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Ce e thèse consiste essentiellement en la concaténation de contributions variées à la théorie

additive des structures algébriques comme les groupes, les anneaux et leurs généralisations, d’une

part, et à la théorie élémentaire des nombres, d’autre part. En conséquence, la présentation sera

divisée en deux parties, partie I et partie II, qui sont indépendantes l’une de l’autre et se composent,

respectivement, de trois et deux chapitres.

Dans la première partie, nous prouvons un certain nombre de résultats concernant la théorie ad-

ditive des groupes (pas nécessairement commutatifs), mais nous le faisons dans le cadre plus large

et abstrait des semi-groupes (éventuellement non-commutatifs). Notre philosophie à cet égard

peut être résuméedans leméta-principe suivant : plus faibles sont les hypothèses structurelles, plus

grand est le nombre de problèmes que nous pouvons espérer résoudre, tout en essayant d’arriver à

une meilleure compréhension de leur nature intime.

Les sommes d’ensembles, principalement dans le cadre des groupes commutatifs, ont été in-

tensivement étudiés depuis plusieurs années (voir [Ru] pour un survol récent). Également des

résultats intéressants ont été obtenus pour le cas des monoïdes commutatifs et cancellatifs par

A. Geroldinger et ses coauteurs ; voir, par exemple, [G] et les références citées là (en notation

additive, “cancellatif ” veut dire que a + c = b + c ou c + a = c + b impliquent a = b). Mais

presque rien n’est connu sur la théorie additive des semi-groupes, et l’un des objectifs du présent

travail est de contribuer à l’exploration de ce e théorie et de convaincre, nous l’espérons, le lecteur

que le sujet est plus intéressant que l’on pourrait peut-être le suspecter.

Unepremièremotivationnaturelle pour s’intéresser aux semi-groupes vient de l’observationque

l’ensemble des éléments non nuls d’un anneau à unité non-trivial (commutatif ou non) n’est pas, en
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général, cancellatif (sauf si l’anneau est sans diviseurs de zéro), et par conséquent n’est même pas

fermé pour la multiplication. Une autre motivation est liée au fait que, même si A = (A,+) est

un groupe, les sous-ensembles non vides de A, munis de l’opération binaire qui envoie une paire

(X, Y) sur la sommeX+ Y, ne forment en général rien de plus qu’unmonoïde non cancellatif (par

exemple, quand A est (Z,+), la structure correspondante sur les parties de A a été étudiée par

J. Cilleruello, Y. ould Hamidoune et O. Serra [CHS]).

A cet égard, il semble utile dementionner une chose. Bien que chaque semi-groupe commutatif

et cancellatif puisse être immergé dans un groupe (comme il résulte de la construction standard

du groupe de fractions d’un monoïde ; voir [B1, chapitre I, section 2.4]), rien de semblable n’est

vrai dans le cas non-commutatif, pas même dans le cas de type ni. Ceci est lié à une question

bien connue en théorie des semi-groupes, d’abord résolue par A. I. Mal’cev dans [Ma]. Ce résultat

est d’une importance fondamentale pour notre travail sur ce point dans la mesure où il démontre

que l’étude des sommes d’ensembles dans les semi-groupes ne peut pas être systématiquement ré-

duite, en l’absence de commutativité, au cas des groupes (en tout cas, pas de façon évidente). En

fait, l’exemple de Mal’cev est basé sur le quotient du semi-groupe libre sur huit le res par une con-

gruence appropriée, et le semi-groupe correspondant est non seulement de type ni, mais aussi

linéairement (c’est-à-dire, strictement et totalement) ordonnable.

La Partie I se compose de trois chapitres (chapitres 1, 2 et 3). Dans le premier chapitre, qui

est basé sur un article par l’auteur [Tr1] publié dans Uniform Distribution eory, on généralise la

transformée de Davenport [V] et on l’utilise pour prouver que, siA = (A,+) est un semi-groupe

cancellatif (éventuellement non-commutatif) et X, Y sont des sous-ensembles non vides de A tels
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que le sous-semi-groupe engendré par Y est commutatif, on a

|X + Y| ≥ min(γ(Y), |X|+ |Y| − ),

où γ(Y), qu’on appelle la constante de Cauchy-Davenport de Y relative au semi-groupe A, est

dé nie par

γ(Y) := sup
y ∈Y×

inf
y ̸=y∈Y

ord(y − y ).

Cela généralise le théorème classique deCauchy-Davenport [C] [D1] [D2] au cadre plus large des

semi-groupes, avec comme cas particuliers une extension des théorèmes de I. Chowla [Ch] et S. S.

Pillai [Pi] pour les groupes cycliques et une version plus forte d’une autre généralisation dumême

théorème de Cauchy-Davenport pour les groupes commutatifs, où dans la formule ci-dessus γ(Y)

est remplacé par l’in mum des ordres d’un sous-semi-groupe non trivial de l’unitarisation de A.

Ce dernier résultat a été prouvé par G. Károlyi dans le cas des groupes nis, grâce au théorème de

Feit- ompson ; puis par Hamidoune pour un groupe arbitraire. L’approche d’Hamidoune passe

par sa généralisation d’un théorème additif de L. Shatrowsky et il est en dé nitive construit sur sa

méthode isopérimétrique.

Dans le deuxième chapitre, qui s’appuie sur unpapier par l’auteur [Tr2] soumis pour publication,

on fait une étude plus approfondie des propriétés de la constante de Cauchy-Davenport (intro-

duite dans le chapitre précédent) pour montrer l’extension supplémentaire suivante du théorème

de Cauchy-Davenport : si (A,+) est un semi-groupe cancellatif et si X, Y ⊆ A, alors

|X + Y| ≥ min(γ(X + Y), |X|+ |Y| − ).
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Cela implique une généralisation de l’inégalité de Kemperman pour les groupes sans torsion [Ke]

et aussi une version plus forte du théorème d’Hamidoune-Károlyi mentionné ci-dessus. Ici, on

donne une preuve indépendante et totalement combinatoire du cas général de ce résultat, qui ne

dépend ni du théorème de Feit- ompson ni de la méthode isopérimétrique. En n, on se penche

sur certains aspects d’une conjecture qui, si elle était vraie, pourrait fournir une formulation uni ée

de beaucoup de théorèmes de type Cauchy-Davenport, y compris ceux-là déjà prouvés dans le

chapitre 1.

En n, le troisième chapitre généralise des résultats par G. A. Freĭman, M. Herzog et leurs coau-

teurs sur la théorie structurelle des sommes d’ensembles dans les groupes ordonnés [FHLM] au

cas plus général des semi-groupes ordonnés. En particulier, on prouve que, si (A, ·,≼) est un semi-

groupe linéairement ordonné et S est un sous-ensemble ni deA engendrant un sous-semi-groupe

non-abélien, alors |S | ≥ |S|− . Au coursde la preuve, onobtient égalementungrandnombrede

résultats secondaires, et notamment que le commutateur et le normalisateur d’un sous-ensemble

ni d’un semi-groupe linéairement ordonné coïncident. Ce chapitre est basé sur un article par

l’auteur [Tr3] soumis pour publication.

La deuxième partie de la thèse traite de questions de théorie élémentaire des nombres, avec

un accent particulier sur les congruences, les nombres premiers et la divisibilité. Ce e partie est

composée de deux chapitres (chapitres 4 et 5).

Dans le chapitre 4, on prouve des résultats liés à une conjecture par K. Győry et C. Smyth [GS]

sur la nitude des ensemblesR±
k (a, b)de tous les entiers n tels que nk divide an±bn pour des entiers

xés a, b et k avec k ≥ , |ab| ≥ et gcd(a, b) = : en particulier, on démontre que les ensembles

R±
k (a, b) sont nis si k ≥ max(|a|, |b|). Le chapitre s’appuie sur un article par l’auteur [Tr4] publié

dans Integers.
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En n, dans le chapitre 5, nous considérons une question de divisibilité dans l’anneau des entiers,

en quelque sorte liée au problème de Znám et à la conjecture Agoh-Giuga. Plus précisément, étant

donné un entier n ≥ , soient u , . . . , un des entiers premiers entre eux deux à deux pour lesquels

≤ u < · · · < un, soit D une famille de sous-ensembles propres et non vides de { , . . . , n}

qui contient un nombre “suffisant” d’éléments, et soit ε une fonction D → {± }. Existe-t-il au

moins un nombre premier q tel que q divise
∏

i∈I ui − ε(I) pour un certain I ∈ D, mais ne divise

pas u · · · un ? Nous donnons une réponse positive à ce e question dans le cas où les ui sont des

puissances de nombres premiers si on impose certaines restrictions sur ε et D. Nous utilisons ce

résultat pour prouver que, si ε ∈ {± } et siA est un ensemble de trois ou plus nombres premiers

qui contient les diviseurs premiers des tous les nombres de la forme
∏

p∈B p − ε pour lesquels

B est un sous-ensemble propre, ni et non vide de A, alors A contient tous les nombres premiers.

Le chapitre est basé sur un article par Paolo Leone i et l’auteur [Tr5] accepté pour publication au

Journal de éorie des Nombres de Bordeaux.
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A

e present thesis is basically a recollection of several sparse contributions to the additive theory

of group-like and ring-like structures, on the one hand, and to the elementary theory of numbers,

on the other hand. Accordingly, the presentation will be subdivided into two parts, namely Part I

and Part II, which are essentially independent from each other and consist, respectively, of three

and two chapters.

In the rst part, we prove a number of results concerning the additive theory of (possibly non-

commutative) groups, but we do it in the broader and more abstract se ing of (possibly non-

commutative) semigroups. Our philosophy in this respect can be summarized in the following

meta-principle: e weaker are the structural assumptions, the larger is the class of problems that

we can hope to solve, while trying to get a deeper understanding.

Sumsets in (mostly commutative) groups have been intensively investigated for several years

(see [Ru] for a recent survey), and interesting results have been also obtained in the case of com-

mutative and cancellative monoids by A. Geroldinger and coauthors; see, e.g., [G] and references

therein (in additive notation, “cancellative” means that a + c = b + c or c + a = c + b imply

a = b). But almost nothing is known on the additive theory of semigroups, and one of the goals

of the present work is to contribute to the investigation of the theory and to convince the reader,

we hope, that the subject is more interesting than one would possibly suspect.

A natural motivation in this sense comes from considering that the non-zero elements of a non-

trivial unital ring, either commutative or not, are not, in general, cancellative (unless the ring is a

domain), and hence not even closed under multiplication. Another motivation relies on the fact

that, even whenA = (A,+) is a group, the non-empty subsets of A, endowed with the binary op-
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eration taking a pair (X, Y) to the sumsetX+Y, is, in general, nothingmore than a non-cancellative

monoid (e.g., whenA is (Z,+), the corresponding structure on the powerset ofAhas been studied

by J. Cilleruello, Y. ould Hamidoune and O. Serra [CHS]).

In this respect, one thing seemsworthmentioning. While every commutative cancellative semi-

group embeds as a subsemigroup into a group (as it follows from the standard construction of the

group of fractions of a commutative monoid; see [B1, Chapter I, Section 2.4]), nothing similar is

true in the non-commutative case, not even if the ambient semigroup is nitely generated. is

is related to a well-known question in the theory of semigroups, rst answered by A. I. Mal’cev in

[Ma], and is of fundamental importance for our work here, in that it shows that the study of sum-

sets in cancellative semigroups cannot be systematically reduced, in the absence of commutativity,

to the case of groups (at the very least, not in any obvious way). In fact, Mal’cev’s example involves

the quotient of the free semigroup over eight le ers by a suitable congruence, and it is not only

nitely generated, but even linearly orderable (here, a semigroup (A,+) is called linearly order-

able if there exists a total order≼ onA such that x+ z ≺ y+ z and z+ x ≺ z+ y for all x, y, z ∈ A

with x ≺ y).

Part I consists of three chapters, namely Chapters 1, 2 and 3. In the rst chapter, based on a

paper by the author [Tr1] published in Uniform Distribution eory, we generalize the Davenport

transform [V] and use it to prove that, for a (possibly non-commutative) cancellative semigroup

A = (A,+) and non-empty subsets X, Y of A such that the subsemigroup generated by Y is com-

mutative, we have

|X + Y| ≥ min(γ(Y), |X|+ |Y| − ),

viii



where

γ(Y) := sup
y ∈Y×

inf
y ̸=y∈Y

ord(y − y )

is what we call the Cauchy-Davenport constant of Y (relative to A). is generalizes the classical

Cauchy-Davenport theorem [C] [D1] [D2] to the se ing of semigroups, and it implies, in par-

ticular, an extension of I. Chowla’s [Ch] and S. S. Pillai’s [Pi] theorems for cyclic groups, as well

as a strengthening of another generalization of the same Cauchy-Davenport theorem to the case

of commutative groups, where γ(Y) in the above formula is replaced by the in mum of the or-

der of the non-trivial subsemigroups of the (conditional) unitization of A. In fact, a proof of this

la er result was rst given by G. Károlyi in 2005 for the special case of nite groups [Ka], based

on the structure theory of group extensions, by reduction to nite solvable groups in the light of

the Feit- ompson theorem. en, a more “elementary” proof of the general statement (for an

arbitrary group) was communicated to Károlyi by Hamidoune during the peer-review process of

Károlyi’s paper and included in the nal version of the manuscript [Ka]. Hamidoune’s approach

depends on a generalization of an addition theorem by L. Shatrowsky and is ultimately built upon

the isoperimetric method.

In the second chapter, which is founded on a paper by the author [Tr2] submi ed for publi-

cation, we further investigate the properties of the Cauchy-Davenport constant and use them to

prove the following: IfA is cancellative and X, Y ⊆ A, then

|X + Y| ≥ min(γ(X + Y), |X|+ |Y| − ).

is implies at once a generalization of Kemperman’s inequality for torsion-free groups [Ke] and

a strengthening of the Hamidoune-Károlyi theorem mentioned in the above. Our proof of this is
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basically a transformationproof; in particular, it is self-contained anddoesnot dependoneither the

Feit- ompson theorem or the isoperimetric method. In addition, we present and discuss aspects

of a conjecture which, if true, would further improvemost of the results in the chapter and provide

a uni ed picture of manymore theorems of Cauchy-Davenport type, including the ones proved in

Chapter 1.

Finally, Chapter 3 generalizes results by G. A. Freĭman, M. Herzog and coauthors on the struc-

ture theory of set addition from the context of linearly ordered groups [FHLM] to linearly ordered

semigroups. In particular, we nd that, if (A, ·,≼) is a linearly ordered semigroup and S is a nite

subset of A generating a non-abelian subsemigroup, then |S | ≥ |S| − . On the road to this

goal, we also prove a number of subsidiary results, and most notably that the commutator and the

normalizer of a nite subset of a linearly ordered semigroup are equal to each other. e chapter is

based on a paper by the author [Tr3] submi ed for publication.

e second part of the thesis, on the other hand, deals with questions from the elementary the-

ory of numbers, with a focus on congruences, prime numbers and divisibility in the integers.

Part II is composed of two chapters, namely Chapters 4 and 5. In Chapter 4 we prove a result

related to a difficult conjecture by K. Győry and C. Smyth [GS] about the niteness of the sets

R±
k (a, b)of all positive integers n such that nk divides an±bn for xed integers a, b and kwith k ≥ ,

|ab| ≥ and gcd(a, b) = : Speci cally, we show thatR±
k (a, b) are nite sets if k ≥ max(|a|, |b|).

e chapter relies on a paper by the author [Tr4] published in Integers.

Finally, in Chapter 5 we consider a question in the study of primes and divisibility in the ring of

integers, somehow related to Znám’s problem and the Agoh-Giuga conjecture. Speci cally, given

an integer n ≥ , let u , . . . , un be pairwise coprime integers for which ≤ u < · · · < un, and

letD be a family of nonempty proper subsets of { , . . . , n} with “enough” elements and ε a map
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D → {± }. It is then natural to ask whether there exist at least one prime q such that q divides∏
i∈I ui−ε(I) for some I ∈ D, but it does not divide u · · · un. In fact, we answer this in the positive

in the case where the integers ui are prime powers and some restrictions hold on ε andD. We use

the result to prove that, if ε ∈ {± } andA is a set of three or more primes that contains all prime

divisors of any number of the form
∏

p∈B p− ε for which B is a nite nonempty proper subset of

A, then A contains all the primes. e chapter is based on a paper by the author [Tr5] (joint work

with Paolo Leone i) accepted for publication in Journal de éorie des Nombres de Bordeaux.
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Cualquier destino, por largo y complicado que sea, consta en
realidad de un solo momento: el momento en que el hombre
sabe para siempre quién es.

Jorge Luis B , El Aleph

0
General formalities

R . Le but de ce bref chapitre est de rappeler les dé nitions de base et de xer les notations
et la terminologie générales. Nous faisons tout d’abord une courte digression sur la théorie des
ensembles, qui pour pédante qu’elle puisse sembler aux praticiens, se révèle nécessaire au vu des
développements à venir.

A . e purpose of this brief chapter is to review basic de nitions and x some general ter-
minology andnotation. Wemake rst a short digression into set theory, whichmay soundpedantic
to practitioners, but is necessary in view of certain developments, on which we hope to work in the
future.
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0.1 P

We use as a foundation the Tarski-Grothendieck set theory, shortly TG. Alternatives are possible,
but this issue exceeds the scope of the thesis, and we can pass over it. We just mention that we
choose to work in TG, rather than, say, in ZFC (the classical Zermelo-Fraenkel set theory with the
axiom of choice), motivated by the fact that we will hopefully be concerned, in a sequel of this
work, with objects like the “class of all structures of a certain type”, which would make no sense in
ZFC, essentially because the la er does not allow for anything like the “class of all sets”. With this
inmind, we x once and for all an uncountableGrothendieck universeΩ, and refer to the elements
of Ω as Ω-sets, or simply sets, and to an arbitrary set in the ontology of TG as a class, a family, or a
collection.

We writeZ for the integers,N+ for the positive integers,Q for the rationals,R for the real num-
bers, andR+ for the positive real numbers. en, we letN := { } ∪ N+ andR+ := { } ∪ R+.
Each of these sets is regarded as a subset of R and endowed with its usual addition +, multipli-
cation ·, absolute value | · |∞ and order ≤ (as customary, we write ≥ for the dual of ≤, and <

and >, respectively, for the strict orders induced by ≤ and ≥). Moreover, we denote by P the
set { , , . . .} of all (positive rational) primes, and for m ∈ N+ we write Z/mZ for the integers
modulo m, equipped with the usual addition+m and multiplication ·m (we omit the subscript ‘m’
if there is no danger of confusion).

We extend the operations and the order ofR toR ∪ {∞}, by adjoining a “point at in nity”, viz
an element∞ /∈ R (in fact, we may assume∞ := R), and by taking a +∞ := ∞ + a := ∞
and a ≤ ∞ for a ∈ R∪{∞}, as well as a ·∞ := ∞· a := ∞ if a ̸= and ·∞ := ∞· := .
Accordingly, we set := ∞ and := · = · ∞ = .

We use capital blackboard le ers such as A and B, with or without subscripts or superscripts,
to denote structured classes (or simply structures), by which we mean here any tuple consisting of
one class, referred to as the carrier of the structure, and a nite number of operations or relations
of nite ariety on the same class such as (A,+), (B,⊥), or (C,+, ·, ,≼). Accordingly, if A is a
structure andA its carrier, wewrite a ∈ A tomeanon the one hand that a is an element ofA, and on
the other to emphasize that, in the context of the discourse, any statement involving the element
a should be interpreted, in the presence of ambiguity, with respect to the structure of A (this is
typically the case where, by an abuse of notation, operations or relations of different structures are
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denotedby the same symbol). e sameprinciple applies to subclasses, so thatwemayoccasionally
write S ⊆ A in place of S ⊆ A. Since every class can be viewed as a “vacuous structure”, the above
is perfectly consistent with the fact that we are using blackboard le ers like N, Z, etc. to refer to
some special sets of numbers.

We write |X| for the counting measure of a set X (this is just the number of elements of X when
X is nite), by interpreting | · | as a map from Ω toN ∪ {∞}.

At several points throughout the thesis, wewill usewithout explicitmention the elementary fact
that ifA ⊆ B ⊆ R+∪{∞} then inf(B) ≤ inf(A) and sup(A) ≤ sup(B), with the convention that
the supremum and the in mumof an empty subset ofR+∪{∞} are, respectively, and∞. Note
that, here and later, in ma and suprema of subsets ofR+ ∪ {∞}, as well as minima and maxima
(when de ned) are always taken with respect to (the appropriate restriction of) the order≤.

Given a, b ∈ Z with a + b ̸= we use gcd(a, b) for the greatest common divisor of a and b.
Also, for c ∈ Z \ { } and p ∈ P, we write ep(c) for the p-adic valuation of c, namely the greatest
exponent k ∈ N such that pk | c, and we extend this toZ by ep( ) := ∞. Finally, for m ∈ N+ and
x ∈ Z/mZwe let gcd(m, x) := gcd(m, x̄), where x̄ is the smallest non-negative integer in x.

Unless otherwise speci ed, we refer to N. Bourbaki, éorie des ensembles, Éléments de math-
ématique I, Springer-Verlag, Berlin, 2006 (reprint ed.) and N. Bourbaki, Algèbre, Chapitres 1 à 3,
Éléments de mathématique II, Springer-Verlag, Berlin, 2006 (2nd revised ed.), respectively, for
standard notations and de nitions from set theory and abstract algebra.

In all what follows, the lowercase Latin le ers h and k shall denote integers, while i, j, ℓ, m and n
stand for positive integers, unless a statement to the contrary is made.
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Il mare è senza strade, il mare è senza spiegazioni.
Se lo guardi non te ne accorgi: di quanto rumore faccia.

Alessandro B ,Oceano Mare

1
Cauchy-Davenport type theorems, I

R . On généralise la transformée de Davenport et on l’utilise pour prouver que, si A =

(A,+) est un semi-groupe cancellatif (éventuellement non-commutatif) et X, Y sont des sous-
ensembles non vides de A tels que le sous-semi-groupe engendré par Y est commutatif, on a |X +

Y| ≥ min(γ(Y), |X| + |Y| − ), où γ(Y), qu’on appelle la constante de Cauchy-Davenport de Y
relative au semi-groupeA, est dé nie par

γ(Y) := sup
y ∈A×

inf
y ̸=y∈Y

ord(y − y ).

Cela généralise le théorème classique de Cauchy-Davenport au cadre plus large des semi-groupes,
avec commecasparticuliers uneextensiondes théorèmesde I.Chowla et S. S.Pillai pour les groupes
cycliques et une version plus forte d’une autre généralisation du théorème de Cauchy-Davenport
pour les groupes commutatifs, où dans la formule ci-dessus γ(Y) est remplacé par l’in mum de |S|
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sur les sous-semigroupes S non triviaux de l’unitarisation de A. Ce dernier résultat a été prouvé
par G. Károlyi dans le cas des groupes nis, grâce au théorème de Feit- ompson ; puis par Hami-
doune pour un groupe arbitraire grâce à sa méthode isopérimétrique. Le chapitre est basé sur un
papier par l’auteur [Tr1] publié dans Uniform Distribution eory.

A . We generalize the Davenport transform and use it to prove that, for a (possibly non-
commutative) cancellative semigroupA = (A,+) and non-empty subsets X, Y of A such that the
subsemigroup generated by Y is commutative, we have |X+Y| ≥ min(γ(Y), |X|+ |Y|− ), where

γ(Y) := sup
y ∈A×

inf
y ̸=y∈Y

ord(y − y ).

is carries over the Cauchy-Davenport theorem to the broader se ing of semigroups, and it im-
plies, in particular, an extension of I. Chowla’s and S. S. Pillai’s theorems for cyclic groups and
a strengthening of another generalization of the same Cauchy-Davenport theorem to commuta-
tive groups, where γ(Y) in the above is replaced by the in mum of |S| as S ranges over the non-
trivial subsemigroups of the (conditional) unitization of A. is la er result was rst proved by
G. Károlyi in 2005 for the special case of nite groups [Ka], by reduction to simple groups by the
Feit- ompson theorem, and later by Y. O. Hamidoune for an arbitrary group, building upon the
isoperimetric method. e chapter is based on a paper by the author [Tr1] published in Uniform
Distribution eory.

1.1 I

Semigroups are a natural framework for developing large parts of theories traditionally presented
in less general contexts. Not only this can suggest new directions of research and shed light on
questions primarily focused on groups, but it also makes methods and results otherwise restricted
to “richer se ings” applicable, at least in principle, to larger classes of problems.

Here and later, a semigroup is a structureA = (A,+) consisting of a (possibly empty) setA and
an associative binary operation+ on A. Given subsets X and Y of A, we de ne the sumset, relative
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toA, of the pair (X, Y) as the set

X + Y := {x + y : x ∈ X, y ∈ Y},

which is wri en as x + Y if X = {x} (respectively, as X + y if Y = {y}). Furthermore, we extend
the notion of difference set by

X − Y := {z ∈ A : (z + Y) ∩ X ̸= ∅} (1.1)

and
−X + Y := {z ∈ A : (X + z) ∩ Y ̸= ∅}. (1.2)

Expressions involving one or more summands of the form Z + · · · + Zn or
∑n

i= Zi, as well as
expressions of the form−x + Y and X − y for x, y ∈ A are de ned in a similar way (we may omit
the details); in particular, we use nZ for Z + · · ·+ Zn if the Zi are all equal to the same set Z, and
we possibly refer to nZ as the n-fold sum of Z.

We say that A is unital, or a monoid, if there exists ∈ A such that z + = + z = z for
all z; when this is the case, is unique and called the identity of A. en, we let A× be the set of
units ofA, so thatA× = ∅ ifA is not a monoid. In this respect, we recall that, ifA is unital with
identity , a unit ofA is an element z for which there exists a provably unique element z̃ ∈ A such
that z+ z̃ = z̃+ z = ; this z̃ is then called the inverse of z inA and denoted by (−z)A, or simply
by−z if no ambiguity can arise.

Given Z ⊆ A, we write Z× in place of Z ∩ A× (if there is no likelihood of confusion) and ⟨Z⟩A
for the smallest subsemigroup of A containing Z. Note that A is a group if and only if A× = A.

en, if Z = {z}, we use ⟨z⟩A instead of ⟨{z}⟩A and ordA(z) for the order of z (inA), that is we
let ordA(z) := |⟨z⟩A|, so generalizing the notion of order for the elements of a group. Here and
later, the subscript ‘A’ may be omi ed from the notation ifA is clear from the context. Finally, an
element z ∈ A is called cancellable (inA) if x + z = y + z or z + x = z + y for x, y ∈ A implies
x = y (see [B1, Section I.2.2]), andA is said cancellative if any element of A is cancellable.

On another hand, we de ne the conditional unitization ofA, herein denoted byA( ) and simply
referred to as the unitization ofA, as follows: IfA is not unital,A( ) is the pair (A∪{A},+), where
+ is, by an abuse of notation, the unique extension of+ to a binary operation onA∪{A} for which
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A serves as an identity (note that A /∈ A, so loosely speaking we are just adjoining a distinguished
element to A and extending the structure ofA in such a way that the outcome is a monoid whose
identity is the adjoined element); otherwise A( ) := A (cf. [Ho, p. 2]). en, for a subset S
of A we write pA(S) for infz∈S\{ } ordA( )(z), namely the in mum of the order of the non-trivial
subsemigroups ofA( ), which is simply denoted by p(S) if there is no ambiguity.

Remark 1.1. In the case of a multiplicatively wri en semigroup B = (B, ·), the “sumset” of two
subsets X and Y of B, relative to B, is more properly called the product set of the pair (X, Y) and
possibly denoted by XY, while the analogues of the difference sets de ned by (1.1) and (1.2) are
wri en as XY− and X− Y, respectively. Accordingly, given Z ⊆ B we use Zn for the product set
of n copies of Z and call it the n-fold product of Z. Further, we write the unitization of B as B( )

rather than asB( ). However, note that, if we are talking of a semigroup and it is not clear from the
context whether this is wri en either additively or not, the term “sumset” will be preferred. For the
rest, everything works as expected.

Sumsets in (mostly commutative) groups have been intensively investigated for several years
(see [Ru] for a recent survey), and interesting results have been also obtained in the case of com-
mutative cancellative monoids (see [G] and references therein, where these structures are simply
called “monoids”). e chapter aims to extend aspects of the theory to the more general se ing of
possibly non-commutative semigroups.

A natural motivation in this sense comes from considering that the non-zero elements of a non-
trivial unital ring, either commutative or not, are not, in general, cancellative (unless the ring is a
domain), and hence not even closed under multiplication. Another motivation relies on the fact
that, even whenA = (A,+) is a group, the non-empty subsets of A, endowed with the binary op-
eration taking a pair (X, Y) to the sumsetX+Y, is, in general, nothingmore than a non-cancellative
monoid (e.g., whenA is (Z,+), the corresponding structure on the powerset of A has been stud-
ied by J. Cilleruello, Y. O. Hamidoune and O. Serra [CHS]; see the discussion at the end of the
section for details on this).

Historically, oneof the rst signi cant achievements in the eld is probably theCauchy-Davenport
theorem, originally establishedbyA.-L.Cauchy [C] in1813, and independently rediscoveredmore
than a century later by H. Davenport [D1] [D2]:
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eorem 1.2 (Cauchy-Davenport theorem). Let (A,+) be a group of prime order p and X, Y non-
empty subsets of A. en, |X + Y| ≥ min(p, |X|+ |Y| − ).

e result has been the subject of numerous papers, and received many different proofs, each
favoring alternative points of view and eventually leading to progress on a number of related ques-
tions. In fact, themain contribution here is an extension of eorem1.2 to cancellative semigroups
(this is stated in Section 1.2).

e Cauchy-Davenport theorem applies especially to the additive group of the integers mod-
ulo a prime. Extensions to composite moduli have been given by several authors, and notably by
I. Chowla [Ch] and S. S. Pillai [Pi]. ese results, reported below for the sake of exposition and
used byChowla and Pillai in relation toWaring’s problem, are further strengthened, in Section 1.2,
by Corollary 1.17, which can be viewed as a common generalization of both of them, and whose
proof is sensibly shorter than each of the proofs appearing in [Ch] and [Pi] (not tomention that it
comes as a by-product of a deeper result).

eorem 1.3 (Chowla’s theorem). If X, Y are non-empty subsets of Z/mZ such that ∈ Y and
gcd(m, y) = for each y ∈ Y \ { }, then

|X + Y| ≥ min(m, |X|+ |Y| − ).

eorem1.4 (Pillai’s theorem). Pick non-empty subsets X and Y ofZ/mZ. Let δ be the maximum of
gcd(m, y − y ) for distinct y, y ∈ Y if |Y| ≥ , and set δ := otherwise. en,

|X + Y| ≥ min(δ− m, |X|+ |Y| − ).

Apartial account of further results in the same spirit can be found in [N, Section 2.3], alongwith
an entire chapter dedicated to Kneser’s theorem [N, Chapter 4], which, among the other things,
implies eorem 1.3 (and then also eorem 1.2); see [N, Section 4.6, Exercises 5 and 6]. Gener-
alizations of the Cauchy-Davenport theorem of a somewhat different avor have been furnished,
still in recent years, by several authors.

Speci cally, assume for the rest of the chapter that A = (A,+) is a xed, arbitrary semigroup
(unless differently speci ed), and let be the identity of the unitization,A( ), ofA. en we have:

11



eorem 1.5 (folklore). IfA is a commutative group and X, Y are non-empty subsets of A, then

|X + Y| ≥ min(p(A), |X|+ |Y| − ).

eorem 1.5 is another (straightforward) consequence of Kneser’s theorem. While it applies to
both nite and in nite commutative groups, an analogous result holds for all groups:

eorem 1.6 (Hamidoune-Károlyi theorem). If A is a group and X, Y are non-empty subsets of A,
then |X + Y| ≥ min(p(A), |X|+ |Y| − ).

is was rst proved byG. Károlyi in the case of nite groups, relying on the structure theory of
group extensions, by reduction to nite solvable groups in the light of the Feit- ompson theorem,
and then by Hamidoune in the general case, based on the isoperimetric method. In fact, we will
give an elementary proof of theHamidoune-Károlyi theorem in the next chapter, which the reader
is referred to for more details on the history of the result.

A further result from the literature that is signi cant in relation to the subject ma er is due to
J. H. B. Kemperman [Ke], and reads as follows:

eorem 1.7 (Kemperman’s inequality). Let A be a group, and let X, Y be non-empty subsets of A.
Suppose that every non-zero element of A has order≥ |X|+ |Y| − . en, |X+ Y| ≥ |X|+ |Y| − .

Remarkably, [Ke] is focused on cancellative semigroups (there simply called semigroups), and
it is precisely in this framework that Kemperman establishes a series of results, related to the num-
ber of different representations of an element in a sumset, that eventually lead to eorem 1.7, a
weakened version of which will be obtained in Section 1.5 as a corollary (namely, Corollary 1.15)
of our main theorem.

As for the rest, Cilleruello,Hamidoune andSerra, see [CHS, eorem3], haveproved aCauchy-
Davenport theorem for acyclic monoids (these are termed acyclic semigroups in [CHS], but they
are, in fact, monoids in our terminology), and it would be interesting to nd a common pa ern
among their result and the ones in the present chapter. Unluckily, we do not havemuch on this for
themoment (inparticular, note that acyclic semigroups in [CHS] arenot cancellative semigroups),
but will come back to the question with some thoughts in the next chapter.
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O .

In Section 1.2, we de ne the Cauchy-Davenport constant and state our main results. In Section
1.3, we establish a few basic lemmas. Section 1.4 is devoted to generalized Davenport transforms
and their fundamental properties. We demonstrate the central theorem of the chapter ( eorem
1.9) in Section 1.5 and give a couple of applications in Section 1.6.

1.2 T

Keeping all of the above in mind, we can now proceed to the heart of the chapter.

De nition 1.8. For an arbitrary subset X of A, we let

γA(X) := sup
x ∈X×

inf
x ̸=x∈X

ord(x − x )

en, given X , . . . ,Xn ⊆ A we de ne

γA(X , . . . ,Xn) := max
≤i≤n

γA(Xi)

and call γA(X , . . . ,Xn) the Cauchy-Davenport constant of (X , . . . ,Xn) relative toA (again, the
subscript ‘A’ may be omi ed from the notation if there is no likelihood of confusion).

Any pair of subsets of A has a well-de ned Cauchy-Davenport constant (relative toA). In par-
ticular, γ(Z) is zero for Z ⊆ A if A× = ∅. However, this is not the case, for instance, when Z ̸= ∅
andA is a group, which serves as a “moral base” for the following non-trivial bound:

eorem 1.9. Suppose A is cancellative and let X, Y be non-empty subsets of A such that ⟨Y⟩ is com-
mutative. en, |X + Y| ≥ min(γ(Y), |X|+ |Y| − ).

eorem 1.9 represents the central contribution of the chapter. Not only it extends the Cauchy-
Davenport theorem to the broader se ing of semigroups (see Section 1.6), but it also provides a
strengthening and a generalization of eorem 1.5, as is shown below. Any pair of subsets ofA has,
in fact, a well-de ned Cauchy-Davenport constant (relative toA), and it is interesting to compare
it with other “structural parameters”, as in the following:
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Lemma 1.10. Let X, Y be subsets of A and assume thatA is cancellative and X× + Y× is non-empty.
en, γ(X, Y) ≥ min(γ(X), γ(Y)) ≥ γ(X + Y) ≥ p(A).

eproof ofLemma1.10 is deferred to the endof Section2.3. Note that the result applies, on the
level of groups, to any pair of non-empty subsets. On the other hand, the following basic example
suggests that the lemma is quite pessimistic, insofar as there are some relevant cases where each of
the ‘≥’ in its statement can actually be replaced with a “much greater than”:

Example 1.11. Let m ≥ and pick prime numbers p and q with m < p < q. en, set

X := {mk mod n : k = , . . . , p − } and Y := {mk mod n : k = , . . . , p},

where n := m · p · q. We have |X + Y| = p, γ(X) = γ(Y) = p · q and γ(X + Y) = q, while
p(Z/nZ) is the smallest prime divisor of m, with the result that

p(Z/nZ) < γ(X + Y) < min(γ(X), γ(Y)) = γ(X, Y),

and indeed p(Z/nZ) is “much” smaller than γ(X + Y) if q is “much” larger than m, and similarly
γ(X + Y) is “much” smaller than γ(X, Y) if p is “much” larger than .

eorem 1.9 can be “symmetrized” and further strengthened when each summand generates a
commutative subsemigroup. is leads to the following corollaries, whose proofs are straightfor-
ward, by duality (see Proposition 2.8 in Section 2.3), in the light of De nition 1.8:

Corollary 1.12. AssumeA is cancellative and let X, Y be non-empty subsets of A such that ⟨X⟩ is com-
mutative. en, |X + Y| ≥ min(γ(X), |X|+ |Y| − ).

Corollary 1.13. IfA is cancellative and X, Y are non-empty subsets of A such that both of ⟨X⟩ and ⟨Y⟩
are commutative, then |X + Y| ≥ γ(X, Y).

Moreover, the result specializes to groups as follows:

Corollary 1.14. IfA is a group andX, Y are non-empty subsets of A such that ⟨Y⟩ is commutative, then
|X + Y| ≥ min(γ̃(Y), |X|+ |Y| − ), where now

γ̃(Y) = sup
y ∈Y

inf
y ̸=y∈Y

ord(y − y ),
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and indeed γ̃(Y) = maxy ∈Y infy ̸=y∈Y ord(y − y ) if Y is nite.

Proof. Immediate by eorem 1.9, for on the one handA being a group implies Y = Y×, and on
the other, a supremum over a non-empty nite set is a maximum.

e next corollary is now a partial generalization of eorem 1.7 to cancellative semigroups: its
proof is straightforward by Corollary 1.13 and Lemma 1.10. Here, we say thatA is torsion-free if
p(A) is in nite (in fact, this is an abstraction of the classical de nition for groups).

Corollary 1.15. IfA is cancellative, and if X, Y are non-empty subsets ofA such that every element of
A \ { } has order≥ |X|+ |Y| − (this is especially the case whenA is torsion- ee) and either of ⟨X⟩
and ⟨Y⟩ is abelian, then |X + Y| ≥ |X|+ |Y| − .

eorem 1.9 is proved in Section 1.5. e argument is inspired by the transformation proof
originally used for eorem 1.2 by Davenport in [D1]. is leads us to the de nition of what
we call a generalized Davenport transform. e author is not aware of any earlier use of the same
technique in the literature, all themore in relation to semigroups. With few exceptions, remarkably
including [HR] and A. G. Vosper’s original proof of his famous theorem on critical pairs [V], even
the “classical” Davenport transform has not been greatly considered by practitioners in the area,
especially in comparison with similar “technology” such as the Dyson transform [N, p. 42].

Remark 1.16. A couple of things are worth mentioning before proceeding. While every com-
mutative cancellative semigroup embeds as a subsemigroup into a group (as it follows from the
standard construction of the group of fractions of a commutativemonoid; see [B1, Chapter I, Sec-
tion 2.4]), nothing similar is true in the non-commutative case, not even if the ambient is nitely
generated. is is related to a well-known question in the theory of semigroups, rst answered by
A. I. Mal’cev in [Ma], and is of fundamental importance for our work here, in that it shows that the
study of sumsets in cancellative semigroups cannot be systematically reduced, in the absence of
commutativity, to the case of groups (at the very least, not in any obvious way). In fact, Mal’cev’s
example involves the quotient of the free semigroup over eight le ers by a suitable congruence, and
it is not only nitely generated, but even linearly orderable (see Section 3.2 for the terminology and
cf. Remark 3.6).
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On the other hand, it is true that every cancellative semigroup can be embedded into a cancella-
tive monoid, so that, for the speci c purposes of the chapter, we could have assumed almost every-
where that the “ambient” is a monoid (rather than a semigroup), but we did differently because,
rst, the assumption is not really necessary, and second, it seems more appropriate to develop as

much as possible of thematerial with no regard to the presence of an identity (e.g., since this is be er
suited for the kind of generalizations outlined above). We will see, however, that certain parts take
a simpler form when an identity is made available somehow, as in the case of various lemmas in
Section 1.3 or in the proof of eorem 1.9.

Weprovide twoapplicationsof eorem1.9 inSection1.6 (hopefully, otherswill be investigated
in future work): e rst is a generalization of eorem 1.3, the second is an improvement on
a previous result by Ø. J. Rødseth [R, Section 6] based on Hall’s “marriage theorem”. As for the
former (which is stated below), we will use the following speci c notation: Given a non-empty
Z ⊆ Z/mZ, we let

δZ := min
z ∈Z

max
z ̸=z∈Z

gcd(m, z − z ) (1.3)

if |Z| ≥ , and δZ := otherwise. With this in hand, we have:

Corollary 1.17. Let X and Y be non-empty subsets ofZ/mZ and de ne δ := min(δX, δY). en,

|X + Y| ≥ min(δ− m, |X|+ |Y| − ).

In particular, |X + Y| ≥ min(m, |X|+ |Y| − ) if there exists y ∈ Y such that gcd(m, y − y ) =

for each y ∈ Y \ {y } (or dually with X in place of Y).

In fact, Corollary 1.17 contains Chowla’s theorem ( eorem 1.3) as a special case: With the
same notation as above, it is enough to assume that at least one unit of (Z/mZ, ·) belongs to Y and
gcd(m, y) = for each non-zero y ∈ Y (or dually with X in place of Y). Also, it is clear from (1.3)
that the result is a strengthening of Pillai’s theorem ( eorem 1.4).

Many questions arise. Most notably: Is it possible to further extend Corollary 1.13 in such a
way to get rid of the assumption that summands generate commutative subsemigroups? Partial
answers in this sensewill be provided in the next chapter, leading towhatwe refer to as theCauchy-
Davenport conjecture (namely, Conjecture 2.1).
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1.3 P

is short section collects basic results used later to introduce the generalized Davenport trans-
forms and prove eorem 1.9. Some proofs are direct and standard (and thus omi ed without
further explanation), but we have no reference to anything similar in the context of semigroups, so
we include them here for completeness.

Proposition1.18. Pick subsetsX , Y , . . . ,Xn, Yn ofA such thatXi ⊆ Yi for each i. en,
∑n

i= Xi ⊆∑n
i= Yi and

∣∣∑n
i= Xi

∣∣ ≤ ∣∣∑n
i= Yi

∣∣.
Proposition 1.19. Assume that A is cancellative, let n ≥ , and pick non-empty X , . . . ,Xn ⊆ A.

en,
∣∣∑n

i= Xi
∣∣ ≤ ∣∣∑n

i= Xi
∣∣ and ∣∣∑n−

i= Xi
∣∣ ≤ ∣∣∑n

i= Xi
∣∣.

In spite of being trivial, the next estimate is o en useful (cf. [TV, Lemma 2.1, p. 54]).

Proposition 1.20. Given X , . . . ,Xn ⊆ A, it holds
∣∣∑n

i= Xi
∣∣ ≤∏n

i= |Xi|.

Let X, Y ⊆ A. No ma er whether or notA is cancellative, nothing similar to Proposition 1.20
applies, in general, to the difference setX−Y, which can be in nite even if both ofX and Y are not.
On another hand, it follows from the same proposition that, in the presence of cancellativity, the
cardinality of X+ Y is preserved under translation, namely |z+ X+ Y| = |X+ Y+ z| = |X+ Y|
for every z ∈ A.

is is a point in common with the case of groups, but a signi cant difference is that, in the
context of semigroups (even when unital), the above invariance property cannot be used, at least
in general, to “normalize” either ofX and Y in such a way as to contain some distinguished element
of A. However, we will see in a while that things continue to work properly when A is a monoid
and sets are shi ed by units.

Lemma 1.21. Let X and Y be subsets of A. e following are equivalent:

(i) X + Y ⊆ X + Y.

(ii) X + nY ⊆ X + Y for all n.

(iii) X + ⟨Y⟩ = X + Y.
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Proof. Points (ii) and (iii) are clearly equivalent, asX+ ⟨Y⟩ =
∪∞

n= (X+ nY), and (i) is obviously
implied by (ii). us, we are le to prove that (ii) follows from (i), which is immediate (by induc-
tion) using that, if X + nY ⊆ X + Y for some n, then we have X + (n + )Y = (X + nY) + Y ⊆
(X + Y) + Y = X + Y ⊆ X + Y.

e above result is as elementary as central in the plan of the chapter, as the applicability of the
generalized Davenport transform (introduced in Section 1.5) to the proof of eorem 1.9 depend
on it in a critical way. On another hand, the following lemma shows that, in reference to eorem
1.9, there is no loss of generality in assuming that the ambient semigroup is unital, for any semi-
group embeds as a subsemigroup into its unitization (recall Remark 1.16).

Lemma1.22. LetB = (B, ⋆) be a semigroup, ϕ a semigroupmonomorphismA → B, i.e. an injective
function om A to B such that ϕ(z + z ) = ϕ(z ) ⋆ ϕ(z ) for all z , z ∈ A, and X , . . . ,Xn ⊆ A.

en, |X + · · ·+ Xn| = |ϕ(X ) ⋆ · · · ⋆ ϕ(Xn)|.

We close the section with a few properties of units. Here and later, given X ⊆ A we use CA(X)
for the centralizer of X inA, namely the set of all z ∈ A such that z + x = x + z for every x ∈ X.

Lemma 1.23. LetA be a monoid, X a subset of A, and z a unit ofA with inverse z̃. en:

(i) X − z = X + z̃ and−z + X = z̃ + X, but also |−z + X| = |X − z| = |X|.

(ii) If z ∈ CA(X) then z̃ ∈ CA(X); in addition to this, ⟨X − z⟩ and ⟨−z + X⟩ are commutative if
⟨X⟩ is commutative.

Proof. (i) By duality, it suffices to prove that X − z = X + z̃ and |X − z| = |X|. As for the rst
identity, it holds w ∈ X − z if and only if there exists x ∈ X such that w + z = x, which in turn
is equivalent to x + z̃ = (w + z) + z̃ = w, namely w ∈ X + z̃. In order to conclude, it is then
sufficient to observe that the function A → A : ξ 7→ ξ + z̃ is a bijection.

(ii) Pick z ∈ CA(X) and x ∈ X. It is clear that x + z̃ = z̃ + x if and only if x = (x + z̃) + z =
z̃+x+z, and this is certainly veri ed as our standing assumptions imply z̃+x+z = z̃+z+x = x.
It follows that z̃ ∈ CA(X).

Suppose now that ⟨X⟩ is a commutative semigroup and let v,w ∈ ⟨X − z⟩. By point (i) above,
there exist x , . . . , xℓ, y , . . . , ym ∈ X such that v =

∑ℓ
i= (xi + z̃) and w =

∑m
i= (yi + z̃), thus
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v + w = w + v by induction on ℓ+ m and the observation that for all u , u ∈ X it holds

(u + z̃) + (u + z̃) = u + u + z̃ = u + u + z̃ = (u + z̃) + (u + z̃),

where we use that z̃ ∈ CA(X), as proved above, and ⟨X⟩ is commutative. Hence, ⟨X − z⟩ is com-
mutative too, which completes the proof by duality.

Remark 1.24. Considering that units are cancellable elements, point (i) in Lemma 1.23 can be
(partially) generalized as follows: IfX ⊆ A and z ∈ A is cancellable, then |z+X| = |X+ z| = |X|
(this is straightforward, because both of the functionsA → A : x 7→ x+z andA → A : x 7→ z+x
are bijective).

Remark 1.25. ere is a subtleness in De nition 1.8 and Lemma 1.23 that we have so far (inten-
tionally) overlooked, but should be remarked. For, suppose thatA is a monoid and pick x, y ∈ A.
In principle, x−y and−y+x are not elements ofA: In fact, they are difference sets, namely subsets
ofA, and no other interpretation is possible a priori. However, if y is a unit ofA and ỹ is the inverse
of y, then x− y = {x+ ỹ} and−y+ x = {ỹ+ x} by point (i) of Lemma 1.23, and we are allowed
to identify x − y with x + ỹ and−y + x with ỹ + x, which is useful in many ways.

1.4 T D

As mentioned in Section 1.2, Davenport’s proof [D1, Statement A] of eorem 1.2 is a transfor-
mation proof. ForA a commutative group, the idea is to map a pair (X, Y) of non-empty subsets of
A to a new pair (X, YD), which is smaller than (X, Y) in an appropriate sense, and speci cally such
that

|YD| < |Y|, |X + YD|+ |Y| ≤ |X + Y|+ |YD|.

We then refer to (X, YD) as a Davenport transform of (X, Y); see, for instance, [HR]. For this to be
possible, the classical approach requires that X + Y ̸⊆ X + Y and ∈ Y, so that |Y| ≥ .

As expected, many difficulties arise when a empting to adapt the same approach to semigroups,
all the more if these are non-commutative. Even the possibility of embedding a semigroup into a
monoid does not resolve anything, since the fundamental problem is that, contrary to the case of
groups, cardinality is not preserved “under subtraction”. Namely, ifA is an arbitrary monoid with
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identity (as intended for the remainder of the section), X is a subset of A, and z ∈ A, then |X|,
|X−z| and |−z+X| can be greatly different from each other, even in the case thatA is cancellative;
cf. point (i) of Lemma 1.23. us, unlessA is a group or, more generally, embeds as a submonoid
into a group, we are not allowed to assume, for instance, that ∈ Y by picking an arbitrary element
y ∈ Y and replacing (X, Y)with the “shi ed” pair (X+ y ,−y + Y); cf. the comments following
Proposition 1.20.

In fact, the primary goal of this section is to show that, in spite of these issues, Davenport’s orig-
inal ideas can be extended and used for a proof of eorem 1.9.

To start with, letX andY be subsets ofA such thatmX+ Y ̸⊆ X+Y for some (positive integer)
m. For the sake of brevity, de ne

Z := (mX + Y) \ (X + Y).

Our assumptions give Z ̸= ∅. us x z ∈ Z, and take xz ∈ (m − )X and yz ∈ Y for which
z ∈ xz + X + Y + yz, where X := { }. Finally, set

Ỹz := {y ∈ Y : z ∈ xz + X + Y + y} and Yz := Y \ Ỹz. (1.4)

We refer to (X, Yz) as a generalizedDavenport transform of (X, Y) (relative to z), and based on this
notation we have:

Proposition 1.26. If Yz ̸= ∅, then the triple (X, Yz, Ỹz) satis es the following:

(i) Yz and Ỹz are non-empty disjoint proper subsets of Y, and Ỹz = Y \ Yz.

(ii) IfA is cancellative, then (xz + X + Yz) ∪ (z − Ỹz) ⊆ xz + X + Y.

(iii) If ⟨Y⟩ is commutative, then (xz + X + Yz) ∩ (z − Ỹz) = ∅.

(iv) IfA is cancellative, then |z − Ỹz| ≥ |Ỹz|.

(v) IfA is cancellative and ⟨Y⟩ is commutative, then |X + Y|+ |Yz| ≥ |X + Yz|+ |Y|.

Proof. (i) Yz is non-empty by hypothesis, while Ỹz is non-empty since yz ∈ Ỹz by construction.
Also, (1.4) gives Yz, Ỹz ⊆ Y and Yz ∩ Ỹz = ∅, so that Y \ Yz = Y \ (Y \ Ỹz) = Ỹz and Yz, Ỹz ( Y.
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(ii) Since Yz ⊆ Y by point (i) above, xz + X + Yz ⊆ xz + X + Y by Proposition 1.19. On the
other hand, ifw ∈ z− Ỹz then there exists y ∈ Ỹz such that z = w+ y. But y ∈ Ỹz implies by (1.4)
that z = w̃+ y for some w̃ ∈ xz+X+Y, whencew = w̃ by cancellativity, namelyw ∈ xz+X+Y.

(iii) Assume the contrary and letw ∈ (xz+X+Yz)∩ (z− Ỹz). ere then exist x ∈ X, y ∈ Yz

and y ∈ Ỹz such that w = xz + x + y and z = w + y . Using that ⟨Y⟩ is commutative, it follows
that z = xz + x + y + y = xz + x + y + y , which in turn implies y ∈ Ỹz by (1.4), since
Yz, Ỹz ⊆ Y by point (i). is is, however, absurd as Yz ∩ Ỹz = ∅, by the same point (i).

(iv) We have from (1.4) that for each y ∈ Ỹz there exists w ∈ xz + X + Y such that z = w + y,
and hencew ∈ z− Ỹz. On the other hand, sinceA is cancellative, we cannot havew+ y = w+ y
for some w ∈ A and distinct y , y ∈ Ỹz. us, Ỹz embeds as a set into z − Ỹz, with the result that
|z − Ỹz| ≥ |Ỹz|.

(v) SinceA is cancellative and X ̸= ∅ (otherwise Z = ∅), we have |X + Y| ≥ max(|X|, |Y|) by
Propositions 2.8 and 1.19. is implies the claim if Y is in nite, since then either |X + Y| > |Y|,
and hence

|X + Y|+ |Yz| = |X| = |X + Yz|+ |Y|,

or |X + Y| = |Y|, and accordingly

|X + Yz|+ |Yz| = |Y| = |X + Yz|+ |Y|.

So we are le with the case when Y is nite, for which the inclusion-exclusion principle, points
(ii)-(iv) and Proposition 1.19 give, by symmetry, that

|X + Y| = |xz + X + Y| ≥ |xz + X + Yz|+ |z − Ỹz| =

= |X + Yz|+ |z − Ỹz| ≥ |X + Yz|+ |Ỹz|.

But Ỹz = Y\Yz andYz ⊆ Ybypoint (i) above, so at the endwehave |X+Y| ≥ |X+Yz|+|Y|−|Yz|,
and the proof is complete.

Remark 1.27. To apply the generalizedDavenport transform to eorem 1.9, it will be enough to
consider the casewherem = , forwhich it is easily seen that ∈ Yz if ∈ Y (we continuewith the
notation from above), as otherwise z ∈ X+Y, contradicting the fact that z ∈ (X+ Y) \ (X+Y).
However, it seems intriguing that the same machinery can be used, at least in principle, even if
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m ≥ in so far as there is a way to prove that Yz is non-empty.

1.5 T

Lemma 1.26 is used here to establish the main contribution of the chapter.

Proof of eorem 1.9. Since every semigroupembeds as a subsemigroup into its unitization, and the
unitization of a cancellative semigroup is cancellative in its own right, Lemma 1.22 and De nition
1.8 imply that there is no loss of generality in assuming, as we do, thatA is unital.

us, supposebycontradiction that the theorem is false. ere thenexists apair (X, Y)of subsets
of A for which ⟨Y⟩ is abelian and |X + Y| < min(γ(Y), |X|+ |Y| − ). en,

≤ |X|, |Y| < ∞. (1.5)

In fact, if either ofX and Y is a singleton or in nite then |X+ Y| = |X|+ |Y| − , contradicting the
standing assumptions. It follows from (1.5) that

|X + Y| < sup
y ∈Y×

inf
y ̸=y∈Y

ord(y − y ) and |X + Y| ≤ |X|+ |Y| − . (1.6)

Again without loss of generality, we also take |X|+ |Y| to be minimal over the pairs of subsets of A
for which, in particular, (1.5) and (1.6) are assumed to hold.

Now, since |X+ Y| is nite, thanks to (1.5) and Proposition 1.20, we get by (1.6) and the same
equation (1.5) that there exists ỹ ∈ Y× such that

|X + Y| < inf
ỹ ̸=y∈Y

ord(y − ỹ ) = min
ỹ ̸=y∈Y

ord(y − ỹ ). (1.7)

So le ing W := Y − ỹ implies

|X + W | < min
̸=w∈W

ord(w) and |X + W | ≤ |X|+ |W | − (1.8)

in view of (1.6) and (1.7). In fact, on the one hand |Y− ỹ | = |Y| and |X+ Y− ỹ | = |X+ Y| by
point (i) of Lemma 1.23, and on the other, y ∈ Y \ {ỹ } only if y − ỹ ∈ (Y − ỹ ) \ { }, but also
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w ∈ (Y − ỹ ) \ { } only if w + ỹ ∈ Y \ {ỹ } (see also Remark 1.25). We claim that

Z := (X + W ) \ (X + W ) ̸= ∅. (1.9)

For, suppose the contrary. en, X + W = X + ⟨W ⟩ by Lemma 1.21, so that

|X + W | = |X + ⟨W ⟩| ≥ |⟨W ⟩| ≥ max
w∈W

ord(w) ≥ min
̸=w∈W

ord(w),

where we use, in particular, Proposition 1.19 for the rst inequality and the fact that |W | ≥ for
the last one. But this contradicts (1.8), so (1.9) is proved.

Pick z ∈ Z and let (X, W̄ ) be a generalized Davenport transform of (X,W ) relative to z. Since
⟨Y⟩ is a commutative subsemigroup ofA (by hypothesis), the same is true for ⟨W ⟩, by point (ii)
of Lemma 1.23. Moreover, ∈ W , and thus

∈ W̄ ̸= ∅ and W̄ ( W , (1.10)

when taking into account Remark 1.27 and point (i) of Proposition 1.26. As a consequence, point
(v) of the same Proposition 1.26 yields, together with (1.8), that

|X + W̄ |+ |W | ≤ |X + W |+ |W̄ | ≤ |X|+ |W | − + |W̄ |,

which means, since |W | = |Y − ỹ | = |Y| < ∞ by (1.5) and the above, that

|X + W̄ | ≤ |X|+ |W̄ | − . (1.11)

It follows from (1.10) that ≤ |W̄ | < |W |, and in fact |W̄ | ≥ , as otherwise we would have
|X| = |X+ W̄ | ≤ |X|− by (1.11), in contrast to the fact that |X| < ∞ by (1.5). To summarize,
we have found that

≤ |W̄ | < |W | < ∞. (1.12)

Furthermore, (1.8) and (1.10) entail that

|X + W̄ | ≤ |X + W | < min
̸=w∈W̄

ord(w). (1.13)
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us, since ∈ W̄×, we get by (1.13) that

|X + W̄ | < sup
w ∈W̄×

min
w ̸=w∈W̄

ord(w), (1.14)

which is however in contradiction, due to (1.5), (1.11) and (1.12), with theminimality of |X|+|Y|,
for |W̄ | < |W | = |Y|, and hence |X|+ |W̄ | < |X|+ |Y|.

1.6 A

First, we show how to use eorem 1.9 to prove the extension of Chowla’s theorem for composite
moduli mentioned in Section 1.2.

Proof of Corollary 1.17. e claim is trivial if X or Y is a singleton. Otherwise, since Z/mZ is a
commutative nite group and ord(z − z ) = m/ gcd(m, z − z ) for all z, z ∈ Z/mZ, we get by
Corollary 1.14 that |X + Y| ≥ min(γ̃(Y), |X|+ |Y| − ), where

γ̃(Y) = max
y ∈Y

min
y ̸=y∈Y

ord(y − y ) = m · max
y ∈Y

min
y ̸=y∈Y gcd(m, y − y )

= δ−Y m.

Now in an entirely similar way, it is found, in view of Corollary 1.12, that

|X + Y| ≥ min(δ−X m, |X|+ |Y| − ).

is concludes the proof, considering that δY = if there exists y ∈ Y such that gcd(m, y−y ) =

for every y ∈ Y \ {y } (and dually with X).

We now use P. Hall’s theorem on distinct representatives [H] to say something on the “localiza-
tion” of elements in a sumset.

eorem 1.28 (Hall’s theorem). Let S , . . . , Sn be sets. ere then exist (pairwise) distinct elements
s ∈ S , . . . , sn ∈ Sn if and only if for each k = , . . . , n the union of any k of S , . . . , Sn contains at
least k elements.

More precisely, supposeA is a cancellative semigroup and let X, Y be non-empty nite subsets
ofA such that |X+ Y| < γ(Y). Clearly, this implies Y× ̸= ∅. De ne k := |X| and ℓ := |Y|, and let
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x , . . . , xk be a numbering of X and y , . . . , yℓ a numbering of Y. en consider the k-by-ℓmatrix,
say α(X, Y), whose entry in the i-th row and j-th column is xi + yj. Any element of X + Y appears
in α(X, Y), and viceversa any entry of α(X, Y) is an element of X + Y. Also, eorem 1.9 and our
hypotheses give |X+Y| ≥ k+ ℓ− . So it is natural to try to get some information about where in
thematrix α(X, Y) it is possible to nd k+ ℓ− distinct elements ofX+Y. In this respect we have
the following proposition, whose proof is quite similar to the one of a weaker result in [R, Section
6], which is, in turn, focused on the less general case of a group of prime order:

Proposition 1.29. Assume that ⟨Y⟩ is commutative and let Z be any subset of X+ Y of size ℓ− , for
instance Z = x + {y , . . . , yℓ− }. en we can choose one element om each row of α(X, Y) in such a
way that Z and these elements form a subset of X + Y of size k + ℓ− .

Proof. For each i = , . . . , k let Zi := (xi + Y) \ Z and note that Zi is a subset of the i-th row of
α(X, Y). us, Zi ∪ · · · ∪ Zih = ({xi , . . . , xih} + Y) \ Z for any positive h ≤ k and all distinct
i , . . . , ih ∈ { , . . . , k}. It follows that

|Zi ∪ · · · ∪ Zih | ≥ |{xi , . . . , xih}+ Y| − |Z| ≥ h + ℓ− − (ℓ− ) = h,

where we combine eorem 1.9 with the fact that

|{xi , . . . , xih}+ Y| ≤ |X + Y| < γ(Y),

as is implied by Proposition 1.18 and the assumption that |X+Y| < γ(Y). en, as a consequence
of Hall’s theorem, we can nd k distinct elements z ∈ Z , . . . , zk ∈ Zk, and these, together with
the ℓ − elements of Z, provide a total of k + ℓ − distinct elements of X + Y, since Z ∩ Z =

· · · = Z ∩ Zk = ∅ (by construction).
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On ne voit bien qu’avec le cœur.
L’essentiel est invisible pour les yeux.

Antoine S E , Le Petit Prince

2
Cauchy-Davenport type theorems, II

R . On fait une étude plus approfondie des propriétés de la constante de Cauchy-Davenport
(introduite dans le chapitre 1) pour montrer l’extension supplémentaire suivante du théorème de
Cauchy-Davenport : si (A,+) est un semi-groupe cancellatif et si X, Y ⊆ A, alors

|X + Y| ≥ min(γ(X + Y), |X|+ |Y| − ).

Cela implique une généralisation de l’inégalité de Kemperman pour les groupes sans torsion [Ke]
et aussi une version plus forte du théorème d’Hamidoune-Károlyi mentionné précédemment. Ici,
on donne une preuve indépendante et totalement combinatoire du cas général de ce résultat, qui
ne dépend ni du théorème de Feit- ompson ni de la méthode isopérimétrique. En n, on se
penche sur certains aspects d’une conjecture qui, si elle était vraie, pourrait fournir une formu-
lation uni ée de beaucoup de théorémes de type Cauchy-Davenport, y compris ceux déjà prouvés
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dans le chapitre précédent. Le contenu ci-après est basé sur un papier par l’auteur [Tr2] soumis
pour publication.

A . Based on a paper by the author [Tr2] which is still under review, we further investigate
the properties of theCauchy-Davenport constant (introduced inChapter 1) and use them to prove
the following: IfA is a cancellative semigroup (either commutative or not) and X, Y ⊆ A, then

|X + Y| ≥ min(γ(X + Y), |X|+ |Y| − ).

is implies at once a generalization of Kemperman’s inequality for torsion-free groups [Ke] and
a strengthening of the Hamidoune-Károlyi theorem. Our proof of the la er is basically a transfor-
mation proof; in particular, it is self-contained and does not depend on either the Feit- ompson
theorem or the isoperimetric method. In addition, we discuss aspects of a conjecture that, if true,
would further improve most of the results in the chapter, generalize a greater number of Cauchy-
Davenport type theorems (including those proved in the previous chapter), and hopefully provide
a deeper understanding on this kind of inequalities.

2.1 I

e weaker are the structural assumptions, the larger is, in principle, the number of problems that
we can hope to solve, while trying to arrive at a be er understanding of their “real nature”: is is,
in essence, the philosophy at the heart of the present thesis. Building on these ideas, we aim here
to further extend some aspects of the theory developed in the previous chapter, particularly in the
direction of the study of non-commutative or non-cancellative semigroups.

A naturalmotivation for this comes from considering that the non-zero elements of a non-trivial
unital ring, either commutative or not, are not, in general, cancellative (and hence not even closed)
under multiplication (unless the ring is a domain). Another motivation is the fact that, even when
A is a commutative group, the non-empty subsets of A, endowed with the binary operation taking
a pair (X, Y) to the sum-setX+Y, is, in general, nothingmore than a non-cancellativemonoid (e.g.,
whenA is the additive group of the ring of integers, the corresponding structure on the powerset
of A has been studied by J. Cilleruello, Y. O. Hamidoune and O. Serra; see [CHS] and references
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therein).
Here, more speci cally, the main contribution is an extension ( eorem 2.3) of the (classi-

cal) Cauchy-Davenport theorem ( eorem 1.2) to the se ing of cancellative, but possibly non-
commutative semigroups (see comments at the end of Section 2.2), whencewe derive as an almost
immediate consequence a stronger and more abstract version (Corollary 2.4) of the Hamidoune-
Károlyi theorem ( eorem1.6). In fact, a proof of this la er result was rst published byKárolyi in
2005 for the special case of nite groups [Ka], based on the structure theory of group extensions,
by reduction to nite solvable groups in the light of the Feit- ompson theorem. In the same pa-
per (p. 242), Károlyi reports a more elementary proof of the general statement (for an arbitrary
group), which was apparently communicated to him by Hamidoune during the peer-review pro-
cess of [Ka]. Hamidoune’s approach depends on a generalization of an addition theorembyL. Sha-
trowsky and is ultimately built upon the isoperimetric method (see [Ha] and references therein).
However, Károlyi himself has pointed out to the author, as recently as July 2013, that an alternative
and even “simpler” approach comes from a Kneser-type result due to J. E. Olson [O, eorem 2],
based on Kemperman’s transform. Yet another argument along the same lines was suggested by
I. Ruzsa in a private communication in mid-June 2013.

On these premises, we remark from the outset that also our proof of eorem 2.3, and conse-
quently of Corollary 2.4, is basically a transformation proof, close in the spirit to Olson’s approach
and as elementary as other combinatorial proofs in the literature (in particular, it is self-contained
anddoes not depend at all on the Feit- ompson theoremorHamidoune’s isoperimetricmethod).

In addition to the above, we present and discuss aspects of a conjecture (Conjecture 2.1) which,
if true, would further improvemost of the results in the paper and include as a special case a greater
number of Cauchy-Davenport type theorems, and particularly those proved in the previous chap-
ter. In all of this, a key role is played by certain invariance properties of the Cauchy-Davenport
constant (De nition 1.8), which are also investigated in this work.

O .

In Section 2.2 we give an overview, complementary to the one of the previous chapter, of the lit-
erature on theorems of Cauchy-Davenport type (with a particular emphasis on those that we are
going to strengthen or generalize), and state our main results and a related conjecture (Conjec-
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ture 2.1). Section 2.3 contains intermediate results on the invariance of the Cauchy-Davenport
constant under suitable transformations. Finally, in Section 2.4 we prove the principal theorem
(namely, eorem 2.3).

2.2 C -D

As already emphasized in the previous chapter, theCauchy-Davenport theorem is probably the rst
signi cant achievement in the eld of additive theory, dating back towork byA.-L. Cauchy in 1813
[C]. e result has many generalizations. E.g., we have seen that extensions to composite moduli
(the theorem applies especially to the additive group of the integers modulo a prime) have been
given by I. Chowla [Ch, eorem 1] and S. S. Pillai [Pi]. ese la er results have been sharpened
and further generalized by Corollary 1.17 in the previous chapter, where they appear as eorems
1.3 and 1.4, respectively. e whole thing comes as an almost immediate consequence of eorem
1.9, and leads us here to the following:

Conjecture 2.1. Let n be a positive integer and X , . . . ,Xn non-empty subsets of A. IfA is cancellative,
then |X + · · ·+ Xn| ≥ min(γ(X , . . . ,Xn), |X |+ · · ·+ |Xn|+ − n).

Unluckily, we do not have a proof of the conjecture (not even for two summands), which can
however be con rmed in some special case (see, in particular, Corollary 2.5 below, or consider
Corollary 1.13 whenA is commutative) and would provide, if it were true, a comprehensive gen-
eralization of about all the extensions of the Cauchy-Davenport theorem reported in this thesis.
Incidentally, the next example shows that the assumption of cancellativity, or a surrogate of it, is
critical and somewhat necessary:

Example 2.2. Let X and Y be non-empty disjoint sets with |X| < ∞ and denote by (FX, ·X) and
(FY, ·Y), respectively, the free abelian groups onX andY. For a xed element e /∈ FX∪FY, we de ne
a binary operation · on F := FX ∪ FY ∪ {e} by taking u · v := u ·X v for u, v ∈ FX, u · v := u ·Y v
for u, v ∈ FY and u · v := e otherwise. It is routine to check that · is associative, so we write F for
the unitization of (F, ·) and for the identity of F. en, taking Z := Y ∪ { } gives γF(Z) = ∞
and X · Z := {x · z : x ∈ X, z ∈ Z} = X ∪ {e}, so that |X · Z| < |X| + |Z| − ≤ γF(X,Z),
namely |X · Z| < min(γF(X,Z), |X| + |Z| − ), and the right-hand side can be made arbitrarily
larger than the le -hand side.
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Nevertheless, we can prove the following inequality, which in fact represents themain contribu-
tion of the present chapter:

eorem2.3. Let X, Y be subsets of A and suppose thatA is cancellative. en, |X+Y| ≥ min(γ(X+
Y), |X|+ |Y| − ).

At this point, it is worth comparing eorems 1.9 and 2.3. On the one hand, the la er is “much
stronger” than the former, for it does no longer depend on commutativity (which, by theway, leads
to a perfectly symmetric statement). Yet on the other hand, the former is “much stronger” than the
la er, since for subsets X and Y of A we are now replacing γ(X, Y) in eorem 1.9 with γ(X + Y),
and it has been already observed (Example 1.11) that this means, in general, a weaker bound.

e above seems to suggest that a common generalization of the two theorems should be possi-
ble, and gives another (indirect)motivation to believe thatConjecture 2.1 can be true. Let it be as it
may, eorem 2.3 is already strong enough to allow for a strengthening of theHamidoune-Kàrolyi
theorem( eorem1.6 inChapter 1), as implied byLemma1.10 andExample 1.11. As pointed out
before, the theoremwas rst proved byKárolyi in [Ka] in the particular case of nite groups, based
on the Feit- ompson theorem. e full theorem was then established by Hamidoune through
the isoperimetric method [Ka, p. 242].

In contrast, our proof of eorem 1.6 is purely combinatorial, and it comes as a trivial conse-
quence of eorem 2.3 in view of Lemma 1.10. Speci cally, we have the following:

Corollary 2.4. Pick n ∈ N+ and subsets X , . . . ,Xn of A such that X× + · · · + X×
n ̸= ∅. If A is

cancellative, then |X + · · ·+ Xn| ≥ min(p(A), |X |+ · · ·+ |Xn|+ − n).

eorem 2.3 and Corollary 2.4 are proved in Section 2.4. Another result from the literature
that is meaningful in relation to the present chapter is Kemperman’s inequality, to wit eorem
1.7. In fact, the result is generalized by the following, whose proof is straightforward in the light of
Corollary 2.4 (we may omit the details).

Corollary 2.5. Given n ∈ N+, let X , . . . ,Xn be subsets of A such that X× + · · ·+ X×
n ̸= ∅. De ne

κ := |X |+ · · ·+ |Xn|+ − n and assume ord(x) ≥ κ for every x ∈ A \ { }. IfA is cancellative,
then |X + · · ·+ Xn| ≥ κ.

For the rest, it was already mentioned in the introduction that earlier contributions by other
authors to the additive theory of semigroups are due, e.g., to Cilleruelo, Hamidoune and Serra,
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who in particular proved in [CHS] a Cauchy-Davenport theorem for acyclic monoids (these are
termed acyclic semigroups in [CHS], but they are, in fact,monoids in our terminology), and it could
be quite interesting to nd a common pa ern among their result and the ones in this chapter. e
same question was raised at the end of Section 1.1, where it was also observed that one of themain
difficulties with this idea is actually represented by the fact that acyclic monoids in [CHS] are not
cancellative, which has served as a basic motivation for making the results of Section 2.3 mostly
independent from the assumption of cancellativity.

Remark 2.6. Incidentally, wepoint out that conditionM1 in thede nitionof an acyclic semigroup
M = (M, ·) in [CHS], to wit “y · x = x implies y = , for every x ∈ M” (we write for the
identity ofM), is to be xed in some way, since otherwise takingM to be the unitization of a non-
empty le -zero semigroup (N, ·), where x · y := x for all x, y ∈ N, yields a counterexample to the
statement that “IfM is an acyclic semigroup and ∈ S”, where S is a nite subset of M, “then the
only nite directed cycles in the Cayley graph Cay(M, S) are the loops”: is is rst mentioned in
the second paragraph of Section 2 in the cited paper (p. 100), and is fundamental for most of its
results. At rst, we thought of a typo and tried to substitute condition M1 with its “dual”, namely
“x · y = x implies y = , for every x ∈ M.” In fact, this is enough to x the issue with the Cayley
graphs of M, but Lemma 1 in the same paper, which is equally essential in many proofs, breaks
down completely (for a concrete counterexample, consider the monoid obtained by reversing the
multiplication of (N, ·) in the previous counterexample).

However, there are at least two possible workarounds: e rst is to assume thatM is commu-
tative, the second to turn condition M1 into a “self-dual” axiom, namely to replace it with “x · y =
x or y · x = x implies y = , for every x ∈ M.”

2.3 P

roughout, we collect basic results to be used later in Section 2.4 to prove eorem2.3 andCorol-
lary 2.4. Some proofs are quite simple (and thus omi edwithout further explanation), but we have
no standard reference to anything similar in the context of semigroups, sowe include themhere for
completeness.

Notice that, even though eorem 2.3, say, refers to cancellative semigroups, most of the results
presented in the section do not depend on the cancellativity of the “ambient”. While this makes no

34



serious difference from the point of view of readability, it seems interesting in itself, and our hope
is that the material can help to nd a proof of Conjecture 2.1 (or to further re ne it).

Lemma 2.7. Suppose A is a monoid. Pick n ∈ N+ and z , . . . , zn ∈ A×, and let X , . . . ,Xn be
subsets of A. en,

∣∣∑n
i= Xi

∣∣ = ∣∣∑n
i= (zi− + Xi − zi)

∣∣.
Proof. Let z̃i be, for i = , . . . , n, the inverse of zi in A, and set X :=

∑n
i= Xi for economy of

notation. Lemma 1.23 gives
∑n

i= (zi− + Xi − zi) =
∑n

i= (zi− + Xi + z̃i) = z + X+ zn, and
then another application of the same proposition yields |X| = |z + X + zn|.

In allwhat follows, we letAop be thedual (or opposite) semigroupofA, namely thepair (A,+op)

where +op is the binary operation A × A → A : (z , z ) 7→ z + z ; cf. [B1, Section I.1.1,
De nition 2].

Proposition 2.8. Given n ∈ N+, let X and X , . . . ,Xn be subsets of A, and pick z ∈ A. en,
X + · · ·+ Xn = Xn +op · · ·+op X and ord(z) = ordAop(z).

Here and later, to express that a statement follows as amore or less direct consequence of Propo-
sition 2.8, wewill simply say that it is true “by duality”. is is useful for it o en allows, for instance,
to simplify a proof to the extent of cu ing by half its length, as in the following lemma, which gen-
eralizes an analogous, well-known property of groups:

Lemma 2.9. Pick x, y ∈ A and suppose that at least one of x or y is cancellable. en, ord(x + y) =
ord(y + x).

Proof. By duality, there is no loss of generality in assuming, as we do, that y is cancellable. Further,
it suffices to prove that ord(x + y) ≤ ord(y + x), since then the desired conclusion will follow
from the fact that, on the one hand,

ord(y + x) = ord(x +op y) = ordAop(x +op y) ≤

ordAop(y +op x) = ord(y +op x) = ord(x + y),

and on the other hand, y is cancellable inA if and only if it is cancellable inAop. Now, the claimed
inequality is obvious if ord(y + x) is in nite. Otherwise, there exist n, k ∈ N+ with k < n such
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that ord(y + x) = n and

(y + x) + · · ·+ (y + x)︸ ︷︷ ︸
k times

= (y + x) + · · ·+ (y + x)︸ ︷︷ ︸
n+ times

.

So, by adding y to the right of both sides and using associativity to rearrange how the terms in the
resulting expression are grouped we get

y + (x + y) + · · ·+ (x + y)︸ ︷︷ ︸
k times

= y + (x + y) + · · ·+ (x + y)︸ ︷︷ ︸
n+ times

,

Since y is cancellable, it then follows that

(x + y) + · · ·+ (x + y)︸ ︷︷ ︸
k times

= (x + y) + · · ·+ (x + y)︸ ︷︷ ︸
n+ times

,

which ultimately gives ord(x + y) ≤ n = ord(y + x).

Proposition 2.10. Let X be a subset of A. en, γ(X) = γAop(X).

Proof. Let i be the map A× → A× sending a unit of A to its inverse, and de ne iop in a similar
way by replacing A with its dual. An element x ∈ A is a unit in A if and only if it is also a unit
in Aop, and x̃ ∈ A is the inverse of x in A if and only if it is also the inverse of x in Aop. us,
A× = (Aop)×, X ∩ A× = X ∩ (Aop)× and i = iop, with the result that

γ(X) = sup
x ∈X×

inf
x ̸=x∈X

ord(x + i(x ))

and
γAop(X) = sup

x ∈X×
inf

x ̸=x∈X
ordAop(i(x ) + x),

where we use Lemma 1.23 to express the Cauchy-Davenport constant of X relative to either ofA
andAop only in the terms of i. But any unit in amonoid is cancellable, so for all x ∈ X× and x ∈ A
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we get, again by Proposition 2.8 and in the light of Lemma 2.9, that

ordAop(i(x ) + x) = |⟨i(x ) + x⟩Aop| = |⟨i(x ) + x⟩| =

= ord(i(x ) + x) = ord(x + i(x )).

And this, together with the above, is enough to conclude.

We de ne an invariant n-transform ofA, here simply called an invariant n-transform if no confu-
sion can arise, to be any tupleT = (T , . . . ,Tn) of functions on the powerset ofA, herein denoted
byP(A), with the property that, for all non-empty X , . . . ,Xn ∈ P(A),

1.
∣∣∑n

i= Ti(Xi)
∣∣ = ∣∣∑n

i= Xi
∣∣ and∑n

i= |Xi| =
∑n

i= |Ti(Xi)|;

2. γ(X + · · ·+ Xn) = γ(T (X ) + · · ·+ Tn(Xn)).

An interesting case is when each of the Ti is a unital shi , namely a function of the form

P(A) → P(A) : X → zl + X + zr

such that zl and zr are units ofA. is is implied by the following results, for which we use, among
the other things, that ifA is a monoid and z ∈ A× then, by Lemma 1.23, we have

(X + Y)− z = X + (Y − z) and (−z + X) + Y = −z + (X + Y)

for all X, Y ⊆ A, so that we can drop the parentheses without worrying and write, e.g., X + Y − z
for (X + Y)− z and−z + X + Y in place of (−z + X) + Y.

Lemma 2.11. If n ∈ N+ and X , . . . ,Xn ⊆ A, then X× + · · ·+ X×
n ⊆ (X + · · ·+ Xn)

×, and the
inclusion is, in fact, an equality ifA is cancellative.

Proof. e assertion is obvious for n = , so it is enough to prove it for n = , since then the
conclusion follows by induction. For, let X, Y be subsets of A.

Suppose rst that z ∈ X× + Y× (whichmeans, in particular, thatA is a monoid), i.e. there exist
x ∈ X× and y ∈ Y× such that z = x+ y. If x̃ is the inverse of x (inA) and ỹ is the inverse of y, then
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it is immediate to see that ỹ+ x̃ is the inverse of x+ y, and hence x+ y ∈ (X+ Y)×. It follows that
X× + Y× ⊆ (X + Y)×.

As for the other inclusion, assume thatA is cancellative and pick z ∈ (X+Y)×. Wehave to show
that z ∈ X× + Y×. For, let z̃ be the inverse of z, and pick x ∈ X and y ∈ Y such that z = x+ y. We
de ne x̃ := y+ z̃ and ỹ := z̃+ x. It is straightforward to check that x+ x̃ = (x+ y) + z̃ = and
ỹ+y = z̃+(x+y) = . Also, (x̃+x)+y = y+z̃+(x+y) = y and x+(y+ỹ) = (x+y)+z̃+x = x,
from which we get, by cancellativity, x̃ + x = y + ỹ = . is implies that z belongs to X× + Y×,
and so we are done.

Remark 2.12. As a byproduct of the proof of Lemma 2.11, we get the following: If x , . . . , xn ∈
A× (n ∈ N+) and x̃i is the inverse of xi, then x̃n + · · · + x̃ is the inverse of x + · · · + xn. is
is a standard fact about groups, which goes through verbatim for monoids; see [B1, Section I.2.4,
Corollary 1]. We mention it here because it is used below.

Lemma 2.13. LetA be a monoid, and pick z ∈ A× and X ⊆ A. en, γ(X) ≤ γ(X + z).

Proof. By Lemma 2.11, we have X× + z ⊆ (X + z)×, and thus

γ(X + z) = sup
w ∈(X+z)×

inf
w ̸=w∈X+z

ord(w − w ) ≥ sup
w ∈X×+z

inf
w ̸=w∈X+z

ord(w − w ). (2.1)

But w ∈ X+ z if and only if there exists x ∈ X such that w = x+ z, and in particular w ∈ X× + z
if and only if x ∈ X×. Also, given x ∈ X× and x ∈ X, it holds x+ z = x + z if and only if x = x .
As a consequence, it is immediate from (2.1) and Remark 2.12 that

γ(X + z) ≥ sup
x ∈X×

inf
x +z̸=w∈X+z

ord(w + z̃ − x ) = sup
x ∈X×

inf
x ̸=x∈X

ord(x − x ) = γ(X),

where z̃ is the inverse of z inA. us, our proof is complete.

Now, the following proposition shows that the Cauchy-Davenport constant of a set is invariant
under translation by units. While fundamental for the proof of our main result, this may be of
independent interest in view of Conjecture 2.1.

Proposition 2.14. Suppose thatA is a monoid and pick z ∈ A× and X ⊆ A. en, we have

γ(X) = γ(X + z) = γ(z + X).
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Proof. Let z̃ denote the inverse of z inA. Lemma 2.13 yields

γ(X) ≤ γ(X + z) ≤ γ((X + z) + z̃),

whence γ(X) = γ(X + z). en, we observe that, on the one hand, Proposition 2.10, together
with the fact thatA is the dual ofAop, implies γ(X) = γAop(X) and γAop(X+op z) = γ(X+op z) =
γ(z + X), and on the other hand, it follows from the above that γAop(X) = γAop(X +op z). is
gives γ(X) = γ(z + X) and completes our proof.

Corollary 2.15. Let A be a monoid, and for a xed integer n ≥ pick X , . . . ,Xn ⊆ A and
z , . . . , zn ∈ A×. For each i = , . . . , n denote by Ti the map

P(A) → P(A) : X → zi− + X − zi.

en, (T , . . . ,Tn) is an invariant n-transform and γ(Ti(Xi)) = γ(Xi) for each i.

Proof. By construction, it holds
∑n

i= Ti(Xi) = z +(X +· · ·+Xn)+zn. en, we get by Lemma
2.7 that

|X | = |T (X )|, . . . , |Xn| = |Tn(Xn)| and
∣∣∑n

i= Xi
∣∣ = ∣∣∑n

i= Ti(Xi)
∣∣,

while Proposition 2.14 implies γ(Xi) = γ(Ti(Xi)) for each i and γ(X + · · ·+Xn) = γ(T (X )+

· · ·+ Tn(Xn)). By pu ing all together, the claim follows immediately.

Corollary 2.16. SupposeA is a monoid, x an integer n ≥ and let X , . . . ,Xn be subsets of A such
that X× + · · · + X×

n ̸= ∅. ere then exists an invariant n-transform T = (T , . . . ,Tn) such that
∈
∩n

i= Ti(Xi). Moreover, ifA is cancellative and X× + · · · + X×
n is nite, then T can be chosen in

such a way that

γ(T (X ) + · · ·+ Tn(Xn)) = min
̸=w∈T (X )+···+Tn(Xn)

ord(w). (2.2)

Proof. For each i = , . . . , n pick xi ∈ X×
i , using that X× + · · · + X×

n is non-empty (and hence
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X×
i ̸= ∅), and let Ti be the function

P(A) → P(A) : X 7→ zi− + X − zi,

where z := and zi := x + · · ·+ xi = zi− + xi. en clearly ∈
∩n

i= Ti(Xi), while Corollary
2.15 entails that (T , . . . ,Tn) is an invariant n-transform. us, the rst part of the claim is proved.

As for the rest, assume in what follows thatA is cancellative and X× + · · ·+ X×
n is nite. en,

le ing Z := X + · · ·+ Xn for brevity yields, by Proposition 2.11, that X× + · · ·+ X×
n = Z×, so

there exist x̄ ∈ X , . . . , x̄n ∈ Xn such that

γ(Z) = min
z̸̄=z∈Z

ord(z − z̄), (2.3)

where z̄ := x̄ + · · · + x̄n and we are using that a supremum taken over a non-empty nite set
is, in fact, a maximum. It follows from the above that we can build an invariant n-transform T̄ =

(T̄ , . . . , T̄n) such that ∈
∩n

i= T̄i(Xi) and
∑n

i= T̄i(Xi) = Z − z̄, with the result that

γ(Z) = γ(Z − z̄) ≥ min
̸=w∈Z−z̄

ord(w) = min
z̄ ̸=z∈Z

ord(z − z̄),

by the invariance of T̄ and the fact that, on the one hand, ∈ Z − z̄ and, on the other hand,
w ∈ Z − z̄ if and only if w = z − z̄ for some z ∈ Z. Together with (2.3), this ultimately leads to
γ(Z − z̄) = min ̸=w∈Z−z̄ ord(w), and thus to (2.2).

We conclude the section with a proof of Lemma 1.10:

Proof of Lemma 1.10. By duality, it is enough to prove that γ(Y) ≥ γ(X + Y) ≥ p(A), since all
the rest is more or less trivial from our de nitions. For, pick z ∈ (X + Y)× using that, on the one
hand, (X + Y)× = X× + Y× by Proposition 2.11 and the cancellativity of A, and on the other
hand,X×+ Y× is non-empty by the standing assumptions. ere then exist x ∈ X× and y ∈ Y×

such that z = x + y , and it is immediate from Remark 2.12 that, for all y ∈ A,

⟨x + y − z ⟩ = x + ⟨y − y ⟩ − x ,

which, together with Lemma 2.7, gives ord(y − y ) = ord(x + y − z ). us, considering that,
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for y ∈ A, it holds x + y = z if and only if y = y , it follows that

inf
y ̸=y∈Y

ord(y − y ) = inf
y ̸=y∈Y

ord(x + y − z ) ≥ inf
z ̸=z∈X+Y

ord(z − z ) ≥ p(A),

and this in turn implies the claim by taking the supremum over the units of X + Y.

2.4 T

At long last, we are ready to prove the central contributions of the chapter. We start with the fol-
lowing:

Proof of eorem 2.3. e claim is obvious if (X + Y)× = ∅, so suppose for the remainder of the
proof that (X + Y)× is non-empty (which, among the other things, implies that A is a monoid),
and set κ := |X+ Y|, while noticing that, by Lemma 2.11, both of X× and Y× are non-empty, and
so, by Proposition 1.18 and Lemma 1.23, we have

κ ≥ max(|X|, |Y|) ≥ min(|X|, |Y|) ≥ . (2.4)

e statement is still trivial if κ = ∞ (respectively, κ = ), since then either of X and Y is in nite
(respectively, both ofX andY are singletons), and hence |X+Y| = |X|+ |Y|− by (2.4). us, we
assume inwhat follows that κ is a positive integer and argue by strong induction on κ, supposing by
contradiction that κ < min(γ(X + Y), |X|+ |Y| − ). Based on the above, this ultimately means
that

≤ κ < ∞, ≤ |X|, |Y| < ∞, κ < γ(X + Y), and κ ≤ |X|+ |Y| − . (2.5)

More speci cally, there is no loss of generality in assuming, as we do, that (X, Y) is a “minimax
counterexample” to the claim, by which wemean that, if (X̄, Ȳ) is another pair of subsets of A with
X̄× + Ȳ× ̸= ∅ and |X̄+ Ȳ| < min(γ(X̄+ Ȳ), |X̄|+ |Ȳ| − ), then either κ = |X̄+ Ȳ| and at least
one of the following conditions holds:

(i) |X̄|+ |Ȳ| < |X|+ |Y|; (ii) |X̄|+ |Ȳ| = |X|+ |Y| and |X̄| ≤ |X|, (2.6)

or κ < |X̄ + Ȳ|. is makes sense because if X̄, Ȳ ⊆ A, X̄× + Ȳ× ̸= ∅ and κ = |X̄ + Ȳ| then X̄×
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and Ȳ× are non-empty, so we get, as before with (2.4), that

|X̄| ≤ |X̄|+ |Ȳ| ≤ · max(|X̄|, |Ȳ|) ≤ · |X̄ + Ȳ| = κ < ∞.

Finally, in the light of Corollary 2.16, we may also assume without restriction of generality, up to
an invariant -transform, that

∈ X ∩ Y and γ(X + Y) = min
̸=z∈X+Y

ord(z). (2.7)

en, both of X and Y are subsets of X + Y, and by the inclusion-exclusion principle we have κ ≥
|X|+ |Y| − |X∩ Y|, which gives, together with (2.5), that X∩ Y has at least one element different
from , i.e. |X∩ Y| ≥ . On these premises, we prove the following intermediate claim (from here
on, we set Z := X ∩ Y for notational convenience):

C . ere exists n such that X + nZ + Y ̸⊆ X + Y, but X + kZ + Y ⊆ X + Y for each
k = , . . . , n − , with the convention that Z := { }.

Proof of the claim. Assume by contradiction thatX+ nZ+ Y ⊆ X+ Y for all n. en, we get from
⟨Z⟩ =

∪∞
n= nZ thatX+⟨Z⟩+Y ⊆ X+Y, which implies by (2.7) that ⟨Z⟩ = +⟨Z⟩+ ⊆ X+Y.

en, using that |Z| ≥ to guarantee that { } ( Z ⊆ X + Y, it follows from Proposition 1.18
and the same equation (2.7) that

κ ≥ |⟨Z⟩| ≥ max
̸=z∈Z

ord(z) ≥ min
̸=z∈Z

ord(z) ≥ min
̸=z∈X+Y

ord(z) = γ(X + Y).

is is, however, absurd, for it is in contradiction to (2.5), and we are done.

So, let n be as in the above claim and x, for the remainder of the proof, an element z̄ ∈ nZ such
thatX+ z̄+Y ̸⊆ X+Y (this exists by construction since otherwise we would haveX+ nZ+Y ⊆
X + Y, which is a contradiction). Consequently, observe that

(X + z̄) ∪ (z̄ + Y) ⊆ X + Y. (2.8)

In fact, z̄ being an element of nZ entails that there exist z , . . . , zn ∈ Z such that z̄ = z + · · ·+ zn,
whenceweget that bothofX+z̄ and z̄+Y are contained inX+(n− )Z+Y. ButX+(n− )Z+Y is,
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again by construction, a subset ofX+Y, so (2.8) is proved. With this in hand, let us now introduce
the sets

X := {x ∈ X : x + z̄ + Y ̸⊆ X + Y}

and
Y := {y ∈ Y : X + z̄ + y ̸⊆ X + Y}.

It is then clear thatX (respectively,Y) is disjoint fromX +z̄ (respectively, from z̄+Y ). In addition,
sinceX+ z̄+Y ̸⊆ X+Y, it is also immediate thatX and Y are both non-empty. Finally, it follows
from (2.8) that is not an element of either X or Y . To sum it up,

X ̸= ∅ ̸= Y , /∈ X ∪ Y and (X + z̄) ∩ X = (z̄ + Y ) ∩ Y = ∅. (2.9)

Now, let nX := |X | and nY := |Y |. By Remark 1.24 and the cancellativity ofA, we have

|X + z̄| = |X | = nX and |z̄ + Y | = |Y | = nY, (2.10)

which naturally leads to distinguish between the following two cases:

Case 1 nX ≥ nY. We form X̄ as the union of X and X + z̄ and Ȳ as the relative complement of
Y in Y. First, note that ∈ X̄× ∩ Ȳ× by (2.9). Secondly, pick x̄ ∈ X̄ and ȳ ∈ Ȳ and set
z := x̄ + ȳ. If x̄ ∈ X, then obviously z ∈ X + Y; otherwise, by the construction of X̄ and
Ȳ, we get x̄ ∈ X + z̄ ⊆ X + z̄ and ȳ /∈ Y , so that x̄ + ȳ ∈ X + Y. erefore, we see that
X̄+ Ȳ is a non-empty subset ofX+ Ywith ∈ X̄+ Ȳ, so on the one hand |X̄+ Ȳ| ≤ κ and
on the other hand we have by (2.7) that

γ(X + Y) ≤ inf
̸=z∈X̄+Ȳ

ord(z) ≤ γ(X̄ + Ȳ).

Furthermore, (2.9) and (2.10) give that |X̄| = |X| + |X + z̄| = |X| + nX > |X| and
|Ȳ| = |Y| − |Y | = |Y| − nY, so |X̄|+ |Ȳ| = |X|+ |Y|+ nX − nY ≥ |X|+ |Y|.

Case 2 nX < nY. We set X̄ := X\X and Ȳ := (z̄+Y )∪Y. en, by repeating (except for obvious
modi cations) the same reasoning as in the previous case, we get again that ∈ X̄× ∩ Ȳ×

and X̄ + Ȳ ⊆ X + Y, with the result that |X̄ + Ȳ| ≤ κ and γ(X + Y) ≤ γ(X̄ + Ȳ). In
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addition, it follows from (2.9) and (2.10) that |X̄| = |X| − |X | = |X| − nX and |Ȳ| =
|Y|+ |z̄ + Y | = |Y|+ nY, whence |X̄|+ |Ȳ| = |X|+ |Y|+ nY − nX > |X|+ |Y|.

So in both cases, we end up with an absurd, for we nd subsets X̄ and Ȳ of A that contradict the
“minimaximality” of (X, Y) as it is expressed by (2.6).

Remarkably, several pieces of the above proof of eorem 2.3 do not critically depend on the
cancellativity of the ambient, while others can be adapted to the case where γ(X + Y) is replaced
by γ(X, Y), which is one of our strongest motivations for believing that Conjecture 2.1 should be
ultimately true.

Proof of Corollary 2.4. e claim is obvious if n = . us, assume in what follows that n is ≥
and the assertion is true for all sumsets of the form Y + · · · + Yn− with Y× + · · · + Y×

n− ̸= ∅.
Based on these premises, we get by eorem 2.3 that

|X + · · ·+ Xn| ≥ min(γ(X + · · ·+ Xn), |X + · · ·+ Xn− |+ |Xn| − ),

which in turn implies, by Lemma 1.10, that

|X + · · ·+ Xn| ≥ min(p(A), |X + · · ·+ Xn− |+ |Xn| − ). (2.11)

But we know from Proposition 2.11 that X× + · · ·+ X×
n− ̸= ∅, so the inductive hypothesis gives

|X + · · ·+ Xn− | ≥ min(p(A), |X |+ · · ·+ |Xn− |+ − n),

which, together with (2.11), yields the desired conclusion by induction.
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If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,
And lose, and start again at your beginnings
And never breathe a word about your loss.

Joseph R. K , If

3
Small doubling in ordered semigroups

R . On généralise des résultats par G. A. Freĭman,M.Herzog et leurs coauteurs sur la théorie
structurelle des sommes d’ensembles dans les groupes linéairement ordonnés au cas plus général
des semi-groupes linéairement ordonnés. En particulier, on prouve que, si (A, ·,≼) est un semi-
groupe linéairement ordonné et S est un sous-ensemble ni deA engendrant un sous-semi-groupe
non-abélien, alors |S | ≥ |S|− . Au coursde la preuve, onobtient égalementungrandnombrede
résultats secondaires, et notamment que le commutateur et le normalisateur d’un sous-ensemble
ni d’un semi-groupe linéairement ordonné coïncident. Ce chapitre est basé sur un article par

l’auteur [Tr3] soumis pour publication.

A . Let A = (A, ·) be a semigroup. We generalize results by G. A. Freĭman, M. Herzog
and coauthors on the structure theory of set addition from the context of linearly ordered groups
to linearly ordered semigroups, where we say thatA is linearly orderable if there exists a total order
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≼ on A such that xz ≺ yz and zx ≺ zy for all x, y, z ∈ A with x ≺ y. In particular, we nd that if
S is a nite subset of A generating a non-abelian subsemigroup ofA, then |S | ≥ |S| − . On the
road to this goal, we also prove a number of subsidiary results, and most notably that for S a nite
subset of A the commutator and the normalizer of S are equal to each other. e chapter is based
on a paper by the author [Tr3] submi ed for publication.

3.1 I

Semigroups are ubiquitous in mathematics. Apart from being a subject of continuous interest to
algebraists, they are, as already remarked in theprevious chapters, a natural framework for introduc-
ing several broadly-scoped concepts and developing large parts of theories traditionally presented
in much less general contexts.

Our interest in semigroups is related here to Freĭman’s structure theory of set addition and its
generalizations; this is a very active area of research, which has drawn a constantly increasing at-
tention in the last decade, and has led to signi cant progress in several elds, from algebra [Ge] to
additive number theory and combinatorics [Na, R, TV].

e primary goal of the chapter is, in fact, to extend recent results by G. A. Freĭman, M. Herzog
and coauthors from the se ing of linearly ordered groups [FHLM] to linearly ordered semigroups
(see Section 3.2 for de nitions). Speci cally, assume for the remainder of this section that A =

(A, ·) is a xed semigroup (unless a statement to the contrary is made). e main contribution
here is then represented by the following generalization of [FHLM, eorem 1.2]:

eorem 3.1. Let A be a linearly orderable semigroup and S a nite subset of A such that |S | ≤
|S| − . en, ⟨S⟩ is abelian.

Our proof of eorem3.1 basically follows the same broad scheme as the proof of [FHLM, e-
orem 1.2], but there are signi cant differences in the details. As expected, the increased generality
implied by the switching to semigroups - and especially the fact that inverses are no longer available
- presents, in practice, a number of challenges and requires somethingmore than amere adjustment
of terminology (in some cases, for instance, it is not even clear how a certain result known to hold
for linearly ordered groups should be reformulated in the language of semigroups). In particular,
we will look for an extension of several classical results, such as the following:
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Lemma 3.2. LetA be a linearly orderable semigroup and pick a, b ∈ A. If anb = ban for some n, then
ab = ba.

is is, in fact, a generalization of an old lemma by N. H. Neumann [Ne] on commutators of
linearly ordered groups, appearing as Lemma 2.2 in [FHLM].

In the same spirit, we will also need to extend [FHLM, Proposition 2.4]. For, we use CA(S) for
the centralizer of S (relative toA), viz the set of all a ∈ A such that ay = ya for every y ∈ S, and
NA(S) for the normalizer of S (relative toA), namely the set {a ∈ A : aS = Sa}. ese are wri en
as CA(a) and NA(a), respectively, if S = {a} for some a. Building on these premises, we have:

Lemma 3.3. Let A be a linearly orderable semigroup and S a non-empty nite subset of A, and pick
y ∈ A \ CA(S). en, |yS ∪ Sy| ≥ |S|+ , i.e. there are a, b ∈ S with ya /∈ Sy and by /∈ yS.

Lemma 3.3 is proved in Section 3.2, along with the following generalization of [FHLM, Corol-
lary 1.5], which may perhaps be interesting per se:

eorem 3.4. IfA is a linearly orderable semigroup and S a nite subset of A, then NA(S) = CA(S).

Weconclude the chapterwith a number of examples (Appendix 3.5),mostly nalized to explore
conditions under which certain semigroups (or related structures as semirings) are linearly order-
able. is is mainly to show that the class of linearly orderable semigroups is not, in some sense,
trivial. In particular, we prove ( eorem 3.21) that, for each n, the subsemigroup of GLn(R), the
general linear group of degree n over the real eld, consisting of all upper (respectively, lower)
triangular matrices with positive entries on or above (respectively, below) themain diagonal is lin-
early orderable, subsequently raising the question (to which we do not have an answer) whether
the same conclusion holds for the subsemigroup of all matrices which can be wri en as a ( nite)
product of upper or lower triangular matrices of the same kind as above.

3.2 N

roughout, an order on a setA is a binary relation≼ onAwhich is re exive, antisymmetric, tran-
sitive, and total, in the sense that for all a, b ∈ A we have either a ≼ b or b ≺ a, where≺ is used
for the strict order induced on A by≼.
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Accordingly, we let an ordered semigroup be a triple (A, ·,≼), where (A, ·) is a semigroup,≼ is
an order on A, and the following holds:

∀a, b, c ∈ A : a ≺ b =⇒ a · c ≼ b · c and c · a ≼ c · b. (3.1)

If each of the signs “≼” in (3.1) is replaced with the sign “≺”, then (A, ·,≼) is called a linearly
ordered semigroup; see, e.g., [Iw].

Conversely, we say that a semigroupA = (A, ·) is [linearly] orderable if there exists an order≼
on A such that (A, ·,≼) is a [linearly] ordered semigroup.

All of the above notions and terminology are now extended in the obvious way to monoids and
groups (so we have, for instance, ordered monoids and linearly orderable groups).

3.3 P

In what follows, unless stated otherwise, A = (A, ·) is a xed semigroup and ≼ is an order on A
for whichA♯ = (A, ·,≼) is an ordered semigroup.

In this section, we collect some results that will be essential to prove the main contributions of
the paper, later in Section 3.4. Some are quite elementary, and their group analogues are part of
the folklore; however, we do not have a reference to something similar for semigroups, and thus
we include them here for the sake of exposition. In particular, the proof (by induction) of the
proposition below is straightforward from our de nitions, and we may omit the details.

Proposition 3.5. e following holds:

(i) For all a , . . . , an, b , . . . , bn ∈ A with a ≼ b , …, an ≼ bn we have a · · · an ≼ b · · · bn,
and indeed a · · · an ≺ b · · · bn ifA♯ is linearly ordered and ai ≺ bi for each i.

(ii) If a, b ∈ A and a ≼ b, then an ≼ bn for all n, and in fact an ≺ bn ifA♯ is linearly ordered and
a ≺ b.

(iii) If a ∈ A is such that a ≼ a, then an ≼ am for m ≤ n, and indeed an ≺ am if A♯ is linearly
ordered, a ≺ a and m < n.
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Pick an element a ∈ A. We say that a is cancellable (inA) if both of the maps A → A : x 7→ ax
and A → A : x 7→ xa are one-to-one. e semigroupA is then cancellative if each element of A is
cancellable.

Remark 3.6. A cancellative semigroup is linearly orderable if and only if it is totally orderable.
Furthermore, any linearly orderable semigroup is cancellative. us, one thing seems worth men-
tioning before proceeding: While, on the one hand, every commutative cancellative semigroup
embeds as a subsemigroup into a group, as already mentioned in Remark 1.16, nothing similar is
true, on the other hand, in the non-commutative case, noma er if the ambient is linearly orderable
and nitely generated, as rst noticed by R. E. Johnson [J] on the basis of Mal’cev’s construction
[M1]. Again, this is of fundamental importance here, as it shows that the study of sumsets in lin-
early ordered semigroups cannot be systematically reduced, in the absence of commutativity, to
the case of groups (at least, not in any obvious way).

On another hand, a ∈ A is said to be periodic (in A) if there exist n and p ∈ N+ such that
an = an+p; we then refer to the smallest n with this property as the index of a (in A) and to the
smallest p relative to such an n as the period of a (inA); see, for instance, [Ho, p. 10]. In particular,
a is called idempotent (inA) if it has period and index equal to , namely a = a , and we say that
A is torsion-free if its only periodic elements are idempotent.

Remark 3.7. e unique idempotent element of a cancellative monoid is the identity, so that
torsion-free groups arede nitely a special kindof torsion-free semigroups; cf. Example3.17. More-
over, ifA is cancellative and a ∈ A is idempotent, thenA is unital (which applies especially to lin-
early orderable semigroups, in view of Remark 3.6): For, a = a implies a b = ab and ba = ba
for every b ∈ A, hence ab = ba = b. is ultimately proves that a serves as the identity ofA.

e next proposition generalizes properties mentioned in [FHLM, Section 2].

Proposition 3.8. LetA♯ be a linearly ordered semigroup. We have:

(i) If a ∈ A and a ≺ a, then ab ≺ b and aba ≺ b for all b ∈ A.

(ii) If aba = b for a, b ∈ A, thenA is unital and a is the identity ofA.

(iii) None of the elements of A has nite period unless A is unital and such an element is the identity.
In particular,A is torsion- ee.
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Proof. (i) Pick a, b ∈ Awith a ≺ a. en a b ≺ ab, whence ab ≺ b by totality of≼ and Remark
3.6. It follows fromProposition 3.5 that aba ≺ ba; thus, aba ≺ bby the same arguments as above.

(ii) Let a, b ∈ A be such that aba = b. By duality, we may suppose that a ≼ a, which implies
the claim by Remark 3.7 and the previous point (i).

(iii) is trivial from the above, and we may omit the details.

e next proposition, of whichwe omit the proof, is in turn an extension of an elementary prop-
erty of the integers; see, e.g., [R, Exercise 1, p. 93] and contrast with [FHLM, eorem 1.1].

Proposition 3.9. Suppose that A♯ is a linearly ordered semigroup and let S , . . . , Sn be non-empty
nite subsets of A. en,

|S · · · Sn| ≥ − n +
∑n

i= |Si|. (3.2)

Also, (3.2) is sharp, the lower bound being a ained, for instance, by picking a ∈ A and le ing Si be, for
each i, of the form {a, . . . , asi} for some si ∈ N+.

In particular, the second part of Proposition 3.9 follows from considering that, given a linearly
orderable non-trivial non-empty semigroupA, point (iii) of Proposition 3.8 provides at least one
element a ∈ A such that aj ̸= aj for all distinct j , j ∈ N+.

Now we prove the generalizations of [FHLM, Lemma 2.2] and [FHLM, Proposition 2.4] al-
luded to in the introduction, while noticing that, if A is a group with identity and a, b ∈ A are
such that [an, b] = for some n, then anb = abn (the square brackets denote a commutator).

Proposition 3.10. LetA♯ be a linearly ordered semigroup and pick a, b ∈ A. If ab ≺ ba then for all
n we have

anb ≺ an− ba ≺ · · · ≺ aban− ≺ ban. (3.3)

Proof. Assume that (3.3) holds true for some n. en, multiplying by a on the le gives an+ b ≺
anba ≺ · · · ≺ a ban− ≺ aban, while multiplying by a on the right yields aban ≺ ban+ . Since
ab ≺ ba, the transitivity of≼ implies the claim by induction.

e proof of Lemma 3.2 is now an immediate consequence of Proposition 3.10 (by duality, if
A♯ is a linearly ordered semigroup and a, b ∈ A then we may assume ab ≼ ba without loss of
generality).
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Proof of Lemma 3.3. Assume to the contrary that yS = Sy. Since y /∈ CA(S), we can nd an el-
ement a ∈ S such that a y ̸= ya , which in turn implies that there exists a ∈ S \ {a } such
that ya = a y. en, using that S is a nite set, we get a maximum integer k ≥ and elements
a , . . . , ak ∈ S such that

(i) yai = ai+ y for i = , . . . , k − ;

(ii) ai = aj for i, j = , . . . , k only if i = j.

Hence, themaximality ofk and yS = Sy imply yak = ahy for someh = , . . . , k, with the result that
yi+ ak = ah+iyi+ for every i = , . . . , k − h (by induction). In particular, it holds yk−h+ ak =

akyk−h+ . erefore, yak = aky (by Lemma 3.2), and indeed yak = yak− (as aky = yak− , by
construction). So, Remark 3.6 yields ak = ak− , which is however absurd because ai ̸= aj for all
i, j = , . . . , k with i ̸= j. e proof is thus complete.

Proof of eorem 3.4. e claim is obvious if S = ∅, so assume that S is non-empty. For y ∈ NA(S)
we have yS = Sy, and Lemma 3.3 implies y ∈ CA(S), from which it follows NA(S) ⊆ CA(S). e
other inclusion is obvious.

3.4 T

roughout, A = (A, ·) denotes a xed semigroup (unless differently speci ed). We start with a
series of three lemmas: the two rst apply to cancellative semigroups in general, while the la er is
speci c to linearly ordered semigroups.

Lemma 3.11. Let A be a cancellative semigroup and S a nite subset of A such that ⟨S⟩ is an abelian
subsemigroup. If y ∈ A \ CA(S), then S is disjoint om yS ∪ Sy.

Proof. Pick y ∈ A \ CA(S) and assume by contradiction that S ∩ (yS ∪ Sy) is non-empty. en,
without loss of generality, there exist a, b, c ∈ S such that ab = cy. Since ⟨S⟩ is abelian, this gives
that cyc = abc = cab, whence ab = yc (using thatA is cancellative), and nally cy = yc.

We claim that xy = yx for all x ∈ S. For, let x ∈ S. On the one hand, we have abx = cyx =

ycx = yxc (as we have just seen that cy = yc). On the other hand, xab = xcy = xyc. But
abx = xab (again by abelianity of ⟨S⟩). So, at the end of the day, yxc = xyc, and hence yx = xy
(by cancellativity of c). It follows that y ∈ CA(S), which is absurd.
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Lemma3.12. LetA be a cancellative semigroup and pick elements a, b, x, y, z ∈ A such that x, y, z ∈
CA(b) and xy = az (respectively, xy = za). en, ab = ba.

Proof. By duality, we just consider the case when xy = az. On the one hand, xyb = azb = abz
since zb = bz; on the other, baz = bxy = xyb since x, y ∈ CA(b). Hence abz = baz, that is
ab = ba (by cancellativity of z).

Now, assume for the remainder of the section that A is made into an ordered semigroup by a
certain order≼, and setA♯ := (A, ·,≼).

Lemma 3.13. Let A♯ be linearly ordered, and let S be a non-empty nite subset of A, and pick y ∈
A \ CA(S). If ⟨S⟩ is abelian, then |S ∪ yS ∪ Sy| ≥ |S|.

Proof. e inclusion-exclusion principle, Remark 3.6 and Lemma 3.11 give

|S ∪ yS ∪ Sy| = |S |+ |yS ∪ Sy| − |S ∩ (yS ∪ Sy)| = |S |+ |yS ∪ Sy|,

which is enough to complete the proof on account of the fact that |S | ≥ |S| − , by Proposition
3.9, and |yS ∪ Sy| ≥ |S|+ , by Lemma 3.3.

So at long last we are ready to prove the main theorem of the chapter.

Proof of eorem 3.1. Write Im for { , . . . ,m}, wherem := |S|, and let a , . . . , am be a numbering
of S for which a ≺ · · · ≺ am. It is clear that m ≥ . If m = then |S | ≤ , and indeed |S | =
by Proposition 3.9. Since a ≺ a a ≺ a and a ≺ a a ≺ a , it follows that S = {a , a a , a }
and a a = a a , which implies that ⟨S⟩ is abelian, as was desired.

So, in what follows, let m ≥ and suppose that ⟨B⟩ is abelian for every subset B of A satisfying
≤ |B| < m and |B | ≤ |B| − . Furthermore, assume for the sake of contradiction that ⟨S⟩

is not abelian, and accordingly denote by i the maximum integer in Im such that ⟨T⟩ is abelian for
T := {a , . . . , ai}. en, ≤ i < m and ai+ /∈ CA(T), so on the one hand

T ∩ (ai+ T ∪ Tai+ ) = ∅, (3.4)

thanks to Remark 3.6 and Lemma 3.11, and on the other hand

|T ∪ ai+ T ∪ Tai+ | ≥ i, (3.5)
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by virtue of Lemma 3.13. Also, there exists a positive integer j ≤ i such that

ai+ aj ̸= ajai+ , (3.6)

which is chosen here to be as great as possible, in such a way that

xai+ = ai+ x for every x ∈ T with aj ≺ x. (3.7)

We have that aj /∈ CA(V), where V := S \ T = {ai+ , . . . , am}, and

V ∩ (T ∪ ai+ T ∪ Tai+ ) = ∅ (3.8)

since ahak ≺ ai+ ≼ aras for all h, k, r, s ∈ Im with h + k ≤ i + and i + ≤ min(r, s). en,
the inclusion-exclusion principle, together with (3.5) and the standing assumptions, gives that

|V | ≤ |S | − |T ∪ ai+ T ∪ Tai+ | ≤ m − − i = |V| − .

us ≤ |V| < m, and ⟨V⟩ is abelian (by the inductive hypothesis). en,

V ∩ (ajV ∪ Vaj) = ∅ (3.9)

in view of Remark 3.6, Lemma 3.11 and the fact that aj /∈ CA(V). We claim

T ∩ (ajV ∪ Vaj) = ∅. (3.10)

For, assume to the contrary, with no loss of generality, that T ∩ ajV ̸= ∅, namely xy = ajz for
some x, y ∈ T and z ∈ V. Using that y ≺ z, this yields aj ≺ x, and similarly aj ≺ y as ⟨T⟩ is
abelian (so that xy = yx, and hence yx = ajz). It then follows from (3.7) and the abelianity of ⟨V⟩
that x, y, z ∈ CA(ai+ ). us, we get ai+ aj = ajai+ by Lemma 3.12, which however contradicts
(3.6) and implies (3.10).

at said, let x ∈ T and y ∈ V be such that xai+ = ajy. Since ai+ ≼ y, it is apparent that
aj ≼ x. Suppose for the sake of contradiction that aj ≺ x. en, we get from (3.7) and the
abelianity of ⟨V⟩ that x, ai+ , y ∈ CA(ai+ ), with the result that ajai+ = ai+ aj (by Lemma 3.12).
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But this is in open contrast with (3.6), and it is enough to argue that

Tai+ ∩ ajV = {ajai+ }.

us, the inclusion-exclusion principle gives that

|Tai+ ∪ ajV| = |Tai+ |+ |ajV| − |Tai+ ∩ ajV| = m − , (3.11)

which in turn implies, together with (3.4), (3.8), (3.9) and (3.10), that

|T ∪ V ∪ Tai+ ∪ ajV| = |T |+ |V |+ |Tai+ ∪ ajV|.

It follows from Proposition 3.9 and (3.11) that

|T ∪ V ∪ Tai+ ∪ ajV| ≥ ( i − ) + ( m − i − ) + (m − ) = m − .

As |S | ≤ m − and T ∪ V ∪ Tai+ ∪ ajV ⊆ S , it is then proved that

S = T ∪ V ∪ Tai+ ∪ ajV. (3.12)

So to conclude, let us de ne a := ai+ aj. By (3.4) and (3.8), it is straightforward to see that
a /∈ T ∪ V , and we want to show that a /∈ Tai+ ∪ ajV to reach a contradiction. To this aim,
observe rst that, by (3.6) and Lemma 3.3, there exist x ∈ T and y ∈ V such that

ai+ x /∈ Tai+ , yaj /∈ ajV. (3.13)

Since ai+ x, yaj /∈ T ∪V by (3.4), (3.8), (3.9) and (3.10), it follows from(3.12) that ai+ x ∈ ajV
and yaj ∈ Tai+ , so we nd b ∈ V and c ∈ T such that

ajb = ai+ x, yaj = cai+ . (3.14)

Suppose that a ∈ Tai+ , that is there exists z ∈ T for which zai+ = ai+ aj, and in fact z ̸= aj
by (3.6). If aj ≺ z then z ∈ CA(ai+ ) by (3.7), so ai+ aj = ajai+ by Lemma 3.12, again in
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contradiction to (3.6). us z ≺ aj, and in addition x ≼ aj, as otherwise ai+ x = xai+ ∈ Tai+
in view of (3.7), in contradiction to (3.13). Considering that ⟨T⟩ is abelian, it follows from (3.14)
that ajbaj = ai+ xaj = ai+ ajx. However ai+ aj = zai+ , so at the end ajbaj = zai+ x. Hence,
baj ≺ ai+ x as z ≺ aj, which is absurd since ai+ ≼ b and x ≼ aj, viz ai+ x ≼ baj. is implies
a /∈ Tai+ .

Finally, assume that a ∈ ajV, i.e. there exists w ∈ V such that ai+ aj = ajw. By construction of
V, we have ai+ ≼ w, and indeed ai+ ≺ w by (3.6). We want to show that c ≼ aj. For, suppose
to the contrary that aj ≺ c. e abelianity of ⟨V⟩, together with (3.7), then yields that c, ai+ , y ∈
CA(ai+ ), so ai+ aj = ajai+ by (3.14) and Lemma 3.12; this contradicts (3.6), and hence c ≼ aj.
Using once more that ⟨V⟩ is abelian, it is then immediate from (3.14) that ai+ cai+ = ai+ yaj =
yai+ aj, so ai+ cai+ = yajw since ai+ aj = ajw. But, as argued before, ai+ ≺ w, whence it is seen
that yaj ≺ ai+ c, which is absurd because ai+ ≼ y, by construction of V, and c ≼ aj, as proved
above. us, we get that a /∈ ajV.

Pu ing all together, it follows that a /∈ T ∪V ∪Tai+ ∪ajV, which is however in contradiction
to (3.12), as a is obviously an element of S . erefore, ⟨S⟩ is abelian.

In some sense, eorem 3.1 is best possible; speci cally, [FHLM, Section 3] provides the ex-
ample of a subset S of a linearly ordered group generating a non-abelian subgroup and such that
|S | = |S| − .

Corollary 3.14. Let S be a nite subset of a linearly orderable semigroup (A, ·), which generates a non-
abelian subsemigroup. en |S | ≥ |S| − .

Proof. It is just a trivial restatement of eorem 3.1.

We have not found so far an appropriate way to extend Proposition 3.1 in [FHLM] from nite
subsets of linearly ordered groups, generating abelian subgroups, to nite subsets of linearly or-
dered semigroups, generating abelian subsemigroups, so we raise the following:

Question 3.15. Assume thatA is a linearly orderable semigroup. Let S be a nite subset of A, set s :=
|S| and t := |S | for convenience of notation, and suppose that t ≤ s − and ⟨S⟩ is abelian. Is
it then possible to nd a, b ∈ A such that ab = ba and S is a subset of the geometric progression
a, ab, . . . , abt−s?
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3.5 A : E

We conclude the paper with a few examples. As mentioned in the introduction, the basic goal is to
show that [linearly] orderable semigroups and related structures are far from being “exotic”.

We start with an orderable semigroup which is not linearly orderable. en, we mention some
classesof linearlyorderable groups and some linearlyorderablemonoids (respectively, semigroups)
which are not groups (respectively, monoids).

Example 3.16. Every set A can be turned into a semigroup by the operation · : A × A → A :

(a, b) → a; see, for instance, [Ho, p. 3]. Trivially, if≼ is a total order onA then (A, ·,≼) is a totally
ordered semigroup. However, (A, ·) is not linearly orderable for |A| ≥ .

Example 3.17. An interesting variety of linearly ordered groups is provided by abelian torsion-
free groups, as rst proved by F. W. Levi in [Le], and the result can be, in fact, extended to abelian
cancellative torsion-free semigroupswith no substantialmodi cation; see the comments following
Remark 3.6 in Section 3.2 and Corollary 3.4 in R. Gilmer’s book on commutative semigroup rings
[Gi]. In a similar vein, K. Iwasawa [Iw], A. I. Mal’cev [M2] and B. H. Neumann [Ne] established
independently that all torsion-free nilpotent groups are linearly orderable.

Save for the semigroupanalogueofLevi’s result, all of the above is alreadymentioned in [FHLM],
where the interested reader can nd further references to existing literature on the subject. How-
ever, there are other interesting examples of linearly ordered groups which are not included in
[FHLM], and remarkably pure braid groups [RZ] and free groups [Iw].

Example 3.18. As for linearly ordered monoids which are not linearly ordered groups, consider,
for instance, the free monoid [Ho, Section 1.6] on a totally ordered alphabet (X,≼) together with
the “shortlex ordering”: words are primarily sorted by length, with the shortest ones rst, and
words of the same length are then sorted into lexicographical order. On the other hand, the posi-
tive integers divisible only for the members of a given subset S of primes, endowed with the usual
multiplication, provide the example of a linearly orderable semigroup which is not even a monoid
unless S = ∅.

Example 3.19. Let A = (A, ·) and B = (B, ⋄) be semigroups and φ : A → B a semigroup
monomorphism, i.e. an injective function A → B such that φ(a · a ) = φ(a ) ⋄ φ(a ) for all
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a , a ∈ A. IfB is linearly ordered by a certain order≼B and≼A is the binary relation onA de ned
by taking a ≼A a if and only if φ(a ) ≼B φ(a ), it is routine to check that≼A is a total order, and
indeed (A, ·,≼A) is a linearly ordered semigroup.

e next example is potentially interesting per se. Not only it gives a family of linearly ordered
semigroups which are neither abelian nor groups (at least in general); it also shows that, for each
n, certain subsemigroups of GLn(R) consisting of triangular matrices are linearly orderable.

Example 3.20. We let a semiring be a triple (A,+, ·) consisting of a set A and associative opera-
tions+ and · fromA×A toA (referred to, respectively, as the semiring addition andmultiplication)
such that

1. (A,+) is an abelian monoid, whose identity we denote by ;

2. annihilates A, that is · a = a · = for every a ∈ A;

3. multiplicationdistributes over addition, that isa·(b+c) = a·b+a·c and (a+b)·c = a·c+b·c
for all a, b, c ∈ A.

(In other words, a semiring is a ring where elements do not need have an additive inverse.) We call
(A,+) and (A, ·), respectively, the additive monoid and the multiplicative semigroup of (A,+, ·),
which in turn is termed a unital semiring if (A, ·) is a monoid too; see [He, Ch. II] and [Go, Ch. 1,
p. 1].

A semiring (A,+, ·) is said orderable if there exists a total order≼ onA such that (A,+,≼) and
(A, ·,≼) are ordered semigroups, in which case (A,+, ·,≼) is named an ordered semiring. If, on
the other hand, the following hold:

4. (A,+,≼) is a linearly ordered monoid;

5. a · c ≺ b · c and c · a ≺ c · b for all a, b, c ∈ A with a ≺ b and ≺ c,

then (A,+, ·) is said to be linearly orderable and (A,+, ·,≼) is called a linearly ordered semiring;
cf. [Go, Ch. 20]. Notable examples of linearly ordered semirings areN, Z, R+, andR with their
usual structure.
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On these premises, letA = (A,+, ·) be a xed semiring. We writeMn(A) for the set of n-by-n
matrices with entries in A. Endowed with the usual operations of entry-wise addition and row-
by-column multiplication implied by the structure of A, here respectively denoted by the same
symbols as the addition and multiplication of the la er,Mn(A) becomes a semiring per se, called
the semiring of n-by-n matrices overA and wri en asMn(A); see [Go, Ch. 3].

Now, supposeA is linearly ordered by a certain order≼, so thatA♯ := (A,+, ·,≼) is a linearly
ordered semiring, and denote by Un(A+

♯ ) the subsemigroup of the multiplicative semigroup of
Mn(A) consisting of all upper triangular matrices whose entries on or above the main diagonal
belong toA+

♯ := {a ∈ A : ≺ a}. Observe that Un(A+
♯ ) is not, in general, a group (for instance,

the inverse of a regular -by- matrix with positive real entries has not positive real entries), and
not even a monoid for n ≥ . Perhaps more interestingly, we have the following:

eorem 3.21. Un(A+
♯ ) is a linearly orderable semigroup.

Proof. Set In := { , , . . . , n}, Ξn := {(i, j) ∈ In × In : i ≤ j} and de ne a binary relation ≤n

on Ξn by (i , j ) ≤n (i , j ) if and only if (i) j − i < j − i or (ii) j − i = j − i and j < j .
It is seen that≤n is a well-order, so we can de ne a binary relation≼n,U on Un(A+

♯ ) by taking, for
α = (ai,j)ni,j= and β = (bi,j)ni,j= in Un(A+

♯ ), α ≼n,U β if and only if (i) α = β or (ii) there exists
(i , j ) ∈ Ξn such that ai ,j ≺ bi ,j and ai,j = bi,j for all (i, j) ∈ Ξn with (i, j) <n (i , j ).

It is straightforward that≼n,U is an order. To see, in particular, that it is total: Pick α = (ai,j)ni,j=
and β = (bi,j)ni,j= in Un(A+

♯ ) with α ̸= β. ere then exists (i , j ) ∈ Ξn such that ai ,j ̸= bi ,j ,
where (i , j ) is chosen in such a way that ai,j = bi,j for every (i, j) ≤n (i , j ). Since≼ is total, we
have that either α ≺n,U β if ai ,j ≺ bi ,j or β ≺n,U α otherwise, and we are done.

It remains to prove that Un(A+
♯ ) is linearly ordered by ≼n,U. For, let α and β be as above and

suppose α ≺n,U β, viz there exists (i , j ) ∈ Ξn with ai ,j ≺ bi ,j and ai,j = bi,j for all (i, j) ∈ Ξn

with (i, j) <n (i , j ). Given γ = (ci,j)ni,j= in Un(A+
♯ ) we then have ai,kck,j ≼ bi,kck,j and ci,kak,j ≼

ci,kbk,j for all (i, j) ∈ Ξn and k ∈ In such that (i, k) ≤n (i , j ) and (k, j) ≤n (k, j ), and indeed
ai ,j cj ,j ≺ bi ,j cj ,j and ci ,i ai ,j ≺ ci ,i bi ,j for the fact that (A,+, ·,≼) is a linearly ordered
semiring. It follows that, for all (i, j) ∈ Ξn with (i, j) ≤n (i , j ),∑n

k= ai,kck,j =
∑j

k=i ai,kck,j ≼
∑j

k=i bi,kck,j =
∑n

k= bi,kck,j

and, similarly,
∑n

k= ci,kak,j ≼
∑n

k= ci,kbk,j. In particular, these majorizations are equalities for
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(i, j) <n (i , j ) and strict inequalities if (i, j) = (i , j ). So α · γ ≺n,U β · γ and γ · α ≺n,U γ · β,
and the proof is complete.

We refer to the order≼n,U de ned in the proof of eorem 3.21 as the zig-zag order onUn(A+
♯ ).

If Ln(A+
♯ ) stands for the subsemigroup of themultiplicative semigroup ofMn(A) consisting of all

lower triangularmatrices whose entries on or below themain diagonal are inA+
♯ , it is then straight-

forward to see that Ln(A+
♯ ) is itself linearly orderable: It is, in fact, linearly ordered by the binary

relation≼n,L de nedby taking α ≼n,L β if andonly if α⊤ ≼n,U β⊤, where the superscript ‘⊤’means
‘transpose’. Provided that Tn(A+

♯ ) is the subsemigroup of (Mn(A), ·) generated by Un(A+
♯ ) and

Ln(A+
♯ ), it is hence natural to ask the following:

Question 3.22. Is Tn(A+
♯ ) a linearly orderable semigroup?

While at present we do not have an answer to this, it was remarked by Carlo Pagano (Università
di Roma Tor Vergata, Italy) in a private communication thatMn(A+

♯ ), namely the subsemigroup
of (Mn(A), ·) consisting of allmatrices with entries inA+

♯ , is not in general linearly orderable. For
a speci c counterexample, letA be the real eld and take α as the n-by-n matrix whose entries are
all equal to and β as any n-by-n matrix with positive (real) entries each of whose columns sums
up to n; then α = αβ.

Apparently, the question has not been addressed before by other authors, although the ordering
of Mn(A), in the case where A is a partially orderable semiring, is considered in [Go, Example
20.60].

Example 3.23. In what follows, we let K = (K,+, ·) be a semiring (see Example 3.20 for the
terminology) and A = (A, ⋄) a semigroup, and use K[A] for the set of all functions f : A → K
such that f is nitely supported in K, namely f(a) ̸= K for nitely many a ∈ A, where K is the
additive identity ofK.

In fact, K[A] can be turned into a semiring, here wri en as K[A], by endowing it with the op-
erations of pointwise addition and Cauchy product induced by the structure of A and K (these
operations are denoted below with the same symbols as the addition and multiplication ofK, re-
spectively). We have the following:

eorem 3.24. Suppose thatK is a linearly orderable semiring andA a linearly orderable semigroup.
enK[A] is itself a linearly orderable semiring.
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Proof. e claim is obvious if A = ∅, so assume that A is non-empty, and let ≼K and ≼A be, re-
spectively, orders onA andK for which (K,+, ·,≼K) is a linearly ordered semiring and (A, ⋄,≼A)

a linearly ordered semigroup.
en, given α ∈ A and f ∈ K[A] we let f↓α (respectively, f↑α) be the function A → K taking a to

f(a) if a ≺A α (respectively, α ≼A a), and to K otherwise, in such a way that f = f↓α+ f↑α. Also, we
denote by μ the map K[A]× K[A] → A ∪ {A} sending a pair (f, g) to min{a ∈ A : f(a) ̸= g(a)}
if f ̸= g (the minimum is taken with respect to≼A, and it exists by consequence of the de nition
itself of K[A]), and to A otherwise.

We de ne a binary relation ≼ on K[A] by le ing f ≼ g if and only if either f = g or f ̸= g and
f(μ(f, g)) ≺K f(μ(f, g)). It is clear that≼ is a total order onK[A], andwewant to prove that it is also
compatible with the algebraic structure ofK[A], in the sense thatK[A] is linearly ordered by≼.

For, pick f, g, h ∈ K[A] with f ≺ g. Since the additive monoid of K is linearly ordered by
≼K, we have μ(f, g) = μ(f + h, g + h), and thus f + h ≺ g + h. at is, (K[A],+,≼) is a
linearly orderedmonoid in its own right. On another hand, assumeΘ ≺ h, whereΘ is the function
A → K : a 7→ K, and set α := μ(f, g) and β := μ(Θ, h). We have f↓α = g↓α and h = h↑β, with
the result that f · h ≺ g · h if and only if f↑α · h↑β ≺ g↑α · h↑β, and the la er inequality is certainly
true, since on the one side f↑α · h↑β(a) = g↑α · h↑β(a) = K for a ≺A α ⋄ β, and on the other

f↑α · h↑β(α ⋄ β) = f↑α(α) · h↑β(β) ≺K g↑α(α) · h↑β(β) = g↑α · h↑β(α ⋄ β).

In a similar way, it is seen that h · f ≺ h · g. So, by the arbitrariness of f, g, and h, we get that
(K[A],+, ·,≼) is a linearly ordered semiring.

So takingA to be the free commutative monoid (respectively, the free monoid) on a certain set
and recalling that free groups (and hence free monoids) are linearly orderable (Example 3.17), we
have the following:

Corollary 3.25. e semiring K is linearly orderable if and only if it goes the same with the semiring
of polynomials with coefficients inK depending on a given set of pairwise commuting (respectively, non-
commuting) variables.
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Amo como ama o amor. Não conheço nenhuma outra razão
para amar senão amar. Que queres que te diga, além de que
te amo, se o que quero dizer-te é que te amo?

Fernando A. N. P , Primeiro Fausto

4
On a conje ure of Győry and Smyth

R . Nous déterminons tous les triplets (a, b, n) d’entiers positifs tels que a et b sont premiers
entre eux et nk divise an + bn (respectivement, an − bn), lorsque k est le maximum de a et b (en
fait, nous répondons à une question un peu plus générale). Comme sous-produit, il est obtenu
que, pour m, n ∈ N+ et n ≥ , nm divise mn + si et seulement si (m, n) = ( , ) ou ( , ).
Les résultats sont liés à une conjecture par K. Győry et C. Smyth sur la nitude des ensembles
R±
k (a, b) := {n ∈ N+ : nk | an ± bn}, où a, b, k sont des entiers xes avec k ≥ , gcd(a, b) =

et |ab| ≥ ; en particulier, ce résultat implique que la conjecture est vraie pour k ≥ max(|a|, |b|).
Ce chapitre est basé sur un papier par l’auteur [Tr4] publié sur Integers.

A . We determine all triples (a, b, n) of positive integers such that a and b are relatively
prime and nk divides an + bn (respectively, an − bn), when k is the maximum of a and b (in fact,
we answer a slightly more general question). As a by-product, it is found that, for m, n ∈ N+ with
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n ≥ , nm dividesmn + if and only if (m, n) = ( , ) or ( , ), which generalizes problems from
the 1990 and 1999 editions of the InternationalMathematical Olympiad. e results are related to
a conjecture by K. Győry and C. Smyth on the niteness of the sets R±

k (a, b) := {n ∈ N+ : nk |
an ± bn}, where a, b, k are xed integers with k ≥ , gcd(a, b) = and |ab| ≥ ; in particular, we
nd that the conjecture is true for k ≥ max(|a|, |b|). e chapter is based on a paper by the author

[Tr4] published in Integers.

4.1 I

It is a problem from the 1990 edition of the International Mathematical Olympiad (shortly, IMO)
to nd all integers n ≥ such that n | n + . is is reported as Problem 7.1.15 (p. 147) in
[AA], together with a solution by the authors (p. 323), which shows that the only possible n is .
On another hand, Problem 4 in the 1999 IMO asks for all pairs (n, p) of positive integers such that
p is a (positive rational) prime, n ≤ p and np− | (p − )n + . is is Problem 5.1.3 (p. 105)
in the same book as above, whose solution by the authors (p. 105) is concluded with the remark
that “With a li le bit more work, we can even erase the condition n ≤ p.” Speci cally, it is found
that the required pairs are ( , p), ( , ) and ( , ), where p is an arbitrary prime. (For notation and
terminology herein used without de nition, as well as for material concerning classical topics in
number theory, the reader should refer to [HW].)

It is now fairly natural to ask whether similar conclusions can be drawn in relation to the more
general problem of determining all pairs (m, n) of positive integers for which nm | mn + . In fact,
the question is answered in the positive, and even in a stronger form, by eorem 4.1 below, where
the following observations are taken into account to rule out from the analysis a few trivial cases:
Given a, b ∈ Z and n, k ∈ N+, we have that k | an±bn and nk | an−an. Furthermore, nk | an±bn

if and only if nk | bn ± an, and also if and only if nk | (−a)n ± (−b)n. Finally, nk | an + (−a)n for
n odd and nk | an − (−a)n for n even.

eorem 4.1. Let a, b, n be integers such that n ≥ , a ≥ max( , |b|) and b ≥ for n even, and set
δ := gcd(a, b), α := δ− a and β := δ− b.

(i) Assume that β ̸= −α when n is odd. en, na | an + bn and nα | αn + βn if and only if
(a, b, n) = ( , , ) or ( c, c, ) for c ∈ { , , }.
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(ii) Assume β ̸= α. en, na | an − bn and nα | αn − βn if and only if (a, b, n) = ( , , ) or
( ,− , ).

e theorem will be proved in Section 4.2. In fact, our proof is just the result of a meticulous
re nementof the solutions alreadyknown for the IMOproblemsmentioned in thepreamble. us,
our only possible merit, if any at all, has been that of bringing into focus a clearer picture of (some
of) their essential features.

Somecomments are inorder before proceeding. First, itwouldbe interesting to extend eorem
4.1, possibly at the expense of some extra solutions, by removing the assumption that nα | (αn+βn)
or nα | (αn−βn) (the notation is the same as in the statement of the result), but at presentwedonot
have great ideas for this. Secondly, three out of the six triples obtained by the present formulation
of the theorem come from the identity + = . Lastly, the result yields a solution of the
problems which have originally stimulated this work, as we have the following corollary (of which
we omit the obvious proof):

Corollary 4.2. Let m, n ∈ N+. en nm | mn + if and only if either (m, n) = ( , ), (m, n) =
( , ), or n = and m is arbitrary.

We will make use at some point of the following lemma, which belongs to the folklore and is
typically a ributed to É. Lucas [Lu] and R. D. Carmichael [Car] (the la er having xed an error
in Lucas’ original work in the -adic case).

Lemma 4.3 (Li ing-the-exponent lemma). For all x, y ∈ Z, ℓ ∈ N+ and p ∈ P such that p - xy
and p | x − y, the following conditions are satis ed:

(i) If p ≥ , ℓ is odd, or | x − y, then ep(xℓ − yℓ) = ep(x − y) + ep(ℓ).

(ii) If p = , ℓ is even and e (x − y) = , then e (xℓ − yℓ) = e (x + y) + e (ℓ).

e study of the congruences an ± bn ≡ mod nk has a very long history, dating back at least
to Euler, who proved that, for all relatively prime integers a, b with a > b ≥ , every primitive
prime divisor of an − bn is congruent to modulo n; see [BV, eorem I] for a proof (a prime
divisor p of an − bn is said to be primitive if there does not exist any k ∈ N+ with k < n such that
p - ak − bk). However, since there are so many results related to the question, instead of trying to
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summarize them here, we just refer the interested reader to the paper [GS], whose authors provide
an account of the existing literature on the topic and characterize, for a, b ∈ Z and k ∈ N+, the set
R+
k (a, b), respectively R−

k (a, b), of all positive integers n such that nk divides an + bn, respectively
an − bn (note that no assumption is made about the coprimality of a and b), while addressing the
problem of nding the exceptional cases when R−(a, b) and R−(a, b) are nite; see, in particular,
[GS, eorems 1–2 and 18]. Nevertheless, the related question of determining, given a, b ∈ Z
with gcd(a, b) = , all positive integers n such that nk divides an + bn (respectively, an − bn),
when k is the maximum of |a| and |b|, does not appear to be considered neither in [GS] nor in the
references therein.

On another hand, it is suggested in [GS] thatR+
k (a, b) andR−

k (a, b) are both nite provided that
a, b, k are xed integers with k ≥ , gcd(a, b) = and |ab| ≥ (the authors point out that the
question is probably a difficult one, even assuming the ABC conjecture). Although far from being
an answer to this, eorem 4.1 below implies that, under the same assumptions as above, R+

k (a, b)
and R−

k (a, b) are nite for k ≥ max(|a|, |b|).

4.2 P

First, for the sake of exposition, we give a couple of lemmas.

Lemma 4.4. Let x, y, z ∈ Z and ℓ ∈ N+ such that gcd(x, y) = and z | xℓ + yℓ. en xy and z are
relatively prime, q - xℓ − yℓ for every integer q ≥ for which q | z, and - z provided that ℓ is even.
Moreover, if there exists an odd prime divisor p of z and ℓ such that gcd(ℓ, p − ) = , then p | x + y,
ℓ is odd and ep(z) ≤ ep(x + y) + ep(ℓ).

Proof. e rst part is routine (we omit the details). As for the second, let p be an odd prime
dividing both z and ℓ with gcd(ℓ, p − ) = . Also, considering that z and xy are relatively prime
(by the above), denote by y− an inverse of ymodulo p and byω the order of xy− modulo p, viz the
smallest k ∈ N+ such that (xy− )k ≡ mod p; cf. [HW, Section6.8]. Since (xy− ) ℓ ≡ mod p,
we have ω | ℓ. It follows from Fermat’s li le theorem and [HW, eorem 88] that ω divides
gcd( ℓ, p − ), whence we get ω | , using that gcd(ℓ, p − ) = . is in turn implies that
p | x − y , and hence either p | x − y or p | x + y. But p | x − y would give that p | xℓ − yℓ,
which is impossible by the rst part of the claim (since p ≥ ). So p | x + y, with the result that
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ℓ is odd: For, if | ℓ, then p | xℓ (because p | z | xℓ + yℓ and y ≡ −x mod p), which would
lead to gcd(x, y) ≥ p (again, using that p is odd), viz to a contradiction. e rest is an immediate
application of Lemma 4.3.

Lemma 4.5. Let x, y, z ∈ Z such that x, y are odd and x, y ≥ . en x − y = z if and only if
z ≥ , x = z− + and y = z− − .

Proof. Since x and y are odd, x − y is divisible by , namely z ≥ , and there exist i, j ∈ N+ such
that i + j = z, x − y = i and x + y = j. It follows that x = j− + i− and y = j− − i− ,
and then j > i and i = (otherwise x and y would be even). e rest is straightforward.

Now, we are ready to write down the proof of the main result.

Proof of eorem 4.1. (i) Assume that na | an + bn, nα | αn + βn, and β ̸= −α when n is odd. Since
α and β are coprime (by construction), it holds that β ̸= , for otherwise n | αn + βn and n ≥
would give gcd(α, β) ≥ . Also, α = |β| if and only if α = β = and n = (as β ≥ for n even),
and thus δ divides δ , which is possible if and only if δ ∈ { , , } and gives (a, b, n) = ( , , ),
( , , ), or ( , , ). So, we are le with the case when

α ≥ and α > |β| ≥ , (4.1)

since α ≥ max( , |β|). Considering that | n for n even, it follows from Lemma 4.4 that n is odd
and gcd(αβ, n) = . Denote by p the smallest prime divisor of n. Again by Lemma 4.4, it is then
found that p divides α + β and

α − ≤ (α − ) · ep(n) ≤ ep(α + β). (4.2)

Furthermore, α + β ≥ by equation (4.1), whence

α + β = prs, with r, s ∈ N+ and p - s. (4.3)

erefore, equations (4.1) and (4.3) yield that α ≥ prs+ . is implies by equation (4.2), since
r = ep(α + β), that rs ≤ prs ≤ r + , which is possible only if p = and r = s = . us, by
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equations (4.2) and (4.3), we get α + β = and α = , namely (α, β) = ( , ). Also, e (n) = ,
and hence n = t for some t ∈ N+ with gcd( , t) = . It follows that t | γt + for γ = .

So suppose, for the sake of contradiction, that t ≥ and let q be the least prime divisor of
t. en, another application of Lemma 4.4 gives eq(t) ≤ eq(γ + ) + eq(t), and accordingly
≤ eq(t) ≤ eq(γ + ) = eq( ), which is however absurd, due to the fact that gcd( , t) = .

Hence t = , i.e. n = , andpu ing everything together completes theproof, because + =

and δ | δ · ( + ) only if δ = .
(ii) Assume that na | an − bn, nα | αn − βn, and β ̸= α. Since gcd(α, β) = , we get as in the

proof of point (i) that β ̸= , while α = |β| only if α = , β = − , and n is odd (again, β ≥
for n even), which is however impossible, because it would give that n | with n ≥ . So, we can
suppose from now on that α and β satisfy the same conditions as in equation (4.1), and write n as
rs, where r ∈ N, s ∈ N+ and gcd( , s) = . We have the following:

Case 1: r = , i.e. n = s. en, n is odd, so that na | an+(−b)n and nα | αn+(−β)n, so by point
(i) we get (a, b, n) = ( ,− , ).

Case 2: r ≥ . Since n is even and gcd(α, β) = , both α and β are odd, that is | α − β . It
follows from point (i) of Lemma 4.3 that

e (αn − βn) = e (α − β ) + e ( r− s) = e (α − β ) + r − . (4.4)

(With the same notation as in its statement, we apply Lemma 4.3 with x = α , y = β ,
ℓ = r− s, and p = .) Also, rα | αn − βn, so equation (4.4) yields

(α − ) · r ≤ e (α − β )− . (4.5)

ere now exist u, v ∈ N+ with u ≥ and gcd( , v) = such that α − β = u+ v, with
the result that α > u/ √

v. Hence, taking also into account that x ≥ x+ for every x ∈ R
with x ≥ , we get by equation (4.5) that(u

+
)√

v ≤ u/ √
v <

u
r
+ , (4.6)

which is possible only if r = and
√

v < . en u/ √
v < u + , in such a way that
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≤ u ≤ and v = (using that v is odd). In consequence of Lemma 4.5, all of this
implies, at the end of the day, that α = z + , b = z − and n = s (recall that we want
the conditions in equation (4.1) to be satis ed and β ≥ for n even), where z is an integer
between and . But we need z ≤ z+ by equation (4.5), so necessarily z = , i.e. α =

and β = . Finally, we check that ( s) | s − s if and only if s = : For, if s ≥ and
q is the smallest prime divisor of s, then < eq(s) ≤ eq( − ) by Lemma 4.4, which
is absurd since gcd( , s) = . is gives (a, b, n) = ( , , ), while it is trivially seen that

δ | δ · ( − ) if and only if δ = .

Pu ing all the pieces together, the proof is thus complete.
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Ithaca has given you the beautiful voyage.
Without her you would not have set out on the road.
Nothing more does she have to give you.

Konstantinos Petrou K , Ithaca

5
On a system of equations with primes

R . Étant donné un entier n ≥ , soient u , . . . , un des entiers premiers entre eux deux à
deux pour lesquels ≤ u < · · · < un, soit D une famille de sous-ensembles propres et non
vides de { , . . . , n} qui contient un nombre “suffisant” d’éléments, et soit ε une fonction D →
{± }. Existe-t-il au moins un nombre premier q tel que q divise

∏
i∈I ui − ε(I) pour un certain

I ∈ D, mais ne divise pas u · · · un ? Nous donnons une réponse positive à ce e question dans
le cas où les ui sont des puissances de nombres premiers si on impose certaines restrictions sur
ε et D. Nous utilisons ce résultat pour prouver que, si ε ∈ {± } et si A est un ensemble de
trois ou plus nombres premiers qui contient les diviseurs premiers de tous les nombres de la forme∏

p∈B p − ε pour lesquels B est un sous-ensemble propre, ni et non vide de A, alors A contient
tous les nombres premiers. Ce chapitre est basé sur un article par Paolo Leone i et l’auteur [Tr5]
accepté pour publication au Journal de éorie des Nombres de Bordeaux.
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A . Given an integer n ≥ , let u , . . . , un be pairwise coprime integers for which ≤
u < · · · < un, and let D be a family of nonempty proper subsets of { , . . . , n} with “enough”
elements and ε a map D → {± }. Does there exist at least one prime q such that q divides∏

i∈I ui − ε(I) for some I ∈ D, but it does not divide u · · · un? We answer this question in the
positive in the case where the integers ui are prime powers and some restrictions hold on ε andD.
We use the result to prove that, if ε ∈ {± } and A is a set of three or more primes that contains
all prime divisors of any number of the form

∏
p∈B p− ε for which B is a nite nonempty proper

subset of A, then A contains all the primes. e chapter is based on a paper by the author [Tr5]
(joint work with Paolo Leone i) accepted for publication on Journal de éorie des Nombres de
Bordeaux.

5.1 I

ere are several proofs of the fact thatP is in nite: Some are elementary, others come as a byprod-
uct of deeper results. E.g., six of them, including Euclid’s classical proof, are given byM. Aigner and
G.M. Ziegler in the rst chapter of their lovely Proofs om THE BOOK [AZ]. Although not really
focused on the in nity of primes, this chapter is inspired by Euclid’s original work on the subject,
concerned as it is with the factorization of numbers of the form a · · · an ± , where a , . . . , an are
coprime positive integers, and in fact prime powers (we do not consider as a prime power).

To be more speci c, we need rst some notation. Given a set A, we denote byP⋆(A) the family
of all nite nonempty proper subsets of A, in such a way that A /∈ P⋆(A). Furthermore, for an
integer n ≥ we set Sn := { , . . . , n} and let Pn(A) be the collection of all subsets B of A with
|B| = n. Formore notation and terminology used here without explanation, as well as for material
concerning classical topics in number theory, the reader should refer to [HW]. With this in mind,
we can state the basic question addressed below:

Question 5.1. Given an integer n ≥ , pick exponents v , . . . , vn ∈ N+ and primes p , . . . , pn ∈ P
such that p < · · · < pn, and let D be a nonempty subfamily of P⋆(Sn) with “enough” elements and
ε a map D → {± }. Does there exist at least one prime q ∈ P \ {p , . . . , pn} such that q divides∏

i∈I p
vi
i − ε(I) for some I ∈ D?

At present, we have no formal de nition of what should be meant by the word “enough” in the
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previous statement: this is part of the question. With the notation from above it is rather clear, for
instance, that the answer toQuestion 5.1 is no, at least in general, if |D| is “small” with respect to n,
as shown by the following:

Example 5.2. Given an integer k ≥ , (pairwise) distinct primes q , . . . , qk and positive integers
e , . . . , ek, letqbe the greatest primedividing at least oneof thenumbers of the form

∏
i∈I q

ei
i ± for

I ∈ P⋆(Sk). en, we get a negative answer to Question 5.1 by extending q , . . . , qk to a sequence
q , . . . , qℓ containing all the primes≤ q (note that ℓ ≥ k+ ), by taking a nonempty E ⊆ P⋆(Sk)
and arbitrary ek+ , . . . , eℓ ∈ N+, and by se ing n := ℓ, pi := qi, vi := ei andD := E .

us, to rule out such trivial cases, one shall suppose, e.g., that |D| ≥ nκ or, in alternative,
|D| ≥ nκ for some absolute constant κ > .

at said, we concentrate here on the case where D contains at least all subsets of Sn of size ,
n − , or n − , and the function ε is constant when restricted to these (see eorem 5.5 below),
while collecting a series of intermediate results that could be useful, in future research, to try to
draw broader conclusions. In particular, Question 5.1 can be naturally “generalized” as follows:

Question 5.3. Given an integer n ≥ and pairwise relatively prime integers u , . . . , un such that
≤ u < · · · < un, letD be a nonempty subcollection of P⋆(Sn) for whichD has “enough” elements

and ε a functionD → {± }. Does there exist at least one q ∈ P such that q divides
∏

i∈I ui− ε(I) for
some I ∈ D and q - u · · · un?

Note thatQuestion 5.3 is not really a generalization ofQuestion 5.1, in the sense that the former
can be stated in the terms of the la er by replacing, with the samenotation as above, nwith the total
number d of the prime divisors of u · · · un andD with a suitable subfamily ofP⋆(Sd).

Questions 5.1 and 5.3 are somewhat reminiscent of cyclic systems of simultaneous congruences,
studied by several authors, and still in recent years, for their connection with some long-standing
questions in the theory of numbers, and especiallyZnám’s problemand theAgoh-Giuga conjecture
(see [BV] and [La], respectively, and references therein). Our initialmotivationhas been, however,
of a completely different sort, and in fact related to the following:

Question 5.4. Let A be a subset of P, having at least three elements, and such that for any B ∈ P⋆(A)
all prime divisors of

∏
p∈B p − belong to A. en A = P.
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is served as a problem in the 4th grade of the 2003 Romanian IMO Team Selection Test,
and it appears (up to minor notational differences) as Problem 10 in [BAB, p. 53]. e solution
provided in the book (p. 62) consists of two parts. In the rst one, the authors aim to show thatA is
in nite, but their argument is seen to be at least incomplete. Speci cally, they argue as follows (we
use the notation from above): A er having proved that is in A, they suppose by contradiction
that A is a nite set of size k (where k ≥ ) and let p , . . . , pk be a numbering of A such that
= p < · · · < pk. en, they derive from the standing assumptions on A that

pα + = β+ pγ +

for some α, β, γ ∈ N. But this does not imply ≡ mod p (as is stated in the book) unless
γ ̸= , which is nowhere proved and has no obvious reason to hold.

e problem per se is not, however, difficult, and it was used also for the 2004 France IMOTeam
Selection Test (we are not aware of any official solution published by the organizers of the compe-
tition).

Questions somewhat similar to those abovehave been consideredbyother authors, even though
under different assumptions, and mostly focused on the properties of the prime factorization of
very particular numerical sequences a , a , . . . recursively de ned, e.g., by formulas of the form
an+ = + a · · · an; see [Na, Section 1.1.2] and the references therein for an account (for all
practical purposes, we report that one of the questions raised by A. A. Mullin in [Mu] and men-
tioned by W. Narkiewicz on page 2 of his book has been recently answered by [Bo]).

Now, we have not been able to work out a complete solution of Question 5.1, whatever this may
be. Instead, we solve it in some special cases. In fact, our main result here is as follows:

eorem 5.5. Given an integer n ≥ , pick distinct primes p , . . . , pn, exponents v , . . . , vn ∈ N+

and a subcollectionD ofP⋆(Sn) such that

D ⊆ D, withD := P (Sn) ∪ Pn− (Sn) ∪ Pn− (Sn).

en, for every function ε : D → {± } such that the restriction of ε to D is constant, there exists at
least one q ∈ P \ {p , . . . , pn} such that q divides

∏
i∈I p

vi
i − ε(I) for some I ∈ D.

e proof of eorem5.5, as presented in Section 5.3, requires a number of preliminary lemmas,
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which are stated and proved under assumptions much weaker than those in the above statement.
In particular, we will make use at some point of the following (well-known) result [Zs]:

eorem 5.6 (Zsigmondy’s theorem). Pick a, b ∈ N+ and an integer n ≥ such that (i) a > b
and (ii) neither (a, b, n) = ( , , ) nor a+ b is a power of and n = . en, there exists p ∈ P such
that p | an − bn and p - ak − bk for each positive integer k < n.

eorem 5.5 can be used to solve a generalization of Question 5.4. Speci cally, we say that a set
A of integers is ne if either A is nite or for every p ∈ P there exist in nitely many a ∈ A such
that p - a. On the other hand, for B,C ⊆ Z we write B ⊥ C if for every b ∈ B there exists c ∈ C
such that b | c; this simpli es to b ⊥ C when B = {b}. Clearly, B ⊥ C if and only if b ⊥ C for all
b ∈ B. Based on these premises, we then prove the following:

eorem 5.7. Pick ε ∈ {± } and let A be a ne set of prime powers with the property that |A| ≥
and q ⊥ A whenever q is a prime dividing

∏
a∈B a − ε for some B ∈ P⋆(A). en |A| = ∞, and in

particular A = P if A ⊆ P and P ⊥ A if ε = .

eorem 5.7 is proved in Section 5.4. With the notation from above, the assumption that A is
ne is somehow necessary, as we show in Example 5.19. Incidentally, the result gives a solution of

Question 5.4 in the special casewhere ε = andA ⊆ P, while providing another proof, although
overcomplicated, of the in nitude of primes. One related question is as follows:

Question 5.8. Pick n ∈ N+ and distinct primes q , . . . , qn. Does there always exist a nonempty set of
prime powers, say A, such that P \ {q , . . . , qn} is precisely the set of all prime divisors of the numbers∏

a∈B a + for which B is a nite nonempty subset of A?

is is completely open to us. An easier question is answered in Example 5.20.

5.2 P

Here below, we x somemore notation and prove a few preliminary lemmas related to the original
version of Question 5.1 (that is, not only to the special cases covered by eorem 5.5). For any
purpose it may serve, we recall that, in our notation, ∈ N and ∅, Sn /∈ P⋆(Sn).

In the remainder of this section, we suppose that there exist an integer n ≥ , a set P =

{p , . . . , pn}of nprimes, integral exponents v , . . . , vn ∈ N+, a nonempty subfamilyD ofP⋆(Sn),
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and a function ε : D → {± } such that p < · · · < pn and q ∈ Pwhenever q ∈ P and q divides∏
i∈I p

vi
i − εI for some I ∈ D, where εI := ε(I) for economy of notation. Accordingly, we show

that these assumptions lead to a contradiction ifD contains some distinguished subsets of Sn and
the restriction of ε to the subcollection of these sets, herein denoted by D , is constant: is is
especially the case whenD = P (Sn) ∪ Pn− (Sn) ∪ Pn− (Sn).

We let P :=
∏n

i= pvii andDop := {Sn \ I : I ∈ D}, and then we de ne

PI :=
∏
i∈I

pvii and P−I := PSn\I

for I ∈ P⋆(Sn) (note that P = PI · P−I), and ε−I := εSn\I for I ∈ Dop. In particular, given i ∈ Sn
wewrite Pi in place of P{i} and P−i for P−{i}, but also εi instead of ε{i} and ε−i for ε−{i} (whenever
thismakes sense). It then follows fromour assumptions that there aremaps α , . . . , αn : Dop → N
such that

∀I ∈ Dop : P−I = ε−I +
∏
i∈I

pαi,Ii , (5.1)

where αi,I := αi(I). In particular, if there exists i ∈ Sn such that {i} ∈ Dop then

P−i = pαii + ε−i, with αi := αi,{i} ∈ N+ (5.2)

(of course, αi ≥ since P−i − ε−i ≥ · − ). is in turn implies that

∀I , I ∈ Dop : P = PI ·

(
ε−I +

∏
i∈I

pαi,Ii

)
= PI ·

(
ε−I +

∏
i∈I

pαi,Ii

)
, (5.3)

which specializes to
P = pvii ·

(
pαii + ε−i

)
= pvii ·

(
pαii + ε−i

)
(5.4)

for all i , i ∈ Sn such that {i }, {i } ∈ Dop. We mention in this respect that, for any xed integer
b ̸= and any nite subset S of P, the diophantine equation

A · (ax − ax ) = B · (by − by ) (5.5)

has only nitely many solutions in positive integers a,A,B, x , x , y , y for which a is a prime,
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gcd(Aa,Bb) = , x ̸= x and all the prime factors of AB belong to S; see [BL] and the ref-
erences therein. It follows that our equation (5.4) has only nitely many possible scenarios for ε
taking the constant value− inD. However, themethods used in [BL] are not effective and, as far
as we can tell, a list of all the solutions to equation (5.5) is not known, not even in the special case
when A = B = and b = . Furthermore, there doesn’t seem to be any obvious way to adapt the
proof of the main result in [BL] to cover all of the cases resulting from equation (5.4).

With this in mind, and based on (5.1), our main hypothesis can be now restated as

“q divides P−I − ε−I for some q ∈ P and I ∈ Dop only if q ∈ P.” (5.6)

In addition, we can easily derive, using (5.3) and unique factorization, that

“q divides ε−I +
∏

i∈I p
αi,I
i for some q ∈ P and I ∈ Dop only if q ∈ P.” (5.7)

Both of (5.6) and (5.7) will be o en referred to throughout the article. Lastly, we say that ε is
k-symmetric for a certain k ∈ N+ if both of the following conditions hold:

(i) I ∈ D ∩ Pk(Sn) only if I ∈ Dop; (ii) εI = ε−I for all I ∈ D ∩ Pk(Sn).

With all this in hand, we are nally ready to prove a few preliminary results that will be used later,
in Section 5.3, to establish our main theorem.

5.2.1 P

e material is intentionally organized into a list of lemmas, each one based on “local”, rather than
“global”, hypotheses. is is motivated by the idea of highlighting which is used for which purpose,
while looking for an approach to solve Question 5.1 in a broader generality. In particular, the rst
half of eorem 5.5 (the one relating to the case ε = ) will follow as a corollary of Lemma 5.14
below, while the second needs more work.

In what follows, given a ∈ Z and m ∈ N+ such that gcd(a,m) = , we denote by ordm(a) the
smallest k ∈ N+ such that ak ≡ mod m, namely the order of a in the group of units ofZ/mZ.

Lemma 5.9. If pi = for some i ∈ Sn and there exists j ∈ Sn \ {i} such that {j} ∈ Dop, then one,
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and only one, of the following conditions holds:

1. ε−j = − and αj is even.

2. ε−j = − , αj is odd and pj ≡ mod .

3. ε−j = , αj is odd and pj ≡ mod .

Proof. Under the assumptions of the claim, (5.4) gives that | pαjj + ε−j, which is possible only if
one, and only one, of the desired conditions is satis ed.

e next lemma, as trivial as it is, furnishes a sufficient condition under which ∈ P. Indeed,
having away to show that and are inP looks like a key aspect of the problem in its full generality.

Lemma 5.10. If there exists I ∈ D such that /∈ I then p = ; also, α ≥ if, in addition to the
other assumptions, I ∈ Pn− (Sn).

Proof. Clearly, pi is odd for each i ∈ I, which means that PI − εI is even, and hence p = by
(5.6) and the assumed ordering of the primes pi. us, it follows from (5.2) that if I ∈ Pn− then
α = P− − ε− ≥ · − , to the effect that α ≥ .

e following two lemmas prove that, in the case of a -symmetric ε, reasonable (and not-so-
restrictive) assumptions imply that belongs toP.

Lemma 5.11. Suppose that ε is -symmetric and pick a prime q /∈ P. en, there doesn’t exist any
i ∈ Sn such that {i} ∈ D and pi ≡ mod q.

Proof. Assume by contradiction that there exists i ∈ Sn such that {i } ∈ D and pi ≡ mod q.
en, since ε is -symmetric, we get by (5.1) and (5.2) that

− ε ≡ pvii − ε ≡
∏
i∈I

pαi,Ii mod q and PI ≡ pαii + ε ≡ + ε mod q,

where I := Sn \ {i }. But q /∈ P implies q - pvii − ε by (5.6), with the result that ε = −
(from the above), and then q | PI . By unique factorization, this is however in contradiction to the
fact that q is not inP.
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Lemma 5.12. Suppose that ε is -symmetric and there exists J ∈ P⋆(Sn) such that Sn \ J has an even
number of elements, D := P (Sn) ∪ {Sn \ J} ⊆ D, and the restriction of ε toD is constant. en
p = and α ≥ ( − ε ).

Proof. Let ε take the constant value ε when restricted to D and assume by contradiction that
/∈ P. en, Lemma 5.11 entails that pi ≡ − mod for all i ∈ Sn, while taking I = Sn \ {i} in

(5.1) and working modulo yield by (5.6) that

pvii − ε ≡
∏
j∈I

pαj,Ij ̸≡ mod ,

to the effect that vi is odd if ε = and even otherwise (here, we are using thatP (Sn) ∈ D and ε
is -symmetric, in such a way thatPn− (Sn) ∈ D too). Now, since Sn \ J ∈ D, the very same kind
of reasoning also implies that

− ε ≡ P−J − ε ≡
∏
j∈J

pαj,Jj mod ,

with the result that if ε = then ∈ P by (5.6), as follows from the fact that Sn \ J has an even
number of elements and vi is odd for each i ∈ J (which was proved before). is is however a
contradiction.

us, we are le with the case ε = − . Since − is not a quadratic residue modulo a prime
p ≡ − mod , we get by the above and (5.2) that pi ≡ mod for each i = , , . . . , n.

en, (5.1) gives, together with Lemma 5.10, that P− + = α with α ≥ , which is again a
contradiction as it means that ≡ mod . e whole proves that p = , which implies from
(5.2) that α = P− − ε− ≥ · − ε , and hence α ≥ ( − ε ).

Now, we show that, ifD contains at least some distinguished subsets of Sn and ε±i = for some
admissible i ∈ Sn \ { }, then pi has to be a Fermat prime.

Lemma5.13. AssumeP (Sn \{ }) ⊆ Dop and suppose there exists i ∈ Sn \{ } for which {i} ∈ D
and ε±i = . en, pi is a Fermat prime.

Proof. It is clear from Lemma 5.10 that p = . Suppose by contradiction that there exists an odd
prime q such that q | pi − (note that pi ≥ ), and hence q | pvii − εi. en, taking I = {i} in
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(5.6) gives that q = pj for some j ∈ Sn \ { , i}. Considering thatP (Sn \ { }) ⊆ Dop, it follows
from (5.4) that

pvjj (p
αj
j + ε−j) = pvii (p

αi
i + ),

where we use that ε−i = . is is however a contradiction, because it implies that ≡ mod pj
(with pj ≥ ). So, pi is a Fermat prime by [HW, eorem 17].

Lemma 5.14. Suppose that pi = for some i ∈ Sn,P (Sn) ⊆ Dop, and there exists j ∈ Sn \ { , i}
such that {j} ∈ D and ε±j = . en i = , p = , and ε− = − .

Proof. First, we have by Lemma 5.10 that p = , and hence i = . Also, pj is a Fermat prime
by Lemma 5.13 (and clearly pj ≥ ). So suppose by contradiction that ε− = . en, Lemma
5.9 and (5.2) imply that pj | P− = α + with α odd, to the effect that ≤ ordpj( ) ≤
gcd( α, pj − ) = . It follows that ≤ pj ≤ − , which is obviously impossible.

e proof of the next lemma depends on Zsigmondy’s theorem. Although not strictly related to
the statement and the assumptions of eorem 5.5, it will be of crucial importance later on.

Lemma5.15. Pick p, q ∈ P and assume that there exist x, y, z ∈ N for which x ̸= , y ≥ , p | q+
and qx − = py(qz − ). en x = , z = , p = , y ∈ P, and q = y − .

Proof. Since x ̸= , it is clear that qx − ̸= , with the result that z ̸= and qz − ̸= too.
erefore, using also that y ̸= , one has that

py = (qx − )/(qz − ) > , (5.8)

which is obviously possible only if
x > z ≥ . (5.9)

We claim that x ≤ . For suppose to the contrary that x > . en by Zsigmondy’s theorem, there
must exist at least one r ∈ P such that r | qx − and

r - qk − for each positive integer k < x.

In particular, (5.8) yields that r = p (by unique factorization), which is a contradiction since p |
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q − . us, we get from (5.9) that x = and z = . en, py = q + , that is py − ∈ P, and
this is absurd unless p = and y ∈ P. e claim follows.

is completes the series of our preliminary lemmas; we can now proceed to the proof of the
main result.

5.3 P T 5.5

roughout we use the same notation and assumptions as in Section 5.2, but we specialize to the
case where

D := P (Sn) ∪ Pn− (Sn) ∪ Pn− (Sn) ⊆ D

and ε takes the constant value ε when restricted toD (as in the statement of eorem 5.5).

Proof of eorem 5.5. At least one of n − or n − is even, so we have by Lemmas 5.10 and 5.12
that p = , p = and v ≥ . ere is, in consequence, no loss of generality in assuming, as we
do, that ε = − , since the other case is impossible by Lemma 5.14. us, pick i ∈ Sn such that
| pi + . It follows from (5.3) and our hypotheses that there exist βi , γi ∈ N such that

P = v ( α − ) = pvii ·
(
pαii −

)
= v pvii ·

(
βi p

γi
i −

)
,

to the effect that, on the one hand,

pαii − = v ·
(

βi p
γi
i −

)
, (5.10)

and on the other hand,
α − = pvii ·

(
βi p

γi
i −

)
. (5.11)

en, since v ≥ and αi ̸= , we see by (5.10) and Lemma 5.15 that βi ≥ . It is then found
from (5.11) that− ≡ (− )vi + mod , i.e. vi is even. To wit, we have proved that

∀i ∈ Sn : pi ≡ − mod =⇒ vi is even and pvii ≡ mod . (5.12)
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But every prime ̸= is congruent to± modulo . us, we get from (5.2) and (5.12) that

≡
∏

i∈Sn\{ }

pvii + ≡ α ≡ mod ,

which is obviously a contradiction and completes the proof.

5.4 P T 5.7

In the present section, unless differently speci ed, we use the same notation and assumptions of
eorem 5.7, whose proof is organized into three lemmas, one for each aspect of the claim.

Lemma 5.16. A is an in nite set.

Proof. Suppose for the sake of contradiction that A is nite and let n := |A|. Since A is a set of
prime powers, there then exist p , . . . , pn ∈ P and v , . . . , vn ∈ N+ such that p ≤ · · · ≤ pn and
A = {pv , . . . , pvnn }, and our assumptions give that

“q divides
∏

i∈I p
vi
i − ε for some I ∈ P⋆(Sn) only if q ∈ {p , . . . , pn}.” (5.13)

is clearly implies that p < · · · < pn. In fact, if pi = pi for distinct i , i ∈ Sn, then it is found
from (5.13) and unique factorization that

pki =
∏

i∈Sn\{i }

pvii − ε

for a certain k ∈ N+, which is impossible when reduced modulo pi . us, using that n ≥ , it
follows from eorem5.5 that there also exists q ∈ P\{p , . . . , pn} such that q divides

∏
i∈I p

vi
i −

ε for some I ∈ P⋆(Sn). is is, however, in contradiction with (5.13), and the proof is complete.

Lemma 5.17. If ε = , then P ⊥ A. In particular, A = P if A ⊆ P.

Proof. Suppose for the sake of contradiction that there exists p ∈ P such that p does not divide any
element ofA. en, sinceA is ne and |A| = ∞ (by Lemma 5.16), there are in nitelymany a ∈ A
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such that p - a. By the pigeonhole principle, this yields that, for a certain r ∈ { , . . . , p − }, the
set Ar := {a ∈ A : a ≡ r mod p} is in nite, and we have that

∀B ∈ P⋆(Ar) :
∏
a∈B

a ≡
∏
a∈B

r ≡ r|B| mod p. (5.14)

As it is now possible to choose B ∈ P⋆(Ar) in such a way that |B | is a multiple of p− , one gets
from (5.14) and Fermat’s li le theorem that p divides

∏
a∈B a− for someB ∈ P⋆(A), and hence

p | a for some a ∈ A (by the assumptions of eorem 5.7). is is, however, absurd, because by
construction no element of A is divisible by p. It follows that P ⊥ A. e rest is trivial.

In the next lemma, we let ω(n) denote the number of distinct prime factors of n, in such a way
that, e.g., ω( ) = and ω( ) = . Moreover, we let an empty sum be equal to and an empty
product be equal to , as usual.

Lemma 5.18. If ε = − and A ⊆ P, then A = P.

Proof. Suppose to the contrary that A ̸= P, i.e. there exists p ∈ P such that p - A, and for each
r ∈ Sp− , let Ar := {a ∈ A : a ≡ r mod p}. en, p - A yields that

A = A ∪ · · · ∪ Ap− . (5.15)

In addition, set Γfin := {r ∈ Sp− : |Ar| < ∞} and Γinf := Sp− \ Γfin, and then

Afin := {a ∈ A : a ∈ Ar for some r ∈ Γfin} and Ainf := A \ Afin.

It is clear from (5.15) that Ainf is in nite, because Afin is nite, {Afin,Ainf} is a partition of A, and
|A| = ∞ by Lemma 5.16. us, we de ne ξ :=

∏
a∈Afin

a, and we claim that there exists a
sequence ϱ , ϱ , . . . of positive integers such that ϱn is, for each n ∈ N, a nonempty product (of a
nite number) of distinct elements of A with the property that

ξ | ϱn and + ϱn ≡
n+∑
i=

ϱi mod p. (5.16)

Proof of the claim. We construct the sequence ϱ , ϱ , . . . in a recursive way. To start with, pick an
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arbitrary a ∈ Ainf and de ne ϱ := a · ξ , where the factor a accounts for the possibility that
Γfin = ∅. By construction, ϱ is a nonempty product of distinct elements of A, and (5.16) is satis-
ed in the base case n = .
Now x n ∈ N and suppose that we have already found ϱn ∈ N+ such that ϱn is a product of

distinct elements of A and (5.16) holds true with ϱ and ϱn. By unique factorization, we then get
from the assumptions on A that there exist s , . . . , sk ∈ N+ and distinct primes p , . . . , pk ∈ P
such that pi ⊥ A for each i and

ξ | ϱn and + ϱn =
k∏

i=

psii , (5.17)

where k := ω(ϱn) ≥ . Since A is a subset of P, then pi ⊥ A implies pi ∈ A, and indeed pi ∈ Ainf,
because every element of Afin, if any exists, is a divisor of ξ , and ξ | ϱn by (5.17). Using that
Ar is in nite for every r ∈ Γinf and Ainf =

∪
r∈Γinf Ar, we get from here that there exist elements

a , . . . , ah ∈ Ainf such that, on the one hand,

ϱ < a < · · · < ah, (5.18)

and on the other hand,

∀i ∈ Sk : pi ≡ a +ti ≡ · · · ≡ asi+ti mod p, (5.19)

where h :=
∑k

i= si and ti :=
∑i−

j= sj for each i. It follows from (5.17) and (5.19) that

+ ϱn ≡
k∏

i=

psii ≡
h∏

i=

ai mod p.

So, for the assumptions on ϱn and the above considerations, we see that

+ ϱ · ( + ϱn) ≡ + ϱ ·
n+∑
i=

ϱi ≡
n+∑
i=

ϱi mod p.

Our claim is hence proved, by recurrence, by taking ϱn+ := ϱ · ( + ϱn), because ξ | ϱ | ϱn+
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and ϱn+ is, by virtue of (5.18), a nonempty product of distinct elements of A.

us, le ing n = p(p − ) − in (5.16) and considering that p - ϱ , as p - A and ϱ is, by
construction, a product of elements of A, gives that + ϱn ≡ mod p, with the result that p ∈ A
by the assumed properties of A. is is, however, a contradiction, and the proof is complete.

Finally, we have all the ingredients to cook the following:

Proof of eorem 5.7. Just put together Lemmas 5.16, 5.17 and 5.18.

Oneobvious question arises: Canweprove eorem5.7without assuming thatA is a ne subset
ofZ? at the answer is not unconditionally affirmative is implied by the following:

Example 5.19. Pick distinct primes q , q , . . . , qℓ ≥ and, in view of [HW, eorem 110], let
gi be a primitive root modulo qi. A standard argument based on the Chinese remainder theorem
then shows that there also exists an integer g such that g is a primitive rootmodulo qi for each i, and
by Dirichlet’s theorem on arithmetic progressions we can choose g to be prime. Now, de ne

A :=


∪ℓ

i= {g(qi− )n : n ∈ N+} if ε =

∪ℓ
i= {g (qi− )( n+ ) : n ∈ N} if ε = − .

If P is the set of all primes q such that q divides
∏

a∈B a − ε for some B ∈ P⋆(A), then on the
one hand, qi ⊆ P for each i (essentially by construction), and on the other hand, qi - A because
gcd(qi, g) = . Note that this is possible, by virtue of eorem 5.7, only because A is not ne.

Weconclude the sectionwith another example, that provides evidenceof a substantial difference
between Lemmas 5.17 and 5.18, and is potentially of interest in relation to Question 5.8.

Example 5.20. Given odd primes q , . . . , qℓ, let k := lcm(q − , . . . , qℓ − ) and A := {pnk :
p ∈ P, n ∈ N+}. We denote byP the set of all primes q for which there exists B ∈ P⋆(A) such
that q divides

∏
a∈B a + . It is then easily seen thatP ⊆ P \ {q , . . . , qℓ}, since

∏
a∈B a + ≡

̸≡ mod qi for each i = , , . . . , ℓ.
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5.5 C

Many natural questions related arise (in addition to the ones already raised in the previous sec-
tions), and perhaps it can be interesting to nd them an answer.

Some examples: Is it possible to prove eorem 5.5 under the weaker assumption that D , as
there de ned, is P (Sn) ∪ Pn− (Sn) instead of P (Sn) ∪ Pn− (Sn) ∪ Pn− (Sn)? is is clearly
the case if n = , but what about n ≥ ? And what if n is sufficiently large andD = Pk(Sn) for
some k ∈ Sn? e answer to the la er is negative for k = (to see this, take p , . . . , pn to be the n
smallest primes and let v = · · · = vn = ε = , then observe that, for each i ∈ Sn, the greatest
prime divisor of pvii − ε is≤ pi − ). But what if k ≥ ?

Furthermore: Towhat degree can the results in Section5.2 be extended in thedirectionofQues-
tion 5.3? It seemsworthmentioning in this respect thatQuestion 5.3 has the following abstract for-
mulation in the se ing of integral domains (we refer to [Mo, Ch. 1] for background on divisibility
and related topics in the general theory of rings):

Question 5.21. Given an integral domainF = (F,+, ·) and an integer n ≥ , pick pairwise coprime
non-units u , . . . , un ∈ F (assuming that this is actually possible), and letD be a nonempty subfamily
of P⋆(Sn) with “enough” elements. Does there exist at least one irreducible q ∈ F such that q divides∏

i∈I ui − for some I ∈ D and q - u · · · un?

In the above, the condition thatu , . . . , un are non-units is needed to ensure that, for each I ∈ D,
thenumber

∏
i∈I ui− is non-zero,whichwould, in some sense, trivialize thequestion. Onanother

hand, one may want to assume that F is a UFD, in such a way that an element is irreducible if and
only if it is prime [Mo, eorems 1.1 and 1.2]. In particular, it seems interesting to try to answer
Question 5.21 in the special case where F is the ring of integers of a quadratic extension ofQwith
the property of unique factorization, and u , . . . , un are primes inF. is will be, in fact, the subject
of future work.
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