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RESUME

Cette thése consiste essentiellement en la concaténation de contributions variées a la théorie
additive des structures algébriques comme les groupes, les anneaux et leurs généralisations, d'une
part, et a la théorie élémentaire des nombres, dautre part. En conséquence, la présentation sera
divisée en deux parties, partie I et partie II, qui sont indépendantes I'une de I'autre et se composent,
respectivement, de trois et deux chapitres.

Dans la premiére partie, nous prouvons un certain nombre de résultats concernant la théorie ad-
ditive des groupes (pas nécessairement commutatifs), mais nous le faisons dans le cadre plus large
et abstrait des semi-groupes (éventuellement non-commutatifs). Notre philosophie a cet égard
peut étre résumée dans le méta-principe suivant : plus faibles sont les hypotheses structurelles, plus
grand est le nombre de problémes que nous pouvons espérer résoudre, tout en essayant d’arriver a
une meilleure compréhension de leur nature intime.

Les sommes d’ensembles, principalement dans le cadre des groupes commutatifs, ont été in-
tensivement étudiés depuis plusieurs années (voir [Ru] pour un survol récent). Egalement des
résultats intéressants ont été obtenus pour le cas des monoides commutatifs et cancellatifs par
A. Geroldinger et ses coauteurs ; voir, par exemple, [G] et les références citées 1a (en notation
additive, “cancellatif” veut dire que a + ¢ = b+ couc + a = ¢ + b impliquent a = b). Mais
presque rien n'est connu sur la théorie additive des semi-groupes, et 'un des objectifs du présent
travail est de contribuer a l'exploration de cette théorie et de convaincre, nous I'espérons, le lecteur
que le sujet est plus intéressant que 'on pourrait peut-étre le suspecter.

Une premiére motivation naturelle pour s’intéresser aux semi-groupes vient de I'observation que

'ensemble des éléments non nuls d’'un anneau a unité non-trivial (commutatif ou non) n'est pas, en



général, cancellatif (sauf si l'anneau est sans diviseurs de zéro), et par conséquent n'est méme pas
fermé pour la multiplication. Une autre motivation est liée au fait que, méme si A = (A, +) est
un groupe, les sous-ensembles non vides de A, munis de I'opération binaire qui envoie une paire
(X, Y) surla somme X + Y, ne forment en général rien de plus qu'un monoide non cancellatif (par
exemple, quand A est (Z, +), la structure correspondante sur les parties de A a été étudiée par
J. Cilleruello, Y. ould Hamidoune et O. Serra [ CHS]).

A cet égard, il semble utile de mentionner une chose. Bien que chaque semi-groupe commutatif
et cancellatif puisse étre immergé dans un groupe (comme il résulte de la construction standard
du groupe de fractions d’'un monoide ; voir [B1, chapitre I, section 2.4]), rien de semblable n’est
vrai dans le cas non-commutatif, pas méme dans le cas de type fini. Ceci est lié a une question
bien connue en théorie des semi-groupes, d’abord résolue par A. I. Mal'cev dans [Ma]. Ce résultat
est d'une importance fondamentale pour notre travail sur ce point dans la mesure ou il démontre
que I'étude des sommes d’ensembles dans les semi-groupes ne peut pas étre systématiquement ré-
duite, en l'absence de commutativité, au cas des groupes (en tout cas, pas de fagon évidente). En
fait, l'exemple de Mal'cev est basé sur le quotient du semi-groupe libre sur huit lettres par une con-
gruence appropriée, et le semi-groupe correspondant est non seulement de type fini, mais aussi
linéairement (c’est-a-dire, strictement et totalement) ordonnable.

La Partie I se compose de trois chapitres (chapitres 1, 2 et 3). Dans le premier chapitre, qui
est basé sur un article par l'auteur [Tr1] publié dans Uniform Distribution Theory, on généralise la
transformée de Davenport [V] et on I'utilise pour prouver que, si A = (A, +) est un semi-groupe

cancellatif (éventuellement non-commutatif ) et X, Y sont des sous-ensembles non vides de A tels
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que le sous-semi-groupe engendré par Y est commutatif, on a

ot 7(Y), quon appelle la constante de Cauchy-Davenport de Y relative au semi-groupe A, est
définie par

y(Y) := sup inf ord(y —y,).

yo€Y* YoFIEY

Cela généralise le théoréme classique de Cauchy-Davenport [C] [D1] [D2] au cadre pluslarge des
semi-groupes, avec comme cas particuliers une extension des théorémes de I. Chowla [Ch] et S. S.
Pillai [Pi] pour les groupes cycliques et une version plus forte d'une autre généralisation du méme
théoréme de Cauchy-Davenport pour les groupes commutatifs, oit dans la formule ci-dessus y(Y)
est remplacé par I'infimum des ordres d’'un sous-semi-groupe non trivial de l'unitarisation de A.
Ce dernier résultat a été prouvé par G. Karolyi dans le cas des groupes finis, grice au théoréme de
Feit-Thompson ; puis par Hamidoune pour un groupe arbitraire. L'approche d’'Hamidoune passe
par sa généralisation d'un théoréme additif de L. Shatrowsky et il est en définitive construit sur sa
méthode isopérimétrique.

Dansle deuxiéme chapitre, qui s'appuie sur un papier par l'auteur [ Tr2 ] soumis pour publication,
on fait une étude plus approfondie des propriétés de la constante de Cauchy-Davenport (intro-
duite dans le chapitre précédent) pour montrer l'extension supplémentaire suivante du théoréme

de Cauchy-Davenport : si (A, +) est un semi-groupe cancellatif et si X, Y C A, alors

|X+ Y| > min(y(X+Y), |X| + Y] — 1).
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Cela implique une généralisation de I'inégalité de Kemperman pour les groupes sans torsion [Ke]
et aussi une version plus forte du théoréme d’'Hamidoune-Karolyi mentionné ci-dessus. Ici, on
donne une preuve indépendante et totalement combinatoire du cas général de ce résultat, qui ne
dépend ni du théoreme de Feit-Thompson ni de la méthode isopérimétrique. Enfin, on se penche
sur certains aspects d’une conjecture qui, si elle était vraie, pourrait fournir une formulation unifiée
de beaucoup de théorémes de type Cauchy-Davenport, y compris ceux-la déja prouvés dans le
chapitre 1.

Enfin, le troisieme chapitre généralise des résultats par G. A. Freiman, M. Herzog et leurs coau-
teurs sur la théorie structurelle des sommes d'ensembles dans les groupes ordonnés [FHLM] au
cas plus général des semi-groupes ordonnés. En particulier, on prouve que, si (4, -, <) est un semi-
groupe linéairement ordonné et S est un sous-ensemble fini de A engendrant un sous-semi-groupe
non-abélien, alors |S?| > 3|S|—2. Aucours dela preuve, on obtient également un grand nombre de
résultats secondaires, et notamment que le commutateur et le normalisateur d’'un sous-ensemble
fini d’'un semi-groupe linéairement ordonné coincident. Ce chapitre est basé sur un article par
l'auteur [ Tr3] soumis pour publication.

La deuxiéme partie de la these traite de questions de théorie élémentaire des nombres, avec
un accent particulier sur les congruences, les nombres premiers et la divisibilité. Cette partie est
composée de deux chapitres (chapitres 4 et 5).

Dans le chapitre 4, on prouve des résultats liés & une conjecture par K. Gyéry et C. Smyth [GS]
surla finitude des ensembles Ri" (a, b) de tous les entiers n tels que n* divide a” 4-b" pour des entiers
fixésa,betkaveck > 3,|ab| > 2etgcd(a, b) = 1: enparticulier, on démontre que les ensembles
R (a, b) sont finis si k > max(|al, |b|). Le chapitre sappuie sur un article par 'auteur [ Tr4] publié

dans Integers.
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Enfin, dans le chapitre 5, nous considérons une question de divisibilité dans 'anneau des entiers,
en quelque sorte liée au probleme de Znam et a la conjecture Agoh-Giuga. Plus précisément, étant
donné un entier n > 3, soient uy, . . . , u, des entiers premiers entre eux deux a deux pour lesquels
2 <y < -+ < uy,soit D une famille de sous-ensembles propres et non vides de {1, ...,n}
qui contient un nombre “suffisant” d’éléments, et soit £ une fonction D — {41}. Existe-t-il au
moins un nombre premier g tel que g divise [ [,.; #; — £(I) pour un certain I € D, mais ne divise
pas uy - - - u, 2 Nous donnons une réponse positive a cette question dans le cas ou les u; sont des
puissances de nombres premiers si on impose certaines restrictions sur € et D. Nous utilisons ce
résultat pour prouver que, sicg € {11} et si A est un ensemble de trois ou plus nombres premiers
qui contient les diviseurs premiers des tous les nombres de la forme | | pep P — Eo pour lesquels
B est un sous-ensemble propre, fini et non vide de A, alors A contient tous les nombres premiers.
Le chapitre est basé sur un article par Paolo Leonetti et l'auteur [ Tr5] accepté pour publication au

Journal de Théorie des Nombres de Bordeaux.



THIS PAGE INTENTIONALLY LEFT BLANK



ABSTRACT

The present thesis is basically a recollection of several sparse contributions to the additive theory
of group-like and ring-like structures, on the one hand, and to the elementary theory of numbers,
on the other hand. Accordingly, the presentation will be subdivided into two parts, namely Part I
and Part II, which are essentially independent from each other and consist, respectively, of three
and two chapters.

In the first part, we prove a number of results concerning the additive theory of (possibly non-
commutative) groups, but we do it in the broader and more abstract setting of (possibly non-
commutative) semigroups. Our philosophy in this respect can be summarized in the following
meta-principle: The weaker are the structural assumptions, the larger is the class of problems that
we can hope to solve, while trying to get a deeper understanding.

Sumsets in (mostly commutative) groups have been intensively investigated for several years
(see [Ru] for a recent survey), and interesting results have been also obtained in the case of com-
mutative and cancellative monoids by A. Geroldinger and coauthors; see, e.g., [G] and references
therein (in additive notation, “cancellative” means thata + ¢ = b + corc + a = ¢ + b imply
a = b). But almost nothing is known on the additive theory of semigroups, and one of the goals
of the present work is to contribute to the investigation of the theory and to convince the reader,
we hope, that the subject is more interesting than one would possibly suspect.

A natural motivation in this sense comes from considering that the non-zero elements of a non-
trivial unital ring, either commutative or not, are not, in general, cancellative (unless the ring is a
domain), and hence not even closed under multiplication. Another motivation relies on the fact

that, even when A = (A, +) is a group, the non-empty subsets of A, endowed with the binary op-
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eration taking a pair (X, Y) to the sumset X+, is, in general, nothing more than a non-cancellative
monoid (e.g, when A is (Z, +), the corresponding structure on the powerset of A has been studied
by J. Cilleruello, Y. ould Hamidoune and O. Serra [CHS]).

In this respect, one thing seems worth mentioning. While every commutative cancellative semi-
group embeds as a subsemigroup into a group (as it follows from the standard construction of the
group of fractions of a commutative monoid; see [B1, Chapter I, Section 2.4]), nothing similar is
true in the non-commutative case, not even if the ambient semigroup is finitely generated. This
is related to a well-known question in the theory of semigroups, first answered by A. I. Mal'cev in
[Ma], and is of fundamental importance for our work here, in that it shows that the study of sum-
sets in cancellative semigroups cannot be systematically reduced, in the absence of commutativity,
to the case of groups (at the very least, not in any obvious way). In fact, Mal’cev’s example involves
the quotient of the free semigroup over eight letters by a suitable congruence, and it is not only
finitely generated, but even linearly orderable (here, a semigroup (A, +) is called linearly order-
able if there exists a total order < on Asuchthatx+2z < y+zandz+x < z+yforallx,y,z € A
withx < y).

Part I consists of three chapters, namely Chapters 1, 2 and 3. In the first chapter, based on a
paper by the author [Tr1] published in Uniform Distribution Theory, we generalize the Davenport
transform [V] and use it to prove that, for a (possibly non-commutative) cancellative semigroup
A = (A, +) and non-empty subsets X, Y of A such that the subsemigroup generated by Y is com-
mutative, we have

X + Y] > min(y(Y), |X] + Y] — 1),
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where

y(Y) := sup inf ord(y —y,)

yoeyx ;Vo#yey

is what we call the Cauchy-Davenport constant of Y (relative to A). This generalizes the classical
Cauchy-Davenport theorem [C] [D1] [D2] to the setting of semigroups, and it implies, in par-
ticular, an extension of I. Chowla’s [Ch] and S. S. Pillai’s [Pi] theorems for cyclic groups, as well
as a strengthening of another generalization of the same Cauchy-Davenport theorem to the case
of commutative groups, where 7(Y) in the above formula is replaced by the infimum of the or-
der of the non-trivial subsemigroups of the (conditional) unitization of A. In fact, a proof of this
latter result was first given by G. Kérolyi in 2005 for the special case of finite groups [Ka], based
on the structure theory of group extensions, by reduction to finite solvable groups in the light of
the Feit- Thompson theorem. Then, a more “elementary” proof of the general statement (for an
arbitrary group) was communicated to Karolyi by Hamidoune during the peer-review process of
Kérolyi’s paper and included in the final version of the manuscript [Ka]. Hamidoune’s approach
depends on a generalization of an addition theorem by L. Shatrowsky and is ultimately built upon
the isoperimetric method.

In the second chapter, which is founded on a paper by the author [Tr2] submitted for publi-
cation, we further investigate the properties of the Cauchy-Davenport constant and use them to

prove the following: If A is cancellative and X, Y C A, then

|X+ Y| > min(y(X—l— Y), |X| + |Y’ — 1).

This implies at once a generalization of Kemperman’s inequality for torsion-free groups [Ke] and

a strengthening of the Hamidoune-Karolyi theorem mentioned in the above. Our proof of this is
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basically a transformation proof; in particular, it is self-contained and does not depend on either the
Feit-Thompson theorem or the isoperimetric method. In addition, we present and discuss aspects
of a conjecture which, if true, would further improve most of the results in the chapter and provide
a unified picture of many more theorems of Cauchy-Davenport type, including the ones proved in
Chapter 1.

Finally, Chapter 3 generalizes results by G. A. Freiman, M. Herzog and coauthors on the struc-
ture theory of set addition from the context of linearly ordered groups [FHLM] to linearly ordered
semigroups. In particular, we find that, if (A, -, <) is a linearly ordered semigroup and S is a finite
subset of A generating a non-abelian subsemigroup, then |[S*| > 3|S| — 2. On the road to this
goal, we also prove a number of subsidiary results, and most notably that the commutator and the
normalizer of a finite subset of a linearly ordered semigroup are equal to each other. The chapter is
based on a paper by the author [Tr3] submitted for publication.

The second part of the thesis, on the other hand, deals with questions from the elementary the-
ory of numbers, with a focus on congruences, prime numbers and divisibility in the integers.

Part II is composed of two chapters, namely Chapters 4 and S. In Chapter 4 we prove a result
related to a difficult conjecture by K. Gyéry and C. Smyth [GS] about the finiteness of the sets
R (a, b) of all positive integers n such that n* divides a” & b" for fixed integers a, b and kwith k > 3,
|lab| > 2 and ged(a, b) = 1: Specifically, we show that R (a, b) are finite sets if k > max(|a, |b|).
The chapter relies on a paper by the author [ Tr4] published in Integers.

Finally, in Chapter 5 we consider a question in the study of primes and divisibility in the ring of
integers, somehow related to Znam’s problem and the Agoh-Giuga conjecture. Specifically, given
anintegern > 3,letu, ..., u, be pairwise coprime integers for which2 < u; < --- < u,, and

let D be a family of nonempty proper subsets of {1, . .., n} with “enough” elements and ¢ a map



D — {+£1}. Itis then natural to ask whether there exist at least one prime q such that g divides
[Lc; ui—e(I) forsomeI € D,butit does not divide u; - - - u,,. In fact, we answer this in the positive
in the case where the integers u; are prime powers and some restrictions hold on € and D. We use
the result to prove that, if 6, € {£1} and A is a set of three or more primes that contains all prime
divisors of any number of the form [ | peBP — €0 for which B is a finite nonempty proper subset of
A, then A contains all the primes. The chapter is based on a paper by the author [ Tr5] (joint work

with Paolo Leonetti) accepted for publication in Journal de Théorie des Nombres de Bordeaux.
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Cualquier destino, por largo y complicado que sea, consta en
realidad de un solo momento: el momento en que el hombre

sabe para siempre quién es.

— Jorge Luis BORGES, El Aleph

General formalities

RESUME. Le but de ce bref chapitre est de rappeler les définitions de base et de fixer les notations
et la terminologie générales. Nous faisons tout d’abord une courte digression sur la théorie des
ensembles, qui pour pédante qu'elle puisse sembler aux praticiens, se révele nécessaire au vu des

développements a venir.

ABSTRACT. The purpose of this brief chapter is to review basic definitions and fix some general ter-
minology and notation. We make first a short digression into set theory, which may sound pedantic
to practitioners, but is necessary in view of certain developments, on which we hope to work in the

future.



0.1 PRELIMINARIES AND GENERAL NOTATION

We use as a foundation the Tarski-Grothendieck set theory, shortly TG. Alternatives are possible,
but this issue exceeds the scope of the thesis, and we can pass over it. We just mention that we
choose to work in TG, rather than, say, in ZFC (the classical Zermelo-Fraenkel set theory with the
axiom of choice), motivated by the fact that we will hopefully be concerned, in a sequel of this
work, with objects like the “class of all structures of a certain type”, which would make no sense in
ZFC, essentially because the latter does not allow for anything like the “class of all sets”. With this
in mind, we fix once and for all an uncountable Grothendieck universe ), and refer to the elements
of Q) as Q-sets, or simply sets, and to an arbitrary set in the ontology of TG as a class, a family, or a
collection.

We write Z for the integers, N for the positive integers, Q for the rationals, R for the real num-
bers, and R™ for the positive real numbers. Then, welet N := {0} UNT and Rj := {0} URT.
Each of these sets is regarded as a subset of R and endowed with its usual addition +, multipli-
cation -, absolute value | - |, and order < (as customary, we write > for the dual of <, and <
and >, respectively, for the strict orders induced by < and >). Moreover, we denote by P’ the
set {2,3, ...} of all (positive rational) primes, and for m € NT we write Z/mZ for the integers
modulo m, equipped with the usual addition +,, and multiplication -,, (we omit the subscript ‘m’
if there is no danger of confusion).

We extend the operations and the order of R to R U { o0}, by adjoining a “point at infinity”, viz
an element 0o ¢ R (in fact, we may assume 0o := R), and by takinga + 00 := 00 +a := 00
anda < cofora € RU{oo},aswellasa- 0o := 00-a := ooifa # 0and0- 00 := 00-0 := 0.
Accordingly, weset $ := coand J :=0-3 =0-00 =0.

We use capital blackboard letters such as A and B, with or without subscripts or superscripts,
to denote structured classes (or simply structures), by which we mean here any tuple consisting of
one class, referred to as the carrier of the structure, and a finite number of operations or relations
of finite ariety on the same class such as (A, +), (B, L), or (C, +, -, 0, <X). Accordingly, if A is a
structure and A its carrier, we write a € A to mean on the one hand that ais an element of A, and on
the other to emphasize that, in the context of the discourse, any statement involving the element
a should be interpreted, in the presence of ambiguity, with respect to the structure of A (this is

typically the case where, by an abuse of notation, operations or relations of different structures are



denoted by the same symbol). The same principle applies to subclasses, so that we may occasionally
write S C A in place of S C A. Since every class can be viewed as a “vacuous structure”, the above
is perfectly consistent with the fact that we are using blackboard letters like N, Z, etc. to refer to
some special sets of numbers.

We write | X| for the counting measure of a set X (this is just the number of elements of X when
X is finite), by interpreting | - | as a map from Q to N U {o0}.

At several points throughout the thesis, we will use without explicit mention the elementary fact
thatif A C B C Ry U{oo} theninf(B) < inf(A) and sup(A) < sup(B), with the convention that
the supremum and the infimum of an empty subset of R; U {00} are, respectively, 0 and co. Note
that, here and later, infima and suprema of subsets of R U {00}, as well as minima and maxima
(when defined) are always taken with respect to (the appropriate restriction of ) the order <.

Givena, b € Zwith a* + b* # 0 we use gcd(a, b) for the greatest common divisor of a and b.
Also, forc € Z \ {0} and p € IP, we write ¢,(c) for the p-adic valuation of ¢, namely the greatest
exponent k € N such that p* | ¢, and we extend this to Z by ¢,(0) := oo. Finally, form € N* and
x € Z/mZ welet gcd(m, x) := gcd(m, x), where x is the smallest non-negative integer in x.

Unless otherwise specified, we refer to N. Bourbaki, Théorie des ensembles, Eléments de math-
ématique I, Springer-Verlag, Berlin, 2006 (reprint ed.) and N. Bourbaki, Algébre, Chapitres 1 a 3,
Eléments de mathématique II, Springer-Verlag, Berlin, 2006 (2nd revised ed.), respectively, for
standard notations and definitions from set theory and abstract algebra.

In all what follows, the lowercase Latin letters h and k shall denote integers, while i, j, , m and n

stand for positive integers, unless a statement to the contrary is made.



THIS PAGE INTENTIONALLY LEFT BLANK



Part1

Additive Semigroup Theory



THIS PAGE INTENTIONALLY LEFT BLANK



Il mare é senza strade, il mare é senza spiegazioni.

Se lo guardi non te ne accorgi: di quanto rumore faccia.

— Alessandro Baricco, Oceano Mare

Cauchy-Davenport type theorems, |

RESUME. On généralise la transformée de Davenport et on 'utilise pour prouver que, si A =
(A, +) est un semi-groupe cancellatif (éventuellement non-commutatif) et X, Y sont des sous-
ensembles non vides de A tels que le sous-semi-groupe engendré par Y est commutatif, on a | X +
Y| > min(y(Y), |X| + |Y] — 1), ot y(Y), quon appelle la constante de Cauchy-Davenport de Y

relative au semi-groupe A, est définie par

y(Y) := sup inf ord(y —y,).
Yo cAX J’o?é)’EY
Cela généralise le théoreme classique de Cauchy-Davenport au cadre plus large des semi-groupes,
avec comme cas particuliers une extension des théorémes de I. Chowla et S. S. Pillai pourles groupes
cycliques et une version plus forte d’'une autre généralisation du théoréme de Cauchy-Davenport

pour les groupes commutatifs, ou dans la formule ci-dessus y(Y) est remplacé par I'infimum de ||



sur les sous-semigroupes S non triviaux de I'unitarisation de A. Ce dernier résultat a été prouvé
par G. Karolyi dans le cas des groupes finis, grace au théoréme de Feit-Thompson ; puis par Hami-
doune pour un groupe arbitraire grice a sa méthode isopérimétrique. Le chapitre est basé sur un

papier par l'auteur [ Tr1] publié dans Uniform Distribution Theory.

ABSTRACT. We generalize the Davenport transform and use it to prove that, for a (possibly non-
commutative) cancellative semigroup A = (A, +) and non-empty subsets X, Y of A such that the
subsemigroup generated by Yis commutative, we have |[X + Y| > min(y(Y), |X| +|Y] — 1), where

r(Y) = s nf ord(y = ).

This carries over the Cauchy-Davenport theorem to the broader setting of semigroups, and it im-
plies, in particular, an extension of I. Chowla’s and S. S. Pillai’s theorems for cyclic groups and
a strengthening of another generalization of the same Cauchy-Davenport theorem to commuta-
tive groups, where 7(Y) in the above is replaced by the infimum of |S| as S ranges over the non-
trivial subsemigroups of the (conditional) unitization of A. This latter result was first proved by
G. Karolyi in 2005 for the special case of finite groups [Ka], by reduction to simple groups by the
Feit-Thompson theorem, and later by Y. O. Hamidoune for an arbitrary group, building upon the
isoperimetric method. The chapter is based on a paper by the author [ Tr1] published in Uniform
Distribution Theory.

1.1 INTRODUCTION

Semigroups are a natural framework for developing large parts of theories traditionally presented
in less general contexts. Not only this can suggest new directions of research and shed light on
questions primarily focused on groups, but it also makes methods and results otherwise restricted
to “richer settings” applicable, at least in principle, to larger classes of problems.

Here and later, a semigroup is a structure A = (A, +) consisting of a (possibly empty) set A and

an associative binary operation + on A. Given subsets X and Y of A, we define the sumset, relative



to A, of the pair (X, Y) as the set
X+Y:={x+y:x€XyecVY}

which is written as x + Yif X = {x} (respectively, as X + yif Y = {y}). Furthermore, we extend

the notion of difference set by

X-Y:={z€A:(z+Y)NX# 0} (1.1)
and

—X+Y:={z€A: (X+2z)NY#0D}. (1.2)
Expressions involving one or more summands of the form Z; + --- + Z, or E?:l Z;, as well as

expressions of the form —x + Yand X — y forx,y € A are defined in a similar way (we may omit
the details); in particular, we use nZ for Z, + - - - + Z, if the Z; are all equal to the same set Z, and
we possibly refer to nZ as the n-fold sum of Z.

We say that A is unital, or a monoid, if there exists 0 € A suchthatz +0 = 0 + z = zfor
all z; when this is the case, 0 is unique and called the identity of A. Then, we let A* be the set of
units of A, so that A* = () if A is not a monoid. In this respect, we recall that, if A is unital with
identity 0, a unit of A is an element z for which there exists a provably unique element z € A such
thatz + z = z + z = 0; this z is then called the inverse of z in A and denoted by (—z)4, or simply
by —z if no ambiguity can arise.

Given Z C A, we write Z* in place of Z N A* (if there is no likelihood of confusion) and (Z) 5
for the smallest subsemigroup of A containing Z. Note that A is a group if and only if A* = A.
Then, if Z = {z}, we use (z) 4 instead of ({z}), and ord, (z) for the order of z (in A), that is we
let ords(z) := |(z)a], so generalizing the notion of order for the elements of a group. Here and
later, the subscript ‘A’ may be omitted from the notation if A is clear from the context. Finally, an
element z € A s called cancellable (in A) ifx +z =y + zorz + x = z + yforx,y € A implies
x = y (see [B1, Section 1.2.2]), and A is said cancellative if any element of A is cancellable.

On another hand, we define the conditional unitization of A, herein denoted by A and simply
referred to as the unitization of A, as follows: If A is not unital, A(®) is the pair (AU {A}, +), where

+ is, by an abuse of notation, the unique extension of + to a binary operation on AU{A} for which



A serves as an identity (note that A ¢ A, so loosely speaking we are just adjoining a distinguished
element to A and extending the structure of A in such a way that the outcome is a monoid whose
identity is the adjoined element); otherwise A© = A (cf [Ho, p- 2]). Then, for a subset S
of A we write p,(S) for inf,cg\ (0} ord (o) (2), namely the infimum of the order of the non-trivial

subsemigroups of A(®), which is simply denoted by p(S) if there is no ambiguity.

Remark 1.1. In the case of a multiplicatively written semigroup B = (B, -), the “sumset” of two
subsets X and Y of B, relative to BB, is more properly called the product set of the pair (X, Y) and
possibly denoted by XY, while the analogues of the difference sets defined by (1.1) and (1.2) are
written as XY~ ! and X 'Y, respectively. Accordingly, given Z C B we use Z" for the product set
of n copies of Z and call it the n-fold product of Z. Further, we write the unitization of B as B™)
rather than as B(®). However, note that, if we are talking of a semigroup and it is not clear from the
context whether this is written either additively or not, the term “sumset” will be preferred. For the

rest, everything works as expected.

Sumsets in (mostly commutative) groups have been intensively investigated for several years
(see [Ru] for a recent survey), and interesting results have been also obtained in the case of com-
mutative cancellative monoids (see [G] and references therein, where these structures are simply
called “monoids”). The chapter aims to extend aspects of the theory to the more general setting of
possibly non-commutative semigroups.

A natural motivation in this sense comes from considering that the non-zero elements of a non-
trivial unital ring, either commutative or not, are not, in general, cancellative (unless the ring is a
domain), and hence not even closed under multiplication. Another motivation relies on the fact
that, even when A = (A, +) is a group, the non-empty subsets of A, endowed with the binary op-
eration taking a pair (X, Y) to the sumset X+, is, in general, nothing more than a non-cancellative
monoid (e.g., when A is (Z, +), the corresponding structure on the powerset of A has been stud-
ied by J. Cilleruello, Y. O. Hamidoune and O. Serra [CHS]; see the discussion at the end of the
section for details on this).

Historically, one of the first significant achievements in the field is probably the Cauchy-Davenport
theorem, originally established by A.-L. Cauchy [C] in 1813, and independently rediscovered more
than a century later by H. Davenport [D1] [D2]:
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Theorem 1.2 (Cauchy-Davenport theorem). Let (A, +) be a group of prime order p and X, Y non-
empty subsets of A. Then, |X + Y| > min(p, |X| + |Y| — 1).

The result has been the subject of numerous papers, and received many different proofs, each
favoring alternative points of view and eventually leading to progress on a number of related ques-
tions. In fact, the main contribution here is an extension of Theorem 1.2 to cancellative semigroups
(this is stated in Section 1.2).

The Cauchy-Davenport theorem applies especially to the additive group of the integers mod-
ulo a prime. Extensions to composite moduli have been given by several authors, and notably by
L. Chowla [Ch] and S. S. Pillai [Pi]. These results, reported below for the sake of exposition and
used by Chowla and Pillai in relation to Waring’s problem, are further strengthened, in Section 1.2,
by Corollary 1.17, which can be viewed as a common generalization of both of them, and whose
proofis sensibly shorter than each of the proofs appearing in [Ch] and [Pi] (not to mention that it

comes as a by-product of a deeper result).

Theorem 1.3 (Chowla’s theorem). If X, Y are non-empty subsets of Z./mZ such that 0 € Y and
ged(m,y) = 1 foreachy € Y \ {0}, then

|X 4+ Y| > min(m, |X| + |Y] — 1).

Theorem 1.4 (Pillai’s theorem). Pick non-empty subsets X and Y of ZL/mZ. Let § be the maximum of
ged(m,y — y,) for distinct y, y, € Yif|Y| > 2, and set § := 1 otherwise. Then,

X + Y| > min(§ 'm, |X| + Y] — 1).

A partial account of further results in the same spirit can be found in [N, Section 2.3], along with
an entire chapter dedicated to Kneser’s theorem [N, Chapter 4], which, among the other things,
implies Theorem 1.3 (and then also Theorem 1.2); see [N, Section 4.6, Exercises S and 6]. Gener-
alizations of the Cauchy-Davenport theorem of a somewhat different flavor have been furnished,
still in recent years, by several authors.

Specifically, assume for the rest of the chapter that A = (A, +) is a fixed, arbitrary semigroup
(unless differently specified), and let 0 be the identity of the unitization, A(®), of A. Then we have:

11



Theorem 1.5 (folklore). If A is a commutative group and X, Y are non-empty subsets of A, then
X+ Y] > min(p(A), [X] + [Y] - 1).

Theorem 1.5 is another (straightforward) consequence of Kneser’s theorem. While it applies to

both finite and infinite commutative groups, an analogous result holds for all groups:

Theorem 1.6 (Hamidoune-Karolyi theorem). If A is a group and X, Y are non-empty subsets of A,
then | X + Y| > min(p(A), |X] + Y] — 1).

This was first proved by G. Kérolyi in the case of finite groups, relying on the structure theory of
group extensions, by reduction to finite solvable groups in the light of the Feit-Thompson theorem,
and then by Hamidoune in the general case, based on the isoperimetric method. In fact, we will
give an elementary proof of the Hamidoune-Kérolyi theorem in the next chapter, which the reader
is referred to for more details on the history of the result.

A further result from the literature that is significant in relation to the subject matter is due to

J. H. B. Kemperman [Ke], and reads as follows:

Theorem 1.7 (Kemperman’s inequality). Let A be a group, and let X, Y be non-empty subsets of A.
Suppose that every non-zero element of A has order > |X| + |Y| — 1. Then, | X + Y| > |X| + |Y] — L.

Remarkably, [Ke] is focused on cancellative semigroups (there simply called semigroups), and
it is precisely in this framework that Kemperman establishes a series of results, related to the num-
ber of different representations of an element in a sumset, that eventually lead to Theorem 1.7, a
weakened version of which will be obtained in Section 1.5 as a corollary (namely, Corollary 1.15)
of our main theorem.

Asfor the rest, Cilleruello, Himidoune and Serra, see [ CHS, Theorem 3], have proved a Cauchy-
Davenport theorem for acyclic monoids (these are termed acyclic semigroups in [CHS], but they
are, in fact, monoids in our terminology), and it would be interesting to find a common pattern
among their result and the ones in the present chapter. Unluckily, we do not have much on this for
the moment (in particular, note that acyclic semigroups in [ CHS] are not cancellative semigroups),

but will come back to the question with some thoughts in the next chapter.
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ORGANIZATION.

In Section 1.2, we define the Cauchy-Davenport constant and state our main results. In Section
1.3, we establish a few basic lemmas. Section 1.4 is devoted to generalized Davenport transforms
and their fundamental properties. We demonstrate the central theorem of the chapter (Theorem

1.9) in Section 1.5 and give a couple of applications in Section 1.6.

1.2 THE STATEMENT OF THE MAIN RESULTS

Keeping all of the above in mind, we can now proceed to the heart of the chapter.

Definition 1.8. For an arbitrary subset X of A, we let

y,(X) := sup inf ord(x —xo)

XoEXX xoFxEX

Then, given X, ..., X, C A we define

(X1, ..., X,) = max 7,(X;)

1<i<n

and call y, (Xi, . .., X,) the Cauchy-Davenport constant of (Xj, . . ., X,) relative to A (again, the

subscript ‘A’ may be omitted from the notation if there is no likelihood of confusion).

Any pair of subsets of A has a well-defined Cauchy-Davenport constant (relative to A). In par-
ticular, y(Z) is zero for Z C Aif A* = (). However, this is not the case, for instance, when Z # ()

and A is a group, which serves as a “moral base” for the following non-trivial bound:

Theorem 1.9. Suppose A is cancellative and let X, Y be non-empty subsets of A such that (Y) is com-
mutative. Then, | X + Y| > min(y(Y), |X| + |Y] — 1).

Theorem 1.9 represents the central contribution of the chapter. Not only it extends the Cauchy-
Davenport theorem to the broader setting of semigroups (see Section 1.6), but it also provides a
strengthening and a generalization of Theorem 1.5, as is shown below. Any pair of subsets of A has,
in fact, a well-defined Cauchy-Davenport constant (relative to A ), and it is interesting to compare

it with other “structural parameters”, as in the following:
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Lemma 1.10. Let X, Y be subsets of A and assume that A is cancellative and X + Y™ is non-empty.
Then, (X, Y) > min(y(X), 7(Y)) > y(X +Y) > p(4).

The proof of Lemma 1.10 is deferred to the end of Section 2.3. Note that the result applies, on the
level of groups, to any pair of non-empty subsets. On the other hand, the following basic example
suggests that the lemma is quite pessimistic, insofar as there are some relevant cases where each of

the ‘> in its statement can actually be replaced with a “much greater than”:

Example 1.11. Let m > 2 and pick prime numbers p and g withm < p < q. Then, set
X:={mkmodn:k=0,....,p—1} and Y:={mkmodn:k=1,...,p},

wheren :== m-p-q. Wehave |X + Y| = 2p, y(X) = y(Y) = p-qand y(X + Y) = g, while
p(Z/nZ) is the smallest prime divisor of m, with the result that

p(Z/nZ) < y(X+Y) < min(y(X), 7(Y)) = 7(X,Y),
and indeed p(Z/nZ) is “much” smaller than y(X + Y) if q is “much” larger than m, and similarly

y(X 4 Y) is “much” smaller than y(X, Y) if p is “much” larger than 2.

Theorem 1.9 can be “symmetrized” and further strengthened when each summand generates a
commutative subsemigroup. This leads to the following corollaries, whose proofs are straightfor-

ward, by duality (see Proposition 2.8 in Section 2.3), in the light of Definition 1.8:

Corollary 1.12. Assume A is cancellative and let X, Y be non-empty subsets of A such that (X) is com-
mutative. Then, |X + Y| > min(y(X), |X| + |Y] — 1).

Corollary 1.13. If A is cancellative and X, Y are non-empty subsets of A such that both of (X) and (Y)
are commutative, then | X + Y| > v(X, Y).

Moreover, the result specializes to groups as follows:
Corollary 1.14. If A is a group and X, Y are non-empty subsets of A such that (Y) is commutative, then

X + Y| > min(7(Y), |X| + |Y]| — 1), where now

7(Y) = sup inf ord(y —y,),

9o €Y Yo7 VEY
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and indeed y(Y) = max, cyinf, +,cyord(y — y,) if Yis finite.

Proof. Immediate by Theorem 1.9, for on the one hand A being a group implies Y = Y*, and on

the other, a supremum over a non-empty finite set is a maximum. [l

The next corollary is now a partial generalization of Theorem 1.7 to cancellative semigroups: its
proof is straightforward by Corollary 1.13 and Lemma 1.10. Here, we say that A is torsion-free if

p(A) is infinite (in fact, this is an abstraction of the classical definition for groups).

Corollary 1.15. If A is cancellative, and if X, Y are non-empty subsets of A such that every element of
A\ {0} has order > |X| + |Y| — 1 (this is especially the case when A is torsion-free) and either of (X)
and (Y) is abelian, then |X + Y| > |X| + |Y] — L.

Theorem 1.9 is proved in Section 1.5. The argument is inspired by the transformation proof
originally used for Theorem 1.2 by Davenport in [D1]. This leads us to the definition of what
we call a generalized Davenport transform. The author is not aware of any earlier use of the same
technique in the literature, all the more in relation to semigroups. With few exceptions, remarkably
including [HR] and A. G. Vosper’s original proof of his famous theorem on critical pairs [ V], even
the “classical” Davenport transform has not been greatly considered by practitioners in the area,

especially in comparison with similar “technology” such as the Dyson transform [N, p. 42].

Remark 1.16. A couple of things are worth mentioning before proceeding. While every com-
mutative cancellative semigroup embeds as a subsemigroup into a group (as it follows from the
standard construction of the group of fractions of a commutative monoid; see [B1, Chapter I, Sec-
tion 2.4]), nothing similar is true in the non-commutative case, not even if the ambient is finitely
generated. This is related to a well-known question in the theory of semigroups, first answered by
A.L Malcevin [Ma], and is of fundamental importance for our work here, in that it shows that the
study of sumsets in cancellative semigroups cannot be systematically reduced, in the absence of
commutativity, to the case of groups (at the very least, not in any obvious way). In fact, Mal'cev’s
example involves the quotient of the free semigroup over eight letters by a suitable congruence, and
itis not only finitely generated, but even linearly orderable (see Section 3.2 for the terminology and

cf. Remark 3.6).
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On the other hand, it is true that every cancellative semigroup can be embedded into a cancella-
tive monoid, so that, for the specific purposes of the chapter, we could have assumed almost every-
where that the “ambient” is a monoid (rather than a semigroup), but we did differently because,
first, the assumption is not really necessary, and second, it seems more appropriate to develop as
much as possible of the material with no regard to the presence of an identity (e.g., since this is better
suited for the kind of generalizations outlined above). We will see, however, that certain parts take
a simpler form when an identity is made available somehow, as in the case of various lemmas in

Section 1.3 or in the proof of Theorem 1.9.

We provide two applications of Theorem 1.9 in Section 1.6 (hopefully, others will be investigated
in future work): The first is a generalization of Theorem 1.3, the second is an improvement on
a previous result by @. J. Redseth [R, Section 6] based on Hall’s “marriage theorem”. As for the
former (which is stated below), we will use the following specific notation: Given a non-empty
Z C 7/ mZ, welet

8z = mi d — L.
» = g e sedlm = = =) ()

if |Z| > 2,and §; := 1 otherwise. With this in hand, we have:

Corollary 1.17. Let X and Y be non-empty subsets of Z/mZ. and define § := min(8x, 8y). Then,
X + Y| > min(§ 'm, |X| + |Y] — 1).

In particular, |X 4+ Y| > min(m, |X| + |Y| — 1) i there exists y, € Y such that gcd(m,y — y,) = 1
foreachy € Y\ {y,} (or dually with X in place of ).

In fact, Corollary 1.17 contains Chowla’s theorem (Theorem 1.3) as a special case: With the
same notation as above, it is enough to assume that at least one unit of (Z/mZ, -) belongs to Y and
ged(m,y) = 1 for each non-zero y € Y (or dually with X in place of Y). Also, it is clear from (1.3)
that the result is a strengthening of Pillai’s theorem (Theorem 1.4).

Many questions arise. Most notably: Is it possible to further extend Corollary 1.13 in such a
way to get rid of the assumption that summands generate commutative subsemigroups? Partial
answers in this sense will be provided in the next chapter, leading to what we refer to as the Cauchy-

Davenport conjecture (namely, Conjecture 2.1).
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1.3 PRELIMINARIES

This short section collects basic results used later to introduce the generalized Davenport trans-
forms and prove Theorem 1.9. Some proofs are direct and standard (and thus omitted without
further explanation), but we have no reference to anything similar in the context of semigroups, so

we include them here for completeness.

Proposition 1.18. PicksubsetsX;, Y1, ..., Xy, Y, of AsuchthatX; C Y;foreachi. Then, Z?zl X; C

Z?:l Y; and ‘ Z?:lXi| < | Z?:l Yi}'

Proposition 1.19. Assume that A is cancellative, let n > 2, and pick non-empty X1, ..., X, C A
Then, | 371, Xi| < | 320, Xif and | 302 X[ < | 221, i

In spite of being trivial, the next estimate is often useful (cf. [TV, Lemma 2.1, p. 54]).

<IIL, Xl

Let X,Y C A. No matter whether or not A is cancellative, nothing similar to Proposition 1.20

Proposition 1.20. Given X;, ..., X, C A, it holds ! Z:.l:l X;

applies, in general, to the difference set X — Y, which can be infinite even if both of X and Y are not.
On another hand, it follows from the same proposition that, in the presence of cancellativity, the
cardinality of X + Y'is preserved under translation, namely |z 4+ X+ Y| = [X+ Y+ z| = |X + Y|
foreveryz € A.

This is a point in common with the case of groups, but a significant difference is that, in the
context of semigroups (even when unital), the above invariance property cannot be used, at least
in general, to “normalize” either of X and Y'in such a way as to contain some distinguished element
of A. However, we will see in a while that things continue to work properly when A is a monoid

and sets are shifted by units.

Lemma 1.21. Let X and Y be subsets of A. The following are equivalent:
() X+2YC X+ Y.
(i) X+ nY C X+ Yforalln.

(iii) X+ (V) =X+Y.
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Proof. Points (ii) and (iii) are clearly equivalent, as X+ (Y) = |J~, (X +nY), and (i) is obviously
implied by (ii). Thus, we are left to prove that (ii) follows from (i), which is immediate (by induc-
tion) using that, if X + nY C X + Y for some n, thenwe have X + (n +1)Y = (X +nY) + Y C
(X+Y)+Y=X+2YCX+VY. O

The above result is as elementary as central in the plan of the chapter, as the applicability of the
generalized Davenport transform (introduced in Section 1.5) to the proof of Theorem 1.9 depend
on it in a critical way. On another hand, the following lemma shows that, in reference to Theorem
1.9, there is no loss of generality in assuming that the ambient semigroup is unital, for any semi-

group embeds as a subsemigroup into its unitization (recall Remark 1.16).

Lemma 1.22. Let B = (B, %) be a semigroup, ¢ a semigroup monomorphism A — B, i.e. an injective
function from A to B such that ¢(z1 + z) = ¢(z1) * ¢(z3) forallzy,z, € A,and X, ..., X, C A
Then, |X; + -+ 4+ Xu| = [¢(X1) * - - - % ¢(X,)].

We close the section with a few properties of units. Here and later, given X C A we use Cy (X)

for the centralizer of X in A, namely the set ofallz € A such thatz + x = x 4 zforeveryx € X.
Lemma 1.23. Let A be a monoid, X a subset of A, and z a unit of A with inverse z. Then:
(i) X—z=X+zand —z+ X =2z+ X, butalso|—z+ X| = [X — 2| = |X].

(ii) Ifz € Ca(X) thenz € Cx(X); in addition to this, (X — z) and (—z + X) are commutative if

(X) is commutative.

Proof. (i) By duality, it suffices to prove that X — z = X + zand |X — z| = |X|. As for the first
identity, it holds w € X — zif and only if there exists x € X such that w + z = x, which in turn
is equivalenttox + z = (w + z) + Z = w, namely w € X + z. In order to conclude, it is then
sufficient to observe that the function A — A : £ — £ + Zis a bijection.

(ii) Pickz € Co(X) andx € X. Itisclearthatx +z = Z + xifand onlyifx = (x + 2) + z =
z-+x+z,and thisis certainly verified as our standing assumptions imply z+x+z = z+z+x = x.
It follows that z € Cy (X).

Suppose now that (X) is a commutative semigroup and let v, w € (X — z). By point (i) above,
there exist xy,...,%¢,y,,...,y,, € Xsuchthatv = Zle(x,- +z)andw = > " (y, + ), thus
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v+ w = w + v by induction on ¢ + m and the observation that for all u;, u, € Xitholds
(m+2)+(m+2)=u+u+2z2=u+u +2z=(u, +z) + (u; + 2),

where we use that z € C, (X), as proved above, and (X) is commutative. Hence, (X — z) is com-

mutative too, which completes the proof by duality. ]

Remark 1.24. Considering that units are cancellable elements, point (i) in Lemma 1.23 can be
(partially) generalized as follows: If X C Aandz € Ais cancellable, then |[z+ X| = | X +z| = |X]
(thisis straightforward, because both of the functionsA — A : x — x+zandA — A : x — z+x

are bijective).

Remark 1.25. There is a subtleness in Definition 1.8 and Lemma 1.23 that we have so far (inten-
tionally) overlooked, but should be remarked. For, suppose that A is a monoid and pick x,y € A.
In principle, x — y and —y -+ are not elements of A: In fact, they are difference sets, namely subsets
of A, and no other interpretation is possible a priori. However, if y is a unit of A and y is the inverse
of y,thenx —y = {x+y} and —y + x = {y + x} by point (i) of Lemma 1.23, and we are allowed
to identify x — y with x + y and —y + x with y + x, which is useful in many ways.

1.4 THE DAVENPORT TRANSFORM REVISITED

As mentioned in Section 1.2, Davenport’s proof [D1, Statement A] of Theorem 1.2 is a transfor-
mation proof. For A a commutative group, the idea is to map a pair (X, Y) of non-empty subsets of
A to a new pair (X, Yp), which is smaller than (X, Y) in an appropriate sense, and specifically such
that

Y| <[], [X+Yp|+[¥] < [X+ Y]+ |¥p]

We then refer to (X, Yp) as a Davenport transform of (X, Y); see, for instance, [HR]. For this to be
possible, the classical approach requires that X + 2Y Z X + Yand 0 € Y, so that |Y| > 2.

As expected, many difficulties arise when attempting to adapt the same approach to semigroups,
all the more if these are non-commutative. Even the possibility of embedding a semigroup into a
monoid does not resolve anything, since the fundamental problem is that, contrary to the case of

groups, cardinality is not preserved “under subtraction”. Namely, if A is an arbitrary monoid with
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identity O (as intended for the remainder of the section), X is a subset of A, and z € A, then |X],
|X —z| and | —z+ X| can be greatly different from each other, even in the case that A is cancellative;
cf. point (i) of Lemma 1.23. Thus, unless A is a group or, more generally, embeds as a submonoid
into a group, we are not allowed to assume, for instance, that 0 € Y by picking an arbitrary element
¥, € Yand replacing (X, Y) with the “shifted” pair (X + y,, —y, + Y); cf. the comments following
Proposition 1.20.

In fact, the primary goal of this section is to show that, in spite of these issues, Davenport’s orig-
inal ideas can be extended and used for a proof of Theorem 1.9.

To start with, let X and Y be subsets of A such that mX+2Y ¢ X+ Y for some (positive integer)
m. For the sake of brevity, define

Z = (mX+2Y)\ (X+7).

Our assumptions give Z # (). Thus fixz € Z, and takex, € (m — 1)Xandy, € Y for which
z € x, + X+ Y +y_ where 0X := {0}. Finally, set

V,:={y€Y:iz€x,+X+Y+y} and Y,:=Y\Y,. (1.4)

We refer to (X, Y,) as a generalized Davenport transform of (X, Y) (relative to z), and based on this

notation we have:
Proposition 1.26. IfY, # (), then the triple (X, Y,, Y,) satisfies the following:
(i) Y, and Y, are non-empty disjoint proper subsets of Y, and Y, = Y \ Y.

(ii) If A is cancellative, then (x, + X+ Y,)U (z—Y,) Cx, + X+ Y.

(iii) If (Y) is commutative, then (x, + X + Y,) N (z — Y,) = ().

(iv) IfA is cancellative, then |z — Y,| > |Y,|.

(v) If Ais cancellative and (Y) is commutative, then | X + Y| + |Y,| > |[X + Y| + |Y].

Proof. (i) Y, is non-empty by hypothesis, while Y, is non-empty since y , € Y, by construction.
Also, (1.4) gives Y,,Y, C Yand Y, NY, = (,sothat Y\ Y, = Y\ (Y\ Y,) = Y,and Y,, Y, C Y.
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(i) Since Y, C Y by point (i) above, x, + X + Y, C x, + X + Y by Proposition 1.19. On the
other hand, if w € z — Y, then there exists y € Y, such thatz = w+y. Buty € Y, implies by (1.4)
thatz = w+ yforsome w € x, + X+ Y, whence w = w by cancellativity, namelyw € x, + X+ Y.

(iii) Assume the contrary andletw € (x, + X+ Y,) N (z—Y,). There thenexistx € Xy, € Y,
andy, € Y, such that w = x, + x + y, and z = w + y,. Using that (Y) is commutative, it follows
thatz = x, +x +y, +y, = x, + x +y, + y,, which in turn implies y, € Y, by (1.4), since
Y,,Y, C Y by point (i). This is, however, absurd as Y, N Y, =0, by the same point (i).

(iv) We have from (1.4) that for each y € Y, there exists w € x, + X + Ysuch thatz = w -+ Y
and hence w € z—Y,. On the other hand, since A is cancellative, we cannot have w + ¥y, =wty,
for some w € A and distincty,,y, € Y,. Thus, Y, embeds as a set into z — Y, with the result that
|z = Yo| > |Ye].

(v) Since A is cancellative and X # () (otherwise Z = (}), we have |X 4+ Y| > max(|X], |Y]) by
Propositions 2.8 and 1.19. This implies the claim if Y is infinite, since then either |X + Y| > |Y],
and hence

X+ Y]+ Y| = [X] = X+ Ye| + [V],

or |X + Y| = |Y], and accordingly
X+ Ye| + |Ye| = Y] = X + Yo + [Y].

So we are left with the case when Y is finite, for which the inclusion-exclusion principle, points

ii)-(iv) and Proposition 1.19 give, by symmetry, that
P g Y sy V)
X4V =[x + X+ Y] > e + X+ Y|+ |z - Y| =
=X+ Y|+ |z - Y| > |X+ Y| + V.|

ButY, = Y\Y,and Y, C Ybypoint (i) above, so at the end we have | X+ Y| > |X+Y,|+|Y]—|Y],
and the proof is complete. [l

Remark 1.27. To apply the generalized Davenport transform to Theorem 1.9, it will be enough to
consider the case where m = 1, for whichitis easily seen that 0 € Y,if0 € Y (we continue with the
notation from above), as otherwise z € X + Y, contradicting the fact thatz € (X+2Y) \ (X+7Y).

However, it seems intriguing that the same machinery can be used, at least in principle, even if
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m > 2 in so far as there is a way to prove that Y, is non-empty.

1.5 THE PROOF OF THE MAIN THEOREM

Lemma 1.26 is used here to establish the main contribution of the chapter.

Proof of Theorem 1.9. Since every semigroup embeds as a subsemigroup into its unitization, and the
unitization of a cancellative semigroup is cancellative in its own right, Lemma 1.22 and Definition
1.8 imply that there is no loss of generality in assuming, as we do, that A is unital.

Thus, suppose by contradiction that the theorem is false. There then exists a pair (X, Y) of subsets
of A for which (Y) is abelian and |X + Y| < min(y(Y), |X| + |Y| — 1). Then,

2 < |X], Y] < oc. (L.5)

In fact, if either of X and Y'is a singleton or infinite then | X + Y| = |X| + |Y| — 1, contradicting the
standing assumptions. It follows from (1.5) that

|X+Y| < sup inf ord(y —y,) and [X+Y|]<|X|+[Y]—2. (1.6)
yoeyx }'075}’61’

Again without loss of generality, we also take |X| + |Y| to be minimal over the pairs of subsets of A
for which, in particular, (1.5) and (1.6) are assumed to hold.

Now, since |X + Y] is finite, thanks to (1.5) and Proposition 1.20, we get by (1.6) and the same
equation (1.5) that there exists y, € Y™ such that

X+7Y| < _inf_ord(y —j,) = min_ord(y — j,). 1.7
X+ Y[ <_inf ordly—j,) = min ord(y -5, (17)

So letting W, := Y — y,, implies

|X 4+ Wo| < min ord(w) and |X+ Wy| < |X]|+ |[Wo| —2 (1.8)

0#AWwEW,

in view of (1.6) and (1.7). In fact, on the one hand |Y — y,| = |Y] and [ X + Y — j,| = |X + Y| by
point (i) of Lemma 1.23, and on the other,y € Y'\ {},} onlyify —y, € (Y —J,) \ {0}, butalso
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we (Y—5,) \ {0}onlyifw+y, € Y\ {J,} (see also Remark 1.25). We claim that
Z:= (X+2W,) \ (X + Wp) # 0. (1.9)
For, suppose the contrary. Then, X + Wy, = X + (W,) by Lemma 1.21, so that

= > > > i
X+ Wol = [X+ (Wo)| 2 |(Wo)| 2 max ord(w) > min ord(w),

where we use, in particular, Proposition 1.19 for the first inequality and the fact that |W,| > 2 for
the last one. But this contradicts (1.8), so (1.9) is proved.

Pickz € Zand let (X, Wy) be a generalized Davenport transform of (X, W;) relative to z. Since
(Y) is a commutative subsemigroup of A (by hypothesis), the same is true for (W), by point (ii)
of Lemma 1.23. Moreover, 0 € Wy, and thus

0eEW,#0 and W, C W, (1.10)

when taking into account Remark 1.27 and point (i) of Proposition 1.26. As a consequence, point

(v) of the same Proposition 1.26 yields, together with (1.8), that
X+ Wol + [Wo| < |X + Wo| + [Wo| < [X] + [Wo| — 2 4 [Wol,
which means, since [Wy| = |Y — j,| = |Y]| < oo by (1.5) and the above, that
X+ Wo| < |X] + [Wo| — 2. (L.11)

It follows from (1.10) that 1 < |Wy| < |W,|, and in fact [W,| > 2, as otherwise we would have
|X| = | X+ Wo| < |X| —1by(1.11), in contrast to the fact that |X| < oo by (1.5). To summarize,
we have found that

Furthermore, (1.8) and (1.10) entail that

X+ Wo| < |X+ Wp| < min ord(w). (L.13)

0#£wEW
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Thus, since 0 € W, we get by (1.13) that

|X+Wy| < sup min_ ord(w), (1.14)

— W
WoGW(;< WO#WG 0

which is however in contradiction, due to (1.5), (1.11) and (1.12), with the minimality of | X| 4| Y],
for [Wy| < |[W,| = |Y], and hence |X| + |W,| < |X]| + |Y]. ]

1.6 A COUPLE OF APPLICATIONS

First, we show how to use Theorem 1.9 to prove the extension of Chowla’s theorem for composite

moduli mentioned in Section 1.2.

Proof of Corollary 1.17. 'The claim is trivial if X or Y is a singleton. Otherwise, since Z/mZ is a
commutative finite group and ord(z — zo) = m/ ged(m,z — z¢) forall z, zy € Z/mZ, we get by
Corollary 1.14 that |X + Y| > min(7(Y), |X| + |Y| — 1), where

1
¥(Y) = max min ord(y — —m-max mn —— = §,'m.
) YoEY yoAyeY =) $0€Y yoreY ged(m,y —y,)

Now in an entirely similar wayj it is found, in view of Corollary 1.12, that
X + Y| > min(8'm, |X| + Y] — 1).
This concludes the proof, considering that §y = 1 if there exists y, € Ysuchthatged(m,y—y,) =

1foreveryy € Y\ {y,} (and dually with X). ]

We now use P. Hall's theorem on distinct representatives [H] to say something on the “localiza-

tion” of elements in a sumset.

Theorem 1.28 (Hall’s theorem). Let Sy, . .., S, be sets. There then exist (pairwise) distinct elements
s1 € 81,...,8, € Syifand only if foreachk = 1, ..., ntheunion of any k of Sy, ..., S, contains at

least k elements.

More precisely, suppose A is a cancellative semigroup and let X, Y be non-empty finite subsets
of A such that |[X + Y| < y(Y). Clearly, this implies Y* # (). Define k := |X| and £ := |Y], and let
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x1,...,%beanumberingof Xandy,,...,y, anumbering of Y. Then consider the k-by-¢ matrix,
say a(X, Y), whose entry in the i-th row and j-th column is x; + y;- Any element of X + Yappears
in a(X, Y), and viceversa any entry of a(X, Y) is an element of X + Y. Also, Theorem 1.9 and our
hypotheses give | X+ Y| > k+ ¢ — 1. So it is natural to try to get some information about where in
the matrix a(X, Y) it is possible to find k + ¢ — 1 distinct elements of X + Y. In this respect we have
the following proposition, whose proof is quite similar to the one of a weaker result in [R, Section

6], which is, in turn, focused on the less general case of a group of prime order:

Proposition 1.29. Assume that (Y) is commutative and let Z be any subset of X + Y of size { — 1, for
instanceZ = x1 +{y,, ..., y,_, }- Then we can choose one element from each row of a(X,Y) in such a
way that Z and these elements form a subset of X + Y of sizek + { — 1.

Proof. Foreachi = 1,...,kletZ; := (x; + Y) \ Z and note that Z; is a subset of the i-th row of
a(X,Y). Thus, Z;, U--- U Z;, = ({xs,...,%;,} +Y) \ Z for any positive h < k and all distinct
it,...,ip € {1,...,k}. It follows that

|Zi1U”’UZih| Z ’{x,-l,...,x,-h}—i—Y|—|Z| Zl’l—f—g—l—(f—l):h,
where we combine Theorem 1.9 with the fact that
|{xi17"'7xih} +Y| S |X+Y| < Y(Y)’

as is implied by Proposition 1.18 and the assumption that | X+ Y| < y(Y). Then, as a consequence

of Hall’s theorem, we can find k distinct elements z; € Z, ...,z € Z;, and these, together with
the / — 1 elements of Z, provide a total of k 4+ ¢ — 1 distinct elements of X + Y, since ZN Z; =
.-+ = ZN Z; =  (by construction). ]
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On ne voit bien qu’avec le ceeur.

Lessentiel est invisible pour les yeux.

— Antoine DE SAINT EXUPERY, Le Petit Prince

Cauchy-Davenport type theorems, 11

RESUME. On fait une étude plus approfondie des propriétés de la constante de Cauchy-Davenport
(introduite dans le chapitre 1) pour montrer I'extension supplémentaire suivante du théoréme de

Cauchy-Davenport : si (A, +) est un semi-groupe cancellatif et si X, Y C A, alors
X+ Y| > min(y(X+7), |[X| + Y] - 1).

Cela implique une généralisation de I'inégalité de Kemperman pour les groupes sans torsion [Ke]
et aussi une version plus forte du théoréme d’'Hamidoune-Kérolyi mentionné précédemment. Ici,
on donne une preuve indépendante et totalement combinatoire du cas général de ce résultat, qui
ne dépend ni du théoréme de Feit-Thompson ni de la méthode isopérimétrique. Enfin, on se
penche sur certains aspects d’'une conjecture qui, si elle était vraie, pourrait fournir une formu-

lation unifiée de beaucoup de théorémes de type Cauchy-Davenport, y compris ceux déja prouvés
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dans le chapitre précédent. Le contenu ci-aprés est basé sur un papier par l'auteur [Tr2] soumis

pour publication.

ABSTRACT. Based on a paper by the author [ Tr2] which is still under review, we further investigate
the properties of the Cauchy-Davenport constant (introduced in Chapter 1) and use them to prove

the following: If A is a cancellative semigroup (either commutative or not) and X, Y C A, then
|X+ Y| > min(y(X+7Y), [X| +[Y] — 1).

This implies at once a generalization of Kemperman’s inequality for torsion-free groups [Ke] and
a strengthening of the Hamidoune-Kdrolyi theorem. Our proof of the latter is basically a transfor-
mation proof; in particular, it is self-contained and does not depend on either the Feit-Thompson
theorem or the isoperimetric method. In addition, we discuss aspects of a conjecture that, if true,
would further improve most of the results in the chapter, generalize a greater number of Cauchy-
Davenport type theorems (including those proved in the previous chapter), and hopefully provide

a deeper understanding on this kind of inequalities.

2.1 INTRODUCTION

The weaker are the structural assumptions, the larger is, in principle, the number of problems that
we can hope to solve, while trying to arrive at a better understanding of their “real nature”: This is,
in essence, the philosophy at the heart of the present thesis. Building on these ideas, we aim here
to further extend some aspects of the theory developed in the previous chapter, particularly in the
direction of the study of non-commutative or non-cancellative semigroups.

A natural motivation for this comes from considering that the non-zero elements of a non-trivial
unital ring, either commutative or not, are not, in general, cancellative (and hence not even closed)
under multiplication (unless the ring is a domain). Another motivation is the fact that, even when
A'is a commutative group, the non-empty subsets of A, endowed with the binary operation taking
apair (X, Y) to the sum-set X+, is, in general, nothing more than a non-cancellative monoid (e.g,
when A is the additive group of the ring of integers, the corresponding structure on the powerset
of A has been studied by J. Cilleruello, Y. O. Hamidoune and O. Serra; see [CHS] and references
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therein).

Here, more specifically, the main contribution is an extension (Theorem 2.3) of the (classi-
cal) Cauchy-Davenport theorem (Theorem 1.2) to the setting of cancellative, but possibly non-
commutative semigroups (see comments at the end of Section 2.2), whence we derive as an almost
immediate consequence a stronger and more abstract version (Corollary 2.4) of the Hamidoune-
Kérolyi theorem (‘Theorem 1.6). In fact, a proof of this latter result was first published by Karolyi in
2005 for the special case of finite groups [Ka], based on the structure theory of group extensions,
by reduction to finite solvable groups in the light of the Feit-Thompson theorem. In the same pa-
per (p. 242), Kérolyi reports a more elementary proof of the general statement (for an arbitrary
group), which was apparently communicated to him by Hamidoune during the peer-review pro-
cess of [Ka]. Hamidoune’s approach depends on a generalization of an addition theorem by L. Sha-
trowsky and is ultimately built upon the isoperimetric method (see [Ha] and references therein).
However, Kérolyi himself has pointed out to the author, as recently as July 2013, that an alternative
and even “simpler” approach comes from a Kneser-type result due to J. E. Olson [O, Theorem 2],
based on Kemperman’s transform. Yet another argument along the same lines was suggested by
I. Ruzsa in a private communication in mid-June 2013.

On these premises, we remark from the outset that also our proof of Theorem 2.3, and conse-
quently of Corollary 2.4, is basically a transformation proof, close in the spirit to Olson’s approach
and as elementary as other combinatorial proofs in the literature (in particular, it is self-contained
and does not depend at all on the Feit-Thompson theorem or Hamidoune’s isoperimetric method).

In addition to the above, we present and discuss aspects of a conjecture (Conjecture 2.1) which,
if true, would further improve most of the results in the paper and include as a special case a greater
number of Cauchy-Davenport type theorems, and particularly those proved in the previous chap-
ter. In all of this, a key role is played by certain invariance properties of the Cauchy-Davenport

constant (Definition 1.8), which are also investigated in this work.

ORGANIZATION.

In Section 2.2 we give an overview, complementary to the one of the previous chapter, of the lit-
erature on theorems of Cauchy-Davenport type (with a particular emphasis on those that we are

going to strengthen or generalize), and state our main results and a related conjecture (Conjec-
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ture 2.1). Section 2.3 contains intermediate results on the invariance of the Cauchy-Davenport
constant under suitable transformations. Finally, in Section 2.4 we prove the principal theorem

(namely, Theorem 2.3).

2.2 CAUCHY-DAVENPORT TYPE THEOREMS

As already emphasized in the previous chapter, the Cauchy-Davenport theorem is probably the first
significant achievement in the field of additive theory, dating back to work by A.-L. Cauchy in 1813
[C]. The result has many generalizations. E.g., we have seen that extensions to composite moduli
(the theorem applies especially to the additive group of the integers modulo a prime) have been
given by I. Chowla [ Ch, Theorem 1] and S. S. Pillai [Pi]. These latter results have been sharpened
and further generalized by Corollary 1.17 in the previous chapter, where they appear as Theorems
1.3 and 1.4, respectively. The whole thing comes as an almost immediate consequence of Theorem

1.9, and leads us here to the following:

Conjecture 2.1. Let n be a positive integer and Xy, . . . , X,, non-empty subsets of A. If A is cancellative,
then |X; + - -+ + X,,| > min(y(Xy, ..., X,), |Xa| + -+ |Xa| +1 —n).

Unluckily, we do not have a proof of the conjecture (not even for two summands), which can
however be confirmed in some special case (see, in particular, Corollary 2.5 below, or consider
Corollary 1.13 when A is commutative) and would provide, if it were true, a comprehensive gen-
eralization of about all the extensions of the Cauchy-Davenport theorem reported in this thesis.
Incidentally, the next example shows that the assumption of cancellativity, or a surrogate of it, is

critical and somewhat necessary:

Example 2.2. Let X and Y be non-empty disjoint sets with |X| < 0o and denote by (Fy, -x) and
(Fy, -y), respectively, the free abelian groups on X and Y. For a fixed element e ¢ FxUFy, we define
a binary operation - on F := Fx U Fy U {e} by takingu - v := u -x vforu,v € Fx,u-v:=u-yv
foru,v € Fyand u - v := e otherwise. It is routine to check that - is associative, so we write [F for
the unitization of (F, -) and 1 for the identity of IF'. Then, taking Z := Y U {1} gives y(Z) = oo
andX-Z:={x-z:x€X,z€ Z} =XU{e},sothat |X- Z| < |X] +|Z] — 1 < 7x(X,2),
namely |X - Z| < min(yy(X, Z), |X| + |Z| — 1), and the right-hand side can be made arbitrarily
larger than the left-hand side.
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Nevertheless, we can prove the following inequality, which in fact represents the main contribu-

tion of the present chapter:

Theorem 2.3. Let X, Y be subsets of A and suppose that A is cancellative. Then, |X+Y| > min(y(X+
Y), [X] + Y] = 1).

At this point, it is worth comparing Theorems 1.9 and 2.3. On the one hand, the latter is “much
stronger” than the former, for it does no longer depend on commutativity (which, by the way, leads
to a perfectly symmetric statement). Yet on the other hand, the former is “much stronger” than the
latter, since for subsets X and Y of A we are now replacing y(X, Y) in Theorem 1.9 with (X + Y),
and it has been already observed (Example 1.11) that this means, in general, a weaker bound.

The above seems to suggest that a common generalization of the two theorems should be possi-
ble, and gives another (indirect) motivation to believe that Conjecture 2.1 can be true. Letit be as it
may, Theorem 2.3 is already strong enough to allow for a strengthening of the Hamidoune-Karolyi
theorem (Theorem 1.6 in Chapter 1), as implied by Lemma 1.10 and Example 1.11. As pointed out
before, the theorem was first proved by Kérolyi in [ Ka] in the particular case of finite groups, based
on the Feit-Thompson theorem. The full theorem was then established by Hamidoune through
the isoperimetric method [Ka, p. 242].

In contrast, our proof of Theorem 1.6 is purely combinatorial, and it comes as a trivial conse-

quence of Theorem 2.3 in view of Lemma 1.10. Specifically, we have the following:

Corollary 2.4. Pickn € N and subsets X, ..., X, of Asuch that X + --- + X* # 0. If A'is
cancellative, then |X; + - - - + X,| > min(p(A), |Xq| + -+ + |X.| +1 — n).

Theorem 2.3 and Corollary 2.4 are proved in Section 2.4. Another result from the literature
that is meaningful in relation to the present chapter is Kemperman’s inequality, to wit Theorem
1.7. In fact, the result is generalized by the following, whose proof is straightforward in the light of
Corollary 2.4 (we may omit the details).

Corollary 2.5. Givenn € NT,let X, ..., X, be subsets of A such that X' + - - - + X* # (). Define
k:=|Xy| + -+ |Xu| + 1 — nand assume ord(x) > « foreveryx € A\ {0}. If A is cancellative,
then |X; + - -+ X,| > «.

For the rest, it was already mentioned in the introduction that earlier contributions by other

authors to the additive theory of semigroups are due, e.g., to Cilleruelo, Hamidoune and Serra,
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who in particular proved in [CHS] a Cauchy-Davenport theorem for acyclic monoids (these are
termed acyclic semigroups in [ CHS], but they are, in fact, monoids in our terminology), and it could
be quite interesting to find a common pattern among their result and the ones in this chapter. The
same question was raised at the end of Section 1.1, where it was also observed that one of the main
difficulties with this idea is actually represented by the fact that acyclic monoids in [CHS] are not
cancellative, which has served as a basic motivation for making the results of Section 2.3 mostly

independent from the assumption of cancellativity.

Remark 2.6. Incidentally, we point out that condition M1 in the definition of an acyclic semigroup
M = (M,-) in [CHS], to wit “y - x = ximpliesy = 1,foreveryx € M” (we write 1 for the
identity of M), is to be fixed in some way, since otherwise taking M to be the unitization of a non-
empty left-zero semigroup (N, -), where x - y := xforallx, y € N, yields a counterexample to the
statement that “If Ml is an acyclic semigroup and 1 € §”, where S is a finite subset of M, “then the
only finite directed cycles in the Cayley graph Cay(M], S) are the loops”: This is first mentioned in
the second paragraph of Section 2 in the cited paper (p. 100), and is fundamental for most of its
results. At first, we thought of a typo and tried to substitute condition M1 with its “dual’, namely
“x -y = ximpliesy = 1, for every x € M.” In fact, this is enough to fix the issue with the Cayley
graphs of M, but Lemma 1 in the same paper, which is equally essential in many proofs, breaks
down completely (for a concrete counterexample, consider the monoid obtained by reversing the
multiplication of (N, -) in the previous counterexample).

However, there are at least two possible workarounds: The first is to assume that M is commu-
tative, the second to turn condition M1 into a “self-dual” axiom, namely to replace it with “x - y =

xory-x = ximpliesy = 1, foreveryx € M.”

2.3 PREPARATIONS

Throughout, we collect basic results to be used later in Section 2.4 to prove Theorem 2.3 and Corol-
lary 2.4. Some proofs are quite simple (and thus omitted without further explanation), but we have
no standard reference to anything similar in the context of semigroups, so we include them here for
completeness.

Notice that, even though Theorem 2.3, say, refers to cancellative semigroups, most of the results

presented in the section do not depend on the cancellativity of the “ambient”. While this makes no
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serious difference from the point of view of readability, it seems interesting in itself, and our hope

is that the material can help to find a proof of Conjecture 2.1 (or to further refine it).

Lemma 2.7. Suppose A is a monoid. Pickn € Nt and zy,...,z, € A”, and let X, ..., X, be
subsets of A. Then, ‘ YoroXi| = | Yor(zioi + X —z) |

Proof. Letz; be, fori = 0,...,n, the inverse of z; in A, and set X := Z?:l X; for economy of
notation. Lemma 1.23 gives 2?21 (z,-,l + X, — z,-) = Z?:l (z,-,1 + X, + 2,-) =zo+ X+ z,,and
then another application of the same proposition yields |X| = |zo + X + z,]. O]

In all what follows, we let A°P be the dual (or opposite) semigroup of A, namely the pair (A, +op)
where +,,, is the binary operation A X A — A : (z1,25) — 2z + zy1; cf. [BI, Section L1.1,
Definition 2].

Proposition 2.8. Givenn € N7, let X and Xy, ..., X, be subsets of A, and pick z € A. Then,
Xi+ 4+ X, =X, +op - +op Xi and ord(z) = order (2).

Here and later, to express that a statement follows as a more or less direct consequence of Propo-
sition 2.8, we will simply say that it is true “by duality”. This is useful for it often allows, for instance,
to simplify a proof to the extent of cutting by halfits length, as in the following lemma, which gen-

eralizes an analogous, well-known property of groups:

Lemma 2.9. Pickx,y € A and suppose that at least one of x or y is cancellable. Then, ord(x + y) =
ord(y + x).

Proof. By duality, there is no loss of generality in assuming, as we do, that y is cancellable. Further,
it suffices to prove that ord(x + y) < ord(y + ), since then the desired conclusion will follow
from the fact that, on the one hand,

ord(y + x) = ord(x +op y) = ordper(x +op y) <
ordper (¥ +op ¥) = ord(y +op x) = ord(x + y),

and on the other hand, y is cancellable in A if and only if it is cancellable in A°?. Now, the claimed

inequality is obvious if ord(y + x) is infinite. Otherwise, there exist n,k € N* with k < n such
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that ord(y + x) = nand

Gta)+- - +O+a)=0p+a)+ - +(+a).
kti‘x,nes n+1\trimes

So, by adding y to the right of both sides and using associativity to rearrange how the terms in the

resulting expression are grouped we get

yHE+y) o+ wty) =y+aty) £+ (x+y),

(& J N J/
' '

k times n-+1 times

Since y is cancellable, it then follows that

Ayt ety =ty ot wty),

kt?;les n+f§mes
which ultimately gives ord(x + y) < n = ord(y + ). ]

Proposition 2.10. Let X be a subset of A. Then, y(X) = 7 o (X).

Proof. Let i be the map A* — A sending a unit of A to its inverse, and define iy, in a similar
way by replacing A with its dual. An element xy € A is a unit in A if and only if it is also a unit
in A°® and xy € A is the inverse of xp in A if and only if it is also the inverse of xy in A°P. Thus,
AX = (A®), XN A* = XN (A®)* and i = i,p, with the result that

y(X) = sup inf ord(x +i(x0))

XoEXX xoFxEX

and

Ypor(X) = sup inf ordger(i(xo) + %),

o EXX xo#xEX

where we use Lemma 1.23 to express the Cauchy-Davenport constant of X relative to either of A

and AP only in the terms of i. But any unit in a monoid is cancellable, so forallxy € X* andx € A
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we get, again by Proposition 2.8 and in the light of Lemma 2.9, that

order (i(xg) + %) = [(i(x0) + x) per| = |(i(x0) + x)|
= ord(i(xg) + x) = ord(x + i(xo))

And this, together with the above, is enough to conclude. L]

We define an invariant n-transform of A, here simply called an invariant n-transform if no confu-
sion can arise, to be any tuple T = (T7, . .., T,,) of functions on the powerset of A, herein denoted

by P(A), with the property that, for all non-empty X, ..., X, € P(A),

L. ‘ z?:l Ti(Xi)| = ‘ Z?:l X;| and Z?:l 1Xi| = 2?21 | T:(X3)];

2. y(Xh+ 4 X)) = p(Th(X) + -+ - + Tu(X,))-

An interesting case is when each of the T; is a unital shift, namely a function of the form
PA) = PA) X—>z+X+z

such that z; and z, are units of A. This is implied by the following results, for which we use, among

the other things, that if A is a monoid and z € A then, by Lemma 1.23, we have
(X+Y)—z=X+(Y—2z)and (—z+X)+¥Y=—2+ (X+Y)

forall X, Y C A, so that we can drop the parentheses without worrying and write, e.g, X +Y — z
for(X+Y) — zand —z + X + Yinplace of (—z + X) + Y.

Lemma2.11. Ifn € Ntand Xy, ..., X, CAthenX; + -+ X C (X, + -+ X,,)*, and the

inclusion is, in fact, an equality if A is cancellative.

Proof. 'The assertion is obvious for n = 1, so it is enough to prove it for n = 2, since then the
conclusion follows by induction. For, let X, Y be subsets of A.

Suppose first that z € X* + Y™ (which means, in particular, that A is a monoid), i.e. there exist
x € X" andy € Y* suchthatz = x +y. If xis the inverse of x (in A) and y is the inverse of y, then
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it is immediate to see that y + x is the inverse of x 4y, and hence x +y € (X + Y)*. It follows that
X+ Y C(X+Y)~

Asfor the other inclusion, assume that A is cancellative and pickz € (X+7Y)*. We have to show
thatz € X* + Y. For, let z be the inverse of z, and pickx € Xandy € Ysuchthatz = x +y. We
define X := y +Zandy := Z + . It is straightforward to check thatx + ¥ = (x +y) +z = Oand
y+y = z+(x+y) = 0. Also, (x+x)+y = y+z+(x+y) = yandax+(y+y) = (x+y)+z+x = x,
from which we get, by cancellativity, x + x = y 4+ y = 0. This implies that z belongs to X* + Y*,

and so we are done. L]

Remark 2.12. As a byproduct of the proof of Lemma 2.11, we get the following: If x4, ..., %, €
A* (n € NT) and &; is the inverse of x;, then x,, + - - - + x; is the inverse of x; + - - - + «x,,. This
is a standard fact about groups, which goes through verbatim for monoids; see [B1, Section 1.2.4,

Corollary 1]. We mention it here because it is used below.
Lemma 2.13. Let A be a monoid, and pickz € A* and X C A. Then, y(X) < y(X + 2).

Proof. By Lemma 2.11, we have X* + z C (X + z)*, and thus

X+2z)= su inf  ord(w —wy) > su inf  ord(w — wyp). 2.1
7( ) woe(X-iP-z)X woAWEX+z ( 0) - woele—i-z woAWEX+z ( 0) ( )

Butw € X + zif and only if there exists x € X such that w = x + z, and in particularw € X* 4z
ifand onlyifx € X*. Also, givenxy € X* andx € X, itholdsx 4z = x¢ 4 zifand only if x = x,.

As a consequence, it is immediate from (2.1) and Remark 2.12 that

y(X+z) > sup inf  ord(w+Zz—x) = sup inf ord(x —xp) = y(X),

xpEXX xo+zEWEX+z xoEXX xoFAxEX

where z is the inverse of z in A. Thus, our proof is complete. ]

Now, the following proposition shows that the Cauchy-Davenport constant of a set is invariant
under translation by units. While fundamental for the proof of our main result, this may be of

independent interest in view of Conjecture 2.1.

Proposition 2.14. Suppose that A is a monoid and pick z € A* and X C A. Then, we have

7(X) = (X +2) =7(z+X).
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Proof. Let z denote the inverse of z in A. Lemma 2.13 yields
7(X) < 7y(X+2) < 7((X+2) +2),

whence y(X) = y(X + z). Then, we observe that, on the one hand, Proposition 2.10, together
with the fact that A is the dual of A°?, implies y(X) = 7,0, (X) and 70 (X +0p2) = y(X+0pz) =
7(z 4+ X), and on the other hand, it follows from the above that 7., (X) = 740 (X +op 2). This
gives 7(X) = y(z + X) and completes our proof. O

Corollary 2.15. Let A be a monoid, and for a fixed integer n > 1 pick X;,...,X, C A and
20,...,2y € AX. Foreachi=1,..., ndenote by T; the map

PA) = PA): X—z 1 +X—z

Then, (T, . .., T,) is an invariant n-transform and y(T;(X;)) = y(X;) for each i.

Proof. By construction,itholds ) | | T:(X;) = zo+(X;+- - - +X,) +2,. Then, we getby Lemma
2.7 that

X | =TiX)], - X] = |Tu(X0)] and [ 300, Xi| = [ 00, Tu(X))

?

while Proposition 2.14 implies y(X;) = y(T;(X;)) foreachiand y(X; +- - -+ X,,) = y(T1(X;) +
-+ 4 T,(X,)). By putting all together, the claim follows immediately. ]

Corollary 2.16. Suppose A is a monoid, fix an integer n > 1 and let X, . . ., X,, be subsets of A such
that X + -+ + X = (). There then exists an invariant n-transform T = (Ty, ..., T,) such that
0 € (N, Ti(X;). Moreover, if A is cancellative and X} + - - - + X is finite, then T can be chosen in

such a way that

T, (X)) + -+ Tu(X,)) = i d(w). 22
7(T1(X1) (X)) e ey (w) (22)

Proof. Foreachi = 1,...,npickx; € X/, using that X;' + - - - + X* is non-empty (and hence
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X # ()), and let T; be the function
PA) = PA) : Xz + X —z,

wherezg := 0andz; := x; + - - - +u; = z;_1 + ;. Then clearly 0 € (|_, Ti(X;), while Corollary
2.15 entails that (T7, . . ., T,) is an invariant n-transform. Thus, the first part of the claim is proved.

As for the rest, assume in what follows that A is cancellative and X;* + - - - + X* is finite. Then,
letting Z := X; + - - - + X, for brevity yields, by Proposition 2.11, that X;' + - - - + X = Z*, so
there exist x; € Xy, ...,x, € X, such that

Z) = min ord(z — 2), 2.3
7(2) = min ord(z —Z) (23)
where z := X; + - -+ + X, and we are using that a supremum taken over a non-empty finite set

is, in fact, a maximum. It follows from the above that we can build an invariant n-transform T =
(Ty,...,T,)suchthat0 € (_, T;(X;) and > | Ti(X;) = Z — z, with the result that

- —Z > i — 1 — >
1(2)=7y(2-2) = oA ord(w) min ord(z — z),

by the invariance of T and the fact that, on the one hand, 0 € Z — Z and, on the other hand,
w € Z — zifand only if w = z — z for some z € Z. Together with (2.3), this ultimately leads to
¥(Z — z) = ming 4,7z ord(w), and thus to (2.2). ]

We conclude the section with a proof of Lemma 1.10:

Proof of Lemma 1.10. By duality, it is enough to prove that y(Y) > y(X + Y) > p(A), since all
the rest is more or less trivial from our definitions. For, pick zg € (X 4 Y)* using that, on the one
hand, (X + Y)* = X* + Y* by Proposition 2.11 and the cancellativity of A, and on the other
hand, X* + Y™ is non-empty by the standing assumptions. There then exist xo € X* andy, € Y~
such that zg = xo + y,, and it is immediate from Remark 2.12 that, forally € A,

(xo+y—z0> Zxo+<y—y0>—x07

which, together with Lemma 2.7, gives ord(y — y,) = ord(xo + y — 2o). Thus, considering that,
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fory € A, itholds xy + y = zo ifand onlyify = y,), it follows that

yosiér;felford(y —5,) = yo;r;felrord(xo +y—z) > zo#irelgpryord(z —2z9) > p(A),

and this in turn implies the claim by taking the supremum over the units of X 4 Y. ]

2.4 'THE PROOF OF THE MAIN THEOREM

At long last, we are ready to prove the central contributions of the chapter. We start with the fol-

lowing:

Proof of Theorem 2.3. The claim is obvious if (X + Y)* = (), so suppose for the remainder of the
proof that (X + Y)* is non-empty (which, among the other things, implies that A is a monoid),
and set x := |X + Y|, while noticing that, by Lemma 2.11, both of X* and Y* are non-empty, and

so, by Proposition 1.18 and Lemma 1.23, we have
x 2 max(|X], [Y]) = min(|X], [Y[) > 1. (2.4)

The statement is still trivial if « = 0o (respectively, x = 1), since then either of X and Y is infinite
(respectively, both of X and Y are singletons), and hence | X+ Y| = |X|+|Y| — 1 by (2.4). Thus, we
assume in what follows that « is a positive integer and argue by strong induction on «, supposing by
contradiction that x < min(y(X + Y), |X| + |Y| — 1). Based on the above, this ultimately means
that

2<k <00, 2<|X],]Y] <00, k< y(X+Y), and x < |X]| + |Y] — 2. (2.9)

More specifically, there is no loss of generality in assuming, as we do, that (X, Y) is a “minimax
counterexample” to the claim, by which we mean that, if (X, Y) is another pair of subsets of A with
X4 Y* # Dand | X+ Y] < min(y(X+Y),|X| 4 |Y| — 1), then either « = |X + Y| and at least

one of the following conditions holds:
@) X+ Y] < IX]+ ¥, (i) [X]+ |¥] = [X] 4 [Y] and |X] < [X], (2.6)
ork < |X + Y|. This makes sense because if X, Y C A, X* + Y™ # (Jand x = |X + Y| then X*
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and Y* are non-empty, so we get, as before with (2.4), that
1X] <X+ Y] <2-max(]X],]Y]) <2 |X+ Y] =2« < 0.

Finally, in the light of Corollary 2.16, we may also assume without restriction of generality, up to

an invariant 2-transform, that

0cXNYand y(X+7Y) = O#n'éi)rg”ord(z). (2.7)
Z

Then, both of X and Y are subsets of X + Y, and by the inclusion-exclusion principle we have x >
|X| + |Y| — |X N Y|, which gives, together with (2.5), that X N Y has at least one element different
from 0, ie. | XN Y| > 2. On these premises, we prove the following intermediate claim (from here

on, we set Z := X N Y for notational convenience):
CraM. There exists n suchthat X + nZ +Y € X+ Y, but X + kZ +Y C X + Y for each
k=0,...,n— 1, with the convention that 0Z := {0}.

Proof of the claim. Assume by contradiction that X +nZ 4 Y C X + Y for all n. Then, we get from
(Z) = U,2 nZthat X+ (Z) +Y C X+Y, whichimpliesby (2.7) that (Z) = 0+(Z)+0 C X+7V.
Then, using that |Z| > 2 to guarantee that {0} C Z C X + Y, it follows from Proposition 1.18
and the same equation (2.7) that

> (Z)] > d(z) > min ord(z) > min ord(z) = ¥(X+ Y).
k> | )I_Or;zagzor (Z)_Oglzlgzor (Z)_O#I;gg”or (z2) =y(X+7)

This is, however, absurd, for it is in contradiction to (2.5), and we are done. [

So, let n be as in the above claim and fix, for the remainder of the proof, an element z € nZ such
that X +z+ Y Z X+ Y (this exists by construction since otherwise we would have X+ nZ+Y C
X + Y, which is a contradiction). Consequently, observe that

(X+2)U(z+Y) CX+Y. (2.8)

In fact, zbeing an element of nZ entails that there existz;, .. ., z, € Zsuchthatz = z; +- - - +z,,
whence we get that both of X+Zz and z+ Y are contained in X+ (n—1)Z+Y. But X+ (n—1)Z+Yis,
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again by construction, a subset of X+ Y, so (2.8) is proved. With this in hand, let us now introduce
the sets
Xo={xeX:x+z+YZX+Y}

and
Yo ={yeY: X+z+yZX+Y}

Itis then clear that X (respectively, Y) is disjoint from X, +z (respectively, from z+ Y, ). In addition,
since X+2z+Y ¢ X+, itis also immediate that X, and Y, are both non-empty. Finally, it follows

from (2.8) that 0 is not an element of either X, or Y,. To sum it up,
Xo#D#Yy, 0 XoUYyand (Xo+2)NX=(z+Yy)NY=0. (2.9)
Now, let ny := |Xo| and ny := |Y,|. By Remark 1.24 and the cancellativity of A, we have
|Xo + z| = |Xo| = nx and |z + Yo| = |Yo| = ny, (2.10)
which naturally leads to distinguish between the following two cases:

Case 1 nx > ny. We form X as the union of X and X, + z and Y as the relative complement of
Yy in Y. First, note that 0 € X* N Y* by (2.9). Secondly, pickx € Xandy € Y and set
z := x+y. Ifx € X, then obviously z € X + Y; otherwise, by the construction of X and
Y,wegetx € Xo +z C X+zandy ¢ Yy, sothatx + 3y € X + Y. Therefore, we see that
X+ Yisanon-empty subset of X + Ywith 0 € X + Y, so on the one hand |X + Y| < x and
on the other hand we have by (2.7) that

y(X+Y) < inf ord(z) < y(X+7Y).
0£zEX+Y

Furthermore, (2.9) and (2.10) give that |X| = |X| + |Xo + z| = |X| + nx > |X| and
Y] = Y] = [Yo| = [¥] = ny, s0 [X] + [Y] = |X] + [Y] + nx — ny > |X] + [Y].

Case2 ny < ny. WesetX := X\XpandY := (z+Y,)UY. Then, by repeating (except for obvious
modifications) the same reasoning as in the previous case, we get again that 0 € X* N Y*
and X + Y C X + Y, with the result that [X + Y| < xand y(X +Y) < y(X+ Y). In
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addition, it follows from (2.9) and (2.10) that |X| = |X| — |Xo| = |X| — nxand |Y| =
Y| + |z + Yo| = |Y| + ny, whence |X| + Y| = [X| + |Y| + ny — nx > |X| + |Y].

So in both cases, we end up with an absurd, for we find subsets X and Y of A that contradict the
“minimaximality” of (X, Y) as it is expressed by (2.6). O

Remarkably, several pieces of the above proof of Theorem 2.3 do not critically depend on the
cancellativity of the ambient, while others can be adapted to the case where y(X + Y) is replaced
by y(X, Y), which is one of our strongest motivations for believing that Conjecture 2.1 should be

ultimately true.

Proof of Corollary 2.4. The claim is obvious if n = 1. Thus, assume in what follows that n is > 2
and the assertion is true for all sumsets of the form Y; + -+ - + Y,_; with Y + -+ + Y," | # 0.
Based on these premises, we get by Theorem 2.3 that

1X; + -+ X, > min(y(Xg + -+ X)), [ Xy + -+ X | + [ X] — 1),
which in turn implies, by Lemma 1.10, that
IX; + -+ X,| > min(p(A), | Xy + -+ + X | 4 [ X = 1). (2.11)
But we know from Proposition 2.11 that X} + - - - + X, ; # (), so the inductive hypothesis gives
X1+ -+ Xya| 2 min(p(A), X + -+ [Xua +2 — 1),

which, together with (2.11), yields the desired conclusion by induction. [
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If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,
And lose, and start again at your beginnings

And never breathe a word about your loss.

— Joseph R. K1PLING, If

Small doubling in ordered semigroups

RESUME. On généralise des résultats par G. A. Freiman, M. Herzog et leurs coauteurs sur la théorie
structurelle des sommes d’ensembles dans les groupes linéairement ordonnés au cas plus général
des semi-groupes linéairement ordonnés. En particulier, on prouve que, si (A, -, <) est un semi-
groupe linéairement ordonné et S est un sous-ensemble fini de A engendrant un sous-semi-groupe
non-abélien, alors |S?| > 3|S|—2. Aucours dela preuve, on obtient également un grand nombre de
résultats secondaires, et notamment que le commutateur et le normalisateur d’'un sous-ensemble
fini d'un semi-groupe linéairement ordonné coincident. Ce chapitre est basé sur un article par

lauteur [Tr3] soumis pour publication.
ABSTRACT. Let A = (A, -) be a semigroup. We generalize results by G. A. Freiman, M. Herzog

and coauthors on the structure theory of set addition from the context of linearly ordered groups

to linearly ordered semigroups, where we say that A is linearly orderable if there exists a total order
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= onAsuchthat xz < yzand zx < zyforallx,y,z € Awithx < y. In particular, we find that if
S is a finite subset of A generating a non-abelian subsemigroup of A, then |S?| > 3|S| — 2. On the
road to this goal, we also prove a number of subsidiary results, and most notably that for S a finite
subset of A the commutator and the normalizer of S are equal to each other. The chapter is based

on a paper by the author [ Tr3] submitted for publication.

3.1 INTRODUCTION

Semigroups are ubiquitous in mathematics. Apart from being a subject of continuous interest to
algebraists, they are, as already remarked in the previous chapters, a natural framework for introduc-
ing several broadly-scoped concepts and developing large parts of theories traditionally presented
in much less general contexts.

Our interest in semigroups is related here to Freiman’s structure theory of set addition and its
generalizations; this is a very active area of research, which has drawn a constantly increasing at-
tention in the last decade, and has led to significant progress in several fields, from algebra [ Ge] to
additive number theory and combinatorics [Na, R, TV].

The primary goal of the chapter is, in fact, to extend recent results by G. A. Freiman, M. Herzog
and coauthors from the setting of linearly ordered groups [FHLM] to linearly ordered semigroups
(see Section 3.2 for definitions). Specifically, assume for the remainder of this section that A =
(A, ) is a fixed semigroup (unless a statement to the contrary is made). The main contribution

here is then represented by the following generalization of [FHLM, Theorem 1.2]:

Theorem 3.1. Let A be a linearly orderable semigroup and S a finite subset of A such that |S*| <
3|S| — 3. Then, (S) is abelian.

Our proof of Theorem 3.1 basically follows the same broad scheme as the proof of [FHLM, The-
orem 1.2], but there are significant differences in the details. As expected, the increased generality
implied by the switching to semigroups - and especially the fact that inverses are no longer available
- presents, in practice, a number of challenges and requires something more than a mere adjustment
of terminology (in some cases, for instance, it is not even clear how a certain result known to hold
for linearly ordered groups should be reformulated in the language of semigroups). In particular,

we will look for an extension of several classical results, such as the following:
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Lemma 3.2. Let A be a linearly orderable semigroup and pick a, b € A. If a"b = ba" for some n, then
ab = ba.

This is, in fact, a generalization of an old lemma by N. H. Neumann [Ne] on commutators of
linearly ordered groups, appearing as Lemma 2.2 in [FHLM].

In the same spirit, we will also need to extend [FHLM, Proposition 2.4]. For, we use C (S) for
the centralizer of S (relative to A), viz the set of alla € A such that ay = ya foreveryy € S, and
N4 (S) for the normalizer of S (relative to A), namely the set {a € A : aS = Sa}. These are written

as Ca (a) and Ny (a), respectively, if S = {a} for some a. Building on these premises, we have:

Lemma 3.3. Let A be a linearly orderable semigroup and S a non-empty finite subset of A, and pick
y € A\ Ca(S). Then, |[ySU Sy| > |S| + 1, i.e. thereare a, b € Swithya ¢ Sy and by ¢ yS.

Lemma 3.3 is proved in Section 3.2, along with the following generalization of [FHLM, Corol-
lary 1.5], which may perhaps be interesting per se:

Theorem 3.4. If A is a linearly orderable semigroup and S a finite subset of A, then N (S) = Ca(S).

We conclude the chapter with a number of examples (Appendix 3.5), mostly finalized to explore
conditions under which certain semigroups (or related structures as semirings) are linearly order-
able. This is mainly to show that the class of linearly orderable semigroups is not, in some sense,
trivial. In particular, we prove (Theorem 3.21) that, for each n, the subsemigroup of GL,(R), the
general linear group of degree n over the real field, consisting of all upper (respectively, lower)
triangular matrices with positive entries on or above (respectively, below) the main diagonal is lin-
early orderable, subsequently raising the question (to which we do not have an answer) whether
the same conclusion holds for the subsemigroup of all matrices which can be written as a (finite)

product of upper or lower triangular matrices of the same kind as above.

3.2 NOTATION AND DEFINITIONS

Throughout, an order on a set A is a binary relation < on A which is reflexive, antisymmetric, tran-
sitive, and total, in the sense that for all a,b € A we have eithera < borb < a, where < is used

for the strict order induced on A by <.
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Accordingly, we let an ordered semigroup be a triple (A, -, <), where (A4, -) is a semigroup, < is
an order on A, and the following holds:

Va,bccA:a<b — a-c=xb-candc-a=c-b (3.1)

If each of the signs “<” in (3.1) is replaced with the sign “<”, then (4, -, <) is called a linearly
ordered semigroup; see, e.g., [Iw].

Conversely, we say that a semigroup A = (A, -) is [linearly] orderable if there exists an order <
on A such that (4, -, <) is a [linearly] ordered semigroup.

All of the above notions and terminology are now extended in the obvious way to monoids and

groups (so we have, for instance, ordered monoids and linearly orderable groups).

3.3 PRELIMINARIES

In what follows, unless stated otherwise, A = (A, -) is a fixed semigroup and = is an order on A
for which Ay = (A, -, <) is an ordered semigroup.

In this section, we collect some results that will be essential to prove the main contributions of
the paper, later in Section 3.4. Some are quite elementary, and their group analogues are part of
the folklore; however, we do not have a reference to something similar for semigroups, and thus
we include them here for the sake of exposition. In particular, the proof (by induction) of the

proposition below is straightforward from our definitions, and we may omit the details.
Proposition 3.5. The following holds:

(i) Forallay,...,a,by,...,b, € Awitha, < by, ...,a, = b,wehavea,---a, < by ---b,,
and indeed ay - - - a, < by - - - b, if Ay is linearly ordered and a; < b; for each i.

ii) Ifa,b € Aanda <X b, thena” < oralln, and in facta® < b" i is linearly ordered an
(ii) b d b, th b" I d b if Ay is ly ordered and
a<b.

(iii) Ifa € Aissuchthata® < a, then a” < a™ form < n, and indeed a" < a™ if Ay is linearly

ordered, a*> < aand m < n.
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Pick an element a € A. We say that a is cancellable (in A) if both of the maps A — A : x > ax
and A — A : x —> xa are one-to-one. The semigroup A is then cancellative if each element of A is

cancellable.

Remark 3.6. A cancellative semigroup is linearly orderable if and only if it is totally orderable.
Furthermore, any linearly orderable semigroup is cancellative. Thus, one thing seems worth men-
tioning before proceeding: While, on the one hand, every commutative cancellative semigroup
embeds as a subsemigroup into a group, as already mentioned in Remark 1.16, nothing similar is
true, on the other hand, in the non-commutative case, no matter if the ambient is linearly orderable
and finitely generated, as first noticed by R. E. Johnson [J] on the basis of Mal'cev’s construction
[M1]. Again, this is of fundamental importance here, as it shows that the study of sumsets in lin-
early ordered semigroups cannot be systematically reduced, in the absence of commutativity, to

the case of groups (at least, not in any obvious way).

On another hand, a € A is said to be periodic (in A) if there exist n and p € N7 such that
a" = a"*F; we then refer to the smallest n with this property as the index of a (in A) and to the
smallest p relative to such an n as the period of a (in A); see, for instance, [Ho, p. 10]. In particular,
a is called idempotent (in A) if it has period and index equal to 1, namely a = a?, and we say that

A is torsion-free if its only periodic elements are idempotent.

Remark 3.7. The unique idempotent element of a cancellative monoid is the identity, so that
torsion-free groups are definitely a special kind of torsion-free semigroups; cf. Example 3.17. More-
over, if A is cancellative and a € A is idempotent, then A is unital (which applies especially to lin-
early orderable semigroups, in view of Remark 3.6): For, a> = a implies a’b = ab and ba*> = ba

forevery b € A, hence ab = ba = b. This ultimately proves that a serves as the identity of A.
The next proposition generalizes properties mentioned in [FHLM, Section 2].
Proposition 3.8. Let Ay be a linearly ordered semigroup. We have:
(i) Ifa € Aand a* < a,thenab < b and aba < b forallb € A.
(ii) Ifaba = bfora,b € A, then A is unital and a is the identity of A.

(iii) None of the elements of A has finite period unless A is unital and such an element is the identity.

In particular, A is torsion-free.
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Proof. (i) Picka, b € Awitha* < a. Then a®b < ab, whence ab < b by totality of < and Remark
3.6. It follows from Proposition 3.5 that aba® < ba; thus, aba < bby the same arguments as above.

(i) Leta, b € Abe such that aba = b. By duality, we may suppose that a*> < a, which implies
the claim by Remark 3.7 and the previous point (i).

(iii) is trivial from the above, and we may omit the details. 0

The next proposition, of which we omit the proof, is in turn an extension of an elementary prop-

erty of the integers; see, e.g., [R, Exercise 1, p. 93] and contrast with [FHLM, Theorem 1.1].

Proposition 3.9. Suppose that Ay is a linearly ordered semigroup and let Sy, . . ., S, be non-empty
finite subsets of A. Then,
Syl > 1 —n+ 300 [Si]- (3.2)

Also, (3.2) is sharp, the lower bound being attained, for instance, by pickinga € A and letting S; be, for
each i, of the form {a, ..., a"} for somes; € NT.

In particular, the second part of Proposition 3.9 follows from considering that, given a linearly
orderable non-trivial non-empty semigroup A, point (iii) of Proposition 3.8 provides at least one
element a € A such that @' # 4 for all distinctj ,j, € NT.

Now we prove the generalizations of [FHLM, Lemma 2.2] and [FHLM, Proposition 2.4] al-
luded to in the introduction, while noticing that, if A is a group with identity 1 and a,b € A are

such that [a", b] = 1 for some n, then a"b = ab” (the square brackets denote a commutator).

Proposition 3.10. Let A be a linearly ordered semigroup and pick a,b € A. If ab < ba then for all
n we have

a'b < a" 'ba < --- < aba""' < ba". (3.3)

Proof. Assume that (3.3) holds true for some n. Then, multiplying by a on the left gives a"™'b <
a'ba < -+ < a*ba""! < aba", while multiplying by a on the right yields aba” < ba"!. Since
ab < ba, the transitivity of < implies the claim by induction. O

The proof of Lemma 3.2 is now an immediate consequence of Proposition 3.10 (by duality, if
Ay is a linearly ordered semigroup and a,b € A then we may assume ab < ba without loss of

generality).
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Proof of Lemma 3.3. Assume to the contrary that yS = Sy. Sincey ¢ C,(S), we can find an el-
ement a; € S such that a;y # ya;, which in turn implies that there exists a, € S\ {a;} such
that ya; = a,y. Then, using that S is a finite set, we get a maximum integer k > 2 and elements

ai, ..., ar € Ssuch that
(i) ya; = appyfori=1,... . k—1;
(ii) a; = a;fori,j=1,... konlyifi =j.

Hence, the maximality of kand yS = Syimplyya, = ajyforsomeh = 1, ..., k, with the result that
yHla = ap ! kbl

ay*"+1. Therefore, yar = aiy (by Lemma 3.2), and indeed ya, = yar_; (as ary = yap_y, by

foreveryi = 0,...,k — h (by induction). In particular, it holds y

construction). So, Remark 3.6 yields a; = a;_;, which is however absurd because a; # a; for all

i,j=1,...,kwithi # j. The proofis thus complete. O

Proof of Theorem 3.4. 'The claim is obvious if S = (), so assume that S is non-empty. Fory € Ny (S)
we have yS = Sy, and Lemma 3.3 implies y € C4(S), from which it follows N4 (S) C Ca(S). The

other inclusion is obvious. O]

3.4 THE MAIN RESULT

Throughout, A = (A, -) denotes a fixed semigroup (unless differently specified). We start with a
series of three lemmas: the two first apply to cancellative semigroups in general, while the latter is

specific to linearly ordered semigroups.

Lemma 3.11. Let A be a cancellative semigroup and S a finite subset of A such that (S) is an abelian
subsemigroup. Ify € A\ Cx(S), then S* is disjoint from yS U Sy.

Proof. Picky € A\ Cx(S) and assume by contradiction that S*> N (yS U Sy) is non-empty. Then,
without loss of generality, there exist a, b, ¢ € S such that ab = cy. Since (S) is abelian, this gives
that cyc = abc = cab, whence ab = yc (using that A is cancellative), and finally cy = yc.

We claim that xy = yxforallx € S. For, letx € S. On the one hand, we have abx = cyx =
ycx = yxc (as we have just seen that cy = yc). On the other hand, xab = xcy = «xyc. But
abx = xab (again by abelianity of (S)). So, at the end of the day, yxc = xyc, and hence yx = xy
(by cancellativity of ¢). It follows that y € C,(S), which is absurd. U
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Lemma 3.12. Let A be a cancellative semigroup and pick elements a, b, x,y,z € Asuch thatx,y,z €
Cu(b) and xy = az (respectively, xy = za). Then, ab = ba.

Proof. By duality, we just consider the case when xy = az. On the one hand, xyb = azb = abz
since zb = bz; on the other, baz = bxy = xybsince x,y € Cp(b). Hence abz = baz, that is
ab = ba (by cancellativity of z). [

Now, assume for the remainder of the section that A is made into an ordered semigroup by a

certain order <, and set Ay := (4, -, ).

Lemma 3.13. Let Ay be linearly ordered, and let S be a non-empty finite subset of A, and pick y €
A\ Ca(S). If (S) is abelian, then |S* U yS U Sy| > 3]S].

Proof. The inclusion-exclusion principle, Remark 3.6 and Lemma 3.11 give
[S*UySUSYl = [S* + ySUSY = [S* N (S U Sy)| = [S°] + [yS U Sy,
which is enough to complete the proof on account of the fact that |S*| > 2|S| — 1, by Proposition
3.9,and [ySU Sy| > || + 1, by Lemma 3.3. ]
So atlong last we are ready to prove the main theorem of the chapter.

Proof of Theorem 3.1. Write I, for {1,...,m},wherem := |S|,andletay, ..., a,, be a numbering
of S for whicha; < -+ < ay,. Itis clear that m > 2. If m = 2 then |S?| < 3,and indeed |S*| = 3
by Proposition 3.9. Since a> < aja, < a? and a? < a,a, < a3, it follows that > = {a?, a;a,,a2}
and a;a, = a,a,, which implies that (S) is abelian, as was desired.

So, in what follows, let m > 3 and suppose that (B) is abelian for every subset B of A satisfying
2 < |B] < mand |B*| < 3|B| — 3. Furthermore, assume for the sake of contradiction that (S)
is not abelian, and accordingly denote by i the maximum integer in I,, such that (T) is abelian for
T:={ai,...,a;}. Then,1 <i < manda;;; ¢ Ca(T), so on the one hand

TZ N (ai+1T U Tai+1) = @, (34)
thanks to Remark 3.6 and Lemma 3.11, and on the other hand

|T2 U ai+1TU Tai+1| Z 31, (35)
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by virtue of Lemma 3.13. Also, there exists a positive integer j < i such that
Aip14; 7 i1, (3.6)
which is chosen here to be as great as possible, in such a way that
xai 1 = ai1x foreveryx € Twitha; < «. (3.7)
We have that a; ¢ C,(V), where V:= S\ T = {a;y1,...,du}, and
VN (T*Ua TU Tagy,) =0 (3.8)

since apar < aj, = a,a;forallh k,r,s € I, withh + k < 2i + 1andi+ 1 < min(r,s). Then,

the inclusion-exclusion principle, together with (3.5) and the standing assumptions, gives that
V2| < |S$*] — |T* Ua  TU Tag | < 3m—3 —3i=3|V|] - 3.
Thus 2 < |V| < m, and (V) is abelian (by the inductive hypothesis). Then,
VN (aVUVa) =0 (3.9)
in view of Remark 3.6, Lemma 3.11 and the fact that a; ¢ C4 (V). We claim
> N (VU Va;) = 0. (3.10)

For, assume to the contrary, with no loss of generality, that T> N a;V' # (), namely xy = a;z for
some x,y € Tandz € V. Using thaty < z, this yields a; < x, and similarly a; < yas (T) is
abelian (so that xy = yx, and hence yx = a;z). It then follows from (3.7) and the abelianity of (V)
thatx,y,z € Ca(ai41). Thus, we get a;1a; = a;a;41 by Lemma 3.12, which however contradicts
(3.6) and implies (3.10).

That said, let x € Tandy € Vbe such that xa;;; = ajy. Since a;;; = y, it is apparent that
a; = x. Suppose for the sake of contradiction that a; < x. Then, we get from (3.7) and the
abelianity of (V) thatx, a; 11,y € Ca(aiy1), with the result that aja;11 = a;114; (by Lemma 3.12).
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But this is in open contrast with (3.6), and it is enough to argue that
Tair, NaV= {a}'a,’+1}.

Thus, the inclusion-exclusion principle gives that

|Taiy1 UaV| = |Taia| + |aV] — |Tai NaV] =m — 1, (3.11)
which in turn implies, together with (3.4), (3.8), (3.9) and (3.10), that

I'T> UV U Tai UgV] = T + [V + |Tai, U V).
It follows from Proposition 3.9 and (3.11) that
IT*UV*U Ta UgV] > (2i— 1)+ (2m—2i— 1)+ (m—1) = 3m — 3.
As |$?| <3m —3and T* U V> U Ta;y; U a;V C 8, itis then proved that
$* =T*UV*UTay, UaV. (3.12)

So to conclude, let us define a := a;;14;. By (3.4) and (3.8), it is straightforward to see that
a ¢ T* U V2, and we want to show thata ¢ Ta;,; U a;V to reach a contradiction. To this aim,

observe first that, by (3.6) and Lemma 3.3, there exist x € Tand y € V such that
aiax & Taipy, ya; & a;V. (3.13)

Since a; 1%, ya; ¢ T>UV?by (3.4),(3.8),(3.9) and (3.10), it follows from (3.12) that a;, ;x € a;jV
and ya; € Ta;1,sowefindb € Vand ¢ € T such that

a]b = 4jt+1X, ya] = Cajt1- (314)

Suppose that a € Ta;;y, that is there exists z € T for which za;; = a;,4;, and in fact z # g;

by (3.6). If a; < zthenz € Cp(ait1) by (3.7), so aiy14j = a;ja;41 by Lemma 3.12, again in
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contradiction to (3.6). Thus z < aj, and in addition x = aj, as otherwise a;;1x = xa; ;1 € Ta; 4,
in view of (3.7), in contradiction to (3.13). Considering that (T) is abelian, it follows from (3.14)
that a;ba; = a;11xa; = a;;1a;x. However a;1a; = za;; 1, so at the end a;ba; = za;,x. Hence,
ba; < a;y1xasz < aj, which is absurd since a;;; =< bandx = aj, viz a;;1x =X ba;. This implies
a ¢ Tapy.

Finally, assume that a € a4,V i.e. there exists w € V'such that a; ;a; = ajw. By construction of
V, we have a;;; =< w, and indeed a;;; < w by (3.6). We want to show that ¢ < a;. For, suppose
to the contrary that a; < c. The abelianity of (V), together with (3.7), then yields that ¢, a;1.1,y €
Ca(ait1),so aiy14; = a;ai;1 by (3.14) and Lemma 3.12; this contradicts (3.6), and hence ¢ < aj.
Using once more that (V) is abelian, it is then immediate from (3.14) that a;; ;ca; 1, = Ait1)a; =
Yai+1aj, 80 dip1Ca;11 = ya;wsince a;.1d4; = a;w. But, as argued before, a;; < w, whence it is seen
that ya; < a;,c, which is absurd because a;1; = y, by construction of V, and ¢ = aj, as proved
above. Thus, we get thata ¢ a;V.

Putting all together, it follows thata ¢ T>UV*U Ta;;, U a;V, which is however in contradiction
to (3.12), as a is obviously an element of S%. Therefore, (S) is abelian. [

In some sense, Theorem 3.1 is best possible; specifically, [FHLM, Section 3] provides the ex-

ample of a subset S of a linearly ordered group generating a non-abelian subgroup and such that
|| = 3|S| — 2.

Corollary 3.14. Let S be a finite subset of a linearly orderable semigroup (A, -), which generates a non-
abelian subsemigroup. Then |S*| > 3|S| — 2.

Proof. Itisjust a trivial restatement of Theorem 3.1. ]

We have not found so far an appropriate way to extend Proposition 3.1 in [FHLM] from finite
subsets of linearly ordered groups, generating abelian subgroups, to finite subsets of linearly or-

dered semigroups, generating abelian subsemigroups, so we raise the following:

Question 3.15. Assume that A is a linearly orderable semigroup. Let S be a finite subset of A, set s :=
S| and t := |S?| for convenience of notation, and suppose that t < 3s — 4 and (S) is abelian. Is
it then possible to find a,b € A such that ab = ba and S is a subset of the geometric progression

a,ab,... ab"*?
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3.5 APPENDIX: EXAMPLES

We conclude the paper with a few examples. As mentioned in the introduction, the basic goal is to
show that [linearly] orderable semigroups and related structures are far from being “exotic”.

We start with an orderable semigroup which is not linearly orderable. Then, we mention some
classes of linearly orderable groups and some linearly orderable monoids (respectively, semigroups)

which are not groups (respectively, monoids).

Example 3.16. Every set A can be turned into a semigroup by the operation- : A X A — A :
(a,b) — a; see, for instance, [Ho, p. 3]. Trivially, if < isa total order on A then (A, -, <) isa totally

ordered semigroup. However, (4, -) is not linearly orderable for |[A| > 2.

Example 3.17. An interesting variety of linearly ordered groups is provided by abelian torsion-
free groups, as first proved by F. W. Levi in [Le], and the result can be, in fact, extended to abelian
cancellative torsion-free semigroups with no substantial modification; see the comments following
Remark 3.6 in Section 3.2 and Corollary 3.4 in R. Gilmer’s book on commutative semigroup rings
[Gi]. In a similar vein, K. Iwasawa [Iw], A. I. Mal'cev [M2] and B. H. Neumann [Ne] established
independently that all torsion-free nilpotent groups are linearly orderable.

Save for the semigroup analogue of Levi's result, all of the above is already mentioned in [FHLM],
where the interested reader can find further references to existing literature on the subject. How-
ever, there are other interesting examples of linearly ordered groups which are not included in

[FHLM], and remarkably pure braid groups [RZ] and free groups [Iw].

Example 3.18. As for linearly ordered monoids which are not linearly ordered groups, consider,
for instance, the free monoid [Ho, Section 1.6] on a totally ordered alphabet (X, <) together with
the “shortlex ordering”: words are primarily sorted by length, with the shortest ones first, and
words of the same length are then sorted into lexicographical order. On the other hand, the posi-
tive integers divisible only for the members of a given subset S of primes, endowed with the usual
multiplication, provide the example of a linearly orderable semigroup which is not even a monoid

unless S = ().

Example 3.19. Let A = (A, ) and B = (B, ¢) be semigroups and ¢ : A — B a semigroup

monomorphism, i.e. an injective function A — B such that ¢(a; - a;) = ¢(a;) © ¢(ay) for all
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ar, a, € A. If Bislinearly ordered by a certain order <p and <, is the binary relation on A defined
by taking a; < a, ifand onlyif ¢(a;) <p @(a,), it is routine to check that < is a total order, and

indeed (4, -, <4) is a linearly ordered semigroup.

The next example is potentially interesting per se. Not only it gives a family of linearly ordered
semigroups which are neither abelian nor groups (at least in general); it also shows that, for each

n, certain subsemigroups of GL,(R) consisting of triangular matrices are linearly orderable.

Example 3.20. We let a semiring be a triple (A, +, -) consisting of a set A and associative opera-
tions + and - from A X A to A (referred to, respectively, as the semiring addition and multiplication)

such that
1. (A, +) is an abelian monoid, whose identity we denote by 0;
2. O annihilates A, thatis0-a = a - 0 = O for everya € A;

3. multiplication distributes over addition, thatisa-(b+c) = a-b+a-cand (a+b)-c = a-c+b-c
foralla, b, c € A.

(In other words, a semiring is a ring where elements do not need have an additive inverse.) We call
(A, +) and (A, -), respectively, the additive monoid and the multiplicative semigroup of (4, +, -),
which in turn is termed a unital semiring if (A, -) is a monoid too; see [He, Ch. II] and [Go, Ch. 1,
p-1].

A semiring (A, +, -) is said orderable if there exists a total order < on A such that (A, +, <) and
(A, -, <) are ordered semigroups, in which case (A, +, -, =) is named an ordered semiring. If, on

the other hand, the following hold:
4. (A,+, %) is alinearly ordered monoid;
S.a-c<b-candc-a<c-bforalla,b,c € Awitha < band0 < ¢,

then (A, +, -) is said to be linearly orderable and (A, +, -, <) is called a linearly ordered semiring;
cf. [Go, Ch. 20]. Notable examples of linearly ordered semirings are N, Z, RS, and R with their

usual structure.

61



On these premises, let A = (A, +, -) be a fixed semiring. We write M,,(A) for the set of n-by-n
matrices with entries in A. Endowed with the usual operations of entry-wise addition and row-
by-column multiplication implied by the structure of A, here respectively denoted by the same
symbols as the addition and multiplication of the latter, M,,(A) becomes a semiring per se, called
the semiring of n-by-n matrices over A and written as M,,(A); see [Go, Ch. 3].

Now, suppose A is linearly ordered by a certain order <, so that A; := (A, +, -, =) isalinearly
ordered semiring, and denote by U, (A;) the subsemigroup of the multiplicative semigroup of
M., (A) consisting of all upper triangular matrices whose entries on or above the main diagonal
belong to A; :={a € A: 0 < a}. Observe that U, (A;) is not, in general, a group (for instance,
the inverse of a regular 2-by-2 matrix with positive real entries has not positive real entries), and

not even a monoid for n > 2. Perhaps more interestingly, we have the following:
Theorem 3.21. U, (A;r ) is a linearly orderable semigroup.

Proof. Setl, :== {1,2,...,n},E, := {(i,j) € I, X I, : i < j} and define a binary relation <,
on &, by (i1,j,) <a (i2,j,) ifand onlyif (i) j, — i1 < j, —ipor (i) j, — i1 = j, — iz andj, < j,.
It is seen that <, is a well-order, so we can define a binary relation <, y on U, (A;) by taking, for
a= (ai,}'):jzl and p = (bi,i)zz':l inU, (A;r), a <,u Pifand onlyif (i) a = p or (ii) there exists
(i0,jo) € Ensuchthata;; < by ; anda;; = b;;forall (i,j) € E, with (i,) <, (io, ji)-

It is straightforward that <, y is an order. To see, in particular, that it is total: Picka = (“iJ)Zj: 1
and p = (bi;)};—, in U, (Agr) with a # B. There then exists (i, j,) € E, such thata;,; # b

where (i, j,) is chosen in such a way that a;; = b;; for every (i,j) <, (io,j,)- Since < is total, we

i(),jO)

have that either a <, v fifa;,;, < bj,j, or f <, v a otherwise, and we are done.

It remains to prove that U, (A;) is linearly ordered by <, y. For, let a and f be as above and
suppose a <, u B, viz there exists (io, j,) € E, witha;,; < b;,; and a;; = b;; forall (i,j) € &,
with (i,7) <, (io,j,). Giveny = (Ci,j)?,jzl in U,,(A;) we then have a; kcj < b kerjand ¢ pag; =
cixbijforall (i,j) € E,and k € I, such that (i,k) <, (io,j,) and (k,j) <, (k,j,), and indeed
goCiada = Biosjs i
semiring. It follows that, for all (i, j) € E, with (i,j) <, (io, j,),

a;, and ¢;, iy iy j, = Cig,igio j, for the fact that (A, +, -, %) is a linearly ordered

n _ j j o n
D ket BikChj = D i GikChj = D bikCij = Dy bikc;
and, similarly, )}, Cikdrj = Yoo Cikbrj. In particular, these majorizations are equalities for
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(i,) <n (io,j,) and strict inequalities if (i,j) = (io,j,)- Soa -y <uu f-yandy-a <,u 7P,
and the proof is complete. ]

We refer to the order <, y defined in the proof of Theorem 3.21 as the zig-zag order on U, (Aj;F ).
IfL, (A;) stands for the subsemigroup of the multiplicative semigroup of M,,(A ) consisting of all
lower triangular matrices whose entries on or below the main diagonal are in A; , itis then straight-
forward to see that L, (AgF ) is itself linearly orderable: It is, in fact, linearly ordered by the binary
relation <, 1, defined by taking a <, 1, fifand onlyif a’ =nu ,BT , where the superscript “ T’ means
‘transpose’. Provided that T, (A;r) is the subsemigroup of (M, (A), -) generated by U, (A;) and
L,(A}"), itis hence natural to ask the following:

Question 3.22. Is T, (A; ) a linearly orderable semigroup?

While at present we do not have an answer to this, it was remarked by Carlo Pagano (Universita
di Roma Tor Vergata, Italy) in a private communication that M, (A;) , namely the subsemigroup
of (M,,(A), -) consisting of all matrices with entries in A; ,is not in general linearly orderable. For
a specific counterexample, let A be the real field and take a as the n-by-n matrix whose entries are
all equal to 1 and f as any n-by-n matrix with positive (real) entries each of whose columns sums
up to n; then a® = af.

Apparently, the question has not been addressed before by other authors, although the ordering
of M, (A), in the case where A is a partially orderable semiring, is considered in [Go, Example

20.60].

Example 3.23. In what follows, we let K = (K, +, -) be a semiring (see Example 3.20 for the
terminology) and A = (A, ©) a semigroup, and use K[A] for the set of all functions f : A — K
such that fis finitely supported in K, namely f(a) # O for finitely many a € A, where O is the
additive identity of K.

In fact, K[A] can be turned into a semiring, here written as K[A], by endowing it with the op-
erations of pointwise addition and Cauchy product induced by the structure of A and K (these
operations are denoted below with the same symbols as the addition and multiplication of K re-

spectively). We have the following:

Theorem 3.24. Suppose that K is a linearly orderable semiring and A a linearly orderable semigroup.
Then K[A)] is itself a linearly orderable semiring.
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Proof. The claim is obvious if A = (), so assume that A is non-empty, and let <x and <, be, re-
spectively, orders on A and K for which (K, +, -, <k ) is a linearly ordered semiring and (A, ¢, <,)
alinearly ordered semigroup.

Then, given a € A andf € K[A] we let fla (respectively, fTa) be the function A — K taking a to
fla)ifa <4 a (respectively,a <4 a), and to Ok otherwise, in such a way that f = Jia tfiar Also,we
denote by y the map K[A] x K[A] — AU {A} sending a pair (f, g) tomin{a € A : f(a) # g(a)}
if f # g (the minimum is taken with respect to <4, and it exists by consequence of the definition
itself of K[A]), and to A otherwise.

We define a binary relation < on K[A] by letting f < gif and only if either f = gor f # gand
fu(f,g)) <x fp(f, g)). Itis clear that < is a total order on K[A], and we want to prove that it is also
compatible with the algebraic structure of K[A], in the sense that K[A] is linearly ordered by <.

For, pick f,g,h € K[A] with f < g. Since the additive monoid of K is linearly ordered by
<K, we have yu(f,g) = u(f + h,g+ h),and thusf + h < g+ h. Thatis, (K[A],+, <) isa
linearly ordered monoid in its own right. On another hand, assume ® < h, where © is the function
A — K:aw> O andseta := y(f,g) and B := u(®, h). We havef, = g and h = hyg, with
theresult thatf- h < g- hifand onlyiff, - hy < g, - htp, and the latter inequality is certainly
true, since on the one side f, - hip(a) = 1o hig(a) = Og fora <4 a ¢ B, and on the other

fra TplaoB) = fi(a) - hp(B) <k &, (a) - hp(B) = g, - hipla o p).

In a similar way, it is seen that h - f < h - g So, by the arbitrariness of f, g, and h, we get that
(K[A], +, -, <) is a linearly ordered semiring. [l

So taking A to be the free commutative monoid (respectively, the free monoid) on a certain set
and recalling that free groups (and hence free monoids) are linearly orderable (Example 3.17), we

have the following:

Corollary 3.25. The semiring K is linearly orderable if and only if it goes the same with the semiring
of polynomials with coefficients in KK depending on a given set of pairwise commuting (respectively, non-

commuting) variables.
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Amo como ama o amor. Ndo conhego nenhuma outra razdo
para amar sendo amar. Que queres que te diga, além de que

te amo, se 0 que quero dizer-te é que te amo?

— Fernando A. N. PEssoA, Primeiro Fausto

On a conjecture of GyOry and Smyth

ResuME. Nous déterminons tous les triplets (a, b, n) d’entiers positifs tels que a et b sont premiers
entre eux et n* divise a” + b" (respectivement, a” — b"), lorsque k est le maximum de a et b (en
fait, nous répondons a une question un peu plus générale). Comme sous-produit, il est obtenu
que, pour m,n € NT etn > 2, n™ divise m" + 1 si et seulement si (m,n) = (2,3) ou (1,2).
Les résultats sont liés a une conjecture par K. Gyéry et C. Smyth sur la finitude des ensembles
RE(a,b) := {n € N* : #*¥ | a" 4 b"}, o1 a, b, k sont des entiers fixes avec k > 3, gcd(a, b) = 1
et |ab| > 2 ; en particulier, ce résultat implique que la conjecture est vraie pour k > max(|al, |b]).

Ce chapitre est basé sur un papier par l'auteur [ Tr4] publié sur Integers.
ABSTRACT. We determine all triples (a, b, n) of positive integers such that a and b are relatively

prime and * divides a" + b" (respectively, a" — b"), when k is the maximum of a and b (in fact,

we answer a slightly more general question). As a by-product, it is found that, for m,n € N with
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n > 2,n™ dividesm" + 1 ifand only if (m, n) = (2, 3) or (1, 2), which generalizes problems from
the 1990 and 1999 editions of the International Mathematical Olympiad. The results are related to
a conjecture by K. Gyéry and C. Smyth on the finiteness of the sets R (a,b) := {n € N* : u¥ |
a" + b"}, where a, b, k are fixed integers with k > 3, gcd(a, b) = 1and |ab| > 2; in particular, we
find that the conjecture is true for k > max(|a|, |b|). The chapter is based on a paper by the author
[Tr4] published in Integers.

4.1 INTRODUCTION

It is a problem from the 1990 edition of the International Mathematical Olympiad (shortly, IMO)
to find all integers n > 2 such that n* | 2" + 1. This is reported as Problem 7.1.1S (p. 147) in
[AA], together with a solution by the authors (p. 323), which shows that the only possible 7 is 3.
On another hand, Problem 4 in the 1999 IMO asks for all pairs (n, p) of positive integers such that
p is a (positive rational) prime, n < 2pand n?~' | (p — 1)" + 1. This is Problem 5.1.3 (p. 105)
in the same book as above, whose solution by the authors (p. 105) is concluded with the remark
that “With a little bit more work, we can even erase the condition n < 2p.” Specifically, it is found
that the required pairs are (1, p), (2,2) and (3, 3), where p is an arbitrary prime. (For notation and
terminology herein used without definition, as well as for material concerning classical topics in
number theory, the reader should refer to [HW].)

It is now fairly natural to ask whether similar conclusions can be drawn in relation to the more
general problem of determining all pairs (m, n) of positive integers for which n™ | m" 4 1. In fact,
the question is answered in the positive, and even in a stronger form, by Theorem 4.1 below, where
the following observations are taken into account to rule out from the analysis a few trivial cases:
Givena, b € Zandn, k € N*,wehave that 1* | a"4-b" and n* | " —a". Furthermore, n* | a" 41"
ifand only if n* | b" & 4", and also if and only if n* | (—a)" 4= (—b)". Finally, n* | a" + (—a)" for

noddand n* | a" — (—a)" for n even.

Theorem 4.1. Let a, b, n be integers such thatn > 2, a > max(1, |b|) and b > 0 for n even, and set
§:=gcd(a,b),a:=8 'aandf = §'b.

(i) Assume that p # —a when nis odd. Then, n® | a" + b" and n* | a" + B" if and only if
(a,b,n) = (2,1,3) or (2,2°,2) forc € {0, 1,2}.
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(ii) Assumep # a. Then, n® | a" — b" and n* | a" — B" ifand only if (a,b,n) = (3,1,2) or
(2,—-1,3).

The theorem will be proved in Section 4.2. In fact, our proof is just the result of a meticulous
refinement of the solutions already known for the IMO problems mentioned in the preamble. Thus,
our only possible merit, if any at all, has been that of bringing into focus a clearer picture of (some
of ) their essential features.

Some comments are in order before proceeding. First, it would be interesting to extend Theorem
4.1, possibly at the expense of some extra solutions, by removing the assumption that n* | (a"+ ")
orn® | (a"—p") (the notation is the same as in the statement of the result), but at present we do not
have great ideas for this. Secondly, three out of the six triples obtained by the present formulation
of the theorem come from the identity 2° 4+ 1> = 3. Lastly, the result yields a solution of the
problems which have originally stimulated this work, as we have the following corollary (of which

we omit the obvious proof):

Corollary 4.2. Let m,n € NT. Thenn™ | m" + 1 if and only if either (m,n) = (2,3), (m,n) =

(1,2), or n = 1 and m is arbitrary.

We will make use at some point of the following lemma, which belongs to the folklore and is
typically attributed to E. Lucas [Lu] and R. D. Carmichael [Car] (the latter having fixed an error

in Lucas’ original work in the 2-adic case).

Lemma 4.3 (Lifting-the-exponent lemma). Forallx,y € Z,¢ € N" andp € P such thatp { xy
and p | x — y, the following conditions are satisfied:

(i) Ifp > 3,isodd, or4 | x — y, thene,(x* — y*) = e,(x — ) + ¢, (£).
(i) Ifp =2 Cisevenand e;(x — y) = 1, then ey (x* — y*) = ey (x + y) + ex(0).

The study of the congruences a” + b" = 0 mod r* has a very long history, dating back at least
to Euler, who proved that, for all relatively prime integers a,b witha > b > 1, every primitive
prime divisor of a® — b" is congruent to 1 modulo n; see [BV, Theorem I] for a proof (a prime
divisor p of a" — b" is said to be primitive if there does not exist any k € N with k < n such that

p 1 @ — b*). However, since there are so many results related to the question, instead of trying to
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summarize them here, we just refer the interested reader to the paper [ GS], whose authors provide
an account of the existing literature on the topic and characterize, fora, b € Z andk € N7, the set
R} (a, b), respectively R, (a, b), of all positive integers n such that n* divides a” + b", respectively
a" — b" (note that no assumption is made about the coprimality of a and b), while addressing the
problem of finding the exceptional cases when Ry (a, b) and R; (a, b) are finite; see, in particular,
[GS, Theorems 1-2 and 18]. Nevertheless, the related question of determining, given a,b € Z
with ged(a, b) = 1, all positive integers n such that n* divides a" + b" (respectively, a" — b"),
when k is the maximum of |a| and |b|, does not appear to be considered neither in [GS] nor in the
references therein.

On another hand, it is suggested in [ GS] that R,j (a,b)and R, (a, b) are both finite provided that
a, b, k are fixed integers with k > 3, gcd(a,b) = 1and |ab| > 2 (the authors point out that the
question is probably a difficult one, even assuming the ABC conjecture). Although far from being
an answer to this, Theorem 4.1 below implies that, under the same assumptions as above, R,': (a,b)
and R, (a, b) are finite for k > max(|al, |b|).

4.2 PROOFS

First, for the sake of exposition, we give a couple of lemmas.

Lemma4.4. Letx,y,z € Zand{ € N¥ such thatgcd(x,y) = landz | x° + y*. Then xy and z are
relatively prime, q 1 x° — y* for every integer q > 3 for which q | z, and 4 | z provided that { is even.
Moreover, if there exists an odd prime divisor p of z and { such that gcd({,p — 1) = 1, thenp | x +y,
Cisodd and e,(z) < ey(x +y) + €,(£).

Proof. 'The first part is routine (we omit the details). As for the second, let p be an odd prime
dividing both z and ¢ with gcd(¢, p — 1) = 1. Also, considering that z and xy are relatively prime
(by the above), denote by y ! an inverse of y modulo p and by w the order of xy~! modulo p, viz the
smallestk € N such that (xy~!)* = 1 mod p; cf. [HW, Section 6.8]. Since (xy )% = 1 mod p,
we have w | 2{. It follows from Fermat’s little theorem and [HW, Theorem 88] that w divides
ged(24,p — 1), whence we get w | 2, using that gcd(¢,p — 1) = 1. This in turn implies that
p | #* — y* and hence eitherp | x — yorp | x +y. Butp | x — y would give that p | x* — y/,
which is impossible by the first part of the claim (since p > 3). Sop | x + y, with the result that
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{is odd: For,if2 | £, thenp | 2x° (becausep | z | #* + y* andy = —x mod p), which would
lead to gcd(x,y) > p (again, using that p is odd), viz to a contradiction. The rest is an immediate

application of Lemma 4.3. [

Lemma4.5. Let x,y,z € Z such that x,y are odd and x,y > 0. Then x* — y* = 2% if and only if
z>3,x=2"2+1landy =22 —1.

Proof. Since x and y are odd, x* — y* is divisible by 8, namely z > 3, and there existi,j € NT such
thati+j=z,x —y =2'andx +y = 2. It follows thatx = 27! + 2" tandy = 271 — 2771,
and thenj > iand i = 1 (otherwise x and y would be even). The rest is straightforward. 0

Now, we are ready to write down the proof of the main result.

Proof of Theorem 4.1. (i) Assume thatn® | a" + b",n* | a" + p",and B # —a when nis odd. Since
a and f are coprime (by construction), it holds that § # 0, for otherwise n | a" + " andn > 2
would give ged(a, f) > 2. Also,a = |B|ifand onlyifa = p = landn = 2 (as p > Oforneven),
and thus 2° divides 287, which is possible ifand onlyif § € {1,2,4} and gives (a, b, n) = (1,1,2),
(2,2,2), 0r (4,4,2). So, we are left with the case when

a>2 and a>|f| >1, (4.1)

since @ > max(1, ||). Considering that 4 | n* for n even, it follows from Lemma 4.4 that n is odd
and ged(apB, n) = 1. Denote by p the smallest prime divisor of n. Again by Lemma 4.4, it is then
found that p divides a 4 f and

a—1<(a—1) e(n) <efatp). (42)

Furthermore, a + f > 1 by equation (4.1), whence
a+B=p's, withr,s€ Nt andp{s. (4.3)
Therefore, equations (4.1) and (4.3) yield that 2a > p’s + 1. This implies by equation (4.2), since

r = e,(a + B),that 3’s < p’s < 2r + 1, which is possible only if p = 3and r = s = 1. Thus, by
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equations (4.2) and (4.3), we geta + f = 3 and a = 2, namely (a, ) = (2, 1). Also, e3(n) = 1,
and hence n = 3tfor some t € N with gcd(6,t) = 1. It follows that £ | y* + 1 for y = 2°.

So suppose, for the sake of contradiction, that ¢ > 2 and let g be the least prime divisor of
t. Then, another application of Lemma 4.4 gives 2¢,(t) < eq(y + 1) + e4(t), and accordingly
1 < e4(t) < eg(y + 1) = ¢,(3?), which is however absurd, due to the fact that ged(3,t) = 1.
Hencet = 1,i.e. n = 3,and putting everything together completes the proof, because 2°>+1° = 32
and 3% | §% - (23 + 13) onlyif § = 1.

(ii) Assume that n® | a" — b",n* | a" — B",and p # a. Since gcd(a, B) = 1, we get as in the
proof of point (i) that B # 0, whilea = || onlyifa = 1, = —1,and nis odd (again, f > 0
for n even), which is however impossible, because it would give that n | 2 with n > 3. So, we can
suppose from now on that a and f satisfy the same conditions as in equation (4.1), and write n as

2's,wherer € N,s € N* and gcd(2,s) = 1. We have the following:

Case 1: r = 0,i.e. n = s. Then, nis odd, so thatn® | a" + (—b)" and n* | a" + (—PB)", so by point
(i) we get (a,b,n) = (2,—1,3).

Case2: r > 1. Since nis even and gcd(a, f) = 1, both a and 8 are odd, thatis 8 | a> — 2. It
follows from point (i) of Lemma 4.3 that

er(a" — B) = ey(a® — B) + (277 Ys) = ey(a® — B +r— 1. (4.4)

(With the same notation as in its statement, we apply Lemma 4.3 with x = a%,y = B,

¢ =2"1s,andp = 2.) Also, 2™ | a" — ", so equation (4.4) yields
(a—1)-r<efa®—p)—1 (4.5)

There now exist u, v € N* withu > 2 and gcd(2,v) = 1 such thata® — [32 = 2¥Tly with
the result that a > 2*/2,/v. Hence, taking also into account that 2* > x+ 1 foreveryx € R
with x > 1, we get by equation (4.5) that

<g+1> <2y <Y, (4.6)
r
which is possible only if = 1and \/v < 2. Then 2“/2\/v < u + 1, in such a way that
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2 < u < Sandv = 1 (using that v is odd). In consequence of Lemma 4.5, all of this
implies, at the end of the day, that a = 2 + 1,b = 2% — 1 and n = 2s (recall that we want
the conditions in equation (4.1) to be satisfied and f > 0 for n even), where z is an integer
between 1 and 4. But we need 2° < z+ 1 by equation (4.5), so necessarilyz = 1,i.e.a = 3
and B = 1. Finally, we check that (2s)* | 3* — 1**ifand only if s = 1: For, ifs > 2 and
q is the smallest prime divisor of 5, then 0 < 3e, (s) < eq(f’a2 — 1) by Lemma 4.4, which
is absurd since gcd(2,s) = 1. This gives (a, b,n) = (3, 1,2), while it is trivially seen that
2% | 8- (3* — 1%)ifand onlyif § = 1.

Putting all the pieces together, the proof is thus complete. U
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Ithaca has given you the beautiful voyage.
Without her you would not have set out on the road.

Nothing more does she have to give you.

— Konstantinos Petrou KavaFis, Ithaca

On a system of equations with primes

ResumE. Etant donné un entier n > 3, soient uy, . . ., u, des entiers premiers entre eux deux a
deux pour lesquels 2 < u; < --- < u,, soit D une famille de sous-ensembles propres et non
vides de {1, ...,n} qui contient un nombre “suffisant” d’éléments, et soit € une fonction D —
{£1}. Existe-t-il au moins un nombre premier g tel que g divise [ [, u; — £(I) pour un certain
I € D, mais ne divise pas u; - - - u, > Nous donnons une réponse positive a cette question dans
le cas ou les u; sont des puissances de nombres premiers si on impose certaines restrictions sur
¢ et D. Nous utilisons ce résultat pour prouver que, si ¢, € {31} et si A est un ensemble de
trois ou plus nombres premiers qui contient les diviseurs premiers de tous les nombres de la forme
I1 yep P — €o pour lesquels B est un sous-ensemble propre, fini et non vide de 4, alors A contient
tous les nombres premiers. Ce chapitre est basé sur un article par Paolo Leonetti et lauteur [TrS]

accepté pour publication au Journal de Théorie des Nombres de Bordeaux.
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ABSTRACT. Given an integer n > 3, let uy, . .., u, be pairwise coprime integers for which 2 <
u; < -+ < u,, and let D be a family of nonempty proper subsets of {1,...,n} with “enough”
elements and € amap D — {%1}. Does there exist at least one prime g such that q divides
Hiel u; — £(I) for some I € D, but it does not divide u; - - - u,,? We answer this question in the
positive in the case where the integers ; are prime powers and some restrictions hold on € and D.
We use the result to prove that, if 6, € {£1} and A is a set of three or more primes that contains
all prime divisors of any number of the form [ | pepP — €0 for which B is a finite nonempty proper
subset of A, then A contains all the primes. The chapter is based on a paper by the author [Tr5]
(joint work with Paolo Leonetti) accepted for publication on Journal de Théorie des Nombres de

Bordeaux.

5.1 INTRODUCTION

There are several proofs of the fact that Pis infinite: Some are elementary, others come as a byprod-
uct of deeper results. E.g., six of them, including Euclid’s classical proof, are given by M. Aigner and
G. M. Ziegler in the first chapter of their lovely Proofs from THE BOOK [AZ]. Although not really
focused on the infinity of primes, this chapter is inspired by Euclid’s original work on the subject,
concerned as it is with the factorization of numbers of the form a; - - - a, = 1, where a,, . . ., a, are
coprime positive integers, and in fact prime powers (we do not consider 1 as a prime power).

To be more specific, we need first some notation. Given a set A, we denote by P, (A) the family
of all finite nonempty proper subsets of A, in such a way that A ¢ P,(A). Furthermore, for an
integern > 1 wesetS, := {1,...,n} and let P,(A) be the collection of all subsets B of A with
|B| = n. For more notation and terminology used here without explanation, as well as for material
concerning classical topics in number theory, the reader should refer to [HW]. With this in mind,

we can state the basic question addressed below:

Question 5.1. Given an integer n > 3, pick exponents vy, . .., v, € N* and primesp,,...,p, € P
such thatp, < --- < p,, and let D be a nonempty subfamily of P, (S,) with “enough” elements and
e amap D — {%1}. Does there exist at least one prime g € P\ {p,,...,p,} such that q divides
[Licipl — €(I) for somel € D?

At present, we have no formal definition of what should be meant by the word “enough” in the
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previous statement: this is part of the question. With the notation from above it is rather clear, for
instance, that the answer to Question 5.1 is no, at least in general, if | D| is “small” with respect to n,

as shown by the following:

Example 5.2. Given an integer k > 3, (pairwise) distinct primes q,s- - -, q, and positive integers
e, - - -, e, letgbe the greatest prime dividing atleast one of the numbers of the form Hie 195 £ 1for
I € P,(Sk). Then, we get a negative answer to Question 5.1 by extending q,, . . . , g, to a sequence
4, - - -, q, containing all the primes < gq (notethat¢ > k+1),by taking a nonempty & C P.(S)
and arbitrary g1, ..., e € N¥,and by settingn := ¢, p, := q,,v; := ¢;and D := €.

Thus, to rule out such trivial cases, one shall suppose, e.g., that |D| > nx or, in alternative,
|D| > n* for some absolute constant x > 0.

That said, we concentrate here on the case where D contains at least all subsets of S,, of size 1,
n — 2,orn — 1, and the function ¢ is constant when restricted to these (see Theorem 5.5 below),
while collecting a series of intermediate results that could be useful, in future research, to try to

draw broader conclusions. In particular, Question 5.1 can be naturally “generalized” as follows:

Question 5.3. Given an integer n > 3 and pairwise relatively prime integers uy, . . ., u, such that
2 <uy < -+ < uy, let D be a nonempty subcollection of P,(S,) for which D has “enough” elements
and € a function D — {=£1}. Does there exist at least one g € P such that q divides | [,., u; — £(I) for
somel € Dandqtuy---u,?

Note that Question S.3 is not really a generalization of Question 5.1, in the sense that the former
can be stated in the terms of the latter by replacing, with the same notation as above, n with the total
number d of the prime divisors of u; - - - u, and D with a suitable subfamily of P, (S;).

Questions S.1 and 5.3 are somewhat reminiscent of cyclic systems of simultaneous congruences,
studied by several authors, and still in recent years, for their connection with some long-standing
questions in the theory of numbers, and especially Zndm’s problem and the Agoh-Giuga conjecture
(see [BV] and [La], respectively, and references therein). Our initial motivation has been, however,

of a completely different sort, and in fact related to the following:

Question 5.4. Let A be a subset of P, having at least three elements, and such that for any B € P,(A)
all prime divisors opreBP — 1 belongto A. Then A = P.
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This served as a problem in the 4th grade of the 2003 Romanian IMO Team Selection Test,
and it appears (up to minor notational differences) as Problem 10 in [BAB, p. 53]. The solution
provided in the book (p. 62) consists of two parts. In the first one, the authors aim to show that A is
infinite, but their argument is seen to be at least incomplete. Specifically, they argue as follows (we
use the notation from above): After having proved that 2 is in A, they suppose by contradiction
that A is a finite set of size k (where k > 3) and letp,,...,p, be a numbering of A such that
2 =p, <--- < p,. Then, they derive from the standing assumptions on A that

pe+1=2"pl +2

for some a, f,7 € N. But this does not imply 1 = 2 mod p, (as is stated in the book) unless
y # 0, which is nowhere proved and has no obvious reason to hold.

The problem per se is not, however, difficult, and it was used also for the 2004 France IMO Team
Selection Test (we are not aware of any official solution published by the organizers of the compe-
tition).

Questions somewhat similar to those above have been considered by other authors, even though
under different assumptions, and mostly focused on the properties of the prime factorization of
very particular numerical sequences gy, a;, . . . recursively defined, e.g., by formulas of the form
dpp1 = 1+ ag- - a,; see [Na, Section 1.1.2] and the references therein for an account (for all
practical purposes, we report that one of the questions raised by A. A. Mullin in [Mu] and men-
tioned by W. Narkiewicz on page 2 of his book has been recently answered by [Bo]).

Now, we have not been able to work out a complete solution of Question 5.1, whatever this may

be. Instead, we solve it in some special cases. In fact, our main result here is as follows:

Theorem S5.5. Given an integer n > 3, pick distinct primes p,, ..., p,, exponents vy, ..., v, € Nt
and a subcollection D of P,(S,) such that

Do g D, with DO = 7)1 (Sn) U 73”_2(5,1) @) Pn—l(Sn)-

Then, for every function € : D — {£1} such that the restriction of € to Dy is constant, there exists at
leastoneq € P\ {p,,...,p,} such that q divides [ [,., p}' — £(I) for someI € D.

The proof of Theorem S.5, as presented in Section 5.3, requires a number of preliminary lemmas,

84



which are stated and proved under assumptions much weaker than those in the above statement.

In particular, we will make use at some point of the following (well-known) result [Zs]:

Theorem 5.6 (Zsigmondy’s theorem). Pick a,b € NT and an integer n > 2 such that (i) a > b
and (ii) neither (a, b,n) = (2,1, 6) nora+ b is a power of 2 and n = 2. Then, there exists p € P such
thatp | a" — b" and p § ak — b* for each positive integer k < n.

Theorem 5.5 can be used to solve a generalization of Question S5.4. Specifically, we say that a set
A of integers is fine if either A is finite or for every p € PP there exist infinitely many a € A such
that p 1 a. On the other hand, for B, C C Z we write B L Ciffor every b € B there exists c € C
such that b | ¢; this simplifiesto b L Cwhen B = {b}. Clearly, B L Cifand onlyifb L Cforall

b € B. Based on these premises, we then prove the following:

Theorem S.7. Pickco € {£1} and let A be a fine set of prime powers with the property that |A| > 3
and q L A whenever q is a prime dividing [ [ .5 a — €0 for some B € P,(A). Then |A| = oo, and in
particular A = PifA C PandP L Aifey = 1.

Theorem 5.7 is proved in Section 5.4. With the notation from above, the assumption that A is
fine is somehow necessary, as we show in Example 5.19. Incidentally, the result gives a solution of
Question 5.4 in the special case whereey = 1and A C [P, while providing another proof, although

overcomplicated, of the infinitude of primes. One related question is as follows:

Question 5.8. Pickn € N* and distinct primes q,, . . ., q,. Does there always exist a nonempty set of
prime powers, say A, such that P\ {q,, ..., q,} is precisely the set of all prime divisors of the numbers
[1.cp @ + 1 for which B is a finite nonempty subset of A?

This is completely open to us. An easier question is answered in Example 5.20.

5.2 PREPARATIONS

Here below, we fix some more notation and prove a few preliminary lemmas related to the original
version of Question 5.1 (that is, not only to the special cases covered by Theorem S.5). For any
purpose it may serve, we recall that, in our notation, 0 € Nand (), S, & P,(S,).

In the remainder of this section, we suppose that there exist an integer n > 3, a set P =

{p,,---,p,} of nprimes, integral exponents vy, . . ., v, € NT, anonempty subfamily D of P, (S,,),
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andafunctione : D — {%1}suchthatp, < --- < p andq € P wheneverq € P and q divides
[Lic;p! — erforsomeI € D, where &1 := £(I) for economy of notation. Accordingly, we show
that these assumptions lead to a contradiction if D contains some distinguished subsets of S,, and
the restriction of ¢ to the subcollection of these sets, herein denoted by D,, is constant: This is
especially the case when Dy = P (S,,) U P,_2(S,) U Po_1(S,)-

WeletP := ], p/and D := {S, \ I : I € D}, and then we define

PI = Hp;j’ and P—I = PSn\I

il

forI € P.(S,) (notethat P = P;- P_;),and e_; := gs,\1 for I € D, In particular, given i € S,

we write P; in place of P;; and P_; for P_y;3, but also ¢; instead of £(;; and ¢ _; fore_ (whenever

this makes sense). It then follows from our assumptions that there are maps a;, . . . , a, : D? — N
such that
VIeD®: Py =c_+[[p" (5.1)
iel

where ;1 := a;(I). In particular, if there exists i € S, such that {i} € D°P then
pP_ ;= p?i +e_, with a; ‘= a;{i} c N* (52)

(of course, a; > 1since P_; — £_; > 2+ 3 — 1). This in turn implies that
VI,,, e D®* :P=Py, - (5_11 + H pf"'”1> =P, - <6_12 + H p?i’12> , (5.3)
il ich

which specializes to
P=pit- (b Ten) =pit- (07 +e-n) (5:4)

foralliy, i, € S, such that {i; }, {i»} € D°P. We mention in this respect that, for any fixed integer
b # 0 and any finite subset S of P, the diophantine equation

A-(a" —a?)=B- (P —b"?) (5.5)
has only finitely many solutions in positive integers a, A, B, x1, x5,y ,y, for which a is a prime,
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gcd(Aa,Bb) = 1,x; # x, and all the prime factors of AB belong to S; see [BL] and the ref-
erences therein. It follows that our equation (5.4) has only finitely many possible scenarios for €
taking the constant value —1 in D. However, the methods used in [BL] are not effective and, as far
as we can tell, a list of all the solutions to equation (5.5) is not known, not even in the special case
when A = B = 1 and b = 2. Furthermore, there doesn’t seem to be any obvious way to adapt the
proof of the main result in [BL] to cover all of the cases resulting from equation (5.4).

With this in mind, and based on (5.1), our main hypothesis can be now restated as
“qdivides P_; — e_rforsome q € PandI € D onlyifg € 3.” (5.6)
In addition, we can easily derive, using (5.3) and unique factorization, that
“q dividese_; + H,.Glp?i’l forsome g € PandI € D onlyifq € °B.” (5.7)

Both of (5.6) and (5.7) will be often referred to throughout the article. Lastly, we say that ¢ is
k-symmetric for a certain k € NV if both of the following conditions hold:

(i) I € DN P(S,) onlyifI € D®;  (ii) ey = e_rforalll € DN Pi(S,).

With all this in hand, we are finally ready to prove a few preliminary results that will be used later,

in Section 5.3, to establish our main theorem.

5.2.1 PRELIMINARIES

The material is intentionally organized into a list of lemmas, each one based on “local’, rather than
“global”, hypotheses. This is motivated by the idea of highlighting which is used for which purpose,
while looking for an approach to solve Question 5.1 in a broader generality. In particular, the first
half of Theorem S.5 (the one relating to the case £ = 1) will follow as a corollary of Lemma 5.14
below, while the second needs more work.

In what follows, givena € Z and m € N such that gcd(a, m) = 1, we denote by ord,,(a) the
smallest k € NT such that @ = 1 mod m, namely the order of a in the group of units of Z /mZ.

Lemma 5.9. Ifp, = 3 for somei € S, and there exists j € S, \ {i} such that {j} € D, then one,
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and only one, of the following conditions holds:
1. e_j = —1and a; is even.
2. €= —1l,ajisodd and p; = 1 mod 6.
3. e-j=1,ajisodd and p; = 2 mod 3.

Proof. Under the assumptions of the claim, (5.4) gives that 3 | p}xj + €_j, which is possible only if

one, and only one, of the desired conditions is satisfied. ]

The next lemma, as trivial as it is, furnishes a sufficient condition under which 2 € ‘3. Indeed,

having a way to show that 2 and 3 are in *J3 looks like a key aspect of the problem in its full generality.

Lemma 5.10. If there exists I € D such that 1 ¢ Ithenp, = 2; also, a; > 4 if, in addition to the
other assumptions, I € P,_1(S,).

Proof. Clearly, p, is odd for each i € I, which means that P; — ¢; is even, and hence p, = 2 by
(5.6) and the assumed ordering of the primes p;. Thus, it follows from (5.2) thatifI € P,_; then
21 =P_; —e_; > 3-5—1,totheeffect thata; > 4. ]

The following two lemmas prove that, in the case of a 1-symmetric &, reasonable (and not-so-

restrictive) assumptions imply that 3 belongs to 3.

Lemma 5.11. Suppose that € is 1-symmetric and pick a prime q ¢ . Then, there doesn't exist any
i € S, suchthat {i} € Dandp, =1 mod q.

Proof. Assume by contradiction that there exists iy € S, such that {io} € Dandp, = 1 mod g.
Then, since ¢ is 1-symmetric, we get by (5.1) and (5.2) that

1—¢o EpZ" — & = Hp?i’l" mod q and Py Epf::" +¢e9 =1+ ¢gmod g,

i€lp

where Iy := S, \ {io}. Butq ¢ P implies q 1 p;° — o by (5.6), with the result that g = —1
(from the above), and then q | Py,. By unique factorization, this is however in contradiction to the

fact that g is not in *J3. [
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Lemma 5.12. Suppose that € is 1-symmetric and there exists ] € P, (S,) such that S, \ ] has an even
number of elements, Dy := P1(S,) U {S, \ J} C D, and the restriction of € to Dy is constant. Then
p, =3anday > 3(5 — &).

Proof. Let ¢ take the constant value £y when restricted to D, and assume by contradiction that
3 & B. Then, Lemma 5.11 entails that p, = —1 mod 3 foralli € S, while takingI = S, \ {i} in
(5.1) and working modulo 3 yield by (5.6) that

Pl — 0 = pri’l # 0 mod 3,
jeT

to the effect that v; is odd if £, = 1 and even otherwise (here, we are using that P;(S,) € Dande
is 1-symmetric, in such a way that P,_,(S,,) € D too). Now, since S, \ ] € D, the very same kind

of reasoning also implies that

l—cg=P j—¢co = Hp;.”"] mod 3,
j€J

with the result that if ¢, = 1 then 3 € 3 by (5.6), as follows from the fact that S, \ J has an even

number of elements and v; is odd for each i € ] (which was proved before). This is however a

contradiction.
Thus, we are left with the case g = —1. Since —1 is not a quadratic residue modulo a prime
p = —1 mod 4, we get by the above and (5.2) that p, = 1 mod 4 for eachi = 2,3,...,n.

Then, (5.1) gives, together with Lemma 5.10, that P_; + 1 = 2% with a; > 2, which is againa
contradiction as it means that 2 = 0 mod 4. The whole proves that p, = 3, which implies from
(52)that3 =P_, —e_, >2-5— go,and hence a, > %(5 — &) O

Now, we show that, if D contains at least some distinguished subsets of S,, and £ ; = 1 for some

admissiblei € S, \ {1}, then p, has to be a Fermat prime.

Lemma 5.13. Assume P1(S,\ {1}) C D°? and suppose there existsi € S, \ {1} for which {i} € D

and €+; = 1. Then, p, is a Fermat prime.

Proof. Itis clear from Lemma 5.10 that p . = 2. Suppose by contradiction that there exists an odd
prime g such that q | p, — 1 (note that p, > 3), and hence q | p — ;. Then, takingI = {i} in
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(5.6) gives that g = p; for somej € S, \ {1, i}. Considering that P; (S, \ {1}) C D, it follows
from (5.4) that

Vi (.4 i i
p (b + ) =p' (P + 1),
where we use that £_; = 1. This is however a contradiction, because it implies that 0 = 2 mod p;

(with p; = 3). So, p, is a Fermat prime by [HW, Theorem 17]. H

Lemma S.14. Suppose that p, = 3 for some i € S, P1(S,) C D, and there existsj € S, \ {1,i}
such that {j} € D and €4j= L Theni=2p =2ande_; = —1.

Proof. First, we have by Lemma 5.10 that p, = 2, and hence i = 2. Also, pjisa Fermat prime
by Lemma 5.13 (and clearly p; = 5). So suppose by contradiction that ¢ ; = 1. Then, Lemma
5.9 and (5.2) imply that p; | P, = 2% + 1 with a; odd, to the effect that 2 < ord, (2) <
ged(2a, P — 1) = 2. It follows that § < p; < 2% — 1, which is obviously impossible. ]

The proof of the next lemma depends on Zsigmondy’s theorem. Although not strictly related to

the statement and the assumptions of Theorem 5.5, it will be of crucial importance later on.

Lemma 5.15. Pickp, q € P and assume that there existx,y,z € N forwhichx # 0,y > 2,p | g+1
andq* — 1 =p' (¢ —1). Thenx =2,z=1,p=2,y € Pandq=2" — 1.

Proof. Since x # 0, it is clear that ¢* — 1 # 0, with the result that z # 0 and ¢ — 1 # 0 too.
Therefore, using also that y # 0, one has that

=G -1/¢q-1>1, (5.8)

which is obviously possible only if
x>z> 1 (5.9)

We claim thatx < 2. For suppose to the contrary that x > 2. Then by Zsigmondy’s theorem, there

must exist at least one r € Psuch thatr | ¢* — 1 and
r{ q* — 1 for each positive integer k < x.

In particular, (5.8) yields that = p (by unique factorization), which is a contradiction since p |
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q* — 1. Thus, we get from (5.9) that x = 2and z = 1. Then,p’ = q + 1, thatisp’ — 1 € P, and
this is absurd unless p = 2 and y € IP. The claim follows. ]

This completes the series of our preliminary lemmas; we can now proceed to the proof of the

main result.

5.3 PRrROOF OF THEOREM S.5

Throughout we use the same notation and assumptions as in Section 5.2, but we specialize to the

case where

DO = Pl (Sn) U 'Pn,z(Sn) U 77,,,1(8,,) g D
and ¢ takes the constant value £y when restricted to Dy (as in the statement of Theorem 5.5).

Proof of Theorem 5.5. Atleast one of n — 2 or n — 1 is even, so we have by Lemmas 5.10 and 5.12
thatp, = 2,p, = 3and v, > 2. There is, in consequence, no loss of generality in assuming, as we
do, that e = —1, since the other case is impossible by Lemma 5.14. Thus, pick iy € S, such that
3 | p,, + 1. Itfollows from (5.3) and our hypotheses that there exist 8, , 7, € N such that

P=37(3" = 1) = gl - (pi — 1) = 3pi2 - (ol — 1),
to the effect that, on the one hand,
PZ;O —1=3". <3ﬁi0pz)i° — 1) , (5.10)

and on the other hand,
3 = 1= (Fapl 1) (5.11)

Then, since v, > 2 and a;, # 0, we see by (5.10) and Lemma S.15 that B, = 1. Itis then found

from (5.11) that —1 = (—1)"0 ™" mod 3, i.e. v, is even. To wit, we have proved that

VieS,:p,=—1mod3 = v;isevenandp!’ = 1 mod 3. (5.12)
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But every prime # 3 is congruent to +1 modulo 3. Thus, we get from (5.2) and (5.12) that

2= [] pr+1=3"=0mod3,
i€S,\{2}

which is obviously a contradiction and completes the proof. U

5.4 PROOF OF THEOREM 5.7

In the present section, unless differently specified, we use the same notation and assumptions of

Theorem 5.7, whose proof is organized into three lemmas, one for each aspect of the claim.
Lemma 5.16. A is an infinite set.

Proof. Suppose for the sake of contradiction that A is finite and let n := |A|. Since A is a set of
prime powers, there then existp ,...,p, € Pandv;,...,v, € N*suchthatp, <.-- <p and
A= {p,...,p’}, and our assumptions give that

“q divides [[,.,p" — €0 forsome I € P,(S,) onlyifq € {p,,....p,}.” (5.13)

This clearly implies that p, < --- < p,.Infact,ifp, = p, fordistincti;, i, € Sy, thenitisfound

from (5.13) and unique factorization that
k Vi
pi, = H pi — %o
ie€S,\{i1}

for a certain k € N, which is impossible when reduced modulo pi- Thus, using that n > 3, it
follows from Theorem 5.5 that there also existsg € P\ {p,, ..., p,} suchthat g divides [ .., p!" —

go for some I € P,(S,). This is, however, in contradiction with (5.13), and the proof is complete.
O

Lemma 5.17. Ifeg = 1, then P L A. In particular, A = Pif A C P.

Proof. Suppose for the sake of contradiction that there exists p € [P such that p does not divide any
element of A. Then, since A is fine and |A| = 0o (by Lemma 5.16), there are infinitely many a € A
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such that p { a. By the pigeonhole principle, this yields that, fora certainr € {1,...,p — 1}, the
setA, := {a € A: a = r mod p} is infinite, and we have that

VB € P.(4,) : Ha = Hr = B mod p. (5.14)

acB acB

As it is now possible to choose By € P4 (A,) in such a way that |By| is a multiple of p — 1, one gets
from (5.14) and Fermat’s little theorem that p divides [ [ . @ — 1 for some B € P,(A), and hence
p | ao for some ay € A (by the assumptions of Theorem 5.7). This is, however, absurd, because by

construction no element of A is divisible by p. It follows that P | A. The rest is trivial. 0

In the next lemma, we let w(n) denote the number of distinct prime factors of n, in such a way
that, e.g., w(1) = 0and w(12) = 2. Moreover, we let an empty sum be equal to 0 and an empty

product be equal to 1, as usual.
Lemma 5.18. Ifeg = —1land A C P, then A = P.

Proof. Suppose to the contrary that A # P, i.e. there exists p € P such that p { A, and for each
r€ Sy_1,letA, := {a € A: a =rmod p}. Then, p { Ayields that

A=A U---UA, ;. (5.15)
In addition, set I'g, := {r € Sp_1 : |A,| < 00} and Ty := Sp—1 \ Tin, and then
Afn:={a€A:ac A forsomer € I'g,} and App:= A\ Agp.

It is clear from (S5.15) that A; is infinite, because Agy, is finite, {Agy,, Ajne} is a partition of A, and
|A| = oo by Lemma 5.16. Thus, we define §, := [],.,.

sequence @y, 01, - - . of positive integers such that g, is, for each n € N, a nonempty product (of a

a, and we claim that there exists a

finite number) of distinct elements of A with the property that

n+1
£ | 0n and 1+, = Z 05 mod p. (5.16)
i=0
Proof of the claim. We construct the sequence gy, 01, . . . in a recursive way. To start with, pick an
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arbitrary ay € Ay and define gy := aq - §,, where the factor ay accounts for the possibility that
T4, = (). By construction, gy is a nonempty product of distinct elements of A, and (5.16) is satis-
fied in the base case n = 0.

Now fixn € N and suppose that we have already found o, € N7 such that g, is a product of
distinct elements of A and (5.16) holds true with gy and g,. By unique factorization, we then get
from the assumptions on A that there exist s;, ..., s. € N and distinct primesp,...,p, € P
such that p, | A for eachiand

k
flo, and 1+0,=]]r (5.17)
i=1

where k := w(0,) > 1. Since Ais a subset of P, thenp, | Aimplies p, € A, and indeed p, € Ay,
because every element of Ay, if any exists, is a divisor of £y, and &, | 0, by (5.17). Using that

A, is infinite for every r € Tjyrand Ay = |J A,, we get from here that there exist elements

ai, ..., ap € Ajyrsuch that, on the one hand, o
0o <ap < - <ap, (5.18)
and on the other hand,
VieSg:p, = aiyy, = = agyy, mod p, (5.19)

where h 1= Zle siand t; 1= Z;i s; for each i. It follows from (5.17) and (5.19) that

k h
1+ o0, = pr" = Ha,- mod p.
i=1 i=1
So, for the assumptions on g, and the above considerations, we see that
n+1 n+2
1+Q0-(1+gn)EI—FQO-ZQBEZQBmOd}?.
i=0

i=0

Our claim is hence proved, by recurrence, by taking 0,11 := 0o - (1 + 0,), because &, | 0o | Ont1
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and 0,4 is, by virtue of (5.18), a nonempty product of distinct elements of A. [l

Thus, lettingn = p(p — 1) — 2 in (5.16) and considering that p 1 0o, as p 1 A and gy is, by
construction, a product of elements of A, gives that 1 + ¢, = 0 mod p, with the result thatp € A

by the assumed properties of A. This is, however, a contradiction, and the proof is complete. [
Finally, we have all the ingredients to cook the following:
Proof of Theorem S.7. Just put together Lemmas 5.16, 5.17 and S.18. ]

One obvious question arises: Can we prove Theorem 5.7 without assuming that A is a fine subset

of 72 That the answer is not unconditionally affirmative is implied by the following:

Example 5.19. Pick distinct primes q,,¢,, . ..,q, = 3 and, in view of [HW, Theorem 110], let
g; be a primitive root modulo g,. A standard argument based on the Chinese remainder theorem
then shows that there also exists an integer g such that gis a primitive root modulo g, for each i, and

by Dirichlet’s theorem on arithmetic progressions we can choose g to be prime. Now, define
Uf:l{g(qfl)" :ne Nt} ifeg =1

Ule{g%(qu)(znﬂ) neN} ifeg=—1.

If 3 is the set of all primes g such that g divides [[,_, a — €0 for some B € P,(A), then on the
one hand, g, C 3 for each i (essentially by construction), and on the other hand, q; { A because
ged(g,,g) = 1. Note that this is possible, by virtue of Theorem 5.7, only because A is not fine.

We conclude the section with another example, that provides evidence of a substantial difference

between Lemmas 5.17 and 5.18, and is potentially of interest in relation to Question S.8.

Example 5.20. Given odd primesq,,...,q, letk :==1lem(q, — 1,...,q, — 1) and A := {p"k :
p € P,n € NT}. We denote by ‘P the set of all primes q for which there exists B € P,(A) such
that g divides [ [, @ + 1. Itis then easily seen that B C P\ {q,,...,q,},since [[,cpa+1=
2 # 0mod g, foreachi=1,2,... ¢
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5.5 CLOSING REMARKS

Many natural questions related arise (in addition to the ones already raised in the previous sec-
tions), and perhaps it can be interesting to find them an answer.

Some examples: Is it possible to prove Theorem 5.5 under the weaker assumption that Dy, as
there defined, is P;(S,) U P,_1(S,) instead of P;(S,) U P,_2(S,) U P,_1(S,)? This is clearly
the case if n = 3, but what about n > 42 And what if n is sufficiently large and Dy = Py(S,) for
some k € S,? The answer to the latter is negative for k = 1 (to see this, take p,, ..., p, tobethen
smallest primes and letv; = - -+ = v, = ¢ = 1, then observe that, for each i € §,,, the greatest
prime divisor of p!¥ — ggis < p, — 1). But whatifk > 22

Furthermore: To what degree can the results in Section 5.2 be extended in the direction of Ques-
tion 5.3? It seems worth mentioning in this respect that Question 5.3 has the following abstract for-
mulation in the setting of integral domains (we refer to [Mo, Ch. 1] for background on divisibility

and related topics in the general theory of rings):

Question 5.21. Given an integral domain ¥ = (F, +, -) and an integer n > 3, pick pairwise coprime
non-units uy, . . . ,u, € IF (assuming that this is actually possible), and let D be a nonempty subfamily
of P« (S,) with “enough” elements. Does there exist at least one irreducible ¢ € F such that q divides
[Licywi — 1forsomel € Dandqfuy---u,?

In the above, the condition thatu,, . . . , u, are non-units is needed to ensure that, foreachI € D,
the number Hie ; 4i— lisnon-zero, which would, in some sense, trivialize the question. On another
hand, one may want to assume that [ is a UFD, in such a way that an element is irreducible if and
only if it is prime [Mo, Theorems 1.1 and 1.2]. In particular, it seems interesting to try to answer
Question 5.21 in the special case where F is the ring of integers of a quadratic extension of (Q with
the property of unique factorization, and uy, . . . , u, are primes in [F. This will be, in fact, the subject

of future work.
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