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“Quite apart from the fact that percolation had its origin in an honest applied prob-
lem (...), it is a source of fascinating problems of the best kind a mathematician can
wish for: problems which are easy to state with a minimum of preparation, but whose
solutions are (apparently) difficult and require new methods.”

H. Kesten, Percolation theory for Mathematicians
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RÉSUMÉ

Cette thèse s’inscrit dans l’étude mathématique de la percolation, qui regroupe une famille
de modèles présentant une transition de phase. Ce domaine a connu de nombreuses
avancées au cours de ces trente-cinq dernières années. Certains des plus grands suc-
cès remontent aux années 2000, avec notamment l’invention du SLE, et la preuve de
l’invariance conforme de la percolation de Bernoulli critique sur le réseau triangulaire.
Ces avancés majeures, nous permettent aujourd’hui d’avoir une image très complète de
la percolation de Bernoulli sur le réseau triangulaire. Heureusement, il reste encore de
nombreuses questions en suspens, dont certaines sont maintenant célèbres. Ces ques-
tions ont guidé et motivé le travail de cette thèse.

La première d’entre elle est l’universalité de la percolation plane, qui affirme que les
propriétés macroscopiques de la percolation plane critique ne devraient pas dépendre du
réseau sous-jacent à sa définition. Par exemple, vue de très loin, la percolation critique
sur le réseau carré devrait avoir le même comportement que celui de la percolation cri-
tique sur le réseau triangulaire. Ce phénomène d’universalité est analogue à celui bien
connu du mouvement brownien : lorsqu’on regarde de très loin une marche aléatoire
symétrique sur un réseau, on observe un mouvement brownien, indépendamment du
réseau qui définit la marche. Nous montrons dans le cadre de la percolation Divide and
Color, un résultat qui va dans le sens de cette universalité et identifions dans ce contexte
des phénomènes macroscopiques indépendants du réseau microscopique. Une version
plus faible d’universalité est donnée par la théorie de Russo-Seymour-Welsh (RSW), dont
la validité est connue pour la percolation de Bernoulli (sans dépendance) sur les réseaux
plans suffisamment symétriques. Nous étudions de nouveaux arguments de type RSW
pour des modèles de percolation avec dépendance.

La deuxième question que nous avons abordée est celle de l’existence d’un com-
posante connexe ouverte infinie au point critique. Cette question fondamentale du point
de vue physique, est aussi très naturelle, puisque le point critique en percolation est
défini comme étant le paramètre marquant la transition entre la phase où toutes les com-
posantes ouvertes sont finies et la phase où existe une composante connexe ouverte in-
finie. Lorsqu’il n’y a pas de composante connexe ouverte infinie au point critique, on dit
que la transition de phase est continue. Dans deux travaux en collaboration avec Hugo
Duminil-Copin et Vladas Sidoravicius, nous montrons que la transition de phase est con-



tinue pour la percolation de Bernoulli sur le graphe Z2 × {0, ..., k}, et pour la percolation
FK avec paramètre q ≤ 4.

Enfin, la dernière question qui nous a guidée est la localité du point critique : est-ce
que la donnée des boules de grands rayons d’un graphe suffit à identifier avec une bonne
précision la valeur du point critique? Dans un travail en collaboration avec Sébastien
Martineau, nous répondons de manière affirmative à cette question dans le cadre des
graphes de Cayley de groupe abéliens. Dans ce travail nous étendons à un cadre non
symétrique des techniques de renormalisation dynamique développées dans le cadre de
la percolation sur Zd.
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ORGANIZATION OF THE

THESIS

This manuscript begins with a general introduction: it presents an overview of the ques-
tions studied and the results obtained during this thesis, but mainly focuses on the perco-
lation techniques that inspired this PhD work. In order to introduce the study of planar
percolation, we start this introduction with a full proof of Kesten’s result which states that
the critical point for Bernoulli percolation on the square lattice equals 1/2. This proof,
which follows the same steps as Kesten’s, allows us to present various tools which have
now become standard. We also drive the interested reader to the last part of the proof,
obtained jointly with Vincent Beffara, which presents a shorter version of Kesten’s argu-
ment showing the sharp threshold phenomenon. In this introduction, we also discuss
two general arguments which have been used in various contexts through this thesis.
The first one, the RSW-theory, is one of the most fundamental tools in the study of planar
percolation. The second one, the finite-criterion approach, is a very powerful and beau-
tiful tool which has been used since the first steps of Percolation to tackle a great variety
of questions.

The rest of the manuscript is organized into three parts and seven chapters. Each
chapter corresponds to a paper (or a paper in progress) and can be read independently
of the others:

- Chapters 1 and 2 are published in ALEA;
- Chapters 4 and 7 are submitted;
- Chapters 3, 5 and 6 are in preparation.
Chapter 3 presents the most recent work, and may later be split into two different

papers. Chapters 1 and 2 are written jointly with András Bálint and Vincent Beffara,
chapters 4 and 5 with Hugo Duminil-Copin and Vladas Sidoravicius, and chapter 7 with
Sébastien Martineau.

Part 1. Planar Divide and Color percolation. The first part is divided into three chap-
ters, and mainly focuses on Divide and Color (DaC) percolation on the square lattice. In
the first chapter, we present a rigorous method based on a finite criterion for planar DaC
model that provides a confidence interval for the critical value function in this model. We
present simulation results that confirm previous predictions, but also rise new questions.
The second chapter establishes continuity properties of the critical value for DaC percola-
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tion on the square lattice. We investigate a monotonicity question on general graphs and
identify some difficulties by giving some counter-examples. The third chapter presents
our most interesting result on the subject. We prove a conjecture formulated by Beffara
and Camia, related to one of the most fundamental question in the study of percolation,
namely the universality of almost-critical and critical planar percolation.

Part 2. Critical planar percolation with dependencies. In the fourth chapter, we present
a new RSW-result that can be applied to a large class of planar percolation models. In par-
ticular, our approach does not use a “conditioning on a lowest path” argument, and can
be applied to models with local dependencies (the process tends to evolve independently
in two different regions, when they are taken to be sufficiently far away from each other).
We develop the RSW-result for Voronoi percolation, which is a good example of a planar
percolation model with local dependencies. As a consequence we prove that the box-
crossing property holds for critical Voronoi percolation. This result is new and, as far as
we know, does not follow from the previously known RSW-techniques.

In the fifth chapter, we prove that the phase transition of the random-cluster model
is continuous when the cluster-weight q is smaller than or equal to 4, and obtain a strong
box-crossing property at criticality for such q: there exists an open circuit in the annu-
lus with inner radius n and outer radius 2n, with probability larger than some positive
constant c > 0. This constant depends neither on n, nor on the boundary conditions.
The proof uses two ingredients. The first one is a new result providing the equivalence
of the following properties at criticality: absence of infinite cluster for the wired mea-
sure, uniqueness of the infinite-volume measure, sub-exponential decay of the two-point
function for the free measure, the strong box-crossing property mentioned above. This
equivalence relies on the self-duality of the critical model, and holds for any cluster-
weight q ≥ 1. The second ingredient is a recent result of Hugo Duminil-Copin, proving
sub-exponential decay of the two-point function for the free measure.

Part 3. Locality for Bernoulli percolation. The last two chapters study Bernoulli per-
colation on non-planar graphs. The results proved in these chapters deal with Bernoulli
percolation and are concerned with a similar question: how can we characterize locally
the existence of an infinite cluster? In other words, is the existence of an infinite cluster
equivalent to the occurrence of a certain event in a finite box?

In the sixth chapter, we prove the absence of infinite cluster at criticality for Bernoulli
percolation on the graph Z2 × {0, . . . , k}.

In the seventh chapter, we study Bernoulli bond percolation on Cayley graphs of
abelian groups, and we prove the locality of the critical point in this setting. Consider G
and G1, G2, . . . a sequence of Cayley graphs of abelian groups with rank larger than or
equal to 2. If Gn and G have the same ball of radius n for every n, then pc(Gn) converges
to pc(G) when n tends to +∞. This result can be seen as a continuity statement on
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the Benjamini-Schramm space, and treats a particular case of a conjecture due to Oded
Schramm.
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INTRODUCTION

1 What is percolation?

1.1 General definitions

Graph definitions. We consider a simple non-oriented connected graph, given by a pair
G = (V, E): V denotes the vertex set, and the edge set E is a set of pairs of vertices {v, w},
v, w ∈ V. A path in G is a sequence of vertices x0, x1, . . ., finite or infinite, such that for
every i ≥ 0, {xi, xi+1} ∈ E. This path is said to be self-avoiding if all its vertices are
distinct.

Bond percolation configurations. We consider the space Ω = {0, 1}E, equipped with
the product sigma-algebra. An elementω ∈ Ω is called a bond percolation configuration
and we use the following definitions. An edge e ∈ E is said to be open if ω(e) = 1
and closed if ω(e) = 0. A path of G is said to be open when all its edges are open. We
consider the graph obtained from G by removing all the closed edges, and call bond-
cluster, or simply cluster a maximal connected set of this graph.

Bernoulli bond percolation. In Bernoulli percolation we construct a random configu-
ration in Ω by declaring each edge open with probability p and closed otherwise, in-
dependently for different edges. We denote by Pp the resulting probability measure on
Ω.

Phase transition. Fix a vertex 0 ∈ V, we write 0 ←→ ∞ the event that there exists an
infinite open self-avoiding path starting from 0, and define

θ(p) = Pp [0←→ ∞] .

The function θ is nondecreasing, and there exists a (unique) parameter pc = pc(G) ∈
[0, 1], called critical parameter or critical point of G, such that

θ(p)

= 0 if p < pc

> 0 if p > pc.
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1.2 Standard techniques

The FKG inequality. The set Ω = {0, 1}E has a natural partial ordering ≤ defined by

ω1 ≤ ω2 ⇐⇒ ω1(e) ≤ω2(e) for all e ∈ E.

An event A ⊂ Ω is said to be increasing if

(ω1 ≤ ω2, ω1 ∈ A) ⇒ ω2 ∈ A.

An event is decreasing if its complement is increasing. The following theorem, due
to Harris [Har60], shows that increasing events are positively correlated.

Theorem 1.1. If A,B are increasing events, then

Pp [A∩B] ≥ Pp [A]Pp [B] .

The inequality above is often called FKG inequality, in reference to Fortuin, Kasteleyn
and Ginibre who proved it in a more general setting than Bernoulli percolation. We will
also call FKG inequalities the following straightforward consequences of Theorem 1.1:

If A and B are decreasing events, then

Pp [A∩B] ≥ Pp [A]Pp [B] .

If A is increasing and B is decreasing, then

Pp [A∩B] ≤ Pp [A]Pp [B] .

Russo’s formula. Letω ∈ Ω, e ∈ E. We define the configurationsωe andωe by

ωe( f ) =

ω( f ) if f 6= e

0 if f = e
and ωe( f ) =

ω( f ) if f 6= e

1 if f = e

Let A be an increasing event defined in terms of the state of finitely many edges. The
event “e is pivotal for A” is defined by all the configurations ω such that ωe /∈ A and
ωe ∈ A. The following theorem, named after Russo who proved it in [Rus81], allows one
to estimate the rate of change of Pp [A] when p varies.

Theorem 1.2 (Russo’s formula). Let A be an increasing event defined in terms of the state of
the edges in a finite set E0 ⊂ E. Then

d
dp

Pp [A] = ∑
e∈E0

Pp [e is pivotal for A]

2



2 Percolation on the square lattice

2 Percolation on the square lattice

In this section, we study the percolation on the square lattice and give a full proof of
Kesten’s result that pc = 1/2 for percolation on this graph. We choose to present this
proof here because it introduces some fundamental tools of percolation, such as the
Russo-Seymour-Welsh theory, the finite criterion approach, or the geometric interpre-
tation of Russo’s formula. This tools are very general and will be used and studied in
various contexts all along the thesis.

2.1 Definitions for planar percolation

We consider the square lattice G = (V, E) drawn in the plane, defined by setting V = Z2,
and E the set of pairs {v, w} ⊂ V at Euclidean distance |v − w| = 1. Its dual graph
G∗ = (V∗, E∗) is defined by setting V∗ := (1/2, 1/2) + Z2 (there is a vertex in the middle
of each face of G), and E∗ the set of pairs {v, w} ⊂ V∗ with |v − w| = 1 (two vertices
are neighbours if they correspond to two adjacent faces of G). Note that the graph G∗ is
isomorphic to G, we call this specificity of the square lattice the self-duality property. The
elements of E∗ are sometimes called dual edges.

In the study of percolation on the square lattice, we see a path in G (or in G∗) as a
planar curve obtained by joining its vertices x0, x1, . . . by segments of length 1. Note
that when the path is self-avoiding the corresponding planar curve is a Jordan arc. Let
R = [a, b] × [c, d] be a rectangle in the plane. We call horizontal crossing of R a self-
avoiding path (of G or G∗) in R with exactly one point on {b} × [c, d] and one point on
{a} × [c, d]. Note that these two points are necessarily the two end-vertices of the path.
We define similarly a vertical crossing in R.

To each edge e ∈ E corresponds a unique dual edge e∗ ∈ E∗ that crosses e (see Fig. 1).
Given a bond percolation configuration, we say that the dual-edge e∗ is dual-open if the
edge e is closed. A path in G∗ is said to be dual-open if all its edges are dual-open.

e

e∗

Figure 1: A portion of the square lattice G (solid lines) and its dual graph G∗ (dashed
lines). Each edge e of G crosses a unique dual-edge e∗ of G∗.
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2.2 The box-crossing property at p=1/2

Let R = [a, b] × [c, d] be a rectangle such that a, b, c, d ∈ Z2. We define H(R), resp.
V(R), to be the event that there exists an open horizontal, resp. vertical, crossing in R.
We also define V∗(R) to be the event that there exists a dual-open vertical crossing in the
rectangle [a+ 1/2, b− 1/2]× [c− 1/2, d+ 1/2]. The following result was first obtained by
Russo[Rus81] and Seymour and Welsh[SW78]. The proof we give here is due to Bollobás
and Riordan[BR06b]; as the original proofs of Russo, Seymour and Welsh, it involves a
“conditioning on the lowest path argument”.

Theorem 2.1. Box-crossing property. For any ρ > 0, there exist two constant c(ρ) > 0 and
N(ρ) ≥ 1 such that for every n ≥ N(ρ),

1− c(ρ) ≥ P1/2 [H([0, b2ρnc]× [−n, n])] ≥ c(ρ)

The constant N(ρ) appearing above is needed only to avoid the event H([0, bρnc]×
[−n, n]) to be empty, in particular, we can take N(ρ) = 1 for every ρ ≥ 1.

Proof. In order to emphasize the different arguments used, we decompose the proof into
three steps.

Step 1: consequences of the self-duality. Given a rectangle R, one can prove that the
eventH(R) holds if and only if V∗(R) does not hold, and we have

P1/2 [H(R)] + P1/2 [V∗(R)] = 1.

When p = 1/2, one can easily check that P1/2 [V∗(R)] ≤ P1/2 [V(R)], and we obtain

P1/2 [H(R)] + P1/2 [V(R)] ≥ 1.

Setting R = [0, n]2, and using the invariance under π/2 rotation, we find

P1/2

[
H([0, n]2)

]
≥ 1

2
. (1)

From similar considerations involving the self-duality property, one can also see
that it is sufficient to show that

P1/2 [H([0, b2ρnc]× [−n, n])] ≥ c(ρ) (2)

holds for ρ ≥ 1, in order to prove Theorem 2.1. Equation (1) concludes the case
ρ = 1. It now remains to show that Equation (2) holds for every ρ > 1.

Step 2: conditioning on the lowest path. Consider the squares S = [−n, 0]× [0, n] and
S+ = [−n, n]× [0, 2n]. Define the event E+ that there exists in S an open horizontal
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2 Percolation on the square lattice

crossing γ, and in S+ an open path connecting γ to the top of S+ (see Fig. 2). We
will prove that

P1/2 [E+] ≥
1
8

.

S+

S

n

Figure 2: The event E+

n

γ γ′

J(γ)

Figure 3: The event Vγ

Let γ be a (deterministic) crossing in S. It separates the square S into two disjoint
regions, and we write J(γ) the union of the region below γ together with the points
on the path γ. Let γ′ be the path obtained by reflecting γ in the vertical line {0}×R.
Define Vγ to be the event that there exists an open path from γ to the top of the
square S+ in the region of S+ above the union of γ with γ′. Note that this event
is independent of the configuration in J(γ). Any open vertical crossing in S+ must
intersect γ ∪γ′, and by symmetry we find

P1/2 [Vγ] ≥
1
4

.

When the eventH(S) holds, one can define the lowest open path Γ from left to right
in S. Note that the event {Γ = γ} is measurable with respect to the configuration in
J(γ) and is thus independent of Vγ. Conditioning on Γ , we obtain

P1/2 [E+] ≥∑
γ

P1/2 [Vγ]P1/2 [Γ = γ]

≥ 1
4

P1/2 [H(S)]

≥ 1
8

.

Step 3: gluing paths with FKG inequality. Consider the square S− = [−n, n]2 and de-
fine the event E− that there exists in S an open horizontal crossing γ, and in S−
an open path connecting γ to the bottom of S−. When E−, E+ and V(S) hold, it
implies the existence of an open vertical crossing in the rectangle [−n, n]× [−n, 2n]
(see Fig. 4). By FKG inequality, we obtain

P1/2 [V([−n, n]× [−n, 2n])] ≥ P1/2 [E−, E+, V(S)]

≥ 1
128

. (3)

5
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S+

S
n

S−

Figure 4: The occurrence of E−, E+,V(S)

n

Figure 5: The events E1, E2, E3, . . .

For every i ≥ 0, define the event Ei that there exist an open horizontal crossing in
[in, (i + 3)n]× [−n, n] and an open vertical crossing in [(i + 1)n, (i + 3)n]× [−n, n].
By equation (3) above, the horizontal crossing exists with probability larger than
1/128, and by equation (1) the vertical crossing exists with probability larger than
1/2. By FKG inequality, we find for every i

P1/2 [Ei] ≥
1

256

Let k ≥ 3 and assume that Ei holds for every 0 ≤ i ≤ k− 3, then there exists an open
horizontal crossing in [0, kn]× [−n, n] (see Fig. 5). By FKG inequality, we obtain

P1/2 [V([0, kn]× [−n, n])] ≥ P1/2 [E0, E1, . . . , Ek−3]

≥
(

1
256

)k−2

,

which concludes the proof of equation (2).

2.3 Static renormalization

We define for every n ≥ 1 and 0 ≤ p ≤ 1, πn(p) := Pp [H([0, 5n]× [−n, n])].

Theorem 2.2. If for some n ≥ 1

πn(p) >
2
√

2
3

,

then Pp [0←→ ∞] > 0.

6



2 Percolation on the square lattice

The numerical value 2
√

2/3 is irrelevant and could be replaced by any constant δ < 1.
Theorem 2.2 was proved initially by Russo [Rus81] with 2

√
2/3 replaced by another con-

stant. It can be proved in various ways. The proof we give here is very similar to
Russo’s proof. we use a coupling with a 1-dependent percolation measure. A measure
P on Ω is said to be 1-dependent if the events {e1 is open}, . . . , {en is open} are inde-
pendent as soon as e1, . . . , en are vertex-disjoint edges, meaning that ei and e j have no
common end-vertex for all i 6= j.

Lemma 2.3. Let P be a 1-dependent measure on ΩE, such that

∀e ∈ E, P [e is open] >
8
9

.

Then there exists an infinite open cluster in G with positive probability.

Lemma 2.3 is proved using a Peierl’s argument, named after Peierl who discovered it
in the context of Ising model, see [Pei36].

Proof. If [−n, n]2 does not intersect an infinite cluster, then it must be surrounded by a
dual-open circuit in G∗. Such a circuit must intersect the half-axis [n, ∞) × {−1/2} at
a point (` + 1/2,−1/2) for some ` ≥ n and contain a dual-open self-avoiding path of
length ` starting from (`+ 1/2,−1/2) (see Fig. 6). Note that ` is not necessarily unique.

(` + 1/2,−1/2)

n

Figure 6: A dual-open circuit (in dotted line) around the box [−n, n]2: it must contain
a self-avoiding path (solid line) of length ` starting from a point (`+ 1/2,−1/2).

Let us denote SAW` the set of self-avoiding paths of length ` starting from (` +

1/2,−1/2), the union bound gives

P
[
[−n, n]2 does not intersect an infinite cluster

]
≤ ∑

`≥n
∑

γ∈SAW`

P [γ is dual-open] .

The number of paths in SAW` is smaller than 4.3`, and a given path in SAW`, containing
b`+ 1/2c vertex-disjoint edges, is dual-open with probability smaller than (1− p)`/2. We
obtain

P
[
[−n, n]2 does not intersect an infinite cluster

]
≤ 4 ∑

`≥n
(3
√

1− p)`. (4)

7
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If p > 8/9, then by equation (4) above, one can pick n large enough so that [−n, n]2

intersects an infinite cluster with positive probability.

Proof of Theorem 2.2. Let 0 ≤ p ≤ 1, and assume that πn(p) > 2
√

2/3. Let Gn be the
graph with vertex set 3nZ2 and edge set given by the pairs {x, x′} such that the Euclidean
distance between x and x′ is exactly 3n. Note that Gn is isomorphic (as a graph) to the
square lattice. We associate to each edge e of Gn an event Ee, defined as follows. If e is of
the form {z, z + (3n, 0)}, we define Ee to be the event that there exists an open horizontal
crossing in the rectangle z+[−n, 4n]× [−n, n], and an open vertical crossing in the square
z + [−n, n]2 (see Fig. 7). If e is of the form {z, z + (0, 3n)}, we define Ee to be the event
that there exists an open vertical crossing in the rectangle z + [−n, n]× [−n, 4n] and an
open horizontal crossing in the square z + [−n, n]2.

z

n 3n n

z

n

3n

n

Figure 7: On the left, the event Ee for e = {z, z + (3n, 0)}, and on the right for e =

{z, z + (0, 3n)}

Note that the events Ee1 , . . . , Eek are independent, when e1, . . . , ek are any vertex-disjoint
edges of Gn. By the FKG inequality we have for every edge e of Gn,

Pp [Ee] ≥ Pp [H([−n, 4n]× [−n, n])] Pp

[
V([−n, n]2)

]
≥ πn(p)2

>
8
9

.

Let Y be the random variable defined by Y(e) = 1 if Ee holds and Y(e) = 0 oth-
erwise. The independence properties above imply that the law of Y is a 1-dependent
percolation measure on the graph Gn. Since Y(e) = 1 with probability larger than 8/9,
Lemma 2.3 ensures that there exists with positive probability an infinite self-avoiding
path 0 = z0, z1, . . . in Gn such that Y({zi, zi+1}) = 1 for every i ≥ 0. When such a path
exists in Gn, it implies in G that the box [−n, n]2 intersects an infinite cluster.

8



2 Percolation on the square lattice

2.4 The critical point is at least 1/2

The following theorem is due to Harris[Har60] and implies that pc ≥ 1/2.

Theorem 2.4. For Bernoulli bond percolation on the square lattice, we have

θ(1/2) = 0.

Proof. Consider the eventAn that there exists in the annulus [−3n, 3n]2 \ [−n, n]2 a dual-
open circuit surrounding the origin. It follows from Theorem 2.1 that there exists a con-
stant c0 > 0 such that for every n

P1/2 [An] > c0. (5)

To see this, consider the following four rectangles R1 = [−3n + 1
2 , 3n− 1

2 ]× [n + 1
2 , 3n−

1
2 ], R2 = [n+ 1

2 , 3n− 1
2 ]× [−3n+ 1

2 , 3n− 1
2 ], R3 = [−3n+ 1

2 , 3n− 1
2 ]× [−3n+ 1

2 ,−n− 1
2 ],

R4 = [−3n+ 1
2 ,−n− 1

2 ]× [−3n+ 1
2 , 3n− 1

2 ]. If there exist dual-open horizontal crossings
in R1 and R3, and dual-open vertical crossings in R2 and R4, then the event An occurs
(see Fig. 8). We obtain then the uniform bound (5) by applying FKG inequality.

R1

R4 R2

R3

n

3n

Figure 8: Dual-crossings in R1, R2, R3, R4.

Finally consider the sequence of events (A3i)i≥1. They are independent and by the
Borel-Cantelli lemma, the origin is almost surely surrounded by a dual-open circuit,
which concludes the proof.

2.5 The critical point is at most 1/2

We prove the following theorem, which implies directly that pc ≤ 1/2.

Theorem 2.5. For every p > 1/2, we have θ(p) > 0.

The proof of Theorem 2.5 presented here is very similar to Kesten’s one. The general
idea is to show that the box-crossing property cannot hold on a whole range of param-
eters (p0, p1), p0 < p1. This sharp-threshold phenomenon can be obtained via Russo’s
formula by showing that there are many pivotal points when the crossing probabilities

9
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are uniformly bounded away from 0 and 1. To show this, Kesten uses a circuit argument.
Here we present a slightly shorter argument, obtained jointly with Vincent Beffara, and
using a comparison between the four-arm event and the five-arm event.

Define θn(p) to be the probability that there exists an open path from the origin 0 to
the boundary of the box [−n, n]2. Consider the rectangle Rn := [0, 6n]× [0, 2n].

Lemma 2.6. There exists a constant c1 > 0 such that the following holds. For every n ≥ 1 and
every p ≥ 1/2, we have

d
dp

Pp [H(Rn)] ≥ c1
1− πn(p)
θn(p)

.

Proof. Consider the rectangle R− = [0, 6n]× [0, n]. Let γ be a (deterministic) path from
left to right in R−, we write J(γ) the region above γ. Note that the path γ is disjoint from
J(γ), nevertheless we consider by abuse that the edges with one end-vertex in γ and one
in J(γ) lie in J(γ). For every edge e on the path γ, we define the events A(e,γ) that
there exists an open path from an end-vertex of e to the top of Rn in the region J(γ), and
A∗(e∗,γ) that there exists a dual-open path from an end-vertex of e∗ to the top of Rn in
the region J(γ). Consider the event illustrated on Fig. 9 that there exist

(i) an open path in the region J(γ) ∩ ([0, n] × [0, 2n]), starting from γ and ending at
the top of Rn,

(ii) a dual-open path in the region J(γ) ∩ ([n, 6n] × [0, 2n]), starting at distance 1/2
from γ and ending on [n, 6n]× {2n + 1/2}.

γ
2n

n 5n

Figure 9: An event implying the occurence ofA(e,γ) andA∗(e∗,γ) for the same edge
e in γ.

The first path exists with probability larger than some constant c2 > 0 (by the box cross-
ing property, see Theorem 2.1, and monotonicity), the second one with probability larger
than 1− πn(p), by duality. When the event depicted above holds, one can consider the
boundary of a cluster containing an open path of type (i) and show that there exists an
edge e on γ such that both A(e,γ) and A∗(e∗,γ) hold. We find

∑
e∈γ

Pp [A(e,γ) ∩A∗(e∗,γ)] ≥ c2(1− πn(p)). (6)

The event A(e,γ) is increasing and A∗(e∗,γ) is decreasing, and one can apply the FKG
inequality to each term in the sum of equation (6). Using then the bound Pp [A(e,γ)] ≤

10



2 Percolation on the square lattice

θn(p), we obtain

∑
e∈γ

Pp [A∗(e∗,γ)] ≥ c2
1− πn(p)
θn(p)

.

When the event H(R−) holds, we can define the lowest open horizontal crossing Γ

in R−. Let γ be a deterministic path, and assume that Γ is well defined and equal to γ.
Under this assumption, one can verify that an edge e is pivotal if and only if the edge e is
on the path γ and the event A∗(e∗,γ) holds. We obtain

Pp [e is pivotal, Γ = γ] =

Pp [Γ = γ, A∗(e∗,γ)] if e ∈ γ
0 otherwise.

(7)

Using first Russo’s formula, and then equation (7) above, we find

d
dp

Pp [H(Rn)] = ∑
e∈Rn

Pp [e is pivotal]

≥ ∑
e∈Rn

Pp [e is pivotal, H(R−)]

= ∑
γ

∑
e∈Rn

Pp [e is pivotal, Γ = γ]

= ∑
γ

∑
e∈γ

Pp [A∗(e∗,γ), Γ = γ]

For a fixed γ, the event {Γ = γ} is measurable with respect to the state of the edges below
and on γ. It is in particular independent of the event A∗(e∗,γ), and we obtain from the
computation above

d
dp

Pp [H(Rn)] ≥∑
γ

(
∑
e∈γ

Pp [A∗(e∗,γ)]
)

Pp [Γ = γ] .

Using equation (7), we finally obtain

d
dp

Pp [H(Rn)] ≥ c2Pp [H(R−)]
1− πn(p)
θn(p)

.

We conclude the proof using the box crossing property (see Theorem 2.1) which implies
by monotonicity that Pp [H(R−)] is larger than some constant c3 > 0 independent of n
and p ≥ 1/2.

Proof of Theorem 2.5. Assume for contradiction that there exists p0 > 1/2 such thatθ(p0) = 0.
By Theorem 2.2 and monotonicity, we have for n ≥ 1 and 1/2 ≤ p ≤ p0,

πn(p) ≤ 2
√

2
3

and θn(p) ≤ θn(p0)

By Lemma 2.6 we obtain, for 1/2 ≤ p ≤ p0,

d
dp

Pp [H(Rn)] ≥ c4
1

θn(p0)
.

11
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Integrating the equation above for p between 1/2 and p0, we find

Pp0 [H(Rn)]− P1/2 [H(Rn)] ≥ c4
p0 − 1/2
θn(p0)

.

The left hand side is always smaller than 1, while the right hand side tends to infinity
when n tends to infinity, which provides us a contradiction.
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3 Overview of the results

3 Overview of the results

3.1 Divide and Color percolation (Chapter 1-2-3)

Divide and Color (DaC) percolation was introduced in 2001 by Häggström [Hä01]. This
is a stochastic model that was originally motivated by physical considerations (see [Hä01,
CLM07]), but it has since then been used for biological modelling in [GPG07] as well and
has inspired several generalizations (see e.g. [HH08, BCM09, GG06]).

Definition. Given a graph G = (V, E) and two parameters 0 ≤ p, r ≤ 1, DaC percola-
tion is defined by the following two step procedure.

Step 1: Bernoulli bond percolation Consider a realization of Bernoulli bond percolation
with parameter p. We focus on the resulting bond-clusters, which form a random
partition of vertices of G.

Step 2: Coloring the clusters For each bond-cluster, choose one color, black or white,
and assign this color to all its vertices. The chosen color is black with probability r,
white otherwise, and the chosen colors are independent for different bond clusters.

These two steps yield a random configuration X ∈ {0, 1}V by defining, for each v ∈ V,
X(v) = 1 if v is black and X(v) = 0 if v is white. We denote by µG

p,r the probability
measure given by the law of X. Note that the process has long range dependencies:
when 0 < p < 1 two given vertices have always a positive probability to be on the same
bond-cluster in the first step, and their colors are thus non-trivially correlated. In general,
statistical mechanics models with non trivial correlations are not easy to define in infinite
volume and are obtained by taking limits of measures in finite boxes. Here, the measure
is defined only in terms of i.i.d. sequences, and can be directly defined in infinite volume.

Phase transition. Fix an origin 0 ∈ V. We consider the event, denoted by 0 black←−→ ∞,
that there exists an infinite path of G, starting from 0, all the vertices of which are col-

ored black. For every fixed p ∈ [0, 1], the probability µp,r[0
black←−→ ∞] is a nondecreas-

ing function of r (by a standard coupling argument), and one can define a critical value
rc(p) ∈ [0, 1] such that the following holds:

µp,r[0
black←−→ ∞]

= 0 if r < rc(p)

> 0 if r > rc(p).

One can already observe that rc(p) = 0 when p is larger than the critical point pc for
Bernoulli bond percolation on G. Indeed, when p > pc, the origin lies in an infinite
bond cluster with positive probability after the first step. As soon as r > 0, this cluster
is colored black in the second step with positive probability, which realizes the event

0 black←−→ ∞. When G is the d-dimensional hypercubic lattice Zd, d ≥ 2, Häggström [Hä01]

13
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proved that the phase transition occurs at a nontrivial rc(p) ∈ (0, 1), for all subcritical
p < pc. The behavior when p = pc depends on the graph G: Häggström proved that
rc(pc) = 0 when G is a sufficiently branching tree, and rc(pc) = 1 when G = Z2.

The function rc is completely determined when G is the standard triangular lattice
in the plane by the work of Bálint, Camia and Meester [BCM09]. On this graph, rc is
constant and equals 1/2 on the interval [0, pc), it jumps to 1 at pc, and is equal to 0 for
p > pc.

DaC percolation in the plane. We studied DaC percolation on planar lattices. We
present here the results we obtained on the square lattice, but most of them extend to
other planar lattices. From now on, the underlying graph is always assumed to be the
square lattice (except in Theorem 3.1). In particular we have pc = 1/2 but we prefer to
keep the notation pc to avoid possible confusions with other 1/2’s. In [VT1], we adapt to
DaC percolation a technique developed by Riordan and Walters [RW07] and obtain con-
fidence intervals for the critical value function rc. Figure 10 below shows the results of
our simulations for rc on the interval [0, pc). On the right we draw the complete expected
picture, using Häggström’s results mentioned above concerning the behavior on [pc, 1].
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Figure 10: Simulation results for differ-
ent values of p < pLc . The dashed line
was obtained via a non-rigorous cor-
rection method.

r

p

0.5

1

psite
c

10.5

rc continuous

rc ≥ 1
2

Bond percolation
already produces
an infinite cluster

Infinitely many p-
clusters surround the
origin.

Obtained by simulations

Figure 11: Expected behavior for rc on
the square lattice.

The inequality rc(p) ≥ 1/2 was established by Bálint, Camia and Meester, using dual-
ity arguments. The simulations strongly suggest that on the interval [0, pc), the function
rc is continuous, decreasing, and converges to 1/2 when p tends to pc. We studied all
these features.

Monotonicity? When p increases, the underlying bond clusters become larger and one
may expect that it becomes easier to have an infinite black path from the origin. This

heuristic reasoning is wrong. Simply consider r ∈ (rc(0), 1). We have µ0,r[0
black←−→
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∞] > 0 while µpc ,r[0
black←−→ ∞] = 0. What happens here is that the bond clusters get

larger and create “barriers” around the origin. This shows that there is a priori no
easy coupling that could prove the monotonicity. In order to identify some difficul-
ties arising with this question, we investigate the monotonicity question on general
graphs and prove the following.

Theorem 3.1 (with Vincent Beffara and András Bálint). There exists a quasi-transitive1

graph G with a critical rc which is not monotonic (neither nonincreasing nor nondecreasing)
on [0, pc).

Continuity. Based on the previous work of Bálint, Camia, and Meester, we could prove
that rc is continuous on the interval [0, pc). Our proof uses a finite criterion ap-
proach.

Theorem 3.2 (with Vincent Beffara and András Bálint). The function rc is continuous
on the interval [0, pc).

Convergence to 1/2? The fact that rc(p) should converge to 1/2 when p tends to pc was
conjectured by Beffara and Camia, based on the following heuristic reasoning. One
can see DaC percolation as a site percolation process on the random graph Gp de-
termined by the bond-clusters: the vertices of Gp correspond to the bond-clusters,
and there is an edge between two vertices if the corresponding bond-clusters are
adjacent in Z2. The value rc(p) can be interpreted as the critical parameter for site
percolation on the random graph Gp. Near p = pc, the large bond-clusters should
be arranged as a graph which is close to a triangulation, and, from a site perco-
lation point of view, a triangulation is self-dual and is expected to have a critical
value equal to 1/2. Thus when p is close to pc, the value rc(p) should be close to
1/2, being the critical parameter of a graph which looks like a triangulation.

Actually the structure of Gp is given by the geometry of “near-critical percolation
clusters,” which is expected to be universal for 2-dimensional planar graphs. This
suggests that the critical r for p close to its critical value should not depend much
on the original underlying lattice, and we expect the convergence of rc(p) to 1/2 to
be universal and hold in the case of any 2-dimensional lattice.

Our main result on DaC percolation was to prove Beffara and Camia’s conjecture
for the square lattice.

Theorem 3.3. For DaC percolation on the square lattice, we have

lim
p→pc
p<pc

rc(p) = 1/2.

1A graph is said to be quasi-transitive if the action of its group of automorphisms has finitely many orbits
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Linearity? Surprisingly, the critical value function rc seems to be linear on the interval
[0, pc). We used also simulations to estimate rc(p) on the interval [0, pc) for the hexago-
nal lattice (see Fig. 12). In this second case the function is clearly not linear. Thus, if it
holds, linearity must be a specific property of the square lattice, but we do not have any
argument or heuristic reasoning to explain this fact.
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Figure 12: Estimations for the critical value function rc(p) on the hexagonal lattice.

3.2 The random cluster model (Chapter 5)

The free and wired measures. We consider the square lattice G = (Z2, E). We denote
by Λn the subgraph of Z2 illustrated on Fig. 13 and defined as follows: its vertex set
is given by all the vertices of Z2 in [−n, n]2 except the four corners of [−n, n]2, and its
edge set, denoted by En, is given by all the edges of the square lattice with both end-
vertices [−n, n]2 except those included on the boundary of [−n, n]2 . We write ∂Λn the
set of vertices of Λn with less than four neighbours in Λn. Given a bond percolation
configuration ω ∈ {0, 1}En , we write o(ω) and c(ω) for the number of open and closed
edges in ω. We also write k0(ω) the number of clusters in the configuration ω. The
configuration ω can also be seen as a bond percolation configuration on the graph Λ̃n

obtained from Λn by contracting into one point all the vertices of ∂Λn. Write then k1(ω)

the number of clusters forω in the graph Λ̃n. As illustrated on Fig. 14, k1(ω) can also be
seen as the number of clusters when all the points of ∂Λn are wired altogether.

Let p ∈ [0, 1], q ∈ [1, ∞). Define the random-cluster measure in Λn with edge density
p, cluster weight q, and free boundary conditions by the formula

φ0
Λn ,p,q[{ω}] :=

po(ω)(1− p)c(ω)qk0(ω)

Z0
G,p,q

,

and the random-cluster measure in Λn with wired boundary conditions by

φ1
Λn ,p,q[{ω}] :=

po(ω)(1− p)c(ω)qk1(ω)

Z1
G,p,q

.
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3 Overview of the results

Figure 13: The graphs Λn (left) and Λ̃n (right). On the right, the thickened boundary
represents a single vertex.

Figure 14: The bond-clusters defined by the configuration on Λn (left) and Λ̃n (right).
There are k0(ω) bond-clusters on the left, k1(ω) on the right.
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The constants Z0
Λn ,p,q and Z1

Λn ,p,q are called the partition functions, and are defined in such
a way that the sum of the weights over all possible configurations equals 1.

Infinite-volume measures can be defined on Z2 by taking limits of finite-volume mea-
sures for graphs tending to Z2. In particular, the infinite-volume random-cluster measure
with free (resp. wired) boundary conditions φ0

Z2 ,p,q (resp. φ1
Z2 ,p,q) can be defined as the

limit of the sequence of measures φ0
Λn ,p,q (resp. φ1

Λn ,p,q) for Λn ↗ Z2. We refer the reader
to [Gri06] for more details on this construction.

Phase transition. For fixed q ≥ 1, the random-cluster model undergoes a phase transi-
tion in infinite volume. Defineθ1(p, q) = φ1

Z2 ,p,q[0←→ ∞], there exists a critical parameter
pc(q) ∈ (0, 1) such that the following holds:

θ1(p, q)

= 0 if p < pc(q)

> 0 if p > pc(q).

The value of pc(q) was recently proved to be equal to
√

q/(1 +
√

q) for any q ≥ 1 in
[BDC12a]. The result was previously proved in [Kes80] for Bernoulli percolation (q = 1),
in [Ons44] for q = 2 using the connection with the Ising model and in [LMMS+91] for
q ≥ 25.72.

The phase transition is said to be continuous if θ1(pc(q), q) = 0, and discontinuous if
θ1(pc(q), q) > 0. Our main result in this context is the following theorem.

Theorem 3.4 (with Hugo Duminil-Copin and Vladas Sidoravicius). For every q ≤ 4, the
phase transition in random cluster model is continuous.

This theorem was already proved in the case q = 1 (which corresponds to Bernoulli
percolation) by combining results of Harris [Har60] and Kesten [Kes80] and in the case
q = 2 from the work of Onsager on Ising model [Ons44].

The theorem above confirms the physical predictions of Baxter [Bax71, Bax73, Bax89].
Based on exact (but non-rigorous) computations, he was able to predict the critical be-
havior of Potts model. Via the Edwards and Sokal coupling [ES88] which establishes a
correspondence between the Potts model and the random cluster model and using Bax-
ter’s work, one can predict that the phase transition in the random cluster model should
be continuous for 1 ≤ q ≤ 4 and discontinuous for q > 4. Our theorem covers thus the
whole range of values for which the phase transition is expected to be continuous. Note
that Edwards and Sokal coupling allowed us to derive from Theorem 3.4 a continuity
result for the Potts model, and confirm a part of Baxter’s prediction on this model.

For q > 4, we prove a result strongly suggesting a discontinuous phase transition.
Stating this result here would require additional definitions but we drive the interested
reader to chapter 5 Proposition 5.4.3. Let us finally mention that the phase transition is
already known to be discontinuous for every q ≥ 25.72 (see [LMMS+91]).
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An alternative for the behavior of critical random-cluster models. Most of our work
on the random cluster consisted in proving the following theorem, which provides a great
understanding of the critical behavior of the critical random-cluster, and shows that only
two very different behaviors are possible. This result is valid for every q ≥ 1 and its proof
relies on a self duality property enjoyed by the model on the square lattice.

Theorem 3.5 (with Hugo Duminil-Copin and Vladas Sidoravicius). Let q ≥ 1. The follow-
ing assertions are equivalent :

P1 (Absence of infinite cluster at criticality)φ1
Z2 ,pc ,q [0←→ ∞] = 0;

P2 (Uniqueness of the infinite-volume measure)φ0
Z2 ,pc ,q = φ

1
Z2 ,pc ,q;

P3 (Infinite susceptibility) χ0(pc, q) := ∑
x∈Z2

φ0
Z2 ,pc ,q [0←→ x] = ∞;

P4 (Sub-exponential decay for free boundary conditions)

lim
n→∞ 1

n logφ0
Z2 ,pc ,q [0←→ ∂Λn] = 0;

P5 (RSW) For any ρ ≥ 1, there exists c = c(ρ) > 0 such that for all n ≥ 1,

φ0
Λ2ρn ,pc ,q [H([−ρn,ρn]× [−n, n])] ≥ c.

Recently, Hugo Duminil-Copin developed new ingenious techniques based on Smirnov’s
parafermionic observable (see his recent book [DC13] for an overview) and obtained nu-
merous new rigorous results in various planar models of statistical physics. In particular,
for the random cluster model with q ≤ 4, he managed to prove that the probability
φ0
Z2 ,pc ,q [0←→ ∂Λn] decays at most polynomially fast (meaning ≥ 1

nc for some constant
c > 0) when n tends to infinity (see [DC12]). This is enough information to identify the
critical behavior, since it implies that Property P4 above holds, and Theorem 3.5 provides
then a complete picture when q ≤ 4. The strongest property is P5, it extends the RSW-
Theorem of Bernoulli percolation, and allows to identify similarities between the critical
behavior of the random cluster models with 1 ≤ q ≤ 4 and the well-known critical be-
havior of Bernoulli percolation.

3.3 Bernoulli percolation: the critical behavior (Chapter 6)

The critical value pc separates two different behaviors for the Bernoulli percolation pro-
cess on a graph G:

• when p < pc, there is almost surely no infinite cluster, we say that the process does
not percolate in G.

• when p > pc, there exists almost surely at least one infinite cluster: the process
percolates.
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A natural question to ask is whether the process percolates or not at criticality, which is
equivalent to ask whether θ(pc) > 0 or θ(pc) = 0. When θ(pc) = 0 on a graph G, we
say that the phase transition is continuous for Bernoulli percolation. A continuous phase
transition has been proved to hold

- for the square lattice G = Z2 by combining results of Harris [Har60] and Kesten
[Kes80].

- for the d-dimensional hypercubic lattice Zd, d ≥ 19, by Harra and Slade [HS94],
using a lace-expansion technique.

- for the half-spaces Zd−1 ×N, d ≥ 1, by Barsky, Grimmett and Newman [BGN91b],
using a dynamical renormalization argument.

- for any unimodular non-amenable transitive graph by Benjamini, Lyons, Peres
and Schramm [BLPS99], using a mass-transport principle. (For definitions, see
[BLPS99].)

The case of Zd for d between 3 and 18 is still open. The continuity of the phase transition
for Z3 is one of the most famous open questions in Bernoulli percolation.

With an eye on this open problem, Benjamini asked the question for the slabs Sk,
which are expected to have the same percolation properties as Z3 when k is large. We
managed to answer positively to this question.

Theorem 3.6 (with Hugo Duminil-Copin and Vladas Sidoravicius). For every k ≥ 0, the
phase transition is continuous for Bernoulli percolation on the slab Sk.

3.4 Bernoulli percolation: the locality conjecture (Chapter 7)

Bernoulli percolation defines for each graph G a critical value pc(G). Which properties
of the graph determine the value of pc? The locality conjecture, formulated in [BNP11]
and attributed to Oded Schramm, states that the value of pc(G) is only sensitive to the
local structure of the graph. Informally, when two graphs have the same balls of radius
n for a large n, they have close critical values for Bernoulli percolation. Let us give a first
example illustrating this behavior. Consider the subgraph of Z3, called slab, generated
by the vertices in Z2 × {−k, . . . , k}. We denote this graph by Sk. When k is large, the
structure of the graph Sk in a neighborhood of the origin is the same as the structure of Z3

around 0, and a fundamental result of Grimmett and Marstrand [GM90] states that pc(Sk)

converges to pc(Z3) when k tends to infinity. In order to generalize and formalize this
phenomenon, we would like to see pc as function defined on a set of graphs, equipped
with a suitable topology, and study its continuity properties. In the next paragraph we
present the space of transitive graphs, introduced by Benjamini and Schramm, which
offers a natural framework to state the locality conjecture.

The space of transitive graphs. A graph G is said to be (vertex-)transitive if for every
two vertices v, w there exists a graph automorphism of G mapping v to w. Let G denote
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the set of (locally finite, non-empty, connected) transitive graphs considered up to iso-
morphism. Take G ∈ G and o any vertex of G. Then consider the ball of radius k (for the
graph distance) centered at o, equipped with its graph structure and rooted at o. Up to
isomorphism of rooted graphs, it is independent of the choice of o, and we denote it by
BG(k). Let G and H be two transitive graph. We consider the supremum of the integers
k such that balls of radius k in G and H are isomorphic,

n = sup{k : BG(k) ' BH(k)} ∈ N∪ {∞},
and then define dloc(G, H) = 2−n, where 2−∞ := 0. One can verify that dloc is a distance
on G, called the local distance. It was introduced by Benjamini and Schramm [BS01], see
also [Ben13a] for more details.

The locality conjecture. With the notation above, one can state Schramm’s conjecture
as follows. Consider a sequence of transitive graphs (Gn) that converges locally to a
transitive graph G, which means that limn→∞ dloc(Gn, G) = 0. If sup pc(Gn) < 1, then
the following convergence holds,

lim
n→∞ pc(Gn) = pc(G). (8)

The restriction to graphs with pc uniformly bounded away from 1 allows one to discard
in particular the case of sequences of finite graphs converging locally toward an infinite
graph with a non-trivial critical point, a situation where the convergence (8) is clearly
wrong.

Benjamini, Nachmias and Peres [BNP11] prove some particular cases of the conjec-
ture. They obtained for example the convergence (8) for particular sequences of graphs
converging to a tree. Grimmett and Marstrand’s theorem given at the beginning of the
section does not fit directly in the framework of Schramm’s conjecture, since slabs are not
transitive graphs. Nevertheless, it is possible to deduce from Grimmett and Marstrand’s
theorem that the following convergence holds. For n ≥ 1, write Zn the cyclic graph with
vertex set Z/nZ, we have limn→∞ pc(Z2 × Zn) = pc(G).

Extending Grimmett and Marstrand’s techniques to the more general setting of abelian
groups, we managed to obtain the following locality result.

Theorem 3.7 (with Sébastien Martineau). Consider a sequence (Gn) of Cayley graphs of
abelian groups satisfying pc(Gn) < 1 for all n. If the sequence converges to the Cayley Graph G
of an abelian group, then

pc(Gn) −−−→n→∞ pc(G).
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4 Rectangle, Square, Which one can be crossed?

4.1 Overview

In the study of planar percolation, the Russo-Seymour-Welsh (RSW) theory has become
one of the most important tools. We have already presented a proof of a RSW-result in
section 2.2 for Bernoulli percolation on the square lattice, but such results can be studied
for general planar percolation models: a RSW-result generally refers to an inequality
providing bounds on the crossing probability for long rectangles, knowing bounds on
the crossing probability for squares. Heuristically, this inequality is obtained by “gluing”
together square-crossings in order to obtain a crossing in a long rectangle.

Such results have first been obtained for Bernoulli percolation on a lattice with a sym-
metry assumption [Rus78, SW78, Rus81, Kes82]. For continuum percolation in the plane,
a RSW-result is proved in [Roy90] for open crossings and in [Ale96] for closed cross-
ings. A RSW-theory has been recently developed for FK-percolation, see e.g. [BDC12b,
DCHN11]. Some weaker versions of the standard RSW have been developed in [BR06a],
[BR10] and [vdBBV08],

At criticality, RSW-theory generally implies the box-crossing property: the crossing
probability for any rectangle remains bounded between c and 1 − c, where c > 0 is a
constant depending only the aspect ratio of the considered rectangle (in particular it is
independent of the scale). The box-crossing property has numerous consequences and
provides a great understanding of the critical and near-critical regime of percolation. For
example, it is one of the key ingredients in the foundational work of Kesten [Kes87] on
scaling relations. The box-crossing property is also used to study the scaling limit of per-
colation, providing tightness arguments (see e.g. [Smi01, SSG11, GPS13b]). In the recent
work of Grimmett and Manolescu [GM13], the box-crossing property is established for
critical percolation on isoradial graphs, and used in order to prove a universality result
on the so-called arm exponents.

4.2 RSW-theory in this thesis

RSW-results are mainly studied in Chapter 4 and 5 of this thesis, and new results are
developed in contexts where standard arguments do not apply. We prove RSW results

- in Chapter 4 for Voronoi percolation, where the “conditioning on the lowest path”
argument does not apply, due to local dependencies.

- in Chapter 5 for the random-cluster model, where we have to deal with boundary
conditions, due to global dependencies.

Since the difficulties are not the same, the methods developed in chapters 4 and 5 are
very different. Nevertheless, one can notice that in both cases, a renormalization scheme
is involved: contrarily to the proof presented in section 2.2, where two square crossings
are “glued” at some scale in order to create a rectangle at the same scale, the proofs in
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Chapter 4 and 5 examine how the crossing probabilities are related from one scale to
another.

In Chapters 6 and 7 some RSW-type reasonings are also investigated in non-planar
context: for slabs and for d-dimensional graphs. In these contexts, we can no longer use
tools from planar topology and the gluing procedure is more complicated. In chapter
6, we develop a new method relying on a lexicographic ordering on the paths, and in
chapter 7, we use a method known to some as “sprinkling” (see [Gri99b]).

In Chapters 1, 2 and 3, we do not work directly with RSW-results. Nevertheless, we
use results of Bálint, Camia and Meester such as the duality relation rc(p) + r∗c (p) = 1 or
the finite criterion of Lemma 2.10 in [BCM09], and these results rely on the RSW theorem
of van den Berg, Brouwer and Vágvölgyi [vdBBV08].

4.3 An RSW-result

For Bernoulli percolation, the original proof of the Russo-Seymour-Welsh theorem uses
an argument relying on the spatial Markov property of the model: knowing that a left-
right crossing exists in a square, it is always possible to condition on the lowest one,
which leaves an unexplored region where the configuration can be sampled indepen-
dently of the explored region (below the lowest path). This argument was presented
in section 2.2 for Bernoulli percolation and cannot be applied directly when the model
has spatial dependencies. In this thesis, we developed a new RSW-argument without
exploration, allowing to prove RSW-results for a broader class of models than Bernoulli
percolation. We present this argument here for particular percolation measures on the
square lattice, but it can be applied in other contexts, in particular when the “condition-
ing on the lowest crossing” argument cannot be used. In Chapter 4, we will refine the
argument presented here together with a renormalization procedure in order to estab-
lish the box-crossing property for critical Voronoi percolation. In Chapter 6, we also use
similar argument in the context of Bernoulli percolation on slabs.

What will we prove here? Let G = (V, E) be the square lattice. We use the same def-
initions as in section 3.1. We consider a measure P on the space of bond percolation
configurations Ω = {0, 1}E. We assume that P is positively associated, meaning that the
inequality

P [A∩B] ≥ P [A] P [B]

holds for every increasing events A and B. We also assume that P is invariant under
the translations, reflections and π/2-rotations preserving Z2. We will us the following
elementary consequence of positive association, called the square root trick (following
[CD88]). For every increasing events A and B, such that P [A] ≥ P [B], we have

P [A] ≥ 1−
√

P [A∪B].
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Define, for ρ ≥ 1,

fn(ρ) := P [H([0, 2ρn]× [−n, n])] .

We will prove the following result.

Theorem 4.1. Let η > 0. Assume that lim infn→∞ fn(1) > 1− η, then

lim sup
n→∞ fn(4/3) > (1− η1/4)7

The conclusion of the theorem above bounds the crossing probability of the rectan-
gle [0, 8/3n] × [−n, n] only along a subsequence, and for this reason, we call it a weak
RSW-result. Weak RSW-results are sufficient for many applications. For example, Bol-
lobás and Riordan [BR06a] used a similar result for Voronoi percolation in the plane in
order to prove that the critical point is 1/2. Later, Van den Berg, Brouwer and Vágvölgyi
[vdBBV08] refined Bollobás and Riordan’s result and obtained continuity properties of
the self-destructive percolation model. A weak-RSW result is also obtained in [BR10] for
percolation processes without any symmetry.

As in the third step of the proof of Theorem 2.1, one can use the bounds on the crossing
probability fn(4/3) to obtain bounds on the crossing probabilities fn(ρ) for any ρ, and the
following result is a straightforward consequence of theorem 4.1.

Corollary 4.2. For every ρ > 0, there exists a continuous function φρ : (0, 1] → (0, 1] satisfy-
ingφρ(1) = 1, such that

lim sup
n→∞ fn(ρ) ≥ φρ(lim inf

n→∞ fn(1)).

Our strategy is inspired by Bollobás and Riordan’s. We introduce at each scale n a
parameter 0 ≤ αn ≤ n. At scale n, if α3n/2 ≤ 2αn, a geometric construction allows
one to “glue” square crossings in order to create a rectangle crossing at scale 3n/2 and
bound below the crossing probability f3n/2(4/3) by some explicit function of the crossing
probabilities fn(1) and f3n/2(1). We sketch the proof in the next paragraph.

Sketch of proof of Theorem 4.1. Let η > 0 and n0 ≥ 1. We assume that for every
n ≥ n0,

fn(1) > 1− η.

We consider for −n ≤ α ≤ β ≤ n the eventHn(α,β) that there exists an open horizontal
crossing in [−n, n]2 from {−n} × [−n, n] to {n} × [α,β]. Note that

P [Hn(−n, 0) ∪Hn(0, n)] ≥ 1− η,
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and, by reflection invariance P [Hn(−n, 0)] = P [Hn(0, n)]. We can apply the square root
trick to obtain

P [Hn(0, n)] > 1− η1/2.

We would like to repeat this square root trick argument, but we can no longer use sym-
metries to “split” Hn(0, n) into two events with equal probabilities. Nevertheless, one
can define α(n) such that the two events Hn(0,α(n)) and Hn(α(n), n) illustrated below
have close probabilities.

Hn(0,α(n)) =

α(n)

n

Hn(α(n), n) =

α(n)

n

A suitable choice ofα(n) allows one to prove by the square root trick that

P [Hn(0,α(n))] ≥ 1− η1/4 and P [Hn(α(n), n)] ≥ 1− η1/4.

Then consider the event Xn defined by the following picture:

Xn =

α(n)

−α(n)

n

One can obtain the event Xn by intersecting four symmetric versions of Hn(α(n), n) to-
gether with the event V([−n, n]2). By positive association and using the invariance prop-
erties of P, we find

P [Xn] ≥ P [Hn(α(n), n)]4 P
[
V([−n, n]2)

]
≥ (1− η1/4)4(1− η)
≥ (1− η1/4)5.

Whenα(3n/2) ≤ 2α(n), one can use the construction illustrated on Fig. 15 page 26 to
show that the rectangle [0, 4n]× [0, 3n] contains an open horizontal crossing with proba-
bility larger than

P [Xn] P
[
H3n/2(0,α(3n/2))

]2
,
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α(n)

n

3n/2

Step 1: gluing a crossing of a square of size 3n/2 with a crossing of a square
of size n. Sinceα(3n/2) ≤ 2α(n) the blue path exists with probability larger
than P

[
H3n/2(0,α(3n/2))

]
and the event illustrated on the picture above

occurs with probability larger than P [Xn] P
[
H3n/2(0,α(3n/2))

]
.

3n

4n

Step 2: reflection argument. The additional green path exists also with prob-
ability larger than P

[
H3n/2(0,α(3n/2))

]
and the event illustrated on the pic-

ture above occurs with probability larger than P [Xn] P
[
H3n/2(0,α(3n/2))

]2
.

Figure 15: Construction of an open horizontal crossing in [0, 4n] × [0, 3n] when
α(3n/2) ≤ 2α(n).
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Note that the construction of Fig. 15 requires the square of size n to be included in the
square of size 3n/2, which is not possible if α(n) ≥ n/2. But in this case, we can use a
simpler construction to bound the probability of H([0, 4n]× [0, 3n]). Finally, we obtain
the following implication for every n ≥ n0:

α(3n/2) ≤ 2α(n)⇒ fn(4/3) ≥ (1− η1/4)7 (9)

By the implication (9) above, we only need to show that for every n1 ≥ n0 there exists
n2 ≥ n1 such thatα(3n2/2) ≤ 2α(n2) in order to conclude the proof of Theorem 4.1.

One can assume that α(n1) ≥ 1. Otherwise, we have P [H(0, 0)] ≥ 1− η1/4 and we
can use the event E illustrated below to conclude directly that fn1(2) ≥ (1− η1/4)2.

E =

n1

If for every n ≥ n1,α(3n/2) > 2α(n), then we would have for every k ≥ 0

α
(
(3/2)kn1

)
≥ 2kα(n1)

≥ 2k,

which would contradict the bound α(n) ≤ n. Thus, there must exist n2 ≥ n1 such that
α(3n2/2) ≤ 2α(n2).
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5 Locality: the finite criterion approach

In statistical mechanics, an infinite system is generally defined by taking a limit of finite
systems. On the infinite system arise questions proper to the infinite volume: for exam-
ple in percolation, one can ask whether there exists an infinite cluster, whether the size
of the cluster of the origin is integrable,... We would like to understand how such ques-
tions can be understood by studying the finite systems. In this section we will use finite
criteria (standing for finite-size criterion). Roughly, given an event in infinite volume A,
a finite criterion says that the occurrence of A is equivalent to the occurrence with high
probability (or with low probability) of some particular finite-size events.For example,
the existence of an infinite cluster should imply that big boxes are well connected, and
reciprocally if we put strongly connected regions together, we should be able to construct
an infinite cluster. Seeing the infinite volume eventA as a wall, one can see the finite size
event as a brick: the wall requires bricks, and putting bricks together, one can build a
wall.

Being able to translate an infinite volume question into a finite size question has many
applications, and we use finite criteria at various places in this thesis:

• in Chapter 1 to obtain bounds on the critical value rc(p) in DaC percolation;

• in Chapter 2 to prove that rc(p) is a continuous function in p;

• in Chapter 3 to prove that rc(p) is close to 1/2 when p is close to pc;

• in Chapter 6 to prove absence of percolation at criticality on slabs;

• in Chapter 7 to obtain the continuity of pc(G) as a function of the graph G, when
restricted to some particular class of graphs.

These applications can seem different, and our goal in this section is to explain why finite
criteria approaches are natural in the enumeration above.

Rather than giving a formal definition, we will provide in the next section a simple
example of a finite criterion and its consequences. More precisely we will explicit a finite
criterion that witnesses in finite volume (locally) when the size of the cluster of the origin
has a finite expectation. We will then illustrate how it can be a powerful tool to bound
critical values, study the critical behavior of percolation, or tackle Schramm’s locality
conjecture. We chose to present this example here because it provides us a very simple
and illustrative applications of the finite criterion approach.

5.1 An example of finite criterion

Let G be an infinite transitive graph, with a fixed vertex 0. Recall that pc(G) denotes
the critical value for Bernoulli bond percolation on G. Given a bond percolation config-
uration, we denote by C0 the cluster of the origin 0. Its expected size Ep[|C0|] allows to
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identify the phase transition in the following sense:

Ep[|C0|]

< +∞ when p < pc(G)

= +∞ when p > pc(G).

The finite expectation when p < pc(G) was obtained in this generality in [AV08], extend-
ing method of Aizenman and Barsky[AB87].

We now explicit a finite criterion that witnesses locally when the expected size of C0 is
finite. Let us denote BG(0, n) the ball of radius n, centered at 0. We consider the random
set XG

n of vertices at graph distance exactly n from 0, that are connected to 0 by an open
path included in the ball BG(0, n).

Lemma 5.1 (Finite criterion for the finite expectation of the origin cluster size).
For every p ∈ [0, 1], we have

Ep[|C0|] < ∞ ⇐⇒
(
∃n ∈ N, Ep[|XG

n |] < 1
)

. (FC)

The left-to-right implication follows from the trivial inequality:

∑
n

Ep[|XG
n |] ≤ Ep[|C0|].

The reciprocal implication was first proved by Hammersley [Ham57], who used it to
obtain lower bounds on the critical value pc(G). Hammersley’s proof involves an explo-
ration argument, but a short proof can be obtained using BK inequality, see e.g. [KN11,
Lemma 3.1.].

5.2 Application 1: bounding the critical value

For small value of n, one can try to compute explicitly the quantity Ep[|XG
n |]. For example,

we have
Ep[|XG

1 |] = p · dG, (10)

where dG denotes the degree of the graph G. From the computation (10) and the finite
criterion (FC), we obtain that the expected size of C0 is finite whenever p · dG < 1. We
derive the lower bound

pc(G) ≥ 1
dG

.

If one can estimate Ep[|XG
n |] for large n, which can been achieved by Monte-Carlo

simulations on a computer, one can obtain good lower bounds on pc(G). This is the
strategy we used in Chapter 1, but we used a different finite criterion.

5.3 Application 2: critical behavior

We illustrate here how finite criteria can be used to prove results concerning the critical
behavior of percolation. We will use the finite criterion (FC) to prove the following well-
known result.
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Theorem 5.2. Let G be an infinite transitive graph such that pc(G) < 1. Then the expected size
of the cluster of the origin at criticality is infinite: we have

Ep[|C0|] = +∞ when p = pc(G).

For the hypercubic lattice, Theorem 5.2 was obtained in [AN84] (see also [Gri99b]).
Here, we will prove it using a finite criterion approach.

Proof of Theorem 5.2. Let us consider the set of parameters

S := {p ∈ [0, 1] : Ep[|C0|] < ∞}.
Using the finite criterion of Lemma 5.1, we can rewrite this set as

S =
⋃

n≥1

{p ∈ [0, 1] : Ep[|XG
n |] < 1}.

Since Ep[|XG
n |] is continuous in p (it is polynomial in p), we find that S is an open subset of

[0, 1]. Thus, pc(G) is not an element of S, because S is a subset of [0, pc(G)] and pc(G) <

1.

More generally, and roughly stated, if a percolation property occurring only in one
phase of the process can be “witnessed” by a finite criterion, then this property cannot
hold at criticality.

In Chapter 6, using a similar strategy, we proved that there is no infinite cluster at
criticality for percolation on a 2-dimensional slab. Our proof involves a finite criterion
that witnesses locally when θ(p) > 0. Finding such a finite criterion for general graph
is a natural approach in order to try to prove absence of percolation at criticality, and is
thus very challenging.

Application 3: locality of the critical point

The finite criterion (FC) allows to see in a finite box for which p the expectation of C0 is
finite. Otherwise saying, it allows to identify locally which values of p are below pc(G),
an it is naturally related to Schramm’s locality conjecture.

Recall that we equipped in section 3.4 the set of transitive graph G with the local
distance dBS. Schramm’s conjecture can be seen as a continuity statement on the function
G 7→ pc(G). Thanks to the finite criterion (FC), we can obtain easily one semi-continuity,
and we will prove the following.

Theorem 5.3. The function pc : G → [0, 1] is lower semi-continuous. Otherwise saying, for
any sequence (Gn) of transitive graphs such that the convergence limn→∞ Gn = G holds in G,
we have

lim inf
n→∞ pc(Gn) ≥ pc(G). (11)
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Some remarks:

1. Contrarily to Schramm’s conjecture in section 3.4, we do not need to restrict to
graphs with a critical value bounded away from 1. In particular, Equation (11)
is not contradictory when Gn = (Z/nZ)2 and G = Z2.

2. This theorem shows that the hard part in Schramm’s conjecture is the upper semi-
continuity. This upper semi-continuity would follow from a finite criterion witness-
ing locally when θ(p) > 0. Unfortunately, as we already mentioned in the previous
section, finding such a finite criterion is very hard in general.

3. The remark 2 above shows that Schramm’s conjecture deals with the same difficulty
as trying to prove absence of percolation at criticality. Though, for Schramm’s con-
jecture, we are authorized to move slightly the value of p and use the “sprinkling”
technique. This gives rise to weaker versions (allowing “sprinkling”) of finite crite-
rion, which are sufficient to prove the desired upper semi-continuity of pc. This is
the approach developed in Chapter 7, where we use such a weaker finite criterion
in the context of Cayley graphs of abelian groups, allowing us to prove a particular
case of Schramm’s conjecture.

Proof of Theorem 5.3. We need to show that, for every fixed q < 1, the set

Gq := {G ∈ G : pc(G) > q}

is open in G. Using first Theorem 5.2 and then the finite criterion (FC), we can rewrite
this set as

Gq = {G ∈ G : Eq[C0] < ∞}
=
⋃

n≥1

{G ∈ G : Eq[XG
n ] < 1}. (12)

The mapping G 7→ Eq[XG
n ] from G to [0,+∞) is continuous. This observation, together

with equation (12) concludes that Gq is an open subset of G.
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1CONFIDENCE INTERVALS FOR

THE CRITICAL VALUE IN THE

DIVIDE AND COLOR MODEL

This chapter corresponds to the published article [VT1] with the same title, written in collabora-
tion with András Bálint and Vincent Beffara.

We obtain confidence intervals for the location of the percolation phase transition in
Häggström’s divide and color model on the square latticeZ2 and the hexagonal latticeH.
The resulting probabilistic bounds are much tighter than the best deterministic bounds
up to date; they give a clear picture of the behavior of the DaC models on Z2 and H
and enable a comparison with the triangular lattice T. In particular, our numerical re-
sults suggest similarities between DaC model on these three lattices that are in line with
universality considerations, but with a remarkable difference: while the critical value
function rc(p) is known to be constant in the parameter p for p < pc on T and appears to
be linear on Z2, it is almost certainly non-linear onH.

1 Introduction

Our object of study in this paper is the critical value function in Häggström’s divide
and color (DaC) model [Hä01]. This is a stochastic model that was originally motivated
by physical considerations (see [Hä01, CLM07]), but it has since then been used for bi-
ological modelling in [GPG07] as well and inspired several generalizations (see, e.g.,
[HH08, BCM09, GG06]). Our results concerning the location of the phase transition give
a clear picture of the behavior of the DaC model on two important lattices and lead to
intriguing open questions.

Our analysis will be based on the same principles as [RW07], where confidence in-
tervals were obtained for the critical value of Bernoulli bond and site percolation on the
11 Archimedean lattices by a modification of the approach of [BBW05]. The main idea
in [BBW05, RW07] is truly multidisciplinary and attractive, namely to reduce a problem
which has its roots in theoretical physics by deep mathematical theorems to a situation
in which a form of statistical testing by numerical methods becomes possible. Our other
main goal with this paper is to demonstrate the strength of this strategy by applying it
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to a system which is essentially different from those in its previous applications. In par-
ticular, in the DaC model, as opposed to the short-range dependencies in [BBW05] and
the i.i.d. situation in [RW07], one has to deal with correlations between sites at arbitrary
distances from each other. We believe that the method of [BBW05, RW07] has a high po-
tential to be used in a number of further models and deserves higher publicity than it
enjoys at the moment.

Given a graph G with vertex set V and edge set E and parameters p, r ∈ [0, 1], the DaC
model on G is defined in two steps: first, Bernoulli bond percolation with density p is per-
formed on G, and then the resulting open clusters are independently colored black (with
probability r) or white (a more detailed definition will follow in the next paragraph).
Note that this definition resembles the so-called random-cluster (or FK) representation
of the ferromagnetic Ising model, with two important differences: a product measure is
used in the DaC model in the first step instead of a random-cluster measure with cluster
weight 2 and the second step is more general here in that all r ∈ [0, 1] are considered
instead of only 1/2.

Now we set the terminology that is used throughout, starting with an alternative
(equivalent) definition of the DaC model which goes as follows. First, an edge con-
figuration η ∈ {0, 1}E is drawn according to the Bernoulli percolation measure νE

p :=
Bernoulli(p)⊗E. In the second step, a coloring ξ ∈ {0, 1}V is chosen by independently
assigning state 1 with probability r or otherwise 0 to each vertex, conditioning on the
event that there exists no edge e = 〈v, w〉 ∈ E such that η(e) = 1 and ξ(v) 6= ξ(w). We
denote the probability measure on {0, 1}V × {0, 1}E associated to this procedure by PG

p,r.
An edge e (a vertex v) is said to be open or closed (black or white) if and only if it is in
state 1 or 0, respectively. We will call the maximal subsets of V connected by open edges
bond clusters, and the maximal monochromatic connected (via the edge set of E, not only
the open edges!) subsets of V black or white clusters. We write Cv(η) for the bond cluster
of a vertex v in the edge configuration η and use ΩS to denote {0, 1}S for arbitrary sets S.

Note that the measure PG
p,r is concentrated on the set of pairs (η,ξ) such that for all

edges e = 〈v, w〉 ∈ E,ξ(v) = ξ(w) whenever η(e) = 1. When this compatibility condition
is satisfied, we write η ∼ ξ .

For infinite graphs G, there are two types of phase transitions present in the DaC
model in terms of the appearance of infinite clusters; first, there exists pc = pG

c ∈ [0, 1]
such that PG

p,r(there exists an infinite bond cluster) is 0 for p < pc and 1 for p > pc. Sec-
ond, for each fixed p, there exists rc = rG

c (p) such that PG
p,r(there exists an infinite black

cluster) is 0 for r < rc and positive for r > rc. For more on the different character of these
two types of phase transitions, see [VT2]. A key feature of the DaC model (as noted in
[Hä01]) is that while it is close in spirit to the Ising model, its simulation is straightfor-
ward from the definition and does not require sophisticated MCMC algorithms. In this
paper, we will exploit this feature in order to learn about the values and various features
of the critical value function rG

c (p).
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Monotonicity and continuity properties of the function rG
c (p) for general graphs have

been studied in [VT2]. Here we will focus on two specific graphs, namely the square
lattice Z2 and the hexagonal lattice H (see Figure 1.1), for which pZ

2

c = 1/2 and pHc =

1− 2 sin(π/18) ≈ 0.6527 (see [Kes82]). Our reason for this restriction is twofold: first,
these two are the most commonly considered planar lattices (apart from the triangular
lattice T, for which the critical value function rTc has been completely characterized in
[BCM09]), whence results about these cases are of the greatest interest. On the other
hand, the DaC model on these lattices enjoys a form of duality (described in Section 2.2)
which is a key ingredient for the analysis we perform in this paper.

Figure 1.1: A finite sublattice of the square lattice Z2 (above left) and the hexagonal
lattice H (below left) and their respective matching lattices (right).

Fixing L ∈ {Z2,H}, it is trivial that rLc (p) = 0 for all p > pLc , and it easily follows
from classical results on Bernoulli bond percolation that rLc (pLc ) = 1 (see [BCM09] for
the case L = Z2). However, there are only very loose theoretical bounds for the critical
value when p < pLc : the duality relation (1.1) in Section 2.2 below and renormalization
arguments as in the proof of Theorem 2.6 in [Hä01] give that 1/2 ≤ rLc (p) < 1 for all such
p, and Proposition 1 in [VT2] gives just a slight improvement of these bounds for very
small values of p. Therefore, our ultimate goal here is to get good estimates for rLc (p)
with p < pLc .

We end this section with an outline of the paper. Section 2 contains a crucial reduction
of the infinite-volume models to a finite situation by a criterion that is stated in terms of a
finite sublattice but nonetheless implies the existence of an infinite cluster. This method,
often called static renormalisation in percolation, is a particular instance of coarse grain-
ing. We then describe in Section 3 how the occurrence of this finite size criterion can
be tested in an efficient way and obtain confidence intervals for rLc (p) as functions of
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uniform random variables (Proposition 3.1). Finally, we implement this method using
a (pseudo)random number generator, and present and discuss the numerical results in
Section 4.

2 Finite size criteria

2.1 An upper bound for rc(p)

In this section, we will show how to obtain an upper bound for rLc (p) by deducing a finite
size criterion for percolation in the DaC model (Proposition 2.3). This criterion, which is
a quantitative form of Lemma 2.10 in [BCM09], will play a key role in Sections 3–4. To
enhance readability, we will henceforth focus on the case L = Z2 and mention L = H

only when the analogy is not straightforward. Accordingly, we will write Pp,r and rc(p)
for PZ

2

p,r and rZ
2

c (p) respectively, and denote the edge set of Z2 by E2. Let us first recall a
classical result (Lemma 2.2 below) concerning 1-dependent percolation.

Definition 2.1. Given a graph G = (V, E), a probability measure ν on {0, 1}E is called 1-
dependent if, whenever S ⊂ E and T ⊂ E are vertex-disjoint edge sets, the state of edges in S is
independent of that of edges in T under ν.

It follows from standard arguments or from a general theorem of Liggett, Schonmann
and Stacey [LSS97] that if each edge is open with a sufficiently high probability in a
1-dependent bond percolation on Z2, then the origin is with positive probability in an
infinite bond cluster. Currently the best bound is given by Balister, Bollobás and Walters
[BBW05]:

Lemma 2.2. ([BBW05]) Let ν be any 1-dependent bond percolation measure onZ2 in which each
edge is open with probability at least 0.8639. Then the probability under ν that the origin lies in
an infinite bond cluster is positive.

Now, suppose that the lattice Z2 is embedded in the plane the natural way (so that
v = (i, j) ∈ Z2 has coordinates i and j). We consider the following partition of R2 (see
Figure 1.2): given parameters s ∈ N = {1, 2, . . .} and ` ∈ N, we take k = s + 2` and
define, for all i, j ∈ Z, the s× s squares

Si, j = [ik + `, ik + `+ s]× [ jk + `, jk + `+ s],

the s× 2` rectangles

Hi, j = [ik + `, ik + `+ s]× [ jk− `, jk + `],

the 2`× s rectangles

Vi, j = [ik− `, ik + `]× [ jk + `, jk + `+ s],
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l

s

Si,j

Si,j+1

Vi+1,j Si+1,j

Hi,j+1

Hi,j

Figure 1.2: A partition of R2.

and what remains are the 2`× 2` squares [ik− `, ik + `]× [ jk− `, jk + `].

We will couple Pp,r to a 1-dependent bond percolation measure. Define f : ΩE2 ×
ΩZ2 → ΩE2 , as follows. To each horizontal edge e = 〈(i, j), (i + 1, j)〉 ∈ E2, we associate
a (2` + 2s) × s rectangle Re = Si, j ∪ Vi+1, j ∪ Si+1, j and the event Ee that there exists a
left-right black crossing in Re (i.e., a connected path of vertices all of which are black
which links the left side of Re to its right side) and an up-down black crossing in Si, j (see
Figure 1.3). Here and below, a vertex in the corner of a rectangle is understood to link the
corresponding sides in itself. For each vertical edge e = 〈(i, j), (i, j + 1)〉 ∈ E2, we define
the s× (2`+ 2s) rectangle Re = Si, j ∪ Hi, j+1 ∪ Si, j+1 and the event Ee = {up-down black
crossing in Re and left-right black crossing in Si, j} ⊂ ΩE2 ×ΩZ2 . For each edge e ∈ E2,
we also consider the event Fe = {there exists a bond cluster which contains a vertex in Re

and a vertex at graph distance at least ` from Re} ⊂ ΩE2 ×ΩZ2 , and define Ẽe = Ee ∩ Fc
e .

Now for each configuration ω = (η,ξ) ∈ ΩE2 ×ΩZ2 , we determine a corresponding
bond configuration f (ω) = γ ∈ ΩE2 as follows: for all e ∈ E2, we declare e open if and
only if Ẽe holds (i.e., we define γ(e) = 1 if and only if ω ∈ Ẽe). Finally, we define the
probability measure ν = f∗Pp,r on ΩE2 .
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l

s

Re

Figure 1.3: A black component in Re witnesses the occurrence of Ee.

It is not difficult to check that ν is a 1-dependent bond percolation measure. Indeed,
if e and e′ are two vertex-disjoint edges in E2, then the corresponding rectangles Re and
Re′ are at graph distance at least 2` from one another, hence Fc

e and Fc
e′ are independent.

Given that Fe and Fe′ do not hold, the bond clusters in Re and Re′ are colored indepen-
dently of each other. Keeping this in mind, a short computation proves the independence
of Ẽe and Ẽe′ under Pp,r, which implies the 1-dependence of ν.

Note also that the function f was chosen in such a way that if γ = f (ω) ∈ ΩE2

contains an infinite open bond cluster, then ω contains an infinite black cluster. Such
configurations have zero Pp,r-measure for r < rc(p). Finally, note that Pp,r(Ẽe) is the
same for all edges e ∈ E2. These observations combined with Lemma 2.2 imply that,
denoting 〈(0, 0), (0, 1)〉 ∈ E2 by e1, we have the following result.

Proposition 2.3. Given any values of the parameters s, ` ∈ N, if p and r are such that

Pp,r(Ẽe1) ≥ 0.8639,

then rc(p) ≤ r.

Note that Proposition 2.3 is indeed a finite size criterion since the event Ẽe1 depends
on the state of a finite number of edges and the color of a finite number of vertices. A
similar criterion, which will imply a lower bound for rc(p), will be given in Section 2.3.

2.2 Duality

A concept that is essential in understanding site percolation models on L ∈ {Z2,H} is
that of the matching lattice L∗ which is a graph with the same vertex set, V, as L but more
edges: the edge set E∗ of L∗ consists of all the edges in E plus the diagonals of all the faces
of L (see Figure 1.1). The finiteness of a monochromatic cluster in L can be rephrased in
terms of circuits of the opposite color in L∗ and vice versa; see [Kes82] for further details.
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We say that B ⊂ V is a black ∗-component in a color configuration ξ ∈ ΩV if it is a black
component in terms of the lattice L∗ (i.e., ξ(v) = 1 for all v ∈ B and B is connected via
E∗).

Accordingly, there is yet another phase transition in the DaC model on L at the point
where an infinite black ∗-component appears; formally, for each fixed p ∈ [0, 1], one can
define r∗c (p,L) as the value such that PLp,r(there exists an infinite black ∗-component) is 0
for r < r∗c (p,L) and positive for r > r∗c (p,L). It was proved in [BCM09] that there is an
intimate connection between all the critical values in the DaC model that we mentioned
so far; namely, for all p < pLc ,

rLc (p) + r∗c (p,L) = 1. (1.1)

Actually, this relation was proved only for L = Z2, but essentially the same proof gives
the result for L = H as well. The importance of this result here is that due to the duality
relation (1.1), a lower bound for rLc (p) may be obtained by giving an upper bound for
r∗c (p,L).

2.3 A lower bound for rc(p)

As in Section 2.1, we will focus on L = Z2 since the case L = H is analogous; we denote
r∗c (p,Z2) here and in the next section by r∗c (p). Obviously rc(p) itself is an upper bound
for r∗c (p). However, a better bound may be obtained by a slight modification of the ap-
proach given in Section 2.1. For each e ∈ E2, let Re and Fe be as in Section 2.1, define E∗e
by substituting black ∗-component for black component in the definition of Ee, and take
Ẽ∗e = E∗e ∩ Fc

e . Then, by similar arguments as those before Proposition 2.3 and using (1.1),
we get the following:

Proposition 2.4. Given any values of the parameters s, ` ∈ N, if p and r are such that

Pp,r(Ẽ∗e1
) ≥ 0.8639,

then r∗c (p) ≤ r, and hence rc(p) ≥ 1− r.

3 The confidence interval

The main idea in [BBW05, RW07] is to reduce a stochastic model to a new model in
finite volume by criteria similar in spirit to those in Section 2 and do repeated (computer)
simulations of the new model to test whether the corresponding criteria hold. The point
is that after a sufficiently large number of simulations, one can see with an arbitrarily
high level of confidence whether or not the probability of an event exceeds a certain
threshold. By the special nature of the events in question, statistical inferences regarding
the original, infinite-volume model may be made from the simulation results.

To be able to follow this strategy, we will have to refine Propositions 2.3–2.4 as those
are concerned with the state of finitely many objects, but still in the infinite-volume
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model. The adjusted criteria that truly are of finite size are given below, see (1.2) and
(1.3). Finding an efficient way of performing the simulation step involves further obsta-
cles. The main problem is that it would be unfeasible to run a large number of separate
simulations for different values of r to find, for a fixed p, the lowest value of r such that
both (1.2) and (1.3) seem sufficiently likely to hold. We will tackle this difficulty with a
stochastic coupling, which is the simultaneous construction of several stochastic models
on the same probability space. Such a construction will enable us to deal with all values
of r ∈ [0, 1] at the same time and is very related to the model of invasion percolation.

After the description of the coupling, a “theoretical” confidence interval (meaning a
confidence interval as a function of i.i.d. random variables) for rc(p) is given in Propo-
sition 3.1. The numerical confidence intervals obtained by this method using computer
simulations will be presented in Section 4. Note also that the inequalities (1.2) and (1.3)
implicitly involve the parameters s and ` whose choices may influence the width of the
confidence intervals obtained; this issue is addressed before the proof of Proposition 3.1.
Our methods in this section work for a general p ∈ [0, pLc ); we note that substantial sim-
plifications are possible in the case p = 0 (i.e., in the absence of correlations), see [RW07].

Fix p ∈ [0, 1/2) and s, ` ∈ N, and define the rectangle R̃e1 = [0, 2s + 4`]× [0, s + 2`].
Note that for a configuration ω ∈ ΩE2 ×ΩZ2 , one can decide whether ω ∈ Ẽe1 (respec-
tivelyω ∈ Ẽ∗e1

) holds by checking the restriction ofω to R̃e1 . In fact, defining G̃ = (Ṽ, Ẽ)
as the minimal subgraph of Z2 which contains R̃e1 and considering the DaC model on
G̃, it is easy to see that for any r ∈ [0, 1], PG̃

p,r(Ẽe1) = Pp,r(Ẽe1) and PG̃
p,r(Ẽ∗e1

) = Pp,r(Ẽ∗e1
).

(These equalities hold despite the fact that PG̃
p,r is not the same distribution as the projec-

tion of Pp,r on G̃.) Therefore, by Propositions 2.3 and 2.4,

PG̃
p,r(Ẽe1) ≥ 0.8639 (1.2)

would imply that rc(p) ≤ r, and

PG̃
p,r(Ẽ∗e1

) ≥ 0.8639 (1.3)

would imply that rc(p) ≥ 1− r. Below we shall describe a method which tests whether
(1.2) or (1.3) holds, simultaneously for all values of r ∈ [0, 1].

We construct the DaC model on G̃ with parameters p and an arbitrary r ∈ [0, 1] as
follows. Fix an arbitrary deterministic enumeration v1, v2, . . . , v|Ṽ| of the vertex set Ṽ,
and for V ⊂ Ṽ, let min(V) denote the vertex in V of the smallest index. For all r ∈ [0, 1],
we define the function

Ψr : ΩẼ × [0, 1]Ṽ → ΩẼ ×ΩṼ ,
(η, U) 7→ (η,ξr),

where

ξr(v) =

{
1 if U(min(Cv(η))) < r,
0 if U(min(Cv(η))) ≥ r.
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Now, if U denotes uniform distribution on the interval [0, 1] and (η, U) ∈ ΩẼ × [0, 1]Ṽ

is a random configuration with distribution νẼ
p ⊗UṼ , then it is not difficult to see that

(η,ξr) = Ψr((η, U)) is a random configuration with distribution PG̃
p,r.

We are interested in the following question: for what values of r does (η,ξr) ∈ Ẽe1

(respectively, (η,ξr) ∈ Ẽ∗e1
) hold? The first step is to look at the edges in η in R̃e1 \ Re1

to see if there is a bond cluster which connects Re1 and the boundary of R̃e1 . If no such
connection is found, it is easy to see that there exists a threshold value r1 = r1(η, U) ∈ [0, 1]
such that for all r ∈ [0, r1), (η,ξr) /∈ Ẽe1 , and for all r ∈ (r1, 1], we have that (η,ξr) ∈ Ẽe1 .
Indeed, the color configurations are coupled in such a way that if r′ ≥ r and (η,ξr) ∈ Ẽe1

then (η,ξr′) ∈ Ẽe1 , since all vertices that are black in ξr are black in ξr′ as well. A similar
argument shows that in case of η /∈ Fe1 , there exists r∗1 = r∗1(η, U) ∈ [0, 1] such that
(η,ξr) /∈ Ẽ∗e1

for all r ∈ [0, r∗1), whereas (η,ξr) ∈ Ẽ∗e1
for all r ∈ (r∗1 , 1]. Otherwise, i.e., if

there is a connection in η between Re1 and the boundary of R̃e1 , we know that neither of
Ẽe1 or Ẽ∗e1

has occurred. Hence, in that case, we define r1 = r∗1 = 1, which preserves the
above “threshold value” properties as (r1, 1] = (r∗1 , 1] = ∅.

Now, if we want a confidence interval with confidence level 1 − ε where ε > 0 is
fixed, we choose positive integers m and n in such a way that the probability of having
at least m successes among n Bernoulli experiments with success probability 0.8639 each
is smaller than (but close to) ε/2. For instance, for a 99.9999% confidence interval, we
can choose n = 400 and m = 373. By repeating the above experiment n times, each time
with random variables that are independent of all the previously used ones, we obtain
threshold values r1, r2, . . . , rn and r∗1 , r∗2 , . . . , r∗n. Then we sort them so that r̃1 ≤ r̃2 ≤ ... ≤
r̃n, and r̃∗1 ≤ r̃∗2 ≤ ... ≤ r̃∗n.

Proposition 3.1. Each of the inequalities rc(p) ≤ r̃m and 1− r̃∗m ≤ rc(p) occurs with probability
at least 1−ε/2, hence [1− r̃∗m, r̃m] is a confidence interval for rc(p) of confidence level 1−ε.

Before turning to the proof, we remark that the above confidence interval does not
necessarily provide meaningful information. In fact, with very small (< ε) probability,
r̃m < 1− r̃∗m can occur. Otherwise, for unreasonable choices of s and `, taking a too small `
in particular, it could happen that there is a connection in the bond configuration between
Re1 and the boundary of R̃e1 in at least n−m + 1 experiments out of the n, in which case
[1− r̃∗m, r̃m] = [0, 1] indeed contains rc(p) but gives no new information.

However, the real difficulty is that although a confidence interval with an arbitrarily
high confidence level may be obtained with the above algorithm, we do not know in
advance how wide the confidence interval is. The width of the interval depends on s
and `, and it is a difficult problem to find good parameter values. A way to make the
confidence interval narrower is to decrease the value of m, but that comes at the price of
having a lower confidence level.

The choices we made for the parameters s and ` in our simulations, together with
some intuitive reasoning advocating these choices, are given in the Appendix.
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Proof of Proposition 3.1. Let S be the probability measure on the sample space [0, 1]2n

which corresponds to the above experiment, where a realization (r̃1, r̃∗1 , r̃2, r̃∗2 , . . . , r̃n, r̃∗n)
contains the (already ordered) threshold values. LetB0.8639 denote the binomial distribu-
tion with parameters n and 0.8639, and Ba(r) the binomial distribution with parameters
n and a(r) = PG̃

p,r(Ẽe1).
For r ∈ [0, 1], let Nr denote the number of trials among the n such that Ẽe1 occurs

at level r. Note that Nr has distribution Ba(r). Since a(r) ≥ 0.8639 implies r ≥ rc(p)
(see inequality (1.2)), we have that r < rc(p) implies a(r) < 0.8639. Therefore, for all
r < rc(p), Ba(r) is stochastically dominated by B0.8639. This implies that for all r < rc(p),
we have that

S(r̃m < r) ≤ S(Nr ≥ m)

= Ba(r)({m, m + 1, . . . , n})
≤ B0.8639({m, m + 1, . . . , n})
≤ ε/2,

by the definition of m and n.
Hence, for all δ > 0, we have that S(r̃m < rc(p) − δ) ≤ ε/2, which easily implies

that S(r̃m < rc(p)) ≤ ε/2. We also have S(r̃∗m < r∗c (p)) ≤ ε/2 by a completely analogous
computation, which implies by equation (1.1) that S(1− r̃∗m > rc(p)) ≤ ε/2. Therefore,

S(1− r̃∗m ≤ rc(p) ≤ r̃m) ≥ 1−ε,

which is exactly what we wanted to prove.

4 Results of the simulations

We implemented the method described in the previous section in a computer program,
and the results for parameter values ε = 10−6, n = 400, m = 373 are given below.1 We
stress again that although the method in Section 3 that determines a confidence interval
for rLc (p) is mathematically rigorous, the results below are obtained by using the random
number generator [Mer], therefore their correctness depends on “how random” the gen-
erated numbers are. The simulations ran on the computers of the ENS-Lyon, and yielded
the confidence intervals represented in Figure 1.4.

Having looked at Figure 1.4, we conjecture the following concerning the behavior of
rLc (p) as a function of p:

Conjecture 4.1. For L ∈ {Z2,H}, in the interval p ∈ [0, pLc ), rLc (p) is a strictly decreasing
function of p and

lim
p→pLc −

rLc (p) =
1
2

.

1These results — without the description of the method — have been included in [VT2] as well.
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Figure 1.4: Simulation results for different values of p < pLc (left: on the square lattice;
right: on the hexagonal lattice). The dashed line was obtained via a non-rigorous
correction method.

Since it is rigorously known that rLc (0) > 1/2 and rLc (p) ≥ 1/2 for all p ∈ [0, pLc ),
Conjecture 4.1 would imply that rLc (p) > 1/2 for all p < pLc . This suggests that the DaC
model on Z2 or H is qualitatively different from the DaC model on the triangular lattice,
where the critical value of r is 1/2 for all subcritical p (see Theorem 1.6 in [BCM09]).
However, lim rLc (p) = 1/2 would mean that the difference disappears as p converges to
pLc .

The fact that the difference should disappear was conjectured by one of the authors
(VB) and Federico Camia, based on the following heuristic reasoning. Near p = pLc ,
the structure of the random graph determined by the bond configuration (whose ver-
tices correspond to the bond clusters, and there is an edge between two vertices if the
corresponding bond clusters are adjacent in L) is given by the geometry of “near-critical
percolation clusters,” which is expected to be universal for 2-dimensional planar graphs.
This suggests that the critical r for p close to its critical value should not depend much
on the original underlying lattice, and we expect the convergence of rLc (p) to 1/2 to be
universal and hold in the case of any 2-dimensional lattice.

There is an additional, strange feature appearing in the case of the square lattice: rc(p)
seems to be close to being an affine function of p on the interval [0, 1/2). This is not at
all the same on the hexagonal lattice, and we have not found any interpretation of this
observation, or of the special role Z2 seems to play here.

Open question 4.2. Is rZ
2

c (p) an affine function of p for p < 1/2?

Appendix

The algorithm in Section 3 is described for general values of s and `, and the concrete
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values of these parameters will not affect the correctness of the simulation results. How-
ever, a reasonable choice is important for the tightness of the bounds obtained and the
efficiency of the algorithm, i.e., the running time of the program. The heuristic arguments
given here are somewhat arbitrary, and it is quite possible that there exist other choices
that would give at least as good results as ours.

Applying the method described in Section 3 requires to simulate a realization of the
DaC model on the graph G̃, which is a 2L × L rectangular subset of the square lattice
where

L = s + 2`. (1.4)

We will keep this value fixed while we let ` and s depend on p. Since we want to esti-
mate the critical value for a phase transition, it is natural to take the largest L possible.
After having performed various trials of our program, we chose L = 8000, which was
estimated to be the largest value giving a reasonable time of computation.

Having fixed the size of the graph, we want to choose the parameters so that the
probability of Ẽe1 is as high as possible. We need to find a balanced value for ` as small
values favor Ee1 , but a large ` might be required to prevent Fe1 from happening. The
exponential decay theorem in [AB87, Men86] for subcritical Bernoulli bond percolation
ensures the existence of an appropriate ` of moderate size. In our context, we decided
that a good ` = `(p) would be one that ensures

PG̃
p,r (Fe1) ≈ 0.001. (1.5)

We did simulations in order to find an ` such that (1.5) holds, then chose s according to
equation (1.4). The values we used in our simulations are summed up in Figure 1.5.
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4 Results of the simulations

Z2 H

p s ` s `

0 7998 1 7998 1
0.025 7986 7 7986 7
0.05 7986 8 7984 8

0.075 7982 9 7982 9
0.1 7980 10 7980 10

0.125 7978 11 7978 11
0.15 7976 12 7976 12

0.175 7974 13 7974 13
0.2 7970 15 7970 15

0.225 7964 18 7968 16
0.25 7962 19 7964 18

0.275 7956 22 7962 19
0.3 7948 26 7954 23

0.325 7938 31 7952 24
0.35 7926 37 7946 27

0.375 7904 48 7940 30
0.4 7876 62 7932 34

0.425 7822 89 7924 38
0.45 7704 148 7908 46

0.475 7260 370 7896 52
0.5 7876 62

0.525 7844 78
0.55 7790 105

0.575 7710 145
0.6 7538 231

0.625 7002 499

Figure 1.5: Parameters chosen
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2ON THE CRITICAL VALUE

FUNCTION IN THE DIVIDE

AND COLOR MODEL

This chapter corresponds to the published article [VT2] with the same title, written in collabora-
tion with András Bálint and Vincent Beffara.

We mainly study the continuity properties of the function rG
c , which is an instance of

the question of locality for percolation. Our main result is the fact that in the case G = Z2,
rG

c is continuous on the interval [0, 1/2); we also prove continuity at p = 0 for the more
general class of graphs with bounded degree. We then investigate the sharpness of the
bounded degree condition and the monotonicity of rG

c (p) as a function of p.

Introduction

The divide and color (DaC) model is a natural dependent site percolation model intro-
duced by Häggström in [Hä01]. It has been studied directly in [Hä01, Gar01, BCM09],
and as a member of a more general family of models in [KW07, Bá10, GG06]. This model
is defined on a multigraph G = (V, E), where E is a multiset (i.e., it may contain an
element more than once), thus allowing parallel edges between pairs of vertices. For
simplicity, we will imprecisely call G a graph and E the edge set, even if G contains self-
loops or multiple edges. The DaC model with parameters p, r ∈ [0, 1], on a general (finite
or infinite) graph G with vertex set V and edge set E, is defined by the following two-step
procedure:

• First step: Bernoulli bond percolation. We independently declare each edge in E
to be open with probability p, and closed with probability 1− p. We can identify
a bond percolation configuration with an element η ∈ {0, 1}E: for each e ∈ E, we
define η(e) = 1 if e is open, and η(e) = 0 if e is closed.

• Second step: Bernoulli site percolation on the resulting cluster set. Given η ∈
{0, 1}E, we call p-clusters or bond clusters the connected components in the graph
with vertex set V and edge set {e ∈ E : η(e) = 1}. The set of p-clusters of η gives a
partition of V. For each p-cluster C, we assign the same color to all the vertices in C.
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The chosen color is black with probability r and white with probability 1− r, and
this choice is independent for different p-clusters.

These two steps yield a site percolation configuration ξ ∈ {0, 1}V by defining, for each
v ∈ V, ξ(v) = 1 if v is black, and ξ(v) = 0 if v is white. The connected components (via
the edge set E) in ξ of the same color are called (black or white) r-clusters. The resulting
measure on {0, 1}V is denoted by µG

p,r.

Let Eb∞ ⊂ {0, 1}V denote the event that there exists an infinite black r-cluster. By
standard arguments (see Proposition 2.5 in [Hä01]), for each p ∈ [0, 1], there exists a
critical coloring value rG

c (p) ∈ [0, 1] such that

µG
p,r(Eb∞)

= 0 if r < rG
c (p),

> 0 if r > rG
c (p).

The critical edge parameter pG
c ∈ [0, 1] is defined as follows: the probability that there

exists an infinite bond cluster is 0 for all p < pG
c , and positive for all p > pG

c . The latter
probability is in fact 1 for all p > pG

c , whence rG
c (p) = 0 for all such p. Kolmogorov’s

0− 1 law shows that in the case when all the bond clusters are finite, µG
p,r(Eb∞) ∈ {0, 1};

nevertheless it is possible that µG
p,r(Eb∞) ∈ (0, 1) for some r > rG

c (p) (e.g. on the square
lattice, as soon as p > pc = 1/2, one has µG

p,r(Eb∞) = r).

Statement of the results

Our main goal in this paper is to understand how the critical coloring parameter rG
c de-

pends on the edge parameter p. Since the addition or removal of self-loops obviously
does not affect the value of rG

c (p), we will assume that all the graphs G that we consider
are without self-loops. On the other hand, G is allowed to contain multiple edges.

Our first result, based on a stochastic domination argument, gives bounds on rG
c (p)

in terms of rG
c (0), which is simply the critical value for Bernoulli site percolation on G.

By the degree of a vertex v, we mean the number of edges incident on v (counted with
multiplicity).

Proposition 0.3. For any graph G with maximal degree ∆, for all p ∈ [0, 1),

1− 1− rG
c (0)

(1− p)∆
≤ rG

c (p) ≤ rG
c (0)

(1− p)∆
.

As a direct consequence, we get continuity at p = 0 of the critical value function:

Proposition 0.4. For any graph G with bounded degree, rG
c (p) is continuous in p at 0.

One could think of an alternative approach to the question, as follows: the DaC model
can be seen as Bernoulli site percolation of the random graph Gp = (Vp, Ep) where Vp is
the set of bond clusters and two bond clusters are connected by a bond of Ep if and only
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if they are adjacent in the original graph. The study of how rG
c (p) depends on p is then

a particular case of a more general question known as the locality problem: is it true in
general that the critical points of site percolation on a graph and a small perturbation of
it are always close? Here, for small p, the graphs G and Gp are somehow very similar,
and their critical points are indeed close.

Dropping the bounded-degree assumption allows for the easy construction of graphs
for which continuity does not hold at p = 0:

Proposition 0.5. There exists a graph G with pG
c > 0 such that rG

c is discontinuous at 0.

In general, when p > 0, the graph Gp does not have bounded degree, even if G does;
this simple remark can be exploited to construct bounded degree graphs for which rG

c has
discontinuities below the critical point of bond percolation (though of course not at 0):

Theorem 0.6. There exists a graph G of bounded degree satisfying pG
c > 1/2 and such that

rG
c (p) is discontinuous at 1/2.

Remark 0.7. The value 1/2 in the statement above is not special: in fact, for every p0 ∈
(0, 1), it is possible to generalize our argument to construct a graph with a critical bond
parameter above p0 and for which the discontinuity of rc occurs at p0.

Our main results concerns the case G = Z2, for which the above does not occur:

Theorem 0.8. The critical coloring value rZ
2

c (p) is a continuous function of p on the whole
interval [0, 1/2).

The other, perhaps more anecdotal question we investigate here is whether rG
c is

monotonic below pc. This is the case on the triangular lattice (because it is constant equal
to 1/2), and appears to hold on Z2 in simulations.

In the general case, the question seems to be rather delicate. Intuitively the presence
of open edges would seem to make percolation easier, leading to the intuition that the
function p 7→ rc(p) should be non-increasing. Theorem 2.9 in [Hä01] gives a counterex-
ample to this intuition. It is even possible to construct quasi-transitive graphs on which
any monotonicity fails:

Proposition 0.9. There exists a quasi-transitive graph G such that rG
c is not monotone on the

interval [0, pG
c ).

A brief outline of the paper is as follows. We set the notation and collect a few results
from the literature in Section 1. In Section 2, we stochastically compareµG

p,r with Bernoulli
site percolation (Theorem 2.1), and show how this result implies Proposition 0.3. We then
turn to the proof of Theorem 0.8 in Section 3, based on a finite-size argument and the
continuity of the probability of cylindrical events.

In Section 4, we determine the critical value function for a class of tree-like graphs,
and in the following section we apply this to construct most of the examples of graphs
we mentioned above.
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1 Definitions and notation

We start by explicitly constructing the model, in a way which will be more technically
convenient than the intuitive one given in the introduction.

Let G be a connected graph (V, E) where the set of vertices V = {v0, v1, v2, . . .} is
countable. We define a total order “<” on V by saying that vi < v j if and only if i < j.
In this way, for any subset V ⊂ V, we can uniquely define min(V) ∈ V as the minimal
vertex in V with respect to the relation “<”. For a set S, we denote {0, 1}S by ΩS. We
call the elements of ΩE bond configurations, and the elements of ΩV site configurations.
As defined in the Introduction, in a bond configuration η, an edge e ∈ E is called open if
η(e) = 1, and closed otherwise; in a site configuration ξ , a vertex v ∈ V is called black if
ξ(e) = 1, and white otherwise. Finally, for η ∈ ΩE and v ∈ V, we define the bond cluster
Cv(η) of v as the maximal connected induced subgraph containing v of the graph with
vertex set V and edge set {e ∈ E : η(e) = 1}, and denote the vertex set of Cv(η) by Cv(η).

For a ∈ [0, 1] and a set S, we define νS
a as the probability measure on ΩS that assigns

to each s ∈ S value 1 with probability a and 0 with probability 1− a, independently for
different elements of S. We define a function

Φ : ΩE ×ΩV → ΩE ×ΩV ,
(η,κ) 7→ (η,ξ),

where ξ(v) = κ(min(Cv(η))). For p, r ∈ [0, 1], we define PG
p,r to be the image measure of

νE
p ⊗ νV

r by the function Φ, and denote by µG
p,r the marginal of PG

p,r on ΩV . Note that this
definition of µG

p,r is consistent with the one in the Introduction.
Finally, we give a few definitions and results that are necessary for the analysis of

the DaC model on the square lattice, that is the graph with vertex set Z2 and edge set
E2 = {〈v, w〉 : v = (v1, v2), w = (w1, w2) ∈ Z2, |v1 −w1|+ |v2 −w2| = 1}. The matching
graph Z2

∗ of the square lattice is the graph with vertex set Z2 and edge set E2
∗ = {〈v, w〉 :

v = (v1, v2), w = (w1, w2) ∈ Z2, max(|v1 − w1|, |v2 − w2|) = 1}. In the same manner as
in the Introduction, we define, for a color configuration ξ ∈ {0, 1}Z2

, (black or white) ∗-
clusters as connected components (via the edge set E2

∗) in ξ of the same color. We denote
by Θ∗(p, r) the PZ

2

p,r-probability that the origin is contained in an infinite black ∗-cluster,
and define

r∗c (p) = sup{r : Θ∗(p, r) = 0}

for all p ∈ [0, 1] — note that this value may differ from rZ
2
∗

c (p). The main result in [BCM09]
is that for all p ∈ [0, 1/2), the critical values rZ

2

c (p) and r∗c (p) satisfy the duality relation

rZ
2

c (p) + r∗c (p) = 1. (2.1)

We will also use exponential decay result for subcritical Bernoulli bond percolation
on Z2. Let 0 denote the origin in Z2, and for each n ∈ N = {1, 2, . . .}, let us define
Sn = {v ∈ Z2 : dist(v, 0) = n} (where dist denotes graph distance), and the event
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2 Stochastic domination and continuity at p = 0

Mn = {η ∈ ΩE2 : there is a path of open edges in η from 0 to Sn}. Then we have the
following result:

Theorem 1.1 ([Kes80]). For p < 1/2, there exists ψ(p) > 0 such that for all n ∈ N, we have
that

νE
2

p (Mn) < e−nψ(p).

2 Stochastic domination and continuity at p = 0

In this section, we prove Proposition 0.3 via a stochastic comparison between the DaC
measure and Bernoulli site percolation. Before stating the corresponding result, however,
let us recall the concept of stochastic domination.

We define a natural partial order on ΩV by saying that ξ ′ ≥ ξ for ξ ,ξ ′ ∈ ΩV if, for all
v ∈ V, ξ ′(v) ≥ ξ(v). A random variable f : ΩV → R is called increasing if ξ ′ ≥ ξ implies
that f (ξ ′) ≥ f (ξ), and an event E ⊂ ΩV is increasing if its indicator random variable is
increasing. For probability measures µ,µ′ on ΩV , we say that µ′ is stochastically larger
than µ (or, equivalently, that µ is stochastically smaller than µ′, denoted by µ ≤st µ

′) if,
for all bounded increasing random variables f : ΩV → R, we have that

∫
ΩV

f (ξ) dµ′(ξ) ≥
∫
ΩV

f (ξ) dµ(ξ).

By Strassen’s theorem [Str65], this is equivalent to the existence of an appropriate cou-
pling of the measures µ′ and µ; that is, the existence of a probability measure Q on
ΩV ×ΩV such that the marginals of Q on the first and second coordinates are µ′ and
µ respectively, and Q({(ξ ′,ξ) ∈ ΩV ×ΩV : ξ ′ ≥ ξ}) = 1.

Theorem 2.1. For any graph G = (V, E) whose maximal degree is ∆, at arbitrary values of the
parameters p, r ∈ [0, 1],

νV
r(1−p)∆ ≤st µ

G
p,r ≤st ν

V
1−(1−r)(1−p)∆ .

Before turning to the proof, we show how Theorem 2.1 implies Proposition 0.3.

Proof of Proposition 0.3. It follows from Theorem 2.1 and the definition of stochastic
domination that for the increasing event Eb∞ (which was defined in the Introduction), we
have µG

p,r(Eb∞) > 0 whenever r(1− p)∆ > rG
c (0), which implies that rG

c (p) ≤ rG
c (0)/(1−

p)∆. The derivation of the lower bound for rG
c (p) is analogous.

Now we give the proof of Theorem 2.1, which bears some resemblance with the proof
of Theorem 2.3 in [Hä01].
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Proof of Theorem 2.1. Fix G = (V, E) with maximal degree ∆, and parameter values
p, r ∈ [0, 1]. We will use the relation “<” and the minimum of a vertex set with respect
to this relation as defined in Section 1. In what follows, we will define several random
variables; we will denote the joint distribution of all these variables by P.

First, we define a collection (ηe
x,y : x, y ∈ V, e = 〈x, y〉 ∈ E) of i.i.d. Bernoulli(p)

random variables (i.e., they take value 1 with probability p, and 0 otherwise); one may
imagine having each edge e ∈ E replaced by two directed edges, and the random vari-
ables represent which of these edges are open. We define also a set (κx : x ∈ V) of
Bernoulli(r) random variables. Given a realization of (ηe

x,y : x, y ∈ V, e = 〈x, y〉 ∈ E)
and (κx : x ∈ V), we will define an ΩV ×ΩE-valued random configuration (η,ξ) with
distribution PG

p,r, by the following algorithm.

1. Let v = min{x ∈ V : no ξ-value has been assigned yet to x by this algorithm}.
(Note that v and V, vi, Hi (i ∈ N), defined below, are running variables, i.e., their
values will be redefined in the course of the algorithm.)

2. We explore the “directed open cluster” V of v iteratively, as follows. Define v0 = v.
Given v0, v1, . . . , vi for some integer i ≥ 0, set η(e) = ηe

vi ,w for every edge e =

〈vi, w〉 ∈ E incident to vi such that no η-value has been assigned yet to e by the
algorithm, and write Hi+1 = {w ∈ V \ {v0, v1, . . . , vi} : w can be reached from
any of v0, v1, . . . , vi by using only those edges e ∈ E such that η(e) = 1 has been
assigned to e by this algorithm}. If Hi+1 6= ∅, then we define vi+1 = min(Hi+1),
and continue exploring the directed open cluster of v; otherwise, we define V =

{v0, v1, . . . , vi}, and move to step 3.

3. Define ξ(w) = κv for all w ∈ V, and return to step 1.

It is immediately clear that the above algorithm eventually assigns a ξ-value to each
vertex. Note also that a vertex v can receive a ξ-value only after all edges incident to
v have already been assigned an η-value, which shows that the algorithm eventually
determines the full edge configuration as well. It is easy to convince oneself that (η,ξ)
obtained this way indeed has the desired distribution.

Now, for each v ∈ V, we define Z(v) = 1 if κv = 1 and ηe
w,v = 0 for all edges

e = 〈v, w〉 ∈ E incident on v (i.e., all directed edges towards v are closed), and Z(v) = 0
otherwise. Note that every vertex with Z(v) = 1 has ξ(v) = 1 as well, whence the
distribution of ξ (i.e., µG

p,r) stochastically dominates the distribution of Z (as witnessed
by the coupling P).

Notice that Z(v) depends only on the states of the edges pointing to v and on the
value ofκv; in particular the distribution of Z is a product measure on ΩV with parameter
r(1− p)d(v) at v, where d(v) ≤ ∆ is the degree of v, whence µG

p,r stochastically dominates
the product measure on ΩV with parameter r(1− p)∆, which gives the desired stochastic
lower bound. The upper bound can be proved analogously; alternatively, it follows from
the lower bound by exchanging the roles of black and white.
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3 Continuity of rZ
2

c (p) on the interval [0, 1/2)

3 Continuity of rZ2

c (p) on the interval [0, 1/2)

In this section, we will prove Theorem 0.8. Our first task is to prove a technical result valid
on more general graphs stating that the probability of any event A whose occurrence
depends on a finite set of ξ-variables is a continuous function of p for p < pG

c . The
proof relies on the fact that although the color of a vertex v may be influenced by edges
arbitrarily far away, if p < pG

c , the corresponding influence decreases to 0 in the limit as
we move away from v. Therefore, the occurrence of the event A depends essentially on a
finite number of η- and κ-variables, whence its probability can be approximated up to an
arbitrarily small error by a polynomial in p and r.

Once we have proved Proposition 3.1 below, which is valid on general graphs, we
will apply it on Z2 to certain “box-crossing events,” and appeal to results in [BCM09] to
deduce the continuity of rZ

2

c (p).

Proposition 3.1. For every site percolation event A ⊂ {0, 1}V depending on the color of finitely
many vertices, µG

p,r(A) is a continuous function of (p, r) on the set [0, pG
c )× [0, 1].

Proof. In this proof, when µ is a measure on a set S, X is a random variable with law
µ and F : S −→ R is a bounded measurable function, we write abusively µ[F(X)] for
the expectation of F(X). We show a slightly more general result: for any k ≥ 1, x =

(x1, . . . , xk) ∈ Vk and f : {0, 1}k → R bounded and measurable, µG
p,r [ f (ξ(x1), . . . ,ξ(xk))]

is continuous in (p, r) on the product [0, pG
c )× [0, 1]. Proposition 3.1 will follow by choos-

ing an appropriate family {x1, . . . , xk} such that the states of the xi suffices to determine
whether A occurs, and take f to be the indicator function of A.

To show the previous affirmation, we condition on the vector

mx(η) = (min Cx1(η), . . . , min Cxk(η))

which takes values in the finite set V =
{
(v1, . . . , vk) ∈ Vk : ∀i vi ≤ max{x1, . . . , xk}

}
,

and we use the definition of PG
p,r as an image measure. By definition,

µG
p,r [ f (ξ(x1), . . . ,ξ(xk))]

= ∑
v∈V

PG
p,r [ f (ξ(x1), . . . ,ξ(xk))|{mx = v}]PG

p,r [{mx = v}]

= ∑
v∈V

νE
p ⊗ νV

r [ f (κ(v1), . . . ,κ(vk))|{mx = v}]νE
p [{mx = v}]

= ∑
v∈V

νV
r [ f (κ(v1), . . . ,κ(vk))]ν

E
p [{mx = v}] .

Note that νV
r [ f (κ(v1), . . . ,κ(vk))] is a polynomial in r, so to conclude the proof we only

need to prove that for any fixed x and v, νE
p ({m(x) = v}) depends continuously on p on

the interval [0, pG
c ).

For n ≥ 1, write Fn = {|Cx1 | ≤ n, . . . , |Cxk | ≤ n}. It is easy to verify that the event
{mx = v} ∩ Fn depends on the state of finitely many edges. Hence, νE

p [{mx = v} ∩ Fn] is
a polynomial function of p.
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ON THE CRITICAL VALUE FUNCTION IN THE DIVIDE AND COLOR MODEL

Fix p0 < pG
c . For all p ≤ p0,

0 ≤ νE
p [{m(x) = v}]− νE

p [{mx = v} ∩ Fn] ≤ νE
p [F

c
n]

≤ νE
p0
[Fc

n]

where lim
n→∞νE

p0
[Fc

n] = 0, since p0 < pG
c . So, νE

p [m(x) = v] is a uniform limit of polynomi-

als on any interval [0, p0], p0 < pG
c , which implies the desired continuity.

Remark 3.2. In the proof we can see that, for fixed p < pG
c , µG

p,r(A) is a polynomial in r.

Remark 3.3. If G is a graph with uniqueness of the infinite bond cluster in the supercritical
regime, then it is possible to verify that νE

p [{m(x) = v}] is continuous in p on the whole
interval [0, 1]. In this case, the continuity given by the Proposition 3.1 can be extended to
the whole square [0, 1]2.

Proof of Theorem 0.8. In order to simplify our notations, we write Pp,r,νp, rc(p), for
PZ

2

p,r,νE
2

p and rZ
2

c (p) respectively. Fix p0 ∈ (0, 1/2) and ε > 0 arbitrarily. We will show
that there exists δ = δ(p0,ε) > 0 such that for all p ∈ (p0 − δ, p0 + δ),

rc(p) ≥ rc(p0)−ε, (2.2)

and
rc(p) ≤ rc(p0) +ε. (2.3)

Note that by equation (2.1), for all small enough choices of δ > 0 (such that 0 ≤ p0 ± δ <
1/2), (2.2) is equivalent to

r∗c (p) ≤ r∗c (p0) +ε. (2.4)

Below we will show how to find δ1 > 0 such that we have (2.3) for all p ∈ (p0 − δ1, p0 +

δ1). One may then completely analogously find δ2 > 0 such that (2.4) holds for all p ∈
(p0 − δ2, p0 + δ2), and take δ = min(δ1, δ2).

Fix r = rc(p0) + ε, and define the event Vn = {(ξ , η) ∈ ΩZ2 ×ΩE2 : there exists a
vertical crossing of [0, n] × [0, 3n] that is black in ξ}. By “vertical crossing,” we mean
a self-avoiding path of vertices in [0, n]× [0, 3n] with one endpoint in [0, n]× {0}, and
one in [0, n]× {3n}. Recall also the definition of Mn in Theorem 1.1. By Lemma 2.10 in
[BCM09], there exists a constant γ > 0 such that the following implication holds for any
p, a ∈ [0, 1] and L ∈ N:

(3L + 1)(L + 1)νa(MbL/3c) ≤ γ,
and Pp,a(VL) ≥ 1−γ

}
⇒ a ≥ rc(p).

As usual, bxc for x > 0 denotes the largest integer m such that m ≤ x. Fix such a γ.
By Theorem 1.1, there exists N ∈ N such that

(3n + 1)(n + 1)νp0(Mbn/3c) < γ
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4 The critical value functions of tree-like graphs

for all n ≥ N. On the other hand, since r > rc(p0), it follows from Lemma 2.11 in [BCM09]
that there exists L ≥ N such that

Pp0 ,r(VL) > 1−γ.

Note that both (3L + 1)(L + 1)νp(MbL/3c) and Pp,r(VL) are continuous in p at p0. Indeed,
the former is simply a polynomial in p, while the continuity of the latter follows from
Proposition 3.1. Therefore, there exists δ1 > 0 such that for all p ∈ (p0 − δ1, p0 + δ1),

(3L + 1)(L + 1)νp(MbL/3c) ≤ γ,

and Pp,r(VL) ≥ 1−γ.

By the choice of γ, this implies that r ≥ rc(p) for all such p, which is precisely what we
wanted to prove.

Finding δ2 > 0 such that (2.4) holds for all p ∈ (p0 − δ2, p0 + δ2) is analogous: one
only needs to substitute rc(p0) by r∗c (p0) and “crossing” by “∗-crossing,” and the exact
same argument as above works. It follows that δ = min(δ1, δ2) > 0 is a constant such that
both (2.3) and (2.4) hold for all p ∈ (p0− δ, p0 + δ), completing the proof of continuity on
(0, 1/2). Right-continuity at 0 may be proved analogously; alternatively, it follows from
Proposition 0.4.

Remark 3.4. It follows from Theorem 0.8 and equation (2.1) that r∗c (p) is also continuous
in p on [0, 1/2).

4 The critical value functions of tree-like graphs

In this section, we will study the critical value functions of graphs that are constructed by
replacing edges of an infinite tree by a sequence of finite graphs. We will then use several
such constructions in the proofs of our main results in Section 5.

Let us fix an arbitrary sequence Dn = (Vn, En) of finite connected graphs and, for
every n ∈ N, two distinct vertices an, bn ∈ Vn. Let T3 = (V3, E3) denote the (infinite)
regular tree of degree 3, and fix an arbitrary vertex ρ ∈ V3. Then, for each edge e ∈ E3,
we denote the end-vertex of e which is closer to ρ by f (e), and the other end-vertex by
s(e). Let ΓD = (Ṽ, Ẽ) be the graph obtained by replacing every edge e of Γ3 between levels
n− 1 and n (i.e., such that dist(s(e),ρ) = n) by a copy De of Dn, with an and bn replacing
respectively f (e) and s(e). Each vertex v ∈ V3 is replaced by a new vertex in Ṽ, which
we denote by ṽ. It is well known that pΓ3

c = rΓ3
c (0) = 1/2. Using this fact and the tree-like

structure of ΓD, we will be able to determine bounds for pΓD
c and rΓD

c (p).
First, we define hDn(p) = νEn

p (an and bn are in the same bond cluster), and prove the
following, intuitively clear, lemma.

Lemma 4.1. For any p ∈ [0, 1], the following implications hold:

a) if lim supn→∞ hDn(p) < 1/2, then p ≤ pΓD
c ;

b) if lim infn→∞ hDn(p) > 1/2, then p ≥ pΓD
c .
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ON THE CRITICAL VALUE FUNCTION IN THE DIVIDE AND COLOR MODEL

Proof. We couple Bernoulli bond percolation with parameter p on ΓD with inhomoge-
neous Bernoulli bond percolation with parameters hDn(p) on T3, as follows. Let η be a
random variable with law νẼ

p , and define, for each edge e ∈ E3, W(e) = 1 if ˜f (e) and ˜s(e)
are connected by a path consisting of edges that are open in η, and W(e) = 0 otherwise.
The tree-like structure of ΓD implies that W(e) depends only on the state of the edges in
De, and it is clear that if dist(s(e),ρ) = n, then W(e) = 1 with probability hDn(p).

It is easy to verify that there exists an infinite open self-avoiding path on ΓD from ρ̃

in the configuration η if and only if there exists an infinite open self-avoiding path on T3

from ρ in the configuration W. Now, if we assume lim supn→∞ hDn(p) < 1/2, then there
exists t < 1/2 and N ∈ N such that for all n ≥ N, hDn(p) ≤ t. Therefore, the distribution
of the restriction of W on L = {e ∈ E3 : dist(s(e),ρ) ≥ N} is stochastically dominated
by the projection of νE3

t on L. This implies that, a.s., there exists no infinite self-avoiding
path in W, whence p ≤ pΓD

c by the observation at the beginning of this paragraph. The
proof of b) is analogous.

We now turn to the DaC model on ΓD. Recall that for a vertex v, Cv denotes the vertex
set of the bond cluster of v. Let Ean ,bn ⊂ ΩEn ×ΩVn denote the event that an and bn are
in the same bond cluster, or an and bn lie in two different bond clusters, but there exists
a vertex v at distance 1 from Can which is connected to bn by a black path (which also
includes that ξ(v) = ξ(bn) = 1). This is the same as saying that Can is pivotal for the
event that there is a black path between an and bn, i.e., that such a path exists if and only
if Can is black. It is important to note that Ean ,bn is independent of the color of an. Define
f Dn(p, r) = PDn

p,r(Ean ,bn), and note also that, for r > 0, f Dn(p, r) = PDn
p,r(there is a black

path from an to bn | ξ(an) = 1).

Lemma 4.2. For any p, r ∈ [0, 1], we have the following:

a) if lim supn→∞ f Dn(p, r) < 1/2, then r ≤ rΓD
c (p);

b) if lim infn→∞ f Dn(p, r) > 1/2, then r ≥ rΓD
c (p).

Proof. We couple here the DaC model on ΓD with inhomogeneous Bernoulli site perco-
lation on T3. For each v ∈ V3 \ {ρ}, there is a unique edge e ∈ E3 such that v = s(e). Here
we denote De (i.e., the subgraph of ΓD replacing the edge e) by Dṽ, and the analogous
event of Ean ,bn for the graph Dṽ by Eṽ. Let (η,ξ) with values in ΩẼ ×ΩṼ be a random
variable with law PΓD

p,r. We define a random variable X with values in ΩV3 , as follows:

X(v) =


ξ(ρ̃) if v = ρ,

1 if the event Eṽ is realized by the restriction of (η,ξ) to Dṽ,

0 otherwise.

As noted after the proof of Lemma 4.1, if u = f (〈u, v〉), the event Eṽ is independent of
the color of ũ, whence (Eṽ)v∈V3\{ρ} are independent. Therefore, as X(ρ) = 1 with proba-
bility r, and X(v) = 1 is realized with probability f Dn(p, r) for v ∈ V3 with dist(v,ρ) = n
for some n ∈ N, X is inhomogeneous Bernoulli site percolation on T3.
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5 Counterexamples

Our reason for defining X is the following property: it holds for all v ∈ V3 \ {ρ} that

ρ̃
ξ↔ ṽ if and only if ρ

X↔ v, (2.5)

where x Z↔ y denotes that x and y are in the same black cluster in the configuration
Z. Indeed, assuming ρ̃ ξ↔ ṽ, there exists a path ρ = x0, x1, · · · , xk = v in Γ3 such that,
for all 0 ≤ i < k, x̃i

ξ↔ ˜xi+1 holds. This implies that ξ(ρ̃) = 1 and that all the events
(Ex̃i)0<i≤k occur, whence X(xi) = 1 for i = 0, . . . , k, so ρ X↔ v is realized. The proof of
the other implication is similar. It follows in particular from (2.5) that ρ̃ lies in an infinite
black cluster in the configuration ξ if and only if ρ lies in an infinite black cluster in the
configuration X.

Lemma 4.2 presents two scenarios when it is easy to determine (via a stochastic com-
parison) whether the latter event has positive probability. For example, if we assume
that lim infn→∞ f Dn(p, r) > 1/2, then there exists t > 1/2 and N ∈ N such that for all
n ≥ N, f Dn(p, r) ≥ t. In this case, the distribution of the restriction of X on K = {v ∈
V3 : dist(v,ρ) ≥ N} is stochastically larger than the projection of νE3

t on K. Let us further
assume that r > 0. In that case, X(ρ) = 1 with positive probability, and f Dn(p, r) > 0
for every n ∈ N. Therefore, under the assumptions lim infn→∞ f Dn(p, r) > 1/2 and
r > 0, ρ is in an infinite black cluster in X (and, hence, ρ̃ is in an infinite black cluster
in ξ) with positive probability, which can only happen if r ≥ rΓD

c (p). On the other hand,
if lim infn→∞ f Dn(p, 0) > 1/2, then it is clear that lim infn→∞ f Dn(p, r) > 1/2 (whence
r ≥ rΓD

c (p)) for all r > 0, which implies that rΓD
c (p) = 0. The proof of part a) is similar.

5 Counterexamples

In this section, we study two particular graph families and obtain examples of non-
monotonicity and non-continuity of the critical value function.

5.1 Non-monotonicity

The results in Section 4 enable us to prove that (a small modification of) the construction
considered by Häggström in the proof of Theorem 2.9 in [Hä01] is a graph whose critical
coloring value is non-monotone in the subcritical phase.

Proof of Proposition 0.9. Define for k ∈ N, Dk to be the complete bipartite graph with
the vertex set partitioned into {z1, z2} and {a, b, v1, v2, . . . , vk} (see Figure 2.1). We call
e1, e′1 and e2, e′2 the edges incident to a and b respectively, and for i = 1, . . . , k, fi, f ′i the
edges incident to vi. Consider Γk the quasi-transitive graph obtained by replacing each
edge of the tree T3 by a copy of Dk. Γk can be seen as the tree-like graph resulting from
the construction described at beginning of the section, when we start with the constant
sequence (Dn, an, bn) = (Dk, a, b).
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z1

vkv1

e1 f1 fk

f ′
k

e′1 e′2

z2

e2

. . .

f ′
1

ba

Figure 2.1: The graph Dk.

We will show below that it holds for all k ∈ N that

pΓk
c > 1/3, (2.6)

rΓk
c (0) < 2/3, and (2.7)

rΓk
c (1/3) < 2/3. (2.8)

Furthermore, there exists k ∈ N and p0 ∈ (0, 1/3) such that

rΓk
c (p0) > 2/3. (2.9)

Proving (2.6)–(2.9) will finish the proof of Proposition 0.9 since these inequalities imply
that the quasi-transitive graph Γk has a non-monotone critical value function in the sub-
critical regime.

Throughout this proof, we will omit superscripts in the notation when no confusion
is possible. For the proof of (2.6), recall that hDk

is strictly increasing in p, and hDk
(pDk) =

1/2. Since 1− hDk
(p) is the νp-probability of a and b being in two different bond clusters,

we have that

1− hDk
(1/3) ≥ ν1/3({e1 and e′1 are closed} ∪ {e2 and e′2 are closed}).

From this, we get that hDk
(1/3) ≤ 25/81, which proves (2.6).

To get (2.7), we need to remember that for fixed p < pDk , f Dk
(p, r) is strictly increasing

in r, and f Dk
(p, rDk(p)) = 1/2. One then easily computes that f (0, 2/3) = 16/27 > 1/2,

whence (2.7) follows from Lemma 4.2.
Now, define A to be the event that at least one edge out of e1, e′1, e2 and e′2 is open.

Then

f Dk
(1/3, 2/3) ≥ P1/3,2/3(Ea,b | A)P1/3,2/3(A)

≥ P1/3,2/3(Cb black | A) · 65/81,

which gives that f Dk
(1/3, 2/3) ≥ 130/243 > 1/2, and implies (2.8) by 4.2.
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To prove (2.9), we consider Bk to be the event that e1, e′1, e2 and e′2 are all closed and
that there exists i such that fi and f ′i are both open. One can easily compute that

Pp,r(Bk) = (1− p)4
(

1− (1− p2)
k
)

,

which implies that we can choose p0 ∈ (0, 1/3) (small) and k ∈ N (large) such that
Pp0 ,r(Bk) > 17/18. Then,

f Dk
(p0, 2/3) = Pp0 ,r(Ea,b | Bk)Pp0 ,r(Bk) + Pp0 ,r(Ea,b | Bc

k)(1−Pp0 ,r(Bk))

< (2/3)2 · 1 + 1 · 1/18(= 1/2),

whence inequality (2.9) follows with these choices from Lemma 4.2, completing the proof.

5.2 Graphs with discontinuous critical value functions

Proof of Proposition 0.5. For n ∈ N, let Dn be the graph depicted in Figure 2.2, and let G
be ΓD constructed with this sequence of graphs as described at the beginning of Section 4.

v
... bna

Figure 2.2: The graph Dn.

It is elementary that limn→∞ hDn(p) = p, whence pG
c = 1/2 follows from Lemma 4.1,

thus p = 0 is subcritical. Since limn→∞ f Dn(0, r) = r2, Lemma 4.2 gives that rG
c (0) =

1/
√

2. On the other hand, limn→∞ f Dn(p, r) = p + (1− p)r for all p > 0, which implies
by Lemma 4.2 that for p ≤ 1/2,

rG
c (p) =

1/2− p
1− p

→ 1/2

as p→ 0, so rG
c is indeed discontinuous at 0 < pG

c .

In the rest of this section, for vertices v and w, we will write v ↔ w to denote that
there exists a path of open edges between v and w. Our proof of Theorem 0.6 will be
based on the Lemma 2.1 in [PSS09], that we rewrite here:

Lemma 5.1. There exists a sequence Gn = (Vn, En) of graphs and xn, yn ∈ Vn of vertices
(n ∈ N) such that

1. νEn

1/2(xn ↔ yn) >
2
3 for all n;

2. limn→∞ νEn

p (xn ↔ yn) = 0 for all p < 1/2, and

3. there exists ∆ < ∞ such that, for all n, Gn has degree at most ∆.
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Lemma 5.1 provides a sequence of bounded degree graphs that exhibit sharp threshold-
type behavior at 1/2. We will use such a sequence as a building block to obtain disconti-
nuity at 1/2 in the critical value function in the DaC model.

Proof of Theorem 0.6. We first prove the theorem in the case p0 = 1/2. Consider the
graph Gn = (Vn, En), xn, yn (n ∈ N) as in Lemma 5.1. We construct Dn from Gn by
adding to it one extra vertex an and one edge {an, xn}. More precisely Dn has vertex set
Vn ∪ {an} and edge set En ∪ {an, xn}. Set bn = yn and let G be the graph ΓD defined with
the sequence (Dn, an, bn) as in Section 4.

We will show below that there exists r0 > r1 such that the graph G verify the following
three properties:

(i) 1/2 < pG
c

(ii) rG
c (p) ≥ r0 for all p < 1/2.

(iii) rG
c (1/2) ≤ r1.

It implies a discontinuity of rG
c at 1/2 < pG

c , finishing the proof.
One can easily compute hDn(p) = pνEn

p (xn ↔ yn). Since the graph Gn has degree
at most ∆ and the two vertices xn, yn are disjoint, the probability νEn

p (xn ↔ yn) cannot
exceed 1− (1− p)∆. This bound guarantees the existence of p0 > 1/2 independent of n
such that hDn(p0) < 1/2 for all n, whence Lemma 4.1 implies that 1/2 < p0 ≤ pG

c .
For all p ∈ [0, 1], we have

f Dn(p, r) ≤ (p + r(1− p))
(
νEn

p (xn ↔ yn) + r(1− νEn

p (xn ↔ yn))
)

.

which gives that lim
n→∞ f Dn(p, r) <

( r+1
2

)
· r. Writing r0 the positive solution of r(1+ r) = 1,

we get that lim
n→∞ f Dn(p, r0) < 1/2 for all p < 1/2, which implies by Lemma 4.2 that

rG
c (p) ≥ r0.

On the other hand, f Dn(1/2, r) ≥ νEn

p (xn ↔ yn)
( 1+r

2

)
, which gives by Lemma 5.1 that

lim
n→∞ f Dn(1/2, r) > 2

3 · 1+r
2 . Writing r1 such that 2

3 (1 + r1) = 1, it is elementary to check

that r1 < r0 and that lim
n→∞ f Dn(1/2, r1) > 1/2. Then, using Lemma 4.2, we conclude that

rc(1/2) ≤ r1.
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3A UNIVERSAL BEHAVIOR FOR

PLANAR DAC PERCOLATION

This chapter corresponds to the work in progress [VT3].

Introduction

In this chapter, we study DaC percolation on the square lattice G = (Z2,E2). Recall that
the critical parameter for bond percolation on this graph is pc = 1/2. We write rc(p)
the critical value function for the DaC model, as defined in Chapter 2. In [Hä01], it was
proved that 1/2 ≤ rc(p) < 1 for all p < pc. In the previous chapter we studied the
behavior of rc(p) when p is small and proved in particular that rc(p) > 1/2 for all p
small enough. In the present chapter, we study the behavior of rc when p is close to pc,
and we prove the following result.

Theorem 0.2. For DaC percolation on the square lattice, we have

lim
p→pc
p<pc

rc(p) =
1
2

. (3.1)

The theorem above should not be restricted to the square lattice, and we expect it to
hold for any general periodic planar graph. In our approach, one argument (the “shift
argument” developed in section 5.3) uses the following property of critical bond percola-
tion on Z2: one can couple two critical bond percolation processes such that the following
holds (see section 1 for the definitions). To any open path v1, v2, . . . vn ∈ Z2 in the first
configuration corresponds dual-open dual-path w1, w2, . . . wn ∈ (1/2, 1/2)+Z2 such that
|vi − wi| ≤

√
2/2. The constant

√
2/2 does not play any role here, any constant would

be sufficient. This property is not specific to the square lattice, and such coupling can
be obtained for example on the hexagonal lattice using the star-triangle transformation.
For any periodic planar graph with the coupling property above, one can use the proof
presented here, with small modifications, and prove that the convergence (3.1) holds. In
particular Theorem 1 holds also for the hexagonal lattice. Apart from the “shift argu-
ment”, the proof is very general, and we believe the general strategy is a good approach
in order to tackle the convergence (3.1) on general periodic planar graph.



A UNIVERSAL BEHAVIOR FOR PLANAR DAC PERCOLATION

1 Definitions and notation

Plane notation. We write |z| the standard Euclidean norm of a point z ∈ R2. We define
the following subsets of the plane, for 0 ≤ m ≤ n:

• the square Bn := [−n, n]2,

• the annulus Am,n := Bn \ Bm.

Graph notation. We will mainly work on graphs with vertex set Z2, that will be con-
structed from the following sets of edges.

• E2 := {{v, w} : v, w ∈ Z2, |v− w| = 1},
• D+ := {{v, v + (1, 1)} : v ∈ Z2},
• D− := {{v, v + (1,−1)} : v ∈ Z2}.

For S a subset of R2, we write E2(S) (resp. D+(S), D−(S)) the set of edges in E2 (resp
D+, D−) with both ends in S. We also consider the dual graph of the square lattice, its
vertex set is Z2

dual := (1/2, 1/2) +Z2, and its edge set E2
dual is given by the pairs {v, w} of

elements of Z2
dual such that |w− v| = 1. We will sometimes call dual vertices the elements

of Z2
dual and dual edges the elements of E2

dual. To each edge e = {v, w} ∈ E2 corresponds
a unique dual edge denoted e∗ = {v′, w′} such that the two segments [v, w] and [v′, w′]
intersect exactly at their middle.

The space of configurations. In this chapter, we consider the probability space Ω =

{0, 1}E2 × {0, 1}Z2 × {0, 1}D+
, equipped with the product sigma-algebra. A configura-

tion is given by a tripleω = (η,ξ , δ), an we use the following definitions.

• We call η the bond percolation configuration. An edge e ∈ E2 is said to be open
if η(e) = 1, and closed otherwise. A dual edge e∗ is said to be dual-open if its
corresponding edge in E2 is closed. If S is a subset of the plane, we call S-bond-
cluster, or simply bond-cluster when S = R2, a connected component of the graph
with vertex set Z2 ∩ S, and with edge set given by the open edges {v, w} such that
v, w ∈ S.

• We call ξ the coloring configuration. A vertex v ∈ Z2 is said to be black if ξ(v) = 1
and white if ξ(v) = 0. More generally a subset of Z2 is said to be black, resp. white,
if all its elements are black, resp. white.

• We call δ the diagonal configuration. An edge e ∈ D+ is said to be added if δ(e) = 1.

The probability measures. We construct a random configuration in Ω, by the following
3 steps procedure. Let n ≥ 1 and 0 ≤ p, r, s ≤ 1.

Step 1: Bernoulli bond percolation. Declare independently each edge of E2 open with
probability p and closed otherwise.
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Step 2: Bernoulli site percolation on the set of bond-clusters. Examine independently each
bond-cluster obtained after the first step, and assign the same color to all its vertices.
The chosen color is black with probability r and white otherwise.

Step 3: adding diagonal edges in the set Bn. Independently of the others, and of the two
steps above, declare each edge in D+(Bn) added with probability s. In the comple-
ment of Bn, no edge is added.

We define the probability measure Pn
p,r,s on Ω to be the law of the random configuration

obtained after the three steps above.

Step 1: Bernoulli bond
percolation.

Step 2: Bernoulli site
percolation on the set
of bond-clusters.

Step 3: adding diago-
nal edges in the set Bn.

Figure 3.1: Construction of a random configuration (n = 3)

We also write νp the standard Bernoulli percolation measure on {0, 1}E2
with parameter

p, 0 ≤ p ≤ 1.

Primal/dual paths. In general we call path in a graph (V, E), (V = Z2 or V = Z2
dual), a

finite sequence γ = (γ(1), . . . ,γ(`)) of elements of V, such that {γ(i),γ(i + 1)} ∈ E. γ
is said to be self-avoiding if all the γ(i)’s are distinct. One can identify a path γ with the
compact connected subset of the plane given by the union of the segments [γ(i),γ(i+ 1)],
1 ≤ i ≤ `− 1. For example, given a set S in the plane, when we say that γ lies in S it
means that all the segments [γ(i),γ(i + 1)] are subset of S.

A path in (Z2,E2), is called a primal path. When all its edges are open, we call it a
primal-open path. Similarly, a path in (Z2

dual,E
2
dual), is called a dual path. When all its

edges are dual-open, we call it a dual-open path.

G-paths/G∗-paths. Consider a configurationω = (η,ξ , δ). Let G = G(δ) be the random
graph obtained by adding to the square lattice (Z2,E2) all the diagonal edges e ∈ D+ with
δ(e) = 1. This graph is planar, and we can define its matching graph G∗. Its vertex set is
Z2 and its edge set is given by
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• the edges in E2 ∪D+;

• the edges {z + (1, 0), z + (0, 1)} in D− such that δ({z, z + (1, 1)}) = 0.

Figure 3.2: On the left, a piece of a possible graph G. On the right, the corresponding
piece of its matching graph G∗

We call G-path a path in G, and G∗-path a path in G∗. In our study we will be mostly
interested in black G-paths, and white G∗-paths.

Events/ bond percolation events. In general, the events will be defined on the whole
probability space Ω. We will sometimes work on the smaller probability space ({0, 1}E2

,νp),
and we call bond percolation event a measurable set in this space.

2 Preliminaries

2.1 The bond percolation event CL

For L ≥ 2, we denote by CL the bond percolation event that there exist L < L1 < L2 < 2L
and

• a dual-open circuit in the annulus AL,L1 ,

• an open circuit in the annulus AL1 ,L2 ,

• a dual-open circuit in the annulus AL2 ,2L,

where each of the circuits contains the origin 0 in its interior. This event illustrated on
Fig. 3.3 implies that there exists a bond-cluster surrounding BL and included in the an-
nulus AL,2L. We will need the following result, which follows from standard RSW-theory
for critical percolation, and the continuity in p of νp[CL] for fixed L. There exist an abso-
lute constant c0 > 0 such that the following holds. For every L ≥ 2, there exists p0 < pc

such that

νp[CL] > c0 (3.2)

for every p0 ≤ p ≤ pc.
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2L

L

Figure 3.3: The event CL, the dotted circuits represent the dual-open circuits, and the
solid circuit represents the open circuit.

2.2 The crossing probability and its derivatives

Definition of the crossing probability. Let R = [a, b]× [c, d] be a rectangle in the plane.
We write H(R) the event that there exists a black G-path from the {a} × [c, d] to {b} ×
[c, d].

Let n, L ≥ 0. We define for all 0 ≤ p, r, s ≤ 1

fn,L(p, r, s) := Pn
p,r,s [H(Bn+4L)] . (3.3)

Notice that in the definition (3.3) above, we consider a crossing of the square Bn+4L,
but we take its probability under Pn

p,r,s, meaning that the diagonal edges are added with
density s in the square Bn, and none is added in the annulus An,n+4L. This choice will
avoid boundary effects when we will study the derivative in s of fn,L(p, r, s).

The derivative in s. Consider a configuration (η,ξ , δ). Let δe and δe be the two diagonal
configurations defined by δe(e) = 0, δe(e) = 1, and δe( f ) = δe( f ) = δ( f ) for every
f 6= e. We call an edge e ∈ D+ pivotal (for the event H(Bn+4L)) if H(Bn+4L) occurs in the
configuration (η,ξ , δe) but not in (η,ξ , δe). The derivative in s of fn,L can be computed
by the following formula

∂

∂s
fn,L(p, r, s) = ∑

e∈D+(Bn)

Pn
p,r,s [e is pivotal] . (3.4)

The derivative in r. Let C be a bond-cluster, the coloring configurations ξC and ξC are
obtained form ξ by coloring respectively white and black all the vertices in C, and keep-
ing the other colors unchanged. A bond-cluster C is said to be pivotal ifH(Bn+4L) occurs
in the configuration (η,ξC, δ) but not in (η,ξC, δ). Let Npiv be the number of pivotal
clusters, the derivative in r can be expressed as follows.

∂

∂r
fn,L(p, r, s) = Pn

p,r,s[Npiv]. (3.5)
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We do not prove the formulas (3.4) and (3.5) above. They can be obtained exactly
the same way as Russo’s formula for Bernoulli percolation (see [Gri99b] for Bernoulli
percolation and [BCM09], Theorem 2.8 for DaC-percolation).

2.3 Previous results

Sharp threshold. The sharp-threshold result proved in [BCM09] for standard DaC-
percolation (no diagonal edge is added) implies the following result with our notation.

Theorem 2.1. Let p < pc, L ∈ N, be fixed. The following convergence holds.

lim
n→∞ fn,L(p, r, 0) =

0 if r < rc(p)

1 if r > rc(p)

Duality. In his initial paper introducing DaC-percolation [Hä01], Häggström proved
that there is no infinite black path on the square lattice when p < pc and r = 1/2. This
result based on duality considerations implies the following.

Theorem 2.2. For all p < pc, the critical value rc(p) satisfies

rc(p) ≥ 1
2

.

3 Proof of Theorem 0.2

This section presents the proof of Theorem 0.2. In order to achieve this proof we need
two propositions, the proofs of which are given in the next sections. We first state and
comment on these two propositions and then show how they imply Theorem 0.2.

The first proposition exploits the fact that the model becomes self-dual when r = 1/2
and all the diagonal edges ofD+ are added. More precisely, under PBn

p,1/2,1, the probability
that there exists a black G-path from left to right in Bn is equal to the probability of a white
G∗-path from top to bottom. This implies that both probabilities are equal to 1/2. Then,
for fixed L

Proposition 3.1. There exists an absolute constant c1 > 0 such that the following holds. For any
L ≥ 0 there exists p0 < pc such that, for all p0 ≤ p ≤ pc and r ≥ 1/2

lim inf
n→∞ fn,L(p, r, 1) ≥ c1

The second proposition is really the heart of the proof. Heuristically, it says that when
p is close enough to pc, adding diagonal edges becomes useless in order to create a left-
right black crossing. This will allow us to show that the model with s = 0 (critical at
r = rc(p)) is close to the model with s = 1 (self-dual at r = 1/2), implying that rc(p) is
close to 1/2.
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Proposition 3.2 (Differential inequality for fn,L). For all (p, r, s) ∈ [0, pc]× (0, 1)× [0, 1]
and all n, L ∈ N, we have

∂

∂s
fn,L(p, r, s) ≤ gL(p, r)

∂

∂r
fn,L(p, r, s),

where the function gL satisfies the following two properties for every fixed r0 ∈ (1/2, 1).

1. For L fixed, gL is continuous on [0, pc]× [1/2, r0];

2. lim
L→∞ max

1/2≤r≤r0

gL(pc, r) = 0.

Proof of Theorem 0.2. First, by Theorem 2.2, we already know that, for all p < pc,

rc(p) ≥ 1
2

.

Fix ε > 0 and 1 > r0 > 1/2 +ε. There exists L large enough, and p0 < pc close enough to
pc such that the following holds. For all (p, r) ∈ [p0, pc]× [1/2, r0], we have

gL(p, r) < c1ε, (3.6)

lim inf
n→∞ fn,L(p, r, 1) ≥ c1. (3.7)

(Recall that the constant c1 was defined by Proposition 3.1.) To see this, use first Proper-
ties 1 and 2 of gL in Proposition 3.2 to say that equation (3.6) holds for some L, and for all
p close enough to pc. Then, apply Proposition 3.1 with such an L to conclude.

Let us fix L ≥ 1 and p0 as above. By Proposition 3.2, we obtain the following differ-
ential inequality, valid for all (p, r, s) ∈ [p0, pc]× [1/2, r0]× [0, 1].

∂

∂s
fn,L(p, r, s) ≤ c1ε

∂

∂r
fn,L(p, r, s).

For fixed p ∈ [p0, pc], integrate the equation above for (r, s) ∈ [1/2, min(r0, rc(p))] ×
[0, 1], and use Fubini’s Theorem to deduce∫ min(r0 ,rc(p))

1/2
fn,L(p, r, 1)− fn,L(p, r, 0)dr ≤ c1ε. (3.8)

By Theorem 2.1, and Equation (3.7), we have for all 1/2 ≤ r < min(r0, rc(p)),

lim inf
n→∞ fn,L(p, r, 1)− fn,L(p, r, 0) ≥ c1.

Fatou’s Lemma applied to the left term in Equation (3.8) gives min(r0, rc(p))− 1/2 ≤ ε,
and we can conclude that, for all p ∈ [p0, pc),

0 ≤ rc(p)− 1/2 ≤ ε,

since r0 > ε+ 1/2.
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3.1 Proof of Proposition 3.1

In this section, we study the DaC-percolation under the measure PBn
p,r,1. In this setting the

diagonal configuration is deterministic, all the diagonal edges in D+(Bn) are added, but
none outside Bn. In order to prove Proposition 3.1, we will need two lemmas. In the first
one, we use a standard self-duality argument to show that the square Bn is crossed by a
black G-path with probability equal to 1/2 when r = 1/2. In the second one, we consider
the larger square Bn+4L, and we show that a black G-path from left to right in Bn can be
“extended” into a a black G-path from left to right in Bn+4L by paying a price of order
νp[C4L]

2.

Lemma 3.3. For all 0 ≤ p ≤ 1 and r ≥ 1/2, we have

fn,0(p, r, 1) ≥ 1/2.

Proof. First, recall that there exists a black G-path from left to right in Bn if and only
if there is no white G∗-path from top to bottom. (This follows from Proposition 2.2
in [Kes82], which relies on Jordan curve theorem.) Here all the diagonal edges ofD+(Bn)

are added and the notions of G-path and G∗-path coincide within the box Bn. In particu-
lar, the probability that there exists a white G∗-path from top to bottom in Bn is given by
fn,0(p, 1− r, 1), and the topological observation recalled above implies the identity

fn,0(p, 1− r, 1) + fn,0(p, r, 1) = 1.

When r ≥ 1/2, we have by monotonicity fn,0(p, r, 1) ≥ fn,0(p, 1 − r, 1), and we finally
obtain

fn,0(p, r, 1) ≥ 1
2

.

Lemma 3.4. Let 0 ≤ p ≤ 1 and r ≥ 1/2. For all n > 4L, we have

fn,L(p, r, 1) ≥ fn,0(p, r, 1)
(

1
4
νp[C4L]

)2

.

Proof. In this proof, p, r, n, and L are fixed, and we simply write P for the probability
measure Pn

p,r,1. We consider the square S = (−2L, 2L) + Bn+2L and the half plane H =

[−n,+∞)× R. We will show that

P [H(S)] ≥ 1
2

r2νp[C4L]P [H(Bn)] , (3.9)

and
P [H(Bn+4L)] ≥

1
2

r2νp[C4L]P [H(S)] . (3.10)

Combining the two inequalities above provides the desired result. We will only prove
Equation (3.9), Equation (3.10) can be obtained in the same way.
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We will now apply a “lowest-crossing” argument, similar to the one used in Bernoulli
percolation (see [Rus81]). The main difficulty comes from the dependencies in the color-
ing, and we will have to condition on the lowest “sequence” of black bond-clusters, as
in the proof of theorem 3.2 in [BCM09]. Let G be the set of all G-path from left to right
in Bn, and let γ ∈ G be one such path. We consider the sequence of H-bond-clusters
(C0, C1, . . . , Ck) visited by γ, ordered by the time of visit, meaning that C0 is the first
visited, then C1, and so on...Notice that C0 must intersect the boundary of H, and that
sequence depends only on the configuration in H (since we only looked at the H-bond-
clusters). We say that γ is an almost-crossing of R if C1, . . . Ck are colored black, and none
of them intersects the left side of H.

For every γ ∈ G, let J(γ) be the set of points in S below γ, formally defined as the set
of z such that any path in S from z to the top of S must contain at least one point of γ. In
particular, we have γ ⊂ J(γ). We also define J(γ) as the union of all the H-bond-clusters
intersecting J(γ).

When an almost-crossing exists, we can consider the lowest one Γ defined by

• Γ is an almost-crossing of S,

• for every almost-crossing γ′ of S, we have J(Γ) ⊂ J(γ′).

(The existence of Γ can be proved rigorously, using the Jordan curve theorem, as in Propo-
sition 2.3 of [Kes82].)

Consider the event E that there exists an almost-crossing in Bn. On this event Γ is well
defined and we have

P
[
E
]
≥ P [H(Bn)] , and

P
[
H(S)

]
≥ E

[
1EP

[
H(S)

∣∣ E , Γ , J(Γ)
]]

In order to conclude the proof, we only need to show that

P
[
H(S)

∣∣ E , Γ , J(Γ)
]
≥ r2νp[C4L] (3.11)

holds almost surely. The proof of Equation (3.11) relies on the observation that Γ is mea-
surable with respect to the bond configuration in J(Γ), and the coloring of the clusters in
J(Γ) that do not intersect the boundary of H. This allows us to build a configuration in E
by the following two-step exploration.

1. Find the lowest almost-crossing Γ of Bn by exploring the bond configuration in J(Γ),
and then color the bond-clusters in J(Γ) that do not intersect the boundary of H.

2. Explore the the remaining bond configuration, and then color the bond-clusters that
have not been colored in the first step.

Observe that, in the second step, we find a black G-path from left to right in S if the
following holds.
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J(Γ)

n 4L

H

C0
z0

Figure 3.4: An event ensuring the existence of a bond-cluster C from the left side of S
to J(Γ). The H-bond-cluster in grey is the first one visited by Γ and is uncolored after
the first step of exploration

(i) there exists a bond-cluster C, included in the unexplored region R2 \ J(Γ) intersect-
ing the left side of S, and such that the distance between J(Γ) and C is exactly one;

(ii) both C and the first bond-cluster visited by Γ are colored black.

The cluster C exists with probability larger than νp[C4L]. To see this, one can define z0 to
be the high point of the left side of Bn lying in J(Γ), and consider the event illustrated on
Fig. 3.4 that there exists two dual paths and one primal path from the left side of S to J(Γ)
in the annulus z0 + A4L,8L. We find that, independently of Γ , J(Γ), ((i)) and ((ii)) occur in
the second step with probability larger than

r2νp[C4L],

which proves equation (3.11).

Proposition 3.1 easily follows from the two lemmas above. First consider c0 and p0

such that equation (3.2) page 64 holds. By Lemma 3.4, we obtain for all L ≥ 1, p0 ≤ p ≤
pc,

fn,L(p, r, 1) ≥ fn,0(p, r, 1) (c0/4)2 .
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Using Lemma 3.3, we finally obtain the statement of Proposition 3.1 with c1 = c2
0/32.

3.2 Proof of Proposition 3.2

Let us consider the following covering of Bn by “mesoscopic boxes” of size L:

Bn ⊂
⋃

z∈2LZ2∩Bn

z + BL.

In in the derivation formula (3.4) we decompose the sum with respect to the covering
above.

∂

∂
fn,L(p, r, s) = ∑

z∈2LZ2∩Bn

∑
e∈D+(z+BL)

Pn
p,r,s [e is pivotal]

We say that a subset S of Bn+4L is pivotal if coloring black all the vertices in S implies
thatH(Bn+4L) occurs, and coloring all them white implies thatH(Bn+4L) does not occur.
It is almost-pivotal if there exist four disjoint Sc-bond-clusters Ci with d(Ci, S) = 1, 1 ≤
i ≤ 4, and such that coloring them respectively black, white, black and white implies that
S is pivotal.

When a diagonal edge e = {v, v+(1, 1)} in z+ Bn is pivotal, the following two events
occur.

• There exist four B2L-bond-clusters C1, C2, C3 and C4 intersecting ∂B2L, and four
paths in B2L that come respectively at distance 1 from C1, C2, C3 and C4, without
using any vertex in a bond-cluster intersecting z + ∂B2L:

– a black G-path from v,

– a white G∗-path from v + (0, 1),

– a black G-path from v + (1, 1),

– a white G∗-path from v + (1, 0).

• z + B2L is almost-pivotal.

We write Ã4(e, z + ∂B2L) the first event. One can verify that the two events above are
independent.

• Ã4(e, z + ∂B2L) is measurable with respect to the bond percolation configuration
in the box z + B2L, and the coloring of the bond-cluster in z + B2L which do not
intersect the boundary z + ∂B2L.

• the event that z + B2L is almost-pivotal is measurable with respect to the bond per-
colation configuration outside z + B2L, and the coloring of the clusters that do not
intersect z + B2L.
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z

n + 4L

2L

2L

e

Figure 3.5: Left: the event “z+ B2L is almost pivotal”. Right: the event Ã4(e, z+ ∂B2L).
Black G-paths are represented by black dots, and white G∗-paths by white dots

Using this independence property we find

∑
e∈D+(z+BL)

Pn
p,r,s [e is pivotal]

≤ ∑
e∈D+(z+BL)

Pn
p,r,s
[
Ã4(e, z + ∂B2L)

]
︸ ︷︷ ︸

(?)

Pn
p,r,s [z + B2L almost-pivotal]

We want to bound the quantity (?) independently of z. For D ⊂ D+(B2L), we write
ED the event that the set of added edges in the box B2L is D. Let us define

hL(p, r) = max
D⊂D+(B2L)

(
∑

e∈D+(BL)

Pp,r,1/2
[
Ã4(e, ∂B2L)|ED

])
. (3.12)

one can easily verify that (?) ≤ hL(p, r), and we obtain for all z ∈ 2LZ2 ∩ Bn,

∑
e∈D+(z+BL)

Pn
p,r,s [e is pivotal] ≤ hL(p, r)Pn

p,r,s [z + B2L almost-pivotal] .

Summing over all z, we find

∂

∂s
fn,L(p, r, s) ≤ hL(p, r) ∑

z∈2LZ2∩Λn

Pn
p,r,s [z + B2L almost pivotal] . (3.13)

In order to obtain the differential inequality of Proposition 3.2, we need to compare
the sum above to the derivative in r of fn,L(p, r, s). For z ∈ Z2, let us define the event that
there exists a bond-cluster included in the annulus z + A2L,4L and containing an open
bond-circuit with B2L in its interior. (This event occurs with probability νp[C2L] by trans-
lation invariance.) Assume that such a bond-cluster C exists. We can explore C from the
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inside, leaving unexplored all the configuration in the unbounded connected component
of Cc. Then explore all the bond-configuration and all the colors of the clusters that do
not touch C. Since C surrounds z + B2L, we find in this second step that C is almost-
pivotal with probability larger than Pn

p,r,s [z + B2L almost-pivotal]. Finally we explore the
colors of the bound-clusters touching C. When C is almost-pivotal, we know that there
exists at least 4 of these “touching” clusters that make C pivotal when they are colored
black/white/black/white. Thus, in this last step of exploration, C is made pivotal with
probability larger than r2(1− r)2. We finally obtain

νp[C2L]Pn
p,r,s [z +Λ2L almost pivotal] r2(1− r)2 ≤ Pn

p,r,s
[
Opiv(z, L)

]
. (3.14)

whereOpiv(z, L) is the event that there exists a pivotal bond-cluster included in B4L \ B2L

and surrounding ΛL.

Let z, z′ be two different points in 2LZ2 ∩ Bn, and assume that both Opiv(z, L) and
Opiv(z′, L) occur. Then any pair of bond-clusters witnessing these two events are neces-
sarily disjoint. This observation provides the following inequality,

∑
z∈2LZ2∩Λn

Pn
p,r,s
[
Opiv(z, L)

]
≤ ∂

∂r
fn,L(p, r, s),

Together with equation (3.13) and (3.14), it finally gives

∂

∂s
fn,L(p, r, s) ≤ gL(p, r)

∂

∂r
fn,L(p, r, s),

where

gL(p, r) =
1

r2(1− r)2νp[C2L]
hn,L(p, r).

It remains to verify that gL verifies points 1 and 2 of Proposition 3.2. Point 1 is easy
since all the events considered are cylindrical, and their probabilities are thus polynomial
functions of (p, r). Point 2 is the hard part of the Proposition, it follows directly from
Lemma 3.5 below, that we will show in the next section.

Lemma 3.5. There exist some absolute constants c3, C3 > 0 such that, for all r ≥ 1/2, and all
L ≥ 2

hL(pc, r) ≤ C3
1

(1− r)2 L−c3(1−r).

4 Behavior at p = pc

This section present a proof of Lemma 3.5 and is rather independent of the rest of the
chapter. We focus here on the particular behavior at the point p = pc.
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4.1 Additional definitions

Through the entire section, we fix L ≥ 1 and consider the DaC-percolation in the box B2L,
as defined below. The bond percolation parameter is p = pc. We also fix the density of
black clusters 1/2 ≤ r < 1, and a diagonal configuration D ∈ D+(B2L). The absolute
constants appearing in the proofs will not depend on the choice of the parameters above.

DaC-percolation in a subset of the plane. We introduce here a DaC-measure in a finite
subset S ⊂ B2L. It is defined similarly to the full-plane measure of section 1, except that
we color the S-bond-clusters in the second step of construction, and take the diagonal
configuration to be deterministic in the third step. For completeness, we provide below
the 3-step procedure building this new measure. We consider the probability space ΩS =

{0, 1}E(S) × {0, 1}S∩Z2 × {0, 1}D+(S), and the terminology introduced at the beginning of
this chapter for Ω (open edge, bond-cluster, black vertex, G-path...) can be adapted in a
natural way. Note that, as before, the bond-clusters are defined using only the open edges
of Z2. We construct a random configuration in ΩS, by the following 3 step procedure.

Step 1: Bernoulli bond percolation. Declare independently each edge ofE2(S) open with
probability p = pc and closed otherwise.

Step 2: Bernoulli site percolation on the set of S-bond-clusters. Examine independently each
S-bond-cluster obtained after the first step, and assign the same color to all its ver-
tices. The chosen color is black with probability r and white otherwise.

Step 3: Add deterministically all the diagonal edges in D.

The law of the random configuration obtained after the three steps above is denoted by
QS. When the measure is constructed from the set S = B2L, we simply write Q instead of
QB2L .

Arms. The arm events appear naturally the study of the geometric properties in stan-
dard Bernoulli percolation : informally speaking, one open arm corresponds to a point
being on a large cluster, four arm correspond to a point at the interface of two large open
clusters,... In Bernoulli percolation, there are two types of arms considered, the open
arms and the closed arms. In DaC-percolation, the picture is richer and we introduce
four types of arms. We call:

• primal arm a self-avoiding primal-path in B2L from a vertex v ∈ BL to a vertex
w ∈ ∂B2L, with no edge in ∂B2L (meaning that w is the end-vertex of the path and is
the unique visited vertex of ∂B2L). When all its edges are open we call it a primal-
open arm.

• dual arm a self-avoiding dual-path in B2L+1/2 from a dual vertex v? ∈ BL to a self-
avoiding dual vertex w? ∈ ∂B2L+1/2, with no dual edge in ∂B2L+1/2. When all its
edges are open we call it a dual-open arm.
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• black arm a self-avoiding black G-path in B2L from a vertex v ∈ BL to a vertex
w ∈ ∂B2L, with no edge in ∂B2L.

• white arm a white G∗-path in B2L from a vertex v ∈ BL to a vertex w ∈ ∂B2L, with
no edge in ∂B2L.

As for the paths, the arms can be seen as piecewise linear continuous paths in the plane.
This is the point of view used when we say that an arm lies in a planar subset S.

The four-arm event. Let e = {v, v + (1, 1)} ∈ D+(BL), we define the event A4(e) that
there exist

• two black arms starting respectively from v and v + (1, 1);

• two white arms starting respectively from v + (1, 0) and v + (0, 1).

Notice that these four arms are necessarily disjoint, and they must be separated by four
dual-open arms, as illustrated on Fig. 3.6.

The mixed-arm event. Let e = {v, v + (1, 1)} ∈ D+(BL), we define the event Amixed(e)
that the following holds.

• The bond-cluster C of v + (1, 1) contains a primal-open arm (which means that C
intersect the boundary B2L).

• In the region B2L \ C, there exist a black arm starting from v, and a white arm start-
ing from v + (1, 0).

As for the four-arm event, the three arms appearing in the definition above must be
disjoint and separated by three dual-open arms, as illustrated on Fig. 3.7.

e

2L

Figure 3.6: The event A4(e)

e

Figure 3.7: The event Amixed(e)

The black arms are represented by black dots, white arms by white dots, primal-open
arms by solid lines, dual-open arms by dotted lines
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4.2 Proof of Lemma 3.5

What do we need to prove? We introduced quite a lot of notation, let us restate the con-
tent of Lemma 3.5 in this new framework. We want to find two absolute constants c3, C3

such that hL(pc, r) ≤ C3L−c3(1−r). By definition (see Equation (3.12)), this is equivalent to
proving that

∑
e∈D+(BL)

Ppc ,r,1/2
[
Ã4(e, ∂B2L)|ED

]
≤ C3

1
(1− r)2 L−c3(1−r),

independently of the choice of r ≥ 1/2, L ≥ 2, and D ⊂ D+(B2L) at the beginning of the
section.

Let e be a diagonal edge in BL. The event Ã4(e, ∂B2L) can be seen as an event on the
probability space ΩB2L , and when it holds, there exist four B2L-bond-clusters intersecting
the boundary ∂B2L such that coloring them black/white/black/white makes the event
A4(e) occur. Thus, we have for every e ∈ D+(BL),

Ppc ,r,s[Ã4(e, ∂B2L)|ED]r2(1− r)2 ≤ Q[A4(e)]. (3.15)

By equation (3.15) above, in order to prove Lemma 3.5, we only need to find two
absolute constants c3, C3 > 0 such that

∑
e∈D+(BL)

Q [A4(e)] ≤ C3L−c3(1−r). (3.16)

We prove the above in two steps. First, we show that

Q [A4(e)] ≤ L−c3(1−r)Q [Amixed(e)] , (3.17)

for every diagonal edge e ⊂ B2L. Equation (3.17) is proved below by conditioning on the
lowest black and white arms, and using a technical “swapping” Lemma.

Then, we use a RSW-argument to show that the number of diagonal edges e ⊂ BL

such that Amixed(e) holds has a bounded expectation:

∑
e∈D+(BL)

Q [Amixed(e)] ≤ C3, (3.18)

which, together with equation (3.17), implies (3.16).

Proof of (3.17). Let us fix a diagonal edge e = {v, v + (1, 1)} ⊂ BL, write v? = v +

(1/2, 1/2) (v? is a dual vertex). We call admissible, a pair (γ`,γr) of two (deterministic)
dual arms, from v?, such that γ` and γr use disjoint sets of vertices, and start respectively
from the dual edges {v?, v? − (1, 0)} and {v?, v? + (1, 0)}. Let J0 be the region (strictly)
above these two paths in B2L+1/2, formally defined as the connected component of v +

(1, 1) in B2L \ (γ` ∪ γr). (Here, the connected component is defined with respect to the
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plane topology, and the paths γ` and γr are seen as piecewise linear Jordan arc obtained
by joining their vertices by segment of length 1). Finally, we define

J(γ`,γr) := J0 ∪
(

Z2
dual ∩γ`

)
∪
(

Z2
dual ∩γr

)
, and

I(γ`,γr) := B2L \ J0.

γ`

γr

J(γ`, γr)

I(γ`, γr)

v?

Figure 3.8: An admissible pair
(γ`,γr) and the regions I(γ`,γr),
J(γ`,γr)

e

Γ`

Γr

Figure 3.9: Definition of (Γ`, Γr)

Examine a DaC-configuration in B2L. Consider the event that there exists an admissi-
ble pair (γ`,γr) such that

(i) γ` and γr are both dual-open;

(ii) in the region I(γ`,γr), there exist a black arm from v and a white arm from v+(0, 1).

On this event we can define (Γ`, Γr) to be the unique1 admissible pair such that I(Γ`, Γr)

is minimal (for the inclusion ordering) among the admissible pairs satisfying ((i)) and
((ii)) above. An alternative and more natural way to define (Γ`, Γr) would be to define an
exploration process in order to find the “interface” between the black arm starting from
v and the white arm starting from v + (1, 0). In order to find this interface, we need to
explore the sequence of black bond-clusters containing the black part of the interface, and
the sequence of white bond-clusters containing the white part of the interface. The paths
Γ` and Γr are then obtained by considering the left and right boundaries of the explored
region.

Given an admissible pair (γ`,γr), the event {(Γ`, Γr) = (γ`,γr)} is measurable with re-
spect to the configuration in I(γ`,γr), and is independent of the configuration in J(γ`,γr).

1 Similarly to the proof of the the existence of a lowest square crossing in Bernoulli percolation, the proof
of the existence of (Γ` , Γr) is not obvious and would involve planar topology arguments.
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v?

γr

γ`

Figure 3.10: The event Aw,b(γ`,γr)

v?

γr

γ`

Figure 3.11: The event A1(γ`,γr)

By conditioning on (Γ`, Γr), one can compute the probability of the two event A4(e) and
Amixed(e) as follows. DefineAw,b(γ`,γr) to be the event that there exist a white arm from
v + (0, 1), and a black arm from v + (1, 1), both lying in the region J(γ`,γr). We have

Q [A4(e)] = ∑
γ` ,γr

QJ(γ` ,γr) [Aw,b(γ`,γr)]Q [(Γ`, Γr) = (γ`,γr)] ,

where the sum is taken over all the admissible pairs (γ`,γr). Similarly define the event
A1(γ`,γr) that there exists a primal-open arm in J(γ`,γr) from v + (1, 1). We can com-
pute the probability of Amixed(e) with the same conditioning:

Q [Amixed(e)] = ∑
γ` ,γr

˚ pc [A1(γ`,γr)]Q [(Γ`, Γr) = (γ`,γr)] ,

Equation (3.17) will follows from the two decompositions above and the following Lemma,
the rigorous proof of which is postponed to section 4.3.

Lemma 4.1 (Dual to primal swapping). There exists an absolute constant c3 > 0 such that
the following holds. For every admissible pair (γ`,γr),

QJ(γ` ,γr) [Aw,b(γ`,γr)] ≤ L−c3(1−r) ˚ pc [A1(γ`,γr)]. (3.19)

The proof of the lemma above relies on the following heuristic reasoning. When
Aw,b(γ`,γr) occurs, the black and white arms cannot cross, and they must lie on two
disjoint sequences of bond-clusters. In particular, in the underlying bond percolation
configuration, there must exist a dual-open path γ from v? to ∂B2L, that separates these
two black/white paths. We will be able to “swap” this dual-open arm into a primal-open
arm, showing that γ exists with a probability comparable Q [A1(R)]. Knowing that such
γ exists, one can then use a “conditioning on the left-most path” argument, leaving an
unexplored region where there must exist a black path. In this unexplored region, using
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a RSW-argument one can easily find ' log L bond-clusters that must be colored black.
This shows that the black path exists with probability smaller than ' rc′ log L.

Proof of (3.18). For every e = {v, v + (1, 1)} in BL such that Amixed(e) holds, we write
Ce the B2L-bond-cluster containing the primal-open arm starting from v+ (1, 1), and con-
sider a dual-open arm γe starting from v? := v + (1/2, 1/2) and lying between the black
arm starting from v, and the white arm starting from v + (1, 0). If we fix a B2L-bond-
cluster C crossing the annulus AL,2L, we can consider the set of edges e such thatAmixed(e)
holds and Ce = C. One can verify that the set of dual-open paths γe corresponding to
these edges are all disjoint (see Fig. 3.7).

e

C

fγe

γf

L

Figure 3.12: The events Amixed(e) and Amixed( f ) realized with Ce = C f = C. It
implies two disjoint dual-open arms crossing the annulus AL,2L.

Writing N∗ the maximal number of disjoint dual-open paths crossing the annulus
AL,2L, and Nclust the number of disjoint bond-clusters crossing the annulus AL,2L, we
obtain

∑
e∈BL

Q [Amixed(e, ∂B2L)] ≤ νpc [NclustN∗]

≤ 1
2
νpc [N

2
clust] +

1
2
νpc [N

2
∗ ].

A RSW-argument and the BK inequality show that bothνpc [N2
clust] andνpc [N2

∗ ] are smaller
than some absolute constant 0 < C3 < ∞.

4.3 The swapping Lemma

In this section, we prove Lemma 4.1. We fix a diagonal edge e = {v, v + (1, 1)} in BL

and an admissible pair (γ`,γr) of dual arms. Let γt be a dual-open arm from v? :=
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v + (1/2, 1/2) in J(γ`,γr). We say that a dual vertex z is bad (for γt) if

• z− (1, 0), z, z− (0, 1) lie in γt;

• z + (1, 0), z, z + (0, 1) lie in γ` ∪γr.

Write τ the translation by vector (1/2, 1/2), and τγt the self-avoiding primal-path ob-
tained by translating γt by vector (1/2, 1/2). The only vertices of γt mapped outside
J(γ`,γr) are the end-vertices of γt and the the bad vertices defined above, and we have
following straightforward property.

Lemma 4.2. Let γt be a dual arm from v? in J(γ`,γr). If γt has no bad vertex, then the primal
path τγt contains a primal-arm from v + (1, 1) in J(γ`,γr).

Assume that Aw,b(γ`,γr) holds and consider a dual-open arm γt from v?, between
the white arm and the black arm. Since the black arm does not use any diagonal edges
of the type {w, w + (1,−1)}, the path γt cannot have any bad vertex on γr. Contrarily to
the black arm, the white arm does not guarantee that there is no bad vertex on γ`, and a
“surgery” step will be needed.

Organization of the proof. We drop the dependence in J(γ`,γr) in the two events ap-
pearing in equation (3.19), and we write simply A1 and Aw,b instead of Aw,b(J(γ`,γr))

and A1(J(γ`,γr)). We define two other arm events. Let Aw be the event that there exists

• a dual-open arm γt in J(γ`,γr) from v? with no bad vertex on γr,

• a white arm from v+ (0, 1) in the region J(γ`,γt) delimited by the two paths γ` and
γt.

Let A0 to be the bond percolation event that there exists a dual-open arm in J(γ`,γr)

from v? without bad vertex. The proof of Lemma 4.1 is divided in 3 steps. First, we use a
conditioning on the left-most dual arm, and define an absolute constant c > 0 such that
the following inequality holds.

QJ(γ` ,γr) [Aw,b] ≤ L−c(1−r)QJ(γ` ,γr) [Aw] . (I1)

The second step is the most technical part of the proof. We perform a “surgery” on a
dual-path in J(γ`,γr) in order to prove the following inequality

QJ(γ` ,γr) [Aw] ≤ ˚ pc [A0]. (I2)

Finally, we apply Lemma 4.2 above to show that

˚ pc [A0] ≤ ˚ pc [A1]. (I3)

We conclude the proof of Lemma 4.1 by combining the three inequalities (I1)(I2) and (I3).

Proof of (I1): using the price of the black coloring. When Aw holds, we define Γt to be
the left-most dual-open arm in J(γ`,γr) such that there exists on its left, a white
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arm from v + (0, 1). The arm Γt can be seen as the right boundary of the left-most
sequence of clusters containing a white arm from v + (0, 1).

For a fixed dual path γt, the event {Γt = γt} is measurable with respect to the con-
figuration on its left γt ∪ J(γ`,γt), and the configuration on its right is independent
of it. LetAb(γt) be the event that there exists a black arm in J(γt,γr) from v+(1, 1).
Conditioning on Γt, we find

QJ(γ` ,γr) [Aw,b] = ∑
γt

QJ(γt ,γr) [Ab(γt)]QJ(γ` ,γr) [Γt = γt] . (3.20)

Assume for a moment that one can find an absolute constant c3 > 0, such that, for
all γt,

QJ(γt ,γr) [Ab(γt)] ≤ L−c3(1−r). (3.21)

Together with equation (3.20), it gives

Q [Aw,b] ≤ L−c3(1−r)
∑
γt

Q [Γt = γt] .

The sum on the right is exactly the probability of Aw, and we obtain the desired
inequality (I1). It remains to show equation (3.21). Let us fix a possible value γt

for the random arm Γt. Let Bi be the bond percolation event that there exist in
A(2i, 2i+1) ∩ J(γt,γr) two dual-open paths paths that comes at distance 1/2 from
both γt and γr, and one primal-open lying between those two paths (see Fig. 3.13).
The event Bi occurs with probability larger than ˚ pc [C2i ] and, by Equation (3.2), we
obtain

˚ pc [Bi] > c0.

(The constant c0 does not depend on any parameter.)

For each i such that Bi occurs, there is one “blocking” J(γt,γ`)-bond-cluster in the
region A(2i, 2i+1) ∩ J(γt,γr) that must be colored black. By independence, we ob-
tain

QJ(γt ,γr) [Ab] ≤ ∏
i≤log2 L

Epc

[
r1Bi

]
≤ (c0r + 1− c0)

log2 L

≤ L−c3(1−r).

Proof of (I2): surgery on the dual path. Let us begin with some definitions. Since γ` is
self-avoiding, any dual vertex z on γ` that is not an end has exactly two adjacent
edges that lie on γ`. When these two adjacent edges are {z, z + (0, 1)} and {z, z +
(1, 0)}, we call the dual vertex z exposed, and the set z − [0, 1]2 an exposed box.
Let η a bond percolation realization in J(γ`,γr), define η1 to be the configuration
restricted to the edges in J(γ`,γr) that do not intersect any exposed box, and η2 the
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v?

γr

γt

2i

2i+1

Figure 3.13: The event Bi. It implies the existence of a J(γt,γ`)-bond-cluster in the
annulus A(2i, 2i+1), from γt to γ`.

configuration restricted to the edges intersecting the exposed boxes. Let E be the
bond percolation event defined by all configurations η such that the configuration
(η1, 0) is in the event A0. (The configuration (η1, 0) is obtained from η by closing
all the primal-edges intersecting exposed boxes, which corresponds to opening all
the dual edges intersecting the exposed boxes.)

Computation of ˚ pc [A0]. Assume that A0 occurs.

• First, examine the configuration η1. In the configuration (η1, 0), there
must exist a dual-open arm from v? lying in the region J(γ`,γr). One
can consider the right-most such arm Γ0. Define then Z1 as the set of
exposed points z1 such that the two dual edges {z1 − (1, 0), z1 − (1, 1)}
and {z1 − (1, 1), z1 − (0, 1)} lie on Γ0, and Z2 the set of exposed points z2

such that exactly one of the two dual edges {z2 − (1, 0), z2 − (1, 1)} and
{z2 − (1, 1), z2 − (0, 1)} lies on Γ0 (see Fig. 3.15).

• Then, examine the configuration η2. For each z1 ∈ Z1, the two dual edges
{z1 − (1, 1), z1 − (1, 0)} and {z1 − (1, 1), z1 − (0, 1)} must be dual-open,
otherwise the dual-open arm cannot exist or the point z would be a bad
point. In the same way, for each z2 ∈ Z2, the unique dual edge of z− [0, 1]2

visited by Γ0 in the first step must be dual-open.

The probability that the first step occurs with |Z1| = k1 and |Z2| = k2 is equal
to ˚ pc [E , |Z1| = k1, |Z2| = k2]. In this case, the second step occurs with prob-
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v?

γ`

γr

Figure 3.14: The set of exposed points (represented by black squared dots) and their
associated exposed boxes (grey squares).

γ`

z1 ∈ Z1

Γ0

γ`

z2 ∈ Z2

Γ0

Figure 3.15: Exposed boxes visited by the path Γ0. On the left, the two dual-edges
{z1− (1, 0), z1− (1, 1)} and {z1− (1, 1), z1− (0, 1) are visited. On the right, only one
is visited
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ability (1/4)k1(1/2)k2 , and we obtain

˚ pc [A0] = ∑
k≥0

(
1
4

)k1
(

1
2

)k2

˚ pc [E , |Z1| = k1, |Z2| = k2]

= ˚ pc

[
1E

(
1
4

)|Z1| (1
2

)|Z2|
]

(3.22)

v?

γ`

γr

Figure 3.16: The dotted line represent the right most dual open arm, the arrows point
toward the elements in the set Z.

Computation of Q [Aw] Assume that Aw occurs.

• First, examine the configuration η1. In the configuration (η1, 0), there
must exist a dual-open arm from v? in the region J(γ`,γr). As above,
we can define Z1 as the set of exposed points z1 such that the edges {z1 −
(1, 0), z1 − (1, 1)} and {z1 − (1, 1), z1 − (0, 1)} are visited by the right-
most dual-open arm Γ0 from v?, and Z2 the set of exposed points z2 such
that exactly one of the two dual edges {z2 − (1, 0), z2 − (1, 1)} and {z2 −
(1, 1), z2 − (0, 1)} is visited by Γ0.
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• Then, examine the configuration η2.

– For each z1 ∈ Z1, the two dual vertices z1 − (1, 0) and z1− (0, 1) must
be connected by two dual-open edges in the box z1 − [0, 1]2. We say
that the connection is separating if in addition, at least one of the dual
edge adjacent to z1 is dual-open. Notice that, among the seven pos-
sible dual-configurations in the box z1 − [0, 1]2 that realize the dual
connection between z1 − (1, 0) and z1 − (0, 1), six are separating, and
one is not separating (see Fig. 3.17). Denote by Zs

1 the set of dual ver-
tices z1 ∈ Z1 where a separating connection holds.

– For each z2 ∈ Z2, the two end-vertices of the unique edge e in the
box z2 − [0, 1]2 visited by Γ0 must be connected by a dual path in the
box z2 − [0, 1]2. We say that the connection is separating if in addi-
tion, one end-vertex of e is connected to z2 by an open path in the box
z2 − [0, 1]2. Notice that, among the nine possible dual-configurations
in the box z2 − [0, 1]2 that realize a dual connection between the two
end-vertices of e, six are separating, and three are not separating (see
Fig. 3.18). Denote by Zs

2 the set of dual vertices z1 ∈ Z2 where a sepa-
rating connection holds.

• Finally, examine the coloring configuration ξ . Consider the right most
dual-open arm Γ in the whole bond configuration η = (η1, η2). In the
region J(γ`, Γ), there must exist a white arm.

γ`

z1 ∈ Z1

The six separating configurations:

The non-separating configuration:

Figure 3.17: The seven possible configurations in the box z1− [0, 1]2, z1 ∈ Z1, realizing
the connexion between z1 − (1, 0) and z1 − (0, 1): six are separating, one is not.

As before, the probability that the first step occurs with |Z1| = k1 is ˚ pc [E , |Z1| = k1, |Z2| = k2].
The probability that the second step occurs with |Zs

1| = l1, and |Zs
2| = l2 is

given by (
k1

l1

)(
6

16

)l1
(

1
16

)k1−l1

·
(

k2

l2

)(
6

16

)l2
(

3
16

)k2−l2

.

Finally, the third step occurs with probability smaller than

(1− r)|Z
s
1|+|Zs

2|.

To see this, one can associate to each z ∈ Zs
1 ∪ Zs

2 a J(γ`, Γ)-bond-cluster Cz,
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γ`

z2 ∈ Z2

The six separating configurations:

The three non-separating configurations:

Figure 3.18: The nine possible configurations in the box z2 − [0, 1]2, z2 ∈ Z2 realizing
the connexion between the two extremity of the dual-edge e: six are separating, three
are not.

in such a way that the Cz’s are all disjoint. For a white arm to exist in the re-
gion J(γ`, Γ), all the Cz’s must be colored white, providing the estimate above.
Putting everything together, we finally obtain

QJ(γ` ,γr) [Aw]

≤ ∑
0≤l≤k

(1− r)l1+l2 ˚ pc [E , (|Z1|, |Z2|, |Zs
1|, |Zs

2|) = (k1, k2, l1, l2)]

= ∑
0≤l1≤k1
0≤l2≤k2

(1− r)l1+l2

(
k1

l1

) ( 6
16

)l1 ( 1
16

)k1−l1 ·
(

k2

l2

) ( 6
16

)l2 ( 3
16

)k2−l2

˚ pc [E , (|Z1|, |Z2|) = (k1, k2)]

= Epc

[
1E

(
1 + 6(1− r)

16

)|Z1| (3 + 6(1− r)
16

)|Z2|
]

(3.23)

Since r ≥ 1/2, we obtain inequality (I2) from the two computations (3.22) and (3.23)
above.

Computation of (I3): The shift argument. Let η ∈ {0, 1}E2
. We define the configuration

τη by
τη(e) := 1− η∗(τ−1e), e ∈ E2.

Otherwise saying, an edge e is open for τη if and only if the dual edge τ−1e is dual-
open for η.

Let X ∈ {0, 1}E be a random variable with law νpc . Since pc = 1/2, the law of the
random variable τX is also νpc . By Lemma 4.2, we have

P[X ∈ A0] ≤ P[τX ∈ A1],

which implies inequality (I3).
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4CROSSING PROBABILITIES FOR

VORONOI PERCOLATION

This chapter corresponds to the work in progress [VT4].

We prove that the standard Russo-Seymour-Welsh theory is valid for Voronoi perco-
lation. At criticality it implies that the crossing probabilities for a rectangle are bounded
by constants depending only on its aspect ratio. This result has many consequences, such
as the polynomial decay of the one-arm event at criticality.

Introduction

In the study of planar percolation, the Russo-Seymour-Welsh (RSW) theory has become
one of the most important tools. A RSW-result generally refers to an inequality providing
bounds on the probability to cross rectangles in the long direction, knowing bounds on
the probability to cross squares (or a rectangles in the easy direction). Heuristically, this
inequality is obtained by “gluing” together square-crossings in order to obtain a crossing
in a long rectangle.

Such results have been first obtained for Bernoulli percolation on a lattice with a sym-
metry assumption [Rus78], [SW78], [Rus81], [Kes82]. For continuum percolation in the
plane, a RSW-result is proved in [Roy90] for the open crossings, and in [Ale96] for the
closed crossings. A RSW-theory has been recently developed in for FK-percolation, see
e.g. [BDC12b, DCHN11] [VT5]. For Bernoulli percolation on a lattice without symmetry,
or for Voronoi percolation, some weaker version of the standard RSW has been proved
in [BR10] and [BR06a] respectively.

At criticality, RSW-results imply the following statement, called the box-crossing prop-
erty: the crossing probability for any rectangle remains bounded between c and 1 − c,
where c > 0 is a constant depending only the aspect ratio of the considered rectangle (in
particular it is independent of the scale). For the terminology, we follow [GM13] where
the box-crossing is established, for Bernoulli percolation on isoradial graphs.

For Bernoulli percolation, the original proof of the Russo-Seymour-Welsh theorem
uses an argument relying on the spatial Markov property of the model: knowing that a
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left-right crossing exists in a square, it is always possible to condition on the lowest one,
which leaves an unexplored region where the configuration can be sampled indepen-
dently of the explored region (below the lowest path). This argument cannot be applied
directly when the model has spatial dependencies. In this paper, we provide a new RSW-
argument without exploration, allowing to prove RSW-results for a larger class of models
than Bernoulli percolation. We present this argument for Voronoi percolation, since it is
a good example of a model with local dependencies where the “lowest path” argument
does not apply.

First introduced in the context of first passage percolation [VAW93], planar Voronoi
percolation has been an active area of research, see for example [BR06a, BS98, Aiz98,
BBQ05]. It can be defined by the following two-step procedure. (A more detailed defini-
tion will be given in section 1.) First, construct the Voronoi tiling associated to a Poisson
point process in R2 with intensity 1. Then, color independently each tile black with prob-
ability p and white with probability 1 − p. The self-duality of the model for p = 1/2
suggests that the critical value is pc = 1/2. This result was proved in [BR06a] and one of
the main difficulties they had to overcome was precisely that none of the known RSW-
results applied in this context. An important step of their proof was to obtain the fol-
lowing weaker version of the standard RSW-theorem. For ρ ≥ 1 and s ≥ 1, let fs(ρ) the
probability that there exists a left-right black crossing in the rectangle [0,ρs]× [0, s]. For
fixed 0 < p < 1, they proved that infs>0 fs(1) > 0 implies that lim sups→∞ fs(ρ) > 0 for
all ρ ≥ 1. Otherwise saying, a RSW-result has been obtained for arbitrarily large scale,
but not for all scales. This result was strengthened in [vdBBV08], relaxing the square
crossing condition to a rectangle crossing condition, but keeping the same conclusion.

Our main result is to prove a standard RSW for Voronoi percolation.

Theorem 0.3. Let 0 < p < 1 fixed. If infs≥1 fs(1) > 0, then for all ρ ≥ 1, infs≥1 fs(ρ) > 0.

At criticality (when p = 1/2), it is known that fs(1) = 1/2 for all s, and Theorem 0.3
above implies the following new results.

Theorem 0.4. Consider Voronoi percolation at p = 1/2. Then the following holds.

1. [Box crossing property] For all ρ > 0, there exists c(ρ) > 0 such that

c(ρ) < fs(ρ) < 1− c(ρ), for all s ≥ 1.

2. [Polynomial decay of the 1-arm event] Let π1(s, t) be the probability that there exists a
black path from [−s, s]2 to the boundary of [−t, t]2. There exists η > 0, such that, for every
1 ≤ s < t,

π(s, t) ≤
( s

t

)η
.

Our proof is not restricted to Voronoi percolation, and Theorem 0.3 extends to a large
class of planar percolation models. In order to help the reader interested in applying the
technique of the present paper in a different context, we isolate in the context of Voronoi
percolation, the sufficient properties that we use (see section 1 for the main definitions).
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1 Voronoi percolation

Positive association If A, B are two (black-)increasing events, P [A∩B] ≥ P [A] P [B].

Invariance properties The measure is invariant under translation, π/2-rotation and hor-
izontal reflection.

Quasi-independence We have

lim
s→∞ sup

A∈σ(A2s,4s)
B∈σ(R2\As,5s)

|P [A∩B]− P [A] P [B] | = 0,

where we write As,t = [−t, t]2 \ [−s, s]2, 0 ≤ s ≤ t < ∞, andσ(S) the sigma-algebra
defined by the events measurable with respect to the coloring in S, S ⊂ R2.

1 Voronoi percolation

1.1 Definitions and notation

General notation. The Lebesgue measure of a measurable set A ⊂ R2 is denoted by
vol(A). The cardinality of a set S is denoted by |S| (with |S| = +∞ if S is infinite). We
write d(u, v) the Euclidean distance between two points u, v ∈ R2. Finally, for 0 ≤ s ≤
t < ∞, we consider the square Bs = [−s, s]2 and the annulus As,t = Bt \ Bs.

Voronoi tilings. Let Ω be the set of all subsets ω of R2 such that the intersection of
ω with any bounded set is finite. Equip Ω with the sigma-algebra generated by the
functions ω 7→ |ω ∩ A|, A ⊂ R2. To each ω ∈ Ω corresponds a Voronoi tiling, defined
as follows. For every z ∈ ω, let Vz be the Voronoi cell of z, defined as the set of all points
v ∈ R2 such that d(v, z) ≤ d(v, z′) for all z′ ∈ ω. The family (Vz)z∈ω of all the cells forms
a tiling of the plane.

Voronoi percolation. Given a parameter p ∈ [0, 1], one defines the Voronoi percolation
process as follows. Let X be a Poisson point process in R2 with density 1, it is a random
variable in Ω characterized by the following two properties. For every measurable set A
(with finite measure), X ∩ A contains exactly k points with probability

vol(A)k

k!
exp(−vol(A)),

and the random variables |X ∩ A1|, . . . , |X ∩ An| are independent, when A1, . . . , An are
any disjoint measurable sets. Declare each point z ∈ X open with probability p, and
closed with probability 1− p, independently of each other and of the variable X. Define
then Xo and Xc to be respectively the set of open and closed points in X. Notice that we
could have equivalently defined Xo and Xc as two independent Poisson processes with
density p and 1− p, and then formed X = Xo ∪ Xc. Through this paper we write P the
measure defining the random variable (Xo, Xc) in the space Ω2. The definition of the
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model strongly depends on the value of p. Nevertheless, in all the proofs, the value of p
will be fixed, and we do not mention the dependence in the underlying p in our notation.

In Voronoi percolation, we consider the Voronoi tiling (Vz)z∈X associated to X, and we
are interested in the random coloring of the plane obtained by coloring black the points in
the cells to open points, and white the points in the cells corresponding to closed points.
Otherwise saying, the set of black points is the union of the cells Vz, z ∈ Xo, and the set of
white points is the union of the cells Vz, z ∈ Xc. points are de(The points at the boundary
between two cells of different colors are both black and white.)

Crossing events. In our study, events will be simpler to define in terms of the colors
of the points in R2. Let us introduce some notation that allows to do so. Given some
set U ⊂ R2, write EU for the event that all the points in U are black, one can verify
that it is measurable. For S ⊂ R2, we say that an event is S-measurable if it lies in the
sigma-algebra generated by the events (EU)U⊂S. For a fixed subset V of S, one can verify
that the event that all the points in V are white is S-measurable. Roughly, an event is
S-measurable if it is defined in terms of the colors in S.

Let A, B and S be three subsets of R2 such that A, B ⊂ S. We call black path from A
to B in S an injective continuous map γ : [0, 1] → S such that γ(0) ∈ A, γ(1) ∈ B, and
all the points in the Jordan arc γ([0, 1]) are black. For A, B and S, one can verify that the
existence of a path from A to B in S is an S-measurable event. (Up to some negligeable
set, it is equivalent to look only at γ obtained by connecting linearly a finite number of
rational points.) In the same way, we define a black circuit in the annulus As,t, s < t as a
Jordan curve included in As,t such that the origin 0 is in its interior, and all its point are
black. White paths and white circuits are defined analogously.

We write As the event that there exists a black circuit in the annulus As,2s, and fs(ρ)

the probability that there exists a black path from {0} × [0, s] to {ρs} × [0, s] in the rect-
angle [0,ρs]× [0, s], ρ > 0, s > 0.

1.2 External ingredients

Independence properties. One main difficulty in Voronoi percolation is the spatial de-
pendency between the colors of the points: given two fixed points in the plane, there is a
positive probability for them to lie on the same tile, thus (for 0 < p < 1) the probability
that they are both black is larger than p2. Nevertheless, the spatial dependencies are only
local and the color of a given point is determined with high probability by the process
restricted to a neighbourhood of it. More precisely, Lemma 3.2. in [BR06a] states that
the color of the points in the box Bs are determined with high probability by the process
(Xo, Xc) restricted to Bs+2

√
log s. In our approach, this property is stronger than what we

really need, and the following lemma is sufficient. Let Fs be the event that for every
z ∈ A2s,4s, there exists some point x ∈ X at distance d(z, x) < s.
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1 Voronoi percolation

Lemma 1.1. We have lims→∞ P [Fs] = 1 and, for any A2s,4s-measurable event E , the event
E ∩ Fs is measurable with respect to the restriction of (Xo, Xc) to As,5s.

Proof. Let us consider an absolute constant C > 0 such that, for every s ≥ 1, there exists a
covering of A2s,4s by C Euclidean balls of diameter s. Fix s ≥ 1 and a a covering of A2s,4s

by C Euclidean balls of diameter s. Consider the event that each of these balls contains at
least one point of the Poisson process X. Using that it is a sub-event of Fs, we obtain

P [Fs] ≥ 1− Ce−s2
.

For the second part of the lemma, observe that the color of a point in A2s,4s is determined
by the color of its closest point of the process X, the latter lies in As,5s when Fs holds.
Thus, for any U ⊂ A2s,4s, the event EU is measurable with respect to (Xo ∩ As,5s, Xc ∩
As,5s).

FKG inequality. The FKG inequality is an important tool allowing to “glue” black
paths. Its proof can be found in [BR10]. Before stating it, we need to define increas-
ing events in the context of Voronoi percolation. An event E is black-increasing if for any
configurationsω = (ωo,ωc) andω′ = (ω′o,ω′c), we have

ω ∈ E
ωo ⊂ω′o andωc ⊃ ω′c

}
⇒ ω′ ∈ E .

Theorem 1.2 (FKG inequality). Let E , F two black-increasing events, then

P [E ∩ F ] ≥ P [E ] P [F ] .

The following standard inequalities can be easily derived from Theorem 1.2.

Corollary 1.3. Let s ≥ 1.

1. fs(1 + iκ) ≥ fs(1 +κ)i fs(1)i−1 for any κ > 0 and any i ≥ 1,

2. P [As] ≥ fs(3)4,

3. fs(2) ≥ P [As]
2.

1.3 Organization of the proof

We fix 0 < p < 1 and assume that there exists a constant c0 > 0 such that, for all s ≥ 1,

fs(1) ≥ c0. (4.1)

Our goal is to prove that infs≥1 P [As] > 0. Rather than studying only the sequence
(P [As]), we introduce at each scale s a value αs ∈ [0, s/4] (defined at the beginning of
section 2) and study the couple (P [As] ,αs) altogether.
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• In section 2, a geometric construction valid only whenα3s/2 ≤ 2αs provides a RSW-
result at scale 3s/2. We will refer to such scale as a “good scale”.

• In section 3, we use the independence properties of the model to show that the good
scales are close to each other. More precisely, we construct an infinite sequence
s(1), s(2), . . . of good scales such that 2s(i) ≤ s(i + 1) ≤ Cs(i).

In the proof, many constants will be introduced, they will not depend on any parameter
of the model, and in particular they never depend on the scale parameter s. By conven-
tion, the constants will generally be denoted by c0, c1, c2, . . . or C0, C1, C2, . . . (depending
on whether they have to be thought small or large), and they are all assumed to be in
(0, ∞).

2 Gluing at good scales

Definition of αs. Let s ≥ 1, 0 ≤ α ≤ β ≤ s. Define Hs(α,β) to be the event that there
exists a black path in the square Bs/2, from the left side to {s/2} × [α,β]. Define also
Xs(α) to be the event that there exists in Bs/2

• a black path γ−1 from {−s/2} × [−s/2,−α] to {−s/2} × [α, s/2],

• a black path γ1 from {s/2} × [−s/2,−α] to {s/2} × [α, s/2],

• a black path from γ−1 to γ1.

α

s
Bs

The eventHs(0,α)

α

s
Bs

−s

−α

The event Xs(α)

Lemma-definition 2.1. For every s ≥ 1, there exists αs ∈ [0, s/4] such that the following
two properties hold.

(P1) For allα ≤ αs, P [Xs(α)] ≥ c1.

(P2) Ifαs < s/4, then for allα ≥ αs, P [Hs(0,α)] ≥ c0/4 + P [Hs(α, s/2)].
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2 Gluing at good scales

In the rest of the paper, we fix for every s ≥ 1 a real number αs ∈ [0, s/4] satisfying (P1)
and (P2) above.

Proof. Define forα ∈ [0, s]

φs(α) = P [Hs(0,α)]− P [Hs(α, s/2)] .

For fixed s, one can verify that φs is continuous increasing, and φs(0) ≤ 0. If φs(s/4) >
c0/4, we define αs as the unique α ∈ (0, s/4) such that φs(α) = c0/4. Otherwise, let
αs = s/4.

With this definition ofαs, the property (P2) is clearly verified, we need to show that it
also provides the property (P1). Let α ≤ αs, our hypothesis (4.1) and symmetries imply
that

c0 ≤ 2P [Hs(0, s/2)]

≤ 2P [Hs(0,α)] + 2P [Hs(α, s/2)]

≤ 4P [Hs(α, s/2)] + 2φs(α)

≤ 4P [Hs(α, s/2)] + c0/2.

We obtain, for everyα ≤ αs,
P [H(αs, s/2)] ≥ c0/8.

A sub-event ofXs(α) can be obtained by intersecting four symmetric versions ofHs(α, s/2)
with the event that there exists a top-down crossing in Bs/2. The FKG inequality implies
then

P [Xs(α)] ≥ c0(c0/8)4.

This concludes the first part of the lemma with c1 = c0(c0/8)4. The second part follows
from the definition ofαs.

Lemma 2.2. There exists c2 > 0 such that, for all s ≥ 2,

αs ≤ 2α2s/3 ⇒ P [As] ≥ c2.

Proof. We first treat the caseαs = s/4. By Lemma 2.1, we have P [Xs(s/4)] ≥ c1, and it is
easy to create a black crossing in a long rectangle. For example, consider for i = 0, . . . , 4
the event Ei that there exists a black path from {0} × [(i − 1)s/2, is/2] to {0} × [(i +
1)s/2, (i + 2)s/2] in the strip [0, s] × R. For every i, the event Ei has probability larger
than P [Xs(s/4)], and when all of them occur, it implies a vertical black crossing in the
rectangle [0, s]× [0, 2s]. We conclude using FKG inequality that

fs(2) ≥ c5
1.

Now, let s be such that αs ≤ 2α2s/3 and αs < s/4. We use the event X2s/3 to connect at
scale 2s/3 two crossings at scale s. Consider the two squares R = (−s/6,−α2s/3)+ Bs and
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R′ = (s/6,−α2s/3) + Bs. Notice that Bs/3 ⊂ R and Bs/3 ⊂ R′ since α2s/3 ≤ s/6. Let E be
the event that there exists a black path from left to {s/3} × [−α2s/3,α2s/3] in R. Similarly,
define E ′ as the event that there exists a black path from {−s/3} × [−α2s/3,α2s/3] to right
in R′. Since αs ≤ 2α2s/3, (P2) in Lemma 2.1 ensures that both event E and E ′ occur with
probabilities larger than c0/4.

When X2s/3, E and E ′ occur, a black path must exist from left to right in the rectangle
R ∪ R′ (see fig. 4.1). The rectangle R ∪ R′ has aspect ratio 4/3, and we can conclude by
FKG inequality that

fs(4/3) ≥ P
[
X2s/3 ∩ E ∩ E ′

]
≥ c1

( c0

4

)2
.

α2s/3

R R′B2s/3

Figure 4.1: The occurrence of X2s/3, E and E implies the existence of a horizontal
crossing in R ∪ R′.

3 All the scales are good

Lemma 3.1. There exists c3 > 0 such that the following holds. Consider a scale s ≥ 1 such that
P [As] ≥ c2. Then, for all t ≥ 3s withαt ≤ s, we have

P [At] ≥ c3.

Proof. Consider the event that there exist:

• a black path from left to {0} × [0, s] in the square [−2t, 0]× [−t, t],

• a black path from {0} × [0, s] to right in the square [−2t, 0]× [−t, t],

• and a black circuit in the annulus As,2s.
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Since αt ≤ s, Lemma 2.1 implies that each of the first two paths exists with probability
larger than c0/4. When the event depicted above occurs, it implies the existence of an
horizontal black crossing in the rectangle [−2t, 2t] × [−t, t]. Using the FKG inequality,
we obtain

ft(2) ≥
( c0

4

)2
c2.

The standard inequalities in Corollary 1.3 allow to conclude that

P [At] ≥ c3,

for some constant c3.

In order to apply a “circuit argument”, we define s0 such that P [Fs] ≥ 1− c3/2 for all
s ≥ s0. (The existence of s0 is guaranteed by Lemma 1.1.)

Lemma 3.2. Define a constant C1 ≥ 3 large enough, so that

(1− c3/2)log5(C1) < c0/2.

Let s ≥ s0 such that P [As] ≥ c2. Then there exists s′ ∈ [3s, C1s] withαs′ ≥ s.

Proof. Fix s ≥ s0. Assume for contradiction that

αt ≤ s for all 3s ≤ t ≤ C1s.

Consider for i = 1, 2, . . . the event Ei = F5is ∩ A5is. By Lemma 1.1, these events are
independent, and by lemma 3.1, the probability of Ei is larger than c3/2 for all i ≤ log5 C1.
SinceαC1s ≤ s, (P2) in Lemma 2.1 gives

c0/2 ≤ P [H(0, s) \ H(s, C1s)]

≤ P

 ⋂
i≤blog5(C1)c

E c
i


≤ (1− c3/2)log5 C1 ,

which contradicts the definition of C1.

Lemma 3.3. There exists a constant C3 ≥ 3 and an infinite sequence s1, s2 . . . of scales such
that, for all i ≥ 1

• 3si ≤ si+1 ≤ C3si,

• P [Asi ] > c2.

Proof. Since αs ≤ s, the sequence αs cannot grow super-linearly, and there must exist
s1 ≥ s0 such thatαs1 ≤ 2α2s1/3.

Since P [As1 ] > c2, Lemma 3.2 implies the existence of s′1 ∈ [3s1, C1s1] such that

αs′1
≥ s′1/C1.
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Then, there must exist s2 ∈ [s′1, C
log4/3(3/2)
1 s′1] such thatαs2 ≤ 2α2s2/3, otherwise the bound

αs ≤ s would be contradicted. Defining C3 = C
1+log4/3(3/2)
1 , we find from Lemma 2.2 that

s2 ∈ [3s1, C3s1], and

P [As2 ] ≥ c2.

The constant C3 is independent of the scale, we can thus iterate the construction above,
and find by induction s3, s4, . . . concluding the proof.

Theorem 1 follows easily from Lemma 3.3 and the standard inequalities of Corol-
lary 1.3.
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5
CONTINUITY OF THE PHASE

TRANSITION FOR PLANAR

POTTS MODELS WITH

1 ≤ q ≤ 4

This chapter corresponds to the article [VT5] in preparation with the same title, written in collab-
oration with Hugo Duminil-Copin and Vladas Sidoravicius.

This chapter studies the planar Potts model and its random-cluster representation.
We show that the phase transition of the nearest-neighbor ferromagnetic q-state Potts
model on Z2 is continuous for q ∈ {2, 3, 4}, in the sense that there exists a unique Gibbs
state, or equivalently that there is no ordering for the critical Gibbs states with monochro-
matic boundary conditions.

The proof uses the random-cluster representation and is based on two ingredients:

• Studying parafermionic observables on a discrete Riemann surface, it is shown that
the two-point function for the free state decays sub-exponentially fast for cluster-
weights 1 ≤ q ≤ 4.
• A new result proving the equivalence of several properties of critical random-cluster

models:

– the absence of infinite-cluster for wired boundary conditions,

– the uniqueness of infinite-volume measures,

– the sub-exponential decay of the two-point function for free boundary condi-
tions,

– a Russo-Seymour-Welsh type result on crossing probabilities in rectangles with
arbitrary boundary conditions.

The result leads to a number of consequences concerning the scaling limit of the model. It
shows that the family of interfaces (for instance for Dobrushin boundary conditions) are
tight when taking the scaling limit and that any sub-sequential limit can be parametrized
by a Loewner chain. We also study the effect of boundary conditions on these sub-
sequential limits. Let us mention that the result should be instrumental in the study
of critical exponents as well.



CONTINUITY OF THE PHASE TRANSITION FOR PLANAR POTTS MODELS WITH 1 ≤ q ≤ 4

1 Introduction

1.1 Motivation

The Potts model is a model of random coloring of Z2 introduced as a generalization of the
Ising model to more-than-two components spin systems. In this model, each vertex of Z2

receives a spin among q possible colors. The energy of a configuration is proportional
to the number of frustrated edges, meaning edges whose endpoints have different spins.
Since its introduction by Potts [Pot52] (the model was suggested to him by his adviser
Domb), it has been a laboratory for testing new ideas and developing far-reaching tools.
In two dimensions, it exhibits a reach panel of possible critical behaviors depending on
the number of colors, and despite the fact that the model is exactly solvable (yet not
rigorously for q 6= 2), the mathematical understanding of its phase transition remains
restricted to a few cases (namely q = 2 and q large). We refer to [Wu82] for a review on
this model.

The question of deciding whether a phase transition is continuous or discontinuous
constitutes one of the most fundamental question in physics, and an extensive physics
literature has been devoted to this subject in the case of the Potts model. In the planar
case, Baxter [Bax71, Bax73, Bax89] used a mapping between the Potts model and solid-
on-solid ice-models to compute the spontaneous magnetization at criticality for q ≥ 4.
He was able to predict that the phase transition was discontinuous for q ≥ 5. While this
computation gives a good insight on the behavior of the model, it relies on unproved
assumptions which, forty years after their formulation, seem still very difficult to justify
rigorously (and are related to the nature of the phase transition itself). Furthermore,
Baxter outlined another heuristic predicting that the phase transition is continuous for
q ≤ 4, but according to the author, the justification is not as solid for this case. Among
other results, the present article proves that the phase transition is continuous for q ∈
{2, 3, 4} without any reference to unproved assumptions.

Most of our article will be devoted to the study of the so-called random-cluster model.
This model is a probability measure on edge configurations (each edge is declared open
or closed) such that the probability of a configuration is proportional to p# open edges(1−
p)# closed edgesq# clusters, where clusters are maximal connected subgraphs, and (p, q) ∈
[0, 1]× R+. For q = 1, the model is simply Bernoulli percolation.

Since its introduction by Fortuin and Kasteleyn [FK72], the random-cluster model has
become an important tool in the study of phase transitions. The spin correlations of Potts
models are rephrased as cluster connectivity properties of their random-cluster represen-
tations. As a byproduct, properties of the random-cluster model can be transferred to the
Potts model, and vice-versa.

While the critical understanding of Bernoulli percolation is now fairly well under-
stood, the case of the random-cluster model remains mysterious. The long range depen-
dency makes the model challenging to study probabilistically, and some of its most basic
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properties were not proved until recently. In this article, we derive several properties of
the critical model, including a suitable generalization of the celebrated Russo-Seymour-
Welsh theory available for Bernoulli percolation. This powerful tool enables us to prove
several new results on the critical phase.

This article fits in the more general context of the study of conformally invariant pla-
nar lattice models. In the early eighties, physicists Belavin, Polyakov and Zamolodchikov
postulated conformal invariance of critical planar statistical models [BPZ84b, BPZ84a].
This prediction enabled physicists to harness Conformal Field Theory in order to formu-
late many conjectures on these models. From a mathematical perspective, proving rigor-
ously the conformal invariance of a model (and properties following from it) constitutes
a formidable challenge.

In recent years, the connection between discrete holomorphicity and planar statistical
physics led to spectacular progress in this direction. Kenyon [Ken00, Ken01], Smirnov
[Smi10] and Chelkak and Smirnov [CS12] exhibited discrete holomorphic observables in
the dimer and Ising models and proved their convergence to conformal maps in the scal-
ing limit. These results paved the way to the rigorous proof of conformal invariance for
these two models. Other discrete observables have been proposed for a number of critical
models, including self-avoiding walks and Potts models. While these observables are not
exactly discrete holomorphic, their discrete contour integrals vanish, a property shared by
discrete holomorphic functions. It is a priori unclear whether this property is of any rel-
evance for the models. Nevertheless, in the case of the self-avoiding walk, it was proved
to be sufficient to compute the connective constant of the hexagonal lattice [DCS12]. One
can consider that this article is part of a program initiated informally in [DCS12] and
devoted to the study of the possible applications of the property mentioned above. In
our case, we will use parafermionic observables (more precisely, we will use a corollary
which may be deduced from the study of such observables) introduced independently
in [FK80, RC06, Smi10] to prove our main theorem as well as several corollaries. Since
such observables have been found in a large class of planar critical models, we believe
that similar applications can be obtained in these models as well, and that the tools de-
veloped in this article should be instrumental there. Last but not least, the techniques
developed in this article improve the understanding of the scaling limit of these models.
We think that they will be useful for proving conformal invariance of these scaling limits.

1.2 Definition of the models and main statements

Definition of Potts models and statement of the main theorem

Consider an integer q ≥ 2 and a subgraph G = (VG, EG) of the square lattice Z2. Here
and below, VG is the set of vertices of G and EG ⊂ V2

G is the set of edges. For simplicity,
the square lattice will be identified with its set of vertices, namely Z2. For two vertices
x, y ∈ VG, x ∼ y denotes the fact that (x, y) ∈ EG.

99



CONTINUITY OF THE PHASE TRANSITION FOR PLANAR POTTS MODELS WITH 1 ≤ q ≤ 4

Let τ ∈ {1, . . . , q}Z2
. The q-state Potts model on G with boundary conditions τ is defined

as follows. The space of configurations is Ω = {1, . . . , q}Z2
. For a configurationσ = (σx :

x ∈ Z2) ∈ Ω, the quantity σx is called the spin at x (it is sometimes interpreted as being a
color). The energy of a configuration σ ∈ Ω is given by the Hamiltonian

Hτ
G(σ) :=


− ∑

x∼y
{x,y}∩G 6=∅

δσx ,σy if σx = τx for x /∈ VG,

∞ otherwise.

Above, δa,b denotes the Kronecker symbol equal to 1 if a = b and 0 otherwise. The
spin-configuration is sampled proportionally to its Boltzmann weight: at an inverse-
temperature β, the probability µτG,β of a configuration σ is defined by

µτG,β[σ ] :=
e−βHτ

G(σ)

ZτG,β
where ZτG,β := ∑

σ∈Ω
e−βHτ

G(σ)

is the so-called partition function defined in such a way that the sum of the weights over
all possible configurations equals 1. By construction, configurations that do not coincide
with τ outside of G have probability 0.

Infinite-volume Gibbs measures can be defined by taking limits, as G tends to Z2, of
finite-volume measures µτG,β. In particular, if (i) := τ denotes the constant configuration

equal to i ∈ {1, . . . , q}, the sequence of measures µ(i)
G,β converges, as G tends to infinity, to

a Gibbs measure denoted byµ(i)
Z2 ,β. This measure is called the infinite-volume Gibbs measure

with monochromatic boundary conditions i.
The Potts models undergo a phase transition in infinite volume at a certain critical

inverse-temperature βc(q) ∈ (0, ∞) in the following sense

µ
(i)
Z2 ,β[σ0 = i] =

 1
q if β < βc(q),
1
q + mβ > 1

q if β > βc(q).

The value βc(q) is computed in [BDC12a] and is equal to log(1 +
√

q) for any integer q
(this value was previously known for q = 2 [Ons44] and q ≥ 26 [LMR86]).

This article is devoted to the study of the phase transition at β = βc(q). The phase
transition is said to be continuous if µ(i)

Z2 ,βc(q)
[σ0 = i] = 1

q and discontinuous otherwise. The
main result is the following.

Theorem 1.1 (Continuity of the phase transition for 2, 3 or 4 colors). Let q ∈ {2, 3, 4}.
Then for any i ∈ {1, . . . , q}, we have

µ
(i)
Z2 ,βc(q)

[σ0 = i] = 1
q .

This result was known in the q = 2 case. For two colors, the model is simply the Ising
model. Onsager computed the free energy in [Ons44] and Yang obtained a formula for
the magnetization in [Yan52]. In particular, this formula implies that the magnetization
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is zero at criticality. This results has been reproved in a number of papers since then. Let
us mention a recent proof [Wer09] not harnessing any exact integrability.

For q equal to 3 or 4, the result appears to be new. As mentioned in the previous
section, exact (yet non rigorous) computations performed by Baxter strongly suggest that
the phase transition is continuous for q ≤ 4, and discontinuous for q > 4. This result
therefore tackles the whole range of q for which the phase transition is continuous. Let us
mention that the technology developed here is not restricted to the study of Potts models
for q ≤ 4: a property of Potts models with q ≥ 5 colors witnessing ordering at criticality
is also derived, see Proposition 4.5. Unfortunately, we were unable to show rigorously
that the phase transition is discontinuous in the sense defined above.

In dimension d ≥ 3, the phase transition is expected to be continuous if and only if
q = 2. The best results in this direction are the following. On the one hand, the fact that
the phase transition is continuous for the Ising model (q = 2) is known for any d ≥ 3
[ADCS13] (in fact, the critical exponents are known to be taking their mean-field value
for d ≥ 4 [AF86]). On the other hand, mean-field considerations together with Reflection
Positivity enabled [BCC06] to prove that for any q ≥ 3, the q-state Potts model undergoes
a discontinuous phase transition above some dimension dc(q). Finally, Reflection Posi-
tivity can be harnessed to prove that for any d ≥ 2, the phase transition is discontinuous
provided q is large enough [KS82].

The random-cluster model

The proof of Theorem 1.1 is based on the study of a graphical representation of the Potts
model, called the random-cluster model. Let us define it properly. Consider p ∈ [0, 1], q > 0
and a subgraph G = (VG, EG) of the square lattice. A configuration ω is an element of
Ω′ = {0, 1}EG . An edge e withω(e) = 1 is said to be open, while an edge withω(e) = 0
is said to be closed. Two vertices x and y in VG are said to be connected (this event is
denoted by x←→ y) if there exists a sequence of vertices x = v1, v2, . . . , vr−1, vr = y such
that (vi, vi+1) is an open edge for every i < r. A connected component of ω is a maximal
connected subgraph of ω. Let o(ω) and c(ω) be respectively the number of open and
closed edges inω.

The random-cluster measure on EG with edge-weight p, cluster-weight q, and free boundary
conditions is defined by the formula

φ0
G,p,q [ω] =

po(ω)(1− p)c(ω)qk0(ω)

Z0
G,p,q

,

where k0(ω) is the number of connected components of the graphω, and Z0
G,p,q is defined

in such a way that the sum of the weights over all possible configurations equals 1. We
also define the random-cluster measure on EG with edge-weight p, cluster-weight q, and wired
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boundary conditions by the formula

φ1
G,p,q [ω] =

po(ω)(1− p)c(ω)qk1(ω)

Z1
G,p,q

,

where k1(ω) is the number of connected components of the graphω, except that all the
connected components of vertices in the vertex boundary ∂G, i.e. the set of vertices in
VG with less than four neighbors in G, are counted as being part of the same connected
component. Again, Z1

G,p,q is defined in such a way that the sum of the weights over all
possible configurations equals 1.

For q ≥ 1, infinite-volume measures can be defined on Z2 by taking limits of finite-
volume measures for graphs tending to Z2. In particular, the infinite-volume random-cluster
measure with free (resp. wired) boundary conditions φ0

Z2 ,p,q (resp. φ1
Z2 ,p,q) can be defined as

the limit of the sequence of measuresφ0
G,p,q (resp. φ1

G,p,q) for G↗ Z2. We refer the reader
to [Gri06] for more details on this construction.

The random-cluster model with q ≥ 1 undergoes a phase transition in infinite volume
in the following sense. There exists pc(q) ∈ (0, 1) such that

φ1
Z2 ,p,q [0←→ ∞] =

0 if p < pc(q),

θ1(p, q) > 0 if p > pc(q),

where {0 ←→ ∞} denotes the event that 0 belongs to an infinite connected component.
The value of pc(q) was recently proved to be equal to

√
q/(1 +

√
q) for any q ≥ 1 in

[BDC12a]. The result was previously proved in [Kes80] for Bernoulli percolation (q = 1),
in [Ons44] for q = 2 using the connection with the Ising model and in [LMMS+91] for
q ≥ 25.72.

Similarly to the Potts model case, a notion of continuous/discontinuous phase transi-
tion can be defined: the phase transition is said to be continuous ifφ1

Z2 ,pc(q),q
[0←→ ∞] =

0 and discontinuous otherwise. The following theorem is the alter ego of Theorem 1.1.

Theorem 1.2 (Continuous phase transition for cluster-weight 1 ≤ q ≤ 4). Let q ∈ [1, 4],
thenφ1

Z2 ,pc(q),q
[0←→ ∞] = 0.

Let us now describe briefly the coupling between Potts models and their random-
cluster representation as well. Fix q ≥ 2 integer. From a random-cluster configuration
sampled according to φ1

G,p,q, color each component (meaning all the vertices in it) with
one color chosen uniformly in {1, . . . , q}, except for the connected component containing
the vertices in ∂G which receive color i. The law of the random coloring thus obtained
is µ(i)

G,β, where β = − log(1− p). This coupling between the random-cluster model with
integer cluster-weight and the Potts models enables us to deduce Theorem 1.1 from The-
orem 1.2 immediately. For this reason, we now focus on Theorem 1.2.
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An alternative for the behavior of critical random-cluster models

Proving Theorem 1.2 requires a much better understanding of the critical phase than the
one available until now. Indeed, except for the q = 1, q = 2 and q ≥ 25.72 cases, very
little was known on critical random-cluster models. The following theorem provides new
insight on the possible critical behavior of these models.

For an integer n, let Λn denote the box [−n, n]2 of size n. An open path is a path of
adjacent open edges (we refer to the next section for a formal definition). Let 0 ←→ ∂Λn

be the event that there exists an open path from the origin to the boundary of Λn. For a
rectangle R = [a, b]× [c, d], let Ch(R) be the event that there exists an open path in R from
{a} × [c, d] to {b} × [c, d].

Theorem 1.3. Let q ≥ 1. The following assertions are equivalent :

P1 (Absence of infinite cluster at criticality)φ1
Z2 ,pc ,q [0←→ ∞] = 0.

P2 φ0
Z2 ,pc ,q = φ

1
Z2 ,pc ,q.

P3 (Infinite susceptibility) χ0(pc, q) := ∑
x∈Z2

φ0
Z2 ,pc ,q [0←→ x] = ∞.

P4 (Sub-exponential decay for free boundary conditions)

lim
n→∞ 1

n logφ0
Z2 ,pc ,q [0←→ ∂Λn] = 0.

P5 (RSW) For anyα > 0, there exists c = c(α) > 0 such that for all n ≥ 1,

φ0
[−n,(α+1)n]×[−n,2n],pc ,q [Ch([0,αn]× [0, n])] ≥ c.

The previous theorem does not show that these conditions are all satisfied, but that
they are equivalent. In fact, whether the conditions are satisfied or not will depend on
the value of q, see Section 1.2 for a more detailed discussion.

The previous result was previously known in a few cases:
• Bernoulli percolation (random-cluster model with q = 1). In such case P2 is obviously

satisfied. Furthermore, Russo [Rus78] proved that P1, P3 and P4 are all true (and
therefore equivalent). Finally, P5 was proved by Russo [Rus78] and Seymour-Welsh
[SW78].
• Random-cluster model with q = 2. This model is directly related to the Ising via the

Edwards-Sokal coupling. Therefore, all of these properties can be proved to be true
using the following results on the Ising model: Onsager proved that the critical
Ising measure is unique and that the phase transition is continuous in [Ons44].
Properties P3 and P4 follow from Simon’s correlation inequality for the Ising model
[Sim80]. Property P5 was proved in [DCHN11] using a proof specific to the Ising
model. Interestingly, in the Ising case each property is derived independently and
no direct equivalence was known previously.
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• Random-cluster model with q ≥ 25.72. In this case, none of the above properties are
satisfied, as proved by using the Pirogov-Sinai technology [LMMS+91].

Except for these special cases, no general result was known, and Theorem 1.3 represents,
to the best of our knowledge, the first formal proof of the equivalence between these
conditions for a relatively large class of dependent percolation models. We expect that a
similar result can be stated for a large class of models, and that some of the tools devel-
oped in this article may be extended to these models.

Remark 1.4. P4⇒P1 implies that whenever there is an infinite-cluster for the wired bound-
ary conditions, correlations decay exponentially fast at criticality for free boundary con-
ditions.

Before proceeding further, let us discuss alternative conditions which could replace
the conditions P1–P5. Once again, q is assume to be larger or equal to 1.

The condition P1 has the following interpretation: it is equivalent to

P1’ (Continuous phase transition) lim
p↘pc

φ1
Z2 ,p,q [0←→ ∞] = 0

(simply use [Gri06, (4.35)]). Note that the (almost sure) absence of an infinite-cluster for
φ0
Z2 ,pc ,q follows from Zhang’s argument [Gri06, Theorem (6.17)(a)] and is true for any

q ≥ 1. Nevertheless, it does not imply the (almost sure) absence of an infinite-cluster for
φ1
Z2 ,pc ,q nor the continuity of the phase transition.

The property P2 can be reinterpreted in terms of infinite-volume measures (see [Gri06]
for a formal definition). Then, P2 is equivalent to (see [Gri06, Theorem (4.34)])

P2’ The infinite-volume measure on Z2 at pc and q is unique.

Let us now turn to P4 which can be understood in terms of the so-called correlation
length defined for p < pc(q) by the formula

ξ(p, q) =
(
− lim

n→∞ 1
n logφ0

Z2 ,p,q[(0, 0)←→ (n, 0)]
)−1

.

Now, P4 is equivalent to

P4’ (vanishing mass-gap) ξ(p, q) tends to +∞ as p↗ pc(q).

Condition P1 together with P3 have an interesting consequence in terms of the order
of the phase transition for the Potts model. We do not enter in the details here but let
us briefly mention that properties P1 and P3 are respectively equivalent to the continu-
ity and the non-differentiability with respect to the magnetic field h of the free energy
at (β = βc, h = 0). Therefore, these properties mean that the phase transition of the
corresponding Potts model is of second order. The properties P1–P4 (and their equiva-
lent formulations) are classical definitions describing continuous phase transitions and
are believed to be equivalent for many natural models, even though it is a priori unclear
how this can be proved in a robust way.
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Now that we have an interpretation for properties P1–P4, let us explain why P5 is
of particular interest: it provides an equivalent to the RSW theorem proved in [BDC12a]
which is uniform in boundary conditions (see Proposition 3.1 below). This uniformity with
respect to boundary conditions is crucial for applications, especially when trying to de-
couple events, see e.g. Section 1.3. Let us also emphasize that the fact that P5 can be
derived from the other properties requires the development of a Russo-Seymour-Welsh
theory for dependent percolation models. As mentioned above, such a theory existed for
Bernoulli percolation [SW78, Rus78], and for q = 2 [DCHN11], but in the latter case the
proof was based on discrete holomorphicity, hence hiding the close connection between
P5 and the other properties. This Russo-Seymour-Welsh theory is expected to apply to
a large class of planar models, and we insist on the fact that uniformity on boundary
conditions is crucial.

Remark 1.5. The restriction on boundary conditions being at distance n from the rectangle
can be relaxed in the following way: if P5 holds, then for anyα > 0 andε > 0, there exists
c = c(α,ε) > 0 such that for every n ≥ 1,

φξ
[−εn,(α+ε)n]×[−εn,(1+ε)n],pc ,q [Ch([0,αn]× [0, n])] ≥ c.

It is natural to ask why boundary conditions are fixed at distance εn of the rectangle
[0,αn]× [0, n] and not simply on the boundary. The reason is the latter property is not
equivalent to P1–P5. Indeed, it may in fact be the case that P5 holds but that crossing
probabilities of rectangles [0,αn]× [0, n] with free boundary conditions on their bound-
ary converge to zero as n tends to infinity. Such phenomenon does not occur for 1 ≤ q < 4
as shown in Theorem 1.13 but is expected to occur for q = 4. In conclusion, we will al-
ways work with boundary conditions at “macroscopic distance” from the boundary.

Random-cluster model with cluster weight q ∈ [1, 4]

The previous alternative provides us with a powerful tool to prove Theorem 1.2. Namely,
it is sufficient to prove one of the properties P2–P5 when 1 ≤ q ≤ 4 to derive our result.
We will therefore focus on property P4, which is the easiest to check.

In order to prove P4, we will use estimate son the probability of being connected by
an open path which can be deduced from the fact that discrete contour integrals of the
so-called (edge) parafermionic observable vanish. This observable was introduced in [Smi10]
for q ∈ (0, 4) and then generalized to q > 4 in [BDCS12] (the q = 4 case also requires
the introduction of a slightly different observable). They satisfy local relations that can
be understood as discretizations of the Cauchy-Riemann equations when the model is
critical. These relations imply that discrete contour integrals vanish. We do not recall the
definition of the parafermionic observable nor do we describe its principal properties,
and simply mention an important corollary (see Theorem 4.3). For more details on the
parafermionic observable, we refer to [DC13, Chapter 6].
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In any case, the parafermionic observable can be used to show the following theorem
dealing with random-cluster models with 1 ≤ q ≤ 4.

Theorem 1.6 ([DC12]). Let 1 ≤ q ≤ 4, then lim
n→∞ 1

n logφ0
Z2 ,pc(q),q [0←→ ∂Λn] = 0.

Theorem 1.6 together with Theorem 1.3 implies that P1–P5 are satisfied for 1 ≤ q ≤ 4.
In particular, these two theorems imply Theorem 1.2.

As mentioned above, the proof harnesses the fact that the discrete contour integrals
of parafermionic observables vanish. The intrinsic difficulty of this theorem relies on the
fact that, for our proof to work, the random-cluster model needs to be considered on the
universal cover of Z2 minus a face; see Section 2.1 for more details. Bootstrapping the
information from the universal cover to the plane is not straightforward.

Investigating more general lattice models on this universal cover seems an interesting
direction of research. Indeed, lattice models on Riemann surfaces have been studied
extensively. Nevertheless, the theory mostly deals with surfaces of higher genius, while
in our case we are facing (a discretization of) a simply connected planar Riemann surface
with a logarithmic singularity at the origin.

The proof of Theorem 1.6 can be found in [DC12]. Nevertheless, other applications of
parafermionic observables which are based on the same principle will be derived in this
article, and most of the tools required for the proof of Theorem 1.6 will be harnessed in
other places as well. In addition, some of the ideas of the proof of Theorem 1.3 allows
one to simplify drastically the proof exposed in [DC12]. We therefore chose to include a
streamlined version of the proof here (still, the details on parafermionic observables are
omitted).

In order to conclude this section, let us mention that because the discrete contour in-
tegrals vanish, the parafermionic observable is therefore a discretization of a divergence-
free differential form. For q = 2 (which corresponds to the Ising model), further informa-
tion can be extracted from local integrability and the observable satisfies a strong notion
of discrete holomorphicity, called s-holomorphicity. In this case, the observable can be used
to understand many properties on the model, including conformal invariance of the ob-
servable [CS12, Smi10] and loops [DDCH+14, HK13], correlations [CI13, Hon10, HS11]
and crossing probabilities [BDCH12, DCHN11, CDCH12]. It can also be extended away
from criticality [DCGP14]. We do not discuss special features of the q = 2 case and we
refer to the extensive literature for further information.

1.3 Applications to the study of the critical phase for 1 ≤ q ≤ 4

The previous theorems have a large number of consequences regarding the understand-
ing of the critical phase. We list some of them now.
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Mixing properties at criticality

The bound P5 on crossing probabilities enables us to study the spatial mixing properties
at criticality. One may decouple events which are depending on edges in different areas
of the space, and therefore compensate for the lack of independence. The next theorem
illustrates this fact. It will be used in many occasions in the reminder of this book.

Theorem 1.7 (Polynomial ratio weak mixing under condition P5). Fix q ≥ 1 such that
Property P5 of Theorem 1.3 is satisfied. There existsα > 0 such that for any 2k ≤ n and for any
event A depending only on edges in Λk,

∣∣φξΛn ,pc ,q [A]−φψΛn ,pc ,q [A]
∣∣ ≤ ( k

n

)α
φξΛn ,pc ,q [A]

uniformly in boundary conditions ξ and ψ.

Together with the Domain Markov property, this result implies the following inequal-
ity for 2k ≤ m ≤ n (with n possibly infinite),

∣∣φξΛn ,pc ,q [A ∩ B]−φξpc ,q,Λn
[A]φξΛn ,pc ,q [B]

∣∣ ≤ ( k
m

)α
φξΛn ,pc ,q [A]φξΛn ,pc ,q [B] ,

where the boundary conditions ξ are arbitrary, A is an event depending on edges of Λk

only, and B is an event depending on edges of Λn \Λm.

Remark 1.8. For p 6= pc(q), estimates of this type (with an exponential speed of conver-
gence instead of polynomial) can be established by using the rate of spatial decay for the
influence of a single vertex [Ale98]. At criticality, the correlation between distant events
does not boil down to correlations between points and a finer argument must be har-
nessed. Crossing-probability estimates which are uniform in boundary conditions are the
key in order to prove such results.

Remark 1.9. We will see several specific applications of this theorem in the next chapters.
The most striking consequence is the fact that the dependence on boundary conditions
can be forgotten as long as the boundary conditions are sufficiently distant from the set
of edges determining whether the events under consideration occur or not. For instance,
it allows us to state several theorems in infinite volume, keeping in mind that most of
these results possess natural counterparts in finite volume by using the fact that

cφpc ,q [A] ≤ φξpc ,q,Λ2n
[A] ≤ Cφpc ,q [A]

for any event A depending on edges in Λn only, and any boundary conditions ξ (the
constants c and C are universal).

Consequences for the scaling limit

The phase transition being continuous, the scaling limit of the model is expected to be
conformally invariant. This work opens new perspectives in the study of this scaling
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limit and we now mention several possible directions of research. We refer the reader to
Section 4 for the definition of Dobrushin domains and the exploration path.

Conjecture 1.10 (Schramm, [Sch07]). Let 0 ≤ q ≤ 4 and p = pc(q). Let (Ω, a, b) be a
simply connected domain with two points a and b. Let (Ωδ , aδ , bδ) be a sequence of Dobrushin
domains converging in the Carathéodory sense towards (Ω, a, b). The law of the exploration path
(γδ) for critical random-cluster model with cluster-weight q and Dobrushin boundary conditions
in (Ωδ , aδ , bδ) converges, as the mesh size δ tends to zero, to the Schramm-Loewner Evolution
between a and b in Ω with parameter κ = 4π

arccos(−√q/2) .

Schramm-Loewner Evolution are very-well studied objects; see e.g. [Law05]. This
convergence would therefore lead to a deep understanding of the critical phase of the
random-cluster models. For the q = 0 case corresponding to the perimeter curve of
the uniform spanning tree, the conjecture was proved by Lawler, Schramm and Werner
[LSW04]. The q = 2 case was formally proved in [DDCH+14] even though the fundamen-
tal contribution leading to this result was achieved in [Smi10]. Conjecture 1.10 is open for
any other values of q (even for the q = 1 case corresponding to Bernoulli percolation).

Lawler, Schramm and Werner proposed a global strategy for proving Conjecture 1.10,
which can be summarized as follows:

1. Prove compactness of the family of exploration paths (γδ)δ>0 and show that any
sub-sequential limits can be parametrized as a Loewner chain (with a continuous
driving process denoted by W).

2. Prove the convergence of some discrete observables of the model.

3. Extract from the limit of these observables enough information to evaluate the con-
ditional expectation and quadratic variation of Wt and use Lévy’s theorem to prove
that Wt is equal to

√
κBt, where Bt is the standard Brownian motion. As a con-

sequence, any sub-sequential limits must be the Schramm-Loewner Evolution of
parameter κ.

Step 1 of this program is provided by Theorem 1.11 below. We refer to [Law05] for details
on Loewner chains.

Let X be the set of continuous parametrized curves and d be the distance on X defined
by

d(γ1,γ2) = min
ϕ1 :[0,1]→I,ϕ2 :[0,1]→J increasing

sup
t∈I
|γ1(ϕ1(t))−γ2(ϕ2(t))|,

where γ1 : I → C and γ2 : J → C. Note that I and J can be equal to R+ ∪ {∞}.
Theorem 1.11. Fix 1 ≤ q ≤ 4, p = pc(q) and a simply connected domain Ω with two marked
points on its boundary a and b. Let (Ωδ , aδ , bδ) be a sequence of Dobrushin domains converging
in the Carathéodory sense towards (Ω, a, b). Define γδ to be the exploration path in (Ωδ , aδ , bδ)
with Dobrushin boundary conditions. Then, the family (γδ) is tight and any sub-sequential limit
γ satisfies the following properties:
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R1 γ is almost surely a continuous non-intersecting curve from a to b staying in Ω.
R2 For any parametrization γ : [0, 1] → ∞, b is a simple point, in the sense that γ(t) = b

implies t = 1. Furthermore, almost surely γ(t) is on the boundary of Ω \ γ[0, t] for any
t ∈ [0, 1].

R3 Let Φ be a conformal map from Ω to the upper half-plane H sending a to 0 and b to ∞.
For any parametrization γ : [0, 1] → R+, the h-capacity of the hull K̂s of Φ(γ[0, s]) tends
to ∞ when s approaches 1. Furthermore, if (K̂t)t≥0 denotes (K̂s)s∈[0,1] parametrized by h-
capacity, then (K̂t)t≥0 is a Loewner chain with a driving process (Wt)t≥0 which isα-Hölder
for any α < 1/2 almost surely. Furthermore, there exists ε > 0 such that for any t > 0,
E[exp(εWt/

√
t)] < ∞.

R4 There exists α > 0 such that γ has Hausdorff dimension between 1 +α and 2−α almost
surely.

Tightness criteria for random planar curves were first introduced in [AB99]. They
were used as a key step in the proof of convergence of interfaces to the Schramm-Loewner
Evolution for Bernoulli site percolation on the triangular lattice [CN07]. These criteria
were improved in [KS12] to treat the case of random non-self-crossing planar curves
parametrized as Loewner chains.

Step 2 represents the main challenge in the program outlined above (Step 3 is easy
once Steps 1 and 2 have been achieved, see e.g. [DC13, Section 13.2]). Smirnov succeeded
to perform Step 2 for q = 2 using the fermionic observable [Smi10]. He also proposed
to consider the parafermionic observables introduced in [Smi06] as a potential candidate
for Step 2 in the case of general cluster-weights q < 4 (let us mention that the choice of
the observables in Step 2 are not determined uniquely). For completeness, let us mention
a conjecture which, together with the results of this paper, would imply Conjecture 1.10.

Conjecture 1.12 (Smirnov). Let 0 < q < 4, p = pc(q) and (Ω, a, b) be a simply connected
domain with two points on its boundary. For every z ∈ Ω,

1
(2δ)σ

Fδ(z) → φ′(z)σ when δ → 0

where

• for δ > 0, Fδ is the vertex parafermionic observable of [Smi06] at pc(q) in (Ωδ , aδ , bδ).
• σ = 1− 2

π arccos(
√

q/2),
• φ is any conformal map from Ω to R× (0, 1) sending a to −∞ and b to ∞.

Let us mention that even though we are currently unable to prove Conjecture 1.12
(and therefore Conjecture 1.10), we are still able to obtain nice results on the scaling limit.
Indeed, the geometry of the random curve γ can be easily related to the geometry of
clusters boundaries at a discrete level. Keeping in mind that we are not able to prove that
the scaling limit of cluster boundaries is well-defined, we may still extract sub-sequential
limits and ask simple properties about these objects. For instance, property R4 of the
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previous theorem implies that any sub-sequential scaling limit of cluster boundaries of
random-cluster models with 1 ≤ q ≤ 4 is a random fractal. The next theorem corre-
sponds to another property of these sub-sequential scaling limits: it shows that macro-
scopic clusters touch the boundary of a smooth domain, for instance a rectangle, with
free boundary conditions.

Theorem 1.13. Fix 1 ≤ q < 4 andα > 0. There exists c1 > 0 such that for any n ≥ 1,

φ0
[0,αn]×[0,n],pc(q),q [Ch([0,αn]× [0, n])] ≥ c1.

In the previous theorem, the free boundary conditions are directly on the boundary
of the rectangle [0,αn]× [0, n]. This corresponds to the most naive generalization of the
Russo-Seymour-Welsh theorem.

Consequences for critical exponents

Theorem 1.6 has several implications which are postponed to a future paper for so-called
arm-events. Let us quickly mention that one can prove a priori bounds on the probability
of arm-events, the so-called quasi-multiplicativity and extendability of these probabili-
ties, as well as universal exponents. These tools are crucial in order to compute critical
exponents via the understanding of the scaling limit. Let us also mention that universal
bounds can be deduced between different critical exponents.

Theorem 1.6 is also instrumental in the understanding of the near-critical regime, and
in particular to derive the scaling relations between critical exponents (see [DC13, Sec-
tion 13.2.3]).

In another direction, Theorem 1.3 provides the relevant criteria in order to prove that
the critical exponents of random-cluster models are universal on isoradial graphs (see
[GM13, CS12] for the case of percolation and Ising). This should be the object of a future
work.

Consequences for Potts

The Edwards-Sokal coupling enables one to transfer properties from the random-cluster
model to the Potts model. In order to illustrate this fact, let us state the following theo-
rem (many other results could be proved, but this would make this article substantially
longer) which is a direct consequence of the previous theorems.

Theorem 1.14. For q ∈ {2, 3, 4}, there exists a unique Gibbs measure µZ2 ,βc(q),q for the critical
q-state Potts model. Furthermore, there exist η1, η2 > 0 such that for any x ∈ Z2 \ {0},

1
|x|η1

≤ µZ2 ,βc(q),q[σx = σ0]−
1
q
≤ 1
|x|η2

.

The main result should also have consequences for the Glauber dynamics of the Potts
model. Recently, Lubetzky and Sly [LS12] used spatial mixing properties of the Ising
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model in order to derive an important conjecture on the mixing time of the Glauber dy-
namics of the Ising model at criticality. As a key step, they harness the equivalent of
P5 together with tools from the analysis of Markov chains, to provide polynomial upper
bounds on the inverse spectral gap of the Glauber dynamics (and also on the total vari-
ation mixing time). We plan to prove similar results for 3 and 4 states Potts models in a
subsequent paper.

2 Preliminaries

The norm | · | will denote the Euclidean norm.

Primal and dual graphs. The square lattice (Z2, E) is the graph with vertex set Z2 =

{(n, m) : n, m ∈ Z} and edge set E given by edges between nearest neighbors. The
square lattice will be identified with the set of vertices, i.e. Z2. The dual square lattice
(Z2)∗ is the dual graph of Z2. The vertex set is ( 1

2 , 1
2 ) + Z2 and the edges are given by

nearest neighbors. The vertices and edges of (Z2)∗ are called dual-vertices and dual-edges.
In particular, every edge of Z2 is naturally associated to a dual-edge, denoted by e∗, that
it crosses in its center.

Except otherwise specified, we will only consider subgraphs of Z2, (Z2)∗, and use the
following notations. For a graph G, we denote by VG its vertex set and by EG its edge
set. Two vertices x and y are neighbors (in G) if (x, y) ∈ EG. In such case, we write x ∼ y.
Furthermore, if x is an end-point of e, we say that e is incident to x. Finally, the boundary
of G, denoted by ∂G, is the set of vertices of G with strictly fewer than four incident edges
in EG.

For a graph G ⊂ Z2, we define G∗ to be the subgraph of (Z2)∗ with edge-set EG∗ =

{e∗ : e ∈ EG} and vertex set given by the end-points of these dual-edges.

Let Λn be the subgraph of Z2 induced by the vertex set [−n, n]2.

Connectivity properties in graphs. A path in Z2 is a sequence of vertices v0, . . . , vn in
Z2 such that vi ∼ vi+1 for any 0 ≤ i < n. The path will often be identified with the set of
edges (v0, v1), (v1, v2), . . . , (vn−1, vn). The path is said to start at x and to end at y if v0 = x
and vn = y. If x = y, the path is called a circuit.

Two vertices x and y of G are connected if there exists a path of edges in EG from x to
y. A graph is said to be connected if any two vertices of G are connected. The connected
components of G will be the maximal connected subgraphs of G. For three sets X, Y ⊂ VG

and F ⊂ EG, we say that X is connected to Y in F (we denote this fact by X F←→ Y) if there
exist two vertices x ∈ X and y ∈ Y and a path of edges in F starting at x and ending at y.
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2.1 Background on the random-cluster model

This section is devoted to a very brief description of the tools we will use during the
proofs of the next sections. The reader may consult [Gri06] or [DC13] for more details,
proofs and original references.

Random-cluster model and critical point. Let G = (V, E) be a finite subgraph of Z2 or
U. A configuration on G is an elementω = {ω(e) : e ∈ E} ∈ {0, 1}E. An edge e is said to
be open ifω(e) = 1, and closed otherwise. A configurationω can be seen as a subgraph of
G, whose vertex set is V and edge set if the set of open edges {e ∈ E : ω(e) = 1}. A path
(resp. circuit) in ω will be called an open path (resp. open circuit). Two sets X and Y are
connected inω if there exists an open path from X to Y. The connected components ofω
will be called clusters.

The boundary conditions on G are given by a partitionξ = P1 t · · · t Pk of ∂G. From a
configurationω, defineωξ to be the graph with vertex set V and edge set given by edges
ofω together with edges of the form (x, y), where x and y belong to the same Pi. In such
case, the vertices x and y are sometimes said to be wired together.

Definition 2.1. The random-cluster measure on G with edge-weight p, cluster-weight q, and
boundary conditions ξ is defined by the formula

φξG,p,q [ω] =
po(ω)(1− p)c(ω)qk(ωξ )

ZξG,p,q

,

where k(ωξ) is the number of connected components of the graphωξ . As usual, ZξG,p,q is
defined in such a way that the sum of the weights over all possible configurations equals
1.

The following boundary conditions play a special role in this article. The partition
ξ composed of singletons only is called the free boundary conditions and is denoted by
ξ = 0. It corresponds to no additional connections. The partition ξ = {∂G} is called the
wired boundary conditions and is denoted by ξ = 1. It corresponds to the fact that all the
boundary vertices are connected by boundary conditions.

Infinite-volume measures and critical point. We do not aim for a complete description,
or even a formal definition of random-cluster measures on Z2 and we refer to [DC13,
Chapter 4] for details. When q ≥ 1, infinite-volume random-cluster measures can be
defined by taking the limit of finite-volume measures. In particular, the sequence of
measures φ1

Λn ,p,q (resp. φ0
Λn ,p,q) converges to the infinite-volume measure with wired (resp.

free) boundary conditions φ1
Z2 ,p,q (resp. φ0

Z2 ,p,q). Furthermore, there exists pc = pc(q) ∈
(0, 1) such that for p 6= pc(q), the infinite-volume measureφZ2 ,p,q is unique and satisfies

φZ2 ,p,q [0↔ ∞] =

0 if p < pc(q),

θ(p, q) > 0 if p > pc(q).
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The critical parameter pc(q) was proved to be equal to
√

q/(1 +
√

q) in [BDC12a].

Positive association when q ≥ 1. Denote the product ordering on {0, 1}E by ≤. An
event A depending on edges in E only is increasing if for any ω′ ≥ ω, ω ∈ A imply
ω′ ∈ A.

For q ≥ 1, the random-cluster model satisfies important properties regarding increas-
ing events. The first such property is the FKG inequality [Gri06, Theorem 3.8]: for any
boundary conditions ξ and for any increasing events A and B,

φξG,p,q [A∩B] ≥ φξG,p,q [A]φξG,p,q [B] .

The second important property is the comparison between boundary conditions [Gri06,
Lemma 4.56]: for any increasing event A and for any ξ ≥ ψ,

φξG,p,q [A] ≥ φ
ψ
G,p,q [A] . (5.2)

Here, ξ ≥ ψ if the partition ψ is finer than the partition ξ (any wired vertices in ψ are
wired in ξ). In such case, ξ is said to dominate ψ or equivalently ψ is said to be dominated
by ξ . The free (resp. wired) boundary conditions is dominated by (resp. dominates) any
other boundary conditions.

Domain Markov property and insertion tolerance. Consider a subgraph G′ of G. The
following proposition describes how the influence of the configuration outside G′ on the
measure within G′ can be encoded using appropriate boundary conditions ξ .

Proposition 2.2 (Domain Markov Property). Let p ∈ [0, 1], q > 0 and ξ some boundary
conditions. Fix G′ ⊂ G. Let X be a random variable measurable which is measurable with respect
to edges in EG′ . Then,

φξG,p,q

[
X|ω|EG\EG′

= ψ
]
= φψ

ξ

G′ ,p,q [X] ,

for any ψ ∈ {0, 1}EG\EG′ . Above, ψξ is the partition on ∂G′ obtained as follows: two vertices
x, y ∈ ∂G′ are in the same element of the partition if they are connected in ψξ .

The previous proposition has the following corollary, called insertion tolerance. For
p, q > 0, there exists cIT > 0 such that for anyω ∈ {0, 1}EG , any finite graph G, and any
boundary conditions ξ ,φξG,p,q [ω] ≥ c|G|IT .

Dual representation. A configurationω on G can be uniquely associated to a dual con-
figuration ω∗ on the dual graph G∗ defined as follows: set ω∗(e∗) = 1 if ω(e) = 0 and
ω∗(e∗) = 0 if ω(e) = 1. A dual-edge e∗ is said to be dual-open if ω∗(e∗) = 1, it is dual-
closed otherwise. A dual-cluster is a connected component ofω∗. We extend the notion of
dual-open path in a trivial way. For two sets X, Y ⊂ VG∗ , we set X ∗←→ Y if there exists a
dual-open path from X to Y.
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If ω is distributed according to φξG,p,q, then ω∗ is distributed according to φξ
∗

G∗ ,p∗ ,q∗

with q∗ = q and pp∗

(1−p)(1−p∗) = q. In particular, for p = pc(q) we find p∗ = p = pc(q). The
boundary conditions ξ∗ can be deduced from ξ in a case by case manner. We will mostly
be interested in the case of ξ = 0 or 1, for which ξ∗ = 1 and 0 respectively.

Russo-Seymour-Welsh with wired boundary conditions. For a rectangle R = [a, b]×
[c, d], let Ch(R) be the event that there exists an open path in R from {a} × [c, d] to {b} ×
[c, d] ⊂ Z2. Such a crossing is called an horizontal crossing of R. Similarly, one defines
Cv(R) to be the event that there exists an open path in R from [a, b]× {c} to [a, b]× {d}
(such a path is called a vertical crossing). For a rectangle R∗ = [s, t] × [u, v] ⊂ (Z2)∗

(note that s, t, u, v are half-integers), let C∗h (R∗) be the event that there exists a dual-open
dual-path in R∗ from {s} × [u, v] to {t} × [u, v] (such a path is called an horizontal dual-
crossing), and similarly C∗v (R∗) is the event that there exists a dual-open dual-path in R∗

from [s, t]× {u} to [s, t]× {v} (such a path is called a vertical dual-crossing).

The following result will be important in the proof. Let us restate it here.

Theorem 2.3 ([BDC12a, Corollary 9]). For α > 1 and q ≥ 1, there exists cRSW > 0 such that
for every 0 < m < αn,

φ1
Z2 ,pc ,q [Ch([0, m]× [0, n])] ≥ cRSW.

Let us mention a particularly interesting case of non wired boundary conditions. We
refer the interested reader to [BDC12a] for more details. Consider the random-cluster
measure on Λn with wired boundary conditions on top and bottom, and free elsewhere
(we call these boundary conditions mixed). Then

φmixed
Λn ,pc ,q [Ch(Λn)] ≥

1
1 + q2 . (5.3)

From now on, we fix q ≥ 1 and p = pc(q). In order to lighten the notation, we drop the
reference to p and q and simply writeφξG instead ofφξG,pc(q),q

.

3 Proof of Theorem 1.3

3.1 A preliminary result

Before diving into the proof, let us mention three useful equivalent formulations of P5.
For z ∈ R2, define An(z) to be the event that there exists an open circuit in the annulus
z + (Λ2n \Λn) surrounding z. Also define An = An(0).

Proposition 3.1. The following propositions are equivalent;
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P5 For anyα > 0, there exists c1 = c1(α) > 0 such that for all n ≥ 1, we have

φ0
pc ,q,[−n,(α+1)n]×[−n,2n] [Ch([0,αn]× [0, n])] ≥ c1.

P5a There exists c2 > 0 such that for all n ≥ 1,

φ0
pc ,q,Λ2n\Λn+1

[An] ≥ c2.

P5b For any R ≥ 2, there exists c3 = c3(R) > 0 such that for all n ≥ 1,

φ0
pc ,q,ΛRn

[An] ≥ c3.

P5c For any α > 0, there exists c4 = c4(α) > 0 such that for all n ≥ 1 and for all boundary
conditions ξ on the boundary of [−n, (α + 1)n]× [−n, 2n], we have

c4 ≤ φξpc ,q,[−n,(α+1)n]×[−n,2n] [Ch([0,αn]× [0, n])] ≤ 1− c4.

The last condition justifies the fact that the result is uniform with respect to boundary
conditions.

Proof. The proof of P5a⇒P5b and P5c⇒P5 are obvious by comparison between bound-
ary conditions. In order to prove P5⇒P5a, consider the four rectangles

R1 := [4n/3, 5n/3]× [−5n/3, 5n/3],

R2 := [−5n/3,−4n/3]× [−5n/3, 5n/3],

R3 := [−5n/3, 5n/3]× [4n/3, 5n/3],

R4 := [−5n/3, 5n/3]× [−5n/3,−4n/3].

If the intersection of Cv(R1), Cv(R2), Ch(R3) and Ch(R4) occurs, thenAn occurs. In partic-
ular, the FKG inequality and the comparison between boundary conditions implies that
c2 can be chosen to be equal to c1(10)4.

Let us now turn to the proof of P5b⇒P5. We start by the lower bound. Fix some
R ≥ 2 as in P5b and the corresponding c3 > 0. Let α > 0. For n ≥ 4R, the intersection
of the eventsAn/(2R)[( jb n

Rc, n
2 )] for j = 0, . . . , dRαe is included in Ch([0,αn]× [0, n]). The

FKG inequality implies

φ0
pc ,q,[−n,(α+1)n]×[−n,2n] [Ch([0,αn]× [0, n])] ≥ c1+Rdαe

3 .

By comparison between boundary conditions, we obtain the lower bound for every ξ .
The upper bound may be obtained from this lower bound as follows. By comparison

between boundary conditions once again, it is sufficient to prove the bound for the wired
boundary condition. In such case, the complement of Ch([0,αn]× [0, n]) is C∗v ([ 1

2 ,αn−
1
2 ]× [− 1

2 , n + 1
2 ]). Since the dual of the wired boundary conditions are the free ones, the

boundary conditions for the dual measure are free. We can now harness P5b for the dual
model to construct a dual path from top to bottom with probability bounded away from
0. This finishes the proof.
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It only remains to prove that P5 implies P5c to conclude. Define

R := [0,αn]× [0, n],

R := [−n, (α + 1)n]× [−n, 2n],

R∗ := [ 1
2 ,αn− 1

2 ]× [− 1
2 , n + 1

2 ].

First, (5.2) implies that

c1 ≤ φ0
R [Ch(R)] ≤ φξ

R
[Ch(R)] ,

where the first inequality is due to P5. Now, we wish to prove the upper bound. Let us
assume without loss of generality that α < 1. As mentioned above, the complement of
the event Ch(R) is the event C∗v (R∗). We find that

φ1
R [Ch(R)] ≤ φ1

R [Ch(R)] = 1−φ1
R [C∗v (R∗)] ≤ 1− c1(1/α).

In the last inequality, we used the lower bound proved previously for α′ = 1/α and
n′ = αn. To justify that we can do so, observe that the dual of wired boundary conditions
are the free ones, and that since α < 1, the dual graph of R contains a rotated version of
[ 1

2 −αn,αn− 1
2 +αn]× [− 1

2 −αn, n + 1
2 +αn].

3.2 Proof of Theorem 1.3: easy implications

In order to isolate the hard part of the proof, let us start by checking the four “simple”
implications P1⇒P2, P2⇒P3, P3⇒P4 and P5⇒P1.

Property P1 implies P2: This implication is classical, see e.g. [DC13, Corollary 4.23].

Property P2 implies P3: If P2 holds,

(2n + 1)φ0
Z2 [0↔ ∂Λn] = (2n + 1)φ1

Z2 [0↔ ∂Λn] ≥ ∑
x∈{0}×[−n,n]

φ1
Z2 [x↔ (x + ∂Λn)]

≥ φ1
Z2 [Cv([−n, n]× [0, n])] ≥ c,

where c > 0 is a constant independent of n. The first equality is due to the uniqueness of
the infinite-volume measure given by P2 and the second inequality by Theorem 2.3. This
leads to

∑
x∈∂Λn

φ0
Z2 [0←→ x] ≥ φ0

Z2 [0↔ ∂Λn] ≥
c

2n + 1
.

As a consequence, ∑
x∈Z2

φ0
Z2 [0←→ x] = ∞ and P3 holds true.

Property P3 implies P4: Assume that P4 does not hold. In such case, the fact that

φ0
Z2 [0←→ (n + m)x] ≥ φ0

Z2 [0←→ nx]φ0
Z2 [nx←→ (n + m)x]

= φ0
Z2 [0←→ nx]φ0

Z2 [0←→ mx]
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(this follows from the FKG inequality) implies the existence of M > 0 such that for every
x = (x1, x2) ∈ Z2,

φ0
Z2 [0←→ x] ≤ e−|x|/M.

Summing over every x ∈ Z2 gives

∑
x∈Z2

φ0
Z2 [0↔ x] < ∞

and thus P3 does not hold.

Property P5 implies P1: Recall that P5 implies P5a. We now prove a slightly stronger
result which obviously implies P1 and will be useful later in the proof.

Lemma 3.2. Property P5a implies that there exists ε > 0 such that for any n ≥ 1,

φ1
Z2 [0↔ ∂Λn] ≤ n−ε.

Proof. Let k be such that 2k ≤ n < 2k+1. Also define the annuli A j = Λ2 j \ Λ2 j−1−1 for
j ≥ 1. We have

φ1
Z2 [0←→ ∂Λn] ≤

k

∏
j=1
φ1
Z2

Λ2 j−1
A j←→ ∂Λ2 j

∣∣∣∣∣∣⋂i> j

{
Λ2i−1

Ai←→ ∂Λ2i

}
≤

k

∏
j=1
φ1

A j

[
Λ2 j−1

A j←→ ∂Λ2 j

]
.

In the second line, we used the fact that the event upon which we condition depends
only on edges outside of Λ2 j or on ∂Λ2 j together with the comparison between boundary
conditions.

Now, the complement of Λ2 j−1
A j←→ ∂Λ2 j is the event that there exists a dual-open

circuit in A∗j surrounding the origin. Property P5a implies that this dual-open circuit
exists with probability larger than or equal to c > 0 independently of n ≥ 1. This implies
that

φ1
Z2 [0←→ ∂Λn] ≤

k

∏
j=1

(1− c) = (1− c)k ≤ (1− c)log n/ log 2.

The proof follows by setting ε = − log(1−c)
log 2 .

Remark 3.3. The proof of the previous lemma illustrates the need for bounds which are uni-
form with respect to boundary conditions. Indeed, it could be the case that theφ1-probability
of an open path from the inner to the outer sides of A j is bounded away from 1, but con-
ditioning on the existence of paths in each annulus Ai (for i < j) could favor open edges
drastically, and imply that the probability of the event under consideration is close to 1.

117



CONTINUITY OF THE PHASE TRANSITION FOR PLANAR POTTS MODELS WITH 1 ≤ q ≤ 4

3.3 Proof of Theorem 1.3: P4 implies P5

Recall from Proposition 3.1 that P5 is equivalent to P5b and we therefore choose to prove
that P4 implies P5b when R = 8. The proof follows two steps. First, we prove that either
P5b holds orφ0(0↔ ∂Λn) tends to 0 stretched-exponentially fast. We then prove that in
the second case, the speed of convergence is actually exponential.

Proposition 3.4. Exactly one of these two cases occurs :

1. inf
n≥1

φ0
Λ8n

[An] > 0.

2. There existsα > 0 such that for any n ≥ 1,

φ0
Z2 [0←→ ∂Λn] ≤ exp(−nα).

First, consider the strip S = Z× [−n, 3n], and the boundary conditions ξ defined to
be wired on Z× {3n}, and free on Z× {−n}. Recall that boundary conditions at infinity
are not relevant since the strip is essentially one dimensional.

Lemma 3.5. For all k ≥ 1, there exists a constant c = c(k) > 0 such that, for all n ≥ 1,

φ
1/0
S [Ch([−kn, kn]× [0, 2n])] ≥ c. (5.4)

Proof. Fix n, k ≥ 1. We will assume that n is divisible by 9 (one may adapt the argu-
ment for general values of n). By duality, the complement of Ch([−kn, kn] × [0, 2n]) is
C∗v ([−kn + 1

2 , kn− 1
2 ]× [− 1

2 , 2n + 1
2 ]). Therefore, either (5.4) is true for c = 1/2, or

φ
1/0
S

[
C∗v ([−kn + 1

2 , kn− 1
2 ]× [− 1

2 , 2n + 1
2 ])
]
≥ 1/2.

We assume that we are in this second situation for the rest of the proof.
The dual of the measure on the strip with free boundary conditions on the bottom

and wired on the top is the measure on the strip with free boundary conditions on the
top and wired on the bottom. This measure is the image of φstrip under the orthogonal
reflection with respect to the horizontal line R× {n− 1

4} composed with a translation by
the vector ( 1

2 , 0). We thus obtain that

φ
1/0
S [Cv([−kn, kn]× [0, 2n])] ≥ φ1/0

S [Cv([−kn, kn− 1]× [−1, 2n])]

= φ
1/0
S

[
C∗v ([−kn + 1

2 , kn− 1
2 ]× [− 1

2 , 2n + 1
2 ])
]

≥ 1/2.

Partitioning the segment [−kn, kn]× {0} into the union of 18k segments of length λ :=
n/9 (note that λ is an integer), the union bound gives us

φ
1/0
S [I ←→ Z× {2n}] ≥ 1

36k
=: c1, (5.5)
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where I = [4λ, 5λ] × {0}. For future reference, let us also introduce the segment J =

[6λ, 7λ]× {0}.
Define the rectangle R = [0, 9λ]× [0, 2n]. When the event estimated in equation (5.5)

is realized, there exists an open path in R connecting I to the union of the top, left and
right boundaries of R. Using the reflection with respect to the vertical line { n

2} × R, we
find that at least one of the two following inequalities occurs:

Case 1: φ1/0
S

[
I R←→ [0, n]× {2n}

]
≥ c1/3.

Case 2: φ1/0
S

[
I R←→ {0} × [0, 2n]

]
≥ c1/3.

Ω

I J

Γ1

Γ2

Figure 5.1: The construction in Case 1 with the two paths Γ1 and Γ2 and the domain
Ω between the two paths. On the right, a combination of paths creating a long path
from left to right.

Proof of (5.4) in Case 1: Consider the event that there exist

(i) an open path from I to the top of [0, 2n]2 contained in [0, 2n]2,
(ii) an open path from J to the top of [0, 2n]2 contained in [0, 2n]2,
(iii) an open path connecting these two paths in [0, 2n]2.

Each path in (i) and (ii) exists with probability larger than c1/3 (since R and (2λ, 0)+R
are included in [0, 2n]2). Furthermore, let Γ1 be the left-most path satisfying (i) and Γ2 the
right-most path satisfying (ii); see Fig. 5.1. The subgraph of [0, 2n]2 between Γ1 and Γ2 is
denoted by Ω. Conditioning on Γ1 and Γ2, the boundary conditions on Ω are wired on
Γ1 and Γ2, and dominate the free boundary conditions on the rest of ∂Ω. We deduce that
boundary conditions on Ω dominate boundary conditions inherited by wired boundary
conditions on the left and right sides of the box [0, 2n]2, and free on the top and bottom
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sides. As a consequence of (5.3), conditionally on Γ1 and Γ2, there exists an open path in
Ω connecting Γ1 to Γ2 with probability larger than 1/(1 + q2). In conclusion,

φ
1/0
S

[
I

[0,2n]2←−−→ J
]
≥ φ1/0

S [(i), (ii) and (iii) occur] ≥
( c1

3

)2
× 1

(1 + q2)
. (5.6)

For x = jλ, where j ∈ {−9k− 5, . . . , 9k− 6}, define the translate of the event considered
in (5.6):

Ax := (x + I)
x+[0,2n]2←−−−−→ (x + J).

If Ax occurs for every such x, we obtain an open crossing from left to right in [−kn, kn]×
[0, 2n]. The FKG inequality implies that this happens with probability larger than

(
c2

1
9(1+q2)

)20k
.

Proof of (5.4) in Case 2: Define the rectangle R′ = [4λ, 9λ]× [0, 2n]. Note that in Case 2,
J is connected to one side of [2λ, 11λ]× [0, 2n] with probability bounded from below by
c1/3, hence the same is true for R′ (since [2λ, 11λ]× [0, 2n] is wider than R′). Consider
the event that there exist

(i) an open path from I to the right side of R contained in R,
(ii) an open path from J to the left side of R′ contained in R′,
(iii) an open path connecting these two paths in [0, 2n]2.

The first path occurs with probability larger than c1/3, and the second one with prob-
ability larger than c1/6 (there exists a path to one of the sides with probability at least
c1/3, and therefore by symmetry in R′ to the left side with probability larger than c1/6).
By the FKG inequality, the event that both (i) and (ii) occur has probability larger than
c2

1/18. We now wish to prove that conditionally on (i) and (ii) occurring, the event (iii)
occurs with good probability.

Define the segments K(y, z) = {4λ} × [y, z] for y ≤ z ≤ ∞. They are all subsegments
of the vertical line of first coordinate equal to 4λ.

Consider the right-most open path Γ1 satisfying (ii). It intersects the segment K(0, 2n)
at a unique point with second coordinate denoted by y. Also consider the left-most open
path Γ̃2 satisfying (i). Either Γ1 and Γ̃2 intersect, or they do not. In the first case, we are
already done since (iii) automatically occurs. In the second, we consider the subpath Γ2 of
Γ̃2 from I to the first intersection with K(y, 2n) (this intersection must exist since Γ̃2 goes to
the right side of R′). Let us now show that Γ1 and Γ2 are connected with good probability.
Note the similarity with the construction in [BDC12a] with symmetric domains, except
that the lattice is not rotated here. The proof is therefore slightly more technical and we
choose to isolate it from the rest of the argument.

Claim: There exists c2 > 0 such that for any possible realizations γ1 and γ2 of Γ1 and Γ2,

φ
1/0
S

[
γ1

R←→ γ2

∣∣∣ Γ1 = γ1, Γ2 = γ2

]
≥ c2. (5.7)

Proof. Fig. 5.2 should be very helpful in order to follow this proof. Construct the sub-
graph Ω “between γ1 and γ2” formally delimited by:
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• the arc γ2,
• the segment [0, n]× {0},
• the arc γ1,
• the segment K(y + 1, 2n) excluded (the vertices on this segment are not part of the

domain).

We wish to compare Ω (left of Fig. 5.2) to a reference domain D (center of Fig. 5.2) defined
as the upper half-plane minus the edges intersecting {4λ − 1

2} × (y, ∞) and define the
boundary conditions mix on D by:
• wired boundary conditions on K(y, ∞) and A := (−∞, 4λ]× {0};
• wired boundary conditions at infinity (by this we mean that we take the limit of

measures on D ∩Λn, with wired boundary conditions on ∂Λn);
• free boundary conditions elsewhere.

The boundary conditions on Ω inherited by the conditioning Γ1 = γ1 and Γ2 = γ2 domi-
nate wired on γ1 and γ2, and free elsewhere. Thus, we deduce that

φ
1/0
S

[
γ1

Ω←→ γ2
∣∣ Γ1 = γ1, Γ2 = γ2

]
≥ φmix

D

[
K(y, ∞)

D←→ A
]

. (5.8)

As mentioned above, the domain D is not exactly a symmetric domain but it is still
very close to be one. Consider the domain D̃ (see on the right of Fig. 5.2) obtained from
D by the reflection with respect to the vertical line d = {(4λ − 1

4 , y) : y ∈ R} and a
translation by ( 1

2 , 1
2 ). Let B = (−∞, 4λ − 1]× {0}. Define the boundary conditions mix

on D̃ as
• wired boundary conditions on K(y + 1, ∞) ∪ B (it is very important that the two

arcs are wired together);
• free boundary conditions at infinity;
• free boundary conditions elsewhere.

Using duality, we find that

φmix
D

[
K(y, ∞)

D
6←→ A

]
= φmix

D̃

[
K(y + 1, ∞)

D̃←→ B
]

and thus
φmix

D

[
K(y, ∞)

D←→ A
]
+φmix

D̃

[
K(y + 1, ∞)

D̃←→ B
]
= 1. (5.9)

Define the mix′ boundary conditions on D as wired boundary conditions on K(y+ 1, ∞)∪
B := (−∞, 4λ− 1]× {0} (the two arcs are once again wired together) and free elsewhere
(they correspond to the boundary conditions mix on D̃). Since D̃ ⊂ D,

φmix
D̃

[
K(y + 1, ∞)

D̃←→ B
]
≤ φmix′

D

[
K(y, ∞)

D←→ A
]

.

The boundary conditions for the term on the right can be compared to the boundary
conditions mix. First, one may wire the vertices (4λ, y) and (4λ, y + 1) together, and the
vertices (4λ− 1, 0) and (4λ, 0) together, which increases the probability of an open path
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Γ2

K(y,∞)

(4λ, y)

Γ1

R′R

I J

Ω

2n

4λ

D D̃

(4λ, 0)

Figure 5.2: Left. The domain Ω. We depicted the part of the domain with free bound-
ary conditions by putting dual wired boundary conditions on the associated dual
arcs. The wired boundary conditions are depicted in bold. The rectangles R and R′

are also specified (R′ is in dashed). Center. The domain D. We depicted the domain
Ω in white. The existence of an open path between K(y, ∞) and A implies the exis-
tence of an open path between γ1 and γ2 in D (between the two crossings). Right.
The domain D̃ with one path from K(y + 1, ∞) to B. The pre image of this path by
the reflection mapping D onto D̃ is a dual-path in D preventing the existence of an
open path from K(y, ∞) to A.
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3 Proof of Theorem 1.3

between K(y, ∞) and A. Second, one may unwire the arcs B and K(y + 1, ∞), paying a
multiplicative cost of q2. Using the previous inequality and the comparison between the
boundary conditions described in this paragraph, we deduce

φmix
D̃

[
K(y + 1, ∞)

D̃←→ B
]
≤ q2φmix

D

[
K(y, ∞)

D←→ A
]

.

Putting this inequality in (5.9) and then using (5.8), we find that

φ
1/0
S

[
γ1

Ω←→ γ2
∣∣ Γ1 = γ1, Γ2 = γ2

]
≥ φmix

D

[
K(y, ∞)

D←→ A
]
≥ 1

1 + q2 .

It follows from (5.7) and the probabilities of (i) and (ii) that

φ
1/0
S

[
I R←→ J

]
≥ 1

1 + q2 ×
c2

1
18

.

Here again, 20k translations of the event above guarantee the occurrence of an open
crossing from left to right in [−kn, kn]× [0, 2n]. This occurs with probability larger than
(

c2
1

18(1+q2)
)20k thanks to the FKG inequality again.

In the next lemma, we consider horizontal crossings in rectangular shaped domains
with free boundary conditions on the bottom and wired elsewhere.

Lemma 3.6. For all k > 0 and ` ≥ 4/3, there exists a constant c = c(k, `) > 0 such that for all
n > 0,

φ
1/0
D [Ch ([−kn, kn]× [0, n])] ≥ c (5.10)

with D = [−kn, kn]× [0, `n], and φ1/0
D is the random-cluster measure with free boundary con-

ditions on the bottom side, and wired on the three other sides.

Proof. For ` = 4/3, the result follows directly from Lemma 3.5 since boundary conditions
dominate boundary conditions in the strip Z× [0, 4n

3 ], and therefore there exists an hor-
izontal crossing of the rectangle [−kn, kn]× [ n

3 , n] with probability bounded away from
0.

Now assume that the result holds for ` and let us prove it for `+ 1/3. By comparison
between boundary conditions in [−kn, kn]× [ n

3 , `n + n
3 ], we know that

φ
1/0
D
[
Ch([−kn, kn]× [ n

3 , 4n
3 ])
]
≥ c(k, `).

Conditioning on the highest such crossing, the boundary conditions below this crossing
dominate the free boundary conditions on the bottom side of [−kn, kn] × [0, 4n

3 ], and
wired on the other three sides of [−kn, kn] × [0, 4n

3 ]. An application of the case ` = 4
3

enables us to set c(k, `+ 1
3 ) = c(k, `)c(k, 4

3 ).
The proof follows from the fact that the probability in (5.10) is decreasing in `.
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Lemma 3.7. There exists a constant C < ∞ such that, for all n ≥ 1,

φ0
Λ56n

[A7n] ≤ Cφ0
Λ8n

[An]
2 .

Proof. Define z± = (±5n, 0). IfA7n occurs, the boundary conditions on Λ7n dominate the
wired boundary condition on Λ56n due to the existence of the open circuit in Λ14n \Λ7n.
The use of Theorem 2.3 thus implies the existence of a constant c1 > 0 such that, for all n,

φ0
Λ56n

[An(z+) ∩An(z−)|A7n] ≥ φ1
Λ56n

[An(z+) ∩An(z−)] ≥ c1.

It directly implies that for all n,

φ0
Λ56n

[An(z+) ∩An(z−)] ≥ c1φ
0
Λ56n

[A7n]. (5.11)

Now, examine the domain D = [−56n, 56n]× [2n, 56n] and consider the measure φ1/0
D

with free boundary conditions on the bottom and wired boundary elsewhere. Also set

R∗+ := [−56n− 1
2 , 56n + 1

2 ]× [2n + 1
2 , 3n− 1

2 ].

Underφ0
56n[ · |An(z+) ∩An(z−)], the boundary conditions on D are dominated by wired

boundary conditions on the bottom and free boundary conditions on the other sides. As
a consequence, Lemma 3.6 applied to k = 56 and ` = 54 implies that

φ0
Λ56n

[
C∗h (R∗+)

∣∣An(z+) ∩An(z−)
]
≥ φ1/0

D [C∗h (R∗+)] ≥ c2 (5.12)

for some universal constant c2 > 0 independent of n. Similarly, with

R∗− := [−56n− 1
2 , 56n + 1

2 ]× [−3n + 1
2 ,−2n− 1

2 ],

we find
φ0

Λ56n

[
C∗h
(

R+
−
) ∣∣∣An(z+) ∩An(z−)

]
≥ c2. (5.13)

Define the event Bn, illustrated on Fig. 5.3, which is the intersection of the eventsAn(z+),
An(z−), C∗h (R∗+) and C∗h (R∗−). Equations (5.11), (5.12) and (5.13) lead to the estimate

φ0
Λ56n

[Bn] ≥ c3φ
0
Λ56n

[A7n] , (5.14)

where c3 > 0 is a positive constant independent of n.
Assume Bn occurs and define Γ ∗1 to be the top-most horizontal dual-crossing of R∗+

and Γ ∗2 to be the bottom-most horizontal dual-crossing of R∗−. Note that these paths are
dual paths. Let Ω∗ be the set of dual-vertices in R∗ := [−3n + 1

2 , 3n − 1
2 ]

2 below Γ ∗1
and above Γ ∗2 . Exactly as in the proof of Lemma 3.5, when conditioning on Γ ∗1 , Γ ∗2 and
everything outside Ω∗, the boundary conditions inside Ω∗ are dual-wired on Γ ∗1 and Γ ∗2 ,
and dual-free elsewhere. The dual measure inside Ω∗ therefore dominates the restriction
to Ω∗ of the dual measure on R∗ with dual-wired boundary conditions on the top and
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0 z+

2n

−2n

3n

−3n5n5n

n

Ω∗

z−
n

z+ + Λ8n

Γ∗
1

Γ∗
2

Figure 5.3: Primal open crossings are in bold, dual-open are in plain. The events
An(z+), An(z−) and the existence of the dual horizontal crossings of R∗+ and R∗−
form Bn. Conditionally on Bn, Γ ∗1 and Γ ∗2 are connected in Ω∗ by a dual-open path
with probability larger than 1/(1 + q2).

bottom, and dual-free boundary conditions on the left and right sides. Using (5.3), we
find

φ0
Λ56n

[
Cn
∣∣ Bn

]
≥ 1

1 + q2 ,

where Cn = {Γ1
∗←→ Γ2 in R∗}. Similar inequalities hold for the events

Dn =
{
Γ1

∗←→ Γ2 in (−10n, 0) + R∗
}

,

En =
{
Γ1

∗←→ Γ2 in (10n, 0) + R∗
}

.

The FKG inequality thus implies

φ0
Λ56n

[
Cn ∩Dn ∩ En

∣∣ Bn
]
≥ 1

(1 + q2)3

which, together with (5.14), leads to

φ0
Λ56n

[Bn ∩ Cn ∩Dn ∩ En] ≥
c3

(1 + q2)3φ
0
Λ56n

[A7n] . (5.15)

The event estimated in (5.15) implies in particular the existence of dual circuits in z+ +

Λ∗8n and z− +Λ∗8n disconnecting z+ +Λ∗2n from z− +Λ∗2n. Writing Fn for the event that
such dual circuits exist and using the comparison between boundary conditions one last
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time (more precisely a “conditioning on the exterior-most circuit”-type argument), we
obtain

φ0
Λ8n

[An]
2 = φ0

z−+Λ8n
[An(z−)]φ0

z++Λ8n
[An(z+)]

≥ φ0
Λ56n

[An(z−) | An(z+) ∩ Fn]φ
0
Λ56n

[An(z+) | Fn]φ
0
Λ56n

[Fn]

= φ0
Λ56n

[An(z−) ∩An(z+) ∩ Fn]

≥ c3

(1 + q2)3φ
0
Λ56n

[A7n] .

This inequality implies the claim.

We need a last lemma before being able to prove Proposition 3.4.

Lemma 3.8. Let 1 ≤ k ≤ n,

φ0
Λn

[0←→ ∂Λk] ≤ ∑
m≥k

72m4 max
a∈{0}×[0,m]
b∈{m}×[0,m]

φ0
[0,m]2 [a←→ b] .

Proof. For x = (x1, x2), define ‖x‖∞ = max{|x1|, |x2|}.
Define C to be the connected component of the origin. Consider the event that a and

b are two vertices in C maximizing the ‖ · ‖∞-distance between each other. Since these
vertices are at maximal distance from each other, they can be placed on the two opposite
sides of a square box Λ in such a way that C is included in this box. Let Amax(a, b, Λ) the
event that a and b are connected in Λ and that their cluster is contained in Λ.

We now wish to estimate the probability of Amax(a, b, Λ). Let Λ∗ be the subgraph
of (Z2)∗ composed of dual-edges whose end-points correspond to faces touching Λ. Let
C be the set of dual self-avoiding circuits γ = {γ0 ∼ γ1 ∼ · · · ∼ γm ∼ γ0} on Λ∗

surrounding a and b. As before, we denote by γ the interior of γ.
On the event C, there exists γ ∈ C which is dual-open1, and a and b are connected in

γ. As before, we may condition on the outermost dual-open circuit Γ in C. We deduce as
in the last proof that

φξΛn
(a←→ b in γ | Γ = γ) = φ0

γ(a←→ b in γ) ≤ φ0
Λ(a←→ b in γ) ≤ φ0

Λ(a←→ b).

We now partition Amax(a, b, Λ) into the events {Γ = γ} to find

φξΛn
(Amax(a, b, Λ)) ≤ φ0

Λ(a←→ b)

and therefore
φξΛn

(Amax(a, b, Λ)) ≤ max
a∈{0}×[0,m]
b∈{m}×[0,m]

φ0
[0,m]2 [a←→ b] , (5.16)

where m = ‖a− b‖∞.

1Note that this is true even when Λ = Λn since free boundary conditions can be seen as dual-wired
boundary conditions on Λ∗n, and that therefore ∂Λ∗n provides us with a dual self-avoiding circuit in C which
is dual-open. A similar reasoning applies when Λ only shares some sides with Λn.
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We may now use the fact that if 0 is connected to distance k, there exist a and b at
distance m ≥ k of each others and a box Λ having a and b on opposite sides such that
Amax(a, b, Λ) occurs. Let us bound the number of choices for a, b and Λ.

For a fixed m ≥ k, there are |Λm| = (2m+ 1)2 choices for a (since a must be at distance
smaller or equal to m from the origin). Then a must be on the boundary of Λ and there
are therefore |∂Λ| = 4m choices for Λ. The number of choices for b is bounded by m + 1
(it must be on the opposite sides of Λ). Therefore, for fixed m we can bound the number
of possible triples (a, b, Λ) by 4m(2m + 1)2(m + 1) ≤ 72m4. We have been very wasteful
in the previous reasoning and the bound on this number could be improved greatly but
this will be irrelevant for applications.

Overall, (5.16) and a union bound gives

φ0
Z2 [0↔ ∂Λk] ≤ ∑

m≥k
72m4 max

a∈{0}×[0,m]
b∈{m}×[0,m]

φ0
[0,m]2 [a←→ b] .

Proof of Proposition 3.4. Obviously the cases 1 and 2 cannot occur simultaneously. Sup-
pose that the first case does not occur and let us prove that the second does.

For all n ≥ 1, set un = Cφ0
Λ8n

[An], where C is defined as in Lemma 3.7. With this
notation, Lemma 3.7 implies that u7n ≤ u2

n for any n ≥ 1 which implies that for 0 ≤
`, k ≤ n,

u7kn0
≤ u2k

n0
(5.17)

for any positive k ≥ 0 and n0 ≥ 1. Now, if lim inf
n→∞ φ0

Λ8n
[An] = 0, then we may pick n0

such that un0 < 1. By (5.17), there exists c1 > 0 such that for all n of the form n = 7kn0,

un ≤ exp
(
−c1nlog 2/ log 7

)
.

Fix n = 7kn0 and consider n
7 ≤ m < n. The FKG inequality and the comparison between

boundary conditions imply that

φ0
[0,m]2 [(0, k)←→ (m, `)] ≤

(
φ0
[−m,m]×[0,m] [(−m, `)←→ (m, `)]

)1/2

≤
(
φ0

Λ8n
[Ch([−2n, 2n]× [0, m])]

)1/14

≤
(
φ0

Λ8n
[An]

)1/56
≤ exp

(
−c2nlog 2/ log 7

)
.

In the first inequality, we used that if (0, k) ←→ (m, `) and (−m, `) ←→ (0, k), then
(−m, `) ←→ (m, `). In the second inequality, we have used that if (x, `) ←→ (x + 2m, `)
occur for x = 2m j with j ∈ {−7, . . . , 7}, then Ch([−2n, 2n] × [0, m]) occurs. Finally in
the third inequality we combined four crossings as in the proof of P5⇒P5a. Lemma 3.8
implies the claim.

Theorem 1.3 follows directly from Proposition 3.4 and the following proposition:
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Proposition 3.9. If there existsα > 0 such that for all n ≥ 1,

φ0
Z2 [0←→ ∂Λn] ≤ exp(−nα),

then there exists c > 0 such that for all n ≥ 1,

φ0
Z2 [0←→ ∂Λn] ≤ exp(−cn).

We start by a lemma. Let n ≥ 1 and θ ∈ [−1, 1]. Define the tilted strip in direction θ:

S(n,θ) := {(x, y) ∈ Z2 : 0 ≤ y−θx ≤ n}.

Writeφ1/0
S(n,θ) for the random-cluster measure on the tilted strip S(n,θ) with wired bound-

ary conditions on the top side and free on the bottom side (the boundary conditions at
infinity are irrelevant since the tilted strip is essentially a one-dimensional graph).

We will also consider a truncated version of the tilted strip S(n,θ). For m ≥ 0, con-
sider the truncated tilted strip

S(n, m,θ) := S(n,θ) ∩Λm.

We will always assume that θm ∈ N. Writeφ1/0
S(n,m,θ) for the random-cluster measure with

free boundary conditions on the bottom side and wired on the other three sides.
For simplicity, we will call the bottom side of the strip or the truncated strip the free

arc, and the rest of the boundary the wired arc.

Lemma 3.10. For all m ≥ n ≥ 1 and θ ∈ [−1, 1],

φ
1/0
S(n,m,θ) [0←→ wired arc] ≥ 1

5m2n2 .

Proof. Fix n ≥ 0 andθ ∈ [−1, 1]. Let us work in the strip S(2n,θ). From now on, we drop
the dependence in n and θ and write for instance S = S(n,θ) and S(m) = S(2n, m,θ).
Beware that there is a slightly confusing notation here: the height of the strip is 2n while
the one of the truncated strip is n.

For x ∈ S, define the translate Sx(m) := x + S(m) of S(m). We extend the definition
of wired and free arcs to this context. Let A(x) be the event that x is connected to the
wired arc of Sx(m) and every open path from a vertex y /∈ Sx(m) to x intersects the wired
arc (of Sx(m)). In other words, no open path starting from x “exits” Sx(m) through the
free arc (i.e. the bottom side).

We consider the random function F : N −→ [0, 2n] defined by

F(k) := min{` : (k, `) is connected to the top side of S} −θk.

Recall that θm ∈ N. Therefore, F can take only the 2nm + 1 following values:{
0, 1

m , . . . , 2nm−1
m , 2n

}
.
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On the event {F(0) ≤ n}, there must exist k ∈ {−nm2, . . . , nm2} such that F(k) ≤ n and
F(k′) ≥ F(k) for every |k′ − k| ≤ m. Otherwise, if there is no such k, then there exists a
sequence 0 = k0, . . . , knm with |ki+1 − ki| ≤ m and 0 < F(ki+1) < F(ki). But this provides
nm + 1 distinct values for F, all smaller or equal to n and strictly larger than 0, which is
contradictory.

Now, for k satisfying F(k) ≤ n and F(k′) ≥ F(k) for every |k′ − k| ≤ m, the event
A((k, F(k))) is realized. In conclusion, if F(0) ≤ n, then there exists x ∈ S(n, nm2,θ)
such that A(x) is realized and the union bound shows the existence of x ∈ S(n,θ) (the
lower half of S) such that

φ
1/0
S [A(x)] ≥ φ

1/0
S [F(0) ≤ n]
|S(n, nm2,θ)| =

φ
1/0
S [F(0) ≤ n]
n(2nm2 + 1)

.

Consider the interface between the open cluster connected to the top side of the box
and the dual-open cluster dual-connected to the bottom side. By duality, this interface
intersects {0} × [0, n] with probability larger or equal to 1/2. Thus, φ1/0

S [F(0) ≤ n] ≥ 1
2

and therefore
φ

1/0
S [A(x)] ≥ 1

5n2m2 .

In order to conclude, we simply need to prove that

φ
1/0
S(m) [0←→ wired arc] ≥ φ1/0

S [A(x)] .

First, observe that since x is contained in the bottom half S(n,θ) of S, the set Sx(m) is
entirely included in S. Second, since there is no open path containing x and exiting Sx(m)

by the free arc, there exists a lowest dual-open path in Sx(m)∗, denoted Γ ∗, preventing
the existence of such a path, see Fig. 5.4. Let Ω be the set of vertices of Sx(m) above
Γ ∗. The boundary conditions on Ω are dominated by free boundary conditions on the
bottom side of Sx(m) and wired on the three other sides of Sx(m). If A(x) occurs, then
conditionally on Γ ∗, x is connected to the wired arc of Sx(m) by an open path contained
in Ω. Thus,

φ
1/0
S [x←→ wired arc of Sx(m)|Γ ∗] ≤ φ1/0

Sx(m) [x←→ wired arc of Sx(m)]

= φ
1/0
S(m) [0←→ wired arc of S(m)] .

We omitted a few lines to get the first inequality since we already mentioned such an
argument. The equality follows from invariance under translations. Since the previous
bound is uniform in the possible realizations of Γ ∗, we deduce

φ
1/0
S [A(x)] ≤ φ1/0

S(m) [0←→ wired arc of S(m)] .

The result follows readily.

The next lemma will be used recursively in the proof of Proposition 3.9.
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y = θx

y = θx+ n

y = θx+ 2n

m

n

Sx(m)

x

Ω

Γ⋆

S

Figure 5.4: The event A(x). The bottom-most dual-path Γ ∗.
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Lemma 3.11. Assume that there existsα > 0 such that for all n ≥ 1,

φ0
Z2 [0←→ ∂Λn] ≤ exp(−nα).

Then for ε > 0 small enough, there exists a constant C < ∞ such that for any n ≥ 1, any
u ∈ {−n} × [−n, n] and any v ∈ {n} × [−n, n],

φ0
Λn

[u←→ v] ≤ eCnεφ0
Z2 [0←→ ∂Λn]

2 + Cn6
∑

k,`≥nε
k+`=2n

φ0
Z2 [0←→ ∂Λk]φ

0
Z2 [0←→ ∂Λ`] .

Proof. Fix ε > 0. Let us translate the box Λn in such a way that u = −v; the new box is
denoted by Λ̃n. Define the set

D =
{

z ∈ Λ̃n : d(z, [u, v]) < nε
}

.

As illustrated in Fig. 5.5, we consider the sets D− and D+ of points z ∈ Λ̃n lying re-

D+

D

D−

0

v

u = −v

2nǫ

2n

Λ̃n

0

v

u

z

Figure 5.5: Left. The regions D, D− and D+. Note that 0 is not necessarily at the
center of Λ̃n. Right. The situation before closing the edges surrounding z when Gn(z)
and {z + ( 1

2 , 1
2 )

∗←→ ∂Λn} occurs. The dual-open paths are depicted in dash lines.

spectively below D and above D. On {u Λ̃n←→ v}, define Γ− and Γ+ to be respectively
the lowest and highest open (non-necessarily self-avoiding) paths connecting u to v. The

event {u Λ̃n←→ v} is included in the union of the following three sub-events:

E− = {u Λ̃n←→ v} ∩ {Γ− ∩ D+ 6= ∅}, (5.18)

E+ = {u Λ̃n←→ v} ∩ {Γ+ ∩ D− 6= ∅},

E = {u Λ̃n←→ v} ∩ {Γ+ ⊂ D+ ∪ D} ∩ {Γ− ⊂ D− ∪ D}.

In the rest of the proof, we will bound separately φ0
Λ̃n

[E−] (and therefore φ0
Λ̃n

[E+] by
symmetry) and φ0

Λ̃n
[E ], hence the two terms on the right-hand side of the inequality in

the statement.
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Estimation of φ0
Λ̃n

[E−]. For z ∈ D+ ∩ Z2, let Gn(z) be the event that:
• u is connected to v in Λ̃n,
• z ∈ Γ− and d(z, [u, v]) = max

z′∈Γ−∩D+

d(z′, [u, v]).

Note that
E− =

⋃
z∈D+

Gn(z).

Conditionally on Γ−, what is above Γ− follows a random-cluster measure with wired
boundary conditions on Γ− and free on ∂Λ̃n. Thus, by comparison between boundary
conditions and Lemma 3.10 (with m = n and θ = v2−u2

v1−u1
, where u = (u1, u2) and v =

(v1, v2)), we find that

φ0
Λ̃n

[
z + (1/2, 1/2) ∗←→ ∂B∗n

∣∣∣ Gn(z)
]
≥ 1

5(2n)4 ,

When both Gn(z) and {z + (1/2, 1/2) ∗←→ ∂B∗n} occur, closing the four dual edges sur-
rounding the vertex z disconnects Γ− into two paths separated by dual-open circuits (see
Fig. 5.5). The respective end-to-end distances ` and k of these paths satisfy k+ ` ≥ 2n− 2.

Using the comparison between boundary conditions once-again, we find

φ0
Λ̃n

[Gn(z)] ≤ 5(2n)4φ0
Λ̃n

[
Gn(z) ∩ {z + (1/2, 1/2) ∗←→ ∂B∗n}

]
≤ 80

c4
IT

n4
∑

k,`≥nε
k+`=2n−2

φ0
Z2 [u←→ u + ∂Λk]φ

0
Z2 [v←→ v + ∂Λ`] .

The finite energy property is used in the second line to close the edges around z. Sum-
ming over all possible z ∈ D+ gives

φ0
Λ̃n

[E−] ≤ C1n6
∑

k,`≥nε
k+`=2n−2

φ0
Z2 [0←→ ∂Λk]φ

0
Z2 [0←→ ∂Λ`] .

The finite energy property once again implies that φ0
Z2 [0←→ ∂Λr+1] ≥ cITφ

0
Z2 [0←→ ∂Λr]

for any r ≥ 0 and thus

φ0
Λ̃n

[E−] ≤ C2n6
∑

k,`≥nε
k+`=2n

φ0
Z2 [0←→ ∂Λk]φ

0
Z2 [0←→ ∂Λ`] .

Estimation of φ0
Λ̃n

[E ]. First, we wish to justify that conditionally on the occurrence of E ,
there exists an open path between u and v which is staying in D with probability close
to 1. To see this, remark that any open path between u and v must lie in the region Ω

between Γ− and Γ+ (see Fig. 5.6). Furthermore, conditioning on Γ+ and Γ−, the boundary
conditions on Ω are wired. In particular, the configuration in Ω dominates the restriction
to Ω of a configuration ω̃ sampled according to a random-cluster measure with wired
boundary conditions at infinity. Since Γ+ and Γ− are already open, u and v are connected
in D if there exists an open path in ω̃ from left to right in D. The complement of this
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event is included in the event that a dual-vertex of D∗ is dual-connected to distance nε of
itself in ω̃. The probability of this event can thus be bounded by 4n1+ε exp(−nαε) thanks
to the assumption made on connection probabilities. We deduce

φ0
Λ̃n

[
u D←→ v

]
≥
(
1− 4n1+ε exp(−nαε)

)
φ0

Λ̃n
[E ] .

Now, consider the set of edges E of D intersecting the line { 1
2} × R. Also define w−

and w+ to be respectively the highest point of D∗− and the lowest point of D∗+ with first
coordinate equal to 1

2 . Let F be the event that

• all the edges of E are closed,
• w− and w+ are dual-connected to ∂Λ̃∗n in D∗− and D∗+ respectively.

Consider the event u D←→ v and modify the configuration by closing all edges in E. The
finite energy property implies that

φ0
Λ̃n

[F ∩ {u←→ u + ∂Λn} ∩ {v←→ v + ∂Λn−1}]

≥ φ0
Λ̃n

[
u D←→ v

]
× c2

√
2nε

IT ×
(

1
5(2n)4

)2

,

where the term c2
√

2nε
IT is a uniform lower bound for the probability that all edges in E are

closed, and [5(2n)4)]−2 comes from the fact that Lemma 3.10 gives

φ0
Λ̃n

[
w−

∗←→ ∂Λ̃∗n in D−
∣∣∣ u D←→ v

]
≥ 1

5(2n)4 and

φ0
Λ̃n

[
w+

∗←→ ∂Λ̃∗n in D+

∣∣∣ u D←→ v
]
≥ 1

5(2n)4 .

The event F forces the existence of a dual path disconnecting the cluster of u and the
cluster of v (see Fig. 5.6). Conditioning on the cluster of u and its boundary, the boundary
conditions in what remain are dominated by free boundary conditions at infinity, and we
deduce that

φ0
Λ̃n

[E ] ≤ ec2nεφ0
Z2 [0←→ ∂Λn]φ

0
Z2 [0←→ ∂Λn−1] ≤

ec2nε

cIT
φ0
Z2 [0←→ ∂Λn]

2 ,

where once again we used insertion tolerance in the last inequality. The claim follows
readily.

Remark 3.12. The previous lemma implies that φ0
[0,2n]2(u ←→ v) is bounded by the right

hand-side of (5.18) for any u and v on two opposite sides of [0, 2n]2. Let us argue that
φ0
[0,2n−1]2(u

′ ←→ v′) is also bounded by a universal constant C times the right-hand side
of (5.18) uniformly on u′ and v′ on opposite sides of [0, 2n− 1]2. Indeed, the comparison
between boundary conditions shows that

φ0
[0,2n−1]2(u

′ ←→ v′) ≤ φ0
[0,2n]2

(
u′

[0,2n−1]2←−−−−→ v′
)
.
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u

v

0C⋆

u

v

0

w+

w−

E

Figure 5.6: Left. The domain Ω between Γ− and Γ+. Inside, a dual cluster C∗ prevent-
ing the existence of an open path from u to v in D. Since we assumed that connection
probabilities decay as a stretched exponential, this cluster exists with very small prob-
ability. Right. Splitting the open path from u to v in two pieces.

Now let u and v be two neighbors of u′ and v′ on opposite sides of [0, 2n]2. The finite
energy property implies that

φ0
[0,2n−1]2(u

′ ←→ v′) ≤ cITφ
0
[0,2n]2(u←→ v)

and we may apply the previous lemma.

Proof of Proposition 3.9. Assume that there existsα > 0 such that

φ0
Z2 [0←→ ∂Λn] ≤ exp(−nα)

for any n ≥ 0. Fix ε < β < α to be chosen later. Set

qn = enβφ0
Z2 [0↔ ∂Λn] .

Lemma 3.8 applied to 2n and Lemma 3.11 (more precisely Remark 3.12) imply that there
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3 Proof of Theorem 1.3

exists C3 > 0 such that

q2n ≤ e(2n)β
∑

m≥n
C3m4

(
ec3mεφ0(0↔ ∂Λm)

2

+ c3m6
∑

k,`≥mε
k+`=2m

φ0(0←→ ∂Λk)φ
0(0←→ ∂Λ`)

)
≤ e(2n)β

∑
m≥n

C3m4
(

ec3mεe−2mβ

q2
m + c3m6

∑
k,`≥mε

k+`=2m

e−(k
β+`β)qkq`

)
≤
(

max
k,`≥nε

k+`≥2n

qkq`
)

e(2n)β
∑

m≥n
C3m4

(
ec3mεe−2mβ

+ c3m6
∑

k,`≥mε
k+`=2m

e−(k
β+`β)

)
≤ C4 max

k,`≥nε
k+`≥2n

qkq`,

where C4 < ∞ is a constant independent of n. The existence of C4 follows from a simple
computation using ε < β and the fact that β < 1 and k, ` ≥ nε imply

e−(k
β+`β) ≤ e−(k+`)βe−c4nεβ

for some constant c4 > 0 2.
Let us now come back to the proof. The finite energy property implies the existence

of c5 > 0) such that c5qk ≤ qk+1 ≤ qk/c5 for any k ≥ 0. Using this fact, the previous
inequality immediately extends to odd integers and there exists C5 < ∞ such that

qn ≤ C5 max
k,`≥nε
k+`≥n

qkq`.

We unfortunately need to include the following technical trick. We do not know a priori
that (qn) is decreasing. For this reason, we set Qn = C5 max{qm : m ≥ n}. For this
definition, we get

Qn ≤ max
k,`≥nε
k+`≥n

QkQ`.

We are now in a position to conclude. The assumption implies that (Qn) tends to zero.
Pick n0 such that Qn < 1 for n ≥ nε0. Since (Qn)n≥0 is decreasing, the maximum of QkQ`

is not reached for k ≥ n or ` ≥ n and we obtain that for n ≥ n0,

Qn ≤ max
n>k,`≥nε

k+`≥n

QkQ`.

2Let us make a small remark before proceeding forward with the proof. It was crucial to keep the division
in the inequality of Lemma 3.11 between a term k = ` = m with a stretched exponential penalty 8m3ec3mε

,
and the general term k + ` = 2m, for which we have only a polynomial penalty 8m3c3m6. If we would have
replaced the polynomial bound by a stretched exponential one for every k and `, the values of k or ` close to
nε would have created difficulties since the correction would have been of the order of the largest of the two
terms.
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We can now proceed by induction to prove that for n ≥ n0,

Qn ≤ exp(−c6n) where c6 := max
nε0≤n≤n0

− 1
n log(Qn) > 0.

We therefore conclude that

φ0
Z2 [0←→ ∂Λn] ≤ n exp(nβ) · 1

C5
exp(−c6n).

4 Proof of Theorem 1.6

4.1 An input coming from the theory of parafermionic observables

We will harness the following theorem, which follows from the study of the parafermionic
observable. For a complete exposition of the current knowledge on parafermionic observ-
ables and a proof of this statement, we refer to [DC13, Chapter 6].

Dobrushin domains. In order to properly state and use the result, we first define the
notion of Dobrushin domain.

Let us start by defining the medial lattice (Z2)�, which is the graph with the centers of
edges of Z2 as vertex set, and edges connecting nearest vertices. The vertices and edges of
the medial lattice are called medial-vertices and medial-edges. This lattice is a rotated and
rescaled (by a factor 1/

√
2) version of Z2. Edges of (Z2)� are oriented counterclockwise

around medial-faces having a vertex of Z2 at their center. Like that, the medial lattice can
sometimes be seen as an oriented graph.

Let a� and b� be two distinct medial-vertices, and ∂�ab = {v0 ∼ v1 ∼ · · · ∼ vn},
∂�ba = {w0 ∼ w1 ∼ · · · ∼ wm} two paths of neighboring medial-vertices satisfying the
following properties:
• The paths start from a� and end at b�, i.e. v0 = w0 = a� and vn = wm = b�.
• The paths follow the orientation of the medial lattice.
• The path ∂�ab goes counterclockwise, while ∂�ba goes clockwise.
• The paths are edge-avoiding.
• The paths intersect only at a� and b�.

Note that ∂�ab ∪ ∂�ba is a non self-crossing edge-avoiding polygon. However, some vertices
might be visited twice.

Definition 4.1 (medial Dobrushin domains). Let ∂�ab and ∂�ba be two paths as above, and
let Ω� be the subgraph of (Z2)� induced by the medial-vertices that are enclosed by or in
the path ∂�ab ∪ ∂�ba. Then, (Ω�, a�, b�) is called a medial Dobrushin domain. An example is
given in Fig. 5.7.

As it stands, a� and b� have three incident medial-edges in EΩ� . Call ea and eb the
fourth medial-edges incident to a� and b� respectively.
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ebb⋄

a⋄

ea

∂⋄
ab

∂⋄
ba

Figure 5.7: A medial Dobrushin domain. Note the position of ea and eb.

Definition 4.2 (primal and dual Dobrushin domains with two marked points). Let (Ω�, a�, b�)
be a medial Dobrushin domain.

Let Ω ⊂ Z2 be the graph with edge set composed of edges passing through end-
points of medial-edges in EΩ� \ ∂�ab (if a medial-vertex is the end-point of a medial-edge
in EΩ� \ ∂�ab and one in ∂�ab, it is included) and vertex set given by the end-points of these
edges. Let a and b be the two vertices of Ω bordered by ea and eb. The triplet (Ω, a, b)
is called a primal Dobrushin domain. We denote by ∂ba the set of edges corresponding to
medial-vertices in ∂Ω� which are also end-points of medial-edges in ∂�ba, and set ∂ab =

∂Ω \ ∂ba.

Let Ω∗ ⊂ Z∗ be the graph with edge set composed of dual-edges passing through
medial-edges in EΩ� \ ∂�ba and vertex set given by the end-points of these dual-edges. Let
a∗ and b∗ be the two dual-vertices of Ω∗ bordered by ea and eb. The triplet (Ω∗, a∗, b∗) is
called a dual Dobrushin domain. We denote by ∂∗ab the set of dual-edges corresponding to
medial-vertices in ∂Ω� which are also end-points of medial-edges in ∂�ab, and set ∂∗ba =

∂Ω∗ \ ∂∗ab.

For a Dobrushin domain, let us define the Dobrushin boundary conditions on (Ω, a, b)
to be wired on ∂ba, and free on ∂ab. The random-cluster measure with these boundary
conditions and p = pc(q) is denoted byφa,b

Ω .

The main statement. Consider a Dobrushin domain (Ω, a, b). The winding WΓ (e, e′) of
a curve Γ on the medial lattice between two medial-edges e and e′ of the medial graph is
the total signed rotation in radians that the curve makes from the mid-point of the edge
e to that of the edge e′.
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b
b⋆

a
a⋆

∂ba

∂⋆
ab

∂ab

∂⋆
ba

Figure 5.8: The primal and dual Dobrushin domains associated to a medial Do-
brushin domain. Note the position of a, a∗, b and b∗.

For x ∈ ∂ab, define N(x) to be the number of neighboring vertices of x which are not
in Ω. We also set

W(x) :=
1

N(x) + 1 ∑
e

W∂�ab
(e, eb),

where the sum runs over medial-edges e ∈ ∂�ab bordering the face corresponding to x.
Note that there are N(x) + 1 such medial-edges. This quantity can thus be interpreted as
the average winding on adjacent medial-edges of ∂�ab ∪ ∂�ba.

For u ∈ ∂∗ba, define N(u) to be the number of neighboring dual-vertices of u which are
not in Ω. The quantity W(u) is defined as before, with ∂�ba replacing ∂�ab.

Define σ ∈ C so that sin(π2σ) =
√

q
2 (for simplicity, we choose σ ∈ [0, 1] for q ∈ [0, 4],

and σ ∈ 1− iR+ for q > 4).

Theorem 4.3 ([DC13, Corollary 6.12 and Theorem 6.14]). Let (Ω, a, b) be a Dobrushin do-
main, q > 0 and p = pc. Then

∑
x∈∂ab

δxφ
a,b
Ω [x←→ ∂ba]− ∑

u∈∂∗ba

δuφ
a,b
Ω

[
u ∗←→ ∂

∗
ab

]
= 1− exp[i(σ − 1)W∂�ab

(ea, eb)], (5.19)

where δz := 2i sin
[
(1−σ)π4 N(z)

]
exp

[
i(σ − 1)W(z)

]
.

Furthermore, for q = 4, we also find

∑
x∈∂ab

δxφ
a,b
Ω [x←→ ∂ba]− ∑

u∈∂∗ba

δuφ
a,b
Ω

[
u ∗←→ ∂

∗
ab

]
= W∂�ab

(ea, eb), (5.20)

where δz := π
2 N(z).
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(0, 0, 0)

Figure 5.9: The graph U.

The proof of this statement can be found in [DC13]. There, the factor 2i was forgotten
in the before last displayed equation in the proof.

4.2 Proof of Theorem 1.6

The original proof of Theorem 1.6 can be found in [DC12]. However, we choose to present
a streamlined proof here which is based on some of the new arguments of the previous
section. In this section, we fix 1 ≤ q < 4 (and still p = pc(q)). The case q = 4 follows the
same proof with (5.20) instead of (5.19).

Set Cn to be the slit domain obtained by removing from Λn the edges between the ver-
tices of {(0, k) : 0 ≤ k ≤ n}. We define Dobrushin boundary conditions on Cn to be wired
on {(0, k) : 0 ≤ k ≤ n} and free elsewhere. For simplicity, we now refer to {(0, k) : 0 ≤
k ≤ n} as the wired arc. The measure on Cn with these boundary conditions is denoted
φdobr

Cn
. Equivalently, one may obtainφdobr

Cn
by takingφ0

Λn
[ · |ω(e) = 1 : for all e in wired arc]

and we therefore think of Cn as the box Λn with free boundary conditions and {(0, k) :
0 ≤ k ≤ n} wired; see Fig. 5.10.

Lemma 4.4. There exists c > 0 such that for any n ≥ 1,

φdobr
Cn

[(0,−n)←→ wired arc] ≥ c
n16 .

The main estimate used in the proof of this lemma is provided by Theorem 4.3 ap-
plied in a well-chosen domain. Then, we compare boundary conditions in this domain
to Dobrushin boundary conditions in Cn. To exploit the whole power of Theorem 4.3,
we will consider a domain which is non-planar. Namely, let us introduce the following
graph U (see Fig. 5.9): the vertices are given by Z3 and the edges by
• [(x1, x2, x3), (x1, x2, x3)] for every x1, x2, x3 ∈ Z,
• [(x1, x2, x3), (x1 + 1, x2, x3)] for every x1, x2, x3 ∈ Z such that x1 6= 0
• [(0, x2, x3), (1, x2, x3)] for every x2 ≥ 0 and x3 ∈ Z,
• [(0, x2, x3), (1, x2, x3 + 1)] for every x2 < 0 and x3 ∈ Z.

This graph is the universal cover of Z2 \ F, where F is the face centered at ( 1
2 ,− 1

2 ). It can
also be seen at Z2 with a branching point at ( 1

2 ,− 1
2 ). All definitions of dual and medial

graphs extend to this context, as well as Theorem 4.3.
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Proof. For n ≥ 1, define

Un :=
{
(x1, x2, x3) ∈ U : |x1|, |x2| ≤ n and |x3| ≤ n5}.

We wish to apply Theorem 4.3 to (Un, 0, 0). Even if the domain is non-planar, the proof
works exactly in the same way and we get

∑
x∈∂Un

δxφ
0
Un

[x←→ 0] = 1− exp[i(σ − 1) 3π
2 ].

To obtain this equality, we used that:
• ∂ab = ∂Un and ∂∗ba = ∅;
• W(ea, eb) =

3π
2 ;

• The Dobrushin boundary conditions with a = b = 0 are simply free boundary
conditions.

Since |δx| ≤ 2, we immediately get that

∑
x∈∂Un

φ0
Un

[0←→ x] ≥ c1 (5.21)

for some constant c1 = c1(q) > 0 independent of n.
We now wish to bootstrap this estimate to an estimate on Cn. Let us start by proving

the following claim (observe that |x3| < n5 in the statement).

Claim: There exists c2 > 0 (independent of n) such that there exists x = (x1, x2, x3) ∈ ∂Un with
|x3| < n5 and

φ0
Un

[0←→ x] ≥ c2

n6 .

We will prove this fact by showing that vertices x with |x3| = n5 have very small
probability of being connected to the origin and therefore cannot account for much in
(5.21).

Proof of the Claim. Let R∗0 be the dual graph of the subgraph of U with vertex set R0 :=
[−n, n]× [0, n]× {0}, i.e. the graph with edge set {e∗ : e ∈ ER0} and vertex set given by
the end-points of these edges. Note that uniformly in the state of edges outside R0, the
boundary conditions in R0 are dominated by wired boundary conditions on the “bottom
side” [−n, n]×{0}×{0} of R0, and free elsewhere. Passing to the dual model, we deduce
that uniformly in the state of edges outside R0,

φ0
Un

[
(− 1

2 ,− 1
2 , 0) ∗←→ ∂U∗n in R∗0

∣∣∣ edges outside R0

]
≥ φ1/0

R∗0

[
(− 1

2 ,− 1
2 , 0) ∗←→ ∂U∗n in R∗0

]
,

where φ1/0
R∗0

the (dual) random-cluster measure on R∗0 with free boundary conditions on
the bottom and wired boundary conditions everywhere else. Lemma 3.10 (with m = n
and θ = 0) thus implies that

φ0
Un

[
(− 1

2 ,− 1
2 , 0) ∗←→ ∂U∗n in R∗0

∣∣∣ edges outside R0

]
≥ 1

5n4 . (5.22)
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The same is also true for R∗k = (0, 0, k) + R∗0 with |k| ≤ n5.
If a vertex x = (x1, x2, x3) ∈ ∂Un with x3 = n5 is connected to (0, 0, 0), then none

of the dual vertices (− 1
2 ,− 1

2 , k) are dual connected to ∂Un in R∗k for 0 < k < x3 (the
symmetric holds for x3 = −n5). Equation (5.22) applied |x3| − 1 times implies that

φ0
Un

[0←→ x] ≤
(

1− 1
5n4

)|x3|−1
.

The probability is therefore exponentially small when |x3| = n5. Together with (5.21), the
previous inequality implies that for n large enough,

∑
x∈∂Un :|x3|<n5

φ0
Un

[0←→ x] ≥ c1

2
.

The claim follows directly from the union bound, provided that c2 is chosen small enough.

�

Fix x given by the claim and rotate and translate vertically3 Un in such a way that
x = (x1,−n, 0) for some −n ≤ x1 ≤ n. Consider Cn as a subgraph of Un. The boundary
conditions on Cn induced by the free boundary conditions on Un are dominated by the
Dobrushin boundary conditions on Cn defined above. Furthermore, the existence of an
open path from x to the origin implies the existence of a path from x to the wired arc in
Cn. Thus, the claim implies that

φdobr
Cn

[x←→ wired arc] ≥ c2

n6 .

To conclude the proof, we need to obtain a lower bound for the probability that the
vertex (0,−n, 0) itself is connected to the wired arc. We use once again a “conditioning on
the right-most and left-most paths type argument”. Since we now work on a sub-domain
of Z2, we drop the third coordinate from the notation.

We may assume that x1 ≥ 0 and that the two vertices x = (x1,−n) and (−x1,−n) are
connected to the wired arc. The FKG inequality implies that this occurs with probability
( c2

n6 )
2. Consider the right-most open path from (x1,−n) to the wired arc, and the left-most

open path from (−x1,−n) to the wired arc. Let S be the part of Cn between these two
paths, see Fig. 5.10. The boundary conditions in S dominate the free boundary conditions
on the bottom of Cn, and wired elsewhere. We use a comparison between boundary
conditions. The reasoning is the same as usual: we compare boundary conditions on S
with the boundary conditions induced by boundary conditions on Λn with free boundary
conditions on the bottom and wired boundary conditions on the other sides. Lemma 3.10
(applied to 2n, m = n and θ = 0) thus implies that (0,−n) is connected to the wired arc
with conditional probability larger than 1

20n4 , and we finally obtain

φdobr
Cn

[(0,−n)←→ wired arc] ≥
( c2

n6

)2 1
20n4 .

3Seen as a graph, Un is invariant by rotation by π/2 since the line where x3 “increases” is invisible from
inside Un.
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We are now in a position to prove Theorem 1.6. Let ∂n be the set of vertices at distance
n
16 of the vertex (0,−n) in Cn. The reasoning is similar to the proof of Lemma 3.7 except
that instead of isolating primal circuits around z− and z+ from each other, we will isolate
the primal path from (0,−n) to ∂n from the wired arc.

Proof of Theorem 1.6. Introduce the three rectangles

R∗right :=
[ n

16 +
1
2 , 5n

16 − 1
2

]
× [−(n + 1

2 ), n + 1
2 ],

R∗left :=
[
− 5n

16 + 1
2 ,− n

16 − 1
2

]
× [−(n + 1

2 ), n + 1
2 ],

R∗ :=
[
− 5n

16 + 1
2 , 5n

16 − 1
2

]
×
[
− 3n

4 + 1
2 ,− n

8 − 1
2

]
.

Define the three events E = {(0,−n) ←→ ∂n in Cn}, Fright and Fleft that there exists a
dual-open dual-path from bottom to top in R∗right and R∗left respectively. Let C be the event
that there exists a dual-open dual-path in R∗ connecting a dual open path crossing R∗left

from top to bottom to a dual open path crossing R∗right from top to bottom.
Conditioning on Fleft ∩ Fright ∩ C, boundary conditions on Rn are dominated by free

boundary conditions in the plane. Therefore

φ0
Z2

[
0↔ ∂Λn/16

]
≥ φdobr

Cn

[
E|Fleft ∩ Fright ∩ C

]
≥ φdobr

Cn

[
E ∩ Fleft ∩ Fright ∩ C

]
.

We now prove a lower bound on the term on the right:

φdobr
Cn

[
E ∩ Fleft ∩ Fright ∩ C

]
= φdobr

Cn
[E ] ·φdobr

Cn

[
Fleft ∩ Fright|E

]
·φdobr

Cn

[
C|E ∩ Fleft ∩ Fright

]
.

First, Lemma 4.4 implies that φdobr
Cn

(E) ≥ c
n16 . Second, conditioned on everything

on the left of { n
16} × [−n, n], boundary conditions on [ n

16 , n]× [−n, n] are dominated by
wired boundary conditions on the left side and free elsewhere. In particular, boundary
conditions for the dual model dominate free boundary conditions on the left side and
wired elsewhere. Lemma 3.6 implies thatφdobr

Cn

[
Fright|E

]
≥ c2 and the same lower bound

holds true forφdobr
Cn

[
Fleft|Fright ∩ E

]
. We obtain

φdobr
Cn

[
Fleft ∩ Fright|E

]
≥ c2

2.

Third, we turn to φdobr
Cn

[
C|E ∩ Fleft ∩ Fright

]
. Let S∗ be the area of the dual graph in R∗

between the right-most dual-open path from top to bottom in R∗right, and the left-most
dual-open path crossing from top to bottom in R∗left, see Fig. 5.10. The boundary condi-
tions for the dual model on S∗ dominate free boundary conditions on top and bottom,
and wired elsewhere. The domain Markov property and the comparison between bound-
ary conditions imply that boundary conditions for the dual model on S∗ dominate free
boundary conditions on top and bottom sides of R∗, and wired on the two other sides.
Therefore, the probability of having a dual-open path in S∗ crossing from left to right is
larger than 1/(1 + q2) thanks to (5.3). In particular,

φdobr
Cn

[
C|E ∩ Fleft ∩ Fright

]
≥ 1

1 + q2 .
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(x1,−n, 0)(−x1,−n, 0) (0,−n, 0)

Cn

S

S∗

Cn

Figure 5.10: Top. The two paths connecting the wired arc to (x1,−n, 0) and
(−x1,−n, 0) (or simply (x1,−n) and (−x1,−n)) and the area S between them. Bot-
tom. The two dual-open paths in the long rectangles R∗right and R∗left.
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Putting everything together, we find that

φ0
Z2

[
0↔ ∂Λn/16

]
≥ c

n16 · c
2
2 ·

1
1 + q2

and indeed
lim

n→∞− 1
n log

(
φ0
Z2 [0↔ ∂Λn]

)
= 0.

4.3 Ordering for q > 4

As mentioned in the introduction, the phase transition of the random-cluster model (or
equivalently of the Potts model) with q > 4 is expected to be discontinuous. In partic-
ular, this would mean that there exists an infinite cluster almost surely for the critical
measure with wired boundary conditions. We are currently unable to prove this result.
Nevertheless, we are able to prove the following (much) weaker result.

The graph U is planar and we can define its dual graph, denoted Ũ. Notice that all
the vertices of Ũ have degree 4, except one vertex, denoted b, which has infinite degree
(it corresponds to the vertex at middle of the spiral). Given a finite subgraph Ũ of Ũ,
containing the vertex b, we define the random cluster measure in Ũ with wired boundary
conditions: the boundary of Ũ is given by b together with all the vertices of Ũ with degree
strictly smaller than 4 in Ũ. We can then define the random-cluster measure on Ũ with
wired boundary condition, denoted by φ1

Ũ
, by taking the limit when Ũ converge to Ũ.

We fix a vertex v of Ũ, disjoint from b, and write v ←→ ∞ for the event that there exists
an infinite open path from v and disjoint from b.

Proposition 4.5. For q > 4,φ1
Ũ
(v←→ ∞) > 0.

It would be very interesting to improve this result by bootstrapping this information
to the geometry of the plane. As for today, we did not manage to do so. Let us mention a
question whose understanding may help solving this problem. Consider the upper half-
plane H = Z× N. Assume that there exists an infinite cluster in this plane (once again
not using any boundary edge) for the random-cluster measure with wired boundary con-
ditions on the boundary of H. Can one show that there exists an infinite cluster for the
random-cluster measure on Z2 with wired boundary conditions. Obviously, this is true
for Bernoulli percolation since H ⊂ Z2. This last fact is not sufficient to prove the claim
for general cluster-weights q > 1 since the wiring on Z2×{0}may influence the measure
inside the upper half-plane by favoring open edges.

Let us now prove the proposition.

Proof. Consider the random-cluster measure on U with free boundary conditions. Let us
prove that 0 := (0, 0, 0) and (0, 0, k) are connected to each other with probability decay-
ing exponentially fast in k ≥ 0. The Borel-Cantelli lemma would then imply that finitely
many pairs of integers k ≥ 0 and ` < 0 are such that (0, 0, k) and (0, 0, `) are connected to
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each other. This immediately shows the existence of an infinite dual-open cluster in the
dual model, which is the random cluster on Ũ with wired boundary conditions.

To prove this exponential decay, we invoke Theorem 4.3. Consider a finite Dobrushin
subdomain U of U containing 0 and (0, 0, k), and such that a = b = 0. We further
assume that (0, 0, k) belongs to the boundary of U (this allows us to make the term
φ0

U [0←→ (0, 0, k)] appear as one of theφ0
U [0←→ x] for x ∈ ∂ab). The Dobrushin boundary

conditions are simply the free boundary conditions in this case. Set σ̃ = i(σ − 1) which
is a positive real number since we assume that q > 4. We find

δx = −2 sinh
[
σ̃ π4 N(x)

]
exp

[
σ̃W(x)

]
≤ 0.

This observation implies that

2 sinh
[
σ̃ π4 N(x)

]
exp

[
σ̃W(x)

]
φ0

U [0←→ (0, 0, k)] ≤ exp[σ̃W∂�ab
(ea, eb)]− 1.

But W(x) = 2πk and therefore we deduce that there exists C = C(q) > 0 not depending
on k or the domain so that

φ0
U [0←→ (0, 0, k)] ≤ Ce−2πσ̃ |k|.

By taking larger and larger subdomains U, we deduce that for any subdomain U contain-
ing 0 and such that (0, 0, k) is on the boundary of U,

φ0
U [0←→ (0, 0, k)] ≤ Ce−2πσ̃ |k|.

By applying this inequality for U equal to U minus one of the edges incident to (0, 0, k),
the finite energy property implies that

φ0
U [0←→ (0, 0, k)] ≤ Ce−2πσ̃ |k|.

Remark 4.6. The fact that σ ∈ [0, 1] for q ≤ 4 and σ = 1 − iR+ for q > 4 explains the
difference of behavior between q ≤ 4 and q > 4 random-cluster models.

5 Proofs of other theorems

5.1 Proof of Theorem 1.7

This section contains the proof of Theorem 1.7.

Lemma 5.1. Let k ≤ n and ξ some arbitrary boundary conditions on ∂Λn. There exist two
couplings P and Q on configurations (ωξ ,ω1) with the following properties:

• ωξ andω1 have respective lawsφξΛn
andφ1

Λn
.

• P-almost surely, ifω∗1 contains a dual-open dual-circuit in Λ∗n \Λ∗k and Γ ∗ is the outermost
such circuit, then Γ ∗ is also closed inωξ , and furthermoreω1 andωξ coincide inside Γ ∗.
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• Q-almost surely, if ωξ contains an open circuit in Λn \ Λk and Γ̃ is the outermost such
circuit, then Γ̃ is also open inω1, and furthermoreω1 andωξ coincide inside Γ̃ .

Proof. We start by explaining how to sampleφξΛn
. The Domain Markov property enables

us to construct a configuration as follows. Consider uniform random variables Ue on
[0, 1] for every edge e. Choose an edge e1 and declare it open if Ue1 is smaller or equal to
φξΛn

[ω(e1) = 1]. Choose another edge e2 and set it to open if Ue2 ≤ φξΛn
[ω(e2) = 1|ω(e1)].

We iterate this procedure for every edge. Also note that we can stop the procedure after
a certain number of edges and sample the rest of the edges according to the right condi-
tional law. The domain Markov property guarantees that the measure thus obtained is
φξΛn

. Note that the choice of the next edge can be random, as long as it depends only on
the state of edges discovered so far.

Of course, the previous construction is useless for one measure, but it becomes inter-
esting if we consider two measures: one may sample both configurations based on the
same random variables Ue with a specific way of choosing the next edges. Let us now
describe the way we are choosing the edges:

• Construction of P: After t steps, the edge et+1 ∈ EΛn \ EΛk is chosen in such a way
that it has one end-point connected to ∂Λn by an open path in ω1, until it is not
possible anymore. Then sample all remaining edges at once according to the cor-
rect conditional law. If there is a closed circuit surrounding Λk inω1, then there was
a time t such that at time t + 1, no undiscovered edges had an end-point which was
connected to the boundary in ω1. Since this procedure guarantees that ω1 ≥ ωξ ,
no such edges were connected to the boundary in ωξ as well. Therefore, the con-
figuration sampled inside the remaining domain is a random-cluster model with
free boundary conditions in both cases. In particular, both configurations coincide
in Λk.

• Construction of Q: After t steps, the edge et+1 ∈ EΛn \ EΛk is chosen in such a way
that one end-point of e∗t+1 is dual-connected to ∂Λ∗n by a dual-open path in ω∗ξ ,
until it is not possible anymore. Then sample all remaining edges according to the
correct conditional law. If there is an open circuit surrounding Λk inωξ , then there
was a first time t such that the open circuit was discovered at time t. Once again,
ω1 ≥ ωξ and this circuit is also open in ω1. Then, the configuration inside the
connected component of Λk in Λn \ {e1, e2, . . . , et} will be sampled according to a
random-cluster configuration with wired boundary conditions. In particular, both
configurations coincide in Λk.

Theorem 1.7. It is clearly sufficient to prove that there existsα > 0 such that

∣∣φξΛn
[A]−φ1

Λn
[A]

∣∣ ≤ ( k
n

)α
φξΛn

[A]
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for any event A depending on edges in Λk. Let E be the event that there exists a dual-open
dual-circuit inω∗ξ included in Λ∗n \Λ∗k . We deduce

φξΛn
[A] ≥ φξΛn

[A ∩ E] = Q[ωξ ∈ A ∩ E] ≥ Q[ω1 ∈ A ∩ E]

= φ1
Λn

[A ∩ E] ≥ (1− (k/n)α)φ1
Λn

[A]

where in the third inequality, we used the fact that if ω1 belongs to A ∩ E, then ω1 and
therefore ωξ belong to E. Since ω1 and ωξ coincide in Λk, then ωξ ∈ A. The existence
ofα in the last inequality follows exactly as in the proof of Lemma 3.2 from Property P5a
applied in concentric annuli Λk2i+1 \Λk2i+1 with 0 ≤ i ≤ log2(n/k).

Reciprocally, if F denotes the event that there is an open circuit in Λn \Λk, we find

φ1
Λn

[A] ≥ φ1
Λn

[A ∩ F] = P[ω1 ∈ A ∩ F] ≥ P[ωξ ∈ A ∩ F]

= φξΛn
[A ∩ F] ≥ (1− (k/n)α)φξΛn

[A]

where once again, we used in the third inequality that ifωξ ∈ A ∩ F, thenω1 is in F, and
since ω1 and ωξ then coincide on Λk, we get that ω1 ∈ A. The last inequality is due to
P5a once again.

5.2 Proof of Theorem 1.11

Definition of the exploration path. Before proving Theorem 1.11, let us define precisely
the exploration path.

We start by defining the loop-configuration associated to a percolation-configuration.
Fix a Dobrushin domain (Ω, a, b) and consider a configuration ω ∈ {0, 1}EΩ together
with its dual-configurationω∗ ∈ {0, 1}EΩ∗ , see Fig. 5.11. We define the Dobrushin bound-
ary conditions by taking the edges (between endpoints) of ∂ba to be open, and the dual-
edges of ∂∗ab to be dual-open.

Through every vertex of the medial graph Ω� of Ω passes either an open edge of Ω or
a dual-open dual-edge of Ω∗. Draw self-avoiding loops on Ω� as follows: a loop arriving
at a vertex of the medial lattice always makes a ±π/2 turn so as not to cross the open
edge or dual-open dual-edge through this vertex, see Fig. 5.12. The loop representation
contains loops together with a self-avoiding path going from a� to b�, see Fig. 5.12. This
curve is called the exploration path and is denoted by γ.

Remark 5.2. The loops correspond to the interfaces separating clusters ofω from clusters
of ω∗, and the exploration path corresponds to the interface between the cluster con-
nected to ∂ba and the cluster ofω∗ connected to ∂∗ab.

Approximation of domains. In the statement of Theorem 1.11, we consider an approx-
imation of a simply connected domain Ω with two points a and b on its boundary. More
precisely, (Ωδ , aδ , bδ) denotes a Dobrushin domain defined on the square lattice of mesh
size δ, i.e. δZ2. All the definitions and result extend to this context in a direct fashion.
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Figure 5.11: The configurationω with its dual configurationω∗.

A family of Dobrushin domain approximates a continuous domain (Ω, a, b) if (Ωδ , aδ , bδ)
converges in the Carathéodory sense as δ tends to 0. This convergence is classical, we re-
fer to [DC13, Chapter 3]. For smooth domains, it corresponds to the convergence in the
Hausdorff sense.

In what follows,γδ denotes the exploration path in the Dobrushin domain (Ωδ , aδ , bδ).

Proof of Theorem 1.11. In order to prove Theorem 1.11, [KS12] shows that we only
need to check the condition G2 defined now. Consider a fixed domain (Ω, a, b) and a
parametrized continuous curve Γ from a to b in Ω. A connected set C is said to disconnect
Γ(t) from b if it disconnects a neighborhood of Γ(t) from a neighborhood of b in Ω \ Γ[0, t].

Fig. 5.13 will help the reader here. For any annulus A = A(z, r, R) := z + (ΛR \Λr),
let At be the subset of Ω satisfying At := ∅ if ∂(z+Λr)∩ ∂(Ω \ Γ[0, t]) = ∅, and otherwise

At :=

{
z ∈ A \ Γ[0, t] such that the connected component of z
in A \ Γ[0, t] does not disconnect Γ(t) from b in Ω \ Γ[0, t]

}
.

Consider the exploration path γδ as a continuous curve from a�δ to b�δ parametrized in
such a way that it goes along one medial vertex in time 1 (in particular, after time n the
path explored n medial-vertices). For simplicity, once the path reaches b�δ , it remains at
b�δ for any subsequent time.

Condition G2 There exists C < 1 such that for any (γδ) in (Ωδ , aδ , bδ), for any stopping time
τ and any annulus A = A(z, r, R) with 0 < Cr < R,

φaδ ,bδ
Ωδ

(
γδ[τ , ∞] makes a crossing of A contained in Aτ

∣∣∣γδ[0, τ ]
)
< 1

2 .
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Figure 5.12: The loop representation associated to the primal and dual configurations
in the previous picture. The exploration path is drawn in bold.

Above, “γδ[τ , ∞] makes a crossing of A contained in Aτ” means that there exists a sub-path
γδ[t1, t2] of the continuous path γδ[τ , ∞] that intersects both the boundary of z + Λr and the
boundary of z +ΛR, and such that γδ[t1, t2] ⊂ Aτ .

Before proving Condition G2 (and therefore Theorem 1.11), let us introduce the notion
of slit Dobrushin domain. Fig. 5.13 may give a good idea of what it is.

Fix a Dobrushin domain (Ωδ , aδ , bδ) and consider the exploration path γδ in the loop
representation on Ωδ. The path γδ can be seen as a random parametrized curve (the
parametrization being simply given by the number of steps along the curve between a
medial-vertex in γδ and a�δ).

Definition 5.3. The slit domain Ωδ \γδ[0, n] is defined as the subdomain of Ωδ constructed
by removing all the primal edges crossed by γδ[0, n] and by keeping only the connected
component of the remaining graph containing bδ. It is seen as a Dobrushin domain by
fixing the points cδ and bδ, where cδ is the vertex of δZ2 bordered by the last medial edge
of γδ[0, n].

Similarly, one may define the dual Dobrushin domain. The marked point is then
c∗δ , where c∗δ is the dual-vertex of (δZ2)∗ bordered by the last medial edge of γδ[0, n]. It is
worth mentioning that the construction is symmetric for the dual Dobrushin domain: the
dual of the slit domain Ωδ \ γ[0, n] is simply the subgraph of Ω∗δ obtained by removing
the dual-edges crossed by the curve.

Remark 5.4. The notation Ωδ \γδ[0, n] could somewhat be misleading, since Ωδ is a subset
of δZ2 and γδ[0, n] is a path of medial edges. Nevertheless, we allow ourselves some
latitude here since we find this notation both concise and intuitive.
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If one starts with Dobrushin boundary conditions on (Ωδ , aδ , bδ), then conditionally
on γδ[0, n] the law of the configuration inside Ωδ \ γδ[0, n] is a FK-Ising model with Do-
brushin boundary conditions wired on ∂bδcδ and free elsewhere. This comes from the fact
that the exploration path γδ[0, n] “slides between open edges and dual-open dual-edges”
and therefore the edges on its left must be open and the dual-edges on its right dual-open.
This implies that the arc ∂aδcδ must be wired (and therefore ∂bδcδ is since ∂bδaδ was already
wired to start with) and the dual arc ∂c∗δ a∗δ is dual-wired.

We are now in a position to prove Condition G2.

Proof of Condition G2. Let A(z, r, R) and Aτ as defined above. We can fix a realization of
γδ[0, τ ], and work in the slit Dobrushin domain (Ωδ \ γδ[0, τ ], cδ , bδ).

See Aτ as the union of connected components of the Dobrushin domain Ω�δ seen as
an open domain of R2 minus the path γδ[0, τ ]. We denote generically a connected com-
ponent by C (we see it as a subset of R2).

The connected components can be divided into three classes:

• ∂C intersects both ∂�cδbδ
and ∂�bδcδ

;
• ∂C intersects ∂�bδcδ

but not ∂�cδbδ
.

• ∂C intersects ∂�cδbδ
but not ∂�bδcδ

;

In fact, there cannot be any connected component of the first type. Indeed, let us assume
that such a connected component C does exist. Let γ be a self-avoiding path in C going
from ∂�bδcδ

to ∂�cδbδ
. Topologically, c�δ and b�δ must be on two different sides of Γ in (Ωδ \

γδ[0, τ ])� \ Γ . But this means that C disconnects cδ from bδ, and therefore that C is not
part of Aτ , which is contradictory.

We can therefore safely assume that the connected components are either of the sec-
ond or third types. We now come back to the interpretation in terms of graphs.

Let S be the subgraph of Ωδ \γδ[0, τ ] given by the union of the connected components
(seen as primal graphs this time) of the second type (see Fig. 5.13). This set is a subset
of Aτ . Furthermore, the boundary conditions induced by the conditioning on γδ[0, τ ]
are wired on ∂S \ ∂Aτ . Therefore, conditioned on γδ[0, τ ] and the configuration outside
A(z, r, R), the configurationω in S dominatesω′|S, whereω′ follows the law of a random-
cluster model in A(z, r, R) with free boundary conditions. In particular, if there exists an
open circuit inω′ surrounding z +Λr in A(z, r, R), then the restriction of this path to S is
also open inω and it disconnects z+ ∂Λr from z+ ∂ΛR in S. In particular, the exploration
path γδ[τ , ∞] cannot cross Aτ inside S since this would require the existence of a dual-
open dual-path from the outer to the inner part of A∗τ .

Property P5a implies that this open circuit exists inω′ with probability larger than a
constant c > 0 not depending on δ, and that therefore γδ[τ , ∞] cannot cross Aτ inside S
with probability larger than c uniformly on the configuration outside Aτ .

Let now S∗ be the subgraph of Ω∗δ \ γδ[0, τ ] given by the union of the connected
components (seen as dual graphs) of the third type. The same reasoning for the dual
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aδ

bδ

cδ

c∗δ
γ(τ )

S∗

S

Figure 5.13: The dashed area is a connected component of A \ γδ[0, τ ] which is dis-
connecting γδ(τ) from b�δ , or equivalently cδ from bδ, and which is therefore not in
Aτ . The black parts are not included in the slit domain since they corresponds to
connected components that are not containing b�δ . Conditioning on γδ[0, τ ] induces
Dobrushin boundary conditions in the new domain. The dark grey area is S and the
light-gray S∗. We depicted a blocking open path in S and a dual-open path in each
connected component of S∗.

model implies that with probability c > 0, the exploration path γδ[τ , ∞] cannot cross A∗τ
inside S∗.

Altogether, γδ[τ , ∞] cannot cross Aτ with probability c2. Now, Proposition 3.1 shows
that c can be taken to be equal to 1− (1− c2)

blog2(R/r)c. Since R/r ≥ C, we can guarantee
that c2 ≥ 1/2 by choosing C large enough.

�

5.3 Proof of Theorem 1.13

Since we used Property P5 several times in this article already, we present the proof of
Theorem 1.13 without providing every detail. We start by a lemma. Define the upper
half-plane H = Z×N.

Lemma 5.5. Assume that there exists c > 0 such that for any n ≥ 1,

φ0
H [[−n, n]× {0} ←→ Z× {n}] ≥ c.
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Then, for anyα > 0 there exists c(α) > 0 such that for every n ≥ 1,

φ0
[−n,n]×[0,αn] [Cv([−n, n]× [0,αn])] ≥ c(α).

Proof. First, Property P5 allows us to choose β > 1 so that for any m ≥ 1,

φ1
Z2 [Ch([0, (β− 1)m]× [0, m])] ≤ c

3 .

Let
A(m) :=

{
[−m, m]× {0} [−βm,βm]×[0,m]←−−−−−−−−→ [−βm,βm]× {m}

}
.

With this choice of β, and because of the comparison between boundary conditions, we
find that

φ0
H [A(m)] ≥ c

3 .

Using Property P5 for the dual model, we deduce that there exists c1 > 0 such that for
any m ≥ 1,

φ0
[−2βm,2βm]×[0,2m] [F (m) ∩A(m)] ≥ c1,

where F (m) is the existence of a dual-path in the half-annulus

[−2βm, 2βm]× [0, 2m] \ [−βm,βm]× [0, m]

from [βm, 2βm]×{0} to [−2βm,−βm]×{0}. (The occurrence ofFn andAn is illustrated
on Fig. 5.14.) After conditioning on the exterior most such dual path, the domain Markov
property and the comparison between boundary conditions imply that

φ0
[−2βm,2βm]×[0,2m] [A(m)] ≥ c1. (5.23)

We now fix α ≥ 2 and n ≥ 1. We assume without loss of generality that αn is an
integer. Set m = bn/(2β)c. Define the following four events:

B(m) =
{
[−βm,βm]× {αn} [−βm,βm]×[αn−m,αn]←−−−−−−−−−−−→ [−m, m]× {αn−m}

}
,

C(m) = Ch
(
[−βm,βm]× [m

2 , m]
)
,

D(m) = Ch
(
[−βm,βm]× [αn−m,αn− m

2 ]
)
,

E(m) = Cv
(
[−βm,βm]× [m

2 ,αn− m
2 ]
)
.

Note that the event B(m) is the equivalent of the event A(m), but “at the top of the rect-
angle”. By (5.23) and comparison between boundary conditions,φ0

[−n,n]×[0,αn] [A(m)] and
φ0
[−n,n]×[0,αn] [B(m)] are larger or equal to c1. Furthermore, Property P5 also implies that
φ0
[−n,n]×[0,αn] [C(m)],φ0

[−n,n]×[0,αn] [D(m)] are larger than c2 > 0, and thatφ0
[−n,n]×[0,αn] [E(m)]

is larger than c3(α) > 0.
Now observe that if the five events A(m), . . . , E(m) occur simultaneously, then the

rectangle [−n, n] × [0,αn] is crossed vertically (see Fig. 5.15). The FKG inequality thus
implies that

φ0
[−n,n]×[0,αn] [Cv([−n, n]× [0,αn])] ≥ φ0

[−n,n]×[0,αn] [A(m) ∩ B(m) ∩ C(m) ∩D(m) ∩ E(m)]

≥ c2
1 · c3

2.
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m−m βm−βm 2βm−2βm

Figure 5.14: The occurrence of A and
F in H with free boundary conditions
on Z× {0}

m−m βm−βm 2βm−2βm

Figure 5.15: The occurrence of
A, . . . , E in [−n, n] × [0,αn] with free
boundary conditions

We just proved the result for α ≥ 2 with c(α) = c2
1c2

2c3(α) > 0. For α ∈ (0, 2), simply
apply the comparison between boundary conditions in the rectangle [−αn

4 , αn
4 ]× [0,αn]

which has aspect ratio 2 and is included in [−n, n]× [0,αn].

The previous lemma shows that in order to prove Theorem 1.13, we may focus on
showing that there exists a constant c > 0 such that for any n ≥ 1,

φ0
H [[−n, n]× {0} ←→ Z× {n}] ≥ c.

In order to do so, we use the second-moment method. Let pn = φ0
H [0←→ Z× {n}] and

define
N := ∑

x∈[−n,n]×{0}
1x↔Z×{n}.

By definitionφ0
H [N] = (2n + 1)pn. Furthermore,

φ0
H

[
N2
]
≤ (2n + 1) ∑

x∈[−2n,2n]×{0}
φ0
H [0, x←→ Z× {n}]

≤ (2n + 1) · C6 ∑
x∈[−2n,2n]×{0}

φ0
H

[
Λ2|x| ←→ Z× {n}

]
φ0
H

[
0←→ ∂Λ|x|/4

]2

≤ (2n + 1) · C7 ∑
x∈[−2n,2n]×{0}

φ0
H [0←→ Z× {n}]φ0

H

[
0←→ ∂Λ|x|

]
≤ (2n + 1) · C7 · pn · 2

2n

∑
k=0

pk. (5.24)

In the second, we used that{
0, x←→ Z× {n}

}
⊂
{
Λ2|x| ←→ Z× {n}

}
∩
{

0←→ ∂Λ|x|/4
}
∩
{

x←→ x + ∂Λ|x|/4
}
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and Theorem 1.7 (more precisely a direct adaptation to the upper half-plane) to decouple
the different events on the right side. In the third line, we used Property P5 as follows.
Let A be the event that
• ∂Λ|x|/8 ←→ ∂Λ4|x|,
• there exists an open path in Λ|x|/4 \Λ|x|/8 disconnecting 0 from infinity in H,
• there exists an open path in Λ4|x| \Λ2|x| disconnecting 0 from infinity in H.

With this definition, we see that if 0 ←→ ∂Λ|x|/4, Λ2|x| ←→ Z× {n} and A occur, then 0 is
connected to Z×{n}. Now, the eventA has probability bounded away from 0 uniformly
in x thanks to P5, so that the FKG inequality directly implies the third inequality of (5.24).

Let us now state the following claim.

Claim: There exists C8 > 0 such that for any n ≥ 0,

n

∑
k=0

pk ≤ C8npn.

Before proving the claim, let us finish the proof of Theorem 1.13. The claim and (5.24)
imply that

φ0
H

[
N2
]
≤ (2n + 1)C7 pn2

(
C8npn + npn

)
≤ C7(C8 + 1)(2n + 1)2np2

n ≤ C7(C8 + 1)φ0
H [N]2 .

(We also used that pk ≤ pn for k ≥ n.) By applying the Cauchy-Schwarz inequality, we
find

φ0
H [[−n, n]× {0} ←→ Z× {n}] = φ0

H [N > 0] ≥ φ
0
H [N]2

φ0
H [N2]

≥ 1
C7(C8 + 1)

> 0.

Proof of the Claim. We use Theorem 4.3. Recall that q < 4. Let V be the subgraph of Z3

defined as follows: the vertices are given by Z3 and the edges by
• [(x1, x2, x3), (x1, x2 + 1, x3)] for every x1, x2, x3 ∈ Z,
• [(x1, x2, x3), (x1 + 1, x2, x3)] for every x1, x2, x3 ∈ Z such that x1 6= 0,
• [(0, x2, x3), (1, x2, x3)] for every x2 ≥ −n and x3 < 0,
• [(0, x2, x3), (1, x2, x3 + 1)] for every x2 < −n and x3 < 0,
• [(0, x2, x3), (1, x2, x3)] for every x2 > n and x3 ≥ 0,
• [(0, x2, x3), (1, x2, x3 + 1)] for every x2 ≤ n and x3 ≥ 0.

For θ > 0 and n ≥ 0, let

Vn,θ :=
{
(x1, x2, x3) ∈ V : |x1| ≤ n, |x2| ≤ 2n and |x3| ≤ θ

}
.

We also set a = (0,−n, 0) and b = (0, n, 0) and see Vn,θ as a Dobrushin domain. Note
that by definitions, boundary conditions are wired on the segment of the boundary ∂ab

between a and b, and free elsewhere. Theorem 4.3 (more precisely an extension to Do-
brushin domains on V) implies that

∑
x∈∂ab

δxφ
a,b
Vn,θ

[x←→ ∂ba]− ∑
u∈∂∗ba

δuφ
a,b
Vn,θ

[
u ∗←→ ∂

∗
ab

]
= 1− exp[i(σ − 1)π2 ]. (5.25)
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Note that Re(δu) = 1 − cos[(σ − 1)π2 ] for u ∈ ∂∗ba and that |δx| ≤ 1 for every x ∈ ∂ba.
Let ∂ be the part of ∂ba composed of vertices such that |x1| = n or |x2| = 2n. We may
choose θ = θ(q) < 0 so that Re(δx) ≤ 0 for any x ∈ ∂ba \ ∂ (for instance, one may take
θ = d(1−σ)2π)e).

With this choice of θ, taking the real part of (5.25) gives that

1 + ∑
u∈∂∗ab

φa,b
Vn,θ

[
u ∗←→ ∂

∗
ba

]
≤ ∑

x∈∂

φa,b
Vn,θ

[x←→ ∂ab] ≤ C9npn,

where in the second inequality we used the comparison between boundary conditions
and Property P5.

Now, for a dual-vertex x of ∂∗ab at distance k from a or b (let us assume without loss of
generality that x is at distance k from a). Let Λ+

k = [−k, k]× [0, k]. If the following three
events occur simultaneously:

• x ∗←→ x + ∂Λ+
k ,

• the half-annulus x + ∂Λ+
k \ Λ+

k/2 contains a dual-open dual path disconnecting x
from the ∂∗ba in Vn,θ,
• that there exists a dual-open dual path disconnecting a from ∂ in

{x ∈ Vn,θ : k/2 ≤ |(x1, x2)− (0, n)| ≤ k}

(this set is a topological rectangle winding around the singularity a at distance k/2
of it),

then x is connected by a dual-open path to ∂∗ba. Now, the second and third events occur
with probability bounded away from 0 uniformly in n thanks to P5 and the fact that
θ(q) < ∞ does not depend on n. By conditioning on these two events and using the
comparison between boundary conditions, we find that

φa,b
Vn,θ

[
x ∗←→ ∂

∗
ba

]
≥ c7φ

1
x+Λ+

k

[
x ∗←→ x + ∂Λ+

k

]
≥ c7 pk,

where in the last inequality we used duality and the comparison between boundary con-
ditions. In conclusion, we find

1 + 2c7

n

∑
k=0

pk ≤ C9npn

and the conclusion follows immediately.

�

Remark 5.6. Note that θ = θ(q) < ∞ for any q < 4, but that θ(q) tends to infinity as q
tends to 4 and there is no such θ(q) for q = 4. This fact explains why this proof does not
work for q = 4 (and should not work since the statement is expected to be false).
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5.4 proof of Theorem 1.14

The Edwards-Sokal coupling shows that

µZ2 ,βc(q),q[σx = σ0]−
1
q
= φ1

Z2 ,pc(q),q [0←→ x] .

Lemma 3.2 implies the existence of η2 > 0 such that

φ1
Z2 ,pc(q),q [0←→ x] ≤ 1

|x|η2
,

thus implying the second inequality of Theorem 1.14.
In order to obtain the first, we do not need P5 but just Theorem 2.3. Indeed, assume

that the following events occur simultaneously:
• Ch([0, 2n+1]× [0, 2n]) for any n so that n ≤ log2(4|x|),
• Cv([0, 2n]× [0, 2n+1]) for any n so that n ≤ log2(4|x|).

In such case, 0 is connected to ∂Λ2|x|. Furthermore, the FKG inequality together with
Theorem 2.3 show that these events occur simultaneously with probability larger than
cblog2(4|x|)c, where c > 0 is a constant not depending on x.

Thus, there exists η > 0 such that for any x ∈ Z2,

φ1
Z2 ,pc(q),q

[
0←→ ∂Λ4|x|

]
≥ |x|−η.

LetA(n) be the event that there exists an open circuit in Λ2n \Λn surrounding the origin.
The FKG inequality and Theorem 2.3 one more time show that there exists c > 0 so that

φ1
Z2 ,pc(q),q [0←→ x] ≥ φ1

Z2 ,pc(q),q

[
0←→ ∂Λ3|x|

]
φ1
Z2 ,pc(q),q

[
x←→ ∂Λ3|x|

]
φ1
Z2 ,pc(q),q [A(|x|)]

≥ φ1
Z2 ,pc(q),q

[
0←→ ∂Λ4|x|

]
φ1
Z2 ,pc(q),q

[
x←→ x + ∂Λ4|x|

]
φ1
Z2 ,pc(q),q [A(|x|)]

≥ c|x|−2|η|

and the proof follows by choosing η1 small enough.
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6
ABSENCE OF INFINITE

CLUSTER FOR CRITICAL

BERNOULLI PERCOLATION ON

SLABS

This chapter corresponds to the submitted article [VT6] with the same title, written in collabora-
tion with Hugo Duminil-Copin and Vladas Sidoravicius.

We prove that for Bernoulli percolation on a graph Z2 × {0, . . . , k} (k ≥ 0), there is
no infinite cluster at criticality, almost surely. The proof extends to finite range Bernoulli
percolation models on Z2 which are invariant under π/2-rotation and reflection.

Introduction

Determining whether a phase transition is continuous or discontinuous is one of the fun-
damental questions in statistical physics. Bernoulli percolation has offered the mathe-
maticians a setup to develop techniques to prove either continuity or discontinuity of
the phase transition, which in the case of continuity corresponds to the absence of an
infinite cluster at criticality. Harris [Har60] proved that the nearest neighbor bond perco-
lation model with parameter 1/2 on Z2 does not contain an infinite cluster almost surely.
Viewed together with Kesten’s result that pc ≤ 1/2 [Kes80], it provided the first proof of
such type of statement. Since the original proof of Harris, a few alternative arguments
have been found for planar graphs (See, for example, a short argument by Y. Zhang
[Gri99a, p 311]). In the late eighties, dynamic renormalization ideas were successfully
applied to prove continuity in octants and half spaces of Zd, d ≥ 3, [BGN91a, BGN91b].
The continuity was also proved for Zd with d ≥ 19 using the lace expansion technique
[HS94], and for non-amenable Cayley graphs using mass-transport arguments [BLPS99].
Despite all these developments, a general argument to prove the continuity of the phase
transition for the nearest neighbor Bernoulli percolation on arbitrary lattices is still miss-
ing, and the fact that the Bernoulli percolation undergoes a continuous phase transition
on Z3 still represents one of the major open questions in the field.

This article provides the proof of continuity for Bernoulli percolation on a class of
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non-planar lattices, namely slabs. We wish to highlight that the lattices Zd with d ≥ 3 do
not belong to this class of graphs.

Consider the graph Sk, called slab of width k, given by the vertex set Z2 × {0, . . . , k}
and edges between nearest neighbors. In what follows, Pp denotes the Bernoulli bond
percolation measure with parameter p on Sk defined as follows: every edge of Z2 ×
{0, . . . , k} is open with probability p (if it is not open, it is said to be closed) indepen-
dently of the other edges. Let pc(k) be the critical parameter of Bernoulli percolation on
Sk. Let B be a subset of Z3, the event {0 B←→ ∞} denotes the existence of an infinite path
of open edges in B starting from 0.

Theorem 0.7. For any k > 0, Ppc(k)[0
Sk←→ ∞] = 0.

For site percolation on S2, an ad hoc argument was provided in [DNS12]. Nevertheless,
one of the major difficulty of the present theorem is absent of [DNS12], namely the fact
that “crossing paths do not necessarily intersect”. This additional phenomenon, which
is one of the main reasons why higher dimensional critical percolation is so difficult to
study, requires the introduction of a new argument, based on the multi-valued map prin-
ciple (see Lemma 1.3 below for further explanations).

Two generalizations The same proof works equally well (with suitable modifications)
for any graph of the form Z2 × G, where G is finite. This includes G = {0, . . . , k}d−2 for
d ≥ 3.

Similarly, symmetric finite range percolation on Z2 can be treated via the same tech-
niques (once again, relevant modifications must be done). Let us state the result in this
setting. Let p ∈ [0, 1]Z

2
be a set of edge-weight parameters, and M > 0. We consider

functions p’s that are M-supported (meaning pz = 0 for |z| ≥ M) and invariant under
reflection and π/2-rotation (meaning that for all z, piz = pz̄ = pz). Consider the graph
with vertex set Z2 and edges between any two vertices and the percolation Pp defined as
follows: the edge (x, y) is open with probability px−y, independently of the other edges.

Theorem 0.8. Fix M > 0. The probability Pp[0 ←→ ∞] is continuous, when viewed as a
function defined on the set of M-supported and invariant p’s.

From the slab to Z3? The fact that Z2 × {0, . . . , k}d−2 is approximating Zd when k tends
to infinity suggests that the non-percolation on slabs could shed a new light on the prob-
lem of proving the absence of infinite cluster (almost surely) for critical percolation on
Zd. Nevertheless, we wish to highlight that this is not immediate. Indeed, while pc(k)
is known to converge to pc(Z3) [GM90], passing at the limit requires a new ingredient.
For instance, a uniform control (in k) on the explosion of the infinite-cluster density for p
tending to the critical point would be sufficient.
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Proposition 0.9. Let f : [0, 1] → R be a continuous function such that f (0) = 0. If for any
k ≥ 0 and any p ∈ (0, 1),

Pp[0
Sk←→ ∞] ≤ f (p− pc(k)),

then Ppc(Z3)[0
Z3

←→ ∞] = 0.

It is natural to expect that proving the existence of f is roughly of the same difficulty
as attacking the problem directly on Z3. Nevertheless, it could be that a suitable renor-
malization argument enables one to prove the existence of f .

Let us finish by recalling that several models undergo discontinuous phase transitions
in high dimension and continuous phase transition in two dimensions (one may think
of the 3 and 4-state Potts models). For most of these models, a discontinuous phase
transition is expected to occur already in a slab. Theorem 0.7 shows that this is not the
case for Bernoulli percolation.

What about other models? While this work is focused on the continuity of the phase
transition for short range models, it is well known that the complete picture of phase
transition for Bernoulli percolation is more complex. For one-dimensional long-range
Bernoulli systems with power law decay, the transition may be discontinuous. Indeed,
when the probabilities of edges of length r being open decay as 1/r2, the percolation
density at criticality is strictly positive, see [AKN87].

Also, one may consider more general percolation models with dependence. On Z2,
the continuity of the phase transition was recently proven [VT5] for dependent percola-
tion models known as random-cluster models with cluster-weight q ∈ [1, 4] (the special
case q = 1 corresponds to Bernoulli percolation). The continuity of the phase transition
for q = 1 and 2 was previously established by Harris [Har60] and Onsager [Ons44] re-
spectively. Furthermore, [LMMS+91] showed that the phase transition is discontinuous
for q large enough.

Let us conclude this introduction by mentioning that the phase transition on Zd is
expected to be discontinuous for q > 4 when d = 2 (we refer to [DC13] for details on this
prediction), and for q > 2 when d ≥ 3. The best results (for q > 1) in this direction are
mostly restricted to integer values of q, for which the model is related to the Potts model.
On the one hand, the fact that the phase transition is continuous for q = 2 (corresponding
to the Ising model) is known for any d ≥ 3 [ADCS13]. On the other hand for any q ≥
3, the random-cluster model undergoes a discontinuous phase transition above some
dimension dc(q) [BCC06]. The proof of this result is based on Reflection-Positivity for the
Potts model.

Notation. For a subset E of Z2, let E be the set of sites in Sk whose two first coordinates
are in E. A cluster in E is a connected component of the graph given by all the vertices in
E and the open edges with two endpoints in E. Let n be a positive integer, B a subset of
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Z2, and X, Y ⊂ B. We define

X B←→ Y = {there exists an open cluster in B connecting X to Y},
X !B!←→ Y = {there exists a unique open cluster in B connecting X to Y}.

Further we use the following notations: Bn = [−n, n]2 and ∂Bn = Bn \ Bn−1.

1 Proof

Outline of the proof. We follow a well known approach: we assume that Pp[0
Sk←→∞] > 0, and using this, we construct a finite-size criterion which is sufficient for per-

colation to occur. By continuity, this finite-size criterion is satisfied for percolation with

parameters sufficiently close to p. This immediately implies that Ppc [0
Sk←→ ∞] = 0.

The proof is divided in three steps:

• First, we prove that Pp[0
Sk←→ ∞] > 0 implies the existence of a certain event with a

large probability. This step is new, and in particular, we invoke a gluing lemma to
estimate probability of connections between open paths.

• The second step is classical. It consists in applying a block argument to deduce that
percolation occurs for any q sufficiently close to p.

• The last step provides the proof of the gluing lemma. This lemma provides an
answer to a difficulty encountered when doing renormalization in 3-dimensions
(e.g. in [GM90]) in the case of slabs. When trying to construct long open connections
by connecting two open paths together, the conditioning on the first path creates
negative information along the path. As a consequence, one may construct open
paths coming at distance one of the existing path, but the last edge can potentially
be already explored and closed. This difficulty is one of the major obstacles in using

a renormalization scheme to prove that Ppc [0
Z3

←→ ∞] = 0. In our case, the fact that
slabs are quasi-planar enables us to overcome this difficulty.

From now on in this section, we fix p and k and we assume that

Pp
[
0

Sk←→ ∞] > 0.

Since the ambient space is fixed, we will not refer to Sk and will rather write X ←→ Y instead of

X
Sk←→ Y.

1.1 The finite-size criterion

The infinite cluster in Sk being unique almost surely [AKN87, BK89], one can construct a
sequence (un)n≥1 such that un ≤ n/3 and

lim
n→∞ Pp

[
Bun

!Bn !←−→ ∂Bn

]
= 1. (6.1)
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1 Proof

For simplicity, we set Sn = Bun . For 0 ≤ α ≤ β ≤ n, we define the following event:

En(α,β) =
{

Sn
Bn←→ {n} × [α,β]

}
.

Sn

Bn

αn

n

0

(a) The event En(αn, n).

Sn

Bn

αn/4
yn

n

(b) The event En(yn −αn/4, yn +αn/4).

Figure 6.1: The two events of Lemma 1.1.

Lemma 1.1. There exist two sequences (yn) and (αn) with values in [0, n], such that

lim
n→∞ Pp [En(αn, n)] = 1,

lim
n→∞ Pp [En(yn −αn/4, yn +αn/4)] = 1.

The proof relies on the following classical inequality, which is a straightforward con-
sequence of the Harris-FKG inequality. Let A1, . . . ,Am be m increasing events. Then

max
i=1,...,m

Pp [Ai] ≥ 1− (1− Pp [A1 ∪ · · · ∪ Am])
1/m. (6.2)

When the events are of equal probability, this inequality is known as “square-root trick”.
We use the same name for the generalization given by (6.2).

Proof of Lemma 1.1. Applying the square-root trick and using the symmetries of the box,
we obtain

Pp [En(0, n)] ≥ 1−
(

1− Pp

[
Sn

Bn←→ ∂Bn

])1/8

which implies that Pp [En(0, n)] also tends to 1 as n goes to infinity. Now, forα ∈ {0, . . . , n−
1} we will use the decomposition

En(0, n) = En(0,α) ∪ En(α + 1, n).
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The probability of the event En(0, 0) is smaller than some constant c < 1 uniformly in n
and Pp [En(0, n)] tends to 1, providing that for n large enough:

Pp [En(0, 0)] < Pp [En(1, n)] .

In the same way, we also have for n large enough

Pp [En(0, n− 1)] > Pp [En(n, n)] .

The two inequalities above ensure that the inequality between Pp [En(0,α − 1)] and Pp [En(α, n)]
reverses for a non-trivialα. More precisely we can defineαn ∈ {1, . . . , n− 1} by

αn = max
{
α ≤ n− 1 : Pp [En(0,α − 1)] < Pp [En(α, n)]

}
,

and this choice implies that

Pp [En(0,αn − 1)] < Pp [En(αn, n)] and Pp [En(0,αn)] ≥ Pp [En(αn + 1, n)] .

Therefore, two other uses of the square-root trick imply that Pp [En(0,αn)] and Pp [En(αn, n)]
are larger than 1− (1− Pp [En(0, n)])1/2 and thus tends to 1 when n goes infinity. Finally,
we decompose

En(0,αn) = En(0,αn/2) ∪ En(αn/2,αn)

and a last application of the square root trick allows to define yn = αn/4 or yn = 3αn/4
such that

Pp [En(yn −αn/4, yn +αn/4)] ≥ 1−
√

1− Pp [En(0,αn)],

which concludes the proof of the lemma.

Lemma 1.2. There exist infinitely many n such thatα3n ≤ 4αn.

Proof. A sequence of positive integers such that α3n > 4αn for n large enough grows
super-linearly. Sinceαn ≤ n, we obtain the result.

Let n ≥ 1. Write y = y3n and define the following five subsets of Z2 (see Fig. 6.2 for
an illustration):

B′n = (2n, y) + Bn,

S′n = (2n, y) + Sn,

Y+
n = {3n} × [y +αn, y + n],

Y−n = {3n} × [y− n, y−αn],

Zn = {3n} × [y−αn, y +αn].

When n is such thatα3n/4 ≤ αn, we have

Pp

[
S3n

B3n←→ Zn

]
≥ Pp [E3n(y3n −α3n, y3n +α3n)] ,
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S3n

B3n

B′n

S ′n

Y +
n

Y −n

Zn

Figure 6.2: The events S3n
B3n←→ Zn (the path is depicted by dots) and {S′n

B′n←→ Y−n } ∩
{S′n

B′n←→ Y+
n } (the paths are depicted in bold).

and Lemmata 1.1 and 1.2 imply that

lim sup
n→∞ Pp

[
S3n

B3n←→ Zn

]
= 1. (6.3)

Using Harris inequality and the invariance of Pp under reflection, we deduce that

Pp

[
S3n

B3n←→ Zn, S′n
B′n←→ Y−n , S′n

B′n←→ Y+
n

]
≥ Pp

[
S3n

B3n←→ Zn

]
Pp [En(0,αn)]

2 .

From Lemma 1.1 and (6.3), we finally obtain

lim sup
n→∞ Pp

[
S3n

B3n←→ Zn, S′n
B′n←→ Y−n , S′n

B′n←→ Y+
n

]
= 1. (6.4)

We now intend to construct a path from S3n to S′n. Projections of paths from S3n to
Zn and from S′n to Y−n and Y+

n must intersect (as illustrated on Fig. 6.2), but the paths
themselves have no reason to do so. This is one of the main difficulties when working
with non-planar graphs. Let us assume for a moment that we have the following lemma
at our disposition and let us finish the proof. Note that this lemma is a crucial ingredient
of the proof, since it solves the problem of the intersection of paths on slabs.

Lemma 1.3 (Gluing Lemma). For any ε > 0, there exists δ = δ(ε, k) > 0 such that for any n,

Pp

[
S3n

B3n←→ Zn, S′n
B′n←→ Y−n , S′n

B′n←→ Y+
n

]
≥ 1− δ
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implies

Pp

[
S3n

B3n∪B′n←−−→ S′n

]
≥ 1−ε.

Lemma 1.3 and (6.4) imply that

lim sup
n→∞ Pp

[
S3n

B4n←→ S′n
]
= 1. (6.5)

Observe that

Pp

[
S3n

(2n,0)+B6n←−−−−−→ (4n, 0) + S3n

]
≥ Pp

[
{S3n

B4n←→ S′n} ∩ {S′n
(4n,0)+B4n←−−−−−→ (4n, 0) + S3n} ∩ {S′n

!B′n !←−→ ∂B′n}
]

≥ Pp

[
{S3n

B4n←→ S′n} ∩ {S′n
(4n,0)+B4n←−−−−−→ (4n, 0) + S3n}

]
+ Pp

[
S′n

!B′n !←−→ ∂B′n

]
− 1

≥ Pp

[
S3n

B4n←→ S′n
]2

+ Pp

[
S′n

!B′n !←−→ ∂B′n

]
− 1.

The first inequality followed from the fact that paths coming from S3n and (4n, 0) + S3n

and going to S′n must be connected to each other in B′n by uniqueness of the cluster in B′n
from S′n to ∂B′n. The Harris inequality and the reflection across the axis {2n} × R were
used in the last inequality.

Using (6.5) and (6.1), we find

lim sup
n→∞ Pp

[
S3n

(2n,0)+B6n←−−−−−→ (4n, 0) + S3n

]
= 1. (6.6)

1.2 The renormalization step

Fix n ∈ N to be chosen below. Call an edge {z, z′} of 4nZ2 good if

• z + S3n
Rn←→ z′ + S3n, with Rn = z+z′

2 + B6n,

• z + S3n
!z+B3n !←−−−→ z + ∂B3n and z′ + S3n

!z′+B3n !←−−−→ z′ + ∂B3n.

Notice that the set of good edges follows a percolation law which is
4-dependent. In particular, there exists η > 0 such that whenever the probability to be
good exceeds 1− η, the set of good edges percolates (this fact follows from a Peierls argu-
ment presented for example in [BBW05, Lemma 1], or from the classical result of [LSS97]
comparing 4-dependent percolation to Bernoulli percolation).

Equations (6.6) and (6.1) guarantee the existence of n such that the Pp-probability that
an edge is good is larger than 1− η. Since being good depends only on the state of the
edges in a finite box, there exists q < p such that an edge is good with Pq-probability
larger than 1− η, and the set of good edges percolates for the percolation of parameter q.

By construction, an infinite path of good edges in the coarse-grained lattice imme-
diately implies the existence of an infinite path of open edges in the original lattice.
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As a consequence, q ≥ pc(k) and therefore p > pc(k). This concludes the proof of
Ppc(k)[0←→ ∞] = 0 conditionally on Lemma 1.3.

1.3 The proof of Lemma 1.3 (the gluing Lemma)

First, observe that the lemma holds trivially for k = 0 by setting δ(ε, 0) = ε. We therefore
assume from now on that k ≥ 1. We will be using the following lemma.

Lemma 1.4. Let s, t > 0. Consider two events A and B and a map Φ from A into the set P(B)
of subevents of B. We assume that:

1. for allω ∈ A, |Φ(ω)| ≥ t,

2. for allω′ ∈ B, there exists a set S with less than s edges such that {ω : ω′ ∈ Φ(ω)} ⊂
{ω : ω|Sc =ω

′
|Sc
}.

Then,

Pp [A] ≤
(2/min{p, 1− p})s

t
Pp [B] .

This lemma will enable us to bound from above the probability of A when s is small
and t is large.

Proof. It follows from exchanging the order of the summation onω and onω′ ∈ Φ(ω):

∑
ω∈A

Pp [ω] ≤ 1
t(min{p, 1− p})s ∑

ω∈A
Pp [Φ(ω)]

=
1

t(min{p, 1− p})s ∑
ω′∈B

Card{ω : ω′ ∈ Φ(ω)} · Pp
[
ω′
]

≤ 2s

t(min{p, 1− p})s ∑
ω′∈B

Pp
[
ω′
]

.

Let us now explain how the previous statement can be used to prove Lemma 1.3. Fix
an arbitrary order≺ on edges emanating from each vertex of Sk, which is invariant under
translations of Z2. Also fix an arbitrary order � on vertices of Sk. Then, define a total
order on self-avoiding paths from S3n to Zn by taking the lexicographical order: for two
paths γ = (γi)i≤r and γ′ = (γ′i)i≤r′ , we set γ < γ′ if one of the following conditions
occurs:

• r < r′ and γ = (γ′i)i≤r,

• γ0 � γ′0,

• there exists k < min{r, r′} such that γ j = γ′j for j ≤ k and (γk,γk+1) ≺ (γ′k,γ′k+1).
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Definition. Considerω with at least one open path from S3n to Zn. Define γmin(ω) to be the
minimal (for the order defined above) open self-avoiding path from S3n to Zn. Let U(ω) be the set
of points z in B′n with

P1 {z} ∩γmin(ω) 6= ∅,
P2 z + B1 is connected to S′n by an open path π , such that the distance between the canonical

projections of π and γmin onto Z2 is exactly 1.

Write X = {S3n
B3n←→ Zn, S′n

B′n←→ Y−n , S′n
B′n←→ Y+

n } ∩ {S3n
B3n∪B′n←−−→ S′n}c. Proving Lemma 1.3

corresponds to proving that the probability of X is small whenever the probability of

{S3n
B3n←→ Zn, S′n

B′n←→ Y−n , S′n
B′n←→ Y+

n } is close to 1. We proceed in two steps, depending
on whether the cardinality of U(ω) is large or not.

Fact 1.5. Fix ε > 0 and t > 0. There exists δ > 0 so that

Pp

[
S′n

B′n←→ Y−n , S′n
B′n←→ Y+

n

]
> 1− δ

implies Pp [X ∩ {|U| < t}] ≤ ε.

Proof of Fact 1.5. Let ω ∈ X such that |U(ω)| < t. Define ω′ to be the configuration
obtained fromω by closing, for any z ∈ U(ω), all the edges {u, v} such that u ∈ {z} and
v is connected to S′n by an open path.

Observe that ω′ cannot contain two open paths in B′n from S′n to Y−n and Y+
n respec-

tively. Indeed, an open path in ω′ must be open in ω. Furthermore, two paths from S′n
to Y−n and Y+

n respectively must intersect at least one set of the form {z} with z in U(ω).
But this implies that one edge of one of these two paths was turned to closed inω′, which
is a contradiction. We therefore constructed a map

Φ : X ∩ {|U| < t} −→ {S′n
B′n←→ Y−n , S′n

B′n←→ Y+
n }c

mapping a configurationω toω′. For anyω′ in the image of Φ, the set {ω : Φ(ω) = ω′}
contains only configurations that are equal to ω′ except possibly on the edges adjacent
to U(ω′). Here, we use the fact that U(ω′) = U(ω) and γmin(ω

′) = γmin(ω) for any
pre-image ofω′ (since P1 guarantees that no edge of γmin(ω

′) was closed in the process).
Lemma 1.4 can be applied to obtain

Pp [X ∩ {|U| < t}] ≤ (2/min{p, 1− p})6ktPp

[{
S′n

B′n←→ Y−n , S′n
B′n←→ Y+

n

}c]
.

Fact 1.5 follows immediately.

Fact 1.6. Fix ε > 0. For t large enough,

Pp [X ∩ {|U| ≥ t}] ≤ εPp

[
S3n

B3n∪B′n←−−→ S′n

]
.
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Proof of Fact 1.6. For R ≥ 1 and z = (z1, z2, z3) ∈ Sk, we write BR(z) for (z1, z2) + BR. Fix
R ≥ 2 in such a way that for any site z ∈ Sk, for any three distinct neighbors u, v, w of z
and any three distinct sites u′, v′, w′ on the boundary of BR(z), there exist three disjoint
self-avoiding paths in BR(z) \ {z} connecting u to u′, v to v′ and w to w′. Note that such
an R exists since in this section, k is assume to be strictly larger than 0.

Remark. For the slab, one could take R = 2. Nevertheless, taking larger R becomes necessary
when dealing with finite range percolation. Since the proof is not more complicated, we choose to
present it with an arbitrary R.

z

to Zn

from S3nfrom S ′
n

z

to Zn

from S3nfrom S ′
n

u′

v′

w′

wu

v

γu

γv

γw

Figure 6.3: Two configurations ω and ω(z). In both cases, γmin is depicted in bold,
and closed edges are not drawn for clarity. Note that at the end of the construction,
there are exactly three open edges connecting a vertex of BR(z) to a vertex in the
complement of BR(z).

Fixω ∈ X such that |U(ω)| ≥ t and pick z ∈ U(ω). Construct the configurationω(z)

as follows (see Fig. 6.3 for an illustration of the construction):

1. Choose u, v, w in such a way that (z, u), (z, v) and (z, w) are three distinct edges
with (z, v) ≺ (z, w).

Define u′ and v′ to be respectively the first and last (when going from S3n to Zn)
vertices of γmin(ω) which are in BR(z) (these two vertices exist and are distinct
since γmin(ω) intersects the set B1(z) by P1).

Choose w′ on the boundary of BR in such a way that there exists an open self-
avoiding path π from w′ to S′n, all the edges of which lie outside BR(z) (this path
exists by P2). Sinceω ∈ X , we also have that w′ is different from u′ and v′ (other-
wise S3n ←→ S′n inω).

2. Close all edges of ω in BR+1(z) at the exception of the edges of BR+1(z) \ BR(z)
which are in γmin(ω) or π .

3. Open the edges (z, u), (z, v) and (z, w), together with three disjoint self-avoiding
paths γu, γv and γw in BR(z) \ {z} connecting u to u′, v to v′, and w to w′.
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By construction,ω(z) is in {S3n
B3n∪B′n←−−→ S′n} and we can define the map

Ψ : X ∩ {|U| > t} −→ P(S3n
B3n∪B′n←−−→ S′n)

ω 7−→ {ω(z), z ∈ U(ω)}.

We wish to apply Lemma 1.4. In order to do so, the following observation will be useful.

Working with the lexicographical order implies that γmin(ω
(z)) and γmin(ω) neces-

sarily coincide up to u′. Thanks to the second step, the degree of u′ inω(z) is 2. This fact
forces any self-avoiding open path from S3n to Zn containing the minimal path up to u′ to
containγu. Now (this is the crucial point of the construction), we have that (z, v) ≺ (z, w).
Therefore, even though there could exist an open path from z to Zn passing by w, the min-
imal path will still be going through v. Hence, the continuation of the minimal path goes
through v and thus contains γv for the same reason that it was including γu. From v′, the
minimality of γmin(ω) implies that γmin(ω

(z)) and γmin(ω) coincide from this vertex up
to the end.

Since no site of γmin(ω) is connected to S′n inω (simply becauseω ∈ X ), the previous
paragraph implies that z is the only site on γmin(ω

(z)) to be connected to S′n without using
any edge in γmin(ω

(z)).

We are now in a position to apply Lemma 1.4. The configurationsω(z) are all distinct
since either γmin(ω

(z)) 6= γmin(ω
(z′)) (which readily implies that the configurations are

distinct), or γmin(ω
(z)) = γmin(ω

(z′)) but then z = z′ by the characterization of z (and z′)
above.

Furthermore, consider a pre-imageω ofω′ and assume thatω′ = ω(z) for some z ∈
Sk. The discussion above shows that z is determined uniquely. Beside, the configurations
ω andω(z) differ only in BR+1(z).

In conclusion, the map Φ verifies the hypotheses of Lemma 1.4 with s equal to the
number of edges in BR+1. This gives

Pp [X ∩ {|U| > t}] ≤ (2/min{p, 1− p})C

t
Pp

[
S3n

B3n∪B′n←−−→ S′n

]
.

Choosing t large enough concludes the proof.

Fix ε > 0. Choosing first t as in Fact 1.6 and then δ as in Fact 1.5 conclude the proof of
Lemma 1.3.

1.4 The proof of Proposition 0.9

Proof of Proposition 0.9. Recall the result of [GM90] yielding that pc(k) tends to pc(Z3) as
k tends to infinity.

Let p > pc(Z3). Since the infinite cluster is unique almost surely, and since there exits
an infinite cluster in Slabk for any k sufficiently large (simply choose k so that pc(k) < p),
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we obtain that
Pp
[
0 Z3

←→ ∞] = Pp

[ ⋃
k≥0

{0 Sk←→ ∞}],
from which we deduce that

Pp
[
0 Z3

←→ ∞] = lim
k→∞ Pp

[
0

Sk←→ ∞] ≤ lim
k→∞ f (p− pc(k)) = f (p− pc(Z

3)).

As p tends to pc(Z3), the continuity of f implies that

Ppc(Z3)

[
0 Z3

←→ ∞] = 0.
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7LOCALITY OF PERCOLATION

FOR ABELIAN CAYLEY

GRAPHS

This chapter corresponds to the published article [VT7] with the same title, written in collabora-
tion with Sébastien Martineau.

We prove that the value of the critical probability for percolation on an abelian Cayley
graph is determined by its local structure. This is a partial positive answer to a conjecture
of Schramm: the function pc defined on the set of Cayley graphs of abelian groups of
rank at least 2 is continuous for the Benjamini-Schramm topology. The proof involves
group-theoretic tools and a new block argument.

Introduction

In the paper [BS96], Benjamini and Schramm launched the study of percolation in the
general setting of transitive graphs. Among the numerous questions that have been
studied in this setting stands the question of locality: roughly, “does the value of the
critical probability depend only on the local structure of the considered transitive graph
?” This question emerged in [BNP11] and is formalized in a conjecture attributed to Oded
Schramm. In the same paper, the particular case of (uniformly non-amenable) tree-like
graphs is treated.

In the present paper, we study the question of locality in the context of abelian groups.

• Instead of working in the geometric setting of transitive graphs, we employ the vo-
cabulary of groups — or more precisely of marked groups, as presented in section 1.
This allows us to use additional tools of algebraic nature, such as quotient maps,
that are crucial to our approach. These tools could be useful to tackle Schramm’s
conjecture in a more general framework than the one presented in this paper, e.g.
Cayley graphs of nilpotent groups.

• We extend renormalization techniques developed in [GM90] by Grimmett and Marstrand
for the study of percolation on Zd (equipped with its standard graph structure). The
Grimmett-Marstrand theorem answers positively the question of locality for the d-
dimensional hypercubic lattice. With little extra effort, one can give a positive an-
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swer to Schramm’s conjecture in the context of abelian groups, under a symmetry
assumption. Our main achievement is to improve the understanding of supercrit-
ical bond percolation on general abelian Cayley graphs: such graphs do not have
enough symmetry for Grimmett and Marstrand’s arguments to apply directly. The
techniques we develop here may be used to extend other results of statistical me-
chanics from symmetric lattices to lattices which are not stable under any reflection.

0.5 Statement of Schramm’s conjecture

The following paragraph presents the vocabulary needed to state Schramm’s conjecture
(for more details, see [BNP11]).

Transitive graphs. We recall here some standard definitions from graph theory. A
graph is said to be transitive if its automorphism group acts transitively on its vertices. Let
G denote the space of (locally finite, non-empty, connected) transitive graphs considered
up to isomorphism. By abuse of notation, we will identify a graph with its isomorphism
class. Take G ∈ G and o any vertex of G. Then consider the ball of radius k (for the graph
distance) centered at o, equipped with its graph structure and rooted at o. Up to isomor-
phism of rooted graphs, it is independent of the choice of o, and we denote it by BG(k).
If G ,H ∈ G, we set the distance between them to be 2−n, where

n := max{k : BG(k) ' BH(k)} ∈ N∪ {∞}.
This defines the Benjamini-Schramm distance on the set G. It was introduced in [BS01]
and [BNP11].

Locality in percolation theory. We will use the standard definitions from percolation
theory and refer to [Gri99b] and [LP14] for background on the subject. To any G ∈ G

corresponds a critical parameter pc(G) for i.i.d. bond percolation. One can see pc as a
function from G to [0, 1]. The locality question is concerned by the continuity of this
function.

Question 0.7 (Locality of percolation). Consider a sequence of transitive graphs (Gn) that
converges to a limit G.

Does the convergence pc(Gn) −−−→n→∞ pc(G) hold?

With this formulation, the answer is negative. Indeed, for the usual graph structures,
the following convergences hold:

• (Z/nZ)2 −−−→
n→∞ Z2,

• Z/nZ× Z −−−→
n→∞ Z2.

In both cases, the critical parameter is constant equal to 1 all along the sequence and
jumps to a non trivial value in the limit. The following conjecture, attributed to Schramm
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and formulated in [BNP11], states that Question 0.7 should have a positive answer when-
ever the previous obstruction is avoided.

Conjecture 0.8 (Schramm). Let Gn −−−→n→∞ G denote a converging sequence of transitive graphs.
Assume that supn pc(Gn) < 1. Then pc(Gn) −−−→n→∞ pc(G).

It is unknown whether supn pc(Gn) < 1 is equivalent or not to pc(Gn) < 1 for all
n. In other words, we do not know if 1 is an isolated point in the set of critical prob-
abilities of transitive graphs. Besides, no geometric characterization of the probabilistic
condition pc(G) < 1 has been established so far, which constitutes part of the difficulty
of Schramm’s conjecture.

0.6 The Grimmett-Marstrand theorem

The following theorem, proved in [GM90], is an instance of locality result. It was an
important step in the comprehension of the supercritical phase of percolation.

Theorem 0.9 (Grimmett-Marstrand). Let d ≥ 2. For the usual graph structures, the following
convergence holds:

pc

(
Z2 × {−n, . . . , n}d−2

)
−→
n→∞ pc

(
Zd
)

.

Remark. Grimmett and Marstrand’s proof covers more generally the case of edge struc-
tures on Zd that are invariant under both translation and reflection.

The graph Z2 × {−n, . . . , n}d−2 is not transitive, so the result does not fit exactly into
the framework of the previous subsection. However, as remarked in [BNP11], one can
easily deduce from it the following statement:

pc

(
Z2 ×

(
Z

nZ

)d−2
)
−→
n→∞ pc

(
Zd
)

. (7.1)

Actually, after having introduced the space of marked abelian groups, we will see
in section 1.3 that one can deduce from the Grimmett-Marstrand theorem a statement
that is much stronger than convergence (7.1). We will be able to prove that pc(Zd) =

lim pc(Gn) for any sequence of abelian Cayley graphs Gn converging to Zd with respect
to the Benjamini-Schramm distance.

0.7 Main result

In this paper we prove the following theorem, which provides a positive answer to Ques-
tion 0.7 in the particular case of Cayley graphs of abelian groups (see definitions in sec-
tion 1).

Theorem 0.10. Consider a sequence (Gn) of Cayley graphs of abelian groups satisfying pc(Gn) <

1 for all n. If the sequence converges to the Cayley Graph G of an abelian group, then

pc(Gn) −−−→n→∞ pc(G). (7.2)

173



LOCALITY OF PERCOLATION FOR ABELIAN CAYLEY GRAPHS

We now give three examples of application of this theorem. Let d ≥ 2, fix a generating
set S of Zd, and denote by G the associated Cayley graph of Zd.

Example 1: There exists a natural Cayley graph Gn of Z2 ×
(
Z

nZ

)d−2 that is covered by G.
For such sequence, the convergence (7.2) holds, and generalizes (7.1).

Example 2: Consider the generating set of Zd obtained by adding to S all the n · s, for
s ∈ S. The corresponding Cayley graph Hn converges to the Cartesian product
G × G, and we get

pc(Hn) −−−→n→∞ pc(G × G).

Example 3: Consider a sequence of vectors xn ∈ Zd such that lim |xn| = ∞, and write
Gn the Cayley graph of Zd constructed from the generating set S ∪ {xn}. Then the
following convergence holds:

pc(Gn) −−−→n→∞ pc(G × Z).

The content of Example 2 was obtained in [dLSS11] when G is the canonical Cayley
graph of Zd, based on Grimmett-Marstrand theorem. In the statement above, G can be
any Cayley graph of Zd, and Grimmett-Marstrand theorem cannot be applied without
additional symmetry assumption.

0.8 Questions

In this paper, we work with abelian groups because their structure is very well under-
stood. An additional important feature is that the net formed by large balls of an abelian
Cayley graph has roughly the same geometric structure as the initial graph. Since nilpo-
tent groups also present these characteristics, the following question appears as a natural
step between Theorem 0.10 and Question 0.7.

Question 0.11. Is it possible to extend Theorem 0.10 to nilpotent groups?

This question can also be asked for other models of statistical mechanics than Bernoulli
percolation. In questions 0.12 and 0.13, we mention two other natural contexts where the
locality question can be asked.

Theorem 2.1 of [Bod05] states that locality holds for the critical temperature of the
Ising model for the hypercubic lattice. This suggests the following question.

Question 0.12. Is it possible to prove Theorem 0.10 for the critical temperature of the Ising model
instead of pc ?

Define cn as the number of self-avoiding walks starting from a fixed root of a transitive
graph G. By sub-multiplicativity, the sequence c1/n

n converges to a limit called the con-
nective constant of G. In this context, the following question was raised by I. Benjamini
[Ben13b]:

174
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Question 0.13. Does the connective constant depend continuously on the considered infinite
transitive graph?

0.9 Organization of the paper

Section 1 presents the material on marked abelian groups that will be needed to establish
Theorem 0.10. In section 1.4, we explain the strategy of the proof, which splits into two
main lemmas. Sections 2 and 3 are each devoted to the proof of one of these lemmas.

We drive the attention of the interested reader to Lemma 2.8. Together with the
uniqueness of the infinite cluster, it allows to avoid the construction of “seeds” in Grim-
mett and Marstrand’s approach.

1 Marked abelian groups and locality

In this section, we present the space of marked abelian groups and show how problems
of Benjamini-Schramm continuity for abelian Cayley graphs can be reduced to continu-
ity problems for marked abelian group. Then, we provide a first example illustrating
the use of marked abelian groups in proofs of Benjamini-Schramm continuity. Finally,
section 1.4 presents the proof of Theorem 1.3, which is the marked group version of our
main theorem.

General marked groups are introduced in [Gri85]. Here, we only define marked
groups and Cayley graphs in the abelian setting, since we do not need a higher level
of generality.

1.1 The space of marked abelian groups

Let d denote a positive integer. A (d-)marked abelian group is the data of an abelian
group together with a generating d-tuple (s1, . . . , sd), up to isomorphism. (We say that

(G; s1, . . . , sd) and (G′; s′1, . . . , s′d) are isomorphic if there exists a group isomorphism from G to G′

mapping si to s′i for all i.) We write Gd the set of the d-marked abelian groups. Elements
of Gd will be denoted by [G; s1, . . . , sd] or G•, depending on whether we want to insist
on the generating system or not. Finally, we write G the set of all the marked abelian
groups: it is the disjoint union of all the Gd’s.

Quotient of a marked abelian group. Given a marked abelian group G• = [G; s1, . . . , sd]

and a subgroup Λ of G, we define the quotient G•/Λ by

G•/Λ = [G/Λ; s1, . . . , sd],

where (s1, . . . , sd) is the image of (s1, . . . , sd) by the canonical surjection from G onto
G/Λ. Quotients of marked abelian groups will be crucial to define and understand the
topology of the set of marked abelian groups. In particular, for the topology defined
below, the quotients of a marked abelian group G• forms a neighbourhood of it.
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The topology. We first define the topology on Gd. Let ffi denote the canonical generat-
ing system of Zd. To each subgroup Γ of Zd, we can associate an element of Gd via the
mapping

Γ 7−→ [Zd; ffi]/Γ . (7.3)

One can verify that the mapping defined by (7.3) realizes a bijection from the set of the
subgroups of Zd onto Gd. This way, Gd can be seen as a subset of {0, 1}Zd

. We consider
on Gd the topology induced by the product topology on {0, 1}Zd

. This makes of Gd a
Hausdorff compact space. Finally, we equip G with the topology generated by the open
subsets of the Gd’s. (In particular, Gd is an open subset of G.)

Let us illustrate the topology with three examples of converging sequences:

• [Z/nZ; 1] converges to [Z; 1].

• [Z; 1, n, . . . , nd] converges to [Zd; ffi].

• [Z; 1, n, n + 1] converges to [Z2; ffi1, ffi2, ffi1 + ffi2].

Cayley graphs. Let G• = [G; s1, . . . , sd] be a marked abelian group. Its Cayley graph,
denoted Cay(G•), is defined by taking G as vertex-set and declaring a and b to be neigh-
bours if there exists i such that a = b± si. It is is uniquely defined up to graph isomor-
phism. We write BG•(k) ⊂ G the ball of radius k in Cay(G•), centered at 0.

Converging sequences of marked abelian groups. In the rest of the paper, we will use
the topology of G through the following proposition, which gives a geometric flavour to
the topology. In particular, it will allow to do the connection with the Benjamini-Schramm
topology through corollary 1.2.

Proposition 1.1. Let (G•n) be a sequence of marked abelian groups that converges to some G•.
Then, for any integer k, the following holds for n large enough:

1. G•n is of the form G•/Λn, for some subgroup Λn of G, and

2. Λn ∩ BG•(k) = {0}.

Proof. Let d be such that G• ∈ Gd. For n large enough, we also have G•n ∈ Gd. Let Γ (resp.
Γn) denote the unique subgroup of Zd that corresponds to G• (resp. G•n) via bijection (7.3).
The group Γ is finitely generated: we consider F a finite generating subset of it. Taking n
large enough, we can assume that Γn contains F, which implies that Γ is a subgroup Γn.
We have the following situation

Zd ϕ−→ Zd/Γ
ψn−→ Zd/Γn.

Identifying G with Zd/Γ and taking Λn = kerψn = Γn/Γ , we obtain the first point of the
proposition.

176



1 Marked abelian groups and locality

By definition of the topology, taking n large enough ensures that Γn ∩ BZd(k) = Γ ∩
BZd(k). We have

BZd/Γ (k) ∩Λn =ϕ(BZd(k) ∩ Γn)

=ϕ(BZd(k) ∩ Γ)

= {0}.

This ends the proof of the second point.

Corollary 1.2. The mapping Cay from G to G that associates to a marked abelian group its Cayley
graph is continuous.

1.2 Percolation on marked abelian groups

Via its Cayley graph, we can associate to each marked abelian group G• a critical param-
eter pc

•(G•) := pc(Cay(G•)) for bond percolation. If G• is a marked abelian group, then
pc
•(G•) < 1 if and only if the rank of G is at least 2. (We commit the abuse of language

of calling rank of an abelian group the rank of its torsion-free part.) This motivates the
following definition:

G̃ = {G• ∈ G : rank(G) ≥ 2} .

In the context of marked abelian groups, we will prove the following theorem:

Theorem 1.3. Consider G•n −→ G• a converging sequence in G̃. Then,

pc
•(G•n) −−−→n→∞ pc

•(G•).

Theorem 1.3 above states that pc
• is continuous on G̃. It seems a priori weaker than

Theorem 0.10. Nevertheless, the following lemma allows us to deduce Theorem 0.10 from
Theorem 1.3.

Lemma 1.4. Let G• be an element of G̃. Assume it is a continuity point of the restricted function

pc
• : G̃ −→ (0, 1).

Then its associated Cayley graph Cay(G•) is a continuity point of the restricted function

pc : Cay(G̃) −→ (0, 1).

Proof. Assume, by contradiction, that there exists a sequence of marked abelian groups
G•n in G̃ such that Cay(G•n) converges to some Cay(G•) and pc

•(G•n) stays away from
pc
•(G•). Define d to be the degree of Cay(G•). Considering n large enough, we can assume

that all the G•n’s lie in the compact set
⋃

d′≤d Gd′ . Up to extraction, one can then assume
that G•n converges to some marked abelian group G•∞. This group must have rank at least
2. Since Cay is continuous, Cay(G•) = Cay(G•∞) and Theorem 1.3 is contradicted by the
sequence (G•n) that converges to G•∞.
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We will also use the following theorem, which is a particular case of theorem 3.1 in
[BS96].

Theorem 1.5. Let G• be a marked abelian group and Λ a subgroup of G. Then

pc
•(G•/Λ) ≥ pc

•(G•).

1.3 A first continuity result

In this section, we will prove Proposition 1.6, which is a particular case of Theorem 0.10.
We deem interesting to provide a short independent proof of it. This proposition epit-
omizes the scope of Grimmett-Marstrand results in our context. It also illustrates how
marked groups can appear as useful tools to deal with locality questions. More precisely,
Lemma 1.4 reduces some questions of continuity in the Benjamini-Schramm space to
equivalent questions in the space of marked abelian groups, where the topology allows
to employ methods of algebraic nature.

Proposition 1.6. Let (G•n) be a sequence in G̃. Assume that G•n −−−→n→∞ [Zd; ffi], where ffi stands

for the canonical generating system of Zd. Then

pc
•(G•n) −−−→n→∞ pc

•([Zd; ffi]).

Proof. Since Gd is open, we can assume that G•n belongs to it. It is thus a quotient of
[Zd; ffi], and Theorem 1.5 gives

lim inf pc
•(G•n) ≥ pc

•([Zd; ffi]).

To establish the other semi-continuity, we will show that the Cayley graph of G•n even-
tually contains Z2 × {0, . . . , K} as a subgraph (for K arbitrarily large), and conclude by
applying Grimmett-Marstrand theorem.

Let us denote Γn the subgroup of Zd associated to G•n via bijection (7.3). We call co-
ordinate plane a subgroup of Zd generated by two different elements of the canonical
generating system of Zd.

Lemma 1.7. For any integer K, for n large enough, there exists a coordinate plane Π satisfying

(Π+ BZd(0, 2K + 1)) ∩ Γn = {0}.

Proof of Lemma 1.7. To establish Lemma 1.7, we proceed by contradiction. Up to extraction, we
can assume that there exists some K such that

for all Π, (Π+ BZd(0, 2K + 1)) ∩ Γn 6= {0}. (7.4)

We denote by vΠn a non-zero element of (Π+ BZd(0, 2K+ 1))∩ Γn. Up to extraction, we can assume
that, for all Π, the sequence vΠn /‖vΠn ‖ converges to some vΠ. (The vector space Rd is endowed with
an arbitrary norm ‖ ‖.) Since Γn converges pointwise to {0}, for any Π, the sequence ‖vΠn ‖ tends to
infinity. This entails, together with equation (7.4), that vΠ is contained in the real plane spanned by
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1 Marked abelian groups and locality

Π. The incomplete basis theorem implies that the vector space spanned by the vΠ’s has dimension
at least d− 1. By continuity of the minors, for n large enough, the vector space spanned by Γn as
dimension at least d− 1. This entails that, for n large enough, Γn has rank at least d− 1, which
contradicts the hypothesis that Zd/Γn has rank at least 2.

For any K, provided that n is large enough, one can see Z2 × {−K, . . . , K}d−2 as a
subgraph of Cay(G•n). (Restrict the quotient map from Zd to G•n to the Π+ BZd(0, K) given
by Lemma 1.7 and notice that it becomes injective.) It results from this that

lim sup pc
•(G•n) ≤ pc(Z

2 × {−K, . . . , K}d−2).

The right-hand side goes to pc
•([Zd; ffi]) as K goes to infinity, by Grimmett-Marstrand

theorem. This establishes the second semi-continuity.

Remark. Proposition 1.6 states exactly what Grimmett-Marstrand theorem implies in our
setting. Together with Lemma 1.4, it entails that the hypercubic lattice is a continuity
point of pc on Cay(G̃). Without additional idea, one could go a bit further: the proof
of Grimmett and Marstrand adjusts directly to the case of Cayley graphs of Zd that are
stable under reflections relative to coordinate hyperplanes. This statement also has a
counterpart analog to Proposition 1.6. Though, we are still far from Theorem 1.3, since
Grimmett-Marstrand theorem relies heavily on the stability under reflection. In the rest
of the paper, we solve the locality problem for general abelian Cayley graphs. We do
so directly in the marked abelian group setting, and do not use a “slab result” analog to
Grimmett-Marstrand theorem.

1.4 Proof of Theorem 1.3

The purpose of this section is to reduce the proof of Theorem 1.3 to the proof of two
lemmas (Lemma 1.8 and Lemma 1.9). These are respectively established in sections 2
and 3.

As in section 1.3, it is the upper semi-continuity of pc
• that is hard to establish: given

G• and p > pc
•(G•), we need to show that the parameter p remains supercritical for any

element of G̃ that is close enough to G•. To do so, we will characterize supercriticality
by using a finite-size criterion, that is a property of the type “Pp [EN ] > 1− η” for some
event EN that depends only on the states of the edges in the ball of radius N. The finite-
size criterion we use is denoted by FC(p, N, η) and characterizes supercriticality through
lemmas 1.8 and 1.9. Its definition involving heavy notation, we postpone it to section 2.5.

First, we work with a fixed marked abelian group G•. Assuming that p > pc
•(G•),

we construct in its Cayley graph a box that exhibits nice connection properties with high
probability. This is formalized by Lemma 1.8 below, which will be proved in section 2.

Lemma 1.8. Let G• ∈ G̃. Let p > pc
•(G•) and η > 0. Then, there exists N such that G•

satisfies the finite-size criterion FC(p, N, η).
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Then, take H• = G•/Λ a marked abelian group that is close to G•. Since Cay(G•) and
Cay(H•) have the same balls of large radius, the finite criterion is also satisfied by H•.
This enables us to prove that there is also percolation in Cay(H•). As in Grimmett and
Marstrand’s approach, we will not be able to prove that percolation occurs in Cay(H•) for
the same parameter p, but we will have to slightly increase the parameter. Here comes a
precise statement, established in section 3.

Lemma 1.9. Let G• ∈ G̃. Let p > pc
•(G•) and δ > 0. Then there exists η > 0 such that the

following holds: if there exists N such that G• satisfies the finite-size criterion FC(p, N, η), then
pc(H•) < p + δ for any marked abelian group H• close enough to G•.

Assuming these two lemmas, let us prove Theorem 1.3.

Proof of Theorem 1.3. Let G•n −−−→n→∞ G• denote a converging sequence of elements of G̃.
Our goal is to establish that pc

•(G•n) −−−→n→∞ pc
•(G•).

For n large enough, G•n is a quotient of G•. (See Proposition 1.1.) By Theorem 1.5, for
n large enough, pc

•(G•) ≤ pc
•(G•n). Hence, we only need to prove that lim sup pc

•(G•n) ≤
pc
•(G•).

Take p > pc and δ > 0. By Lemma 1.8, we can pick N such that FC(p, N, η) is
satisfied. Lemma 1.9 then guarantees that, for n large enough, pc

•(G•n) ≤ p + δ, which
ends the proof.

2 Proof of Lemma 1.8

Through the entire section, we fix:

- G• ∈ G̃ a marked abelian group of rank greater than two,

- p ∈ (pc
•(G•), 1),

- η > 0.

We write G• under the form [Zr × T; S], where T is a finite abelian group. Let G =

(V, E) = (Zr × T, E) denote the Cayley graph associated to G•. Paths and percolation
will always be considered relative to this graph structure.

2.1 Between continuous and discrete

An element of Zr × T will be written

x = (xfree, xtor).

For the geometric reasonings, we will use linear algebra tools. (The vertex set — Zr × T
— is roughly Rr.) Endow Rr with its canonical Euclidean structure. We denote by ‖ ‖ the
associated norm and B(v, R) the closed ball of radius R centered at v ∈ Rr. If the center is
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2 Proof of Lemma 1.8

0, this ball may be denoted by B(R). Set RS := maxs∈S ‖sfree‖. In G, we define for k > 0

B(k) := {x : ‖xfree‖ ≤ kRS}
= (B(kRS) ∩ Zd)× T.

Up to section 2.5, we fix an orthornomal basis e = (e1, . . . , ed) of Rr. Define

πe : Rr −→ R2

∑
r
i=1 xiei 7−→ (x1, x2).

We now define the function Graph, which allows us to move between the continuous
space R2 and the discrete set V. It associates to each subset X of R2 the subset of V
defined by

Graph (X) :=
((
π−1

e (X) + B(RS)
)
∩ Zr

)
× T. (7.5)

In section 2.5, we will have to consider different bases. To insist on the dependence on e,
we will write Graphe.

If a and b belong to R2, we will consider the segment [a, b] and the parallelogram
[a, b,−a,−b] spanned by a and b in R2, defined respectively by

[a, b] = {λa + (1− λ)b ; 0 ≤ λ ≤ 1} and

[a, b,−a,−b] = {λa +µb ; |λ|+ |µ| ≤ 1}

Write then L(a, b) := Graph ([a, b]) and R(a, b) := Graph ([3a, 3b,−3a,−3b]) the corre-
sponding subsets of V.

The following lemma illustrates one important property of the function Graph con-
necting continuous and discrete.

Lemma 2.1. Let X ⊂ R2. Let γ be a finite path of length k in G. Assume that γ0 ∈ Graph (X)

and γk 6∈ Graph (X). Then the support of γ intersects Graph (∂X).

Proof. It suffices to show that if x and y are two neighbours in G such that x ∈ Graph (X)

and y /∈ Graph (X), then x belongs to Graph (∂X). By definition of Graph, we have xfree ∈
π−1(X) + B(RS), which can be restated as

π (B(xfree, RS)) ∩ X 6= ∅. (7.6)

By definition of RS, we have yfree ∈ B(xfree, RS) and our assumption on y implies that
π(yfree) /∈ X, which gives

π (B(xfree, RS)) ∩ cX 6= ∅. (7.7)

Since π (B(xfree, RS)) is connected, (7.6) and (7.7) implies that

π (B(xfree, RS)) ∩ ∂X 6= ∅

which proves that x belongs to Graph (∂X).
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2.2 Percolation toolbox

Probabilistic notation. We denote by Pp the law of independent bond percolation of
parameter p ∈ [0, 1] on G.

Connections. Let A, B and C denote three subsets of V. The event “there exists an
open path intersecting A and B that lies in C” will be denoted by “A C←→ B”. The event
“restricting the configuration to C, there exists a unique component that intersects A and
B” will be written “A !C!←→ B”. The event “there exists an infinite open path that touches
A and lies in C will be denoted by “A C←→ ∞”. If the superscript C is omitted, it means
that C is taken to be the whole vertex set.

This paragraph contains the percolation results that will be needed to prove Theo-
rem 1.3. The following lemma, sometimes called “square root trick”, is a straightforward
consequence of Harris-FKG inequality.

Lemma 2.2. Let A and B be two increasing events. Assume that Pp [A] ≥ Pp [B]. Then, the
following inequality holds:

Pp [A] ≥ 1−
(
1− Pp [A∪B]

)1/2 .

The lemma above is often used when Pp [A] = Pp [B], in a context where the equality
of the two probabilities is provided by symmetries of the underlying graph (see [Gri99b]).
This slightly generalized version allows to link geometric properties to probabilistic esti-
mates whithout any symmetry assumption, as illustrated by the following lemma.

Lemma 2.3. Let a and b be two points in R2. Let A ⊂ V be a subset of vertices of G. Assume
that

Pp [A←→ L(a, b)] > 1−ε2 for some ε > 0. (7.8)

Then, there exists u ∈ [a, b] such that both Pp [A←→ L(a, u)] and Pp [A←→ L(u, b)] exceed
1−ε.

Remark. The same statement holds when we restrict the open paths to lie in a subset C of
V.

Proof. We can approximate the event estimated in inequality (7.8) and pick k large enough
such that

Pp [A←→ L(a, b) ∩ B(k)] > 1−ε2.

The set L(a, b) ∩ B(k) being finite, there are only finitely many different sets of the
form L(a, u) ∩ B(k) for u ∈ [a, b]. We can thus construct u1, u2 . . . , un ∈ [a, b] such that
u1 = a and un = b, and for all 1 ≤ i < n,

1. [a, ui] is a strict subset of [a, ui+1],

2. L(a, b) ∩ B(k) is the union of L(a, ui) ∩ B(k) and L(ui+1, b) ∩ B(k).
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Assume that for some i, the following inequality holds:

Pp [A←→ L(a, ui) ∩ B(k)] ≥ Pp [A←→ L(ui+1, b) ∩ B(k)] . (7.9)

Lemma 2.2 then implies that

Pp [A←→ L(a, ui) ∩ B(k)] > 1−ε.

If inequality (7.9) never holds (resp. if it holds for all possible i), then A is connected
to L({a}) (resp. to L({b})) with probability exceeding 1 − ε. In these two cases, the
conclusion of the lemma is trivially true. We can assume that we are in none these two
situations, and define j ∈ {2, . . . , n− 1} to be the smallest possible i such that inequal-
ity (7.9) holds. We will show the conclusion of Lemma 2.3 holds for u = u j. We already
have

Pp
[
A←→ L(a, u j) ∩ B(k)

]
> 1−ε,

and inequality (7.9) does not hold for i = j− 1. Once again, Lemma 2.2 implies that

Pp
[
A←→ L(u j, b) ∩ B(k)

]
> 1−ε.

Lemma 2.4. Bernoulli percolation on G at a parameter p > pc(G) produces almost surely a
unique infinite component. Moreover, any fixed infinite subset of V is intersected almost surely
infinitely many times by the infinite component.

The first part of the lemma is standard (see [BK89] or [Gri99b]). The second part stems
from the 0-1 law of Kolmogorov.

2.3 Geometric constructions

In this section, we aim to prove that a set connected to infinity with high probability also
has “good” local connections. To formalize this, we need a few additionnal definitions.
We say that (a, b, u, v) ∈

(
R2)4 is a good quadruple if

1. u = a+b
2 ,

2. v ∈ [−a, b] and

3. [a, b,−a,−b] contains the planar ball of radius RS.

Property 3 ensures that the parallelogramm [a, b,−a,−b] is not too degenerate. To each
good quadruple (a, b, u, v), we associate the following four subsets of the graph G:

Z(a, b, u, v) = {L (a, u) , L (u, b) , L(b, v), L(v,−a)} .
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RS

b

a

−a

−b

u

v

Figure 7.1: A good quadruple

Lemma 2.5. Let A be a finite subset of V containing 0 and such that

−A := {−x; x ∈ A} = A.

Let k ≥ 1 be such that B := B(k) contains A. Assume the following relation to hold for some
ε ∈ (0, 1):

Pp [A←→ ∞] > 1−ε24.

Then there exists a good quadruple (a, b, u, v) such that for any Z ∈ Z(a, b, u, v)

(i) B ∩ Z = ∅,

(ii) Pp

[
A

R(a,b)←−−→ Z
]
> 1−ε.

Proof. Let (n, h, `) ∈ N× R× R+. Define a := (n, h − `), b := (n, h + `) and the three
following subsets of V illustrated on Figure 7.2:

C(n, h, `) := Graph ([a, b,−a,−b])

LR(n, h, `) := Graph ([a, b] ∪ [−a,−b]) = L(a, b) ∪ L(−a,−b)

UD(n, h, `) := Graph ([−a, b] ∪ [−b, a]) = L(−a, b) ∪ L(−b, a)

Let us start by focusing on the geometric constraint ((i)), which we wish to translate
into analytic conditions on the triple (n, h, `). We fix nB large enough such that

B ∩ Graph
(

R2\(−nB + 1, nB − 1)2
)
= ∅. (7.10)

This way, any set defined as the image by the function Graph of a planar set in the com-
plement of (−nB + 1, nB − 1)2 will not intersect B. In particular, defining for n > nB and
h ∈ R

`B(n, h) = nB

(
1 +
|h|
n

)
,
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h

n

`

LR(n, h, `)

UD(n, h, `)
C(n, h, `)

Figure 7.2: Pictures of the planar
sets defining C(n, h, `), UD(n, h, `) and
LR(n, h, `)

h

n

nB

`B(n, h)

Figure 7.3: Definition of `B(n, h)

the set UD(n, h, `) does not intersect B whenever ` ≥ `B − 1. (See Figure 7.3.) Suppose
that A intersects the infinite cluster. By Lemma 2.4, V \ C(n, h, `) — which is infinite —
intersects the infinite cluster almost surely. Thus there exists an open path from A to
V \ C(n, h, `). By Lemma 2.1, A is connected to UD(n, h, `) ∪ LR(n, h, `) within C(n, h, `),
which gives the following inequality:

Pp

[(
A

C(n,h,`)←−−−→ LR(n, h, `)
)
∪
(

A
C(n,h,`)←−−−→ UD(n, h, `)

)]
> 1−ε24. (7.11)

The strategy of the proof is to work with some sets C(n, h, `) that are balanced in the
sense that

Pp

[
A

C(n,h,`)←−−−→ LR(n, h, `)
]

and Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]

are close, and conclude with Lemma 2.2. We shall now prove two facts, which ensure
that the inequality between the two afore-mentioned probabilities reverses for some `

between `B(n, h) and infinity.

Fact 2.6. There exists n > nB such that, for all h ∈ R, when ` = `B(n, h)

Pp

[
A

C(n,h,`)←−−−→ LR(n, h, `)
]
< Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]

.

Proof of fact 2.6. For n > nB + RS, define the following sets, illustrated on Figure 7.4:

X = Graph (((−∞, nB)× R) ∪ (R× [−nB, ∞)))

∂X = Graph (({nB} × (−∞,−nB]) ∪ ([nB, ∞)× {−nB}))
Xn = Graph (([−n, nB)× R) ∪ ([−n, n]× [−nB, ∞)))

∂1Xn = Graph ({−n} × R∪ {n} × [−nB, ∞))

∂2Xn = Graph ({nB} × (−∞,−nB] ∪ [nB, n]× {−nB})
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Since the sequence of events
(

A Xn←→ ∂1Xn

)
n>nB+RS

is decreasing, we have

XXn

B

A

∂1Xn

∂2Xn

n nB

Figure 7.4: Planar pictures corresponding to X, Xn, ∂1Xn and ∂2Xn

lim
n→∞ Pp

[
A Xn←→ ∂1Xn

]
= Pp

[ ⋂
n>nB+RS

(
A Xn←→ ∂1Xn

)]
≤ Pp

[
A X←→ ∞]

= Pp

[(
A X←→ ∞) ∩ (A X←→ ∂X

)]
. (7.12)

(The last equality results from the fact that the infinite set V \ X intersects the infinite
cluster almost surely.)

The sequence
(

A Xn←→ ∂2Xn

)
n>nB+RS

is increasing, hence we have

lim
n→∞ Pp

[
A Xn←→ ∂2Xn

]
= Pp

[ ⋃
n>nB+RS

(
A Xn←→ ∂2Xn

)]
= Pp [A←→ ∂X] . (7.13)

Since p ∈ (0, 1) and A is finite, the probability that A is connected to ∂X but intersects
only finite clusters is positive. Thus the following strict inequality holds

Pp

[(
A X←→ ∞) ∩ (A X←→ ∂X

)]
< Pp [A←→ ∂X] . (7.14)

From (7.12), (7.13) and (7.14), we can pick n1 > nB + RS large enough such that, for all
n ≥ n1,

Pp

[
A Xn←→ ∂1Xn

]
< Pp

[
A Xn←→ ∂2Xn

]
.

Fix n ≥ n1 and h ≥ 0, then define ` = `B(n, h). For these parameters, we have A ⊂
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C(n, h, `) ⊂ Xn and LR(n, h, `) ⊂ ∂1Xn, which gives

Pp

[
A

C(n,h,`)←−−−→ LR(n, h, `)
]
≤ Pp

[
A Xn←→ ∂1Xn

]
< Pp

[
A Xn←→ ∂2Xn

]
≤ Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]

.

The last inequality follows from the observation that each path connecting A to ∂2Xn

inside Xn has to cross UD(n, h, `).
The computation above shows that the following srict inequality holds for n ≥ n1,

h ≥ 0, and ` = `B(n, h)

Pp

[
A

C(n,h,`)←−−−→ LR(n, h, `)
]
< Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]

. (7.15)

In the same way, we find n2 such that for all n ≥ n2 and h ≤ 0, equation (7.15) holds for
` = `B(n, h). Taking n = max(n1, n2) ends the proof of the fact.

In the rest of the proof, we fix n as in the previous fact. For h ∈ R, define

`eq(h) = sup
{
` ≥ `B(n, h)− 1 : Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]

≥ Pp

[
A

C(n,h,`)←−−−→ LR(n, h, `)
] }

.

Fact 2.7. For all h ∈ R, the quantity `eq(h) is finite.

Proof of fact 2.7. We fix h ∈ R and use the same technique as developed in the proof of the
fact 2.6. Define

Y = Graph ([−n, n]× R)

∂Y = Graph ({−n, n} × R)

In the same way we proved equations (7.12) and (7.13), we have here

lim
`→∞ Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]
= Pp

[
A Y←→ ∞]

lim
`→∞ Pp

[
A

C(n,h,`)←−−−→ LR(n, h, `)
]
= Pp [A←→ ∂Y]

Thus, we can find a finite ` large enough such that

Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]
< Pp

[
A

C(n,h,`)←−−−→ LR(n, h, `)
]

.
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The quantity `eq plays a central role in our proof, linking geometric and probabilistic
estimates. We can apply Lemma 2.2 with the two events appearing in inequality (7.11),
to obtain the following alternative:

If ` < `eq(h), then Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]
> 1−ε12. (7.16a)

If ` > `eq(h), then Pp

[
A

C(n,h,`)←−−−→ LR(n, h, `)
]
> 1−ε12. (7.16b)

Fix (hopt, `0) ∈ R× R+ such that

`eq(hopt) < `0 < inf
h∈R

(
`eq(h)

)
+ 1

6 . (7.17)

With such notation, we derive from (7.16b)

Pp

[
A

C(n,hopt ,`0)←−−−−−→ LR(n, hopt, `0)

]
> 1−ε12.

Another application of Lemma 2.2 ensures then the existence of a real number h0 of the
form h0 = hopt +σ`0/3 (for σ ∈ {−2, 0,+2}) such that

Pp

[
A

C(n,hopt ,`0)←−−−−−→ LR(n, h0, `0/3)
]
> 1−ε4.

Recall that LR(n, h0, `0/3) = L(a0, b0) ∪ L(−a0,−b0) with a0 = (n, h0 − `0/3) and b0 =

(n, h0 + `0/3). By symmetry, the set A is connected inside C(n, h0, `0/3) to L(a0, b0) and
to L(−a0,−b0) with equal probabilities. Applying again Lemma 2.2 gives

Pp

[
A

C(n,hopt ,`0)←−−−−−→ L(a0, b0)

]
> 1−ε2.

Then, use Lemma 2.3 to split L(a0, b0) into two parts that both have a good probability to
be connected to A: we can pick u = (n, h) ∈ [a0, b0] such that both

Pp

[
A

C(n,hopt ,`0)←−−−−−→ L(a0, u)
]

and Pp

[
A

C(n,hopt ,`0)←−−−−−→ L(u, b0)

]
exceed 1 − ε. Finally, pick ` such that `eq(h) − 1/6 < ` < `eq(h). Define a = u +

(0,−`) and b = u + (0, `). In particular, we have u = (a + b)/2. Our choice of `0 (see
equation (7.17)) implies that ` > `0 − 1/3 ≥ 2`0/3, and the following inclusions hold:

L(a0, u) ⊂ L(a, u)

L(u, b0) ⊂ L(u, b)

C(n, hopt, `0) ⊂ R(a, b)

These three inclusions together with the estimates above conclude the point ((ii)) of
Lemma 2.5 for Z = L(a, u) and Z = L(u, b).
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2 Proof of Lemma 1.8

Now, let us construct a suitable vector v ∈ [−a, b] such that the point ((ii)) of Lemma 2.5
is verified for Z = L(−a, v) and Z = L(v, b). Equation (7.16a) implies that

Pp

[
A

C(n,h,`)←−−−→ UD(n, h, `)
]
> 1−ε12.

As above, using UD(n, h, `) = L(−a, b) ∪ L(−b, a), symmetries and Lemma 2.2, we
obtain

Pp

[
A

C(n,h,`)←−−−→ L(−a, b)
]
> 1−ε6.

By Lemma 2.3, we can pick v ∈ [−a, b] such that the following estimate holds for Z =

L(−a, v), L(v, b):

Pp

[
A

C(n,h,`)←−−−→ Z
]
> 1−ε3 ≥ 1−ε.

It remains to verify the point ((i)). For Z = L(a, u), L(u, b), it follows from n > nB

and the definition of nB, see equation (7.10). For Z = L(−a, v), L(v, b), it follows from
` > `B(n, h)− 1 (see Fact 2.6) and the definition of `B(n, h).

2.4 Construction of Good Blocks

In this section, we will define a finite block together with a local event that “characterize”
supercritical percolation — in the sense that the event happening on this block with high
probability will guarantee supercriticality. This block will be used in section 3 for a coarse
graining argument.

In Grimmett and Marstrand’s proof of Theorem 0.6, the coarse graining argument
uses “seeds” (big balls, all the edges of which are open) in order to propagate an infinite
cluster from local connections. More precisely, they define an exploration process of the
infinite cluster: at each step, the exploration is succesful if it creates a new seed in a
suitable place, from which the process can iterate. If the probability of success at each
step is large enough, then, with positive probability, the exploration process does not
stop and an infinite cluster is created.

In their proof, the seeds grow in the unexplored region. Since we cannot control this
region, we use the explored region to produce seeds instead. Formally, long finite self-
avoiding paths will play the role of the seeds in the proof of Grimmett and Marstrand.
The idea is the following: if a point is reached at some step of the exploration process, it
must be connected to a long self-avoiding path, which is enough to iterate the process.

Lemma 2.8. For all ε > 0, there exists m ∈ N such that, for any fixed self-avoiding path γ of
length m,

Pp [γ ←→ ∞] > 1−ε.

Proof. By translation invariance we can restrict ourselves to self-avoiding paths starting
at the origin 0. Fix ε > 0. For all k ∈ N we consider one self-avoiding path γ(k) starting
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at the origin that minimizes the probability to intersect the infinite cluster among all the
self-avoiding paths of length k:

Pp

[
γ(k) ←→ ∞] = min

γ: length(γ)=k
Pp [γ ←→ ∞] .

By diagonal extraction, we can consider an infinite self-avoiding path γ(∞) such that,
for any k0 ∈ N,

(
γ
(∞)
0 ,γ(∞)

1 , . . . ,γ(∞)
k0

)
is the beginning of infinitely many γ(k)’s. By

Lemma 2.4, γ(∞) intersects almost surely the infinite cluster of a p-percolation. Thus,
there exists an integer k0 such that

Pp

[{
γ
(∞)
0 ,γ(∞)

1 , . . . ,γ(∞)
k0

}
←→ ∞] > 1−ε.

Finally, there exists m such that γm begins with the sequence

(γ
(∞)
0 ,γ(∞)

1 , . . . ,γ(∞)
k0

),

thus it intersects the infinite cluster of a p-percolation with probability exceeding 1− ε.
By choice of γ(m), it holds for any other self-avoiding path γ of length m that

Pp [γ ←→ ∞] > 1−ε.

We will focus on paths that start close to the origin. Let us define S(m) to be the set
of self-avoiding paths of length m that start in B(1).

Lemma 2.9. For any η > 0, there exist two integers m, N ∈ N and a good quadruple (a, b, u, v)
such that

∀γ ∈ S(m), ∀Z ∈ Z(a, b, u, v) Pp

[
γ

R(a,b)∩B(N)←−−−−−−→ Z ∩ B(N)

]
> 1− 3η.

Proof. By Lemma 2.8, we can pick m such that any self-avoiding path γ ∈ S(m) verifies

Pp [γ ←→ ∞] > 1− η.

Pick k ≥ m + 1 such that
Pp [B(k)←→ ∞] > 1− η24.

The number of disjoint clusters (for the configuration restricted to B(n + 1)) connecting
B(k) to B(n)c converges when n tends to infinity to the number of infinite clusters inter-
secting B(k). The infinite cluster being unique, we can pick n such that

Pp

[
B(k)

!B(n+1)!←−−−→ B(n)c
]
> 1− η. (7.18)

Applying Lemma 2.5 with A = B(k) and B = B(n + 1) provides a good quadruple
(a, b, u, v) such that the following two properties hold for any Z ∈ Z(a, b, u, v):
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2 Proof of Lemma 1.8

(i) B(n + 1) ∩ Z = ∅,

(ii) Pp

[
B(k)

R(a,b)←−−→ Z
]
> 1− η.

Note that condition ((i)) implies in particular that B(n + 1) is a subset of R(a, b). Equa-
tion (7.18) provides with high probability a “uniqueness zone” between B(k) and B(n)c:
any pair of open paths crossing this region must be connected inside B(n + 1). In par-
ticular, when γ is connected to infinity, and B(k) is connected to Z inside R(a, b), this
“uniqueness zone” ensures that γ is connected to Z by an open path lying inside R(a, b):

Pp

[
γ

R(a,b)←−−→ Z
]

≥ Pp

[
{γ ←→ ∞} ∩{B(k)

!B(n+1)!←−−−→ B(n)c
}
∩
{

B(k)
R(a,b)←−−→ Z

}]
> 1− 3η.

The identity

Pp

[
γ

R(a,b)←−−→ Z
]
= lim

N→∞ Pp

[
γ

R(a,b)∩B(N)←−−−−−−→ Z ∩ B(N)

]
concludes the proof of Lemma 2.9.

2.5 Construction of a finite-size criterion

In this section, we give a precise definition of the finite-size criterion FC(p, N, η) used in
lemmas 1.8 and 1.9. Its construction is based on Lemma 2.9.

Recall that, up to now, we worked with a fixed orthonormal basis e, which was hidden
in the definition of Graph = Graphe, see equation (7.5). In order to perform the coarse
graining argument in any marked group G•/Λ close to G•, we will need to have the
conclusion of Lemma 2.9 for all the orthonormal bases.

Denote by B the set of the orthonormal basis of Rr. It is a compact subset of Rr×r. If
we fix X ⊂ R2, a positive integer N and e ∈ B then the following inclusion holds for any
orthonormal basis f close enough to e in B:

Graphe(X) ∩ B(N) ⊂ (Graphf(X) + B(1)) ∩ B(N). (7.19)

We define N (e, N) ⊂ B to be the neighbourhood of e formed by the orthonormal bases
f for which the inclusion above holds. A slight modification of the orthonormal basis in
Lemma 2.9 keeps its conclusion with the same integer N and the same vectors a, b, u, v,
but with

• Z + B(1) in place of Z

• and R(a, b) + B(1) instead of R(a, b).

In order to state this result properly, let us define:

ZN,e(a, b, u, v) = {(Z + B(1)) ∩ B(N) : Z ∈ Ze(a, b, u, v)};
RN,e(a, b) = (R(a, b) + B(1)) ∩ B(N).
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Note that we add the subscript e here to insist on the dependence in the basis e. This
dependence was implicit for the sets Z and R(a, b) which were defined via the function
Graph.

We are ready to define the finite size criterion FC(p, N, η) that appears in lemmas 1.8
and 1.9.

Definition of the finite-size criterion. Let N ≥ 1 and η > 0. We say that the finite-size
criterion FC(p, N, η) is satisfied if for any e ∈ B, there exist m ≥ 1 and a good quadruple
(a, b, u, v) such that:

∀γ ∈ S(m), ∀Z ∈ ZN,e(a, b, u, v), Pp

[
γ

RN,e(a,b)←−−−→ Z
]
> 1− η. (7.20)

Proof of Lemma 1.8. Let η > 0. Given e an orthonormal basis, Lemma 2.9 provides
me, Ne ∈ N, and a good quadruple (ae, be, ue, ve) such that the following holds (we omit
the subscript for the parameters m, a, b, u, v):

∀γ ∈ S(m), ∀Z ∈ Ze(a, b, u, v), Pp

[
γ

Re(a,b)∩B(Ne)←−−−−−−−→ Z ∩ B(Ne)

]
> 1− η.

For any f ∈ N (e, Ne), we can use inclusion (7.19) to derive from the estimate above that
for all γ ∈ S(m) and Z ∈ Zf(a, b, u, v),

Pp

[
γ

(Rf(a,b)+B(1))∩B(Ne)←−−−−−−−−−−−→ (Z + B(1)) ∩ B(Ne)

]
> 1− η.

By compactness of B, we can find a finite subset F ⊂ B of bases such that

B =
⋃

e∈F
N (e, Ne).

For N := max
e∈B f

Ne, the finite-size criterion FC(p, N, η) is satisfied.

3 Proof of Lemma 1.9

Through the entire section, we fix:

- G• ∈ G̃ a marked abelian group of rank greater than two,

- p ∈ (pc
•(G•), 1),

- δ > 0.

Let G = (V, E) denote the Cayley graph associated to G•.

3.1 Hypotheses and notation

Let us start by an observation that follows from the definition of good quadruple at
the beginning of section 2.3: there exists an absolute constant κ such that for any good
quadruple (a, b, u, v) and any w ∈ R2,

Card
{

z ∈ Z2 : w + z1u + z2v ∈ [5a, 5b,−5a,−5b]
}
≤ κ.
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We fix κ as above and choose η > 0 such that

p0 := sup
t∈N

{
1− (1− δ/κ)t + η(1− p)−t} > pc

site(Z2). (7.21)

We will prove that this choice of η provides the conclusion of Lemma 1.9. We assume
that G• satisfies FC(p, N, η) for some positive integer N (which will be fixed throughout
this section). Let us consider a marked abelian group H• = G•/Λ of rank at least 2 and
such that

Λ ∩ B(2N + 1) = {0}.

(Notice that such H•’s form a neighbourhood of G• in G̃ by Proposition 1.1.) Under these
hypotheses, we will prove that pc(H•) < p + δ, providing the conclusion of Lemma 1.9.

The Cayley graph of H• = G•/Λ is denoted by G = (V, E). For x ∈ V, we write x̄ for
the image of x by the quotient map G → G/Λ. This quotient map naturally extends to
subsets of V and we write A for the image of a set A ⊂ V.

3.2 Sketch of proof

Under the hypotheses above, we show that percolation occurs in G at parameter p + δ.
The proof goes as follows.

Step 1: Geometric construction. We will construct a renormalized graph, that is a family
of big boxes (living in G) arranged as a square lattice. In particular, there will be a
notion of neighbour boxes. The occurence of the finite-size criterion FC(p, N, η)
will imply good connection probabilities between neighbouring boxes. This is the
object of Lemma 3.2.

Step 2: Construction of an infinite cluster. The renormalized graph built in the first step
will allow us to couple a (p + δ)-percolation on G with a percolation on Z2 in such
a way that the existence of an infinite component in Z2 would imply an infinite
component in G. This event will happen with positive probability. The introduction
of the parameter δ will allow us to apply a “sprinkling” technique in the coupling
argument developed in the proof of Lemma 3.4.

3.3 Geometric setting: boxes and corridors

Since Λ has corank at least 2, we can fix an orthonormal basis e ∈ B such that

Λ ⊂ Ker (πe)× T. (7.22)

Condition (7.22) ensures that sets defined in G via the function Graphe have a suitable
image in the quotient G. More precisely, for any x ∈ V and any planar set X ⊂ R2, we
have

x ∈ Graphe(X) ⇐⇒ x ∈ Graphe(X). (7.23)
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According to FC(p, N, η), there exists m < N and a good quadruple (a, b, u, v) such that

∀γ ∈ S(m), ∀Z ∈ ZN,e(a, b, u, v), Pp

[
γ

RN,e(a,b)←−−−→ Z
]
> 1− η.

We introduce here some subsets of G, that will play the role of vertices and edges in the
renormalized graph.

Box. For z in Z2, define

Bz := Graph (z1u + z2v + [a, b,−a,−b]).

When z and z′ are neigbours in Z2 for the standard graph structure, we write z ∼ z′. In
this case, we say that the two boxes Bz and Bz′ are neighbours.

Corridor. For z in Z2, define

Cz := Graph (z1u + z2v + [4a, 4b,−4a,−4b]).

We will explore the cluster of the origin in G. If the cluster reaches a box Bz, we will try
to spread it to the neighbouring boxes (Bz′ for z′ ∼ z) by creating paths that lie in their
respective corridors Cz′ . For this strategy to work, we need the boxes to have good con-
nection probabilities and the corridors to be “sufficiently disjoint”: if the exploration is
guaranted to visit each corridor at mostκ+ 1 times, then we do need more thanκ “sprin-
kling operations”. These two properties are formalized by the following two lemmas.

Lemma 3.1. For all x̄ ∈ V,
Card{z ∈ Z2 / x̄ ∈ Cz} ≤ κ. (7.24)

Proof. By choice of the basis, equivalence (7.23) holds and implies, for any z = (z1, z2) ∈
Z2,

x̄ ∈ Cz ⇐⇒ x ∈ Graphe(z1u + z2v + [4a, 4b,−4a,−4b])}
By the last condition defining a good quadruple,

x̄ ∈ Cz =⇒ π(x) ∈ z1u + z2v + [5a, 5b,−5a,−5b]

The choice of κ at the beginning of the section (see equation (7.24)) concludes the proof.

Lemma 3.2. For any couple of neighbouring boxes (Bz, Bz′),

∀x̄ ∈ Bz, ∀γ ∈ S(m) Pp

[
x̄ +γ

Cz′←→ Bz′ + B(1)
]
> 1− η. (7.25)

Proof. We assume that z′ = z + (0, 1). The cases of z + (1, 0), z + (0,−1) and z + (−1, 0)
are treated the same way.

The assumption Λ ∩ B(2N + 1) = {0} implies that RN,e(a, b) is isomorphic (as a
graph) to RN,e(a, b). It allows us to derive from estimate (7.20) that

Pp

[
γ

RN,e(a,b)←−−−→ Z
]
> 1− η. (7.26)
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Now let Bz and Bz′ be two neighbouring boxes. Let x̄ be any vertex of Bz. By translation
invariance, we get from (7.26) that

Pp

[
x +γ

x̄+RN.e(a,b)←−−−−−→ x̄ + Z
]
> 1− η.

Here comes the key geometric observation: there exists Z ∈ ZN,e(a, b, u, v) such that

x̄ + Z ⊂ Bz′ + B(1).

This is illustrated on Figures 7.5 and 7.6 when z = (0, 0) and z′ = (0, 1). Besides, x̄ +

RN(a, b) ⊂ Cz′ . Hence, by monotonicity, we obtain that

Pp

[
x̄ +γ

Cz′←→ Bz′ + B(1)
]
> 1− η.

b

a

v

x̄

Bz

Bz′

x̄ + R(a, b)

x̄ + L(v, b)

Figure 7.5: If x̄ is on the left of the box Bz, then x̄ + L(v, b) ⊂ Bz′ .

3.4 Probabilistic setting

Letω0 be Bernoulli percolation of parameter p on G. In order to apply a “sprinkling argu-
ment”, we define for every z ∈ Z2 a sequence (ξ z(e))e edges in Cz of independent Bernoulli
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b

a

v

x̄

Bz

Bz′

x̄ + R(a, b)

x̄ + L(−a, v)

Figure 7.6: If x̄ is on the right of the box Bz, then x̄ + L(−a, v) ⊂ Bz′ .
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variables of parameter δκ . In other words, ξ z is a δ
κ -percolation on Cz. We assume thatω0

and all theξ z’s are independent. Lemma 3.1 implies that at mostκ+ 1 Bernoulli variables
are associated to a given edge e: ω0(e) and the ξ z(e)’s for z such that e ⊂ Cz.

To state lemma 3.3, we also need the notion of edge-boundary. The edge-boundary of
a set A of vertices is the set of the edges of G with exactly one endpoint in A. It is denoted
by ∆A.

Lemma 3.3. Let Bz and Bz′ be two neighbouring boxes. Let H be a subset of V. Let (ω(e))e∈E

be a family of independent Bernoulli variables of parameter P [ω(e) = 1] ∈ [p, 1) independent of
ξ z′ . If there exists x̄ ∈ Bz and γ ∈ S(m) such that x̄ +γ ⊂ H, then

P
[

H
Cz′←−−→

ω∨ξz′
Bz′ + B(1)

∣∣∣∣ ∀e ∈ ∆H, ω(e) = 0
]
≥ p0.

Proof. In all this proof, the marginals of ω are assumed to be Bernoulli random vari-
ables of parameter p. The more general statement of Lemma 3.3 follows by a stochastic
domination argument. The case H ∩ (Bz′ + B(1)) 6= ∅ being trivial, we assume that
H ∩ (Bz′ + B(1)) = ∅.

Let W ⊂ ∆H be the (random) set of edges {x̄, ȳ} ⊂ Cz′ such that

(i) x̄ ∈ H, ȳ ∈ Cz′ \ H and

(ii) there is anω-open path joining ȳ to Bz′ + B(1), lying in Cz′ , but using no edge with
an endpoint in H.

In a first step, we want to say that |W| cannot be too small. The inclusions x̄ + γ ⊂ H ⊂
(Bz′ + B(1))c imply that anyω-open path from x̄ + γ to Bz′ + B(1) must contain at least
one edge of W. Thus, there is noω-open path connecting x̄ +γ to Bz′ + B(1) in Cz′ when
all the edges of W areω-closed. Consequently, for any t ∈ N, we have

P
[(

x̄ +γ
Cz′←→
ω

Bz′ + B(1)
)c ]
≥ P [all edges in W areω-closed]

≥ (1− p)tP [|W| ≤ t] .

To get the last inequality above, remark that the random set W is independent from the
ω-state of the edges in ∆H. Using estimate (7.25), it can be rewritten as

P [|W| ≤ t] ≤ η(1− p)−t. (7.27)

We distinguish two cases. Either W is small, which has a probability estimated by equa-
tion (7.27) above; or W is large, and we use in that case that Bz′ + B(1) is connected to H
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as soon as one edge of W is ξ z′-open. The following computation makes it quantitative:

P
[

H
Cz′←−−→

ω∨ξz′
Bz′ + B(1)

∣∣∀e ∈ ∆H, ω(e) = 0
]

≥ P
[
at least one edge of W is ξ z′-open

∣∣∀e ∈ ∆H, ω(e) = 0
]

= P
[
at least one edge of W is ξ z′-open

]
≥ P

[
at least one edge of W is ξ z′-open and |W| > t

]
≥ 1− P

[
all the edges of W are ξ z′-open

∣∣|W| > t
]
− P

[
|W| ≤ t

]
.

Using equation (7.27), we conclude that, for any t,

P
[

H
Cz′←−−→

ω∨ξz′
A
∣∣∀e ∈ ∆H, ξ z′(e) = 0

]
≥ 1− (1− δ/κ)t − η(1− p)−t. (7.28)

Our choice of η in (7.21) make the right hand side of (7.28) larger than p0.

Lemma 3.4. With positive probability, the origin is connected to infinity in the configuration

ωtotal :=ω0 ∨
∨

z∈Z2

ξ z.

Lemma 3.4 concludes the proof of Lemma 1.9 because ωtotal is stochastically domi-
nated by a (p+δ)-percolation. Indeed, (ωtotal(e))e is an independent sequence of Bernoulli
variables such that, for any edge e,

P [ωtotal(e) = 1] ≥ 1− (1− p)(1− δ/κ)κ ≥ p + δ.

Proof of Lemma 3.4. The strategy of the proof is similar to the one described in the original
paper of Grimmett and Marstrand: we explore the Bernoulli variables one after the other
in an order prescribed by the algorithm hereafter. During the exploration, we define
simultaneously random variables on the graph G and on the square lattice Z2.
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3 Proof of Lemma 1.9

Algorithm

(0) Set z(0) = (0, 0) ∈ Z2. Explore the connected component H0 of the origin
in G in the configurationω0. Notice that only the edges of H0 ∪ ∆H0 have
been explored in order to determine H0.

– If H0 contains a path of S(m), set X((0, 0)) = 1 and (U0, V0) =

({0}, ∅) and move to (t = 1).

– Else, set X((0, 0)) = 0 and (U0, V0) = (∅, {0}) and move to (t = 1).

(t) Call unexplored the vertices in Z2 \ (Ut ∪ Vt). Examine the set of unex-
plored vertices neighbouring an element of Ut. If this set is empty, define
(Ut+1, Vt+1) = (Ut, Vt) and move to (t + 1). Otherwise, choose such an
unexplored vertex zt. In the configuration ωt+1 := ωt ∨ ξ zt , explore the
connected component Ht+1 of the origin.

– If Ht+1 ∩ Bzt 6= ∅, which means in particular that Bzt is connected
to 0 by an ωt+1-open path, then set X(zt) = 1 and (Ut+1, Vt+1) =

(Ut ∪ {zt}, Vt) and move to (t + 1).

– Else set X(zt) = 0 and (Ut+1, Vt+1) = (Ut, Vt ∪ {zt}) and move to
(t + 1).

This algorithm defines in particular:

• a random process growing in the lattice Z2,

S0 = (U0, V0), S1 = (U1, V1), . . .

• a random sequence (X(zt))t≥0.

Lemma 3.3 ensures that for all t ≥ 1, whenever zt is defined,

P [X(zt) = 1 |S0, S1, . . . St−1 ] ≥ p0 > pc
site(Z2). (7.29)

Estimate (7.29) states that each time we explore a new site zt, whatever the past of the
exploration is, we have a sufficiently high probability of success: together with Lemma 1
of [GM90], it ensures that

P [|U| = ∞] > 0,

where U :=
⋃

t≥0 Ut is the set of zt’s such that X(zt) equals 1. For such zt’s, we know that
Bzt is connected to the origin of G by anωt+1-open path. Hence, when U is infinite, there
must exist an infinite open connected component in the configuration

ω0 ∨
∨
t≥0

ξ zt ,

which is a subconfiguration ofωtotal, and Lemma 3.4 is established.
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