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Professeur à l’UPMC, Président

M. Loı̈c LAGADEC
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Chapter 1

Introduction

THE digital revolution, which started somewhere around 1970 and is still under-
going today, has modified deeply and in many ways the society we are living

in. The number of users of electronic devices has not stopped increasing since then.
As an example, figure 1.1 shows that the number of cellphone users has gone from
11.2 millions in 1980 to 4 billions in 2010, while the number of Internet users has
passed from less than 100,000 in 1980 to more than 1.8 billion in 2010.
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Figure 1.1: Evolution of Internet and cellphone users between 1980 and 2010

Similarly, the number of electronic devices has known an incredible growth over
the last 30 years, going from 1 million in 1980 to more than 6 billions in 2012. As
another example, Oracle is proud to say that more than 4 billion devices run java in
the world at every java update.

Not only the digital revolution is related to the omnipresence of electronic de-
vices, but it has also been accompanied by a fast evolution of each individual sys-
tem’s performance. The most famous quoted measure is the number of transistors
integrated on a single chip, which has continuously doubled every 2 years since
1965, commonly known as Moore’s law.
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Chapter 1 Introduction

One of the challenges addressed by this integration growth is the face to the
always increasing computation demand. Although this demand has a lot of sources
(e.g. games), one of the biggest is data processing. In fact, the amount of data
produced worldwide in 2010 has reached 1.2 zettabytes (1021 bytes), and even if
only about 5% of this data is structured – i.e. can be analyzed by a machine –,
it still represents a very high computing demand [idc11]. According to the same
sources, this trend is not going to stop in the near future, since the International
Data Corporation foresees the world to produce more than 40 zettabytes per year in
2020, as shown on figure 1.2.
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Figure 1.2: Evolution of the amount of data produced every year between 2005 and
2020

However, if Moore’s law combined to the increase of the number of devices pro-
vides a support to face this demand, it still does not resolve it all as two major
problems come up with the transistor integration growth.

The first one may seem paradoxical since it deals with the utilization of the tran-
sistors themselves. Around 2004, 50 years of exponential improvement in the se-
quential performance of processors ended [OH05]. This led manufacturers to de-
sign multicore chips, which has been the first answer to the utilization of available
circuit surface. The second problem is related to the power consumption of actual
and future chips, since it estimated that by 2015, 300mm² chip will consume more
than 1kW [Bor07]. One part of this increase is due to what is called the power wall, or
the trend to consume an exponentially increasing power when increasing linearly
the frequency. The other part is related to Pollack’s rule, which states that the per-
formance increase of a circuit achieved via architectural improvements is roughly
proportional to the square root of the increase of complexity – the latter being di-
rectly linked with power consumption. Once again, an answer is to turn towards
multi- and manycore chips, so as to enhance the performance per watt ratio.

Finally, another problem related to Moore’s law is the end of it; we know that
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physical constraints will make technology below 1nm hardly feasible, and until a
major breakthrough in technology occurs – likely the end of CMOS –, new ways to
improve performance at fixed cost and power must be found.

Using FPGAs to Improve Performance

A general-purpose microprocessor, by executing various software on a fixed hard-
ware, can achieve any logical or mathematical operation that a programmer can
conceive, but the performance is not always satisfactory. In contrast, Application
Specific Integrated Circuits (ASICs), by dedicating hardware circuits to a particular
task, can result in a smaller, cheaper, faster chip that consumes less power than a
programmable processor. However, a slight change in its functionality may lead to
a complete redesign and rebuilt of the circuit, which is very expensive.

In order to find the right balance, the idea of adapting hardware to the applica-
tion after build time was formed in the 1960s [Est60]. However, this idea could not
become a reality before long.

Field Programmable Gate Arrays (FPGAs) are circuits which were originally de-
signed in the mid-1980’s to validate Register Transfer Level (RTL) models before
using them to make an ASIC chip. By configuring its behaviour with the means of
a “bitstream”, a FPGA can achieve any functionality in hardware. These bitstreams
are created from RTL models via different tools. Using FPGAs is thus an alternative
to RTL simulation, with the advantage of providing a very high speed compared to
the former. It is, as such, a RTL emulation technique.

However, this also allows triggered a regain of interest in the idea of adapting
hardware to the application after its build. Quickly enough, FPGAs became used as
a part of a System-on-Chip.

With this hypothesis, circuit design now possesses an additional step in the
speed vs generality trade-off: a functionality implemented by a RTL model on a
FPGA is orders of magnitude faster (up to 3 can be observed in literature) than a
software implementation, what also results on large power savings compared to a
processor executing equivalent code. On the other side, the circuit used for it has
neither to be designed, nor is definitely attached to this functionality. As such, a
FPGA is a good compromise between a processor executing a piece of software and
an ASIC. The drawbacks are the opposite: a RTL model is still harder to write than
a high level function; besides, a RTL model on a FPGA will still run one order of
magnitude slower than an ASIC backend of this model.

Exploiting Reconfiguration Inside FPGAs

To even gain more in flexibility, researchers and industrials did not content them-
selves with integrating FPGAs in system-on-chip. In the late 1990’s, a technique was
proposed to allow a part of the FPGA to be reconfigured while the rest of the system
is still running and computing, thus opening a new era in which the adaption of
hardware to the application can even be done at runtime. This technique was called
Dynamic Partial Reconfiguration (DPR).
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Chapter 1 Introduction

Dynamic reconfigurable FPGAs achieve both inherent computing efficiency and
potentially infinite execution space by breaking the barriers between hardware and
software. Unfortunately, compared to CPU-based solutions, FPGA-based solution
suffer from low productivity. The latter is measured by the time required to arrive
to a solution and indirectly by flexibility (scalability, portability and reusability).

This thesis investigates dynamic reconfigurable FPGA, and more specifically the
ways to ease the life of application developers who program a system containing
such FPGAs. In particular, this work will try to improve the flexibility of such sys-
tems in terms of scalability, portability and reusability.

The rest of the thesis is organized as follows: chapter 2 introduces the prob-
lematic we considered for this work; chapter 3 presents related works considering
the integration of FPGAs into conventional systems-on-chip; chapter 4 details the
abstraction layer proposed by the author to solve the portability problems stated
earlier; chapter 5 presents the communication mechanisms used between the differ-
ent parts of the systems; chapter 6 summarizes the experiments fulfilled during this
thesis to validate our proposal; finally, chapter 7 concludes and discusses possible
future works.
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Chapter 2

Problem Statement

THIS chapter introduces the general context of our study, centered around dy-
namic reconfigurable (DR) systems, i.e. systems in which a part of the hard-

ware can be adapted to applications at run-time, while the rest of the system keeps
executing as normal.

Figure 2.1 is a schematic diagram of a typical architecture employed by DR
systems, in which the general purpose CPUs and reconfigurable fabrics (RF) are
loosely-coupled by an interconnect.
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Figure 2.1: Schematic view of a basic dynamically reconfigurable system

According to the integration strategy, the RF part can either act as individual data
processors in a heterogeneous multi-processor system or peripheral data processing
devices.

Depending on the scale of the DR system, the RFs can be implemented by one
partial reconfigurable FPGA or several FPGAs. The number of CPUs is not limited
to one neither. The CPUs can be conventional micro-processors, multi-core proces-
sors, or soft cores in FPGAs.

In our hypothesis, applications can be seen as communicating tasks, as shown
in Figure 2.2. A task can be a data producer (T1), a data consumer (T3) or both
(T2) at the same time. Tasks can be executed by CPU or be mapped to RF. We
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can see that the CPU/RF hybrid DR architecture provides a quite promising com-
putational power by breaking the barrier between hardware (hardware) and soft-
ware (software), but it is exactly such a mixture that makes programming somehow
complicated. Taking the dynamic nature and flexibility demand into consideration,
handling such systems is not an easy job.

�� �� ��

Figure 2.2: Task Graph Example

There are numerous issues in programming models, resource management, com-
munication infrastructure to deal with, and many design choices to make before
finally arriving to a solution.

2.1 Task Management

Noticing the possible parallelism implied by the loose coupling between the CPUs
and RFs, and the potential multi-CPU, multi-FPGA context, wise application pro-
grammers would probably consider dividing their algorithms into multiple com-
putation tasks, which can independently execute during a relatively long period of
time and which can effectively communicate with each other when necessary. The
tasks definition and their assignment to an execution unit have a great influence on
the system’s performance, thus should be treated with care.

One particularity of the hybrid DR systems is that a task can either be executed
by a CPU, called a software task; or be implemented on a RF, then called a hard-
ware task. A hardware task can be considered as the hardware accelerator of its
software counterpart. Normally, an application designer knows best whether a task
should be allocated to a kind of execution unit or another; therefore, when the whole
system is totally predictable, the HW/SW partitioning can be done statically before
the application is executed. However, there are cases in which the behavior of the
application depends on information only available at run-time. Accordingly, the
executing unit of a specific task must be decided based on system state at that mo-
ment. Dedicating the precious RF to a task which never runs is a waste of resource
and an inefficient way of using the DR architecture. This on-demand task allocation
increases the difficulty of task management, because the procedure of launching a
hardware task is not the same as the one of a software one.

The hardware tasks can be prepared in advance in several ways:

• from a Register Transfer Level Hardware Description Language, such as
VHDL or Verilog,

• by commercial Electronic Design Automation tools,

• or, from high level language, as C or C++, by High-Level Synthesis (HLS) tools.
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Some just-in-time compile-synthesis methods are in research to provide an on-line
hardware task generation. Whichever the way, the bitstreams of hardware tasks
must be loaded to the FPGA before these hardware tasks actually run. They can run
until all expected computations are finished, or be swapped in-and-out and com-
plete all predefined operations in several time slices. Whether preemptive or not,
there must be a way to recognize the tasks’ state, i.e. that the requested hardware
task is available on FPGA (first appearance or reloaded), and that the hardware tasks
reach their end or the point to be swapped out.

2.2 Resource Management

The DR feature adds another dimension of system resource management. The
FPGA is not only a spatial resource, but also temporally shared by different hard-
ware tasks. Therefore, resource management mainly consists in managing the RFs
in the platform, through a reconfiguration process, by allocating room for hard-
ware tasks and for a given time on the RFs. Apart from this reconfiguration pro-
cess, the configurations (usually called bitstreams) of hardware tasks corresponding
to the RFs should also be stored somewhere in memory. The identification and
transfers of these bitstreams to the RF also need to be handled. In addition, FP-
GAs can be configured through several kinds of interface, such as Joint Test Action
Group (JTAG) port, synchronized serial data/clock interface, or Internal Configura-
tion Access Port (ICAP) in some self-reconfigurable FPGAs. All these reconfigurable
interfaces need to be controlled and thus require the system to have this ability.

From the view of resource management, the execution of a hardware task can
be considered as a request of part of the RF on the FPGA. Some of the questions to
address during the lifetime of a hardware task are the following:

• How to organize RFs into zones in which we can put different hardware tasks?

• How to choose a specific zone to be reconfigured for the required hardware
task from the numerous available zones?

• What to do when there are no more zones available?

• How to make a zone reusable once the hardware task on it has finished its
execution?

In a multi-threaded context, several applications run independently. It is nei-
ther necessary nor possible to know the executing state of other applications. There
must be a mechanism to guarantee the coexistence of hardware tasks belonging to
different applications. For example, the requests sent simultaneously from different
applications should not be lost; or a hardware task configured on the RF by one ap-
plication should not be replaced by a request of another application even without
a proper run. When in a multi-FPGA context or when an FPGA contains several
configuration ports, parallelizing several reconfigurations is feasible. In that case,
the distribution of reconfiguration requests to the different ports is also a problem
to consider.
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2.3 Communication Management

As mentioned at the beginning of this chapter, our programming model is sup-
posed to be communicating tasks, which form the data producer-consumer (P-C)
pairs (Figure 2.2). In a conventional architecture, once the task graph is settled,
the communication can be managed as the data synchronization between P-C pairs.
However, the communication in a DR system could be much more complicated.

Firstly, each task could either be implemented in its software version or hard-
ware version. Consequently, a basic P-C pair evolves into four combinations: soft-
ware/software, software/hardware, hardware/software and hardware/hardware.
In a software version, data is usually stored in arrays, which are referred to by a
pointer; while in a hardware version, data is probably stored in an unaddressable
First-In First-Out (FIFO) queue on the RF. The communication mechanism should
be able to cover the different natures of communicators.

Secondly, depending on the availability of resources on the RF, one task
could have more than one instance. As a result, a basic P-C pair may leave as
single-producer/single-consumer, or it may expand to multiple-producers/single-
consumer, single-producer/multiple-consumers or multiple-producers/multiple-
consumers. Thus, the number of instances of a hardware task may not be predi-
cable. The communication mechanism should be able to cover an arbitrary number
of communicators in both sides of a P-C pair, so that the computational power is not
wasted due to disconnections among tasks.

Finally, since the hardware tasks need a period of time to be reconfigured on the
RF and since they may be taken off from the RF, the communicators of a basic P-
C pair do not always exist. The communication mechanism should also be able to
guarantee that the data will not be sent to or taken from nowhere, while keeping
the property that different running tasks should not break their boundaries to get
information of existence of other tasks.

2.4 Flexibility Issues

Usability, portability and scalability are the terms we use when talking about flexi-
bility. In the above sections, we discussed the management of tasks, reconfigurable
resources and communication separately, but in practice they are often tightly con-
nected due to FPGA architectures. In the conventional way of using FPGAs, it is the
application programmer who decides which task is put on which part of FPGA, at
which moment, through which reconfiguration port, from which place the bitstream
of the task should be taken from in the memory, and how the ready task should be
accessed.

The strong relation between the platform and the application imposes on the
application programmers a deep knowledge about the underlying hardware, what
asks extra efforts apart from their own job – programming to implement algorithms.
The usability of DR CPU/FPGA hybrid architecture thus need to be improved.

In addition, platform information is planted into applications, what makes such
applications not portable at all. A slight change of the platform, such as a damage
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of one part of the FPGA, requires a complete recoding of the application; not to
mention the porting of an application to other FPGA devices.

Besides, such applications are not scalable: the communication graph is firmly
based on task distribution and task distribution is mixed with resource management
of the current platform. As a result, when resources are added to the platform,
the applications cannot benefit from the potential increase in computational power
without a rewrite, which is both not trivial and error prone.

To solve the flexibility issues, the only possible choice is to hide the platform
details to application programmers. All the problem is to decide to which degree
this hiding should occur. Is it better to achieve a virtualization, meaning the ap-
plication programmers are not aware of the underlying platform at all; or just an
abstraction, meaning the application programmers can get some information from
and give order to the underlying platform in a much easier way. The former gives
the application programmer more freedom, while the latter promises better perfor-
mance gained from more control. Once decided, the other problems arising are the
following:

• How to provide this hiding;

• how to separate the communication from the task distribution;

• how to separate the management of tasks and resource.

2.5 Summary

After discussing the different aspects of DR CPU/FPGA hybrid system, we can
identify the following problems:

1. How are tasks allocated to different resources in a CPU/FPGA hybrid system
where dynamic partitioning is allowed?

2. How the reconfiguration related resources (RFs, bitstreams, reconfiguration
ports) are managed, so that the DR processing can be well maintained even in
a multi-threaded, multi-FPGA environment?

3. How to design a communication mechanism which can recognize the exis-
tence of dynamically appearing communicators, no matter what the nature
and number of communicators at both sides of a P-C pair?

4. How to ease the life of application programmers by separating the manage-
ment of tasks, reconfiguration resources and communication, so that they can
write more flexible applications?
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Chapter 3

State of the Art

THIS chapter presents existing work relevant to our study. The different domains
covered deal with the parallel programming models, and the reconfigurable

architectures which have been proposed in the literature. The focus is made on
the gap between both domains, and the attempt to integrate reconfiguration into
existing programming models.

3.1 Background on Model of Computation and Recon-

figurable Circuit

Current applications often impose conflicting requirements on computing system
designers. For example, the system should be efficient to implement a specific appli-
cation, while it should be generic enough in order to adapt to different applications;
or the computing power is expected to greatly increase, while stricter constraints in
terms of area, footprint and power consumption are placed. In order to meet such
design requirements, various efforts are made in the community. In this section,
we are going to review mainly in two directions: the computational model and the
reconfigurable architecture.

3.1.1 Computational Model

To make developers more productive in describing their applications, various com-
putational models have been proposed to abstract the hardware system, giving the
developers the representations of algorithms and data structures which are easier to
manipulate than underlying hardware details. One tendency of the computational
model development is to explore the parallelism inside an application. To do this,
the most discussed subjects are recognizing the independent computation parts and
managing the communications amongst them. Some frequently used computational
models are described in the following text. It is to note that research efforts also exist
to bring interoperability between models [DCL13].
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3.1.1.1 Streaming Model

Data stream is a model often used in real time data-intensive applications, such as
network monitor, telecommunication data management, on-line video player, etc.

In [Mut03], the authors describe data stream as a ”sequence of digitally encoded
signals used to represent information in transmission, where TCS balance should
be struck when input data comes at a very high rate”. Here, T stands for trans-
mitting the entire input to the program, C for computing sophisticated functions
on large pieces of the input at the rate it is presented, and S for storing, capturing
temporarily or archiving all of it on the long term. The authors of [BBD+02] point
out the common characters of data stream models. For instances, the input data is
not available for random access from disk or memory, but rather arrive as contin-
uous data items. The system has no control over the order or the moment of the
arriving data items. Compared with the potentially unbounded size of data stream,
the number of data items that can be temporarily stored is relatively small. Besides,
once an item in a data stream has been processed, it cannot be retrieved easily.

The parallelism in streaming application can be explored by separating the ap-
plication in several step functions running at the same time, and keeping the output
data rate of one step function the same as the input data rate of next step functions.

3.1.1.2 Kahn Process Network Model

The Kahn Process Network (KPN) is a widely accepted model for parallel programs,
used for example in [APDG05] and [CDHL12]. The formal description of KPN
model is firstly given in [Kah74] as a programming language. If we try to describe
it in simple words, the KPN model could be seen as concurrently running processes
which communicate through unidirectional FIFOs. A process in the KPN model
either stays blocked by the unavailable input, or it computes and products output
data. The process transmits information within an unpredictable but finite amount
of time. The data writing in an output FIFO is non-blocking, which means in theory
that the FIFO should acts as if it had an infinite size.

The above characteristics indicate that the KPN is suitable for modeling only the
deterministic parallel programs. Here the word ”deterministic” can be explained as
the following: whatever the possible execution order of running processes is, the
final outputs and the data history on channels of one program remain unchanged.

For applications satisfying the KPN model hypotheses, their concurrency and
communications are explicitly handled. KPN Processes are only data-dependent,
none of control variables are shared. In practice, the FIFO size need to be bounded
by considering the data rate and possible executing time range. Some run-time
monitoring mechanism might be need to notify and handle the overflow excep-
tions [Par95].

3.1.1.3 Synchronous Data-Flow Model

The Synchronous Data-Flow (SDF) model [LM87] is considered to be a natural
paradigm for describing many digital signal processing applications. In the SDF
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model, algorithms are described as directed graphs where the nodes represent com-
putations and the arcs represent data paths. Any node can fire (perform its compu-
tation) whenever input data are available on its incoming arcs. When the node fires,
a fixed number of data samples (or tokens) are consumed or produced on each arc
respectively.

The SDF model is sometimes considered as a restriction of the KPN model. How-
ever, thanks to its static property (the fixed number of tokens on each arc), the SDF
model has certain appealing characteristics. For instance, it is suitable for optimiza-
tion techniques, namely minimizing bounded buffer sizes and static scheduling at
compile time [BLM96].

Based on the primary SDF model, many efforts have been made to extend this
model to be able to describe more generic programs, such as the following:

• the cyclo-static data flow model [BELP95], in which the rules of firing are al-
lowed to be changed cyclically;

• The scenario-aware data flow model [TGB+06], in which the data rate and ex-
ecution time can be parameterized according to the scenario occurrence cap-
tured by a stochastic approach;

• The control-operations-integrated SDF model, where the control informations
are exchanged amongst processes to synchronize their execution and configu-
ration [Bui13].

3.1.1.4 Multi-Threaded Model

The multi-threaded programming model brings the abstraction of threads to the pro-
grammer, a thread being a sequence of instruction executed in order. In this model,
the threads communicate through shared memory, meaning that a thread can access
to any memory location without constraint. This is why the threads come along
with some synchronization primitives: at least locks, and often other abstractions
like semaphores and barriers. Usually, this kind of model also comes up with some
other support, e.g. memory allocation primitives.

Contrary to the previous models, multi-threaded programming lets the pro-
grammer a lot more freedom, but this freedom comes with a counterpart: the pro-
grammer has to guarantee himself the correctness of the synchronization to avoid
deadlocks, while allowing enough concurrence between threads to get an effective
parallelization. The latter is non-trivial at all, and this is why embedded programs
are usually not written directly using this model. However, this model is well
adapted to write a higher-level programming model such as the ones described
above.

The most commonly known multi-threaded programming interface is the POSIX
specification which provides all these basic blocks. Its most widespread implemen-
tations are Linux and BSD.
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3.1.2 Reconfigurable Architectures

[HD07] provides an introduction to the entire range of issues relating to reconfig-
urable computing. In this book, various reconfigurable architectures are presented
as the solution of the conflict between the increasing performance demand and the
stricter constraints of area, memory footprint and energy consumption. Nowadays,
the most commonly used reconfiguration device is the FPGA. The following discus-
sion are mainly about the granularity of the FPGA device, the configuration type
and the coupling with general purpose processors (GPP).

3.1.2.1 Granularity of FPGA Devices

FPGA can be seen as an array of logic block islands surrounded by general routing
resources. The complexity and size of the logic blocks are referred to as the granu-
larity of the blocks. The range of the granularity can vary.

[KTR08] reviews a spectrum of FPGAs. The logic blocks range from the very-
fine-grained ones made of transistors, NAND gates; to medium-grained ones made
of multiplexers, lookup tables; and to coarse-grained ones made of PAL-style wide-
input gates, or even small processors.

The area, speed and power consumption are analyzed based on the granularity
of the FPGA. In general, the fine-grained FPGAs benefit from convenient bit-level
manipulations, but suffer from lower productivity, larger area, slower clock rates
and higher power consumptions when complicated functions are demanded. The
facts that developers have to construct functions at bit-level and that many areas
are dedicated for interconnection result to a lower area-efficiency and a longer con-
figuration time. The coarse-grained FPGAs, such as DART [DCPS02], are the other
side of the story, as they are suited to implement relatively complicated operations,
but very fine value operations lead to unnecessary area and speed overheads. The
detailed trade-off can be found in [Ahm01].

3.1.2.2 Reconfiguration Types

The logic blocks and routing resources in FPGAs are controlled by reprogrammable
memory locations. Boolean values held in these memory bits control whether cer-
tain wires are connected and what functionality is implemented by a particular piece
of logic. A specific sequence of 1s and 0s for a particular memory locations in hard-
ware is called a configuration, or referred to as a bitstream in the rest of the thesis.
The process of loading bitstreams to the hardware memory locations is called recon-
figuration. Depending on the time and influence to the system, we can divide the
reconfigurations into two kinds: static ones and dynamic ones.

Static reconfigurations refer to the reconfigurations which can only take place dur-
ing the system initiation and in which any change of configuration requires a halt of
the whole system. If we limit our discussion only at the FPGA scope, the static re-
configuration examples could be the single-context FPGAs. The memory locations
of such FPGAs can only be sequentially accessed, so that a large single bitstream for
the whole chip has to be reloaded even when the functionality of a very small part
needs to be modified.
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At the opposite, dynamic reconfiguration means that a part of the fabric can be
reconfigured while the rest of the system keeps on running. The example of dynamic
reconfiguration could be multi-context FPGAs which allow background loading of
inactive planes when an active plane is in execution. Another example is the partial
reconfigurable FPGAs, whose memory locations can be randomly accessed, so that
reconfiguration of one part of the chip and the computation of the rest are allowed
to overlap in time. It is a special case of dynamic reconfiguration, called dynamic
partial reconfiguration (DPR).

The main difference between static and dynamic reconfiguration is whether the
functionality of a system hardware can evolve at runtime. It is not strictly bound
to a special reconfigurable architecture. For instance, in a multi-FPGA system com-
posed of single-context FPGAs, if the reconfiguration of a particular FPGA does not
effect the execution of other FPGAs, the multi-FPGA system is still a dynamic re-
configurable system.

Another concept related with DPR is self-reconfiguration. It refers to a reconfig-
urable architecture in which the partial reconfigurations are controlled at runtime
inside the FPGA device itself (either by a CPU core or by a dedicated controller).

3.1.2.3 Coupling FPGAs with GPPs

Frequently, the reconfigurable fabrics (RFs) are coupled with GPPs to set up a re-
configurable system. Such systems tend to make good use of both computation
structures. High density of parallel data processing are often mapped to RFs, while
certain control-intensive operations are left to GPPs. According to the position of
RFs in the memory hierarchy, [HD07] summed up the coupling between RFs and
GPPs as shown in Figure 3.1.

Tightly coupled RFs can be seen for example in PRISC architecture [RS94], Chi-
maera architecture [YMHB00], and OneChip architecture [CC01]. Garp architec-
ture [CHW00] is an example of loosely coupled RF. The coprocessor RF can be found
in the RaPiD architecture [CFF+99] and various commercial systems.

Each of the above coupling styles has its advantages and drawbacks. Normally,
the tighter RFs and GPPs are coupled, the lower is the communication overhead
between the two computation structures. The looser RFs and GPPs are coupled,
the more complicated functions can be put on the RFs, thus greater parallelism
can be achieve between the two computation structures. Before choosing an appro-
priate coupling style, the developer needs to carefully analyze the nature (control-
intensive or data-intensive) of an application.

3.1.3 Gap Between Computational Models and Reconfigurable Ar-

chitectures

As shown in Figure 3.2, we have reviewed some commonly used computational
models and some key characteristics of the reconfigurable architectures in the last
two subsections. However, for application programmers who probably are not ex-
perts of hardware, the link between the sea of reprogrammable arrays and their
familiar models for describing algorithms is not so obvious. To be able to quickly
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Figure 3.1: The Coupling between Reconfigurable Fabrics and General Purpose Pro-
cessors (adapt from [HD07])
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Figure 3.2: Gap between Computation Models and Reconfigurable Architectures

come to a solution, they need the appropriate design methodologies to answer the
new problems introduced by reconfigurable architectures. Examples of such prob-
lems are: what is the role of RFs in an application? How do they communicate
with the GPPs? Which place should a computation be mapped to? When should
a computation take place? Are the programmer supposed to take care of all above
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aspects? Is that possible to have some automation?
There is clearly a gap between the computation models and the reconfiguration

architecture, which largely influences the productivity of the application program-
mer. In the following two sections, we are going to review some efforts to fill the
gap. The related works are organized from two angles: how the RFs are integrated
in a computing system, and how these extra reconfigurable resources are managed
at runtime.

3.2 Integration Strategies

In this section, we are going to review some works bridging the semantic gap be-
tween the algorithm and the reconfigurable hardware architecture, emphasizing
how hardware implemented computations are encapsulated and notified by pro-
gramming environments.

The related works are categorized into four groups according to different inte-
gration strategies. We can see that the way of integration (at task level, process level,
thread level or instruction-set level) also influences the way of interactions between
a hardware implemented computation and the other parts of the programming en-
vironment.

3.2.1 Integration at Task Level

Integrating hardware implemented computations as tasks is the integration means
which is the closest to the algorithm level. Such an integration usually relies on
a specific programming paradigm or a domain-specific language. The hardware
implemented computations are recognized as independent tasks (they may also be
named actors, nodes or components) in the programming paradigm, where the com-
munications amongst tasks are explicitly decided in most of the cases.

To achieve a task level integration, a high-level abstraction API has to be pro-
vided to adapt to the corresponding programming model or domain-specific lan-
guage. Sometimes, the high-level abstraction API may be built up on thread imple-
mentations. Some examples of task level integration are described as follows.

3.2.1.1 FOSFOR

The FOSFOR project[GKM+12] targets applications written via a SDF model. The
author intends to propose a full development flow to reduce the programming com-
plexity of such application on a Heterogeneous System-on-Chip architecture.

At high level, the applications are described as a graph of SDF actors which re-
ceive and send certain amount of data tokens through virtual channels. The actors
description is made from the standard graphical language UML (Unified Model-
ing Language). Their interfaces are described using Interface Description Language
(IDL3).

At implementation level, the actors are refined as threads. software threads are
managed by the RTEMS Operating System (OS), which is able to run on a multipro-
cessor target by using its Multi-Processor Communication Interface; while hardware
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threads are managed by a flexible hardware OS, which provides the services includ-
ing fast system call, thread management, semaphores, simple memory allocation
and mailbox. The virtual channels and their corresponding managers are imple-
mented as a middleware on top of the OS, explicitly transferring the exchanged
data and implicitly maintaining state coherency through software and hardware.

The preemptive states have been added in the hardware thread Finite State Ma-
chines. However, the current scheduling strategy is a Highest-Priority First algo-
rithm sorting statically partitioned thread. The context switch and relocation of
hardware threads are left as open issues. The authors also plan to develop a load-
balancing HW/SW partition mechanism and model transformation techniques to
automatically generate the actors’ code.

3.2.1.2 ReConfigME

ReConfigME [WK01, WKJ06] is a set of OS services, which are developed for allocat-
ing pure hardware implemented applications onto shared reconfigurable platforms,
and for managing shared-memory data communications for each application.

All applications handled by ReConfigME must respect a data flow programming
paradigm. Each application should be structured as a data flow graph, which con-
sists of computation nodes and logic connections amongst the nodes. As inputs of
ReConfigME, each node is described by an EDIF file, and a JAVA class file is pro-
vided to define how EDIF files are connected together.

The ReConfigME is responsible to place the input application, generating the
corresponding bitstreams and realizing the actual configuration procedure. An ap-
plication can be configured to the platform only when all of its nodes can be placed
on the FPGA, or the application is put into a waiting queue. In other words, a whole
application is the minimum unit to be allocated on the reconfigurable fabrics. The
decision of user to load and unload an application is transferred to ReConfigME
through a user command-line interface.

As for the aspect of communication, each application is assigned to a dedicated
segment of on-board memory. The nodes of the application access the segment of
memory through a memory controller. A remote host can send the stimulating data
to and collect the final result from the memory segment through a network protocol.

The ReConfigME framework does not support dynamic reconfiguration or par-
tial reconfiguration. When a new application is about to be added to the platform,
the clock of FPGA is stopped. The bitstream of the whole FPGA is read out, merged
with the bitstream of the newly-added application, then reloaded back to FPGA.

3.2.1.3 SPORE

Simple Parallel platfOrm for Reconfigurable Environment (SPORE) [FMG13] is
a general theoretical platform which adapts a High Performance Computers
(HPC) topology, with nodes composed of computing processing elements and a
communication-dedicated element.

Close to OpenCL [ope11], applications in SPORE are viewing as a gathering of
independent kernels communicating with each other. All the kernels have both
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a software and a hardware implementation, the one eventually used is chosen at
execution time depending on available resources and process criticality.

To achieve this HW/SW online codesign, the author proposed a virtualization
mechanism to automatically manage kernels and their access. Sequential action sets
are carried out by a kernel implementation as the way to deal with the starting and
parameters setting of the kernel implementation.

Currently, SPORE has two implementations. One is software HPC platform,
which use MPI [For12] for inter-node communication; the other is hardware stream
dynamic platform, which is rather dataflow-oriented. Both platform are evaluated
in terms of resource usage and job running time. The evaluation revealed that
memory is a bottleneck issue led by the symmetric multiprocessing characteristic
of their platform. The author intended to develop the third SPORE implementation,
in which both the nodes and kernel implementations can have hybrid HW/SW na-
ture.

3.2.1.4 Flextiles

In the Flextiles project [LMA+12], the application is described as a set of actors, that
respects a dataflow model of computation. This on going project aims at providing
a virtualization layer in order to mask the underlying heterogeneity of the reconfig-
urable architecture. Their virtualisation layer will provide self-adaptation capabili-
ties by dynamically relocation of application tasks to software on the manycore or
to hardware on the reconfigurable area. Beside the code location, the virtualization
layer should also manage on the fly the storage and communication paths. To make
this possible, the project also proposes a specific reconfigurable technology based
on a virtual bitstream that allows dynamic relocation of accelerators just as software
based on virtual binary code allows task relocation.

3.2.2 Integration at Process Level

3.2.2.1 BORPH

BORPH [hSAS+07] provides kernel support for FPGA applications by extending a
standard Linux operating system. In BORPH, an instance of a program executing
on the reconfigurable fabric is recognized as a hardware process, which is an active
independent executing entity equivalent to the conventional software process.

A hardware process is an executing BORPH object file. Such a file is a binary file
format that encapsulates, among other information, configuration for reconfigurable
fabrics. In order to handle hardware processes, BORPH makes use of an extensible
interface provided by the standard Linux kernel and integrates a new binary file
format kernel module. The interface provides a system-call-consisted API for user
defined binary file formats. The newly-added kernel module serves the requests
passed by the extensible interface, such as allocating and configuring the necessary
reconfigurable resources during process creation.

BORPH provides hardware processes a hybrid message passing system call in-
terface for both accessing regular data files and to communicate with other processes
in the system through UNIX’s pipe construct. Besides, the ioreg virtual file system
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allows passive communication from the controlling processor to gateware designs.
Because of the kernel’s involvement, access to FPGA resources may be initiated by
any UNIX programs: from simple shell scripts to complex compiled programs.

BORPH has been implemented for multi-FPGA platforms. The kernel/user in-
terface of BORPH also makes it possible to employ dynamic partial reconfiguration
on a FPGA.

3.2.3 Integration at Thread Level

There exists solutions which integrate hardware implemented computations at
thread level. Such solutions have the following features in common. They all rely on
a multi-threaded programming model. The computation implemented by hardware
and software are handled in a unified manner, as threads share the same memory
space. To achieve this, an API for hardware thread management is normally built
up on the top of an OS, providing services such as scheduling, communication, syn-
chronization, and so forth. A thread interface is usually implemented on the re-
configurable fabric for each hardware computation, providing to the OS the thread
elements to manipulate. Some examples of thread level integration are described in
the following.

3.2.3.1 HybridThread

HybridThread [ASA+08] is a POSIX-compliant multi-threaded programming model
across the HW/SW boundary. It is composed of several middleware services and
an extended operating system.

The middleware services provide a unified API to create, control and schedule
all threads. The executing unit of a specific thread is indicated as an attribute of the
creation function. That is to say, the partition is explicitly done in the application
code. Each hardware thread has a dedicated system interface called hardware thread
interface, which allows the hardware thread to execute autonomously and in parallel
by supporting system call mechanism and shared memory accesses.

In order to have a promising performance, parts of the OS concerning the hard-
ware thread management are migrated into hardware, including a mutex manager,
a CPU bypass interrupt scheduler, a thread scheduler and a thread manager.

A compiler is demanded to automatically and correctly translate the application
from a standard high-level programming language to hardware threads that can be
synthesized for a specific target platform. As far as we get from the literature, the
HybridThread framework neither supports dynamic nor partial reconfiguration.

3.2.3.2 ReconOS

ReconOS [LP07] is an execution environment built on the top of existing embedded
operating systems, extending shared memory multi-threaded programming model
from the software domain to reconfigurable hardware.

ReconOS employs hardware threads through a dedicated API which is similar
to but different from the POSIX or eCos kernel API used by software threads. The
HW/SW thread interfacing problem is addressed by using the same OS objects for
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thread communication and synchronization. Each hardware thread has its own soft-
ware proxy thread, called delegate thread. The delegate thread is responsible to
maintain the OS kernel-mapped objects used by the associated hardware thread.

Hardware thread is structured by two hardware parts: user logic and an OS
interface. The user logic implements the computation demanded by the application.
The OS interface provides thread supervision and control. Inside this OS interface,
there are VHDL-implemented procedures which govern the system calls required
by the hardware thread. These system calls are either transformed as an access to
shared memory or dedicated hardware FIFO buffer, or relayed to the corresponding
delegated thread to execute a software OS call on behalf of the hardware thread.

The current ReconOS prototypes hardware threads are statically configured. The
support of dynamic partial reconfiguration is planned in future work by the au-
thors [LP09].

3.2.3.3 FUSE

FUSE [IS11] is a front-end user framework intending to ease the migration of
software-implemented tasks to hardware. To attain this goal, the authors proposed
a specific creation/destroy API and some OS support organized in two layers.

The API acts as the wrapper of corresponding POSIX thread creation/destruc-
tion functions, augmenting their abilities by supporting hardware tasks when a
platform contains hardware accelerators. The user-layer OS supports, called top-
level FUSE component, provide a decision flow to firstly partition a task on hardware
when possible and secondly to assign the task to software otherwise. Thanks to the
API and top-level FUSE component, the semantic of task creation/destruction code
remains identical in the application program, whatever the underlying platform is.

Although the creation of hardware tasks is encapsulated in POSIX-like thread
creation function, the communication and synchronization between software and
hardware are not managed at thread-level. In the FUSE framework, all tasks imple-
mented in hardware are considered as memory-mapped I/O devices.

The kernel-layer OS supports, called low-level FUSE component, provides the typ-
ical file system services (open, close,read, write, iocrl and mmap) to give access
to hardware tasks. The device drivers in the low-level FUSE component are cus-
tomized for each specific hardware task. They can be dynamically loaded to kernel
at runtime.

A hardware accelerator interface is added to each hardware task. However, un-
like the hardware thread interface in HybridThread or the OS interface in ReconOS,
this hardware accelerator interface does not support the encapsulated hardware task
to actively communicate with the remaining parts of the system.

The current version of FUSE partly provides the dynamic feature by employing
on-demand loaded device drivers to manage the already existing hardware acceler-
ators. The fully partial dynamic reconfiguration support needs further research on
reconfigurable resource management.
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3.2.3.4 SPREAD

SPREAD [WZW+13] is another HW/SW multi-threaded programming model built
up on the top of an extended OS. The particularity is that SPREAD was designed
specially for the streaming applications and SPREAD supports dynamic computing
resource allocation, and runtime HW/SW switching.

Resembling to ReconOS, SPREAD provides a dedicated API for creating, ter-
minating or switching hardware threads. However, a stream programming library
provides a set of unified communication and synchronization services for both soft-
ware threads and hardware threads. The inter-thread communications are explicitly
implemented through data-driven point-to-point streaming channels.

On the platform, each user-defined function is encapsulated by a hardware thread
interface. Apart from the thread state controlling, the hardware thread interface
mainly provides two full-duplex, synchronized stream interfaces, so that the hard-
ware threads can communicate with software threads and hardware threads. Each
hardware thread in SPREAD has its software delegate thread, called stub thread,
which monitors the hardware thread interface and maintains the stream communi-
cation primitives located in OS kernel for the hardware thread.

A reconfigurable computing resource, a hardware thread manager and a stream
manager are added to the OS kernel. They operate concurrently to implement the
hardware task allocation, the HW/SW thread switch and stream redirection at run-
time.

3.2.3.5 Virtual Memory System

[VPI05] introduces a hardware-agnostic multi-threaded programming paradigm.
All threads in such a programming paradigm communicate implicitly through a
shared virtual memory space. The programming paradigm is achieved by the sup-
port of a predefined hardware thread library and a virtual memory system.

Each hardware accelerator has a software wrapper. The software wrapper is re-
sponsible to activate the corresponding hardware accelerator, and to pass the asso-
ciated virtual memory space and size of expected data to the hardware accelerator.
The name of the software wrapper is used as the identifier in the hardware thread
library. In the application, a software wrapper is invoked during a thread creation
procedure, as the implementing function of the thread.

The virtual memory system consists of several window management units phys-
ically linked to each statically-located hardware accelerator and a virtual-memory
window manager. The window management units, equivalent to memory manage-
ment units for CPUs, map the virtual memory address used by the hardware ac-
celerator onto physical memory addresses. The virtual memory window manager,
as a supplement to conventional virtual memory managers, ensures memory con-
sistency while providing the standardized OS data-transfer services to user space
libraries and applications.
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3.2.4 Integration at Instruction-Set Processor Level

Integrating hardware implemented computations as customized instruction is the in-
tegration way which the closest to the hardware architecture level. Such an integra-
tion is usually tailored to a special application domain. The most-frequently used
patterns in the application are implemented as extra function units in the data-path
of the processor core. The HW/SW interfacing is normally implicit to a program-
mer, realized by a bypass circuit which redirects corresponding data to instruction
executing units on the reconfigurable fabric.

To achieve instruction-set level integration, a series of tools are normally re-
quired. The design space is usually explored based on the result of a profiling tool,
which is able to find the hot spots in applications in an architecture-independent
manner. The customized instructions can be identified and re-targeted to a recon-
figurable fabric manually by the programmer or automatically by a compiler. The
generation of customized instructions can be achieved through a separated synthe-
sis tool chain from a HDL description. Sometimes, the synthesis is also integrated
inside the compiler to generate customized instructions directly from the applica-
tion. Some examples of instruction-set level integration are described in the follow-
ing.

3.2.4.1 Chimaera

Chimaera [YMHB00] tightly couples a superscalar processor and a reconfigurable
functional unit on a small and fast FPGA-like device. This unit is capable of per-
forming 9-input/1-output operations on integer data. The data is exchanged via the
shadow register file. An execution control unit communicates with the control logic of
the host processor for coordinating the execution of the reconfigurable functional
unit operations.

A modified version of GCC provides the compiler support for Chimaera. It au-
tomatically maps groups of instructions to the reconfigurable functional unit op-
erations (RFUOP). At the same time, it performs instruction combination, control
localization and SIMD within a register. The three RFUOP-specific optimizations
offer significant performance improvements even under pessimistic assumptions.

Upon detection of an RFUOP, the execution control unit is able to initiate a trap
to load the appropriate configuration at runtime. However, while the configuration
is being loaded, execution is stalled. Moreover, if the working set of the RFUOPs is
relatively large, the problem of thrashing in the configuration array is reported.

3.2.4.2 XiRisc

eXtended Instruction Set RISC (XiRisc) [LTC+03] is a VLIW based processor, which
is enhanced with an additional pipelined runtime configurable data-path (PiCo Gate
Array, or PiCoGA). The PiCoGA acts as a repository of virtual application-specific
multi-cycle instructions. The PiCoGA is tightly integrated in the processor core,
receiving inputs from and writing back results to the register file of the processor.
Synchronization and consistency between the normal program flow and PiCoGA
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elaboration is granted by hardware stall logic based on a register locking mecha-
nism, which handles read-after-write hazards.

The critical computations that should be implemented on the PiCoGA are manu-
ally determined, based on a software profiling environment. That is to say, the pro-
grammers have to be aware of the application-specific instructions when they write
the programming code. Dynamic reconfiguration is handled by a special assembly
instruction, which means that the instruction decoder circuits should be modified to
recognize the new added instructions.

3.2.4.3 MOLEN

The Molen architecture [SB09] consists of two parts: the GPP and the tightly coupled
reconfigurable processor usually implemented on a FPGA. An arbiter performs a
partial decoding of the instructions received from the instruction fetch unit and is-
sue them to the appropriate processor. The exchange registers are used for data com-
munication between the core GPP and the reconfigurable processor. Parameters are
moved from the register file to the exchange registers and the results stored back
from the exchange registers to the register file.

A runtime environment, including a scheduler, a profiler and a transformer, de-
cides on which processor each instruction should be executed. In the Molen frame-
work, a compiler assisted task scheduling takes place in two phases [SSB09].

First at compile-time, the compiler performs static scheduling of the reconfigu-
rations requests (by SET and EXECUTE instructions) assuming a single application
executing, in order to hide the reconfiguration delay by configuring the operations
well in advance before the execution point. Then at runtime, the scheduler should
make the decision based on the runtime statistics recorded by the profiler. The trans-
former has to replace the software instruction with a call of pre-synthesized hard-
ware implementation. The SET and EXECUTION instructions are only conditions
to invoke the scheduler. It is possible to run an instruction in software even though
the compiler already scheduled the configuration on the reconfigurable hardware.

In the current version, the reconfigurable processor implemented instructions
are not relocatable. They are all pre-synthesized with a fixed physical mapping
location.

3.2.4.4 RISPP

Rotating Instruction Set Processing Platform (RISPP) [BSH08] distinguishes itself
from other instruction-set integrations by separating the notion of a data path from
a special instruction for an application. A special instruction is the combination of
several data paths. A single data path can be reused by several special instructions.
A data path can be used as soon as it is reconfigured. The RISPP allows a special
instruction to be implemented with only a subset of its required data path, in order
to improve the efficiency of the hardware usage.

Different implementation possibilities exist for each special instruction, which
employ different trade-offs between the amount of required accelerating data paths
and the achieved performances. These implementations are prepared at compile
time. A runtime manager is used to control the special instruction executions,
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upgrading the performance of a special instruction implementation at runtime by
gradually loading the corresponding data paths. In the case that the reconfigurable
hardware does not support a requested special instruction (either because of the
lack of reconfigurable hardware or the low expectation of its performance), a trap is
activated to call a corresponding pure software implementation for it.

The authors spent a large effort to automatically detect special instructions.
However, the partition of special instructions into data paths are still manually de-
veloped.

3.3 Conclusion

This chapter provides a background on computational model and reconfigurable
architectures. To support reconfigurable computing, a broad range of integration
strategies exist. This chapter covers them thoroughly from the one closely related to
the computation model to the one tightly-coupled to a specific reconfiguration ar-
chitecture. It should help the reader to position contributions described in following
chapters on these axis.
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Chapter 4

An Abstraction Layer for Dynamic
Reconfiguration

IN this chapter, we are going to introduce an abstraction layer between the ap-
plication and the hardware platform. This layer separates task allocation from

FPGA reconfiguration procedure, by abstracting different kinds of reconfigurable
fabrics and providing a uniform allocation service to the upper layers.

4.1 Hypotheses on the System

Looking for simplicity and willing to search a solution implementable in a
lightweight manner led us up to the following hypotheses on the hardware archi-
tecture and software environment, which form the base of our work.

4.1.1 Targeted Hardware Architecture Template
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Figure 4.1: The targeted hardware architecture template
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The targeted hardware architecture template is represented in Figure 4.1. The
proposed architecture is based on cells located in one or several FPGAs with dynamic
partial reconfiguration (DPR) capabilities. The cells can either be FPGA parts or a full
FPGA. The architecture template also contains reconfiguration controllers (called RCtrl
in the figure), general-purpose processors (GPPs) and memories.

4.1.1.1 Cells and the Homogeneous Choice

We make the assumption that the cells present in the architecture are homogeneous.
This brings several advantages, that we outline now.

Bitstream Size and Structure

First, the homogeneous choice implies that two configuration files, called
bitstreams, which configure different cells with different functions, are similar
in terms of size and structure [KLPR05]. By structure, we mean the sequence of
configuration commands and configuration memory address space. This allows a
better management of bitstreams in memory.

Generation of Bitstreams and Storage Size

For each complete computing function implemented on the RF, a bitstream must
be available. Normally, a bitstream is dependent on the position where the function
is mapped to. However, thanks to the homogeneous cell choice, only one configura-
tion bitstream per function has to be generated and this bitstream can be relocated
on each cell of the architecture template [CMN+09] with just a bit of modification.
This allows a considerable reduction of the configuration storage required.

In addition, homogeneous cells allow to ease the bitstream generation process,
since a function has to be synthesized only once with area constraints associated to
cell resources, which results in less synthesis number and shorter synthesis time.

Interconnect Infrastructure

Another consequence of the homogeneous cell choice is that the interconnect is
static and standard interfaces can be used, as proposed for example in [HKHT05],
thus simplifying at the same time the communication management.

4.1.1.2 Reconfiguration Controllers

The architecture template also integrates one or several reconfiguration controllers.
Each reconfiguration controller can configure one cell at a time among the cells it
can access. The reconfiguration controller is responsible for adapting a bitstream
to a specific chosen cell. By doing so, a function can be relocated to any cell in the
architecture template, while keeping only one bitstream in storage.

Therefore, the template can support multi-FPGA architectures and FPGA with
multi-programming ports as proposed in [QSN06] – even if it does not exist in cur-
rent FPGAs.
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4.1.1.3 General-Purpose Processors

The architecture template also contains one or several GPPs to benefit from soft-
ware modularity and ease of use. Multi-GPP is considered to ensure software per-
formance. The GPPs can be conventional micro-processors, multi-core processors,
or soft cores in FPGAs.

4.1.2 Software Environment Assumptions

Having discussed the hypotheses on the hardware template, we are now going to
make assumptions about the software environment in the GPP/FPGA hybrid re-
configurable system. The assumptions mainly concern the task partition, the way
to handle multitasking for functions running on the reconfigurable fabrics, and how
the bitstreams are generated and recognized by the software environment.

4.1.2.1 Explicit Partition

Normally, application programmers have the best knowledge of their algorithms
and the most efficient way of implementing them. Thus, we assume that an ex-
plicit partition of tasks is employed in our context, i.e. while writing applications,
programmers are aware of which parts should be accelerated by putting them onto
reconfigurable fabrics.

The explicit partition avoids the efforts of an attempt of resource assignment
between hardware and software, and so simplifies the run-time task management
infrastructure. Runtime assignment of tasks to hardware or software is out of the
scope of this work.

4.1.2.2 Cooperative Multitasking

We assume that the tasks implemented on the reconfigurable fabric are cooperative.
That is to say, once a hardware task begins to compute, it will be executed until the
end of the task. The reason why we employ this non-preemptive multitasking way
is that we would like to keep things simple.

On one hand, the context switch of hardware tasks is rather expensive. This is
because it includes not only the storing and reloading the execution state of the two
hardware tasks, but also a procedure of reconfiguration of the switched-in hardware
task. Both of them require a period of time and space in the memory.

On the other hand, a definition of “execution state” for all hardware tasks is
difficult, if not impossible. The implementation of each hardware task is designed to
adapt to the function that it realizes. Some hardware task implementations contain
many state machines, others are more data-dependent. Even during the different
stages of a specific hardware task, the context (states of state machines, data under
processing) needed to be stored may be different.

It is to note that efficient hardware context-switch solutions has been proposed in
[GG09]. However, these solutions are restricted to dedicated reconfigurable fabrics.

By employing the cooperative multitasking way for the hardware tasks, we
avoid the overhead and complexity of context-switch. If the task can not work in
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a cooperative manner (e.g. infinite tasks), it is the responsibility of the hardware
designer to implement it with preemption points.

4.1.2.3 Pre-synthesized User Library

We assume that the functions implemented on the reconfigurable fabric are pre-
synthesized and recognized by the software environment as a user library.

We chose to pre-synthesize the functions running on the reconfigurable fabric
mainly for performance reason, since to the best of our knowledge, fast and reliable
just-in-time compile-synthesis methods have not been developed yet.

Since the preparation and the usage are separated, the bitstreams can be gen-
erated in various ways. They can be synthesized from VHDL or Verilog models
written by professional hardware designers. Alternatively, a high level synthesis
tool [CM08] is able to generate the bitstream from the models written in high level
language (the C or C++ languages for instance). By doing so, a homogeneous pro-
gramming environment is preserved, leaving application programmers free from
underlying hardware details. After synthesis, the bitstreams of functions running
on the reconfigurable fabric are platform dependant.

To be recognized by the software environment and used by applications, the in-
formation of pre-synthesized functions forms a user library. The library contains the
information such as the identification of the function, the size and storage address
of the corresponding bitstream, and the offset of the control and status registers of
each function.

The size of the library is decided by the number of the pre-synthesized functions
supported by the platform. If the kinds of functions are changed or the number
functions is extended or reduced depending on the application needs or the plat-
form resource condition, the pre-synthesized user library should be recompiled ac-
cordingly.

4.2 A Motivating Example

In this section, we are going to analyze a piece of application code which explicitly
manages the configuration of hardware tasks. By pointing out the drawbacks of this
approach, we state the motivation of our work.

Figure 4.2 illustrates the task assignment in a GPP/FPGA hybrid platform which
satisfies the hypotheses in section 4.1. The platform contains a certain number of
GPPs and several homogeneous cells. There are two kinds of tasks in the applica-
tion. The software tasks assigned to GPPs are represented by the light-grey ellipses,
while the hardware tasks assigned to cells are represented by the dark-grey ellipses.
On the left, a piece of pseudo-code is listed, mapping the software task S to a GPP by
a standard function call and mapping the hardware task H to FPGA by a sequence
of operations on cell 2.

In this example, the drawbacks of the way of managing hardware task H are
obvious. The code is hard to write and maintain, lacks flexibility, and is error-prone
in a multi-user context.
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Figure 4.2: Task Assignment in a GPP/FPGA Hybrid Platform

4.2.1 Development and Maintenance of the Code

When writing the code as in the example, the programmer needs to handle the cell
2 usage himself, and to explicitly calls the reconfiguration procedure. When there
are several hardware tasks to manage, the programmer has to calculate the recon-
figuration delay and the calculation duration of each function in advance. Based on
the timing information, the programme has to schedule the right moment to launch
each cell-related operation by hand. The fact that the programmer has to arrange
everything explicitly by hand makes the code hard to write and very specific.

The code in the example is hard to maintain too. First of all, the function of task
H is implicitly called, hidden by the use of cell 2. For a maintainer who is not the
original programmer of this piece of code, it requires much effort to understand the
algorithm intention through a sequence of tedious operations of a cell in the plat-
form. Besides, the code in the example is clearly platform dependant. The slightest
problem of platform, such as the damage of some gates inside cell 2 or malfunction
of its reconfiguration controller, would mean a complete failure of this piece of ap-
plication. The correction of such problem demands a rescheduling of the resources,
and thus a complete rewriting of the application.

4.2.2 Flexibility of the Code

Since resource management information are hard-coded inside the application, the
code in the example lacks flexibility, in terms of portability and scalability. Even if
new reconfigurable resources are added to the platform, such an application cannot
benefit from the potential increase in computation power resulting from the update,
let alone a complete change of platform.
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4.2.3 Working in the Multi-User Context

The code in the example is very error-prone in a multi-user context. For example,
the interval between checking the available resource (line 31) and sending a config-
uration request (line 32) may put the application into a race condition. If there is
another application, which intends to assign to cell 2 another hardware task differ-
ent from task H; and if unfortunately both applications get the information that cell
2 is not occupied at the same time, then one of the simultaneously sent configuration
requests will be overwritten by the other, and the first application will be waiting
for a function that will never be available.

In order to have the complete control to sequentialize the usage of resources in
common, the two applications sharing cell 2 should be merged as one big applica-
tion. However, in most cases, these applications are completely independent from
the algorithm point of view. It is irrelevant to put such applications together.

Since different users do not know and have no need to know the reconfigurable
resource usage of other users, the above strategy is a dead-end. Lacking of an ar-
biter of shared reconfigurable resources, no guarantee is given to any application to
ensure the exclusive reconfiguration resource usage.

4.2.4 Motivation of our Work

The analyses above provide the motivation of our work: we are going to provide
a mechanism which allows the programming code of the applications running on
a GPP/FPGA hybrid reconfigurable platform (1) to be easy to write and maintain,
(2) to be flexible in terms of portability and scalability, and (3) to be able to work in
a multi-user context with the guarantee of the exclusive usage of shared reconfig-
urable resources.

4.3 Proposal: An Abstraction Layer Wrapping Hard-

ware Components

In order to achieve the objectives that we set in the last section, applications need to
be more clearly separated from the underlying architecture. Our proposal relies on
the following observation of the interactions between the elements of the template.

4.3.1 Observed Interactions

Depending upon the elements involved in a computation implemented on hard-
ware, different information is needed. In order to program an application, we need
a function identification, information on the availability of the function on the plat-
form, and on timings and methods to access the function. The application does
not need to know the location of the function (which cell is used) or configuration
procedure (which reconfiguration controller is used and how to use it).

The reconfiguration controllers are slave elements and do not require knowledge
on which application asked for the reconfiguration. The only required information
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is the location and size of the corresponding bitstream for a reconfiguration, and the
cell which must be reconfigured.

Cells are designed to contain functions. They passively accept the configuration
bitstreams during reconfiguration and report their status when computation is fin-
ished. No knowledge on configuration choices (what and when) is needed in the
cells, and they do not need to initiate communication with other elements.

Based on this analysis, two layers can be distinguished. On one hand, the ap-
plication layer which needs functions for computation, expects them to be avail-
able, and should be notified when the computation finishes. On the other hand, a
Reconfigurable Hardware Resource (RHR) layer, which encompasses the reconfigura-
tion controllers and the cells, in which the reconfiguration and computation actually
happens but which does not have knowledge on the implemented functionalities.
It is important to keep both layers separated, and to mask the specificities of each
layer. We propose a new abstraction layer between the application layer and the
RHR layer. It is designed to provide a uniform Application Programming Interface
(API) to all applications, and a standard control interface to the RHR layer. This
abstraction layer is further described in the following subsections.

4.3.2 Hardware Component: the Key Element for Interfacing with

Application Layer

In order to ease the life of application programmers, we would like to provide an
abstraction of the program running on the reconfigurable fabric. This abstraction,
called hardware component or component, should extract only the piece of infor-
mation concerning its functionality and its execution properties. With hardware
components, application code can be written by a sequence of operations on the ab-
straction, instead of explicit management of elements in the RHR layer. Such code
is not sensitive to the change of underlying platform, thus can be flexible. The prop-
erties and operations of hardware component are described in details as follows.

4.3.2.1 Hardware Component Properties

Based on the observations on the application layer, the hardware component prop-
erties are listed in Table 4.1. There follows some further descriptions about certain
properties, in order to provide more details and to distinguish the potentially con-
fusing properties from each other.

COMPONENT ID v.s. FUNCTION ID
Each hardware task mapped to a cell is identified as a specific hardware component,
thus owning a unique COMPONENT ID. The hardware component is the programming
item that application programmers are able to operate.

Each hardware component is dedicated to implement a function, marked by a
FUNCTION ID. The function is purely software, independent of any implementing
unit, either a cell or a general purpose processor.

A specific function may have several instances on different cells. In other
words, hardware components with different COMPONENT ID may share the same
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Table 4.1: Hardware Component Properties

Property Name Comment

COMPONENT ID unique identification of the hardware component in the system

FUNCTION ID the identification of the function of the hardware component

COMPONENT STATE the processing state of the hardware component

BOUNDED CELL ID the identification of the cell on which the hardware component

is executing

SYNC ITEM the synchronization item of the hardware component

PRIORITY the priority of hardware component

INIT FCN the function of hardware component initialization

INIT PARAM parameters of hardware component initialization function

ACTIVATE FNC the function of hardware component activation

ACTIVATE PARAM parameters of hardware component activation function

FUNCTION ID.

COMPONENT STATE
A hardware component is an abstraction used by application programmers.
COMPONENT STATE reflects both the status of underlying reconfigurable resources
(the corresponding cell, the reconfiguration controller) and the interaction with soft-
ware environment (the other parts of the program). At any moment, the hardware
component must be in one of the five following states:

• not exist: the hardware component is not attached to any cell from the soft-
ware point of view;

• waiting cfig finish: the hardware component is needed to act as a part
of the application, but the configuration of the corresponding cell is still in
progress on the platform;

• cfig finish: the configuration of the corresponding cell is finished, but the
hardware component has not yet been used to act as a part of the application;

• computing: the hardware component is computing, acting a part of applica-
tion;

• calc finish: the hardware component has completed the function which is
needed as a part of the application, but it is still attached to the corresponding
cell from the software point of view.

BOUNDED CELL ID
As we have mentioned in the observation, the location of a hardware component
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(which cell is used) is not important for the application. What an application pro-
grammer really cares about is the method to access the hardware component.

BOUNDED CELL ID identifies the cell on which the hardware component executes.
However, the value of BOUNDED CELL ID here is NOT indicating the physical po-
sition of the hardware component. Instead, it is used as a reference to access the
hardware component.

It can be translated by the operating system to the base address of the control
registers of the hardware component, or to the identifications of communication
properties that the hardware component can use.

When a different cell is assigned to the hardware component according to a
different reconfiguration resource usage, it is sufficient to translate the changed
BOUNDED CELL ID according to the unchanged operating system translation mecha-
nism. The application can be kept untouched.

It is also the reason why hardware component is an abstraction instead of a
virtualization: it does not hide all information of the underlying platform, but make
the platform information easier to handle.

INIT FUNC and ACTIVATE FUNC
Usually, a hardware device may contain several memory-mapped registers as inter-
face with the software, in order to get control orders and to report status. When such
a hardware device is implemented in a reconfigurable way, these registers should
be initiated to certain values once the reconfiguration completes.

In some cases, two functions use almost the same kind and size of resources
when they are implemented on hardware. Such functions can share the same bit-
stream in order to reduce the storage memory footprints. A parameter is needed
to be given before the computation starts, in order to distinguish between the two
functions, which one is going to work.

In the both above cases, the initialization procedures may be different from one
hardware component to another. The INIT FUNC allows the programmers to give
each hardware component a specific initialization according to the nature of the
hardware component.

While the INIT FUNC focuses on the hardware component itself, the
ACTIVATE FUNC concerns the software environment of the hardware component.
For example, synchronizing with another task or setting up communications.

4.3.2.2 Hardware Component Operations

It is true that a function implemented on the reconfigurable fabric requires a con-
figuration procedure, which introduces many reconfigurable resource management
problems. However, as we observed in section 4.3.1, the application layer only needs
to know which function is asked for, when it is available, how to access this func-
tion and when the required function has completed its job. These requirements can
be transformed as the operations wrapping the hardware components, as shown in
Table 4.2. Only these operations appear in the application code.

The above operations can be implemented depending on different system condi-
tions and on the design choices of the programmer. For example, we have presented
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Table 4.2: Hardware Component Services

Function Name Comment

hwc create creating a hardware component, asking for the corresponding

function to be made available on the platform.

hwc activate checking availability of the function asking for by hwc create;

initiating the available function, including the access method of

this function.

hwc destroy releasing software resources attached to hardware component

after the function finishing its job on the reconfigurable fabric.

a proof-of-concept implementation in Chapter 6. With the operation format in the
proof-of-concept implementation, the motivated example can be rewritten as in Fig-
ure 4.3.
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Figure 4.3: The Rewritten Motivated Example

Whatever the implementation, the hardware component and its operations pro-
vide a uniform API to the application programmer. We can see from the rewritten
motivated example that thanks to this uniform API, reconfiguration management
and status checking of Cell 2 is removed from the application code. The task H
processing is managed through operations on the software avatar of the hardware
component “compo for H”. Compared with the original programming code of the
motivated example, the rewritten code involves no platform information, thus be-
comes more flexible. With the hardware component centered API, the application is
much easier to write, understand and maintain. Until now, we have achieved two
of our motivations.
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4.3.3 Hardware Component Manager: A Centralized Reconfig-

urable Hardware Resource Manager

Thanks to the hardware component centered API, the reconfiguration procedure has
been removed from the application code. However, without reconfiguration proce-
dure, the hardware component API is only an empty shell. In addition, looking
back to our third motivation, we expect that reconfigurable hardware resources (in-
cluding reconfiguration controllers and cells) can be shared correctly in a multi-user
context. The elements in the RHR layer must be managed somewhere else than in
the application.

In order to process information from application (through hardware component)
and the RHR layer, a Hardware Component Manager (HCM) is integrated in the new
abstraction layer. It is a centralized manager of reconfiguration controllers and cells.
It is designed to manage the interfaces, to perform the placement of components on
the cells, and to provide protection of cells in a multi-user context. The conceptual
model of the HCM is presented in section 4.3.3.1, then an HCM implementation is
described in section 4.3.3.2.

4.3.3.1 Conceptual Model of HCM

The HCM is located inside the new abstraction layer, which interfaces with the
application and RHR layers. Information exchanged between the new abstraction
layer and the other layers is presented in Figure 4.4.
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Figure 4.4: Hardware Component Manager in System

Communication between the application layer and the new abstraction layer is
centered around the operations of hardware components. The applications can send
the operations for making a component available in the platform for the application
(hwc create), enabling the component to work (hwc activate), or releasing the compo-
nent when the computation finished (hwc destroy). These operations either request
the HCM to provide a service, or wait for the HCM to report a change of status. To
be more precise, the hwc create operation requests the HCM with a hardware compo-
nent allocation service. The concerned component identification is sent to the HCM,
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which then sends back the result of the request, including the information on the
availability of the component and on ways to access the allocated component. This
information is contained in the component properties shown in Figure 4.4, and used
by hwc activate and hwc destroy operations.

Communication between the HCM and the RHR is centered around reconfigu-
ration procedures. Based on its internal decisions, described in the following para-
graphs, the HCM sends reconfiguration orders to the selected reconfiguration con-
trollers. A reconfiguration order contains the necessary platform-dependent infor-
mation for a reconfiguration, such as the bitstream location or targeted cell. An
order initiates the configuration process. This interface also collects status from the
RHR such as the availability of a reconfiguration controller, or the status of a cell.

Having seen the communication between the HCM and two layers, we would
like to detail the working mechanism of the HCM.

The HCM extracts information from allocation requests received from applica-
tion through the hwc create operation. Based on this information combined with
internal information on the RHR usage, it selects a cell for allocation, and generates
a reconfiguration order to be sent to a compatible reconfiguration controller when
needed. It then reports to the application through the hardware component proper-
ties.

In order to place components while limiting the number of required reconfig-
urations when possible, and to guarantee the exclusive use of each cell, the HCM
defines cell states and obeys a placement policy described as follows.

Figure 4.5: The State Machine of a Cell

Cell usage is monitored through the use of a state machine described in Fig-
ure 4.5. For each cell, there are three states recognized by a Dynamic Resource Man-
ager (DRM, presented later):

• empty: The cell is not occupied by any component (only used at the begin-
ning);

• busy: The cell is being configured, or it is occupied by a component which is
busy computing;

• idle: The cell is occupied by a component which has finished its computation.
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When the HCM searches for a cell to place the required component, only idle
or empty cells can be chosen. Since we work in a non-preemptive model, a busy
cell must not be reconfigured. The cell is chosen according to a placement strategy
which is implementation-defined.

When a cell reports end of computation to the HCM, the latter searches the in-
ternal cell usage track to find out the corresponding hardware component. Then the
HCM reports this event to the application through the hardware component prop-
erties.

4.3.3.2 An Implementation of the HCM

Figure 4.6 shows the internal structure of the HCM implementation. The HCM con-
sists of an Application Interface (A IF), a DRM and a Reconfigurable Hardware Re-
source Interface (RHR IF).

For a given platform, the numbers of reconfiguration controllers and cells are
fixed. We chose to implement the DRM in hardware, in order to have a shorter
response time and to free the CPU from tedious reconfiguration control. The DRM
consists of an Available Cell Counter, an Allocation Request Dispatcher (ARD), a Cell
Track Maintainer (CTM) and an Interrupt Controller.

The A IF is a software/hardware interface. The hardware part of A IF contains
several memory-mapped registers and an interrupt port. By accessing these regis-
ters and serving the interrupt, the software part of A IF, called HCM driver, commu-
nicates with applications by receiving the requests translated from hardware com-
ponent operations, reporting the results of these requests and the states of the hard-
ware components, and providing inter-application protections.

When an application needs a hardware component to perform a function, the
identification of the function (fid) is sent as a parameter of the hwc create operation.
After getting the necessary software resource and initiating certain properties, the
hwc create sends an allocation request hcm alloc to the A IF of the HCM implemen-
tation. The pointer of the hardware component is used as the parameter.

Having received the allocation request, the HCM driver does an atomic opera-
tion on the HCM LOCK register inside A IF (s1 in the figure 4.6). If the lock is taken
by another allocation request, the driver has to wait and retry later. Otherwise, it
gets the lock.

Then, the HCM driver has to check the CELL AVAILABILITY register to avoid
untreatable requests when no cells are available. In this case, a NO RESOURCE ac-
knowledge is returned to the hwc create (s2). Otherwise, the driver fills the regis-
ters FUNCTION ID, BITSTREAM BASE and BITSTREAM SIZE with the corresponding
information extracted from the hardware component properties, in order to form an
allocation command sequence.

Afterward, the HCM OPERATION register is written to validate the allocation com-
mand sequence and automatically push the content of required registers into the
input FIFO of the ARD (s3). The FIFO can not accept more requests than cells in
the platform. At this point, the DRM is unlocked and becomes available for other
applications.

The allocation request is then popped by the ARD. The dispatcher asks the CTM
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Figure 4.6: Internal Structure of the HCM Implementation

for a cell to place the required component (s4).

The CTM is composed of a cell usage table and matching circuits. The table
is indexed by a global cell identification cell id, i.e. one entry per cell, and each
entry records the state of the cell and the function id for non-empty cells. The
CTM has to follow a placement policy to select a cell for the ARD. The imple-
mented policy prioritizes cell reuse when possible, configures empty cells other-
wise, and falls back to actual reconfiguration of idle cells as a default case. Once a
demanded function id is sent from the ARD, it is combined with state “idle” as a
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comparison condition. All the entries in the table are compared with this condition.
All matching entries are possible candidates for reuse. At the same time, a signal
called reusable cell found is asserted to indicate the ARD that the proposed cell
is reusable. Otherwise, empty (or idle) cells are selected for reconfiguration and the
reusable cell found signal is deasserted. For each case, matching circuits return
the lowest matching cell id. Once the CTM has proposed a cell id to the ARD
(s5), it changes the state of corresponding entry as busy.

If the proposition is a reusable cell, the ARD sends the function id and cell id

to the interrupt controller for issuing an interrupt later (s6); If the proposed cell
needs to be reconfigured, the ARD transfers the associated reconfiguration order to
a free reconfiguration controller through the RHR IF (s7) and finishes its job.

Through the RHR IF, the HCM can receive two kinds of interrupts: CFIG FINISH

from reconfiguration controllers and CALC FINISH from cells (s8).
The interrupt controller collects with an input FIFO the interrupts issued by cells,

reconfiguration controllers and the ARD. If this FIFO is not empty, the interrupt
signal in A IF is issued (s9). The interrupt service routine inside the HCM driver
reads interrupt registers inside the A IF hardware part.

When a component is placed on a reusable cell, or when a reconfiguration con-
troller finishes its work, the interrupt service routine hcm isr in the HCM driver
chooses the first hardware component in the waiting queue which requires the func-
tion with IRQ FUNCTION ID and initializes its property BOUNDED CELL ID as the read-
back value IRQ CELL ID. The HCM driver then reports the availability by changing
the property COMPONENT STATE to cfig finish (s10). The hardware component op-
eration hwc activate can then initiate the hardware component access address based
on the property BOUNDED CELL ID value and system memory map.

When a cell finishes its job, the cell state inside the CTM is set to idle (s11).
In order to ensure the consistency of the CELL AVAILABILITY, the available cell

counter is kept up-to-date throughout the different processing steps. It is initialized
with the number of cells in the platform, decreased for each HCM OPERATION write
and increased for each CALC FINISH interrupt.

The CALC FINISH interrupt is also processed by hcm isr. The corresponding
hardware component is found from the computing queue by the match of value
BOUNDED CELL ID and IRQ CELL ID. The HCM driver reports this event by chang-
ing the property COMPONENT STATE to calc finish (s12).

4.4 Summary of the Chapter

In this chapter, we have proposed two important concepts. One is the Hardware
Component, which is the abstraction of a program running on the reconfigurable
fabric. The other is the Hardware Component Manager, which is a centralized re-
configurable hardware resource manager.

Through these two models, we have resolved the following problems:
By the hardware component abstraction, we have decoupled the execution of a

program from the reconfigurable platform. This leads to two desirable results:

• The API built upon the hardware component makes the application codes
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more straightforward to write, understand and maintain.

• The application code is no longer platform-dependent, thus more flexible in
terms of portability and scalability.
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Chapter 5

A Scalable Communication
Mechanism for Dynamic
Reconfiguration Platforms

IN this chapter, we discuss a scalable communication mechanism for dynamic re-
configuration platforms based on the concept of FIFOs. As opposed to the single

producer/single consumer FIFOs usually used in data-flow or Kahn Process Net-
works, FIFOs here accept several producer and consumer processes. It is important
to note that from the application point of view, the channels are still single produc-
er/single consumer FIFOs, the multiple nature being a requirement for the support
of dynamic reconfiguration.

5.1 Communication Problems Brought by Dynamically

Reconfigurable Platforms

In order to effectively use the FPGA/GPP hybrid platform, the applications are bro-
ken down into smaller parts, called tasks. The tasks are dynamically mapped to
different processing elements and are exchanging information. The behavior of ex-
changed information amongst these parallel running tasks is called communication.
The communication management is largely influenced by the communication par-
ticipants, i.e. the tasks.

In our context, we assume that functions implemented by hardware components
are passive data-driven tasks. The pseudo-code and state machine of such functions
is shown in Figure 5.1.

After initialization, the start of the function depends on the availability of suf-
ficient input data. Once this input data is processed and the result is properly ob-
tained, a finish condition is checked. If the condition is fulfilled, the function com-
pletes its job; otherwise, the function continues to process the next set of input data.
Of course, the function can be only a data producer (when the required number of
input data equals to zero) or only a data consumer (when the finish condition does
not include output data).
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Figure 5.1: Passive Task Model

The reason why we made such an assumption is that before being employed by a
specific application, a function cannot know exactly from which function the input
data comes from or to which function the output data ought to be sent to. Such
dependency can only be resolved when the task graph of the whole application is
decided.

Based on such assumptions, the data transferring and processing phase are sep-
arated. On one hand, the design of individual tasks becomes easier, since they are
well isolated by not including control related information. On the other hand, a
communication mechanism is required to explicitly handle the synchronization and
data exchange amongst the tasks.

5.1.1 A Motivating Example

In conventional cases, the task graph of an application is settled when the applica-
tion is written. The communication scheme can thus be figured out accordingly at
the same time and stay static. However, and as opposed to the hardwired case, in
a dynamically reconfigurable platform, even a settled task graph only determines
a logical communication scheme. The final physical communication scheme imple-
mentation depends on where exactly the tasks are mapped. Figure 5.2 illustrates
such a case as a motivating example, in which we will see some communication
issues which arrive because of the dynamicity of the underlying platform.
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Figure 5.2: Communication Problems Caused by Dynamic Reconfigurable Platform

The subfigure A of the Figure 5.2 shows the settled logical task graph of an ap-
plication. The subfigure B presents the underlying physical platform on which the
logical task graph will be mapped. The subfigures C and D show two possible phys-
ical task graphs after mapping.

The logical task graph shows the data dependency amongst different tasks in a
data flow application. Each task in the graph fits the passive function model given
at the beginning of this section. All tasks in the graph may run in parallel. The
synchronization of the tasks is achieved only by data transfered amongst them. The
arrows between two tasks indicate the direction of the data flow. The task level par-
allelism can be performed as a pipeline (T1, T2, T4, T5 task sequence) or a task farm
(T3 duplications), or the hybrid of the two (T1, T3 duplications, T5 task sequence).

The underlying platform is a GPP/FPGA hybrid platform, which contains two
GPPs sharing the same memory space. The FPGA fabric has been divided into four
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cells, which can be reconfigured to execute various hardware tasks at different mo-
ment. This underlying platform is shared by several applications, including the ap-
plication described by the logical task graph at the left. It is possible that at a specific
moment, the resources of the platform are not dedicated to only one application.

The physical task graphs show the resource usage of the application. A task in
the logical task graph is now mapped to a GPP as a software task (presented by
a rectangle with rounded corner in the Figure 5.2), or to a cell as a hardware task
(presented by a rectangle). Otherwise, a task may be left unmapped (presented by
a circle with dashed line) due to the lack of resource. The arrows are unidirectional
single-input single-output FIFOs, responsible for data synchronization between ev-
ery two tasks with dependency. It should be noted that the two physical task graphs
in the Figure 5.2 are only two of numerous possible task mappings. The actual phys-
ical task graph depends on the number of other applications and their usage of the
platform resources during the period when the concerned application is running.

5.1.2 Analysis of the Motivating Example

Observing the motivating example presented Figure 5.2, we can identify two kinds
of communication problems arising due to the dynamic reconfigurable nature of the
platform. One is related to the existence of the tasks, the other is related to the access
of the already existing tasks.

5.1.2.1 The Existence of Tasks

In the logical task graph, we can differentiate two kinds of tasks: the surely-mapped
tasks and the possibly-mapped ones. Surely-mapped tasks are the tasks that are
mandatory to ensure application completion. Possibly-mapped tasks are optional
tasks, that accelerate the overall processing. In the motivated example presented by
Figure 5.2, T1, T2, T4, T5 and one of the T3 instances are surely-mapped tasks, the
other T3 instance is a possibly-mapped task.

According to this mapping requirement, the task existence has a different
meaning, resulting in different problems of task communication.

The Presence of Surely-Mapped Tasks

For a surely-mapped task, its existence in the physical task graph is guaranteed
by definition. This does not mean that the task is mapped on the underlying physi-
cal platform all along the life time of the concerned application.

For example, if GPPs are used by other applications, T2 and T3b in the physical
task graph (A), may be switched out for a moment. Even if hardware context switch
is more difficult, the same thing can happen on tasks mapped on cells.

As these context switches are handled at run time, the application programmers
can not foresee them. Therefore, the communication channels associated to a surely-
mapped task have always to be ready to communicate.

A communication mechanism should be able to recognize the presence and
absence of each surely mapped task on the physical platform, in order to guarantee
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that the data will not be read from or sent to nowhere.

The Number of Possibly-Mapped Tasks

There are cases that the programmers expect some tasks would have certain
number of instances when possible, in order to balance the performance of different
parts of an application. However, since the resources of a dynamic reconfigurable
platform are distributed at runtime, it is possible that not all the expected instances
could be mapped to the computing units (GPPs or cells) due to the lack of resources
at a specific moment. It is not fatal to the application, as long as at least one instance
appears in the final physical task graph.

T3 in the motivating example is such a task. In the case of the physical task
graph (A), the two expected instances in the logic task graph are mapped to a cell
(T3a) and a GPP (T3b); while in the case of the physical task graph (B), the expected
instance T3a does not get an implementing unit. Since the programmer is not able to
and has no need to predict the usage of the resources in the dynamic reconfigurable
platform when the application is written, the use of FIFO (4) and (5) becomes a
problem. If the programmer does not use the two FIFOs in the application code, the
computation power of T3a in the physical task graph (A) will be wasted owing to
the disconnections to T1 and T5; on the contrary, the direct usage of the two data
FIFOs in the application code may cause that part of output data of T1 are led to
FIFO (4) and stored in there forever, which in turn makes T3b to be blocked or to
run wrongly because of the missing input data.

From the T3 example, we can see that in a dynamic reconfigurable platform
where the number of physical instances of a task may change, the unidirectional
single-input single-output FIFO solution is difficult to manage explicitly in the ap-
plication code. A communication mechanism should be developed in order to rec-
ognize and connect only the actually mapped task instances.

5.1.2.2 The Access to Tasks

Once the existence of tasks is guaranteed, the challenge of the communication
mechanism is to find out the location of the tasks, and to transfer data in a proper
way.

The Location of the Tasks

The locations of the tasks are important. They are the actual places where the
data are produced and/or consumed. They are the sources and/or destinations
where the communication system should receive data from or sent data to.

The problem brought by the dynamic reconfigurable platform is that when the
application is written, the programmer cannot and has no need to predict where
exactly a task will be located. In the motivating example, the fact that T3b is mapped
to GPP 2 or GPP 1, and that T4 is mapped to cell 3 or cell 2, are influenced largely
by the runtime status of the underlying platform.

A communication mechanism should be developed to be able to find out
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the actual computing units to which the tasks are mapped, and to connect the
computing units to the communication system.

The Nature of the Tasks

The data storage in software tasks usually differs from that in hardware tasks. In
a software task, data are usually stored in arrays in memory, which are referenced
by pointers; while in a hardware task, data are probably stored in a FIFO on the
reconfigurable fabrics. As a consequence, the methods of accessing data in these
two kinds of tasks should be managed differently.

Although in the last chapter, we mentioned that in our context we assumed an
explicit hardware/software partition in specific applications, it is possible that the
application programmers are willing to try different partitions for an application
when they search for better performance balance amongst tasks. To avoid the po-
tential complicated modifications of associated communication management in the
application code, it is expected that the communication mechanism handles cor-
rectly the difference of the task nature.

For instance, in the motivating example, the task which sends data to the FIFO,
called the producer, could be a software task or a hardware task (e.g. T2 for FIFO 2);
so does the task which receives data from the FIFO, called the consumer (e.g. T5 for
FIFO 3). The communication mechanism would become more generic if it would be
able to recognize the nature of tasks and provide the proper data transfer interface
accordingly.

5.2 MWMR Channel Analysis in a Dynamic Reconfig-

urable Context

By studying the existing communication solutions, we found a generic communica-
tion channel, called MWMR channel [Fau07]. It has some interesting features which
may resolve part of the problems listed in the previous section.

At the beginning of this section, a simple description of the original MWMR
channel is given. An analysis of the use of the MWMR channel in the motivated ex-
ample is then carried out, distinguishing the problems remaining unsolved, which
sets up the start point of our proposal.

5.2.1 MWMR Channel Description

A MWMR channel is a generic channel behaving as a FIFO, which can be accessed
by multiple writers and multiple readers. Figure 5.3 illustrates the basic elements
and access operations of a MWMR channel.

The data buffer and necessary control structures of the MWMR channel are lo-
cated in the shared memory. Being allocated and deallocated by application pro-
grammers, the MWMR channel is a software element.

As most of the memories support only one access at a time, the MWMR chan-
nel does not support simultaneous accesses. The exclusive access amongst several
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Figure 5.3: Basic Properties of a MWMR Channel

readers and writers is guaranteed by a five-step protocol described as follows:

• Get the lock protecting the MWMR channel;

• Test the status of the data FIFO of the MWMR channel;

• Transfer a burst of data between a local buffer and the data FIFO of the MWMR
channel;

• Update the status of the data FIFO of the MWMR channel;

• Release the lock.

When the access is required by a software task (see top of Figure 5.3), the five-
stage protocol is implemented by a user library. The two software communication
services mwmr write and mwmr read in the library are blocking functions which can
be called simultaneously by several tasks mapped to different CPUs.

When there is not enough data to be read from an MWMR channel, or there
is not enough space inside an MWMR channel to receive data, the thread of the
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task which calls the communication service will be blocked by the access request.
In such a situation, another thread may get the CPU resource to run, if there is
any. An underlying operating system is responsible to do the context switch and to
synchronize the simultaneously called communication services.

When the access is required by a hardware coprocessor(see bottom of Figure 5.3),
the five-stage protocol is implemented by a state machine in an MWMR hardware
controller. A hardware MWMR controller can have several small unidirectional FI-
FOs, called ways. Each way can connect an MWMR channel with an input or output
FIFO in a hardware coprocessor. A hardware coprocessor and a way communicate
using the FIFO protocol, while an MWMR channel and a way communicate using
the MWMR five-stage protocol.

It should be noted that in practice, an access requested by a hardware coproces-
sor is composed from a sequence of fixed-length data transfers. The data transfer
length equals to the depth of the way. Only when a way is empty or full will a data
transfer take place. The state machine inside the MWMR controller is responsible to
watch over the status of a way and to realize the data transfer accordingly.

5.2.2 Why the MWMR Channel is Chosen

We have chosen the MWMR channel as a starting point to solve the four commu-
nication problems identified in section 5.1. Three major reasons are stated in the
following text, explaining why such a decision is made from the hypotheses, the
useful features and the technique aspects.

5.2.2.1 Shared Hypotheses

First of all, the MWMR channel shares with us certain hypotheses on the platform
and the application.

The MWMR channel is developed aiming at shared-memory multi-processor
system on chip, which contains several I/O hardware coprocessors. It is well
adapted to our GPP/FPGA hybrid context by considering our hardware compo-
nents realized on FPGA cells as coprocessors, which are linked with general purpose
processors by memory-mapped I/Os.

In terms of programming model, the MWMR channel tackles two kinds of mod-
els in telecommunication applications: the pipeline model, which means splitting
the algorithm into functional tasks that execute sequentially; and the task farm
model, which means duplicating the application into several clones. Both of pro-
gramming models extract the coarse grain parallelism from an application based on
data flow, which is also congruous with our hypothesis: The application is made
of coarse-grained independent tasks running in parallel, the inter-task communica-
tions contain no control relative information.

5.2.2.2 Useful Features

Secondly but not less important, the MWMR channel has already met two of the
essential communication requirements required by our objective dynamic reconfig-
urable systems: the tolerance regarding the different nature and number of tasks.
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Figure 5.4 shows the situation when we use MWMR channels to replace the simple
data FIFOs as the communication solution in the motivated example.
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Figure 5.4: Different Physical Task Graphs Using the Same MWMR Channels

We can see that in the two physical task graphs, each link between tasks in the
logical task graph is implemented by an MWMR channel. Although the task map-
ping in the two physical task graphs are different, the same MWMR channels can be
used, forming a unique unchanged communication scheme.

Thanks to the task-nature-tolerant feature of the MWMR channel, the communi-
cation scheme accepts a data producer implemented either as a software task or as
a hardware component (T2 of MWMR channel 2, for instance); the communication
scheme is also agnostic towards the nature of a data consumer (e.g. T5 of MWMR
channel 3 and MWMR channel 5).

Thanks to the task-number-tolerant feature of the MWMR channel, the commu-
nication scheme accepts the number of sources of a communication channel to be
unique or multiple (T3 instance(s) of MWMR channel 5); so does the number of
destinations of a communication channel (T3 instance(s) of MWMR channel 4).
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5.2.2.3 Reasonable Technical Requirements

Finally, from the technical point of view, the MWMR channel protocol keeps its
generality as it does not impose much special requirements on the implementation
details. The library which allows software tasks to access the MWMR channel can
be built up on a very thin hardware abstraction layer and a few basic operating sys-
tem services. The hardware controller which permits hardware tasks to access the
MWMR channel employs the generic virtual component interface (VCI) rather than
any specific bus. The freedom from specific implementation detail makes it easy to
integrate the MWMR channel in our system; also, the communication mechanism
which we propose based on the MWMR channel may get a chance to receive wide
acceptance.

5.2.3 The Problems Unsolved by the MWMR Channel

A MWMR channel accepts any number of writers and readers, which can be soft-
ware or hardware tasks, so that various source-destination combinations of inter-
task communications can be supported by a uniform communication scheme. How-
ever, the tolerance of such a communication scheme is achieved under a default
condition, which is that all data sources and destinations should be known in ad-
vance by the MWMR channels. In other words, the MWMR channel itself is not
responsible for detecting the existence or the location of the communicating tasks.

When writing the application, the programmer knows which tasks should be
connected to a MWMR channel according to the logical task graph. Mapped to
a dynamic reconfigurable physical platform, a software task has no problems of
accessing any MWMR channel. It is the hardware tasks that suffer from connecting
issues. A detailed analysis of these issues is given in the following paragraphs.

A dynamic mapped software task is able to access any MWMR channel, because,
with the help of an operating system, the process (or thread) model has abstracted
common characteristics of different physical CPUs. In fact, software tasks are
mapped to identical processes (or threads) instead of different CPUs. On whichever
physical CPU the software task is running, it is sufficient to call the mwmr read and
the mwmr write services inside the software task. Indicating explicitly the name of
the MWMR channel as a parameter, the services and the underlying operating sys-
tem guarantee the exclusive access and coherence of the associated MWMR channel
in the shared memory.

It is not the case for hardware tasks. From the section 5.2.1, we know that a
hardware coprocessor is statically connected to a MWMR channel through ways
in a MWMR controller. In the context of the original MWMR channel proposition,
the hardware coprocessor has a dual-nature. It is a function which completes a
specific algorithm, and at the same time, it is a computing unit which is a part of
physical platform. However, in a dynamic reconfigurable platform, a function and
the computing unit of this function are two different concepts. The location of a
hardware task changes depending on the runtime conditions. The static connecting
solution between a hardware coprocessor and a MWMR channel no longer fits for
the dynamic cases.
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Figure 5.5 illustrates the dynamic connection problem that the MWMR channel
has not resolved. Sub-figure A gives a close view of two scenarios of inter-task com-
munications extracted from Figure 5.4. Sub-figure B shows the underlying physical
implementation of the two scenarios in the sub-figure A.
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Figure 5.5: The Problems that MWMR Channels Left Unsolved

From sub-figure A, we can see in the physical task graph 1, the two communi-
cating tasks are T3a and T5. Data is transfered from cell 2 to cell 4 through MWMR
channel 5, represented by the solid line. While in the physical task graph 2, the two
communicating tasks are T2 and T4. Data is transfered from cell 4 to cell 2 through
the MWMR channel 2, represented by the dotted line.

From sub-figure B, we can see that in order to realize the scenario in physical
task graph 1 represented by the solid line, cell 2 is connected to a coprocessor-to-
channel way in the MWMR controller, which is in turn connected to the writing
end of MWMR channel 5. The reading end of MWMR channel 5 is connected to a
channel-to-coprocessor way, which is in turn connected to cell 4. While in order to
realize the scenario in physical task graph 2 represented by the dotted line, all con-
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nections should be changed. Cell 2 should be connected to a channel-to-coprocessor
way in the MWMR controller, which should be in turn connected to the reading end
of MWMR channel 2. The writing end of the MWMR channel 2 should be connected
to a coprocessor-to-channel way, which should be in turn connected to cell 4.

There is a potential problem. Although the tasks are dynamically mapped to dif-
ferent cells at runtime, which are unpredictable by the programmer, the connections
between the cells and the MWMR channels are static: the links between the cells and
the ways in the MWMR controller are fixed in the hardware platform; the connec-
tions between the ways and the MWMR channel are settled while the MWMR con-
troller is being set up during the operating system initiation. As a result, the original
MWMR channel alone cannot fulfill the two scenarios described above. Something
additional must be integrated to form a communication mechanism able to handle
the connections dynamically.

5.3 Proposed Communication Mechanism Based on

MWMR Channels and HCM

From the above analysis, we can see that even with MWMR channels, there are still
some problems left unsolved: the hardware task existence and location detections.
In a dynamic reconfigurable platform, the HCM described in the last chapter is the
component which is aware of the task mapping information. As a consequence, the
basic idea of our proposal is to integrate an HCM with MWMR channels to form
a unique communication mechanism able to handle cell sharing in dynamic recon-
figuration. The communication mechanism allows the programmer to only deal
with the logical task graph and to let underlying communication services connect
all mapped tasks, whatever their nature and number are. The following sections ex-
plain in details of the hardware architecture and software services of the proposal.

5.3.1 Proposed Architecture

Figure 5.6 illustrates our proposed architecture. It is based on the targeted hardware
architecture template shown on the figure 4.1, and modified to integrate an HCM
and several MWMR controllers. Software tasks and a unique operating system are
running on GPPs. MWMR channels are implemented in the shared memory. Hard-
ware tasks are mapped to homogeneous cells. The reconfiguration control registers
of cells and reconfiguration controllers are addressable and managed by the HCM.
The communication interface of hardware tasks are not addressable FIFOs. They are
instead handled by MWMR controllers.

We assume that each hardware task has an input FIFO and an output FIFO. The
two FIFO interfaces for each cell are constructed during the platform initialization,
and remain unchanged through the later reconfigurations. The input FIFO inter-
face is statically connected to a channel-to-coprocessor way in an associated MWMR
controller, while the output FIFO interface is statically connected to a coprocessor-
to-channel way in the same MWMR controller. Although the single-input single-
output FIFO interfaces assumption adds an extra constraint to hardware task de-
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Figure 5.6: Proposed Communication Architecture

signers, it largely simplifies the integration of hardware tasks, making the commu-
nication mechanism scalable.

The communication mechanism is organized as clusters. Each cluster is an
MWMR controller containing equal numbers of channel-to-coprocessor ways and
coprocessor-to-channel ways. For example, in Figure 5.6, this number is four. Each
pair of one channel-to-coprocessor way and one coprocessor-to-channel way is con-
nected with the input FIFO and output FIFO of a cell.

The objective is to achieve the correct connections between the hardware tasks
and the MWMR channels, in spite of the fact that hardware tasks mapped in the cells
are evolving at runtime. Since the FIFO protocol interface connection between cells
and ways is fixed in the hardware platform, the changeable part is the connection
between the ways and the MWMR channels. Ideally, an application is independent
from the underlying platform, so that none of the platform information, as for ex-
ample the index of a way, should appear in the program code. The programmers
indicate only the logical connection between the hardware tasks and the MWMR
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channel. Some communication services are required to cooperate with an operating
system for searching the hardware task mapping information from the HCM and
for managing the connection of ways and MWMR channels accordingly.

5.3.2 Communication Services

In this section, we introduced five communication services, which are used to cre-
ate and destroy the MWMR channels according to the need of application program-
mers, to connect the MWMR channels with hardware tasks at runtime and to ensure
that the data will not be transfered to inactive tasks. To realize these services, some
operating system support is needed.

First of all, all MWMR controllers are globally indexed, so are cells. A cluster,
composed of one MWMR controller and a fixed number of associated cells, has the
same global index number as the MWMR controller in the operating system. The
ways connected to input and output FIFOs of the associated cell are locally indexed
inside the cluster. The index information is used by the MWMR controller driver,
the HCM driver and hardware component abstraction.

As mentioned in chapter 4, all hardware tasks mapped on cells are identified
as hardware components in the operating system. Each time the HCM reports a
successful allocation of a task on a cell, the cell index is read by the operating system
and stored as a property of the hardware component.

According to the cell global index and the number of cells in each cluster, the
operating system is able to locate the ways which are connected to the input and
output FIFOs of the hardware task on the platform. The formulas of locating the
ways are listed as follows:

1. cl = ce/Ncells

2. wayin = ce mod Ncells

3. wayout = ce mod Ncells

where cl is the global index of the cluster, ce is the index of the cell on which
the hardware task is mapped to, Ncells is the number of cells in each cluster, wayin
is the local index of the channel-to-coprocessor way which is connected to the input
FIFO of the hardware task, wayout is the local index of the coprocessor-to-channel
way which is connected to the output FIFO of the hardware task. In an MWMR
controller, the channel-to-coprocessor ways and coprocessor-to-channel ways are
indexed separately, so wayin and wayout of a specific cell are the same.

The location of the ways is then used by the communication service
mwmr hw init to connect the ways to an existing MWMR channel created by the
service mwmr create. Each time a hardware task finishes its job, the communication
service mwmr hw cutoff forbids the data transfer between the MWMR channel and
the inactive hardware task. A disconnected MWMR channel can then be released by
the service mwmr destroy to free the shared memory, or can be cleaned by the service
mwmr reset to get ready to be reused by the connection between other tasks. We now
detail the five communication services.
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• mwmr create

void mwmr create(struct mwmr s ** channel, size t width, size t depth)

Description:

This service is used to create an MWMR channel. In the original version of the
MWMR channel proposal, all MWMR channels are created during the boot of
the operating system. Thanks to this new service, an MWMR channel can be
created at runtime according to the need of programmers.

Input:

width: the width of the MWMR channel, measured in bytes.

depth: the depth of the data buffer of the MWMR channel. The data buffer
occupies (width * depth) bytes in the memory.

Output:

channel: the address of the pointer which points to the structure of an MWMR
channel. Before the execution of the service, the pointer has no valid value.
After the execution of the service, the pointer points to the created MWMR
channel structure.

• mwmr hw init

void mwmr hw init(void * mwmr controller base, enum MwmrWay direction,
size t index, const struct mwmr s * mwmr channel)

Description:

This service is used to connect a way to an existing MWMR channel. Once the
service is done, the data can be immediately transfered between the MWMR
channel and the way.

Input:

mwmr controller base: the base address of the MWMR controller, in which the
way is located. This address is obtained by the combination of the cluster
index (Formula 1) and the system memory map.

direction: the direction of the way. If the way is connected with the input
FIFO of the hardware task, the direction should be indicated as channel-to-
coprocessor; otherwise, the direction should be indicated as coprocessor-to-
channel.

index: the local index of the way inside the cluster (Formulas 2 and 3).

mwmr channel: the pointer of the MWMR channel to connect.

Output: None.

• mwmr hw cutoff

void mwmr hw cutoff(void * mwmr controller base, enum MwmrWay direction,
size t index)

Description:
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This service is used to disconnect a way from the MWMR channel it is linked
to. Once the service is done, the data transfer between the MWMR channel
and the way is immediately cut off.

Input:

mwmr controller base: the base address of the MWMR controller.

direction: the direction of the way. Since the coprocessor-to-channel way and
the channel-to-coprocessor way connected to a hardware task have the same
index number in both direction categories, the indication of way direction is
important for the MWMR controller to recognize the way to be cut off.

index: the local index of the way inside the cluster.

Output: None.

• mwmr reset

void mwmr reset(struct mwmr s * channel)

Description:

This service is used to reset an MWMR channel. Once this service is done,
the status of the data buffer is forced to reset as unused and as if no read or
write action had ever happened. At the same time, the lock of the data buffer
is released. If there are data left in the buffer, they will be lost. So before using
this service, the programmer should make sure that the required data have
been retrieved.

Input:

channel: the MWMR channel to be reset.

Output: None.

• mwmr destroy

void mwmr destroy(struct mwmr s ** channel)

Description:

This service is used to destroy an MWMR channel. All the memory occupied
by the channel are cleaned and released after the execution of this service.

Input:

channel: the address of the pointer which points to the MWMR channel to be
destroyed.

Output: None.

5.3.3 Use on the Motivating Example

With the proposed architecture and the new added communication services, the
motivating example can be solved. The following algorithm is written according to
the platform usage of sub-figure (C) of Figure 5.4.

1. Creating all five MWMR channels chl1 - chl5 by the service mwmr create;
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2. Mapping tasks T1, T2, T3a, T4 to cells and tasks T3b, T5 to GPPs.

3. Calling the service mwmr read and mwmr write inside T3b and T5 to accom-
plish the data transfer. Once the mapping is successful, linking T1 with chl1,
linking T2 to chl2, linking T3a with chl4 and chl5, and linking T4 with chl3 by
the service mwmr hw init;

4. When hardware tasks finish their job, disconnecting them from the corre-
sponding MWMR channel by the service mwmr hw cutoff ; Since T3a has never
been mapped, only T1, T2 and T4 process this step.

5. Destroying T1, T2 and T4.

6. When all the tasks finish their job, release the MWMR channels chl1 - chl5 with
the service mwmr destroy.

5.4 summary of this chapter

In this chapter, we have seen four inter-task communication problems brought by
the dynamic reconfigurable platform. Depending on the platform usage, the surely-
mapped tasks may be switched in-and-out; some of the possibly-mapped tasks may
not be present at all. Once mapped, the connection of the tasks require their precise
locations; the access method of a task asks for the recognition of the nature of the
task. All the above four issues are runtime issues and cannot be predicted by a
programmer at the time an application is written.

Based on the existing MWMR communication channel solution which provides
the required tolerance regarding the nature and number of tasks, we propose a com-
munication cluster architecture composed of MWMR controllers and cells. In addi-
tion, five communication services are presented to support the life cycle of these
new channels, so that all the runtime needs of programmers are fulfilled.
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Chapter 6

Experiments

IN this chapter, we prove experimentally that the HCM and the scalable communi-
cation mechanism are efficient for managing dynamic reconfiguration platforms.
The content of this chapter is organized as follows: Section 6.1 shows the interest

of integrating the HCM into an OS. A hardware implementation of the HCM and
its integration in DnaOS are presented as an example. The hardware overhead and
integration cost are analyzed. Section 6.2 presents the validation of the communica-
tion mechanism. An image processing application confirms that the communication
mechanism combined with the integrated HCM have saved much work of the pro-
grammers.

In chapter 4, we have introduced the HCM abstraction layer, which separated
task allocation from the FPGA reconfiguration procedure. This separation removes
the burden of reconfigurable resource management from application programmers.
At the same time, the flexibility of the application has been improved.

The HCM is designed to be able to work in multi-task environments, even multi-
user environments. However, the synchronization with the HCM and the process-
ing of resource lacking situations are tedious jobs for application programmers.
Sometimes, processing an unexpected allocation acknowledgement or sharing other
platform resources rather than FPGAs is beyond the control scope of an individual
user. Luckily, the above task management problems are well-studied subjects in
the OS domain. From the next sections, we will see that the HCM can be easily in-
tegrated into an OS at a reasonable cost, which in turn completely solves the task
management problems in a dynamic reconfigurable FPGA/GPP hybrid platform.

6.1 Proof-of-concept Integration in an OS

For the proof-of-concept integration, we chose DnaOS [GP09, dna10] to prototype
our solution. DnaOs is a kernel-mode operating system for heterogeneous multiple-
processor architectures, built on a very thin Hardware Abstraction Layer (HAL). Its
well defined application programming interface (API) provides the support of the most
widespread application libraries such as a fully fledged C library or pthreads library.
Thanks to its strict separation from the hardware dependent software, DnaOs can be
ported easily through different platforms and processor architectures. In addition,
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the fact that DnaOS is open-source and built up using the object-component model
paradigm makes it easy to tailor it to our need.
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Figure 6.1: Global View of Software Organization

Figure 6.1 shows the global view of the organization of various software com-
ponents running on the dynamic reconfigurable GPP/FPGA hybrid platform. The
software components are organized in three layers: user application and libraries,
the OS and the HAL. The HAL is the lowest layer, abstracting the functionalities
of the physical platform. Upon the HAL, the OS is constructed, which in turn is
providing necessary services to ease the life of the users.

In chapter 4, the HCM was presented as an abstraction layer of all reconfigurable
resources on the platform, which can be considered at the same level as the HAL in
the Figure 6.1. Also, some common operations were recognized during the lifetime
of any hardware components. We have discussed that it would be efficient to en-
capsulate them in a user library. Between the HCM and the hardware component
library, some additional OS supports (presented as “HWC Services” in the dashed-
line block) are required to provide a uniform API to programmers, and to ease the
use of the HCM. One possible implementation is described in the following text.

6.1.1 The Implementation of the HCM Integration

Figure 6.2 shows the infrastructure of the software supports and interactions
amongst the different parts. The software support is achieved mainly by three ele-
ments: an Hardware Accelerator (HA) library at user layer, the HardWare Component
(HWC) extension at the OS layer and an HCM driver at the HAL layer.

The HA library is the implementation of the pre-synthesised hardware acceler-
ator library described in section 4.1.2. Each object in the library is a data structure,
which contains the FUNCTION ID of the HA, the size of the corresponding bit-
stream and the base address in the memory where the bitstream is stored. Thanks
to the homogeneous cell choice, all hardware components realizing the same func-
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Figure 6.2: One Implementation of HCM-integrated OS

tion can use the same HA library object to search the configuration bitstream. The
number and kinds of HA in the library is initiated at the OS boot phase.

The HWC extension provides a uniform API to applications. The API is formed
by three HWC services, called hwc create, hwc activate and hwc destroy. The detailed
description of these three services is given in the next section. The most important
part of the HWC extension is an HWC slot pool. Each slot in the pool is a data
structure containing all properties of an hardware component (see Table 4.1). By
maintaining the HWC slot pool, the OS is able to supervise all existing hardware
components, to make them correctly synchronize with applications and to share the
HCM properly.

The HCM driver chiefly communicates with the HCM implementation hardware
part. It receives the hcm alloc request formed by the HWC extension and sends
the corresponding sequence to the HCM. It serves the interrupts coming from the
HCM implementation hardware part, while maintaining two pools. The waiting
allocation pool keeps the pointer of HWC slots, whose allocation sequences have
been sent, but not yet on the cell. The running computation pool keeps the pointer
of HWC slots, which has not yet finish the required function.

The three elements interact, recording the current status of the evolving plat-
form and deciding upon the correct action to take. To make it clearer, a detailed
description of HWC services is given below, with the explanation of service internal
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processing procedure as well.

6.1.2 HWC Services Description

• hwc create

status t hwc create(hw component t * hw component, hwc function id t fid);

Description:

This service is used to create a hardware component to perform the function
fid. It works in a non-blocking way.

The service gets a slot from the hardware component slot pool, dedicating the
slot to the required hardware component; also, it uses the function identifica-
tion fid as the index to look up the HA library, in order to collect the corre-
sponding bitstream base and bitstream size as necessary information to
form the reconfiguration command sequence. The information is stored in a
slot as hardware component properties; finally, an allocation request hcm alloc
is sent to the HCM, using the hardware component slot as a parameter. The
service checks the result of the allocation request, processing according to dif-
ferent situations and reporting to the user.

Input:

hw component: an empty hardware component pointer;

fid: the function identification that the hardware component will perform;

Status:

If the return value is HWC ALLOC OK, it means that hw component is pointing
to a valid hardware component slot and that the reconfiguration command
sequence has been successfully sent to the dynamic resource manager. Other-
wise, the creation fails.

• hwc activate

status t hwc activate(hw component t hw component);

Description:

This service is mainly responsible for the synchronization of the hardware part
and the software part of the hardware component, which has already been
created by a call to hwc create. It works in a blocking way.

In this service, the hardware component status is checked up for once. At the
moment of checking, if the reconfiguration of the underlying cell is complete,
the service initiates the hardware component which has the ready status and
the software environment related with the hardware component. After that,
the hardware component status is changed to computing (cf. Table 4.1). The
thread calling the services releases the CPU to let other threads have a chance
to run, while the hardware component is doing its work on the platform.

Otherwise, the service simply changes the hardware component status to
wait cfig finish and yields the CPU, leaving the initialization work to the
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hcm isr interrupt service routine when the CFIG FINISH interrupt is received,
so as to avoid the constant polling by the general purpose processor.

In both cases, the service can only be rescheduled once the hardware compo-
nent finishes its computation.

Input:

hw component: the pointer pointing to the slot of hardware component which
is about to be activated.

Status:

If the return value is HWC ACTIVATE OK, it means the hardware component has
successfully completed its work on the platform. Otherwise, it means the
hardware component suffers from synchronization problems during the ini-
tialization phase or the computation phase.

• hwc destroy

status t hwc destroy(hw component t hw component);

Description:

This service is used to destroy a hardware component. It works in a non-
blocking way.

One thing to notice is that only when the hardware component status is
calc finish can the hardware component be safely destroyed. The service
verifies this condition and then cleans all the fields in the hardware compo-
nent slot pointed by hw component, and releases the slot back into the hardware
component slot pool.

Input:

hw component: the pointer pointing to the slot of hardware component which
is about to be destroyed.

Status:

If the return value is HWC DESTROY OK, it means the hardware component has
been safely destroyed. Otherwise, the destruction has failed.

6.1.3 Experiment 1: Feature Validation on Simulator-based Test

Environment

6.1.3.1 Test Platforms

In order to validate the efficiency of the HCM integration, we designed test plat-
forms respecting the template described in Figure 4.1 using the open platform So-
CLib [soc10], which is a library of SystemC simulation models for IP cores.

The advantage of a SystemC simulation model over a FPGA prototype are: (1)
the HCM implementation is not locked to any reconfigurable technology; (2) the
parameter of platforms can be more easily changed and the HW/SW cosimulation
is much easier and faster to debug.
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In addition to the cycle accurate HCM model described in section 4.3.3.2, a cell
model and a reconfiguration controller model are developed. The modeling of re-
configuration processes is implemented using the Dynamic Circuit Switching ap-
proach [LS96]. The cell model integrates all possible hardware components, but only
one component can be active at a time. The selection of the active component is con-
trolled through a register of the cell, which is writable only from a reconfiguration
controller model. The reconfiguration controller model generates an interruption
when a reconfiguration is finished. The implemented models can be parametrized
at reconfiguration time for the reconfiguration controller model and execution time
for cell model.

Test platforms also integrate a MIPS model for CPU cores and a mesh network
on-chip based on the VCI standard for the interconnect.

Table 6.1: Parameters of test platforms

CPU Cell Reconf. Controller with

Platform Number Number Number HCM

wo hcm 1 3 1 no

base hcm 1 3 1 yes

hcm multi rctrl 1 3 3 yes

hcm multi cores 3 3 1 yes

hcm multi rctrl cores 3 3 3 yes

hcm single cell 1 1 1 yes

As described in Table 6.1, experiments are conducted on six platforms, defined
by the four following parameters: the number of CPU cores, the number of cells, the
number of reconfiguration controllers, and the presence or not of a HCM.

6.1.3.2 Application

In order to provide realistic test scenarios, simple image processing applications
have been designed based on four possible components, represented in Table 6.2.
The three generated applications are made of two components each, as represented
on Figure 6.3. Communication between components is performed through software
FIFOs in the applications, and through hardware FIFO in the component.

Table 6.2: Basic components for test applications

Component fid Function Tr(µs) Tc(µs)

A color transform 147.6 844.86

B gaussian blur 147.6 99072.10

C median filter 147.6 172800.10

D gradient direction 147.6 20544.06
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Figure 6.3: Simple image processing scenario

Reconfiguration and computation time (resp. Tr and Tc) for the proposed compo-
nents are computed for a Xilinx Virtex-5 FPGA (LX110T). Targeting a cell size of 360
configuration frames [Xil11] and a 100 MHz clock, the developed components are
synthesized using the UGH HLS tool [APDG05]. From the obtained hardware com-
ponents, execution times are derived for 320x240 pixels images with the assumption
that the communication time is overlapped. Reconfiguration time is derived from
cell size assuming the reconfiguration controller is an Internal Configuration Access
Port (ICAP) with a 32-bit wide and a 100MHz interface. The feasibility of such a
controller has been presented for example in [DML11].

6.1.3.3 Results Analysis

Results are presented in Figure 6.4, Figure 6.5 and Figure 6.6. Figures 6.4 and 6.5
show the application code with and without HCM integration, while Figure 6.6
presents the resulting cell usage for each platform during execution. When looking
at the wo hcm platform required code in Figure 6.4, we can see that it is clearly plat-
form dependant, not flexible, and not easy to use. The programmer needs to sched-
ule the cell usage himself, and to explicitly call the reconfiguration procedures. He
also has to manage configuration bitstreams, and the reconfiguration delay. Hard-
ware components are implicitly used, hidden by the use of cells. It is also very error-
prone, since if the programmer makes a mistake on the cell to be reconfigured, the
whole application will be faulty. The three applications also need to be merged as
one, which limits a parallel usage of the CPU. This could be avoided by associating
one cell for each application, but it would be suboptimal.

The code designed for this platform is also non-portable. The slightest change in
the number of cells or available reconfiguration controllers would mean a complete
rescheduling, and thus a complete rewriting, of the application.

In HCM integrated platforms, the development of applications does not require
FPGA knowledge. As can be seen in the code in Figure 6.5, all applications are
wrapped in threads, which are launched in a natural order. The application is com-
pletely independent from the platform details, and only the functionality of the re-
quired hardware component is known, not its location nor implementation details.
This has several advantages. First of all, the resulting applications are more flexible.
They can be reused without modifications on other different platforms, moving the
burden of reconfiguration management out of the scope of application developers.
Cell usage results presented in Figure 6.6 show that for all platforms, the HCM per-
forms all component allocations in a reasonable time (about 0.11% more compared
to the wo hcm platform). For the reference HCM platform, the schedule is slightly
less efficient than the platform without the HCM, since the handmade scheduling of
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1 void main ( ) {
2 c f i g (C, CELL1 ) ;
3 c f i g ( B , CELL2 ) ;
4 c f i g (A, CELL3 ) ;
5 / / Compute f i r s t component o f app1
6 while ( c e l l 1 s t a t u s != CFIG FINISH ) ;
7 compute app1 ( CELL1 ) ;
8 / / same f o r app2 and app3
9 while ( c e l l 2 s t a t u s != CFIG FINISH ) ;

10 compute app2 ( CELL2 ) ;
11 while ( c e l l 3 s t a t u s != CFIG FINISH ) ;
12 compute app3 ( CELL3 ) ;
13 / / r e c o n f i g u r e c e l l 3 wi th component B
14 while ( c e l l 3 s t a t u s != CALC FINISH ) ;
15 c f i g ( B , CELL3 ) ;
16 while ( c e l l 3 s t a t u s != CFIG FINISH ) ;
17 compute app3 ( CELL3 ) ;
18 / / r e c o n f i g u r e c e l l 2 wi th component D
19 while ( c e l l 2 s t a t u s != CALC FINISH ) ;
20 c f i g (D, CELL2 ) ;
21 while ( c e l l 2 s t a t u s != CFIG FINISH ) ;
22 compute app2 ( CELL2 ) ;
23 / / when component B i s done , app3 i s done
24 while ( c e l l 3 s t a t u s != CALC FINISH ) ;
25 / / r e c o n f i g u r e c e l l 3 wi th component A
26 c f i g (A, CELL3 ) ;
27 while ( c e l l 3 s t a t u s != CFIG FINISH ) ;
28 / / Wait f o r f i r s t component o f app3
29 while ( c e l l 1 s t a t u s != CALC FINISH ) ;
30 / / F i n i s h i n g app1 on c e l l 3
31 compute app1 ( CELL3 ) ;
32 / / Wait f o r a l l apps
33 while ( c e l l 2 s t a t u s != CALC FINISH )
34 while ( c e l l 3 s t a t u s != CALC FINISH )
35 }

Figure 6.4: Code without HCM

allocation calls performed in Figure 6.4 is better than the unoptimized scheduling of
allocation calls used for platforms with the HCM. On the other hand, the flexibility
gain is clearly visible. Without changing the application, it can make use of multiple
reconfiguration controllers, it can run under a multi-CPU environment, and it can
still compute in a single cell platform.
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1 void app1 proc ( ) {
2 hw component t A, C;
3 h w c f u n c t i o n i d t fidA , fidC ;
4

5 / / A l l o c a t e and compute C
6 hwc create (&C, fidC ) ;
7 hwc act ivate (C) ;
8

9 / / A l l o c a t e and compute A
10 hwc create (&A, fidA ) ;
11 hwc act ivate (A) ;
12

13 / / R e l e a s e t h e hardware component s l o t
14 hwc destroy (A) ;
15 hwc destroy (C) ;
16 }
17 / / same f o r app2 and app3

Figure 6.5: Code with HCM
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Figure 6.6: The Underneath Processing of Scenario in Different Platforms

6.1.4 Experiment 2: Integration Cost

In the last section, we have shown that the integration of a HCM enables the pro-
grammer to write flexible and elegant application code, while only adding a very
small portion of execution time. In this section, we are going to measure precisely
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the cost of gaining such advantages, in terms of time overhead, memory footprint
and reconfigurable hardware overhead.

6.1.4.1 Test Platform and Application

In order to remove the influence of the synchronization amongst multi-GPP, and
to get the worst case result, we use the base hcm platform of Table 6.1 as the test
platform of measuring the integration cost.

In theory, the overhead of the HCM integration is independent from the number
and kind of hardware components that the HCM integration handles. In a lifetime
period of one hardware component, the overhead of all elements of the extended
software supports can be measured. This overhead can also represent the extended
software support overhead in the lifetime of any other hardware component. Keep-
ing this in mind, we have written an application in which component A in Table 6.2
is allocated to the reconfigurable fabric twice, in order to measure the overhead in
both cases when an actual reconfiguration takes place and when the configuration
in the cell is reused.

6.1.4.2 Execution Result

Figure 6.7 shows the resulting time consumption of different elements during a life-
time period of a hardware component in two cases: A) when an actual reconfig-
uration is needed, and B) when the hardware component reuses the configuration
which is already on the cell.

In each case, there are four classes of time consumption which are measured.
The bar on the top represents the time quota of involved services; the bar below
stands for the time consumed by the HCM driver; the third bar illustrates the time
portion of different hardware component states recognized by the OS extension; the
bar at the bottom shows the time points of some important events taking place on
the platform. During each lifetime period, 21 moments are sampled to measure the
time overhead.

When an application needs a hardware component which does not yet exist in
its scope, the service hwc create is called (time sample 1 (t1) in the Figure 6.7). The
FUNCTION ID of the required hardware component is passed by the application as
an input.

To begin its work, the hwc create service gets an empty hardware component slot
for recording information of the required hardware component. After initiation, the
pointer of the slot is added into a waiting-allocation pool. Afterwards, information
such as the location and size of the corresponding bitstream is collected from the
HA library by hwc create, in order to form an allocation request hcm alloc. This re-
quest is then handled by the HCM driver (t2) and sent to the HCM implementation
hardware part (t3). Since hwc create works in a non-blocking manner, it terminates
(t5) once the HCM driver has returned (t4) from request sending.

Then the application calls the service hwc activate (t6) to ensure the presence and
valid access to the HA. If the HA is not yet available, as shown in the reconfigu-
ration case (t7), hwc activate changes the hardware component state in the slot as
waiting cfig finish. Otherwise, as shown in the reuse case (t11.b), hwc activate
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Figure 6.7: Time Consumption During the Lifetime of an HA

changes the hardware component state in the slot to computing and enables the
hardware component function on FPGA. In both case, the hwc activate service yields
(t8) the CPU to other processes ready to run, if there is any.
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Once the required hardware component is made available by an actual reconfig-
uration on FPGA (as shown in Figure 6.7.A), or by a reuse (as shown in Figure 6.7.B)
according to the decision of the HCM, an interrupt is issued to report the success of
the allocation (t9). This interrupt is picked up and processed by the interrupt service
routine hcm isr inside the HCM driver (t10 to t12). If the process had been blocked
by the absence of hardware component, as shown in the reconfiguration case (t11.a),
the hardware component state is changed to computing and the hardware compo-
nent function on FPGA is enabled. Otherwise, as shown in the reuse case (t22), the
hardware component state is marked as cfig finish. In both case, the slot pointer
of the required hardware component is extracted from the waiting-allocation queue,
according to the FUNCTION ID read back from the HCM implementation hardware
part. The identification of the occupied cell (BOUNDED CELL ID) is also fetched from
the HCM implementation hardware part. Based on the BOUNDED CELL ID, the access
method of the hardware component is set up and registered into the slot. Then the
hardware component slot pointer is added into the running-computation pool.

An interrupt issued by the HCM implementation hardware part reports the com-
putation end of a hardware component (t13). This interrupt is also picked up and
processed by hcm isr (t14 to t16). The identification of the interrupting cell is read
back from the HCM implementation hardware part. The hardware component slot
with the same BOUNDED CELL ID is removed from the running-computation pool.
The hardware component access method is unvalidated and its status is changed to
calc finish (t15). Then the yielded hwc activate gets back (t17) to run until its end
(t18).

At last, application calls the hwc destroy service (t19) to deallocate the hardware
component. The hardware component status is reset to not exist (t20). hwc destroy
returns (t21) after the hardware component slot is cleaned and released.

6.1.4.3 Results Analysis

1. Time overhead:

The time consumption of a reconfigurable computation (Trc) is composed of
computation time (Tc) and the allocation time (Ta) which is spent on getting
the computing resource. In our case, the Ta can be further divided into two
parts: the time spent on the HCM assisted reconfiguration on FPGA (Tr), and
the time spent on managing the hardware component life cycle, the synchro-
nization between application and the hardware component, and parallelism
among hardware components. The latter is what we are going to measure: the
overhead introduced by our extended OS support (Tov). Using the samples
from Figure 6.7 these timing are:

Trc = T[1,18] + T[19,21];

Tc = T[11,13];

Tr = T[3,9];

Tov = Ta − Tr = Trc − Tc − Tr

= T[1,3] + T[9,11] + T[13,18] + T[19,21];
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where T[i,j] is the time between the sample ti and tj in figure 6.7.

The meaning of each time range is listed as follows. T[1,3] is from the mo-
ment when the hwc create service is called by application to the moment when
the allocation request is received by the HCM implementation hardware part.
T[9,11] is DnaOS interrupt management (IRQ selection, context switch) plus
hcm isr for cfig finish. For the reuse case, it also includes part of hwc activate
service. T[13,18] is DnaOS interrupt management, hcm isr for calc finish

and reschedule of the end of the hwc activate service. T[19,21] is the execution
time of hwc destroy service.

Table 6.3: Time Overhead of OS Extension Services

Time Range Services Reconfigure Reuse

(cycles) (cycles)

T[1,3] hwc create 2985 2945

T[9,11] 3330 3790

DnaOS IRQ management 1230 1440

hcm isr 2100 1470

hwc activate - 880

T[13,18] 2125 2265

DnaOS IRQ management 1015 1230

hcm isr 1020 990

hwc activate 55 45

T[19,21] hwc destroy 960 870

Total Time Overhead (Tov) 9440 9870

The time overhead in the reconfiguration case and the reuse case are listed in
Table 6.3, measured in cycles. The Tov in the reuse case is slightly more than
that in the reconfigure case, because of parts of hwc activate service, which is
concurrent with reconfiguration procedure on FPGA in the other case. In both
cases, the Tov stays stably less than 10k cycles. In our experiment, the cell size is
relatively small (360 frames, 1600 LUTs, 1600 FFs), the time overhead is slightly
less than the reconfiguration time (Tov/Tr ∼ 0.65). When the cell size increases,
Tr will increase accordingly, the rate of Tov in Ta will become neglected.

The developers of reconfigurable computing always wish to have a high rate
of Tc/Trc. Our hardware assisted OS support permits the quantitative anal-
ysis at early stage, since the Tov stays almost fixed. Given the cell size and
computation time of an hardware component, the developers can quickly
decide whether it is worth using the hardware component at the rate of
Tc/(Tc + Tr + Tov). For example, in our experiment Tr is 14760 cycles, Tc of
the worst case is about 85 thousand cycles, Tc of the best case is about 17.3 mil-
lion cycles. The Tc/Trc rate ranges from 77.4% to 99.8%. Once decided, then the
hardware assisted OS support allows the developers to easily integrate their
hardware components.
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2. Footprint

Table 6.4: Memory Footprints of Systems

Memory Footprint (KBytes)

OS extension 7.1

HWC services 2.7

HCM driver 4.4

DnaOS (Kernel, File System, drivers) [10,40]

Bitstream (360 frames) 58

medium size application (MJPEG) 140

The footprint of the proposed extension is around 7.1KB on a MIPS processor.
The Table 6.4 provides details on these components and comparison points.
The obtained footprint is smaller than the original DNAOS one, which may
vary between 10 and 40KB depending on OS tailoring. Note that the foot-
print of the OS with the extension (less than 47 KB) is always smaller than a
single partial bitstream for a small cell (360 configuration frames). By consid-
ering that an application requires several bitstreams and also the application
sofware footprint (e.g. an MJPEG application requires around 140KB), we can
conclude that the proposed extension has a negligible impact on the overall
system footprint. To the best of our knowledge, any memory footprint of ex-
isting OS extension supporting the DPR has been found in the literature.

3. Hardware overhead of the HCM

Besides the SystemC simulation model, we also implemented the HCM on a
Xilinx FPGA, in the expectation of giving out a realistic reference of resource
usage of the HCM. The targetted FPGA is a Virtex-5 (LX110T), which contains
17,280 slices with four Flip-flops (FF) and four look-up tables (LUT) in each
slice. The following two figures are obtained through logic synthesis with a
100MHz timing constraint.

Figure 6.8 shows the curve of maximum frequency that the HCM is able to
reach as a function of the number of cells. We can see when the number of
cells inferior to five, the maximum frequency remains stable at about 230 MHz.
Starting from five cells, the maximum frequency drops when the number of
cells increases. In spite of this downward trend, the maximum frequency stays
greater than 130 MHz, when the number of cells is less than 16.

Figure 6.9 is the curve diagram of the HCM resource utilization in different
cell number conditions. The horizontal axis represents the number of cells
that the HCM manages. The vertical axis represents the number of resources
used by the HCM. There are two curves of resource utilization. The red one
represents the number of FFs used by the HCM, while the green one represents
the number of LUTs dedicated to the HCM.
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Figure 6.8: Maximum Frequency that the HCM can Reach Depending on the Cell
Number
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Figure 6.9: HCM Resource Utilization Depending on the Cell Number

We can see both curves raising when the number of cells increases. The num-
ber of FFs is almost proportional to the number of cells. At any number of
cells, the HCM uses always more FFs than LUTs. The curves show such up-
ward trends, because the Cell Track Maintainer (CTM) inside the HCM has been
implemented as a Content Accessible Memory (CAM). That is to say, the com-
parison between the index of the cell which issued an interrupt and all the
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cell indexes in the CTM table is done concurrently at one clock cycle. This
choice guaranteed that the HCM is able to run at high speed, however, it costs
much of the FPGA resource. Especially when there is no dedicated CAM in
the FPGA architecture, the circuit designer has to build up CAM using FFs.

For a 16-cell system, the HCM requires 8,677 (12.55%) FFs and 4,765 (6.89%)
LUTs of the whole FPGA. Thus, the HCM sizes five times bigger than the cell
size defined in our architecture (1,600 FFs and 1,600 LUTs). To give a rough
idea, a Microblaze softcore requires between 600 LUTs for the smallest config-
uration and 4000 LUTs for the largest one (including cache, FPU, MMU). Thus,
the size of this implementation is clearly not negligible.

The reason of such high HCM resource consumption, as we have analyzed
previously, comes from the CAM implementation choice. Noting that the re-
configuration of a cell through a 32-bit and 100 MHz ICAP requires 14760 clock
cycles, and that the time for an allocation request of crossing the current HCM
implementation only takes 4 cycles, we have clearly over-optimized the HCM
circuit which is not quite critical in the whole allocation procedure. To bet-
ter compromise the resource utilization and the running speed, we may have
a different hardware HCM implementation which uses Block RAMs resource
in the FPGA to build up the CTM, or have a software HCM implementation
which is realized by a microblaze processor embedded in the FPGA, since we
still have some margin of time.

6.2 Communication Mechanism Validation

In the following section, we are going to describe the experiments of validating the
communication mechanism proposed in the chapter 5. The validation is achieved
in two steps. Firstly, we verify that the original MWMR channel works properly
in our implementation environment. Then, we show that in cooperation with the
HCM, the dynamicity can be added to the original MWMR channel, so that the
whole communication mechanism is able to handle the intertask communications
in various runtime task mapping cases.

6.2.1 Experiment 3: Original MWMR Channel Migration

The object of this validation step is to guarantee that the original MWMR channel
works well when we migrate it in our implementation environment. To do so, we
have to prove that the MWMR channel can be accessed successfully by any number
of tasks of any nature, under the condition that the task mapping is known in ad-
vance and kept unchanged during the system runtime. In other words, we should
verify (1) that the software tasks can correctly access an MWMR channel through the
mwmr read and/or mwmr write services, (2) that the hardware tasks can correctly ac-
cess an MWMR channel through a MWMR controller, and (3) that when there are
multiple accessing tasks, they can get data from and/or send data to a MWMR chan-
nel without error in a cooperative manner.
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Figure 6.10: Platform for Testing the Original MWMR channel

In order to keep the consistency with the platform template proposed in chap-
ter 4 for the GPP/FPGA dynamic reconfigurable architecture, we tested the original
MWMR channel in the platform shown Figure 6.10. The platform is a simulated
one, built using SoCLib [soc10] simulation models written in SystemC, containing
three GPPs, the shared memory, four block devices (a component emulating a disk
controller in order to transfer data from (resp. to) files in the host system to (resp.
from) buffers in the memory of the virtual platform) and two MWMR hardware
controllers connected to four cells each. The eight cells are configured as two kinds
of specific coprocessors.

The software environment of our test uses the DnaOS operating system. The
MWMR channel access services are implemented as a user library. There are four
simple tasks (T1, T2, T3, T4) programmed as the basic computations of the appli-
cations. Each task implements the function that makes a grey scale image brighter
for certain degrees (Ti increases the grey scale of each pixel in an image by 16i).
Amongst the four tasks, T1 and T2 are pure software tasks. T3 and T4 are imple-
mented as hardware coprocessors, in addition to their software alternatives.

Figure 6.11 shows the five applications that we use as benchmarks built using
the four tasks. They are executed to validate the nine cases of possible combination
of data producers and consumers at the two ends of a MWMR channel. The names
of the nine test cases are the concatenation of two parts. The first part of the name
indicates the nature of the MWMR channel accessors, while the second part of the
name indicates the number of the MWMR channel accessors.

In sub-figure (A), black images (grey scale value of each pixel is 0x0) are stored
in block device 1. They are read by software task T1 through the FIFO channel 1. T1
turns every pixel value to 0x10, and writes the output data into the MWMR channel
1. The software task T2 reads its input data from the MWMR channel 1, increases
every pixel value by 0X20 and writes them into block device 3 through FIFO chan-
nel 2. A final dark grey image (each pixel value equals to 0x30) in block device 3
would prove the success of the experiment. Indeed, this experiment verified that
the MWMR channel is able to handle the communication between a single software
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task and another single software.
The application in sub-figure (B) is almost the same case as in sub-figure (A), the

only difference being that other software instances of T1 and T2, called T1’ and T2’,
are added to run in parallel. This experiment also verified that the MWMR channel
can handle the communication amongst multiple software task writers and multiple
software task readers.

In sub-figure (C), (D) and (E), black images are processed by T1, T3, T4 and T2 in
sequence. The MWMR channel 1, 2 and 3 are used to connect two adjacent tasks. In
sub-figure (C), T3 and T4 are hardware tasks connected to different MWMR hard-
ware controllers. The experiment again proved that the MWMR channel is able to
handle the communication between a single software task writer and a single hard-
ware task reader (the MWMR channel 1), the communication between a single hard-
ware task writer and a single hardware task reader (the MWMR channel 2) and the
communication between a single hardware task writer and a single software task
reader (the MWMR channel 3).

By adding to each task an instance of the same nature, the application in sub-
figure (D) proved that the three cases verified in sub-figure (C) can be handled by
the MWMR channel even when there are multiple writers and readers.

In sub-figure (E), T1 and T2 each have two software instances. T3 has a software
instance and a hardware instance, and so does T4. The T3 and T4 hardware instances
are connected to the same MWMR hardware controller. This experiment finally
proved that the MWMR channel can be accessed by software tasks and hardware
tasks at the same time.

The hardware tasks which are connected to the same MWMR hardware con-
troller can communicate correctly (as T3 and T4 in sub-figure (E)), so do the hard-
ware tasks which are connected to different MWMR hardware controllers (As T3
and T4 in sub-figure (C) and (D)). This validation is the foundation of the commu-
nication mechanism based on the MWMR-hardware-controller-centered clusters,
which is proposed in the chapter 5.

We may have noted that the MWMR channel usage scenario in the sub-figure
(A) and (B) is the almost the same. So does the MWMR channel usage scenario in
the last three sub-figures. The reason why we have to write five applications instead
of two is that the original MWMR channel has to be connected to its accessors at the
system boot time and has to stay unchanged. That is also the motivation for which
we would like to integrate the HCM with the MWMR channel, in order to bring the
dynamicity to the communication mechanism.

6.2.2 Experiment 4: Dynamicity Management with the HCM and

Modified MWMR Channels

The objective of this experiment is to verify the dynamicity of our communication
mechanism. As explained in chapter 5, the original MWMR channel already allows
any number of software tasks to access the data at any time, so it is sufficient for us
to prove that our communication mechanism allows hardware tasks to do the same
thing even when the hardware tasks are dynamically-mapped.

The platform of the experiment is shown Figure 6.12. It is composed from three
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Figure 6.11: MWMR Channel Validation in Various Data Producer-Consumer Pair
Cases

GPPs which share the common memory, an HCM which controls three reconfigu-
ration controllers and four cells. Two MWMR controllers each connect to the FIFO
I/O interfaces of two cells. Six block devices are used to store the data before and
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Figure 6.12: The Platform for Testing the Dynamic Communication Mechanism

after processing.
This platform is a multi-GPP, multi-reconfiguration controller and multi-cell use

scenario of the HCM. As a specific example of proposed cluster-based communica-
tion mechanism, the platform is organized as two clusters, and each cluster contains
one MWMR hardware controller and two cells. The platform is implemented in Sys-
temC as described before.
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Figure 6.13: The Platform for Testing the Dynamic Communication Mechanism

The schematic diagrams of the applications in this experiment are shown in Fig-
ure 6.13. We can see that they are quite similar to the applications in the experiment
1 (Figure 6.3). The computation performed by hardware tasks (square box) are the
same as the ones presented in Table 6.2.

In this experiment, the three applications are running in parallel. Each applica-
tion consists of two software tasks and two hardware tasks. Connected by MWMR
channels, the four tasks in an application are launched in parallel. The software task
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Ini (i = 1, 2, 3) is mainly responsible for reading images from a block device and re-
arranging the data for the following image processing task. The software task Outi
(i = 1, 2, 3) is responsible for obtaining data from the last image processing task and
organizing them as images to write to another block device. The two hardware tasks
perform image processing functions, constantly driven by the data from from last
step and sending the generated data to the next step, until a whole image has been
processed. After that, the hardware task considers the computation completed. As
a consequence, the current occupied cell is released. Before processing the next im-
age, the hardware task has to be allocated to a cell according to the resource usage
at that moment.
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Figure 6.14: Underlying Cell Usage for Each Application Processing the Two First
Images

We have launched these three applications in parallel, Figure 6.14 shows the un-
derlying cell usage for each application to process the two first images. In the figure,
on each period of time when cells are occupied, there is a code to identify the owner
of the hardware component. The code is composed from three numbers. The first
one indicates the number of the application; the second one indicates the number of
the processed image; and the third one indicates the identifier of the image process-
ing task. For example, the number 312 represents that the component executes the
second task of the application 3 while processing the first image.

When writing the application, the programmer only knows the logic connec-
tion amongst tasks. This logic connection remains unchanged during the executing
time. However, we can see clearly from Figure 6.14 that the locations of these tasks
changed dynamically during the run time. These physical locations are determined
depending on the cell usage at a specific moment. The programmers have no way
to predict the physical location of a component. It is the communication mechanism
based on the HCM and the extended MWMR channel services which handles the
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redirection of data flow to the new location.
Our experiments produced the expected results, which validate the principles of

our solutions. We thus have shown that:

1. This kind of redirection can be managed inside a cluster.
For example, component A function of application 3 is firstly mapped to cell 0
(component number 311), before being remapped to cell 1 (component number
321). Similar examples include also component B function in application 2
(from cell 2 to cell 3), and component D function in application 2 (from cell 1
to cell 0).

2. This kind of redirection can be managed amongst different clusters.
For example, component B in application 3 is firstly mapped to cell 1 (compo-
nent number 312), then remapped to cell 2 (component number 322). Similar
examples include component C in application 1 (from cell 3 to cell 1), and com-
ponent A in application 1 (from cell 0 to cell 2).

6.3 Conclusion

In this chapter, we answer the question posed in chapter 2 “how to ease the life of ap-
plication programmers” by experimentally approving our approaches presented in
chapter 4 and chapter 5: to have a centralized abstraction layer to separate the notion
of tasks from its implementation, and to have a scalable communication mechanism
to gain the independence of task access from the nature and number of implemen-
tations.

Moreover, through the measurement of the experiments, we showed that with
a reasonable price, the HCM and dynamic MWMR channels – the implementations
of the two above approaches can be easily integrated into an OS. The OS integration
eases further the application programmers work.
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Conclusion

7.1 Contribution

The work introduced in this thesis aims at providing a flexible hardware/software
environment comprising CPUs and a pool of reconfigurable elements, which is a
promising way to take advantage of both the hardware speed and the software
versatility. We showed that the major issues with such architectures were the
task allocation mechanism and its associated hardware resource management, the
communication mechanism between tasks, and the issues related to code generality
and hardware specificities. In the problem statement chapter, we asked several
questions related to these issues, for which we will try to answer now using the
work presented in past chapters.

How to allocate tasks to different resources in a CPU/FPGA hybrid system where
dynamic partitioning is allowed?

We saw in chapter 4 that task allocation should be performed using at best
the available parts of the FPGA. We also showed that hardware tasks should be
reusable whenever possible, so as to avoid costly useless reconfigurations. In order
to achieve this, we presented the key notion of Hardware Component to abstract
a task running on the Reconfigurable Fabric. This notion allows the programmer
not to care about the real FPGA below and instead to reason in terms of operations
(e.g. activate the hardware component) and status (e.g. computation is complete).
We further presented the Hardware Component Manager (HCM), whose role is
to centralize the knowledge of all the hardware components. Using these two
concepts, we are able to provide a task allocation mechanism which guarantees a
efficient usage of hardware resources.

How should the reconfiguration related resources (RFs, bitstreams, reconfigura-
tion ports) be managed, so that DR processing can be well maintained even in
multi-threaded, multi-FPGA environment?

Apart from being efficient, the utilization of hardware resources should guar-
antee exclusivity properties so as to ensure that other applications do not interfere
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with currently running applications. This is why we showed in chapter 4 and
5 that the reconfiguration related resources should be managed in a way that
applications do not have access to low-level information, and that this kind of
information should be kept in a centralized way and protected module. We
decided to store these information in the HCM as it seemed well suited given
our design. In case of a multi-FPGA environment, the centralization in the HCM
of all reconfiguration related resources permits a cooperative resource management.

How to design a communication mechanism which can recognize the existence
of dynamically appearing communicating entities, no matter what the nature
(hardware or software) and number of communicators at the both sides of a
producer-consumer pair?

In chapter 5, we presented the difficulty to write correct code when the number
of instances of some tasks cannot be known in advance. In particular, tasks left
unmapped can lead to a loss of data if the connection between tasks is not made
properly. To solve this, we proposed to use an existing communication channel
model called MWMR to perform the communications between tasks. Using the
task mapping information, we integrated the ability for the HCM to dynamically
link and unlink hardware tasks instances to the corresponding MWMR channels,
by the means of five communication services. Two levels of configurations are
presented: one linking tasks with MWMR controllers, since one task can be mapped
to different cells, which are fixed to different ways of a MWMR controller or even
different MWMR controllers; and one linking controllers to channels themselves,
since the latter are located in memory, and are constructed and destroyed as the
need of applications.

How to ease the life of application programmers by separating the management
of task, reconfiguration resource and communication, so that they can write more
flexible applications?

In chapter 4, we presented a 3-level layered architecture, comprising a) the
application: b) the Hardware Component Manager, and c) the Reconfigurable
Hardware Resources, which is in charge of knowing the functionality and occupa-
tion of cells. In a way, the HCM is acting as a ”hardware server” for application,
taking and responding to their requests. This dividing makes application more
flexible since the interface provided hides the nature, status and occupation of the
FPGA. Besides, the ability to use dynamically linked communication channels is
also a step towards application flexibility. Of course, such hardware modules have
to be integrated in the operating system to be truly usable. This is what we did
by integrating this layered architecture into an existing operating system called
DnaOS. We then showed in chapter 6 that the provided integrated services had a
limited impact in terms of performance compared to a manual utilization of the
FPGA. Overall, our proposal respects the separation between applications and
hardware management through the use of the HCM, for the hardware mapping of
both tasks and communication channels, and at a limited cost.
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Perspectives and Future Work

For the work done in this thesis, we have the following perspectives.

Development of a real prototype on a FPGA platform

Currently, we use an open simulation platform named SocLib for validating the
correctness and efficiency of the HCM and the communication mechanism. Based
on this, it will be good to develop a prototype using a real FPGA device. In such a
realistic environment, we may better observe the actual behavior and performance,
and validate the robustness of our proposal. An HCM implementation has been
developed for FPGA. The development of other parts of the prototype is an ongoing
work.

Mixed hardware/software task implementations

At the current stage of development, whenever a hardware task faces the prob-
lem of no more resource available, it is blocked by the HCM until some cells are
released, even if some processors are idle.

An idea to avoid this is to have mixed hardware/software descriptions, so
that the operating system can decide online with the knowledge of resource usage
whether to run a task in software or in hardware.

To achieve this, it is necessary to integrate a mechanism which allows the HCM
to yield the control back to the operating system. This can be done using system
calls inside the HCM driver. Thus, when a task containing a hardware description
is launched, it can be placed on the FPGA if enough cells are available; otherwise it
can be placed on a processor.

Taking advantage on the fact that actual hardware and software tasks use the
same interface, this evolution only requires the management of mixed descriptions.

Dynamic management of mixed implementations

Based on the previously presented evolution, we can also imagine the infrastruc-
ture to be able to dynamically switch between several implementations of one task,
in order to automatically balance the hardware load of the platform.

A task running in software can be migrated to hardware when a cell becomes
available. This requires the need to migrate the intermediate state of the task, since
we can’t retrieve the consumed inputs and we don’t want to rewrite the outputs
which have already been written.

Reciprocally, a task running in hardware must be able to migrate to software if
the system needs to evict a running task to make room for hardware only tasks.
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HCM with support for heterogeneous granularity

The homogeneous choice that we have made in this work has the advantage of
simplicity at different levels; however, it can lead to a waste of area when the tasks
consume a wide range of surfaces. In this case, it is necessary to consider the biggest
task in terms of surface to define the cell size.

To solve this problem, we might want the HCM to handle various size of cells.
The imagined approach consists in combining the cells in a hierarchical way, such
that four adjacent cells of the same level can be merged to create a cell of the higher
level, following the principle of the buddy memory allocator [Kno65], but in two
dimensions.

Improvement of on-demand placement strategy

Currently, there is no management of priority of hardware tasks – in case of con-
tended resources –, but there is even no guarantee that when no resource is avail-
able, the upcoming tasks will be granted allocation in order of arrival.

This perspective aims at adding a priority mechanism for hardware task alloca-
tion. Each task can be specified a priority level. Based on this level:

• if two tasks of different levels are blocked until some cells are available, the
one with higher priority will get the resource first

• if two task with the same level are blocked, the one which accessed the HCM
first will get the resource first.

This evolution also requires the HCM to give back the control to the operating
system, for the management of associated priority queues.

Optimization of the number of I/O channels per cell

In the current infrastructure, each cell is connected to two ways of an MWMR
controller. This connection is fixed in hardware and thus the number of connections
canot be changed at runtime. However, many tasks do not use only two channels,
what requires multiplexing and/or demultiplexing at channels ends. This multi-
plexing may be a bottleneck for some tasks, and we suggest to study the impact on
performance of different number of I/O channels per tasks.

Of course, the more I/O channels are connected, the more hardware controller
will be required, so a tradeoff between both must be analyzed.

Optimization of communications between hardware tasks

Currently, when two hardware tasks communicate via a MWMR channel, the
data has first to be copied from the first controller to memory where the data part of
the channel lies. Then, it has to be copied back from memory to the second MWMR
controller. It is possible that these two controllers are actually two ways of the same
controller, thus generating a lot of data transfers.
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We think that these transfers could be avoided with an appropriate bypass mech-
anism, which could route directly data from a way of a controller to another, or even
to the way of a distinct controller.

If combined with dynamic task migration, when a task is migrated from hard-
ware to software, the mechanism needs to remove the bypasses of the migrated
task, by informing the corresponding controllers.
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Résumé Cette thèse s’intéresse aux architectures contenant des FPGAs
reconfigurables dynamiquement et partiellement. Dans ces architectures, la com-
plexité et la difficulté de portage des applications sont principalement dues aux
connections étroites entre la gestion de la reconfiguration et le calcul lui-même.
Nous proposons 1) un nouveau niveau d’abstraction, appelé gestionnaire de
composants matériels (HCM) et 2) un mécanisme de communication scalable
(SCM), qui permettent une séparation claire entre l’allocation d’une fonction
matérielle et la procédure de reconfiguration. Cela réduit l’impact de la gestion
de la reconfiguration dynamique sur le code de l’application, ce qui simplifie
grandement l’utilisation des plateformes FPGA. Les application utilisant le HCM
et le SCM peuvent aussi être portées de manière transparentes à des systèmes
multi-FPGA et/ou multi-utilisateurs. L’implémentation de cette couche HCM et
du mécanisme SCM sur des plateformes réalistes de prototypage virtuel démontre
leur capacité à faciliter la gestion du FPGA tout en préservant les performances
d’une gestion manuelle, et en garantissant la protection des fonctions matérielles.
L’implémentation du HCM et du mécanisme SCM ainsi que leur environnement
de simulation sont open-source dans l’espoir d’une réutilisation par la communauté.

Mots-Clés Calcul reconfigurable, virtualisation matérielle, gestion des
tâches, mécanismes de communication, décision en ligne, gestion des zones recon-
figurables

Abstract This thesis shows that in FPGA-based dynamic reconfigurable
architectures, the complexity and low portability of application developments are
mainly due to the tight connections between reconfiguration management and
computation. By proposing 1) a new abstraction layer, called Hardware Component
Manager (HCM) and 2) a Scalable Communication Mechanism (SCM), we clearly
separate the allocation of a hardware function from the control of a reconfiguration
procedure. This reduces the dynamic reconfiguration management impact on the
application code, which greatly simplifies the use of FPGA platforms. Applications
using the HCM and the SCM can also be transparently ported to multi-user
and/or multi-FPGA systems. The implementation of this HCM layer and the SCM
mechanism on realistic simulation platforms demonstrates their ability to ease
the management of FPGA flexibility while preserving performance and ensuring
hardware function protection. The HCM and SCM implementations and their
simulation environment are open-source in the hope of reuse by the community.

Keywords Reconfiguration computing, hardware virtualization, task
management, communication mechanism, online decision, reconfigurable area
management
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