr,�

J. Strohalm,� P. Chytil� & K. Ulbrich�

*Immunology and Gnotobiology, Institute of Microbiology Academy of

Sciences of the Czech Republic, Prague, Czech Republic, �Institute of

Macromolecular Chemistry Academy of Sciences of the Czech Republic,

Prague, Czech Republic

Purpose: The possibility was tested to induce potent and long-lasting

tumor-specific immunity during the treatment of experimental cancer

with targeted water-soluble polymer based on N-(2-hydroxypro-

pyl)methacrylamide (HPMA) containing doxorubicin. The drug

(doxorubicin; DOX) was bound to its polymeric carrier through low

pH-sensitive hydrazone bond from which drug is released only intra-

cellularly in endosomes and lysosomes.

Material and methods: Three models of experimental cancer were

used: BCL1-mouse B cell leukemia, EL4 T � mouse T cell lymphoma

and 38C13 � mouse B cell lymphoma. The mice that developed

palpable tumors reaching 8�9 mm3 in diameter within 8�9 days after

the implantation were i.v. treated with different doses (5�15 lg DOX

eq./kg) of DOXHYD-HPMA. Those surviving at least 60 days without

any signs of a disease were considered as long-term survivors (LTS),

and they were re-transplanted with a lethal dose of the same cancer cell

line and left without treatment to determine the therapy-induced

tumor resistance (TITR).

Results: It was seen that the treatment with DOXHYD-HPMA regularly

triggers a systemic anticancer response that protects mice from a

second cancer attack. Such treatment � inducible ‘autovaccination’ is

dose and time dependent; more aggressive treatment which facilitates

very rapid elimination of tumor cells induces low or even undetectable

tumor resistance whereas a slower eradication of tumor mass induces

tumor resistance that is strong, long-lasting and could protect up to

100% of cancer-bearing animals. As proven by neutralization Winn¢s
test, the chief mediators of the observed tumor resistance are CTL

CD8+. The immunogenic cancer cell death is probably involved in

described phenomenon as translocation of CRT together with ERp57

and release of HMGB-1 alarmin was seen after cancer cell exposition of

DOXHYD-HPMA.

Conclusion: Targeted conjugates based on HPMA represent a new

generation of polymeric anticancer drugs with improved therapeutic

potential, considerably decreased nonspecific side effects and the ability

to stimulate therapy-dependent tumor resistance.

S068
CD8 ‘inflammatory’ effectors: a new population of effector cells
with a fundamental role in early immune responses

B. Rocha,* H. Sung,* S. Lemos,* P. Ribeiro-Santos,* A. Charbit� &

C. Evaristo*

*INSERM Faculté de Médecine Descartes, Paris, France, �Paris, France

Inflammatory reactions are complex biological responses believed to be

triggered by pathogens or tissue injure ‘danger signals’ that have a

major protective role by recruiting innate immunity cells, favouring

lymphocyte activation and differentiation, and thus contributing to the

sequestration and eventually eliminating the injurious stimuli. Al-

though certain T lymphocyte types such as TH17 cells may co-par-

ticipate in inflammatory reactions, the generation of such cells from a

naı̈ve T cell pool requires previous differentiation steps within a pre-

existing inflammatory milieu. In this context inflammation is regarded

as beginning with an innate immune response mediated by tissue

resident cells that may eventually be perpetuated and amplified by the

recruitment and/or differentiation of certain T cell types. We show that

CD8 T cells but not CD4 T cells, initiate a local inflammatory process

shortly after antigen stimulation. Even in ‘sterile immunizations’ and

in the apparent absence of danger signals, they secrete a burst of pro-

inflammatory cytokines and chemokines. Inflammatory effectors have

a most powerful effect in vivo: very low numbers present in a single LN

are able to recruit not only lymphocytes, but also NK cells and multiple

accessory cell types known to have a fundamental role in local defence.

Moreover, they also induce an increase in the local concentration of

sphingosine1-phosphate (S1P) what should hinder lymphocyte egress

and immobilize circulating lymphocytes at the site of the immune

reaction. These results demonstrate that CD8 differentiation into

effector functions is not necessarily preceded by an expansion phase.

They show that CD8 cognate interactions have a major role in

inducing the early recruitment of multiple cell types to the place where

the antigen is present. They demonstrate for the first time that local

inflammatory reactions can modify S1P concentrations in tissues, thus

modulating local S1P gradients. Conceptually, they also show that al-

though inflammation does modulates cognate responses, CD8 T cells

cognate responses also have a fundamental role in initiating and

modulating inflammatory reactions.

� 2012 The Author(s) � 2012 Blackwell Publishing Ltd, Immunology, 137 (Suppl. 1), 773�809
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Résumé 
 

Les lymphocytes T CD8 ont un rôle essentiel dans la protection contre les agents pathogènes intracellulaires et la 
progression tumorale. Ainsi, la compréhension de la diversité des mécanismes de différenciation des lymphocytes T CD8 
naïfs en cellules effectrices, ainsi qu’en cellules mémoires compétentes, est fondamentale pour le développement 
efficace de vaccins à cellules T. 
Dans ce travail de thèse, nous avons abordé deux questions centrales:  
(1)Très tôt après l’activation des cellules T CD8, quels sont les mécanismes par lesquels les cellules T effectrices agissent 
comme effecteurs pro-inflammatoires en recrutant d’autres cellules? Et quel est leur rôle dans la réponse immunitaire? 
(2) Quel est le rôle du contexte infectieux dans le programme de différenciation des lymphocytes T CD8 ? Est-il 
responsable de l’hétérogénéité des cellules répondeuses et a-t-il un rôle dans les différents effets protecteurs des cellules 
mémoires?  
Afin de répondre à ces questions, nous avons choisit d’utiliser des cellules T CD8 exprimant un récepteur pour l’antigène 
transgéniques (TCR-Tg) pour suivre la différentiation in vivo des lymphocytes T CD8. De plus, la méthode de RT-PCR sur 
des séries de cellules uniques, nous a permis  d’analyser la co-expression des  ARNm dans ces cellules. 

 

Comme l’utilisation à haute fréquence de cellules TCR-Tg a été fortement critiquée, nous avons comparé la 
différenciation de ces cellules avec celle des cellules endogènes (non transgéniques et rares). Dans ce premier manuscrit 
nous avons observé un comportement similaire, ce qui a renforcé l'avantage d'utiliser des cellules TCR Tg pour étudier les 
réponses immunitaires des lymphocytes T CD8. De plus, nous avons conclu que la diversité des réponses immunitaires 
des lymphocytes T CD8 n’est pas conditionnée par la fréquence de cellules naïves. 
 

Dans un deuxième manuscrit, nous avons comparé la réponse des cellules OT1 TCR-Tg (spécifiques de l’antigène OVA) à 
l'infection bactérienne LM-OVA (Listeria Monocytogènes exprimant OVA) avec la réponse des cellules P14 TCR-Tg 
(spécifiques de l’épitope GP33) à l’infection par le virus LCMV. Nous avons montré que les cellules OT1, stimulées par 
l’OVA dans un contexte bactérien (LM-OVA), présentent un profil d’expression génique distinct de celui des cellules P14 
stimulées par le GP33 dans un contexte viral (LCMV). Nous avons également co-stimulé les cellules P14 et OT1 dans une 
même souris suivant le même contexte bactérien avec LM-GP33 et LM-OVA. Dans ce cas, nous n’avons pas observé de 
différence dans le profil d’expression génique. L’ensemble des résultats démontrent que les stimulations spécifiques des 
cellules T CD8 par différents agents pathogènes génèrent des cellules T CD8 présentant des caractéristiques différentes 
qui ne sont pas déterminées par la spécificité du TCR mais plutôt par le contexte infectieux. De plus, nous avons montré 
que les cellules mémoires endogènes résultant de la stimulation des CD8 en présence de LCMV ont été plus efficaces 
après une deuxième réponse immunitaire que des cellules mémoires générées après stimulation avec LM-GP33 
(bactérie). Nous avons également observé que la protection plus efficace dans le contexte viral est associée à des cellules 
T CD8 qui présentent un phénotype de cellules T mémoires effectrices (TEM) tandis que les cellules T CD8 générées dans 
un contexte bactérien ont plutôt un phénotype associé aux cellules T mémoires centrales (TCM). Ces résultats démontrent 
que différents pathogènes induisent différents profils de différentiation des cellules T CD8 et que malgré l’élimination 
efficace des différents pathogènes dans une réponse primaire, la qualité des cellules mémoires générées au cours de 
cette réponse peut être différente. 
 

Dans un troisième manuscrit, nous avons étudié les mécanismes de recrutement d’autres cellules par les lymphocytes T 
CD8 activés à un temps précoce de la réponse immunitaire. Nous avons analysé les réponses  de cellules OT1 TCR-Tg à 
l'infection par LM-OVA, et la réponse des cellules anti- HY spécifiques des cellules mâles (contexte « stérile », non 
infectieux). Les résultats ont montré, qu’immédiatement après l’activation, les cellules T CD8 expriment des niveaux 
élevés de cytokines et de chimiokines pro-inflammatoires (TNFa, XCL1, CCL3 et CCL4). Nous avons aussi confirmé 
l'expression de ces médiateurs pro-inflammatoires dans des cellules endogènes activées. De plus, l’injection locale de ces 
effecteurs pro-inflammatoires dans l'oreille de souris induit l’hypertrophie du ganglion drainant, le recrutement de 
nombreux leucocytes (B, T, NK, monocytes, PMNs et DCs), et leur rétention dans le ganglion par l’augmentation de S1P. 
Ce potentiel inflammatoire a également été détecté après l'injection intra nodale de cellules T CD8. En contraste avec les 
fonctions classiques des lymphocytes T CD8 cytotoxiques, l'expression de médiateurs pro-inflammatoires diminue avec 
les divisions cellulaires alors que l'antigène est encore présent de manière abondante. La perte rapide de fonctions 
effectrices CD8 inflammatoires a été corrélée à la très forte diminution de l’expression du TCR à la surface des cellules 
activées et à la régulation des voies de signalisation du TCR (MAPkinases). Ces résultats  démontrent, pour la première 
fois, que les réponses CD8 comportent deux phases effectrices distinctes qui suivent des règles opposées (inflammatoires 
et cytotoxiques), et que la stimulation spécifique par l’antigène est suffisante pour induire la phase effectrice 
inflammatoire des lymphocytes T CD8, ce qui est nécessaire pour faciliter la rencontre avec des cellules rares 
présentatrices de l’antigène. 
 

En conclusion, l’ensemble de ces études ont démontré la diversité des fonctions des cellules T CD8 au cour de une 
réponse immunitaire (phase inflammatoire et phase cytotoxique) et que différents pathogènes induisent différents profils 
de différentiation des cellules T CD8, ce qui est crucial pour prédire la réponse T CD8 et envisager le développement de 
vaccins efficaces.  
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