
HAL Id: tel-01061936
https://theses.hal.science/tel-01061936

Submitted on 8 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controlling execution time variability using COTS for
Safety-critical systems

Jingyi Bin

To cite this version:
Jingyi Bin. Controlling execution time variability using COTS for Safety-critical systems. Hardware
Architecture [cs.AR]. Université Paris Sud - Paris XI, 2014. English. �NNT : 2014PA112151�. �tel-
01061936�

https://theses.hal.science/tel-01061936
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE : Sciences et Technologie de l‘Information,
des Télécommunications et des Systèmes

Institut d’Electronique Fondamentale (IEF)
Thales Research & Technology - France (TRT)

DISCIPLINE : Physique - Systèmes Embarqués

THÈSE DE DOCTORAT

soutenance le 10/07/2014

par

Jingyi BIN

Controlling Execution Time Variability Using

COTS for Safety Critical Systems

Directeur de thèse : Alain MERIGOT Professeur (IEF, Université Paris-sud)
Co-encadrant : Sylvain GIRBAL Ingénieur (TRT)
Composition du jury :

Président : Daniel ETIEMBLE Professeur (Université Paris-sud)

Rapporteurs : Laurent PAUTET Professeur (LTCI, Télécom ParisTech)
Michel AUGUIN Directeur de Recherche (Université de Nice)

Examinateurs : Alain MERIGOT Professeur (IEF, Université Paris-sud)
Claire PAGETTI Chargée de recherche (ONERA)
Sylvain GIRBAL Ingénieur (TRT)

I would like to dedicate this thesis to my loving parents BIN Wenjin
and XU Zhanchun and my loving husband WANG Weijia. Although
my parents were not with me in France during my PhD study, their
words of encouragement and push for tenacity kept me moving on.
They are always my most trusted supporters. My dear husband was
the one who has accompanied me everyday during these three years

to share my happiness, anxiousness and depression. I feel so
thankful to him for understanding me and helping me when I was
losing the confidence. He is the witness throughout the process.

Acknowledgements

I would like to express the deepest appreciation to my PhD adviser–
Professor Alain Mérigot who has given me constructive advices and
guidances during my PhD study. In addition, he has shown a great
patience and warm encouragements when my thesis did not move on
smoothly. Without his constant help, I would not have finished my
thesis.

I would like to give the most sincere appreciation to my co-adviser
Dr. Sylvain Girbal and co-workers Dr. Daniel Gracia Pérez and
Dr. Arnaud Grassat in Thales Research & Technology (TRT). All
of them has helped me greatly in the technique domain of research
and shown me serious, proactive altitude of researchers. Additionally,
Sylvain taught me other professional capabilities, like making a simple
and efficient slides ppt and a convincing presentation, which are also
helpful in the future work.

I also would like to show my gratitude to the head of Embedded
Systems Lab in TRT - Philippe BONNOT who has shown so much
concern for my PhD progress and helped me a lot to adapt to the
company’s affaires.

Besides, I would like to thank all the colleagues in Embedded Systems
Lab in TRT. Without their help and concern, I would not have happily
integrated into the group during these three years.

Last, I would like to thank all the commitee members of my defense:
Prof. Daniel ETIEMBLE who accepted our invitation as the commi-
tee president, Prof. Michel AUGUIN and Prof. Laurent PAUTET
who gave thoughtful and detailed comments as my thesis reviewers,
Dr. Claire PAGETTI who provided encouraging and constructive
feedback as the examiner. I appreciate all of them for their questions
and remarks during my thesis defense.

Abstract

While relying during the last decade on single-core Commercial Off-
The-Shelf (COTS) architectures despite their inherent runtime vari-
ability, the safety critical industry is now considering a shift to multi-
core COTS in order to match the increasing performance requirement.

However, the shift to multi-core COTS worsens the runtime variability
issue due to the contention on shared hardware resources. Standard
techniques to handle this variability such as resource over-provisioning
cannot be applied to multi-cores as additional safety margins will
offset most if not all the multi-core performance gains. A possible
solution would be to capture the behavior of potential contention
mechanisms on shared hardware resources relatively to each applica-
tion co-running on the system. However, the features on contention
mechanisms are usually very poorly documented.

In this thesis, we introduce measurement techniques based on a set of
dedicated stressing benchmarks and architecture hardware monitors
to characterize (1) the architecture, by identifying the shared hard-
ware resources and revealing their associated contention mechanisms.
(2) the applications, by learning how they behave relatively to shared
resources. Based on such information, we propose a technique to es-
timate the WCET of an application in a pre-determined co-running
context by simulating the worst case contention on shared resources
produced by the application’s co-runners.

Contents

Contents . iv
List of Figures . viii
List of Tables . xii
Listings . xiii
Introduction . 1

A Context 3
A.1 Context . 4

A.1.1 Safety-critical Domain . 4
A.1.2 Worst Case Execution Time (WCET) 4
A.1.3 Evolution of Architectures . 5
A.1.4 Challenge of Using Multi-cores for Safety-critical Applications 7
A.1.5 Objectives . 9

A.2 State of the Art . 10
A.2.1 WCET Analysis in Single-cores 10

A.2.1.1 Static Analysis . 11
A.2.1.2 Measurement-based Analysis 13
A.2.1.3 Commercial WCET Tools 13

A.2.2 In-house Approach for the WCET Estimate 16
A.2.3 COTS Approach for the WCET Estimate 18
A.2.4 Performance Evaluation . 23
A.2.5 Conclusion . 24

A.3 Target Platform - QorIQ P4080 . 27
A.3.1 Structure of the P4080 . 27
A.3.2 Hardware Monitors in the e500mc Core 28

A.3.2.1 Performance Monitoring Example Using PMRs 30
A.3.3 Hardware Monitors in the Platform P4080 32

A.3.3.1 P4080 Memory Map Overview 34
A.3.3.1.1 Local Address Map Example 35

A.3.3.2 The Use of Platform Hardware Monitors 35

iv

CONTENTS

A.3.4 P4080 Configurations . 37
A.3.4.1 Cache Partitioning in the P4080 37
A.3.4.2 Compromise of Different Configurations 38

A.3.5 Conclusion of Target Platform 39
A.4 Software Environment - CodeWarrior 41

A.4.1 Creating Projects in CodeWarrior 41
A.4.2 Building Projects in CodeWarrior 42
A.4.3 Debugging Projects in CodeWarrior 45

A.5 Contribution . 46

B Quantifying Runtime Variability 48
B.1 Overview . 49
B.2 Applications under Study . 50

B.2.1 Applications from Mibench Suite 50
B.2.2 Industrial Applications . 51

B.3 Resource Stressing Benchmarks . 53
B.4 Quantifying Runtime Variability . 55

B.4.1 Experimental Scenario . 55
B.4.2 Representing Runtime Variability Using Violin Plots 55
B.4.3 Quantification Using Stressing Benchmarks 56

C Architecture and Application Characterization 59
C.1 Characterization Methodology . 60
C.2 Measurement Techniques . 62

C.2.1 Hardware Monitors . 62
C.2.2 Stressing Benchmarks . 63

C.3 Experimental Setup . 65
C.3.1 Architecture Characterization 65

C.3.1.1 Identifying Shared Hardware Resources 65
C.3.1.2 Identifying Undisclosed Features and the Shared Re-

source Availability . 66
C.3.1.3 Identifying the Optimal Configuration 66

C.3.2 Application Characterization 67
C.3.2.1 Identifying Sensitive Shared Resources 68
C.3.2.2 Capturing the Shared Resource Usage 68
C.3.2.3 Determining Possible Co-running Applications using

Resource Usages . 68
C.3.3 Design Space . 68

C.4 Implementation . 70

v

CONTENTS

C.4.1 Measurement Framework . 70
C.4.2 Synchronization of Multi-cores Using the Interprocessor Inter-

rupt (IPI) . 71
C.4.2.1 Use of the Interprocessor Interrupt 71
C.4.2.2 Framework of Synchronizing Hardware Monitor Col-

lections Using IPI . 73
C.4.3 Software Development Using CodeWarrior 74

C.4.3.1 Automating the Debugging Session for a Single Exper-
iment within CodeWarrior 74

C.4.3.2 Automating Experiments outside CodeWarrior 75
C.4.3.2.1 Generation Process 76
C.4.3.2.2 Configuration Process 77
C.4.3.2.3 Execution Process 77

C.5 Architecutre Characterization Results 80
C.5.1 Identifying Shared Hardware Resources 80
C.5.2 Identifying Undisclosed Features 81
C.5.3 Identifying the Optimal Configuration 84
C.5.4 Selecting the Adequate Mapping 87
C.5.5 Quantify the Shared Resource Availability 88

C.6 Application Characterization Results 95
C.6.1 Optimal Number of Iterations to Capture Variability 95
C.6.2 Identifying the Sensitivity to Shared Resources 96
C.6.3 Capturing the Shared Resource Usage 98
C.6.4 Determining Possible Co-running Applications using Resource

Usages . 99
C.7 Conclusion . 100

D Alternative technique to Estimate the WCET 102
D.1 WCET Estimation Methodology . 103
D.2 Experimental Setup . 105

D.2.1 Experimental Scenario . 105
D.2.2 Measurement Techniques . 105

D.2.2.1 Hardware Monitors 105
D.2.2.2 Stressing Benchmarks 106

D.3 Global Signature . 107
D.3.1 Defining Global Signatures . 107
D.3.2 Using Global Signatures . 108
D.3.3 Limitation of Global Signatures 111

D.4 Local Signature . 113
D.4.1 Defining and Collecting Local Signatures 113

vi

CONTENTS

D.4.1.1 Collecting Local Signatures Using Fixed-Interval Timer
(FIT) . 113

D.4.1.1.1 Implementing the FIT Interrupt 113
D.4.1.1.2 Collecting Local Signatures 114

D.4.2 Using Local Signatures . 121
D.5 Conclusion . 125

E Conclusion 127
E.1 Conclusion . 128
E.2 Future work . 131

F Appendix 133
Source Code of Stressing benchmark . 134
TCL Script of Automating Debugging Session 136
Python Script of Automating Experiments 138
References . 153

vii

List of Figures

A.1.1 Estimation of theWorst-Case Execution Time, and the over-estimation
problem . 5

A.1.2 Evolution of architecture and corresponding average time and WCET 6
A.1.3 Evolution of code size in space, avionic and automotive embedded

systems . 7

A.2.1 Basic notions related to timing analysis. The lower curve repre-
sents a subset of measured executions. Its minimum and maximum
are the minimal observed execution times and maximal observed
execution times. The darker curve, an envelope of the former, rep-
resents the times of all executions. Its minimum and maximum are
the best case and worst case execution times, abbreviated BCET
and WCET. 11

A.2.2 Workflow of aiT WCET analyzer. 14

A.3.1 Freescale P4080 block diagram . 28
A.3.2 The flowchart of using PMRs . 33
A.3.3 Local address map example . 36

A.4.1 Various pages that the CodeWarrior Project wizard displays. (a)
Project name and location page, (b) Processor page, (c) Build set-
tings page, (d) Launch configuration page, (e) Hardware page and
(f) Trace configuration page. 44

A.4.2 The Debugger Shell view. 45

B.2.1 Distributions of main classes of instructions for each Mibench bench-
mark. 51

B.4.1 Example of violin plot to represent runtime distribution of two dif-
ferent applications . 56

viii

LIST OF FIGURES

B.4.2 Runtime variability over 600 iterations of reference applications
running (a) standalone, (b) concurrently with 2 benchmarks stress-
ing the shared memory path, and (c) concurrently with 7 bench-
marks stressing this resource. 58

C.1.1 Overview of the analysis process 60

C.2.1 The cache access pattern with different STRIDE (one cache line=64bytes) 64

C.3.1 Selected configurations of P4080 (a) single controller non-partitioned,
(b) single controller partitioned, (c) dual controller non-partitioned
and (d) dual controller partitioned. 67

C.4.1 Examples of using doorbell. Top: single core to single core; Bottom:
single core to multi-cores . 72

C.4.2 The framework of synchronizing hardware monitor collections. . . 74
C.4.3 The flowchart of automating debugging session of a single experi-

ment within CodeWarrior. 75
C.4.4 The flowchart of automating experiments outside CodeWarrior. . . 79

C.5.1 The runtime variability of the core #1 while 8 co-running L1 data
cache stressing benchmarks, 8 co-running L2 cache stressing bench-
marks and 8 co-running L3 cache stressing benchmarks. 81

C.5.2 Runtime variability while mapping three instances of a stressing
benchmark on different cores. 82

C.5.3 Three types of mapping under the 4-core cluster effect. 83
C.5.4 Runtime variability of one of the stressing benchmarks while vary-

ing the number of co-running instances. 86
C.5.5 Comparing the runtime variability of different balancing techniques. 87
C.5.6 Performance slowdown versus CoreNet load to identify CoreNet

maximum bandwidth and saturation behavior. (a) Total CoreNet
load while running 2 co-runners in the 1st cluster, (b) Total CoreNet
load while running 3 co-runners in the 1st cluster, (c) Total CoreNet
load while running 4 co-runners in the 1st cluster 90

C.5.7 Performance slowdown versus CoreNet load while 4 co-runners bal-
anced in two clusters to identify CoreNet topology. (a) Performance
slowdown versus total CoreNet load, (b) Performance slowdown
versus CoreNet load of Cluster1. 91

C.5.8 Performance slowdown versus CoreNet load while 6 co-runners bal-
anced in two clusters to identify CoreNet topology. (a) Performance
slowdown versus total CoreNet load, (b) Performance slowdown
versus CoreNet load of Cluster1. 91

ix

LIST OF FIGURES

C.5.9 Performance slowdown versus CoreNet load while 8 co-runners bal-
anced in two clusters to identify CoreNet topology. (a) Performance
slowdown versus total CoreNet load, (b) Performance slowdown
versus CoreNet load of Cluster1. 92

C.5.10 Runtime variability versus DDR controller accesses to identify each
DDR controller maximum bandwidth 94

C.6.1 Runtime variability collected with different number of iterations for
application Adpcm. 96

C.6.2 The sensitivity of applications to (a) the CoreNet, (b) the DDR. . 97
C.6.3 Performance slowdown with difference number of co-running AD-

PCM. 99

D.1.1 The upper bound estimation methodology. 103

D.3.1 Evaluating the global signatures against the performance slowdown
induced by co-running with 3 instances of ADPCM, CRC32, FFT,
SHA, patricia, susan, airborne radar, pedestrian detection versus
their equivalent stressing benchmarks. Blue violin plots represent
the runtime variability while co-running with stressing benchmarks.
The red marks denote the maximum runtime while co-running with
the original applications. 110

D.3.2 The example showing limitations of global signatures. 112

D.4.1 The mechanism of collecting local signatures using the FIT interrupt.115
D.4.2 Variation of the number of CoreNet transaction per cpu cycle dur-

ing ADPCM full run using time slot (a) T, (b) T/2, (c) T/4 and
(d) T/8. The black line denotes the mean value of the CoreNet
transaction per cpu cycle. 116

D.4.3 Variation of the number of CoreNet transaction per cycle during
the full run of (a) ADPCM, (b) CRC32, (c) FFT, (d) SHA, (e)
Patricia, (f) Susan, (g) Airborne radar, (h) Pedestrian detection.
The black line denotes the mean value of the collected metric. . . . 118

D.4.4 Variation of the number of DDR read per cycle during the full run
of (a) ADPCM, (b) CRC32, (c) FFT, (d) SHA, (e) Patricia, (f)
Susan, (g) Airborne radar, (h) Pedestrian detection. The black line
denotes the mean value of the collected metric. 119

D.4.5 Variation of the number of DDR write per cylce during the full run
of (a) ADPCM, (b) CRC32, (c) FFT, (d) SHA, (e) Patricia, (f)
Susan, (g) Airborne radar, (h) Pedestrian detection. The black line
denotes the mean value of the collected metric. 120

x

LIST OF FIGURES

D.4.6 Evaluating the local signatures against the performance slowdown
induced by co-running with 3 instances of ADPCM, CRC32, FFT,
SHA, patricia, susan, airborne radar, pedestrian detection versus
their equivalent stressing benchmarks. Blue violin plots represent
the runtime variability while co-running with stressing benchmarks.
The red marks denote the maximum runtime while co-running with
the original applications. 123

xi

List of Tables

A.3.1 Freescale P4080 specifications . 29
A.3.2 e500mc Performance Monitor Registers 30
A.3.3 Instructions for reading and writing the PMRs 30
A.3.4 Event types . 30
A.3.5 Some performance monitor event selection of the e500mc 31
A.3.6 Local Access Window Setting Example 36
A.3.7 Four configurations of P4080 . 40

A.4.1 Description of ecd.exe tool command build 44

C.2.1 The main events used in the characterization 62

C.3.1 Order of magnitude of the design space 69

C.5.1 Worst execution times (in ms) for the monitored core while varing
the number of running benchmarks. 86

C.6.1 CoreNet and DDR loads of standalone application 98

D.3.1 Global signature of target applications 107
D.3.2 Evaluating global signature accuracy in terms of over-margin value

and upper-bounding ability. 111

D.4.1 Stressing benchmarks identified with local signatures 121
D.4.2 Evaluating local signature accuracy in terms of over-margin value

and over-bounding ability. 124

xii

Listings

A.3.1 Example code of using PMRs . 31
A.3.2 CPC1 partitioning example . 38
C.2.1 General framework of memory-path stressing benchmarks 63
C.4.1 Measurement framework using hardware monitors 70
C.4.2 Example of framework of scenario generation process 76
1 Example source code of stressing benchmark 134
2 Example TCL script of automating debugging session 136
3 Example Python script of automating experiments 138

xiii

Introduction

In recent years, most of the research in computer architectures has concentrated
on delivering average-case performance, but high performance is not the only
criterion for some type of applications. For example, hard real-time systems have
to satisfy stringent timing constraints, which needs a reliable guarantee based
on the Worst Case Execution Time (WCET) to make sure that required
deadlines can be respected. Missing deadlines may cause huge damages and loss
of lives in safety-critical systems, like the avionic, healthcare and so forth.
As a consequence, the performance predictability is more required than high
performance in the safety-critical domain.

However, considering the increasing processing performance requirement in
safety-critical industries, the next generation architectures have to guarantee the
predictability while providing the sufficient average performance. Based on this
point, multi-core Commercial Off-The-Shelf (COTS) architectures are considered
as an appropriate candidate to provide a long-term answer to the increasing per-
formance demand with an acceptable power consumption and weight. In addition,
compared to in-house solutions which aim at proposing new predictable architec-
tures, COTS solutions have lower Non-Recurring-Engineering (NRE) costs and
shorter Time-To-Market (TTM).

Despite above advantages of multi-core COTS architectures, they have a
critical issue to the safety-critical domain - reduced predictability due to the
contention of co-running applications on shared hardware resources within
multiple cores, like the interconnect bus and the memory. There are thus many
related on-going researches concentrating on estimating the performance variabil-
ity by analysing the interference on concurrent shared resources. Since multi-core
COTS are inherently very complex with some undisclosed contention mechanisms
and the behavior of applications on shared resources is also a gray- or black-box
to users, the variability estimation is very difficult in such circumstance.

In the thesis, we proposed two approaches to overcome the difficulty for the
overall objective - estimate the execution time variability of co-running safety-
critical applications on a multi-core COTS architecture. We first presented a
methodology characterizing the underlying architecture and applications to learn

1

LISTINGS

undisclosed hardware features, especially the contention mechanisms on shared
resources, and to master how an application behaves relatively to shared re-
sources. Based on the characterized information, we then proposed an alterna-
tive technique to estimate the WCET of an application when it ran with a set
of pre-determined applications by simulating the worst case contention on shared
resources produced by co-runners. Compared to the state of the art using the
measurement-based approach, our approach can provide a tighter estimation of
the execution time upper bound.

To clearly present the proposed approaches, the remaining thesis is organised
as below:

• Part A - Context: Present the research context, the state of the art, our
target architecture platform with the corresponding software environment
and our contributions.

• Part B - Quantifying Runtime Variability: Demonstrate the variability that
an application may experience while co-running with others due to the con-
tention on shared hardware resources in multi-cores. To better understand
the organized experiments, we also present our used applications and stress-
ing benchmarks.

• Part C - Architecture and Application Characterization: Present first the
characterization methodology, and second the measurement techniques, and
third experimental setup with all the experiment designs and implementa-
tions, and fourthly the experimental results which are splitted into the
architecture section and the application section.

• Part D - Alternative Technique of WCET: Present first the methodology,
and second the measurement techniques, and third the two detailed esti-
mation methods with experimental results.

• Part E - Conclusion: Conclude the achievements throughout the thesis and
propose some constructive future work based on the estimation results.

2

Part A

Context

3

Chapter A.1

Context

A.1.1 Safety-critical Domain

Safety-critical domains [6] such as the avionic, automotive, space, healthcare or
robotic industry are characterized by stringent hard real-time constraints which
are usually defined as a set of deadlines to respect. To ensure the correct func-
tionality of a safety-critical application, we should make sure that such application
can finish its execution before a required dealine. Missing a single deadline may
have some catastrophic consequence (i.e. the air crash and the explosion in a
nuclear station) on the user or the environment and should be avoided at all
cost. Therefore, the time predictability is a major concern instead of deliv-
ering high average performance. In order to ensure that an critical application
can finish execution before its required deadline, we usually determine its Worst
Case Execution Time(WCET) which has to be guaranteed shorter than this
deadline.

A.1.2 Worst Case Execution Time (WCET)

A real-time system consists of a number of tasks and each task typically shows
a certain variation of execution times depending on the input data or different
behavior of the environment. The WCET of a task is defined as its longest
execution time. In most cases, it is quite impossible to exhaustively explore all
possible execution times and thereby determine the exact WCET.

Today, there are some practical methods to compute the WCET. In single-
core architectures, this WCET computation usually relies on analysis tools based
on static program analysis tools [38, 27], detailed hardware model, as well as
measurement techniques through execution or simulation [15]. However, these
analysis techniques and tools are not currently able to provide an exact computa-

4

A.1. CONTEXT

tion of the WCET, especially for multi-cores, only delivering an estimated upper
bound, introducing some safety margins as depicted in Figure A.1.1.

execution time

d
is
tr
ib
u
ti
on measured WCET

exact WCET

estimated WCET

safety margin

over margin

Figure A.1.1: Estimation of the Worst-Case Execution Time, and the over-estimation
problem

In Figure A.1.1, the red curve is the real execution time distribution, and
the blue one represents measured execution time distribution observed during
experiments. As we explained above that it is quite impossible to exhaustively
explore all possible execution times through experiments, the real distribution is
thereby an envelope of the measured one. That’s why the measured WCET is
shorter than the real one in Figure A.1.1. In order to make a sure over-bound the
real WCET, we add a safety margin to the measured WCET to get estimated
WCET which is used to compare with a pre-determined deadline.

A.1.3 Evolution of Architectures

The evolution of architectures is mainly targeting the consumer electronic market
that represents 97% of the overall market. As this consumer electronic market is
mostly driven by best-effort performances, the design complexity has increased
by integrating more and more high-performance techniques into architectures.
Figure A.1.2 shows the evolution of architectures and how the average time and
the WCET vary according to such evolution.

A cache is a smaller, faster memory physically existing between the CPU and
the memory to temporarily store the copy of data so that future request for that
data can be served faster. Most modern CPUs have multiple independent levels
of cache with small fast caches backed up by larger, slower caches to deal with a
fundamental tradeoff between cache latency and hit rate.

5

A.1. CONTEXT

Figure A.1.2: Evolution of architecture and corresponding average time and WCET

A pipeline is a concept inspired from assembly line where a set of processing
elements are connected in series so that they can be arranged in parallel. Pipelin-
ing doesn’t decrease the processing time of a single instruction, but it can apply
the parallelism among a series of instructions to increase the throughput of CPUs.
Based on pipelining, a superscalar pipeline further increases the CPU throughput
by executing more than one instruction during a clock cycle by simultaneously
dispatching multiple instructions to redundant functional units on the processor.
In addition, an out-of-order execution can make use of instruction cycles which
would be wasted because of some types of operations with costly delay. For ex-
ample, a processor can avoid being idle while data read from memory for the next
instruction.

From the early 2000s, considering higher-clock-speeds-produced exponential
increasing thermal and power dissipation along with design complexity increases
in single-cores, processor design trends shifted to multi-cores. The motivation
of multi-cores design is the parallelism of processors that can address the issue

6

A.1. CONTEXT

of power while maintaining performance where higher data throughput may be
achieved with lower voltage and frequency.

Thanks to above techniques, the average time decreased step by step in the
blue right column of Figure A.1.2. Compared to the average time, the WCET time
decreased much slower due to the runtime variability source brought by above
design techniques, like cache misses, structural or data hazards during pipeline
executions and the contention on shared hardware resources in multi-cores and
so forth.

A.1.4 Challenge of Using Multi-cores for Safety-

critical Applications

Figure A.1.3 shows the roadmap of code size in safety-critical industries where
the code size of avionics increased from 104 magnitude in 1970s upto 107 in 2000s.
This exponential increase of code size implicates the exponential needs in perfor-
mance and functionalities [1, 6, 5] in the industries. To match the performance
requirement, multi-cores have been considered as a potential platform candidate
taking account of their increasing average performance.

1970 1975 1980 1985 1990 1995 2000 2005 2010
104

105

106

107

108

109

A300B

A300FF

A310
A320

A330

A380

Voyager

Galileo

Pathfinder

Cassini

Mars Explorer

co
d
e
si
ze

(i
n
sn
)

space
avionic
automotive

x

Figure A.1.3: Evolution of code size in space, avionic and automotive embedded
systems

However, as multi-cores are mostly driven by the consumer electronic market
which aims at best-effort performances, the use of multi-cores will make safety-

7

A.1. CONTEXT

critical industries to face more and more runtime variability issues while offer-
ing the increasing performance.

Shared Resource Problem In nowaday multi-cores, each core has its private
resources, like L1 D/I caches, but all the cores usually share the last level cache
and the same main memory through a common interconnect bus.

If users run several applications independently in different cores in a multi-
core, such applications have to share the same hardware resources, like the in-
terconnect bus and the memory, even though they do not communicate the data
with each other. For example, two applications want to access to the interconnect
at the same time, the interconnect has to decide which one should go first. The
interconnect arbitration may add a delay to both application’s execution time.
This delay thus results in the runtime variability.

Despite all the improvements in the WCET estimation domain [19, 10] over
the last decades, the over-estimation remained mostly constant as the predictabil-
ity of the architecture decreased [38], thus making the use of WCET analysis tools
difficult for real industrial programs running on multi-core architectures [18, 21].
Possible interference on shared hardware resources among co-running tasks sig-
nificantly increases the complexity of timing analysis, forcing it to have a full
knowledge of co-running tasks at software level, and detailed resource contention
models at hardware level. Unfortunately, the underlying multi-core architecture
and co-running applications both usually behave as a gray- or black-box to users.

Undisclosed Hardware Feature Problem Embedded architectures come
with detailed ISA and block diagram, but many aspects of the micro-architecture
remain undisclosed such as the exact SoC network topology, contention, ar-
bitration and prefetcher mechanisms. If such information is not necessary to
guarantee correct functional behavior, it could have a significant impact on the
timing behavior, that is as much important for safety-critical real-time sys-
tems. For instance, the Freescale QorIQ platform P4080 presented in chapter
A.3 has no information about the exact behavior and the topology of its shared
interconnect. Since the lack of the understanding about contention mechnisms
of these important resources which can be potential performance bottlenecks in
the context of co-running applications, we are hardly able to predict the perfor-
mance variability derived from the contention on these shared resources. As a
consequence, black-box multi-cores prevent users to accurately understand and
predict co-running application behavior/performance on it.

In addition to architectures, co-running applications are also black-box. We
do not know how a standalone application behaves on shared hardware resources,
not to mention the interference of co-running applications on shared resources.

8

A.1. CONTEXT

A.1.5 Objectives

Considering the challenge of using multi-cores to estimate the runtime variability
of co-running safety-critical applications, we proposed two approaches in this
thesis to:

• Characterize the underlying architecture to discover its undisclosed features,
especially the shared resource related mechanisms and characterize target
applications to observe their behavior on shared resources.

• Estimate the execution time upper bound of co-running applications based
on the information of characterizations.

9

Chapter A.2

State of the Art

In this chapter, we present first the WCET analysis on single-cores to introduce
static and measurement based techniques computing upper bounds on execu-
tion times. Second, we present several representative proposals about designing
new architectures with less runtime variability. Third, we detail some work on
the WCET estimation using multi-core Commercial Off-The-Shelf (COTS) ar-
chitectures. Last, we present different methods of performance evaluation which
provides the behavior information of applications, allowing users to apply during
the WCET estimation.

A.2.1 WCET Analysis in Single-cores

Hard real-time systems need to satisfy stringent timing constraints [1, 6, 5]. In
general, upper bounds on the execution time are needed to show the satisfaction
of these contraints. Figure A.2.1 proposed in [38] by Wilhelm et al. facilitate the
understanding of timing analysis by depicting some real-time properties.

A real-time system consists of a number of tasks and each task typically shows
a certain variation of execution times depending on the input data or different
behavior of the environment. The upper curve refers to the distribution of all the
possible execution times of a task where the BCET (Best Case Execution Time)
and the WCET (Worst Case Execution Time) are respectively the shortest ex-
ecution time and the longest execution time. Most of the time, the BCET and
WCET can not be accurately determined by exhausting all the possible execu-
tions. Therefore, the industries usually measure the end-to-end execution times
of a task only for a partial set of all the possible executions to estimate the exe-
cution time bound. This measured execution time distribution is depicted by the
lower curve in Figure A.2.1 where we have the minimal observed execution time
which usually overestimates the BCET and the maximal observed execution time

10

A.2. STATE OF THE ART

which usually underestimates the WCET. The upper and lower timing bounds
are computed by the methods exploring all the possible executions. The upper
bound provides the worst case guarantee to envelope the worst case performance.
There are thus two criteria for timing analysis methods:

• Safety: Making sure that the WCET is greater than any possible execution
time.

• Tightness: Keeping the real worst case execution time close to the upper
bound. A large overestimation implies a great resource over-provision.

Figure A.2.1: Basic notions related to timing analysis. The lower curve represents a
subset of measured executions. Its minimum and maximum are the minimal observed
execution times and maximal observed execution times. The darker curve, an envelope
of the former, represents the times of all executions. Its minimum and maximum are
the best case and worst case execution times, abbreviated BCET and WCET.

To compute the WCET on single-core processors [38, 18], two main classes of
methods have been adopted: the static analysis and the measurement-based
analysis (dynamic timing analysis).

A.2.1.1 Static Analysis

Static analysis methods [38] perform some analysis on the application code to
extract possible control flow paths which are then combined with an abstract
model of the system to compute the upper bound of all the execution times.
This analysis do not rely on executing code on real hardware or on a simulator.
Therefore, static methods are able to produce bounds allowing safe schedulability
analysis of hard real-time systems. There are three key components in static
methods:

11

A.2. STATE OF THE ART

• Control-flow Analysis
The purpose of control-flow analysis is to determine all the possible exe-
cution paths of a task under analysis. The input of this analysis can be
the task’s control flow graph (CFG), call graph and some additional infor-
mation such as maximum iterations of loops and so forth. We can finally
obtain the actually feasible paths, including the conditional dependencies
by eliminating infeasible and mutually exclusive paths. All the flow infor-
mation performs as behavioral contraints of the task. There are different
matured techniques to automate the flow analysis, like the pattern match-
ing method, Bound-T method for loops analysis. The result of control-flow
analysis is an annotated syntax tree for the structure- based approaches in
the bound calculation, and a set of flow facts about the transitions of the
control-flow graph. These flow facts are translated into a system of con-
straints for the methods using Implicit Path Enumeration (IPET) in the
bound calculation.

• Processor-behavior Analysis
The execution time of a task depends on the selected hardware behavior,
like the pipeline structure, historical states of the cache and the arbitration
mode of the bus, which can be derived from the abstract processor model,
the memory hierarchy and the interconnect bus. The abstract processor
model depends on the class of used processor. For some simple processors
without the pipeline and caches, the timing construction is simple to ab-
stract. Even for processors with a simple scalar pipeline, maybe a cache,
the abstract also can be achieved by analyzing different hardware features
separately, since there are no timing anomalies. However, for complex pro-
cessors, some high performance enhancing techniques prevent to create the
timing construction. For example, out-of-order executions produce timing
anomalies making a cache hit resulting in a longer execution time than
a cache miss, which can be hardly modeled. Most approaches use Data
Flow Analysis, a static program-analysis technique, to get static knowl-
edge about the contents of caches, the occupancy of functional units and
processor queues, and of states of branch-prediction units.

• Bound Calculation
The purpose of this phase is to compute an upper bound of all execution
times of the whole task based on the flow and timing information derived
in the previous phases. There are three main classes of methods proposed
in literature: structure-based, path-based, and techniques using Implicit
Path Enumeration (IPET). In the structure-based method, the annotated
syntax tree derived in the flow analysis is traversed from bottom to up to

12

A.2. STATE OF THE ART

first determine the execution time bound of each basic block and second
combine all the computed bounds to deduct the upper bound of the whole
task. The path-based calculation is to find the longest execution path based
on the CFG with timing nodes derived in previous phases to determine the
upper bound. In IPET, the flow of a program is modeled as an assignment
of values to execution count variables. The values reflect the total number
of executions of each node for an execution of the task. Each entity with a
count variable also has a time variable giving the contribution of that part
of the program to the total execution time. The upper bound is computed
by maximizing the sum of products of count variables and time variables.

Although the static analysis can offer a sound and safe bound, there are
some limitations during the processor-behavior analysis. First, the contention on
shared resources can not be accurately modeled. In addition, the knowledge of the
hardware is usually limited for users. As a consequence, the measurement-based
analysis is proposed to overcome it.

A.2.1.2 Measurement-based Analysis

Measurement-based methods [38] replace the processor-behavior analysis in the
static methods by performing measurements on the target hardware (or a detailed
simulator) to estimate the WCET. This analysis usually measures the execution
times of code segments, typically of CFG basic blocks. As in the static analysis,
the measurement-based analysis also use the control flow analysis to find all
possible paths and then use the bound calculation to combine the measured times
of the code segments into an overall time bound.

However, the measured execution times of basic blocks would be unsafe if only
a subset of input data or initial states were considered. Unsafe execution times
may produce an unsafe upper bound which can not be accepted by safety-critical
industries but can be used to provide a picture of the actual variability of the
execution time of the application.

A.2.1.3 Commercial WCET Tools

aiT aiT WCET Analyzer is the first software tool of the well-known statical
industiral tool AbsInt [9] designed in the IST project DAEDALUS according to
the requirements of Airbus France for validating the timing behavior of critical
avionic software, including the flight control software of the A380, the worlds
largest passenger aircraft. The purpose of aiT tool is to obtain upper bounds for
the execution times of code snippets (tasks) in executable by statically analyzing
a tasks intrinsic cache and pipeline behavior based on formal cache and pipeline
models.

13

A.2. STATE OF THE ART

The workflow of aiT is shown in Figure A.2.2 proposed in [38]. The analysis
is composed of three main steps: 1) Reconstruct CFG from the given executable
program and then translate the CFG into CRL (Control Flow Representation
Language, a human-readable intermediate format designed to simplify analysis
and optimization at executable/assembly level) served as input of the next step.
2) Value analysis determines potential values in the processor registers for any
possible program point. The analysis results are used to identify possible ad-
dresses of memory accesses for cache analysis, to determine infeasible paths re-
sulting from conditions being true or false at any point of the analysed program,
and to analyse loop bounds. The following cache analysis statically analyze the
cache behavior of a program using a formal model examining sure hits and poten-
tial misses. The pipeline analysis models the prpcessor’s pipeline behavior based
on the current state of the pipeline, the resources in use, the contents in prefetch
queues and the results obtained during cache analysis. It aims at finding the
WCET estimate of each basic block of the program. 3) Bound calculation based
on the path analysis determines the worst-case execution path of the program
relying on the timing information of each basic block.

Figure A.2.2: Workflow of aiT WCET analyzer.

aiT includes automatic analysis to determine the targets of indirect calls and
branches and to determine the upper bounds of iterations of loops. However, this

14

A.2. STATE OF THE ART

analysis does not work in all cases. If it fails, the users have to supply annota-
tions. In addition, aiT relies on the standard calling convention that may not
be respected by some code. In this case, the users have to provide additional
annotations describing control flow properties of the program.

RapiTime RapiTime [19, 38] is a measurement-based tool aiming at medium
to large real-time embedded systems on advanced processors. It targets the auto-
motive electronics, avionics and telecommunications industries. RapiTime derives
timing information of each basic block of the program from the measurements,
and then combines all the measurement results according to the structure of the
program to estimate the longest path of the program. RapiTime not only com-
putes the upper bound of the program as a single value but also gets the whole
probability distribution of the execution time of the longest path in the program.
The input of RapiTime can be either source code files or binary code files, and
the users have to provide test data for measurements.

Compared to the static tools, RapiTime does not rely on the processor model,
so it can model any processing unit based on its measurement results. However,
the limitation is also put on the measurement. It has to extract the execution
traces of basic blocks in the running system using code instrumentations or other
measurement mechanisms. Regarding source code level, RapiTime cannot analyse
programs with recursions and with non-statically analyzable function pointers.

SymTA/P (SYMbolic Timing Analysis for Processes) SymTA/P [16, 38]
is a hybrid approach combining the static and measurement-based analysis to ob-
tain lower and upper execution time bounds of C programs running on microcon-
trollers. The key concept of SymTA/P is to combine platform independent path
analysis on source code level and platform dependent measurement methodology
on object code level using an actual target architecture. SymTA/P uses sym-
bolic analysis on the abstract syndax tree to identify single feasible paths (SFP).
SFP is a sequence of basic blocks where the execution sequence is invariant to
input data. The result of the analysis is a CFG with nodes containing SFPs or
basic blocks that are part of a multiple feasible paths. In the second step, the
execution time of each node is estimated on an off-the-shelf processor simulator
or an evaluation board by instrumenting C code with measurement points that
mark the beginning and the end of each node. However, such measurement can
not ensure a safe initial state in all cases, so an additional time delay is added to
cover a potential underestimation during such measurement by many techniques.
The longest and the shortest paths in the CFG are found by IPET introduced in
Section A.2.1.1.

15

A.2. STATE OF THE ART

However, data-dependent execution times of single instructions are not ex-
plicitly considered. The input data has to cover the worst case regarding data-
dependent instruction execution time, which means that the input data has to
generate complete branch coverage. In addition, there is no sub-function analysis
during cache-analysis. Each function is analysed seperately (assuming an empty
cache at function start), and there is no interference assumed when a function is
called.

A.2.2 In-house Approach for the WCET Esti-

mate

As we stated in Chapter A.1, multi-core architectures provide high average perfor-
mance and are increasingly considered as execution platforms for embedded sys-
tems in the safety-critical domain. However, the performance variability, namely
the reduced predictability is a critical issue that should be avoided in the safety-
critical context. To increase the performance predictability, two different ap-
proaches have been advocated. The first is the in-house approach and the second
is the COTS approach. We present, in this section, some related work about the
former and in the next section about the latter.

With the advent of multi-core architectures the WCET analysis methods for
single-cores are no longer able to estimate WCETs due to the shared hardware
resources and mechanisms (network-on-chip, memory coherency, . . .) which add
too much performance uncertainty. In order to provide tight WCETs the research
community has mainly focused on in-house approach which aims at proposing
new and more predictable multi-core architectures implementing proper isolation
mechanisms to separate the use of shared resources and provide a adequate level
of determinism, as in multiple european and american projects Predator [26],
Merasa [33] / parmerasa [34] and Prets [7].

TheMerasa project aims to achieve a breakthrough in hardware design, hard
real-time support in system software and the WCET analysis tools for embed-
ded multicore processors. The project focuses on developing multicore processor
designs for hard real-time embedded systems and techniques to gurantee the an-
alyzability and timing predictability of every feature provided by the processor.

Intertask interferences in mainstream multicores provoke the main difficulty in
analyzing timing behaviour, which renders multicores unusable in safety-related
real-time embedded systems. In this context, MERASA architecture is designed
in [33] to make analysis of each task independent from coscheduled tasks and
allow safe and tight worst-case execution time (WCET) estimation. The general
MERASA multicore architecture is based on SMT cores and is capable of running
both hard real-time (HRT) and non hard real-time (NHRT) threads. However,

16

A.2. STATE OF THE ART

HRT threads receive the highest priority in the fetch stage, the real-time issue
stage, and the intracore real-time arbiter. Moreover, each HRT task has access
to its local dynamic instruction scratchpad (D-ISP) and data scratchpad (DSP),
private instruction, and data cache partitions. Thanks to these tailors, HRT
threads are isolated from NHRT threads. In addition, analyzable real-time mem-
ory controller (AMC) is proposed to minimize the impact of memory intertask
interferences on the WCET. With respect to WCET techniques and tools, the
MERASA project uses a static WCET tool and a measurement-based WCET
tool to evaluate impact of intertask inference on WCET estimation.

The philosophy of the Prets project [7] is to propose very predictable archi-
tectures whose temporal behavior is as easily controlled as their logical function.
The timing control research thus spans all abstraction layers in computing, in-
cluding programming languages, the ISA level, the memory hierarchy, the inter-
connect architecture, the DRAM design and so forth.

B.Lickly et al. [20] focus on integrating timing instructions to a thread-interleaved
pipeline and a predictable memory system. With respect to pipeline, based on
SPARC v8 ISA, PRET architecture implements a six-stage thread-interleaved
pipeline that supports six independent hardware threads. Each thread has its
own register file, local on-chip memory (scratchpad memories (SPMs)) and as-
signed off-chip memory. The thread controller schedules the threads according to
a round-robin policy. This pipeline eliminates dependencies among instructions
in the same thread. However, structural hazards do exist, which will stall the
pipeline. To avoid to stall the whole pipeline, a replay mechanism is used by
repeatedly replaying the stalling thread until it can continue. Moreover, in order
to provide precise timing control to software, a deadline instruction is offered to
allow the programmer to set a lower bound deadline on the execution time of a
segment of code through accessing cycle-accurate timers. With respect to mem-
ory system, PRET replaces caches with SPMs which are managed by software
through direct memory access (DMA) transfers, thus avoiding unpredictability of
hardware replacement policies. In order to isolate off-chip memory access among
each thread, a memory wheel is provided to determine which thread is allowed to
access memory through a fixed round robin schedule, which finally ensure a pre-
dictable timing. Although all above timing control techniques are able to ensure
the real-time constraints of the design with ease, the timing constraints have to
be calculated by hand whenever the code is optimized or modified. The lack of
the automated tool for calculating and verifying timing constraints prevent the
realistic programming for this PRET.

In [3], the Prets authors discuss techniques of temporal isolation on mul-
tiprocessing architectures at the microarchitecture level, the memory architec-
ture, the network-on-chip (NoC), and the instruction-set architecture (ISA). At
the microarchitecture level, temporal interference can be removed by assigning a

17

A.2. STATE OF THE ART

top priority to hard real-time threads or using virtual multiprocessor or thread-
interleaved pipeline. At the memory level, partitioned caches can be applied to
avoid the interference in the cache by pre-allocating a fixed cache region to each
core or application. In addition, scratchpad memories (SPMs) are an alternative
to caches. SPMs provide constant latency access times and the contents are un-
der software control. For the next lower level of the memory, dynamic random
access memory (DRAM) controller allocates private banks to different clients.
At the NoC level, there are two approaches: one is time-division multiple-access
(TDMA), and the other is priority-based mechanism. At the ISA level, some new
instructions with temporal semantics considered as ISA extensions are proposed
to enable control over timing.

Reineke et al. [29] propose a novel dynamic random access memory (PRET
DRAM) controller is proposed in which the DRAM device is considered as mul-
tiple resources shared between one or more clients individually. The physical
address space is partitioned following the internal structure of the DRAM device,
ie., its ranks and banks. The DRAM controller is split into a backend and a fron-
tend. The frontend connects to the processor, and the backend issues commands
to the independent resources in DRAM module with a periodic and pipelined
fashion. Therefore, a bank parallelism is realized and interference amongst the
resources is removed.

The Proartis project [4] proposes an interesting approach for the WCET
problem on multi-cores by proposing architecture designs with randomness. Thanks
to the randomness properties of such designs probabilistic approaches can be ap-
plied to compute accurate WCETs.

The advantage of these in-house approaches is that they can address temporal
and spatial isolation directly, which makes few or no modification in terms of the
software, like the operating system. However, hardware modifications especially
complex modifications lead to high custom silicon cost and a long time-to-market
(TTM). From my best knowledge, there is no MERASA or PRET architecture
commercialised in the market. Furthermore, for these in-house architectures, the
high predictability is achieved at the cost of their average performance, which
makes them not able to sustain the increasing performance requirement shown
in Figure A.1.3.

A.2.3 COTS Approach for the WCET Estimate

COTS architectures refer to the commercial components that we can directly
get in the market. Therefore, compared to in-house solutions, COTS architec-
tures reduce both the non-recurring engineering costs (NRE) and the TTM [2].
Considering these advantages and multi-core COTS’s high average performance

18

A.2. STATE OF THE ART

safety-critical industries have been seeking the methods to achieving the worst
case timing analysis based on multi-core COTS. The critical issue of using multi-
core COTS is reduced predictability resulting from the interference among co-
running appications on shared resources. The performance in the context of
co-running applications is mostly slown down either by concurrent accesses to a
shared bus/memory or by changed states of shared caches.

Pellizzoni et al. [24] propose a methodology computing upper bounds to task
delay due to memory contention. The methodology adopts task model based on
superblocks. Each task is composed of a sequence of superblocks characterised by
a cache profile Ci={µmin

i , µmax
i , execLi , exec

U
i }. µ

min
i , µmax

i are the minimum and
maximum number of access requests to the main memory, and execLi , exec

U
i are

lower and upper bounds on computation time for superblock si. To bound the
amount of concurrently requested access time for a given superblock, all possible
interleavings of its bus accesses with concurrent access sequences have to be taken
into account. As this may be computationally infeasible, an arrival curve αi(t) is
introduced in the article based on the cache profiles of all the tasks executed on the
processing unit i (PEi). αi(t) bounds the maximal amount of access time required
by concurrent tasks running on PEi to perform operations in the main memory in
a time interval t. Arrival curves are then combined with a representation of cache
behavior of the task under analysis to generate a delay bound. The principle of
delay analysis is to construct the worst-case scenario which is the scenario that
maximizes the latency of a request based on the memory arbitration scheme. For
round-robin arbitration, the worst-case scenario is that all other processing units
are allowed to perform one access before the PEi is allowed to do so. In First
Come First Served (FCFS) arbitration, an interference bound has to additionally
take into account the maximum number of access requests that can be released at
the same time by concurrent processing units if this number is greater than one.
Pellizzoni et al. finally give a delay bound equation that was evaluated through
an extensive simulations to derive the delay bounds.

In addition to [24], superblocks are also applied in [30, 23] to analyse the
delay bounds due to the contention on shared bandwidth resources. However,
this approach requires the bounds on the amount of computation time and the
access times and delays to be compositional, which means that the approach
should rely on timing compositional hardware architectures [39]. Unfortunately,
many existing hardware architectures exhibit domino effects and timing anomalies
and are thus out of the scope of such an approach.

Compared to the bandwidth resources, like the interconnect bus, which bring
the runtime delay via their arbitration mechanisms when different applications
request them at the same time, there is another type of shared resources, like
caches. When one application changes the state of a resource, another application
using that resource will suffer from a slowdown. Unfortunately, the behavior of

19

A.2. STATE OF THE ART

current shared caches is hard to predict statically. Cache accesses from different
cores are typically served on a first-come first-served basis. Their interleaving
thus depends on the relative execution speeds of the applications running on
these cores, which depend on their cache performance, which in turn depends on
the cache state. This cyclic dependency between the interleaving of the accesses
and the cache state makes precise and efficient analysis hard or even impossible
in general.

Chi Xu et al. in [40] propose CAMP, a fast and accurate shared cache aware
performance model for multi-core processors. CAMP estimates the performace
degradation due to cache contention of processes running on chip multiprocessors
(CMPs). The model uses non-linear equilibrium equations in a least-recently-
used (LRU) and pseudo-LRU last level cache, taking into account process reuse
distance histograms, cache access frequencies and miss rate aware performance
degradation. CAMP models both cache miss rate and performance degradation
as functions of process effective cache size, which is in turn a function of the
memory access behavior of other processes sharing the cache. CAMP can be used
to accurately predict the effective cache sizes of processes running simultaneously
on CMPs, allowing the performance prediction.

Fedorova et al. [8] describe a new operating system scheduling algorithm that
improves performance isolation on chip multiprocessors (CMP). This algorithm
is a cache-fair algorithm ensuring that the application runs as quickly as it would
under fair cache allocation, regardless of how the cache is actually allocated.

Zhao et al. [41] presented an approach to dynamic scheduling that is based on
their CacheScouts monitoring architecture. This architecture provides hardware
performance counters for shared caches that can detect how much cache space
individual tasks use, and how much sharing and contention there is between
individual tasks.

An approach to static scheduling in a hard real-time context is presented by
Guan et al. [13]. They extend the classical real-time scheduling problem by asso-
ciating with each task a required cache partition size. They propose an associated
scheduling algorithm, Cache-Aware Non-preemptive Fixed Priority Scheduling,
FPCA and a linear programming formulation that determines whether a given
task set is schedulable under FPCA . For higher efficiency, they also introduce a
more efficient heuristic schedulability test that may reject schedulable task sets.

All these above proposals are static analysis of shared resources to try to
provide a sound and safe bound in a co-running context. In addition to them,
there are measurement-based approaches that aim at quantifying the slowdown
a task experiences when different tasks are executed in parallel. In a single-core
setting, a measurement-based estimate is obtained by adding a safety-margin to
the longest observed execution time. However, it is not possible to directly extend
such measurement-based timing analysis from the single-core to the multi-core

20

A.2. STATE OF THE ART

setting because of increased variability of the runtime.
Radojković et al. [28] propose benchmarks that stress a variety of possibly

shared resources, including functional units, the memory hierarchy, especially the
caches at different levels and the bandwidth to the main memory. These bench-
marks are called resource stressing benchmarks which aim at maximizing
the load on a resource or a set of resources. The interference a resource stressing
benchmark causes on a certain resource is meant to be an upper bound to the
interference any real co-runner could cause. Therefore the slowdown a program
experiences due to interferences on a certain resource when co-running with a re-
source stressing benchmark bounds the slowdown that could occur with respect
to this resource in any real workload. Resource stressing benchmarks are thus
considered as a good metric to obtain a workload-independent estimate of the per-
formance slowdown. The authors applied resource stressing benchmarks in multi-
threaded processors to 1) estimate the upper limit of a performance slowdown due
to different shared-resource contention for simultaneously-running tasks. 2) quan-
tify time-critical applications sensitivity to different shared-resource contention.
3) determine if a given multithreaded processor is a good candidate to meet the
required timing contraints.

Experiments are carried out on three architectures with different shared re-
sources in order to show the varying timing predictability, depending on the
degree of resource sharing. One architecture Atom Z530 offers hyperthreading,
and the resources from the front-end of the pipeline to the memory bandwidth are
shared. For the second architecture Pentium D, the only shared resource is the
bandwidth to the main memory between two cores whereas for the third architec-
ture Core2Quad, the L2 cache is shared as well. In order to show the variance of
the possible slowdown, measurements are taken for three different scenarios. In
the first scenario, only resource stressing benchmarks are executed concurrently
to estimate the worst possible slowdown independently of the application. In
the other cases, the application is either executed with another co-running appli-
cation or with different co-running resource-stressing benchmarks. The experi-
mental results of the first scenario reveal that the techniques like hyperthreading
are impractical for hard real-time applications due to a possible significant slow-
down caused by the contention on all the shared resources. The measurements
for the different scenarios reveal that the slowdown due to co-running resource
stressing benchmarks drastically exceeds the slowdown measured in workloads
only consisting of real applications. This implies that the workload- independent
slowdown determined with co-running resource stressing benchmarks yields a very
overestimated upper bound to the slowdown in any real workload. Therefore, the
analysis result might be not very useful in practice.

Another measurement-based approach proposed by Nowotsch and Paulitsch
[22] quantifies the impact of integration of multiple independent applications

21

A.2. STATE OF THE ART

onto multi-core platforms using resource stressing benchmarks. Measurements
are carried out on the Freescale P4080 multi-core processor, and access two key
parameters: influences introduced by multiple cores concurrently accessing net-
work and memory and additional overhead introduced by coherency mechanisms.
Several scenarios are considered:

1. configure L3 caches to SRAM in order to compare accesses to SRAM and
DDR memory when coherency flag in turned off

2. compare accesses to SRAM and DDR memory in case of static coherency
enabled (i.e. only checks whether memory blocks in the local caches are
coherent)

3. compare accesses to SRAM and DDR memory in case of dynamic coherency
enabled (i.e. not only checks, but also explicit memory operations enforcing
coherency)

The outcomes show that the time for concurrent accesses to DDR memory
scales very badly with the number of concurrent cores, in contrast to SRAM.
Concerning the different cache coherency settings, the results show that even
without coherent accesses, static coherency induces an overhead in execution
time that should be considered in timing analysis. The impact of dynamic co-
herency strongly depends on the type of memory operation (read or write). In
case of read with concurrent read, dynamic coherency does not cause any slow-
down compared to static coherency. For write operations, the execution is slown
down significantly in case of dynamic coherency, regardless of the concurrent op-
eration. This can be explained by the fact that after a write operation, coherency
actions are required to keep the memory hierarchy consistent. Throughout all
the evaluation results, the article points out that multi-core COTS may be used
for safety-critical applications, but the WCET may be a factor of the number of
cores being used.

The static approach is always highly complex due to the large number of
potential hardware features to be considered during modeling. For complex ar-
chitectures, several simplifications and unrealistic assumptions have to be set in
order to derive a safe modeling, which hinders its widespread use in industries.
The measurement-based approach is a good complement to the static approach
by searching the worst case interference of co-running tasks to estimate the up-
per bound. However, compared to the static approach, there is a lack of formal
proofs to support the measurement-based approach. In addition, measured ex-
ecution times might not be reproduced in the next measurement because of the
variability. Therefore, the measurement usually has to be repeated to cover the
worst-case scenario.

22

A.2. STATE OF THE ART

A.2.4 Performance Evaluation

The purpose of the performance evaluation is to monitor how an application
behaves on an architecture. This monitoring information allows us to identify
possible bottlenecks of performance which guide us to maximize the performance
through various optimizations. In addition, it is also useful for characterizing
workloads, allowing us to quantify hardware resource utilization at application
level and providing some clues to better understand the runtime variability. There
are broadly two distinguished profiling techniques: sampling and instrumentation.

Sampling Techniques
In the sampling approach, the measurement tool stops the target application
in fixed intervals or at specific events and samples the program counter as the
application progresses to measure performance aspects statistically by triggering
relevant interrupts. At this point, additional information about hardware and
program state can also be recorded. By unwinding the stack-frames, the tool is
then able to roughly pinpoint the corresponding source position from the debug
information.

The SimPoint tool [31, 25] is an automatic technique relying on sampling
techniques to find and exploit program phase behavior to guide program analy-
sis, optimization and simulation. During the phase analysis, different metrics of
the program are captured within each fixed interval or variable-sized interval to
classify the intervals within the programs execution that have similar behavior/-
metrics as the same phase.

Instrumentation Techniques
In the instrumentation approach, the target program is augmented with measure-
ment points, called probes which are mostly installed at all entries and exists of
a given function, to gather the necessary information. For example, the inserted
hooks allow the profiler to maintain a shadow stack at runtime. The stack stores
the time at which a function is entered, which is subtracted from the time when
the function returns. The accumulated differences precisely capture how much
time was spent in each function.

There are several well-known program profiling tool based on the instrumenta-
tion. Valgrind [35] provides a generic infrastructure for supervising the execution
of programs by providing a way to instrument programs in very precise ways,
making it relatively easy to support activities such as dynamic error detection
and profiling. The most used tool in Valgrind is memcheck which inserts extra
instrumentation code around almost all instructions, which keeps track of the
memory state, lile its validity and addressability. In addition, Joint Test Action
Group (JTAG) which is propably the most widely used debug interface applies

23

A.2. STATE OF THE ART

the processor instrumentation to examine and modify the internal and external
states of a system’s registers, memory and I/O space.

Both sampling and instrumentation are in principle capable of gathering the
same information, though each of them has proper advantages and drawbacks.
We can easily control measurement dilation under sampling by adjusting the
sampling frequency. However, as sampling is performed outside of the scope of
the observed application, important events occurring in between sampling points
may potentially be missed. In contrast, the instrumentation approach where an
event will always be observed provides deterministic and reproducible results, but
automatic placement of event-probes is difficult to control and has tendencies to
fail for current C++ codes due to immense overhead.

In the thesis, we propose methodologies characterizing architecture and ap-
plications, and computing the runtime upper bound based on the performance
evaluation using hardware monitors. Hardware monitors are essentially a group
of special purpose registers implemented in most recent architectures include
some special on-chip hardware to count hardware related activities. The col-
lected hardware monitors information provides performance information [32] on
the applications, the operating system, and the underlying hardware behavior.

The special purpose registers available from the micro-architecture instruction-
set are confined to count on-die related events. In some architectures, it would
imply not being able to gather some events related to the last cache level, as well
as the interconnect, and the DDR controller. As contention on these resources
can actually be the bottleneck of the architecture, we cannot afford not collecting
this information.

However for recent embedded architectures, the integrators are proposing
some monitoring facilities at platform level. These monitoring features are most
of the time dedicated to debugging through proprietary hardware probes but al-
low to count events at all the platform levels, including the number of DRAM
refresh, page switch, and so on. This ability is a proof of the existence of some
additional (most of the time undocumented) platform-level hardware counters
that could be exploited through some reverse-engineering.

A.2.5 Conclusion

There are two complementary timing analysis methods for single-cores: the static
and the measurement-based method. Although the static analysis is able to pro-
vide a sound and safe execution time bound, the processor-behavior analysis can
not be achieved for some complex processors with out-of-order executions which

24

A.2. STATE OF THE ART

produce timing anomalies. In addition, the static analysis supposes that it has a
complete and detailed behavior description of the analysed architecture. Unfor-
tunately, this is not the case of COTS architectures which typically only provide a
high level description. The measurement-based analysis is an alternative method
to estimate the WCET by replacing the processor-behavior analysis with per-
forming measurements on the target hardware or a detailed simulator. However,
the measurement-based analysis would offer an unsafe bound if only a subset of
execution paths and states were considered.

Multi-core architectures are increasingly considered as execution platforms for
safety-critical systems since they offer a good energy-performance tradeoff. How-
ever, they produce the increased performance variability that should be analysed
and controlled in the safety-critical domain. Considering the increasing complex-
ity of timing analysis caused by the interference on shared resources in multi-cores,
the static and measurement-based analysis for single-cores are no longer usable
for multi-cores. For multi-cores, both approaches are not scalabale: the static
analysis has to face a state explosion which is impossible to be all covered during
modeling, and the measurement-based analysis has to suffer sequential consis-
tency problems. To achieve timing analysis in multi-cores, two approaches have
been advocated: the in-house approach and the COTS approach.

For the in-house approach, the projects (Predator [26], Merasa [33] /
parmerasa [34] and Prets [7]) propose new architectures dealing with the inter-
task interferences on WCET to finally reduce the performance variability. The
advantage of the approach is that it directly addresses temporal and spatial iso-
lation in hardwares, and frequently requires few or no modifications to softwares.
However, the hardware modifications can make the new architecture prohibitively
costly and long TTM.

In contrast to the in-house approach, the COTS approach has lower NRE cost
and shorter TTM while leaving the timing analysis difficult due to its complex
hardware behavior. The timing analysis using COTS can be splitted into two
categories: the static analysis and the measurement-based analysis. The static
analysis concentrates on deriving analytic and formal models on accessing shared
resources in the co-running context, which provides an upper bound capable of
proof. The measurement-based analysis applies resource stressing benchmarks to
quantify the possible maximum co-running performance slowdown which is used
to bound the execution time of real co-running applications. The measurement-
based analysis is, at the most time, too pessimist. The slowdown an application
experiences with co-running resource-stressing benchmarks is significantly higher
compared to with co-running real applications [28].

Compared to the static analysis, the measurement-based analysis is more
straitforward and can be always evaluated through a series of experiments di-
rectly in hardware platforms, while the static analysis is always highly complex

25

A.2. STATE OF THE ART

due to the large number of potential features to be considered and thus often
tested via simulations with several unrealistic assumptions.

In this thesis, we propose a measurement-based approach to estimate the
runtime variability of co-running safety-critical applications on a COTS multi-
core architecture. The contribution is described in Chapter A.5.

26

Chapter A.3

Target Platform - QorIQ P4080

The selection of processors for future safety-critical applications depends on some
essential factors related to the manufacturer and the processor design. For exam-
ple, avionic industries select a manufacturer which has experience in the avionic
domain and is involved in the certification process. In addition, the manu-
facturer is expected to have a sufficient life expectancy and ensure a long-term
support, including willing to exchange the information related to the processor
design, debug and test. In the side of the processor design, the industries will
evaluate the desired candidate according to a series of technical critiria aiming at
identifying undesirable features and correlated mitigation means.

According to above selection rules, the Freescale’s QorIQ P4080 is a po-
tential candidate of the next generation processor for future avionic applications,
because Freescale is a long-term provider in the avionic domain and it launched
a project MCFA (Multi-Core For Avionics) collaborating with avionics manufac-
turers to facilitate their certification of systems using multicore processors. In
this context, airbus keeps a long term relationship with Freescale about Pow-
erPC based systems. Moreover, predecessors of the QorIQ line have been used in
multiple aircraft applications.

Therefore, we selected the P4080 as the target platform to evaluate the ex-
periments, and we present the P4080 structure and features in this chapter.

A.3.1 Structure of the P4080

The P4080 Development System [12] is the 8-core Freescale’s QorIQ platform. It
belongs to the P4 series which is a high performance networking platform, de-
signed for backbone networking and enterprise level switching and routing. As
shown in Figure A.3.1, the system is composed of eight e500mc PowerPC cores
coupled with private L1 data+instruction caches and a private L2 unified cache.

27

A.3. TARGET PLATFORM - QORIQ P4080

A shared memory architecture including two banks of L3 cache and two associated
DDR controllers is built around the CoreNet fabric. Additionally, several differ-
ent peripherals are implemented around the CoreNet fabric. The CoreNet fabric
is a key design component of the QorIQ P4 platform. It manages full coherency of
the caches and provides scalable on-chip, point-to-point connectivity supporting
concurrent traffic to and from multiple resources connected to the fabric, elimi-
nating single-point bottlenecks for non-competing resources. This eliminates bus
contention and latency issues associated with scaling shared bus/shared memory
architectures that are common in other multi-core approaches.

We concentrated on the e500mc cores and the shared memory architecture
without using other perpherals. The features of the e500mc and the shared
memory are depicted in Table A.3.1.
Figure 1 shows the major functional units within the P4080.

Perf
Monitor

CoreNet
Trace

Watchpoint
Cross
Trigger

Real Time Debug

Aurora

18-Lane 5-GHz SERDES

sRIO

1GE

1GE

128-kbyte
Backside
L2 Cache

10GE

Frame Manager

1GE

1GE

1GE

1GE

10GE

Frame Manager

1GE

1GE

PCIe sRIOPCIe

RapidIO
Message

Unit
(RMU)

PCIe

2x DMA

QorIQ P4080
Power Architecture™

e500mc Core

Test
Port/
SAP

Security
4.0

Pattern
Match
Engine

2.0

eLBC
Queue

Mgr

Buffer
Mgr

eOpenPIC

Internal

Power Mgmt

SD/MMC

SPI

2x DUART

4x I2C

Clocks/Reset

GPIO

CCSR

BootROM

2x
USB 2.0/ULPI

Security
Monitor

PreBoot
Loader

32
D-Cache

32-kbyte
I-Cache

1024-kbyte
Frontside
L3 Cache

1024-kbyte
Frontside
L3 Cache

64-bit
DDR2/DDR3

Memory Controller

64-bit
DDR2/DDR3

Memory Controller

CoreNet™

Coherency Fabric

PAMU PAMUPAMU PAMU PAMU
Peripheral

Access Mgmt Unit

Buffer

Parse, Classify,
Distribute

Buffer

Parse, Classify,
Distribute

Figure A.3.1: Freescale P4080 block diagram

A.3.2 Hardware Monitors in the e500mc Core

Each e500mc PowerPC core provides a special set of registers for the perfor-
mance monitoring called Performance Monitor Registers (PMR). The perfor-
mance monitor provides the ability to count predefined core related events, for
example cache misses, mispredicted branches, or the number of cycles an exe-

28

A.3. TARGET PLATFORM - QORIQ P4080

Core 8 Power Architecture e500mc at 1.5GHz
Pipeline 7-stage pipeline, superscalar, out-of-order
Distributed L1 caches 32kb, 8-way associative, 64-byte line, PLRU
Distributed L2 cache 128kb, 8-way associative, 64-byte line, PLRU
Performance monitors 162 available events

4 performance monitor counters per core
Shared L3 cache (x2) 1MB, 32-way associative, 64-byte line, PLRU
Memory controller Two DDR memory controllers
Interconnect CoreNet Coherency Fabric

Table A.3.1: Freescale P4080 specifications

cution unit stalls. According to the manual of e500mc, there are totally 162
available events. Each core has ability to collect four of these 162 events at a
given time.

In the P4080, the PMRs can be classified in three types:

• The Performance Monitor Counter registers (PMC) which are used to count
selected software-selectable events.

• The Performance Monitor Global Control register (PMGC) which controls
the counting of performance monitor events. It is mainly used to freeze/un-
freeze all the counters.

• The Performance Monitor Local Control registers (PMLC) which controls
each individual performance monitor counter, including freeze/unfreeze each
counter, select desired events for each counter, enable/disable the perfor-
mance monitor interrupt for each counter and etc.

Each PMR has its own PMR number (PMRn) and comes in two versions, one
that is read- and writable in the supervisor mode and one that is only readable
from the user mode. Table A.3.2 lists all the PMRs and their PMRn in the
supervior mode and the user mode. The first step to use PMRs for monitoring is
to configure the PMGC0 and PMLCs to control the performance counters and to
select desired events. However, writing to the PMGC0 and PMLCs is only legal
in the supervisor mode, which means that we can realise the write operations
either on the bareboard of the P4080 or using a kernel module on the Linux
environment implemented on the P4080. Considering that using kernel modules
is more complicated and may produce unexpected overhead during monitoring,
we finally used the bareboard method to avoid these drawbacks.

In order to interact with the PMRs, the P4080 provides a pair of assembly
instructions mtpmr/mfpmr to move to and from the PMRs. The instructions are
shown in Table A.3.3.

29

A.3. TARGET PLATFORM - QORIQ P4080

Name Supervisor User
Abbreviation PMRn Abbreviation PMRn

Performance monitor counter 0 PMC0 16 UPMC0 0
Performance monitor counter 1 PMC1 17 UPMC1 1
Performance monitor counter 2 PMC2 18 UPMC2 2
Performance monitor counter 3 PMC3 19 UPMC3 3
Performance monitor local control a0 PMLCa0 144 UPMLCa0 128
Performance monitor local control a1 PMLCa1 145 UPMLCa1 129
Performance monitor local control a2 PMLCa2 146 UPMLCa2 130
Performance monitor local control a3 PMLCa3 147 UPMLCa3 131
Performance monitor local control b0 PMLCb0 272 UPMLCb0 256
Performance monitor local control b1 PMLCb1 273 UPMLCb1 257
Performance monitor local control b2 PMLCb2 274 UPMLCb2 258
Performance monitor local control b3 PMLCb3 275 UPMLCb3 259
Performance monitor globam control 0 PMGC0 400 UPMGC0 384

Table A.3.2: e500mc Performance Monitor Registers

Name Mnemonics Syntax
Move From Performance Monitor Register mfpmr rD, PMRn
Move To Performance Monitor Register mtpmr PMRn, rS

Table A.3.3: Instructions for reading and writing the PMRs

Event selection is specified through an event-select field in the PMLCan regis-
ters listed in Table A.3.2. Table A.3.4 describes event types used in Table A.3.5.
Table A.3.5 lists some encodings for the selectable events to be monitored and es-
tablishes a correlation between each counter, events to be traced, and the pattern
required for the desired selection.

Event type Label Descriptions
Reference Ref:# Shared across counters PMC0PMC3.

Applicable to most microprocessors.
Counter Com:# Shared across counters PMC0PMC3.

Fairly specific to e500 microarchitectures.
Counter-specific C[0:3]:# Counted only on one or more specific counters.

The notation indicates the counter to which an event is assigned.
For example, an event assigned to counter PMC2 is shown as C2:#.

Table A.3.4: Event types

A.3.2.1 Performance Monitoring Example Using PMRs

We provide a simple example to explain how to use PMRs in this section. We
first show the flowchart of using PMRs in Figure A.3.2. The example is a simple
benchmark where we traverse all the elements of an array. For this benchmark,
we want to monitor the processor cycles and data L1 cache misses using per-

30

A.3. TARGET PLATFORM - QORIQ P4080

Numbers Events
Spec/

Nonspec
Count Description

General Events
Ref:0 Nothing Nonspec Register counter holds current value

Ref:1 Processor cycles Nonspec Every processor cycle

Ref:2 Instructions completed Nonspec Completed instructions 0,1 or 2 per cycle

Com:3 Micro-ops completed Nonspec Completed micro-ops

Com:4 Instructions fetched Spec
Fetched instructions 0,1,2,3 or 4 per cycle (instructions written
to the IQ)

Com:5 Micro-ops decoded Spec Micro-ops decoded

Com:6 PM EVENT transitions Spec 0 to 1 transitions on the pm event input

Com:7 PM EVENT cycles Spec Processor cycles that occur when the pm event input is asserted

. . .
Load/Store, Data Cache, and Data Line Fill Buffer (DLFB) Events

Com:27 Loads translated Spec cacheable loads micro-ops translated

Com:28 Stores translated Spec cacheable stores micro-ops translated
. . .

Com:41 Data L1 cache reloads Spec
Counts cache reloads for any reason. Typically used to determine
data cache miss rate (along with loads/stores completed)
. . .

Bus Interface Unit (BIU) Interface Usage Events

Com:67 BIU master requests Spec Master transaction starts (number of Aout sent to CoreNet)

Com:68 BIU master global requests Spec
Master transaction starts that are global (M=1)(number of Aout
with M=1 sent to CoreNet). For e500mc Rev 1.x and Rev 2.x
this event is not supported

Com:69 BIU master data-side requests Spec
Master data-side transaction starts (number of D-side Aout sent
to CoreNet)
. . .

Snoop Events

Com:72 Snoop requests N/A
Externally generated snoop requests (number of Ain from
CoreNet not from self)
. . .

Table A.3.5: Some performance monitor event selection of the e500mc

formance counters. From the description of the example, we know that we can
monitor these two events at the same time using two performance counters. Here
we select the PMC0 (PMR16) and the PMC1 (PMR17) listed in Table A.3.2
respectively for the processor cycles and data L1 cache misses. Accordingly, we
should configure the PMLCa0 (PMR144) and the PMLCa1 (PMR145) to respec-
tively select the event processor cycles whose identification number is 1 and the
event L1 cache misses whose number is 41 as shown in Table A.3.5. After de-
termining the performance counters to be used, we begin to configure all the
necessary PMRs following the procedures in the flowchart in Figure A.3.2. The
source code of the example is shown in Listing A.3.1.

Listing A.3.1: Example code of using PMRs

/∗Freeze counter s ∗/
l i s 14 , 0x8000 ; // s e t g ene ra l r e g i s t e r r14 to

// the value 0x80000000
mtpmr 400 , 14 ; //PMGC0=r14=0x80000000 to

// f r e e z e a l l the counter s

/∗ I n i t i a l i z e counter s ∗/

31

A.3. TARGET PLATFORM - QORIQ P4080

l i 14 , 0 ; // s e t r14 to zero
mtpmr 16 , 14 ; // i n i t i a l i z e PMC0 to zero
mtpmr 17 , 14 ; // i n i t i a l i z e PMC1 to zero

/∗ S e l e c t d e s i r ed events ∗/
l i s 14 , 1 ; // s e t r14 to 1 which i s the number

// o f the event p ro c e s s o r c y c l e s
mtpmr 144 , 14 ; // con f i gu r e PMLCa0 to s e l e c t

// the p ro c e s s o r c y c l e s
l i s 14 , 41 ; // s e t r14 to 41 which i s the number

// o f the event data L1 cache misses
mtpmr 145 , 14 ; // con f i gu r e PMLCa1 to s e l e c t

// the data L1 cache mis se s

/∗Enable counter s ∗/
l i 14 , 0 ; // s e t r14 to zero
mtpmr 400 , 14 ; //PMGC0=r14=0x0 to un f r e e z e / enable

// a l l the counter s

{benchmark execute s . . . }

/∗Freeze counter s ∗/
l i s 14 , 0x8000 ;
mtpmr 400 , 14 ;

/∗Read counter s to get the event va lue s ∗/
mfpmr 14 , 16 ; // read the value o f the PMC0 to r14
mfpmr 15 , 17 ; // read the value o f the PMC1 to r15

A.3.3 Hardware Monitors in the Platform P4080

Besides the core-related performance monitoring, the P4080 has the ability to
monitor the platform related activities. In the P4080, an infrastructure is inte-
grated to support run control, performance monitoring and tracing. This infras-
tructure is called Advanced QorIQ Platform Debug Architecture (APDA). The
functionality of the APDA is modular.

The P4080 has five functional areas and each of them has its own function-
specific debug logic that forwards information to cross-functional facilities to co-
ordinate run control, performance monitoring, and tracing operations.

Five function areas are illustrated below:

32

A.3. TARGET PLATFORM - QORIQ P4080

Enter supervisor mode

Freeze counters

Initialize counters

Select events

Unfreeze/enable counters

Run tasks
(Supervisor or user mode)

Freeze counters
(Supervisor mode)

Read counters

Figure A.3.2: The flowchart of using PMRs

• CoreNet - platform coherency fabric and platform cache

• DDR - external memory

• Data Path (Frame Manager and Queue Manager) - network packet process-
ing and queuing

• OCeaN (PCI-Express and Serial RapidIO) - interface to high-speed serial
peripherals

• e500mc processor cores

The cross-functional debug components are as follows:

• Event Processing Unit (EPU) - event selection, combining, counting, cross-
triggering, and run-control interface

• Nexus Port Controller (NPC) - central ingress and egress point for Nexus
commands and trace data

• Nexus Concentrator (NXC) - trace filtering, arbitration, and message for-
matting

33

A.3. TARGET PLATFORM - QORIQ P4080

• Nexus Aurora Link (NAL) - high-speed serial debug link over SerDes lanes

The NPC, NXC and NAL are not covered in the thesis, but the EPU is
briefly presented as it is the heart of the APDA. The EPU houses the platform
performance monitoring function and enables the performance characterization
through a set of event counters and their associated performance counter control
registers. It allows the user to select, control performance events by configur-
ing corresponding registers similarly with the core-related performance monitors
PMRs. There are a maximum of 2048 event signals that can be routed to the 32
platform performance counters. Some events can be combined with each other to
produce a new event. It thus provides a high flexibility to users for performance
monitoring.

We concentrated on three function areas: the e500mc, the CoreNet and the
DDR. The performance monitoring for the e500mc is to use PMRs located in the
e500mc as presented in Section A.3.2. To monitor performance activities of the
CoreNet and the DDR, we configure relevant registers of debug components to
select desired events. Unfortunately, the CoreNet area debug is not documented
in the reference manual. As a consequence, we have no ability to monitor the
activities related to the CoreNet and the L3 cache. We finally used APDA to
monitor DDR concerning activities.

A.3.3.1 P4080 Memory Map Overview

Before explaining how to use platform hardware monitors, we first present the
P4080 memory map which will be used for platform hardware monitors config-
urations. In the P4080, there are several address domains within the device,
including:

• Logical, virtual, and physical (real) address spaces within the Power Archi-
tecture core(s)

• Internal local address space

• Internal Configuration, Control, and Status Register (CCSR) address space,
which is a special-purpose subset of the internal local address space

• Internal Debug Control and Status Register (DCSR) address space, which is
another special-purpose set of registers mapped in the internal local address
space

• External memory, I/O, and configuration address spaces of the serial Ra-
pidIO link

34

A.3. TARGET PLATFORM - QORIQ P4080

• External memory, I/O, and configuration address spaces of the PCI Express
links

The MMU in the core handles translation of logical (effective) addresses, into
virtual addresses, and ultimately to the physical addresses for the local address
space. The local address map is defined by a set of 32 Local Access Windows
(LAWs). Each of these windows maps a region of the local address space to a
specified target interface, such as the DDR controller, DCSR, CCSR or other
targets. Each LAW is defined by a pair of base address registers that specify the
starting address for the window, and an attribute register that specifies whether
the mapping is enabled, the size of the window, a coherency subdomain, and the
target interface for that window. The concerning registers are described as below:

• LAWn base address register high (LAW LAWBARHn): It identifies bits
0∼3 of the 36-bit base address of local access window n.

• LAWn base address register low (LAW LAWBARLn): It identifies bits
4∼23 of the 36-bit base address of local access window n.

• LAWn attribute register (LAW LAWARn): It is composed of four main
fields:

– EN: Enable this window.

– TRGT ID: Target identifier identifying the target interface when a
transaction hits in the address range defined by this window.

– CSD ID: Coherency subdomain identifier identifying a group of one or
more partitions that have access to the address space defined by this
access window.

– SIZE: Identifies the size of the window from the starting address.

A.3.3.1.1 Local Address Map Example

Figure A.3.3 shows a typical local address map example, and Table A.3.6 shows
the setting of LAWs corresponding to the each address segment in the example.

A.3.3.2 The Use of Platform Hardware Monitors

To control the debug components of APDA for monitoring, we configure dedicated
registers in the Configuration, Control and Status Register map (CCSR), and
the Debug Configuration Control and Status Register map (DCSR) presented in
Section A.3.3.1. The DCSR and CCSR both belong to the internal local address

35

A.3. TARGET PLATFORM - QORIQ P4080

Memory

Local bus SRAM

I/O

CCSR

Boot window

0

0x0_8000_0000

0x0_A000_0000

DDR SDRAM

0x0_FFFF_FFFF

 PCI
Express 1

 PCI
Express 2

Local Bus
 DSP

0x0_A000_0000

0x0_B000_0000

0x0_C000_0000

Figure A.3.3: Local address map example

Window Base Address Size Target Interface
0 0x0 0000 0000h 2Gbytes DDR
1 0x0 8000 0000h 1Mbytes Local bus controller (eLBC)-SRAM
2 0x0 A000 0000h 256Mbytes PCI Express 1
3 0x0 B000 0000h 256Mbytes PCI Express 2
4 0x0 C000 0000h 256Mbytes Local bus controller (eLBC)-DSP
5-9 Unused

Table A.3.6: Local Access Window Setting Example

space in the P4080. Usually, the CCSR address range has been defined in the
initialization file of the P4080, but the DCSR is not specified. Therefore, to
access to registers mapped in the DCSR, the overall mechanism is shown as the
following:

1. Open a LAW for the DCSR by configuring LAW registers presented in
Section A.3.3.1. The target ID in LAW LAWARn should be set to select
the DCSR, and the size of the DCSR is 4Mbytes.

2. Configure appropriate MMUs to allow the access from e500mc cores to the
DCSR address range.

3. Configure relevant registers in the defined DCSR map to monitor the desired
platform events. The flowchart of this procedure is the same with using
PMRs shown in Figure A.3.2.

For example, to monitor the event DDR1 read, we should configure relevant
registers of the EPU and of the DDR debug component. If we want to further

36

A.3. TARGET PLATFORM - QORIQ P4080

specify the event DDR1 read issued from core1, we should additionally configure
the registers of the NXC to indicate the source of the DDR read.

We succeeded in monitoring DDR events with the help of the reference manual
of the platform debug. But the reference manual is not publicly available. It is
provided only to authorized debug hardware and software vendors. Therefore,
we can not present the detail of register configurations for the event monitoring.

A.3.4 P4080 Configurations

Most multi-core COTS provide some amount of configurability to adapt users’
requirements. For example, caches help to reduce data transfer time between
cores and the main memory to improve the overall system performance, but they
also bring the performance variability when they are shared among co-running
applications. To improve the predictability, most embedded architectures allow
to simply disable caches, some provide some degree of hardware partitioning,
and few allow the caches to be configured as SRAM memories. However, most
applications from Thales today do not allow us to completely disable the cache for
the performance reason, so we concentrate on the cache partitioning to increase
the predictability.

A.3.4.1 Cache Partitioning in the P4080

The P4080 platform provides us with two shared L3 caches each connected to a
dedicated DDR controller. Beyond allowing us to enable one or both of the L3
cache / DDR controller pairs, the P4080 L3 cache offers some hardware parti-
tioning support, allowing us to shift from a cache fully shared by the cores to a
cache where each core has a dedicated pre-allocated memory space.

All the configurations of L3 caches is set by programming CoreNet platform
cache (CPC) registers which are mapped in the CCSR area. The CPC partition-
ing is thus achieved through specific configuration control registers in this area.
The CPC registers used for paritioning are described as below:

• CPC partition ID register n (CPCPIRn): It indicates the partition ID which
equates to the CSD ID assigned by the LAWs.

• CPC partition allocation register n (CPCPARn): It controls the CPC al-
location for different data and instruction transactions. For example, it
decides whether data store transactions that miss in the CPC will attempt
to allocate in one of the ways defined by the corresponding CPCPWRn.

37

A.3. TARGET PLATFORM - QORIQ P4080

• CPC partition way register n (CPCPWRn): It decides which partition
way(s) can be allocated to transactions that match the PID defined in the
corresponding CPCPIRn.

The overall partitioning mechanism involves CPC registers and LAW registers
presented in Section A.3.3.1, which is concluded as follows:

1. A transaction matches a LAW whose target ID is the memory complex 1
or 2 (DDR controller1 or controller2).

2. LAW LAWAR[CSD ID] identifies the coherency sub-domain.

3. The selected CSD ID is searched through CPC partitioning control registers
(CPCPIRn, CPCPARn, CPCPWRn) to find which way(s) of the CPC has
been allocated to this transaction.

CPC Partitioning Example
We provide a simple example to demonstrate how to map a DDR area of 256M
(0x000000000 0x00FFFFFFF) to eight ways 0∼7 of the CPC1 (L3 cache 1). The
example is depicted in Listing A.3.2.

Listing A.3.2: CPC1 partitioning example

1 . LAW28 matches DDR1−256M 0x00000000 ˜0x0FFFFFFF
Bit s 0˜3 o f 0x00FFFFFFF i s a l l 0
LAWLAWBARH28 = 0x00000000
Bit s 4˜23 o f 0x000000000 i s a l l 0
LAWLAWBARL28 = 0x00000000
EN=1, TRGT ID=ID of DDR1, CSD ID=1, SIZE=256M
LAWLAWAR28 = 0x8100101B

2 . Pa r t i t i on1 8 ways 0˜7 o f CPC1 f o r LAW28
PID=CSD ID=1
CPC1 CPCPIR0 = 0x40000000
Al l the types o f t r an s a c t i o n s can a l l o c a t e 8 ways

de f in ed by CPC1 CPCPWR0
CPC1 CPCPAR0 = 0xFFFFFFFF
Al l o ca t e 0˜7 ways to LAW28
CPC1 CPCPWR0 = 0xFF000000

A.3.4.2 Compromise of Different Configurations

Different configurations may result in different overall performance and differ-
ent performance variability. However, a configuration can hardly satisfy all the

38

A.3. TARGET PLATFORM - QORIQ P4080

desired requirements, which makes us to compromise in terms of some less sig-
nificant demand. For example, we have two different configurations of P4080 as
below:

• Config1: we enable one L3 cache and its associated DDR controller. The
L3 cache is not partitioned, which means that all the cores share the same
L3 cache.

• Config2: we enable one L3 cache and its associated DDR controller. The
L3 cache is partitioned into eight identical segments and each of them is
allocated to one core. Therefore, each core has its proper L3 cache storage.

If we want to test the overall performance and the variability of an application
when it runs with other applications independently in different cores under the
Config1 and the Config2 in P4080, we can predict in design time that:

• the Config1 will in principle provide better overall performance by better fit-
ting asymmetric load balancing scenario while providing more performance
variability because of the shared cache line evictions due to interferences of
other cores on the L3 cache.

• the Config2 will provide less performance variability, namely better pre-
dictability by preventing cache line evictions due to other cores, because
each core has its private pre-allocated L3 cache. However, the Config2 may
degrade the overall performance by providing less allocated cache area due
to the partition.

Considering the impact of configurations on the behavior in the co-running
context, we evaluated different configurations to identify the most suitable one
for safety-critical applications. Table A.3.7 lists the selected configurations tested
in the thesis. The configuration details and relevant results are shown in Section
C.3.1.3 and Section C.5.3.

A.3.5 Conclusion of Target Platform

As the next generation processor candidate in the avionic domain, the P4080
is an eight-core platform based on PowerPC developped by Freescale. In the
P4080, there are a series of hardware monitors implemented in e500mc cores
and in the platform. The core related hardware monitors allow us to collect
162 events, including CPU CYCLES, L1 cache misses..., while platform related
monitors capturing DDR events, like DDR read, DDR write, DDR page closing...,
by configuring relevant registers within cores or in the CCSR and DCSR internal

39

A.3. TARGET PLATFORM - QORIQ P4080

configuration level 3 cache #ddr
size associativity controllers

single controller
non-partitioned

1MB, shared by 8 cores 32-way 1

single controller
partitioned

128KB, per core 4-way 1

dual controller
non-partitioned

2×(1MB, shared by 4 cores) 32-way 2

dual controller
partitioned

256KB per core 8-way 2

Table A.3.7: Four configurations of P4080

address space. Since there are only four hardware monitors in each core, we are
able to collect a maximum of four events per core at the same time. For some
event which can not be counted by only one 32 bit monitor, we have to combine
two monitors as a chained counter to count the overflow of the event. In this
case, the number of events which can be simultaneously collected is less than
four. In addition to the core-related events, the platform-related events which
can be simultaneously collected are also limited due to the limited number of
counters in the EPU and the limited number of components (i.e. comparators,
filters ...) in the NXC. As a consequence, we should make a compromise among
simultaneously collected events.

In addition, the P4080 supports different hardware configurations adapting to
users’ requirements. We can enable one or both of the L3 cache / DDR controller
pairs and further partition shared L3 caches through configuring CPC and DDR
concerning registers along the CCSR space.

Although there are many peripherals implemented around the CoreNet in the
P4080, we only concentrated on P4080’s e500mc cores and the shared memory-
path resources: the CoreNet, L3 caches and DDRs throughout the thesis. To
facilitate the use of hardware monitors and eliminate unexpected overheads dur-
ing the events collection, we realised all the experiments on the bareboard of
P4080 without any operating system.

40

Chapter A.4

Software Environment -
CodeWarrior

The CodeWarrior [11] is an integrated development environment (IDE) for the
creation of software that runs on a number of embedded systems. In the Code-
Warrior toolset, the Editor, Compiler, Linker, Debugger, and other software mod-
ules operate within IDE. The IDE oversees the control and execution of the tools.

We used CodeWarrior to develop our applications and benchmarks and we
downloaded the binary files .elf into the P4080 using CodeWarrior USB TAP
which enables P4080 debugging via a JTAG port while connected to our host
computer via USB.

We present, in this chapter, different development stages in the CodeWarrior
to implement applications into the P4080.

A.4.1 Creating Projects in CodeWarrior

The CodeWarrior provides a project manager to organize all the files related to
the project. The first step of CodeWarrior development process is to create a
new project using the project wizard. The CodeWarrior Project wizard presents
a series of pages that prompt you for the features and settings to be used when
making your program. This wizard also helps you specify other settings, such as
whether the program executes on a simulator rather than actual hardware.

The users can create all the projects according to their experimental setup.
For example, throughout the thesis, we run one application per core in barebone
P4080, so we generate a new project with main settings described below:

• Processor type: P4080 - target hardware.

41

A.4. SOFTWARE ENVIRONMENT - CODEWARRIOR

• Processing model: AMP (one project per core) - Select this option to gen-
erate a separate project for each selected core.

• Tool chain: Bareboard: GCC EABI e500mc - Select to execute the program
on the bareboard.

• Debugger connection type: Hardware - Select to execute the program on
the target hardware.

• Trace configuration: Disable trace and profile for the project to avoid the
interference noise.

All the features and settings selected in the above example during the project
creation are graphically illustrated in Figure A.4.1.

For each new project, the CodeWarrior automatically configures the P4080 by
generating an initialization file and a memory configuration file. We can directly
compile a new project and then run/debug it on the P4080. The default configu-
ration set by the CodeWarrior is the one in the first row of Table A.3.7. However,
this stationery project is designed to get you up and running quickly with the
CodeWarrior for Power Architecture Development Studio. We can absolutely
modify the initialization file to adapt to our own demands. For example, to get
different configurations of the P4080 described in Table A.3.7, we re-configured
registers related to L3 caches and DDR controllers in the initialization file.

According to the readme.txt file generated in each new project in AMP model,
the first core’s project (core 0) is responsible for initializing the board. The
projects for other than the first core only initialize core specific options, not the
whole platform. Therefore launching projects for other cores requires that the
core 0’s project is running.

A.4.2 Building Projects in CodeWarrior

There are two modes of building projects in CodeWarrior: the graphic interface
mode and the command line mode.

Graphic Interface Mode
In the CodeWarrior, we can build all the projects in a workspace using option
Build All in Project menu from the CodeWarrior IDE menu bar. Considering
that building the entire workspace can take a long time and often there are only
a few projects that really matter to a user at a given time, we can also build only
the selected projects by right-clicking on the selected project in the CodeWarrior
Projects view and selecting Build Project from the context menu.

42

A.4. SOFTWARE ENVIRONMENT - CODEWARRIOR

(a) (b)

(c) (d)

43

A.4. SOFTWARE ENVIRONMENT - CODEWARRIOR

(e) (f)

Figure A.4.1: Various pages that the CodeWarrior Project wizard displays. (a)
Project name and location page, (b) Processor page, (c) Build settings page, (d) Launch
configuration page, (e) Hardware page and (f) Trace configuration page.

Command Line Mode
A new command line tool, ecd.exe, is installed along with the CodeWarrior instal-
lation that allows you to run build commands. The command line mode allows us
to build projects through a script from outside of the CodeWarrior, which helps
automate our experiments. The command build is described in following Table
A.4.1.

build
Builds a set of C/C++ projects. Multiple-project flags can be passed on the same command invocation.
The build tool output is generated on the command line, and the build result is returned by ecd.exe return
code, as 0 for success, and -1 for failure
Syntax
ecd.exe -build [-verbose] [-cleanAll] [-project path [- config name | -allConfig] -cleanBuild]
Parameter
-cleanBuild
The -cleanBuild command applies to the preceding -project only
-cleanAll
The -cleanAll command applies to all -project flags
-config
The build configuration name. If the -config flag isn’t specified, the default build configuration is used

Table A.4.1: Description of ecd.exe tool command build

44

A.4. SOFTWARE ENVIRONMENT - CODEWARRIOR

A.4.3 Debugging Projects in CodeWarrior

There are also two modes of debugging projects similar to building projects
modes: the graphic interface mode and the command line mode.

Graphic Interface Mode
The CodeWarrior Project wizard sets the debugger settings of the project’s launch
configurations to default values. We can change these default values based on our
requirements from the CodeWarrior IDE menu bar by selecting Run -> Debug
Configurations. To launch a debugging session and select a debugging operation,
like Step into, we can click relevant options from the Run menu.

Command Line Mode
The CodeWarrior supports a command-line interface to some of its features in-
cluding the debugger. We can use the command-line interface together with the
TCL scripting engine. The Debugger Shell view is used to issue command lines
to the IDE. For example, you type the command debug in this window to start
a debugging session. The window lists the standard output and standard error
streams of command-line activity. Figure A.4.2 shows the Debugger Shell view.
The command line mode helps us automate the experiments.

Figure A.4.2: The Debugger Shell view.

We will show how to use the CodeWarrior for software developments in Section
C.4.3.

45

Chapter A.5

Contribution

The overall objective of the thesis is to estimate the runtime variability of co-
running safety-critical applications on a COTS multi-core architecture. Our pro-
posal will allow us to

• first learn undocumented features of the underlying architecture and appli-
cations relatively to shared hardware resources.

• second compute a runtime upper bound of an application co-running with a
set of pre-determined applications with gathered shared resource concerning
information.

Our proposed approach to achieve the objective is the measurement-based
analysis using COTS according to the classification concluded in the state of the
art A.2.5. Similar with [28, 22], we also use resource stressing benchmarks
to quantify the co-running performance slowdown. However, compared to [28]
where Radojković et al. only rely on measured execution time to derive the re-
source sensitivity of an application, we are using hardware monitors to capture
the shared resource related activities of an application, which allows us not only
to observe the sensitivity on shared resources, but also to learn the application’s
utilization of each shared resource. In addition, Radojković et al. estimate the
upper bound of a target application while co-running with other real applications
by co-running the target application with resource stressing benchmarks with-
out taking account of the behavior on shared resources of the real co-running
applications. Similarly, the authors [22] use resource stressing benchmarks to
derive the performance slowdown caused by concurrent accesses to the network
and memory under different hardware configurations, and consider the tested
maximum slowdown as the worst case slowdown that real applications will expe-
rience. However, there is neither a proof nor a formal argument why a specific
resource stressing benchmark puts maximum load on the resource. In case of

46

A.5. CONTRIBUTION

several possible co-runners, these arguments become even more difficult because
of the combined interferences. Another concern demonstrated via experimental
results in [28, 22] is that the estimated upper bound is too pessimist compared
with the longest measured execution time of co-running real applications. In our
approach, hardware monitors can provide a proof showing if a resource stressing
benchmark or co-running resource stressing benchmarks saturate the resource.
Besides, the utilizations of shared resources of each co-running application can
help us to design stressing benchmarks simulating the worst case interference on
shared resources, which results in a safer and tighter upper bound estimate.

To clearly present our methodologies and concerning experiments, the remain-
ing thesis is organized as below:

• Part B - Quantifying Runtime Variability: Demonstrate the variability that
an application may experience while co-running with others due to the con-
tention on shared hardware resources in multi-cores. To better understand
the organized experiments, we also present our used applications and stress-
ing benchmarks.

• Part C - Architecture and Application Characterization: Present first the
characterization methodology, and second the measurement techniques, and
third experimental setup with all the experiment designs and implementa-
tions, and fourthly the experimental results which are splitted into the
architecture section and the application section.

• Part D - Alternative Technique of WCET: Present first the methodology,
and second the measurement techniques, and third the two detailed esti-
mation methods with experimental results.

• Part E - Conclusion: Conclude the thesis and propose some future work
based on our estimation results.

47

Part B

Quantifying Runtime Variability

48

Chapter B.1

Overview

In Chapter A.1 we explained that using multi-core COTS may bring about unsus-
tainable runtime variability for co-running applications because of contention
on shared hardware resources, which might not be accepted in safety-critical con-
text. To better estimate this variability, we designed a group of experiments
to quantify the variability, which shown us upto which extent the co-running
performance can be slown down.

The concept of the quantification is to capture the runtime variability on a
target application when it runs with a set of stressing benchmarks on the P4080.
We first present applications under analysis for the experiments in Chapter B.2,
and then introduce dedicated stressing benchmarks used as co-runners in Chapter
B.3.Finally, we explain the experimental setup and analyse the results in Chapter
B.4.

49

Chapter B.2

Applications under Study

B.2.1 Applications from Mibench Suite

As a proxy for various independent applications co-running on a safety-critical
system, we used a subset of the MiBench benchmark suite [14], a set of em-
bedded benchmarks from various domains of the embedded market: automotive,
consumer, office, networking, security and telecommunication. Considering that
we run the experiments on the bareboard P4080, we have to modify the Mibench
benchmarks to be portable for barebone testing by eliminating operating system
requirements such as system calls and dynamic memory management. We finally
selected a subset of 7 Mibench benchmarks: ADPCM, CRC32, FFT, blowfish,
SHA, patricia, and susan which are easier to be ported for barebone testing on
the P4080 hardware platform. Although these seven benchmarks are not real-
time as expected for the safety-critical domain, it is not an issue to apply them
for characterizing the runtime variability.

• ADPCM (telecommunication): Adaptive Differential Pulse Code Modula-
tion (ADPCM) is a variation of the well-known standard Pulse Code Mod-
ulation (PCM) that varies the size of the quantization step, to allow further
reduction of the required bandwidth for a given signal-to-noise ratio.

• CRC32 (telecommunication): This benchmark performs a 32-bit Cyclic Re-
dundancy Check (CRC) on a file. CRC checks are is an error-detecting code
commonly used in data transmission.

• FFT (telecommunication): Fast Fourier Transform (FFT) on an array of
data. Fourier transform converts digital signal from time space to frequency
space to find the frequencies contained in the signal.

• blowfish (security): This benchmark is a symmetric block cipher with a
variable length key.

50

B.2. APPLICATIONS UNDER STUDY

• SHA (security): Secure Hash Algorithm (SHA) is a family of cryptographic
hash functions used in the secure exchange of cryptographic keys and for
generating digital signatures.

• patricia (network): Patricia tries are used to represent routing tables in net-
work applications. This benchmark provides functions for inserting nodes,
removing nodes, and searching in a Patricia trie designed for IP addresses
and netmasks.

• susan (automotive): It is an image recognition package. It was developed
for recognizing corners and edges in an image.

Figure B.2.1 shows the instructions (load/store, branches, integer and float-
ing point) distribution of each Mibench benchmark, which can guide us to pre-
understand their features before use them for our own purpose. For example, the
benchmarks with low portion of load/store instructions will be not suitable for
analysing the impact on the memory-path resources.

Figure B.2.1: Distributions of main classes of instructions for each Mibench bench-
mark.

B.2.2 Industrial Applications

We completed above suite of small benchmarks with two larger industrial-level
applications developed internally at Thales including additional hard real-time
constraints:

51

B.2. APPLICATIONS UNDER STUDY

• an airborne radar application embedded in planes based on the Space-Time
Adaptive Processing (STAP) algorithm [37] to detect the position and radial
speed of another flying target despite the presence of ground-based or flying
jamming devices.

• a pedestrian detection application based on the Viola & Jones shape recog-
nition algorithm [36] to detect pedestrian on the security camera footage.

These applications were used in all the experiments throughout the thesis.

52

Chapter B.3

Resource Stressing Benchmarks

To evaluate the runtime variability caused by contention on shared hardware
resources, we ran an application under monitor with a set of stressing bench-
marks. The concept of stressing benchmark design is derived from article [28]
that we stated in Section A.2.3. We designed stressing benchmarks which aim
at stressing a single hardware resource by putting a high load onto it. However,
stressing a single resource is sometimes not practically possible (like stressing the
L3 cache without impacting the CoreNet in P4080), we are obliged to stress sev-
eral resources at a time in this circumstance. Co-running an application with a
particular resource stressing benchmarks allows us to produce a significant per-
formance slowdown on the application due to conflicts on this resource.

Stressing benchmarks are directly written in assembly code to 1) let us max-
imize the master of the instructions to be executed and 2) prevent a compiler to
change the main purpose of benchmarks by performing optimizations on them.
We can thus stress a target resource in our expected way.

There were several different types of stressing benchmarks proposed in article
[28], like the intra-core resources (e.g. pipeline level resources, private caches) and
the inter-core resources (e.g. the last level cache, the interconnect). As we pre-
sented in Chapter A.3, we concentrated on e500mc cores and the shared memory
architecture without using other perpherals in P4080. In addition, we insisted
on mapping one benchmark into one core to keep co-running benchmarks to-
tally isolated at the core-level. Accordingly, the major source of the performance
variability for co-running applications comes from the contention on the shared
memory-path, which allows us to restrict stressing benchmarks to stress shared
memory-path resources: the CoreNet, the L3 caches and the DDR controllers.

The memory-path resource stressing benchmarks consist of a sequence of load-
/store instructions that access to different cachelines in one L3 cache. Also, L3
cache access implies stressing access to the CoreNet. When the sum of the size
of the array that co-running benchmarks traverse exceeds the L3 cache, the data

53

B.3. RESOURCE STRESSING BENCHMARKS

sets of all the co-runners do not fit in the L3 cache, which causes L3 cache misses
forcing access to DDRs. In this circumstance, DDR controllers are stressed.

In addition to producing a fixed high load into one resource, we are able
to tune the load by introducing some parameters in the stressing benchmark
to modify resouce access pattern and frequency. These more specified stressing
benchmarks are not necessary for variability quantification, but they are needed
to characterize the architecture in the following part C. We thus present their
details in chapter C.2.

54

Chapter B.4

Quantifying Runtime Variability

Before trying to estimate the runtime variability, we try to quantify this variability
and the impact on the over margin.

B.4.1 Experimental Scenario

We used the platform P4080 to evaluate the runtime variability by co-running tar-
get applications respectively with stressing benchmarks on the bareboard P4080
without any operating system to minimize the runtime variability and to facili-
tate the use of hardware monitors as presented in Chapter A.3. In addition, we
eliminated the preemption which has to be strictly controlled for safety-critical
systems, by having each core running a unique benchmark. With this setup the
contention on the shared memory-path becomes the major source of the runtime
variability. The settings are used for all the experiments throughout the thesis.

B.4.2 Representing Runtime Variability Using

Violin Plots

We are considering safety critical applications that requires to control their run-
time variability to ensure that their worst execution time is below the hard real-
time deadlines.

The runtime variability however, is not only characterized by a minimum and
a maximum runtime. The statistical distribution of the runtimes also provides
some useful information such as the rarity of the worst case, the distribution
relatively to the median runtime, ...

To represent this distribution of runtimes, we relied on violin plots [17]. Violin
plots are a method of plotting numeric data. They show the statistical distri-

55

B.4. QUANTIFYING RUNTIME VARIABILITY

bution of the data, which are a quick way of observing one or more sets of data
graphically. One violin plot example is depicted in Figure B.4.1.

r

Application A Application B

o
b
se
rv
ed

ru
n
ti
m
e

va
ri
a
b
il
it
y median

runtime

minimum
runtime

maximum
runtime

density

Figure B.4.1: Example of violin plot to represent runtime distribution of two different
applications

Figure B.4.1 is composed of two violin plots providing some information about
the runtime distribution of two applications A and B. For each application the
variability is characterized by the bottom-most point and the top-most point that
correspond to the minimum and maximum observed runtimes. The black dot in
the violin represents the median runtime. Finally the width of the plot for a
particular runtime (r in the figure) is proportional to the density of the runtime
population with such a runtime.

We apply the violin plots to establish the distribution of measured execution
times to graphically show the quantified variability.

B.4.3 Quantification Using Stressing Benchmarks

To quantify the runtime variability that a target application may experience due
to the collision in shared resources, we designed experiments as below:

1. Measure the runtime of this target application using hardware monitors
when it runs in isolation RTisolation . To capture the runtime variability, we
repeat this measure several iterations to get a set of RTisolation , and we pick
the median value of this set of RTisolation as this application’s standalone
runtime.

2. Measure the runtime of the target application when it runs simultaneously
with a set of stressing benchmarks RTcorunning in several iterations, and then

56

B.4. QUANTIFYING RUNTIME VARIABILITY

normalise all the obtained RTcorunning by RTisolation to get a set of values of
the performance slowdown.

3. Plot a violin plot using the set of values of the performance slowdown to
graphically show its distribution, including the variability.

We quantified the runtime variability on nine applications presented in chapter
B.2 when they respectively ran with the memory-path stressing benchmarks on
the bareboard P4080.

Figure B.4.2(a) illustrates, with distribution violin plots, the runtime vari-
abilty for nine applications running standalone on the P4080. To mimic a single-
core configuration, the other cores are idle. In such a configuration the runtime
variability represented by the height of the violin plots remains very low (below
0.1%).

However, when introducing 2 co-running stressing benchmarks, the runtime
variability of each application around the previously computed standalone median
runtime is increasing rapidly as depicted in Figure B.4.2(b). The impact on the
average runtime is not significant, however, for the worst-case, we observe an
average variability of 71% and a maximum variability of 361% for airborne radar.

Increasing the number of co-runners upto eight cores as depicted in Figure
B.4.2(c) furthermore degrades the runtime variability, up to an average variability
of 87% on the worst case and a maximal variability of 396% for airborne radar.
Additionally, the average and minimal runtimes start to be impacted as well, with
a variability of 54% on the average runtime.

Another study [22] from EADS also exhibits that using actual WCET analysis
techniques for multi-cores would force the industry to multiply the WCET by a
value close to the number of cores being used, providing no performance benefits
over single-cores.

As considering the impact on such a large runtime variability would lead to
unsustainable WCET margins far above the performance benefits of multi-core
systems, it is critical to control this variability by providing a detailed charac-
terization on the contention mechanism of the shared hardware resources and
how each co-running application is behaving relatively to the shared hardware
resources. Therefore, we proposed a methodology to achieve the architecture and
application characterization in the next part, Part C.

57

B.4. QUANTIFYING RUNTIME VARIABILITY
1

2
3

4
5

● ● ● ● ● ● ● ● ●

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

(a)

1
2

3
4

5

●
●

● ● ● ● ● ● ●

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

(b)

1
2

3
4

5

●

●

●
●

●

●
●

●

●

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

(c)

Figure B.4.2: Runtime variability over 600 iterations of reference applications run-
ning (a) standalone, (b) concurrently with 2 benchmarks stressing the shared memory
path, and (c) concurrently with 7 benchmarks stressing this resource.

58

Part C

Architecture and Application
Characterization

59

Chapter C.1

Characterization Methodology

To be able to control the variability quantified in Part B, we proposed a method-
ology characterizing the underlying architecture and applications which both be-
have like a gray- or black-box as we presented in Chapter A.1. Figure C.1.1
illustrates the concept of methodology. The charaterization consists on two steps:
1) Architecture characterization and 2) Application characterization.

hardware monitors

hw hw hw hw

hw hw hw hw

stressing benchmarks
pipeline i/o

devices
memory
hiearchy

SBSBSBSBSBSB SBSB
SBSBSBSB

ar
ch

it
e
ct
u
re

ch
ar
a
ct
e
ri
za

ti
o
n

identify the shared
hardware resources

learn undisclosed
architecture features

select adhoc hardware
monitors and stressing
benchmarks subsets

monitors and stressing
benchmarks subsets

hw hw

hw

SB SB

SB SB

application
D running
standalone

a
p
p
li
ca
ti
o
n
s

A B C

D E F

G H I

a
p
p
li
ca

ti
o
n

ch
ar
a
ct
e
ri
za

ti
o
n

select
one

identify the hardware
resources required by
application D

quantify the ressource
usage

compute the necessary
resource quota prior
to time degradation

Figure C.1.1: Overview of the analysis process

Architecture Characterization
In the architecture characterization, we run different resource stressing bench-

60

C.1. CHARACTERIZATION METHODOLOGY

marks in parallel to produce and tune a load on hardware resources under analy-
sis. To observe the variation of performance according to different resource loads,
we monitor and collect relevant events using hardware monitors during the exe-
cution. Thanks to stressing benchmarks and hardware monitors, this step is able
to identify shared hardware resources, undisclosed features, like the contention
mechanism of a shared resource, and select useful stressing benchmarks and hard-
ware monitors which are responsible for the runtime variability.

Application Characterization
The purpose of the application characterization analysis is to understand why a
particular application performance, and thus its execution time, varies when the
application is running with other applications in the same multi-core. Therefore,
we first run an application with a set of shared resource stressing benchmarks
which have been selected in the previous architecture characterization to learn
which shared resources such application is sensitive to. Second, we monitor and
collect the events related to sensitive shared resources during the standalone run
of the application to compute each shared resource usage of the application.

In the remaining of the part, we first present two measurement techniques
- selected hardware monitors and designed stressing benchmarks. Second, we
explain how to organise experiments using these two techniques to achieve char-
acterization objectives. Third, we present the implementation in detail, especially
how to automate experiments. Fourth, we demonstrate and analyse the experi-
mental results. Last, we make a conclusion about the characterised features of
the architecture and the applications.

61

Chapter C.2

Measurement Techniques

To evaluate the methodology, we used two measurement metrics: Hardware Mon-
itors and Stressing Benchmarks.

C.2.1 Hardware Monitors

We used the setup presented in Section B.4.1 for the characterization, which
means that all the performance slowdown should be mainly caused by interfer-
ences of co-running applications on shared hardware resources - the CoreNet, the
L3 caches and the DDR controllers. So instead of monitoring all the available
events in the P4080, these three shared resources concerning events are necessary
to characterize the architecture and applications.

Table C.2.1 lists the main events used during the characterization and corre-
sponding descriptions. As we explained in Section A.3.3, the CoreNet (including
the CPC (L3 cache)) monitoring is not documented in the reference manual. We
are thus not able to monitor the concerning events.

Event Description
CPU CYCLES Core related event counting the number of processor cycles.

Event number is Ref:1 in Table A.3.5.
BIU master requests Core related event counting the number of CoreNet transactions.

Event number is Com:67 in Table A.3.5.
DDRr Platform related event counting the number of DDR read transactions.
DDRw Platform related event counting the number of DDR write transactions.

Table C.2.1: The main events used in the characterization

62

C.2. MEASUREMENT TECHNIQUES

C.2.2 Stressing Benchmarks

To better characterize concurrent accesses to shared hardware resources, a large
set of stressing benchmarks are defined, each dedicated at stressing a particular
potentially shared hardware resource. Since the memory-path is the main source
of the runtime variability, stressing benchmarks are restricted to produce a high
load to the memory-path resources - the CoreNet, the L3 caches and the DDR
controllers.

The overall concept of stressing benchmarks has been presented in chapter
B.3. In this section, we present the detail of stressing benchmarks used for the
characterization. The sample code listed in Listing C.2.1 shows a general frame-
work of memory-path stressing benchmark with its parameters TABLESIZE,
STRIDE,OPERATION,NOP andUNROLLED. We shown the source code
of a stressing benchmark example in the Appendix (see Chapter F).

Listing C.2.1: General framework of memory-path stressing benchmarks

LOOP (i=0;i<TABLESIZE -1;i+= STRIDE*UNROLLED)

{

ACCESS_TABLE(i,OPERATION)

NOP

ACCESS_TABLE(i+STRIDE ,OPERATION)

NOP

...

ACCESS_TABLE(i+(STRIDE *(UNROLLED -1)), OPERATION)

NOP

}

The following describes the parameters in Listing C.2.1:

• TABLESIZE
It defines the size of the table that the benchmark traverse within one loop.
We regulate this parameter to decide which resource along memory-path
will be stressed. For instance, on the P4080, a benchmark with TABLESIZE
less than private L2 cache 128KB will not stress the CoreNet, the L3 caches
and the DDR. However, if we set TABLESIZE between the L2 cache size
and the L3 cache size, we will stress both CoreNet and L3 cache without
touching DDR. To stress one DDR controller, we increase TABLESIZE upto
more than one L3 cache.

• STRIDE
It defines the distance of elements between two consecutive table accesses.
This parameter is essential for cache usage. We regulate STRIDE to mod-
ify the number of accesses hitting the same cache line, which changes the
number of accesses physically communicating with the interconnect and the

63

C.2. MEASUREMENT TECHNIQUES

main memory. The worst case for cache locality is to use each cache line
only once, which maximizes the physical access to the interconnect and the
memory. For example, the cache line size in P4080 is 64 bytes and we have
a table of type integer which is 4 bytes. If we hit different cache line for
each access, STRIDE should be set to more than 16. Figure C.2.1 shows
the cache usage with different STRIDE.

• OPERATION
It defines table access type, either read or write. Different combination of
two operations makes different accessing latency and traffic load.

• NOP
It defines some idle time between two consecutive table accesses. This
parameter is primarily used to regulate the access frequency, namely to
regulate the traffic workload on the interconnect.

• UNROLLED
The loop is unrolled into a number of accesses defined by this parameter.
This loop unrolling helps to reduce the frequency of branches and loop
maintenance instructions, which accordingly increases the frequency of table
access.

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

0x0000_1000
0x0000_1020

6
4
 b

y
te

s

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

0x0000_1040
0x0000_1060

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

0x0000_1080
0x0000_10A0

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

0x0000_10C0
0x0000_10E0

STRIDE=4

STRIDE=12

STRIDE=16

Figure C.2.1: The cache access pattern with different STRIDE (one cache
line=64bytes)

64

Chapter C.3

Experimental Setup

To evaluate the proposed characterization methodology, we designed a set of
experiments using the measurement techniques presented in Chapter C.2. This
chapter presents how we organized the experiments to achieve corresponding char-
acterization objectives. In addition, we quantified the size of the design space
according to the methodology, and explained how to reduce it. The experimental
setup is the same as we presented in Section B.4.1.

C.3.1 Architecture Characterization

C.3.1.1 Identifying Shared Hardware Resources

To identify shared hardware resources, we run a particular resource stressing
benchmark on the P4080 in isolation to collect the runtime represented by CPU
CYCLES using hardware monitors. This stressing benchmark is then replicated
up to the number of available cores to collect the runtime again. Comparing these
runtimes allows to confirm if this stressed particular resource is truely shared (a
runtime slowdown implicates a shared resource), while reproducing this study for
every potentially shared resource enables to identify each effectively shared re-
source. During the identification, useful hardware monitors and stressing bench-
marks can be selected according to truely shared resources. This study is an
useful complement to the information appearing in the user manual (cache size
and sharing level). The results are presented in Section C.5.1.

65

C.3. EXPERIMENTAL SETUP

C.3.1.2 Identifying Undisclosed Features and the Shared
Resource Availability

After identifying shared hardware resources, we learn undisclosed architecture
features relatd to shared resources by varying the mapping of co-running stress-
ing benchmarks and the parameters of stressing benchmarks presented in Section
C.2.2.

Identifying Undisclosed Features
Our experimental P4080 platform features a complex CoreNet interconnect to
connect all the cores to two L3 platform caches, each connected to a DDR con-
troller. The undisclosed topology of this interconnect has a significant impact
on how the memory traffic of one core will interfere with the traffic of other
cores, which means that different core mappings will bring different runtime vari-
ability. Therefore, varying the mapping of co-running stressing benchmarks and
monitoring the performance under different mappings allows us to reveal this
phenomenon. The results are presented in Section C.5.2.

Quantifying the Shared Resource Availability
To learn the CoreNet availability, we modify the parameter NOP of co-running
stressing benchmarks to tune the CoreNet access load allowing to study correla-
tion between the performance and the CoreNet load, which deducts the maximum
throughput and the saturation behavior of the CoreNet that are not clearly docu-
mented. Furthermore, mapping the CoreNet stressing benchmarks into different
cores allows to learn the CoreNet topology. We get the CoreNet load by moni-
toring the event BIU master requests in all the co-running cores. The concept of
the DDR quantification is the same with the CoreNet, but with the DDR mon-
itoring to get DDR accesses. The results for the CoreNet and DDR evaluations
are presented in Section C.5.5.

C.3.1.3 Identifying the Optimal Configuration

The P4080 supports different configuration modes as explained in Section A.3.4.
Considering that different configurations may result in different performance, the
optimal configuration for the safety-critical context is thus identified to respect
two criteria: 1) predictability, ensuring low performance variability, and 2) suffi-
cient minimal performances assuring the worst case execution time will be below
the application deadlines of the hard real-time system. However, it is not obvious
to intuitively infer the most suitable configuration. For instance, partitioning can
lower the runtime variability while taking a risk of degrading overall performance
below acceptable throughput as we explained in Section A.3.4, and activating the

66

C.3. EXPERIMENTAL SETUP

second L3 cache / DDR controller only makes sense if it does not compromise
the predictability of the interconnect.

We have selected four configuration candidates described in Table A.3.7 in
Section A.3.4 to be challenged for the performance and predictability. Figure
C.3.1 details each configuration structure. The experiments realized to determine
the optimal configuration is described in Section C.5.3.

core0 core1

core2 core3

core4 core5

core6 core7

DDR

controller1

L3 cache1

DDR1

core0

core1

core2

core3

DDR2

core4

core5

core6

core7

(a)

core0 core1

core2 core3

core4 core5

core6 core7

DDR

controller1

L3 cache1

core0

core1

core3

DDR1

core0

core1

core2

core3

DDR2

core4

core5

core6

core7

core4

core5

core6

core7

core2

(b)

core0 core1

core2 core3

core4 core5

core6 core7

DDR

controller1

DDR

controller2

L3 cache1

L3 cache2

DDR1

core0

core1

core2

core3

DDR2

core4

core5

core6

core7

(c)

core0 core1

core2 core3

core4 core5

core6 core7

DDR

controller1

DDR

controller2

L3 cache1

core0

core1

core2

core3

L3 cache2

core4

core5

core6

core7

DDR1

core0

core1

core2

core3

DDR2

core4

core5

core6

core7

(d)

Figure C.3.1: Selected configurations of P4080 (a) single controller non-partitioned,
(b) single controller partitioned, (c) dual controller non-partitioned and (d) dual con-
troller partitioned.

C.3.2 Application Characterization

As the runtime variability is mostly due to the conflict on concurrent shared
hardware resources accesses, it is critical to identify which of such resources each

67

C.3. EXPERIMENTAL SETUP

application requires, as well as to quantify the amount of the resource usage by
the application.

C.3.2.1 Identifying Sensitive Shared Resources

To identify which of the shared resources an application is sensitive to, we run
each application with every shared resource stressing benchmark from the subset
identified by the architecture analysis, gathering the runtime information using
hardware monitors. Application performance slowdowns allow us to identify to
which resources this application is sensitive as well as the sensitivity of the ap-
plication to the resources. The results are presented in Section C.6.2.

C.3.2.2 Capturing the Shared Resource Usage

A resource usage allows to evaluate the minimal share of this resource the ap-
plication requires. To compute each shared resource usage, we monitor sensitive
shared resource concerning events for a standalone application and normalise the
value of each resource event by maximum throughput of this resource quantified
in the architecture characterization. The obtained percentage value is the usage
of this resource. The results are presented in Section C.6.3.

C.3.2.3 Determining Possible Co-running Applications us-
ing Resource Usages

Finally, repeating the above processes on every application would allow us to
identify applications likely to run concurrently on the system without exceeding
the maximum throughput of sensitive shared resources, which means that indi-
vidual worst-case execution times would not significantly degrades. The results
are shown in Section C.6.4.

C.3.3 Design Space

Considering the available number of hardware monitors (∼ 200), the total number
of stressing benchmarks (∼ 1000), and the total number of possible mappings on
an 8-core architecture, the experimental space of the methodology presented in
Chapter C.1 can be quite large.

Let A be the number of applications to characterize, S the number of stressing
benchmarks, M the number of available hardware monitors, C the number of
cores, I the number of iterations of repeating each experimental scenario, and N

68

C.3. EXPERIMENTAL SETUP

the number of monitor each core is able to measure at once. The total number
of possible experiments is:

1

N
(AMC(S + 1)(C−1) + SMC(S + 1)(C−1))I

Considering that average execution time of a single experiment to be 100ms,
and the order of magnitude for the values presented in Table C.3.1, it would
requires us 1019 years to exhaust such a design space.

Applications A 9
Stressing benchmarks S 1000
Hardware monitors M 200
Cores C 8
Iterations I 100
Performance monitor registers N 4

Table C.3.1: Order of magnitude of the design space

To deal with such a design space we setup an automatic framework which is
explained in Section C.4.3.2. As depicted in Figure C.1.1 we perform an overall
architecture characterization prior to performing the application characterization.

Beyond the characterization aspect presented in Section C.3.1, the architec-
ture characterization phase allows us to filter out unnecessary hardware monitors
and stressing benchmarks by identifying those that are not related to the perfor-
mance variability. As we explained in Chapter C.2, we only used the hardware
monitors and stressing benchmarks related to the CoreNet, the L3 cache and the
DDR controllers taking account of our scenario restriction (one application per
core and restricted on shared memory-path without the use of other peripherals)
and documented resource features (L1 and L2 caches are both private).

We can learn from the design space formula that the decisive factor of the
order of magnitude is the number of possible mappings. We will show how to
reduce the design space in terms of the mapping and also in other respects in
Chapter C.5.

69

Chapter C.4

Implementation

C.4.1 Measurement Framework

We have presented in Chapter A.3 how to use PMRs in the e500mc and platform
debug facilities to respectively monitor core-related and platform-related activi-
ties. In this section, we only presented the measurement framework according to
the flowchart of using hardware monitors shown in Figure A.3.2.

Listing C.4.1 shows the measurement framework using hardware monitors.

Listing C.4.1: Measurement framework using hardware monitors

LOOP (i=0;i<N;i++)

{

FREEZE_Counter ();

INITIALIZE_Counter ();

CONFIGURE_Counter ();

UNFREEZE_Counter ();

{Benchmark execution ...}

FREEZE_Counter ();

COLLECT_Counter ();

}

In Listing C.4.1, all the procedures from FREEZE Counter to COLLECT Counter
respect the flowchart A.3.2 except that the loop indice N is a new parameter that
we have not seen. The parameter N limits the iterations of the measurement
repeated to capture the variability of collected events.

70

C.4. IMPLEMENTATION

C.4.2 Synchronization of Multi-cores Using the

Interprocessor Interrupt (IPI)

To quantify the CoreNet availability during the architecture characterization, we
need to collect the CoreNet transactions represented by the event BIU master
requests in all the co-running cores to get the total load of the CoreNet. Con-
sidering that each core runs independently/asynchronously with others, we can
not make sure that each core stops simultaneously to store hardware monitor
counters. Therefore, we need a synchronization mechanism to manage hardware
monitor information collection.

There are three methods to realise the intercore interrupt in the P4080: the
interprocessor interrupt (doorbell) method, the messaging-interrupt method and
the shared-message, signaled-interrupt method. We used the interprocessor in-
terrupt method to achieve the synchronization. The interprocessor interrupt ap-
proach is preferred when a cluster of cores works asynchronously and one core
may signal the other core(s) with unpredictable timing. The interprocessor in-
terrupt is managed by the Multicore Programmable Interrupt Controller (MPIC)
which is responsible for receiving hardware-generated interrupts from different
sources (both internal and external), prioritizing them in the context of inter-
rupts that are generated from within the MPIC (such as messaging, timer, and
interprocessor interrupts), and delivering them to the appropriate destination for
servicing.

The doorbell method can generate an event from a single core to a single core
or from a single core to multi-cores. Figure C.4.1 depicts two example diagrams
of using doorbell in these two contexts.

C.4.2.1 Use of the Interprocessor Interrupt

The use of the interprocessor interrupt is achieved by configuring relevant regis-
ters in the MPIC map. There are several common registers for all the intercore
interrupt methods described in the following:

• Processor core Who Am I (WHOAMIn): There is one WHOAMI per core.
It can be read by a processor core to determine its physical connection to
the MPIC. The value returned when reading this register may be used to
determine the value for the destination masks used for dispatching inter-
rupts.

• Global Configuration Register (GCR): It controls the MPIC’s operating
mode, and allows the software to reset the MPIC. There are three avail-
able modes to be selected, the mixed mode should be set for the intercore
interrupt.

71

C.4. IMPLEMENTATION

Core_ x MPIC Core_ y
Doorbell Event

Producer Consumer

Single interrupt

Core_ x MPIC

Core_ y

Doorbell Event

Producer Consumer

Interrupt broadcast

Core_ z

Core_ n

Figure C.4.1: Examples of using doorbell. Top: single core to single core; Bottom:
single core to multi-cores

• Processor core Current Task Priority Register (CTPR): There is one CTPR
per core It allows each core to specify the priority of task that will be allowed
to interrupt. The MPIC uses this value for comparison with the priority
of incoming interrupts. Given several concurrent incoming interrupts, the
highest priority interrupt is asserted to the core.

• Processor core Interrupt Acknowledge registers (IACKn): Each processor
core has an IACK register assigned to it. In the mixed mode, when the
MPIC causes int to be asserted, the external interrupt service routine ac-
knowledges the request by reading that cores processor core IACK, which at
this point holds the 16-bit vector value for the interrupt source that gener-
ated the request. Reading IACK negates the int signal to that core, making
it possible for another interrupt source to signal an external interrupt to
the core.

• End-Of-Interrupt (EOIn): There is one EOI per core. It is a write-only reg-
ister that notifies the MPIC that servicing of the currently-active interrupt
is complete.

In addition to these common registers, there are registers specific to the door-
bell method:

• Interprocessor Interrupt Vector/Priority Registers (IPIVPRn): IPIVPRs
contain the interrupt vector and priority fields for the four interprocessor
interrupt channels. There is one vector/priority register per channel. One
of them must be programmed with the interrupt vector and priority.

72

C.4. IMPLEMENTATION

• Interprocessor Interrupt Dispatch Registers (IPIDRn): There are four IPIDRs,
one for each interprocessor interrupt channel. Writing to an IPIDR with
a bit set causes an interrupt to the target-core device. These registers
are accessible through the per-CPU private address or by external devices,
through the core-specific, global address allowing external bus masters to
use simple mechanisms to generate interrupts to a selected core. Reading
the chosen core(s) IACK register clears the interrupt so that when inter-
rupts are re-enabled the same IPI is not seen again.

The procedure of using the interprocessor interrupt to signal an interrupt from
the core0 to core1 is explained below:

1. Core0 reads WHOAMI0 and Core1 reads WHOAMI1 to identify their role.

2. Core0 writes GCR to program the mixed mode.

3. Core0 writes IPIVPR0 to unmask interprocessor interrupt 0 and to program
a priority and vector ID.

4. Core1 writes CPTR1 to adjust the interrupt priority task to a value less
than IPIVPR0, which lets the incoming interrupt occur (this can be done
by Core0 or Core1).

5. Core0 writes IPIDR0 to signal the interrupt to Core1.

6. Core1 reads IACK1 to negate int and get the interrupt vector ID.

7. Core1 writes zero to EOI1 to clear the IPI and signal the end of the interrupt
service.

C.4.2.2 Framework of Synchronizing Hardware Monitor
Collections Using IPI

Let take the core0 and core1 as example to show the framework synchronizing
hardware monitor collections. The core0 signals the core1 with the collection
timing. The framework is illustrated in Figure C.4.2.

The core0 dispatches the IPI signal to the core1 to inform the timing of
collecting hardware counters. Once the latter receives the IPI signal, it calls the
IPI interrupt routine where it freezes the hardware counters for collecting them
and then initializes them for the next iteration.

73

C.4. IMPLEMENTATION

Prepare IPI settings by
configuring required registers

LOOP (i=0 ; i<N ; i++)
{

FREEZE_Counter() ;
INITIALIZE_Counter() ;
CONFIGURE_Counter() ;
UNFREEZE_Counter() ;
{Benchmark execution...}
FREEZE_Counter ;
IPI dispatch to core1 ;
COLLECT_Counter() ;

}

Prepare IPI settings by
configuring required registers

FREEZE_Counter() ;
INITIALIZE_Counter() ;
CONFIGURE_Counter() ;
UNFREEZE_Counter() ;
While (1)
{

{Benchmark execution...}
}

Read register IACK ;

FREEZE_Counter() ;
COLLECT_Counter() ;
INITIALIZE_Counter() ;
UNFREEZE_Counter() ;

Write register EOI ;

Core0 Core1

IPI signal

IPI_Interrutp_Routine

After receive IPI signal

Figure C.4.2: The framework of synchronizing hardware monitor collections.

C.4.3 Software Development Using CodeWar-

rior

In Section C.3.3, we stated the huge design space that we may experience during
experiments. Therefore, to cope with this huge space, we developed a framework
automating experiments. The automatic framework is composed of two steps:
1) automate the execution of a single experiment within the CodeWarrior. 2)
automate a series of experiments outside the CodeWarrior. In Chapter A.4, we
presented the command line mode for compilation and debugging in the Code-
Warrior. The command line mode provides us the opportunity to achieve the
automatisation.

C.4.3.1 Automating the Debugging Session for a Single
Experiment within CodeWarrior

As all the experiments were run on baremetal P4080, there was no file system to
support functions related to file operations in C programming, which prevented us
to write the data directly in a destination file in C. To overcome this limitation, we
wrote all the hardware monitor data in the P4080’s memory for temporary storage
during the application execution and then exported the data from the memory

74

C.4. IMPLEMENTATION

into destination files in the end of execution using the debugger shell command
save. To export the data, we debugged the target application and saved the data
from a specified memory range into .txt files by stopping the debugging once
the execution finished. To automatically detect the end of application execution
when all the data are stored in the memory, the application displayed a keyword
”over” in the end of execution in a hyper terminal (we used PuTTY) in our host
computer. We configured the PuTTY to make the keyword written into a log file
with overwrite mode once it appeared in the hyper terminal. Therefore, we were
able to detect the end of execution by keeping the log file under surveillance.

To automate this detection and save processes during the debugging session,
we used the debugging commands and TCL script supported in the CodeWarrior.
The framework of the script is described in Figure C.4.3.

Launch debugging session

Begin debugging

Detect the end of application execution

is the end?

Stop debugging

Save data from memory into destination file

Kill debugging session

no

yes

Figure C.4.3: The flowchart of automating debugging session of a single experiment
within CodeWarrior.

This debugging framework is an important part of the whole automatical
framework that we present in Section C.4.3.2. The source code of a TCL script
example is shown in Appendix (see Chatper F).

C.4.3.2 Automating Experiments outside CodeWarrior

The automatical framework is shown with a flowchart in Figure C.4.4 which
includes the above automatical debugging session. We used the Python script
language to program the framework in the thesis. The source code of a Python
script example is shown in Appendix (see Chapter F).

75

C.4. IMPLEMENTATION

As shown in Figure C.4.4, we had three main processes in the automatization:
the generation process, the configuration process and the execution process.

C.4.3.2.1 Generation Process

The objective of this process is to generate experimental scenarios that we want
to automatically execute in one script. The scenarios are organized by cores as
an example illustrated in Listing C.4.2.

Listing C.4.2: Example of framework of scenario generation process

s c ena r i o [i] =
{ ’ core0 ’ : { ’BM’ : ’ t rue ’ ,

’APP ’ : ’ t rue ’ ,
’NAMEAPP’ : APP,
’SAVE ’ : APP APP+1SB} ,

’ core1 ’ : { ’BM’ : ’ t rue ’ ,
’APP ’ : ’ f a l s e ’ ,
’TABLESIZE ’ : t a b l e s i z e ,
’STRIDE ’ : s t r i d e ,
’OPERATION’ : wr ite ,
’NOP’ : nop ,
’SAVE ’ : SB APP+1SB} ,

’ core2 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core3 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core4 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core5 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core6 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core7 ’ : { ’BM’ : ’ f a l s e ’}

}

Each scenario is composed of eight cores which represent eight cores in the
P4080. In each core, we designed a series of parameters specifying some features
of the benchmark mapping in this core. These features would be used to configure
the scenario in the following configuration process. The parameters appearing in
Listing C.4.2 are explained below:

• BM: It defines if there is a benchmark in the core. ’false’ means there is no
benchmark in the core, so the core is idle. ’true’ means there is a benchmark
in it, either an application or a stressing benchmark.

• APP: If BM is set to be ’true’, we use APP to indicate if the existing
benchmark is an application. ’true’-application, ’false’-stressing benchmark.

76

C.4. IMPLEMENTATION

• NAME APP: It gives the name of the application running in the core. It
will be set only if APP is set to be ’true’.

• SAVE: It defines the name of the destination file where we will save the
scenario’s output data, namely hardware monitor information.

• TABLESIZE, STRIDE, OPERATION and NOP: They are all stressing
benchmark related parameters that we have explained in Chapter C.2.
These parameters will be set only if APP is set to be ’false’. We will obtain
a desired stressing benchmark by modifying the source files according to
these parameters in the configuration process.

Listing C.4.2 is just an example of scenarios generation. We can add other
parameters in each core to further specify the configuration of benchmarks.

C.4.3.2.2 Configuration Process

The objective of this process is twofold: to modify source files and to compile
modified projects. The generated scenarios behave as input arguments of the
configuration process, which allows us to use each scenario’s pre-defined parame-
ters to modify source files in corresponding core’s project which has been created
prior to the automatization. After projects’ modifications, we compiled all the
modified projects using command build provided by command tool ecd.exe which
is located in CodeWarrior installation folder as we introduced in Section A.4.2.
The command is shown below:

ecd.exe -build -verbose -project PATHofProject -cleanBuild

where PATHofProject is the project that we want to compile.
All the modified source files and compilation output files were additionally

saved in a pre-selected path in our host computer, which helped trace backward
in case we got an incorrect experimental result.

C.4.3.2.3 Execution Process

The objective of this process is to automate debugging scenarios as we explained
in Section C.4.3.1. The first thing that we should do is to create a TCL debug-
ging script according to each scenario’s pre-defined parameters. For example, to
automatically debug the scenario[i] defined by Listing C.4.2, we need to create a
TCL script to first debug a project named APP in core0 and a project of stress-
ing benchmark in core1 which has been already configured and compiled in the
configuration process, and second to save the hardware monitor data from core0
and core1 into destination file APP APP+1SB.txt and SB APP+1SB.txt, and

77

C.4. IMPLEMENTATION

finally we quit CodeWarrior using the debugger shell command quitIDE. After
create desired TCL script, we execute this script within the CodeWarrior using
command line tool cwide.exe located in CodeWarrior installation folder as:

cwide.exe -vmargsplus -Dcw.script=”PATHofTCLscript”

where ”PATHofTCLscript” is the TCL script we want to execute in CodeWarrior.
The TCL script was additionally saved in our host computer, which helped trace
backward in case we got an incorrect experimental result.

However, we met an unexpected problem about the use of CodeWarrior. The
CodeWarrior IDE sometimes loses the connection with the target platform P4080
without any warning and we can not diagnose and repair this connection error
in command line. To not interrupt our automatization, the only solution is to
restart the CodeWarrior IDE and repeat the unfinished scenario. To detect the
collapse of CodeWarrior, we create a background thread in parallel with the ex-
ecution process. The thread behaves as a timer configured with a threshold to
count the elapsed time from the start of CodeWarrior until it quits. If the elapsed
time is more than the threshold, we consider that the CodeWarrior collapsed and
should be restarted. We accordingly kill the process CodeWarrior by force and
restart the execution of current unfinished scenario. If the elapsed time is less
than the threshold, CodeWarrior quits normally and we cancel the thread prior
to the execution of the next scenario. We should pay attention to the value of
threshold. This waiting time has to be sufficiently long to let every scenario finish
properly.

Thanks to the experiment automatization, we are able to easily organize hun-
dreds of or thousands of scenarios and execute them with one click ”return”. The
only thing we have to do is to fetch result data files from the destination folders.

78

C.4. IMPLEMENTATION

Generate experimental scenarios

Modify source code files
according to scenario(i)

Compile modified projects in scenario(i)

Launch CodeWarrior for scenario(i)

Debugging scenario(i)

Quit CodeWarrior for scenario(i)

is the last scenario?

The end of all the executions

no;i=i+1

yes

generation process

configuration process

execution process

Figure C.4.4: The flowchart of automating experiments outside CodeWarrior.

79

Chapter C.5

Architecutre Characterization
Results

We have quantified the potential variability caused by the contention on shared
hardware resources among co-running benchmarks on the P4080 in Chapter B.4.
Before analysing the contention mechanism of shared resources to control the
variability, we first identified which hardware resources are effectively shared in
the underlying architecture.

C.5.1 Identifying Shared Hardware Resources

To identify the shared hardware reources, we ran the experiments as presented in
Section C.3.1.1. Despite the privacy of L1 and L2 caches, we still co-ran stressing
benchmarks related to them to demonstrate the impact of these private resources
on the performance variability, which can be used to compare with the impact
of the shared resources. We used the default platform configuration appearing in
the first row of Table A.3.7 to run:

• first a L1 data cache stressing benchmark in isolation in the core #1, and
second a L1 data cache stressing benchmark in the core #1 with seven same
stressing benchmarks in remaining cores.

• first a L2 cache stressing benchmark in isolation in the core #1, and second
a L2 cache stressing benchmark in the core #1 with seven same stressing
benchmarks in remaining cores.

• first a L3 cache stressing benchmark in isolation in the core #1, and second
a L3 cache stressing benchmark in the core #1 with seven same stressing
benchmarks in remaining cores.

80

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

We measured the runtime by monitoring the event CPU CYCLES in the
core #1 . For each above experimental scenario, we computed the performance
slowdown of the core #1 by normalising the co-running runtime by the standalone
runtime as we detailed in Section B.4.3. Figure C.5.1 depicts the performance
variability of the core #1 in above three circumstances.

1.0

1.5

2.0

2.5

3.0

● ●

●

L1cache L2cache L3cachepe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

different stressing benchmark

Figure C.5.1: The runtime variability of the core #1 while 8 co-running L1 data cache
stressing benchmarks, 8 co-running L2 cache stressing benchmarks and 8 co-running L3
cache stressing benchmarks.

We can infer from Figure C.5.1 that co-running L1 data cache and L2 cache
stressing benchmarks do not impair the performance of the core #1 while L3 cache
stressing benchmark results in a performance slowdown up to 270%. We can thus
experimentally confirm that the L1 data cache and L2 cache are effectively private
and L3 cache is shared as presented in the P4080 manual.

As we stated in Section C.3.3, we can reduce the design space by filtering out
hardware monitors and stressing benchmarks related to L1 data cache and L2
cache which are not responsible for the performance variability.

C.5.2 Identifying Undisclosed Features

The architecture characterization phase is an opportunity to learn about the
undisclosed features and mechanisms. More particularly, we identified the impact
of the core mapping on the runtime variability as we presented in Section C.3.1.2.

To characterize the core mapping, we used the default platform configuration
appearing as first row of Table A.3.7. By running and monitoring various stressing
benchmarks within this configuration, we managed to figure out that the eight
cores are organized as two clusters of four cores.

The experiment illustrating this cluster effect is depicted in Figure C.5.2. It
shows the runtime variability of running three instances of a particular stressing

81

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

benchmark, mapping the first instance on core #1, while varying the mapping of
the other two instances on the other available cores side by side. We measured the
runtime of the core #1 by monitoring the event CPU CYLCES, and computed
the performance slowdown for each experimental scenario. The different scenarios
were organized as the following:

• Mapping(1,2,3): mapped three stressing benchmarks in core #1, core #2
and core #3.

• Mapping(1,3,4): mapped three stressing benchmarks in core #1, core #2
and core #4.

• Mapping(1,4,5): mapped three stressing benchmarks in core #1, core #4
and core #5.

• Mapping(1,5,6): mapped three stressing benchmarks in core #1, core #5
and core #6.

• Mapping(1,6,7): mapped three stressing benchmarks in core #1, core #6
and core #7.

• Mapping(1,7,0): mapped three stressing benchmarks in core #1, core #7
and core #0.

• Mapping(1,0,2): mapped three stressing benchmarks in core #1, core #0
and core #2.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

●

●

●

●
●

●

●

●

●

●

●
●

●

●

(1,4,5) (1,5,6) (1,6,7) (1,3,4) (1,7,0) (1,2,3) (1,0,2)

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

mapping

Figure C.5.2: Runtime variability while mapping three instances of a stressing bench-
mark on different cores.

82

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

If we classify eight cores into two clusters: Cluster1(core #0 to core #3) and
Cluster2(core #4 to core #7), three different distributions can be identified in
the figure:

• The first one, corresponding to the first three violin plots, corresponds to
mapping the monitored instance alone in Cluster1 while running the two
other instances on the other cluster. It exhibits only a small performance
slowdown with a maximum of +7.6% and relatively small variance among
the three mappings.

• The second distribution, illustrated by the next two violin plots, corresponds
to mapping the monitored instance in the same cluster with one of the two
other instances and shows a bigger performance slowdown with a maximum
of +15.6% and low variability.

• Finally, the third distribution, illustrated by the last two violin plots corre-
sponds to mapping all three instances in the same cluster and exhibits the
largest performance slowdown and an important variability (from +16.3%
to +23.0%).

We summarize above three types of mapping in Figure C.5.3.

core0 core1 core2 core3 core4 core5 core6 core7

Cluster1 Cluster2

Idle Benchmark

Mapping3

Mapping2

Mapping1

Figure C.5.3: Three types of mapping under the 4-core cluster effect.

We generally describe three mappings as below:

83

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

• Mapping1: we try to avoid to map the co-running benchmark(s) in the
same cluster with the benchmark under monitor.

• Mapping2: we try to balance the total co-running benchmarks in two clus-
ters.

• Mapping3: we try to map the co-running benchmark(s) in the same cluster
with the benchmark under monitor.

As a conclusion, due to the cluster effect, the runtime variability of appli-
cations is placement dependent for the P4080 platform. Mapping1 brings the
smallest performance slowdown and the lowest variability. However within each
4-core cluster the performance does not depend on the placement, enabling us to
reduce the number of mapping to be tested, and therefore allowing us to reduce
the overall design space.

C.5.3 Identifying the Optimal Configuration

In Section C.3.1.3 we identified several hardware configurations presented in Ta-
ble A.3.7. Selecting the most appropriate configuration for safety-critical applica-
tions is not straightforward as two criteria: the low variability and the sufficient
minimal performance, have to be maximized presented in Section C.3.1.3.

To evaluate these different hardware configurations, we designed a set of stress-
ing benchmarks dedicated at stressing the different shared hardware resources
along the memory path including the CoreNet interconnect, the L3 caches and
the DDR controllers.

We measured the runtime of stressing benchmark running on core #1 by mon-
itoring the event CPU CYCLES, and we varied the number of stressing bench-
marks running on the remaining cores. For two configurations in the first two
rows of Table A.3.7, we identified Mapping1 bringing the smallest performance
slowdown and the lowest variability due to 4-core cluster effect in the previous
section. For other two configurations in the last two rows of Table A.3.7, we
configured core #0 to core #3 attached to one L3 cache and its associated DDR
controller and core #4 to core #7 attached to the other L3 cache and its asso-
ciated DDR controller, which artificially separated eight cores into two clusters
as two former configurations. To fulfill the low variability for safety-critical sys-
tems, we selected Mapping1 to map varied number of stressing benchmarks in
the remaining cores for four configurations as shown below:

• 1SB: standalone stressing benchmark in core #1.

• 2SB: 2 stressing benchmarks in (core #1, core #4).

84

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

• 3SB: 3 stressing benchmarks in (core #1, core #4, core #5).

• 4SB: 4 stressing benchmarks in (core #1, core #4, core #5, core #6).

• 5SB: 5 stressing benchmarks in (core #1, core #4, core #5, core #6, core
#7).

• 6SB: 6 stressing benchmarks in (core #1, core #0, core #4, core #5, core
#6, core #7).

• 7SB: 7 stressing benchmarks in (core #1, core #0, core #2, core #4, core
#5, core #6, core #7).

• 8SB: 8 stressing benchmarks in (core #1, core #0, core #2, core #3, core
#4, core #5, core #6, core #7).

Figure C.5.4 shows the distribution of the observed runtime of core #1 while
varying the number of co-runners using the above mapping.

The y-axis on the left shows the observed speed down compared to when
running the stressing benchmark standalone for each particular configuration.
The y-axis on the right corresponds to the overall runtime in millisecond (ms).

The performance variability of the different configurations can be obtained
by comparing the height of the various distribution violin plots relatively to the
left y-axis, the tallest plot being the one with the largest variability. The worst
performance of the various configurations can be observed with the top-most
point of each violin plot. The associated runtime appears on the right y-axis.

The configurations exhibiting the lowest variability are the configurations with
partitioned L3 cache(s) appearing in Figures C.5.4(b) and (d). On the other hand,
enabling a second L3 cache and associated DDR controller in configurations in
Figures C.5.4(c) and (d) also allow the system to reduce the performance vari-
ability by providing some load balancing between two clusters, while increasing
the overall performances.

To put it simply, on one hand, activating the second L3 cache and associated
controller brings both more predictability and more performance. On the other
hand, shared L3 caches are providing more performance while partitioned L3
caches are offering more predictability.

To compare these two last configurations, we collected worst execution times
of Figures C.5.4(c) and (d) into Table C.5.1. Even by offering a larger variability,
the shared configuration provide better overall performance leading to lower worst
case runtimes than the partitioned configuration. Therefore the worst case upper
bound has the opportunity to be lower for the shared configuration, making the
dual-controller shared configuration the most efficient setup for our safety critical
system.

85

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

5

10

15

20

25

●

●

●

● ●

●

● ●

1 2 3 4 5 6 7 8

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

number of co−running stressing benchmarks

200

400

600

800

ru
nt

im
e

(m
s)

(a) one controller, shared

5

10

15

20

25

● ●
●

● ●

●

● ●

1 2 3 4 5 6 7 8

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

number of co−running stressing benchmarks

500

1000

1500

2000

ru
nt

im
e

(m
s)

(b) one controller, partitioned

5

10

15

20

25

● ● ● ●
●

●

●
●

1 2 3 4 5 6 7 8

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

number of co−running stressing benchmarks

200

400

600

800

ru
nt

im
e

(m
s)

(c) dual controllers, shared

5

10

15

20

25

● ● ● ● ●
●

● ●

1 2 3 4 5 6 7 8

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

number of co−running stressing benchmarks

500

1000

1500

2000

ru
nt

im
e

(m
s)

(d) dual controllers, partitioned

Figure C.5.4: Runtime variability of one of the stressing benchmarks while varying
the number of co-running instances.

1 2 3 4 5 6 7 8
dual-
controller
shared

34 34 35 61 84 196 378 355

dual-
controller
partitioned

86 86 87 102 126 259 481 482

Table C.5.1: Worst execution times (in ms) for the monitored core while varing the
number of running benchmarks.

Even though we shown that the configuration with two controllers and shared
L3 caches could be the most efficient for safety critical systems as allowing a lower
upper bound for the worst execution time, avionic applications usually favor par-
titioning as it allows to minimize interferences, here eliminating L3 cache line
evictions due to other co-running tasks. For this reason we focused on the con-

86

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

figuration with two controllers but with partitioned L3 caches for the remaining
of the thesis.

Using this configuration is also in cope with the cluster organization identified
in Section C.5.2, and will benefit from the same design space reduction options
as applications sharing the same cluster / L3 cache / memory controller will
compete on the same shared hardware resources, whereas application placed in
different clusters will not.

C.5.4 Selecting the Adequate Mapping

Selecting an optimal mapping with the considered dual-controller partitioned
hardware setup is important as the amount of resource competition between tasks
will be tied to their core placement, with large competition for tasks running on
the same cluster, and with low or even no competition for tasks running on
different clusters.

This optimal mapping largely depends on the application to be considered.
In a system only running critical blackbox tasks with the same level of criticality,
a fair load balancing of the tasks between the cluster should be privileged.

In a mixed critical system running a few very high-critical applications to-
gether with some lower-critical ones, designers may want to keep one cluster for
the high-critical tasks, and the other cluster for the low critical tasks. This way,
the possible impact of low-critical tasks on high-critical ones is minimized by
reducing the sources of resouce competition between them.

5

10

15

20

25

● ●
● ●

● ● ● ●

1 2 3 4 5 6 7 8

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

number of co−running stressing benchmarks

500

1000

1500

2000

ru
nt

im
e

(m
s)

(a) fair load balancing between tasks with
the same criticality level

5

10

15

20

25

● ● ● ● ●
●

● ●

1 2 3 4 5 6 7 8

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

number of co−running stressing benchmarks

500

1000

1500

2000

ru
nt

im
e

(m
s)

(b) load balancing minimizing tasks run-
ning with the high-critical one

Figure C.5.5: Comparing the runtime variability of different balancing techniques.

Figure C.5.5 presents these both setups. We placed the benchmark with
highest criticality level in the first cluster, and then augmented the number of

87

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

co-running benchmarks. In Figure C.5.5(a) new benchmarks were placed to en-
sure fair load balancing as Mapping2 in Figure C.5.3, in Figure C.5.5(b) new
benchmarks, considered of lower criticality were placed first on the other cluster
as Mapping1 in Figure C.5.3.

While Figure C.5.5(a) corresponding to the fair load balancing exhibits similar
and more regular variabilities, for Figure C.5.5(b) the performance variability
starts to be impaired only when the number of co-runners do not fit anymore
into the second cluster (from 6 co-running benchmarks). As a consequence, a
mixed-critical system should better not try to use all the available resources to
ensure that the low-critical traffic does not impact the high-critical one. In a
word, a mixed-critical system should choose the mapping in Figure C.5.5(b) to
keep the high-critical task non-disturbed.

C.5.5 Quantify the Shared Resource Availabil-

ity

With a hardware setup selected, the last step of the hardware characterization
is to identify the available amount of each hardware resource, quantifying the
maximum throughput, available number of concurrent accesses and so on.

The most important resource to be characterized (and the least documented)
is the CoreNet interconnect connecting the core clusters to their dedicated L3
cache and DDR controller, as well as to the other off-chip resources.

Evaluation of the CoreNet Interconnect.
Very few details on the topology of the CoreNet interconnect are available, and
the only information available in the P4080 reference manual is the 0.8 Tbps
coherent read bandwidth.

To better characterize this interconnect, we need to figure out its maximum
throughput corresponding to the amount of traffic needed to saturate the inter-
connect. Remaining strictly below this saturation value would allow us to mini-
mize the variability due to the interconnect, while getting closer to the saturation
value would mean a significant increase of the runtime.

We also need to figure out how this available bandwidth is distributed among
the clusters. Is the total bandwidth shared by all the cores, or is this bandwidth
partitioned per-cluster?

We defined the CoreNet load as the number of CoreNet transactions per CPU
CYCLE by monitoring the event BIU master requests and CPU CYCLES. To
evaluate the correlation between the runtime and the CoreNet load, we set up a
dedicated stressing benchmark only stressing the CoreNet and performing misses

88

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

in the L1 and L2 caches to maximize possible CoreNet load by setting the pa-
rameter TABLESIZE to fit the data in the partitioned area of L3 cache and
the parameter STRIDE to use each L1/L2 cache line only once, and tuned the
CoreNet load by regulating the parameter NOP.

To learn the maximun throughput and the saturation behavior of the
CoreNet, we organized the experiment as below:

• We ran a stressing benchmark in core #1, and measured its runtime by
monitoring the event CPU CYCLES.

• We ran the same stressing benchmark(s) in the remaining cores in the same
cluster with core #1. For every stressing benchmark co-running with core
#1, we regulated the value of NOP to progressively interfere the execution
of core #1.

• We monitored the event BIU master requests in all the co-running cores to
get the CoreNet transactions. To synchronize the independent co-running
cores to collect the event BIU master requests, core #1 signaled other cores
with the timing of event collection using the interprocessor interrupt as we
presented in Section C.4.2.

• We computed the CoreNet load by dividing the sum of BIU master requests
in all the co-running cores by CPU CYCLES of core #1 (CPU CYCLES
of all the co-running cores are actually the same, because they have been
synchronized): sum(BIU)/CPU CYCLES.

The results of the experiment are presented in Figure C.5.6.
Figure C.5.6(a), (b) and (c) respectively depicts the correlation between the

performance variability and the CoreNet load while running two, three and four
instances of our stressing benchmark on the first cluster. In Figure C.5.6(a),
the performance stays nearly unchanged (upto 2.5% of performance slowdown),
which means that two co-running stressing benchmarks are not able to saturate
the CoreNet. We can infer from the (b) and (c) that the CoreNet begins to be
saturated from three co-running stressing benchmarks. The performance remains
nearly unchanged below 0.219 CoreNet transactions per CPU cycle, but suffers a
brutal degradation when reaching this value. This inflection point corresponds to
when the CoreNet becomes saturated just before reaching the maximum band-
width 0.221 CoreNet transactions per CPU cycle.

After identifying the maximun bandwidth and the saturation behavior of
CoreNet, we organized a group of experiments to identify the CoreNet topol-
ogy between two clusters under the optimal hardware configuration. The experi-
ment was based on the previous experiment, but with different core mappings to
discover how the CoreNet bandwidth is distributed between two clusters.

89

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

1.005 1.010 1.015 1.020

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●●●●● ●●● ●●●●●●● ●●
●

●
●
●

●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●● ●●●●●●●●●●●●●●

(a)

1.00 1.05 1.10 1.15 1.20

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●
●

●
●
●
●●●

(b)

1.0 1.1 1.2 1.3 1.4 1.5 1.6

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime

C
or

eN
et

 tr
an

sa
ct

io
n

pe
r

cy
cl

e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●
●●

(c)

Figure C.5.6: Performance slowdown versus CoreNet load to identify CoreNet max-
imum bandwidth and saturation behavior. (a) Total CoreNet load while running 2
co-runners in the 1st cluster, (b) Total CoreNet load while running 3 co-runners in the
1st cluster, (c) Total CoreNet load while running 4 co-runners in the 1st cluster

• We ran four co-running benchmarks with half of them mapped in Cluster1
and the remaining half of them mapped in Cluster2.

• We ran six co-running benchmarks with half of them mapped in Cluster1
and the remaining half of them mapped in Cluster2.

• We ran eight co-running benchmarks with half of them mapped in Cluster1
and the remaining half of them mapped in Cluster2.

Figure C.5.7, Figure C.5.8 and Figure C.5.9 respectively show how the per-
formance varies according to the CoreNet load in above three different mappings.

Figure C.5.7(a) describes the correlation between the performance of core #1
and total CoreNet load while running four instances of the stressing benchmark
in two clusters. The maximum value of CoreNet load is 0.346 transaction per
CPU cycle which is doubled compared with Figure C.5.6(a). Figure C.5.7(b)
describes the correlation between the performance of core #1 and CoreNet load
of Cluster1, which demonstrates the same behavior with Figure C.5.6(a). The
doubled maximum value and the same behavior of Cluster1 means that 1) using
the second cluster, namely enabling the second L3 cache, triggers the other part
of the CoreNet bandwidth. 2) when two clusters are both below the CoreNet
saturation 0.219 transaction per CPU cycle, the CoreNet bandwidth is evenly
distributed between to both clusters without any inter-cluster interference.

Figure C.5.8 and Figure C.5.9 describes the same correlation when running
six and eight instances of the stressing benchmark. Figure C.5.8(a) and Fig-

90

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

1.005 1.010 1.015 1.020

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●●●●●●● ●●● ●●●●● ●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
● ● ●●

(a)

1.005 1.010 1.015 1.020

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime
(C

or
eN

et
 tr

an
sa

ct
io

ns
 p

er
 c

yc
le

)
of

 c
lu

st
er

1

●●●●●●● ●●● ●●●●● ●●
●

●
●
●

●●●●●●●●●●●●●●●●●●● ● ● ●●

(b)

Figure C.5.7: Performance slowdown versus CoreNet load while 4 co-runners balanced
in two clusters to identify CoreNet topology. (a) Performance slowdown versus total
CoreNet load, (b) Performance slowdown versus CoreNet load of Cluster1.

1.00 1.05 1.10 1.15 1.20 1.25 1.30

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●●●●

●●
●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

(a)

1.00 1.05 1.10 1.15 1.20 1.25 1.30

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime

(C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le
)

of
 c

lu
st

er
1

●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●
●
●
●
●
●●●

(b)

Figure C.5.8: Performance slowdown versus CoreNet load while 6 co-runners balanced
in two clusters to identify CoreNet topology. (a) Performance slowdown versus total
CoreNet load, (b) Performance slowdown versus CoreNet load of Cluster1.

ure C.5.9(a) clearly show that the performance degradation occurs once the num-

91

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

1.0 1.1 1.2 1.3 1.4 1.5 1.6

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime

C
or

eN
et

 tr
an

sa
ct

io
n

pe
r

cy
cl

e

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●
●

●
●
●
●
●
●
●
●
●●
●
●
●
●●●

(a)

1.0 1.1 1.2 1.3 1.4 1.5 1.6

0.1

0.2

0.3

0.4

0.5

perf. slowdown over standalone median runtime
(C

or
eN

et
 tr

an
sa

ct
io

n
pe

r
cy

cl
e)

 o
f c

lu
st

er
1

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●

●
●
●
●●
●●

(b)

Figure C.5.9: Performance slowdown versus CoreNet load while 8 co-runners balanced
in two clusters to identify CoreNet topology. (a) Performance slowdown versus total
CoreNet load, (b) Performance slowdown versus CoreNet load of Cluster1.

ber of CoreNet transactions reaches 0.406 transaction per CPU cycle which is
nearly doubled compared to Figure C.5.6(b) and (c). Figure C.5.8(b) and Fig-
ure C.5.9(b) depict that the per-cluster CoreNet saturation is 0.219 transaction
per CPU cycle which is the same with Figure C.5.6(b) and (c). The nearly dou-
bled value and the same per-cluster saturation means that when two clusters both
reaches the per-cluster CoreNet saturation 0.219 transaction per CPU cycle, the
total saturated CoreNet (0.406 transactions per cycle) is not sufficient to support
the saturated bandwidth of both clusters (2× 0.219 transactions per cycle). The
same conclusion can be made for the total maximum bandwidth of the CoreNet:
it (0.436 transactions per cycle) is not sufficient to support the maximum band-
width of both clusters (2 × 0.221 transactions per cycle). In other words, each
cluster has its private basic CoreNet bandwidth, but there is still a little concur-
rent part of CoreNet competed between two clusters. The competition on this
concurrent part can be reflected by the tail of the curve in Figure C.5.8(b) and
Figure C.5.9(b) which falls a little compared to Figure C.5.6(b) and (c). That’s
because two clusters both need the maximum per-cluster bandwidth. Since they
are not able to both get the maximum at the same time, the Cluster1 has to
cede some concurrent bandwidth to the Cluster2. In addition, the competition
on the concurrent part can be also observed through the extra performance slow-
down upto 9% and 8% in Figure C.5.8(b) (the maximum slowdown is ×1.23) and
Figure C.5.9(b) (the maximum slowdown is ×1.59) compared to Figure C.5.6(b)

92

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

(the maximum slowdown is ×1.32) and (c) (the maximum slowdown is ×1.67).
In a real-time context, to enforce that the activity of a cluster does not impact

the activity of the other one, we therefore need to make sure that this saturation
bandwidth is not reached.

Evaluation of the DDR.
Another important shared hardware resource to consider are the DDR controllers
and the associated DDR memory.

To similarly evaluate the maximum throughput and saturation value of each
DDR controller, we shifted back to the hardware setup with one unique L3 cache
and associated DDR controller. This allowed us define a stressing benchmark
aiming at stressing the DDR controller with the load of 8 different running cores
performing misses in the L3 cache. To identify the maximum throughput and
saturation behavior of the DDR controller, we organized the similar experiment
with CoreNet evaluation:

• We ran a stressing benchmark in core #1, and measured its runtime by
monitoring the event CPU CYCLES.

• We ran the same stressing benchmark(s) in the remaining cores with core
#1. For every stressing benchmark co-running with core #1, we regulated
the value of NOP to progressively interfere the execution of core #1.

• We monitored the events DDRread and DDRwrite in core #1 for all the
co-running cores to get the total number of DDR accesses.

• We computed the DDR load by dividing the sum of DDRread and DDRwrite
by CPU CYCLES of core #1: (DDRread+DDRwrite)/CPU CYCLES.

Figure C.5.10 shows the correlation between the performance variability of
the benchmark monitored in core #1 and the number of accesses to the DDR
controller. The figure exhibits again an inflection point when saturating the DDR
controller when reaching 0.042 accesses to the controller per CPU cycle.

93

C.5. ARCHITECUTRE CHARACTERIZATION RESULTS

1.0 1.5 2.0 2.5 3.0

0.
03

0
0.

03
5

0.
04

0
0.

04
5

0.
05

0

perf. slowdown over standalone median runtime

D
D

R
 a

cc
es

s
pe

r
cy

cl
e

●●
●

●●
●●

●●
●

●●
●

●●
●

●

●●●

●
●●

●
●●●
●

●
●
●

●
●●

●
●
●
●
●●

●
●
●
●●
●●

●

Figure C.5.10: Runtime variability versus DDR controller accesses to identify each
DDR controller maximum bandwidth

94

Chapter C.6

Application Characterization
Results

In the previous chapter we quantified the different available shared hardware
resources. In this section, we focus on identifying the resource requirements of
the applications. The application runtime variability while stressing a particular
resource will allow to determine the share of the hardware resource that each
application requires. We characterized applications under the optimal hardware
configuration of P4080.

We start by figuring out the optimal number of iterations required to fully
capture the runtime variability of each application, and then quantify the sensi-
tivity of each application to the shared resources and the resource usage of each
application. Such an information about resource usage could later be used to
determine which applications could run smoothly together.

C.6.1 Optimal Number of Iterations to Capture

Variability

To capture runtime variability of a particular application, each experiment involv-
ing this application has to be run a large number of times in successive iterations.
A large enough number of iterations will be able to capture the whole runtime
variability of the application, while a not sufficiently large number will miss the
runtime with the rarest distribution. As missing the worst execution time is not
an option, we need to figure out what is this optimal number of iterations allowing
to fully capture the runtime variability.

To empirically determine this optimal execution iteration number of a partic-
ular application, we setup an experiment performing successive executions of this

95

C.6. APPLICATION CHARACTERIZATION RESULTS

application concurrently with a resource-stressing environment. Every 100 itera-
tions, we collected the runtime distribution since the beginning of the execution.

1.10

1.15

1.20

1.25

1.30

● ●

● ● ● ● ● ● ● ●

100 200 300 400 500 600 700 800 900 1K

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

number of iterations

Figure C.6.1: Runtime variability collected with different number of iterations for
application Adpcm.

Figure C.6.1 shows such runtime distribution results for the Adpcm bench-
mark co-running with two DDR stressing benchmarks. The shape of a violin plot
corresponds to the captured behavior of the application. Therefore, comparing
the violin plot shapes enables us to figure out if the optimal iteration value has
been reached. For these experiments, stopped the iteration counter when we
obtained three consecutive identical violin plots. For Figure C.6.1 the optimal
number of iteration is therefore 1000.

Identifying the optimal number of iterations to capture the runtime variability
of each application allows us to reduce the overall design space. We applied
the same methodology to identify the optimal number of iterations for every
experiment.

C.6.2 Identifying the Sensitivity to Shared Re-

sources

We quantified the performance variability that each application may experience
due to the collision on shared resources in Chapter B.4. However, in addition to
representing the runtime variability, the performance slowdown of an application
can be also used to perform as the sensitivity of the application to the resource(s)
stressed by co-running stressing benchmarks. If the performance slowdown is low,
the application is not sensitive to the stressed resource(s), which means that the
application does not need a significant quota of the resource(s) to complete its
execution. On the contrary, if the application experiences a significant slowdown

96

C.6. APPLICATION CHARACTERIZATION RESULTS

when it runs with a resource stressing benchmark, the application certainly needs
a great usage of the resource showing a high sensitivity to it.

In this section, we used a CoreNet and a DDR stressing benchmark with
the worst case cache locality to identify the sensitivity of the applications to
the CoreNet and DDR under the optimal configuration. Since we identified two
symmetric clusters under the optimal configuration, we restricted our experiment
in one cluster to identify the sensitivity. The experiment was organized in the
same way with the variability quantification.

• Measure the runtime of a target application when it runs in isolation in core
#1 RTisolation .

• Measure the runtime of the target application in core #1 when it runs simul-
taneously with three CoreNet/DDR stressing benchmarks in the remaining
cores in the same cluster RTcorunning .

• Normalise RTcorunning by RTisolation to get the performance slowdown, namely
the sensitivity to CoreNet/DDR.

• Repeat the above measurement within the optimal number of iterations to
capture the variability and plot a violin plot.

Figure C.6.2 shows the sensitivity of nine applications to the CoreNet and
DDR.

1

2

3

4

5

6

●
●

● ● ● ● ●

●

●

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

ru
nt

im
e

va
ria

bi
lit

y
ov

er
 s

ta
nd

al
on

e
m

ed
ia

n
ru

nt
im

e

(a)

1

2

3

4

5

6

●

●

●

●

●

●

●

●

●

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

ru
nt

im
e

va
ria

bi
lit

y
ov

er
 s

ta
nd

al
on

e
m

ed
ia

n
ru

nt
im

e

(b)

Figure C.6.2: The sensitivity of applications to (a) the CoreNet, (b) the DDR.

We can infer from Figure C.6.2 that CRC32, airborne radar are more sensitive
to both CoreNet and DDR compared to other applications, and FFT is the most
stable application showing the lowest sensitivity. In addition, comparing Figure

97

C.6. APPLICATION CHARACTERIZATION RESULTS

C.6.2(a) and (b) allows us to discover that the contention on the DDR is much
more destructive than on the CoreNet to the performance.

However, the sensitivity only tells us upto which extent an application is
sensitive to a shared resource, but it can not provide the shared resource usage
of the application which is required to deduct possible co-running applications
without exceeding the resource saturation. We thus capture the shared resource
usage of applications in the next section.

C.6.3 Capturing the Shared Resource Usage

Section C.5.5 allowed us to quantify the maximum throughput of shared resources:
CoreNet and DDR controller in the architecture. We now want to capture the
resource requirements of each standalone application.

To perform this measurement, we ran each application standalone, collecting
the event CPU CYCLES, BIU master requests, DDRread and DDRwrite to get
the CoreNet load and the DDR load of the application by computing BIU master
requests/CPU CYCLES, and (DDRread + DDRwrite)/CPU CYCLES.

Table C.6.1 provides the resource usage information for each application, this
usage being computed as a ratio to the previously quantified saturation value:
0.219 requests per CPU cycle for the CoreNet, and 0.042 requests per CPU cycle
for the DDR controller.

average peak average peak
Application CoreNet CoreNet DDR DDR
ADPCM 0.86% 9.04% 4.52% 47.13%
CRC32 0.93% 1.30% 4.77% 6.90%
FFT 0.19% 13.38% 0.38% 31.43%
blowfish 0.14% 0.72% 0.74% 3.74%
SHA 0.25% 2.15% 1.33% 11.19%
patricia 0.07% 0.19% 0.35% 0.97%
susan 0.40% 2.96% 2.01% 15.44%
airborne radar 2.23% 3.06% 11.68% 16.19%
pedestrian detection 0.10% 4.29% 0.48% 22.86%

Table C.6.1: CoreNet and DDR loads of standalone application

Table C.6.1 lists both the average and peak number of resource usage for
the considered applications. We collected the peak value of CoreNet and DDR
related hardware counters relying on sampling techniques that we will present in
Part D. The maximum average usage remains quite low: 2.23% of the available
CoreNet resources, and 11.68% of the DDR resources. The peak usage however is
significant with Adpcm using as much as 47% of the available DDR bandwidth.

In addition, we confirm that CRC32 and airborne radar which are more sen-
sitive to shared CoreNet and DDR also have a higher CoreNet and DDR average
usage compared to others.

98

C.6. APPLICATION CHARACTERIZATION RESULTS

C.6.4 Determining Possible Co-running Appli-

cations using Resource Usages

With the resource usage of each benchmark and the total amount of available re-
sources quantified, we can deduct which applications could run together without
significantly endangering each other’s performance. Considering that the perfor-
mance remains nearly unchanged below the CoreNet saturation and the DDR
saturation, we can deduct that the performance of co-running applications will
not significantly degrade if the sum of their peak CoreNet usages and the sum of
peak DDR usages both do not exceed the corresponding saturations.

Looking at the peak usage of the DDR resource for the ADPCM application
in Table C.6.1, up to two instances of ADPCM should run fine on the same
cluster with low performance impact compared to the standalone version; 3 and
4 instances should start to exhibit significant slowdown because their total peak
DDR usage exceeds the saturation, namely more than 100%.

1.00

1.02

1.04

1.06

1.08

1.10

●

●

●

●

1 2 3 4

pe
rf

. s
lo

w
do

w
n

ov
er

 s
ta

nd
al

on
e

m
ed

ia
n

ru
nt

im
e

number of co−running Adpcm

Figure C.6.3: Performance slowdown with difference number of co-running ADPCM.

Figure C.6.3 depicts the performance variability while running an increasing
number of ADPCM instances on a single cluster. All slowdown are normalized
to the standalone execution time of ADPCM. Running two concurrent instances
of the ADPCM benchmark produces a slight maximum performance degradation
of +2%. This is in cope with the fact that the DDR controller is just below
saturation. When running three concurrent instances the maximum increases to
+5%, and to +8% when co-running four different instances.

Even though the impact on runtime behavior is not that high, the behavior
is correctly captured. The reason why the maximum performance degradation is
only 8% is due to the fact that the average DDR controller usage of ADPCM is
only 9%, far away from the peak usage of 47%.

99

Chapter C.7

Conclusion

In this part, we presented a methodology and its associated automatic framework
allowing us to characterize both the hardware and the safety-critical software
relying on hardware monitors available in multi-core architectures and stressing
benchmarks. From the hardware point of view, we successfully

• identified some undisclosed hardware features: 4-core cluster effect in the
P4080, which helped reduce the design space in terms of the mapping. The
mapping which tries to avoid to map the co-running applications in the
same cluster with the application under monitor will provide the lowest
variability for this application under monitor.

• identified the most suitable hardware configuration for safety-critical appli-
cations. According to two criteria: the low variability and sufficient overall
performance, the optimal configuration is dual controller/partitioned L3
cache.

• quantified shared hardware resource availability: the maximum through-
put, the saturation behavior and the topology of the CoreNet and the DDR
controller, which helped compute the resource usage in the application char-
acterization. Either the CoreNet or DDR controller has a saturation band-
width below which the performance remains nearly unchanged. Once it is
reached the performance will dramatically degrade. Under the optimal con-
figuration, each cluster has a basic proper CoreNet bandwidth but they still
share a little part of bandwidth. To enforce that the activity of a cluster
does not impact the activity of the other one, we need to make sure that the
per-cluster saturation bandwidth 0.219 transactions/cycle is not reached in
both clusters.

From the software point of view, we were able to

100

C.7. CONCLUSION

• get the optimal iteration for capturing the variability, which helped reduce
the design space.

• capture the sensitivity of applications to shared resources.

• capture the average and the peak resource usage.

• perform the first prediction on co-running application behavior using re-
source usage information.

For safety-critical applications, we need an estimated execution time upper
bound of co-running applications, and determine if the co-running applications
can practically run together by comparing this upper bound with the required
deadline. However, our first prediction can not accurately estimate an upper
bound of the co-running execution time, which prevents us to guarantee a safe
execution without endangering the deadline.

In order to estimate an execution time upper bound, we proposed an alterna-
tive technique to estimate the WCET in the next part, Part D.

101

Part D

Alternative technique to
Estimate the WCET

102

Chapter D.1

WCET Estimation Methodology

As we explained in Chapter C.7, to be able to guarantee a safe co-running exe-
cution without any risk of missing deadlines for safety-critical systems, we need
a more reliable technique to get a precise execution time upper bound in the
co-running context.

We therefore propose a methodology heavily based on worst-case execution/sim-
ulation techniques to easily and rapidly estimate the WCET of an application
when co-running with a pre-determined set of applications in safety critical sys-
tems. The procedures of the methodology are illustrated in Figure D.1.1.

APP2APP1 APP3

Monitor

APP2APP1 APP3

 Identify RB
(Replacement Benchmark)

RB1

RB2

RB3

Target
APP

APP1 APP2 APP3

SRB(RB1)=
upper bound of SRB(APP1)

+

Execution time upper bound

Target
APP

+

Minimum (Execution time)

RB1 RB2 RB3

Shared Resource Behavior (APP1)

Shared Resource Behavior (APP2)

Shared Resource Behavior (APP3)

SRB(RB2)=
upper bound of SRB(APP2)

SRB(RB3)=
upper bound of SRB(APP3)

Figure D.1.1: The upper bound estimation methodology.

The methodology first monitors the shared resources related behavior of a set
of standalone pre-determined applications. Then, it identifies for each of these

103

D.1. WCET ESTIMATION METHODOLOGY

applications a replacement benchmark that exhibits an upper bounded behavior
over the original application relatively to the monitored shared resources.

Such replacement benchmarks should allow us to simulate the worst-case con-
tention on shared hardware resources caused by the original applications. By
co-running these replacement benchmarks together with a target application, we
will be able to estimate a safe execution time upper-bound for the target appli-
cation while co-running with the original applications.

The proposed method can be applied in a black-box context without knowing
the full details of the hardware and the software. The avionic industry is facing
such a context when integrating third-party software componnents into COTS
hardware with undisclosed features.

104

Chapter D.2

Experimental Setup

D.2.1 Experimental Scenario

During the previous architecture characterization (see Section C.3.1.3 and Section
C.5.3), we developed a methodology automatically determining the most suitable
configuration of P4080 such that the runtime variability is reduced without sig-
nificantly degrading the average performance. For that purpose, we performed
a per-core partitioning of the L3 caches and the DDR memory space. Poten-
tial interferences are therefore restricted to concurrent accesses to the CoreNet,
L3 caches and DDR controllers. In addition, we also discoverd that the most
suitable configuration has a symmetric cluster behavior with two groups of four
cores, each cluster sharing a basic part of CoreNet to both L3 caches. So for the
sake of simplicity, we restricted our estimation evaluation to identify the potential
co-runners of a single cluster under the identified optimal configuration on the
bareboard P4080.

D.2.2 Measurement Techniques

We used hardware monitors and stressing benchmarks to evaluate the estimation
methodology.

D.2.2.1 Hardware Monitors

The first step of the methodology is to monitor the shared resources related
behavior of pre-determined applications that we want to run with a target appli-
cation. As we did during the architecture and application characterization, we
used hardware monitors to collect shared resource related events. We evaluated
the estimation methodology under the optimal configuration identified in Part C

105

D.2. EXPERIMENTAL SETUP

on the P4080, so the shared resources are the CoreNet and DDR controllers. We
thus only monitored the events listed in Table C.2.1.

To ease comparison of the shared resource behavior among different applica-
tions, we normalised CoreNet and DDR events by CPU CYCLES :

• BIU/cycle: the number of CoreNet transactions per cpu cycle

• DDRr/cycle: the number of DDR read accesses per cpu cycle

• DDRw/cycle: the number of DDR write accesses per cpu cycle

D.2.2.2 Stressing Benchmarks

The second step of the estimation methodology is to identify a replacement ben-
hcmark for a pre-determined application by taking the upper bound behavior on
shared resources. To perform the replacement, we designed stressing benchmarks.

Stressing benchmarks have been introduced for the variability quantification
and the characterization as a way to produce a high load on a particular hardware
resource. The purpose of these stressing benchmarks was twofold: 1) to actually
identify the shared hardware resources and associated contention mechanisms,
and 2) to identify the hardware resources each application is sensitive to.

In this part, we designed these stressing benchmarks in the same way described
in Section C.2.2, but we extended these stressing benchmarks with the ability
to simultaneously stress multiple hardware resources and finely tune the load
they are producing to each of them. The stressing benchmark used to replace an
application should behave like the original application relatively to the monitored
shared hardware resources, while exhibiting upper bounded behavior.

For example, we are able to create a stressing benchmark with 0.01 BIU/cycle,
0.005 DDRr/cycle and 0.001 DDRw/cycle. We will show how the methodology
uses these stressing benchmarks in Chapter D.3 and Chapter D.4.

106

Chapter D.3

Global Signature

D.3.1 Defining Global Signatures

The global signature of an application provides some global information about
how the overall application behaves relatively to each hardware resource. The
global signature is defined as a vector of normalized hardware counters values
collected during an application full standalone run on one core, with the other
cores being idle. As previously said, we restrict ourselves to three shared memory
path related metrics for the signature elements: BIU/cycle, DDRr/cycle and
DDRw/cycle The global signature can be therefore represented as: [BIU/cycle,
DDRr/cycle, DDRw/cycle] which gives information about overall CoreNet and
DDR behavior.

To capture potential global signature variability, we collected these signatures
for hundreds of different iterations, and only kept the maximum values represent-
ing the highest observed impact on hardware resources. These collected values,
provided in Table D.3.1 exhibited a very small (below 0.1%) variation for these
standalone runs.

Application BIU/cycle DDRr/102cycle DDRw/102cycle
ADPCM 0.001871 0.103959 0.083134
CRC32 0.002029 0.202885 0.000007
FFT 0.000409 0.012522 0.003619
blowfish 0.000308 0.030787 0.000007
SHA 0.000562 0.056187 0.000002
patricia 0.000147 0.014689 0.000004
susan 0.000892 0.058581 0.025376
airborne radar 0.004879 0.484096 0.001111
pedestrian detection 0.000219 0.018304 0.001795

Table D.3.1: Global signature of target applications

Hardware monitor collection is performed between each iteration of a full
application run, ensuring a non-intrusive monitoring of the application.

107

D.3. GLOBAL SIGNATURE

D.3.2 Using Global Signatures

Global signatures enable us to select for each original application a stressing
benchmark with the closest upper bound signature (we used the euclidean dis-
tance). This identified stressing benchmark is likely to behave like the original
application relatively to the monitored shared hardware resources, while exhibit-
ing much less variability.

Our assumption is that the stressing benchmarks should exhibit a very close
and upper bounded behavior over the original benchmark relatively to these
shared hardware resources, while requiring much less iterations to capture the
variability on resource usage and runtime.

To validate this assumption, we organized the experiment as:

• We ran a target application on core #1 in isolation to get its standalone
runtime RTisolation .

• We ran this target application on core #1 with three instances of an original
application in the same cluster within the optimal number of iterations to
get a set of co-running runtimes RTco−apps .

• We ran this target application on core #1 with three instances of the iden-
tified closest stressing benchmark of the original application in the same
cluster within the optimal number of iterations to get a set of co-running
runtimes RTco−sbs .

• We normalised RTco−apps and RTco−sbs respectively by RTisolation to get a
set of performance slowdown for these two groups of experiment: PSco−apps

and PSco−sbs .

The observed slowdown is related to the interference among co-running appli-
cations on the shared hardware resources, and we expect all the PSco−sbs caused
by co-running stressing benchmarks to upper bound the worst case performance
slowdown max(PSco−apps) caused by the co-running original applications, meaning
that the stressing benchmark could be used to predict the worst case contention
on shared resources caused by the original application in a safety critical context.

Figure D.3.1 depicts the experimental results: the maximum observed perfor-
mance slowdown while running with three original applications (ADPCM in (a),
CRC32 in (b), FFT in (c), SHA in (d), patricia in (e), susan in (f), airborne radar
in (g) and pedestrian detection in (h)): max(PSco−apps) is presented by a single
red mark, while all the values of PSco−sbs obtained by co-running stressing bench-
marks are represented by a blue violin plot. If our upper bounding assumption is
correct, every violin plot should completely appear above the corresponding red

108

D
.3
.
G
L
O
B
A
L

S
IG

N
A
T
U
R
E

1.00 1.02 1.04 1.06 1.08 1.10

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(a
)
A
D
P
C
M

1.00 1.02 1.04 1.06 1.08 1.10

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar
runtime variability over standalone median runtime

(b
)
C
R
C
32

1.00 1.02 1.04 1.06 1.08 1.10

●
●

●
●

●
●

●
●

●

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(c)
F
F
T

1.00 1.02 1.04 1.06 1.08 1.10

●

●

●
●

●
●

●
●

●

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(d
)
S
H
A

1.00 1.02 1.04 1.06 1.08 1.10

●
●

●
●

●
●

●
●

●

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(e)
P
atricia

1.00 1.02 1.04 1.06 1.08 1.10

●

●

●
●

●

●
●

●

●

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(f)
S
u
san

109

D.3. GLOBAL SIGNATURE
1.

00
1.

02
1.

04
1.

06
1.

08
1.

10

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

ru
nt

im
e

va
ria

bi
lit

y
ov

er
 s

ta
nd

al
on

e
m

ed
ia

n
ru

nt
im

e

(g) Airborne radar

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

● ● ● ● ● ● ● ● ●

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

ru
nt

im
e

va
ria

bi
lit

y
ov

er
 s

ta
nd

al
on

e
m

ed
ia

n
ru

nt
im

e

(h) Pedestrian detection

Figure D.3.1: Evaluating the global signatures against the performance slowdown in-
duced by co-running with 3 instances of ADPCM, CRC32, FFT, SHA, patricia, susan,
airborne radar, pedestrian detection versus their equivalent stressing benchmarks. Blue
violin plots represent the runtime variability while co-running with stressing bench-
marks. The red marks denote the maximum runtime while co-running with the original
applications.

mark, whereas violin plots closeby the corresponding mark will demonstrate the
accuracy of the prediction.

Running these experiments, we observed two categories of applications: For
CRC32, FFT, SHA, patricia, susan, airborne radar and pedestrian detection we
observed a very accurate prediction, because all the violin plots is very close to the
corresponding red mark. However we failed in systematically over bounding the
worst case performance slowdown of the target application for some applications.
For example, for airborne radar in Figure D.3.1(g), we only succeeded in over
bounding the target applications: ADPCM, CRC32, SHA and airborne radar.
The over-bounding ability defined as the relative difference between the number
of successful cases and the total cases is therefore: 4/9=44.4% for airborne radar.
The other category of applications is like ADPCM in Figure D.3.1(a). Most of
the violin plots stay far from their corresponding red marks (i.e. 8% for ADPCM
and 6% for CRC32). In addition, we failed in over bounding all the target appli-
cations, exhibiting over-bounding ability 0%. This second category reveals that
the identified stressing benchmark is not able to simulate the shared resources
behavior of the original application.

Table D.3.2 lists the over-bounding ability in each subfigure of Figure D.3.1
and its over-margin value which is defined as the average of the disparity between
the minimum value of each violin plot and the red mark: average((abs(min(PSco−sbs)-
max(PSco−apps))).

110

D.3. GLOBAL SIGNATURE

Even though providing an accurate prediction with an average over margin
of only 0.72% as shown in Table D.3.2, the global signature fails to provide the
required systematic upper bound, only succeeding in 24.9% of the cases. This
technique therefore proves itself to be irrelevant for safety critical applications.

Application over-margin over-bounding
value ability

ADPCM 3.69% 0.00%
CRC32 0.79% 11.1%
FFT 0.18% 0.00%
SHA 0.28% 11.1%
patricia 0.00% 100%
susan 0.25% 11.1%
airborne radar 0.36% 44.4%
pedestrian detection 0.24% 22.2%
average 0.72% 24.9%

Table D.3.2: Evaluating global signature accuracy in terms of over-margin value and
upper-bounding ability.

D.3.3 Limitation of Global Signatures

By collecting hardware monitors for full application runs, we artificially intro-
duced an averaging effect on this behavioral information. We take an example to
illustrate the limitation of global signatures caused by this average behavior in
Figure D.3.2. Application1 requires 80% of a particular hardware resource during
the first 50% of the full run time, the average resource usage is therefore 40%.
We identify a stressing benchmark with a regular resource usage 40% to simulate
Application1. Synchronized two co-running Application1 will certainly cause a
significant contention on the resource since their total requirement exceeds the re-
source saturation (2×80%). However, co-running two stressing benchmarks may
not bring any performance slowdown since their resource demand is always below
the resource saturation (2× 80%). As a consequence, the stressing benchmark is
not able to simulate the worst case contention caused by the peak resource usage
80% that is hidden by the averaging effect introduced in global signatures, which
results in failure of over bounding the WCET.

In the following chapter, we present an alternative technique based on local
signatures to capture the application’s phase behavior of required resources, in-
cluding the peak resource usage which can be used to simulate the worst case
contention.

111

D.3. GLOBAL SIGNATURE

Resource
usage

80%

0%

T/2 T

Resource
usage

40%

0%

T/2 T

Application1 Stressing benchmark
of Application1

Average usage = 40% Average usage = 40%

80%

0%

T/2 T

100%

Resource
usage

2 x (Application1)

0%

T/2 T

100%

Resource
usage

2 x (Stressing benchmark of Application1)

Above saturation
contention

Unused
resource

Above saturation contention
caused performance slowdown

Below saturation contention
caused performance slowdown>

40%

Figure D.3.2: The example showing limitations of global signatures.

112

Chapter D.4

Local Signature

D.4.1 Defining and Collecting Local Signatures

Whereas global signatures are collected once for each full run of the application,
local signatures rely on sampling techniques to collect the monitored information
on regular basis, many times during each application full run. As a consequence
a local signature is not represented by a single vector of hardware monitor values,
but by a succession of such vectors.

D.4.1.1 Collecting Local Signatures Using Fixed-Interval
Timer (FIT)

The Fixed-Interval Timer (FIT) is a mechanism for providing timer interrupts
with a repeatable period, to facilitate system maintenance. To perform the regu-
lar collection, we implemented an interruption handler triggered by the FIT using
the hardware clock. During this interruption, the target application running in
isolation is suspended while the hardware counters are collected.

D.4.1.1.1 Implementing the FIT Interrupt

To perform a FIT interrupt, there are a set of registers to configure:

• Time Base (TB): it is composed of two 32-bit registers: the time base upper
(TBU) concatenated on the right with the time base lower (TBL). The TB
is interpreted as a 64-bit unsigned integer that is incremented periodically.
Each increment adds 1 to the least-significant bit.

• Time Control Register (TCR): it provides control information for the on-
chip timer of the core e500mc. There are three fields related to the FIT:

113

D.4. LOCAL SIGNATURE

– TCR[FP] and TCR[FPEXT]: Fixed interval timer period and Fixed in-
terval timer period extention. TCR[FR] concatenates with TCR[FPEXT]
to specify one of 64 bit locations of the time base used to signal a fixed-
interval timer exception on a transition from 0 to 1.

– TCR[FIE]: Fixed interval interrupt enable. Set 1 to enable the FIT
interrupt.

• Timer Status Register (TSR): it contains status on timer events. The
field related to the FIT is TSR[FIS]: Fixed-interval timer interrupt status.
TSR[FIS] must be reset by writing 1 to it in order to avoid a redundant
fixed-interval timer interrupt.

• Core timebase enable register (RCPM CTBENR): it provides a mechanism
for enabling clocks to any core timebases on the device.

The procedures of the FIT interrupt implementation is:

1. Setting the FIT period by configuring TCR[FP] and TCR[FPEXT].

2. Enabling the FIT interrupt by setting the TCR[FIE].

3. Enabling clocks to current core TB by configuring RCPM CTBENR.

4. Resetting TSR[FIS] in the FIT interrupt service routine once the FIT in-
terrupt occurs.

D.4.1.1.2 Collecting Local Signatures

The mechanism of collecting local signatures using the FIT interrupt is shown
in Figure D.4.1. We configured the FIT related registers to set a fixed time slot
T in the beginning of a standalone application. A FIT interrupt occurs every T
time slot jumping into the FIT interrupt service routine to execute the routine
function where the TSR[FIS] is reset to avoid a redundant interrupt, the clock
to current timebase is disabled to freeze the TB counting, hardware counters are
collected, the TB is reset to the initial value for the next time slot counting and
the clock to the timebase is enabled to unfreeze the TB counting. We finally get
N successive vectors of [BIU/cycle, DDRr/cycle, DDRw/cycle].

This local signature collection is therefore more intrusive than for global sig-
natures, but provides detailed information for every execution time slot. The
granularity of the information depends on the time slot. A shorter time slot
provides more detailed information while leading to more intrusion or overhead.
We should therefore select an appropriate time slot to capture the peak resource

114

D.4. LOCAL SIGNATURE

T 2T 3T

FIT Interrupt Service Routine()
{

Reset TSR[FIS];
Disable clocks in tmebase;
Collect CPU CYCLES, BIU, DDRr, DDRw;
Reset TB to initial value;
Enable clocks in tmebase;

}

NT0 end

Main()
{ … ;}

[BIU/cycle, DDRr/cycle, DDRw/cycle](T)

[BIU/cycle, DDRr/cycle, DDRw/cycle](2T)

[BIU/cycle, DDRr/cycle, DDRw/cycle](3T)
…...

[BIU/cycle, DDRr/cycle, DDRw/cycle](NT)

Local Signature =

Figure D.4.1: The mechanism of collecting local signatures using the FIT interrupt.

usage which is responsible for the worst case performance slowdown but at the
same time to guarantee an acceptable intrusion or overhead.

The mechanism of selecting the time slot is described as below:

1. Select a time slot T with magnitude 106 CPU CYCLES. If the full runtime
is short, we can select a smaller T.

2. Collect local signatures using fixed interval T. After collection, we com-
pute the mean value of each set of normalised counters: meanBIU/cycle ,
meanDDRr/cycle and meanDDRw/cycle . We then compare the mean values with
their corresponding global values collected in the global signature. If the
difference between the mean and the global value: abs(mean-global)/mean
is less than 20%, we consider it as an acceptable overhead caused by the
interrupt, which means that the time slot T is usable. Otherwise, T is not
usable and we should take a larger time slot 2× T to repeat this step.

3. If T is usable, we reduce T to T/2 and repeat the second step. If T/2 is also
usable, we compare the maximum value of each normalised counter collected
in the time slot T with corresponding maximums in T/2. If the maximums
are similar with a difference below 10%, we take T/2 as an appropriate time
slot to capture the peak usage of resources. If the maximums in T/2 are
larger than in T, we continue to reduce the time slot to its half value and
repeat this step to test if the current time slot is an appropriate time slot.

We show in Figure D.4.2 the results of BIU/cycle of Adpcm as an example to
illustrate the impact of time slot on the local signatures.

115

D.4. LOCAL SIGNATURE

0.0e+00 1.0e+07 2.0e+07 3.0e+07

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

(a)

0.0e+00 1.0e+07 2.0e+07 3.0e+07

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

elapsed execution time (cpu cycles)
C

or
eN

et
 tr

an
sa

ct
io

ns
 p

er
 c

yc
le

●

●

●●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●
●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●
●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●
●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●●●●

●

●●●●

●

●

●●●●

●

●

●●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●●●

●

●

●●●

●

●●●

●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●
●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●
●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●
●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●
●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●
●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●
●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●
●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●
●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●
●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●
●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●
●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●
●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●
●●●

●

●●●●

●

●
●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●
●
●

●

●●●

●

●
●●●

●

●●●●

●

●●●

●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

(b)

0.0e+00 1.0e+07 2.0e+07 3.0e+07

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●●●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●

●

●

●
●●●
●
●
●
●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●
●
●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●

●

●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●
●●●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●
●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●●●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●
●
●
●
●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●

●

●

●

●

●
●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●
●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●●

●

●●●●●●●●●

●

●

●●●●●●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●●●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●
●
●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●●●●●
●
●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●

(c)

0.0e+00 1.0e+07 2.0e+07 3.0e+07

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●
●
●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●
●
●
●
●
●
●
●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●
●
●
●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●
●
●●●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●
●
●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●
●
●●●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●

●●●●●●●

●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●
●
●
●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●
●
●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●●●
●
●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●
●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●

●●●●
●
●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●
●
●
●

●

●

●●●
●
●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●
●
●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●
●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

(d)

Figure D.4.2: Variation of the number of CoreNet transaction per cpu cycle during
ADPCM full run using time slot (a) T, (b) T/2, (c) T/4 and (d) T/8. The black line
denotes the mean value of the CoreNet transaction per cpu cycle.

In Figure D.4.2, the gray curve refers to the variation of BIU/cycle collected
during the full run of ADPCM, and the black line denotes the mean value of
BIU/cycle which we used to compare with ADPCM’s global BIU/cycle 0.001871
listed in Table D.3.1, allowing us to discover the overhead of interrupt. The
mean value in Figure D.4.2(a), (b), (c) and (d) is successively 0.001964, 0.002124,
0.002196, 0.002206 which produced an overhead of 5.0%, 13.5%, 17.4% and 17.9%,

116

D.4. LOCAL SIGNATURE

all below unacceptable level 20%. The maximum value in (a), (b) and (c) is
nearly doubled every time, and stays similar in (c) with in (d). Accordingly, the
appropriate time slot for BIU/cycle of ADPCM is T/8 and the peak BIU/cycle
is 0.0198.

In addition, we infer from Figure D.4.2 the advantage of local signatures over
global signatures. The local signature is able to capture the chaotic variation
behavior of the metric, also the worst case behavior, while the global signature
can only capture the average value denoted by the black line.

We used the mechanism of selecting the appropriate time slot for all the
metrics of each application to capture their local signature. Figure D.4.3, Figure
D.4.4 and Figure D.4.5 respectively depicts the variation of CoreNet transactions
per cycle (BIU/cycle), DDR read per cycle (DDRr/cycle) and DDR write per
cycle (DDRw/cycle) for applications.

In Figure D.4.3, Figure D.4.4 and Figure D.4.5, the gray curve refers to the
variation of normalised metric, and the black line denotes the mean value.

For the behavior on the CoreNet in Figure D.4.3, we can classify the phase
behavior into three types: the first type, as ADPCM and SHA, performs a chaotic
behavior with a large disparity between the average and most of the peak values
(nearly ×10 for ADPCM, ×3 for SHA). The second type, as susan and airborne
radar, provides a smoothly changed behavior with the average value not far from
most of the local values (about×1.8 for susan, ×1.3 for airborne radar). The third
type, as CRC32, FFT, patricia and pedestrian detection, has a stable or regular
behavior around the average line with occasional peak values (i.e. occasional little
mountains in the beginning of CRC32 and patricia, a lonely peak just before the
end of FFT, a peak in the beginning of pedestrian detection in addition with
little hills periodically around the average behavior).

For the behavior on DDRr and DDRw in Figure D.4.4 and Figure D.4.5, all
the applications except airborne radar has a behavior on DDRr and DDRw both
similar with the CoreNet. Airborne radar has DDRr similar with the CoreNet
while a regular and low DDRw with a lonely peak and a noisy mountains in the
beginning and in the end of the execution.

This detailed local information can help us understand the failure of over-
bounding the WCET in Section D.3.2. We observed two categories of applications
according to the estimation in Figure D.3.1: the first category with all the appli-
cations without ADPCM and the second with ADPCM. ADPCM failed not only
in over bounding the WCET for all the target applications but also in providing
an accurate estimation of the WCET, which is charged to its chaotic behavior
and upto ×10 gap between the average and the worst case.

In a safety critical context it is critical to successfully capture this worst case
behavior. Local signatures allow us both to capture phase behavior of benchmarks
while also providing per-metric upper bound for this worst case.

117

D.4. LOCAL SIGNATURE

0.0e+00 1.0e+07 2.0e+07 3.0e+07

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●
●
●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●
●
●
●
●
●
●
●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●
●
●
●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●
●
●●●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●
●
●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●
●
●●●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●

●●●●●●●

●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●
●
●
●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●
●
●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●●●
●
●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●
●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●

●●●●
●
●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●
●
●
●

●

●

●●●
●
●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●
●
●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●
●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

(a) ADPCM

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.
00

00
0.

00
10

0.
00

20
0.

00
30

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●
●●●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●
●

●

●●

●●
●
●
●●●●

●

●●
●●
●●●
●
●●●●●●●
●●●●●●●●
●●●●●●●●
●
●●●
●●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●
●●

●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●
●●●
●●●

●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●●●
●●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●
●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●

●
●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●
●●
●
●
●
●●

●●●●
●●●●●●
●●●●●
●
●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●
●●●●●
●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●
●●●●●●●

(b) CRC32

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.
00

0.
01

0.
02

0.
03

0.
04

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●●●

●

●●●●●

(c) FFT

0e+00 2e+07 4e+07 6e+07 8e+07

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le ●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●
●

●

●●

(d) SHA

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●
● ● ● ●

●
●

● ●

●

● ● ●

●
●

●
● ●

● ● ●
●

● ● ● ●
● ● ● ● ● ●

●
● ●

● ● ●

●

●

●
●

●

● ● ● ● ● ● ●
●

● ● ● ●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

(e) Patricia

1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

0.
00

0
0.

00
2

0.
00

4
0.

00
6

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●

●

●

●
● ● ● ● ● ●

●
●

●
●

●

(f) Susan

0e+00 2e+09 4e+09 6e+09 8e+09 1e+10

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●
●●●

●

●

●●●●
●●●●

●
●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●

●

●

●

●

●

●
●

●●●●●

●
●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●

●

●

●

●

●●●

●●
●
●●

●

●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●

●

●

●

(g) Airborne radar

0.0e+00 1.0e+09 2.0e+09 3.0e+09

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

elapsed execution time (cpu cycles)

C
or

eN
et

 tr
an

sa
ct

io
ns

 p
er

 c
yc

le

●

●

●

●
●●

●
●

●●

●

●
●●●

●

●

●●

●

●
●●●●●●●●●●●●●●●●

●●

●

●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●●●●●●●●●●●
●●●●●●●●

●

●
●●●●●●●●●●●●●

●●●●●●●

●
●

●●●●●●●●
●
●
●●●●
●●●●●

●

●
●●●●●
●●●

●
●

●●●●●●●●
●

●
●
●●●●

●

●
●●●

●●

●
●

(h) Pedestrian detection

Figure D.4.3: Variation of the number of CoreNet transaction per cycle during the
full run of (a) ADPCM, (b) CRC32, (c) FFT, (d) SHA, (e) Patricia, (f) Susan, (g)
Airborne radar, (h) Pedestrian detection. The black line denotes the mean value of the
collected metric.

118

D.4. LOCAL SIGNATURE

0.0e+00 1.0e+07 2.0e+07 3.0e+07

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

elapsed execution time (cpu cycles)

D
D

R
 r

ea
d

pe
r

cy
cl

e

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●
●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●
●

●●●●●●●●

●

●
●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●●

●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●●●●

●

●

●●●●●●●●

●

●
●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●
●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

(a) ADPCM

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.
00

00
0.

00
10

0.
00

20
0.

00
30

elapsed execution time (cpu cycles)

D
D

R
 r

ea
d

pe
r

cy
cl

e

●

●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●

●

●●●
●
●●●

(b) CRC32

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

elapsed execution time (cpu cycles)

D
D

R
 r

ea
d

pe
r

cy
cl

e

●●●

●

●●
●●●

(c) FFT

0e+00 2e+07 4e+07 6e+07 8e+07

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

elapsed execution time (cpu cycles)

D
D

R
 r

ea
d

pe
r

cy
cl

e

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●
●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●●

(d) SHA

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

elapsed execution time (cpu cycles)

D
D

R
 r

ea
d

pe
r

cy
cl

e

●

●
● ●

●
●

● ●
●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ●

(e) Patricia

1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

elapsed execution time (cpu cycles)

D
D

R
 r

ea
d

pe
r

cy
cl

e

●

●

●

●

●
● ● ● ● ● ●

●
●

●

●

●

(f) Susan

0e+00 2e+09 4e+09 6e+09 8e+09 1e+10

0.
00

0
0.

00
2

0.
00

4
0.

00
6

elapsed execution time (cpu cycles)

D
D

R
 r

ea
d

pe
r

cy
cl

e

●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●●

●●●
●●

●●●
●

●

●●●●●●●●

●
●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●

●

●

●

●

●●
●●●●●

●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●

●

●

●

●●●
●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●

(g) Airborne radar

0.0e+00 1.0e+09 2.0e+09 3.0e+09

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

elapsed execution time (cpu cycles)

D
D

R
 r

ea
d

pe
r

cy
cl

e

●

●

●
●●●

●
●
●●

●

●
●●●

●

●
●●

●

●
●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●

●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●

●●●●●●●●●

●
●

●●●●●●●●●●●●●
●●●●●●●●

●

●
●●●●●●●●●●●●●

●●●●●●●

●

●
●●●●●●●●●●

●●●●●●●●●

●

●●●●●●
●●●

●

●
●●●●●●●●●

●
●●●●●

●

●●●●

●●
●●

(h) Pedestrian detection

Figure D.4.4: Variation of the number of DDR read per cycle during the full run
of (a) ADPCM, (b) CRC32, (c) FFT, (d) SHA, (e) Patricia, (f) Susan, (g) Airborne
radar, (h) Pedestrian detection. The black line denotes the mean value of the collected
metric.

119

D.4. LOCAL SIGNATURE

0.0e+00 1.0e+07 2.0e+07 3.0e+07

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

elapsed execution time (cpu cycles)

D
D

R
 w

rit
e

pe
r

cy
cl

e

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●●
●
●
●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●●●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●
●
●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●
●
●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●●●●●

●

●●●
●
●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●●●●

●

●

●●●●●●●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●
●
●
●
●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●
●
●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●
●
●●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●
●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●
●
●
●
●
●
●●

●

●

●
●
●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●
●
●●●●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●
●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●
●
●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●●●
●
●

●

●
●●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●
●
●
●
●
●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●
●
●●●●●
●

●

●
●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●
●
●
●
●●●
●

●

●●●●
●
●
●
●
●

●

●●
●
●
●
●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●
●

●
●
●
●
●
●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●
●
●
●
●

●

●
●
●
●
●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●●●
●
●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●●●
●

●

●
●●●●●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●
●
●●●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●
●
●
●

●

●

●
●
●
●
●
●
●●

●
●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●
●
●
●
●
●

●

●●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●
●
●
●
●●●

●

●●●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●●●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●●●
●
●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●●

●
●●●
●
●
●
●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●●●●

●

●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●

●
●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●●●
●
●
●

●

●

●
●
●●●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●
●●●●●●●●

●

●
●●●●●
●
●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●
●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●●●
●

●

●

●●●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●●●
●
●

●

●

●
●●●●●
●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●●●
●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●●●●

●

●
●
●
●
●
●
●
●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●
●
●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●
●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●●●
●

●

●

●●●●●
●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●
●
●●●
●
●

●

●

●
●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●
●●●●●●●●

●

●
●
●
●
●
●●●

●

●

●●
●
●
●
●
●
●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●
●
●
●
●
●
●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●
●
●
●
●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●●●●●
●
●

●

●
●●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●
●
●●●
●
●
●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●
●
●
●
●
●●●

●

●
●
●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●
●
●●●
●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●●

●

●

●●●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●

●
●
●
●
●●●

●

●

●●
●
●●●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●●●
●
●
●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●●●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●●●
●
●

●
●

●●●●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●
●
●
●
●
●
●

●

●

●●
●
●
●
●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●●

●
●●●
●
●
●
●

●

●●●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●●

●

●
●
●
●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●
●
●●●
●
●

●

●
●
●●●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●
●
●
●
●

●

●●
●
●
●●●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●
●●●
●

●

●

●●●●●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●●

●

●
●●●●●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●●●
●
●

●

●●●●●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●●●
●
●●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●●

●
●
●●●
●
●
●

●

●
●
●
●
●
●●●
●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●
●
●
●
●
●
●
●

●

●●
●
●●●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●
●
●
●
●

●

●

●●
●
●●●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●
●
●
●
●
●
●
●

●
●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●●

●●●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●
●
●
●

●

●
●●●
●
●●●
●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●

●
●
●
●●●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●
●
●●

●

●
●
●
●
●
●
●
●

●

●
●●●●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●

●
●●●●●
●
●

●

●
●
●
●
●
●
●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●●
●●●
●
●
●
●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●
●
●
●
●
●
●

●

●

●●●
●
●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●
●
●
●

●

●
●●●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●
●
●●●

●

●
●
●
●
●●●●●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●
●
●
●

●

●

●
●
●
●
●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●●●
●

●

●●
●
●
●
●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●
●●●●●
●
●

●

●
●●
●
●●●●●

●

●●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●
●
●
●
●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●●●
●
●
●
●

●

●
●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●

●
●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●●●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●
●
●
●
●●●

●●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●
●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●
●
●●●
●
●
●

●

●
●
●
●●●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●●●●●●●

●

●

●
●●●
●
●●●

●

●

●
●●●
●
●
●
●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●
●
●
●
●
●
●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●
●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●●●

●

●
●
●
●
●
●
●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●●
●
●
●
●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●
●
●
●
●
●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●●●
●
●

●

●
●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●●

●

●

●●●
●
●●●●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●

●

●

●
●
●●●
●
●
●

●

●
●
●
●
●
●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●
●
●●●
●
●
●

●

●

●
●
●
●
●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●
●
●●●●●
●
●

●

●●●
●
●
●
●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●
●
●
●

●

●

●
●
●●●●●

(a) ADPCM

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e
+

00
2e

−
04

4e
−

04
6e

−
04

elapsed execution time (cpu cycles)

D
D

R
 w

rit
e

pe
r

cy
cl

e

●●●●●●●●●●●●●●
●
●●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●
●
●
●●
●

●
●
●
●
●
●
●

●

●
●
●
●
●

●

●

●

●●
●
●
●●●
●●●

●

●

●

●

●

●
●
●
●
●
●●●
●
●
●

●

●

●

●●●
●
●●●●
●
●
●
●

●

●

●

●●●

●
●
●

●
●
●
●●
●

●

●

●

●

●

●

●

●

●
●
●●●●
●
●

●

●

●

●

●

●
●
●

●

●
●
●
●
●
●
●

●

●

●

●●●●●●●

●

●●●●
●
●

●

●
●
●

●

●

●

●
●
●
●
●●●●●

●

●●●●●●●

●

●
●
●
●
●
●
●

●

●●●●

●
●
●

●
●
●
●
●
●
●

●

●
●
●

●

●
●
●
●
●

●

●
●
●

●

●●●

●

●

●

●●
●
●
●
●

●

●

●

●
●
●
●
●●●
●
●
●
●
●
●
●
●

●

●●●●●

●

●

●

●
●
●●
●
●●●

●

●

●

●●●
●
●●●

●

●●●●●●●

●

●●●
●
●●●
●
●

●

●
●
●

●
●
●

●

●

●

●●●
●
●

●

●
●
●●●

●

●
●
●
●
●
●
●

●

●

●

●

●

●
●
●
●
●●
●
●

●

●
●
●

●

●●●

●

●
●
●

●
●
●

●

●
●
●
●
●
●
●●●●●●

●

●
●
●●●●●●●●●

●

●●●●●
●
●●●

●

●●●

●

●
●
●

●

●

●

●●

●

●
●
●●●

●

●

●

●●●●●●●

●

●●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●●●●
●
●
●
●

●

●

●

●

●

●
●
●●●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●
●●●
●
●

●

●

●

●
●
●●●
●
●
●
●

●

●
●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●●
●
●
●
●
●
●
●●
●
●●
●
●
●
●
●●●
●
●

●

●●●●●●●●●●●●
●
●
●
●●●
●
●
●
●
●
●

●

●

●

●

●

●●●

●

●
●
●●
●
●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●
●
●
●
●

●

●
●
●
●
●

●

●●●●
●
●
●
●●●●
●
●

●

●●●
●
●
●
●●●

●

●

●

●●●

●

●
●
●●●
●
●●●●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●
●
●
●●●●●
●
●

●

●
●
●

●
●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●
●

●

●
●
●
●
●●●●●●●●●●●

●

●
●
●
●
●●●

●

●
●
●●●●●●●●●●●●

●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●
●
●

●

●
●
●

●

●
●
●●●●●●●

●

●●
●
●
●
●
●
●

●

●
●
●

●

●
●
●

●

●

●

●●●

●

●

●

●
●
●●●●
●
●●

●

●
●
●

●

●
●
●●●

●

●●●●
●
●●●
●
●

●

●

●

●
●
●●●
●
●●●●
●
●
●
●

●

●
●
●
●
●

●

●

●

●●●
●
●

●

●●●
●
●●●
●
●
●
●
●
●
●
●●

●

●

●

●
●
●
●
●

●

●
●
●
●
●
●
●

●

●

●

●
●
●
●●
●

●

●

●

●●●●●●

●

●
●
●
●
●
●
●
●●
●●
●
●●●

●

●●●

●

●
●
●●●
●
●
●
●

●

●

●

●
●
●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●

●
●
●
●
●●●
●
●
●
●●●●●●
●
●
●
●

●

●
●
●

●

●
●
●
●
●●●

●

●
●
●

●

●

●

●●●

●

●

●

●●●
●
●●●●
●
●
●
●●●
●
●
●
●
●
●
●
●●●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●
●
●●●●
●
●
●
●
●
●

●

●
●
●
●
●●●

●

●
●
●

●

●
●
●

●

●●●

●

●

●

●
●
●●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●●●●●
●
●
●
●●●●

●

●

●

●●●●●

●

●●●●●
●
●

●

●
●
●

●

●

●

●●●

●

●

●

●
●
●
●
●●
●
●

●

●

●

●
●
●
●
●

●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●●●●●

●

●●

●

●
●
●●●
●
●
●
●

●

●

●

●
●
●●●

●

●●●

●

●

●

●
●
●
●
●●●●●
●
●●
●
●●●●●●●

●

●●●
●
●
●
●

●

●

●

●

●

●
●
●

●

●

●

●
●
●●●

●

●●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●

●
●
●

●

●

●

●

●

●●●

●

●
●
●
●
●●●●●●

●

●
●
●
●
●
●
●

●

●●●
●
●●●●●
●
●

●

●●●●●
●
●●●●●

●

●●
●
●
●
●

●

●

●

●

●

●
●
●

●

●
●
●
●
●

●

●

●

●

●

●
●
●

●

●●●

●

●

●

●●
●
●
●
●

●

●

●

●
●
●
●
●

●

●
●
●
●
●

●

●
●
●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●
●
●
●
●
●
●

●

●
●
●

●

●

●

●●●
●
●●●●●

●

●●●●●●
●
●

●

●

●

●●●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●●●●
●
●
●
●
●
●●●
●
●
●
●
●
●
●
●●●

●

●

●

●
●
●
●
●
●
●●●

●

●
●
●●
●
●
●
●

●

●
●
●
●
●●●

●

●●●●●

●

●●●●●●●●●

●

●●●
●●

(b) CRC32

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

elapsed execution time (cpu cycles)

D
D

R
 w

rit
e

pe
r

cy
cl

e

●●●

●

●●●●●

(c) FFT

0e+00 2e+07 4e+07 6e+07 8e+07

0e
+

00
2e

−
04

4e
−

04
6e

−
04

elapsed execution time (cpu cycles)

D
D

R
 w

rit
e

pe
r

cy
cl

e

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●

●●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●●●●●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●●

●

●

●●

●

●●●●

●

●

●●

●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●

●

●

●●●●●●●●●

●

●●●●

●

●●

●

●●

●

●●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●

●

●

●●

●

●●●

●

●●●●●●

●

●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●●●●

●

●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●

●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●

●

●

●●

●

●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●

●

●

●●

●

●●●●●●●

●

●●

●

●

●●

●

●●●●●●●●●●

●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●●

●●

●

●●

●

●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●

●●

●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●●

●

●●●●●●●●●●

●●

●●

●

●●●●●●●

●

●●●●●

●

●

●●●●●●●●●●

●

●●

●

●

●●

●

●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●●●●

●

●●

●

●●

●●

●●

●

●●●

●

●●●

●

●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●●●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●

●

●

●

●

●●●

●

●●●●●●

●

●

●●

●●

●●●●●●

●

●●●

●

●●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●

●●

●●

●

●●●

●

●●●

●

●●

●

●●

●●

●●●●●●●●●●

●

●●●●●●

●

●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●

●●

●●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●

●●●●●●●●●

●

●

●●

●

●●●

●

●●●●●●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●●●●●●●●●

(d) SHA

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0e
+

00
1e

−
05

2e
−

05
3e

−
05

4e
−

05
5e

−
05

elapsed execution time (cpu cycles)

D
D

R
 w

rit
e

pe
r

cy
cl

e

● ●

●

● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

● ●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ● ●

(e) Patricia

1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

elapsed execution time (cpu cycles)

D
D

R
 w

rit
e

pe
r

cy
cl

e

●

●

●
●

● ● ● ● ● ● ● ● ●
●

● ●

(f) Susan

0e+00 2e+09 4e+09 6e+09 8e+09 1e+10

0.
00

00
0.

00
04

0.
00

08
0.

00
12

elapsed execution time (cpu cycles)

D
D

R
 w

rit
e

pe
r

cy
cl

e

●

●●

●
●
●
●
●

●●●
●●

●

●●●
●●●
●●●●●●●●
●
●
●

●

●

●

●
●

●●

●

●
●●

●
●

●●

●

●
●●

●
●

●

●●
●
●●

●

●

●
●
●●
●●
●
●●●
●●●●●
●●

●

●

●●●

●●●

●●

●

●

●●

●

●

●●

●
●

●
●

●●
●
●

●

●

●
●
●●●●●●●●●●
●
●●●●

●

●

●

●●

●
●
●

●
●
●
●
●

●

●

●

●

(g) Airborne radar

0.0e+00 1.0e+09 2.0e+09 3.0e+09

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

elapsed execution time (cpu cycles)

D
D

R
 w

rit
e

pe
r

cy
cl

e

●

●

●

●●●
●●●

●●
●●●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●

●●
●●●●●●●

●
●
●●

(h) Pedestrian detection

Figure D.4.5: Variation of the number of DDR write per cylce during the full run
of (a) ADPCM, (b) CRC32, (c) FFT, (d) SHA, (e) Patricia, (f) Susan, (g) Airborne
radar, (h) Pedestrian detection. The black line denotes the mean value of the collected
metric.

120

D.4. LOCAL SIGNATURE

D.4.2 Using Local Signatures

While global signatures were only able to capture the average usage of each shared
hardware resource during the whole application runtime, local signatures enable
us to capture peak hardware resource usage at time slot level by selecting the
maximum value independently for each normalised hardware counter among the
succession of monitored vector values.

We can then create a signature composed of these maximum values, and
identify a stressing benchmark with a similar upper bound signature, as we have
done for global signatures. This identified stressing benchmark, appearing in Ta-
ble D.4.1 which is more pessimistic than results from global signatures in Table ??,
should behave as the original application constantly performing peak access to
its shared hardware resource. As a consequence, it is much more likely to be an
upper bound of the original application.

Application BIU/cycle DDRr/102cycle DDRw/102cycle
ADPCM 0.0198 0.9900 0.9900
CRC32 0.0029 0.2210 0.0690
FFT 0.0300 0.9300 0.3900
SHA 0.0048 0.4272 0.0528
patricia 0.0004 0.0383 0.0044
susan 0.0065 0.3464 0.3027
airborne radar 0.0068 0.5400 0.1360
pedestrian detection 0.0096 0.5126 0.4481

Table D.4.1: Stressing benchmarks identified with local signatures

To evaluate this new stressing benchmark candidate, we ran again each target
application on the 4-core cluster together with 3 instances of the original applica-
tion and afterwards with 3 instances of the identified closest stressing benchmark
as we have done for global signatures. Figure D.4.6 illustrates both the maximum
performance slowdown observed while three co-running original applications with
a single red dot, and the different possible slowdowns collected within successive
iterations while three co-running identified stressing benchmarks by a blue violin
plot.

This time mostly every violin plot completely appear above the mark, indicat-
ing a successful upper bounding, at the cost of a larger gap with this upper-bound.

Figure D.4.6(c)(e)(f)(g)(h) are respectively evaluating the results of stressing
benchmark candidate of FFT, patricia, susan, airborne radar and pedestrian
detection, now all of them displays systematic over bounding of the violin shapes
against the maximum observed runtime mark, exhibiting 100% successful over-
bounding ability. The safety margin of the over-bound increased compared to
global signatures from a maximum of 0.66% to 13% for FFT, 0.02% to 0.21%
for patricia, 0.96% to 13.57% for susan, 1.46% to 7.93% for airborne radar and

121

D
.4
.
L
O
C
A
L

S
IG

N
A
T
U
R
E

1 2 3 4 5 6

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(a
)
A
D
P
C
M

1.00 1.02 1.04 1.06 1.08 1.10

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar
runtime variability over standalone median runtime

(b
)
C
R
C
32

1.00 1.05 1.10 1.15 1.20

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(c)
F
F
T

1.00 1.02 1.04 1.06 1.08 1.10

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(d
)
S
H
A

1.00 1.02 1.04 1.06 1.08 1.10

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(e)
P
atricia

1.00 1.05 1.10 1.15 1.20

A
D

P
C

M
F

F
T

S
H

A
susan

pedestrian
C

R
C

32
blow

fish
patricia

radar

runtime variability over standalone median runtime

(f)
S
u
san

122

D.4. LOCAL SIGNATURE
1.

00
1.

05
1.

10
1.

15

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

ru
nt

im
e

va
ria

bi
lit

y
ov

er
 s

ta
nd

al
on

e
m

ed
ia

n
ru

nt
im

e

(g) Airborne radar

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

ADPCM FFT SHA susan pedestrian
CRC32 blowfish patricia radar

ru
nt

im
e

va
ria

bi
lit

y
ov

er
 s

ta
nd

al
on

e
m

ed
ia

n
ru

nt
im

e

(h) Pedestrian detection

Figure D.4.6: Evaluating the local signatures against the performance slowdown in-
duced by co-running with 3 instances of ADPCM, CRC32, FFT, SHA, patricia, susan,
airborne radar, pedestrian detection versus their equivalent stressing benchmarks. Blue
violin plots represent the runtime variability while co-running with stressing bench-
marks. The red marks denote the maximum runtime while co-running with the original
applications.

0.88% to 8.95% for pedestrian detection. However this over-margin remains far
below the maximum margin ×5 identified by co-running a target application with
resource stressing benchmarks in Figure C.6.2 and the worst case performance
slowdown ×4 (the WCET should be multiplied by a value close to the number of
cores being used) concluded in [22].

Figure D.4.6(b)(d) are showing similar results for the CRC32 and SHA stress-
ing benchmark. While providing a successful upper bound for 8 out of 9 applica-
tions, CRC32 fails to over bound while co-running with the CRC32 application
itself with a lower over margin 4.27% compared to 6.67% using global signatures.
The SHA stressing benchmark is exhibiting exactly the same behavior also suc-
cessfully upper-bounding for every application but itself, and it failed also with
a lower margin 0.88% compared to previous 2.11%.

Finally, for ADPCM presented in Figure D.4.6(a) which we were previously
unable to approximate with the global signatures due to its chaotic behavior, we
are now able to systematically over bound its WCET, but with a very large safety
margin (between ×3 and ×5) for CRC32 and the airborne radar applications.

Table D.4.2 summarizes evaluation results for every identified stressing appli-
cations, indicating first, the accuracy in terms of average safety margin to the
over bound, and second, the average over-bounding ability.

Over the 81 evaluations performed, we obtained an average over-margin of
12.1% and managed to successfully upper-bound in 97.5% of the cases.

123

D.4. LOCAL SIGNATURE

Application over-margin over-bounding
value ability

ADPCM 69.7% 100%
CRC32 6.26% 88.9%
FFT 3.71% 100%
SHA 9.51% 88.9%
patricia 0.45% 100%
susan 2.96% 100%
airborne radar 2.26% 100%
pedestrian detection 2.16% 100%

Table D.4.2: Evaluating local signature accuracy in terms of over-margin value and
over-bounding ability.

Compared to the state of the art, we managed to control the over margin,
but haven’t yet achieved the ultimate systematic over bounding, though being
now very close. One of the reasons that we cannot achieve 100% over bounding
is that we restricted ourselves into a few hardware monitors to represent the
application’s behavior on shared resources, which may not be sufficient to capture
the worst case performance slowdown caused by other non-collected activities.
The extending future work regarding to this point will be presented in Chapter
E.2.

124

Chapter D.5

Conclusion

In this part, we have presented a technique relying on stressing benchmarks to
easily compute the execution time upper bound for an application running on a
multi-core alongside a set of pre-determined applications. We created a stressing
benchmark to exhibit an upper bound behavior on shared resources of a pre-
determined application using:

• global signatures which only capture an average behavior of the application,
preventing us to simulate the worst case contention on shared resources
caused by the worst case behavior of the original application. Therefore,
global signatures are not able to systematically over bound the WCET, but
provide a good estimation of the runtime for applications whose behavior
are not too chaotic.

• local signatures relying on sampling techniques which capture the phase
behavior including the worst case behavior on shared resources of the ap-
plication. They thus allow us to over bound the WCET thanks to the ability
of simulating the worst case interference on shared resources.

This technique enables us to compute a tight WCET margin of a targeted
application with a single run on the multi-core, allowing the development of the
safety critical system to rapidly and easily determine if a given set of applica-
tions can run together while respecting their deadlines. Moreover, the proposed
technique is well adapted for the use in an industrial environment, where the
combination of different applications is typically limited and controlled.

Our initial evaluation shows that with only three monitored normalised hard-
ware counters: BIU/cycle, DDRr/cycle and DDRw/cycle, we are able to generate
representative stressing benchmarks. The proposed technique using the generated
stressing benchmarks is able to compute the execution time upper bound with an
average over-margin of 12.1%, with the worst case over-margin of 350%. In our

125

D.5. CONCLUSION

experiments the technique failed to over bound WCETs in two occassions (2.5%
of the total number of tests), which we expect to solve in the future work that
we present in Chapter E.2.

126

Part E

Conclusion

127

Chapter E.1

Conclusion

In the thesis, to achieve the overall objective - estimate the runtime variability of
co-running safety-critical applications on a multi-core COTS, we proposed first a
methodology to characterize the target architecture and applications, and second
an alternative method to estimate the WCET of co-running applications. To
better understand the potential runtime variability that co-running applications
may experience on a multi-core COTS, we quantified the variability of each target
application while co-running with a set of resource stressing benchmarks in the
target P4080 platform. The experimental results demonstrated a large variability
upto 396% due to the contention on shared hardware resources. To be able to
control such variability which would lead to unsustainable WCET margin far
above the performance benefits of multi-cores, we proposed a methodology to
characterize the architecture and target applications regarding shared hardware
resources.

During the characterizations, relying on hardware monitors and stressing
benchmarks we successfully

• identified which hardware resources are effectively shared

• discovered undisclosed features of the architecture - two 4-core clusters,
which helped select the mapping leading to the lowest variability.

• identified the optimal hardware configuration for safety-critical applications
according to two criteria: the low variability and sufficient overall perfor-
mance.

• identified the adequate mapping for mixed-critical applications and all-
critical applications.

• quantified shared hardware resource availability: the maximum throughput,
the saturation behavior and the topology of the CoreNet and the DDR

128

E.1. CONCLUSION

controller, which helped compute the CoreNet and DDR resource usage in
the application characterization.

During the application characterization, we relied on the identified optimal
hardware configuration to

• identify the sensitivity of each application to each shared resource, which
allowed us to understand upto which extent the application is sensitive to
each resource and upto which extent the performance of the application
may be slown down by the contention on each shared resource.

• compute the resource usage of each standalone application. A shared re-
source usage can accurately tell us how many percentages of the resource
(compared to its saturation value) is required by the application.

• identify possible co-running applications using resource usages. Applica-
tions whose total usage of each shared resource keeps below the correspond-
ing saturation value can run together without significantly endangering each
other’s deadline.

Based on the characterizations, we presented a technique relying on stressing
benchmarks to easily compute the execution time upper bound for an applica-
tion running on a multi-core alongside a set of pre-determined applications. We
created a stressing benchmark to exhibit an upper bound behavior on shared
resources of a pre-determined application using:

• global signatures which only capture an average behavior of the application,
preventing us to simulate the worst case contention on shared resources
caused by the worst case behavior of the original application. Therefore,
global signatures are not able to systematically over bound the WCET, but
provide a good estimation of the runtime for applications whose behavior
are not too chaotic.

• local signatures relying on sampling techniques which capture the phase
behavior including the worst case behavior on shared resources of the ap-
plication. They thus allow us to over bound the WCET thanks to the ability
of simulating the worst case interference on shared resources.

This technique enables us to compute a tight WCET margin of a targeted
application with a single run on the multi-core, allowing the development of the
safety critical system to rapidly and easily determine if a given set of applica-
tions can run together while respecting their deadlines. Moreover, the proposed
technique is well adapted for the use in an industrial environment, where the
combination of different applications is typically limited and controlled.

129

E.1. CONCLUSION

Our initial evaluation shows that with only three monitored normalised hard-
ware counters: BIU/cycle, DDRr/cycle and DDRw/cycle, we are able to generate
representative stressing benchmarks. The proposed technique using the generated
stressing benchmarks is able to compute the execution time upper bound with an
average over-margin of 12.1%, with the worst case over-margin of 350%. Com-
pared to the state of the art, our approach managed to better control the over
margin by simulating the worst case contention on shared resources that can be
produced by real co-running applications but not only using resource stressing
benchmarks to achieve the most pessimistic case [22, 28].

130

Chapter E.2

Future work

In the experiments, the technique to estimate the WCET failed in over-bounding
in two occassions (2.5% of the total number of tests), which can be concluded
into one main reason: according to the characterization results on shared re-
sources under the optimal configuration, we intuitively selected three normalised
hardware monitors (BIU/cycle, DDRr/cycle and DDRw/cycle) to represent an
application’s access behavior on the CoreNet and DDR and to identify a stress-
ing benchmark replacing the application, which means that we are only able to
estimate the worst case performance slowdown caused by the access contention
described by these monitors. However, there may be other hardware monitors
being responsible for the performance variability that we didn’t take account of,
like DDR page closing. For example, for the application CRC32, it has the lowest
overall DDR page closing frequency compared to other eight applications through
our experiments, which means that it has the most efficient memory access ref-
erence pattern to avoid the page switches. When it runs with other applications,
this most efficient pattern may be disturbed by memory accesses of co-runners
due to the sharing mechanism. In this case, additional increasing page switches
may dominate the performance slowdown of the CRC32. Since we didn’t ap-
ply the event DDR page closing to identify the CRC32’s replacement stressing
benchmark, we are not able to estimate the performance slowdown given by the
event.

Therefore, to ameliorate the over-bounding ability of our technique, we should
develop a framework automatically detecting the useful hardware monitors re-
sponsible for the variability before the estimation. Then, a more representative
stressing benchmark can be identified using detected useful monitors to com-
pletely simulate the worst case contention on variability sources, which will allow
to over bound the WCET in the co-running context.

In addition to 100% over-bounding ability, we are considering to reduce the
over margin obtained in our technique. The maximum average over margin from

131

E.2. FUTURE WORK

our experimental results is 69.7% while co-running a target application with sev-
eral ADPCM. That’s because ADPCM’s peak CoreNet and DDR usages are both
much larger than the global ones due to its too chaotic local behavior and we only
take the peak usages to design its replacement stressing benchmark. The stress-
ing benchmark is thus too pessimistic on resource usages, which leads to a large
over margin in the estimation. To control the over margin, we can additionally
take account of each resource usage distribution and design a stressing bench-
mark to have a more pessimitic distribution over the original one to provide a
tighter upper bound. However, we should admit that making a more pessimitic
distribution is inherently difficult for some local behavior without evident phases.

132

Part F

Appendix

133

Source Code of Stressing
benchmark

Listing 1 demonstrates an example source code of a stressing benchmark travers-
ing a integer table with parameters below:

• STRIDE: 1 element = 4 bytes

• OPERATION: write

• NOP: 1

• UNROLL: 8

Listing 1: Example source code of stressing benchmark

// r20 and r15 r e s p e c t i v e l y s t o r e the beg inn ing and the
end address o f the i n t e g e r t ab l e

// r16 c on t r o l s the ou t s i d e f o r e v e r loop
l i 16 , 0
// r17 i s the po in t e r o f the cur r ent t ab l e address ,

c o n t r o l s the i n s i d e loop (one t r av e r s o f the whole
t ab l e)

l o op f o r e v e r : mr 17 , 20
//STRIDE i s 1 element=4bytes , UNROLL=8
loop : stw 18 , 0(17)
nop
stw 18 , 4(17)
nop
stw 18 , 8(17)
nop
stw 18 , 12(17)
nop
stw 18 , 16(17)

134

. SOURCE CODE OF STRESSING BENCHMARK

nop
stw 18 , 20(17)
nop
stw 18 , 24(17)
nop
stw 18 , 28(17)
// s h i f t the po in t e r r17 to the next 8 element
addi 17 , 17 , 32
// determine i f the end o f the t ab l e
cmplw 17 ,15
b l t loop
// r16=0<1, the loop cond i t i on i s always t rue
cmpwi 16 ,1
b l t l o op f o r e v e r

135

TCL Script of Automating
Debugging Session

Listing 2 demonstrates an example of TCL script to automate a debugging session
where there are projects in core #0, core #1 and core #4. The core #1 is under
monitor and send the keyword over to inform the execution end and it also send
the start and end address of the memory area storing the results data to let
us save the data from the memory into the destination file. The blue words in
Listing 2 are the keywords of TCL and the red ones refer to the shell commands
of CodeWarrior.

Listing 2: Example TCL script of automating debugging session

launch a debug s e s s i o n f o r s e l e c t e d p r o j e c t s in c o r e 0 ,
core1 and core4

debug
in i t ia l i zat ion 2L3Part i t ion−core0 RAM P4080 Cache Download

wait 2000
debug stress bm−core1 RAM P4080 Cache Download
wait 2000
debug stress bm−core4 RAM P4080 Cache Download
wait 2000

s t a r t debug
mc: :go
wait 1000

detec t the end o f the execut ion o f p r o j e c t under
monitor by s u r v e i l i n g the keyword ” over ” in the l og
f i l e F l a g . t x t o f the PuTTY

se t f [open C:/ F l ag . t x t]
g e t s $ f l i n e
ge t s $ f l i n e

136

. TCL SCRIPT OF AUTOMATING DEBUGGING SESSION

whi le { [s t r i n g match ∗over∗ $ l i n e]<=0} {
puts stdout ”wait ”
puts $ l i n e
c l o s e $ f
wait 1000
s e t f [open C:/ F l ag . t x t]
g e t s $ f l i n e
ge t s $ f l i n e }

stop debug
mc: : s top

get the s t a r t and end address o f data s t o rage area
ge t s $ f saddr
ge t s $ f eaddr

save the data from the memory in to the d e s t i n a t i o n
f i l e

save −b ” p :0x$saddr . . 0x$eaddr ” . / f o l d e r / f i l e n ame . t x t −o
puts stdout ” s u c c e s s f u l ”

k i l l debug s e s s i o n
m c : : k i l l
puts $ l i n e
c l o s e $ f
puts stdout ” f i n i s h in 5 s e c s ”
wait 5000

qu i t CodeWarrior IDE
quitIDE

137

Python Script of Automating
Experiments

Listing 3 demonstrates an example of Python script to automate the whole ex-
periments mapping one application with two stressing benchmarks in different
cores. In the scenarios generation function, we create different scenarios with
different mappings, different parameters of stressing benchmarks and different
applications under monitor. In the configuration function, we modify the source
file and header file of the current stressing benchmark and compile them. The
application projects are pre-programmed and compiled statically, there is no need
to modify them. In the execution function, we configure all the projects using
the configuration function and create TCL script to automate the debugging ses-
sion within the CodeWarrior. As we presented in Section C.4.3.2, to avoid the
influence of the collapse of CodeWarrior, we create a background thread to kill
the CodeWarrior by force after waiting a threshold time.

Listing 3: Example Python script of automating experiments

import os
import s i g n a l
import subproces s
import s h u t i l
import thread
import thread ing
import time

wa s k i l l e d = Fal se
APP core = 0

s c ena r i o s gene ra t i on proce s s func t i on
de f g en e r a t e s c ena r i o () :

s c ena r i o = {}
i = 0
number APP = 1

138

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

name APP = ”CRC32”
whi l e number APP<10:

s t r i d e = 1
whi l e s t r i d e <= 16 :

t a b l e s i z e = 49152
whi l e t a b l e s i z e <= 262128:

s c ena r i o [i] = { ’ core0 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core1 ’ : { ’BM’ : ’ t rue ’ , ’

APP’ : ’ t rue ’ , ’
name APP ’ : name APP , ’
save ’ : s t r (name APP)+’
1+2SB wri te ’+s t r (
t a b l e s i z e)+’ ’+s t r (
s t r i d e) } ,

’ core2 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core3 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core4 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core5 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core6 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core7 ’ : { ’BM’ : ’ f a l s e ’ }
}

i = i+1
s c ena r i o [i] = { ’ core0 ’ : { ’BM’ : ’ f a l s e ’ } ,

’ core1 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ t rue ’ , ’
name APP ’ : name APP , ’
save ’ : s t r (name APP)+’
1+2SB wri te ’+s t r (
t a b l e s i z e)+’ ’+s t r (
s t r i d e) } ,

’ core2 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core3 ’ : { ’BM’ : ’ t rue ’ , ’

APP’ : ’ f a l s e ’ , ’

139

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core4 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core5 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core6 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core7 ’ : { ’BM’ : ’ f a l s e ’ }
}

i = i+1
s c ena r i o [i] = { ’ core0 ’ : { ’BM’ : ’ f a l s e ’ } ,

’ core1 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ t rue ’ , ’
name APP ’ : name APP , ’
save ’ : s t r (name APP)+’
1+2SB wri te ’+s t r (
t a b l e s i z e)+’ ’+s t r (
s t r i d e) } ,

’ core2 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core3 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core4 ’ : { ’BM’ : ’ t rue ’ , ’

APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core5 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core6 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core7 ’ : { ’BM’ : ’ f a l s e ’ }
}

i = i+1
s c ena r i o [i] = { ’ core0 ’ : { ’BM’ : ’ f a l s e ’ } ,

’ core1 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ t rue ’ , ’
name APP ’ : name APP , ’

140

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

save ’ : s t r (name APP)+’
1+2SB wri te ’+s t r (
t a b l e s i z e)+’ ’+s t r (
s t r i d e) } ,

’ core2 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core3 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core4 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core5 ’ : { ’BM’ : ’ t rue ’ , ’

APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core6 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core7 ’ : { ’BM’ : ’ f a l s e ’ }
}

i = i+1
s c ena r i o [i] = { ’ core0 ’ : { ’BM’ : ’ f a l s e ’ } ,

’ core1 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ t rue ’ , ’
name APP ’ : name APP , ’
save ’ : s t r (name APP)+’
1+2SB wri te ’+s t r (
t a b l e s i z e)+’ ’+s t r (
s t r i d e) } ,

’ core2 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core3 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core4 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core5 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core6 ’ : { ’BM’ : ’ t rue ’ , ’

APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core7 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :

141

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

s t r i d e }
}

i = i+1
s c ena r i o [i] = { ’ core0 ’ : { ’BM’ : ’ t rue ’ , ’

APP’ : ’ f a l s e ’ , ’ t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ : s t r i d e } ,

’ core1 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ t rue ’ , ’
name APP ’ : name APP , ’
save ’ : s t r (name APP)+’
1+2SB wri te ’+s t r (
t a b l e s i z e)+’ ’+s t r (
s t r i d e) } ,

’ core2 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core3 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core4 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core5 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core6 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core7 ’ : { ’BM’ : ’ t rue ’ , ’

APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e }

}
i = i+1
s c ena r i o [i] = { ’ core0 ’ : { ’BM’ : ’ t rue ’ , ’

APP’ : ’ f a l s e ’ , ’ t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ : s t r i d e } ,

’ core1 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ t rue ’ , ’
name APP ’ : name APP , ’
save ’ : s t r (name APP)+’
1+2SB wri te ’+s t r (
t a b l e s i z e)+’ ’+s t r (
s t r i d e) } ,

’ core2 ’ : { ’BM’ : ’ t rue ’ , ’
APP’ : ’ f a l s e ’ , ’
t a b l e s i z e ’ : s t r (
t a b l e s i z e) , ’ s t r i d e ’ :
s t r i d e } ,

’ core3 ’ : { ’BM’ : ’ f a l s e ’ } ,

142

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

’ core4 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core5 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core6 ’ : { ’BM’ : ’ f a l s e ’ } ,
’ core7 ’ : { ’BM’ : ’ f a l s e ’ }
}

i = i+1
i f t a b l e s i z e == 49152 :

t a b l e s i z e = 65536
e l i f t a b l e s i z e == 65536 :

t a b l e s i z e = 262128
e l i f t a b l e s i z e == 262128:

t a b l e s i z e = t a b l e s i z e+1
i f s t r i d e == 1 :

s t r i d e = s t r i d e ∗16
e l i f s t r i d e == 16 :

s t r i d e = s t r i d e + 1
i f name APP == ”CRC32” :

name APP = ”Adpcm”
e l i f name APP == ”Adpcm” :

name APP = ”Sha”
e l i f name APP == ”Sha” :

name APP = ”Blowf i sh ”
e l i f name APP == ”Blowf i sh ” :

name APP = ” Pa t r i c i a ”
e l i f name APP == ” Pa t r i c i a ” :

name APP = ”Susan”
e l i f name APP == ”Susan” :

name APP = ”FFT”
e l i f name APP == ”FFT” :

name APP = ”STAP”
e l i f name APP == ”STAP” :

name APP = ”Vio l a j one s ”
number APP = number APP + 1

return s c ena r i o

con f i g u r a t i on proce s s func t i on
de f c o n f i g u r a t e c o r e (number core , s cenar io exper iment , i

, debug) :
g l oba l APP core
i f the r e i s a benchmark in the cur r ent core

143

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

i f ((s c ena r i o expe r iment . get (i)) . get (’ co re ’+s t r (
number core))) . get (’BM’) == ’ t rue ’ :
i f the r e i s a s t r e s s i n g benchmark in the

cur r ent core
i f ((s c ena r i o expe r iment . get (i)) . get (’ co re ’+s t r (

number core))) . get (’APP’) == ’ f a l s e ’ :
there i s indeed a s t r e s s i n g benchmark in

the core , so open the source code f i l e
and modify i t accord ing to the s c ena r i o ’ s
parameters

f = open (”C:\ Users\ J ingy i \workspace\
stress bm−core ”+s t r (number core)+”\Source
\main . c” , ’w ’)

f . wr i t e (”#inc lude <s t d i o . h>\n”
”#inc lude \” P4080 Reg i s t e r s . h\”\n”
”#inc lude \” g l o b a l v a r i a b l e s . h\”\n”
”#de f i n e s t r i d e ”+s t r (((

s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))+”
\n”

” i n t 3 2 t mem[t a b l e s i z e] ; \ n”
” char ∗ pos wr i t e ;\n”
” char tab [4 0 0 0 0] ; \ n”
” i n t main () \n”
”{\n”
” i n t i =0, j =2;\n”
” po s wr i t e = tab ;\n”
” /∗ enable ex t e rna l i n t e r r up t s ∗/\n”
” asm v o l a t i l e (\n”
” \”mfmsr 0\\n\\ t \”\n”
” \” o r i 0 , 0 , 0xA000\\n\\ t \”\n”
” \”mtmsr 0\”\n”
” : : : \ ” r0 \”\n”
”) ;\n”
” mem[0]=&mem[t ab l e s i z e −1]+1;\n”
” f o r (i =1; i<t a b l e s i z e ; i++)\n”
” {\n”
” mem[i] = j ;\n”
” j++;\n”
” }\n”
” asm v o l a t i l e (\n”

144

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

” \” l i 16 , 0x0\\n\\ t \”\n”
” \” l i 18 , 0x1\\n\\ t \”\n”
” \” l i 19 , 0x0\\n\\ t \”\n”
” \” l i 21 , 0x0\\n\\ t \”\n”
” \”mr 20 , %0\\n\\ t \”\n”
” \” lwzx 15 , 16 , 20\\n\\ t \”\n”
” \” stwx 16 , 16 , 15\\n\\ t \”\n”
” \” l o op f o r e v e r : mr 17 , 20\\n\\ t \”\n”
” \” loop : stw 18 , 0(17) \\n\\ t \”\n”
” \” stw 18 , ”+s t r ((((

s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))
∗4)+” (17) \\n\\ t \”\n”

” \” stw 18 , ”+s t r ((((
s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))
∗8)+” (17) \\n\\ t \”\n”

” \” stw 18 , ”+s t r ((((
s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))
∗12)+” (17) \\n\\ t \”\n”

” \” stw 18 , ”+s t r ((((
s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))
∗16)+” (17) \\n\\ t \”\n”

” \” stw 18 , ”+s t r ((((
s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))
∗20)+” (17) \\n\\ t \”\n”

” \” stw 18 , ”+s t r ((((
s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))
∗24)+” (17) \\n\\ t \”\n”

” \” stw 18 , ”+s t r ((((
s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))
∗28)+” (17) \\n\\ t \”\n”

” \” addi 17 , 17 , ”+s t r ((((
s c ena r i o expe r iment . get (i)) . get (’ co re
’+s t r (number core))) . get (’ s t r i d e ’))
∗32)+”\\n\\ t \”\n”

145

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

” \”cmplw 17 ,15\\n\\ t \”\n”
” \” b l t loop \\n\\ t \”\n”
” \” lwzx 19 , 16 , 15\\n\\ t \”\n”
” \” addi 19 ,19 ,1\\n\\ t \”\n”
” \” stwx 19 , 16 , 15\\n\\ t \”\n”
” \”cmpwi 16 ,1\\n\\ t \”\n”
” \” b l t l o op f o r e v e r \”\n”
” : : \ ” r \”(mem) :\” r15 \” ,\” r16 \” ,\” r17

\” ,\” r18 \” ,\” r19 \” ,\” r20 \” ,\” r21 \”) ;\
n”

”}\n”
)

f . c l o s e ()

save t h i s modi f i ed source f i l e in a pre−
s e l e c t e d path f o r t r a c i n g backward in
case an e r r o r

f = open (”C:\ Users\ J ingy i \workspace\
stress bm−core ”+s t r (number core)+”\Source
\main . c”)

l i n e s = f . r e a d l i n e s ()
main = open (”C:\ Users\ J ingy i \workspace\

l og exper iment \ l o g s c e n a r i o ”+s t r (i)+”\
main core ”+s t r (number core)+” . c” , ’w ’)

main . w r i t e l i n e s (l i n e s)
main . c l o s e ()
f . c l o s e ()

modify the header f i l e accord ing to the
s c ena r i o ’ s parameters

f = open (”C:\ Users\ J ingy i \workspace\
stress bm−core ”+s t r (number core)+”\Source
\ g l o b a l v a r i a b l e s . h” , ’w ’)

f . wr i t e (”#inc lude <s t d i n t . h>\n”
”#de f i n e t a b l e s i z e ”+s t r (((

s c ena r i o expe r iment . get (i)) . get (’
co re ’+s t r (number core))) . get (’
t a b l e s i z e ’))+”\n”

” extern char ∗ pos wr i t e ;\n”
” extern i n t 3 2 t mem[t a b l e s i z e] ; \ n”
)

146

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

f . c l o s e ()

save t h i s modi f i ed header f i l e in a pre−
s e l e c t e d path f o r t r a c i n g backward in
case an e r r o r

f = open (”C:\ Users\ J ingy i \workspace\
stress bm−core ”+s t r (number core)+”\Source
\ g l o b a l v a r i a b l e s . h”)

l i n e s = f . r e a d l i n e s ()
g l o b a l v a r i a b l e s = open (”C:\ Users\ J ingy i \

workspace\ l og exper iment \ l o g s c e n a r i o ”+
s t r (i)+”\ g l o b a l v a r i a b l e s ”+s t r (
number core)+” . h” , ’w ’)

g l o b a l v a r i a b l e s . w r i t e l i n e s (l i n e s)
g l o b a l v a r i a b l e s . c l o s e ()
f . c l o s e ()

#compi le t h i s s t r e s s i n g p r o j e c t and save the
compi la t ion output in fo rmat ion in a txt
f i l e f o r t r a c i n g backward

f c omp i l e = open (”C:\ Users\ J ingy i \workspace\
l og exper iment \ l o g s c e n a r i o ”+s t r (i)+”\
s tdout compi l e ”+s t r (number core)+” . txt ” ,
’w ’)

c omp i l e f i l e = subproces s . c a l l ([”C:\Program
F i l e s (x86)\Fre e s ca l e \CW PA v10 . 1 . 2 \
e c l i p s e \ ecd . exe ” ,

”−bu i ld ” , ”−
verbose ” , ”−
p r o j e c t ” , ”C
:\ Users\
J ingy i \
workspace\
stress bm−
core ”+s t r (
number core)
, ”−
c l eanBu i ld ”
] ,

s tdout=
f compi l e ,

147

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

s t d e r r=
f comp i l e)

f c omp i l e . c l o s e ()

add t h i s s t r e s s i n g benchmark p r o j e c t in
debug command parameter

debug = debug + ”debug stress bm−core ”+s t r (
number core)+” RAM P4080 Cache Download ;
wait 2000 ; ”

e l i f ((s c ena r i o expe r iment . get (i)) . get (’ co re ’+
s t r (number core))) . get (’APP’) == ’ t rue ’ :
add t h i s app l i c a t i o n p r o j e c t in debug

command parameter
debug = debug + ”debug ”+((

s c ena r i o expe r iment . get (i)) . get (’ co re ’+
s t r (number core))) . get (’name APP ’)+”−core
”+s t r (number core)+”
RAM P4080 Cache Download ; wait 2000 ; ”

APP core = number core
re turn debug

execut ion proce s s func t i on
de f execute exper iment (scenar io exper iment ,

s t a r t s c e n a r i o , end s c ena r i o) :
i d s c e n a r i o = s t a r t s c e n a r i o
#con f i gu r e core0
g l oba l wa s k i l l e d
whi l e i d s c ena r i o<end s c ena r i o :

c r ea t e a l og f o l d e r f o r sav ing the cur r ent
execut ion in fo rmat ion f o r t r a c i n g backward

i f os . path . e x i s t s (”C:\ Users\ J ingy i \workspace\
l og exper iment \ l o g s c e n a r i o ”+s t r (i d s c e n a r i o)
)==False :
os . makedirs (”C:\ Users\ J ingy i \workspace\

l og exper iment \ l o g s c e n a r i o ”+s t r (
i d s c e n a r i o))

f l o g = open (”C:\ Users\ J ingy i \workspace\
l og exper iment \ l o g s c e n a r i o ”+s t r (i d s c e n a r i o)
+”\ l og . l og ” , ’w ’)

148

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

f l o g . wr i t e (” begin . . . \ n”)

#v e r i f y i f core0 i s only an i n i t i a l i z a t i o n or
not

i f ((s c ena r i o expe r iment . get (i d s c e n a r i o)) . get (’
core0 ’)) . get (’BM’) == ’ f a l s e ’ :
i d c o r e = 1
debug = ”debug i n i t i a l i z a t i o n s t r e s s −

core0 RAM P4080 Cache Download ; wait 2000 ;
”

e l i f ((s c ena r i o expe r iment . get (i d s c e n a r i o)) . get
(’ core0 ’)) . get (’BM’) == ’ t rue ’ :
i d c o r e = 0
debug = ””

#con f i gu r a t e a l l the co r e s accord ing to the
s c ena r i o

whi l e i d co r e <8:
debug = con f i g u r a t e c o r e (i d co r e ,

s cenar io exper iment , i d s c ena r i o , debug)
i d c o r e = i d c o r e+1

#cr ea t e t c l s c r i p t f o r automating debug
f = open (”C:\ Users\ J ingy i \workspace\ execut ion .

t c l ” , ’w ’)
f . wr i t e (””+debug+”\n”

”wait 2000\n”
”mc : : go ;\n”
”wait 1000 ;\n”
” s e t f [open C: / Flag . txt] ; \ n”
” ge t s $ f l i n e ;\n”
” ge t s $ f l i n e ;\n”
”whi l e { [s t r i n g match ∗ over∗ $ l i n e]<=0}

{\n”
” puts stdout \”wait \” ;\n”
” puts $ l i n e ;\n”
” c l o s e $ f ;\n”
” wait 1000 ;\n”
” s e t f [open C: / Flag . txt] ; \ n”
” ge t s $ f l i n e ;\n”
” ge t s $ f l i n e ;}\n”

149

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

”mc : : stop ;\n”
” ge t s $ f saddr ;\n”
” ge t s $ f eaddr ;\n”
” save −b \”p : 0 x$saddr . . 0 x$eaddr \” . /

r e s u l t s c l u s t e r c o r e s / ((
s c ena r i o expe r iment . get (i d s c e n a r i o))
. get (’ core ’+ s t r (APP core))) . get (’ save
’)+” s c e n a r i o ”+s t r (i d s c e n a r i o)+” . txt
” −o ;\n”

”puts stdout \” s u c c e s s f u l \”\n”
”mc : : k i l l ;\n”
”puts $ l i n e ;\n”
” c l o s e $ f ;\n”
”puts stdout \” f i n i s h in 5 s e c s \n\” ;\n”
”wait 5000 ;\n”
”quitIDE ; ”
)

f . c l o s e ()
save the t c l f i l e in the l og f o l d e r f o r

t r a c i n g backward
f = open (”C:\ Users\ J ingy i \workspace\ execut ion .

t c l ”)
l i n e s = f . r e a d l i n e s ()
f t c l = open (”C:\ Users\ J ingy i \workspace\

l og exper iment \ l o g s c e n a r i o ”+s t r (i d s c e n a r i o)
+”\ execut ion . t c l ” , ’w ’)

f t c l . w r i t e l i n e s (l i n e s)
f t c l . c l o s e ()
f . c l o s e ()

#execute t h i s s c ena r i o
1 . open the hypertermina l PuTTY
f = open (”C: / Flag . txt ” , ’w ’)
f . wr i t e (””)
f . c l o s e ()
putty = subproces s . Popen ([”C:\Program F i l e s (X86

)\PuTTY\putty . exe ” , ”−load ” , ”BIN”])
p r i n t ”putty launched”

2 . open the CodeWarrior IDE

150

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

cwide = subproces s . Popen ([”C:\Program F i l e s (x86
)\Fre e s ca l e \CW PA v10 . 1 . 2 \ e c l i p s e \ cwide . exe ” ,

”−vmargsplus ” , ”−Dcw. s c r i p t=\”C: / Users /
J ingy i /workspace/ execut ion . t c l \””])

3 . c r e a t e a backgroud thread as a t imer
con f i gu r ed with a th r e sho ld 2400 seconds with
kil l CW func t i on

wa s k i l l e d = Fal se
thread ki l l CW = thread ing . Timer (2400 , kill CW ,

[cwide , i d s c e n a r i o])
p r i n t ” t imer c r ea ted ”
thread ki l l CW . s t a r t ()

4 . i f the CodeWarrior qu i t s normal ly dur ing
the th r e sho ld time 2400 s , jump to the next
s c ena r i o ;

Otherwise , thread ki l l CW w i l l c a l l f unc t i on ”
kil l CW” to k i l l the CodeWarrior by f o r c e

p r i n t ” cwide . wait ”
cwide . wait ()
thread ki l l CW . cance l ()
p r i n t ” thread . e x i t ”
p r i n t ” s c ena r i o ”+s t r (i d s c e n a r i o)+” f i n i s h e d ”
i f wa s k i l l e d :

p r i n t ” s c ena r i o ” + s t r (i d s c e n a r i o) + ”
f a i l e d (re launch) ”

time . s l e e p (60)
e l s e :

i d s c e n a r i o = i d s c e n a r i o+1
putty . terminate ()
f l o g . wr i t e (”end . . . \ n”)
f l o g . c l o s e ()

r e turn 0

func t i on : k i l l the CodeWarrior by f o r c e
de f kil l CW (cwide , i d s c e n a r i o) :

p r i n t ” cwide i s dead , k i l l i n g i t (s c ena r i o ” + s t r (
i d s c e n a r i o) + ”) ”

g l oba l wa s k i l l e d

151

. PYTHON SCRIPT OF AUTOMATING EXPERIMENTS

wa s k i l l e d = True
cwide . terminate ()
subproces s . c a l l ([” t a s k k i l l ” , ”/IM” , ” cc s . exe ” , ”/F” , ”/T

”])
#make a log f i l e to note k i l l . cwide
f c lose CW = open (”C:\ Users\ J ingy i \workspace\

l og exper iment \ c l o s e CW in fo r c e \ l og ”+s t r (
i d s c e n a r i o)+” . l og ” , ’w ’)

f c lose CW . wr i t e (”Close CW in f o r c e in the s c ena r i o ”
+s t r (i d s c e n a r i o)+” ! ”)

f c lose CW . c l o s e ()

launch a l l the s c e n a r i o s
s c ena r i o expe r iment = gen e r a t e s c ena r i o ()
execute exper iment (scenar io exper iment , 0 , 378)

152

References

[1] E. Bailey. Study report on anionics systems for the time frame 2007, 2011
and 2020. European Organisation for the Safety of Air Navigation (EOSA),
EUROCONTROL, Nov 2004. 7, 10

[2] T. G. Baker. Lessons learned integrating COTS into systems. In Proceedings
of the First International Conference on COTS-Based Software Systems, IC-
CBSS ’02, pages 21–30, 2002. 18

[3] D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke. Temporal isolation on
multiprocessing architectures. In Proceedings of the 48th Design Automation
Conference, DAC ’11, pages 274–279, New York, NY, USA, 2011. ACM. 17

[4] F. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis,
C. Lo, and D. Maxim. PROARTIS: Probabilistically analysable real-time
systems, 2012. 18

[5] D. Dvorak and M. Lyu. NASA study on flight software complexity. Jet
Propulsion, page 264, May 2009. 7, 10

[6] C. Ebert and C. Jones. Embedded software: Facts, figures and future. Com-
puter, 42(4):42–52, April 2009. 4, 7, 10

[7] S. A. Edwards and E. A. Lee. The case for the precision timed (pret) machine.
In Proceedings of the 44th annual Design Automation Conference, DAC ’07,
pages 264–265, New York, NY, USA, 2007. ACM. 16, 17, 25

[8] A. Fedorova, M. Seltzer, and M. D. Smith. Improving performance isolation
on chip multiprocessors via an operating system scheduler. In Proceedings of
the 16th International Conference on Parallel Architecture and Compilation
Techniques, PACT ’07, pages 25–38, Washington, DC, USA, 2007. IEEE
Computer Society. 20

153

REFERENCES

[9] C. Ferdinand and R. Heckmann. aiT: worst case execution time prediction by
static program analysis. In IFIP Congress Topical Sessions, pages 377–384,
2004. 13

[10] C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling, I. Stein, S. Thesing,
and R. Heckmann. Program analysis and compilation, theory and practice.
pages 12–52. 2007. 8

[11] Freescale. CodeWarrior Development Tools. http://www.freescale.com/

webapp/sps/site/homepage.jsp?code=CW_HOME0. [Online]. 41

[12] Freescale. P4080 Product Summary Page. http://www.freescale.com/

webapp/sps/site/prod_summary.jsp?code=P4080. [Online]. 27

[13] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and analysis
for multicores. In EMSOFT, pages 245–254, 2009. 20

[14] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown.
Mibench: A free, commercially representative embedded benchmark suite.
In Proceedings of the Workload Characterization, 2001, WWC ’01, pages
3–14, 2001. 50

[15] R. Heckmann and C. Ferdinand. Verifying safety-critical timing and memory-
usage properties of embedded software by abstract interpretation. In Proceed-
ings of the conference on Design, Automation and Test in Europe, DATE’05,
pages 618–619, 2005. 4

[16] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System
level performance analysis - the SymTA/S approach. In IEEE Proceedings
Computers and Digital Techniques, 2005. 15

[17] J. L. Hintze and R. D. Nelson. Violin Plots: A Box Plot-Density Trace
Synergism. The American Statistician, 52(2):181–184, 1998. 55

[18] R. Kirner and P. Puschner. Obstacles in worst-case execution time analysis.
In Proceedings of the 11th IEEE Symposium on Object Oriented Real-Time
Distributed Computing, pages 333–339, 2008. 8, 11

[19] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner. Using measurements as
a complement to static worst-case execution time analysis. In Intelligent
Systems at the Service of Mankind, volume 2. Dec. 2005. 8, 15

[20] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee. Pre-
dictable programming on a precision timed architecture. In Proceedings of

154

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=CW_HOME0
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=CW_HOME0
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080

REFERENCES

the 2008 international conference on Compilers, architectures and synthesis
for embedded systems, CASES ’08, pages 137–146, 2008. 17

[21] E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis.
In Proceedings of the 11th International Workshop on Worst Case Execution
Time Analysis (WCET2011). 2011. 8

[22] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architec-
tures in avionics. European Dependable Computing Conference, pages 42–52,
2012. 21, 46, 47, 57, 123, 130

[23] R. Pellizzoni and M. Caccamo. Impact of peripheral-processor interference
on wcet analysis of real-time embedded systems. IEEE Trans. Computers,
59(3):400–415, 2010. 19

[24] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele. Worst
case delay analysis for memory interference in multicore systems. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2010, pages 741–
746, 2010. 19

[25] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder.
Using simpoint for accurate and efficient simulation. In SIGMETRICS, pages
318–319, 2003. 23

[26] PREDATOR. Design for predictability and efficiency. http://www.predator-
project.eu/. 16, 25

[27] P. Puschner and A. Burns. Guest editorial: A review of worst-case execution-
time analysis. Real-Time Systems, 18(2/3):115–128, 2000. 4

[28] P. Radojkovic, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F. J. Ca-
zorla. On the evaluation of the impact of shared resources in multithreaded
cots processors in time-critical environments. TACO, 8(4):34, 2012. 21, 25,
46, 47, 53, 130

[29] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. PRET DRAM con-
troller: bank privatization for predictability and temporal isolation. In Pro-
ceedings of the seventh IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, CODES+ISSS ’11, pages 99–
108, New York, NY, USA, 2011. ACM. 18

[30] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing analysis for tdma ar-
bitration in resource sharing systems. In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 215–224, 2010. 19

155

REFERENCES

[31] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. In IEEE
PACT, pages 3–14, 2001. 23

[32] B. Sprunt. The basics of performance-monitoring hardware. Micro, IEEE,
22(4):64–71, 2002. 24

[33] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quinones, M. Gerdes, M. Paolieri, J. Wolf, H. Casse, S. Uhrig, I. Gu-
liashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische. Merasa: Multi-
core execution of hard real-time applications supporting analyzability. IEEE
Micro, 30(5):66–75, 2010. 16, 25

[34] T. Ungerer, E. Quinones, H. Ozaktas, I. Broster, J. Fernandes, and S. Kehr.
parMerasa: Multi-core execution of parallelised hard real-time applications
supporting analysability. Workshop on Advanced Real-time Architectures
(ARPA), 2012. 16, 25

[35] Valgrind. Valgrind Home Page. http://valgrind.org/. [Online]. 23

[36] P. Viola and M. Jones. Robust real-time object detection. In International
Journal of Computer Vision, 2001. 52

[37] M. Wicks, M. Rangaswamy, R. Adve, and T. Hale. Space-time adaptive pro-
cessing: a knowledge-based perspective for airborne radar. Signal Processing
Magazine, IEEE, 23(1):51–65, 2006. 52

[38] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, T. Mitra, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, I. Puaut, R. Heckmann, F. Mueller,
P. Puschner, J. Staschulat, and P. Stenström. The worst case execution time
problem, overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., pages 36–53, May 2008. 4, 8, 10, 11, 13, 14, 15

[39] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdi-
nand. Memory hierarchies, pipelines, and buses for future architectures in
time-critical embedded systems. IEEE Trans. on CAD of Integrated Circuits
and Systems, 28(7):966–978, 2009. 19

[40] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao. Cache contention and applica-
tion performance prediction for multi-core systems. In ISPASS, pages 76–86,
2010. 20

[41] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.
Cachescouts: Fine-grain monitoring of shared caches in cmp platforms. In

156

http://valgrind.org/

REFERENCES

Proceedings of the 16th International Conference on Parallel Architecture
and Compilation Techniques, PACT ’07, page 339, 2007. 20

157

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	A Context
	A.1 Context
	A.1.1 Safety-critical Domain
	A.1.2 Worst Case Execution Time (WCET)
	A.1.3 Evolution of Architectures
	A.1.4 Challenge of Using Multi-cores for Safety-critical Applications
	A.1.5 Objectives

	A.2 State of the Art
	A.2.1 WCET Analysis in Single-cores
	A.2.1.1 Static Analysis
	A.2.1.2 Measurement-based Analysis
	A.2.1.3 Commercial WCET Tools

	A.2.2 In-house Approach for the WCET Estimate
	A.2.3 COTS Approach for the WCET Estimate
	A.2.4 Performance Evaluation
	A.2.5 Conclusion

	A.3 Target Platform - QorIQ P4080
	A.3.1 Structure of the P4080
	A.3.2 Hardware Monitors in the e500mc Core
	A.3.2.1 Performance Monitoring Example Using PMRs

	A.3.3 Hardware Monitors in the Platform P4080
	A.3.3.1 P4080 Memory Map Overview
	A.3.3.1.1 Local Address Map Example

	A.3.3.2 The Use of Platform Hardware Monitors

	A.3.4 P4080 Configurations
	A.3.4.1 Cache Partitioning in the P4080
	A.3.4.2 Compromise of Different Configurations

	A.3.5 Conclusion of Target Platform

	A.4 Software Environment - CodeWarrior
	A.4.1 Creating Projects in CodeWarrior
	A.4.2 Building Projects in CodeWarrior
	A.4.3 Debugging Projects in CodeWarrior

	A.5 Contribution

	B Quantifying Runtime Variability
	B.1 Overview
	B.2 Applications under Study
	B.2.1 Applications from Mibench Suite
	B.2.2 Industrial Applications

	B.3 Resource Stressing Benchmarks
	B.4 Quantifying Runtime Variability
	B.4.1 Experimental Scenario
	B.4.2 Representing Runtime Variability Using Violin Plots
	B.4.3 Quantification Using Stressing Benchmarks

	C Architecture and Application Characterization
	C.1 Characterization Methodology
	C.2 Measurement Techniques
	C.2.1 Hardware Monitors
	C.2.2 Stressing Benchmarks

	C.3 Experimental Setup
	C.3.1 Architecture Characterization
	C.3.1.1 Identifying Shared Hardware Resources
	C.3.1.2 Identifying Undisclosed Features and the Shared Resource Availability
	C.3.1.3 Identifying the Optimal Configuration

	C.3.2 Application Characterization
	C.3.2.1 Identifying Sensitive Shared Resources
	C.3.2.2 Capturing the Shared Resource Usage
	C.3.2.3 Determining Possible Co-running Applications using Resource Usages

	C.3.3 Design Space

	C.4 Implementation
	C.4.1 Measurement Framework
	C.4.2 Synchronization of Multi-cores Using the Interprocessor Interrupt (IPI)
	C.4.2.1 Use of the Interprocessor Interrupt
	C.4.2.2 Framework of Synchronizing Hardware Monitor Collections Using IPI

	C.4.3 Software Development Using CodeWarrior
	C.4.3.1 Automating the Debugging Session for a Single Experiment within CodeWarrior
	C.4.3.2 Automating Experiments outside CodeWarrior
	C.4.3.2.1 Generation Process
	C.4.3.2.2 Configuration Process
	C.4.3.2.3 Execution Process

	C.5 Architecutre Characterization Results
	C.5.1 Identifying Shared Hardware Resources
	C.5.2 Identifying Undisclosed Features
	C.5.3 Identifying the Optimal Configuration
	C.5.4 Selecting the Adequate Mapping
	C.5.5 Quantify the Shared Resource Availability

	C.6 Application Characterization Results
	C.6.1 Optimal Number of Iterations to Capture Variability
	C.6.2 Identifying the Sensitivity to Shared Resources
	C.6.3 Capturing the Shared Resource Usage
	C.6.4 Determining Possible Co-running Applications using Resource Usages

	C.7 Conclusion

	D Alternative technique to Estimate the WCET
	D.1 WCET Estimation Methodology
	D.2 Experimental Setup
	D.2.1 Experimental Scenario
	D.2.2 Measurement Techniques
	D.2.2.1 Hardware Monitors
	D.2.2.2 Stressing Benchmarks

	D.3 Global Signature
	D.3.1 Defining Global Signatures
	D.3.2 Using Global Signatures
	D.3.3 Limitation of Global Signatures

	D.4 Local Signature
	D.4.1 Defining and Collecting Local Signatures
	D.4.1.1 Collecting Local Signatures Using Fixed-Interval Timer (FIT)
	D.4.1.1.1 Implementing the FIT Interrupt
	D.4.1.1.2 Collecting Local Signatures

	D.4.2 Using Local Signatures

	D.5 Conclusion

	E Conclusion
	E.1 Conclusion
	E.2 Future work

	F Appendix
	Source Code of Stressing benchmark
	TCL Script of Automating Debugging Session
	Python Script of Automating Experiments
	References

