B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annual Review of Materials Science, vol.30, issue.1, pp.545-610, 2000.
DOI : 10.1146/annurev.matsci.30.1.545

V. Kovalenko, M. I. Bodnarchuk, and D. V. Talapin, Nanocrystal Superlattices with Thermally Degradable Hybrid Inorganic???Organic Capping Ligands, Journal of the American Chemical Society, vol.132, issue.43, pp.15124-15126, 2010.
DOI : 10.1021/ja106841f

V. Talapin and C. B. Murray, PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors, Science, vol.310, issue.5745, pp.86-89, 2005.
DOI : 10.1126/science.1116703

M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese et al., Schottky Solar Cells Based on Colloidal Nanocrystal Films, Nano Letters, vol.8, issue.10, pp.3488-3492, 2008.
DOI : 10.1021/nl802476m

S. Ginger and N. C. Greenham, Charge injection and transport in films of CdSe nanocrystals, Journal of Applied Physics, vol.87, issue.3, pp.1361-1368, 2000.
DOI : 10.1063/1.372021

J. M. Law, O. Luther, B. K. Song, C. L. Hughes, A. J. Perkins et al., Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines, Journal of the American Chemical Society, vol.130, issue.18, pp.5974-5985, 2008.
DOI : 10.1021/ja800040c

M. Liu, J. Gibbs, S. Puthussery, R. Gaik, H. W. Ihly et al., Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids, Nano Letters, vol.10, issue.5, pp.1960-1969, 2010.
DOI : 10.1021/nl101284k

H. Zarghami, Y. Liu, M. Gibbs, E. Gebremichael, C. Webster et al., p-Type PbSe and PbS Quantum Dot Solids Prepared with Short-Chain Acids and Diacids, ACS Nano, vol.4, issue.4, pp.2475-2485, 2010.
DOI : 10.1021/nn100339b

W. Kucur, R. B?-ucking, T. Giernoth, and . Nann, Determination of Defect States in Semiconductor Nanocrystals by Cyclic Voltammetry, The Journal of Physical Chemistry B, vol.109, issue.43, pp.20355-20360, 2005.
DOI : 10.1021/jp053891b

S. Von-holt, A. Kudera, T. E. Weiss, L. Schrader, W. J. Manna et al., Ligand exchange of CdSe nanocrystals probed by optical spectroscopy in the visible and mid-IR, Journal of Materials Chemistry, vol.12, issue.23, pp.2728-2732, 2008.
DOI : 10.1155/2007/26796

D. Ji, C. Copenhaver, X. Sichmeller, and . Peng, Ligand Bonding and Dynamics on Colloidal Nanocrystals at Room Temperature: The Case of Alkylamines on CdSe Nanocrystals, Journal of the American Chemical Society, vol.130, issue.17, pp.5726-5735, 2008.
DOI : 10.1021/ja710909f

S. Owen, J. Park, P. E. Trudeau, and A. P. , Reaction Chemistry and Ligand Exchange at Cadmium???Selenide Nanocrystal Surfaces, Journal of the American Chemical Society, vol.130, issue.37, pp.12279-12281, 2008.
DOI : 10.1021/ja804414f

B. Schapotschnikow, T. J. Hommersom, and . Vlugt, Adsorption and Binding of Ligands to CdSe Nanocrystals, The Journal of Physical Chemistry C, vol.113, issue.29, pp.12690-12698, 2009.
DOI : 10.1021/jp903291d

P. Bullen and . Mulvaney, The Effects of Chemisorption on the Luminescence of CdSe Quantum Dots, Langmuir, vol.22, issue.7, pp.3007-3013, 2006.
DOI : 10.1021/la051898e

C. Landes, M. Burda, M. A. Braun, and . Sayed, -Butylamine, The Journal of Physical Chemistry B, vol.105, issue.15, pp.2981-2986, 2001.
DOI : 10.1021/jp0041050

URL : https://hal.archives-ouvertes.fr/hal-00164163

K. Haram, B. M. Quin, and A. J. Bard, Electrochemistry of CdS Nanoparticles:?? A Correlation between Optical and Electrochemical Band Gaps, Journal of the American Chemical Society, vol.123, issue.36, pp.8860-8861, 2001.
DOI : 10.1021/ja0158206

D. Girolamo, P. Reiss, M. Zagorska, R. De-bettignies, S. Bailly et al., Layer-by-layer assembled composite films of side-functionalized poly(3-hexylthiophene) and CdSe nanocrystals: electrochemical, spectroelectrochemical and photovoltaic properties, Physical Chemistry Chemical Physics, vol.179, issue.27, pp.4027-4035, 2008.
DOI : 10.1039/b803029d

URL : https://hal.archives-ouvertes.fr/hal-00396533

P. Querner, S. Reiss, M. Sadki, A. Zagorska, and . Pron, Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals, Physical Chemistry Chemical Physics, vol.101, issue.1???3, pp.3204-3209, 2005.
DOI : 10.1039/b508268b

K. R. Sarasqueta, F. Choudhury, and . So, Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors, Chemistry of Materials, vol.22, issue.11, pp.3496-3501, 2010.
DOI : 10.1021/cm1006229

N. Lokteva, F. Radychev, H. Witt, J. Borchert, J. Parisi et al., Surface Treatment of CdSe Nanoparticles for Application in Hybrid Solar Cells: The Effect of Multiple Ligand Exchange with Pyridine, The Journal of Physical Chemistry C, vol.114, issue.29, pp.12784-12791, 2010.
DOI : 10.1021/jp103300v

L. Jaseniak, . Smith, P. Van-embden, M. Mulvaney, and . Califano, Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots, The Journal of Physical Chemistry C, vol.113, issue.45, pp.19468-19474, 2009.
DOI : 10.1021/jp906827m

J. Panyam and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Advanced Drug Delivery Reviews, vol.55, issue.3, pp.329-347, 2003.
DOI : 10.1016/S0169-409X(02)00228-4

R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, Journal of Physics: Condensed Matter, vol.18, issue.38, pp.2919-2934, 2006.
DOI : 10.1088/0953-8984/18/38/S26

Q. Sun, Y. A. Wang, L. Li, D. Wang, T. Zhu et al., Bright, multicoloured light-emitting diodes based on quantum dots, Nature Photonics, vol.15, issue.12, pp.717-722, 2007.
DOI : 10.1038/nphoton.2007.226

M. C. Schlamp, X. Peng, and A. P. , Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer, Journal of Applied Physics, vol.82, issue.11, pp.5837-5843, 1997.
DOI : 10.1063/1.366452

Y. L. Wu, C. S. Lim, S. Fu, A. I. Tok, H. M. Lau et al., Surface modifications of ZnO quantum dots for bio-imaging, Surface modifications of ZnO quantum dots for bioimaging, pp.215604-215613, 2007.
DOI : 10.1088/0957-4484/18/21/215604

E. Ying, D. Li, S. Guo, S. Dong, and J. Wang, « Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acidcoated CdTe nanocrystals, PloS one, p.2222, 2008.

K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan et al., Full, « Adhesive force of a single gecko foot-hair, Nature, vol.405, pp.681-686, 2000.

N. Greenham and X. Peng, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Physical Review B, vol.54, issue.24, pp.17628-17637, 1996.
DOI : 10.1103/PhysRevB.54.17628

B. Sun and N. Greenham, Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers, Physical Chemistry Chemical Physics, vol.67, issue.30, pp.3557-60, 2006.
DOI : 10.1039/b604734n

E. Couderc, N. Bruyant, A. Fiore, F. Chandezon, D. Djurado et al., Charge transport in poly(3-hexylthiophene):CdSe nanocrystals hybrid thin films investigated with time-of-flight measurements, Applied Physics Letters, vol.101, issue.13, p.133301, 2012.
DOI : 10.1063/1.4749840

D. Aldakov, A. Lefrancois, and P. Reiss, Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications, Journal of Materials Chemistry C, vol.186, issue.suppl. 3, pp.3756-3776, 2013.
DOI : 10.1039/c3tc30273c

S. Lany and A. Zunger, Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors, Physical Review B, vol.72, issue.3, pp.35215-35228, 2005.
DOI : 10.1103/PhysRevB.72.035215

F. Courtel, A. Hammami, R. Imbeault, G. Hersant, R. Paynter et al., -methylimidazole, Characterization and Growth Mechanism, Chemistry of Materials, vol.22, issue.12, pp.3752-3761, 2010.
DOI : 10.1021/cm100750z

URL : https://hal.archives-ouvertes.fr/dumas-01133550

J. Parkes, R. D. Tomlinson, and M. J. Hampshire, The fabrication of p and n type single crystals of CuInSe2, Journal of Crystal Growth, vol.20, issue.4, pp.315-318, 1973.
DOI : 10.1016/0022-0248(73)90099-7

L. L. Kazmerski and G. A. Sanborn, thin???film homojunction solar cells, Journal of Applied Physics, vol.48, issue.7, p.3178, 1977.
DOI : 10.1063/1.324058

T. Omata, K. Nose, and S. Otsuka-yao-matsuo, Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals, Journal of Applied Physics, vol.105, issue.7, p.73106, 2009.
DOI : 10.1063/1.3103768

L. E. Brus, Electron???electron and electron???hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, The Journal of Chemical Physics, vol.80, issue.9, pp.4403-4410, 1984.
DOI : 10.1063/1.447218

L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, The Journal of Physical Chemistry, vol.90, issue.12, pp.2555-2560, 1986.
DOI : 10.1021/j100403a003

H. Zhong, S. S. Lo, T. Mirkovic, Y. Li, Y. Ding et al., Nanocrystals and Their Size-Dependent Properties, ACS Nano, vol.4, issue.9, pp.5253-62, 2010.
DOI : 10.1021/nn1015538

B. Mao, C. Chuang, J. Wang, and C. Burda, Nanocrystals: Intrinsic versus Surface States, The Journal of Physical Chemistry C, vol.115, issue.18, pp.8945-8954, 2011.
DOI : 10.1021/jp2011183

S. Hong, H. K. Park, J. H. Oh, and H. , Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS, Journal of Materials Chemistry, vol.91, issue.36, pp.18939-18949, 2012.
DOI : 10.1039/c2jm33879c

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama et al., « Facile Synthesis of ZnS-AgInS 2 solid solution nanoparticles for a color adjustable luminophore, Journal of the American Chemical Society, vol.4, pp.12388-12389, 2007.

L. Li, A. Pandey, D. Werder, B. Khanal, J. Pietryga et al., Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission, Tunable Photoluminescence Wavelength of Chalcopyrite CuInS 2 -Based Semiconductor Nanocrystals Synthesized in a Colloidal System, pp.1176-1185, 2006.
DOI : 10.1021/ja108261h

K. Nose, T. Omata, and S. Otsuka-yao-matsuo, Colloidal Synthesis of Ternary Copper Indium Diselenide Quantum Dots and Their Optical Properties, The Journal of Physical Chemistry C, vol.113, issue.9, pp.3455-3460, 2009.
DOI : 10.1021/jp809398k

B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li et al., Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance, Highly Emissive and Color- Tunable CuInS2-based Colloidal Semiconductor Nanocrystals : Off- Stoichiometry Effects and Improved Electroluminescence Performance, pp.2081-2088, 2012.
DOI : 10.1002/adfm.201102496

L. Li, T. J. Daou, I. Texier, T. T. Kim-chi, N. Liem et al., /ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging, Highly Luminescent CuInS 2 /ZnS Core/Shell Nanocrystals : Cadmium-Free Quantum Dots for In Vivo Imaging, pp.2422-2429, 2009.
DOI : 10.1021/cm900103b

S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp, Nanoparticles from a Molecular Single-Source Precursor, Synthesis and Characterization of Colloidal CuInS 2 Nanoparticles from a Molecular Single-Source Precursor », pp.12429-12435, 2004.
DOI : 10.1021/jp049107p

Y. Hamanaka, T. Kuzuya, T. Sofue, T. Kino, K. Ito et al., Defect-induced photoluminescence and third-order nonlinear optical response of chemically synthesized chalcopyrite CuInS2 nanoparticles, Chemical Physics Letters, vol.466, issue.4-6, pp.176-180, 2008.
DOI : 10.1016/j.cplett.2008.10.055

T. Ogawa, T. Kuzuya, Y. Hamanaka, and K. Sumiyama, Synthesis of Ag???In binary sulfide nanoparticles???structural tuning and their photoluminescence properties, Journal of Materials Chemistry, vol.288, issue.11, p.2226, 2010.
DOI : 10.1039/b920732e

K. Nose, Y. Soma, T. Omata, and S. Otsuka-yao-matsuo, Nanocrystals; Phase Determination by Complex Ligand Species, Synthesis of Ternary CuInS 2 Nanocrystals ; Phase Determination by Complex Ligand Species, pp.2607-2613, 2009.
DOI : 10.1021/cm802022p

L. D. Trizio, M. Prato, A. Genovese, A. Casu, M. Povia et al., Nanocrystals by Partial Cation Exchange, Strongly Fluorescent Quaternary Cu ? In ? Zn ? S Nanocrystals Prepared from Cu 1 ? x InS 2 Nanocrystals by Partial Cation Exchange, pp.2400-2406, 2012.
DOI : 10.1021/cm301211e

J. Zhang, R. Xie, W. Yang, and «. A. , A Simple Route for Highly Luminescent Quaternary Cu-Zn-In-S Nanocrystal Emitters, Chemistry of Materials, vol.23, issue.14, pp.3357-3361, 2011.
DOI : 10.1021/cm201400w

Z. Tan, Y. Zhang, C. Xie, H. Su, J. Liu et al., Near-Band-Edge Electroluminescence from Heavy-Metal-Free Colloidal Quantum Dots, Advanced materials, pp.3553-3561, 2011.
DOI : 10.1002/adma.201100719

L. Li, N. Coates, and D. Moses, ChemInform Abstract: Solution-Processed Inorganic Solar Cell Based on in situ Synthesis and Film Deposition of CuInS2 Nanocrystals., ChemInform, vol.132, issue.21, pp.22-25, 2010.
DOI : 10.1002/chin.201021013

T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya et al., /ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity, ACS Nano, vol.4, issue.5, pp.2531-2539, 2010.
DOI : 10.1021/nn901421v

URL : https://hal.archives-ouvertes.fr/hal-00479841

J. Park and S. Kim, CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence, Journal of Materials Chemistry, vol.86, issue.11, pp.3745-3750, 2011.
DOI : 10.1039/c0jm03194a

A. Rockett and R. W. Birkmire, for photovoltaic applications, CuInSe2 for photovoltaic applications, p.81, 1991.
DOI : 10.1063/1.349175

W. Song and H. Yang, Fabrication of white light-emitting diodes based on solvothermally synthesized copper indium sulfide quantum dots as color converters, Applied Physics Letters, vol.100, issue.18, pp.183104-183108, 2012.
DOI : 10.1063/1.4711019

C. Yu, J. C. Yu, H. Wen, and C. Zhang, A mild solvothermal route for preparation of cubic-like CuInS2 crystals, Materials Letters, vol.63, issue.23, pp.1984-1986, 2009.
DOI : 10.1016/j.matlet.2009.06.030

K. Das, S. K. Panda, S. Gorai, P. Mishra, S. Chaudhuri et al., Effect of Cu/In molar ratio on the microstructural and optical properties of microcrystalline CuInS2 prepared by solvothermal route, Materials Research Bulletin, vol.43, issue.10, pp.2742-2750, 2008.
DOI : 10.1016/j.materresbull.2007.10.013

A. Pein, M. Baghbanzadeh, T. Rath, W. Haas, E. Maier et al., Nanoparticles by the Oleylamine Route: Comparison of Microwave-Assisted and Conventional Syntheses, Inorganic Chemistry, vol.50, issue.1, pp.193-200, 2011.
DOI : 10.1021/ic101651p

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect, The Journal of Chemical Physics, vol.129, issue.13, pp.134709-134715, 2008.
DOI : 10.1063/1.2987707

T. Li and H. Teng, Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes, Journal of Materials Chemistry, vol.130, issue.432, pp.3656-3664, 2010.
DOI : 10.1039/b927279h

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn et al., (CIGS) Nanocrystal ???Inks??? for Printable Photovoltaics, Synthesis of CuInS2,CuInSe2 and CIGS Nanocrystal " Inks " for Printable Photovoltaics, pp.16770-16777, 2008.
DOI : 10.1021/ja805845q

D. Pan, L. An, Z. Sun, W. Hou, Y. Yang et al., Synthesis of Cu???In???S Ternary Nanocrystals with Tunable Structure and Composition, Synthesis of Cu-In-S Ternary Nanocrystals with Tunable, pp.5620-5621, 2008.
DOI : 10.1021/ja711027j

M. E. Norako and R. L. Brutchey, Nanocrystals, Synthesis of Metastable Wurtzite CuInSe 2 Nanocrystals, pp.1613-1615, 2010.
DOI : 10.1021/cm100341r

X. Sheng, L. Wang, Y. Luo, and D. Yang, Synthesis of hexagonal structured wurtzite and chalcopyrite CuInS2 via a simple solution route, Nanoscale Research Letters, vol.6, issue.1, pp.562-568, 2011.
DOI : 10.1021/ic802399f

J. Wang, Y. Wang, F. Cao, Y. Guo, and L. Wan, ChemInform Abstract: Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application in High-Performance Organic-Inorganic Hybrid Photodetectors., ChemInform, vol.132, issue.49, pp.12218-12239, 2010.
DOI : 10.1002/chin.201049005

M. Kruszynska, H. Borchert, J. Parisi, and J. , Nanoparticles, Journal of the American Chemical Society, vol.132, issue.45, pp.15976-86, 2010.
DOI : 10.1021/ja103828f

S. T. Connor, C. Hsu, B. D. Weil, S. Aloni, and Y. Cui, Nanorods, Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods . », pp.4962-4968, 2009.
DOI : 10.1021/ja809901u

X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Controlled synthesis of wurtzite CuInS2 nanocrystals and their side-by-side nanorod assemblies, CrystEngComm, vol.11, issue.432, pp.4039-4045, 2011.
DOI : 10.1039/c0ce00451k

S. K. Batabyal, L. Tian, N. Venkatram, W. Ji, and J. J. Vittal, Nanocrystals, Phase-Selective Synthesis of CuInS 2 Nanocrystals, pp.15037-15042, 2009.
DOI : 10.1021/jp905234y

W. Zhang and X. Zhong, -Alloyed Nanocrystals for a Color-Tunable Fluorchrome and Photocatalyst, Inorganic Chemistry, vol.50, issue.9, pp.4065-72, 2011.
DOI : 10.1021/ic102559e

URL : https://hal.archives-ouvertes.fr/hal-01258459

W. Yue, S. Han, R. Peng, W. Shen, H. Geng et al., CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells, Journal of Materials Chemistry, vol.7, issue.481, p.7570, 2010.
DOI : 10.1039/c0jm00611d

Z. Luo, H. Zhang, J. Huang, and X. Zhong, One-step synthesis of water-soluble AgInS2 and ZnS???AgInS2 composite nanocrystals and their photocatalytic activities, Journal of Colloid and Interface Science One-step synthesis of water-soluble AgInS 2 and ZnS ? AgInS 2 composite nanocrystals and their photocatalytic activities, pp.27-33, 2012.
DOI : 10.1016/j.jcis.2012.03.074

R. Xie, M. Rutherford, and X. Peng, Formation of High-Quality I???III???VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors, Journal of the American Chemical Society, vol.131, issue.15, pp.5691-5698, 2009.
DOI : 10.1021/ja9005767

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya et al., Synthesis and Characterization of Near-Infrared Cu???In???Se/ZnS Core/Shell Quantum Dots for In vivo Imaging, Synthesis and Characterization BIBLIOGRAPHIE of Near-Infrared Cu?In?Se/ZnS Core/Shell Quantum Dots for In vivo Imaging, pp.6117-6124, 2010.
DOI : 10.1021/cm101881b

URL : https://hal.archives-ouvertes.fr/hal-00548762

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye et al., Nanocrystals, Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS 2 Nanocrystals, pp.6434-6443, 2008.
DOI : 10.1021/cm8006827

L. Shi, C. Pei, and Q. Li, « Ordered arrays of shape tunable CuInS(2) nanostructures, from nanotubes to nano test tubes and nanowires, pp.2126-2156, 2010.

Q. Lu, J. Hu, K. Tang, and Y. Qian, (M = In or Ga) through a Solvothermal Process, Synthesis of Nanocrystalline CuMS 2 ( M = In or Ga ) through a Solvothermal Process, pp.1606-1607, 2000.
DOI : 10.1021/ic9911365

Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie et al., (E = S, Se) Nanorods, Elemental Solvothermal Reaction To Produce Ternary Semiconductor CuInE 2 ( E = S , Se ) Nanorods », pp.2964-2965, 2000.
DOI : 10.1021/ic000126x

A. Zhang, Q. Ma, M. Lu, G. Yu, Y. Zhou et al., « Copper- Indium Sulfide Hollow Nanospheres Synthesized by a Facile Solution- Chemical Method & DESIGN, Crystal Growth & Design, vol.8, issue.7, pp.5-8, 2008.

S. Liu, H. Zhang, Y. Qiao, and X. Su, « One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution, RSC Advances, pp.819-825, 2012.

W. Du, X. Qian, and J. , Yin et Q. Gong, « Shape-and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. », Chemistry a european journal, pp.8840-8846, 2007.

A. L. Abdelhady, M. A. Malik, and P. O-'brien, iso-Propylthiobiuret-copper and indium complexes as novel precursors for colloidal synthesis of CuInS2 nanoparticles, Journal of Materials Chemistry, vol.21, issue.481, pp.3781-3785, 2012.
DOI : 10.1039/c2jm15460a

S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp, ) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors, Nanocrystalline Chalcopyrite Materials (CuInS 2 and CuInSe 2 ) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors, pp.3142-3147, 2003.
DOI : 10.1021/cm034161o

C. Sun, J. S. Gardner, G. Long, C. Bajracharya, A. Thurber et al., Chalcopyrite Nanoparticles from Single-Source Precursors via Microwave Irradiation, Controlled Stoichiometry for Quaternary CuIn x Ga 1? x S 2 Chalcopyrite Nanoparticles BIBLIOGRAPHIE from Single-Source Precursors via Microwave Irradiation, pp.2699-2701, 2010.
DOI : 10.1021/cm100456t

W. Zhou, Z. Yin, D. H. Sim, H. Zhang, J. Ma et al., nanostructures by a two-step solvothermal process, Nanotechnology, vol.22, issue.19, pp.195607-195613, 2011.
DOI : 10.1088/0957-4484/22/19/195607

M. Kruszynska, M. Knipper, J. Kolny-olesiak, H. Borchert, and J. Parisi, Charge transfer in blends of P3HT and colloidally prepared CuInS2 nanocrystals, Charge transfer in blends of P3HT and colloidally prepared CuInS2 nanocrystals, pp.7374-7377, 2011.
DOI : 10.1016/j.tsf.2010.12.102

Y. A. Wang, X. Zhang, N. Bao, B. Lin, and A. Gupta, Semiconductor Nanocrystals with Tunable Band Gap, Journal of the American Chemical Society, vol.133, issue.29, pp.11072-11077, 2011.
DOI : 10.1021/ja203933e

M. E. Norako, M. A. Franzman, and R. L. Brutchey, Growth Kinetics of Monodisperse Cu???In???S Nanocrystals Using a Dialkyl Disulfide Sulfur Source, Growth Kinetics of Monodisperse Cu?In?S Nanocrystals Using a Dialkyl Disulfide Sulfur Source, pp.4299-4304, 2009.
DOI : 10.1021/cm9015673

S. Choi, E. Kim, and T. Hyeon, One-Pot Synthesis of Copper???Indium Sulfide Nanocrystal Heterostructures with Acorn, Bottle, and Larva Shapes, Journal of the American Chemical Society, vol.128, issue.8, pp.2520-2521, 2006.
DOI : 10.1021/ja0577342

M. Kruszynska, H. Borchert, J. Parisi, and J. , Investigations of solvents and various sulfur sources influence on the shape-controlled synthesis of CuInS2 nanocrystals, Journal of Nanoparticle Research, vol.20, issue.11, pp.5815-5824, 2011.
DOI : 10.1007/s11051-011-0381-4

V. Lamer and R. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, Journal of the American Chemical Society, vol.72, issue.11, pp.4847-4854, 1950.
DOI : 10.1021/ja01167a001

C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, vol.115, issue.19, pp.8706-8715, 1993.
DOI : 10.1021/ja00072a025

S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo et al., Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by ???Heating-Up??? Process, Journal of the American Chemical Society, vol.129, issue.41, pp.12571-84, 2007.
DOI : 10.1021/ja074633q

S. Supothina, R. Rattanakam, and M. Suwan, « Microelectronic Engineering Effect of precursor morphology on the hydrothermal synthesis of nanostructured potassium tungsten oxide », microelectronic engineering, pp.182-186, 2013.

H. Reiss, The Growth of Uniform Colloidal Dispersions, The Journal of Chemical Physics, vol.19, issue.4, p.482, 1951.
DOI : 10.1063/1.1748251

X. Peng, J. Wickham, and A. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth:?? ???Focusing??? of Size Distributions, Journal of the American Chemical Society, vol.120, issue.21, pp.5343-5344, 1998.
DOI : 10.1021/ja9805425

A. Rogach, Semiconductor nanocrystal quantum dots, 2008.
DOI : 10.1007/978-3-211-75237-1

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard et al., Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol, ACS Nano, vol.2, issue.2, pp.271-280, 2008.
DOI : 10.1021/nn7003348

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins et al., Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines, Structural , Optical , and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines, pp.5974-5985, 2008.
DOI : 10.1021/ja800040c

Y. Wu and G. Zhang, Performance Enhancement of Hybrid Solar Cells Through Chemical Vapor Annealing, Nano Letters, vol.10, issue.5, pp.1628-1659, 2010.
DOI : 10.1021/nl904095n

J. Olson, G. Gray, and S. Carter, Optimizing hybrid photovoltaics through annealing and ligand choice, Solar Energy Materials and Solar Cells, pp.519-523, 2009.
DOI : 10.1016/j.solmat.2008.11.022

A. Nag, M. V. Kovalenko, J. Lee, W. Liu, B. Spokoyny et al., as Surface Ligands, OH-, and NH2-as surface ligands. », pp.10612-10632, 2011.
DOI : 10.1021/ja2029415

W. Liu, J. Lee, D. V. Talapin, and «. Iii-v, III???V Nanocrystals Capped with Molecular Metal Chalcogenide Ligands: High Electron Mobility and Ambipolar Photoresponse, Colloidal nanocrystals with molecular metal chalcogenide surface ligands. », Science, pp.1349-57, 2009.
DOI : 10.1021/ja308200f

M. V. Kovalenko, M. I. Bodnarchuk, J. Zaumseil, J. Lee, and D. V. , Expanding the Chemical Versatility of Colloidal Nanocrystals Capped with Molecular Metal Chalcogenide Ligands, Journal of the American Chemical Society, vol.132, issue.29, pp.10085-92, 2010.
DOI : 10.1021/ja1024832

A. T. Fafarman, W. Koh, B. T. Diroll, D. K. Kim, D. Ko et al., Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids, Journal of the American Chemical Society, vol.133, issue.39, pp.15753-61, 2011.
DOI : 10.1021/ja206303g

I. Lokteva, N. Radychev, F. Witt, H. Borchert, and J. Kolnyolesiak, Surface Treatment of CdSe Nanoparticles for Application in Hybrid Solar Cells: The Effect of Multiple Ligand Exchange with Pyridine, The Journal of Physical Chemistry C, vol.114, issue.29, pp.12784-12791, 2010.
DOI : 10.1021/jp103300v

D. V. Talapin and C. B. Murray, PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors, Science, vol.310, issue.5745, pp.86-95, 2005.
DOI : 10.1126/science.1116703

J. Choi, A. T. Fafarman, S. J. Oh, D. Ko, D. K. Kim et al., Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics, Nano letters, pp.2631-2639, 2012.
DOI : 10.1021/nl301104z

«. Murray and . Thiocyanate, Capped PbS Nanocubes : Ambipolar Transport Enables, Nano letters, vol.11, issue.11, pp.4764-4767, 2011.

K. W. Johnston, A. G. Pattantyus-abraham, J. P. Clifford, S. H. Myrskog, S. Hoogland et al., Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion, Applied Physics Letters, vol.92, issue.12, pp.122111-122114, 2008.
DOI : 10.1063/1.2896295

W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry et al., Photovoltaic Performance of Ultrasmall PbSe Quantum Dots, ACS Nano, vol.5, issue.10, pp.8140-8147, 2011.
DOI : 10.1021/nn202786g

P. Reiss, E. Couderc, J. De-girolamo, and A. Pron, Conjugated polymers/semiconductor nanocrystals hybrid materials???preparation, electrical transport properties and applications, Nanoscale, vol.20, issue.52, pp.446-89, 2011.
DOI : 10.1109/JSTQE.2010.2044557

D. Ginger and N. Greenham, Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals, Physical Review B, vol.59, issue.16, pp.10622-10629, 1999.
DOI : 10.1103/PhysRevB.59.10622

J. Nunzi, Organic photovoltaic materials and devices, Organic photovoltaic materials and devices, pp.523-542, 2002.
DOI : 10.1016/S1631-0705(02)01335-X

E. J. Klem, C. W. Gregory, G. B. Cunningham, S. Hall, D. S. Temple et al., heterojunction photovoltaic devices with 5.2% power conversion efficiency, Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2% power conversion efficiency, pp.173109-173113, 2012.
DOI : 10.1063/1.4707377

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Applied Physics Letters, vol.75, issue.1, pp.4-7, 1999.
DOI : 10.1063/1.124258

E. Arici, N. Sariciftci, and D. Meissner, Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices, Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices, pp.165-171, 2003.
DOI : 10.1002/adfm.200390024

S. K. Saha, A. Guchhait, and A. J. Pal, CZTS) nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells. », Physical chemistry chemical physics, pp.8090-8096, 2012.
DOI : 10.1039/c2cp41062a

«. Greenham, Vertically segregated hybrid blends for photovoltaic devices with improved efficiency, Journal of Applied Physics, vol.97, issue.1, p.14914, 2005.

M. D. Goodman, J. Xu, J. Wang, and Z. Lin, Semiconductor Conjugated Polymer???Quantum Dot Nanocomposites at the Air/Water Interface and Their Photovoltaic Performance, 131] R. C. Advincula, « Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. », Dalton transactions, pp.934-938, 2006.
DOI : 10.1021/cm803248j

Y. Yang, H. Zhong, Z. Bai, B. Zou, Y. Li et al., Composites, Transition from Photoconductivity to Photovoltaic Effect in P3HT/CuInSe 2 Composites, pp.7280-7286, 2012.
DOI : 10.1021/jp300973c

URL : https://hal.archives-ouvertes.fr/jpa-00227755

A. F. Sariciftci and . Nogueira, « The effects of CdSe incorporation into bulk heterojunction solar cells, Journal of Materials Chemistry, vol.20, issue.23, p.4845, 2010.

H. Fu, M. Choi, W. Luan, Y. Kim, and S. Tu, Hybrid solar cells with an inverted structure: Nanodots incorporated ternary system, Solid-State Electronics, vol.69, pp.50-54, 2012.
DOI : 10.1016/j.sse.2011.12.009

Y. Feng, D. Yun, X. Zhang, and W. Feng, Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots bilayer, Applied Physics Letters, vol.96, issue.9, pp.93301-93305, 2010.
DOI : 10.1063/1.3337100

M. Reyes-reyes, K. Kim, and D. L. Carroll, High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends, Applied Physics Letters, vol.87, issue.8, pp.83506-083509, 2005.
DOI : 10.1063/1.2006986

Y. Zhou, F. S. Riehle, Y. Yuan, H. Schleiermacher, M. Niggemann et al., Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene), Applied Physics Letters, vol.96, issue.1, p.13304, 2010.
DOI : 10.1063/1.3280370

H. Liao, S. Chen, D. Liu, and . In, In-Situ Growing CdS Single-Crystal Nanorods via P3HT Polymer as a Soft Template for Enhancing Photovoltaic Performance, Macromolecules, vol.42, issue.17, pp.6558-6563, 2009.
DOI : 10.1021/ma900924y

N. Radychev, D. Scheunemann, M. Kruszynska, K. Frevert, R. Miranti et al., Investigation of the morphology and electrical characteristics of hybrid blends based on poly(3-hexylthiophene) and colloidal CuInS2 nanocrystals of different shapes, Organic Electronics, vol.13, issue.12, pp.3154-3164, 2012.
DOI : 10.1016/j.orgel.2012.09.007

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Nguyen et al., Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science, vol.317, issue.5835, pp.222-227, 2007.
DOI : 10.1126/science.1141711

J. I. Langford and A. J. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, vol.11, issue.2, pp.102-113, 1978.
DOI : 10.1107/S0021889878012844

A. Lefrançois, E. Couderc, J. Faure-vincent, S. Sadki, A. Pron et al., Effect of the treatment with (di-)amines and dithiols on the spectroscopic, electrochemical and electrical properties of CdSe nanocrystals' thin films, Journal of Materials Chemistry, vol.113, issue.31, pp.11524-11531, 2011.
DOI : 10.1039/c1jm10538h

L. Adriaensens, J. V. Lutsen, D. Manca, N. S. Vanderzande, R. Sariciftci-asha et al., Convenient synthesis and polymerization of 5,6- disubstituted dithiophthalides toward soluble poly(isothianaphthene) : An initial spectroscopic characterization of the resulting low-band-gap polymers, Growth of CuInS2 thin films by sulphurisation of Cu?In alloys », Solar Energy Materials and Solar Cells, pp.1034-1045, 2004.

C. R. Bullen and P. Mulvaney, Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene, Nano Letters, vol.4, issue.12, pp.2303-2307, 2004.
DOI : 10.1021/nl0496724

B. Abécassis, F. Testard, O. Spalla, and P. Barboux, Probing in situ the Nucleation and Growth of Gold Nanoparticles by Small-Angle X-ray Scattering, Nano Letters, vol.7, issue.6, pp.1723-1730, 2007.
DOI : 10.1021/nl0707149

W. Han, L. Yi, N. Zhao, A. Tang, M. Gao et al., Synthesis and Shape-Tailoring of Copper Sulfide/Indium Sulfide-Based Nanocrystals, Journal of the American Chemical Society, vol.130, issue.39, pp.13152-61, 2008.
DOI : 10.1021/ja8046393

P. Espinet, M. C. Lequerica, J. M. Martín-alvarez, and «. Synthesis, Synthesis, Structural Characterization and Mesogenic Behavior of Copper(I)n-Alkylthiolates, Chemistry - A European Journal, vol.5, issue.7, pp.1982-1986, 1999.
DOI : 10.1002/(SICI)1521-3765(19990702)5:7<1982::AID-CHEM1982>3.0.CO;2-6

Y. Wang, A. Tang, K. Li, C. Yang, M. Wang et al., Shape-Controlled Synthesis of PbS Nanocrystals via a Simple One-Step Process, Langmuir, vol.28, issue.47, pp.16436-16479
DOI : 10.1021/la303738u

Y. Gao, M. Aerts, C. S. Sandeep, E. Talgorn, T. J. Savenije et al., Photoconductivity of PbSe Quantum-Dot Solids: Dependence on Ligand Anchor Group and Length, ACS Nano, vol.6, issue.11, pp.9606-9620, 2012.
DOI : 10.1021/nn3029716

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon et al., A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals, Journal of the American Chemical Society, vol.133, issue.4, pp.998-1006, 2011.
DOI : 10.1021/ja108948z

B. Milliron, Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein's salt. », Angewandte Chemie, vol.51, pp.684-693, 2012.

C. Querner, A. Benedetto, R. Demadrille, P. Rannou, and P. Reiss, Carbodithioate-Containing Oligo- and Polythiophenes for Nanocrystals' Surface Functionalization, Chemistry of Materials, vol.18, issue.20, pp.4817-4826, 2006.
DOI : 10.1021/cm061105p

S. Morin, Déposition galvanostatique du semi-conducteur CuInS2 sur un substrat de titane, Thèse doctorat, 2006.

O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland et al., A Charge-Orbital Balance Picture of Doping in Colloidal Quantum Dot Solids, ACS Nano, vol.6, issue.9, pp.8448-55, 2012.
DOI : 10.1021/nn303364d

H. Mattoussi, A. Cumming, C. Murray, M. Bawendi, and R. Ober, Properties of CdSe nanocrystal dispersions in the dilute regime: Structure and interparticle interactions, Properties of CdSe nanocrystal dispersions in the dilute regime : Structure and interparticle interactions, pp.7850-7863, 1998.
DOI : 10.1103/PhysRevB.58.7850

F. C. Spano, J. Clark, C. Silva, and R. H. Friend, Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films, The Journal of Chemical Physics, vol.130, issue.7, pp.74904-074920, 2009.
DOI : 10.1063/1.3076079

F. Witt, M. Kruszynska, H. Borchert, and J. Parisi, Charge Transfer Complexes in Organic???Inorganic Hybrid Blends for Photovoltaic Applications Investigated by Light-Induced Electron Spin Resonance Spectroscopy, The Journal of Physical Chemistry Letters, vol.1, issue.20, pp.2999-3003, 2010.
DOI : 10.1021/jz101194d

M. Pientka, Photogeneration of charge carriers in blends of conjugated polymers and semiconducting nanoparticles, Thin Solid Films, vol.451, issue.452, pp.451-452, 2004.
DOI : 10.1016/j.tsf.2003.11.040

A. Carrington and A. D. Mclaclan, In introduction to magnetic Resonance with applications to Chemistry and Chemical physics, 1967.

V. I. Krinichnyi, LEPR spectroscopy of charge carriers photoinduced in polymer/fullerene composites, Encyclopedia of Polymer Composites, 2009.

R. Alger, J. Electron-paramagnetic-resonance, J. Weil, J. Bolton, and . Wertz, Electron Paramagnetic Resonance, Techniques and Applications, American Journal of Physics, vol.37, issue.8, p.847, 1968.
DOI : 10.1119/1.1975893

M. D. Heinemann, K. Von-maydell, F. Zutz, J. Kolny-olesiak, H. Borchert et al., Photo-induced Charge Transfer and Relaxation of Persistent Charge Carriers in Polymer/Nanocrystal Composites for Applications in Hybrid Solar Cells, Advanced Functional Materials, vol.15, issue.23, pp.3788-3795, 2009.
DOI : 10.1002/adfm.200900852

V. I. Krinichnyi, E. I. Yudanova, and N. N. Denisov, Light-induced EPR study of charge transfer in poly(3-hexylthiophene)/fullerene bulk heterojunction, The Journal of Chemical Physics, vol.131, issue.4, pp.44515-044526, 2009.
DOI : 10.1063/1.3193722

D. J. Keeble, E. Thomsen, A. Stavrinadis, I. D. Samuel, J. M. Smith et al., Paramagnetic Point Defects and Charge Carriers in PbS and CdS Nanocrystal Polymer Composites, Paramagnetic Point Defects and Charge Carriers in PbS and CdS Nanocrystal Polymer Composites, pp.17306-17312, 2009.
DOI : 10.1021/jp9044429

J. Ceuster, E. Goovaerts, A. Bouwen, J. Hummelen, and V. Dyakonov, High-frequency (95 GHz) electron paramagnetic resonance study of the photoinduced charge transfer in conjugated polymer-fullerene composites, Physical Review B, vol.64, issue.19, pp.195206-195212, 2001.
DOI : 10.1103/PhysRevB.64.195206

K. Marumoto, Y. Muramatsu, and S. Kuroda, Quadrimolecular recombination kinetics of photogenerated charge carriers in regioregular poly(3-alkylthiophene)/fullerene composites, Applied Physics Letters, vol.84, issue.8, pp.1317-1320, 2004.
DOI : 10.1063/1.1650910

S. Choi, H. Song, I. K. Park, J. Yum, S. Kim et al., Synthesis of size-controlled CdSe quantum dots and characterization of CdSe???conjugated polymer blends for hybrid solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.179, issue.1-2, pp.135-141, 2006.
DOI : 10.1016/j.jphotochem.2005.08.004

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz et al., 2.5% efficient organic plastic solar cells, 5% Efficient Organic Plastic Solar Cells, pp.841-844, 2001.
DOI : 10.1063/1.1345834

URL : https://hal.archives-ouvertes.fr/hal-00328479

H. Hoppe and N. S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem., vol.152, issue.404, pp.45-61, 2006.
DOI : 10.1039/b505361g

P. W. Hummelen, L. J. Blom, and . Koster, « Origin of the enhanced performance in poly(3-hexylthiophene) : [6,6]-phenyl C[sub 61]-butyric acid methyl ester solar cells upon slow drying of the active layer, Applied Physics Letters, vol.89, issue.1, pp.12107-012110, 2006.

P. Schilinsky, Simulation of light intensity dependent current characteristics of polymer solar cells, Journal of Applied Physics, vol.95, issue.5, pp.2816-2820, 2004.
DOI : 10.1063/1.1646435

W. Ma, C. Yang, X. Gong, K. J. Lee, and . Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, pp.1617-1622, 2005.
DOI : 10.1002/adfm.200500211

B. I. Macdonald, A. Martucci, S. Rubanov, S. E. Watkins, P. Mulvaney et al., Nanocrystal Solar Cells, ACS Nano, vol.6, issue.7, pp.5995-6004, 2012.
DOI : 10.1021/nn3009189

A. Pivrikas, P. Stadler, H. Neugebauer, and N. S. Sariciftci, Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives, Organic Electronics, vol.9, issue.5, pp.775-782, 2008.
DOI : 10.1016/j.orgel.2008.05.021

G. Juska, K. Arlauskas, M. Viliunas, J. J. Kocka, N. S. Mozer et al., Extraction Current Transients: New Method of Study of Charge Transport in Microcrystalline Silicon, Physical review letters Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique190] A. Pivrikas, N. Sariciftci, G. Juska et R. Österbacka, « A Review of Charge Transport and Recombination in Polymer / Fullerene », progress in photovoltaics, pp.4946-4955, 2000.
DOI : 10.1103/PhysRevLett.84.4946

J. Huang, G. Li, and Y. Yang, Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends, Applied Physics Letters, vol.87, issue.11, p.112105, 2005.
DOI : 10.1063/1.2045554

S. Schorr, The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study, Solar Energy Materials and Solar Cells, pp.1482-1488, 2011.
DOI : 10.1016/j.solmat.2011.01.002

Q. Guo, H. W. Hillhouse, and R. Agrawal, Nanocrystal Ink and Its Use for Solar Cells, Synthesis of Cu 2 ZnSnS 4 Nanocrystal Ink and Its Use for Solar Cells, pp.11672-11673, 2009.
DOI : 10.1021/ja904981r

S. C. Riha, B. Parkinson, and A. L. Prieto, Nanocrystals, Journal of the American Chemical Society, vol.131, issue.34, pp.12054-12059, 2009.
DOI : 10.1021/ja9044168

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo et al., Nanocrystals for Use in Low-Cost Photovoltaics, Journal of the American Chemical Society, vol.131, issue.35, pp.12554-12559, 2009.
DOI : 10.1021/ja905922j

M. Cao and Y. Shen, A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles, Journal of Crystal Growth, vol.318, issue.1, pp.1117-1120, 2011.
DOI : 10.1016/j.jcrysgro.2010.10.071

Y. Zhou, W. Zhou, M. Li, Y. Du, and S. Wu, Particles for a Low-Cost Solar Cell: Morphology Control and Growth Mechanism, Hierarchical Cu 2 ZnSnS 4 Particles for a Low-Cost Solar Cell : Morphology Control and Growth Mechanism, pp.19632-19639, 2011.
DOI : 10.1021/jp206728b

Y. K. Jung, J. I. Kim, and J. Lee, Thermal Decomposition Mechanism of Single-Molecule Precursors Forming Metal Sulfide Nanoparticles, Journal of the American Chemical Society, vol.132, issue.1, pp.178-84, 2010.
DOI : 10.1021/ja905353a

S. D. Disale and S. S. Garje, using single-source precursors, Applied Organometallic Chemistry, vol.96, issue.12, pp.492-497, 2009.
DOI : 10.1002/aoc.1553

J. Hu, Q. Lu, B. Deng, K. Tang, Y. Qian et al., A hydrothermal reaction to synthesize CuFeS2 nanorods, Inorganic Chemistry Communications, vol.2, issue.12, pp.569-571, 1999.
DOI : 10.1016/S1387-7003(99)00154-9

M. Wang, L. Wang, G. Yue, X. Wang, P. Yan et al., Single crystal of CuFeS2 nanowires synthesized through solventothermal process, Single crystal of CuFeS2 nanowires synthesized through solventothermal process, pp.147-150, 2009.
DOI : 10.1016/j.matchemphys.2008.11.032

Y. A. Wang, N. Bao, and A. Gupta, Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals, Solid State Sciences, vol.12, issue.3, pp.387-390, 2010.
DOI : 10.1016/j.solidstatesciences.2009.11.019

D. Liang, R. Ma, S. Jiao, and G. , Pang et S. Feng, « A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance, pp.6265-6273

C. Ottone, P. Berrouard, G. Louarn, S. Beaupré, D. Gendron et al., Donor???acceptor alternating copolymers containing thienopyrroledione electron accepting units: preparation, redox behaviour, and application to photovoltaic cells, Polymer Chemistry, vol.133, issue.9, pp.2355-2365, 2012.
DOI : 10.1039/c2py20064c

P. W. Hines, E. H. Cyr, and . Sargent, « Efficient excitation transfer from polymer to nanocrystals, Applied Physics Letters, vol.84, issue.21, pp.4295-4297, 2004.