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Ce e thèse consiste essentiellement en la concaténation de contributions variées à la théorie additive des structures algébriques comme les groupes, les anneaux et leurs généralisations, d'une part, et à la théorie élémentaire des nombres, d'autre part. En conséquence, la présentation sera divisée en deux parties, partie I et partie II, qui sont indépendantes l'une de l'autre et se composent, respectivement, de trois et deux chapitres.

Dans la première partie, nous prouvons un certain nombre de résultats concernant la théorie additive des groupes (pas nécessairement commutatifs), mais nous le faisons dans le cadre plus large et abstrait des semi-groupes (éventuellement non-commutatifs). Notre philosophie à cet égard peut être résumée dans le méta-principe suivant : plus faibles sont les hypothèses structurelles, plus grand est le nombre de problèmes que nous pouvons espérer résoudre, tout en essayant d'arriver à une meilleure compréhension de leur nature intime.

Les sommes d'ensembles, principalement dans le cadre des groupes commutatifs, ont été intensivement étudiés depuis plusieurs années (voir [Ru] pour un survol récent). Également des résultats intéressants ont été obtenus pour le cas des monoïdes commutatifs et cancellatifs par A. Geroldinger et ses coauteurs ; voir, par exemple, [G] et les références citées là (en notation additive, "cancellatif " veut dire que a + c = b + c ou c + a = c + b impliquent a = b). Mais presque rien n'est connu sur la théorie additive des semi-groupes, et l'un des objectifs du présent travail est de contribuer à l'exploration de ce e théorie et de convaincre, nous l'espérons, le lecteur que le sujet est plus intéressant que l'on pourrait peut-être le suspecter.

Une première motivation naturelle pour s'intéresser aux semi-groupes vient de l'observation que l'ensemble des éléments non nuls d'un anneau à unité non-trivial (commutatif ou non) n'est pas, en i général, cancellatif (sauf si l'anneau est sans diviseurs de zéro), et par conséquent n'est même pas fermé pour la multiplication. Une autre motivation est liée au fait que, même si A = (A, +) est un groupe, les sous-ensembles non vides de A, munis de l'opération binaire qui envoie une paire (X, Y) sur la somme X + Y, ne forment en général rien de plus qu'un monoïde non cancellatif (par exemple, quand A est (Z, +), la structure correspondante sur les parties de A a été étudiée par J. Cilleruello, Y. ould Hamidoune et O. Serra [CHS]).

A cet égard, il semble utile de mentionner une chose. Bien que chaque semi-groupe commutatif et cancellatif puisse être immergé dans un groupe (comme il résulte de la construction standard du groupe de fractions d'un monoïde ; voir [B1, chapitre I, section 2.4]), rien de semblable n'est vrai dans le cas non-commutatif, pas même dans le cas de type ni. Ceci est lié à une question bien connue en théorie des semi-groupes, d'abord résolue par A. I. Mal'cev dans [Ma]. Ce résultat est d'une importance fondamentale pour notre travail sur ce point dans la mesure où il démontre que l'étude des sommes d'ensembles dans les semi-groupes ne peut pas être systématiquement réduite, en l'absence de commutativité, au cas des groupes (en tout cas, pas de façon évidente). En fait, l'exemple de Mal'cev est basé sur le quotient du semi-groupe libre sur huit le res par une congruence appropriée, et le semi-groupe correspondant est non seulement de type ni, mais aussi linéairement (c'est-à-dire, strictement et totalement) ordonnable.

La Partie I se compose de trois chapitres (chapitres 1, 2 et 3). Dans le premier chapitre, qui est basé sur un article par l'auteur [START_REF] Tringali | A Cauchy-Davenport theorem for semigroups[END_REF] publié dans Uniform Distribution eory, on généralise la transformée de Davenport [V] Cela généralise le théorème classique de Cauchy-Davenport [C] [D1] [D2] au cadre plus large des semi-groupes, avec comme cas particuliers une extension des théorèmes de I. Chowla [Ch] et S. S.

Pillai [Pi] pour les groupes cycliques et une version plus forte d'une autre généralisation du même théorème de Cauchy-Davenport pour les groupes commutatifs, où dans la formule ci-dessus γ(Y) est remplacé par l'in mum des ordres d'un sous-semi-groupe non trivial de l'unitarisation de A.

Ce dernier résultat a été prouvé par G. Károlyi dans le cas des groupes nis, grâce au théorème de Feit-ompson ; puis par Hamidoune pour un groupe arbitraire. L'approche d'Hamidoune passe par sa généralisation d'un théorème additif de L. Shatrowsky et il est en dé nitive construit sur sa méthode isopérimétrique.

Dans le deuxième chapitre, qui s'appuie sur un papier par l'auteur [START_REF] Tringali | Cauchy-Davenport type theorems for semigroups[END_REF] soumis pour publication, on fait une étude plus approfondie des propriétés de la constante de Cauchy-Davenport (introduite dans le chapitre précédent) pour montrer l'extension supplémentaire suivante du théorème de Cauchy-Davenport : si (A, +) est un semi-groupe cancellatif et si X, Y ⊆ A, alors

|X + Y| ≥ min(γ(X + Y), |X| + |Y| -).
iii Cela implique une généralisation de l'inégalité de Kemperman pour les groupes sans torsion [Ke] et aussi une version plus forte du théorème d'Hamidoune-Károlyi mentionné ci-dessus. Ici, on donne une preuve indépendante et totalement combinatoire du cas général de ce résultat, qui ne dépend ni du théorème de Feit-ompson ni de la méthode isopérimétrique. En n, on se penche sur certains aspects d'une conjecture qui, si elle était vraie, pourrait fournir une formulation uni ée de beaucoup de théorèmes de type Cauchy-Davenport, y compris ceux-là déjà prouvés dans le chapitre 1.

En n, le troisième chapitre généralise des résultats par G. A. Freĭman, M. Herzog et leurs coauteurs sur la théorie structurelle des sommes d'ensembles dans les groupes ordonnés [FHLM] au cas plus général des semi-groupes ordonnés. En particulier, on prouve que, si (A, •, ≼) est un semigroupe linéairement ordonné et S est un sous-ensemble ni de A engendrant un sous-semi-groupe non-abélien, alors |S | ≥ |S|-. Au cours de la preuve, on obtient également un grand nombre de résultats secondaires, et notamment que le commutateur et le normalisateur d'un sous-ensemble ni d'un semi-groupe linéairement ordonné coïncident. Ce chapitre est basé sur un article par l'auteur [START_REF] Tringali | Small doubling in ordered semigroups[END_REF] soumis pour publication.

La deuxième partie de la thèse traite de questions de théorie élémentaire des nombres, avec un accent particulier sur les congruences, les nombres premiers et la divisibilité. Ce e partie est composée de deux chapitres (chapitres 4 et 5).

Dans le chapitre 4, on prouve des résultats liés à une conjecture par K. Győry et C. Smyth [GS] sur la nitude des ensembles R Le chapitre s'appuie sur un article par l'auteur [START_REF] Tringali | On the divisibility of a n ± b n by powers of n[END_REF] publié dans Integers. iv En n, dans le chapitre 5, nous considérons une question de divisibilité dans l'anneau des entiers, en quelque sorte liée au problème de Znám et à la conjecture Agoh-Giuga. Plus précisément, étant donné un entier n ≥ , soient u , . . . , u n des entiers premiers entre eux deux à deux pour lesquels ≤ u < • • • < u n , soit D une famille de sous-ensembles propres et non vides de { , . . . , n} qui contient un nombre "suffisant" d'éléments, et soit ε une fonction D → {± }. Existe-t-il au moins un nombre premier q tel que q divise ∏ i∈I u i -ε(I) pour un certain I ∈ D, mais ne divise pas u • • • u n ? Nous donnons une réponse positive à ce e question dans le cas où les u i sont des puissances de nombres premiers si on impose certaines restrictions sur ε et D. Nous utilisons ce résultat pour prouver que, si ε ∈ {± } et si A est un ensemble de trois ou plus nombres premiers qui contient les diviseurs premiers des tous les nombres de la forme ∏ p∈B p -ε pour lesquels B est un sous-ensemble propre, ni et non vide de A, alors A contient tous les nombres premiers.

Le chapitre est basé sur un article par Paolo Leone i et l'auteur [START_REF] Tringali | On a system of equations with primes[END_REF] accepté pour publication au Journal de éorie des Nombres de Bordeaux. v T A e present thesis is basically a recollection of several sparse contributions to the additive theory of group-like and ring-like structures, on the one hand, and to the elementary theory of numbers, on the other hand. Accordingly, the presentation will be subdivided into two parts, namely Part I and Part II, which are essentially independent from each other and consist, respectively, of three and two chapters.

In the rst part, we prove a number of results concerning the additive theory of (possibly noncommutative) groups, but we do it in the broader and more abstract se ing of (possibly noncommutative) semigroups. Our philosophy in this respect can be summarized in the following meta-principle: e weaker are the structural assumptions, the larger is the class of problems that we can hope to solve, while trying to get a deeper understanding.

Sumsets in (mostly commutative) groups have been intensively investigated for several years (see [Ru] for a recent survey), and interesting results have been also obtained in the case of commutative and cancellative monoids by A. Geroldinger and coauthors; see, e.g., [G] and references therein (in additive notation, "cancellative" means that a + c = b + c or c + a = c + b imply a = b). But almost nothing is known on the additive theory of semigroups, and one of the goals of the present work is to contribute to the investigation of the theory and to convince the reader, we hope, that the subject is more interesting than one would possibly suspect.

A natural motivation in this sense comes from considering that the non-zero elements of a nontrivial unital ring, either commutative or not, are not, in general, cancellative (unless the ring is a domain), and hence not even closed under multiplication. Another motivation relies on the fact that, even when A = (A, +) is a group, the non-empty subsets of A, endowed with the binary opvii eration taking a pair (X, Y) to the sumset X+Y, is, in general, nothing more than a non-cancellative monoid (e.g., when A is (Z, +), the corresponding structure on the powerset of A has been studied by J. Cilleruello, Y. ould Hamidoune and O. Serra [CHS]).

In this respect, one thing seems worth mentioning. While every commutative cancellative semigroup embeds as a subsemigroup into a group (as it follows from the standard construction of the group of fractions of a commutative monoid; see [B1,Chapter I,Section 2.4]), nothing similar is true in the non-commutative case, not even if the ambient semigroup is nitely generated. is is related to a well-known question in the theory of semigroups, rst answered by A. I. Mal'cev in [Ma], and is of fundamental importance for our work here, in that it shows that the study of sumsets in cancellative semigroups cannot be systematically reduced, in the absence of commutativity, to the case of groups (at the very least, not in any obvious way). In fact, Mal'cev's example involves the quotient of the free semigroup over eight le ers by a suitable congruence, and it is not only nitely generated, but even linearly orderable (here, a semigroup (A, +) is called linearly orderable if there exists a total order ≼ on A such that x + z ≺ y + z and z + x ≺ z + y for all x, y, z ∈ A with x ≺ y).

Part I consists of three chapters, namely Chapters 1, 2 and 3. In the rst chapter, based on a paper by the author [START_REF] Tringali | A Cauchy-Davenport theorem for semigroups[END_REF] published in Uniform Distribution eory, we generalize the Davenport transform [V] and use it to prove that, for a (possibly non-commutative) cancellative semigroup A = (A, +) and non-empty subsets X, Y of A such that the subsemigroup generated by Y is commutative, we have

|X + Y| ≥ min(γ(Y), |X| + |Y| -), viii where γ(Y) := sup y ∈Y × inf y ̸ =y∈Y ord(y -y )
is what we call the Cauchy-Davenport constant of Y (relative to A). is generalizes the classical Cauchy-Davenport theorem [C] [D1] [D2] to the se ing of semigroups, and it implies, in particular, an extension of I. Chowla's [Ch] and S. S. Pillai's [Pi] theorems for cyclic groups, as well as a strengthening of another generalization of the same Cauchy-Davenport theorem to the case of commutative groups, where γ(Y) in the above formula is replaced by the in mum of the order of the non-trivial subsemigroups of the (conditional) unitization of A. In fact, a proof of this la er result was rst given by G. Károlyi in 2005 for the special case of nite groups [Ka], based on the structure theory of group extensions, by reduction to nite solvable groups in the light of the Feit-ompson theorem. en, a more "elementary" proof of the general statement (for an arbitrary group) was communicated to Károlyi by Hamidoune during the peer-review process of Károlyi's paper and included in the nal version of the manuscript [Ka]. Hamidoune's approach depends on a generalization of an addition theorem by L. Shatrowsky and is ultimately built upon the isoperimetric method.

In the second chapter, which is founded on a paper by the author [START_REF] Tringali | Cauchy-Davenport type theorems for semigroups[END_REF] submi ed for publication, we further investigate the properties of the Cauchy-Davenport constant and use them to prove the following: If A is cancellative and X, Y ⊆ A, then

|X + Y| ≥ min(γ(X + Y), |X| + |Y| -).
is implies at once a generalization of Kemperman's inequality for torsion-free groups [Ke] and a strengthening of the Hamidoune-Károlyi theorem mentioned in the above. Our proof of this is ix basically a transformation proof; in particular, it is self-contained and does not depend on either the Feit-ompson theorem or the isoperimetric method. In addition, we present and discuss aspects of a conjecture which, if true, would further improve most of the results in the chapter and provide a uni ed picture of many more theorems of Cauchy-Davenport type, including the ones proved in Chapter 1.

Finally, Chapter 3 generalizes results by G. A. Freĭman, M. Herzog and coauthors on the structure theory of set addition from the context of linearly ordered groups [FHLM] to linearly ordered semigroups. In particular, we nd that, if (A, •, ≼) is a linearly ordered semigroup and S is a nite subset of A generating a non-abelian subsemigroup, then |S | ≥ |S| -. On the road to this goal, we also prove a number of subsidiary results, and most notably that the commutator and the normalizer of a nite subset of a linearly ordered semigroup are equal to each other. e chapter is based on a paper by the author [START_REF] Tringali | Small doubling in ordered semigroups[END_REF] submi ed for publication.

e second part of the thesis, on the other hand, deals with questions from the elementary theory of numbers, with a focus on congruences, prime numbers and divisibility in the integers.

Part II is composed of two chapters, namely Chapters 4 and 5. In Chapter 4 we prove a result related to a difficult conjecture by K. Győry and C. Smyth [GS] about the niteness of the sets ). e chapter relies on a paper by the author [START_REF] Tringali | On the divisibility of a n ± b n by powers of n[END_REF] published in Integers.

R ± k (a
Finally, in Chapter 5 we consider a question in the study of primes and divisibility in the ring of integers, somehow related to Znám's problem and the Agoh-Giuga conjecture. Speci cally, given an integer n ≥ , let u , . . . , u n be pairwise coprime integers for which ≤ u < • • • < u n , and let D be a family of nonempty proper subsets of { , . . . , n} with "enough" elements and ε a map x D → {± }. It is then natural to ask whether there exist at least one prime q such that q divides ∏ i∈I u i -ε(I) for some I ∈ D, but it does not divide u • • • u n . In fact, we answer this in the positive in the case where the integers u i are prime powers and some restrictions hold on ε and D. We use the result to prove that, if ε ∈ {± } and A is a set of three or more primes that contains all prime divisors of any number of the form ∏ p∈B p -ε for which B is a nite nonempty proper subset of A, then A contains all the primes. e chapter is based on a paper by the author [START_REF] Tringali | On a system of equations with primes[END_REF] (joint work with Paolo Leone i) accepted for publication in Journal de éorie des Nombres de Bordeaux. À mes parents : pour le bien que vous me voulez. Pour le bien que je vous veux. Parce que sans vous, je ne serais rien. À ma soeur : pour me rappeler toujours que tout est, en principe, une question de con ance. À mes grands-mères et à mes grands-pères : à ceux qui sont encore en vie et à ceux qui ne sont plus là. Pour m'avoir donné une plage pour écouter la mer et un petit bois pour courir le vent. À ' dans la rue du monde. Je suis heureux de vous avoir connus. Pour ce que vous avez simplement signi é. Pour les sourires soudains que le passant ne comprendra jamais. Et même pour la mélancolie que je porte dans les poches du coeur, avec les souvenirs dont la mémoire ne se souvient plus. À , et à Giovanni d'une façon particulière. S'ils ne sont pas nombreux, ils me sont en revanche très chers sans que cela ne coûte rien.
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A . Parce qu'ils me rendent le monde des hommes plus beau. Aux musiciens : pour la musique. Aux écrivains : pour les romans. Aux poètes : pour la joie et la tristesse de la parole. Aux chanteurs : pour les chansons. Et aux jardiniers : pour les roses dans les jardins de la ville.

A . À ceux qui regardent les autres pour ce qu'ils sont, sans a priori. À ceux qui sont grands sans être arrogants. À ceux qui sont extraordinaires parce que, personnes simples, ils font des choses parfois très compliquées. Ce e thèse n'a été possible que parce que j'ai eu la chance d'en rencontrer beaucoup.

A . 

A

. e purpose of this brief chapter is to review basic de nitions and x some general terminology and notation. We make rst a short digression into set theory, which may sound pedantic to practitioners, but is necessary in view of certain developments, on which we hope to work in the future. 1

P

We use as a foundation the Tarski-Grothendieck set theory, shortly TG. Alternatives are possible, but this issue exceeds the scope of the thesis, and we can pass over it. We just mention that we choose to work in TG, rather than, say, in ZFC (the classical Zermelo-Fraenkel set theory with the axiom of choice), motivated by the fact that we will hopefully be concerned, in a sequel of this work, with objects like the "class of all structures of a certain type", which would make no sense in ZFC, essentially because the la er does not allow for anything like the "class of all sets". With this in mind, we x once and for all an uncountable Grothendieck universe Ω, and refer to the elements of Ω as Ω-sets, or simply sets, and to an arbitrary set in the ontology of TG as a class, a family, or a collection.

We write Z for the integers, N + for the positive integers, Q for the rationals, R for the real numbers, and R + for the positive real numbers. en, we let N := { } ∪ N + and R + := { } ∪ R + . Each of these sets is regarded as a subset of R and endowed with its usual addition +, multiplication •, absolute value | • | ∞ and order ≤ (as customary, we write ≥ for the dual of ≤, and < and >, respectively, for the strict orders induced by ≤ and ≥). Moreover, we denote by P the set { , , . . .} of all (positive rational) primes, and for m ∈ N + we write Z/mZ for the integers modulo m, equipped with the usual addition + m and multiplication • m (we omit the subscript 'm' if there is no danger of confusion).

We extend the operations and the order of R to R ∪ {∞}, by adjoining a "point at in nity", viz an element ∞ / ∈ R (in fact, we may assume ∞ := R), and by taking a

+ ∞ := ∞ + a := ∞ and a ≤ ∞ for a ∈ R ∪ {∞}, as well as a • ∞ := ∞ • a := ∞ if a ̸ = and • ∞ := ∞ • := .
Accordingly, we set := ∞ and := • = • ∞ = .

We use capital blackboard le ers such as A and B, with or without subscripts or superscripts, to denote structured classes (or simply structures), by which we mean here any tuple consisting of one class, referred to as the carrier of the structure, and a nite number of operations or relations of nite ariety on the same class such as (A, +), (B, ⊥), or (C, +, •, , ≼). Accordingly, if A is a structure and A its carrier, we write a ∈ A to mean on the one hand that a is an element of A, and on the other to emphasize that, in the context of the discourse, any statement involving the element a should be interpreted, in the presence of ambiguity, with respect to the structure of A (this is typically the case where, by an abuse of notation, operations or relations of different structures are denoted by the same symbol). e same principle applies to subclasses, so that we may occasionally write S ⊆ A in place of S ⊆ A. Since every class can be viewed as a "vacuous structure", the above is perfectly consistent with the fact that we are using blackboard le ers like N, Z, etc. to refer to some special sets of numbers.

We write |X| for the counting measure of a set X (this is just the number of elements of X when X is nite), by interpreting | • | as a map from Ω to N ∪ {∞}.

At several points throughout the thesis, we will use without explicit mention the elementary fact that if A ⊆ B ⊆ R + ∪ {∞} then inf(B) ≤ inf(A) and sup(A) ≤ sup(B), with the convention that the supremum and the in mum of an empty subset of R + ∪ {∞} are, respectively, and ∞. Note that, here and later, in ma and suprema of subsets of R + ∪ {∞}, as well as minima and maxima (when de ned) are always taken with respect to (the appropriate restriction of) the order ≤.

Given a, b ∈ Z with a + b ̸ = we use gcd(a, b) for the greatest common divisor of a and b. Also, for c ∈ Z \ { } and p ∈ P, we write e p (c) for the p-adic valuation of c, namely the greatest exponent k ∈ N such that p k | c, and we extend this to Z by e p ( ) := ∞. Finally, for m ∈ N + and x ∈ Z/mZ we let gcd(m, x) := gcd(m, x), where x is the smallest non-negative integer in x.

Unless otherwise speci ed, we refer to N. Bourbaki, éorie des ensembles, Éléments de mathématique I, Springer-Verlag, Berlin, 2006 (reprint ed.) and N. Bourbaki, Algèbre, Chapitres 1 à 3, Éléments de mathématique II, Springer-Verlag, Berlin, 2006 (2nd revised ed.), respectively, for standard notations and de nitions from set theory and abstract algebra.

In all what follows, the lowercase Latin le ers h and k shall denote integers, while i, j, ℓ, m and n stand for positive integers, unless a statement to the contrary is made. 
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Part I Additive Semigroup eory

γ(Y) := sup y ∈A × inf y ̸ =y∈Y ord(y -y ).
Cela généralise le théorème classique de Cauchy-Davenport au cadre plus large des semi-groupes, avec comme cas particuliers une extension des théorèmes de I. Chowla et S. S. Pillai pour les groupes cycliques et une version plus forte d'une autre généralisation du théorème de Cauchy-Davenport pour les groupes commutatifs, où dans la formule ci-dessus γ(Y) est remplacé par l'in mum de |S| sur les sous-semigroupes S non triviaux de l'unitarisation de A. Ce dernier résultat a été prouvé par G. Károlyi dans le cas des groupes nis, grâce au théorème de Feit-ompson ; puis par Hamidoune pour un groupe arbitraire grâce à sa méthode isopérimétrique. Le chapitre est basé sur un papier par l'auteur [START_REF] Tringali | A Cauchy-Davenport theorem for semigroups[END_REF] publié dans Uniform Distribution eory.

A

. We generalize the Davenport transform and use it to prove that, for a (possibly noncommutative) cancellative semigroup A = (A, +) and non-empty subsets X, Y of A such that the subsemigroup generated by Y is commutative, we have

|X + Y| ≥ min(γ(Y), |X| + |Y| -), where γ(Y) := sup y ∈A × inf y ̸ =y∈Y ord(y -y ).
is carries over the Cauchy-Davenport theorem to the broader se ing of semigroups, and it implies, in particular, an extension of I. Chowla's and S. S. Pillai's theorems for cyclic groups and a strengthening of another generalization of the same Cauchy-Davenport theorem to commutative groups, where γ(Y) in the above is replaced by the in mum of |S| as S ranges over the nontrivial subsemigroups of the (conditional) unitization of A. is la er result was rst proved by G. Károlyi in 2005 for the special case of nite groups [Ka], by reduction to simple groups by the Feit-ompson theorem, and later by Y. O. Hamidoune for an arbitrary group, building upon the isoperimetric method. e chapter is based on a paper by the author [START_REF] Tringali | A Cauchy-Davenport theorem for semigroups[END_REF] published in Uniform Distribution eory.

I

Semigroups are a natural framework for developing large parts of theories traditionally presented in less general contexts. Not only this can suggest new directions of research and shed light on questions primarily focused on groups, but it also makes methods and results otherwise restricted to "richer se ings" applicable, at least in principle, to larger classes of problems.

Here and later, a semigroup is a structure A = (A, +) consisting of a (possibly empty) set A and an associative binary operation + on A. Given subsets X and Y of A, we de ne the sumset, relative to A, of the pair (X, Y) as the set

X + Y := {x + y : x ∈ X, y ∈ Y},
which is wri en as x + Y if X = {x} (respectively, as X + y if Y = {y}). Furthermore, we extend the notion of difference set by

X -Y := {z ∈ A : (z + Y) ∩ X ̸ = ∅} (1.1) and -X + Y := {z ∈ A : (X + z) ∩ Y ̸ = ∅}. (1.2)
Expressions involving one or more summands of the form

Z + • • • + Z n or ∑ n i= Z i ,
as well as expressions of the form -x + Y and Xy for x, y ∈ A are de ned in a similar way (we may omit the details); in particular, we use nZ for Z + • • • + Z n if the Z i are all equal to the same set Z, and we possibly refer to nZ as the n-fold sum of Z.

We say that A is unital, or a monoid, if there exists ∈ A such that z + = + z = z for all z; when this is the case, is unique and called the identity of A. en, we let A × be the set of units of A, so that A × = ∅ if A is not a monoid. In this respect, we recall that, if A is unital with identity , a unit of A is an element z for which there exists a provably unique element z ∈ A such that z + z = z + z = ; this z is then called the inverse of z in A and denoted by (-z) A , or simply by -z if no ambiguity can arise.

Given Z ⊆ A, we write Z × in place of Z ∩ A × (if there is no likelihood of confusion) and ⟨Z⟩ A for the smallest subsemigroup of A containing Z. Note that A is a group if and only if A × = A.

en, if Z = {z}, we use ⟨z⟩ A instead of ⟨{z}⟩ A and ord A (z) for the order of z (in A), that is we let ord A (z) := |⟨z⟩ A |, so generalizing the notion of order for the elements of a group. Here and later, the subscript 'A' may be omi ed from the notation if A is clear from the context. Finally, an element [B1,Section I.2.2]), and A is said cancellative if any element of A is cancellable.

z ∈ A is called cancellable (in A) if x + z = y + z or z + x = z + y for x, y ∈ A implies x = y (see
On another hand, we de ne the conditional unitization of A, herein denoted by A ( ) and simply referred to as the unitization of A, as follows: If A is not unital, A ( ) is the pair (A ∪ {A}, +), where + is, by an abuse of notation, the unique extension of + to a binary operation on A∪{A} for which A serves as an identity (note that A / ∈ A, so loosely speaking we are just adjoining a distinguished element to A and extending the structure of A in such a way that the outcome is a monoid whose identity is the adjoined element); otherwise A ( ) := A (cf. [Ho,p. 2]). en, for a subset S of A we write p A (S) for inf z∈S\{ } ord A ( ) (z), namely the in mum of the order of the non-trivial subsemigroups of A ( ) , which is simply denoted by p(S) if there is no ambiguity.

Remark 1.1. In the case of a multiplicatively wri en semigroup B = (B, •), the "sumset" of two subsets X and Y of B, relative to B, is more properly called the product set of the pair (X, Y) and possibly denoted by XY, while the analogues of the difference sets de ned by (1.1) and (1.2) are wri en as XY -and X -Y, respectively. Accordingly, given Z ⊆ B we use Z n for the product set of n copies of Z and call it the n-fold product of Z. Further, we write the unitization of B as B ( ) rather than as B ( ) . However, note that, if we are talking of a semigroup and it is not clear from the context whether this is wri en either additively or not, the term "sumset" will be preferred. For the rest, everything works as expected.

Sumsets in (mostly commutative) groups have been intensively investigated for several years (see [Ru] for a recent survey), and interesting results have been also obtained in the case of commutative cancellative monoids (see [G] and references therein, where these structures are simply called "monoids"). e chapter aims to extend aspects of the theory to the more general se ing of possibly non-commutative semigroups.

A natural motivation in this sense comes from considering that the non-zero elements of a nontrivial unital ring, either commutative or not, are not, in general, cancellative (unless the ring is a domain), and hence not even closed under multiplication. Another motivation relies on the fact that, even when A = (A, +) is a group, the non-empty subsets of A, endowed with the binary operation taking a pair (X, Y) to the sumset X+Y, is, in general, nothing more than a non-cancellative monoid (e.g., when A is (Z, +), the corresponding structure on the powerset of A has been studied by J. Cilleruello, Y. O. Hamidoune and O. Serra [CHS]; see the discussion at the end of the section for details on this).

Historically, one of the rst signi cant achievements in the eld is probably the Cauchy-Davenport theorem, originally established by A.-L. Cauchy [C] in 1813, and independently rediscovered more than a century later by H. Davenport [D1] [D2]: eorem 1.2 (Cauchy-Davenport theorem). Let (A, +) be a group of prime order p and X, Y nonempty subsets of A. en, |X + Y| ≥ min(p, |X| + |Y| -).

e result has been the subject of numerous papers, and received many different proofs, each favoring alternative points of view and eventually leading to progress on a number of related questions. In fact, the main contribution here is an extension of eorem 1.2 to cancellative semigroups (this is stated in Section 1.2).

e Cauchy-Davenport theorem applies especially to the additive group of the integers modulo a prime. Extensions to composite moduli have been given by several authors, and notably by I. Chowla [Ch] and S. S. Pillai [Pi]. ese results, reported below for the sake of exposition and used by Chowla and Pillai in relation to Waring's problem, are further strengthened, in Section 1.2, by Corollary 1.17, which can be viewed as a common generalization of both of them, and whose proof is sensibly shorter than each of the proofs appearing in [Ch] and [Pi] (not to mention that it comes as a by-product of a deeper result).

eorem 1.3 (Chowla's theorem). If X, Y are non-empty subsets of Z/mZ such that ∈ Y and gcd(m, y) = for each y ∈ Y \ { }, then |X + Y| ≥ min(m, |X| + |Y| -).
eorem 1.4 (Pillai's theorem). Pick non-empty subsets X and Y of Z/mZ. Let δ be the maximum of gcd(m, yy ) for distinct y, y ∈ Y if |Y| ≥ , and set δ := otherwise. en,

|X + Y| ≥ min(δ -m, |X| + |Y| -).
A partial account of further results in the same spirit can be found in [START_REF] Nathanson | Additive Number eory. Inverse Problems and the Geometry of Sumsets[END_REF]Section 2.3], along with an entire chapter dedicated to Kneser's theorem [START_REF] Nathanson | Additive Number eory. Inverse Problems and the Geometry of Sumsets[END_REF]Chapter 4], which, among the other things, implies eorem 1.3 (and then also eorem 1.2); see [START_REF] Nathanson | Additive Number eory. Inverse Problems and the Geometry of Sumsets[END_REF]Section 4.6,Exercises 5 and 6]. Generalizations of the Cauchy-Davenport theorem of a somewhat different avor have been furnished, still in recent years, by several authors. Speci cally, assume for the rest of the chapter that A = (A, +) is a xed, arbitrary semigroup (unless differently speci ed), and let be the identity of the unitization, A ( ) , of A. en we have: eorem 1.5 (folklore). If A is a commutative group and X, Y are non-empty subsets of A, then

|X + Y| ≥ min(p(A), |X| + |Y| -).
eorem 1.5 is another (straightforward) consequence of Kneser's theorem. While it applies to both nite and in nite commutative groups, an analogous result holds for all groups:

eorem 1.6 (Hamidoune-Károlyi theorem). If A is a group and X, Y are non-empty subsets of A, then |X + Y| ≥ min(p(A), |X| + |Y| -).
is was rst proved by G. Károlyi in the case of nite groups, relying on the structure theory of group extensions, by reduction to nite solvable groups in the light of the Feit-ompson theorem, and then by Hamidoune in the general case, based on the isoperimetric method. In fact, we will give an elementary proof of the Hamidoune-Károlyi theorem in the next chapter, which the reader is referred to for more details on the history of the result.

A further result from the literature that is signi cant in relation to the subject ma er is due to J. H. B. Kemperman [Ke], and reads as follows: eorem 1.7 (Kemperman's inequality). Let A be a group, and let X, Y be non-empty subsets of A.

Suppose that every non-zero element of A has order

≥ |X| + |Y| -. en, |X + Y| ≥ |X| + |Y| -.
Remarkably, [Ke] is focused on cancellative semigroups (there simply called semigroups), and it is precisely in this framework that Kemperman establishes a series of results, related to the number of different representations of an element in a sumset, that eventually lead to eorem 1.7, a weakened version of which will be obtained in Section 1.5 as a corollary (namely, Corollary 1.15) of our main theorem.

As for the rest, Cilleruello, Hamidoune and Serra, see [CHS,eorem 3], have proved a Cauchy-Davenport theorem for acyclic monoids (these are termed acyclic semigroups in [CHS], but they are, in fact, monoids in our terminology), and it would be interesting to nd a common pa ern among their result and the ones in the present chapter. Unluckily, we do not have much on this for the moment (in particular, note that acyclic semigroups in [CHS] are not cancellative semigroups), but will come back to the question with some thoughts in the next chapter.

O .

In Section 1.2, we de ne the Cauchy-Davenport constant and state our main results. In Section 1.3, we establish a few basic lemmas. Section 1.4 is devoted to generalized Davenport transforms and their fundamental properties. We demonstrate the central theorem of the chapter ( eorem 1.9) in Section 1.5 and give a couple of applications in Section 1.6.

T

Keeping all of the above in mind, we can now proceed to the heart of the chapter.

De nition 1.8. For an arbitrary subset X of A, we let

γ A (X) := sup x ∈X × inf x ̸ =x∈X ord(x -x ) en, given X , . . . , X n ⊆ A we de ne γ A (X , . . . , X n ) := max ≤i≤n γ A (X i )
and call γ A (X , . . . , X n ) the Cauchy-Davenport constant of (X , . . . , X n ) relative to A (again, the subscript 'A' may be omi ed from the notation if there is no likelihood of confusion).

Any pair of subsets of A has a well-de ned Cauchy-Davenport constant (relative to A). In particular, γ(Z) is zero for Z ⊆ A if A × = ∅. However, this is not the case, for instance, when Z ̸ = ∅ and A is a group, which serves as a "moral base" for the following non-trivial bound: eorem 1.9. Suppose A is cancellative and let X, Y be non-empty subsets of A such that ⟨Y⟩ is commutative. en,

|X + Y| ≥ min(γ(Y), |X| + |Y| -).
eorem 1.9 represents the central contribution of the chapter. Not only it extends the Cauchy-Davenport theorem to the broader se ing of semigroups (see Section 1.6), but it also provides a strengthening and a generalization of eorem 1.5, as is shown below. Any pair of subsets of A has, in fact, a well-de ned Cauchy-Davenport constant (relative to A), and it is interesting to compare it with other "structural parameters", as in the following:

Lemma 1.10. Let X, Y be subsets of A and assume that A is cancellative and X

× + Y × is non-empty. en, γ(X, Y) ≥ min(γ(X), γ(Y)) ≥ γ(X + Y) ≥ p(A).
e proof of Lemma 1.10 is deferred to the end of Section 2.3. Note that the result applies, on the level of groups, to any pair of non-empty subsets. On the other hand, the following basic example suggests that the lemma is quite pessimistic, insofar as there are some relevant cases where each of the '≥' in its statement can actually be replaced with a "much greater than":

Example 1.11. Let m ≥ and pick prime numbers p and q with m < p < q. en, set

X := {mk mod n : k = , . . . , p -} and Y := {mk mod n : k = , . . . , p}, where n := m • p • q. We have |X + Y| = p, γ(X) = γ(Y) = p • q and γ(X + Y) = q, while p(Z/nZ) is the smallest prime divisor of m, with the result that p(Z/nZ) < γ(X + Y) < min(γ(X), γ(Y)) = γ(X, Y),
and indeed p(Z/nZ) is "much" smaller than γ(X + Y) if q is "much" larger than m, and similarly γ(X + Y) is "much" smaller than γ(X, Y) if p is "much" larger than . eorem 1.9 can be "symmetrized" and further strengthened when each summand generates a commutative subsemigroup. is leads to the following corollaries, whose proofs are straightforward, by duality (see Proposition 2.8 in Section 2.3), in the light of De nition 1.8: Corollary 1.12. Assume A is cancellative and let X, Y be non-empty subsets of A such that ⟨X⟩ is commutative. en, |X + Y| ≥ min(γ(X), |X| + |Y| -).

Corollary 1.13. If A is cancellative and X, Y are non-empty subsets of A such that both of ⟨X⟩ and ⟨Y⟩ are commutative, then

|X + Y| ≥ γ(X, Y).
Moreover, the result specializes to groups as follows:

Corollary 1.14. If A is a group and X, Y are non-empty subsets of A such that ⟨Y⟩ is commutative, then |X + Y| ≥ min(γ(Y), |X| + |Y| -), where now γ(Y) = sup y ∈Y inf y ̸ =y∈Y ord(y -y ), and indeed γ(Y) = max y ∈Y inf y ̸ =y∈Y ord(y -y ) if Y is nite.
Proof. Immediate by eorem 1.9, for on the one hand A being a group implies Y = Y × , and on the other, a supremum over a non-empty nite set is a maximum. e next corollary is now a partial generalization of eorem 1.7 to cancellative semigroups: its proof is straightforward by Corollary 1.13 and Lemma 1.10. Here, we say that A is torsion-free if p(A) is in nite (in fact, this is an abstraction of the classical de nition for groups).

Corollary 1.15. If A is cancellative, and if X, Y are non-empty subsets of A such that every element of A \ { } has order ≥ |X| + |Y| -(this is especially the case when A is torsion-ee) and either of ⟨X⟩ and ⟨Y⟩ is abelian, then |X

+ Y| ≥ |X| + |Y| -.
eorem 1.9 is proved in Section 1.5.

e argument is inspired by the transformation proof originally used for eorem 1.2 by Davenport in [D1].

is leads us to the de nition of what we call a generalized Davenport transform. e author is not aware of any earlier use of the same technique in the literature, all the more in relation to semigroups. With few exceptions, remarkably including [HR] and A. G. Vosper's original proof of his famous theorem on critical pairs [V], even the "classical" Davenport transform has not been greatly considered by practitioners in the area, especially in comparison with similar "technology" such as the Dyson transform [N, p. 42].

Remark 1.16. A couple of things are worth mentioning before proceeding. While every commutative cancellative semigroup embeds as a subsemigroup into a group (as it follows from the standard construction of the group of fractions of a commutative monoid; see [B1, Chapter I, Section 2.4]), nothing similar is true in the non-commutative case, not even if the ambient is nitely generated. is is related to a well-known question in the theory of semigroups, rst answered by A. I. Mal'cev in [Ma], and is of fundamental importance for our work here, in that it shows that the study of sumsets in cancellative semigroups cannot be systematically reduced, in the absence of commutativity, to the case of groups (at the very least, not in any obvious way). In fact, Mal'cev's example involves the quotient of the free semigroup over eight le ers by a suitable congruence, and it is not only nitely generated, but even linearly orderable (see Section 3.2 for the terminology and cf. Remark 3.6).

On the other hand, it is true that every cancellative semigroup can be embedded into a cancellative monoid, so that, for the speci c purposes of the chapter, we could have assumed almost everywhere that the "ambient" is a monoid (rather than a semigroup), but we did differently because, rst, the assumption is not really necessary, and second, it seems more appropriate to develop as much as possible of the material with no regard to the presence of an identity (e.g., since this is be er suited for the kind of generalizations outlined above). We will see, however, that certain parts take a simpler form when an identity is made available somehow, as in the case of various lemmas in Section 1.3 or in the proof of eorem 1.9.

We provide two applications of eorem 1.9 in Section 1.6 (hopefully, others will be investigated in future work): e rst is a generalization of eorem 1.3, the second is an improvement on a previous result by Ø. J. Rødseth [R,Section 6] based on Hall's "marriage theorem". As for the former (which is stated below), we will use the following speci c notation: Given a non-empty Z ⊆ Z/mZ, we let

δ Z := min z ∈Z max z ̸ =z∈Z gcd(m, z -z ) (1.3)
if |Z| ≥ , and δ Z := otherwise. With this in hand, we have:

Corollary 1.17. Let X and Y be non-empty subsets of Z/mZ and de ne δ := min(δ X , δ Y ). en,

|X + Y| ≥ min(δ -m, |X| + |Y| -).
In particular, |X + Y| ≥ min(m, |X| + |Y| -) if there exists y ∈ Y such that gcd(m, yy ) = for each y ∈ Y \ {y } (or dually with X in place of Y).

In fact, Corollary 1.17 contains Chowla's theorem ( eorem 1.3) as a special case: With the same notation as above, it is enough to assume that at least one unit of (Z/mZ, •) belongs to Y and gcd(m, y) = for each non-zero y ∈ Y (or dually with X in place of Y). Also, it is clear from (1.3) that the result is a strengthening of Pillai's theorem ( eorem 1.4).

Many questions arise. Most notably: Is it possible to further extend Corollary 1.13 in such a way to get rid of the assumption that summands generate commutative subsemigroups? Partial answers in this sense will be provided in the next chapter, leading to what we refer to as the Cauchy-Davenport conjecture (namely, Conjecture 2.1).

P

is short section collects basic results used later to introduce the generalized Davenport transforms and prove eorem 1.9. Some proofs are direct and standard (and thus omi ed without further explanation), but we have no reference to anything similar in the context of semigroups, so we include them here for completeness.

Proposition 1.18. Pick subsets X , Y , . . . , X n , Y n of A such that X i ⊆ Y i for each i. en, ∑ n i= X i ⊆ ∑ n i= Y i and ∑ n i= X i ≤ ∑ n i= Y i .
Proposition 1.19. Assume that A is cancellative, let n ≥ , and pick non-empty X , . . . ,

X n ⊆ A. en, ∑ n i= X i ≤ ∑ n i= X i and ∑ n- i= X i ≤ ∑ n i= X i .
In spite of being trivial, the next estimate is o en useful (cf. [TV,Lemma 2.1,p. 54]).

Proposition 1.20. Given X , . . . ,

X n ⊆ A, it holds ∑ n i= X i ≤ ∏ n i= |X i |.
Let X, Y ⊆ A. No ma er whether or not A is cancellative, nothing similar to Proposition 1.20 applies, in general, to the difference set X -Y, which can be in nite even if both of X and Y are not. On another hand, it follows from the same proposition that, in the presence of cancellativity, the cardinality of X + Y is preserved under translation, namely |z

+ X + Y| = |X + Y + z| = |X + Y| for every z ∈ A.
is is a point in common with the case of groups, but a signi cant difference is that, in the context of semigroups (even when unital), the above invariance property cannot be used, at least in general, to "normalize" either of X and Y in such a way as to contain some distinguished element of A. However, we will see in a while that things continue to work properly when A is a monoid and sets are shi ed by units.

Lemma 1.21. Let X and Y be subsets of A. e following are equivalent:

(i) X + Y ⊆ X + Y. (ii) X + nY ⊆ X + Y for all n. (iii) X + ⟨Y⟩ = X + Y.
Proof. Points (ii) and (iii) are clearly equivalent, as X + ⟨Y⟩ = ∪ ∞ n= (X + nY), and (i) is obviously implied by (ii). us, we are le to prove that (ii) follows from (i), which is immediate (by induction) using that, if X + nY ⊆ X + Y for some n, then we have

X + (n + )Y = (X + nY) + Y ⊆ (X + Y) + Y = X + Y ⊆ X + Y.
e above result is as elementary as central in the plan of the chapter, as the applicability of the generalized Davenport transform (introduced in Section 1.5) to the proof of eorem 1.9 depend on it in a critical way. On another hand, the following lemma shows that, in reference to eorem 1.9, there is no loss of generality in assuming that the ambient semigroup is unital, for any semigroup embeds as a subsemigroup into its unitization (recall Remark 1.16).

Lemma 1.22. Let B = (B, ⋆) be a semigroup, ϕ a semigroup monomorphism A → B, i.e. an injective function om A to B such that ϕ(z

+ z ) = ϕ(z ) ⋆ ϕ(z ) for all z , z ∈ A, and X , . . . , X n ⊆ A. en, |X + • • • + X n | = |ϕ(X ) ⋆ • • • ⋆ ϕ(X n )|.
We close the section with a few properties of units. Here and later, given X ⊆ A we use C A (X) for the centralizer of X in A, namely the set of all z ∈ A such that z + x = x + z for every x ∈ X.

Lemma 1.23. Let A be a monoid, X a subset of A, and z a unit of A with inverse z. en:

(i) X -z = X + z and -z + X = z + X, but also |-z + X| = |X -z| = |X|. (ii) If z ∈ C A (X) then z ∈ C A (X)
; in addition to this, ⟨X -z⟩ and ⟨-z + X⟩ are commutative if ⟨X⟩ is commutative.

Proof. (i) By duality, it suffices to prove that Xz = X + z and |X -z| = |X|. As for the rst identity, it holds w ∈ Xz if and only if there exists x ∈ X such that w + z = x, which in turn is equivalent to x + z = (w + z) + z = w, namely w ∈ X + z. In order to conclude, it is then sufficient to observe that the function

A → A : ξ → ξ + z is a bijection. (ii) Pick z ∈ C A (X) and x ∈ X. It is clear that x + z = z + x if and only if x = (x + z) + z = z+x+z,
and this is certainly veri ed as our standing assumptions imply z+x+z = z+z+x = x.

It follows that z ∈ C A (X).

Suppose now that ⟨X⟩ is a commutative semigroup and let v, w ∈ ⟨X -z⟩. By point (i) above, there exist x , . . . , x ℓ , y , . . . ,

y m ∈ X such that v = ∑ ℓ i= (x i + z) and w = ∑ m i= (y i + z), thus
v + w = w + v by induction on ℓ + m and the observation that for all u , u ∈ X it holds

(u + z) + (u + z) = u + u + z = u + u + z = (u + z) + (u + z),
where we use that z ∈ C A (X), as proved above, and ⟨X⟩ is commutative. Hence, ⟨X -z⟩ is commutative too, which completes the proof by duality.

Remark 1.24. Considering that units are cancellable elements, point (i) in Lemma 1.23 can be (partially) generalized as follows:

If X ⊆ A and z ∈ A is cancellable, then |z + X| = |X + z| = |X| (this is straightforward, because both of the functions A → A : x → x+z and A → A : x → z+x are bijective).
Remark 1.25. ere is a subtleness in De nition 1.8 and Lemma 1.23 that we have so far (intentionally) overlooked, but should be remarked. For, suppose that A is a monoid and pick x, y ∈ A.

In principle, x-y and -y+x are not elements of A: In fact, they are difference sets, namely subsets of A, and no other interpretation is possible a priori. However, if y is a unit of A and ỹ is the inverse of y, then xy = {x + ỹ} and -y + x = {ỹ + x} by point (i) of Lemma 1.23, and we are allowed to identify xy with x + ỹ and -y + x with ỹ + x, which is useful in many ways.

T D

As mentioned in Section 1.2, Davenport's proof [D1, Statement A] of eorem 1.2 is a transformation proof. For A a commutative group, the idea is to map a pair (X, Y) of non-empty subsets of A to a new pair (X, Y D ), which is smaller than (X, Y) in an appropriate sense, and speci cally such that

|Y D | < |Y|, |X + Y D | + |Y| ≤ |X + Y| + |Y D |.
We then refer to (X, Y D ) as a Davenport transform of (X, Y); see, for instance, [HR]. For this to be possible, the classical approach requires that X + Y ̸ ⊆ X + Y and ∈ Y, so that |Y| ≥ . As expected, many difficulties arise when a empting to adapt the same approach to semigroups, all the more if these are non-commutative. Even the possibility of embedding a semigroup into a monoid does not resolve anything, since the fundamental problem is that, contrary to the case of groups, cardinality is not preserved "under subtraction". Namely, if A is an arbitrary monoid with identity (as intended for the remainder of the section), X is a subset of A, and z ∈ A, then |X|, |X-z| and |-z+X| can be greatly different from each other, even in the case that A is cancellative; cf. point (i) of Lemma 1.23. us, unless A is a group or, more generally, embeds as a submonoid into a group, we are not allowed to assume, for instance, that ∈ Y by picking an arbitrary element y ∈ Y and replacing (X, Y) with the "shi ed" pair (X + y , -y + Y); cf. the comments following Proposition 1.20.

In fact, the primary goal of this section is to show that, in spite of these issues, Davenport's original ideas can be extended and used for a proof of eorem 1.9.

To start with, let X and Y be subsets of A such that mX + Y ̸ ⊆ X + Y for some (positive integer) m. For the sake of brevity, de ne

Z := (mX + Y) \ (X + Y).
Our assumptions give Z ̸ = ∅. us x z ∈ Z, and take

x z ∈ (m -)X and y z ∈ Y for which z ∈ x z + X + Y + y z , where X := { }. Finally, set Ỹz := {y ∈ Y : z ∈ x z + X + Y + y} and Y z := Y \ Ỹz .
(1.4)

We refer to (X, Y z ) as a generalized Davenport transform of (X, Y) (relative to z), and based on this notation we have: (ii

) If A is cancellative, then (x z + X + Y z ) ∪ (z -Ỹz ) ⊆ x z + X + Y. (iii) If ⟨Y⟩ is commutative, then (x z + X + Y z ) ∩ (z -Ỹz ) = ∅. (iv) If A is cancellative, then |z -Ỹz | ≥ | Ỹz |. (v) If A is cancellative and ⟨Y⟩ is commutative, then |X + Y| + |Y z | ≥ |X + Y z | + |Y|. Proof. (i) Y z is non-empty by hypothesis, while Ỹz is non-empty since y z ∈ Ỹz by construction. Also, (1.4) gives Y z , Ỹz ⊆ Y and Y z ∩ Ỹz = ∅, so that Y \ Y z = Y \ (Y \ Ỹz ) = Ỹz and Y z , Ỹz Y. (ii) Since Y z ⊆ Y by point (i) above, x z + X + Y z ⊆ x z + X + Y by Proposition 1.19.
On the other hand, if w ∈ z -Ỹz then there exists y ∈ Ỹz such that z = w + y. But y ∈ Ỹz implies by (1.4) that z = w + y for some w ∈ x z + X + Y, whence w = w by cancellativity, namely w ∈ x z + X + Y.

(iii) Assume the contrary and let w ∈ (x z + X + Y z ) ∩ (z -Ỹz ). ere then exist x ∈ X, y ∈ Y z and y ∈ Ỹz such that w = x z + x + y and z = w + y . Using that ⟨Y⟩ is commutative, it follows that z = x z + x + y + y = x z + x + y + y , which in turn implies y ∈ Ỹz by (1.4), since Y z , Ỹz ⊆ Y by point (i). is is, however, absurd as Y z ∩ Ỹz = ∅, by the same point (i).

(iv) We have from (1.4) that for each y ∈ Ỹz there exists w ∈ x z + X + Y such that z = w + y, and hence w ∈ z -Ỹz . On the other hand, since A is cancellative, we cannot have w + y = w + y for some w ∈ A and distinct y , y ∈ Ỹz . us, Ỹz embeds as a set into z -Ỹz , with the result that 

|z -Ỹz | ≥ | Ỹz |. (v) Since A is cancellative and X ̸ = ∅ (otherwise Z = ∅),
|X + Y z | + |Y z | = |Y| = |X + Y z | + |Y|.
So we are le with the case when Y is nite, for which the inclusion-exclusion principle, points (ii)-(iv) and Proposition 1.19 give, by symmetry, that

|X + Y| = |x z + X + Y| ≥ |x z + X + Y z | + |z -Ỹz | = = |X + Y z | + |z -Ỹz | ≥ |X + Y z | + | Ỹz |.
But Ỹz = Y\Y z and Y z ⊆ Y by point (i) above, so at the end we have

|X+Y| ≥ |X+Y z |+|Y|-|Y z |,
and the proof is complete.

Remark 1.27. To apply the generalized Davenport transform to eorem 1.9, it will be enough to consider the case where m = , for which it is easily seen that ∈ Y z if ∈ Y (we continue with the notation from above), as otherwise z ∈ X + Y, contradicting the fact that z ∈ (X + Y) \ (X + Y). However, it seems intriguing that the same machinery can be used, at least in principle, even if m ≥ in so far as there is a way to prove that Y z is non-empty.

T

Lemma 1.26 is used here to establish the main contribution of the chapter.

Proof of eorem 1.9. Since every semigroup embeds as a subsemigroup into its unitization, and the unitization of a cancellative semigroup is cancellative in its own right, Lemma 1.22 and De nition 1.8 imply that there is no loss of generality in assuming, as we do, that A is unital. us, suppose by contradiction that the theorem is false. ere then exists a pair (X, Y) of subsets of A for which ⟨Y⟩ is abelian and

|X + Y| < min(γ(Y), |X| + |Y| -). en, ≤ |X|, |Y| < ∞.
(1.5)

In fact, if either of X and Y is a singleton or in nite then |X + Y| = |X| + |Y| -, contradicting the standing assumptions. It follows from (1.5) that

|X + Y| < sup y ∈Y × inf y ̸ =y∈Y ord(y -y ) and |X + Y| ≤ |X| + |Y| -. (1.6)
Again without loss of generality, we also take |X| + |Y| to be minimal over the pairs of subsets of A for which, in particular, (1.5) and (1.6) are assumed to hold. Now, since |X + Y| is nite, thanks to (1.5) and Proposition 1.20, we get by (1.6) and the same equation (1.5) that there exists ỹ ∈ Y × such that

|X + Y| < inf ỹ ̸ =y∈Y ord(y -ỹ ) = min ỹ ̸ =y∈Y ord(y -ỹ ).
(1.7) 

So le ing W := Y -ỹ implies |X + W | < min ̸ =w∈W ord ( 
∈ Y \ {ỹ } only if y -ỹ ∈ (Y -ỹ ) \ { }, but also w ∈ (Y -ỹ ) \ { } only if w + ỹ ∈ Y \ {ỹ } (see also Remark 1.25). We claim that Z := (X + W ) \ (X + W ) ̸ = ∅.
(1.9)

For, suppose the contrary. en, X + W = X + ⟨W ⟩ by Lemma 1.21, so that

|X + W | = |X + ⟨W ⟩| ≥ |⟨W ⟩| ≥ max w∈W ord(w) ≥ min ̸ =w∈W ord(w),
where we use, in particular, Proposition 1.19 for the rst inequality and the fact that |W | ≥ for the last one. But this contradicts (1.8), so (1.9) is proved. Pick z ∈ Z and let (X, W ) be a generalized Davenport transform of (X, W ) relative to z. Since ⟨Y⟩ is a commutative subsemigroup of A (by hypothesis), the same is true for ⟨W ⟩, by point (ii) of Lemma 1.23. Moreover, ∈ W , and thus 

∈ W ̸ = ∅ and W W , ( 1 

A

First, we show how to use eorem 1.9 to prove the extension of Chowla's theorem for composite moduli mentioned in Section 1.2.

Proof of Corollary 1.17. e claim is trivial if X or Y is a singleton. Otherwise, since Z/mZ is a commutative nite group and ord(zz ) = m/ gcd(m, zz ) for all z, z ∈ Z/mZ, we get by Corollary 1.14 that

|X + Y| ≥ min(γ(Y), |X| + |Y| -), where γ(Y) = max y ∈Y min y ̸ =y∈Y ord(y -y ) = m • max y ∈Y min y ̸ =y∈Y gcd(m, y -y ) = δ - Y m.
Now in an entirely similar way, it is found, in view of Corollary 1.12, that

|X + Y| ≥ min(δ - X m, |X| + |Y| -).
is concludes the proof, considering that δ Y = if there exists y ∈ Y such that gcd(m, yy ) = for every y ∈ Y \ {y } (and dually with X).

We now use P. Hall's theorem on distinct representatives [H] to say something on the "localization" of elements in a sumset. eorem 1.28 (Hall's theorem). Let S , . . . , S n be sets. ere then exist (pairwise) distinct elements s ∈ S , . . . , s n ∈ S n if and only if for each k = , . . . , n the union of any k of S , . . . , S n contains at least k elements.

More precisely, suppose A is a cancellative semigroup and let X, Y be non-empty nite subsets of A such that |X + Y| < γ(Y). Clearly, this implies Y × ̸ = ∅. De ne k := |X| and ℓ := |Y|, and let x , . . . , x k be a numbering of X and y , . . . , y ℓ a numbering of Y. en consider the k-by-ℓ matrix, say α(X, Y), whose entry in the i-th row and j-th column is x i + y j . Any element of X + Y appears in α(X, Y), and viceversa any entry of α(X, Y) is an element of X + Y. Also, eorem 1.9 and our hypotheses give |X + Y| ≥ k + ℓ -. So it is natural to try to get some information about where in the matrix α(X, Y) it is possible to nd k + ℓdistinct elements of X + Y. In this respect we have the following proposition, whose proof is quite similar to the one of a weaker result in [R, Section 6], which is, in turn, focused on the less general case of a group of prime order: Proposition 1.29. Assume that ⟨Y⟩ is commutative and let Z be any subset of X + Y of size ℓ -, for instance Z = x + {y , . . . , y ℓ-}. en we can choose one element om each row of α(X, Y) in such a way that Z and these elements form a subset of X + Y of size k + ℓ -.

Proof.

For each i = , . . . , k let Z i := (x i + Y) \ Z and note that Z i is a subset of the i-th row of α(X, Y). us, Z i ∪ • • • ∪ Z i h = ({x i , . . . , x i h } + Y) \ Z for any positive h ≤ k and all distinct i , . . . , i h ∈ { , . . . , k}. It follows that |Z i ∪ • • • ∪ Z i h | ≥ |{x i , . . . , x i h } + Y| -|Z| ≥ h + ℓ --(ℓ -) = h,
where we combine eorem 1.9 with the fact that |{x i , . . . ,

x i h } + Y| ≤ |X + Y| < γ(Y),
as is implied by Proposition 1.18 and the assumption that |X + Y| < γ(Y). en, as a consequence of Hall's theorem, we can nd k distinct elements z ∈ Z , . . . , z k ∈ Z k , and these, together with the ℓelements of Z, provide a total of k

+ ℓ -distinct elements of X + Y, since Z ∩ Z = • • • = Z ∩ Z k = ∅ (by construction).

T On ne voit bien qu'avec le coeur. L'essentiel est invisible pour les yeux.

Antoine S E , Le Petit Prince
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Cauchy-Davenport type theorems, II R . On fait une étude plus approfondie des propriétés de la constante de Cauchy-Davenport (introduite dans le chapitre 1) pour montrer l'extension supplémentaire suivante du théorème de Cauchy-Davenport : si (A, +) est un semi-groupe cancellatif et si X, Y ⊆ A, alors

|X + Y| ≥ min(γ(X + Y), |X| + |Y| -).
Cela implique une généralisation de l'inégalité de Kemperman pour les groupes sans torsion [Ke] et aussi une version plus forte du théorème d'Hamidoune-Károlyi mentionné précédemment. Ici, on donne une preuve indépendante et totalement combinatoire du cas général de ce résultat, qui ne dépend ni du théorème de Feit-ompson ni de la méthode isopérimétrique. En n, on se penche sur certains aspects d'une conjecture qui, si elle était vraie, pourrait fournir une formulation uni ée de beaucoup de théorémes de type Cauchy-Davenport, y compris ceux déjà prouvés dans le chapitre précédent. Le contenu ci-après est basé sur un papier par l'auteur [START_REF] Tringali | Cauchy-Davenport type theorems for semigroups[END_REF] soumis pour publication.

A

. Based on a paper by the author [START_REF] Tringali | Cauchy-Davenport type theorems for semigroups[END_REF] which is still under review, we further investigate the properties of the Cauchy-Davenport constant (introduced in Chapter 1) and use them to prove the following: If A is a cancellative semigroup (either commutative or not) and X, Y ⊆ A, then

|X + Y| ≥ min(γ(X + Y), |X| + |Y| -).
is implies at once a generalization of Kemperman's inequality for torsion-free groups [Ke] and a strengthening of the Hamidoune-Károlyi theorem. Our proof of the la er is basically a transformation proof; in particular, it is self-contained and does not depend on either the Feit-ompson theorem or the isoperimetric method. In addition, we discuss aspects of a conjecture that, if true, would further improve most of the results in the chapter, generalize a greater number of Cauchy-Davenport type theorems (including those proved in the previous chapter), and hopefully provide a deeper understanding on this kind of inequalities.

I

e weaker are the structural assumptions, the larger is, in principle, the number of problems that we can hope to solve, while trying to arrive at a be er understanding of their "real nature": is is, in essence, the philosophy at the heart of the present thesis. Building on these ideas, we aim here to further extend some aspects of the theory developed in the previous chapter, particularly in the direction of the study of non-commutative or non-cancellative semigroups.

A natural motivation for this comes from considering that the non-zero elements of a non-trivial unital ring, either commutative or not, are not, in general, cancellative (and hence not even closed) under multiplication (unless the ring is a domain). Another motivation is the fact that, even when A is a commutative group, the non-empty subsets of A, endowed with the binary operation taking a pair (X, Y) to the sum-set X+Y, is, in general, nothing more than a non-cancellative monoid (e.g., when A is the additive group of the ring of integers, the corresponding structure on the powerset of A has been studied by J. Cilleruello, Y. O. Hamidoune and O. Serra; see [CHS] and references therein).

Here, more speci cally, the main contribution is an extension ( eorem 2.3) of the (classical) Cauchy-Davenport theorem ( eorem 1.2) to the se ing of cancellative, but possibly noncommutative semigroups (see comments at the end of Section 2.2), whence we derive as an almost immediate consequence a stronger and more abstract version (Corollary 2.4) of the Hamidoune-Károlyi theorem ( eorem 1.6). In fact, a proof of this la er result was rst published by Károlyi in 2005 for the special case of nite groups [Ka], based on the structure theory of group extensions, by reduction to nite solvable groups in the light of the Feit-ompson theorem. In the same paper (p. 242), Károlyi reports a more elementary proof of the general statement (for an arbitrary group), which was apparently communicated to him by Hamidoune during the peer-review process of [Ka]. Hamidoune's approach depends on a generalization of an addition theorem by L. Shatrowsky and is ultimately built upon the isoperimetric method (see [Ha] and references therein). However, Károlyi himself has pointed out to the author, as recently as July 2013, that an alternative and even "simpler" approach comes from a Kneser-type result due to J. E. Olson [O, eorem 2], based on Kemperman's transform. Yet another argument along the same lines was suggested by I. Ruzsa in a private communication in mid-June 2013.

On these premises, we remark from the outset that also our proof of eorem 2.3, and consequently of Corollary 2.4, is basically a transformation proof, close in the spirit to Olson's approach and as elementary as other combinatorial proofs in the literature (in particular, it is self-contained and does not depend at all on the Feit-ompson theorem or Hamidoune's isoperimetric method).

In addition to the above, we present and discuss aspects of a conjecture (Conjecture 2.1) which, if true, would further improve most of the results in the paper and include as a special case a greater number of Cauchy-Davenport type theorems, and particularly those proved in the previous chapter. In all of this, a key role is played by certain invariance properties of the Cauchy-Davenport constant (De nition 1.8), which are also investigated in this work. O .

In Section 2.2 we give an overview, complementary to the one of the previous chapter, of the literature on theorems of Cauchy-Davenport type (with a particular emphasis on those that we are going to strengthen or generalize), and state our main results and a related conjecture (Conjec-ture 2.1). Section 2.3 contains intermediate results on the invariance of the Cauchy-Davenport constant under suitable transformations. Finally, in Section 2.4 we prove the principal theorem (namely, eorem 2.3).

C -D

As already emphasized in the previous chapter, the Cauchy-Davenport theorem is probably the rst signi cant achievement in the eld of additive theory, dating back to work by A.-L. Cauchy in 1813 [C]. e result has many generalizations. E.g., we have seen that extensions to composite moduli (the theorem applies especially to the additive group of the integers modulo a prime) have been given by I. Chowla [Ch, eorem 1] and S. S. Pillai [Pi]. ese la er results have been sharpened and further generalized by Corollary 1.17 in the previous chapter, where they appear as eorems 1.3 and 1.4, respectively. e whole thing comes as an almost immediate consequence of eorem 1.9, and leads us here to the following:

Conjecture 2.1. Let n be a positive integer and X , . . . ,

X n non-empty subsets of A. If A is cancellative, then |X + • • • + X n | ≥ min(γ(X , . . . , X n ), |X | + • • • + |X n | + -n).
Unluckily, we do not have a proof of the conjecture (not even for two summands), which can however be con rmed in some special case (see, in particular, Corollary 2.5 below, or consider Corollary 1.13 when A is commutative) and would provide, if it were true, a comprehensive generalization of about all the extensions of the Cauchy-Davenport theorem reported in this thesis. Incidentally, the next example shows that the assumption of cancellativity, or a surrogate of it, is critical and somewhat necessary:

Example 2.2. Let X and Y be non-empty disjoint sets with |X| < ∞ and denote by (F X , • X ) and (F Y , • Y ), respectively, the free abelian groups on X and Y. For a xed element e / ∈ F X ∪F Y , we de ne a binary operation

• on F := F X ∪ F Y ∪ {e} by taking u • v := u • X v for u, v ∈ F X , u • v := u • Y v for u, v ∈ F Y and u • v := e otherwise.
It is routine to check that • is associative, so we write F for the unitization of (F, •) and for the identity of F. en, taking

Z := Y ∪ { } gives γ F (Z) = ∞ and X • Z := {x • z : x ∈ X, z ∈ Z} = X ∪ {e}, so that |X • Z| < |X| + |Z| -≤ γ F (X, Z), namely |X • Z| < min(γ F (X, Z), |X| + |Z| -)
, and the right-hand side can be made arbitrarily larger than the le -hand side.

Nevertheless, we can prove the following inequality, which in fact represents the main contribution of the present chapter: eorem 2.3. Let X, Y be subsets of A and suppose that A is cancellative. en, |X+Y| ≥ min(γ(X+ Y), |X| + |Y| -).

At this point, it is worth comparing eorems 1.9 and 2.3. On the one hand, the la er is "much stronger" than the former, for it does no longer depend on commutativity (which, by the way, leads to a perfectly symmetric statement). Yet on the other hand, the former is "much stronger" than the la er, since for subsets X and Y of A we are now replacing γ(X, Y) in eorem 1.9 with γ(X + Y), and it has been already observed (Example 1.11) that this means, in general, a weaker bound.

e above seems to suggest that a common generalization of the two theorems should be possible, and gives another (indirect) motivation to believe that Conjecture 2.1 can be true. Let it be as it may, eorem 2.3 is already strong enough to allow for a strengthening of the Hamidoune-Kàrolyi theorem ( eorem 1.6 in Chapter 1), as implied by Lemma 1.10 and Example 1.11. As pointed out before, the theorem was rst proved by Károlyi in [Ka] in the particular case of nite groups, based on the Feit-ompson theorem. e full theorem was then established by Hamidoune through the isoperimetric method [Ka,p. 242].

In contrast, our proof of eorem 1.6 is purely combinatorial, and it comes as a trivial consequence of eorem 2.3 in view of Lemma 1.10. Speci cally, we have the following: Corollary 2.4. Pick n ∈ N + and subsets X , . . . ,

X n of A such that X × + • • • + X × n ̸ = ∅. If A is cancellative, then |X + • • • + X n | ≥ min(p(A), |X | + • • • + |X n | + -n).
eorem 2.3 and Corollary 2.4 are proved in Section 2.4. Another result from the literature that is meaningful in relation to the present chapter is Kemperman's inequality, to wit eorem 1.7. In fact, the result is generalized by the following, whose proof is straightforward in the light of Corollary 2.4 (we may omit the details).

Corollary 2.5. Given n

∈ N + , let X , . . . , X n be subsets of A such that X × + • • • + X × n ̸ = ∅. De ne κ := |X | + • • • + |X n | + -n and assume ord(x) ≥ κ for every x ∈ A \ { }. If A is cancellative, then |X + • • • + X n | ≥ κ.
For the rest, it was already mentioned in the introduction that earlier contributions by other authors to the additive theory of semigroups are due, e.g., to Cilleruelo, Hamidoune and Serra, who in particular proved in [CHS] a Cauchy-Davenport theorem for acyclic monoids (these are termed acyclic semigroups in [CHS], but they are, in fact, monoids in our terminology), and it could be quite interesting to nd a common pa ern among their result and the ones in this chapter. e same question was raised at the end of Section 1.1, where it was also observed that one of the main difficulties with this idea is actually represented by the fact that acyclic monoids in [CHS] are not cancellative, which has served as a basic motivation for making the results of Section 2.3 mostly independent from the assumption of cancellativity.

Remark 2.6. Incidentally, we point out that condition M1 in the de nition of an acyclic semigroup M = (M, •) in [CHS], to wit "y • x = x implies y = , for every x ∈ M" (we write for the identity of M), is to be xed in some way, since otherwise taking M to be the unitization of a nonempty le -zero semigroup (N, •), where x • y := x for all x, y ∈ N, yields a counterexample to the statement that "If M is an acyclic semigroup and ∈ S", where S is a nite subset of M, "then the only nite directed cycles in the Cayley graph Cay(M, S) are the loops": is is rst mentioned in the second paragraph of Section 2 in the cited paper (p. 100), and is fundamental for most of its results. At rst, we thought of a typo and tried to substitute condition M1 with its "dual", namely "x • y = x implies y = , for every x ∈ M." In fact, this is enough to x the issue with the Cayley graphs of M, but Lemma 1 in the same paper, which is equally essential in many proofs, breaks down completely (for a concrete counterexample, consider the monoid obtained by reversing the multiplication of (N, •) in the previous counterexample).

However, there are at least two possible workarounds: e rst is to assume that M is commutative, the second to turn condition M1 into a "self-dual" axiom, namely to replace it with "x • y = x or y • x = x implies y = , for every x ∈ M."

P

roughout, we collect basic results to be used later in Section 2.4 to prove eorem 2.3 and Corollary 2.4. Some proofs are quite simple (and thus omi ed without further explanation), but we have no standard reference to anything similar in the context of semigroups, so we include them here for completeness.

Notice that, even though eorem 2.3, say, refers to cancellative semigroups, most of the results presented in the section do not depend on the cancellativity of the "ambient". While this makes no serious difference from the point of view of readability, it seems interesting in itself, and our hope is that the material can help to nd a proof of Conjecture 2.1 (or to further re ne it).

Lemma 2.7. Suppose A is a monoid. Pick n ∈ N + and z , . . . , z n ∈ A × , and let X , . . . , X n be subsets of A. en,

∑ n i= X i = ∑ n i= (z i-+ X i -z i ) .
Proof. Let zi be, for i = , . . . , n, the inverse of z i in A, and set X := ∑ n i= X i for economy of notation. Lemma 1.23 gives

∑ n i= (z i-+ X i -z i ) = ∑ n i= (z i-+ X i + zi ) = z + X + z n ,

and then another application of the same proposition yields

|X| = |z + X + z n |.
In all what follows, we let A op be the dual (or opposite) semigroup of A, namely the pair (A, + op ) where + op is the binary operation

A × A → A : (z , z ) → z + z ; cf. [B1, Section I.1.1, De nition 2].
Proposition 2.8. Given n ∈ N + , let X and X , . . . , X n be subsets of A, and pick z ∈ A. en,

X + • • • + X n = X n + op • • • + op X and ord(z) = ord A op (z).
Here and later, to express that a statement follows as a more or less direct consequence of Proposition 2.8, we will simply say that it is true "by duality". is is useful for it o en allows, for instance, to simplify a proof to the extent of cu ing by half its length, as in the following lemma, which generalizes an analogous, well-known property of groups: Lemma 2.9. Pick x, y ∈ A and suppose that at least one of x or y is cancellable. en, ord(x + y) = ord(y + x).

Proof. By duality, there is no loss of generality in assuming, as we do, that y is cancellable. Further, it suffices to prove that ord(x + y) ≤ ord(y + x), since then the desired conclusion will follow from the fact that, on the one hand, ord(y

+ x) = ord(x + op y) = ord A op (x + op y) ≤ ord A op (y + op x) = ord(y + op x) = ord(x + y),
and on the other hand, y is cancellable in A if and only if it is cancellable in A op . Now, the claimed inequality is obvious if ord(y + x) is in nite. Otherwise, there exist n, k ∈ N + with k < n such that ord(y + x) = n and

(y + x) + • • • + (y + x) k times = (y + x) + • • • + (y + x) n+ times .
So, by adding y to the right of both sides and using associativity to rearrange how the terms in the resulting expression are grouped we get

y + (x + y) + • • • + (x + y) k times = y + (x + y) + • • • + (x + y) n+ times ,
Since y is cancellable, it then follows that

(x + y) + • • • + (x + y) k times = (x + y) + • • • + (x + y) n+ times , which ultimately gives ord(x + y) ≤ n = ord(y + x).
Proposition 2.10. Let X be a subset of A. en, γ(X) = γ A op (X).

Proof. Let i be the map A × → A × sending a unit of A to its inverse, and de ne i op in a similar way by replacing A with its dual. An element x ∈ A is a unit in A if and only if it is also a unit in A op , and x ∈ A is the inverse of x in A if and only if it is also the inverse of x in A op . us,

A × = (A op ) × , X ∩ A × = X ∩ (A op ) × and i = i op , with the result that γ(X) = sup x ∈X × inf x ̸ =x∈X ord(x + i(x )) and γ A op (X) = sup x ∈X × inf x ̸ =x∈X ord A op (i(x ) + x),
where we use Lemma 1.23 to express the Cauchy-Davenport constant of X relative to either of A and A op only in the terms of i. But any unit in a monoid is cancellable, so for all x ∈ X × and x ∈ A we get, again by Proposition 2.8 and in the light of Lemma 2.9, that

ord A op (i(x ) + x) = |⟨i(x ) + x⟩ A op | = |⟨i(x ) + x⟩| = = ord(i(x ) + x) = ord(x + i(x )).
And this, together with the above, is enough to conclude.

We de ne an invariant n-transform of A, here simply called an invariant n-transform if no confusion can arise, to be any tuple T = (T , . . . , T n ) of functions on the powerset of A, herein denoted by P(A), with the property that, for all non-empty X , . . . , X n ∈ P(A),

1. ∑ n i= T i (X i ) = ∑ n i= X i and ∑ n i= |X i | = ∑ n i= |T i (X i )|; 2. γ(X + • • • + X n ) = γ(T (X ) + • • • + T n (X n )).
An interesting case is when each of the T i is a unital shi , namely a function of the form

P(A) → P(A) : X → z l + X + z r
such that z l and z r are units of A. is is implied by the following results, for which we use, among the other things, that if A is a monoid and z ∈ A × then, by Lemma 1.23, we have

(X + Y) -z = X + (Y -z) and (-z + X) + Y = -z + (X + Y)
for all X, Y ⊆ A, so that we can drop the parentheses without worrying and write, e.g., X + Yz for (X + Y)z and -z + X + Y in place of (-z + X) + Y.

Lemma 2.11. If n ∈ N + and X , . . . ,

X n ⊆ A, then X × + • • • + X × n ⊆ (X + • • • + X n ) × ,

and the inclusion is, in fact, an equality if A is cancellative.

Proof.

e assertion is obvious for n = , so it is enough to prove it for n = , since then the conclusion follows by induction. For, let X, Y be subsets of A.

Suppose rst that z ∈ X × + Y × (which means, in particular, that A is a monoid), i.e. there exist x ∈ X × and y ∈ Y × such that z = x + y. If x is the inverse of x (in A) and ỹ is the inverse of y, then it is immediate to see that ỹ + x is the inverse of x + y, and hence x + y ∈ (X + Y) × . It follows that

X × + Y × ⊆ (X + Y) × .
As for the other inclusion, assume that A is cancellative and pick z ∈ (X+Y) × . We have to show that z ∈ X × + Y × . For, let z be the inverse of z, and pick x ∈ X and y ∈ Y such that z = x + y. We de ne x := y + z and ỹ := z + x. It is straightforward to check that x + x = (x + y) + z = and ỹ+y = z+(x+y) = . Also, (x+x)+y = y+z+(x+y) = y and x+(y+ỹ) = (x+y)+z+x = x, from which we get, by cancellativity, x + x = y + ỹ = . is implies that z belongs to X × + Y × , and so we are done.

Remark 2.12. As a byproduct of the proof of Lemma 2.11, we get the following: If x , . . . ,

x n ∈ A × (n ∈ N + ) and xi is the inverse of x i , then xn + • • • + x is the inverse of x + • • • + x n .
is is a standard fact about groups, which goes through verbatim for monoids; see [B1,Section I.2.4,Corollary 1]. We mention it here because it is used below. Lemma 2.13. Let A be a monoid, and pick z ∈ A × and X ⊆ A. en, γ(X) ≤ γ(X + z).

Proof. By Lemma 2.11, we have X × + z ⊆ (X + z) × , and thus

γ(X + z) = sup w ∈(X+z) × inf w ̸ =w∈X+z ord(w -w ) ≥ sup w ∈X × +z inf w ̸ =w∈X+z ord(w -w ).
(2.1)

But w ∈ X + z if and only if there exists x ∈ X such that w = x + z, and in particular w ∈ X × + z if and only if x ∈ X × . Also, given x ∈ X × and x ∈ X, it holds x + z = x + z if and only if x = x . As a consequence, it is immediate from (2.1) and Remark 2.12 that

γ(X + z) ≥ sup x ∈X × inf x +z̸ =w∈X+z ord(w + z -x ) = sup x ∈X × inf x ̸ =x∈X ord(x -x ) = γ(X),
where z is the inverse of z in A. us, our proof is complete. Now, the following proposition shows that the Cauchy-Davenport constant of a set is invariant under translation by units. While fundamental for the proof of our main result, this may be of independent interest in view of Conjecture 2.1. Proposition 2.14. Suppose that A is a monoid and pick z ∈ A × and X ⊆ A. en, we have

γ(X) = γ(X + z) = γ(z + X). Proof. Let z denote the inverse of z in A. Lemma 2.13 yields γ(X) ≤ γ(X + z) ≤ γ((X + z) + z),
whence γ(X) = γ(X + z). en, we observe that, on the one hand, Proposition 2.10, together with the fact that A is the dual of A op , implies γ(X) = γ A op (X) and γ A op (X + op z) = γ(X + op z) = γ(z + X), and on the other hand, it follows from the above that γ A op (X) = γ A op (X + op z). is gives γ(X) = γ(z + X) and completes our proof.

Corollary 2.15. Let A be a monoid, and for a xed integer n ≥ pick X , . . . , X n ⊆ A and z , . . . , z n ∈ A × . For each i = , . . . , n denote by T i the map

P(A) → P(A) : X → z i-+ X -z i . en, (T , . . . , T n ) is an invariant n-transform and γ(T i (X i )) = γ(X i ) for each i. Proof. By construction, it holds ∑ n i= T i (X i ) = z +(X +• • •+X n )+z n . en, we get by Lemma 2.7 that |X | = |T (X )|, . . . , |X n | = |T n (X n )| and ∑ n i= X i = ∑ n i= T i (X i ) ,
while Proposition 2.14 implies γ(X i ) = γ(T i (X i )) for each i and γ(X

+ • • • + X n ) = γ(T (X ) + • • • + T n (X n ))
. By pu ing all together, the claim follows immediately.

Corollary 2.16. Suppose A is a monoid, x an integer n ≥ and let X , . . . , X n be subsets of A such that X

× + • • • + X × n ̸ = ∅. ere then exists an invariant n-transform T = (T , . . . , T n ) such that ∈ ∩ n i= T i (X i ). Moreover, if A is cancellative and X × + • • • + X × n is nite, then T can be chosen in such a way that γ(T (X ) + • • • + T n (X n )) = min ̸ =w∈T (X )+•••+Tn(Xn)
ord(w).

(2.2)

Proof. For each i = , . . . , n pick x i ∈ X × i , using that X × + • • • + X ×
n is non-empty (and hence

X × i ̸ = ∅)
, and let T i be the function

P(A) → P(A) : X → z i-+ X -z i ,
where z := and z

i := x + • • • + x i = z i-+ x i . en clearly ∈ ∩ n i= T i (X i ),
while Corollary 2.15 entails that (T , . . . , T n ) is an invariant n-transform. us, the rst part of the claim is proved.

As for the rest, assume in what follows that A is cancellative and

X × + • • • + X × n is nite. en, le ing Z := X + • • • + X n for brevity yields, by Proposition 2.11, that X × + • • • + X × n = Z × , so there exist x ∈ X , . . . , xn ∈ X n such that γ(Z) = min z̸ =z∈Z ord(z -z),
(2.3)

where z := x + • • • + xn and we are using that a supremum taken over a non-empty nite set is, in fact, a maximum. It follows from the above that we can build an invariant n-transform T = ( T , . . . , Tn ) such that ∈ ∩ n i= Ti (X i ) and

∑ n i= Ti (X i ) = Z -z, with the result that γ(Z) = γ(Z -z) ≥ min ̸ =w∈Z-z ord(w) = min z̸ =z∈Z ord(z -z),
by the invariance of T and the fact that, on the one hand, ∈ Z -z and, on the other hand, w ∈ Z -z if and only if w = z -z for some z ∈ Z. Together with (2.3), this ultimately leads to γ(Z -z) = min ̸ =w∈Z-z ord(w), and thus to (2.2).

We conclude the section with a proof of Lemma 1.10:

Proof of Lemma 1.10. By duality, it is enough to prove that γ(Y) ≥ γ(X + Y) ≥ p(A), since all the rest is more or less trivial from our de nitions. For, pick z ∈ (X + Y) × using that, on the one hand, (X + Y) × = X × + Y × by Proposition 2.11 and the cancellativity of A, and on the other hand, X × + Y × is non-empty by the standing assumptions. ere then exist x ∈ X × and y ∈ Y × such that z = x + y , and it is immediate from Remark 2.12 that, for all y ∈ A,

⟨x + y -z ⟩ = x + ⟨y -y ⟩ -x ,
which, together with Lemma 2.7, gives ord(yy ) = ord(x + yz ). us, considering that, for y ∈ A, it holds x + y = z if and only if y = y , it follows that inf

y ̸ =y∈Y ord(y -y ) = inf y ̸ =y∈Y ord(x + y -z ) ≥ inf z ̸ =z∈X+Y ord(z -z ) ≥ p(A),
and this in turn implies the claim by taking the supremum over the units of X + Y.

T

At long last, we are ready to prove the central contributions of the chapter. We start with the following:

Proof of eorem 2.3. e claim is obvious if (X + Y) × = ∅, so suppose for the remainder of the proof that (X + Y) × is non-empty (which, among the other things, implies that A is a monoid), and set κ := |X + Y|, while noticing that, by Lemma 2.11, both of X × and Y × are non-empty, and so, by Proposition 1.18 and Lemma 1. (2.5) More speci cally, there is no loss of generality in assuming, as we do, that (X, Y) is a "minimax counterexample" to the claim, by which we mean that, if ( X, Ȳ) is another pair of subsets of A with X× + Ȳ× ̸ = ∅ and | X + Ȳ| < min(γ( X + Ȳ), | X| + | Ȳ| -), then either κ = | X + Ȳ| and at least one of the following conditions holds:

(i) | X| + | Ȳ| < |X| + |Y|; (ii) | X| + | Ȳ| = |X| + |Y| and | X| ≤ |X|, (2.6) or κ < | X + Ȳ|. is makes sense because if X, Ȳ ⊆ A, X× + Ȳ× ̸ = ∅ and κ = | X + Ȳ| then X×
and Ȳ× are non-empty, so we get, as before with (2.4), that

| X| ≤ | X| + | Ȳ| ≤ • max(| X|, | Ȳ|) ≤ • | X + Ȳ| = κ < ∞.
Finally, in the light of Corollary 2.16, we may also assume without restriction of generality, up to an invariant -transform, that

∈ X ∩ Y and γ(X + Y) = min ̸ =z∈X+Y ord(z).
(2.7) en, both of X and Y are subsets of X + Y, and by the inclusion-exclusion principle we have κ ≥ |X| + |Y| -|X ∩ Y|, which gives, together with (2.5), that X ∩ Y has at least one element different from , i.e. |X ∩ Y| ≥ . On these premises, we prove the following intermediate claim (from here on, we set Z := X ∩ Y for notational convenience):

C

. ere exists n such that X + nZ

+ Y ̸ ⊆ X + Y, but X + kZ + Y ⊆ X + Y for each k = , . . . , n -, with the convention that Z := { }.
Proof of the claim. Assume by contradiction that X + nZ + Y ⊆ X + Y for all n. en, we get from ⟨Z⟩ = ∪ ∞ n= nZ that X+⟨Z⟩+Y ⊆ X+Y, which implies by (2.7) that ⟨Z⟩ = +⟨Z⟩+ ⊆ X+Y. en, using that |Z| ≥ to guarantee that { } Z ⊆ X + Y, it follows from Proposition 1.18 and the same equation (2.7) that

κ ≥ |⟨Z⟩| ≥ max ̸ =z∈Z ord(z) ≥ min ̸ =z∈Z ord(z) ≥ min ̸ =z∈X+Y ord(z) = γ(X + Y).
is is, however, absurd, for it is in contradiction to (2.5), and we are done.

So, let n be as in the above claim and x, for the remainder of the proof, an element z ∈ nZ such that X + z + Y ̸ ⊆ X + Y (this exists by construction since otherwise we would have X + nZ + Y ⊆ X + Y, which is a contradiction). Consequently, observe that

(X + z) ∪ (z + Y) ⊆ X + Y.
(2.8)

In fact, z being an element of nZ entails that there exist z , . . . ,

z n ∈ Z such that z = z + • • • + z n ,
whence we get that both of X+z and z+Y are contained in X+(n-)Z+Y. But X+(n-)Z+Y is, again by construction, a subset of X + Y, so (2.8) is proved. With this in hand, let us now introduce the sets X := {x ∈ X :

x + z + Y ̸ ⊆ X + Y} and Y := {y ∈ Y : X + z + y ̸ ⊆ X + Y}.
It is then clear that X (respectively, Y) is disjoint from X +z (respectively, from z+Y ). In addition, since X +z + Y ̸ ⊆ X + Y, it is also immediate that X and Y are both non-empty. Finally, it follows from (2.8) that is not an element of either X or Y . To sum it up,

X ̸ = ∅ ̸ = Y , / ∈ X ∪ Y and (X + z) ∩ X = (z + Y ) ∩ Y = ∅.
(2.9)

Now, let n X := |X | and n Y := |Y |. By Remark 1.24 and the cancellativity of A, we have

|X + z| = |X | = n X and |z + Y | = |Y | = n Y , (2.10) 
which naturally leads to distinguish between the following two cases:

Case 1 n X ≥ n Y . We form X as the union of X and X + z and Ȳ as the relative complement of Y in Y. First, note that ∈ X× ∩ Ȳ× by (2.9). Secondly, pick x ∈ X and ȳ ∈ Ȳ and set z := x + ȳ. If x ∈ X, then obviously z ∈ X + Y; otherwise, by the construction of X and Ȳ, we get x ∈ X + z ⊆ X + z and ȳ / ∈ Y , so that x + ȳ ∈ X + Y. erefore, we see that X + Ȳ is a non-empty subset of X + Y with ∈ X + Ȳ, so on the one hand | X + Ȳ| ≤ κ and on the other hand we have by (2.7) that

γ(X + Y) ≤ inf ̸ =z∈ X+ Ȳ ord(z) ≤ γ( X + Ȳ).
Furthermore, (2.9) and (2.10) give that

| X| = |X| + |X + z| = |X| + n X > |X| and | Ȳ| = |Y| -|Y | = |Y| -n Y , so | X| + | Ȳ| = |X| + |Y| + n X -n Y ≥ |X| + |Y|.
Case 2 n X < n Y . We set X := X\X and Ȳ := (z+Y )∪Y. en, by repeating (except for obvious modi cations) the same reasoning as in the previous case, we get again that ∈ X× ∩ Ȳ× and X + Ȳ ⊆ X + Y, with the result that | X + Ȳ| ≤ κ and γ(X + Y) ≤ γ( X + Ȳ). In addition, it follows from (2.9) and (2.10) that

| X| = |X| -|X | = |X| -n X and | Ȳ| = |Y| + |z + Y | = |Y| + n Y , whence | X| + | Ȳ| = |X| + |Y| + n Y -n X > |X| + |Y|.
So in both cases, we end up with an absurd, for we nd subsets X and Ȳ of A that contradict the "minimaximality" of (X, Y) as it is expressed by (2.6).

Remarkably, several pieces of the above proof of eorem 2.3 do not critically depend on the cancellativity of the ambient, while others can be adapted to the case where γ(X + Y) is replaced by γ(X, Y), which is one of our strongest motivations for believing that Conjecture 2.1 should be ultimately true.

Proof of Corollary 2.4.

e claim is obvious if n = . us, assume in what follows that n is ≥ and the assertion is true for all sumsets of the form

Y + • • • + Y n-with Y × + • • • + Y × n-̸ = ∅.
Based on these premises, we get by eorem 2.3 that

|X + • • • + X n | ≥ min(γ(X + • • • + X n ), |X + • • • + X n-| + |X n | -),
which in turn implies, by Lemma 1.10, that

|X + • • • + X n | ≥ min(p(A), |X + • • • + X n-| + |X n | -).
(2.11)

But we know from Proposition 2.11 that

X × + • • • + X × n-̸ = ∅, so the inductive hypothesis gives |X + • • • + X n-| ≥ min(p(A), |X | + • • • + |X n-| + -n),
which, together with (2.11), yields the desired conclusion by induction.

T T If you can make one heap of all your winnings

And risk it on one turn of pitch-and-toss, And lose, and start again at your beginnings And never breathe a word about your loss.

Joseph R. K , If
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Small doubling in ordered semigroups R . On généralise des résultats par G. A. Freĭman, M. Herzog et leurs coauteurs sur la théorie structurelle des sommes d'ensembles dans les groupes linéairement ordonnés au cas plus général des semi-groupes linéairement ordonnés. En particulier, on prouve que, si (A, •, ≼) est un semigroupe linéairement ordonné et S est un sous-ensemble ni de A engendrant un sous-semi-groupe non-abélien, alors |S | ≥ |S|-. Au cours de la preuve, on obtient également un grand nombre de résultats secondaires, et notamment que le commutateur et le normalisateur d'un sous-ensemble ni d'un semi-groupe linéairement ordonné coïncident. Ce chapitre est basé sur un article par l'auteur [START_REF] Tringali | Small doubling in ordered semigroups[END_REF] soumis pour publication.

A

. Let A = (A, •) be a semigroup. We generalize results by G. A. Freĭman, M. Herzog and coauthors on the structure theory of set addition from the context of linearly ordered groups to linearly ordered semigroups, where we say that A is linearly orderable if there exists a total order ≼ on A such that xz ≺ yz and zx ≺ zy for all x, y, z ∈ A with x ≺ y. In particular, we nd that if S is a nite subset of A generating a non-abelian subsemigroup of A, then |S | ≥ |S| -. On the road to this goal, we also prove a number of subsidiary results, and most notably that for S a nite subset of A the commutator and the normalizer of S are equal to each other. e chapter is based on a paper by the author [START_REF] Tringali | Small doubling in ordered semigroups[END_REF] submi ed for publication.

I

Semigroups are ubiquitous in mathematics. Apart from being a subject of continuous interest to algebraists, they are, as already remarked in the previous chapters, a natural framework for introducing several broadly-scoped concepts and developing large parts of theories traditionally presented in much less general contexts.

Our interest in semigroups is related here to Freĭman's structure theory of set addition and its generalizations; this is a very active area of research, which has drawn a constantly increasing attention in the last decade, and has led to signi cant progress in several elds, from algebra [Ge] to additive number theory and combinatorics [Na, R, TV]. e primary goal of the chapter is, in fact, to extend recent results by G. A. Freĭman, M. Herzog and coauthors from the se ing of linearly ordered groups [FHLM] to linearly ordered semigroups (see Section 3.2 for de nitions). Speci cally, assume for the remainder of this section that A = (A, •) is a xed semigroup (unless a statement to the contrary is made). e main contribution here is then represented by the following generalization of [START_REF] Freĭman | Small doubling in ordered groups[END_REF]eorem 1.2]: eorem 3.1. Let A be a linearly orderable semigroup and S a nite subset of A such that |S | ≤ |S| -. en, ⟨S⟩ is abelian.

Our proof of eorem 3.1 basically follows the same broad scheme as the proof of [FHLM, eorem 1.2], but there are signi cant differences in the details. As expected, the increased generality implied by the switching to semigroups -and especially the fact that inverses are no longer available -presents, in practice, a number of challenges and requires something more than a mere adjustment of terminology (in some cases, for instance, it is not even clear how a certain result known to hold for linearly ordered groups should be reformulated in the language of semigroups). In particular, we will look for an extension of several classical results, such as the following:

Proof. (i) Pick a, b ∈ A with a ≺ a. en a b ≺ ab, whence ab ≺ b by totality of ≼ and Remark 3.6. It follows from Proposition 3.5 that aba ≺ ba; thus, aba ≺ b by the same arguments as above.

(ii) Let a, b ∈ A be such that aba = b. By duality, we may suppose that a ≼ a, which implies the claim by Remark 3.7 and the previous point (i).

(iii) is trivial from the above, and we may omit the details.

e next proposition, of which we omit the proof, is in turn an extension of an elementary property of the integers; see, e.g., [R,Exercise 1,p. 93] and contrast with [START_REF] Freĭman | Small doubling in ordered groups[END_REF]eorem 1.1].

Proposition 3.9. Suppose that A ♯ is a linearly ordered semigroup and let S , . . . , S n be non-empty nite subsets of A. en,

|S • • • S n | ≥ -n + ∑ n i= |S i |. (3.2)
Also, (3.2) is sharp, the lower bound being a ained, for instance, by picking a ∈ A and le ing S i be, for each i, of the form {a, . . . , a si } for some s i ∈ N + .

In particular, the second part of Proposition 3.9 follows from considering that, given a linearly orderable non-trivial non-empty semigroup A, point (iii) of Proposition 3.8 provides at least one element a ∈ A such that a j ̸ = a j for all distinct j , j ∈ N + . Now we prove the generalizations of [START_REF] Freĭman | Small doubling in ordered groups[END_REF]Lemma 2.2] and [START_REF] Freĭman | Small doubling in ordered groups[END_REF]Proposition 2.4] alluded to in the introduction, while noticing that, if A is a group with identity and a, b ∈ A are such that [a n , b] = for some n, then a n b = ab n (the square brackets denote a commutator).

Proposition 3.10. Let A ♯ be a linearly ordered semigroup and pick a, b ∈ A. If ab ≺ ba then for all n we have a

n b ≺ a n-ba ≺ • • • ≺ aba n-≺ ba n . (3.3)
Proof. Assume that (3.3) holds true for some n. en, multiplying by a on the le gives

a n+ b ≺ a n ba ≺ • • • ≺ a ba n-≺ aba n
, while multiplying by a on the right yields aba n ≺ ba n+ . Since ab ≺ ba, the transitivity of ≼ implies the claim by induction.

e proof of Lemma 3.2 is now an immediate consequence of Proposition 3.10 (by duality, if A ♯ is a linearly ordered semigroup and a, b ∈ A then we may assume ab ≼ ba without loss of generality). by virtue of Lemma 3.13. Also, there exists a positive integer j ≤ i such that

a i+ a j ̸ = a j a i+ , (3.6)
which is chosen here to be as great as possible, in such a way that xa i+ = a i+ x for every x ∈ T with a j ≺ x.

(3.7)

We have that a j / ∈ C A (V), where V := S \ T = {a i+ , . . . , a m }, and

V ∩ (T ∪ a i+ T ∪ Ta i+ ) = ∅ (3.8)
since a h a k ≺ a i+ ≼ a r a s for all h, k, r, s ∈ I m with h + k ≤ i + and i + ≤ min(r, s). en, the inclusion-exclusion principle, together with (3.5) and the standing assumptions, gives that

|V | ≤ |S | -|T ∪ a i+ T ∪ Ta i+ | ≤ m --i = |V| -.
us ≤ |V| < m, and ⟨V⟩ is abelian (by the inductive hypothesis). en,

V ∩ (a j V ∪ Va j ) = ∅ (3.9)
in view of Remark 3.6, Lemma 3.11 and the fact that a j / ∈ C A (V). We claim

T ∩ (a j V ∪ Va j ) = ∅. (3.10)
For, assume to the contrary, with no loss of generality, that T ∩ a j V ̸ = ∅, namely xy = a j z for some x, y ∈ T and z ∈ V. Using that y ≺ z, this yields a j ≺ x, and similarly a j ≺ y as ⟨T⟩ is abelian (so that xy = yx, and hence yx = a j z). It then follows from (3.7) and the abelianity of ⟨V⟩ that x, y, z ∈ C A (a i+ ). us, we get a i+ a j = a j a i+ by Lemma 3.12, which however contradicts (3.6) and implies (3.10). at said, let x ∈ T and y ∈ V be such that xa i+ = a j y. Since a i+ ≼ y, it is apparent that a j ≼ x. Suppose for the sake of contradiction that a j ≺ x.

en, we get from (3.7) and the abelianity of ⟨V⟩ that x, a i+ , y ∈ C A (a i+ ), with the result that a j a i+ = a i+ a j (by Lemma 3.12). But this is in open contrast with (3.6), and it is enough to argue that Ta i+ ∩ a j V = {a j a i+ }. us, the inclusion-exclusion principle gives that (3.11) which in turn implies, together with (3.4), (3.8), (3.9) and (3.10), that

|Ta i+ ∪ a j V| = |Ta i+ | + |a j V| -|Ta i+ ∩ a j V| = m -,
|T ∪ V ∪ Ta i+ ∪ a j V| = |T | + |V | + |Ta i+ ∪ a j V|.
It follows from Proposition 3.9 and (3.11) that

|T ∪ V ∪ Ta i+ ∪ a j V| ≥ ( i -) + ( m -i -) + (m -) = m -. As |S | ≤ m -and T ∪ V ∪ Ta i+ ∪ a j V ⊆ S , it is then proved that S = T ∪ V ∪ Ta i+ ∪ a j V.
(3.12) So to conclude, let us de ne a := a i+ a j . By (3.4) and (3.8), it is straightforward to see that a / ∈ T ∪ V , and we want to show that a / ∈ Ta i+ ∪ a j V to reach a contradiction. To this aim, observe rst that, by (3.6) and Lemma 3.3, there exist x ∈ T and y ∈ V such that a i+ x / ∈ Ta i+ , ya j / ∈ a j V.

(3.13) Since a i+ x, ya j / ∈ T ∪V by (3.4), (3.8), (3.9) and (3.10), it follows from (3.12) that a i+ x ∈ a j V and ya j ∈ Ta i+ , so we nd b ∈ V and c ∈ T such that

a j b = a i+ x, ya j = c a i+ . (3.14)
Suppose that a ∈ Ta i+ , that is there exists z ∈ T for which za i+ = a i+ a j , and in fact z ̸ = a j by (3.6). If a j ≺ z then z ∈ C A (a i+ ) by (3.7), so a i+ a j = a j a i+ by Lemma 3.12, again in contradiction to (3.6). us z ≺ a j , and in addition x ≼ a j , as otherwise a i+ x = xa i+ ∈ Ta i+ in view of (3.7), in contradiction to (3.13). Considering that ⟨T⟩ is abelian, it follows from (3.14) that a j ba j = a i+ xa j = a i+ a j x. However a i+ a j = za i+ , so at the end a j ba j = za i+ x. Hence, ba j ≺ a i+ x as z ≺ a j , which is absurd since a i+ ≼ b and x ≼ a j , viz a i+ x ≼ ba j . is implies a / ∈ Ta i+ .

Finally, assume that a ∈ a j V, i.e. there exists w ∈ V such that a i+ a j = a j w. By construction of V, we have a i+ ≼ w, and indeed a i+ ≺ w by (3.6). We want to show that c ≼ a j . For, suppose to the contrary that a j ≺ c. e abelianity of ⟨V⟩, together with (3.7), then yields that c, a i+ , y ∈ C A (a i+ ), so a i+ a j = a j a i+ by (3.14) and Lemma 3.12; this contradicts (3.6), and hence c ≼ a j . Using once more that ⟨V⟩ is abelian, it is then immediate from (3.14) that a i+ ca i+ = a i+ ya j = ya i+ a j , so a i+ ca i+ = ya j w since a i+ a j = a j w. But, as argued before, a i+ ≺ w, whence it is seen that ya j ≺ a i+ c, which is absurd because a i+ ≼ y, by construction of V, and c ≼ a j , as proved above. us, we get that a / ∈ a j V.

Pu ing all together, it follows that a / ∈ T ∪ V ∪ Ta i+ ∪ a j V, which is however in contradiction to (3.12), as a is obviously an element of S . erefore, ⟨S⟩ is abelian.

In some sense, eorem 3.1 is best possible; speci cally, [START_REF] Freĭman | Small doubling in ordered groups[END_REF]Section 3] provides the example of a subset S of a linearly ordered group generating a non-abelian subgroup and such that |S | = |S| -.

Corollary 3.14. Let S be a nite subset of a linearly orderable semigroup (A, •), which generates a nonabelian subsemigroup. en |S | ≥ |S| -.

Proof. It is just a trivial restatement of eorem 3.1.

We have not found so far an appropriate way to extend Proposition 3.1 in [FHLM] from nite subsets of linearly ordered groups, generating abelian subgroups, to nite subsets of linearly ordered semigroups, generating abelian subsemigroups, so we raise the following: Question 3.15. Assume that A is a linearly orderable semigroup. Let S be a nite subset of A, set s := |S| and t := |S | for convenience of notation, and suppose that t ≤ sand ⟨S⟩ is abelian. Is it then possible to nd a, b ∈ A such that ab = ba and S is a subset of the geometric progression a, ab, . . . , ab t-s ?

A : E

We conclude the paper with a few examples. As mentioned in the introduction, the basic goal is to show that [linearly] orderable semigroups and related structures are far from being "exotic".

We start with an orderable semigroup which is not linearly orderable. en, we mention some classes of linearly orderable groups and some linearly orderable monoids (respectively, semigroups) which are not groups (respectively, monoids).

Example 3.16. Every set A can be turned into a semigroup by the operation • : A × A → A : (a, b) → a; see, for instance, [Ho,p. 3]. Trivially, if ≼ is a total order on A then (A, •, ≼) is a totally ordered semigroup. However, (A, •) is not linearly orderable for |A| ≥ .

Example 3.17. An interesting variety of linearly ordered groups is provided by abelian torsionfree groups, as rst proved by F. W. Levi in [Le], and the result can be, in fact, extended to abelian cancellative torsion-free semigroups with no substantial modi cation; see the comments following Remark 3.6 in Section 3.2 and Corollary 3.4 in R. Gilmer's book on commutative semigroup rings [Gi]. In a similar vein, K. Iwasawa [Iw], A. I. Mal'cev [M2] and B. H. Neumann [Ne] established independently that all torsion-free nilpotent groups are linearly orderable.

Save for the semigroup analogue of Levi's result, all of the above is already mentioned in [FHLM], where the interested reader can nd further references to existing literature on the subject. However, there are other interesting examples of linearly ordered groups which are not included in [FHLM], and remarkably pure braid groups [RZ] and free groups [Iw].

Example 3.18. As for linearly ordered monoids which are not linearly ordered groups, consider, for instance, the free monoid [Ho,Section 1.6] on a totally ordered alphabet (X, ≼) together with the "shortlex ordering": words are primarily sorted by length, with the shortest ones rst, and words of the same length are then sorted into lexicographical order. On the other hand, the positive integers divisible only for the members of a given subset S of primes, endowed with the usual multiplication, provide the example of a linearly orderable semigroup which is not even a monoid unless S = ∅. On these premises, let A = (A, +, •) be a xed semiring. We write M n (A) for the set of n-by-n matrices with entries in A. Endowed with the usual operations of entry-wise addition and rowby-column multiplication implied by the structure of A, here respectively denoted by the same symbols as the addition and multiplication of the la er, M n (A) becomes a semiring per se, called the semiring of n-by-n matrices over A and wri en as M n (A); see [START_REF] Golan | Semirings and their Applications[END_REF]Ch. 3]. Now, suppose A is linearly ordered by a certain order ≼, so that A ♯ := (A, +, •, ≼) is a linearly ordered semiring, and denote by U n (A + ♯ ) the subsemigroup of the multiplicative semigroup of M n (A) consisting of all upper triangular matrices whose entries on or above the main diagonal belong to A + ♯ := {a ∈ A : ≺ a}. Observe that U n (A + ♯ ) is not, in general, a group (for instance, the inverse of a regular -by-matrix with positive real entries has not positive real entries), and not even a monoid for n ≥ . Perhaps more interestingly, we have the following: eorem 3.21. U n (A + ♯ ) is a linearly orderable semigroup. Proof. Set I n := { , , . . . , n}, Ξ n := {(i, j) ∈ I n × I n : i ≤ j} and de ne a binary relation ≤ n on Ξ n by (i , j ) ≤ n (i , j ) if and only if (i) ji < ji or (ii) ji = ji and j < j . It is seen that ≤ n is a well-order, so we can de ne a binary relation ≼ n,U on U n (A + ♯ ) by taking, for α = (a i,j ) n i,j= and β = (b i,j ) n i,j= in U n (A + ♯ ), α ≼ n,U β if and only if (i) α = β or (ii) there exists (i , j ) ∈ Ξ n such that a i ,j ≺ b i ,j and a i,j = b i,j for all (i, j) ∈ Ξ n with (i, j) < n (i , j ).

It is straightforward that ≼ n,U is an order. To see, in particular, that it is total: Pick α = (a i,j ) n i,j= and β = (b i,j ) n i,j= in U n (A + ♯ ) with α ̸ = β. ere then exists (i , j ) ∈ Ξ n such that a i ,j ̸ = b i ,j , where (i , j ) is chosen in such a way that a i,j = b i,j for every (i, j) ≤ n (i , j ). Since ≼ is total, we have that either α ≺ n,U β if a i ,j ≺ b i ,j or β ≺ n,U α otherwise, and we are done.

It remains to prove that U n (A + ♯ ) is linearly ordered by ≼ n,U . For, let α and β be as above and suppose α ≺ n,U β, viz there exists (i , j ) ∈ Ξ n with a i ,j ≺ b i ,j and a i,j = b i,j for all (i, j) ∈ Ξ n with (i, j) < n (i , j ). Given γ = (c i,j ) n i,j= in U n (A + ♯ ) we then have a i,k c k,j ≼ b i,k c k,j and c i,k a k,j ≼ c i,k b k,j for all (i, j) ∈ Ξ n and k ∈ I n such that (i, k) ≤ n (i , j ) and (k, j) ≤ n (k, j ), and indeed a i ,j c j ,j ≺ b i ,j c j ,j and c i ,i a i ,j ≺ c i ,i b i ,j for the fact that (A, +, •, ≼) is a linearly ordered semiring. It follows that, for all (i, j) ∈ Ξ n with (i, j) ≤ n (i , j ),

∑ n k= a i,k c k,j = ∑ j k=i a i,k c k,j ≼ ∑ j k=i b i,k c k,j = ∑ n k= b i,k c k,j
and, similarly, 

∑ n k= c i,k a k,j ≼ ∑ n k= c i,

I

It is a problem from the 1990 edition of the International Mathematical Olympiad (shortly, IMO) to nd all integers n ≥ such that n | n + . is is reported as Problem 7.1.15 (p. 147) in [AA], together with a solution by the authors (p. 323), which shows that the only possible n is . On another hand, Problem 4 in the 1999 IMO asks for all pairs (n, p) of positive integers such that p is a (positive rational) prime, n ≤ p and n p-| (p -) n + . is is Problem 5. 1.3 (p. 105) in the same book as above, whose solution by the authors (p. 105) is concluded with the remark that "With a li le bit more work, we can even erase the condition n ≤ p. " Speci cally, it is found that the required pairs are ( , p), ( , ) and ( , ), where p is an arbitrary prime. (For notation and terminology herein used without de nition, as well as for material concerning classical topics in number theory, the reader should refer to [HW].)

It is now fairly natural to ask whether similar conclusions can be drawn in relation to the more general problem of determining all pairs (m, n) of positive integers for which n m | m n + . In fact, the question is answered in the positive, and even in a stronger form, by eorem 4.1 below, where the following observations are taken into account to rule out from the analysis a few trivial cases: Given a, b ∈ Z and n, k ∈ N + , we have that k | a n ±b n and n 

k | a n -a n . Furthermore, n k | a n ±b n if and only if n k | b n ± a n ,
i) Assume that β ̸ = -α when n is odd. en, n a | a n + b n and n α | α n + β n if and only if (a, b, n) = ( , , ) or ( c , c , ) for c ∈ { , , }.
ℓ is odd: For, if | ℓ, then p | x ℓ (because p | z | x ℓ + y ℓ and y ≡ -x mod p), which would lead to gcd(x, y) ≥ p (again, using that p is odd), viz to a contradiction. e rest is an immediate application of Lemma 4.3.

Lemma 4.5. Let x, y, z ∈ Z such that x, y are odd and x, y ≥ . en xy = z if and only if z ≥ , x = z-+ and y = z--.

Proof. Since x and y are odd, xy is divisible by , namely z ≥ , and there exist i, j ∈ N + such that i + j = z, xy = i and x + y = j . It follows that x = j-+ i-and y = j--i-, and then j > i and i = (otherwise x and y would be even). e rest is straightforward. Now, we are ready to write down the proof of the main result. 4.3) yield that α ≥ p r s + . is implies by equation (4.2), since r = e p (α + β), that r s ≤ p r s ≤ r + , which is possible only if p = and r = s = . us, by equations (4.2) and (4.3), we get α + β = and α = , namely (α, β) = ( , ). Also, e (n) = , and hence n = t for some t ∈ N + with gcd( , t) = . It follows that t | γ t + for γ = .

So suppose, for the sake of contradiction, that t ≥ and let q be the least prime divisor of t. en, another application of Lemma 4.4 gives e q (t) ≤ e q (γ + ) + e q (t), and accordingly ≤ e q (t) ≤ e q (γ + ) = e q ( ), which is however absurd, due to the fact that gcd( , t) = .

Hence t = , i.e. n = , and pu ing everything together completes the proof, because

+ = and δ | δ • ( + ) only if δ = . (ii) Assume that n a | a n -b n , n α | α n -β n
, and β ̸ = α. Since gcd(α, β) = , we get as in the proof of point (i) that β ̸ = , while α = |β| only if α = , β = -, and n is odd (again, β ≥ for n even), which is however impossible, because it would give that n | with n ≥ . So, we can suppose from now on that α and β satisfy the same conditions as in equation (4.1), and write n as r s, where r ∈ N, s ∈ N + and gcd( , s) = . We have the following: (With the same notation as in its statement, we apply Lemma 4.3 with x = α , y = β , ℓ = r-s, and p = .) Also, rα | α nβ n , so equation (4.4) yields

Case 1: r = , i.e. n = s. en, n is odd, so that n a | a n + (-b) n and n α | α n + (-β) n , so by point (i) we get (a, b, n) = ( , -, ).
(α -) • r ≤ e (α -β ) -. (4.5) ere now exist u, v ∈ N + with u ≥ and gcd( , v) = such that α -β = u+ v, with the result that α > u/ √ v.
Hence, taking also into account that x ≥ x + for every x ∈ R with x ≥ , we get by equation (4.5) that 

( u + ) √ v ≤ u/ √ v < u r + , ( 4 

5

On a system of equations with primes R . Étant donné un entier n ≥ , soient u , . . . , u n des entiers premiers entre eux deux à deux pour lesquels ≤ u < • • • < u n , soit D une famille de sous-ensembles propres et non vides de { , . . . , n} qui contient un nombre "suffisant" d'éléments, et soit ε une fonction D → {± }. Existe-t-il au moins un nombre premier q tel que q divise ∏ i∈I u i -ε(I) pour un certain I ∈ D, mais ne divise pas u • • • u n ? Nous donnons une réponse positive à ce e question dans le cas où les u i sont des puissances de nombres premiers si on impose certaines restrictions sur ε et D. Nous utilisons ce résultat pour prouver que, si ε ∈ {± } et si A est un ensemble de trois ou plus nombres premiers qui contient les diviseurs premiers de tous les nombres de la forme ∏ p∈B p -ε pour lesquels B est un sous-ensemble propre, ni et non vide de A, alors A contient tous les nombres premiers. Ce chapitre est basé sur un article par Paolo Leone i et l'auteur [START_REF] Tringali | On a system of equations with primes[END_REF] accepté pour publication au Journal de éorie des Nombres de Bordeaux.

previous statement: this is part of the question. With the notation from above it is rather clear, for instance, that the answer to Question 5.1 is no, at least in general, if |D| is "small" with respect to n, as shown by the following:

Example 5.2. Given an integer k ≥ , (pairwise) distinct primes q , . . . , q k and positive integers e , . . . , e k , let q be the greatest prime dividing at least one of the numbers of the form ∏ i∈I q ei i ± for I ∈ P ⋆ (S k ). en, we get a negative answer to Question 5.1 by extending q , . . . , q k to a sequence q , . . . , q ℓ containing all the primes ≤ q (note that ℓ ≥ k + ), by taking a nonempty E ⊆ P ⋆ (S k ) and arbitrary e k+ , . . . , e ℓ ∈ N + , and by se ing n := ℓ, p i := q i , v i := e i and D := E. us, to rule out such trivial cases, one shall suppose, e.g., that |D| ≥ nκ or, in alternative, |D| ≥ n κ for some absolute constant κ > . at said, we concentrate here on the case where D contains at least all subsets of S n of size , n -, or n -, and the function ε is constant when restricted to these (see eorem 5.5 below), while collecting a series of intermediate results that could be useful, in future research, to try to draw broader conclusions. In particular, Question 5.1 can be naturally "generalized" as follows:

Question 5.3. Given an integer n ≥ and pairwise relatively prime integers u , . . . , u n such that ≤ u < • • • < u n , let D be a nonempty subcollection of P ⋆ (S n ) for which D has "enough" elements and ε a function D → {± }. Does there exist at least one q ∈ P such that q divides ∏ i∈I u i -ε(I) for some I ∈ D and q u • • • u n ?

Note that Question 5.3 is not really a generalization of Question 5.1, in the sense that the former can be stated in the terms of the la er by replacing, with the same notation as above, n with the total number d of the prime divisors of u • • • u n and D with a suitable subfamily of P ⋆ (S d ).

Questions 5.1 and 5.3 are somewhat reminiscent of cyclic systems of simultaneous congruences, studied by several authors, and still in recent years, for their connection with some long-standing questions in the theory of numbers, and especially Znám's problem and the Agoh-Giuga conjecture (see [BV] and [La], respectively, and references therein). Our initial motivation has been, however, of a completely different sort, and in fact related to the following: Question 5.4. Let A be a subset of P, having at least three elements, and such that for any B ∈ P ⋆ (A) all prime divisors of ∏ p∈B pbelong to A. en A = P.

is served as a problem in the 4th grade of the 2003 Romanian IMO Team Selection Test, and it appears (up to minor notational differences) as Problem 10 in [START_REF] Becheanu | Romanian Mathematical Competitions[END_REF]p. 53]. e solution provided in the book (p. 62) consists of two parts. In the rst one, the authors aim to show that A is in nite, but their argument is seen to be at least incomplete. Speci cally, they argue as follows (we use the notation from above): A er having proved that is in A, they suppose by contradiction that A is a nite set of size k (where k ≥ ) and let p , . . . , p k be a numbering of A such that = p < • • • < p k . en, they derive from the standing assumptions on A that

p α + = β+ p γ +
for some α, β, γ ∈ N. But this does not imply ≡ mod p (as is stated in the book) unless γ ̸ = , which is nowhere proved and has no obvious reason to hold. e problem per se is not, however, difficult, and it was used also for the 2004 France IMO Team Selection Test (we are not aware of any official solution published by the organizers of the competition).

Questions somewhat similar to those above have been considered by other authors, even though under different assumptions, and mostly focused on the properties of the prime factorization of very particular numerical sequences a , a , . . . recursively de ned, e.g., by formulas of the form a n+ = + a • • • a n ; see [Na,Section 1.1.2] and the references therein for an account (for all practical purposes, we report that one of the questions raised by A. A. Mullin in [Mu] and mentioned by W. Narkiewicz on page 2 of his book has been recently answered by [Bo]). Now, we have not been able to work out a complete solution of Question 5.1, whatever this may be. Instead, we solve it in some special cases. In fact, our main result here is as follows: eorem 5.5. Given an integer n ≥ , pick distinct primes p , . . . , p n , exponents v , . . . , v n ∈ N + and a subcollection

D of P ⋆ (S n ) such that D ⊆ D, with D := P (S n ) ∪ P n-(S n ) ∪ P n-(S n ).
en, for every function ε : D → {± } such that the restriction of ε to D is constant, there exists at least one q ∈ P \ {p , . . . , p n } such that q divides ∏ i∈I p vi i -ε(I) for some I ∈ D.

e proof of eorem 5.5, as presented in Section 5.3, requires a number of preliminary lemmas, which are stated and proved under assumptions much weaker than those in the above statement.

In particular, we will make use at some point of the following (well-known) result [Zs]: Based on these premises, we then prove the following: eorem 5.7. Pick ε ∈ {± } and let A be a ne set of prime powers with the property that |A| ≥ and q ⊥ A whenever q is a prime dividing ∏ a∈B a -ε for some B ∈ P ⋆ (A). en |A| = ∞, and in particular A = P if A ⊆ P and P ⊥ A if ε = .

eorem 5.7 is proved in Section 5.4. With the notation from above, the assumption that A is ne is somehow necessary, as we show in Example 5.19. Incidentally, the result gives a solution of Question 5.4 in the special case where ε = and A ⊆ P, while providing another proof, although overcomplicated, of the in nitude of primes. One related question is as follows:

Question 5.8. Pick n ∈ N + and distinct primes q , . . . , q n . Does there always exist a nonempty set of prime powers, say A, such that P \ {q , . . . , q n } is precisely the set of all prime divisors of the numbers ∏ a∈B a + for which B is a nite nonempty subset of A?

is is completely open to us. An easier question is answered in Example 5.20.

P

Here below, we x some more notation and prove a few preliminary lemmas related to the original version of Question 5.1 (that is, not only to the special cases covered by eorem 5.5). For any purpose it may serve, we recall that, in our notation, ∈ N and ∅, S n / ∈ P ⋆ (S n ).

In the remainder of this section, we suppose that there exist an integer n ≥ , a set P = {p , . . . , p n } of n primes, integral exponents v , . . . , v n ∈ N + , a nonempty subfamily D of P ⋆ (S n ), and a function ε : D → {± } such that p < • • • < p n and q ∈ P whenever q ∈ P and q divides ∏ i∈I p vi i -ε I for some I ∈ D, where ε I := ε(I) for economy of notation. Accordingly, we show that these assumptions lead to a contradiction if D contains some distinguished subsets of S n and the restriction of ε to the subcollection of these sets, herein denoted by D , is constant: is is especially the case when D = P (S n ) ∪ P n-(S n ) ∪ P n-(S n ).

We has only nitely many solutions in positive integers a, A, B, x , x , y , y for which a is a prime, gcd(Aa, Bb) = , x ̸ = x and all the prime factors of AB belong to S; see [BL] and the references therein. It follows that our equation (5.4) has only nitely many possible scenarios for ε taking the constant valuein D. However, the methods used in [BL] are not effective and, as far as we can tell, a list of all the solutions to equation (5.5) is not known, not even in the special case when A = B = and b = . Furthermore, there doesn't seem to be any obvious way to adapt the proof of the main result in [BL] to cover all of the cases resulting from equation (5.4). With this in mind, and based on (5.1), our main hypothesis can be now restated as "q divides P -I -ε -I for some q ∈ P and I ∈ D op only if q ∈ P."

(5.6)

In addition, we can easily derive, using (5.3) and unique factorization, that "q divides ε -I + ∏ i∈I p αi,I i for some q ∈ P and I ∈ D op only if q ∈ P."

(5.7)

Both of (5.6) and (5.7) will be o en referred to throughout the article. Lastly, we say that ε is k-symmetric for a certain k ∈ N + if both of the following conditions hold: With all this in hand, we are nally ready to prove a few preliminary results that will be used later, in Section 5.3, to establish our main theorem.

P

e material is intentionally organized into a list of lemmas, each one based on "local", rather than "global", hypotheses. is is motivated by the idea of highlighting which is used for which purpose, while looking for an approach to solve Question 5.1 in a broader generality. In particular, the rst half of eorem 5.5 (the one relating to the case ε = ) will follow as a corollary of Lemma 5.14 below, while the second needs more work.

In what follows, given a ∈ Z and m ∈ N + such that gcd(a, m) = , we denote by ord m (a) the smallest k ∈ N + such that a k ≡ mod m, namely the order of a in the group of units of Z/mZ. Lemma 5.9. If p i = for some i ∈ S n and there exists j ∈ S n \ {i} such that {j} ∈ D op , then one, and only one, of the following conditions holds:

1. ε -j =and α j is even.

2. ε -j = -, α j is odd and p j ≡ mod .

3. ε -j = , α j is odd and p j ≡ mod .

Proof. Under the assumptions of the claim, (5.4) gives that | p αj j + ε -j , which is possible only if one, and only one, of the desired conditions is satis ed. e next lemma, as trivial as it is, furnishes a sufficient condition under which ∈ P. Indeed, having a way to show that and are in P looks like a key aspect of the problem in its full generality. Proof. Clearly, p i is odd for each i ∈ I, which means that P I -ε I is even, and hence p = by (5.6) and the assumed ordering of the primes p i . us, it follows from (5.2) that if I ∈ P n-then α = P --ε -≥ • -, to the effect that α ≥ .

e following two lemmas prove that, in the case of a -symmetric ε, reasonable (and not-sorestrictive) assumptions imply that belongs to P. Lemma 5.11. Suppose that ε is -symmetric and pick a prime q / ∈ P. en, there doesn't exist any i ∈ S n such that {i} ∈ D and p i ≡ mod q.

Proof. Assume by contradiction that there exists i ∈ S n such that {i } ∈ D and p i ≡ mod q. en, since ε is -symmetric, we get by (5.1) and (5.2) that -ε ≡ p where I := S n \ {i }. But q / ∈ P implies q p vi i -ε by (5.6), with the result that ε = -(from the above), and then q | P I . By unique factorization, this is however in contradiction to the fact that q is not in P. arbitrary a ∈ A inf and de ne ϱ := a • ξ , where the factor a accounts for the possibility that Γ fin = ∅. By construction, ϱ is a nonempty product of distinct elements of A, and (5.16) is satised in the base case n = . Now x n ∈ N and suppose that we have already found ϱ n ∈ N + such that ϱ n is a product of distinct elements of A and (5.16) holds true with ϱ and ϱ n . By unique factorization, we then get from the assumptions on A that there exist s , . . . , s k ∈ N + and distinct primes p , . . . , p k ∈ P such that p i ⊥ A for each i and (5.17) where k := ω(ϱ n ) ≥ . Since A is a subset of P, then p i ⊥ A implies p i ∈ A, and indeed p i ∈ A inf , because every element of A fin , if any exists, is a divisor of ξ , and ξ | ϱ n by (5.17). Using that A r is in nite for every r ∈ Γ inf and A inf = ∪ r∈Γ inf A r , we get from here that there exist elements a , . . . , a h ∈ A inf such that, on the one hand, So, for the assumptions on ϱ n and the above considerations, we see that

ξ | ϱ n and + ϱ n = k ∏ i= p si i ,
ϱ < a < • • • < a h , ( 5 
+ ϱ • ( + ϱ n ) ≡ + ϱ • n+ ∑ i= ϱ i ≡ n+ ∑ i= ϱ i mod p.
Our claim is hence proved, by recurrence, by taking ϱ n+ := ϱ • ( + ϱ n ), because ξ | ϱ | ϱ n+ and ϱ n+ is, by virtue of (5.18), a nonempty product of distinct elements of A.

us, le ing n = p(p -)in (5.16) and considering that p ϱ , as p A and ϱ is, by construction, a product of elements of A, gives that + ϱ n ≡ mod p, with the result that p ∈ A by the assumed properties of A. is is, however, a contradiction, and the proof is complete.

Finally, we have all the ingredients to cook the following:

Proof of eorem 5.7. Just put together Lemmas 5.16, 5.17 and 5.18.

One obvious question arises: Can we prove eorem 5.7 without assuming that A is a ne subset of Z? at the answer is not unconditionally affirmative is implied by the following:

Example 5.19. Pick distinct primes q , q , . . . , q ℓ ≥ and, in view of [HW,eorem 110], let g i be a primitive root modulo q i . A standard argument based on the Chinese remainder theorem then shows that there also exists an integer g such that g is a primitive root modulo q i for each i, and by Dirichlet's theorem on arithmetic progressions we can choose g to be prime. Now, de ne

A :=      ∪ ℓ i= {g (q i -)n : n ∈ N + } if ε = ∪ ℓ i= {g (q i -)( n+ ) : n ∈ N} if ε = -.
If P is the set of all primes q such that q divides ∏ a∈B a -ε for some B ∈ P ⋆ (A), then on the one hand, q i ⊆ P for each i (essentially by construction), and on the other hand, q i A because gcd(q i , g) = . Note that this is possible, by virtue of eorem 5.7, only because A is not ne.

We conclude the section with another example, that provides evidence of a substantial difference between Lemmas 5.17 and 5.18, and is potentially of interest in relation to Question 5.8.

Example 5.20. Given odd primes q , . . . , q ℓ , let k := lcm(q -, . . . , q ℓ -) and A := {p nk : p ∈ P, n ∈ N + }. We denote by P the set of all primes q for which there exists B ∈ P ⋆ (A) such that q divides ∏ a∈B a + . It is then easily seen that P ⊆ P \ {q , . . . , q ℓ }, since ∏ a∈B a + ≡ ̸ ≡ mod q i for each i = , , . . . , ℓ.

  et on l'utilise pour prouver que, si A = (A, +) est un semi-groupe cancellatif (éventuellement non-commutatif) et X, Y sont des sous-ensembles non vides de A tels que le sous-semi-groupe engendré par Y est commutatif, on a |X + Y| ≥ min(γ(Y), |X| + |Y| -), où γ(Y), qu'on appelle la constante de Cauchy-Davenport de Y relative au semi-groupe A, est dé nie par γ(Y) := sup y ∈Y × inf y ̸ =y∈Y ord(yy ).

  ± k (a, b) de tous les entiers n tels que n k divide a n ±b n pour des entiers xés a, b et k avec k ≥ , |ab| ≥ et gcd(a, b) = : en particulier, on démontre que les ensembles R ± k (a, b) sont nis si k ≥ max(|a|, |b|).

  , b) of all positive integers n such that n k divides a n ±b n for xed integers a, b and k with k ≥ , |ab| ≥ and gcd(a, b) = : Speci cally, we show that R ± k (a, b) are nite sets if k ≥ max(|a|, |b|
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Proposition 1 .

 1 26. If Y z ̸ = ∅, then the triple (X, Y z , Ỹz ) satis es the following: (i) Y z and Ỹz are non-empty disjoint proper subsets of Y, and Ỹz = Y \ Y z .

  w) and |X + W | ≤ |X| + |W | -(1.8) in view of (1.6) and (1.7). In fact, on the one hand |Y -ỹ | = |Y| and |X + Y -ỹ | = |X + Y| by point (i) of Lemma 1.23, and on the other, y

  .10) when taking into account Remark 1.27 and point (i) of Proposition 1.26. As a consequence, point (v) of the same Proposition 1.26 yields, together with (1.8), that|X + W | + |W | ≤ |X + W | + | W | ≤ |X| + |W | -+ | W |,which means, since |W | = |Y -ỹ | = |Y| < ∞ by (1.5) and the above, that |X + W | ≤ |X| + | W | -. (1.11) It follows from (1.10) that ≤ | W | < |W |, and in fact | W | ≥ , as otherwise we would have |X| = |X + W | ≤ |X|by (1.11), in contrast to the fact that |X| < ∞ by (1.5). To summarize, we have found that ≤ | W | < |W | < ∞. in contradiction, due to (1.5), (1.11) and (1.12), with the minimality of |X|+|Y|, for | W | < |W | = |Y|, and hence |X| + | W | < |X| + |Y|.

  23, we have κ ≥ max(|X|, |Y|) ≥ min(|X|, |Y|) ≥ . (2.4) e statement is still trivial if κ = ∞ (respectively, κ = ), since then either of X and Y is in nite (respectively, both of X and Y are singletons), and hence |X+Y| = |X|+|Y|by (2.4). us, we assume in what follows that κ is a positive integer and argue by strong induction on κ, supposing by contradiction that κ < min(γ(X + Y), |X| + |Y| -). Based on the above, this ultimately means that ≤ κ < ∞, ≤ |X|, |Y| < ∞, κ < γ(X + Y), and κ ≤ |X| + |Y| -.

Example 3 .

 3 19. Let A = (A, •) and B = (B, ⋄) be semigroups and φ : A → B a semigroup monomorphism, i.e. an injective function A → B such that φ(a • a ) = φ(a ) ⋄ φ(a ) for all

  k b k,j . In particular, these majorizations are equalities for n ≥ , n m divides m n + if and only if (m, n) = ( , ) or ( , ), which generalizes problems from the 1990 and 1999 editions of the International Mathematical Olympiad. e results are related to a conjecture by K. Győry and C. Smyth on the niteness of the sets R ± k (a, b) := {n ∈ N + : n k | a n ± b n }, where a, b, k are xed integers with k ≥ , gcd(a, b) = and |ab| ≥ ; in particular, we nd that the conjecture is true for k ≥ max(|a|, |b|). e chapter is based on a paper by the author [Tr4] published in Integers.

  and also if and only ifn k | (-a) n ± (-b) n . Finally, n k | a n + (-a) n for n odd and n k | a n -(-a) n for n even.

eorem 4. 1 .

 1 Let a, b, n be integers such that n ≥ , a ≥ max( , |b|) and b ≥ for n even, and set δ := gcd(a, b), α := δ -a and β := δ -b.

(

  

Case 2 :

 2 r ≥ . Since n is even and gcd(α, β) = , both α and β are odd, that is | αβ . It follows from point (i) of Lemma 4.3 that e (α nβ n ) = e (αβ ) + e ( r-s) = e (αβ ) + r -.(4.4)

eorem 5. 6 (

 6 Zsigmondy's theorem). Pick a, b ∈ N + and an integer n ≥ such that (i) a > b and (ii) neither (a, b, n) = ( , , ) nor a + b is a power of and n = . en, there exists p ∈ P such that p | a nb n and p a kb k for each positive integer k < n. eorem 5.5 can be used to solve a generalization of Question 5.4. Speci cally, we say that a set A of integers is ne if either A is nite or for every p ∈ P there exist in nitely many a ∈ A such that p a. On the other hand, for B, C ⊆ Z we write B ⊥ C if for every b ∈ B there exists c ∈ C such that b | c; this simpli es to b ⊥ C when B = {b}. Clearly, B ⊥ C if and only if b ⊥ C for all b ∈ B.

  let P := ∏ n i= p vi i and D op := {S n \ I : I ∈ D}, and then we de ne P I := ∏ i∈I p vi i and P -I := P Sn\I for I ∈ P ⋆ (S n ) (note that P = P I • P -I ), and ε -I := ε Sn\I for I ∈ D op .In particular, given i ∈ S n we write P i in place of P {i} and P -i for P -{i} , but also ε i instead of ε {i} and ε -i for ε -{i} (whenever this makes sense). It then follows from our assumptions that there are maps α , . . . , α n :D op → N such that ∀I ∈ D op : P -I = ε -I + α i,I := α i (I).In particular, if there exists i ∈ S n such that {i} ∈ D op thenP -i = p αi i + ε -i , with α i := α i,{i} ∈ N + (5.2) (of course, α i ≥ since P -i -ε -i ≥ • -). isin turn implies that ∀I , I ∈ D op : P = P I • ( i , i ∈ S n such that {i }, {i } ∈ D op . We mention in this respect that, for any xed integer b ̸ = and any nite subset S of P, the diophantine equation A • (a xa x ) = B • (b yb y )(5.5)

  (i) I ∈ D ∩ P k (S n ) only if I ∈ D op ; (ii) ε I = ε -I for all I ∈ D ∩ P k (S n ).

  Lemma 5.10. If there exists I ∈ D such that / ∈ I then p = ; also, α ≥ if, in addition to the other assumptions, I ∈ P n-(S n ).

  q and P I ≡p αi i + ε ≡ + ε mod q,
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  Il mare è senza strade, il mare è senza spiegazioni. Se lo guardi non te ne accorgi: di quanto rumore faccia.

		Alessandro B	, Oceano Mare
			1 Cauchy-Davenport type theorems, I
	R	. On généralise la transformée de Davenport et on l'utilise pour prouver que, si A =
	(A, +) est un semi-groupe cancellatif (éventuellement non-commutatif) et X, Y sont des sous-

ensembles non vides de A tels que le sous-semi-groupe engendré par Y est commutatif, on a |X + Y| ≥ min(γ(Y), |X| + |Y| -), où γ(Y), qu'on appelle la constante de Cauchy-Davenport de Y relative au semi-groupe A, est dé nie par

  

  we have |X + Y| ≥ max(|X|, |Y|) by Propositions 2.8 and 1.19. is implies the claim if Y is in nite, since then either |X + Y| > |Y|, and hence |X + Y| + |Y

z | = |X| = |X + Y z | + |Y|, or |X + Y| = |Y|,

and accordingly

Remerciements

Lemma 3.2. Let A be a linearly orderable semigroup and pick a, b ∈ A. If a n b = ba n for some n, then ab = ba. is is, in fact, a generalization of an old lemma by N. H. Neumann [Ne] on commutators of linearly ordered groups, appearing as Lemma 2.2 in [FHLM].

In the same spirit, we will also need to extend [START_REF] Freĭman | Small doubling in ordered groups[END_REF]Proposition 2.4]. For, we use C A (S) for the centralizer of S (relative to A), viz the set of all a ∈ A such that ay = ya for every y ∈ S, and N A (S) for the normalizer of S (relative to A), namely the set {a ∈ A : aS = Sa}. ese are wri en as C A (a) and N A (a), respectively, if S = {a} for some a. Building on these premises, we have: Lemma 3.3. Let A be a linearly orderable semigroup and S a non-empty nite subset of A, and pick y ∈ A \ C A (S). en, |yS ∪ Sy| ≥ |S| + , i.e. there are a, b ∈ S with ya / ∈ Sy and by / ∈ yS.

Lemma 3.3 is proved in Section 3.2, along with the following generalization of [START_REF] Freĭman | Small doubling in ordered groups[END_REF]Corollary 1.5], which may perhaps be interesting per se: eorem 3.4. If A is a linearly orderable semigroup and S a nite subset of A, then N A (S) = C A (S).

We conclude the chapter with a number of examples (Appendix 3.5), mostly nalized to explore conditions under which certain semigroups (or related structures as semirings) are linearly orderable. is is mainly to show that the class of linearly orderable semigroups is not, in some sense, trivial. In particular, we prove ( eorem 3.21) that, for each n, the subsemigroup of GL n (R), the general linear group of degree n over the real eld, consisting of all upper (respectively, lower) triangular matrices with positive entries on or above (respectively, below) the main diagonal is linearly orderable, subsequently raising the question (to which we do not have an answer) whether the same conclusion holds for the subsemigroup of all matrices which can be wri en as a ( nite) product of upper or lower triangular matrices of the same kind as above.

N

roughout, an order on a set A is a binary relation ≼ on A which is re exive, antisymmetric, transitive, and total, in the sense that for all a, b ∈ A we have either a ≼ b or b ≺ a, where ≺ is used for the strict order induced on A by ≼.

Accordingly, we let an ordered semigroup be a triple (A, •, ≼), where (A, •) is a semigroup, ≼ is an order on A, and the following holds:

(3.1)

If each of the signs "≼" in (3.1) is replaced with the sign "≺", then (A, •, ≼) is called a linearly ordered semigroup; see, e.g., [Iw].

Conversely, we say that a semigroup A = (A, •) is [linearly] orderable if there exists an order ≼ on A such that (A, •, ≼) is a [linearly] ordered semigroup.

All of the above notions and terminology are now extended in the obvious way to monoids and groups (so we have, for instance, ordered monoids and linearly orderable groups).

P

In what follows, unless stated otherwise, A = (A, •) is a xed semigroup and ≼ is an order on A for which A ♯ = (A, •, ≼) is an ordered semigroup.

In this section, we collect some results that will be essential to prove the main contributions of the paper, later in Section 3.4. Some are quite elementary, and their group analogues are part of the folklore; however, we do not have a reference to something similar for semigroups, and thus we include them here for the sake of exposition. In particular, the proof (by induction) of the proposition below is straightforward from our de nitions, and we may omit the details. Proposition 3.5. e following holds:

Pick an element a ∈ A. We say that a is cancellable (in A) if both of the maps A → A : x → ax and A → A : x → xa are one-to-one. e semigroup A is then cancellative if each element of A is cancellable.

Remark 3.6. A cancellative semigroup is linearly orderable if and only if it is totally orderable. Furthermore, any linearly orderable semigroup is cancellative. us, one thing seems worth mentioning before proceeding: While, on the one hand, every commutative cancellative semigroup embeds as a subsemigroup into a group, as already mentioned in Remark 1.16, nothing similar is true, on the other hand, in the non-commutative case, no ma er if the ambient is linearly orderable and nitely generated, as rst noticed by R. E. Johnson [J] on the basis of Mal'cev's construction [M1]. Again, this is of fundamental importance here, as it shows that the study of sumsets in linearly ordered semigroups cannot be systematically reduced, in the absence of commutativity, to the case of groups (at least, not in any obvious way).

On another hand, a ∈ A is said to be periodic (in A) if there exist n and p ∈ N + such that a n = a n+p ; we then refer to the smallest n with this property as the index of a (in A) and to the smallest p relative to such an n as the period of a (in A); see, for instance, [Ho,p. 10]. In particular, a is called idempotent (in A) if it has period and index equal to , namely a = a , and we say that A is torsion-free if its only periodic elements are idempotent.

Remark 3.7.

e unique idempotent element of a cancellative monoid is the identity, so that torsion-free groups are de nitely a special kind of torsion-free semigroups; cf. Example 3.17. Moreover, if A is cancellative and a ∈ A is idempotent, then A is unital (which applies especially to linearly orderable semigroups, in view of Remark 3.6): For, a = a implies a b = ab and ba = ba for every b ∈ A, hence ab = ba = b. is ultimately proves that a serves as the identity of A.

e next proposition generalizes properties mentioned in [START_REF] Freĭman | Small doubling in ordered groups[END_REF]Section 2].

Proposition 3.8. Let A ♯ be a linearly ordered semigroup. We have: (iii) None of the elements of A has nite period unless A is unital and such an element is the identity.

In particular, A is torsion-ee.

Proof of Lemma 3.3. Assume to the contrary that yS = Sy. Since y / ∈ C A (S), we can nd an element a ∈ S such that a y ̸ = ya , which in turn implies that there exists a ∈ S \ {a } such that ya = a y. en, using that S is a nite set, we get a maximum integer k ≥ and elements a , . . . , a k ∈ S such that (i) ya i = a i+ y for i = , . . . , k -;

(ii) a i = a j for i, j = , . . . , k only if i = j.

Hence, the maximality of k and yS = Sy imply ya k = a h y for some h = , . . . , k, with the result that y i+ a k = a h+i y i+ for every i = , . . . , kh (by induction). In particular, it holds y k-h+ a k = a k y k-h+ . erefore, ya k = a k y (by Lemma 3.2), and indeed ya k = ya k-(as a k y = ya k-, by construction). So, Remark 3.6 yields a k = a k-, which is however absurd because a i ̸ = a j for all i, j = , . . . , k with i ̸ = j. e proof is thus complete.

Proof of eorem 3.4. e claim is obvious if S = ∅, so assume that S is non-empty. For y ∈ N A (S) we have yS = Sy, and Lemma 3.3 implies y ∈ C A (S), from which it follows N A (S) ⊆ C A (S). e other inclusion is obvious.

T

roughout, A = (A, •) denotes a xed semigroup (unless differently speci ed). We start with a series of three lemmas: the two rst apply to cancellative semigroups in general, while the la er is speci c to linearly ordered semigroups. Lemma 3.11. Let A be a cancellative semigroup and S a nite subset of A such that ⟨S⟩ is an abelian subsemigroup. If y ∈ A \ C A (S), then S is disjoint om yS ∪ Sy.

Proof. Pick y ∈ A \ C A (S) and assume by contradiction that S ∩ (yS ∪ Sy) is non-empty. en, without loss of generality, there exist a, b, c ∈ S such that ab = cy. Since ⟨S⟩ is abelian, this gives that cyc = abc = cab, whence ab = yc (using that A is cancellative), and nally cy = yc.

We claim that xy = yx for all x ∈ S. For, let x ∈ S. On the one hand, we have abx = cyx = ycx = yxc (as we have just seen that cy = yc). On the other hand, xab = xcy = xyc. But abx = xab (again by abelianity of ⟨S⟩). So, at the end of the day, yxc = xyc, and hence yx = xy (by cancellativity of c). It follows that y ∈ C A (S), which is absurd. Lemma 3.12. Let A be a cancellative semigroup and pick elements a, b, x, y, z ∈ A such that x, y, z ∈ C A (b) and xy = az (respectively, xy = za). en, ab = ba.

Proof. By duality, we just consider the case when xy = az. On the one hand, xyb = azb = abz since zb = bz; on the other, baz = bxy = xyb since x, y ∈ C A (b). Hence abz = baz, that is ab = ba (by cancellativity of z). Now, assume for the remainder of the section that A is made into an ordered semigroup by a certain order ≼, and set A ♯ := (A, •, ≼). Lemma 3.13. Let A ♯ be linearly ordered, and let S be a non-empty nite subset of A, and pick y ∈

Proof.

e inclusion-exclusion principle, Remark 3.6 and Lemma 3.11 give is not abelian, and accordingly denote by i the maximum integer in I m such that ⟨T⟩ is abelian for

, so on the one hand

thanks to Remark 3.6 and Lemma 3.11, and on the other hand

If B is linearly ordered by a certain order ≼ B and ≼ A is the binary relation on A de ned by taking a ≼ A a if and only if φ(a ) ≼ B φ(a ), it is routine to check that ≼ A is a total order, and indeed (A, •, ≼ A ) is a linearly ordered semigroup.

e next example is potentially interesting per se. Not only it gives a family of linearly ordered semigroups which are neither abelian nor groups (at least in general); it also shows that, for each n, certain subsemigroups of GL n (R) consisting of triangular matrices are linearly orderable.

Example 3.20. We let a semiring be a triple (A, +, •) consisting of a set A and associative operations + and • from A×A to A (referred to, respectively, as the semiring addition and multiplication) such that 1. (A, +) is an abelian monoid, whose identity we denote by ;

(In other words, a semiring is a ring where elements do not need have an additive inverse.) We call (A, +) and (A, •), respectively, the additive monoid and the multiplicative semigroup of (A, +, •), which in turn is termed a unital semiring if (A, •) is a monoid too; see [He, Ch. II] and [START_REF] Golan | Semirings and their Applications[END_REF]Ch. 1,p. 1].

A semiring (A, +, •) is said orderable if there exists a total order ≼ on A such that (A, +, ≼) and (A, •, ≼) are ordered semigroups, in which case (A, +, •, ≼) is named an ordered semiring. If, on the other hand, the following hold: then (A,+,•) is said to be linearly orderable and (A, +, •, ≼) is called a linearly ordered semiring; cf. [START_REF] Golan | Semirings and their Applications[END_REF]Ch. 20]. Notable examples of linearly ordered semirings are N, Z, R + , and R with their usual structure.

and the proof is complete.

We refer to the order ≼ n,U de ned in the proof of eorem 3.21 as the zig-zag order on U n (A + ♯ ). While at present we do not have an answer to this, it was remarked by Carlo Pagano (Università di Roma Tor Vergata, Italy) in a private communication that M n (A + ♯ ), namely the subsemigroup of (M n (A), •) consisting of all matrices with entries in A + ♯ , is not in general linearly orderable. For a speci c counterexample, let A be the real eld and take α as the n-by-n matrix whose entries are all equal to and β as any n-by-n matrix with positive (real) entries each of whose columns sums up to n; then α = αβ.

Apparently, the question has not been addressed before by other authors, although the ordering of M n (A), in the case where A is a partially orderable semiring, is considered in [START_REF] Golan | Semirings and their Applications[END_REF]Example 20.60].

Example 3.23.

In what follows, we let K = (K, +, •) be a semiring (see Example 3.20 for the terminology) and A = (A, ⋄) a semigroup, and use K [A] for the set of all functions f : A → K such that f is nitely supported in K, namely f(a) ̸ = K for nitely many a ∈ A, where K is the additive identity of K.

In fact, K[A] can be turned into a semiring, here wri en as K[A], by endowing it with the operations of pointwise addition and Cauchy product induced by the structure of A and K (these operations are denoted below with the same symbols as the addition and multiplication of K, respectively). We have the following: eorem 3.24. Suppose that K is a linearly orderable semiring and A a linearly orderable semigroup. en K[A] is itself a linearly orderable semiring.

Proof.

e claim is obvious if A = ∅, so assume that A is non-empty, and let ≼ K and ≼ A be, respectively, orders on A and K for which (K, +, •, ≼ K ) is a linearly ordered semiring and (A, ⋄, ≼ A ) a linearly ordered semigroup.

en, given α ∈ A and f ∈ K[A] we let f ↓α (respectively, f ↑α ) be the function A → K taking a to f(a) if a ≺ A α (respectively, α ≼ A a), and to K otherwise, in such a way that f = f ↓α + f ↑α . Also, we denote by μ the map

the minimum is taken with respect to ≼ A , and it exists by consequence of the de nition itself of K[A]), and to A otherwise.

We de ne a binary relation

It is clear that ≼ is a total order on K[A], and we want to prove that it is also compatible with the algebraic structure of K[A], in the sense that K[A] is linearly ordered by ≼.

For, pick f, g, h ∈ K[A] with f ≺ g. Since the additive monoid of K is linearly ordered by ≼ K , we have μ(f, g) = μ(f + h, g + h), and thus f + h ≺ g + h.

at is, (K[A], +, ≼) is a linearly ordered monoid in its own right. On another hand, assume Θ ≺ h, where Θ is the function A → K : a → K , and set α := μ(f, g) and β := μ(Θ, h). We have

and the la er inequality is certainly true, since on the one side

and on the other

In a similar way, it is seen that h • f ≺ h • g. So, by the arbitrariness of f, g, and h, we get that (K[A], +, •, ≼) is a linearly ordered semiring.

So taking A to be the free commutative monoid (respectively, the free monoid) on a certain set and recalling that free groups (and hence free monoids) are linearly orderable (Example 3.17 Ce chapitre est basé sur un papier par l'auteur [START_REF] Tringali | On the divisibility of a n ± b n by powers of n[END_REF] publié sur Integers.

A

. We determine all triples (a, b, n) of positive integers such that a and b are relatively prime and n k divides a n + b n (respectively, a nb n ), when k is the maximum of a and b (in fact, we answer a slightly more general question). As a by-product, it is found that, for m, n

e theorem will be proved in Section 4.2. In fact, our proof is just the result of a meticulous re nement of the solutions already known for the IMO problems mentioned in the preamble. us, our only possible merit, if any at all, has been that of bringing into focus a clearer picture of (some of) their essential features. Some comments are in order before proceeding. First, it would be interesting to extend eorem 4.1, possibly at the expense of some extra solutions, by removing the assumption that n α | (α n +β n ) or n α | (α n -β n ) (the notation is the same as in the statement of the result), but at present we do not have great ideas for this. Secondly, three out of the six triples obtained by the present formulation of the theorem come from the identity + = . Lastly, the result yields a solution of the problems which have originally stimulated this work, as we have the following corollary (of which we omit the obvious proof): ), or n = and m is arbitrary.

We will make use at some point of the following lemma, which belongs to the folklore and is typically a ributed to É. Lucas [Lu] and R. D. Carmichael [Car] (the la er having xed an error in Lucas' original work in the -adic case).

Lemma 4.3 (Li ing-the-exponent lemma). For all x, y ∈ Z, ℓ ∈ N + and p ∈ P such that p xy and p | xy, the following conditions are satis ed:

(ii) If p = , ℓ is even and e (xy) = , then e (x ℓy ℓ ) = e (x + y) + e (ℓ).

e study of the congruences a n ± b n ≡ mod n k has a very long history, dating back at least to Euler, who proved that, for all relatively prime integers a, b with a > b ≥ , every primitive prime divisor of a nb n is congruent to modulo n; see [BV, eorem I] for a proof (a prime divisor p of a nb n is said to be primitive if there does not exist any k ∈ N + with k < n such that p a kb k ). However, since there are so many results related to the question, instead of trying to summarize them here, we just refer the interested reader to the paper [GS], whose authors provide an account of the existing literature on the topic and characterize, for a, b ∈ Z and k ∈ N + , the set

), of all positive integers n such that n k divides a n + b n , respectively a nb n (note that no assumption is made about the coprimality of a and b), while addressing the problem of nding the exceptional cases when R -(a, b) and R -(a, b) are nite; see, in particular, [GS, eorems 1-2 and18]. Nevertheless, the related question of determining, given a, b ∈ Z with gcd(a, b) = , all positive integers n such that n k divides a n + b n (respectively, a nb n ), when k is the maximum of |a| and |b|, does not appear to be considered neither in [GS] nor in the references therein.

On another hand, it is suggested in [GS] that R + k (a, b) and R - k (a, b) are both nite provided that a, b, k are xed integers with k ≥ , gcd(a, b) = and |ab| ≥ (the authors point out that the question is probably a difficult one, even assuming the ABC conjecture). Although far from being an answer to this, eorem 4.1 below implies that, under the same assumptions as above,

P

First, for the sake of exposition, we give a couple of lemmas.

Lemma 4.4. Let x, y, z ∈ Z and ℓ ∈ N + such that gcd(x, y) = and z | x ℓ + y ℓ . en xy and z are relatively prime, q x ℓy ℓ for every integer q ≥ for which q | z, and z provided that ℓ is even. Moreover, if there exists an odd prime divisor p of z and ℓ such that gcd(ℓ, p -) = , then p | x + y, ℓ is odd and e p (z) ≤ e p (x + y) + e p (ℓ).

Proof.

e rst part is routine (we omit the details). As for the second, let p be an odd prime dividing both z and ℓ with gcd(ℓ, p -) = . Also, considering that z and xy are relatively prime (by the above), denote by y -an inverse of y modulo p and by ω the order of xy -modulo p, viz the smallest k ∈ N + such that (xy -) k ≡ mod p; cf. [HW,Section 6.8]. Since (xy -) ℓ ≡ mod p, we have ω | ℓ. It follows from Fermat's li le theorem and [HW,eorem 88] that ω divides gcd( ℓ, p -), whence we get ω | , using that gcd(ℓ, p -) = . is in turn implies that p | xy , and hence either p | xy or p | x + y. But p | xy would give that p | x ℓy ℓ , which is impossible by the rst part of the claim (since p ≥ ). So p | x + y, with the result that ≤ u ≤ and v = (using that v is odd). In consequence of Lemma 4.5, all of this implies, at the end of the day, that α = z + , b = zand n = s (recall that we want the conditions in equation ( 4.1) to be satis ed and β ≥ for n even), where z is an integer between and . But we need z ≤ z + by equation (4.5), so necessarily z = , i.e. α = and β = . Finally, we check that ( s) | ss if and only if s = : For, if s ≥ and q is the smallest prime divisor of s, then < e q (s) ≤ e q ( -) by Lemma 4.4, which is absurd since gcd( , s) = . is gives (a, b, n) = ( , , ), while it is trivially seen that

Pu ing all the pieces together, the proof is thus complete.

A

. Given an integer n ≥ , let u , . . . , u n be pairwise coprime integers for which ≤ u < • • • < u n , and let D be a family of nonempty proper subsets of { , . . . , n} with "enough" elements and ε a map D → {± }. Does there exist at least one prime q such that q divides ∏ i∈I u i -ε(I) for some I ∈ D, but it does not divide u • • • u n ? We answer this question in the positive in the case where the integers u i are prime powers and some restrictions hold on ε and D. We use the result to prove that, if ε ∈ {± } and A is a set of three or more primes that contains all prime divisors of any number of the form ∏ p∈B p -ε for which B is a nite nonempty proper subset of A, then A contains all the primes. e chapter is based on a paper by the author [START_REF] Tringali | On a system of equations with primes[END_REF] (joint work with Paolo Leone i) accepted for publication on Journal de éorie des Nombres de Bordeaux.

I

ere are several proofs of the fact that P is in nite: Some are elementary, others come as a byproduct of deeper results. E.g., six of them, including Euclid's classical proof, are given by M. Aigner and G. M. Ziegler in the rst chapter of their lovely Proofs om THE BOOK [AZ]. Although not really focused on the in nity of primes, this chapter is inspired by Euclid's original work on the subject, concerned as it is with the factorization of numbers of the form a • • • a n ± , where a , . . . , a n are coprime positive integers, and in fact prime powers (we do not consider as a prime power).

To be more speci c, we need rst some notation. Given a set A, we denote by P ⋆ (A) the family of all nite nonempty proper subsets of A, in such a way that A / ∈ P ⋆ (A). Furthermore, for an integer n ≥ we set S n := { , . . . , n} and let P n (A) be the collection of all subsets B of A with |B| = n. For more notation and terminology used here without explanation, as well as for material concerning classical topics in number theory, the reader should refer to [HW]. With this in mind, we can state the basic question addressed below:

Question 5.1. Given an integer n ≥ , pick exponents v , . . . , v n ∈ N + and primes p , . . . , p n ∈ P such that p < • • • < p n , and let D be a nonempty subfamily of P ⋆ (S n ) with "enough" elements and ε a map D → {± }. Does there exist at least one prime q ∈ P \ {p , . . . , p n } such that q divides ∏ i∈I p vi i -ε(I) for some I ∈ D?

At present, we have no formal de nition of what should be meant by the word "enough" in the Lemma 5.12. Suppose that ε is -symmetric and there exists J ∈ P ⋆ (S n ) such that S n \ J has an even number of elements, D := P (S n ) ∪ {S n \ J} ⊆ D, and the restriction of ε to D is constant. en p = and α ≥ ( -ε ).

Proof. Let ε take the constant value ε when restricted to D and assume by contradiction that / ∈ P. en, Lemma 5.11 entails that p i ≡mod for all i ∈ S n , while taking I = S n \ {i} in (5.1) and working modulo yield by (5.6) that

to the effect that v i is odd if ε = and even otherwise (here, we are using that P (S n ) ∈ D and ε is -symmetric, in such a way that P n-(S n ) ∈ D too). Now, since S n \ J ∈ D, the very same kind of reasoning also implies that

with the result that if ε = then ∈ P by (5.6), as follows from the fact that S n \ J has an even number of elements and v i is odd for each i ∈ J (which was proved before). is is however a contradiction. us, we are le with the case ε = -. Sinceis not a quadratic residue modulo a prime p ≡mod , we get by the above and (5.2) that p i ≡ mod for each i = , , . . . , n.

en, (5.1) gives, together with Lemma 5.10, that P -+ = α with α ≥ , which is again a contradiction as it means that ≡ mod . e whole proves that p = , which implies from (5.2) that α = P --ε -≥ • -ε , and hence α ≥ ( -ε ). Now, we show that, if D contains at least some distinguished subsets of S n and ε ±i = for some admissible i ∈ S n \ { }, then p i has to be a Fermat prime. Lemma 5.13. Assume P (S n \ { }) ⊆ D op and suppose there exists i ∈ S n \ { } for which {i} ∈ D and ε ±i = . en, p i is a Fermat prime.

Proof. It is clear from Lemma 5.10 that p = . Suppose by contradiction that there exists an odd prime q such that q | p i -(note that p i ≥ ), and hence q | p vi i -ε i . en, taking I = {i} in (5.6) gives that q = p j for some j ∈ S n \ { , i}. Considering that P (S n \ { }) ⊆ D op , it follows from (5.4) that p vj j (p

where we use that ε -i = . is is however a contradiction, because it implies that ≡ mod p j (with p j ≥ ). So, p i is a Fermat prime by [HW,eorem 17].

Lemma 5.14. Suppose that p i = for some i ∈ S n , P (S n ) ⊆ D op , and there exists j ∈ S n \ { , i} such that {j} ∈ D and ε ±j = . en i = , p = , and ε -= -.

Proof. First, we have by Lemma 5.10 that p = , and hence i = . Also, p j is a Fermat prime by Lemma 5.13 (and clearly p j ≥ ). So suppose by contradiction that ε -= . en, Lemma 5.9 and (5.2) imply that p j | P -= α + with α odd, to the effect that ≤ ord p j ( ) ≤ gcd( α, p j -) = . It follows that ≤ p j ≤ -, which is obviously impossible.

e proof of the next lemma depends on Zsigmondy's theorem. Although not strictly related to the statement and the assumptions of eorem 5.5, it will be of crucial importance later on.

Lemma 5.15. Pick p, q ∈ P and assume that there exist x, y, z ∈ N for which x ̸ = , y ≥ , p | q + and q x -= p y (q z -). en x = , z = , p = , y ∈ P, and q = y -.

Proof. Since x ̸ = , it is clear that q x -̸ = , with the result that z ̸ = and q z -̸ = too. erefore, using also that y ̸ = , one has that p y = (q x -)/(q z -) > , (5.8) which is obviously possible only if x > z ≥ .

(5.9)

We claim that x ≤ . For suppose to the contrary that x > . en by Zsigmondy's theorem, there must exist at least one r ∈ P such that r | q xand r q kfor each positive integer k < x.

In particular, (5.8) yields that r = p (by unique factorization), which is a contradiction since p | q -. us, we get from (5.9) that x = and z = . en, p y = q + , that is p y -∈ P, and this is absurd unless p = and y ∈ P. e claim follows.

is completes the series of our preliminary lemmas; we can now proceed to the proof of the main result.

P T 5.5

roughout we use the same notation and assumptions as in Section 5.2, but we specialize to the case where

and ε takes the constant value ε when restricted to D (as in the statement of eorem 5.5).

Proof of eorem 5.5. At least one of nor nis even, so we have by Lemmas 5.10 and 5.12 that p = , p = and v ≥ . ere is, in consequence, no loss of generality in assuming, as we do, that ε = -, since the other case is impossible by Lemma 5.14. us, pick i ∈ S n such that | p i + . It follows from (5.3) and our hypotheses that there exist β i , γ i ∈ N such that

to the effect that, on the one hand, .10) and on the other hand,

(5.11) en, since v ≥ and α i ̸ = , we see by (5.10) and Lemma 5.15 that β i ≥ . It is then found from (5.11) that -≡ (-) vi + mod , i.e. v i is even. To wit, we have proved that ∀i ∈ S n : p i ≡mod =⇒ v i is even and p vi i ≡ mod .

(5.12) 91 But every prime ̸ = is congruent to ± modulo . us, we get from (5.2) and (5.12) that

which is obviously a contradiction and completes the proof.

P T 5.7

In the present section, unless differently speci ed, we use the same notation and assumptions of eorem 5.7, whose proof is organized into three lemmas, one for each aspect of the claim.

Lemma 5.16. A is an in nite set.

Proof. Suppose for the sake of contradiction that A is nite and let n := |A|. Since A is a set of prime powers, there then exist p , . . . , p n ∈ P and v , . . . , v n ∈ N + such that p ≤ • • • ≤ p n and A = {p v , . . . , p vn n }, and our assumptions give that "q divides ∏ i∈I p vi i -ε for some I ∈ P ⋆ (S n ) only if q ∈ {p , . . . , p n }."

(5.13) is clearly implies that p < • • • < p n . In fact, if p i = p i for distinct i , i ∈ S n , then it is found from (5.13) and unique factorization that

for a certain k ∈ N + , which is impossible when reduced modulo p i . us, using that n ≥ , it follows from eorem 5.5 that there also exists q ∈ P \ {p , . . . , p n } such that q divides ∏ i∈I p vi iε for some I ∈ P ⋆ (S n ). is is, however, in contradiction with (5.13), and the proof is complete.

Lemma 5.17. If ε = , then P ⊥ A. In particular, A = P if A ⊆ P.

Proof. Suppose for the sake of contradiction that there exists p ∈ P such that p does not divide any element of A. en, since A is ne and |A| = ∞ (by Lemma 5.16), there are in nitely many a ∈ A such that p a. By the pigeonhole principle, this yields that, for a certain r ∈ { , . . . , p -}, the set A r := {a ∈ A : a ≡ r mod p} is in nite, and we have that

(5.14)

As it is now possible to choose B ∈ P ⋆ (A r ) in such a way that |B | is a multiple of p -, one gets from (5.14) and Fermat's li le theorem that p divides ∏ a∈B afor some B ∈ P ⋆ (A), and hence p | a for some a ∈ A (by the assumptions of eorem 5.7). is is, however, absurd, because by construction no element of A is divisible by p. It follows that P ⊥ A. e rest is trivial.

In the next lemma, we let ω(n) denote the number of distinct prime factors of n, in such a way that, e.g., ω( ) = and ω( ) = . Moreover, we let an empty sum be equal to and an empty product be equal to , as usual.

Lemma 5.18. If ε =and A ⊆ P, then A = P.

Proof. Suppose to the contrary that A ̸ = P, i.e. there exists p ∈ P such that p A, and for each r ∈ S p-, let A r := {a ∈ A : a ≡ r mod p}. en, p A yields that

(5.15)

In addition, set Γ fin := {r ∈ S p-: |A r | < ∞} and Γ inf := S p-\ Γ fin , and then

A fin := {a ∈ A : a ∈ A r for some r ∈ Γ fin } and A inf := A \ A fin .

It is clear from (5.15) that A inf is in nite, because A fin is nite, {A fin , A inf } is a partition of A, and |A| = ∞ by Lemma 5.16. us, we de ne ξ := ∏ a∈A fin a, and we claim that there exists a sequence ϱ , ϱ , . . . of positive integers such that ϱ n is, for each n ∈ N, a nonempty product (of a nite number) of distinct elements of A with the property that ξ | ϱ n and + ϱ n ≡ n+ ∑ i= ϱ i mod p.

(5.16)

Proof of the claim. We construct the sequence ϱ , ϱ , . . . in a recursive way. To start with, pick an

C

Many natural questions related arise (in addition to the ones already raised in the previous sections), and perhaps it can be interesting to nd them an answer. Some examples: Is it possible to prove eorem 5.5 under the weaker assumption that D , as there de ned, is P (S n ) ∪ P n-(S n ) instead of P (S n ) ∪ P n-(S n ) ∪ P n-(S n )? is is clearly the case if n = , but what about n ≥ ? And what if n is sufficiently large and D = P k (S n ) for some k ∈ S n ? e answer to the la er is negative for k = (to see this, take p , . . . , p n to be the n smallest primes and let v = • • • = v n = ε = , then observe that, for each i ∈ S n , the greatest prime divisor of p vi i -ε is ≤ p i -). But what if k ≥ ? Furthermore: To what degree can the results in Section 5.2 be extended in the direction of Question 5.3? It seems worth mentioning in this respect that Question 5.3 has the following abstract formulation in the se ing of integral domains (we refer to [START_REF] Mollin | Algebraic Number eory, Discrete Mathematics and Its Applications (Chapman and Hall/CRC[END_REF]Ch. 1] for background on divisibility and related topics in the general theory of rings): Question 5.21. Given an integral domain F = (F, +, •) and an integer n ≥ , pick pairwise coprime non-units u , . . . , u n ∈ F (assuming that this is actually possible), and let D be a nonempty subfamily of P ⋆ (S n ) with "enough" elements. Does there exist at least one irreducible q ∈ F such that q divides ∏ i∈I u ifor some I ∈ D and q u • • • u n ?

In the above, the condition that u , . . . , u n are non-units is needed to ensure that, for each I ∈ D, the number ∏ i∈I u iis non-zero, which would, in some sense, trivialize the question. On another hand, one may want to assume that F is a UFD, in such a way that an element is irreducible if and only if it is prime [START_REF] Mollin | Algebraic Number eory, Discrete Mathematics and Its Applications (Chapman and Hall/CRC[END_REF]eorems 1.1 and 1.2]. In particular, it seems interesting to try to answer Question 5.21 in the special case where F is the ring of integers of a quadratic extension of Q with the property of unique factorization, and u , . . . , u n are primes in F. is will be, in fact, the subject of future work.