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Reshape and Relighting for Interactive Content Creation and Manipulation

Abstract

Over recent years, computer graphics tools and techniques have become accessible to a
wider audience, allowing non-experts to create 2D and 3D digital content of their own.
However, most users still lack the skills to create content that is both attractive and use-
ful.

This thesis proposes solutions to bridge this gap, by providing tools that can be used
by non-expert users to assist content creation for virtual worlds.

We first address the complexity present in current 3D modeling tools, which are tar-
geted at experienced users. Our approach allows users to simply drag and drop vertices
of an architectural model to accomplish the desired changes, while also adapting the tex-
tures. We cast the problem as a set of linear equations representing the structure of the
3D model. At run time, the equations are solved in a least squares sense, allowing the
user to make changes to the 3D model while preserving overall shape and texture.

We next adapt this approach to an immersive 3D virtual environment. The user can
interact with the modeling system using gestures, while immersed in a 4-wall projection
system. We augment our approach with basic lighting capabilities, allowing the user to
change the day and time of the year to visualize light distribution inside the architectural
model.

We conclude this thesis with a solution that allows users to change the lighting in
a photograph of a tree. We adopt a single scattering volume rendering approach to
approximate light distribution in tree canopies. Using a few pictures at a single time
of the day as input our solution enables the user to virtually change the time of day at
which the input picture was taken.

Keywords: Computer Graphics, Image-based Rendering, Human Computer Interface,
Interactive Mesh Editing, Linear Systems, Image-based Relighting, Global Illumination.





Remodelage et Ré-éclairage Pour La Création et Manipulation de Contenu
Interactif

Resumé

Ces dernières années, les outils et techniques d’infographie sont devenus accessibles à un
public plus large, permettant á des non-spécialistes de créer du contenu numérique 2D
ou 3D par eux-mêmes. Cependant, la plupart des utilisateurs n’ont pas les compétences
nécessaires pour créer du contenu qui soit à la fois esthétique et utile.

Dans cette thèse, nous proposons de combler cette lacune en fournissant des outils
qui peuvent être employés par des utilisateurs non-experts pour aider dans la création
de contenu numérique pour des mondes virtuels.

Nous examinons d’abord la complexité des outils de modélisation 3D actuels, qui
sont conçus pour des utilisateurs expérimentés. Notre approche permet aux utilisa-
teurs de simplement déplacer les sommets d’un modèle architectural pour effectuer les
changements souhaités, tout en adaptant les textures du modèle. Nous avons posé le
problème comme un système d’équations linéaires représentant la structure du modèle
3D. A l’exécution, les équations sont résolues selon la méthode des moindres carrés, per-
mettant à l’utilisateur de modifier le modèle 3D tout en préservant la forme générale et
la texture.

Nous adaptons ensuite cette approche à un environnement virtuel 3D immersif.
L’utilisateur peut interagir avec le système de modélisation en utilisant des gestes, étant
immergé dans un système de projection avec 4 murs. Nous étendons notre approche
avec des capacités d’éclairage basiques, permettant à l’utilisateur de changer le jour de
l’année et l’heure pour visualiser la distribution de la lumière à l’intérieur du modèle
architectural.

La dernière partie de cette thèse présente une solution qui permet aux utilisateurs
de modifier l’éclairage d’une photo d’un arbre. Nous adoptons une approche de rendu
volumique à un rebond pour estimer la répartition de la lumière dans le feuillage des
arbres. Avec quelques photos prises à un seul moment de la journée comme entrée,
notre solution permet à l’utilisateur de changer l’heure de la journée à laquelle la photo
d’origine à été prise, et ce avec un éclairage cohérent.

Mots clés: Infographie, Rendu á partir d’Images, Interface Homme/Machine, Modéli-
sation Interactive, Systèmes Linéaires, Ré-éclairage à partir d’Images, Eclairage Global
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target times can be found in the previous Figure 6.18 . . . . . . . . . . . . 103

6.20 The European mountain Ash. (Left) Ground Truth; (Right) Relit result.
The almost spherical nature of the canopy results in lack of detail from
the volumetric reconstruction. Slight banding artifacts can be seen (better
seen in the video - http://www-sop.inria.fr/members/Marcio.Cabral/thesis/). . 104

6.21 Mulberry Tree First row: input image and 2 target images with corre-
sponding times of day. Second row: resulting relit images using our ap-
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CHAPTER 1

Introduction

"Quando uma forma cria beleza

tem na beleza sua propria justificativa."

"When a shape creates beauty

its own beauty justifies it."

Oscar Niemeyer

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Easy Interactive Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Editing Photographs and Textures . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Human Computer Interfaces . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Context and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Interactive Geometry Editing . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Editing in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Relighting photographs of tree canopies . . . . . . . . . . . . . . . . . 7

1.3 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Sculpture, painting, modeling and other forms of art have existed for as long as
mankind exists. Artists, in each particular field, have expressed themselves through
the usage of these various techniques, which require dexterity as well as an acute eye to
make the most out of each tool.

The recent advent of computer systems has introduced new tools which allows artists
to express themselves using other media. In particular computer graphics has gained
much attention given that it provides the ability to create virtual worlds that look real as
well as augmenting real worlds with virtual objects. Personal computing brought com-
puter graphics tools and techniques closer to a wider audience, exposing "non-artists" to
the possibility of creating art of their own. However, most users still lack the required
dexterity and ability to create content that is both attractive and useful to them.

To bridge this gap by providing tools that can be used by non-expert users to assist
content creation for virtual worlds, we will present new solutions by exploring both
assisted content creation and interaction techniques that attempt to diminish the barrier
between users and current interaction devices based on 2D metaphors.
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Specifically we target two different fronts: interactive editing of architectural tex-
tured meshes and relighting photographs. For the former, we first develop a general
framework allowing easy editing, and then propose a solution in an immersive environ-
ment. For the latter, we concentrate on the case of tree canopies, which, as we shall see,
have several interesting properties.

We begin this introduction by presenting the main motivations to our work followed
by stating our main goals. We then finalize this Chapter with a brief overview of each
technique that is explored and developed in this thesis.

1.1 Motivation

We want to provide users with techniques and tools that leverage their abilities for creat-
ing content that would otherwise require artistic skills. My thesis focuses on two possible
directions for this: complex editing of existing content to create new models from basic
pieces and; parameterization and data extraction of lighting information in photographs
to allow editing.

1.1.1 Easy Interactive Modeling

It is hard for non-expert users to translate their creative ideas to create physical objects
or to the commands of a digital content creation program without the required skills to
put them to practice. Even if we consider, for example, the task of small scale changes to
an already created 3D model, it requires a considerable effort from an expert 3D artist to
achieve such modifications in existing commercial software modelers.

On the other hand, a small number of skilled people, namely artists, make available
daily a large quantity of new content, ranging from photographs to 3D models, that they
create and share with others often at no charge. In a ideal world, users would be able to
interactively edit this content, in its numerous formats and data types, in such a way that
pleases them. Users could achieve what would otherwise be impossible to them given
their restricted skills. Completely new content can be created by taking what has already
been developed. In such an ideal scenario, it would be possible to create completely new
content by taking and editing it accordingly and putting together different pieces.

Another important issue is that the size of virtual environments is increasing at an
unprecedented rate, both in terms of spatial extent and quantity of details. As a con-
sequence, most of the difficulty in producing interactive applications is now in dealing
with the graphical content. This is especially true with online environments featuring
spaces of several square kilometers.

At the same time, many games and online applications let users produce additional
content (referred to as user created content). This has fostered large communities of so
called modders, and thousands of additional game levels, objects and characters can be
found online for the most popular applications.

For instance, gamers often like to build game levels on their own. When a game
seems exhausted by the user, new game levels, created by the user himself, can open
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up novel possibilities in a game. Other possibilities include architectural design where
users want to visualize how ideas for remodeling a house would look like. For instance,
increasing the size of the living room while keeping the kitchen with the same area.

These two trends make example-based modeling approaches extremely interesting:
The idea is to let users create complex environments from a set of basic elements. Such
approaches have been successfully applied to avatar and character creation [EA, 2008],
and single objects [Funkhouser et al., 2004, Kraevoy et al., 2007]. However it has never
been applied to large scale architectural environments, despite its attractivity: Computer
artists save a lot of time by producing large amounts of content from small inputs, and
non-expert users can easily use such a system, as long as they are given examples - which
abound online.

Unfortunately approaches for mesh editing that work well on finely tessel-
lated, non textured object, fail to generalize to buildings and very structured
environments[Sorkine et al., 2004]. The key reason is that the properties that are pre-
served by those methods are not the ones that must be preserved in an architectural
model.

1.1.2 Editing Photographs and Textures

One can argue that casual computer users hardly use a tool for 3D modeling - but they
often take photographs. Another common activity that users normally do with com-
puter tools are photograph edits. Users often want to make changes to a photograph
taken. Currently available tools for photo editing allow a myriad of operations. How-
ever, changing the lighting in a photograph is a hard task. Users can mimic this effect
by altering the photograph’s brightness. But subtle effects such as indirect lighting and
self-shadows are hard to change or remove.

In outdoors scenes for instance, a compelling case would be to allow users to change
the time of the day or the day of the year at which the picture was taken. If such
a tool existed, a photograph taken in the morning in the summer could be trans-
formed automatically to a photograph taken in the early evening in the winter. In
this context, another common editing operation such as photo montage, would ben-
efit from inserting new elements in this scene, with matching lighting. Other edit-
ing operations on a photograph such as resizing have greatly improved over the years
[Avidan and Shamir, 2007, Shamir and Sorkine, 2009]. Content-aware methods aid users
to apply smart resize operations on photographs, preserving areas of interest and remov-
ing areas that will not be missed otherwise.

1.1.3 Human Computer Interfaces

During the course of development of this thesis we realized that despite enhanced tech-
nical functionality, some tools would benefit from an improved interface paradigm. 3D
tools are mostly used through a 2D interface metaphor such as the mouse and keyboard.
Experienced and expert users, in the long run, benefit from this paradigm as they get
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proficient with the tools. Newcomers to the 3D world however need to learn the 2D in-
terface in order to interact and possibly edit the 3D world. For small scale changes and
rapid prototyping, a 3D interface is better suited. We draw inspiration from a concept
video created by Bruce Branit called World Builder 1 - see Figures 1.1 (a) and (b).

(a) (b)

Figure 1.1: World Builder by Bruce Branit: (a) shows the interface paradigm for resizing
a 3D object, which is simply pinching two corners of a box and pulling them apart, to
achieve (b)

In this context devices that allow for these tasks to be accomplished play an impor-
tant role. Appropriate devices will allow users to communicate better with the computer
while expressing themselves with accuracy. In the long run, as showcased by the World

Builder’s concept and noted by [Bowman et al., 2008], gestural interfaces will allow users
to communicate seamlessly with the computer, providing true immersion to the user.

VR immersive systems provide such environments where a user can feel immersed,
given its limitations. We choose to build upon this concept and transposed one of the
solutions developed in this thesis to a 3D projection environment. Given its nature,
that of 3D manipulation, we felt that it was appropriate to explore this venue and de-
velop an interface that would give users a form of 3D interaction, using 3D devices,
to achieve the desired editing goals. Visual realism matters to the feeling of immersion
[Slater et al., 2009] but ultimately a proper, non-invasive interface completes the scenario
[Bowman et al., 2008].

1.1.4 Context and Previous Work

Several methods have been proposed to address the challenges described
above. Modeling from photographs [Shlyakhter et al., 2001] or from examples
[Funkhouser et al., 2004] have been explored in order to ease content creation.

Editing models also present an interesting challenge, where both geometric and the
underlying semantic information needs to be taken into account for modifications to be
reasonable. Office furniture arrangement has been dealt with an automatic placement al-
gorithm proposed by [Xu et al., 2002]. Although not interactive, it allowed users to direct

1http://www.branitvfx.com/worldbuilder/
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placement of objects in the scene as a way to enforce constraints. [Gleicher, 1994] pro-
posed a method to integrate constraints and direct manipulation for interactive editing.
If semantic information is available, more complex automatic modeling and further edit-
ing operations can be performed [Lipp et al., 2008]. Although not the case for most archi-
tectural types of meshes, highly tesselated meshes benefit from other editing approaches
such as Laplacian [Sorkine et al., 2004] and Poisson [Yu et al., 2004] based editing tech-
niques. Due to their complexity, editing occurs locally within the mesh. A more recent
approach [Gal et al., 2009] targeted at man-made objects identifies intelligent curves that
describe the shape of the object. Editing on the object is then performed through these
curves, providing a global scale change to the model, while preserving its features.

These techniques however explore editing of 3D meshes using a 2D desktop
metaphor as an interface. Other approaches try to face the problem from a different
perspective, paying attention to not only the technique involved but how can users effec-
tively act on editing these meshes. [Igarashi et al., 2007] Teddy is an interface metaphor
for creating 3D shapes from 2D sketches. As reported in this work, within minutes of
learning the interface, users are able to create interesting 3D models. Other techniques
take advantage of the large displays and their immersive nature to create novel interface
metaphors that can control the level of accuracy when interacting [Peck et al., 2009] or
to reach far away objects [Pierce et al., 1999, Bowman and Hodges, 1997]. Seminal work
done by [Mine et al., 1997a] explores the concept of proprioception for creating a 3D in-
teraction metaphor, positioning objects within reach of the users hands and body.

Despite recent work, [Bowman and Fröhlich, 2005] states there has not been an in-
crease of quality and usable solutions for VR applications in Immersive environments
mostly due to the lack of proper 3D UI research. We thus focus on extending our ap-
proach in 2D to a 3D metaphor proposing a novel interface for basic architectural light
and design which mixes different interaction scales at the same time (see Chapter 4).

Changing illumination in photographs is a long standing goal in computer graphics.
Several methods have been proposed but require a somewhat difficult capture proce-
dure to allow relighting offline [Yu et al., 1999] or even interactively [Loscos et al., 2000].
Inserting new objects in a photograph with matching lighting have also been solved
using complex capture procedures [Debevec, 1998] which requires some effort and it
is not targeted at causal computer users. Recent techniques approach this problem by
taking advantage of the large amount of data available online to achieve relighting by
transferring illuminant information between photographs [Lalonde et al., 2009]. These
data-driven approaches work well for most cases but require a considerable amount of
pre-processing.

We believe that despite previous work in these areas, there is still need for more
active development for tools that aid users create content seamlessly.

1.2 Goals

Our idea is to empower the average computer user and allow him to perform tasks that
would otherwise be too difficult to perform manually. In this context, our goal is to
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create tools that aid users at creating new content based on existing data. We target
two different areas: (1) creating new textured 3D models based on existing ones and; (2)
altering the lighting configuration at existing photographs.

More specifically for (1), we focus on architectural 3D models since these are widely
available online and commonly used in applications such as in games and design. For
(2) we choose to edit lighting in tree canopies for outdoor environments since these are
commonly encountered in most outdoor scenes.

1.2.1 Interactive Geometry Editing

To address the problem of interactive modeling of architectural environments we take
inspiration from previous approaches for mesh editing. Our main contribution, as dis-
cussed at length in Chapter 3, is the development of an interactive technique that au-
tomatically extracts a set of linear equations from the input that expresses their overall
shape. At run time, user interaction triggers the system to be solved in a least-squares
sense. The user has the freedom to drag and move vertices of the mesh while the under-
lying system deals with the details preserving the original characteristics of the mesh.

Textures are a crucial way of representing details in the architectural type of meshes.
They contain geometric information that adds depth and decoration to a variety of envi-
ronments. And such, when reshaping geometry, we have adapted our method to a simi-
lar reshape operator for textures. Our approach identifies regions of the texture that can
be stretched to concentrate deformations in these areas. Details are later re-introduced,
allowing a high-quality result overall.

Geometry reshape triggers the underlying texture reshape accordingly allowing it to
adapt to the new size of the mesh. Our system is interactive so all these operations are
executed at run-time. Due to its interactive nature, users can experiment with several
possibilities for mesh editing, going back and forth, to finally settle with the desired
editing choices.

Figures 1.2 (a) and (b) shows results of our interactive mesh editing tool. Figure 1.2
(a) shows an initial set of 3D meshes from various game levels. In Figure 1.2 (b) these
pieces have been reshaped and plugged together to create a new game level. Note how
textures change significantly between the input model and the final reshaped geometry.

1.2.2 Editing in 3D

While experimenting with our tool for mesh editing we realized that one difficulty was
the translation of the 3D commands through a 2D mouse/keyboard device configura-
tion. The ambiguity inherent in this metaphor is not suitable for interacting in a 3D ap-
plication such as in architectural editing. Visualizing and understanding the true depth
of the models reduces ambiguity in interaction. Moreover, it is arguably better to use 3D
commands in space for this type of geometric editing.

With this in mind, we further extended our approach and designed a 3D interface
to perform geometry editing while in a immersive VR environment, and in particular
the 4-sided BARCO iSpace at INRIA Sophia-Antipolis. In this environment, the user is
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(a)

(b)

Figure 1.2: (a) input 3D meshes from a game level; (b) our interactive mesh editing
approach allows pieces to be individually reshaped and plugged together to create new
environments with textures appropriately adapted.

surrounded by projection screens depicting the virtual world. Another advantage is that
thanks to an optical tracker, hand and head movements from the user can be tracked in
real-time.

We use this technology and allow the editing operations on the architectural mesh
to be performed in 3D. Users can grab and move vertices of the mesh, by means of a
flystick, just as if they were standing in front of the actual 3D model. In this system,
the user has three different options for interaction: a small scale version of the model is
presented in front of him; a 1:1 scale of model and; a mixed mode, where both the 1:1
scale and small scale are presented at the same time. We then evaluate user actions and
performance through these three different paradigms.

Additionally, we allow users to explore lighting design. We use a simplified version
of a global illumination algorithm to evaluate indirect lighting of the architectural world
being edited. Users can change the day of the year and the time of the day to simulate
how sun light will illuminate these models.

Figure 1.3 shows a user changing a window position in a mixed mode environment,
where both the 1:1 scale version of the 3D model and a small scale are present.

1.2.3 Relighting photographs of tree canopies

To achieve these goals we combine existing algorithms with novel techniques. First, in
Chapter 6 we develop a new approach which builds on volumetric modeling of trees to
allow relighting of photographs of tree canopies. Using a small set of photographs taken
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Figure 1.3: The user is changing the position of a window in Mixed Mode (more details
in Chapter 4).

from a tree at a single time of the day, we are able to perform relighting, i.e., change the
time of the day and/or day of the year at which the photograph was taken. We build
an approximate volumetric proxy of the tree canopy and estimate lighting parameters at
the time the input photograph was taken. Using a single scattering volumetric rendering
approach with image ratios, we are able to achieve a convincing effect for tree canopy re-
lighting which is qualitatively comparable to a ground truth photograph of a tree canopy
taken at the target time. For an example of our relighting technique, see Figures 1.4 (a),
(b) and (c). Figure 1.4 (a) shows the input photograph, taken at noon. Figure 1.4 (b)
shows our relighting result for changing the time of the day to 18h00. Figure 1.4 (c)
shows an actual photograph of the tree taken at the target time of 18h00.

(a) (b) (c)

Figure 1.4: (a) input photograph taken at noon; (b) our relighting result changing the
time of the day to 18h00; (c) a ground truth photograph taken at 18h00 for comparison.
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1.3 Contributions and Organization

Our goal is to contribute tools that ease content creation. As such, we consider the fol-
lowing to be contributions of this thesis:

- Interactive mesh editing tool targeted at architectural models: We developed an
algorithm that allows interactive editing of architectural 3D meshes, taking into account
both geometry and textures. Our formulation extracts a set of linear equations for both
geometry and textures, allowing users to edit the mesh in real-time while the underlying
system maintains coherence of the input meshes by solving the set of equations in a least-
squares sense. To our knowledge, this is the first time an algorithm proposes to edit both
geometry and textures concurrently and interactively.

- 3D interface for simple interactive architectural and lighting design: We devel-
oped a multi-mode immersive user interface to allow interactive textured mesh editing.
We allow users to perform simple architectural design using 3D gestures by means of a
joystick in a immersive projection environment. To our knowledge, this is the first ap-
proach that allows simple architectural editing with lighting design to be performed in
a VR immersive environment, which is also accompanied by a comparative study for
different interface configurations.

- Relighting photographs of tree canopies using as input photographs at a single
time of day: We develop an algorithm that takes as input a small set of photographs
from a tree at a single time of the day and performs relighting of the input by changing
the time and the day of the year of the photograph, effectively changing the illumination
of the tree canopy. Our method uses a volumetric approach to perform relighting. To
our knowledge, this is first time that an algorithm is able to relight tree canopies using
only a single lighting condition as input.

1.3.1 Organization

This thesis is structured in two main parts.
Part I starts with Chapter 2 which gives a brief overview of related work to our mesh

editing operator and its extension to a 3D environment. We then introduce our reshaping
operator in Chapter 3 and show its results. In Chapter 4 we explain how we extend our
reshape operator to a 3D environment and how we devise a set of tests to evaluate the
effectiveness and performance of our solution.

Part II presents our work on relighting photographs. In Chapter 5 we review litera-
ture related to tree modeling, image based relighting and volumetric algorithms. Then
in Chapter 6 we introduce our relighting algorithm for tree canopies.

Chapter 7 presents our final conclusions and discussions, giving insight to
future work. Finally, there is an online Appendix, located at http://www-

sop.inria.fr/members/Marcio.Cabral/thesis/ which contains additional results for our tree re-
lighting algorithm, containing the full set of time lapse photographs taken for ground
truth comparison as well as additional ground truth renderings for our synthetic trees.
The appendix also contains videos showing results for Chapters 3,4 and 6.
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Easy Interactive Modeling





Introduction to Part I

Our goal is to provide algorithms for users to interactively create new content without
knowledge of the specificities of the underlying software. Geometry editing in this con-
text should be as easy as dragging and dropping vertices from an initial position to the
desired location. In addition, for 3D models, textures play an important role. Textures
include a lot of detail that would be otherwise prohibitively expensive to describe in the
geometry alone.

Thus, we will develop a new approach that allows users to simply drag and drop
vertices to achieve the desired editing goal, while adapting textures and geometry ac-
cordingly. Geometry of the 3D model is described by a set of linear equations, repre-
senting their overall characteristics such as angles and surface contacts. Texture is also
described by a set of linear equations, with the key difference that we identify areas that
can be stretched, i.e, areas that do not posses a lot of detail. These equations are then
solved in real time and interactively, while trying to accommodate user’s changes to the
model. What is important here is that the user does not need to deal with the intrin-
sics of modeling: the underlying system handles these transformations, at interactive
framerates.

We further explore this system for 3D modeling in an immersive setting. We use spe-
cific interactive techniques targeted at using our system in an immersive environment,
called iSpace, where the user is surrounded by projection screens and can use gestures
to drag and drop vertices of the geometry. In this immersive context, we also allow in-
teractive lighting design, providing a preview of the appearance of the inside of a house
for different lighting conditions, such as early morning in the summer or late afternoon
in the winter. This is a new research direction and, to our knowledge, automatic and
interactive mesh editing has not been explored before in such an immersive context.

In the following Chapter we introduce related work that has inspired our develop-
ments. We then delve into the intrinsics of the proposed method to show how to auto-
matically change geometry plus textures to accommodate the user’s changes to the 3D
model. We finalize by showing how this system can be used in an immersive context,
showing results in an iSpace like environment.





CHAPTER 2

Previous Work for Part I
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2.1 Interactive Geometry Editing

Interactive mesh editing includes ideas from several areas. The most closely related
areas to our work are procedural modeling, modeling by example, mesh and constrained
editing, texture and image resizing, and room connectivity through portals. For each of
them, we present research most related to our work.

Procedural modeling Several approaches have been proposed for automatic geome-
try synthesis. L-Systems build geometry from a rule set. They have been applied
to plants [Prusinkiewicz and Lindenmayer, 1990], cities [Parish and Müller, 2001], build-
ings [Müller et al., 2006] and facades [Müller et al., 2007].

[Prusinkiewicz and Lindenmayer, 1990] explores mathematical models that define
processes and structures, from birth to death, of plants and their interaction with the
ecosystem. The authors showed impressive results using L-systems to generate strings
that are interpreted with the LOGO turtle paradigm.

[Parish and Müller, 2001] uses L-Systems to model a full city. The authors extend
L-Systems to take into account local constraints and global goals, replacing rules with
generic templates at each expansion step. This allows the modification of parameters in
external functions, reducing the complexity of rule creation.

[Müller et al., 2006] introduced CGA Shape, a grammar with production rules that
iteratively adds details to buildings. The modeling process first creates a volumetric
structure of the building, which is called a mass model. The modeling process continues
by adding structured details to façades and then windows. Model annotation is specified
during the modeling process, which aids in creating variety and variation, for instance,
when creating a full city. The method however depends on the input configuration, for
instance an arbitrary building footprint read from a GIS database, and it can produce
inconsistent configurations that are not plausible. As with most rule-based procedural
modeling, there is an intrinsic difficulty in learning the language, mostly faced by users
without a background related to computer science, as noted by the authors.
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[Müller et al., 2007] is a procedural façade modeling system which takes as input a
single aerial image of a building façade and enhances it by matching 2D features with a
database of existing 3D models representing several types of windows and doors. The
system automatically identify repeating features, both horizontally and vertically, such
as windows and doors for a building façade. The method uses the Mutual Information
statistical model, which compares intensities of nearby regions of the input image to de-
tect repeating elements, grouping them in a hierarchical order within the façade. It works
for low resolution input textures but it fails if the façade structure is not symmetric, with
prominent details and variation across floors.

Similarly, geometric languages let the user write programs generating complex
shapes from simple operations [Berndt et al., 2005]. While such approaches often pro-
vide very impressive results, the main drawback is the level of expertise they require:
The rules have to describe how every single geometric primitive is to be placed in the
scene.

[Lipp et al., 2008] attempts to leverage the intrinsic difficulty of procedural model-
ing and grammar editing with a visual tool. Despite impressive results with visual in-
terfaces, understanding of rules and grammars is still necessary, to a certain extent, to
create/modify initial models.

These methods produce impressive results; however they all require manual labeling
of 3D models which makes them unsuitable for our approach. We favor the use of 3D
models available online which may not contain such information. We believe that this
is a frequent use-case, especially as more and more ready-made model libraries become
available.

Modeling by example [Merrell, 2007] proposed an example-based scene synthesis
method producing impressive results. The method is inspired by traditional texture
synthesis and it can be seen as an extension to 3D of the traditional 2D texture synthesis.
The example is given as a set of building blocks aligned on a regular 3D grid, which
evidently have to be very carefully modeled. As noted by the author, example models
which are not carefully constructed will reproduce exactly the input model, given the
tight constraints present on the input example. By reproducing the neighboring rela-
tionships of the input blocks in the output, the algorithm automatically generates larger
randomized environments. The method was recently adapted to handle arbitrary in-
puts [Merrell and Manocha, 2008].

Other approaches have been proposed to model from examples, in particular by as-
sembling mesh pieces. [Funkhouser et al., 2004] let the user slice parts from objects and
assemble them in new ways. The process is interactive and intuitive: it allows the user
to draw strokes to segment parts of 3D models. Strokes are used as input to search for
a best cut on the mesh that satisfies some criteria such as cutting only through smaller
edges, choosing edges closer to the center of the stroke, etc. Once parts have been seg-
mented, they can be assembled together by using a two-par process: placement and
attachment. Placement is achieved using a voxel version of the ICP (Iterative Closest
Point) algorithm [Besl and McKay, 1992]. The ICP algorithm will converge to a locally
optimal solution, which minimizes the sum of the squared distances between the mod-
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els. The voxel version of the ICP does not need an initial guess and is guaranteed to give
a globally optimal solution. Attachment uses a simple heuristic to find corresponding
edges and create fillet edges connecting both independent parts, creating a watertight
and smooth connection. Despite impressive results, the system is limited to connecting
segmented parts of matching regions, for instance, animal heads or house ceilings. The
system does not handle connection of completely different parts, for an example, as cited
by the authors, a bell in a church does not match a bell on a fire engine. The segmenta-
tion system also does not handle well strokes that are too close to the boundary of the
mesh and it does not handle occlusions (for mesh parts that are not visible to the user)
although the authors provide a remedy to this problem using a "laser cut" segmentation,
which cuts through the geometry. The results produced are interesting and it allows
users to produce a large variety of new models.

[Kraevoy et al., 2007] follow a similar approach. Unlike [Funkhouser et al., 2004],
the proposed method automates alignment and segmentation, which avoids putting to-
gether segments that differ significantly. The automatic segmentation aims at providing
perceptually meaningful decomposition of input meshes, which can be both natural or
man-made objects. The heuristics for segmenting the input meshes rely solely on geom-
etry features such as convexity and angles, which limits segmentation of more semantic
parts such a cheek or a forehead on a human face. The system was tested using a pro-
totype interface called shuffler which automatically selects possible segments for a given
model part chosen by the user, giving a naive user a powerful tool to produce impressive
results.

Both methods [Kraevoy et al., 2007] [Funkhouser et al., 2004] are targeted at creating
objects and would be difficult to adapt for entire environments. A similar approach
is used by [Zhou et al., 2006] at a much finer scale to synthesize mesoscale structures.
Patches of geometrical details are carefully stitched together to cover a surface. This
approach draws inspiration from regular 2D texture synthesis - it carries the same lim-
itations of earlier approaches such as repetition. The algorithm heavily depends on the
underlying geometry and the local parameterization of surface patches which presents
a problem for regions with high curvature such as objects with high genus or complex
models. Similarly to some 2D texture synthesis methods, if the 3D swatch is not tileable,
perfectly aligned synthesis and matching cannot be achieved.

More recently, data driven approaches have been developed to ease 3D modeling.
[Merrell et al., 2010] introduced a data driven approach to model architectural houses
from high level input. The method produces plausible results from architectural high
level input and user’s constraints. The optimization method however takes at least a few
seconds for the simpler models, making it unsuitable in its current form to interactive
techniques.

Mesh editing Mesh editing techniques provide interactive tools to deform a mesh
while retaining its overall appearance, for instance such as Poisson mesh edit-
ing [Yu et al., 2004] and Laplacian surface editing [Sorkine et al., 2004]

[Yu et al., 2004] introduces a strong theoretical formulation to mesh editing using the
Poisson equation. The formulation allows mesh editing based on gradient field ma-
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nipulation and boundary condition editing. This technique manipulates the gradients of
each vertex of the mesh and deforms the reconstructed surface by solving a least-squares
system. The system is formulated as a parameterization of the vertices of the mesh
into a discretized Poisson equation with Dirichlet boundary conditions. The method
allows large-scale and local deformation of the mesh while preserving features. The au-
thors also develop a powerful interface capable of manipulating boundary conditions to
achieve interactive mesh editing in a intuitive manner to users.

Alternatively, Laplacian surface editing [Sorkine et al., 2004] represents geometric
details of a mesh by means of their distances between vertices and the average of all their
respective neighbors. This is known as a Laplacian coordinate. The key contribution of
this work is the ability to make Laplacian coordinates invariant to rotation and isotropic
scaling in addition to translation. A transformation T which encodes linear transfor-
mations of isotropic scale and translation of a vertex is introduced into the Laplacian
coordinate implicit representation of the mesh. When solving in a least squares sense,
T is computed and allows for scaling and rotation, which Laplacian coordinates cannot
handle. The bulk of processing occurs when factoring the matrices, while solving for
a new user vertex position request is fast. Due to performance constraints, the system
works locally, on a limited, well-defined area of the mesh. Nevertheless, it can handle
interactively segmented areas of a mesh with at least 10000 vertices.

In related work, a method for model resizing has been recently proposed
[Kraevoy et al., 2008]. The proposed method allows axis-aligned non-uniform scaling
of 3D models. Vulnerable parts of the mesh are identified - they will receive most of the
stretching during deformation. These areas are selected based on metrics such as slip-
page [Gelfand and Guibas, 2004] and surface normal curvature. Deformation on the 3D
model occurs indirectly, by applying changes to a 3D grid which encloses the full model.
Each grid cell has scaling properties defined by the metrics of the underlying geome-
try. These properties are expressed in a system of linear equations and express locally
how each cell changes. This is the first step; this system of equations is solved using
a preconditioned MINRES solver [Toledo et al., 2003]. Another set of linear equations
restricts the global motion of the cells, keeping the grid cells aligned to their axis, and
prevents undesirable sheering of the model. This global system of equations is solved
using a conjugate gradient solver [Toledo et al., 2003]. The proposed method performs
well for most man made shapes. However, memory and computation time implied by
the 3D grid used would be a big handicap for our particular case since it allows only
axis-aligned reshaping.

Most of these approaches work very well as long as the mesh is smooth and finely
tessellated. In particular, highly tessellated meshes often depict organic shapes, where
they achieve impressive results and allow interactive changes to a mesh through user
interaction, while preserving the overall original shape. However, this does not hold for
architectural pieces, where the tessellation is often irregular and sharp edges are com-
mon. Our approach is inspired by these works and it provides a new formulation better
suited to our needs.
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Constrained editing In earlier work, [Gleicher, 1992] outlined the benefit of mixing direct
manipulation with constraint solvers. Spatial relationships between objects are inferred
from user manipulations and later maintained by the system. The ability to continuously
update the model while the user interacts with it is called Differential Constraints by the
authors. To maintain constraints during this dragging operation performed by the user,
the authors treat the model as a differential equation and solve a sparse-linear systems
to maintain the non-linear constraints. In comparison to our approach, we disturb the
model slightly, subdividing each user interaction into small steps and solve for each one
of this changes. Gleicher notes that this rapid visual feedback is essential. It allows the
user to explore under-constrained models permitting user experimentation and a better
understanding of how the model behaves when a particular motion is applied. The
author developed a system called Briar to test the proposed techniques.

Similarly, [Xu et al., 2002] helped the layout of many objects in a scene by guiding
user manipulation using constraints. The objects can be placed automatically. Objects
are placed in the scene in a 2D manner: 3D objects are reduced to 2D polygons by project-
ing their convex hull on the ground plane. This produces simple and convex polygons.
With these conditions, the 2D spatial planning problem can be solved using the classic
theory of Minkowski sums and differences. Objects are also organized semantically, for
instance, with attributes as "can support another object". Finally the system developed
also integrates a pseudo-physics engine, disallowing object interpenetration and auto-
matically placing objects in a stable position. A scene layout containing 300 objects can
be accomplished in approximately 10 minutes using the proposed system. Alternatively
the user can guide the process or suggest modifications by restricting the positioning of
an object.

We follow a similar trend proposed by these two papers: we let the user manipulate
a scene while the system automatically updates vertex positions and textures through
constraints. We take advantage of the visual feedback, as noted by [Gleicher, 1992] to
provide the user interactive editing abilities to explore model variation. Also, similar to
the Snap-Dragging technique by Gleicher, we allow the user to interactively add con-
straints to the 3D model, integrating them automatically into the set of linear equations
and changing the behavior of future mesh editing operations.

Texture and image resizing There has been much recent work on texture and image re-
sizing. The closest approach to ours has been proposed by [Wang et al., 2008]. A grid is
used to deform an image while preserving gradients. This method could be adapted to
our needs, although our emphasis is more on structure versus detail rather than salience,
as targeted by the authors. The grid is overlaid on top of the original image; regions with
homogenous content are stretched and regions with details, considered to be important,
are simply scaled. Important (or "attractive pixels" as suggested by the authors) are
identified by a significance map, which is a composition of two measures: image gra-
dient and saliency. Saliency identifies pixels that are different from its surroundings (in
different scales). Like previous methods, it does not preserve straight lines or prominent
lines that are not aligned to the xy-axis of the overlaid quad mesh.

Seam carving [Avidan and Shamir, 2007] minimizes energy to find the appropriate
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image seams to remove (or add),effecting content-aware image resizing. Seams are op-
timal paths in a image, either horizontally or vertically, that minimizes its cost for a
given energy function. Reducing the size of an image is achieved by removing succes-
sive optimal seams. To increase the size of an image, optimal k−seams are found first
and then replicated using the average of their neighboring pixels: this avoids repetition
and stretching artifacts. The authors experimented with several cost functions such as
L1 and L2, saliency map and the Harris-corners measure to show that no single function
performs better across all images. Although all functions produces similar results, they
found that a simple energy function that minimizes the differences between neighbor-
ing pixels in both the horizontal and vertical directions performed well for most cases.
These costs functions, do not identify visual cues and important structured areas, such
as human faces, and thus the algorithm fails to preserve these areas.

[Tai et al., 2008] use texture synthesis from example [Wei and Levoy, 2000] to recover
details in stretched image areas when a 2D texture is applied to 3D models. Usually
this 2D mapping to the 3D geometry produces regions with highly distorted textured
appearance. These distorted areas are identified and amended using an adapted version
of the graph-cut texture synthesis technique [Kwatra et al., 2003] that takes into account
texture flow. Flow is identified manually by user strokes. Texture synthesis is applied
to a high-frequency version of the stretched area to reduce illumination effects in the
final result. The resulting high frequency synthesis is then combined with the original
low frequency texture using a standard Poisson image blending technique. Like most
texture synthesis techniques, this approach works best for near-regular and stochastic
textured regions.

These ideas are related to our approach to reintroduce details to stretched texture
areas. Our method extracts tiles from the stochastic textured regions. These tiles contain
details that are re-introduced in the stretched areas (see following Chapter, Section 3.4.5).
If the stretched area is bigger than the tile, a modulo operation allows the tile details to be
repeated across the textured region. The bigger the stretch, the more the re-introduced
details will appear. The key difference is that our approach must allow for interactive
feedback. We call this approach detail sliding.

Interiors as connected rooms Representing scenes – especially interiors – as a set
of rooms connected together is very convenient for fast on-line visibility determina-
tion [Teller and Séquin, 1991]. [Lefebvre and Hornus, 2003] proposed a way to obtain
such a decomposition automatically from a binary partitioning of the scene. The many
small convex cells are merged into larger ones, following a rendering cost-driven heuris-
tic. [Haumont et al., 2003] position portals at strangulations of the volume distance field
defined by the distance to the walls. This distance field D in 3D serves as an adaptation
to classic 2D image segmentation algorithm called watershed, which a flooding process
starts at places of local minimum height and identifies where valleys merge. The merg-
ing area is replaced by a damp which is the location of the portal.

In contrast to the above approaches, we consider geometry and texture reshape to-
gether. However, we do explore room connectivity using pre-defined portals, which
are elements that identifies openings in a 3D model. This simplification allows a sim-
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ple alternative for the propagation of texture and geometry reshape to other models, as
explained in Section 3.5.

2.2 Interactive 3D Manipulation

Interactively changing geometry is inherently a 3D task. The methods previously de-
scribed however are targeted at using a 2D desktop metaphor for interaction. This in-
terface paradigm imposes restrictions on the activities performed by users of such sys-
tems, limiting the full potential of such applications. Recent work on surface editing
and modeling has focused on how to provide a better interface for users to express their
skills [Igarashi et al., 2007]. We extend our interactive geometry editing approach to an
immersive environment, where the user is surrounded by stereo projection screens, pro-
viding users the ability to use 3D gestures to effectively edit geometry. Additionally, we
introduce interactive lighting design for simple architectural 3D models. This is a novel
task that takes advantage of the immersive nature of a 3D projection environment. In
the rest of this section, we describe work in this area that is relevant and has inspired our
work.

[Ball et al., 2007] show that physical navigation improves user performance and in-
teraction for perception of data in visualization. Additionally, in a recent publication,
[Peck et al., 2009] presented a multi-scale interaction for tasks such as selection and ma-
nipulation, which adapts itself depending on the distance between the user and the vi-
sualization device.

We draw inspiration from these ideas for interaction targeted at architectural editing.
We focus on building a system that allows users to design a simple house composed of
separate rooms. We take advantage of the immersive setting and provide the users a way
to explore the designed house from different viewpoints including a 1:1 scale where the
user can position himself and navigate inside the house. In this context useful operations
are changing the height and widget of a room; adding windows and doors to a room;
changing the size of windows and doors and; adding more rooms to complete a full
house.

These operations are available to the user through widgets. These widgets only ap-
pear near a surface when the user gets close to them, avoiding unnecessary clutter in
the virtual environment. Widgets are positioned where the user can easily perform co-
located gestures to achieve the desired editing operation. Our definition of co-located
gestures means that the user can, without discomfort, use his hands to reach the model
in front of him.

Depending on the scale of the object with respect to the user, changes to the model
are either likely to be local, directed toward a specific detail of a specific part of the 3D
model (for instance, changing the size of a single step in staircase) or global (for instance,
changing the size of corridor, or of a roof top).

We use a form of multi-scale interaction [Peck et al., 2009] to allow users to interact
with the system using different modes. Each mode has a different scale and allows the
use of a different viewpoint for manipulating the objects in the environment. We believe
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that fatigue is also reduced by using a multi-scale approach for interaction, as user’s
gestures are confined to a smaller 3D space. The available modes for interaction are
based on exocentric and egocentric paradigms and are called Table Mode, which follows
the exocentric paradigm; Immersive Mode, which follows the egocentric paradigm and
a mode which is a composition of the two previous modes, called Mixed Mode. These
modes will be describe in detail in Section 4.3.

In architectural design, users need tools for interaction which are simple yet pro-
vide enough flexibility to achieve the desired goal. Simple and generic manipula-
tion techniques such as Go-go [Poupyrev et al., 1996] may be limited for architectural
design, since they are not practical when dealing with a large number of objects
[Chen and Bowman, 2009]. Architectural design and geometric modeling have tradi-
tionally been privileged applications for virtual reality systems [Deisinger et al., 2000,
Bullinger et al., 2010, Leigh and Johnson, 1996]. Our approach draws inspiration from
these and others but addresses the problem from a different perspective. We restrict
users to a small number of available actions depending on their position with respect to
the 3D environment. This will unclutter the environment displayed. We also provide a
combination of different viewpoints, at different scales, for interaction, allowing a more
precise manipulation, depending on the task at hand.

The closest previous work is the World-in-Miniature (WIM) system
[Stoakley et al., 1995]. They presented a miniature version mixed with a scale 1:1
model (equivalent to our “Mixed Mode”), but for simple manipulations of viewpoint
and of the virtual scene, using an HMD. The viewpoint can be interactively changed
by rotating a tennis ball on the user’s non-dominant hand. The user’s dominant hand
holds another device, used to interact with objects in the scene. These objects are placed
"on top" of the tennis ball device so the user can reach them and move them around.
Looking at the tennis ball gives the user an aerial viewpoint of the whole Virtual World.

In contrast, we allow the user to actually change the shape and size of objects in
the scene automatically. As we shall see in Chapter 3, our system provides automatic
assistance in the context of a “quick prototype” modeling or conceptual design applica-
tion [Anderson et al., 2003]. More sophisticated modeling/design operations can thus
be performed. In addition, we study lighting design in this context, using a simple “one-
bounce” global illumination approximation to evaluate the consequences of light source
changes in an immersive setting.

By targeting specific developments to the universal 3D tasks of manipulation, se-
lection, system control, navigation and symbolic input [Bowman et al., 2002a] we can
focus on providing a resourceful experience for architectural environment design. Our
study is related to several aspects of manipulation of objects in large scale and immer-
sive displays; these are usually accomplished with some degree of physical navigation
and interaction.

The idea of automatically scaling an object and placing it within reach in front of the
user has been proposed by [Mine et al., 1997b] and makes use of the concept of propri-
oception. [Pierce et al., 1999] make use of this concept in their Voodoo Dolls technique
where a copy of an object that is far away is brought close to the user’s hand for interac-
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tion. In this thesis we will build on these ideas for interaction, as discussed in Chapter 4

We use a simple form of bimanual interaction for resizing (similar to that used on 2D
touch-sensitive devices). [Malik et al., 2005] propose a bimanual touchpad for interact-
ing with large displays from a distance. In asymmetric interactions, the non-dominant
hand coarsely controls the region of the display that maps to the touchpad, while the
dominant hand does the fine-scale interaction in that region. In symmetric interac-
tions, the region is locked and both hands interact inside it. [Owen et al., 2005] study
the faster performance of bimanual manipulation, especially for cognitively demand-
ing tasks. [Moscovich and Hughes, 2006] show that multi-finger touchpad interaction
allows for simultaneous control of several object properties, such as translation, rota-
tion, and scaling. In previous work, bimanual interfaces have been used in immersive
settings [Balakrishnan and Kurtenbach, 1999]. We try to follow ideas which were ini-
tially observed by [Guiard, 1987] and others ([Cutler et al., 1997], [Zeleznik et al., 1997])
regarding the usage of both hands in our resizing gesture.

There has been a lot of previous work on hand and fingers gesture recognition,
e.g. [Laviola et al., 2004, Keskin et al., 2003]. Most of them describe in detail software
and/or hardware for actually recognizing hand’s gestures. To overcome the problem
of previous input devices for reading noise free data from hand motion, alternative in-
teraction methods appeared such as using only discreet data from pinching of fingers
[Bowman et al., 2002b, Bowman et al., 2001, Laviola, 1999].

In our system, described in Chapter 4, the user may switch between an immer-
sive, scale 1:1 view and a world-in-miniature view, which implies a viewpoint change.
[Ware and Osborne, 1990] proposed a technique called Eyeball in Hand in which the user
directly controls the viewpoint with a device that directly maps its position and orien-
tation. Our approach adopts the use of widgets to disambiguate rotation in all axes
and provide the user more precise control. Go-Go [Poupyrev et al., 1996] and PRISM
[Frees and Kessler, 2005] switch between direct (1:1) and scaled interaction, either for
large-scale or precise manipulation, based on the user’s intentions which are determined
by the velocity of the hand. The HOMER system [Bowman and Hodges, 1997] attaches a
virtual hand to an object selected by a light ray selection, allowing the user to manipulate
far objects with no extra work.

[Lucas et al., 2005] introduce alternative 3D resizing widgets, including the straight-
forward generalization of the familiar 2D resizing widgets, the Pointer Orientation based
Resize Technique (PORT), and the Gaze-Hand resize technique. Users prefer the familiar
widgets, but after a training period they perform faster with the novel widgets.

[Buchmann et al., 2004] present a finger tracking and haptic feedback setup that
allows users to manipulate virtual objects naturally in a HMD AR environment.
[Grossman et al., 2004] describe multi-finger gestures for interaction with volumetric
displays where hand motion is restricted to the outside of the display’s enclosure.
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2.3 Conclusion and Discussions

Previous work on geometry editing and manipulation has provided solutions based
on differential coordinates that work well on highly tessellated meshes [Yu et al., 2004,
Sorkine et al., 2004]. While interactive, these methods are not suitable for architectural
meshes, which are composed of a few polygons and mostly straight angles between
edges. On our case, we find novel formulations that express the shape and connec-
tivity for this class of meshes, composed of only a few vertices. This class of meshes
is composed of game levels, which for performance reasons is mostly composed of a
smaller number of meshes and a lot of detail is encoded on the textured faces. We
call this set of meshes architectural meshes. We do however use the same ideas as
[Yu et al., 2004, Sorkine et al., 2004] for solving our linear system expressions at an in-
teractive rate by pre-factoring the equations only when needed and doing the back-
substitution at every interaction from the user.

Our method also couples deformation of geometry and textures. The reshap-
ing that occurs at each face triggers the deformation of the underlying texture ac-
cordingly. Although we could use more resilient methods for texture stretching
[Avidan and Shamir, 2007] we needed to keep our system running at interactive rates,
in order to provide the user with realtime feedback of the results of his actions. Ad-
ditionally, game level textures (or architectural types of textures) encode details such
as straight lines and other types of decorations, which are not guaranteed to be pre-
served by these methods [Wang et al., 2008, Avidan and Shamir, 2007]. Newer meth-
ods exist that identify straight lines and try to preserve them when stretching a texture
[Barnes et al., 2009, Laffont et al., 2010, Chen et al., 2010]. Although we could use them,
we opted for a simpler, faster method that could be used coupled with our geometry
reshape. Our texture stretching will be explained in Section 3.4.

To a certain extent, all these methods for shape deformation work well, depending
on the input model. In our tests however, we identified that one of the main problems
for users trying to create new content is to overcome the interface barrier. Learning and
mastering a software interface is crucial to achieve the desired results and make the most
out of a 3D tool. We address this issue by taking our reshaping operator from a 2D to
a 3D metaphor. We believe that reshaping of 3D meshes can be better understood in a
3D environment. We explore this idea and develop a solution that allows our reshape
operator to be used interactively in a 3D Virtual Reality immersive environment. We
further extend our tool and also allow lighting design to be explored in a architectural
context.

In the following Chapter we introduce the details of our reshaping operator. We
begin by a brief motivation Section. We then describe how geometry reshape works in
this architectural context. Then we introduce the coupled texture reshape and how we
can connect different pieces of mesh together to create a novel 3D world or game level.
Then in Chapter 4 we bring our reshaping operator to the 3D immersive environment,
showing how novel interaction techniques can be used to aid users edit geometry using
3D gestures.
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In this Chapter we will show how to interactively deform architectural geometry,
coupled with textures. We show results on sets of 3D models both found on the web and
developed in-house. Our method easily allows novel game levels and 3D models to be
created from existing content.

3.1 Reshaping of Architectural Geometry

In order to ease the creation of large environments such as game levels, it is typical to
prepare a set of basic building-blocks that are later combined together. However, these
building-blocks have to be very carefully prepared to ensure proper combination. More-
over, too much repetition of the same elements will quickly become visible to the user.
Modeling large architectural environments is a difficult task due to the intricate nature of
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these models and the complex dependencies between the structures represented. More-
over, textures are an essential part of architectural models. While the number of geo-
metric primitives is usually relatively low (i.e., many walls are flat surfaces), textures
actually contain many detailed architectural elements.

We present an approach for modeling architectural scenes by reshaping and combin-
ing existing textured models, where the manipulation of the geometry and texture are
tightly coupled. We make a set of assumptions to achieve this goal which we consider
to be reasonable. In particular, for geometry, preserving angles such as floor orientation
or vertical walls is of key importance. We thus allow the user to interactively modify
lengths of edges, while constraining angles. Our texture reshaping solution introduces
a measure of directional autosimilarity, to focus stretching in areas of stochastic content
and to preserve details in such areas. We show results on several challenging models,
and show two applications: Building complex road structures from simple initial pieces
and creating complex game-levels from an existing game based on pre-existing model
pieces.

We first introduce a coupled approach to geometry and texture reshaping of struc-
tured, architectural models. Our approach lets the user interactively compose large ar-
chitectural environments by combining pieces cut out of example scenes. Pieces can be
connected together and moved around through simple drag and drop, while geometry
and texture are updated on-the-fly. The geometry of each piece is also modifiable by
simple drag of vertices, the rest of the scene automatically updated to accommodate the
changes. Our approach relies on a reshaping operator targeted at architectural pieces,
taking both geometry and textures into account.

In Section 3.3 we explain how to define the constraints to maintain edge directions
and other desirable properties and how we efficiently solve for geometry reshape. In Sec-
tion 3.4, we introduce directional autosimilarity and show how it is used to reshape texture.
Our approach preserves structured parts of the texture while re-introducing detail in
stretched regions. We present examples and applications in Section 3.5 and discuss lim-
itations in Section 3.6.

3.2 Motivation

The cost of developing modern interactive applications such as games is often domi-
nated by the creation of a large number of detailed textured models. For many such
scenes, such as typical “game levels”, these models are often architectural, or more gen-
erally man-made, structures: In this thesis we will be focusing our attention to this class
of models. Traditionally, such assets are created by trained artists, who create the models
and textures for each scene. While the tools used have improved in the past few years,
this remains a tedious and painstaking manual process.

A different approach to create such content is procedural or grammar-based mod-
eling [Prusinkiewicz and Lindenmayer, 1990, Müller et al., 2007]. While these methods
hold great promise and can be very powerful, they require a “programmer-like” ap-
proach to modeling, making them hard to use, with a steep learning curve for typical
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modelers/artists.

Figure 3.1: Examples of our approach used to build road structures based on a small
number of initial blocks. We show the building blocks (sides) and two example construc-
tions made from these blocks in a few minutes, as shown in the accompanying video (lo-
cated in the online Appendix http://www-sop.inria.fr/members/Marcio.Cabral/thesis/). No-
tice how pieces deform and adapt, and how texture replicates but also preserves detail
in cases of stretching.

Our solution allows the user to interactively modify or reshape textured geometry,
since in the interactive applications we focus on a large part of the detail is usually incor-
porated in textures. Conceptually, our solution lies between the two methods discussed
above. In our approach, both the geometry and the texture adapt to these modifica-
tions in an intuitive manner. This opens the way to easily creating large varieties of
models from small sets of pre-existing model “pieces”, as can be seen in Figure 3.1. An
additional motivation for our approach is that appropriate model pieces are becoming
widely available as communities of modelers (or “modders”) create and distribute them
on a massive scale [EA, 2008].

Our main design choice is to provide interactive feedback to the user while modi-
fying textured geometry. Our approach is thus based on the definition of appropriate
constraints and a fast least-squares solution. The interactivity of our approach gives suf-
ficient flexibility to enable repeated tailoring of the constraints, thus allowing the user to
obtain the desired result. In contrast to grammar-based approaches, which imply knowl-
edge of model semantics, we do not assume any high-level knowledge of the model, e.g.,
that one part of the model is a door and the other a window. However, since we concen-
trate on architectural/man-made structures for interactive applications, the meshes do
have an inherent “expected behavior” which we will seek to preserve. We thus base our
reshaping operator on the key insight that angles are most important in keeping the as-
pect of a room or structure. Obvious examples are the horizontal orientation of the floor
and the vertical orientation of walls. By preserving angles we avoid that a wall becomes
tilted in a weird angle or that a corridor gets narrower at one end. This constraint allows
reshaping to happen without these undesirable side effects. Given this choice, the main
“degree of freedom” for the user will be the ability to make edges (of walls etc.) longer
or shorter, without changing the angles. At the same time we restrict deformation for
small edges, since they typically correspond to finer details, which we want to preserve.
For instance, decorations around a window or a door are likely to be very small edges if
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compared to the length of a room. We want these edges to remain unchanged or receive
less deformation if we enlarge this wall.

We have designed and implemented a complete system to achieve these goals. Our
main contributions are thus:

• A novel approach for deforming and reshaping architectural meshes, based on
separating angular and length constraints. We propose a linear formulation of the
problem, solved as a least square minimization. Our approach allows interactive
geometry reshape with intuitive results.

• A reshaping tool tightly coupling geometry and texture. While the user manipu-
lates the geometry, texture features are updated so as to maintain their visual ap-
pearance while following the deformations; to our knowledge such coupling has
not been done before.

• The use of directional autosimilarity to identify regions of a texture which can be
appropriately deformed, while keeping structured parts rigid during interactive
textured geometry reshape.

• An interactive method to re-introduce texture detail in stretched regions, based on
detail extraction, tiling and a realtime rendering solution.

We have implemented the above ideas in an interactive system. As we will show
in our results and applications (Section 3.5), our new method provides an interactive
approach to complex reshaping of textured models (see Figure 3.1).

3.3 Geometry reshape

Our goal is to reshape an architectural model while retaining its characteristic features.
As explained above, we consider that preserving angles is the most important constraint
to impose for the class of models under consideration.

In our formulation, vertices are either variables, in which case the solution to our sys-
tem determines their position, or they are constrained. Constrained vertices can be ma-
nipulated by the user - in which case their position is attached to the mouse (“handles”)
- or they remain fixed. In Figure 3.2 and the video 1 constrained vertices are shown in
green.
Our approach has three major steps:

• The input model is loaded and organized into a simple constraint graph (Sec-
tion 3.3.1).

• A set of constraints is defined capturing the relationships between vertices, walls
and edges (Section 3.3.2). In addition to preserving angles, we maintain short edge
length, vertex/face contacts and avoid edge flips.

1located here http://www-sop.inria.fr/members/Marcio.Cabral/thesis/
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Figure 3.2: Left: The original model. Right: The final result. Elongated edges are high-
lighted in blue and compressed edges in red. This motion is achieved by moving the
handle up (green point in the center).

• A solver recomputes vertex positions from the user controlled handles, while at-
tempting to preserve the constraints (Section 3.3.3).

The two first steps are a pre-process. In contrast, the solver is used at run-time, dur-
ing user manipulation of the model. To enable interactivity, we rely on a simple solver
and allow it to fail or refuse user input if this leads to degeneracies (ie., collapsing edges
or collisions). We argue this behavior is reasonable since the user has full freedom to
assign new handles and guide the solver in avoiding degeneracies, thus obtaining the
desired result. Nevertheless, we propose simple mechanisms to help the user in this
task (see Section 3.3.4).

3.3.1 Input and graph construction

We first load the model and create a corresponding constraint graph. We assume that
the input is a textured mesh, in the form of an indexed face set. We expect triangles to
be grouped in textured surfaces, which we refer to as surfaces. Triangles within a same
surface share vertices; a shared edge implies that vertices share 3D and UV (texture) co-
ordinates. The nodes of the constraint graph are the vertices of the model. Note however
that two co-located vertices in different textured surfaces will share a same graph node.

We distinguish three types of edges within a textured surface. Contour edges are used
by a single triangle in the textured surfaces, while angle edges are shared by two non co-
planar triangles. Both edge types are added to the graph. Lastly, flat edges, shared by
two co-planar triangles, are ignored. In addition, textured surface contours must be well
formed: i.e., a contour is formed by following the ring of adjacent contour edges. We
also support holes.

Finally, we identify connected components of the graph. In the examples we show
here, the number of connected components is typically low (most often around 3 or 4).
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3.3.2 Constraints

We use the constraint graph to express the properties to be preserved whenever handles
are being moved. We thus formulate a system of equations expressing constraints that
must be either strictly enforced or minimized. In what follows, we will present “strict”
and “soft” constraints. Table 3.2 and table 3.3 provide a summary. We will explain how
these are actually used in Section 3.3.3.

Notations In what follows vi is a vertex and Eki an edge between vertices vi and vk. Ni is
the set of neighboring vertices of vertex i and |Ni| the size of this set. We designate vari-
ables using a “tilde” symbol. Hence, ṽi is the unknown next position of vertex i, while
vi simply refers to its initial position. We note uki =

vi−vk

||vi−vk ||
the normalized direction of

edge Eki, while lki = ||vi − vk|| is its length. Please see Figure 3.3 for more details.
Note that the edge direction uki and length lki are fixed with respect to variables

since they are computed on the initial graph; they are thus constants in the system being
solved (Section 3.3.3). Finally v

T
j
i

is the i-th vertex of triangle j, and nT j the normal to

triangle j. Please refer to Table 3.1 for a summarized list of notations.

Figure 3.3: Notations used.

Edge direction constraints The most important constraint is to preserve angles between
planar faces. Rather than working directly on faces, we equivalently preserve edge di-
rections. For each vertex i we derive the following equation:

|Ni|ṽi −
|Ni |−1

∑
k=0

(ṽk + (uki · (ṽi − ṽk))uki) = 0 (3.1)

Intuitively, this simply states that from any neighboring vertex k we can come back to
vertex i by adding the appropriate length in the direction of Eki. Note that uki is constant
and computed on the initial mesh, while ṽi and ṽk are variables.

An important property of this equation is that it does not restrict the edge length but
only the alignment of the vertices. However, vertices are free to move so the solver might
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Notations
vi initial position of vertex
Eki edge between vertices vi and

vk

Ni set of neighboring vertices of
vertex i

|Ni| size of the set Ni

ṽi vertices as variables
uki =

vi−vk

||vi−vk ||
normalized direction of edge
Eki

lki = ||vi − vk|| length of normalized edge uki

v
T

j
i

i-th vertex of triangle j

nT j normal to triangle j

Table 3.1: Notations used in this Chapter.

have to compromise and change the direction of some edges (see Figure 3.5(right)).

Figure 3.4: Edge direction constraints (left) and contact constraints (right).

Edge length preservation It is also desirable for the edges to keep their original lengths:
The result of our geometry reshape will thus be as close as possible to the initial mesh.

We express this with an edge stress term S. We thus seek to minimize the following
term for each edge:

Ski = wki (uki · (ṽi − ṽk)− lki) (3.2)

The scalar term wki controls how well the edge length must be preserved, or edge stiff-

ness. We typically give a higher importance to small edges compared to large edges, and
consider edges shorter than a user defined threshold as rigid.

We compute wki as:

wki = wsmall + (wlong − wsmall)

(

lki − lmin

lmax − lmin

)

(3.3)

where lmax is the largest edge length, lmin the threshold below which edges are consid-
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ered rigid, and wsmall , wlong control the overall edge stiffness. We use wsmall = 10−3 and
wlong = 10−5. Note that wsmall is larger than wlong to make small edges more rigid. For
rigid edges, we set wki = 1

We illustrate direction constraints and edge length preservation in Figure 3.2. Our
approach preserves angles and the length of short edges, while allowing large edges to
be either shortened or lengthened.

Additionally, all edge lengths must remain positive during reshaping, which is ex-
pressed with the following strict constraint per-edge:

uki · (ṽi − ṽk) > 0 (3.4)

Contacts Often structures lie on other surfaces: Pillars, doors, windows, etc. Using only
edge direction constraints, we would not be able to capture these relationships.

Within a connected component, coplanarity is already captured by edge direction
constraints. However, two disconnected components do not share triangles: Contact
relationships are not captured by the previous equations. We check whether vertices of
one component are on a triangle of another component. When this happens we add one
“strict” constraint for co-planarity, simply using the vertex and the first vertex of the
triangle containing it:

(ṽi − ṽ
T

j
0
) · nT j = 0 (3.5)

where nT j is the normal to triangle T j, ṽi and ṽ
T

j
0

belong to different connected compo-

nents. We also add three “soft” constraints to encourage the vertex to stay at the same
distance from the triangle vertices:

(

(ṽi − ṽ
T

j
k

)− (vi − v
T

j
k

)
)

= 0, k = 0..2 (3.6)

These are mandatory otherwise the system is under-constrained, since co-planarity does
not tells us “where” the vertex should be on the plane. Please see Figure 3.4 for more
details.

Edge groups Architectural models contain many implicit constraints. For instance, the
height of doors is typically the same throughout a building. In general, inferring this
type of constraint from input geometry is a difficult problem and depends on the seman-
tics of the model.

We do not infer semantic information; instead we use some easily identifiable proper-
ties of the model, notably groups of similar edges. This provides correct default behavior
for most cases, and it may be switched off by the user at any time. Specifically, we de-
fine an edge group as a set of edges having similar direction, similar length, and being
spatially close to each others. This is achieved using a simple clustering approach.

For each edge group we add constraints stating that edges must keep similar length.
The first edge of the group is used as reference. For each other edge we write the equa-
tion stating that its length must be equal to the length of the first edge, using a group error
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GE:

GE = wg







 ∑
Eji∈G

uji · (ṽi − ṽj)



− |G| u10 · (ṽ0 − ṽ1)



 (3.7)

We use v1, v0 to denote the vertices of the first edge of group G, and u10 for its direction.
The edge between vj, vi (Eji) is within the same group. The group has |G| edges. We use
wg = 0.1. An example of the effect of edge groups is illustrated Figure 3.5.

Figure 3.5: Left: A model of stairs. Middle-left: Result obtained if we do not use edge
groups and use the handles shown in green. Unwanted distortion appears. Middle-right:
Using our edge group approach, we achieve uniform reshape of the stairs. Right: The
solver changed edge directions in order to achieve the motion required by the user.

Edge direction |Ni|ṽi − ∑
|Ni |−1
k=0 (ṽk + (uki · (ṽi − ṽk))uki) = 0

Edge > 0 uki · (ṽi − ṽk) > 0
Co-planarity (ṽi − ṽ

T
j
0
) · nT j = 0

Table 3.2: Summary of desired strict constraints.

Edge length wki (uki · (ṽi − ṽk)− lki)

Contact positions
(

(ṽi − ṽ
T

j
k

)− (vi − v
T

j
k

)
)

, k = 0..2

Edge groups wg

((

∑Eji∈G uji · (ṽi − ṽj)
)

− |G| u10 · (ṽ0 − ṽ1)
)

Table 3.3: Summary of soft constraints to be minimized.

3.3.3 Solver

As discussed above, we have three types of constraints: inequality, equalities and terms
to that should be minimized. For the first, an accurate solution would require linear
programming, thus sacrificing interactivity. We discuss our alternative solution in Sec-
tion 3.3.4. For the remaining constraints a typical way to solve is to describe the problem
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as an least squares minimization and solve with efficient linear system solvers enabling
interactivity. We can write this more formally as:

x′ = argmin x||Ax − b||2 (3.8)

where x is the vector of positions ṽi of all the vertices in the model except for the han-
dle(s), whose position is given by user input and the fixed vertices which are not affected
by the solution. A is the matrix defined by the constraint equations.

A typical way to enforce equality constraints in a least square optimization is to in-
clude them in the system with a large weighting term [Loan, 1985]. This can lead to small
inaccuracies, which are tolerable in our context.

In this system, we weight the minimization constraints with appropriate values wi. In
particular we use weight wg = 10−2 for Eq. 3.7, wc = 10−5 for Eq. 3.6; for Eq. 3.2 weight-
ing is embedded in wki. In practice, these weights work across most of our meshes. Only
lmin – fixing the edge length under which wki = 1 (Section 3.3.2) – needs to be adapted
since it strongly impacts the reshaping behavior.

We compute the normal equations, pre-factor the sparse matrix AT A and solve
very efficiently at run-time, using the Cholesky factorization of the TAUCS li-
brary [Toledo et al., 2003]. Such approaches have been used for interactive mesh ma-
nipulation [Botsch et al., 2005, Botsch and Sorkine, 2008].

3.3.4 Edge flips and User Constraints

To deal with the non negative edge inequality (Eq. 3.4), we exploit the interactive aspect
of the user manipulations: As the user drags handles only small motions occur. After ev-
ery step we verify that no edge is collapsing. If an edge becomes too small we artificially
increase the length lki (Eq. 3.2), making it less likely to collapse. Since this only affects the
constants in the system, it does not affect the interactive performance of our approach.
If an edge does collapse we refuse the last motion and rollback to the previous position.

Note that linear programming could be used to enforce this inequality,
for instance by incrementally updating constraints during interactive manipula-
tion [Borning et al., 1997]. In practice interactive feedback makes it easy to detect and
avoid degeneracies during manipulation: It seemed unnecessary to resort on more com-
plex solvers in our context.

User-defined additional constraints In some cases (e.g., Figure 3.7(left)), it may be neces-
sary to add additional constraints. Our system provides a simple mechanism to link two
vertices, resulting in an additional constraint. An example is shown in Figure 3.7(right).

3.3.5 Limitations

One of the main limitations is that we ignore surface interpenetration, which can result
in internal structures going through walls.

The behavior of the reshape depends on the chosen handles, and an unfortunate
choice may result in undesired motions. Thankfully, given the interactive nature of our
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(a) (b)

(c)

Figure 3.6: (a) and (b): The choice of handles results in undesired motions. (c): Thanks
to interactive feedback the user easily chooses a better set of handles and achieves the
desired reshape.

approach the user can quickly correct for such cases, as illustrated in Figure 3.6. Note
that the system behaves reasonably even if the user ask for deformations where edge
direction cannot be preserved, as illustrated in Figure 3.5-Right.

Many of these limitations could be addressed by adding constraints; however, we
cannot infer all these constraints since they often depend on model semantics.

3.4 Texture reshape

The vast majority of interactive applications enhance the appearance of objects with
texture mapping. But surprisingly most existing geometry editing approaches do not
provide special treatment of textures during deformation. For single-material models
texture synthesis from example methods could be used to automatically obtain a new
texture map [Wei and Levoy, 2000]. However, on architectural models textures are of-
ten much richer, contain many architectural elements: A door frame, various decorative
elements and other wall details. It is therefore very important to retain and preserve
the appearance of this information when the user changes the geometry of a mesh, even
though the only information we have are the texture pixels.

We thus propose a new approach to resize texture maps targeted at architectural
environments, inspired by ideas from image warping [Wang et al., 2008], image com-
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Figure 3.7: Left: parts of the roof frame (in the blue circle) should move together; how-
ever they do not share edges or vertices. Right: The user can add an a link between
appropriate vertices, resulting in appropriate deformation.

pletion [Drori et al., 2003] and texture synthesis from example [Efros and Leung, 1999].
It is designed to perform efficiently during interactive manipulation of the geometry,
while providing high quality results. Our work is most similar to the approach of
[Wang et al., 2008] in that it deforms the texture to concentrate stretch in some partic-
ular areas. However we provide a different formulation based on the new notion of
directional autosimilarity (Section 3.4.2).

In the following we use texture map to designate the image mapped onto a surface
and stochastic texture to designate areas of the image having homogeneous content.

3.4.1 Overview

Consider the texture in Figure 3.8(a); if we enlarge the geometry with no special treat-
ment, we get the result of Figure 3.8(b)-Left. We want to get the result shown in Fig-
ure 3.8(b)-Right, where structured parts of the texture are preserved, and stretching is
focused on the stochastic texture regions.

To do this we use directional autosimilarity, which measures whether a texture region
remains similar to itself if slightly translated along a given direction. We typically com-
pute this measure along the two main image axes. Our autosimilarity measure often
takes large values across edges and low values in the direction parallel to edges (see Fig-
ure 3.9). In areas of stochastic content it exhibits a low value - compared to edges - in all
directions. This provides an effective measure to detect regions of similar homogeneous
content.

We encode this measure in an autosimilarity map (see Figure 3.9). We then warp the
texture using a grid, shown in Figure 3.10(a). The goal is to first replicate edge-length
changes from geometry reshape to texture space, and then to deform the grid guided by
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(a) (b)

Figure 3.8: (a) The original textured polygon. (b) Left: The polygon has been stretched
without reshape. (b) Right: The desired result, where features are preserved.

Figure 3.9: Directional autosimilarity map.

the autosimilarity measure, giving the result shown in Figure 3.10(b). We use the result
to generate a map of distorted texture coordinates for the stretched polygon.

As we can see in Figure 3.13(a), details in stretched regions are now blurred. We want
to reintroduce detail by finding and using appropriate regions in the original texture. We
do this by segmenting the texture into rigid/stochastic regions (Figure 3.12(a) and then
extracting detail tiles Figure 3.12(b). These are regions of stochastic content which can be
tiled to re-introduce detail into stretched regions. We introduce an appropriate rendering
technique that can use this information, giving the final result shown in Figure 3.13(b).
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(a) (b)

Figure 3.10: (a) The grid on the original texture (Figure 3.8(a)). (b) The deformed grid,
representing Figure 3.8(b)-Right. Note how rigid features are preserved.

3.4.2 Directional texture autosimilarity

Architectural texture maps often contain a mix of structural elements and areas of ho-
mogeneous, stochastic texture content. For instance, in the image of a brick wall, the
separation between the bricks can be considered as structure, while the interior of each
brick is a texture in the statistical sense [Wei and Levoy, 2000]. That is, for a given pixel
neighborhood in these areas other, similar pixel neighborhoods can be found in its vicin-
ity. Since we know these textured areas are easier for us to reproduce, our goal will be to
detect them so as to focus stretch onto them.

When the geometry is deforming, the edges of the textured polygon will change
length (Section 3.3.2). Often these changes will be anisotropic, for instance when a wall
is widened while keeping its height. The structural elements contained in textures are
often parallel or orthogonal to the ground plane - a plinth, a door frame or brick walls are
good examples. These structural elements are likely to be very auto-similar in a given
direction along which they can be considered as a texture. This implies that stretch is
not likely to be visible if applied in this same direction - however it must be prevented
in other directions.

In order to exploit these degrees of freedom, we introduce the notion of directional

autosimilarity. We start from a given set of directions, typically the vertical and horizontal
texture space axes. For each direction we compute an error map indicating whether each
pixel location can be considered as an autosimilar texture in the given direction. This
is done by comparing small neighborhoods along a 1D line centered on the pixel and
oriented parallel to the current direction.
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More formally, we define an error at a given pixel p expressing how far we are from
autosimilarity:

T~dir
(p) =

1
2∆

p+∆ ~dir

∑
q=p−∆ ~dir

q 6=p

||N(q)− N(p)||2 (3.9)

where ~dir is the considered direction, ∆ controls how far around the pixel we search and
N(p) is a pixel neighborhood around p. We typically use 5 × 5 neighborhoods and a
value of ∆ = 10. The result for two directions can be seen in Figure 3.8(d), encoded as
red and green.

We next use this information to deform the texture map and focus stretch in textured
areas.

3.4.3 Deformation grid and Constraints

We now exploit directional autosimilarity maps to deform the texture map. We achieve
this using a deformation grid overlaid on the texture map. We intersect the grid with the
contour of the surface polygon in texture space, using a DDA approach for robustness.
This is illustrated Figure 3.10. The spacing of the grid is chosen to be as large as possible
while still preserving the features of the texture map. We typically use a spacing of 1

32 in
normalized texture space.

We call nodes the vertices of the grid. We distinguish three types of nodes: corner
nodes, denoted ci, boundary nodes, which lie on the edge of the polygon boundary but
are not corners, denoted bi, and interior nodes (Figure 3.10). We use gi to denote any
kind of grid node (interior, boundary or corner).

We deform this grid in two steps, first solving for the shape of the textured polygon
(i.e., the corner nodes) and then for the boundary and interior nodes.

Grid corner constraints First, in order to determine the new shape of the poly-
gon in texture space we replicate the changes in length of the world space poly-
gon edges. We deform the texture space polygon using a gradient-based ap-
proach [Botsch and Sorkine, 2008]. Second, as we shall see, for efficiency we impose
that boundary edge directions are maintained. Finally, we fix the position of one corner
node to remove the translational degree of freedom of the system.

We use the same convention as for geometry reshape where c̃i denotes the (variable)
position of corner i during reshape. For gradient-based deformation of the triangles we
consider each corner ci, i = 0..2 of each triangle T in the textured surface. We define the
set of NT(ci) of neighboring corners ck, with |NT(ci)| the size of this set. We thus have:

|NT(ci)|c̃i − ∑
ck∈NT(ci)

[c̃k + rki (ci − ck)] = 0 (3.10)
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where rki is the length change ratio of edge ki from the geometry reshape:

rki =
|vk − vi|current

|vk − vi|initial
(3.11)

The interior node system, defined in the following section, depends on the direction
of the polygon contour edges. To avoid having to re-factor the interior system during
interaction, we constrain the edges of the contour to maintain their direction, using a 2D
version of Eq. (3.1), replacing vi by ci.

Interior grid node constraints The first constraint concerns boundary nodes bk, con-
tained in the edge defined by corners ci, cj. We define Ncicj

to be the normal direction to
the edge defined by ci, cj. We require that the bk remain on the edge, by imposing the
following constraint:

b̃k · Ncjci
= c̃i · Ncjci

(3.12)

Note that thanks to the edge direction constraint described above, normal Ncjci
will never

change during interactive manipulation.
For interior nodes we want to achieve a deformation which will preserve rigid re-

gions and concentrate stretching in stochastic regions. For each edge defined by grid
nodes gi, gj and for each deformation direction ~dir (there are typically two), we define
energy eij to be minimized:

eij =
(

(g̃i − g̃j) · ~dir − (gi − gj) · ~dir
)

sij (3.13)

We define the stiffness weight sij using the autosimiliarity error map T~dir
in direction ~dir

as:

sij = smin + T~dir

(

vi + vj

2

)

(

1 + salign

(

1 − |(vj − vi) · ~dir|
))

(3.14)

where T is accessed with a 2D coordinate in texture map space (
vi+vj

2 represents the
proper texture coordinate that access its respective value in the error map, between in-
terior nodes vi and vj), smin is the stiffness of texture areas, salign controls how much or-
thogonal alignment must be preserved. Note that we equalize luminance in all textures,
and we assume that lighting information is not included.

3.4.4 Online Reshape Solver

To achieve online texture reshape we use an approach analogous to that used for geom-
etry (Section 3.3.3). We express all constraints as a linear system and weight equations
with respect to their importance. We use a direct least square solver (sparse Cholesky
factorization [Toledo et al., 2003]). For fast interactive manipulation we pre-factor the
matrices for both the contour and interior system. During interactive manipulation, only
the vector b needs to be recomputed and ATb updated, where A contains the constraint
equations.

An example is shown in Figure 3.8 where the textured surface has been stretched



3.4. Texture reshape 41

significantly. For efficient storage and display, we manipulate and store uv coordinates
rather than the texture itself. The deformation is thus coded in these coordinates, which
are rendered into a render target and stored as a texture of the same resolution as the
original texture map. We call this the distortion map. During rendering we thus use one
level of indirection to access the original texture.

Figure 3.11: Left: the deformed surface without texture reshape Middle: our texture re-
shape focuses stretch in stochastic areas, preserving structural elements. Right: the top
circle shows a close-up of the reshaped region, part of the original texture is shown be-
low. Notice how fine details are stretched.

Regions where stretching has occurred will of course be blurred, since the texture
hardware interpolation will be used. This is illustrated in Figure 3.8(b). To alleviate this
problem, we present a new approach to reintroduce details for the reshaped texture.

For toroidal textures we want to have an integer number of tiles covering the poly-
gon. We solve for the corners, then extract a bounding square in texture space. This
allows us to compute the number of repetitions in UV and the amount of distortion for
a single tile. This should not be confused with the detail tiles described below. We then
solve as usual for the interior nodes. Windows on the right of Figure 3.15 are repeated
in this manner.

3.4.5 Reintroducing detail

Stretching high-frequency texture regions results in undesirable distortion artifacts. To
avoid this issue, we separate texture detail from the image and identify each texture re-
gion of the texture map. For each region, we extract a representative rectangular tile
from the detail layer. When stretch occurs we only apply the deformation to the base im-
age, and reintroduce details. However, instead of stretching the details we simply repeat
the representative tile, hence preserving the frequency content. As shown Figure 3.8(b)-
Right this significantly improves the quality of the result at little cost. The following
paragraphs explain this approach in more detail.

The first step in recovering detail is to identify which regions within the texture can
be used as a model to reintroduce details. We first perform a binary segmentation of the
texture into stochastic and structural areas following our autosimilarity measure. We
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then identify stochastic regions and “grow” a rectangular tile within each such region.
These tiles will be used to reintroduce detail during rendering. Figures 3.12 and 3.13
illustrates this process.

(a) (b)

Figure 3.12: (a) Texture segmentation into rigid/stochastic regions. (b) Detail tiles ex-
tracted from original texture (color rectangles)

(a) (b)

Figure 3.13: (a) Stretched texture: inset shows blurred detail. (b) Stretched texture: inset
shows re-introduced detail, extracted from tiles. (Please zoom to see details)
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Texture segmentation and Detail extraction To segment, we first merge the directional
autosimilarity error maps (typically we have two, one along each axis), keeping the
largest error for each pixel. This gives us a new map measuring how rigid each pixel
is in the worst case direction. We apply a binary segmentation [Boykov and Jolly, 2001]
on this map. After experimentally setting the parameters of the segmentation we use the
same ones on all textures of our dataset. This works well in practice since our textures
all have equalized luminance and do not contain lighting information.

The segmentation separates the texture in disconnected regions (see Figure 3.12(a)).
We assume that each region corresponds to a stochastic texture with locality and sta-
tionary properties [Wei and Levoy, 2000] - note that while this is not to be expected in
general, it works well in our cases since most architectural textures depict regions of
homogeneous materials separated by structural elements.

Within each region we seek to extract a rectangular tile representative of the details,
with the goal of using this to re-introduce detail when stretching occurs. Starting from a
random seed we grow the rectangular tile in a “spiral-like” manner. We perform several
iterations and keep the largest rectangle as our tile (Figure 3.12(b)). This naive search
could be improved using more involved algorithms [Daniels et al., 1997]. Another ex-
ample of this pipeline can be seen in Figure 3.14.

For each texture, we finally create a tilemap which indicates in each pixel the tile ID
associated with its region. The tile ID indexes a small table which contains the upper
and lower corner of each tile. If a pixel belongs to a rigid region, the tile ID is set to a
special value (for example 0).

Figure 3.14: From left to right: original texture, directional autosimilarity error (red
for the u direction and green for the v direction), resulting segmentation, the detail tile
locations (each tile is shown with a different color). Texture Copyright c©Id Software, all
rights reserved.

Online Detail sliding After solving the system for the polygon, we obtain new texture
coordinates for each vertex. During rendering of the final scene, these per-vertex texture
coordinates are interpolated by the rasterizer and passed over to the fragment shader.
We use these coordinates to access the deformation map (see Section 3.4.4), retrieving the
coordinates computed by the deformation grid. Directly accessing the original texture
with these coordinates produces blurred details.

Instead, we perform a lookup in the tilemap to determine whether the pixel has an
associated tile. If yes, we perform a lookup in the texture from the tile, using a modulo
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operation to let the tile cycle in heavily stretched regions.
Directly using colors from the tiles would produce artifacts at the boundary of

stretched regions. Instead, we separate the original image into a base and a detail layer
using a bilateral filter [Tomasi and Manduchi, 1998]. We only use the tiles on the detail
layer, the base layer being stretched as previously. However in the base layer stretched
areas contain no detail.

Finally, to avoid modifying the original texture when no stretch is applied we grace-
fully transition from the original detail layer to the tiled details using a measure of the
local stretch. This is easily computed from the deformation grid.
The shader pseudo-code below summarizes these operations:

UV = distortionMap(p); // p contains the distorted coordinates

tile = tilemap(UV); // UV accesses tilemap & original texture

if( tile != 0 ) { // pixel isnt rigid

detailTile = lookup(tileMap, p modulo tileSize);
color = base(UV) + lerp(detail(UV), detailTile, stretch);

}
else

color = base(UV) + detail(UV);

Figure 3.15: An example of houses with a complex roof frame using three pieces shown
on the first row. We show two views of two different variants of the resulting house.

The result of this operation is that detail is added in the stretched regions. In addition,
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the modulo operation during the lookup of the tilemap will result in tiles being repeated
when necessary. We illustrate these operations in Figures 3.13 and 3.12.

3.5 Results and Applications

Piece vars nnz nnz nodes edges eqns factor solve
A At A

114 2136 4284 38 60 217 4 ms 1 ms

1314 30294 60936 438 760 3874 2155 ms 10 ms

258 5604 13068 86 176 517 44 ms 1 ms

909 15588 30681 303 530 1555 175 ms 3 ms

Table 3.4: Performance measure for some of the meshes utilized for tests. nnz stands for
’number of non-zero entries’, vars for variables and eqns for equations. All results shown
here were achieved using a Dual Xeon 1.67GHz machine with 8GB RAM.

The geometry (Section 3.3) and texture (Section 3.4) reshaping algorithms con-
stitute the core of our approach. We next present present three examples us-
ing a “mesh piece modeling” application. To truly appreciate our results,
please see the accompanying video located in the online Appendix http://www-

sop.inria.fr/members/Marcio.Cabral/thesis/.
Texture and geometry reshape can be used together to form a powerful tool for the

edition and creation of architectural scenes. The user can create complex models based
on a small set of initial pieces, which are either specifically built for this purpose, or are
easily available (e.g., the pieces of a game level in our examples).

We assume that each piece has “portals” associated at each extremity, and that portals
are compatible, i.e., have the same number of vertices. This is for example the case with
the game level pieces we extracted.

The user deforms and connects pieces to achieve the desired result, for example as
in Figure 3.1 for roads, or Figure 3.17 for game levels. When modifications are made on
a given piece, deformations and reshape are appropriately propagated along the chain
of pieces. We can limit the propagation length during interactive manipulation; when
the user releases the handles, the propagation is completed. We also cache the matrix
factorizations to accelerate updates. Please see the video for example usage.

Mesh pieces and Interactive tool
We have developed an interactive tool providing a simple, yet intuitive interface to

assemble and reshape pieces. The interface allows the user to connect pieces (by their
portals) and reshape them. To connect two pieces, the user simply clicks on a piece por-
tal, which brings up a list of possible pieces with matching portals that can be connected
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to the selected piece (left hand side of the interface - see Figure 3.16(b)). Reshaping is pos-
sible by clicking on any vertex: when one vertex is selected as a handle, an axis-widget is
shown, allowing the user to move the vertex (see Figure 3.16(a)). Changes made to this
vertex propagate through all pieces affected. Besides moving vertices, the user can also
add constraints between edges (rigidity values can be added interactively in a pop-up
menu - see Figure 3.16(b) top right).

(a) (b)

Figure 3.16: Our interactive tool allowing the user to assemble various pieces into com-
plex models.

Applications: House/Road Building and Doom Levels We first show an example of
house building in Figure 3.15. We then show an example with road blocks in Figure 3.1.
As we can see, quite complex road structures, with bridges, many-lane highways, over-
passes etc. can be built from a small number of initial pieces. Figure 3.17, shows game
level pieces and the construction of a new modified level using our approach.

In these examples, mesh pieces had between 200-1400 vertices (450-4000 equations),
creating the matrix takes from 40-800ms (unoptimized), and factorization takes between
20ms and 2.5s (for the bridge piece). For textures factorization takes 20-330ms with a
maximum of almost 5000 equations.

3.6 Discussions

We have already discussed limitations specific to geometry reshape in Section 3.3.5. In
terms of other limitations, we currently assume that the models are well formed in tex-
tured indexed face sets. We have found this to be a reasonable assumption for example
with the game levels of “Doom” we tested here. For the custom-built pieces we also
show here, no particular modifications were required in the modeler’s workflow to pro-
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Figure 3.17: Examples of our Doom level construction. We show the level building blocks
and two views of a final construction made in tens of seconds. Note that these pieces do
not trivially connect by construction. Textures and models from the game Doom IIITM.
c©Id Software, all rights reserved.

duce models we could use. Nonetheless, it may be desirable to re-use model pieces
which have some inconsistencies in terms of connectivity information, for instance data
from 3D scanners. We did some initial experimentation with such pieces, and we found
that a simple voxelization approach to determine corners was sufficient to extract cor-
ners and connectivity. Evidently, a general robust solution is a very difficult problem
with strong links to mesh repair techniques [Ju, 2004]. Since our method is primarily de-
signed to be applied to models created by 3D modeling software we do not expect this
to be be a major limitation.

Another limitation is our assumption that each connected component of texture de-
tail contains one tile. Evidently this may not be the case; A multi-label segmentation
should be performed to identify this and extract the appropriate tiles.

Finally, we currently assume that portals of pieces are “compatible”. Correctly
treating incompatible portals is a hard problem; a more general “geometry matching”
approach needs to be developed. While methods to treat general meshes exist (e.g.,
[Funkhouser et al., 2004]), they are not necessarily adapted to architectural pieces. We
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are actively pursuing this direction of research.
Adding feedback between texture rigidity constraints and geometric reshape should

be relatively straightforward to add. This would be particularly helpful in cases when
we cannot identify detail tiles for examples.

3.7 Conclusion

To conclude, we have introduced a new approach which simultaneously treats geometry
and texture reshape of architectural or structured man-made models. Our new algorithm
enables modeling by adapting and varying existing pieces, and chaining them together,
achieving rapid construction of complex models.

Our main contributions are twofold: (i) A novel approach to deformation and re-
shape of architectural meshes, by separating angular and length constraints. We pro-
pose an efficient, interactive solution which we incorporate into a reshaping tool tightly
coupling geometry and texture modifications. (ii) The use of directional autosimilar-
ity identifying regions of a texture to deform during interactive reshape, while keeping
structured parts rigid. We use this to present an interactive method to re-introduce tex-
ture detail in stretched regions, using detail extraction, tiling and a realtime rendering
solution.

We have also demonstrated the power and utility of the approach in several exam-
ples: complex parts with conflicting deformation requirements, road and bridge con-
struction based on a small set and complex new “Doom” (game) levels based on a set of
existing pieces. We believe our approach is a key step towards powerful content creation
tools for end users of virtual environments.
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In the previous Chapter, we described a system for interactive mesh editing with
automatic texture deformation. It provides an intuitive approach for mesh editing to
naive users. We observed however, that its 2D interface was restrictive and hard to use
(although easier to use than commercial modeling packages). Precise 3D selection and
manipulation of vertices is desired (over 2D manipulation) to achieve editing goals due
to its one-to-one mapping. Additionally, viewpoint changes in the 2D desktop inter-
face are mimicked with a combination of mouse motion/mouse buttons events, which
disorients the user from the target goal.

In this Chapter we extend our approach to try to solve these issues. We explore
3D interaction applied in an immersive setting. To evaluate our assumptions, we pro-
pose three different immersive settings for architectural editing and perform an initial
pilot user study. The initial user study results that indicates that users appreciated the
immersive nature of the system, and found interaction to be natural and pleasant. We
finalize this Chapter with concluding remarks and directions for future work that can be
explored.
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4.1 Geometry editing in a 3D environment

Creating and manipulating 3D models is one of the hardest tasks in virtual environ-
ments. Traditional 3D modeling packages [Autodesk Maya, 2010, Blender, 2010] have
a very high learning curve, and are inappropriate for fast conceptual design by lay
users, especially in immersive settings. In the previous Chapter we presented our ef-
fort on providing an intuitive and easy-to-use interfaces to build simple 3D models.
Recently several other research [Zeleznik et al., 1996, Igarashi et al., 2007] and commer-
cial [Google Sketchup, 2010] efforts have also concentrated on this topic. These results
and products are an indication of the widespread interest for such functionality. Intu-
itively, the creation of 3D models should be an ideal candidate for true 3D interfaces,
since the content is inherently 3D. Such considerations have inspired futuristic artistic
works [Branit, 2009] in which a 3D gestural interface is used to create a complex and
visually rich environment.

Figure 4.1: A screenshot from the artistic work called "World Builder" by Bruce
Branit [Branit, 2009]. In his vision, a person can build an entire city using simple hand
gestures such as the one shown in this image.
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Based on this intuition, in this part of the thesis we intend to study direct manipula-
tion for basic 3D modeling in an immersive setting, in the context of conceptual or initial
design for architecture.

Our 3D modeling system fills this gap of conceptual design which allows users to
manipulate geometry and texture directly, and automatically updates the model to re-
spond to these changes.

In addition to geometry and texture, we are interested in the manipulation of light-
ing, which is an important element in modeling and design, especially for architectural
models.

The last element of interest is the interaction paradigm and in particular the “view”
or “mode” in which the user performs the modeling task: egocentric (1:1 scale) immer-
sive mode, exocentric mode or a combination of both (similar to world-in-miniature
[Stoakley et al., 1995]) - see Figure 4.2. These modes are described in more detail in Sec-
tion 4.3.3.

The goals of this study are to create a prototype system in an immersive setting,
which supports casual modeling of textured geometry and lighting, and to investigate
the relative merits of the different view modes with a pilot user study.

4.2 Related Work

Figure 4.2: A view of our system in “mixed mode” where a miniature and immersive
version are combined.



52 CHAPTER 4. 3D INTERACTION FOR GEOMETRY EDITING

In architectural design, users need tools for interaction which are simple yet pro-
vide enough flexibility to achieve the desired goal. Simple and generic manipula-
tion techniques such as Go-Go [Poupyrev et al., 1996] may be limited for architectural
design, since they are not practical when dealing with a large number of objects
[Chen and Bowman, 2009]. Architectural design and geometric modeling have tradi-
tionally been privileged applications for virtual reality systems [Deisinger et al., 2000,
Bullinger et al., 2010, Leigh and Johnson, 1996]. Our approach draws inspiration from
these and others but addresses the problem from a different perspective. The clos-
est previous work is the World-in-Miniature (WIM) system [Stoakley et al., 1995]. They
presented a miniature version mixed with a scale 1:1 model (equivalent to our “mixed
mode”), but for simple manipulations of viewpoint and of the virtual scene. The virtual
world is shown to the user using an HMD system. Each hand holds a different device to
interact with the Virtual World. The user’s dominant hand holds a tennis ball adapted
with a tracking sensor plus two buttons. This device is used for fine grained interaction
with the scene, such as changing the position of a chair. The user’s non-dominant hand
holds a clipboard. The surface of the clipboard represents the floor of the virtual scene.
When the user looks at the clipboard, he sees an aerial view of a miniature version of
the Virtual World. This division of labor follows Guiard’s [Guiard, 1987] guidelines for
two-handed interaction. We also provide two-handed interaction, however, equally di-
viding labor between both hands so that they work in cooperation in a coordinated fash-
ion [Guiard, 1987]. In contrast to [Stoakley et al., 1995], our system provides automatic
assistance in the context of a “quick prototype” modeling or conceptual design applica-
tion [Anderson et al., 2003]. More sophisticated modeling/design operations can thus
be performed. In addition, we study lighting design in this context, using a simple “one-
bounce” global illumination approximation to evaluate the consequences of light source
changes in an immersive setting.

By targeting specific developments to the universal 3D tasks of manipulation, se-
lection, system control, navigation and symbolic input [Bowman et al., 2002a] we can
focus on providing a resourceful experience for architectural environment design. Our
study is related to several aspects of manipulation of objects in large scale and immer-
sive displays; these are usually accomplished with some degree of physical navigation
and interaction.

The idea of automatically scaling an object and placing it within reach in front of the
user has been proposed by [Mine et al., 1997b] and makes use of the concept of propri-
oception. [Pierce et al., 1999] make use of this concept in their Voodoo Dolls technique
where a copy of an object that is far away is brought close to the user’s hand for interac-
tion. Our approach tries to build on these ideas for interaction.

We use a simple form of bimanual interaction for resizing (similar to that used
on 2D touch-sensitive devices). In previous work, bimanual interfaces have been
used in immersive settings [Balakrishnan and Kurtenbach, 1999]. We try to follow
ideas which were initially observed by [Guiard, 1987] and others ([Cutler et al., 1997],
[Zeleznik et al., 1997]) regarding the usage of both hands in our resizing gesture, which
uses coordinated manipulation tasks (for example, our resizing gesture).
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Figure 4.3: (a) The wall widget can be grabbed, resulting in a resized wall (b). (c) A
window widget allows move and resize (bimanual) shown in (d). (e) The user selects
the “human avatar” on the left and drags it to a location in the room (f). The user is then
transported to that point in 1:1 scale (g). (h) The sun widget allows manipulation of the
location of the sun (i), resulting in an update of one-bounce illumination.

In our system, the user may switch between an immersive, scale 1:1 view and a
world-in-miniature view, which implies a viewpoint change. Ware and Osborne pro-
posed a technique [Ware and Osborne, 1990] called Eyeball in Hand in which the user
directly controls the viewpoint with a device that directly maps its position and orien-
tation. Our approach adopts the use of widgets to disambiguate rotation in all axes
and provide the user more precise control. Go-Go [Poupyrev et al., 1996] and PRISM
[Frees and Kessler, 2005] switch between direct (1:1) and scaled interaction, either for
large-scale or precise manipulation, based on the user’s intentions which are determined
by the velocity of the hand. The HOMER system [Bowman and Hodges, 1997] attaches a
virtual hand to an object selected by a light ray selection, allowing the user to manipulate
far objects with no extra work.

[Lucas et al., 2005] introduce alternative 3D resizing widgets, including the straight-
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forward generalization of the familiar 2D resizing widgets, the Pointer Orientation based
Resize Technique (PORT), and the Gaze-Hand resize technique. Users prefer the familiar
widgets, but after a training period they perform faster with the novel widgets.

4.3 Prototype System Description

We designed and implemented a system for 3D immersive modeling aimed at initial
prototyping or conceptual design, including modification of textured geometry and
lighting. The system supports three different interaction modes, notably table (see Fig-
ure 4.4(b)), immersive (see Figure 4.4(a)) (1:1 scale, fully immersive) and mixed (see Fig-
ure 4.4(c)), which is a combination of the former two modes.

(a) (b)

(c)

Figure 4.4: Sketches representing each one of the interaction modes: in Immersive Mode
(a) the user is placed inside the confines of the 3D model; in Table Mode (b) the user stands
in front of a virtual table to interact with a small scale version of the 3D environment;
and finally Mixed Mode (c) is a combination of the previous modes: the user is immersed
inside the 3D environment but a small scale version of it is also displayed, allowing him
to interact and perceive changes in both models simultaneously.

The underlying modeling system is the one developed in Chapter 3, in which the
user “fixes” a set of vertices, and then manipulates one or more “variable” vertices. The
system solves an optimization and updates the rest of the model accordingly. In addition



4.3. Prototype System Description 55

we have added new functionality for lighting and the control of sun position, which we
describe later. We have modified the system to solve the specific task of building a simple
house from a set of pre-built rooms which can be assembled.

The user can add doors and windows which can subsequently be manipulated.
Doors and windows are modeled as textured faces which have the same texture of the
underlying wall. Resizing windows and doors works the same as with the rest of the
geometry, using the reshape operator describe in Chapter 3.

Different “rooms” can be assembled, which communicate through portals (our
doors) allowing the propagation of the mesh modifications. Users interact using both
hands, in a co-located manner, based solely on simple actions that we call "grab-move-
release": the user grabs "something" (a widget, an avatar); then moves it to a particular
position in the 3D space to achieve an action; to finally release it, confirming that ac-
tion. We take advantage of human nature to perform coordinate two-handed interaction
[Guiard, 1987] and allow simple gestures using two hands for resizing windows: the
user grabs any two-corners of a window and move their hands, to interactively resize
the window.

(a) (b)

Figure 4.5: Resizing a wall in Mixed Mode (a) The wall widget can be grabbed, resulting
in a resized wall (b).

(a) (b)

Figure 4.6: Resizing a wall in Table Mode (a) The wall widget can be grabbed, resulting
in a resized wall (b).

For our prototype, we introduce a layer on top of our system that knows which one of
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(a) (b)

Figure 4.7: Resizing a window in Immersive Mode (a) Any combination of the four win-
dow widgets, placed respectively at each corner, can be grabbed and translated, resulting
in a resized window (b).

(a) (b)

Figure 4.8: Resizing a window in Table Mode (a) Any combination of the four window
widgets, placed respectively at each corner, can be grabbed and translated, resulting in
a resized window (b).

the vertices are variables and which ones are fixed. This layer contains pre-defined sets
of vertices representing the objects that can be edited. These objects are windows, doors
and walls. We identify these objects manually since our models are not annotated. This
is done as a pre-processing step for each different piece type. Each piece is a room com-
posed of four walls, one floor, one ceiling and four portals, which are initially disabled.
These portals can become either windows or walls at run time.

The system is interactive, and thus geometry and textures of 3D models, as well
as lighting, are updated on the fly. The system receives input from the user through
the use of a bi-manual interface, which is currently implemented using an ART 1 wand
(dominant hand), called flystick, and a hand-tracking device (non-dominant hand). The
user is head-tracked and all interaction is performed in a BARCO iSpace 3.2x3.2x2.4m

1http://www.ar-tracking.de/
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(a) (b)

Figure 4.9: If the user is outside the 3D environment, walls and windows are rendered
with transparency, only showing edges of windows and/or doors (a),(b).

(a) (b)

Figure 4.10: Moving a window in Mixed Mode (a) Any one of the four window wid-
gets, placed respectively at each corner, can be grabbed and translated, resulting in a
new position for the window (b). The advantage of the Mixed Mode is that the user can
experience editing transformations immersed in the virtual room.

4-wall system 2. The system used in our developments can be seen in Figure 4.12.

4.3.1 Widgets

The user can interact with the environment through a set of “selectable widgets”. The
list of available widgets along with their pictorial representation is shown in Table 4.1.

2http://www.barco.com/en/virtualreality/product/732.
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(a) (b)

(c)
Figure 4.11: The human avatar widget can be grabbed (a) and dragged inside (b) a
particular room, transporting the user to that room by changing the interaction mode
from Table Mode to Immersive Mode (c).

Figure 4.12: The virtual reality iSpace used in our experiments.
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Widgets Icon Widgets Icon

(a) Move Wall,
Move Window
Widget

(b) Sun Widget

(c) Add Door Wid-
get

(d) Add Window
Widget

(e) Go Into Immer-
sive Mode Widget

Table 4.1: List of available widgets for user interaction.

Each widget allows the user to perform a unique action. For instance, a "move wid-
get" (see Table 4.1(a)) allows the user to grab, then move or resize the wall or window.
Figures 4.5(a) and (b) shows an example of a wall resize in mixed mode. Figures 4.7(a)
and (b) shows an example of a window resize in immersive mode.

A “human avatar" (see Table 4.1(e)) can be dragged and dropped inside a particular
room, changing the viewpoint so that the user is transported to immersive mode inside
that room. A button-press is used to go back. Figures 4.11(a) and (b) exemplies this
process.

The viewpoint change is performed with a smooth transition, interpolating the scale
of the scene similar to [McCrae et al., 2009]. We however, use a unique interpolation
speed given the simplicity of our architectural scene.

4.3.2 Lighting Design

A special widget is provided for lighting design: the user can move an orange colored
and textured sphere (see Table 4.1(b)) representing the sun over two trajectories (latitude
and longitude). The date and time are displayed in 3D next to the sun widget; when
these are changed the lighting is updated in the scene (see Figures 4.3 (h) and (i)).

To simulate natural lighting inside the room, we use a simple global illumination al-
gorithm. Sun rays entering through a window will directly illuminate a polygonal area
of the interior of the room. We call this polygonal patch P (see Figure 4.13). Other sur-
faces of the room, for instance, the opposite wall facing the window will receive light
indirectly from this patch. Global Illumination algorithms attempt to solve this com-
plex light interaction problem. However, computing these light interactions precisely is
computationally expensive and is prohibitive for our application.
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Figure 4.13: Light rays enter the room through a window, illuminating its interior with
both direct and indirect lighting. We use a simplified one-bounce global illumination
approximation to provide an approximate and visually acceptable result at interactive
frame rates.

Empirically we have found that a simplified light interaction computation sufficed
for our purposes of conceptual lighting design. A simplified one-bounce illumination
model is used: a directional light source illuminates the scene through the windows in
the room created by the user. The center of P is used as if it was a secondary light source,
illuminating the other surfaces of the room, using a point to point differential form-factor
[Greenberg et al., 1986]:

Fx,P =
∫

y∈P

cos θ cos θ′

πr2 V(x, P)dy (4.1)

For a sun patch P, we integrate over all surface points x in the room to find the form
factor Fx,P. r is the distance between each surface point x and the center of P. θ is the
angle between the surface normal at the surface point x and r. Respectively, θ′ is the
angle between the surface normal of P and r. Please refer to Figure 4.13 for more details.

This is a simple approximation, but it provides an effective first impression of global
illumination changes due to modifications in lighting position.

Since we do only one bounce and assume that all points are visible to the sun patch
P, the form factor is computed per pixel in the GPU using the following formula:

Fx,P =
cos θ cos θ′

πr2 · AP
(4.2)

where AP is the area of the projected sun patch P on the surface of the room.
In Figure 4.14 we can see how lighting changes inside a room when the user moves

the sun. The overall illumination of the room changes accordingly. This simple approxi-
mation proves to be visually effective for quick lighting design in real time.
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4.3.3 Interaction Modes

(a) (b)

Figure 4.14: (a) The sun widget can be grabbed and moved to a different location (b),
changing the illumination of the room.

Actions can be executed in three different editing modes. All three modes take ad-
vantage of the immersive nature of a iSpace system, putting the user within reach of
all tools for prototyping an architectural model. All modes allow co-located interaction
based on the widgets described above.

Table Mode The first mode is based on a table top design, with building blocks and
tools available for interaction: the user stands in front of a table with the building blocks
available for usage (Figure 4.15(a)). The user begins the architectural design by choos-
ing a pre-designed 3D model e.g., a room, corridor, etc. Room selection is provided
to the user with a floating rotation menu with options (see Figure 4.15(b)), displayed
to his right and within reach (co-located paradigm). As the user waves his hand over
the menu, it rotates and displays all available options; the user presses the wand but-
ton to choose the appropriate room (please see video located in the online Appendix
http://www-sop.inria.fr/members/Marcio.Cabral/thesis/).

Table (and mixed) mode resembles the WIM paradigm, with the addition of the un-
derlying table which gives the user stability and a “real location” to position its proto-
type. Since the user observes the world from an external perspective, this is an exocentric
view.

Immersive Mode The second editing mode is egocentric: the world is displayed at a
1:1 scale and the user is correctly immersed in the architectural model (Figure 4.15(c)).

In this second mode the user has the same editing tools available as in the previous
mode. Interaction occurs in the same manner as in table mode using the widgets. One of
the challenges in this particular mode is navigation: the user is free to walk around in the
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confined space of the iSpace system to explore and edit the model. This also translates to
a 1:1 scale translation inside the virtual environment. However, it is often the case that
the VR environment is bigger than the actual physical iSpace room. To overcome this
limitation, the user can “fly through" the environment using the wand.

Mixed mode The third editing mode is a combination of the two previous editing
modes. The user is positioned at a 1:1 scale inside the 3D model. While in this mode,
the user is able to visualize a small scale version of the model in front of him (see Fig-
ure 4.15(c)). This approach is similar to the one described in [Stoakley et al., 1995]. The
main difference is that the miniature model is placed in a fixed position, always dis-
played in the center of the physical iSpace projection system.

(a) (b)

(c) (d)

Figure 4.15: (a) Table mode, (b) Room rotational menu (c) Immersive mode (d) Mixed
mode

4.4 User studies and Evaluation

The integration of the prototype modeling system described in the previous Chapter 3
and a simple lighting control interface into an immersive environment allows us to study
the relative effectiveness of the different modes (table, immersive and mixed) for several
different tasks.

The study has three parts: a training session, then a first set of specific tasks and
finally a more open task in which the user is asked to construct a three room house. The
specific tasks are: resize a wall, add/move/resize a window, and move the sun. For
placement and resize tasks, the user is presented with a target guide in wireframe which
allows objective error in the task to be measured. For the sun task, the user is presented
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Table Immersive Mixed
Add window ✔ ✔ ✔

Move window ✔ ✔ ✔

Resize window ✔ ✔ ✔

Resize wall ✔ ✔ ✔

Add door ✔ ✔ ✔

Add room ✔ ✗ ✔

Move sun ✔ ✗ ✔

Table 4.2: Available actions for each interaction mode.

with a square having a target intensity, and is asked to move the sun to match the target
intensity. Figure 4.16 (a) shows the target wireframe in Table mode; in Figure 4.16 (b)
the user is performing the test, trying to match the wireframe intensity to the one in the
front room wall below.

Table 4.2 gives an overview of which actions can be accomplished in a particular
mode. The participants are also presented with a questionnaire with subjective ques-
tions after the experiment.

4.5 Experimental procedure

A total of 8 participants completed the study in the iSpace of our institute, all male with
ages varying from 25 to 40. All reported normal vision except for one subject who had
stereo deficiency. Although we did not test the vision of the subjects, 3D glasses can be
worn over corrective glasses and the subjects were instructed to do so.

We did not test handedness but we instructed people to hold the wand in their dom-
inant hand. We will now detail the experimental procedures.

4.5.1 Training Session

The experiment starts with a training session so the participant can learn the interface.
The participant is introduced to the interface by an experimenter who guides the user

through the process. The participant starts in table mode, with a simple room created
and is then guided through each action available in each mode. The participant is then
asked to perform the action until the experimenter is satisfied that the knowledge of the
action has been acquired. The training session is extensive to minimize learning effects
during the follow up part of the experiment.

The training session takes between 10-15 minutes. The detailed procedure for the
training is described in Algorithm 4.1.

The training session can be extended until the experimenter is satisfied that the user
knows how to accomplish all tasks.
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Algorithm 4.1 Training Session Detailed Procedure
for all modes {table, immersive, mixed} do

put the user in the mode
start by showing a simple room
for all actions available in the current mode do

give detailed step-by-step instructions
let the user perform the action
correct and retry if necessary

end for
end for

4.5.2 Objective Specific Study

After a short break, the participant is asked to perform the set of tests involving the
actions listed in Table 4.2. The window and sun tests are performed for each of Table,
Immersive and Mixed mode; the wall resize test is only performed in Table and Mixed
mode. For all add/move/resize tests, we record time to achieve the task and error com-
pared to the wireframe target. Completion time is also recorded for the sun test and
the error in color between the target square and the corresponding square on the wall is
computed (see Figure 4.16, second row).

Users performed the tasks in the following order, executing all tasks for a particular
mode before proceeding to the next mode.

1.Table Mode: resize room, move/resize window three times, sun task

2.Immersive Mode: move/resize window three times

3.Mixed Mode: resize room, move/resize window three times, sun task

The Objective Specific Study session took between 10-30 minutes. The detailed pro-
cedure is described in Algorithm 4.2.

4.5.3 Objective Open Study

For the open task, we want to measure speed, accuracy, and behavior in an open-ended
task with a specific goal. The participants were instructed to construct a three room
house within a time limit of 5 minutes and to make sure that all rooms have enough
sunlight in winter but not too much in summer. Participants could use any combination
of editing operations, in any mode (or combination of modes) they had learned from the
previous tasks.

4.5.4 Subjective Questionnaire

At the end of each study a questionnaire is presented to the participant. The post ques-
tionnaire covered the following topics:
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Algorithm 4.2 Objective Specific Study

for all modes {table, immersive, mixed} do
for all actions available in the current mode do

start by showing a simple room
give a specific task:
task 1: resize room to match the constraints shown
for i = 1 to 3 do

task 2: move / resize window
end for
task 3: match the intensity of the target wireframe shown to the intensity of the
front wall; in order to accomplish this, move the sun and/or window until the
goal has been achieved
let the user perform the task

end for
end for

(a) (b)

(c) (d)

Figure 4.16: (a) Target wireframe for a window resize and (b) a room resize task. (c) Sun
target in table mode (start of test) (d) Sun target at the end of the test.

Satisfaction How pleasant is each mode? How much is your creativity hindered by
each mode? How pleasant is the iSpace?

Comfort How tiring (mentally and physically) is it to use the system?

Presence Did you feel that you were really "there" in the virtual world while using the
different modes? Did you feel that you were directly manipulating a physical ob-
ject or just a representation? How aware were you of the control devices and the
display system?
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The responses to the questionnaire were all positive about the system overall, finding
the experience to be interesting and engaging. There was a small preference for table
mode (4 subjects). Overall users appreciated the immersive nature of the system, and
found interaction to be natural and pleasant.

4.6 Experimental Results

Tasks in the immersive mode can take slightly longer (e.g. approximately 30 seconds
longer than the 42 seconds it takes on average for each window manipulation task in the
other modes, two-sample t-test with unequal variances p < 0.05) if the user first needs
to walk, virtually or physically, to get closer to the object. Some participants reported
that it was difficult to reach the corners of the large windows when they were standing
too far away. On the other hand resizing the windows from a suitable location was a
little more accurate in immersive mode than in the other modes.

Timings for the task of room resize are equivalent both in Table and Mixed modes (73
± 28s versus 54 ± 27s, p > 0.05). This is also the case for the sun positioning task (283 ±

17s versus 149 ± 8s, p > 0.05).
In Table mode, completing the first window resize task is marginally slower than

for subsequent windows resize tasks (second and third window) because of a learning
effect. Timings of first window versus second/third window resize in Table mode: 55 ±

28s versus 32 +/- 28s, p > 0.05.
Again, we observe the same pattern in Immersive mode: completing the first win-

dow resize task is marginally slower than the window resize task for the third window
because of a learning effect. Timings of first versus third window resize in Immersive
mode: 70 ± 55s vs. 53 ± 54s, p > 0.05.

In immersive mode, the second window resize task obliged the user to walk towards
it using the wand’s joystick. This caused the second window resize task to perform
marginally slower than for the third window (97 ± 76s versus 53 ± 54s, p > 0.05 so
nonsignificant difference).

Table 4.3 shows detailed timings for the Objective Specific Study session.
We measure accuracy for the Add / Move window task as the average positional

error of the 4 corners of the window in virtual space. The virtual space matches the real
space of the CAVE system, which is about 2.5 meters tall and 2x2 meters in length. Room
resize task accuracy is proportional to the positional error of the corner of the room and
is computed using the following formulae:

‖ extentu − extentt ‖

theight
(4.3)

where extentu is a 3-d vector containing the user’s choice for the room’s height, depth
and length; extentt is a 3-d vector of the room’s target extent and; theight is the target
room’s height.

The match criteria for the Sun task was a subjective measure: a comparison between
brightness of two texture patches. Accuracy values for the Sun task are not included in
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Table 4.4 because different window positions and sun positions can yield similar bright-
ness.

Room resizing accuracy in both Mixed and Table mode are equivalent (0.081 ±

0.073m versus 0.076 ± 0.076m, p > 0.05). On the other hand, for window move/resize
accuracy, we do not observe a learning effect for the window resize task for all modes.
For room resize, accuracy is measured similarly to the window resize: as the average
positional error of the 4 corners of the room.

In Immersive mode, completing the second window resize task has marginally larger
error because the virtual window is too close to the real projection screen if the subject
did not advance far enough with the joystick (0.104 ± 0.085m versus 0.050 ± 0.033m,
p > 0.05).

Table 4.4 shows accuracy measurements for the Objective Specific Study session.

The Sun is harder to select in Table mode than in Mixed mode: 7.25 misses ± 10.32
for Table mode versus 2 misses ± 2.83, p > 0.05. Users perform better in Mixed mode,
possibly because of a learning effect.

The widgets and the selection sphere that floated just in front of the wand cast a
shadow on nearby surfaces. For widgets in the house, participants could use these shad-
ows as a depth cue to guide them to the correct position. Most participants initially had
some difficulty selecting the sun widget because there was no shadow to guide them
and they had to rely on the stereoscopic depth cue.

During the 5 minutes of the open task, participants switched between modes on av-
erage 13 times (average 12.86 ± standard deviation 3.72), suggesting that they preferred
to perform some operations in specific modes. Most editing was performed in table
mode, while immersive or mixed mode were used mainly for inspection and even for
fun. Participants used the undo functionality on average only twice (average 1.86 times
± standard deviation 1.95) since any move or resize operations could easily be corrected
manually. From Table 4.4 we can see that mixed mode is globally more accurate than
table mode. From informal observation, we noted that most interaction was performed
using the table in mixed mode. This may imply some advantage of mixed mode for
accuracy, but requires further investigation.

Table Immersive Mixed
Add Move Window 1 54.81s 52.57s 47.06s
Add Move Window 2 28.74s 96.82s 48.18s
Add Move Window 3 35.09s 52.57s 41.15s
Room Resize 73.19s ✗ 54.01s
Move sun 283.38s ✗ 149.43s

Table 4.3: Objective Specific Study timings
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Table Immersive Mixed
Add Move Window 1 0.218 0.046 0.027
Add Move Window 2 0.146 0.025 0.093
Add Move Window 3 0.214 0.054 0.101
Room Resize 0.081 ✗ 0.076

Table 4.4: Objective Specific Study accuracy

4.7 Discussions and Conclusion

The results of the pilot study tend to indicate that none of the modes we used demon-
strates clear superiority for the tasks proposed. As a result, all modes can potentially be
used, depending on user preference, level of immersion required etc. The results also
indicate that measured performance times are similar in table and mixed mode. This is
interesting since in mixed mode the effects of lighting on the overall environment can be
appreciated much better than in table mode only. Given the slight preference for table
mode, it may be the case that mixed mode can be used as the “default view”, but the
user can “switch off” immersive view when they wish to concentrate on a specific task
in table mode. Additional study is required to answer this question, with more complex
tasks.

In conclusion, we have presented a first immersive system which allows simple con-
ceptual design for textured geometric models and basic lighting design. We imple-
mented and tested this system in an immersive room with a four-sided display, using
three different modes: table, immersive (1:1 scale) and mixed, which is a combination of
the first two (WIM). When asked to perform a more open task, all modes were used, and
novice users all mentioned that they found the experience rewarding and interesting.

We are interested in pursuing these ideas further in the future, and notably investi-
gating more complex modeling and lighting tasks. It is particularly interesting to investi-
gate the use of sophisticated global illumination algorithms in the context of lighting de-
sign, and the importance of different levels of realism, in the spirit of [Slater et al., 2009].
We are also planning on using a bimanual gesture-based interface based on the finger
tracking device 3 provided by ART. Ultimately, the long term goal of our research us-
ing the high-end iSpace is to develop appropriate interface paradigms for involved 3D
conceptual design tasks even for low-end stereo display systems with low-resolution
tracking (e.g., webcam based). We plan to investigate such paradigms and in particular
test how our various hypotheses and designs bare out when we degrade the quality of
the various system elements (display surfaces, tracking, stereo).

3http://www.ar-tracking.de/Fingertracking.54.0.html
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Easy Image Relighting for Trees





Introduction to Part II

In the second part of this thesis we continue to explore techniques that aid users to create
new content from existing data.

Photographs are probably the most important source used for content creation. Pho-
tographs are used as a basis for texturing geometric models for "from scratch" content
creation. They are also the basis for image-based modeling and rendering. However,
photographs suffer from a major limitation, which is the fact that lighting and shadows
are already present in the image. It is thus hard to reuse the images in any context other
than a lighting setup which is exactly the same as that in which the photograph was
taken.

Relighting images is thus a very interesting and promising research direction. In the
general case, the problem is of course very hard, since it is first necessary to remove
shadows and lighting. Previous solutions depend heavily on detailed reconstruction of
geometry and careful measurements of reflectance properties. Interestingly, the case of
trees canopies is a good starting point, since the geometric nature of tree canopies has
an intuitive equivalent to a semi-opaque volume. As we shall see, we will build on this
intuition to develop our solution.

Ultimately, our goal is to provide a relighting tool for tree canopies which is image
based and can be achieved with a small set of photographs taken at a single time of the
day and does not rely on geometric information as input. In the following Chapter, we
present previous work related to our approach. And in Chapter 6 we introduce how this
can be achieved using a single scattering volume rendering approach.
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Previous Work for Part II
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The goal of changing the lighting conditions of a photograph, which we call relight-

ing from now on has been the focus of much past research in Computer Graphics. Ini-
tial approaches were based on constructing an approximate model of the scene, esti-
mating reflectance parameters and then performing a relighting calculation sometimes
based on global illumination computations (e.g., [Yu and Malik, 1998, Yu et al., 1999,
Sato et al., 1999, Loscos et al., 2000, Boivin and Gagalowicz, 2001]).

[Yu and Malik, 1998] merges rendering and image-based techniques to produce
novel renderings at different lighting conditions than those of the input data. To do
this, the authors introduce the concept of "pseudo-brdf", which are exactly the same as
the real BRDF if the original BRDF does not vary with wavelength. BRDF stands for the
bi-directional reflectance distribution function and it models how light interacts with a
given opaque surface. It is a four dimensional function which takes as parameters the
incoming and outgoing light direction which are defined with respect to the surface nor-
mal. It returns a ratio between the incoming irradiance and the outgoing radiance. It
was first introduced by [Nicodemus, 1965] and later widely used in computer graphics
with several approximations. The authors recover two sets of pseudo-BRDF’s, one for
the sun and one for the sky. With this information, they generate renderings of archi-
tectural buildings under novel illumination from the input photographs (approximately
100 photographs). The results are qualitative comparable to ground truth photos taken
at the target synthetic render time. The method however requires a relatively high num-
ber of images to work. This is due to the process of recovering reflectance of the building
facades; it requires the separation of the sun and sky lighting, which can be done by
taking photographs from the same face, at different angles and different times of a day,
when a surface does not receive sun light directly.

[Yu et al., 1999] introduces a new technique that is able to estimate reflectance prop-
erties of a real scene and allows re-rendering of it under new lighting conditions. The
algorithm introduced is called inverse global illumination; it captures a set of HDR pho-
tographs from a scene with known illumination and geometry to compute radiance
maps for each one of the surfaces present in the scene. A low parameter reflectance
model is used to solve an inverted radiosity equation to radiance maps. Radiance maps
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are images that encode a large dynamic range, allowing both for very bright and darker
points to be represented correctly. Using the known geometry and recovered radiance
maps, the scene can be render under novel lighting conditions. Ground truth compar-
isons with novel lighting conditions rendered, show the system successfully achieves its
goal. The input data capture process is time consuming however. In addition, the re-
quirement of geometry, even though estimated by the input photographs, restricts the
applicability of this method.

Concurrently with this approach, a similar method [Loscos et al., 2000] was devel-
oped that allowed interactive relighting of scenes. It require a smaller number of pho-
tographs and thus a simpler capture procedure for radiance estimation. It is restricted
however to a single viewpoint, that is from the input photograph. It also requires that
at least one view of a particular textured surface has no shadow. Nonetheless, the use
of efficient global illumination algorithms allowed interactive updates with changing
illumination and the mix of real and synthetic objects.

[Sato et al., 1999] proposes a method for superimposing virtual objects onto a real
scene. Their method estimates the 3D geometry from a pair of fisheye images of the
scene. The geometry estimation begins by identifying key points in the scene. These
points are direct sources of illuminations such as a fluorescent light or a external win-
dow. Since the stereo pair of the fisheye cameras are calibrated using the Tsai’s method
[Tsai, 1986], these points are recovered in the scene geometry and a mapping between
real and virtual objects can be stablished. The rest of the scene is approximated by first
recovering a 2D Delaunay triangular mesh over these key points. Using these correspon-
dences and the connectivity found, a 3D mesh can be recovered. Radiance distribution
is estimated by establishing a relationship between the image irradiance from the fish-
eye photo and radiance incident on a scene object. This relationship can be established
because the design of the fisheye lens allows the computation of the direction of the
incoming light onto a particular point on the image plane. The estimated radiance al-
lows rendering of scenes with superimposed virtual objects while taking into account
shadows and shading, both in indoors and outdoors environments.

[Boivin and Gagalowicz, 2001] presents an approach that estimates surface re-
flectance properties of a scene from a single image. The authors iteratively and hi-
erarchically compute surface properties to try to fit the Ward BRDF parameterization
[Ward, 1992]. The scene is modeled and registered manually using Autodesk Maya. The
illumination for which the scene was photographed is also known. With the recovered
properties, the scene can be rendered under different lighting conditions. Textured sur-
faces however do not work well for this technique since shadows and specular highlights
cannot be correctly identified.

The environments used in these approaches did not involve complex geometries such
as trees, since they are hard to reconstruct from images. An interesting recent solution
to image-based relighting taps into the sheer volume of images and lighting conditions
available on the web [Lalonde et al., 2009]. While very promising, it has similar limita-
tions concerning required geometry reconstruction in the case of trees.

Lighting in tree canopies has been previously studied in computer graphics and other
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fields. [Soler et al., 2003] describe a hierarchical instantiation scheme for radiosity ren-
dering of vegetation that takes advantage of self-similarities that exists in plants; their
solution is on entirely synthetic models, with exact geometry and materials available. In
the field of agronomy, de [de Castro and Fetcher, 1998] model lighting in a tree canopy
by analyzing illumination arriving at individual grid cells overlaid on a vegetation. They
validate this model with real measurements on a coarse grid and in an "artificial" planta-
tion. While this model has some similarities to our approach, their focus is on producing
average illumination values at much larger scales, suitable for agronomy. As a result this
approach cannot be directly applied for image relighting. In addition, we assume that
the medium is isotropic and that we have single scattering.

The work of [Boulanger et al., 2008] utilizes a volumetric approach to approximate
visibility in a tree canopy. However, their approach is a tree rendering method, which
relies on actual geometry and normals to compute visibility and create renderings. Our
method is quite different from this approach as it does not depend on actual tree canopy
geometry as input - this information is hard capture and estimate if the intent is to use a
small set of photographs (approximately 12 photos) as input.

There has also been a significant amount of recent work on tree modeling
from images. Most approaches (e.g., [Shlyakhter et al., 2001, Neubert et al., 2007,
Tan et al., 2008]) use the images to guide the generation of a completely synthetic model;
an alternative is to create an image-based volumetric representation using a voxel grid
with billboards [Reche et al., 2004]. This approach first builds a volumetric proxy by
taking a set of photographs around the tree. These photographs are then calibrated to
recover camera parameters. For each view, a matte separating the background (world)
from the foreground(tree) are identified. A density value for each voxel is estimated us-
ing the image mattes; the process is repeated until a convergence threshold is achieved.
This process effectively estimates a volumetric proxy of the tree by either removing vox-
els that are unseen by any of the image matters and increasing the density of voxels that
are seen by one or more mattes.

While it would be possible to use the resulting purely synthetic tree models for re-
lighting in the spirit of [Debevec, 1998, Boivin and Gagalowicz, 2001, Debevec, 2002], it
would be necessary to extract leaf reflectance parameters from the images. We will build
on this method to create a volumetric representation of trees in the input images to per-
form relighting. While some methods exist for large scale reflectance capture in radiom-
etry [Rahman et al., 1993] it is unclear whether these could be used here. Even if re-
flectance were available, the final result would not completely match the image since the
resulting synthetic models are not usually pixel accurate. Thus our goal of relighting the
tree in the actual photograph would not be achieved.

Our relighting formulation is based on ratios of images that depict differ-
ent environment conditions to compute lighting at a target time. These meth-
ods have been extensively used in the literature for solving inverse lighting prob-
lems [Marschner and Greenberg, 1997, Liu et al., 2001, Shashua and Riklin-Raviv, 2001,
Stoschek, 2000]. Marschner [Marschner and Greenberg, 1997] was the first to introduce
image ratio multiplication targeted at relighting. Given as input a rough 3D model ap-
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proximating the scene, the camera and basis lighting, the authors construct low fre-
quency renderings of the output photograph. These renderings are computed at both
lighting conditions. The ratio of these two images is then multiplied to the original pho-
tograph, pixel by pixel, giving the final result. High frequency details are not recovered
by the model but are present in the original input photograph.

A recent trend in relighting research is based on complex capture setups, such as
the Light Stage [Debevec et al., 2000] and followup work, e.g., [Peers et al., 2007]. These
results have produced impressive results of stunning realism, and have been extensively
used in film production. Our approach is orthogonal to such capture setups, since our
goal is to have a simple capture workflow using a simple digital camera. In addition,
most such laboratory setups [Debevec et al., 2000] are inappropriate for capturing trees,
due to size and transportability issues.

5.1 A participating media lighting model

We will be using a participating media lighting model. For a comprehensive survey,
please see [Cerezo et al., 2005]; we describe here the basic concepts that we will be using
in our work. Our notation is inspired from this survey.

As energy travels and crosses a participating medium, three different processes can
occur, according to [Cerezo et al., 2005]: absorption, scattering and emission. For our
particular case, we make the assumption that light going through the canopy of a tree
undergoes only scattering and absorption. We observe that a tree canopy is qualitatively
similar to a participating medium since it is composed of a very large number of leaves.
These leaves play the role of particles. Our relighting method is based on this idea and
it allow us to make an estimate of lighting parameters for different lighting conditions,
effectively allowing tree relighting.

If we consider that leaves in a tree have a random orientation, we can consider scat-
tering to be isotropic. Furthermore, as we will show later in Section 6.1.2, results from
synthetics renderings indicates that indirect lighting is qualitatively similar and compa-
rable to single scattering.

The mathematical formulation that allows us to express the phenomena of en-
ergy reduction as it travels through a medium, or the transport equation, is given as
[Cerezo et al., 2005]

dL(x) = −kt(x)L(x)dx (5.1)

where kt = ka + ks is called the extinction coefficient (ka absorption and ks scattering).
We estimate these quantities for our volumetric rendering formulation in Section 6.2
using image mattes extracted from photographs around the tree. Beer’s law states that
the solution of the differential equation 5.1 is given as

L(x) = L(x0)τ(x0, x) (5.2)

where
τ(x0, x) = e

−
∫ x

x0
kt(u)du (5.3)
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Note that 5.2 does not take into account in-scattering. For the particular case of
single-scattering, the integral transport equation can be simplified as follows

L(x) =
∫ x

x0

τ(u, x)kt(u)Lss(u)du (5.4)

In Section 6.2.1 we show in more details how Equation 5.2 can be used to effectively
allow tree relighting using a participating medium lighting model.

5.2 Conclusion

Image-based relighting is a difficult task. In particular for trees, where geometric recon-
struction is hard, this task presents several challenges such as recovering an approximate
geometric proxy and estimating the lighting that each leaf receives. Relighting is then
performed based on the estimated information.

Interestingly however, the nature of tree canopies also allows us to simplify compu-
tations. Intuitively we can then avoid the computation of local indirect lighting, since it
is one or more orders of magnitude lower than the sun and the sky lighting.

In the following Chapter we will introduce a new solution for relighting canopies of
trees based on the assumption that ultimately, tree canopies at a distance, can be inter-
preted as a volumetric entity. As such, we can reliably estimate enough lighting, visibil-
ity and geometric information to perform relighting using a Single Scattering Volumetric
Rendering technique. To our knowledge, our method is the first to achieve this goal.
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Image Based Tree Relighting
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Trees are a very compelling and important component of many outdoor images.
Matting photos of trees is common practice, e.g., in photomontages for urban planning
projects or in other image editing applications. One important problem in such contexts
is that the lighting conditions of the tree do not correspond to the lighting of the final
image (see Figures 6.2(a)-(b)). We introduce a novel approach which allows us to take a
small set of photos of a tree at a single time of day, and then relight the tree canopy with
a different, target lighting condition (see Figure 6.1(b)-(d) and Figures 6.21, 6.22, 6.28).

Relighting photographs is a long-standing goal of computer graphics. In
many previous methods (e.g., [Yu and Malik, 1998, Yu et al., 1999, Masselus et al., 2003,
Boivin and Gagalowicz, 2001, Loscos et al., 2000, Debevec, 2002]) geometric and photo-
metric reconstruction and/or capture are required, followed by different kinds of in-
verse (global) illumination computations. More recently, relighting research has con-
centrated on complex, often expensive, capture setups (e.g., [Debevec et al., 2000,
Peers et al., 2007]) typically involving multiple light sources and cameras.

It is unclear how tree canopies can be relit with such methods. Despite recent work
on image-based tree reconstruction [Neubert et al., 2007, Tan et al., 2008], pixel-accurate
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geometric reconstruction of tree canopies is very hard. Even if a synthetic tree were to
be reconstructed from images, it is unlikely that photometric, geometric and lighting
calibration would be sufficiently accurate to convincingly mix the synthetic tree with
the photograph. On the other hand, solutions based on laboratory capture setups are
inappropriate for trees. To our knowledge, no previous method has been proposed that
allows relighting of tree canopy photos, using a single lighting condition as input.

Given the above, our goals are as follows:

1. Allow relighting of a given tree canopy from a given input photograph;

2. Provide an image-based method, i.e., that only takes photographs as input. No ge-
ometry or material information is required for the tree canopy;

3. Require photographs to be taken only at a single time of day; no input is thus required
for the target relit time.

These goals have the advantage of allowing us to relight at any target time, given input
photographs at a single time of day. However, a consistent analytic model must exist
to represent illumination at the input time (which is captured), and at the target time
(for which no data is required). As a result, methods based e.g., on light probes, which
would require capturing lighting both at input and target times, are incompatible with
our goals.

We do not deal with relighting of the rest of the photograph, such as shadow removal
and relighting of parts of the scene other than the canopy. In future work, our results
could potentially be integrated with one of the previous approaches mentioned above to
handle this more general problem.

The proposed tree canopy relighting method is based on a volumetric single-
scattering participating media approximation; it is image-based and does not use or
generate leaf geometry or normals to achieve relighting; in this sense it should not be
confused with a traditional rendering algorithm.

We build our approach based on an intuitive argument of qualitative similarity be-
tween volumetric single scattering and the effect of lighting distribution in a tree canopy.
We use synthetic renderings of trees to illustrate and validate this principle. This intu-
ition is then used to estimate a per pixel radiance value for the input photograph and
then estimate an equivalent value at the target time, allowing us to achieve relighting.

Our goal is to provide a convincing relighting algorithm for tree canopies, and as
such our approximations do not constitute a physically accurate model. Nonetheless, as
we shall see, our assumptions provide satisfactory results for relighting. In particular,
we have three main contributions:

• We present an analysis of lighting in a tree canopy, starting from first principles,
and using physically-based synthetic renderings to guide our study. Synthetic trees
are used only to generate renderings for analysis, and do not constitute part of our
contribution. The analysis indicates that in terms of overall lighting behavior we
can assume diffuse reflectance for leaves, and approximate lighting behavior in a
tree canopy using a single-scattering isotropic participating media model.
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(a) input lighting condition

(b) relit image (c) ground truth

(d) relit image (e) ground truth

Figure 6.1: (a) One of the input images taken at noon. (b)-(d) Canopies relit with our
approach using only photos taken at noon, and the respective ground truth photographs
(c)-(e) at the target relighting times (taken for purposes of comparison only, and not used
by the algorithm). Please note that we only use (a) as input, together with a set of images
taken at the same time around the tree. The target lighting conditions (i.e., (b) and (d))
are generated automatically by our method.

• Based on this analysis, we develop a relighting approach based on a volumetric
lighting model, and an analytical sky/sun model [Preetham et al., 1999]. This is
achieved by computing approximate representations for irradiance both at the time
of the input photograph and that of the desired lighting condition, and relighting
using their ratio.

• Finally, we develop a fast relighting algorithm using spherical harmonics to com-
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(a) (b)

Figure 6.2: (a) A snapshot of an image editing program interface, with the layer contain-
ing a tree, and the target photo. Inserting the tree directly in the image is unsatisfactory,
clearly revealing the lighting inconsistency. (b) Using our approach, the relit tree fits
much better with the target lighting condition, in particular for shadowing in the canopy.

bine the effect of transmittance from the sky sampling directions and the path to
the eye.

We present validation results on synthetic trees (Fig-
ures 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19), for which exact ground truth exists,
and for (sparse) time-lapse sequences of three different real trees (see Figure 6.1(a)-(e)
and Figures 6.21, 6.22 and 6.28)

We next start with a careful analysis of tree canopy relighting. We use synthetic
global illumination renderings to study lighting in tree canopies, which leads us to
adopt a volumetric rendering model (Sec. 6.1). Based on this analysis, we develop
a volumetric tree canopy relighting method (Sec. 6.2) and an efficient relighting al-
gorithm based on spherical harmonics, which were first introduced by Sloan et al.
[Sloan et al., 2002] in the context of pre-computed radiance transfer. More recently,
Jansen et al. [Jansen and Bavoil, 2010] introduced Fourier opacity mapping, in which
absorption is projected along one ray onto a 1D Fourier basis to speed up the integral
computation. In our case however, we project the directional (2D) distribution of trans-
missivities onto a sphere to allow for faster integration. Our method is explained in more
detail in Section 6.3.

6.1 An Analysis of Tree Canopy Lighting

As discussed above, no previous method is able to achieve the goal of relighting single
lighting condition photographs of tree canopies. This is due to the inherent complexity of
tree canopy geometry and illumination. The analysis presented in this section shows that
a number of simplifying assumptions can be made concerning lighting of tree canopies,
providing us with the qualitative intuition required for our fast and efficient relighting
algorithm
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In particular, using theoretical arguments and synthetic simulation, we will show
that a diffuse reflectance assumption and a single scattering volumetric lighting ap-
proximation (Section 6.2) are qualitatively acceptable, enabling the use of a ratio-based
relighting technique, in the spirit of [Marschner and Greenberg, 1997, Liu et al., 2001,
Shashua and Riklin-Raviv, 2001, Stoschek, 2000].

In the following, we will be using synthetic images to provide intuition about light-
ing, and to validate our approximations and assumptions.

Note however that the geometry and normals of these trees are never used in any
way to generate the results of our method; using synthetic trees is just a convenient way
to generate images while controlling various parameters and thus to perform validation
of our various hypotheses.

These synthetic images are rendered using PBRT [Pharr and Humphreys, 2004], a
physically-based rendering system. For these images we used photon-mapping (5M
photons) with final gather (128 samples/pixel and 128 directional samples), as a low-
noise global illumination solution to best match reality. Note that such "reference" image
requires several hours to compute. We use diffuse reflectance for the leaves, which are
also slightly translucent for Figure 6.12. The sun is modeled as a directional light source
and the sky is modeled using the Preetham model [Preetham et al., 1999].

6.1.1 Canopy Lighting: diffuse assumption

Consider an image of a tree canopy (e.g., Figure 6.3(a)); in what follows we will only
be referring to pixels which are on the tree canopy itself. Without loss of generality, we
assume that for a given pixel x we have a single corresponding 3D point xl on a leaf
in the real tree. The reflectance of xl is ρ(ωi, ωo), where ωi is the incoming direction
and ωo is the outgoing direction. We assume two light sources, the sun, with radiance
Lsun and the sky, which is a hemispherical source. We can sample the sky in a given
direction ω, giving radiance Lsky(ω). We also denote Lind(ω) the radiance due to indirect
illumination, and θ the angle of ω with the surface normal; Ω is the positive hemisphere
of directions. The radiance arriving at pixel x from point xl , is thus:

L(x) =
∫

Ω

(

ρ(ω, ωo)Lsky(ω, x)cos(θ)

+ ρ(ω, ωo)Lind(ω, x)cos(θ)
)

dω

+ ρ(ωsun, ωo)Lsun(x)cos(θsun) (6.1)

Our first assumption is that we can assume leaf reflectance ρ to be diffuse. This may
seem to be too strong a simplification; however, there are two reasons which justify this
choice. First, if we assume that the leaves are randomly oriented in a uniform distri-
bution, in a manner analogous to microfacets for surfaces, at a given scale, where each
pixel captures one or more leaves, the canopy can be seen as a diffuse surface. Second, as
noted by [Boulanger et al., 2008], more than half the total radiance in an image of a tree
comes from the sky (which is an hemispherical source) and indirect light. In addition,
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(a) (b)

Figure 6.3: (a) A globally illuminated image of a tree. (b) the same tree, in which the
dependency on the cosine to the normal is ignored in all lighting computations.

the direct sunlight, while contributing a high percentage of radiance (about half), only
affects a small number of pixels (see also Figure 6.4).

These observations indicate that specular effects, at a certain scale, do not always
have a very strong effect on the image of a tree. For leaves with a strong preferred orien-
tation and high specularity, these assumptions no longer hold, and this could adversely
affect the quality of our results.

To further examine the effect of these assumptions on the performance of our ap-
proach, we varied the reflectance parameters of leaves in synthetic data sets, to have
high specularity and then high translucency and studied the effect on the performance
of our algorithm. Details of these studies are presented in Section 6.4.2.

If we assume that ρ is diffuse, we can simplify Eq. (6.1) by dropping dependencies on
angle θ. Since we are integrating over the hemisphere Ω, we are now treating irradiance
values, which we note with the symbol E. Radiance received at pixel x thus becomes:

L(x) = ρ(Esky(x) + Esun(x) + Eind(x)) = ρE (6.2)

where E is the total irradiance received at xl , and Esky(x), Esun(x), Eind(x) are the ir-
radiance due to sky, sun and indirect illumination respectively. It is important to note
that we could still derive Eq. (6.2) without dropping dependencies on angle: we do so to
emphasize the fact that we do not have any information on normals in our volumetric
approximation. For clarity, Esky(x), Esun(x), Eind(x) will be called Esky, Esun, Eind from
now on.

One way to evaluate the validity of discarding the cosine term in the volumetric
model assumption is to examine the importance, with respect to lighting, of normals
compared to visibility for tree canopies. To do this, we compute an image of a tree
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Notations
x image pixel
xl corresponding 3D point on a leaf in the tree

ρ(ωi, ωo) leaf reflectance at xl

ωi incoming direction
ωo outgoing direction

Lsun sun radiance
Lsky sky radiance

Lsky(ω) sky radiance sampled at direction ω

Lind(ω) radiance due to indirect illumination
θ the angle of ω with the surface normal
Ω positive hemisphere of directions ω

Esky(x) irradiance arriving at xl due to the sky
Esun(x) irradiance arriving at xl due to the sun
Eind(x) irradiance arriving at xl due to the indirect illumination
Lvol

sun(x) approximated radiance due to the sun arriving at x using
our single scattering approach

Lvol
sky(x) approximated radiance due to the sky arriving at x using

our single scattering approach
τ(u, ωsun) transmittance along the sun direction ωsun to the point u

Table 6.1: Notations used in this Chapter

(shown in Figure 6.3(a)) using standard PBRT rendering. We then compute an image
of the same tree with the same lighting parameters, but we ignore the cosine with the
normal in the computation of lighting (Eq. (6.1)) (see Figure 6.3(b)). As we can see the
difference in the images is minimal, except for leaves which receive direct light.

6.1.2 Volumetric approximation

A tree canopy is made up of a very large number of leaves. As such, at an appropriate
scale, there is a qualitative similarity to a participating medium, in which the leaves
have the roles of particles. Our method is based on this idea, which will allow us to
approximate irradiance at given lighting conditions, thus enabling tree relighting. As
we shall see in Section 6.3, this will allow us to approximate Esky, Esun and Eind from
Eq. (6.2) using an approximation of L(x), shown in Eq. (6.12).

To investigate this qualitative analogy, we will analyze the behavior of light by sep-
arating out the various components of Eq. (6.1). In Figure 6.4(a) we show an image of a
tree with global illumination. We then show the various components of illumination, no-
tably direct sunlight Figure 6.4(b), direct skylight Figure 6.4(c) and indirect illumination
Figure 6.4(d) (from both sun and skylight), Figure 6.4(e) indirect due only to skylight and
Figure 6.4(f) indirect due only to sun light. Since we will be comparing to a participating
media model, whose phase function will be monochromatic, we set leaf reflectance equal
to (1,1,1). As we shall see later (Section 6.2), reflectance cancels out in our computations.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: (a) A globally illuminated tree, using photon mapping, computed with PBRT.
Images (b)-(f) are computed with leaf reflectance equal to (1,1,1) to allow comparison
with our participating media model. (b) Direct sunlight. (c) Direct skylight. (d) Indirect
illumination. (e) Indirect illumination (sky only) (f) Indirect illumination (sun only)

As we can see in Figure 6.4(b), direct lighting from the sun only affects a small num-
ber of pixels since it is only present on unoccluded front-facing leaves (with respect to the
sun). Skylight (Figure 6.4(c)), while present everywhere, contributes less to the overall
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(a) (b)

(c)

Figure 6.5: (a) The image Ẽ computed with our single scattering model. (b) Skylight
only component and (c) Sunlight only component.

illumination of the tree canopy. Indirect illumination (Figure 6.4(d)) represents a signif-
icant portion of overall illumination. As expected, the overall aspect of indirect light,
especially due to the sun, is similar to that of scattering within a volume. As we can see
in Figure 6.4(e) and (f) this is mainly due to indirect reflections of sunlight.

We use this qualitative observation as the intuition to derive our volumetric model,
which allows us to develop an effective tree canopy relighting approach.

We will be using a standard participating media lighting model, described in Sec-
tion 6.2.1. In particular, we shall see that we can compute an image of irradiance for a
volumetric representation of the tree canopy. We use [Reche et al., 2004] (see Section 6.2.1
for details) to construct a volume, using exact “mattes” separating pixels of the canopy
from those in the background.

The isotropic assumption is valid if the orientation of leaves is considered random
within the canopy. As the synthetic results show, a single scattering approximation is
qualitatively similar to the behavior of indirect lighting in a tree canopy.

As we shall see later (Section 6.2) our relighting does not depend on reflectance; we
thus use a constant monochromatic phase function with unit value.
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We show a rendering of our volumetric lighting model (Section 6.2.1) in Figure 6.5(a).
We also show the effect of the sky and sun separately in (b) and (c). If we compare Fig-
ure 6.4(d) (all indirect) and 6.5 (c) (sunlight component), outlined in red, we see similar
overall distribution of light. As we can see, first order scattering in the volumetric model
provides an approximation of indirect light. This provides a strong indication that it is
in effect unnecessary to consider multiple scattering.

In addition, Figure 6.4(d) and Figure 6.5(c) (highlighted in red) show that our model
captures the overall behavior of skylight.

The above comparisons are a qualitative indication that the participating media ap-
proximation we propose provides a good approximation for the overall distribution of
lighting within a tree. We make no claims about the accuracy of the absolute illumina-
tion levels, nor physical fidelity from our model; however in the context of our algorithm
for tree canopy relighting, these approximations appear to work well (see synthetic vali-
dation and results on real images in Figures 6.12, 6.13-6.28, as well as the accompanying
video - http://www-sop.inria.fr/members/Marcio.Cabral/thesis/).

6.2 A Participating Media Approach for Tree Relighting

In this section, we first discuss our relighting approach, and then present our participat-
ing media lighting model.

To achieve tree canopy relighting, we use a method based on image ra-
tios ([Marschner and Greenberg, 1997, Liu et al., 2001, Shashua and Riklin-Raviv, 2001,
Stoschek, 2000]). Assume that we have two images of the same tree canopy, at two dif-
ferent times of day Iin and Itarg (see Figure 6.6(a) and (b)). We can write: Iin = ρEin

and Itarg = ρEtarg. The above leads to the well known property governing all diffuse
materials, which we call ratio Ir:

Ir =
ρEtarg

ρEin
=

Etarg

Ein
(6.3)

An example image Ir is given in Figure 6.6(c). Clearly, if we only have Iin as input, we
only need the ratio Ir to compute Itarg, since

Itarg = Ir · Iin (6.4)

There are two interesting observations to be made from Eqs. 6.3 and 6.4. First, we can
compute relighting without estimating reflectance, since only irradiance values are required
to compute Ir. Second, only relative values are required, since only the ratio of the input
and target irradiance values is required, not their absolute values. As a consequence, all
we need is to compute appropriate approximations for Ein and Etarg so that their ratio is
accurate.

The analysis presented in the previous section indicates that a good way to compute
such approximations Ẽin and Ẽtarg would be with a participating media lighting model.
We describe our volumetric lighting solution in the following section.
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(a) (b)

(c)

Figure 6.6: (a) The input image Iin. (b) The target lighting condition Itarg. (c) The ratio
image Ir of (b)/(a).

6.2.1 Participating Media Lighting Model

Our goal is to compute values Ẽin and Ẽtarg. This will give us an approximation of Ein

and Etarg and ultimately a good approximation of Ir. Once we have Ir we can relight the
canopy using Eq. (6.4).

We start by constructing an approximate voxel representation of the tree; we use the
approach of [Reche et al., 2004] to achieve this. We briefly recall the process here: a set
of photographs (around 12-15) is taken around the tree, the cameras are calibrated, and
a set of mattes created to separate the canopy from the background.

The quality of the mattes plays an important role since our method for relighting
heavily depends on the quality of the reconstructed volume. When possible, blue screens
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Two input photos of the same tree ((a) and (b)), the corresponding mattes ((c)
and (d)) and two views of the resulting volume ((e) and (f)).

were utilized in order to isolate the subject tree properly from other vegetation behind it
(see Figure 6.8). This process improves the quality of the resulting mattes.
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Figure 6.8: When conditions allowed, a blue screen was placed behind the tree (left) to
aid matte extraction (right).

Once the input images with calibrated cameras and the mattes are in place, an opti-
mization process is run to estimate opacities in each voxel and to “carve out” the shape
of the tree. We show an example of tree photos and the resulting reconstructed volume
in Figure 6.7.

As mentioned in the introduction, the basic intuition for the model we adopted is
that the leaves of the tree canopy can be seen as a participating media volume in terms
of lighting; such a model thus appears suitable for the computations of Ẽin and Ẽtarg.
We thus adopt a standard participating media rendering approach, based on Beer’s law
[Cerezo et al., 2005, Perez-Cazorla et al., 1997, Kajiya and Von Herzen, 1984]. Radiance
at point x is given as follows:

L(x) = L(x0)e
−
∫ x

x0
kt(u)du (6.5)

where kt is the extinction coefficient of the medium and light travels from x0 to x. We
write:

τ(x0, x) = e
−
∫ x

x0
kt(u)du (6.6)

τ(x0, x) is the transmittance from x0 to x. We will also write τ(x0, ω) which denotes the
transmittance along a direction ω from the entry point of the volume to the point x0.

In our case, x will typically be the eye point, or equivalently the pixel, and x0 will be
the furthermost point of the volume along a ray emanating from the eye. We illustrate
these quantities, and those of Eq. (6.7) and Eq. (6.8), in Figure 6.9.

Given these assumptions, and expanding L(x0) in Eq. (6.5), radiance at L is given
as [Cerezo et al., 2005]:

L(x) =
∫ x

x0

τ(u, x)kt(u)Lss(u)du (6.7)
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x
(eye) 

x0

volume with k  extinction

coefficient
t

u
w

L   (w) sky

in-scattering 

L   (w    ) sun  sun

Figure 6.9: The geometry of our single scattering participating media model, illustrating
the quantities of Eq. (6.5). Note that ωsun is a constant in this equation.

where Lss is the single-scattering radiance arriving at u. In our case we write:

Lss(u) = Lsunτ(u, ωsun) +
∫

Ω
Lsky(ω)τ(u, ω)dω (6.8)

where Ω is the positive hemisphere of directions ω and τ(u, ωsun) is the transmittance
through the volume along the sun direction ωsun to the point u.

The integrals of Eqs. 6.6 and 6.7 can be approximated with a standard method, sim-
ilar to [Kajiya and Von Herzen, 1984], using ray traversal through the discrete voxels of
the grid and numerical integration.

The participating media model we use computes radiance at a given pixel. However,
since our phase function is equal to one in all frequencies, the final quantity we compute
is actually irradiance. We thus write Ẽ(x) for the value computed by Eq. (6.7).

To compute the values Ẽin and Ẽtarg, we use the discrete volume, a kt coefficient for
each voxel (both computed using [Reche et al., 2004]), and values for Lsun and Lsky(ω)

using the Preetham model [Preetham et al., 1999]. At each pixel we evaluate Eq. 6.7,
with appropriate values for the sun and sky illumination depending on the time of day
of the input and target images.

6.2.2 Sunlight

The contribution of the sun to radiance at the eye point x is given as follows:

Lsun
vol (x) =

∫ x

x0

τ(u, x)kt(u)Lsunτ(u, ωsun)du (6.9)

Lsun is attenuated according to its respective zenith angle position, as described in
[Lalonde et al., 2009]:

Lsun = αe(−βm(ωsun))Nmax (6.10)
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where m(ωsun) is given as in [Lalonde et al., 2009], and is the relative optical path length
through Earth’s atmosphere [Kasten and Young, 1989], Nmax is the maximum sun bright-
ness value, α is a scale factor and β is a scattering coefficient. We used N = 1 × 106 and
α, β as described in [Lalonde et al., 2009]. The final contribution of sunlight is then:

Lsun
vol (x) =

∫ x

x0

τ(u, x)kt(u)α

e(−βm(ωsun))Nmaxτ(u, ωsun)du (6.11)

6.3 Efficient Relighting Algorithm

To approximate Eqs. 6.7 and 6.8 at each pixel we need to compute sun and skylight
along the corresponding viewing ray. We separate the contributions of the sun and sky
in Eq. (6.7) for clarity of presentation, and without loss of generality we write:

L(x) = Lsun
vol (x) + L

sky
vol (x) (6.12)

The contribution Lsun
vol (x) of sunlight is computed by directly estimating the value of

τ(u, ωsun) at a sample point u at the center of each voxel along the viewing ray, providing
a discrete approximation of Eq. (6.9).

Evaluating sky illumination in Eq. (6.8) is the most expensive part of our computa-
tion. Using the naive approach discussed previously, to relight each pixel we need to
sample in the order of 1024 directions in the sky, stepping through the voxelization for
each sample direction. We do this for each voxel visited along a viewing ray. Clearly, this
results in prohibitively high relighting costs. We will next show how to use spherical
harmonics to precompute the accumulated effect of transmittance through the volume,
both in each sky sample direction and along the viewing ray for a given pixel.

Radiance L
sky
vol due to the sky in our volumetric model is given as follows:

L
sky
vol (x) =

∫ x

x0

τ(u, x)kt(u)
∫

Ω
Lsky(ω)τ(u, ω)dωdu (6.13)

where the quantities τ, ω, Ω and u are the same as in Eq. (6.6)-(6.8).

Since τ(u, x) does not depend on ω we can write:

L
sky
vol (x) =

∫ x

x0

∫

Ω
τ(u, x)kt(u)Lsky(ω)τ(u, ω)dωdu (6.14)

We can then invert the order of integration and factor out Lsky:

L
sky
vol (x) =

∫

Ω
Lsky(ω)

(

∫ x

x0

τ(u, ω)τ(u, x)kt(u)du

)

dω (6.15)
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We can write the inner integral as g(ω):

g(ω, x) =
∫ x

x0

τ(u, ω)τ(u, x)kt(u)du (6.16)

One way to reason about the above equation is that, for a given point u along a view-
ing ray (in the direction −→xu), this expression simultaneously captures the contribution
in skylight sample direction ω at the point u, and the attenuation from point u to the
eye-point x (see Figure 6.9).
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Figure 6.10: Graph plotting the reconstruction error (Y) for a given number of bands.

We precompute a discretized version of g(ω, x) and project it onto a spherical har-
monic basis g̃(ω, x) using 6 bands.

Spherical Harmonics were first introduced by Sloan et al. [Sloan et al., 2002]
in the context of pre-computed radiance transfer. More recently, Jansen et al.
[Jansen and Bavoil, 2010] introduced Fourier opacity mapping, in which absorption is
projected along one ray onto a 1D Fourier basis to speed up the integral computation.
In our case however, we project the directional (2D) distribution of transmissivities onto
a sphere to allow for faster integration. This precomputation is done only once for each
reconstructed tree, which allows faster relighting.

The reconstruction error using 6 bands is 12.86% in L2 norm. See Figure 6.10 for
a graph which plots the errors in reconstruction using different number of bands. At
runtime, we can then simply compute a dot product of the skylight projected on-
the-fly onto spherical harmonics (we could alternatively use an analytical formula-
tion [Habel et al., 2008]), and the precomputed combined transmittance:

L
sky
vol (x) =

∫ x

x0

Lsky(ω)g̃(ω, x) (6.17)

This allows us to compute Ẽin and Ẽtarg very efficiently (i.e., in the order of 3 seconds
each for a 512x512 image1). Precomputation for a 1283 volume required 20 minutes.
However, computing the sky contribution on a coarsened 643 volume does not result in
significant degradation, but reduces the precomputation time to 5 minutes.

1Timings on 4-core 2.3Ghz Xeon; only relighting is multi-threaded.
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a b c

Figure 6.11: (a) Image computed by explicit sampling of the sun dome at each sample
point. (b) The result of our spherical harmonics approximation. (c) Difference image
(x10).

To validate the quality of this approximation, we compare the result of Eq. (6.17) to
the ground truth reference in which we approximate the integral of Eq. (6.13). Ground
truth is computed by explicitly sampling 1024 sky directions at each sample point of the
line integral along the viewing ray. In Figure 6.11, we see that the difference is very low
(note that the difference image is multiplied by x10).

6.4 Validation Results on Synthetic Trees

We first apply our model on several synthetic trees; the advantage of these tests is that it
is much easier to generate reference solutions and obtain a variety of data for analysis, in
addition, we can vary the location and dates of the images freely. Note that we only use
the images generated by PBRT as input. The only difference with the real photographs
is that no calibration is required for the camera, since the exact cameras are provided as
input. All other steps (volumetric construction etc.) are identical to the process for real
photographs.

We also investigate the effect of varying reflectance parameters (specularity, translu-
cency), of the leaves, and the resulting effect on the performance of our algorithm.

6.4.1 Synthetic Validation Results

We show two examples taken from the X f rog (http://www.xfrog.com) European
tree database. Two more examples are provided in the online Appendix located at
http://www-sop.inria.fr/members/Marcio.Cabral/thesis/. The date used is July 22nd, and the
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Figure 6.12: Horse Chestnut Top row: input image and 2 target ground truth images
with corresponding times of day. Middle row: 2 resulting relit images using our ap-
proach. Bottom row: Ẽin and the two Ẽtarg images. Two additional times can be found in
the following Figure 6.13.
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Figure 6.13: Horse Chestnut Top row: 2 target ground truth images with corresponding
times of day. Middle row: 2 resulting relit images using our approach. Bottom row:
Ẽin and the two Ẽtarg images. Two earlier target times can be found in the previous
Figure 6.12
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Figure 6.14: European Beech Top row: input image and 2 target ground truth images
with corresponding times of day. Middle row: 2 resulting relit images using our ap-
proach. Bottom row: Ẽin and the two Ẽtarg images. Two additional times can be found in
the following Figure 6.14.
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Figure 6.15: European Beech Top row: 2 target ground truth images with corresponding
times of day. Middle row: 2 resulting relit images using our approach. Bottom row:
Ẽin and the two Ẽtarg images. Two earlier target times can be found in the previous
Figure 6.14
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Figure 6.16: London Planetree Top row: input image and 2 target ground truth images
with corresponding times of day. Middle row: 2 resulting relit images using our ap-
proach. Bottom row: Ẽin and the two Ẽtarg images. Two additional times can be found in
the following Figure 6.17.
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Figure 6.17: London Planetree Top row: 2 target ground truth images with correspond-
ing times of day. Middle row: 2 resulting relit images using our approach. Bottom row:
Ẽin and the two Ẽtarg images. Two earlier target times can be found in the previous Fig-
ure 6.16
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Figure 6.18: European Mountain Ash Top row: input image and 2 target ground truth
images with corresponding times of day. Middle row: 2 resulting relit images using our
approach. Bottom row: Ẽin and the two Ẽtarg images. Two additional times can be found
in the following Figure 6.19.
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Figure 6.19: European Mountain Ash Top row: 2 target ground truth images with corre-
sponding times of day. Middle row: 2 resulting relit images using our approach. Bottom
row: Ẽin and the two Ẽtarg images. Two earlier target times can be found in the previous
Figure 6.18
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location is East Coast US.

For each tree on the top row, we show the input image and 4 target images at dif-
ferent times of day. In the middle row we show the relit images using our method
and in the lower row we show the Ẽ images (Figures 6.12, 6.13, 6.14,6.15, 6.16,6.17
and 6.18,6.19 are respectively called Horse Chestnut, European Beech, London Planetree

and European Mountain Ash). Please also see the accompanying video (http://www-

sop.inria.fr/members/Marcio.Cabral/thesis/), where the movement of the sun and the cor-
responding illumination is much easier to comprehend.

As we can see, our relighting approach captures the overall behavior of light-
ing well. Evidently, the limitation of the volumetric reconstruction compared to the
actual detailed geometry results in minor differences in levels of illumination. In
the online Appendix of this thesis and the additional video, located at http://www-

sop.inria.fr/members/Marcio.Cabral/thesis/, we can also see that our approach works quite
well even for cases of relatively sparse trees, and for trees of different canopy shapes.
For the case of the European Mountain Ash, we see slight “banding” artifacts, which
are more visible in the video (see Figure 6.20). We believe this is due to the close-to-
spherical nature of this particular canopy, and the consequent inability of the volumetric
reconstruction to capture fine geometric details. This renders the grid structure more
visible in the final results.

Figure 6.20: The European mountain Ash. (Left) Ground Truth; (Right) Relit result.
The almost spherical nature of the canopy results in lack of detail from the volumetric
reconstruction. Slight banding artifacts can be seen (better seen in the video - http://www-
sop.inria.fr/members/Marcio.Cabral/thesis/).
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Figure 6.21: Mulberry Tree First row: input image and 2 target images with correspond-
ing times of day. Second row: resulting relit images using our approach. Third row: Ẽin

and the four Ẽtarg images. Next three rows follow the same pattern with additional
hours.
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input at 15h30 ground truth at 11h00 ground truth at 12h30

relit at 11h00 relit at 12h30

Ẽin at 15h30 Ẽtarg at 11h00 Ẽtarg at 12h30

ground truth at 16h30 ground truth at 18h30

relit at 16h30 relit at 18h30

Ẽtarg at 11h00 Ẽtarg at 12h30

Figure 6.22: Oak Tree First row: input image and 2 target images with corresponding
times of day. Second row: resulting relit images using our approach. Third row: Ẽin and
the four Ẽtarg images. Next three rows follow the same pattern with additional hours.
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Figure 6.23: Comparison with Specular/Non-Specular leaves 1st and 3rd rows: target
images with corresponding times of day for the same tree rendered with diffuse (left
image) and specular (right image) leaves. 2nd and 4th rows: the four corresponding relit
images.
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Figure 6.24: A tree canopy with a diffuse/glossy transmissive material for leaves; note
that the result of our algorithm is significantly better than the specular only case.
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6.4.2 Varying Reflectance Parameters

To study the effect of high specularity on the performance of our algorithm we ren-
dered a synthetic tree in PBRT with a leaf material that contains both diffuse and glossy
specular reflections. The material uses Blinn BRDF with a microfacet model for surface
roughness (see [Pharr and Humphreys, 2004] for details). Glossy reflectivity was set up
to be 5 × stronger than the diffuse reflectivity to exaggerate the results. Surface rough-
ness was set up to 0.1 which indicates smaller but highly specular highlights (see Figure
6.23). From our test, we clearly see that specular highlights are not well captured by our
relighting method since we do not have geometry (and normal) information.

Despite the above test, we believe that our model works well in practice for pho-
tographs because real tree leaves are in reality translucent. To investigate this hypothesis
we created a synthetic tree with very translucent leaves. We rendered synthetic images
of a tree using a translucent material with glossy/diffuse transmissivity for leaves - val-
ues for glossy transmissivity are 0.15 and diffuse/glossy reflection are 0.85 – see PBRT
[Pharr and Humphreys, 2004] for more details (see Figure 6.24). As we can see, the re-
sults are significantly improved compared to the specular only test in Figure 6.23.

6.5 Results on Photographs

We next present our results on real photographs. We first present issues related to the
procedure and implementation, then present and discuss our results.

6.5.1 Procedure and Implementation

As mentioned previously, we use the method of [Reche et al., 2004] to construct the
volume. We currently use [Levin et al., 2008] for the mattes, and ImageModeler
(http://usa.autodesk.com) for calibration. Automatic camera calibration using e.g.,
[Snavely et al., 2008] can also be used, simply requiring a larger number of photographs.
Mattes would still only be required on 10-12 photos however.

We applied two modifications to the initialization described in [Reche et al., 2004].
Due to inaccurate camera calibration and the fact that we were unable to use blue screens
everywhere, we observed that the algorithm culls voxels too aggressively, resulting in
too sparse volumes and relighting artifacts. The first modification involves keeping vox-
els even if they are not present in 2-3 mattes/photos. The second modification involves
artificially “densifying” the voxel reconstruction in very sparse areas. We first find vox-
els with less than 8 non-empty neighbors. For each such voxel, we collect its 6 axial
neighbors, and we give those that are empty an extinction coefficient value correspond-
ing to the average of the coefficients of the non-empty neighbors. The denser voxel grid
significantly improves the results of relighting. Better camera calibration and matting
algorithms would render this step unnecessary.

We tested a Mulberry, an Oak and a Pine tree (shown respectively in
Figs. 6.21, 6.22, 6.28.) For the volume reconstruction, we used 11, 12 and 11 images
respectively for each tree. The Mulberry tree was the only one where a blue screen was
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used to aid matte extraction. The Oak and Pine tree locations and sizes prevented us
from using a blue screen. The values of kt computed using [Reche et al., 2004] can be
modulated by a global scaling factor s. For the three examples used, we chose s so that
the Ein image best represents the input lighting (see first column of Figures 6.28-6.22).
The values for s we used were 0.95, 0.90 and 0.85 for each of the three trees respectively,
and account for the density of leaves in each tree. In some cases the resulting masks have
small imperfections, and additional manual editing is required. In all the cases shown
here, manual editing of masks required less than 5 minutes, for each dataset (i.e., all 11-12
images). We used a Canon EOS 5D camera, and performed all processing on linearized,
12-bit “.RAW” images. HDR images of trees (composed using different exposures) are
hard to capture because of the inherent motion of leaves due to wind. We found that the
12-bit images contain sufficient dynamic range for our method. Care has to be taken to
ensure relatively high-quality camera calibration, otherwise the volume reconstruction
is unsatisfactory and will not give good relighting results.

Photos are always captured at a single time of day. The camera is positioned around
the tree, with the tree canopy at the focal point. The viewpoints around the tree (10− 12)
were chosen in a way to minimize occlusion and interference of nearby objects. When
possible, blue screens were utilized to provide a better matte from vegetation behind
(see Figure 6.8). For each shot a compass was used to determine the viewpoint direction,
and a standard GPS provided coordinates to determine the spatial location of the tree.
These data were then used to compute the sky and sun models.

For the Preetham sky model, we use a turbidity parameter of 4.2 which appears to
work well in all cases. All photos were taken on September 23rd and 24th.

Since our method is based on the Preetham model, sky luminance values early in the
morning or late in the evening can be inaccurate, as mentioned in [Zotti et al., 2007]. We
alleviate this problem by making the sun brightness decay towards sunset and sunrise
more strongly. To do this, in Eq. (6.11), we change the relative optical path m(ωsun) to
m(ωsun)k, where k = 2.5 for the red channel and k = 2.0 for the green and blue channels.
This heuristic yields good results in all experiments, significantly improving the quality
of the results. An example is shown in Figure 6.25.

The quality of our results is degraded if the input data used lies within this period
of the day, as can be seen in Figure 6.26 - middle column. Our experiments indicate that
to obtain optimal results with our method, it is best to take input images between 12am
and 3pm.

6.5.2 Results

We took sparse “time-lapse” sequences of the three trees to provide ground truth ref-
erences, from 9am to 6pm over one hour intervals. In Figures 6.21, 6.22 and 6.28
we show the results in the top row, and the ground truth photographs in the sec-
ond row. We show four times here (indicated in the figure); the entire sequences
are provided in the additional material and in the accompanying video (http://www-

sop.inria.fr/members/Marcio.Cabral/thesis/). As in the case of the synthetic validation,
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(a) (b) (c)

Figure 6.25: (a) Target image at 17:30. (b) the relit image - the color shift is due to the
inaccuracies of luminance values in the Preetham sky model for the early evening. (c) A
simple correction factor brings the result much closer to the target.

watching the video provides a better sense of the moving sun.

As we can see the quality of the relighting results is satisfactory. Our diffuse re-
flectance assumption, and the consequent volumetric approximation appears to work
well on the examples tested, despite its apparent simplicity. From the results we see that
the quality for the real photographs is on a par with that of the synthetic trees, despite
the inaccuracies in camera calibration and the non-diffuse nature of the real tree leaves.
In addition, even for the case of a relatively sparse tree (the Mulberry example, but also
the Oak to a lesser extent), the results are of high quality.

The quality of the volumetric reconstruction does affect the results. A blue screen
was used on the Mulberry tree and we can see that the results are slightly better. Adverse
capture conditions such as the impossibility to use a blue screen to aid matte extraction
due to size and the difficulty of calibrating cameras using scene features (see Fig 6.27
for the capture conditions of the Pine tree) produces somewhat lower quality relighting
results as can be seen in Fig 6.28.

We believe that improvements in vision and image processing algorithms, which are
beyond the scope of this thesis, will allow the creation of better mattes and higher quality
camera calibration, thus improving the results of our approach, and removing the need
for the heuristics for the volumetric reconstruction.

Qualitative comparisons between the real trees and the synthetic results show that
our approach works slightly better on the real trees photographs. We believe that this is
due to the quality of the geometric model used for the synthetic renderings. Although
each synthetic tree is on the order of 300K triangles, individual leaves were flat, contain-
ing only a few faces. As a result a lot of the geometric subtlety is missing, which allows
the volumetric reconstruction method to produce good results.
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Input at 14h00 Input at 18h00

Relit Relit Target at 09h00

Relit Relit Target at 11h30

Relit Relit Target at 16h00

Relit Relit Target at 18h00

Figure 6.26: Mulberry tree In contrast to Figure 6.21, in this example we also show relit
results when the input data photographs were taken at different times. 1st row: input
images taken at different times of the day: 14h00 in 1st column and 18h00 in 2nd column.
Following rows show in the 1st column: relighting results using the input image taken at
14h00; in the 2nd column relighting results using the input image taken at 18h00; in the
3rd column shows ground truth photographs for comparison.
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Figure 6.27: Capture conditions for the Pine Tree (Figure 6.28).

6.5.3 Limitations

Our method is intended for distant cameras only, such that the entire canopy is present
in the image. We thus propose a solution to the specific case when no 3D information
can be reliably captured in a pixel accurate way, and robustly enough to handle small
variations in the geometry (e.g., presence of slight wind). If the camera gets close enough
to the tree to be able to perceive large regions of individual leaves and branches, our
volumetric assumption would not hold.

It would be possible to use a high-dynamic range (HDR) light-probe to capture the
input sky. However, the advantage of using the Preetham model is that it is available
for both the input and the target times. Such an additional capture overhead is thus
unnecessary for our approach, and would defeat the purpose of our method which is to
require no lighting information at the target time. Additionally, using different models
for the input and target skies will inevitably lead to inconsistencies and probably give
worse results.

We assume clear skies in our method since these are well simulated by the Preetham
model [Preetham et al., 1999]. To our knowledge, overcast skies cannot be accurately
and consistently represented to allow our ratio-based approach to work.

Due to the small number of SH bands used for reconstruction of natural skies created
by the Preetham model, our method is expected to produce lower quality results for
higher frequency lighting such as those encountered in some high frequency captured
HDR environment maps. Additionally, our method requires consistent input and target

lighting models to work. Since our method focuses on minimizing the capture procedure
to a single time of day, there is no captured HDR available for the target time.

Although our method can relight a canopy for different lighting conditions, such
as winter or summer sun positions, our method cannot simulate changes in the leaf
structure of the tree canopy that occurs between two extremely different seasons - this
would require explicit geometric reconstruction of leaves and branches, and appropriate
modification.
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Finally, our method depends heavily on the quality of the volumetric reconstruction.
Irregularly shaped trees with complex isolated branch structures pose a difficult problem
for reconstruction, and thus our relighting results are of somewhat lower quality. This
can be seen in Figures 6.14,6.15 at 14h30 and 17h00.

6.6 Discussions and Conclusions

Other approaches could be envisaged to solve the tree canopy relighting problem. For
example, texture synthesis could be used rather than a ratio, in which we would search
for similar luminance pixels in the input. Our experiments with such an approach
showed that the visual quality was not as good as that presented here, since the syn-
thesis stage alters the image and thus degrades the overall quality of the result. A hy-
brid volumetric/geometric approach can also be considered, in which 3D leaf positions
of pixels are estimated to perform relighting. We also experimented with this idea, and
despite promising initial results, extensive tests showed that the pixels positions could
not be reliably estimated in the general case.

Concerning the application in Figures 6.2(a)-(b), it could be argued that simple his-
togram transfer would suffice. As we can see in Figure 6.29(a), colors are correctly re-
produced, but lighting is incorrect: the right side of the tree should be in shadow. This is
correctly reproduced by our approach (Figure 6.2(b)).

While beyond the scope of this paper, it would of course be highly desirable to be
able to relight the entire environment including the tree canopies. We consider this to
be important future work, starting for example with shadow removal (including the cast
shadows from the tree canopies and trunks) and then treating general relighting. We
also expect our method to have somewhat reduced performance on very sparse trees, or
trees where leaves have a very strong preferred orientation.

The volumetric model should be applicable to all photographs of materials which
are either truly volumetric (e.g., clouds or smoke), or have behavior which is similar to a
volume (e.g., large collections of small objects or grass). While the model presented here
is not directly transposable on all geometries and all scales, we do believe that some of
the ideas presented here could well generalize to non-volumetric materials. In addition,
we believe that our approach could fit well with more traditional approaches such as
[Debevec, 2002], resulting in a general and complete relighting method.
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input at 13h00 target at 10h30 target at 11h30

relit at 10h30 relit at 11h30

Ẽin Ẽtarg at 10h30 Ẽtarg at 11h30

target at 16h00 target at 17h00

relit at 16h00 relit at 17h00

Ẽtarg at 16h00 Ẽtarg at 17h00

Figure 6.28: Pine Tree First row: input image and two target (ground-truth) images
with corresponding times of day. Second row: resulting relit images using our approach.
Third row: Ẽin and the four Ẽtarg images. Next three rows follow the same pattern with
additional hours.
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(a) (b)

Figure 6.29: (a) The input image has been pasted to the background after an histogram
transfer. Although the colors are correctly reproduced, the overall lighting direction, and
corresponding shadows, are not well captured compared to our method (b).



CHAPTER 7

Conclusions and Future Work

This thesis provides novel contributions towards to the goal of creating new digital con-
tent from existing data. Our contributions span three areas which are important in
achieving this goal: interactive geometry editing, image-based relighting and Human
Computer Interaction. In each case, we have provided solutions which will contribute
to the development of new tools which will hopefully make such content creation easier
in the future.

7.1 Interactive Geometry Editing

Our mesh editing solution provides a new approach for creating new content interac-
tively. Structured man-made objects and architectural 3D models can be reshaped by
simply dragging and dropping vertices. Our approach also handles underlying texture,
reshaping it appropriately as well. Each of these reshaped models can then be connected,
allowing the creation of new models. This approach is rapid and it allows for fast con-
struction of complex models. These tasks, if done manually using common 3D editing
tools, would require a lot of effort, even from experienced users. On the other hand, our
algorithm enables inexperienced users to perform such operations. Our approach auto-
matically extracts a series of linear equations that characterizes the overall shape of the
3D model. During run-time, as the user moves vertices to achieve the desired reshape,
a least-squares solver solves these equations, preserving the original aspect of the 3D
model while also satisfying the user’s motion. The reshaped mesh triggers deformation
of the texture faces, in a similar fashion, also using a least-squares solver.

We demonstrate our approach through several scenarios, using in-house models but
also models created specifically for games, which are widely available online. This is
a major advantage, that allows users to expand their ability of creating new content
from previously created models. Another key feature is the reshaping of textures and
geometry concurrently which had not been proposed prior to this work. Our directional
autosimilarity measure is able to identify areas that can be stretched, such as stochastic
regions, and areas with structured details, which should be rigid for deformation. Other
examples we applied our algorithm include road and bridge construction based on a few
basic pieces.

7.1.1 Future Work

We would like to extend our approach to general geometries as opposed to architectural
and structured man-made objects. Recent work that address the reshaping of general
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geometries such as iWires [Gal et al., 2009] proposes an interesting direction.

Currently, the coupled editing of geometry and texture is unidirectional: geometry
reshape triggers texture deformation. It is straightforward to explore this event in the
other direction, by introducing geometry constraints based on the underlying rigidity of
the texture.

7.2 Human Computer Interaction

The first results for interactive geometry editing showed us that although our tool per-
formed well, users struggled with its 2D interface. Therefore, we investigated further
how to address the problem of transposing our system to an immersive setting. We
achieved this by creating a novel 3D interface and allowing users to interact with the
system in a fully immersive VR environment utilizing simple command gestures.

The immersive system developed allowed simple conceptual design of architectural
models with the possibility of exploring different lighting configurations by changing
the day and time of the year. A simplified global illumination algorithm simulated light-
ing interaction within a concept design of a house allowing users to simulate how sun
light would contribute to the overall illumination of the scene. An informal user study
showed that novice users to an immersive system found the experience and interactivity
rewarding and interesting.

Our system is fully immersive and it allows simple conceptual design of textured
geometric models. It is the first to also include basic lighting design. Three different
modes allow users to interact at different scales. One of them, called Mixed mode is
a variation of an interaction mode based on the WIM [Stoakley et al., 1995] paradigm
and it provides both local and global views of the 3D world being manipulated. Users
who experimented with the system equally used all three modes when performing more
open tasks. Overall, users enjoyed using the system. Moreover, users with no experience
in VR immersive systems were able to use our system after a short 10 minute training
session.

7.2.1 Future Work

The ultimate goal for such immersive editing of 3D geometry and textures is to com-
pletely eliminate the need for 3D input devices, such as the joystick used. We hope to
use novel capture devices in the future, such as finger and hand tracking systems. We
began experimenting with these devices at a final stage of development of these thesis
but found them to be fragile, making them uncomfortable for regular usage.

Other avenues include extending the global illumination algorithm to more complex
models, investigating how different levels of realism affects user’s perception of the sys-
tem.
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7.3 Image-based Relighting

We have proposed a method for tree canopy relighting. Using only photographs taken
at a single time of the day, our algorithm can relight the tree canopy to any other time,
or day. Our method faces the problem of relighting by interpreting the tree canopy as
a volumetric entity. As such, a single scattering volume rendering technique was used
to estimate lighting parameters for the tree canopy. With these parameters estimated
per pixel for the input image, our method estimated the same parameters for the target
lighting condition and performed relighting by using a simple image ratio method. Our
algorithm worked well for a variety of trees. We validated our method using synthetic
renderings of trees as well as real times, with time-lapse sequences taken throughout the
course of a day.

7.3.1 Future Work

An important area of future work is the development of solutions for relighting for the
whole environment and not only tree canopies. As a first step, shadows need to be re-
moved appropriately from the surroundings. The more challenging problem is to solve
relighting for the whole environment which includes different types of objects with dif-
ferent characteristics. As such, a hybrid solution can be proposed where several ap-
proaches are used to relight different areas of the scene.

7.4 Concluding Remarks

We have seen lately a breakthrough in terms of quantity and quality of content created by
users everywhere, including novice users to computer systems. In particular, the solu-
tions proposed in this thesis provide users with intuitive ways to create textured geome-
try from existing pieces, including in an immersive setting, and to manipulate lighting in
photographs of trees. We hope that this thesis is a step forward towards providing users
with better tools for creating content that would otherwise be hard to create manually.
Ultimately, our goal is to empower users with abilities allowing them to easily create and
manipulate 3D content, without the need for talent and lengthy training. When this goal
is achieved, their creative imagination will no longer be limited by technology.





APPENDIX A

Traduction en Français

"When a shape creates beauty

its own beauty justifies it."

Oscar Niemeyer
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A.1 Introduction

Sculpture, peinture, modelisation ainsi que d’autres formes d’art ont existé depuis aussi
longtemps que l’humanité existe. Des artistes, dans leur domaine particulier, se sont ex-
primés à travers l’utilisation de ces différentes techniques, qui requièrent de la dextérité
ainsi qu’un sens aigu à tirer le meilleur parti de chaque outil. L’avènement récent des
systèmes informatiques a introduit de nouveaux outils, qui permettent aux artistes de
s’exprimer en utilisant d’autres médias. Les images générées par ordinateur ont partic-
ulièrement gagné en attention, étant donnée les possibilités qu’elles offrent de créer des
mondes virtuels très réalistes, ou encore d’augmenter la réalité avec des objets virtuels.
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En informatique personnelle, l’infographie s’est dotée d’outils et de techniques aptes à
toucher un plus large public, offrant aux Ônon-artistes" la possibilité de créer de une
forme d’art leur étant propre. Cependant, la plupart des utilisateurs n’ont pas encore
acquis suffisamment de dextérité et de capacités pour créer du contenu qui soit à la fois
attrayant et utile pour eux.

Pour combler cette lacune, c’est à dire fournir des outils qui peuvent être utilisés par
des utilisateurs non-experts afin de les aider à la création de contenu pour les mondes
virtuels, nous allons présenter de nouvelles solutions en explorant à la fois la création de
contenu assistée et des techniques d’interaction qui tentent de diminuer la barrière entre
les utilisateurs et les dispositifs d’interaction actuels basé sur des métaphores 2D.

Plus précisément nous ciblons deux fronts différents: édition de maillage texturés
architecturaux, et ré-illumination de photographies. Pour le premier, nous élaborerons
d’abords un cadre de travail général permettant une édition simplifiée, puis nous pro-
poserons une solution dans un environnement immersif. Pour le second, nous nous
concentrerons sur le cas de la cime des arbres, qui, comme nous le verrons, présentent
plusieurs propriétés intéressantes. Nous commençons cette introduction en présentant
les principales motivations de notre travail, suivies par la présentation de nos objectifs
centraux. Nous terminerons ensuite ce chapitre par un bref aperçu des techniques qui
sont explorées et développées dans cette thèse.

A.2 Motivation

Nous voulons fournir aux utilisateurs des techniques et des outils qui maximisent leurs
capacités à créer un contenu qui, autrement, exigerait des compétences artistiques. Notre
thèse se focalise dans deux directions possibles: assemblage complexe de contenu exis-
tant pour créer de nouveaux modèles à partir de pièces de base, et, paramétrage et ex-
traction des données d’éclairage contenues par des photos pour permettre leur édition.

A.2.1 Modélisation interactive facile

Il est difficile pour les utilisateurs non-experts de traduire leurs idées créatives afin
de créer des objets physiques, ou au sein d’un programme de création de contenu
numérique, sans les compétences requises pour les mettre en pratique. Même si l’on con-
sidère, par exemple, la tâche des changements à petite échelle sur un modèle 3D pré exis-
tant, cela requiert un effort considérable de la part d’un artiste 3D expert pour réaliser de
telles modifications dans les logiciels de modelisation commerciaux existants. D’autre
part, un petit nombre de personnes qualifiées, à savoir les artistes, mettent quotidien-
nement à disposition une grande quantité de nouveaux contenus, allant de la photogra-
phie au modèle 3D, qu’ils créent et partagent souvent gratuitement. Dans un monde
idéal, les utilisateurs seraient en mesure de modifier de façon interactive ce contenu,
dans ses divers formats et types de données, de la manière qui leur plaît. Les utilisateurs
pourraient réaliser ce qui leur serait autrement impossible étant données leurs compé-
tences limitées. Du contenu entièrement nouveau pourrait être créé en prenant ce qui a
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déjà été développé. Dans un tel scénario idéal, il serait possible de créer du contenu en-
tièrement nouveau en prenant et en modifiant et en assemblant des morceaux différents.

Une autre problématique importante est que la taille des environnements virtuels
augmente à un rythme sans précédent, tant en termes d’étendue spatiale que de quantité
de détails. En conséquence, la plupart des difficultés dans la production d’applications
interactives se trouvent désormais dans le traitement des contenus graphiques. Cela
est particulièrement vrai avec les environnements en ligne proposant des espaces de
plusieurs kilomètres carrés.

Dans le même temps, de nombreux jeux et applications en ligne permettent aux util-
isateurs de produire du contenu supplémentaire (appelé contenu créé par l’utilisateur).
Cela a favorisé la mise en place de grandes communautés de ce qu’on appelle modders,
et des milliers de niveaux de jeu supplémentaires, ainsi que des objets et des personnages
peuvent être trouvés sur Internet pour les applications les plus populaires. Par exemple,
les joueurs aiment souvent créer des niveaux de jeu par leurs propres moyens. Quand
les possibilités offertes par un jeu semblent épuisé aux yeux de l’utilisateur, de nouveaux
niveaux, créés par l’utilisateur lui-même, peuvent ouvrir de nouvelles possibilités de jeu.
D’autres possibilités incluent la conception architecturale, où les utilisateurs veulent vi-
sualiser le résultat de leurs idées de rénovation. Par exemple, augmenter la taille de la
salle de séjour tout en conservant la surface de la cuisine.

Ces deux tendances rendent les approches de modélisation à base d’exemples très
intéressantes: L’idée est de permettre aux utilisateurs de créer des environnements com-
plexes à partir d’un ensemble d’éléments fondamentaux. Ces approches ont été ap-
pliquées avec succès à la création d’avatar et de personnages [EA, 2008], mais aussi
d’objets [Funkhouser et al., 2004, Kraevoy et al., 2007]. Toutefois, elles n’ont jamais été
appliquées à grande échelle à des environnements architecturaux, en dépit de son attrait
: les artistes informatiques économisent beaucoup de temps en produisant de grandes
quantités de contenu à partir d’existants élémentaires, et les utilisateurs non-experts peu-
vent facilement utiliser un tel système, tant qu’ils des exemples leurs sont fournis - exem-
ples qui abondent en ligne. Malheureusement, les approches pour l’édition de maillages
qui fonctionnent bien sur les découpages fins d’objets non texturés, ne parviennent pas à
se généraliser aux bâtiments et aux environnements très structurés [Sorkine et al., 2004].
La raison principale est que les propriétés souhaitables pour un objet classique ne sont
pas celles qui doivent être conservés dans un modèle architectural.

A.2.2 Édition de photos et textures

On peut dire Il est vrai que les utilisateurs occasionnels utilisent très rarement un outil
pour la modélisation 3D - mais ils sont souvent amenés à prendre des photos. Une
autre activité commune que les utilisateurs font de l’outil informatique est l’édition pho-
tographique. Souvent, les utilisateurs veulent apporter des modifications à une pho-
tographie existante. Les outils actuellement disponibles pour l’édition de photos perme-
ttent une multitude d’opérations. Toutefois, changer l’éclairage dans une photographie
est une tâche difficile. Les utilisateurs peuvent reproduire cet effet en modifiant la lu-
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minosité de la photographie. Mais des effets subtils tels que l’éclairage indirect et les
ombres autoportées sont difficiles à modifier ou supprimer. Dans les scènes en plein
air par exemple, des arguments convaincants seraient de permettre aux utilisateurs de
modifier l’heure de la journée, ou encore le jour de l’année à laquelle la photo a été prise.
Si un tel outil existait, une photographie prise un matin d’été pourrait être transformée
automatiquement en une photographie prise lors d’une soirée au début de l’hiver. Dans
ce contexte, une autre opération d’édition commune telle que le montage photo, béné-
ficieraient de l’insertion de nouveaux éléments dans cette scène avec leur éclairage as-
sorti. D’autres opérations d’édition de photo comme le redimensionnement se sont con-
sidérablement améliorés au fil des ans [Avidan and Shamir, 2007]. Des méthodes cen-
trées sur le contenu aident les utilisateurs à appliquer des opérations intelligentes de
redimensionnement sur les photographies, préservant les zones d’intérêt et supprimant
des zones qui ne manqueront pas dans tous les cas.

A.2.3 Interfaces Homme-Machine

Au cours du développement de cette thèse, nous avons réalisé que, malgré le renforce-
ment de fonctionnalités techniques, des outils bénéficieraient d’une amélioration de leur
paradigme d’interface. Les outils 3D sont principalement utilisés par des métaphores
d’interface 2D tels que la souris et le clavier. Les utilisateurs expérimentés et les experts,
sur le long terme, bénéficient de plus en plus de ce paradigme à mesure qu’ils appro-
fondissent leur maîtrise des outils. Les nouveaux arrivants dans le monde de la 3D
ont cependant besoin d’apprendre l’interface 2D afin d’interagir et éventuellement de
modifier l’environnement en 3D. Pour les changements à petite échelle et le prototypage
rapide, une interface 3D est mieux adaptée. Nous nous inspirons d’une vidéo concept
créé par Bruce Branit appelée World Builder 1 - voir les Figures A.1 (a) et (b).

(a) (b)

Figure A.1: World Builder par Bruce Branit: World Builder par Bruce Branit: (a) présente
un paradigme d’interface pour redimensionner un objet en 3D, qui est simplement de
pincer deux coins d’une boite et de les écarter, pour obtenir (b)

1http://www.branitvfx.com/worldbuilder/



A.3. Contexte et travaux antérieurs 125

Dans ce contexte, les dispositifs qui permettent d’accomplir ces tâches jouent un rôle
important. Des dispositifs appropriés permettraient aux utilisateurs de mieux commu-
niquer avec l’ordinateur, tout en s’exprimant avec précision. A long terme, comme
illustré par le concept World Builder et remarqué par [Bowman et al., 2008], les inter-
faces gestuelles permettent aux utilisateurs de communiquer en toute transparence avec
l’ordinateur, leur offrant une véritable immersion.

A.3 Contexte et travaux antérieurs

Plusieurs méthodes ont été proposées pour relever les défis décrits ci-dessus. La
modélisation à partir de photographies [Shlyakhter et al., 2001], ou à partir d’exemples
[Funkhouser et al., 2004] a cherché à faciliter la création de contenu.

L’édition de modèles est également un défi intéressant, où à la fois les informa-
tions géométriques et les informations sémantiques sous-jacentes doivent être prises
en compte afin que les modifications soient raisonnables. L’agencement de meubles
de bureau a été traité avec un algorithme de placement automatique proposé par
[Xu et al., 2002]. Bien qu’il ne soit pas interactif, il permet aux utilisateurs de placer
des objets dans la scène de manière à mettre en place des contraintes. [Gleicher, 1994]
a proposé une méthode pour intégrer les contraintes et la manipulation directe pour
l’édition interactive. Si de l’information sémantique est disponible, une modélisation
automatique plus complexe et des opérations d’édition supplémentaires peuvent être
réalisées [Lipp et al., 2008]. Bien que ce ne soit pas applicable pour la plupart des
maillages d’architecture, les maillages fortement tesselated peuvent utiliser d’autres ap-
proches d’édition, telles que les techniques basées sur le Laplacien [Sorkine et al., 2004]
ou Poisson [Yu et al., 2004]. En raison de leur complexité, le maillage est édité locale-
ment.

Cependant, ces techniques cherchent à éditer des maillages 3D en utilisant une mé-
taphore du bureau 2D comme interface. D’autres approches tentent de traiter le prob-
lème sous un angle différent, en s’intéressant non seulement à la technique utilisée, mais
également la façon dont les utilisateurs peuvent agir efficacement sur l’édition de ces
maillages. Teddy [Igarashi et al., 2007] est une métaphore d’interface pour créer des
formes 3D à partir d’esquisses 2D. Comme indiqué dans ce travail, au bout de quelques
minutes d’apprentissage de l’interface, les utilisateurs sont en mesure de créer des mod-
èles 3D intéressants. D’autres techniques tirent profit des grands écrans et de leur car-
actère immersif pour créer de nouvelles métaphores d’interface qui permettent de con-
trôler le niveau de précision lors de l’interaction [Peck et al., 2009], ou pour atteindre des
objets éloignés [Pierce et al., 1999, Bowman and Hodges, 1997]. Les récents travaux de
[Mine et al., 1997a] explorent le concept de proprioception pour la création d’une mé-
taphore d’interaction 3D, en positionnant les objets à proximité des mains et du corps
des utilisateurs.

En dépit de récents travaux, [Bowman and Fröhlich, 2005] affirment qu’il n’y a pas
eu d’augmentation de la qualité et du nombre de solutions utilisables pour des applica-
tions de Réalité Virtuelle dans des environnements immersifs, principalement en raison
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du manque de véritable recherche en interfaces utilisateur 3D. Nous avons donc mis
l’accent sur l’extension de notre approche 2D vers une métaphore 3D qui propose une
nouvelle interface pour la conception de base et l’éclairage d’architectures, en mêlant
simultanément plusieurs échelles d’interaction (voir le Chapitre 4).

Modifier l’éclairage de photographies est un objectif de longue date en infogra-
phie. Plusieurs méthodes ont été proposées, mais elles nécessitent une procédure de
capture difficile pour effectuer un ré-éclairage automatique [Yu et al., 1999] ou interac-
tif [Loscos et al., 2000]. L’insertion de nouveaux objets dans une photographie avec un
éclairage cohérent a également été résolu à l’aide de procédures de capture complexes
[Debevec, 1998] qui exigent un certain effort, et qui ne sont pas destiné à des utilisateurs
occasionnels. Les techniques récentes abordent ce problème en tirant parti de la grande
quantité de données disponibles en ligne pour permettre le ré-éclairage par transfert
d’information sur les sources lumineuses entre les photographies [Lalonde et al., 2009].
Ces approches guidées par les données fonctionnent bien pour la plupart des cas, mais
nécessitent une quantité considérable de pré-traitement.

Nous pensons que, malgré les travaux antérieurs dans ces domaines, il est nécessaire
de poursuivre le développement d’outils permettant de faciliter la création de contenu
transparente pour l’utilisateur.

A.4 Objectifs

Notre but est d’augmenter les possibilités de l’utilisateur moyen, en lui permettant
d’effectuer des tâches qui seraient autrement trop difficile à effectuer manuellement.
Dans ce contexte, notre objectif est de créer des outils qui aident les utilisateurs à créer
de nouveaux contenus à partir des données existantes. Nous ciblons deux domaines
différents: (1) la création de nouveaux modèles 3D texturés à partir d’existants, et (2) la
modification de l’éclairage sur des photographies existantes.

Plus spécifiquement pour (1), nous nous concentrons sur les modèles 3D architec-
turaux car ils sont largement disponibles en ligne, et sont couramment utilisés dans
des applications comme les jeux et le design. Pour (2) nous avons choisi de modi-
fier l’éclairage de la cime des arbres pour des environnements extérieurs, car ils sont
fréquemment rencontrés dans la plupart des scènes en extérieur.

A.4.1 Modification de géométrie interactive

Pour résoudre le problème de la modélisation interactive d’environnements architec-
turaux, nous nous inspirons des approches existantes pour l’édition de maillage. Notre
principale contribution, comme nous le verrons en détail au Chapitre 3, est le développe-
ment d’une technique interactive qui extrait automatiquement un ensemble d’équations
linéaires à partir de l’entrée qui exprime leur forme générale. Au moment de l’exécution,
l’interaction avec l’utilisateur déclenche la résolution du système au sens des moindres
carrés. L’utilisateur a la possibilité de déplacer les sommets du maillage, tandis que le
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système sous-jacent prend en charge les détails en préservant les caractéristiques origi-
nales du maillage.

Les textures sont un moyen essentiel de représenter les détails dans les maillages
architecturaux. Elles contiennent des informations géométriques qui ajoutent de la pro-
fondeur et de la décoration dans une variété d’environnements. De la même manière
que la géométrie est remodelée, nous avons adapté notre méthode à un opérateur sim-
ilaire pour modifier les textures. Notre approche identifie les régions de la texture qui
peuvent être étirées, afin de concentrer les déformations dans ces zones. Les détails sont
ensuite réintroduits, ce qui permet un résultat global de haute qualité.

Une modification de la géométrie déclenche la modification de la texture sous-
jacente, lui permettant de s’adapter à la nouvelle taille du maillage. Notre système est
interactif et toutes ces opérations sont effectuées au moment de l’exécution. En raison
de sa nature interactive, les utilisateurs peuvent tester plusieurs possibilités d’édition du
maillage, et revenir en arrière, avant de décider des réglages finaux.

Les Figures A.2 (a) et (b) montrent les résultats de notre outil d’édition de maillage
interactif. La Figure A.2 (a) montre un ensemble initial de maillages 3D provenant de
plusieurs niveaux de jeux vidéos. Dans la Figure A.2 (b), ces pièces ont été remodelées et
connectées afin de créer un nouveau niveau. Notez comme les textures ont été modifiées
de manière significative entre le modèle d’entrée et la géométrie finale remodelée.

(a)

(b)

Figure A.2: (a) maillages 3D originaux provenant de niveaux de jeux vidéo; (b) notre
approche pour l’édition interactive de maillage permet de remodeler individuellement
et connecter les pièces, afin de créer de nouveaux environnements avec des textures
adaptées.
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A.4.2 Modification en 3D

En testant notre outil pour l’édition de maillage, nous avons réalisé que l’une des diffi-
cultés a été la configuration du clavier et de la souris 2D pour traduire des commandes
3D. L’ambiguïté inhérente à cette métaphore ne convient pas pour l’interaction dans une
application 3D comme l’édition d’architecture. Visualiser et interpréter la véritable pro-
fondeur des modèles réduit l’ambiguïté lors de l’interaction. En outre, il est sans doute
préférable d’utiliser des commandes 3D dans l’espace pour ce type de modifications
géométriques.

Dans cet esprit, nous avons encore étendu notre approche et avons conçu une inter-
face 3D afin de réaliser l’édition de géométrie dans un environnement immersif de Réal-
ité Virtuelle, et en particulier le iSpace 4-faces de BARCO à l’INRIA Sophia-Antipolis.
Dans cet environnement, l’utilisateur est entouré par des écrans de projection représen-
tant le monde virtuel. Grâce à un tracker optique, les mouvements de la main et de la
tête de l’utilisateur peuvent être suivis en temps réel.

Nous utilisons cette technologie et permettons d’effectuer les opérations d’édition de
maillage d’architecture en 3D. Les utilisateurs peuvent saisir et déplacer les sommets du
maillage, au moyen d’un flystick, comme s’ils étaient réellement debout devant le modèle
3D. Dans ce système, l’utilisateur dispose de trois options différentes pour l’interaction:
une version à petite échelle du modèle est présentée devant lui; à l’échelle 1:1 du modèle;
et, un mode mixte, où le modèle est présenté à la fois à l’échelle 1:1 et à petite échelle.
Nous évaluons ensuite les actions des utilisateurs et leur performance à travers ces trois
paradigmes différents.

De plus, nous permettons aux utilisateurs d’explorer la conception d’éclairage. Nous
utilisons une version simplifiée d’un algorithme d’illumination globale pour évaluer
l’éclairage indirect du monde architectural en cours d’édition. Les utilisateurs peuvent
changer le jour de l’année et le moment de la journée afin de simuler comment la lumière
du soleil illuminera ces modèles.

La Figure A.3 montre un utilisateur en train de changer la position d’une fenêtre dans
un environnement en mode mixte, où le modèle est présent à la fois en version à l’échelle
1:1 et à petite échelle.

A.4.3 Ré-éclairage de photographies d’arbres

Pour atteindre cet objectif, nous combinons des algorithmes avec de nouvelles tech-
niques. Tout d’abord, dans le chapitre 6 nous développons une nouvelle approche qui
s’appuie sur la modélisation volumétrique des arbres pour permettre le ré-éclairage de
photographies de la cime des arbres. En utilisant un petit ensemble de photographies
prises à partir d’un arbre à un unique moment de la journée, nous sommes en mesure
d’effectuer le ré-éclairage, à savoir, changer l’heure de la journée et / ou le jour de l’année
à laquelle la photo a été prise. Nous construisons un proxy volumétrique approximatif
du feuillage des arbres et estimons les paramètres d’éclairage au moment où la photo a
été prise en entrée. En utilisant une seule méthode de diffusion de rendu volumétrique
avec des ratios d’images, nous sommes en mesure d’obtenir un effet convaincant pour
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Figure A.3: L’utilisateur modifie la position d’une fenêtre en mode mixte (détails au
Chapitre 4).

le ré-éclairage du feuillage qui est qualitativement comparable à une photographie de
l’éclairage réel d’un arbre prise au moment cible. Pour un exemple de notre technique de
ré-éclairage, voir les figures A.4 (a), (b) et (c). La figure 1.4 (a) montre la photo d’entrée,
prise à midi. La figure A.4 (b) montre notre résultat de ré-éclairage pour changer l’heure
de la journée à 18h00. La figure A.4 (c) montre une photographie réelle de l’arbre prise
au moment cible (18h00).

(a) (b) (c)

Figure A.4: (a) photographie d’entrée prise à midi; (b) notre résultat de ré-éclairage
pour changer l’heure de la journée à 18h00; (c) photographie réelle prise à 18h00 pour
comparaison.

A.5 Contributions

Notre objectif est de contribuer à l’élaboration d’outils qui facilitent la création de con-
tenu. En tant que tel, nous considérons que les apports de cette thèse sont:
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- Outil interactif d’édition du maillage destiné aux modèles d’architecture: Nous
développons un algorithme qui permet l’édition interactive de maillages 3D architec-
turaux, en tenant compte à la fois de la géométrie et des textures. Notre formulation
extrait un ensemble d’équations linéaires pour la géométrie et les textures, permettant
aux utilisateurs de modifier le maillage en temps réel tandis que le système sous-jacent
assure la cohérence des maillages d’entrée en résolvant le système d’équations selon la
méthode des moindres carrés. À notre connaissance, c’est la première fois qu’un algo-
rithme propose de modifier la géométrie et les textures simultanément et de manière
interactive.

- Interface 3D pour la conception interactive simple de modèles architecturaux
et d’éclairage: Nous avons développé une interface utilisateur immersive multi-mode
pour permettre l’édition interactive de maillages texturés. Nous permettons aux util-
isateurs de faire de la conception architecturale simple à l’aide de gestes 3D au moyen
d’un joystick dans un environnement de projection immersif. À notre connaissance, c’est
la première approche qui permet une édition architecturale simple avec une conception
de l’éclairage à exécuter dans un environnement immersif de réalité virtuelle, et qui est
également accompagnée d’une étude comparative pour les différentes configurations de
l’interface.

- Ré-éclairage de photographies de feuillages d’arbres utilisant en entrée des pho-
tographies prises à un seul moment de la journée: Nous développons un algorithme
qui prend en entrée un petit ensemble de photographies d’un arbre à un unique mo-
ment de la journée et effectue le ré-éclairage de l’entrée en changeant l’heure et le jour
de l’année de la photo, en changeant en réalité l’éclairage du feuillage de l’arbre. Notre
méthode utilise une approche volumétrique pour effectuer le ré-éclairage. À notre con-
naissance, c’est la première fois qu’un algorithme est capable de ré-éclairer la cime des
arbres en utilisant seulement une condition d’éclairage unique en entrée.

A.6 Organisation

Cette thèse est structurée en deux parties principales.
La partie I commence par le chapitre 2 qui donne un bref aperçu des travaux relatifs

à notre outil d’édition de maillages et son extension à un environnement en 3D. Nous
introduisons ensuite notre outil de remodelisation dans le chapitre 3 et nous montrons
ses résultats. Dans le chapitre 4, nous expliquons comment nous étendons notre outil
de remodelisation à un environnement 3D et comment nous concevons un ensemble de
tests pour évaluer l’efficacité et la performance de notre solution.

La deuxième partie présente nos travaux sur le ré-éclairage de photographies. Dans
le chapitre 5, nous passons en revue la littérature liée à la modélisation des arbres, au
ré-éclairage à partir d’images et aux algorithmes volumétriques. Puis dans le chapitre 6,
nous introduisons notre algorithme de ré-éclairage de la cime des arbres.

Le chapitre 7 présente nos conclusions et discussions finales, ce qui donne un aperçu
des futurs travaux. Enfin, il y a une annexe en ligne, située à l’adresse http://www-
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sop.inria.fr/members/Marcio.Cabral/thesis/ qui contient des résultats supplémentaires pour
notre algorithme de ré-éclairage des arbres, contenant l’ensemble complet des sequences
de photographies prises pour la comparaison avec la réalité ainsi que d’autres rendus
réels pour nos arbres de synthèse. L’annexe contient aussi des vidéos montrant les ré-
sultats des chapitres 3, 4 et 6.

A.7 Conclusion

Cette thèse apporte de nouvelles contributions à la création de nouveaux contenus
numériques à partir de données existantes. Nos contributions couvrent trois domaines
qui sont importants dans la réalisation de cet objectif: l’édition interactive de géométrie,
le ré-éclairage à partir d’images et les interactions homme-machine. Dans chaque cas,
nous avons fourni des solutions qui contribueront à l’élaboration de nouveaux outils
qui, nous l’espérons, faciliteront la création de tels contenus à l’avenir.

A.7.1 Edition interactive de Géométrie

Notre solution d’édition de maillages fournit une nouvelle approche pour la création in-
teractive de nouveaux contenus. Les objets structurés créés par l’homme et les modèles
3D architecturaux peuvent être remodelés en deplaçant simplement les sommets. Notre
approche gère également la texture sous-jacente, la transformant également de manière
appropriée. Chacun de ces modèles retouchés peut alors être connecté, permettant la
création de nouveaux modèles. Cette approche est rapide et elle permet la construction
rapide de modèles complexes. Ces tâches, si elles sont effectuées manuellement à l’aide
des outils courants d’édition 3D, exigeraient beaucoup d’efforts, même pour des util-
isateurs expérimentés. D’autre part, notre algorithme permet aux utilisateurs inexpéri-
mentés de réaliser de telles opérations. Notre approche extrait automatiquement une
série d’équations linéaires qui caractérisent la forme globale du modèle 3D. Au cours
de l’exécution, lorsque l’utilisateur déplace les sommets pour obtenir le remodelisation
souhaité, un solveur des moindres carrés permet de résoudre ces équations, préservant
l’aspect original du modèle 3D tout en répondant aux mouvements de l’utilisateur. Le
maillage remodelé déclenche la déformation de la texture des côtés, d’une manière sim-
ilaire, en utilisant également un solveur des moindres carrés.

Nous démontrons notre approche à travers plusieurs scénarios, en utilisant des mod-
èles en intérieur, mais également des modèles créés spécialement pour les jeux, qui sont
largement disponibles en ligne. Il s’agit d’un avantage majeur, qui permet aux util-
isateurs d’étendre leur capacité de créer de nouveaux contenus a partir de modèles
précédemment créés. Une autre caractéristique essentielle est le remodelisation des tex-
tures et de la géométrie en même temps, ce qui n’avait pas été proposé avant ce travail.
Notre mesure d’autosimilarité directionnelle est capable d’identifier les zones qui peu-
vent être étirées, telles que les régions stochastiques, et les zones avec des détails struc-
turés, qui doivent être rigides à la déformation. D’autres exemples auxquels nous avons
appliqué notre algorithme comprennent la construction d’une route et d’un pont à partir
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de quelques pièces de base.

A.7.1.1 Travaux Futurs

Nous aimerions étendre notre approche à des géométries générales par opposi-
tion aux modèles architecturaux et aux objets structurés créés par l’homme. Des
travaux récents qui portent sur le remodelisation de géométries générales telles que
iWires [Gal et al., 2009] proposent une direction intéressante.

Actuellement, l’édition couplée de la géométrie et de la texture est unidirectionnelle:
le remodelisation de la géométrie déclenche la déformation de la texture. Il est facile
d’explorer ce phénomène dans l’autre sens, en introduisant des contraintes géométriques
basées sur la rigidité sous-jacente de la texture.

A.7.2 Interaction Homme-Machine

Les premiers résultats de l’édition interactive de géométrie nous ont montré que, bien
que notre outil ait obtenu de bons résultats, les utilisateurs se débattaient avec son in-
terface 2D. Par conséquent, nous avons approfondi la manière d’aborder le problème
de la transposition de notre système dans un cadre immersif. Nous y sommes parvenu
en créant une nouvelle interface 3D et en permettant aux utilisateurs d’interagir avec le
système dans un environnement de réalité virtuelle totalement immersif en utilisant des
gestes de commande simples.

Le système immersif développé a permis le design conceptuel simple de modèles
architecturaux avec la possibilité d’explorer différentes configurations d’éclairage en
changeant l’heure et la date de l’année. Un algorithme simplifié d’éclairage global simu-
lait les interactions lumineuses dans le design conceptuel d’une maison permettant aux
utilisateurs de simuler la façon dont la lumière du soleil contribuerait à l’illumination
globale de la scène. Une étude utilisateur informelle a montré que les utilisateurs novices
d’un système immersif ont trouvé l’expérience et l’interactivité enrichissantes et intéres-
santes.

Notre système est complètement immersif et permet un design conceptuel simple de
modèles géométriques texturés. Il est le premier à également comprendre la conception
d’un éclairage de base. Trois modes différents permettent aux utilisateurs d’interagir
à différentes échelles. L’un d’eux, appelé mode mixte, est une variante d’un mode
d’interaction basé sur le paradigme des WIM [Stoakley et al., 1995] et il fournit à la fois
des vues locale et globale du monde 3D manipulé. Les utilisateurs qui ont expérimenté
le système ont utilisé équitablement les trois modes pour les tâches plus libres. Glob-
alement, les utilisateurs ont apprécié l’utilisation du système. De plus, les utilisateurs
n’ayant aucune expérience des systèmes immersifs de réalité virtuelle ont été en mesure
d’utiliser notre système après une courte session d’entraînement de 10 minutes.
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A.7.2.1 Travaux Futurs

Le but final d’une telle édition immersive de géométrie 3D et de textures est d’éliminer
complètement le besoin de dispositifs d’entrée 3D, tels que la manette utilisée. Nous
espérons plus tard utiliser de nouveaux dispositifs de capture, tels que les systèmes de
suivi des doigts et des mains. Nous avons commencé à expérimenter ces appareils à un
stade final du développement de cette thèse, mais nous les avons trouvés fragiles, ce qui
les rend inconfortable pour un usage régulier.

D’autres pistes incluent l’extension de l’algorithme d’illumination globale à des mod-
èles plus complexes, analysant comment différents niveaux de réalisme affectent la per-
ception du système par l’utilisateur.

A.7.3 Ré-éclairage à partir d’images

Nous avons proposé une méthode pour ré-éclairer le feuillage des arbres. En utilisant
uniquement des photos prises à un seul moment de la journée, notre algorithme peut
ré-éclairer la cime des arbres pour correspondre à n’importe quel autre moment, ou jour.
Notre méthode traite le problème du ré-éclairage en interprétant le feuillage des arbres
comme une entité volumétrique. En tant que tel, une technique de rendu de volume par
diffusion simple a été utilisée pour estimer les paramètres d’éclairage du feuillage des ar-
bres. Avec ces paramètres estimés pour chaque pixel pour l’image d’entrée, notre méth-
ode estime les mêmes paramètres pour les conditions d’éclairage souhaitées et effectue
le ré-éclairage en utilisant une simple méthode de ratios d’images. Notre algorithme a
bien fonctionné pour plusieurs variétés d’arbres. Nous avons validé notre méthode en
utilisant des rendus de synthèse d’arbres ainsi que les temps réels, avec des séquences
de photographies prises tout au long de la journée.

A.7.3.1 Travaux Futurs

Une part importante des futurs travaux est le développement de solutions pour le ré-
éclairage d’environnements entiers et non pas seulement de feuillages d’arbres. Dans
un premier temps, les ombres doivent être éliminées de l’environnement de façon ap-
propriée. Le problème le plus difficile est de résoudre le ré-éclairage de l’environnement
entier qui comprend différents types d’objets avec des caractéristiques différentes. En
tant que tel, une solution hybride peut être proposée où plusieurs approches sont util-
isées pour ré-éclairer les différentes zones de la scène.

A.8 Conclusion

Nous avons vu récemment une percée en termes de quantité et de qualité du contenu
créé par les utilisateurs de partout, y compris les utilisateurs novices de systèmes in-
formatiques. En particulier, les solutions proposées dans cette thèse fournissent aux
utilisateurs des moyens intuitifs pour créer une géométrie texturée à partir de pièces
existantes, y compris dans un cadre d’immersion, et de manipuler l’éclairage dans les
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photographies d’arbres. Nous espérons que cette thèse est un pas en avant pour fournir
aux utilisateurs de meilleurs outils pour créer des contenus qui autrement seraient dif-
ficiles à créer manuellement. Au final, notre objectif est de donner aux utilisateurs les
capacités leur permettant de facilement créer et manipuler du contenu 3D, sans avoir
besoin de talent et de formation de longue durée. Lorsque cet objectif sera atteint, leur
imagination créatrice ne sera plus limitée par la technologie.
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