its a pleasant journey with the help of the guides who know about the road, the other fellow travelers and the supporters. Here, I would like to thank all the people who contributed to this thesis.

I feel privileged to have worked with my advisor, Dr. Cécile BELLEUDY, who guided me with great enthusiasm and patience. She gave me freedom to explore and discover new areas in the domain of energy consumption of embedded systems and I have learnt a lot while working under her supervision. I am also grateful to Dr.

Sébastien BILAVARN for providing the constant guidance and the helpful feedback on my work. Working in the MCSOC team at LEAT, Sophia Antipolis had been an unforgettable and very pleasant experience of my life, and I am going to miss the working environment here. I would also like to thank my colleagues for numerous useful discussions.

I feel honored to have respected researchers who served on my dissertation committee. I would like to thank my reviewing committee members: Dr. Smail NIAR and Dr. Yvon TRINQUET for their time, interest, and helpful comments. I would also like to thank my examiners, who provided encouraging and constructive feedback. It is no easy task, reviewing a thesis, and I am grateful for their thoughtful and detailed comments. To the many anonymous reviewers at the various conferences and journals, thank you for helping to shape and guide the direction of the work with your informative and instructive comments. This thesis was funded by National Research Agency (ANR) of France in the frame of the OPEN-PEOPLE project. As a member of OPEN-PEOPLE, I have been surrounded by wonderful colleagues who have provided me a rich and fertile environment to study and explore new ideas. I would like to thank the project leader, Dr. Eric SENN, and Dr. Rabie BEN ATITALLAH who has been extremely supportive in allowing me to participate in LAMIH laboratory activities while pursuing my PhD studies.

A special thanks to all my friends, who have accompanied me in this wonderful journey of professional and personal growth that started in HORBIT, SIDI KHELIF (SIDI BOUZID) and ended in NICE. Thanks for putting up with me, being a support and sharing some unforgettable moments.

Lastly, I would like to thank my family for all their love and encouragement. I wish to thank my parents. They bore me, raised me, supported me, taught me and loved me. And most of all for my supportive, encouraging and patient ancee whose faithful support during the nal stages of this Ph.D. is so appreciated. I love you all dearly. Thank you. In this thesis, we focused on power and energy characterization, modeling, estimation and optimization of embedded systems running applications with operating system (OS) support. An energy consumption characterization ow is introduced and power/energy models of embedded OS services are extracted. Several hardware and software parameters are varied to estimate the embedded OS energy consumption. The obtained models are rst integrated in a simulation tool for multiprocessor scheduling to calculate the OS energy consumption . Then, we compare the overhead of the embedded OS using low power scheduling policies such as DVFS (Dynamic Voltage Frequency Scaling) and DPM (Dynamic power management) techniques. Finally, system design exploration ow is introduced. We dene and verify system requirements, using a set of tools: RDALTE and QAML, when allocating applicative tasks to processors. In this chapter, we begin by introducing the context of this thesis, then the main contributions, and we wrap up by presenting the outline of the dissertation.

Context

Nowadays technological developments have changed our lives. This has led to a rise of the automation in everyday life activities which is expected to increase further in the future. This automation is provided by computing systems that associate the electronic design and hardware components with software applications which are known as embedded systems. An embedded system is a microprocessor-based system that is incorporated into a device to monitor and control the functions of the components of this device [START_REF] Jazdi | Component-based and distributed web application for embedded systems[END_REF]. The realm of embedded systems has expanded so that they are used in a wide variety of domains ranging from home appliances, wireless communications systems, medical imaging systems, automotive/transportation 2 Chapter 1. Introduction devices to complex applications in avionics and defense.

Generally, embedded systems are composed of two main layers: a hardware layer, which is the physical support containing the hardware components, and the software layer represented by the operating system joined with the application.

The physical support is the architecture containing all major physical components that execute the application tasks through the operating system services. The application and the operating system, a set of software tasks and services managing these tasks and the system resources, constitute the software part of an embedded system. Both hardware and software elements are closely linked and they are not easily discernible.

Embedded systems are one of the most ecient tools that can be used to resolve challenges faced when designing a new system. The architecture of an embedded device allows the denition of the design's infrastructure, constraints and options.

In fact, embedded system interacts tightly with its environment: it respects physical phenomena constraints, real-time constraints, constraints of dynamism, energy consumption constraints, density constraints, robustness constraints, cost constraints, etc. Software, hardware and mixed architectures are eciently designed to satisfy these constraints.

Embedded systems become complex as they contain various hardware devices and software applications which interact with the users to handle the system. The complexity of the hardware and software layers necessitates the use of a specic support allowing application to exploit eciently the hardware platform. This support is the operating system (OS).

According to a recent poll data [START_REF] Turley | Operating systems on the rise[END_REF], as showed in gure 1.1, a little less than 73%

of embedded systems engineers, programmers and managers around the world use the embedded OS for their projects. These statistics conrm the importance and wide spreading of embedded OS. This is thanks to the wide variety of its services and capabilities allowing an ecient exploitation of hardware resources.

The ever-increasing complexity of embedded systems that are developing their computation performances, ranging from multimedia and telecommunication to medical systems, poses a great challenge for embedded systems developers and experts: power and energy consumption. In fact, power densities in microprocessors have almost doubled every three years [START_REF] Egawa | Temperature Gradient Alleviating Method for Arithmetic Units[END_REF], [START_REF] Skadron | Temperature-aware computer systems: Opportunities and challenges[END_REF]. Also, leakage power is increasing exponentially with process technology and it is expected to dominate the total power consumption. This growth in power consumption poses two main problems:

the increase of energy consumption and device's temperature dissipation. For this reason, characterizing and reducing energy consumption of embedded systems is an important design challenge for embedded system designers. As the OS is a basic component of an embedded system, it has become imperative to take its energy overhead into account when designing embedded systems. In gure 1.2, we show The reasons for non-use of operating systems in embedded projects [START_REF] Nass | An insider's view of the 2008 embedded market study[END_REF] percentages of embedded OS non-use reasons from a large-scale survey of embedded systems developers from around the world. Power consumption of OS services is one of three important reasons for non-use of OS in embedded systems [START_REF] Nass | An insider's view of the 2008 embedded market study[END_REF].

In fact, the embedded OS drives the exploitation of the hardware resources Chapter 1. Introduction eciently by oering a wide variety of services such as task management, scheduling, inter-process communication, timer services, I/O operations and memory management. Also, the embedded OS manages the overall power consumption of the embedded system components. It includes many power management policies aiming at keeping components in lower power states, thereby reducing energy consumption.

In this context, the work presented in this dissertation has been carried out at Electronics, Antennas and Telecommunication Laboratory (LEAT), from University of Nice-Sophia Antipolis. This thesis has been conducted under the French national project OPEN-PEOPLE [START_REF]PEOPLE project: Open power and energy optimization platform and estimator[END_REF] (Open Power and Energy Optimization PLatform and Estimator) gathering several academic and industrial partners (INRIA of Lille, INRIA of Nancy, Lab-STICC (Lorient), IRISA-Cairn (Rennes), THALES Communications (Colombes) and InPixal (Rennes)). The main goal of this project is to provide a complete platform to ease the design of complex systems. This platform should allow rapid power/energy estimation for complex heterogeneous systems, also, it should test dierent optimizations in order to signicantly reduce the power consumption of the system.

Contributions

Various works have been done on energy consumption characterization and modeling at dierent abstraction levels in embedded systems design. Many methodologies deal with low level models, and are dedicated to the analysis of hardware components (processor, memory or FPGA), or part of hardware components. With the complexity of embedded systems, these methodologies become not used to analyze the energy consumption. In this thesis, we will focus on approaches intended to estimate the power and energy consumption of a complete embedded system, including its operating system, in order to evaluate the performance and eciency of low power scheduling policies which are used in various embedded systems. Therefore, the main contribution of this thesis is proposing a methodology for characterizing and modeling the power/energy consumption of an embedded system including software components, the application and operating system, and hardware components. To achieve this goal, we intend to pursue a methodology beginning from power/energy modeling to high level estimation of OS services energy overhead when using lower power scheduling policies:

We propose an approach of embedded OS power/energy consumption characterization and modeling. Various methods are used to calculate energy and power consumption overheads of a set of three basic services of the embedded 1.2. Contributions 5 OS: the scheduling, context switch and inter-process communication. Furthermore, the variation of power/energy consumption of the embedded OS services is studied. Also, the impacts of hardware and software parameters like processor frequency and scheduling policy on energy consumption are analyzed.

Afterwards, we extract the power and energy consumption mathematical models and laws. The use-case embedded system used is the OMAP3530 EVM board with an OMAP3 processor and Linux 2.6.32 operating system.

Then, we implement high level models of OS services, software and hardware components taking into account the energy consumption and scheduling requirements. The obtained models will be exploited for calculating OS energy overhead when adapting low power scheduling policies. Also, they will be used for system design exploration and verication of requirements. The architecture modeling language used is AADL. We exploit AADL language functionalities and tools to model the OS services and the software application, the H.264 video decoder application. In addition, the communication between OS services and the applicative tasks has been modeled. Besides, AADL models of OMAP3 processor and the binding of applicative tasks on the hardware platform components have been developed.

Thereafter, mathematical and AADL models of OS services have been integrated at system level using a multiprocessor scheduling simulator (STORM) in order to evaluate the OS energy overhead when using low power scheduling policies: the DPM and DVFS. In addition, a global approach of models integration is introduced. It is based on three focal concepts: AADL Modeling, code transformation from AADL to STORM and OS services power/energy estimation.

Finally, we propose a design space exploration methodology and a ow of denition and verication of system requirements. The AADL models of software and hardware components are analyzed quantitatively using the Quantitative Analysis Modeling Language (QAML) and QEML tool. The denition and analysis of system requirements are performed using the (RDAL) language and RDALTE tool. The formal language OCL (Object Constraint Language) is used to describe dierent constraints and to communicate between AADL and QEML models. Taking into account the system constraints, we propose a design exploration methodology: the rst step in this strategy consists of searching the operating point that satises the maximum number of system requirements. Once the operating point is checked and validated, the design model can be reviewed and updated. The second step consists of nely reducing the exploration domain by limiting the number of execution units. The Chapter 1. Introduction target of third and last step is the allocation of execution resources to each thread once the operating point and processor numbers of our system are predicted and xed beyond the previous two levels.

Outline

This dissertation is organized as follows. After the introduction, we present in chapter 2 the research issues associated with power/energy estimation and characterization techniques for processor based embedded systems; at dierent abstraction levels, from the functional level to the transistor level. The third chapter details the methods used to determine energy and power overheads of a set of three basic services of the embedded OS: scheduling, context switch and inter-process communication. This chapter presents also the extracted OS services energy/power consumption mathematical models and laws. Fourth chapter deals with the AADL modeling of OS services and the software application, the H.264 video decoder application. Also, it presents the AADL models of the communication between OS services and the applicative tasks. The fth chapter focuses on the integration of AADL and mathematical models in STORM simulator and calculating the OS energy overhead when adapting low power scheduling policies. A ow of denition and verication of system requirements when allocating applicative tasks to the processors is proposed in the sixth chapter. Using a set of languages, RDAL and QAML, various real time and energetic constraints are checked when exploring the design.

Finally, the thesis is concluded and perspectives are drawn.

Chapter 2

Background on embedded systems energy consumption characterization, modeling and analysis In this chapter, we present the terminology of power and energy dissipation, characterization and estimation in embedded systems. Then, we introduce research eorts and tools related to power and energy consumption estimation of embedded systems at dierent abstraction levels: the microprocessor, hardware and software abstraction levels.

Power and energy dissipation in embedded systems

Nowadays, the number of transistors in electronic circuits grows with the development of technology so that each circuit might have millions of transistors packed Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis inside. Moore's law [START_REF] Gelsinger | Moore's law -the genius lives on[END_REF] conrms this huge increase of number of transistors on a chip. According to him, this number doubles approximately every two years, for decades.

Due to the huge number of transistors in electronic devices, dierent issues related to the overall performance of a system appear prominently. Energy consumption of embedded systems is an important issue that resulted from the huge growth of the number of transistors.

Reducing energy and power dissipation of embedded systems is now a critical challenge for a large number of electronic corporations. Now, to analyze, characterize and estimate the energy consumption, we examine the CMOS (Complementary Metal-Oxide Semiconductor) circuits that embedded systems consist of.

In CMOS technology-based systems, there are two principle sources of power dissipation: 1) dynamic power dissipation, which arises from the repeated capacitance charge and discharge on the output of the hundreds of millions of gates in modern chips and depends on the processor frequency, and 2) static power dissipation which arises from the electric current that leaks through transistors even when they are turned o.

The power dissipation P in CMOS gates including dynamic and static components is depicted by equation 2.1:

P = P dynamic + P static (2.

1)

Where P dynamic and P static represent respectively the dynamic and static power dissipation.

Also, the total power dissipation in CMOS system can be represented by this expression 2.2:

P = P SW + P SC + P LK (2.2)
Where, P LK is the static power or leakage power, the remaining terms represent the dierent parts of dynamic power consumption.

The rst term of the equation P SW , represents the switching power dissipation, the major contributor in dynamic power consumption, which is caused by the charging and discharging of gate capacitances when the output changes between high and low levels. During the transition of the output signals, an amount of power P SC is dissipated, the short-circuit power, due to the direct path between the power supply and ground.

The dynamic power dissipation, P dynamic , of a CMOS circuit is depicted by an approximate relation given by equation 2.3 which relates the operating frequency F op to the supply voltage V op and the total load capacitance of all gates C T .

P dynamic = λ × C T × V 2 op × F op (2.3)

Power and energy consumption characterization and estimation in embedded systems 9

where λ is the activity factor -i.e., the fraction of the circuit that is actively switching.

In a CMOS device including n transistors {T R i , 1 ≤ i ≤ n}, the static power consumption, P static , is calculated as a function of the number of transistors, the leakage current Ilk i of each transistor T R i and the supply voltage V op . It is represented by equation 2.4

P static = 1≤i≤n (Ilk i × V op) (2.4)
Actually, when not switching, transistors in CMOS circuits lose negligible power, the static power. However, due to the shrink of transistors size, the augmentation of device speed and chip density, the power they consume has increased dramatically.

Consequently, the amount of current leakage raises [START_REF] Siddharth Rele | Optimizing static power dissipation by functional units in superscalar processors[END_REF].

The leakage of power becomes a signicant issue in embedded systems as it reduces the battery service life. To this eect, embedded systems designers propose various techniques aiming at controlling and minimizing the OFF current of CMOS circuits in both standby and active modes of the circuit [START_REF] Fallah | Standby and active leakage current control and minimization in cmos vlsi circuits[END_REF].

In this work, we consider that static power is an important factor that inuences the total power consumption of the device and can not be disregarded any further.

Power and energy consumption characterization and estimation in embedded systems

Power and energy in electrical circuits

Power and energy consumption are important performance metrics for embedded systems. In electrical circuits, the power P is the rate of doing work. It is produced by an electric current I, consisting of a charge of N c coulombs every N s seconds, passing through an electric potential dierence or voltage V . It is measured in watts (W). The power is given by equation 2.5:

P = (N c/N s) × V = I × V (2.5)
Formally, the energy consumed by a system is the amount of power dissipated during a certain period of time. For instance, if a task T occupies a processor during an execution interval of [a, b] then the energy consumed by the processor E T during this time interval is given by equation 2.6:

E T = b a P (t) dt (2.6)
The following section covers the basic terminology that we will use in this thesis dissertation. An overview of power/energy consumption characterization and estimation will be presented. Then, in subsequent sections, we detail the dierent Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis abstraction levels of microprocessor based embedded systems. Furthermore, we review the state of the art of power/energy consumption estimation and analysis of microprocessor based embedded systems at dierent abstraction levels.

2.2.2 Overview of power and energy consumption characterization and estimation

Power/energy consumption characterization

Characterizing energy consumption of an embedded system consists in studying the variation of energy consumption of its hardware and software parts. This step aims at determining the energy overhead of dierent components of the system as a function of various parameters. As a result of the characterization step, mathematical models and laws of the power and energy consumption are extracted : the modeling of energy overhead. The extracted models depend on the parameters varied to characterize the power and energy dissipation. The precision of the models is checked by calculating the error rate which is the dierence between the model's values and the measured or estimated values. The energy consumption characterization is based on direct measurements on the platform or on energy estimations.

Power/energy consumption estimation

In the design ow, the power estimation is a process allowing the evaluation of the power consumption of an existing design independently of the abstraction level. It aims to check whether power and reliability constraints are veried or not. Estimation step helps to choose the chip parts that ensure a low cost for the embedded systems designers. Depending on the embedded system complexity, functionalities and measurement points, the energy consumption could be estimated based on either power and energy consumption models, deduced from a lower abstraction level, or on simulations using specic simulators or on verication resources in the design ow [START_REF] Ahuja | Applying verication collaterals for accurate power estimation[END_REF]:

Power estimation using simulation: This kind of power estimation is based on simulations of the embedded system energy consumption. The simulation is proportional to the activity/toggles of the design.

Power estimation using mathematical models: Estimation of energy and power consumption can be made based on mathematical models that describe the dependance of power consumption of the embedded system on certain parameters such as the processor frequency, the memory size, the capacitance, etc.

Power and energy consumption estimation of embedded systems at dierent abstraction levels 11

Power estimation using verication resources in the design ow:

Dierent verication resources, which are a set of design tests built during the verication process of a high-level design, are used to enable power consumption estimation and proling. Generally, this estimation is specic to a high-level synthesis and power estimation framework.

At an abstraction level (n -1), the estimation process generates power/energy consumption models that can be used to characterize the energy consumption at an abstraction level (n). Figure 2.1 depicts the global ow of power/energy estimation, characterization, modeling and analysis at abstraction levels (n -1) and (n).

Power and energy consumption estimation of embedded systems at dierent abstraction levels

The power/energy estimations are centered around two aspects: the power model granularity and the system abstraction level. The rst aspect concerns the granularity of the relevant activities on which the power model relies. It covers a large spectrum that starts from a ne-grained level, such as logic gate switching, and stretches out to a coarse-grained level like hardware component events. Fine-grained power estimation, in general, yields a more correlated model with data and handles various technological parameters. On the other hand, coarse-grained power models depend on micro-architectural parameters that cannot be determined easily. Let us highlight that the power estimation accuracy is not altered by the chosen granularity level, however, it depends rst on the characterization phase of each activity and second on the computing of the related occurrences while carrying out the application.

Even when using coarse-grained activities, the characterization in term of power or energy cost can always be done at a lower level (board measurements, transistor, gate or RTL), and after that, the obtained values can be used at a higher abstraction level. The second aspect of power/energy estimation involves the abstraction level on which the system is described. It starts from the usual Register Transfer Level (RTL) and extends until reaching the algorithmic level. As we go from higher to lower levels, the power evaluation time increases, which is indirectly proportional to the accuracy. The aspects presented above are correlated. Indeed, dierent power estimation speed/accuracy trade-os can be achieved according to the power model granularity and the abstraction level from which the relevant activities should be extracted. Figure 2.2 shows the dierent abstraction levels of microprocessor based embedded systems. The view of the components of microprocessor-based embedded systems is considered as the system-level view. Three main abstraction levels constitute the system level view which are: the software, the microprocessor and the hardware abstraction levels.

Abstraction level (n)

Abstraction level (n-1) The software abstraction levels describe the software part of the system including applications and operating system; from a high level model to the assembly language.

The microprocessor abstraction levels extend from the transistor level to the func-2.3. Power and energy consumption estimation of embedded systems at dierent abstraction levels 13 and tools for characterizing, estimating and modeling power/energy consumption at dierent abstraction levels in embedded system design. In the the remainder of this section, we present an overview of these approaches and tools.

Estimation and modeling of power/energy consumption at microprocessor abstraction levels

In this section, we present related works and tools for dierent microprocessor abstraction levels: the transistor level, the gate level, the register-transfer level, the micro-architecture level, the instruction set architecture level and the functional level.

Functional level:

At this level, the processor's architecture is described. This architecture is divided into dierent functional blocks. Each block represents a unit ensuring a specic functionality such as the memory unit, the processing unit etc.

Using simulations or measurements, the power consumption of each block is modeled. The total power consumption is then given as the sum of the power Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis consumption of each functional block [START_REF] Schneider | Power estimation on functional level for programmable processors[END_REF]. This division aims at clustering the components that are concurrently activated when a code is running.

In [START_REF] Laurent | Functional level power analysis: An ecient approach for modeling the power consumption of complex processors[END_REF], the authors introduce a new instruction level power estimation methodology named the Functional Level Power Analysis (FLPA). In order to estimate the power consumption of hardware platform when running a specic application, the proposed approach is based on identication of functional blocks inuencing the processor power consumption. Laurent et al. [START_REF] Laurent | Functional level power analysis: An ecient approach for modeling the power consumption of complex processors[END_REF] divide the processor architecture into dierent functional blocks. Then, they vary algorithmic parameter values which depend on the executed algorithm, and architectural parameters values which depend on the processor hardware characteristics. Finally, they study the variation of processor power consumption as a function of these parameters. Using this methodology, a power estimation tool is developed: the SoftExplorer tool [START_REF] Senn | Softexplorer: Estimation, characterization, and optimization of the power and energy consumption at the algorithmic level[END_REF]. This tool realizes the suitable tradeo between the estimation accuracy and time in order to ensure a rapid and reliable feedback to the designer.

In [START_REF] Senn | Softexplorer: Estimating and optimizing the power and energy consumption of a C program for DSP applications[END_REF], the SoftExplorer tool is used to estimate the power/energy consumption of an algorithm directly from the C program. Also, it is used to optimize the power/energy consumption of an application. The authors perform a functional-level power analysis to extract the dierent power models and describe how to perform the best data mapping for an algorithm. To validate the proposed methodology, various processors have been used such as the (ARM7), the low-power (C55) and the VLIW (C62) processors. Furthermore, very important phenomena like pipeline stalls, cache misses, and memory accesses are taken into account.

Instruction set architecture level:

The Instruction-Set-Architecture abstraction level is related to programming aspects. It describes the processor's addressing modes and registers. Also, it includes instructions that can be executed on the processor, the set of native commands and machine language instructions that specify the operation to be performed. During the instruction set architecture power estimation, a power consumption cost is assigned to each individual instruction, by considering pipeline stalls and cache misses.

Instead of analyzing the hardware components behavior, such as the number of memory access and power overhead of transistors, several studies have proposed instruction-level approaches to model the energy consumption.

The work done in [START_REF] Bona | Reducing the complexity of instructionlevel power models for vliw processors[END_REF] relies on instruction-level energy estimation for VLIW (Very Long Instruction Word) processors. Power consumption have been modeled for various components of the system: the core, the register le, the instruction and data caches.

Power and energy consumption estimation of embedded systems at dierent abstraction levels 15

This work shows the reduction of the complexity of the energy model for VLIW cores, while preserving a good level of accuracy. Then, the authors proposed an estimation engine that provides power consumption estimates for software running on a given hardware architecture by interpreting an executable program and simulating and proling the eects of each instruction on the main components of the architectural state of the system. To obtain an overall hardware/software power optimization for VLIW embedded systems, the authors use various instruction-level techniques such as operation clustering which consists in grouping in the same cluster the operations with energy cost values close to each other.

In order to estimate the energy consumption of a given program under dierent cores and to nd the energy-optimal number of cores used for execution, the authors in [START_REF] Wang | An instruction-level energy estimation and optimization methodology for GPU[END_REF] proposed an instruction-level methodology consisting in predicting the energy consumption. The mechanism of prediction is achieved using an output of initial programs compilation called Parallel Thread Execution (PTX) codes [START_REF]PTX: Parallel Thread Execution ISA[END_REF], a pseudo-assembly language used in NVIDIA's CUDA [6] programming environment. The output of the proposed approach is the estimated energy consumption under dierent number of active stream multiprocessors. Tests have been carried on several NVIDIA CUDA benchmarks.

Wang et al. [START_REF] Wang | An instruction-level energy estimation and optimization methodology for GPU[END_REF] assign to each type of PTX instructions an energy overhead.

As showed in equation 2.7, the energy consumption within one thread is the sum of products of unit energy consumption of one type of PTX instruction and the number of instructions of that type.

E thread = 1≤i≤n (e i × n i) + o 1 (2.7)
where E thread , e i and n i represent respectively the energy consumed by one thread, the energy consumption of a certain type of PTX instruction and the number of instruction of type i . The parameter o 1 is the energy consumed when the thread is created.

Micro-architecture level:

In order to implement the set of instructions, the interconnections of dierent parts of the processor and the communication between the micro-architectural components of the machine, such as processor registers and caches, are described at the micro-architecture abstraction level.

Hidaji et al. [START_REF] Hidaji | Microarchitectural power estimation and optimization[END_REF] are interested in power estimation and optimization at microarchitectural abstraction level. To optimize power consumption, dierent techniques have been used, such as the Clock-gating technique that is based on stopping the clock of some parts of the design when these parts are idle and therefore reducing the switching power, and the common-case technique by Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis spotting the most common operation conditions and optimize their switching power. Also, Hidaji et al. achieve a memory optimization using the commoncase technique.

In [START_REF] Kim | Microarchitectural power modeling techniques for deep sub-micron microprocessors[END_REF], Kim et al. proposed micro-architectural level power modeling methodologies approach for deep sub-micron microprocessors. In order to determine the execution time and circuit specic power consumption, the authors included detailed micro-architectural and circuit models in their approach. They modeled power consumption of dierent micro-architectural components, such as transistor capacitance components, by switching events with an embedded cycle-based logic simulator, execution units and memory accesses etc. Also, they introduced an accurate micro-architectural event modeling methodology to give a cycle-accurate power estimation of long-latency and multi-cycle operations such as external I/O access. The proposed technique combines simplied circuit-level capacitance extraction and cycle-based logic simulation embedded into a micro-architectural level simulator: SimpleScalar [START_REF] Austin | Simplescalar: An infrastructure for computer system modeling[END_REF].

A new technique for processor power optimization at micro-architectural level, called micro-architectural power analysis (MPA) for microprocessors, is presented in [START_REF] George | Microarchitectural power analysis for cpu power/performance optimization[END_REF]. The simulation environment used in this work is the Simplescalar microprocessor simulator. The proposed technique consists of three mechanisms: dynamic, static and multivariate power analysis. Based on architectural simulations and dynamic power models, the dynamic power analysis is performed by analyzing the power consumption behavior. The authors integrate power monitors, which are parts of power models, into each functional block within the architectural performance simulator to determine the power consumption of each block. In the static micro-architecture power analysis step, the power consumption of a microprocessor under dierent workloads is estimated. This analysis permits the estimation of full-chip and each functional block power consumption when running dierent applications such as oce applications, games and multimedia applications, scientic computational applications etc.

Using the results of the dynamic and static micro-architectural power analysis, the multivariate power/performance analysis step identies the possible power reduction targets within complex microprocessor architectures. Cai et al. [START_REF] George | Microarchitectural power analysis for cpu power/performance optimization[END_REF] study the eectiveness of the proposed micro-architecture circuit implementation by evaluating the full-chip power consumption, the functional block power consumption, the average performance and the interfaced functional block impacts. For instance, they compare the power reduction between two dierent implementations A and B: the full-chip and functional block power reduction rates are respectively 2% and 10% when using the circuit implementation A, whereas, when the other circuit implementation B is used, these rates are Register-transfer level:

In digital circuits, the register-transfer level (RTL) abstraction level describes the mechanism for exchanging data between hardware registers using digital signals. It also details the logic functions of these signals. To estimate accurately the power consumption of a circuit at the RTL abstraction level, the hardware/software designers need three entries: a design description using a specic hardware description language such as Very-high-speed integrated circuits Hardware Description Language (VHDL) [START_REF]VHDL Analysis and Standardization Group[END_REF], a trace of RTL simulation using a standard le format, such as the Value Change Dump (VCD) format, and power/energy characterization libraries.

In [START_REF] Ahuja | Power estimation methodology for a high-level synthesis framework[END_REF], Ahuja et al. present a system-level power estimation methodology, which is based on a high-level synthesis framework and supports suciently accurate power estimation of hardware designs at the system level.

To provide a reasonable power estimation while remaining at high level, the authors propose a methodology using register-transfer level probabilistic power estimation technique controlled by the system-level simulation. As showed in gure 2.3, the methodology is divided into dierent steps: rst, Ahuja et al.

convert the system-level model of the design to an equivalent cycle-accurate RTL model using Esterel Studio tool [START_REF]esterel studio[END_REF] in oreder to synthesize the high-level models to RTL implementations. Then, they simulate the high-level model and generate its VCD le. After that, they apply an algorithm to the VCD le generated in order to extract the activities associated with each signal of the RTL design, such as the number of simulation ticks for which the variable value remains unchanged, from the system level simulation dump. Finally, they perform the mapping of system-level variables to RTL signals and use the algorithm outputs to nd the activity information of the remaining signals, to generate the power models and to analyze the power consumption using RTL power estimator: the "PowerTheater".

Gate level:

The gate level describes the ip ops wire-connected to the logic-gates (such as NOT, AND, NOR, etc.). The estimation of power consumption at this level is achieved using a specic libraries of logic gates. Each library provides the dierent elements allowing the power characterization of dierent gates.

The embedded system designers can calculate the currents in the various logic gates and thus monitor the power consumption of the circuit.

In [START_REF] Sha | Design and validation of a performance and power simulator for powerpc systems[END_REF], energy consumption modeling is done from a gate-level description.

The authors associate the energy cost with the occurrence of certain architectural events such as the ALU events which represent a logic instruction Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis (addition, substraction etc.). These events, which are modeled for timing and energy estimates, are computed simply by some additional counting. In fact, the proposed model assumes that the total energy consumed by a processor is the sum of its idle energy consumption E idle and the energies consumed by the dierent events executed by the pipeline, execution units and caches. The total energy consumption of an application E total is depicted by equation 2.8:

E total = E idle + i (e i × n i) (2.8)
Where i and e i represent respectively the set of events and their energies. The parameter n i denotes the number of executed events of event type i.

To validate their approach, the authors decided to model the power consump- Transistor level:

The transistor level is the lowest abstraction level. It is based on modeling the behavior of the basic electrical elements such as transistors, resistors, capacitors... etc, and describing the interconnection between these primitive electrical elements. The behavior description is generally performed by using equations or specic diagrams.

In [START_REF] Basmadjian | Modelling and analysing the power consumption of idle servers[END_REF], Basmadjian et al. perform a transistor level power estimation and characterization of idle servers. The authors provide power models for multi-core processors, hard disks, memories, power supply units and fans. Basmadjian et al. identify the relevant energy-related attributes allowing to build the basis for the power consumption prediction models. Since the power consumption of each core depends upon its number of transistors, the authors consider the power consumption of the processor core as the sum of power consumption of its transistors. The power consumption P j,i of j th transistor, inside the i th processor's core, is given by equation 2.9.

P j,i = I j,i × V j,i (2.9)
where I j,i and V j,i represent respectively the current and voltage of the j th transistor of the i th core.

The authors study the impact of frequency for a given voltage on the power consumption of dierent server's components. They set up machines having various hardware characteristics, such as the processor's type: Intel and AMD processors, the number of cores: dual-/ quad-/ hexa-core processors, dierent memory modules: DDR2 and DDR2, as well as various energy-saving mechanisms (e.g. Intel SpeedStep, AMD Cool'n'Quiet).

A new approach for simulating a transistor-level design with a VHDL testbench was adopted in Singh et al.'s work [START_REF] Singh | Using a VHDL testbench for transistor-level simulation and energy calculation[END_REF]. The proposed test-bench, implemented using the Mentor Graphics digital design tool suite [2], reads Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis the transistor level design's outputs and supplies the inputs accordingly. The proposed method calculates automatically the power and energy consumption and performs automated testing of functional correctness. Singh et al. apply this approach to specic circuits, the NULL Convention Logic (NCL) circuits [START_REF] Fant | Null convention logic/sup TM/: A complete and consistent logic for asynchronous digital circuit synthesis[END_REF], and their transistor-level designs were successfully simulated using selfchecking exhaustive VHDL test-benches.

In [START_REF] Shiue | Accurate power estimation for cmos circuits[END_REF], Shiue et al. estimate the power consumption at transistor level using a new analytical equation derived from a particular model, based on the physical law MOSFET [START_REF] Bowman | A physical alpha-power law mosfet model[END_REF] models and BSIM3v3 manual [1], having thus a simple mathematical form and ensuring a high degree of accuracy for the power estimation of CMOS circuits. The proposed analytical equation model was validated on their own benchmark example and shows 2.72% error in average.

Based on the internal capacitance switching and discharging currents of such circuits, the authors present in [START_REF] Rosselló | A compact gate-level energy and delay model of dynamic cmos gates[END_REF] an accurate analytical expressions to compute the dissipated energy and the propagation delay of CMOS gates. They use a good metric to evaluate a design called the energy delay product (EDP).

The obtained results show that the position of the switching transistor on the overall gate delay can lead to a 20% of delay variation. Also, this study concluded that short-circuit current of the output inverter optimizes the gate's energy consumption.

Next section details the related works and tools to power/consumption estimation at hardware abstraction level.

E RAM = c1 × n_read_accesses + c2 × n_write_accesses +c3 × n_ref reshes + executionperiod P Standby (2.11)
where c1, c2, c3, n_read_accesses, n_write_accesses and n_ref reshes represent respectively the average energy for read, write and refresh operations, the number of read accesses, write accesses and memory refreshes.

The software abstraction levels include mainly the operating system (OS) and the software application. The hardware/software designers aim at estimating the power consumption of the whole system at dierent abstraction levels, including the soft-

22

Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis ware level. For this reason, determining and estimating the power/energy cost of the OS are highly required. In the next section, we present various research works related to the characterization, estimation and modeling of power/energy consumption of embedded OS.

Characterization of embedded OS power/energy consumption

In order to characterize energy and power overhead of embedded OS, several studies have proposed evaluating its energy consumption at dierent abstraction levels.

Dick et al. [START_REF] Dick | Power analysis of embedded operating systems[END_REF] analyze the power consumption of the µCOS operating system which is running several embedded applications on a Fujitsu SPARClite processor based embedded system. This study is the rst work that characterizes the power consumption of an OS. The authors developed a general framework to measure the power consumed by the application and operating system routines. They present quantitative results for energy and time consumed by various operating system routines, such as semaphores, task control, synchronization, and timer management.

Also, Dick et al. show that power/energy characterization and analysis of OS services help to optimize and reduce the power consumption of embedded system's software layer. This study demonstrates that the OS functions have an important impact on the total energy consumption of an embedded system. This impact depends on the complexity of the applications. This work represents only an analysis of operating system power consumption. Dick et al. did not determine power/energy consumption models and laws.

Tao Li et al. introduce in [START_REF] Li | Run-time modeling and estimation of operating system power consumption[END_REF] a routine level power model of OS tasks. As depicted by equation 2.12, the energy consumed by the OS services E OS is considered as the sum of the energies consumed by dierent OS routines.

E OS = Alli (P OS_routine,i × T OS_routine,i) (2.12)
where P OS_routine,i and T OS_routine,i represent respectively the power and execution time of the i th OS routine invocation.

This work evaluates the power characteristics of these OS routines and extract power consumption models. The authors show that OS routines power consumption depends on the test benchmarks. Interestingly, they observe that this power is strongly correlated with OS performance and the Instruction per cycle (IPC) metric. This metric is exploited for power/energy characterization of embedded OS services. When validating the approach to track the OS routines energy overhead, the authors found that the error rate per routine estimation is less than 6%. Low power techniques such as dynamic voltage scaling are not applied to the OS code and not considered in this work.

Power and energy consumption estimation of embedded systems at dierent abstraction levels 23

Acquaviva et al. propose in [START_REF] Acquaviva | Energy characterization of embedded real-time operating systems[END_REF] a new methodology to characterize the OS energy overhead. They measure the energy consumption of the eCos Real Time Operating System running on a prototype wearable computer, HP's SmartBadgeIII.

Then, they study the energy impact of the RTOS both at the kernel and at the I/O driver level and determine the key parameters aecting the energy consumption.

This work studies the relation between the power and performance of the OS services and the CPU clock frequency. Acquaviva et al. perform an analysis but they do not model the energy consumption of the OS services and drivers.

In [START_REF] Kee Tan | Embedded operating system energy analysis and macro-modeling[END_REF], Tan et al. model the OS energy consumption at the kernel level. They classify the energy into two groups: the explicit energy which is related directly to the OS primitives and the implicit energy resulting from the running of the OS engine. The authors explain their approaches to measure these classes of energy and they propose energy consumption macro models. Then, Tan et al. validate their methodology on two embedded OSs, µCOS and Linux OS. However, the scope of the proposed work in [START_REF] Kee Tan | Embedded operating system energy analysis and macro-modeling[END_REF] is limited in some ways as it targets OS's running on a single processor. Also, the authors do not consider the I/O drivers in the proposed energy consumption model.

In [START_REF] Baynes | The performance and energy consumption of embedded real-time operating systems[END_REF], Baynes et al.

describe their simulation environment, Simbed, which evaluates the performance and energy consumption of the real time operating system (RTOS) and embedded applications. The authors compare three dierent RTOS's: µCOS, Echidna and NOS. They found that the OS energy overhead depends on the applications: it is so high for the lightweight applications and diminishes for more compute-intensive applications. Nevertheless, Baynes et al.

perform high level energy simulations to extract power/energy models. These models are not realistic because they are not deduced from measurements on actual hardware platform. Also, the energy consumption of OS services compared with the total application energy consumption was not calculated.

Guo et al. [START_REF] Guo | A hopeld neural network approach for power optimization of real-time operating systems[END_REF] introduce a novel approach using hopeld neural network to solve the problem of RTOS power partitioning; they aim at optimally allocating the RTOS's behavior to the hardware/software system. They dene a new energy function for this kind of neural network and some considerations on the state updating rule. The obtained simulation results show that the proposed method can perform energy saving up to 60%. This work does not consider energy macro-modeling and RTOS services.

Zhao et al. [START_REF] Zhao | Fine-grained energy estimation and optimization of embedded operating systems[END_REF] propose a new approach to estimate and optimize the energy consumption of the embedded OS and the applications at a ne-grained level.

As showed in gure 2.4, the proposed estimation framework consists of three major components: a full-system instruction level simulator to execute the OS and applications; a micro-architectural power simulator to estimate cycle-accurate They modify the process interface by vectorizing the communications between processes and selecting an energy-ecient IPC mechanism. This work attempts to [START_REF] Zhao | Fine-grained energy estimation and optimization of embedded operating systems[END_REF] relocate computations from one process to another so as to reduce the number and data volume of IPCs. These transformations provide complementary optimization strategies to traditional compiler optimizations for energy savings.

Software energy analyzer readelf

Symbol info table

…

OS-routine energy consumption

Dhouib et al. [START_REF] Dhouib | Modelling and estimating the energy consumption of embedded applications and operating systems[END_REF] propose a multi-layer approach to estimate the energy consumption of embedded OS. The authors start by estimating energy and power consumption of standalone tasks. Then, they add energy overheads of OS services which are timer interrupts, inter-process communication and peripheral device accesses. They validate the multi-layer approach by estimating the energy consumption of an M-JPEG encoder running on linux 2.6 and deployed on a XUP Virtex-II pro development board. Low power scheduling policies are not considered in this work.

Brandolese et al. [START_REF] Brandolese | Measurement, analysis and modeling of rtos system calls timing[END_REF] introduce an approach to characterize the OS for embedded ner (SES) [START_REF] Shin | Energy-monitoring tool for low-power embedded programs[END_REF] as energy measurement tool. Because the SES tool was not designed to attribute energy consumption to the µC/OS -II kernel functions, the authors modify its structure slightly to measure the energy consumption of each kernel function. In order to save the OS energy consumption, the authors improve the utilization of the cache memory using the cache locking mechanism: in a rst step, to determine the function to lock into the cache, they determine the ratio of the energy consumption which is the percentage of the total OS energy consumption and invocation frequency of µC/OS -II kernel functions, such as OSSched() and OST askChangeP rio() functions. Then, they lock frequently used OS routines into the cache, such as switching and timer interrupts, and rearrange the code to avoid cache contention between these routines. To handle cache locking from an application, the authors add a new layer, the energy aware (EA) layer, where the application programming interface (API) and the cache management modied functions were implemented. To lock and unlock the instruction or data cache, the cache management functions were implemented in the hardware abstraction layer (HAL).

As depicted in gure 2.5, using the EA API functions, software application can lock each OS kernel function in the cache. The (EA) manager layer sends the function addresses to be locked to the memory simulator, where the requests are handled. Experimental results show that total energy savings can increase to 5.9%.

Power and energy consumption estimation of embedded systems at dierent abstraction levels 27

In [START_REF] Haukilahti | Energy characterization of a RTOS hardware accelerator for SoCs[END_REF], Haukilahti characterizes the energy consumption of a RTOS hardware accelerator called RTU. As depicted by gure 2.6, the ow of the proposed method is presented. The synthesis and power optimization of RTU is performed using the Synopsys Design Compiler tool. The author generates a gate-level netlist after the synthesis step. Then, he simulates the generated netlist using an RTL-level simulator called M odelsim. To determine the energy consumption of dierent system calls, such as thread_create, semaphore_create, and task_switch, Haukilahti uses benchmarks that generate one switching activity le for each system call performed by the RTU. Also, the execution times are recorded and the power consumption of each call is estimated using a power analysis tool called Synopsys Design Power.

The tool performs power estimation at gate-level for each switching activity le.

The power optimization process is achieved using a power optimization tool called

Power Compiler and the switching activity les. The simulations show that the power consumption of the RTU is almost independent of what action it performs.

The variation from the average power consumption is less than 4 percent. However, in this work, the energy consumption of OS calls was not modeled and the variation of power consumption as a function of dierent software or hardware parameters was not studied.

Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis

Gate-level netlist

Synthesis

RTL design

Test-bench

Gate level simulation

Switching activity

Power optimization

Library

Power optimized netlist Test-bench

Gate level simulation

Switching activity file for system call "i", 1≤i≤n

Power analyzer

Average power consumption for system call "i"; 1≤i≤n 1-Hardware platform synthesis:

Power and energy consumption estimation of embedded systems at dierent abstraction levels 29

At this step, the authors compose a representative SoC with basic hardware components allowing the binding of RTOS. They synthesize the platform by describing the wire delays and parasitics at gate-level.

2-Association of RTOS routines with memory addresses:

The authors compile and load the RTOS into the system. Then, they extract a memory dump of the RTOS and its tasks. This dump allows to associate any routine name with its memory addresses.

3-Gate level system execution:

At this level, the application tasks are executed at gate level and the RTOS calls are activated for a long period of time to ensure a high accuracy of energy characterization.

4-Generation of VCD le:

This Also, in this work, the power/energy consumption was not modeled.

Conclusion

In this chapter, we have described the research issues associated with power/energy estimation and characterization techniques for processor based embedded systems, at dierent abstraction levels, from the functional level to the transistor level.

Embedded operating system is integrated to handle applications upon hardware architectures. Research studies show that the OS not only steals a signicant portion of the machine cycles but it can also consume a large part of embedded system's total energy. Therefore, energy and power estimation of operating systems constitutes a challenge for embedded system designers.

In more recent works, characterization of low power OS was not considered. It is not mentioned what are the processor capabilities and which low power policy is used. Also, some works did not model the energy consumption of OS services. In the sequel of this dissertation, we will address all these topics. The next chapter introduces a ow of OS energy characterization. We rst study the variation of the energy and power consumption of the embedded OS services. We detail the methods used to determine energy and power overheads of a set of embedded OS basic services: scheduling, context switch and inter-process communication. We analyze the impact of hardware and software parameters like processor frequency and scheduling policy on the energy consumption and we deduce models and laws of the power and energy consumption. In this chapter, a ow of embedded OS power/energy consumption characterization is introduced. First, an overview of embedded operating system is presented. Then, we detail the methods used to determine energy and power overheads of three basic services of the embedded OS: scheduling, context switch and inter-process communication. Also, the variation of power/energy consumption of these embedded OS services is studied. Furthermore, the impact of hardware and software parameters like processor frequency and scheduling policy on energy consumption is analyzed. Mathematical models for power and energy consumption are extracted. The use-case embedded system used is the OMAP3530EVM board with an OMAP3 processor and Linux 2.6.32 operating system. Chapter 3. Characterization and analysis of embedded OS services energy consumption

Introduction

As mentioned previously in last chapter, embedded systems become so complex as they contain various hardware devices and software application which interact with users to handle these systems. The complexity of hardware and software layers necessitates the use of a specic support that allows the application to exploit eciently the hardware platform. This support is the embedded OS; it includes libraries and device drivers and oers a wide variety of services. Estimating and modeling the energy consumption of OS routines and services constitute a challenge for embedded system designers. In this chapter, First, we propose a ow of OS energy characterization. We study the variation of the energy and power consumption of the embedded OS services. We detail the methods used to determine power/energy overheads of embedded OS basic services: scheduling, context switch and inter-process communication. Then, we analyze the impact of hardware and software parameters like processor frequency and scheduling policy on the OS energy consumption in order to deduce models and laws that estimate this consumption.

Overview of embedded OS

In this section, an overview of embedded OS is presented. We present the OS middleware in embedded systems and detail its dierent services.

OS middleware in embedded systems

In embedded systems, the OS serves as an interface between the software application and the hardware platform. It is an important software component in many embedded system applications since it drives the exploitation of the hardware platform by oering a wide variety of services: task management, scheduling, inter-process communication, timer services, I/O operations and memory management. Also, the embedded OS manages the overall power consumption of embedded system components. It includes many power management policies aiming at keeping components into lower power states, thereby reducing energy consumption.

Figure 3.1 shows the disposition of embedded systems' dierent layers. The application is represented by a set of (n) tasks {T ask i, 1 ≤ i ≤ n}. The embedded OS includes (m) services used by the application to exploit the hardware platform resources. The set of these services is {S j, 1 ≤ j ≤ m}.

In next section, main functionalities and services of embedded OS are detailed.

Application

Embedded OS services and functionalities

To bind the software application tasks on the hardware platform components, the embedded operating system provides various services and functionalities. The main services are detailed below.

Interprocess communication and synchronization:

This service is called when two or more processes need to communicate with each other. The OS ensures the data exchange, resources share, and synchronization between these processes. The process synchronization access is achieved using signals, mutexes and semaphores. The OS uses dierent technique for data exchange between the processes, such as, named pipes, anonymous pipes, message queues and shared memory. These mechanisms will be Chapter 3. Characterization and analysis of embedded OS services energy consumption detailed later when characterizing the energy consumption of this service.

Clock/timer functions: Embedded OS uses heavily the timer functions to schedule the dierent processes. This service could be exploited by the user till it provides a set of basic functions such as getting the current time and the elapsed time.

Device management: This service consists in handling peripheral devices through the processor using a set of commands and signals. The component that makes these commands easily understandable by hardware devices is named the device controller. The latter is an interface between the OS and the peripheral device. The OS software routines that control each device is called device driver. The OS needs many device drivers to ensure the proper functioning of dierent peripheral devices. For this reason, when a new peripheral is added to the embedded system, its device driver should be integrated in OS code.

Memory management: The OS includes a unit called memory management unit that manages the accesses to embedded system memory requested by the processor. This unit allocates dynamically the memory when the application tasks need it. Then, it frees the memory when they are not required for reuse.

Also, the OS handles the swapping between main memory and disk when the main memory is too small to hold all the data that needs the application for execution.

Besides, as showed in gure 3.2, the memory management unit uses the virtual memory mechanism to convert the logic or virtual addresses, which are used by the processor, to a physical addresses that allow the access to various memory locations called pages. This address conversion is performed via an associative cache called translation look-aside buer (TLB).

Tasks handling: This service controls the dierent states of applicative tasks.

These tasks are represented by processes or threads. Processes have distinct address spaces, while threads share the same address space inside a process.

The OS handles the creation, the execution and the termination of application tasks. The task has three possible states: running, blocked and ready states. When the task executes its routines on the processor, it is considered in running state. A task is in ready state means that it is ready for execution but can not run because the processor is used by another task. An application task is in blocked state when it is unable to run until some external event happens; for instance, it is waiting for a resource to be available. Dierent transitions between task's states are showed in gure 3.3. Tasks scheduling: The OS makes the application tasks scheduling decision.

Memory

It includes a module that denes which tasks are running on the processing platform at every time instant. Scheduling routines determine the interleaving of execution for application tasks on the target processor. This interleaving is named a schedule. The schedule must be produced to ensure that every job of task executes on processor(s) for its execution requirement (WCET) during its scheduling window.

A scheduling event is occurred generally at various situations. In fact, the scheduler is called when a process nishes its execution so that it can no longer run on the processor. As a result, the OS selects another process from the list of ready processes. When there is no a ready process, an idle process is chosen for running. Moreover, when a process blocks on a resource, the scheduler chooses another process for execution. Also, the scheduler is called, when a new process is created, to run the parent or the child process. Furthermore, the OS invokes the scheduler when timer provides periodic interrupts.

A scheduling decision can be taken after each timer interrupt or after every n timer interrupts.

The choice of the next process to run depends on the scheduling algorithm.

The scheduling policies aim at increasing the processor eciency by maximiz- The scheduler elects this task to run

The scheduler elects a new task for execution

The task is waiting for a resource and it blocks 4

The resource becomes available table describing the predetermined schedule. This table contains the set of tasks and their activation times. The o-line scheduler is called every time period. For example, if there is a set of periodic tasks to be scheduled, an o-line schedule may be generated for an interval of length equal to the least common multiple of the periods of dierent tasks. Unlike o-line schedulers, online scheduling algorithms examine the active tasks properties and make the scheduling decision when running tasks.

Furthermore, based on preemptive-ness of tasks criteria, scheduling algorithms can be broadly classied into non-preemptive and preemptive algorithms. A non-preemptive scheduling algorithm elects a task for execution and do not interrupt its execution until it blocks or until it voluntary releases the CPU.

But, a preemptive scheduling algorithm uses an interrupt technique to suspend the currently executing process and elects a new process for execution.

Therefore, all processes will get some amount of CPU time at any given time.

The main scheduling policies in classical operating systems are: First-in-Firstout (FIFO), round-robin. These policies will be detailed later when characterizing the energy consumption of scheduling routines. Also, in order to respect the deadlines and time constraints, various scheduling policies are used in realtime OS such as the rate monotonic (RM) and earliest deadline rst (EDF)

policies [START_REF] Cottet | Scheduling in Real-Time Systems[END_REF]. Also, to reduce the energy consumption, low power scheduling policies are used, such as (DPM) and (DVFS) policies. These policies will be detailed later in chapter 5.

Context switch:

The context switch is a mechanism which occurs when the kernel changes the control of the processor from an executing process to another that is ready to run. The kernel saves the state of current process including the processor register values and other data that describe this state.

Then, it loads the saved state of the new process for execution. This service will be detailed later when estimating its energy consumption.

Error detection: The OS is able to detect the dierent errors that could occur when the embedded system is running. The source of the errors could be the processor, the memory, the peripheral devices and the user programs.

When an error occurs, the OS informs the user about the malfunctioning of the system and indicates the cause of the error. Then, the OS takes the convenable action to correct this error.

User interface: To handle easily the hardware platform, this service provides an interface between the user and the hardware components. This interface could be a command line interface through a command line interpreter, such as text terminal, or a graphical user interface using graphical icons and elements.

Experimental setup

Under the OPEN-PEOPLE project, academic and industrial partners have chosen the OMAP35x EVM board [START_REF]OMAP35x Evaluation Module (EVM)[END_REF] as a hardware platform to validate this work. The proposed approach is generic and could be applied to other hardware platforms and OSs.

The OMAP (Open Multimedia Applications Platform) architecture, developed by

Texas Instruments [14], is a category of proprietary system on chips for dierent multimedia applications. The OMAP processors are used by various devices such as Samsung, Nokia, and Motorola mobiles [START_REF] Klug | Two OMAP 3430 phones: Nokia N900 and Motorola Droid[END_REF].

To characterize the energy overhead of embedded OS, we use the OMAP35x Evaluation Module (EVM) board, equipped with OMAP3530 processor, as an embedded system. This board builds low power applications requiring low power consumption

Experimental setup 39

and high performance such as portable media players, navigation devices, software dened radio, medical applications and media controllers.

In this section, we describe and detail the characteristics of hardware and software components of this board.

OMAP3530 Applications Processor

The OMAP3530 multimedia applications processor is developed based on advanced Super-scalar 720 MHz ARM Cortex-A8 RISC Core and a digital signal processor (520 MHz TMS320C64x DSP).

OMAP3530 EVM board

The dierent components of the OMAP35x EVM board are the processing subsystem (including one or more processor cores, hardware accelerators, etc), a memory subsystem, peripherals as well as global and local interconnect structures (buses, bridges, etc). Figure 3.6 and gure 3.7 show the dierent features of the OMAP35x EVM Board. The embedded OS used is linux-omap which is supported for use with the OMAP35x EVM.

In this work, we are interested in studying the energy overhead of the processor core supporting the OS, the ARM Cortex-A8 processor.

Measurement framework

When power is rst applied to OMAP35x EVM board, many hardware elements are initialized before the execution and running of user application and OS routines.

This early initialization code is a part of the boot-loader. After the hardware platform initialization step, the boot of OS image is performed using the boot-loader.

Then, Once the OS has started execution, it takes control of the board and the boot-loader is overwritten and ceases to exist. The "U-Boot" open-source boot-loader for the OMAP35x EVM board is generated.

It includes support for ethernet interfaces and supports several network protocols such as BOOTP, DHCP, TFTP and NFS. The "U-Boot" is also able to update the board embedded ash memory with an image downloaded through the ethernet.

As shown in gure 3.8, the measurement platform includes a dedicated server to congure the OMAP35x EVM board and to control the energy consumption measurements on this board. It consists of a computer wire-connected to the board. We The test programs are executed on the hardware platform and the energy dissipated by the processor is determined as follows: the voltage drop V drop across a jumper J6 pins connected in series with the OMAP 3530 processor is measured. Then, the current consumed is calculated after dividing V drop by a shunt resistance R in

Energy characterization and estimation ow

The proposed method targets to extract models of embedded OS services power/energy overhead. The inputs are the embedded OS, the application and the hardware platform. As showed in gure 3.9, to characterize the energy consumed by OS services, a set of benchmarks, which are test programs that stimulate each service separately, are implemented. These programs are compiled and linked to the OS.

In the energy analysis step, a set of parameters are varied: hardware and software parameters which inuence the energy consumption are identied then energy proles are traced. The energy traces obtained are able to characterize the energy overhead of the OS services and then to model the power and energy consumption.

After extracting energy models, we estimate the energy and power overheads, as showed in gure 3.10. We focus on the correlation between the energy consumed energy consumption

∀T i , E T i = Eintra i + (1≤j≤p δ i,j × E S j) (3.1)
Where E T i represents the energy consumed by the task T i , Eintra i is the energy consumed by this task routines and operations, p is the number of services used by the task T i , δ i,j is energy consumption rate of the task T i using the service S j and E S j , the energy consumption of the service S j .

We consider t the total number of the OS services, x j the number of the parameters that inuence E S j , the energy consumption of the service S j , 1 ≤ j ≤ t.

The set of parameters appropriate to the energy overhead of the service S j is { P aram j,k , 1 ≤ j ≤ t, 1 ≤ k ≤ x j }. The function f k describes the variation of E S j with P aram j,k . We compute the energy consumption of the service S j following

E OS = (1≤j≤p α i,j × E BS j) + (1≤k≤q β i,k × E SS k) (3.3) Where 1≤i≤n (1≤j≤p α i,j + 1≤k≤q β i,k) = 100% (3.4)
α i,j : energy consumption rate of the task T i using the service BS j . β i,k : energy consumption rate of the task T i using the service SS k . E BS j and E SS k represent respectively the energy consumed by the service BS j and SS k .

In next section, we will detail methodologies and benchmarks used to characterize the embedded OS services energy overhead and study its variation with hardware and software parameters.

OS power and energy modeling

In this section, embedded OS services energy characterization approaches are introduced, three important services are studied: the scheduling, the context switch and 3.5. OS power and energy modeling 45 inter-process communication.

Scheduling routines

Scheduling routines and operations could generate power overhead on the processor and/or memory components. They are considered as system calls and only consist in switching the processor from unprivileged user mode to a privileged kernel mode.

To quantify power and energy overhead of embedded OS scheduler routines and operations, we have to build test programs containing threads with dierent priorities, we measure in a rst step the average energy consumed by the stand-alone tasks without scheduling routines, and then with scheduling routines.

E Scheduling represents the energy consumed by the scheduling operations. It is calculated as showed in equation 3.5:

E Scheduling = E withsch -E withoutsch (3.5)
Where E withsch and E withoutsch represent respectively the energy consumed by the benchmarks with scheduling routines and without scheduling routines.

We vary several parameters when running the test programs. The applicative parameter that we can change is the scheduling policy. We also modify the processor frequency as a hardware parameter. We are interested in studying the inuence of three scheduling policies: SCHED_F IF O, SCHED_RR and SCHED_OT HER.

The used embedded OS supports only these scheduling policies.

SCHED_F IF O policy is used with static priorities higher than 0, it is a scheduling algorithm without time slicing. Under this policy, a process which is preempted by another one having higher priority will stay at the head of the list for its priority and will resume execution as soon as all processes of higher priority are blocked again.

If there are two SCHED_F IF O processes having the same priority, the process which is running will continue its execution until it decides to give the processor up.

The process having the highest priority will use the processor as long as it needs it.

SCHED_RR policy enhances the SCHED_F IF O one; hence, everything described above for SCHED_F IF O also applies to SCHED_RR except that each process is only allowed to run for a maximum time called quantum. If a SCHED_RR process has been running for a time period equal to or greater than the time quantum, it will be put at the end of the priority list. Only xed-priority threads can have a SCHED_RR scheduling policy. A SCHED_RR process that has been preempted by a higher priority process subsequently resumes execution as a running process will complete the unexpired portion of its round robin time quantum.

SCHED_OT HER policy is only used at static priority 0. To ensure a fair progress among the processes, the SCHED_OT HER scheduler elects a process to run from Chapter 3. Characterization and analysis of embedded OS services energy consumption the static priority 0 list based on a dynamic priority that is determined only inside this list. The dynamic priority is based on the nice level and increased for each time quantum, when the process is ready to run, but denied to run by the scheduler.

Figure 3.11 shows the evolution of the power overhead of the scheduler routines P Scheduling over the scheduling policy. We can see that the energy consumed when we use SCHED_OT HER policy is important compared to SCHED_F IF O and SCHED_RR policies. This is due to the additional operations (nice or setpriority() system calls) used when the SCHED_OT HER scheduler calculates and increases the dynamic priority for each time quantum. P Scheduling increases with the rise of the number of processes, this is due to the increase of the scheduler routines, such as the assignment of the priorities. In the majority of recent works presented in last chapter, the authors do not take into account the energy and time overheads of this service when studying the energy consumption of the operating systems. They include it with the scheduling service, but the two services are distinct. Actually, in embedded systems, the processor has two operating modes: the kernel mode and user mode. The processes running on kernel and user mode are called respectively kernel and user processes. The user process runs in a memory space which can be swapped out when necessary. When the processor needs the user process to execute a kernel code, the process becomes for dierent scheduling policies in kernel mode with administrative privileges. In this case, the processor has no restrictions while executing the instructions and will access to key system resources.

Once the kernel process nishes its workload, it returns to the initial state as a user process. The scheduler switches the processor from the user mode to a kernel mode via system calls; this mechanism is named the mode switch. Unlike the mode switch, the context switch consists in switching the processor from one process to another.

The context switch service introduces direct and indirect overheads [START_REF] Liu | Characterizing and modeling the behavior of context switch misses[END_REF]. Direct context switch overheads include saving and restoring processor registers, ushing the processor pipeline and executing the OS scheduler. Indirect overheads involve the switch of the address translation maps used by the processor when threads have dierent virtual address spaces. This switch perturbs the TLB (CPU cache that memory management hardware unit uses to improve virtual address translation speed) states. Also, the indirect context switch includes the perturbation of the processor's caches. In fact when a thread T 1 is switched out and a new thread T 2 starts the execution, the cache state of T 1 is perturbed and some cache blocks are replaced. So, when T 1 resumes the execution and restores the cache state, it gets a cache misses. Besides, the OS memory paging represents a source of the indirect overhead since the context switch can occur in a memory page moved to the disk when there is no free memory.

Prior research has shown that indirect context switch overheads [START_REF] Tsafrir | The context-switch overhead inicted by hardware interrupts (and the enigma of do-nothing loops)[END_REF], mainly the To characterize the energy consumption of the context switch, we create a set of threads in a multitasking environment using the POSIX standard [START_REF] Stephen | The POSIX family of standards[END_REF].

As depicted in gure 3.13 and gure 3.14, the test-bench consists in creating two threads P1 and P2 and generating a number of context-switches as detailed in our recent work [START_REF] Ouni | Embedded operating systems energy overhead[END_REF]. In fact, in step 1, only one context switch is generated and in step n, n context switches are generated.

In the remainder of this dissertation, T cs represents the time of the context switch, S i,j the j-th section of the process P i and T i,j is the execution time of the section S i,j .

The total execution time of the benchmark in step 1 and step n are respectively T step1 and T stepn . They are depicted by equations 3.7 and 3.8: Where p and q represent respectively the number of sections of P 1 and P 2 . The context switch time T cs and the context switch power overhead P cs are calculated following equations 3.9 and 3.10:

T Step1 = T exec 1 + T cs + T exec 2 (3.7) T Stepn = 1≤i≤p T 1,i + 1≤j≤q T 2,j + (n × T cs) (3.8)
T cs = (T stepn -T step1)/(n -1) (3.9)
P cs = (P stepn -P step1)/(n -1) Where P step1 and P stepn are respectively the average power consumption of the benchmarks in step 1 and step n.

We execute the test programs following the characterization approach. Then, we vary the scheduling policy and the frequency, we note the power and performance variations and we extract energy models.

The scheduling policy impact on the context switch overhead

In our experiments, the scheduling policy and the number of context switches are varied and the energy consumed is measured when a context switch occurred. The variation of the energy dissipated according to the number of context switches and the scheduling policy is presented in gure 3.15. This gure compares the decrease of the context switch energy overhead for the two processes, P1 and P2, by varying the number of context switches.

It is noted that the context switch energy overhead decreases with the increase of the number of context switches. In fact, when the rst context switch from one process to another occurs, a data structure named Process Control Block (P CB)

is created in order to save the state of each process. The energy overhead of the creation of the P CB is accounted with the context switch energy overhead and is divided between the context switches. As a result, if the number of context switches increases, the average Ecs per context switching decreases. Also, when the scheduling policy used is SCHED_F IF O, the context switch energy overhead is more important than the energy for the SCHED_RR scheduling policy. Actually, under the round robin scheduling policy, the processor assigns time slices (quantum) to each process. So, before the context switches that we generate, there is another context switches that occurred automatically due to the expiration of the quantum of the process P1. Consequently, the P CB is created during the automatic context switch. The energy overhead of the P CB creation is not accounted with the energy of the context switch that we generate: Ecs. But, under the FIFO scheduling policy, the processor does not switch automatically from the process P1 to P2 only if P1 terminates its execution so that the energy overhead of the P CB creation is accounted with Ecs. Context switch power variation with processor frequency follows the law presented in equation 3.12. The average error of the proposed methodology results against the physical measurements is about 3.4%.

P cs(f) = (4.4 × 10 -3 × f) + 0.3041

(3.12)
Where f is the CPU frequency, the unit of P cs and f is respectively mW and MHz.

The voltage V drop across the processor increases with the rise of the processor frequency so that the power consumption increases with the frequency.

Dynamic frequency case: The core frequency is dynamically changed during the execution of benchmarks: test programs are executed in step 1 and step n. The processes P1 and P2 are executed respectively at a frequency F1 and F2. When the processor preempts the process P1 and executes the process P2, the core frequency changes from F1 to F2; and inversely. For raising the frequency and supply voltage, the microprocessor sets a new VID (voltage identier) code to have a higher output voltage than the current one, and conversely. This operation leads to time and energy overhead [START_REF] Park | Accurate modeling and calculation of delay and energy overheads of dynamic voltage scaling in modern high-performance microprocessors[END_REF].

Also, the more important the dierence between F1 and F2 is, the higher context switch energy is. This is due to the perturbation of the processor's cache memory resulting from the variation of processor bus frequency which varies with the processor frequency.

Inter-process communication

Inter-process communications (IPC) allow threads in one process to share information with threads in other processes, and even with processes that exist on dierent hardware platforms. The embedded OS explicitly copies information from sending

P ipc (F) = (α × F) + β (3.13)
Where α and β are coecients of the model. The unit of P ipc and F is respectively mW and MHz. Power models are presented in table 3.1. 1060.9 × e 48.9 * 10 -6 ×msz 1.468%

Conclusion

In this chapter, the power/energy consumption of embedded OS services were analyzed and and modeled for a specic hardware platform: the OMAP 35X evm board.

We proposed a methodology to characterize power/energy overheads of three basic services of the embedded OS: scheduling, context switch and inter-process communication. In addition, the impacts of hardware and software parameters like processor frequency and scheduling policy on energy consumption are studied. Consequently, mathematical models for power and energy consumption are extracted. Next chapter

Conclusion 57

talks about a high level model of software application, the OS services and hardware platform using an architecture analysis and design language (AADL). Then, AADL and mathematical models of OS services energy consumption will be integrated in a multiprocessor scheduling simulator in order to evaluate the OS energy overhead when using low power techniques.

Chapter 4

High level modeling of embedded system components This chapter introduces a high level modeling of OS services, software and hardware components taking into account the energy consumption aspects. The obtained models will be exploited for calculating OS energy overhead when adapting low power scheduling policies. Also, they will be used for system design exploration and verication of requirements. First, An overview of used modeling language (AADL) is presented. Then, AADL functionalities and tools are exploited to model the OS services and the software application, the H.264 video decoder application. In addition, the communication between OS services and the applicative tasks have been modeled. Furthermore, AADL models of OMAP3 processor and the binding of applicative tasks on the hardware platform components have been proposed. [START_REF] Jazdi | Component-based and distributed web application for embedded systems[END_REF] Chapter 4. High level modeling of embedded system components

Exploitation of high level AADL models

The contribution proposed in this chapter consists in providing a high level AADL models of dierent hardware and software components, the OS services and the communication between the OS and the applicative tasks. These models take into account the properties of applicative tasks (the deadline, the period etc.), the scheduling policy, the operating points (frequency and voltage) and characteristics of the processor. As showed in gure 4.1, the proposed models will be exploited, in chapter 5, to estimate the OS services energy overhead in order to evaluate the performance of low power scheduling policies. Also, they will be used, in chapter 6, to explore system design and to dene and verify various system requirements (OS energy requirements, scheduling requirements etc.).

Embedded OS functional/non-functional properties and requirements

In embedded systems, non-functional properties or requirements dene how a system is supposed to be. They are used to evaluate the system operations. However, functional requirements dene a specic behavior of the system. They could be technical details, operations, data manipulation and other various functionalities that specify particular characteristics of a system.

The main non-functional properties of embedded OS are timeliness, dependability and energy consumption [START_REF] Daniel Lohmann | Functional and non-functional properties in a family of embedded operating systems[END_REF]. Depending on the kind of deadline, preemption points

AADL models of hardware and software components

System requirements definition and verification (OS energy consumption, scheduling policies etc.)

Scheduling policies simulation and determination of OS energy overhead. The timeliness non-functional issues are the existence, locality, and frequency of a preemption point.

The dependability non-functional property refers to the system trustworthiness providing a service that can be justiably trusted. The dependability is the ability of a system to avoid failures that are more frequent or more severe, and outage durations that are longer, than is acceptable to the user(s) [START_REF] Avizienis | Fundamental concepts of dependability[END_REF]. It encompasses aspects of reliability, availability, safety, security, survivability and maintainability. In fact, these aspects rely on hardware-supported protection and isolation in order to limit fault propagation.

The last non-functional requirement is the energy which a scarce resource in embedded systems, especially the battery operated embedded systems such as mobiles.

As demonstrated in chapter 3, the embedded OS energy overhead is important and varies with dierent hardware and software parameters. Consequently, we are interested in modeling this non functional property for embedded OS services.

In this work, we aim at building a model of the functional/non-functional properties and requirements. So, choosing the adequate modeling language, to analyze and verify these embedded systems properties, is necessary. This choice is justied in next section.

Architecture modeling languages

In order to describe and analyze functional/non-functional properties and requirements of a system, various modeling languages are used. The Object Management Group (OMG) [17] standardizes the Unied Modeling Language (UML) [START_REF]Object Management Group, Unied Modeling Language: Superstructure[END_REF], a widespread modeling language including a set of graphic notation techniques to provide concepts and model the architecture behavior and the deployment of software systems in object-oriented or component-based paradigms.

The UML language can be extended through proles, accommodating domain specic modeling concepts. For example, SysML [4] is a prole to describe system engineering applications. Non-functional properties and requirements are harder to describe using UML. An extension of UML called MARTE [108] improves UML functionalities to enhance the modeling and analysis of Real-Time and Embedded systems. The MARTE language takes into account dierent aspects such as schedulability, performance and time [START_REF] Omg | UML prole for schedulability, performance, and time specication v1[END_REF]. This language addresses new requirements: specication of both software and hardware model aspects, separated abstract models of software applications and hardware platforms and modeling various domains of time and non functional properties [START_REF] Bernardi | Adding dependability analysis capabilities to the MARTE prole[END_REF].

The Architecture Description Languages (ADLs) target to model both functional and nonfunctional properties of system architectures.

Chapter 4. High level modeling of embedded system components

The (ADL) language generates dierent executable models with simulator, compiler and hardware conguration. The generated models enable various design automation tasks including exploration, simulation, compilation, synthesis, test generation and validation. Furthermore, (ADL) language is exploited to design both software and hardware architectures. It analyzes and models the software applications architectures [START_REF] Paul | A survey of architecture description languages[END_REF] by capturing behavioral specications of applicative tasks and their interactions. Also, (ADL) language describes the hardware platform. It models the dierent modules of the platform and their connectivity.

Recently, various (ADL)s have been proposed and exploited for modeling the system functional/non functional properties [START_REF] Medvidovic | A classication and comparison framework for software architecture description languages[END_REF].

From these proposals, the Architecture Analysis and Design Language (AADL) [START_REF]The SAE AADL Standard Info Site[END_REF], developed by the Society of Automotive Engineers (SAE), has received increasing interest from mission-critical applications development industries. The AADL standard models the applications and hardware platforms and describes the deployment of applicative tasks on hardware components. The modeling is performed using textual and graphic notations with precise semantics. This language analyzes and models the functional and non functional requirements and properties of embedded systems. The (SAE) generates, from the AADL model, textual les with interchange text format (XML) that supports the exchange of AADL models between dierent subcontractors, integrators and agencies. Additionally, the AADL standard is extensible with analysis approaches to evaluate properties such as schedulability, performance and power/energy consumption. The standard of this language was proposed in 2004 and functionalities were published in 2006 for graphical notation, error modeling, standard meta-model and programming language guidelines. Moreover, this language is supported by commercial and open source tool solutions: the Open Source AADL Tool Environment (OSATE) [START_REF] Sei Aadl Team | OSATE: An extensible source AADL tool environment[END_REF].

For these reasons, under the OPEN-PEOPLE project, dierent academic and industrial partners choose AADL as modeling language.

Various works use the AADL to model system architecture and verify its constraints.

In [START_REF] Rubini | Modeling and verication of memory architectures with aadl and real[END_REF], the authors use the AADL language to dene memory architectures, and then verify rules in order to assess that the memory is correctly dimensioned. They model memory requirements (such as layout or size) and then validate them on a case-study using the VxWorks real-time kernel.

Also, an AADL simulation tool has been proposed in [START_REF] Varona | Aadl simulation and performance analysis in systemc[END_REF] to design and analyze software and hardware architectures for real-time embedded systems. This tool supports the performance analysis of the AADL specication throughout the renement process from the initial system architecture until the complete, detailed application and execution platform are developed. AADL language is used to verify the initial timing constraints during the complete design process.

Overview of AADL language

To describe AADL models of dierent features of an embedded system, various representations are available for the AADL users:

Graphical representation: This kind of representation is used to show an overview of the system and the interaction between the application and dierent hardware devices.

Textual representation: The text format is used to rene and detail the model entities.

XML format representation (AAXL le):

The XML le is also used for AADL modeling to facilitate the interoperability between dierent tools.

In this section, we present an overview of AADL specication of embedded systems by showing the dierent available software, hardware and hybrid components. Also, implementations and properties of these components will be detailed.

AADL components

To model complex embedded systems, AADL provides three distinct sets of component categories:

Software components

In order to describe the applicative tasks, AADL model includes various software components:

Thread: it is the smallest sequence of routines that can be scheduled by an OS. A thread represents a unit of concurrent execution.

Process: represents a protected address space. A process should include one or more threads.

Thread group: the hierarchy of thread group is used to organize threads within a process in the same block.

Data: this software component includes application data types and dierent data component implementations.

Subprogram: this component is a sequential code that could be called for execution. A subprogram could call other subprograms and communicate with them through specic parameters and data access features.

The AADL language assigns to each software component a graphical symbol.

Components implementations

The component implementation describes the internal structure of dierent AADL components. It species the set of subcomponents and details interactions between their features. These interactions are established through connections, calls, bindings and mapping of software components on the hardware platform. The component implementation denes dierent modes representing operational states and component properties [START_REF] Peter | The architecture analysis & design language (AADL): An introduction[END_REF].

Components interaction

To ensure the communication between AADL components, the AADL developers provide various interfaces or features. A component interface consists of directional ow through:

-Data ports for unqueued state data.

-Event data ports for queued message data.

-Event ports for asynchronous events.

-Subprogram calls.

-Explicit access to data components. [START_REF] Li | Run-time modeling and estimation of operating system power consumption[END_REF] Chapter 4. High level modeling of embedded system components 4.4.5 AADL properties, annexes, packages and modes AADL language not only describe the architecture and interconnections between components, but also the behavior of dierent components. It species the components characteristics using the properties, annexes, packages and modes.

AADL properties

An AADL property provides information about an AADL specication element.

The timing characteristics of dierent applications tasks, such as the deadline, the worst-case execution time and the period, are dened through AADL properties.

Furthermore, AADL properties include the source code and routines of AADL modeled applicative software components and they specify the constraints for binding threads to processors, processes to memories and connections to busses. Properties are declared in named property sets. Property set declarations allow the addition of properties to the core of AADL property set.

AADL annexes

The AADL annexes enrich the architecture description using specic languages such as Object Constraint Language (OCL). Many annexes have been dened by AADL developers, for example, the error-model annex that species fault and propagation concerns and the data-model annex that describes the modeling of specic data constraint with AADL.

AADL packages

The libraries of AADL components are dened in AADL packages. These packages organize the import of component declarations.

AADL modes

AADL modes are the operational states of software, hardware and compositional components in the modeled system.

AADL tools

Various tools are available for system modeling and analysis with the AADL language. For instance, Ocarina tool is used for optimization and analysis of AADL models [START_REF] Hugues | Rapid prototyping of distributed real-time embedded systems using the aadl and ocarina[END_REF]. This tool achieve semantic analysis, schedulability analysis and checks the behavior of the model by transforming the AADL model to a Petri network and

AADL modeling case study

In this section, we present AADL models of dierent embedded system components.

The use case software application, the H.264 video decoder, is detailed below.

H.264 application

The H.264 video decoder application is taken as main use case application. It is a high quality video compression algorithm relying on several ecient strategies extracting spatial (within a frame) and temporal dependencies (between frames). This application is characterized by a exible coding, high compression and high quality resolution. Moreover, it is a promising standard for embedded devices.

The main steps of the H.264 decoding process consist in the following: rst, a compressed bit stream coming from the Network application layer (NAL), which formats the representation of the video and provides header information in a manner appropriate for conveyance by particular transport layers, is received at the input of the decoder. Then, the entropy decoded bloc begins with decoding the slice header and then it decodes the other parameters. The decoded data are entropy decoded and sorted to produce a set of quantized coecients. These coecients are then inversely quantized and transformed. Thereafter, the data obtained are added to the predicted data from the previous frames depending upon the header information.

Finally, the original block is obtained after the de-blocking lter to compensate the block artifacts eect. Architecture) [5].

The main characteristic of this version is that the algorithm is parallelized on the slices of the frame as illustrated in gure 4.4 from this diagram; For this version, it is considered that frames are made up of 4 slices. Since slices inside a frame can be computed independently, therefore, one task is assigned for each slice to be computed. Thus, four tasks, named slice_processing, can run simultaneously in this version. There are some synchronizations required between tasks that must be handled to ensure a proper processing without data corruption. These synchronizations are handled through the task named SY N C. At the beginning of each new frame, tasks can access only sequentially to the input data buer. Therefore, there is a slight overhead in the real beginning of each start up of the task named slice. This behavior is due to the access of shared resource which is protected by a semaphore. Due to temporal dependencies between frames, it is not possible to compute the next frame if the previous one has not been completely decoded. Thus, at the end of each slice computation, tasks need to be resynchronized using task named SY N C. As a result, input data must be present and the previous frame must be decoded at the start of decoding a new frame. Hence, we have four types of tasks. First, we start with the N EW _F RAM E task (T 1) that can access only sequentially to the input data buer. Therefore, the N AL_DISP AT CH task (T 2), which provides access to a shared resource and is protected by a semaphore, starts execution. Then, SLICE_P ROCESSIN G tasks (T 3 , T 4 , T 5 and T 6) are launched simultaneously. Due to temporal dependencies between frames, it is not possible to compute the next frame if the previous one has not been completely decoded.

Thus, at the end of each slice computation, tasks need to be resynchronized using the SY N C task before running the REBU ILD_F RAM E (T 7) task.

Hence, H.264 slices version, comprising seven periodic tasks as shown in table 4.2, is used as use case application. All values are given at maximum frequency of OMAP 3 processor (i.e., 720-MHz).

AADL modeling of system components

Using AADL, the properties of the system architecture, including the application's tasks and the hardware platform, are modeled.

H.264 application software tasks AADL modeling

The software tasks are modeled using the "Thread" component. The model is divided into two parts: the features, that dene the component interface and its communication ports, and the properties, that dene the task's period and its acti-

AADL modeling of OS services

The AADL implementation of each OS service species its properties, such as the periodicity, and its features, mainly, its communication ports. The OS services AADL model is presented in gure 4.6. To model the dierent OS services studied and to facilitate the communication with applicative tasks, we need to gather these services in the same unit. For this reason, we use the "Thread group" component that includes three "Thread"s representing the context switch, the inter-process communication and the scheduling services. Figure 4.7 shows the structure of OS services AADL unit.

AADL modeling of communication between OS services and applicative tasks

When switching from one task to another, the OS routines are called. To ensure the communication and message passing between the OS services and the applicative tasks, the event/data ports are used. As showed in gure 4.8, the software components are linked by event and data connections. The AADL graphical representation of dierent software tasks and their interactions with the OS services are showed in gure 4.9.

AADL modeling case study 71

---------OS Services threads------- nections between them change due to the processor frequency variation. The AADL event ports are used to ensure the system mode change, the activation and deactivation of system parts, when switching from one frequency to another. Figure 4.11 shows the dierent system modes, used when binding the applicative tasks on the processor, for dierent operating points of the processor: 125 MHz, 250 MHz, 500 MHz and 720 MHz. It also depicts the event ports allowing the switching from one mode to another. Figure 4.12 details the binding properties. The property type "reference" allows a property value to refer to a model element according to the containment hierarchy. The Allowed_Processor_Binding declaration references modeled processor in the system hierarchy. This property association restricts the binding to processors of type OMAP 3 and is applied to the software part of the system, the H.264 Application. It also species the system execution mode. Besides, the Actual_Memory_Binding property association denes the memory component to which code and routines are bound.

thread
The reference properties should be declared high enough in the system hierarchy in order to point to the desired component in the system hierarchy.

Properties

Allowed_Processor_Binding => (reference Execution_platform.cpu1, reference Execution_platform.cpu2, reference Execution_platform.cpu3, reference Execution_platform.cpu4, reference Execution_platform.cpu5) applies to H264_application.pr; Actual_Memory_Binding => reference sram applies to H264_application.pr;

Conclusion

In this chapter, we have presented an overview of AADL language. The AADL functionalities and tools have been exploited to model the OS services and the software application, the H.264 video decoder application. In addition, the communication between OS services and the applicative tasks have been modeled. Furthermore, AADL models of OMAP3 processor and the binding of applicative tasks on the hardware platform components have been proposed. The implemented AADL models will be used in next chapter for the determination of OS services energy overhead when adapting low power scheduling policies. Chapter 5 Embedded OS service's models integration in the system level design ow Thanks to the signicant evolution in processor technology over the last few years, processors with variable voltages and frequencies are now available, they adapt low power and energy scheduling policies to minimize the energy consumption. Reduction in supply voltage requires reduction in operating frequency. To ensure a high level of energy and power optimization, several studies and techniques have been proposed for the exploration of scheduling policy and dynamic Voltage/Frequency management. For instance, the Dynamic Power Management (DPM) and Dynamic Voltage and Frequency Scaling (DVFS) techniques are used to reduce the power and energy consumption. In this chapter, the energy overhead of studied OS services is evaluated when using an instance of DPM and DVFS low power techniques: the AsDPM and DSF scheduling policies. In fact, the operating system services's models are integrated at system level using multiprocessor scheduling simulator (STORM). Also, a general ow, consisting mainly in generating from the AADL model a le Chapter 5. Embedded OS service's models integration in the system level design ow used as input to the STORM simulator, and calculating the OS energy overhead, is proposed in this chapter.

Models integration in multiprocessor scheduling simulation tool

The integration of OS services energy models in power/energy estimation tools is necessary to achieve estimations at system level and to quantify the power/energy overhead of embedded OS services. In this work, energy estimation is targeting the system design including software and hardware components. Hence, the OS power/energy mathematical and AADL models, developed respectively in chapter 3 and 4, will be integrated in a simulation tool.

We present in the remaining of this section the simulation tool used to integrate OS services energy models at system level. Then, we introduce the proposed methodology of energy models integration at system level.

STORM tool

To simulate the execution of application and extract the OS energy overhead when using low power scheduling policies, we use STORM (Simulation TOol for Real-time Multiprocessor Scheduling) simulator [START_REF]STORM simulation tool[END_REF]. This tool is a java-based simulator for multiprocessor scheduling algorithms developed by IRCCyN [START_REF]Nantes Real time systems group[END_REF] under the French national project PHERMA [5].

The main functionality of STORM tool is evaluating of performance and energy consumption eciency of software applications and hardware platforms. This simulation tool allows the implementation of dierent scheduling policies on multiprocessor architectures with homogeneous or heterogeneous processors. This simulator takes into account the architecture and dierent components of hardware platforms, such as the multi-core design and memory architecture (L1 and L2 caches), and low power consumption policies, particularly DPM and DVFS techniques. STORM is characterized by high exibility, so that the user could add many simulation entities, and by portability: the possibility of running on various operating systems.

As shown in gure 5.1, the inputs of this tool is the specications of the hardware and software architectures together with the scheduling policy; it simulates the system behavior using all the characteristics (task execution time, processor functioning conditions, etc.) in order to obtain the chronological track of dierent scheduling events that occurred at run time, compute various real-time metrics and analyze the system behavior and performances from various point of views.

Dierent tasks, data links and processor entities are specied in XML input le, and they are automatically instantiated from the library components. These libraries dene the task characteristics: recurrence, periodicity, aperiodicity, etc. An example of XML le is showed in gure 5.2. It represents the set of used processors and software application tasks with various characteristics such as the best case execution time (BCET), the period and deadline.

The proposed approach

As demonstrated in gure 5.3, the proposed approach of OS services integration at system level revolves around three focal concepts: AADL Modeling, code transformation and energy/power estimation.

The AADL modeling step is mainly performed in last chapter. Dierent AADL models are integrated in this ow. In fact, we rely on the platform model that contains all the components and connections instances of the application. Also, we perform the implementation of various components instances, found in the AADL models library. Furthermore, AADL model is exploited to describe the hardware of the physical target platform: the processor, the memory, and the bus entity which are necessary to processes and threads execution. In the proposed approach, we take into account the intra-task properties, such as the deadline and worst case execution time, and the inter-task aspects, such as the events and inter-process communication, in order to dene the binding properties that are necessary to the deployment of the application's tasks and embedded OS services on the target platform. Using the textual and graphical modeling tool OSATE, we automatically generate the corresponding textual deployment le: the AADL model is mapped to an XML le.

As a result, simulated outputs can be computed as: either user readable in the form of diagrams or reports, or machine readable intended for a subsequent analysis tool.

The user interacts with STORM through a user-friendly graphical interface which is composed of command and display windows. The XML le generated from the AADL model having the extension ".aaxl" is not recognized by the STORM simu-Chapter 5. Embedded OS service's models integration in the system level design ow <SIMULATION duration="10000" precision="1"> <SCHED className="EDF_P_Scheduler" quantum="1"> </SCHED> <CPUS> <CPU className="storm.Processors.OmapProcessor" name="CPU A" id="1"></CPU> <CPU className="storm.Processors.OmapProcessor" name="CPU B" id="2"></CPU> </CPUS> <TASKS> <TASK className="storm.Tasks.PTask_NAM_A" name="NEW_FRAME" id="1" activationDate="0" WCET="1" BCET="1" period="19" deadline="19"> </TASK> <TASK className="storm.Tasks.PTask_NAM_A" name="NAL_DISPATCH" id="2" activationDate="0" WCET="2" BCET="1" period="5" deadline="5"> </TASK> <TASK className="storm.Tasks.PTask_NAM_A" name="SLICE1_PROCESSING" id="3" activationDate="0" WCET="42" BCET="21" period="66" deadline="66"> </TASK> <TASK className="storm.Tasks.PTask_NAM_A" name="SLICE2_PROCESSING" id="4" activationDate="1" WCET="42" BCET="21" period="66" deadline="66"> </TASK> <TASK className="storm.Tasks.PTask_NAM_A" name="SLICE3_PROCESSING" id="5" activationDate="2" WCET="42" BCET="21" period="66" deadline="66"> </TASK> <TASK className="storm.Tasks.PTask_NAM_A" name="SLICE4_PROCESSING" id="6" activationDate="3" WCET="42" BCET="21" period="66" deadline="66"> </TASK> <TASK className="storm.Tasks.PTask_NAM_A" name="REBUILD_FRAME" id="7" activationDate="66" WCET="2" BCET="1" period="66" deadline="66"> </TASK> </TASKS> </SIMULATION> to the simulator structure by parsing existing le ".aaxl " and extracting the data needed to generate the input le of the simulator. To extract the required data from the "aaxl" le, we use the java API JDOM [START_REF]API JDOM[END_REF] which allows us to manipulate and output XML data from Java code. Consequently, we can read and write XML data without the complex and memory-consumptive options that current API oerings provide. Because JDOM uses the Java Collections API to manage a tree data structure, we transform the "aaxl" le to a JDOM tree. Then, we extract each data by walking the tree and iterating the document as showed in algorithm 2. Algorithm 2 Data extraction from the "aaxl" le 1: Create a list of the tree's nodes 2: Create an iterator "i" for the list 3: while "i" has a next element in the tree do 4: assign j = next element of "i"

5:

Extract the required property; maining of this chapter, taking as use case the H.264 video decoder application, the energy consumption of the OS services will be determined when adapting specic low power techniques, presented in next section.

Low power scheduling policies

In this section, we present the low power techniques used to evaluate the performance of embedded OS services: the DSF and AsDPM techniques. These techniques work in conjunction with global Earliest Deadline First (EDF) scheduling algorithm. On single-processor, under the EDF scheduling policy, at every time instant, the task that has the smallest deadline is selected for execution on the sole processor. (EDF) interval of length T idle when it will be in idle state. The DPM technique compares the length of idle interval with the processor break-event time (BET), which is the minimum length of idle interval guarantying energy consumption gain when switching the processor from running to idle state [START_REF] Devadas | On the interplay of dynamic voltage scaling and dynamic power management in real-time embedded applications[END_REF]. The transition to idle state is performed only if T idle is bigger than (BET). Figure 5.5 shows a scenario for reducing energy consumption using the DPM technique by setting the processor in idle mode, during the interval time T idle , when it is not executing the application. Also, this gure shows the transition time overhead when switching from active state to idle state. To evaluate the OS services energy consumption, we use a DPM strategy named the AsDPM (Assertive Dynamic Power Management) technique proposed in [START_REF] Bhatti | Assertive dynamic power management (AsDPM) strategy for globally scheduled rt multiprocessor systems[END_REF]. This technique is based on the extraction of inherently present idleness in application's behavior to make appropriate decisions for state-transition of processors in a multiprocessor system. The AsDPM technique does not predict the time intervals when the processor is idle. This technique is based on the principle of admission control which consists in deciding when the ready task will be executed.

Power

Time T idle

Transition time overheads

The AsDPM low power strategy delays the execution of ready tasks as much as possible and controls the maximum number of active/running processors in the system at any time instant.

The AsDPM technique denes four types of task queue: the Tasks Queue (TQ) containing the application tasks which are neither executing nor ready at any point in time, the Released Tasks Queue (ReTQ) including tasks that are released but not running currently on any processor, the Running Tasks Queue (RuTQ) containing tasks that are released and currently running on some processors. Finally, the Deferred Tasks Queue (DeTQ) including tasks that are released but their execution is delayed. A released task, that is not the highest priority task but has its priority high enough to execute on an m-processor platform (i.e., it is among the m highest priority tasks), can be deferred from execution under AsDPM at any [START_REF] Kumar Rethinagiri | An ecient power estimation methodology for complex risc processor-based platforms[END_REF] Chapter 5. Embedded OS service's models integration in the system level design ow scheduling event. In this technique, a runtime parameter of a task, the laxity, is used to measure task execution urgency taking into account the deadline constraint.

For example, an applicative task with zero laxity is the most urgent job to execute in order to avoid deadline miss. The absolute laxity l i of a task T i at its release time instant t is given by equation 5.1. Scaling (DVS) [START_REF] Pillai | Real-time dynamic voltage scaling for low-power embedded operating systems[END_REF][START_REF] Eyerman | Fine-grained DVFS using on-chip regulators[END_REF]. Chapter 5. Embedded OS service's models integration in the system level design ow

l i = d i -(t + C i) (5.
The DVFS techniques are classied into intra-task and inter-task techniques [START_REF] Seo | Optimal integration of inter-task and intra-task dynamic voltage scaling techniques for hard real-time applications[END_REF][START_REF] Seo | Algorithms for combined inter-and intra-task dynamic voltage scaling[END_REF].

The inter-task DVFS technique based on redistribution of slack time between tasks which are ready for execution [START_REF] Sasaki | An intra-task dvfs technique based on statistical analysis of hardware events[END_REF][START_REF] Shin | Intra-task voltage scheduling on dvs-enabled hard real-time systems[END_REF][START_REF] Yang | Energy ecient intra-task dynamic voltage scaling for realistic CPUs of mobile devices[END_REF]. Consequently, the inter-task DVFS techniques make decisions related to slack reclamation only at scheduling events when ready tasks are chosen for execution. The intra-task DVFS techniques reallocate the slack time inside the same task. This kind of technique includes modules in application's code in order to study its power variation over its execution time. The intra-task voltage scaling methods have many disadvantages such as requiring excessive analysis, the feasibility of application source code update [START_REF] Wang | Predvs: preemptive dynamic voltage scaling for real-time systems using approximation scheme[END_REF][START_REF] Daniel Mosse | Compilerassisted dynamic power-aware scheduling for real-time applications[END_REF]. Also, the intra-task DVFS technique generates an additional number of voltage and frequency switching points and most of them assume continuous voltage levels [START_REF] Shin | Optimizing intratask voltage scheduling using prole and data-ow information[END_REF].

For this reason, to evaluate the energy overhead of OS services, we adapt an intertask of DVFS technique: the Deterministic Stretch-to-Fit Technique (DSF) proposed in [START_REF] Bhatti | An intertask real time DVFS scheme for multiprocessor embedded systems[END_REF], it is based on the slowdown strategy of reducing the processor power consumption. Slowdown is known to reduce the dynamic power consumption at the cost of increased execution time for a given computation task. It detects early completion of tasks and exploits the processor resources to reduce the energy consumption.

As showed in gure 5.6, by comparing the actual execution time (AET) of a task T 1 with its worst-case execution time (W CET) C 1 , (DSF) technique determines the value of the dynamic slack (ε). This slack time is exploited by the method to reduce the energy consumed, by stretching the execution of T 2 , having C 2 as WCET, and reducing the frequency of the processor. The parameter t disp is the available time at current processor frequency f . The variables t 1 and t 2 represent respectively the activation date of T 1 and T 2 , d 1 and d 2 represent respectively the deadline of T 1 and T 2 . Let us highlight that it is not possible to determine the exact actual execution time of the running task until it terminates, the algorithm computes the value of dynamic slack boundaries only. In addition, this slack as the dierence between (WCET) and (AET) allows to reduce the speed of lower priority tasks.

The OMAP 3530 processor supports ve discrete voltage and frequency levels, as shown in table 5.2 allowing static and dynamic voltage and frequency scaling.

Embedded OS services energy overhead:

In this section, we detail how to calculate the OS energy overhead when running application tasks at xed and dynamic frequency. where E(OS), n OS and (E_OS_call) k represent respectively the total energy consumption of OS services, the number of OS calls and the elementary energy consumed when the OS routines are running.

Dynamic frequency case:

To calculate the energy overhead of OS services when the processor changes its frequency, we consider, according to the energy analysis and modeling of OS services presented in last chapter, that OS routines are called when the processor changes the execution from one task to another one or when it varies its running frequency, especially for the context switch service. To explain the OS energy estimation, a set of two tasks T 1 and T 2 are considered. They are preempted and running on dierent frequencies F 1 and F 2 as depicted by gure 5.8, where: Chapter 5. Embedded OS service's models integration in the system level design ow -T idle and T OS represent respectively the idle time of processor and the execution time of OS routines.

-T 1,F 1 and T 2,F 1 represent respectively the execution time of T ask1 and T ask2 when the processor frequency is F 1 .

-T 1,F 2 and T 2,F 2 represent respectively the execution time of T ask1 and T ask2 when the processor frequency is F 2 . Equation 5.3 details the energy consumption of OS services E(OSV) when switching the processor frequency. -n F 1,F 2 and n F 2,F 1 represent respectively the number of frequency changes from F1 to F2 and from F2 to F1.

E(OSV) = 1≤i≤n F 1,F 2 (E_OS_call) F 1,F 2 + 1≤j≤n F 2,F 1 (E_OS_call) F 2,F 1 (5.
-(E_OS_call) F 1,F 2 and (E_OS_call) F 2,F 1 represent respectively the OS energy consumption when switching from F1 to F2 and from F2 to F1.

Experimental results:

To evaluate the OS energy overhead, the execution of the H.264 video encoder application tasks is simulated using the STORM environment. For hardware platform, we use the OMAP3530 processor to carry-out simulations. interrupt system and so on) with other processors. These processors are connected to each other using a system bus.

Figure 5.9 shows the simulation traces of application tasks scheduling, between 1 and 50 ms, when using the DSF technique. The OS services energy consumption rates when using the DSF technique are presented in table 5.3, the initial processor(s) frequency is 500 Mhz. We note that the context switch is a basic service because the DSF technique performs many processor frequency changes in order to reduce the energy consumption. When the number of processors increases, the energy overhead of the OS services decreases because the total application execution time is reduced and the OS calls are minimized. Hence, in multiprocessor platform, it is not necessary to call the context switch service to switch from one task to another because each applicative task is running in an independent execution unit.

In table 5.4, the OS services energy consumption rates using AsDPM technique are presented. This technique is less inuenced by the context switch and scheduling routines energy overhead because AsDPM targets to save the energy overhead by keeping the processor in idle modes, with fewer preemptions and context switches.

Also, when the processor is in idle state, these basic services consume less power than when it is in active mode.

As explained previously, the energy consumption is divided between intra-task and inter-task instructions and routines. Consequently, intra-task routines and instructions ie. application standalone tasks consume the remaining amount of energy.

Figure 5.10 compares between the total energy consumption and OS services energy overhead when using DSF scheduling policy. The number of processors is 4 and, for each simulation setup, we vary the initial running frequency of each processor.

When note that for initial high frequencies (500 Mhz and 720 Mhz), the energy consumption of OS services is higher. This is because studied scheduling policy reduces operating frequency to low values (125 Mhz) in order save the energy consumption which leads to signicant context switch energy overhead, as detailed in chapter 3, when the dierence between frequencies is high.

Under the Open PEOPLE project, modeling of power/energy of application tasks is achieved by an academic partner, INRIA of Lille, in [START_REF] Kumar Rethinagiri | An ecient power estimation methodology for complex risc processor-based platforms[END_REF][START_REF] Kumar Rethinagiri | A system level power consumption estimation for mpsoc[END_REF].

Conclusion

In this chapter, models of OS services, extracted in chapter 3, have been integrated at system level using the (STORM) simulator in order to evaluate the OS energy overhead when using AsDPM and DVFS low power techniques. Furthermore, a global approach of models integration is introduced. Embedded systems often need to comply with particular requirements such as energy consumption, time constraints and processor workload. The software components binding on the hardware platform needs to take into account these platform restrictions and constraints and respect the hardware platform resources. In this chapter, we present a system design exploration methodology and we dene a global ow, using a set of tools: RDALTE and QAML, to verify system requirements when allocating applicative tasks to the processors.

AADL exploration of hardware software solutions

After modeling the hardware and software components, OS services and the binding of software tasks on the hardware platform, AADL language is exploited to explore the set of possible solutions taking into account various requirements such as the processor workload.

According to hardware components specications and software tasks characteristics, constraints Figure 6.1: Possible solution of AADL software tasks binding on hardware platform dierent solutions of software executions on the hardware platform are possible. For this reason, we exploit the AADL modeling because it allows the denition of tasks deployment on hardware components from which an analysis tool can verify the feasibility. For instance, the processor can not exceed its workload when running the software application.

The AADL exploration veries mainly the processor workload and the instruction per cycle rate. Figure 6.1 shows a model of hardware platform which contains ve processors, running at the same frequency. Then, we allow to all processors to execute the H.264 software application without deployment tasks, using the Allowed_Processor_Binding property. By choosing the partitioning strategy and xing the running mode (operating point), we obtain an optimal task conguration (deployment) which respects the workload of each processor.

To rene this exploration, various requirements are dened. In the remaining of this chapter, a design exploration methodology is proposed. Furthermore, a ow, using a set of tools that denes and veries system constraints, such as the OS energy consumption and scheduling requirements, is proposed.

Design space exploration methodology

As showed in gure 6.2, the exploration methodology includes three main steps.

The rst step of this strategy consists in searching the operating point that satises the maximum number of system requirements. Once the operating point is checked and validated, the design model can be reviewed and updated. The second step consists in nely reducing the exploration domain by limiting the number of execution units. The target of third and last step is the allocation of execution resources to each thread once the operating point and processor numbers of our system are and their energy consumption. The second constraints class concerns the power budget, parallelism and schedulability requirements. Finally, we verify operating system specic constraints.

System constraints denition and verication ow

In this section, we present dierent languages and tools used to specify system constraints. Then, the proposed approach of requirements denition and verication is introduced. 100 Chapter 6. System design space exploration and verication of constraints

RDAL Language and RDALTE tool

To specify the system constraints, project partners choose RDAL language and RDALTE tool [START_REF]RDAL language[END_REF] dened below.

RDAL Language

The RDAL (Requirements Denition and Analysis Language for AADL) is a language that denes a set of requirements specifying, at dierent levels of details, what the system to be implemented should do. They are therefore a very important part of the system under design and are created at the very beginning of a project.

When performing its functions, the system architecture takes into account the dened requirements and constraints.

In a standard requirements analysis process, an initial RDAL specication is created to model high level requirements before any system architecture is dened.

The RDAL specication is then further rened into ner requirements derived from the high level requirements. In that way, the development of the requirements specications is used to drive the design and implementation of the system. Once the requirements are suciently rened, the denition of a system architecture model can start. Components of the architecture can then be linked to requirements of the RDAL specications. The requirements can be expressed in terms of a formal language (such as OCL or REAL) so that properties of the design components can be checked automatically to see if the components satisfy or meet their requirements.

RDALTE tool

The Requirements Denition and Analysis Language Tool Environment (RDALTE) has been developed by the Lab-STICC research lab in the frame of the Open-PEOPLE project. It is a set of plug-ins on top of the open source eclipse platform [START_REF]The Eclipse Project[END_REF] that provides a toolset for front-end processing of RDAL specications and for their verication over architecture models. Also, the RDALTE tool allows the creation of RDAL specications with the help of graphical and object tree editors. Furthermore, it denes the requirements referenced model elements of the design and the expression in terms of natural or formal languages such as the OMG Object Constraint Language (OCL) or the Requirement Enforcement and Analysis Language (REAL). In this work, we use the OCL language to specify these requirements referenced model.

The Object Constraint Language (OCL)

The Object Constraint Language (OCL) [START_REF]OCL language[END_REF] is an expression language that describes constraints on object-oriented languages and other modeling artifacts. OCL 6.4. System requirements analysis, denition and verication 101 language species constraints and other expressions attached to their models.

6.3.3

The Quantitative Analysis Modeling Language (QAML)

The Quantitative Analysis Modeling Language (QAML) language [START_REF]QAML language[END_REF] is created during the project OPEN-PEOPLE to formally represent quantitative analysis of embedded systems models. (QEML) tool is also developed in order to exploit the QAML language and evaluate QAML specications. Models representing quantitative analysis of all kinds can be created and associated with specic components of system architecture models. These models are then evaluated to provide estimation for properties of components to which they are associated with. While most analysis of the Open-PEOPLE project concern power and energy consumption, special care was taken during the design of the QAML language to make it generic enough so that quantitative analysis for arbitrary quantities (execution time, costs, latency, bandwidth, etc..) can be represented.

The proposed approach

As depicted in gure 6.3, a ow of denition and verication of system requirements is proposed. The AADL models of software and hardware components are analyzed quantitatively using the (QAML) language and the QEML tool. The denition and analysis of system requirements are performed using the (RDAL) language and RDALTE tool. The formal language OCL is used to describe dierent constraints and to communicate between AADL and QEML models. In fact, various OCL queries are implemented to verify dierent system requirements, they are collected in a constraint library in addition to the predened OCL ones. All these libraries make writing OCL constraints much easier for the designer, when searching properties from AADL architecture and QAML quantity models.

System requirements analysis, denition and verication

In this section, we introduce the QAML quantitative analysis and we specify the composition and estimation laws used to verify the system constraints. Then, we dene and verify system requirements using the RDAL tool.

Quantitative analysis specications using the QAML language

A model represented with the QAML language establishes a relationship that can be evaluated to produce an output quantity from several input quantities. For example, the bus frequency, the bus number of lines etc.., to the resulting power consumption quantity. There are two main types of quantity models: estimation and composition models. We propose below the implemented estimation and composition laws that will be used later to check system requirements.

QAML Estimation modeling:

The estimation model is a quantity model that also carries another estimation model for representing the uncertainty of the evaluated value. This model can be expressed in two ways: as a set of mathematical formulae (laws) or by a multi-dimension lookup table (LUT).

The estimation laws are composed of one or more pieces, which consist of a pair of formulae that dene the value of the law and the domain of validity into which the corresponding rst formula applies. The union of all of the pieces constitutes the estimation model itself. In this work, we associate these laws to many components of the system architecture model specically the software components, the application threads and OS services. We dene a set of estimation laws that will be used to verify system constraints:

Energy consumption estimation law: This law depends on the execution time and the power consumption. For instance, the quantitative analysis view, showed in gure 6.4, represents the energy estimation law associated with an AADL system architecture component which is "slice2_processing" application thread, running at 720 MHz. As a result, the calculated energy Task CPU utilization law: The task CPU utilization law is dened using the QAML language as the worst-case task execution time divided by its period.

QAML composition modeling:

The composition model is used to represent how quantities are combined to calculate a resulting quantity. For example, the sum of the product of power and time quantities over a set of system components contained in a system is a composition model for calculating the energy consumed by the system. As opposed to an estimation model, a composition model does not have an attached uncertainty model.

However, a set of elements must be provided to which the composition function will be applied.

In the proposed model, the composition laws are used mainly to calculate the energy consumption of applicative tasks and OS services and to evaluate the CPU utilization rate.

Energy consumption composition law: As showed by gure 6.5, this composition law calculates the total energy consumption of the software application by summing the elementary energy consumption of all application tasks and OS services. This total energy consumption composition law is sub-divided under two composition laws. The rst one calculates the energy consumption of dierent AADL software threads. For this, OCL queries are used to collect dierent threads allowed to be executed on platform processors.

The second law determines the energy overhead of OS services: it multiplies constraints Tasks CPU utilization composition law: This law calculates the sum of dierent application and OS threads CPU utilization rates. The obtained value will be used later to verify schedulability constraints.

Requirements denition and verication using RDALTE tool

In this section, we detail the dierent constraints that the studied embedded system should satisfy or that we have to verify in the design exploration process. Some constraints concern software application components; some others are formalized to check the eciency of hardware components. Also, we implement some requirements that revolve around the integration of OS services in the AADL model.

The schematic diagram, represented in gure 6.7, shows a hierarchical view of an RDAL model and denes non-functional requirements that should be veried according to their priorities. As explained previously, three classes of constraints are dened depending on the exploration level: The set of constraints veried at this level are:

Energy consumption Requirement: The energy consumption requirement is attached to the process instance that contains the dierent threads of the H.264 application, including the OS services as specic threads. For this constraint, an energy budget is xed. The total energy consumption should respect allowed budgets for used system and should not be exceeded when running the application on the hardware platform. This constraint also allows checking dierent possible congurations. Thus, we can ensure for each operating point an ecient exploitation of the energy resource. The chosen value helps us to specify which conguration can be a candidate for the next exploration level. The global energy consumption will be evaluated as in the equation below 6.1 1≤i≤n

E T i ≤ EB (6.1)
Where n, E T i and EB represent respectively the number of application threads, the energy consumed by the thread number (i) and the energy budget. To verify this constraint, the QAML energy consumption estimation law and its associated property to each process, described in the section above, are used. Once getting the energy consumption of each thread at the running frequency, the OCL queries will browse the tree view of AAXL model and 106 Chapter 6. System design space exploration and verication of constraints Where ns and np represent respectively the number of serial and parallel tasks. The set of serial and parallel tasks are respectively {{T s i }, 1 ≤ i ≤ ns} and {{T p j }, 1 ≤ j ≤ np}, their execution times are CET T s i and CET T p j . The execution time threshold is T T .

-Deadline requirement: This requirement species, for each task, that the case execution time property, once evaluated at the specic operating point, must met the corresponding deadline. For a specic operating point, the execution time for each thread is deduced using the rule of three and the quantity model. Otherwise, we consider that execution time function is linear as showed in equation 6.3.

CET F i = CET Fmax × F max /F i (6.3)

Where F i and F max are respectively the running and maximal frequency.

CET F i and CET Fmax represent respectively the execution times at frequency F i and F max .

Second level of design exploration constraints

At the second level of design exploration, we have to take into account these requirements:

Power budget Requirement: This requirement concerns battery powered systems. It veries that each processor's power consumption does not exceed a xed value depending on the battery autonomy. In order to evaluate the global power consumed by all hardware platform components, we need to x the processor number. This expression 6.4 is used to calculate total power consumption.

P = K CP U × V 2 × F × N CP U (6.4)
Where K CP U represents a specic constant for processor; in our case, we used an OMAP 3530 processor and we recall that we adopted the homogeneous embedded systems. (F,V) is the used operating point: the running frequency and voltage. N CP U represents the processor number used in the platform. 108 Chapter 6. System design space exploration and verication of constraints Parallelism requirement: When running the software application, the parallelism constraint should be respected. For that, the number of processors should be greater than or equal to the parallelism rate which is the number of slices that will be executed concurrently. We remind in this context that a processor can execute only one task at once a time.

Global scheduling requirement: This schedulability requirement species the least processor number that hardware platform can support to execute the application tasks and verify their deadlines. Since we are interested in global scheduling, this constraint is checked before scheduling tasks on hardware execution units. This specicity is due to the homogeneity of used hardware platform. We start by checking one of the most used scheduling policies in the multiprocessor embedded systems: Earliest Deadline First (EDF) [START_REF] Burns | Real-Time Systems and Programing Languages: Ada 95, Real Time Java and Real Time Posix[END_REF][START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF].

Thus, the schedulability test of EDF is presented in expression 6.5:

1≤i≤n
CET i /P i ≤ (m + 1)/2 (6.5)

Where m is the processor number in the multiprocessor platform and n the number of tasks. The rst part of the inequality is the sum of dierent tasks CPU utilizations. Application tasks, satisfying this requirement, are schedulable by m-processor platform. This condition is necessary and sucient to conrm the schedulability test. The computed task CPU utilization, which is the result of the QAML estimation law, and the global application workload, which is the sum of the dierent task CPU utilizations, are computed using QAML composition laws. The OCL expression checking this constraint and validating the schedulability test, is showed in gure 6.9.

Third level of design exploration constraints

Depending on the running mode presented in AADL deployment model, the binding of each task to the suitable execution target (CPU) is performed. At the third level of design exploration, AADL binding properties are used to identify which 6.5. Example 109 are software components that handle specic hardware components. For this, it is recommended to use the Allowed_Processor_Binding in the deployment model to enable the AADL scheduler to aect the dierent application tasks to the appropriate execution target taking into account their deadlines as well as the parallelism rate. We have to add specic requirements in this level in addition to the energy and timing constraints dened in previous step. We will detail in this section how to implement the schedulability and the workload requirements for each processor.

Processor workload requirement: This requirement is applied to the instantiate processor set, independently to tasks deployment on the hardware platform; the verication of this requirement warns us of the processor overload cases. An OCL query, implemented to identify for each processor its allocated tasks, will compare the sum of these tasks CPU utilizations (the case execution time divided by its period) with 100%.

Scheduling requirement: When allocating application tasks for processors, the schedulability condition for each processor following the standards scheduling policy: Earliest deadline rst (EDF), Rate Monotonic (RM) is checked. Expressions 6.6 and 6.7 are veried respectively to conrm the scheduling requirements of (EDF) and (RM) policies.

U i ≤ n × (2 1/n -1)

(6.6)
Where U i represents the workload of the processor number (i) and n its allowed tasks number.

1≤i≤n

CET T i /P T i ≤ 100 (6.7)

Where CET T i and P T i are respectively the case execution time and the period of task T i .

Example

An example of verication scenario is used in order to explore the design and evaluate the dierent constraints. When executing the H.264 application presented previously in chapter 4, the total energy consumption, the execution time with their deadline satisfaction percentages and nally the OS energy overhead are measured. Table 6.1 shows the total energy consumption, the OS energy rates and allowed execution times of dierent possible solutions. The OS energy overhead should not exceed 60% of the total energy consumption.

As explained in the rst level of our strategy, we can eliminate the highest frequency (720 Mhz) in view of exceeding the energy budget xed by the designer. We note also 110 Chapter 6. System design space exploration and verication of constraints In the second step, after xing the running frequency, the number of processors should be selected. This number should verify the maximum of second level of design exploration constraints. In our case, the number of processors varies from 4 to 8. The selected processors number, having the highest satisfaction rate of the dierent requirements checked in the second level of design exploration (72%), is ve. Finally, we perform the tasks partitioning using the AADL tools. The used scheduling policy is Rate Monotonic. The schedulability test for each processor when AADL decides tasks partitioning is checked. As showed in gure 6.11, the average acceptance rate of third level of exploration constraints is (90%). and scheduling policies constraints. Also, a ow, using a set of tools that denes and veries system constraints, is proposed. The AADL models of software and hardware components are analyzed quantitatively using the (QAML) language. The denition and analysis of system requirements are performed using the (RDAL) language and RDALTE tool. Also, the formal language (OCL) is exploited to describe dierent constraints and to communicate between AADL and QEML models. This chapter summarizes the proposed methodology of characterization, estimation and modeling of OS services energy consumption and recapitulates the main thesis contributions that have been discussed in previous chapters. Also, it presents the perspectives and future works.

Conclusion

All along this document, eorts have been made to present methodology targeting to characterize, estimate and model the power and energy consumption of embedded operating systems running on a hardware platform.

As detailed in the introduction, power consumption is a major challenge for embedded systems designers. Besides, embedded and real time OS are more and more used by embedded systems developers: nearly 73% of embedded projects integrate an OS. Various studies and research works have pointed out the overhead of some specic OS services. In this thesis, a methodology is proposed in order to characterize and model the power overhead of OS services. The proposed approach comprised of four main contributions: characterizing the power and energy consumption of OS services, the AADL modeling of dierent features of the used embedded system components and the OS services, the integration of OS services models in the system level design ow using low power scheduling policies and verication of system and OS services energy consumption constraints.

In chapter 3, we introduce a ow of embedded OS services power/energy consumption characterization. Furthermore, we present the methods and benchmarks used to determine energy and power overheads of a set of three basic services of the embedded OS: scheduling, context switch and inter-process communication. In addition, 114 Chapter 7. Conclusion we study the variation of power/energy consumption of the embedded OS services and we analyzed the impacts of hardware and software parameters like processor frequency and scheduling policy on energy consumption. An accurate mathematical models and laws of the power and energy consumption are extracted. The use-case embedded system used is the OMAP3530 EVM board with an OMAP3 processor and Linux 2.6.32 operating system. Then, in chapter 4 , AADL language is used to model OS services, applicative tasks, hardware platform and the binding of software tasks on the hardware components. The H.264 video decoder application is taken as main use case application. Furthermore, using the power/energy models and laws of the OS basic services extracted in chapter 5, the energy overhead of the scheduling, the context switch and inter-process communication routines is determined when adapting low power techniques: the DPM and DVFS techniques. To calculate the energy and power overhead of the embedded OS services, extracted models of OS services are integrated in multiprocessor scheduling estimation tool: STORM. A global approach is introduced, it is based on three focal concepts: AADL Modeling, code transformation from AADL to STORM and OS services energy and power estimation. Taking into account the properties of the application tasks and the hardware platform, the energy overhead of OS services is calculated. Experimental results show that OS services consume a signicant part of energy and that it depends on the low power scheduling policy used.

In chapter 6, we introduce a ow of denition and verication of system requirements. The AADL models of software/hardware components are analyzed quantitatively using the Quantitative Analysis Modeling Language (QAML). Also, we dene a set of system requirements, such as the OS services energy consumption and scheduling Requirements, using the (RDAL) language and RDALTE tool. The formal language OCL (Object Constraint Language) is used to describe dierent constraints and to communicate between AADL and QAML models. Taking into account these requirements, an exploration of possible binding solutions is performed: we search the operating points and the number of execution units that satises the maximum number of system requirements. Then, we allocate execution resources to each thread.

Perspectives

In this section, we discuss many extensions of the proposed work and we present future works.

OS services energy characterization approach extension

We have studied in chapter 3 the energy consumption of three basic embedded OS services: the context switch, the scheduling and the interprocess communication.

As a continuation of the work, we are planning to calculate the energy overhead of other OS services. Also, we will validate the energy characterization approach using various hardware platforms and peripherals and compare the OS energy overhead when using dierent architectures. Furthermore, we can extend this study by extracting power and energy models for other embedded and real time operating systems.

OS services energy optimization

One of the possible extension of this work can be the optimization OS energy consumption. In fact, we can dene, for other complex architectures, a multi-objective function that characterizes the energy consumption of the embedded operating system. This function depends on many hardware and software parameters. The goal is to nd a hardware/software binding solution that minimizes the OS energy overhead. Depending on the complexity of the architecture, we can use, to search the OS energy optimal or good solution, heuristic or complete methods. Heuristic algorithms, such as the bees algorithm, are used when the set of possible solutions is huge. The complete methods explore all possible solutions and ensures an optimal solution as a result.

System level thermal modeling

Future works also include the system level thermal modeling. We can develop a module aiming to characterize the temperature of processor blocks using infrared measurement framework, such as infrared cameras with high spatial resolution, that permits the capture of run-time power consumption and thermal characteristics of modern chips.

1 . 1

 11 . 1.2 Contributions . 1.3 Outline . 2 Background on embedded systems energy consumption characterization, modeling and analysis Introduction Contents Context . 1 1.2 Contributions . 4 1.3 Outline . 6

Figure 1 . 1 :Figure 1 . 2 :

 1112 Figure 1.1:The use of operating systems in embedded systems development[START_REF] Turley | Operating systems on the rise[END_REF]

Contents 2 . 1 9 2. 2 . 1 11 2. 3 . 1

 219211131 Power and energy dissipation in embedded systems 7 2.2 Power and energy consumption characterization and estimation in embedded systems Power and energy in electrical circuits 9 2.2.2 Overview of power and energy consumption characterization and estimation . 10 2.3 Power and energy consumption estimation of embedded systems at dierent abstraction levels Estimation and modeling of power/energy consumption at microprocessor abstraction levels 13 2.3.2 Power/energy consumption of hardware components and peripheral devices . 20 2.3.3 Characterization of embedded OS power/energy consumption 22 2.4 Conclusion . 30

Figure 2 . 1 :

 21 Figure 2.1: Energy/power consumption estimation and characterization ow

Figure 2 . 2 :

 22 Figure 2.2: Dierent abstraction levels

Chapter 2 .

 2 Background on embedded systems energy consumption characterization, modeling and analysis power dissipation of instructions and a software energy analyzer to integrate multiple-granularity software energy consumption. The entries of the proposed methodology are an executable binary OS kernel image le and a root le system involving user-level test programs.The output is the energy consumption of OS routines. The image initrdi.img (initial ramdisk) describes the load of root le system into memory in the boot process of the Linux kernel. The authors apply the readelf command to the executable image le, generated from the compilation of OS source code, and extract an OS symbol information table. The full system instruction simulator simulates functionalities of microprocessor and hardware devices. It generates instruction and address traces and sends it to the micro-architectural power simulator, through a message queue, in order to simulate operations of micro-architectural components of pipelines and memory access. During instructions execution in the pipeline, the simulator calculates the power consumption of micro-architectural components. It sends cycle-accurate power consumption of instructions and corresponding instruction addresses to the software energy analyzer. The software energy analyzer treats a run-time operating system as a set of logical units consisting of atomic functions, routines, services and execution paths. It builds run-time function call tree on the y by analyzing instruction-address sequences and symbol information of OS. Then, it calculates multiple-granularity software energy consumption of OS based on software energy estimation-model. Zhao et al. implement their approach, using an Intel Strong-Arm architecture running embedded Linux 2.4.18.They show that energy consumption of the embedded OS and the software application could be characterized and optimized.Fournel et al.[START_REF] Fournel | eSimu: a fast and accurate energy consumption simulator for real embedded system[END_REF] present a performance and energy consumption simulator for embedded system executing an application code. This work allows designers to get fast performance and consumption estimations without deploying software on target hardware, while being independent of any compilation tools or software components such as network protocols or operating systems.Fei et al.[START_REF] Fei | Energy-optimizing source code transformations for operating system-driven embedded software[END_REF] are interested in reducing the energy consumption of the operating system-driven multi-process embedded software programs by transforming its source code. They minimize the energy consumed when running OS functions and services. The authors propose four types of transformations, namely process-level concurrency management, message vectorization, computation migration and inter-process communication (IPC) mechanism selection. The authors evaluate the applicability of theses techniques in the context of an embedded system containing an Intel StrongARM processor and embedded Linux OS. They manage process-level concurrency through process merging to save context switch overhead and IPCs.

Figure 2 . 4 :

 24 Figure 2.4: Overview of Zhao et al. OS routines energy estimation approach[START_REF] Zhao | Fine-grained energy estimation and optimization of embedded operating systems[END_REF]

Chapter 2 .

 2 Background on embedded systems energy consumption characterization, modeling and analysis applications. The methodology is divided into two phases: measurements and modeling. The methodology is based on the opportunities oered by SoC hardware/software architectures (Xilinx/PowerPc and Altera/ARM). The main benets of this work is respecting the characteristics of dierent OSs and microprocessors, the simplication of the measurement setup and the coverage of system calls of commercial and open source OSs. The obtained results constitute a sound starting point for a more complete analysis of software energy characteristics, both for estimation and optimization purposes and allow covering the whole spectrum from source-level down to system calls. In [74], Nellans et al. consider two approaches to manage the execution of the embedded OS instructions. They are interested in the boost of performance aorded by reducing OS-user interference within the cache. The authors propose an adaptive o-load policy based on behavior proling and syscall run-length prediction. They introduce a cache within a core to cache a subset of OS references and consider several design options for it, including various block placement policies, bank predictors, and sequential/parallel look-ups. Kang et al. [61] present a new approach to characterize the energy consumption of individual OS functions in the µC/OS -II real time kernel running on an ARM7TDMI-based embedded system. To measure the energy consumption of dierent components of the hardware platform such as the CPU, the cache, the memory and the bus, Kang et al. use the Seoul National University energy scan-

Figure 2 . 5 :

 25 Figure 2.5: Implementation of API and cache management functions[START_REF] Kang | Functional-level energy characterization of µC/OS-II and cache locking for energy saving[END_REF]

2 Figure 2 . 6 :

 226 Figure2.6: Power synthesis, optimization and analysis methodology[START_REF] Haukilahti | Energy characterization of a RTOS hardware accelerator for SoCs[END_REF]

 step consists of generating an execution trace le and a VCD (Value Change Dump) le from the gate-level simulation. These les contain data allowing the power consumption estimation such as the execution time of RTOS instructions and the switching activity. 5-Determination of execution cycles number and power consumption: This last step targets characterizing the energy consumption of RTOS routines using the memory dump, the execution trace and the VCD les. To extract the average number of cycles and calculate the power consumption of RTOS routines, Penolazzi et al. develop and use a C-based script, called RTOS Modeler. This script allows the energy characterization of RTOS routines or sequences of routines without any intervention from the user.Then, after characterizing the RTOS activity, the authors propose an algorithm to predict how many times the OS calls get triggered during the OS execution in order to estimate the total OS overhead. The authors compare the eectiveness of their approach with other methods. In fact, They are interested in comparing the accuracy with gate level simulation method and the speed with Transaction-Level Modeling (TLM) approach. For experimental results, the chosen applications are the image compression codec JPEG2000 and the video compression codec H264.Applications and data have been combined in dierent ways to show some possible use-case scenarios, where two applications always run concurrently on top of the RTEMS OS. Penolazzi et al. show that their approach could achieve an important mean speedup (36X) compared to TLM. But when estimating the energy consumption, they lose 12% of the gate-level accuracy. This work considers only the scheduling and clock tick interruption routines. The energy consumed by other Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis services of the RTOS, such as the inter-process communication, was not studied.

Figure 3 . 1 :

 31 Figure 3.1: The dierent layers of an embedded system

Figure 3 . 2 :

 32 Figure 3.2: Address conversion by memory management unit

 ing the number of tasks completed per unit of time and reducing the average waiting time of dierent tasks. Scheduling algorithms can be classied based on two main criteria: the execution and preemptive-ness of tasks[START_REF] Fisher | The Multiprocessor Real-Time Scheduling of General Task Systems[END_REF][START_REF] Hyatt | EDF Scheduling on Heterogeneous Multiprocessors[END_REF].Consequently, scheduling algorithms are also divided into two categories based on the tasks execution criteria: the o-line and online scheduling algorithms.The o-line scheduling algorithms assign dierent tasks to processor before the execution step. These algorithms are usually carried out via a scheduling Chapter 3. Characterization and analysis of embedded OS services energy consumption

Figure 3 . 3 :

 33 Figure 3.3: Transitions between task states

Figure 3 .Chapter 3 .Figure 3 . 4 :

 3334 Figure 3.4 synthesizes the interactions between the OS services and the hardware components.

Figure 3 .

 3 Figure 3.5 shows the dierent components of OMAP3530 processor. These are characteristics of this processor: -CPU: ARM Cortex-A8 RISC -Operating frequencies: 125, 250, 500, 550 and 720 MHz -External Memory Type Supported: LPDDR, NOR Flash, NAND ash, One-NAND, Asynch SRAM DMA64-Ch E -Core Supply: 0.8 V to 1.35 V -IO Supply:1.8 V,3.0 V -IVA2.2 subsystem with a C64x+ digital signal processor (DSP) core -POWER SGX subsystem for 3D graphics acceleration to support display and gaming eects

40 Chapter 3 .Figure 3 . 5 :

 40335 Figure 3.5: OMAP3530 Applications Processor [7]

 use the DHCP protocol to obtain an IP address of the board from the server. The TFTP (Trivial File Transfer Protocol) and NFS (Network File System) protocols are used to load and boot the OS image from the server and through the ethernet.

Figure 3 . 6 :

 36 Figure 3.6: OMAP35x EVM Board top overview

Figure 3 . 7 :

 37 Figure 3.7: OMAP35x EVM Board bottom overview

Figure 3 Figure 3 . 9 :Figure 3 .

 3393 Figure 3.8: The measurement framework

Figure 3 . 2

 32 Figure 3.12 depicts the variation of measured and estimated scheduling routines energy consumption with processor frequency. The used frequencies are operating points of the processor: 125 Mhz, 250 Mhz, 500 Mhz and 720 Mhz. The scheduling policy is SCHED_OT HER and the number of processes is 10. The energy consumption law for the scheduling routines is depicted by equation 3.6. The average estimation error is around 0.355%.The obtained results are explained by considering that the energy is the product between the average power and the total execution time. If we consider that the steady state current (and hence the power) prole obtained when running this experiment is almost at since the processor does not access the external bus, the energy cost of the scheduler is proportional to the execution time of the scheduling routines which decrease with the increase of the frequency.

Figure 3 . 11 :

 311 Figure 3.11: Scheduling routines power consumption versus the number of processes

Chapter 3 .Figure 3 . 12 :

 3312 Figure 3.12: Scheduling routines energy variation as a function of CPU frequency (SC HED_OT HER policy and 10 processes)

Figure 3 .

 3 Figure 3.13: Step 1

(3. 10)

 10 The context switch energy overhead is computed as showed in equation (3.11):Ecs = ((P stepn * T stepn) -(P step1 * T step1))/(n -1)(3.11)

Figure 3 . 15 : 52 Chapter 3 .Figure 3 . 16 :

 315523316 Figure 3.15: Context switch energy consumption versus the number of context switching for dierent scheduling policies

Figure 3 .

 3 Figure 3.17: Context switch energy variation as a function of dynamic CPU frequency scaling

, 3 .

 3 Figures 3.17, 3.18 and 3.19 illustrate the context switch energy, power and time variation when changing the CPU frequency. Actually, for the processor core, a set of voltage and frequency couples is specied, named operating points. Running on high frequency requires also high voltage and inversely.

Figure 3 . 18 :Figure 3 . 19 :Figure 3 . 20 :

 318319320 Figure 3.18: Context switch power variation as a function of dynamic CPU frequency scaling

Figure 3 .Chapter 3 .Figure 3 . 21 :

 33321 Figure 3.21 depicts the inuence of the message size msz on the energy consumption of IPC : E ipc . The energy overhead increases exponentially with the rise of the size of data transmitted. Equation 3.14 represents the IPC energy model:

Contents 4 . 1

 41 Exploitation of high level AADL models 60 4.2 Embedded OS functional/non-functional properties and requirements . 60 4.3 Architecture modeling languages 61 4.4 Overview of AADL language634.4.1 AADL components . 63 4.4.2 Subcomponents . 64 4.4.3 Components implementations 65 4.4.4 Components interaction . 65 4.4.5 AADL properties, annexes, packages and modes 66 4.4.6 AADL tools . 66 4.5 AADL modeling case study 67 4.5.1 H.264 application . 67 4.5.2 AADL modeling of system components 68 4.6 Conclusion . 77

Figure 4 . 1 : 4 . 3 .

 4143 Figure 4.1: From AADL modeling to scheduling policies simulation and system requirements verication

4. 4 .

 4 Overview of AADL language 63

Figure

4. 2 Figure 4 . 3 :

 243 Figure 4.3: Graphical representations of hardware and generic AADL components

 The H.264 video decoder application can be broken down into various tasks sets corresponding to dierent types of parallelization. In our experiments, we use the slices 68 Chapter 4. High level modeling of embedded system components version proposed by Thales Group (France) [10] in the context of French national project PHERMA (Parallel Heterogeneous Energy ecient real-time Multiprocessor

Figure 4 . 5 :

 45 Figure 4.5: Thread N AL_DISP AT CH AADL model

Figure 4 . 6 :Figure 4 . 9 :

 4649 Figure 4.6: OS services AADL model

Figure 4 .

 4 Figure 4.10: AADL modeling of the OMAP3530 processor

Figure 4 .

 4 Figure 4.12: AADL model of software application on hardware platform

Contents 5 . 1 81 5. 2 83 5. 2 . 1 88 5. 3 . 1 89 5. 4

 5181283218831894 Models integration in multiprocessor scheduling simulation tool . 80 5.1.1 STORM tool . 80 5.1.2 The proposed approach . Low power scheduling policies The AsDPM scheduling policy: 84 5.2.2 The DSF scheduling policy: 87 5.3 Embedded OS services energy overhead: Fixed frequency case: . 89 5.3.2 Dynamic frequency case: . Experimental results: . 91 5.5 Conclusion . 94

5. 1 .Figure 5 . 1 :

 151 Figure 5.1: STORM simulator input and output le system [9]

Figure 5 . 2 :

 52 Figure 5.2: Example of STORM input XML le

Figure 5 . 3 :

 53 Figure 5.3: Os power and energy models integration in the system level design ow

Figure 5 . 5 :

 55 Figure 5.5: DPM technique energy saving

5. 2 . 2

 22 The DSF scheduling policy: Nowadays the Dynamic Voltage and Frequency Scaling (DVFS) techniques have emerged. They have been particularly distinguished by their eciency to reduce CPU power consumption. It can execute various tasks of an application at dierent couples of voltage/frequency depending on the workload of the processor. The DVFS techniques adjust dynamically the voltage and frequency of the processor to minimize the energy consumption. The voltage/frequency switching mechanisms are coupled with the scheduling techniques and policies to preserve the feasibility of schedule and respect the time constraints. Several strategies have been proposed to exploit certain aspects of DVFS and oer a particular method to build pseudo intermediate frequencies for use in conjunction with the techniques of Dynamic Voltage

Figure 5 . 6 :

 56 Figure 5.6: Slack reclamation using the DSF technique

Figure 5 . 7 :

 57 Figure 5.7: Os calls at xed frequency

Figure 5 . 8 :

 58 Figure 5.8: Os calls when changing the frequency

5. 4 . 93 Figure 5 . 9 :Figure 5 .

 493595 Figure 5.9: Schedule of application tasks using DSF technique

Figure 6 . 2 :

 62 Figure 6.2: System design exploration methodology

Figure 6 . 4 :

 64 Figure 6.4: Energy consumption estimation law of slice2_processing thread running at 720 Mhz

Figure 6 . 5 :Figure 6 . 6 :

 6566 Figure 6.5: Energy consumption composition law

6. 4 . 105 Figure 6 . 7 :

 410567 Figure 6.7: System requirements RDAL diagram

Figure 6 . 8 :

 68 Figure 6.8: Energy consumption requirement verication using OCL

Figure 6 . 9 :

 69 Figure 6.9: OCL expression of the schedulability test

Figure 6 .

 6 Figure 6.10: Requirements satisfaction rates (500 Mhz)

6. 6 . Conclusion 111 Figure 6 . 11 :

 6111611 Figure 6.11: Satisfaction rates of third level of exploration requirements

energy consumption characterization Power/energy consumption modeling Power/energy consumption Analysis Embedded system design Power/energy consumption models and laws Power/energy consumption simulations High level verification resources/ tests Power/energy consumption estimation Power/energy measurements Power/energy consumption characterization Power/energy consumption modeling Power/energy consumption Analysis Embedded system design Power/energy consumption models and laws

	Chapter 2. Background on embedded systems energy consumption characterization, modeling and analysis
	Power/energy consumption laws and models	Power/energy consumption simulations	High level verification resources/ tests
	Power/energy	Power/energy consumption	
	measurements	estimation	
	Power/		

High level test bench System-level IP High level value change dump (.vcd)

	High level variable to RTL
	signal synthesis
	Activity extraction from high
	level simulation dump
	High level variable to RTL
	signal mapping
	Probabilistic input for power
	estimation

Probabilistic input generation for power analysis RTL Gate level/VERILOG model RTL power analysis engine Average power number

	Figure 2.3: Ahuja et al.'s RTL power estimation ow [24]

 RAM and E ADC represent respectively the energy consumed by the micro-controller while executing a program, the memory and the A/D converter.

	2.3. Power and energy consumption estimation of embedded systems at dierent abstraction levels 21
	Access (DMA) functionality that enables direct communication between memory
	and peripherals. For experimental framework, the Linux based development board
	SmartBadge IV [3] is used as an embedded system with dierent hardware com-
	ponents, such as the processor, the memory, an audio interface, a speaker and a
	headphone. Simulation results show that peripheral devices can consume from 50%
	to 55% of the total system energy consumption. Furthermore, MP3 decoder is used
	as use-case application to demonstrate that the proling tool reduces the total ap-
	plication energy consumption by 44% when optimizing the audio driver's energy
	overhead.	
	Konstantakos et al. present in [64] a new methodology for modeling the energy con-
	sumption of various hardware devices. As showed in equation 2.10, they consider
	that the energy consumed by an embedded system when executing a software appli-
	cation is mainly the sum of energy overheads of a micro-controller, a RAM memory
	and an analog-to-digital A/D converter.	
	E System = E µController + E RAM + E ADC	(2.10)
	The energy of each peripheral device component has been modeled and analyzed
	based on separate physical measurements of the drawn current. For instance, to
	characterize the energy consumption of the RAM memory, the authors are inter-
	ested in studying the energy overhead of each read/write access routines. Also, the
	standby energy consumed due to the steady-state current ow through memory cells
	and the energy dissipated during each memory row refresh are considered. Based
	on measurements, an average value of energy consumption for each read and write 2.3.2 Power/energy consumption of hardware components and pe-access routines and refresh operations is calculated. In the proposed memory energy ripheral devices model, Konstantakos et al. take into account the energy leakage due to the steady-
	In embedded systems, hardware devices can consume an important amounts of en-state current, this energy is calculated as the integral of power for the complete
	ergy. In this paragraph, we report research studies that are interested in energy period of the test-program execution, as formulated below:
	consumption estimation and modeling of hardware platform components.	
	Celebican et al.'s work [39] focuses on the energy estimation of peripheral devices in
	embedded systems. To identify the highest power consuming routines and compo-
	nents, Celebican et al. implement a cycle-accurate simulator and proling tool for
	energy consumption of hardware platform devices. They modeled with analytical
	equations the energy overhead of I/O controller and the audio module. Also, they
	dene dierent energy modes for each peripheral device. The energy value of each
	peripheral in each mode is calculated. The proposed approach is tested with two
	types of communication protocols, the polling and the interrupt based communi-
	cation protocols. Also, they compare the energy consumption of various hardware
	modules when using the polling communication protocol and the Direct Memory

where E µController , E

 2.3. Power and energy consumption estimation of embedded systems at dierent abstraction levels 25

	OS source code	Root file system	Application binary code
	Compilation	initrd.img
	Executable image file	Full system Instruction level simulator
			Instruction
			& address
			trace
		Micro-architecture
			power model
			& simulator
		Instruction	
		address&	
		energy	

 We note that SCHED_OT HER processes are non real time processes, but, SCHED_RR and SCHED_F IF O are real time processes. So, SCHED_RR

	and SCHED_F IF O processes need more memory than SCHED_OT HER pro-
	cesses to save the processor registers because they perform more operations and
	calculations in order to respect the real time constraints.	Consequently, they
	consume more time to change the context.	Then, the context switch of the

SCHED_OT HER processes consume less energy than the SCHED_RR and SCHED_F IF O ones.

Table 3 .

 3

	Anonymous pipe	0.347 × F + 6.474	0.293%
	Named pipe	0.333 × F + 4.968	2.113%
	Shared memory	0.217 × F + 8.542	2.27%

1: Inter-process communication power models according to processor frequency IPC mechanism Power model: P IP C (mW) Average error

Table 3 .

 3

	Anonymous pipe	3068 × e 103.9 * 10 -6 ×msz	2.149%
	Named pipe	3003.8 × e 44.96 * 10 -6 ×msz	1.728%
	Shared memory		

2: Inter-process communication energy models according to message size IPC mechanism Energy model: E IP C (nJ) Average error

Table 4 .

 4

		1: AADL subcomponents
	Components	Subcomponents
	System	Data, process, subprogram, processor, memory, bus, device, system
	Thread	Data
	Thread group	Thread, thread group, data
	Process	Thread, thread group, data
	Processor	Memory, bus
	Memory	Memory, bus
	Bus	None
	Data	Data
	Device	None
	Subprogram	None

 In the context of the OPEN-PEOPLE project, we use a set of ECLIPSE[START_REF]The Eclipse Project[END_REF] based tools. Also, the OSATE is used as textual and graphical modeling tool. It is dened as a set of plug-ins on top of the open source Eclipse platform. The set of plug-ins provides a tool set for front-end processing of AADL models. These models can be maintained as textual AADL les or as XML based AADL model les. Also, the ADELE tool is used in this work [107]. It addresses shortcomings in the OSATE graphical editor by providing a new AADL editor, with a new graphical layer.

	4.5. AADL modeling case study	67
	performing formal verication. Ocarina tool is able to generate automatically a
	code from AADL models to C code, ADA code and ARINC653 compliant systems.
	Also, Cheddar [103] is a free real time scheduling tool. It is designed for checking
	task temporal constraints of a real time application/system written in the AADL
	or with a Cheddar proprietary language. Cheddar is not used in this work because
	it supports only monoprocessor platforms.	

 High level modeling of embedded system components vation protocol. The execution times of dierent tasks will be modeled when binding the application tasks on the hardware platform. For instance, gure 4.5 depicts the AADL model of the second task of the application N AL_DISP AT CH: T 2 .

	70 Chapter 4. thread Nal_dispatch		Slice 1 Temporal dependency		
	features IN0: in event data port donnee.impl;	P R		
	OUT1: out event data port donnee.impl; Slice 2 OUT2: out event data port donnee.impl;	O C		
	Ring Buffer OUT3: out event data port donnee.impl; Slice 3 H.264 OUT4: out event data port donnee.impl; Compressed file properties	E S S	Decoded Frame	.yuv file
	Dispatch_Protocol => Periodic;		I		
	Period => 5 Ms;			N		
	end Nal_dispatch;		Slice n	G		
		SYNC	LOOP	SYNC		
	Figure 4.4: Block diagram of H.264 decoding scheme slices version
	Table 4.2: H.264 video decoder application tasks features	
	Task name	WCET (ms)	BCET (ms)	Period (ms)	Deadline (ms)	Activation date (ms)
	N ew_f rame(T 1)	1	1	19	19		0
	N al_dispatch(T 2)	2	1	5	5		0
	Slice1_processing(T 3) 42	21	66	66		0
	Slice2_processing(T 4) 42	21	66	66		1
	Slice3_processing (T5) 42	21	66	66		2
	Slice4_processing (T6) 42	21	66	66		3
	Rebuild_f rame(T 7)	2	1	66	66		66

 1) where d i and C i are respectively the deadline and the worst-case execution time (W CET) of task T i .The working principle of AsDPM technique is showed in algorithm 3. The variable j represents the number of processors. When a scheduling event occurs, all task queues (TQ, RuTQ, ReTQ, and DeTQ) are updated and sorted according to the priority specied by the governing scheduling algorithm. Then, (j) highest priority task(s) from ReTQ are executed on (j) processor(s). For rest of the ready tasks present in ReTQ, a laxity test (l i ≥ 0) is performed considering the rst target processor (line 6..9). If a task passes this test, it is moved into DeTQ i.e., it is deferred from execution at current scheduling event. Otherwise, if a task does not pass this test then it implies that currently available running processors are not sucient to satisfy the concurrent resource requirement of ready tasks and some tasks may miss their deadlines in future. In this case, all tasks which are deferred or running i.e., present in RuTQ or DeTQ, are put into ReTQ again and more processors are activated. This procedure is repeated until ReTQ becomes empty i.e., until all tasks present in ReTQ are either moved to RuTQ or DeTQ. DPM, some processors of the platform have larger workload while others have less workload. For those processors having larger workload and consequently shorter idle time intervals, it is not so benecial, some times even penalizing, to transition them into deeper power-ecient states. This is because the number of transitions on such processors is greater and accumulates large transition cost. In addition, generally, the more a state is power-ecient, the more it takes (time and energy) to recover a processor from that state. However, for other processors having longer idle time intervals, it is advantageous to put them in more power-ecient states as they are not often recovered to running state. Once the AsDPM technique has

	Table 5.1: Power-ecient states of OMAP3530 processor @ 125-MHz
	C-state	Sleep latency (µs) wake-up latency (µs)
	Running	0	0
	C1 (Idle)	73.6	78
	C3 (Stand by)	163	182
	C5 (Sleep)	800	366
	C7 (Deep sleep)	4300	12933
	needs to be put in the power-ecient state long enough to save energy. Under As-
	extracted idle time intervals, processors are then assigned suitable power-ecient
	state with respect to their worst-case workload. In our case, the OMAP 3 processor
	has ve power-ecient states, called C-states, as shown in table 5.1, which allows
	dynamic power management. This table presents the sleep and wake-up latency of
	each C-state which are respectively the time latency from the running state to the
	Algorithm 3 Assertive Dynamic Power Management C-state and the time overhead when switching the processor from C-state to the 1: assign j = 1 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: until ReTQ is empty activate j processors assign j = j + 1 move all tasks from DeTQ and RuTQ to ReTQ else move T i to DeTQ if l i ≥ 0 on j processor(s) then for every remaining task i in ReTQ do move highest priority j task(s) from ReTQ to RuTQ repeat sort TQ, ReTQ, RuTQ, and DeTQ w.r.t. scheduler's priority order 2: for each scheduling event do running state [13].
	Modern processors support multiple power-ecient states. Since, there are tem-
	poral and energy penalties associated with state transitions, therefore, a processor

Table 5 .

 5

		2: Voltage-frequency levels of OMAP330 processor	
	Parameter Operating point 1	Operating point 2	Operating point 3	Operating point 4	Operating point 5
	Frequency	125	250	500	550	720
	(Mhz)					
	Voltage	0.975	1.05	1.2	1.27	1.35
	(V)					
	Running	57	130	303	348	550
	power					
	(mW)					
	Idle power					
	(mW)					

 The power consumption parameters presented previously in table 5.1 and table 5.2 are used in all our simulation results. The used H.264 application provides 15 frames per second.

	92	Chapter 5. Embedded OS service's models integration in the system level design ow
	ric shared-memory multiprocessor (SMP). In this architecture, two or more identical
	processors are connected to a single shared main memory, have full access to all I/O
	devices, and are controlled by a single OS instance. The processors are treated
	equally, with none being reserved for special purposes. Each processor executes
	dierent programs and is able to share common resources (memory, I/O device,
		Software tasks are scheduled over identical multiprocessor platforms of type symmet-

Table 5 .

 5 3: OS services energy consumption rates when using the DSF technique

	Number of processors	Context switch	Inter-process communication	Scheduling routines
	1	44%	35.4%	1.07%
	2	35.38%	32.5%	1.12%
	4	30.88%	27.1%	1.38%
	6	26.8%	21.7%	1.8%
	8	24.62%	22.4%	1.9%

Table 5 .

 5 4: OS services energy consumption rates when using the AsDPM technique

	Context switch Inter-process communication Scheduling routines
	18.67%	29.16%	1.38%

 Design space exploration methodology 98 6.3 System constraints denition and verication ow 99

	Chapter 6
	System design space exploration
	and verication of constraints
	Contents
	6.1 AADL exploration of hardware software solutions 97
	6.2

It is based on three focal concepts: AADL Modeling, code transformation from AADL to STORM and OS services energy and power estimation. Experimental results show that the OS ser-6.3.1 RDAL Language and RDALTE tool 100 6.3.2 The Object Constraint Language (OCL) 100 6.3.3 The Quantitative Analysis Modeling Language (QAML) . . . 101 6.3.4 The proposed approach . 101 6.4 System requirements analysis, denition and verication . 101 6.4.1 Quantitative analysis specications using the QAML language 101 6.4.2 Requirements denition and verication using RDALTE tool 104 6.5 Example . 109 6.6 Conclusion . 111

Table 6 .

 6

		1: Characteristics of possible solutions
	Frequency (Mhz)	OS energy con-sumption rate (%)	Total energy consumption (mJ)	Allowed time (ms)
	125	35%	57.4	278
	250	36.38%	65.3	139
	500	52.5%	80.1	74
	720	62.8%	98.7	48

 Conclusion . 113 7.2 Perspectives . 114 7.2.1 OS services energy characterization approach extension . . . 115 7.2.2 OS services energy optimization 115 7.2.3 System level thermal modeling 115

	Chapter 7
	Conclusion
	Contents
	7.1

vices consume a signicant part of energy and that it depends on the behavior of the low power technique used.

Acknowledgements

The road to a PhD is not always smooth, is sometimes hilly and has bends but

Thread

Thread group Process Subprogram Data Various hardware components are available for AADL users in order to model different units of hardware platforms and to represent system's computational and interfacing resources. These hardware platform components are:

Processor: represents the main hardware unit of the platform that runs and schedules the threads.

Memory: represents the hardware devices allowing the storage of data and routines.

Bus: this component ensures the interconnection between dierent hardware parts of the system.

Device: represents dierent entities of the external environment such as peripheral devices.

Generic components

The generic or composite component, called system in AADL modeling, is used to model entities consisting of both hardware and software components. The system component encapsulates hardware devices, such as peripheral device or processor, the software application tasks and the mapping of software code on hardware components. Generic components add hierarchy in the modeling; they are at the higher level in this hierarchy. ---------OS Services Thread Group -------

AADL modeling of OMAP 3 processor

To model the OMAP 3 processor, we use various AADL hardware components such as "processor", "bus" and "memory" components. The bus is used for the communication between the processor core and its memory. When implementing the processor model, as depicted by gure 4.10, the AADL memory component is used to dene the internal cache memory of the processor. Also, many characteristics of the processor are specied such as its operating point (Running frequency and voltage), its idle and running power consumption and the scheduling policy used.

AADL modeling of the tasks binding on hardware components

To provide a complete system specication, applicative tasks should be bound to appropriate execution platform components. This software/hardware binding is modeled using property associations called binding properties. The AADL modes are exploited to represent dierent system states. In the proposed model, each system mode is mainly characterized by the processor running frequency, voltage and power consumption in idle and running states. Many properties are linked to each system mode such as the power consumption in idle and running states and the CPU core voltage.

When switching from one mode to another, the system active components and con- is optimal scheduling algorithm for single-processor systems [START_REF] Burns | Real-Time Systems and Programing Languages: Ada 95, Real Time Java and Real Time Posix[END_REF][START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. Nevertheless, when more processors are added to the system, (EDF) suers from sub-optimality.

The used low power scheduling policies aim to verify (EDF) scheduling constraints and reduce the energy consumption of multiprocessor hardware platform when running the application tasks.

The AsDPM scheduling policy:

The dynamic power management (DPM) is an ecient technique for embedded systems energy reduction [START_REF] Norman | Using probabilistic model checking for dynamic power management[END_REF][START_REF] Hyatt | EDF Scheduling on Heterogeneous Multiprocessors[END_REF]. When the embedded system is not running any application task, it switches its state from running to idle state. The (DPM) technique keeps the system into low-power states whenever it is in idle state. This technique improves power conservation capabilities by changing selectively the multiple idle states taking into account the cost of transitions power [START_REF] Irani | Online strategies for dynamic power management in systems with multiple power-saving states[END_REF][START_REF] Benini | A survey of design techniques for system-level dynamic power management[END_REF].

Furthermore, the prediction of the system workload could be exploited by the DPM technique to save the energy consumption by switching o or decreasing the performance of system components when they are idle or partially unexploited [START_REF] Singh | Using probabilistic model checking for dynamic power management[END_REF]. But, the disadvantage of using the DPM technique is that processor transitions from idle to running state requires an overhead of time and energy to serve an incoming task.

Usually, the scheduler uses the DPM technique to make such decisions when executing the application based on the system state, its workload and timing constraints [START_REF] Cai | Dynamic power management using data buers[END_REF][START_REF] Chung | Dynamic power management for nonstationary service requests[END_REF][START_REF] Norman | Using probabilistic model checking for dynamic power management[END_REF].

After executing an application task, the processor is able to determine the time

Abstract

The ever-increasing complexity of embedded systems that are developing their computation performances poses a great challenge for embedded systems designers: power and energy consumption. This thesis focuses on power and energy characterization, modeling, estimation of embedded operating systems (OS) energy consumption. First, an OS energy consumption characterization ow is introduced: a set of benchmarks, which are test programs that stimulate each OS service separately, are implemented. These programs are executed on the hardware platform: OMAP 35x EVM board. Based on hardware measurements, several hardware and software parameters that inuence the OS power/energy consumption are identied and energy consumption mathematical models are extracted. The second contribution consists in proposing a high level model of software application, the OS services and hardware platform using an architecture analysis and design language (AADL). Then, AADL and mathematical models of OS services energy consumption are integrated in a multiprocessor scheduling simulator (STORM) in order to evaluate the OS energy overhead when using DPM and DVFS low power techniques. Finally, a ow of denition and verication of system requirements when allocating application tasks to the processors is proposed. Using a set of languages, RDAL and QAML, various real time and energetic constraints are checked when exploring the design. Keywords: Embedded systems, Energy consumption, Embedded operating systems, Power management techniques and algorithms, AADL modeling, Constraints verication.