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Chapter 1

Introduction

Performance improvement is a requirement for all physical systems including Un-

manned Aerial Vehicles (UAVs) whose applications are steadily increasing. They

offer a smooth transition of autonomous flight control design from theory to practice

in addition to providing a proper solution in environments inaccessible or dangerous

to human life. However, the lack of a human pilot on board implies that the UAVs

rely on automation to navigate or to avoid obstacles. Thus, given the complex dy-

namics of a flying vehicle, a flight controller capable to provide, maintain and improve

the aircraft performance is required in order to guarantee the stability of the system

despite uncertainties in the model or some external perturbing forces like wind.

1.1 Motivation and objectives

This work is motivated by commonly encountered situations which are dangerous to

human life such as extreme manifestations of force or hostage crisis, among others.

The number of casualties would be significantly reduced if information on the site were

available before the procedure of the emergency services. This information could be

obtained by the use of a drone which must be able to navigate a safe distance to the

place of intervention and back to the ground station in an unobtrusive way. However,

the relatively low operating speed of small UAVs makes them particularly affected by

wind field which is any movement of the air mass with respect to the surface of the
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Earth. Therefore, the drone in question must also be able to overcome the effect of

such perturbation in order to safely meet the mission objectives.

Miniature drones seem to be best suited to solve this kind of problems due to

their discretion and portability. Nevertheless, it is necessary to increase their flight

time and make them more tolerant to wind. Note that the wind may be of the order

of the drone speed, which makes the problem very difficult.

Based on these considerations, the aim of this thesis is to develop a navigation

strategy for a model aircraft of conventional configuration in order to accomplish dif-

ferent missions in presence of wind. If it is possible to obtain the path that minimizes

the time of flight, the energy consumption or the forces acting on the structure of the

vehicle, then the flight controller must be able to steer the vehicle along this path. As

for what concerns the direction and intensity of the wind, the information provided

by a ground station can be taken into account to define the trajectory of the mission.

Since the aircraft is considered small, wind has a significant influence on its flight

performance. Note that the wind measured by the ground station may be different

from the one actually encountered at higher altitudes or at any location away from

the initial point of measurement. To improve the performance of flight, a method

for estimating the intensity and the direction of the wind will be explored and the

navigation strategy will be adapted accordingly. To this end, the measures provided

by the ground station and the changes in the aircraft trajectory due to the wind must

be considered. To simplify the study, a first assumption will be to consider that the

wind gusts are isolated. Thus, the wind field is relatively constant or varies slowly

over time. Finally, the proposed navigation strategies need to be validated in real

flight tests using an experimental prototype which also must be developed.

1.2 Challenges

The large flight envelope of the aerial devices posses several challenges to the suc-

cessful achievement of the proposed objectives. First, the choice of a robust airframe

possessing reliable flight characteristics is essential for real flight tests. Long duration
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flight and sufficient payload capacity to carry the weight of sensors and batteries are

two features of great interest. Then, the appropriate avionics equipment meeting

the requirements of the application being treated in this work needs to be integrated.

Onboard sensors are required, on the one hand, to provide measurements of the quan-

tities needed to determine the relevant parameters of the nonlinear dynamic model

of the airplane. For this purpose, the use of parameter identification techniques is

mandatory. On the other hand, the avionics system must provide the parameters of

any integrated or developed flight controller.

This emphasizes the second main challenge that must be faced when dealing with

UAVs, which is the development of a control law capable of governing the airplane

during the flight. The motion of an airplane through the air is modeled as a coupled

nonlinear system with complex dynamics. Its performance depends on the operating

altitude, speed, atmosphere or the geometric characteristics of the airplane. That

involves an increased complexity in the implementation of flight controllers which

should provide both the internal stability of the aircraft and the achievement of the

commanded attitude and velocity. In addition, the controller must be able to remove

the adverse effects of external disturbances or model uncertainties in order to maintain

good performance.

Last but not least, developing autonomous aerial devices requires a good under-

standing of the principles of aircraft operation. With this stock of knowledge, the

influence of wind on aircraft performance can be incorporated into the equations of

motion and, then, compensated with appropriate control input.

1.3 Approach

In order to achieve these objectives, the following research areas have been addressed.

First, a literature review on the subject is necessary in order to obtain the aerody-

namic model of the miniature aircraft in the presence of wind. Secondly, the devel-

opment of navigation strategies is required in order to allow the airplane to perform

various tasks in the presence of wind. To improve the performance of flight, the nav-
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igation strategies need to take into account the wind measured by a ground station

or estimated by an online estimator based on the aerodynamic model.

The third axis is the design and implementation of an experimental setup which

consists of a ground station used for visualization and control purposes and an em-

bedded autopilot architecture containing the airframe platform equipped with appro-

priate avionics such as inertial measurement unit, global positioning system, commu-

nication devices, air sensors and a control processing unit to manage the control law

and the sensors data.

1.4 Thesis outline

The manuscript is divided in two main sections which are: modeling of the aircraft

dynamics and designing flight controllers in order to achieve autonomous flight in

presence of wind. The first section focuses on deriving complete and reduced-order

mathematical models for a fixed-wing UAV and it is represented by Chapter 2. In the

first part of the section, a description of the physical principles of flight is presented

with the aim of deriving the dynamic model of an airplane. The additional forces

acting on the aircraft subjected to wind, which is modeled as a stochastic process,

have been incorporated into the equations of motion. Further, this section presents

a reduced-order model of the airplane which is appropriate for control design.

On the other hand, the second aspect addressed in this report, i.e., achieving au-

tonomous flight in presence of wind, is described in chapters 3 and 4. The control

design developed in these chapters relies on the simplified model introduced in the

previous section of the thesis. Furthermore, chapter 5 describes the practical imple-

mentation of a test platform with the purpose of obtaining flight test results. Finally,

general conclusions are presented in chapter 6.
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Chapter 2

Modeling for control

To address the problem of designing an autonomous flight controller for a small fixed-

wing UAV, first an accurate nonlinear dynamic model of the vehicle needs to be

derived. Unlike ground transportation systems, whose motion is primarily governed

by propulsive inputs, airplanes rely on aerodynamic forces which are difficult to model

since they depend on many varying operating conditions. As a consequence, the

development of autonomous operating aerial devices is a challenging problem which

requires significant attention.

The present chapter begins by introducing the basic principles of flight and the

common parts of an airframe. Then, the derivation of the airplane equations of motion

is described in order to formulate the problem from an automatic control perspective.

Finally, the effect of a moving atmosphere on the aircraft performance is discussed

and the wind is incorporated into the mathematical model of the vehicle.

2.1 Basic principles of flight

The design of an effective flight controller for an autonomous UAV starts with a good

understanding of the principles of flight theory. A lack of knowledge about basic

aerodynamics may cause inappropriate input commands when the aircraft operates

at the limit of its performance capabilities. For this reason, the objective of this

section is to provide a basic insight into the mechanics of flight.
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2.1.1 The forces of flight

Fundamental aerodynamic principles involve the interaction between a solid object

and the air which flows around the body of the object maintaining contact at all

points. Considering the case of an aircraft in flight, the pressure variations along its

component parts, caused by the physical contact with the air, generate an aerody-

namic force which act through the center of pressure1. This force can be resolved into

a component normal to the airflow direction which is called lift, L, and a component

along the airflow direction which is called drag, D.

L is always an upward force perpendicular to the flight direction and it depends

on several variables. Likewise, D is a backward force highly sensitive to many factors

and its main source is the skin friction between the air and the surface of the aircraft

[36]. However, the theory explaining the generation of lift is more complex than the

one justifying the drag and this difficulty has led to several incorrect descriptions

which will be presented further in this chapter. There are two other forces acting on

the airplane: thrust which is generated by the engines and which makes the aircraft

to move forward and the gravitational force which is due to the weight of the airplane

and is always directed downward the center of the Earth.

Consequently, the lift force is what holds the airplane in the air overcoming its

weight while the thrust force is what moves the airplane forward overcoming drag.

When the airplane flies straight and level without accelerating, the four forces are

in balance, thrust equalling drag and lift equalling weight. This particular case is

represented in Figure 2− 1.

The four forces affecting the flight of an airplane are vector quantities which

means that they have both magnitude and direction. The motion of flight depends

exclusively on the parameters of these vectors and on how they are related. In order

for a pilot to manoeuvre the aircraft, the four forces have to be precisely manipulated.

Therefore, understanding their nature and possessing means to adjust their direction

and magnitude is required in order to achieve precise control of the airplane.

1The center of pressure is the average location of all the pressure forces acting on the aircraft
[31]. Similarly, the center of gravity is the average location of the weight of the airplane.
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Lift

ThrustDrag

Weight

Figure 2-1: The forces of flight

2.1.2 Parts of an airplane

Aircrafts may come in several configurations and sizes but they all work on the same

principle, namely manipulating the for forces of flight. Therefore, any vehicle which

is capable to provide these forces is said to be an aircraft, regardless its shape. But,

since the subject of this thesis is fixed-wing UAVs, let us introduce the component

parts of an aircraft of conventional shape.

An airplane consists of a propulsion system and many aerodynamic shapes which

can be fixed or variable. The propulsion system or the engine is used to power the

vehicle. The fixed aerodynamic shapes provide the lift force and the stability of

the airplane and they are represented by: fuselage, wings and tail stabilizers. With

respect to the variable aerodynamic shapes, they are commonly known as control

surfaces and they are divided in elevator, ailerons and rudder, see Figure 2 − 2. In

some aircrafts there are additional parts to vary the aerodynamics of the wing, most

of them being high lift devices such as flaps and slats. In addition, spoilers can be

employed to break the airflow over the wing or winglets to reduce drag.
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The fixed component parts of an airplane are listed below:

1. The propulsion system is the component which generates the thrust force

required to move the airplane forwards. Both propeller and jet engines produce

thrust by throwing the air backwards. By manipulating the power of the engine,

one can control the magnitude of the resulting force while its direction is fixed

along the longitudinal axis of the airplane.

2. The fuselage is the airplane component which connects all the parts together.

It has an aerodynamic shape in order to reduce the resulting drag force. Besides,

a small proportion of produced lift comes from the fuselage.

3. The wings produce the most significant amount of lift which is the force that

makes the flight of heavier-than-air vehicles possible.

4. Horizontal stabilizer is a small horizontal wing located at the tail of the

airplane used to avoid up and down undesirable motion.

5. Vertical stabilizer - is a small vertical wing located at the tail of the airplane

used to avoid side to side motion.

Engine

Fuselage
Wings

Ailerons

Horizontal tail
Vertical tail

ElevatorRudder

Figure 2-2: Component parts of an airplane
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The aerodynamic control surfaces are moving parts of the wings (including the tail

stabilizers) that can change the airflow over these particular locations of the aircraft in

very specific ways. Actually, they act by modifying the shapes of the wings and, thus,

their cambers. This results in a desired pressure difference producing a controlled

force. The common control surfaces of a fixed-wing aircraft are:

1. The elevator is a hinged-surface connected to the horizontal stabilizer which

is used to control the vertical motion of the airplane. When the elevator is

deflected downwards, the horizontal tail wing produces an increased lift force

which makes the tail of the airplane to rise relative to the nose and, thereby, the

airplane to descend2. An upward deflection of the elevator creates an opposite

effect, making the aircraft to climb. Hence, the elevator controls the motion of

the airplane around the lateral axis that is known as pitching motion.

2. The ailerons are movable sections placed outboard toward the wing tips which

work usually in opposition: one deflected upward and one deflected downward.

They work in the same way as the elevator. As they are deflected, the airfoils

chambers vary resulting an increased lift on one wing and a decreased lift on the

other. The resulting motion of the airplane is a rotation around its longitudinal

axis known as rolling.

3. The rudder is a variable part placed at the rear of the vertical stabilizer which

causes the airplane to move from side to side. Deflecting the rudder, one can

manipulate the amount of force produced by the vertical tail wing and, thereby,

the motion of the aircraft around the vertical axis known as yawing.

Unlike pitching motion, rolling and yawing motions are not pure, that is rudder

and ailerons deflections excite both yawing and rolling displacements. When rolling

an airplane, the lowered aileron has more drag than the up-going aileron and this

causes an adverse yaw. Therefore, the rudder is mainly used is to maintain the nose

of the aircraft into the direction of flight, thus to obtain a coordinated flight.

2The aircraft descends when the elevator is deflected downward as a result of changing the angle
of attack and the direction of the thrust vector.
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2.1.3 Misleading lift theories

At this point we can make a legit answer to the question ”How the airplanes fly?” by

saying that there is a lift force produced by the wings which keeps the aircraft into

the air. Such a general explanation satisfies just the curious but those ones really

passionate about the flight of an airplane need a more detailed description of how

this force is created. This is, for that matter, a much more difficult question which

has been answered throughout time in several ways, but many concepts describing

the basic principles of lift have been shown to be misleading and incorrect [32], such

as ”the equal transit times” or ”the skipping stone” principles. Unfortunately, such

misconceptions about flight have been taught for many years in most flight training

manuals and they still create passionate debates between physicists and aeronautical

engineers [38]. This subsection stars by examining the components of a wing in order

to explain further some classical descriptions of lift.

Wing section

Let us first illustrate a wing section, usually called airfoil, as shown in Figure 2-

3. Notice from this figure that wings have generally a rounded leading edge and a

pointed trailing edge. The line joining the center of the leading edge to the point of

the trailing edge is called the chord line. When the wing has a curvature we speak

about the camber of the airfoil. The airflow striking the aircraft and its component

parts is called the relative wind and its direction is always opposite to and parallel

with the flight path of the airplane.

Leading edge

Trailing edge

Chord line

Relative wind α
Angle of attack

Flight path

Figure 2-3: Parts of a wing
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The relative wind and the flight path are horizontal and parallel in level flight.

However, the chord line of the airfoil forms a small angle, called the angle of attack α,

with the flight path even in level flight. As it will be later discussed, α is an important

variable in the flight dynamics since even small variations affect the amount of lift.

The equal transit theory

This subsection discusses one of the most popular incorrect explanations of the lift

force. Although the theory is correct in principle, it fails to provide a satisfactory ex-

planation in detail. The theory starts from a basic principle of aerodynamics proposed

by the Swiss scientist Daniel Bernoulli who claims that the faster the air moves, the

less pressure it exerts. In order to invoke this principle, the proponents of the theory

state that the molecules of the air on the upper surface of the airfoil have to reach

the trailing edge at the same time as the molecules on the lower surface [33]. Then,

claiming that the top of the wing is shaped in order to provide a longer surface than

the bottom, it follows that the air molecules have to generate higher velocities over

the wing than underneath it. This difference in velocity is balanced by an increased

air pressure under the wing which lifts the airplane into the air.

Figure 2−4 illustrates the ”equal transit time” theory. In this figure, the airfoil has

a particular shape with the upper surface longer than the bottom. The air molecules

split apart at the leading edge of the wing (point A) and they have to move faster over

the top of the airfoil in order to meet at the trailing edge (point C). This difference

in velocity produces a higher pressure underneath the wing and, thereby, lift.

Longer path

Shorter path
A B C

Figure 2-4: The ”equal transit time” lift theory.
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According to this theory, wings possessing a symmetrical airfoil have equal pres-

sure on the both sides of the airfoil when flying in level flight, thus they do not

produce any lift. But how do paper airplanes with perfectly flat wings fly? Or how

can airplanes fly upside down since, using the same explanation based on Bernoulli

principle, would show that the aircraft is pushed down. Moreover, how do the air

particles know to speed up over the wing since they do not have any information

about the geometry of the object with which they will interact? In reality, the air

molecules on the upper surface of a wing travels at much higher velocity than the one

required by the equal transit time theory. What goes wrong with this explanation

is the fact that it uses the Bernoulli’s equation for the wrong assumption that the

air molecules have to meet at the end of the wing. In addition, this theory fails to

explain why the air moves faster over the wing than beneath it. Therefore, although

Bernoulli’s argument is correct, the complete explanation is misleading.

The skipping stone theory

This theory uses the Newton’s laws of motion to explain the generation of lift. For

this purpose, the wing is described as a surface which forces the air to go down.

Then, by Newton’s third law which states that ”for every action there is an equal and

opposite reaction”, the lift is considered to be the reaction force of the airfoil to the

air molecules striking the bottom surface of the wing. The name of the theory comes

from the similarity with skipping a flat rock across a body of water when thrown at

a small angle and its principle is shown in Figure 2− 5.

Lift

Inflow
Outflow

Figure 2-5: The ”skipping stone” lift theory.
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The deficiency of this theory is that it does not consider the upper surface of the

wing assuming that the downwash is all produced by the lower surface. Following

this idea, it results that two airfoils having identical lower surfaces but different upper

surfaces give the same amount of lift. In reality this is not the case, and this is due to

the fact that the upper surface of the airfoil contributes more to the downwash than

the lower surface.

2.1.4 Lift generated by airflow deflection

Lift is a mechanical force generated the by the airfoil of the airplane as it interacts

with the air [35]. Indeed, the airfoil has an aerodynamic shape which produces a net

deflection of the incoming flow since the molecules of the air stay in contact with

the body of the wing. Hence, the airflow velocity vector is changed producing an

acceleration. Finally, from Newton’s second law of motion, when a mass is accelerated

then a force is produced.

Therefore, the wing creates lift as a reaction force from redirecting air downwards

with the major part coming from the upper wing surface pushing air down [39]. Figure

2− 6 shows the streamlines over a wing with lift generated by using the FoilSim III

Java Applet provided by NASA. Notice from this figure that both the flow above and

below the wing are bent down. In addition, the air passing above the wing travels

faster than the air on the lower surface.

Figure 2-6: Lift generated by the airflow deflection.
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2.2 Coordinate frames

When analyzing the dynamics of an aircraft it is necessary to express its position

and orientation relative to a suitable coordinate system in which the Newton’s laws

of motion can be applied. In addition, several frames of reference need to be used

in order to define relative positions and velocities, the choice of the frame to be

employed being a matter of convenience. For example, sensors such as GPS measure

the aircraft velocity relative to the Earth, thus a coordinate system fixed on Earth

surface is preferable to write the velocity equations. On the other hand, sensors such

as rate gyros give information with respect to the body of the vehicle where they

are installed. Accordingly, the airplane angular rates are most easily described in a

vehicle-fixed reference frame.

Based on these considerations, this section discusses the commonly used coor-

dinate frames for the problem of the airplane flight dynamics and introduces the

required transformations to bring vectors from one frame to another. The presenta-

tion in this section is mainly based on textbooks by B. Etkin [17] and Randal W.

Beard & Timothy W. McLain [40].

2.2.1 Inertial and Earth-fixed reference frames F I, FE

Solving a dynamic problem requires an inertial reference frame, F I , which is fixed or in

uniform rectilinear translation relative to the distant stars. Meeting this requirement

leads to the possibility of using the Newton’s second law for the motion of a particle,

which relates the external forces acting on the particle to its mass and acceleration

relative to F I . Generally, the rotation of the Earth relative to such an inertial frame

is neglected in the analysis of the flight dynamics. Therefore, any coordinate frame

with the origin at a defined location on the Earth can be used as an inertial frame.

Let FE denote an Earth-fixed frame having the origin close to the vehicle body

and its axes directed North, East and vertically down as shown in Figure 2− 7. This

coordinate system will be used in further analysis to describe aircraft position and

orientation since many sensors measure these quantities with respect to the Earth.

14



In addition, most mission are defined in this frame, such as waypoint guidance, flight

trajectories etc.

IF

ix

iy

iz

North

East

Down

Figure 2-7: Illustration of the inertial coordinate frame.

2.2.2 Body-fixed coordinate system FB

The origin of the body-fixed frame, FB, is identical to the vehicle center of gravity and

the axes point out the nose of the airframe, out the right wing and downward, as shown

in Figure 2− 8. FB has angular velocity relative to F I denoted by ω = [p, q, r]T . It

is employed since the aerodynamic and propulsive forces act on the aircraft body and

they are easily defined in this reference system. Moreover, on-board sensors generally

measure information with respect to the body frame.

The orientation of FB relative to F I can be given by the Euler angles (ψ, θ, φ)

which are three consecutive rotations about the axes z, y and x. The angles represent

the yaw, pitch and roll and they rotate the body of the airplane about the vertical,

lateral and longitudinal inertial axes. The transformations associated with each single

rotation are given by

R1(φ) =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ


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R2(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



R3(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1


The complete transformation from F I to FB reads

RBI = R1(φ)R2(θ)R3(ψ)

=



cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ sinφ sin θ sinψ sinφ cos θ

− cosφ sinψ + cosφ cosψ

cosφ sin θ cosψ cosφ sin θ sinψ cosφ cos θ

+ sinφ sinψ − sinφ cosψ


(2.1)

2.2.3 Wind axes coordinate frame FW

The wind axes frame, FW , has the origin at the aircraft center of gravity and the

x-axis is directed along the velocity vector of the vehicle relative to the atmosphere

as depicted in Figure 2− 8. In calm conditions, i.e. atmosphere at rest, the origin of

FW will trace out the trajectory of the aircraft relative to the Earth.

The wind frame is of interest since the lift, drag and side forces are directly

measured in the direction of its axes. It has angular velocity relative to F I and its

components are denoted by ωw = [pw, qw, rw]T . The orientation of FW relative to

the body-fixed frame is determined by the aerodynamic angles α and β which stand

for angle of attack and sideslip, respectively. This implies that some trigonometry is

required in order to bring the measured vectors from FW into FB or vice versa.
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Figure 2-8: Illustration of the body and wind axes reference frames.

In order to obtain the total transformation from wind to body frame, one may

follow the same steps as for RBI considering the sequence of rotations given by

(−β, α, 0), where

R2(α) =


cosα 0 − sinα

0 1 0

sinα 0 cosα



R3(−β) =


cos β − sin β 0

sin β cos β 0

0 0 1


Thus

RBW = R1(0)R2(α)R3(−β)

=


cosα cos β − cosα sin β − sinα

sin β cos β 0

sinα cos β − sinα sin β cosα

 (2.2)
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2.3 Aircraft nonlinear model

The present section focuses on the derivation of the mathematical model of a fixed-

wing UAV which is considered as a rigid body having 6 degrees of freedom. In

addition, the Earth is considered as flat and stationary for the purpose of simplicity

and that makes FE a Newtonian frame of reference. Note that this is a valid ap-

proximation for most problems of aircraft flight. The equations of motion are derived

considering that the atmosphere is at rest relative to the Earth and making an appro-

priate adjustment at the end in order to include the effect of the wind into the model.

The presentation in this section is mainly based on the textbooks by [49, 17, 1].

2.3.1 State variables

The Earth relative aircraft motion can be described by position, orientation, velocity,

and angular velocity over time. The position of the aircraft center of gravity in the

inertial coordinate frame will be denoted by the vector pE, whose components are

pE = [pn pe − ph]T

with pn being the inertial position along the North axis in FE, pe representing the

inertial position along the East axis in FE and ph denoting the inertial altitude along

the vertical axis in FE.

The Earth related aircraft orientation is represented by the Euler angles from the

attitude vector Φ

Φ = [φ θ ψ]T

where φ is the roll angle, θ defines the pitch angle, and ψ represents the yaw angle.

The aircraft inertial velocity vector VE is commonly represented in several coor-

dinate systems. Its components are given by

VE = REWVW = REBVB (2.3)
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where

VE =


vn

ve

vh

 ; VW =


Va

0

0

 ; VB =


vu

vv

vw

 ;

and REW is the transformation from FW to FE and it is obtained from the sequence

of rotations given by the angles (φw, θw, ψw) which provide the orientation of the

wind axes, VW represents the inertial velocity vector measured in the direction of the

wind axes reference frame, Va denotes the magnitude of the aircraft velocity relative

to the air mass known as airspeed, REB describes the rotation from FB to FE and

REB = RIB = RT
BI while VB represents the inertial velocity vector of the aircraft in

the body coordinate system having components along the longitudinal, lateral and

normal axes denoted by(vu, vv, vw).

The velocity vector of the aircraft relative to surrounding air is denoted by Va
having the components Va = [u v w]T in the body frame of reference. If the atmo-

sphere is at rest, the air-relative aircraft velocity equals the velocity of the vehicle

with respect to the Earth. Writing the equation describing this relationship for both

body and wind axes, it follows

Va = VB = RBWVW

and using equation (2.2), it yields


u

v

w

 = Va


cosα cos β

sin β

sinα cos β


which implies that

Va =
√
u2 + v2 + w2

α = arctan
w

u

β = arcsin
v

Va
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The angular velocity vector is also represented in the body-fixed and in the wind-

axes coordinate frames having the components

ω =


p

q

r

 ; ωw = RWBω =


pw

qw

rw


where ω is the angular velocity vector of FB relative to FE, p denotes the roll rate,

q the pitch rate and r the yaw rate while ωw represents the angular velocity vector of

FW relative to FE.

Based on the above notations typically employed in the aeronautics literature, the

state vector is given by

xT =
[
V T
B ωT ΦT pTE

]T
= [u v w p q r φ θ ψ pn pe ph]

T (2.4)

Then, the equations of motion of a rigid body aircraft when considering a sta-

tionary flat-Earth and the atmosphere at rest ar given in [49] and they have the form

ṗE = RT
BEVa (2.5a)

Φ̇ = G(Φ)ω (2.5b)

V̇B = −ΩBVB +RBEg0 +
FB
m

(2.5c)

ω̇ = −J−1ΩBJω + J−1TB (2.5d)

where ΩB is the cross-product matrix of the body axes angular rates, g denotes the

gravitational acceleration, FB is the net applied force on the aircraft center of gravity,

m is the vehicle mass, J represents the inertia matrix of the rigid aircraft, TB is the

net torque acting about the aircraft center of gravity. The complete mathematical

model given in (2.5) can be separated into translational and rotational equations as

it will be further shown.
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2.3.2 The navigation equations

Equation (2.5a) provides the coordinates of the flight path in the inertial frame and

it is known as the navigation equation. Introducing (2.1) in (2.5a) and using the

above notations in order to extend the equation in terms of the vector components

introduced in subsection 2.3.1, the rate of change of the translational position reads

ṗn = u cos θ cosψ + v (− cosφ sinψ + sinφ sin θ cosψ)

+w (sinφ sinψ + cosφ sin θ cosψ) (2.6a)

ṗe = u cos θ sinψ + v (cosφ cosψ + sinφ sin θ sinψ)

+w (−sinφ cosψ + cosφ sin θ sinψ) (2.6b)

ṗh = u sin θ − v sinφ cos θ − w cosφ cos θ (2.6c)

A more convenient form of the inertial position coordinates can be obtained from

equation (2.3) when employing the velocity vector in the wind axes reference frame.

The differential equations governing the translational position are given by

ṗn = Va cos θw cosψw (2.7a)

ṗe = Va cos θw sinψw (2.7b)

ṗh = −Va sin θw (2.7c)

2.3.3 The attitude equations

The attitude equation is represented by (2.5b) which provide the orientation of the

airplane in the inertial frame. Note from this equation that the angular velocity

vector of the aircraft in the body-fixed reference frame is related to the angular

velocity vector in the inertial frame through a transformation matrix G(Φ) defined as

G(Φ) =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ


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Thus, the rate of change of angular position reads

φ̇ = p+ tan θ (q sinφ+ r cosφ) (2.8a)

θ̇ = q cosφ− r sinφ (2.8b)

ψ̇ =
q sinφ+ r cosφ

cos θ
(2.8c)

2.3.4 The force and moment equations

The last two equations derived in (2.5) are driven by the forces and moments acting

on the aircraft center of gravity. They have both components due to several factors

with main sources being the propulsive and aerodynamic effects. In order to extend

the dynamic equations in terms of vector components and forces and moments acting

on the aircraft, let us first examine how FB and TB can be expressed.

The force vector from equation (2.5c) can be represented in terms of the propulsive

and aerodynamic components, Fp and Fa respectively. Thus

FB = Fp + Fa

The propulsive force is produced by the engine thrust denoted by T . Generally,

the engines are placed along the longitudinal body axis of the aircraft so that the

produced force has just a component pointing in the direction of this axis, that is

Fp =


T

0

0



Regarding the aerodynamic force, it can be expressed in both body or wind axes;

whether one frame or another is employed, the components are related by the rotation

matrix given in equation (2.2). Actually, the aerodynamic force may be naturally
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defined in the wind axes as lift L, drag D and sideforce Y . Hence

FW
a =


−D

Y

−L

 =


q̄SCD

q̄SCY

q̄SCL


where q̄ = 1

2
ρ(h)V 2

a is the free-stream dynamic pressure, S is the wing area and CD,

CL, CY are dimensionless aerodynamic coefficients which are primarily dependent

on aerodynamic angles, the geometry of the aircraft, the deflections of the control

surfaces, etc.

Denoting the components of the aerodynamic force in the body axes by (Xa, Ya, Za),

they can be expressed in terms of body-axes dimensionless aerodynamic coefficients

Cx, Cy, Cz

Fa =


Xa

Ya

Za

 =


q̄SCx

q̄SCy

q̄SCz


or in terms of the wind axes components of the aerodynamic force

Xa = −D cosα cos β − Y cosα sin β + L sinα

Ya = −D sin β + Y cos β

Za = −D sinα cos β − Y sinα sin β − L cosα

Extending the force equation (2.5c) and introducing the above notations, it yields

u̇ = rv − qw − g0 sin θ +
Xa + T

m
(2.9a)

v̇ = −ru+ pw + g0 sinφ cos θ +
Ya
m

(2.9b)

ẇ = qu− pv + g0 cosφ cos θ +
Za
m

(2.9c)
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In some particular cases, e.g. derivation of a linear small-perturbation model or

estimation of the aerodynamic derivatives values, it is more convenient to express the

force equations of motion in the wind axes in which the aerodynamic coefficients are

naturally measured. In the following, we will provide the final form of these equations,

the reader being referred to [17] for a detailed description of how the equations were

obtained.

The scalar expansion of the wind axes equations reads

mV̇a = Txw −D −mg sin θw (2.10a)

α̇ = q − qw sec β − p cosα tan β − r sinα tan β (2.10b)

β̇ = rw + p sinα− r cosα (2.10c)

where Txw represents the thrust component along the x-axis of the wind frame and

[pw qw rw] are the angular velocities of the wind frame relative to the inertial frame

of reference.

A similar procedure applied to the moment equation (2.5d), in which TB is defined

in terms of aerodynamic and propulsive components, leads to

TB = Tp + Ta =


0

dT

0

+


L̄a

Ma

Na

 =


q̄SbCl

dT + q̄Sc̄Cm

q̄SbCn


where d is the offset of the engine from the aircraft center of gravity along the z-axis

of the body frame, TBa is the moment due to aerodynamic effects having components

(L̄a Ma Na) in the direction of the body axes, b represents the wing span, c̄ defines

the mean geometric chord of the wing and (Cl, Cm, Cn) are dimensionless coefficients

primarily dependent on the aerodynamic angles.

Denoting the body axes moment components by TB =
[
L̄ M N

]T
in accordance
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with traditional usage, the expended set of the moment equation reads

ṗ = (c1r + c2p) q + c3L̄+ c4N (2.11a)

q̇ = c5pr − c6
(
p2 − r2

)
+ c7M (2.11b)

ṙ = (c8p− c2r) q + c4L̄+ c9n (2.11c)

where the constants ci, i = 1, 9 are given by

Γc1 = (Jy − Jz) Jz − J2
xz, Γc2 = (Jx − Jy + Jz) Jxz

Γc3 = Jz, Γc4 = Jxz

c5 = Jz−Jx
Jy

, c6 = Jxz
Jy

c7 = 1
Jy
, Γc8 = Jx (Jx − Jy) + J2

xz

Γc9 = Jx, Γ = JxJz − J2
xz

Remark: Writing the wind-axes moment equations offers no advantages for use in

a nonlinear model. In reality, these equations are more complex than the previously

derived body-axes equations. Therefore, typical nonlinear models combine force equa-

tions in either body or wind axes with body-axes moment equations [49].

2.3.5 Discussion of the equations

The complete state model of the airplane consists of 12 coupled nonlinear ordinary

differential equations obtained from (2.6), (2.8), (2.9) and (2.11). Note that two alter-

natives have been presented for both navigation and force equations given in (2.7) and

(2.10). The control vector, although it is not directly observable in these equations,

determines the thrust force and the deflections of the movable surfaces managing the

aerodynamic forces (D, L, Y ) and moments (L̄, M , N). The mathematical model

established by collecting these equations is subject to some general assumptions such

as: (i) the airplane is a rigid body having a plane of symmetry, (ii) the Earth is flat

and stationary and (iii) the atmosphere is at rest relative to the Earth.
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2.4 Flying in a moving atmosphere

It has been shown in the previous section that airplane dynamics offer challenging

control problems since they are nonlinear, require transformations between several

reference frames and depend on uncertain forces and moments. In addition, in real

conditions airplanes are subjected to environmental disturbances such as wind which

is the movement of the surrounding air that disturbs the stability of the vehicle and

its inertial track. Hence, an analysis of how these perturbations affect the dynamics

of flight is required to obtain improved flight capabilities.

Accordingly, the aim of this section is to extend the mathematical model previ-

ously derived by including the effects of the wind on the aircraft performance. For

this reason, the section begins by describing a model of low altitude wind which is

adequate for analysis purposes. Further, the vulnerability of airplanes to wind is

analyzed and incorporated into the equations of motion.

2.4.1 Wind description

To understand and analyze how the air motion impacts the modeling of an aircraft,

we need first to describe the wind itself as part of the velocity field in which the

aircraft flies. The air mass is in a continuous state of motion due to the solar heating,

Earth rotation or various thermodynamic and electromagnetic processes. The velocity

vector of the atmosphere is generally variable in both space and time and it can be

decomposed into a mean value and variations from it [17]. The steady-state velocity

at a given position is known as mean wind while the remaining fluctuating part is

defined as atmospheric turbulence or gust. The wind occurs primarily in navigation

and guidance applications while the turbulence affects mainly the airplane stability.

The conventional notation for the velocity vector of the air mass relative to the

Earth is W. Based on the above considerations, the total velocity field within the

atmosphere is defined as

W = WM + WF

where WM is the mean wind vector and WF is the atmospheric turbulence.
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Local wind is naturally measured in the direction of the Earth-fixed reference

frame having north, east and down velocity components denoted by Wn, We and

Wh, respectively. For convenience, it may be represented in other coordinate systems

using the transformation matrices derived in the previous section. Thus

W =


wn

we

wh

 =


wnM

+ wnF

weM + weF

whM + whF

 = RIB


uw

vw

ww


where (uw, vw, ww) represent the wind components in the body-fixed reference frame

and RIB is given by equation (2.1) with RIB = RT
BI .

The investigation of the wind vector effect on the flying qualities of an aircraft

requires a mathematical model of such perturbation. In principle, a deterministic

description of complete wind is not possible; in other words, it can not be described

by analytical expressions. Rather, the wind field can be modeled as a stochastic

process for which statistical properties can be described [1, 17, 50]. The derivation

of a wind gust model relies heavily on the random-process theory, the reader being

referred to [17, 1] for a detailed discussion on the subject.

There are two spectral forms of random continuous turbulence used to model

atmospheric turbulence which were provided by the scientists von Karman and Dry-

den. To generate the fluctuating wind vector with the correct characteristics, the Von

Karman velocity spectra are used to filter a unit variance, band-limited white noise

signal. The transfer functions of a Von Karman model are further listed [41].

Hu(s) =
σu

√
2
π
Lu

V

(
1 + 0.25Lu

V
s
)

1 + 1.357Lu

V
s+ 0.1987

(
Lu

V

)2
s2

Hv(s) =

σv

√
1
π
Lv

V

(
1 + 2.7478Lv

V
s+ 0.3398

(
Lv

V

)2
s2
)

1 + 2.9958Lv

V
s+ 1.9754

(
Lv

V

)2
s2 + 0.1539

(
Lv

V

)3
s3

Hw(s) =

σw

√
1
π
Lw

V

(
1 + 2.7478Lw

V
s+ 0.3398

(
Lw

V

)2
s2
)

1 + 2.9958Lw

V
s+ 1.9754

(
Lw

V

)2
s2 + 0.1539

(
Lw

V

)3
s3
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where Lu, Lv, Lw represent the turbulence scale lengths, σu, σv, σw represent the

turbulence intensities and V is the speed of the vehicle.

In terms of Dryden models, the forming filters are derived from the spectral square

roots of the spectrum equations and the transfer functions are given by [41]

Hu(s) = σu

√
2Lu
πV

1

1 + Lu

V
s

Hv(s) = σv

√
Lv
πV

1 +
√
3Lv

V
s(

1 + Lv

V
s
)2

Hw(s) = σw

√
Lw
πV

1 +
√
3Lw

V
s(

1 + Lw

V
s
)2

The parameters of a Dryden gust model are summarized in Table 2.1 for different

conditions of flight and an example of a low altitude low turbulence Dryden gust

model is illustrated in Figure 2 − 9 having the mean values equal to wnM
= 4 m/s,

weM = 1.7 m/s and whM = 0.4 m/s. In real conditions, the parameters of the mean

wind change along the flight path due to the movement of air masses relative to one

another. A significant variation over a relatively short distance in either the speed

or direction of the wind is called wind shear and it is of special interest during the

take-off and landing approaches [42].
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Figure 2-9: Illustration of a low altitude low turbulence Dryden gust model.
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Gust description Altitude Lu = Lv Lw σu = σv σw
(m) (m) (m) (m/s) (m/s)

Low altitude, light turbulence 50 200 50 1.06 0.7

Low altitude, moderate turbulence 50 200 50 2.12 1.4

Medium altitude, light turbulence 600 533 533 1.5 1.5

Medium altitude, moderate turb. 600 533 533 3.0 3.0

Table 2.1: Dryden gust model parameters.

We distinguish vertical wind shear, in which the wind parameters vary with chang-

ing altitude, and horizontal wind shear which refers to variations in the wind field

along horizontal distances [1]. Figure (2−10) shows a horizontal wind shear affecting

an aircraft during the landing approach. Note from this figure that the magnitude

of the wind shear is a function of height above the ground. Therefore, the aircraft

control system must account for variations in the lift force as the airplane descends

since the amount of the air mass around the wing diminishes as a result of the de-

creasing wind velocity. An exponential variation of the mean wind with altitude can

be computed based on the wind measured at a reference height of 10 meters from [44]

W(h) = W10

(
h

h10

)a
where W(h) is the velocity of the wind at height h, W10 represents represents the

velocity of the wind at height h10 = 10 m and a is the Hellman exponent which

depends on the shape and the coastal location of the terrain.���������
	
�����
�
� �
���������

Figure 2-10: Aircraft descending into a horizontal wind shear.
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The wind shear is influenced by the contours of the terrain and by its aerodynamic

’roughness’. For example, the velocity profile of a wind shear over a large urban area

will be much different than over a woods or flat grassy area since they are characterized

by completely different roughnesses. Furthermore, a sloping ground produces different

wind profiles at the bottom and at the top of the slop [43].

2.4.2 The vulnerability of airplanes to wind

Whether we refer to the movement of the aircraft relative to the surrounding atmo-

sphere or to the movement of the latter relative to the aircraft, the flight is possible

due to the velocity difference of the airflow over the upper and the lower surface of the

aircraft wing. The direction and the magnitude of the airflow experienced by the air-

craft is affected when the air mass itself is in motion relative to the Earth. The wind

affects both the longitudinal and the lateral variables of the airplane contributing to

its nonlinear, coupled and complex dynamics.

When an aircraft flies in windy conditions, it is subjected to unknown external

forces which can endanger its structural integrity but also the internal stability of

the flight controller. The additional forces can degrade the overall performance of

the vehicle causing, in certain situations, aircraft accidents. In order to avoid such

undesirable situations, the control system must provide additional control effort to

perform particular flight maneuvers such as crosswind takeoff or landing.

There are two standard techniques to handle steady crosswinds. The first one

is called ”crab” and it balances the crosswind component by engine thrust point-

ing the nose of the airplane into the wind. The second one, known as ”sideslip”,

consists in maintaining the aircraft heading aligned with the inertial track and cor-

recting for wind drift with a slight bank angle. Typically, both rudder and aileron

inputs are required during crosswind maneuvers. Some critical flight conditions may

require maximum control power to account for heavy crosswinds during the landing

approach. In order to obtain augmented rudder control, structural improvements in

the aircraft conceptual design phase may be considered. For example, the ”Boeing

B−52 Stratofortress” airplane model has been designed with a ”yaw-adjustable cross-
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wind landing gear” which points down the runway while the airplane is yawed into

the relative wind [45]. Furthermore, turbulent winds may roll the airplane during the

takeoff or landing approaches and additional aileron control is required to counter

this motion. Upper surface wing spoilers can be used to augment aileron effectiveness

in order to hold the upwind wing down in heavy crosswinds [51].

The Earth relative motion of the air affects the groundspeed/airspeed relationship

but also the inertial course with respect to the aircraft heading. In extreme conditions,

turbulent wind may affect the vehicle to fly outside the flight envelope. In order to

provide some insight into the influence of environmental wind on aircraft response,

we shall examine the landing approach of an airplane that encounters aggressive wind

shear caused by thunderstorms, as illustrated in Figure 2− 11. As the aircraft enters

the wind shear, it flies into a headwind created by the outflow which increases the

airspeed. This leads to a reduction of the engine power in order to bring the airspeed

at nominal value. Since the wind shear acts over short distances, the airplane will pass

through the other side of the outflow flying in a tailwind which reduces substantially

the lift and increases the sink rate. Aggressive control input is required since the

aircraft is in a low-power, low-speed descent and it may be close to the ground.

���������	�
Figure 2-11: Effect of wind shear on aircraft trajectory.
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The relatively low operating speed of small fixed-wing airplanes, such as those

explored in our work, makes them particularly affected by the wind field in all phases

of flight. The aerodynamic forces produced by their wings are strongly dependent on

relative wind, based on the aerodynamic knowledge gained in the previous section.

The latter varies with the moving atmosphere resulting in an imbalance between

the forces of flight and, thereby, an uncontrolled airplane behavior. Moreover, if lift

decreases abruptly due to adverse wind, drag becomes the principal component of the

aerodynamic force and stall may occur.

2.4.3 Incorporating the wind in the equations of motion

The previous subsection has provided intuitive aspects of the effect of a moving at-

mosphere on the aircraft performance. In order to continue to describe accurately the

behavior of the vehicle when flying in such conditions, the mathematical model needs

to be modified so that the wind will be incorporated in the equations of motion. This

requirement is due to the fact that the relative motion of the aircraft with respect to

the air mass is affected by wind and, thereby, the aerodynamic forces and moments

acting on the vehicle. It is therefore necessary to determine how the velocity of the

atmosphere results in aerodynamic forces and moments.

To begin with, note that both longitudinal and lateral airplane dynamics are

sensitive to wind perturbations. Mainly, the surrounding wind provides variations in

the lift force but, given its predominantly horizontal movement relative to the Earth,

it may produce as well a lateral force which tends to affect the directional stability

of the airplane. Therefore, the wind velocities along the three axis of the body-fixed

reference frame must be considered.

The mean component of the wind vector affects the navigation of an aircraft by

differentiating the velocity of the vehicle with respect to the air from its velocity with

respect to the ground. The relation of the velocities can be expressed as

Vg = Va + W (2.12)
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Figure 2-12: The velocities affecting the navigation of an airplane.

where Vg is the aircraft velocity relative to the ground, Va represents the air-relative

aircraft velocity and W is the velocity of the wind with respect to the ground.

For convenience, Vg and W from the above expression are expressed in the inertial

reference frame. In terms of Va, there is no direct measurement of the airspeed from a

ground position and this is computed by using sensors placed on board. Consequently,

its components are expressed in the direction of the body-fixed reference frame axes,

FB. Thus, it yields

Ve
g = REBVb

a + We

where the superscript refers to the frame of reference in which the vector is expressed

with e denoting the inertial frame and b representing the body frame.

Therefore, the rate of change of the airplane translational position when the at-

mosphere is moving relative to the Earth is expressed in the Earth-fixed coordinate

system, FE, as

ṗeE = Ve
g = REBVb

a + We

where peE is the position of the vehicle in FE. Figure 2 − 12 show a geometrical

representation of the velocities affecting the inertial track of the airplane.
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Remember that peE = [pn pe ph]
T , Vb

a = [u v w]T and We = [wn we wh]
T . With

the latter, the position of the aircraft relative to inertial space is computed from

ṗn = u cos θ cosψ + v (sinφ sin θ cosψ − cosφ sinψ)

+w (cosφ sin θ cosψ + sinφ sinψ) + wn

ṗe = u cos θ sinψ + v (sinφ sin θ sinψ + cosφ cosψ)

+w (cosφ sin θ sinψ − sinφ cosψ) + we

ṗh = −u sin θ + v sinψ cos θ + w cosψ cos θ + wh

Note also that Vg, rather than VB, must be used in the force equation (2.5c).

Let us denote the components of the ground velocity vector in the body frame by

Vb
g = [ug vg wg]

T . From (2.12), we get

ug = u+ uw

vg = v + vw

wg = w + ww

where (uw, vw, ww) represent the wind components in the body-fixed reference frame.

The force equations of motion described in (2.9) become

Xa + T

m
= u̇g + qwg − rvg + g0 sin θ

Ya
m

= v̇g + rug − pwg − g0 cos θ sinφ

Za
m

= ẇg + pvg − qug − g0 cos θ cosφ

Using the fact that V̇b
g = V̇b

a + Ẇb in the above equations, it yields

u̇ =
Xa + T

m
− qwg + rvg − g0 sin θ − u̇w (2.13a)

v̇ =
Ya
m
− rug + pwg + g0 cos θ sinφ− v̇w (2.13b)

ẇ =
Za
m
− pvg + qug + g0 cos θ cosφ− ẇw (2.13c)
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The aerodynamic forces and moments acting on the vehicle are dependent mainly

on Va, α and β. The values of these quantities are computed based on u, v and w

from (2.13) affected by the wind vector through u̇w, v̇w and ẇw. Note that the vector

of wind accelerations in this equation is given in the body-fixed axes while the wind

velocities in (2.12) are given in the inertial coordinate system.

2.5 Reduced-order aircraft nonlinear models

This section focuses on deriving simplified airplane models which are appropriate

for control design, so that autonomous flight can be easier achieved, while capturing

the essential behavior of the system. The models derived here will be the basis for

analysis, simulation, and control design that will be discussed in chapters 3 and 4.

The material in this section addresses the flight in both horizontal and vertical plane.

For this reason, this section discusses first the equations decoupling problem. Then,

the dynamics of a coordinated flight are introduced.

2.5.1 Decoupling the equations

The equations of motion can be separated into a longitudinal and a lateral-directional

set which, under certain assumptions, become independent solutions of the airplane

dynamics. The longitudinal variables are represented by the position, velocity, angle,

and angular rate in the vertical plane and they are denoted by pn, ph, u, w, θ and

q. The lateral directional vector is also composed of six variables representing the

position, velocity, angle, and angular rate out of the vertical plane and they are

denoted by pe, v, φ, ψ, p and r.

Generally, the two sets of equations are coupled. However, variations of the longi-

tudinal variables do not induce lateral-directional motions for the case of a symmetric

aircraft [52]. On the other hand, lateral-directional perturbations do induce longitu-

dinal motions. For example, as the aircraft begins to roll, it starts to lose lift and,

thereby, altitude.
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Longitudinal variables

Restricting the flight path to the vertical plane by setting the lateral-directional mo-

tions to zero (Xlat = 0; Ẋlat = 0), the longitudinal equations reduce to

ṗn = u cos θ + w sin θ

ṗe = −u sin θ + w cos θ

θ̇ = q

u̇ =
Xb

m
− g sin θ − qw

ẇ =
Zb
m

+ g cos θ + qu

q̇ =
M

Iyy

The above equations can be further transformed by replacing the body components

of the velocity (u, w) by polar inertial components (V , γ) and by expressing the forces

in the wind axes direction, (T , D, L) instead of (Xb, Zb). In addition, neglecting the

range and the altitude and replacing the pitch angle by the angle of attack from the

relationship α = θ − γ, it yields

V̇ =
1

m
[T cosα−D −mg sin γ]

γ̇ =
1

mV
[T sinα + L−mg cos γ]

q̇ =
M

Iyy

α̇ = θ̇ − γ̇ = q − 1

mV
[T sinα + L−mg cos γ]

Lateral-directional variables

Also, we can restrict the flight path to steady, level longitudinal flight by specifying

nominal airspeed (VaN), altitude (phN) and constant longitudinal variables (qN = 0,

γN = 0, θN = αN ' 0, wN = 0).
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Therefore, we get the reduced lateral-directional equations

ṗe = uN sinψ + v cosφ cosψ

ψ̇ = r cosφ

φ̇ = p

v̇ =
Yb
m

+ g sinφ− ruN

ṗ =
IzzL̄+ IxzN

IxxIzz − I2xz

ṙ =
IxzL̄+ IxxN

IxxIzz − I2xz

It is evident that the equations will be considerably simplified if the bank angle is

zero since it leads to decoupling the equations of motion and the aircraft model can

be approximated by two independent lower order systems. If φ ' 0 then there is no

lateral force in the body axes and no roll rate or moment. Moreover, considering a

symmetrical airplane with the propulsion system placed in the direction of its body, it

can then be considered, without loss of generality, that V is acting only in the x-axis.

Hence, the following expressions can be stated

v � 1

u ' V

and, introducing the wind wind parameters, it yields

ṗe = V sinψ +W sinψw

ψ̇ = r

ṙ = N

There are two lateral steady states that are of interest, namely the steady sideslip

and the steady turn. In steady sideslip, the flight path is rectilinear and this motion

is used to correct for cross-wind on landing approaches. During a steady turn the

37



vehicle angular velocity vector ω is constant and vertical and the resultant of gravity

and centrifugal force at the mass center lies in the plane of symmetry [17]. The

equation describing a steady turn is

ψ̇ =
g

V
tanφ

2.6 Chapter summary

This chapter presents the theoretical aspects of a nonlinear model derivation for a

fixed-wing aircraft flying in a moving atmosphere. Developing autonomous operating

aerial devices requires first a good understanding of the principles of flight theory.

For this reason, the component parts of an aircraft of conventional shape have been

presented and the forces that act on an aircraft in flight have been briefly introduced.

Nevertheless, since the lift is the force that makes the flight possible, a more detailed

explanation of how this force is created has been provided, along with two misleading

theories which have been taught for many years in most flight training manuals.

Moreover, airplane dynamics require transformations between several frames of

reference. In order to describe the relative orientation of the vehicle, three coordinate

systems have been presented and the rotation matrices, used to transform coordinates

from one frame to another, have been derived in terms of Euler angles or angles of

attack and sideslip. Based on all information gathered, the equations of motion of

a rigid body aircraft have been extended in terms of vector components and two

alternatives have been presented for both navigation and force equations, the choice

being a matter of convenience.

Further, an analysis of how a moving atmosphere affects the dynamics of flight

has been provided and two models of wind and atmospheric turbulence have been

presented. Finally, the mathematical model of the airplane has been extended so

that the effects of the wind on the aircraft performance were incorporated. Simplified

airplane models capturing the essential behavior of the system have been presented

in order to achieve autonomous flight.
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Chapter 3

Lyapunov-based flight guidance

control

In this chapter we address the guidance problem of autonomous air vehicles in or-

der to follow an inertial trajectory when flying in other than calm conditions. An

application of light fixed-wing Unmanned Aerial Vehicles (UAVs) that consists in fol-

lowing straight-line paths between geo-referenced waypoints is first formulated and

the dynamic of the cross track error with respect to such trajectory is further obtained

from the lateral airplane equations of motion. The control strategy is designed in the

framework of Lyapunov theory in order to minimize the error position of the airplane

relative to the desired path.

3.1 Problem statement

A crucial requirement for the autonomous flight control system of the aerial vehicles

is the ability to fly in a commanded fashion so that the UAV to be in a particular

location at a prespecified time. This capability requires the simultaneous solving of

two basic issues in aerial navigation: path planning and trajectory tracking. While

the first concern refers to generating a reference path, the second deals with guiding

the vehicle towards a constantly moving position with a specified progression rate.

In addition, in order to increase their usefulness, small fixed-wing UAVs also need
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to account for wind since they fly constantly at low speed and they are significantly

sensitive to the surrounding air.

3.1.1 General description of the problem

Flying in complex environments, i.e. in presence of wind as considered in our analy-

sis, makes the trajectory tracking a challenging problem [1, 2] since this perturbation

directly affects some important variables of airplane navigation: airspeed and course.

Therefore, rather than tracking the trajectory, this work addresses the problem of

steering the airplane along a geometric path without any temporal requirement.

Moreover, the main purpose of this study is to offer path following capabilities in

windy conditions, therefore a reasonable flight path is considered available and just

the problem of path following will be addressed. A simplified geometrical description

of the problem is shown in Figure 3-1.
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Figure 3-1: Path following formulation problem
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If there is a difference, d, between the real position of the airplane and the reference

position generated by the path planner controller, then a corrective action, ud, is

required in order to compensate for d. The feedback control is enabled until the

airplane position and the reference path overlap.

3.1.2 Previous work on path following

Traditionally, the problem of path following has been addressed by considering two

approaches. First design involves the complete dynamics of the vehicle which is sta-

bilized by means of well established control strategies. A typical example of this

methodology is the use of the linear control theory by employing approximate lin-

earized models to describe the aircraft dynamics. Further, Proportional and Deriva-

tive (PD) controllers are usually developed to generate the lateral acceleration re-

quired to follow a desired path. Nevertheless, in real conditions the wind may affect

the plant to fly outside the set of the operating points, making the system to describe

the behavior of the airplane inaccurately.

A solution to this problem is the interpolation between several operating regions

and local stabilizing controllers in the framework of gain scheduling control theory.

General features of gain scheduling design do not restrict the system to remain close

to a single equilibrium but the controller performs well for slowly varying signals [5, 6].

An example of gain scheduling based trajectory tracking controller for an autonomous

underwater vehicle is presented in [7]. In terms of applications in flight control, the

airspeed and the altitude are the prevailing scheduling variables used to parameterize

the operating points. Consequently, gain scheduled controllers usually guarantee the

stability only for low angular rates and low angles of attack [8, 9].

In certain situations the aerial vehicles are required to perform aggressive maneu-

vers outside of the linear region of the flight dynamics, thus, the need for nonlinear

control tools arises. The drawback of a nonlinear flight controller over a linear one is

that it involves high on-line computational complexity [10]. Hence, given the limited

payload capacity of light UAVs, it is essential for the flight controller to have low

complexity. This requirement is usually fulfilled by using the time-scale separation
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criteria in order to divide the flight control problem into an inner and an outer loop;

the former is designed to ensure the stability of the vehicle whereas the latter guides

the vehicle along the trajectory. This methodology is referred to as the second typical

approach to the path following problem.

Following this approach, many solutions have been developed taking advantage

of the autopilots that are normally installed on board UAVs in order to ensure the

internal stability of the vehicle and proposing guidance strategies based on Line-

of-Sight (LOS) design [11, 12, 13], Lyapunov theory [14], vector fields [1, 15], etc.

In [12] a LOS inspired nonlinear guidance logic is presented for tight tracking of

curved trajectories. The approach approximates PD control for straight-line paths

and an additional anticipatory control element that improves the tracking capability

is implemented for curved paths. The guidance logic accounts for wind by focusing on

the ground track of the UAV, the same strategy being considered also in [14, 1, 16].

However, in practice this information is given from GPS feedback signals which are

usually delayed, have low rate and questionable accuracy. Moreover, the reflective

choice of the visibility distance in LOS strategy demands high computational power

and local adjustments for changes in either the speed or the direction of the wind.
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Figure 3-2: LOS inspired path following controllers
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3.2 Modeling for control

Building on the time-scale separation approach, our analysis proposes an inner-outer

control structure taking advantage of the fact that the outer kinematic loop is de-

signed separately from the internal vehicle dynamics. Stated intuitively, the guidance

loop first generates a commanded attitude of the aircraft based on the position error

derived at a kinematic level and then the inner dynamic loop uses deflections of the

flight control surfaces in order to achieve the commanded attitude.

For the sake of clarity, only the guidance control loop will be discussed in this

chapter. In addition, it is assumed that the vehicle flies in two dimensions (in the

horizontal plane) and thus, only the lateral equations of motion are of primary inter-

est. It follows that the longitudinal variables of the airplane (airspeed, pitch and flight

path angle) are stabilized around nominal values by means of the inner autopilot and

their time derivatives can be neglected in further analysis [17].

On the basis of the above considerations, in this section we first introduce the

simplified airplane model that will be used in the design of the guidance controller

and then we present an application of light fixed-wing UAVs that consists in following

straight-line paths between geo-referenced waypoints.

3.2.1 Translational and rotational kinematics

Corresponding to the above assumptions, the airplane motion relative to the inertial

frame, as presented in Chapter 2, simplifies to

ṗn = V cosψ +W cosψω (3.1a)

ṗe = V sinψ +W sinψω (3.1b)

ψ̇ =
g

V
tanφc (3.1c)

where pn and pe represent the inertial position of the airplane, W cosψω = WN ,

W sinψω = WE, W is the wind velocity and ψω describes the wind direction and φc

stands for the commanded bank angle.
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The motion of the airplane governed by equations (3.1) corresponds to a truly

banked turn maneuver in which both rudder and ailerons are used to change the

aircraft heading. First, the ailerons are used to bank the airplane to one side, which

produces a side component of the lift force. The rudder is used to provide corrections

for unwanted motions such as adverse yaw, and to coordinate the turn. If turning

at large bank angles, the elevator must also be used to provide more lift needed

to balance the gravity. Consequently, the airplane flies in a circular arc. Further,

the inner autopilot of the airplane implements a bank-hold loop whose dynamics is

described by the differential equation

φ̇ = kφ (φc − φ) (3.2)

where kφ is a positive constant and its value depends on the structure of the inner

control loop.

Stated in the form of equations (3.1), the airplane kinematic model can be used

to formulate the following control problem of a certain paths, i.e. straight-line trajec-

tories aligned with one of the inertial frame axes. In this particular case, equations

(3.1a) or (3.1b) supply the cross track error velocity equation and the guidance prob-

lem to be solved simplifies to commanding the bank angle, φc, required for the airplane

to change its direction in order to minimize pn or pe.

3.2.2 Motion relative to a straight-line path

In the previous subsection, the simplified aircraft equations of motion in the direction

of the inertial frame axes were used to formulate the path following problem in terms

of a state vector and a control input. Nevertheless, the airplane may be required

to follow paths which are not aligned with any of these axes. Consequently, the

main purpose of this subsection is to express the motion of the airplane relative to a

straight-line path of given orientation.

To this end, let us consider the segment line defined by the points (A, B) and the

orientation ψs in Figure 3− 3. In order to obtain the motion of the airplane relative
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Figure 3-3: Airplane motion relative to a straight-line path

to such a path, it is appropriate to introduce a reference frame which has one of its

axis aligned with the line-segment itself while the other is chosen to define a clockwise

rotation of the inertial frame, represented by FE, through angle ψs. The new reference

frame is highlighted by the red color in the figure above and it is denoted by FS.

The coordinates of the velocity vector, expressed in the rotated frame, are given

by the rotation matrix R(ψs) as it follows

[
ṗns
ṗes

]
= RS

E(ψs)

[
ṗn
ṗe

]
(3.3)
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where

RS
E(ψs) =

 cosψs sinψs

− sinψs cosψs


represents the rotation from FE to FS and pns and pes are the components of the

airplane position in the segment frame.

The motion of the airplane with respect to a stationary desired straight-line path

of angle ψs can then be expressed from equations (3.1) and (3.3) as

ṗns = V cos (ψ − ψs) +W cos (ψω − ψs) (3.4a)

ṗes = V sin (ψ − ψs) +W sin (ψω − ψs) (3.4b)

Equations (3.4) can be used to formulate the following problem of straight-line

segments of any given orientation as the one plotted in Figure 3− 3. In this case, the

control objective is the regulation of pns or pes by commanding the φc bank angle,

which corresponds to non-zero inertial coordinates of the airplane position.

3.2.3 Following multiple segments

In this subsection we aim to extend the above results to the case of multiple segments

following. Comparing to the others scenarios, this case has the particularity to con-

tain segments that are translated from the origin of the inertial frame, as it will be

highlighted in the following lines.

First, let us introduce the inertial path (C) denoted by dotted line in Figure 3−4.

In order to minimize the airplane position error relative to the reference trajectory,

one can use the assumption that every smooth path can be divided into a series of

successive straight-line segments. Therefore, the path (C) can been discretized by a

series of three successive segments, as shown in the figure, in order to facilitate the

formulation of the following control problem.

Therefore, FS is preferred, rather than FE, to define the aircraft kinematics, since

it allows to formulate the path following problem as a regulation problem. As depicted

in the geometrical representation from Figure 3 − 4, following the segment line AB
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by the airplane is equivalent to driving to zero the conveniently defined cross track

error Pes while Pns moves along the segment, where Pes and Pns are defined in FS.

Since the airplane position is usually measured in the inertial frame, a transfor-

mation of the position vector to the segment frame is necessary. Therefore, for a

complete transformation from FE to FS, a translation is performed first and then a

rotation. [
pns
pes

]
= RS

E(ψs)

[
pn −WP 1n

pe −WP 1e

]
where WP 1n and WP 1e represent the position of the start point of the segment.

On the other hand, first a rotation and then a translation is needed when passing a

position vector from FS to FE[
pn
pe

]
= RE

S (ψs)

[
pns
pes

]
+

[
WP 1n

WP 1e

]
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Figure 3-4: Frames of reference
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Notice from Eq. (3.4) that the deviation from the desired trajectory, parameter-

ized by its orientation ψs, depends on the airplane velocity and on the wind parame-

ters. Thus, without loss of generality, the airplane equations for multiple straight-line

path following purpose can be defined as

ḋ ≡ ṗes = V sin (ψ − ψs) +W sin (ψω − ψs) (3.5a)

ψ̇ =
g

V
tanφ (3.5b)

φ̇ = kφ (φc − φ) (3.5c)

3.3 Lyapunov stability theory

Lyapunov theory offers some of the most useful tools for stability analysis, which is

a fundamental property of any dynamical system. The difficulty in using Lyapunov

based design lies in finding a different Lyapunov function for any given system, which

would prove the stability of the system. However, the backstepping procedure allows

the Lyapunov function to be constructed successively, along with the control law.

For these reasons, this section first introduces fundamentals of Lyapunov theory and

then it explains the main concepts of the backstepping control design with the aim

of obtaining airplane path following capabilities.

3.3.1 Basic definitions and main stability theorems

The most important property of any dynamical system is related to its stability. For

this purpose, Lyapunov theory contains a collection of results that are widely used for

studying the stability properties of nonlinear systems. In order to define the guidance

problem in the sense of Lyapunov, let us review the most basic concepts of this theory

in terms of autonomous1 systems, as they are stated in [3, 4, 10].

As for the case of aircraft guidance control, many stability problems are related to

the stability around the equilibrium points. In Lyapunov theory, usually the stability

1Nonlinear systems are traditionally classified as either autonomous or non-autonomous, depend-
ing whether the system depends or not on time [10].
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of such points is characterized. First, consider the autonomous system

ẋ = f(x) (3.6)

where x is the state vector and f is a nonlinear vector function. Let x = xe be an

equilibrium of the system, that is f(xe) = 0.

Definition 3.1. The equilibrium point x = xe of (3.6) is

1. stable if for each ε > 0 there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε,∀t ≥ 0

2. unstable if it is not stable

3. asymptotically stable if it is stable and δ can be chosen such that

‖x(0)− xe‖ < δ ⇒ lim
t→∞

x(t) = xe

4. globally asymptotically stable (GAS) if it is asymptotically stable for all initial

states, that is, if

lim
t→∞

x(t) = xe,∀x(0)

The stability of an equilibrium point being defined, the next challenge is to find

ways to determine the stability for a particular system. As a solution to this problem,

the mathematician Lyapunov showed that the stability of a system can be examined

by studying a single appropriate scalar function V (x) and its time derivative along the

trajectories of (3.6). This idea is nothing else then a fundamental physical observation,

namely that if the total energy of a mechanical (or electrical) system is continuously

dissipated, then the system, whether linear or nonlinear, must eventually settle down

to an equilibrium point [10]. Let us introduce first a useful theoretical background

for Lyapunov’s stability theorem to be stated.
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Definition 3.2. A scalar function V (x) is

1. positive definite if V (0) = 0 and V (x) > 0, x 6= 0

2. positive semidefinite if V (0) = 0 and V (x) ≥ 0, x 6= 0

3. negative (semi-)definite if −V (x) is positive (semi-)definite

4. radially unbounded if V (x)→∞ as ‖x‖ → ∞

Definition 3.3. A continuously differentiable positive definite function V (x) for

which V̇ (x) is negative semidefinite is called a Lyapunov function.

Based on the terminology introduced by the above definitions, the stability of

an equilibrium point in the sense of Lyapunov can be determined by the use of the

following theorem (Theorem 4.1 from [4])

Theorem 3.1. (Lyapunov’s stability theorem). Let x = 0 be an equilibrium point for

(3.6) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a Lyapunov

function. Then, x = 0 is stable. Moreover, if V̇ (x) is negative definite then the origin

is asymptotically stable.

The above theorem is concerned with establishing the stability or asymptotic

stability of an equilibrium point but it can not be used to prove that the equilibrium

is unstable. Moreover, if the origin is asymptotically stable, no conclusion can be

drawn using this theorem if the point is whether or not GAS, that is for any initial

state x the trajectory approaches the origin as t → ∞, no matter how large ‖x‖ is.

In order to ensure the global asymptotic stability, any point x from the whole space

Rn should be included in the interior of bounded set Ωc. For this constraint to be

satisfied, we need the conditions of the Theorem [3.1, p. 50] to hold globally, that is

D = Rn, and the Lyapunov function to be radially unbounded, that is

V (x)→∞ as ‖x‖ → ∞ (3.7)
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Theorem 3.2. (Barbashin-Krasovskii theorem, Theorem 4.2 from [4]). Let x = 0

be an equilibrium point for (3.6). Let V : Rn → Rn be a positive definite, radially

unbounded, continuously differentiable function such that

V̇ (x) < 0,∀x 6= 0

then x = 0 is globally asymptotically stable.

A system possessing a global asymptotically stable origin x = 0 has a unique

equilibrium point which is x. In some cases, the (global) asymptotic stability of the

equilibrium point can be determined when V̇ (x) is only negative semidefinite with

the help of the powerful invariant set theorems attributed to LaSalle2 (Corollary 4.1

and 4.2 from [4]).

Theorem 3.3. (Local invariant set theorem). Let x = 0 be an equilibrium point for

(3.6). Let V : D → R be a continuously differentiable positive definite function on

a domain D containing the origin x = 0, such that V̇ (x) ≤ 0 in D. Let S = {x ∈

D|V̇ (x) = 0} and suppose that no solution can stay identically in S, other than the

trivial solution x(t) ≡ 0. Then, the origin is asymptotically stable.

Theorem 3.4. (Global invariant set theorem). Let x = 0 be an equilibrium point for

(3.6). Let V : Rn → Rn be a continuously differentiable, radially unbounded, positive

definite function such that V̇ (x) ≤ 0 for all x ∈ Rn. Let S = {x ∈ Rn|V̇ (x) = 0}

and suppose that no solution can stay identically in S, other than the trivial solution

x(t) ≡ 0. Then, the origin is globally asymptotically stable.

The above definitions and theorems can be used in order to analyze the stability

properties of a given system. However, if we are interested in creating closed loop

systems with asymptotically stable equilibrium points, then control design using Lya-

punov theory should be employed. In order to illustrate this idea, let us consider the

2Theorems 3.3 and 3.4 are known as the theorems of Barbashin and Krasovskii, who proved them
before the introduction of LaSalle’s invariance principle.
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autonomous system

ẋ = f(x, u), x ∈ Rn, u ∈ R, f(0, 0) = 0 (3.8)

with the control objective being the design of a control law u = α(x) such that

the equilibrium x = 0 is a globally asymptotically stable point of the closed-loop

system. Lyapunov based control design refers to constructing a control law α(x) and a

Lyapunov function V (x) satisfying the conditions of the above theorems. Accordingly,

let us state the following definition, which is an extension of the Lyapunov function

concept ([3], Definition 2.4)

Definition 3.4. A smooth, positive definite, radially unbounded function V : Rn →

R+ is called a control Lyapunov function (clf) for (3.8) if

inf
u∈R
{∂V
∂x

(x)f(x, u)} < 0, ∀x 6= 0

Further, Artstein [18] showed that the existence of a clf for a system is sufficient

to prove the existence of a stabilizing control law for that system, which is equivalent

to global asymptotic stability.

3.3.2 Related Lyapunov design

Backstepping

The main deficiency in applying Lyapunov theory is that there is no systematic

method for finding a Lyapunov function. In addition, the control problem becomes

more complicated when the real input of the system does not directly influence the

state which formulates the control objective. This is illustrated by the example of

the system of equations (3.5) in which the cross track error, d, is one integrator away

from the control input, φc. In this case, the construction of the Lyapunov function

becomes a difficult task. Moreover, finding the appropriate control law to stabilize the

system represents also a complex problem which may require considerable caution.
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The backstepping method solves these two tasks for a class of nonlinear systems

by approaching the problem in a backward manner, constructing the control law

along with a Lyapunov function. The procedure is based on the idea that a stabi-

lizing control law and a Lyapunov function are easier to find for a scalar system.

Consequently, the task of stabilizing a higher-order system is accomplished by using

a recursive scalar design in which the states act as virtual controls. The deviation

of the states from their real value is considered in the progressive construction of a

candidate Lyapunov function. The procedure repeats until the real control input,

u, could be chosen such that the candidate function becomes a control Lyapunov

function, which shows that the equilibrium is GAS in view of Definition 3.4.

3.4 Lyapunov-based guidance control

The main objective of this section is to cast the airplane guidance problem in the

framework of the Lyapunov theory in order to use the above tools for control design

to create a closed-loop system with global asymptotically stability properties. In this

context, the airplane yaw angle is of great interest since manipulating ψ leads to

changes in the velocity vector direction, thus in the airplane heading direction. This

motivates the development of a backstepping controller where the yaw angle can be

used as a virtual control. However, before applying the backstepping procedure, let

us first resume the wind correction angle technique which is a correction applied to

the heading in order to counteract wind drift and maintain a desired course.

3.4.1 Wind correction angle

The wind is an important factor for the airplane performance when required to fly

a constant inertial course. Indeed, any inert object with no contact with the Earth

(clouds, birds, balloons, etc.) is blown along by the moving air mass. Assuming

no correction is made for wind effect, the airplane will be similarly affected so that

its inertial track will fall laterally of the desired course. However, airplane control

systems act typically to offset this effect by determining the amount of the drift and

53



by heading the airplane away from the intended course accordingly. Then, the track

of the airplane follows the desired course.

The correction applied to the airplane heading in order to counteract the effect

of wind is called the wind correction angle (WCA) and it is expressed in terms of

degrees right or left of the true course (see Figure 3− 5).
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Figure 3-5: Wind correction angle definition

Based on these considerations, the control objective of the path following problem

introduced in section 3.2.3 by equations (3.5), is twofold:

1. d→ 0, regulation of the cross track error

2. ψ → ψs ±WCA, convergence of the airplane heading to the intended course

adding or subtracting the WCA, depending on whether the wind is on the left

or on the right of the intended course

In order to meet these goals, it is worth mentioning that both the position and the

orientation errors can be controlled by variations of ψ which manipulates the direction

of the velocity vector. For this purpose, let us consider that the yaw angle has two
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components: one will be used to minimize the position error and it is denoted by ψe,

and the other to counteract the wind and it is represented by ψc, i.e.,

ψ = ψe + ψc (3.9)

Consider, in a first time, the airplane aligned with the desired trajectory with the

position error very small, thus, ψe ≈ 0 and d, ḋ ≈ 0, then it yields

V sin (ψc − ψs) +W sin (ψω − ψs) = 0

and from the above

ψc = − arcsin

(
W sin(ψω − ψs)

V

)
+ ψs (3.10)

It follows from the above that the control system must provide a heading angle

equal to ψc given by (3.10) in order to offset the effect of the wind and to maintain

alignment with a desired course ψs. When there is a position error relative to the

reference trajectory, ψe, in addition to ψc, needs to be provided such that d from

ḋ = V sin(ψe − ψs) (3.11a)

ψ̇ =
g

V
tanφc (3.11b)

to be minimized. A straightforward method to stabilize the system (3.11) is to impose

a linear behavior of the airplane position by choosing the control input so that the

closed loop system to act as a stable polynomial. In order to illustrate this principle,

let us considerate the second derivative of d from (3.11a) with respect to time

d̈ = g tanφc cos(ψe − ψs)

Proposing

φc = arctan

(
−2ḋ− d

g cos (ψe − ψs)

)
(3.12)
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where ψe = ψ − ψc, then, the closed-loop system becomes

d̈ = −2ḋ− d

or s2 + 2s+ 1 = 0, which represents a stable polynomial.

Stability analysis

A natural choice of a Lyapunov function candidate is

V =
1

2
z21 +

1

2
z22 (3.13)

with z1 = d and z2 = ḋ.

Taking the derivative of V along the trajectories of the system it yields

V̇ = −2z22

Let us study the stability of the equilibrium point at the origin. Let D ⊂ R2 be

a domain containing z = 0. V is a continuously differentiable, radially unbounded,

positive definite function in D since V (0) = 0 and V (z) > 0, z 6= 0. In addition, the

derivative of V along the trajectories of the system is negative semidefinite; it is not

negative definite because V̇ (z) = 0 along the z1 axis, that is V̇ (z) = 0 for z2 = 0

irrespective of the value of z1. Then, according to Definition [3.3, p. 50], V is a

Lyapunov function and we can conclude that the origin is stable in view of Theorem

[3.1, p. 50].

Let us now find S = {z ∈ D|V̇ (z) = 0}. For this purpose, note that

V̇ (z) = 0⇒ z2 = 0

Thus, S = {z ∈ D|z2 = 0}. Let z(t) be a solution that belongs identically to S.

z2(t) = 0⇒ ż2(t) = 0⇒ ḋ(t), d̈(t) = 0⇒ d(t) = 0⇒ z1(t) = 0 (3.14)
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This implies that the only solution that can stay identically in S is the trivial solution

z(t) = 0. Thus, the origin is asymptotically stable in view of Theorem [3.3, p. 51].

Numerical simulations

This section addresses the results obtained from the simulation of three scenarios,

aimed to validate the performance of the proposed controller. In all three scenarios,

the value of the airplane velocity relative to the air was considered constant and set

to 10 m/s, the bank angle was limited to a maximum value of ±45◦ while a low-

altitude/low-turbulence dryden gust model was added to simulate the environmental

wind, whose components are shown in Figure 3− 6.
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Figure 3-6: Low altitude, low turbulence Dryden Gust Model. Windspeed vs. Wind
direction

A. Wind influence on inertial track

The first scenario includes a simple analysis of the open-loop nonlinear system in

order to illustrate the effect of the wind on the airplane performance. Figure 3 − 7

shows the behavior of the airplane when no correction is made for wind effect. Notice

from this figure that the airplane advancing direction is North-East although it is

headed continuously North. Hence, if the control system does not account for wind

disturbances, the trajectory tracking ability of the aircraft are compromised.
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Figure 3-7: Airplane states in presence of wind

B. Wind angle computation

Further, the proposed control strategy was validated in closed-loop simulations.

The airplane was commanded to follow the north direction based on the controller

(3.12) without any initial path deviation. For comparative studies, a controller based

on the same strategy was developed but without computing the WCA. The controller

has the same form as (3.12) except the fact that it manipulates the yaw angle, ψ, so

that the position and the orientation errors are controlled simultaneously.

The airplane response is shown in Figure 3−8 based on the two similar controllers.

Notice from this figure that the error corresponding to the controller developed in

(3.12), plotted in blue line, is ∼ 7.5 m. On the other hand, not using the knowledge

of the WCA results in a larger error of ∼ 13 m from the path.

C. Waypoint Guidance

Last simulations were performed to test the capabilities of the controller (3.12)

to navigate between a series of predefined waypoints. For this purpose, Table 3.1

summarizes both the inertial coordinates of the points and the course to be flown,

based on two neighboring waypoints. Figure 3− 9 illustrates the ground track of the

airplane when commanded to fly this scenario.
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Figure 3-8: Airplane response in presence of wind

A = (0, 0); B = (0, 0); C = (150, 100); D = (100, 0); E = (200, 0);

F = (200, 150); G = (0, 150); H = (−50, 0);

ψAB = 0◦; ψBC = 90◦; ψCD ' −153◦; ψDE = 90◦;

ψEF = 0◦; ψFG = −90◦; ψGH ' −161◦

Table 3.1: Waypoints list and course

The aircraft starts West of the current waypoint at a distance of 10 m, with a 0◦

heading and wings level. It recovers relatively fast from the cross track error and it

manages to follow the straight-line segments between the given waypoints. The cross

track error, plotted in Figure 3 − 10, remains bounded and it converges to zero as

the airplane approaches the desired trajectory. The WCA is shown in Figure 3− 11

and it changes depending on the direction of the wind relative to each segment line.

Notice from this figure that the WCA is positive for right cross wind, negative for left

cross wind and zero when the wind has the same direction as the intended course.
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Figure 3-10: Cross track error relative to different segment lines
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Figure 3-11: The Wind Correction Angle computed for each segment
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The airplane orientation is plotted in Figure 3−12 along with the intended and the

real courses. Notice from this figure that the airplane follows the inertial straight-line

path by heading the nose into the wind. As a matter of fact, the difference between

the airplane heading and the ground track is the value of the WCA depicted in Figure

3−11. Likewise, the commanded and the real bank angles are plotted in Figure 3−13.

Positive values of the bank angle correspond to right turns while negative values to

left turns.
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Figure 3-12: Airplane heading and real course relative to the intended course
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3.4.2 Standard backstepping design

In the previous section, the Lyapunov stability theorem failed to show the asymp-

totic stability of the closed-loop system due to a poor choice of the Lyapunov function.

Nevertheless, an important feature of the Lyapunov’s stability theorem is that its con-

ditions are only sufficient, which means that for an inappropriate Lyapunov function

no conclusions can be drawn on the stability of the system. This powerful property

allowed us to determine the asymptotic stability of the system by using the LaSalle

invariance principle.

However, many Lyapunov functions may exist for a given system and a specific

choice of such a function may provide more precise results than others. Therefore,

in this section we propose a backstepping design for the aircraft path following prob-

lem in windy conditions, which allows us to construct a proper Lyapunov function

progressively, along with a stabilizing controller.

The following commonly steps in the development of a backstepping based con-

troller will be illustrated for the path following problem of an aerial vehicle:

1. define a control objective

2. choose a virtual control among the states that could meet the control objective

and find a stabilizing function for the scalar system

3. propose an error variable based on the deviation of the state from its commanded

value and reformulate the control objective as the regulation of the error variable

4. derive the error variable dynamics and repeat the procedure until the real control

input can be proposed

For this purpose, let us rewrite the nonlinear system described by (3.5)

ḋ = V sin (ψ − ψs) +W sin (ψω − ψs)

ψ̇ =
g

V
tanφ

φ̇ = kφ (φc − φ)
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We intend to achieve regulation of d designing backstepping control, thus we define

the following error variable

e1 = d− dmin

where dmin is the minimum allowed constant distance from the desired trajectory.

The dynamics of e1 yields

ė1 = V sin (ψ − ψs) +W sin (ψw − ψs) (3.15)

Let us consider the following positive function

VL1 =
1

2
e21

thus

V̇L1 = e1 [V sin (ψ − ψs) +W sin (ψw − ψs)]

The e1 term can be stabilized if we introduce ψv as virtual control in the form

V sin (ψv − ψs) = −c1e1 −W sin (ψw − ψs)

Evaluating V̇L1 when ψ → ψv it follows that

V̇L1|ψ=ψv = −c1e21

Note from the above that, if ψ → ψv then the proposed control objective will be

achieved. However, since ψ is a state variable and not an input control, let us define

the deviation from its desired value

e2 = V sin (ψ − ψs)−V sin (ψv − ψs) = V sin (ψ − ψs)+c1e1+W sin (ψw − ψs) (3.16)

and rewrite (3.15) in terms of e1 and e2

ė1 = e2 − c1e1
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This implies that

ė2 = g tanφ cos (ψ − ψs) + c1e2 − c21e1 (3.17)

Notice that cos(ψ − ψs) =
√

1− sin2(ψ − ψs). From equation (3.16)

sin(ψ − ψs) =
e2 − c1e1 −W sin(ψw − ψs)

V
(3.18)

and assuming that −π
2
< ψ − ψs < π

2
it follows that equation (3.17) becomes

ė2 =
g

V
R tanφ+ c1e2 − c21e1

with R =
√
V 2 − [e2 − c1e1 −W sin(ψw − ψs)]2.

Introducing VL = 1
2
e21 + 1

2
e22 as the Lyapunov function, then

V̇L = −c1e21 + e2

[ g
V
R tanφ+ c1e2 + e1(1− c21)

]
(3.19)

Let us propose the control input as

φc = arctan

(
V [−e1(1− c21)− e2(c1 + c2)]

gR

)
(3.20)

Thus, (3.19) becomes

V̇L = −c1e21 − c2e22

Stability analysis

The Lyapunov function VL is positive definite for all e ∈ R2 and radially unbounded

since it tends to infinity as |e| → ∞. In addition, its derivative is negative definite

since V̇L(e) < 0 ∀ e 6= 0. Thus, using Theorem [3.2, p. 50], the origin (0, 0) is a

GAS equilibrium of the system represented in the (e1, e2) coordinates. It follows that

d→ dmin. Moreover, from (3.16) it yelds

ψ → − arcsin

(
W sin(ψω − ψs)

V

)
+ ψs
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Remark: The model presented above assumes that the airplane is equipped with

an autopilot which stabilizes the vehicle and provides roll-angle tracking capabilities.

If the autopilot disposes of angular momentum tracking capabilities instead of roll

angle, the simplified model, introduced in Chapter 2, will have the form

ḋ = V sin (ψ − ψs) +W sin (ψw − ψs) (3.21a)

ψ̇ = r (3.21b)

ṙ = cN (3.21c)

where r stands for yaw rate, N represents the yawing moment and c is a con-

stant related to the aircraft moment of inertia. Employing the standard nonlinear

backstepping algorithm, the commanded yaw moment is given by3

cN c = −3r + tan (ψ − ψs)(r2 − 5)− 3d+ 5W sin (ψw − ψs)
V cos (ψ − ψs)

(3.22)

Numerical simulations

In this subsection we present several simulations which were carried out in order to

validate the control structure proposed in (3.20) whose performance is mainly af-

fected by wind. However, the stability analysis presented in the previous subsection

has shown that the closed-loop system is also constrained by the choice of the con-

stant parameters in the design of the Lyapunov function. For this reason, two sets

of simulations will be further conducted, the goal of the first being to analyze the

sensitivity of the controller to different choices of the constant parameters while the

second concerns the controller robustness relative to slowly varying wind when fol-

lowing straight-line paths between geo-referenced waypoints.

3For a detailed description of the controller 3.22 see Appendix A.
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A. The choice of the tuning parameters

First set of simulations addresses the constant parameters choice problem. For

this purpose, the aircraft was commanded to follow a straight-line path defined by

the geo-referenced waypoints A(0, 0) and B(0, 400), as shown in Figure 3-14. Thus,

the minimum distance to the path, dmin, was required to be zero and different values

of the constant parameters, listed in Table 3.2, were employed in order to analyze the

risk that the aircraft exits the nominal flight envelope compromising the trajectory

following abilities of the controller.

Figure 3-14 shows the time evolution of the airplane position related to the Earth

when employing the controller (3.20) with three different sets of tuning parameters

listed in the table above. The initial position of the aircraft was given by the point

of coordinates S(-30; 10), with an orientation of 0◦ relative to North and wings level.
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Figure 3-14: Airplane paths for different values of the constant parameters.

1st Scenario c1 = 0.5; c2 = 2;

2nd Scenario c1 = 0.1; c2 = 6;

3rd Scenario 3 c1 = 0.03; c2 = 10;

Table 3.2: Tuning parameters choice
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The aircraft performance is shown to be affected by the choice of the constant

parameters in the controller design. For example, the first scenario corresponds to

the case when the airplane convergence to the reference path is oscillatory although

the reaction time is short. The large values of the parameters, especially for c1 which

controls the convergence rate of d → 0, make the airplane to move fast toward the

desired trajectory in presence of large cross track errors but they cause oscillations

when the airplane is close to the path. By reducing the values of this parameter in the

second scenario and increasing the value of c2, we have obtained a smoother response

in airplane motion but a shorter convergence time. The smoothest convergence but

also the slowest, was obtained for the set of constant gains.

The controller points the nose of the airplane into the wind in order to balance

sideways displacements with engine thrust. This technique is displayed in Figure

3− 15 which shows the heading angle stabilized around −25◦. However, as shown in

Figure 3-14, the airplane keeps moving towards the North since it follows a straight-

line path which makes a course of 0◦. In terms of stability, Figure 3 − 15 proves

that a sharp convergence towards the reference trajectory increases the risk that the

aircraft will exit the nominal flight envelope since |ψ − ψd| ≈ π
2

for the first set of

parameters. In the case of the second scenario the system presents a better stability

since the heading does not exceed 20◦ while a slow convergence, as obtained in the

third scenario, presents the lowest risk of instability for the system.
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Figure 3-15: Airplane headings for different values of the constant parameters.
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B. Waypoint guidance

The second set of simulations addresses a ”Waypoint Guidance” scenario in which

the airplane navigates between a series of predefined waypoints. As it was previously

shown, the most important parameter in designing the guidance controller is c1 since

it affects the convergence rate of the airplane to the reference position. On the

other hand, c2 is also important but it affects the performance of a virtual input in

the system, ie ψv. Thus, given the the second scenario envisaged, the parameters

employed in simulation are : c1 = 0.05; c2 = 10. The airplane performance, as well as

the state variables, are plotted in the following figures.

Figure 3− 16 illustrates the ground track of the airplane which recovers from the

initial cross track error and it manages to maintain the course of the first segment

by heading the airplane nose into the wind which blows perpendicular to the desired

segment line. When the aircraft reaches the second waypoint, it starts the course

correction according to the next segment to be followed. This time, the wind has

the same direction with the intended course, affecting just the groundspeed/airspeed

relation and no correction needs to be made in order to offset lateral movements due

to the wind. When flying the third segment, the wind comes from the side direction

of the forward motion which creates mainly a difference between aircraft course and
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Figure 3-16: Airplane response when employing standard backstepping design
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heading. Following the forth and the fifth segments requires similar effort from the

airplane as for the second and the first segments. Contrary to the forth segment, the

airplane encounters a headwind when flying the FG segment, which is favorable in

takeoffs and landings since it generates greater lift but it makes the forward movement

difficult.

In Figure 3 − 17 we show the time evolution of the airplane deviation from the

desired trajectory when commanded to follow this scenario. Notice from this figure

that the developed controller provides cross track error regulation. Crosswind flight

requires the controller to use an intentional crab maneuver in order to adjust the

ground track of the airplane. As a result, the airplane moves in the direction of the

line segment orientation while the airplane nose is yawed into the wind, see Figure

3− 18. The required and the provided control effort is illustrated in Figure 3− 19.
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Figure 3-17: Airplane cross track error
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Figure 3-18: Airplane heading vs. inertial course
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Figure 3-19: Control effort

3.5 Summary of results

This chapter has addressed the directional control problem of autonomous air vehicles

in order to obtain path following capabilities when flying in a moving atmosphere with

respect to the Earth. The motion of the atmosphere, i.e. the wind, was considered

constat and known (measurable online with onboard sensors or from a ground location

and sent to the aircraft via radio links) for control design. However, the performance

of the controller was evaluated in presence of a low-altitude/low-turbulence dryden

gust model to simulate real-flight conditions.

In what concerns the airplane guidance problem, first a general description has

been given from a control design point of view and then an application consisting

in following straight-line paths between geo-referenced waypoints was formulated. In

order to obtain the dynamic of the cross track error with respect to such trajectory,

a segment-fixed reference frame was introduced and the transformation of the latter

relative to the inertial frame has been derived combining rotation and translation

operations.

The control strategy is designed in the framework of Lyapunov theory and it uses

a flight maneuver commonly employed in the landing approach of the airplanes which

is known as ”the crab technique” and which was described in the previous chapter.

To this end, first some fundamentals of the Lyapunov theory were introduced and the

main stability theorems were stated. The importance of applying a correction to the
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airplane heading in order to counteract the effect of wind was emphasized by means of

an example which compares the performance of a simple Lyapunov-based trajectory

following controller and a similar design but incorporating the wind correction angle

in its parameters. By illustrating the response of the aircraft to control signals from

the two similar controllers, it can be noticed that using the knowledge of the wind

correction angle results in small deviations from the path.

The general applicability of a Lyapunov-based control design is limited by the

difficulty of finding a Lyapunov function. However, employing the backstepping ap-

proach we have constructed a stabilizing function along with a Lyapunov function

for the simplified system describing the motion of the aircraft relative to a stationary

straight-line path. Using this methodology, the closed-loop system was shown to be

asymptotically stable. Several numerical simulations were carried out in order to val-

idate the proposed control structure and they were divided into two main categories:

the first one addressed the constant parameters choice problem while the second one

addressed a waypoint guidance scenario.
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Chapter 4

Wind identification with

application to autonomous flight

The flight controllers developed in the previous chapter consider that local wind field

data is available. In reality, measuring the wind from a moving aircraft platform is a

challenging problem which requires accurate measurements of the airflow around the

aircraft together with inertial velocity and orientation. Consequently, this chapter

investigates conventional wind computation methods and addresses the estimation

precision problem by taking into account the expected uncertainty in sensor mea-

surements. Furthermore, an approach to improve the wind estimation accuracy and

to maintain consistent aircraft performance for the path following application intro-

duced in the previous chapter is proposed by employing adaptive control techniques.

4.1 Prior work on aircraft control in unknown wind

Generally, flight controllers proposed in literature do not account for wind or the wind

conditions are assumed to be known and several control techniques are developed for

different applications. Nevertheless, it is reasonable to consider that the airplane

does not have full knowledge of the experienced wind given its sudden variations in

velocity or orientation. For this reason, this section explores prior research on relevant

methods to offset undesirable wind effect on airplane performance.
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The problem of the aircraft flight in unknown wind is usually approached from two

points of view, depending on whether or not it relies on knowledge of the local wind.

On the one hand, a flight controller can account for wind perturbations by using

ground-referenced measurements (i.e., course and groundspeed) instead of airspeed

and flow angles. An important amount of research has been conducted following this

direction with works developed in [1, 16, 29] being typical examples. However, this

method is not likely to give good results in practice since accurate airdata has become

a general requirement for the autopilot of an aircraft flying in presence of wind shear

[23, 30]. In addition, the ground position and velocity are usually provided by sensors

with questionable accuracy as it will be discussed later in this chapter.

On the other hand, the problem can be addressed by taking the wind into account

during the construction of the flight controller. Although it requires knowledge of the

wind vector, the approach has been employed in a wide range of literature and several

strategies have been adopted to deal with the wind identification problem. First,

measurements of the wind can be made from ground based devices and transmitted

via radio signals to the aircraft. The ground station should also be capable of tracking

the position of the aircraft, namely its altitude, since the wind parameters at the

aircraft level are computed as a function of altitude based on a standard atmosphere

model. However, the wind data processed in this way may have significant errors due

to sudden variations in the wind profile.

Therefore, onboard sensors capable of measuring or algorithms for estimating the

wind parameters are necessary in order to obtain better flight capabilities. Accurate

measurements of wind have been obtained by using arrays of multihole pitot probes

[19]. Nevertheless, our study addresses the flight of small light UAVs for which

the payload capacity is limited. Thus, rather than adding additional sensors which

increase weight and costs, we intend to use only sensors that are typically included

in standard autopilots, such as inertial measurement unit (IMU), global positioning

system (GPS) or air data sensors.

There is an increasing amount of literature highlighting methods to compute the

wind from a moving aircraft platform. For example, in [25] the authors compute the
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wind by comparing Earth relative measurements of the aircraft motion and predictions

of the same quantities obtained from the aircraft dynamic model in which the influence

induced by the wind field can be separated by the influence induced by the control

input. A second approach proposed in this paper uses the vehicle kinematics and

sensor measurements of the inertial velocity to directly compute the wind. This

method follows from the graphical representation of the relationship between aircraft

motion and wind and it is known as the wind triangle. Indeed, in [26] the authors use

this approach to estimate the wind comparing the aircraft airspeed with estimates

of the inertial speed. Artificial noise was injected in simulations in order to obtain

real flight measurements while the critical parameters to be computed were chosen

to be the wind bearing and the variation of wind speed with altitude. Even though

the proposed algorithm introduces a delay in computation of the wind acceleration, it

has low complexity which makes it usable on small UAVs with limited computational

power. The same strategy to compute the wind is considered in [20, 21].

In the same way, the authors explore in [27] the joint estimation problem of vehicle

heading, wind speed and wind direction using air data and inertial measurements. A

nonlinear recursive filter associated with a reduced kinematic model is implemented

and high fidelity simulations are conducted.

4.2 Common techniques for wind computation

As the above discussion attests, wind identification involves various measured quan-

tities which can be separated in two main categories: air data and inertial navigation

sensing. Estimates of these quantities are computed by standard autopilots and they

represent a potential uncertainty source that will propagate through the wind iden-

tification algorithm. Thus, the error in the wind estimates depends on how the data

provided by sensors are combined. Thereby, this section starts by establishing the

common quantities which are required to evaluate the wind and the sensors needed

to measure them. Further, relevant methods to compute the wind are explored in

detail and an associated error analysis is conducted based on sensors uncertainty.
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4.2.1 Required quantities for wind sensing capabilities

This subsection introduces the minimum sensing suite needed by an autopilot to pro-

vide wind estimates. The sensors that are commonly used to measure the required

quantities are discussed along with the corresponding uncertainties provided by man-

ufacturers and quantified by one standard deviation referred as σ.

Air data

Knowing the airstream surrounding the aircraft is vital for the flight control system

to ensure flight safety. Generally, airdata include static and dynamic pressures, which

are converted into airspeed, vertical speed, altitude and airflow angles represented by

angle of attack and sideslip. The static and dynamic pressures are measured using

air data probes called Pitot tubes while the flow angles are typically measured using

mass flow vanes connected to potentiometers or fixed differential pressure probes.

The measurements are subject to errors due to sensor uncertainty. In addition, the

movement of the airplane creates distortion of the surrounding air generating errors

that are sometimes larger than those inherent in the measuring instruments. Further-

more, the location of the sensors greatly affects their measurements [22]. Nevertheless,

standard air data sensors offer smooth airspeed measurements with an accuracy of

σVa = ±0.2 m/s and flow angles with a high σα,β = ±0.2◦ accuracy.

Inertial navigation data

A complete Earth relative data set can be determined from several sensors such as

INS, GPS, ground based radar, etc. Since an INS determines velocity from integrated

acceleration, the computed data set is not accurate being subject to drift errors.

On the other hand, Earth relative data without drift errors can be computed by

a GPS unit which has, however, the deficiency of a large uncertainty in position

measurements of the order of σPI
= ±2.5 m. GPS sensors provide smooth velocity

measurements which are not affected by this problem, having an accuracy of σVI =

±0.1 m/s. Using carrier phase differential GPS significantly increases the position
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accuracy but the signal is still noisy to be used for accurate wind identification.

The orientation of the airplane can be measured using an Inertial Measurement Unit

(IMU) with σψ,θ,φ = ±0.5◦ accuracy.

4.2.2 Computing the wind from the velocity vectors diagram

The Earth-relative motion of an airplane is the resultant of the aircraft motion

through the airmass and the motion of the airmass over the ground. The equa-

tion connecting these quantities is captured by the graphical diagram in Figure 4− 1

and it is given by
−→
V g =

−→
V a +

−→
V w (4.1)

Equation (4.1) is known as the wind triangle equation and it represents the re-

lationships among the velocities involved in the navigation of an aircraft. Its terms

are vector quantities, each being described by both magnitude and orientation as it

follows: the ground vector,
−→
V g, is represented by ground speed Vg and course χ, the

air vector,
−→
V a, is defined by airspeed Va and heading ψ while the wind vector,

−→
V w,

is described by wind speed W and wind direction ψw.

Air Vector

Ground Vector

Wind V
ecto

r

N

E

Figure 4-1: The graphical representation of the relationship between aircraft motion
and wind.
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Wind sensing capabilities can be obtained from the vector difference of
−→
V g and

−→
V a

in equation (4.1) when these quantities are known. Apparently, this approach is

straightforward and it relies on navigation and air-relative velocity measurements.

However, solving the wind triangle equation for the inertial components of the wind

vector requires the use of several coordinate systems and, implicitly, the angles to

transform between them.

This inconvenient is due to the fact that there is no direct measurement of the

required quantities in the same frame of reference, i.e. ground vector is directly

measured by the navigation sensor in the inertial coordinate system while the air

vector is essentially measured by the air data sensor in the directions of the axes of a

reference frame aligned with the airflow referred as the aerodynamic reference frame.

Therefore, several calculations have to be applied in order to allow for the vector

difference in the Earth-fixed reference frame.

To begin with, air data sensors provide measurements of the airspeed, Va, and

airflow angles, α and β. The air vector is then obtained by employing the aerodynamic

coordinate system, in which it has the components
−→
V a = (Va, 0, 0). Further, the

air vector is brought into the body-fixed coordinate system by successive rotations

through angles β and α using the transformation introduced in [28] and given by

{
−→
V a}B = RBA

−→
V a =

Va
D


1

tan β

tanα


with the normalization factor D =

√
1 + tan2 α + tan2 β, the subscript B describing

a vector in the body frame and the matrix RBA representing the transformation from

aerodynamic to body frame.

The vector describing the motion of the aircraft through the airmass has been

obtained and transformed in the orientation of the body frame but it can still not

be exploited in equation (4.1). For this purpose, the complete transformation from

the body coordinate system into the inertial frame, achieved by successive rotations
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through angles (ψ, θ, φ) and introduced in Chapter 2 by RIB, is required

{
−→
V a}I = RIB{

−→
V a}B (4.2)

Thus, from (4.1) and (4.2) the wind vector can be obtained as

−→
V w =

−→
V g −RIBRBA

−→
V a

where
−→
V w = (we, wn, wh) and

−→
V g = (ve, vn, vh) are two vectors expressed in the

Earth-relative reference frame and
−→
V a = (Va, 0, 0) is described in the aerodynamic

coordinate system. Writing for the inertial components of the wind vector it yields

we = ve − VaD−1 [cos θ sinψ + tan β (sinφ sin θ sinψ + cosφ cosψ)]

+ VaD
−1 tanα (cosφ sin θ sinψ − sinφ cosψ) (4.3a)

wn = vn − VaD−1 [cos θ cosψ + tan β (sinφ sin θ cosψ − cosφ sinψ)]

+ VaD
−1 tanα (cosφ sin θ cosψ + sinφ sinψ) (4.3b)

wh = vh − VaD−1 (− sin θ + tan β sinφ cos θ)

+ tanα cosφ cos θ (4.3c)

4.2.3 Wind computation using the vehicle response approach

Another approach to compute wind from a fixed wing UAV platform is to compare

measurements of the aircraft inertial motion, provided by a navigation sensor, with

predictions of the same quantities resulted from the dynamic model of the vehicle

[25]. Indeed, the Earth-relative aircraft motion can be stimulated by two inputs:

aerodynamic or propulsive commands sent by the autopilot and external perturbing

forces typically represented by wind. In addition, the contribution of each of these

inputs in the induced motion of the aircraft can be emphasized in the equations of

motion. Therefore, any potential difference between predictions of the aircraft motion

induced by autopilot commands and actual measurements provided by embedded

sensors can be assigned to wind which can thus be estimated.
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Writing the equation for the rate of change of translational position, it yields

ṗI = RIBVb + Vw (4.4)

where pI = [pe pn ph]
T is the inertial position of the airplane and Vb = [u v w]T

represents the air-mass relative velocity in the body axes direction.

Equation (4.4) relates the aircraft inertial motion to the Earth-relative wind, Vw,

velocity with respect to the air-mass, Vb, and angular position through the transfor-

mation matrix from body to inertial frame, RIB. Further, let the aircraft motion

induced by autopilot inputs be denoted by pAP . Therefore, one can write

ṗAP = RIBVb

In the above equation, the aircraft air-relative velocity and angular position are

controlled by aerodynamic and propulsive inputs and predictions of their values are

provided by the autopilot system based on the dynamic model of the aircraft. Conse-

quently, the airplane motion induced by control inputs can be estimated. Further, if

the vehicle is equipped with a sensor capable of measuring the Earth-relative velocity

of the aircraft, then the wind field yields from

Vw = ṗSENI − ṗAP (4.5)

The wind estimates provided by equation (4.5) rely on inertial velocity measure-

ments and aircraft state predictions. Another approach, similar in principle with the

one previously presented, uses numerical differentiation of position measurements in-

stead of inertial velocity. To this end, the discrete form of the aircraft mathematical

model needs to be derived in order to obtain the wind speed as

Vwk−1
=

1

∆t

(
pIk − pIk−1

)
− fu (xk−1, uk−1) (4.6)

where pIk and pIk−1
are two successive measurements of the aircraft Earth-relative
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position, xk−1 represents an estimations of the aircraft state commanded by the con-

trol input uk−1, fu (xk−1, uk−1) is the prediction of the change in aircraft state over

the time interval from k− 1 to k ignoring the effects of wind and ∆T is the sampling

time determined by the navigation sensor. The methods based on the vehicle response

differ by the fact that one relies on velocity while the other on position measurements.

Thus, depending on the employed sensor and its corresponding uncertainty, one can

give more precise results than the other.

4.2.4 Expected uncertainty in the computed wind

The calculation of the wind vector based on the methods presented above involves

several measured and/or predicted quantities, each representing a potential source

of uncertainty in the wind values. As discussed in section 4.2.1, the uncertainty

in sensor measurements can be quantified by one standard deviation provided by

manufacturers. Regarding predicted quantities, their uncertainty depends on the

accuracy of the airplane dynamic model to describe the real behavior of the vehicle.

Thus, this subsection focuses on determining the wind computation precision based

on expected errors in sensor measurements and aircraft state predictions.

Wind triangle approach

Equations (4.3) shows that the velocity vectors diagram method involves nine mea-

sured quantities and several trigonometric functions to compute the wind field. The

nonlinear form of the equations implies that the measurement precision can not be

straightforward addressed. In order to transparently quantify the overall system ac-

curacy, one can use a linearized uncertainty propagation model in the wind vector

equations. For this purpose, let us write the compact form of the computed nonlinear

equation (4.3)

Vw = f(ve, vn, vh;Va, α, β;ψ, θ, φ)
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which becomes after linearization

∆Vw ≈ f(xn) +H (x− xn)

where x is the vector containing the measured quantities and it is given by x =

[ve vn vh Va α β ψ θ φ]T , f(xn) represents the computed wind evaluated at nominal

value xn of the state vector and Hw = ∂Vw
∂x

is the Jacobian of the wind equations.

Therefore, the overall uncertainty of the wind computation method is determined

through Gaussian uncertainty propagation by evaluating the trace of the wind error

covariance matrix ΣW

σ2
W = TrΣw =

9∑
j=1

Σw(j, j)

with Σw resulting from the covariance of the expected noise denoted by Σx

Σx = diag(σ2
ve σ

2
vn σ

2
vh
σ2
Va σ

2
α σ

2
β σ

2
ψ σ

2
θ σ

2
φ )

Σw = HwΣxH
T
w

Approaches based on vehicle response

Equations (4.5) and (4.6) involves two measured quantities of known uncertainty and

predictions of the aircraft state which require an accurate mathematical model of the

aircraft. However, this can be a challenging problem for small UAVs whose dynamic

properties change frequently due to changes in the embedded system setup. Therefore,

another uncertainty source needs to be considered but a potential deviation from the

real values of the aircraft state can not be generally quantified and the overall quality

of the vehicle based wind measurement methods can not be completely evaluated.

Nevertheless, denoting the uncertainties of the inertial velocity predicted vector

by σAPVg and employing σVg and σpI to represent the navigation sensor uncertainties

for the velocity and position vectors parameters measurement, then the Gaussian

uncertainty propagation model can be used to estimate the errors in the computed

wind. However, σAPVg is difficult to predict and it can be subject to large ranges.
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4.3 Adaptive control theory

The wind computation methods presented in the previous section have the deficiency

to directly rely on sensors measurements which are subject to noise and large errors.

Hence, all the false readings are translated into inaccurate wind measurements which

might result in excessive and insecure control efforts. In order to deal with this

drawback, one can consider the wind components as unknown parameters in the

aircraft equations of motion and employ adaptive control techniques to achieve global

stabilization with online parameter estimation.

To this end, this section introduces basic concepts of adaptive control theory

together with an illustrative example of adaptive control design for a simple scalar

system. Further, relevant literature on adaptive flight control is discussed.

4.3.1 Basic concepts

Adaptive control is an approach to control systems with uncertain parameters such as

robots, airplanes, ships, etc. Lately, an increasingly number of practical problems are

addressed using adaptive control techniques and several examples can be illustrated.

For instance, commercial airplanes fly long courses and account for considerable mass

changes, large speed or altitude variations. In addition, the adaptive control system

of a ship is able to adjust depending on ship loading or wave conditions. On the

other hand, robots can manipulate loads of different sizes or unknown weights. As

a matter of fact, the theory describing this methodology was originally developed

for high-performance aircraft control purposes. Indeed, airplanes have a large flight

envelope depending on changes in speed, altitude, configuration, payload, etc. Thus,

in order to achieve and maintain consistent performance under varying operating

conditions, flight controllers need to adjust their parameters such that a satisfactory

plant response is reached.

Nevertheless, despite their usefulness in many practical contexts, a significant

issue to be considered in the adaptation designs is the stability and the convergence

of the closed-loop adaptive system. It can be then concluded that the design of an
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adaptive controller, compared to conventional control design, involves three steps that

are further listed [10]

1. the choice of a control law containing the uncertain parameters

2. the choice of an adaptation law in order to adjust these parameters

3. the analysis of the stability properties of the resulting control system

Adaptive controllers are usually flexible and they allow the coupling of various

control techniques, employed to meet the objective of the first step, with estimation

techniques, used to adjust the uncertain parameters. Nevertheless, the stability of

the resulting system is difficult to guarantee. Various tools from nonlinear control

theory, such as Lyapunov theory, can be used to this end. In reality, an appropriate

choice of the Lyapunov function can coordinate, in some cases, the three steps usually

involved in the design of an adaptive controller. In this particular case, guessing the

Lyapunov function at the beginning of the design process, allows the choice of the

control and adaptation laws so that the proposed function decreases, fulfilling all the

requirements of an efficient adaptive system. This property will guide our choice

of estimation technique for Lyapunov stability theory as it will be illustrated in the

following example.

4.3.2 Example: aerodynamic velocity control

Let us illustrate the Lyapunov-based adaptive control for a simple application which

requires the stabilization of the aircraft aerodynamic velocity, Va, at predefined values.

The equation governing the velocity dynamics is given by

V̇a =
Fwx
m
− g sin γ

where Fwx = Twx−D is the total force along the x-axis of the aerodynamic reference

frame and it is determined by the thrust component in the direction of the same

axis, Twx, and the drag force, D, while γ describes the flight path angle. Using the
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transformation matrix from body to aerodynamic frame, RAB, in order to write the

equation in appropriate form, ie depending on the body-axis thrust, it yields

V̇a =
1

m
(FT cosα cos β −D −mg sin γ)

Since the purpose of this example is to illustrate the typical steps to follow in adaptive

control design, let us consider for simplicity that the aircraft flies at zero angle of

attack, sideslip and flight path angle. Therefore, the velocity equation reads

V̇a =
1

m
(FT −D) (4.7)

where the drag force is the uncertain parameter and the body-axis thrust force repre-

sents the control input. Thus, the problem to be solved involves the estimation of the

uncertain parameter based on the measured velocity and the use of the estimated pa-

rameter in the flight controller in order to make the system to follow a given reference

in velocity.

For this purpose consider the velocity error

eV = Va − Vref

whose evolution is given by

ėV =
1

m
(FT −D)

In order to stabilize eV , one can employ Lyapunov theory design proposing the can-

didate function

V1 =
1

2
e2V

whose derivative reads

V̇1 =
eV
m

(FT −D)

At this point we should choose FT such that V1 decreases. An intuitive selection

of the required engine thrust would be FT = D − c1eV with c1 a positive definite

constant gain. However, the term D is not known and it can not be employed in the

85



controller. For this reason, D is replaced by its estimate D̂ and the new error variable

is considered in the candidate Lyapunov function

VL =
1

2
e2V +

1

2kγ
D̃

with D̃ = D−D̂ being the difference between the unknown parameter and its estimate

and kγ a constant positive adaptation gain. The derivative of this function, for slowly-

varying D, is given by

V̇L =
eV
m

(FT −D)− 1

kγ
D̃

˙̂
D

Choosing

FT = D̂ −mc1eV

the derivative of VL reads

V̇L = −c1e2V −
D̃

kγ

(
kγeV
m

+
˙̂
D

)

Then, the adaptation law for the unknown drag force is

˙̂
D = −kγeV

m

which makes the derivative of the Lyapunov function

V̇L = −c1e2V

proving the stability of the closed-loop adaptive system in the sense of Lyapunov.

Simulations have been carried out with the purpose of testing the capabilities of

the developed adaptive controller. The variation of the Drag force with airspeed for a

typical airplane in steady, level flight was considered in order to reproduce conditions

similar to real flight and it is shown in Figure 4 − 2. Note from equation (4.7)

that thrust must equal drag in steady flight; thus, the curve for the total drag also

represents the required thrust. Based on these considerations, the scenario envisaged
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in simulations was to stabilize the aircraft airspeed at several nominal values, each

corresponding to a different value of the Drag force. The performance of this simple

adaptive system is provided in Figure 4− 3.
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Figure 4-2: The variation of the Drag force with airspeed.
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Figure 4-3: The parameters of the adaptive system.
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4.4 Path following with online wind estimation

The adaptive design in the above example is straightforward because the matched

uncertainty condition is satisfied, i.e. the uncertainty is in the span of the control

input. Systems with uncertainties separated from the control input can be addressed

using an extended framework of the backstepping approach introduced in the previous

chapter, which contains a dynamic feedback part as the uncertain parameter update

law. This approach, referred to as adaptive backstepping, allows the design of an

adaptive controller in a structured and recursive way. In addition, boundedness of

the closed-loop states and convergence of the tracking error to zero are properties

that adaptive backstepping handles well due to its Lyapunov foundation.

Based on these considerations, this section addresses the guidance problem of a

small fixed-wing UAV when flying in unknown wind field. Rather than accounting

for uncertain dynamics of the aircraft, adaptive control design is employed in order

to estimate and to eliminate the wind influence on the vehicle performance. For

this purpose, the application consisting in following straight-line paths, introduced in

Chapter 3, is formulated in the framework of the adaptive backstepping theory.

Let us rewrite the nonlinear system (3.5) describing the motion of an aircraft

relative to a stationary straight-line path

ḋ = V sin (ψ − ψs) + kω

ψ̇ =
g

V
tanφ

φ̇ = kφ (φc − φ)

where kω = W sin (ψω − ψs) is unknown and it is due to the wind perturbation.

In practice, the uncertain parameters describing the dynamic systems are often

time-varying. This is also the case for the unknown wind field which is generally

slowly-varying but it can also be associated with significant variations in speed or

direction. Although wind gust is likely to occur in real flight conditions, a complete

analysis of the airplane behavior in such conditions involves mathematical difficul-

88



ties in the adaptive control design and requires high computation capabilities of the

embedded autopilot. For this reason, we will assume further that the wind vector

varies slowly so that it can be considered constant in the development of the adaptive

control structure. However, at the end of the section we will provide an analysis

based on simulation results relative to the behavior of the adaptive control system in

presence of time-varying wind.

In what follows, we will propose a path following controller correlated with adap-

tation laws for on-line wind estimation. The controller will be developed based on

the adaptive backstepping approach and it will use the estimated values of the wind.

For this purpose, define the following error variable

e1 = d− dmin (4.8)

where dmin represents the minimum allowed distance from the desired. Thus,

ė1 = V sin (ψ − ψs) + kω (4.9)

4.4.1 Regulation of the cross track error

Propose the following positive function

VL1 =
1

2
e21

thus

V̇L1 = e1 [V sin (ψ − ψs) + kω]

To stabilize e1 we introduce ψv as a virtual control in the following form

V sin (ψv − ψs) = −c1e1 − k̂ω1

where k̂ω1 is the estimate of kω and c1 > 0 is a constant. Evaluating V̇L1 when ψ → ψv
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it follows that

V̇L1 |ψ=ψv = −c1e21 + e1k̃ω1

where k̃ω1 = kω − k̂ω1 .

Notice from the above equation that if k̂ω1 → kω then V̇L1 ≤ 0. Thus, rewriting

VL1 , it yields

VL1 =
1

2

(
e21 +

1

γ1
k̃2ω1

)
where γ1 > 0 denotes a constant adaptation gain. Then

V̇L1|ψ=ψv = −c1e21 +

(
e1 −

˙̂
kω1

γ1

)
k̃ω1

Choosing the update law as

˙̂
kω1 = γ1e1

It follows that

V̇L1|ψ=ψv = −c1e21

4.4.2 Convergence of ψ to ψv

Define the error

e2 = V sin (ψ − ψs)− V sin (ψv − ψs) = V sin (ψ − ψs) + c1e1 + k̂ω1 (4.10)

and rewrite (4.9) in terms of e1 and e2

ė1 = e2 − c1e1 + k̃ω1

This implies that

ė2 = g tanφc cos (ψ − ψs) +
(
γ1 − c21

)
e1 + c1e2 + c1k̃ω1
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Finally, introduce the following Lyapunov function

VL =
1

2

(
e21 +

1

γ1
k̃2ω1

+ e22

)

then

V̇L = −c1e21 + e2

[
g tanφc cos (ψ − ψs) + c1e2 + (1 + γ1 − c21)e1 + c1k̃ω1

]
(4.11)

Propose the control input as

φc = arctan

[
−e1(1 + γ1 − c21) + e2(c1 + c2) + c1(k̂ω2 − k̂ω1)

g cos (ψ − ψs)

]
(4.12)

where k̃ω2 = kω − k̂ω2 , k̂ω2 represents a new estimate for kω and c2 denotes a pos-

itive constant gain. Notice that if we had employed the existing estimate k̂ω1 , we

would have had no design freedom left to cancel the unknown parameter from V̇L.

Additionally, k̂ω2 could be seen as a factor correction for k̂ω1 .

Introducing the above into (4.11), we have

V̇L|φ=φc = −c1e21 − c2e22 + c1e2k̃ω2

Observe that V̇L ≤ 0 if k̂ω2 → kω. Therefore augmenting VL, it yields

VL =
1

2

(
e21 +

1

γ1
k̃2ω1

+ e22 +
1

γ2
k̃2ω2

)
(4.13)

and

V̇L|φ=φc = −c1e21 − c2e22 + k̃ω2

(
c1e2 −

˙̂
kω2

γ2

)

Choosing

˙̂
kω2 = γ2c1e2

V̇L becomes

V̇L = −c1e21 − c2e22 (4.14)
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The error representation of the closed-loop adaptive system is summarized below ė1

ė2

 =

 −c1 1

−1 −c2

 e1

e2

+

 k̃ω1

c1k̃ω2


 ˙̂
kω1

˙̂
kω2

 =

 γ1 0

0 c1γ2

 e1

e2

 (4.15)

4.4.3 Stability analysis

The stability of the equilibrium (ei, k̃ωi
) = 0; i = 1, 2; follows from (4.13) and (4.14).

From the LaSalle-Yoshizawa theorem [3] we have that ei and k̂ωi
are bounded and

ei, k̃ωi
→ 0 as t → ∞. From (4.8), it follows that d → dmin. The boundedness of ψ

follows from the boundedness of e1, k̂ω1 and e2 defined in (4.10). Observe that the

convergence to zero of ei does not imply the convergence to zero of ψ. From (4.10) it

can be noted that ψ is bounded, i.e.

lim
t→∞

ψ = arcsin

(
− k̂ω1

V

)
+ ψs

Observe that from (4.15) it follows that
˙̂
kωi
→ 0; i = 1, 2. Finally, from (4.12) we

conclude that the control φc is also bounded.

LaSalle’s invariance principle [4] assures that the state (ei, k̃ωi
) converges to the

largest invariant set M contained in {(e1, e2, k̃ω1 , k̃ω2) ∈ R4|V̇L = 0}. On this invariant

set, we have ei ≡ 0 and ėi ≡ 0. From (4.15) it yields ˙̃kωi
= 0 and k̃ωi

= 0. Thus, the

largest invariant set M is

M ={(ei, k̃ωi
) ∈ R4|ei = 0, k̃ωi

= 0}

={(d, ψ, k̂ω1 , k̂ω2) ∈ R4|(d, ψ, k̂ω1 , k̂ω2) = (0, arcsin(− k̂ω1

V
) + ψs, kω, kω)}

The manifold M is the single point d = 0, ψ = arcsin(− k̂ω1

V
) + ψs, k̂ωi

= kω for i = 1

and 2, which is asymptotically stable.
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Remark: The model presented above assumes that the airplane is equipped with an

autopilot which stabilizes the vehicle and provides roll-angle tracking capabilities.

If the autopilot disposes of angular momentum tracking capabilities instead of roll

angle, then the simplified model introduced by equations (3.21) needs to be used.

Thus, employing the adaptive backstepping algorithm, the commanded yaw moment

reads1

cN c = − L̄1r + tan (ψ − ψs)(r2 − L̄2)−
L̄3d+ L̄4k̂ω1 + L̄5k̂ω2 + L̄6k̂ω3

Va cos (ψ − ψs)
(4.16)

˙̂
kω1 = γ̄1d (4.17a)

˙̂
kω2 = γ̄2c̄1

(
V sin (ψ − ψs) + c̄1d+ k̂ω1

)
(4.17b)

˙̂
kω3 = γ̄3L̄6V [r cos (ψ − ψs) + (c̄1 + c̄2) sin (ψ − ψs)]

+ γ̄3L̄6

[
dL̄6 + c̄1k̂ω2 + c̄2k̂ω1

]
(4.17c)

where L̄1 = c̄1 + c̄2 + c̄3, L̄2 = c̄1c̄2 + c̄1c̄3 + c̄2c̄3 + 2 + γ̄1 + c̄21γ̄2, L̄3 = c̄1 + c̄3 +

c̄1c̄2c̄3 + γ̄1 (c̄2 + c̄3), L̄4 = c̄2c̄3 + c̄21γ̄2 + 1, L̄5 = c̄1c̄3, L̄6 = c̄1c̄2 + γ̄1 + 1 with

c̄1, c̄2, c̄3, γ̄1, γ̄2, γ̄3 > 0.

The choice of the adaptation laws given by equations (4.17) has been made so

that the derivative of the Lyapunov function

V̄L =
1

2

[
ε̄T Iε̄+ ω̃T Iγω̃

]
with

ε̄ =


ē1

ē2

ē3

 =


d

V sin (ψ − ψs) + c̄1ē1 + k̂ω1

rV cos (ψ − ψs) + (c̄1 + c̄2) ē2 + (1− c̄21 + γ̄1) ē1

+c̄1

(
k̂ω2 − k̂ω1

)


1For a detailed description of the controller 4.16 see Appendix B.
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ω̃E = kω − k̂ω =


kω − k̂ω1

kω − k̂ω2

kω − k̂ω3



Iγ =


1
γ1

0 0

0 1
γ2

0

0 0 1
γ3


to be always negative, which proves the stability of the closed-loop adaptive system,

hence the boundedness and the convergence of d→ 0 and of k̂ωi
→ kω, i = 1, 2, 3.

4.5 Wind estimation with minimum-order design

The main deficiency of the resulting adaptive system consisting of equations (3.5)

with control law (4.12) and update laws (4.15) is the increased dynamic order of

the closed-loop system despite the cross track error regulation even in presence of

unknown wind. The overparametrization, i.e. more than one update law for each

parameter, can be avoided by using the tuning functions method [3]. Instead of using

two adaptation laws for the unknown wind (as it was the case in the previous design),

this approach reduces the dynamic order of the adaptive controller to its minimum.

Consider the system (3.5) with the design objective being the convergence of the

cross track error d to a minimum allowed distance from the path, dmin. Therefore,

the following error variable is defined

e1 = d− dmin (4.18)

Thus,

ė1 = V sin (ψ − ψs) + kω (4.19)
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4.5.1 Regulation of e1

Propose the following positive function

VL1 =
1

2
e21

thus

V̇L1 = e1 [V sin (ψ − ψs) + kω] (4.20)

define the second error as

e2 = V sin (ψ − ψs)− V sin (ψv − ψs) (4.21)

where ψv defines the virtual control with the form

V sin (ψv − ψs) = −c1e1 − k̂ω

with k̂ω an estimate of kω and c1 > 0 a constant. Then, (4.21) becomes

e2 = V sin (ψ − ψs) + c1e1 + k̂ω (4.22)

Rewriting (4.19)

ė1 = e2 − c1e1 + k̃ω

where k̃ω = kω − k̂ω. Hence, (4.20) yields

V̇L1 = −c1e21 + e1e2 + e1k̃ω

Notice from the above equation that if k̂ω → kω and e2 → 0 then V̇L1 ≤ 0 and

this implies that e1 → 0.

In order to converge k̃ω → 0, propose the following positive function

VL2 =
1

2γ
k̃2ω
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where γ > 0 is a constant adaptation gain. Then

V̇L2 = −
˙̂
kω
γ
k̃ω

Define the following tuning function

τ1 = γe1 (4.23)

Thus

V̇L1 + V̇L2 = −c1e21 + e1e2 +
(
τ1 − ˙̂

kω

) k̃ω
γ

4.5.2 Regulation of e2

From (4.22), it follows that

ė2 = g cos (ψ − ψs) tanφc + c1e2 − c21e1 + c1k̃ω +
˙̂
kω

Consider the following positive function

VL3 =
1

2
e22

Taking the time derivative leads to

V̇L3 = e2

[
g cos (ψ − ψs) tanφc + c1e2 − c21e1 + c1k̃ω +

˙̂
kω

]

Observe in the above equation the term k̃ω. To reduce the adaptive error, we

introduce the second tuning function of the form

τ2 = τ1 + γc1e2 (4.24)
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Finally, define the Lyapunov function

VL = VL1 + VL2 + VL3 =
1

2

(
e21 +

1

γ
k̃2ω + e22

)
(4.25)

thus

V̇L =− c1e21 +
k̃ω
γ

(τ2 − ˙̂
kω) + e2

(
˙̂
kω − τ2

)
+ e2 [g cos (ψ − ψs) tanφc + τ2 + c1e2 + (1− c1)e1]

Proposing the commanded bank angle as

φc = tan−1
[
L1e1 + L2e2
g cos (ψ − ψs)

]
(4.26)

and the update law

˙̂
kω = τ2 (4.27)

consequently, it follows that

V̇L = −c1e21 − c2e22 (4.28)

where L1 = c21 − 1− γ and L2 = −c1 − c2 − c1γ.

The error system representation of the resulting closed-loop adaptive system is

summarized below

ė1 = −c1e1 + e2 + k̃ω

ė2 = −e1 − c2e2 + c1k̃ω

˙̃kω = −γe1 − γc1e2

Rewriting (4.26) and (4.27) in terms of d and ψ we have

φc = tan−1

[
L3(d− dmin) + L2V sin (ψ − ψs) + L2k̂ω

g cos (ψ − ψs)

]
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and

˙̂
kω = L4(d− dmin) + γc1V sin (ψ − ψs) + γc1k̂ω

with L3 = L1 + c1L2 and L4 = γ + γc1.

4.5.3 Stability analysis

Notice that, the stability of the equilibrium (ei, k̃ω) = 0 follows from (4.25) and (4.28).

(4.28) implies that VL ≤ 0 and from the LaSalle-Yoshizawa theorem [4] we have that

ei and k̂ω are bounded and ei, k̃ω → 0 as t → ∞; i = 1, 2. From (4.18), it follows

that d → dmin. The boundedness of ψ follows from the boundedness of e1, k̂ω and

e2 defined in (4.22). Observe that the convergence to zero of ei does not imply the

convergence to zero of ψ. From (4.22) it can be noted that ψ is bounded, i.e.

lim
t→∞

ψ = arcsin

(
− k̂ω
V

)
+ ψs

Observe that from (4.23), (4.24) and (4.27) it follows that
˙̂
kω, τi → 0; i = 1, 2.

Finally from (4.26), we conclude that the control φc is also bounded.

LaSalle’s invariance principle [4] assures that the state (ei, k̃ω) converges to the

largest invariant set M contained in {(e1, e2, k̃ω) ∈ R3|V̇L = 0}. On this invariant set,

we have e ≡ 0 and ė ≡ 0. From (4.27) it yields ˙̃kω = 0 and k̃ω = 0. Thus, the largest

invariant set M is

M = {(e, k̃ω) ∈ R3|e = 0, k̃ω = 0}

= {(d, ψ, k̂ω) ∈ R3|

(d, ψ, k̂ω) = (0, arcsin(−kω
V

) + ψs, kω)}

The manifold M is the single point d = 0, ψ = arcsin(−kω
V

) +ψs, k̂ω = kω which is

asymptotically stable.
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For a perturbed system it is very important to estimate if not delimitate the region

of attraction of its equilibrium points. Equation (4.22) can be rewritten as

e2 = V sinψ + e1 +
(
k̂ω − kω

)
+ kω

Thus

|V sinψ| ≤ |e2|+ |e1|+ |k̃ω|+ |kω| (4.29)

From the proposed Lyapunov function we can write the inequalities

1

2
e21 ≤ VL ≤ V (0)⇒ |e1| ≤

√
2V (0)

1

2
e22 ≤ VL ≤ V (0)⇒ |e2| ≤

√
2V (0)

1

2
k̃2ω ≤ VL ≤ V (0)⇒ |k̃ω| ≤

√
2V (0)

Using the above and (4.29) we can write

| sinψ| ≤
3
√

2V (0)

V
+
|kω|
V

To remove the singularities we impose | sinψ| < 1. Therefore, the region of attraction

is |kω |
V
≤ 1− ε, where ε = 3

√
2V (0).

Remark: The model presented above assumes that the airplane is equipped with

an autopilot which stabilizes the vehicle and provides roll-angle tracking capabilities.

If the autopilot disposes of angular momentum tracking capabilities instead of roll

angle, then the simplified model introduced by equation (3.21) needs to be used.

Introducing the error variables

e1 = d− dmin

e2 = V sinψ − V sinψv

e3 = V r cosψ − V rv cosψ
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where ψv and rv are stabilizing functions given by

V sinψv = −c1e1 − ŵE

V rv cosψ = − (c1 + c2 + γc1) e2 −
(
1− c21 + γ

)
e1

one can verify that the adaptive controller consisting of the feedback control and of

the parameter update law given by2

cτψ = −L1r + tanψ(r2 − L2)−
L3d+ L2ŵE
Va cosψ

(4.30a)

˙̂wE = τ3 (4.30b)

with the tuning function obtained from

τ1 = γe1

τ2 = τ1 + γc1e2

τ3 = τ2 + γ [c1 (γc1 + c2) + 1 + γ] e3

and the coefficients

L1 = c3 + (c1 + c2 + γc1)
(
1 + γ + γ2 + γ2c21 + γc1c2

)
L2 = 2 (1 + γ) + γ2

(
1 + c21

)
−
(
c21 + c1c2 + c22 + γ

)
+ L1 (c1 + c2 + γc1)

L3 = c1γ
2
(
1 + c21

)
− c2 (1 + c1 + c2) + L1

(
1 + γ + c1c2 + γc21

)
guarantees the asymptotic stability of the equilibrium (ei, k̃ω) = (0, 0) through the

Lyapunov function

V L =
1

2

(
e21 +

1

γ
w̃2
E + e22 + e23

)
and its derivative

V̇ L = −c1e21 − c2e22 − c3e23 .

2For a detailed description of the controller 4.30 see Appendix C.
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4.6 Simulation results and performance analysis

The performance of the wind computation methods has been evaluated in simulations

along with the developed path following controllers and relevant results are further

presented. The airplane velocity relative to the air was considered constant and

equal to 10 m/s, the bank angle was limited to a maximum value of 45◦ while the

low-altitude/low-turbulence dryden gust model, shown in Figure 3− 6, was added to

simulate the environmental wind.

4.6.1 Path following based on computed wind

First simulations were carried out in order to test the capabilities of the wind com-

putation methods introduced in Sections 4.2.2 and 4.2.3. For this reason, the path

following application formulated in the previous chapter, for which a stabilizing con-

troller was designed in equation (3.20), has been considered. The airplane was com-

manded to follow the north direction based on the developed controller and employing

successively the values of the wind computed in equations (4.3), (4.5) and (4.6). The

error analysis developed in Section 4.2.4 will be used in order to quantify the overall

uncertainty of the computed wind for the studied case.

Based on the wind triangle

Let us first discuss the precision of the wind estimation algorithm for the path follow-

ing application introduced in the previous chapter. Remember that several assump-

tions have been considered in order to derive the simplified equations (3.5) which

describe the flight in horizontal plane, stabilized longitudinal variables and truly

banked turn. Introducing these assumptions in the velocity vectors diagram based

computed wind given in equations (4.3), the wind components in the direction of the

(E, N) axes of the inertial frame simplify to

we = ve − Va sinψ (4.31a)

wn = vn − Va cosψ (4.31b)
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where ve, vn, Va and ψ are measured quantities whose uncertainties σ, provided by

manufacturers, are summarized in Table 4.1.

The Jacobian of the simplified wind equations (4.31) reads

Hw =

 1 0 − sinψ −Va cosψ

0 1 − cosψ Va sinψ


and the covariance of the expected noise and of the expected error in the wind velocity

estimate are given by

Σx = diag
(
σ2
ve σ

2
vn σ

2
Va σ

2
ψ

)
Σw = HwΣxH

T
w

After computations, Σw reads

Σw =

 σ2
ve + σ2

Va
sin2 ψ + V 2

a σ
2
ψ cos2 ψ σ2

Va
sinψ cosψ − V 2

a σ
2
ψ sinψ cosψ

σ2
Va

sinψ cosψ − V 2
a σ

2
ψ sinψ cosψ σ2

vn + σ2
Va

cos2 ψ + V 2
a σ

2
ψ sin2 ψ


The error in the wind estimates can be evaluated computing the trace of the

covariance matrix

e2w = TrΣw = σ2
ve + σ2

vn + σ2
Va + V 2

a σ
2
ψ (4.32)

Equation (4.32) shows that the airspeed is a critical parameter in reducing the

estimates error of the wind speed, together with the noise in sensor measurements.

Minimizing the error in the computed wind requires flying at low airspeed as shown

in Figures (4− 4) - (4− 9). .

Sensor Measured quantity Provided uncertainty

Pitot tube Airspeed σVa = 0.2
GPS Inertial velocity σve = σvn = 0.1
GPS Inertial position σpe = σpn = 2.5
IMU Heading σψ = 0.5

Table 4.1: Sensors uncertainty.
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Figure 4-4: Airplane inertial position when computing wind from the wind triangle
and Va = 10 m/s.
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Figure 4-5: Computed wind from the velocity vectors diagram for Va = 10 m/s.
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Figure 4-6: Control effort for the path following application based on computed wind
for Va = 10 m/s.
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Figure 4-7: Airplane inertial position when computing wind from the wind triangle
and Va = 30 m/s.
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Figure 4-8: Computed wind from the velocity vectors diagram for Va = 30 m/s.
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Figure 4-9: Control effort for the path following application based on computed wind
for Va = 30 m/s.
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Based on vehicle response and velocity measurements

Developing equation (4.5) for the considered assumptions, we get the relationships

for the wind components in the inertial coordinate system

we = vSENe − V AP
a sinψAP (4.33a)

wn = vSENn − V AP
a cosψAP (4.33b)

where vSENe and vSENn are measured quantities provided by a GPS sensor and V AP
a and

ψAP are predictions provided by the autopilot system based on the aircraft dynamic

model.

The way the terms of equations (4.31) and (4.33) are obtained represents the only

difference between the two wind computation methods for the simplified case studied

here. The precision of the vehicle response based approach depends on the accuracy

of the equations to describe the dynamic behavior of the vehicle, which is difficult

to quantify. Therefore, the analysis concerning the error in the wind estimates can

not be further continued. Simulations based on this method are presented in Figures

(4− 10) - (4− 12).
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Figure 4-10: Airplane inertial position when computing wind from the vehicle re-
sponse and velocity measurements.
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Figure 4-11: Computed wind from the vehicle response and velocity measurements.
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Figure 4-12: Control effort for the path following application based on computed wind
from the vehicle response and velocity measurements.

Based on vehicle response and position measurements

In order to emphasize the wind computation method based on inertial position mea-

surements, let us write the equations (3.5) in discrete form using a forward Euler

integration.

Thus, it yields

xek = xek−1
+ ∆T

(
Va sinψk−1 + wek−1

)
ynk

= ynk−1
+ ∆T

(
Va cosψk−1 + wnk−1

)
ψk = ψk−1 + ∆T

g

Va
tanφk−1

φk = φk−1 + ∆Tkφ(φck−1 − φk−1)
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According to equation (4.6), the wind speed components along the xe and yn axes

are given by

wek−1
=

1

∆T

(
xek − xek−1

)
− Va sinψk−1

wnk−1
=

1

∆T

(
ynk
− ynk−1

)
− Va cosψk−1
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Figure 4-13: Airplane inertial position when computing wind from the vehicle re-
sponse and position measurements.
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Figure 4-14: Computed wind from the vehicle response and position measurements.
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Figure 4-15: Control effort for the path following application based on computed wind
from the vehicle response and position measurements.

4.6.2 Adaptive backstepping with overparametrization

Waypoint guidance

In order to test the performance of the closed loop adaptive system consisting of the

flight controller (4.12) and adaptation laws (4.15), the same ”waypoint guidance”

scenario introduced in Chapter 3 was considered. The airplane response when com-

manded to fly between geo-referenced points is shown in figures 4-16.
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Figure 4-16: Earth relative path when flying in unknown wind.
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Figure 4-17: Flight parameters when flying between predefined waypoints in unknown
wind.

4.6.3 Tuning functions adaptive backstepping

Waypoint guidance

First simulations were performed to test the capabilities of the controller to navigate

in unknown wind between a series of predefined waypoints. Figure 4-18 illustrates

the ground track of the airplane when commanded to fly the first scenario. The flight

controller recovers the airplane from the initial cross track error of 30 m, see Figure

4-19, and it manages to maintain the course of the first segment flying with lateral

wind. When the aircraft flies the second segment it encounters a tail wind while,

for the third segment, the wind has a cross side component almost equally with the

tailwind component.
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Figure 4-18: Airplane inertial position when flying between predefined waypoints in
unknown wind.
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Figure 4-19: Flight parameters when flying between predefined waypoints in unknown
wind.
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Notice from Figure 4-19a that the controller developed in equation (4.26) is able

to provide cross track error regulation due to the adaptation law presented in (4.27).

For this case the closed-loop adaptive system shows good response even in presence

of unknown disturbance. The proposed adaptation law employs one estimate for the

unknown parameter whose convergence to its real value is guaranteed in a relatively

short time, see Figure 4-19b. The adaptation law is used to estimate the value

of kω = W sin(ψw − ψs), which varies depending on ψs and on changes in wind

parameters. The control effort is illustrated in Figure Figure 4-19c.

Wind influence on inertial track

The second scenario envisaged was to command different courses for the airplane,

each course flown the same period of time. If there were no wind and excluding the

transient errors from the turns, the ground course would be the same as the heading

and the airplane would fly several line segments of the same length. On the other

hand, flying in wind requires the autopilot to provide a drift correction, which is

usually obtained heading the airplane into the wind while following a desired ground

track. In this way, the length of the flown segments is different depending on the

relation between the course of the segment and the wind direction and speed.

The performance of the airplane when commanded to fly this scenario is illustrated

in Figure 4-20. Notice from the figure that the wind plays an important role for the

path that the airplane traces over the ground. It navigates a maximum inertial

distance of ≈ 275m when flying with a wind blowing in the direction of motion (the

distances from A to B and from E to F). Next, it covers an average of ≈ 220m from

B to C and from D to E, when still flying with a tail wind but also with crosswind.

Finally, when the wind blows against the direction of travel, the airplane tracks the

smallest distance over the ground (≈ 125m from C to D and from F to G).

t0 = 0s 7→ χ = 0◦; t1 = 20s 7→ χ = 90◦; t2 = 40s 7→ χ = 180◦;

t3 = 60s 7→ χ = 90◦; t4 = 80s 7→ χ = 0◦; t5 = 100s 7→ χ = −90◦

Table 4.2: The course to follow
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Figure 4-20: Airplane ground track. The course to follow changes each 20 seconds
according to table 4.2. The distance covered on ground varies for each course being
affected by wind.
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Figure 4-21: Flight parameters. (a) Tracking errors are small since the airplane follows
the desired course closely. (b) Airplane heading and course. (c) The groundspeed
varies according to the wind direction relative to the desired course.
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The first plot in Figure 4-21 shows that the proposed control algorithm keeps the

tracking errors small when the system is subjected to large course change demands.

As mentioned above, the inertial course and the groundspeed, shown in the second

and the third plots of this figure, are strongly affected by wind. The desired course

is maintained by heading the airplane into the wind and the length of the distances

traveled by the airplane decreases with the groundspeed. The estimated parameter,

which is in agreement with the real values, and the control effort required to follow

the commanded courses are illustrated in Figure 4-22.

0 20 40 60 80 100 120

−4

−2

0

2

4

6

P
ar

am
et

er
 e

st
im

at
io

n

 

 

real value
estimate

0 20 40 60 80 100 120

−20

0

20

Time [s]

B
an

k 
an

gl
e 

[d
eg

]

 

 

Commanded value
Real value

Figure 4-22: Flight parameters. (a) Parameter estimation. (b) The control effort
required to follow the desired course.

4.7 Summary of results

The main contribution of this chapter is twofold. On the one hand, it extends the

results obtained in Chapter 3 by dealing with unknown wind which is considered as an

unknown parameter in the aircraft equations of motion and estimated using adaptive

control design. On the other hand, the solution proposed in this chapter overcomes

the initial condition constraint.

The first adaptive backstepping method employed overparametrization, i.e. more
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than one update law was used for each parameter, which is not very efficient in

a numerical implementation of the controller. With the introduction of the tuning

functions adaptive backstepping method the overparametrization was removed so that

only one dynamic update law for each unknown parameter is needed.
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Chapter 5

Experimental setup

The real-time implementation of the proposed flight controllers and wind estimation

algorithms requires the setup of an embedded autopilot architecture containing an

airframe platform equipped with appropriate avionics. Optionally, a ground station

can be developed for monitoring purposes or to interact with the flight platform in

real time in order to change its mission or to adjust the controller parameters.

Therefore, the main purpose of this chapter is to introduce an overview of the

experimental setup used to carry out flight tests. First, typical avionics equipment

for actuation, data processing, navigation and communication is briefly presented

followed by different airframes that have been developed within the HEUDIASYC

Laboratory. Further, a ground station designed to be used for monitoring and control

purposes is described. Finally, data from manual flight tests are presented.

5.1 Embedded autopilot

Developing an aircraft platform and equipping it with required sensors and actuators

yields many difficulties. On the one hand, the propulsion system must produce enough

thrust to offset the drag. On the other hand, the power source needs to have large

capacity to allow for long duration flight. At the same time, sensors to measure the

state of the aircraft or to enable radio communications with a ground human pilot,

must be selected from a wide choice of devices. Further, once all the components have
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been integrated, a central processing unit is necessary in order to read the information

from sensors, compute the control law and send the corrections to the actuators. This

section gives an overview of the developed embedded autopilot describing general

features of its component parts.

5.1.1 Central processing unit (CPU)

The CPU used in our experiments is the RCM4300 series of RabbitCore modules

which takes advantage of the features of a Rabbit 4000 microprocessor such as clock

speeds of up to 60 MHz, I/O lines shared with six serial ports, variable-phase PWM,

input capture, A/D converter and removable memory card [46]. The module is fast,

efficient, and it has the essentials required to design a microprocessor-based system.

Therefore, RCM4300 offers an ideal solution for a wide range of embedded applica-

tions such as the one addressed in our work.

The microprocessor shown in Figure 5 − 1 is programmed using a C language

compiler called Dynamic C. The sensors measure the state of the vehicle and they

transmit the data to the CPU through different communication interfaces (serial

port, I2C, SPI, A/D convertor). The information is processed in order to compute the

control law, which is sent to the actuators in terms of control signals (deflections of the

control surfaces or adjustments of the engine thrust). In addition, the microprocessor

is able to exchange information with a ground station in order to transmit data

relative to the aircraft state or to receive signals with respect to the ongoing mission.

Figure 5-1: RabbitCore RCM4300.
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5.1.2 GPS-Aided Inertial Navigation System (GPS/INS)

A miniature Microstrain 3DM-GX3-45 GPS-Aided Inertial Navigation System, il-

lustrated in Figure 5 − 2, was used to generate a range of navigation-related out-

put quantities, including estimated position, velocity and attitude [47]. The sensor

combines MEMS inertial sensors, a highly-sensitive embedded GPS receiver, and a

complex Extended Kalman Filter. In addition, fully-calibrated inertial measurements

provided by the GPS/INS sensors include acceleration, angular rate, magnetic field,

Euler angles (pitch, roll, and heading), rotation matrix and quaternion. Unprocessed

GPS data quantities include LLH position, NED velocity, ECEF position and velocity,

UTC and GPS time.

The 3DM-GX3-45 possesses three communications modes, namely the NAV mode,

AHRS Direct and GPS Direct. Each packet can contain any combination of data

quantities from the same data descriptor set (any combination of GPS, AHRS or

NAV data). The streaming of the received data can be controlled either by enabling

the continuous transmission or by polling for data each time it is necessary. Most ap-

plications will operate with the 3DM-GX3-45 sending a continuous data stream since

polling for data is less efficient than processing a continuous data stream. Moreover,

the vehicle dynamics mode setting can be changed in order to adjust the GPS Kalman

filter expectation of the vehicle motion. The choice between three types of applica-

tions is possible: low acceleration applications, low vertical acceleration, wheeled -

vehicle dynamics or typical airborne applications. The data is transmitted between

the 3DM-GX3-45 GPS/INS sensor and the CPU through a serial interface.

Figure 5-2: Microstrain 3DM-GX3-45.
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5.1.3 Airspeed sensor

An Eagle Tree Airspeed MicroSensor V3 has been installed on the aircraft to measure

its velocity with respect to the atmosphere. The MicroSensor uses a Prandtl style

pitot-static tube and it can display the maximum speed on the built-in 7 segment

LED display when used in standalone mode. Turning the power off and on makes the

maximum speed from the last flight to be displayed. Additionally, the MicroSensor

can be connected to a eLogger to provide airspeed data for the entire flight [48].

The sensor contains an aluminum Prandtl style pitot-static tube and a Standalone

Cable of silicon hose. The pitot tube has been mounted at the front of the fuselage

aligned with the airplane longitudinal axis. This is to ensure that the static holes and

pitot pickup are in undisturbed air. In order to make the sensor accessible with the

Rabbit microprocessor, the switch from ”Eagle Tree” mode to ”Third Party” mode

(actual airspeed returned via I2C) ir required.

Figure 5-3: Eagle Tree Airspeed MicroSensor V3.

5.1.4 Actuators

An actuator is a mechanical device that converts an input signal (energy, electricity,

hydraulics, etc.) into motion in order to move or control a system. Generally, the

actuation system on aircraft is hydraulic but, for small fixed-wing UAV models, it

rather consists of electric actuators. They transform the CPU electrical signals into

desired motion of the airplane by adjusting the thrust force and the deflection of the

control surfaces. In the case of our flight platforms, the actuators are the propul-

sion system composed of an electronic speed controller (ESC), brushless motor and

propeller and several servomotors to actuate the control surfaces deflection.

118



Servomotors

Servomotors are commonly designed to provide precise control of angular position

and velocity. Therefore, they can be employed in R/C aircraft models to actuate

the control surfaces deflection. They consists of an electric motor, a potentiometer

and a control board linked together. These actuators are controlled using pulse width

modulation signals (PWM) sent by the CPU based on the computed controller. Figure

5 − 4 shows the Futaba S3003 Servomotor, which has been employed within the

developed flight platforms.

Figure 5-4: Futaba S3003 Servomotor.

Propulsion system

The propulsion system of the platform consists of one or two brushless DC motors

and the appropriate number of ESCs and propellers. A brushless motor is a rotating

electric machine with a classic three phase stator and a surface-mounted permanent

magnets rotor. The electronic speed controller is required in order to vary the speed

and the direction of rotation of the motor while the propellers are airfoils producing

the thrust force. The motors can be driven by either PWM signals or I2C communi-

cation protocol. The propulsion system is represented in Figure 5− 5.

Figure 5-5: Airplane propulsion system.
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5.1.5 Data transmission

For the UAV to perform effectively, a data link with a ground station is required.

First, the communication between the aerial vehicle and a ground station is employed

for control purposes (in order to manually fly the device or to update the flight path

online). Secondly, real-time navigation data can be received from the UAV, such as

actual position, flown trajectory, etc. The communication may be achieved through

different ways.

Radio Control

The aircraft can be remotely controlled by the use of an ordinary RC transmit-

ter/receiver. The receiver, installed on board the aircraft, links the microprocessor to

the pulse train coming from the transmitter. The CPU processes the information and

converts it into control signals which are sent to the actuation system. The communi-

cation with the receiver is made through the input capture port of the microprocessor.

Figure 5− 6 shows the receiver/transmitter devices used in our setup.

Figure 5-6: RC receiver Futaba R617FS and transmitter Futaba 6EX 2.4GHz.

Radio Modem

Radio modems provide the possibility to create private radio networks between the ve-

hicle and the ground station. The modem is connected to the microprocessor through

a serial port and it allows large amounts of real-time data communication. Two mod-

ules RF XBee Pro, illustrated in Figure 5− 7, have been used in our implementation

to monitor the status of the vehicle during the flight.
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Figure 5-7: Xbee Pro 2.4 GHz.

5.1.6 Electronics diagram

An overview of the complete avionics suite of our experimental setup is illustrated

in Figure 5− 8 along with the corresponding communication interfaces employed to

collect data from sensors and to send control signals to actuators.
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Figure 5-8: Synoptic view of the avionics along with the employed communication
interfaces.
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5.2 Ground station

A ground station is an information and a control terminal located at ground level

which is capable to establish a radio communication link with a moving device. In

terms of lightweight miniature UAVs, it is typically a software application providing a

friendly graphical interface that shows cockpit displays of real-time data on the vehicle

performance. It can also be used for control purposes to update the objectives of the

ongoing mission or to adjust the flight controller settings. According to the needs

encountered during the development of the experimental platform, we have designed

two ground station applications whose main features will be highlighted further.

5.2.1 Graphical interface for monitoring purposes

First, a graphical interface using the LabView software has been designed in order

to visualize the performance of the developed flying prototype during real-time flight

tests. By means of this interface, we are able to monitor data measured by the

onboard sensors, such as airspeed and aircraft orientation, in a graphical manner at

the ground level. Also, the control signals sent by a human pilot, who handles the

platform remotely, can be displayed on a computer screen running this application.

Moreover, it allows the storage of the data which can then be analyzed offline. Figure

5− 9 shows the developed graphical interface along with the flying airframe during a

manual flight.

Figure 5-9: The graphical interface of the monitoring ground station.
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5.2.2 Software application for monitor and control purposes

In addition to the LabView graphical interface, we have developed an application in

V isual Studio .NET using the programming language C # which provides extended

capabilities of real-time control, monitoring and navigation. To this end, an open

source ”virtual cockpit” showing many of the instruments contained on board of a

real plane, such as attitude, airspeed or height indicators, was incorporated. An

additional display panel allows the visualization of a complete set of inertial data. In

addition, an open source .NET control which enables the use of the Google Maps

tool, was included in order to illustrate the Earth relative traveled path.

Further, the developed application was suited for real time parameter adjustment

of the flight controller. For example, the airspeed of the aircraft is held constant

through a PID controller whose parameters were tuned in real time flights using the

developed application. The software is continuously under development in order to

adapt its features to the requirements of the aircraft mission. Several improvements

are planned in order to offer real-time wind estimates visualization or to be able to

define the trajectories to be flown graphically. Figure 5− 10 illustrates the software

application displaying the virtual flight instruments and the map of the flight site.

Figure 5-10: Visual C# Ground Station.
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5.3 Flight platform

Not only the choice of the avionics equipment requires increased attention but also

the considered airframe which is the typical location of all the electronics involved

in the development of a flight platform. A robust airframe possessing reliable flight

characteristics is essential for real flight tests. At the same time, sufficient payload

capacity to carry the weight of sensors and batteries is a feature of great interest.

For this reason, the airfoil must be chosen so that it produces adequate lift for the

requirements of various missions. This section discusses the main characteristics of

the experimental platforms which have been developed in our laboratory.

5.3.1 Prototype used for training purposes

A first experimental platform was developed for training purposes. Its configuration

is based on the classic aerodynamic layout and it is built of polystyrene foam sheet

and carbon fiber tubes. The airplane is powered by a brushless motor placed in front

of the body and it has a main flat sheet foam wing fixed to the body, a couple of

ailerons, an elevator and a rudder. Servomotors are attached to ailerons, the elevator

and the rudder as control surface actuators. The prototype is illustrated in Figure

5-11 and its parameters are given in Table 5.1.

The airplane is able to take off from a short distance runway and to land on

the ground. The control surfaces are connected to a Futaba system representing

the servo signal generator/receiver unit. All servomotors are controlled manually via

radio signals from a ground position.

Parameter Value

Airfoil Flat sheet
Wing span (b) 1.4 m
Aspect ratio (AR) 6.49
Wing Area (s) 0.302 m2

Mass Vehicle 0.70 kg
Length 1 m

Table 5.1: Parameters of the first developed prototype.
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Figure 5-11: First prototype.

5.3.2 Airfoil-shaped wing aircraft

The first prototype provides a good maneuverability due to its large wing area and

large control surfaces. Nevertheless, it does not possesses the capacity to carry large

payloads because the flat foam sheet airfoil does not produce sufficient lift. Therefore,

an analysis of different airfoils was conducted and a NACA 2609 airfoil shape for the

aircraft wings, illustrated in Figure 5-12, was built of polystyrene foam. In addition,

a dihedral design was considered in order to increase the stability of the vehicle. The

first flight tests collecting real-time data were conducted using this prototype. How-

ever, its space for avionic systems is limited so another airframe had to be considered

in order to install the required equipment.

Figure 5-12: Illustration of the developed airfoil-shaped wing aircraft.
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5.3.3 Multiplex Twinstar II airframe

The third developed flying platform uses the commercially available Multiplex Twin-

star II model which is shown in Figure 5-13. Its configuration is based on the classic

aerodynamic layout and it is made of molded Elapor foam. Two brushless motors were

mounted on the airfoil-shaped wings to power the airplane. A couple of ailerons, an

elevator and a rudder are used as control surfaces and are actuated by servo motors.

The technical characteristics of the Multiplex Twinstar II are given in Table 5.2.

A payload of approximately 300 g, consisting of sensors and a central processing unit,

was added to the airframe as the embedded electronics. The central processing unit

collects the measurements of the IMU (employed to estimate the airplane attitude

and angular rates), of the airspeed sensor and of the GPS system, to compute the

control law. The control responses are sent to the servo signal generator/receiver

unit and also to the two electric speed controllers to activate the brushless motors.

Besides, a modem is added to exchange data with the ground station.

Figure 5-13: Multiplex Twinstar II airframe.

Parameter Value

Wingspan 1420 mm / 55.9 in
Fuselage length 1085 mm / 42.7 in
Wing area 43 dm2 / 666.5 inch2

Weight approx. 1340 g / 47.3 oz
Wing loading 31.2 g/dm2 / 10.3 oz/sq.ft
RC functions Aileron, elevator, rudder, throttle

Table 5.2: Parameters of the Multiplex Twinstar II airplane.
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5.4 Manual flight tests

Several flight tests have been conducted in manual mode and data collected in real-

time are shown in the following figures. For example, Figure 5-16 plots the path of the

aircraft in three dimensions. Data was provided by the GPS sensor and transmitted to

the ground station through the radio link created by the transimter/receiver devices.

Besides, the developed ground station software application allows plotting the

aircraft path in real-time as shown in Figure 5-14. As it was shown in the previous

section, this application was designed for control purposes also and this is illustrated

in Figure 5-15 in which the airspeed controller parameters are adjusted online for an

improved performance.

Figure 5-14: Manual flight traveled path.

0 200 400 600 800 1000 1200
0

20

40

60

Samples

S
pe

ed
 [k

m
/h

]

 

 

Reference speed
Actual value

Figure 5-15: Manual flight airspeed.
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Figure 5-16: Manual flight 3D path.
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Chapter 6

Conclusions

In this thesis we have developed a navigation strategy for lightweight UAVs flying in

windy conditions. Sensors providing high-resolution measurements at high-frequency

update rates are not typically available for UAVs. This fact affects the uncertainty

of the computed wind which is noisy. Successful path following and accurate wind

estimation can be obtained by exploiting fully the potential of these sensors that are

readily available.

6.1 Results

In order to clearly identify and analyze relevant issues related to this project, we have

conducted a literature review on the fundamental principles that govern the flight of

the aircraft. Initially, we addressed a comprehensive study on the aerodynamic aspect

of the plane, including the forces acting on the aircraft in flight. As a result, we have

obtained the nonlinear aerodynamic model and we have used the Matlab software to

simulate the behavior of the aircraft in undisturbed flight. Since the object of the work

is a lightweight miniature UAV flying at low speed, which makes it very vulnerable

to environmental disturbances, we studied the influence of the wind on the airplane

navigation and we incorporated the resulting forces into the mathematical model.

The complete structure of the nonlinear model is complex and problematic for

control purposes since it depends on uncertain aerodynamic forces. For this reason,
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we have analyzed models that reproduce the essential behavior of the system in a

simplified context. We have considered the dynamics of the different phases of flight

such as coordinated turn flight. Then, we have presented nonlinear reduced complex-

ity models that are easier to analyze and simulate and more adapted to the design of

control strategies.

Once the equations of motion obtained, we have formulated the problem of trajec-

tory following for a plane. It has been considered that all the missions outlined in the

thesis objectives can be accomplished by providing a solution to this basic problem.

To this end, we have developed a navigation strategy for the plane that minimizes the

deviation from a straight line and we have proposed a control algorithm for a simpli-

fied model of the aircraft. Specifically, we hypothesized a stabilized level flight in the

presence of constant and measurable wind, and we opted for a flight controller of the

vehicle in the horizontal plane. It has been shown that the proposed strategy offers

a linear behavior of the aircraft along the desired trajectory and results, validated by

simulations, have been published in an international conference.

In the same context, we have used a nonlinear controller based on backstepping

approach to obtain improved response of the aircraft response. In order to eliminate

the error between the wind measured by the ground station and the wind actually

experienced by the device, estimation of the wind parameters (intensity and direction)

are required. Therefore, we have proposed a strategy of adaptive navigation based on

the theory of Lyapunov and the results were presented in an international conference

and published in a journal. Finally, we have worked on the optimization of the

estimation algorithm using control technology based on the control functions (tuning

functions). We have presented these results together with a comparison between the

proposed methodology and other wind identification methods from literature in an

international conference.

In order to validate the theoretical results, we have developed several airplane

models that served as a tool for learning and testing. Subsequently, we developed a

hardware platform for real-time validation of the control techniques presented above.

The aircraft has been developed based on a classic aerodynamic configuration powered
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by two brushless motors. The platform is equipped with a central control unit, a

GPS-Aided Inertial Navigation system, a Pitot tube and a communication modem

for exchanging data with the ground station. The first experiments were carried

out in open loop and we continued with closed-loop tests. To facilitate testing, we

have designed a graphical interface using the LabView software that allows real-time

visualization of the state of the aircraft. We have used an application developed in

Visual Studio .NET using C # language in order to exchange commands in real time

between the aircraft and the ground station.

6.2 Future work

Several aspects are critical to the successful flight of lightweight fixed-wing UAVs in

wind. First, all aerodynamic forces and moments depend on the velocity vector of

the aircraft relative to the surrounding air mass which is defined in terms of angle

of attack and sideslip. These angles are extremely difficult to measure precisely for

small UAVs. Therefore, sensors capable to compute them or methods to estimate their

values are required. Furthermore, autonomous flight is the highest control objective

to be accomplished in this work. However, the absence of a stable complete aircraft

platform has required additional work. Therefore, autonomous flight has not been

achieved and it is, consequently, a mandatory step in further work for which current

test flights are in advanced stages.

For this reason, a suitable model of an airplane needs to be developed and the

pertinent parameters must be determined by means of parameter identification meth-

ods. Also, the developed ground station requires several improvements in order to

offer real-time wind estimates visualization or to be able to define the trajectories to

be flown graphically.
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Appendix A

Standard backstepping design

Let us rewrite the nonlinear system described by (3.21)

ḋ = V sin (ψ − ψs) +W sin (ψw − ψs)

ψ̇ = r

ṙ = cN

We intend to achieve regulation of d(t) designing backstepping control, for this pur-

pose we define the following error variable

e1 = d− dmin

where dmin is the minimum constant distance from the desired trajectory. The dy-

namics of e1 yields

ė1 = V sin (ψ − ψs) +W sin (ψw − ψs) (A.1)

Let us consider the following positive function

VL1 =
1

2
e21

thus

V̇L1 = e1 [V sin (ψ − ψs) +W sin (ψw − ψs)]
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The e1 term can be stabilized if we introduce ψv as virtual control in the form

V sin (ψv − ψs) = −e1 −W sin (ψw − ψs)

Evaluating V̇L1 when ψ → ψv it follows that

V̇L1|ψ=ψv = −e21

Since ψ is not the real control, let us define the deviation from its desired value

e2 = V sin (ψ − ψs)− V sin (ψv − ψs) = V sin (ψ − ψs) + e1 +W sin (ψw − ψs) (A.2)

and rewrite (A.1) in terms of e1 and e2

ė1 = e2 − e1

This implies that

ė2 = V r cos (ψ − ψs) + e2 − e1 (A.3)

Notice that cos (ψ − ψs) =
√

1− sin2 (ψ − ψs). From (A.2)

sin (ψ − ψs) =
e2 − e1 −W sin (ψw − ψs)

V

and assuming that −π
2
< ψ − ψs < π

2
it follows that (A.3) becomes

ė2 = rR + e2 − e1 (A.4)

with R =
√
V 2 − [e2 − e1 −W sin (ψw − ψs)]2. Let us consider the positive definite

function

VL2 =
1

2

(
e21 + e22

)
whose derivative is

V̇L2 = −e21 + e2 (e2 + rR)
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Using the virtual control rv in the form

rvR = −2e2

V̇L2 becomes when r → rv

V̇L2 |r=rv = −e21 − e22

Let e3 be the deviation of r from its desired value

e3 = rR− rvR = rR + 2e2 (A.5)

This implies

r =
e3 − 2e2

R

It is more convenient to write the error system representation

ė1 = −e1 + e2

ė2 = −e1 − e2 + e3

ė3 = cNR− (e3 − 2e2)
2[e2 − e1 −W sin (ψw − ψs)]

V 2 − [e2 − e1 −W sin (ψw − ψs)]2
− 2e2 − 2e1 + 2e3

Introducing VL = 1
2
e1

2 + 1
2
e22 + 1

2
e23 as the Lyapunov function, then

V̇L = −e21 − e22 + e3(e2 + ė3) (A.6)

Let us propose the control input as

cN =
(e3 − 2e2)

2[e2 − e1 −W sin (ψw − ψs)]
[V 2 − (e2 − e1 −W sin (ψw − ψs))2]R

+
e2 − 3e3 + 2e1

R
(A.7)

Using (A.5), the control law takes the form

cN = −3r − 5e2 − 2e1 − r2[e2 − e1 −W sin (ψw − ψs)]
R

(A.8)
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Thus, (A.6) becomes

V̇L = −e21 − e22 − e23 (A.9)

which proves that in the (d, e1, e2) coordinates the equilibrium (0, 0, 0) is GAS. In

view of (d, ψ, r), the resulting control is

cN = −3r + tan (ψ − ψs)(r2 − 5)− 3d+ 5W sin (ψw − ψs)
V cos (ψ − ψs)
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Appendix B

Path following with on-line

parameter estimation

Let us rewrite the nonlinear system described by (3.21)

ḋ = V sin (ψ − ψs) + kω (B.1)

ψ̇ = r (B.2)

ṙ = cτψ (B.3)

where kω = W sin (ψw − ψs) is considered constant for control design and and it is

due to the wind perturbation

Define the following error variable

e1 = d− dmin (B.4)

where dmin is the minimum constant distance from the desired trajectory. Thus,

ė1 = V sinψ + kω (B.5)

Convergence of e1 to zero
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Propose the following positive function

VL1 =
1

2
e21

thus

V̇L1 = e1 (V sinψ + kω)

To stabilize e1 we introduce ψv as a virtual control in the following form

V sinψv = −c1e1 − k̂ω1

where k̂ω1 is the estimate of kω and c1 > 0 is a constant. Evaluating V̇L1 when ψ → ψv

it follows that

V̇L1 |ψ=ψv = −c1e21 + e1k̃ω1

where k̃ω1 = kω− k̂ω1 . Notice from the above equation that if k̂ω1 → kω then V̇L1 ≤ 0.

Thus, rewriting VL1 , it yields

VL1 =
1

2

(
e21 +

1

γ1
k̃2ω1

)

where γ1 > 0 denotes a constant adaptation gain. Then

V̇L1|ψ=ψv = −c1e21 +

(
e1 −

˙̂
kω1

γ1

)
k̃ω1

Choosing the update law as

˙̂
kω1 = γ1e1 (B.6)

It follows that

V̇L1|ψ=ψv = −c1e21

Convergence of ψ to ψv
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Define the error

e2 = V sinψ − V sinψv = V sinψ + c1e1 + k̂ω1 (B.7)

and rewrite (B.5) in terms of e1 and e2

ė1 = e2 − c1e1 + k̃ω1 (B.8)

This implies that

ė2 = V r cosψ +
(
γ1 − c21

)
e1 + c1e2 + c1k̃ω1 (B.9)

Notice that cosψ =
√

1− (sinψ)2. From (B.7)

sinψ =
e2 − c1e1 − k̂ω1

V

and assuming that −π
2
< ψ < π

2
it follows that (B.9) becomes

ė2 = rR +
(
γ1 − c21

)
e1 + c1e2 + c1k̃ω1 (B.10)

with R =

√
V 2 −

(
e2 − c1e1 − k̂ω1

)2
.

Introduce the following positive function

VL2 = VL1 +
1

2
e22 =

1

2

(
e21 +

1

γ1
k̃2ω1

+ e22

)

From (B.6), (B.8) and (B.10) the derivative reads

V̇L2 = −c1e21 + e2

[
c1e2 + e1(γ1 + 1− c21) + c1k̃ω1 + rR

]
By selecting the virtual control as

rvR = −e2(c1 + c2)− e1(γ1 + 1− c21)− c1(k̂ω2 + k̂ω1)
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V̇L2 becomes when r → rv

V̇L2|r=rv = −c1e21 − c2e22 + c1e2k̃ω2

where k̃ω2 = kω − k̂ω2 , k̂ω2 represents a new estimate for kω and c2 denotes a pos-

itive constant gain. Notice that if we had employed the existing estimate k̂ω1 , we

would have had no design freedom left to cancel the unknown parameter from V̇L2 .

Additionally, k̂ω2 could be seen as a factor correction for k̂ω1 .

Notice from the above equation that if k̂ω2 → kω then V̇L2 ≤ 0. Thus, rewriting

VL2 , it yields

VL2 = VL1 +
1

2

(
e22 +

1

γ2
k̃2ω2

)
with γ2 > 0 and constant. Hence V̇L2 becomes

V̇L2|r=rv = c1e
2
1 − c2e22 + k̃ω2

(
c1e2 −

˙̂
kω2

γ2

)

Proposing the update law

˙̂
kω2 = γ2c1e2

then, it follows

V̇L2 |r=rv = c1e
2
1 − c2e22

Convergence of r to rv

Let us define the third error variable

e3 = rR− rvR

= rR + L2e2 + L1e1 + c1(k̂ω2 − k̂ω1) (B.11)

where L1 = 1− c21 + γ1, L2 = c1 + c2. Rewriting the error system representation, we

obtain [
ė1
ė2

]
=

 −c1 1

−1 −c2

[e1
e2

]
+

[
k̃ω1

e3 + c1k̃ω2

]
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thus, the derivative of e3 yields

ė3 =cτψR−
r(e2 − c1e1 − k̂ω1)(e3 − L2e2 − L1e1 + c1k̂ω1 − c1k̂ω2)

R

+ L2e3 + L3e2 + L4e1 + c1L2k̃ω2 + L1k̃ω1

with L3 = −c1c2 − c21 − c22 + 1 + γ1 + c21γ2 and L4 = −2c1 − c2 + c31 − 2c1γ1.

Finally, introduce the following Lyapunov function

VL =
1

2

(
e21 +

1

γ1
k̃2ω1

+ e22 +
1

γ2
k̃2ω2

+ e23

)

then

V̇L = −c1e21 − c2e22 + e3 (ė3 + e2) (B.12)

Propose the control input as

cτψ =− e3(L2 + c3) + e2(L3 + 1− r2) + e1(L4 + c1r
2)

R

− k̂ω3(L1 + c1L2)− k̂ω2c1L2 − k̂ω1(L1 − r2)
R

where k̃ω3 = kω − k̂ω3 and c3 is a positive constant gain. Notice that the unknown

term kω appears again in V̇L, thus we propose a correction factor in order to realize

the convergence of the states.

Introducing the above into (B.12), we have

V̇L = −c1e21 − c2e22 − c3e23 + e3 (L1 + c1L2) k̃ω3

Observe that V̇L ≤ 0 if k̂ω3 → kω. Therefore augmenting VL, it yields

VL =
1

2

(
e21 +

1

γ1
k̃2ω1

+ e22 +
1

γ2
k̃2ω2

+ e23 +
1

γ3
k̃2ω3

)
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and

V̇L = −c1e21 − c2e22 − c3e23 + k̃ω3

[
e3 (L1 + c1L2)−

˙̂
kω3

γ3

]
Choosing

˙̂
kω3 = γ3(L1 + c1L2)e3

V̇L becomes

V̇L = −c1e21 − c2e22 − c3e23 (B.13)

The error representation of the closed-loop adaptive system is summarized below
ė1

ė2

ė3

 =


−c1 1 0

−1 −c2 1

0 −1 −c3



e1

e2

e3

+


k̃ω1

c1k̃ω2

L5k̃ω3




˙̂
kω1

˙̂
kω2

˙̂
kω3

 =


γ1 0 0

0 c1γ2 0

0 0 L5γ3



e1

e2

e3

 (B.14)

where L5 = c1c2 + γ1 + 1.

Rewriting the control input cτψ in terms of d, ψ, r we have

cτψ = tanψ(r2 − L6)− L7r −
L8d+ L9k̂ω1 + L10k̂ω2 + L11k̂ω3

V cosψ
(B.15)

with the updated parameters

˙̂
kω1 = γ1d

˙̂
kω2 = γ2c1

(
V sinψ + c1d+ k̂ω1

)
˙̂
kω3 = γ3L11V [r cosψ + L2 sinψ] + γ3L11

[
dL11 + c1k̂ω2 + c2k̂ω1

]
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where

L6 = 1 + L2c3 + L2
2 + L3

L7 = L2 + c3

L8 = L7(L1 + c1L2) + c1(L3 + 1) + L4

L9 = 1− c1L7 + L3 − L1 + L2L7

L10 = c1L7 − c1L2

L11 = L1 + c1L2

Notice from (B.13) that V̇L ≤ 0 and it estates the global stability of the equilibrium

(ei, k̃ωi
) =(0, 0). From the LaSalle-Yoshizawa theorem, we have that ei and k̃ωi

; i =

1, 2, 3; are bounded and go to zero as t → ∞. From (B.4) it follows that d → dmin.

(B.4) implies that k̂ω1 is also bounded and

lim
t→∞

ψ = arcsin

(
− k̂ω1

V

)

Observe that from (B.11) r is bounded and r → 0. On the other hand, from

(B.15) it follows that cτψ is bounded.

LaSalle’s invariance principle assures that the state (ei, k̃ωi
) converges to the

largest invariant set M contained in {(e1, e2, e3, k̃ω1 , k̃ω2 , k̃ω3) ∈ R6|V̇L = 0}. On

this invariant set, we have ei ≡ 0 and ėi ≡ 0. From (B.14) it yields ˙̃kωi
= 0 and

k̃ωi
= 0. Thus, the largest invariant set M is

M ={(ei, k̃ωi
) ∈ R6|ei = 0, k̃ωi

= 0}

={(d, ψ, r, k̂ω1 , k̂ω2 , k̂ω3) ∈ R6|(d, ψ, r, k̂ω1 , k̂ω2 , k̂ω3)

= (0, arcsin(− k̂ω1

V
), 0, kω, kω, kω)}

The manifold M is the single point d = 0, ψ = arcsin(− k̂ω1

V
), r = 0, k̂ωi

= kω for
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i = 1, 2 and 3, which is globally asymptotically stable.
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Appendix C

Parameter estimation with

minimum-order design

Let us rewrite the nonlinear system described by (3.21)

ḋ ≡ ṗe s = V sin (ψ − ψd) + kω

ψ̇ = r

ṙ = cτψ

where kω = ω sin (ψω − ψd) is considered constant and due to the wind, and d is the

cross track error from the desired trajectory.

In the following, a step by step adaptive backstepping control algorithm is developed

in order to stabilize the above system system.

Let us define the following error variable

e1 = d− dmin (C.2)

where dmin 6= 0 when needed to stabilize the aircraft to fly at a constant distance

from the desired segment line. Thus,

ė1 = V sin (ψ − ψd) + kω (C.3)
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Regulation of e1

Propose the following positive function

VL1 =
1

2
e21

thus

V̇L1 = e1 [V sin (ψ − ψd) + kω]

Define the second error as

e2 = V sin (ψ − ψd)− V sin (ψv − ψd) (C.4)

where ψv defines the virtual control with the form

V sin (ψv − ψd) = −c1e1 − k̂ω

In the above, k̂ω is an estimate of kω and c1 > 0 is a constant. Then, (C.4)

becomes

e2 = V sin (ψ − ψd) + c1e1 + k̂ω (C.5)

Rewriting (C.3)

ė1 = e2 − c1e1 + k̃ω

where k̃ω = kω − k̂ω. Hence, (C) yields

V̇L1 = −c1e21 + e1e2 + e1k̃ω

Notice from the above equation that if k̂ω → kω and e2 → 0 then V̇L1 ≤ 0 and

this implies that e1 → 0.

In order to converge k̃ω → 0, propose the following positive function

VL2 =
1

2γ
k̃2ω
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where γ > 0 is a constant adaptation gain. Then

V̇L2 = −
˙̂
kω
γ
k̃ω

Define the following tuning function

τ1 = γe1 (C.6)

Thus

V̇L1 + V̇L2 = −c1e21 + e1e2 +
(
τ1 − ˙̂

kω

) k̃ω
γ

Regulation of e2

From (C.5), it follows that

ė2 = V r cos (ψ − ψd) + c1e2 − c21e1 + c1k̃ω +
˙̂
kω (C.7)

Consider the following positive function

VL3 =
1

2
e22

Taking the time derivative leads to

V̇L3 = e2

[
V r cos (ψ − ψd) + c1e2 − c21e1 + c1k̃ω +

˙̂
kω

)
Observe in the above equation the term k̃ω. To reduce the adaptive error, we introduce

the second tuning function of the form

τ2 = τ1 + γc1e2 (C.8)

Define now, the third error as

e3 = V r cos (ψ − ψd)− V rv cos (ψ − ψd)
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The rv term represents a virtual control and it is given by

V rv cos (ψ − ψd) = −e2(c1 + c2)− e1(1− c21)− τ2

then, e3 yields

e3 = V r cos (ψ − ψd) + e2(c1 + c2) + e1(1− c21) + τ2 (C.9)

Rewriting (C.7) in terms of e3

ė2 = e3 − c2e2 − e1 + c1k̃ω +
˙̂
kω − τ2

Thus, V̇L3 becomes

V̇L3 = −c2e22 − e1e2 + e2e3 + e2

(
c1k̃ω +

˙̂
kω − τ2

)
and

V̇L1 + V̇L2 + V̇L3 = −c1e21 − c2e22 + e2e3 + e2

(
−τ2 +

˙̂
kω

)
+
k̃ω
γ

(
τ2 − ˙̂

kω

)
Regulation of e3

The derivative of e3 yields

ė3 = V cτψ cos (ψ − ψd)− V r2 sin (ψ − ψd) + L1e1 + L2e2 + L3e3 + L4k̃ω + L3
˙̂
kω

where

L1 = −c1(3γ + 2 + γ2 − c21)− c2(1 + γ),

L2 = −c1
[
c1(1 + γ + γ2) + c2(1 + 2γ)

]
+ 1 + γ − c22,

L3 = c1 + c2 + γc1

L4 = c1(γc1 + c2) + 1 + γ.
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Propose

VL4 =
1

2
e23

The derivative reads

V̇L4 = e3

(
V cτψ cos (ψ − ψd)− V r2 sin (ψ − ψd) + L1e1 + L2e2 + L3e3 + L4k̃ω + L3

˙̂
kω

)

Finally, define the Lyapunov function

VL = VL1 + VL2 + VL3 + VL4 =
1

2

(
e21 +

1

γ
k̃2ω + e22 + e23

)
(C.10)

thus

V̇L =− c1e21 − c2e22 +
k̃ω
γ

(τ2 + γL4e3 − ˙̂
kω) + e2(

˙̂
kω − τ2)

+ e3

[
V cτψ cos (ψ − ψd)− V r2 sin (ψ − ψd) + L1e1 + (1 + L2)e2 + L3e3 + L3

˙̂
kω

]
(C.11)

Notice that the term k̃ω yields in VL4 , to reduce the adaptive error, we introduce the

third tuning function as

τ3 = τ2 + γL4e3 (C.12)

Observe that

˙̂
kω − τ2 =

˙̂
kω − τ3 + τ3 − τ2 =

˙̂
kω − τ3 + γL4e3

Then, (C.11) becomes

V̇L =− c1e21 − c2e22 + e2(
˙̂
kω − τ3) +

k̃ω
γ

(τ3 − ˙̂
kω)

+ e3

[
V cτψ cos (ψ − ψd)− V r2 sin (ψ − ψd) + L1e1 + (1 + L2 + γL4)e2 + L3e3 + L3

˙̂
kω

]
Proposing the controller

cτψ = r2 tan (ψ − ψd)−
L5e1 + L6e2 + L7e3
V cos (ψ − ψd)

(C.13)
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and the update law

˙̂
kω = τ3 (C.14)

consequently, it follows that

V̇L = −c1e21 − c2e22 − c3e23 (C.15)

where

L5 = L1 + γL3

L6 = 1 + L2 + γc1L3 + γL4

L7 = c3 + L3 + γL3L4.

The error system representation of the resulting closed-loop adaptive system is

summarized below

ė1 = −c1e1 + e2 + k̃ω

ė2 = −e1 − c2e2 + (1 + γL4)e3 + c1k̃ω

ė3 = −(1 + γL4)e2 − c3e3 + L4k̃ω

˙̃kω = −γe1 − γc1e2 − γL4e3 (C.16)

Rewriting (C.13) and (C.14) in terms of d, ψ, r we have

cτψ = tan (ψ − ψd)(r2 − L8)− L7r −
L9d+ L8k̂ω

V cos (ψ − ψd)
(C.17)

and

˙̂
kω = γ

(
L10d+ L11k̂ω + L11V sin (ψ − ψd) + L4V r cos (ψ − ψd)

)
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with

L8 = L6 + L7L3

L9 = L5 + c1L6 + L7(1 + γ + c1c2 + c21γ)

L10 = 1 + L4(1− c21 + γ) + c1L11

L11 = c1 + L3L4

Stability analysis

Notice that, the global stability of the equilibrium (ei, k̃ω) = 0 follows from (C.10)

and (C.15). (C.15) implies that VL ≤ 0 and from the LaSalle-Yoshizawa theorem [4]

we have that ei and k̂ω are bounded and ei, k̃ω → 0 as t → ∞; i = 1, 2, 3. From

(C.2), it follows that d→ dmin. The boundedness of ψ follows from the boundedness

of e1, k̂ω and e2 defined in (C.5). Observe that the convergence to zero of ei does not

imply the convergence to zero of ψ. From (C.5) it can be noted that ψ is bounded,

i.e.

lim
t→∞

ψ = arcsin

(
− k̂ω
V

)
+ ψd

Observe that from (C.16), (C.14), (C.12), (C.8) and (C.6) it follows that
˙̂
kω, τi → 0;

i = 1, 2, 3. (C.9) implies that r → 0 as t→∞. Finally from (C.13), we conclude that

the control τψ is also bounded.

LaSalle’s invariance principle [4] assures that the state (ei, k̃ω) converges to the

largest invariant set M contained in {(e1, e2, e3, k̃ω) ∈ R4|V̇L = 0}. On this invariant

set, we have e ≡ 0 and ė ≡ 0. From (C.14) it yields ˙̃kω = 0 and k̃ω = 0. Thus, the

largest invariant set M is

M = {(e, k̃ω) ∈ R4|e = 0, k̃ω = 0}

= {(d, ψ, r, k̂ω) ∈ R4|(d, ψ, r, k̂ω) = (0, arcsin(−kω
V

) + ψd, 0, kω)}

The manifold M is the single point d = 0, ψ = arcsin(−kω
V

), r = 0, k̂ω = kω which is

globally asymptotically stable.
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For a perturbed system is very important to estimate if not delimitate the region

of attraction of its equilibrium points. Equation (C.5) can be rewritten as

e2 = V sin (ψ − ψd) + e1 +
(
k̂ω − kω

)
+ kω

Thus

|V sin (ψ − ψd)| ≤ |e2|+ |e1|+ |k̃ω|+ |kω| (C.18)

From the proposed Lyapunov function we can write the inequalities

1

2
e21 ≤ VL ≤ V (0)⇒ |e1| ≤

√
2V (0)

1

2
e22 ≤ VL ≤ V (0)⇒ |e2| ≤

√
2V (0)

1

2
k̃2ω ≤ VL ≤ V (0)⇒ |k̃ω| ≤

√
2V (0)

Using the above and (C.18) we can write

| sin (ψ − ψd)| ≤
3
√

2V (0)

V
+
|kω|
V

To remove the singularities we impose | sin (ψ − ψd)| < 1. Therefore, the region of

attraction is |kω |
V
≤ 1− ε, where ε = 3

√
2V (0).
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