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Résumé

Introduction

La vidéo 3D connâıt un développement rapide ces dernières années, des sorties de

plus en plus fréquentes de films 3D à l’émergence de nouveaux services 3D comme

la télévision 3D (3DTV) et la Free Viewpoint TV (FTV). Bien que la vidéo 3D n’a

pas encore atteint le succès attendu (dû principalement aux inconforts visuels et à

la nécessité de porter des lunettes 3D tout au long de la séance), elle est attendue à

conquérir rapidement le marché avec le visionnage auto-stéréoscopique, qui requiert

un nombre important de vues à multiplexer simultanément au récepteur.

Le format stéréo classique (mettant en jeu deux vues uniquement) étant du coup

insuffisant, le format multi-vue (MVV pour Multi-View Video), composé de plusieurs

vues représentant la même scène mais légèrement décalées les unes par rapport aux

autres, permet de subvenir aux exigences de la 3DTV et la FTV. Or le coût de

transmission des différentes vues dans le format MVV peut toutefois rester exorbit-

ant, même si les corrélations inter-vues sont exploitées avec des codeurs tels que

Multi-view Video Coding (MVC). Le format Multi-view Video + Depth (MVD) est

une alternative intéressante à MVV car il introduit des vidéos de profondeur qui

sont moins coûteuses à coder que des vidéos de texture, et qui peuvent être utilisées

pour synthétiser autant de vues nécessaires au récepteur avec la technique de Depth

Image Based Rendering (DIBR).

Or il n’y a actuellement aucun standard conçu pour coder efficacement des vidéos

3D dans un format MVD. Le groupe MPEG s’est penché sur le sujet en 2011, et

parmi les différentes voies de standardisation qui en ont découlé, l’une concerne une

extension 3D du standard HEVC (3D-HEVC) qui permettrait un codage efficace des

données MVD. C’est dans ce contexte que se situent justement les travaux de cette

thèse. L’objectif est de développer des outils qui permettent d’augmenter l’efficacité

de codage des vues dépendantes, des vidéos de profondeur, et des vidéos synthétisées

dans 3D-HEVC. Le fil conducteur des approches proposées est l’amélioration de la

prédiction des informations de codage transmises dans un flux binaire 3D-HEVC.

Les travaux sont divisés en deux catégories, la première regroupant des approches
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conventionnelles orientées vers la normalisation et la deuxième regroupant des ap-

proches amont, en rupture avec l’état de l’art actuel. Les approches de la première

catégorie sont soumises à des contraintes strictes (en matière de complexité, de

nombre de calculs, de mémoire RAM utilisée. . . ) afin d’être facilement intégrables

dans des standards 3D tel que 3D-HEVC. Les approches de la deuxième catégorie par

contre, ne sont soumises à aucune contrainte. L’accent est plus mis sur l’innovation

et la recherche pure, et ceci permet d’obtenir des gains de codage plus significatifs

que ceux obtenus dans la première catégorie.

1 Représentation et codage vidéo 3D

Dans le premier chapitre de cette thèse, nous introduisons les différents indices à

partir desquels le système visuel humain perçoit la profondeur. On distingue les

indices physiologiques des indices monoculaires et binoculaires. Ces derniers per-

mettent en particulier de recréer une sensation de profondeur avec des moyens arti-

ficiels, d’où la stéréoscopie qui domine le marché de la vidéo 3D actuellement. Bien

sûr, d’autres formats 3D existent aussi. Ils peuvent être divisés en deux catégories

principales : les formats à base de texture uniquement, et les formats à base de

profondeur, dont MVD.

Le chapitre introduit ensuite des outils de codage de vidéos 3D sous un format

MVD. En l’occurrence, il s’agit d’outils qui permettent de coder plus efficacement

les vues de texture et de profondeur en exploitant les corrélations inter-vues mais

aussi inter-composantes (texture-profondeur). Certains outils spécifiques au codage

de la profondeur y sont détaillés également.

Finalement, ce chapitre présente différents standards vidéo capables d’encoder

des vidéos 3D sous un format MVD. Parmi les plus efficaces, on note HEVC, MVC,

une extension multi-vue de HEVC (MV-HEVC), et 3D-HEVC. MVC est une ex-

tension multivue du standard H.264/AVC qui permet d’exploiter les corrélations

inter-vues pour augmenter l’efficacité de codage. MV-HEVC est similaire, sauf que

basé HEVC et non AVC. MVC et MV-HEVC permettent de coder des vidéos 3D

sous un format MVD en codant séparément les textures et les profondeurs. 3D-

HEVC, en cours de standardisation, permet un codage conjoint des textures et des

profondeurs pour augmenter encore plus l’efficacité de codage. Des outils spécifiques

au codage de la profondeur y sont inclus également.

HEVC, MVC, MV-HEVC et 3D-HEVC sont ensuite comparés. Deux scénarios

sont considérés, où doivent être codées 9 vues de texture dans l’un (format MVV),

et 3 vues de texture (parmi les 9) ainsi que leurs profondeurs dans l’autre (format

MVD), sachant que dans ce scénario, après décodage, 6 vues sont synthétisées pour
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revenir aux 9 initiales. Dans le scénario 1, MVC donne des gains de -7.5% en moyenne

par rapport à un codage HEVC simulcast des différentes vues. En réalité, MVC ne

commence à donner des gains qu’à partir de la 4ème vue codée, où l’exploitation des

corrélations inter-vues devient plus efficace que le codage mono-vue de HEVC qui est

meilleur que celui de MVC basé AVC. MV-HEVC ne souffre pas d’un codage mono-

vue inefficace car l’extension est basée elle-même sur HEVC. Du coup l’exploitation

des corrélations inter-vue améliore l’efficacité de codage sans pour autant être con-

trée par des pertes, ce qui justifie un gain moyen de -37.1%. Dans le scenario 2,

MVC donne des pertes importantes (73.2%) par rapport à HEVC simulcast car

moins que 4 vues sont codées. MV-HEVC donne -28.8% de gains, alors que 3D-

HEVC donne -45.6% à cause de l’exploitation des corrélations inter-composantes

(texture-profondeur) et des outils de codage de la profondeur. En comparant les

deux scénarios par codec utilisé, on remarque que le scénario 2 est plus efficace que

le premier dans tous les cas (-23.7% de gains avec MVC, -31.2% avec MV-HEVC,

et -55.5% avec HEVC), ce qui prouve que MVD est plus rentable que MVV pour

représenter des vidéos 3D.

2 Outils de codage dans 3D-HEVC

Dans le deuxième chapitre, nous présentons les outils de codage dans 3D-HEVC.

Une vue dite vue de base est en premier codée avec HEVC pour maintenir une

compatibilité arrière avec le standard. Puis, les autres vues de texture, dites vues

dépendantes, et les vidéos de profondeur sont codées avec des outils additionnels

pour un codage plus efficace. Dans 3D-HEVC, on code par unité d’accès. Une unité

d’accès comporte toutes les trames de texture et de profondeur à un instant donné

t. La structure de codage est détaillée à la Figure 1.

La vue de base est codée avec HEVC sans aucun outil additionnel pour garantir la

compatibilité arrière. La structure de codage dans HEVC est une structure en arbres

quaternaires. Elle est illustrée à la Figure 2. L’image est découpée en Coding Tree

Units (CTU). Chaque CTU peut être divisée en quatre Coding Units (CU), et chaque

CU peut elle-aussi être divisée en quatre autres CU et ainsi de suite jusqu’à arriver

à une taille minimale autorisée de CU. Chaque CU non splittée est divisée en une

ou plusieurs Prediction Units (PU). Différentes tailles de partitionnement existent :

carrées (2N×2N et N×N), rectangulaires (2N×N, N×2N) mais aussi asymétriques

(2N×nU, 2N×nD, nL×2N, nR×2N) appellées Asymetric Motion Partition (AMP).

Une PU ne peut être partitionnée en d’autres PU. Notons que c’est au niveau d’une

CU qu’est sélectionné un mode de codage (Intra, Inter ou Merge), et que c’est au

niveau des PUs que sont déterminés les informations de prédiction qui correspondent
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Figure 1: Structure de codage dans 3D-HEVC

au mode de codage choisi (directions Intra si la CU est codée en Intra, vecteurs de

mouvement si la CU est codée en Inter, ...). Indépendamment du partitionnement

en PUs, une CU peut aussi être divisée en plusieurs Transform Units (TU). C’est

au niveau des TUs qu’est appliquée la transformée après le calcul du résiduel. La

division en TUs définit donc ce qu’on appelle un arbre de transformée ou Residual

QuadTree (RQT). Un processus d’optimisation débit-distorsion ou Rate Distortion

Optimization (RDO) va tester, pour chaque CU, toutes les combinaisons Mode de

codage / Partitionnement en PUs / RQT et va aussi tenter de splitter la CU en 4

où il va refaire la même chose pour les 4 CUs ainsi générées. La configuration qui

résulte en le moindre coût pour la CU donnée va être choisie pour le codage de cette

CU.

Une CU peut être codée en Intra, Inter, et Merge. Dans le mode Intra, une PU

est prédite à partir de ses pixels voisins causaux dans la même trame. La ligne au-

dessus et la colonne de gauche forment la liste des pixels de référence. Dans HEVC,

34 modes Intra existent dont 2 non-angulaires : le DC et le Planar, comme l’illustre

la Figure 3.

Le mode Intra est en général codé sur 6 bits. Pour réduire ce coût de signalisation,

HEVC introduit l’outil Most Probable Mode (MPM) qui consiste à établir une liste

de deux candidats qui sont les modes Intra des PUs à gauche et au-dessus de la PU

courante. Si le mode Intra de la PU courante est égal à l’un des deux candidats

MPM, seuls un bit qui signale qu’une correspondance a été trouvée, et un autre

qui signale lequel des deux correspond au mode courant sont transmis dans le flux
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Figure 2: Structure de codage en arbres quaternaires dans HEVC

binaire. Le mode courant est du coup codé sur 2 bits au lieu de 6.

Le mode Inter consiste en une estimation de mouvement où un vecteur de

mouvement (MV) est déterminé pour une PU donnée. Un MV fait correspondre

la PU courante à la PU qui minimise un critère de distorsion dans une trame

précédemment codée. L’estimation de mouvement est suivie d’une compensation

de mouvement qui consiste à utiliser le vecteur de mouvement pour construire la

prédiction et pouvoir ainsi calculer un résiduel pour la PU courante. Le MV doit

être transmis au décodeur. Pour réduire le coût de signalisation, il va être prédit

et seul un résiduel de MV va finalement être transmis. Le processus de prédiction

du MV dans HEVC s’appelle Advanced Motion Vector Prediction (AMVP). Il con-

siste à établir une liste de deux candidats qui sont les MV de PU voisines à la PU

courante.

Finalement, le mode Merge permet à une PU courante d’hériter les paramètres

de mouvement (MV + indices de référence temporelle) d’une PU voisine. Les para-

mètres de mouvement des PU voisines forment la liste des candidats du Merge. Il

y a 5 candidats dans cette liste, 4 spatiaux (A1, B1, B0, A0) et un temporel (C0),

comme le montre la Figure 4. Des candidats combinés et des candidats zéro viennent

remplir la liste s’il manque des candidats. RDO vérifie ensuite les paramètres de

mouvement de chacun des 5 candidats et l’indice de celui qui minimise le plus le

coût RD va être transmis au décodeur.

Les vues dépendantes sont aussi codées avec HEVC auquel viennent s’ajouter

des outils qui vont exploiter les corrélations inter-vues. Le premier est la prédiction

en compensation de disparité (DCP). DCP ajoute de la syntaxe additionnelle afin

que les trames d’une autre vue au même instant temporel soient insérées dans la
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Figure 3: Liste des modes Intra dans HEVC

liste des trames de référence d’une trame courante. Un MV pointant vers un bloc

dans une trame de référence inter-vue n’est plus appelé MV mais plutôt vecteur de

disparité (DV). Une PU qui a été codée avec un DV est dite être codée en DCP (à

l’opposé des PU codées avec un MV qui sont dites être codées en MCP).

Le deuxième outil est la prédiction du mouvement inter-vues ou IVMP. Dans

IVMP, un DV est dérivé pour une PU courante de la même manière à l’encodeur

et au décodeur. Le processus de dérivation de ce DV est le Neighboring Disparity

Vector (NBDV). Ce DV pointe vers une PU qui correspond à la PU courante dans

une vue de référence, comme le montre la Figure 5. Le MV de cette PU de référence
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Figure 4: Candidats du Merge dans HEVC
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est ensuite ajouté à la liste des candidats AMVP et Merge de la PU courante. Plus

précisément, le MV est ajouté comme candidat multi-vue à la première position de

la liste des candidats du Merge, liste qui comprendra donc 6 candidats au lieu de 5.

Si le MV n’existe pas (si la PU de référence est codée en Intra par exemple), c’est

le DV lui-même qui sera ajouté comme candidat multi-vue.

������

����	

��	
�

�

��
��

	
�
	
��


Figure 5: Prédiction du mouvement inter-vues (IVMP)

La prédiction du résiduel inter-vue (IVRP) est un troisième outil pour coder les

vues dépendantes, qui consiste à prédire le résiduel de la PU courante avec le résiduel

de la PU de référence pointée par le DV dérivé avec NBDV.

NBDV, quant à lui, est un simple processus de recherche d’un DV parmi des PU

voisines. Les mêmes positions spatio-temporelles voisines que celles utilisées pour le

Merge sont parcourues, et le DV de la première PU trouvée codée en DCP est choisi

comme DV final utilisé pour IVMP et IVRP.

Par ailleurs, plusieurs outils de codage de vidéos de profondeur sont inclus dans

3D-HEVC : les modes de modélisation de la profondeur (DMM), l’héritage des para-

mètres de mouvement (MPI), le codage simple de la profondeur (SDC), et enfin le

codage Region Boundary Chain (RBC).

3 Codage des vidéos de profondeur par héritage des modes

Intra de texture

Dans ce troisième chapitre, nous présentons notre outil de codage des vidéos de pro-

fondeur basé sur l’héritage des modes Intra de texture. En analysant les coûts de

signalisation de différents éléments transmis dans un flux binaire 3D-HEVC dans la

version 0.3 du software de référence de 3D-HEVC : HTM-0.3, on remarque que la

signalisation des modes Intra représente 25% du débit total alloué à la profondeur.
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Des gains significatifs peuvent être alors obtenus avec une meilleure prédiction de

ces modes Intra. L’idée initiale proposée est de prédire systématiquement les modes

Intra de profondeur avec les modes Intra des blocs colocalisés en texture. Or une

analyse montre que les modes ne sont identiques que dans 18% des PUs et que

la correspondance est plus marquée dans les zones où on a des contours bien mar-

qués en texture. En effet, un contour bien marqué en texture définit une structure

géométrique dans la scène qui, en général, existerait aussi en profondeur. Comme

les modes Intra sont directionnels, ils vont suivre la direction de cette structure aussi

bien en texture qu’en profondeur, et par conséquent, les modes Intra de texture et de

profondeur choisis par RDO vont être identiques. L’idée proposée dans ce chapitre

est donc de prédire le mode Intra d’une PU de profondeur avec celui de la PU de

texture colocalisée, mais uniquement si cette dernière comprend un contour bien

marqué.

La méthode proposée est une méthode de codage inter-composantes (où l’on code

une composante à partir d’une autre, en l’occurrence ici la profondeur à partir de

la texture). D’autres méthodes inter-composantes incluent DMM (modes 3 et 4),

MPI, View Synthesis Prediction (VSP), etc. Une méthode similaire a été proposée

par ETRI où le mode Intra de texture est systématiquement ajouté à la liste des

candidats prédicteurs MPM de la PU de profondeur colocalisée. Si la liste est déjà

pleine, un des deux candidats MPM spatiaux présents est forcément remplacé par le

candidat de texture. Or rien ne garantit que ce dernier soit meilleur que le candidat

remplacé, et si ce n’est effectivement pas le cas, ceci résultera en des pertes en

efficacité de codage. Notre méthode consiste donc à ajouter le mode Intra de texture

à la liste des candidats MPM de la PU de profondeur colocalisée uniquement si la

PU comprend un contour bien marqué en texture, où la similarité entre les deux

modes est la plus probable.

Notre algorithme est illustré à la Figure 6. La première étape consiste à trouver

la PU de texture colocalisée à une PU de profondeur courante. Dans une deuxième

étape, on calcule un critère sur cette PU de texture qui estime la probabilité que les

modes Intra de texture et de profondeur soient identiques. D’après notre analyse

précédente, ce critère devra détecter s’il y a un contour bien marqué dans la PU de

texture. Dans une troisième étape, on va comparer le critère calculé à un seuil. Si

la valeur du critère est supérieure au seuil, on va hériter le mode Intra de texture

pour la profondeur, ce qui veut dire concrètement qu’il sera ajouté dans la liste des

candidats MPM de la PU de profondeur courante, remplaçant ainsi un candidat

spatial si la liste est déjà pleine.

Nous proposons deux critères différents pour notre méthode qu’on évalue in-

dépendamment. Les deux reposent sur un filtrage au préalable de la PU de texture
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Figure 6: Algorithme de la méthode proposée

avec un filtre de détection de contour comme Sobel. Le filtrage donne les deux

composantes (horizontale et verticale) du gradient : Gx et Gy à partir desquelles

peuvent être calculés le module du gradient : M =
√
G2

x +G2
y et la matrice des

angles : A = arctan
(

Gy

Gx

)
. Le maximum du module du gradient nous donne un

premier critère : GradientMax, et l’exploitation de l’histogramme des angles dont

le module est supérieur à un certain seuil nous donne un deuxième critère : Dom-

inantAngle. GradientMax permet de détecter s’il y a un contour bien marqué en

texture, alors que DominantAngle détecte s’il y a un contour bien marqué mais aussi

directionnel, c’est-à-dire s’il suit une direction bien définie.

Prenons l’exemple de la Figure 7. Dans le premier cas, la PU de texture com-

prend un contour bien marqué mais non directionnel. La CU correspondante sera

probablement splittée à l’encodeur car il n’y a aucun mode Intra qui permet de

prédire efficacement la structure géométrique présente dans la PU. Du coup le mode

Intra de cette PU de texture ne sera pas pertinent pour la profondeur, et dans ce

cas, il vaudrait mieux ne pas l’hériter. Or le critère GradientMax dans ce cas va

donner une valeur élevée (346) car un contour marqué est bien présent dans la PU.

DominantAngle par contre détectera que le contour en question n’est pas direction-

nel et donnera une valeur faible (4). Si on spécifie un seuil égal à 200, on va hériter

dans le premier cas mais pas dans le deuxième, et c’est exactement ce qui est requis.



xiv

(a) PU de texture com-
prenant un contour bien
marqué non directionnel
(CMND)
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(c) Histogramme des angles de
la PU de texture comprenant un
CMND

(d) PU de texture com-
prenant un contour bien
marqué directionnel
(CMD)
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comprenant un CMD
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(f) Histogramme des angles de la
PU de texture comprenant un
CMD

Figure 7: Deux types de PU de texture comprenant des contours bien marqués

Bien sûr, quand la PU de texture comprend un contour bien marqué et directionnel,

comme à la Figure 7(d), les deux critères vont donner des valeurs élevées (337 et

344) impliquant un héritage dans les deux cas.

Nous avons implémenté notre méthode et les deux critères dans le HTM-0.3.

Nous avons respecté les conditions communes de test (CTC) définies par le groupe

JCT-3V qui dirige les activités de standardisation de 3D-HEVC, sauf que nous avons

choisi une configuration Intra (où toutes les trames sont codées en Intra) pour mieux

évaluer notre méthode. Les séquences ont été codées avec quatre couples de QP

(QPtexture / QPprofondeur) : 25/34 30/39 35/42 40/45. Nous avons testé notre méthode

sur les 7 séquences décrites dans les CTC. Il s’agit de séquences de 10 secondes

chacune (entre 250 et 300 trames) mais nous n’avons choisi de coder que 0.5 secondes

de vidéo pour accélérer les simulations. Nous donnons ainsi les résultats sur 0.5

secondes de vidéo mais aussi sur la première trame codée. En effet, le seuil auquel

on compare la valeur du critère a besoin d’être optimisé. Or l’optimiser sur toutes

les trames serait long et complexe. Par conséquent, dans notre méthode, nous

optimisons le seuil uniquement sur la première trame codée et nous l’utilisons tel

quel pour les autres trames.
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Les Tableaux 1 et 2 donnent les gains sur les vues synthétisées et sur les vidéos

de profondeur avec notre méthode, pour les deux critères GradientMax et Domin-

antAngle, et pour, respectivement, la première trame codée et les 0.5 secondes de

vidéo. Notons que ces gains sont mesurés avec la métrique de Bjontegaard (BD-

Rate). DominantAngle, comme prévu, donne de meilleurs gains que GradientMax

car il permet de prendre en compte la direction des contours.

Séquence
DominantAngle GradientMax

Gains sur
VS (in %)

Gains sur
profondeur (en %)

Gains sur
VS (en %)

Gains sur
profondeur (en %)

GT Fly −1.4 −1.4 −3.0 +6.1

Newspaper −1.4 −2.9 −2.0 −0.7

PoznanHall2 −3.1 −7.8 −1.4 −2.7

Kendo −0.6 +1.1 −1.0 +0.3

Balloons −0.9 −1.9 −0.7 −0.1

Dancer −2.4 −2.4 −0.6 −1.4

PoznanStreet −1.2 −1.2 −0.2 −0.4

Moyenne −1.6 −2.3 −1.3 +0.2

Table 1: Gains de codage (en BD-Rate) sur la première trame des vues synthétisées et des vidéos
de profondeur

Séquence
DominantAngle GradientMax

Gains sur
VS (en %)

Gains sur
profondeur (en %)

Gains sur
VS (en %)

Gains sur
profondeur (en %)

GT Fly −0.5 +1.6 −0.6 0.0

Newspaper −0.9 −1.3 −0.9 −0.8

PoznanHall2 −2.1 −0.6 −1.3 −0.5

Kendo −0.9 −0.8 −1.2 −1.2

Balloons −0.6 −0.6 −1.1 −0.4

Dancer −1.2 −1.2 −0.5 −0.6

PoznanStreet −0.7 −2.0 −0.7 −1.3

Moyenne −1.0 −0.7 −0.9 −0.7

Table 2: Gains de codage (en BD-Rate) sur 0.5 secondes de vues synthétisées et de vidéos de
profondeur

L’écart-type des gains entre les différentes séquences est de 0.5 pour Domin-

antAngle et 0.29 pour GradientMax. Les deux écarts-types sont assez faibles, et

on peut donc en conclure que les deux critères sont statistiquement stables. En

comparant la variation des gains en fonction du seuil choisi pour les deux critères,

illustrée à la Figure 8, on remarque que dans DominantAngle, si on s’éloigne de la

valeur optimale du seuil (200 au lieu de 15 par exemple), la moitié du gain max-

imum est conservée (-0.8% au lieu de -1.6%), alors qu’avec GradientMax, on perd

tous les gains en passant du seuil optimal 50 à 200 par exemple. En conclusion,
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DominantAngle donne plus de gains en moyenne que GradientMax et est aussi plus

robuste en matière de sélection du seuil. Notre méthode a été le sujet d’un article

de journal publié dans APSIPA Transactions on Signal and Information Processing

en 2013.
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Figure 8: Gains sur les vues synthétisées en fonction du seuil

4 Amélioration de IVMP dans 3D-HEVC

En analysant les modes de codage des PUs des vues dépendantes dans le HTM-4.1,

on remarque qu’il y a peu de PUs codées en DCP (16% uniquement). La Figure 9

montre une trame d’une vue dépendante. Les blocs roses représentent des PUs

codées en DCP, minoritaires par rapport aux blocs gris et verts codés en MCP.

Une des causes possibles de ce déséquilibre serait une mauvaise estimation des DV.

En effet, si un bloc contient deux objets de profondeur différentes, ces deux objets

auraient donc une disparité différente, et du coup l’estimation d’un seul vecteur de

disparité pour ce bloc ne permettrait pas d’obtenir une prédiction efficace. Une

autre cause serait la mauvaise prédiction des DV eux-mêmes. En effet on remarque

aussi qu’il y a rarement de DVs dans la liste des candidats du Merge des PUs des

vues dépendantes. Or le Merge est sélectionné pour 92% des PUs dans le HTM-4.1,

donc s’il y avait des candidats DV dans cette liste, on aurait une bien meilleure

répartition entre DV et MV et cela augmenterait les gains de codage.

Actuellement, pour une PU donnée, un DV et un MV sont estimés. Le DV peut

donner une meilleure prédiction que celle du MV mais comme il y a rarement de

candidats DV dans la liste du Merge, pour coder le DV, AMVP devra être utilisé

et un résiduel de DV devra être transmis. Le MV par contre pourrait se retrouver

dans la liste des candidats du Merge et dans ce cas, son codage se résumerait à

l’envoi d’un simple indice. L’encodeur va alors sûrement préférer coder la PU en
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MCP plutôt qu’en DCP, créant ainsi le déséquilibre MV/DV. Notre idée est donc

de rééquilibrer la donne en insérant un DV dans la liste des candidats du Merge.

Figure 9: Mode de codages des PUs dans une trame d’une vue dépendante codée avec le HTM-4.1

Différentes méthodes dans la litérature proposent de modifier la liste des candid-

ats du Merge. Dans une contribution au 2ème meeting JCT-3V, la liste primaire des

candidats est parcourue et le premier DV trouvé est utilisé pour calculer 2 candidats

additionnels en ajoutant un offset positif et négatif à ce DV. Ces candidats sont en-

suite utilisés pour compléter la liste s’il manque des candidats. Cette méthode n’était

pas très efficace à l’époque car il y avait rarement des DV dans la liste primaire. Dans

une autre contribution, une vérification de redondance entre le candidat multi-vue

et les deux premiers candidats spatiaux a été ajoutée, ce qui a donné -0.3% de gain

et une adoption conséquente dans 3D-HEVC. Différentes autres méthodes ont été

proposées aussi mais aucune n’a été spécialement conçue pour équilibrer la sélection

de DCP par rapport à MCP. Et c’est justement ce qu’on propose dans ce chapitre.

Dans notre méthode qu’on appelle Additional Inter-ViewMerge Candidate (AIMC),

on va ajouter un DV à la liste des candidats du Merge. Dans 3D-HEVC, un DV

est dérivé avec NBDV pour chaque PU d’une vue dépendante pour construire le

candidat multi-vue du Merge (voir Section 2). Ce dernier correspond au MV de la

PU de référence pointée par ce DV s’il existe. Sinon, il correspondait directement au

DV. Nous proposons ici d’insérer ce DV en tant que candidat inter-vue si le candidat

multi-vue est un MV.

On propose deux méthodes d’insertion. Dans la première (AIMC-1) on insère

le DV dans la liste de candidats secondaires. Le DV va venir compléter la liste

primaire uniquement s’il y a des positions vides. Sinon, le DV ne va pas être ajouté.

Dans une deuxième méthode d’insertion (AIMC-2), le candidat est toujours inséré

avant le 4ème candidat spatial. Du coup c’est le candidat temporel qui est déplacé
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à la liste secondaire et ne sera donc rajouté dans la liste primaire que s’il y a des

positions vides. Notons que dans les deux cas, avant d’insérer le candidat inter-vue,

une vérification de la redondance du candidat avec tous les autres candidats qui le

précèdent dans la liste est effectuée, et s’il est redondant, il ne sera pas ajouté.

On a testé notre méthode dans le HTM-4.1 qui nous a aussi servi de référence

et on a respecté les CTCs. Ici on a testé notre méthode sur l’ensemble des trames

des différentes séquences (10 secondes de vidéo). Dans le Tableau 3 qui représente

les gains en BD-Rate, les 2è, 3è, et 4è colonnes représentent respectivement les

gains de codage sur la vue de base et sur les deux vues dépendantes. Comme on

n’applique pas notre méthode à la vue de base, on a 0% de gain évidemment. Pour

la 5è colonne, on considère la moyenne des trois PSNR et la somme des débits des

3 vues de texture pour calculer le BD-rate. La 6è colonne donne les gains sur les

vues synthétisées. On synthétise au total 6 vues donc 3 entre la vue gauche et la

centrale (qui est la vue de base) et trois autres entre la centrale et la droite. On

considère la moyenne des 6 PSNR et la somme des 3 débits de texture et les 3 débits

de profondeur pour calculer ce BD-Rate. La 7è colonne considère la moyenne des

PSNR des 9 vues (donc 6 vues synthétisées et 3 vues codées) et la somme des 3

débits de texture et les 3 débits de profondeur pour calculer le BD-Rate. Enfin,

les deux dernières colonnes donnent les runtimes à l’encodeur et au décodeur. On

remarque des gains de -0.5% et -0.6% sur les deux vues dépendantes avec AIMC-1 et

-0.6% sur les deux vues dépendantes avec AIMC-2. On a aussi des gains en runtime

de 3-4% avec la méthode proposée. On remarque aussi que la sélection de DCP

a été augmentée de 8.3% dans les deux méthodes ce qui explique les gains. Ceci

est visible d’ailleurs sur la Figure 10 qui montre plus de blocs roses par rapport à

la référence. En proposant un candidat additionnel, on réduit aussi le nombre de

candidats secondaires à construire de 9%. Or cette construction est un peu complexe

en général ce qui explique pourquoi on a gagné également en runtime. Enfin, on

remarque qu’en enlevant l’étape de vérification de la redondance qui est l’élément

le plus complexe de la méthode proposée, on réduit les gains de codage sans pour

autant gagner en runtime, donc il vaut mieux laisser cette étape. Les deux méthodes

ont été proposées au 2ème meeting JCT-3V et AIMC-2 a été adoptée dans le texte

et dans le logiciel de référence de 3D-HEVC. AIMC a aussi fait le sujet d’un article

accepté et présenté à la conférence Multi Media Signal Processing (MMSP) en 2013.

Toujours dans le but d’améliorer IVMP, on s’attaque à présent directement à

NBDV, le processus de dérivation du DV (qui, à présent, correspond au candidat

inter-vue ajouté dans AIMC). On remarque au fait que NBDV est sous-optimal.

En effet dans NBDV, le premier DV trouvé est utilisé directement pour IVMP et



4. Amélioration de IVMP dans 3D-HEVC xix

Méthode
Vidéo

Synt.
Codé
+Synt

Runtimes
0 1 2 Avg Enc Dec

AIMC-1 0.0 -0.5 -0.6 -0.2 -0.2 -0.2 97 100

AIMC-1-NORC 0.0 -0.4 -0.4 -0.1 -0.1 -0.1 98 101

AIMC-2 0.0 -0.6 -0.6 -0.2 -0.2 -0.2 96 99

AIMC-2-NORC 0.0 -0.5 -0.4 -0.2 -0.1 -0.1 98 100

Table 3: Moyenne des gains de codage (en BD-Rate) de AIMC-1 et AIMC-2 et de la variante qui
enlève l’étape de vérification de la redondance (NORC)

Figure 10: Mode de codages des PUs dans une trame d’une vue dépendante codée avec AIMC

IVRP et le processus de recherche s’arrête là, sans aucune garantie d’optimalité. On

pourrait au fait avoir des voisins qui possèdent un meilleur DV et qui ne seront

jamais parcourus. Bien qu’il y ait plusieurs contributions dans la littérature qui ont

proposé de modifier NBDV, aucune n’a tenté de résoudre ce problème particulier.

Notre méthode qu’on appelle MedianNBDV consiste au fait à parcourir tous

les voisins et à sauvegarder leurs DV/DDVs dans une liste. Le processus s’arrête

uniquement après le parcours du dernier voisin. Dans une deuxième étape, les

vecteurs redondants sont enlevés de cette liste. Enfin, dans une troisième étape,

le médian des vecteurs restants est sélectionné comme vecteur final qui sera utilisé

pour IVMP. On utilise toujours NBDV pour IVRP. L’algorithme de la méthode est

illustré à la Figure 11.

Dans MedianNBDV, le nombre maximal de vecteurs sur lesquels le médian est

calculé (par la suite, on appellera ce nombre MaxCand) est de 14 vecteurs (5 voisins

spatiaux * 2 liste de référence + 2 voisins temporaux dans 2 trames de référence

temporelles = 14) . Or le calcul du médian de 14 vecteurs est difficile en hardware,

donc pour que MedianNBDV puisse être adopté dans 3D-HEVC, MaxCand doit

être réduit. Pour cela, nous avons pensé à 3 variantes : 1Ref où une seule liste de
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Figure 11: Algorithme de MedianNBDV

référence est parcourue pour les voisins spatiaux (cela réduitMaxCand à 9), RMPOS

où une position spatiale du parcours est carrément enlevée (cela permet d’économiser

deux vecteurs, ou un seul si combiné avec 1REF) et enfin LIMIT-X où la taille de

la liste est limitée à X vecteurs (MaxCand = X). Par exemple, dans LIMIT-4, les

voisins sont parcourus et seuls les 4 premiers vecteurs trouvés sont sauvegardés (le

processus de recherche s’arrête là). Nous avons aussi pensé à d’autres variantes

dont les résultats permettront d’arriver à des conclusions intéressantes : NODDV

où aucun DDV n’est ajouté dans la liste, ALLOWRED où la vérification de la

redondance à l’étape 2 est enlevée, NOAMVP où MedianNBDV n’est pas utilisé

pour IVMP-AMVP, APPLYRES où MedianNBDV est utilisé également pour IVRP

et enfin, MEAN où le calcul du médian est remplacé par une moyenne.

On a testé notre méthode dans le HTM-5.0.1 et on a respecté les CTC. On obtient

-0.6% et -0.8% de gain avec MedianNBDV pour les vues dépendantes, comme le

montre le Tableau 4. L’augmentation de la sélection des candidats multi-vue et inter-

vue du Merge (qui dépendent directement du DV) de 1.9% et 31.1% respectivement

justifie ces gains. Notons aussi que le nombre moyen de vecteurs sur lequels le médian

est calculé est de 1.9 à l’encodeur et 2.2 au décodeur ce qui explique pourquoi il n’y

a pas eu d’augmentation apparente du runtime avec notre méthode. Visuellement,

nous pouvons souligner une différence en comparant une partie d’une trame codée

avec MedianNBDV et la même partie codée avec une référence HTM-5.0.1 dans

deux séquences : Kendo et Dancer (Figure 12). En effet, dans Kendo, l’épée qui

était coupée en deux avec la référence est rétablie avec MedianNBDV. Dans Dancer,

l’arrière de la tête du danseur est mieux représentée avec MedianNBDV qu’avec la

référence.
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Variante
Max
Cand

Vidéo
Synt.

Codé
+Synt

Runtimes
0 1 2 Avg Enc Dec

MedianNBDV 14 0.0 -0.6 -0.8 -0.3 -0.2 -0.2 100 99

1REF 9 0.0 -0.6 -0.7 -0.2 -0.2 -0.2 97 98

1REF+RMPOS 7 0.0 -0.5 -0.6 -0.2 -0.2 -0.2 99 99

LIMIT-4 4 0.0 -0.5 -0.7 -0.2 -0.2 -0.2 103 98

NODDV 14 0.0 -0.3 -0.3 -0.1 -0.1 -0.1 97 99

ALLOWRED 14 0.0 -0.2 -0.3 -0.1 -0.1 -0.1 98 98

MEAN 14 0.0 -0.3 +0.1 0.0 0.0 0.0 100 98

NOAMVP 14 0.0 -0.6 -0.7 -0.3 -0.2 -0.2 101 98

APPLYRES 14 0.0 -0.6 -0.8 -0.3 -0.2 -0.2 108 98

Table 4: Moyennes des gains de coage (en BD-Rate) avec MedianNBDV et ses différentes variantes

(a) Kendo V1 QP40 - référence (b) Kendo V1 QP40 - MedianNBDV

(c) Dancer V2 QP35 - référence (d) Dancer V2 QP35 - MedianNBDV

Figure 12: Parties de trames codées avec MedianNBDV et avec une référence HTM-5.0.1

Parmi les 3 variantes que nous avons proposées pour réduire MaxCand, LIMIT-4

le réduit le plus moyennant une très légère perte (0.2% sur la vue 1, 0.1% sur la

vue 2) c’est donc la meilleure variante dans cette catégorie. On remarque aussi que

si aucun DDV n’est ajouté dans la liste, si le médian est remplacé par une moy-

enne, ou si la vérification de redondance est enlevée, les gains de codage diminuent

significativement. Ne pas appliquer MedianNBDV pour IVMP-AMVP diminue très

légèrement les gains (0.1% sur la vue 2) ce qui prouve que l’efficacité de la méthode

vient plutôt de l’amélioration du mode Merge ce qui est normal vu sa sélection

fréquente. Par ailleurs, utiliser MedianNBDV pour IVRP ne modifie pas les gains

mais augmente sensiblement le runtime (108%) vu l’application plus fréquente d’un

calcul de médian. MedianNBDV a fait le sujet d’un article accepté et présenté à la
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conférence International Conference on Image Processing (ICIP) en 2013.

5 Initialisation et limitation des arbres quaternaires de tex-

ture et de profondeur dans 3D-HEVC

En analysant les arbres quaternaires des deux composantes de texture et de pro-

fondeur codées avec 3D-HEVC, on remarque que la texture est plus partitionnée

en général que la profondeur. La Figure 13 illustre cette observation. En effet,

la texture et la profondeur représentent la même scène à un même instant donné.

Supposons qu’on ait un objet bien texturé dans la scène, les CUs comportant cet

objet seront splittées dans la composante de texture. Mais puisque tous les détails

de l’objet sont à la même profondeur, l’objet sera représenté dans la composante

de profondeur comme une surface plate et les CUs correspondantes n’auront pas

besoin d’être splittées pour obtenir une prédiction efficace. Nous formulons ainsi

l’hypothèse suivante : “une CU de texture est au moins autant partitionnée qu’une

CU de profondeur colocalisée”.

Le Tableau 5 montre le pourcentage de CUs où cette hypothèse n’est pas vérifiée,

pour diverses séquences codées à différents QPs. On en conclut que l’hypothèse

est en général valide, elle l’est particulièrement pour les séquences Dancer et GT

Fly qui sont des séquences générées par ordinateur et qui ne comprennent donc

pas d’artefacts liés à une mauvaise estimation des cartes de profondeur. En effet,

les autres séquences ont ce problème là et ce dernier se manifeste par des faux

contours dans la profondeur qui n’existent pas en texture. Dans ces cas-là, les CUs

de profondeur correspondantes à ces contours seront splittées alors qu’ils ne le seront

pas en texture, faussant ainsi l’hypothèse. Cet effet s’estompe à bas débit comme le

montre le Tableau 5.

(a) Arbre quaternaire de texture (b) Arbre quaternaire de profondeur

Figure 13: Arbre quaternaire de texture et de profondeur d’une trame Inter de la séquence Balloons
codée à QP 25
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Sequence
QP

25 30 35 40

Kendo 38 15 6 2

Newspaper 56 31 16 6

Balloons 40 19 7 4

Dancer 15 16 10 4

GT Fly 21 11 4 2

Poznan Hall2 32 11 4 2

Poznan Street 31 13 6 2

Table 5: Pourcentage de CUs où l’hypothèse formulée n’est pas vérifiée

Par ailleurs, les informations de partitionnement : bit signalant un split (split

flag) + taille de partitionnement représentent 8.1% du débit total alloué à la texture

et à la profondeur, ce qui donne une marge de gain intéressante si une prédiction

efficace de ces informations était mise en place.

Par conséquent, il serait bénéfique d’imposer l’hypothèse formulée lors du codage

effectif des deux composantes : si la texture est codée avant la profondeur, l’arbre

quaternaire de la profondeur serait limité par celui de la texture, et dans le cas

inverse, l’arbre quaternaire de la texture serait initialisé par celui de la profondeur.

Dans les deux cas, on gagnerait en temps d’encodage car dans le premier, cela évitera

de tester les partitions plus fines, alors que dans le second, cela évitera de tester

les grandes partitions. On augmente aussi l’efficacité de codage en n’ayant plus à

envoyer les informations de partitionnement pour une composante dans certains cas,

car ils pourront être dérivés par l’arbre quaternaire décodé de l’autre composante.

Notre méthode n’est pas vraiment un raccourci d’encodeur car un raccourci

d’encodeur cherche en général à obtenir des gains en runtime moyennant une cer-

taine perte en efficacité de codage, à travers le choix de ne pas tester certains modes

de prédiction. Dans notre méthode, on cherche à obtenir des gains en runtime mais

aussi des gains de codage avec une meilleure prédiction des informations de par-

titionnement. Quoi qu’il en soit, il serait intéressant de comparer notre méthode

aux raccourcis d’encodeur suivants, qu’on peut trouver dans le HM ou le HTM :

CBF-based early termination, Early CU termination (ECU) et Enhanced Depth

CU (EDCU), qui est un raccourci appliqué uniquement en profondeur.

La première méthode proposée est l’initialisation de l’arbre quaternaire de texture

(QTI), où on force l’arbre quaternaire de la texture à être au moins autant partitionné

que celui de la profondeur. Ceci bien sûr suppose que la profondeur est codée avant

la texture dans les vues dépendantes. Si la CU de profondeur est splittée (cas ‘a’

dans la Figure 14), on force le split au niveau de la CU de texture colocalisée et

on n’envoie pas donc de split flag. Si la CU de profondeur est partitionnée (cas

‘b’ et ‘c’), on autorise la texture à être partitionnée de la même manière ou à être
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splittée. Donc on envoie uniquement un split flag car si la CU de texture n’est pas

splittée, son partitionnement en PUs est identique à celui de la profondeur (donc pas

besoin de le transmettre). Si la CU de profondeur n’est ni splittée ni partitionnée

(cas ’d’), la CU de texture peut être quelconque (on envoie le split flag et la taille

du partitionnement). Notons que la partie de la méthode qui ne transmet pas

les informations de partitionnement selon le cas est appelée codage prédictif (PC).

Notons aussi que la probabilité des cas ‘a’, ‘b’ et ‘c’ où on applique effectivement

QTI+PC est égale à 9.2%. Comme on n’applique pas QTI+PC très souvent, les

gains potentiels en runtime et en codage seront limités.
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Figure 14: Partitions de texture autorisées dans QTI

Dans une variante à QTI+PC qu’on appelle QTI+1+PC, on autorise la CU de

texture à être au maximum un niveau de profondeur moins partitionnée que la CU

de profondeur colocalisée. C’est à dire que si la CU de profondeur est splittée au

niveau N+2 comme le montre la Figure 15, on va forcer le split de la CU de texture

au niveau N+1, et on n’envoie pas de split flag ni de taille de partitionnement.

Sinon, dans tous les autres cas, y compris si la CU de profondeur est splittée au

niveau N+1, la CU de texture peut être quelconque donc on envoie les deux infos

de partitionnement. Dans cette variante un peu moins stricte que QTI+PC, on

applique l’initialisation en texture moins souvent, donc on altère l’arbre quaternaire

de texture moins souvent par rapport à celui choisi par RDO, diminuant ainsi les

pertes de codage, mais on réduit aussi les gains du PC car on envoie les infos de

partitionnement plus souvent. Ceci crée un nouveau compromis.
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Figure 15: La variante QTI+1

La deuxième méthode proposée est la limitation de l’arbre quaternaire de la

profondeur (QTL) où l’on force l’arbre quaternaire de la profondeur à être au plus

autant partitionné que celui de la texture. Ceci suppose que la texture est codée

avant la profondeur dans les vues dépendantes, ce qui est d’ailleurs l’ordre habituel

dans 3D-HEVC. Si la CU de texture est partitionnée ou ni partitionnée ni splittée

(cas ‘a’ dans la Figure 16), la CU de profondeur est forcée à être ni partitionnée, ni

splittée (on envoie ni split flag ni taille de partitionnement). Si la CU de texture

est splittée par contre, la CU de profondeur peut être quelconque (on envoie les

deux infos de partitionnement). La probabilité du cas ‘a’ où on applique QTL+PC

est égale à 84.9%. On applique donc la méthode plus souvent que QTI+PC et par

conséquent, les gains en runtime et en codage seront plus importants.
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Figure 16: Partitions de profondeur autorisées dans QTL

Nous avons implémenté QTI+PC et QTI+1+PC dans le HTM-4.0, où on a activé

l’outil Flexible Coding Order (FCO) pour coder les profondeurs avant les textures

dans les vues dépendantes (sinon QTI+PC ne peut être appliqué). Nous avons re-

specté les CTC et codé toutes les trames de toutes les séquences. Le Tableau 6

résume les gains moyens obtenus avec QTI, QTI+PC, QTI+1+PC et les raccourcis

d’encodeur ECU et CBF appliqués uniquement en texture (ECU-T et CBF-T). QTI

donne 10% de gain en runtime moyennant une perte de 3.0% et 2.9% sur les vues

dépendantes et 0.9% sur les vues synthétisées. L’ajout du PC réduit considérable-

ment ces pertes (1.7% sur les vues dépendantes et 0.6% sur les vues synthétisées)

mais réduit aussi le gain en runtime qui passe de 10% à 5%. Enfin, la variante

QTI+1+PC réduit presque totalement les pertes de codage tout en maintenant un
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Méthode
Vidéo

Synt.
Codé
+Synt

Runtimes
0 1 2 Avg Enc Dec

QTI 0.0 3.0 2.9 1.0 0.9 0.9 90 99

QTI+1 0.0 1.7 1.7 0.6 0.5 0.5 95 100

QTI+1+PC 0.0 0.1 0.2 0.0 0.1 0.0 94 101

ECU-T 0.3 -1.2 -1.1 0.5 -0.1
N/A

63 100
CBF-T 0.9 0.5 0.5 0.9 0.7 72 101

Table 6: Moyenne des gains (en BD-Rate) obtenus avec QTI, QTI+PC, QTI+1+PC, et d’autres
raccourcis d’encodeur pour la texture

gain en runtime de 6%. En effet, QTI+1 est plus souple que QTI dans le sens où

l’arbre quaternaire de texture est altéré moins souvent, réduisant ainsi les pertes.

Les Figure 17(a) et 17(b) montrent respectivement les arbres quaternaires de tex-

ture et de profondeur d’une partie d’une trame codée avec la référence HTM-4.0.

Les CU marquées en bleu en texture ne sont ni splittées ni partitionnées, c’est le

meilleur choix selon RDO. Or avec QTI, ces mêmes CU sont forcées à être au moins

autant partitionnées que les CU de profondeur colocalisées d’où le partitionnement

fin visible à la Figure 17(c), qui induit certainement des pertes étant trop éloigné

du meilleur choix. Avec QTI+1+PC, les CU de texture peuvent être un niveau

de profondeur moins partitionnées que les CU de profondeur colocalisées, comme

le montre la Figure 17(d). Le partionnement résultant est plus proche du meilleur

choix, d’où la réduction des pertes.

Comparé à d’autres raccourcis d’encodeur, QTI+1+PC ne donne aucune perte

sur les vues codées, contrairement à ECU et CBF qui donnent respectivement 0.5%

et 0.9% de pertes. Par contre, les gains en runtime que donnent ces deux raccourcis

d’encodeur sont supérieurs à ceux obtenus avec QTI+1+PC.

Nous avons implémenté QTL+PC dans le HTM-4.0 également. Nous avons re-

specté les CTC et codé toutes les trames de toutes les séquences. Les résultats

obtenus sont résumés dans le Tableau 7. QTL donne des gains de codage signific-

atifs (-20.1% sur les vidéos de profondeur, et -1.4% sur les vues codées) ainsi que des

gains en runtime assez significatifs également de 34%. Ceci est accompagné d’une

perte sur les vues synthétisées de 0.7%. QTL+PC augmente les gains de codage

sur les vidéos de profondeur et sur les vues codées, diminue les pertes sur les vues

synthétisées, mais réduit aussi légèrement le gain en runtime qui passe à 31%. Il

est important de noter que les pertes sur les vues synthétisées ne sont pas toutes de

vraies pertes. Une partie de ces pertes est liée au lissage de faux contours dans la pro-

fondeur, qui est en réalité un avantage apporté par la méthode. En effet, considérons

l’exemple de la Figure 18. Cette figure montre une partie d’une trame de texture

et de profondeur. Nous remarquons des faux contours en profondeur, marqués en
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(a) Arbre quaternaire de profondeur
avec la référence

(b) Arbre quaternaire de texture
avec la référence

(c) Arbre quaternaire de texture
avec QTI+PC

(d) Arbre quaternaire de texture
avec QTI+1+PC

Figure 17: Arbre quaternaire de texture avec la référence HTM-4.0, avec QTI+PC, et avec
QTI+1+PC

rouge à la Figure 18(b) qui n’existent pas en texture. Les CU correspondantes ne

seront pas splittées en texture, comme le montre la Figure 18(c) mais le seront en

profondeur (Figure 18(d)) avec un codage de référence. Avec QTL, les CU de pro-

fondeur sont limitées aux CUs de texture. Elles ne sont ni splittées ni partitionnées,

comme le montre la Figure 18(e), lissant ainsi les faux contours sous-jacents. Ceci

est bénéfique car des vues synthétisées avec ces cartes de profondeur plus “propres”

seront d’une meilleure qualité. En effet, lors du 2ème meeting JCT-3V, des tests sub-

jectifs ont été effectués et leurs résultats prouvent qu’avec QTL+PC, il n’y a aucune

dégradation visible sur les vues synthétisées. Il y a même au contraire une très légère

amélioration. Enfin, comparé à d’autres raccourcis d’encodeur, QTL+PC donne le

plus de gains de codage et le plus de gains en runtime. QTL+PC a été présenté au

2ème meeting JCT-3V et a été adopté dans le texte et dans le logiciel de référence de

3D-HEVC. QTI+PC et QTL+PC ont été les sujets d’un article de journal publié

dans IEEE Transactions on Circuits and Systems for Video Technology (CSVT) en

2013.
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Méthode Profondeur Vidéo total Synt.
Codé
+Synt

Runtimes
Enc Dec

QTL -20.1 -1.4 0.7 0 66 97

QTL+PC -23.1 -1.8 0.4 -0.3 69 97

ECU-D
N/A

-2.2 1.1
N/A

76
N/AEDCU -1.4 0.4 82

CBF-D -0.2 0.3 85

Table 7: Moyenne des gains (en BD-Rate) obtenus avec QTL, QTL+PC et d’autres raccourcis
d’encodeur pour la profondeur

(a) Zone de texture (b) Zone de profondeur (c) Arbre quaternaire de texture

(d) Arbre quaternaire de pro-
fondeur avec la référence

(e) Arbre quaternaire de pro-
fondeur avec QTL

Figure 18: Arbres quaternaires de profondeur avec la référence et avec QTL

6 Codage vidéo 3D en utilisant le flot optique warpé

Le flot optique (OF) est une méthode utilisée pour dériver un champ dense de

vecteurs de mouvement (DMVF) entre deux trames. Le DMVF réduit davantage

l’énergie résiduelle en comparaison avec un champ de vecteurs de mouvement par

blocs estimé par le HTM (CMVF). Le Tableau 8 montre en effet que l’énergie résidu-

elle avec le CMVF (EC
2 ) est supérieure à celle obtenue avec le DMVF (ED

2 ) et ce

pour toutes les séquences et QPs testés.

Par ailleurs, le DMVF estimé entre deux trames reconstruites (pour simuler une

estimation de mouvement pouvant être réalisée au décodeur) reste toujours meil-

leur qu’un CMVF classique estimé à l’encodeur entre une trame originale et une

autre reconstruite. En effet, le Tableau 8 montre que l’énergie résiduelle avec ce

DMVF bruité par le bruit de quantification (EDQ
2 ) est inférieure à EC

2 pour toutes
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les séquences et QPs testés, même à bas débit (bruit de quantification élevé). C’est

sur cette observation que va se baser l’approche proposée dans ce chapitre.

Séquence QP EC
2 ED

2 EDQ
2

Balloons

25 5.7 4.1 4.2
30 6.3 4.8 5.0
35 8.1 6.3 6.9
40 11.8 8.9 10.3

Kendo

25 28.1 8.5 8.8
30 15.8 8.7 9.3
35 16.6 9.3 10.2
40 17.9 10.0 12.1

Newspaper

25 8.6 5.8 6.0
30 9.5 7.6 8.0
35 12.8 10.5 11.4
40 18.0 15.0 16.8

PoznanHall2

25 9.3 6.3 6.4
30 8.2 5.9 6.2
35 7.3 6.3 6.8
40 8.3 7.2 7.9

Table 8: Energie résiduelle par méthode d’estimation de mouvement pour 4 séquences et 4 QPs
testés

Dans la littérature, l’OF est en général utilisé dans des applications d’indexation

vidéo, de détection / reconnaissance d’objets dans des séquences vidéo. L’OF a

rarement été proposé pour le codage vidéo à cause du coût élevé lié à la transmission

des multiples vecteurs de mouvement qui composent le DMVF. Quelques solutions

ont été proposées pour réduire ce coût mais aucune n’a été suffisamment efficace.

Par ailleurs, les approches décodage intelligent permettent de réduire le coût de

signalisation de certaines informations transmises dans le flux binaire en déplaçant

quelques opérations au décodeur. Des exemples d’approches décodage intelligent

incluent le template matching ou la réduction du nombre de prédicteurs. L’idée

proposée dans ce chapitre est d’utiliser une approche décodage intelligent conjointe-

ment avec l’OF pour coder les vues dépendantes dans 3D-HEVC, en évitant de

transmettre les vecteurs qui constituent le DMVF. Concrètement, cela consiste à

estimer le DMVF sur une vue de base reconstruite au décodeur, et l’utiliser pour

coder les vues dépendantes.

La Figure 19 illustre notre méthode, qu’on appelle Warped Optical Flow (WOF).

On suppose qu’on désire coder une vue dépendante courante à l’instant t, ayant

déjà codé la vue de base aux instants t − 1, t et t + 1, et la vue dépendante aux

instants t − 1 et t + 1. Dans une première étape, avant le début du codage de

la vue dépendante courante, deux DMVFs sont calculés au niveau de la vue de
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base entre les trames reconstruites à l’instant t et t − 1 pour l’un, et t et t + 1

pour l’autre. Dans une deuxième étape, en codant une PU courante dans la vue

dépendante courante, un DV est dérivé en utilisant NBDV qui pointe vers une PU

correspondante à la PU courante dans la vue de base à l’instant t. Dans une troisième

étape, les deux DMVFs de cette PU de référence sont hérités pour la PU courante,

où ils seront ajoutés comme un candidat dense du Merge à la première position de la

liste. L’avantage de cette méthode c’est que les PUs de la vue dépendante courante

vont bénéficier de prédictions plus précises apportées par les DMVFs hérités, au

prix d’une simple transmission d’un indice du Merge. Le deuxième avantage est

que comme avec les DMVFs, chaque pixel d’une PU a son propre MV, la CU n’a

plus besoin d’être splittée pour obtenir une prédiction plus efficace. Un gain sur les

informations de partitionnement est par conséquent possible avec WOF.
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Figure 19: Méthode proposée pour dériver un candidat dense du Merge

Dans WOF, un seul vecteur de disparité estimé avec NBDV compense la PU

courante, même si celle-ci contient deux objets de profondeurs différentes. Ceci à

son tour faussera l’association des MVs aux pixels de la PU courante et la prédic-

tion ne sera plus efficace. Pour résoudre ce problème, nous proposons deux variantes

: Flexible Coding Order WOF (FCO-WOF) et Depth Oriented WOF (DO-WOF).

FCO-WOF suppose qu’on code la profondeur avant la texture dans les vues dépend-

antes. Dans ce cas, au lieu de compenser la PU courante avec un seul DV, chaque

pixel de la PU va être compensé avec un DV calculé à partir de la valeur du pixel

colocalisé dans la trame de profondeur déjà codée, comme le montre la Figure 20.

La variante DO-WOF suppose qu’on code la texture avant la profondeur dans les

vues dépendantes. Dans ce cas, le DV donné par NBDV va être utilisé pour pointer
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à la PU correspondante dans la trame de profondeur déjà codée associée à la vue de

base. Chaque valeur de profondeur dans cette PU de référence est transformée en un

vecteur de disparité qui va compenser le pixel correspondant dans la PU courante,

comme le montre la Figure 21.
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Figure 20: La variante FCO-WOF

Nous avons implémenté WOF, FCO-WOF et DO-WOF dans le HTM-5.1. Nous

avons respecté les CTC et codé la moitié des trames de toutes les séquences pour

accélérer les simulations (5 secondes de vidéo). Le Tableau 9 montre les résultats

obtenus avec WOF. On note des gains significatifs de -7.3% et -6.9% sur les vues

dépendantes et -2.5% sur les vues synthétisées. Les gains vont jusqu’à -21.1% sur une

vue dépendante de la séquence GT Fly. Ces gains sont accompagnés d’une augment-

ation du runtime à l’encodeur de 33% et de 11487% au décodeur. L’augmentation

est accrue au décodeur car ce dernier est passé d’un décodeur passif qui lit simple-

ment des informations du flux binaire à un décodeur actif qui estime des DMVFs,

une opération qui reste assez complexe.

Les gains de codage avec WOF proviennent d’une réduction de l’énergie résiduelle

bien sûr, mais aussi d’une réduction du nombre de split et de skip flags transmis

dans le flux binaire de 38% et 44% respectivement, comme le montre le Tableau 10.

Le Tableau 11 résume les résultats des variantes DO-WOF et FCO-WOF et les
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Figure 21: La variante DO-WOF

compare à ceux obtenus avec WOF. On remarque que si les résultats de WOF et

DO-WOF sont similaires, FCO-WOF donne légèrement plus de gains avec -7.5% et

-7.6% en moyenne sur les vues dépendantes et -2.7% sur les vues synthétisées. Ceci

est dû à la compensation dense en disparité, plus précise que la compensation d’un

bloc entier avec un seul DV.

Le Tableau 12 montre les résultats obtenus avec WOF à bas débit, à moyen débit

et à haut débit. On remarque que les gains diminuent quand le débit augmente. En

effet, le Tableau 13 montre que le candidat dense du Merge ajouté dans WOF est

plus sélectionné par les PUs à bas débit (grands QPs). Ceci est dû au fait que le

mode Merge est lui-même plus sélectionné à bas débit.

Par ailleurs, le runtime peut être réduit par plusieurs méthodes. Premièrement,

certains paramètres de l’OF peuvent être modifiés sans réelle influence sur la per-

formance de codage. Le Tableau 14 montre par exemple qu’en diminuant la valeur

d’un des paramètres (le ratio), les gains de codage restent pratiquement inchangés,

alors que le runtime à l’encodeur et au décodeur diminue significativement. Deux-

ièmement, le code de l’OF peut être optimisé pour réduire le runtime en évitant

d’utiliser des structures de données complexes par exemple. Finalement, un calcul

OF par PU et non par trame peut être mis en place car nos expériences montrent

qu’en moyenne, seuls 68% des pixels de la vue de base sont référencés par les PUs
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Séquence
Vidéo

Vidéo total Synt.
Runtimes

0 1 2 Moy Enc Dec

Balloons 0.0 -7.8 -7.0 -3.2 -3.1 -3.1 127 10514

Kendo 0.0 -5.4 -4.5 -1.9 -1.8 -2.0 126 11417

Newspaper 0.0 -3.1 -2.6 -1.1 -1.0 -1.0 141 12968

GT Fly 0.0 -21.1 -20.4 -6.0 -5.7 -5.9 135 11160

PoznanHall2 0.0 -7.9 -9.4 -3.8 -3.7 -3.7 124 11515

PoznanStreet 0.0 -3.6 -4.2 -1.1 -1.1 -1.4 142 12159

Dancer 0.0 -1.9 -0.4 -0.5 -0.4 -0.5 136 11373

Moyenne 0.0 -7.3 -6.9 -2.5 -2.4 -2.5 133 11587

Table 9: Gains de codage (en BD-Rate) avec WOF

Sequence
WOF

RSP RSK

Balloons 40 47

Kendo 28 32

Newspaper 29 33

GT Fly 66 76

PoznanHall2 40 42

PoznanStreet 39 48

Dancer 23 28

Average 38 44

Table 10: Réduction du nombre de split flags (RSP) et de skip flags (RSK) envoyés dans le flux
binaire avec WOF

des vues dépendantes. Cela veut dire que des MVs estimés pour 32% des pixels de

la vue de base ne sont pas utilisés. Un gain en runtime est alors possible en évitant

de les estimer en premier lieu.
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Méthode
Vidéo

Vidéo total Synt.
Runtimes

0 1 2 Moy Enc Dec

WOF 0.0 -7.3 -6.9 -2.5 -2.4 -2.5 133 11587

DO-WOF 0.0 -7.1 -7.2 -2.5 -2.5 -2.5 136 11968

FCO-WOF 0.0 -7.5 -7.6 -2.7 -2.4 -2.7 139 11022

Table 11: Moyenne des gains de codage (en BD-Rate) avec WOF, DO-WOF et FCO-WOF

Test
Vidéo

Vidéo total Synt.
0 1 2 Avg

Bas débit 0.0 -5.9 -5.8 -2.0 -2.0 -2.0

Moyen débit 0.0 -4.8 -4.4 -1.5 -1.5 -1.6

Haut débit 0.0 -2.7 -2.3 -0.8 -0.8 -0.8

Table 12: Moyenne des gains de codage (en BD-Rate) obtenus avec WOF à bas, moyen et haut
débit

Séquence
Pourcentage de sélection
20 25 30 35 40 45

Balloons 36 67 82 90 93 96

Kendo 24 36 49 59 70 78

Newspaper 36 63 80 89 96 98

GT Fly 18 33 81 90 93 94

PoznanHall2 18 55 76 85 90 95

PoznanStreet 19 36 51 66 79 89

Dancer 8 16 37 67 81 89

Average 23 44 65 78 86 91

Table 13: Pourcentage de sélection du candidat dense du Merge par séquence et par QP

Ratio
Vidéo

Vidéo total Synt.
Runtimes

0 1 2 Moy Enc Dec

R = 0.85 0.0 -4.7 -4.3 -1.5 -1.5 -1.6 275 52355

R = 0.75 0.0 -4.8 -4.4 -1.5 -1.5 -1.6 187 29142

R = 0.65 0.0 -5.0 -4.6 -1.6 -1.6 -1.5 175 22294

R = 0.5 0.0 -4.9 -4.6 -1.6 -1.6 -1.5 138 12023

R = 0.4 0.0 -4.9 -4.5 -1.6 -1.5 -1.5 134 10136

Table 14: Moyennes des gains de codage obtenus avec WOF pour différentes valeurs de ratio
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7 Synthèse de vues exploitant les prédictions temporelles

Plusieurs méthodes existent pour synthétiser des vues à partir de cartes de pro-

fondeur. Certaines sont implémentées dans les logiciels de référence : View Synthesis

Reference Software (VSRS) et VSRS-1DFast (utilisé pour la synthèse des vues dans

le contexte de la normalisation 3D-HEVC). D’autres sont proposées dans la littérat-

ure (par exemple, les méthodes qui tentent de réduire les trous en prétraitant les

cartes de profondeur ou en post-traitant les vues synthétisées directement).

Quoi qu’il en soit, toutes ces méthodes synthétisent une vue centrale à partir de

deux vues de référence (gauche et droite). La synthèse exploite ainsi les corrélations

inter-vues. L’idée proposée dans ce chapitre est d’utiliser les trames de référence

temporelles pour synthétiser une trame centrale pour augmenter la qualité de la

synthèse finale. Ce sont les corrélations temporelles qui seront donc exploitées dans

notre méthode qu’on appelle View Synthesis Temporal Prediction (VSTP).

Dans VSTP, on suppose que les vues de référence gauche et droite et leurs vidéos

de profondeur associées, ainsi que les deux trames de la vue synthétisée aux instants

t − 1 et t + 1 sont disponibles. Pour synthétiser la trame à l’instant t, on calcule

d’abord un DMVF avec l’OF au niveau de la vue de référence entre t et t − 1,

qu’on appelle Vr. Ayant les cartes de profondeur de la vue de référence à l’instant

t − 1 et t on peut aussi calculer des champs de vecteurs de disparité Dt−1 et Dt

en transformant les valeurs de profondeur en disparité. Ayant Vr, Dt−1 et Dt, un

DMVF noté Vs liant, au niveau de la vue synthétisée, la trame à l’instant t − 1 à

la trame courante peut être calculé en utilisant une contrainte épipolaire. Illustrée

à la Figure 22, la contrainte épipolaire stipule qu’à partir d’un point S dans la vue

de référence à l’instant t− 1, on peut atteindre la projection de ce point dans la vue

synthétisée à l’instant t par deux chemins différents, l’un en compensant en disparité

puis en mouvement et l’autre en compensant en mouvement puis en disparité. Ceci

permet d’écrire l’équation suivante :

Vr(S) +Dt(S +Vr(S)) = Dt−1(S) +Vs(S +Dt−1(S)) (1)

En utilisant Vs, une compensation en mouvement de la trame synthétisée à

l’instant t−1 nous donnera une première prédiction de la trame courante. Le même

processus peut être répété pour une autre vue de référence. Le DMVF peut aussi

être calculé entre les instants t et t+1 (trame de référence temporelle future au lieu

de passée). Ceci donne au final 4 prédictions comme le montre la Figure 23 : passé

/ gauche, passé / droite, futur / gauche, futur / droite, qui seront ensuite combinées

en une seule trame synthétisée. Les éventuels trous dans cette trame sont remplis
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Figure 22: Contrainte épipolaire

avec un inpainting linéaire (le même que celui utilisé dans VSRS-1DFast).

Notre algorithme a besoin d’être initialisé en envoyant certaines trames, qu’on

appelle trames clés, de la vue synthétisée dans le flux binaire. Les trames clés cor-

respondent dans VSTP à la première trame de chaque GOP, le GOP étant le même

que celui utilisé pour coder les vues de référence, comme le montre la Figure 24.

Les autres trames sont synthétisées avec VSTP selon deux schémas de prédiction,

illustrés à la Figure 25 : un schéma direct où les trames de référence temporelles

sont uniquement des trames clés, et un autre schéma hiérarchique où les trames de

référence temporelles peuvent être des trames précédemment synthétisées au sein

d’un même GOP. L’avantage du schéma hiérarchique est que la distance de prédic-

tion moyenne est réduite.

Nous avons implémenté VSTP dans MATLAB. Les deux vues de référence ont

été codées avec le HTM-7.0. Nous avons respecté les CTC et codé seulement 3

secondes de 4 séquences vidéo pour accélérer les simulations. Nous nous sommes

comparés à VSRS-1DFast pour évaluer VSTP.

Le Tableau 15 donne les gains en dB, mesurés avec la métrique de Bjontegaard

BD-PSNR obtenus avec VSTP dans les deux schémas de prédiction proposés. En

moyenne, VSTP augmente le PSNR de 0.717 dB et de 1.391 dB dans les schémas

Direct et Hiérarchique respectivement. Les courbes RD correspondantes à chacune

des 4 séquences sont données à la Figure 26.

Le Tableau 15 et les courbes de la Figure 26 montrent que le schéma Hiérarchique

dépasse en performances le schéma Direct. Ceci est dû au fait que les distances de

prédiction temporelles sont plus courtes avec le schéma Hiérarchique, augmentant
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Figure 23: Quatre prédictions en utilisant la contrainte épipolaire

ainsi la qualité des 4 prédictions qui seront combinées.

En général, VSTP donne des gains par rapport à VSRS-1DFast car la méthode

permet d’atteindre le bon niveau d’illumination en envoyant les trames clés, et de le

maintenir pour toutes les trames de la vue synthétisée. Par ailleurs, la combinaison

de 4 prédictions réduit significativement le nombre de trous à remplir car il est fort

probable que des trous dans une prédiction soient disponibles dans une autre.

La Figure 27 montre l’évolution au fil du temps du PSNR da la vue synthétisée,

pour la référence et pour VSTP dans les deux schémas de prédiction. On remarque

que même si VSTP est en général meilleur que VSRS-1DFast, sur certaines trames,
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Figure 24: Synthèse par GOP dans notre algorithme
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Figure 25: Schémas de prédiction dans un GOP

Séquence BD-PSNR (en dB)
Direct Hiérarchique

Balloons 3.150 3.511

Kendo -0.556 0.205

Newspaper -0.404 0.442

PoznanHall2 0.678 1.406

Moyenne 0.717 1.391

Table 15: Gains en BD-PSNR obtenus avec VSTP dans les deux schémas de prédiction proposés

c’est l’inverse. Ceci est dû à l’échec de l’OF à donner un bon DMVF lorsqu’il y a des

mouvements rapides dans la vidéo. Le problème peut être résolu en modifiant les

paramètres de l’OF pour rendre le calcul du DMVF plus précis, au prix par contre

d’une augmentation de la complexité générale de VSTP.

Même s’il est difficile de comparer la complexité de VSTP et de VSRS-1DFast car

implémentés dans deux langages différents (MATLAB pour l’un, C++ pour l’autre),

il est clair que VSTP est plus complexe que VSRS-1DFast à cause de l’estimation et

de la compensation de mouvement denses qui doivent être effectuées 4 fois par trame.

Pour réduire la complexité de VSTP, moins de prédictions peuvent être utilisées (par

exemple prendre uniquement futur / gauche et futur / droite). Une estimation de

mouvement par bloc beaucoup moins complexe qu’une estimation de mouvement

dense peut aussi être mise en place.
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Figure 26: Courbes RD de la référence et de VSTP dans les deux schémas de prédiction proposés
pour les 4 séquences testées
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8 Conclusion

Dans ces travaux de thèse, nous avons étudié différents aspects du modèle 3D-HEVC.

La prédiction de différentes informations transmises dans un flux binaire 3D-HEVC

a été améliorée, donnant ainsi des gains de codage. Plusieurs méthodes convention-

nelles qui suivent des contraintes strictes ont été proposées : l’héritage des modes

Intra de texture pour la profondeur, AIMC, MedianNBDV, QTI / QTL + PC. Deux

approches en rupture basées sur le flot optique ont aussi été proposées : WOF et

VSTP. Les gains significatifs obtenus pour ces deux méthodes prouvent le potentiel

de ces solutions innovantes.

Dans le futur, nous développerons une méthode adaptative VSTP / VSRS afin

de sélectionner VSRS dans les zones à fort mouvement où VSTP échoue. Pour

l’héritage des modes Intra de texture pour la profondeur, un schéma d’héritage

progressif peut être implémenté, où le mode Intra de texture est directement utilisé

pour coder la PU de profondeur si la dépendance statistique entre les deux modes est

jugée importante. Dans AIMC, l’ajout du nouveau candidat peut être conditionné

par un critère qui va en prédire le bénéfice. Pour MedianNBDV, l’ensemble des DVs

sauvegardés dans la liste peuvent être évalués par RDO et l’indice du meilleur DV

pour le bloc courant peut être signalé au décodeur. Pour QTI, nous pouvons trouver

un schéma moins sévère que QTI mais plus sévère que QTI+1 afin que le PC ait

plus de poids. Pour QTL, nous pouvons étudier son intéraction avec AMP qui a

été récemment activé dans les CTC. Enfin, pour WOF, nous pouvons utiliser une

contrainte épipolaire pour corriger le DMVF hérité, comme dans VSTP.
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Introduction

Context

The invention of the stereoscope by Sir Charles Wheatstone in 1833 marked the

first milestone in the history of 3D video. The device consisted in a pair of mir-

rors oriented at a 45◦ angle to the viewer’s eyes, reflecting two images depicting the

same scene but from a slightly different view point. This resulted in a compelling

sense of 3D perception of the scene. In the beginning of the 20th century, different

stereoscopic viewing techniques were progressively introduced such as the anaglyph

glasses, the shutter based technique and the polarized projection. The 1950s are con-

sidered as the golden era of 3D movies. Indeed, Hollywood invested in 3D back then

to counter the dropping box office receipts of 2D movies due to the ever-increasing

popularity of a competing technology: the television. However, this outbreak was

short-due because 3D viewing was uncomfortable for the cinema audience at that

time. Since then, 3D has come and gone in certain “waves”. In 2004, the release

of the animation movie “Polar Express” and later, in 2009, the blockbuster “Avatar”

marked a significant comeback of 3D.

Over the years, the cinema audience became more and more demanding, ex-

pecting higher picture resolutions, more vibrant colors, multi-sensorial interaction,

animations, and finally depth perception, because it exists in real life. This is the

reason behind these periodic outbursts in 3D cinema history. Indeed, 3D cinema

has the ability to generate a compelling sense of physical space, and allows images

to emerge from the screen and enter further into the spectator’s space, more than

what is possible with conventional 2D or “flat” cinema.

In the most recent 3D“wave”, new multi-media services such as Three-Dimensional

TeleVision (3DTV) or Free viewpoint TeleVision (FTV) are being explored. 3DTV,

on the one hand, is expected to offer depth perception of broadcasted TV programs

without the need to wear special glasses. As a general consensus, 3DTV should

provide a level of image quality and viewing comfort at least comparable to stand-

ard 2DTV. Furthermore, 3DTV should offer monoscopic compatiblity for 2DTV sets,

for a gradual system transition. FTV, on the other hand, should allow the viewer
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to switch through the available viewpoints of a 3D scene using a special controller.

The transition between the different viewpoints is required to be as fluid as possible

for a successful deployment of FTV.

Conventional stereo, one of the most popular 3D video format available on the

market today, is not sufficient however to support deployment of 3DTV and FTV.

To alleviate the burden of wearing special glasses for 3DTV, an auto-stereoscopic

display must be used and it requires inputting multiple views to reduce flipping

effects when switching from one stereo pair to another, and to provide at least some

horizontal head motion parallax. The fluidity in navigation in FTV is also only

possible if numerous views are available at the receiver side. In this context, the

multiview video-plus-depth (MVD) 3D video format is particularly interesting, as it

can provide multiple views at the receiver at the cost of transmitting only a handful

of texture views and corresponding depth videos. Indeed, the other views can be

interpolated using Depth Image Based Rendering (DIBR) algorithms.

Furthermore, MPEG has been planning to standardize a 3D video coding stand-

ard as a second phase of the FTV project since 2009, following the first phase

which consisted in the standardization of the MVC extension of H.264/AVC. For

that purpose, a Call for Proposals on 3D video coding technologies was issued in

March 2011, and answered in November 2011. MVD turned out to be the most

popular choice of 3D formats amongst the different contributions, hence proving its

potentials. Between the various standardization tracks created after the answer to

the CfP, one particular track aimed at standardizing an HEVC-compatible 3D video

coding standard, which is basically an MVC extension of HEVC that includes depth.

This extension, called MV-HEVC, allows to exploit inter-view redundancies in both

texture and depth using high-level syntax only. The coding efficiency of dependent

views and depth data is further increased using additional block-level coding tools

in another extension called 3D-HEVC. The work on 3D-HEVC started in the begin-

ning of 2012 at the MPEG side, then ITU joined in July 2012 and a joint ISO / ITU

collaborative team for 3D video (JCT-3V) was created. Since it implies a redesign

of the decoders, 3D-HEVC is not expected to be finalized before early 2015.

The work done in this thesis falls in the 3D-HEVC standardization context. The

goal is to develop new coding tools on top of the 3D-HEVC reference software to

further improve the coding efficiency of coded and synthesized views. Indeed, Orange

follows 3D-HEVC standardization as a continuity of its previous activities in HEVC.

The work in this thesis was thus performed in the Advanced Video Coding (CVA)

team of Orange Labs, and in the Multimedia (MMA) group of the Signal and Image

processing department (TSI) of Telecom ParisTech and the LTCI laboratory (UMR

5141).
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Contributions

Various methods aimed at increasing the coding efficiency in 3D-HEVC were de-

velopped during this thesis. They can be divided into two categories. The first

category includes methods that comply to real-world constraints in terms of com-

plexity, memory usage, and practicality. These are thus more oriented towards

standardization. We identify three contributions in this category:

• A method that exploits the statistical Intra direction dependency between tex-

ture and depth. The texture Intra directions are conditionally inherited by

depth blocks and used to predict the depth Intra directions.

• A method for improving Interview Motion Vector Prediction (IVMP) in 3D-

HEVC which adds a Disparity Vector (DV) candidate in the Merge list for a

better Motion Vector (MV) / DV equilibrium in the list. IVMP is also improved

by modifiying the Neighboring DV (NBDV) process for DV derivation.

• A method that exploits the link between the texture and depth quadtrees to

save on both encoder runtime and coding of partition information. The depth

quadtree is limited to the texture quadtree or inversely, the texture quadtree

is initialized from the depth quadtree.

The methods in the second category are unconstrained coding approaches where the

aim is to achieve significant coding gains regardless of the introduced complexity.

A novel optical flow approach is used to either increase the coding efficiency of de-

pendent texture views in 3D-HEVC, or to improve the view synthesis after decoding.

There are thus two contributions in this category:

• A method that combines a smart decoder approach and an optical flow compu-

tation to benefit from a dense motion vector field that significantly improves

the block predictors at no additional cost. The optical flow is applied on the

reconstructed base view after decoding (this can be done at both the encoder

and decoder sides) and then the resulting dense motion vector field is inherited

by blocks in dependent views as a Merge candidate.

• A view synthesis method that blends four different frame predictions obtained

through motion compensation with four dense motion vector fields. These are

computed using optical flow at the level of two reference views (using a past

and a future reference), then warped to the synthesized view.
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Structure of the manuscript

This manuscript starts with a state-of-the-art in 3D video representation and coding,

and a detailed overview of the coding tools in 3D-HEVC. Then, it comprises two

parts which describe, respectively, coding approaches aimed towards standardization,

and more innovative approaches using optical flow. More precisely, the manuscript

is organized as follows:

• Chapter 1 presents a state-of-the-art in 3D video representation and coding.

It starts by presenting depth perception in 3D displays. 3D video formats are

described next, followed by tools developped to specifically code 3D video. A

list of 3D video standards and a summary of recent standardization activites

in this field are detailed next. A comparison of 3D-HEVC with other 3D video

coding standards concludes this chapter.

• Chapter 2 lists the coding tools present in 3D-HEVC at the time of developping

our methods. The tools used to code the HEVC-compatible base view are

detailed first, followed by the ones used to code the dependent views and the

depth videos. A presentation of non-normative encoder controls concludes this

chapter.

Part one

• Chapter 3 details our depth video coding method based on the Intra mode

inheritance from texture. First, a preliminary study of the texture/depth Intra

mode matchings is given. Then, the method is presented with a first criterion

used to condition the inheritance: GradientMax. The results of our method

with GradientMax are reported next. In an aim to further increase coding

efficiency, another criterion, DominantAngle, is presented next. Its associated

results are reported to allow for a direct comparison with GradientMax, which

concludes the chapter.

• Chapter 4 presents two methods to improve IVMP in 3D-HEVC. The first adds

an inter-view candidate in the Merge candidate list of dependent view PUs to

achieve a better equilibrium between MVs and DVs in the list. The second

tackles the sub-optimality issue of the NBDV process by considering multiple

neighboring DVs and selecting the median as final DV. For both methods, a

state-of-the-art, a motivation, a detailed description, and a reporting of the

results are given.

• Chapter 5 presents the depth quadtree limitation using texture (QTL), the

texture quadtree initialization using depth (QTI), and the predictive coding
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(PC) algorithm which can be applied in both methods. A state-of-the-art of

existing encoder shortcuts is first given. The two methods are then motivated

by analyzing the percentage of CUs where the texture quadtree is more parti-

tionned than the depth quadtree, and the percentage of bits used to code the

partition information in the bitstream. QTI and QTL are then respectively

presented, along with their variants. The objective and subjective coding res-

ults of the methods, and the runtime savings they bring are reported, then

analyzed thoroughly.

Part two

• Chapter 6 presents a coding method that uses optical flow and a smart decoder

approach to increase the coding efficiency of dependent texture views in 3D-

HEVC. A state-of-the-art on these two aspects is presented to put the method

in context. Then, the method is motivated by showing that the dense motion

vector field (DMVF) provided by optical flow gives more accurate predictions

than the conventional block-based coarse motion vector field in HTM, even if

the DMVF is computed between reconstructed frames and is thus affected by

quantization noise. The method is then presented: basically an optical flow

computation is performed, at both encoder and decoder sides, between the

reconstructed base view frame and one of its temporal reference frames. The

resulting DMVF is then inherited at the level of dependent view PUs as a

dense Merge candidate. The significant coding gains of the method are then

reported and interpreted.

• Chapter 7 presents a novel view synthesis method that uses an optical flow

approach as well to increase the quality of synthesized views. A state-of-the-

art on view synthesis techniques is first given, followed by a presentation of

the method. Basically, four DMVFs are computed at the level of two coded

reference views using two temporal reference frames (one in the past, the other

in the future). These DMVFs are then warped to the level of the synthesized

view using an epipolar constraint, then used for motion compensation. The

four resulting predictions are blended as a final step of the algorithm. The

significant coding gains on synthesized views are then given and analyzed.

We end this manuscript with a summary of the proposed methods and their

associated results, as well as some perspectives for future work in this field.
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We begin this thesis manuscript by introducing the mecanisms by which the

viewer can experience 3D while watching a video on a 3D display. Different types of

display technologies will be discussed, underlining the advantages and disadvantages

of each.

Furthermore, the work done in this thesis is aimed at improving the coding

efficiency of 3D video data for stereoscopic and autostereoscopic displays, represented

in a specific Multiview Video-plus-Depth (MVD) format. In a second section of this

chapter, we thus position the MVD format along side other 3D video representations.

We first discuss texture-only formats, and then introduce depth-based formats which

include MVD.

The 3D information, regardless of the format it is represented in, is costly in terms

of bitrate; it thus needs to be efficiently compressed. A myriad of tools are proposed
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for this purpose in literature and in 3D video codecs. In a third section, these tools

will first be categorized and detailed. Then, a list of existing video standards suitable

for compressing 3D data will be established. New standardization activities in this

field, leading to the draft 3D extension of HEVC (3D-HEVC) on which our work is

based, will also be presented. A performance comparison between different 3D video

coding schemes is also performed in this section, in order to prove the superiority of

3D-HEVC in efficiently coding MVD data.

1.1 Depth perception in 3D displays

1.1.1 Depth cues

The human visual system uses several depth cues to build a mental model of a

perceived 3D scene [RHFL10, LRL13]. Depth cues can be divided into two main

categories: oculomotor and visual.

Oculomotor depth cues include accomodation, convergence and myosis. Acco-

modation is a change of the focal length of the eye’s lens in order to bring objects

at different distances into sharp focus on the retina. Convergence is a rotation of

the eyes toward each other for closer objects. Myosis is the constriction of the pupil

size relative to the amount of light the pupil receives. Occulomotor depth cues are

relatively weak, they are only effective for short distances (less than 10m).

Visual depth cues include monocular cues and binocular cues. Monocular cues

can be either static or dynamic. Static monocular cues are classic pictorial cues

such as shadow, illumination, relative size differences, aerial perspective, linear per-

spective, etc., while dynamic monocular cues correspond to motion parallax. Indeed,

motion cues are created when the viewer moves his eyes or head. A relative object

motion around a fixation point can serve as a depth cue. Monocular cues are im-

portant depth cues which span a large range of scene depths. Binocular cues allow

a viewer to experience the sensation of depth (stereopsis) through the existence of

different retinal images captured by each eye. Those are only effective for medium

viewing distances (from a few centimeters to nearly 100 meters). Figure 1.1 compares

the depth perception layers of different types of depth cues [Ebr12].

1.1.2 3D displays

A natural real world scene provides multiple depth cues to the viewer, allowing him

to mentally build the model of the scene and experience 3D. In order to be able to

view 3D video, a 3D display should do the same. However, not all depth cues can

be provided by 3D displays.
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Figure 1.1: Depth perception layers of different types of depth cues

(a) Anaglyph (b) Polarized (c) Shutter

Figure 1.2: Types of glasses used for stereoscopic viewing

The most common and commercially popular 3D displays provide only binocular

disparity. These so-called stereoscopic displays multiplex two slightly different im-

ages (called views) of the same scene captured at the same time instant. In order to

provide the binocular disparity depth cue, each image must be matched to a different

eye of the viewer. This can be done either using special glasses (anaglyph, polar-

ization or shutter glasses) as illustrated in Figure 1.2 [Ali] or without the need of

special equipment, as in the case of autostereoscopic displays where the dissociation

between views is done using a parallax barrier or lenticular arrays [Dod05], as shown

in Figure 1.3. Autostereoscopic displays can multiplex more than two views and can

thus provide motion parallax, at some extent. Indeed, as the viewer moves around

the display, different stereo pairs are projected to his eyes, and hence, he can explore

different elements of the 3D scene. These displays are reported to cause eye strain

because of a discrepancy between the accomodation and the convergence distance,

as shown in Figure 1.4. Indeed, the convergence and binocular parallax will place

an object in front of the display, but the eyes must still focus on the display in order

to make the object sharp in the retina. Another disadvantage is the lack of fluid

motion parallax due to a limited number of views. In case there is no sufficient views
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Figure 1.3: Stereoscopic and autostereoscopic displays

projected on the 3D display, the viewer will experience discomfort since he will not

be able to perceive a slightly different perspective of the projected 3D scene with the

natural movement of the head [Ols08]. In addition, when switching from one stereo

pair to the next, an unpleasant flipping effect usually occurs in autostereoscopic

displays. These two inconveniences have hindered the successful commercialization

of stereoscopic displays.
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Figure 1.4: Discrepancy between the convergence and accomodation distances

To counter these issues, more advanced 3D display technologies are currently

being explored. These include holoscopic and holographic displays. Holoscopic or

Integral Imaging 3D displays consist of a display panel and a lens array placed in

front of the panel. The display panel projects several elemental images, each corres-
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ponding to a different viewpoint of the same scene. The light rays from the elemental

images are integrated by the lens array in order to form a 3D image of the captured

scene [PHL09]. Figure 1.5 [3Dv] shows a 3D image formed using a holoscopic dis-

play. The 3D images formed present continuous parallax throughout the viewing

zone. This continuity eliminates the flipping effect discussed earlier [3Dv]. Head

motion parallax is fully provided by these displays. In addition, the accomodation

and convergence distances are the same, and thus eye strain is greatly reduced [3Dv].

However, at the time of writing this thesis manuscript, the display, with its complex

optical system, is still relatively expensive to be commercially popular. Plus, there is

little content available today for holoscopic viewing. Indeed, the capture technology

is not mature, and specific compression schemes for integral images are yet to be

established.

Figure 1.5: Holoscopic display

Another solution that counters most of the issues of classical stereoscopy is the

holographic display technology, where a light distribution is physically duplicated

into a volume of interest [YKO10]. Specifically, the wave field of a 3D scene is

recorded onto a hologram, and the display reconstructs it in space by modulating

coherent light, e.g. with a Spatial Light Modulator (SLM). Consequently, holo-

graphic displays can provide nearly all depth cues and are thus labeled as “true 3D”

displays. Figure 1.6 [SCS05] shows an example of a 3D image produced by com-

puter generated holograms (CGH). The commercialization of holographic displays

is not expected any time soon however since the computational and bandwidth cost

associated with holographic data is, to this day, too high.

Each display technology has its own associated video formats. The following

section will detail the 3D video formats for stereoscopic and autostereoscopic displays.

Holoscopic and holographic display technologies are not in the scope of this thesis,

and thus, they will be disregarded in the remainder of this manuscript.
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Figure 1.6: Replay of a spatial-multiplexed, 3×8 billion-pixel, full-parallax, fullcolor, 3D image
with a holographic display

1.2 3D video formats

1.2.1 Texture-only 3D video

The most common 3D video format is the Conventional Stereo Video (CSV) format,

in which two views representing the same scene but captured by two different cam-

eras separated by a certain distance (called the baseline), are multiplexed in the 3D

display, as illustrated in Figure 1.7.
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Figure 1.7: Convention Stereo Video format

The Mixed Resolution Stereo (MRS) format is an alternative to CSV [BSM+09].

It exploits the binocular suppression theory which states that if two views of different

image quality are multiplexed together on a stereo display, the resulting 3D image

quality will be closer to that of the higher quality view. This means that one of

the two views can be represented at a lower resolution, as illustrated in Figure 1.8,

without sustaining a significant loss in the resulting 3D image quality.

Multi-resolution Frame Compatible (MFC) formats multiplex both views of a

stereo format onto a single support. The multiplexing can be done either spatially (in

a side-by-side or an over-under configuration, also called top-bottom) or temporally.

If temporal multiplexing is used, the views are interleaved as alternating frames or

fields, whereas both views are downsampled either horizontally or vertically then
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Figure 1.8: Mixed Resolution Stereo format

joined together in spatial multiplexing, hence losing spatial resolution. An example

in Figure 1.9 illustrates these different types of frame packing arrangements.
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Figure 1.9: Stereo multiplexing

New emerging multimedia services require more than two views to be multi-

plexed on the 3D display. 3D Television (3DTV) [FCSK02] for instance, requires

motion parallax to be supported, at least within practical limits: a viewer must

be able to view different elements of the 3D scene when moving from left to right

(looking behind objects for instance). This is impossible to perform using only two

views. Furthermore, two views are not sufficient to provide fluidity in navigation,

as required by applications such as Free viewpoint TeleVision (FTV) [CTMS03] for

instance, in which the user is free to navigate in the 3D scene using a controller.

To that end, the MultiView Video (MVV) format exists. The 3D data in a MVV

format is composed of N views captured by N cameras arranged and spaced in a
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specific manner.
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Figure 1.10: MultiView Video format

The bitrate required for transmitting the 3D data in MVV can increase rapidly as

N increases. Depth based formats may be more cost-effective alternatives, hence the

ever-increasing popularity of these formats in both academic and industrial research

fields.

1.2.2 Depth-based 3D video

Definition and characteristics of a depth map

A depth map is a grayscale luminance only image which maps each pixel in an

associated texture frame to a certain distance from the camera (a depth value).

A depth map is essentially composed of large planar regions seperated by sharp

edges and is invariant to illumination, patterned textures, and shadows [DTPP08,

KOL+10, MdWF06, MD08, SSO09, MVJ+13]. Figure 1.11 shows an example of a

depth map with its associated texture frame. The higher the luminance value (closer

to white), the closer the object is to the camera.

View synthesis

Depth maps are not displayed on screen but rather used to synthesize views us-

ing a technique called Depth Image Based Rendering (DIBR). Namely, using a
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Figure 1.11: A texture frame and its associated depth map from the Breakdancers video sequence

texture frame and its associated depth frame at a specific view, another view, loc-

ated at a different point in space, can be extrapolated. View synthesis invokes a

3D image warping process that can be decomposed into two steps including a first

back-projection of the reference image into the 3D-world, followed by projecting the

back-projected 3D scene onto the targeted image plane [Dar09, McM97], as shown

in Figure 1.12: a point m1 representing a point M in real world coordinates in a

reference image plane (or view) captured by a camera of center C1 is warped to point

m2 in a targetted image plane that would be captured by another camera of center

C2.
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Figure 1.12: Image warping from a reference to a targetted image plane

Let us define some notations first before detailing the warping operations: let

(u1, v1) be the coordinates of m1 in the reference image plane, and (u2, v2) the co-

ordinates of m2 in the targetted image plane. Let Z(u1, v1) be the depth value of

m1. The goal is to express (u2, v2) in terms of (u1, v1) and Z(u1, v1).

First, m1 is back-projected into point M of coordinates (x, y, z) in the 3D-world,

using the following equation [Dar09]:



x

y

z


 = R−11 K−1

1



u1

v1

1


λ1 − R−11 t1 (1.1)
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where K1, R1 and t1 are respectively the 3 × 3 intrinsic camera parameters matrix,

the 3 × 3 orthogonal rotation matrix and the 3 × 1 translation vector of reference

view 1. λ1 is a scaling factor.

Then, point M is projected back onto the targetted image plane at point m2 of

homogeneous coordinates (u′2, v
′
2, w

′
2) using the following equation:



u′2

v′2

w′2


 = K2R2



x

y

z


+K2t2 (1.2)

where K2, R2 and t2 are respectively the 3 × 3 intrinsic camera parameters matrix,

the 3×3 orthogonal rotation matrix and the 3×1 translation vector of reference view

2. More details on homogeneous coordinates can be found in [Dar09]. Replacing

(x, y, z)T by the expression found in Equation 1.1, we obtain:



u′2

v′2

w′2


 = K2R2R

−1
1 K−1

1



u1

v1

1


λ1 −K2R2R

−1
1 t1 +K2t2 (1.3)

If we attach the world coordinates system to the first camera system, as it is

usually done, then R1 = I3 and t1 = O3, where I3 is the 3 × 3 identity matrix, and

O3 the 3× 1 null vector. Equation 1.3 can thus be simplified as such:



u′2

v′2

w′2


 = K2R2K

−1
1



u1

v1

1


λ1 +K2t2 (1.4)

In this case, λ1 can be written as:

λ1 =
z

c
where



a

b

c


 = K−1

1



u1

v1

1


 (1.5)

Furthermore, if the depth map at view 1 is represented using 8 bits per pixel, z can

be expressed as:

z =
1

Z(u1,v1)
255

·
(

1
Znear

− 1
Zfar

)
+ 1

Zfar

(1.6)

where Znear and Zfar are the extremal depth values. Finally, (u2, v2) = (
u′

2

w′

2

,
v′
2

w′

2

).

If we suppose that the cameras are identitical and that they are rectified (par-

allel), then K = K1 = K2, R2 = I3 (no rotation angle between cameras), and the
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translation between cameras is only on one axis, meaning t2 = (tx, 0, 0)
T . In this

case, λ1 = z and Equation 1.4 can be simplied into:



u′2

v′2

w′2


 =



u1

v1

1


 z +K



tx

0

0


 (1.7)

In non-homogeneous coordinates, we obtain:

u2 = u1 +
f · tx
z

and v2 = v1 (1.8)

where f is the focal length of the cameras.

3D image warping often introduces occlusions and disocclusions in the synthes-

ized view. Occlusions is when two points of different depth and clearly visible in

the reference view, are mapped to the same point in the targetted view. The point

with the higher depth value (the foreground) will overlap the other (background).

Disocclusions are points in the targetted view that are not mapped to any point in

the reference view. These correspond to areas that were not visible in the reference

view (either covered by another object or simply non-existant) and which became

visible in the targetted view. Filling these holes can be done in various ways. First,

the synthesis can be performed at the encoder side, and the missing information sent

in the bitstream (although this increases the required bitrate). Second, the depth

video can be pre-processed (general smoothing [TAZ+04], assymetric filtering [ZT05],

bilateral filtering [CLLY08], etc.) to reduce the number of holes. Finally, the syn-

thesized video itself can be post-processed to fill the holes (average filtering [ZT05],

multiple reference images [ZWPSxZy07], inpainting [TLD07], etc.).

Depth-based formats

First we have the Video plus Depth (V+D) format, which consists of one texture view

and its associated depth view. With those two components, one or more views can be

extrapolated. Figure 1.13 shows one extrapolated view using a V+D format, which

along side the original texture view, allows stereoscopic viewing. Autostereoscopic

viewing can be achieved if more than one view is extrapolated. However, the more

distant from the original texture view the extrapolated views are, the more they

contain disoccluded areas, and hence the less qualitative they will be.

The Multiview Video plus Depth (MVD) format solves this particular issue by

introducing view interpolation. It consists of N texture views and their associated

N depth views. With two pairs of texture and depth views, intermediate views can

be interpolated, meaning they are extrapolated from each pair and the two repres-
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Figure 1.13: The Video+Depth format

entations are blended together to reduce the number of holes due to disocclusions.

This allows synthesizing multiple intermediate views between two original texture

views, hence enabling autostereoscopic viewing, without the constraint of disocclu-

sions. The only constraint is relative to the baseline since a small baseline allows

synthesizing a limited number of views. Figure 1.14 shows three intermediate views

synthesized using two texture / depth pairs in an MVD format.
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Figure 1.14: The Multiview Video plus Depth format

Layered Depth Video (LDV) is an alternative to MVD. Using a texture / depth

pair (Vi, Di) at view i, the texture / depth map pair (V ∗i+1, D
∗
i+1) at view i + 1

can be extrapolated using DIBR. A residual (RVi+1, RDi+1) can be computed as

(Vi+1 − V ∗i+1, Di+1 −D∗
i+1) which corresponds to the areas of view i+ 1 which could
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Figure 1.15: The Layered Depth Video format

not be rendered from view i (disocclusions). The residuals corresponding to the

different views and at least one complete texture / depth pair (designated as main

layer) for reference are then sent in the bitstream. Figure 1.15 shows a main layer

composed of V1 and D1 and a residual layer composed of RV5 and RD5 and how

the V5 / D5 pair is reconstructed using the two layers.

1.3 3D video coding

1.3.1 Overview of coding tools for MVD representations

In an MVD format, N texture views and N associated depth views are to be coded

and transmitted. This represents quite a large amount of information, which in-

creases linearly with N . A simulcast coding of each texture and depth view using a

standard 2D codec such as AVC [H2605] or HEVC [BHO+13] is possible, but that

would not allow to exploit the correlations between the different views. Furthermore,

depth videos have different characteristics than texture videos and conventional com-

pression algorithms might not be very efficient for this type of data. New coding

tools must thus be designed specifically for depth maps. In this section, we present

an overview of coding tools proposed in literature which are designed to code 3D

data in an MVD representation.
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Texture video coding

Standard 2D video codecs include an Inter coding mode where a block can be coded

using Motion-Compensated Prediction (MCP). Coding a block with MCP involves

two stages: motion estimation and motion compensation. Motion estimation is the

non-normative process by which the encoder tries, for the currently coded block, to

find the best matching block in an already decoded picture stored in a buffer called

Decoded Picture Buffer (DPB). The best matching block is the one minimizing

a certain criteria, such as the Mean of Absolute Distortion (MAD). Once found,

a motion vector (MV) representing the displacement between the current block

and the best match, and the index of the picture in which the latter has been

found (called reference index ) are sent to the decoder. Motion compensation is the

normative reverse process in which the decoder builds the predictor of the block

using the motion parameters (MV + reference index) associated with it (it basically

recovers the best matching block previously found by the encoder). For 3D data,

inter-view correlations can be exploited by extending MCP into the view direction.

This basically consists in adding an already decoded picture at the same time instant

but in a different view in the DPB of the current frame. The MV found in this case

does not represent motion per se, it represents a certain disparity between views

and is thus called disparity vector (DV). A block coded in Inter mode and which is

associated with a DV is said to be coded using Disparity-Compensated Prediction

(DCP) [CWU+09]. Figure 1.16 shows a current block in view Vj at time instant Ti

coded in Inter mode, either with MCP (it has a MV pointing to a decoded picture

at the same view Vj but at a different time instant Ti−1) or with DCP (it has a DV

pointing to a decoded picture at the same time instant Ti but in a different view

Vj−1).
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Figure 1.16: Motion and disparity-compensated predictions



1.3. 3D video coding 21

Aside from DCP which exploits inter-view correlations, several coding tools ex-

ploit inter-component correlations (between texture and depth) to increase coding

efficiency of texture data. In [KD10], an inter-view Direct mode is added in the MVC

codec, wherein the motion parameters of each pixel in the currently coded block are

inferred from a reference view at the same time instant. Basically, for each pixel

(xi, yi) in the current block, the corresponding pixel in the reference view (xr, yr) is

found by warping using the coded depth information Z(xi, yi) (see Equation 1.4).

The motion information contained in (xr, yr) is then copied to (xi, yi). If it does not

exist (the block containing (xr, yr) is Intra coded or (xr, yr) is occluded), another

reference view is tested. If the motion information of (xi, yi) cannot be inferred

from reference views, it is inferred from local neighboring points in the current view

(some sort of inpainting is applied for instance). Once the motion information of

all the pixels of the current block is found, a pixel wise motion compensation is

applied to form the prediction. This tool reportedly brings 6.5% bitrate reduction

on top of JMVC and 10.9% on top of JMVM+Motion skip (JMVC and JMVM are

respectively an older and a newer version of the MVC reference software). However,

the computation of the reported gains was only performed for coded texture views

(no results for synthesis) while not considering the depth rate, although depth is

essential to decode the texture in this case.

View synthesis prediction (VSP) is also a popular coding tool where using a

decoded texture / depth pair in a reference view j − 1, a texture frame at view j

can be synthesized and used to improve the coding efficiency of the currently coded

texture frame at view j. This can be done in various ways: the synthesized frame

can be added into the reference picture lists of the current frame where it will be

used by MCP as in [Jag12a]. In [DGK+11], the synthesized frame is compared to the

current frame in order to know which areas cannot be rendered (due to disocclusions),

and only the non-renderable parts of the current frame are coded. However, VSP

does not account for inter-view signal mismatches caused by camera heterogeneity

and the non-Lambert reflection of objects (difference of sharpness, blurriness, color,

illumination, etc.) and thus, it may sometimes be inefficient.

In [SK10], a temporal improvement of VSP is proposed. Using T ∗[i − 1][j − 1]

and T ∗[i−1][j+1] which are the reconstructed texture frames at time instant i−1 at

views j−1, and j+1, and their associated reconstructed depth maps D∗[i−1][j−1]

and D∗[i− 1][j + 1], a texture frame T ′[i− 1][j] can be synthesized. The same can

be done at the current time instant i: using T ∗[i][j − 1], T ∗[i][j + 1], D∗[i][j − 1]

and D∗[i][j + 1], a texture frame T ′[i][j] can be synthesized. A motion estimation

can be performed between the two synthesized frames in order to derive a motion

vector field (MVF). Since all this information is available at the decoder, the motion



22 1. 3D video representation and coding

estimation can also be done there, so there is no need to transmit the derived MVF.

Once the MVF has been found, a motion compensation process can be performed

using the MVF and T ∗[i − 1][j] in order to form a prediction T̂ [i][j] that is used

to code the current frame T [i][j]. This tool reportedly brings around 2% bitrate

reduction over the standard VSP method, but it is also a lot more complex since

motion estimation is done at the decoder.

Depth information can also be used to improve motion and disparity vector

prediction. In [HRS+13], a default DV predictor (DVpred) is computed from the

depth map if none of the neighboring blocks of the current texture block has any

DVs. The average of the collocated decoded depth block is computed and that depth

value is transformed into a DV which is set as DVpred. A second part of the tool

modifies the Skip and Direct modes in H.264/AVC: the MVs of the three spatial

neighbours are each used to compensate the collocated decoded depth block, and a

Sum of Absolute Distortions (SAD) is computed between that depth block and its

predictor. The vector yielding the lowest SAD was inherited by the texture block.

This brings 8.9% bitrate reduction on coded texture views in a three view coding

(left, center, right) scenario. However, this tool was judged too complex because in

Skip or Direct mode, the decoder would have to perform three SAD computations

for each block. The first part of the tool was adopted in the 3D extension of AVC:

3D-AVC [RCZS13]. The second was replaced in 3D-AVC with a simpler Disparity-

based Skip and Direct modes where the motion information of the corresponding

base view block pointed by DVpred is inherited.

Rate control for texture can also take advantage of depth data. Indeed, the depth

map allows to identify the areas in the texture frame that belongs to the background,

and the ones corresponding to the foreground. In order to improve the perceptual

quality of the coded texture frame, a higher quantization parameter (QP) (less

bitrate) can be set in the background and a lower one in the foreground [DGK+11].

Depth video coding

Depth videos, by their natural composition and purpose in the video chain, have

different characteristics than texture videos and thus, specific tools have been de-

velopped in order to code them. This area of research has been very active in the

recent years due to the increased industrial interest in depth-based 3D video formats.

Furthermore, depth coding methods can be divided into three categories: methods

that exploit the inherent characteristics of the depth maps, methods that exploit the

correlations with the associated texture videos, and methods that optimize depth

coding for the quality of the synthesis.

1. Methods that exploit the inherent characteristics of depth videos:
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the methods in the first category can be applied at the slice or at the block

level in depth map coding, hence respectively defining two sub-categories of

methods. In the first sub-category, we find the reduction of the resolution of

depth videos before coding, which may be considered as a depth data compres-

sion technique [RH11]. Indeed, the artifacts associated with up-sampling the

depth map after decoding are minimal, and we can thus obtain considerable

compression gains by simply reducing the resolution of the depth videos to

encode. The test model of 3D-AVC [RCZS13] proposes to down-sample depth

videos to a quarter of their initial resolution (half in each direction) before

encoding.

Another tool in the first subcategory is the Znear Zfar compensation [DGK+11]

for weighted prediction. Different frames of a same view or different views

at the same instant in time, for a depth video sequence, may have different

extremal depth values (noted Znear and Zfar). As depth maps are rescaled

in the [0, 255] interval, different depth images may be scaled differently. In

this case, the use of a depth map as the reference image for another depth

map would lead to poor predictions and unefficient compression. To solve this

problem, coherent scaling needs to be applied for all depth maps in question.

This is easy to achieve using extremal values. For example, if a depth map with

extremal values Zs
near and Zs

far is used as the reference image for a current depth

map with extremal values Zt
near and Zt

far, the scaling for the current depth map

is done as follows:

LT = LS ·
Zs

far − Zs
near

Zt
far − Zt

near

+ 255 ·
Zs

near − Zt
near

Zt
far − Zt

near

(1.9)

where LS is the original depth value and LT the rescaled value. This tool is

included in 3D-AVC under the name: Depth Range based Weighted Prediction

(DRWP), although implemented differently.

Non-linear Depth Representation (NDR), included in 3D-AVC for coding of the

base view, allows representing closer objects more accurately than distant ones.

This can be achieved by encoding non-linearly mapped disparity, normalized

in the [0, 255] range, instead of generic depth map values. The depth map is

nonlinearly mapped through forward lookup table at the preprocessing stage

of the encoder and inversely mapped back to original representation at the

post-processing stage of the decoder. Only a few key values need to be mapped

(and this mapping is sent in the bitstream), the others can be obtained through

piece-wise linear interpolation.

Furthermore, the encoder can be configured to use only full-pel motion estima-
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tion for depth coding. Indeed the eight-tap filters used for motion-compensated

interpolations, as defined in the HEVC standard [HEV13], produce artifacts on

sharp edges in depth. Consequently, motion (or disparity)-compensated pre-

dictions may be modified to avoid interpolations, meaning that only full-pel

motion vectors and disparity vectors will be used. The reduction in precision

of motion vectors also reduces the bit rate required to transmit the motion

vector differences [SBB11].

In the second subcategory, i.e.that of block-level methods, we find the approx-

imation of depth blocks using modeling functions, presented in [MMS+08]. As

the depth map is essentially made up of smooth regions separated by contours,

a depth block may be approximated by four different types of functions: a

constant function, a linear function, a constant piecewise function or a linear

piecewise function. If no suitable approximation can be found for the current

block, then it is divided into four blocks in a quad-tree manner. The process is

repeated for each block until an approximation function is found for each leaf

of the quad-tree.

While the first tool concerned Intra prediction, the so-called adaptive 2D Block

Matching (2D-BM) / 3D Block Matching (3D-BM) selection tool concerns

Inter prediction [KFM10]. 2D-BM is the classic way in which an encoder,

during a motion estimation stage, finds the temporal reference block which

best corresponds to the current block. The correspondence is measured by the

Sum of Squared Errors (SSE), defined as follows:

SSE(i, j) =
M−1∑

m=0

N−1∑

n=0

(f(m,n)− g(m+ i, n + j))2 (1.10)

where f is the original current block of M×N to code, and g is the temporal

reference block, also of size M×N . In this case, the search is carried out in two

dimensions: horizontal and vertical. However, in depth videos, we also have

motion in the depth direction. The search precision may thus be increased by

an extension to a third dimension. This idea is implemented in 3D-BM. Thus,

the best temporal correspondence is the one minimizing the new formulation

of the SSE, as follows:

SSE(i, j, k) =
M−1∑

m=0

N−1∑

n=0

(f(m,n)− g(m+ i, n+ j) + k)2 (1.11)

3D-BM is more efficient than 2D-BM for high bitrates, where the gains pro-

duced by the reduction of distortion are higher than the costs associated with



1.3. 3D video coding 25

the addition of a new component for motion vectors. Inversely, at low bitrates,

2D-BM is more efficient than 3D-BM. Adaptive 2D-BM / 3D-BM selection

evaluates the R-D cost for the coding of each block with 2D-BM and 3D-BM

and chooses the method which minimizes cost. The choice is then sent in the

bitstream for decodability. This adaptive selection is more efficient than pure

2D-BM and 3D-BM for middle bitrates.

2. Methods that exploit the correlations with the associated texture

videos: in this category, we find some mode decisions for depth that depend

on the texture. the Skip mode, for instance, can be forced for a currently

coded depth block each time that the co-located texture block is coded using

Skip [KOL+09]. The main idea behind this tool is that the spatial uniformity

of movement in texture is likely to be also present in depth. Skip mode may

not necessarily be chosen under normal circumstances due to the presence of

certain artifacts inherent in the original depth, which create false movements.

Imposing Skip mode on a depth block if it is chosen for the co-located texture

block eliminates these artifacts, thus increasing the quality of views which will

be synthesized with the current depth frame. The tool also brings compression

gains due to the fact that no signaling is required for Skip mode. Finally, it

also reduces the complexity of the encoder as it reduces the number of motion

estimations and compensations to be performed.

Prediction information can also be inherited by depth from texture. Motion

information (motion vectors + reference picture indices) is highly correlated

between texture and depth, especially around object contours. In [SPW+10],

a new mode, known as Motion Sharing or MS, is added to the list of existing

modes (Intra, Inter, Skip). In this new mode, the motion information for a

depth block is directly inherited from the corresponding texture block. No

motion estimation is carried out. MS mode is not systematically imposed

for depth blocks: an R-D criterion verifies the cost and compares it to those

entailed by other prediction modes. MS is then selected only if it offers the

lowest cost. This tool is also included in 3D-AVC under the name of Inside

View Motion Prediction.

The Intra mode of a texture block may also be inherited, as proposed in [BYN11],

for the co-located depth block. Inheriting the texture Intra mode here means

that the mode will be added to the list of most probable modes (MPM, will

be described in the next chapter) for the current depth block, where it will act

as a predictor for the depth Intra mode. While the proposal is efficient, the

fact remains that one of the two already present MPM candidates is always

removed in order to replace it with the texture Intra mode, otherwise there
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would be an additional bit required per MPM index signaling. However, this

substitution is not always the best choice if there is little dependency between

the texture and depth Intra modes; i.e., a potentially good MPM candidate

might be replaced with a bad one.

3. Methods that optimize depth map coding for the quality of the syn-

thesis: as depth maps are not shown on screen but rather used to synthesize

views, the R-D model used in depth coding must consider distortion directly

on the synthesized views in order to optimize coding for the truly important

aspects, i.e. the intermediate synthesized views. In [LOL11], the VSD (View

Synthesis Distortion) metric is calculated as a distortion in the depth block,

weighted by one-pixel texture translation differences:

V SD =
∑

(x,y)

[α
2
·
∣∣∣Dx,y − D̃x,y

∣∣∣ ·
(∣∣∣C̃x,y − C̃x−1,y

∣∣∣+
∣∣∣C̃x,y − C̃x+1,y

∣∣∣
)]2

(1.12)

where Dx,y, D̃x,y, and C̃x,y are respectively the original depth value, the re-

constructed depth value and the reconstructed texture value at position (x, y).

The value of α is defined as follows:

α =
f · B

255
·

(
1

Znear

−
1

Zfar

)
(1.13)

where f is the focal distance, B the distance between cameras for the current

view and the synthesized view, and Znear Zfar are the extremal depth values.

In Equation 1.12, we suppose that two adjacent pixels will remain adjacent

after the warping operation, which is not always the case as occlusions or

disocclusions may occur in synthesized views. To rectify this, C̃x−1,y and C̃x+1,y

in Equation 1.12 may be replaced by C̃xL,y and C̃xR,y respectively, with xL and

xR defined as follows:

xL = x+ arg maxl≥1 ⌊α · (Dx−l,y −Dx,y)− l⌋

xR = x+ arg minr≥1 [max (α · (Dx+r,y −Dx,y) + r, 0)]
(1.14)

Equation 1.12 is then corrected to take account of regions of occlusion and

disocclusion, as follows:

V SD =





∑

(x,y)

[α
2
·
∣∣∣Dx,y − D̃x,y

∣∣∣ · PC

]2
if xL < x

0 if xL ≥ x

(1.15)
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where PC , the weight in texture, is defined as follows:

PC =
∣∣∣C̃x,y − C̃xL,y

∣∣∣+
∣∣∣C̃x,y − C̃xR,y

∣∣∣ (1.16)

Other depth coding tools aim to increase the sparsity of depth in the transform

domain in order to increase coding efficiency. This is carried out by modifying

the original values of the depth map before coding, as long as the change only

affects synthesized views below a certain, predefined threshold. Depth map

coding using Don’t Care Regions (DCR) [VCG+12], falls into this category.

1.3.2 3D video coding standards

Different video coding standards can be used to code and transmit 3D video data in

different representations. We first list exisiting standards, then introduce new test

models currently in standardization (“test model” is the term used to reference a

standard or an extension that has not yet reached final draft international status),

and finally, we compare the performance of different 3D video coding schemes to-

gether.

Existing standards

For conventional stereo 3D formats, a multiview profile (MVP) for MPEG-2 has

been defined, in which an MPEG-2 compatible base layer is coded, which corres-

ponds to the first view. An enhancement layer corresponding to the second view is

also coded using additional inter-view predictions with the first view as reference.

The resulting bitstream is then decoded in order to reconstruct both views, but

it remains compatible with MPEG-2 Main Profile (MP) decoders which can only

decode the base layer [MPE98]. Stereoscopic video can also be coded with the mul-

tiview extension of H.264/AVC called Multiview Video Coding (MVC) [CWU+09],

described in more details below.

For MFC formats, the H.264/AVC standard can be used to encode the mul-

tiplexed video if a Supplemental Enhancement Information (SEI) message is also

sent in the bitstream to signal the existence and the type (side-by-side, over-under,

temporal) of the frame packing arrangement [MWG05]. Once the decoder receives

this message, it will know how to demultiplex the signal in order to reconstruct

both views. The disadvantage of this technique is that the bitstream is not AVC-

compatible. An H.264/AVC decoder will not be able to extract a 2D video out of

the 3D data stream.

For video+depth formats, MPEG-C Part 3 [BF06] can be used to code the two

components. MPEG-C Part 3 was standardized in 2007 as a response to a strong
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industrial demand. An MPEG-C Part 3 encoder basically consists of two MPEG-2

or H.264/AVC encoders used to independently encode both components, and the

two resulting bitstreams (plus other auxiliary data if available) are multiplexed into

an MPEG-2 compatible bitstream. Due to the inherent characteristics of depth

maps, the bitrate required to code the depth component is in the 10-20% range of

the total bitrate required to code both components. The advantage of MPEG-C

Part 3 is that the produced bitstream is compatible with legacy 2D decoders.

MPEG-4 Part 2 Multiple Auxiliary Components (MAC) is an alternative to

MPEG-C Part 3 for coding video+depth data. In MPEG-4 Part 2 MAC, the

depth video is inputted as an auxiliary channel. Traditionally, auxiliary channels

describe the transparency of objects (alpha channel), objects shape, secondary tex-

tures. . . The encoding of the auxiliary components re-uses the same motion vectors

as the texture component for motion compensation. Furthemore, this scheme can

also be applied for conventional stereo formats [CYBH03], where a disparity vector

field and residual luma and chroma coefficients after disparity compensation are all

input as auxiliary components.

For MVV formats, MVC can be used. MVC uses DCP to exploit the correlations

between views. In MVC, there is always a view which is coded independently of the

other views, using only temporal predictions. This view, which corresponds to S0 in

Figure 1.17 [CWU+09], is denoted as base view, and it provides backward compat-

ibility for legacy 2D H.264/AVC decoders. The base view provides random access

functionnalities using anchor pictures, coded in Intra mode. All other pictures are

called non-anchor pictures. In non-base views, random access can be provided if

the prediction structure involves V-pictures, which are pictures that are not tempor-

ally dependent on any other picture in the same view, but which can be dependent

on pictures in other views at the same time instant. In Figure 1.17, the P and

B pictures at T0 and T8 in non-base views are all V-pictures. Instanteneous De-

coder Refresh (IDR) pictures are natural random access points which correspond

to anchor pictures in the base view and to V-pictures in non-base views (hence the

commonly found denomination: V-IDR). Furthermore, MVC extends Skip mode to

the view direction by introducing Inter-view Skip mode, and implements Illumina-

tion Change-Adaptive Motion Compensation (ICA MC) to compensate the natural

illumination change between views that otherwise weakens the inter-view prediction.

For MVD formats, there is currently no existing standard that can code into

a single bitstream all the texture and depth views of the 3D signal. The above-

mentionned standards can however be used to produce multiple bitstreams: the

texture views and the depth views can be encoded independently using MVC and
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Figure 1.17: Typical MVC prediction structure

two bitstreams will thus be produced. An MPEG-C Part 3 or MPEG-4 Part 2 MAC

encoding can otherwise be performed on every texture/depth pair hence producing as

many bitstreams as the total number of views. Coding efficiency would not however

be maximal since in each case, there would be unexploited signal correlations. A

standard capable of jointly coding all the texture and depth views is thus needed.

Recent standardization activities

To answer this need, a Call for Proposal (CfP) for 3D video coding technologies

was issued by MPEG in March 2011 [CFP11]. The CfP was answered in November

2011 with multiple contributions. Two standardization tracks, now directed by a

joint collaborative team between ISO and ITU called JCT-3V, were later created:

one for AVC-based solutions and another for HEVC-based ones. In the first track,

the goal was to standardize an MVC-compatible extension including depth (called

MVC+D), where the main target is to enable 3D enhancements while maintaining

MVC stereo compatibility for the texture videos [VM13]. This involves only high

level syntax change for the decoder to recognize and extract depth data. Macroblock-

level changes to the AVC or MVC syntax, semantics and decoding processes are not

considered to guarantee backward compatibility. MVC+D has reached Final Draft

Amendment (FDAM) status following the 3rd JCT-3V meeting in January 2013.

Another goal of the first track is to standardize an AVC-compatible extension (3D-

AVC) that includes depth. In this approach, further coding efficiency gains could

be obtained by improving the compression efficiency of non-base texture views and

the depth data itself. However, in contrast to the MVC-compatible approach, this

method requires changes to the syntax and decoding process for non-base (depend-

ent) texture views and depth information at the block level [VM13]. 3D-AVC has
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reached the Final Draft Amendment (FDAM) status in November 2013.

In the second track, a multiview extension of HEVC (MV-HEVC) including depth

is being standardized. MV-HEVC provides backward compatibility with HEVC (the

base view is encoded in HEVC without any additional tools). Only high level syntax

is employed to code dependent texture and depth views by introducing inter-view pic-

tures into the DPB to allow disparity compensated prediction (no block level coding

tools will be considered). MV-HEVC produces two seperately decodable bitstreams,

one for texture and the other for depth. It is expected to reach FDAM status in

early 2014. Furthermore, a multiview extension of HEVC including depth and intro-

ducing block level changes is also being standardized under the name: 3D-HEVC.

The coding efficiency of dependent texture views and depth data is increased using

additional coding tools and syntax. Since this implies a redesign of the decoders,

3D-HEVC is not expected to be finalized before 2015 [Ohm13].

2010 2011 2012 2013 2014 2015

HEVC Standardization

MPEG 3DV CfP

Response to 3DV CfP

MVC+D FDAM

3D-AVC FDAM

MV-HEVC 3D-HEVC

Figure 1.18: 3DV standardization timeline

Performance comparison between different 3D video coding schemes1

We consider two 3D data representations in the following tests: a first scenario

where 9 views of 3D video sequences are coded and transmitted, and a second one

where only 3 out of those 9 views (the leftmost, the center and the rightmost views),

with their associated depth videos, are coded and transmitted, and the remaining

6 views synthesized at the receiver side using DIBR. We first compare the coding

performance of HEVC simulcast, MVC, MV-HEVC and 3D-HEVC together in each

scenario, then compare the two scenarios together per used codec.

For the first scenario, results are evaluated on each coded view using the Bjontegaard-

Delta rate (BD-Rate) metric [Bjo01]. The rate and PSNR involved in each compu-

tation correspond to the bitrate needed to code the view and its PSNR compared to

an uncompressed original view. For the second scenario, results are evaluated on the

1I would like to thank Antoine Dricot for performing the following tests during his internship at Orange
Labs
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Figure 1.19: Coding structure of HEVC

coded texture views and on the synthesized views using BD-Rate as well. Three res-

ults columns thus appear in the results table: “Video PSNR / Video bitrate” where

the bitrate considered is the sum of the 3 coded texture views bitrate, and the PSNR

the average of the 3 coded texture views PSNR,“Video PSNR / Total bitrate”which

differs from the previous column in the fact that the bitrate considered is the sum

of the 3 texture and the 3 depth bitrates, and finally “Total PSNR / Total bitrate”,

where the PSNR considered is the average between the 9 views (3 coded + 6 syn-

thesized views). In the results tables, a negative value represents a gain over the

considered reference.

The reference softwares of the different standards used are the following: HM-

10.0 for HEVC, JMVC-8.5 for MVC, and HTM-6.0 for 3D-HEVC and MV-HEVC.

QPs were aligned in order to obtain good BD-Rate measures. For 3D-HEVC, the

following texture/depth (respectively) QP combinations were used: (20/30, 25/34,

30/39, 35/42). For MVC and HEVC: (22/31, 27/36, 32/39, 37/42), and for MV-

HEVC: (17/28, 22/31, 27/36, 32/39). The encoding structure for the different codecs

is the following: for HEVC, each texture and depth view is coded independently in

a Simulcast (SC) fashion as shown in Figure 1.19. For MVC and MV-HEVC, an

hierarchical B-picture structure is used to code the views, as shown in Figure 1.20.

In scenario 2, this coding structure is applied independently for the texture views

and for the depth views hence producing two different bitstreams. Finally, for 3D-

HEVC, the central view (base view) is coded first, and is used as reference to code

the side views (dependent views). Inter-component (between texture and depth)

dependencies also exist as shown in Figure 1.21. Note that in Figures 1.20 and 1.21,

black and blue dashed lines represent respectively inter-view and inter-component

dependencies. The coding order is indicated in yellow circles.

The coding configuration was also aligned among the different codecs. The GOP
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Figure 1.20: Coding structure of MVC and MV-HEVC
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Figure 1.21: Coding structure of 3D-HEVC

size was set to 8, the Intra period was set to 24, and finally, the search range

for motion estimation was set to 96. The sequences considered are defined in the

Common Test Conditions for 3D-AVC and 3D-HEVC experiments, defined by the

JCT-3V group [RMV13]. All frames of all sequences were coded. The renderer used

to synthesize views is the one included in the HTM-6.0 package (VSRS-1DFast).

First, we compare the different codecs together per scenario. For scenario 1, the

reference was an HEVC simulcast coding of the different views. Table 1.1 summar-

izes the results of MVC and MV-HEVC. 3D-HEVC cannot be used for scenario

1 because no depth videos are considered. MVC codes V1 in the main profile of

H.264/AVC to provide backward compatibility, which explains the large loss com-

pared to HEVC on this particular view. As the number of coded views increases

inter-view correlations become more and more exploited in MVC which becomes

eventually more performant than HEVC, starting from the 4th coded view (V3 in

display order), as shown in Table 1.1. On average, a 7.5% bitrate reduction is re-

ported for this codec over HEVC. MV-HEVC codes V1 with HEVC for backward

compatibility as well. Hence there is practically no difference with HEVC on this
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Codec Sequences V1 V2 V3 V4 V5 V6 V7 V8 V9 Avg

MVC

Balloons 88.1 -31.9 -15.7 -34.2 21.3 -36.5 -13.9 -27.0 54.7 -1.4
Kendo 82.8 -36.3 -19.2 -43.5 19.6 -43.9 -14.3 -28.5 56.3 -4.8

Newspaper 75.0 -37.8 -24.3 -46.7 -5.6 -50.2 -29.8 -43.7 32.8 -16.3
Average 82.0 -35.3 -19.8 -41.5 11.8 -43.5 -19.3 -33.1 47.9 -7.5

MV-
HEVC

Balloons -0.9 -71.0 -57.3 -47.2 -32.7 -43.5 -35.4 -38.7 -21.0 -37.9
Kendo -0.6 -70.7 -57.5 -48.4 -31.8 -42.7 -33.2 -33.1 -16.8 -36.6

Newspaper 0.0 -66.7 -51.2 -46.4 -39.2 -45.4 -33.4 -36.0 -21.4 -37.0
Average -0.5 -69.5 -55.3 -47.3 -34.6 -43.8 -34.0 -35.9 -19.7 -37.1

Table 1.1: BD-Rate coding results of MVC and MV-HEVC vs. HEVC in scenario 1

Codec
Video PSNR

/ Video bitrate
Video PSNR
/ Total bitrate

Total PSNR
/ Total bitrate

MVC 55.6 62.2 73.2

MV-HEVC -30.7 -29.0 -28.8

3D-HEVC -35.3 -35.3 -45.6

Table 1.2: BD-Rate coding results of MVC, MV-HEVC and 3D-HEVC vs. HEVC in scenario 2

particular view (small differences come from syntax changes but the coding / decod-

ing process is the same). Similarily to MVC, MV-HEVC exploits more inter-view

correlations as the number of coded views increases, and eventually outperforms

HEVC with a significant average gain of -37.1%. While MVC achieves some gains,

its performance is always hindered by the more efficient coding tools implemented

in HEVC. This problem does not exist in MV-HEVC; the gains result from solely

exploiting inter-view correlations and are not countered by any loss.

Table 1.2 summarizes the coding results of MVC, MV-HEVC and 3D-HEVC

in scenario 2. In this scenario, only 3 views are coded. However, as seen previ-

ously, MVC starts to outperform HEVC from the 4th coded view. Hence, in this

second scenario, MVC brings losses compared to HEVC. MV-HEVC, on the other

hand, outperforms HEVC and brings -28.8% gain. 3D-HEVC brings additional gains

(-45.6%) because it introduces new coding tools to code depth data, and allows ex-

ploiting inter-component correlations. These functionnalities bring -23.6% gain over

MV-HEVC as shown in Table 1.3.

Next, we compare, for a fixed codec, the coding results of using scenario 2 (MVD)

instead of scenario 1 (MVV) to represent the 3D data. These results are summarized

in Table 1.4. We can see that regardless of the codec used, representing the 3D

data in an MVD format provides important coding gains with respect to an MVV

representation. This is due to the fact that the amount of data to be encoded is

far less important in MVD than in MVV (lesser texture views are coded and depth

maps do not cost as much to code as texture views), and because the quality of
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Sequence Total PSNR / Total bitrate

Balloons -22.7

Kendo -22.0

Newspaper -29.7

GT Fly -4.1

Poznan Hall 2 -33.8

Poznan Street -18.8

Dancer -34.3

Average -23.6

Table 1.3: BD-Rate coding results of 3D-HEVC vs. MV-HEVC

Codec
Video PSNR

/ Video bitrate
Video PSNR
/ Total bitrate

Total PSNR
/ Total bitrate

MVC -46.1 -30.2 -23.7

MV-HEVC -40.0 -32.0 -31.2

HEVC -61.3 -56.6 -55.5

Table 1.4: BD-Rate coding results of scenario 2 vs. scenario 1, per used codec

the synthesis is maintained (there is no large PSNR drops, but this highly depends

on the renderer used). The performance gap is smaller if MV-HEVC or MVC is

used due inter-view coding tools that reduce the rate needed to code the views that

otherwise in MVD would not need to be sent.

1.4 Conclusion

In this chapter, we have reviewed different types of 3D displays in Section 1.1. While

it is expected that holoscopic and holographic displays will dominate the 3D mar-

ket in the future, these technologies are, to this day, quite expensive for consumer

commercialization and far from production maturity. Stereoscopic imagery still has

some years ahead of it, and a number of problems with auto-stereoscopic displays

can be tackled with an increased number of views projected on the display.

To this purpose, the MVD format (studied amongst other formats in Section 1.2

can be quite useful, as it allows synthesizing a large number of views at the receiver,

given a few texture views and associated depth videos as input. As shown in Sec-

tion 1.3, an MVD representation can be a better alternative than MVV as it allows

to reduce the cost of coding the 3D data.

However, to this day, there are no standards capable of coding all texture and

depth views of an MVD format, while exploiting in the process inter-view and inter-

component dependencies for maximal coding efficiency, and producing a single bit-

stream for the data. 3D-HEVC is currently being standardized to answer this need.
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As seen from the results of Section 1.3.2, it is currently the extension that offers the

most coding gains for MVD representations (-41% gain over HEVC simulcast). The

next chapter will detail 3D-HEVC for a better understanding of the coding tools

used for dependent view and depth map coding.
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In this chapter, we first describe the context which led to the creation of the cur-

rent 3D-HEVC test model, then we present the coding structure 3D-HEVC utilizes.

The improvement of video compression techniques within 3D-HEVC requires a fine

understanding of the coding tools already present in the extension: hence, in a third

section, we first describe the classic HEVC coding of the base view (which provides

monoscopic backward compatibility). Dependent views and depth videos are coded
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with additional coding tools that will be presented respectively in a fourth and fifth

section. Non-normative encoder controls are further explained in section 6. Section

7 finally concludes this state-of-the-art.

2.1 Context

With HEVC reaching Final Draft International Standard (FDIS) status in January

2013, standardization efforts have now shifted towards a 3D extension of HEVC.

Following an MPEG CfP on 3D video coding technologies in March 2011, a total

of 11 HEVC-compatible proposals have been submitted and compared during the

98th MPEG meeting in Geneva (November 2011). Specifically, proponents had to

submit results in a two-view and a three-view scenario. In the first scenario, two

views of each of the eight sequences considered in the CfP had to be coded and one

intermediate view had to be synthesized between the two, whereas in the second

scenario, three views had to be coded and fifteen (twenty-three for some sequences)

had to be synthesized between each pair. Results were compared against an HEVC

simulcast coding of each texture and depth views. Four rate points were specified in

the CfP for each scenario. All proposals and anchors had the same bitrate, such that

a Mean Opinion Score (MOS) subjective quality comparison could be performed as

well. The viewing results of the two-view scenario on a stereoscopic display (SD) with

polarized glasses and the results of the three-view scenario on an auto-stereoscopic

28-view display (ASD) are given for each rate point as the average MOS value over

all eight sequences considered. For the two-view scenario, the stereo pair viewed

was composed of the synthesized view and one of the two (left and right) reference

views, whereas the 28 views shown on the ASD were selected, amongst the reference

and synthesized views, in a way to guarantee visual comfort and provide sufficient

depth range (a sufficiently wide baseline distance was imposed between the 1st and

the 28th view). Figure 2.1 [VM13] shows the MOS values of the best performing

proposal and the HEVC anchor.

The best performing proposal achieved 57% and 61% bitrate reduction (measured

in BD-Rate) in the two-view and three-view scenarios respectively. A corresponding

test model, which would later be called 3D-HEVC Test Model, was then drafted,

and the software of the proposal became the reference software on top of which

further tool experiments were to be performed. The standardization process of 3D-

HEVC is now directed by JCT-3V which holds trimestrial meetings, during which

new coding tools are evaluated and adopted. At each meeting, a new version of the

software, which includes all meeting adoptions, and following the naming convention

“HTM-X.0”, is maintained.
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Figure 2.1: Average MOS accross 8 sequences of the best performing HEVC-compatible proposal
and of the HEVC anchor

2.2 Coding structure

Data coded in 3D-HEVC is processed by access units. An access unit is composed of

a base texture view and other dependent texture views, along with their associated

depth videos, at one time instant, as shown in Figure 2.2. All the data inside one

access unit is coded, then another access unit at the next time instant is processed

and so on.

Inside an access unit, the base view is always coded first, followed by depend-

ent views where inter-view redundancies are exploited. In each view, the texture

component is coded before the depth component. Indeed, depth videos are coded

by exploiting redundancies with the associated texture (also called inter-component

dependencies). A non-normative tool, called Flexible Coding Order (FCO), allows

to change the coding order for dependent views so that depth is coded before texture,

although this implies disabling specific depth-using-texture coding tools which may

reduce the coding efficiency of depth data.

Furthermore, a dependent view in an access unit is coded using another view

as reference view. The CTCs defined by the JCT-3V group impose the base view

as reference for all dependent views. However, an hierarchical IBP configuration is

possible using 3D-HEVC, as shown in Figure 2.2. In this Figure, green, blue / black

and orange lines represent respectively temporal, inter-view and inter-component

dependencies exploited in 3D-HEVC.

The two following sections list the different coding tools which were adopted in

3D-HEVC at the time of developping the coding methods proposed in the following

chapters. Since 3D-HEVC is not yet finalized at the time of writing this thesis,
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(b) IBP configuration

Figure 2.2: Different coding structures in 3D-HEVC

some of these tools might have been modified, others added and others completely

removed. Hence, it is important to note that the following sections do not describe

the final version of the 3D-HEVC draft.

2.3 Coding of the base view

This section will basically detail the HEVC standard since it is used to code the

base view. The HEVC structure and tools are also used to code the dependent

views and the depth videos, along side additional coding tools designed to further

increase their coding efficiency.

2.3.1 Coding structure

HEVC uses an advanced quadtree-based coding approach [HMK+10], wherein a

picture is divided into coding tree units (CTUs). Those are the equivalent of mac-

roblocks in previous video coding standards. Each CTU can then be split into four

coding units (CU), and each CU can be further split into four CUs, and so on. A

maximum CTU size and a maximum depth level are set to limit the CU split re-

cursion. This quadtree approach allows having different block sizes inside the same

image, making the encoding more adapted to the image contents. Note that it is at

the CU level where a specific coding mode (Intra, Inter, or Merge) is chosen: the

Intra coding mode predicts a CU using samples from previously coded CUs in the

same image, whereas the Inter coding mode predicts the current CU with samples
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located in a previously coded frame. Merge mode allows to make an Inter predic-

tion of a CU using the motion parameters of other neighboring CUs. Skip mode is

a particular Merge mode where no CU residual is sent. These modes are further

detailed in Sections 2.3.2 and 2.3.3.

A CU can further be partitioned into prediction units (PUs) where all PUs are

coded in the same coding mode, but where each has its own prediction information

(Intra mode, motion vectors, etc.). The PUs however cannot be further partitioned.

Different coding modes imply different possible PU partitions:

• Merge: 2N×2N

• Intra: 2N×2N, N×N (only possible at the maximum depth level)

• Inter: 2N×2N, 2N×N, N×2N, 2N×nU, 2N×nD, nL×2N, nR×2N and N×N

(only possible at the maximum depth level)

These partition sizes are shown in Figure 2.3. A 2N×2N partitionning gives a single

PU which is the same size as the CU, whereas a 2N×N partitionning for instance

gives two rectangular PUs, where each is half the size (same width, halved height)

of the CU.
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Figure 2.3: Quadtree structure of a CTU and possible partition shapes

Each CU is also the root of a transform tree, known as residual quadtree (RQT).

A CU can be partitionned into multiple transform units (TUs). A TU defines the

size of the transform and quantization to be applied to the corresponding area of

the CU. TU sizes vary between 4×4 and 32×32. TUs in Intra mode are exclusively

square partitions. In Inter, rectangular TUs are possible (of size 4×16, 16×4, 8×32

and 32×8) in order to avoid applying the transform accross block edges which will
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produce high frequency coefficients in the residual. Note that the RQT is completely

independent from the prediction tree: a TU can cover one or more PUs.

In HTM, for each CU, coding mode and partition size, a non-normative Rate

Distortion Optimization (RDO) process tests all possible TU partitionnings. A Lag-

rangian cost is computed for each coding mode / partition size / RQT combination.

The cost of splitting the CU is also computed and the configuration yielding the

lowest cost is selected for that CU.

2.3.2 Intra coding mode

HEVC introduces a total of 34 Intra modes, 32 of which are directional. The two

non-directional modes are DC and Planar. Each mode tries to form a prediction of

the current PU using reference pixels belonging to the neighboring row and column,

respectively above and left of the current PU. The Intra modes are ordered according

to the direction angle. Vertical and horizontal directions are associated with low

Intra indices (1 and 2 respectively), while finer angles have higher Intra indices, as

shown in Figure 2.4.

Figure 2.4: List of Intra modes in HEVC

The DC mode forms a prediction where each sample has the same value, which

is the mean of the reference pixels. It is efficient to code uniform areas of the image.

The Planar mode involves bi-linear interpolation: each pixel is interpolated using

the bottom row and the rightmost column of the current PU which are respectively
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substituted with the bottom-left and above-right causal reference samples. This pre-

diction mode, which is particularily adapted to smooth textures in the image, solves

a problem with classical Intra prediction which imposes a non-negligible distance

between the reference row and column and the pixels at the bottom right of the PU.

Coding the Intra mode of a PU requires 6 bits at most. In order to reduce this

cost, the Most Probable Mode (MPM) technique has been introduced. Each Intra

coded PU has at most two MPM candidates, which are the Intra modes of the PU

above and the PU to the left of the coded PU if they are available. If the best Intra

mode of the coded PU matches one of the MPM candidates, only a flag signaling the

use of an MPM candidate and another flag signaling which MPM candidate matches

the best mode are transmitted, making it a total of 2 bits used for signalling instead

of 6. This technique thus effectively avoids coding the Intra mode itself and reduces

the Intra mode signaling bitrate.

2.3.3 Inter coding mode

Inter prediction involves two aspects: motion compensation and motion vector cod-

ing. For the first part, HEVC supports motion vectors with units of one quarter and

one eighth of the distance between luma and chroma samples respectively. Hence,

an 8-tap and a 7-tap DCT-based interpolation filter is used for luma samples for

respectively the half-pel and the quarter-pel positions, whereas a 4-tap filter is used

for chroma samples for all eighth-pel positions [SOHW12].

For the second part, two tools exist. The first tool is called Advanced Motion

Vector Prediction (AMVP) [LJPP08, MHK+10]. In AMVP, a list of 2 motion vector

predictor (MVP) candidates is established. The 2 candidates are selected amongst

the MVs of the PUs covered by different neighboring positions: there are 5 spatial

positions and 2 temporal ones, as depicted in Figure 2.5. Note that the temporal

candidates are derived from a collocated picture in the temporal reference pictures

of the current slice. A first spatial candidate is derived from A0 and A1 (the two

PUs covered by these positions are checked in this order, and the first MV found is

selected). A second one is derived from B0, B1 and B2. If neither or only one of the

two spatial candidates is unavailable, or if the two candidates are identical, then a

temporal candidate is derived from C0 and C1 and added to the list. If the list still

contains less than 2 candidates, it is filled with zero MVs. Only a residual between

the MV and the MVP is sent in the bitstream, along with an index signalling which

MVP candidate out of the two was selected. If the two candidates are identical after

the list construction, no index is sent.

The second tool is called Merge mode [HOB+12]. Merge mode allows a PU to

inherit the motion information (motion vectors + reference indices, in both reference
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Figure 2.5: AMVP candidates in HEVC

lists L0 and L1) of neighboring spatial or temporal PUs. A list of candidates is

established here as well, composed of the motion information of the PUs covered

by the same positions as in AMVP. Only the index of the selected candidate is sent

in the bitsream. The candidate list in Merge mode is composed, in order, of four

spatial candidates: A1, B1, B0, A0 (and B2 if one of these four is unavailable) and one

temporal candidate. A pruning process is performed within the 4 spatial candidates

to remove redundant vectors [BLU11]. Finally, if some of these 5 candidates are

unavailable (the PU corresponding to the position falls outside the slice, or is Intra-

coded, or the candidate is redundant), a secondary list of candidates is computed.

These candidates are then appended to the list so that the total number of candidates

is always 5. The candidates in that secondary list are, in order, combined candidates

from mixed primary vectors of both reference lists, and zero-vector candidates, each

having a different reference index.

Note that a CU is said to be coded in Skip mode when it is coded in Merge mode

and when no pixel residual for that CU is sent. The reconstructed signal in this case

equals the prediction signal.

2.4 Coding of the dependent views

Aside from Disparity-Compensated Prediction (DCP) used by the dependent views

to exploit inter-view correlations, and which does not require any block level changes,

there are a couple of tools that are implemented in 3D-HEVC to increase the coding

efficiency of these views. Note that these tools are not implemented in MV-HEVC

which only provides DCP.
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2.4.1 Inter-View Motion Prediction

Inter-View Motion Prediction (IVMP) improves the coding of the motion vectors of

an Inter coded PU by exploiting inter-view motion vector correlations. It basically

consists of inserting a multiview candidate in the Merge and AMVP candidate lists,

making it a total of 6 and 3 candidates respectively in each list [TWCY13]. First a

disparity vector, called DVIVMP in this section, pointing to a reference view is derived

for the current PU. The derivation of this DV is performed using a neighboring search

process called NBDV which will be described next. Once the DV is found, it is used

to find a corresponding PU, PUref in the reference view, as shown in Figure 2.6.
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Figure 2.6: Inter-view motion prediction

DV derivation process

Obtaining DVIVMP involves a derivation process called Neighboring Disparity Vector

(NBDV) [ZCK12]. NBDV is a simple search process across neighboring positions.

The PUs covered by these positions are checked if they are coded using disparity-

compensated prediction (DCP), in which case they have a DV, and the first DV

found is selected as the final DV used for IVMP. The positions are the same as the

Merge / AMVP positions depicted in Figure 2.5.

Spatial positions are checked first, in the following order: A1, B1, B0, A0, B2. A

PU covered by one of the 5 spatial positions can have up to two vectors, one from each

reference list (list 0 and list 1) and they are both checked if they are DVs. Temporal

positions are checked next in the following order: C0, then C1. Those positions

are checked in a maximum of two temporal reference pictures. Furthermore, if a

neighboring spatial PU was coded in MCP (i.e, the PU has a MV in a specific

reference list, not a DV), its MV could have been computed using IVMP which
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necessarily involves the derivation of a DV. Indeed, the MV could have been inherited

from the multi-view candidate in Merge mode or predicted using the multi-view MV

predictor in AMVP. Constructing the multi-view candidate in both lists (Merge &

AMVP) requires a prior derivation of a DV, which would then be linked to the

current MV. These special DVs, called DDVs [SKY12], are also checked after the

temporal neighbors in the following order A0, A1, B0, B1, B2. If no DV can be found

after this entire search process, DVIVMP is set as (0,0).

IVMP in AMVP

In AMVP, if the motion vector of PUref points to a picture in the same access unit

as the one pointed to by the current motion vector, it is added in the first position

in the AMVP candidate list. If the currently coded vector is a disparity vector, then

DVIVMP is added instead. In both cases, no redundancy check with other candidates

is performed.

IVMP in Merge

The multiview candidate in the Merge list is the motion vector of PUref, if it exists

(PUref is Inter coded and falls inside the base slice). If not, the multiview candidate

is DVIVMP (it will be a disparity candidate). Indeed, there is always a preference for

this candidate to be a motion vector rather than a disparity vector.

2.4.2 Inter-view Residual Prediction

Inter-view Residual Prediction (IVRP) also involves the derivation of a DV, called

here DVIVRP. The same derivation process as in IVMP, NBDV, is invoked to obtain

this DV, which will thus equal DVIVMP. DVIVRP will point to a corresponding PU

in the base view: PUref. The residual of PUref is used to predict the residual of the

current PU: it will be substracted from the current residual, and only the remaining

residual is transformed and quantized. IVRP is only applied, systematically, for

2N×2N PUs coded in Merge mode with the multiview Merge candidate, or with

Skip mode. Hence no explicit block level signalling is used. A flag signalling the use

of IVRP at the slice level is sent nevertheless for dependent views, depending on the

decoded information in the base view.

2.4.3 Illumination Compensation

A discrepancy between different views in a multiview setting may exist due to illu-

mination changes (for instance, one camera is directed more towards the sunlight

and hence, it captures more light than another adjacent camera). This discrepancy
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often leads to bad inter-view prediction signals. To correct this, Illumination Com-

pensation (IC) has been introduced in [LJS+12] and later adopted in the 3D-HEVC

working draft.

IC uses a linear model with two parameters a and b to correct the inter-view

prediction signal. If the current PU, PUcur, is DCP coded with a DV pointing

to PUref in a reference view, the residual r, typically computed as PUcur − PUref

would be computed, using IC, as PUcur − (a · PUref + b). The model parameters, a

and b, are computed using reconstructed neighboring samples. Hence they are not

transmitted in the bitstream. A flag is sent at CU level indicating whether IC is

applied or not. However, a simplified encoder can just check IC for Merge mode in

2N×2N partition, and if IC is not selectionned for this mode, IC is disabled for all

other Inter modes. IC brings 0.6% bitrate reduction for synthesized views. Details

about the test conditions used and the way these gains are evaluated can be found

in Section 4.2.

2.4.4 View Synthesis Prediction

View Synthesis Prediction (VSP) [TZV13] uses the reference decoded depth to in-

crease the coding efficiency of a dependent view. By imposing this dependency,

significant coding gains can be achieved at the price of losing stereo compatibility:

decoding only a stereo representation of the video, composed of a reference view

and a dependent view will not be possible if VSP is enabled, because decoding the

dependent view requires the prior decoding of the reference depth. VSP involves a

DV, DVVSP, obtained through a DV derivation process such as NBDV. But unlike

IVMP or IVRP, DVVSP is used to find the depth PU in the reference view, PUd
ref

corresponding to the current texture PU in the dependent view, PUcur. PUd
ref is

then processed by sub-blocks of size 4×4. For each sub-block, a depth value is de-

termined as the maximum value of the four corners of the sub-block. This value

is transformed into a disparity vector, which will then be used to compensate the

corresponding 4×4 sub-block in PUcur, as shown in Figure 2.7. Although it might

increase coding efficiency, disparity compensation is not performed on a pixel basis

because it would require, in hardware, developping a new module to compensate

each pixel. 4×4 is the smallest block size capable of being compensated using the

already existing modules in HEVC.

This mode is introduced as a new VSP candidate in the Merge candidate list. The

advantage of this approach is that the current PU is compensated using a disparity

vector field composed of a DV for each 4×4 sub-block. This semi-dense approach

(a true dense approach would associate a DV with each pixel) accounts for having

objects of different depth (and hence different disparities) inside the same PU and
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thus improves the inter-view prediction signal. Significant gains of more than -3.0%

on coded views and -0.8% on synthesized views with only a 1% and 3% encoder and

decoder runtime increases (respectively) are reported for this tool.
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Figure 2.7: View synthesis prediction

2.5 Coding of the depth videos

Additional tools have been introduced in 3D-HEVC to increase coding efficiency

of depth data. In Intra, several new modes have been added: Depth Modeling

Modes (DMM), Region Boundary Chain coding (RBC), and Simplified Depth Cod-

ing (SDC). The signaling of the depth Intra modes is different than the one of the

texture Intra modes, which still follows the HEVC recommendation. Indeed, when

a texture CU is Intra coded, an Intra direction (from 0 to 33) is read from the

bitstream for each PU, whereas when a depth CU is Intra coded, a new parameter

called depth intra mode is read first for each PU. Then additional parameters

are optionally read according to the depth Intra mode. Table 2.1 summarizes the

possible depth Intra modes. The rest of the section describes these additional tools.

2.5.1 Depth Modeling Modes

Four new Intra modes, called Depth Modeling Modes (DMM) may be used to code

depth data. In DMM 1, the depth PU is approximated by two constant regions, R1

and R2, separated by a straight line (wedgelet). For each region Ri, a parameter
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Depth Intra Mode Description

INTRA DEP SDC PLANAR Signals SDC mode with Planar

INTRA DEP NONE
Signals the use of a normal HEVC Intra
direction, which is read next

INTRA DEP SDC DMM WFULL
Signals SDC mode with DMM 1, whose
partition information are read next

INTRA DEP DMM WFULL
Signals DMM 1 whose partition
information are read next

INTRA DEP DMM CPREDTEX Signals DMM 3

INTRA DEP DMM WPREDTEX Signals DMM 4

INTRA DEP CHAIN
Signals RBC mode whose chain codes
are read next

Table 2.1: Depth Intra modes

called region constant (Pi), is defined as the average of the values of the pixels

covered by Ri and is sent in the bitstream to the decoder. Partition information is

also sent, consisting in the start and end points of the straight line separating the

two regions.

In DMM 2, P1 and P2 are sent but the partition information is not. Instead, it

is inferred from neighboring PUs. However, the resulting partitioning may not be

adequate for the current PU. Hence, an offset Eoff is introduced that corrects the

end point of the straight line, as shown in Figure 2.8. Eoff is sent in the bitstream

as well.
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Figure 2.8: Depth modeling modes 1 & 2

DMM 3 also approximates the current PU by two constant regions, although
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here, the partition information is inherited from the texture itself. Indeed, a simple

thresholding of the texture Luma samples allows to divide the texture block into

two separate regions. The resulting partitioning is used as partition information

for depth. No start and end points are thus computed in this mode. Since we are

dealing with reconstructed and not original textures, the process is decodable and

the partition information does not need to be signaled. The constants of the two

regions are sent though.

DMM 4 is the same as DMM 3, except that the PU is divided into three constant

regions, as shown in Figure 2.9 (this is called Contour partitioning as opposed to

Wedgelet partitioning where the block is divided into two constant regions as in

DMM 1, 2 and 3).
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Figure 2.9: Depth modeling modes 3 & 4

2.5.2 Region boundary chain coding

The Region Boundary Chain (RBC) [HSYSg12] coding mode is an Intra mode that,

just like DMM 1, tries to segment a depth block into two regions. The only difference

is in the way the partition information is signalled. No start and end points are

transmitted, but rather chain codes that, read one after the other, describe an

arbitrary edge (not necessarily a straight line).

Basically, edges are detected at the encoder by comparing horizontally and ver-

tically adjacent samples. If the difference is higher than a specified threshold, an

edge is detected. Then, the coordinates of the starting point of the edge are sent in

the bitstream, followed by a series of angles (chain codes) to direct the edge from

the starting point to the end point. Region constants P1 and P2 are also sent as in
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DMM 1.

RBC’s distinctive feature is that it can well describe even a curved depth pat-

tern (unlike DMM 1) that has weak or little correlation with the corresponding

texture pattern (unlike DMM 3 or 4). However, this comes at the cost of signalling

chain codes. RBC brings -0.3% gain on synthesized views with 2% encoder runtime

increase.

2.5.3 Simplified Depth Coding

Simplified Depth Coding (SDC) [Jag12b] is another Intra mode, wherein a depth

PU can only be predicted by DMM 1 or the Planar mode (a flag signalling which

configuration was selected is sent in the bitstream). In SDC, a single residual index

for each segment (in Planar there is only one segment whereas in DMM 1, there are

two), iresi, is sent instead of a residual signal for the whole PU (a residue for each

sample of the PU). It is computed a such:

iresi = I(dorig)− I(dpred) (2.1)

where I(·) indicates a depth lookup table (DLT) mapping of each depth value. dpred

is, for the Planar mode, the average value of the four corners of the predicted PU,

and for DMM 1, the average value of the sub-set of the four corners that are avail-

able in each segment of the predicted PU, as shown in Figure 2.10 [ZTWY13]. In

Figure 2.10(a):

dpred =
p(0, 0) + p(7, 0) + p(0, 7) + p(7, 7)

4
(2.2)

and in Figure 2.10(b):

dpred[0] = p(0, 0) (2.3)

dpred[1] =
p(7, 0) + p(0, 7) + p(7, 7)

3
(2.4)

The computation of dorig is non-normative. In HTM-8.0, it is identical to the

computation of dpred but with the original version of the PU used instead of the

predictor. The advantage of the DLT used is the reduced bit depth of the residual

index for sequences with reduced depth value range (e.g. they have estimated depth

maps where not all depth values are present). However, it still must be transmitted

to the decoder to perform the inverse mapping. The decoder receives iresi and the

DLT, and reconstructs d̂orig

d̂orig = I−1(iresi + I(dpred)) (2.5)
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(a) SDC Planar (b) SDC DMM 1

Figure 2.10: Computing dpred in SDC

A residual value is then computed as:

d̂resi = d̂orig − dpred (2.6)

And finally, the PU is reconstructed using the computed residual value, and the

predictor signal Px,y.

P̂x,y = Px,y + d̂resi (2.7)

SDC brings -0.5% gain on synthesized views in a random access configuration, and

-2.0% in an all-intra configuration (all frames coded in Intra), with respectively 6%

and 22% encoder runtime increase and 2% and 29% decoder runtime decrease.

2.5.4 Motion parameter inheritance

The motion vector correlations between the texture and the depth component are

exploited with the Motion Parameter Inheritance (MPI) tool for depth coding. In

MPI, the motion vectors and, when the texture CU is smaller than the depth CU, the

quadtree coding structure of the colocated texture CU, are considered for inheritance

in the depth CU as an additional Merge candidate. This introduces a dependency

when parsing the depth, because of the need to check the sizes of both the texture

and depth CUs before deciding to parse the split flag.

Note that MPI, DMM 3 and DMM 4 are all inter-component coding tools for

depth data, which bring altogether -1.8% gain on synthesized views with respectively

6% and 7% encoder and decoder runtime increases [JL12].
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2.6 Encoder control

Since depth videos are not displayed on screen but rather used to synthesize inter-

mediate views after decoding, the RDO process should consider distortion directly

on synthesized views in order to optimize depth coding for the quality of what actu-

ally matters: the synthesized views. In HTM, when coding depth, a non-normative

method called View Sytnhesis Optimization (VSO) computes the Synthesized View

Distortion Change (SVDC) [TSMW12] caused by a change at the level of the depth

block being coded. The SVDC metric is computed by actually synthesizing in-loop

the part of the view affected by the depth block change. It is later used by the

RDO process in the Lagrangian cost computation instead of the usual depth block

distortion as such: J = SVDC + λR to make decisions for depth, except in mo-

tion estimation where conventional RDO is still used to reduce the computational

complexity.

Figure 2.11 shows how the SVDC metric is computed. A depth frame sD is

Figure 2.11: Computing the SVDC

considered, where the depth block being tested and all subsequent blocks are in

their original form, and all previous blocks are already coded and reconstructed

blocks. Another depth frame s̃D is formed just like sD, only the depth block being

tested is replaced with its reconstructed form according to the test being performed.

sD and s̃D are used to synthesize two texture views s
′

T and s̃
′

T . Another view s
′

T,ref

can be synthesized using the original depth and texture frames. Computing the SSE

between s
′

T and s
′

T,ref gives E, and between s̃
′

T and s
′

T,ref gives Ẽ. The SVDC metric

is the difference Ẽ −E.
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The method is characterized by the fact that it considers occlusions and disoc-

clusions in the synthesized views. In addition, it is relative to a block, and it allows

partial distortions to be additive: if the block is divided into four sub-blocks, which

is a common operation in quadtree codecs such as HEVC, the sum of the distortions

caused by a change in each sub block equals the distortion caused by the correspond-

ing change in the whole block. This assumption holds for SVDC because only the

change in the synthesized view distortion caused by a change in the depth block is

considered, and not the total synthesized view distortion itself.

2.7 Conclusion

In this chapter, we have presented an overview of all coding tools used to code the

base view, the dependent views, and the depth data of a 3D-HEVC input video signal.

Intensive research efforts are being put to further improve the coding efficiency of

3D-HEVC data, concretized every three months in a JCT-3V standardization meet-

ing. In this thesis, we developped new coding tools on top of 3D-HEVC designed

to increase the coding efficiency of dependent views, synthesized views, and depth

videos in 3D-HEVC. The next three chapters will detail original yet conventional

coding approaches, in the sense that they strictly follow standardization constraints

in terms of complexity, runtime, memory usage, and practicality. In the final two

chapters, we describe unconstrained approaches where the goal is to achieve signific-

ant coding efficiency regardless of the additional complexity the tools imply. These

approaches would serve as a stepping stone to future research projects in this field.
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In this chapter, we present an inter-component coding method aimed at increas-

ing the coding efficiency of depth data in 3D-HEVC, by exploiting correlations with

the associated texture. Namely, the Intra direction or mode of the collocated texture

block is conditionally inherited and used as a predictor for the current depth block’s

Intra mode. The inheritance is driven by a specific criterion, which estimates how

much the two Intra modes are supposed to match. Inheritance is only performed

when a metric, quantifying the selected criterion, is higher than a certain threshold.
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In the first section of this chapter, we motivate our method with a preliminary

study in which we analyze the texture and depth Intra modes in 3D-HEVC. Then, we

present the core algorithm of our method, and a first criterion which we use to drive

the inheritance: GradientMax, along with the bitrate reductions it brings. A second

criterion, DominantAngle, is then introduced and detailed with its respective coding

results. These results are interpreted, and a comparison with the first criterion is

then made, concluding the study.

3.1 Motivation

When analyzing a depth video bitstream coded in an Intra configuration using HTM-

0.3 at four texture / depth QPs: 25/34, 30/39, 35/42, 40/45 (please refer to Sec-

tion 3.3.1 for more details about the coding configuration used), we find that the

Intra mode signaling (including DMMs) represents roughly 25% of the total depth

bitrate. It is the element that has the largest coding cost in depth videos. Hence,

there is much to gain if the bitrate needed to code the depth Intra modes is reduced.

The MPM tool, described in Section 2.3.2, reduces this cost. In an MVD system, a

depth video is always associated with a texture video, and we can further improve

the efficiency of the MPM tool if we exploit the dependency between the Intra modes

of texture and depth. In practice, our idea consists in adding a new MPM candidate

or predictor, which is the Intra mode of the corresponding texture PU, to the MPM

candidate list of a depth PU. However, texture and depth Intra modes do not always

match.

Further experiments, under the same configuration and testing conditions, have

shown that when comparing a coded depth map to its associated coded texture

frame, the Intra mode of a depth PU, chosen by the Rate Distortion Optimization

(RDO) process, matches the Intra mode of its co-located texture PU in average 18%

of the time, as shown in Table 3.1. These experiments also show that the matching

Sequence Percentage of Intra mode matchings (in %)

Kendo 8.68

Newspaper 12.39

Balloons 6.88

Dancer 26.74

GT Fly 19.29

PoznanHall2 37.63

PoznanStreet 13.78

Average 17.91

Table 3.1: Percentage of PUs where the texture Intra mode matches the one in depth for various
tested sequences
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occurs mostly in areas where there are sharp edges in texture. Indeed, a sharp edge

in texture defines a dominant geometric structure which is likely to exist in depth

as well. Since Intra modes are highly directional, they closely follow this structure,

and hence, the texture and depth Intra modes are likely to be the same, as shown

in Figure 3.1. This figure shows a texture PU and its co-located depth PU. The

texture PU is composed of parts of a red object and a background. Since the object

and the background have different depth levels, they will also be clearly represented

in the depth PU as two different regions seperated by a clear edge. A specific Intra

direction (represented by arrows), roughly parallel to this edge, will be chosen for

the texture PU by RDO, as it is the direction that most accurately describes the

geometric structure of the PU. Since this structure also exists in depth, the same

Intra direction will be chosen by the depth RDO.

Consequently, if the texture Intra mode inheritance is only done for depth PUs

whose co-located texture PU contains sharp edges, the Intra mode signaling bitrate

for these PUs will be reduced. The remaining depth PUs, to which the texture Intra

mode is irrelevant, will not be impacted.

������� ����	

Figure 3.1: Geometric partitionning and resulting Intra direction of a texture and depth PU caused
by the presence of an edge

Figure 3.2 shows the depth map of a sequence in our test set: Kendo, with its

associated texture frame. This frame is coded using the same Intra configuration

and testing conditions as in the previous experiments. In Figures 3.2(c), 3.2(d)

and 3.2(e), all PUs are coded in Intra. PUs marked in green in Figure 3.2(c) are

PUs that contain sharp edges detected by gradient estimation in texture. PUs

marked in yellow in Figure 3.2(d) are PUs where the depth Intra mode matches

the texture Intra mode. For the maximal coding efficiency, the texture Intra mode

inheritance should only be performed on the yellow PUs, but those are not known

a priori by the decoder. The green PUs are known, and we can see that the green

and yellow PUs approximately superpose, hence validating our assumption.

Note that some Intra mode matchings can be exploited in smooth areas, but it

is not very beneficial to do so. Indeed, Figure 3.2(e) shows the coding cost of Intra
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CUs in the Kendo depth map. The R-D cost computed at the encoder for each CU

is mapped to an intensity value. Hence, a lighter red color indicates a CU that costs

more to code than a darker colored CU. We can see that the smooth areas are cheap

to code so we can not expect much gains if we reduce the Intra mode signaling at

this level.

(a) Kendo texture frame (b) Kendo depth map

(c) In green: PUs containing
edges detected in the Kendo tex-
ture frame

(d) In yellow: PUs where a
texture-depth Intra mode match
occurs

(e) Coding cost of depth CUs:
lighter colors cost more to code

Figure 3.2: Kendo texture frame and associated depth map analysis

3.2 Proposed method and GradientMax criterion

For the current depth PU, the corresponding texture PU, Tref, needs to be found.

It is generally the co-located PU except when the texture CU is more finely parti-

tionned than the depth CU: Tref is set as the top left PU, and when the depth CU is

more finely partitionned than the texture CU: the latter is set as Tref for all depth

partitions (PUs). These three cases are shown in Figure 3.3.

Then, a metric is computed on Tref and compared to a fixed constant threshold.

If the computed metric is higher than that threshold, the texture Intra mode is

inherited and added to the MPM candidate list of the depth PU. Otherwise, no

inheritance is performed. In Section 3.1, we have shown that the texture and depth

Intra modes match in PUs where we have sharp edges in texture. Hence the metric

has to quantify the presence of an edge in Tref.

To compute the metric, we perform a Sobel filtering on Tref. We choose the Sobel

filter because it is a simple and effective edge detector. Other edge detection filters
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Figure 3.3: Definition of the corresponding texture PU, Tref, for a currently coded depth PU in
our algorithm

such as the Prewitt or Canny filters can also be used. The Sobel filter output is

composed of two gradient matrices Gx and Gy. From these matrices, we compute

the gradient module matrix M as follows:

M =
√

G2
x +G2

y (3.1)

The metric is set as the maximum value in the PU of this gradient module matrix

(GradientMax). It is a measure of the sharpness of the edges present in the texture

PU, and can therefore be used to drive the inheritance.

If the computed metric is larger than the threshold, the texture Intra mode is

inherited and inserted into the MPM candidate list. However, that list contains at

most two candidates. If there is only one spatial candidate in the list (the modes of

the two spatial neighbours are identical, or one of the two neighbours is not Intra

coded or falls outside the slice), the texture Intra mode is added, and the resulting

list is sorted in ascending order of Intra indices. If there are two spatial candidates

in the list, the texture Intra mode always replaces the second, and the resulting list

is sorted in ascending order of Intra indices. The different steps of the algorithm are

depicted in Figure 3.4.

Note that the proposed method is intended to be integrated into a full 3D-HEVC

codec. The resulting bitsream is decodable and so, the edge detection in step 2 is

performed on a reconstructed Tref, because the depth decoder does not have access

to original texture samples. This is possible, since we assume that the texture frame

is coded before the depth frame, meaning the depth encoder also has access to

reconstructed texture samples.

Furthermore, we observe that the proposed method is somewhat similar to the

MPI method described in Section 2.5.4 which can be used in the case of Inter coded

PUs. However, MPI is not driven by a criterion as in our algorithm (the motion
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vector is always inherited), and as we show in the following, imposing conditions on

the inheritance is the most relevant part of the proposed method. Note that MPI

and our algorithm can be used together, as also shown in the experimental section.

��������������	�
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Figure 3.4: Algorithm of our proposed tool

3.3 Experimental results with the GradientMax criterion

3.3.1 Experimental setting

We implement our tool in HTM-0.3 [Teca]. The software is based on the HM-3.0

reference software for HEVC. The coding configuration used is the one defined by

the JCT-3V community in the Common Test Conditions (CTC) [RMV13], which are

used to evaluate new coding tools for potential adoption in 3D-HEVC. It consists of

the following: 8-bit internal processing, CABAC entropy coding, disabling the loop

filter for depth coding, DMM, VSO and MPI tools enabled for depth coding, a GOP

size of 8 and an Intra period of 24. 35 Intra modes are considered for both texture

and depth components. PU sizes range from 64× 64 to 4× 4. Four QPs for texture:

25, 30, 35 and 40 and their respective QPs for depth: 34, 39, 42, 45 are used to code

the sequences, as indicated in the CTCs.

We respect all of these conditions, except that we evaluate our tool in an Intra
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configuration (by setting the GOP size and the Intra period to 1), where all the

frames of all the views (texture and depth) are coded in Intra. This should not be

surprising, since our method is intended to improve Intra coding. Gains on Inter

images are still possible because, resulting from the use of our tool, better Intra

reference frames are used for Inter prediction, and because PUs can be coded in

Intra mode in these frames as well. However, gains in the Inter configuration are

smaller since our method has less chances to be selected.

Note that HEVC-specific tools such as the Residual QuadTree (RQT), the Mode-

Dependant Directional Transform (MDDT) and the Intra Smoothing (IS) tools are

enabled as well, which make up an efficient Intra configuration, on top of which our

tool is added.

We test our tool on the seven sequences defined in the CTCs, which consist of

four 1920×1088 and three 1024×768 resolution sequences, as shown in Table 3.2.

The length of these sequences is 10 seconds each, but we choose to only code half

a second of video to speed up the simulations. We believe that this is acceptable

since multiple sequences are considered, with different types of content, and because

an all-Intra configuration is used anyway, which means the coding of each frame is

independant of the coding choices made in the previous frame. To conform to CTCs,

a 3-view testing scenario is considered where 3 texture views with their 3 associated

depth views are encoded for each sequence. After encoding, 3 views are synthesized

between the center and the left view, and another 3 between the center and the

right view, making a total of 6 synthesized views per sequence. The Bjontegaard

delta rate (BD-Rate) metric [Bjo01] is used to evaluate gains on the depth and

synthesized view components. The reference consists of HTM-0.3 with the same

coding configuration.

Class Sequence Frames per second
Total number
of frames

Number of
coded frames

class A
(1920 × 1088)

Dancer 25 250 12
GT Fly 25 250 12

PoznanHall2 25 200 10
PoznanStreet 25 250 12

class C
(1024 × 768)

Balloons 30 300 15
Kendo 30 300 15

Newspaper 30 300 15

Table 3.2: Sequences in test set

To obtain the average gain for depth, the BD-Rate for each of the 3 coded depth

views is computed using the rate and PSNR values associated with the coding of

that depth view. Then the three gains are averaged. To obtain the average gain

for synthesized views, the BD-Rate for each of the 6 synthesized views is computed
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using the PSNR value of the synthesized view and the combined rate of all 3 coded

depth views, since all of them are involved in the synthesis of each intermediate

view. To compute the PSNRs of the synthesized views, uncompressed texture and

depth views are used to synthesize 6 intermediate uncompressed views based on

which the PSNR is computed, since original intermediate views to compare to are

not available.

In Section 3.2, we introduce a threshold to decide whether to inherit the texture

Intra mode for the currently coded depth PU or not. This threshold is empirically

fixed and is known by both encoder and decoder, hence, it does not need to be

transmitted. We perform the optimization of the threshold on only the first frame

of the seven sequences considered in Table 3.2. The optimization consists in testing

a large set of thresholds ranging from 0 to 4000 for all sequences, hence it is too

computationally intensive to perform on all the frames especially since the encoding

runtime of HTM-0.3 is high. Once the threshold that gives the largest gains on

average for the first frame is found, we use it as is for the other frames. In this work,

we thus present coding results on the first frame and on the entire set of frames,

knowing that in the latter case, the optimization is done only on the first frame.

The optimal threshold found after exhaustive searches equals 50.

3.3.2 Coding results

Table 3.3 shows the coding gains on the first frame of each sequence in the test

set, evaluated on synthesized views and on coded depth views (negative values are

gains, positive ones are losses). Average bitrate reductions of 1.3% are reported on

synthesized views, and minor losses (0.2%) on depth videos. Gains on the entire set

of frames are shown in Table 3.4. In this case, average bitrate reductions of 0.9%

and 0.7% on synthesized views and depth videos respectively are reported.

Sequence Gains on synthesized views (in %) Gains on depth (in %)

GT Fly −3.0 +6.1

Newspaper −2.0 −0.7

PoznanHall2 −1.4 −2.7

Kendo −1.0 +0.3

Balloons −0.7 −0.1

Dancer −0.6 −1.4

PoznanStreet −0.2 −0.4

Average −1.3 +0.2

Table 3.3: BD-Rate coding results for the first frame in synthesized views and depth with Gradi-
entMax
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Sequence Gains on synthesized views (in %) Gains on depth (in %)

GT Fly −0.6 0.0

Newspaper −0.9 −0.8

PoznanHall2 −1.3 −0.5

Kendo −1.2 −1.2

Balloons −1.1 −0.4

Dancer −0.5 −0.6

PoznanStreet −0.7 −1.3

Average −0.9 −0.7

Table 3.4: BD-Rate coding results for the entire set of frames in synthesized views and depth with
GradientMax

3.3.3 Results analysis and conclusion

Our tool with the GradientMax criterion gives overall −1.3% gain on synthesized

views, and minor losses (0.2%) on depth videos. The loss on depth videos can be

explained by the fact that the RDO process in HTM-0.3 optimizes depth map coding

for the quality of the synthesized views (due to VSO). This means that a coding

mode that is optimal for a currently coded depth PU may not be selected for this

PU if it is not optimal for synthesis. Since our tool introduces a new predictor for

depth Intra modes, the R-D choices are altered and this may lead in some cases, as

in the GT Fly sequence, to a selection of Intra modes that improves significantly

the quality of the synthesis (−3.0% gain) at the expense of an even bigger loss on

depth (6.1%). Consequently, the gains on depth are not very relevant here.

The gains on synthesized views for the entire set of frames are lower than if they

are evaluated only the first frame. This is due to the fact that the threshold is not

optimized per frame, but only on the first frame of the sequences. Our optimization

process to obtain the threshold can however be done online, using a multi-pass

encoder which codes the frame N times until it finds the threshold giving the largest

gains, and then finally codes the frame using the threshold obtained. This also

means that the encoder should transmit the threshold to the decoder for each frame.

Nevertheless, the results given would still hold because the extra signaling is minimal.

If this has to be done for each frame, the whole encoding process would turn out

to be very complex. Optimizing on the first frame, as we have presented it, can

therefore be seen as a compromise between coding efficiency and complexity.

The inheritance and selection percentages, and the inheritance efficiency of our

method for both test cases and for each sequence are given in Table 3.5. The

inheritance percentage is the ratio between the number of PUs where a texture

Intra mode inheritance occurs and the total number of coded PUs. The selection

percentage is the ratio between the number of PUs where a texture Intra mode
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inheritance occurs and where this inherited mode turns out to be the best (R-D

wise) mode for the PU (so in other words, the number of PUs where we “correctly”

inherit) and the total number of coded PUs. The inheritance efficiency is the ratio

between the selection and the inheritance percentages. We can see that the depth

and synthesized view gains are correlated with the selection percentages shown in

Table 3.5. Of course, this is not an exact measure, since inheriting the texture Intra

mode and selecting it as the best R-D mode for a PU does not necessarily imply

gains (the mode in question might already be in the MPM list as a spatial candidate).

Likewise, inheriting the texture Intra mode and not selecting it as best R-D mode

does not necessarily imply losses (the texture Intra mode would have to replace a

predictor which would have been selected as best R-D mode, or get inserted next to

it hence increasing its signaling bitrate in case it was alone in the list). Nevertheless,

the selection percentage still gives us an idea on the performance of the tool in the

various tested sequences. In general, as it increases, the gains (considered on both

the depth and synthesized views) increase also.

Sequence
First frame Entire set of frames

Inh.
Perc.

Selection
Perc.

Inh.
Efficiency

Inh.
Perc.

Selection
Perc.

Inh.
Efficiency

GT Fly 60.80 15.52 25.52 60.76 15.32 25.22

Newspaper 70.78 16.56 23.39 71.08 15.76 22.18

PoznanHall2 45.95 20.35 44.28 45.89 20.18 43.97

Kendo 49.23 9.86 20.03 49.92 10.90 21.83

Balloons 65.65 10.43 15.89 65.46 10.89 16.64

Dancer 70.73 17.57 24.84 70.88 17.50 24.69

PoznanStreet 79.16 19.88 25.11 78.51 19.22 24.48

Table 3.5: Inheritance and selection percentages, and inheritance efficiency of our method with
GradientMax

We believe that the coding gains could be higher, if a better texture mode in-

heritance criterion is considered, even at the cost of a slightly higher computational

cost. The work devoted to finding and testing this criterion is presented in the next

section.

3.4 The DominantAngle criterion

3.4.1 Preliminary Study

An analysis of the texture-depth Intra modes matchings shows that they mostly

occur in PUs where there is only one clear sharp directional edge in texture rather

than in PUs that have several edges in texture, or one edge which does not have a

dominant direction.
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Figure 3.5 shows two texture CUs, one having a sharp edge which does not have a

single dominant direction, and another having a single sharp directional edge. The

first CU (Figure 3.5(a)) is likely to be partitionned in the texture encoding pass

because it is difficult to find an Intra mode which gives an accurate prediction of the

texture signal. Hence, there will not only be one Intra mode for this CU, but rather

one for each partition. Inheriting one of these Intra modes (in practice, it is the one

of the top left PU which will be inherited, as shown in Figure 3.3) for the co-located

depth PU would not be efficient because the inherited Intra mode is not pertinent

in depth. In these situations, it is better not to inherit at all. In the second PU

however (Figure 3.5(b)), a specific Intra mode will be able to describe perfectly the

dynamics of the PU (hence giving a good prediction signal) and will thus be retained

for coding the texture PU. This mode would also be able to describe accurately the

dynamics of the co-located depth PU and hence, in this case, it is efficient to inherit

it.

Figure 3.6 shows the module of the gradient computed as in Equation 3.1 for the

two PUs of Figure 3.5. The red pixels in the module matrices correspond to sharp

edges. The maximum value of the module matrix in the first case equals 346 and in

the second case, it equals 337. These are the values of the GradientMax criterion

if used. Both are relatively high values. Indeed, if the threshold was set to 50 as

in the previous case, the texture Intra mode would be inherited in both cases since

both metrics are larger than 50. This inheritance is fine for the second case, but not

for the first case. Consequently, there is a need to develop a new criterion which

accounts for the direction of the edge and not its sharpness alone.

(a) Texture PU containing a
sharp non directional edge

(b) Texture PU containing only
one sharp directional edge

Figure 3.5: Two types of texture PUs containing sharp edges
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(a) Module matrix obtained after Sobel fil-
tering of the texture PU containing a sharp
non directional edge
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(b) Module matrix obtained after Sobel fil-
tering of the texture PU containing only one
sharp directional edge

Figure 3.6: Module matrices obtained after Sobel filtering of two types of texture PUs containing
sharp edges

3.4.2 Proposed criterion

We have developped a new criterion, DominantAngle, that takes into account the

direction of the edges present in the texture PUs.

To compute the metric associated with the criterion, we first perform a gradient

calculation on the texture PU. Besides the gradient module, we also compute its

angle A as follows:

A = arctan

(
Gy

Gx

)
(3.2)

The module matrix shows the magnitude of the edges in the texture PU. The angle

matrix gives the direction of these edges. For the computation of the metric, we

establish the histogram of these angles, but only the angles corresponding to edges

with a relatively high module value (50 in our method, as in GradientMax) are

considered. The histogram will thus list the number of occurences of the angles

corresponding only to sharp edges. To establish the histogram, a number of bins

has to be set. We choose β = 33 bins which correspond to the number of directional

Intra modes in HEVC.

The aim is to find PUs containing a single sharp directional edge. Thus, we

have to detect a single peak (local maximum) in the histogram, corresponding to

that edge. Having other distant peaks in the histogram discredits the initial peak

and decreases the pertinence of the texture mode to be inherited. Consequently, we

propose to compute the metric as follows:

1. First, initialize the metric c to the maximum histogram value (highest peak).

Let xc denote the bin index of that value in the histogram.

2. If c = 0, stop the algorithm.
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Else, find the next highest value in the histogram, denoted as p, with a bin

index of xp

3. If p ≥ α · c, reduce c such that:

c← c ·

(
1−
|xc − xp|

β

)
(3.3)

and return to step 2.

Else, stop the algorithm.

This criterion penalizes the maximum histogram value if there are other peaks in the

histogram and this penalty is proportional to the distance separating the two peaks,

which corresponds to the angle difference. The binning operation, which can be seen

as a type of quantization, may lead to the insertion of two close angles into seperate

bins. Thus, we can find in some cases two high histogram values that are next to

each other. These are not two different peaks. The criterion initialized to the highest

value should not be penalized by the presence of the other, because it is practically

the same angle, the difference being only due to the binning operation. Eq. 3.3

accounts for this situation. Furthermore, the α parameter has been optimized and

empirically set to 0.75 for maximum coding gains.

Figure 3.7 shows the angle histograms of the two PUs in Figure 3.5. For the PU

which contains a sharp non-directional edge, the histogram presents many peaks

while the histogram of the PU containing only one sharp directional edge contains

only one peak that corresponds to that direction. The above-mentionned metric

computation gives the values of 4 and 344 respectively. If the threshold was set to

50, this means we will inherit only in the second case and not in the first case, and

that is exactly what is required.
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(a) Angles histogram of the texture PU con-
taining a sharp non directional edge
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(b) Angles histogram of the texture PU con-
taining only one sharp directional edge

Figure 3.7: Angles histograms of two types of texture PUs containing sharp edges
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As opposed to the GradientMax criterion case, the threshold used for the Dom-

inantAngle criterion is PU size dependent since the maximum number of occurences

of an angle in the histogram of a N ×N PU equals N2. Each PU size has a different

criterion dynamic. If the computed metric in a PU of a given size is larger than the

threshold corresponding to that PU size, the texture Intra mode is inherited and

is inserted into the MPM candidate list. Experiments show that normalizing the

computed metric by N2 to obtain a single threshold for all PU sizes is not the most

efficient solution, as bigger PU sizes have a higher weight than smaller ones, and

thus require a higher threshold.

3.5 Experimental results with the DominantAngle criterion

3.5.1 Experimental setting

We implement DominantAngle in the same experimental framework and testing con-

ditions as the GradientMax criterion (see Section 3.3.1) to allow for a fair comparison

between the two.

The threshold for each PU size is empirically determined. These thresholds

are fixed and are known by both the encoder and decoder so they do not need to

be transmitted. In HTM-0.3, PU sizes vary from 64 × 64 to 4 × 4. Hence there

are 5 different PU sizes, and 5 different thresholds to determine. Here also, the

optimization is done only on the first frame and the best thresholds obtained are

used to code the rest of the frames. Indeed, the optimization process here is even

more complex than in GradientMax since it has to be done independently for each

PU size. Thus, in this section, we also present coding gains on the first frame, and

on the entire set of frames.

The optimization process consists of an exhaustive search for the best threshold

for each PU size, starting with 64× 64. All the other thresholds are set to 0. Once

the threshold that maximizes the average view synthesis gain for all sequences is

found, another exhaustive search is performed for 32 × 32 PUs. The threshold for

the 64 × 64 PU size is set to the previously found threshold and all the others are

set to 0. This process is repeated until all five thresholds are found. The optimal

thresholds found after exhaustive searches are 15 for the 64 × 64 PUs and 0 for

smaller PU sizes.

3.5.2 Coding results

Table 3.6 shows the coding gains, evaluated on synthesized views (“SV”) and on

coded depth views, for the first frame of each sequence in the test set, on which

the threshold optimization is performed. Average bitrate reductions of 1.6% and
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2.3% are reported for synthesized views and depth videos respectively. Gains for

the entire set of frames are given in Table 3.7. In this scenario, average bitrate

reductions equal 1.0% and 0.7% respectively. These two tables also recall the gains

of GradientMax for comparison.

Sequence
DominantAngle GradientMax

Gains on
SV (in %)

Gains on
depth (in %)

Gains on
SV (in %)

Gains on
depth (in %)

GT Fly −1.4 −1.4 −3.0 +6.1

Newspaper −1.4 −2.9 −2.0 −0.7

PoznanHall2 −3.1 −7.8 −1.4 −2.7

Kendo −0.6 +1.1 −1.0 +0.3

Balloons −0.9 −1.9 −0.7 −0.1

Dancer −2.4 −2.4 −0.6 −1.4

PoznanStreet −1.2 −1.2 −0.2 −0.4

Average −1.6 −2.3 −1.3 +0.2

Table 3.6: BD-Rate coding results for the first frame on synthesized views and depth with Domin-
antAngle and GradientMax (for comparison)

Sequence
DominantAngle GradientMax

Gains on
SV (in %)

Gains on
depth (in %)

Gains on
SV (in %)

Gains on
depth (in %)

GT Fly −0.5 +1.6 −0.6 0.0

Newspaper −0.9 −1.3 −0.9 −0.8

PoznanHall2 −2.1 −0.6 −1.3 −0.5

Kendo −0.9 −0.8 −1.2 −1.2

Balloons −0.6 −0.6 −1.1 −0.4

Dancer −1.2 −1.2 −0.5 −0.6

PoznanStreet −0.7 −2.0 −0.7 −1.3

Average −1.0 −0.7 −0.9 −0.7

Table 3.7: BD-Rate coding results for the entire set of frames on synthesized views and depth with
DominantAngle and GradientMax (for comparison)

3.5.3 Results interpretation

The optimal thresholds obtained imply that in PUs smaller than 64× 64, we always

inherit the texture Intra mode. In these PUs, the gains obtained by exploiting all

possible matchings overcome the loss induced by the occasional replacement of a

good spatial predictor with the inherited texture Intra mode. For 64× 64 PUs, this

is not the case. A threshold must be established to avoid inheriting in patterned

PUs in texture or at edges intersections, since those PUs contain many directional

contours. Furthermore, the weight of a 64× 64 PU is significant. A bad prediction
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(a) PoznanHall2 central view tex-
ture frame

(b) PoznanHall2 central view
depth map

(c) Texture-depth Intra mode
matchings in depth map

(d) Inheritance with Gradient-
Max

(e) Inheritance with Domin-
antAngle

Figure 3.8: Texture-depth Intra mode matchings PUs and inheritance PUs with the GradientMax
and DominantAngle criteria, in the first frame of the central view of PoznanHall2

in this PU affects the prediction and coding of many subsequent PUs. Hence, for

this PU size, the optimal threshold is 15.

Furthermore, the inheritance and selection percentages, and the inheritance effi-

ciency of our method for both test cases and for each sequence are given in Table 3.8.

The gains shown in Table 3.6 and Table 3.7 are correlated with these selection per-

centages. In most cases, when the selection percentage increases, the gains increase

as well. Compared to GradientMax (see Table 3.5), DominantAngle yields more

frequent selections, but more frequent inheritances as well. This is due to the fact

that the threshold for PU sizes different than 64×64 is 0, meaning the texture Intra

mode is always inherited in those PUs.

Sequence
First frame Entire set of frames

Inh.
Perc.

Selection
Perc.

Inh.
Efficiency

Inh.
Perc.

Selection
Perc.

Inh.
Efficiency

GT Fly 75.20 20.48 27.24 75.20 19.26 25.61

Newspaper 96.83 22.46 23.20 96.87 22.15 22.87

PoznanHall2 68.89 30.07 43.64 69.64 32.13 46.14

Kendo 88.32 18.23 20.64 88.04 16.71 18.98

Balloons 92.91 14.43 15.54 93.01 14.83 15.95

Dancer 89.01 26.90 30.22 89.74 27.15 30.26

PoznanStreet 91.69 21.15 23.07 91.68 21.86 23.84

Table 3.8: Inheritance and selection percentages and inheritance efficiency of our method with
DominantAngle

Figure 3.8(c) shows, in yellow, the PUs in which a texture-depth Intra mode
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matching can be exploited in the first frame of the central view of the PoznanHall2

sequence. Figure 3.8(d) shows, in green, the PUs where we inherit the texture Intra

mode using GradientMax, and Figure 3.8(e) shows the same with DominantAngle.

We can see that there are indeed more green PUs in DominantAngle than in Gradi-

entMax. DominantAngle covers more yellow PUs than GradientMax (hence the

observed increase in the selection percentages), but also more PUs where there is

not a matching to exploit, and those are mostly smaller size PUs due to the threshold

set to 0 for these PU sizes.

However, that increase in the inheritance percentage in DominantAngle, and

consequently, in the percentage of PUs where the texture Intra mode was inherited

but not selected (which can be seen as the difference between the inheritance and

the selection percentage), is not problematic. As previously said, the fact that the

texture Intra mode was inherited for a PU and not selected does not always imply

losses. But even if it does, the losses would be minimal because they occur in

smaller PU sizes. Also, the smaller the PU size, the more planar the depth PU and

the corresponding texture PU would be, and thus, in these cases, the best mode is

most probably either the non-directional Planar or DC mode. Inheriting one instead

of the other is certainly not ideal, but is not catastrophic either as both succeed in

representing the dynamics of a planar PU.

There are however some PUs where an inheritance can happen in GradientMax,

and not in DominantAngle, and those are PUs where there is more than one clear

directional edge in texture. Avoiding to inherit in these PUs will reduce losses in

DominantAngle compared to GradientMax. Figure 3.8(c) shows for instance that

there is no Intra mode matching in the first 64 × 64 top-left PU in the depth map

of the central view of PoznanHall2. This is expected, because the corresponding

texture PU is actually patterned, as shown in Figure 3.9, so it has no pertinent

Intra mode to offer for its corresponding depth PU. In GradientMax, an inheritance

is made in this case, as shown in Figure 3.8(d), but that is successfully avoided in

DominantAngle, as shown in Figure 3.8(e).

Figure 3.9: First top-left 64 × 64 PU (with adjusted contrast for visibility) of the first texture
frame in the central view of PoznanHall2
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When comparing the stability of the optimal threshold obtained for each criterion

(for DominantAngle it is the 64×64 threshold) as shown in Figure 3.10, we find that

in the case of DominantAngle, when the threshold approaches the optimal value

(15), the coding gain varies very quickly. However, we also observe that, even if we

make a wrong guess about the best value (for example we double the value and use

30), the gain are still high (-1%). Even if we use an overestimated value (e.g. 120, 8

times the best value), we still keep half of the gains. In conclusion, it is important

to use the best threshold value, but globally this technique is robust with respect to

the selection of this parameter.

As far as the GradientMax method is concerned, we observe a similar behavior.

The best value of the threshold is 50, which gives 1.3% rate reduction. If this value

is halved, we still have 0.9% rate reduction. On the other hand, when the threshold

is doubled we only gain -0.3%, and when it is quadrupled, all the gains are lost. We

conclude that the GradientMax method, not only has a smaller best gain, but is

also a bit less robust with respect to the threshold selection.
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Figure 3.10: Average gains on synthesized views as a function of the threshold

When further analyzing the gains we obtain on synthesized views for each pro-

posed criterion, considering the more realistic scenario where we code all the frames,

we can see (from Table 3.7) that the results are somewhat coherent across sequences.

The standard deviation equals 0.50 for DominantAngle and 0.29 for GradientMax

which are relatively small values. For DominantAngle, the gains vary between 50%

and 210% of the average gain value while in GradientMax the gains vary between 56%

to 144%. We believe that these ranges are acceptable. Both methods are statiscally

stable in that sense, and even though GradientMax outperforms DominantAngle in

some sequences, on average, DominantAngle remains better. Consequently, we have

succeeded in finding a better criterion than GradientMax.
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3.6 Conclusion

In this chapter, we have presented a novel depth video coding tool that exploits

the statistical dependency between the texture and depth Intra modes in order to

increase the coding efficiency and achieve gains on synthesized views. The proposed

method first finds the corresponding texture PU for a currently coded depth PU.

Then it computes a metric on that texture PU and if it is larger than a specified

threshold, adds the texture Intra mode to the MPM candidate list where it may

replace another spatial candidate.

Two criteria were studied in this work: GradientMax and DominantAngle. The

rationale behind the GradientMax criterion is that the texture-depth Intra mode

matchings occur only in areas where there are sharp edges in texture. Based on

that assumption, the metric was set as the sharpness of the edges present in the

texture PU. Our tool associated with the GradientMax criterion gave −1.3% gain on

average for synthesized sequences and a small loss on depth, when the corresponding

threshold was optimized. A further study showed that our initial assumption was not

completely accurate. Texture-depth Intra mode matchings actually occured in areas

where there is one sharp edge in texture. This meant that the initial inheritance set

was actually a superset of the appropriate inheritance set. Based on this remark, we

developped a new criterion, DominantAngle, which accounted for the direction of

the edge in a texture PU. This new criterion gave −2.3% gain on depth sequences

and −1.6% gain on synthesized sequences with optimized thresholds. A journal

article detailing our method and the two developped criterions was accepted for

publication in the APSIPA Transactions on Signal and Information Processing in

October 2013 [MJCPP13a].

In the future, we will implement a more intelligent content-adaptive and system-

atic way to drive the inheritance without relying on complex threshold optimizations.

Furthermore, the direct inheritance of the texture Intra mode can also be considered

(wherein the currently coded depth PU is forced to be coded with the inherited mode,

without having to signal this mode in the bitstream since the same process can be

repeated at the decoder) if the statistical dependency is expected to be exceptionally

high. The resulting progressive inheritance scheme would therefore be able to adapt

itself to the degree of dependency between texture and depth Intra modes in order

to increase coding efficiency.
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As presented in Chapter 2, inter-view motion prediction (IVMP) is a tool in

3D-HEVC that increases the coding efficiency of dependent views by introducing

new MV predictors from the base view. Specifically, IVMP adds a multiview MV

candidate in the Merge and AMVP candidate lists of a dependent view PU. This
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MV is the one of the base view PU which corresponds to the current PU in the

dependent view. The correspondence is made using a disparity vector (DVIVMP)

derived in the NBDV process.

In this chapter, we propose to improve IVMP in two ways: first, an additional

interview candidate, which is always a DV, is added in the Merge candidate list

to achieve a better equilibrium between MVs and DVs in this list, which will in

turn increase disparity-compensated prediction (DCP) selection and achieve coding

gains. Second, the NBDV process is modified to avoid selecting as DVIVMP the first

neighboring DV found, which is not necessarily the best from a coding efficiency

point of view.

The first section presents method 1, the results of which are detailed in a second

section. The second method is detailed in section 3 along with its different vari-

ants, and the corresponding coding results are detailed in a fourth section. Results

are analyzed and interpreted in both cases. Section 5 concludes this chapter and

underlines possibilities for future work.

4.1 Additional Inter-view Merge Candidate

In 3D-HEVC, inter-view redundancies are exploited using DCP. DCP enables hav-

ing, for the current frame, reference frames from different views at the same time

instant. DVs are estimated in the same way as MVs. However, when analyzing

videos coded using HTM-4.1, we can see that DCP-coded PUs are not numerous.

This is, in part, due to the fact that there are not enough DV candidates in the

Merge candidate list. Indeed, even though IVMP introduces a multiview candidate

in the list, this candidate is preferred to be a MV rather than a DV. In this first

section, we modify the Merge candidate list to achieve a better equilibrium between

MV and DV candidates, with the aim of increasing DCP selection and coding gains.

4.1.1 State-of-the-art

Several tools that modify the Merge candidate list construction in 3D-HEVC were

proposed to either achieve coding gains, or reduce complexity / memory consump-

tion. In [GGG12a], the primary candidate list is checked and the first DV candidate

found is used to compute, by adding a positive and a negative offset, two more DV

candidates which will then be added to the list. However this requires having a DV

in the primary list to begin with, which is not a frequent case. Consequently, the

coding gains are limited. In [GGG12b], a dynamic re-ordering of the Merge index is

performed to reduce its coding cost, based on a conversion table and a Merge index

histogram regularly updated. The coding gains however are not high enough to
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justify the usage and the frequent updates of the histogram and conversion tables,

which increase complexity. The Merge pruning process can also be changed, like

in [LCHL12], where a comparison between the multiview candidate and the first

two spatial candidates is added. This method achieves 0.3% bitrate reduction on

dependent views with no runtime increase and was adopted in 3D-HEVC.

Tools that affect the Merge candidate list construction were also proposed in

HEVC. In [LCT+11], the temporal candidate (TMVP) position is changed from the

center of the co-located PU to the bottom-right position. Significant bitrate reduc-

tions of 0.9% were reported and thus the method was adopted in HEVC. In [YI12],

two refined candidates are computed from the first Merge candidate and added to

the secondary list of candidates, to replace the combined ones for uni-predicted PUs.

Coding gains were not significant enough however to favor adoption.

These methods try to improve the candidate list construction but with no par-

ticular intention to balance the DCP selection against the MCP selection in the

process. We propose in this section a novel method to reach a better DCP / MCP

equilibrium by inserting a DV candidate in the Merge list.

4.1.2 Motivation

Figure 4.1 shows parts of a B-frame of the Kendo sequence coded with HTM-4.1.

The PUs coded using MCP are shown in grey (Merge-SKIP) and green (Inter). PUs

coded using DCP are shown in light pink (Merge-SKIP) and dark pink (Inter). Blue

PUs are coded in Intra. We can clearly see that Merge mode is selected often, and

that DCP coded PUs are not numerous.

Figure 4.1: CU coding modes in parts of a Kendo B-frame coded with HTM-4.1

Furthermore, Table 4.1 gives the percentages of Merge coded PUs, DCP coded
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PUs, and DCP coded PUs in Merge mode, averaged across four QPs, in the depend-

ent texture and depth views of the seven JCT-3V sequences. These results confirm

Sequence Merge DCP DCP-Merge

Kendo 92 17 14

Newspaper 88 15 12

Balloons 93 13 11

Dancer 90 26 21

GT Fly 96 18 15

Poznan Hall2 95 9 7

Poznan Street 94 15 12

Average 92 16 13

Table 4.1: Percentage of Merge coded PUs, DCP coded PUs, and DCP coded PUs in Merge mode
in HTM-4.1

the assertion that Merge mode is selected often, actually for 92% of PUs. This is

due to the fact that Merge mode is very efficient at reducing the cost of motion /

disparity parameters as only an index is encoded. Table 4.1 also shows that only

16% of PUs use DCP, and they are also most often coded in Merge mode (13%).

While it is true that there are often more temporal correlations than inter-view,

as shown in [ZJYH09], the main issue behind the unfrequent DCP selection remains

the lack of DV candidates in the Merge candidate list. Indeed, DCP can yield a

better prediction for a given PU than MCP, in case there is little disparity between

views or if there is fast motion in the video. However, not having a DV candidate

in the Merge list increases the rate needed to code the PU with DCP since the only

option left is to send a motion vector residual. MCP, while maybe not yielding a

lower distortion value, requires a lower rate due to the fact that there are numerous

MV candidates in the Merge list and signaling the motion parameters only costs an

index. Consequently MCP is chosen more often since its Lagrangian cost is smaller,

but if a DV candidate was added in the Merge list, as proposed in this section, the

required rate for DCP coding would be decreased, hence increasing the selection of

DCP and achieving coding gains.

4.1.3 Description of the proposed method

When computing the multiview candidate in the Merge list, a DV (referred to as

DVIVMP) pointing to a reference block in the base view is derived using NBDV, as

explained in Section 2.4.1. The multiview candidate is set as the MV of that reference

block, and only if that MV does not exist, it is set as DVIVMP. We propose to insert

DVIVMP as a new interview candidate in the Merge list along side the multiview

candidate if the latter turned out to be a MV. In the rest of this chapter, this
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proposed method is referred to as Additional Inter-view Merge Candidate (AIMC).

Two insertion methods are proposed. In method 1 (AIMC-1), the candidate is in-

serted in the secondary list along with the combined and the zero vector candidates.

If any of the first five candidates in the primary list is unavailable, the interview

candidate is inserted after the final spatial candidate (before the temporal) to com-

plete the list. If more primary candidates are unavailable, the combined and zero

vector candidates are then appended to the list, as it is normally done. In method 2

(AIMC-2), the candidate is inserted in the primary list, in the 5th position, shifting

the final spatial candidate to the 6th position. The temporal candidate is hence

pushed out of the primary list and into the secondary list. It is the first candidate

in the secondary list to be appended back in the primary list if some candidates

are unavailable. Figure 4.2 illustrates these two methods. In both methods, before

inserting the interview candidate, a redundancy check (i.e.a vector equality check in

both horizontal and vertical components) with all candidates preceding it in the list

is performed for better coding efficiency. Note that the insertion positions in both

methods have been empirically set as those positions gave out the most coding gains

on average.

Primary list Secondary list

Insertion point for B & Z

Reference

B ZM S S S S T

Insertion point for B & Z

Proposed - Method 1

I

Insertion point for I

B ZM S S S SI

Insertion point for T, B & Z

Proposed - Method 2

T

Figure 4.2: Proposed insertion methods (M: multiview, S: spatial, T: temporal, B: combined, Z:
zero, I: interview candidate)

4.2 Experimental results of AIMC

4.2.1 Experimental setting

We implement AIMC-1 & AIMC-2 in HTM-4.1 [Tecd]. We strictly follow the coding

configuration defined in the CTCs [RMV13] and which is detailed in Section 3.3.1.



80 4. Improvement of the inter-view motion prediction in 3D-HEVC

Full-frame experiments are done on 10 seconds of video length (cf. Table 3.2). The

same 3-view testing scenario as described in Section 3.3.1 is used.

4.2.2 Coding results

Tables 4.2 and 4.3 give the coding gains, measured in BD-Rate (negative values are

gains), and runtimes obtained with AIMC-1 and AIMC-2 respectively. These results

are summarized in Table 4.4 which also gives the average results if the redundancy

check preceding the insertion of the interview candidate in the list is removed. In

these tables, the “Video” column shows the gains on the central (0) and on the two

side views (1 and 2) and averages these results. The “Synt.” column gives results

on the 6 synthesized views (the bitrate considered is the sum of the 3 texture and

depth bitrates, and the PSNR is the average PSNR of all 6 synthesized views). The

“Coded+Synt.” result is the same as in the previous column except that the PSNR

considered is the average PSNR of the 6 synthesized views and the 3 coded texture

views.

Sequence
Video

Synt.
Coded
+Synt

Runtimes
0 1 2 Avg Enc Dec

Balloons 0.0 -0.6 -0.6 -0.3 -0.2 -0.2 96 102

Kendo 0.0 -0.6 -0.4 -0.2 -0.1 -0.2 100 101

Newspaper 0.0 -0.3 -0.3 -0.1 -0.1 -0.1 100 101

GT Fly 0.0 -1.2 -1.0 -0.3 -0.2 -0.3 97 100

Poznan Hall2 0.0 0.2 -0.5 -0.1 -0.1 -0.1 97 94

Poznan Street 0.0 -0.6 -0.6 -0.2 -0.2 -0.2 90 100

Dancer 0.0 -0.6 -0.6 -0.2 -0.2 -0.2 97 102

Average 0.0 -0.5 -0.6 -0.2 -0.2 -0.2 97 100

Table 4.2: BD-Rate coding results with AIMC-1

Sequence
Video

Synt.
Coded
+Synt

Runtimes
0 1 2 Avg Enc Dec

Balloons 0.0 -0.6 -0.6 -0.3 -0.2 -0.2 97 95

Kendo 0.0 -0.6 -0.4 -0.2 -0.1 -0.1 98 101

Newspaper 0.0 -0.3 -0.2 -0.1 -0.1 -0.1 100 90

GT Fly 0.0 -1.2 -1.2 -0.4 -0.2 -0.3 101 100

Poznan Hall2 0.0 -0.1 -0.3 -0.1 -0.1 -0.1 93 107

Poznan Street 0.0 -0.7 -0.6 -0.2 -0.2 -0.2 92 100

Dancer 0.0 -0.6 -0.6 -0.2 -0.2 -0.2 93 101

Average 0.0 -0.6 -0.6 -0.2 -0.2 -0.2 96 99

Table 4.3: BD-Rate coding results with AIMC-2
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Method
Video

Synt.
Coded
+Synt

Runtimes
0 1 2 Avg Enc Dec

AIMC-1 0.0 -0.5 -0.6 -0.2 -0.2 -0.2 97 100

AIMC-1-NORC 0.0 -0.4 -0.4 -0.1 -0.1 -0.1 98 101

AIMC-2 0.0 -0.6 -0.6 -0.2 -0.2 -0.2 96 99

AIMC-2-NORC 0.0 -0.5 -0.4 -0.2 -0.1 -0.1 98 100

Table 4.4: BD-Rate coding results when the redundancy check is removed (NORC) in AIMC-1 and
AIMC-2

Tables 4.2 and 4.3 show bitrate reductions of 0.5% (resp. 0.6%) and 0.6% for

side views, 0.2% for synthesized and 0.2% for coded and synthesized views. This is

accompanied by a 3% (resp. 4%) encoder runtime reduction. No gains are achieved

on the central view since AIMC is not applied there. Table 4.4 shows that coding

efficiency is reduced if the redundancy check is removed, with no decrease in encoder

and decoder runtimes compared to the original version.

4.2.3 Results interpretations

The gains obtained result from an increase in DCP selection. Inserting a DV into

the Merge candidate list reduces the rate needed for DCP coding and favors its

selection, especially if there is small disparity between views (interview redundancies

are much higher, and DVs can point to a better hypothesis) or if there is fast motion

in the video (MVs are not able to correctly predict PUs). Figure 4.3 indeed shows

an increase in DCP coded PUs compared to Figure 4.1. This is confirmed in the

numerical results of Table 4.5, which shows, for AIMC-1 and AIMC-2, an increase

of 8% and 11% on average in the percentage of DCP-coded PUs and DCP-coded

PUs using Merge mode.

Sequence
DCP increase DCP-Merge increase

AIMC-1 AIMC-2 AIMC-1 AIMC-2

Kendo 6.2 6.4 9.1 8.9

Newspaper 5.0 4.9 7.8 8.0

Balloons 8.2 7.8 12.2 11.3

Dancer 7.7 7.3 10.8 10.6

GT Fly 17.6 17.0 21.0 20.3

Poznan Hall2 6.3 6.8 8.4 8.9

Poznan Street 6.9 8.2 9.3 10.8

Average 8.3 8.3 11.2 11.3

Table 4.5: Percentage increase of DCP-coded PUs and DCP-coded PUs using Merge mode in
AIMC-1 and AIMC-2

The complexity resulting from the redundancy check used in AIMC-1 and AIMC-
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Figure 4.3: CU coding modes in parts of a Kendo B-frame coded with HTM-4.1 and AIMC

Sequence Combined Zero Total

Kendo 6 12 9

Newspaper 6 13 9

Balloons 7 12 9

Dancer 8 10 9

GT Fly 6 10 8

Poznan Hall2 8 11 9

Poznan Street 6 13 9

Average 7 12 9

Table 4.6: Reduction percentage of the number of constructed combined and zero candidates in
AIMC-1 or AIMC-2 (same percentages in both)

2 is debatable. The purpose of this redundancy check is to avoid having a redundant

DV candidate in the list which will either push potentially better primary candidates

further down the list, while increasing their indices, and hence their signaling cost,

in the process, or take the place of other, potentially better, secondary candidates

which will not even be evaluated. The maximum number of checks equals 4 and 5 in

AIMC-1 and AIMC-2 respectively. These would be quite complex to perform for each

PU. However, we show in Table 4.4 that removing the redundancy check decreases

coding efficiency, as expected, while not reducing neither encoder or decoder runtime.

Indeed, the worst case rarely occurs. Consequently, keeping the redundancy check

is a better choice.

AIMC-1 and AIMC-2 also bring small encoder runtime reductions of 3 and 4%.

This is because inserting a DV candidate in the Merge list means constructing one

less secondary candidate, which is a complex process since it involves mixing different

vectors to construct combined candidates or looping around all reference indices
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to construct zero-vector candidates. Additional experiments have shown that the

number of constructed secondary candidates has decreased by 9% on average in

AIMC-1 and AIMC-2 as shown in Table 4.6.

AIMC-1 and AIMC-2 were presented at the 2nd JCT-3V meeting in October 2012

[MJPPC12]. AIMC-2 was adopted in the 3D-HEVC draft and software (HTM-5.0).

The next section details a second method aimed at improving IVMP based on a

HTM-5.0.1 reference which thus includes AIMC-2.

4.3 MedianNBDV

In order to construct the multiview and inter-view candidates in the Merge and

AMVP candidate lists, DVIVMP needs to be derived using the NBDV process. How-

ever, in NBDV, the first DV / DDV found in a neighboring PU is selected as the final

DV with no guarantee of optimality. The method proposed in this section modifies

the NBDV process to obtain more accurate DVs which will, in turn, increase coding

gains.

4.3.1 State-of-the-art

Several DV derivation techniques have been proposed in 3D-HEVC. The first one

involves a depth map estimate which is computed and maintained for each view

using already coded texture information. The maximum depth value contained in

the collocated PU in the depth map estimate is transformed into the required DV.

This derivation process is called Depth Map Disparity Vector (DMDV) [TWCY12].

To obtain the depth map estimates, the coded disparity vector field between the

first dependent view and the base view is transformed into a depth map which is

then warped to the base view and to other dependent views. Over time, the estim-

ated depth maps are motion-compensated using the same motion vector field as in

texture and corrected with coded disparity vector fields. The complex warpings and

successive motion compensations that DMDV involves led to its later replacement

with NBDV.

Depth-oriented NBDV (DoNBDV) [CWTL12] is an interesting refinement of the

classic NBDV process. It uses the coded depth map of the base view to refine the

DV obtained after the standard NBDV process. Basicaly, the DV obtained is used

to point to the corresponding PU in the base depth view. The maximum depth

value inside that PU is converted into another DV which will be used for IVRP and

IVMP. DoNBDV achieves significant bitrate reductions compared to NBDV (0.4%

on coded views and 0.3% on coded+synthesized views) but adds a non-negligible

decoding dependency between the base depth view and the dependent texture view
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(indeed, if the base depth view is corrupted, the dependent texture view cannot be

decoded).

A final DV derivation process can be conceived if the depth is coded before the

texture component. This is possible using the flexible coding order (FCO) tool which

allows to change the coding order in 3D-HEVC. In this case, the DV can simply be

computed from the coded depth component (taking the maximum depth value in

the collocated depth PU and transforming it into a disparity) without the need of

transmitting it since the process can be repeated at the decoder.

The DV derivation process in 3D-HEVC is subject to intensive research and

is expected to change over the course of the standardization phase. At the time of

developping the method proposed in this section (following the 2nd JCT-3V meeting)

the derivation process used in 3D-HEVC was NBDV since it was coding efficient,

not complex, and did not introduce new decoding dependencies. However, NBDV

is sub-optimal. Indeed, the first DV / DDV found in a neighboring PU during the

NBDV search process is selected as the final DV and the search process stops. The

remaining neighbors are not checked even if some have a DV / DDV which is better,

rate-distortion (R-D) wise, than the selected one hence the sub-optimality of the

process. The proposed method answers and solves this specific issue.

4.3.2 Motivation

Table 4.7 shows the percentage of PUs coded in Merge mode using either the mul-

tiview or the inter-view candidate in HTM-5.0.1, averaged across four QPs, for the

seven JCT-3V sequences. The test conditions used are the same as the ones used

to evaluate our method, which are described in Section 4.4.1. We can see that the

multiview Merge candidate is largely selected in HTM-5.0.1 (by 57% of PUs coded

in Merge mode, on average) since it is inserted at the first position in the list (the

rate needed to code a merge index of 0 is small, hence the R-D cost of this candidate

is small as well). The inter-view candidate is inserted further down the list and is

thus selected less often (only 1%).

The efficiency of the multi-view and the inter-view candidate directly depends on

the DV derived using NBDV (DVIVMP), which is used to construct both candidates.

If the accuracy of DVIVMP is improved through the modification of the NBDV pro-

cess, as proposed in this section, the distortion associated with these two candidates

will decrease, along with their R-D cost, hence increasing their selection and achiev-

ing coding gains. These gains will be significant since in general, the Merge coding

mode which is already widely selected (92% of PUs as shown in Table 4.1) will be

improved, and more specifically, the first candidate in the Merge list which is also

largely selected as shown in Table 4.7 will be improved as well. It is important to
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Sequence Multi-view Inter-view

Kendo 51.6 2.1

Newspaper 53.4 1.4

Balloons 59.9 1.6

Dancer 45.9 1.7

GT Fly 65.6 0.9

Poznan Hall2 61.5 0.9

Poznan Street 60.6 1.2

Average 56.9 1.4

Table 4.7: Percentage of PUs coded in Merge mode using the multi-view or the inter-view candid-
ates in HTM-5.0.1

note that some of the resulting gains will also come from improving these candidates

in the AMVP list but those gains are small compared to the ones resulting from the

improvement in the Merge list.

4.3.3 Description of the proposed method

In the proposed method, referred to in the rest of this chapter by MedianNBDV, the

search process for a DV in NBDV is never stopped. All the spatial and temporal

neighbors are checked, in the usual order, and all found DVs and DDVs are stored

together in a single list. A redundancy check is applied to remove redundant vectors

in this list. Then, the median of all remaining vectors is computed and is set as the

final DV used for IVMP. Applying MedianNBDV for IVRP as well will be tested

seperately in a variant (i.e. MedianNBDV is used to derive DVIVMP and NBDV is

used for DVIVRP). Figure 4.4 illustrates the different steps of our algorithm.
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Figure 4.4: Proposed DV derivation method
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The advantage of MedianNBDV is that it groups different types of DVs, namely

DVs obtained from DCP-coded PUs and DDVs obtained from MCP-coded PUs, in a

single list. This heterogeneity in lists is usually coding efficient. For instance, in the

Merge candidate list, secondary candidates are constructed to fill the list if primary

candidates are unavailable. Hence, two types of candidates can potentially be in the

same list, namely primary and secondary candidates. This configuration has been

proven to bring coding gains compared to one which does not involve secondary

candidates. MedianNBDV is thus set in the same mind frame.

The disadvantage of MedianNBDV lies in the worst case scenario for median

computation. Indeed, each spatial neighbor can have up to two vectors, one from

each reference list, and there are 5 neighbors. In addition, there are two temporal

neighbors in two temporal reference frames, each one having at most one vector.

In case all spatial neighbors in both reference lists and all temporal neighbors have

DVs or DDVs, and there is no redundancy between these vectors, the median has

thus to be computed on 14 vectors. This is quite complex to perform in hardware.

Consequently, in order to avoid this worst-case scenario, different variants of the

method have been implemented and tested.

4.3.4 Variants

The 1REF variant consists of storing in the list a maximum of one vector per spatial

neighbor. In case the spatial neighbor has two DVs or two DDVs, only the one

from reference list 0 is stored. In case it has one DV and one DDV, only the

DV is stored. In this configuration, the maximum number of spatial candidates is 5,

making the worst-case maximum number of vectors on which the median is computed

(MaxCand) equal to 9. Another variant, RMPOS, consists in simply removing one or

more spatial positions (for example A0) from the check, hence decreasing MaxCand

by 2 (or by 1 if associated with 1REF) for each spatial position removed. In our

experiments, RMPOS consisted in removing the A0 and the B2 spatial positions from

the check. A final variant aimed at reducing MaxCand, called LIMIT-X, consists in

storing only the first X found DVs / DDVs in the list. In this case, MaxCand = X.

Note that the LIMIT-1 variant is equivalent to the standard NBDV process.

The following variants are not aimed at reducing MaxCand, but rather imple-

mented and tested to make interesting interpretations: NODDV does not store any

DDVs in the list, ALLOWRED removes the redundancy check before median compu-

tation, NOAMVP does not apply our method for AMVP while APPLYRES applies

it for IVRP as well, and finally, MEAN replaces the median computation with the

computation of the vectors’ average.
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4.4 Experimental results of MedianNBDV and its variants

4.4.1 Experimental setting

We implement MedianNBDV and its variants in HTM-5.0.1 [Tece]. We strictly follow

the CTCs [RMV13]. Full-frame experiments on 10 seconds of video are performed,

and a 3-view test scenario is considered.

4.4.2 Coding results

Objective results

Table 4.8 gives the coding gains, measured in BD-Rate (negative values are gains),

achieved with MedianNBDV. These results are summarized also in Table 4.9 along

side all the studied variants (only the average results accross all sequences are shown).

In this table, the column “MaxCand” is added to show the maximum number of

vectors on which the median can be computed in a worst-case scenario, per variant.

Note that there is a ±3% error margin on the encoder and decoder runtimes, because

even if launched back to back on the same machine, the runtime of an encoding or

decoding process varies slightly every time.

Sequence
Video

Synt.
Coded
+Synt

Runtimes
0 1 2 Avg Enc Dec

Balloons 0.0 -0.7 -0.7 -0.3 -0.2 -0.2 100 99

Kendo 0.0 -1.2 -1.3 -0.5 -0.4 -0.4 98 97

Newspaper 0.0 -0.7 -0.7 -0.3 -0.2 -0.2 99 98

GT Fly 0.0 -0.6 -0.9 -0.2 -0.2 -0.2 89 98

Poznan Hall2 0.0 0.0 -0.5 -0.1 -0.2 -0.2 102 101

Poznan Street 0.0 -0.4 -0.4 -0.1 -0.1 -0.1 104 95

Dancer 0.0 -0.9 -1.0 -0.3 -0.4 -0.4 108 99

Average 0.0 -0.6 -0.8 -0.3 -0.2 -0.2 100 98

Table 4.8: BD-Rate coding results per sequence, in %, with MedianNBDV

Table 4.8 shows 0.6% and 0.8% average bitrate reductions on the dependent

views, and 0.2% on the synthesized views, with a MaxCand of 14, as explained in

Section 4.3.3. These gains were achieved with no increase on encoder and decoder

runtimes. Note that no gains are reported on the central view because no DV

derivation is done on the base view.

Table 4.9 shows the average coding results of three variants (1REF, 1REF+RMPOS,

LIMIT-4) aimed at reducing MaxCand. These variants slightly reduce the gains

obtained in MedianNBDV but alleviate the median computation in hardware in

the worst-case scenario. The NODDV, ALLOWRED and MEAN variants however
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Variant
Max
Cand

Video
Synt.

Coded
+Synt

Runtimes
0 1 2 Avg Enc Dec

MedianNBDV 14 0.0 -0.6 -0.8 -0.3 -0.2 -0.2 100 99

1REF 9 0.0 -0.6 -0.7 -0.2 -0.2 -0.2 97 98

1REF+RMPOS 7 0.0 -0.5 -0.6 -0.2 -0.2 -0.2 99 99

LIMIT-4 4 0.0 -0.5 -0.7 -0.2 -0.2 -0.2 103 98

NODDV 14 0.0 -0.3 -0.3 -0.1 -0.1 -0.1 97 99

ALLOWRED 14 0.0 -0.2 -0.3 -0.1 -0.1 -0.1 98 98

MEAN 14 0.0 -0.3 +0.1 0.0 0.0 0.0 100 98

NOAMVP 14 0.0 -0.6 -0.7 -0.3 -0.2 -0.2 101 98

APPLYRES 14 0.0 -0.6 -0.8 -0.3 -0.2 -0.2 108 98

Table 4.9: Average BD-Rate coding results for the different variants of MedianNBDV

keep the same MaxCand as MedianNBDV but significantly reduce gains (losses

are even reported for the MEAN variant on the second dependent view). Finally,

the NOAMVP variant slightly reduces gains while not affecting runtime, while the

APPLYRES variant, on the contrary, achieves the same coding performance as Medi-

anNBDV with the same MaxCand but with an increase in encoder runtime (108%).

Visual results

The significant gains on the dependent views for the Kendo and Dancer sequences in

MedianNBDV are visible in Figure 4.5. Parts of the left view (view 1) and the right

view (view 2) at a QP of 40 and 35 for the Kendo and Dancer sequences respectively,

coded using the HTM-5.0.1 reference software and with MedianNBDV are shown in

this figure. For the Kendo sequence, we can see that our method avoids having the

sword broken in two as in the reference. For the Dancer sequence, the back of the

dancer’s head is more sharply represented using MedianNBDV.

4.4.3 Results interpretation

Origin of the gains

MedianNBDV improves the quality of the DV used in IVMP. Consequently, the

multi-view and the inter-view candidates in the Merge list, which depend on that

DV, are also improved and more often selected. Table 4.10 shows the increase in

the number of PUs coded in Merge mode using the multi-view or the inter-view

candidates, in MedianNBDV, for each tested sequence, averaged across four QPs.

A significant increase is noted for the inter-view candidate (31% on average) since

it directly corresponds to the improved DV. For the multi-view candidate, the im-

proved DV is only used to find a PU in the base view from which to extract a MV.

Consequently, the improved DV may point to a PU that has the same MV as the one
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(a) Kendo V1 QP40 reference (b) Kendo V1 QP40 proposed

(c) Dancer V2 QP35 reference (d) Dancer V2 QP35 proposed

Figure 4.5: Parts of dependent views coded with the reference software and with the proposed
method

of the PU pointed to by the original DV. In this case, our DV improvement has no

effect, and this explains why on average the selection of the multi-view candidate has

only slightly increased (2%) compared to an HTM-5.0.1 reference. In any case, these

increases are directly correlated with the coding gains achieved in MedianNBDV.

Sequence Multi-view increase Inter-view increase

Kendo 0.6 23.3

Newspaper 1.4 21.5

Balloons 3.6 18.4

Dancer 3.5 54.8

GT Fly 0.5 62.9

Poznan Hall2 2.2 16.7

Poznan Street 1.4 20.1

Average 1.9 31.1

Table 4.10: Increase in the percentage of PUs coded in Merge mode using the multi-view or the
inter-view candidates

Runtime results analysis

Furthermore, Table 4.11 shows the average, minimum and maximum number of

vectors on which the median is computed for each tested sequence in the encoder
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and the decoder, in MedianNBDV. We can see that the worst case scenario in which

the median is computed on 14 values never occurs for any sequence (maximum is

12). On average, the median is computed on 1.9 vectors at the encoder and 2.2

vectors at the decoder, the difference being due to the fact that the encoder tests all

possible CU sizes and partitions and hence performs the median computation much

more often than the decoder. Some of these CUs tested by the encoder only have

a few neighboring DVs. These CUs contribute in decreasing the average compared

to the one evaluated at the decoder. In any case, most of the time, the median

computation is simple and is performed quickly. This explains why the runtime

increase at both coder sides was imperceptible. Indeed, this increase definetely exists

since MedianNBDV necessarily adds some operations to the encoder and decoder

without removing others, but it is not visible in Table 4.8 because it is really small.

Sequence
Encoder Decoder

Avg Min Max Avg Min Max

Kendo 1.9 1 11 2.2 1 9

Newspaper 1.9 1 11 2.1 1 10

Balloons 1.9 1 10 2.2 1 10

Dancer 1.9 1 10 2.2 1 10

GT Fly 2.3 1 12 2.4 1 12

Poznan Hall2 1.7 1 11 1.9 1 10

Poznan Street 2.0 1 11 2.2 1 11

Overall 1.9 1 12 2.2 1 12

Table 4.11: Average, minimum and maximum number of vectors for median computation at the
encoder and decoder side

Variants results interpretation

The 1REF, 1REF+RMPOS and the LIMIT-4 variants all succeed in reducing Max-

Cand with a small penalty on coding gains (0.1% on coded texture videos). The

performance of these three variants is roughly equivalent, but LIMIT-4 reduces Max-

Cand the most (to 4 instead of 9 or 7), making it clearly the best variant in this

category. Note that Table 4.9 shows that LIMIT-4 increases the encoder runtime

(103%) but as previously said, there is a ±3% error margin on this runtime so any

increase below 103% or any decrease above 97% is not considered valid.

The gains are more significantly reduced in the ALLOWRED variant, in which

the redundancy check on the vectors before median computation is not performed.

This can be explained by the fact that the redundancy check allows to diversify

the input vectors for the median computation, hence avoiding having the same DV
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chosen over a contiguous region with different disparity values. In addition, the

redundancy check reduces the average and maximum number of vectors (considered

on all sequences) on which the median is computed. Indeed, our experiments show

that these values would have increased to 4.0 and 14 at the encoder, and 4.8 and 14

at the decoder, respectively, if the check was not performed.

Storing only the DVs in the list while discarding DDVs also reduces the gains of

our method. Indeed, not considering DDVs in the list penalizes MedianNBDV in

case there are no DVs to insert because in that case, DVIVMP is set as a zero vector,

while in NBDV, a DDV may be chosen, which is almost always more accurate than

a zero vector. This result also validates our intuition discussed in Section 4.3.3

about the fact that the heterogeneity in lists in a video coder is more efficient than

homogeneity.

If we do not apply MedianNBDV for AMVP, the multi-view and the inter-view

candidates in the AMVP list are not improved. Consequently, a slight reduction

of the gains on the dependent views (0.1% loss) is noted with practically no influ-

ence on the encoder runtime. This validates our assumption that the contribution

of improving the multi-view and inter-view AMVP candidates in MedianNBDV is

small.

If MedianNBDV is applied for IVRP as well as IVMP, as in the APPLYRES

variant, the average coding gains remain the same as in the original method. This is

because improving the multi-view and the inter-view Merge candidates has a much

higher impact than improving IVRP. However, the slight increase in encoder runtime

in our method becomes multiplied by around 2.5 since IVRP is applied for all PUs,

including PUs coded in Intra, as opposed to IVMP. As a consequence, it becomes

visible as seen in Table 4.9. Hence, for a better coding efficiency / complexity

tradeoff, MedianNBDV should not be applied for IVRP.

Finally, we have tested replacing the median computation with a simpler average

computation (the MEAN variant). However, the coding gains obtained are small.

Some losses are even reported for the second dependent view. This can be explained

by the fact that the median allows to select a DV out of accurate, previously estim-

ated DVs, whereas the average creates a new DV which might not truly describe the

disparity at the level of the current PU.

4.5 Conclusion

In this chapter, we have presented two methods to improve IVMP in 3D-HEVC. The

first method, AIMC, introduces an inter-view DV candidate in the Merge candidate

list to increase DCP selection. Two insertion methods for AIMC have been proposed,
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one where the DV is inserted in the secondary candidate list (AIMC-1) and another

where the DV is inserted in the primary list (AIMC-2). Bitrate reductions of 0.5%

(resp. 0.6%) and 0.6% for the two side views, along with 0.2% for synthesized and

for coded+synthesized views are reported. These are accompanied by a 3% (resp.

4%) encoder runtime reduction since secondary candidates are less required to be

constructed. AIMC-1 and AIMC-2 were presented at the 2nd JCT-3V meeting and

AIMC-2 was adopted in 3D-HEVC.

The second method, MedianNBDV, tackles the sub-optimality problem in NBDV

resulting from selecting the first DV or DDV found in the search. In MedianNBDV,

all found DVs and DDVs in spatial and temporal neighboring PUs are stored together

in a single list, and the search process is never stopped. Redundant vectors in the

list are removed, and the median of the remaining vectors is computed and set as

the final DV used for IVMP. Average bitrate reductions of 0.6% and 0.8% on the

two dependent views, along with 0.2% on synthesized views are achieved with no

increase in encoder and decoder runtimes. Additional results also show that the

maximum number of vectors on which the median is computed can be reduced

from 14 to 4, with only a limited impact on the coding results. Two conference

papers were published for AIMC and MedianNBDV respectively, the first being for

the IEEE International Conference on Image Processing (ICIP) 2013 [MJCPP13c],

and the second for the IEEE workshop on Multimedia Signal Processing (MMSP)

2013 [MJPPC13].

In the future, AIMC can be improved by driving the insertion of the inter-view

candidate with a criterion which estimates, using decoded information (to avoid ad-

ditional signaling), the benefits of having the candidate in the list. In MedianNBDV,

the selection of the final DV could be based on an R-D check applied on the candid-

ates stored in the list. The DV selected would be the one yielding the lowest R-D

cost. This requires sending the index of the DV in the list to the decoder, but the

method might still bring significant gains. Hence, it is an interesting idea to consider

for future work.
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3D-HEVC utilizes the quadtree-based coding structure described in Section 2.3.1

for both the texture and depth components. In HTM, the RDO process is performed
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at each level of the quadtree to determine the best coding mode and partition size for

a CU at that level. The best depth level for the quadtree of a CU is also determined

using an R-D check. Tools aimed at speeding up the quadtree construction by

skipping some of these R-D checks are included in HTM, but these encoder shortcuts

are always accompanied by coding losses.

Furthermore, existing inter-component tools in 3D-HEVC are not designed to

directly handle this quadtree coding structure. They can only influence its construc-

tion indirectly by favoring a specific inherited coding mode or prediction parameter

amongst others, which can lead to a different partitioning of a CTU. In this chapter,

we propose a novel inter-component tool that utilizes either the coded texture or

depth quadtree to control the construction and coding of the other component’s

quadtree. The aim is to reduce encoder runtime while simultaneously improving

coding efficiency. The main idea is to force a depth CU to be less or equally parti-

tioned than its co-located texture CU. This means that if the depth is coded first, the

texture quadtree will be initialized from the depth quadtree. Otherwise, the depth

quadtree will be limited to the texture quadtree. Additionally, a predictive coding

of the quadtree of a component using the other component’s quadtree is performed

to increase coding efficiency.

Section 1 presents tools designed to speed-up the construction of the texture

and depth quadtrees. Section 2 analyzes the texture-depth quadtree relationship in

order to prove the potential of the proposed texture quadtree initialization (QTI)

and the depth quadtree limitation (QTL). Section 3 presents QTI, QTL, and their

associated predictive coding part. The results for QTI and QTL are given in a fourth

section, then analyzed in a fifth. Section 6 concludes this chapter while underlining

possibilities for future work.

5.1 State-of-the-art

HTM includes three non-normative tools that directly impact the splitting and par-

titioning of CTUs. First, an Early Skip tool checks whether the R-D cost of the Skip

mode in a 2N×2N partition is lower than a certain threshold. If that is the case,

no other prediction modes are tested and the CU is no longer split (the recursion is

stopped at this level). Second, the Coding Block Flag (CBF)-based early termina-

tion [GLL11], where after each Inter partition check, if there is no residual to code

(i.e. if the CBF equals 0) in the CU, all subsequent Inter checks (except Inter mode

in N×N) and Intra checks are no longer tested. Finally, the Early CU Termination

tool (ECU) stops the CU split at a certain depth level if the SKIP mode in 2N×2N

turned out to be the best mode at that level [CJ12].
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In JMVM (reference software of the MVC standard), these three tools have

been implemented and tested [SLA+11]. A technique that categorizes macroblocks

(MBs) into either simple or complex mode regions MBs, and in which Inter mode

checks (including time-consuming motion and disparity estimations) for the first

category are skipped, is proposed as well in [SZL12]. Also in JMVM, the Previous

Disparity Vector Disparity Estimation (PDV-DE) and Stereo-Motion Consistency

Constraint Motion and Disparity Estimation (SMCC-MDE) shortcuts are proposed

in [KHAF12] to reduce the search range for disparity estimation.

More recently, the Enhanced Depth CU (EDCU) [LK13] shortcut is proposed for

the depth component only, where the recursive split of the depth CU is stopped if

the best mode of the current depth CU is Skip and if the co-located texture CU is

encoded in Skip mode as well. Other tools [SLZ+12, TLTY12] attempt to reach a

good complexity-performance trade-off by implementing algorithms to make more

intelligent early CU termination decisions.

However, all these tools are aimed at reducing encoder runtime at the expense

of a decrease in coding efficiency as they do not allow any efficient coding of the

quadtree syntax elements. Furthermore, these tools would not be able to exploit

the relationship between the texture and the depth quadtrees as they are purely 2D

coding tools. The proposed methods exploit this relationship to both reduce the

encoder runtime and achieve coding gains.

5.2 Motivation

5.2.1 Comparison of the texture and depth quadtree

Our work in this chapter is based on the following assumption:

Assumption 1 A texture CU is at least as partitioned as its co-located depth CU.

Indeed, fine partitioning is usually performed along edges, to account for the lack

of a correct prediction for a CU. Since texture has more edges than depth due to

illumination changes, patterned textures and shadows (to which a depth map is

invariant, as mentionned in Section 1.2.2), it is thus in general more partitioned.

This can be seen in Figure 5.1 which presents the texture and depth coding and

prediction quadtrees at QP 25 in an Intra and an Inter frame of the Kendo and

Balloons sequences respectively.

Table 5.1 gives the percentage of CUs where Assumption 1 fails for four tested

QPs and for one GOP of the sequences considered (assumptions 2 and 3 will be

discussed in Section 5.3). The GOP consists of an 8-frame pyramid, with I, P and

hierarchical B pictures. The test was done under HTM-4.0 in the same coding con-
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(a) Kendo texture quadtree (Intra) (b) Kendo depth quadtree (Intra)

(c) Balloons texture quadtree (Inter) (d) Balloons depth quadtree (Inter)

Figure 5.1: Texture and depth quadtree partitions for a Kendo Intra frame and a Balloons Inter
frame at QP 25

figuration and test conditions as described later in Section 5.4.1. We can see from

Sequence
Assumption 1 Assumption 2 Assumption 3
25 30 35 40 25 30 35 40 25 30 35 40

Kendo 38 15 6 2 15 4 1 0 43 18 8 3

Newspaper 56 31 16 6 27 13 6 1 60 34 17 7

Balloons 40 19 7 4 17 7 1 0 44 21 8 5

Dancer 15 16 10 4 3 5 3 0 21 20 12 5

GT Fly 21 11 4 2 5 4 1 0 25 12 4 2

Poznan Hall2 32 11 4 2 12 3 1 0 34 13 4 2

Poznan Street 31 13 6 2 9 3 1 0 36 15 7 2

Table 5.1: Percentage of CUs per sequence and per QP where Assumptions 1, 2 and 3 fail

this table that the assumption seems reasonable. It holds particularly well for the

Dancer and the GT Fly sequences because they are computer-generated sequences

with very clean depth maps. Indeed, the depth maps of the other sequences con-

sidered are estimated using stereo matching algorithms and thus, they inherently

contain artefacts. These artefacts sometimes come out as false edges in the depth

map which cause a fine partitioning of an area that is supposed to be flat. This

area would however be coarsly partitioned in texture, hence breaking the initial as-
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sumption. These false edges are smoothed out at lower bitrates, which is why the

assumption failure percentage decreases from QP 25 to QP 40.

Furthermore, the assumption does not hold if we have two adjacent objects in

texture with similar luminance and chrominance but with different depths. In that

case, the CUs containing both objects will be split in depth and not in texture.

Particular motions (zooming for instance) also break the assumption. However these

cases are rare, and this is confirmed by the results of Table 5.1.

5.2.2 Analysis of the quadtree coding cost

Three syntax elements, sent for each CU, control the quadtree coding structure for

texture and depth. First, the split flag syntax element is sent to signal whether

a CU has been split into four sub-CUs or not. If the CU is at the highest depth

level, it cannot be further split, and hence the split flag is not sent. If the CU is not

split, a skip flag syntax element is sent to signal whether the CU has been coded in

SKIP mode or not. If not, the partition size syntax element signals the partition

shape which has been selected for coding that CU. Table 5.2 shows the percentage

of bits used to code the split flag and the partition size per slice type and for one

entire GOP (in the texture and depth bitstreams). The same software basis, test

conditions and coding configuration as the ones used to get the results of Table 5.1

were used in order to get these percentages. Results shown here are averaged across

four QPs (25, 30, 35 and 40).

Sequence
Texture Depth

I P B GOP I P B GOP

Kendo 3.2 6.1 16.6 7.5 8.2 12.1 19.4 13.3

Newspaper 3.1 7.4 22.0 5.7 9.4 14.3 20.3 13.6

Balloons 3.2 8.0 20.8 6.5 9.3 14.5 18.6 13.4

Dancer 2.9 9.1 17.9 7.0 14.6 22.8 24.2 21.9

GT Fly 4.2 11.1 21.5 8.8 10.6 17.3 18.9 16.1

Poznan Hall2 4.7 8.6 16.2 8.3 13.3 18.2 18.4 17.2

Poznan Street 3.7 7.7 14.8 7.0 10.4 15.8 20.4 15.5

Average 3.6 8.3 18.5 7.2 10.8 16.4 20.0 15.8

Table 5.2: Percentage of bits per slice type for the “split flag” plus the “part size” elements in the
texture and depth bitstreams

This table shows that there is a significant amount of bits used to code the split

flag and the partition size. The bitrate percentage for these two elements is especially

high on P and B slices for depth and on B slices for texture. And although on average,

the percentage in the GOP is higher for depth, our experiments show that the texture

as a whole represents around 90% of the entire texture+depth bitstream in HTM-4.0.
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Consequently the quadtree information of the texture represents 6.5% (7.2%× 0.9)

of the entire bitstream, while the quadtree information for depth represents only

1.6% (15.8%× 0.1).

5.2.3 Conclusion

Since the assumption seems reasonable judging from Table 5.1, the encoder runtime

is expected to be reduced if the quadtree structure of a texture CTU is directly

initialized from that of the depth or if the quadtree structure of a depth CTU is

limited to that of the texture. The encoder runtime reduction can be evaluated fairly

in both components since the texture and depth runtimes are roughly the same in

HTM-4.0 (coding all texture views takes, on average, 55% of the total encoding time

of the sequences, while coding the depth views takes the remaining 45%).

Furthermore, Table 5.2 shows that the cost of the quadtree syntax element is

significant, especially in texture. There is much to be gained from an efficient coding

of these elements.

Consequently, a texture quadtree initialization using depth and a depth quadtree

limitation using texture, with a quadtree predictive coding scheme in both methods

can achieve both encoder runtime reduction and coding gains.

5.3 Proposed methods

5.3.1 Texture quadtree initialization

Proposed scheme

When the depth is coded before the texture, the texture encoder has access to the

quadtree information (split flag and partition size) of the co-located CU in depth to

control the quadtree of a currently coded texture CU. Based on our assumption, we

propose to force a texture CU to be at least as partitioned as its corresponding depth

CU. In other words, the quadtree of the texture CU is initialized from the quadtree

of the depth CU; it can be further partitioned but not less. This has two benefits: it

can reduce encoder runtime since certain coding modes are no longer checked, and

allow a predictive coding of the quadtree syntax elements of the texture which, in

turn, will increase coding efficiency. The rest of this section will detail the texture

quadtree initialization (QTI) and its associated predictive coding part (PC).

Figure 5.2 shows all possible depth CU partitions and the allowed texture CU

partitions in each case, at a specific depth level L. It does not show the allowed

texture sub-CU partitions at level L+1 if the CU at depth level L was split. Indeed,

this scheme is recursive; it can be applied the same way for each sub-CU.
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If the depth CU is split or has a partition size of N×N , as in case (a), the texture

CU is forced to be split or partitioned in N×N respectively. Other partitions are

not checked, and no split flag or partition size is sent for the texture CU. In case (b)

and (c), the only partition allowed for the texture CU is N×2N (respectively 2N×N).

Splitting the texture CU is also possible. Hence, the encoder only sends the split

flag. If the CU is not split, the partition size is inferred from the depth CU. In case

(d), all texture modes and partitions are checked, the encoder needs to send both

the split flag and the partition size in this case. Note that in all cases, splitting the

texture is always an option. Hence, in QTI, the recursion is never stopped at any

level, it is the starting level that is set.
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Figure 5.2: Allowed texture partitions in QTI

Flexible QTI+1 variant

The proposed scheme sometimes leads to a sub optimal (R-D wise) partitioning of

a texture CU as it can force an unnecessary split or partition when an assumption

failure occurs. The texture quadtree is said to be altered, meaning it has changed

from what the RDO process intended it to be. We define the severity of a scheme in

QTI by the amount of forced split and partitions the scheme imposes in a CTU. The

least severe scheme is where no forcing is done (reference coding). The most severe

scheme is where each CU is forced to be split or partitioned in N×N. Forcing splits

and partitions however removes the need of sending split flags and / or partition sizes.

Consequently, the more severe the scheme is, the more it alters the texture quadtree,
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but the more bitrate reduction it allows as well. An efficient coding scheme has a

severity level that achieves a good compromise between the amount of alteration

and the amount of bitrate reduction.

In this chapter, we propose a less severe scheme for QTI that we call QTI+1

which relies on the following assumption:

Assumption 2 A texture CU is at least one depth level less partitionned than its

co-located depth CU.

This scheme forces to split the texture CU at depth level L only if the depth CU

is split at depth level L + 1 (hence the name), as shown in Figure 5.3. The split

flag for the texture CU does not need to be sent in this case. In any other case, the

decision is left for the R-D based optimization process, and consequently the split

flags and partition sizes need to be sent. Compared to Assumption 1, Assumption 2

fails less often, as can be seen in Table 5.1. Hence, this flexible scheme alters the

texture quadtree less often but at the expense of a lower bitrate reduction potential.

Note that this scheme is recursive as well, it can be applied in the same way for each

sub-CU at depth level L+ 1 if the CU at level L is split.
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Figure 5.3: The QTI+1 variant

5.3.2 Depth quadtree limitation

Proposed scheme

When texture is coded first, the depth encoder has access to the split flag and the

partition size of the co-located texture CU to control the quadtree of a currently

coded depth CU. The same assumption as in QTI is considered: a depth CU is, at

most, as partitioned as its co-located texture CU. In other words, the depth quadtree

is limited to that of the texture. This also has two benefits since encoder runtime

can be reduced, and coding efficiency increased. The rest of this section will detail

the depth quadtree limitation (QTL) and its associated predictive coding part (PC).

Figure 5.4 shows the allowed depth partitions per possible texture partition in

QTL. If the texture is partitioned either in 2N×2N, N×2N, or 2N×N as in case (a),

the depth is forced to be in 2N×2N. The encoder will not check smaller partition

sizes, and will not try to split the depth CU. Also, it does not need to send the split
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flag or partition size for that CU. In case (b), all partition sizes are checked and

splitting the depth CU is allowed. The split flag and partition size need to be sent.

This case does not yield any encoder runtime reduction nor coding gains compared

to a reference coding.
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Figure 5.4: Allowed depth partitions in QTL

Strict QTL-1 variant

The proposed depth quadtree limitation scheme has a certain level of severity. Just

like in QTI, we can adjust this severity level to obtain a better trade-off between

the amount of quadtree alteration and the potential of bitrate reduction. A more

severe scheme for QTL was thus studied in this work, which relies on the following

assumption:

Assumption 3 A depth CU is at most one depth level less partitionned than its

co-located texture CU.

In this scheme, the depth CU at depth level L is only allowed to be split or rectan-

gularly partitioned if the texture is split at depth level L+1. In any other case, the

depth CU is forced to be partitioned in 2N×2N. This scheme, called QTL-1, is more

severe than QTL, because no split flags or partition sizes are sent for both cases of

the original QTL scheme. However, the alteration level is also higher since there are

more assumption failures, as can be seen from Table 5.1.

5.3.3 Impact on the codec architecture

QTL+PC and QTI+PC include a predictive coding scheme where the split flag

and/or the partition size for a CU are not sent in some cases. Similarly as for the

MPI tool, this implies a parsing dependency since the decoder needs to check the

texture or depth quadtree to know whether to parse or not the two syntax elements.

It is most likely that any realistic implementation of 3D-HEVC will perform at most

a parallel parsing with one CTU delay given that parallel decoding is forbidden
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by the following tools: DMM and MPI. This is possible with both QTL+PC and

QTI+PC.

On the encoder side, this whole set of tools enables a one CTU delay parallel en-

coding, whatever the component coding order. This one CTU delay parallelization

strategy also enables a very limited increase of the memory requirements, result-

ing from the storage of the quadtree information due to QTL, MPI or QTI, tiny

compared to other data to be stored at the CTU level.

5.4 Experimental results

5.4.1 Experimental setting

We implement QTI, QTL, their predictive coding parts, and their variants in HTM-

4.0 [Tecb]. The standard texture-before-depth coding order in HTM-4.0 allows test-

ing QTL+PC. An extension of the HTM-4.0 software [Tecc] includes the Flexible

Coding Order (FCO) tool. FCO allows changing the coding order to depth-before-

texture for dependent views only, which in turn allows testing QTI+PC for the side

views. FCO cannot change the coding order in the base view since the processing

of the base view needs to remain HEVC compatible. Hence QTI+PC cannot be ap-

plied for the base view. In our QTI experiments, the coding of the base view remains

consequently unchanged. It is important to note that we could apply QTL+PC in

the base view to code the depth, but that would not allow for a fair evaluation of

QTI since results would be mixed in with QTL results.

Aside from the changed coding order for QTI, we strictly follow the CTCs [RMV13].

Note that the following encoder shortcuts are enabled to conform to CTCs: fast en-

coder control (FEN), fast decision for Merge RD cost (FDM).

5.4.2 QTI results

Tables 5.3, 5.4 and 5.5 present the BD-Rate coding results of QTI, QTI+PC, and

the variant QTI+1+PC (positive values are losses). QTI succesfully reduces encoder

runtime by 10% because certain coding modes and partition sizes are no longer

checked for CUs, as explained in Section 5.3.1. This is however accompanied by

around 1% bitrate increase on coded views and on synthesized views.

When the predictive coding part is added, the BD-Rate losses are largely reduced.

A bitrate reduction of 1.3% and 0.4% is achieved on side views and on coded and

synthesized views respectively compared to QTI alone. This comes with a small

increase in encoding runtime due to memory accesses to the depth component and

additional checks, making a total runtime reduction of 6%. The bitrate reductions
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Sequence
Video

Synt. Coded+Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 2.6 2.2 0.9 0.8 0.8 91 100

Kendo 0.0 3.4 3.5 1.4 1.1 1.1 87 96

Newspaper 0.0 5.3 3.8 1.7 1.4 1.4 87 99

GT Fly 0.0 3.0 3.5 0.8 0.7 0.7 87 100

Poznan Hall2 0.0 2.8 2.6 1.1 0.9 0.9 92 99

Poznan Street 0.0 1.8 2.0 0.6 0.5 0.5 93 100

Dancer 0.0 2.4 2.5 0.7 0.6 0.6 92 99

Average 0.0 3.0 2.9 1.0 0.9 0.9 90 99

Table 5.3: BD-Rate coding results per sequence, in %, of QTI

Sequence
Video

Synt. Coded+Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 1.7 1.4 0.6 0.5 0.5 90 100

Kendo 0.0 1.9 2.1 0.8 0.7 0.7 91 97

Newspaper 0.0 3.0 2.3 1.0 0.9 0.8 87 93

GT Fly 0.0 1.7 2.2 0.5 0.4 0.4 94 103

Poznan Hall2 0.0 1.3 1.6 0.6 0.5 0.5 104 101

Poznan Street 0.0 1.1 1.1 0.3 0.3 0.3 97 101

Dancer 0.0 1.1 1.1 0.3 0.3 0.3 101 108

Average 0.0 1.7 1.7 0.6 0.5 0.5 95 100

Table 5.4: BD-Rate coding results per sequence, in %, of QTI+PC

Sequence
Video

Synt. Coded+Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 0.1 0.0 0.0 0.0 0.0 87 105

Kendo 0.0 0.2 0.2 0.1 0.1 0.1 86 96

Newspaper 0.0 0.1 0.1 0.0 0.1 0.1 86 92

GT Fly 0.0 0.3 0.6 0.1 0.1 0.1 92 117

Poznan Hall2 0.0 -0.1 0.0 0.0 0.0 0.0 105 101

Poznan Street 0.0 -0.2 0.2 0.0 0.0 0.0 102 99

Dancer 0.0 0.1 0.1 0.0 0.0 0.0 101 99

Average 0.0 0.1 0.2 0.0 0.1 0.0 94 101

Table 5.5: BD-Rate coding results per sequence, in %, of QTI+1+PC



104
5. Initialization, limitation and predictive coding of the texture and

depth quadtrees in 3D-HEVC

however are not large enough to compensate all the losses in QTI, hence the remain-

ing overall BD-Rate losses in QTI+PC.

The QTI+1 variant relaxes the severity of the scheme by only forcing to split a

texture CU if the co-located depth CU is split at the next depth level. Here, the

texture quadtree is less altered but the bitrate reduction potential is also reduced.

QTI+1+PC still achieves the same encoder runtime savings as QTI+PC but with

only a small coding loss of 0.1% on coded and synthesized views.

5.4.3 QTL results

Objective results

Tables 5.6, 5.7 and 5.8 shows the BD-Rate coding results and runtimes of QTL,

QTL+PC, and QTL-1+PC. Notice that in these tables, the “Video” columns are

removed since QTL does not affect texture data. A new column, “Depth”, is added

to show BD-Rate coding results evaluated only on the depth component. Only

the depth PSNR and depth bitrate are considered in this computation. Another

column, “Video total” is added wherein the average PSNR of the coded texture

videos is measured against the total texture+depth bitrate. Since QTI does not

affect depth, these two columns are not shown in Tables 5.3, 5.4 and 5.5.

Sequence Depth Video total Synt. Coded+Synt.
Runtimes
Enc Dec

Balloons -15.7 -1.4 1.3 0.4 68 98

Kendo -11.5 -1.3 0.9 0.2 64 98

Newspaper -15.1 -1.8 2.0 0.7 64 100

GT Fly -20.6 -1.2 0.0 -0.4 62 100

Poznan Hall2 -24.5 -2.3 0.6 -0.3 69 98

Poznan Street -15.3 -1.0 0.1 -0.2 74 87

Dancer -37.8 -1.0 0.2 -0.2 65 99

Average -20.1 -1.4 0.7 0.0 66 97

Table 5.6: BD-Rate coding results per sequence, in %, of QTL

As seen in Table 5.6, QTL achieves a significant 34% encoder runtime reduc-

tion, while introducing coding losses on synthesized views. The predictive coding

part brings an additional 0.3% bitrate reduction in both the synthesized and the

coded+synthesized columns but with a little runtime penalty due to the additional

access to texture data. The QTL-1+PC variant is a more radical scheme: it achieves

34% encoder runtime reduction, but at the expense of a bigger coding loss of 1.1%

on synthesized views. Consequently, QTL+PC achieves a better coding gain vs.

encoder runtime reduction trade-off than QTL-1+PC.
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Sequence Depth Video total Synt. Coded+Synt.
Runtimes
Enc Dec

Balloons -18.2 -1.7 1.0 0.1 76 102

Kendo -14.3 -1.6 0.6 -0.2 68 99

Newspaper -17.9 -2.3 1.6 0.3 66 100

GT Fly -23.7 -1.4 -0.2 -0.6 70 99

Poznan Hall2 -28.1 -2.9 0.0 -0.9 65 97

Poznan Street -18.7 -1.2 -0.1 -0.5 69 87

Dancer -40.6 -1.3 -0.1 -0.5 69 99

Average -23.1 -1.8 0.4 -0.3 69 97

Table 5.7: BD-Rate coding results per sequence, in %, of QTL+PC

Sequence Depth Video total Synt. Coded+Synt.
Runtimes
Enc Dec

Balloons -24.7 -2.2 1.6 0.4 71 103

Kendo -15.8 -2.0 1.4 0.3 65 98

Newspaper -23.4 -2.9 2.8 0.9 66 103

GT Fly -37.3 -2.0 0.2 -0.5 67 99

Poznan Hall2 -35.3 -3.6 0.6 -0.7 61 99

Poznan Street -25.5 -1.6 0.2 -0.3 70 88

Dancer -47.3 -1.9 0.6 -0.2 64 99

Average -29.9 -2.3 1.1 0.0 66 98

Table 5.8: BD-Rate coding results per sequence, in %, of QTL-1+PC

Subjective results

Table 5.7 shows that QTL+PC gives losses, on average, on synthesized views. These

are due to smoothing out wrong edges in depth, which is in fact an improvement

brought by the tool. To show that QTL+PC does not add any new artefacts on

synthesized views, a subjective viewing session was conducted during the 2nd JCT-

3V meeting [JM12b]. A 3D and a 2D test were performed. For each test, two

sequences (Balloons and Newspaper) at two QPs (25 and 35) each were evaluated.

QP 25 was selected because it yields the highest coding losses on synthesized views.

QP 35 was selected to provide complementary information for lower bitrates.

In the 3D test, a stereo sequence was constructed from the two synthesized views

that are closest to the center view, and was projected onto a 3D screen. In the

2D test, the closest synthesized view to the left of the center view was selected for

projection. These synthesized views were rendered from texture and depth coded

using the reference software HTM-4.0 on the one hand, and with our tool enabled on

the other hand. Hence two sequences, A and B, were projected to nine (5 JCT-3V

experts, and 4 non-experts) viewers in this order: A B A B. The viewers did not
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Test Sequence + QP
Viewer

AVG
AVG /
Test1 2 3 4 5 6 7 8 9

3D

Balloons 25 0 -1 -1 -1 0 0 -1 -1 0 -0.6

-0.1
Newspaper 25 0 0 0 1 0 0 0 0 0 0.1
Balloons 35 1 1 0 0 0 1 1 0 0 0.4

Newspaper 35 0 0 -1 0 0 0 0 -1 0 -0.2

2D

Balloons 25 1 0 0 0 0 0 0 1 0 0.2

-0.2
Newspaper 25 -1 -1 -1 -1 0 0 -1 0 -1 -0.7
Balloons 35 0 0 0 1 -1 -1 0 1 0 0

Newspaper 35 0 -1 0 -1 -1 1 0 -1 0 -0.3

Table 5.9: Coding scores from subjective viewing experiments for 2D and 3D tests

know what A and B corresponded to. Actually, A was set as the reference for some

viewings and as the proposed method for others. The viewers were asked to rate if

A is largely better (a score of +3 is given), better (+2), slightly better (+1), same

as (0), slightly worse (-1), worse (-2) or largely worse (-3) than B. Table 5.9 shows

the coding scores for the 2D and the 3D test, where a negative value represents an

improvement resulting from the use of the proposed QTL+PC method.

In both the 2D and the 3D test, no score above 1 or below -1 is reported. It is

thus confirmed that no new annoying artifact is noticeable. In the 3D test, results

were particularly consistent: for each sequence, there was either no difference, or one

of the method claimed as slightly better. Said differently, for one given experiment,

it is not possible to find a score of +1 and -1 simultaneously. The proposed method is

even favored with an average score of -0.1 and -0.2 in the 3D and 2D case respectively.

This confirms that smoothing out the wrong edges in QTL+PC actually tends to

be beneficial.

5.4.4 Comparison with state-of-the-art encoder shortcuts

Table 5.10 shows the average coding gains of QTL+PC and QTI+1+PC compared

to state-of-the-art encoder shortcuts: ECU, CBF and EDCU, defined in Section 5.1.

ECU and CBF are 2D video shortcuts, applicable to both texture and depth com-

ponents. Thus, for fairness of evaluation, we have compared ECU and CBF applied

on texture only (resp. depth only) with QTI+PC (resp. QTL+PC). EDCU is a

depth only encoder shortcut and was thus compared only with QTL+PC.

Table 5.10 shows that QTL+PC achieved more bitrate and encoder runtime

reductions than its competitors. For texture coding, ECU-T and CBF-T achieved

more encoder runtime reductions than QTI+1+PC, at the expense of a bigger loss

in the “Video Total” column.
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Method
Video

Video total Synt. Enc
0 1 2 Avg

QTL+PC 0.0 0.0 0.0 0.0 -1.8 0.4 69

ECU-D 0.0 0.0 0.0 0.0 -2.2 1.1 76

EDCU 0.0 0.0 0.0 0.0 -1.4 0.4 82

CBF-D 0.0 0.0 0.0 0.0 -0.2 0.3 85

QTI+1+PC 0.0 0.1 0.2 0.0 0.0 0.1 94

ECU-T 0.3 -1.2 -1.1 0.5 0.7 -0.1 63

CBF-T 0.9 0.5 0.5 0.9 1.0 0.7 72

Table 5.10: Average BD-Rate coding results of QTI+1+PC, QTL+PC and other recent encoder
shortcuts

5.5 Results interpretation and analysis

5.5.1 Analysis of QTI results

Table 5.11 shows in which cases encoder runtime savings, bitrate savings and coding

losses occur in QTI+PC. When a depth CTU is homogeneous (not split), QTI+PC

CTU
Texture

Homogeneous
64×64

Textured/Edge
8×8

Depth
Homogeneous

64×64

QTI+PC: no impact

QTL+PC: runtime saving
+ bitrate reduction

QTI+PC: no impact

QTL+PC: no impact

Textured/Edge
8×8

QTI+PC: coding loss
+ runtime saving

QTL+PC: runtime saving
+ bitrate reduction
+ synth. PSNR drop

QTI+PC:
bitrate reduction
+ runtime saving

QTL+PC:
bitrate reduction

Table 5.11: Analysis of impact on coding loss, bitrate reduction and encoder runtime in QTI+PC
and QTL+PC under different combinations of depth and texture CTUs

does not impact the texture quadtree construction nor its coding. When a depth

CTU contains an edge and is split accordingly, if the texture CTU is split as well,

QTI brings encoder runtime savings since coding modes and partition sizes are no

longer checked for low depth level CUs. The predictive coding part further brings

bitrate reductions since the split flag and partition size for low level CUs are not sent

in the bitstream. If the texture CTU is homogeneous while the depth CTU is split,

our initial assumption no longer holds. Runtime savings are achieved but coding

losses occur since the texture quadtree is altered. This is shown in Figure 5.5:

while the highlighted texture CTUs are homogeneous in reference coding as seen
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in Figure 5.5(b), they become as partitioned as the co-located depth CTUs with

QTI+PC, as seen in Figure 5.5(c). This situation is relatively unfrequent, as can be

seen from Table 5.1, but it is responsible for the coding losses shown in Table 5.3

for QTI alone.

(a) Depth quadtree in reference cod-
ing

(b) Texture quadtree in reference
coding

(c) Texture quadtree with QTI+PC (d) Texture quadtree with
QTI+1+PC

Figure 5.5: Texture quadtree in reference coding, with QTI+PC and QTI+1+PC. Gray CUs are
coded in SKIP mode, and green CUs in Inter

We can see from Table 5.11 that encoder runtime savings in QTI only occur

when the depth CTU is split. Actually, they are possible only if a depth CU is

split or partitioned in N×2N or 2N×N, which correspond to cases (a), (b) and (c)

respectively in Figure 5.2. The percentage of these three cases, that we call FT for

Favorable for Texture, is shown in Table 5.12 for each sequence. This table shows

that overall, the percentage of CUs wherein encoder runtime savings are possible is

only 9.2% which explains why the runtime savings in QTI were not larger than 10%.

Furthermore, the predictive coding part of the tool brings bitrate reductions

only on those 9.2% of CUs as well. Consequently, the amount of bitrate reduction

is not sufficient to compensate all the losses in QTI that are due to assumption

failures. Hence, coding losses are still reported in QTI+PC. In QTI+1+PC, the

more flexible scheme reduces the alteration of the texture quadtree while decreasing

the FT percentage in the process. Figure 5.5(d) indeed shows that QTI+1+PC

allowed the highlighted texture CTUs, to be one level less partitioned than the
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Sequence FT FD

Kendo 10.3 82.1

Newspaper 11.4 87.0

Balloons 8.8 87.5

Dancer 11.4 80.9

GT Fly 7.4 84.5

Poznan Hall2 5.5 89.2

Poznan Street 9.8 82.5

Average 9.2 84.9

Table 5.12: The FT and FD percentages per sequence

depth CTUs, hence reducing the texture quadtree alteration compared to QTI+PC,

and the losses that come along with it. The resulting trade-off nearly removes all

coding losses (only a small 0.1% loss is reported).

When applied on the texture component only, ECU reduces significantly the

encoder runtime by 37% because it is applied often. It gives losses on the central

view but significant gains on the dependent views. Indeed, a significant PSNR drop

is noticeable in these views, but well compensated by an equally significant bitrate

reduction. This PSNR drop is no longer compensated when taking into account

the PSNR and bitrate of the central view hence the 0.5% loss in the “Video Avg”

column in Table 5.10. When also taking into account the depth bitrate in the BD-

Rate computation, the results are even worse (0.7% loss). QTI+1+PC is applied

less often than ECU, hence only reducing encoder runtime by 6%. However, it

also does not alter the texture enough to cause such a major PSNR drop, hence not

presenting any coding loss when evaluating the coded views PSNR against the coded

views bitrate or against the coded views + depth bitrate. In mobile applications for

instance where encoder runtime savings are primordial, ECU on texture could be

preferred over QTI+1+PC. In other applications which do not involve view synthesis,

and where only the R-D performance of the coded texture views counts, QTI+1+PC

could be more suitable than ECU-T. Note that QTI+1+PC also gives lower losses

in general than CBF-T in all evaluation scenarios, although CBF-T gives larger

runtime reductions.

5.5.2 Analysis of QTL results

Table 5.11 shows that when the texture and depth CTUs are homogeneous, runtime

savings are achieved since coding modes and partition sizes are no longer checked for

high level CUs in depth. The recursion is stopped at depth level 0, hence bringing

significant runtime reduction. Also, a small bitrate saving is achieved with the

predictive coding part since neither the split flag or the partition size of the CTU
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needs to be sent. If only the depth is split to achieve better prediction on an edge,

then our assumption no longer holds. In this case, the runtime and bitrate reductions

are accompanied by a loss of quality on synthesized views. This does not happen

very frequently however, as can be seen in Table 5.1. When the texture is split, if

the depth CTU is homogeneous, QTL+PC has no impact on coding the depth CTU.

If the depth CTU is also split, only bitrate reductions are achieved by not sending

the quadtree information for high level depth CUs.

We can see from Table 5.11 that the CUs wherein bitrate reductions and runtime

savings are possible in depth have an homogeneous co-located texture CU. Actually,

these reductions occur when the texture CU is partitioned in 2N×2N, N×2N, or

2N×N, which correspond to case (a) in Figure 5.4. The percentage of these CUs,

that we call Favorable for Depth (FD), is given in Table 5.12, for each sequence.

Overall, the FD percentage equals 84.9%, which is relatively high. This explains the

significant runtime reduction and bitrate savings in QTL+PC. The large difference

between the FT and FD percentages also explains the performance gap between

QTI+PC and QTL+PC in terms of runtime reductions. The predictive coding

part achieved however nearly the same coding gains in both tools, as it gave -0.3%

and -0.4% on coded+synthesized in QTL and QTI respectively. Since FD is much

higher than FT, the predictive coding in QTI should have given less gains. However,

the cost of transmitting the split flag and partition size in the bitstream is higher

in texture than in depth (6.5% against 1.6%), as shown in Section 5.2.2, so even

though the predictive coding is less used in QTI, it has more impact there than in

QTL.

The example in Figure 5.6 shows how QTL successfully smoothes out wrong

edges in depth. Indeed, the texture background area, as shown in Figure 5.6(a) is

planar. Its corresponding CTUs are not split (or at most, split once). In depth,

the corresponding area should normally be planar as well, but a badly performed

stereo matching created a wrong edge in that area, highlighted in Figure 5.6(b).

Consequently, when QTL is not used, the CTUs corresponding to that depth area

are split, as seen in Figure 5.6(d). When QTL is used, the depth quadtree is limited

to the texture quadtree: the depth CTUs are not split, hence smoothing out the

wrong edge, as shown in Figure 5.6(e).

These wrong edges are still present in reference coding, and when comparing to

an uncompressed synthesized view, rendered with an original depth that contains

these wrong edges, the reference coding appears to be better than QTL+PC. This is

visible in the“Synth.” column in Table 5.7 which reports losses, due to a PSNR drop

on synthesized views from smoothing out wrong edges. While there is a significant

depth bitrate reduction brought by QTL+PC, evaluated at 23.1% on the depth
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(a) Texture area (b) Depth area (c) Texture quadtree

(d) Depth quadtree with refer-
ence

(e) Depth quadtree with
QTL+PC

Figure 5.6: Depth quadtree with reference coding and with QTL. Gray CUs are coded in SKIP
mode, green CUs in Inter and red CUs in Intra

component as shown in Table 5.7, this reduction is not able to compensate this

PSNR drop.

However, smoothing out the wrong edges in depth is actually an improvement

since the quality of the synthesized views will be increased. Indeed, the subjective

results in Table 5.9 confirm that there is no actual degradation in the quality of the

synthesized views. In fact, on average, our tool was found to be better than the

reference, especially on the 2D test where the potential artefacts resulting from the

use of our tool, if any, would be more noticeable anyway.

In the coded+synthesized column, the PSNR considered is the average between

the 6 PSNRs of the synthesized views and the 3 PSNRs of the coded texture views,

which do not change using our method since QTL does not affect the texture com-

ponent. Consequently, the PSNR drop on the synthesized views is attenuated in this

column, and can therefore be compensated by the bitrate reduction on the depth

component, leading to the shown overall BD-Rate gains.

Furthermore, since neither the PSNR nor the bitrate of the coded texture videos

change in QTL+PC, the depth bitrate reductions are directly visible in the “Video

total” column, and although attenuated by the added texture bitrate, they are still

significant.

Compared to QTL+PC, ECU applied only on depth achieves lower runtime

reduction than QTL+PC. ECU however gives a more significant bitrate reduction on
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the depth component alone, which is visible in the“Video total”column in Table 5.10

(-2.2% gain). ECU, which was presented initially as a 2D encoder shortcut in HM, is

based on the assumption that if a CU is best coded in Skip mode, splitting it further

would not allow to find a better configuration, R-D wise. Altough the assumption is

valid for texture, it is not appropriate for depth since any failures in this assumption

would cause smoothing out an edge in depth, hence heavily impacting the synthesis.

And unlike in QTL+PC, these are not necessarily wrong edges. Consequently, a

significant PSNR drop on the synthesized views is observed, causing a 1.1% loss.

These losses are not present in QTL+PC. EDCU conditions the application of ECU

using an additional constraint: the co-located texture CU must be coded in Skip

as well. Consequently, EDCU is less applied than ECU, hence giving lower runtime

reductions (18% instead of 24%), but also lower losses on synthesized views, and

an R-D performance only slightly worse than QTL+PC. As for CBF applied only

on depth, it gives a worse R-D performance than QTL+PC and a lower runtime

reduction.

Finally, note that at the time of developping QTI+PC and QTL+PC, the most

recent HTM software version was HTM-4.0. Since then, many tools have been ad-

ded or removed from the software. In the more recent HTM-8.0 version, released

in September 2013, the coding performance of QTL+PC is only slightly reduced:

QTL+PC achieves a 1.2% loss on synthesized views (but as said earlier, these are

not real losses) and -1.4% gain in the “Video total” column. However, the encoder

runtime reductions QTL+PC offers have increased to 41%. This is due to the ad-

option in HTM-8.0 of two encoder shortcuts for texture: early Merge mode decision

and early CU splitting termination [ZCL+13]. The first shortcut omits the exam-

ination of Intra and Inter modes after Merge and Skip modes if all five inter-view

neighboring blocks (the base view CU and its four directly adjacent CUs correspond-

ing to the current CU in the dependent view) are coded in Merge modes and if the

R-D performance of Skip mode is better than Merge mode for the current CU. The

second shortcut stops the CU splitting process if the CU splitting depth of the cur-

rent CU is equal to or larger than the maximum depth of the CU splitting depths

of the five inter-view neighboring blocks and if Skip mode is selected as the best

prediction mode for the current CU after checking all possible prediction modes.

These two shortcuts tend to make the dependent texture views less partitionned,

allowing to apply more frequently the limitation in depth coding, and consequently

increasing the encoder runtime savings.
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5.6 Conclusion

In this chapter, we have presented the texture quadtree initialization (QTI) and the

depth quadtree limitation (QTL) coding tools and their associated predictive coding

(PC) part. QTI+PC and QTL+PC are able to reduce encoder runtime and achieve

coding gains by exploiting texture-depth correlations.

QTI+PC brings 6% encoder runtime reduction. The method is promising, al-

though the assumption failures, essentially due to wrong edges in depth, cause

coding losses. In a more flexible scheme, the runtime reductions are maintained,

and the coding losses are almost entirely compensated by the bitrate reductions the

predictive coding part brings. In the future, a more flexible scheme that achieves a

better compromise between level of texture quadtree alteration and bitrate reduction

potential needs to be found.

QTL+PC, on the other hand, reduces encoder runtime significantly by 31% while

achieving -0.3% coding gain on average for coded and synthesized views, -23.1% on

depths, and -1.8% on coded videos when the depth bitrate is considered. It can also

smooth out wrong edges in depth, which eventually leads to a better synthesis quality.

QTL+PC was presented in the 2nd JCT-3V meeting and was adopted in both the

3D-HEVC working draft and software [JM12a]. Furthermore, a journal article on

QTI+PC and QTL+PC was published in the IEEE Transactions on Circuits and

Systems for Video Technology (TCSVT) [MJCPP13b].
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In computer vision, optical flow is a technique that allows to obtain a dense mo-

tion vector field that maps the motion of each pixel from one frame to another. This

dense motion estimation technique differs from block-based techniques, currently

used in most video codecs, which determine a single vector for all pixels in a block.

While the dense motion vector fields obtained using optical flow give more accurate

block predictions, transmitting a motion vector for each pixel is costly and it can

quickly compensate all potential gains of such a technique. The use of optical flows

in video compression has thus always been very limited, its main applications being

in computer vision.
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In this chapter, we propose a method in 3D-HEVC that employs dense motion

estimation using optical flows to improve temporal predictions in dependent views,

without the need of signaling the resulting dense motion vector field. This is done us-

ing a smart decoder, which also performs the dense motion estimation on compressed

frames in the base view.

In a first section of this chapter, we present a state-of-the-art on the use of optical

flow in video compression, and on smart decoder coding approaches. Our method

is motivated in a second section, then presented and detailed, along with two other

variants, in a third section. The experimental results associated with our method

and its variants are presented and interpreted in a fourth section, followed by a

conclusion where we underline possibilites for future work.

6.1 State-of-the-art

6.1.1 Optical flow

Optical flow (OF) is a method for deriving a Dense Motion Vector Field (DMVF) for

a given frame or parts of a frame, where each pixel is associated with a motion vector.

Many OF algorithms have been developed over the past thirty years, prominently

the Horn and Schunck [HS81] and Lucas and Kanade [LK81] methods which are

both based on the spatio-temporal derivatives in a video sequence.

OF is mostly used in video indexing [ALC96, CHWZ08], object detection / re-

cognition / tracking [DFS09, Zha10, SLP13], and feature extraction in video se-

quences [RSP10, HYK03]. In video compression, some dense motion estimation tech-

niques similar to OF have been used in Distributed Video Coding (DVC) [CMPP09,

CMMPP09, MMCPP09] but only because in DVC, the motion estimation is per-

formed at the decoder, and hence there is no need to transmit the vectors. In

classical video coding, OF has rarely been a serious contender against block-based

motion estimation, since the signaling overhead associated with coding the motion

vectors of each pixel is too large.

Some techniques attempt to reduce this overhead. In [LSZ97], a Discrete Co-

sine Transform (DCT) is applied to the motion vectors of the OF field to exploit

redundancies and increase coding efficiency. However, the experimental protocol is

questionable and the results are not particularly convincing. In [KMW95], a Hier-

archical Finite Elements (HFE) representation is used to code the motion vectors

of the OF field. It is reported that the method brings 0.6 dB over block matching

algorithms (BMA), but it is unclear in which standard this method was implemented

in. Also, the method is fairly old, and it is questionable if this representation might

still work in recent video standards such as HEVC which already provides significant
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coding gains over older standards. In [KCCL96], the motion vectors of the OF field

are transformed using Arbitrary Shaped Transforms (ASTs). However, the extra

overhead resulting from signaling which shape was used to transform which block of

vectors is also costly. Finally in [CTEC07], the OF is used in a way to derive only

one vector per macroblock instead of a DMVF. The technique comes close to the

coding performance of BMA but with a reported complexity saving. It obviously

fails however to exploit the full potential of OF.

6.1.2 Smart decoder approaches

In classical video coding schemes, the encoder performs an exhaustive search over

all coding parameters (prediction mode, partitionning, motion vectors) and trans-

mits the best (RD-wise) coding choices in the bitstream. The decoder simply parses

sequentially these coding parameters and reconstructs the video. All the computa-

tional complexity is thus concentrated at the encoder while the normalized decoder

is light in terms of computations.

These classical video coding schemes maximize the quality of the prediction by ex-

ploiting spatio-temporal redundancies through diverse coding choices. This intense

competition bounds the global coding performance through the induced signaling

costs and the ever-decreasing coding gain margins.

In this context, transferring parts of the operations to the decoder can avoid

coding specific information while maintaining the accuracy of the predictions. This

complexity switch is not new, it has already been proposed in the Distributed Video

Coding (DVC) paradigm [GARRM05]. DVC moves the entire computational com-

plexity from the encoder to the decoder. This is useful for recording systems with

low computational power (like cellphones or surveillance cameras) that require cod-

ing a video with a limited complexity while guaranteeing a satisfactory video quality

after decoding. More conventional coding schemes where only some operations are

moved to the decoder, hence resulting in a more equitable load at both sides, were

developped as well. The decoder in these cases becomes referred to as a “smart

decoder”.

Examples of smart decoder approaches include template matching in the Intra

and Inter coding modes. In Intra, the basic idea, proposed in [TBS06], defines a

shape composed of causal pixels neighboring the current block (Bcur) as a target T ,

as shown in Figure 6.1(a). An exhaustive search accross a number of N blocks, is

then performed in a similar way at the encoder and at the decoder, to find a causal

block (Bn
ref), whose neighboring pixels (Sn) minimize a matching criterion like the
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pixel-wise SSD with T :

n = arg min
i=0..N-1

{
SSD(T, Si)

}
(6.1)

Bn
ref will then serve as a predictor for Bcur. However, even though they have similar

neighboring pixel values, Bref might not be the most efficient predictor for Bcur.

Hence, in [MADB10], it is proposed to compute the RD cost associated with each

predictor in a subset of N ′ (N ′ < N) best potential predictors (who best minimize

the SSD between T and Si), and signal the index of the one associated with the

lowest cost in the bitstream. This reportedly brings 4% bitrate reduction in an all-

Intra coding configuration. In [CGT+12], template matching and block matching

in Intra replace two of the eight Intra prediction modes in H.264/AVC. This brings

-24.8% and -16.7% gain on low and high bitrates respectively.
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Figure 6.1: Template matching in Intra and Inter coding modes

In Inter, the template matching process is the same, except that Bn
ref is searched

for in an already coded temporal reference frame, as shown in Figure 6.1(b). The

advantage of the template matching approach is that it allows testing a large number

of predictors at no additional coding cost. Indeed, since the decoder can perform

the same template matching process, nothing needs to be signaled in the bitstream.

Other smart decoder approaches involve reducing the number of predictors in
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competition. In [LJPP10], the number of Intra modes is reduced by analyzing the

corresponding predictor signals in the transform domain and eliminating the similar

patterns until all remaining patterns are complementary. This reduction is per-

formed similarly at the encoder and decoder sides, and it allows coding the selected

Intra mode for the current block with less bits. This method is a generalization

of [KHL08], where it is adaptively decided to use either a single Intra mode (DC)

or the whole set of Intra modes of H.264/AVC according to a criterion which can

be evaluated similarly at the encoder and at the decoder. This criterion measures

the similarity of the neighboring causal pixels of the current block. The rationale

behind this is that if the values of these pixels are similar, there is no need to put

all the Intra modes in competition because the result will be equivalent to using the

DC predictor anyway.

Furthermore, a smart decoder can also be used in MVD systems. In [SKSM11],

it is proposed to synthesize at the level of the currently coded view a virtual view by

extrapolation from another view and its associated depth video. All the signaling

information (modes, partitions, motion vectors) are determined for this virtual view

at both the encoder and decoder sides. Then, it is proposed to use this information

to code the current view, without the need of signaling it in the bitstream. This

method, put in competition with classical RD mode selection, brings 10% gain over

an MVC anchor.

6.2 Motivation

The DMVF obtained using OF gives more accurate frame predictions than the coarse

block-based MVF. To verify this assumption, we perform some tests on a subset of

the JCT-3V test sequences: Kendo, Balloons, Newspaper and PoznanHall2. Only

the left texture video of each sequence is considered for these tests. Frames 0 and

2 (F0 and F2) of each video are coded with respect to CTCs [RMV13] at four QPs,

using HTM-5.1 to which the following encoder changes are made: first, the lambda

(λ) parameter used in Lagrangian cost computations is set to 0, meaning that the

encoder minimizes the distortion, regardless of the resulting bitrate. Second, the

Intra mode is removed for P & B-slices: no CUs in F2 are coded in Intra (all PUs

have a motion vector). At the end of the encoding stage, we output the resulting

coarse motion vector field (C) which, alongside the reconstructed F̃0, allows us to

construct offline the prediction of F2 using motion compensation and obtain F̂C
2 .

We compute the residual RC
2 as such: RC

2 = F2 − F̂C
2 . The energy of RC

2 is then

computed as such:

EC
2 =

1

MN

∑

i

∑

j

(
RC

2 [i][j]− R̄C
2

)2
(6.2)
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where M and N are the width and height of the frame, and R̄C
2 the mean of RC

2 :

R̄C
2 =

1

MN

∑

i

∑

j

RC
2 [i][j] (6.3)

In parallel, we also input F2 and F̃0 into an optical flow algorithm (we use the one

which can be found in [Liu]). The resulting DMVF (D) is used to motion compensate

F̃0 hence obtaining another prediction of F2: F̂D
2 . The corresponding residual RD

2

and its energy ED
2 are then computed. The same process can be repeated a third

time if the reconstructed F̃2 and F̃0 are inputted into the OF algorithm instead,

hence yielding another prediction and residual energy: E
DQ
2 . Table 6.1 gives the

values of EC
2 , E

D
2 , and E

DQ
2 for the four considered sequences and QPs.

Sequence QP EC
2 ED

2 EDQ
2

Balloons

25 5.7 4.1 4.2
30 6.3 4.8 5.0
35 8.1 6.3 6.9
40 11.8 8.9 10.3

Kendo

25 28.1 8.5 8.8
30 15.8 8.7 9.3
35 16.6 9.3 10.2
40 17.9 10.0 12.1

Newspaper

25 8.6 5.8 6.0
30 9.5 7.6 8.0
35 12.8 10.5 11.4
40 18.0 15.0 16.8

PoznanHall2

25 9.3 6.3 6.4
30 8.2 5.9 6.2
35 7.3 6.3 6.8
40 8.3 7.2 7.9

Table 6.1: Residual energy values per motion estimation method for the considered sequences and
QPs

We can see from Table 6.1 that ED
2 < EC

2 for all tested sequences and QPs: the

DMVF computed between F2 and F̃0 using the OF gives a more accurate prediction

than the most accurate coarse MVF that the HTM encoder could provide. However,

the DMVF has to be sent in the bitstream because the decoder does not have access

to F2 to redo the motion estimation. The gains obtained by lowering the residual

energy will thus be countered by the losses resulting from the extra signaling of one

motion vector per pixel.

If the DMVF is computed between two already coded frames (F̃2 and F̃0 for

instance), no MV signaling is necessary because the motion estimation can be per-

formed at the decoder side. Although the resulting DMVF will suffer from the
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quantization noise of both frames, our experiments show that it is still more accur-

ate than the HTM’s coarse MVF as E
DQ
2 < EC

2 for all considered sequences and

QPs. The proposed method described in the next section exploits this conclusion.

6.3 Proposed method

6.3.1 Algorithm description

In 3D-HEVC, the base view in any access unit is coded first, followed by the depend-

ent views. Interview Motion Vector Prediction (IVMP) allows to use the motion vec-

tors of the base view to increase the coding efficiency of the dependent views. Since

the base view is coded with HEVC, the motion vectors are computed at PU-level

using BMA. We propose to extend IVMP such that a DMVF at the level of the base

view is computed using OF, at no additional cost since a smart decoder approach is

used. A PU in the dependent view can then inherit a motion vector for each of its

pixels from its corresponding PU in the base view, hence increasing the accuracy of

the prediction and reducing the residual energy.

Let IBt and ĨBt respectively be the original and reconstructed base view frame

at the current time instant t, and ĨBt−1 and ĨBt+1 the first frames in the L0 and L1

reference lists of IBt , respectively. The notations t−1 and t+1 thus do not necessarely

imply that ĨBt−1 and ĨBt+1 are located in the adjacent past and future access units.

Let IDt be the current frame to be coded in the dependent view, and ĨDt−1 and ĨDt+1

the reconstructed dependent view frames in the same access units as ĨBt−1 and ĨBt+1

respectively.

In the proposed method, after IBt is coded, two DMVFs are computed using

OF between ĨBt and ĨBt−1, and between ĨBt and ĨBt+1. Two motion vectors for each

pixel of ĨBt are derived this way. The decoder has access to these frames, and can

thus perform this motion estimation. The two resulting DMVFs do not need to

be transmitted. When coding a PU (Bcur) in IDt , the NBDV process derives a DV

(DVIVMP) for this PU, pointing to a corresponding PU (Bref) in ĨBt . Bref will thus have

two motion vectors MV0
ref and MV1

ref in the L0 and L1 reference list (respectively),

estimated at the base view encoding pass, and two DMVFs: OF0
ref and OF1

ref. IVMP

already inherits MV0
ref and MV1

ref into a single multi-view candidate in the Merge

candidate list of PUcur. We propose to additionally inherit OF0
ref and OF1

ref (which

we refer to as WOF0
cur and WOF1

cur at the level of the dependent view) as another

dense Merge candidate for PUcur located at the first position of the list. Figure 6.2

illustrates our method.

The warped optical flow DMVFs: WOF0
cur and WOF1

cur are only accessible by

PUcur at the motion compensation stage. If PUcur is coded in Merge mode using the
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Figure 6.2: Proposed method for deriving dense Merge candidate

dense Merge candidate, other neighboring PUs regard it as being coded with MV0
ref

and MV1
ref. These vectors actually will correspond to the left Merge and AMVP

candidates for the right neighboring PU for instance.

Note that the method is only applied if IBt is not an I-frame (otherwise its

reference lists would be empty). If IBt is a P-frame, IBt+1 is not available, and hence

only one DMVF is computed between ĨBt and ĨBt−1, then warped and inherited by

the current PU in the dependent view. Uni-predictive motion compensation with

only WOF0
cur is performed in this case.

6.3.2 Variants

In the proposed method, a single DV allows to disparity-compensate the current PU

to find the corresponding PU in the base view. However, PUcur may contain objects

of different depths (like for instance parts of a foreground object and background),

some of which might inherit incorrect motion from the base view due to an incorrect

disparity shift. To solve this issue, we propose two variants of the original method.

FCO-WOF

The first variant can only be applied if the depth maps of the dependent views are

coded before the texture views. This can be done using the non-normative Flexible

Coding Order (FCO) tool. Let Z̃D
t be the reconstructed dependent view depth map

at the current time instant. When coding PUcur in IDt , we propose in this variant to

disparity compensate each pixel with its own DV. The DV of a pixel can be obtained
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by converting the collocated depth value z in Z̃D
t into a disparity value d using the

following equation:

d = f · tx ·

[
z

255

(
1

Zmin

−
1

Zmax

)
+

1

Zmax

]
(6.4)

where f is the focal length, tx the baseline between the base view and the dependent

view, and Zmin / Zmax the extremal depth values. Since we are assuming a 1D

parallel camera setup, the disparity is only horizontal: DV = (d, 0).

Thus, in this variant, WOF0
cur and WOF1

cur will be composed of the motion

vectors of the pixels in ĨBt pointed to by the different computed disparity vectors

of PUcur, as shown in Figure 6.3. PUcur is still seen by other PUs as coded with

MV0
ref and MV1

ref if the dense Merge candidate is selected, which means DVIVMP is

still used to fetch Bref to get these two vectors.
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Figure 6.3: Proposed FCO-WOF variant for deriving dense Merge candidate
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DO-WOF

If the standard texture-before-depth coding order is used, FCO-WOF cannot be

applied because the decoder would not have access to Z̃D
t to decode IDt . However,

the decoder would have access to the reconstructed base view depth which can also

be used to derive a dense disparity vector field to disparity-compensate each pixel

in PUcur.

Let Z̃B
t the reconstructed base view depth. In this variant called Depth Oriented-

WOF (DO-WOF), DVIVMP, derived using NBDV, is used to fetch a depth block Zref

corresponding to PUcur in Z̃B
t . The depth value z of each pixel in Zref is transformed

into a disparity d using Equation 6.4, which is then used to disparity-compensate

the corresponding pixel in PUcur. The motion vectors of the pixels in ĨBt pointed to

by the different computed disparity vectors of PUcur form WOF0
cur and WOF1

cur, as

shown in Figure 6.4.
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Figure 6.4: Proposed DO-WOF variant for deriving dense Merge candidate
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6.3.3 Advantages and disadvantages of the proposed method

The proposed method and variants allow to motion-compensate with a DMVF com-

puted using OF at no additional cost. The resulting prediction is more accurate, and

the energy of the corresponding residual is reduced, hence bringing coding gains. Fur-

thermore, in 3D-HEVC, CUs are often split in a quad-tree fashion to compensate

for a lack of a good CU predictor signal, at the cost of an increased signaling: the

MVF of an Inter-coded CU becomes denser as the number of transmitted split flags

increases. The densest MVF associates a motion vector to each 4×4 PU of a 64×64

CU but requires 21 split flags to be sent, while the coarsest associates a single mo-

tion vector to the entire CU with only one split flag. In our method, the MVF of a

CU is already dense without the need to split that CU since each pixel is associated

with a motion vector. Hence, our method also allows savings on split flags.

The disadvantage of the proposed method is that unlike classical motion estim-

ation which considers the original uncompressed block and finds the corresponding

block in a compressed reference, the proposed dense motion estimation is performed

between two compressed frames. The resulting DMVF is thus affected by the quant-

ization noise of the base view frame and might not always be accurate, especially

at low bitrates. However, as shown in Section 6.2, the method can still outper-

form classical motion estimation. Furthermore, there is a considerable amount of

complexity that is added to the decoder, since it has to re-do the complex optical

flow computation, but this is acceptable since this smart decoder approach allows

significant savings on MV signaling.

6.4 Experimental results

6.4.1 Experimental setting

We implement the proposed method (referred to in the rest of this chapter as WOF)

and its variants (DO-WOF & FCO-WOF) in HTM-5.1. The OF code is integrated

into HTM-5.1 from the package downloadable from [Liu]. The OF configuration

parameters are summarized in Table 6.2. The downsampling ratio parameter (R)

is particularly interesting. Basically, the core OF algorithm employs a Gaussian

pyramid, composed of N levels, N being driven by R (as R increases, N increases).

At each level i, the two images between which a DMVF is to be computed are

downsampled from their resolution at level i − 1, level 0 corresponding to the full

resolution images. At level N − 1, a DMVF is computed between the smallest

resolution images. Then, it is upsampled at level N − 2 and updated by performing

another dense motion estimation. This is repeated until a dense full resolution MVF
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is determined for level 0. As N increases, the final DMVF becomes more accurate

at the cost of additional computations. More details on the core OF algorithm, and

on the significance of the other parameters in Table 6.2 can be found in [Liu09].

The method and the variants are tested on the 7 sequences of the JCT-3V test

set and the coding configuration defined in the CTCs [RMV13] is respected with

the exception of the length of the sequences to code which is limited to 5 seconds

instead of 10 in order to speed-up the simulations.

Gains in the following tables are measured using the Bjontegaard delta-rate (BD-

Rate) metric. For more information on the significance of the different columns, refer

to Section 4.2. For WOF & DO-WOF, the reference anchor is HTM-5.1. The FCO-

WOF variant requires changing the coding order so that dependent depth videos

are coded before the dependent texture views. This is done by enabling FCO in the

encoder configuration file. This variant is compared to a HTM-5.1 reference where

FCO is enabled as well.

Parameter Description Value

Alpha Regularization weight 0.012

Ratio Downsampling ratio 0.4

MinWith Width of the coarsest level 20

nOuterFPIterations Number of outer fixed point iterations 7

nInnerFPIterations Number of inner fixed point iterations 1

nSORIterations Number of Successive Over Relaxation iterations 30

Table 6.2: Optical flow parameters

6.4.2 Coding results

Tables 6.3, 6.4 and 6.5 present the coding results of WOF, DO-WOF, and FCO-WOF

respectively. Negative values in these tables indicate gains. WOF brings -7.3% and

-6.9% gain on the dependent texture views, and -2.5% gain on synthesized views.

DO-WOF is slightly better on the right view (Video 2) with -7.2% gain and slightly

worse on the left view (Video 1) with -7.1% gain. In the “Video Total” results, DO-

WOF is slightly better than WOF by -0.1%. FCO-WOF is better than both WOF

and DO-WOF with -7.5% and -7.6% on dependent texture views, and -2.7% on

synthesized views. Note that in these three tables, no gains are reported for “Video

0” because neither WOF, DO-WOF or FCO-WOF are applied for base view coding.

For WOF, we perform some additional shorter simulations with a lower number

of frames (1 second of video), where we consider two other sets of QPs, corresponding

to a low bitrate and a high bitrate test. The first set (low bitrate) is composed of

the following texture / depth QPs: (30;39), (35;42), (40;45) and (45;48) while the
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Sequence
Video

Video total Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 -7.8 -7.0 -3.2 -3.1 -3.1 127 10514

Kendo 0.0 -5.4 -4.5 -1.9 -1.8 -2.0 126 11417

Newspaper 0.0 -3.1 -2.6 -1.1 -1.0 -1.0 141 12968

GT Fly 0.0 -21.1 -20.4 -6.0 -5.7 -5.9 135 11160

PoznanHall2 0.0 -7.9 -9.4 -3.8 -3.7 -3.7 124 11515

PoznanStreet 0.0 -3.6 -4.2 -1.1 -1.1 -1.4 142 12159

Dancer 0.0 -1.9 -0.4 -0.5 -0.4 -0.5 136 11373

Average 0.0 -7.3 -6.9 -2.5 -2.4 -2.5 133 11587

Table 6.3: BD-Rate coding results of the proposed method

Sequence
Video

Video total Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 -8.2 -7.1 -3.2 -3.2 -3.1 130 11313

Kendo 0.0 -4.9 -3.9 -1.7 -1.6 -1.8 136 12813

Newspaper 0.0 -2.5 -2.3 -0.9 -0.9 -0.8 140 12523

GT Fly 0.0 -21.7 -22.0 -6.3 -6.0 -6.1 135 11025

PoznanHall2 0.0 -8.3 -10.5 -4.1 -4.0 -4.0 127 11473

PoznanStreet 0.0 -3.2 -4.1 -1.0 -1.0 -1.3 139 12763

Dancer 0.0 -1.2 -0.7 -0.5 -0.4 -0.5 144 11868

Average 0.0 -7.1 -7.2 -2.5 -2.5 -2.5 136 11968

Table 6.4: BD-Rate coding results of the DO-WOF variant

other (high bitrate) is composed of: (20;31), (25;34), (30;39) and (35;42). The set

of QPs used in CTC corresponds to the middle bitrate test. For each test, the

same set of QPs is used for the reference and for the proposed method. Table 6.6

presents the coding results, averaged accross all the sequences, per test. We can see

that the lower the bitrate, the more our method becomes efficient. This might be

surprising because on higher bitrates, the DMVF computed at the level of the base

view is supposed to be more accurate as it is less affected by quantization noise, and

consequently, one would expect the gains to increase as the bitrate increases. There

is however a justification for this peculiar phenomenon, which is given in the next

section.

We perform one final test where we gradually change the downsampling ratio

(R) in the OF parameters in order to study its impact on the coding results and

complexity of the proposed method. Short simulations on 1 second of video are

also performed for this. Table 6.7 presents the average coding results and runtimes

obtained for various values of R. We can see that as R decreases, the coding results

are only slightly impacted while the encoder and decoder runtimes are significantly

reduced.
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Sequence
Video

Video total Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 -9.0 -9.0 -3.7 -3.3 -3.6 138 11175

Kendo 0.0 -5.3 -4.2 -1.8 -1.5 -2.2 134 11423

Newspaper 0.0 -2.5 -2.4 -0.9 -0.8 -1.0 134 12153

GT Fly 0.0 -22.1 -22.1 -6.3 -5.9 -6.4 137 10768

PoznanHall2 0.0 -8.7 -11.2 -4.3 -3.7 -3.9 148 11804

PoznanStreet 0.0 -3.6 -4.3 -1.1 -1.0 -1.4 137 7998

Dancer 0.0 -1.4 -0.3 -0.5 -0.4 -0.7 143 11834

Average 0.0 -7.5 -7.6 -2.7 -2.4 -2.7 139 11022

Table 6.5: BD-Rate coding results of the FCO-WOF variant

Test
Video

Video total Synt.
0 1 2 Avg

Low bitrate 0.0 -5.9 -5.8 -2.0 -2.0 -2.0

Middle bitrate 0.0 -4.8 -4.4 -1.5 -1.5 -1.6

High bitrate 0.0 -2.7 -2.3 -0.8 -0.8 -0.8

Table 6.6: BD-Rate coding results of WOF for 1 second of video at low, middle, and high bitrates

6.4.3 Results interpretation

Origin of the gains

The significant gains that our method and its variants bring, as shown in Tables 6.3, 6.4

and 6.5, can be explained by analyzing three types of data: the selection percentage

of the dense Merge candidate (SP = the number of PUs coded in Merge mode with

the dense Merge candidate (DMC) over the total number of coded PUs), and the

reduction in the number of split (RSP) and skip (RSK ) flags sent in the bitstream

compared to an HTM-5.1 anchor. Table 6.8 shows these three values, averaged

across the four considered QPs, for each sequence and for each variant. Basically,

the more the DMC is selected, the more it reduces the residual energy and brings

coding gains. Additional gains come from the reduction in the number of transmit-

Ratio
Video

Video total Synt.
Runtimes

0 1 2 Avg Enc Dec

R = 0.85 0.0 -4.7 -4.3 -1.5 -1.5 -1.6 275 52355

R = 0.75 0.0 -4.8 -4.4 -1.5 -1.5 -1.6 187 29142

R = 0.65 0.0 -5.0 -4.6 -1.6 -1.6 -1.5 175 22294

R = 0.5 0.0 -4.9 -4.6 -1.6 -1.6 -1.5 138 12023

R = 0.4 0.0 -4.9 -4.5 -1.6 -1.5 -1.5 134 10136

Table 6.7: Average BD-Rate coding results and runtimes of WOF with various values of R for 1
second of video
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ted split and skip flags. The most significant bitrate reductions appear in the GT

Fly sequence because both gain sources are present: the DMC is frequently selected

(SP = 69%) on the one hand, and the split and skip flag reductions are important

(RSP = 66% and RSK = 76%) on the other. In the Balloons sequence, the DMC

is frequently selected (SP = 76%) but the split and skip flag reductions are lower

than in GT Fly (RSP = 40% and RSK = 47%) hence the lower but still significant

overall coding gains. In Dancer, the DMC is less selected (SP = 42%) and the split

and skip flag reductions are low (RSP = 23% and RSK = 28%). This is why the

smallest gains are reported for this sequence. The relatively high coding gain devi-

Sequence
WOF DO-WOF FCO-WOF

SP RSP RSK SP RSP RSK SP RSP RSK

Balloons 76 40 47 73 43 49 74 44 50

Kendo 60 28 32 58 29 33 58 29 33

Newspaper 67 29 33 65 29 33 65 29 33

GT Fly 69 66 76 68 68 77 68 68 77

PoznanHall2 78 40 42 78 41 43 79 41 42

PoznanStreet 64 39 48 62 40 48 63 40 48

Dancer 42 23 28 39 24 28 38 24 28

Average 65 38 44 63 39 45 64 39 45

Table 6.8: Selection percentage of the dense Merge candidate and reduction in split and skip flags
in the proposed method and variants

ation across the various sequences can be explained by the nature of the motion in

each sequence. The Dancer sequence contains relatively complex motion including

camera motion and frequent rotations of the dancer character. The OF algorithm

fails in these conditions to detect the true motion of objects and gives inaccurate

motion vectors. One solution is to tweak the OF parameters in order to increase the

accuracy of the resulting DMVF and increase coding gains, although this implies

additional computational cost. An adaptive setting of the OF parameters according

to the motion in each sequence (or in each frame of a sequence) can be a more

interesting alternative, but this solution is not trivial as it requires conceiving a way

to detect and characterize the motion before the OF computation.

Performance comparison between WOF, DO-WOF and FCO-WOF

Furthermore, we can see from Tables 6.3 and 6.4 that the results of DO-WOF and

WOF are similar. A more detailed analysis shows that DO-WOF is better than

WOF in sequences where we have the highest gains. In the “Video Total” column,

DO-WOF brings an additional -0.1%, -0.3% and -0.3% over the proposed method

for Balloons, GT Fly and PoznanHall2, which already give the best gains. The gains
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are particularly good on these sequences because the DMVF computed using the OF

is particularly accurate, and this, in turn, allows for a better assignment of motion

vectors to pixels in the dependent view when a dense disparity compensation is used,

as in DO-WOF. Figure 6.5 shows the difference between WOF and DO-WOF if the

DMVF is accurate, and if it is not. Let us assume two objects (a square and a circle)

have two different motions. If the DMVF is accurate, a different motion vector will

be associated to each object in the base view. In that case, the WOF method will

incorrectly inherit the motion vector of the square for the circle, as opposed to the

DO-WOF method, as shown in Figure 6.5(a). If the DMVF is not accurate, the two

objects may be incorrectly assigned the same motion vector, making no difference

if WOF or DO-WOF is used 6.5(b). As for FCO-WOF, we can see from Table 6.5

that it is better than both WOF and DO-WOF. This was expected, because the

disparity compensation in this case is the most accurate.

������

��� ��	���

(a) Accurate dense motion estimation

������

��� ��	���

(b) Inaccurate dense motion estimation

Figure 6.5: Difference between WOF and DO-WOF in case of an accurate and an inaccurate dense
motion estimation

Coding results analysis of WOF at lower and higher bitrates

Table 6.6 shows that our method becomes more efficient as the bitrate decreases.

This is due to the fact that on low bitrates, Merge mode in HTM-5.1 is already

selected more often by PUs, as shown in Table 6.9. Indeed, the high quantization

at low bitrates makes the temporal reference frames less detailed. In this case,

the encoder can achieve the same prediction using a neighboring MV at no cost

(Merge mode), or an estimated MV which needs to be signalled (Inter mode), so

the choice obviously goes in favor of the Merge mode. In our method, the dense

Merge candidate we add has more chances of being selected at low bitrates, simply

because the Merge mode itself is in general more often selected. This is confirmed

in Table 6.10.
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Sequence
Merge mode selection
25 30 35 40

Balloons 89 92 95 97

Kendo 85 90 94 96

Newspaper 81 87 91 95

GT Fly 92 94 98 99

PoznanHall2 89 93 98 99

PoznanStreet 88 92 97 98

Dancer 83 87 93 96

Average 87 91 95 97

Table 6.9: Selection percentage of the Merge mode in the HTM-5.1 anchor per sequence and per
QP

Sequence
SP

20 25 30 35 40 45

Balloons 36 67 82 90 93 96

Kendo 24 36 49 59 70 78

Newspaper 36 63 80 89 96 98

GT Fly 18 33 81 90 93 94

PoznanHall2 18 55 76 85 90 95

PoznanStreet 19 36 51 66 79 89

Dancer 8 16 37 67 81 89

Average 23 44 65 78 86 91

Table 6.10: Selection percentage of the dense Merge candidate per sequence and per QP

Complexity analysis

Finally, we can see from Table 6.3 that our method increases the encoder and decoder

runtimes by 33% and 11487% respectively. While the increase can be considered

acceptable at the encoder, it remains quite significant at the decoder. It is important

to note that the OF code is directly copied from the OF package and integrated into

HTM-5.1, and is thus not as optimized as the rest of the HTM-5.1 code. Hence, it

is possible that some simplifications to the data structures used could reduce the

decoder runtime.

Furthemore, we study in this chapter the impact of increasing the value of the

downsampling ratio R on the coding results. We can see from Table 6.7 that increas-

ing R (and therefore N) only slightly impacts the results but dramatically increases

the encoder and decoder runtimes. Hence, another solution to reduce the decoder

runtime, potentially at similar coding performance impacts, is to tweak other OF

parameters (presented in Table 6.2).

Yet another way to achieve such savings is to perform an on-the-fly OF compu-

tation at PU level, instead of one at the frame level. The rationale behind this is
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that when disparity-compensating PUs coded with the dense Merge candidate at

the decoder, not all pixels in the base view are referenced. Table 6.11 shows that

only 68% (67% for the variants) of base view pixels are referenced in a dependent

view. Hence, the MVs of the remaining pixels do not need to be computed. This

can alleviate some computations at the decoder and hence reduce runtime.

Sequence
Base view pixel usage

WOF DO-WOF FCO-WOF

Balloons 76 75 75

Kendo 68 68 67

Newspaper 70 66 67

GT Fly 69 69 69

PoznanHall2 76 78 78

PoznanStreet 67 66 67

Dancer 48 47 46

Average 68 67 67

Table 6.11: Percentage of referenced base view pixels at the decoder by a dependent view

6.5 Conclusion

We have presented in this chapter a method that allows PUs in dependent views to

inherit a DMVF computed at the level of the base view using OF, at no additional

signaling cost. Indeed, the DMVF is computed between two reconstructed frames

also available at the decoder, hence there is no need to transmit the MVs. The

DMVF is added in the first position of the Merge candidate list of dependent view

PUs. Correspondences between pixels in the dependent view and in the base view

are done using disparity compensation. Different disparity compensation methods

exist: a compensation with a single DV for the entire PU using NBDV (WOF),

a compensation with one DV per pixel computed from the associated and already

coded dependent view depth map (FCO-WOF) and one with also one DV per pixel

but computed from the already coded base view depth (DO-WOF). WOF brings -

7.3%, -6.9% and -2.5% gain on the left and right dependent views and on synthesized

views respectively. DO-WOF is better than WOF mostly on sequences where the

computed dense MVF is particularly accurate and which consequently present signi-

ficant gains. FCO-WOF is better than both methods with -7.5%, -7.6% and -2.7%

gain on the two dependent views and synthesized views respectively. These results

will be transcribed in a conference paper for the IEEE International Conference on

Image Processing (ICIP) 2014.

The study performed in this work allows us to conclude that the coding gains
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come from an improvement of the PU predictions which, in turn, reduces the residual

energy, and from the reduction of the number of split and skip flags sent in the

bitstream. Also, we conclude that the method and the variants are more efficient

at low bitrates since the Merge mode, and a fortiori, the dense Merge candidate,

are more frequently selected as the bitrate decreases. Finally, although the method

increases decoder runtime significantly, some savings can be obtained by tweaking

the OF parameters, or by implementing an on-the-fly, OF computation at PU-level,

instead of computing the DMVF at the frame level.

In the future, a simplification of the OF code, and some general parameter tweak-

ing will be performed to reduce the decoder runtime. A PU-level OF computation at

the decoder will also be implemented. Finally, we will correct the inherited DMVFs

by exploiting an epipolar constraint using additional depth maps in order to account

for occlusions and disocclusions. This allows obtaining a more accurate DMVF and

consequently higher coding gains.
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In previous chapters, we presented some coding tools designed to improve the

coding efficiency in 3D-HEVC. In this chapter, we do not deal with the encoding /

decoding process but rather with the synthesis stage after decoding. Traditionally,

view synthesis only interpolates intermediate views from side views using the dispar-

ity information. Temporal correlation between different frames in the intermediate

view can however be exploited to improve the synthesis. In our method1, we use the

optical flow, which already proved to be effective at increasing the coding effiency of

1This work has been initiated by Andrei Purica during his internship in Telecom ParisTech [Pur13]
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texture data in 3D-HEVC (see Chapter 6), to derive dense motion vector fields at

the side views, then warp them at the level of the intermediate views. This allows

constructing different temporal predictions of the synthesized frame which would

then be merged together. The remaining holes are then inpainted.

The first section of this chapter presents a state-of-the-art of view synthesis

techniques. The proposed method is described in the second section. The results

obtained are summarized in section three with a detailed interpretation, followed by

a conclusion where we underline possibilities for future work.

7.1 State-of-the-art in view synthesis techniques

View synthesis is the process of extrapolating or interpolating a view from other

available views. It is a popular research topic in computer vision, and numerous

methods have been developped in this field over the past four decades. View syn-

thesis techniques can be mainly classified in three categories [SK00]. The methods

in the first category require explicit geometry information, like depth or disparity

maps to warp the pixels in the available views to the correct position in the synthes-

ized view. Methods in the second category require only implicit geometry like some

pixel correspondances in the available and synthesized view, that can be computed

using optical flow for instance. Finally, methods in the third category require no geo-

metry at all. They appropriately filter and interpolate a pre-acquired set of samples

(examples of tools in this category include light field rendering [LH96], lumigraph,

concentric mosaics, etc.).

The second and third category of methods are out of the scope of this thesis, and

thus, will not be further discussed. We focus on the first category of methods, also

referred to as Depth Image Based Rendering (DIBR) techniques, in this state-of-the-

art. We first discuss the rendering technique used in the reference software for view

synthesis, and in the rendering software used in JCT-3V. Then, an overview of some

rendering techniques found in literature is presented.

7.1.1 Reference softwares

View Synthesis Reference Software

In 2010, MPEG expressed a significant interest in MVD formats for their ability

to support 3D video applications. Several exploration experiments were established

around the subject at the 94th MPEG meeting (this activity corresponded to the

second part of FTV, the first being MVC). An experimental framework was de-

velopped as well to conduct the different experiments [EXP10]. This framework
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defined a View Synthesis Reference Software (VSRS), which would later become an

anchor to several new rendering techniques in literature.

VSRS inputs two texture views and their two associated depth views, along with

intrinsic and extrinsic camera parameters. The output is a synthesized intermediate

view. VSRS allows synthesizing frames using two operational modes: general mode

and 1D mode. Hence, both 1D-parallel, where cameras are aligned in a straight line

perpendicularly to their optical axes, and non-parallel (e.g.cameras aligned in an

arc) camera setups are supported.

Figure 7.1 illustrates the rendering process in the general mode of VSRS. First,

the left and right reference depth maps (DL and DR) are warped to the virtual

view position, giving D′
L and D′

R. The 3D image warping process and the warping

equations are described in Section 1.2.2. The occlusions are handled by warping the

pixel with the highest depth value (closest to the camera). D′
L and D′

R are then

median filtered to fill small holes, giving D′′
L and D′′

R. A binary mask is maintained

for each view to memorize larger holes caused by disocclusions. D′′
L and D′′

R are then

used to warp the texture views TL and TR to the virtual view position, giving T ′L and

T ′R (this reverse warping process wherein the depths are warped first and then used

to warp the texture is reported to give a higher rendering quality). Holes in one of

the warped views are filled with collocated non-hole pixels from the other warped

view, if available. This gives T ′′L and T ′′R, which are then blended together to form

a single representation. The blending can be a weighted average according to the

distance of each view to the virtual view point (Blending-On mode), or it can simply

consist in taking the closest view to the virtual view point, and discarding the other

(Blending-Off mode). The binary masks of each view are merged together at this

stage in order to form a single mask which identifies the remaining holes. These

are filled at the final stage of the algorithm by propagating the color information

inward from the region boundaries. VSRS also includes a Boundary Noise Removal

(BNR) option that allows expanding the holes into the background. These areas

are then filled in T ′L and T ′R from the other reference view (respectively T ′R and T ′L).

This reduces the cases where foreground pixels are falsely projected into background

objects due to depth errors.

The 1D mode of VSRS works a bit differently. In this mode, the camera setup

is assumed to be 1D parallel. This allows to make a number of simplifications to

the warping process which is reduced to a simple horizontal shift (see Equation 1.8).

First, the color video is up-sampled for half-pixel or quarter pixel accuracy. A“splat-

ting” option allows a reference pixel to be warped to two sample locations in the

target view. Furthermore, the “CleanNoiseOption” and “WarpEnhancementOption”

avoid warping unreliable pixels, hence reducing the synthesis artefacts due to the
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Figure 7.1: Flow diagram for VSRS general mode

texture-depth misalignment at object boundaries and wrongly categorized holes in

the foreground. The warping process gives two warped images, two warped depth

maps, and two binary masks from the left and right reference views. Each pair is

then merged together. When a pixel gets mapped from both the left and the right

reference views, a specific blending method, driven by the “MergingOption” para-

meter, decides the final pixel value. When “MergingOption” equals 0, the blending

process relies solely on depth, which means that the pixel closer to camera is selec-

ted. When it equals 1, an averaging is performed. Remaining holes are filled by

propagating the background pixels into the holes along the horizontal row. Finally,

the image is downsampled to its original size.

View Synthesis Reference Software 1D Fast

Each contribution to the 3D-HEVC standardization which proposes to modify the

coding of dependent views or depth data, is required to present coding results on

synthesized views. The software used for synthesizing the intermediate views is a

variant of VSRS, called View Synthesis Reference Software 1D Fast (VSRS-1DFast).

This software is included in the HTM package, and is documented in the 3D-HEVC

test model [ZTWY13]. VSRS-1DFast allows inputting two or three texture and

depth views along with their corresponding camera parameters, and synthesize an

arbitrary number of intermediate views. Just like the 1D mode of VSRS, VSRS-

1DFast assumes that the camera setup is 1D parallel.
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Figure 7.2 illustrates the different steps of the rendering algorithm used in VSRS-

1DFast. The texture views sT,l and sT,r are first upsampled to obtain ŝT,l and ŝT,r:

the luma component is upsampled by a factor of four in the horizontal direction, and

the chroma by a factor of eight in horizontal direction and two in vertical direction,

thus yielding a 4:4:4 representation. The warping, interpolation and hole filling are

carried out for ŝT,l and ŝT,r line-wise and within a line, interval-wise. This gives two

representations of the synthesized frame: s′T,l and s′T,r. Then, two reliability maps

s′R,l and s′R,r are determined indicating which pixels correspond to disocclusions

(reliability of 0). A similarity enhancement stage then adapts the histogram of s′T,l
to the one of s′T,r. Finally, s

′
T,l and s′T,r are combined. If the “interpolative rendering”

option is activated, the combination would depend on the warped depth maps and

the two reliability maps created. If not, the synthesized view is mainly rendered

from one view and only the holes are filled from the other view. The resulting

combination is later down-sampled to the original size of the texture views.

Figure 7.2: Flow diagram for VSRS-1DFast

7.1.2 Rendering techniques in literature

In [FLG13], a rendering technique called View Synthesis using Inverse Mapping

(VSIM) is introduced. It operates at full-pel accuracy and assumes a 1D-parallel

camera setting. The left and right texture views are warped to the synthesized view

position using simple horizontal shifts, also called column shifts (see Equation 1.8).

A table is maintained for the left and right interpretations of the synthesized frame

which records the column shift of each pixel. Holes in these two tables are filled using



140 7. View synthesis exploiting temporal prediction

a median filter. Then, the two representations are merged and the remaining holes

are filled by checking the collocated value in the tables, and inverse mapping the

pixel back to its original value in the left or right view. Residual holes are filled by

simply assuming that their depth is the same as the depth of the collocated pixels in

the original views. VSIM outperforms VSRS, on average, by 0.412 dB at quarter-pel

accuracy and 1.350 dB at full-pel accuracy. However, the rendering runtime is not

provided, making it difficult to assess the complexity of the method.

In [LE10], the depth maps are pre-processed with an adaptive smoothing filter

in order to reduce holes after synthesis. The filter is only applied to edges in the

depth map (corresponding to an abrupt transition in depth values) as those are the

main cause for holes. The method is thus less complex than methods which apply a

symetric or asymetric smoothing filter to the depth map as a whole. Furthermore,

if hole regions correspond to vertical edges, an asymetric Gaussian smoothing filter

is used to further pre-process the depth map. No objective gains are reported, but

a visible improvement is noticed on some synthesized sequences.

A technique that does not necessarily require pre-processing the depth map is

introduced in [WLS+11]. A hole in the synthesized texture image is filled by the

color of the neighboring pixel (between the 8 direct neighboring pixels) with the

smallest depth value in the synthesized depth map (this is referred to as Horizontal,

Vertical and Diagonal Extrapolation (HVDE)). The two warped texture images are

complemented (holes in one are filled with available pixel values in the other), and

later blended, giving a final image W . The same process (HVDE, complementation,

and blending) can also be performed in case the depth maps were pre-processed with

a bi-lateral smoothing filter, giving an image A, which would then be used to fill

remaining holes in W . This technique outperforms basic DIBR by 1.78 dB.

Another method for improving the quality of the synthesis is to apply a non-linear

transformation to the depth maps [WZ11]. Specifically, the depth range of points in

the background is compressed, such that these points would have the same or slightly

different depths. This reportedly reduces holes in the synthesis. The transformation

depends on the depth map histogram. Objective gains are not presented but a

visible improvement is noticed on the shown images.

7.1.3 Conclusion

The rendering techniques used in the reference softwares, and in most contributions

in literature, are all based on 3D image warping using depth maps. Pixels from

reference views are mapped to pixels in the virtual view using the disparity inform-

ation that the depth maps convey. However, we believe that the synthesis can be

improved by extending DIBR to the temporal axis. In this work, we present a render-
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ing method where temporal correlations between different frames in the synthesized

views are exploited to improve the quality of the synthesis. Our method is detailed

in the next section.

7.2 Proposed method

Traditional rendering techniques synthesize an intermediate frame only from the left

and right reference views, at the same time instant. By exploiting the temporal

correlation in the synthesized view we are able to obtain additional reconstructions

from past and future frames, and merge them together to obtain the synthesized

frame. In this section, we describe the epipolar constraint, on which the proposed

method is based. We then provide a description of the algorithm and propose two

synthesis schemes for a Group Of Pictures (GOP) that exploit this idea.

7.2.1 Epipolar constraint

Figure 7.3 shows the relation between the positions of a real point projection in

different views and different time instants. Let us consider Irt−1, I
r
t , I

s
t−1, I

s
t which

are, respectively, the reference (r) view frames and the synthesized (s) view frames

at time instants t− 1 and t. Let S = (x, y) be a point in Irt−1, Vr(S) its associated

motion vector, pointing to a corresponding point in Irt , and Dt−1(S) its associated

disparity vector, pointing to a corresponding point in Ist−1. Let Vs(s+Dt−1(S)) the

motion vector of the projection of S in Ist−1 and Dt(S + Vr(S)) the disparity vector

of the projection of S in Irt . Since there is only one projection of S in Ist , those two

vectors will point to the same position. This defines a so-called epipolar constraint

on S, which can be written as:

Vr(S) +Dt(S +Vr(S)) = Dt−1(S) +Vs(S +Dt−1(S)) (7.1)

7.2.2 Method description

The goal of the method is to synthesize Ist . Knowing Vr, Dt, and Dt−1, Vs can be

derived using Equation 7.1 for every pixel in Ist−1 that has a correspondence in Irt−1:

Vs(S +Dt−1(S)) = Vr(S) +Dt(S +Vr(S))−Dt−1(S) (7.2)

Vr can be obtained by inputting Irt−1 and Irt in an optical flow algorithm (like

the one downloadable from [Liu]). The result is a dense motion vector field Vr
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Figure 7.3: Epipolar constraint

where each pixel in Irt−1 is associated with a motion vector (see Chapter 6 for more

information on the optical flow). The disparity maps Dt and Dt−1 can be obtained

by simply converting the values in the depth maps Zr
t and Zr

t−1 associated with Irt

and Irt−1 respectively into disparity values. We assume that we are dealing with a

1D parallel camera setup, and that only horizontal disparities exist. In this simple

setup, the disparity value for a point of coordinates (x, y) in Irt−1 can be written as:

Dx
t (x, y) = f · tx ·

[
Zr

t (x, y)

255

(
1

Zmin

−
1

Zmax

)
+

1

Zmax

]
(7.3)

D
y
t (x, y) = 0 (7.4)

where f is the focal length of the camera, tx the baseline between the reference and

synthesized views, and Zmin / Zmax the extremal depth values. The same formula

can be applied to obtain Dt−1. If we decompose Equation 7.2 for the x and y

components seperately, we obtain:

Vx
s (x+Dx

t−1(x, y), y) = Vx
r (x, y) +Dx

t (x+Vx
r (x, y), y +Vy

r(x, y))−Dx
t−1(x, y)

(7.5)

Vy
s(x+Dx

t−1(x, y), y) = Vy
r(x, y) (7.6)

There will be holes inVs that coincide with disocclusions (areas that are occluded

in the reference view and which become visible in the synthesized one) created when

warping Irt−1 with the Dt−1 disparity vector field. If two or more samples in Irt−1,
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S1 and S2 for instance, are warped to the same position S3 in Ist−1 (occlusion), the

vector Vs(S3) retained is the one which corresponds to the pixel with the highest

depth value, as shown in Equation 7.7. The motion vectors for occluded points of

the scene are thus ignored.

Vs(S3) =




Vr(S1) +Dt(S1 +Vr(S1))−Dt−1(S1) if Zr

t−1(S1) > Zr
t−1(S2)

Vr(S2) +Dt(S2 +Vr(S2))−Dt−1(S2) otherwise
(7.7)

Using Vs and Ist−1, a prediction of Ist , referred to as Îst , can be made, although it

will contain holes due to the holes in Vs. A total of four predictions can be made by

exploiting the epipolar constraint, one for each reference view (left and right) and

each time instant (past and future): Îst [i] where i ∈ {0, 1, 2, 3}. This is shown in

Figure 7.4.
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Figure 7.4: Four predictions using the epipolar constraint

The four predictions are then merged into one prediction Ĩst , where the value of

each pixel equals the average of the non-hole pixel values in the four predictions.

Otherwise the pixel value equals 0. Indeed, while the four predictions contain holes,

the majority of these holes are not the same in all predictions and thus, they will be
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filled after the merging step.

Ĩst (S) =





3∑
i=0

Îst [i](S)

A(S)
if A(S) 6= 0

0 if A(S) = 0

(7.8)

where A(S) is given by:

A(S) =

3∑

i=0

(
Îst [i](S) 6= 0

)
(7.9)

Remaining holes (zero values) are filled using the same inpainting method used

in VSRS-1DFast. The inpainting is done line-wise from left to right. If a hole is

encountered, it is filled with its left neighboring pixel. If the first pixel in a line is a

hole, it is filled with the first non-hole pixel to its right.

7.2.3 Prediction schemes in a GOP

The synthesized view is rendered GOP-wise in our algorithm. The GOP structure

is the one used to code the left and right reference views. Figure 7.5 shows the open

GOP structure of a reference view (8 frames per GOP in this example). We choose

to send only the first frame per GOP of the synthesized view in the bitstream. These

frames, referred to in the rest of this work as key frames, are coded using 3D-HEVC

with the left view serving as an inter-view reference (the base view). The rest of the

frames are synthesized using our method. For the first frame actually synthesized

in each GOP, the key frame of the current GOP and the one of the future GOP

represent respectively the past and future reference synthesized frames used in our

algorithm (Ist−1 and Ist+1). Other frames in the GOP are synthesized using one of

two proposed prediction schemes.
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Figure 7.5: GOP-wise rendering in our method

Figure 7.6 shows the difference between these two schemes. The “Direct” scheme
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uses the key frame of the current GOP and the one of the next GOP as past and

future reference frames for all remaining frames to synthesize in the GOP. This

results in an asymetric prediction, with two different temporal distances between

each of the two key frames and the current frame. The temporal distance can be

as high as the GOP size minus one, and an optical flow computation with such

large temporal distances can give imprecise motion vector fields. Since there are no

weights introduced in the merging process to lower the impact of predictions with

high temporal distance, the “Direct” scheme can thus be inefficient. An alternative

scheme, called the “Hierarchical” scheme, is proposed in this work in which temporal

layers are used to perform symetric predictions (with equal temporal distances). In

each layer, the past and future references for the current frame are either the key

frames or already synthesized frames in lower layers. The maximal temporal distance

in this scheme equals half the GOP size.
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Figure 7.6: Prediction schemes in a GOP

7.2.4 Discussion on the method

Our rendering method assumes that the synthesized view is available at the encoder

side, since one frame per GOP of that view is transmitted in the bitstream. This is a

reasonable assumption since in dense camera rig systems, all the views are available

but only a subset is coded and sent in the bitstream, the rest being synthesized at the

receiver side. Indeed, we have shown in Table 1.4 that synthesizing the intermediate
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views instead of sending them is a more efficient alternative. Our method can be

seen as set in between those two scenarios: we only send some information on the

synthesized views, which we exploit to improve the synthesis. Consequently, in this

work, we not only propose a rendering method, but also a change in the design of

the whole transmission stage. Note that we could have proposed a method where

the key frames in the synthesized view are rendered with the left and right reference

views using VSRS for instance, but then the rendering artifacts created in those key

frames would be propagated to the rest of the frames in the motion compensation

stage.

Furthermore, we use a “backward” motion compensation stage in our method:

the vectors in Vs point from Ist−1 (or I
s
t+1) to Ist , and not the other way around. We

can have a Vs that points from Ist to a past or future reference if the vectors in Vr

point in the same direction (e.g., from Irt to Irt−1 (or Ist+1)). This can easily be done

if the inputs of the optical flow algorithm that outputs Vr are inversed. In this case,

and if S = (x, y) is a point in Irt , Equation 7.2 becomes:

Vs(S +Dt(S)) = Vr(S) +Dt−1(S +Vr(S))−Dt(S) (7.10)

From Equation 7.10, we can see that Vs is now defined for every pixel in Irt that

has a correspondence in Ist . The holes in Vs (and in the corresponding prediction)

correspond to disocclusions when warping from Irt to Ist . Even if we use a different

time instant (t+1), the holes in the corresponding prediction would still come from

warping Irt to Ist and thus will coincide with the holes of the first prediction. The

merging process will not be able to fill these holes and they will eventually have to be

inpainted. In our method, the holes correspond to disocclusions when warping from

Irt−1 to Ist−1 in the first prediction, and from Irt+1 to Ist+1 in the second. The holes

do not necessarily coincide, and thus, they can be efficiently filled in the merging

process.

7.3 Experimental results

7.3.1 Experimental setting

We implement our view synthesis method, which we refer to in this section as View

Synthesis exploiting Temporal Prediction (VSTP), in MATLAB. Our algorithm

takes as input two coded left and right views with their associated depth videos

and camera parameters, and one frame per GOP of the intermediate view, and

outputs the whole intermediate view after synthesizing the rest of the frames. We

thus consider a two-view scenario in these experiments in which we code two views
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(left and right) and synthesize the middle one. We could not consider a three-view

scenario in which we code three views and synthesize three other intermediate views

between each pair, as indicated in the CTCs [RMV13], because we need to compare

the synthesis result to the original intermediate sequences to measure the PSNR

and those are not available for all the sequences considered. The coding configur-

ation defined in the CTCs is nevertheless used for coding the left and right view.

The optical flow algorithm downloadable from [Liu] is used in our method, with the

configuration parameters reported in Table 6.2.

We test our method on four sequences of the test set defined in the CTCs: Bal-

loons, Kendo, Newspaper and PoznanHall2. Each sequence is composed of three

views. The CTCs indicate to use the middle view as base view, and the left and

right views as dependent views. However here, we want the left and right views to

be decodable without the middle view because only the first frame in each GOP of

that view will be sent in the bitstream. We thus set the left view as base view, and

the others as dependent views. Also, we choose to only code 3 seconds of video of

each sequence in order to speed up the simulations. We believe this is acceptable,

because coding the equivalent of 87 frames for Balloons, Kendo and Newspaper, and

58 frames for PoznanHall2 covers around 10 and 7 GOPs respectively, and in our

method, the synthesis in one GOP is independent of the synthesis in the others.

Note that the number of coded frames is lower in PoznanHall2 because its frame

rate is lower as well (cf. Table 3.2).

We compare our synthesis method to the reference VSRS-1DFast rendering. We

evaluate the performance of the reference and the proposed methods using the Bjon-

tegaard delta-PSNR (BD-PSNR) metric on the synthesized view. The PSNR is

evaluated against the original intermediate view. The rate in the reference method

is the sum of the rates needed to code the left and right views with their associated

depth videos. The same rate is considered in the proposed method, to which is added

the rate needed to code the first frame in each GOP of the intermediate view. We

could not use the Bjontegaard delta-Rate (BD-Rate) metric here because in some

cases, the ranges of PSNR values are not superposed enough to justify the compu-

tation of the “average rate reduction at the same PSNR” (see Figure 7.7). On the

contrary, the rate ranges are superposed so we are able to compute the BD-PSNR.

7.3.2 Synthesis results

Table 7.1 gives the BD-PSNR values obtained with the two prediction schemes in

the proposed method. A positive value in this table indicates a gain. On average,

our method brings 0.717 dB and 1.391 dB PSNR increase with the “Direct” and the

“Hierarchical” schemes respectively.
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Sequence BD-PSNR (in dB)
Direct Hierarchical

Balloons 3.150 3.511

Kendo -0.556 0.205

Newspaper -0.404 0.442

PoznanHall2 0.678 1.406

Average 0.717 1.391

Table 7.1: BD-PSNR values obtained with both prediction schemes in the proposed method

The RD curves for the reference and the proposed method (for both schemes) are

given in Figure 7.7. We can see that while both schemes outperform the reference

method for Balloons and PoznanHall2, our method outperforms the reference only

with the “Hierarchical” scheme in Kendo and Newspaper. This is also represented in

BD-PSNR values for these two sequences which are only positive in the“Hierarchical”

scheme, as shown in Table 7.1.

Figure 7.8 shows, for the four tested sequences, the variation of the PSNR of

the synthesized view over time with the reference and the proposed method (both

schemes). Only one QP (25) is represented for simplicity as the behavior of any

curve is similar across all QPs. In the proposed method and for all sequences, we

notice periodic peaks in the synthesized view PSNR, which correspond to the first

frame of each GOP. Since these frames are not synthesized but rather decoded, their

PSNR is higher than any other frames in the GOP. For the Balloons sequence, the

proposed method outperforms the reference VSRS-1DFast rendering for all frames.

For the other sequences, our method is better only in certain parts.

Figure 7.9 shows parts of frames synthesized using the reference and the pro-

posed method. For fairness of comparison, for our method, we show frames that

are actually synthesized and not decoded. We can notice a clear improvement in

the synthesis quality with our method: the artifacts obtained with VSRS-1DFast

(highlighted in red in the figures) are efficiently removed.

7.3.3 Results interpretation

The results of Table 7.1 and the RD curves in Figure 7.7 show that the “Hierarchical”

scheme outperforms the “Direct” scheme, which was expected, since the prediction

distances are shorter in the first. Note that in a GOP of 8 frames, the fifth frame is

synthesized in the same way in both shemes, which is why the curves of Figure 7.8

corresponding to the two schemes, intersect not only in the first frame of each GOP

but also in the fifth frame.

Figure 7.8 also show that the proposed method sometimes does not perform well
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Figure 7.7: RD curves of the reference and proposed method for the four tested sequences

on some series of frames, especially in the Kendo or Newspaper sequence. This is due

to the dense motion estimation process in the reference view which gives incorrect

motion vectors when there is high intensity motion. Tweaking the optical flow

parameters can account for this and would thus solve the problem but that would

imply an additional rendering complexity and coding overhead if those parameters

are to be sent for each frame.

Our method improves the quality of the synthesis on two levels: first, it accounts

for a difference in illumination between the coded reference views and the synthesized

view, which rendering techniques such as VSRS-1DFast cannot do. Indeed, while

VSRS-1DFast cannot warp a different illumination level from the reference views into

the synthesized view, our method propagates the correct illumination level of the sent

key frames accross the rest of the frames using motion compensation. Second, our

method fills holes due to disocclusions more efficiently than VSRS-1DFast. Indeed,

these holes are filled using inpainting in the latter, hence creating artifacts such as
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Figure 7.8: Variation of the PSNR of the synthesized view over time for the reference and proposed
method at QP 25

the ones highlighted in Figure 7.9. In our method, the disocclusion areas can be

found in previously synthesized frames. In addition, four predictions (as opposed to

two in VSRS-1DFast) are merged to give the final synthesized frame, hence reducing

the chance of having residual holes after merging. This explains how our method

efficiently removed the aforementionned artifacts, as shown in Figure 7.9.

Finally, since our method is implemented in MATLAB, whereas VSRS-1DFast

is a binary compiled from C++ code, it was difficult to compare the computation

complexity of the two methods. We believe our method is more inherently complex

than VSRS-1DFast due to the complex dense motion estimation / compensation

stage, which has to be repeated four times per frame. Shortcuts that can reduce the

complexity of our method, at the price of losing some prediction accuracy, include

block-based motion estimation / compensation and uni-predictive motion compens-

ation (predict using only a past frame, or only a future frame).
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7.4 Conclusion

In this chapter, we presented a view synthesis technique that exploits temporal pre-

dictions in order to improve the quality of the synthesis. Namely, some key frames

of the synthesized view are sent in the bitstream, and the rest are interpolated using

motion compensation with vectors warped from reference views. Four predictions

using the left and right reference view, and a past and future time instant can be

constructed and then merged together into a single prediction of the synthesized

frame. Two prediction schemes referred to as “Direct” and “Hierarchical” are presen-

ted in this work. The first synthesizes frames using motion compensation with only

key frames, while the other motion compensates with previously synthesized frames,

hence reducing the prediction distances. Our method brings 0.717 dB and 1.391 dB

PSNR increase with the “Direct” and “Hierarchical” schemes respectively. At the

time of writing this thesis, a journal article reporting these results and investigating

ways to further increase the gains is being drafted.

In the future, the method can be implemented in C++ to speed-up the rendering

simulations and allow direct comparisons with VSRS-1DFast. Furthermore, two

additional predictions can be obtained by simply warping the left and right reference

views to the level of the synthesized view, as done in VSRS-1DFast. An adaptive

blending can judiciously select either VSTP or VSRS-1DFast to synthesize a specific

pixel. Finally, the frequency at which key frames are sent in our method, which, in

the current version, follows the GOP structure used for coding the reference views,

can be modified: lower frequencies allow bitrate savings since less key frames will

be sent but they also imply motion estimation between distant frames, which will

decrease the prediction accuracy. The trade-off is an interesting research subject.
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(a) Balloons - Reference - QP 25 (b) Balloons - VSTP “Direct” -
QP 25

(c) Kendo - Reference - QP 30 (d) Kendo - VSTP “Hierarchical”
- QP 30

(e) Newspaper - Reference - QP
35

(f) Newspaper - VSTP“Hierarch-
ical” - QP 35

(g) PoznanHall2 - Reference - QP
40

(h) PoznanHall2 - VSTP “Direct”
- QP 40

Figure 7.9: Parts of frames synthesized with the reference and the proposed method



Conclusions & future work

Thesis objectives

The purpose of this thesis was to develop original coding methods aimed to in-

crease the coding efficiency of dependent views, depth videos and synthesized views

in 3D-HEVC. Two research phases have structured this thesis. The methods de-

velopped during the first phase comply to real-world constraints in terms of com-

plexity, memory usage, and practicality. They are thus more aimed towards stand-

ardization and potential adoption in 3D-HEVC or in future standards. The second

phase was more dedicated to research, in the sense that all constraints were dropped,

hence giving more freedom to develop unconventional and innovative techniques to

increase coding efficiency, regardless of the introduced complexity. The methods

developped during this second phase are based on motion estimation using optical

flow. The common denominator of all methods though is the improvement of pre-

dictions, whether they are pixel, motion vector, Intra mode or partition information

predictions, using already available information (i.e.without sending any additional

side information).

Summary

Methods aimed towards standardization

To increase the coding efficiency of 3D-HEVC, we first perform a test to see which

signaling information costs the most to code in the bitsream since targetting that

information allows to maximize coding gains. We find that the rate needed to

code the depth Intra modes is evaluated at 25% of the depth bitstream and is the

most costly element. Thus, the first proposed method aims at reducing this rate by

introducing for each depth PU, a new Intra mode predictor. The Intra mode of the

texture PU associated with the current depth PU appears to be a reasonable choice

for a predictor, since texture and depth represent the same scene at the same time

instant. However, when analyzing the Intra modes of texture and depth, we find that

they match mostly on PUs where there is a sharp edge in texture. Consequently,
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we propose to inherit, only for these PUs, the texture Intra mode for depth by

inserting it in the MPM list of the depth PU, where it will serve as a predictor for

the depth Intra mode. The inheritance is thus driven by a criterion, GradientMax,

which measures the sharpness of the edge present in the texture PU, and only occurs

when the criterion value exceeds a specified threshold. The method brings coding

gains on depth videos, and on views synthesized using these depth videos. A further

analysis shows that the texture / depth Intra mode matchings actually occur on PUs

where there is a single sharp directional edge in texture. Indeed, having two sharp

edges, or one sharp edge with no dominant direction decreases the pertinence of the

texture Intra mode as a depth mode predictor. A new criterion, DominantAngle,

which measures the sharpness as well as the direction of the edge, is presented. We

find that DominantAngle yields more coding gains and is also more robust than

GradientMax with respect to the threshold selection.

After improving the Intra coding mode in 3D-HEVC, we now focus on Inter

coding. We first notice that DCP is not selected often in 3D-HEVC: there are more

PUs coded with a MV than a DV. While it is true that there are, in general, more

correlations along the temporal axis than in the view axis, the main reason behind

poor DCP selection is the lack of DV candidates in the Merge list. Not having

DV candidates in this list penalizes DCP as the only other option to code a PU

in DCP is to send a DV residual, which is often costly. Merge mode with a MV

candidate which might not be as accurate as a DV is still preferred by the HTM

encoder. Note that IVMP adds a multiview candidate in the list, but this candidate

is preferred to be a MV rather than a DV. It is basically the MV of the base view PU

corresponding to the current PU in the dependent view. The correspondance is made

using DVIVMP, a DV derived using NBDV. The multiview candidate corresponds to

DVIVMP if and only if the MV is not available. We propose to always add DVIVMP

as an inter-view candidate along side the multiview candidate if the latter is a MV

(otherwise no new candidates are added). Two insertion methods are proposed, one

which inserts the candidate in the secondary Merge candidate list (AIMC-1), and

the other in the primary list (AIMC-2). In both cases, a redundancy check with all

preceding candidates is performed. Both methods achieve coding gains, and AIMC-

2 was adopted in the 3D-HEVC working draft and software. The NBDV process to

derive DVIVMP can also be improved. Indeed, NBDV is sub-optimal because the first

neighboring DV found in the NBDV search process is selected as DVIVMP with no

guarantee that this DV is the most coding efficient. There might be other neighbors

which have a better DV, and those are not checked in NBDV because the search

process stops after finding the first DV. We propose to save all neighboring DVs in a

list (the search process is never stopped). Redundant vectors are removed from the
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list, and the median of the remaining vectors is set as DVIVMP. The method brings

interesting coding gains and a variant, which only saves up to four DVs in the list,

successfully reduces the maximum number of vectors for median computation from

14 to 4 with only a slight decrease in coding efficiency.

Another costly signaling element is partition information, which is used in 3D-

HEVC to describe the quadtree partitionning of a frame into CUs and PUs. Indeed,

texture and depth partition information take respectively 6.5% and 1.6% of the

total bitstream in HTM-4.0. When analyzing the quadtree information of a texture

frame and its associated depth map, we find that in general, the texture quadtree

is more finely partitionned than the depth quadtree. Two methods are developped

based on that assumption: a texture quadtree initialization (QTI) where the texture

quadtree is initialized from the depth quadtree, and a depth quadtree limitation

(QTL) where the depth quadtree is limited to that of the texture. QTI and QTL

allow encoder runtime savings because in the first case, a split may be directly forced

without the need for RDO to check coding modes at the current depth level, and

in the latter, splitting may be prohibited hence alleviating RDO checks in smaller

partitions. A predictive coding (PC) of the partition information, allowing bitrate

savings, can be applied in each method. On the one hand, QTI+PC yields 5%

encoder runtime savings with 0.5% coding loss on coded and synthesized views. A

more relaxed variant called QTI+1+PC where a texture CU is allowed to be at least

one level less partitionned than its collocated depth CU outperforms QTI+PC with

6% encoder runtime savings and no coding loss. Other encoder shortcuts like Early

CU termination (ECU) applied on texture yield much higher runtime savings (37%)

at the cost of higher coding losses though (0.7% on coded videos). QTI+1+PC

might thus be preferred in applications where coding performance is paramount.

On the other hand, QTL+PC brings 31% encoder runtime savings with -0.3% gain

on coded + synthesized views and 0.4% loss on synthesized views alone. However,

we show that these losses are not actual losses as they are due to smoothing false

contours. Subjective results on synthesized views actually show an improvement

resulting from the use of QTL+PC. QTL+PC also clearly outperform all depth-

based state-of-the-art encoder shortcuts in both coding gains and runtime savings.

QTL+PC was adopted in the 3D-HEVC working draft and software.

Methods based on optical flow

Optical flow is a method used to estimate a dense motion vector field (DMVF)

describing the motion of each pixel from one frame to another. In the field of video

compression, it can replace block matching algorithms in Inter mode which estimate

a single vector for an entire block of pixels. A dense motion vector field allows
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constructing a more accurate block predictor hence reducing the residual energy

and giving bitrate reductions. However, sending one vector per pixel is costly and it

can quickly compensate all the potential coding gains of a dense motion estimation.

We propose to combine optical flow with a smart decoder approach in 3D-HEVC.

Specifically, two dense motion vector fields are computed in the base view between

the frame at the current time instant and the first frames in its L0 & L1 reference

lists. All these frames are reconstructed so that the optical flow computation can

be performed at the decoder in a similar way. For a currently coded PU in the

dependent view at the current time instant, a corresponding PU is found in the base

view using disparity-compensation with a single DV derived using NBDV, and the

two DMVFs of that PU are inherited as a single bi-predictive dense Merge candidate

in the candidate list of the current PU. Two variants that disparity-compensate with

a dense disparity vector field using either the reconstructed base depth view (DO-

WOF) or the already coded dependent view depth map (FCO-WOF) in case the

coding order is depth-before-texture are proposed. Significant coding are reported

for all three variants, FCO-WOF being slightly better than the other two. The gains

result from an improvement of the block predictions, and from savings on split and

skip flags. We also find that the methods become more efficient at low bitrates since

Merge mode is already selected more often there.

Optical flow can also be used to improve view synthesis. We propose a novel view

synthesis algorithm that computes four synthesized frame predictions and blends

them together to obtain the final synthesized frame. The predictions are construc-

ted using motion-compensation with four DMVFs. These DMVFs are computed at

the level of the two left and right coded reference views using a past and a future

reference, then warped to the level of the synthesized view using an epipolar con-

straint. For initialization of the algorithm, the first frames in each GOP (also called

key frames) of the synthesized view must be sent in the bitstream. Two prediction

schemes are proposed: a direct scheme where the key frames are used as past and

future references for all remaining frames in the GOP, or an hierarchical scheme

where the references are either key frames or other previously synthesized frames

in the GOP. We find that both schemes achieve significant PSNR increase on the

synthesized view. The hierarchical scheme outperforms the direct one because it

reduces the prediction distances.

Perspectives for future work

At the time of concluding this manuscript, several interesting perspectives can be

proposed to further continue the work done in this thesis. The primary points
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concern the optical flow-based approaches, but some short-term improvements to

the methods detailed in the first part of the manuscript can be proposed as well.

For the texture Intra mode inheritance for depth coding approach, we saw that

the method was particularly sensitive to the selected threshold. For maximal coding

results, the threshold should be optimized not only per sequence, but per frame. To

address this, the threshold can be made content-adaptive. It can be initialized to a

certain value, then updated as the number of coded PUs increases. Furthermore, a

higher additional threshold can be adaptively set as well. If the metric exceeds this

larger threshold, this means that the texture Intra mode will most probably match

the depth Intra mode, and in this case, the depth PU can be directly coded with the

inherited texture Intra mode, hence saving both on runtime (no need for RDO checks

of other Intra modes) and on bitrate (no need to code the inherited mode). If the

metric falls between the two thresholds, the proposed method is applied. Otherwise,

the texture Intra mode is not inherited.

As for the added DV inter-view Merge candidate for dependent view PUs, it

could be driven by a criterion which estimates, using decoded information to avoid

sending any additional information, the benefits of actually having the candidate in

the list. Indeed, not inserting the candidate can, in some cases, be more beneficial

if it would increment the Merge indices of better candidates further down the list,

hence increasing their signaling cost. Regarding the modification of the NBDV

process, all the neighboring DVs could be tested by RDO and the most efficient DV

can be selected as DVIVMP (and even DVIVRP). This implies sending the index of

the most efficient neighbor in the bitstream but given the significant impact a better

DV selection can bring on coding gains, the method is worth to be tested.

For the texture quadtree initialization, alternative schemes with different severity

levels can be tested. The more severe the scheme is the more bitrate reductions (on

partition information) and runtime savings it allows to make, but the more it alters

the quadtree from what the RDO process intended it to be (hence yielding coding

losses) as well. We believe the severity level of QTI can be tweaked in order to

obtain a more efficient scheme. As for QTL, its interaction with assymetric motion

partitions (AMP), recently enabled in HTM, can now be studied.

For unconstrained approaches developped in the second phase of the thesis, more

challenging improvements can be proposed: the coding efficiency of the warped

optical flow method in 3D-HEVC can be increased if the DMVF in the base view

is corrected when warped to the level of the dependent view using the epipolar

constraint described in Chapter 7. Furthermore, to decrease complexity, the OF

code can be revised to use less complex data structures, the OF parameters can

be tweaked, and a DMVF can be estimated per block rather than per frame. For
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VSTP, several improvements can be made as well: first, two additional predictions

can be constructed by warping the left and right reference views to the level of the

synthesized view as it is done in VSRS-1DFast. An adaptive blending, judiciously

selecting to synthesize pixels using either a blend of the four VSTP predictions or a

blend of the two VSRS-1DFast predictions, can be proposed. This allows selecting

VSRS-1DFast in areas where there is high motion in the video, and in which the

optical flow computation gives incorrect motion vectors. Second, the GOP size

used in VSTP can be tweaked: lowering it shortens the prediction distances and

gives more accurate predictions but requires sending more frames of the synthesized

view in the bitstream, and vice-versa. An optimal GOP size yielding the most

advantageous trade-off can be found this way. Finally, implementing VSTP in a

C++ environment while using more appropriate data structures can considerably

reduce the rendering runtime, and allows comparing VSTP directly with VSRS-

1DFast to assess its complexity. Efficient implementations of the OF estimation

in C++ or on GPU can also fasten the encoding and decoding runtime of these

methods.
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Codage multi-vues multi-profondeur pour de nouveaux
services multimédia

Elie Gabriel MORA

RESUME : Les travaux effectués durant cette thèse de doctorat ont pour but d’augmenter l’efficacité de

codage dans 3D-HEVC. Nous proposons des approches conventionnelles orientées vers la normalisation

vidéo, ainsi que des approches en rupture basées sur le flot optique.

En approches conventionnelles, nous proposons une méthode qui prédit les modes Intra de profondeur

avec ceux de texture. L’héritage est conditionné par un critère qui mesure le degré de similitude entre les deux

modes. Ensuite, nous proposons deux méthodes pour améliorer la prédiction inter-vue du mouvement dans

3D-HEVC. La première ajoute un vecteur de disparité comme candidat inter-vue dans la liste des candidats du

Merge, et la seconde modifie le processus de dérivation de ce vecteur. Finalement, un outil de codage inter-

composantes est proposé, où le lien entre les arbres quaternaires de texture et de profondeur est exploité

pour réduire le temps d’encodage et le débit, à travers un codage conjoint des deux arbres.

Dans la catégorie des approches en rupture, nous proposons deux méthodes basées sur l’estimation de

champs denses de vecteurs de mouvement en utilisant le flot optique. La première calcule un champ au

niveau d’une vue de base reconstruite, puis l’extrapole au niveau d’une vue dépendante, où il est hérité par

les unités de prédiction en tant que candidat dense du Merge. La deuxième méthode améliore la synthèse

de vues : quatre champs sont calculés au niveau de deux vues de référence en utilisant deux références

temporelles. Ils sont ensuite extrapolés au niveau d’une vue synthétisée et corrigés en utilisant une contrainte

épipolaire. Les quatre prédictions correspondantes sont ensuite combinées. Les deux méthodes apportent

des gains de codage significatifs, qui confirment le potentiel de ces solutions innovantes.

MOTS-CLEFS : 3D-HEVC, Flot optique, Synthèse de vues, Liste des candidats du Merge, Initialisation et

limitation d’un arbre quaternaire, Vecteur de disparité, Vecteur de mouvement, Mode Intra.

ABSTRACT : This PhD. thesis deals with improving the coding efficiency in 3D-HEVC. We

propose both constrained approaches aimed towards standardization, and also more innovative

approaches based on optical flow.

In the constrained approaches category, we first propose a method that predicts the depth

Intra modes using the ones of the texture. The inheritance is driven by a criterion measuring

how much the two are expected to match. Second, we propose two simple ways to improve

inter-view motion prediction in 3D-HEVC. The first adds an inter-view disparity vector candidate

in the Merge list and the second modifies the derivation process of this disparity vector. Third,

an inter-component tool is proposed where the link between the texture and depth quadtree

structures is exploited to save both runtime and bits through a joint coding of the quadtrees.

In the more innovative approaches category, we propose two methods that are based on

a dense motion vector field estimation using optical flow. The first computes such a field on a

reconstructed base view. It is then warped at the level of a dependent view where it is inser-

ted as a dense candidate in the Merge list of prediction units in that view. The second method

improves the view synthesis process : four fields are computed at the level of the left and right

reference views using a past and a future temporal reference. These are then warped at the

level of the synthesized view and corrected using an epipolar constraint. The four correspon-

ding predictions are then blended together. Both methods bring significant coding gains which

confirm the potential of such innovative solutions.

KEY-WORDS : 3D-HEVC, Optical flow, View synthesis, Merge candidate list, Quadtree

initialization and limitation, Disparity vector, Motion vector, Intra mode.


