
HAL Id: tel-01059814
https://theses.hal.science/tel-01059814

Submitted on 2 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-level energy characterization, modeling and
estimation for OS-based platforms

Bassem Ouni

To cite this version:
Bassem Ouni. High-level energy characterization, modeling and estimation for OS-based platforms.
Other [cs.OH]. Université Nice Sophia Antipolis, 2013. English. �NNT : 2013NICE4043�. �tel-
01059814�

https://theses.hal.science/tel-01059814
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION

T H È S E

pour obtenir le titre de

Docteur en Sciences

de l'Université de Nice - Sophia Antipolis

Mention: Informatique

présentée et soutenue par

Bassem Ouni

High-level energy characterization, modeling
and estimation for OS-based platforms

Thèse dirigée par Cécile Belleudy

soutenue le 11 juillet 2013

Jury :

M. Smail Niar Professeur, Université de Valenciennes Rapporteur

M. Yvon Trinquet Professeur, Université de Nantes Rapporteur

M. Eric Senn Maître de Conférences, Examinateur

Université de Bretagne Sud

M. François Verdier Professeur, Université de Nice-Sophia Antipolis Examinateur

M. Sébastien Bilavarn Maître de Conférences, Examinateur

Université de Nice-Sophia Antipolis

Mme. Cécile Belleudy Maître de Conférences, Directeur de Thèse

Université de Nice-Sophia Antipolis

I TO MY PARENTS J

iii

Acknowledgements

The road to a PhD is not always smooth, is sometimes hilly and has bends but

its a pleasant journey with the help of the guides who know about the road, the

other fellow travelers and the supporters. Here, I would like to thank all the people

who contributed to this thesis.

I feel privileged to have worked with my advisor, Dr. Cécile BELLEUDY, who

guided me with great enthusiasm and patience. She gave me freedom to explore and

discover new areas in the domain of energy consumption of embedded systems and

I have learnt a lot while working under her supervision. I am also grateful to Dr.

Sébastien BILAVARN for providing the constant guidance and the helpful feedback

on my work. Working in the MCSOC team at LEAT, Sophia Antipolis had been an

unforgettable and very pleasant experience of my life, and I am going to miss the

working environment here. I would also like to thank my colleagues for numerous

useful discussions.

I feel honored to have respected researchers who served on my dissertation com-

mittee. I would like to thank my reviewing committee members: Dr. Smail NIAR

and Dr. Yvon TRINQUET for their time, interest, and helpful comments. I would

also like to thank my examiners, who provided encouraging and constructive feed-

back. It is no easy task, reviewing a thesis, and I am grateful for their thoughtful

and detailed comments. To the many anonymous reviewers at the various confer-

ences and journals, thank you for helping to shape and guide the direction of the

work with your informative and instructive comments.

This thesis was funded by National Research Agency (ANR) of France in the

frame of the OPEN-PEOPLE project. As a member of OPEN-PEOPLE, I have

been surrounded by wonderful colleagues who have provided me a rich and fertile

environment to study and explore new ideas. I would like to thank the project

leader, Dr. Eric SENN, and Dr. Rabie BEN ATITALLAH who has been extremely

supportive in allowing me to participate in LAMIH laboratory activities while pur-

suing my PhD studies.

A special thanks to all my friends, who have accompanied me in this wonderful

journey of professional and personal growth that started in HORBIT, SIDI KHELIF

(SIDI BOUZID) and ended in NICE. Thanks for putting up with me, being a support

and sharing some unforgettable moments.

Lastly, I would like to thank my family for all their love and encouragement. I

wish to thank my parents. They bore me, raised me, supported me, taught me and

loved me. And most of all for my supportive, encouraging and patient �ancee whose

faithful support during the �nal stages of this Ph.D. is so appreciated. I love you

all dearly. Thank you.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Contributions . 4

1.3 Outline . 6

2 Background on embedded systems energy consumption character-

ization, modeling and analysis 7

2.1 Power and energy dissipation in embedded systems 7

2.2 Power and energy consumption characterization and estimation in

embedded systems . 9

2.2.1 Power and energy in electrical circuits 9

2.2.2 Overview of power and energy consumption characterization

and estimation . 10

2.3 Power and energy consumption estimation of embedded systems at

di�erent abstraction levels . 11

2.3.1 Estimation and modeling of power/energy consumption at mi-

croprocessor abstraction levels 13

2.3.2 Power/energy consumption of hardware components and pe-

ripheral devices . 20

2.3.3 Characterization of embedded OS power/energy consumption 22

2.4 Conclusion . 30

3 Characterization and analysis of embedded OS services energy con-

sumption 31

3.1 Introduction . 32

3.2 Overview of embedded OS . 32

3.2.1 OS middleware in embedded systems 32

3.2.2 Embedded OS services and functionalities 33

3.3 Experimental setup . 38

3.3.1 OMAP3530 Applications Processor 39

3.3.2 OMAP3530 EVM board . 39

3.3.3 Measurement framework . 39

3.4 Energy characterization and estimation �ow 41

3.5 OS power and energy modeling . 44

3.5.1 Scheduling routines . 45

3.5.2 Context switch . 46

vi Contents

3.5.3 Inter-process communication 53

3.6 Conclusion . 56

4 High level modeling of embedded system components 59

4.1 Exploitation of high level AADL models 60

4.2 Embedded OS functional/non-functional properties and requirements 60

4.3 Architecture modeling languages . 61

4.4 Overview of AADL language . 63

4.4.1 AADL components . 63

4.4.2 Subcomponents . 64

4.4.3 Components implementations 65

4.4.4 Components interaction . 65

4.4.5 AADL properties, annexes, packages and modes 66

4.4.6 AADL tools . 66

4.5 AADL modeling case study . 67

4.5.1 H.264 application . 67

4.5.2 AADL modeling of system components 68

4.6 Conclusion . 77

5 Embedded OS service's models integration in the system level de-

sign �ow 79

5.1 Models integration in multiprocessor scheduling simulation tool . . . 80

5.1.1 STORM tool . 80

5.1.2 The proposed approach . 81

5.2 Low power scheduling policies . 83

5.2.1 The AsDPM scheduling policy: 84

5.2.2 The DSF scheduling policy: 87

5.3 Embedded OS services energy overhead: 88

5.3.1 Fixed frequency case: . 89

5.3.2 Dynamic frequency case: . 89

5.4 Experimental results: . 91

5.5 Conclusion . 94

6 System design space exploration and veri�cation of constraints 97

6.1 AADL exploration of hardware software solutions 97

6.2 Design space exploration methodology 98

6.3 System constraints de�nition and veri�cation �ow 99

6.3.1 RDAL Language and RDALTE tool 100

6.3.2 The Object Constraint Language (OCL) 100

6.3.3 The Quantitative Analysis Modeling Language (QAML) . . . 101

6.3.4 The proposed approach . 101

Contents vii

6.4 System requirements analysis, de�nition and veri�cation 101

6.4.1 Quantitative analysis speci�cations using the QAML language 101

6.4.2 Requirements de�nition and veri�cation using RDALTE tool 104

6.5 Example . 109

6.6 Conclusion . 111

7 Conclusion 113

7.1 Conclusion . 113

7.2 Perspectives . 114

7.2.1 OS services energy characterization approach extension 115

7.2.2 OS services energy optimization 115

7.2.3 System level thermal modeling 115

Bibliography 117

List of Figures

1.1 The use of operating systems in embedded systems development [111] 3

1.2 The reasons for non-use of operating systems in embedded projects [72] 3

2.1 Energy/power consumption estimation and characterization �ow . . 12

2.2 Di�erent abstraction levels . 13

2.3 Ahuja et al.'s RTL power estimation �ow [24] 18

2.4 Overview of Zhao et al. OS routines energy estimation approach [117] 25

2.5 Implementation of API and cache management functions [61] 27

2.6 Power synthesis, optimization and analysis methodology [56] 28

3.1 The di�erent layers of an embedded system 33

3.2 Address conversion by memory management unit 35

3.3 Transitions between task states . 36

3.4 The exploitation of hardware components by the OS services 38

3.5 OMAP3530 Applications Processor [7] 40

3.6 OMAP35x EVM Board top overview 41

3.7 OMAP35x EVM Board bottom overview 42

3.8 The measurement framework . 43

3.9 The methodology of OS energy characterization 43

3.10 Estimation of the operating system energy consumption 44

3.11 Scheduling routines power consumption versus the number of pro-

cesses for di�erent scheduling policies 47

3.12 Scheduling routines energy variation as a function of CPU frequency

(SCHED_OTHER policy and 10 processes) 48

3.13 Step 1 . 49

3.14 Step n . 49

3.15 Context switch energy consumption versus the number of context

switching for di�erent scheduling policies 51

3.16 Context switch power variation as a function of CPU frequency . . . 52

3.17 Context switch energy variation as a function of dynamic CPU fre-

quency scaling . 53

3.18 Context switch power variation as a function of dynamic CPU fre-

quency scaling . 54

3.19 Context switch time variation as a function of dynamic CPU fre-

quency scaling . 54

3.20 IPC power variation as a function of CPU frequency 55

3.21 IPC energy variation as a function of message size 56

x List of Figures

4.1 From AADL modeling to scheduling policies simulation and system

requirements veri�cation . 60

4.2 Graphical representations of software AADL components 64

4.3 Graphical representations of hardware and generic AADL components 65

4.4 Block diagram of H.264 decoding scheme slices version 69

4.5 Thread NAL_DISPATCH AADL model 70

4.6 OS services AADL model . 71

4.7 Thread group of OS services . 72

4.8 AADL modeling of the communication between application and OS

services . 73

4.9 angle=-90 . 74

4.10 AADL modeling of the OMAP3530 processor 75

4.11 AADL implementation of system modes and events 76

4.12 AADL model of software application on hardware platform 77

5.1 STORM simulator input and output �le system [9] 81

5.2 Example of STORM input XML �le 82

5.3 Os power and energy models integration in the system level design �ow 83

5.4 Task period extraction . 84

5.5 DPM technique energy saving . 85

5.6 Slack reclamation using the DSF technique 89

5.7 Os calls at �xed frequency . 90

5.8 Os calls when changing the frequency 91

5.9 Schedule of application tasks using DSF technique 93

5.10 OS services and standalone application tasks energy consumption

(DSF technique) . 94

6.1 Possible solution of AADL software tasks binding on hardware plat-

form . 98

6.2 System design exploration methodology 99

6.3 System constraints de�nition and veri�cation �ow 102

6.4 Energy consumption estimation law of slice2_processing thread run-

ning at 720 Mhz . 103

6.5 Energy consumption composition law 104

6.6 Evaluation of energy consumption composition law 104

6.7 System requirements RDAL diagram 105

6.8 Energy consumption requirement veri�cation using OCL 106

6.9 OCL expression of the schedulability test 108

6.10 Requirements satisfaction rates (500 Mhz) 110

6.11 Satisfaction rates of third level of exploration requirements 111

List of Tables

3.1 Inter-process communication power models according to processor

frequency . 56

3.2 Inter-process communication energy models according to message size 56

4.1 AADL subcomponents . 65

4.2 H.264 video decoder application tasks features 69

5.1 Power-e�cient states of OMAP3530 processor @ 125-MHz 87

5.2 Voltage-frequency levels of OMAP330 processor 90

5.3 OS services energy consumption rates when using the DSF technique 94

5.4 OS services energy consumption rates when using the AsDPM technique 94

6.1 Characteristics of possible solutions 110

Chapter 1

Introduction

Contents

1.1 Context . 1

1.2 Contributions . 4

1.3 Outline . 6

In this thesis, we focused on power and energy characterization, modeling, esti-

mation and optimization of embedded systems running applications with operating

system (OS) support. An energy consumption characterization �ow is introduced

and power/energy models of embedded OS services are extracted. Several hardware

and software parameters are varied to estimate the embedded OS energy consump-

tion. The obtained models are �rst integrated in a simulation tool for multiprocessor

scheduling to calculate the OS energy consumption . Then, we compare the overhead

of the embedded OS using low power scheduling policies such as DVFS (Dynamic

Voltage Frequency Scaling) and DPM (Dynamic power management) techniques.

Finally, system design exploration �ow is introduced. We de�ne and verify system

requirements, using a set of tools: RDALTE and QAML, when allocating applica-

tive tasks to processors. In this chapter, we begin by introducing the context of this

thesis, then the main contributions, and we wrap up by presenting the outline of the

dissertation.

1.1 Context

Nowadays technological developments have changed our lives. This has led to a rise

of the automation in everyday life activities which is expected to increase further

in the future. This automation is provided by computing systems that associate

the electronic design and hardware components with software applications which

are known as embedded systems. An embedded system is a microprocessor-based

system that is incorporated into a device to monitor and control the functions of the

components of this device [60]. The realm of embedded systems has expanded so

that they are used in a wide variety of domains ranging from home appliances, wire-

less communications systems, medical imaging systems, automotive/transportation

2 Chapter 1. Introduction

devices to complex applications in avionics and defense.

Generally, embedded systems are composed of two main layers: a hardware layer,

which is the physical support containing the hardware components, and the

software layer represented by the operating system joined with the application.

The physical support is the architecture containing all major physical components

that execute the application tasks through the operating system services. The

application and the operating system, a set of software tasks and services managing

these tasks and the system resources, constitute the software part of an embedded

system. Both hardware and software elements are closely linked and they are not

easily discernible.

Embedded systems are one of the most e�cient tools that can be used to resolve

challenges faced when designing a new system. The architecture of an embedded

device allows the de�nition of the design's infrastructure, constraints and options.

In fact, embedded system interacts tightly with its environment: it respects

physical phenomena constraints, real-time constraints, constraints of dynamism,

energy consumption constraints, density constraints, robustness constraints, cost

constraints, etc. Software, hardware and mixed architectures are e�ciently designed

to satisfy these constraints.

Embedded systems become complex as they contain various hardware devices and

software applications which interact with the users to handle the system. The

complexity of the hardware and software layers necessitates the use of a speci�c

support allowing application to exploit e�ciently the hardware platform. This

support is the operating system (OS).

According to a recent poll data [111], as showed in �gure 1.1, a little less than 73%

of embedded systems engineers, programmers and managers around the world use

the embedded OS for their projects. These statistics con�rm the importance and

wide spreading of embedded OS. This is thanks to the wide variety of its services

and capabilities allowing an e�cient exploitation of hardware resources.

The ever-increasing complexity of embedded systems that are developing their

computation performances, ranging from multimedia and telecommunication to

medical systems, poses a great challenge for embedded systems developers and

experts: power and energy consumption. In fact, power densities in microprocessors

have almost doubled every three years [47], [104]. Also, leakage power is increasing

exponentially with process technology and it is expected to dominate the total

power consumption. This growth in power consumption poses two main problems:

the increase of energy consumption and device's temperature dissipation. For this

reason, characterizing and reducing energy consumption of embedded systems is an

important design challenge for embedded system designers. As the OS is a basic

component of an embedded system, it has become imperative to take its energy

overhead into account when designing embedded systems. In �gure 1.2, we show

1.1. Context 3

36%

29%

12%

15%
8% Commercial OS

None

Open source

Internally
developed

Commercially
distributed

Figure 1.1: The use of operating systems in embedded systems development [111]

7%

10%

15%

14%

86%

7%

10%

13%

14%

78%

6%

8%

9%

13%

81%

0% 20% 40% 60% 80% 100%

OS is too complicated to use

OS is too expensive

OS requires too much processor power

OS uses too much memory

Current project doesn't need it

2008

2007

2006

Figure 1.2: The reasons for non-use of operating systems in embedded projects [72]

percentages of embedded OS non-use reasons from a large-scale survey of embedded

systems developers from around the world. Power consumption of OS services is

one of three important reasons for non-use of OS in embedded systems [72].

In fact, the embedded OS drives the exploitation of the hardware resources

4 Chapter 1. Introduction

e�ciently by o�ering a wide variety of services such as task management, schedul-

ing, inter-process communication, timer services, I/O operations and memory

management. Also, the embedded OS manages the overall power consumption of

the embedded system components. It includes many power management policies

aiming at keeping components in lower power states, thereby reducing energy

consumption.

In this context, the work presented in this dissertation has been carried out at

Electronics, Antennas and Telecommunication Laboratory (LEAT), from University

of Nice-Sophia Antipolis. This thesis has been conducted under the French national

project OPEN-PEOPLE [12] (Open Power and Energy Optimization PLatform

and Estimator) gathering several academic and industrial partners (INRIA of

Lille, INRIA of Nancy, Lab-STICC (Lorient), IRISA-Cairn (Rennes), THALES

Communications (Colombes) and InPixal (Rennes)). The main goal of this project

is to provide a complete platform to ease the design of complex systems. This

platform should allow rapid power/energy estimation for complex heterogeneous

systems, also, it should test di�erent optimizations in order to signi�cantly reduce

the power consumption of the system.

1.2 Contributions

Various works have been done on energy consumption characterization and model-

ing at di�erent abstraction levels in embedded systems design. Many methodologies

deal with low level models, and are dedicated to the analysis of hardware components

(processor, memory or FPGA), or part of hardware components. With the com-

plexity of embedded systems, these methodologies become not used to analyze the

energy consumption. In this thesis, we will focus on approaches intended to estimate

the power and energy consumption of a complete embedded system, including its

operating system, in order to evaluate the performance and e�ciency of low power

scheduling policies which are used in various embedded systems. Therefore, the

main contribution of this thesis is proposing a methodology for characterizing and

modeling the power/energy consumption of an embedded system including software

components, the application and operating system, and hardware components. To

achieve this goal, we intend to pursue a methodology beginning from power/energy

modeling to high level estimation of OS services energy overhead when using lower

power scheduling policies:

� We propose an approach of embedded OS power/energy consumption charac-

terization and modeling. Various methods are used to calculate energy and

power consumption overheads of a set of three basic services of the embedded

1.2. Contributions 5

OS: the scheduling, context switch and inter-process communication. Further-

more, the variation of power/energy consumption of the embedded OS services

is studied. Also, the impacts of hardware and software parameters like pro-

cessor frequency and scheduling policy on energy consumption are analyzed.

Afterwards, we extract the power and energy consumption mathematical mod-

els and laws. The use-case embedded system used is the OMAP3530 EVM

board with an OMAP3 processor and Linux 2.6.32 operating system.

� Then, we implement high level models of OS services, software and hard-

ware components taking into account the energy consumption and scheduling

requirements. The obtained models will be exploited for calculating OS en-

ergy overhead when adapting low power scheduling policies. Also, they will

be used for system design exploration and veri�cation of requirements. The

architecture modeling language used is AADL. We exploit AADL language

functionalities and tools to model the OS services and the software applica-

tion, the H.264 video decoder application. In addition, the communication

between OS services and the applicative tasks has been modeled. Besides,

AADL models of OMAP3 processor and the binding of applicative tasks on

the hardware platform components have been developed.

� Thereafter, mathematical and AADL models of OS services have been inte-

grated at system level using a multiprocessor scheduling simulator (STORM)

in order to evaluate the OS energy overhead when using low power scheduling

policies: the DPM and DVFS. In addition, a global approach of models inte-

gration is introduced. It is based on three focal concepts: AADL Modeling,

code transformation from AADL to STORM and OS services power/energy

estimation.

� Finally, we propose a design space exploration methodology and a �ow of de�-

nition and veri�cation of system requirements. The AADL models of software

and hardware components are analyzed quantitatively using the Quantitative

Analysis Modeling Language (QAML) and QEML tool. The de�nition and

analysis of system requirements are performed using the (RDAL) language

and RDALTE tool. The formal language OCL (Object Constraint Language)

is used to describe di�erent constraints and to communicate between AADL

and QEML models. Taking into account the system constraints, we propose

a design exploration methodology: the �rst step in this strategy consists of

searching the operating point that satis�es the maximum number of system

requirements. Once the operating point is checked and validated, the design

model can be reviewed and updated. The second step consists of �nely reduc-

ing the exploration domain by limiting the number of execution units. The

6 Chapter 1. Introduction

target of third and last step is the allocation of execution resources to each

thread once the operating point and processor numbers of our system are

predicted and �xed beyond the previous two levels.

1.3 Outline

This dissertation is organized as follows. After the introduction, we present in

chapter 2 the research issues associated with power/energy estimation and charac-

terization techniques for processor based embedded systems; at di�erent abstraction

levels, from the functional level to the transistor level. The third chapter details

the methods used to determine energy and power overheads of a set of three basic

services of the embedded OS: scheduling, context switch and inter-process com-

munication. This chapter presents also the extracted OS services energy/power

consumption mathematical models and laws. Fourth chapter deals with the AADL

modeling of OS services and the software application, the H.264 video decoder ap-

plication. Also, it presents the AADL models of the communication between OS

services and the applicative tasks. The �fth chapter focuses on the integration of

AADL and mathematical models in STORM simulator and calculating the OS en-

ergy overhead when adapting low power scheduling policies. A �ow of de�nition and

veri�cation of system requirements when allocating applicative tasks to the proces-

sors is proposed in the sixth chapter. Using a set of languages, RDAL and QAML,

various real time and energetic constraints are checked when exploring the design.

Finally, the thesis is concluded and perspectives are drawn.

Chapter 2

Background on embedded systems

energy consumption

characterization, modeling and

analysis

Contents

2.1 Power and energy dissipation in embedded systems 7

2.2 Power and energy consumption characterization and esti-

mation in embedded systems 9

2.2.1 Power and energy in electrical circuits 9

2.2.2 Overview of power and energy consumption characterization

and estimation . 10

2.3 Power and energy consumption estimation of embedded

systems at di�erent abstraction levels 11

2.3.1 Estimation and modeling of power/energy consumption at mi-

croprocessor abstraction levels 13

2.3.2 Power/energy consumption of hardware components and pe-

ripheral devices . 20

2.3.3 Characterization of embedded OS power/energy consumption 22

2.4 Conclusion . 30

In this chapter, we present the terminology of power and energy dissipation,

characterization and estimation in embedded systems. Then, we introduce research

e�orts and tools related to power and energy consumption estimation of embedded

systems at di�erent abstraction levels: the microprocessor, hardware and software

abstraction levels.

2.1 Power and energy dissipation in embedded systems

Nowadays, the number of transistors in electronic circuits grows with the develop-

ment of technology so that each circuit might have millions of transistors packed

8
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

inside. Moore's law [54] con�rms this huge increase of number of transistors on a

chip. According to him, this number doubles approximately every two years, for

decades.

Due to the huge number of transistors in electronic devices, di�erent issues related

to the overall performance of a system appear prominently. Energy consumption of

embedded systems is an important issue that resulted from the huge growth of the

number of transistors.

Reducing energy and power dissipation of embedded systems is now a critical chal-

lenge for a large number of electronic corporations.

Now, to analyze, characterize and estimate the energy consumption, we examine

the CMOS (Complementary Metal-Oxide Semiconductor) circuits that embedded

systems consist of.

In CMOS technology-based systems, there are two principle sources of power dissi-

pation: 1) dynamic power dissipation, which arises from the repeated capacitance

charge and discharge on the output of the hundreds of millions of gates in modern

chips and depends on the processor frequency, and 2) static power dissipation which

arises from the electric current that leaks through transistors even when they are

turned o�.

The power dissipation P in CMOS gates including dynamic and static components

is depicted by equation 2.1:

P = Pdynamic + Pstatic (2.1)

Where Pdynamic and Pstatic represent respectively the dynamic and static power dis-

sipation.

Also, the total power dissipation in CMOS system can be represented by this ex-

pression 2.2:
P = PSW + PSC + PLK (2.2)

Where, PLK is the static power or leakage power, the remaining terms represent the

di�erent parts of dynamic power consumption.

The �rst term of the equation PSW , represents the switching power dissipation, the

major contributor in dynamic power consumption, which is caused by the charging

and discharging of gate capacitances when the output changes between high and

low levels. During the transition of the output signals, an amount of power PSC is

dissipated, the short-circuit power, due to the direct path between the power supply

and ground.

The dynamic power dissipation, Pdynamic, of a CMOS circuit is depicted by an

approximate relation given by equation 2.3 which relates the operating frequency

Fop to the supply voltage Vop and the total load capacitance of all gates CT .

Pdynamic = λ× CT × V 2
op × Fop (2.3)

2.2. Power and energy consumption characterization and estimation in
embedded systems 9

where λ is the activity factor -i.e., the fraction of the circuit that is actively switch-

ing.

In a CMOS device including n transistors {TRi, 1 ≤ i ≤ n}, the static power con-
sumption, Pstatic, is calculated as a function of the number of transistors, the leakage

current Ilki of each transistor TRi and the supply voltage Vop. It is represented by

equation 2.4
Pstatic =

∑
1≤i≤n

(Ilki × Vop) (2.4)

Actually, when not switching, transistors in CMOS circuits lose negligible power,

the static power. However, due to the shrink of transistors size, the augmentation of

device speed and chip density, the power they consume has increased dramatically.

Consequently, the amount of current leakage raises [84].

The leakage of power becomes a signi�cant issue in embedded systems as it reduces

the battery service life. To this e�ect, embedded systems designers propose various

techniques aiming at controlling and minimizing the OFF current of CMOS circuits

in both standby and active modes of the circuit [49].

In this work, we consider that static power is an important factor that in�uences

the total power consumption of the device and can not be disregarded any further.

2.2 Power and energy consumption characterization and

estimation in embedded systems

2.2.1 Power and energy in electrical circuits

Power and energy consumption are important performance metrics for embedded

systems. In electrical circuits, the power P is the rate of doing work. It is produced

by an electric current I, consisting of a charge of Nc coulombs every Ns seconds,

passing through an electric potential di�erence or voltage V . It is measured in watts

(W). The power is given by equation 2.5:

P = (Nc/Ns)× V = I × V (2.5)

Formally, the energy consumed by a system is the amount of power dissipated during

a certain period of time. For instance, if a task T occupies a processor during an

execution interval of [a, b] then the energy consumed by the processor ET during

this time interval is given by equation 2.6:

ET =

∫ b

a

P (t) dt (2.6)

The following section covers the basic terminology that we will use in this thesis

dissertation. An overview of power/energy consumption characterization and es-

timation will be presented. Then, in subsequent sections, we detail the di�erent

10
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

abstraction levels of microprocessor based embedded systems. Furthermore, we re-

view the state of the art of power/energy consumption estimation and analysis of

microprocessor based embedded systems at di�erent abstraction levels.

2.2.2 Overview of power and energy consumption characterization

and estimation

2.2.2.1 Power/energy consumption characterization

Characterizing energy consumption of an embedded system consists in studying the

variation of energy consumption of its hardware and software parts. This step aims

at determining the energy overhead of di�erent components of the system as a func-

tion of various parameters. As a result of the characterization step, mathematical

models and laws of the power and energy consumption are extracted : the modeling

of energy overhead. The extracted models depend on the parameters varied to char-

acterize the power and energy dissipation. The precision of the models is checked by

calculating the error rate which is the di�erence between the model's values and the

measured or estimated values. The energy consumption characterization is based

on direct measurements on the platform or on energy estimations.

2.2.2.2 Power/energy consumption estimation

In the design �ow, the power estimation is a process allowing the evaluation of the

power consumption of an existing design independently of the abstraction level. It

aims to check whether power and reliability constraints are veri�ed or not. Estima-

tion step helps to choose the chip parts that ensure a low cost for the embedded

systems designers. Depending on the embedded system complexity, functionalities

and measurement points, the energy consumption could be estimated based on ei-

ther power and energy consumption models, deduced from a lower abstraction level,

or on simulations using speci�c simulators or on veri�cation resources in the design

�ow [23]:

� Power estimation using simulation: This kind of power estimation is

based on simulations of the embedded system energy consumption. The sim-

ulation is proportional to the activity/toggles of the design.

� Power estimation using mathematical models: Estimation of energy and

power consumption can be made based on mathematical models that describe

the dependance of power consumption of the embedded system on certain

parameters such as the processor frequency, the memory size, the capacitance,

etc.

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 11

� Power estimation using veri�cation resources in the design �ow:

Di�erent veri�cation resources, which are a set of design tests built during

the veri�cation process of a high-level design, are used to enable power con-

sumption estimation and pro�ling. Generally, this estimation is speci�c to a

high-level synthesis and power estimation framework.

At an abstraction level (n− 1), the estimation process generates power/energy con-

sumption models that can be used to characterize the energy consumption at an

abstraction level (n). Figure 2.1 depicts the global �ow of power/energy estimation,

characterization, modeling and analysis at abstraction levels (n− 1) and (n).

2.3 Power and energy consumption estimation of em-

bedded systems at di�erent abstraction levels

The power/energy estimations are centered around two aspects: the power model

granularity and the system abstraction level. The �rst aspect concerns the granu-

larity of the relevant activities on which the power model relies. It covers a large

spectrum that starts from a �ne-grained level, such as logic gate switching, and

stretches out to a coarse-grained level like hardware component events. Fine-grained

power estimation, in general, yields a more correlated model with data and handles

various technological parameters. On the other hand, coarse-grained power models

depend on micro-architectural parameters that cannot be determined easily. Let us

highlight that the power estimation accuracy is not altered by the chosen granularity

level, however, it depends �rst on the characterization phase of each activity and sec-

ond on the computing of the related occurrences while carrying out the application.

Even when using coarse-grained activities, the characterization in term of power or

energy cost can always be done at a lower level (board measurements, transistor,

gate or RTL), and after that, the obtained values can be used at a higher abstraction

level. The second aspect of power/energy estimation involves the abstraction level

on which the system is described. It starts from the usual Register Transfer Level

(RTL) and extends until reaching the algorithmic level. As we go from higher to

lower levels, the power evaluation time increases, which is indirectly proportional to

the accuracy. The aspects presented above are correlated. Indeed, di�erent power

estimation speed/accuracy trade-o�s can be achieved according to the power model

granularity and the abstraction level from which the relevant activities should be

extracted. Figure 2.2 shows the di�erent abstraction levels of microprocessor based

embedded systems. The view of the components of microprocessor-based embedded

systems is considered as the system-level view. Three main abstraction levels con-

stitute the system level view which are: the software, the microprocessor and the

hardware abstraction levels.

12
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

Power/energy consumption

laws and models

Power/energy consumption

 simulations
High level verification

resources/ tests

Power/energy consumption

 estimation

Power/energy

measurements

Power/energy consumption

 characterization

Power/energy consumption

 modeling

Power/energy consumption

 Analysis

Embedded system design

Power/energy consumption

 models and laws

Power/energy consumption

 simulations
High level verification

resources/ tests

Power/energy consumption

 estimation

Power/energy

measurements

Power/energy consumption

 characterization

Power/energy consumption

 modeling

Power/energy consumption

 Analysis

Embedded system design

Power/energy consumption

 models and laws

Abstraction level
 (n)

Abstraction level
 (n-1)

Figure 2.1: Energy/power consumption estimation and characterization �ow

The software abstraction levels describe the software part of the system including

applications and operating system; from a high level model to the assembly language.

The microprocessor abstraction levels extend from the transistor level to the func-

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 13

Figure 2.2: Di�erent abstraction levels

tional level. Various research e�orts have been devoted to develop methodologies

and tools for characterizing, estimating and modeling power/energy consumption

at di�erent abstraction levels in embedded system design. In the the remainder of

this section, we present an overview of these approaches and tools.

2.3.1 Estimation and modeling of power/energy consumption at

microprocessor abstraction levels

In this section, we present related works and tools for di�erent microprocessor ab-

straction levels: the transistor level, the gate level, the register-transfer level, the

micro-architecture level, the instruction set architecture level and the functional

level.

� Functional level:

At this level, the processor's architecture is described. This architecture is

divided into di�erent functional blocks. Each block represents a unit ensur-

ing a speci�c functionality such as the memory unit, the processing unit etc.

Using simulations or measurements, the power consumption of each block is

modeled. The total power consumption is then given as the sum of the power

14
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

consumption of each functional block [90]. This division aims at clustering the

components that are concurrently activated when a code is running.

In [65], the authors introduce a new instruction level power estimation method-

ology named the Functional Level Power Analysis (FLPA). In order to esti-

mate the power consumption of hardware platform when running a speci�c

application, the proposed approach is based on identi�cation of functional

blocks in�uencing the processor power consumption. Laurent et al. [65] di-

vide the processor architecture into di�erent functional blocks. Then, they

vary algorithmic parameter values which depend on the executed algorithm,

and architectural parameters values which depend on the processor hardware

characteristics. Finally, they study the variation of processor power consump-

tion as a function of these parameters. Using this methodology, a power

estimation tool is developed: the SoftExplorer tool [91]. This tool realizes the

suitable tradeo� between the estimation accuracy and time in order to ensure

a rapid and reliable feedback to the designer.

In [92], the SoftExplorer tool is used to estimate the power/energy consump-

tion of an algorithm directly from the C program. Also, it is used to opti-

mize the power/energy consumption of an application. The authors perform a

functional-level power analysis to extract the di�erent power models and de-

scribe how to perform the best data mapping for an algorithm. To validate the

proposed methodology, various processors have been used such as the (ARM7),

the low-power (C55) and the VLIW (C62) processors. Furthermore, very im-

portant phenomena like pipeline stalls, cache misses, and memory accesses are

taken into account.

� Instruction set architecture level:

The Instruction-Set-Architecture abstraction level is related to programming

aspects. It describes the processor's addressing modes and registers. Also, it

includes instructions that can be executed on the processor, the set of native

commands and machine language instructions that specify the operation to be

performed. During the instruction set architecture power estimation, a power

consumption cost is assigned to each individual instruction, by considering

pipeline stalls and cache misses.

Instead of analyzing the hardware components behavior, such as the number

of memory access and power overhead of transistors, several studies have pro-

posed instruction-level approaches to model the energy consumption.

The work done in [33] relies on instruction-level energy estimation for VLIW

(Very Long Instruction Word) processors. Power consumption have been mod-

eled for various components of the system: the core, the register �le, the in-

struction and data caches.

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 15

This work shows the reduction of the complexity of the energy model for

VLIW cores, while preserving a good level of accuracy. Then, the authors

proposed an estimation engine that provides power consumption estimates

for software running on a given hardware architecture by interpreting an ex-

ecutable program and simulating and pro�ling the e�ects of each instruction

on the main components of the architectural state of the system. To obtain an

overall hardware/software power optimization for VLIW embedded systems,

the authors use various instruction-level techniques such as operation cluster-

ing which consists in grouping in the same cluster the operations with energy

cost values close to each other.

In order to estimate the energy consumption of a given program under di�er-

ent cores and to �nd the energy-optimal number of cores used for execution,

the authors in [115] proposed an instruction-level methodology consisting in

predicting the energy consumption. The mechanism of prediction is achieved

using an output of initial programs compilation called Parallel Thread Execu-

tion (PTX) codes [8], a pseudo-assembly language used in NVIDIA's CUDA

[6] programming environment. The output of the proposed approach is the

estimated energy consumption under di�erent number of active stream mul-

tiprocessors. Tests have been carried on several NVIDIA CUDA benchmarks.

Wang et al. [115] assign to each type of PTX instructions an energy overhead.

As showed in equation 2.7, the energy consumption within one thread is the

sum of products of unit energy consumption of one type of PTX instruction

and the number of instructions of that type.

Ethread =
∑

1≤i≤n

(ei × ni) + o1 (2.7)

where Ethread, ei and ni represent respectively the energy consumed by one

thread, the energy consumption of a certain type of PTX instruction and the

number of instruction of type i . The parameter o1 is the energy consumed

when the thread is created.

� Micro-architecture level:

In order to implement the set of instructions, the interconnections of di�erent

parts of the processor and the communication between the micro-architectural

components of the machine, such as processor registers and caches, are de-

scribed at the micro-architecture abstraction level.

Hidaji et al. [57] are interested in power estimation and optimization at micro-

architectural abstraction level. To optimize power consumption, di�erent tech-

niques have been used, such as the Clock-gating technique that is based on

stopping the clock of some parts of the design when these parts are idle and

therefore reducing the switching power, and the common-case technique by

16
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

spotting the most common operation conditions and optimize their switching

power. Also, Hidaji et al. achieve a memory optimization using the common-

case technique.

In [62], Kim et al. proposed micro-architectural level power modeling method-

ologies approach for deep sub-micron microprocessors. In order to determine

the execution time and circuit speci�c power consumption, the authors in-

cluded detailed micro-architectural and circuit models in their approach. They

modeled power consumption of di�erent micro-architectural components, such

as transistor capacitance components, by switching events with an embedded

cycle-based logic simulator, execution units and memory accesses etc. Also,

they introduced an accurate micro-architectural event modeling methodol-

ogy to give a cycle-accurate power estimation of long-latency and multi-cycle

operations such as external I/O access. The proposed technique combines

simpli�ed circuit-level capacitance extraction and cycle-based logic simulation

embedded into a micro-architectural level simulator: SimpleScalar [25].

A new technique for processor power optimization at micro-architectural level,

called micro-architectural power analysis (MPA) for microprocessors, is pre-

sented in [37]. The simulation environment used in this work is the Sim-

plescalar microprocessor simulator. The proposed technique consists of three

mechanisms: dynamic, static and multivariate power analysis. Based on archi-

tectural simulations and dynamic power models, the dynamic power analysis

is performed by analyzing the power consumption behavior. The authors in-

tegrate power monitors, which are parts of power models, into each functional

block within the architectural performance simulator to determine the power

consumption of each block. In the static micro-architecture power analysis

step, the power consumption of a microprocessor under di�erent workloads is

estimated. This analysis permits the estimation of full-chip and each func-

tional block power consumption when running di�erent applications such as

o�ce applications, games and multimedia applications, scienti�c computa-

tional applications etc.

Using the results of the dynamic and static micro-architectural power analysis,

the multivariate power/performance analysis step identi�es the possible power

reduction targets within complex microprocessor architectures. Cai et al. [37]

study the e�ectiveness of the proposed micro-architecture circuit implementa-

tion by evaluating the full-chip power consumption, the functional block power

consumption, the average performance and the interfaced functional block im-

pacts. For instance, they compare the power reduction between two di�erent

implementations A and B: the full-chip and functional block power reduction

rates are respectively 2% and 10% when using the circuit implementation A,

whereas, when the other circuit implementation B is used, these rates are

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 17

respectively 3% and 20%.

� Register-transfer level:

In digital circuits, the register-transfer level (RTL) abstraction level describes

the mechanism for exchanging data between hardware registers using digital

signals. It also details the logic functions of these signals. To estimate accu-

rately the power consumption of a circuit at the RTL abstraction level, the

hardware/software designers need three entries: a design description using a

speci�c hardware description language such as Very-high-speed integrated cir-

cuits Hardware Description Language (VHDL) [15], a trace of RTL simulation

using a standard �le format, such as the Value Change Dump (VCD) format,

and power/energy characterization libraries.

In [24], Ahuja et al. present a system-level power estimation methodology,

which is based on a high-level synthesis framework and supports su�ciently

accurate power estimation of hardware designs at the system level.

To provide a reasonable power estimation while remaining at high level, the

authors propose a methodology using register-transfer level probabilistic power

estimation technique controlled by the system-level simulation. As showed in

�gure 2.3, the methodology is divided into di�erent steps: �rst, Ahuja et al.

convert the system-level model of the design to an equivalent cycle-accurate

RTL model using Esterel Studio tool [11] in oreder to synthesize the high-level

models to RTL implementations. Then, they simulate the high-level model

and generate its VCD �le. After that, they apply an algorithm to the VCD

�le generated in order to extract the activities associated with each signal of

the RTL design, such as the number of simulation ticks for which the variable

value remains unchanged, from the system level simulation dump. Finally,

they perform the mapping of system-level variables to RTL signals and use

the algorithm outputs to �nd the activity information of the remaining sig-

nals, to generate the power models and to analyze the power consumption

using RTL power estimator: the "PowerTheater".

� Gate level:

The gate level describes the �ip �ops wire-connected to the logic-gates (such

as NOT, AND, NOR, etc.). The estimation of power consumption at this

level is achieved using a speci�c libraries of logic gates. Each library provides

the di�erent elements allowing the power characterization of di�erent gates.

The embedded system designers can calculate the currents in the various logic

gates and thus monitor the power consumption of the circuit.

In [95], energy consumption modeling is done from a gate-level description.

The authors associate the energy cost with the occurrence of certain archi-

tectural events such as the ALU events which represent a logic instruction

18
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

High level
test bench System-level IP

High level value
change dump (.vcd)

Activity extraction from high
level simulation dump

High level variable to RTL
signal mapping

Probabilistic input for power
estimation

High level variable to RTL
signal synthesis

Probabilistic input generation
for power analysis

RTL Gate
level/VERILOG

model

RTL power analysis engine

Average power number

Figure 2.3: Ahuja et al.'s RTL power estimation �ow [24]

(addition, substraction etc.). These events, which are modeled for timing and

energy estimates, are computed simply by some additional counting. In fact,

the proposed model assumes that the total energy consumed by a processor

is the sum of its idle energy consumption Eidle and the energies consumed by

the di�erent events executed by the pipeline, execution units and caches. The

total energy consumption of an application Etotal is depicted by equation 2.8:

Etotal = Eidle +
∑
i

(ei × ni) (2.8)

Where i and ei represent respectively the set of events and their energies. The

parameter ni denotes the number of executed events of event type i.

To validate their approach, the authors decided to model the power consump-

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 19

tion of a speci�c microprocessor: the PowerPC 405GP core.

Tran et al. [109] propose a methodology to estimate the power consumption

of digital CMOS VLSI chips. They divide the chip into �ve parts: the logic

circuit, the memory, the local and intermediate interconnections and global

buses, the clock distribution and the I/O drivers. After that, they character-

ize the power overhead of each chip part. To estimate the power consumption

at gate level, Tran et al. implement an estimation tool using the C language.

The proposed tool is used to count the number of gates (such as NOR, XOR,

inverter, multiplexer, etc.) needed to implement the design description. Then,

this tool calculates the gates number of each arithmetic and logic operation.

The gates count of each single instruction is calculated independently and all

single results are added to the global statement gate-count result.

� Transistor level:

The transistor level is the lowest abstraction level. It is based on modeling

the behavior of the basic electrical elements such as transistors, resistors, ca-

pacitors... etc, and describing the interconnection between these primitive

electrical elements. The behavior description is generally performed by using

equations or speci�c diagrams.

In [27], Basmadjian et al. perform a transistor level power estimation and char-

acterization of idle servers. The authors provide power models for multi-core

processors, hard disks, memories, power supply units and fans. Basmadjian et

al. identify the relevant energy-related attributes allowing to build the basis

for the power consumption prediction models. Since the power consumption

of each core depends upon its number of transistors, the authors consider the

power consumption of the processor core as the sum of power consumption

of its transistors. The power consumption Pj,i of jth transistor, inside the ith

processor's core, is given by equation 2.9.

Pj,i = Ij,i × Vj,i (2.9)

where Ij,i and Vj,i represent respectively the current and voltage of the jth

transistor of the ith core.

The authors study the impact of frequency for a given voltage on the power

consumption of di�erent server's components. They set up machines having

various hardware characteristics, such as the processor's type: Intel and AMD

processors, the number of cores: dual-/ quad-/ hexa-core processors, di�erent

memory modules: DDR2 and DDR2, as well as various energy-saving mecha-

nisms (e.g. Intel SpeedStep, AMD Cool'n'Quiet).

A new approach for simulating a transistor-level design with a VHDL test-

bench was adopted in Singh et al.'s work [101]. The proposed test-bench,

implemented using the Mentor Graphics digital design tool suite [2], reads

20
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

the transistor level design's outputs and supplies the inputs accordingly. The

proposed method calculates automatically the power and energy consumption

and performs automated testing of functional correctness. Singh et al. apply

this approach to speci�c circuits, the NULL Convention Logic (NCL) circuits

[50], and their transistor-level designs were successfully simulated using self-

checking exhaustive VHDL test-benches.

In [100], Shiue et al. estimate the power consumption at transistor level us-

ing a new analytical equation derived from a particular model, based on the

physical law MOSFET [34] models and BSIM3v3 manual [1], having thus a

simple mathematical form and ensuring a high degree of accuracy for the

power estimation of CMOS circuits. The proposed analytical equation model

was validated on their own benchmark example and shows 2.72% error in av-

erage.

Based on the internal capacitance switching and discharging currents of such

circuits, the authors present in [87] an accurate analytical expressions to com-

pute the dissipated energy and the propagation delay of CMOS gates. They

use a good metric to evaluate a design called the energy delay product (EDP).

The obtained results show that the position of the switching transistor on the

overall gate delay can lead to a 20% of delay variation. Also, this study con-

cluded that short-circuit current of the output inverter optimizes the gate's

energy consumption.

Next section details the related works and tools to power/consumption estimation

at hardware abstraction level.

2.3.2 Power/energy consumption of hardware components and pe-

ripheral devices

In embedded systems, hardware devices can consume an important amounts of en-

ergy. In this paragraph, we report research studies that are interested in energy

consumption estimation and modeling of hardware platform components.

Celebican et al.'s work [39] focuses on the energy estimation of peripheral devices in

embedded systems. To identify the highest power consuming routines and compo-

nents, Celebican et al. implement a cycle-accurate simulator and pro�ling tool for

energy consumption of hardware platform devices. They modeled with analytical

equations the energy overhead of I/O controller and the audio module. Also, they

de�ne di�erent energy modes for each peripheral device. The energy value of each

peripheral in each mode is calculated. The proposed approach is tested with two

types of communication protocols, the polling and the interrupt based communi-

cation protocols. Also, they compare the energy consumption of various hardware

modules when using the polling communication protocol and the Direct Memory

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 21

Access (DMA) functionality that enables direct communication between memory

and peripherals. For experimental framework, the Linux based development board

SmartBadge IV [3] is used as an embedded system with di�erent hardware com-

ponents, such as the processor, the memory, an audio interface, a speaker and a

headphone. Simulation results show that peripheral devices can consume from 50%

to 55% of the total system energy consumption. Furthermore, MP3 decoder is used

as use-case application to demonstrate that the pro�ling tool reduces the total ap-

plication energy consumption by 44% when optimizing the audio driver's energy

overhead.

Konstantakos et al. present in [64] a new methodology for modeling the energy con-

sumption of various hardware devices. As showed in equation 2.10, they consider

that the energy consumed by an embedded system when executing a software appli-

cation is mainly the sum of energy overheads of a micro-controller, a RAM memory

and an analog-to-digital A/D converter.

ESystem = EµController + ERAM + EADC (2.10)

where EµController, ERAM and EADC represent respectively the energy consumed by

the micro-controller while executing a program, the memory and the A/D converter.

The energy of each peripheral device component has been modeled and analyzed

based on separate physical measurements of the drawn current. For instance, to

characterize the energy consumption of the RAM memory, the authors are inter-

ested in studying the energy overhead of each read/write access routines. Also, the

standby energy consumed due to the steady-state current �ow through memory cells

and the energy dissipated during each memory row refresh are considered. Based

on measurements, an average value of energy consumption for each read and write

access routines and refresh operations is calculated. In the proposed memory energy

model, Konstantakos et al. take into account the energy leakage due to the steady-

state current, this energy is calculated as the integral of power for the complete

period of the test-program execution, as formulated below:

ERAM = c1× n_read_accesses+ c2× n_write_accesses

+c3× n_refreshes+
∫
executionperiod

PStandby (2.11)

where c1, c2, c3, n_read_accesses, n_write_accesses and n_refreshes rep-

resent respectively the average energy for read, write and refresh operations, the

number of read accesses, write accesses and memory refreshes.

The software abstraction levels include mainly the operating system (OS) and the

software application. The hardware/software designers aim at estimating the power

consumption of the whole system at di�erent abstraction levels, including the soft-

22
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

ware level. For this reason, determining and estimating the power/energy cost of

the OS are highly required. In the next section, we present various research works

related to the characterization, estimation and modeling of power/energy consump-

tion of embedded OS.

2.3.3 Characterization of embedded OS power/energy consump-

tion

In order to characterize energy and power overhead of embedded OS, several studies

have proposed evaluating its energy consumption at di�erent abstraction levels.

Dick et al. [45] analyze the power consumption of the µCOS operating system

which is running several embedded applications on a Fujitsu SPARClite processor

based embedded system. This study is the �rst work that characterizes the power

consumption of an OS. The authors developed a general framework to measure the

power consumed by the application and operating system routines. They present

quantitative results for energy and time consumed by various operating system rou-

tines, such as semaphores, task control, synchronization, and timer management.

Also, Dick et al. show that power/energy characterization and analysis of OS ser-

vices help to optimize and reduce the power consumption of embedded system's

software layer. This study demonstrates that the OS functions have an important

impact on the total energy consumption of an embedded system. This impact de-

pends on the complexity of the applications. This work represents only an analysis of

operating system power consumption. Dick et al. did not determine power/energy

consumption models and laws.

Tao Li et al. introduce in [66] a routine level power model of OS tasks. As depicted

by equation 2.12, the energy consumed by the OS services EOS is considered as the

sum of the energies consumed by di�erent OS routines.

EOS =
∑
Alli

(POS_routine,i × TOS_routine,i) (2.12)

where POS_routine,i and TOS_routine,i represent respectively the power and execution

time of the ith OS routine invocation.

This work evaluates the power characteristics of these OS routines and extract

power consumption models. The authors show that OS routines power consumption

depends on the test benchmarks. Interestingly, they observe that this power is

strongly correlated with OS performance and the Instruction per cycle (IPC)

metric. This metric is exploited for power/energy characterization of embedded OS

services. When validating the approach to track the OS routines energy overhead,

the authors found that the error rate per routine estimation is less than 6%. Low

power techniques such as dynamic voltage scaling are not applied to the OS code

and not considered in this work.

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 23

Acquaviva et al. propose in [22] a new methodology to characterize the OS

energy overhead. They measure the energy consumption of the eCos Real Time

Operating System running on a prototype wearable computer, HP's SmartBadgeIII.

Then, they study the energy impact of the RTOS both at the kernel and at the I/O

driver level and determine the key parameters a�ecting the energy consumption.

This work studies the relation between the power and performance of the OS

services and the CPU clock frequency. Acquaviva et al. perform an analysis but

they do not model the energy consumption of the OS services and drivers.

In [105], Tan et al. model the OS energy consumption at the kernel level. They

classify the energy into two groups: the explicit energy which is related directly

to the OS primitives and the implicit energy resulting from the running of the OS

engine. The authors explain their approaches to measure these classes of energy

and they propose energy consumption macro models. Then, Tan et al. validate

their methodology on two embedded OSs, µCOS and Linux OS. However, the

scope of the proposed work in [105] is limited in some ways as it targets OS's

running on a single processor. Also, the authors do not consider the I/O drivers in

the proposed energy consumption model.

In [28], Baynes et al. describe their simulation environment, Simbed, which

evaluates the performance and energy consumption of the real time operating

system (RTOS) and embedded applications. The authors compare three di�erent

RTOS's: µCOS, Echidna and NOS. They found that the OS energy overhead

depends on the applications: it is so high for the lightweight applications and

diminishes for more compute-intensive applications. Nevertheless, Baynes et al.

perform high level energy simulations to extract power/energy models. These

models are not realistic because they are not deduced from measurements on actual

hardware platform. Also, the energy consumption of OS services compared with

the total application energy consumption was not calculated.

Guo et al. [55] introduce a novel approach using hop�eld neural network to solve the

problem of RTOS power partitioning; they aim at optimally allocating the RTOS's

behavior to the hardware/software system. They de�ne a new energy function

for this kind of neural network and some considerations on the state updating

rule. The obtained simulation results show that the proposed method can perform

energy saving up to 60%. This work does not consider energy macro-modeling and

RTOS services.

Zhao et al. [117] propose a new approach to estimate and optimize the energy

consumption of the embedded OS and the applications at a �ne-grained level.

As showed in �gure 2.4, the proposed estimation framework consists of three

major components: a full-system instruction level simulator to execute the OS

and applications; a micro-architectural power simulator to estimate cycle-accurate

24
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

power dissipation of instructions and a software energy analyzer to integrate

multiple-granularity software energy consumption. The entries of the proposed

methodology are an executable binary OS kernel image �le and a root �le system

involving user-level test programs. The output is the energy consumption of

OS routines. The image initrdi.img (initial ramdisk) describes the load of root

�le system into memory in the boot process of the Linux kernel. The authors

apply the readelf command to the executable image �le, generated from the

compilation of OS source code, and extract an OS symbol information table. The

full system instruction simulator simulates functionalities of microprocessor and

hardware devices. It generates instruction and address traces and sends it to

the micro-architectural power simulator, through a message queue, in order to

simulate operations of micro-architectural components of pipelines and memory

access. During instructions execution in the pipeline, the simulator calculates the

power consumption of micro-architectural components. It sends cycle-accurate

power consumption of instructions and corresponding instruction addresses to the

software energy analyzer.

The software energy analyzer treats a run-time operating system as a set of logical

units consisting of atomic functions, routines, services and execution paths. It

builds run-time function call tree on the �y by analyzing instruction-address

sequences and symbol information of OS. Then, it calculates multiple-granularity

software energy consumption of OS based on software energy estimation-model.

Zhao et al. implement their approach, using an Intel Strong-Arm architecture

running embedded Linux 2.4.18. They show that energy consumption of the

embedded OS and the software application could be characterized and optimized.

Fournel et al. [53] present a performance and energy consumption simulator for

embedded system executing an application code. This work allows designers to

get fast performance and consumption estimations without deploying software on

target hardware, while being independent of any compilation tools or software

components such as network protocols or operating systems.

Fei et al. [51] are interested in reducing the energy consumption of the operating

system-driven multi-process embedded software programs by transforming its

source code. They minimize the energy consumed when running OS functions and

services. The authors propose four types of transformations, namely process-level

concurrency management, message vectorization, computation migration and

inter-process communication (IPC) mechanism selection. The authors evaluate the

applicability of theses techniques in the context of an embedded system containing

an Intel StrongARM processor and embedded Linux OS. They manage process-level

concurrency through process merging to save context switch overhead and IPCs.

They modify the process interface by vectorizing the communications between

processes and selecting an energy-e�cient IPC mechanism. This work attempts to

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 25

OS source code Root file system Application binary

code

initrd.img

Full system

Instruction level

simulator

Micro-architecture

power model

& simulator

Instruction

& address

trace

Executable image

file

Compilation

Instruction

address&

energy

Software energy

analyzer

readelf

Symbol info

table

…

OS-routine

energy consumption

Figure 2.4: Overview of Zhao et al. OS routines energy estimation approach [117]

relocate computations from one process to another so as to reduce the number and

data volume of IPCs. These transformations provide complementary optimization

strategies to traditional compiler optimizations for energy savings.

Dhouib et al. [44] propose a multi-layer approach to estimate the energy con-

sumption of embedded OS. The authors start by estimating energy and power

consumption of standalone tasks. Then, they add energy overheads of OS services

which are timer interrupts, inter-process communication and peripheral device

accesses. They validate the multi-layer approach by estimating the energy con-

sumption of an M-JPEG encoder running on linux 2.6 and deployed on a XUP

Virtex-II pro development board. Low power scheduling policies are not considered

in this work.

Brandolese et al. [35] introduce an approach to characterize the OS for embedded

26
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

applications. The methodology is divided into two phases: measurements and

modeling. The methodology is based on the opportunities o�ered by SoC hard-

ware/software architectures (Xilinx/PowerPc and Altera/ARM). The main bene�ts

of this work is respecting the characteristics of di�erent OSs and microprocessors,

the simpli�cation of the measurement setup and the coverage of system calls of

commercial and open source OSs. The obtained results constitute a sound starting

point for a more complete analysis of software energy characteristics, both for

estimation and optimization purposes and allow covering the whole spectrum from

source-level down to system calls.

In [74], Nellans et al. consider two approaches to manage the execution of the

embedded OS instructions. They are interested in the boost of performance

a�orded by reducing OS-user interference within the cache. The authors propose

an adaptive o�-load policy based on behavior pro�ling and syscall run-length

prediction. They introduce a cache within a core to cache a subset of OS references

and consider several design options for it, including various block placement

policies, bank predictors, and sequential/parallel look-ups.

Kang et al. [61] present a new approach to characterize the energy consump-

tion of individual OS functions in the µC/OS − II real time kernel running on

an ARM7TDMI-based embedded system. To measure the energy consumption of

di�erent components of the hardware platform such as the CPU, the cache, the

memory and the bus, Kang et al. use the Seoul National University energy scan-

ner (SES) [99] as energy measurement tool. Because the SES tool was not de-

signed to attribute energy consumption to the µC/OS − II kernel functions, the

authors modify its structure slightly to measure the energy consumption of each

kernel function. In order to save the OS energy consumption, the authors improve

the utilization of the cache memory using the cache locking mechanism: in a �rst

step, to determine the function to lock into the cache, they determine the ratio of

the energy consumption which is the percentage of the total OS energy consump-

tion and invocation frequency of µC/OS − II kernel functions, such as OSSched()

and OSTaskChangePrio() functions. Then, they lock frequently used OS routines

into the cache, such as switching and timer interrupts, and rearrange the code to

avoid cache contention between these routines. To handle cache locking from an

application, the authors add a new layer, the �energy aware� (EA) layer, where the

application programming interface (API) and the cache management modi�ed func-

tions were implemented. To lock and unlock the instruction or data cache, the cache

management functions were implemented in the hardware abstraction layer (HAL).

As depicted in �gure 2.5, using the EA API functions, software application can lock

each OS kernel function in the cache. The (EA) manager layer sends the function

addresses to be locked to the memory simulator, where the requests are handled.

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 27

Application

OS API

RTOS services

Hardware abstraction layer (HAL)

EA API

EA manager

EA HAL

Hardware (SES)

API—Application programming interface

EA—Energy aware

HAL—Hardware abstraction layer

OS—Operating system

SES—Seoul National University energy scanner

Figure 2.5: Implementation of API and cache management functions [61]

Experimental results show that total energy savings can increase to 5.9%.

In [56], Haukilahti characterizes the energy consumption of a RTOS hardware

accelerator called RTU. As depicted by �gure 2.6, the �ow of the proposed method

is presented. The synthesis and power optimization of RTU is performed using the

Synopsys Design Compiler tool. The author generates a gate-level netlist after the

synthesis step. Then, he simulates the generated netlist using an RTL-level simu-

lator called Modelsim. To determine the energy consumption of di�erent system

calls, such as thread_create, semaphore_create, and task_switch, Haukilahti uses

benchmarks that generate one switching activity �le for each system call performed

by the RTU. Also, the execution times are recorded and the power consumption of

each call is estimated using a power analysis tool called Synopsys Design Power.

The tool performs power estimation at gate-level for each switching activity �le.

The power optimization process is achieved using a power optimization tool called

Power Compiler and the switching activity �les. The simulations show that the

power consumption of the RTU is almost independent of what action it performs.

The variation from the average power consumption is less than 4 percent. However,

in this work, the energy consumption of OS calls was not modeled and the variation

of power consumption as a function of di�erent software or hardware parameters

was not studied.

28
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

Gate-level netlist

Synthesis

RTL design

Test-bench

Gate level simulation

Switching activity

Power optimization

Library

Power optimized netlist Test-bench

Gate level simulation

Switching activity file for system call “i”, 1≤i≤n

Power analyzer

Average power consumption for system call “i”; 1≤i≤n

1

S
y
n

th
e
s
is

 a
n

d
 P

o
w

e
r

O
p

ti
m

iz
a
ti

o
n

 s
te

p

P
o

w
e
r

a
n

a
ly

s
is

 s
te

p

2

Figure 2.6: Power synthesis, optimization and analysis methodology [56]

In [81], Penolazzi et al. present an accurate and fast methodology to estimate the

energy consumption and performance overhead of Real-Time Operating Systems

(RTOS). First, they characterize, using RTEMS OS for the Leon3-based SoC, the

energy consumption of RTOS main functionalities in terms of typical number of

execution cycles and power consumption. The characterization process consists of

�ve main steps:

� 1-Hardware platform synthesis:

2.3. Power and energy consumption estimation of embedded systems
at di�erent abstraction levels 29

At this step, the authors compose a representative SoC with basic hardware

components allowing the binding of RTOS. They synthesize the platform by

describing the wire delays and parasitics at gate-level.

� 2-Association of RTOS routines with memory addresses:

The authors compile and load the RTOS into the system. Then, they extract

a memory dump of the RTOS and its tasks. This dump allows to associate

any routine name with its memory addresses.

� 3-Gate level system execution:

At this level, the application tasks are executed at gate level and the RTOS

calls are activated for a long period of time to ensure a high accuracy of energy

characterization.

� 4-Generation of VCD �le:

This step consists of generating an execution trace �le and a VCD (Value

Change Dump) �le from the gate-level simulation. These �les contain data

allowing the power consumption estimation such as the execution time of

RTOS instructions and the switching activity.

� 5-Determination of execution cycles number and power consump-

tion:

This last step targets characterizing the energy consumption of RTOS routines

using the memory dump, the execution trace and the VCD �les. To extract

the average number of cycles and calculate the power consumption of RTOS

routines, Penolazzi et al. develop and use a C-based script, called RTOS

Modeler. This script allows the energy characterization of RTOS routines or

sequences of routines without any intervention from the user.

Then, after characterizing the RTOS activity, the authors propose an algorithm to

predict how many times the OS calls get triggered during the OS execution in or-

der to estimate the total OS overhead. The authors compare the e�ectiveness of

their approach with other methods. In fact, They are interested in comparing the

accuracy with gate level simulation method and the speed with Transaction-Level

Modeling (TLM) approach. For experimental results, the chosen applications are

the image compression codec JPEG2000 and the video compression codec H264.

Applications and data have been combined in di�erent ways to show some possi-

ble use-case scenarios, where two applications always run concurrently on top of

the RTEMS OS. Penolazzi et al. show that their approach could achieve an im-

portant mean speedup (36X) compared to TLM. But when estimating the energy

consumption, they lose 12% of the gate-level accuracy. This work considers only

the scheduling and clock tick interruption routines. The energy consumed by other

30
Chapter 2. Background on embedded systems energy consumption

characterization, modeling and analysis

services of the RTOS, such as the inter-process communication, was not studied.

Also, in this work, the power/energy consumption was not modeled.

2.4 Conclusion

In this chapter, we have described the research issues associated with power/energy

estimation and characterization techniques for processor based embedded systems,

at di�erent abstraction levels, from the functional level to the transistor level.

Embedded operating system is integrated to handle applications upon hardware

architectures. Research studies show that the OS not only steals a signi�cant portion

of the machine cycles but it can also consume a large part of embedded system's total

energy. Therefore, energy and power estimation of operating systems constitutes a

challenge for embedded system designers.

In more recent works, characterization of low power OS was not considered. It is

not mentioned what are the processor capabilities and which low power policy is

used. Also, some works did not model the energy consumption of OS services. In

the sequel of this dissertation, we will address all these topics. The next chapter

introduces a �ow of OS energy characterization. We �rst study the variation of

the energy and power consumption of the embedded OS services. We detail the

methods used to determine energy and power overheads of a set of embedded OS

basic services: scheduling, context switch and inter-process communication. We

analyze the impact of hardware and software parameters like processor frequency

and scheduling policy on the energy consumption and we deduce models and laws

of the power and energy consumption.

Chapter 3

Characterization and analysis of

embedded OS services energy

consumption

Contents

3.1 Introduction . 32

3.2 Overview of embedded OS . 32

3.2.1 OS middleware in embedded systems 32

3.2.2 Embedded OS services and functionalities 33

3.3 Experimental setup . 38

3.3.1 OMAP3530 Applications Processor 39

3.3.2 OMAP3530 EVM board . 39

3.3.3 Measurement framework . 39

3.4 Energy characterization and estimation �ow 41

3.5 OS power and energy modeling 44

3.5.1 Scheduling routines . 45

3.5.2 Context switch . 46

3.5.3 Inter-process communication 53

3.6 Conclusion . 56

In this chapter, a �ow of embedded OS power/energy consumption characteri-

zation is introduced. First, an overview of embedded operating system is presented.

Then, we detail the methods used to determine energy and power overheads of three

basic services of the embedded OS: scheduling, context switch and inter-process com-

munication. Also, the variation of power/energy consumption of these embedded OS

services is studied. Furthermore, the impact of hardware and software parameters

like processor frequency and scheduling policy on energy consumption is analyzed.

Mathematical models for power and energy consumption are extracted. The use-case

embedded system used is the OMAP3530EVM board with an OMAP3 processor and

Linux 2.6.32 operating system.

32
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

3.1 Introduction

As mentioned previously in last chapter, embedded systems become so complex

as they contain various hardware devices and software application which interact

with users to handle these systems. The complexity of hardware and software lay-

ers necessitates the use of a speci�c support that allows the application to exploit

e�ciently the hardware platform. This support is the embedded OS; it includes

libraries and device drivers and o�ers a wide variety of services. Estimating and

modeling the energy consumption of OS routines and services constitute a chal-

lenge for embedded system designers. In this chapter, First, we propose a �ow of

OS energy characterization. We study the variation of the energy and power con-

sumption of the embedded OS services. We detail the methods used to determine

power/energy overheads of embedded OS basic services: scheduling, context switch

and inter-process communication. Then, we analyze the impact of hardware and

software parameters like processor frequency and scheduling policy on the OS energy

consumption in order to deduce models and laws that estimate this consumption.

3.2 Overview of embedded OS

In this section, an overview of embedded OS is presented. We present the OS

middleware in embedded systems and detail its di�erent services.

3.2.1 OS middleware in embedded systems

In embedded systems, the OS serves as an interface between the software application

and the hardware platform. It is an important software component in many embed-

ded system applications since it drives the exploitation of the hardware platform

by o�ering a wide variety of services: task management, scheduling, inter-process

communication, timer services, I/O operations and memory management. Also, the

embedded OS manages the overall power consumption of embedded system compo-

nents. It includes many power management policies aiming at keeping components

into lower power states, thereby reducing energy consumption.

Figure 3.1 shows the disposition of embedded systems' di�erent layers. The appli-

cation is represented by a set of (n) tasks {Task i, 1 ≤ i ≤ n}. The embedded

OS includes (m) services used by the application to exploit the hardware platform

resources. The set of these services is {S j, 1 ≤ j ≤ m}.
In next section, main functionalities and services of embedded OS are detailed.

3.2. Overview of embedded OS 33

Application

Users

Task 4
Task 1

Task
(n) Task 2

Task
(n-1)

Task 3

Embedded OS

S 1

S 2

S (m-1)

S (m)

Hardware platform

System calls Services

Figure 3.1: The di�erent layers of an embedded system

3.2.2 Embedded OS services and functionalities

To bind the software application tasks on the hardware platform components, the

embedded operating system provides various services and functionalities. The main

services are detailed below.

� Interprocess communication and synchronization:

This service is called when two or more processes need to communicate with

each other. The OS ensures the data exchange, resources share, and syn-

chronization between these processes. The process synchronization access is

achieved using signals, mutexes and semaphores. The OS uses di�erent tech-

nique for data exchange between the processes, such as, named pipes, anony-

mous pipes, message queues and shared memory. These mechanisms will be

34
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

detailed later when characterizing the energy consumption of this service.

� Clock/timer functions: Embedded OS uses heavily the timer functions to

schedule the di�erent processes. This service could be exploited by the user

till it provides a set of basic functions such as getting the current time and

the elapsed time.

� Device management: This service consists in handling peripheral devices

through the processor using a set of commands and signals. The compo-

nent that makes these commands easily understandable by hardware devices

is named the device controller. The latter is an interface between the OS and

the peripheral device. The OS software routines that control each device is

called device driver. The OS needs many device drivers to ensure the proper

functioning of di�erent peripheral devices. For this reason, when a new periph-

eral is added to the embedded system, its device driver should be integrated

in OS code.

� Memory management: The OS includes a unit called memory management

unit that manages the accesses to embedded system memory requested by the

processor. This unit allocates dynamically the memory when the application

tasks need it. Then, it frees the memory when they are not required for reuse.

Also, the OS handles the swapping between main memory and disk when the

main memory is too small to hold all the data that needs the application for

execution.

Besides, as showed in �gure 3.2, the memory management unit uses the virtual

memory mechanism to convert the logic or virtual addresses, which are used by

the processor, to a physical addresses that allow the access to various memory

locations called pages. This address conversion is performed via an associative

cache called translation look-aside bu�er (TLB).

� Tasks handling: This service controls the di�erent states of applicative tasks.

These tasks are represented by processes or threads. Processes have distinct

address spaces, while threads share the same address space inside a process.

The OS handles the creation, the execution and the termination of applica-

tion tasks. The task has three possible states: running, blocked and ready

states. When the task executes its routines on the processor, it is considered

in running state. A task is in ready state means that it is ready for execution

but can not run because the processor is used by another task. An application

task is in blocked state when it is unable to run until some external event

happens; for instance, it is waiting for a resource to be available. Di�erent

transitions between task's states are showed in �gure 3.3.

3.2. Overview of embedded OS 35

Memory

management unit

Translation look-aside

buffer

Processor

virtual
addresses

Physical
addresses

Memory

Page 1

Page 2

…

Page (n-1)

Page (n)

Figure 3.2: Address conversion by memory management unit

� Tasks scheduling: The OS makes the application tasks scheduling decision.

It includes a module that de�nes which tasks are running on the processing

platform at every time instant. Scheduling routines determine the interleaving

of execution for application tasks on the target processor. This interleaving is

named a schedule. The schedule must be produced to ensure that every job

of task executes on processor(s) for its execution requirement (WCET) during

its scheduling window.

A scheduling event is occurred generally at various situations. In fact, the

scheduler is called when a process �nishes its execution so that it can no

longer run on the processor. As a result, the OS selects another process from

the list of ready processes. When there is no a ready process, an idle process

is chosen for running. Moreover, when a process blocks on a resource, the

scheduler chooses another process for execution. Also, the scheduler is called,

when a new process is created, to run the parent or the child process. Further-

more, the OS invokes the scheduler when timer provides periodic interrupts.

A scheduling decision can be taken after each timer interrupt or after every n

timer interrupts.

The choice of the next process to run depends on the scheduling algorithm.

The scheduling policies aim at increasing the processor e�ciency by maximiz-

ing the number of tasks completed per unit of time and reducing the average

waiting time of di�erent tasks. Scheduling algorithms can be classi�ed based

on two main criteria: the execution and preemptive-ness of tasks [73][96].

Consequently, scheduling algorithms are also divided into two categories based

on the tasks execution criteria: the o�-line and online scheduling algorithms.

The o�-line scheduling algorithms assign di�erent tasks to processor before

the execution step. These algorithms are usually carried out via a scheduling

36
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

 Running

Ready

Blocked

Activate

Terminate

1 2

3

4

The scheduler elects this task to run 1

2 The scheduler elects a new task for execution

3 The task is waiting for a resource and it blocks

4 The resource becomes available

Figure 3.3: Transitions between task states

table describing the predetermined schedule. This table contains the set of

tasks and their activation times. The o�-line scheduler is called every time

period. For example, if there is a set of periodic tasks to be scheduled, an

o�-line schedule may be generated for an interval of length equal to the least

3.2. Overview of embedded OS 37

common multiple of the periods of di�erent tasks. Unlike o�-line schedulers,

online scheduling algorithms examine the active tasks properties and make the

scheduling decision when running tasks.

Furthermore, based on preemptive-ness of tasks criteria, scheduling algorithms

can be broadly classi�ed into non-preemptive and preemptive algorithms. A

non-preemptive scheduling algorithm elects a task for execution and do not

interrupt its execution until it blocks or until it voluntary releases the CPU.

But, a preemptive scheduling algorithm uses an interrupt technique to sus-

pend the currently executing process and elects a new process for execution.

Therefore, all processes will get some amount of CPU time at any given time.

The main scheduling policies in classical operating systems are: First-in-First-

out (FIFO), round-robin. These policies will be detailed later when character-

izing the energy consumption of scheduling routines. Also, in order to respect

the deadlines and time constraints, various scheduling policies are used in real-

time OS such as the rate monotonic (RM) and earliest deadline �rst (EDF)

policies [42]. Also, to reduce the energy consumption, low power scheduling

policies are used, such as (DPM) and (DVFS) policies. These policies will be

detailed later in chapter 5.

� Context switch: The context switch is a mechanism which occurs when

the kernel changes the control of the processor from an executing process to

another that is ready to run. The kernel saves the state of current process

including the processor register values and other data that describe this state.

Then, it loads the saved state of the new process for execution. This service

will be detailed later when estimating its energy consumption.

� Error detection: The OS is able to detect the di�erent errors that could

occur when the embedded system is running. The source of the errors could

be the processor, the memory, the peripheral devices and the user programs.

When an error occurs, the OS informs the user about the malfunctioning of the

system and indicates the cause of the error. Then, the OS takes the convenable

action to correct this error.

� User interface: To handle easily the hardware platform, this service provides

an interface between the user and the hardware components. This interface

could be a command line interface through a command line interpreter, such as

text terminal, or a graphical user interface using graphical icons and elements.

Figure 3.4 synthesizes the interactions between the OS services and the hardware

components.

38
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

Embedded

OS

services

Hardware

platform

Application

Users

Scheduling

Context switch

Clock/timer

functions

Device management

Memory

management

CPU Memory

CPU cache memory
Peripheral

device 1

Peripheral

device 2

Peripheral

device 3

1

Bus

1 Peripheral device driver

2 Peripheral device controller

Tasks handling

Inter-process

communication and

synchronization

2

Error detection *

User interface

* The error detection service is relied to different hardware components

Figure 3.4: The exploitation of hardware components by the OS services

3.3 Experimental setup

Under the OPEN-PEOPLE project, academic and industrial partners have chosen

the OMAP35x EVM board [7] as a hardware platform to validate this work. The

proposed approach is generic and could be applied to other hardware platforms and

OSs.

The OMAP (Open Multimedia Applications Platform) architecture, developed by

Texas Instruments [14], is a category of proprietary system on chips for di�erent

multimedia applications. The OMAP processors are used by various devices such

as Samsung, Nokia, and Motorola mobiles [63].

To characterize the energy overhead of embedded OS, we use the OMAP35x Evalu-

ation Module (EVM) board, equipped with OMAP3530 processor, as an embedded

system. This board builds low power applications requiring low power consumption

3.3. Experimental setup 39

and high performance such as portable media players, navigation devices, software

de�ned radio, medical applications and media controllers.

In this section, we describe and detail the characteristics of hardware and software

components of this board.

3.3.1 OMAP3530 Applications Processor

The OMAP3530 multimedia applications processor is developed based on advanced

Super-scalar 720 MHz ARM Cortex-A8 RISC Core and a digital signal processor

(520 MHz TMS320C64x DSP).

Figure 3.5 shows the di�erent components of OMAP3530 processor. These are char-

acteristics of this processor:

- CPU: ARM Cortex-A8 RISC

- Operating frequencies: 125, 250, 500, 550 and 720 MHz

- External Memory Type Supported: LPDDR, NOR Flash, NAND �ash, One-

NAND, Asynch SRAM DMA64-Ch E

- Core Supply: 0.8 V to 1.35 V

- IO Supply:1.8 V,3.0 V

- IVA2.2 subsystem with a C64x+ digital signal processor (DSP) core

- POWER SGX subsystem for 3D graphics acceleration to support display and

gaming e�ects

3.3.2 OMAP3530 EVM board

The di�erent components of the OMAP35x EVM board are the processing subsys-

tem (including one or more processor cores, hardware accelerators, etc), a memory

subsystem, peripherals as well as global and local interconnect structures (buses,

bridges, etc). Figure 3.6 and �gure 3.7 show the di�erent features of the OMAP35x

EVM Board. The embedded OS used is linux-omap which is supported for use with

the OMAP35x EVM.

In this work, we are interested in studying the energy overhead of the processor core

supporting the OS, the ARM Cortex-A8 processor.

3.3.3 Measurement framework

When power is �rst applied to OMAP35x EVM board, many hardware elements are

initialized before the execution and running of user application and OS routines.

This early initialization code is a part of the boot-loader. After the hardware plat-

form initialization step, the boot of OS image is performed using the boot-loader.

Then, Once the OS has started execution, it takes control of the board and the

boot-loader is overwritten and ceases to exist.

40
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

Figure 3.5: OMAP3530 Applications Processor [7]

The "U-Boot" open-source boot-loader for the OMAP35x EVM board is generated.

It includes support for ethernet interfaces and supports several network protocols

such as BOOTP, DHCP, TFTP and NFS. The "U-Boot" is also able to update the

board embedded �ash memory with an image downloaded through the ethernet.

As shown in �gure 3.8, the measurement platform includes a dedicated server to

con�gure the OMAP35x EVM board and to control the energy consumption mea-

surements on this board. It consists of a computer wire-connected to the board. We

use the DHCP protocol to obtain an IP address of the board from the server. The

TFTP (Trivial File Transfer Protocol) and NFS (Network File System) protocols

are used to load and boot the OS image from the server and through the ethernet.

The test programs are executed on the hardware platform and the energy dissipated

by the processor is determined as follows: the voltage drop Vdrop across a jumper

J6 pins connected in series with the OMAP 3530 processor is measured. Then,

the current consumed is calculated after dividing Vdrop by a shunt resistance R in

3.4. Energy characterization and estimation �ow 41

Figure 3.6: OMAP35x EVM Board top overview

parallel with the jumper pins.

3.4 Energy characterization and estimation �ow

The proposed method targets to extract models of embedded OS services

power/energy overhead. The inputs are the embedded OS, the application and

the hardware platform. As showed in �gure 3.9, to characterize the energy con-

sumed by OS services, a set of benchmarks, which are test programs that stimulate

each service separately, are implemented. These programs are compiled and linked

to the OS.

In the energy analysis step, a set of parameters are varied: hardware and software

parameters which in�uence the energy consumption are identi�ed then energy pro-

�les are traced. The energy traces obtained are able to characterize the energy

overhead of the OS services and then to model the power and energy consumption.

After extracting energy models, we estimate the energy and power overheads, as

showed in �gure 3.10. We focus on the correlation between the energy consumed

42
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

Figure 3.7: OMAP35x EVM Board bottom overview

by the application and the OS services. The energy consumption of an applicative

task is depicted by equation 3.1.

∀Ti, ETi = Eintrai + (
∑

1≤j≤p
δi,j × ESj) (3.1)

Where ETi represents the energy consumed by the task Ti, Eintrai is the energy

consumed by this task routines and operations, p is the number of services used by

the task Ti, δi,j is energy consumption rate of the task Ti using the service Sj and

ESj , the energy consumption of the service Sj .

We consider t the total number of the OS services, xj the number of the parameters

that in�uence ESj , the energy consumption of the service Sj , 1 ≤ j ≤ t.
The set of parameters appropriate to the energy overhead of the service Sj is {

Paramj,k , 1 ≤ j ≤ t, 1 ≤ k ≤ xj }. The function fk describes the variation of ESj

with Paramj,k. We compute the energy consumption of the service Sj following

3.4. Energy characterization and estimation �ow 43

Figure 3.8: The measurement framework

Operating
system Source

Application

Hardware
Platform

OS services

Tasks

Hardware
Components

Energy/Power
analysis

Software
parameters

Hardware
parameters

Benchmarks and
Test programs

Characterization

Energy and
power models

Figure 3.9: The methodology of OS energy characterization

this equation 3.2.

E(Sj) =
∑

1≤k≤xj

fk(Paramj,k) (3.2)

44
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

Energy/power
models

Estimation

Energy and power overhead
of embedded operating

system services

Software
application

Operating
system

Figure 3.10: Estimation of the operating system energy consumption

According to the amount of energy consumed by each service when executing the

application, we classify the operating system's energy overhead into two groups: a

basic energy consumed by basic OS services. Each basic service consumes an amount

of energy bigger than an energy threshold Eth, this threshold is the average energy

consumed by the di�erent OS services. The remaining services are the secondary

services. The set of basic and secondary services are respectively {BSj , 1 ≤ j ≤ p}
and {SSk, 1 ≤ k ≤ q} where p and q are respectively the number of basic and

secondary services.

Expression 3.3 depicts the energy consumed by the operating system EOS when

running a task Ti. Equation 3.4 veri�es whether the totality of the energy consumed

by the OS when running the application, having n tasks, is well distributed between

di�erent services.

EOS = (
∑

1≤j≤p
αi,j × EBSj) + (

∑
1≤k≤q

βi,k × ESSk
) (3.3)

Where ∑
1≤i≤n

(
∑

1≤j≤p
αi,j +

∑
1≤k≤q

βi,k) = 100% (3.4)

αi,j : energy consumption rate of the task Ti using the service BSj .

βi,k: energy consumption rate of the task Ti using the service SSk.

EBSj and ESSk
represent respectively the energy consumed by the service BSj and

SSk.

In next section, we will detail methodologies and benchmarks used to characterize

the embedded OS services energy overhead and study its variation with hardware

and software parameters.

3.5 OS power and energy modeling

In this section, embedded OS services energy characterization approaches are intro-

duced, three important services are studied: the scheduling, the context switch and

3.5. OS power and energy modeling 45

inter-process communication.

3.5.1 Scheduling routines

Scheduling routines and operations could generate power overhead on the processor

and/or memory components. They are considered as system calls and only consist

in switching the processor from unprivileged user mode to a privileged kernel mode.

To quantify power and energy overhead of embedded OS scheduler routines and op-

erations, we have to build test programs containing threads with di�erent priorities,

we measure in a �rst step the average energy consumed by the stand-alone tasks

without scheduling routines, and then with scheduling routines.

EScheduling represents the energy consumed by the scheduling operations. It is cal-

culated as showed in equation 3.5:

EScheduling = Ewithsch − Ewithoutsch (3.5)

Where Ewithsch and Ewithoutsch represent respectively the energy consumed by the

benchmarks with scheduling routines and without scheduling routines.

We vary several parameters when running the test programs. The applicative param-

eter that we can change is the scheduling policy. We also modify the processor fre-

quency as a hardware parameter. We are interested in studying the in�uence of three

scheduling policies: SCHED_FIFO, SCHED_RR and SCHED_OTHER.

The used embedded OS supports only these scheduling policies.

SCHED_FIFO policy is used with static priorities higher than 0, it is a scheduling

algorithm without time slicing. Under this policy, a process which is preempted by

another one having higher priority will stay at the head of the list for its priority and

will resume execution as soon as all processes of higher priority are blocked again.

If there are two SCHED_FIFO processes having the same priority, the process

which is running will continue its execution until it decides to give the processor up.

The process having the highest priority will use the processor as long as it needs it.

SCHED_RR policy enhances the SCHED_FIFO one; hence, everything de-

scribed above for SCHED_FIFO also applies to SCHED_RR except that

each process is only allowed to run for a maximum time called quantum. If a

SCHED_RR process has been running for a time period equal to or greater than

the time quantum, it will be put at the end of the priority list. Only �xed-priority

threads can have a SCHED_RR scheduling policy. A SCHED_RR process that

has been preempted by a higher priority process subsequently resumes execution

as a running process will complete the unexpired portion of its round robin time

quantum.

SCHED_OTHER policy is only used at static priority 0. To ensure a fair progress

among the processes, the SCHED_OTHER scheduler elects a process to run from

46
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

the static priority 0 list based on a dynamic priority that is determined only inside

this list. The dynamic priority is based on the nice level and increased for each time

quantum, when the process is ready to run, but denied to run by the scheduler.

Figure 3.11 shows the evolution of the power overhead of the scheduler routines

PScheduling over the scheduling policy. We can see that the energy consumed when

we use SCHED_OTHER policy is important compared to SCHED_FIFO

and SCHED_RR policies. This is due to the additional operations (nice or

setpriority() system calls) used when the SCHED_OTHER scheduler calculates

and increases the dynamic priority for each time quantum. PScheduling increases

with the rise of the number of processes, this is due to the increase of the scheduler

routines, such as the assignment of the priorities.

Figure 3.12 depicts the variation of measured and estimated scheduling routines

energy consumption with processor frequency. The used frequencies are operating

points of the processor: 125 Mhz, 250 Mhz, 500 Mhz and 720 Mhz. The scheduling

policy is SCHED_OTHER and the number of processes is 10. The energy con-

sumption law for the scheduling routines is depicted by equation 3.6. The average

estimation error is around 0.355%.

The obtained results are explained by considering that the energy is the product

between the average power and the total execution time. If we consider that the

steady state current (and hence the power) pro�le obtained when running this ex-

periment is almost �at since the processor does not access the external bus, the

energy cost of the scheduler is proportional to the execution time of the scheduling

routines which decrease with the increase of the frequency.

Escheduling(f) = (−59.649× 10−3 × f) + (3.106× 102) (3.6)

3.5.2 Context switch

Context switching is a fundamental mechanism and one of basic services of the

embedded OS, it ensures the share of processor resources across multiple threads of

execution. This mechanism consists in saving the processor state of a thread and

loading the saved state of another thread.

In the majority of recent works presented in last chapter, the authors do not take

into account the energy and time overheads of this service when studying the energy

consumption of the operating systems. They include it with the scheduling service,

but the two services are distinct. Actually, in embedded systems, the processor has

two operating modes: the kernel mode and user mode. The processes running on

kernel and user mode are called respectively kernel and user processes. The user

process runs in a memory space which can be swapped out when necessary. When

the processor needs the user process to execute a kernel code, the process becomes

3.5. OS power and energy modeling 47

0

2

4

6

8

10

12

14

16

2 5 10 15

P
sc

he
du

lin
g

(m
W

)

SCHED_OTHER

SCHED_FIFO

SCHED_RR

Number of processes

Figure 3.11: Scheduling routines power consumption versus the number of processes
for di�erent scheduling policies

in kernel mode with administrative privileges. In this case, the processor has no

restrictions while executing the instructions and will access to key system resources.

Once the kernel process �nishes its workload, it returns to the initial state as a

user process. The scheduler switches the processor from the user mode to a kernel

mode via system calls; this mechanism is named the mode switch. Unlike the mode

switch, the context switch consists in switching the processor from one process to

another.

The context switch service introduces direct and indirect overheads [68]. Direct

context switch overheads include saving and restoring processor registers, �ushing

the processor pipeline and executing the OS scheduler. Indirect overheads involve

the switch of the address translation maps used by the processor when threads have

di�erent virtual address spaces. This switch perturbs the TLB (CPU cache that

memory management hardware unit uses to improve virtual address translation

speed) states. Also, the indirect context switch includes the perturbation of the

processor's caches. In fact when a thread T1 is switched out and a new thread T2
starts the execution, the cache state of T1 is perturbed and some cache blocks are

replaced. So, when T1 resumes the execution and restores the cache state, it gets

a cache misses. Besides, the OS memory paging represents a source of the indirect

overhead since the context switch can occur in a memory page moved to the disk

when there is no free memory.

Prior research has shown that indirect context switch overheads [110], mainly the

48
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

100 200 300 400 500 600 700 800
265

270

275

280

285

290

295

300

305

Processor frequency (MHz)

E
n

er
g

y
co

n
su

m
ed

 (
u

J)

Measured energy

Estimated energy

Figure 3.12: Scheduling routines energy variation as a function of CPU frequency
(SCHED_OTHER policy and 10 processes)

cache perturbation e�ect, are signi�cantly larger than direct overheads.

To characterize the energy consumption of the context switch, we create a set of

threads in a multitasking environment using the POSIX standard [113].

As depicted in �gure 3.13 and �gure 3.14, the test-bench consists in creating two

threads P1 and P2 and generating a number of context-switches as detailed in our

recent work [79]. In fact, in step 1, only one context switch is generated and in step

n, n context switches are generated.

In the remainder of this dissertation, Tcs represents the time of the context switch,

Si,j the j-th section of the process Pi and Ti,j is the execution time of the section

Si,j .

The total execution time of the benchmark in step 1 and step n are respectively

Tstep1 and Tstepn. They are depicted by equations 3.7 and 3.8:

TStep1 = Texec1 + Tcs+ Texec2 (3.7)

TStepn =
∑

1≤i≤p
T1,i +

∑
1≤j≤q

T2,j + (n× Tcs) (3.8)

3.5. OS power and energy modeling 49

P1

P2

t

Texec1 Tcs Texec2

t

Figure 3.13: Step 1

t

t

T1,1 T1,p

T2,1

Texec2,1 Tcs Tcs
Texec1,1 Texec1,p

T2,q

…

…

Texec1,p-1 Tcs
Texec2,q

P1

P2

T1,p-1

Figure 3.14: Step n

Where p and q represent respectively the number of sections of P1 and P2.

The context switch time Tcs and the context switch power overhead Pcs are calcu-

lated following equations 3.9 and 3.10:

Tcs = (Tstepn − Tstep1)/(n− 1) (3.9)

Pcs = (Pstepn − Pstep1)/(n− 1) (3.10)

The context switch energy overhead is computed as showed in equation (3.11):

Ecs = ((Pstepn ∗ Tstepn)− (Pstep1 ∗ Tstep1))/(n− 1) (3.11)

Where Pstep1 and Pstepn are respectively the average power consumption of the

benchmarks in step 1 and step n.

We execute the test programs following the characterization approach. Then, we

50
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

vary the scheduling policy and the frequency, we note the power and performance

variations and we extract energy models.

3.5.2.1 The scheduling policy impact on the context switch overhead

In our experiments, the scheduling policy and the number of context switches are

varied and the energy consumed is measured when a context switch occurred. The

variation of the energy dissipated according to the number of context switches and

the scheduling policy is presented in �gure 3.15. This �gure compares the decrease

of the context switch energy overhead for the two processes, P1 and P2, by varying

the number of context switches.

It is noted that the context switch energy overhead decreases with the increase of

the number of context switches. In fact, when the �rst context switch from one

process to another occurs, a data structure named Process Control Block (PCB)

is created in order to save the state of each process. The energy overhead of the

creation of the PCB is accounted with the context switch energy overhead and is

divided between the context switches. As a result, if the number of context switches

increases, the average Ecs per context switching decreases. Also, when the schedul-

ing policy used is SCHED_FIFO, the context switch energy overhead is more

important than the energy for the SCHED_RR scheduling policy. Actually, under

the round robin scheduling policy, the processor assigns time slices (quantum) to

each process. So, before the context switches that we generate, there is another

context switches that occurred automatically due to the expiration of the quantum

of the process P1. Consequently, the PCB is created during the automatic context

switch. The energy overhead of the PCB creation is not accounted with the en-

ergy of the context switch that we generate: Ecs. But, under the FIFO scheduling

policy, the processor does not switch automatically from the process P1 to P2 only

if P1 terminates its execution so that the energy overhead of the PCB creation is

accounted with Ecs.

We note that SCHED_OTHER processes are non real time processes, but,

SCHED_RR and SCHED_FIFO are real time processes. So, SCHED_RR

and SCHED_FIFO processes need more memory than SCHED_OTHER pro-

cesses to save the processor registers because they perform more operations and

calculations in order to respect the real time constraints. Consequently, they

consume more time to change the context. Then, the context switch of the

SCHED_OTHER processes consume less energy than the SCHED_RR and

SCHED_FIFO ones.

3.5. OS power and energy modeling 51

2 4 8 16 30
0

50

100

150

200

250

300

350

400

450

500

Number of context switchs

E
cs

 (
n

J)

SCHED
-
RR

SCHED
-
OTHER

SCHED
-
FIFO

Figure 3.15: Context switch energy consumption versus the number of context
switching for di�erent scheduling policies

3.5.2.2 The processor frequency impact on the context switch overhead

The CPU frequency is another parameter that could in�uence signi�cantly the en-

ergy consumption of the context switch. In this paragraph, the impact of processor

frequency on the context switch energy overhead for static and dynamic frequency

cases is discussed.

� Static frequency case: For this experiment, the scheduling policy and the

number of context switches are �xed. The benchmarks of step 1 and step n

with a static frequency are executed. The CPU frequency is varied afterwards

and the benchmarks are re-executed.

As explained in chapter 2, in CMOS technology-based systems, there are two

principle sources of power dissipation: dynamic power dissipation, which arises

from the repeated capacitance charge and discharge on the output of the hun-

dreds of millions of gates in modern chips, it depends on the processor fre-

quency, and static power dissipation which arises from the electric current

that leaks through transistors even when they are turned o�. The hardware

platform used in the current work reduces standby power consumption by

reducing power leakage so that static power is negligible compared to the dy-

52
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

100 200 300 400 500 600 700 800
0.5

1

1.5

2

2.5

3

3.5

Processor frequency (MHz)

P
cs

 (
m

W
)

Measured power
Estimated power

Figure 3.16: Context switch power variation as a function of CPU frequency

namic power. Figure 3.16 plots the measured and estimated context switch

power, mainly the dynamic power, consumption as a function of the frequency.

Context switch power variation with processor frequency follows the law pre-

sented in equation 3.12. The average error of the proposed methodology results

against the physical measurements is about 3.4%.

Pcs(f) = (4.4× 10−3 × f) + 0.3041 (3.12)

Where f is the CPU frequency, the unit of Pcs and f is respectively mW and

MHz.

The voltage Vdrop across the processor increases with the rise of the processor

frequency so that the power consumption increases with the frequency.

� Dynamic frequency case: The core frequency is dynamically changed dur-

ing the execution of benchmarks: test programs are executed in step 1 and

step n. The processes P1 and P2 are executed respectively at a frequency

F1 and F2. When the processor preempts the process P1 and executes the

process P2, the core frequency changes from F1 to F2; and inversely.

3.5. OS power and energy modeling 53

125 250 500 550

0

5

10

15

20

25

F2 (Mhz)

Ec
s(

u
J)

125

250

500

550

F1 (Mhz)

Figure 3.17: Context switch energy variation as a function of dynamic CPU fre-
quency scaling

Figures 3.17, 3.18 and 3.19 illustrate the context switch energy, power and

time variation when changing the CPU frequency. Actually, for the proces-

sor core, a set of voltage and frequency couples is speci�ed, named operating

points. Running on high frequency requires also high voltage and inversely.

For raising the frequency and supply voltage, the microprocessor sets a new

VID (voltage identi�er) code to have a higher output voltage than the current

one, and conversely. This operation leads to time and energy overhead [80].

Also, the more important the di�erence between F1 and F2 is, the higher con-

text switch energy is. This is due to the perturbation of the processor's cache

memory resulting from the variation of processor bus frequency which varies

with the processor frequency.

3.5.3 Inter-process communication

Inter-process communications (IPC) allow threads in one process to share informa-

tion with threads in other processes, and even with processes that exist on di�erent

hardware platforms. The embedded OS explicitly copies information from sending

process's address space into a distinct receiving process's address space. Examples

of IPC mechanisms are pipes, message passing through mailboxes and shared mem-

ory. To characterize the power and energy consumption of IPC, we have to execute

test programs, each one repeatedly calling an IPC mechanism. The aim is to get an

average power and performance overhead of the IPC mechanism when running the

programs. The set of parameters that we could vary are: the type of IPC mecha-

54
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

125 250 500 550

0

1

2

3

4

5

6

F2 (Mhz)

P
cs

(m
W

)

125

250

500

550

F1 (Mhz)

Figure 3.18: Context switch power variation as a function of dynamic CPU frequency
scaling

125 250 500 550

0

1

2

3

4

5

6

F2 (Mhz)

Tc
s(

m
s)

125

250

500

550

F1 (Mhz)

Figure 3.19: Context switch time variation as a function of dynamic CPU frequency
scaling

nism, the amount of data shared through the IPC (applicative parameters) and the

processor frequency as hardware parameter. Then, we build the power models of

the IPC mechanisms. The test programs were developed for three communication

mechanisms which are shared memory, named pipes and anonymous pipes. The

message length varies from 1B to 8kB, which is the maximum size allowed by the

Linux kernel. Communications are performed within the same process to avoid pro-

3.5. OS power and energy modeling 55

Processor frequency (MHz)

P
ip

c
 (

m
W

)

0

50

100

150

200

250

300

125 250 500 720

Anonymous pipe

Named pipe

Shared memory

Figure 3.20: IPC power variation as a function of CPU frequency

cess context switching. We have also executed test programs with a high priority to

avoid preemptive context switch. Figure 3.20 shows that power consumption Pipc is

varying with the processor frequency F. Thus, the power model of IPC mechanisms

is:

Pipc(F) = (α× F) + β (3.13)

Where α and β are coe�cients of the model. The unit of Pipc and F is respectively

mW and MHz. Power models are presented in table 3.1.

Figure 3.21 depicts the in�uence of the message sizemsz on the energy consumption

of IPC : Eipc. The energy overhead increases exponentially with the rise of the size

of data transmitted.

Equation 3.14 represents the IPC energy model:

Eipc(msz) = λ× e(δ×msz) (3.14)

Where λ and δ are coe�cients depending on the message size and the IPC mecha-

nism. The unit of EIPC and msz is respectively nJ and Bytes. Energy models are

presented in table 3.2.

56
Chapter 3. Characterization and analysis of embedded OS services

energy consumption

0

1000

2000

3000

4000

5000

6000

7000

8000

1 50 200 800 1500 3000 4500 6000 7500 8191

Anonymous pipe

Named pipe

Shared memory

Data transmitted (Bytes)

E i
p

c
 (

n
J)

Figure 3.21: IPC energy variation as a function of message size

Table 3.1: Inter-process communication power models according to processor fre-
quency

IPC mechanism Power model: PIPC(mW) Average error

Anonymous pipe 0.347× F + 6.474 0.293%

Named pipe 0.333× F + 4.968 2.113%

Shared memory 0.217× F + 8.542 2.27%

Table 3.2: Inter-process communication energy models according to message size

IPC mechanism Energy model: EIPC(nJ) Average error

Anonymous pipe 3068× e103.9∗10−6×msz 2.149%

Named pipe 3003.8× e44.96∗10−6×msz 1.728%

Shared memory 1060.9× e48.9∗10−6×msz 1.468%

3.6 Conclusion

In this chapter, the power/energy consumption of embedded OS services were ana-

lyzed and and modeled for a speci�c hardware platform: the OMAP 35X evm board.

We proposed a methodology to characterize power/energy overheads of three basic

services of the embedded OS: scheduling, context switch and inter-process communi-

cation. In addition, the impacts of hardware and software parameters like processor

frequency and scheduling policy on energy consumption are studied. Consequently,

mathematical models for power and energy consumption are extracted. Next chapter

3.6. Conclusion 57

talks about a high level model of software application, the OS services and hardware

platform using an architecture analysis and design language (AADL). Then, AADL

and mathematical models of OS services energy consumption will be integrated in

a multiprocessor scheduling simulator in order to evaluate the OS energy overhead

when using low power techniques.

Chapter 4

High level modeling of embedded

system components

Contents

4.1 Exploitation of high level AADL models 60

4.2 Embedded OS functional/non-functional properties and

requirements . 60

4.3 Architecture modeling languages 61

4.4 Overview of AADL language 63

4.4.1 AADL components . 63

4.4.2 Subcomponents . 64

4.4.3 Components implementations 65

4.4.4 Components interaction . 65

4.4.5 AADL properties, annexes, packages and modes 66

4.4.6 AADL tools . 66

4.5 AADL modeling case study 67

4.5.1 H.264 application . 67

4.5.2 AADL modeling of system components 68

4.6 Conclusion . 77

This chapter introduces a high level modeling of OS services, software and hard-

ware components taking into account the energy consumption aspects. The obtained

models will be exploited for calculating OS energy overhead when adapting low power

scheduling policies. Also, they will be used for system design exploration and veri-

�cation of requirements. First, An overview of used modeling language (AADL) is

presented. Then, AADL functionalities and tools are exploited to model the OS ser-

vices and the software application, the H.264 video decoder application. In addition,

the communication between OS services and the applicative tasks have been modeled.

Furthermore, AADL models of OMAP3 processor and the binding of applicative tasks

on the hardware platform components have been proposed.

60 Chapter 4. High level modeling of embedded system components

4.1 Exploitation of high level AADL models

The contribution proposed in this chapter consists in providing a high level AADL

models of di�erent hardware and software components, the OS services and the com-

munication between the OS and the applicative tasks. These models take into ac-

count the properties of applicative tasks (the deadline, the period etc.), the schedul-

ing policy, the operating points (frequency and voltage) and characteristics of the

processor. As showed in �gure 4.1, the proposed models will be exploited, in chapter

5, to estimate the OS services energy overhead in order to evaluate the performance

of low power scheduling policies. Also, they will be used, in chapter 6, to explore

system design and to de�ne and verify various system requirements (OS energy

requirements, scheduling requirements etc.).

4.2 Embedded OS functional/non-functional properties

and requirements

In embedded systems, non-functional properties or requirements de�ne how a sys-

tem is supposed to be. They are used to evaluate the system operations. However,

functional requirements de�ne a speci�c behavior of the system. They could be

technical details, operations, data manipulation and other various functionalities

that specify particular characteristics of a system.

The main non-functional properties of embedded OS are timeliness, dependability

and energy consumption [69]. Depending on the kind of deadline, preemption points

AADL models of hardware and
software components

System requirements definition and
verification (OS energy consumption,

scheduling policies etc.)

Scheduling policies simulation
and determination of OS energy

overhead.

Figure 4.1: From AADL modeling to scheduling policies simulation and system
requirements veri�cation

4.3. Architecture modeling languages 61

need to be inserted in critical execution paths in order to reduce scheduling latency.

The timeliness non-functional issues are the existence, locality, and frequency of a

preemption point.

The dependability non-functional property refers to the system trustworthiness pro-

viding a service that can be justi�ably trusted. The dependability is the ability of

a system to avoid failures that are more frequent or more severe, and outage dura-

tions that are longer, than is acceptable to the user(s) [26]. It encompasses aspects

of reliability, availability, safety, security, survivability and maintainability. In fact,

these aspects rely on hardware-supported protection and isolation in order to limit

fault propagation.

The last non-functional requirement is the energy which a scarce resource in em-

bedded systems, especially the battery operated embedded systems such as mobiles.

As demonstrated in chapter 3, the embedded OS energy overhead is important and

varies with di�erent hardware and software parameters. Consequently, we are in-

terested in modeling this non functional property for embedded OS services.

In this work, we aim at building a model of the functional/non-functional proper-

ties and requirements. So, choosing the adequate modeling language, to analyze

and verify these embedded systems properties, is necessary. This choice is justi�ed

in next section.

4.3 Architecture modeling languages

In order to describe and analyze functional/non-functional properties and require-

ments of a system, various modeling languages are used. The Object Management

Group (OMG) [17] standardizes the Uni�ed Modeling Language (UML) [18], a

widespread modeling language including a set of graphic notation techniques to

provide concepts and model the architecture behavior and the deployment of

software systems in object-oriented or component-based paradigms.

The UML language can be extended through pro�les, accommodating domain

speci�c modeling concepts. For example, SysML [4] is a pro�le to describe system

engineering applications. Non-functional properties and requirements are harder

to describe using UML. An extension of UML called MARTE [108] improves

UML functionalities to enhance the modeling and analysis of Real-Time and

Embedded systems. The MARTE language takes into account di�erent aspects

such as schedulability, performance and time [78]. This language addresses new

requirements: speci�cation of both software and hardware model aspects, separated

abstract models of software applications and hardware platforms and modeling

various domains of time and non functional properties [30].

The Architecture Description Languages (ADLs) target to model both functional

and nonfunctional properties of system architectures.

62 Chapter 4. High level modeling of embedded system components

The (ADL) language generates di�erent executable models with simulator, compiler

and hardware con�guration. The generated models enable various design automa-

tion tasks including exploration, simulation, compilation, synthesis, test generation

and validation. Furthermore, (ADL) language is exploited to design both software

and hardware architectures. It analyzes and models the software applications

architectures [41] by capturing behavioral speci�cations of applicative tasks and

their interactions. Also, (ADL) language describes the hardware platform. It

models the di�erent modules of the platform and their connectivity.

Recently, various (ADL)s have been proposed and exploited for modeling the

system functional/non functional properties [70].

From these proposals, the Architecture Analysis and Design Language (AADL)

[77], developed by the Society of Automotive Engineers (SAE), has received

increasing interest from mission-critical applications development industries. The

AADL standard models the applications and hardware platforms and describes the

deployment of applicative tasks on hardware components. The modeling is per-

formed using textual and graphic notations with precise semantics. This language

analyzes and models the functional and non functional requirements and properties

of embedded systems. The (SAE) generates, from the AADL model, textual

�les with interchange text format (XML) that supports the exchange of AADL

models between di�erent subcontractors, integrators and agencies. Additionally,

the AADL standard is extensible with analysis approaches to evaluate properties

such as schedulability, performance and power/energy consumption. The standard

of this language was proposed in 2004 and functionalities were published in 2006

for graphical notation, error modeling, standard meta-model and programming

language guidelines. Moreover, this language is supported by commercial and open

source tool solutions: the Open Source AADL Tool Environment (OSATE) [106].

For these reasons, under the OPEN-PEOPLE project, di�erent academic and

industrial partners choose AADL as modeling language.

Various works use the AADL to model system architecture and verify its constraints.

In [88], the authors use the AADL language to de�ne memory architectures, and

then verify rules in order to assess that the memory is correctly dimensioned. They

model memory requirements (such as layout or size) and then validate them on a

case-study using the VxWorks real-time kernel.

Also, an AADL simulation tool has been proposed in [112] to design and analyze

software and hardware architectures for real-time embedded systems. This tool

supports the performance analysis of the AADL speci�cation throughout the

re�nement process from the initial system architecture until the complete, detailed

application and execution platform are developed. AADL language is used to verify

the initial timing constraints during the complete design process.

4.4. Overview of AADL language 63

4.4 Overview of AADL language

To describe AADL models of di�erent features of an embedded system, various

representations are available for the AADL users:

� Graphical representation: This kind of representation is used to show

an overview of the system and the interaction between the application and

di�erent hardware devices.

� Textual representation: The text format is used to re�ne and detail the

model entities.

� XML format representation (AAXL �le): The XML �le is also used for

AADL modeling to facilitate the interoperability between di�erent tools.

In this section, we present an overview of AADL speci�cation of embedded systems

by showing the di�erent available software, hardware and hybrid components. Also,

implementations and properties of these components will be detailed.

4.4.1 AADL components

To model complex embedded systems, AADL provides three distinct sets of compo-

nent categories:

4.4.1.1 Software components

In order to describe the applicative tasks, AADL model includes various software

components:

� Thread: it is the smallest sequence of routines that can be scheduled by an

OS. A thread represents a unit of concurrent execution.

� Process: represents a protected address space. A process should include one

or more threads.

� Thread group: the hierarchy of thread group is used to organize threads

within a process in the same block.

� Data: this software component includes application data types and di�erent

data component implementations.

� Subprogram: this component is a sequential code that could be called for

execution. A subprogram could call other subprograms and communicate with

them through speci�c parameters and data access features.

The AADL language assigns to each software component a graphical symbol. Figure

4.2 depicts di�erent graphical representations of software components.

64 Chapter 4. High level modeling of embedded system components

Thread Thread group Process Subprogram Data

Figure 4.2: Graphical representations of software AADL components

4.4.1.2 Hardware components

Various hardware components are available for AADL users in order to model dif-

ferent units of hardware platforms and to represent system's computational and

interfacing resources. These hardware platform components are:

� Processor: represents the main hardware unit of the platform that runs and

schedules the threads.

� Memory: represents the hardware devices allowing the storage of data and

routines.

� Bus: this component ensures the interconnection between di�erent hardware

parts of the system.

� Device: represents di�erent entities of the external environment such as pe-

ripheral devices.

4.4.1.3 Generic components

The generic or composite component, called system in AADL modeling, is used to

model entities consisting of both hardware and software components. The system

component encapsulates hardware devices, such as peripheral device or processor,

the software application tasks and the mapping of software code on hardware com-

ponents. Generic components add hierarchy in the modeling; they are at the higher

level in this hierarchy. Figure 4.3 represents the di�erent AADL graphical represen-

tations of execution platform and generic components.

4.4.2 Subcomponents

A subcomponent represents a component instance that de�nes the category, type

and speci�cations of an AADL component. Di�erent subcomponents of each AADL

component are presented in table 4.1.

4.4. Overview of AADL language 65

Processor Bus Device Memory System

Figure 4.3: Graphical representations of hardware and generic AADL components

Table 4.1: AADL subcomponents
Components Subcomponents

System Data, process, subprogram, processor, memory, bus, device, system
Thread Data

Thread group Thread, thread group, data
Process Thread, thread group, data
Processor Memory, bus
Memory Memory, bus
Bus None
Data Data
Device None

Subprogram None

4.4.3 Components implementations

The component implementation describes the internal structure of di�erent AADL

components. It speci�es the set of subcomponents and details interactions between

their features. These interactions are established through connections, calls, bind-

ings and mapping of software components on the hardware platform. The com-

ponent implementation de�nes di�erent modes representing operational states and

component properties [52].

4.4.4 Components interaction

To ensure the communication between AADL components, the AADL developers

provide various interfaces or features. A component interface consists of directional

�ow through:

- Data ports for unqueued state data.

- Event data ports for queued message data.

- Event ports for asynchronous events.

- Subprogram calls.

- Explicit access to data components.

66 Chapter 4. High level modeling of embedded system components

4.4.5 AADL properties, annexes, packages and modes

AADL language not only describe the architecture and interconnections between

components, but also the behavior of di�erent components. It speci�es the compo-

nents characteristics using the properties, annexes, packages and modes.

4.4.5.1 AADL properties

An AADL property provides information about an AADL speci�cation element.

The timing characteristics of di�erent applications tasks, such as the deadline, the

worst-case execution time and the period, are de�ned through AADL properties.

Furthermore, AADL properties include the source code and routines of AADL mod-

eled applicative software components and they specify the constraints for binding

threads to processors, processes to memories and connections to busses. Properties

are declared in named property sets. Property set declarations allow the addition

of properties to the core of AADL property set.

4.4.5.2 AADL annexes

The AADL annexes enrich the architecture description using speci�c languages such

as Object Constraint Language (OCL). Many annexes have been de�ned by AADL

developers, for example, the error-model annex that speci�es fault and propagation

concerns and the data-model annex that describes the modeling of speci�c data

constraint with AADL.

4.4.5.3 AADL packages

The libraries of AADL components are de�ned in AADL packages. These packages

organize the import of component declarations.

4.4.5.4 AADL modes

AADL modes are the operational states of software, hardware and compositional

components in the modeled system.

4.4.6 AADL tools

Various tools are available for system modeling and analysis with the AADL

language. For instance, Ocarina tool is used for optimization and analysis of AADL

models [58]. This tool achieve semantic analysis, schedulability analysis and checks

the behavior of the model by transforming the AADL model to a Petri network and

4.5. AADL modeling case study 67

performing formal veri�cation. Ocarina tool is able to generate automatically a

code from AADL models to C code, ADA code and ARINC653 compliant systems.

Also, Cheddar [103] is a free real time scheduling tool. It is designed for checking

task temporal constraints of a real time application/system written in the AADL

or with a Cheddar proprietary language. Cheddar is not used in this work because

it supports only monoprocessor platforms.

In the context of the OPEN-PEOPLE project, we use a set of ECLIPSE [46] based

tools. Also, the OSATE is used as textual and graphical modeling tool. It is de�ned

as a set of plug-ins on top of the open source Eclipse platform. The set of plug-ins

provides a tool set for front-end processing of AADL models. These models can be

maintained as textual AADL �les or as XML based AADL model �les. Also, the

ADELE tool is used in this work [107]. It addresses shortcomings in the OSATE

graphical editor by providing a new AADL editor, with a new graphical layer.

4.5 AADL modeling case study

In this section, we present AADL models of di�erent embedded system components.

The use case software application, the H.264 video decoder, is detailed below.

4.5.1 H.264 application

The H.264 video decoder application is taken as main use case application. It is a

high quality video compression algorithm relying on several e�cient strategies ex-

tracting spatial (within a frame) and temporal dependencies (between frames). This

application is characterized by a �exible coding, high compression and high quality

resolution. Moreover, it is a promising standard for embedded devices.

The main steps of the H.264 decoding process consist in the following: �rst, a com-

pressed bit stream coming from the Network application layer (NAL), which formats

the representation of the video and provides header information in a manner ap-

propriate for conveyance by particular transport layers, is received at the input of

the decoder. Then, the entropy decoded bloc begins with decoding the slice header

and then it decodes the other parameters. The decoded data are entropy decoded

and sorted to produce a set of quantized coe�cients. These coe�cients are then in-

versely quantized and transformed. Thereafter, the data obtained are added to the

predicted data from the previous frames depending upon the header information.

Finally, the original block is obtained after the de-blocking �lter to compensate the

block artifacts e�ect.

The H.264 video decoder application can be broken down into various tasks sets cor-

responding to di�erent types of parallelization. In our experiments, we use the slices

68 Chapter 4. High level modeling of embedded system components

version proposed by Thales Group (France) [10] in the context of French national

project PHERMA (Parallel Heterogeneous Energy e�cient real-time Multiprocessor

Architecture) [5].

The main characteristic of this version is that the algorithm is parallelized on the

slices of the frame as illustrated in �gure 4.4 from this diagram; For this version,

it is considered that frames are made up of 4 slices. Since slices inside a frame

can be computed independently, therefore, one task is assigned for each slice to be

computed. Thus, four tasks, named slice_processing, can run simultaneously in

this version. There are some synchronizations required between tasks that must

be handled to ensure a proper processing without data corruption. These synchro-

nizations are handled through the task named SY NC. At the beginning of each

new frame, tasks can access only sequentially to the input data bu�er. Therefore,

there is a slight overhead in the real beginning of each start up of the task named

slice. This behavior is due to the access of shared resource which is protected by

a semaphore. Due to temporal dependencies between frames, it is not possible to

compute the next frame if the previous one has not been completely decoded. Thus,

at the end of each slice computation, tasks need to be resynchronized using task

named SY NC. As a result, input data must be present and the previous frame

must be decoded at the start of decoding a new frame. Hence, we have four types

of tasks. First, we start with the NEW_FRAME task (T1) that can access only

sequentially to the input data bu�er. Therefore, the NAL_DISPATCH task (T2),

which provides access to a shared resource and is protected by a semaphore, starts

execution. Then, SLICE_PROCESSING tasks (T3, T4, T5 and T6) are launched

simultaneously. Due to temporal dependencies between frames, it is not possible

to compute the next frame if the previous one has not been completely decoded.

Thus, at the end of each slice computation, tasks need to be resynchronized using

the SY NC task before running the REBUILD_FRAME (T7) task.

Hence, H.264 slices version, comprising seven periodic tasks as shown in table 4.2, is

used as use case application. All values are given at maximum frequency of OMAP

3 processor (i.e., 720-MHz).

4.5.2 AADL modeling of system components

Using AADL, the properties of the system architecture, including the application's

tasks and the hardware platform, are modeled.

4.5.2.1 H.264 application software tasks AADL modeling

The software tasks are modeled using the "Thread" component. The model is di-

vided into two parts: the features, that de�ne the component interface and its

communication ports, and the properties, that de�ne the task's period and its acti-

4.5. AADL modeling case study 69

Ring
Buffer

Slice 1

Slice 2

Slice 3

Slice n

P
R
O
C
E
S
S
I
N
G

Decoded
Frame

.yuv
file

H.264
Compressed

file

SYNC SYNC LOOP

Temporal dependency

Figure 4.4: Block diagram of H.264 decoding scheme slices version

Table 4.2: H.264 video decoder application tasks features

Task name WCET
(ms)

BCET
(ms)

Period
(ms)

Deadline
(ms)

Activation
date
(ms)

New_frame(T1) 1 1 19 19 0

Nal_dispatch(T2) 2 1 5 5 0

Slice1_processing(T3) 42 21 66 66 0

Slice2_processing(T4) 42 21 66 66 1

Slice3_processing (T5) 42 21 66 66 2

Slice4_processing (T6) 42 21 66 66 3

Rebuild_frame(T7) 2 1 66 66 66

70 Chapter 4. High level modeling of embedded system components

vation protocol. The execution times of di�erent tasks will be modeled when binding

the application tasks on the hardware platform. For instance, �gure 4.5 depicts the

AADL model of the second task of the application NAL_DISPATCH: T2.

thread Nal_dispatch

features

IN0: in event data port donnee.impl;

OUT1: out event data port donnee.impl;

OUT2: out event data port donnee.impl;

OUT3: out event data port donnee.impl;

OUT4: out event data port donnee.impl;

properties

Dispatch_Protocol => Periodic;

Period => 5 Ms;

end Nal_dispatch;

Figure 4.5: Thread NAL_DISPATCH AADL model

4.5.2.2 AADL modeling of OS services

The AADL implementation of each OS service speci�es its properties, such as the

periodicity, and its features, mainly, its communication ports. The OS services

AADL model is presented in �gure 4.6. To model the di�erent OS services studied

and to facilitate the communication with applicative tasks, we need to gather these

services in the same unit. For this reason, we use the "Thread group" component

that includes three "Thread"s representing the context switch, the inter-process

communication and the scheduling services. Figure 4.7 shows the structure of OS

services AADL unit.

4.5.2.3 AADL modeling of communication between OS services and ap-

plicative tasks

When switching from one task to another, the OS routines are called. To ensure the

communication and message passing between the OS services and the applicative

tasks, the event/data ports are used. As showed in �gure 4.8, the software compo-

nents are linked by event and data connections. The AADL graphical representation

of di�erent software tasks and their interactions with the OS services are showed in

�gure 4.9.

4.5. AADL modeling case study 71

--------- OS Services threads-------

 thread Scheduling

 features

 IN0: in event data port donnee.impl;

 OUT0: out event data port donnee.impl;

 end Scheduling;

 thread implementation Scheduling.impl

 properties

 Dispatch_Protocol => Periodic;

 Period => 1 Ms;

 POSIX_Properties::POSIX_scheduling_policy => SCHED_OTHER;

 end Scheduling.impl;

 thread IPC

 features

 IN0: in event data port donnee.impl;

 OUT0: out event data port donnee.impl;

 end IPC;

 thread implementation IPC.impl

 properties

 POSIX_Properties::POSIX_Memory_policy => SHARED_MEMORY;

 Dispatch_Protocol => Periodic;

 Period => 1 Ms;

 end IPC.impl;

 thread Context_Switch

 features

 IN0: in event data port donnee.impl;

 OUT0: out event data port donnee.impl;

 end Context_Switch;

 thread implementation Context_Switch.impl

 properties

 Dispatch_Protocol => Periodic;

 Period => 1 Ms;

 end Context_Switch.impl;

Figure 4.6: OS services AADL model

72 Chapter 4. High level modeling of embedded system components

--------- OS Services Thread Group -------

thread group OS_services

 features

 IN0: in event data port donnee.impl;

 OUT0: out event data port donnee.impl;

end OS_services;

thread group implementation OS_Services.impl

 subcomponents

 SCHED: thread Scheduling.impl;

 IPC: thread IPC.impl;

 CS: thread Context_Switch.impl;

 connections

 event data port IN0 -> SCHED.IN0;

 event data port SCHED.OUT0 -> IPC.IN0;

 event data port IPC.OUT0 -> CS.IN0;

 event data port CS.OUT0 -> OUT0;

end OS_Services.impl;

Figure 4.7: Thread group of OS services

4.5.2.4 AADL modeling of OMAP 3 processor

To model the OMAP 3 processor, we use various AADL hardware components

such as "processor", "bus" and "memory" components. The bus is used for the

communication between the processor core and its memory. When implementing

the processor model, as depicted by �gure 4.10, the AADL memory component is

used to de�ne the internal cache memory of the processor. Also, many characteristics

of the processor are speci�ed such as its operating point (Running frequency and

voltage), its idle and running power consumption and the scheduling policy used.

4.5.2.5 AADL modeling of the tasks binding on hardware components

To provide a complete system speci�cation, applicative tasks should be bound to

appropriate execution platform components. This software/hardware binding is

modeled using property associations called binding properties. The AADL modes

are exploited to represent di�erent system states. In the proposed model, each sys-

tem mode is mainly characterized by the processor running frequency, voltage and

power consumption in idle and running states. Many properties are linked to each

system mode such as the power consumption in idle and running states and the

CPU core voltage.

When switching from one mode to another, the system active components and con-

4.5. AADL modeling case study 73

process basic_process

 properties

 Threads_Number => 7 threads;

end basic_process;

process implementation basic_process.impl

 subcomponents

 NEW_FRAME: thread New_frame.impl;

 NAL_DISPATCH: thread Nal_dispatch.impl;

 SLICE1_PROCESSING: thread Slice1_processing.impl;

 SLICE2_PROCESSING: thread Slice2_processing.impl;

 SLICE3_PROCESSING: thread Slice3_processing.impl;

 SLICE4_PROCESSING: thread Slice4_processing.impl;

 REBUILD_FRAME: thread Rebuild_frame.impl;

 CALL1_OS, CALL2_OS, CALL3_OS : thread group OS_Services.impl;

 connections

 event data port NEW_FRAME.OUT0 -> CALL1_OS.IN0;

 event data port CALL1_OS.OUT0 -> NAL_DISPATCH.IN0;

 event data port NAL_DISPATCH.OUT0 -> CALL2_OS.IN0;

 event data port CALL2_OS.OUT1 -> SLICE1_PROCESSING.IN0;

 event data port CALL2_OS.OUT2 -> SLICE2_PROCESSING.IN0;

 event data port CALL2_OS.OUT3 -> SLICE3_PROCESSING.IN0;

 event data port CALL2_OS.OUT4 -> SLICE4_PROCESSING.IN0;

 event data port SLICE1_PROCESSING.OUT0 -> CALL3_OS.IN1;

 event data port SLICE2_PROCESSING.OUT0 -> CALL3_OS.IN2;

 event data port SLICE3_PROCESSING.OUT0 -> CALL3_OS.IN3;

 event data port SLICE4_PROCESSING.OUT0 -> CALL3_OS.IN4;

 event data port CALL3_OS.OUT0 -> REBUILD_FRAME.IN0;

end basic_process.impl;

Figure 4.8: AADL modeling of the communication between application and OS
services

74 Chapter 4. High level modeling of embedded system components

N
E

W
_F

R
A

M
E

N

A
L

_D
ISP

A
T

C
H

SL
IC

E
1_P

R
O

C
E

SSIN
G

SL
IC

E
2_P

R
O

C
E

SSIN
G

SL
IC

E
3_P

R
O

C
E

SSIN
G

SL
IC

E
4_P

R
O

C
E

SSIN
G

R
E

B
U

IL
D

_F
R

A
M

E

C
A

L
L

1_O
S

C
A

L
L

2_O
S

C
A

L
L

3_O
S

O
U

T
0

IN
0

O
U

T
0

O
U

T
0

O
U

T
1

O
U

T
2

O
U

T
3

O
U

T
4

O
U

T
0

O
U

T
0

O
U

T
0

O
U

T
0

O
U

T
0

IN
0

IN
0

IN
0

IN
0

IN
0

IN
0

IN
1

IN
2

IN
3

IN
4

IN
0

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

<<E
ventD

ata>>

Figure 4.9: AADL Graphical representation of the communication between tasks
and OS services using the ADELE tool

4.5. AADL modeling case study 75

processor OMAP_3530

 features

 bus_access: requires bus access Bus2.impl;

end OMAP_3530;

processor implementation OMAP_3530.impl

 subcomponents

 CACHE: memory Memory1;

 properties

 POSIX_Properties::POSIX_scheduling_policy => SCHED_RR;

 Power_Properties::Power_Consumption => 57.0 mW;

 Power_Properties::Power_Idle => 4.0 mW;

 Basic_OP_Properties::VDD => 1.0 V;

 Basic_OP_Properties::Frequency => 125.0 MHz;

end OMAP_3530.impl;

Figure 4.10: AADL modeling of the OMAP3530 processor

nections between them change due to the processor frequency variation. The AADL

event ports are used to ensure the system mode change, the activation and deacti-

vation of system parts, when switching from one frequency to another. Figure 4.11

shows the di�erent system modes, used when binding the applicative tasks on the

processor, for di�erent operating points of the processor: 125 MHz, 250 MHz, 500

MHz and 720 MHz. It also depicts the event ports allowing the switching from one

mode to another.

Figure 4.12 details the binding properties. The property type "reference" allows

a property value to refer to a model element according to the containment hi-

erarchy. The Allowed_Processor_Binding declaration references modeled proces-

sor in the system hierarchy. This property association restricts the binding to

processors of type OMAP 3 and is applied to the software part of the system,

the H.264 Application. It also speci�es the system execution mode. Besides, the

Actual_Memory_Binding property association de�nes the memory component to

which code and routines are bound.

The reference properties should be declared high enough in the system hierarchy in

order to point to the desired component in the system hierarchy.

76 Chapter 4. High level modeling of embedded system components

system Global_Binding

 features

 Frequency_at_125_MHZ: in event port;

 Frequency_at_250_MHZ: in event port;

 Frequency_at_500_MHZ: in event port;

 Frequency_at_720_MHZ: in event port;

end Global_Binding;

system implementation Global_Binding.impl

 subcomponents

 H264_application: system ApplicationH264::H264.impl;

 Execution_platform: system Multiprocessor_plat::main.impl1;

 SRAM: memory Multiprocessor_plat::Memory1;

 modes

 conf0: initial mode ;

 conf1: mode {

 Basic_OP_Properties::Frequency => 125.0 MHz;

 Power_Properties::Power_Consumption => 57.0 mW;

 Power_Properties::Power_Idle => 4.0 mW;

 Basic_OP_Properties::VDD => 1.0 V;

 };

 conf2: mode {

 Basic_OP_Properties::Frequency => 250.0 MHz;

 Power_Properties::Power_Consumption => 130.0 mW;

 Power_Properties::Power_Idle => 7.0 mW;

 Basic_OP_Properties::VDD => 1.1 V;

 };

 conf3: mode {

 Basic_OP_Properties::Frequency => 500.0 MHz;

 Power_Properties::Power_Consumption => 303.0 mW;

 Power_Properties::Power_Idle => 16.0 mW;

 Basic_OP_Properties::VDD => 1.3 V;

 };

 conf4: mode {

 Basic_OP_Properties::Frequency => 720.0 MHz;

 Power_Properties::Power_Consumption => 550.0 mW;

 Power_Properties::Power_Idle => 28.0 mW;

 Basic_OP_Properties::VDD => 1.35 V;

 };

 conf0 -[Frequency_at_125_MHZ]-> conf1;

 conf0 -[Frequency_at_250_MHZ]-> conf2;

 conf0 -[Frequency_at_500_MHZ]-> conf3;

 conf0 -[Frequency_at_720_MHZ]-> conf4;

Figure 4.11: AADL implementation of system modes and events

4.6. Conclusion 77

Properties

Allowed_Processor_Binding => (reference

Execution_platform.cpu1, reference

Execution_platform.cpu2, reference

Execution_platform.cpu3, reference

Execution_platform.cpu4, reference

Execution_platform.cpu5) applies to

H264_application.pr;

Actual_Memory_Binding => reference sram applies to

H264_application.pr;

Figure 4.12: AADL model of software application on hardware platform

4.6 Conclusion

In this chapter, we have presented an overview of AADL language. The AADL func-

tionalities and tools have been exploited to model the OS services and the software

application, the H.264 video decoder application. In addition, the communication

between OS services and the applicative tasks have been modeled. Furthermore,

AADL models of OMAP3 processor and the binding of applicative tasks on the

hardware platform components have been proposed. The implemented AADL mod-

els will be used in next chapter for the determination of OS services energy overhead

when adapting low power scheduling policies.

Chapter 5

Embedded OS service's models

integration in the system level

design �ow

Contents

5.1 Models integration in multiprocessor scheduling simulation

tool . 80

5.1.1 STORM tool . 80

5.1.2 The proposed approach . 81

5.2 Low power scheduling policies 83

5.2.1 The AsDPM scheduling policy: 84

5.2.2 The DSF scheduling policy: 87

5.3 Embedded OS services energy overhead: 88

5.3.1 Fixed frequency case: . 89

5.3.2 Dynamic frequency case: . 89

5.4 Experimental results: . 91

5.5 Conclusion . 94

Thanks to the signi�cant evolution in processor technology over the last few years,

processors with variable voltages and frequencies are now available, they adapt low

power and energy scheduling policies to minimize the energy consumption. Reduc-

tion in supply voltage requires reduction in operating frequency. To ensure a high

level of energy and power optimization, several studies and techniques have been

proposed for the exploration of scheduling policy and dynamic Voltage/Frequency

management. For instance, the Dynamic Power Management (DPM) and Dynamic

Voltage and Frequency Scaling (DVFS) techniques are used to reduce the power and

energy consumption. In this chapter, the energy overhead of studied OS services

is evaluated when using an instance of DPM and DVFS low power techniques: the

AsDPM and DSF scheduling policies. In fact, the operating system services's models

are integrated at system level using multiprocessor scheduling simulator (STORM).

Also, a general �ow, consisting mainly in generating from the AADL model a �le

80
Chapter 5. Embedded OS service's models integration in the system

level design �ow

used as input to the STORM simulator, and calculating the OS energy overhead, is

proposed in this chapter.

5.1 Models integration in multiprocessor scheduling sim-

ulation tool

The integration of OS services energy models in power/energy estimation tools is

necessary to achieve estimations at system level and to quantify the power/energy

overhead of embedded OS services. In this work, energy estimation is targeting

the system design including software and hardware components. Hence, the OS

power/energy mathematical and AADL models, developed respectively in chapter

3 and 4, will be integrated in a simulation tool.

We present in the remaining of this section the simulation tool used to integrate OS

services energy models at system level. Then, we introduce the proposed method-

ology of energy models integration at system level.

5.1.1 STORM tool

To simulate the execution of application and extract the OS energy overhead when

using low power scheduling policies, we use STORM (Simulation TOol for Real-time

Multiprocessor Scheduling) simulator [9]. This tool is a java-based simulator for

multiprocessor scheduling algorithms developed by IRCCyN [83] under the French

national project PHERMA [5].

The main functionality of STORM tool is evaluating of performance and energy

consumption e�ciency of software applications and hardware platforms. This sim-

ulation tool allows the implementation of di�erent scheduling policies on multipro-

cessor architectures with homogeneous or heterogeneous processors. This simulator

takes into account the architecture and di�erent components of hardware platforms,

such as the multi-core design and memory architecture (L1 and L2 caches), and low

power consumption policies, particularly DPM and DVFS techniques. STORM is

characterized by high �exibility, so that the user could add many simulation entities,

and by portability: the possibility of running on various operating systems.

As shown in �gure 5.1, the inputs of this tool is the speci�cations of the hardware

and software architectures together with the scheduling policy; it simulates the sys-

tem behavior using all the characteristics (task execution time, processor functioning

conditions, etc.) in order to obtain the chronological track of di�erent scheduling

events that occurred at run time, compute various real-time metrics and analyze

the system behavior and performances from various point of views.

Di�erent tasks, data links and processor entities are speci�ed in XML input �le, and

they are automatically instantiated from the library components. These libraries

5.1. Models integration in multiprocessor scheduling simulation tool 81

 Diagrams

Export

Report

Simulator

XML File

Hardware
architecture

Software
architecture

Configuration parameters

Library

Software
components

Hardware
components

Figure 5.1: STORM simulator input and output �le system [9]

de�ne the task characteristics: recurrence, periodicity, aperiodicity, etc. An example

of XML �le is showed in �gure 5.2. It represents the set of used processors and soft-

ware application tasks with various characteristics such as the best case execution

time (BCET), the period and deadline.

5.1.2 The proposed approach

As demonstrated in �gure 5.3, the proposed approach of OS services integration at

system level revolves around three focal concepts: AADL Modeling, code transfor-

mation and energy/power estimation.

The AADL modeling step is mainly performed in last chapter. Di�erent AADL

models are integrated in this �ow. In fact, we rely on the platform model that

contains all the components and connections instances of the application. Also, we

perform the implementation of various components instances, found in the AADL

models library. Furthermore, AADL model is exploited to describe the hardware of

the physical target platform: the processor, the memory, and the bus entity which

are necessary to processes and threads execution. In the proposed approach, we take

into account the intra-task properties, such as the deadline and worst case execution

time, and the inter-task aspects, such as the events and inter-process communica-

tion, in order to de�ne the binding properties that are necessary to the deployment

of the application's tasks and embedded OS services on the target platform. Us-

ing the textual and graphical modeling tool OSATE, we automatically generate the

corresponding textual deployment �le: the AADL model is mapped to an XML �le.

As a result, simulated outputs can be computed as: either user readable in the form

of diagrams or reports, or machine readable intended for a subsequent analysis tool.

The user interacts with STORM through a user-friendly graphical interface which

is composed of command and display windows. The XML �le generated from the

AADL model having the extension ".aaxl" is not recognized by the STORM simu-

82
Chapter 5. Embedded OS service's models integration in the system

level design �ow

<SIMULATION duration="10000" precision="1">

<SCHED className="EDF_P_Scheduler" quantum="1"> </SCHED>

<CPUS>

 <CPU className="storm.Processors.OmapProcessor" name="CPU A" id="1"></CPU>

 <CPU className="storm.Processors.OmapProcessor" name="CPU B" id="2"></CPU>

</CPUS>

<TASKS>

 <TASK className="storm.Tasks.PTask_NAM_A" name="NEW_FRAME" id="1"

activationDate="0" WCET="1" BCET="1" period="19" deadline="19"> </TASK>

 <TASK className="storm.Tasks.PTask_NAM_A" name="NAL_DISPATCH" id="2"

activationDate="0" WCET="2" BCET="1" period="5" deadline="5"> </TASK>

 <TASK className="storm.Tasks.PTask_NAM_A" name="SLICE1_PROCESSING" id="3"

activationDate="0" WCET="42" BCET="21" period="66" deadline="66"> </TASK>

 <TASK className="storm.Tasks.PTask_NAM_A" name="SLICE2_PROCESSING" id="4"

activationDate="1" WCET="42" BCET="21" period="66" deadline="66"> </TASK>

 <TASK className="storm.Tasks.PTask_NAM_A" name="SLICE3_PROCESSING" id="5"

activationDate="2" WCET="42" BCET="21" period="66" deadline="66"> </TASK>

 <TASK className="storm.Tasks.PTask_NAM_A" name="SLICE4_PROCESSING" id="6"

activationDate="3" WCET="42" BCET="21" period="66" deadline="66"> </TASK>

 <TASK className="storm.Tasks.PTask_NAM_A" name="REBUILD_FRAME" id="7"

activationDate="66" WCET="2" BCET="1" period="66" deadline="66"> </TASK>

</TASKS>

</SIMULATION>

Figure 5.2: Example of STORM input XML �le

lator. For this reason, in the code transformation step, we adapt the �le generated

to the simulator structure by parsing existing �le ".aaxl " and extracting the data

needed to generate the input �le of the simulator. To extract the required data from

the "aaxl" �le, we use the java API JDOM [16] which allows us to manipulate and

output XML data from Java code. Consequently, we can read and write XML data

without the complex and memory-consumptive options that current API o�erings

provide. Because JDOM uses the Java Collections API to manage a tree data struc-

ture, we transform the "aaxl" �le to a JDOM tree. Then, we extract each data by

walking the tree and iterating the document as showed in algorithm 2.

5.2. Low power scheduling policies 83

 Diagrams

Export

Report

Intra-task aspects :

Execution time, period,
deadline..

Inter-task aspects :

Events, inter-process
communication..

Hardware platform

AADL deployment

model

Code transformation

XML code

Energy and power

simulation

OS services energy and

power models

Figure 5.3: Os power and energy models integration in the system level design �ow

For instance, the code of task period extraction is depicted by �gure 5.4. In the re-

Algorithm 2 Data extraction from the "aaxl" �le
1: Create a list of the tree's nodes
2: Create an iterator "i" for the list
3: while "i" has a next element in the tree do
4: assign j = next element of "i"
5: Extract the required property;

maining of this chapter, taking as use case the H.264 video decoder application, the

energy consumption of the OS services will be determined when adapting speci�c

low power techniques, presented in next section.

5.2 Low power scheduling policies

In this section, we present the low power techniques used to evaluate the performance

of embedded OS services: the DSF and AsDPM techniques. These techniques work

in conjunction with global Earliest Deadline First (EDF) scheduling algorithm. On

single-processor, under the EDF scheduling policy, at every time instant, the task

that has the smallest deadline is selected for execution on the sole processor. (EDF)

84
Chapter 5. Embedded OS service's models integration in the system

level design �ow

static void period (String Attribute2)
 {
 List thread = racine.getChildren(“threadimpl”) ;
 Iterator i = thread.iterator();

While (i.hasNext())
{
 Element threadCourant=(Element) i.next();

 List PropAssociation=threadCourant.getChild(“properties”).getChildren(“propertyAssociation”);
 Iterator j=PropAssociation.iterator();

 While (j.hasNext())
 {

Element PropertyAssociation=(Element) j.next();
String test= PropertyAssociation.getAttributeValue(“propertyDefinition”).toString();
 If (test.equals(Attribute2))

{

ThreadCourant.setAttribute(“period”,PropertyAssociation.getChild(“PropertyValue”).getAttributeValue(“value”));
}

 }
 }
}

Figure 5.4: Task period extraction

is optimal scheduling algorithm for single-processor systems [36, 67]. Nevertheless,

when more processors are added to the system, (EDF) su�ers from sub-optimality.

The used low power scheduling policies aim to verify (EDF) scheduling constraints

and reduce the energy consumption of multiprocessor hardware platform when run-

ning the application tasks.

5.2.1 The AsDPM scheduling policy:

The dynamic power management (DPM) is an e�cient technique for embedded sys-

tems energy reduction [75, 96]. When the embedded system is not running any

application task, it switches its state from running to idle state. The (DPM) tech-

nique keeps the system into low-power states whenever it is in idle state. This

technique improves power conservation capabilities by changing selectively the mul-

tiple idle states taking into account the cost of transitions power [59, 29].

Furthermore, the prediction of the system workload could be exploited by the DPM

technique to save the energy consumption by switching o� or decreasing the perfor-

mance of system components when they are idle or partially unexploited [102]. But,

the disadvantage of using the DPM technique is that processor transitions from idle

to running state requires an overhead of time and energy to serve an incoming task.

Usually, the scheduler uses the DPM technique to make such decisions when execut-

ing the application based on the system state, its workload and timing constraints

[38, 40, 76].

After executing an application task, the processor is able to determine the time

5.2. Low power scheduling policies 85

Power

Time
Tidle

Transition time overheads

Figure 5.5: DPM technique energy saving

interval of length Tidle when it will be in idle state. The DPM technique compares

the length of idle interval with the processor break-event time (BET), which is the

minimum length of idle interval guarantying energy consumption gain when switch-

ing the processor from running to idle state [43]. The transition to idle state is

performed only if Tidle is bigger than (BET). Figure 5.5 shows a scenario for reduc-

ing energy consumption using the DPM technique by setting the processor in idle

mode, during the interval time Tidle, when it is not executing the application. Also,

this �gure shows the transition time overhead when switching from active state to

idle state. To evaluate the OS services energy consumption, we use a DPM strategy

named the AsDPM (Assertive Dynamic Power Management) technique proposed

in [32]. This technique is based on the extraction of inherently present idleness in

application's behavior to make appropriate decisions for state-transition of proces-

sors in a multiprocessor system. The AsDPM technique does not predict the time

intervals when the processor is idle. This technique is based on the principle of

admission control which consists in deciding when the ready task will be executed.

The AsDPM low power strategy delays the execution of ready tasks as much as pos-

sible and controls the maximum number of active/running processors in the system

at any time instant.

The AsDPM technique de�nes four types of task queue: the Tasks Queue (TQ)

containing the application tasks which are neither executing nor ready at any point

in time, the Released Tasks Queue (ReTQ) including tasks that are released but

not running currently on any processor, the Running Tasks Queue (RuTQ) con-

taining tasks that are released and currently running on some processors. Finally,

the Deferred Tasks Queue (DeTQ) including tasks that are released but their ex-

ecution is delayed. A released task, that is not the highest priority task but has

its priority high enough to execute on an m-processor platform (i.e., it is among

the m highest priority tasks), can be deferred from execution under AsDPM at any

86
Chapter 5. Embedded OS service's models integration in the system

level design �ow

scheduling event. In this technique, a runtime parameter of a task, the laxity, is

used to measure task execution urgency taking into account the deadline constraint.

For example, an applicative task with zero laxity is the most urgent job to execute

in order to avoid deadline miss. The absolute laxity li of a task Ti at its release time

instant t is given by equation 5.1.

li = di − (t+ Ci) (5.1)

where di and Ci are respectively the deadline and the worst-case execution time

(WCET) of task Ti.

The working principle of AsDPM technique is showed in algorithm 3. The variable

j represents the number of processors. When a scheduling event occurs, all task

queues (TQ, RuTQ, ReTQ, and DeTQ) are updated and sorted according to the

priority speci�ed by the governing scheduling algorithm. Then, (j) highest priority

task(s) from ReTQ are executed on (j) processor(s). For rest of the ready tasks

present in ReTQ, a laxity test (li ≥ 0) is performed considering the �rst target

processor (line 6..9). If a task passes this test, it is moved into DeTQ �i.e., it is

deferred from execution at current scheduling event. Otherwise, if a task does not

pass this test then it implies that currently available running processors are not

su�cient to satisfy the concurrent resource requirement of ready tasks and some

tasks may miss their deadlines in future. In this case, all tasks which are deferred

or running �i.e., present in RuTQ or DeTQ, are put into ReTQ again and more

processors are activated. This procedure is repeated until ReTQ becomes empty

�i.e., until all tasks present in ReTQ are either moved to RuTQ or DeTQ.

Algorithm 3 Assertive Dynamic Power Management
1: assign j = 1
2: for each scheduling event do
3: sort TQ, ReTQ, RuTQ, and DeTQ w.r.t. scheduler's priority order
4: repeat
5: move highest priority j task(s) from ReTQ to RuTQ
6: for every remaining task i in ReTQ do
7: if li ≥ 0 on j processor(s) then
8: move Ti to DeTQ
9: else
10: move all tasks from DeTQ and RuTQ to ReTQ
11: assign j = j + 1
12: activate j processors
13: until ReTQ is empty

Modern processors support multiple power-e�cient states. Since, there are tem-

poral and energy penalties associated with state transitions, therefore, a processor

5.2. Low power scheduling policies 87

Table 5.1: Power-e�cient states of OMAP3530 processor @ 125-MHz

C-state Sleep latency (µs) wake-up latency (µs)

Running 0 0

C1 (Idle) 73.6 78

C3 (Stand by) 163 182

C5 (Sleep) 800 366

C7 (Deep sleep) 4300 12933

needs to be put in the power-e�cient state long enough to save energy. Under As-

DPM, some processors of the platform have larger workload while others have less

workload. For those processors having larger workload and consequently shorter

idle time intervals, it is not so bene�cial, some times even penalizing, to transition

them into deeper power-e�cient states. This is because the number of transitions

on such processors is greater and accumulates large transition cost. In addition,

generally, the more a state is power-e�cient, the more it takes (time and energy)

to recover a processor from that state. However, for other processors having longer

idle time intervals, it is advantageous to put them in more power-e�cient states

as they are not often recovered to running state. Once the AsDPM technique has

extracted idle time intervals, processors are then assigned suitable power-e�cient

state with respect to their worst-case workload. In our case, the OMAP 3 processor

has �ve power-e�cient states, called C-states, as shown in table 5.1, which allows

dynamic power management. This table presents the sleep and wake-up latency of

each C-state which are respectively the time latency from the running state to the

C-state and the time overhead when switching the processor from C-state to the

running state [13].

5.2.2 The DSF scheduling policy:

Nowadays the Dynamic Voltage and Frequency Scaling (DVFS) techniques have

emerged. They have been particularly distinguished by their e�ciency to reduce

CPU power consumption. It can execute various tasks of an application at di�erent

couples of voltage/frequency depending on the workload of the processor.

The DVFS techniques adjust dynamically the voltage and frequency of the processor

to minimize the energy consumption. The voltage/frequency switching mechanisms

are coupled with the scheduling techniques and policies to preserve the feasibility of

schedule and respect the time constraints. Several strategies have been proposed to

exploit certain aspects of DVFS and o�er a particular method to build pseudo inter-

mediate frequencies for use in conjunction with the techniques of Dynamic Voltage

Scaling (DVS) [82, 48].

88
Chapter 5. Embedded OS service's models integration in the system

level design �ow

The DVFS techniques are classi�ed into intra-task and inter-task techniques [94, 93].

The inter-task DVFS technique based on redistribution of slack time between tasks

which are ready for execution [89, 97, 116]. Consequently, the inter-task DVFS tech-

niques make decisions related to slack reclamation only at scheduling events when

ready tasks are chosen for execution. The intra-task DVFS techniques reallocate

the slack time inside the same task. This kind of technique includes modules in

application's code in order to study its power variation over its execution time. The

intra-task voltage scaling methods have many disadvantages such as requiring ex-

cessive analysis, the feasibility of application source code update [114, 71]. Also, the

intra-task DVFS technique generates an additional number of voltage and frequency

switching points and most of them assume continuous voltage levels [98].

For this reason, to evaluate the energy overhead of OS services, we adapt an inter-

task of DVFS technique: the Deterministic Stretch-to-Fit Technique (DSF) pro-

posed in [31], it is based on the slowdown strategy of reducing the processor power

consumption. Slowdown is known to reduce the dynamic power consumption at

the cost of increased execution time for a given computation task. It detects early

completion of tasks and exploits the processor resources to reduce the energy con-

sumption.

As showed in �gure 5.6, by comparing the actual execution time (AET) of a task

T1 with its worst-case execution time (WCET) C1, (DSF) technique determines the

value of the dynamic slack (ε). This slack time is exploited by the method to reduce

the energy consumed, by stretching the execution of T2, having C2 as WCET, and

reducing the frequency of the processor. The parameter tdisp is the available time

at current processor frequency f . The variables t1 and t2 represent respectively the

activation date of T1 and T2, d1 and d2 represent respectively the deadline of T1 and

T2. Let us highlight that it is not possible to determine the exact actual execution

time of the running task until it terminates, the algorithm computes the value of

dynamic slack boundaries only. In addition, this slack as the di�erence between

(WCET) and (AET) allows to reduce the speed of lower priority tasks.

The OMAP 3530 processor supports �ve discrete voltage and frequency levels, as

shown in table 5.2 allowing static and dynamic voltage and frequency scaling.

5.3 Embedded OS services energy overhead:

In this section, we detail how to calculate the OS energy overhead when running

application tasks at �xed and dynamic frequency.

5.3. Embedded OS services energy overhead: 89

(a)

(b)

(c)

tdisp

tdisp d2

C2
t2 ε t1

d1
C1

AET1

d2

T1

T2

Figure 5.6: Slack reclamation using the DSF technique

5.3.1 Fixed frequency case:

When running the applicative tasks at �xed frequency, the OS services are called

when switching from one task to another. To explain the calculating methodology

of energy consumption when executing the software application on the hardware

platform, we consider an example of task's scheduling depicted by �gure 5.7. It

shows the execution of three tasks and the di�erent OS calls. Equation 5.2 shows

the total energy consumed by di�erent services of the OS.

E(OS) =
∑

1≤k≤nOS

(E_OS_call)k (5.2)

where E(OS), nOS and (E_OS_call)k represent respectively the total energy con-

sumption of OS services, the number of OS calls and the elementary energy con-

sumed when the OS routines are running.

5.3.2 Dynamic frequency case:

To calculate the energy overhead of OS services when the processor changes its

frequency, we consider, according to the energy analysis and modeling of OS services

presented in last chapter, that OS routines are called when the processor changes

the execution from one task to another one or when it varies its running frequency,

especially for the context switch service. To explain the OS energy estimation, a set

of two tasks T1 and T2 are considered. They are preempted and running on di�erent

frequencies F1 and F2 as depicted by �gure 5.8, where:

90
Chapter 5. Embedded OS service's models integration in the system

level design �ow

Table 5.2: Voltage-frequency levels of OMAP330 processor

Parameter Operating
point 1

Operating
point 2

Operating
point 3

Operating
point 4

Operating
point 5

Frequency
(Mhz)

125 250 500 550 720

Voltage
(V)

0.975 1.05 1.2 1.27 1.35

Running
power
(mW)

57 130 303 348 550

Idle power
(mW)

4 7 16 18 28

Power

Time

OS call

Task 1

Task 2

Task 3

Figure 5.7: Os calls at �xed frequency

-PTask1 and PTask2 represent respectively the power consumed by Task1 and Task2.

-Tidle and TOS represent respectively the idle time of processor and the execution

time of OS routines.

-T1,F1 and T2,F1 represent respectively the execution time of Task1 and Task2 when

the processor frequency is F1.

-T1,F2 and T2,F2 represent respectively the execution time of Task1 and Task2 when

the processor frequency is F2.

Equation 5.3 details the energy consumption of OS services E(OSV) when switching

the processor frequency.

E(OSV) =
∑

1≤i≤nF1,F2

(E_OS_call)F1,F2 +
∑

1≤j≤nF2,F1

(E_OS_call)F2,F1 (5.3)

5.4. Experimental results: 91

Time

OS call

Task1/F1

Task2/ F1

Time

Task2/ F2

PTask 1

T1,F2

TIDLE

TOS

T2,F1

TIDLE

 TOS

 T1,F1

 TOS

TIDLE

T2,F2

Task1/F2

PTask2

Figure 5.8: Os calls when changing the frequency

where:

-nF1,F2 and nF2,F1 represent respectively the number of frequency changes from

F1 to F2 and from F2 to F1.

-(E_OS_call)F1,F2 and (E_OS_call)F2,F1 represent respectively the OS energy

consumption when switching from F1 to F2 and from F2 to F1.

5.4 Experimental results:

To evaluate the OS energy overhead, the execution of the H.264 video encoder ap-

plication tasks is simulated using the STORM environment. For hardware platform,

we use the OMAP3530 processor to carry-out simulations. The power consumption

parameters presented previously in table 5.1 and table 5.2 are used in all our simu-

lation results. The used H.264 application provides 15 frames per second.

Software tasks are scheduled over identical multiprocessor platforms of type symmet-

92
Chapter 5. Embedded OS service's models integration in the system

level design �ow

ric shared-memory multiprocessor (SMP). In this architecture, two or more identical

processors are connected to a single shared main memory, have full access to all I/O

devices, and are controlled by a single OS instance. The processors are treated

equally, with none being reserved for special purposes. Each processor executes

di�erent programs and is able to share common resources (memory, I/O device,

interrupt system and so on) with other processors. These processors are connected

to each other using a system bus.

Figure 5.9 shows the simulation traces of application tasks scheduling, between 1

and 50 ms, when using the DSF technique. The OS services energy consumption

rates when using the DSF technique are presented in table 5.3, the initial proces-

sor(s) frequency is 500 Mhz. We note that the context switch is a basic service

because the DSF technique performs many processor frequency changes in order to

reduce the energy consumption. When the number of processors increases, the en-

ergy overhead of the OS services decreases because the total application execution

time is reduced and the OS calls are minimized. Hence, in multiprocessor platform,

it is not necessary to call the context switch service to switch from one task to

another because each applicative task is running in an independent execution unit.

In table 5.4, the OS services energy consumption rates using AsDPM technique are

presented. This technique is less in�uenced by the context switch and scheduling

routines energy overhead because AsDPM targets to save the energy overhead by

keeping the processor in idle modes, with fewer preemptions and context switches.

Also, when the processor is in idle state, these basic services consume less power

than when it is in active mode.

As explained previously, the energy consumption is divided between intra-task and

inter-task instructions and routines. Consequently, intra-task routines and instruc-

tions ie. application standalone tasks consume the remaining amount of energy.

Figure 5.10 compares between the total energy consumption and OS services energy

overhead when using DSF scheduling policy. The number of processors is 4 and,

for each simulation setup, we vary the initial running frequency of each processor.

When note that for initial high frequencies (500 Mhz and 720 Mhz), the energy con-

sumption of OS services is higher. This is because studied scheduling policy reduces

operating frequency to low values (125 Mhz) in order save the energy consumption

which leads to signi�cant context switch energy overhead, as detailed in chapter 3,

when the di�erence between frequencies is high.

Under the Open PEOPLE project, modeling of power/energy of application tasks

is achieved by an academic partner, INRIA of Lille, in [86, 85].

5.4. Experimental results: 93

Figure 5.9: Schedule of application tasks using DSF technique

94
Chapter 5. Embedded OS service's models integration in the system

level design �ow

0

2

4

6

8

10

12

14

16

18

20

125 250 500 720

Total energy
consumption

OS services energy
consumption

E
n

e
rg

y
 c

o
n

su
m

e
d

(m
J)

Initial processor frequency (Mhz)

Figure 5.10: OS services and standalone application tasks energy consumption (DSF
technique)

Table 5.3: OS services energy consumption rates when using the DSF technique

Number of
processors

Context
switch

Inter-process
communication

Scheduling
routines

1 44% 35.4% 1.07%

2 35.38% 32.5% 1.12%

4 30.88% 27.1% 1.38%

6 26.8% 21.7% 1.8%

8 24.62% 22.4% 1.9%

Table 5.4: OS services energy consumption rates when using the AsDPM technique

Context switch Inter-process communication Scheduling routines

18.67% 29.16% 1.38%

5.5 Conclusion

In this chapter, models of OS services, extracted in chapter 3, have been integrated

at system level using the (STORM) simulator in order to evaluate the OS energy

overhead when using AsDPM and DVFS low power techniques. Furthermore, a

global approach of models integration is introduced. It is based on three focal

concepts: AADL Modeling, code transformation from AADL to STORM and OS

services energy and power estimation. Experimental results show that the OS ser-

5.5. Conclusion 95

vices consume a signi�cant part of energy and that it depends on the behavior of

the low power technique used.

Chapter 6

System design space exploration

and veri�cation of constraints

Contents

6.1 AADL exploration of hardware software solutions 97

6.2 Design space exploration methodology 98

6.3 System constraints de�nition and veri�cation �ow 99

6.3.1 RDAL Language and RDALTE tool 100

6.3.2 The Object Constraint Language (OCL) 100

6.3.3 The Quantitative Analysis Modeling Language (QAML) . . . 101

6.3.4 The proposed approach . 101

6.4 System requirements analysis, de�nition and veri�cation . 101

6.4.1 Quantitative analysis speci�cations using the QAML language 101

6.4.2 Requirements de�nition and veri�cation using RDALTE tool 104

6.5 Example . 109

6.6 Conclusion . 111

Embedded systems often need to comply with particular requirements such as

energy consumption, time constraints and processor workload. The software compo-

nents binding on the hardware platform needs to take into account these platform

restrictions and constraints and respect the hardware platform resources. In this

chapter, we present a system design exploration methodology and we de�ne a global

�ow, using a set of tools: RDALTE and QAML, to verify system requirements when

allocating applicative tasks to the processors.

6.1 AADL exploration of hardware software solutions

After modeling the hardware and software components, OS services and the binding

of software tasks on the hardware platform, AADL language is exploited to explore

the set of possible solutions taking into account various requirements such as the

processor workload.

According to hardware components speci�cations and software tasks characteristics,

98
Chapter 6. System design space exploration and veri�cation of

constraints

Figure 6.1: Possible solution of AADL software tasks binding on hardware platform

di�erent solutions of software executions on the hardware platform are possible. For

this reason, we exploit the AADL modeling because it allows the de�nition of tasks

deployment on hardware components from which an analysis tool can verify the

feasibility. For instance, the processor can not exceed its workload when running

the software application.

The AADL exploration veri�es mainly the processor workload and the instruction

per cycle rate. Figure 6.1 shows a model of hardware platform which contains

�ve processors, running at the same frequency. Then, we allow to all processors

to execute the H.264 software application without deployment tasks, using the

Allowed_Processor_Binding property. By choosing the partitioning strategy and

�xing the running mode (operating point), we obtain an optimal task con�guration

(deployment) which respects the workload of each processor.

To re�ne this exploration, various requirements are de�ned. In the remaining of this

chapter, a design exploration methodology is proposed. Furthermore, a �ow, using

a set of tools that de�nes and veri�es system constraints, such as the OS energy

consumption and scheduling requirements, is proposed.

6.2 Design space exploration methodology

As showed in �gure 6.2, the exploration methodology includes three main steps.

The �rst step of this strategy consists in searching the operating point that satis�es

the maximum number of system requirements. Once the operating point is checked

and validated, the design model can be reviewed and updated. The second step

consists in �nely reducing the exploration domain by limiting the number of execu-

tion units. The target of third and last step is the allocation of execution resources

to each thread once the operating point and processor numbers of our system are

6.3. System constraints de�nition and veri�cation �ow 99

Mapping of software tasks

on the execution units

Determination of used

processor(s) number

Selection of optimal

execution frequency

F1 F2 F3 … Fn

CPU1 CPU2 … CPUn

Optimal

solutions

Constraints: energy budget, OS

services energy threshold, time

constraints.

Constraints: power budget, Task

parallelism, schedulability.

Constraints: processor workload,

scheduling, battery autonomy

Figure 6.2: System design exploration methodology

predicted and �xed beyond the previous two levels. We note there are three classes

of constraints to be satis�ed depending on the exploration level. The �rst class

includes resource consumption constraints in term of available execution resources

and their energy consumption. The second constraints class concerns the power

budget, parallelism and schedulability requirements. Finally, we verify operating

system speci�c constraints.

6.3 System constraints de�nition and veri�cation �ow

In this section, we present di�erent languages and tools used to specify system

constraints. Then, the proposed approach of requirements de�nition and veri�cation

is introduced.

100
Chapter 6. System design space exploration and veri�cation of

constraints

6.3.1 RDAL Language and RDALTE tool

To specify the system constraints, project partners choose RDAL language and

RDALTE tool [21] de�ned below.

6.3.1.1 RDAL Language

The RDAL (Requirements De�nition and Analysis Language for AADL) is a lan-

guage that de�nes a set of requirements specifying, at di�erent levels of details,

what the system to be implemented should do. They are therefore a very important

part of the system under design and are created at the very beginning of a project.

When performing its functions, the system architecture takes into account the de-

�ned requirements and constraints.

In a standard requirements analysis process, an initial RDAL speci�cation is cre-

ated to model high level requirements before any system architecture is de�ned.

The RDAL speci�cation is then further re�ned into �ner requirements derived from

the high level requirements. In that way, the development of the requirements spec-

i�cations is used to drive the design and implementation of the system. Once the

requirements are su�ciently re�ned, the de�nition of a system architecture model

can start. Components of the architecture can then be linked to requirements of the

RDAL speci�cations. The requirements can be expressed in terms of a formal lan-

guage (such as OCL or REAL) so that properties of the design components can be

checked automatically to see if the components satisfy or meet their requirements.

6.3.1.2 RDALTE tool

The Requirements De�nition and Analysis Language Tool Environment (RDALTE)

has been developed by the Lab-STICC research lab in the frame of the Open-

PEOPLE project. It is a set of plug-ins on top of the open source eclipse plat-

form [46] that provides a toolset for front-end processing of RDAL speci�cations

and for their veri�cation over architecture models. Also, the RDALTE tool allows

the creation of RDAL speci�cations with the help of graphical and object tree ed-

itors. Furthermore, it de�nes the requirements referenced model elements of the

design and the expression in terms of natural or formal languages such as the OMG

Object Constraint Language (OCL) or the Requirement Enforcement and Anal-

ysis Language (REAL). In this work, we use the OCL language to specify these

requirements referenced model.

6.3.2 The Object Constraint Language (OCL)

The Object Constraint Language (OCL) [19] is an expression language that de-

scribes constraints on object-oriented languages and other modeling artifacts. OCL

6.4. System requirements analysis, de�nition and veri�cation 101

language speci�es constraints and other expressions attached to their models.

6.3.3 The Quantitative Analysis Modeling Language (QAML)

The Quantitative Analysis Modeling Language (QAML) language [20] is created

during the project OPEN-PEOPLE to formally represent quantitative analysis of

embedded systems models. (QEML) tool is also developed in order to exploit the

QAML language and evaluate QAML speci�cations. Models representing quantita-

tive analysis of all kinds can be created and associated with speci�c components of

system architecture models. These models are then evaluated to provide estimation

for properties of components to which they are associated with. While most analysis

of the Open-PEOPLE project concern power and energy consumption, special care

was taken during the design of the QAML language to make it generic enough so

that quantitative analysis for arbitrary quantities (execution time, costs, latency,

bandwidth, etc..) can be represented.

6.3.4 The proposed approach

As depicted in �gure 6.3, a �ow of de�nition and veri�cation of system requirements

is proposed. The AADL models of software and hardware components are analyzed

quantitatively using the (QAML) language and the QEML tool. The de�nition

and analysis of system requirements are performed using the (RDAL) language and

RDALTE tool. The formal language OCL is used to describe di�erent constraints

and to communicate between AADL and QEML models. In fact, various OCL

queries are implemented to verify di�erent system requirements, they are collected in

a constraint library in addition to the prede�ned OCL ones. All these libraries make

writing OCL constraints much easier for the designer, when searching properties

from AADL architecture and QAML quantity models.

6.4 System requirements analysis, de�nition and veri�-

cation

In this section, we introduce the QAML quantitative analysis and we specify the

composition and estimation laws used to verify the system constraints. Then, we

de�ne and verify system requirements using the RDAL tool.

6.4.1 Quantitative analysis speci�cations using the QAML lan-

guage

A model represented with the QAML language establishes a relationship that can be

evaluated to produce an output quantity from several input quantities. For example,

102
Chapter 6. System design space exploration and veri�cation of

constraints

AADL models of hardware and

software components

Requirement definition

and analysis (RDALTE)
OCL queries

Quantitative evaluation model :

Composition and estimation
laws (QEML)

OCL queries

OCL queries

Figure 6.3: System constraints de�nition and veri�cation �ow

a quantity model for the power consumed by a bus may relate quantities, such as

the bus frequency, the bus number of lines etc.., to the resulting power consumption

quantity. There are two main types of quantity models: estimation and composition

models. We propose below the implemented estimation and composition laws that

will be used later to check system requirements.

6.4.1.1 QAML Estimation modeling:

The estimation model is a quantity model that also carries another estimation model

for representing the uncertainty of the evaluated value. This model can be expressed

in two ways: as a set of mathematical formulae (laws) or by a multi-dimension lookup

table (LUT).

The estimation laws are composed of one or more pieces, which consist of a pair of

formulae that de�ne the value of the law and the domain of validity into which the

corresponding �rst formula applies. The union of all of the pieces constitutes the

estimation model itself. In this work, we associate these laws to many components of

the system architecture model speci�cally the software components, the application

threads and OS services. We de�ne a set of estimation laws that will be used to

verify system constraints:

� Energy consumption estimation law: This law depends on the execu-

tion time and the power consumption. For instance, the quantitative analysis

view, showed in �gure 6.4, represents the energy estimation law associated

with an AADL system architecture component which is "slice2_processing"

application thread, running at 720 MHz. As a result, the calculated energy

6.4. System requirements analysis, de�nition and veri�cation 103

Figure 6.4: Energy consumption estimation law of slice2_processing thread run-
ning at 720 Mhz

consumption becomes an associated property to this process.

� Execution time estimation law: This estimation law interests on tasks

execution time when running at di�erent operating points. Knowing the exe-

cution time of each task at maximal frequency, this law calculates the execution

time of di�erent tasks at di�erent frequencies.

� Task CPU utilization law: The task CPU utilization law is de�ned us-

ing the QAML language as the worst-case task execution time divided by its

period.

6.4.1.2 QAML composition modeling:

The composition model is used to represent how quantities are combined to calcu-

late a resulting quantity. For example, the sum of the product of power and time

quantities over a set of system components contained in a system is a composition

model for calculating the energy consumed by the system. As opposed to an esti-

mation model, a composition model does not have an attached uncertainty model.

However, a set of elements must be provided to which the composition function will

be applied.

In the proposed model, the composition laws are used mainly to calculate the en-

ergy consumption of applicative tasks and OS services and to evaluate the CPU

utilization rate.

� Energy consumption composition law: As showed by �gure 6.5, this

composition law calculates the total energy consumption of the software ap-

plication by summing the elementary energy consumption of all application

tasks and OS services. This total energy consumption composition law is

sub-divided under two composition laws. The �rst one calculates the energy

consumption of di�erent AADL software threads. For this, OCL queries are

used to collect di�erent threads allowed to be executed on platform processors.

The second law determines the energy overhead of OS services: it multiplies

104
Chapter 6. System design space exploration and veri�cation of

constraints

Figure 6.5: Energy consumption composition law

Figure 6.6: Evaluation of energy consumption composition law

the energy consumed by each OS call by the number of OS calls. The evalua-

tion of the energy consumption composition law applied to software tasks and

OS services is showed in �gure 6.6.

� Tasks CPU utilization composition law: This law calculates the sum

of di�erent application and OS threads CPU utilization rates. The obtained

value will be used later to verify schedulability constraints.

6.4.2 Requirements de�nition and veri�cation using RDALTE tool

In this section, we detail the di�erent constraints that the studied embedded system

should satisfy or that we have to verify in the design exploration process. Some

constraints concern software application components; some others are formalized

to check the e�ciency of hardware components. Also, we implement some require-

ments that revolve around the integration of OS services in the AADL model.

The schematic diagram, represented in �gure 6.7, shows a hierarchical view of an

RDAL model and de�nes non-functional requirements that should be veri�ed ac-

cording to their priorities. As explained previously, three classes of constraints are

de�ned depending on the exploration level:

6.4. System requirements analysis, de�nition and veri�cation 105

Figure 6.7: System requirements RDAL diagram

6.4.2.1 First level of design exploration constraints:

The set of constraints veri�ed at this level are:

� Energy consumption Requirement: The energy consumption requirement

is attached to the process instance that contains the di�erent threads of the

H.264 application, including the OS services as speci�c threads. For this

constraint, an energy budget is �xed. The total energy consumption should

respect allowed budgets for used system and should not be exceeded when

running the application on the hardware platform. This constraint also al-

lows checking di�erent possible con�gurations. Thus, we can ensure for each

operating point an e�cient exploitation of the energy resource. The chosen

value helps us to specify which con�guration can be a candidate for the next

exploration level. The global energy consumption will be evaluated as in the

equation below 6.1 ∑
1≤i≤n

ETi ≤ EB (6.1)

Where n, ETi and EB represent respectively the number of application

threads, the energy consumed by the thread number (i) and the energy bud-

get. To verify this constraint, the QAML energy consumption estimation law

and its associated property to each process, described in the section above,

are used. Once getting the energy consumption of each thread at the running

frequency, the OCL queries will browse the tree view of AAXL model and

106
Chapter 6. System design space exploration and veri�cation of

constraints

Figure 6.8: Energy consumption requirement veri�cation using OCL

accumulate threads energy consumption, contained in the process under test.

The veri�cation of this constraint is done by returning a boolean value and the

requirements veri�cation rates are displayed in the AADL project navigator

view. An overview of OCL editor is shown in �gure 6.8. It details the total

energy consumed and the constraint evaluation.

� OS services energy consumption requirement: This constraint focuses

on the energy consumption of the studied services: scheduling, context switch

and the inter process communication services. This requirement veri�es

whether the OS service energy consumption percentage does not exceed a

percentage of the global energy consumption. This percentage is �xed by the

designer. The expression ”Edyn_Tot”, evaluated with QEML estimation and

composition laws, presents the total energy consumed by threads and OS ser-

vices. We can then deduce services energy percentages thanks to OCL queries.

Knowing the number of OS calls when processing one frame, this requirement

will be satis�ed for each OS service.

� Timing requirements: The execution time constraints remain critical in

embedded system modeling. In this study, two types of timing requirements

are veri�ed: execution time and deadline requirements.

-Execution time requirement: Depending on the hardware platform, the

6.4. System requirements analysis, de�nition and veri�cation 107

total application execution time should not exceed a threshold time. The

total application execution time is computed by summing the contribution

of tasks, sequentially executed, and the maximum of case execution time of

threads which are executed in parallel. The analytic expression 6.2 should be

respected to satisfy this constraint.∑
1≤i≤ns

CETTsi +max{CETTpj , 1 ≤ j ≤ np} ≤ TT (6.2)

Where ns and np represent respectively the number of serial and parallel tasks.

The set of serial and parallel tasks are respectively {{Tsi}, 1 ≤ i ≤ ns} and
{{Tpj}, 1 ≤ j ≤ np}, their execution times are CETTsi and CETTpj . The

execution time threshold is TT .

-Deadline requirement: This requirement speci�es, for each task, that the

case execution time property, once evaluated at the speci�c operating point,

must met the corresponding deadline. For a speci�c operating point, the

execution time for each thread is deduced using the rule of three and the

quantity model. Otherwise, we consider that execution time function is linear

as showed in equation 6.3.

CETFi = CETFmax × Fmax/Fi (6.3)

Where Fi and Fmax are respectively the running and maximal frequency.

CETFi and CETFmax represent respectively the execution times at frequency

Fi and Fmax.

6.4.2.2 Second level of design exploration constraints

At the second level of design exploration, we have to take into account these re-

quirements:

� Power budget Requirement: This requirement concerns battery powered

systems. It veri�es that each processor's power consumption does not exceed

a �xed value depending on the battery autonomy. In order to evaluate the

global power consumed by all hardware platform components, we need to �x

the processor number. This expression 6.4 is used to calculate total power

consumption.

P = KCPU × V 2 × F ×NCPU (6.4)

Where KCPU represents a speci�c constant for processor; in our case, we used

an OMAP 3530 processor and we recall that we adopted the homogeneous

embedded systems. (F,V) is the used operating point: the running frequency

and voltage. NCPU represents the processor number used in the platform.

108
Chapter 6. System design space exploration and veri�cation of

constraints

Figure 6.9: OCL expression of the schedulability test

The global power must be less than the autonomy of the battery chosen by

the designer.

� Parallelism requirement: When running the software application, the par-

allelism constraint should be respected. For that, the number of processors

should be greater than or equal to the parallelism rate which is the number

of slices that will be executed concurrently. We remind in this context that a

processor can execute only one task at once a time.

� Global scheduling requirement: This schedulability requirement speci�es

the least processor number that hardware platform can support to execute the

application tasks and verify their deadlines. Since we are interested in global

scheduling, this constraint is checked before scheduling tasks on hardware

execution units. This speci�city is due to the homogeneity of used hardware

platform. We start by checking one of the most used scheduling policies in

the multiprocessor embedded systems: Earliest Deadline First (EDF) [36, 67].

Thus, the schedulability test of EDF is presented in expression 6.5:∑
1≤i≤n

CETi/Pi ≤ (m+ 1)/2 (6.5)

Where m is the processor number in the multiprocessor platform and n the

number of tasks. The �rst part of the inequality is the sum of di�erent tasks

CPU utilizations. Application tasks, satisfying this requirement, are schedu-

lable by m-processor platform. This condition is necessary and su�cient to

con�rm the schedulability test. The computed task CPU utilization, which is

the result of the QAML estimation law, and the global application workload,

which is the sum of the di�erent task CPU utilizations, are computed using

QAML composition laws. The OCL expression checking this constraint and

validating the schedulability test, is showed in �gure 6.9.

6.4.2.3 Third level of design exploration constraints

Depending on the running mode presented in AADL deployment model, the bind-

ing of each task to the suitable execution target (CPU) is performed. At the third

level of design exploration, AADL binding properties are used to identify which

6.5. Example 109

are software components that handle speci�c hardware components. For this, it is

recommended to use the Allowed_Processor_Binding in the deployment model to

enable the AADL scheduler to a�ect the di�erent application tasks to the appropri-

ate execution target taking into account their deadlines as well as the parallelism

rate. We have to add speci�c requirements in this level in addition to the energy

and timing constraints de�ned in previous step. We will detail in this section how

to implement the schedulability and the workload requirements for each processor.

� Processor workload requirement: This requirement is applied to the in-

stantiate processor set, independently to tasks deployment on the hardware

platform; the veri�cation of this requirement warns us of the processor over-

load cases. An OCL query, implemented to identify for each processor its

allocated tasks, will compare the sum of these tasks CPU utilizations (the

case execution time divided by its period) with 100%.

� Scheduling requirement: When allocating application tasks for processors,

the schedulability condition for each processor following the standards schedul-

ing policy: Earliest deadline �rst (EDF), Rate Monotonic (RM) is checked.

Expressions 6.6 and 6.7 are veri�ed respectively to con�rm the scheduling

requirements of (EDF) and (RM) policies.

Ui ≤ n× (21/n − 1) (6.6)

Where Ui represents the workload of the processor number (i) and n its allowed

tasks number. ∑
1≤i≤n

CETTi/PTi ≤ 100 (6.7)

Where CETTi and PTi are respectively the case execution time and the period

of task Ti.

6.5 Example

An example of veri�cation scenario is used in order to explore the design and eval-

uate the di�erent constraints. When executing the H.264 application presented

previously in chapter 4, the total energy consumption, the execution time with their

deadline satisfaction percentages and �nally the OS energy overhead are measured.

Table 6.1 shows the total energy consumption, the OS energy rates and allowed

execution times of di�erent possible solutions. The OS energy overhead should not

exceed 60% of the total energy consumption.

As explained in the �rst level of our strategy, we can eliminate the highest frequency

(720 Mhz) in view of exceeding the energy budget �xed by the designer. We note also

110
Chapter 6. System design space exploration and veri�cation of

constraints

Table 6.1: Characteristics of possible solutions

Frequency
(Mhz)

OS energy con-
sumption rate
(%)

Total energy
consumption
(mJ)

Allowed
time
(ms)

125 35% 57.4 278

250 36.38% 65.3 139

500 52.5% 80.1 74

720 62.8% 98.7 48

Figure 6.10: Requirements satisfaction rates (500 Mhz)

that the least operating point (125 Mhz) does not respect both of tasks deadline and

allowed execution time. The requirements satisfaction rates when running on the

operating point (500 MHz) are presented in �gure 6.10. Because of its requirements

satisfaction rate, this frequency is chosen in the �rst step of design exploration.

In the second step, after �xing the running frequency, the number of processors

should be selected. This number should verify the maximum of second level of de-

sign exploration constraints. In our case, the number of processors varies from 4

to 8. The selected processors number, having the highest satisfaction rate of the

di�erent requirements checked in the second level of design exploration (72%), is

�ve. Finally, we perform the tasks partitioning using the AADL tools. The used

scheduling policy is Rate Monotonic. The schedulability test for each processor

when AADL decides tasks partitioning is checked. As showed in �gure 6.11, the

average acceptance rate of third level of exploration constraints is (90%).

6.6. Conclusion 111

Figure 6.11: Satisfaction rates of third level of exploration requirements

6.6 Conclusion

In this chapter, we have presented various requirements in order to re�ne the design

exploration. Depending on the exploration level, three classes of constraints are

satis�ed. The �rst class checks resource consumption in term of available execution

resources and their energy consumption. The second constraints class concerns au-

tonomy requirements and the last class veri�es operating system energy consumption

and scheduling policies constraints. Also, a �ow, using a set of tools that de�nes and

veri�es system constraints, is proposed. The AADL models of software and hardware

components are analyzed quantitatively using the (QAML) language. The de�nition

and analysis of system requirements are performed using the (RDAL) language and

RDALTE tool. Also, the formal language (OCL) is exploited to describe di�erent

constraints and to communicate between AADL and QEML models.

Chapter 7

Conclusion

Contents

7.1 Conclusion . 113

7.2 Perspectives . 114

7.2.1 OS services energy characterization approach extension . . . 115

7.2.2 OS services energy optimization 115

7.2.3 System level thermal modeling 115

This chapter summarizes the proposed methodology of characterization, estima-

tion and modeling of OS services energy consumption and recapitulates the main

thesis contributions that have been discussed in previous chapters. Also, it presents

the perspectives and future works.

7.1 Conclusion

All along this document, e�orts have been made to present methodology targeting

to characterize, estimate and model the power and energy consumption of embedded

operating systems running on a hardware platform.

As detailed in the introduction, power consumption is a major challenge for em-

bedded systems designers. Besides, embedded and real time OS are more and more

used by embedded systems developers: nearly 73% of embedded projects integrate

an OS. Various studies and research works have pointed out the overhead of some

speci�c OS services. In this thesis, a methodology is proposed in order to character-

ize and model the power overhead of OS services. The proposed approach comprised

of four main contributions: characterizing the power and energy consumption of OS

services, the AADL modeling of di�erent features of the used embedded system

components and the OS services, the integration of OS services models in the sys-

tem level design �ow using low power scheduling policies and veri�cation of system

and OS services energy consumption constraints.

In chapter 3, we introduce a �ow of embedded OS services power/energy consump-

tion characterization. Furthermore, we present the methods and benchmarks used to

determine energy and power overheads of a set of three basic services of the embed-

ded OS: scheduling, context switch and inter-process communication. In addition,

114 Chapter 7. Conclusion

we study the variation of power/energy consumption of the embedded OS services

and we analyzed the impacts of hardware and software parameters like processor

frequency and scheduling policy on energy consumption. An accurate mathematical

models and laws of the power and energy consumption are extracted. The use-case

embedded system used is the OMAP3530 EVM board with an OMAP3 processor

and Linux 2.6.32 operating system. Then, in chapter 4 , AADL language is used to

model OS services, applicative tasks, hardware platform and the binding of software

tasks on the hardware components. The H.264 video decoder application is taken

as main use case application.

Furthermore, using the power/energy models and laws of the OS basic services

extracted in chapter 5, the energy overhead of the scheduling, the context switch

and inter-process communication routines is determined when adapting low power

techniques: the DPM and DVFS techniques. To calculate the energy and power

overhead of the embedded OS services, extracted models of OS services are inte-

grated in multiprocessor scheduling estimation tool: STORM. A global approach is

introduced, it is based on three focal concepts: AADL Modeling, code transforma-

tion from AADL to STORM and OS services energy and power estimation. Taking

into account the properties of the application tasks and the hardware platform, the

energy overhead of OS services is calculated. Experimental results show that OS

services consume a signi�cant part of energy and that it depends on the low power

scheduling policy used.

In chapter 6, we introduce a �ow of de�nition and veri�cation of system require-

ments. The AADL models of software/hardware components are analyzed quan-

titatively using the Quantitative Analysis Modeling Language (QAML). Also, we

de�ne a set of system requirements, such as the OS services energy consumption

and scheduling Requirements, using the (RDAL) language and RDALTE tool. The

formal language OCL (Object Constraint Language) is used to describe di�erent

constraints and to communicate between AADL and QAML models. Taking into ac-

count these requirements, an exploration of possible binding solutions is performed:

we search the operating points and the number of execution units that satis�es the

maximum number of system requirements. Then, we allocate execution resources

to each thread.

7.2 Perspectives

In this section, we discuss many extensions of the proposed work and we present

future works.

7.2. Perspectives 115

7.2.1 OS services energy characterization approach extension

We have studied in chapter 3 the energy consumption of three basic embedded OS

services: the context switch, the scheduling and the interprocess communication.

As a continuation of the work, we are planning to calculate the energy overhead

of other OS services. Also, we will validate the energy characterization approach

using various hardware platforms and peripherals and compare the OS energy over-

head when using di�erent architectures. Furthermore, we can extend this study by

extracting power and energy models for other embedded and real time operating

systems.

7.2.2 OS services energy optimization

One of the possible extension of this work can be the optimization OS energy con-

sumption. In fact, we can de�ne, for other complex architectures, a multi-objective

function that characterizes the energy consumption of the embedded operating sys-

tem. This function depends on many hardware and software parameters. The goal

is to �nd a hardware/software binding solution that minimizes the OS energy over-

head. Depending on the complexity of the architecture, we can use, to search the

OS energy optimal or good solution, heuristic or complete methods. Heuristic al-

gorithms, such as the bees algorithm, are used when the set of possible solutions is

huge. The complete methods explore all possible solutions and ensures an optimal

solution as a result.

7.2.3 System level thermal modeling

Future works also include the system level thermal modeling. We can develop a

module aiming to characterize the temperature of processor blocks using infrared

measurement framework, such as infrared cameras with high spatial resolution, that

permits the capture of run-time power consumption and thermal characteristics of

modern chips.

Bibliography

[1] BSIM3v3 manual. http://www-device.eecs.berkeley.edu/bsim/?page=BSIM3.

[2] Mentor Graphics Eldo simulator. http://www.mentor.com/products/ic_nanom-

eter_design/analog-mixed-signal-veri�cation/eldo/.

[3] SmartBadge 4 Manual. http://www.it.kth.se/∼maguire/badge4.html.

[4] Systems Modeling Language open source speci�cation project, July 2006.

http://www.sysml.org.

[5] ANR project Pherma, 2007-2010. http://pherma.irccyn.ec-nantes.fr.

[6] NVIDIA CUDA C SDK Code Samples, NVIDIA corporation, 2011.

http://docs.nvidia.com/cuda/cuda-samples/index.html.

[7] OMAP35x Evaluation Module (EVM), 2011.

http://focus.ti.com/docs/toolsw/folders/print/tmdsevm3530.html.

[8] PTX: Parallel Thread Execution ISA, NVIDIA, 2011.

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[9] STORM simulation tool, 2011. http://storm.rts-software.org.

[10] Thales group (France), 2011. http://www.thalesgroup.com.

[11] ESTEREL Technologies: esterel studio, 2012.

http://www.estereltechnologies.com/products/esterel-studio/.

[12] Open-PEOPLE project: Open power and energy optimization platform and

estimator, 2012.

[13] Power management device latencies measurement, 2012.

http://www.omappedia.org/wiki/Power_Management_Device_Latencies_M-

easurement/.

[14] Texas instruments company, 2012. http://www.ti.com/.

[15] VHDL Analysis and Standardization Group (VASG), 2012.

http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome.

[16] API JDOM, 2013. http://www.jdom.org/.

[17] Object Management Group, 2013. http://www.omg.org/.

118 Bibliography

[18] Object Management Group, Uni�ed Modeling Language: Superstructure,

2013. http://www.uml.org/.

[19] OCL language, 2013. http://www.omg.org/spec/OCL/.

[20] QAML language, 2013. http://avalon.aut.bme.hu/mpm12/presentations/pres14.pdf.

[21] RDAL language, 2013. http://cit.tu.edu.sa/web/ccs/publications/111231094019.pdf.

[22] Andrea Acquaviva, Luca Benini, and Bruno Riccó. Energy characterization

of embedded real-time operating systems. ACM SIGARCH Computer Archi-

tecture News, 29:13�18, 2001.

[23] Sumit Ahuja, Deepak Mathaikutty, and Sandeep K. Shukla. Applying veri�-

cation collaterals for accurate power estimation. In 9th International workshop

on Microprocessor test and Veri�cation (MTV), pages 61�66, Austin, Texas,

USA, 2008.

[24] Sumit Ahuja, Deepak A. Mathaikutty, Gaurav Singh, Joe Stetzer, Sandeep K.

Shukla, and Ajit Dingankar. Power estimation methodology for a high-level

synthesis framework. In Proceedings of the 10th International Symposium on

Quality of Electronic Design, ISQED '09, Santa Clara, California, USA, 2009.

[25] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure

for computer system modeling. Computer, 35(2):59�67, February 2002.

[26] Algirdas Avizienis, Jean claude Laprie, and Brian Randell. Fundamental con-

cepts of dependability, 2001.

[27] Robert Basmadjian, Florian Niedermeier, and Hermann De Meer. Modelling

and analysing the power consumption of idle servers. In Proc. of the 2nd IFIP

Conf. on Sustainable Internet and ICT for Sustainability (SustainIT 2012),

Pisa, Italy, 2012. IFIP. The original publication is available at dl.i�p.org (to

appear).

[28] Kathleen Baynes, Chris Collins, Eric Fiterman, Brinda Ganesh, Paul Kohout,

Christine Smit, Tiebing Zhang, and Bruce L. Jacob. The performance and

energy consumption of embedded real-time operating systems. IEEE Trans-

actions on Computers, 52:1454�1469.

[29] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey of design

techniques for system-level dynamic power management. IEEE Transactions

on VLSI systems, 8(3):299�316, 2000.

Bibliography 119

[30] Simona Bernardi, José Merseguer, and Dorina C. Petriu. Adding dependabil-

ity analysis capabilities to the MARTE pro�le. In Proceedings of the 11th in-

ternational conference on Model Driven Engineering Languages and Systems,

MoDELS '08, pages 736�750, Berlin, Heidelberg, 2008. Springer-Verlag.

[31] Muhammad Khurram Bhatti, Cécile Belleudy, and Michel Auguin. An inter-

task real time DVFS scheme for multiprocessor embedded systems. In Confer-

ence on Design and Architectures for Signal and Image Processing (DASIP),

pages 136�143, Edinburgh, Scotland, 2010.

[32] Muhammad Khurram Bhatti, Muhammad Farooq, Cécile Belleudy, Michel

Auguin, and Ons Mbarek. Assertive dynamic power management (AsDPM)

strategy for globally scheduled rt multiprocessor systems. In Proceedings of the

19th international conference on Integrated Circuit and System Design: power

and Timing Modeling, Optimization and Simulation, PATMOS'09, pages 116�

126, Berlin, Heidelberg, 2010. Springer-Verlag.

[33] Andrea Bona, Mariagiovanna Sami, Donatella Sciuto, Cristina Silvano, Vit-

torio Zaccaria, and Roberto Zafalon. Reducing the complexity of instruction-

level power models for vliw processors. Design automation for embedded sys-

tems, 10(1):49�67, 2005.

[34] Keith A. Bowman, Blanca L. Austin, John C. Eble, Xinghai Tang, and

James D. Meindl. A physical alpha-power law mosfet model. In Proceedings

of the 1999 international symposium on Low power electronics and design,

ISLPED '99, pages 218�222, New York, NY, USA, 1999. ACM.

[35] Carlo Brandolese and William Fornaciari. Measurement, analysis and model-

ing of rtos system calls timing. In Euromicro Symposium on Digital Systems

Design, pages 618�625, 2008.

[36] Alan Burns and Andy Wellings. Real-Time Systems and Programing Lan-

guages: Ada 95, Real Time Java and Real Time Posix. Addison Wesley, 2001.

[37] George Z. N. Cai and Chee How Lim. Microarchitectural power analysis for

cpu power/performance optimization. Technical report, Intel company, 2001.

The SimpleScalar-Arm Power Modeling Project.

[38] Le Cai and Yung-Hsiang Lu. Dynamic power management using data bu�ers.

In Proceedings of the conference on Design, automation and test in Europe

- Volume 1, DATE '04, pages 10526�, Washington, DC, USA, 2004. IEEE

Computer Society.

120 Bibliography

[39] Ozgur Celebican, Tajana Simunic Rosing, and Vincent J. Mooney, III. Energy

estimation of peripheral devices in embedded systems. In Proceedings of the

14th ACM Great Lakes symposium on VLSI, GLSVLSI '04, pages 430�435,

New York, NY, USA, 2004. ACM.

[40] Eui-Young Chung, Luca Benini, Alessandro Bogliolo, Yung-Hsiang Lu, and

Giovanni De Micheli. Dynamic power management for nonstationary service

requests. IEEE Transactions on Computers, 51(11):1345�1361, 2002.

[41] Paul C. Clements. A survey of architecture description languages. In Proceed-

ings of the 8th International Workshop on Software Speci�cation and Design,

IWSSD '96, pages 16�, Washington, DC, USA, 1996. IEEE Computer Society.

[42] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in Real-Time

Systems. Wiley, 2002.

[43] Vinay Devadas and Hakan Aydin. On the interplay of dynamic voltage scal-

ing and dynamic power management in real-time embedded applications. In

Proceedings of the 8th ACM international conference on Embedded software,

EMSOFT '08, pages 99�108, New York, NY, USA, 2008. ACM.

[44] S. Dhouib, E. Senn, J.P. Diguet, and J. Laurent. Modelling and estimating the

energy consumption of embedded applications and operating systems. In Pro-

ceedings of the 12th International Symposium on Integrated Circuits, ISIC'09,

pages 457�461, Singapore, 2009.

[45] Robert P. Dick, Ganesh Lakshminarayana, Anand Raghunathan, and Niraj K.

Jha. Power analysis of embedded operating systems. In Design Automation

Conference, Los Angeles, California, USA, 2000.

[46] Eclipse Foundation. The Eclipse Project. http://www.eclipse.org/.

[47] R. Egawa, M. Ito, N. Hasegawa, and T. Nakamura. Temperature Gradient

Alleviating Method for Arithmetic Units. In International Worshop on thermal

investigations of ICs and Systems, pages 151�156, Belgirate, Lago Maggiore,

Italie, September 2005. TIMA Editions.

[48] Stijn Eyerman and Lieven Eeckhout. Fine-grained DVFS using on-chip reg-

ulators. ACM Transactions on Architecture and Code Optimization (TACO),

8(1):1:1�1:24, February 2011.

[49] Farzan Fallah and Massoud Pedram. Standby and active leakage current con-

trol and minimization in cmos vlsi circuits. IEICE Transactions, 88-C(4):509�

519, 2005.

Bibliography 121

[50] K. M. Fant and S. A. Brandt. Null convention logic/sup TM/: A complete

and consistent logic for asynchronous digital circuit synthesis. In Proceedings

of the IEEE International Conference on Application-Speci�c Systems, Archi-

tectures, and Processors, ASAP '96, pages 261�, Washington, DC, USA, 1996.

IEEE Computer Society.

[51] Y. Fei, S. Ravi, A. Raghunathan, and N.K. Jha. Energy-optimizing source

code transformations for operating system-driven embedded software. ACM

Transactions on Embedded Computing Systems (TECS), 7:1�26, 2007.

[52] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture analysis

& design language (AADL): An introduction. Technical Report CMU/SEI-

2006-TN-011, Software Engineering Institute, Carnegie Mellon University,

2006.

[53] Nicolas Fournel, Antoine Fraboulet, and Paul Feautrier. eSimu: a fast and

accurate energy consumption simulator for real embedded system. In Interna-

tional Symposium on a World of Wireless, Mobile and Multimedia Networks

(WOWMOM'07), pages 1�6, Helsinki, Finland, 2007.

[54] Pat Gelsinger. Moore's law - the genius lives on. Solid-State Circuits Society

Newsletter, IEEE, 11(5):18�20, 2006.

[55] Bing Guo, Dianhui Wang, Yan Shen, and Zhishu Li. A hop�eld neural net-

work approach for power optimization of real-time operating systems. Neural

Computing and Applications, 17:11�17, 2008.

[56] Raimo Haukilahti. Energy characterization of a RTOS hardware accelerator

for SoCs. In In Proc. of the Swedish System-on-Chip Conference (SSoCC),

Falkenberg, Sweden, March 2002.

[57] Babak Hidaji, Mohamad Reza Andalibizadeh, and Salar Alipour. Micro-

architectural power estimation and optimization. In IEEE International Con-

ference on Electro/Information Technology, Windsor, Ontario, Canada, 2009.

[58] Jérôme Hugues, Bechir Zalila, Laurent Pautet, and Fabrice Kordon. Rapid

prototyping of distributed real-time embedded systems using the aadl and

ocarina. In IEEE International Workshop on Rapid System Prototyping'07,

pages 106�112, 2007.

[59] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies for dy-

namic power management in systems with multiple power-saving states. ACM

Transactions on Embedded Computing Systems, 2(3):325�346, August 2003.

122 Bibliography

[60] Nasser Jazdi. Component-based and distributed web application for embedded

systems. In International Conference on Intelligent Agents, Web Technology

and Internet Commerce, IAWTIC'2001, Las Vegas, USA, 2001.

[61] Kyungtae Kang, Kyung-Joon Park, and Hongseok Kim. Functional-level en-

ergy characterization of µC/OS-II and cache locking for energy saving. Bell

Labs Technical Journal, 17(1):219�227, 2012.

[62] Nam Sung Kim, Taeho Kgil, Valeria Bertacco, Todd M. Austin, and Trevor N.

Mudge. Microarchitectural power modeling techniques for deep sub-micron

microprocessors. In Rajiv V. Joshi, Kiyoung Choi, Vivek Tiwari, and Kaushik

Roy, editors, Proceedings of the 2004 International Symposium on Low Power

Electronics and Design, 2004, Newport Beach, California, USA, August 9-11,

2004, pages 212�217. ACM, 2004.

[63] Brian Klug. Two OMAP 3430 phones: Nokia N900 and Motorola Droid.

AnandTech computer hardware magazine, 2010.

[64] Vasilios Konstantakos, Alexander Chatzigeorgiou, Spiridon Nikolaidis, and

Theodore Laopoulos. Energy consumption estimation in embedded sys-

tems. IEEE Transactions on instrumentation and measurement, 57(4):797�

804, 2008.

[65] Johann Laurent, Nathalie Julien, Eric Senn, and Eric Martin. Functional level

power analysis: An e�cient approach for modeling the power consumption of

complex processors. In Design, Automation and Test in Europe Conference

and Exposition (DATE 2004), pages 666�667, 2004.

[66] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operat-

ing system power consumption. In In Proceedings of the International Con-

ference on Measurement and Modeling of Computer Systems (SIGMETRICS,

San Diego, California, USA, 2003.

[67] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment. J. ACM, 20(1):46�61, January 1973.

[68] Fang Liu, Fei Guo, Yan Solihin, Seongbeom Kim, and Abdulaziz Eker. Char-

acterizing and modeling the behavior of context switch misses. In Andreas

Moshovos, David Tarditi, and Kunle Olukotun, editors, PACT, pages 91�101,

Toronto, CANADA, 2008.

[69] Daniel Lohmann, Wolfgang Schroder-Preikschat, and Olaf Spinczyk. Func-

tional and non-functional properties in a family of embedded operating sys-

tems. In Proceedings of the 10th IEEE International Workshop on Object-

Bibliography 123

Oriented Real-Time Dependable Systems, WORDS '05, pages 413�420, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[70] Nenad Medvidovic and Richard N. Taylor. A classi�cation and comparison

framework for software architecture description languages. IEEE Transactions

on Software Engineering, 26(1):70�93, January 2000.

[71] Daniel Mosse, Hakan Aydin, Bruce Childers, and Rami Melhem. Compiler-

assisted dynamic power-aware scheduling for real-time applications. In In

Workshop on Compilers and Operating Systems for Low Power, 2000.

[72] Richard Nass. An insider's view of the 2008 embedded market study. Embedded

Systems Design, 2008.

[73] Nathan Wayne Fisher. The Multiprocessor Real-Time Scheduling of General

Task Systems. PhD thesis, University of North-Carolina, Chapel Hill, 2007.

[74] David Nellans, Rajeev Balasubramonian, and Erik Brunvand. Interference

aware cache designs for operating system execution. Technical Report UUCS-

09-002, University of Utah, February 2009.

[75] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using

probabilistic model checking for dynamic power management. Formal Aspects

of Computing, 17(2):160�176, 2005.

[76] Gethin Norman, David Parker, Marta Kwiatkowska, Eep Shukla, and Rajesh

Gupta. Using probabilistic model checking for dynamic power management.

Formal Aspects of Computing, 17:202�215, 2003.

[77] Object Management Group. The SAE AADL Standard Info Site, 2009.

http://www.aadl.info/.

[78] OMG. UML pro�le for schedulability, performance, and time speci�cation

v1.1, 2005.

[79] Bassem Ouni, Cécile Belleudy, Sebastien Bilavarn, and Eric Senn. Embedded

operating systems energy overhead. In Conference on Design and Architectures

for Signal and Image Processing, DASIP, pages 52�57, Tampere, Finland,

2011.

[80] Jaehyun Park, Donghwa Shin, Naehyuck Chang, and Massoud Pedram. Ac-

curate modeling and calculation of delay and energy overheads of dynamic

voltage scaling in modern high-performance microprocessors. In Proceedings

of the 16th ACM/IEEE international symposium on Low power electronics

and design (ISLPED'10), pages 419�424, Austin, TX, USA, 2010.

124 Bibliography

[81] Sandro Penolazzi, Ingo Sander, and Ahmed Hemani. Predicting energy and

performance overhead of real-time operating systems. In Design, Automation

and Test in Europe, DATE 2010, pages 15�20, Dresden, Germany, March

2010.

[82] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling

for low-power embedded operating systems. In Proceedings of the eighteenth

ACM symposium on Operating systems principles, pages 89�102, New York,

NY, USA, 2001.

[83] Nantes Real time systems group, IRCCyN research laboratory, 2009.

http://www.irccyn.ec-nantes.fr/.

[84] Siddharth Rele, Santosh Pande, Soner Önder, and Rajiv Gupta. Optimizing

static power dissipation by functional units in superscalar processors. In Pro-

ceedings of the 11th International Conference on Compiler Construction, CC

'02, pages 261�275, London, UK, UK, 2002. Springer-Verlag.

[85] Santhosh Kumar Rethinagiri, Rabie Ben Atitallah, and J Dekeyser. A system

level power consumption estimation for mpsoc. In System on Chip (SoC),

2011 International Symposium on, pages 56�61. IEEE, 2011.

[86] Santhosh Kumar Rethinagiri, Rabie Ben Atitallah, Jean-Luc Dekeyser, Eric

Senn, and Smail Niar. An e�cient power estimation methodology for complex

risc processor-based platforms. In Proceedings of the great lakes symposium

on VLSI, GLSVLSI '12, pages 239�244, New York, NY, USA, 2012. ACM.

[87] Jose L. Rosselló, Carol de Benito, and Jaume Segura. A compact gate-level

energy and delay model of dynamic cmos gates. IEEE Transactions on circuits

and systems-II: EXPRESS BRIEFS, 52(10):685� 689, 2005.

[88] Stéphane Rubini, Frank Singho�, and Jérôme Hugues. Modeling and veri�ca-

tion of memory architectures with aadl and real. In Proceedings of the 2011

16th IEEE International Conference on Engineering of Complex Computer

Systems, ICECCS '11, pages 338�343, Washington, DC, USA, 2011. IEEE

Computer Society.

[89] Hiroshi Sasaki, Yoshimichi Ikeda, Masaaki Kondo, and Hiroshi Nakamura. An

intra-task dvfs technique based on statistical analysis of hardware events. In

Proceedings of the 4th international conference on Computing frontiers, CF

'07, pages 123�130, New York, NY, USA, 2007. ACM.

[90] M. Schneider, H. Blume, and T. G. Noll. Power estimation on functional level

for programmable processors. Advances in Radio Science, 2:215�219, 2004.

Bibliography 125

[91] Eric Senn, Johann Laurent, Nathalie Julien, and Eric Martin. Softexplorer:

Estimation, characterization, and optimization of the power and energy con-

sumption at the algorithmic level. In 14th International Workshop on Power

and Timing Modeling, Optimization and Simulation (PATMOS 2004), pages

342�351, 2004.

[92] Eric Senn, Johann Laurent, Nathalie Julien, and Eric Martin. Softexplorer:

Estimating and optimizing the power and energy consumption of a C program

for DSP applications. EURASIP Journal on Advances in Signal Processing,

2005(16):2641�2654, 2005.

[93] Hyungjung Seo, Jaewon Seo, and Taewhan Kim. Algorithms for com-

bined inter- and intra-task dynamic voltage scaling. The computer journal,

55(11):1367�1382, 2012.

[94] Jaewon Seo, Taewhan Kim, and N. D. Dutt. Optimal integration of inter-task

and intra-task dynamic voltage scaling techniques for hard real-time appli-

cations. In Proceedings of the 2005 IEEE/ACM International conference on

Computer-aided design, ICCAD '05, pages 450�455, Washington, DC, USA,

2005. IEEE Computer Society.

[95] Hazim Sha�, Patrick J. Bohrer, James Phelan, Cosmin Rusu, and James L.

Peterson. Design and validation of a performance and power simulator for

powerpc systems. IBM Journal of Research and Development, 47(5-6):641�

652, 2003.

[96] Shelby Hyatt Funk. EDF Scheduling on Heterogeneous Multiprocessors. PhD

thesis, University of North-Carolina, Chapel Hill, 2004.

[97] Dongkun Shin and Jihong Kim. Intra-task voltage scheduling on dvs-enabled

hard real-time systems. IEEE transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, 24(10):1530�1549, November 2006.

[98] Dongkun Shin and Jihong Kim. Optimizing intratask voltage scheduling using

pro�le and data-�ow information. IEEE Trans. on CAD of Integrated Circuits

and Systems, 26(2):369�385, 2007.

[99] Dongkun Shin, Hojun Shim, Yongsoo Joo, Han-Saem Yun, Jihong Kim, and

Naehyuck Chang. Energy-monitoring tool for low-power embedded programs.

IEEE Design & Test of Computers, 19(4):7�17, 2002.

[100] Wen-Tsong Shiue. Accurate power estimation for cmos circuits. In Proceed-

ings of IEEE Region 10 International Conference on Electrical and Electronic

Technology TENCON, pages 829�833, Texas, USA, 2001.

126 Bibliography

[101] Anshul Singh and Scott C. Smith. Using a VHDL testbench for transistor-level

simulation and energy calculation. In Proceedings of the 2005 International

Conference on Computer Design CDES, pages 115�121, Las Vegas, Nevada,

USA, 2005.

[102] Pushkar Singh and Vinay Chinta. Using probabilistic model checking for

dynamic power management. In Survey report of the University of Illinois,

Chicago (ECE Department), 2008.

[103] F. Singho�, J. Legrand, L. Nana, and L. Marcé. Scheduling and memory

requirements analysis with AADL. In Proceedings of the 2005 annual ACM

SIGAda international conference on Ada: The Engineering of Correct and

Reliable Software for Real-Time & Distributed Systems using Ada and Related

Technologies, SigAda '05, pages 1�10, New York, NY, USA, 2005. ACM.

[104] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik

Sankaranarayanan, and David Tarjan. Temperature-aware computer systems:

Opportunities and challenges. IEEE Micro, 23(6):52�61, 2003.

[105] Tat Kee Tan, Anand Raghunathan, and Niraj K. Jha. Embedded operating

system energy analysis and macro-modeling. In International Conference on

Computer Design, pages 515�520, Freiburg, Germany, 2002.

[106] SEI AADL Team. OSATE: An extensible source AADL tool environment.

Technical report, December 2004.

[107] Ellidiss Technologies. ADELE: a versatile system architecture graphical editor

based on AADL, 2007. http://gforge.enseeiht.fr/projects/adele/.

[108] The SysML Partners. The o�cial OMG Marte web site, May 2007.

http://www.omgmarte.org.

[109] Duong Tran, Kyung Ki Kim, and Yong-Bin Kim. Power estimation in digital

CMOS VLSI chips. In Proceedings of the Instrumentation and Measurement

Technology Conference, IMTC 2005., pages 317� 321, 2005.

[110] Dan Tsafrir. The context-switch overhead in�icted by hardware interrupts

(and the enigma of do-nothing loops). In ACM Workshop on Experimental

Computer Science (ExpCS), page 4, San-Diego, California, USA, 2007.

[111] Jim Turley. Operating systems on the rise. Embedded Systems Design, 2006.

[112] Roberto Varona-Gomez and Eugenio Villar. Aadl simulation and performance

analysis in systemc. In Proceedings of the 2009 14th IEEE International Con-

ference on Engineering of Complex Computer Systems, ICECCS '09, pages

323�328, Washington, DC, USA, 2009. IEEE Computer Society.

Bibliography 127

[113] Stephen R. Walli. The POSIX family of standards. StandardView, 3(1):11�17,

March 1995.

[114] Weixun Wang and Prabhat Mishra. Predvs: preemptive dynamic voltage

scaling for real-time systems using approximation scheme. In Proceedings of

the 47th Design Automation Conference, DAC '10, pages 705�710, New York,

NY, USA, 2010. ACM.

[115] Yue Wang and Nagarajan Ranganathan. An instruction-level energy estima-

tion and optimization methodology for GPU. In Proceedings of the 2011 IEEE

11th International Conference on Computer and Information Technology, CIT

'11, pages 621�628, Washington, DC, USA, 2011. IEEE Computer Society.

[116] Chien-Chung Yang, Kuochen Wang, Ming-Ham Lin, and Pochun Lin. Energy

e�cient intra-task dynamic voltage scaling for realistic CPUs of mobile de-

vices. Journal of Information Science and Engineering, 25(1):251�272, 2009.

[117] Xia Zhao, Yao Guo, Hua Wang, and Xiangqun Chen. Fine-grained energy esti-

mation and optimization of embedded operating systems. In Proceedings of the

2008 International Conference on Embedded Software and Systems Symposia

(ICESS2008), pages 90�95, Chengdu, Sichuan, China, 2008.

List of Publications

International Journals

1. Bassem Ouni, Cécile Belleudy, Eric Senn

Accurate energy characterization of OS services in embedded systems,

EURASIP Journal on Embedded Systems, July 2012.

2. Ikbel Belaid, Bassem Ouni, Fabrice Muller, Maher Benjemaa

Complete and Approximate Methods for O�-Line Placement of Hardware

Tasks on Recon�gurable Devices, Journal of Circuits, Systems, and Computers,

JCSC Vol. 22, No. 2, February 2013.

International Conferences

1. Bassem Ouni, Hajer Ben Rekhissa, Cécile Belleudy

Inter-process communication energy estimation through AADL modeling,

SMACD '12, Proceedings of International Conference on Synthesis, Model-

ing, Analysis and Simulation Methods and Applications to Circuit Design,

Seville, Spain, September 2012.

2. Bassem Ouni, Cécile Belleudy, Eric Senn

Energy characterization and classi�cation of embedded operating system ser-

vices, DSD '12, Proceedings of the 15th Euromicro Conference on Digital

System Design, Izmir, Turkey, September 2012.

3. Bassem Ouni, Cécile Belleudy, Hajer Ben Rekhissa, Eric Senn

Energy leakage in low power embedded operating systems using DVFS policy,

IEEE FTFC '12, Proceedings of the 11th Edition of IEEE Faible Tension

Faible Consommation, Paris, France, June 2012.

4. Bassem Ouni, Cécile Belleudy, Eric Senn

Realistic energy modeling of scheduling, interprocess-communication and con-

text switch routines, DTIS '12, Proceedings of the 7th International conference

on Design and Technology of Integrated systems in Nanoscale Era , Gam-

marth, Tunisia, May 2012.

5. Bassem Ouni, Cécile Belleudy, Sébastien Bilavarn, Eric Senn

Embedded operating systems energy overhead, DASIP '11, Proceedings of the

Conference on Design and Architectures for Signal and Image Processing,

Tampere, Finland, November 2011.

130 Bibliography

6. Bassem Ouni, Ikbel Belaid, Fabrice Muller, Maher Benjemaa

Placement of hardware tasks on FPGA using the bees algorithm, PECCS '11,

Proceedings of the conference on Pervasive and embedded computing and

communication systems, Algarve, Portugal, March 2011.

National Conferences

1. Bassem Ouni, Cécile Belleudy, Eric Senn

Context switch routines energy characterization, 2 pages, GDR SoC-SiP (Sys-

tem On Chip - System In Package), Paris, France, June 2012.

2. Bassem Ouni, Cécile Belleudy, Eric Senn

embedded OS services power and energy consumption, METHODICA '11, 7 th

workshop on Methods for the Adaptive Distributed Software, Douz, Tunisia,

December 2011.

3. Bassem Ouni, Hajer Ben Rekhissa, Cécile Belleudy, Eric Senn

Approach for modeling embedded operating systems energy characterization, 2

pages, GDR SoC-SiP (System On Chip - System In Package) , Lyon, France,

June 2011.

4. Bassem Ouni, Fabrice Muller, Maher Benjemaa

Placement et ordonnancement des tâches matérielles sur des zones recon�g-

urables en utilisant le Bees algorithm, 2 pages, GDR SoC-SiP (System On

Chip - System In Package) , Paris-Orsay, France, June 2009.

Résumé

La consommation énergétique est devenue un problème majeur dans la conception des systèmes

aussi bien d'un point de vue de la �abilité des circuits que de l'autonomie d'un équipement embar-

qué. Cette thèse vise à caractériser et modéliser le coût énergétique du système d'exploitation (OS)

embarqué en vue d'explorer des solutions faibles consommation. La première contribution consiste

à dé�nir une approche globale de modélisation de la consommation des services de base de l'OS: la

stimulation de l'exécution de ces services, tels que le changement de contexte, l'ordonnancement

et la communication interprocessus, est e�ectuée à travers des programmes de test adéquats. Sur

la base de mesures de la consommation d'énergie sur la carte OMAP35x EVM, des paramètres

pertinents soit matériels soit logiciels ont été identi�és pour en déduire des modèles de consomma-

tion. Dans une seconde étape, la prise en compte de ces paramètres doit intervenir au plus haut

niveau de la conception. L'objectif sera d'exploiter les fonctionnalités o�ertes par un langage de

modélisation et d'analyse architecturale AADL tout en modélisant les aspects logiciel et matériel

en vue d'estimer la consommation d'énergie. Ensuite, les modèles énergétiques de l'OS ont été inté-

grés dans un simulateur multiprocesseur de politique d'ordonnancement STORM a�n d'identi�er

la consommation de l'OS et ceci pour des politiques d'ordonnancement mettant en oeuvre des

techniques de réduction de la consommation tel que le DVFS et le DPM. En�n, la dé�nition et

véri�cation de certaines contraintes temps-réel et énergétiques ont été e�ectuées avec des langages

de spéci�cation de contraintes (QAML, RDAL).

Mots-Clés: Systèmes Embarqués, Consommation d'énergie, Systèmes d'exploitation embarqués,

Algorithmes et techniques de réduction de la consommation énergétique, Modélisation AADL,

Véri�cation des contraintes.

Abstract

The ever-increasing complexity of embedded systems that are developing their computation perfor-
mances poses a great challenge for embedded systems designers: power and energy consumption.
This thesis focuses on power and energy characterization, modeling, estimation of embedded op-
erating systems (OS) energy consumption. First, an OS energy consumption characterization �ow
is introduced: a set of benchmarks, which are test programs that stimulate each OS service sep-
arately, are implemented. These programs are executed on the hardware platform: OMAP 35x
EVM board. Based on hardware measurements, several hardware and software parameters that
in�uence the OS power/energy consumption are identi�ed and energy consumption mathematical
models are extracted. The second contribution consists in proposing a high level model of soft-
ware application, the OS services and hardware platform using an architecture analysis and design
language (AADL). Then, AADL and mathematical models of OS services energy consumption are
integrated in a multiprocessor scheduling simulator (STORM) in order to evaluate the OS energy
overhead when using DPM and DVFS low power techniques. Finally, a �ow of de�nition and ver-
i�cation of system requirements when allocating application tasks to the processors is proposed.
Using a set of languages, RDAL and QAML, various real time and energetic constraints are checked
when exploring the design.
Keywords: Embedded systems, Energy consumption, Embedded operating systems, Power man-
agement techniques and algorithms, AADL modeling, Constraints veri�cation.

132 Bibliography

	Introduction
	Context
	Contributions
	Outline

	Background on embedded systems energy consumption characterization, modeling and analysis
	Power and energy dissipation in embedded systems
	Power and energy consumption characterization and estimation in embedded systems
	Power and energy in electrical circuits
	Overview of power and energy consumption characterization and estimation

	Power and energy consumption estimation of embedded systems at different abstraction levels
	Estimation and modeling of power/energy consumption at microprocessor abstraction levels
	Power/energy consumption of hardware components and peripheral devices
	Characterization of embedded OS power/energy consumption

	Conclusion

	Characterization and analysis of embedded OS services energy consumption
	Introduction
	Overview of embedded OS
	OS middleware in embedded systems
	Embedded OS services and functionalities

	Experimental setup
	OMAP3530 Applications Processor
	OMAP3530 EVM board
	Measurement framework

	Energy characterization and estimation flow
	OS power and energy modeling
	Scheduling routines
	Context switch
	Inter-process communication

	Conclusion

	High level modeling of embedded system components
	Exploitation of high level AADL models
	Embedded OS functional/non-functional properties and requirements
	Architecture modeling languages
	Overview of AADL language
	AADL components
	Subcomponents
	Components implementations
	Components interaction
	AADL properties, annexes, packages and modes
	AADL tools

	AADL modeling case study
	H.264 application
	AADL modeling of system components

	Conclusion

	Embedded OS service's models integration in the system level design flow
	Models integration in multiprocessor scheduling simulation tool
	STORM tool
	The proposed approach

	Low power scheduling policies
	The AsDPM scheduling policy:
	The DSF scheduling policy:

	Embedded OS services energy overhead:
	Fixed frequency case:
	Dynamic frequency case:

	Experimental results:
	Conclusion

	System design space exploration and verification of constraints
	AADL exploration of hardware software solutions
	Design space exploration methodology
	System constraints definition and verification flow
	RDAL Language and RDALTE tool
	The Object Constraint Language (OCL)
	The Quantitative Analysis Modeling Language (QAML)
	The proposed approach

	System requirements analysis, definition and verification
	Quantitative analysis specifications using the QAML language
	Requirements definition and verification using RDALTE tool

	Example
	Conclusion

	Conclusion
	Conclusion
	Perspectives
	OS services energy characterization approach extension
	OS services energy optimization
	System level thermal modeling

	Bibliography

