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R͐ňŊŁ͐

CeĨe thèse consiste essentiellement en la concaténation de contributions variées à la théorie

additive des structures algébriques comme les groupes, les anneaux et leurs généralisations, d’une

part, et à la théorie élémentaire des nombres, d’autre part. En conséquence, la présentation sera

divisée en deux parties, partie I et partie II, qui sont indépendantes l’une de l’autre et se composent,

respectivement, de trois et deux chapitres.

Dans la première partie, nous prouvons un certain nombre de résultats concernant la théorie ad-

ditive des groupes (pas nécessairement commutatifs), mais nous le faisons dans le cadre plus large

et abstrait des semi-groupes (éventuellement non-commutatifs). Notre philosophie à cet égard

peut être résuméedans leméta-principe suivant : plus faibles sont les hypothèses structurelles, plus

grand est le nombre de problèmes que nous pouvons espérer résoudre, tout en essayant d’arriver à

une meilleure compréhension de leur nature intime.

Les sommes d’ensembles, principalement dans le cadre des groupes commutatifs, ont été in-

tensivement étudiés depuis plusieurs années (voir [Ru] pour un survol récent). Également des

résultats intéressants ont été obtenus pour le cas des monoïdes commutatifs et cancellatifs par

A. Geroldinger et ses coauteurs ; voir, par exemple, [G] et les références citées là (en notation

additive, “cancellatif ” veut dire que a + c = b + c ou c + a = c + b impliquent a = b). Mais

presque rien n’est connu sur la théorie additive des semi-groupes, et l’un des objectifs du présent

travail est de contribuer à l’exploration de ceĨe théorie et de convaincre, nous l’espérons, le lecteur

que le sujet est plus intéressant que l’on pourrait peut-être le suspecter.

Unepremièremotivationnaturelle pour s’intéresser aux semi-groupes vient de l’observationque

l’ensemble des éléments non nuls d’un anneau à unité non-trivial (commutatif ou non) n’est pas, en
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général, cancellatif (sauf si l’anneau est sans diviseurs de zéro), et par conséquent n’est même pas

fermé pour la multiplication. Une autre motivation est liée au fait que, même si A = (A,+) est

un groupe, les sous-ensembles non vides de A, munis de l’opération binaire qui envoie une paire

(X, Y) sur la sommeX+ Y, ne forment en général rien de plus qu’unmonoïde non cancellatif (par

exemple, quand A est (Z,+), la structure correspondante sur les parties de A a été étudiée par

J. Cilleruello, Y. ould Hamidoune et O. Serra [CHS]).

A cet égard, il semble utile dementionner une chose. Bien que chaque semi-groupe commutatif

et cancellatif puisse être immergé dans un groupe (comme il résulte de la construction standard

du groupe de fractions d’un monoïde ; voir [B1, chapitre I, section 2.4]), rien de semblable n’est

vrai dans le cas non-commutatif, pas même dans le cas de type ėni. Ceci est lié à une question

bien connue en théorie des semi-groupes, d’abord résolue par A. I. Mal’cev dans [Ma]. Ce résultat

est d’une importance fondamentale pour notre travail sur ce point dans la mesure où il démontre

que l’étude des sommes d’ensembles dans les semi-groupes ne peut pas être systématiquement ré-

duite, en l’absence de commutativité, au cas des groupes (en tout cas, pas de façon évidente). En

fait, l’exemple de Mal’cev est basé sur le quotient du semi-groupe libre sur huit leĨres par une con-

gruence appropriée, et le semi-groupe correspondant est non seulement de type ėni, mais aussi

linéairement (c’est-à-dire, strictement et totalement) ordonnable.

La Partie I se compose de trois chapitres (chapitres 1, 2 et 3). Dans le premier chapitre, qui

est basé sur un article par l’auteur [Tr1] publié dans Uniform Distribution ĉeory, on généralise la

transformée de Davenport [V] et on l’utilise pour prouver que, siA = (A,+) est un semi-groupe

cancellatif (éventuellement non-commutatif) et X, Y sont des sous-ensembles non vides de A tels
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que le sous-semi-groupe engendré par Y est commutatif, on a

|X + Y| ≥ min(γ(Y), |X|+ |Y| − ƾ),

où γ(Y), qu’on appelle la constante de Cauchy-Davenport de Y relative au semi-groupe A, est

déėnie par

γ(Y) := sup
yƽ∈Y×

inf
yƽ ̸=y∈Y

ord(y − yƽ).

Cela généralise le théorème classique deCauchy-Davenport [C] [D1] [D2] au cadre plus large des

semi-groupes, avec comme cas particuliers une extension des théorèmes de I. Chowla [Ch] et S. S.

Pillai [Pi] pour les groupes cycliques et une version plus forte d’une autre généralisation dumême

théorème de Cauchy-Davenport pour les groupes commutatifs, où dans la formule ci-dessus γ(Y)

est remplacé par l’inėmum des ordres d’un sous-semi-groupe non trivial de l’unitarisation de A.

Ce dernier résultat a été prouvé par G. Károlyi dans le cas des groupes ėnis, grâce au théorème de

Feit-ĉompson ; puis par Hamidoune pour un groupe arbitraire. L’approche d’Hamidoune passe

par sa généralisation d’un théorème additif de L. Shatrowsky et il est en déėnitive construit sur sa

méthode isopérimétrique.

Dans le deuxième chapitre, qui s’appuie sur unpapier par l’auteur [Tr2] soumis pour publication,

on fait une étude plus approfondie des propriétés de la constante de Cauchy-Davenport (intro-

duite dans le chapitre précédent) pour montrer l’extension supplémentaire suivante du théorème

de Cauchy-Davenport : si (A,+) est un semi-groupe cancellatif et si X, Y ⊆ A, alors

|X + Y| ≥ min(γ(X + Y), |X|+ |Y| − ƾ).

iii



Cela implique une généralisation de l’inégalité de Kemperman pour les groupes sans torsion [Ke]

et aussi une version plus forte du théorème d’Hamidoune-Károlyi mentionné ci-dessus. Ici, on

donne une preuve indépendante et totalement combinatoire du cas général de ce résultat, qui ne

dépend ni du théorème de Feit-ĉompson ni de la méthode isopérimétrique. Enėn, on se penche

sur certains aspects d’une conjecture qui, si elle était vraie, pourrait fournir une formulation uniėée

de beaucoup de théorèmes de type Cauchy-Davenport, y compris ceux-là déjà prouvés dans le

chapitre 1.

Enėn, le troisième chapitre généralise des résultats par G. A. Freĭman, M. Herzog et leurs coau-

teurs sur la théorie structurelle des sommes d’ensembles dans les groupes ordonnés [FHLM] au

cas plus général des semi-groupes ordonnés. En particulier, on prouve que, si (A, ·,≼) est un semi-

groupe linéairement ordonné et S est un sous-ensemble ėni deA engendrant un sous-semi-groupe

non-abélien, alors |Sƿ| ≥ ǀ|S|−ƿ. Aucoursde la preuve, onobtient égalementungrandnombrede

résultats secondaires, et notamment que le commutateur et le normalisateur d’un sous-ensemble

ėni d’un semi-groupe linéairement ordonné coïncident. Ce chapitre est basé sur un article par

l’auteur [Tr3] soumis pour publication.

La deuxième partie de la thèse traite de questions de théorie élémentaire des nombres, avec

un accent particulier sur les congruences, les nombres premiers et la divisibilité. CeĨe partie est

composée de deux chapitres (chapitres 4 et 5).

Dans le chapitre 4, on prouve des résultats liés à une conjecture par K. Győry et C. Smyth [GS]

sur la ėnitude des ensemblesR±
k (a, b)de tous les entiers n tels que nk divide an±bn pour des entiers

ėxés a, b et k avec k ≥ ǀ, |ab| ≥ ƿ et gcd(a, b) = ƾ : en particulier, on démontre que les ensembles

R±
k (a, b) sont ėnis si k ≥ max(|a|, |b|). Le chapitre s’appuie sur un article par l’auteur [Tr4] publié

dans Integers.
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Enėn, dans le chapitre 5, nous considérons une question de divisibilité dans l’anneau des entiers,

en quelque sorte liée au problème de Znám et à la conjecture Agoh-Giuga. Plus précisément, étant

donné un entier n ≥ ǀ, soient uƾ, . . . , un des entiers premiers entre eux deux à deux pour lesquels

ƿ ≤ uƾ < · · · < un, soit D une famille de sous-ensembles propres et non vides de {ƾ, . . . , n}

qui contient un nombre “suffisant” d’éléments, et soit ε une fonction D → {±ƾ}. Existe-t-il au

moins un nombre premier q tel que q divise
∏

i∈I ui − ε(I) pour un certain I ∈ D, mais ne divise

pas uƾ · · · un ? Nous donnons une réponse positive à ceĨe question dans le cas où les ui sont des

puissances de nombres premiers si on impose certaines restrictions sur ε et D. Nous utilisons ce

résultat pour prouver que, si εƽ ∈ {±ƾ} et siA est un ensemble de trois ou plus nombres premiers

qui contient les diviseurs premiers des tous les nombres de la forme
∏

p∈B p − εƽ pour lesquels

B est un sous-ensemble propre, ėni et non vide de A, alors A contient tous les nombres premiers.

Le chapitre est basé sur un article par Paolo LeoneĨi et l’auteur [Tr5] accepté pour publication au

Journal de ĉéorie des Nombres de Bordeaux.
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AĶňŉŇĵķŉ

ĉepresent thesis is basically a recollection of several sparse contributions to the additive theory

of group-like and ring-like structures, on the one hand, and to the elementary theory of numbers,

on the other hand. Accordingly, the presentation will be subdivided into two parts, namely Part I

and Part II, which are essentially independent from each other and consist, respectively, of three

and two chapters.

In the ėrst part, we prove a number of results concerning the additive theory of (possibly non-

commutative) groups, but we do it in the broader and more abstract seĨing of (possibly non-

commutative) semigroups. Our philosophy in this respect can be summarized in the following

meta-principle: ĉe weaker are the structural assumptions, the larger is the class of problems that

we can hope to solve, while trying to get a deeper understanding.

Sumsets in (mostly commutative) groups have been intensively investigated for several years

(see [Ru] for a recent survey), and interesting results have been also obtained in the case of com-

mutative and cancellative monoids by A. Geroldinger and coauthors; see, e.g., [G] and references

therein (in additive notation, “cancellative” means that a + c = b + c or c + a = c + b imply

a = b). But almost nothing is known on the additive theory of semigroups, and one of the goals

of the present work is to contribute to the investigation of the theory and to convince the reader,

we hope, that the subject is more interesting than one would possibly suspect.

A natural motivation in this sense comes from considering that the non-zero elements of a non-

trivial unital ring, either commutative or not, are not, in general, cancellative (unless the ring is a

domain), and hence not even closed under multiplication. Another motivation relies on the fact

that, even whenA = (A,+) is a group, the non-empty subsets of A, endowed with the binary op-
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eration taking a pair (X, Y) to the sumsetX+Y, is, in general, nothingmore than a non-cancellative

monoid (e.g., whenA is (Z,+), the corresponding structure on the powerset ofAhas been studied

by J. Cilleruello, Y. ould Hamidoune and O. Serra [CHS]).

In this respect, one thing seemsworthmentioning. While every commutative cancellative semi-

group embeds as a subsemigroup into a group (as it follows from the standard construction of the

group of fractions of a commutative monoid; see [B1, Chapter I, Section 2.4]), nothing similar is

true in the non-commutative case, not even if the ambient semigroup is ėnitely generated. ĉis

is related to a well-known question in the theory of semigroups, ėrst answered by A. I. Mal’cev in

[Ma], and is of fundamental importance for our work here, in that it shows that the study of sum-

sets in cancellative semigroups cannot be systematically reduced, in the absence of commutativity,

to the case of groups (at the very least, not in any obvious way). In fact, Mal’cev’s example involves

the quotient of the free semigroup over eight leĨers by a suitable congruence, and it is not only

ėnitely generated, but even linearly orderable (here, a semigroup (A,+) is called linearly order-

able if there exists a total order≼ onA such that x+ z ≺ y+ z and z+ x ≺ z+ y for all x, y, z ∈ A

with x ≺ y).

Part I consists of three chapters, namely Chapters 1, 2 and 3. In the ėrst chapter, based on a

paper by the author [Tr1] published in Uniform Distribution ĉeory, we generalize the Davenport

transform [V] and use it to prove that, for a (possibly non-commutative) cancellative semigroup

A = (A,+) and non-empty subsets X, Y of A such that the subsemigroup generated by Y is com-

mutative, we have

|X + Y| ≥ min(γ(Y), |X|+ |Y| − ƾ),
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where

γ(Y) := sup
yƽ∈Y×

inf
yƽ ̸=y∈Y

ord(y − yƽ)

is what we call the Cauchy-Davenport constant of Y (relative to A). ĉis generalizes the classical

Cauchy-Davenport theorem [C] [D1] [D2] to the seĨing of semigroups, and it implies, in par-

ticular, an extension of I. Chowla’s [Ch] and S. S. Pillai’s [Pi] theorems for cyclic groups, as well

as a strengthening of another generalization of the same Cauchy-Davenport theorem to the case

of commutative groups, where γ(Y) in the above formula is replaced by the inėmum of the or-

der of the non-trivial subsemigroups of the (conditional) unitization of A. In fact, a proof of this

laĨer result was ėrst given by G. Károlyi in 2005 for the special case of ėnite groups [Ka], based

on the structure theory of group extensions, by reduction to ėnite solvable groups in the light of

the Feit-ĉompson theorem. ĉen, a more “elementary” proof of the general statement (for an

arbitrary group) was communicated to Károlyi by Hamidoune during the peer-review process of

Károlyi’s paper and included in the ėnal version of the manuscript [Ka]. Hamidoune’s approach

depends on a generalization of an addition theorem by L. Shatrowsky and is ultimately built upon

the isoperimetric method.

In the second chapter, which is founded on a paper by the author [Tr2] submiĨed for publi-

cation, we further investigate the properties of the Cauchy-Davenport constant and use them to

prove the following: IfA is cancellative and X, Y ⊆ A, then

|X + Y| ≥ min(γ(X + Y), |X|+ |Y| − ƾ).

ĉis implies at once a generalization of Kemperman’s inequality for torsion-free groups [Ke] and

a strengthening of the Hamidoune-Károlyi theorem mentioned in the above. Our proof of this is
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basically a transformationproof; in particular, it is self-contained anddoesnot dependoneither the

Feit-ĉompson theorem or the isoperimetric method. In addition, we present and discuss aspects

of a conjecture which, if true, would further improvemost of the results in the chapter and provide

a uniėed picture of manymore theorems of Cauchy-Davenport type, including the ones proved in

Chapter 1.

Finally, Chapter 3 generalizes results by G. A. Freĭman, M. Herzog and coauthors on the struc-

ture theory of set addition from the context of linearly ordered groups [FHLM] to linearly ordered

semigroups. In particular, we ėnd that, if (A, ·,≼) is a linearly ordered semigroup and S is a ėnite

subset of A generating a non-abelian subsemigroup, then |Sƿ| ≥ ǀ|S| − ƿ. On the road to this

goal, we also prove a number of subsidiary results, and most notably that the commutator and the

normalizer of a ėnite subset of a linearly ordered semigroup are equal to each other. ĉe chapter is

based on a paper by the author [Tr3] submiĨed for publication.

ĉe second part of the thesis, on the other hand, deals with questions from the elementary the-

ory of numbers, with a focus on congruences, prime numbers and divisibility in the integers.

Part II is composed of two chapters, namely Chapters 4 and 5. In Chapter 4 we prove a result

related to a difficult conjecture by K. Győry and C. Smyth [GS] about the ėniteness of the sets

R±
k (a, b)of all positive integers n such that nk divides an±bn for ėxed integers a, b and kwith k ≥ ǀ,

|ab| ≥ ƿ and gcd(a, b) = ƾ: Speciėcally, we show thatR±
k (a, b) are ėnite sets if k ≥ max(|a|, |b|).

ĉe chapter relies on a paper by the author [Tr4] published in Integers.

Finally, in Chapter 5 we consider a question in the study of primes and divisibility in the ring of

integers, somehow related to Znám’s problem and the Agoh-Giuga conjecture. Speciėcally, given

an integer n ≥ ǀ, let uƾ, . . . , un be pairwise coprime integers for which ƿ ≤ uƾ < · · · < un, and

letD be a family of nonempty proper subsets of {ƾ, . . . , n} with “enough” elements and ε a map
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D → {±ƾ}. It is then natural to ask whether there exist at least one prime q such that q divides∏
i∈I ui−ε(I) for some I ∈ D, but it does not divide uƾ · · · un. In fact, we answer this in the positive

in the case where the integers ui are prime powers and some restrictions hold on ε andD. We use

the result to prove that, if εƽ ∈ {±ƾ} andA is a set of three or more primes that contains all prime

divisors of any number of the form
∏

p∈B p− εƽ for which B is a ėnite nonempty proper subset of

A, then A contains all the primes. ĉe chapter is based on a paper by the author [Tr5] (joint work

with Paolo LeoneĨi) accepted for publication in Journal de ĉéorie des Nombres de Bordeaux.
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Dédicace

ÀŁĵ ĺĵŁĽŀŀĹ. Àmes parents : pour le bien que vous me voulez. Pour le bien que je vous veux.
Parce que sans vous, je ne serais rien. À ma sœur : pour me rappeler toujours que tout est, en
principe, une question de conėance. À mes grands-mères et à mes grands-pères : à ceux qui sont
encore en vie et à ceux qui ne sont plus là. Pour m’avoir donné une plage pour écouter la mer et un
petit bois pour courir le vent.

À ŉŃŊň ķĹŊŎŅŊĹ ľ’ĵĽ ńĹŇĸŊň dans la rue dumonde. Je suis heureux de vous avoir connus. Pour
ce que vous avez simplement signiėé. Pour les sourires soudains que le passant ne comprendra
jamais. Et même pour la mélancolie que je porte dans les poches du cœur, avec les souvenirs dont
la mémoire ne se souvient plus.

À ŁĹň ĵŁĽň, et à Giovanni d’une façon particulière. S’ils ne sont pas nombreux, ils me sont en
revanche très chers sans que cela ne coûte rien.

AŊŎ ĵŇŉĽňŉĹň. Parce qu’ils me rendent le monde des hommes plus beau. Auxmusiciens : pour
la musique. Aux écrivains : pour les romans. Aux poètes : pour la joie et la tristesse de la parole.
Aux chanteurs : pour les chansons. Et aux jardiniers : pour les roses dans les jardins de la ville.

AŊŎ ńĹŇňŃłłĹň Ļ͐ł͐ŇĹŊňĹň. À ceux qui regardent les autres pour ce qu’ils sont, sans a priori.
À ceux qui sont grands sans être arrogants. À ceux qui sont extraordinaires parce que, personnes
simples, ils font des choses parfois très compliquées. CeĨe thèse n’a été possible que parce que j’ai
eu la chance d’en rencontrer beaucoup.

AŊŎ Ň͓ŋĹŊŇň. Pour être ce qu’ils sont, malgré celui qui leur a dit que les rêves sont aujourd’hui
démodés. Pour être déraisonnables, têtus, téméraires et fous. Eŉ ̓ ŁŃĽ Ł͓ŁĹ, enėn. Pour être un
peu tout cela. Sans doute.
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Cualquier destino, por largo y complicado que sea, consta en
realidad de un solo momento: el momento en que el hombre
sabe para siempre quién es.

ãJorge Luis BŃŇĻĹň, El Aleph

0
General formalities

RĹňŊŁ͐. Le but de ce bref chapitre est de rappeler les déėnitions de base et de ėxer les notations
et la terminologie générales. Nous faisons tout d’abord une courte digression sur la théorie des
ensembles, qui pour pédante qu’elle puisse sembler aux praticiens, se révèle nécessaire au vu des
développements à venir.

AĶňŉŇĵķŉ. ĉe purpose of this brief chapter is to review basic deėnitions and ėx some general ter-
minology andnotation. Wemake ėrst a short digression into set theory, whichmay soundpedantic
to practitioners, but is necessary in view of certain developments, on which we hope to work in the
future.
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0.1 PŇĹŀĽŁĽłĵŇĽĹň ĵłĸ ĻĹłĹŇĵŀ łŃŉĵŉĽŃł

We use as a foundation the Tarski-Grothendieck set theory, shortly TG. Alternatives are possible,
but this issue exceeds the scope of the thesis, and we can pass over it. We just mention that we
choose to work in TG, rather than, say, in ZFC (the classical Zermelo-Fraenkel set theory with the
axiom of choice), motivated by the fact that we will hopefully be concerned, in a sequel of this
work, with objects like the “class of all structures of a certain type”, which would make no sense in
ZFC, essentially because the laĨer does not allow for anything like the “class of all sets”. With this
inmind, we ėx once and for all an uncountableGrothendieck universeΩ, and refer to the elements
of Ω as Ω-sets, or simply sets, and to an arbitrary set in the ontology of TG as a class, a family, or a
collection.

We writeZ for the integers,N+ for the positive integers,Q for the rationals,R for the real num-
bers, andR+ for the positive real numbers. ĉen, we letN := {ƽ} ∪ N+ andR+

ƽ := {ƽ} ∪ R+.
Each of these sets is regarded as a subset of R and endowed with its usual addition +, multipli-
cation ·, absolute value | · |∞ and order ≤ (as customary, we write ≥ for the dual of ≤, and <

and >, respectively, for the strict orders induced by ≤ and ≥). Moreover, we denote by P the
set {ƿ, ǀ, . . .} of all (positive rational) primes, and for m ∈ N+ we write Z/mZ for the integers
modulo m, equipped with the usual addition+m and multiplication ·m (we omit the subscript ‘m’
if there is no danger of confusion).

We extend the operations and the order ofR toR ∪ {∞}, by adjoining a “point at inėnity”, viz
an element∞ /∈ R (in fact, we may assume∞ := R), and by taking a +∞ := ∞ + a := ∞
and a ≤ ∞ for a ∈ R∪{∞}, as well as a ·∞ := ∞· a := ∞ if a ̸= ƽ and ƽ ·∞ := ∞· ƽ := ƽ.
Accordingly, we set ƾ

ƽ := ∞ and ƽ
ƽ := ƽ · ƾ

ƽ = ƽ · ∞ = ƽ.
We use capital blackboard leĨers such as A and B, with or without subscripts or superscripts,

to denote structured classes (or simply structures), by which we mean here any tuple consisting of
one class, referred to as the carrier of the structure, and a ėnite number of operations or relations
of ėnite ariety on the same class such as (A,+), (B,⊥), or (C,+, ·, ƽ,≼). Accordingly, if A is a
structure andA its carrier, wewrite a ∈ A tomeanon the one hand that a is an element ofA, and on
the other to emphasize that, in the context of the discourse, any statement involving the element
a should be interpreted, in the presence of ambiguity, with respect to the structure of A (this is
typically the case where, by an abuse of notation, operations or relations of different structures are
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denotedby the same symbol). ĉesameprinciple applies to subclasses, so thatwemayoccasionally
write S ⊆ A in place of S ⊆ A. Since every class can be viewed as a “vacuous structure”, the above
is perfectly consistent with the fact that we are using blackboard leĨers like N, Z, etc. to refer to
some special sets of numbers.

We write |X| for the counting measure of a set X (this is just the number of elements of X when
X is ėnite), by interpreting | · | as a map from Ω toN ∪ {∞}.

At several points throughout the thesis, wewill usewithout explicitmention the elementary fact
that ifA ⊆ B ⊆ R+

ƽ ∪{∞} then inf(B) ≤ inf(A) and sup(A) ≤ sup(B), with the convention that
the supremum and the inėmumof an empty subset ofR+

ƽ ∪{∞} are, respectively, ƽ and∞. Note
that, here and later, inėma and suprema of subsets ofR+

ƽ ∪ {∞}, as well as minima and maxima
(when deėned) are always taken with respect to (the appropriate restriction of) the order≤.

Given a, b ∈ Z with aƿ + bƿ ̸= ƽ we use gcd(a, b) for the greatest common divisor of a and b.
Also, for c ∈ Z \ {ƽ} and p ∈ P, we write ep(c) for the p-adic valuation of c, namely the greatest
exponent k ∈ N such that pk | c, and we extend this toZ by ep(ƽ) := ∞. Finally, for m ∈ N+ and
x ∈ Z/mZwe let gcd(m, x) := gcd(m, x̄), where x̄ is the smallest non-negative integer in x.

Unless otherwise speciėed, we refer to N. Bourbaki, ĉéorie des ensembles, Éléments de math-
ématique I, Springer-Verlag, Berlin, 2006 (reprint ed.) and N. Bourbaki, Algèbre, Chapitres 1 à 3,
Éléments de mathématique II, Springer-Verlag, Berlin, 2006 (2nd revised ed.), respectively, for
standard notations and deėnitions from set theory and abstract algebra.

In all what follows, the lowercase Latin leĨers h and k shall denote integers, while i, j, ℓ, m and n
stand for positive integers, unless a statement to the contrary is made.
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Il mare è senza strade, il mare è senza spiegazioni.
Se lo guardi non te ne accorgi: di quanto rumore faccia.

ãAlessandro BĵŇĽķķŃ,Oceano Mare

1
Cauchy-Davenport type theorems, I

RĹňŊŁ͐. On généralise la transformée de Davenport et on l’utilise pour prouver que, si A =

(A,+) est un semi-groupe cancellatif (éventuellement non-commutatif) et X, Y sont des sous-
ensembles non vides de A tels que le sous-semi-groupe engendré par Y est commutatif, on a |X +

Y| ≥ min(γ(Y), |X| + |Y| − ƾ), où γ(Y), qu’on appelle la constante de Cauchy-Davenport de Y
relative au semi-groupeA, est déėnie par

γ(Y) := sup
yƽ∈A×

inf
yƽ ̸=y∈Y

ord(y − yƽ).

Cela généralise le théorème classique de Cauchy-Davenport au cadre plus large des semi-groupes,
avec commecasparticuliers uneextensiondes théorèmesde I.Chowla et S. S.Pillai pour les groupes
cycliques et une version plus forte d’une autre généralisation du théorème de Cauchy-Davenport
pour les groupes commutatifs, où dans la formule ci-dessus γ(Y) est remplacé par l’inėmum de |S|
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sur les sous-semigroupes S non triviaux de l’unitarisation de A. Ce dernier résultat a été prouvé
par G. Károlyi dans le cas des groupes ėnis, grâce au théorème de Feit-ĉompson ; puis par Hami-
doune pour un groupe arbitraire grâce à sa méthode isopérimétrique. Le chapitre est basé sur un
papier par l’auteur [Tr1] publié dans Uniform Distribution ĉeory.

AĶňŉŇĵķŉ. We generalize the Davenport transform and use it to prove that, for a (possibly non-
commutative) cancellative semigroupA = (A,+) and non-empty subsets X, Y of A such that the
subsemigroup generated by Y is commutative, we have |X+Y| ≥ min(γ(Y), |X|+ |Y|−ƾ), where

γ(Y) := sup
yƽ∈A×

inf
yƽ ̸=y∈Y

ord(y − yƽ).

ĉis carries over the Cauchy-Davenport theorem to the broader seĨing of semigroups, and it im-
plies, in particular, an extension of I. Chowla’s and S. S. Pillai’s theorems for cyclic groups and
a strengthening of another generalization of the same Cauchy-Davenport theorem to commuta-
tive groups, where γ(Y) in the above is replaced by the inėmum of |S| as S ranges over the non-
trivial subsemigroups of the (conditional) unitization of A. ĉis laĨer result was ėrst proved by
G. Károlyi in 2005 for the special case of ėnite groups [Ka], by reduction to simple groups by the
Feit-ĉompson theorem, and later by Y. O. Hamidoune for an arbitrary group, building upon the
isoperimetric method. ĉe chapter is based on a paper by the author [Tr1] published in Uniform
Distribution ĉeory.

1.1 IłŉŇŃĸŊķŉĽŃł

Semigroups are a natural framework for developing large parts of theories traditionally presented
in less general contexts. Not only this can suggest new directions of research and shed light on
questions primarily focused on groups, but it also makes methods and results otherwise restricted
to “richer seĨings” applicable, at least in principle, to larger classes of problems.

Here and later, a semigroup is a structureA = (A,+) consisting of a (possibly empty) setA and
an associative binary operation+ on A. Given subsets X and Y of A, we deėne the sumset, relative
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toA, of the pair (X, Y) as the set

X + Y := {x + y : x ∈ X, y ∈ Y},

which is wriĨen as x + Y if X = {x} (respectively, as X + y if Y = {y}). Furthermore, we extend
the notion of difference set by

X − Y := {z ∈ A : (z + Y) ∩ X ̸= ∅} (1.1)

and
−X + Y := {z ∈ A : (X + z) ∩ Y ̸= ∅}. (1.2)

Expressions involving one or more summands of the form Zƾ + · · · + Zn or
∑n

i=ƾ Zi, as well as
expressions of the form−x + Y and X − y for x, y ∈ A are deėned in a similar way (we may omit
the details); in particular, we use nZ for Zƾ + · · ·+ Zn if the Zi are all equal to the same set Z, and
we possibly refer to nZ as the n-fold sum of Z.

We say that A is unital, or a monoid, if there exists ƽ ∈ A such that z + ƽ = ƽ + z = z for
all z; when this is the case, ƽ is unique and called the identity of A. ĉen, we let A× be the set of
units ofA, so thatA× = ∅ ifA is not a monoid. In this respect, we recall that, ifA is unital with
identity ƽ, a unit ofA is an element z for which there exists a provably unique element z̃ ∈ A such
that z+ z̃ = z̃+ z = ƽ; this z̃ is then called the inverse of z inA and denoted by (−z)A, or simply
by−z if no ambiguity can arise.

Given Z ⊆ A, we write Z× in place of Z ∩ A× (if there is no likelihood of confusion) and ⟨Z⟩A
for the smallest subsemigroup of A containing Z. Note that A is a group if and only if A× = A.
ĉen, if Z = {z}, we use ⟨z⟩A instead of ⟨{z}⟩A and ordA(z) for the order of z (inA), that is we
let ordA(z) := |⟨z⟩A|, so generalizing the notion of order for the elements of a group. Here and
later, the subscript ‘A’ may be omiĨed from the notation ifA is clear from the context. Finally, an
element z ∈ A is called cancellable (inA) if x + z = y + z or z + x = z + y for x, y ∈ A implies
x = y (see [B1, Section I.2.2]), andA is said cancellative if any element of A is cancellable.

On another hand, we deėne the conditional unitization ofA, herein denoted byA(ƽ) and simply
referred to as the unitization ofA, as follows: IfA is not unital,A(ƽ) is the pair (A∪{A},+), where
+ is, by an abuse of notation, the unique extension of+ to a binary operation onA∪{A} for which
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A serves as an identity (note that A /∈ A, so loosely speaking we are just adjoining a distinguished
element to A and extending the structure ofA in such a way that the outcome is a monoid whose
identity is the adjoined element); otherwise A(ƽ) := A (cf. [Ho, p. 2]). ĉen, for a subset S
of A we write pA(S) for infz∈S\{ƽ} ordA(ƽ)(z), namely the inėmum of the order of the non-trivial
subsemigroups ofA(ƽ), which is simply denoted by p(S) if there is no ambiguity.

Remark 1.1. In the case of a multiplicatively wriĨen semigroup B = (B, ·), the “sumset” of two
subsets X and Y of B, relative to B, is more properly called the product set of the pair (X, Y) and
possibly denoted by XY, while the analogues of the difference sets deėned by (1.1) and (1.2) are
wriĨen as XY−ƾ and X−ƾY, respectively. Accordingly, given Z ⊆ B we use Zn for the product set
of n copies of Z and call it the n-fold product of Z. Further, we write the unitization of B as B(ƾ)

rather than asB(ƽ). However, note that, if we are talking of a semigroup and it is not clear from the
context whether this is wriĨen either additively or not, the term “sumset” will be preferred. For the
rest, everything works as expected.

Sumsets in (mostly commutative) groups have been intensively investigated for several years
(see [Ru] for a recent survey), and interesting results have been also obtained in the case of com-
mutative cancellative monoids (see [G] and references therein, where these structures are simply
called “monoids”). ĉe chapter aims to extend aspects of the theory to the more general seĨing of
possibly non-commutative semigroups.

A natural motivation in this sense comes from considering that the non-zero elements of a non-
trivial unital ring, either commutative or not, are not, in general, cancellative (unless the ring is a
domain), and hence not even closed under multiplication. Another motivation relies on the fact
that, even whenA = (A,+) is a group, the non-empty subsets of A, endowed with the binary op-
eration taking a pair (X, Y) to the sumsetX+Y, is, in general, nothingmore than a non-cancellative
monoid (e.g., whenA is (Z,+), the corresponding structure on the powerset of A has been stud-
ied by J. Cilleruello, Y. O. Hamidoune and O. Serra [CHS]; see the discussion at the end of the
section for details on this).

Historically, oneof theėrst signiėcant achievements in theėeld is probably theCauchy-Davenport
theorem, originally establishedbyA.-L.Cauchy [C] in1813, and independently rediscoveredmore
than a century later by H. Davenport [D1] [D2]:
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ĉeorem 1.2 (Cauchy-Davenport theorem). Let (A,+) be a group of prime order p and X, Y non-
empty subsets of A. ĉen, |X + Y| ≥ min(p, |X|+ |Y| − ƾ).

ĉe result has been the subject of numerous papers, and received many different proofs, each
favoring alternative points of view and eventually leading to progress on a number of related ques-
tions. In fact, themain contribution here is an extension ofĉeorem1.2 to cancellative semigroups
(this is stated in Section 1.2).

ĉe Cauchy-Davenport theorem applies especially to the additive group of the integers mod-
ulo a prime. Extensions to composite moduli have been given by several authors, and notably by
I. Chowla [Ch] and S. S. Pillai [Pi]. ĉese results, reported below for the sake of exposition and
used byChowla and Pillai in relation toWaring’s problem, are further strengthened, in Section 1.2,
by Corollary 1.17, which can be viewed as a common generalization of both of them, and whose
proof is sensibly shorter than each of the proofs appearing in [Ch] and [Pi] (not tomention that it
comes as a by-product of a deeper result).

ĉeorem 1.3 (Chowla’s theorem). If X, Y are non-empty subsets of Z/mZ such that ƽ ∈ Y and
gcd(m, y) = ƾ for each y ∈ Y \ {ƽ}, then

|X + Y| ≥ min(m, |X|+ |Y| − ƾ).

ĉeorem1.4 (Pillai’s theorem). Pick non-empty subsets X and Y ofZ/mZ. Let δ be the maximum of
gcd(m, y − yƽ) for distinct y, yƽ ∈ Y if |Y| ≥ ƿ, and set δ := ƾ otherwise. ĉen,

|X + Y| ≥ min(δ−ƾm, |X|+ |Y| − ƾ).

Apartial account of further results in the same spirit can be found in [N, Section 2.3], alongwith
an entire chapter dedicated to Kneser’s theorem [N, Chapter 4], which, among the other things,
impliesĉeorem 1.3 (and then alsoĉeorem 1.2); see [N, Section 4.6, Exercises 5 and 6]. Gener-
alizations of the Cauchy-Davenport theorem of a somewhat different Ěavor have been furnished,
still in recent years, by several authors.

Speciėcally, assume for the rest of the chapter that A = (A,+) is a ėxed, arbitrary semigroup
(unless differently speciėed), and let ƽ be the identity of the unitization,A(ƽ), ofA. ĉen we have:
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ĉeorem 1.5 (folklore). IfA is a commutative group and X, Y are non-empty subsets of A, then

|X + Y| ≥ min(p(A), |X|+ |Y| − ƾ).

ĉeorem 1.5 is another (straightforward) consequence of Kneser’s theorem. While it applies to
both ėnite and inėnite commutative groups, an analogous result holds for all groups:

ĉeorem 1.6 (Hamidoune-Károlyi theorem). If A is a group and X, Y are non-empty subsets of A,
then |X + Y| ≥ min(p(A), |X|+ |Y| − ƾ).

ĉis was ėrst proved byG. Károlyi in the case of ėnite groups, relying on the structure theory of
group extensions, by reduction to ėnite solvable groups in the light of the Feit-ĉompson theorem,
and then by Hamidoune in the general case, based on the isoperimetric method. In fact, we will
give an elementary proof of theHamidoune-Károlyi theorem in the next chapter, which the reader
is referred to for more details on the history of the result.

A further result from the literature that is signiėcant in relation to the subject maĨer is due to
J. H. B. Kemperman [Ke], and reads as follows:

ĉeorem 1.7 (Kemperman’s inequality). Let A be a group, and let X, Y be non-empty subsets of A.
Suppose that every non-zero element of A has order≥ |X|+ |Y| − ƾ. ĉen, |X+ Y| ≥ |X|+ |Y| − ƾ.

Remarkably, [Ke] is focused on cancellative semigroups (there simply called semigroups), and
it is precisely in this framework that Kemperman establishes a series of results, related to the num-
ber of different representations of an element in a sumset, that eventually lead to ĉeorem 1.7, a
weakened version of which will be obtained in Section 1.5 as a corollary (namely, Corollary 1.15)
of our main theorem.

As for the rest, Cilleruello,Hamidoune andSerra, see [CHS,ĉeorem3], haveproved aCauchy-
Davenport theorem for acyclic monoids (these are termed acyclic semigroups in [CHS], but they
are, in fact, monoids in our terminology), and it would be interesting to ėnd a common paĨern
among their result and the ones in the present chapter. Unluckily, we do not havemuch on this for
themoment (inparticular, note that acyclic semigroups in [CHS] arenot cancellative semigroups),
but will come back to the question with some thoughts in the next chapter.
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OŇĻĵłĽŐĵŉĽŃł.

In Section 1.2, we deėne the Cauchy-Davenport constant and state our main results. In Section
1.3, we establish a few basic lemmas. Section 1.4 is devoted to generalized Davenport transforms
and their fundamental properties. We demonstrate the central theorem of the chapter (ĉeorem
1.9) in Section 1.5 and give a couple of applications in Section 1.6.

1.2 TļĹ ňŉĵŉĹŁĹłŉ Ńĺ ŉļĹ ŁĵĽł ŇĹňŊŀŉň

Keeping all of the above in mind, we can now proceed to the heart of the chapter.

Deėnition 1.8. For an arbitrary subset X of A, we let

γA(X) := sup
xƽ∈X×

inf
xƽ ̸=x∈X

ord(x − xƽ)

ĉen, given Xƾ, . . . ,Xn ⊆ A we deėne

γA(Xƾ, . . . ,Xn) := max
ƾ≤i≤n

γA(Xi)

and call γA(Xƾ, . . . ,Xn) the Cauchy-Davenport constant of (Xƾ, . . . ,Xn) relative toA (again, the
subscript ‘A’ may be omiĨed from the notation if there is no likelihood of confusion).

Any pair of subsets of A has a well-deėned Cauchy-Davenport constant (relative toA). In par-
ticular, γ(Z) is zero for Z ⊆ A if A× = ∅. However, this is not the case, for instance, when Z ̸= ∅
andA is a group, which serves as a “moral base” for the following non-trivial bound:

ĉeorem 1.9. Suppose A is cancellative and let X, Y be non-empty subsets of A such that ⟨Y⟩ is com-
mutative. ĉen, |X + Y| ≥ min(γ(Y), |X|+ |Y| − ƾ).

ĉeorem 1.9 represents the central contribution of the chapter. Not only it extends the Cauchy-
Davenport theorem to the broader seĨing of semigroups (see Section 1.6), but it also provides a
strengthening and a generalization ofĉeorem 1.5, as is shown below. Any pair of subsets ofA has,
in fact, a well-deėned Cauchy-Davenport constant (relative toA), and it is interesting to compare
it with other “structural parameters”, as in the following:
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Lemma 1.10. Let X, Y be subsets of A and assume thatA is cancellative and X× + Y× is non-empty.
ĉen, γ(X, Y) ≥ min(γ(X), γ(Y)) ≥ γ(X + Y) ≥ p(A).

ĉeproof ofLemma1.10 is deferred to the endof Section2.3. Note that the result applies, on the
level of groups, to any pair of non-empty subsets. On the other hand, the following basic example
suggests that the lemma is quite pessimistic, insofar as there are some relevant cases where each of
the ‘≥’ in its statement can actually be replaced with a “much greater than”:

Example 1.11. Let m ≥ ƿ and pick prime numbers p and q with m < p < q. ĉen, set

X := {mk mod n : k = ƽ, . . . , p − ƾ} and Y := {mk mod n : k = ƾ, . . . , p},

where n := m · p · q. We have |X + Y| = ƿp, γ(X) = γ(Y) = p · q and γ(X + Y) = q, while
p(Z/nZ) is the smallest prime divisor of m, with the result that

p(Z/nZ) < γ(X + Y) < min(γ(X), γ(Y)) = γ(X, Y),

and indeed p(Z/nZ) is “much” smaller than γ(X + Y) if q is “much” larger than m, and similarly
γ(X + Y) is “much” smaller than γ(X, Y) if p is “much” larger than ƿ.

ĉeorem 1.9 can be “symmetrized” and further strengthened when each summand generates a
commutative subsemigroup. ĉis leads to the following corollaries, whose proofs are straightfor-
ward, by duality (see Proposition 2.8 in Section 2.3), in the light of Deėnition 1.8:

Corollary 1.12. AssumeA is cancellative and let X, Y be non-empty subsets of A such that ⟨X⟩ is com-
mutative. ĉen, |X + Y| ≥ min(γ(X), |X|+ |Y| − ƾ).

Corollary 1.13. IfA is cancellative and X, Y are non-empty subsets of A such that both of ⟨X⟩ and ⟨Y⟩
are commutative, then |X + Y| ≥ γ(X, Y).

Moreover, the result specializes to groups as follows:

Corollary 1.14. IfA is a group andX, Y are non-empty subsets of A such that ⟨Y⟩ is commutative, then
|X + Y| ≥ min(γ̃(Y), |X|+ |Y| − ƾ), where now

γ̃(Y) = sup
yƽ∈Y

inf
yƽ ̸=y∈Y

ord(y − yƽ),
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and indeed γ̃(Y) = maxyƽ∈Y infyƽ ̸=y∈Y ord(y − yƽ) if Y is ėnite.

Proof. Immediate by ĉeorem 1.9, for on the one handA being a group implies Y = Y×, and on
the other, a supremum over a non-empty ėnite set is a maximum.

ĉe next corollary is now a partial generalization ofĉeorem 1.7 to cancellative semigroups: its
proof is straightforward by Corollary 1.13 and Lemma 1.10. Here, we say thatA is torsion-free if
p(A) is inėnite (in fact, this is an abstraction of the classical deėnition for groups).

Corollary 1.15. IfA is cancellative, and if X, Y are non-empty subsets ofA such that every element of
A \ {ƽ} has order≥ |X|+ |Y| − ƾ (this is especially the case whenA is torsion-ěee) and either of ⟨X⟩
and ⟨Y⟩ is abelian, then |X + Y| ≥ |X|+ |Y| − ƾ.

ĉeorem 1.9 is proved in Section 1.5. ĉe argument is inspired by the transformation proof
originally used for ĉeorem 1.2 by Davenport in [D1]. ĉis leads us to the deėnition of what
we call a generalized Davenport transform. ĉe author is not aware of any earlier use of the same
technique in the literature, all themore in relation to semigroups. With few exceptions, remarkably
including [HR] and A. G. Vosper’s original proof of his famous theorem on critical pairs [V], even
the “classical” Davenport transform has not been greatly considered by practitioners in the area,
especially in comparison with similar “technology” such as the Dyson transform [N, p. 42].

Remark 1.16. A couple of things are worth mentioning before proceeding. While every com-
mutative cancellative semigroup embeds as a subsemigroup into a group (as it follows from the
standard construction of the group of fractions of a commutativemonoid; see [B1, Chapter I, Sec-
tion 2.4]), nothing similar is true in the non-commutative case, not even if the ambient is ėnitely
generated. ĉis is related to a well-known question in the theory of semigroups, ėrst answered by
A. I. Mal’cev in [Ma], and is of fundamental importance for our work here, in that it shows that the
study of sumsets in cancellative semigroups cannot be systematically reduced, in the absence of
commutativity, to the case of groups (at the very least, not in any obvious way). In fact, Mal’cev’s
example involves the quotient of the free semigroup over eight leĨers by a suitable congruence, and
it is not only ėnitely generated, but even linearly orderable (see Section 3.2 for the terminology and
cf. Remark 3.6).
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On the other hand, it is true that every cancellative semigroup can be embedded into a cancella-
tive monoid, so that, for the speciėc purposes of the chapter, we could have assumed almost every-
where that the “ambient” is a monoid (rather than a semigroup), but we did differently because,
ėrst, the assumption is not really necessary, and second, it seems more appropriate to develop as
much as possible of thematerial with no regard to the presence of an identity (e.g., since this is beĨer
suited for the kind of generalizations outlined above). We will see, however, that certain parts take
a simpler form when an identity is made available somehow, as in the case of various lemmas in
Section 1.3 or in the proof of ĉeorem 1.9.

Weprovide twoapplicationsofĉeorem1.9 inSection1.6 (hopefully, otherswill be investigated
in future work): ĉe ėrst is a generalization of ĉeorem 1.3, the second is an improvement on
a previous result by Ø. J. Rødseth [R, Section 6] based on Hall’s “marriage theorem”. As for the
former (which is stated below), we will use the following speciėc notation: Given a non-empty
Z ⊆ Z/mZ, we let

δZ := min
zƽ∈Z

max
zƽ ̸=z∈Z

gcd(m, z − zƽ) (1.3)

if |Z| ≥ ƿ, and δZ := ƾ otherwise. With this in hand, we have:

Corollary 1.17. Let X and Y be non-empty subsets ofZ/mZ and deėne δ := min(δX, δY). ĉen,

|X + Y| ≥ min(δ−ƾm, |X|+ |Y| − ƾ).

In particular, |X + Y| ≥ min(m, |X|+ |Y| − ƾ) if there exists yƽ ∈ Y such that gcd(m, y − yƽ) = ƾ
for each y ∈ Y \ {yƽ} (or dually with X in place of Y).

In fact, Corollary 1.17 contains Chowla’s theorem (ĉeorem 1.3) as a special case: With the
same notation as above, it is enough to assume that at least one unit of (Z/mZ, ·) belongs to Y and
gcd(m, y) = ƾ for each non-zero y ∈ Y (or dually with X in place of Y). Also, it is clear from (1.3)
that the result is a strengthening of Pillai’s theorem (ĉeorem 1.4).

Many questions arise. Most notably: Is it possible to further extend Corollary 1.13 in such a
way to get rid of the assumption that summands generate commutative subsemigroups? Partial
answers in this sensewill be provided in the next chapter, leading towhatwe refer to as theCauchy-
Davenport conjecture (namely, Conjecture 2.1).
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1.3 PŇĹŀĽŁĽłĵŇĽĹň

ĉis short section collects basic results used later to introduce the generalized Davenport trans-
forms and prove ĉeorem 1.9. Some proofs are direct and standard (and thus omiĨed without
further explanation), but we have no reference to anything similar in the context of semigroups, so
we include them here for completeness.

Proposition1.18. Pick subsetsXƾ, Yƾ, . . . ,Xn, Yn ofA such thatXi ⊆ Yi for each i. ĉen,
∑n

i=ƾ Xi ⊆∑n
i=ƾ Yi and

∣∣∑n
i=ƾ Xi

∣∣ ≤ ∣∣∑n
i=ƾ Yi

∣∣.
Proposition 1.19. Assume that A is cancellative, let n ≥ ƿ, and pick non-empty Xƾ, . . . ,Xn ⊆ A.
ĉen,

∣∣∑n
i=ƿ Xi

∣∣ ≤ ∣∣∑n
i=ƾ Xi

∣∣ and ∣∣∑n−ƾ
i=ƾ Xi

∣∣ ≤ ∣∣∑n
i=ƾ Xi

∣∣.
In spite of being trivial, the next estimate is oěen useful (cf. [TV, Lemma 2.1, p. 54]).

Proposition 1.20. Given Xƾ, . . . ,Xn ⊆ A, it holds
∣∣∑n

i=ƾ Xi
∣∣ ≤∏n

i=ƾ |Xi|.

Let X, Y ⊆ A. No maĨer whether or notA is cancellative, nothing similar to Proposition 1.20
applies, in general, to the difference setX−Y, which can be inėnite even if both ofX and Y are not.
On another hand, it follows from the same proposition that, in the presence of cancellativity, the
cardinality of X+ Y is preserved under translation, namely |z+ X+ Y| = |X+ Y+ z| = |X+ Y|
for every z ∈ A.

ĉis is a point in common with the case of groups, but a signiėcant difference is that, in the
context of semigroups (even when unital), the above invariance property cannot be used, at least
in general, to “normalize” either ofX and Y in such a way as to contain some distinguished element
of A. However, we will see in a while that things continue to work properly when A is a monoid
and sets are shiěed by units.

Lemma 1.21. Let X and Y be subsets of A. ĉe following are equivalent:

(i) X + ƿY ⊆ X + Y.

(ii) X + nY ⊆ X + Y for all n.

(iii) X + ⟨Y⟩ = X + Y.
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Proof. Points (ii) and (iii) are clearly equivalent, asX+ ⟨Y⟩ =
∪∞

n=ƾ(X+ nY), and (i) is obviously
implied by (ii). ĉus, we are leě to prove that (ii) follows from (i), which is immediate (by induc-
tion) using that, if X + nY ⊆ X + Y for some n, then we have X + (n + ƾ)Y = (X + nY) + Y ⊆
(X + Y) + Y = X + ƿY ⊆ X + Y.

ĉe above result is as elementary as central in the plan of the chapter, as the applicability of the
generalized Davenport transform (introduced in Section 1.5) to the proof of ĉeorem 1.9 depend
on it in a critical way. On another hand, the following lemma shows that, in reference to ĉeorem
1.9, there is no loss of generality in assuming that the ambient semigroup is unital, for any semi-
group embeds as a subsemigroup into its unitization (recall Remark 1.16).

Lemma1.22. LetB = (B, ⋆) be a semigroup, ϕ a semigroupmonomorphismA → B, i.e. an injective
function ěom A to B such that ϕ(zƾ + zƿ) = ϕ(zƾ) ⋆ ϕ(zƿ) for all zƾ, zƿ ∈ A, and Xƾ, . . . ,Xn ⊆ A.
ĉen, |Xƾ + · · ·+ Xn| = |ϕ(Xƾ) ⋆ · · · ⋆ ϕ(Xn)|.

We close the section with a few properties of units. Here and later, given X ⊆ A we use CA(X)
for the centralizer of X inA, namely the set of all z ∈ A such that z + x = x + z for every x ∈ X.

Lemma 1.23. LetA be a monoid, X a subset of A, and z a unit ofA with inverse z̃. ĉen:

(i) X − z = X + z̃ and−z + X = z̃ + X, but also |−z + X| = |X − z| = |X|.

(ii) If z ∈ CA(X) then z̃ ∈ CA(X); in addition to this, ⟨X − z⟩ and ⟨−z + X⟩ are commutative if
⟨X⟩ is commutative.

Proof. (i) By duality, it suffices to prove that X − z = X + z̃ and |X − z| = |X|. As for the ėrst
identity, it holds w ∈ X − z if and only if there exists x ∈ X such that w + z = x, which in turn
is equivalent to x + z̃ = (w + z) + z̃ = w, namely w ∈ X + z̃. In order to conclude, it is then
sufficient to observe that the function A → A : ξ 7→ ξ + z̃ is a bijection.

(ii) Pick z ∈ CA(X) and x ∈ X. It is clear that x + z̃ = z̃ + x if and only if x = (x + z̃) + z =
z̃+x+z, and this is certainly veriėed as our standing assumptions imply z̃+x+z = z̃+z+x = x.
It follows that z̃ ∈ CA(X).

Suppose now that ⟨X⟩ is a commutative semigroup and let v,w ∈ ⟨X − z⟩. By point (i) above,
there exist xƾ, . . . , xℓ, yƾ, . . . , ym ∈ X such that v =

∑ℓ
i=ƾ(xi + z̃) and w =

∑m
i=ƾ(yi + z̃), thus
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v + w = w + v by induction on ℓ+ m and the observation that for all uƾ, uƿ ∈ X it holds

(uƾ + z̃) + (uƿ + z̃) = uƾ + uƿ + ƿz̃ = uƿ + uƾ + ƿz̃ = (uƿ + z̃) + (uƾ + z̃),

where we use that z̃ ∈ CA(X), as proved above, and ⟨X⟩ is commutative. Hence, ⟨X − z⟩ is com-
mutative too, which completes the proof by duality.

Remark 1.24. Considering that units are cancellable elements, point (i) in Lemma 1.23 can be
(partially) generalized as follows: IfX ⊆ A and z ∈ A is cancellable, then |z+X| = |X+ z| = |X|
(this is straightforward, because both of the functionsA → A : x 7→ x+z andA → A : x 7→ z+x
are bijective).

Remark 1.25. ĉere is a subtleness in Deėnition 1.8 and Lemma 1.23 that we have so far (inten-
tionally) overlooked, but should be remarked. For, suppose thatA is a monoid and pick x, y ∈ A.
In principle, x−y and−y+x are not elements ofA: In fact, they are difference sets, namely subsets
ofA, and no other interpretation is possible a priori. However, if y is a unit ofA and ỹ is the inverse
of y, then x− y = {x+ ỹ} and−y+ x = {ỹ+ x} by point (i) of Lemma 1.23, and we are allowed
to identify x − y with x + ỹ and−y + x with ỹ + x, which is useful in many ways.

1.4 TļĹDĵŋĹłńŃŇŉ ŉŇĵłňĺŃŇŁ ŇĹŋĽňĽŉĹĸ

As mentioned in Section 1.2, Davenport’s proof [D1, Statement A] of ĉeorem 1.2 is a transfor-
mation proof. ForA a commutative group, the idea is to map a pair (X, Y) of non-empty subsets of
A to a new pair (X, YD), which is smaller than (X, Y) in an appropriate sense, and speciėcally such
that

|YD| < |Y|, |X + YD|+ |Y| ≤ |X + Y|+ |YD|.

We then refer to (X, YD) as a Davenport transform of (X, Y); see, for instance, [HR]. For this to be
possible, the classical approach requires that X + ƿY ̸⊆ X + Y and ƽ ∈ Y, so that |Y| ≥ ƿ.

As expected, many difficulties arise when aĨempting to adapt the same approach to semigroups,
all the more if these are non-commutative. Even the possibility of embedding a semigroup into a
monoid does not resolve anything, since the fundamental problem is that, contrary to the case of
groups, cardinality is not preserved “under subtraction”. Namely, ifA is an arbitrary monoid with
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identity ƽ (as intended for the remainder of the section), X is a subset of A, and z ∈ A, then |X|,
|X−z| and |−z+X| can be greatly different from each other, even in the case thatA is cancellative;
cf. point (i) of Lemma 1.23. ĉus, unlessA is a group or, more generally, embeds as a submonoid
into a group, we are not allowed to assume, for instance, that ƽ ∈ Y by picking an arbitrary element
yƽ ∈ Y and replacing (X, Y)with the “shiěed” pair (X+ yƽ,−yƽ + Y); cf. the comments following
Proposition 1.20.

In fact, the primary goal of this section is to show that, in spite of these issues, Davenport’s orig-
inal ideas can be extended and used for a proof of ĉeorem 1.9.

To start with, letX andY be subsets ofA such thatmX+ƿY ̸⊆ X+Y for some (positive integer)
m. For the sake of brevity, deėne

Z := (mX + ƿY) \ (X + Y).

Our assumptions give Z ̸= ∅. ĉus ėx z ∈ Z, and take xz ∈ (m − ƾ)X and yz ∈ Y for which
z ∈ xz + X + Y + yz, where ƽX := {ƽ}. Finally, set

Ỹz := {y ∈ Y : z ∈ xz + X + Y + y} and Yz := Y \ Ỹz. (1.4)

We refer to (X, Yz) as a generalizedDavenport transform of (X, Y) (relative to z), and based on this
notation we have:

Proposition 1.26. If Yz ̸= ∅, then the triple (X, Yz, Ỹz) satisėes the following:

(i) Yz and Ỹz are non-empty disjoint proper subsets of Y, and Ỹz = Y \ Yz.

(ii) IfA is cancellative, then (xz + X + Yz) ∪ (z − Ỹz) ⊆ xz + X + Y.

(iii) If ⟨Y⟩ is commutative, then (xz + X + Yz) ∩ (z − Ỹz) = ∅.

(iv) IfA is cancellative, then |z − Ỹz| ≥ |Ỹz|.

(v) IfA is cancellative and ⟨Y⟩ is commutative, then |X + Y|+ |Yz| ≥ |X + Yz|+ |Y|.

Proof. (i) Yz is non-empty by hypothesis, while Ỹz is non-empty since yz ∈ Ỹz by construction.
Also, (1.4) gives Yz, Ỹz ⊆ Y and Yz ∩ Ỹz = ∅, so that Y \ Yz = Y \ (Y \ Ỹz) = Ỹz and Yz, Ỹz ( Y.
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(ii) Since Yz ⊆ Y by point (i) above, xz + X + Yz ⊆ xz + X + Y by Proposition 1.19. On the
other hand, ifw ∈ z− Ỹz then there exists y ∈ Ỹz such that z = w+ y. But y ∈ Ỹz implies by (1.4)
that z = w̃+ y for some w̃ ∈ xz+X+Y, whencew = w̃ by cancellativity, namelyw ∈ xz+X+Y.

(iii) Assume the contrary and letw ∈ (xz+X+Yz)∩ (z− Ỹz). ĉere then exist x ∈ X, yƾ ∈ Yz

and yƿ ∈ Ỹz such that w = xz + x + yƾ and z = w + yƿ. Using that ⟨Y⟩ is commutative, it follows
that z = xz + x + yƾ + yƿ = xz + x + yƿ + yƾ, which in turn implies yƾ ∈ Ỹz by (1.4), since
Yz, Ỹz ⊆ Y by point (i). ĉis is, however, absurd as Yz ∩ Ỹz = ∅, by the same point (i).

(iv) We have from (1.4) that for each y ∈ Ỹz there exists w ∈ xz + X + Y such that z = w + y,
and hencew ∈ z− Ỹz. On the other hand, sinceA is cancellative, we cannot havew+ yƾ = w+ yƿ
for some w ∈ A and distinct yƾ, yƿ ∈ Ỹz. ĉus, Ỹz embeds as a set into z − Ỹz, with the result that
|z − Ỹz| ≥ |Ỹz|.

(v) SinceA is cancellative and X ̸= ∅ (otherwise Z = ∅), we have |X + Y| ≥ max(|X|, |Y|) by
Propositions 2.8 and 1.19. ĉis implies the claim if Y is inėnite, since then either |X + Y| > |Y|,
and hence

|X + Y|+ |Yz| = |X| = |X + Yz|+ |Y|,

or |X + Y| = |Y|, and accordingly

|X + Yz|+ |Yz| = |Y| = |X + Yz|+ |Y|.

So we are leě with the case when Y is ėnite, for which the inclusion-exclusion principle, points
(ii)-(iv) and Proposition 1.19 give, by symmetry, that

|X + Y| = |xz + X + Y| ≥ |xz + X + Yz|+ |z − Ỹz| =

= |X + Yz|+ |z − Ỹz| ≥ |X + Yz|+ |Ỹz|.

But Ỹz = Y\Yz andYz ⊆ Ybypoint (i) above, so at the endwehave |X+Y| ≥ |X+Yz|+|Y|−|Yz|,
and the proof is complete.

Remark 1.27. To apply the generalizedDavenport transform toĉeorem 1.9, it will be enough to
consider the casewherem = ƾ, forwhich it is easily seen that ƽ ∈ Yz if ƽ ∈ Y (we continuewith the
notation from above), as otherwise z ∈ X+Y, contradicting the fact that z ∈ (X+ ƿY) \ (X+Y).
However, it seems intriguing that the same machinery can be used, at least in principle, even if
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m ≥ ƿ in so far as there is a way to prove that Yz is non-empty.

1.5 TļĹ ńŇŃŃĺ Ńĺ ŉļĹ ŁĵĽł ŉļĹŃŇĹŁ

Lemma 1.26 is used here to establish the main contribution of the chapter.

Proof of ĉeorem 1.9. Since every semigroupembeds as a subsemigroup into its unitization, and the
unitization of a cancellative semigroup is cancellative in its own right, Lemma 1.22 and Deėnition
1.8 imply that there is no loss of generality in assuming, as we do, thatA is unital.

ĉus, supposebycontradiction that the theorem is false. ĉere thenexists apair (X, Y)of subsets
of A for which ⟨Y⟩ is abelian and |X + Y| < min(γ(Y), |X|+ |Y| − ƾ). ĉen,

ƿ ≤ |X|, |Y| < ∞. (1.5)

In fact, if either ofX and Y is a singleton or inėnite then |X+ Y| = |X|+ |Y| − ƾ, contradicting the
standing assumptions. It follows from (1.5) that

|X + Y| < sup
yƽ∈Y×

inf
yƽ ̸=y∈Y

ord(y − yƽ) and |X + Y| ≤ |X|+ |Y| − ƿ. (1.6)

Again without loss of generality, we also take |X|+ |Y| to be minimal over the pairs of subsets of A
for which, in particular, (1.5) and (1.6) are assumed to hold.

Now, since |X+ Y| is ėnite, thanks to (1.5) and Proposition 1.20, we get by (1.6) and the same
equation (1.5) that there exists ỹƽ ∈ Y× such that

|X + Y| < inf
ỹƽ ̸=y∈Y

ord(y − ỹƽ) = min
ỹƽ ̸=y∈Y

ord(y − ỹƽ). (1.7)

So leĨing Wƽ := Y − ỹƽ implies

|X + Wƽ| < min
ƽ ̸=w∈Wƽ

ord(w) and |X + Wƽ| ≤ |X|+ |Wƽ| − ƿ (1.8)

in view of (1.6) and (1.7). In fact, on the one hand |Y− ỹƽ| = |Y| and |X+ Y− ỹƽ| = |X+ Y| by
point (i) of Lemma 1.23, and on the other, y ∈ Y \ {ỹƽ} only if y − ỹƽ ∈ (Y − ỹƽ) \ {ƽ}, but also
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w ∈ (Y − ỹƽ) \ {ƽ} only if w + ỹƽ ∈ Y \ {ỹƽ} (see also Remark 1.25). We claim that

Z := (X + ƿWƽ) \ (X + Wƽ) ̸= ∅. (1.9)

For, suppose the contrary. ĉen, X + Wƽ = X + ⟨Wƽ⟩ by Lemma 1.21, so that

|X + Wƽ| = |X + ⟨Wƽ⟩| ≥ |⟨Wƽ⟩| ≥ max
w∈Wƽ

ord(w) ≥ min
ƽ̸=w∈Wƽ

ord(w),

where we use, in particular, Proposition 1.19 for the ėrst inequality and the fact that |Wƽ| ≥ ƿ for
the last one. But this contradicts (1.8), so (1.9) is proved.

Pick z ∈ Z and let (X, W̄ƽ) be a generalized Davenport transform of (X,Wƽ) relative to z. Since
⟨Y⟩ is a commutative subsemigroup ofA (by hypothesis), the same is true for ⟨Wƽ⟩, by point (ii)
of Lemma 1.23. Moreover, ƽ ∈ Wƽ, and thus

ƽ ∈ W̄ƽ ̸= ∅ and W̄ƽ ( Wƽ, (1.10)

when taking into account Remark 1.27 and point (i) of Proposition 1.26. As a consequence, point
(v) of the same Proposition 1.26 yields, together with (1.8), that

|X + W̄ƽ|+ |Wƽ| ≤ |X + Wƽ|+ |W̄ƽ| ≤ |X|+ |Wƽ| − ƿ + |W̄ƽ|,

which means, since |Wƽ| = |Y − ỹƽ| = |Y| < ∞ by (1.5) and the above, that

|X + W̄ƽ| ≤ |X|+ |W̄ƽ| − ƿ. (1.11)

It follows from (1.10) that ƾ ≤ |W̄ƽ| < |Wƽ|, and in fact |W̄ƽ| ≥ ƿ, as otherwise we would have
|X| = |X+ W̄ƽ| ≤ |X|−ƾ by (1.11), in contrast to the fact that |X| < ∞ by (1.5). To summarize,
we have found that

ƿ ≤ |W̄ƽ| < |Wƽ| < ∞. (1.12)

Furthermore, (1.8) and (1.10) entail that

|X + W̄ƽ| ≤ |X + Wƽ| < min
ƽ ̸=w∈W̄ƽ

ord(w). (1.13)
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ĉus, since ƽ ∈ W̄×
ƽ , we get by (1.13) that

|X + W̄ƽ| < sup
wƽ∈W̄×

ƽ

min
wƽ ̸=w∈W̄ƽ

ord(w), (1.14)

which is however in contradiction, due to (1.5), (1.11) and (1.12), with theminimality of |X|+|Y|,
for |W̄ƽ| < |Wƽ| = |Y|, and hence |X|+ |W̄ƽ| < |X|+ |Y|.

1.6 A ķŃŊńŀĹ Ńĺ ĵńńŀĽķĵŉĽŃłň

First, we show how to use ĉeorem 1.9 to prove the extension of Chowla’s theorem for composite
moduli mentioned in Section 1.2.

Proof of Corollary 1.17. ĉe claim is trivial if X or Y is a singleton. Otherwise, since Z/mZ is a
commutative ėnite group and ord(z − zƽ) = m/ gcd(m, z − zƽ) for all z, zƽ ∈ Z/mZ, we get by
Corollary 1.14 that |X + Y| ≥ min(γ̃(Y), |X|+ |Y| − ƾ), where

γ̃(Y) = max
yƽ∈Y

min
yƽ ̸=y∈Y

ord(y − yƽ) = m · max
yƽ∈Y

min
yƽ ̸=y∈Y

ƾ
gcd(m, y − yƽ)

= δ−ƾ
Y m.

Now in an entirely similar way, it is found, in view of Corollary 1.12, that

|X + Y| ≥ min(δ−ƾ
X m, |X|+ |Y| − ƾ).

ĉis concludes the proof, considering that δY = ƾ if there exists yƽ ∈ Y such that gcd(m, y−yƽ) =
ƾ for every y ∈ Y \ {yƽ} (and dually with X).

We now use P. Hall’s theorem on distinct representatives [H] to say something on the “localiza-
tion” of elements in a sumset.

ĉeorem 1.28 (Hall’s theorem). Let Sƾ, . . . , Sn be sets. ĉere then exist (pairwise) distinct elements
sƾ ∈ Sƾ, . . . , sn ∈ Sn if and only if for each k = ƾ, . . . , n the union of any k of Sƾ, . . . , Sn contains at
least k elements.

More precisely, supposeA is a cancellative semigroup and let X, Y be non-empty ėnite subsets
ofA such that |X+ Y| < γ(Y). Clearly, this implies Y× ̸= ∅. Deėne k := |X| and ℓ := |Y|, and let
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xƾ, . . . , xk be a numbering of X and yƾ, . . . , yℓ a numbering of Y. ĉen consider the k-by-ℓmatrix,
say α(X, Y), whose entry in the i-th row and j-th column is xi + yj. Any element of X + Y appears
in α(X, Y), and viceversa any entry of α(X, Y) is an element of X + Y. Also, ĉeorem 1.9 and our
hypotheses give |X+Y| ≥ k+ ℓ−ƾ. So it is natural to try to get some information about where in
thematrix α(X, Y) it is possible to ėnd k+ ℓ−ƾ distinct elements ofX+Y. In this respect we have
the following proposition, whose proof is quite similar to the one of a weaker result in [R, Section
6], which is, in turn, focused on the less general case of a group of prime order:

Proposition 1.29. Assume that ⟨Y⟩ is commutative and let Z be any subset of X+ Y of size ℓ− ƾ, for
instance Z = xƾ + {yƾ, . . . , yℓ−ƾ}. ĉen we can choose one element ěom each row of α(X, Y) in such a
way that Z and these elements form a subset of X + Y of size k + ℓ− ƾ.

Proof. For each i = ƾ, . . . , k let Zi := (xi + Y) \ Z and note that Zi is a subset of the i-th row of
α(X, Y). ĉus, Ziƾ ∪ · · · ∪ Zih = ({xiƾ , . . . , xih} + Y) \ Z for any positive h ≤ k and all distinct
iƾ, . . . , ih ∈ {ƾ, . . . , k}. It follows that

|Ziƾ ∪ · · · ∪ Zih | ≥ |{xiƾ , . . . , xih}+ Y| − |Z| ≥ h + ℓ− ƾ − (ℓ− ƾ) = h,

where we combine ĉeorem 1.9 with the fact that

|{xiƾ , . . . , xih}+ Y| ≤ |X + Y| < γ(Y),

as is implied by Proposition 1.18 and the assumption that |X+Y| < γ(Y). ĉen, as a consequence
of Hall’s theorem, we can ėnd k distinct elements zƾ ∈ Zƾ, . . . , zk ∈ Zk, and these, together with
the ℓ − ƾ elements of Z, provide a total of k + ℓ − ƾ distinct elements of X + Y, since Z ∩ Zƾ =

· · · = Z ∩ Zk = ∅ (by construction).
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TļĽň ńĵĻĹ ĽłŉĹłŉĽŃłĵŀŀŏ ŀĹĺŉ ĶŀĵłĿ



On ne voit bien qu’avec le cœur.
L’essentiel est invisible pour les yeux.

ãAntoine ĸĹ SĵĽłŉ EŎŊń͐Ňŏ, Le Petit Prince

2
Cauchy-Davenport type theorems, II

RĹňŊŁ͐. On fait une étude plus approfondie des propriétés de la constante de Cauchy-Davenport
(introduite dans le chapitre 1) pour montrer l’extension supplémentaire suivante du théorème de
Cauchy-Davenport : si (A,+) est un semi-groupe cancellatif et si X, Y ⊆ A, alors

|X + Y| ≥ min(γ(X + Y), |X|+ |Y| − ƾ).

Cela implique une généralisation de l’inégalité de Kemperman pour les groupes sans torsion [Ke]
et aussi une version plus forte du théorème d’Hamidoune-Károlyi mentionné précédemment. Ici,
on donne une preuve indépendante et totalement combinatoire du cas général de ce résultat, qui
ne dépend ni du théorème de Feit-ĉompson ni de la méthode isopérimétrique. Enėn, on se
penche sur certains aspects d’une conjecture qui, si elle était vraie, pourrait fournir une formu-
lation uniėée de beaucoup de théorémes de type Cauchy-Davenport, y compris ceux déjà prouvés
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dans le chapitre précédent. Le contenu ci-après est basé sur un papier par l’auteur [Tr2] soumis
pour publication.

AĶňŉŇĵķŉ. Based on a paper by the author [Tr2] which is still under review, we further investigate
the properties of theCauchy-Davenport constant (introduced inChapter 1) and use them to prove
the following: IfA is a cancellative semigroup (either commutative or not) and X, Y ⊆ A, then

|X + Y| ≥ min(γ(X + Y), |X|+ |Y| − ƾ).

ĉis implies at once a generalization of Kemperman’s inequality for torsion-free groups [Ke] and
a strengthening of the Hamidoune-Károlyi theorem. Our proof of the laĨer is basically a transfor-
mation proof; in particular, it is self-contained and does not depend on either the Feit-ĉompson
theorem or the isoperimetric method. In addition, we discuss aspects of a conjecture that, if true,
would further improve most of the results in the chapter, generalize a greater number of Cauchy-
Davenport type theorems (including those proved in the previous chapter), and hopefully provide
a deeper understanding on this kind of inequalities.

2.1 IłŉŇŃĸŊķŉĽŃł

ĉe weaker are the structural assumptions, the larger is, in principle, the number of problems that
we can hope to solve, while trying to arrive at a beĨer understanding of their “real nature”: ĉis is,
in essence, the philosophy at the heart of the present thesis. Building on these ideas, we aim here
to further extend some aspects of the theory developed in the previous chapter, particularly in the
direction of the study of non-commutative or non-cancellative semigroups.

A naturalmotivation for this comes from considering that the non-zero elements of a non-trivial
unital ring, either commutative or not, are not, in general, cancellative (and hence not even closed)
under multiplication (unless the ring is a domain). Another motivation is the fact that, even when
A is a commutative group, the non-empty subsets of A, endowed with the binary operation taking
a pair (X, Y) to the sum-setX+Y, is, in general, nothingmore than a non-cancellativemonoid (e.g.,
whenA is the additive group of the ring of integers, the corresponding structure on the powerset
of A has been studied by J. Cilleruello, Y. O. Hamidoune and O. Serra; see [CHS] and references
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therein).
Here, more speciėcally, the main contribution is an extension (ĉeorem 2.3) of the (classi-

cal) Cauchy-Davenport theorem (ĉeorem 1.2) to the seĨing of cancellative, but possibly non-
commutative semigroups (see comments at the end of Section 2.2), whencewe derive as an almost
immediate consequence a stronger and more abstract version (Corollary 2.4) of the Hamidoune-
Károlyi theorem (ĉeorem1.6). In fact, a proof of this laĨer result was ėrst published byKárolyi in
2005 for the special case of ėnite groups [Ka], based on the structure theory of group extensions,
by reduction to ėnite solvable groups in the light of the Feit-ĉompson theorem. In the same pa-
per (p. 242), Károlyi reports a more elementary proof of the general statement (for an arbitrary
group), which was apparently communicated to him by Hamidoune during the peer-review pro-
cess of [Ka]. Hamidoune’s approach depends on a generalization of an addition theorembyL. Sha-
trowsky and is ultimately built upon the isoperimetric method (see [Ha] and references therein).
However, Károlyi himself has pointed out to the author, as recently as July 2013, that an alternative
and even “simpler” approach comes from a Kneser-type result due to J. E. Olson [O, ĉeorem 2],
based on Kemperman’s transform. Yet another argument along the same lines was suggested by
I. Ruzsa in a private communication in mid-June 2013.

On these premises, we remark from the outset that also our proof of ĉeorem 2.3, and conse-
quently of Corollary 2.4, is basically a transformation proof, close in the spirit to Olson’s approach
and as elementary as other combinatorial proofs in the literature (in particular, it is self-contained
anddoes not depend at all on the Feit-ĉompson theoremorHamidoune’s isoperimetricmethod).

In addition to the above, we present and discuss aspects of a conjecture (Conjecture 2.1) which,
if true, would further improvemost of the results in the paper and include as a special case a greater
number of Cauchy-Davenport type theorems, and particularly those proved in the previous chap-
ter. In all of this, a key role is played by certain invariance properties of the Cauchy-Davenport
constant (Deėnition 1.8), which are also investigated in this work.

OŇĻĵłĽŐĵŉĽŃł.

In Section 2.2 we give an overview, complementary to the one of the previous chapter, of the lit-
erature on theorems of Cauchy-Davenport type (with a particular emphasis on those that we are
going to strengthen or generalize), and state our main results and a related conjecture (Conjec-
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ture 2.1). Section 2.3 contains intermediate results on the invariance of the Cauchy-Davenport
constant under suitable transformations. Finally, in Section 2.4 we prove the principal theorem
(namely, ĉeorem 2.3).

2.2 CĵŊķļŏ-DĵŋĹłńŃŇŉ ŉŏńĹ ŉļĹŃŇĹŁň

As already emphasized in the previous chapter, theCauchy-Davenport theorem is probably the ėrst
signiėcant achievement in the ėeld of additive theory, dating back towork byA.-L. Cauchy in 1813
[C]. ĉe result has many generalizations. E.g., we have seen that extensions to composite moduli
(the theorem applies especially to the additive group of the integers modulo a prime) have been
given by I. Chowla [Ch, ĉeorem 1] and S. S. Pillai [Pi]. ĉese laĨer results have been sharpened
and further generalized by Corollary 1.17 in the previous chapter, where they appear as ĉeorems
1.3 and 1.4, respectively. ĉewhole thing comes as an almost immediate consequence ofĉeorem
1.9, and leads us here to the following:

Conjecture 2.1. Let n be a positive integer and Xƾ, . . . ,Xn non-empty subsets of A. IfA is cancellative,
then |Xƾ + · · ·+ Xn| ≥ min(γ(Xƾ, . . . ,Xn), |Xƾ|+ · · ·+ |Xn|+ ƾ − n).

Unluckily, we do not have a proof of the conjecture (not even for two summands), which can
however be conėrmed in some special case (see, in particular, Corollary 2.5 below, or consider
Corollary 1.13 whenA is commutative) and would provide, if it were true, a comprehensive gen-
eralization of about all the extensions of the Cauchy-Davenport theorem reported in this thesis.
Incidentally, the next example shows that the assumption of cancellativity, or a surrogate of it, is
critical and somewhat necessary:

Example 2.2. Let X and Y be non-empty disjoint sets with |X| < ∞ and denote by (FX, ·X) and
(FY, ·Y), respectively, the free abelian groups onX andY. For a ėxed element e /∈ FX∪FY, we deėne
a binary operation · on F := FX ∪ FY ∪ {e} by taking u · v := u ·X v for u, v ∈ FX, u · v := u ·Y v
for u, v ∈ FY and u · v := e otherwise. It is routine to check that · is associative, so we write F for
the unitization of (F, ·) and ƾ for the identity of F. ĉen, taking Z := Y ∪ {ƾ} gives γF(Z) = ∞
and X · Z := {x · z : x ∈ X, z ∈ Z} = X ∪ {e}, so that |X · Z| < |X| + |Z| − ƾ ≤ γF(X,Z),
namely |X · Z| < min(γF(X,Z), |X| + |Z| − ƾ), and the right-hand side can be made arbitrarily
larger than the leě-hand side.
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Nevertheless, we can prove the following inequality, which in fact represents themain contribu-
tion of the present chapter:

ĉeorem2.3. Let X, Y be subsets of A and suppose thatA is cancellative. ĉen, |X+Y| ≥ min(γ(X+
Y), |X|+ |Y| − ƾ).

At this point, it is worth comparing ĉeorems 1.9 and 2.3. On the one hand, the laĨer is “much
stronger” than the former, for it does no longer depend on commutativity (which, by theway, leads
to a perfectly symmetric statement). Yet on the other hand, the former is “much stronger” than the
laĨer, since for subsets X and Y of A we are now replacing γ(X, Y) in ĉeorem 1.9 with γ(X + Y),
and it has been already observed (Example 1.11) that this means, in general, a weaker bound.

ĉe above seems to suggest that a common generalization of the two theorems should be possi-
ble, and gives another (indirect)motivation to believe thatConjecture 2.1 can be true. Let it be as it
may,ĉeorem 2.3 is already strong enough to allow for a strengthening of theHamidoune-Kàrolyi
theorem(ĉeorem1.6 inChapter 1), as implied byLemma1.10 andExample 1.11. As pointed out
before, the theoremwas ėrst proved byKárolyi in [Ka] in the particular case of ėnite groups, based
on the Feit-ĉompson theorem. ĉe full theorem was then established by Hamidoune through
the isoperimetric method [Ka, p. 242].

In contrast, our proof of ĉeorem 1.6 is purely combinatorial, and it comes as a trivial conse-
quence of ĉeorem 2.3 in view of Lemma 1.10. Speciėcally, we have the following:

Corollary 2.4. Pick n ∈ N+ and subsets Xƾ, . . . ,Xn of A such that X×
ƾ + · · · + X×

n ̸= ∅. If A is
cancellative, then |Xƾ + · · ·+ Xn| ≥ min(p(A), |Xƾ|+ · · ·+ |Xn|+ ƾ − n).

ĉeorem 2.3 and Corollary 2.4 are proved in Section 2.4. Another result from the literature
that is meaningful in relation to the present chapter is Kemperman’s inequality, to wit ĉeorem
1.7. In fact, the result is generalized by the following, whose proof is straightforward in the light of
Corollary 2.4 (we may omit the details).

Corollary 2.5. Given n ∈ N+, let Xƾ, . . . ,Xn be subsets of A such that X×
ƾ + · · ·+ X×

n ̸= ∅. Deėne
κ := |Xƾ|+ · · ·+ |Xn|+ ƾ − n and assume ord(x) ≥ κ for every x ∈ A \ {ƽ}. IfA is cancellative,
then |Xƾ + · · ·+ Xn| ≥ κ.

For the rest, it was already mentioned in the introduction that earlier contributions by other
authors to the additive theory of semigroups are due, e.g., to Cilleruelo, Hamidoune and Serra,
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who in particular proved in [CHS] a Cauchy-Davenport theorem for acyclic monoids (these are
termed acyclic semigroups in [CHS], but they are, in fact,monoids in our terminology), and it could
be quite interesting to ėnd a common paĨern among their result and the ones in this chapter. ĉe
same question was raised at the end of Section 1.1, where it was also observed that one of themain
difficulties with this idea is actually represented by the fact that acyclic monoids in [CHS] are not
cancellative, which has served as a basic motivation for making the results of Section 2.3 mostly
independent from the assumption of cancellativity.

Remark 2.6. Incidentally, wepoint out that conditionM1 in thedeėnitionof an acyclic semigroup
M = (M, ·) in [CHS], to wit “y · x = x implies y = ƾ, for every x ∈ M” (we write ƾ for the
identity ofM), is to be ėxed in some way, since otherwise takingM to be the unitization of a non-
empty leě-zero semigroup (N, ·), where x · y := x for all x, y ∈ N, yields a counterexample to the
statement that “IfM is an acyclic semigroup and ƾ ∈ S”, where S is a ėnite subset of M, “then the
only ėnite directed cycles in the Cayley graph Cay(M, S) are the loops”: ĉis is ėrst mentioned in
the second paragraph of Section 2 in the cited paper (p. 100), and is fundamental for most of its
results. At ėrst, we thought of a typo and tried to substitute condition M1 with its “dual”, namely
“x · y = x implies y = ƾ, for every x ∈ M.” In fact, this is enough to ėx the issue with the Cayley
graphs of M, but Lemma 1 in the same paper, which is equally essential in many proofs, breaks
down completely (for a concrete counterexample, consider the monoid obtained by reversing the
multiplication of (N, ·) in the previous counterexample).

However, there are at least two possible workarounds: ĉe ėrst is to assume thatM is commu-
tative, the second to turn condition M1 into a “self-dual” axiom, namely to replace it with “x · y =
x or y · x = x implies y = ƾ, for every x ∈ M.”

2.3 PŇĹńĵŇĵŉĽŃłň

ĉroughout, we collect basic results to be used later in Section 2.4 to proveĉeorem2.3 andCorol-
lary 2.4. Some proofs are quite simple (and thus omiĨedwithout further explanation), but we have
no standard reference to anything similar in the context of semigroups, sowe include themhere for
completeness.

Notice that, even though ĉeorem 2.3, say, refers to cancellative semigroups, most of the results
presented in the section do not depend on the cancellativity of the “ambient”. While this makes no
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serious difference from the point of view of readability, it seems interesting in itself, and our hope
is that the material can help to ėnd a proof of Conjecture 2.1 (or to further reėne it).

Lemma 2.7. Suppose A is a monoid. Pick n ∈ N+ and zƽ, . . . , zn ∈ A×, and let Xƾ, . . . ,Xn be
subsets of A. ĉen,

∣∣∑n
i=ƾ Xi

∣∣ = ∣∣∑n
i=ƾ(zi−ƾ + Xi − zi)

∣∣.
Proof. Let z̃i be, for i = ƽ, . . . , n, the inverse of zi in A, and set X :=

∑n
i=ƾ Xi for economy of

notation. Lemma 1.23 gives
∑n

i=ƾ(zi−ƾ + Xi − zi) =
∑n

i=ƾ(zi−ƾ + Xi + z̃i) = zƽ + X+ zn, and
then another application of the same proposition yields |X| = |zƽ + X + zn|.

In allwhat follows, we letAop be thedual (or opposite) semigroupofA, namely thepair (A,+op)

where +op is the binary operation A × A → A : (zƾ, zƿ) 7→ zƿ + zƾ; cf. [B1, Section I.1.1,
Deėnition 2].

Proposition 2.8. Given n ∈ N+, let X and Xƾ, . . . ,Xn be subsets of A, and pick z ∈ A. ĉen,
Xƾ + · · ·+ Xn = Xn +op · · ·+op Xƾ and ord(z) = ordAop(z).

Here and later, to express that a statement follows as amore or less direct consequence of Propo-
sition 2.8, wewill simply say that it is true “by duality”. ĉis is useful for it oěen allows, for instance,
to simplify a proof to the extent of cuĨing by half its length, as in the following lemma, which gen-
eralizes an analogous, well-known property of groups:

Lemma 2.9. Pick x, y ∈ A and suppose that at least one of x or y is cancellable. ĉen, ord(x + y) =
ord(y + x).

Proof. By duality, there is no loss of generality in assuming, as we do, that y is cancellable. Further,
it suffices to prove that ord(x + y) ≤ ord(y + x), since then the desired conclusion will follow
from the fact that, on the one hand,

ord(y + x) = ord(x +op y) = ordAop(x +op y) ≤

ordAop(y +op x) = ord(y +op x) = ord(x + y),

and on the other hand, y is cancellable inA if and only if it is cancellable inAop. Now, the claimed
inequality is obvious if ord(y + x) is inėnite. Otherwise, there exist n, k ∈ N+ with k < n such
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that ord(y + x) = n and

(y + x) + · · ·+ (y + x)︸ ︷︷ ︸
k times

= (y + x) + · · ·+ (y + x)︸ ︷︷ ︸
n+ƾ times

.

So, by adding y to the right of both sides and using associativity to rearrange how the terms in the
resulting expression are grouped we get

y + (x + y) + · · ·+ (x + y)︸ ︷︷ ︸
k times

= y + (x + y) + · · ·+ (x + y)︸ ︷︷ ︸
n+ƾ times

,

Since y is cancellable, it then follows that

(x + y) + · · ·+ (x + y)︸ ︷︷ ︸
k times

= (x + y) + · · ·+ (x + y)︸ ︷︷ ︸
n+ƾ times

,

which ultimately gives ord(x + y) ≤ n = ord(y + x).

Proposition 2.10. Let X be a subset of A. ĉen, γ(X) = γAop(X).

Proof. Let i be the map A× → A× sending a unit of A to its inverse, and deėne iop in a similar
way by replacing A with its dual. An element xƽ ∈ A is a unit in A if and only if it is also a unit
in Aop, and x̃ƽ ∈ A is the inverse of xƽ in A if and only if it is also the inverse of xƽ in Aop. ĉus,
A× = (Aop)×, X ∩ A× = X ∩ (Aop)× and i = iop, with the result that

γ(X) = sup
xƽ∈X×

inf
xƽ ̸=x∈X

ord(x + i(xƽ))

and
γAop(X) = sup

xƽ∈X×
inf

xƽ ̸=x∈X
ordAop(i(xƽ) + x),

where we use Lemma 1.23 to express the Cauchy-Davenport constant of X relative to either ofA
andAop only in the terms of i. But any unit in amonoid is cancellable, so for all xƽ ∈ X× and x ∈ A
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we get, again by Proposition 2.8 and in the light of Lemma 2.9, that

ordAop(i(xƽ) + x) = |⟨i(xƽ) + x⟩Aop| = |⟨i(xƽ) + x⟩| =

= ord(i(xƽ) + x) = ord(x + i(xƽ)).

And this, together with the above, is enough to conclude.

We deėne an invariant n-transform ofA, here simply called an invariant n-transform if no confu-
sion can arise, to be any tupleT = (Tƾ, . . . ,Tn) of functions on the powerset ofA, herein denoted
byP(A), with the property that, for all non-empty Xƾ, . . . ,Xn ∈ P(A),

1.
∣∣∑n

i=ƾ Ti(Xi)
∣∣ = ∣∣∑n

i=ƾ Xi
∣∣ and∑n

i=ƾ |Xi| =
∑n

i=ƾ |Ti(Xi)|;

2. γ(Xƾ + · · ·+ Xn) = γ(Tƾ(Xƾ) + · · ·+ Tn(Xn)).

An interesting case is when each of the Ti is a unital shiĜ, namely a function of the form

P(A) → P(A) : X → zl + X + zr

such that zl and zr are units ofA. ĉis is implied by the following results, for which we use, among
the other things, that ifA is a monoid and z ∈ A× then, by Lemma 1.23, we have

(X + Y)− z = X + (Y − z) and (−z + X) + Y = −z + (X + Y)

for all X, Y ⊆ A, so that we can drop the parentheses without worrying and write, e.g., X + Y − z
for (X + Y)− z and−z + X + Y in place of (−z + X) + Y.

Lemma 2.11. If n ∈ N+ and Xƾ, . . . ,Xn ⊆ A, then X×
ƾ + · · ·+ X×

n ⊆ (Xƾ + · · ·+ Xn)
×, and the

inclusion is, in fact, an equality ifA is cancellative.

Proof. ĉe assertion is obvious for n = ƾ, so it is enough to prove it for n = ƿ, since then the
conclusion follows by induction. For, let X, Y be subsets of A.

Suppose ėrst that z ∈ X× + Y× (whichmeans, in particular, thatA is a monoid), i.e. there exist
x ∈ X× and y ∈ Y× such that z = x+ y. If x̃ is the inverse of x (inA) and ỹ is the inverse of y, then
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it is immediate to see that ỹ+ x̃ is the inverse of x+ y, and hence x+ y ∈ (X+ Y)×. It follows that
X× + Y× ⊆ (X + Y)×.

As for the other inclusion, assume thatA is cancellative and pick z ∈ (X+Y)×. Wehave to show
that z ∈ X× + Y×. For, let z̃ be the inverse of z, and pick x ∈ X and y ∈ Y such that z = x+ y. We
deėne x̃ := y+ z̃ and ỹ := z̃+ x. It is straightforward to check that x+ x̃ = (x+ y) + z̃ = ƽ and
ỹ+y = z̃+(x+y) = ƽ. Also, (x̃+x)+y = y+z̃+(x+y) = y and x+(y+ỹ) = (x+y)+z̃+x = x,
from which we get, by cancellativity, x̃ + x = y + ỹ = ƽ. ĉis implies that z belongs to X× + Y×,
and so we are done.

Remark 2.12. As a byproduct of the proof of Lemma 2.11, we get the following: If xƾ, . . . , xn ∈
A× (n ∈ N+) and x̃i is the inverse of xi, then x̃n + · · · + x̃ƾ is the inverse of xƾ + · · · + xn. ĉis
is a standard fact about groups, which goes through verbatim for monoids; see [B1, Section I.2.4,
Corollary 1]. We mention it here because it is used below.

Lemma 2.13. LetA be a monoid, and pick z ∈ A× and X ⊆ A. ĉen, γ(X) ≤ γ(X + z).

Proof. By Lemma 2.11, we have X× + z ⊆ (X + z)×, and thus

γ(X + z) = sup
wƽ∈(X+z)×

inf
wƽ ̸=w∈X+z

ord(w − wƽ) ≥ sup
wƽ∈X×+z

inf
wƽ ̸=w∈X+z

ord(w − wƽ). (2.1)

But w ∈ X+ z if and only if there exists x ∈ X such that w = x+ z, and in particular w ∈ X× + z
if and only if x ∈ X×. Also, given xƽ ∈ X× and x ∈ X, it holds x+ z = xƽ+ z if and only if x = xƽ.
As a consequence, it is immediate from (2.1) and Remark 2.12 that

γ(X + z) ≥ sup
xƽ∈X×

inf
xƽ+z̸=w∈X+z

ord(w + z̃ − xƽ) = sup
xƽ∈X×

inf
xƽ ̸=x∈X

ord(x − xƽ) = γ(X),

where z̃ is the inverse of z inA. ĉus, our proof is complete.

Now, the following proposition shows that the Cauchy-Davenport constant of a set is invariant
under translation by units. While fundamental for the proof of our main result, this may be of
independent interest in view of Conjecture 2.1.

Proposition 2.14. Suppose thatA is a monoid and pick z ∈ A× and X ⊆ A. ĉen, we have

γ(X) = γ(X + z) = γ(z + X).
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Proof. Let z̃ denote the inverse of z inA. Lemma 2.13 yields

γ(X) ≤ γ(X + z) ≤ γ((X + z) + z̃),

whence γ(X) = γ(X + z). ĉen, we observe that, on the one hand, Proposition 2.10, together
with the fact thatA is the dual ofAop, implies γ(X) = γAop(X) and γAop(X+op z) = γ(X+op z) =
γ(z + X), and on the other hand, it follows from the above that γAop(X) = γAop(X +op z). ĉis
gives γ(X) = γ(z + X) and completes our proof.

Corollary 2.15. Let A be a monoid, and for a ėxed integer n ≥ ƾ pick Xƾ, . . . ,Xn ⊆ A and
zƽ, . . . , zn ∈ A×. For each i = ƾ, . . . , n denote by Ti the map

P(A) → P(A) : X → zi−ƾ + X − zi.

ĉen, (Tƾ, . . . ,Tn) is an invariant n-transform and γ(Ti(Xi)) = γ(Xi) for each i.

Proof. By construction, it holds
∑n

i=ƾ Ti(Xi) = zƽ+(Xƾ+· · ·+Xn)+zn. ĉen, we get by Lemma
2.7 that

|Xƾ| = |Tƾ(Xƾ)|, . . . , |Xn| = |Tn(Xn)| and
∣∣∑n

i=ƾ Xi
∣∣ = ∣∣∑n

i=ƾ Ti(Xi)
∣∣,

while Proposition 2.14 implies γ(Xi) = γ(Ti(Xi)) for each i and γ(Xƾ+ · · ·+Xn) = γ(Tƾ(Xƾ)+

· · ·+ Tn(Xn)). By puĨing all together, the claim follows immediately.

Corollary 2.16. SupposeA is a monoid, ėx an integer n ≥ ƾ and let Xƾ, . . . ,Xn be subsets of A such
that X×

ƾ + · · · + X×
n ̸= ∅. ĉere then exists an invariant n-transform T = (Tƾ, . . . ,Tn) such that

ƽ ∈
∩n

i=ƾ Ti(Xi). Moreover, ifA is cancellative and X×
ƾ + · · · + X×

n is ėnite, then T can be chosen in
such a way that

γ(Tƾ(Xƾ) + · · ·+ Tn(Xn)) = min
ƽ̸=w∈Tƾ(Xƾ)+···+Tn(Xn)

ord(w). (2.2)

Proof. For each i = ƾ, . . . , n pick xi ∈ X×
i , using that X×

ƾ + · · · + X×
n is non-empty (and hence
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X×
i ̸= ∅), and let Ti be the function

P(A) → P(A) : X 7→ zi−ƾ + X − zi,

where zƽ := ƽ and zi := xƾ+ · · ·+ xi = zi−ƾ+ xi. ĉen clearly ƽ ∈
∩n

i=ƾ Ti(Xi), while Corollary
2.15 entails that (Tƾ, . . . ,Tn) is an invariant n-transform. ĉus, the ėrst part of the claim is proved.

As for the rest, assume in what follows thatA is cancellative and X×
ƾ + · · ·+ X×

n is ėnite. ĉen,
leĨing Z := Xƾ + · · ·+ Xn for brevity yields, by Proposition 2.11, that X×

ƾ + · · ·+ X×
n = Z×, so

there exist x̄ƾ ∈ Xƾ, . . . , x̄n ∈ Xn such that

γ(Z) = min
z̸̄=z∈Z

ord(z − z̄), (2.3)

where z̄ := x̄ƾ + · · · + x̄n and we are using that a supremum taken over a non-empty ėnite set
is, in fact, a maximum. It follows from the above that we can build an invariant n-transform T̄ =

(T̄ƾ, . . . , T̄n) such that ƽ ∈
∩n

i=ƾ T̄i(Xi) and
∑n

i=ƾ T̄i(Xi) = Z − z̄, with the result that

γ(Z) = γ(Z − z̄) ≥ min
ƽ ̸=w∈Z−z̄

ord(w) = min
z̄ ̸=z∈Z

ord(z − z̄),

by the invariance of T̄ and the fact that, on the one hand, ƽ ∈ Z − z̄ and, on the other hand,
w ∈ Z − z̄ if and only if w = z − z̄ for some z ∈ Z. Together with (2.3), this ultimately leads to
γ(Z − z̄) = minƽ̸=w∈Z−z̄ ord(w), and thus to (2.2).

We conclude the section with a proof of Lemma 1.10:

Proof of Lemma 1.10. By duality, it is enough to prove that γ(Y) ≥ γ(X + Y) ≥ p(A), since all
the rest is more or less trivial from our deėnitions. For, pick zƽ ∈ (X + Y)× using that, on the one
hand, (X + Y)× = X× + Y× by Proposition 2.11 and the cancellativity of A, and on the other
hand,X×+ Y× is non-empty by the standing assumptions. ĉere then exist xƽ ∈ X× and yƽ ∈ Y×

such that zƽ = xƽ + yƽ, and it is immediate from Remark 2.12 that, for all y ∈ A,

⟨xƽ + y − zƽ⟩ = xƽ + ⟨y − yƽ⟩ − xƽ,

which, together with Lemma 2.7, gives ord(y − yƽ) = ord(xƽ + y − zƽ). ĉus, considering that,
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for y ∈ A, it holds xƽ + y = zƽ if and only if y = yƽ, it follows that

inf
yƽ ̸=y∈Y

ord(y − yƽ) = inf
yƽ ̸=y∈Y

ord(xƽ + y − zƽ) ≥ inf
zƽ ̸=z∈X+Y

ord(z − zƽ) ≥ p(A),

and this in turn implies the claim by taking the supremum over the units of X + Y.

2.4 TļĹ ńŇŃŃĺ Ńĺ ŉļĹ ŁĵĽł ŉļĹŃŇĹŁ

At long last, we are ready to prove the central contributions of the chapter. We start with the fol-
lowing:

Proof of ĉeorem 2.3. ĉe claim is obvious if (X + Y)× = ∅, so suppose for the remainder of the
proof that (X + Y)× is non-empty (which, among the other things, implies that A is a monoid),
and set κ := |X+ Y|, while noticing that, by Lemma 2.11, both of X× and Y× are non-empty, and
so, by Proposition 1.18 and Lemma 1.23, we have

κ ≥ max(|X|, |Y|) ≥ min(|X|, |Y|) ≥ ƾ. (2.4)

ĉe statement is still trivial if κ = ∞ (respectively, κ = ƾ), since then either of X and Y is inėnite
(respectively, both ofX andY are singletons), and hence |X+Y| = |X|+ |Y|−ƾ by (2.4). ĉus, we
assume inwhat follows that κ is a positive integer and argue by strong induction on κ, supposing by
contradiction that κ < min(γ(X + Y), |X|+ |Y| − ƾ). Based on the above, this ultimately means
that

ƿ ≤ κ < ∞, ƿ ≤ |X|, |Y| < ∞, κ < γ(X + Y), and κ ≤ |X|+ |Y| − ƿ. (2.5)

More speciėcally, there is no loss of generality in assuming, as we do, that (X, Y) is a “minimax
counterexample” to the claim, by which wemean that, if (X̄, Ȳ) is another pair of subsets of A with
X̄× + Ȳ× ̸= ∅ and |X̄+ Ȳ| < min(γ(X̄+ Ȳ), |X̄|+ |Ȳ| − ƾ), then either κ = |X̄+ Ȳ| and at least
one of the following conditions holds:

(i) |X̄|+ |Ȳ| < |X|+ |Y|; (ii) |X̄|+ |Ȳ| = |X|+ |Y| and |X̄| ≤ |X|, (2.6)

or κ < |X̄ + Ȳ|. ĉis makes sense because if X̄, Ȳ ⊆ A, X̄× + Ȳ× ̸= ∅ and κ = |X̄ + Ȳ| then X̄×

41



and Ȳ× are non-empty, so we get, as before with (2.4), that

|X̄| ≤ |X̄|+ |Ȳ| ≤ ƿ · max(|X̄|, |Ȳ|) ≤ ƿ · |X̄ + Ȳ| = ƿκ < ∞.

Finally, in the light of Corollary 2.16, we may also assume without restriction of generality, up to
an invariant ƿ-transform, that

ƽ ∈ X ∩ Y and γ(X + Y) = min
ƽ ̸=z∈X+Y

ord(z). (2.7)

ĉen, both of X and Y are subsets of X + Y, and by the inclusion-exclusion principle we have κ ≥
|X|+ |Y| − |X∩ Y|, which gives, together with (2.5), that X∩ Y has at least one element different
from ƽ, i.e. |X∩ Y| ≥ ƿ. On these premises, we prove the following intermediate claim (from here
on, we set Z := X ∩ Y for notational convenience):

CŀĵĽŁ. ĉere exists n such that X + nZ + Y ̸⊆ X + Y, but X + kZ + Y ⊆ X + Y for each
k = ƽ, . . . , n − ƾ, with the convention that ƽZ := {ƽ}.

Proof of the claim. Assume by contradiction thatX+ nZ+ Y ⊆ X+ Y for all n. ĉen, we get from
⟨Z⟩ =

∪∞
n=ƾ nZ thatX+⟨Z⟩+Y ⊆ X+Y, which implies by (2.7) that ⟨Z⟩ = ƽ+⟨Z⟩+ƽ ⊆ X+Y.

ĉen, using that |Z| ≥ ƿ to guarantee that {ƽ} ( Z ⊆ X + Y, it follows from Proposition 1.18
and the same equation (2.7) that

κ ≥ |⟨Z⟩| ≥ max
ƽ ̸=z∈Z

ord(z) ≥ min
ƽ̸=z∈Z

ord(z) ≥ min
ƽ ̸=z∈X+Y

ord(z) = γ(X + Y).

ĉis is, however, absurd, for it is in contradiction to (2.5), and we are done.

So, let n be as in the above claim and ėx, for the remainder of the proof, an element z̄ ∈ nZ such
thatX+ z̄+Y ̸⊆ X+Y (this exists by construction since otherwise we would haveX+ nZ+Y ⊆
X + Y, which is a contradiction). Consequently, observe that

(X + z̄) ∪ (z̄ + Y) ⊆ X + Y. (2.8)

In fact, z̄ being an element of nZ entails that there exist zƾ, . . . , zn ∈ Z such that z̄ = zƾ+ · · ·+ zn,
whenceweget that bothofX+z̄ and z̄+Y are contained inX+(n−ƾ)Z+Y. ButX+(n−ƾ)Z+Y is,
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again by construction, a subset ofX+Y, so (2.8) is proved. With this in hand, let us now introduce
the sets

Xƽ := {x ∈ X : x + z̄ + Y ̸⊆ X + Y}

and
Yƽ := {y ∈ Y : X + z̄ + y ̸⊆ X + Y}.

It is then clear thatX (respectively,Y) is disjoint fromXƽ+z̄ (respectively, from z̄+Yƽ). In addition,
sinceX+ z̄+Y ̸⊆ X+Y, it is also immediate thatXƽ and Yƽ are both non-empty. Finally, it follows
from (2.8) that ƽ is not an element of either Xƽ or Yƽ. To sum it up,

Xƽ ̸= ∅ ̸= Yƽ, ƽ /∈ Xƽ ∪ Yƽ and (Xƽ + z̄) ∩ X = (z̄ + Yƽ) ∩ Y = ∅. (2.9)

Now, let nX := |Xƽ| and nY := |Yƽ|. By Remark 1.24 and the cancellativity ofA, we have

|Xƽ + z̄| = |Xƽ| = nX and |z̄ + Yƽ| = |Yƽ| = nY, (2.10)

which naturally leads to distinguish between the following two cases:

Case 1 nX ≥ nY. We form X̄ as the union of X and Xƽ + z̄ and Ȳ as the relative complement of
Yƽ in Y. First, note that ƽ ∈ X̄× ∩ Ȳ× by (2.9). Secondly, pick x̄ ∈ X̄ and ȳ ∈ Ȳ and set
z := x̄ + ȳ. If x̄ ∈ X, then obviously z ∈ X + Y; otherwise, by the construction of X̄ and
Ȳ, we get x̄ ∈ Xƽ + z̄ ⊆ X + z̄ and ȳ /∈ Yƽ, so that x̄ + ȳ ∈ X + Y. ĉerefore, we see that
X̄+ Ȳ is a non-empty subset ofX+ Ywith ƽ ∈ X̄+ Ȳ, so on the one hand |X̄+ Ȳ| ≤ κ and
on the other hand we have by (2.7) that

γ(X + Y) ≤ inf
ƽ̸=z∈X̄+Ȳ

ord(z) ≤ γ(X̄ + Ȳ).

Furthermore, (2.9) and (2.10) give that |X̄| = |X| + |Xƽ + z̄| = |X| + nX > |X| and
|Ȳ| = |Y| − |Yƽ| = |Y| − nY, so |X̄|+ |Ȳ| = |X|+ |Y|+ nX − nY ≥ |X|+ |Y|.

Case 2 nX < nY. We set X̄ := X\Xƽ and Ȳ := (z̄+Yƽ)∪Y. ĉen, by repeating (except for obvious
modiėcations) the same reasoning as in the previous case, we get again that ƽ ∈ X̄× ∩ Ȳ×

and X̄ + Ȳ ⊆ X + Y, with the result that |X̄ + Ȳ| ≤ κ and γ(X + Y) ≤ γ(X̄ + Ȳ). In
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addition, it follows from (2.9) and (2.10) that |X̄| = |X| − |Xƽ| = |X| − nX and |Ȳ| =
|Y|+ |z̄ + Yƽ| = |Y|+ nY, whence |X̄|+ |Ȳ| = |X|+ |Y|+ nY − nX > |X|+ |Y|.

So in both cases, we end up with an absurd, for we ėnd subsets X̄ and Ȳ of A that contradict the
“minimaximality” of (X, Y) as it is expressed by (2.6).

Remarkably, several pieces of the above proof of ĉeorem 2.3 do not critically depend on the
cancellativity of the ambient, while others can be adapted to the case where γ(X + Y) is replaced
by γ(X, Y), which is one of our strongest motivations for believing that Conjecture 2.1 should be
ultimately true.

Proof of Corollary 2.4. ĉe claim is obvious if n = ƾ. ĉus, assume in what follows that n is ≥ ƿ
and the assertion is true for all sumsets of the form Yƾ + · · · + Yn−ƾ with Y×

ƾ + · · · + Y×
n−ƾ ̸= ∅.

Based on these premises, we get by ĉeorem 2.3 that

|Xƾ + · · ·+ Xn| ≥ min(γ(Xƾ + · · ·+ Xn), |Xƾ + · · ·+ Xn−ƾ|+ |Xn| − ƾ),

which in turn implies, by Lemma 1.10, that

|Xƾ + · · ·+ Xn| ≥ min(p(A), |Xƾ + · · ·+ Xn−ƾ|+ |Xn| − ƾ). (2.11)

But we know from Proposition 2.11 that X×
ƾ + · · ·+ X×

n−ƾ ̸= ∅, so the inductive hypothesis gives

|Xƾ + · · ·+ Xn−ƾ| ≥ min(p(A), |Xƾ|+ · · ·+ |Xn−ƾ|+ ƿ − n),

which, together with (2.11), yields the desired conclusion by induction.
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If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,
And lose, and start again at your beginnings
And never breathe a word about your loss.

ãJoseph R. KĽńŀĽłĻ, If

3
Small doubling in ordered semigroups

RĹňŊŁ͐. On généralise des résultats par G. A. Freĭman,M.Herzog et leurs coauteurs sur la théorie
structurelle des sommes d’ensembles dans les groupes linéairement ordonnés au cas plus général
des semi-groupes linéairement ordonnés. En particulier, on prouve que, si (A, ·,≼) est un semi-
groupe linéairement ordonné et S est un sous-ensemble ėni deA engendrant un sous-semi-groupe
non-abélien, alors |Sƿ| ≥ ǀ|S|−ƿ. Aucoursde la preuve, onobtient égalementungrandnombrede
résultats secondaires, et notamment que le commutateur et le normalisateur d’un sous-ensemble
ėni d’un semi-groupe linéairement ordonné coïncident. Ce chapitre est basé sur un article par
l’auteur [Tr3] soumis pour publication.

AĶňŉŇĵķŉ. Let A = (A, ·) be a semigroup. We generalize results by G. A. Freĭman, M. Herzog
and coauthors on the structure theory of set addition from the context of linearly ordered groups
to linearly ordered semigroups, where we say thatA is linearly orderable if there exists a total order
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≼ on A such that xz ≺ yz and zx ≺ zy for all x, y, z ∈ A with x ≺ y. In particular, we ėnd that if
S is a ėnite subset of A generating a non-abelian subsemigroup ofA, then |Sƿ| ≥ ǀ|S| − ƿ. On the
road to this goal, we also prove a number of subsidiary results, and most notably that for S a ėnite
subset of A the commutator and the normalizer of S are equal to each other. ĉe chapter is based
on a paper by the author [Tr3] submiĨed for publication.

3.1 IłŉŇŃĸŊķŉĽŃł

Semigroups are ubiquitous in mathematics. Apart from being a subject of continuous interest to
algebraists, they are, as already remarked in theprevious chapters, a natural framework for introduc-
ing several broadly-scoped concepts and developing large parts of theories traditionally presented
in much less general contexts.

Our interest in semigroups is related here to Freĭman’s structure theory of set addition and its
generalizations; this is a very active area of research, which has drawn a constantly increasing at-
tention in the last decade, and has led to signiėcant progress in several ėelds, from algebra [Ge] to
additive number theory and combinatorics [Na, R, TV].

ĉe primary goal of the chapter is, in fact, to extend recent results by G. A. Freĭman, M. Herzog
and coauthors from the seĨing of linearly ordered groups [FHLM] to linearly ordered semigroups
(see Section 3.2 for deėnitions). Speciėcally, assume for the remainder of this section that A =

(A, ·) is a ėxed semigroup (unless a statement to the contrary is made). ĉe main contribution
here is then represented by the following generalization of [FHLM, ĉeorem 1.2]:

ĉeorem 3.1. Let A be a linearly orderable semigroup and S a ėnite subset of A such that |Sƿ| ≤
ǀ|S| − ǀ. ĉen, ⟨S⟩ is abelian.

Our proof ofĉeorem3.1 basically follows the same broad scheme as the proof of [FHLM,ĉe-
orem 1.2], but there are signiėcant differences in the details. As expected, the increased generality
implied by the switching to semigroups - and especially the fact that inverses are no longer available
- presents, in practice, a number of challenges and requires somethingmore than amere adjustment
of terminology (in some cases, for instance, it is not even clear how a certain result known to hold
for linearly ordered groups should be reformulated in the language of semigroups). In particular,
we will look for an extension of several classical results, such as the following:
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Lemma 3.2. LetA be a linearly orderable semigroup and pick a, b ∈ A. If anb = ban for some n, then
ab = ba.

ĉis is, in fact, a generalization of an old lemma by N. H. Neumann [Ne] on commutators of
linearly ordered groups, appearing as Lemma 2.2 in [FHLM].

In the same spirit, we will also need to extend [FHLM, Proposition 2.4]. For, we use CA(S) for
the centralizer of S (relative toA), viz the set of all a ∈ A such that ay = ya for every y ∈ S, and
NA(S) for the normalizer of S (relative toA), namely the set {a ∈ A : aS = Sa}. ĉese arewriĨen
as CA(a) and NA(a), respectively, if S = {a} for some a. Building on these premises, we have:

Lemma 3.3. Let A be a linearly orderable semigroup and S a non-empty ėnite subset of A, and pick
y ∈ A \ CA(S). ĉen, |yS ∪ Sy| ≥ |S|+ ƾ, i.e. there are a, b ∈ S with ya /∈ Sy and by /∈ yS.

Lemma 3.3 is proved in Section 3.2, along with the following generalization of [FHLM, Corol-
lary 1.5], which may perhaps be interesting per se:

ĉeorem 3.4. IfA is a linearly orderable semigroup and S a ėnite subset of A, then NA(S) = CA(S).

Weconclude the chapterwith a number of examples (Appendix 3.5),mostly ėnalized to explore
conditions under which certain semigroups (or related structures as semirings) are linearly order-
able. ĉis is mainly to show that the class of linearly orderable semigroups is not, in some sense,
trivial. In particular, we prove (ĉeorem 3.21) that, for each n, the subsemigroup of GLn(R), the
general linear group of degree n over the real ėeld, consisting of all upper (respectively, lower)
triangular matrices with positive entries on or above (respectively, below) themain diagonal is lin-
early orderable, subsequently raising the question (to which we do not have an answer) whether
the same conclusion holds for the subsemigroup of all matrices which can be wriĨen as a (ėnite)
product of upper or lower triangular matrices of the same kind as above.

3.2 NŃŉĵŉĽŃł ĵłĸ ĸĹĺĽłĽŉĽŃłň

ĉroughout, an order on a setA is a binary relation≼ onAwhich is reĚexive, antisymmetric, tran-
sitive, and total, in the sense that for all a, b ∈ A we have either a ≼ b or b ≺ a, where≺ is used
for the strict order induced on A by≼.
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Accordingly, we let an ordered semigroup be a triple (A, ·,≼), where (A, ·) is a semigroup,≼ is
an order on A, and the following holds:

∀a, b, c ∈ A : a ≺ b =⇒ a · c ≼ b · c and c · a ≼ c · b. (3.1)

If each of the signs “≼” in (3.1) is replaced with the sign “≺”, then (A, ·,≼) is called a linearly
ordered semigroup; see, e.g., [Iw].

Conversely, we say that a semigroupA = (A, ·) is [linearly] orderable if there exists an order≼
on A such that (A, ·,≼) is a [linearly] ordered semigroup.

All of the above notions and terminology are now extended in the obvious way to monoids and
groups (so we have, for instance, ordered monoids and linearly orderable groups).

3.3 PŇĹŀĽŁĽłĵŇĽĹň

In what follows, unless stated otherwise, A = (A, ·) is a ėxed semigroup and ≼ is an order on A
for whichA♯ = (A, ·,≼) is an ordered semigroup.

In this section, we collect some results that will be essential to prove the main contributions of
the paper, later in Section 3.4. Some are quite elementary, and their group analogues are part of
the folklore; however, we do not have a reference to something similar for semigroups, and thus
we include them here for the sake of exposition. In particular, the proof (by induction) of the
proposition below is straightforward from our deėnitions, and we may omit the details.

Proposition 3.5. ĉe following holds:

(i) For all aƾ, . . . , an, bƾ, . . . , bn ∈ A with aƾ ≼ bƾ, …, an ≼ bn we have aƾ · · · an ≼ bƾ · · · bn,
and indeed aƾ · · · an ≺ bƾ · · · bn ifA♯ is linearly ordered and ai ≺ bi for each i.

(ii) If a, b ∈ A and a ≼ b, then an ≼ bn for all n, and in fact an ≺ bn ifA♯ is linearly ordered and
a ≺ b.

(iii) If a ∈ A is such that aƿ ≼ a, then an ≼ am for m ≤ n, and indeed an ≺ am if A♯ is linearly
ordered, aƿ ≺ a and m < n.
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Pick an element a ∈ A. We say that a is cancellable (inA) if both of the maps A → A : x 7→ ax
and A → A : x 7→ xa are one-to-one. ĉe semigroupA is then cancellative if each element of A is
cancellable.

Remark 3.6. A cancellative semigroup is linearly orderable if and only if it is totally orderable.
Furthermore, any linearly orderable semigroup is cancellative. ĉus, one thing seems worth men-
tioning before proceeding: While, on the one hand, every commutative cancellative semigroup
embeds as a subsemigroup into a group, as already mentioned in Remark 1.16, nothing similar is
true, on the other hand, in the non-commutative case, nomaĨer if the ambient is linearly orderable
and ėnitely generated, as ėrst noticed by R. E. Johnson [J] on the basis of Mal’cev’s construction
[M1]. Again, this is of fundamental importance here, as it shows that the study of sumsets in lin-
early ordered semigroups cannot be systematically reduced, in the absence of commutativity, to
the case of groups (at least, not in any obvious way).

On another hand, a ∈ A is said to be periodic (in A) if there exist n and p ∈ N+ such that
an = an+p; we then refer to the smallest n with this property as the index of a (in A) and to the
smallest p relative to such an n as the period of a (inA); see, for instance, [Ho, p. 10]. In particular,
a is called idempotent (inA) if it has period and index equal to ƾ, namely a = aƿ, and we say that
A is torsion-free if its only periodic elements are idempotent.

Remark 3.7. ĉe unique idempotent element of a cancellative monoid is the identity, so that
torsion-free groups aredeėnitely a special kindof torsion-free semigroups; cf. Example3.17. More-
over, ifA is cancellative and a ∈ A is idempotent, thenA is unital (which applies especially to lin-
early orderable semigroups, in view of Remark 3.6): For, aƿ = a implies aƿb = ab and baƿ = ba
for every b ∈ A, hence ab = ba = b. ĉis ultimately proves that a serves as the identity ofA.

ĉe next proposition generalizes properties mentioned in [FHLM, Section 2].

Proposition 3.8. LetA♯ be a linearly ordered semigroup. We have:

(i) If a ∈ A and aƿ ≺ a, then ab ≺ b and aba ≺ b for all b ∈ A.

(ii) If aba = b for a, b ∈ A, thenA is unital and a is the identity ofA.

(iii) None of the elements of A has ėnite period unless A is unital and such an element is the identity.
In particular,A is torsion-ěee.
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Proof. (i) Pick a, b ∈ Awith aƿ ≺ a. ĉen aƿb ≺ ab, whence ab ≺ b by totality of≼ and Remark
3.6. It follows fromProposition 3.5 that abaƿ ≺ ba; thus, aba ≺ bby the same arguments as above.

(ii) Let a, b ∈ A be such that aba = b. By duality, we may suppose that aƿ ≼ a, which implies
the claim by Remark 3.7 and the previous point (i).

(iii) is trivial from the above, and we may omit the details.

ĉe next proposition, of whichwe omit the proof, is in turn an extension of an elementary prop-
erty of the integers; see, e.g., [R, Exercise 1, p. 93] and contrast with [FHLM, ĉeorem 1.1].

Proposition 3.9. Suppose that A♯ is a linearly ordered semigroup and let Sƾ, . . . , Sn be non-empty
ėnite subsets of A. ĉen,

|Sƾ · · · Sn| ≥ ƾ − n +
∑n

i=ƾ |Si|. (3.2)

Also, (3.2) is sharp, the lower bound being aĪained, for instance, by picking a ∈ A and leĪing Si be, for
each i, of the form {a, . . . , asi} for some si ∈ N+.

In particular, the second part of Proposition 3.9 follows from considering that, given a linearly
orderable non-trivial non-empty semigroupA, point (iii) of Proposition 3.8 provides at least one
element a ∈ A such that ajƾ ̸= ajƿ for all distinct jƾ, jƿ ∈ N+.

Now we prove the generalizations of [FHLM, Lemma 2.2] and [FHLM, Proposition 2.4] al-
luded to in the introduction, while noticing that, if A is a group with identity ƾ and a, b ∈ A are
such that [an, b] = ƾ for some n, then anb = abn (the square brackets denote a commutator).

Proposition 3.10. LetA♯ be a linearly ordered semigroup and pick a, b ∈ A. If ab ≺ ba then for all
n we have

anb ≺ an−ƾba ≺ · · · ≺ aban−ƾ ≺ ban. (3.3)

Proof. Assume that (3.3) holds true for some n. ĉen, multiplying by a on the leě gives an+ƾb ≺
anba ≺ · · · ≺ aƿban−ƾ ≺ aban, while multiplying by a on the right yields aban ≺ ban+ƾ. Since
ab ≺ ba, the transitivity of≼ implies the claim by induction.

ĉe proof of Lemma 3.2 is now an immediate consequence of Proposition 3.10 (by duality, if
A♯ is a linearly ordered semigroup and a, b ∈ A then we may assume ab ≼ ba without loss of
generality).
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Proof of Lemma 3.3. Assume to the contrary that yS = Sy. Since y /∈ CA(S), we can ėnd an el-
ement aƾ ∈ S such that aƾy ̸= yaƾ, which in turn implies that there exists aƿ ∈ S \ {aƾ} such
that yaƾ = aƿy. ĉen, using that S is a ėnite set, we get a maximum integer k ≥ ƿ and elements
aƾ, . . . , ak ∈ S such that

(i) yai = ai+ƾy for i = ƾ, . . . , k − ƾ;

(ii) ai = aj for i, j = ƾ, . . . , k only if i = j.

Hence, themaximality ofk and yS = Sy imply yak = ahy for someh = ƾ, . . . , k, with the result that
yi+ƾak = ah+iyi+ƾ for every i = ƽ, . . . , k − h (by induction). In particular, it holds yk−h+ƾak =

akyk−h+ƾ. ĉerefore, yak = aky (by Lemma 3.2), and indeed yak = yak−ƾ (as aky = yak−ƾ, by
construction). So, Remark 3.6 yields ak = ak−ƾ, which is however absurd because ai ̸= aj for all
i, j = ƾ, . . . , k with i ̸= j. ĉe proof is thus complete.

Proof of ĉeorem 3.4. ĉeclaim is obvious if S = ∅, so assume that S is non-empty. For y ∈ NA(S)
we have yS = Sy, and Lemma 3.3 implies y ∈ CA(S), from which it follows NA(S) ⊆ CA(S). ĉe
other inclusion is obvious.

3.4 TļĹ ŁĵĽł ŇĹňŊŀŉ

ĉroughout, A = (A, ·) denotes a ėxed semigroup (unless differently speciėed). We start with a
series of three lemmas: the two ėrst apply to cancellative semigroups in general, while the laĨer is
speciėc to linearly ordered semigroups.

Lemma 3.11. Let A be a cancellative semigroup and S a ėnite subset of A such that ⟨S⟩ is an abelian
subsemigroup. If y ∈ A \ CA(S), then Sƿ is disjoint ěom yS ∪ Sy.

Proof. Pick y ∈ A \ CA(S) and assume by contradiction that Sƿ ∩ (yS ∪ Sy) is non-empty. ĉen,
without loss of generality, there exist a, b, c ∈ S such that ab = cy. Since ⟨S⟩ is abelian, this gives
that cyc = abc = cab, whence ab = yc (using thatA is cancellative), and ėnally cy = yc.

We claim that xy = yx for all x ∈ S. For, let x ∈ S. On the one hand, we have abx = cyx =

ycx = yxc (as we have just seen that cy = yc). On the other hand, xab = xcy = xyc. But
abx = xab (again by abelianity of ⟨S⟩). So, at the end of the day, yxc = xyc, and hence yx = xy
(by cancellativity of c). It follows that y ∈ CA(S), which is absurd.
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Lemma3.12. LetA be a cancellative semigroup and pick elements a, b, x, y, z ∈ A such that x, y, z ∈
CA(b) and xy = az (respectively, xy = za). ĉen, ab = ba.

Proof. By duality, we just consider the case when xy = az. On the one hand, xyb = azb = abz
since zb = bz; on the other, baz = bxy = xyb since x, y ∈ CA(b). Hence abz = baz, that is
ab = ba (by cancellativity of z).

Now, assume for the remainder of the section that A is made into an ordered semigroup by a
certain order≼, and setA♯ := (A, ·,≼).

Lemma 3.13. Let A♯ be linearly ordered, and let S be a non-empty ėnite subset of A, and pick y ∈
A \ CA(S). If ⟨S⟩ is abelian, then |Sƿ ∪ yS ∪ Sy| ≥ ǀ|S|.

Proof. ĉe inclusion-exclusion principle, Remark 3.6 and Lemma 3.11 give

|Sƿ ∪ yS ∪ Sy| = |Sƿ|+ |yS ∪ Sy| − |Sƿ ∩ (yS ∪ Sy)| = |Sƿ|+ |yS ∪ Sy|,

which is enough to complete the proof on account of the fact that |Sƿ| ≥ ƿ|S| − ƾ, by Proposition
3.9, and |yS ∪ Sy| ≥ |S|+ ƾ, by Lemma 3.3.

So at long last we are ready to prove the main theorem of the chapter.

Proof of ĉeorem 3.1. Write Im for {ƾ, . . . ,m}, wherem := |S|, and let aƾ, . . . , am be a numbering
of S for which aƾ ≺ · · · ≺ am. It is clear that m ≥ ƿ. If m = ƿ then |Sƿ| ≤ ǀ, and indeed |Sƿ| = ǀ
by Proposition 3.9. Since aƿƾ ≺ aƾaƿ ≺ aƿƿ and aƿƾ ≺ aƿaƾ ≺ aƿƿ, it follows that Sƿ = {aƿƾ, aƾaƿ, aƿƿ}
and aƾaƿ = aƿaƾ, which implies that ⟨S⟩ is abelian, as was desired.

So, in what follows, let m ≥ ǀ and suppose that ⟨B⟩ is abelian for every subset B of A satisfying
ƿ ≤ |B| < m and |Bƿ| ≤ ǀ|B| − ǀ. Furthermore, assume for the sake of contradiction that ⟨S⟩
is not abelian, and accordingly denote by i the maximum integer in Im such that ⟨T⟩ is abelian for
T := {aƾ, . . . , ai}. ĉen, ƾ ≤ i < m and ai+ƾ /∈ CA(T), so on the one hand

Tƿ ∩ (ai+ƾT ∪ Tai+ƾ) = ∅, (3.4)

thanks to Remark 3.6 and Lemma 3.11, and on the other hand

|Tƿ ∪ ai+ƾT ∪ Tai+ƾ| ≥ ǀi, (3.5)
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by virtue of Lemma 3.13. Also, there exists a positive integer j ≤ i such that

ai+ƾaj ̸= ajai+ƾ, (3.6)

which is chosen here to be as great as possible, in such a way that

xai+ƾ = ai+ƾx for every x ∈ T with aj ≺ x. (3.7)

We have that aj /∈ CA(V), where V := S \ T = {ai+ƾ, . . . , am}, and

Vƿ ∩ (Tƿ ∪ ai+ƾT ∪ Tai+ƾ) = ∅ (3.8)

since ahak ≺ aƿi+ƾ ≼ aras for all h, k, r, s ∈ Im with h + k ≤ ƿi + ƾ and i + ƾ ≤ min(r, s). ĉen,
the inclusion-exclusion principle, together with (3.5) and the standing assumptions, gives that

|Vƿ| ≤ |Sƿ| − |Tƿ ∪ ai+ƾT ∪ Tai+ƾ| ≤ ǀm − ǀ − ǀi = ǀ|V| − ǀ.

ĉus ƿ ≤ |V| < m, and ⟨V⟩ is abelian (by the inductive hypothesis). ĉen,

Vƿ ∩ (ajV ∪ Vaj) = ∅ (3.9)

in view of Remark 3.6, Lemma 3.11 and the fact that aj /∈ CA(V). We claim

Tƿ ∩ (ajV ∪ Vaj) = ∅. (3.10)

For, assume to the contrary, with no loss of generality, that Tƿ ∩ ajV ̸= ∅, namely xy = ajz for
some x, y ∈ T and z ∈ V. Using that y ≺ z, this yields aj ≺ x, and similarly aj ≺ y as ⟨T⟩ is
abelian (so that xy = yx, and hence yx = ajz). It then follows from (3.7) and the abelianity of ⟨V⟩
that x, y, z ∈ CA(ai+ƾ). ĉus, we get ai+ƾaj = ajai+ƾ by Lemma 3.12, which however contradicts
(3.6) and implies (3.10).

ĉat said, let x ∈ T and y ∈ V be such that xai+ƾ = ajy. Since ai+ƾ ≼ y, it is apparent that
aj ≼ x. Suppose for the sake of contradiction that aj ≺ x. ĉen, we get from (3.7) and the
abelianity of ⟨V⟩ that x, ai+ƾ, y ∈ CA(ai+ƾ), with the result that ajai+ƾ = ai+ƾaj (by Lemma 3.12).
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But this is in open contrast with (3.6), and it is enough to argue that

Tai+ƾ ∩ ajV = {ajai+ƾ}.

ĉus, the inclusion-exclusion principle gives that

|Tai+ƾ ∪ ajV| = |Tai+ƾ|+ |ajV| − |Tai+ƾ ∩ ajV| = m − ƾ, (3.11)

which in turn implies, together with (3.4), (3.8), (3.9) and (3.10), that

|Tƿ ∪ Vƿ ∪ Tai+ƾ ∪ ajV| = |Tƿ|+ |Vƿ|+ |Tai+ƾ ∪ ajV|.

It follows from Proposition 3.9 and (3.11) that

|Tƿ ∪ Vƿ ∪ Tai+ƾ ∪ ajV| ≥ (ƿi − ƾ) + (ƿm − ƿi − ƾ) + (m − ƾ) = ǀm − ǀ.

As |Sƿ| ≤ ǀm − ǀ and Tƿ ∪ Vƿ ∪ Tai+ƾ ∪ ajV ⊆ Sƿ, it is then proved that

Sƿ = Tƿ ∪ Vƿ ∪ Tai+ƾ ∪ ajV. (3.12)

So to conclude, let us deėne a := ai+ƾaj. By (3.4) and (3.8), it is straightforward to see that
a /∈ Tƿ ∪ Vƿ, and we want to show that a /∈ Tai+ƾ ∪ ajV to reach a contradiction. To this aim,
observe ėrst that, by (3.6) and Lemma 3.3, there exist x ∈ T and y ∈ V such that

ai+ƾx /∈ Tai+ƾ, yaj /∈ ajV. (3.13)

Since ai+ƾx, yaj /∈ Tƿ∪Vƿ by (3.4), (3.8), (3.9) and (3.10), it follows from(3.12) that ai+ƾx ∈ ajV
and yaj ∈ Tai+ƾ, so we ėnd b ∈ V and c ∈ T such that

ajb = ai+ƾx, yaj = cai+ƾ. (3.14)

Suppose that a ∈ Tai+ƾ, that is there exists z ∈ T for which zai+ƾ = ai+ƾaj, and in fact z ̸= aj
by (3.6). If aj ≺ z then z ∈ CA(ai+ƾ) by (3.7), so ai+ƾaj = ajai+ƾ by Lemma 3.12, again in
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contradiction to (3.6). ĉus z ≺ aj, and in addition x ≼ aj, as otherwise ai+ƾx = xai+ƾ ∈ Tai+ƾ

in view of (3.7), in contradiction to (3.13). Considering that ⟨T⟩ is abelian, it follows from (3.14)
that ajbaj = ai+ƾxaj = ai+ƾajx. However ai+ƾaj = zai+ƾ, so at the end ajbaj = zai+ƾx. Hence,
baj ≺ ai+ƾx as z ≺ aj, which is absurd since ai+ƾ ≼ b and x ≼ aj, viz ai+ƾx ≼ baj. ĉis implies
a /∈ Tai+ƾ.

Finally, assume that a ∈ ajV, i.e. there exists w ∈ V such that ai+ƾaj = ajw. By construction of
V, we have ai+ƾ ≼ w, and indeed ai+ƾ ≺ w by (3.6). We want to show that c ≼ aj. For, suppose
to the contrary that aj ≺ c. ĉe abelianity of ⟨V⟩, together with (3.7), then yields that c, ai+ƾ, y ∈
CA(ai+ƾ), so ai+ƾaj = ajai+ƾ by (3.14) and Lemma 3.12; this contradicts (3.6), and hence c ≼ aj.
Using once more that ⟨V⟩ is abelian, it is then immediate from (3.14) that ai+ƾcai+ƾ = ai+ƾyaj =
yai+ƾaj, so ai+ƾcai+ƾ = yajw since ai+ƾaj = ajw. But, as argued before, ai+ƾ ≺ w, whence it is seen
that yaj ≺ ai+ƾc, which is absurd because ai+ƾ ≼ y, by construction of V, and c ≼ aj, as proved
above. ĉus, we get that a /∈ ajV.

PuĨing all together, it follows that a /∈ Tƿ∪Vƿ∪Tai+ƾ∪ajV, which is however in contradiction
to (3.12), as a is obviously an element of Sƿ. ĉerefore, ⟨S⟩ is abelian.

In some sense, ĉeorem 3.1 is best possible; speciėcally, [FHLM, Section 3] provides the ex-
ample of a subset S of a linearly ordered group generating a non-abelian subgroup and such that
|Sƿ| = ǀ|S| − ƿ.

Corollary 3.14. Let S be a ėnite subset of a linearly orderable semigroup (A, ·), which generates a non-
abelian subsemigroup. ĉen |Sƿ| ≥ ǀ|S| − ƿ.

Proof. It is just a trivial restatement of ĉeorem 3.1.

We have not found so far an appropriate way to extend Proposition 3.1 in [FHLM] from ėnite
subsets of linearly ordered groups, generating abelian subgroups, to ėnite subsets of linearly or-
dered semigroups, generating abelian subsemigroups, so we raise the following:

Question 3.15. Assume thatA is a linearly orderable semigroup. Let S be a ėnite subset of A, set s :=
|S| and t := |Sƿ| for convenience of notation, and suppose that t ≤ ǀs − ǁ and ⟨S⟩ is abelian. Is
it then possible to ėnd a, b ∈ A such that ab = ba and S is a subset of the geometric progression
a, ab, . . . , abt−s?
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3.5 AńńĹłĸĽŎ: EŎĵŁńŀĹň

We conclude the paper with a few examples. As mentioned in the introduction, the basic goal is to
show that [linearly] orderable semigroups and related structures are far from being “exotic”.

We start with an orderable semigroup which is not linearly orderable. ĉen, we mention some
classesof linearlyorderable groups and some linearlyorderablemonoids (respectively, semigroups)
which are not groups (respectively, monoids).

Example 3.16. Every set A can be turned into a semigroup by the operation · : A × A → A :

(a, b) → a; see, for instance, [Ho, p. 3]. Trivially, if≼ is a total order onA then (A, ·,≼) is a totally
ordered semigroup. However, (A, ·) is not linearly orderable for |A| ≥ ƿ.

Example 3.17. An interesting variety of linearly ordered groups is provided by abelian torsion-
free groups, as ėrst proved by F. W. Levi in [Le], and the result can be, in fact, extended to abelian
cancellative torsion-free semigroupswith no substantialmodiėcation; see the comments following
Remark 3.6 in Section 3.2 and Corollary 3.4 in R. Gilmer’s book on commutative semigroup rings
[Gi]. In a similar vein, K. Iwasawa [Iw], A. I. Mal’cev [M2] and B. H. Neumann [Ne] established
independently that all torsion-free nilpotent groups are linearly orderable.

Save for the semigroupanalogueofLevi’s result, all of the above is alreadymentioned in [FHLM],
where the interested reader can ėnd further references to existing literature on the subject. How-
ever, there are other interesting examples of linearly ordered groups which are not included in
[FHLM], and remarkably pure braid groups [RZ] and free groups [Iw].

Example 3.18. As for linearly ordered monoids which are not linearly ordered groups, consider,
for instance, the free monoid [Ho, Section 1.6] on a totally ordered alphabet (X,≼) together with
the “shortlex ordering”: words are primarily sorted by length, with the shortest ones ėrst, and
words of the same length are then sorted into lexicographical order. On the other hand, the posi-
tive integers divisible only for the members of a given subset S of primes, endowed with the usual
multiplication, provide the example of a linearly orderable semigroup which is not even a monoid
unless S = ∅.

Example 3.19. Let A = (A, ·) and B = (B, ⋄) be semigroups and φ : A → B a semigroup
monomorphism, i.e. an injective function A → B such that φ(aƾ · aƿ) = φ(aƾ) ⋄ φ(aƿ) for all
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aƾ, aƿ ∈ A. IfB is linearly ordered by a certain order≼B and≼A is the binary relation onA deėned
by taking aƾ ≼A aƿ if and only if φ(aƾ) ≼B φ(aƿ), it is routine to check that≼A is a total order, and
indeed (A, ·,≼A) is a linearly ordered semigroup.

ĉe next example is potentially interesting per se. Not only it gives a family of linearly ordered
semigroups which are neither abelian nor groups (at least in general); it also shows that, for each
n, certain subsemigroups of GLn(R) consisting of triangular matrices are linearly orderable.

Example 3.20. We let a semiring be a triple (A,+, ·) consisting of a set A and associative opera-
tions+ and · fromA×A toA (referred to, respectively, as the semiring addition andmultiplication)
such that

1. (A,+) is an abelian monoid, whose identity we denote by ƽ;

2. ƽ annihilates A, that is ƽ · a = a · ƽ = ƽ for every a ∈ A;

3. multiplicationdistributes over addition, that isa·(b+c) = a·b+a·c and (a+b)·c = a·c+b·c
for all a, b, c ∈ A.

(In other words, a semiring is a ring where elements do not need have an additive inverse.) We call
(A,+) and (A, ·), respectively, the additive monoid and the multiplicative semigroup of (A,+, ·),
which in turn is termed a unital semiring if (A, ·) is a monoid too; see [He, Ch. II] and [Go, Ch. 1,
p. 1].

A semiring (A,+, ·) is said orderable if there exists a total order≼ onA such that (A,+,≼) and
(A, ·,≼) are ordered semigroups, in which case (A,+, ·,≼) is named an ordered semiring. If, on
the other hand, the following hold:

4. (A,+,≼) is a linearly ordered monoid;

5. a · c ≺ b · c and c · a ≺ c · b for all a, b, c ∈ A with a ≺ b and ƽ ≺ c,

then (A,+, ·) is said to be linearly orderable and (A,+, ·,≼) is called a linearly ordered semiring;
cf. [Go, Ch. 20]. Notable examples of linearly ordered semirings areN, Z, R+

ƽ , andR with their
usual structure.
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On these premises, letA = (A,+, ·) be a ėxed semiring. We writeMn(A) for the set of n-by-n
matrices with entries in A. Endowed with the usual operations of entry-wise addition and row-
by-column multiplication implied by the structure of A, here respectively denoted by the same
symbols as the addition and multiplication of the laĨer,Mn(A) becomes a semiring per se, called
the semiring of n-by-n matrices overA and wriĨen asMn(A); see [Go, Ch. 3].

Now, supposeA is linearly ordered by a certain order≼, so thatA♯ := (A,+, ·,≼) is a linearly
ordered semiring, and denote by Un(A+

♯ ) the subsemigroup of the multiplicative semigroup of
Mn(A) consisting of all upper triangular matrices whose entries on or above the main diagonal
belong toA+

♯ := {a ∈ A : ƽ ≺ a}. Observe that Un(A+
♯ ) is not, in general, a group (for instance,

the inverse of a regular ƿ-by-ƿ matrix with positive real entries has not positive real entries), and
not even a monoid for n ≥ ƿ. Perhaps more interestingly, we have the following:

ĉeorem 3.21. Un(A+
♯ ) is a linearly orderable semigroup.

Proof. Set In := {ƾ, ƿ, . . . , n}, Ξn := {(i, j) ∈ In × In : i ≤ j} and deėne a binary relation ≤n

on Ξn by (iƾ, jƾ) ≤n (iƿ, jƿ) if and only if (i) jƾ − iƾ < jƿ − iƿ or (ii) jƾ − iƾ = jƿ − iƿ and jƾ < jƿ.
It is seen that≤n is a well-order, so we can deėne a binary relation≼n,U on Un(A+

♯ ) by taking, for
α = (ai,j)ni,j=ƾ and β = (bi,j)ni,j=ƾ in Un(A+

♯ ), α ≼n,U β if and only if (i) α = β or (ii) there exists
(iƽ, jƽ) ∈ Ξn such that aiƽ,jƽ ≺ biƽ,jƽ and ai,j = bi,j for all (i, j) ∈ Ξn with (i, j) <n (iƽ, jƽ).

It is straightforward that≼n,U is an order. To see, in particular, that it is total: Pick α = (ai,j)ni,j=ƾ

and β = (bi,j)ni,j=ƾ in Un(A+
♯ ) with α ̸= β. ĉere then exists (iƽ, jƽ) ∈ Ξn such that aiƽ,jƽ ̸= biƽ,jƽ ,

where (iƽ, jƽ) is chosen in such a way that ai,j = bi,j for every (i, j) ≤n (iƽ, jƽ). Since≼ is total, we
have that either α ≺n,U β if aiƽ,jƽ ≺ biƽ,jƽ or β ≺n,U α otherwise, and we are done.

It remains to prove that Un(A+
♯ ) is linearly ordered by ≼n,U. For, let α and β be as above and

suppose α ≺n,U β, viz there exists (iƽ, jƽ) ∈ Ξn with aiƽ,jƽ ≺ biƽ,jƽ and ai,j = bi,j for all (i, j) ∈ Ξn

with (i, j) <n (iƽ, jƽ). Given γ = (ci,j)ni,j=ƾ in Un(A+
♯ ) we then have ai,kck,j ≼ bi,kck,j and ci,kak,j ≼

ci,kbk,j for all (i, j) ∈ Ξn and k ∈ In such that (i, k) ≤n (iƽ, jƽ) and (k, j) ≤n (k, jƽ), and indeed
aiƽ,jƽcjƽ,jƽ ≺ biƽ,jƽcjƽ,jƽ and ciƽ,iƽaiƽ,jƽ ≺ ciƽ,iƽbiƽ,jƽ for the fact that (A,+, ·,≼) is a linearly ordered
semiring. It follows that, for all (i, j) ∈ Ξn with (i, j) ≤n (iƽ, jƽ),∑n

k=ƾ ai,kck,j =
∑j

k=i ai,kck,j ≼
∑j

k=i bi,kck,j =
∑n

k=ƾ bi,kck,j

and, similarly,
∑n

k=ƾ ci,kak,j ≼
∑n

k=ƾ ci,kbk,j. In particular, these majorizations are equalities for
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(i, j) <n (iƽ, jƽ) and strict inequalities if (i, j) = (iƽ, jƽ). So α · γ ≺n,U β · γ and γ · α ≺n,U γ · β,
and the proof is complete.

We refer to the order≼n,U deėned in the proof ofĉeorem 3.21 as the zig-zag order onUn(A+
♯ ).

If Ln(A+
♯ ) stands for the subsemigroup of themultiplicative semigroup ofMn(A) consisting of all

lower triangularmatrices whose entries on or below themain diagonal are inA+
♯ , it is then straight-

forward to see that Ln(A+
♯ ) is itself linearly orderable: It is, in fact, linearly ordered by the binary

relation≼n,L deėnedby taking α ≼n,L β if andonly if α⊤ ≼n,U β⊤, where the superscript ‘⊤’means
‘transpose’. Provided that Tn(A+

♯ ) is the subsemigroup of (Mn(A), ·) generated by Un(A+
♯ ) and

Ln(A+
♯ ), it is hence natural to ask the following:

Question 3.22. Is Tn(A+
♯ ) a linearly orderable semigroup?

While at present we do not have an answer to this, it was remarked by Carlo Pagano (Università
di Roma Tor Vergata, Italy) in a private communication thatMn(A+

♯ ), namely the subsemigroup
of (Mn(A), ·) consisting of allmatrices with entries inA+

♯ , is not in general linearly orderable. For
a speciėc counterexample, letA be the real ėeld and take α as the n-by-n matrix whose entries are
all equal to ƾ and β as any n-by-n matrix with positive (real) entries each of whose columns sums
up to n; then αƿ = αβ.

Apparently, the question has not been addressed before by other authors, although the ordering
of Mn(A), in the case where A is a partially orderable semiring, is considered in [Go, Example
20.60].

Example 3.23. In what follows, we let K = (K,+, ·) be a semiring (see Example 3.20 for the
terminology) and A = (A, ⋄) a semigroup, and use K[A] for the set of all functions f : A → K
such that f is ėnitely supported in K, namely f(a) ̸= ƽK for ėnitely many a ∈ A, where ƽK is the
additive identity ofK.

In fact, K[A] can be turned into a semiring, here wriĨen as K[A], by endowing it with the op-
erations of pointwise addition and Cauchy product induced by the structure of A and K (these
operations are denoted below with the same symbols as the addition and multiplication ofK, re-
spectively). We have the following:

ĉeorem 3.24. Suppose thatK is a linearly orderable semiring andA a linearly orderable semigroup.
ĉenK[A] is itself a linearly orderable semiring.
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Proof. ĉe claim is obvious if A = ∅, so assume that A is non-empty, and let ≼K and ≼A be, re-
spectively, orders onA andK for which (K,+, ·,≼K) is a linearly ordered semiring and (A, ⋄,≼A)

a linearly ordered semigroup.
ĉen, given α ∈ A and f ∈ K[A] we let f↓α (respectively, f↑α) be the function A → K taking a to

f(a) if a ≺A α (respectively, α ≼A a), and to ƽK otherwise, in such a way that f = f↓α+ f↑α. Also, we
denote by μ the map K[A]× K[A] → A ∪ {A} sending a pair (f, g) to min{a ∈ A : f(a) ̸= g(a)}
if f ̸= g (the minimum is taken with respect to≼A, and it exists by consequence of the deėnition
itself of K[A]), and to A otherwise.

We deėne a binary relation ≼ on K[A] by leĨing f ≼ g if and only if either f = g or f ̸= g and
f(μ(f, g)) ≺K f(μ(f, g)). It is clear that≼ is a total order onK[A], andwewant to prove that it is also
compatible with the algebraic structure ofK[A], in the sense thatK[A] is linearly ordered by≼.

For, pick f, g, h ∈ K[A] with f ≺ g. Since the additive monoid of K is linearly ordered by
≼K, we have μ(f, g) = μ(f + h, g + h), and thus f + h ≺ g + h. ĉat is, (K[A],+,≼) is a
linearly orderedmonoid in its own right. On another hand, assumeΘ ≺ h, whereΘ is the function
A → K : a 7→ ƽK, and set α := μ(f, g) and β := μ(Θ, h). We have f↓α = g↓α and h = h↑β, with
the result that f · h ≺ g · h if and only if f↑α · h↑β ≺ g↑α · h↑β, and the laĨer inequality is certainly
true, since on the one side f↑α · h↑β(a) = g↑α · h↑β(a) = ƽK for a ≺A α ⋄ β, and on the other

f↑α · h↑β(α ⋄ β) = f↑α(α) · h↑β(β) ≺K g↑α(α) · h↑β(β) = g↑α · h↑β(α ⋄ β).

In a similar way, it is seen that h · f ≺ h · g. So, by the arbitrariness of f, g, and h, we get that
(K[A],+, ·,≼) is a linearly ordered semiring.

So takingA to be the free commutative monoid (respectively, the free monoid) on a certain set
and recalling that free groups (and hence free monoids) are linearly orderable (Example 3.17), we
have the following:

Corollary 3.25. ĉe semiring K is linearly orderable if and only if it goes the same with the semiring
of polynomials with coefficients inK depending on a given set of pairwise commuting (respectively, non-
commuting) variables.
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Amo como ama o amor. Não conheço nenhuma outra razão
para amar senão amar. Que queres que te diga, além de que
te amo, se o que quero dizer-te é que te amo?

ãFernando A. N. PĹňňŃĵ, Primeiro Fausto

4
On a conjeČure of Győry and Smyth

RĹňŊŁ͐. Nous déterminons tous les triplets (a, b, n) d’entiers positifs tels que a et b sont premiers
entre eux et nk divise an + bn (respectivement, an − bn), lorsque k est le maximum de a et b (en
fait, nous répondons à une question un peu plus générale). Comme sous-produit, il est obtenu
que, pour m, n ∈ N+ et n ≥ ƿ, nm divise mn + ƾ si et seulement si (m, n) = (ƿ, ǀ) ou (ƾ, ƿ).
Les résultats sont liés à une conjecture par K. Győry et C. Smyth sur la ėnitude des ensembles
R±
k (a, b) := {n ∈ N+ : nk | an ± bn}, où a, b, k sont des entiers ėxes avec k ≥ ǀ, gcd(a, b) = ƾ

et |ab| ≥ ƿ ; en particulier, ce résultat implique que la conjecture est vraie pour k ≥ max(|a|, |b|).
Ce chapitre est basé sur un papier par l’auteur [Tr4] publié sur Integers.

AĶňŉŇĵķŉ. We determine all triples (a, b, n) of positive integers such that a and b are relatively
prime and nk divides an + bn (respectively, an − bn), when k is the maximum of a and b (in fact,
we answer a slightly more general question). As a by-product, it is found that, for m, n ∈ N+ with
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n ≥ ƿ, nm dividesmn + ƾ if and only if (m, n) = (ƿ, ǀ) or (ƾ, ƿ), which generalizes problems from
the 1990 and 1999 editions of the InternationalMathematical Olympiad. ĉe results are related to
a conjecture by K. Győry and C. Smyth on the ėniteness of the sets R±

k (a, b) := {n ∈ N+ : nk |
an ± bn}, where a, b, k are ėxed integers with k ≥ ǀ, gcd(a, b) = ƾ and |ab| ≥ ƿ; in particular, we
ėnd that the conjecture is true for k ≥ max(|a|, |b|). ĉe chapter is based on a paper by the author
[Tr4] published in Integers.

4.1 IłŉŇŃĸŊķŉĽŃł

It is a problem from the 1990 edition of the International Mathematical Olympiad (shortly, IMO)
to ėnd all integers n ≥ ƿ such that nƿ | ƿn + ƾ. ĉis is reported as Problem 7.1.15 (p. 147) in
[AA], together with a solution by the authors (p. 323), which shows that the only possible n is ǀ.
On another hand, Problem 4 in the 1999 IMO asks for all pairs (n, p) of positive integers such that
p is a (positive rational) prime, n ≤ ƿp and np−ƾ | (p − ƾ)n + ƾ. ĉis is Problem 5.1.3 (p. 105)
in the same book as above, whose solution by the authors (p. 105) is concluded with the remark
that “With a liĨle bit more work, we can even erase the condition n ≤ ƿp.” Speciėcally, it is found
that the required pairs are (ƾ, p), (ƿ, ƿ) and (ǀ, ǀ), where p is an arbitrary prime. (For notation and
terminology herein used without deėnition, as well as for material concerning classical topics in
number theory, the reader should refer to [HW].)

It is now fairly natural to ask whether similar conclusions can be drawn in relation to the more
general problem of determining all pairs (m, n) of positive integers for which nm | mn + ƾ. In fact,
the question is answered in the positive, and even in a stronger form, byĉeorem 4.1 below, where
the following observations are taken into account to rule out from the analysis a few trivial cases:
Given a, b ∈ Z and n, k ∈ N+, we have that ƾk | an±bn and nk | an−an. Furthermore, nk | an±bn

if and only if nk | bn ± an, and also if and only if nk | (−a)n ± (−b)n. Finally, nk | an + (−a)n for
n odd and nk | an − (−a)n for n even.

ĉeorem 4.1. Let a, b, n be integers such that n ≥ ƿ, a ≥ max(ƾ, |b|) and b ≥ ƽ for n even, and set
δ := gcd(a, b), α := δ−ƾa and β := δ−ƾb.

(i) Assume that β ̸= −α when n is odd. ĉen, na | an + bn and nα | αn + βn if and only if
(a, b, n) = (ƿ, ƾ, ǀ) or (ƿc, ƿc, ƿ) for c ∈ {ƽ, ƾ, ƿ}.
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(ii) Assume β ̸= α. ĉen, na | an − bn and nα | αn − βn if and only if (a, b, n) = (ǀ, ƾ, ƿ) or
(ƿ,−ƾ, ǀ).

ĉe theorem will be proved in Section 4.2. In fact, our proof is just the result of a meticulous
reėnementof the solutions alreadyknown for the IMOproblemsmentioned in thepreamble. ĉus,
our only possible merit, if any at all, has been that of bringing into focus a clearer picture of (some
of) their essential features.

Somecomments are inorder before proceeding. First, itwouldbe interesting to extendĉeorem
4.1, possibly at the expense of some extra solutions, by removing the assumption that nα | (αn+βn)
or nα | (αn−βn) (the notation is the same as in the statement of the result), but at presentwedonot
have great ideas for this. Secondly, three out of the six triples obtained by the present formulation
of the theorem come from the identity ƿǀ + ƾǀ = ǀƿ. Lastly, the result yields a solution of the
problems which have originally stimulated this work, as we have the following corollary (of which
we omit the obvious proof):

Corollary 4.2. Let m, n ∈ N+. ĉen nm | mn + ƾ if and only if either (m, n) = (ƿ, ǀ), (m, n) =
(ƾ, ƿ), or n = ƾ and m is arbitrary.

We will make use at some point of the following lemma, which belongs to the folklore and is
typically aĨributed to É. Lucas [Lu] and R. D. Carmichael [Car] (the laĨer having ėxed an error
in Lucas’ original work in the ƿ-adic case).

Lemma 4.3 (Liěing-the-exponent lemma). For all x, y ∈ Z, ℓ ∈ N+ and p ∈ P such that p - xy
and p | x − y, the following conditions are satisėed:

(i) If p ≥ ǀ, ℓ is odd, or ǁ | x − y, then ep(xℓ − yℓ) = ep(x − y) + ep(ℓ).

(ii) If p = ƿ, ℓ is even and eƿ(x − y) = ƾ, then eƿ(xℓ − yℓ) = eƿ(x + y) + eƿ(ℓ).

ĉe study of the congruences an ± bn ≡ ƽ mod nk has a very long history, dating back at least
to Euler, who proved that, for all relatively prime integers a, b with a > b ≥ ƾ, every primitive
prime divisor of an − bn is congruent to ƾ modulo n; see [BV, ĉeorem I] for a proof (a prime
divisor p of an − bn is said to be primitive if there does not exist any k ∈ N+ with k < n such that
p - ak − bk). However, since there are so many results related to the question, instead of trying to
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summarize them here, we just refer the interested reader to the paper [GS], whose authors provide
an account of the existing literature on the topic and characterize, for a, b ∈ Z and k ∈ N+, the set
R+
k (a, b), respectively R−

k (a, b), of all positive integers n such that nk divides an + bn, respectively
an − bn (note that no assumption is made about the coprimality of a and b), while addressing the
problem of ėnding the exceptional cases when R−

ƾ (a, b) and R−
ƿ (a, b) are ėnite; see, in particular,

[GS, ĉeorems 1–2 and 18]. Nevertheless, the related question of determining, given a, b ∈ Z
with gcd(a, b) = ƾ, all positive integers n such that nk divides an + bn (respectively, an − bn),
when k is the maximum of |a| and |b|, does not appear to be considered neither in [GS] nor in the
references therein.

On another hand, it is suggested in [GS] thatR+
k (a, b) andR−

k (a, b) are both ėnite provided that
a, b, k are ėxed integers with k ≥ ǀ, gcd(a, b) = ƾ and |ab| ≥ ƿ (the authors point out that the
question is probably a difficult one, even assuming the ABC conjecture). Although far from being
an answer to this,ĉeorem 4.1 below implies that, under the same assumptions as above, R+

k (a, b)
and R−

k (a, b) are ėnite for k ≥ max(|a|, |b|).

4.2 PŇŃŃĺň

First, for the sake of exposition, we give a couple of lemmas.

Lemma 4.4. Let x, y, z ∈ Z and ℓ ∈ N+ such that gcd(x, y) = ƾ and z | xℓ + yℓ. ĉen xy and z are
relatively prime, q - xℓ − yℓ for every integer q ≥ ǀ for which q | z, and ǁ - z provided that ℓ is even.
Moreover, if there exists an odd prime divisor p of z and ℓ such that gcd(ℓ, p − ƾ) = ƾ, then p | x + y,
ℓ is odd and ep(z) ≤ ep(x + y) + ep(ℓ).

Proof. ĉe ėrst part is routine (we omit the details). As for the second, let p be an odd prime
dividing both z and ℓ with gcd(ℓ, p − ƾ) = ƾ. Also, considering that z and xy are relatively prime
(by the above), denote by y−ƾ an inverse of ymodulo p and byω the order of xy−ƾ modulo p, viz the
smallest k ∈ N+ such that (xy−ƾ)k ≡ ƾ mod p; cf. [HW, Section6.8]. Since (xy−ƾ)ƿℓ ≡ ƾ mod p,
we have ω | ƿℓ. It follows from Fermat’s liĨle theorem and [HW, ĉeorem 88] that ω divides
gcd(ƿℓ, p − ƾ), whence we get ω | ƿ, using that gcd(ℓ, p − ƾ) = ƾ. ĉis in turn implies that
p | xƿ − yƿ, and hence either p | x − y or p | x + y. But p | x − y would give that p | xℓ − yℓ,
which is impossible by the ėrst part of the claim (since p ≥ ǀ). So p | x + y, with the result that
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ℓ is odd: For, if ƿ | ℓ, then p | ƿxℓ (because p | z | xℓ + yℓ and y ≡ −x mod p), which would
lead to gcd(x, y) ≥ p (again, using that p is odd), viz to a contradiction. ĉe rest is an immediate
application of Lemma 4.3.

Lemma 4.5. Let x, y, z ∈ Z such that x, y are odd and x, y ≥ ƽ. ĉen xƿ − yƿ = ƿz if and only if
z ≥ ǀ, x = ƿz−ƿ + ƾ and y = ƿz−ƿ − ƾ.

Proof. Since x and y are odd, xƿ − yƿ is divisible by ǅ, namely z ≥ ǀ, and there exist i, j ∈ N+ such
that i + j = z, x − y = ƿi and x + y = ƿj. It follows that x = ƿj−ƾ + ƿi−ƾ and y = ƿj−ƾ − ƿi−ƾ,
and then j > i and i = ƾ (otherwise x and y would be even). ĉe rest is straightforward.

Now, we are ready to write down the proof of the main result.

Proof of ĉeorem 4.1. (i) Assume that na | an + bn, nα | αn + βn, and β ̸= −α when n is odd. Since
α and β are coprime (by construction), it holds that β ̸= ƽ, for otherwise n | αn + βn and n ≥ ƿ
would give gcd(α, β) ≥ ƿ. Also, α = |β| if and only if α = β = ƾ and n = ƿ (as β ≥ ƽ for n even),
and thus ƿδ divides ƿδƿ, which is possible if and only if δ ∈ {ƾ, ƿ, ǁ} and gives (a, b, n) = (ƾ, ƾ, ƿ),
(ƿ, ƿ, ƿ), or (ǁ, ǁ, ƿ). So, we are leě with the case when

α ≥ ƿ and α > |β| ≥ ƾ, (4.1)

since α ≥ max(ƾ, |β|). Considering that ǁ | nƿ for n even, it follows from Lemma 4.4 that n is odd
and gcd(αβ, n) = ƾ. Denote by p the smallest prime divisor of n. Again by Lemma 4.4, it is then
found that p divides α + β and

α − ƾ ≤ (α − ƾ) · ep(n) ≤ ep(α + β). (4.2)

Furthermore, α + β ≥ ƾ by equation (4.1), whence

α + β = prs, with r, s ∈ N+ and p - s. (4.3)

ĉerefore, equations (4.1) and (4.3) yield that ƿα ≥ prs+ ƾ. ĉis implies by equation (4.2), since
r = ep(α + β), that ǀrs ≤ prs ≤ ƿr + ƾ, which is possible only if p = ǀ and r = s = ƾ. ĉus, by
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equations (4.2) and (4.3), we get α + β = ǀ and α = ƿ, namely (α, β) = (ƿ, ƾ). Also, eǀ(n) = ƾ,
and hence n = ǀt for some t ∈ N+ with gcd(ǃ, t) = ƾ. It follows that tƿ | γt + ƾ for γ = ƿǀ.

So suppose, for the sake of contradiction, that t ≥ ƿ and let q be the least prime divisor of
t. ĉen, another application of Lemma 4.4 gives ƿeq(t) ≤ eq(γ + ƾ) + eq(t), and accordingly
ƾ ≤ eq(t) ≤ eq(γ + ƾ) = eq(ǀƿ), which is however absurd, due to the fact that gcd(ǀ, t) = ƾ.
Hence t = ƾ, i.e. n = ǀ, andpuĨing everything together completes theproof, becauseƿǀ+ƾǀ = ǀƿ

and ǀƿδ | δƿ · (ƿǀ + ƾǀ) only if δ = ƾ.
(ii) Assume that na | an − bn, nα | αn − βn, and β ̸= α. Since gcd(α, β) = ƾ, we get as in the

proof of point (i) that β ̸= ƽ, while α = |β| only if α = ƾ, β = −ƾ, and n is odd (again, β ≥ ƽ
for n even), which is however impossible, because it would give that n | ƿ with n ≥ ǀ. So, we can
suppose from now on that α and β satisfy the same conditions as in equation (4.1), and write n as
ƿrs, where r ∈ N, s ∈ N+ and gcd(ƿ, s) = ƾ. We have the following:

Case 1: r = ƽ, i.e. n = s. ĉen, n is odd, so that na | an+(−b)n and nα | αn+(−β)n, so by point
(i) we get (a, b, n) = (ƿ,−ƾ, ǀ).

Case 2: r ≥ ƾ. Since n is even and gcd(α, β) = ƾ, both α and β are odd, that is ǅ | αƿ − βƿ. It
follows from point (i) of Lemma 4.3 that

eƿ(αn − βn) = eƿ(αƿ − βƿ) + eƿ(ƿr−ƾs) = eƿ(αƿ − βƿ) + r − ƾ. (4.4)

(With the same notation as in its statement, we apply Lemma 4.3 with x = αƿ, y = βƿ,
ℓ = ƿr−ƾs, and p = ƿ.) Also, ƿrα | αn − βn, so equation (4.4) yields

(α − ƾ) · r ≤ eƿ(αƿ − βƿ)− ƾ. (4.5)

ĉere now exist u, v ∈ N+ with u ≥ ƿ and gcd(ƿ, v) = ƾ such that αƿ − βƿ = ƿu+ƾv, with
the result that α > ƿu/ƿ

√
v. Hence, taking also into account that ƿx ≥ x+ƾ for every x ∈ R

with x ≥ ƾ, we get by equation (4.5) that(u
ƿ
+ ƾ
)√

v ≤ ƿu/ƿ
√

v <
u
r
+ ƾ, (4.6)

which is possible only if r = ƾ and
√

v < ƿ. ĉen ƿu/ƿ
√

v < u + ƾ, in such a way that
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ƿ ≤ u ≤ ǂ and v = ƾ (using that v is odd). In consequence of Lemma 4.5, all of this
implies, at the end of the day, that α = ƿz + ƾ, b = ƿz − ƾ and n = ƿs (recall that we want
the conditions in equation (4.1) to be satisėed and β ≥ ƽ for n even), where z is an integer
between ƾ and ǁ. But we need ƿz ≤ z+ƾ by equation (4.5), so necessarily z = ƾ, i.e. α = ǀ
and β = ƾ. Finally, we check that (ƿs)ǀ | ǀƿs − ƾƿs if and only if s = ƾ: For, if s ≥ ƿ and
q is the smallest prime divisor of s, then ƽ < ǀeq(s) ≤ eq(ǀƿ − ƾ) by Lemma 4.4, which
is absurd since gcd(ƿ, s) = ƾ. ĉis gives (a, b, n) = (ǀ, ƾ, ƿ), while it is trivially seen that
ƿǀδ | δƿ · (ǀƿ − ƾƿ) if and only if δ = ƾ.

PuĨing all the pieces together, the proof is thus complete.
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Ithaca has given you the beautiful voyage.
Without her you would not have set out on the road.
Nothing more does she have to give you.

ãKonstantinos Petrou KĵŋĵĺĽň, Ithaca

5
On a system of equations with primes

RĹňŊŁ͐. Étant donné un entier n ≥ ǀ, soient uƾ, . . . , un des entiers premiers entre eux deux à
deux pour lesquels ƿ ≤ uƾ < · · · < un, soit D une famille de sous-ensembles propres et non
vides de {ƾ, . . . , n} qui contient un nombre “suffisant” d’éléments, et soit ε une fonction D →
{±ƾ}. Existe-t-il au moins un nombre premier q tel que q divise

∏
i∈I ui − ε(I) pour un certain

I ∈ D, mais ne divise pas uƾ · · · un ? Nous donnons une réponse positive à ceĨe question dans
le cas où les ui sont des puissances de nombres premiers si on impose certaines restrictions sur
ε et D. Nous utilisons ce résultat pour prouver que, si εƽ ∈ {±ƾ} et si A est un ensemble de
trois ou plus nombres premiers qui contient les diviseurs premiers de tous les nombres de la forme∏

p∈B p − εƽ pour lesquels B est un sous-ensemble propre, ėni et non vide de A, alors A contient
tous les nombres premiers. Ce chapitre est basé sur un article par Paolo LeoneĨi et l’auteur [Tr5]
accepté pour publication au Journal de ĉéorie des Nombres de Bordeaux.
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AĶňŉŇĵķŉ. Given an integer n ≥ ǀ, let uƾ, . . . , un be pairwise coprime integers for which ƿ ≤
uƾ < · · · < un, and let D be a family of nonempty proper subsets of {ƾ, . . . , n} with “enough”
elements and ε a map D → {±ƾ}. Does there exist at least one prime q such that q divides∏

i∈I ui − ε(I) for some I ∈ D, but it does not divide uƾ · · · un? We answer this question in the
positive in the case where the integers ui are prime powers and some restrictions hold on ε andD.
We use the result to prove that, if εƽ ∈ {±ƾ} and A is a set of three or more primes that contains
all prime divisors of any number of the form

∏
p∈B p− εƽ for which B is a ėnite nonempty proper

subset of A, then A contains all the primes. ĉe chapter is based on a paper by the author [Tr5]
(joint work with Paolo LeoneĨi) accepted for publication on Journal de ĉéorie des Nombres de
Bordeaux.

5.1 IłŉŇŃĸŊķŉĽŃł

ĉere are several proofs of the fact thatP is inėnite: Some are elementary, others come as a byprod-
uct of deeper results. E.g., six of them, including Euclid’s classical proof, are given byM. Aigner and
G.M. Ziegler in the ėrst chapter of their lovely Proofs ěom THE BOOK [AZ]. Although not really
focused on the inėnity of primes, this chapter is inspired by Euclid’s original work on the subject,
concerned as it is with the factorization of numbers of the form aƾ · · · an ± ƾ, where aƾ, . . . , an are
coprime positive integers, and in fact prime powers (we do not consider ƾ as a prime power).

To be more speciėc, we need ėrst some notation. Given a set A, we denote byP⋆(A) the family
of all ėnite nonempty proper subsets of A, in such a way that A /∈ P⋆(A). Furthermore, for an
integer n ≥ ƾ we set Sn := {ƾ, . . . , n} and let Pn(A) be the collection of all subsets B of A with
|B| = n. Formore notation and terminology used here without explanation, as well as for material
concerning classical topics in number theory, the reader should refer to [HW]. With this in mind,
we can state the basic question addressed below:

Question 5.1. Given an integer n ≥ ǀ, pick exponents vƾ, . . . , vn ∈ N+ and primes pƾ, . . . , pn ∈ P
such that pƾ < · · · < pn, and let D be a nonempty subfamily of P⋆(Sn) with “enough” elements and
ε a map D → {±ƾ}. Does there exist at least one prime q ∈ P \ {pƾ, . . . , pn} such that q divides∏

i∈I p
vi
i − ε(I) for some I ∈ D?

At present, we have no formal deėnition of what should be meant by the word “enough” in the
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previous statement: this is part of the question. With the notation from above it is rather clear, for
instance, that the answer toQuestion 5.1 is no, at least in general, if |D| is “small” with respect to n,
as shown by the following:

Example 5.2. Given an integer k ≥ ǀ, (pairwise) distinct primes qƾ, . . . , qk and positive integers
eƾ, . . . , ek, letqbe the greatest primedividing at least oneof thenumbers of the form

∏
i∈I q

ei
i ±ƾ for

I ∈ P⋆(Sk). ĉen, we get a negative answer to Question 5.1 by extending qƾ, . . . , qk to a sequence
qƾ, . . . , qℓ containing all the primes≤ q (note that ℓ ≥ k+ ƾ), by taking a nonempty E ⊆ P⋆(Sk)
and arbitrary ek+ƾ, . . . , eℓ ∈ N+, and by seĨing n := ℓ, pi := qi, vi := ei andD := E .

ĉus, to rule out such trivial cases, one shall suppose, e.g., that |D| ≥ nκ or, in alternative,
|D| ≥ nκ for some absolute constant κ > ƽ.

ĉat said, we concentrate here on the case where D contains at least all subsets of Sn of size ƾ,
n − ƿ, or n − ƾ, and the function ε is constant when restricted to these (see ĉeorem 5.5 below),
while collecting a series of intermediate results that could be useful, in future research, to try to
draw broader conclusions. In particular, Question 5.1 can be naturally “generalized” as follows:

Question 5.3. Given an integer n ≥ ǀ and pairwise relatively prime integers uƾ, . . . , un such that
ƿ ≤ uƾ < · · · < un, letD be a nonempty subcollection of P⋆(Sn) for whichD has “enough” elements
and ε a functionD → {±ƾ}. Does there exist at least one q ∈ P such that q divides

∏
i∈I ui− ε(I) for

some I ∈ D and q - uƾ · · · un?

Note thatQuestion 5.3 is not really a generalization ofQuestion 5.1, in the sense that the former
can be stated in the terms of the laĨer by replacing, with the samenotation as above, nwith the total
number d of the prime divisors of uƾ · · · un andD with a suitable subfamily ofP⋆(Sd).

Questions 5.1 and 5.3 are somewhat reminiscent of cyclic systems of simultaneous congruences,
studied by several authors, and still in recent years, for their connection with some long-standing
questions in the theory of numbers, and especiallyZnám’s problemand theAgoh-Giuga conjecture
(see [BV] and [La], respectively, and references therein). Our initialmotivationhas been, however,
of a completely different sort, and in fact related to the following:

Question 5.4. Let A be a subset of P, having at least three elements, and such that for any B ∈ P⋆(A)
all prime divisors of

∏
p∈B p − ƾ belong to A. ĉen A = P.

83



ĉis served as a problem in the 4th grade of the 2003 Romanian IMO Team Selection Test,
and it appears (up to minor notational differences) as Problem 10 in [BAB, p. 53]. ĉe solution
provided in the book (p. 62) consists of two parts. In the ėrst one, the authors aim to show thatA is
inėnite, but their argument is seen to be at least incomplete. Speciėcally, they argue as follows (we
use the notation from above): Aěer having proved that ƿ is in A, they suppose by contradiction
that A is a ėnite set of size k (where k ≥ ǀ) and let pƾ, . . . , pk be a numbering of A such that
ƿ = pƾ < · · · < pk. ĉen, they derive from the standing assumptions on A that

pαƿ + ƾ = ƿβ+ƾpγƿ + ƿ

for some α, β, γ ∈ N. But this does not imply ƾ ≡ ƿ mod pƿ (as is stated in the book) unless
γ ̸= ƽ, which is nowhere proved and has no obvious reason to hold.

ĉe problem per se is not, however, difficult, and it was used also for the 2004 France IMOTeam
Selection Test (we are not aware of any official solution published by the organizers of the compe-
tition).

Questions somewhat similar to those abovehave been consideredbyother authors, even though
under different assumptions, and mostly focused on the properties of the prime factorization of
very particular numerical sequences aƽ, aƾ, . . . recursively deėned, e.g., by formulas of the form
an+ƾ = ƾ + aƽ · · · an; see [Na, Section 1.1.2] and the references therein for an account (for all
practical purposes, we report that one of the questions raised by A. A. Mullin in [Mu] and men-
tioned by W. Narkiewicz on page 2 of his book has been recently answered by [Bo]).

Now, we have not been able to work out a complete solution of Question 5.1, whatever this may
be. Instead, we solve it in some special cases. In fact, our main result here is as follows:

ĉeorem 5.5. Given an integer n ≥ ǀ, pick distinct primes pƾ, . . . , pn, exponents vƾ, . . . , vn ∈ N+

and a subcollectionD ofP⋆(Sn) such that

Dƽ ⊆ D, withDƽ := Pƾ(Sn) ∪ Pn−ƿ(Sn) ∪ Pn−ƾ(Sn).

ĉen, for every function ε : D → {±ƾ} such that the restriction of ε to Dƽ is constant, there exists at
least one q ∈ P \ {pƾ, . . . , pn} such that q divides

∏
i∈I p

vi
i − ε(I) for some I ∈ D.

ĉeproof ofĉeorem5.5, as presented in Section 5.3, requires a number of preliminary lemmas,
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which are stated and proved under assumptions much weaker than those in the above statement.
In particular, we will make use at some point of the following (well-known) result [Zs]:

ĉeorem 5.6 (Zsigmondy’s theorem). Pick a, b ∈ N+ and an integer n ≥ ƿ such that (i) a > b
and (ii) neither (a, b, n) = (ƿ, ƾ, ǃ) nor a+ b is a power of ƿ and n = ƿ. ĉen, there exists p ∈ P such
that p | an − bn and p - ak − bk for each positive integer k < n.

ĉeorem 5.5 can be used to solve a generalization of Question 5.4. Speciėcally, we say that a set
A of integers is ėne if either A is ėnite or for every p ∈ P there exist inėnitely many a ∈ A such
that p - a. On the other hand, for B,C ⊆ Z we write B ⊥ C if for every b ∈ B there exists c ∈ C
such that b | c; this simpliėes to b ⊥ C when B = {b}. Clearly, B ⊥ C if and only if b ⊥ C for all
b ∈ B. Based on these premises, we then prove the following:

ĉeorem 5.7. Pick εƽ ∈ {±ƾ} and let A be a ėne set of prime powers with the property that |A| ≥ ǀ
and q ⊥ A whenever q is a prime dividing

∏
a∈B a − εƽ for some B ∈ P⋆(A). ĉen |A| = ∞, and in

particular A = P if A ⊆ P and P ⊥ A if εƽ = ƾ.

ĉeorem 5.7 is proved in Section 5.4. With the notation from above, the assumption that A is
ėne is somehow necessary, as we show in Example 5.19. Incidentally, the result gives a solution of
Question 5.4 in the special casewhere εƽ = ƾ andA ⊆ P, while providing another proof, although
overcomplicated, of the inėnitude of primes. One related question is as follows:

Question 5.8. Pick n ∈ N+ and distinct primes qƾ, . . . , qn. Does there always exist a nonempty set of
prime powers, say A, such that P \ {qƾ, . . . , qn} is precisely the set of all prime divisors of the numbers∏

a∈B a + ƾ for which B is a ėnite nonempty subset of A?

ĉis is completely open to us. An easier question is answered in Example 5.20.

5.2 PŇĹńĵŇĵŉĽŃłň

Here below, we ėx somemore notation and prove a few preliminary lemmas related to the original
version of Question 5.1 (that is, not only to the special cases covered by ĉeorem 5.5). For any
purpose it may serve, we recall that, in our notation, ƽ ∈ N and ∅, Sn /∈ P⋆(Sn).

In the remainder of this section, we suppose that there exist an integer n ≥ ǀ, a set P =

{pƾ, . . . , pn}of nprimes, integral exponents vƾ, . . . , vn ∈ N+, a nonempty subfamilyD ofP⋆(Sn),
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and a function ε : D → {±ƾ} such that pƾ < · · · < pn and q ∈ Pwhenever q ∈ P and q divides∏
i∈I p

vi
i − εI for some I ∈ D, where εI := ε(I) for economy of notation. Accordingly, we show

that these assumptions lead to a contradiction ifD contains some distinguished subsets of Sn and
the restriction of ε to the subcollection of these sets, herein denoted by Dƽ, is constant: ĉis is
especially the case whenDƽ = Pƾ(Sn) ∪ Pn−ƿ(Sn) ∪ Pn−ƾ(Sn).

We let P :=
∏n

i=ƾ pvii andDop := {Sn \ I : I ∈ D}, and then we deėne

PI :=
∏
i∈I

pvii and P−I := PSn\I

for I ∈ P⋆(Sn) (note that P = PI · P−I), and ε−I := εSn\I for I ∈ Dop. In particular, given i ∈ Sn
wewrite Pi in place of P{i} and P−i for P−{i}, but also εi instead of ε{i} and ε−i for ε−{i} (whenever
thismakes sense). It then follows fromour assumptions that there aremaps αƾ, . . . , αn : Dop → N
such that

∀I ∈ Dop : P−I = ε−I +
∏
i∈I

pαi,Ii , (5.1)

where αi,I := αi(I). In particular, if there exists i ∈ Sn such that {i} ∈ Dop then

P−i = pαii + ε−i, with αi := αi,{i} ∈ N+ (5.2)

(of course, αi ≥ ƾ since P−i − ε−i ≥ ƿ · ǀ − ƾ). ĉis in turn implies that

∀Iƾ, Iƿ ∈ Dop : P = PIƾ ·

(
ε−Iƾ +

∏
i∈Iƾ

pαi,Iƾi

)
= PIƿ ·

(
ε−Iƿ +

∏
i∈Iƿ

pαi,Iƿi

)
, (5.3)

which specializes to
P = pviƾiƾ ·

(
pαiƾiƾ + ε−iƾ

)
= pviƿiƿ ·

(
pαiƿiƿ + ε−iƿ

)
(5.4)

for all iƾ, iƿ ∈ Sn such that {iƾ}, {iƿ} ∈ Dop. We mention in this respect that, for any ėxed integer
b ̸= ƽ and any ėnite subset S of P, the diophantine equation

A · (axƾ − axƿ) = B · (byƾ − byƿ) (5.5)

has only ėnitely many solutions in positive integers a,A,B, xƾ, xƿ, yƾ, yƿ for which a is a prime,
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gcd(Aa,Bb) = ƾ, xƾ ̸= xƿ and all the prime factors of AB belong to S; see [BL] and the ref-
erences therein. It follows that our equation (5.4) has only ėnitely many possible scenarios for ε
taking the constant value−ƾ inD. However, themethods used in [BL] are not effective and, as far
as we can tell, a list of all the solutions to equation (5.5) is not known, not even in the special case
when A = B = ƾ and b = ƿ. Furthermore, there doesn’t seem to be any obvious way to adapt the
proof of the main result in [BL] to cover all of the cases resulting from equation (5.4).

With this in mind, and based on (5.1), our main hypothesis can be now restated as

“q divides P−I − ε−I for some q ∈ P and I ∈ Dop only if q ∈ P.” (5.6)

In addition, we can easily derive, using (5.3) and unique factorization, that

“q divides ε−I +
∏

i∈I p
αi,I
i for some q ∈ P and I ∈ Dop only if q ∈ P.” (5.7)

Both of (5.6) and (5.7) will be oěen referred to throughout the article. Lastly, we say that ε is
k-symmetric for a certain k ∈ N+ if both of the following conditions hold:

(i) I ∈ D ∩ Pk(Sn) only if I ∈ Dop; (ii) εI = ε−I for all I ∈ D ∩ Pk(Sn).

With all this in hand, we are ėnally ready to prove a few preliminary results that will be used later,
in Section 5.3, to establish our main theorem.

5.2.1 PŇĹŀĽŁĽłĵŇĽĹň

ĉe material is intentionally organized into a list of lemmas, each one based on “local”, rather than
“global”, hypotheses. ĉis is motivated by the idea of highlighting which is used for which purpose,
while looking for an approach to solve Question 5.1 in a broader generality. In particular, the ėrst
half of ĉeorem 5.5 (the one relating to the case εƽ = ƾ) will follow as a corollary of Lemma 5.14
below, while the second needs more work.

In what follows, given a ∈ Z and m ∈ N+ such that gcd(a,m) = ƾ, we denote by ordm(a) the
smallest k ∈ N+ such that ak ≡ ƾ mod m, namely the order of a in the group of units ofZ/mZ.

Lemma 5.9. If pi = ǀ for some i ∈ Sn and there exists j ∈ Sn \ {i} such that {j} ∈ Dop, then one,
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and only one, of the following conditions holds:

1. ε−j = −ƾ and αj is even.

2. ε−j = −ƾ, αj is odd and pj ≡ ƾ mod ǃ.

3. ε−j = ƾ, αj is odd and pj ≡ ƿ mod ǀ.

Proof. Under the assumptions of the claim, (5.4) gives that ǀ | pαjj + ε−j, which is possible only if
one, and only one, of the desired conditions is satisėed.

ĉe next lemma, as trivial as it is, furnishes a sufficient condition under which ƿ ∈ P. Indeed,
having away to show that ƿ and ǀ are inP looks like a key aspect of the problem in its full generality.

Lemma 5.10. If there exists I ∈ D such that ƾ /∈ I then pƾ = ƿ; also, αƾ ≥ ǁ if, in addition to the
other assumptions, I ∈ Pn−ƾ(Sn).

Proof. Clearly, pi is odd for each i ∈ I, which means that PI − εI is even, and hence pƾ = ƿ by
(5.6) and the assumed ordering of the primes pi. ĉus, it follows from (5.2) that if I ∈ Pn−ƾ then
ƿαƾ = P−ƾ − ε−ƾ ≥ ǀ · ǂ − ƾ, to the effect that αƾ ≥ ǁ.

ĉe following two lemmas prove that, in the case of a ƾ-symmetric ε, reasonable (and not-so-
restrictive) assumptions imply that ǀ belongs toP.

Lemma 5.11. Suppose that ε is ƾ-symmetric and pick a prime q /∈ P. ĉen, there doesn’t exist any
i ∈ Sn such that {i} ∈ D and pi ≡ ƾ mod q.

Proof. Assume by contradiction that there exists iƽ ∈ Sn such that {iƽ} ∈ D and piƽ ≡ ƾ mod q.
ĉen, since ε is ƾ-symmetric, we get by (5.1) and (5.2) that

ƾ − εƽ ≡ pviƽiƽ − εƽ ≡
∏
i∈Iƽ

pαi,Iƽi mod q and PIƽ ≡ pαiƽiƽ + εƽ ≡ ƾ + εƽ mod q,

where Iƽ := Sn \ {iƽ}. But q /∈ P implies q - pviƽiƽ − εƽ by (5.6), with the result that εƽ = −ƾ
(from the above), and then q | PIƽ . By unique factorization, this is however in contradiction to the
fact that q is not inP.
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Lemma 5.12. Suppose that ε is ƾ-symmetric and there exists J ∈ P⋆(Sn) such that Sn \ J has an even
number of elements, Dƽ := Pƾ(Sn) ∪ {Sn \ J} ⊆ D, and the restriction of ε toDƽ is constant. ĉen
pƿ = ǀ and αƿ ≥ ƾ

ƿ(ǂ − εƽ).

Proof. Let ε take the constant value εƽ when restricted to Dƽ and assume by contradiction that
ǀ /∈ P. ĉen, Lemma 5.11 entails that pi ≡ −ƾ mod ǀ for all i ∈ Sn, while taking I = Sn \ {i} in
(5.1) and working modulo ǀ yield by (5.6) that

pvii − εƽ ≡
∏
j∈I

pαj,Ij ̸≡ ƽ mod ǀ,

to the effect that vi is odd if εƽ = ƾ and even otherwise (here, we are using thatPƾ(Sn) ∈ D and ε
is ƾ-symmetric, in such a way thatPn−ƾ(Sn) ∈ D too). Now, since Sn \ J ∈ D, the very same kind
of reasoning also implies that

ƾ − εƽ ≡ P−J − εƽ ≡
∏
j∈J

pαj,Jj mod ǀ,

with the result that if εƽ = ƾ then ǀ ∈ P by (5.6), as follows from the fact that Sn \ J has an even
number of elements and vi is odd for each i ∈ J (which was proved before). ĉis is however a
contradiction.

ĉus, we are leě with the case εƽ = −ƾ. Since −ƾ is not a quadratic residue modulo a prime
p ≡ −ƾ mod ǁ, we get by the above and (5.2) that pi ≡ ƾ mod ǁ for each i = ƿ, ǀ, . . . , n.
ĉen, (5.1) gives, together with Lemma 5.10, that P−ƾ + ƾ = ƿαƾ with αƾ ≥ ƿ, which is again a
contradiction as it means that ƿ ≡ ƽ mod ǁ. ĉe whole proves that pƿ = ǀ, which implies from
(5.2) that ǀαƿ = P−ƿ − ε−ƿ ≥ ƿ · ǂ − εƽ, and hence αƿ ≥ ƾ

ƿ(ǂ − εƽ).

Now, we show that, ifD contains at least some distinguished subsets of Sn and ε±i = ƾ for some
admissible i ∈ Sn \ {ƾ}, then pi has to be a Fermat prime.

Lemma5.13. AssumePƾ(Sn \{ƾ}) ⊆ Dop and suppose there exists i ∈ Sn \{ƾ} for which {i} ∈ D
and ε±i = ƾ. ĉen, pi is a Fermat prime.

Proof. It is clear from Lemma 5.10 that pƾ = ƿ. Suppose by contradiction that there exists an odd
prime q such that q | pi − ƾ (note that pi ≥ ǀ), and hence q | pvii − εi. ĉen, taking I = {i} in
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(5.6) gives that q = pj for some j ∈ Sn \ {ƾ, i}. Considering thatPƾ(Sn \ {ƾ}) ⊆ Dop, it follows
from (5.4) that

pvjj (p
αj
j + ε−j) = pvii (p

αi
i + ƾ),

where we use that ε−i = ƾ. ĉis is however a contradiction, because it implies that ƽ ≡ ƿ mod pj
(with pj ≥ ǀ). So, pi is a Fermat prime by [HW, ĉeorem 17].

Lemma 5.14. Suppose that pi = ǀ for some i ∈ Sn,Pƾ(Sn) ⊆ Dop, and there exists j ∈ Sn \ {ƾ, i}
such that {j} ∈ D and ε±j = ƾ. ĉen i = ƿ, pƾ = ƿ, and ε−ƾ = −ƾ.

Proof. First, we have by Lemma 5.10 that pƾ = ƿ, and hence i = ƿ. Also, pj is a Fermat prime
by Lemma 5.13 (and clearly pj ≥ ǂ). So suppose by contradiction that ε−ƾ = ƾ. ĉen, Lemma
5.9 and (5.2) imply that pj | P−ƾ = ƿαƾ + ƾ with αƾ odd, to the effect that ƿ ≤ ordpj(ƿ) ≤
gcd(ƿα, pj − ƾ) = ƿ. It follows that ǂ ≤ pj ≤ ƿƿ − ƾ, which is obviously impossible.

ĉe proof of the next lemma depends on Zsigmondy’s theorem. Although not strictly related to
the statement and the assumptions of ĉeorem 5.5, it will be of crucial importance later on.

Lemma5.15. Pick p, q ∈ P and assume that there exist x, y, z ∈ N for which x ̸= ƽ, y ≥ ƿ, p | q+ƾ
and qx − ƾ = py(qz − ƾ). ĉen x = ƿ, z = ƾ, p = ƿ, y ∈ P, and q = ƿy − ƾ.

Proof. Since x ̸= ƽ, it is clear that qx − ƾ ̸= ƽ, with the result that z ̸= ƽ and qz − ƾ ̸= ƽ too.
ĉerefore, using also that y ̸= ƽ, one has that

py = (qx − ƾ)/(qz − ƾ) > ƾ, (5.8)

which is obviously possible only if
x > z ≥ ƾ. (5.9)

We claim that x ≤ ƿ. For suppose to the contrary that x > ƿ. ĉen byZsigmondy’s theorem, there
must exist at least one r ∈ P such that r | qx − ƾ and

r - qk − ƾ for each positive integer k < x.

In particular, (5.8) yields that r = p (by unique factorization), which is a contradiction since p |
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qƿ − ƾ. ĉus, we get from (5.9) that x = ƿ and z = ƾ. ĉen, py = q + ƾ, that is py − ƾ ∈ P, and
this is absurd unless p = ƿ and y ∈ P. ĉe claim follows.

ĉis completes the series of our preliminary lemmas; we can now proceed to the proof of the
main result.

5.3 PŇŃŃĺ Ńĺ TļĹŃŇĹŁ 5.5

ĉroughout we use the same notation and assumptions as in Section 5.2, but we specialize to the
case where

Dƽ := Pƾ(Sn) ∪ Pn−ƿ(Sn) ∪ Pn−ƾ(Sn) ⊆ D

and ε takes the constant value εƽ when restricted toDƽ (as in the statement of ĉeorem 5.5).

Proof of ĉeorem 5.5. At least one of n − ƿ or n − ƾ is even, so we have by Lemmas 5.10 and 5.12
that pƾ = ƿ, pƿ = ǀ and vƿ ≥ ƿ. ĉere is, in consequence, no loss of generality in assuming, as we
do, that εƽ = −ƾ, since the other case is impossible by Lemma 5.14. ĉus, pick iƽ ∈ Sn such that
ǀ | piƽ + ƾ. It follows from (5.3) and our hypotheses that there exist βiƽ , γiƽ ∈ N such that

P = ǀvƿ(ǀαƿ − ƾ) = pviƽiƽ ·
(
pαiƽiƽ − ƾ

)
= ǀvƿpviƽiƽ ·

(
ǀβiƽp

γiƽ
iƽ − ƾ

)
,

to the effect that, on the one hand,

pαiƽiƽ − ƾ = ǀvƿ ·
(
ǀβiƽp

γiƽ
iƽ − ƾ

)
, (5.10)

and on the other hand,
ǀαƿ − ƾ = pviƽiƽ ·

(
ǀβiƽp

γiƽ
iƽ − ƾ

)
. (5.11)

ĉen, since vƿ ≥ ƿ and αiƽ ̸= ƽ, we see by (5.10) and Lemma 5.15 that βiƽ ≥ ƾ. It is then found
from (5.11) that−ƾ ≡ (−ƾ)viƽ+ƾ mod ǀ, i.e. viƽ is even. To wit, we have proved that

∀i ∈ Sn : pi ≡ −ƾ mod ǀ =⇒ vi is even and pvii ≡ ƾ mod ǀ. (5.12)
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But every prime ̸= ǀ is congruent to±ƾ modulo ǀ. ĉus, we get from (5.2) and (5.12) that

ƿ ≡
∏

i∈Sn\{ƿ}

pvii + ƾ ≡ ǀαƿ ≡ ƽ mod ǀ,

which is obviously a contradiction and completes the proof.

5.4 PŇŃŃĺ Ńĺ TļĹŃŇĹŁ 5.7

In the present section, unless differently speciėed, we use the same notation and assumptions of
ĉeorem 5.7, whose proof is organized into three lemmas, one for each aspect of the claim.

Lemma 5.16. A is an inėnite set.

Proof. Suppose for the sake of contradiction that A is ėnite and let n := |A|. Since A is a set of
prime powers, there then exist pƾ, . . . , pn ∈ P and vƾ, . . . , vn ∈ N+ such that pƾ ≤ · · · ≤ pn and
A = {pvƾƾ , . . . , pvnn }, and our assumptions give that

“q divides
∏

i∈I p
vi
i − εƽ for some I ∈ P⋆(Sn) only if q ∈ {pƾ, . . . , pn}.” (5.13)

ĉis clearly implies that pƾ < · · · < pn. In fact, if piƾ = piƿ for distinct iƾ, iƿ ∈ Sn, then it is found
from (5.13) and unique factorization that

pkiƾ =
∏

i∈Sn\{iƾ}

pvii − εƽ

for a certain k ∈ N+, which is impossible when reduced modulo piƾ . ĉus, using that n ≥ ǀ, it
follows fromĉeorem5.5 that there also exists q ∈ P\{pƾ, . . . , pn} such that q divides

∏
i∈I p

vi
i −

εƽ for some I ∈ P⋆(Sn). ĉis is, however, in contradiction with (5.13), and the proof is complete.

Lemma 5.17. If εƽ = ƾ, then P ⊥ A. In particular, A = P if A ⊆ P.

Proof. Suppose for the sake of contradiction that there exists p ∈ P such that p does not divide any
element ofA. ĉen, sinceA is ėne and |A| = ∞ (by Lemma 5.16), there are inėnitelymany a ∈ A
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such that p - a. By the pigeonhole principle, this yields that, for a certain r ∈ {ƾ, . . . , p − ƾ}, the
set Ar := {a ∈ A : a ≡ r mod p} is inėnite, and we have that

∀B ∈ P⋆(Ar) :
∏
a∈B

a ≡
∏
a∈B

r ≡ r|B| mod p. (5.14)

As it is now possible to choose Bƽ ∈ P⋆(Ar) in such a way that |Bƽ| is a multiple of p− ƾ, one gets
from (5.14) and Fermat’s liĨle theorem that p divides

∏
a∈B a− ƾ for someB ∈ P⋆(A), and hence

p | aƽ for some aƽ ∈ A (by the assumptions ofĉeorem 5.7). ĉis is, however, absurd, because by
construction no element of A is divisible by p. It follows that P ⊥ A. ĉe rest is trivial.

In the next lemma, we let ω(n) denote the number of distinct prime factors of n, in such a way
that, e.g., ω(ƾ) = ƽ and ω(ƾƿ) = ƿ. Moreover, we let an empty sum be equal to ƽ and an empty
product be equal to ƾ, as usual.

Lemma 5.18. If εƽ = −ƾ and A ⊆ P, then A = P.

Proof. Suppose to the contrary that A ̸= P, i.e. there exists p ∈ P such that p - A, and for each
r ∈ Sp−ƾ, let Ar := {a ∈ A : a ≡ r mod p}. ĉen, p - A yields that

A = Aƾ ∪ · · · ∪ Ap−ƾ. (5.15)

In addition, set Γfin := {r ∈ Sp−ƾ : |Ar| < ∞} and Γinf := Sp−ƾ \ Γfin, and then

Afin := {a ∈ A : a ∈ Ar for some r ∈ Γfin} and Ainf := A \ Afin.

It is clear from (5.15) that Ainf is inėnite, because Afin is ėnite, {Afin,Ainf} is a partition of A, and
|A| = ∞ by Lemma 5.16. ĉus, we deėne ξƽ :=

∏
a∈Afin

a, and we claim that there exists a
sequence ϱƽ, ϱƾ, . . . of positive integers such that ϱn is, for each n ∈ N, a nonempty product (of a
ėnite number) of distinct elements of A with the property that

ξƽ | ϱn and ƾ + ϱn ≡
n+ƾ∑
i=ƽ

ϱiƽ mod p. (5.16)

Proof of the claim. We construct the sequence ϱƽ, ϱƾ, . . . in a recursive way. To start with, pick an
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arbitrary aƽ ∈ Ainf and deėne ϱƽ := aƽ · ξƽ, where the factor aƽ accounts for the possibility that
Γfin = ∅. By construction, ϱƽ is a nonempty product of distinct elements of A, and (5.16) is satis-
ėed in the base case n = ƽ.

Now ėx n ∈ N and suppose that we have already found ϱn ∈ N+ such that ϱn is a product of
distinct elements of A and (5.16) holds true with ϱƽ and ϱn. By unique factorization, we then get
from the assumptions on A that there exist sƾ, . . . , sk ∈ N+ and distinct primes pƾ, . . . , pk ∈ P
such that pi ⊥ A for each i and

ξƽ | ϱn and ƾ + ϱn =
k∏

i=ƾ

psii , (5.17)

where k := ω(ϱn) ≥ ƾ. Since A is a subset of P, then pi ⊥ A implies pi ∈ A, and indeed pi ∈ Ainf,
because every element of Afin, if any exists, is a divisor of ξƽ, and ξƽ | ϱn by (5.17). Using that
Ar is inėnite for every r ∈ Γinf and Ainf =

∪
r∈Γinf Ar, we get from here that there exist elements

aƾ, . . . , ah ∈ Ainf such that, on the one hand,

ϱƽ < aƾ < · · · < ah, (5.18)

and on the other hand,

∀i ∈ Sk : pi ≡ aƾ+ti ≡ · · · ≡ asi+ti mod p, (5.19)

where h :=
∑k

i=ƾ si and ti :=
∑i−ƾ

j=ƾ sj for each i. It follows from (5.17) and (5.19) that

ƾ + ϱn ≡
k∏

i=ƾ

psii ≡
h∏

i=ƾ

ai mod p.

So, for the assumptions on ϱn and the above considerations, we see that

ƾ + ϱƽ · (ƾ + ϱn) ≡ ƾ + ϱƽ ·
n+ƾ∑
i=ƽ

ϱiƽ ≡
n+ƿ∑
i=ƽ

ϱiƽ mod p.

Our claim is hence proved, by recurrence, by taking ϱn+ƾ := ϱƽ · (ƾ + ϱn), because ξƽ | ϱƽ | ϱn+ƾ
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and ϱn+ƾ is, by virtue of (5.18), a nonempty product of distinct elements of A.

ĉus, leĨing n = p(p − ƾ) − ƿ in (5.16) and considering that p - ϱƽ, as p - A and ϱƽ is, by
construction, a product of elements of A, gives that ƾ + ϱn ≡ ƽ mod p, with the result that p ∈ A
by the assumed properties of A. ĉis is, however, a contradiction, and the proof is complete.

Finally, we have all the ingredients to cook the following:

Proof of ĉeorem 5.7. Just put together Lemmas 5.16, 5.17 and 5.18.

Oneobvious question arises: Canweproveĉeorem5.7without assuming thatA is a ėne subset
ofZ? ĉat the answer is not unconditionally affirmative is implied by the following:

Example 5.19. Pick distinct primes qƾ, qƿ, . . . , qℓ ≥ ǀ and, in view of [HW, ĉeorem 110], let
gi be a primitive root modulo qi. A standard argument based on the Chinese remainder theorem
then shows that there also exists an integer g such that g is a primitive rootmodulo qi for each i, and
by Dirichlet’s theorem on arithmetic progressions we can choose g to be prime. Now, deėne

A :=


∪ℓ

i=ƾ{g(qi−ƾ)n : n ∈ N+} if εƽ = ƾ

∪ℓ
i=ƾ{g

ƾ
ƿ (qi−ƾ)(ƿn+ƾ) : n ∈ N} if εƽ = −ƾ.

If P is the set of all primes q such that q divides
∏

a∈B a − εƽ for some B ∈ P⋆(A), then on the
one hand, qi ⊆ P for each i (essentially by construction), and on the other hand, qi - A because
gcd(qi, g) = ƾ. Note that this is possible, by virtue of ĉeorem 5.7, only because A is not ėne.

Weconclude the sectionwith another example, that provides evidenceof a substantial difference
between Lemmas 5.17 and 5.18, and is potentially of interest in relation to Question 5.8.

Example 5.20. Given odd primes qƾ, . . . , qℓ, let k := lcm(qƾ − ƾ, . . . , qℓ − ƾ) and A := {pnk :
p ∈ P, n ∈ N+}. We denote byP the set of all primes q for which there exists B ∈ P⋆(A) such
that q divides

∏
a∈B a + ƾ. It is then easily seen thatP ⊆ P \ {qƾ, . . . , qℓ}, since

∏
a∈B a + ƾ ≡

ƿ ̸≡ ƽ mod qi for each i = ƾ, ƿ, . . . , ℓ.
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5.5 CŀŃňĽłĻ ŇĹŁĵŇĿň

Many natural questions related arise (in addition to the ones already raised in the previous sec-
tions), and perhaps it can be interesting to ėnd them an answer.

Some examples: Is it possible to prove ĉeorem 5.5 under the weaker assumption that Dƽ, as
there deėned, is Pƾ(Sn) ∪ Pn−ƾ(Sn) instead of Pƾ(Sn) ∪ Pn−ƿ(Sn) ∪ Pn−ƾ(Sn)? ĉis is clearly
the case if n = ǀ, but what about n ≥ ǁ? And what if n is sufficiently large andDƽ = Pk(Sn) for
some k ∈ Sn? ĉe answer to the laĨer is negative for k = ƾ (to see this, take pƾ, . . . , pn to be the n
smallest primes and let vƾ = · · · = vn = εƽ = ƾ, then observe that, for each i ∈ Sn, the greatest
prime divisor of pvii − εƽ is≤ pi − ƾ). But what if k ≥ ƿ?

Furthermore: Towhat degree can the results in Section5.2 be extended in thedirectionofQues-
tion 5.3? It seemsworthmentioning in this respect thatQuestion 5.3 has the following abstract for-
mulation in the seĨing of integral domains (we refer to [Mo, Ch. 1] for background on divisibility
and related topics in the general theory of rings):

Question 5.21. Given an integral domainF = (F,+, ·) and an integer n ≥ ǀ, pick pairwise coprime
non-units uƾ, . . . , un ∈ F (assuming that this is actually possible), and letD be a nonempty subfamily
of P⋆(Sn) with “enough” elements. Does there exist at least one irreducible q ∈ F such that q divides∏

i∈I ui − ƾ for some I ∈ D and q - uƾ · · · un?

In the above, the condition thatuƾ, . . . , un are non-units is needed to ensure that, for each I ∈ D,
thenumber

∏
i∈I ui−ƾ is non-zero,whichwould, in some sense, trivialize thequestion. Onanother

hand, one may want to assume that F is a UFD, in such a way that an element is irreducible if and
only if it is prime [Mo, ĉeorems 1.1 and 1.2]. In particular, it seems interesting to try to answer
Question 5.21 in the special case where F is the ring of integers of a quadratic extension ofQwith
the property of unique factorization, and uƾ, . . . , un are primes inF. ĉiswill be, in fact, the subject
of future work.
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