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Résumé  

L'objectif principal de cette thèse consiste à déterminer (et expliquer) les relations entre les 

conditions de synthèse des couches minces de Cu2ZnSn(Se,S)4 (CZTSSe), leurs propriétés 

physiques et les performances des dispositifs photovoltaïques. Le mécanisme de formation 

du matériau est étudié en fonction des conditions de croissance. Le CZTSSe est synthétisé 

par un procédé en deux étapes, où une première étape de dépôt des précurseurs sous vide 

est suivie d'une seconde étape de recuit sous atmosphère de sélénium. Différents ordres 

d'empilement des précurseurs sont étudiés afin de comprendre la séquence de réactions qui, 

à partir de leur dépôt, conduit à la couche finale de CZTSSe. Le résultat de cette étude 

montre que le matériau final obtenu après un recuit à haute température (570°C) et de 

longue durée (30 min) est indépendant de l’ordre de dépôt des précurseurs, mais que les 

étapes intermédiaires de formation du matériau sont fortement influencées par les positions 

respectives des couches de cuivre et d’étain. 

Les possibles implications bénéfiques de l'incorporation de sodium dans le CZTSSe sont 

également étudiées. Ce travail est réalisé en synthétisant la couche de CZTSSe sur 

différents substrats contenant diffèrents taux de sodium: de cette manière, pendant la 

synthèse, le sodium migre du substrat vers l'absorbeur. Après quantification du Na dans le 

CZTSSe juste après la croissance, le matériau est caractérisé afin d'évaluer sa qualité. 

Ensuite il est employé dans une cellule solaire complète pour vérifier ses propriétés 

photovoltaïques. Les résultats montrent que, comme dans le cas de la technologie CIGS, le 

sodium est bénéfique pour le CZTSSe, permettant l'augmentation de la tension à circuit 

ouvert et le rendement des cellules. 

Le molybdène est le contact arrière le plus utilisé pour les cellules solaires à base de 

CZTSSe. Cependant, il a été suggéré récemment que le Mo n'est pas stable à l'interface 

avec le CZTSSe. En outre, aucune étude expérimentale n’a été effectuée à ce jour pour 

tester si les cellules solaires construites sur un autre contact arrière pourraient présenter de 

meilleures propriétés photovoltaïques. Ainsi, divers métaux (Au, W, Pd, Pt et Ni) sont 

déposés sur le Mo et testés comme contacts arrières dans les cellules solaires à base de 

CZTSSe. Il est démontré qu'il est possible de synthétiser des couches minces de CZTSSe de 

qualité quand le tungstène, l’or et le platine sont employé comme contacts arrière. Il est 

observé que les contacts en W et Au permettent d’augmenter le courant photogénéré, mais 

aussi que le Mo reste le meilleur contact arrière du point de vue du rendement de 

conversion photovoltaïque. 

Les effets de la variation du rapport [S]/([S]+[Se]) sur les performances des cellules 

solaires à base de CZTSSe sont étudiés. Cette étude est effectuée par simulations des 

cellules solaires à base de CZTSSe, avec un ratio variable des éléments chalcogènes dans 
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l’absorbeur, en ayant pour objectif la détermination de la composition optimale de 

l’absorbeur. Les simulations conduisent à un rendement de 16,5% (avec une tension en 

circuit ouvert de 0,56 V, courant de court-circuit de 37,0 mA/cm
2
 et un facteur de forme de 

79,0%) lorsque la teneur en soufre est diminué linéairement à partir du contact arrière en 

direction de la couche tampon. Sur la base de ces résultats, nous proposons que l'ingénierie 

de bande interdite avec une variation du taux [S]/([S]+[Se]) dans l'absorbeur soit un moyen 

efficace qui permet d'augmenter les performances des cellules solaires à base CZTSSe sans 

nécessiter de changer la qualité même de l'absorbeur. 
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composition calculations. 
 

Figure 39: Compositional ratio at different steps of the selenization process of Stack A(a) 

and Stack B(b). Results are obtained from top-view from EDS measurements at 25kV. 

Values for the first steps have to be considered carefully because of the strong 

inhomogeneity of the layers. 
 

Figure 40: CZTSSe density of stack A and B at the end of selenization process. 
 

Figure 41: Raman spectra of the CZTSSe films at different temperatures for Stack A (a) 

and Stack B (b). The sharp peak at 355 cm-1 for CZTSSe spectrum at 570°C (green line in 

Stack B) is considered as an artifact of the measurement, and not indicative of the sample. 
 

Figure 42: GDS spectra of Stack A: (a) 350°C, (b) 450°C, (c) 570°C, (d) 570°C - 30min. 
 

Figure 43: GDS spectra of Stack B: (a) 350°C, (b) 450°C, (c) 570°C, (d) 570°C - 30min. 
 

Figure 44: Model illustrating the strong interaction between Sn and chalcogens as 

compared to the one between chalcogens and Cu; this picture tends to explain qualitatively 

the different intermediate states which occur during the annealing process of stack A (a) 

and B (b). 
 

Figure 45: Model of the beveled and polished CZTSSe with an angle of 1 degree. The six 

points (A:F) represent the location point of Raman analysis. 
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Figure 46: Raman spectra of beveled CZTSSe from stack A (a) and B (b). 
 

Figure 47: Thermodynamic simulations of the reactions of copper and tin with chalcogens: 

Sn + S ↔SnS (a), Sn + Se ↔SnSe (b), Cu + S ↔CuS (c), Cu + Se ↔CuSe (d). 
 

Figure 48: PV performances statistical study of 18 solar cells from different precursor 

stacks. 
 

Figure 49: Back contact bilayer Mo:Na|Mo. 
 

Figure 50: Na concentration measured by SIMS for CZTSSe on different Mo-coated SLG 

(a) and BS (b). O, Cu, Zn, Sn, Se, S, Mo, Si concentrations are in arbitrary units. 
 

Figure 51: SIMS profile measurement on CZTSSe starting from different ZnS precursor 

thickness. Schematic of the precursor stack prior to selenization process with different ZnS 

thicknesses are shown in the insets: 340 nm (a), 400 nm (b), 280 nm (c), 340 + 60 nm 

double layer (d).  
 

Figure 52: XRD spectra for CZTSSe on different Mo-coated glasses.  
 

Figure 53: SEM images showing the CZTSSe synthesized on Mo-coated: (a) SLG (high 

Na-content), (b) BS (low Na-content). 
 

Figure 54: Raman spectra for CZTSSe on different Mo-coated glasses. 
 

Figure 55: PL spectra for CZTSSe on different Mo-coated glasses. 
 

Figure 56: Current-voltage measurements under illumination (simulated AM1.5 spectrum, 

100 mW/cm²) of Al:ZnO/i-ZnO/CdS/CZTSSe/Mo solar cells synthesized on SLG (blue 

boxes) and BS (orange boxes).  
 

Figure 57: Dark current-voltage measurements of Al:ZnO/i-ZnO/CdS/CZTSSe/Mo cells 

synthesized on SLG (blue boxes) and BS (orange boxes). 
 

Figure 58: Light current-voltage measurements of Al:ZnO/i-ZnO/CdS/CZTSSe/Mo/Mo:Na 

cells synthesized on SLG (blue boxes), BS (orange boxes), VSS (fuchsia) and Ti (violet). 
 

Figure 59: Light current-voltage measurements of Al:ZnO/i-ZnO/CdS/CZTSSe/Mo cells 

synthesized on SLG (blue boxes), BS (orange boxes), VSS (fuchsia) and Ti (violet). 
 

Figure 60: Back contact bilayer. 
 

Figure 61: GDS spectra of CZTSSe synthesized on Mo (CZTSSe|Mo) (a), Au 

(CZTSSe|Au) (b), W (CZTSSe|W) (c), Pt (CZTSSe|Pt) (d), Pd (CZTSSe|Pd) (e), Ni 

(CZTSSe|Ni) (f). 
 

Figure 62: XRD patterns of CZTSSe synthesized on Mo (CZTSSe|Mo), Au (CZTSSe|Au), 

W (CZTSSe|W), Pt (CZTSSe|Pt). Patterns are shifted vertically and the x-axis is cut 
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between 60 and 85 degrees for clarity. The inset shows a zoom on CZTSSe|W in the range 

85-90 degrees. 
 

Figure 63: XRD patterns of PtSe2. 
 

Figure 64: Raman spectra of CZTSSe synthesized on Mo (CZTSSe|Mo) (top-left), Au 

(CZTSSe|Au) (top-right), W (CZTSSe|W) (bottom-left), Pt (CZTSSe|Pt) (bottom-right). 

The inset in the bottom-right of Fig. 61d shows the Raman spectrum of PtSe2. 
 

Figure 65: Raman spectrum of PtSe2. 
 

Figure 66: Top-view SEM image of CZTSSe|Pt. 
 

Figure 67: SEM images of Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo solar cells synthesized on 

Au (CZTSSe|Au) (a), W (CZTSSe|W) (b), Pt (CZTSSe|Pt) (c). The inset in Fig. 64a shows 

the SEM image of gold particles after selenization process. 
 

Figure 68: Schematic of Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo solar cells. 
 

Figure 69: Current-voltage measurements under illumination (simulated AM1.5 spectrum, 

100 mW/cm²) of Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo solar cells. 
 

Figure 70: Dark current-voltage measurements of Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo 

solar cells. 
 

Figure 71: External quantum efficiency measurements on best performing CZTSSe solar 

cells with Mo-, Au-, W-back contacts. Bandgaps Eg are deduced via linear extrapolation of 

the low energy slope of the EQE. The inset shows EQE spectrum of CZTSSe|W solar cell 

divided by the EQE spectrum of CZTSSe|Mo solar cell. 
 

Figure 72: The bandgap energies extracted from the Tauc plot. 
 

Figure 73: Cross-sectional EDS analysis of CZTSSe|Au performed in a TEM. 
 

Figure 74: Schematic of COMSOL simulation. 
 

Figure 75: COMSOL simulations of electromagnetic field gain due to gold particles 

resonance with different radius.  
 

Figure 76: Net charge carrier profile extracted from C – V characteristics of CZTSSe|Mo 

and CZTSSe|W solar cells at 300 K. The C – V is performed using 100-mV, 100-kHz ac 

excitation with dc bias from 0.2 to – 3 V. 
 

Figure 77: Cliff-like and spike-like alignment respectively at CZTS|CdS and CZTSe|CdS 

interface. 
 

Figure 78: Composition graph of CZTSSe absorber layer. The CZTSSe absorber thickness 

(L) is 1.2 µm. 
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Figure 79: PV characteristics variation of Mo | CZTSSe | CdS | i-ZnO | ZnO:Al solar cell 

where the CZTSSe absorber has a linear variation of the [S]/([S]+[Se]) ratio as function of 

depth. PCE/% (a), FF/% (b), Voc/Volt (c), Jsc/(mA/cm2) (d), the white star indicates the 

best performing solar cell. 
 

Figure 80: Graphical representation of the band alignments within different CZTSSe solar 

cells in the dark: CZTS (orange line), CZTSe (red dotted line), bandgap decreasing from 

Mo to CdS (purple line), bandgap decreasing from CdS to Mo (black line). 
 

Figure 81: J-V characteristics of the best-performing Mo | CZTSSe | CdS | i-ZnO | ZnO:Al 

solar cell. CZTSSe absorber has a linear variation of the [S]/([S]+[Se]) ratio as function of 

depth (inset). 
 

Figure 82: Voc losses variation (in Volt) of Mo | CZTSSe | CdS | i-ZnO | ZnO:Al solar cell 

where the CZTSSe absorber has a linear variation of the [S]/([S]+[Se]) ratio as function of 

depth. 
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1.1 Aim of this study 

Due to the decrease of system installation costs and increasing industry experience, 

photovoltaics (PV) will become an increasingly economically advantageous source of 

electricity. Around 200 GW in 2020 and 2 TW in 2050 of cumulated PV capacity is 

predicted to be installed globally [1]. These volumes will have a major impact on PV 

technologies in terms of resources and production. 

Thin-film PV (TFPV) technology has more than 10% of this volume share, expecting to 

increase in the next ten years [1]. Despite the good results of TFPV and the increasing 

confidence in this technology, some drawbacks concerning the materials employed are 

highlighted. Some of the materials investigated are either expensive or toxic: arsenic, 

cadmium, gallium, germanium, indium, and tellurium. An evaluation of the literature does 

not picture a clear framework on this subject [2-3]. Nevertheless, despite the differences in 

the conclusion, the common thought is that a potential risk to TFPV development is due to 

the scarcity of some elements.  

Cu2ZnSn(SxSe1-x)4 (CZTSSe) material is a promising candidate for low-cost and high-

efficiency thin film solar cells. Compared to other technologies CZTSSe offers the 

advantage of containing no critical chemical elements. This key aspect joined to its optical 

properties makes possible to foresee a photovoltaic thin film technology scalable at  several 

GW/year [4]. 

Many groups have focused on elaborating such materials in the past few years, using 

vacuum [5-6] or non-vacuum techniques [7-8], either one [6] or two-step process [5-8]. The 

best performances for CZTSSe-based solar cells are obtained at IBM Watson (USA) with a 

power conversion efficiency of 12.6%. [9] 

The research of a trade-off between high performances and low processing cost CZTSSe 

has recently driven the attention of the scientific community. In order to become very 

interesting for production at industrial level, CZTSSe solar cell performances must be 

certainly improved. In this manuscript, different ways to improve CZTSSe solar cells are 

investigated. The aim of this work is firstly to better understand the CZTSSe thin film 

synthesis mechanism in a two-step selenization process, and secondly to study the influence 

of different parameters, as the bandgap of the absorber and the back contact, on the 

photovoltaic performances of the CZTSSe solar cell. 



 

 

 
4 

 

 

In the following, a brief description of the structure of this thesis and the main contents is 

given. 

Chapter 2 illustrates the state-of-the-art of CZTSSe thin film technology. Starting from 

describing the physics of solar cells, an outlook on the different thin film technologies is 

taken, followed by a detailed description of CZTSSe solar cell background. 

Chapter 3 describes the experimental work carried out to fabricate CZTSSe absorbers and 

the various techniques useful to characterize the material from a physical, morphological, 

optical and electrical point of view. 

In Chapter 4 a study of CZTSSe formation mechanism is reported. 

Chapter 5 deals with the influence of sodium in CZTSSe solar cells. 

Chapter 6 reports experimentally the effects of different back contacts on the performances 

of CZTSSe solar cells.  

In Chapter 7 the effects of [S]/([S]+[Se]) ratio tuning on CZTSSe based solar cell 

performances have been studied by solar cell capacitance simulator (SCAPS) to find out the 

optimum absorber composition. 

This work is completed with a summary and a brief outlook for the further improvement of 

solar cell performance. 
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2.1 Physics of Photovoltaics 

2.1.1 The photovoltaic effect 

The origin of the word “photovoltaic” is made up from the Greek word phos (light), and 

voltaic (electrical) from the name of Italian physicist Alessandro Volta. The physical basis 

for photovoltaics is the “photovoltaic effect”. An appropriate definition of the photovoltaic 

effect is the direct conversion of light into electricity.  

The term “solar cell” is employed to describe a device, which is able to convert the energy 

of the sun (light) into electrical energy.  

The first observation of the photovoltaic effect (1839) is attributed to the French physicist 

Edmond Becquerel. He discovered that exposing to light two copper plates immersed in a 

solution, it is possible to produce a continuous flow of current. After that, an American 

engineer called Charles Fritts produced the first selenium-based solar cell (1883). However, 

the efficiency of Fritts’s cell was less than 1% which was not enough to justify it as a 

practical power source due to the cost of gold contacts.  

1954 was the beginning of silicon technology for PV. It was discovered at Bell Labs that a 

silicon p-n junction could convert 6% of the incoming sunlight into electrical energy. In 

1958, silicon solar panels were included on the American spacecraft Vanguard I. Hoffmann 

Electronics increased the efficiency to 14% and soon a market niche for silicon solar cells 

was discovered (1960). In the following 50 years, the global PV production has reached 

over 140 MW. The 21th century sees above all the ripeness of the thin film, dye-

synthesized, and multijunction solar technology [1].  

 

2.1.2 Current trends in PV technology 

Renewable energy as photovoltaics is one of the alternatives to the “conventional” energy 

as nuclear, hydro, and coal. Nuclear has the 15% in world production of electricity. France, 

Japan, and USA depend on nuclear power plants (75%, 30%, and 19% respectively) in their 

whole energy resources [2-3]. A lot of countries, like Germany and Japan, are gradually 

switching to renewable energy as photovoltaics in order to reduce risk factor of nuclear 

energy. Total energy capacity of the world is 4742 GW in which the share of the solar 

energy was 37 GW in 2010 (0.78%) [3]. In 2009, the new installation of solar energy was 
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7.1 GW that was more than doubled in 2010 (17.5 GW). The top 10 companies such as Q-

cells, Sharp, Suntech, Keyocera, First Solar, Motech, Solar World, Jasolar, Yingli, and 

Sanyo share the almost totality of the market.  

It is possible to design PV power plants of several hundred MW for different applications. 

Some examples are shown in Figure 1. 

Since its emergence thin film photovoltaics (TFPV) take on two difficult challenges: (i) to 

compete with silicon based PV in terms of power conversion efficiency and manufacturing 

costs, (ii) to contain only earth-abundant and non-toxic materials without severe 

degradation in the long term. Moreover as long as crystalline silicon (c-Si) solar PV 

manufacturing costs decreases, TFPV solar cells will remain in the small minority. In 

recent years, TFPV technology has experienced rapid growth and achieved significant 

technological advances, consolidating its place in the solar market. In 2012, TFPV 

represented approximately 10% of the global PV market (28.4 GW) [4].  

From a physical point of view, the advantages of TF solar cells are to have a direct band 

gap, a high absorption coefficient which allow absorbing the majority of the solar spectrum 

using only few microns of materials, and reduced sensitivity to recombination at grain 

boundaries. Moreover, from a technological point of view, they either permit to decrease 

fabrication costs by exploiting manufacturing actions like roll-to-roll, or permit the usage of 

flexible substrates, and monolithic interconnections. 

In thin film solar cells family, chalcogenide-based solar cells as Cu(In,Ga)Se2, CdTe and 

Cu2ZnSn(S,Se)4 are the best candidates potentially reduce manufacturing cost of solar 

energy. Recently, First Solar Company proclaimed that the current cost of electricity by its 

CdTe solar panel is 0.70 $/W and aims to develop solar cells at the cost of 0.5 $/W [4]. 
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Figure 1: Examples of solar cell applications: (a) building integration, (b) space, (c) plants, (d) nomad 

 

2.1.3 Solar radiation 

Solar radiation is comparable to the one of a black body at 5800 °K [5]. Sunlight passes 

through the atmosphere, but scattering and absorption processes attenuate it. Solar 

irradiance spectrum occurs over a wide range of energies (or wavelengths).  

The Air Mass (AM) is the path length which light takes through the atmosphere, and is 

useful to quantify the reduction in the power of light when it is absorbed by the atmosphere. 

The Air Mass is defined as: 

 

    
 

       
     (eq. 1) 

 

where θ is the angle from the vertical (zenith angle). When the sun is directly perpendicular 

to Earth surface, AM is 1. The standard spectrum at the Earth's surface is called AM1.5G, 

(the G stands for global): the AM1.5G spectrum (θ = 48.2°) has been normalized to give 1 

kW/m
2
. This spectrum is the normalized flux used to measure the performance of cells in 

laboratories. The standard spectrum outside the Earth's atmosphere is called AM0, because 



 

 

 
11 

 

the light does not overcome the atmosphere barrier. This spectrum is typically used to 

predict the expected performance of cells in space. Both AM0 and AM1.5G spectra are 

compared in Figure 2. 

 

 

Figure 2: Solar irradiance spectrum above atmosphere and at Earth surface. 

 

2.1.4 Principle 

Photovoltaics allow generating electrical power by converting solar radiation. Physics of 

photovoltaics is based on the optical and electrical properties of semiconductors. When a 

photon (hʋ) with energy higher than the bandgap of the semiconductor is absorbed, an 

electron-hole pair is created. This means that an electron is promoted from the valence band 

(Ev) to the conduction band (Ec) leaving a hole behind. This pair needs to be separated then 

by electric field in order to avoid recombination: this field is provided by a p-n junction 

(see 2.1.5) which is the core of a photovoltaic device. A photon hitting on the surface of a 

semiconductor could be either reflected from the surface, absorbed in the material or 

transmitted throughout the material itself. In the case of PV devices, photons which are not 

absorbed (thus reflected or transmitted) are typically considered as a loss since they do not 



 

 

 
12 

 

generate power. Considering the energy of the photon and the bandgap of the 

semiconductor it is possible to establish if a photon is absorbed or transmitted: 

 Eph < EG: photons with energy Eph less than the band gap EG are transmitted 

 Eph = EG:  photons with energy Eph equal than the band gap are absorbed and can create an 

electron hole pair. 

 Eph > EG: photons with energy higher than the band gap are also absorbed. However, for 

PV applications, part of the energy of these photons is released since electrons 

quickly thermalize down to the Ec lower energy states. 

 

2.1.5 Physics of p-n junction 

In a doped semiconductor the more plentiful carriers are named “majority carriers”, while 

the less abundant carriers are named “minority carriers”. Majority carriers are electrons 

(holes) in n-type semiconductors (p-type semiconductors). Minority carriers are electrons 

(holes) in p-type semiconductors (n-type semiconductors). At equilibrium, the product of 

the majority and minority carrier concentration is a constant: 

 

  
           (eq. 2) 

 

where ni is the intrinsic carrier concentration, n0 and p0 are the electron and hole 

equilibrium carrier concentrations.  

When an n-type and a p-type semiconductor are put in contact, a p-n junction is formed 

between the two materials. This event is the same in the case of homo-junctions or hetero-

junctions. Once the two semiconductors are in contact, electrons from the n-region near the 

junction interface diffuse in the p-region leaving donor atoms electrically unshielded by the 

majority carriers. In the same way, holes from the p-region near the interface diffuse in the 

n-region, leaving acceptors unshielded behind. This phenomenon is called “diffusion”. The 

region nearby the p–n interface, common at the two semiconductors, which lost its 

neutrality and become actively charged, is called the “space charge region” (SCR). The 

rest of the two semiconductors which is not influenced by the metallurgical junction is 

called “quasi-neutral region” (QNR). The consequence of the formation of the SCR is an 
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electric field ( ⃗ ) which fights the diffusion for both electrons and holes.  ⃗  will superimpose 

on the random movement of carriers accelerating holes in the same direction of the field 

and electron in the opposite. This phenomenon is called “drift”. When an equilibrium 

condition is reached, a potential difference (VD) is formed across the p-n junction. A 

schematic of the p-n junction is shown in figure 3. 

 

 

Figure 3: p–n junction in thermal equilibrium with zero-bias voltage applied. Donor atoms (blue particles), 

acceptor atoms (green particles), electrons (red particles), holes (violet particles). 

 

2.1.6 Current-voltage characteristics of a diode  

The metallurgical junction introduced in the previous paragraph is the starting point to 

build a diode. In fact, the diode is a p-n junction connected to two contacts. 

It is possible to describe the diode current-voltage (I-V) characteristics (Figure 4), though 

the following equation: 

 

       ( 
  

     )     (eq. 3) 
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where I is the net current flowing through the diode, I0 is the dark saturation current, V is 

the applied voltage across the diode, n is the diode ideality factor, k is the Boltzmann 

constant, and T is the temperature. 

 

 

Figure 4: Static I-V characteristics of a diode 

 

I0 is defined as: 

 

      ( 
   
     )     (eq. 4) 

 

I0 is the diode saturation current which is activated by the activation energy EA and is the 

diode leakage current in the absence of light. EA is the energy of the dominant 

recombination mechanism. I00 is called “reference current” which is only weakly 

temperature dependent. The n moderates the voltage dependence of the current density [6].  

 

2.1.7 Ideality factor  

The ideality factor (n) is typically measured from the slope of the dark I-V characteristics. 

In ideal solar cell, the ideality factor is as much as possible close to one. Different 

magnitudes of n indicate that a specific recombination mechanism is dominant. Thus the 

variation of the ideality factor allows evaluating the type of recombination in solar cells.  
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2.1.8 Light I-V characteristics 

When a solar cell is illuminated under solar spectrum, additional electron-hole pairs are 

created giving rise to the so-called photogenerated current (Iph) which could be model as a 

current generator in parallel to the diode (Figure 5). Iph which is given by the product of the 

carrier generation function G(z) and the collection probability ƞc(z,V): 

 

          ∫                 (eq. 5) 

 

where q is the elemental charge, and A is the surface of the solar cell. The "collection 

probability" (ƞc) is defined as the probability that a carrier generated by the absorption of a 

photon in a certain region of the p-n junction is collected. Collection probability is max in 

the SCR as the electric field effectively separates the electron-hole pairs. In QNR, diffusion 

is the dominant mechanism. In these areas only carriers generated at a distance from the 

SCR which is less than the minority carrier diffusion length (Ln,p) can be collected. Ln,p is 

the average distance a carrier can travel from the point where it is created until it 

recombines. 

Generally, one of the two components of the junction (n or p) is used as a light absorber 

material in single solar cell. For this reason photovoltaic cells are designed with an absorber 

layer much thicker than the other layer forming the junction [6].  

Iph has the effect of shifting down the I-V characteristics into the fourth quadrant (Figure 5). 

When a cell is light irradiated, equation 3 (diode law) needs to be modified by adding the 

photogenerated current, so the output current becomes: 

 

       ( 
  

     )             (eq. 6) 
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Figure 5: Model and I-V curve of a solar cell under illumination. 

 

2.1.8.1 Short-circuit current 

The Isc term in Fig. 5 is named “short-circuit current” defined as the current through the 

solar cell when the terminals are in short circuit (the voltage across the solar cell is zero). It 

is one of the figures of merit of a solar cell. By definition, Isc is identical to Iph(0). The 

typical factors influencing Isc are the light intensity, the optical properties of the cell, the 

thickness of the p-n junction, and the collection probability [6]. 

 

2.1.8.2 Open-circuit voltage 

Another figure of merit of solar cell is the so-called “open-circuit voltage” (Voc): which is 

the voltage at the output of the cell when no load is connected. In this case the output 

current is zero (I=0), so the Voc can be calculated from equation 6 as: 

 

    
   

 
  (

        

  
  )    (eq. 7) 

 

From equation 4, Voc can be reformulated as: 

 

    
  

 
 

   

 
  

   

        
    (eq. 8) 
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Equation 8 shows that Voc depends on both I00 and Iph. The variations of I0 depend on 

recombination inside the solar cell, thus Voc variations also depend on the amount of 

recombination in the solar cell. 

 

2.1.8.3 Fill Factor 

The fill factor (FF) is the third figure of merit introduced in this chapter. It is defined as the 

ratio between the square drawn by the values of the current (IMP) and voltage (VMP) of the 

cell resulting in its maximum power point (PMP=VMP×IMP), and the square given by the 

product Voc×Isc (Figure 6): 

   
       

       
     (eq. 9) 

 

An ideal solar cell has a FF as closer as possible to one. In fact FF increases along with 

VMP and IMP approaching respectively Voc and Isc. To do that, it is mandatory to decrease the 

losses due to parasitic resistances inside the solar cell (parasitic resistance will be detailed 

further in the manuscript). Using this concept, it is possible to expose the FF as a measure 

of the losses of a solar cell.  

 

 

Figure 6: Graph of the FF of the solar cell: the green square is derived from the maximum power point (Vmp, 

Imp), the yellow square is identified by (Voc, Isc) 

 

2.1.8.4 Power Conversion Efficiency 
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The power conversion efficiency (PCE) is the most important figure of merit, which allows 

comparing solar cells each other. It is defined as the ratio between the generated electrical 

power (PMP) and the solar energy (PIN) to which the cell is exposed: 

 

    
   

   
 

          

   
    (eq. 9) 

 

PCE depends on different parameters such as the intensity of the incident sunlight, the type 

of solar spectrum, the working temperature of the solar cell. For this reasons it is important, 

in order to compare the I-V characteristics of two or more devices, to carefully control the 

conditions under which PCE is measured. Typical measurement setup for terrestrial solar 

cells is with an AM1.5G spectrum (defined in 2.1.3) at a temperature of 25°C.  

 

2.1.9 Losses in solar cells 

Equation 6 is considered for an ideal solar cell since it does not take into account series (Rs) 

and shunt resistances (Rsh) with are present into real solar cells. By incorporating these 

resistances in the model of Fig. 5 (see Figure 7), what we obtain is equation 10: 

 

       ( 
        

     )         
     

   
    (eq. 10) 

 

The effects of these parasitic resistances are, in primis, to decrease the FF of the cells. 

 

 

Figure 7: Solar cell model including parasitic resistances. 
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2.1.9.1 Series Resistance 

Rs variation is mainly affected by the resistances of the front and back contacts, and the 

resistance at the interface of the different layers [6]. High values of Rs may reduce the Isc, 

contrary to Voc where it has no effect (see Figure 8).  

 

 

Figure 8: Influence of Rs on photovoltaic characteristics under illumination. 

 

2.1.9.2 Shunt Resistance 

Rsh is a model of alternative paths (in particular short-circuits) for current. Its variations 

could be due to a non-perfect interface between the doped regions and the metal contacts, 

and to recombination in Shockley-Read-Hall (SRH) defects into the QNR. Contrary to Rs, 

Rsh must be as highest as possible in order to prevent lost in Voc (see Figure 9). 

 

  

Figure 9: Influence of Rsh on photovoltaic characteristics under illumination. 
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2.2 Solar cell 

A solar cell is an opto-electronic device which, by photoelectric effect, directly converts 

sunlight into electricity. Its aim is to generate electric power. The core of a solar cell is the 

semiconductor p-n junction (see 2.1.5): once the sunlight is absorbed, an electron-hole pair 

is created and separated by the junction producing a current flow and a voltage across the 

contacts. Metal contacts at the edges of the p-n junction allow power dissipation when a 

load is directly connected (Figure 10). 

 

 

Figure 10: Example of solar cell 

 

2.3 Thin Film Solar cells 

2.3.1 Device structure 

Two types of configurations called “substrate” and “superstrate” are possible for thin film 

solar cell technology (Figure 11). The advantage of using the first configuration is that any 

type of substrate, transparent or opaque, can be employed since the light is passing through 

the cell before hitting on the substrate. Relating to this, is the fact that the choice of any 

substrate, allows using flexible foils (e.g. polymers, stainless steel) for role-to-role 

manufacturing. In the case of superstrate configuration, the light is hitting on the substrate 

before being absorbed by the solar cell. The choice of the substrate is imposed by the 

technology: it must be transparent (e.g. glass) in order to permit the light to be absorbed in 

the solar cell junction.  



 

 

 
21 

 

The choice of one configuration over the other depends on the type of technology used to 

build the solar cell. 

 

 

Figure 11: Two possible configurations for thin film solar cells: substrate (left side) and superstrate (right side). 

 

2.3.2 Possible materials 

2.3.2.1 Amorphous Silicon (a-Si) 

A-Si material became interesting for solar cell applications when the possibility to decrease 

its defects by hydrogenation was discovered (a-Si:H) [7]. The advantage of a-Si:H are the 

low cost Si employed, low temperature process. Typical superstrate p-i-n configuration is 

used [7], although substrate configuration is also employed [8]. In p-i-n structure, the 

intrinsic layer is of good quality and plays the role of absorber of photons. Record 

efficiency of 10.1% obtained at Oerlikon Solar Lab [9] with a simple junction, whereas 

13.4% is achieved with a a-Si:H/µc-Si:H/µc-Si:H triple-junction [10].  

 

2.3.2.2 Cadmium Tellurate (CdTe) 

As for a-Si:H, typical CdTe solar cells are developed in the superstrate configuration: 

starting from a transparent glass and followed by the successive deposition of TCO, CdS 

buffer (n-type layer), CdTe absorber (p-type), back contact [7]. CdTe has a number of 

advantages as its band gap of 1.45 eV and its high absorption coefficient
 
[11] giving a word 

record of 20.4% power conversion efficiency established by First Solar [11]. 
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2.3.2.3 Cu(In,Ga)Se2 (CIGS) 

CIGS is the thin film technology which nowadays offers the higher efficiency at laboratory 

level [11]. CIGS has some advantages as its tunable bandgap ranging from pure CIS (1.0 

eV) to pure CGS (1.7 eV), high α (10
5
 cm

-1
) [12], and a technology which is mature since 

more than 20 years. The best result (20.8% by Zentrum fuer Sonnenenergie- und 

Wasserstoff-Forschung in Germany) has been reached with a CIGS absorber co-evaporated 

on Mo-coated glass, further incorporated in a heterojunction with CdS, and completed with 

a ZnO window layer [12]. 

 

2.4 Cu2ZnSn(S,Se)4 Solar cells 

2.4.1 Introduction 

From a technical point of view, today’s commercially available thin film modules suffer 

from low efficiency like a-Si, shortage of raw material like Te in the case of CdTe, and In 

in the case of CIGS technology, or materials toxicity like Cd in CdTe technology. In this 

context, Cu2ZnSn(SxSe1-x)4 (CZTSSe) appears to be a very attractive and highly potential 

material applied as a chalcogenide absorber in TF solar cells, regarding the fact that it is 

made from non-toxic (in the case of a pure sulfur-based compound, with no selenium), 

earth-abundant and low-cost raw materials, and shows high-efficiency potential for the near 

future [13]. 

 

2.4.2 Material properties 

In the last ten years, numerous investigation at theoretical level, have been carried out in 

order to predict the formation mechanism and the physical properties of CZTSSe 

compounds. The formation of I2–II–IV–VI4 compounds like CZTSSe can be achieved from 

an II–VI semiconductor by sequential replacement of cations in which the octet rule is 

respected and the total charge remains neutral (see Figure 12).  
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Figure 12: Formation of stoichiometric I2–II–IV–VI4 compounds can be achieved by a sequential replacement of 

cations. 

 

2.4.2.1 CZTSSe crystal structure 

Binary compounds like CdTe adopt the cubic zincblende structure in which there are two 

interpenetrating face-centered cubic crystals [14]. The ternary I–III–VI2 semiconductor 

alloys like CIS (in this case a chalcopyrite structure) can be built by replacing the group II 

atom with two atoms of group I and III [12-15]. Always respecting the octet rule, it is 

possible to split the ternary I–III–VI2 compound by replacing two atoms of group III with 

two atoms respectively from group II and IV, forming a I2–II–IV–VI4 semiconductors. 

Composition of quaternary compounds in a phase diagram can be rather complex to 

display. Since each element can in principle be varied independently of the others, we have 

to be very careful when using terms such as ‘Cu-poor’, ‘Zn-rich’ etc., which are commonly 

employed to describe CZTSSe films. These terms are intelligible when only one component 

varies, but when two or more components deviate from stoichiometry, the terminology can 

be misleading.  

The fact that the chalcogens (S, Se) are not an independent variables, allows representing 

the alloy in a ternary phase diagram. In fact the amount of anions (chalcogens) introduced 

in the alloy depends on the amount of the cations and their valency: Cu(I), Sn(IV) and 

Zn(II). In the CZTSSe literature, the ratios of atomic percentages [Cu]/([Zn]+[Sn]) and 

[Zn]/[Sn] are often used to represent the composition of the cations in the alloy. Both ratios 
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are equal to one when the material is stoichiometric. However, these ratios are not 

independent, and therefore do not clearly show the deviations from stoichiometry in a 

particular case. A ternary phase diagram is the most useful way to summarize compositions 

in the Cu-Zn-Sn system. An example of a ternary phase diagram is shown in Figure 10. 

 

 

Figure 13: Ternary composition diagram showing the position of stoichiometric CZTSSe [19]. 

 

 

The three sides of the plot each show the atomic percentage of one of the three metal 

elements. At any point in the diagram, the three values read off the axes will sum to unity. 

The circle in Figure 13 corresponds to the stoichiometric composition of CZTSSe 

compound. 

A comprehensive analysis of the Cu2X-ZnX-SnX2 pseudo-ternary system (where X could 

be S or Se) was carried out by Olekseyuk et al [19], who presented a phase diagram for the 

system at 400°C (Figure 14). Cu2ZnSnX4 as a single phase is present only within a rather 

narrow range of compositions, which is indicated with an asterisk at the centre of the plot. 

In all other regions of the phase diagram there are up to two additional secondary phases 

present, always alongside CZTSSe.  
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Figure 14: Ternary phase diagram adapted from reference [19], showing the expected secondary phases at 400°C. 

 

 

Taking the case of pure CZTS represented in Figure 11, there are five two-phase fields, in 

which one secondary phase will be observed in addition to CZTS. In between these there 

are five three-phase fields, where the secondary phase from both of the bordering regions 

will be formed alongside CZTS. Other phases not in this diagram but seen during the 

formation of CZTS in other reports include Cu4SnS6 and SnS2.  

 

 

Figure 15: Ternary phase diagram defining the compositional labels used throughout this text. 
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Aside from the small region of single-phase material, we can usefully define six regions, 

shown in Figure 15, as “Cu-poor”, “Cu-rich”, “Sn-poor” etc. These are the labels which 

will be applied to compositions in this report, and by this definition they tell us which 

secondary phases should be expected to form at that composition (see Table 1).  

 

Composition description Expected secondary phases 

“Cu-poor” Cu2ZnSn3X8 + ZnX 

“Sn-rich” Cu2ZnSn3X8 

“Zn-poor” Cu-Sn-S + Cu2ZnSn3X8 / Cu2X 

“Cu-rich” Cu2X 

“Sn-poor” Cu2X, ZnX 

“Zn-rich” ZnX 
 

Table 1: Definition of composition descriptions used in this report, in terms of the expected secondary phases. 

 

 

One property of CZTSSe material is the possible shift from its stoichiometric composition 

leading in particular to Cu-poor compounds. The latter phenomenon originates from the 

inclination of the hosting crystal to stabilize copper vacancies, in which the charge balance 

is commonly insured by appropriate substitutions on the cationic sites. 

CZTSSe crystallizes in a structure which could be kesterite (space group   ̅) [16-18], 

stannite (space group   ̅ ̅ ) [17]. The stannite structure differs from that of the kesterite by 

the stacking sequence of the cations layers along the c-axis, i.e. (…–[ZnSn]–[Cu2]–[ZnSn]–

[Cu2]–…) for stannite versus (…–[CuSn]–[CuZn]–[CuSn]–[CuZn]–…) for kesterite. In the 

case of kesterite, it is also possible to have a so called “disordered kesterite” (space 

group   ̅ ̅ , as stannite) in which a random on-site distribution of Cu and Zn (50/50) 

occurs in the Cu/Zn layer leading to a higher symmetry [20]. Lafond et al. report that 

disordered-kesterite and kesterite models are still open to debate since they are very similar 

(Figure 14) and almost undistinguishable [21]. The only differences lye in the splitting for 

symmetry reasons of the 4d position into 2c and 2d positions (Wyckoff notation) going 

from the   ̅ ̅  space group to the   ̅space group, and a slight change in the position 

chalcogens anions.  

It is recurring to have kesterite and stannite structure in the material at the same time due to 

a low energy difference (~3 meV per atom) in which the cations (Cu, Zn, Sn) are fixed, and 
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the anions (S, Se) are randomly distributed [16-17]. This energy difference could undergo 

also a bandgap variation of the material of 0.15 eV between kesterite (lower value) and 

stannite (higher value) [17]. Details about the different crystal structures are shown in 

Figure 16. Since the kesterite phase is the more likely to have (more stable) for CZTSSe 

material, only this one will be taken as reference in the rest of the manuscript (Figure 17). 

Lafond et al. and his group at Nantes University demonstrated: (i) a deviation in 

composition between the surface and the bulk for non-stoichiometric Cu-poor and Cu-rich 

CZTS using EDX and X-ray photoelectron spectroscopy [22], (ii) the ability of the CZTS 

phase to tolerate substitutions, i.e. deviations of the Cu2ZnSnS4 stoichiometric composition, 

without collapse of the structure and maintaining the overall charge balance in a proved Cu-

deficiency range ([Cu]/[Zn+Sn]) between 0.79–1.14 [22]. Starting from the latter 

assumption, it is more adequate to reformulate the Cu2ZnSn(SxSe1-x)4 in Cu2-y-zZnySnz(S1-

xSex)4. 

 

 

Figure 16: Crystal structure representation of binary, ternary and quaternary compounds. 
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From an experimental point of view, structural characterization is made principally on 

CZTSSe monograins. They are synthesized from high-purity powders of CuZnSn-alloy and 

elemental chalcogens in molten potassium iodide in evacuated quartz ampoules and 

annealed isothermally at high temperature (around 1000°K) for days (around 4). After the 

synthesis the flux material was removed by deionised water [23].  

Schorr from Free University Berlin confirms by a neutron and X-ray diffraction study [24] 

that the CZTSSe crystal structure and the cation disorder are in agreement with first-

principles calculations. Scragg et al. show that it is possible to determine the critical 

temperature (260 °C) for the transition from ordered to disordered kesterite. The latter is 

performed by tracking Cu/Zn disorder in CZTSSe with near-resonant Raman spectroscopy 

[25]. Zillner et al. studied the lattice positions of Sn in CZTS nanoparticles and thin films 

studied by synchrotron X-ray absorption near edge structure (XANES) analysis [26].  

 

 

Figure 17: Relationship between the crystallographic positions of cations in stannite, kesterite, and disordered-

kesterite structures. 

 

2.4.2.2 CZTSSe bandgap 

The chalcogens concentration into CZTSSe alloys gives the possibility to make band 

engineering to tailor the material properties for a given application, but at the same time, 

allows having some alloy disorder. 

Calculations of the electronic band alignment of Cu2ZnSn(SxSe1-x)4 alloys by density 

functional theory (DFT) reveal a direct bandgap monotonically increasing from 1.0 eV 
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(pure CZTSe) to 1.5 eV (pure CZTS) [16-18] with a small bowing parameter (b~0.1) as 

reported in equation 11. 

 

                                         (eq. 11) 

 

Since b is small, it is possible to approximate as linear the EG variations as a function of x.  

 

 

Figure 18: Cu2ZnSn(SxSe1-x)4 bandgap variation as function of the composition (x). In the inset the Type I band 

alignment between CZTS and CZTSe 

 

In Figure 18 is noticeable as the band alignment between CZTS and CZTSe is of type I [18, 

23], in particular the Ec offset (CBO~0.35 eV) is larger than the Ev offset (VBO~0.15 eV) 

[18]. This confirms the x variation has more important effects on the Ec rather than Ev. 

Direct measurements of the variation of the CZTSSe bandgap between 1.0 and 1.5 eV are 

performed with different techniques: (i) optical absorption spectra of the CZTSSe powders 

using UV–vis–NIR spectrometer [27], (ii) electrolyte electroreflectance measurements at 

room temperature [28]. Both confirm a nearly linear variation of the bandgap along with the 

variation of chalcogens ratio, with a bowing parameter between 0.08 [27] and 0.19 [28]. 
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2.4.2.3 CZTSSe defects and doping 

Due to higher number of constituent atoms compared to binary or ternary compounds, 

CZTSSe has a wider range of possible defects depending on its growth conditions and 

variations from stoichiometry [18, 30-32]. Most of them are antisites, vacancies, or 

interstitials: they can be located shallow or deep in the bandgap, and their concentration 

depends on their own formation energy [17, 30, 32]. In particular, shallow level defects can 

influence the minority and majority carrier concentrations thus the conductivity, whereas 

deep level defects may act as recombination centers for photogenerated electron-hole pairs 

[6].  

 

 

Figure 19: Calculated defect formation energy as a function of the Fermi energy for a Cu-poor and Zn-rich 

CZTSSe, taken from Ref 14.  

 

The most familiar defects, with their formation energies as function of the position within 

the bandgap, for pure CZTS and CZTSe are summarized in Figure 19. The two graphs in 

Figure 19 could explain why the p-type conductivity of CZTSSe is mainly due to the 

antisite CuZn: its formation energy is lower than all the others acceptors defects (VCu, VZn, 

ZnSn, CuSn) although they can be present in the alloy [30-32]. From this analysis it is 

possible to explain the reason of the higher efficiency for Cu-poor and Zn-rich CZTSSe 
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solar cells [33-34]: indeed this composition allows the increase of shallow Cu vacancies in 

spite of CuZn antisite. Moreover, the high formation energy of donor defects (SnCu, SnZn, 

Zncu, Cui, Zni), explains why n-type doping of CZTSSe is very difficult.  

The more CZTSSe is non-stoichiometric the more deep levels caused by the intrinsic 

defects increase [16, 30, 34]: some of them may act as traps for free carriers, which reduces 

the efficiency of solar-cell devices [15-18, 30-32]. Chen et al. presume that charge-

compensated defect complexes are easy to form in CZTSSe. They may passivate the deep 

donor levels improving CZTSSe quality and thus solar cell efficiency [30]. In particular the 

formation of the     
      

    cluster under Zn-rich and Cu-poor conditions is predicted 

to be beneficial for CZTSSe solar cell performance; however, the precipitation of a ZnS 

phase must be avoided [15-18, 30]. 

 

2.4.2.4 CZTSSe phase formation: parasitic minor phases 

Compare to ternary chalcopyrite compound like CIGS, it is more difficult to achieve a 

single phase material for quaternary compounds like CZTSSe. Various studies with Raman 

spectroscopy and X-ray diffraction show that it is very difficult to achieve a homogenous 

CZTSSe material without spurious minor phases [35-36]. Depending on the Cu, Zn, Sn 

concentration, and the growth technique employed the type and quantity of minor phases 

into CZTSSe compounds can vary [36-38].  

 

 

Figure 20: The calculated chemical-potential stability diagram of pure CZTS, taken from Ref 11. 
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Various studies on this subject have been reported in literature using different calculation 

methods: the common point is that, single phase CZTS and CZTSe exist only in a very 

small region of the phase diagram [26, 30-32]. Figure 20 shows, in the case of pure CZTS, 

a slice (in black) in a given Cu-rich plane, for which the CZTS is stable: outside this area 

there will be the simultaneous existence of CZTS with one of the other phases like ZnS, 

CuS, SnS, Cu2SnS3 (CTS) [25, 39-40]; this is valid also for pure selenite ZnSe, CuSe, SnSe, 

Cu2SnSe3 (CTSe) [36, 41-42].  

Since the best performing CZTSSe solar cells are made with an absorber which is Zn-rich, 

the control over the Zn-content in CZTSSe alloys is very important: Zn-poor samples lead 

to CT(S,Se) formation, instead Zn-rich samples lead to Zn(S,Se) [41-42], which is 

congruent with the narrow line in the Zn-region of figure 20.  

 

2.4.2.5 CZTSSe absorption coefficient 

CZTSSe material owns an optical absorption coefficient higher than 10
4
 cm

-1
 at 

wavelengths lower than the band gap measured by absorption spectroscopy [43]. This 

permits to absorb light with an absorber of very thin thickness (1-2 μm). 

 

2.4.3 Technological Cu2ZnSn(S,Se)4 synthesis 

Different techniques, vacuum or non-vacuum, are employed to synthesize CZTSSe 

absorber. 

 

2.4.3.1 Vacuum techniques 

One-step vacuum processes consist in simultaneously incorporating all the elements. 

Among these techniques employed for high-quality CZTSSe deposition, co-sputtering [44] 

and co-evaporation [45] can give good PV performances. Other interesting methods can be 

pulsed-laser deposition [46]. The so-called two-step process is a technique where the 

precursors are first incorporated during an ambient temperature process like sputtering or 

evaporation, followed by an annealing step [47-52]. The chalcogens can be incorporated 
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into the precursor [36-37] or during the annealing step [35, 40, 48-50]. The annealing step 

could be a selenization [36-37] or sulphurization process [39-40].  

 

2.4.3.2 Non-vacuum techniques 

Non-vacuum deposition methods for CZTSSe synthesis, as well as for other applications, 

are scalable and low-cost processes with the goal of being attractive for large scale 

manufacturing. The world record efficiency for CZTSSe solar cell (12.6 %) has been 

achieved following one of these approaches: the simultaneous use of spin-coating solution 

and particles of constituents [33]. Other possible methods giving a quite good PV 

performance CZTSSe could be nanoparticles [53] and electroplating [54]. One weak point 

of these techniques is, in some cases, the use of toxic and dangerously instable solvents 

which are hard of recycling as hydrazine. 

 

2.4.4 History of CZTSSe solar cells 

The first reported CZTSSe solar cell device was in 1997 by Katagiri et al. [55]. They built 

the first pure CZTS solar cell (0.66% PCE) where CZTS absorber is in a heterojunction 

with CdS buffer, and has Mo and ZnO:Al (AZO) as back and front contacts [55]. The 

CZTS absorber was prepared by two-step sulphurization process from electrodeposited 

Cu/Sn/Zn precursors. Always Katagiri set a new PCE record of 2.62% [43]: this was the 

first reported result for two-step sulphurization with vacuum deposited precursors. New 

records were established when he optimized the sulphurization process (5.4% PCE) [55], 

discovered how to etch remaining metal oxides on the surface of the absorber at the end of 

the annealing process (6.7% PCE) [56]. For analogous selenide CZTSe devices, in 1997 

Friedlmeier et al. reported on vacuum-fabricated films, obtaining PCE of 0.6% [57]. By 

2009 the efficiency for CZTSe devices had increased to 3.2% [58]. This record survived till 

for the first time chalcogens intermixing is introduced in the alloy forming CZTSSe. Mitzi 

and his group at IBM reported 9.7% PCE CZTSSe solar cells by using a hybrid particle-

solution approach [59]. The CZTSSe absorber layers for these devices were deposited using 

two-step approach where precursors are dissolved in hydrazine and spin-coated on Mo-

coated glass followed by annealing [59]. In 2010 the group of Agrawal at Perdue 
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University (USA) introduced for the first time germanium in the alloy forming CZGeTSSe 

leading to a 8.4% PCE [60]. In the two years following (2011-2012), Todorov et al. pushed 

the PCE to 10.1% and 11.1% then still using hybrid particle-solution method [61]. In 2012 

Repins et al. set a new record for coevaporated CZTSe (9.5%) [62].  

 

 

Figure 21: Evolution of the record PCE of CZTSSe solar cells as a function of years. 

 

In 2013 Kato et al. and Brammertz et al. reported the new records for pure CZTS (9.2% 

using co-sputtering) [63] and CZTSe (9.7% using co-evaporation) [52]. Nowadays the 

world record efficiency for CZTSSe solar cells is at 12.6% set at IBM Watson [33]. The 

evolution of the conversion efficiency of CZTSSe solar cells is summarized in Figure 21. 
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3.1 Fabrication techniques  

Two-step processes, in which precursors are vacuum-deposited and then selenized or 

sulfurized, have attracted a lot of attention not only as a technique suitable for large-scale 

module production (as for CIGS) [1], but also as one of the methods with the highest 

potential to yield high cell and module efficiencies [2-3, 4-13]: up to 9.7% power 

efficiencies have been achieved by IMEC [14].  

In the work presented in this manuscript, the CZTSSe absorber has been always obtained 

by two-step selenization process: firstly a stack of ZnS/Cu/Sn precursors are deposited by 

physical vapor deposition (PVD), secondly this stack has been annealed under selenium 

atmosphere in order to achieve the final CZTSSe material. Further details on this technique 

are listed in this chapter. 

 

3.1.1 Molybdenum back contact 

The back contact (BC) employed in the elaboration of the CZTSSe solar cell is a 450 nm 

layer of molybdenum.  It is deposited by DC-sputtering in a Perkin Elmer system at room 

temperature under 1×10
-4

 Torr argon atmosphere on a 1 mm-thick soda-lime glass (SLG) 

substrate. During deposition process the sample is rotating in order to increase 

homogeneity. The choice of Mo as BC for CZTSSe solar cell is an inheritance of CIGS 

technology [15], where it has been identified as the best performing BC. Mo can react with 

Se during selenization process to form MoSe2. The MoSe2 is a semiconductor with a gap of 

1.41 eV [15] and has the effect, for a specific crystal orientation, of forming an ohmic 

contact at Mo|absorber interface [15].  

 

3.1.2 Precursor deposition  

Starting from a Mo-coated SLG substrate deoxidized for 10 seconds in a 10% NH3 

solution, two different PVD techniques are used to deposit the precursors. First ZnS-layer is 

deposited via RF-sputtering in a Plassys MP400 system under 1×10
-3

 mbar of Ar at room 

temperature. Then the metallic layers of Cu and Sn are grown by high vacuum electron-

beam evaporation in a Plassys MEB550S deposition chamber at 5×10
-7

 mbar. In both cases, 

deposition rates are monitored by a quartz balance. These precursor thicknesses have been 
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chosen to create a Zn-rich and Cu-poor CZTSSe layer as used in most efficient CZTSSe-

based solar cells [3]. The stacking order of precursors (Figure 22) could be shifted in order 

to study the different reaction mechanism during selenization process; this topic will be 

analyzed in details in chapter 4. 

 

 

Figure 22: Schematic of the precursor stack prior to selenization process. 

 

3.1.3 Selenization 

The selenization of precursors to synthesize CZTSSe material occurs in a tubular furnace 

under Ar atmosphere. A cross-section of the furnace setup is shown in Figure 23. It is 

composed of a quartz tube where the inner pressure can be varied by playing on the Argon 

inlet and the pump. The precursor stack is positioned on the middle of a graphite support 

(graphite is an inert material): it has a good thermal conductivity and used to provide a low 

temperature gradient along the thickness of the sample. A thermocouple is integrated in the 

graphite in order to check the temperature fluctuation during annealing process. Selenium is 

provided in the form of pellets placed in close proximity of the precursor stack to assure 

proper selenization. Samples are annealed using a halogen lamp perpendicular to the 

furnace following a specific temperature profile: ramp of 1°C/s is used and stopped at 570°, 

at this point a temperature plateau of 570°C is maintained for 30 minutes followed by 

natural cooling (about 1 hour). With this technique it is possible to produce a final 

Cu2ZnSn(S0.15Se0.85)4 absorber with a thickness of 1.5 µm [3].  
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Figure 23: Cross-section of the tubular furnace employed for selenization process. 

 

COMSOL simulations of selenization process using the profile described above 

demonstrate that a graphite box as heat conductor, allow having a temperature difference 

between the top and the bottom of the sample of only 6 degrees (see Figure 24). 

 

 

Figure 24: COMSOL simulation of temperature profile as function of the sample thickness (in millimiters). 
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3.1.4 Processing of the solar cell  

3.1.4.1 CdS buffer layer 

Solar cells are fabricated by adding a 70 nm n-type CdS layer grown by chemical bath 

deposition (CBD) to the CZTSSe thin films to form the hetero-junction. The CZTSSe 

absorber is soaked in a solution composed of cadmium acetate, thiourea and ammonia and 

heated on a hot plate for 11 min at 80°C. The reaction of precursors leading to the thin film 

CdS layer is the following: 

 

        
                                              

 

A magnetic agitator is employed to enhance uniformity. More details about CdS deposition 

is given in table 1. 

 

 

 

 

 

 

Table 1: CdS precursor deposition details. 

 

3.1.4.2 Transparent conductive oxide  

After CdS deposition, a combination of 50 nm i-ZnO and 450 nm Al:ZnO  are grown by 

RF-sputtering from a pure ZnO target and from a 2% wt Al2O3-ZnO target respectively. 

The measured surface resistance of this TCO layer is around 25 Ω/. 

 

3.1.4.2 Ni/Al grids  

The front contact is metal grids composed of a combination of Ni and Al layers (total 

thickness 500 nm) deposed by e-beam evaporation using a deposition mask.  

Precursor material Chemical formula Concentration 

Cadmium acetate Cd(CH3CO2)2 1.094 g/L 

Thiourea SC(NH2)2 1.54 g/L 

Ammonium acetate NH4C2H3O2 2.735 g/L 
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The structure of the completed CZTSSe solar cell is shown in Figure 25. 

 

 

Figure 25: CZTSSe-based thin film solar cell. 

 

3.2 Analysis techniques  

In the spirit of understand and exploit the properties of quaternary compounds like 

CZTSSe, characterization at both material and device stage are mandatory. In particular, it 

is essential to monitor the compositions and elemental distribution of CZTSSe absorber, 

since it is not often homogeneously distributed and since these elemental distributions may 

affect the electrical characteristics of the CZTSSe solar cell. 

 

3.2.1 Material analysis 

3.2.1.1 Scanning Electron Microscopy  

SEM has been widely employed for retrieving topological information from CZTSSe thin 

films on both surface and cross-sections (Figure 26). A Hitachi S4000 scanning electron 

microscope (SEM) is used to examine the morphology of the CZTSSe layers as well as to 

estimate their thicknesses. The use of the SEM requires very little in regard to sample 

preparation: the sample is cleaved along the surface in order to examine cross-section. 

CZTSSe sample is a conductor so no previous metal deposition is required. The images are 

taken always using a vacuum around 10
-3

 mbar and an accelerating voltage between 10 and 
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30 keV. The electron hitting to the sample are emitted by thermionic effect from a tungsten 

filament, whereas the collected electrons, giving the image, are secondary electrons 

resulting from the interaction of the incident beam with the sample at the point of entry. 

 

 

Figure 26: (a) Cross-section view of a as-annealed CZTSSe layer synthesized from a ZnS(480 nm)/Cu(180 

nm)/Sn(240 nm) stack of precursors. (b) Top view of the same layer. 

 

3.2.1.2 Energy Dispersive X-ray Spectroscopy  

EDS/EDX is an analytical technique used for the elemental analysis of all the elements in 

the periodic table above beryllium. It exploits the emission of X-rays generated by an 

accelerated electron beam incident on the sample. CZTSSe measurements are performed at 

25 kV in a Phillips XL30 SEM to determine the global chemical composition of the layers. 

Cross-sectional EDS is also performed in a Zeiss Ultra55 SEM at 30 kV using a micro-

analysis system equipped with a 30 mm
2
 SDD detector from Bruker. In particular cross-

sections are prepared by mechanical polishing up to 30 microns followed by ion milling up 

to electron transparency (Gatan PIPS system operated at 3kV). Concerning the constituent 

elements of CZTSSe, the minimum detection limit (MDL) is as low as 0.2% wt. For 

elements like sodium (Na will be the main subject in chapter 5) the MDL is usually around 

1-2% wt. under the best conditions. In our analysis, the main results giving out of the EDS 

analysis are the atomic cation ([Zn]/[Sn], [Cu]/[Zn+Sn]) and anion ([S+Se]/[Cu+Zn+Sn], 

[S]/[S+Se]) ratio compositions. They estimate the distance from stoichiometry: portraits of 

analysis made on CZTSSe in top and cross-sectional mode are depicted in Figure 27. 
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Figure 27: (a) Cross-section EDS analysis of a as-annealed CZTSSe layer synthesized from a ZnS(480 nm)/Cu(180 

nm)/Sn(240 nm) stack of precursors. (b) Top EDS of the same layer. 

 

3.2.1.3  X-Ray Diffraction  

XRD is a powerful technique used to identify crystallographic and structural properties 

present of a material. The presence and composition of crystalline phases of CZTSSe layer 

are characterized by XRD and grazing incidence X-ray diffraction (GIXRD) in a D8 

Advance Bruker AXS.  

The diffraction patterns of minor phases like Zn(Sx,Se1-x), Cu2Sn(Sx,Se1-x)3 are difficult to 

be identified by XRD due to superposition of their spectral lines with Cu2ZnSn(Sx,Se1-x)4 

phase. Therefore, it is difficult to ascertain right minor phase from XRD but the remaining 

phases such as Sn(Sx,Se1-x), SnS(Sx,Se1-x)2, or Cu2(Sx,Se1-x) can indisputably be 

recognizable. 

XRD has also been used to estimate the crystallite size of CZTSSe by using Scherrer’s 

equation: 

 

  
  

     
     (eq. 12) 
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where D is the mean size of the crystallite (it could be smaller or equal to the grain size), K 

is a dimensionless factor around 0.9,  λ is the X-ray wavelength, B is the line broadening at 

half the maximum intensity (FWHM), after subtracting the instrumental line broadening, in 

radians, and θ is the Bragg angle. 

 

3.2.1.4  Raman spectroscopy 

Raman spectroscopy is a spectroscopic technique used to observe vibrational modes of 

materials. It is based on Raman scattering (inelastic scattering) of monochromatic light, 

usually from a laser in the visible, near-infrared, or near-ultraviolet range. The energy 

difference between the incident photons and those released inelastically by the sample 

corresponds to the vibrational energy levels of the molecule diffusing: the analysis of the 

shift of the spectral lines due to Raman Effect can therefore provide information on the 

chemical composition, molecular structure, and intermolecular interactions of the sample.  

 

 

Figure 28: Raman spectra of pure CZTS and CZTSSe with 90% selenium layers. Main peaks of CZTS and CZTSe 

[15] are reported. 

 

Raman spectroscopy is primarily a structural characterization tool useful to check the 

presence of minor phases. Confocal Raman spectroscopy is used in a backscattering 
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configuration with 10 mW 532 nm green laser excitation. Raman spectroscopy results also 

convenient to observe the bimodal behavior of CZTSSe compounds demonstrated by 

Grossberg et al. [16]:  a variation in the chalcogens concentration (S, Se) will shift the 

CZTS and CZTSe A1 Raman modes towards higher (S-content increasing) or lower 

wavenumber (Se-content increasing) (See Figure 28).  

 

3.2.1.5  Glow Discharge Spectroscopy  

A GDS tool is used to evaluate the elemental depth profile in CZTSSe: the glow discharge 

Ar plasma source (in our case 13.56 MHz radio frequency power) provides a very fast 

sputtering rate of the order of µm/min, and an optical spectrometer for the real-time 

detection of etched species is used for determining the elemental depth profiles as a 

function of the thickness of the layer (30 nm spatial resolution). 

Figure 29 shows a typical GDS spectrum of CZTSSe layer synthesized on Mo. 

 

 

Figure 29: GDS spectrum of CZTSSe material synthesized on Mo. 
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3.2.1.6  Photoluminescence  

PL is mainly used to study the material quality and intrinsic properties of CZTSSe. As for 

Raman spectroscopy, this method is very useful to quantify the chalcogens ratio inside 

CZTSSe compounds as reported in Ref. 15 (Figure 30).The spectral analysis of the PL is 

performed at low temperature (8 K) using a thermo-electrically cooled Andor InGaAs 

CCD. PL spectrum is excited by different femtosecond lasers at 365 and 780 nm with an 

average power between 20 and 120 mW. 

 

 

Figure 30: Normalized low-temperature photoluminescence spectra of the CZTSSe from Ref. 15 

 

3.2.2 Cells analysis 

3.2.2.1  Light current-voltage measurements 

Light current-voltage measurements allow establishing the PCE of a solar cell. The need of 

comparison between devices manufactured at different companies and laboratories using 

different technologies boosted the necessity of find a standardized method of analysis. 

The standards for cell testing are: 

 AM1.5 for terrestrial cells and AM0 for space cells. 

 Intensity of 1 kW/m
2
 (one-sun of illumination) 
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 Cell temperature of 25 °C  

 Four point probe  

 

This standard is respected in the measurement of CZTSSe solar cell using a Spectra-Nova's 

CT Series Solar Cell Tester. 

 

3.2.2.2  Dark current-voltage measurements 

Dark current-voltage (dark I-V) measurements are commonly employed to evaluate the 

electrical characteristics of solar cells. The dark I-V measurement procedure does not 

provide information regarding the four figures of merit described in 2.1.8, but is more 

sensitive than light I-V measurements in determining loss parameters (Rs, Rsh, n, I0) that 

dictate the electrical performance of a solar cell. 

 

 

Figure 31: The olive curve is a typical dark I-V characteristic. The wine dashed curve shows the same device 

without the parasitic resistances (Law Shockley). The colored areas indicate where the different parameters are 

extracted: Rsh (yellow), n and I0 (red) and Rs (green). 

 

The extraction method is to perform parameter interpolation in the three areas of the curve 

(see Figure 31). Rsh can thus be extracted performing a linear regression of the curve around 

0 V. Rs is obtained with a linear regression at high voltage. Finally, I0 and n are obtained by 

interpolation of the exponential portion of the curve using the equation 3. I-V 

measurements are performed in darkness with a sourcemeter Keithley 2601A. 
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3.2.2.3  External Quantum Efficiency measurement 

EQE indicates the ratio of the number of photons incident on a solar cell to the number of 

generated charge carriers. It is extracted from the spectral response of CZTSSe solar cells. 

It is defined as:  

          ∫            
                 (eq. 13) 

where α and ƞc are known, and TF is is the fraction of incident light reaching the CZTSSe 

layer and is defined by: 

 

      (      ) (             )   (eq. 14) 

 

where, R is the reflection of the CZTSSe/CdS/TCO structure and          is  the 

absorption into the buffer and window layers. 

 

 

Figure 32: External quantum efficiency of a typical Mo|CZTSSe|CdS|TCO 

 

EQE measurements are carried out in a Lot Oriel Spequest with a monochromator under 

chopped illumination and a lock-in technique. 
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4.1 Motivation 

CZTSSe compound is a complex material due to its number of constituents. In order to 

increase the efficiency of CZTSSe-based solar cells, and engineer new solutions to this 

scope, it is important to understand the mechanism of formation of the absorber starting 

from its raw components. As described in 2.4.2.4, it is very complicated to achieve a 

single-phase CZTSSe material without spurious minor phases. In particular the highest 

efficiency devices have all been obtained for materials with Zn-rich and Cu-poor 

compositions [1], with a cations ratios ([Cu]/([Zn]+[Sn])) around 0.85, and [Zn]/[Sn] 

around 1.20 [1]. It is reported experimentally [3-4] that Zn-rich/Cu-poor absorbers could 

promote, in most of the cases, the formation of resistive Zn(S,Se) phase which increase 

series resistance [5] and limit device performance.  

The predicted reaction pathway for CZTSSe [6-7] is shown in equation 15, where X is for 

the chalcogens S and Se: 

 

          (                      
 

 
    )  (eq. 15) 

 

The possibility to reduce the formation of minor phases is fundamental to improve CZTSSe 

solar cell efficiency.  

 

4.2 Two-step selenization process 

J. Scragg et al. claims that the search for the “best fabrication route for CZTSSe” [8] is not 

able to leave two requirements out of consideration: (i) a single phase material by 

simultaneous deposition of all the components, (ii) suppress tin losses [6] by annealing of 

CZTSSe under overpressure chalcogens and tin atmosphere. Precursor deposition and 

annealing must be stringed together (two-step process) when these two criteria are not 

achievable within a single system. 

Two-step processes, in which precursors are vacuum-deposited and then selenized or 

sulfurized, have attracted a lot of attention not only as a technique suitable for large-scale 

module production (as for CIGS [9]), but also as one of the methods with the potential to 

yield high cell and module efficiencies [10-16]: up to 10.8% power efficiencies have been 

achieved by Solar Frontier [17].  

During annealing process the chalcogens could be delivered by elemental S or Se 

atmosphere carried with an inert gas like Ar or N2 [6, 8, 11], employing hydrogenated 

chalcogens  atmosphere (H2S, H2Se) with a carrier gas [14, 18]. 

One of the main issues when using such a two-step process is the homogeneity of the 

obtained CZTSSe film: due to the incorporation difference of chalcogens, the material 

could be heterogeneous and CZTSSe could be obtained with a gradient of composition. 

One of the main parameters to control this issue is the order in which the thin films of the 

precursors are stacked (the stacking order) as already demonstrated by Fernandes et al. 

[19]. Yoo et al. [20] reported that it is possible to control the cuprous secondary phases in 

kesterite CZTS thin films by playing on the stacking order of Cu-poor metallic precursors.  
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4.2.1 Different precursor stacks 

In this study, several CZTSSe thin films are prepared from two stacks of precursors named 

stack A and stack B, differing by the precursor deposition order. Both of the stacks start 

with a ZnS layer on a 5×5 cm
2
 Mo-coated SLG, but then the deposition of Cu and Sn is 

inverted (Figure 30). The details of the precursor stacks are presented in table 1. These 

precursor thicknesses have been chosen to create a Zn-rich CZTSSe layer as used in 

efficient CZTSSe-based solar cells [1].  

 

 

 

Figure 33: SEM images of different precursor stacks before annealing: stack A (a) and stack B (b). 

 

 

Sample 

Name 

Precursor 

stack 

Technique of 

deposition 

Thickness 

(nm) 

Stack   

ZnS Sputtering 4 0±40 

Sn Evaporation 240±5 

Cu Evaporation 180±5 

Stack B 

ZnS Sputtering 4 0±40 

Cu Evaporation 180±5 

Sn Evaporation 240±5 

 

Table 1: Precursor deposition details. 

 

The cross-section of stack A in Figure 33a shows flat ZnS deposition profile and a Cu-

profile quite irregular on the top. ZnS layer thickness in Figure 33b is thinner than stack A 

because it corresponds to an image taken on the edge of the glass substrate where the 

deposition rate is not uniform. Any characterization results reported in this chapter are 

taken on a region of CZTSSe material where the precursor’s deposition rate is uniform. 

Grazing-incidence X-ray diffraction is used to study material surfaces because the wave has 

very limited penetration [21]. In our case, it is used to characterize the precursor stacks and 

particularly the top metallic layers (Cu and Sn) before the selenization process. Within the 

experimental conditions, the depth of analysis has been estimated to be 250 nm, which 

means that the focus is on the top metallic layers and that the underlying ZnS layer is 

(a) (b) 

(a) (b) 
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excluded from the analysis. GIXRD on both stacks shows (Figure 34) that before 

selenization process, there is an intermixing between Cu and Sn at the interface leading to 

the formation of a Cu6Sn5 alloy. This intermixing is probably due to the radiated heat from 

the source material during evaporation. 

 

 

Figure 34: Grazing incidence XRD spectra of Stack A(a) and Stack B(b) before the selenization process. The 

diffraction peaks are indexed utilizing the International Center for Diffraction Data for Cu5Sn6 (01-072-8761), Cu 

(00-004-0836), Sn (03-065-0296). 

 

 

4.2.2 Selenization annealing 

The selenization of precursors to synthesize CZTSSe layers occurs in a tubular furnace 

under Ar atmosphere. Selenium is provided in the form of pellets placed in close proximity 

to the precursors to assure proper selenization (details on the selenization process are given 

in 3.1.3). 

 

 

 

Figure 35: Temperature profiles of the samples which underwent selenization at 350°C, 450°C and 570°C (with 

and without the thermal plateau). 
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Four samples of each stack are prepared and each of them are selenized with a different 

temperature profile: ramps of 1 °C/s are used and stopped at the desired final temperature 

(350°C for the first one - 450°C for the second one - 570°C for the third one) followed by 

natural cooling. For the four samples, a temperature plateau of 570°C is maintained for 30 

minutes. In all cases, the cooling time is about 1 hour (Figure 35). 

 

 

4.3 The effects of precursor order on film growth 

4.3.1 Study of the selenization process by SEM 

Figure 36 and 37 show scanning electron microscopy cross-sectional views of stack A and 

stack B respectively after the selenization process at different temperatures. We estimate 

the final CZTSSe layer thickness to be around 1.5 µm for both samples. After selenization 

at 350°C and 450°C (Figure 36-37a and 36-37b, respectively) two layers are identifiable 

above the Mo film. Top layer in Figure 36b could induce a doubt concerning the possibility 

of having a double layer on top of ZnS: this is not true since it is only an artifact due to the 

not-perfect cleavage of the cross-section. A ZnS-like layer is identified closest to the Mo 

interface. This proves that the different precursors undergo incomplete selenization. After 

selenization at 570°C (Figure 36-37c), SEM characterization confirms a decrease in the 

ZnS-like layer thickness, and confirms  partial intermixing of all the precursor elements 

before the plateau of temperature is reached.  

 

 

 

 

Figure 36: SEM images showing the formation of CZTSSe at different steps in the selenization process of Stack A: 

(a) after selenization at 350°C, (b) after selenization at 450°C, (c) after selenization at 570°C, (d) after selenization 

at 570°C with a 30 minute thermal plateau 

 1 
200 nm 

(b) 

Mo 

(a) 

Mo Mo Mo 

(c) (d) 

Mo(SxSe1-x)2 

ZnS ZnS ZnS 

200 nm 200 nm 200 nm 
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Figure 37: SEM images showing the formation of CZTSSe at different steps in the selenization process of Stack B: 

(a) after selenization at 350°C, (b) after selenization at 450°C, (c) after selenization at 570°C, (d) after selenization 

at 570°C with a 30 minute thermal plateau 

 

 

After selenization at 570°C with a 30 min plateau (Figure 36-37d), the SEM image shows 

two distinguishable zones with large grains on top and smaller ones closer to the 

molybdenum interface. The larger grains are of the order of the layer thickness. In Figure 

36-37d a thin layer of Mo(S,Se)2 can also be observed which is in accordance with 

literature [22]: it is especially recognizable due to its typical columnar shape. 

 

 

4.3.2 Study of the selenization process by EDS 

EDS measurements are performed to evaluate compositional changes in the material with 

increasing temperature during the process of selenization (Figure 38 and 39). 

The incorporation of Se into stack A increases with temperature: at 350°C no Se is 

observed (Figure 38a and 39a), indicating that evaporated Se needs higher temperatures to 

facilitate diffusion into the top Cu layer. At 450°C, the Se content increases with annealing 

temperature (Figure 38b), and at 570°C the CZTSSe stoichiometry for chalcogens is 

reached (([S]+[Se])/Metals~1) (Figure 39a). The 30 min plateau does not change the 

[S]/([S]+[Se]) ratio or the chalcogen:metal ratio (Figure 39a). The formation of a high Zn 

and Se content phase (probably Zn(S,Se)) in contact with Mo is noted (Figure 38c). 

In stack B, selenium incorporation is larger at lower temperatures (350°C) than the one in  

stack A evidenced by the presence of high Sn and Se content  phases (probably SnSe) in the 

top layer (Figure 38b) and a much lower [S]/([S]+[Se]) ratio at 350°C and 450°C (Figure 

39b). This result indicates that the low-temperature incorporation of Se in the thin film is 

greatly enhanced when the Sn layer is in contact with the Se vapor. As in stack A, a phase 

with high content of Zn and Se (probably Zn(S,Se)) is still present at the Mo interface after 

the 30 min temperature plateau (Figure 38d). 

 
 

 
 

(b) 

Mo 

(a) 

Mo Mo Mo 

(c) (d) 
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ZnS ZnS 
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 It is also noted that at every annealing temperature before the 30 min plateau (350°C, 

450°C, and 570°C) the [S]/([S]+[Se]) ratio is much lower for stack B than for stack A 

(Figure 39). This demonstrates that the incorporation of Se in loco of S atoms is easier in 

stack B than in stack A.  

 

 

Figure 38: Cross-section EDS profiles of stack A selenized at 350°C (a) and 570°C – 30min (c); cross-section EDS 

profiles of stack B selenized at 350°C b) and 570°C – 30min (d). All statistical errors are twice the confidence limit. 

The yellow line in each image is the starting point for the calculation of [Zn]/[Sn], [Cu]/([Zn]+[Sn]) and 

[S]/([S]+[Se]) ratios shown in Table 2. The Zn-rich phase on the left of the black line is discarded in the 

composition calculations 

 

 

The evaluation of the metal ratios [Zn]/[Sn] and [Cu]/([Zn]+[Sn]) in CZTSSe layers is a 

critical point since improved performance in solar cells  has been attributed to a Cu-poor 

and Zn-rich absorber layers. Top-view EDS measurements at 25kV, at the end of the 30 

min plateau, give [Zn]/[Sn]=1.31 and [Cu]/([Zn]+[Sn])=0.76 for stack A, [Zn]/[Sn]=1.35 

and [Cu]/([Zn]+[Sn])= 0.72 for stack B. These atomic ratios are calculated over the whole 

wafer, thereby including the high Zn-content phase in contact with Mo. The [Zn]/[Sn] ratio 

decreases and the [Cu]/([Zn]+[Sn]) ratio increases by discarding the high Zn-content phase  

at the Mo interface. This has been calculated from cross-section EDS measurements (see 

Figure 38c and 38d), showing that these ratios should be calculated with care in case of 

layer inhomogeneity. Independent of methodology (top-view EDS or cross-section EDS), 
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an alloy composition of (1-x) = 0.13±0.05 ([S]/([S]+[Se])) is found in both stacks after the 

30 min plateau (results summarized in Table 2). 

 

 

 

Figure 39: Compositional ratio at different steps of the selenization process of Stack A(a) and Stack B(b). Results 

are obtained from top-view from EDS measurements at 25kV. Values for the first steps have to be considered 

carefully because of the strong inhomogeneity of the layers. 

 

 

Sample Name EDS technique [Zn]/[Sn] [Cu]/([Zn]+[Sn]) [S]/([S]+[Se]) 

Stack A 
Cross-section 1.26±0.03 0.97±0.02 0.13±0.03 

Top-view 1.31±0.06 0.76±0.06 0.13±0.05 

Stack B 
Cross-section 1.24±0.04 1.00±0.03 0.12±0.01 

Top-view 1.35±0.05 0.72±0.06 0.14±0.04 
 

Table 2: Chemical composition of the thin films obtained from stack A and stack B, after selenization annealing at 

570°C for 30 min. The atomic ratios are extracted from two types of energy dispersive spectroscopy measurements 

(cross-section and top-view, see the text for more details). The alloy composition (1-x) is given in the last column. 

 

 

Using the chemical composition extracted from cross-section EDS measurements and 

reported in table 4, and using the molecular weight of each component, it is possible to 

calculate the CZTSSe density of stack A and B as function of the thickness. This density is 

reported in Figure 40 for both stacks: as noticeable it is around 5.75 g/cm
3
 in the 

homogeneous part of the sample which is in accordance with the one (calculated at 

stoichiometry) reported in literature by Guen et al. [23]. 

 

stack A stack B 
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Figure 40: CZTSSe density of stack A and B at the end of selenization process 

 

 

4.3.3 Study of the selenization process by Raman spectroscopy 

Complementary to EDS which allows determining the chemical composition of the whole 

material, Raman spectroscopy is used to detect minority crystallographic phases in 

CZTSSe. The compositional dependence of Raman spectral features within Cu2ZnSn(S1-

xSex)4  with x values from 1 to 0 has already been studied by Grossberg et al. [24] showing 

a linear dependence of the A1 CZTSSe peaks to the alloy composition.  

The Raman spectra of stack A selenized at different temperatures can be seen in Figure 41a. 

After selenization at 350°C a peak corresponding to SnS (190 cm
-1

) can be seen [25], but 

there is no peak corresponding to Se-containing secondary phases. This indicates that the 

Se does not diffuse into the multilayer at this temperature and, is consistent with EDS 

results (Figure 36a). At 450°C a SnSe peak is noticeable (152 cm
-1

 [24]) and is attributed to 

Se diffusion into the stack and the onset of preliminary reactions with its components. At 

570°C the wide 395-399 cm
-1

 peak cannot be unambiguously attributed to a definite 

chemical species.  

Raman spectra at 570°C, with and without the 30 min plateau show the same profiles 

indicating the CZTSe peak (198 cm
-1

) which could be assigned to the A1 mode of kesterite 

[24], and CZTS (327 cm
-1

 [26]). This is in good agreement with the bimodal behavior of 

the CZTSSe alloy already observed by Grossberg et al. [24]. The broad shoulder between 

225 and 265 cm
-1

 comes most likely from minor phases in the material after the 

selenization process and the formation of the CZTSSe layer. The peak around 260 cm
-1

 

could be attributed to the A1 peak of Cu2Se [27] or to a Zn(S,Se) phase.  

Raman spectra of stack B reveal a different behavior (Figure 41b). At 350°C, a SnSe peak 

(152 cm
-1

) is observed, confirming that Sn reacts with Se to form SnSe, as suggested by 

EDS analysis (Fig. 38b). At 450°C a SnS peak is noticeable (187 cm
-1

 [25]) attributed to S 

diffusion from the ZnS layer towards the top of the stack. At 570°C the formation of 
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kesterite CZTSSe is evidenced by the Raman spectrum which shows the peaks of both 

CZTSe (201 cm
-1

 in Figure 41b) and CZTS (338 cm
-1

 in Figure 41b). The very sharp peak 

at 350 cm
-1

 is an artifact of the measurement and is not attributed to the sample. In contrast 

to stack A, the thermal plateau, namely a 30 minutes plateau at 570°C, is required in the 

case of stack B to get a well-defined material (notice the CZTSe peak sharpening between 

570°C and 570°C-30 min). 

 

 

Figure 41: Raman spectra of the CZTSSe films at different temperatures for Stack A (a) and Stack B (b). The 

sharp peak at 355 cm-1 for CZTSSe spectrum at 570°C (green line in Stack B) is considered as an artifact of the 

measurement, and not indicative of the sample. 

 

 

4.3.4 Study of the selenization process by GDS 

The GDS spectra of stack A during selenization process can be seen in Figure 39. The 

spectra confirm that no Se has diffused layer after selenization at 350°C (Figure 39a) in 

accordance with EDS results (Figure 38-39a) and Raman spectra (Figure 38a). The 

diffusion of S through the Sn-layer (Figure 42a and 42b) can also be observed. After 

selenization at 450°C and 570°C (Figure 42b and 42c, respectively), the spectra indicate 

that Se-atoms have started to diffuse downwards. The GDS spectra at 570°C, with and 

without the thermal plateau (Figure 42d and 42c, respectively), exhibit similar behaviors 

and show an almost uniform distribution of elements. This result is in total agreement with 

Raman spectra (Figure 41a), and demonstrates that the final CZTSSe composition is 

achieved before the thermal plateau in the case of stack A. 

Stack B GDS analysis (Figure 43) shows a different situation: the incorporation of Se has 

already started at low temperature (350°C) (Figure 43a). Its progressing can be seen at 

450°C (Figure 43b), consistent with the EDS (Figure 38b and 39b) and Raman analysis 

(Figure 41b).  Another important difference with stack A is that the distribution of elements 

is not uniform throughout layer prior to the thermal plateau (Figure 43c). After the plateau 

(Figure 43d), in the profile is very similar to that of stack A (Figure 42d), wherein the 

profiles for all elements are relatively constant throughout the material. 

This analysis demonstrates that the 30 minute thermal plateau is required for CZTSSe 

compositional homogeneity in the case of stack B, but is not necessary for stack A. 
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Figure 42: GDS spectra of Stack A: (a) 350°C, (b) 450°C, (c) 570°C, (d) 570°C - 30min 

 

 

 

Figure 43: GDS spectra of Stack B: (a) 350°C, (b) 450°C, (c) 570°C, (d) 570°C - 30min 
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4.4 Minor phases at the end of selenization process 

The experimental results show the importance, for the selenization process, of the position 

of the Sn and Cu layers in the precursor stack: for stack A (Cu on top) the Se incorporation 

is delayed; for stack B (Sn on top) where the Cu is directly in contact with the ZnS layer, 

the sulfur incorporation is the limiting process, and the annealing plateau at 570°C is 

necessary to obtain a homogenous material. In other words, it is found that the Cu layer 

inhibits the incorporation of chalcogens (selenium and sulfur) during the selenization 

process, as illustrated in Figure 44 which schematizes the mechanism. This result is of 

interest for potential industrial applications in order to optimize the synthesis duration. 

 

 

 

Figure 44: Model illustrating the strong interaction between Sn and chalcogens as compared to the one between 

chalcogens and Cu; this picture tends to explain qualitatively the different intermediate states which occur during 

the annealing process of stack A (a) and B (b). 

 

 

In order to check the quality of the final CZTSSe absorber across its thickness at the end of 

selenization process, Raman microscopy is used on a beveled and polished samples of stack 

A and stack B. First, two samples of CZTSSe obtained from respectively stack A and stack 

B are beveled with an angle of one degree followed by mechanical polishing as for cross-

sectional EDS described in 3.2.1.2. 

 

 

Figure 45: Model of the beveled and polished CZTSSe with an angle of 1 degree. The six points (A:F) represent the 

location point of Raman analysis. 
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The six points (A;F spaced every 20 µm) in Figure 45 represent the location where blue 

laser at a wavelength of 457 nm is hitting on the beveled samples for Raman analysis. The 

results are showed in Figure 46. The spectra in both cases show that at the end of the 

annealing process, no difference can be found between stack A and B at any point. At the 

same time, it is noticeable that at each point there is no shift of the CZTSe peaks (172, 197, 

225 cm
-1

) and CZTS peak (335 cm
-1

) according to the bimodal behavior described by 

Grossberg et al. [24], confirming that there is no chalcogens gradient along the thickness of 

both samples as already seen by cross-sectional EDS (see 4.3.2). Moreover the variation of 

intensity of the A1 peaks is negligible thus highlighting the there is no variation of the 

quality of the material. 

Moreover, the “minor phase’s region” in each spectrum (230-260 cm
-1

 range) is not 

evolving along the thickness, meaning that in the end, the distribution of spurious phases in 

both samples is the same. The latter confirms that the CZTSSe layer is homogeneous all 

along its thickness. 

 

 

Figure 46: Raman spectra of beveled CZTSSe from stack A (a) and B (b). 

 

 

4.5 Thermal considerations 

In order to support the conclusion that Cu layer inhibits the incorporation of chalcogens 

during the selenization process as illustrated in Figure 44, some thermodynamic 

considerations on the formation of binary compounds are made by simulating the reactions 

of copper and tin with chalcogens:  

(a) (b) 
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(1) Sn + S ↔SnS 

(2) Sn + Se ↔ SnSe 

(3) Cu + S ↔ CuS 

(4) Cu + Se ↔ CuSe 

 

These simulations are run using FactSage 6.2 software [28] under the same conditions of 

temperature and pressure used in our experiments. Evaluation on the equilibrium constant k 

= exp(-ΔG/RT) (where ΔG is the Gibbs free energy of formation, R=8.31 J K
-1 

mol
-1

 is the 

ideal gas constant and T the temperature) for the four reactions proves that interactions 

between Sn and chalcogens (reactions (1) and (2)) are much more thermodynamically 

favorable. It is found that their equilibrium constants are five (at 350°C) and three (at 

570°C) orders of magnitude larger than the ones of the cuprous reactions (reactions (3) and 

(4)). These thermodynamic data (indicating that the chalcogens react more easily with tin 

than with copper) are consistent with our experimental results which show a better 

incorporation of chalcogens when they are in direct contact with the Sn layer at the early 

stages of the selenization process (reactions (1) and (2) can occur).  However they do not 

give any information about the diffusion of these chalcogens elements because no kinetic 

phenomena are taken into account within this approach. 

 

 

Figure 47: Thermodynamic simulations of the reactions of copper and tin with chalcogens: Sn + S ↔SnS (a), Sn + 

Se ↔SnSe (b), Cu + S ↔CuS (c), Cu + Se ↔CuSe (d). The ΔH is the enthalpy variation of the reaction. 
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4.6 Cu2ZnSn(S,Se)4 solar cells from different stack precursors 

Another result is that at the end of the selenization process, the properties of the obtained 

CZTSSe solar cell are almost independent of the precursor stacking order. In order to 

validate the latter result from a device point of view, the CZTSSe thin films obtained by 

selenization at 570°C with a 30 minute thermal plateau for both stack A and stack B were 

integrated into photovoltaic devices. 18 SLG/Mo/CZTSSe/CdS/i-ZnO/ZnO:Al solar cells 

were fabricated and characterized for each stack (see Figure 48). We observe better short-

circuit current density for stack A, and better open–circuit voltage for stack B. However, 

these differences are within the typical variations observed in our solar cell fabrication 

process. Similar efficiencies are obtained for both stacks, confirming that, after 

selenization, the CZTSSe photovoltaic performances are almost independent of the 

precursor stacking order. 

 

 

Figure 48: PV performances statistical study of 18 solar cells from different precursor stacks. 

 

 

4.7 Conclusion 

A study of the intermediate reactions during the selenization process for CZTSSe has been 

carried out. The results show the importance of the position of Sn and Cu in the precursor 

stack for the formation of intermediate phases before the formation of CZTSSe. The 

[S]/([S]+[Se]) ratio decreases with increasing temperature, since the Se is gradually 

replacing the S during the growth of the material. However, the Cu layer tends to prevent 

this substitution as well as the formation of a homogenous alloy by inhibiting the 

incorporation of chalcogens. Although the CZTSSe growth goes through different minor 

phases, in the end the composition of the film is relatively homogenous and almost 

independent of the precursor stacking order only after the complete process. 
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5.1 Motivation 

In the case of CIGS solar cells, it is well known that the presence of sodium in the absorber 

layer is beneficial [1] and necessary to obtain high conversion efficiencies [2]. It mainly 

improves device performance through FF and Voc; also hole density increases [3]. Although 

the exact action of Na on the structural and electronic properties of the absorber material is 

not clearly understood, defect passivation at the grain boundaries is nowadays the most 

considered explanation since it allows to have a favorable band alignment and so decrease 

recombination [4]. 

Due to the similarity between CIGS and CZTSSe technology, as for CIGS, Na may also 

play a critical role in CZTSSe. In literature, it is demonstrated that Na diffusion in CZTS 

affects grain size, crystal texture, and conductivity [5]. Different techniques have been 

applied to incorporate Na into the absorber in order to study its effect on the CZTSSe 

properties. Li et al. at NREL shows the beneficial effect of Na incorporation on Voc and FF 

in CZTSe by evaporating 15 nm of NaF during CZTSe coevaporation [6]. Schwartz et al. 

reported, using atomic probe tomography, that Na segregates at CZTSe/ZnSe interfaces 

thus it could affect the formation and growth of the ZnSe domains in coevaporated CZTSe 

[7]. Li et al. reported also on the optical influence of Na in CZTS using Na-containing sol-

gel precursors [8]. 

This chapter reports in details the characterization methods and experimental measurements 

on the CZTSSe layer grown with different Na-containing substrates, and electrical 

performances of solar cells built using the latter CZTSSe.  

 

 

5.2 Substrates 

5.2.1 Soda Lime Glass  

The soda-lime glass is the most common type of glass for PV applications. SLG not only 

has the advantage of being made from inexpensive raw materials, but also the practical 

inconvenience of low working temperatures. It can be used in a wide range of scientific and 

industrial applications. 

SLG employed in this study is 1 mm thick furnished by Goodfellow [9] with a 12 wt% 

NaOH. 

 

 

5.2.2 Borosilicate Glass  

Borosilicate glass is a type of glass that includes at least 5% boric oxide. The boric oxide 

makes the glass resistant to higher temperatures, and also improves its resistance to 

chemical corrosion. This glass is very popular in the manufacture of scientific instruments, 

and it was once widely used to make glass for PV applications as well. 

BS employed in this study is 1 mm thick furnished by Corning [10] with a 1.8 wt% NaOH. 
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5.2.3 EAGLE2000 glass  

EAGLE2000 glass is a lightweight alkaline earth boro-aluminosilicate glass with a low 

density and a low coefficient of thermal expansion. Corning's EAGLE2000 glass shows an 

even higher chemical durability. The high, broadband optical transmission and low light 

absorbance, in combination with the low mass of EAGLE2000, make it an ideal solution 

for many demanding optical applications. 

EAGLE2000 employed in this study is 1 mm thick furnished by Praezisions Glas & Optik 

GmbH [11] with a 0.01 wt% NaOH. 

 

 

5.2.4 Titanium 

Ti is a lightweight and mechanically and chemically resistant metal. Furthermore, it has a 

good resistance at high temperature. Ti substrate is 99.6% Ti and contains very little 

harmful impurities (like iron) which could diffuse and modify the electronic properties of 

the materials deposited above it.  

Ti employed in this study is 0.5 mm thick furnished by Goodfellow [9] and is totally 

sodium free. 

 

 

5.3 Mo:Na back contact 

A recent solution to better control the Na incorporation into CZTSSe is to directly 

incorporate a preset quantity of Na in the Mo back contact: it allows to get rid of the Mo 

barrier when the sodium is coming from the substrate. The doped layer thus formed is 

called Mo:Na. The latter is directly deposited by DC sputtering from a target of Mo:Na. It 

is developed using exactly the same type of equipment and process of a standard Mo back 

contact (see 3.1.1).  

 

 

Figure 49: Back contact bilayer Mo:Na|Mo. 

 

The development of Mo:Na layers is relatively recent: the first scientific papers on the 

subject dating from 2011 relating CIGS technology [12-13]. On the best of my knowledge, 

no studies are published about the synthesis of CZTSSe on Mo:Na back contact. 

Bilayers MoNa (450nm)|Mo (100nm) are deposited using DC sputtering in the same 

equipment (Figure 49). The Mo-capping layer is used to avoid the incorporation of damp in 

the MoNa layer and improve the electrical resistance of the BC. The MoNa is deposited 

from a sputtering target composed of Mo:Na containing 5% sodium (atomic percentage) in 
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the form of sodium molybdate Na2MoO4. The composition of 5% sodium was chosen 

because it is one that seems to lead to better performance, according to a study made on 

CIGS by Blösch et al. [14]. 

 

 

5.4 CZTSSe synthesized on different substrates 

CZTSSe material is synthesized on Mo-coated different substrates (SLG, BS, VSS and Ti) 

by two step selenization process as described in 3.1.3. Two studies are performed: (i) 

material and device characterization are performed in order to find a relationship between 

sodium incorporation in CZTSSe and its material properties for absorbers synthesized on 

SLG and BS, (ii) Mo:Na back contact is evaluated by comparison of PV characteristics 

between CZTSSe solar cell with Mo and Mo:Na BC on different substrates (SLG, BS, 

VSS, Ti). 

 

 

5.5 CZTSSe characterization 

5.5.1 Sodium concentration  

The measurement of sodium concentrations as a function of depth in CZTSSe synthesized 

on various substrates is accomplished using Secondary Ion Mass Spectrometry because of 

its very low detection limits and excellent depth resolution. Because the secondary ion 

yields of sodium under the SIMS measurement are dependent upon the matrix composition 

of the CZTSSe, the quantification of this measurement requires the use of appropriate 

reference materials. In this case the reference material is a CZTSSe absorber which is 

grown on titanium (sodium-free substrate) and then bombarded with a known concentration 

of Na-ions. The Na-SIMS profile extracted from the latter will be the reference to quantify 

sodium concentration in the CZTSSe by using spectrum comparison. 

The key to quantification in dynamic SIMS is the Relative Sensitivity Factor (RSF), which 

provides the conversion from measured secondary ion intensities to impurity density. RSF 

is a function of the element of interest and the sample matrix. 

 

 

5.5.1.1 Sodium implantation 
Ion implantation is the technique employed to introduce Na into the CZTSSe synthesized 

on Ti (sodium-free substrate) in order to have a reference spectrum. It consists of 

introducing charged atoms into a material, by delivering to them sufficient energy so that 

they enter beyond the surface area of the absorber. The main advantage of sodium 

implantation is the precise control of the number and of the penetration depth of the Na-

ions. The dose indicates the number of ions implanted per unit of surface of the target 

(given in atoms/cm
2
) and the energy of ions (in keV) is the parameter controlling the spatial 

distribution of the atoms.  
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5.5.1.2 Sodium incorporation in CZTSSe 
SIMS depth profiles reveal varying Na concentrations inside the absorbers (dashed line in 

Figure 50). The lower Na concentrations were found in BS in a range between 10
17

-10
18

 

atoms/cm
3
, whereas for SLG the Na concentration is larger than 10

19
 atoms/cm

3
. It is 

noticeable as well that in both samples the concentration of Na into CZTSSe is higher close 

to the Mo interface where the Zn content is higher. This increase in Zn concentration is 

related to a Zn(S,Se) phase, as demonstrated in Chapter 4, which itself could be related to 

the higher Na concentration in this region, as suggested by Schwarz et al. [7]. 

 

 

 

Figure 50: Na concentration measured by SIMS for CZTSSe on different Mo-coated SLG (a) and BS (b). O, Cu, 

Zn, Sn, Se, S, Mo, Si concentrations are in arbitrary units. 

 

In order to evaluate of a possible relationship between the Zn(S,Se) phase formation and 

the Na diffusion, CZTSSe is synthesized by the usual method (see 3.1.3) with a different 

ZnS precursor thickness (inset Figure 51). 

In Figure 51 is reported the SIMS profile measurement of CZTSSe after selenization of 

precursor stacks with different ZnS thickness. The results show that the Na signal is more 

intense in correspondence of the amplification of the Zn and S signals. This could drive to 

the idea that Na segregation in the bottom of CZTSSe absorber could be somehow involved 

in the growth of Zn(S,Se) phases.  

The benefits and drawbacks of Na for CZTSSe solar cells have to be further elucidated in 

future studies. Moreover further comparative studies of Na-containing and Na-free samples 

must be planned for the future in order to unravel the relationship between Na and Zn-rich 

phase segregation. 

 

(a) (b) 
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Figure 51: SIMS profile measurement on CZTSSe starting from different ZnS precursor thickness. Schematic of 

the precursor stack prior to selenization process with different ZnS thicknesses are shown in the insets: 340 nm (a), 

400 nm (b), 280 nm (c), 340 + 60 nm double layer (d).  

 

 

5.5.2 Grains size dependency on Na-content 

X-ray diffractions of CZTSSe on SLG and BS are shown in Figure 52. The films were 

found to be polycrystalline and having two prominent reflections (112) and (220) recorded 

respectively at a Bragg angle of 27.325° and 47. 3 °. Using the Scherer’s formula (see 

3.2.1.2) the crystallite dimension of the two samples is calculated: the results, exposed in 

Table 1, show that in the case of SLG glass, the size of the crystallite was calculated to be 

43 nm, whereas in the borosilicate glass case the mean crystallite dimension was only 34 

nm. This shows that there is a significant increase in the size when the CZTSSe is 

synthesized on substrates containing higher Na-content as confirmed Prabhakar et al. [5].  
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Figure 52: XRD spectra for CZTSSe on different Mo-coated glasses.  

 

 
 

 

 

 

 

 

 

Table 1: The calculated crystallite size using the Scherer’s formula. 

 

 

Cross-sectional SEM images of the CZTSSe grains synthesized on SLG (a) and BS (b) are 

also reported in Figure 53. They show that bigger grains and less voids are present in 

CZTSSe synthesized on SLG, confirming that the latter has better quality compared to 

CZTSSe grown on BS. 

 

Sample Position FWHM Crystallite size (nm) 

SLG 27.325 0.2122 42.854 

BS 27.299 0.2712 33.627 
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Figure 53: SEM images showing the CZTSSe synthesized on Mo-coated: (a) SLG (high Na-content), (b) BS (low 

Na-content). 

 

 

5.5.3 Minor phases dependency on Na-content 

Raman spectra for both samples are acquired in backscattering configuration with a 10 

mW/cm
2
 532 nm green laser excitation. The Raman spectra of SLG and BS depicted in 

Figure 54 show that the A1 CZTSe peak (198 cm
-1

) and A1 CZTS peak (326 cm
-1

)  of SLG 

are more pronounced compared to the ones of BS (respectively at 194 cm
-1

 and 323 cm
-1

). 

The latter concept is validated when computing FWHM of the A1 CZTSe peaks for the two 

spectra: FWHMSLG = 70 vs FWHMSBS = 100. 

 

 

Figure 54: Raman spectra for CZTSSe on different Mo-coated glasses. 

 

(a) (b) 
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Since the CZTSSe Raman intensities are usually related to the concentration of a given 

phase, it is possible to identify CZTSSe with higher Na concentration (SLG) as a material 

with better quality than CZTSSe with a lower Na content. Secondary CZTSe peaks (237 

cm
-1

 in SLG and 230 cm
-1

 in BS) together with a Zn(S,Se) peak (259 cm
-1

 in BS) are also 

detected. 

 

 

5.5.4 CZTSSe quality dependency on Na-content 

The PL spectra of the SLG and BS samples measured at T=7 °K are presented in Figure 55. 

The excitation power density was 818 mW/cm
2
. For both SLG and BS, the spectra are 

relatively complex with emission occurring at several distinct peak wavelengths (Figure 

55). Although the two spectra show the same features (the main luminescence peak occurs 

at 0.955 eV), the measurements performed in the present study indicate that the PL 

intensity of SLG is much more intense than the BS one, where the Na concentration is 

almost two orders of magnitude lower. This reflects the influence of Na, which improves 

the radiative over non-radiative recombination rates. 

 

 

Figure 55: PL spectra for CZTSSe on different Mo-coated glasses. 

 

 

5.6 Cu2ZnSn(S,Se)4 solar cells on different Na-content substrates 

After material characterizations CZTSSe absorbers grown on different substrates are 

employed in full PV devices: at least twenty 0.25 cm
2
 solar cells have been fabricated and 
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electrically characterized for each CZTSSe|substrate combination. Light J-V characteristics 

are depicted for all the cells in Figure 56 showing that photovoltaic performances increase 

along with the Na content in CZTSSe.  

The median power conversion efficiency in the case of SLG is higher than BS and the 

dispersion of results is smaller. The variation of PCE between cells build on different 

substrates is clearly dominated by the variation of the FF and Voc. Both Voc and Jsc are 

higher in the case of SLG: in particular Voc gain is remarkable with an absolute gain of 83 

mV among the respectively highest values. As demonstrated in CIGS technology, Na 

incorporation into absorber could increase the p-doping of the material: there are no 

confirmations that this is also the case for CZTSSe, but if positive this could be one reason 

for the augmentation of the Voc. 

Possible implications of parasitic resistances in the FF are evaluated through dark J-V 

measurement. Figure 57 discloses series resistance, shunt resistance, dark saturation 

current, and ideality factor extracted from dark J-V characteristics. In the case of SLG, 

median Rs is higher in the case of BS, whereas Rsh is comparable in two cases. Actually the 

J0 median value seems to be slightly higher in the case of BS, which could also explain why 

there is a lost in Voc in the latter although almost the same shunt resistance is detected in 

both samples. The ideality factor in the case of SLG is lower than BS: this means that the 

recombination rate is lower in the case of CZTSSe synthesized on SLG. This result is in 

agreement with the radiative over non-radiative recombination ratio deduced from PL. 

 

 

Figure 56: Current-voltage measurements under illumination (simulated AM1.5 spectrum, 100 mW/cm²) of 

Al:ZnO/i-ZnO/CdS/CZTSSe/Mo solar cells synthesized on SLG (blue boxes) and BS (orange boxes).  
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Figure 57: Dark current-voltage measurements of Al:ZnO/i-ZnO/CdS/CZTSSe/Mo cells synthesized on SLG (blue 

boxes) and BS (orange boxes). 

 

 

5.7 Cu2ZnSn(S,Se)4 solar cells with Mo:Na back contact 

In literature, Mo:Na back contact is reported to be a good compromise to provide sodium in 

CIGS solar cell when the absorber is synthesized on Na-free substrates like stainless steel 

[16] and titanium [17].  

The influence of replacing a standard Mo back contact with a Mo:Na one (details on this 

material are given in 5.3) in CZTSSe solar cell is evaluated. In order to perform this study, 

different substrates have been used: SLG, BS, VSS and Ti: the Na-content in those 

substrates goes from 12% to 0%. Figure 58 shows the PV performances of CZTSSe solar 

cell with a Mo:Na back contact, whereas Figure 59 shows the PV performances with a 

standard Mo back contact. 
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Figure 58: Light current-voltage measurements of Al:ZnO/i-ZnO/CdS/CZTSSe/Mo/Mo:Na cells synthesized on 

SLG (blue boxes), BS (orange boxes), VSS (fuchsia) and Ti (violet). 

 

 

A comparison between the two back contacts highlights the fact that two situations are 

distinguishable: (i) the SLG and BS case, (ii) the VSS and Ti case. 

In (i) it is noticeable that PV performances are higher for SLG and commensurable for BS 

when a Mo back contact is employed. Two possible reasons are foreseen at the origin of 

this behavior: the first one could be that further sodium contribution does not improve PV 

performances in CZTSSe. It has already been demonstrated in the case of CIGS solar cells 

that PV performances increase along with Na incorporation until a certain threshold before 

start decreasing [18]: this could also be the case for CZTSSe technology. The second one 

could be related to the high resistance of the Mo:Na back contact [17] which could 

dominate over the benefits brought by sodium. Roger et al. demonstrated that the resistance 

of the Mo:Na is high enough to overcome the one of the TCO, giving as a result a higher 

series resistance in the related photovoltaic cell [17]. 

In (ii) it is noticeable how PV performances increase when a Mo:Na back contact is used. 

Since both VSS and Ti are almost Na-free, the benefits of sodium incorporation in CZTSSe 

are evident and lead to an improvement of electrical characteristics. 
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Figure 59: Light current-voltage measurements of Al:ZnO/i-ZnO/CdS/CZTSSe/Mo cells synthesized on SLG (blue 

boxes), BS (orange boxes), VSS (fuchsia) and Ti (violet). 

 

 

At the end of this comparison study, a hypothesis rises up: the sodium supply in CZTSSe 

solar cell, as for CIGS technology, is useful to boost PV performances only until a certain 

value included in between 5% and 12%. This value is not precisely accessible because of: 

(i) the high influence of the Mo:Na back contact resistance, (ii) the possible implication of 

Na incorporation at the doping level. Further characterizations are needed in order to 

confirm these assumptions. 

 

 

5.8 Conclusion 

The effects of different Mo-coated Na-content substrates on the electro-optical properties of 

CZTSSe are addressed. This is done through characterization of the finished devices using 

XRD, Raman spectroscopy, photoluminescence and J-V characteristics. The SIMS analysis 

shows that relatively high concentration of Na is found in CZTSSe grown on SLG 

compared to CZTSSe grown on BS. Results indicate the beneficial effect of Na, evidenced 

by increases in the photovoltaic performances (above all open-circuit voltage and 

efficiency) and PL intensity. 
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6.1 Motivation 

In most of the publications dealing with CZTSSe thin films for PV applications, the 

structure of the solar cell is directly copied from those used in CIGS technology: Al:ZnO/i-

ZnO/CdS/CIGS/Mo [1-2] in which CZTSSe is replacing CIGS [3-4]. Especially, Mo is 

used as back contact (BC), but this choice has not been optimized yet for CZTSSe. 

The properties of the BC have a strong impact on the solar cell performances. Patel et al. 

[5] simulated numerically the current-voltage characteristics of a Al:ZnO/i-

ZnO/CdS/CZTSSe/BC solar cell trying to find the optimum BC material and CZTSSe layer 

thickness which gives the best cell performances. SCAPS software simulations of CZTSSe 

solar cells with different BC [6] showed that solar cell performances are improved by 

increasing the BC work function. According to these simulations, Mo is not the best BC in 

terms of power conversion efficiency. On the other hand, Scragg et al. [7] suggested 

reexamining the choice of molybdenum due to a phase-segregation at CZTSSe|Mo 

interface during annealing.  

Those results have motivated the work described in this chapter in which we have studied 

experimentally the effects of different back contacts on the performances of CZTSSe solar 

cells. In this study several metals (Au, W, Pd, Pt, Ni) have been deposited on top of a Mo 

thin film in order to study: (i) the possibility of synthesizing CZTSSe on different BC, (ii) 

the interaction of the BC with the chalcogens during the selenization process, (iii) the 

influence of the BC on Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo solar cell performances. 

The choice of these metals as possible replacement for Mo is directly derived from the 

results published in Ref. 6: in fact all of them have a metal work function which is higher 

than the one of Mo (5 eV) which allow contemplating a better efficiency of the CZTSSe 

solar cell. Moreover, gold is already employed in CIGS technology due: to its high 

reflectance it allows the photon recycling increasing the photovoltaic performances.  

 

 

6.2 Back contact deposition 

Two different techniques are used to deposit 100 nm-thick BC on Mo-coated SLG: W and 

Au are deposited via DC-sputtering at room temperature, while Pd, Pt and Ni are deposited 

by high vacuum electron-beam evaporation. In both cases deposition rates are controlled by 

a quartz balance. It should be noted that in this study, the 100-nm-thick BC (Au, W, Pt, Pd, 

Ni) is deposited on top of a 450-nm-thick Mo layer (Figure 60).  

 

 

Figure 60: Back contact bilayer. 
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There are three reasons to keep an underlying Mo layer: (i) some metals like for example 

Pd and Pt do not have a good adhesion on soda-lime glass, (ii) we assume that Mo may 

play a role of barrier for contaminants from glass (in order to be more confident that the 

CZTSSe performances do not suffer from excess of contamination, we prefer to have the 

same diffusion barrier), (iii) in the context of low-cost solar cells like CZTSSe-based ones, 

the interest of an alternative back contact may only exist if the new back contact is not 

expensive; due to the cost of the metals used in this work (except W), it could be of interest 

to add a thin interfacial layer between Mo and CZTSSe but not to replace the 450-nm-thick 

Mo layer. 

 

 

6.3 CZTSSe synthesized on different back contacts 

CZTSSe material is synthesized on different back contacts by two step selenization process 

as described in 3.1.3.  

 

 

6.3.1 Study of the selenization process by GDS 

Figure 61 shows GDS spectra of CZTSSe synthesized on different BCs. Palladium and 

nickel (CZTSSe|Pd and CZTSSe|Ni in Figure 61e and 61f, respectively) diffuse into the 

CZTSSe reaching the surface of the sample. 

 

 

Figure 61: GDS spectra of CZTSSe synthesized on Mo (CZTSSe|Mo) (a), Au (CZTSSe|Au) (b), W (CZTSSe|W) (c), 

Pt (CZTSSe|Pt) (d), Pd (CZTSSe|Pd) (e), Ni (CZTSSe|Ni) (f). 
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The diffusion of Ni through the absorber layer has been already noticed also for CIGS solar 

cells [8]. On the contrary Au, W and Pt remain in contact with Mo. In the case of Au 

(CZTSSe|Au in Figure 61b), the Mo signal is not equal to zero far from the BC: this is 

simply due to the presence of voids in the CZTSSe layer at the measured point. In the case 

of W (CZTSSe|W in Figure 61c) we can see an important superposition of W with S and Se 

profiles. Finally for Pt (CZTSSe|Pt), there is a clear superposition of the Pt and Se profiles 

(Figure 61d). 

Hereinafter only characterization made on CZTSSe on Au, W and Pt are presented since it 

has been demonstrated that CZTSSe grown on Pd and Ni is not of interest due to their 

diffusion towards the surface. 

 

 

6.3.2 Study of the selenization process by XRD 

Figure 62 shows the diffraction spectra of CZTSSe grown on Au, W and Pt. The CZTSSe 

patterns [9] are recognizable by the main reflections at 22.0°, 27.2°, 33.8°, 45.1° and 53.5° 

which are visible in all the spectra; the reflection of Mo is at 40.2° and 87.4° [9].  

 

 

Figure 62: XRD patterns of CZTSSe synthesized on Mo (CZTSSe|Mo), Au (CZTSSe|Au), W (CZTSSe|W), Pt 

(CZTSSe|Pt). Patterns are shifted vertically and the x-axis is cut between 60 and 85 degrees for clarity. The inset 

shows a zoom on CZTSSe|W in the range 85-90 degrees. 

 

In the case of CZTSSe on Au (CZTSSe|Au), the Au peaks at 38.2° and 44.6° are visible. It 

should be noted that no gold-chalcogens phases are detected pointing the fact that Au BC 

has not reacted with neither S nor Se during the selenization process. In the case of 
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CZTSSe on W (CZTSSe|W), the W reflection at 39.9° [10] overlaps with the Mo one since 

they have almost the same lattice constants but at higher diffraction angles it is possible to 

distinguish W (86.9°) from Mo (87.4°) (inset in Figure 62) which proves that metallic W is 

still present. Moreover W(S,Se)2 peaks are present respectively at 32.0° and 56.5° [11] 

indicating the W has reacted with sulfur and selenium, which is consistent with the GDS 

spectrum (see the overlap of W, S and Se profiles in Figure 61c). Finally for CZTSSe on Pt, 

the reflections at 32.8° and 48.6° are signatures of the PtSe2 phase [9]; again, this is 

consistent with the GDS spectrum (see the overlap of Pt and Se profiles in fig. 61d).  No 

peaks of metallic Pt are visible. 

To sum up, XRD analysis discloses that: (i) Au does not react with chalcogens, (ii) W 

reacts but not completely, (iii) Pt completely reacts with selenium. 

 

 

6.3.3 Study of the selenization process by Raman 

Figure 63 shows Raman analysis made on CZTSSe grown on Mo (Figure 63a), Au (Figure 

63b), W (Figure 63c) and Pt (Figure 63d). Raman spectra of CZTSSe|Au and CZTSSe|W 

show the same profiles indicating both the peak of CZTSe at 197 cm
-1

 which could be 

assigned to the A1 mode of kesterite [12], and the peak of CZTS at 329 cm
-1

 [13]. This is in 

good agreement with the bimodal behavior of the CZTSSe alloy [14].  

 

 

Figure 63: Raman spectra of CZTSSe synthesized on Mo (CZTSSe|Mo) (top-left), Au (CZTSSe|Au) (top-right), W 

(CZTSSe|W) (bottom-left), Pt (CZTSSe|Pt) (bottom-right). The inset in the bottom-right of Fig. 61d shows the 

Raman spectrum of PtSe2. 

(a) (b) 

(c) (d) 
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Other signatures of CZTSe are present in the range of 174-176 cm
-1

 and 234-236 cm
-1

 [13].  

In the case of CZTSSe|Pt, the spectrum is more complicated with broader CZTSSe related 

peaks and additional ones.  

As no Raman spectrum of PtSe2 is found in the literature, a 100-nm-thick layer of Pt has 

been selenized in the same way as CZTSSe (see 3.1.3) and then characterized by XRD 

confirming the formation of a single phase of PtSe2 (Figure 64). 

 

 
Figure 64: XRD patterns of PtSe2. 

 

 

 

Figure 65: Raman spectrum of PtSe2. 
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Then Raman spectrum of this pure PtSe2 sample is acquired and used to further characterize 

CZTSSe|Pt (Figure 65). It is noticeable in the Raman spectra that the peaks at 205 cm
-1

 and 

177 cm
-1

 are signatures of PtSe2. The kesterite peaks of CZTSe and CZTS are also visible 

(at 195 cm
-1

 and 328 cm
-1

, respectively) but with a widening of their own signal, which is 

an indication of a low crystallographic quality. PtSe2 is visible although the CZTSSe layer 

should absorb the laser signal since many voids are present at the surface as observed in 

SEM (Figure 66). 

 

 

 

Figure 66: Top-view SEM image of CZTSSe|Pt. 

 

 

6.3.4 Study of the selenization process by SEM 

SEM cross-section images of CZTSSe|Au, CZTSSe|W and CZTSSe|Pt samples are shown 

in Figure 67. For the CZTSSe|Au sample (Figure 67a), the 1.1 µm thick CZTSSe layer is 

apparently in direct contact with the Mo and the 100 nm layer of gold is not visible after 

selenization process. But it is also noticed on the SEM images that, in some zones where 

the CZTSSe layer is detached from Mo layer, particles with a diameter around 270 nm 

appear (inset in Figure 67a). These particles are identified as gold by cross-sectional EDS 

(shown further in 6.5.2). During the selenization process, the 100 nm–thick gold layer is 

dewetted to form gold particles on the bottom of the absorber with an estimated mean 

distance of 350 nm among them. This dewetting occurs during the annealing process since 

it was a uniform layer after precursor deposition as confirmed by SEM images. This Au 

dewetting process allows Mo to be exposed to the incoming Se during annealing thus 

forming a thin layer of MoSe2. CZTSSe|W SEM image (Figure 67b) shows a 1.1 µm-thick 

CZTSSe layer and a 350 nm-thick layer detected on the top of Mo: according to the results 

obtained by GDS and XRD, part of it could be assigned to a W/W(S,Se)2 phase. In the case 

of the CZTSSe|Pt sample (Figure 67c), according to the previous characterizations, the 
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layer detected on the top of Mo is assigned to PtSe2; as for CZTSSe|W, big CZTSSe grains 

are visible. Noteworthy are, in the three cases (Figure 67), the small grains at the interface 

between CZTSSe and BC. These small grains have been attributed to a Zn-rich phase [15]. 

 

 

Figure 67: SEM images of Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo solar cells synthesized on Au (CZTSSe|Au) (a), W 

(CZTSSe|W) (b), Pt (CZTSSe|Pt) (c). The inset in Fig. 64a shows the SEM image of gold particles after selenization 

process. 

 

 

6.4 Cu2ZnSn(S,Se)4solar cells built with different back contacts 

After these characterizations CZTSSe|Au, CZTSSe|W and CZTSSe|Pt are employed in full 

PV devices (Figure 68): at least eight 0.25 cm
2
 solar cells have been fabricated and 

electrically characterized for each CZTSSe|BC combination and compared with CZTSSe 

solar cells built on a standard Mo BC.  

 

 

 

Figure 68: Schematic of Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo solar cells. 

 

 

On Figure 69 photovoltaic properties are depicted for all the cells. First, it is noticeable that 

solar cells built on Pt exhibit very low performances and will be excluded from the 

following discussion. These low performances could be the effect of a low crystallographic 

quality CZTSSe as demonstrated by Raman spectroscopy and because of the voids in the 

absorber as mentioned before. 
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Figure 69: Current-voltage measurements under illumination (simulated AM1.5 spectrum, 100 mW/cm²) of 

Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo solar cells. 

 

 

The power conversion efficiency in the case of Mo is higher compared to the other BC (Au 

and W) and the dispersion of results is smaller. The variation of PCE between cells with 

different BC is clearly dominated by the variation of the fill factor. To check the possible 

implications of parasitic resistances in the FF, dark J-V measurement have been carried out 

(Figure 70). Figure 70 discloses series resistance, shunt resistance and dark saturation 

current extracted from dark J-V characteristics of CZTSSe|Mo-, CZTSSe|W- and 

CZTSSe|Au- based solar cells: in the case of W, the median Rs is four times higher than in 

the case of Mo probably due to the thick W/W(S,Se)2 layer (see Fig. 67b). In the case of 

Au, the lower Rsh is responsible for the low FF. 

The BC does not have a clear influence on J0. Actually the J0 median value seems to be 

slightly higher in the case of Mo, but the extraction of this parameter is subject of an 

important uncertainty because of the parasitic resistances and the high ideality factor. For 

this reason we assume that the small variation is irrelevant and caused by the fit method. It 

means that the BC might not affect the diode operation. 
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Figure 70: Dark current-voltage measurements of Al:ZnO/i-ZnO/CdS/CZTSSe/BC/Mo solar cells. 

 

 

6.5 Current improvement 

Beyond the analysis of PCE of different solar cells, it is remarkable that the median short-

circuit current is higher for CZTSSe|W (30.2 mA/cm
2
) and for CZTSSe|Au (31.5 mA/cm

2
) 

than for CZTSSe|Mo (28.6 mA/cm
2
).  

In order to find out a reason for this current gain, two hypotheses are settled up. In the case 

of CZTSSe|Au a possible incorporation of Au into CZTSSe will lead to a decrease of the 

bandgap (due to AuCu replacement) which could explain the current gain: this hypothesis is 

verified by external quantum efficiency and cross-sectional EDS in TEM. COMSOL 

simulations are used for CZTSSe|Au solar cells in order to check on possible plasmonic 

effect in CZTSSe due to gold particles. In the case of CZTSSe|W capacitance-voltage (C-

V) measurements are employed to estimate the doping profile: the idea is that a lower 

doping profile can increase the space charge region of the CZTSSe so increasing the 

collection efficiency. 

 

 

6.5.1 Bandgap evaluation 

To understand these differences, EQE measurements on the best performing CZTSSe solar 

cells with Mo–, Au– and W–BC have been carried out and shown on Fig. 71. The quantum 
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efficiency in the visible range is promising (∼90%) for the three cells; the CZTSSe|Mo and 

CZTSSe|W curves have the same trend in the 380 nm – 1300 nm range although 

CZTSSe|W shows higher efficiency, whereas CZTSSe|Au EQE is lower between 750 nm 

and 1150 nm but it is still able to absorb photons in the 1150 nm – 1450 nm range. In the 

inset of Figure 71, the ratio of quantum efficiencies of cell built on W to cell built on Mo 

show the wavelength dependence of the current collection. The increase of this ratio at long 

wavelengths could mean a better collection of carriers generated deep in the absorber in the 

case of CZTSSe|W.  

 

 

Figure 71: External quantum efficiency measurements on best performing CZTSSe solar cells with Mo-, Au-, W-

back contacts. Bandgaps Eg are deduced via linear extrapolation of the low energy slope of the EQE. The inset 

shows EQE spectrum of CZTSSe|W solar cell divided by the EQE spectrum of CZTSSe|Mo solar cell. 

 

 

Figure 72: The bandgap energies extracted from the Tauc plot. 
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Concerning the gold BC, the more triangular shape of the EQE spectrum is the signature of 

current collection losses in the absorber. A major difference between CZTSSe|Au and the 

other cells is the current production in the 1150 nm – 1450 nm range. The evaluation of 

absorber bandgap from EQE curves plotted in Figure 72 gives 1.03 eV in the case of Mo 

and W and 0.95 eV in the case of Au.  

 

 

6.5.2 Study of gold particles by TEM 

A hypothesis to explain both the decrease of the bandgap and the current collection loss at 

long wavelengths may be the diffusion of gold partially replacing the copper in the 

CZTSSe layer close to the back contact. However, this hypothesis has not been clearly 

confirmed up to now, since no gold diffusion has been evidenced with the different 

characterization techniques used: GDS is not spatially resolved enough to determine such a 

diffusion, no shift in XRD spectra has been identified due to potential AuCu replacement, 

and no gold minor phases are found by Raman. For this reason incorporation of Au into 

CZTSSe is checked by performing a cross-sectional EDX analysis in a TEM. The results 

represented in Figure 73 show that Au has not diffused into the CZTSSe. This result allows 

us to put aside the hypothesis concerning the AuCu replacement to explain the lower 

bandgap and thus the latter as possible explanation for the current gain. 

 

 

 

Figure 73: Cross-sectional EDS analysis of CZTSSe|Au performed in a TEM. 
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6.5.3 Plasmonic effect of gold particles 

The fact that no gold incorporation into CZTSSe is so far discovered, paves the way to 

another possibility to explain the gain of current: a plasmonic effect due to gold particles in 

order to enhance light absorption in CZTSSe solar cells [17]. 

Plasmon light-trapping has already been used in other technologies like a-Si [18] and CIGS 

[19] in order to enhance the light absorption into the absorber layer by coupling and 

trapping freely propagating plane waves into the semiconductor thin film layer. 

 

 

Figure 74: Schematic of COMSOL simulation 

 

 

Simulations on COMSOL multiphysics [20] are performed in order to check on a possible 

plasmonic effect due to Au particles in CZTSSe. Figure 75 represents the normalized 

intensity (I/I0 where I0 is the intensity of the electromagnetic field used as excitation) in the 

CZTSSe layer in a cylinder centered around a half gold sphere of variable radius (Figure 

74). The radius of the cylinder corresponds to the inter-particle distance based on the 

amount of gold deposited initially (62.5×10
6
 µm

3
).  

 

 

Figure 75: COMSOL simulations of electromagnetic field gain due to gold particles resonance with different 

radius.  
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Actually there are two moderate resonances of 50nm-width around 1200 and 1300 nm 

which are exactly in the range of interest (see EQE of CZTSSe|Au in Figure 71). This 

phenomenon is more important for small sphere of a 125 nm diameter but the latter is in 

contrast with SEM measurements which show an average particle radius of 200 nm (Figure 

67). However the gain is not enough to corroborate the idea of a current gain due to 

plasmonic effect. 

 

 

6.5.4 Capacitance-Voltage characteristics 

C-V measurements for these three types of cells are performed in order to extract charge 

carrier density (N). The capacity of the p-n junction is considered as the one of a parallel 

plate capacitor (eq. 16) according to the approximation of Shockley [21]. 

 

  
    

 
     (eq. 16) 

 

Where C is the capacitance, A is the surface of the solar cell (0.25 cm
2
), ɛ and ɛ0 are the 

relative permittivity in the material and the vacuum permittivity, and w is the SCR width.  

Considering no deep or interface defects nor additional parasitic resistances, and in the 

approximation of a p-n
+
 junction it is possible to assume that the SCR, is located in the 

CZTSSe layer: the latter will certainly influence the estimation of the final N.  

The capacitance then is computed as: 

 

 

   
 

 
  

  ⁄  
  

  ⁄  
  

  ⁄
 

  

  
    (eq. 17) 

 

Where w is the SCR within the absorber (a), buffer (b), and TCO (c). 

Moreover, considering the relationship relying the SCR to the potential (eq. 20), it is 

possible to extract the N as function of the SCR width [22]: 

 

  √
    

  
           (eq. 18) 

 
 

     
 

      

       
      (eq. 19) 

or 

     
       

       
     (eq. 20) 

 

where VD is the diffusion voltage and N(w) is the net charge carrier density at the edge of 

the SCR.  
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Figure 76: Net charge carrier profile extracted from C – V characteristics of CZTSSe|Mo and CZTSSe|W solar 

cells at 300 K. The C – V is performed using 100-mV, 100-kHz ac excitation with dc bias from 0.2 to – 3 V 

 

 

C-V measurements indicate that there is a lower N in CZTSSe|W solar cell (~10
15

 cm
-3

) 

compared to CZTSSe|Mo (~10
16

 cm
-3

): as a consequence the SCR is wider which could 

induce a better charge collection and thus an improvement of the photo-generated current 

(Jph) (Figure 76). The latter result is consistent with the EQE gain in the 750nm-1150nm 

range for CZTSSe|W solar cell (inset in Figure 71) and may explain the slightly higher VOC 

in the case of Mo. Leakage current prevent us to extract carrier density in the case of 

CZTSSe|Au. 

 

 

6.6 Conclusion 

In conclusion, the replacement of Mo back contact in CZTSSe solar cells by other types of 

metals has been experimentally studied. Results show that, between the different metals 

used to replace Mo BC, only W and Au are eligible given that they provide a higher current 

compared to Mo. For tungsten this could be explained by a better charge collection in the 

near infrared part of the solar spectrum. In the case of gold it is not possible to give a 

unequivocal explanation to account for this effect. No evidences of a possible reaction 

between Au and chalcogens have been found although CZTSSe synthesized on this BC is 

irregular at their interface. However, Mo remains the best BC in terms of power conversion 

efficiency. 
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7.1 Motivation 

To obtain thin film solar cells with high power conversion efficiency, the band gap (Eg) 

engineering of the absorber layer is a possible solution. Clear correlations between Eg 

grading and device performances have already been demonstrated in CIGS solar cells by 

introducing Ga-gradients in the absorber [1].  In CZTSSe absorber layers, Eg can be tuned 

by changing the chalcogens ratio ([S]/([S]+[Se])) as reported in literature [2-4]. In 

particular Grossberg & al. [3] have found experimentally a linear dependence of Eg within 

Cu2ZnSn(S1-ySey)4,  with y values from 1 to 0, by optical measurements. Moreover, Chen & 

al. have also reported a near linear dependence of Eg on the chalcogens ratio with a small 

bowing parameter (b = 0.1) by using density functional theory [4].  

Solar cell modeling is widely used to predict their PV performances. As CZTSSe 

polycrystalline thin film solar cells are complex in nature, numerical simulation of solar 

cells is a useful way to predict the effect of various parameters on the output performances. 

In this chapter we investigate the influence of the [S]/([S]+[Se]) ratio on CZTSSe-based 

solar cells PV properties.  

 

 

7.2 Solar cell capacitance simulator (SCAPS) 

The software SCAPS 3201 [5] is employed in this study and details of device structure and 

simulation are elaborated in the following sections. A particular attention is paid to the 

choice of the input parameters. SCAPS 3201 is a 1-D computer software to simulate the PV 

characteristics of thin film solar cells. Important information such as electric field 

distributions, free and trapped carrier populations, recombination profiles as a function of 

position can be also extracted from the SCAPS program.  

 

 

7.3  Cu2ZnSn(S,Se)4 simulation parameters 

In this chapter, the simulator is used to study CZTSSe based solar cells with the intention to 

propose new absorber design for high efficiency solar cells. A solar cell structure of Mo | 

CZTSSe | CdS | i-ZnO | ZnO:Al | Ni/Al grids was implemented for this study in the SCAPS 

3201 environment. All the parameters of the different materials employed in the solar cell 

structure are listed and described hereafter. 

 

 

7.3.1 Contacts  

Ni/Al finger grids are chosen as front contact: they are of common use in thin film 

technology [6-7]. In the simulation model only Ni (metal work function 5.1 eV) is used 

since no metal stack is possible for the contact. Mo is used as back contact (metal work 

function 5.0 eV): as mentioned in chapter 7, it appears to be the most performing back 

contact tested so far in technology. As already demonstrated in CIGS and CZTS technology 

a Mo(S,Se)2 phase at the interface between Mo and the absorber could be present 

depending on the deposition technique employed. Regarding these simulations no 

Mo(S,Se)2 phase at the interface between Mo and CZTSSe layer is taken into account 

because of a lack of information regarding its mobility and thermal velocity. Electrical 
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properties of both contacts are exposed in Table 1. 

 

Properties Back contact Front contact 

Electron work 

function 
5.0 eV (Mo) 5.1 eV (Ni) 

SRV(*) of 

electron 
10

7
 cm/s 10

7
 cm/s 

SRV(*) of 

hole 
10

7
 cm/s 10

7
 cm/s 

 
 

Table 1: Electrical contact parameters used in the simulation; (*) SRV represents surface recombination velocity. These data are 

taken from CIGS solar cells in SCAPS database. 

 

 

7.3.2 Solar cell parameters 

The rest of the solar cell structure is composed by a i-ZnO | ZnO:Al stack as transparent 

conductive oxide (TCO), a n-doped CdS film as the buffer layer, and a p-doped CZTSSe 

film as the absorber layer.  

Table 2 shows the material parameters used in the simulation: hereafter we discuss the 

semiconductor properties of each layer, with particular attention to the CZTSSe ones. It is 

important to highlight that the parameters in table 2 are taken or estimated from data 

published in the literature, but not necessarily from studies reporting the best devices 

performances.  

Relative permittivity (εCZTS = 6.5 and εCZTSe = 8.6) are estimated from admittance 

spectroscopy measurements by Gunawan & al. [8]. CZTSSe is a self-compensated material 

in which the formation of acceptor-type lattice defects outnumbers donor-type defects. 

CZTS acceptor concentration (NA,CZTS) is found to be 3×10
18

 cm
-3

 by photoconductivity 

measurements [9]; in the same reference a compensation ratio k = ND,CZTS/NA,CZTS = 0.83 is 

measured with ND,CZTS as the CZTS donor concentration. ND,CZTS is calculated from k and 

NA,CZTS and it is found to be 2.5×10
18

 cm
-3

.  

In CZTSSe material the donor and acceptor concentrations are mainly affected by the 

variation of Cu and Zn contents [10]: since there is only a variation in S and Se contents in 

the considered CZTSSe, we have attributed the same k (0.83) for pure CZTS and CZTSe. 

An acceptor concentration in CZTSe (NA,CZTSe = 1×10
17

 cm
-3

) is measured in Ref. 11, thus a 

ND,CZTSe = 8.0×10
16

 cm
-3

 is then calculated.  

With these parameters a net doping [17] is calculated for CZTS and CZTSe (eq. 21):  

 

  (
     

   
)     [ 

  

   
]    (eq. 21) 

 

EA is the activation energy of the CuZn antisite defects for self p-type doping in kesterite 

CZTS and CZTSe (respectively 120 meV and 150 meV) [18]: pCZTS = 3.1×10
15

 cm
-3

 and 
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pCZTSe = 7.4×10
14

 cm
-3

 are finally computed. The latters are consistent with net doping 

evaluated by admittance spectroscopy for CZTS (10
15

-10
18

 cm
-3

 range) [19-20] and CZTSe 

(10
14

-10
17

 cm
-3 

range) [21-22] in the literature.  

The CZTSSe is doped by introducing a single acceptor defect 120 meV above VB (NA,CZTS 

= 3.0×10
18

 cm
-3

) in the CZTS and 150 meV above VB (NA,CZTSe = 1×10
17

 cm
-3

) in the 

CZTSe, and a single donor defect 120 meV below CB (ND,CZTS = 2.5×10
18

 cm
-3

) in the 

CZTS and 150 meV below CB (ND,CZTSe = 8.0×10
16

 cm
-3

) in the CZTSe. In this way the 

software is able to consider the doping compensation in CZTSSe, as demonstrated by 

matching of the doping concentration between the calculated value and the quantity posted 

by SCAPS. 

CZTS and CZTSe hole band mobility (µh,CZTS = µh,CZTSe)= 12.6 cm
2
/V.s are taken from Ref. 

12. CZTS and CZTSe electron band mobility (µe,CZTS = 44.7 cm
2
/V.s and µe,CZTSe = 40 

cm
2
/V.s) are derived from hole mobility and ratio of effective masses [12]. The electron 

affinity for CZTS (χCZTS = 4.1 eV) is calculated by using conduction band (CB) alignment 

offset at CZTS|CdS interface from direct and inversion photoemission measurement by Bär 

& al. [13] and the value of χCdS = 4.4 eV extracted from Ref. 14. χCZTSe = 4.7 eV is 

calculated in the same way from Ref. 15. 

Effective density of states in conduction and valence band are calculated using equations 22 

and 23: 

 

    (
    

    

  
)

 

 
     (eq. 22) 

 

    (
    

    

  
)

 

 

     (eq. 23) 

 

 

where   
  and   

 
 are the electron and hole effective mass extracted from first principle 

calculation reported by Persson [16], kB is the Boltzmann’s constant, T is the temperature in 

Kelvin, and h is the Planck’s constant). Finally it is calculated Nc,CZTS = 8.1×10
16

 cm
-3

 and 

Nv,CZTS = 1.5×10
19

 cm
-3

 for CZTS and Nc,CZTSe = 7.9×10
17

 cm
-3

 and Nv,CZTSe = 4.5×10
18

 cm
-3

 

for CZTSe.  

To obtain the material parameter for a CZTSSe alloy with an arbitrary [S]/([S]+[Se]) ratio, 

value are linearly extrapolated from Table 2 (eq. 24). 

 

                                    (eq. 24) 

 

Semiconductor 

Property 

CZTSSe 
CdS i−ZnO ZnO:Al 

CZTS CZTSe 

Layer thickness 

(nm) 
1200 70 50 450 

Relative 

permittivity, εr 

6.5 

[8] 

8.6 

[8] 

5.7 

[8] 

9.0 

[23] 

9.0 

[23] 
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Acceptor 

concentration, NA 

(1/cm
3
) 

3.0×10
18

  

[9] 

1.0×10
17

 

[11] 

4.0×10
3
 
(*)

  

[27] 

1.0×10
1
 

[12] 

1.0×10
1
 

[17] 

Donor 

concentration, ND 

(1/cm
3
) 

2.5×10
18

 
(*)

 

[9] 

8.0×10
17

 
(*)

 

[11] 

1.1×10
16

  

[28] 

1.0×10
16

  

[29] 

1.0×10
18

  

[17] 

Electron band 

mobility, 44.7 (**) 
40 

[12] 

50 

[29] 

100 

[29] 

100 

[17] 
μe (cm

2
/V.s) 

Hole band 

mobility, 
12.6  

[12] 

12.6  

[12] 

20 

[29] 

25 

[29] 

25 

[17] 
μh (cm

2
/V.s) 

Electrical band 

gap (eV) 

1.5 

[26] 

1.0 

[25] 

2.4 

[9] 

3.4 

[29] 

3.7 
(***)

 

[24] 

Electron 

affinity, xe (eV) 
4.1 

(*)
 4.6 

(*)
 

4.4 

[14] 

4.5 

[29] 

4.6 

[9] 

Effective density 

of states in 

conduction band 

(Nc) (1/cm
3
) 

8.1×10
16

 
(*)

 7.9×10
17

 
(*)

 
2.0×10

19
  

[29] 

9.0×10
18

  

[29] 

2.2×10
18

 

[17] 

Effective density 

of states in 

valence band (Nv) 

(1/cm
3
) 

1.5×10
19

 
(*)

 4.5×10
18

 
(*)

 
1.5×10

18
  

[29] 

4.0×10
18 

 [29] 

1.8×10
19 

[17] 

 

Table 2: material parameters used in the simulation; the CZTSSe parameters correspond to a kesterite crystal 

structure. (*) calculated value, (**) estimated value. (***) The ZnO:Al band gap is found to broaden with 

increasing dopant concentration [23]. The parameter values with no asterisk are experimental ones taken from 

literature. 

 

 

7.3.3 Defects in Cu2ZnSn(S,Se)4 absorber 

Values for CZTSSe radiative recombination rate and Auger electron/hole capture 

coefficients of 5×10
-9 

cm
3
/s and 10

–29 
cm

6
/s respectively are used as reported in Ref. 30. In 

order to model non-radiative recombination (Shockley-Read-Hall) in CZTSSe layer, a 

Gaussian distribution of defects is introduced in the gap and centered in its midpoint. The 

trap density (Ndef) is 5.0×10
16

 cm
-3

 in the case of CZTS and 1.9×10
16

 cm
-3

 in the case of 

CZTSe. Precise values of trap densities have been obtained by successive iteration in order, 

for the simulated cells with pure CZTS and CZTSe absorber layer, to approach the 

literature values of Voc and Jsc of the best-performing CZTS [31] and CZTSe [32] solar 

cells. These values are found to be in the typical range in CIGS solar cells modeling from 

literature (10
14

 – 10
18

 cm
-3

) [33-34]. The defect capture cross-section (σ) is derived from the 

equation 25:  

 

  (        )
  

     (eq. 25) 
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by considering a typical minority carrier lifetime (τ) as reported in literature (1-10 ns), and 

a thermal velocity of electrons (vth) around 10
7
 cm/s.  

 

 
Figure 77: Cliff-like and spike-like alignment respectively at CZTS|CdS and CZTSe|CdS interface 

 

 

 

Defect 

Property 

CZTSSe 
CdS 

CZTSSe|CdS 

interface CZTS CZTSe 

Ndef (D) 5×10
17 

cm
-3

 (D) 1.9×10
16 

cm
-3

 (A) 10
18 

cm
-3

 (N) 10
12 

cm
-2

 

Position Midgap Midgap midgap midgap 

WG 0.1 eV 0.1 eV 0.1 eV 0.1 eV 

σe 10
-15

 cm
2
 10

-15
 cm

2
 10

-17
 cm

2
 10

-18
 cm

2
 

σh 10
-15

 cm
2
 10

-15
 cm

2
 10

-12
 cm

2
 10

-13
 cm

2
 

 

Table 3: Summary of defect distribution parameters: donor-like defect (D), acceptor-like defect (A), neutral-like 

defect (N), defect characteristic energy width of a defect distribution (WG). 

 

 

Nowadays a lot of groups around the world are tackling the study of defects at the CZTSSe 

| CdS interface. It has been demonstrated that a CB “spike-like” alignment at the CZTSSe | 

CdS interface reduces the effects of interface defects on PV performances: this is due to the 

principle of charge carrier inversion at the interface as reported by Redinger & al. [37]. On 

the contrary a CB “cliff-like” alignment at the interface, although it is a typical II-type 

alignment which is ideal to promote charge separation at the interface thus decreasing 

recombination, is more harmful because of a lower defect activation energy (Figure 77). 
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Charged traps at the interface can adversely affect Voc and remains an area for material 

improvement. 

In our study defect distribution parameters for the CZTSSe | CdS interface are taken from 

literature on CIGS | CdS interface [36]. Defect distribution parameters for CZTSSe, CdS 

[35], and CZTSSe | CdS interface are summarized in Table 3.  

 

 

7.4 Cu2ZnSn(S,Se)4 solar cells with different [S]/([S]+[Se]) ratio 

The simulations are run at a fixed temperature of 300 K. The solar cell is illuminated with 

AM1.5G spectrum (1 kW/m
2
) on the TCO face, and the composition of the absorber layer 

is varied to find the influence of [S]/([S]+[Se]) gradient on the solar cell characteristics. 

Before starting with simulations of chalcogens gradients, the PV characteristics of our 

modeled CZTS and CZTSe are compared with the best-performing real counterpart 

published respectively in Ref. 31 and 32. These results are shown in Table 4: 

 

Simulations 

PV Properties 

Voc [Volt] Jsc [mA/cm
2
] FF [%] PCE [%] 

CZTS 0.72 (0.70) 21.3 (21.6) 62.9 (60.0) 10.3 (9.2) 

CZTSe 0.41 (0.41) 39.0 (38.9) 73.2 (61.4) 10.4 (9.7) 

 

Table 4: PV performances comparison of modeled CZTS and CZTSe solar cells with best performing real CZTS 

[31] and CZTSe [32] (values in brackets). 

 

 

Very good matching of J-V characteristics (in particular concerning Voc and Jsc: at least 

97% matching in both cases) have been obtained. The higher PCE, in the case of modeled 

devices, is mainly influenced by the higher FF: the latter could be explained by smaller 

series resistance (Rs) in the simulated device. The reason for smaller Rs might be: (i) the 

absence of Mo(Se,S)2 between the absorber and the back contact in our simulation, (ii) the 

difference between material parameters used to model TCO, and the experimental ones. A 

comparison between extracted Rs from simulation (< 0.7 Ω.cm
2
), and reported Rs (1.05 

Ω.cm
2
) [32] for pure CZTSe, confirms our first assessment. The same comparison for pure 

CZTS is not possible due to the lack of reported experimental values [31]. 

 

7.4.1 Linear variation of the chalcogens gradient 

The composition of the kesterite CZTSSe layer is linearly varied between pure CZTS and 

pure CZTSe. The composition of the absorber varies along the thickness with the 

chalcogens ratio [S]/([S]+[Se] according to equation 26:  

 

     
 

 
           (eq. 26) 
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where L denotes the thickness of the CZTSSe layer, x the distance from the back contact, t 

the chalcogens ratio at the Mo|CZTSSe interface, s the chalcogens ratio at the CZTSSe|CdS 

interface.  Figure 78 shows all the possible linear variations of the absorber (yellow area) 

which are studied in the present paragraph. 

 

 
Figure 78: Composition graph of CZTSSe absorber layer. The CZTSSe absorber thickness (L) is 1.2 µm. 

 

 

The PV characteristics, as a result of simulations, are reported in the colormaps of Figure 

79. A higher PCE is achieved for compositions that are more S-rich towards the back 

contact and more Se-rich towards the CdS interface (Figure 79a). This means also that a 

good choice of the bandgap, decreasing from the BC to the CdS interface (s > t), will 

improve the PV characteristics of CZTSSe solar cells. The latter entail a conduction band 

decreasing from the Mo towards the CdS (purple line in Figure 80). It can be noticed that 

the band diagram shown in Figure 80 fits well with the results published by Persson [38]: in 

the change from CZTS to CZTSe due to Se incorporation, there is a shift towards lower 

energies of the CB, which leads to the decrease of Eg. The valence band is not affected by 

the chalcogens ratio variation, at least far from the metal contacts.  

The best efficiency of 16.5% is achieved (current-voltage curve in Fig. 81) with a CZTSSe 

bandgap of 1.2 eV ([S]/([S]+[Se]) = 0.4) at the back contact and 1.1 eV ([S]/([S]+[Se]) = 

0.2) at the absorber | buffer interface (inset Fig. 79). This latter PCE result is higher than the 

best performing CZTSSe solar cell (12.6% PCE) published by IBM [2] where no 

chalcogens gradient is present and a constant [S]/([S]+[Se]) ~ 0.25 is present. With the 

same constant chalcogens ratio in our simulations, an overall efficiency of 13.1% is 

achieved. 
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Figure 79: PV characteristics variation of Mo | CZTSSe | CdS | i-ZnO | ZnO:Al solar cell where the CZTSSe 

absorber has a linear variation of the [S]/([S]+[Se]) ratio as function of depth. PCE/% (a), FF/% (b), Voc/Volt (c), 

Jsc/(mA/cm2) (d), the white star indicates the best performing solar cell. 
 

 

FF variations do not follow PCE trend: high FF is found in the vicinity of a bandgap with 

no gradient (range 1 – 1.3 eV) and whenever the S-content increases from the BC towards 

the CZTSSe|CdS interface. Since no Mo(S,Se)2 is modeled at the interface with the BC, 

and no change of the TCO properties are provided within each simulation, a reason to 

explain the variations of the FF could be a better contact interface between the Mo and the 

absorber with low S-content close to BC (Figure 79b). In general, at the back surface of the 

CZTSSe a contact barrier may be established due to Fermi level pinning or a particular 

band alignment between the Mo and CZTSSe. It has been demonstrated by Scheer and 

Schock [37] that a barrier height for holes less than 0.3 eV is not harmful for FF and thus 

PCE. In our simulations the barrier height at the Mo interface is always higher than 0.3 eV, 

but it increases when the S-content increase within the BC (Figure 80): the latter may 

explain the FF loss encountered in our simulations.  

 

(a) 
 

PCE 
 

(b) 
 

 
 

FF 
 

(c) 
 

Voc 
 

(d) 
 

Jsc 
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Figure 80: Graphical representation of the band alignments within different CZTSSe solar cells in the dark: CZTS 

(orange line), CZTSe (red dotted line), bandgap decreasing from Mo to CdS (purple line), bandgap decreasing 

from CdS to Mo (black line). 

 

 

 
Figure 81: J-V characteristics of the best-performing Mo | CZTSSe | CdS | i-ZnO | ZnO:Al solar cell. CZTSSe 

absorber has a linear variation of the [S]/([S]+[Se]) ratio as function of depth (inset). 
 

 

CZTS 

CZTSe 
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Voc variations are dominated by the composition variation at the interface with the buffer 

layer and are not related to chalcogens variation towards the BC (Figure 79c). In particular, 

Voc increases with the widening of the bandgap at the CZTSSe|CdS interface.  

Of more interest is the Voc loss as a function of the bandgap grading (Figure 82). Voc loss is 

defined as: 

 

              
 
     

  

 
  (

   

   
)    (eq. 27) 

 

where Jph is the photogenerated current and Joo is the reference current density. To evaluate 

Voc losses in linearly graded absorbers, the value of Eg is taken at the interface with CdS. 

Colormap in Figure 79 shows that Voc loss is more important along with the increase of Eg 

at the buffer interface. This loss could be due mainly to a low     since a high J00 (values 

increasing as a function of the bandgap from 10
13

 A/cm
2 

for pure CZTSe to 10
21

 A/cm
2 

for 

pure CZTS) is extracted from dark J(V) simulations using equation 28: 

 

         
 [

  
  

]      (eq. 28) 

 

where    is considered as the           at the CZTSSe|CdS interface.  

 

 
 

Figure 82: Voc losses variation (in Volt) of Mo | CZTSSe | CdS | i-ZnO | ZnO:Al solar cell where the CZTSSe 

absorber has a linear variation of the [S]/([S]+[Se]) ratio as function of depth. 
 

 

Jsc variations (Figure 79d) depend mostly on the variation of the bandgap at the 

absorber|buffer interface. Three parameters are taken into account to try to explain the 

difference in the simulated Jsc: (i) Eg, (ii) the electric field ( ⃗ ) created by the CB slope in 

Voc 
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the absorber (“negative” when the Eg increases towards the CdS interface, and “positive” 

when the Eg decreases towards the CdS interface), (iii) the band alignment at CZTSSe|CdS 

interface (spike-like or cliff-like alignment) [37]. A low Eg allows increasing the 

photogenerated current. A positive CB slope in CZTSSe assists electron collection due to 

the production of a favorable  ⃗  which drives electron towards the buffer layer, whereas a 

negative slope produces an unfavorable  ⃗  thus limiting the collection of photogenerated 

carriers. The red part of the map in Figure 79d is characterized by having small Eg at the 

CZTSSe|CdS interface, a positive slope which drifts apart the minority carriers towards 

CdS rising up the Jph, and a spike-like alignment at the buffer interface which promote 

charge inversion thus decreasing recombination at the interface. On the contrary low values 

of Jsc are encountered when Eg is high at the interface with CdS, or negative CB slope is 

present. 

 

7.5 Conclusions 

In summary it has been demonstrated by numerical simulations that a good choice of the 

absorber composition can boost PV performances in Mo | CZTSSe | CdS | i-ZnO | ZnO:Al | 

Ni/Al solar cells without changing the absorber material quality. In particular, linear 

[S]/([S]+[Se]) ratio gradients along the depth of the absorber have an impact on solar cell 

efficiency. Among all the different absorber studied, solar cells having a CZTSSe layer 

with a linear grading compositions from [S]/([S]+[Se]) = 0.4 (Eg = 1.2 eV) at the back 

contact to [S]/([S]+[Se]) = 0.2 (Eg = 1.1 eV) at the interface with CdS has been found to be 

the best performing one (PCE = 16.5%, FF = 79.0%, Voc = 0.56 V, Jsc = 37.0 mA/cm
2
). The 

latter results should allow achieving, experimentally, CZTSSe solar cell with good PV 

performances without change the absorber quality. This is possible since the variation of 

the chalcogens is almost ineffective on the CZTSSe lattice parameters thus not playing an 

important role in the formation of defects in the material.  
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8.1 Works carried out 

The main objective of this PhD thesis was directed toward establishing and explaining the 

relationships between synthesis conditions of CZTSSe, its physical properties and 

performance of photovoltaic devices. To tackle this task, the first step is to understand the 

formation mechanism of the material in relation to the growth conditions. CZTSSe is 

synthesized by a two-step selenization process, where a first step of precursor deposition by 

PVD is followed by a second step of annealing. Different precursor stacking orders are 

studied in order to understand the sequence of reactions that, starting from their deposition, 

leads to the final CZTSSe layer. This study has required a strong effort on the material 

characterization at each step of the synthesis. The result demonstrates that in the case of our 

two-step process, the final material obtained after a selenization annealing at high 

temperature (570°C) for a long time (30 min) is independent of the precursor stacking 

order, but that the intermediate steps during the selenization process are strongly influenced 

by the position of the copper and tin layers in the precursor stack, . 

The possible benefits resulting from incorporation of sodium in CZTSSe are also studied. 

This work is carried out by synthesizing CZTSSe on different sodium-containing 

substrates: in this way sodium migrates from the substrates to the absorber. After 

quantification of Na in CZTSSe right after growth, the latter is characterized to evaluate its 

quality and employed in a full solar cell to check on its photovoltaic properties. Results 

demonstrate that, as for CIGS technology, sodium is beneficial for CZTSSe allowing 

increasing the open circuit voltage and efficiency. 

Molybdenum is the most used back contact in CZTSSe based solar cells. However, it has 

been suggested recently that Mo is not stable at the interface with CZTSSe. In addition, to 

the best of our knowledge, no experimental study has been carried out so far to test whether 

solar cells built on another back contact could exhibit better photovoltaic properties. For 

this purpose, various metals (Au, W, Pd, Pt, and Ni) are deposited on top of Mo, and it is 

demonstrated that it is possible to synthesize device-quality CZTSSe thin films on W, Au, 

and Pt back contacts. It is shown that that W and Au back contacts allow enhancing the 

photogenerated current, but that Mo remains the best back contact in terms of power 

conversion efficiency. 

The effects of [S]/([S]+[Se]) ratio tuning on CZTSSe based solar cell performances are 

studied by solar cell capacitance simulator (SCAPS) to find out the optimum absorber 

composition. The simulations lead to an efficiency of 16.5% (with open-circuit voltage of 

0.56 V, short-circuit current of 37.0 mA/cm
2
 and fill factor of 79.0%) when the sulfur 

content is linearly decreased from the back contact towards the buffer layer. Based on these 

results, we propose that bandgap engineering based on the control of [S]/([S]+[Se]) ratio in 

the absorber is a powerful tool which allows increasing the performances of CZTSSe based 

solar cells without changing the absorber material quality. 

 

 

8.2 Perspectives 

CZTSSe is a complex material. Researchers all over the world have identified several high 

impact research topics that could accelerate the development of CZTSSe technology in 

order to take it to the level of other thin film technologies like CIGS and CdTe. To do so, 

high quality films require a higher degree of understanding and control of the CZTSSe 
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phase diagram, correlation of device characteristics with processing conditions, and 

existence of secondary phases. 

Since CZTSSe technology is directly derived from chalcopyrites, a deep study of the front 

and back contacts and interfaces is required to address some of the most urgent solar cell 

development needs. In this context, a precise control on the chalcogen space distribution in 

the absorber is mandatory if we want to tackle the problem of band alignment with the 

other materials composing the solar cell. 

Another major issue that needs to be treated is the formation and impact of bulk, interface, 

and grain boundaries defects. The latter will contribute to decrease the present Voc deficit in 

the best CZTSSe devices which is at the base of the low efficiency. In this context a deeper 

study on the Na, or any other element, that could help passivating defects should be 

addressed.  

In the end, a major point needed to be studied is the possibility to really implement bandgap 

gradient in kesterite solar cells. Simulations demonstrated that this approach should 

increase CZTSSe solar cell efficiency without playing on the material quality. The 

combination of this technique coupled with a better understanding of the defect formation 

will lead to a drastic improvement of the kesterite technology. 
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