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UNIVERSITÉ PARIS-EST

Approximations of Points: Combinatorics and
Algorithms

Nabil Mustafa
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M. Victor CHEPOI Professeur, Université de la Mediterranée, Marseille Rapporteur
M. Kurt MEHLHORN Professeur, MPI fur Informatik & Saarland University Rapporteur
M. Emo WELZL Professeur, ETH Zurich Rapporteur
M. Gilles BERTRAND Professeur, ESIEE Paris Examinateur
Mme. Claire MATHIEU Directeur de Recherche, ENS Paris Examinateur
M. Dominique PERRIN Directeur General, ESIEE Paris Directeur d’habilitation
M. Michel POCCHIOLA Professeur, Université Pierre et Marie Curie Examinateur
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Foreword

My steadfast interest has been in geometry, exploring the interaction of the structure of geomet-
ric shapes with computation. To that end, I have spent the past decade learning ideas and using
techniques from several areas: algorithms, computational geometry, GPU computing, computa-
tional biology, computer graphics, databases, visualization, algebraic topology, discrete geometry
and randomized analysis.

Given available space (and reader patience!), my habilitation thesis focuses on my contributions in
a particular area, and so gives only a partial account of my research interests and activities. This
foreword fills this gap by giving a broader overview of my research activities for the past several
years.

? ? ?

My work for the past fifteen years has been, broadly, in the area of geometric computing, i.e., as-
pects of computation on geometric data. Geometric data is ubiquitous – from Global Positioning
Systems (GPS) to Medical Imaging to Computational Biology to Geographical Information Sys-
tems to 3D scanning. Successful understanding and processing of such data involves the interface
of several key areas, requiring expertise in Mathematics, Algorithms, Geometry and Graphics &
Visualization. Computational geometry, an amalgamation of the above areas, branched out as a
separate field in the 1970s, with the aim of providing a rigorous mathematical and algorithmic
basis for the study and computation of geometric data.

One of the fundamental themes in discrete and computational geometry is the notion of approxi-
mation of geometric data. There are, broadly, two related ways to approximate geometry: either
replace the data with a smaller but similar data (e.g., its median, centroid) which ‘combinatori-
ally’ approximates the original set P . Or compute some descriptive quantity (e.g., diameter, width,
variance) over the entire set P .

I now turn to each in more detail. A complete list of my publications can be found on page 83 .

When the geometric data consists of a set P of n points in Rd, the goal of data-depth measures
is to generalize the idea of the median in higher dimensions; over the past 50 years, several such
measures have been proposed and studied. Part of my work has been a study of their combi-
natorial and algorithmic aspects – designing efficient algorithms for the computation of Tukey
depth [15], resolution of the Oja-depth depth conjecture in R2 and improving bounds for gen-
eral dimensions [33], improved algorithms for Ray-Shooting depth [31], improved combinatorial
bounds for the simplicial-depth problem [11], introducing and developing the notion of center-
disks [10], proposing graphics hardware based algorithms for several of the above depth-measures
(simplicial-depth, oja-depth, colorful variants of these depth measures) [16], and finally, propos-
ing (and partially proving) a general conjecture that unifies all of these above measures under the
Centerflat Conjectures [32].

Similarly, there are several notions of approximating P with more than one point. The most well-
known and useful one is that of ε-nets, where one would like to compute a small-sized subset of P



that is a hitting set for all large-enough subsets of P induced by some geometric object (for example,
under balls, rectangles). One prominent case is the so-called weak ε-net problem, a long-standing
open problem on approximating convex sets. I proposed optimal constructions for small-sized weak
ε-nets [27]. For the general problem, I introduced the use of random-sampling for computing weak
ε-nets [23] which showed a connection between ε-nets and weak ε-nets. This work required the
generalization of some basic theorems in discrete geometry, which was presented in [30]. Finally,
some near-optimal generalizations of the classical ε-net theorem were presented in [24].

Apart from the combinatorial bounds on the size of the hitting sets, I have also worked on algo-
rithms for computing hitting-sets, and related problems. An open problem of finding a polynomial-
time approximation scheme for hitting-sets for disks in the plane was resolved in [28, 29]; this
paper showed the use of provably good local-search for combinatorial geometric problems via
locality-graphs, an idea that was used by several later papers. I also presented approximation algo-
rithms for computing maximum independent sets in intersection graphs of geometric objects in the
plane [4, 6]. Other works include streaming algorithms for computation of minimum-width, small-
est enclosing ball and other problems [3], and the first constant-factor approximation algorithm for
the well-known group TSP problem [13].

When the data is ordered, e.g., a polygonal curve, I presented approximation algorithms for their
simplification under Hausdorff and Frechet distance metrics [1, 2]; here the motivating application
was simplifying protein backbones for structural similarity. This led to the harder problem of sim-
plifying two-dimensional cartographic maps, and in further work [19, 20], we proposed real-time
topology-preserving algorithms for dynamic simplification and visualization of maps. This work
forms the theoretical basis for a patent (US Patent Nr. 10/021,645).

Geometric data comes from many different sources, so part of my published work spans these ar-
eas: Databases, where algorithms for projective clustering of high-dimensional point-set data were
proposed [5]; Computational Biology, where in [7] we resolved several of the problems related to
comparing protein backbones via the so-called contact-map overlap measure; Computational Chem-
istry, where we presented the construction and main ideas that were then used by others to resolve
the Weiner-index conjecture [9, 8]; Networks, where the frequency assignment problem for wire-
less stations was studied [14], as well as the majority influence problem [21, 22].

Our work in [3, 15, 16, 19, 20] was one of the earliest works exploiting the graphics hardware
for geometric computation, and demonstrated its untapped potential; by now, graphics computing
is a large mainstream area. Our work was presented at SIGGRAPH course notes in 2002, entitled
“Interactive Geometric Computations with Graphics Hardware”.

? ? ?

This thesis presents a subset of the above work, that related to combinatorial and algorithmic
aspects of approximations of point-set data in Rd. In particular, this exposition relies on the material
from the following papers. I should note that besides Chapter 5 which includes joint work with my
PhD advisor, the co-authors of all the remaining papers are young researchers (Hans Raj Tiwary,
Rajiv Raman) or PhD students (or were when we started collaborating; Saurabh Ray, Abdul Basit,
Mudassir Shabbir, Sarfraz Raza, Daniel Werner).



• Geometric separators, recent unpublished work with Rajiv Raman and Saurabh Ray (Chap-
ter 2),

• The general weak ε-net problem [26, 23], with Saurabh Ray (Chapter 3),

• Near-optimal generalization of Caratheodory’s Theorem, with Saurabh Ray (Chapter 4),

• Independent sets in Intersection-graphs [4, 6], with Pankaj Agarwal (Chapter 5),

• Hitting-sets for disks in the plane [28, 29], with Saurabh Ray (Chapter 6),

• Optimal bounds for small weak ε-nets [25, 27], with Saurabh Ray (Chapter 7),

• Improved bounds for Simplicial Depth [11, 12], with Abdul Basit, Saurabh Ray and Sarfraz
Raza (Chapter 8),

• Optimal bounds for Oja-depth [33], with Hans Raj Tiwary and Daniel Werner (Chapter 9),

• Unifying data-depths via the Centerflat Conjectures [32], with Saurabh Ray and Mudassir Shab-
bir (Chapter 1).
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Abstract

At the core of successful manipulation and computation over large geometric data is the notion of
approximation, both structural and computational. The focus of this thesis will be on the combina-
torial and algorithmic aspects of approximations of point-set data P of n points in Rd.

Part I of this thesis considers the problem of approximating P with a small-sized subset. There we
concentrate on the long-standing open problem of weak ε-nets: given a set P of n points in Rd and
a parameter ε > 0, one would like to compute a small-sized subset Q ⊂ Rd such that any convex
set containing at least εn points of P contains at least one point of Q; i.e., Q is a hitting-set for sets
of size at least εn induced by convex objects in Rd. Improving earlier work, we first present optimal
constructions of Q when ε is large; in particular, we present optimal bounds when Q consists of
two points, generalizing the classical centerpoint theorem. For the general weak ε-net problem, the
current-best bounds on the size of Q are O(1/εd). We will show that picking O(1/ε log 1/ε) points
R randomly from P give sufficient information to be able to construct a weak ε-net solely from R.
Along the way, this requires re-visiting and generalizing some basic theorems of convex geometry,
such as the Carathéodory’s theorem.

Part II of this thesis is a consideration of the algorithmic aspects of these problems. We first present
a PTAS for computing hitting-sets for disks in the plane, thus closing a 30-year old open problem.
Of separate interest is the technique, an analysis of local-search via locality graphs. A further
application of this technique is then presented in computing independent sets in intersection graphs
of rectangles in the plane.

Part III of this thesis deals with notions of geometric data depth, in particular those of geometric
medians in Rd. Given P , the goal is to compute a point q ∈ Rd that is at the ‘combinatorial center’
of P ; i.e., a natural analog of the concept of median in higher dimensions. Over the past 50
years several such measures have been proposed, and we will re-examine some of the central ones:
Tukey depth, Simplicial depth, Oja depth and Ray-Shooting depth. For each of these measures,
we improve the state-of-the-art by presenting either faster algorithms or improved combinatorial
bounds. Finally we give a geometric framework that unifies these previously considered separates
measures.
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1. A Detailed Overview

Mathematics is amazingly compressible: you may struggle a long time, step by step, to work
through some process or idea from several approaches. But once you really understand it and
have the mental perspective to see it as a whole, there is a tremendous mental compression.
You can file it away, recall it quickly and completely when you need it, and use it as just one
step in some other mental process. The insight that goes with this compression is one of the
real joys of mathematics.

William Thurston

THIS chapter, the longest one, gives a detailed account of the results in this thesis: background
and context of the problems, historical progression of ideas, relations between seemingly
different results, a unifying view of some of the problems, significance of the results and

their algorithmic implications. This will be accomplished keeping three other aims in mind: to
provide intuition behind the various technical statements, to use this opportunity to more deeply
explain fundamental techniques, and to present several conjectures and plausible directions of
further research. We hope that this will give this thesis usefulness beyond just a presentation of a
specific set of results.

Towards these ends, some material from various chapters has been moved to this one. The remain-
ing chapters are then direct technical proofs of the statements claimed here. While reading here,
the reader can visit the appropriate chapters for the technical proofs. A list of well-known theorems
mentioned or used can be reviewed in Appendix A.

? ? ?

ε-nets. One of the fundamental ways to combinatorially approximate a set P of points in Rd is to
capture the desired properties (depending on the application) of P with a smaller-sized subset of
Rd; e.g., when P is a set of points in R, the notion of mean and median are two natural widely-used
measures to capture the spread of the data. The more geometric of these measures, the mean,
generalizes in a straightforward way to higher dimensions as the centroid; the appropriate gener-
alization of the combinatorial one, the median, is less clear. For now we mention one fundamental
generalization, the 1947 centerpoint theorem of Rado [Rad47]1:

1The third part of this thesis deals with various notions of combinatorial approximations of P with a single point.
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Centerpoint Theorem. Given any set P of n points in Rd, there exists a point q ∈ Rd, not necessarily
in P , such that any closed half-space containing q contains at least n/(d + 1) points of P . Any such
point q is called a centerpoint of P .

One proof of this statement follows from the realization that it is equivalent to the fact that all
convex objects containing greater than dn/(d + 1) points of P can be hit by one point2. Helly’s
theorem then implies the centerpoint theorem.

This equivalence paves the way for the natural extension of approximating with k points instead
of just one: given an integer k, what is the smallest ε > 0 such that given any set P of n points in
Rd, there exist a set Q of k points such that any convex object containing at least εn points of P is
hit by Q. Equivalently, one can fix ε and ask for the smallest-sized set Q ⊂ Rd so that any convex
object containing at least εn points of P contains at least one point of Q. This is the well-known
weak ε-net problem.

More generally, one can ask questions regarding small-sized hitting sets for subsets induced by
other kinds of geometric objects. Broadly, given a set system (X,F) where X is a base set and F is
a family of subsets of X, the ε-net problem asks for a small-sized subset X ′ ⊂ X such that for every
set S ∈ F containing at least ε|X| elements, X ′∩S 6= ∅. Examples of geometric set-systems include
when X is a set of points in Rd, and F is defined by containment by geometric objects such as
halfspaces or balls or rectangles. Note here that unlike the convex case, we require the hitting-set
to be a subset of the base set.

The main question (with many implications), first proposed in Haussler-Welzl [HW87], concerns
bounding the sizes of ε-nets. Their remarkable and celebrated result showed that if the set-system
satisfied a certain combinatorial condition (VC-dimension is at most d), then picking a random
sample of size O(d/ε log d/ε)3 yields an ε-net with high probability, the size being independent of
|X|! The condition of having finite VC-dimension is satisfied by set systems induced by many
geometric objects: disks, half-spaces, k-sided polytopes, r-admissible set of regions etc. in Rd,
and in general, geometric objects defined by bounded polynomial constraints. Furthermore, this
bound is tight if one only relies on VC-dimension [KPW92]; consequently VC-dimension theory is
inadequate for proving asymptotically better upper-bounds for geometric set-systems. For example,
given a set of points in Rd, set systems defined by containment by balls, halfspaces, rectangles have
been of fundamental combinatorial and computational interest. So over the past two decades,
a number of specialized techniques have been developed for such set systems for a number of
geometric settings [PW90, MSW90, PR08, CF90, CV07, AES10, Var10, CGKS12].

In a recent breakthrough, Alon [Alo12] proved a super-linear lower-bound on the sizes of ε-nets
for set-systems induced by lines in the plane. Alon’s observation was that any Ramsey-theoretic
statement immediately implies a lower-bound on ε-nets for a related set-system. For an illustration
(Alon uses a different Ramsey-type statement), consider the consequence of the following Ramsey-
type statement on arithmetic progressions: given an integer k, there exists an integer Nk (function
of k) such that any subset of A = {1, . . . , Nk} of size Nk/2 contains an arithmetic progression of
size k. Now suppose we want to hit all arithmetic progressions of size k in A; i.e., an ε-net S

2Clearly a centerpoint q must hit all convex sets containing greater than dn/(d+1) points, for otherwise the halfspace
containing q and separating q from any such unhit convex-set contains less than n/(d + 1) points. A similar argument
shows that any point q hitting all such convex-sets must be a centerpoint.

3This bound was later improved in [KPW92] to a near-optimal bound of (1 + o(1))( d
ε
log(1/ε)).
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for ε = k/Nk. Now the statement above implies that S cannot have size linear in O(1/ε) (i.e.,
O(Nk/k)): S must have size at least Nk/2, as otherwise the set A \ S would contain an arithmetic
progression of length k that is not hit by S. This gives a non-linear lower-bound depending on the
exact function relating k and Nk

4. With a quantitatively stronger Ramsey-type statement, Pach-
Tardos [PT11] showed that any ε-net for halfspaces must have size Ω(1/ε log 1/ε) in dimension 4
and higher, thus closing a long-standing open problem.

One reason for the usefulness of ε-nets is that they capture precisely and provably properties one
would want from a random sample (a ‘well spread out’ subset). So there have been numerous
applications of ε-nets, both combinatorial (the spanning-tree theorem, partition theorem, use in
geometric discrepancy) and algorithmic (divide-and-conquer, hitting-set algorithms as we will see
in the second part).

We give an application of ε-nets to geometric separators that illustrates both their combinatorial
and algorithmic usefulness. Separators are substructures whose removal partitions the original
structure into smaller non-interfering substructures, thus allowing independent computation of
smaller subproblems. A classical example is the planar graph separator theorem [LT80]: any planar
graphG has a small-sized subset that partitions the graph into two roughly equal-sized independent
pieces. Specifically, given a planar graph G = (V,E), there exists a subset S ⊂ V of size O(

√
n)

such that V \ S can be partitioned into two sets V1, V2 with no edge between vertices in V1 and V2

in E.5

Very recently a new separator theorem was proven and used for the problem of approximat-
ing the maximum independent set in the intersection graphs of geometric objects in the plane6.
Adamaszek-Wiese [AW13, AW14] showed the following theorem: given a set S of n weighted dis-
joint line segments in the plane of total weight W , and a parameter δ > 0, there exists a piecewise
linear simple closed curve C withO((1/δ)6) vertices such that i) the weight of the line segments in S
intersecting C is at most δW , and ii) the weight of the line segments completely inside or outside C
is at most 2W/3. This theorem then directly implies, via dynamic programming, a quasi-polynomial
time approximation scheme (QPTAS) for computing independent-sets in the intersection graphs of
geometric objects (defined by at most polylogarithmically many vertices) in the plane.

Their separator proof is long, and technically messy, using a theorem of Arora et al. [AGK+98].
As an illustration of the versatility of ε-nets, we note that an improved optimal separator theorem
follows easily from ε-nets and a variant of the planar graph separator theorem stated earlier:

Theorem (Chapter 2). Given a set S of n disjoint weighted line segments in the plane (with total
weight W ) and a parameter δ > 0, there exists a piecewise linear simple closed curve C with O(1/δ)
vertices such that i) the total weight of segments intersecting C is at most δW , and ii) the total weight
of the line segments completely inside or outside C is at most 2W/3. Furthermore this is optimal, in the
sense that any curve C satisfying these two properties must have size Ω(1/δ).

Besides improving the running time of the algorithms of [AW13, AW14] by polynomial factors, the
4This set-system can be viewed as geometric by placing A as points in R2 (p ∈ R→ (p, 0) ∈ R2); then the arithmetic

progressions are induced by sinusoids in the plane.
5Later we will see the use of this separator theorem for the resolution of the problem of a polynomial-time approxi-

mation scheme (PTAS) for the hitting-set problem.
6Given a set {O1, . . . , On} of n objects in some Euclidean space, the intersection graph has a vertex for each object,

and an edge between two vertices iff the two corresponding objects intersect.
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above statement can be generalized to more general objects like x-monotone curves in the plane,
intersecting curves etc..

? ? ?

Weak ε-nets. Returning to the convex case, given a set P of n points in Rd, and a parameter
ε > 0, call a set Q ⊂ Rd a weak ε-net for P if any convex object containing at least εn points of
P is hit by Q. The previous discussion enables us to view weak ε-nets from two perspectives: as a
generalization of the centerpoint theorem to subsets, and as ε-nets where the set-system is induced
by convex objects.

Getting optimal bounds on the sizes of weak ε-nets has been a long-standing open problem7, as the
ε-net theorem of Haussler-Welzl does not apply (the set systems induced by convex objects have
unbounded VC-dimension). Alon et al. [ABFK92] showed that one can derive weak ε-nets from
the iterative use of centerpoints. This gave the first construction of weak ε-nets of size independent
of n, with a bound of O(1/εd+1). This was subsequently improved by Chazelle et al. [CEG+93] to
O(1/εd polylog(1/ε)); more than a decade later, an elegant new proof of this statement was given
by Matousek-Wagner [MW04]. On the other hand, Bukh et al. [BMN09] proved a lower bound of
Ω(1/ε logd−1 1/ε). Quoting Matousek-Wagner [MW04]: “There seems to be no convincing reason
why f(d, ε)[size of the weak ε-net in Rd] should be substantially super-linear in 1/ε”. As we will
see, for a variety of reasons, a first aim may be the middle-ground of O(1/εbd/2c).

To understand the fundamental reason why progress has been lacking, and there is a wide gap
between the upper- and lower- bounds, consider the proof of the ε-net theorem: each set to be hit
contains a large fraction of the points (at least εn), and so a random sample has a high probability
of being a hitting-set as long as the number of sets is small enough for the union-bound to work. This
idea works when sets are defined by half-spaces, or balls or any algebraically bounded object, or
have finite VC-dimension. For all these, the number of sets are polynomial in |X|, and so trivially
a random sample of size O(1/ε log |X|) is a hitting set (the subtle analysis of Haussler-Welzl is
able to achieve the bound of O(1/ε log 1/ε) by essentially using the ‘hereditary’ property of the
VC-dimension of a set-system). This sampling approach seems doomed for convex objects as the
number of induced subsets are exponentially large (then one requires the probability of not hitting
a set to be exponentially small as well).

We propose a new program towards the resolution of this problem: we will show that given the
set P of n points in Rd, it is possible to pick a subset of only O(1/ε log 1/ε) points of P from which
a weak ε-net can be constructed (though the final size of the weak ε-net is still exponential in d).
The high-level idea is the following: pick a random sample R of size O(1/ε log 1/ε) from P . Now
suppose a convex object C containing εn points of P is not hit by this sample. Then it must be that
no set of k halfspaces separates8 C from points of R; otherwise the intersection of these halfspaces
contains C and so contains at least εn points without containing any point of R, an unlikely event

7We refer the reader to a good history and review of the problem by Gil Kalai: http://terrytao.wordpress.
com/2007/04/22/gil-kalai-the-weak-epsilon-net-problem/.

8We say a point p can be separated from a convex set C if there exists a hyperplane h with C and p in the interior of
the two different halfspaces defined by h.
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as intersection of k halfspaces has finite VC-dimension. Intuitively, this means that some subset RC
of R is ‘close’ to the boundary of C: specifically, it will be shown that there exists a large-enough
set RC ⊂ R such that the convex-hull of every (d + 1) tuple of RC intersects C. We then show
that there exists an appropriate set of ‘product’ points Q over R that hit every convex object C
containing at least εn points of P .

Theorem (Chapter 3). Given a set P of n points in Rd, and a parameter ε > 0, there exists a set R of
O(1/ε log 1/ε) points of P such that a weak ε-net Q for P w.r.t. convex sets can be constructed from
points in R.

The proof establishes the use of random-sampling for computing weak ε-nets: basically using cen-
terpoints over a random sample of size O(1/ε log 1/ε) gives, with high probability, a weak ε-net! In
fact, the proof also establishes a connection between weak ε-nets and ε-nets, showing that weak
nets can be constructed from ε-nets.

We use two ‘product’ functions over points of R to construct Q: Radon points, and centerpoints.
Given P , we say a point in Rd has descriptional complexity k if it is completely determined by at
most k points of P . For example, a Radon point of a (d + 2)-tuple in P trivially has descriptional
complexity d + 2. It can also be shown that there exists a centerpoint of P with d2 descriptional
complexity9. We ask the following question: does there exist an approximate centerpoint (in the
sense that any closed halfspace containing such a point contains at least n/cd points of P , where
cd can be any function of d) of descriptional complexity less than d points10? Our proof yields the
following connection: if the descriptional complexity of an approximate centerpoint is t, then one
can construct weak ε-nets of size O(1/εt logt 1/ε). Thus our approach directly relates the size of the
weak ε-nets to the descriptional complexity of basic product functions.

One of the bottlenecks in the above program is the weak property of ‘closeness’ satisfied by RC , i.e.,
that the convex-hull of every d + 1 subset of RC intersects C. This blocks the approach of adding
points based on every t-tuple, t < d, as such a t-tuple of RC might not even intersect C! For use
in constructing weak ε-nets whose size is low-dimensional, i.e., o(1/εd), the set RC must satisfy a
condition of ‘closeness’ which is based on subsets of size lower than d. In fact, we can strengthen
the statement to show that there exists an RC ⊂ R such that C intersects the convex hull of every
bd/2c + 1-sized subset of RC . Showing the existence of such a set RC required generalizing a
basic theorem of convex geometry, Carathéodory’s theorem. In fact that opens up a new set of
generalizations of such theorems, to which we now turn.

? ? ?

9Helly’s theorem returns a point in the common intersection of a set of convex objects. A vertex of this common
intersection will do, and it is the intersection of d planes, each plane defined by d points of P .

10In R2, the descriptional complexity of approximate centerpoints can be shown to be at most 3 (rather than 4): take
a vertical line l1 through the median point (by x-coordinate) of P , and let l2 be the line that equi-partitions the points
on the left and right side of l1 (such a line always exists by the Ham-sandwich theorem). Then observe that the point
l1 ∩ l2 is an approximate centerpoint, and is defined by 3 points of P .
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A generalization of Carathéodory’s theorem. Our program leads us to study the behavior of
low-dimensional simplices with respect to convex sets in Rd. We will examine some classical theo-
rems in discrete geometry – Radon’s theorem [Rad47], Carathéodory’s theorem [Mat02], colorful
Carathéodory theorem [Bár82] – and prove extensions that demonstrate the phenomenon of low-
dimensional intersections.

Carathéodory’s Theorem states11 that if a convex set C intersects the convex hull of some point
set P , then it also intersects some simplex spanned by points in P . Equivalently, either P can be
separated from C by one hyperplane, or C intersects the convex hull of some (d + 1) points of P .
In general, this cannot be strengthened to guarantee lower-dimensional intersections, i.e., that the
convex-hull of some t < d + 1 points of P intersect C. Though in R2, it is easy to see that given
a convex object C and a set P of points, either P can be separated from C using 2 lines, or there
exist 2 points of P whose line-segment intersects C. In fact, we will show that a similar statement
is true for Rd – that by using more than one hyperplane to separate C from P , one can achieve
low-dimensional intersections.

Theorem (Chapter 4). Given a set P of n points in Rd and a convex object C, either P can be separated
from C by O(d4 log d) hyperplanes (i.e., each p ∈ P is separated from C by one of the hyperplanes),
or C intersects the convex hull of some bd/2c+ 1-sized subset of P .

Note that apart from quantitative improvements on the number of separating hyperplanes, one
cannot guarantee an even lower-dimensional intersection – to see this consider P to be the vertex
set of a cyclic polytope and let C to be a slightly shrunk copy of the polytope.

The proof in Chapter 4 uses linear-programming duality, but the idea should be understood as
an application of the beautiful multiplicative weights technique: given P and C, assume that the
convex-hull of no bd/2c + 1-sized subset intersects C. Then it is not too hard to see that there
must exist a halfspace h1 containing a constant fraction of points of P (constant depends on d) and
containing C in its complement. Now add to P an extra copy of each point of P not separated from
C by h1. Repeat this process by picking another halfspace h2 w.r.t. to the new pointset, and making
an extra copy of each point of the new pointset not contained in h2 and so on. One can visualize
the making of the extra copies of p as doubling the weight of p (set to 1 initially). After some t
steps, each point p ∈ P must be contained in many of these t halfspaces: if p is contained in too
few halfspaces, its weight would be very large (as it is doubled for each halfspace not containing
p), contradicting the fact that the total weight of all the points in the end is not too much (as at
each step we picked a halfspace containing a large weight of points in P ). Now taking an ε-net of
the halfspaces (i.e., the base set is {h1, . . . , ht} and the sets are subsets of the base set containing a
common point q ∈ Rd) gives us a small-sized set of halfspaces separating all points of P from C.

A beautiful extension of Carathéodory’s theorem, the colorful Carathéodory Theorem, was discov-
ered by Imre Bárány [Bár82]: given d+ 1 sets of points P1, . . . , Pd+1 in Rd and a convex set C such
that C ∩ conv(Pi) 6= ∅ for all i = 1, . . . , d+ 1, there exists a set Q with C ∩ conv(Q) 6= ∅ and where
|Q ∩ Pi| = 1 for all i. Equivalently, either some Pi can be separated from C with one hyperplane,
or C intersects the convex hull of a rainbow set of d+ 1 points12.

11Here we have stated the theorem in a slightly more general form; usually it is stated where C is just a point.
12This theorem is also commonly stated for the case where C is a point, but the above slight generalization follows

immediately from Bárány’s proof technique [Bár82].
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In R3, an elementary argument shows that a similar low-dimensional generalization also holds
here: given C and a set of red and blue points in R3, either the red set or the blue set can be
separated from C by a constant number of planes. Or there is a red-blue edge intersecting C. First,
elementary considerations show that given a pointset and a convex set C, either there is a triangle
∆ spanned by the points so that each edge of ∆ intersects C or all the point can be separated from
C using twelve hyperplanes. Now suppose that we have some red and blue points and a convex
set C. Then applying the above result to each set of points, we conclude that either one of the sets
can be separated from C with twelve planes or there is a red triangle and a blue triangle each of
whose edges intersect C. For each vertex of these triangles consider the region on the boundary
of C that it can see (imagine C to be opaque). Since each red (resp. blue) edge intersects C, no
two of the red (resp. blue) regions intersect, i.e., no three of the six regions intersect at a common
point. Since the regions are pseudodisks, their intersection graph is planar. As K3,3 is not planar,
there is a red region and a blue region which do not intersect. This implies that the red-blue edge
defined by the points corresponding to these regions intersects C.

We will prove the lower-dimensional generalization of Colorful Carathéodory’s Theorem in Rd:

Theorem (Chapter 4). For any d, there exists a constant Nd such that given k = bd/2c + 1 sets of
points P1, . . . , Pk in Rd and a convex object C, either one of the sets Pi can be separated from C by Nd

hyperplanes, or there is a rainbow set of size k whose convex hull intersects C.

We feel that this generalization is also true for several other basic theorems:

Conjecture 1 (Low-dimensional Kirchberger’s Theorem). Given a set P of n red points and n blue
points in Rd either there exist a constant number of hyperplanes H such that every red-blue pair is
separated by a plane in H, or a bd/2c-dimensional red simplex intersects a dd/2e-dimensional blue
simplex (or vice versa).

Conjecture 2 (Low-dimensional Tverbeg’s Theorem). Given a set P of n points in Rd, there exists a
Tverberg partition on a large-enough subset of P where two sets have size bd/2c+ 1.13

? ? ?

The hitting-set problem. So far we have looked at the combinatorial problem of finding small-
sized hitting sets for set-systems (X,F) where each set has large size, at least ε|X|. It turns out that
it is intimately related to the fundamental computational problem of computing small-sized hitting
sets for arbitrary set-systems. For example, given n points P in the plane, and a set of m disks D,
compute the smallest-sized subset P ′ ⊆ P such that each disk in D contains at least one point of
P ′. This is the geometric hitting-set problem for disks in the plane (its dual problem is the geometric
set-cover problem where one would like to pick the minimum number of disks D′ ⊆ D that cover
all the points of P ).

The geometric hitting-set problems are also normally NP-hard (even in the case where D are disks
of the same radii [HM87]), so the best one can hope for is an efficient algorithm that returns

13It is not too hard to see that this implies a version of the extension of Carathéodory’s theorem.
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a (1 + ε)-approximation to the optimal solution, i.e., a polynomial-time approximation scheme
(PTAS). Along this (still ongoing) quest, over the past three decades, there have been a num-
ber of algorithms proposed to compute good approximations to the optimal geometric hitting-
set/set-cover for a variety of geometric objects (see [CKLT07, NV06, CMWZ04, CV07, AES12, CF13,
CDD+09, HM84, NV06, EvL08] for a few examples). Much work remains to be done; for example,
till recently a PTAS was not known for the case where the geometric objects are disks in the plane,
the best approximation-factor being a 18-approximation algorithm [DFLON11] 14.

In 1994, Bronnimann and Goodrich [BG95] showed the following surprising connection: let R =
(P,D) be a set-system for which we want to compute a minimum hitting set. If one can compute
an ε-net of size f(1/ε)/ε for the weighted ε-net problem for R in polynomial time then one can
compute a hitting set of size at most f(OPT) · OPT for R, where OPT is the size of the optimal hitting
set, in polynomial time. A shorter, simpler proof was given by Even et al. [ERS05]. The connection
is less surprising when one knows the proof: first assign weights to each point such that the total
weight of the points in each set in D is a large fraction of the total weight; then picking an ε-net
(w.r.t. the weighted sets) hits every set! Assigning such weights is easy, as the optimal hitting-set
gives such an assignment: p ∈ P has weight 1 if p is in the optimal hitting set, 0 otherwise. The
total weight is OPT, while each set has weight at least 1; so ε = 1/OPT and then ε-nets give a hitting
set of size f(OPT) · OPT. This of course requires knowing the optimal hitting set, but as the weights
need not be integral, one can use the linear program for the problem to set the weights [ERS05].
Alternatively, multiplicative weights technique can be used to set the weights [BG95]. Note here
the thematic use of ε-nets as rounding tools: the LP solution gives fractional weights, and ε-nets
round these to integers by (essentially) picking a subset randomly with probability proportional to
these weights.

Unfortunately, the Bronniman-Goodrich technique cannot lead to a PTAS for geometric hitting set
problems. This is a fundamental limitation of the technique: it cannot give better than constant-
factor approximations. Apart from simple set-systems like intervals in R, the sizes of ε-nets are at
least c/ε for some constant c > 1, making it impossible to get below a c-approximation factor. We
now show that a simple ‘local-search’ scheme can bypass the limitation of Bronniman-Goodrich to
get PTAS for several geometric set systems – arbitrary disks in the plane, halfspaces in R3, pseudo-
disks in the plane and several other basic systems:

Theorem (Chapter 6). One can compute a (1 + ε)-approximation to the minimum-hitting set for
set-system induced by disks in the plane, in time O(n1/ε2).

The algorithm starts with any hitting set S ⊆ P (e.g., take all the points of P ), and iterates local-
improvement steps of the following kind: If any k points of S can be replaced by k − 1 points of P
such that the resulting set is still a hitting set, then perform the swap to get a smaller hitting set.
Halt if no such local improvement is possible. The main result is that this algorithm halts with a
hitting-set of size at most (1 + 1/

√
k) · OPT, where OPT is the size of the minimum hitting set 15. In

fact, the result is more general: it holds for any set of objects which are r-admissible. It also gives
a similar PTAS for the hitting-set problem for halfspaces in R3.

14That too for the special case where D is a set of unit disks.
15See the blog-post at the geometry blog GEOMBLOG for a nice exposition by Suresh Venkat of this technique:

http://geomblog.blogspot.com/2009/06/socg-2009-local-search-geometric.html.

8



Such algorithms are generally classified as ‘local-search algorithms’, and have been used for decades
as heuristics in fast practical methods. However widespread their use, it is often not easy to bound
the accuracy of the resulting solutions. The fact that the final solution cannot be ‘locally’ improved
does not normally imply closeness to the global optimum. Therefore theoretically there have been
very few results demonstrating the mathematical soundness of many such search heuristics based
on local search. Let us just mention the inspiration of our result, that of a surprising and beautiful
use of local-search for the well-studied k-median problem to achieve a constant-factor approxima-
tion by Arya et al. [AGK+01], which was later simplified and extended to the k-means problem by
Kanungo et al. [KMN+02]. A well-known example of a heuristic which works well in practice for
clustering a set of points in Rd is the so-called Lloyd’s method or k-means algorithm. The problem
asks for computing k clusters minimizing the sum of square distances of the points to their cluster
centers. A related problem asks for minimizing just the sum of distances to the k centers. Variant
of this were studied in [5] for the case of projective clustering.

As a side result, Chapter 6 also shows that the local search technique can be used to prove the
existence of small-sized ε-nets. Specifically, we show that for the case where we have points in
the plane and ranges consist of unit squares in the plane, a simple local-search method gives the
optimal bound of O(1/ε) for the size of the ε-net. It is quite easy to prove the same result using
other techniques but it is interesting that the local search technique can be used to prove this.
This kind of result is currently known only for half-spaces in R2 and is implied by the proof of
the existence of O(1/ε) size ε-nets by Pach and Woeginger [PW90]. We conjecture that this holds
for ε-nets w.r.t. halfspaces in R3 as well. Of course, given that i) halfspaces in R3 have linear-
sized nets [MSW90, PR08] and ii) the hitting-set algorithm computes a (1 + ε)-approximation to
the smallest-sized hitting set, we know that the local-search algorithm will produce a ε-net of size
O(1/ε). The question is whether one can prove combinatorial bounds directly out of local-search,
without first relying on existence results of small-sized nets.

? ? ?

The independent-set problem. We now illustrate the application of the local-search technique
to the geometric independent-set problem, a basic optimization problem that is hopelessly difficult
to approximate for general graphs. Recall the problem: given a set {O1, . . . , On} of n objects in
the plane, the intersection graph has a vertex for each object, and an edge between two vertices if
the two corresponding objects intersect. Computing a maximum independent set in this graph is
equivalent to picking a maximum subset of disjoint objects.

Computing OPT(S) is known to be NP -complete if S is a set of unit disks or a set of orthogonal seg-
ments in R2 [IA83]. For unit disks in R2, a polynomial time (1 + ε)-approximation scheme was pro-
posed in [HMR+98]. For arbitrary disks, independently Erlebach et al. [EJS01] and Chan [Cha03]
presented a polynomial time (1 + ε)-approximation scheme. For the case of axis-parallel rectan-
gles in the plane, Agarwal et al. [AvKS98] presented a O(log n)-approximation algorithm in time
O(n log n), which was improved to a O(log log n)-approximation algorithm [CC09]. Berman et
al. [BDMR01] show that a logk n-approximation can be computed in O(nkα(S)) time. For the case
when the objects are arbitrary line segments in the plane, Agarwal-Mustafa [4] gave an algorithm
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with approximation ratio O(n1/2+o(1)). This was improved by Fox-Pach [FP11] to O(nε), for any
ε > 0, using small-sized separators in the intersection graphs of line segments.

We consider the case when the objects are axis-parallel rectangles in the plane, and show that
when the independent-set has a large size, then a constant-factor approximation can be computed.
The core of this algorithm illustrates again the use of local-search 16 (on subsets of non-piercing
rectangles): start with any independent set of rectangles, and check if one can improve the solution
by replacing two rectangles from our current independent set with three rectangles. We will show
that if one cannot make any such improvement, then the resulting independent set is a constant-
factor approximation!

Theorem (Chapter 5). Given a set of axis-parallel rectangles in the plane with maximum independent
set of size βn for some β < 1, one can compute an independent set of size Ω(β2n) in polynomial time.

The straightforward extension where k rectangles are replaced by k+1 gives a (1−O(1/
√
k))-factor

approximation [CHP09]. After the appearance of the papers [4, 6, 29, CHP09], several works
followed using this technique to derive PTAS for other geometric optimization problems. Gibson et
al. [GKKV09] improved a previous 4-approximation algorithm to get a PTAS for a terrain guarding
problem. Similar technique was also used to get a PTAS for dominating set in disk graphs [GP10].

? ? ?

Centerpoints. We have seen the useful role of centerpoints in various questions studied so far. In
fact, centerpoints are just one measure of geometric data-depth. As we will see, there are several
natural ways to measure data-depth which have been studied in the literature, related to each
other in sometimes surprising ways. With each such measure there are two questions: i) proving
the existence of a point which suitably captures, with some guaranteed bounds, that measure and
ii) devising efficient algorithms to compute this point.

By now there are several proofs of the centerpoint theorem: using Brouwer’s fixed-point theorem,
using Helly’s theorem, following from Tverberg’s theorem, by induction on the dimension d, using
an elementary extremal argument and several others. Interestingly, each of these above techniques
can be used to generalize this theorem in a different direction; the extremal-argument proof will
be generalized later.

A particularly elegant one is as follows: replace ‘point’ by a ‘ball’ in the above definition; i.e., find a
ball B such that any halfspace containing B contains at least n/(d+ 1) points of P . This is trivial:
any large-enough ball will do. Now it can be shown that B can be shrunk continuously to a point
while maintaining this starting invariant! If B gets ‘stuck’ at some point in this shrinking process,
then there must be d + 1 halfspaces, each containing exactly n/(d + 1) points of P , such that i)
their bounding planes are tangent to B and contain at least one point of P , and ii) the convex-hull
of the d + 1 intersections of these planes with B contains the center of B. Elementary geometric
and counting considerations show that such a configuration is not possible. The essence of this

16In fact it is one of the first combinatorial algorithms that was able to provably show the effectiveness of local-search
on such problems.
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clever technique is: if one wants to prove that a point with a certain property exists, start with a
ball satisfying the analogue of the property, and then show that the ball can be shrunk continu-
ously to a point while satisfying the initial invariant. Tverberg-Vrecica proved this for Tverberg’s
theorem [TV93]. Simplification to the centerpoint theorem and a generalization to centerdisks was
given in [10]. Helly’s theorem has a similar proof. We conjecture that other theorems of similar
type also have such proofs: e.g., the regression-depth theorem [ABET00], and the intersecting-rays
theorem [FHP08].

Recall that the centerpoint theorem is equivalent to the fact that all convex-sets containing greater
than dn/(d + 1) points of P can be hit by one point17; the generalization to hitting with k points
is the weak ε-net problem for which only very partial results are known. Then, a first step towards
the weak ε-net problem (and generalizing the centerpoint theorem) is to resolve the case when k
is a small constant: what is the smallest parameter ε such that for any set P ⊂ R2, it is possible
to find two points q1 and q2 such that any convex set containing ε|P | points must contain either q1

or q2? In general, let εdi be the minimum value of ε such that given any set P in Rd, there exist i
points hitting all convex objects containing greater than ε|P | points of P . The centerpoint theorem
can be restated as εd1 = d/(d+ 1).

Aronov et al. [AAH+09] proved that given a set P of n points in the plane, all convex sets containing
greater than 5n/8 points of P can be hit by two points. They also construct inputs where regardless
of how one picks the two points, there exists a convex set containing at least 5n/9 points that is not
hit. In our notation, 5/9 ≤ ε2

2 ≤ 5/8. They proved further results for larger number of points.

We improve the previous-best upper-bound of 5n/8 to 4n/7 for hitting with two points in the
plane. For the same problem, we then improve the previous-best lower-bound of 5n/9 to 4n/7,
thus completely resolving this problem. Our technique similarly improves the best-known bounds
for hitting with 3, 4 and 5 points (improving the result of Alon-Rosenfeld [Mat02, p. 259]). The
general upper-bound theorem we prove is:

Theorem (Chapter 7). Given a set P of n points in Rd, and integers r, s ≥ 0,

εdr+ds+1 ≤
εdr · (1 + (d− 1)εds)

1 + εdr · (1 + (d− 1)εds)

where we define εd0 = 1.

Note that the centerpoint theorem is a consequence of this more general result; set r = s = 0!
The optimal result for two points in the plane follows by r = 1, s = 0, d = 2. The proof uses
an extremal argument that is a generalization of the argument used to prove Helly’s theorem18 in
R: consider the interval I whose right endpoint is the leftmost of the right endpoints of all given
intervals. This right endpoint must then hit all intervals, as any interval to the left violates the
extremal choice of I while an interval to the right violates the pairwise-intersecting property. It
turns out that this argument actually uses convexity, and so considering points over appropriately-
defined extremal d-tuples works to prove Helly’s theorem in Rd. This is the basis for the proof of

17Clearly a centerpoint q must hit all convex-sets containing greater than dn/(d+1) points, for otherwise the halfspace
containing q and separating q from any such unhit convex-set contains less than n/(d+ 1) points. Similarly, any point q
hitting all such convex-sets must be a centerpoint.

18Any set of pairwise-intersecting intervals in R can be hit by one point.
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the above theorem. This extremal argument has been re-discovered and used in many contexts;
e.g., the proof of colorful Hellys theorem by Lovász [Lov74] or Helly-type theorems for generalized
linear-programming problems [Ame94].

Define the Tukey-depth [Tuk75] of a point q to be the minimum number of points contained in any
half-space containing q. Then the centerpoint theorem can be re-phrased as: there always exists a
point of Tukey-depth at least n/(d+1). The point of highest Tukey-depth w.r.t. P is called the Tukey
median of P , and its depth called the Tukey depth of P . In general, the set of points of Tukey depth
at least βn form a convex region called the β-deep region of P . The β-deep region is non-empty
for any β ≤ 1/(d + 1). It is the intersection of all halfspaces containing more than (1 − β)n points
of P . Each facet of this region is supported by a hyperplane that passes through d points of P .

? ? ?

Simplicial Depth. Observe that any centerpoint must be contained in many simplicies spanned
by (d+ 1)-tuples of points in P . This leads to another related useful depth-measure: given a set P
of n points in Rd, the simplicial depth of a point q is the number of simplices spanned by points of
P that contain q. The simplicial depth of P is the highest such depth of any point q ∈ Rd.

The first question that arises is if there exists, for any P , a point q with high simplicial depth.
A classic result of Bárány [Bár82] gave the first such combinatorial bound, showing in fact that
there exists a point contained in at least 1

d!(d+1)d+1 · nd+1 simplices spanned by P . Let cd be a

constant, depending on d, such that any pointset P has simplicial depth at least cd · nd+1. The
optimal dependency on the dimension, cd, is a long-standing open problem. Bukh, Matoušek and
Nivash [BMN10] showed an elegant construction of a point set P so that no point in Rd is contained
in, up to lower-order terms, more than (n/(d + 1))d+1 simplices defined by P . Furthermore, they
conjecture that this is the right bound.

Conjecture 3 (Simplicial depth conjecture). Given any set P of n points in Rd, there always exists a
point contained in at least (n/(d+ 1))d+1 simplices spanned by P .

For d = 2, the above conjecture was solved in 1984 by Boros-Furedi [BF82] (see Bukh [Buk06] for
an elegant proof). Yet another proof follows from the work of Fox et al. [FGL+11]. For d = 3, the
conjectured bound is c3 = 1/44 = 0.0039.

To get some intuition for the statement (and warming up to an improvement), consider the fol-
lowing lemma (Chapter 8) of independent interest that gives a structural property of points as a
function of their Tukey depth:

Lemma (Tukey Structural Lemma). Given a set P of n points in Rd, where depth(P ) = τn− 1, there
exists a point p with depth τn − 1, and a set H of d + 1 open halfspaces {h1, . . . , hd+1}, such that i)
|hi ∩ P | = τn, ii) p lies on the boundary plane of each hi, and iii) h1 ∪ . . . ∪ hd+1 covers Rd \ {p}.

12



n
3

n
3

n
3

h1h2

h3
q

To see the implications of this, consider the case when
P is a set of n points in R2. And the Tukey depth of
P is n/3 (i.e., the minimum that is guaranteed by the
centerpoint theorem). Then the lemma guarantees three
halfspaces h1, h2, h3, each containing exactly n/3 points
(see figure). Counting considerations imply that the three
regions h1 ∩ h2 ∩ h3, h1 ∩ h2 ∩ h3 and h1 ∩ h2 ∩ h3 each
contain n/3 points. As any transversal contains the point
q, there are (n/3)3 simplices containing q.

Broadly speaking, the structure of this point-set is that
of a triangle, where each vertex of the triangle has n/3
copies (as ‘enforced’ by the three planes). This structure
works in any dimension: if the Tukey depth of a point-set is n/(d + 1) then the points can be
partitioned into d+ 1 sets which behave like the vertices of a simplex. And, crucially, the simplicial
depth conjecture can be seen to be true immediately! If it could be shown that the simplicial-depth
is an increasing function of Tukey-depth, this would then imply a positive solution to the simplicial
depth conjecture in Rd.

As the Tukey-depth of a point increases, the structure implied by the lemma becomes messier:
points start ‘leaking’ from the d+1 regions into other regions, and transversals could stop containing
q. However, it can be shown that this leaking process can be quantitatively controlled as a function
of Tukey-depth, and each leaked point creates new simplices containing q.

Theorem (Chapter 8). Any set P of n points in R3 has simplicial depth at least 0.0023 · n4.

In fact, experimental evidence reveals that the point computed in the above theorem satisfies the
bounds of the conjecture:

Conjecture 4. The point computed in the above theorem is contained in at least (n/44) simplices
spanned by P .

Independently, using algebraic topology machinery, Gromov [Gro10] improved the bound to the
value c3 ≥ 0.0026. This bound for R3 has since been improved even further by Matousek and
Wagner [MW10] to 0.00263, and then by Kral et al. [KMS12] to 0.00031. All these methods use
algebraic topology related machinery. Our proof, on the other hand, is elementary (though not the
best) and we conjecture that it leads to the resolution of the conjecture. Gromov’s result in fact
proves the bound for general d, showing that cd ≥ 2d/((d + 1)!2(d + 1)). His proof has since been
simplified by Karasev [Kar12].

? ? ?

Ray-Shooting Depth. Recently, an elegant new result has been discovered in R2 that easily im-
plies both the centerpoint theorem and the simplicial depth theorem in the plane. Given P , let E
be the set of all

(
n
2

)
edges spanned by points of P . Then a point q ∈ R2 has Ray-Shooting depth at
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least r if any half-infinite ray from q in any direction u ∈ S1 intersects at least r edges in E. The
Ray-Shooting depth (henceforth called RS-depth) of P is the maximum RS-depth of any point in
R2. Fox-Gromov-Lafforgue-Naor-Pach [FGL+11] proved the following statement:

Theorem (Fox et al. [FGL+11]). Given a set P of n points in R2, there exists a point q with RS-depth
at least n2/9.

Note that this statement immediately implies both the centerpoint theorem and the simplicial-
depth theorem in the plane19. The proof in [FGL+11] is topological, and does not give a method
to compute such a point. Efficient algorithms were obtained in Mustafa-Ray-Shabbir [31] by ‘de-
topologising’ their proof to a combinatorial one:

Theorem (Mustafa et al. [31]). Given a set P of n points in R2, a point of RS-depth Ω(n2/9) can be
computed in time O(n2 log2 n).

It turns out that RS-depth immediately implies improved results for another depth measure. The
Oja depth [Oja83] of a point x ∈ Rd w.r.t. P is defined to be the sum of the volumes of all (d+ 1)-
simplices spanned by x and d points of P, normalized with respect to the volume of the convex hull
of P 20. The Oja depth of P, denoted Oja-depth(P ), is the minimum Oja depth over all x ∈ Rd.
Construct P by placing n/(d + 1) points at each of the (d + 1) vertices of a unit-volume simplex
in Rd. It is easy to see that any point will have Oja depth at least (n/(d + 1))d. The conjecture
in [CDI+13] is that the lower bound given above is tight.

Conjecture 5 (Oja-depth conjecture). For all sets P ⊂ Rd of n points, Oja-depth(P ) ≤ ( n
d+1)d.

For general d, the previous best upper bound [CDI+13] was that the Oja depth of any set of n
points is at most

(
n
d

)
/(d+1). For d = 2, this is n2/6. This can immediately be improved by realizing

a connection to RS-depth: let q be the point realizing RS-depth of n2/9 for P . Then the Oja-depth
of q is at most n2/7.2: the number of triangles (spanned by pairs of points in P and the point q)
containing any point p ∈ R2 is at most the number of edges spanned by P intersecting the ray
−→qp, which is at most n2/4 − n2/9 = n2/7.2. Integrating over all p gives the required bound. A
more complete calculation in Rd gives an improvement to the previous-best bound by orders of
magnitude:

Theorem (Chapter 9). Every set P of n points in Rd, d ≥ 3, has Oja depth at most

2nd

2dd!
− 2d

(d+ 1)2(d+ 1)!

(
n

d

)
+O(nd−1).

We also resolve this conjecture in two dimensions:

Theorem (Chapter 9). Given a set P of n points in R2, Oja-depth(P ) ≤ n2/9.
19Let q be a point with RS-depth n2/9. Consider any line l through q. Then l must intersect at least 2n2/9 edges,

and therefore both halfspaces defined by l must contain at least (n− n
√

1− 8/9)/2 = n/3 points. For simplicial depth,
consider, for each point p ∈ P , the ray from q in the direction ~pq. Then for every edge {pi, pj} that interesects this
ray, the triangle defined by {p, pi, pj} must contain q. Summing up these triangles over all points, each triangle can be
counted three times, and so q lies in at least n3/27 distinct triangles.

20So assume w.l.o.g. that vol(conv(P )) = 1.
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The Oja depth conjecture states the existence of a low-depth point, but given P , computing the
lowest-depth point is also an interesting problem. In R2, Rousseeuw and Ruts [RR96] presented a
O(n5 log n) time algorithm for computing the lowest-depth point, which was then improved to the
current-best algorithm with running time O(n log3 n) [ALST03]. For general d, various heuristics
for computing points with low Oja depth were given by Ronkainen, Oja and Orponen [ROO03].
Finally, Krishnan-Mustafa-Venkatesh [16] presented an approximate algorithm utilizing fast ren-
dering systems on current graphics hardware for computing Oja-depth contours in the plane.

? ? ?

A Unifying View. I think that one good way to answer questions related to geometric data-depth
is by the following analogy. Construct a point set of size n by fixing a simplex in Rd (does not have
to be regular) and placing n/(d + 1) points at each of its (d + 1) vertices. Call such a point set a
simplex-like point set. For questions related to data-depth, a simplex-like set seems to represent the
worst case: if some data-depth property is true for this point set, then it is true for any point set.

I mention two facts in the support of this intuition. First consider all depth measures we have
examined thus far for the simplex-like point set (with the underlying simplex S). Take, say, the
centroid c of this simplex. Then the centerpoint theorem follows for this point set because any
halfspace containing c must contain at least one vertex of S, and so contains n/(d + 1) points.
Similarly, taking one point from each of the vertices defines a simplex containing c, and so c is
contained in (n/(d + 1))d+1 simplices. Finally, any ray from c must intersect at least one facet
of S, and so has RS-depth (n/(d + 1))d. The intuition one gets from simplex-like point sets is in
accordance with every information we know about these problems.

Second, as we have already outlined earlier, when the Tukey-depth of P is the lowest possible, i.e.,
n/(d+ 1), P behaves like a simplex-like pointset: the d+ 1 halfspaces H = {h1, . . . , hd+1} specified
by the Tukey Structural Lemma are such that the d + 1 regions Ai = hi

⋂(∩j 6=ihj) each contain
exactly n/(d+1) points, and all the other 2d+1−2 regions are empty. And it is not too hard to prove
that in such a configuration in Rd, the point p has Tukey-depth n/(d + 1), it has simplicial-depth
(n/(d+1))d+1, and has RS-depth (n/(d+1))d. This, together with the first point, leads us to suspect
that the bounds derived from the simplex-like point set might indeed be always realizable for any
point set.

This viewpoint opens up the possibility of the existence of a much broader structure for point sets
in Rd – integrating centerpoints, simplicial depth and RS-depth into a uniform hierarchy of depth-
measures. For d = 1, we have two measures: Tukey-depth and Simplicial-depth, defined by a 1-
dimensional half-flat (i.e., a halfspace in 1D) and a 0-dimensional half-flat respectively. For d = 2,
we now know of three measures: Tukey-depth, RS-depth and Simplicial-depth, defined by 2- and
1- and 0-dimensional half-flats respectively. Now consider the case d = 3. And let c ∈ R3. Then by
considering the 3-dimensional space defined by a halfspace with c on its (2-dimensional) boundary,
we get the notion of Tukey depth. By considering the 1-dimensional space defined by a half-line
with c on its (0-dimensional) boundary, we get the notion of RS-depth. But this begs the question:
what about 2-dimensional space with c on its (1-dimensional) boundary? The natural answer is to
consider the 2-dimensional space defined by a half-plane h with c on its (1-dimensional) boundary.

15



And then count the number of edges spanned by P that intersect h.

Formally, a point q ∈ R3 has Line-depth r if any halfplane through q intersects at least r edges
spanned by P . The Line-depth of a point set P is the highest Line-depth of any point. The simplex-
like pointset has line-depth at least (n/4)2, as any halfplane through c must intersect at least one
edge of S. We conjecture that any set P of n points in R3 has Line-depth at least (n/4)2; however
we can show:

Theorem (Mustafa et al. [32]). Given any set P of n points in R3, there exists a point q such that any
halfplane through c intersects at least n2/24.5 edges spanned by P .

Like RS-depth and Simplicial-depth in R3, it seems hard to prove this exact bound using current
techniques. Intuitively, it is clear that as the dimension of the flat decreases, the degrees of freedom
increase and the problem becomes more complicated. On one end, optimal results for the 2-
dimensional case (Tukey-depth) are known in any dimension. And on the other end, very partial
results are known for the 0-dimensional case. It is our hope that the middle 1-dimensional case
(line-depth) will be more within current reach than the 0-dimensional case. Based on our results on
existence of points with high line-depth in R3, we in fact can conjecture a ‘spectrum’ of structures:

Conjecture 6 (Centerflat Conjectures). Given a set P of n points in Rd, and an integer 0 ≤ k ≤ d,
there exists a point q ∈ Rd such that any (d− k)-half flat through q intersects at least (n/(d+ 1))k+1

k-simplices spanned by P .

The case k = 0 is the centerpoint theorem in any Rd. The case k = d is the simplicial-depth
conjecture in any Rd. The case d = 2, k = 1 is the RS-depth result of [FGL+11]. The case d = 3, k =
1 is on Line-depth.

Asympototically tight (as a function of n) bounds for the centerflat conjecture follow naturally,
though the precise dependence on d remains open (probably difficult, as even a special case of
these conjectures, simplicial depth, is still open, even in R3).

Theorem (Mustafa et al. [32]). Given a set P of n points in Rd, and an integer 0 ≤ k ≤ d− 1, there
exists a point q ∈ Rd such that any (d− k)-half flat through q intersects at least

max

{(
n/(d+ 1)

k + 1

)
,

2d

(d+ 1)(d+ 1)!
(
n
d−k
) · ( n

d+ 1

)}
k-simplices spanned by P .

The proof follows from the use of Tverberg’s Theorem to partition P into t = n/(d+1) sets P1, . . . , Pt
such that there exists a point q with q ∈ conv(Pi) for all i. Consider any (d−k)-dimensional half-flat
F through q, where ∂F is a (d − k − 1)-dimensional flat containing q. Project F onto a (k + 1)-
dimensional subspace H orthogonal to ∂F such that the projection of F is a ray r in H, and ∂F
and q are projected to the point q′. And let P ′1, . . . , P

′
t be the projected sets whose convex-hulls

now contains the point q′. Then note that the k-dimensional simplex spanned by (k + 1) points
Q′ ⊂ P ′ intersects the ray r if and only if the k-dimensional simplex defined by the correponding
set Q in Rd interescts the flat F . Now apply the single-point version 21 of Colorful Carathéodory’s

21Given any point s ∈ Rd and d sets P1, . . . , Pd in Rd such that each conv(Pi) contains the origin, there exists a
d-simplex spanned by s and one point from each Pi which also contains the origin.
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Theorem [Bár82] to every (k + 1)-tuple of sets, say P ′1, . . . , P
′
k+1, together with the point s at

infinity in the direction antipodal to the direction of r to get a ‘colorful’ simplex, defined by s and
one point from each P ′i , and containing q′. Then the ray r must intersect the k-simplex defined
by the (k + 1) points of P ′, and so the corresponding points of P in Rd span a (k + 1)-simplex
intersecting F . In total, we get

(n/(d+1)
k+1

)
k-simplices intersecting F . Another way is to use the

result of Gromov [Gro10], that given any set P of n points in Rd, there exists a point q lying in
2d/((d+ 1)(d+ 1)!) ·

(
n
d+1

)
d-simplices. Now take any (d−k)-half flat through q. It must intersect at

least one k-simplex of each d-simplex containing it, and where each k-simplex is counted at most(
n
d−k
)

times. And we get
2d

(d+ 1)(d+ 1)!
(
n
d−k
) · ( n

d+ 1

)
distinct k-simplices intersecting any (d− k)-half flat through q.

Coming back to the simplex-like point set, one can further observe something stronger: take any
line l through c and move l in any way to ‘infinity’ (i.e., outside the convex-hull of P ). Then it
still has to intersect at least one edge of the tetrahedron; i.e., the property is in fact topological in
nature. This is already true for centerpoints22. We conjecture the same is true for Rd:

Conjecture 7 (Topological centerflat Conjectures). Given a set P of n points in Rd, and an integer
0 ≤ k ≤ d, there exists a point q ∈ Rd such that any (d − k − 1)-flat through q must cross at least
(n/(d+ 1))k+1 k-simplices spanned by P to move to infinity (i.e., so that the flat does not intersect the
convex-hull of P ).23

We end this overview by noting that these conjectures are true in R2:

Theorem (Mustafa et al. [32]). For any set P of n points in R2, the k-centerpoint conjectures are
true.24

22If a point q has Tukey-depth r, then any plane through q has to cross at least r points to reach the point at infinity,
regardless of whether this movement is any arbitrary continuous movement or only affine. See [ABET00].

23The case k = d gives a ‘-1’-flat moving to infinity, which we will treat as a stationary point.
24 It has been communicated to us by a very insightful reader that this was implicit in Gromov’s paper [Gro10].

However the algebraic topology techniques there are highly non-trivial while the short proof in [32] is elementary.
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Part I

Around ε-nets
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2. Geometric Separators

If one is trying to maximize the size of some structure under certain constraints, and if the
constraints seem to force the extremal examples to be spread about in a uniform sort of way,
then choosing an example randomly is likely to give a good answer.

Timothy Gowers

In this chapter we present the following two theorems. The first theorem improves the result
in [AW13, AW14] as stated earlier, and shows the existence of near-optimal separators for weighted
disjoint line segments:

Theorem 2.1. Given a set S of n weighted disjoint line segments in the plane (with total weight W ,
and no segment having weight more than W/3), and a parameter δ > 0, there exists a piecewise linear
simple closed curve C with O(1/δ) vertices such that i) the total weight of segments intersecting C is
at most δW , and ii) the total weight of the segments completely inside or outside C is at most 2W/3.
Furthermore this is near-optimal, in the sense that any C satisfying these two properties must have
Ω(1/δ) vertices.

For the case where the segments are unweighted but not necessarily disjoint, one can show the
existence of a more general separator (slightly generalizing the separator result of Fox-Pach [FP09]
for the case of line segments):

Theorem 2.2. Given a set S of n line segments in the plane with m intersections, and a parameter
r, there exists a piecewise linear simple closed curve C in the plane such that the number of segments
completely inside (or outside C) is at most 2n/3 (call any such curve balanced), and

• the number of vertices of C are O
(√

r + mr2

n2

)
, and

• the number of line-segments in S intersecting C are O
(√

n2

r +m

)
.

Throughout the rest of this chapter, we will assume S to be a set of n weighted line segments in the
plane. Let wi denote the weight of segment si ∈ S, and W be the total weight. We assume S to be
in general position, so no three line segments intersect at the same point.
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A Partitioning Statement

The proof of both these statements follow from a suitable subdivision of the plane, and the ap-
plication of a variant of the planar graph separator theorem. Our proof can also be seen as a
generalization of the separator theorem of Fox-Pach [FP11] where, given a set of curves with m in-
tersections, they show the existence of a separator that intersects O(

√
m) curves: this is obtained by

applying the planar graph separator theorem on the arrangement induced by these curves (where
each intersection is taken as a vertex). We also apply the planar graph separator theorem, but
instead on a coarser subdivision of the plane. This subdivision is similar to a structure for the case
of lines in the plane, called cuttings [Mat92]. We will assume the segments in S are in general
position; in particular no three intersect at the same point.

The key statement from which both the separator theorems follow is:

Lemma 2.3. Given a set S of n line segments in the plane with m intersections, and a parameter r,
there exists a partition of R2 into O(r + mr2

n2 ) triangles such that the interior of any region in this
partition intersects O(n/r) segments.

Proof. We first briefly review the basic partitioning method of using trapezoidal decompositions.
Given a set R ⊆ S of line segments, one can partition the space (say inside a large-enough rectangle
containing all the segments of S) as follows. For each endpoint of a segment inR or an intersection-
point between segments in R, shoot a vertical ray upwards (and downwards) till it hits another
segment (or the bounding rectangle). The union of all these segments together with R partitions
the bounding rectangle into a set of trapezoids (and triangles) called its trapezoidal decomposition1

Denote by Ξ(R) this set of trapezoids in the trapezoidal decomposition of R. The size, |Ξ(R)|, of
the trapezoidal decomposition of R is the number of trapezoids in Ξ(R); it is, within a constant-
factor, equal to the total number of end- and intersection- points in R. A trapezoid present in the
trapezoidal decomposition of any subset R of S is called a canonical trapezoid. For a canonical
trapezoid ∆, let |∆| denote the set of segments of S intersected by ∆. A crucial fact is that each
trapezoid ∆ is determined by a constant (3 or 4) number of segments in S. A trapezoid ∆ is present
in the trapezoidal decomposition of R if and only if its determining segments are present in R, and
R does not contain any of the segments of S that intersect ∆. For the rest of the proof, we only work
with canonical trapezoids determined by 4 segments. The case for canonical trapezoids determined
by 3 segments is similar.

The proof is by an application of the ‘sampling refinement’ technique for constructing ε-nets. First
note that a slightly weaker bound (within logarithmic factors) follows immediately from ε-nets.
Given S, consider the set-system (S,F) induced by intersection with segments in the plane, i.e.,

F ∈ F iff there exists a line segment l s.t. F = {s ∈ S | s ∩ l 6= ∅}

Pick a random set R by uniformly adding each segment of S with probability p = (Cr log r)/n,
where C is a large constant. Then R is a (1/r)-net for (S,F) with probability at least 9/10. The
expected size of R is np, and the expected number of intersections of segments in R is mp2. By
Markov’s inequality, with probability at least 9/10, the size of R is at most 10np, and the number

1We refer the reader to [Mat02] for a nice exposition on trapezoidal decompositions.
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of intersections in R is at most 10mp2. Therefore with probability at least 8/10, R is a (1/r)-net
and the size of the trapezoidal decomposition of R is O(r log r + (mr2 log2 r)/n2). Note that any
open line-segment l in this trapezoidal decomposition must intersect at most n/r segments of S, as
otherwise the set of segments intersecting l would not be hit by a segment from R, contradicting
the fact that R is a (1/r)-net. By dividing each trapezoid of Ξ(R) into two triangles, we get a
partition into O(r log r + (mr2 log2 r)/n2) triangles where the interior of each triangle intersects at
most O(n/r) segments of S.

The way to improve the above construction is by the so-called “sampling refinement” technique
in the study of ε-nets. Set p = Cr/n (for a small-enough constant C to be set later), and pick
each segment in S with probability p to get a random sample R. Construct the trapezoidal de-
composition Ξ(R) of R. If all trapezoids ∆ ∈ Ξ(R) intersect at most n/r segments in S, we are
done. Otherwise we will further partition each violating ∆, based on two ideas. First, the expected
number of trapezoids in Ξ(R) intersecting more than n/r segments are few. In particular, we will
show (Lemma 2.5) that the expected number of trapezoids intersecting at least tn/r segments in
S is exponentially decreasing as a function of t. Second, consider a ∆ intersecting a set, say S∆, of
n∆ = tn/r segments of S. Use the weaker bound on S∆ with parameter t to get a partition inside ∆
of O(t log t+ (m∆t

2 log2 t)/n2
∆) = O(t2 log2 t) triangles. By definition, each such triangle intersects

at most n∆/t = n/r segments of S∆ (and hence of S). Thus refining each ∆ gives the required
partition on S with parameter r. It remains to bound the overall expected size of this partition.

Lemma 2.4. Given a set S of n line segments in the plane withm intersections, the number of canonical
trapezoids defined by S that intersect at most k segments of S is O(nk3 +mk2).

Proof. Let Ξ≤k be the set of canonical trapezoids defined by S that intersect at most k segments
of S. The proof is standard via the Clarkson-Shor technique. Construct a sample T by adding
each segment of S with probability p0; the expected total number of picked segments is np0 and
the expected number of intersections between the segments of T is mp2

0. The trick is to count the
expected size of Ξ(T ) in two ways. On one hand, it is at most O(np0 + mp2

0) (i.e., the expected
number of vertices present in Ξ(T )). On the other hand, as the probability of a canonical trapezoid
∆ being in Ξ(T ) is p4

0(1− p0)|∆∩S|, it is at least∑
∆∈Ξ≤k

p4
0(1− p)|∆∩S| ≥

∑
∆∈Ξ≤k

p4
0(1− p0)k

where the sum is over all canonical trapezoids ∆ which intersect at most k segments of S. There-
fore, ∑

∆

p4
0(1− p0)k = |Ξ≤k| · p4

0(1− p0)k ≤ E[|Ξ(T )|] = np0 +mp2
0

|Ξ≤k| ≤
np0 +mp2

0

p4
0(1− p0)k

= O(nk3 +mk2)

for p0 = 1/2k.

Lemma 2.5. Expected number of trapezoids in Ξ(R) intersecting at least tn/r lines of S is

O

(
(t3r +

mr2t2

n2
)e−t

)
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Proof. By definition:

E[|∆ ∈ Ξ(R) s.t. |∆ ∩ S| = tn/r|] = |∆ s.t. |∆ ∩ S| = tn/r| · p4(1− p)tn/r

Using Lemma 2.4,

E[|∆ ∈ Ξ(R) s.t. |∆ ∩ S| = tn/r|] ≤ O
(
n(tn/r)3 +m(tn/r)2

)
p4(1− p)tn/r

= O

(
(t3r +

mr2t2

n2
)e−t

)
The bound follows by summing up over all trapezoids intersecting at least tn/r segments in S.

Now we can complete the proof of the theorem. Let n∆ = t∆n/r be the number of line segments in
S intersected by each trapezoid ∆ ∈ Ξ(R) (and m∆ the number of their intersections). Using the
weaker bound, refine trapezoid ∆ by adding a (1/t∆)-net R∆ for all the t∆n/r line segments of S
intersected by ∆. The resulting expected total size of the trapezoidal partition is:

= |R|+
∑
∆

Pr[∆ ∈ Ξ(R)] · Size of trapezoidal decomposition of (1/t∆)-net within ∆

= |R|+
∑
∆

Pr[∆ ∈ Ξ(R)] ·O
(
t∆ log t∆ +

m∆t
2
∆ log2 t∆
n2

∆

)
(using the weaker bound)

≤ |R|+
∑
∆

Pr[∆ ∈ Ξ(R)] ·O
(
t2∆ log2 t∆

)
(as m∆ ≤ n2

∆)

= |R|+
∑
j

∑
∆ s.t.

2j≤t∆≤2j+1

Pr[∆ ∈ Ξ(R)] ·O
(
t2∆ log2 t∆

)
≤ |R|+

∑
j

E[ Number of trapezoids ∆ in Ξ(R) with 2j ≤ t∆ ] ·O
(

22(j+1) log2 2j+1
)

≤ |R|+
∑
j

O

(
(23jr +

mr222j

n2
)e−2j

)
·O
(

22(j+1) log2 2j+1
)

(Lemma 2.5)

= |R|+ r
∑
j

O
(

23je−2j
)
·O
(

22(j+1) log2 2j+1
)

+
mr2

n2

∑
j

O
(

22je−2j
)
·O
(

22(j+1) log2 2j+1
)

= np+mp2 +O(r) +O(
mr2

n2
) = O(r +

mr2

n2
) (the summands form a geometric series)

as required. This finishes the proof of Lemma 2.3.

Proof of Theorem 2.1

Given a set S of n weighted disjoint line segments of total weight W , in the standard way, by
scaling, one can assume the weights are integral. Then make wi copies of the segment si ∈ S to
get a set S′ of W segments, each of weight 1. Apply Lemma 2.3 to S′; if the segments in S′ are
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disjoint, the proof of Lemma 2.3 shows the existence of a subset R′ of S′ of total size O(r) such
that the trapezoidal decomposition of R′ gives a partition T where the interior of any region in T
intersects O(W/r) segments of S′. Remove copies of the same segment in R′ to get a subset R of
S of total size O(r). Now replace each s ∈ R with a small triangle which contains s in its interior
and modify T accordingly to use edges of this new region instead of s. As each segment s ∈ S
of weight Ω(W/r) must be present in R (otherwise it would intersect the interior of some region
of T contradicting the partitioning property), this ensures that the new triangulation T ′ has the
properties that i) every s ∈ S with weight Ω(W/r) lies in the interior of a single face of T ′, ii) the
number of vertices of T ′ is O(r), and iii) each edge in T ′ intersects segments in S of total weight
O(W/r) (for small-enough replacing triangles around each s ∈ R).

T ′ can be seen as an embedding of an underlying planar graph G. Give weights to each face of
T ′: if a segment s ∈ S intersects t faces of T ′, add weight wi/t to the weight of each of these
t faces. A variant of the planar graph separator theorem [Mil86] now implies the existence of a
simple cycle C in T ′ of O(

√
r) vertices such that faces completely inside (and outside) have total

weight at most 2W/3, and hence so do the segment of S inside (and outside) C. The weight of the
segments of S intersected by C is at most O(

√
r) ·O(W/r) = O(W/

√
r). Setting r = 1/δ2 concludes

the upper-bound.

The optimality of this statement can be seen by the following construction where S consists of a
set of disjoint line segments of weight 1. Take a regular polygon P with c/δ vertices, and place
δn/c copies of P concentrically, each shrunk slightly more than the previous one so that there are
no intersections between any two copies. Note that one can choose the scaling factor small-enough
such that any closed curve separating two different copies of P must also have at least c/δ vertices.
Finally replace each polygon with c/δ line segments corresponding to its sides (slightly perturbed
so that they are disjoint). Take any balanced closed curve C′ in the plane. If it contains at least
one copy of P completely inside, and one copy completely outside, then by construction it has at
least c/δ vertices. Otherwise, say there is no copy of P completely inside C′. As C′ is balanced, it
contains at least n/3 segments inside or intersecting its boundary; these segments belong to at least
(n/3)/(c/δ) = δn/(3c) different copies of P, and each of these copies must intersect C′ in at least
one segment.

Proof of Theorem 2.2

Given the set S of n line segments with m intersections, apply Lemma 2.3 to get a partition T of
R2 into O(r +mr2/n2) regions. T can be seen as an embedding of an underlying planar graph G.
Give weights to each face of T : if a segment s ∈ S intersects t faces of T , add weight 1/t to the
weight of each of these t faces. Now from [Mil86] we get a simple cycle C in T of O(

√
r +mr2/n2)

vertices such that faces completely inside (and outside) have total weight at most 2n/3, and hence
so do the segments of S inside (and outside) C. The number of segments of S intersected by C is at
most O(

√
r +mr2/n2) ·O(n/r) = O(

√
m+ n2/r).
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3. The General Weak ε-net problem

In dealing with mathematical problems, specialization plays, as I believe, a still more impor-
tant part than generalization. Perhaps in most cases where we seek in vain the answer to a
question, the cause of the failure lies in the fact that problems simpler and easier than the one
in hand have been either not at all or incompletely solved. All depends, then, on finding out
these easier problems, and on solving them by means of devices as perfect as possible and of
concepts capable of generalization. This rule is one of the most important levers for overcom-
ing mathematical difficulties and it seems to me that it is used almost always, though perhaps
unconsciously.

David Hilbert

In this chapter we consider the general weak ε-net problem, and show that a random sample of
size O(1/ε log 1/ε) can be used to construct a weak ε-net for P .

We first present an elementary proof for the two-dimensional case in Section 3.1. While this gives
the intuition for the problem, the proof uses planarity strongly, and so the extension to higher
dimensions uses a different approach based on the Hadwiger-Debrunner theorem. The general
approach can be improved for R3 with additional ideas, which are presented in Section 3.2. The
general construction for arbitrary dimensions is then presented in Section 3.3.

3.1 Two Dimensions

Consider the range space Rk = (P,R), where P is a set of n points in the plane, and R =
{P ∩ ∩ki=1hi, hi is any halfspace} are the subsets induced by the intersection of any k half-spaces
in the plane. This range space has constant VC-dimension (depending on k), and from Welzl and
Haussler [HW87], it follows that a random sample of size O(1/ε log 1/ε) is an ε-net for Rk with
some constant probability. Let Q be such a ε-net. We have the following structural claim which
establishes a relation between strong ε-nets and weak ε-nets.

Lemma 3.1. Let P be a set of n points in the plane, and let Q be an ε-net for the range space Rk.
Then, for any convex object C in the plane containing at least εn points, either a) C∩Q 6= ∅, or b) there
exist k/2 points, say qi ∈ Q, i = 1 . . . k/2, such that C intersects all edges qiqj for all 1 ≤ i < j−1 ≤ k.

Proof. Assume C ∩Q = ∅. We then give a deterministic procedure that always finds k such points.
W.l.o.g. assume that the convex object is polygonal, and denote its vertices in cyclic order by
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p1, . . . , pm for some m. Note that the next vertex after pm is p1 again.

Define −−−→pipi+1 as the (infinite) half-line starting at pi, containing pi+1 and extending towards pi+2

(define −−−→pi+1pi likewise). See Figure 3.1 (a). Let T (i, j) be the region bounded by −−−→pi−1pi, the
segments pipi+1, . . . , pj−1pj , and −−−−→pj+1pj . Initially set l = 1, il = 2, and j = 3, and repeat the
following:

1. If T (il, j) contains a point of Q, denote this point (pick an arbitrary one if there are many) to
be ql. Set il+1 = j. Increment l to l + 1, set j = j + 1, and continue as before to find the next
point of Q.

2. If T (il, j) does not contain any point of Q, extend the region by incrementing j to j + 1, and
check again if T (i, j) contains a point of Q.

This process ends when j = 1. Assume we have l points q1, . . . , ql, together with the indices
i1, . . . , il. Note that, by construction, each point qt is contained in the region T (it, it+1). Consider
any it and the point qt that the region T (it, it+1) contains. See Figure 3.1(b).

Claim 3.2. The region T (it−1, it − 1) has no points of Q.

Proof. By the greedy method of construction, it is the smallest index j for which the region
T (it−1, j) is non-empty. Hence all the regions T (it−1, j), it−1 < j < it are empty.

Define ht to be the halfspace incident to the edge pit−1pit and containing C. Claim 3.2 immediately
implies the following.

Claim 3.3. The halfspace ht, defined by the line incident to the edge pit−1pit , separates qt (and all the
other points of Q) lying in T (it−1, it) from C.

If the number of points found by our method is at most k (i.e., l ≤ k), then take the intersection
of the half-spaces ht, for t = 1 . . . , l. By Claim 3.3, each halfspace ht separates all the points in
T (it−1, it) from C. Thus all the points of Q are now separated by this intersection (see Figure 3.1
(a) for the separating halfspaces), and since each halfspace contains C, the intersection contains at
least εn points of P . This is a contradiction to the fact that Q was a ε-net to the range space Rk.
Finally, note that the sequence qt of points obtained, t = 1 . . . k, has the property that the intersec-
tion point of any (properly intersecting) pair of segments joining non-consecutive points, lies inside
C. This follows from the fact that for every point qt, all the non-adjacent points and qt lie in the
same two half-spaces incident to edges pit−1pit and pit+1pit+1+1, both of which are incident to C.
Therefore picking every alternate point yields the desired set.

Set k = 8, and compute the ε-net for the range space R8. By Lemma 3.1, there exists a sequence of
four points, say a, b, c, d, such that C contains the intersection of the two segments ac and bd. This
immediately yields a way to construct weak ε-nets using (strong) ε-nets: compute a ε-net for R8,
and add the intersection points of all segments between pairs of points. By the above argument,
each convex object contains at least one of these points. The number of points in the weak ε-net
constructed above are O(1/ε4 log4 1/ε). We now show that by a more careful argument, this can be
reduced to O(1/ε3 log3 1/ε).
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Figure 3.1: Constructing weak ε-nets in two dimensions. (a) The dotted red lines indicate the at
most k halfspaces that are used to separate Q from C.

Theorem 3.4. Given a set P of n points in the plane, construct an ε-net Q for the range space R12.
Construct the set Q′ as follows: for every ordered triple of points in Q, say a, b, c, add the intersection
of the bisector of ∠abc to the line segment ac. Then Q′ has size O(1/ε3 log3 1/ε) and is a weak ε-net
for P .

Proof. Fix a convex object C containing at least εn points of P . From Lemma 3.1, there exists a
sequence of six points in convex position, say a, b, c, d, e, f , of Q where the intersection point of
every pair of (properly intersecting) segments spanning these points lies in C.
The sum of the interior angles of the polygon defined by the six points is 4 ≺. Form two triangles
by taking alternate points, say 4ace and 4bdf . The sum of the interior angles of the two triangles
is 2 ≺. By pigeon-hole principle, there exists a point, say a, where the angle ∠cae is at least one-half
of the interior angle of the polygon at vertex a, ∠fab. Therefore, the bisector of the interior angle
∠fab lies inside the triangle ace, and intersects the segment bf . This intersection lies between the
intersection of bf with the two segments ac and ae. See Figure 3.2(a). By assumption, these two
intersections are contained inside C. Therefore, by convexity, the intersection of the bisector of
∠fab with the segment fb lies inside C. Since Q′ contains all such intersections, C is hit by Q′.

3.2 Three Dimensions

Lemma 3.5. Given a positive integer t, a convex set C and a set of points Q in Rd such that C ∩Q = ∅,
then i) either the set Q can be separated from C by f(t) hyperplanes or ii) there exists Q′ ⊆ Q such
that |Q′| = t and the convex hull of every (d+ 1) points of Q′ intersects C.
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Proof. For any point q ∈ Q, define the set

S(q) = {−→a ∈ Rd|−→a · −→q ≥ −→a · −→x , ∀x ∈ C}

First note that S(q) is a convex set: take any two vectors −→a ,−→b ∈ S(q). Then,

−→a · −→q ≥ −→a · −→x , ∀x ∈ C
−→
b · −→q ≥ −→b · −→x , ∀x ∈ C

⇒ −−−−−−−−−−−→(λa+ (1− λ)b) · −→q ≥ −−−−−−−−−−−→(λa+ (1− λ)b) · −→x , ∀x ∈ C ∀λ ∈ [0, 1],

implying that S(q) is a convex object in Rd.

By definition, a ∈ S(−→q ) implies that there is a hyperplane whose normal is parallel to −→a and which
separates q from the C. If there are d + 1 points q1,· · · ,qd+1 whose convex hull does not intersect
C, then these d + 1 points can be separated from C by a single hyperplane. This implies that the
corresponding convex objects S(q1),· · · ,S(qd+1) have a common intersection.

Let S = ∪q∈QS(q) be the set of convex objects corresponding to the points in Q. If every subset
Q′ ⊆ Q of size t has (d + 1) points whose convex hull does not intersect C, then (d + 1) of every
t convex objects in S intersect. Therefore applying the (p, q)-Hadwiger Debrunner theorem with
p = t and q = (d + 1) on the convex sets in S, we deduce that Q can be separated from C using
f(t) hyperplanes, where f(t) = HDd(t, d+1) and HDd(p, q) is the Hadwiger-Debrunner hitting set
number for p and q in d dimensions.

Remark 1: One can also see the statement in the dual setting. For a point q ∈ Q, the dual of the
space of hyperplanes separating q from C is a convex object. Then a hyperplane separating t points
of Q from C becomes a point in the dual space which is in the common intersection of the t dual
convex objects for these points.

Remark 2: We will prove a stronger statement in the next chapter which will imply that the convex-
hull of every bd/2c+ 1 tuple of Q′ will intersect C.

Lemma 3.6. Given a convex object C and a set Q′ of g(t) points in R3, such that the convex hull of
every 4 points in Q′ intersects C, we can find Q

′′ ⊆ Q′ of size at least t ≥ 5 such that the convex hull of
every 3 points in Q′′ intersects C.

Proof. Consider a hypergraph with the base set Q′ and every 3-tuple of points in Q′ as a hyperedge.
Color a hyperedge ‘red’ if the convex hull of the corresponding 3 points intersects C and ‘blue’
otherwise. Then, by Ramsey’s theorem for hypergraphs [Die00], there exists a constant g(t) such
that if |Q′| ≥ g(t), there exists a monochromatic clique, say Q′′, of size t. A monochromatic ‘blue’
clique implies that there exists a set of t points such that C does not intersect the convex hull of any
3-tuple of these points. Take any 5 points of Q′′, and partition their convex hull into two tetrahedra
sharing a face. Since both these tetrahedra must intersect C, their common face must also intersect
C, a contradiction. Therefore, the clique returned must be monochromatic ‘red’, implying the
existence of a subset Q′′ of size t such that the convex hull of all three points in Q′′ intersects C.
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Figure 3.2: (a) The intersection of a bisector with a segment will lie inside C, (b) If C intersects
edges ac, ad and ae, then it must intersect af . Similarly for bf .

To prepare for the next lemma, we need the following geometric claim.

Claim 3.7. Let T = {a, b, c, d, e} be a set of five points in convex position in R3. Then, if a convex
object C intersects the convex hull of every 3-tuple of T , it intersects at least one edge (convex hull of a
2-tuple) spanned by the points in T .

Proof. By Radon’s theorem, in every set of five points in convex position, there exists a line segment
which intersects the convex hull of the remaining three points (the Radon partition). Assume the
line segment ab intersects the convex hull of c,d, and e. Then, we claim that C must intersect ab.
Otherwise, there exists a hyperplane h separating ab from C. Since ab intersects the convex hull
of c,d and e, h separates at least one point in {c, d, e} from C and convex hull of a,b and this third
point does not intersect C, a contradiction.

Lemma 3.8. Given a convex objects C and a set Q′′ of h(t) points such that the convex hull of every 3
points in Q′′ intersects C, there exists a subset Q

′′′ ⊆ Q′′ of size t such that the convex hull of every two
points in Q

′′′
intersects C.

Proof. Again consider a hypergraph with the base set Q′′ and every 2-tuples of these points as a
hyperedge. Color a hyperedge ‘red’ if the convex hull of the corresponding 2-tuple intersects C and
‘blue’ otherwise. Then again by Ramsey’s theorem, there exists a positive integer h(t) such that
if |Q′′| ≥ h(t), there exists a monochromatic clique of size t. We can assume (again by Ramsey’s
theorem) that if t ≥ k where k is a constant, then the points of the monochromatic clique have 5
points in convex position. From Claim 3.7, it follows that the convex hull of two of the points of
these 5 points intersects C, thereby implying that the color of the monochromatic clique cannot be
‘blue’ and hence the convex hull of every pair of points in the clique intersects C.

Lemma 3.9. Given a set of points R in convex position, |R| ≥ 5, and a convex object C that intersects
every edge spanned by the points in R, the Radon point of R is contained in C.
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Proof. Take the Radon partition of any five points in R. See Figure 3.2 (b). Say the edge ab
intersects the facet spanned by {c, d, e}. It is easy to see that if C intersects the edges ac, ad and ae,
it must intersect the segment af . Similarly, if C intersects the edges bc, bd and be, it intersects the
segment bf . By convexity, it must contain the intersection of the edge ab with 4cde.

We come to our main theorem in this section:

Theorem 3.10. Let P be a set of n points in R3. Then there exists a constant c (function of the
dimension, 3 in this case) such that the followings holds: take any ε-net, say Q, with respect to
the range space (P,Rc). Construct a weak ε-net, say Q′, as follows: for every ordered 5-tuple, say
a, b, c, d, e, add the intersection (if any) of 4abc with de. Then Q′ is a weak ε-net for P of size
O(1/ε5 log5 1/ε).

Proof. Fix any convex set C containing at least εn points of P . For a large enough constant c
(depending on f(·), g(·), h(·)), by Lemma 3.5, Lemma 3.6 and Lemma 3.8, there exists a set of at
least five points such that C intersects every edge spanned by these points. Lemma 3.9 then implies
that Q′ is a weak ε-net.

Remark: In [MW04], in order to construct a set that contains a centerpoint of all subsets of a set
of r points in d dimensions, rd2 points are used. The techniques described above can be used to
reduce this to r3 and r5 (instead of r4 and r9) for dimensions two and three respectively. This
improves the logarithmic factors in their result.

3.3 Higher Dimensions

Although the optimal weak ε-net can consist of any subset of Rd, arguing similar to [MW04], we
show that there is a discrete finite set of points in Rd from which an optimal weak ε-net can be
chosen. Given P , this subset is constructed as follows: consider the set of all hyperplanes spanned
by the points of P (each such hyperplane is defined by d points of P ). Every d of these hyperplanes
intersect in a point in Rd, and consider all such points formed by intersection of every d hyperplanes.
This is the required point set, which we denote by Ξ(P ).

Lemma 3.11. Let P be a set of n points in Rd. Then the set Ξ(P ), of size O(nd
2
), contains an optimal

weak ε-net for P , for any ε > 0.

Proof. Let S be any weak ε-net for P . We show how to locally move each point of S to a point
of Ξ(P ). Wlog assume that each convex set is the convex hull of the points it contains. Take a
point r ∈ S, and consider the (non-empty) intersection of all the convex sets which contain r.
The lexicographically minimum point of this intersection, t, is the intersection of d of these convex
objects [Mat02]. Note that t lies on a facet of each of these convex objects, and each facet is a
hyperplane passing through d points of P . Replacing r with t still results in a weak net, since by
construction, t is also contained in all the convex objects containing r. The proof follows.

We now show that Ξ(Q), where Q is a random sample of P of size O(1/ε log 1/ε), is a weak ε-net
with constant probability.
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Theorem 3.12. Let P be a set of n points in Rd, and let Q be a random sample of size O(1/ε log 1/ε)
from P . With constant probability, Q′ = Q ∪ Ξ(Q) is a weak ε-net for P .

Proof. Clearly Q′ has size O(ε−d
2

logd
2

1/ε) since each point in Q′ is defined by at most d2 points of
Q (intersection of d hyperplanes, each defined by d points).

First, with constant probability, Q is an ε-net with respect to the range space (P, Rc), where c =
f((d + 1)2). Let C be any convex object containing at least εn points of P and assume C ∩ Q = ∅.
Then C cannot be separated from Q by c hyperplanes, otherwise the intersection of the halfspaces
containing C defined by these c hyperplanes has εn points and no point of Q, a contradiction to the
fact that Q is an ε-net for (P, Rc). By Lemma 3.5, there exist a set S of at least (d+ 1)2 points of Q
such that the convex hull of every (d+ 1) of them intersects C.
By Lemma 1 of [MW04], Q′ contains a centerpoint, say q, of the set S. We claim that q is contained
in C. Otherwise, by the separation property, there exists a halfspace h− containing q such that
h− ∩ C = ∅. By the centerpoint property, h− contains at least (d + 1)2/(d + 1) = (d + 1) points
of S. The convex hull of these (d + 1) points lies in h− and therefore does not intersect C, a
contradiction.

Given a set Q, a deep-point is a point q ∈ Rd such that any hyperplane containing q contains at least
d points of Q. Let c(Q) be the set of points in Rd such that a deep-point of every subset of Q is
present in c(Q). The proof above implies the following.

Corollary 3.3.1. If c(Q) has size O(mt) for any set Q, one can construct a weak ε-nets for any pointset
of size Õ(1/εt).
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4. A Generalization of Carathéodory’s
Theorem

Counting pairs is the oldest trick in combinatorics . . . every time we count pairs, we learn
something from it.

Gil Kalai

In this chapter we present lower-dimensional extensions of three basic theorems: Radon’s theorem,
Carathéodory’s theorem, and Colorful Carathéodory’s theorem.

The proof of low-dimensional extension of Radon’s Theorem follows trivially from this well-known
generalization of the Erdös-Szekeres theorem:

Theorem 4.1 (Generalized Erdös-Szekeres Theorem). Given positive integers d, k, n such that dd/2e+
1 ≤ k ≤ d, there exists an integer n0 = ESd(n, k) such that any set of n0 points in Rd contains a subset
P of size n with the following property: the simplex spanned by every (d + 1) − k points of P lies on
the boundary of conv(P ). This statement is optimal, in the sense that this is not true for k < dd/2e+ 1
for arbitrarily large pointsets.

The case k = d simply corresponds to the Erdös-Szekeres theorem (that any large-enough set
contains a lot of points in convex position). Of course the ‘large-enough’ size for the above theorem
increases with decreasing k; but if one pays that price, one can get more properties. For example,
for d = 4, k = 3, any large-enough set of points in R4 contains a large subset Q where every edge
spanned by points of Q lies on conv(Q).

We now observe that this immediately carries over to an extension of Radon’s theorem: if one is
willing to increase the number of points, then a better upper-bound can be achieved on the sizes of
the Radon partition:

Theorem 4.2. Given an integer bd/2c + 1 ≤ k ≤ d, any set P of ESd(d + 2, k) points in Rd contains
two sets P1, P2 such that conv(P1) ∩ conv(P2) 6= ∅ and additionally, |P1|, |P2| ≤ k. Furthermore, this
is optimal in the sense that the statement does not hold for k ≤ bd/2c.

Proof. Apply Theorem 4.1 to P to get a set of d+ 2 points P ′. Apply Radon’s theorem to P ′ to get a
partition P1, P2 ⊂ P ′ whose convex hulls intersect. Now note that if |P1| > k, then |P2| ≤ (d+1)−k.
But then conv(P2) lies on the convex hull of P ′, and so cannot intersect conv(P1), a contradiction.
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Optimality is obvious as |P | ≥ d+ 2 for such a partition to exist (for P in general position), and so
one set has to have at least bd/2c+ 1 points.

4.1 Proof of Extended Carathéodory’s Theorem

The goal of this section is to prove the following:

Theorem 4.3. Given a set P of n points in Rd and a convex object C, either P can be separated from
C by O(d4 log d) hyperplanes (i.e., each p ∈ P is separated from C by one of the hyperplanes), or C
intersects the convex hull of some bd/2c+ 1-sized subset of P .

We first show that this problem is related to another problem involving low-dimensional simplices.

Let f(d) be the smallest positive number such that for any set P of points in Rd, there exists a
bd/2c + 1-sized subset P ′ ⊆ P such that any halfspace containing P ′ contains at least |P |/f(d)
points of P .

Let g(d) be the smallest positive number such that given any set P of points in Rd and a convex
set C, if P cannot be separated from C using at most g(d) hyperplanes, then C must intersect the
convex hull of some bd/2c+ 1 size subset of P .

We now show that g(d) and f(d) are related within a factor of d.

Theorem 4.4. g(d) ≤ d · f(d) log f(d). In other words, given a set P of points in Rd and a convex set
C such that P cannot be separated from C by df(d) log f(d) hyperplanes, then C must intersect the
convex hull of some bd/2c+ 1 points of P .

Proof. Assume that no convex hull of any bd/2c+ 1 points of P intersects C. Then we show that P
can be separated from C using df(d) log f(d) hyperplanes.

Claim 4.5. Let P be a weighted set of points in Rd, with weight of the point pi ∈ P to be wi. Assume
all wi’s are rationals, and let W =

∑
wi. If the convex hull of no bd/2c + 1 points of P intersects C,

then there exists a hyperplane separating points of total weight at least W
f(d) from C.

Proof. As each wi is a rational, assume wi = ŵi/D, where ŵi and D are integers. Let Q be the
pointset gotten by replacing each point pi with ŵi copies of pi. Crucially, if the convex hull of no
bd/2c + 1 subset of P intersects C, then the convex hull of no bd/2c + 1 subset of Q can intersect
C. Take the bd/2c+ 1-sized subset Q′ of Q such that any halfspace containing Q′ contains at least
|Q|/f(d) points of Q. As the convex hull of Q′ does not intersect C, there is a halfspace h which
does not intersect C and contains Q′. Let P ′ be the set of points of P contained in h. Then h
contains exactly

∑
pi∈P ′ ŵi points of Q, which by definition of Q′ must be at least |Q|/f(d). Then

the sum of weights of points of P contained in h is bounded by∑
pi∈P ′

wi =

∑
pi∈P ′ ŵi

D
≥ |Q|/f(d)

D
=

(
∑
ŵi)/f(d)

D

=

∑
wiD

Df(d)
=

W

f(d)
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Discretize the set of all combinatorially distinct hyperplanes separating some subset of P from C to
get a set H = {h1, . . . , hm} of O(|P |d) hyperplanes. Now consider assigning weights w(hi) to each
halfspace such that the total weight

∑
w(hi) is minimized, and the sum of weights of halfspaces

containing any point of P is at least 1. Let W (H) denote the minimum value.

Similarly, assign weights w(pi) to each point of P such that the total weight
∑
w(pi) is maximized,

and the sum of weights of points contained in any halfspace h ∈ H is at most 1. Let W (P ) denote
the maximum value. Then the above two problems are dual to each other (as linear programs),
and so by the Strong Duality Theorem, W (H) = W (P ).

Now note that W (P ) ≤ f(d): by Claim 4.5, there exists a halfspace in H of weight at least
W (P )/f(d), which by the definition of W (P ) is at most 1.

Therefore there exists an assignment of weights to halfspaces in H such that W (H) ≤ f(d), and
each point is contained in halfspaces of total weight at least 1. Now using the ε-net theorem for
halfspaces [KPW92], with ε = 1/W (H), there exists a set of

d/ε log 1/ε = dW (H) logW (H) = df(d) log f(d)

halfspaces of H containing all points of P . As all halfspaces in H were separating halfspaces, we
are done.

Remark 1: The above technique is similar to the one used in the proof of Hadwiger-Debrunner
(p, q) theorem [AK92], with some crucial differences. In their use, they get an exponential bound,
which we are able to avoid due to three reasons: ε-nets for halfspaces have a near-linear bound,
avoiding double-counting arguments that they use, and finally, the weighted version (Claim 4.5)
gives exactly the same quantitative bound as the unweighted version.

Proof of Theorem 4.3: the paper [SSW08] proves that f(d) ≤ O(d3). And the proof is complete by
using Theorem 4.4.

Similarly we now show that a bound on g(d) gives an upper-bound on f(d). We will need the
following fact:

Fact 1 [PA95]: If P is a set of n points and h is a hyperplane defining a facet of the β-deep region
C of P , then the halfspace defined by h that does not intersect the interior of C contains less than
βn points of P .

Theorem 4.6. f(d) ≤ d · g(d). In other words, given a set P of points in Rd, there always exists a
subset P ′ of size bd/2c+ 1 such that any halfspace containing P ′ contains at least |P |/dg(d) points of
P .

Proof. Consider the β-deep region C of P ; by the Centerpoint theorem, for β ≤ 1/(d + 1), such a
region always exists. Now we claim that for β = 1/dg(d), there exists a bd/2c + 1-sized subset P ′

whose convex hull intersects C. Then any halfspace containing P ′ contains at least one point of C,
and so contains at least |P |/dg(d) points by the definition of the centerpoint region.
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Otherwise, for contradiction assume that the convex hull of no bd/2c+ 1-sized subset intersects C.
Then by definition of g(d), P can be separated from C using g(d) hyperplanes, say the set H.

Now any halfspace not intersecting C contains less than d · β|P | points: each halfspace supporting
a facet of C contains less than β|P | points, and any other halfspace not intersecting C is contained
in the union of at most d halfspaces supported by facets of C.

Therefore each halfspace of H contains less than d · β|P | points. And so the union of halfspaces in
H contains less than g(d) · d · β|P | points of P , a contradiction for β = 1/dg(d).

4.2 Proof of Extended colorful Carathéodory Theorem

The goal of this section is to prove:

Theorem 4.7. For any d, there exists a constant Nd such that given k = bd/2c + 1 sets of points
P1, . . . , Pk in Rd and a convex object C, either one of the sets Pi can be separated from C by Nd

hyperplanes, or there is a rainbow set of size k whose convex hull intersects C.

The approach of the previous section can be made to work for proving the extension of the colorful
Carathéodory’s theorem through the use of Ramsey-theoretic techniques. Alternatively, we now
present a different proof which highlights explicitly the connection to the Hadwiger-Debrunner
theorem of Alon-Kleitman [AK92].

We use a slightly different language for convenience: instead of saying that “a point set P can be
separated from a convex body C using k hyperplanes”, we say that “there exists a polyhedron Q
with k facets such that C ⊆ Q and Q ∩ P = ∅”. In such a case we also say that Q separates P from
C. We re-state Theorem 4.7 in this language.

Theorem 4.8. For any positive d and l > bd/2c, there exists a constant Nd,l s.t. the following is
true. Given any compact convex body C and l finite sets of points P1, . . . Pl in Rd, at least one of the
following holds:

1. There exists a polyhedron Q with at most Nd,l facets such that for some i, Q separates Pi from
C.

2. There exists a rainbow subset P ′ ⊆ ∪di=1Pi whose convex hull intersects the interior of C.

Call a convex body C fine if it is compact and its boundary ∂C is smooth and has positive curvature
everywhere. Let C be a fine convex body and let P be a finite set of points in Rd. We say that a
point p can see a point y if the relative interior of the segment py does not intersect C. For any
p ∈ P , let Up be the set of points in ∂C that p can see.

Let hy be the tangent plane to C at the point y ∈ ∂C and let h+
y be the closed halfspace defined by

it that contains C. Observe that any point p ∈ P sees a point y ∈ ∂C iff p /∈ int(h+
y ), where int(S)

denotes the interior of the set S.

Lemma 4.9. For any positive numbers d and t ≥ d, there exists a constant Ht,d such that given any
fine convex body C and a finite set of points P such that P ∩C = ∅, at least one of the following hold:
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• There exists a set X ⊂ ∂C of size at most Ht,d such that each point in P is seen by some x ∈ X.

• There is a subset P ′ ⊆ P of size at least t such that no y ∈ ∂C sees more than d− 1 points in P ′.

Proof. Fix any point ν ∈ ∂C as a reference point. Let hν be the tangent plane to C at ν. Let h be
the unique tangent hyperplane parallel to hν such that C is contained in the strip between hν and
h. Let ≺ be the continuous bijective map that maps any y ∈ ∂C \ {ν} to l(ν, y) ∩ h, where l(ν, y)
denotes the line through ν and y.

For any p ∈ P that does not see ν (i.e., ν /∈ Up), let Vp =≺ (Up) = {≺ (y) : y ∈ Up} and let
V = {Vp : p ∈ P, p does not see ν}. Clearly, for each p ∈ P that does not see ν, Vp lies on the plane
h, is convex and has dimension d − 1. Note that if two points p, q ∈ P see a point y ∈ ∂C then
y ∈ Up ∩ Uq. So ≺ (y) ∈ Vp ∩ Vq.
Suppose that the second part of the theorem does not hold; i.e., in every subset of P of size t,
there are at least d points which can be seen by a single point y ∈ ∂C. Equivalently, any subset
of V of size t has at least d sets which have a common intersection. By the Hadwiger-Debrunner
theorem [AK92], there exists a constant HDd−1(t, d) of points in h that hit all the sets in V. Let X ′

be the set of these points. Let X =≺−1 (X ′) ∪ {ν}. Each point in P is seen by at least one point in
X (if Vp is hit by the point y′ ∈ h, then p ∈ P is seen by ≺−1 (y′) ∈ ∂C). The theorem is therefore
proved by setting Ht,d = HDd−1(t, d) + 1.

Now we can finish the proof of the main theorem of this section:

Proof. Let P = ∪li=1Pi. We set Nd,l = Ht,d for some t to be fixed later.

If P ∩ C 6= ∅ then the second part of the theorem is trivially satisfied. We therefore assume that
P ∩ C = ∅. Without loss of generality we also assume that C is fine since we can always find
a fine convex body C ′ that contains C and does not intersect P and furthermore for each point
y′ ∈ C ′, there is a point y ∈ C such that the Euclidean distance between y and y′ is smaller than
any prescribed δ > 0. Proving the theorem for such C ′s also proves it for arbitrary closed convex
bodies.

For each i, apply Lemma 4.9 to C and Pi with the parameter t. This gives us either a set Xi of at
most Ht,d points in ∂C such that each point in Pi is seen by at least one of these or we get a set
Qi ⊆ Pi of t points so that no d of them is seen by the same point in ∂C. If the first possibility
happens for some j, then

⋂
x∈Xj h

+
x gives us the polyhedron Q with at most Ht,d facets and where

Q contains C while Pj lies outside Q. This satisfies the first part of the Theorem and we’re done.

We therefore assume the second possibility for each i; namely, each Pi has a subset Qi of t points
such that no d points of Qi are seen by the same point of ∂C. Equivalently, the convex hull of any
d points of Qi intersects C.

Let Q = ∪li=1Qi. Consider any rainbow set R ⊆ Q with one point from each Qi. There are tl such
sets. If the convex hull of R intersects C, then the second part of the theorem is satisfied, and we’re
done. Assume for contradiction that this is not the case. Then for each rainbow set R, there exists
a hyperplane h separating R from C. The closed halfspace h− bounded by h and not intersecting
C contains at most d− 1 points from any particular Qi due to the fact that any d-sized subset of Qi
intersects C. Therefore |h− ∩Q| ≤ (d− 1)l, and hence is a ≤ k-set of Q with k = l(d− 1).
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If no rainbow set intersects C, then we get such a ≤ k-set for each rainbow set R of size l. As there
are tl such rainbow sets, we get tl ≤ k-sets. However each such ≤ k-set can be overcounted at
most

(
k
l

)
=
(l(d−1)

l

)
times. This implies that there are at least L(t) = tl/

(l(d−1)
l

)
distinct ≤ k-sets.

On the other hand, it is known that the number of ≤ k-sets of a set of n points in Rd is at most
O(nbd/2c(k + 1)dd/2e) [Mat02, p. 265]. This gives an upper bound of U(t) = O((tl)bd/2c((d − 1)l +
1)dd/2e) on the number of ≤ k-sets. Since l > bd/2c, for some large enough t depending only on
l and d, L(t) > U(t). Thus we get a contradiction implying that one of the rainbow sets must
intersect C.
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Part II

Algorithms
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5. Independent sets in Intersection
Graphs of Rectangles

I want to express a radical alternative that I learned from Sir Michael Atiyah. His view
was that the most significant aspects of a new idea are often not contained in the deepest or
most general theorem which they lead to. Instead, they are often embodied in the simplest
examples, the simplest definition and their first consequences.

David Mumford

Let S = {s1, . . . , sn} be a set of n rectangles in R2, and let α(S) denote the size of the largest
independent set in the intersection graph of S. Similarly, let ω(S) denote the size of the largest
clique in the intersection graph of S.

In this chapter we look at the independent-set problem in the intersection graph of axis-parallel
rectangles in the plane, and prove the following main theorem.

Theorem 5.1. Given S with α(S) = βn, one can compute an independent set of size α(S)
4d0·(1/β) in

polynomial time, where d0 is a constant.

Without loss of generality, we can assume that no rectangle completely contains any other rect-
angle. We first consider two special cases of rectangle intersection graphs — the piercing and
non-piercing intersection subgraphs, derived by defining the following partial order among the
rectangles.

Given two rectangles s1 and s2, s1 ≺ s2 if and only if s1 intersects both vertical edges of s2, and
s2 intersects both horizontal edges of s1 (See Figure 5.1(a)). Clearly, if s1 ≺ s2, then s1 and
s2 intersect, and neither contains any vertex of the other. Note that ≺ is a transitive relation:
s1 ≺ s2 ≺ s3 implies s1 ≺ s3. If s1 ≺ s2, we say that s1 and s2 pierce, and that s2 is pierced by s1.

Piercing and Non-Piercing Rectangle Intersection Graphs

Given S, the relation ≺ partitions the edges in the intersection graph GS into two sets E1 and E2:
given an edge {a, b} ∈ E(GS), {a, b} ∈ E1 if a ≺ b or b ≺ a, and {a, b} ∈ E2 otherwise.
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(a) (b) (c)

s1

s2

s3

Figure 5.1: (a) s1 ≺ s2 ≺ s3, (b) The set S′ (solid) and the set I ′ (dashed), (c) Mapping rectangles
in S′ to vertices, and rectangles in I ′ to edges.

Piercing Intersection Graphs. Define the piercing intersection graph of S as the directed graph
Gp = (V,E), i.e., each vertex in V (Gp) corresponds to a rectangle in S, and there is a directed edge
(a, b) between two vertices a and b if b is pierced by a, i.e., (a, b) ∈ E(Gp) if and only if a ≺ b.

Lemma 5.2. Given a set S of n rectangles in R2, let Gp be the piercing graph of S. Then ω(Gp) ·
α(Gp) ≥ n, and a maximum independent set in Gp can be computed in polynomial time.

Proof. It follows from the transitivity of ≺ that Gp is a transitive graph. It is a well-known fact that
all transitive graphs are perfect graphs [Gol04], i.e., for every induced subgraph of Gp, the size of
the maximum clique equals the chromatic number. Therefore the vertices of Gp can be partitioned
into ω(Gp) subsets, each of which is an independent set in Gp. Since the largest subset has at least
n/ω(Gp) vertices, we conclude that ω(Gp) · α(Gp) ≥ n.

By a classical result of Grötschel et al. [GLS81], a largest independent set of a perfect graph can be
computed in polynomial time.

Non-Piercing Intersection Graphs. We now consider the case of pairwise non-piercing rectangles.
Let S be a set of n rectangles such that no two rectangles pierce (although they could intersect); the
intersection graph of S is called the non-piercing intersection graph and denoted as Gnp. First, note
that computing the optimal independent set of S remains NP-hard since the construction in [RN95]
proving the NP-hardness for intersection graphs of rectangles uses only non-piercing rectangles.

We call a subset S′ = {si1 , . . . , sim} ⊆ S r-maximal if it satisfies the following four conditions:

(A1) S′ is an independent set,

(A2) Every s ∈ S \ S′ intersects some s′ ∈ S′,

(A3) For each s′ ∈ S′, there is at most one rectangle s ∈ OPT(S) such that s intersects s′ and does
not intersect any other rectangle in S′, and
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(A4) For every pair of disjoint rectangles s′, t′ ∈ S′, there are at most two mutually-disjoint rectan-
gles s, t ∈ S \ S′ such that s, t intersect both s′ and t′, and no other rectangle in S′.

Lemma 5.3. Let S′ = {si1 , . . . , sim} ⊆ S be an r-maximal set. Then |S′| ≥ α(S)/c0, where c0 ≤ 11.

Proof. Let I = OPT(S) be the set of rectangles in a maximum independent set. We will charge each
rectangle in I to a rectangle in S′ such that each rectangle in S′ is charged at most a constant c0

times. The lemma then follows.

Let s be a rectangle in I. By maximality condition (A2), s intersects at least one rectangle in S′,
and since the rectangles in S are pairwise non-piercing, s does not pierce any rectangle in S′. We
charge s to a rectangle in S′ as follows. First, if s ∈ S′, we charge s to itself. Clearly, each rectangle
in S′ ∩ I receives only one unit of charge. Otherwise, we charge s as follows:

C1. s only intersects one rectangle s′ ∈ S′. Charge s to s′. By condition (A3), each rectangle in S′

receives at most one unit of charge.

C2. s intersects s′ in a corner (i.e., s contains a vertex of s′). Charge s to s′. Since I and S′ are
independent sets, each rectangle in S′ receives at most four units of charge.

Let I ′ ⊆ I be the set of rectangles of I that have not yet been charged. Thus far each rectangle
in S′ has received at most 5 charges, so therefore |I \ I ′| ≤ 5|S′|. We now bound the number of
rectangles in I ′. I ′ has the following property: each rectangle in I ′ intersects exactly two rectangles
in S′ (see Figure 5.1(b)); C1 and C2 above deal with all other intersection possibilities. We map
each rectangle in S′ and I ′ to a vertex and an edge, respectively, by constructing a bipartite multi-
graph GI′ = (V,E) where each vertex in V corresponds to a rectangle in S′, and there is an edge
between vj and vk if there is a rectangle s ∈ I ′ that intersects both sij and sik . Clearly each
rectangle in I ′ maps to an edge in GI′ .

We now show that GI′ is a planar multi-graph as follows. Replace each rectangle s′ ∈ S′ with
its center c(s′), and each rectangle s ∈ I ′ with a polygonal curve (consisting of three piecewise-
linear segments) as illustrated in Figure 5.1(c). It is clear, given the independence property of
the rectangles in I ′ and S′, that the above embedding is non-intersecting. Hence GI′ is a planar
multi-graph.

For a planar graph, the number of edges is at most thrice the number of vertices. Since GI′ is a
planar multi-graph with at most two edges between any pair of vertices by condition (A4), we have
|I ′| = |E| ≤ 6|V | = 6|S′|. Hence, combining the bounds,

|I| = |I ′|+ |I \ I ′| ≤ 6|S′|+ 5|S′| = 11|S′|.

Lemma 5.4. Given a set S of n rectangles in R2 such that no two rectangles pierce, let Gnp denote the
corresponding (non-piercing) intersection graph. Then ω(Gnp) ·α(Gnp) ≥ n

16 , and a c0-approximation
to the maximum independent set can be computed in polynomial time,

Proof. First, by Turán’s Theorem [PA95], there exists an independent set of size at least n2/4|E|.
Second, for each edge e = {si, sj}, due to the properties of non-piercing graphs, either si contains
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a vertex of sj or vice versa. Define ci (a lower-bound on the number of times rectangle si’s vertex
is contained in another rectangle) as follows. If si contains a vertex of sj , charge the edge e to
vertex sj by incrementing cj , otherwise increment ci. Clearly,

∑n
i=1 ci = |E|, and hence there exists

a rectangle sk whose vertices are contained in more than |E|/n rectangles, and therefore at least
one vertex contained in more than |E|/4n rectangles. These rectangles share a common point, and
thus form a clique of size greater than |E|/4n. Hence,

ω(Gnp) · α(Gnp) ≥
n2

4|E| ·
|E|
4n

=
n

16
.

We describe an iterative algorithm to compute a r-maximal set, which, by Lemma 5.3, is a constant-
factor approximation of the maximum independent set of GS . In the beginning of the i-th iteration
the algorithm maintains a set Si of i pairwise-disjoint rectangles. In the i-th iteration, the algorithm
checks whether conditions (A2)–(A4) are satisfied. If the answer is yes, we return Si, as it is a r-
maximal set. Otherwise,

1. Condition (A2) violated. Then there exists a set s ∈ S \ S′ that does not intersect any s′ ∈ S′.
Set Si+1 = Si ∪ {s}.

2. Condition (A3) violated. Then there exist two disjoint rectangles s, t ∈ S \ S′ that intersect
some s′ ∈ S′ but no other rectangle in S′. Set Si+1 = Si \ {s′} ∪ {s, t}.

3. Condition (A4) violated. Then there exist three pairwise-disjoint rectangles s, t, u ∈ S \ S′
that all intersect s′, t′ ∈ S′, but no other rectangle in S′. Set Si+1 = Si \ {s′, t′} ∪ {s, t, u}.

It is clear that Si is a set of pairwise-disjoint segments. The process can continue for at most n
iterations, and the final set Sj is obviously a r-maximal set. Since each of the conditions (A2)–(A4)
can be checked in polynomial time, the total running time is polynomial.

General Rectangle Intersection Graphs

Combining Lemma 5.2 and Lemma 5.4, we attain the following.

Lemma 5.5. Given a set S of n rectangles in R2, an independent set of size at least α(S)
d0·ω(S) , for some

constant d0 ≤ 16c0, can be computed in polynomial time.

Proof. By Lemma 5.2, compute the maximum independent set, say A ⊆ S, in the piercing graph of
S. Note the following:

(i) |A| ≥ α(S) as an independent set in S is an independent set in piercing graph of S, and

(ii) ω(A) ≤ ω(S), since a clique in A is a clique in S.

By Lemma 5.4, α(A) · ω(A) ≥ |A|/16. Hence, using (i) and (ii) above, it follows that α(A) ≥
|A|/16ω(A) ≥ α(S)/16ω(S). Since the intersection graph of A is non-piercing, Lemma 5.4 gives an
algorithm which returns an independent set of size at least α(A)/c0 ≥ α(S)/16c0ω(S).
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Remark: Independently of our work, Lewin-Eytan et al. [LENO02] also proved Lemma 5.5 using
considerably more complicated LP-rounding techniques.

From now on, let α(S) = βn, for some β ≤ 1.

Theorem 5.6. Given S with α(S) = βn, one can compute an independent set of size α(S)
4d0·(1/β) in

polynomial time.

Proof. The algorithm repeatedly extracts large cliques (one can compute the maximum clique in
rectangle intersection graphs in polynomial time [IA83]) until a good independent set is found, as
follows. Set S0 = S, and let Si be the set of rectangles in the i-th iteration. For now assume that
the value of β is known. At the i-th iteration, if there exists a clique C of size at least 2/β, remove
C from Si, i.e., set Si+1 = Si \ C, and reiterate. If no such clique exists, compute the maximum
independent set, say A, in the piercing graph of Si, and return the maximum independent set in A.
Assume the algorithm stops after j iterations, i.e. ω(Sj) ≤ 2/β. Note that j ≤ n/(2/β) = α(S)/2.
Since at most one rectangle from the independent set can be in a clique, each iteration removes
at most one rectangle from the optimal independent set of S, hence α(Sj) ≥ α(S) − j. From
Lemma 5.5, one can thus compute an independent set of size at least

α(Sj)

d0ω(Sj)
≥ α(S)− j

d0(2/β)
≥ α(S)− α(S)/2

d0(2/β)
=

α(S)

(4d0/β)
,

yielding the desired result. Note that we do not know the value of β, but can run the above
algorithm for all the n possible values, and return the maximum.
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6. A PTAS for the Geometric Hitting-Set
Problem for Disks

Different mathematicians study papers in different ways, but when I read a mathematical
paper in a field in which I’m conversant, I concentrate on the thoughts that are between the
lines. I might look over several paragraphs or strings of equations and think to myself, “Oh
yeah, they’re putting in enough rigamarole to carry such-and-such an idea.” When the idea
is clear, the formal setup is usually unnecessary and redundant. I often feel that I could write
it out myself more easily than figuring out what the authors actually wrote. It’s like a new
toaster that comes with a 16-page manual. If you already understand toasters and if the new
toaster looks like previous toasters you’ve encountered, you might just plug it in and see if it
works, rather than first reading all the details in the manual.

William Thurston

In this chapter we will consider the following hitting-set problem: given a set P of n points, and set
systems where the ranges in D are induced by various geometric objects, compute the minimum-
sized hitting-set for D. Specifically, we show that:

• Given a set P of n points, and a set H of m half-spaces in R3, one can compute a (1 + ε)-
approximation to the smallest subset of P that hits all the half-spaces in H in O(mnO(ε−2))
time.

• Given a set P of n points in R2, and a set of r-admissible regions D, one can compute a (1+ε)-
approximation to the smallest subset of P that hits all the regions in D in O(mnO(ε−2)) time.
This includes pseudo-disks (they are 2-admissible), same-height rectangles, circular disks,
translates of convex objects etc. See Definition 6.1.1 for the definition of an r-admissible set
of regions.

Our algorithms are based on the local-search paradigm, the basic idea of which is the following:
start with any feasible solution, and repeatedly improve the current solution by iterating over local
improvement steps. While local-search has been used quite effectively as a practical heuristic, there
are very few cases where one can get provable guarantees on the resulting solution. These are even
rarer for algorithms for geometric problems.

Our algorithm for both the problems is the following simple local search algorithm: start with
any hitting set S ⊆ P (e.g., take all the points of P ), and iterate local-improvement steps of the
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following kind: If any k points of S can be replaced by k − 1 points of P such that the resulting
set is still a hitting set, then perform the swap to get a smaller hitting set. Halt if no such local
improvement is possible. We will call this a k-level local search algorithm. Then our main result is
the following:

Theorem 6.1. Let P be a set of n points in R3 (resp. R2), and let H (resp. D) be the geometric objects
as above. There is a universal constant c such that for any ε > 0, a (c/ε)2-level local search algorithm
returns a hitting set of size at most (1 + ε) · OPT, where OPT is the size of an optimal (smallest) hitting
set.

An important corollary of the above result for halfspaces in R3 is the following:

Corollary 6.0.1. Given a set P of points and a set D of disks in the plane, there exists a PTAS for
approximating the smallest subset of the disks which cover all points in P .

Proof. We map each point (p, q) in the plane to the halfspace z − 2px− 2qy + p2 + q2 ≤ 0 and each
disk (x−a)2 +(y−b)2 ≤ r2 to the point (a, b, a2 +b2−r2). It can be checked that this map preserves
incidence relations between points and disks. Now, the PTAS for hitting sets for halfspaces in R3

gives a PTAS for our problem.

Note that, for any fixed k, the naive implementation of the k-level local search algorithm takes
polynomial time: start the algorithm with the entire set P as (the most likely sub-optimal) hitting
set P ′. The size of P ′ decreases by at least one at each local-improvement step. Hence, there can
be at most n steps of local improvement, where there are at most

(
n
k

)
·
(
n
k−1

)
≤ n2k−1 different local

improvements to verify. Checking whether a certain local improvement is possible takes O(nm)
time. Hence the overall running time of the algorithm is O(mn2k+1).

Combinatorial bounds on ε-nets via Local Search. As a side result, we show that the local search
technique can also be used to prove the existence of small-sized ε-nets. Specifically, we show that
for the case where we have points in the plane and ranges consist unit squares in the plane, a simple
local-search method gives the optimal bound of O(1/ε) for the size of the ε-net. It is quite easy to
prove the same result using other techniques but it is interesting that the local search technique
can be used to prove this. This kind of result is currently known only for half-spaces in R2 and is
implied by the proof of the existence of O(1/ε) size ε-nets by Pach and Woeginger [PW90]. It is not
at all clear that the same holds for half-spaces in R3. We conjecture that this holds for more general
range spaces defined by a set of points and an r-admissible set of regions in the plane – we leave
this as an open problem.

6.1 A (1 + ε)-approximation scheme for hitting geometric sets

Let R = (P,D) be a range space where P is the ground set and D ⊆ 2P is the set of ranges. A
minimum hitting set for R is a subset Q ⊆ P of the smallest size such that Q ∩ D 6= ∅, for all
D ∈ D. In this section we will show that given any parameter ε > 0, a O(ε−2)-level local search
returns a hitting set whose size is at most (1+ ε) times the size of the minimum hitting set for range
spaces that satisfy the following locality condition.
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Locality Condition. A range space R = (P,D) satisfies the locality condition if for any two disjoint
subsets R,B ⊆ P , it is possible to construct a planar bipartite graph G = (R,B,E) with all edges
going between R and B such that for any D ∈ D with D ∩ R 6= ∅ and D ∩ B 6= ∅, there exist two
vertices u ∈ D ∩R and v ∈ D ∩B such that (u, v) ∈ E.

For example, if P is a set of points in the plane and D is defined by intersecting P with a set
of circular disks, then R = (P,D) satisfies the locality condition. To see this consider, for any
given R and B, the Delaunay triangulation G of R ∪ B. Removing the non red-blue edges from
the triangulation gives the required bipartite planar graph since for each disk D in the plane, the
vertices in (R∪B)∩D induce a connected subgraph of G and hence there must be an edge between
a vertex in D ∩R and a vertex in D ∩B whenever both the intersections are non-empty.

The fact that the delaunay graph G of a set of points P has the property that the subgraph of
G induced by the subset of P lying in an arbitrary disk is connected, can be easily proved by
contradiction. If there are disks for which this is not the case then consider a disk D of smallest
radius which contains two vertices u and v belonging to different connected components of the
subgraph induced by D ∩ P . It is not hard to see that both u and v must lie on the boundary of D
for otherwise we can shrinkD to find a diskD′ ⊂ D which still contains u and v. Now, ifD does not
have any point of P in its interior then (u, v) is a delaunay edge which contradicts the assumption
that u and v belong to different components. On the other hand, if there is a point w inside D then
either u and w belong to different components or v and w belong to different components. In either
case, we can shrink D to get D′ ⊂ D which still has two vertices belonging to different connected
components of D′ ∩ P , thus contradicting the minimality of D.

Let us now return to the hitting set problem. For any vertex v in a graph G, denote by NG(v) the
set of neighbors of v. Similarly, for any subset of the vertices W of G, let NG(W ) denote the set of
all neighbors of the vertices in W , i.e., NG(W ) =

⋃
v∈W NG(v). Our basic theorem is the following:

Theorem 6.2. Let R = (P,D) be a range space satisfying the locality condition. Let R ⊆ P be an
optimal hitting set for D, and B ⊆ P be the hitting set returned by a k-level local search. Furthermore,
assume R∩B = ∅. Then there exists a planar bipartite graph G = (R,B,E) such that for every subset
B′ ⊆ B of size at most k, |NG(B′)| ≥ |B′|.

Proof. Let R = (P,D) be a range space satisfying the locality condition where P is set of size n and
D is a set of m subsets of P . From now on, we will call R and B the red points and the blue points
respectively. Since no local improvement is possible in B, we can conclude that no k blue points
can be replaced by k − 1 or fewer non-blue points. In particular, no k blue points can be replaced
by k − 1 or fewer red points.

Let G be the bipartite planar graph between R and B, given by the locality condition for R. Since
both R and B are hitting sets for R, we know that each range in D has both red and blue points.

Claim 6.3. For any B′ ⊆ B, (B \B′) ∪NG(B′) is a hitting set for R.

Proof. If there is range D ∈ D which is only hit by the blue points in B′, then one of those blue
points has a red neighbor that hits D and therefore NG(B′) hits D. Otherwise, D is hit by some
point in B \B′.
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This finishes the proof, since the above claim implies that if B′ ⊆ B is a set of at-most k blue points,
then |NG(B′)| ≥ |B′| since otherwise a local improvement would be possible in B.

Note that we can always assume, without loss of generality, that B ∩ R = ∅. If not, let I = B ∩ R,
P ′ = P \ I, B′ = B \ I, R′ = R \ I and let D′ be the set of ranges that are not hit by the points
in I. B′ and R′ are disjoint. Also, R′ is a hitting set of minimum size for the hitting set problem
with points P ′ and the ranges in D′. If we can show that |B′| is approximately equal to |R′|, we can
conclude that |B| is approximately equal to |R|.
Now, the following lemma (also proved independently in Har-Peled and Chan [CHP09]) implies
that given any parameter ε, a k-level local search with k = c2ε−2 gives a (1 + ε)-approximation to
the minimum hitting set problem for R.

Lemma 6.4. Let G = (R,B,E) be a bipartite planar graph on red and blue vertex sets R and B,
|R| ≥ 2, such that for every subset B′ ⊆ B of size at most k, where k is a large enough number,
|NG(B′)| ≥ |B′|. Then |B| ≤ (1 + c/

√
k) |R|, where c is a constant.

The above lemma follows directly from Lemma 1 of Frederickson [Fre87], which is a refinement of
the Lipton-Tarjan separator theorem [LT77]. We state it in a slightly different way below.

Theorem 6.5 (Planar graph partition with small boundary size [Fre87]). Given a planar graph H
with n vertices and a parameter t, the vertices of H can be divided into groups of size at most t so that,
for each edge there is a group containing both its end points and the total number of vertices of a group
shared with other groups, summed over all groups, is at most γn/

√
t, where γ is a fixed constant.

Note that some vertices belong to more than one group – these vertices are called boundary vertices.
Furthermore, each non-boundary vertex has edges only to members of its own group (which could
include some boundary vertices).

Proof of Lemma 6.4. Let r = |R| and b = |B|. Consider the groups of G formed according to
Theorem 6.5 with the parameter t = k. Each group has at most k vertices. Consider the ith

group and let r∂i and b∂i be the number of red and blue boundary vertices respectively in the group.
Similarly, let binti and rinti be the number of red and blue interior (non-boundary) vertices in this
group. Theorem 6.5 guarantees that

∑
i r
∂
i + b∂i ≤ γ(r + b)/

√
k. Since there are at most k interior

blue vertices in the group, by the expansion condition of the theorem, their neighborhood must be
at least as large as their own number, i.e., binti ≤ rinti + r∂i . Adding b∂i to both sides and summing
over all i we have

b ≤
∑
i

(binti + b∂i ) ≤
∑
i

rinti +
∑
i

(r∂i + b∂i )

≤ r + γ(r + b)/
√
k
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Let us assume that k ≥ 4γ2 and set c = 4γ. Then,

b ≤ r1 + γ/
√
k

1− γ/
√
k

= r(1 + γ/
√
k)(1 + (γ/

√
k) + (γ/

√
k)2 + · · · )

≤ r(1 + γ/
√
k)(1 + 2γ/

√
k) (since γ/

√
k ≤ 1/2 )

= r(1 + 3γ/
√
k + 2γ2/k)

≤ r(1 + 4γ/
√
k) (since 2γ2/k ≤ γ/

√
k )

= r(1 + c/
√
k).

PTAS for an r-admissible set of regions. It turns out that the locality condition, by a more compli-
cated construction of the planar graph G [PR08], also holds for an r-admissible set of regions, for
any r, in the plane. This yields a PTAS for the minimum hitting set problem with an r-admissible
set of regions in the plane. The definition of an r-admissible set of regions is as follows:

Definition 6.1.1. A set of regions in R2, each of which is bounded by a closed Jordan curve, is called
r-admissible (for r even), if for any two s1, s2 of the regions, the Jordan curves bounding them cross
in l ≤ r points, (for some even l), and both s1 \ s2 and s2 \ s1 are connected regions.

As mentioned earlier, this includes pseudo-disks (they are 2-admissible), same-height rectangles,
circular disks, translates of convex objects etc.

PTAS for half-spaces in R3. Given a set of half-spaces and a set of points in R3, we first pick one
of the points o and add it to our hitting set. We then ignore o and all half-spaces containing it.
Let R = (P,D) be the range space defined by the remaining set of points and the remaining set of
half-spaces. A PTAS for R gives a PTAS for the original problem. We will show that R satisfies the
locality condition. Let R and B be disjoint red and blue subsets of P .

We construct the required graph G on the vertices R ∪ B in two stages and prove its planarity by
giving its embedding on the boundary ∂C of the convex hull C of R ∪ B. In the first stage, we add
all red-blue edges (1-faces) of C to G. In the second stage we map each red or blue point p lying in
the interior C to a triangular face ∆(p) of C that intersects the ray op emanating from o and passing
through p.1

Let Q be the set of points mapped to a triangle ∆. We will construct a planar bipartite graph on Q
and the corners of ∆ and embed it so that the edges lie inside ∆. If ∆ has two red corners and one
blue corner, we add an edge between each red point in Q to the blue corner of ∆ and each blue
point of Q to the two red corners of ∆. It it quite easy to see that this can be done so that the graph
remains planar. The case when ∆ has two blue corners and one red corner is handled similarly.
Consider now the case when all corners of ∆ are red and let r1, r2 and r3 be the corners. In this
case we will connect at most one blue point of Q to all three corners of ∆ and we will connect the
rest of the blue points to two of the corners of ∆. Again, it is clear that this can be done regardless
of the selected corners while keeping the graph planar.

1Here we are assuming that each face of C is a triangle, since one can always triangulate the faces.
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For each blue point b ∈ Q, we try to find a corner c of ∆ such that there is no half-space h ∈ R3

that contains only b and c out of (B ∩Q)∪{r1, r2, r3, o}. If we can find such a corner c, then we put
an edge between b and the two corners of ∆ other than c. There can be at most one blue point in
Q for which we cannot find such a corner and we will connect that blue point to all three corners
of ∆. For contradiction, assume that there are two points b1 and b2 in Q such that for each pair
of red and blue points in F = {r1, r2, r3, b1, b2} there is a half-space in R3 containing exactly those
two points of F . This means that each ribj is an edge in the convex hull of F and therefore F is in
convex position. The Radon partition [Mat02] of F is then a (3, 2)-partition. Since the blue points
lie on the same side of the plane containing ∆, the partition with two points has one red point and
one blue point and there cannot be a half-space containing exactly these two among the points of
F , contradicting our assumption. The case when ∆ has three blue corners is handled similarly. The
construction of G is complete.

We now show that for any half-space h ∈ R3 that does not contain o and contains both red and blue
points, there is an edge in G between a red point and blue point both of which lie in h. If h contains
both red and blue points which lie on ∂C then there is a red-blue edge among two of those due
to the edges added in the first stage. Otherwise assume, without loss of generality, that only the
red points in h lie on ∂C. Consider the half-space h′ parallel to and contained in h which contains
the smallest number of points and still contains both red and blue points. h′ contains exactly one
blue point b. Since h, and hence h′, does not contain o, h′ must contain one of the corners of the
triangle ∆ that b is mapped to. If b is connected to all three corners of ∆ in G, we are trivially done.
Also, if h contains two of the corners of ∆, then we are done since b is connected to at least one of
those corners. If h′ contains exactly one corner c of ∆, then b must be adjacent to c by the way we
constructed the graph G. Hence, in all cases, b is connected to one of the red points in h′.

6.2 Combinatorial Bounds on ε-nets via Local Search

Consider the range space R = (P,D) in which P is a set of points in the plane and D is defined by
intersecting P with a set of unit squares in the plane. Construct an ε-net for R, say Y , using the
3-level local search: starting with Y = P , keep improving Y as long as there exists a subset of size
at most three of Y that can be swapped to get a smaller set. We now argue that |Y | = O(1/ε).

For the argument we will consider an equivalent problem. We will replace each of the squares by
a point at its center and each of the points with a unit square centered at it. The task now is to
pick the smallest subset of the squares which cover all points which are covered by more than an
ε fraction of the squares. Let the number of squares be n and the number of points be m. We will
refer to the set of squares corresponding to points in P by S and the set of squares corresponding
to the points in Y by M .

First some definitions. Call the squares inM the “ε-net squares” and the squares in S\M as “normal
squares”. A point p ∈ R2 is dense if it is covered by more than εn squares in S. Each s ∈ M must
have a personal dense point, i.e., a dense point which no other square in M covers. Fix any unit
griding of the plane, and call a grid point p active if at least one of the four cells touching it contains
a dense point. Denote the set of active grid points by A. The following claim is easy to show.

Claim 6.6. |A| = O(1/ε).
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Figure 6.1: The normal square r covers the ε-net square s and stabs its neighbors (in the cascade
M2(p)) in the cell C2(p).

Proof. By a packing argument, each active point has εn unit squares intersecting one of its four
adjacent squares. These squares contribute a constant number of active points, and there can be
only O(1/ε) such sets.

Each unit square s ∈ S contains exactly one of the grid points, and for the squares in M , this
grid point belongs to A. For each active grid point p ∈ A, label the four cells around it as C1(p),
C2(p), C3(p) and C4(p) in counter-clockwise order. For each cell Ci(p), refer to its opposite cell as
C ′i(p) (e.g., C1(p) is the opposite cell to C3(p)). Denote the set of squares in M that contain the grid
point p by M(p), and among these, those that have a personal dense point in Ci(p) as Mi(p). Each
square of M containing p must belong to at least one of the four Mi(p)’s. Each set Mi(p) forms
a cascade and there is a natural linear order on them. Call the squares which are not the first or
the last in this order the middle squares of Mi(p). Each square s ∈ Mi(p) has some region in Ci(p)
which is not covered by other squares in Mi(p) and we denote this region by Ri(s) (see Figure 6.1).
This square s also has a region in C ′i(p) which is not covered by other squares in Mi(p), denoted
by R′i(s). For a normal square r and an ε-net square s ∈ Mi(p) we say that “r stabs s in Ci(p)” if r
intersects the region Ri(s) and we say that “r covers s in Ci(p)” if r contains the region Ri(s). Note
that if r covers s then r also stabs s.

Lemma 6.7. No three middle squares in Mi(p) have a common coverer in both Ci(p) and C ′i(p).
Furthermore, no five squares in Mi(p) are stabbed by a common square in both Ci(p) and C ′i(p). Also,
no four squares in Mi(p) which have a personal dense point only in Ci(p) are stabbed by a common
square in Ci(p).

Proof. If three middle squares in Mi(p) have a common coverer r in Ci(p) and a common coverer

55



r′ in C ′i(p), then a local improvement is possible by replacing the three squares by two squares r
and r′ in the ε-net. Similarly, if five squares are stabbed by a common square r (resp. r′) in Ci(p)
(resp. C ′i(p)), then the three middle squares among them are covered by r (resp. r′), which is not
possible by the first statement. If four squares in Mi(p) which have a personal dense point only in
Ci(p) are stabbed by a square r then the two middle squares among the four can be replaced by r
contradicting the assumption that no local improvement is possible.

For any square s ∈ M , let N(s) be the set of normal squares intersecting s. Also, let Z(p) =
∪s∈M(p)N(s) be the neighborhood of M(p) and Zi(p) = ∪s∈Mi(p)N(s) be the neighborhood of
Mi(p).

Claim 6.8. |M(p)| ≤ 28 |Z(p)|
εn + 27.

Proof. Since M(p) =
⋃
iMi(p), we have that either |M1(p) ∪ M3(p)| ≥ |M(p)|/2 or |M2(p) ∪

M4(p)| ≥ |M(p)|/2. Let us assume without loss of generality that |M1(p) ∪M3(p)| ≥ |M(p)|/2 ≥
14b|M(p)|/28c. Set M ′ = M1(p) ∩ M3(p) and let t = |M ′|. Now, there are two cases depend-
ing on whether t is more than 8b|M(p)|/28c. Suppose first that it is not. Then there are at least
6b|M(p)|/28c squares which have a personal dense point in either C1 or C3 but not both. As-
sume, without loss of generality, that half of them have a personal dense point in C1 but not C3.
Then, since each of these personal dense points are covered by at least εn squares and, by the last
statement of Lemma 6.7, no square can cover more than 3 personal dense points, we have that
Z(p) ≥ b|M(p)|/28c · εn.

Now suppose that t is at least 8b|M(p)|/28c. The squares in M ′ have a personal dense point in both
C1(p) and C3(p). and let s1, s2, · · · , st be the squares of M ′ along the cascade defined by them.
For each square sj , define its red (blue) successor to be the square sk with the smallest index k > j
such that sj and sk are not stabbed by a common square in C1(p) (C3(p)). Note that a square
may not have a red or blue successor. Let us also say that a red or blue successor of a square si
is far if the successor is sj with j − i ≥ 5 and near otherwise. If some square si has a red (blue)
successor sj that is far then si the squares of M ′ between si and sj−1, of which there are at least 5,
are stabbed by a common square in C1(p) (C3(p)). Lemma 6.7 therefore implies that both red and
blue successors of a square cannot be far. At least one of them has to be near. Assume, without loss
of generality, that at least half of the squares in M ′ have a red successor that is near. Let M ′′ be
the set of such squares. Let M ′′′ be the set of squares in which we take every fourth square of M ′′

starting with the first in the cascade defined by them. Clearly no two squares in M ′′′ are stabbed by
a common square in C1(p) since otherwise one of them would have a far red successor. Now, since
|M ′′′| ≥ b|M(p)|/28c and each normal square can contain the personal dense point of at most one
of the squares of M ′′′ in C1(p), we again have that |Z(p)| ≥ b|M(p)|/28c · εn. The claim follows.

We now bound the size of the ε-net M .

Claim 6.9. |M | = O(1/ε).

Proof. A square can belong to the neighborhood of at most nine active points, i.e.,
∑

p∈A |Z(p)| ≤
9n. Summing the inequality in Claim 6.8 over all p ∈ A and using Claim 6.6, one gets the required
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statement: |M | = ∑p∈A |M(p)| =
∑
p∈A |Z(p)|
εn + 27|A| = O(1/ε).
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7. A Generalization of the Centerpoint
Theorem

Thought is only a flash in the middle of a long night, but the flash that means everything.

Henri Poincaré

Given a set P = {p1, . . . , pn} of n points in Rd and a finite set Q ⊂ Rd , define the following:

ε(P,Q) = min{ε | |C ∩Q| 6= ∅ ∀ convex sets C s.t. |C ∩ P | > εn}

and let εdi (P ) = minQ,|Q|=i ε(P,Q). Set εdi = supP ε
d
i (P ). In other words, given any set P of n

points in Rd, the set of all convex sets containing εdi n points of P can be hit by i points. These i
points are said to form a weak εdi -net for P . Recall that the centerpoint theorem in d dimensions
states that εd1 = d

d+1 .

In this chapter we prove the following result:

Theorem 7.1. Given a set P of n points in Rd, and integers r, s ≥ 0,

εdr+ds+1 ≤
εdr · (1 + (d− 1)εds)

1 + εdr · (1 + (d− 1)εds)

where we define εd0 = 1.

Fix a direction −→u ∈ Rd which we call the upward direction. For a point p ∈ Rd, let fu(p) =< u, p >
denote the height of the point p in the upward direction (< u, p > denotes the inner product of u and
p). For a convex set C, let fu(C) denote the height of the lowest point in C, i.e. fu(C) = infp∈C fu(p).

Construction. Let a,b ∈ [0, 1] be two reals to be fixed later.

Let H = {h1, . . . , hk} be the set of all closed halfspaces which contain at least an points of P and
whose bounding hyperplane passes through d points in P . Define Hd = {(hi1 , hi2 , . . . , hid) | |P ∩
(hi1 ∩ hi2 . . . ∩ hid)| ≥ bn, where hi1 , hi2 , . . . , hid ∈ H} to be the set of all d-tuples of halfspaces in
H whose intersection contains at least bn points of P . Consider the d-tuple, say (hl1 , . . . , hld), such
that

1. (hl1 , . . . , hld) ∈ Hd
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Figure 7.1: Illustration of Theorem 7.1

2. (hl1 ∩ . . . ∩ hld) has the highest lowest-intersection point among the d-tuples of halfspaces in
Hd, i.e., fu(hl1 ∩ . . . ∩ hld) = max(hi1 ,...,hid )∈Hd fu(hi1 ∩ . . . ∩ hid)

We choose the upward direction −→u so that the d-tuple (hl1 , . . . , hld) is well defined. Note that
fu(hi1 ∩ . . . ∩ hid) = −∞ iff hi1 ∩ · · · ∩ hid is unbounded in the downward direction −−→u . Let P be
the convex hull of P and let hj1 , . . . , hjd be d halfspaces defining a vertex v of P and containing P .
Choose the upward direction −→u so that the vertex v is the unique lowest vertex of the polyhedron
P ′ = hj1 ∩ . . .∩ hjd in the upward direction and each of the points p ∈ P get a unique height. Such
a choice of −→u ensures that the bounding hyperplane of no halfspace in H has a normal parallel to
the upward direction u and there is at least one d-tuple of halfspaces in Hd whose intersection is
bounded in the downward direction −−→u . Therefore, (hl1 , · · · , hld) is well defined and the lowest
point in hl1 ∩ · · · ∩ hld is unique.

Let R be the polyhedron {hl1 ∩ · · · ∩ hld}. Without loss of generality, we can assume that P is
full-dimensional and hence R is full-dimensional. Let Rli be the intersection of the halfspaces in
{hl1 , · · · , hld} except li i.e., Rli =

⋂
k∈[1,d],k 6=i hlk . Since each of the halfspaces contain at least an

points from P , |P ∩Rli | ≥ (d− 1)an− (d− 2)n. Construct and return the set Q = {x} ∪Q′ ∪Ql1 ∪
· · · ∪Qld , where

1. x is the unique lowest point in hl1 ∩ · · · ∩ hld .

2. Q′ is an εdr-net for the point set P \ (P ∩ hl1 ∩ · · · ∩ hld) using r points.

3. Qli is an εds-net for the point set P \ (P ∩Rli) using s points.

Lemma 7.2. Q is an a-net for P , and has size r + ds+ 1.

Proof. The size of Q is obvious from the construction, and we show that it is an a-net for the value
required in the statement of the theorem. We first need the following crucial fact.

Claim 7.3. Let C′ be a convex set containing at least an points of P which does not contain x and
contains points from P ∩ hl1 ∩ · · · ∩ hld . Then, |P ∩ C ′ ∩Rli | < bn for some i ∈ [1, d].
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Proof. For contradiction, assume that C′ intersects all Rli at at least bn points of P . Let R′ be the
convex hull of P ∩C′. Then,R′ does not contain x, and therefore there exists a halfspace h′ defining
a facet of R′ such that R′ ⊆ h′, and h′ does not contain x. Since R intersects hl1 ∩ · · · ∩ hld , i)
h′ intersects hl1 ∩ · · · ∩ hld , and ii) h′ contains at least an points of P (since R′ ⊆ h′), and iii)
|P ∩ h′ ∩Rli | ≥ bn ∀i ∈ [1, d].

Now, the lowest point z inR∩h′ is strictly higher than x (since h′ does not contain x) and is defined
by exactly d halfspaces from H since R is full dimensional and is defined by exactly d halfspaces
from H. Furthermore, the set of halfspaces defining z is {h′}∪{hl1 , · · · , hld} \hli for some i ∈ [1, d]
and since |P ∩ C ′ ∩ Rli | ≥ bn ∀i ∈ [1, d], their intersection contains at least bn points from P . This
is a contradiction to the assumption that (hl1 , · · · , hld) has the highest lowest-intersection point
among the d-tuples in Hd. See Figure 7.1 for an example in R2.

We now show that any convex set C′ containing an points must contain a point of Q by one of the
following cases:

1. C′ contains x, so is hit by Q.

2. C′ does not contain points from R. Since |P ∩ R| ≥ bn, C′ contains an points from the
remaining set P \ (P ∩R), whose size is at most (1− b)n. If an ≥ εdr(1− b)n, then C′ is hit by
Q′.

3. C′ does not contain x and yet contains points from R. Then, by Claim 7.3, C′ ∩ Rli ≤ bn
for some i ∈ [1, d]. Then it must contain at least an − bn points from P \ (P ∩ Rli). If
an− bn ≥ εds(1− ((d− 1)a− (d− 2)))n, then C′ is hit by Qli .

Therefore, if
an ≥ εdr(1− b)n and an− bn ≥ εds(d− 1)(1− a)n (7.1)

then C′ is hit by Q. Maximizing a while satisfying (7.1) yields

εdr+ds+1 ≤ a =
εdr · (1 + (d− 1)εds)

1 + εdr · (1 + (d− 1)εds)
,

completing the proof of Lemma 7.2 and hence Theorem 7.1.

Remark: The above method actually gives another elementary proof of the centerpoint theorem
in any dimension. The proof for two dimensions, as in the method of Theorem 7.1 is: consider all
halfspaces containing more than 2

3n points, and take the pair with the highest lowest-intersection
point x. This is the required point, since any convex set not containing this point cannot intersect
the intersection of the halfspaces (Claim 7.3), which contains more than n/3 points of P . Hence,
such a convex set can only contain the remaining points of P , of which there are fewer than 2

3n.
This follows from Theorem 7.1 by setting r = s = 0 and d = 2 to get ε2

1 = 2
3 ! The proof for

d-dimensions is exactly the same: consider sets of d halfspaces, each of which contains more than
d
d+1n points and choose the set with the highest lowest-intersection point (w.r.t. any dimension).
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7.1 Consequences of main theorem

Improving upon previous work [AAH+09], we completely resolve the 2-point case.

Corollary 7.1.1. Given a set P of n points in R2, the set of all convex objects which contain more than
4n/7 points of P can be hit by two points (i.e., ε2 ≤ 4/7). Furthermore, there exist arbitrarily large
point sets such that the set of all convex objects containing 4n/7 points cannot be hit by two points.

Proof. The upper bound follows from Theorem 7.1 by setting c = 1, d = 0.

For any n, we construct a point set P of size n such that for any two given points p and q in the
plane there is a convex set which avoids both the points and contains 4n/7 points of P .

Consider the vertices of a regular heptagon each representing a set of n/7 points contained in a
sufficiently small disk. Let a, b, c, d, e, f and g be the sets in clockwise order. Our set P is the union
of these sets.

If one of the points p or q is arbitrarily close to one of the 7 sets, say the set a, then the other point
cannot hit the convex hulls of the sets b∪ c∪d∪e, d∪e∪f ∪g and f ∪g∪a∪ b simultaneously since
they don’t have a common intersection. Now, assume that neither p nor q is arbitrarily close to any
of the 7 sets. Consider the line l passing through the points p and q. If l does not pass through
any of the 7 sets then one of the closed halfspaces defined by l contains 4 of the sets whose convex
hull is not hit by either p or p. Otherwise, one of the closed halfspaces defined by l contains 3 of
sets and they along with one of the sets which l passes through define a set of 4n/7 points whose
convex hull is not hit by either p or q.

Corollary 7.1.2. Given P , the set of all convex objects which contain more than 8n/15 points of P can
be hit by three points (i.e., ε3 ≤ 8/15). Furthermore, there exist arbitrarily large point sets such that
the set of all convex objects containing 5n/11 points cannot be hit by three points.

Proof. The upper bound follows from Theorem 7.1 by setting c = 2, d = 0. The lower bound
construction is as follows.

For any n, we construct a point set P of size n such that for any three given points in the plane
there is a convex set containing 5n/11 points of P which avoids all the three points. Figure 7.2(a)
shows such a point set. Each of the 11 points in the figure represents a set of n/11 points contained
in a sufficiently small disk.

Assume that there are three points which hit all convex sets containing 5n/11 points of P . We first
show that these points cannot be arbitrarily close to any of the 11 sets in the point set. Observe that
if all the three points are arbitrarily close to one of the 11 sets in the point set, then they cannot hit
the convex region formed by the rest of the 8 sets. Also, if two of the points p, q and r are arbitrarily
close to one of the sets, then the rest of the 9 sets can be used to define two convex sets containing
5n/11 points each and sharing only one of the 11 sets. A single point hitting both these sets should
be arbitrarily close to the shared set implying that all the three points are arbitrarily close to one of
the sets. If only one of the points is arbitrarily close to a set, say the set k, we take the rest of the
10 sets and consider the convex sets defgh, fghij and jabcd. Since two points hit all the three sets,
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Figure 7.2: (a) One of the seven (bold) triangles contains a point of the weak ε-net (b) One of the
four triangles jzk, gxh, dve or asc contains a point of the weak ε-net (c) jyi contains a point of the
weak ε-net

one of the points should be contained in the region hxfg. Now, consider the sets hijab and bcdef .
The third point must hit both these regions and therefore must be arbitrarily close to the set b.

Assuming that none of the points is arbitrarily close to one of the 11 sets, we show that if there
exists a set of three points which hits all convex sets containing 5n/11 points from P then one of
those points is contained in one of the bold triangles shown in Figure 7.2(a).

Consider the four convex sets jkabc, abcde, defgh and ghijk (see Figure 7.2(b)) containing 5n/11
points each. In order to hit all the four regions, one of the three points must be in one the four
triangles jzk, gxh, dve or asc. If there is a point in one of the triangles jzk, gxh or dve, we are
done. So, assume that there is a point in the triangle asc. There cannot be two points in this region
since then the remaining one point cannot hit the disjoint regions ahijk and cdefg simultaneously.

If the point in asc is in one of the triangles atb or buc (see Figure 7.2(c)), we are done again. So,
we assume that it is in the region stbu. But then, the regions abijk, fghij and bcdef must be hit by
the other two points, and one of those must be in the triangle jyi (see Figure 7.2(c)).

Hence, one of the bold triangles shown in Figure 7.2(a) must contain one of three weak ε-net
points.

Assume that the triangle hxg contains one of the points (the other cases are analogous). Since the
regions abcdk, efijk and defij must be hit by two points, the region efijr must contain one of the
points (see Figure 7.3(a)). Now, since the regions abcjk and abcde must be hit by one point (see
Figure 7.2(a)), the region abcs contains a point.

Also, since the regions abijk and bcdef must be hit (see Figure 7.3(b)), either the regions abt and
efw contain one point each or the regions buc and ijy contain one point each. Since the cases are
symmetric, let us assume that the regions abt and efw contain one point each.

But then, the region cdijk does not contain any point (see Figure 7.3(c)) although it contains 5n/11
points of P . Hence, it is not possible to hit all the convex regions containing 5n/11 points of P using
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Figure 7.3: (a) efijr contains a point of the weak ε-net (b) Either abt and efw contain one point
each or buc and ijy contain one point each. (c) abt, efw and hxg contain one point each. Hence
cdijk cannot be hit.

3 points.

Aronov [AAH+09] show that ε4 ≤ 4/7. We actually are able to hit sets containing 4n/7 points by
just two points (Corollary 7.1.1)! For ε4, Theorem 7.1 yields 16/31, again improving upon Aronov
et al.’s result. Improving upon a result of Alon et al. [ABFK92], Aronov et al. [AAH+09] showed
that if each convex set contains n/2 points, then they can be hit by five points. Theorem 7.1 yields
an improvement (set c = 2, and d = 1).

Corollary 7.1.3. ε5 ≤ 20/41.
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8. Simplicial Depth

My belt holds my pants up, but the belt loops hold my belt up. I don’t really know what’s
happening down there. Who is the real hero?

Mitch Hedberg

In this chapter we prove the following theorem:

Theorem 8.1. Any set P of n points in R3 has simplicial depth at least 0.0025 · n4.

We remind the reader of the result of Wagner [Wag03], that any point of depth τn is contained in
at least the following number of simplices:

(d+ 1)τd − 2dτd+1

(d+ 1)!
· nd+1 −O(nd). (8.1)

Note that this bound improves with the depth of the point set P . Our simple idea is to show that
when the depth of P is low, one can also get a better bound. For example, when depth(P ) =
n/(d + 1), then the simplicial depth conjecture is in fact proven below. By combining the two
approaches, one gets an overall improvement.

We will use the following lemma, which follows easily from a lemma proved in [BF82].

Lemma 8.2. Given a set P of n points in Rd, where depth(P ) = τn − 1, there exists a point p with
depth τn− 1, and a set H of d+ 1 open halfspaces {h1, . . . , hd+1}, such that i) |hi ∩P | = τn, ii) p lies
on the boundary plane of each hi, and iii) h1 ∪ . . . ∪ hd+1 cover the entire Rd except the point p.

Proof. Boros-Füredi [BF82] (Lemma 3) prove that given a point set P of size n and depth σ in Rd,
there exists a point p of depth σ and d+ 1 closed halfspaces η1, . . . , ηd+1 which cover Rd, have the
point p on their boundary, and where |ηi ∩ P | = n − σ − 1 (they actually prove this statement for
R2, but as they also note in their paper, the generalization to Rd is straightforward). Applying this
lemma with σ = τn − 1 and setting hi to be the complement of ηi for i = 1, . . . , d + 1, proves the
required statement.

We now prove a technical lemma which can be seen as a generalization of Carathéodory’s theorem.
Given a set P of points in Rd, conv(P ) denotes the convex-hull of P .
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Lemma 8.3. Let P = {p1, . . . , pd+2} be a set of d + 2 points in Rd. Then any point x ∈ conv(P ) lies
in at least two d-simplices spanned by P .

Proof. If x lies on any facet F of conv(P ), then the (at least) two simplices spanned by P that
contain F also contain x. Otherwise take any point of P , say p1, and consider the ray emanating
from p1 and passing through x. This ray, after passing through x, intersects the boundary of conv(P )
in a (d− 1)-simplex spanned by d points, say P ′. Then P ′ ∪ p1 contains x, and has size d+ 1. Let pi
be the remaining point in P \ (P ′ ∪ {p1}). Repeating the same procedure of shooting a ray from pi
through x results in another d-simplex, with pi as one of its points, that contains x.

Given a set P of n points in R3, with depth(P ) = τn − 1, use Lemma 8.2 to get the point p and a
set of four halfspaces H = {h1, h2, h3, h4} satisfying the stated conditions. The rest of this chapter
will be devoted to proving that p is contained in a lot of simplices spanned by P (w.l.o.g. one can
assume that p /∈ P , otherwise the bound can only improve, as all the Θ(nd) simplices defined by p
contain p). For any halfspace h, let h be the complement halfspace of h, and ∂h be its boundary
plane. Define the following subsets of P for all i, j = 1 . . . 4:

Ai = P ∩ (
⋂
l 6=i
hl) ∩ hi, Bi,j = P ∩ (

⋂
l 6=i,j

hl) ∩ hi ∩ hj , Ci = P ∩ (
⋂
l 6=i
hl) ∩ hi. (8.2)

Set αi = |Ai|/n, βi,j = |Bi,j |/n, and γi = |Ci|/n. Our main lemma is the following.

Lemma 8.4. Let P be a set of n points in R3, with depth(P ) = τn − 1. Then, there exists a point
contained in at least g(P ) · n4 simplices spanned by P , where

g(P ) =

(∏
i

αi

)
+

∑
i<j

βi,j ·
∏
l αl

max(αi, αj)

+

(∑
i

γi ·
∏
l αl

maxl 6=i αl

)
. (8.3)

Proof. Let p be the point from Lemma 8.2, together with the four halfspaces h1, . . . , h4. We first
show that the simplex spanned by any four points, one from each of Ai, will always contain p.

Claim 8.5. Let p1, p2, p3, p4 ∈ P be four points of P , such that pi ∈ Ai. Then the simplex spanned by
these four points contains p.

Proof. Assume for contradiction that conv({p1, p2, p3, p4}) does not contain p. Then there exists
a hyperplane h that separates p from conv({p1, p2, p3, p4}), and h does not contain p. For i ∈
{1, 2, 3, 4}, define qi to be the point ppi ∩ h. By definition, each hi passes through p, contains pi
and does not contain any other point pj with j 6= i. Note that then each hi also contains qi (by
convexity), and does not contain any other point qj with j 6= i. By Radon’s theorem [Mat02]
applied to {q1, q2, q3, q4} lying on the plane h, there exist disjoint sets Q1, Q2 and a point s so that
Q1 ∪Q2 = {q1, q2, q3, q4} and s ∈ conv(Q1) ∩ conv(Q2). Since s lies on h, s 6= p. By convexity, any
halfspace that contains s must also contain at least one point from both Q1 and Q2. As H covers
R3 \ {p}, there exists an i such that s ∈ hi. But this gives a contradiction, as then this hi must
contain at least one point from both Q1 and Q2, and so contain some point qj with j 6= i.
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The total number of such simplices is n4 ·∏i αi, which is the first term in Equation (8.3). Call any
such simplex a basic simplex, i.e., a simplex on p1, p2, p3, p4 ∈ P is basic iff pi ∈ Ai for all i. All other
simplices are called non-basic.

Now we use basic simplices, which always contain p, to prove the existence of several other sim-
plices which must also contain p.

Claim 8.6. Let P ′ = {p1, p2, p3, p4, p5} ⊂ P be five points of P , such that pk ∈ Ak, k = 1 . . . 4, and
p5 ∈ Bi,j , for any 1 ≤ i < j ≤ 4. Then either the simplex spanned by P ′ \ pi or by P ′ \ pj contains p.

Proof. By Claim 8.5, the basic simplex spanned by p1, p2, p3, p4 contains p. Therefore, by Lemma 8.3,
at least one other simplex spanned by P ′ must contain p. Note that this simplex must have p5 as
one of its points. Also, it must contain pk, where k 6= i, j, since the plane ∂hk separates P ′ \pk from
p, as it follows from the definitions (8.2) that pl ∈ hk for all l 6= k, and p5 ∈ hk since p5 ∈ Bi,j . So
for this second simplex, the only possible choice is for the fourth vertex, which can be either pi or
pj .

For any fixed i, j, there are n5(βi,j ·
∏
i αi) 5-tuples as in Claim 8.6, and each produces one d-simplex

containing p. Each such d-simplex may be double-counted at most n ·max(αi, αj) times, so the total
number of distinct d-simplices of the type in Claim 8.6 containing p are at least n4 βi,j ·

∏
i αi

max(αi,αj)
, which

when summed over all i < j, forms the second term in (8.3).

Claim 8.7. Let P ′ = {p1, p2, p3, p4, p5} ⊂ P be five points of P , such that pk ∈ Ak, k = 1 . . . 4, and
p5 ∈ Ci, for any 1 ≤ i ≤ 4. Then there is a two-element subset P ′′ ⊂ P ′ \{p5, pi} such that the simplex
conv({p5, pi} ∪ P ′′) contains p.

Proof. As in Claim 8.6, at least one non-basic simplex spanned by P ′ must contain p, with p5 as one
of its points. Also, it must contain pi: the plane ∂hi separates P ′ \ pi from p, as P ′ \ pi ⊆ hi. The
other two vertices of this second simplex must therefore be a subset of the remaining three vertices
in P ′.

By similarly eliminating the double-counting, the d-simplices from Claim 8.7 form the third term
of g(P ). Finally, note that no two simplices are counted twice in g(P ), since each contains exactly
one point from a distinct region (one of Bi,j or Ci).

Note that we only have these two contraints on the non-negative variables αi, βi,j and γi:

τ =
|hi ∩ P |

n
= αi +

∑
j 6=i

βi,j +
∑
j 6=i

γj for each i = 1 . . . 4. (8.4)

∑
i

αi +
∑
i<j

βi,j +
∑
i

γi = 1, as H covers R3 \ {p} and p /∈ P . (8.5)

It remains to show that regardless of the distribution of the points in the disjoint sets Ai, Bi,j and
Cj , and therefore the values of the variables satisfying Equations (8.4) and (8.5), the quantity g(P )
is always bounded suitably from below.
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Lemma 8.8. Let P be a set of n points in R3, with depth(P ) = τn− 1, and g(P ) as in Lemma 8.4. If
τ ≤ 0.3, then g(P ) ≥ τ · (1− 3τ)2 · (5τ − 1).

Proof. Using the fact that αi ≤ τ , we get

g(P ) =

(∏
i

αi

)
+

∑
i<j

βi,j ·
∏
l αl

max(αi, αj)

+

(∑
i

γi ·
∏
l αl

maxl 6=i αl

)

≥
(∏

i

αi

)
+

∑
i<j

βi,j ·
∏
l αl
τ

+

(∑
i

γi ·
∏
l αl
τ

)

=

(∏
i

αi

)(
1 +

∑
i<j βi,j +

∑
i γi

τ

)
. (8.6)

Summing up (8.4) for all four halfspaces, and subtracting (8.5) from it, we get∑
i<j

βi,j + 2 ·
∑
i

γi = 4 · τ − 1. (8.7)

Therefore,
∑

i<j βi,j +
∑

i γi ≤ 4τ −1. This fact, together with equation (8.4), implies that 1−3τ ≤
αi ≤ τ for i = 1 . . . 4. Assuming τ ≤ 0.3, we can show the following:

Claim 8.9. The bound in equation (8.6) is minimized when
∑

i γi = 0 or equivalently, when
∑

i<j βi,j+∑
i γi = 4τ − 1.

Proof. Suppose that
∑

i γi = ε + ε1, where γ1 = ε1 > 0. We show that the variables αi, βi,j , γ1

can be re-adjusted to new values α′i, β
′
i,j , γ

′
1 to give a smaller value in Equation (8.6), while still

satisfying all the constraints in Equations (8.4) and (8.5), and where γ′1 = 0. As long as
∑

i γi > 0,
we can iteratively apply this procedure for all γj > 0 to make

∑
i γi = 0 without increasing the

lower bound. At each such step, a value of γj > 0, for some j, is set to 0, so this procedure finishes
after at most 4 steps.

Set γ′1 = 0, β′i,j = βi,j + 2ε1
3 for all i, j 6= 1, and α′i = αi − ε1/3 for all i 6= 1. One can verify that

Equations (8.4) and (8.5) still hold. Therefore, Equation (8.7) also holds; in particular, it follows
that 1 − 3τ ≤ α′i ≤ τ for each i, and so all new α′i variables are still non-negative as τ ≤ 0.3. Now
simple calculation shows that the function of Equation (8.6) can only decrease. For completeness
sake, we present the explicit computations:

(∏
i

α′i

)(
1 +

∑
γ′i +

∑
β′i,j

τ

)
≤
(∏

i

αi

)(
1 +

∑
γi +

∑
βi,j

τ

)
.

Note that
∑

i<j βi,j +
∑

i γi = 4τ − 1− ε− ε1, and
∑

i<j β
′
i,j +

∑
i γ
′
i = 4τ − 1− ε. So
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∏
i 6=1

αi −
ε1
3

(5τ − 1− ε
τ

)
≤

∏
i 6=1

αi

(5τ − 1− ε− ε1
τ

)
∏
i 6=1

(
1− ε1

3αi

)
≤ 1− ε1

5τ − 1− ε

Since each αi, i 6= 1, can be at most τ − ε1 (from (8.4)), we have to prove(
1− ε1

3(τ − ε1)

)3

= 1− 3ε1
3(τ − ε1)

+ 3

(
ε1

3(τ − ε1)

)2

−
(

ε1
3(τ − ε1)

)3

≤ 1− ε1
5τ − 1− ε

By dropping the negative cubic term and simplifying, we have to show

1− 3ε1
3(τ − ε1)

+ 3

(
ε1

3(τ − ε1)

)2

≤ 1− ε1
5τ − 1− ε

− 1

(τ − ε1)
+

ε1
3(τ − ε1)2

≤ − 1

5τ − 1− ε

−(5τ − 1− ε) +
ε1(5τ − 1− ε)

3(τ − ε1)
≤ −(τ − ε1)

4τ ≥ 1 + ε− ε1 +
ε1(5τ − 1− ε)

3(τ − ε1)
.

Since
∑

i<j βi,j + 2
∑

i γi = 4τ − 1, we have
∑
γi = ε + ε1 ≤ (4τ − 1)/2. So 4τ ≥ 2ε + 1, and it

remains to show that

ε1(5τ − 1− ε)
3(τ − ε1)

≤ ε1 or equivalently, 2τ ≤ 1 + ε− 3ε1.

Now one can verify that 2τ ≤ 1− 3ε1, since ε1 ≤ (4τ − 1)/2, and τ ≤ 0.3.

It follows from Claim 8.9 that

g(P ) ≥
(∏

i

αi

)(
1 +

4τ − 1

τ

)
=

(∏
i

αi

)(
5τ − 1

τ

)
.

Claim 8.9 together with (8.5) also implies that
∑
αi = 2− 4τ . As αi ∈ [1− 3τ, τ ], the term

∏
αi is

minimized when, say, α1 = α2 = τ , and α3 = α4 = 1− 3τ (and then β3,4 = 4τ − 1).

Claim 8.10.
∏
αi is minimized when α1 = α2 = τ , and α3 = α4 = (1− 3τ).
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Proof. Recall that each αi lies in the closed interval [(1 − 3τ), τ ]. If each αi > (1 − 3τ), pick the
smallest of them, say α4, and set α′4 = α4 − ε, for a small enough ε > 0, and add this excess to
any other variable that is less than τ , say α3 (there always exists another variable less than τ , else∑
αi > (1−3τ)+3τ = 1, a contradiction). Then (α3 +ε)(α4−ε) < α3α4 since α4 ≤ α3, minimizing

the product further. Similarly, α3 is also (1 − 3τ) in the configuration minimizing
∏
αi. So we get

that α1 + α2 = (2− 4τ)− 2(1− 3τ) = 2τ . And as each α is at most τ , this forces α1 = α2 = τ .

It can be verified that all the constraints are satisfied, and so we get the required lower bound for
g(P ):

g(P ) ≥
(∏

i

αi

)(
5τ − 1

τ

)
≥ τ2 · (1− 3τ)2 · 5τ − 1

τ
.

We can now complete the proof of Theorem 8.1. Wagner [Wag03] proved that any point of depth
τ · n in R3 is contained in at least f(τ) · n4 simplices spanned by P , where f(τ) = (4τ3 − 6τ4)/4!
and 0.25 ≤ τ ≤ 0.5. If P has depth at least τ · n, where τ ≥ 0.2889, then as f ′(τ) ≥ 0 for
τ ∈ [0.25, 0.5], we can deduce that f(τ) ≥ f(0.2889) = 0.00227 and so there exists a point lying in
at least 0.00227 · n4 simplices spanned by P .

Otherwise, as depth is always an integer, P has depth at most τ · n − 1, where τ ≤ 0.2889. By
Lemma 8.8, we can conclude that there exists a point lying in g(τ) · n4 simplices, where g(τ) =
τ ·(1−3τ)2 ·(5τ−1). As g′(τ) ≤ 0 for τ ∈ [0.25, 0.3], we can deduce that g(τ) ≥ g(0.2889) = 0.00227
and so there exists a point lying in at least 0.00227 · n4 simplices spanned by P .
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9. Oja Depth

Meeting a friend in the corridor, Ludwig Wittgenstein said: “Tell me, why do people always
say that it was natural for men to assume that the sun went around the earth rather than the
earth was rotating?”
His friend said: “Well, obviously, because it just looks as if the sun is going around the earth.”
To which the philosopher replied: “Well, what would it look like if it had looked as if the earth
were rotating?”

In this chapter we prove the optimal bound in R2 and improve the previous-best bound for R3. In
Section 9.1, we resolve the planar case of the Oja-depth conjecture. In particular we prove that for
every set P of n points in R2 the center of mass of the convex hull of P has depth at most n2

9 .

Theorem 9.1. Every set P of n points in R2 has Oja depth at most n2

9 . Furthermore, this depth is
attained by the centroid of the point set which be computed in O(n log n) time.

In Section 9.2, using completely different (and more combinatorial) techniques for higher dimen-
sions, we prove:

Theorem 9.2. Every set P of n points in Rd, d ≥ 3, has Oja depth at most

2nd

2dd!
− 2d

(d+ 1)2(d+ 1)!

(
n

d

)
+O(nd−1).

9.1 A tight bound in R2

We now come to prove a tight bound for R2. The center of mass or centroid of a convex set X is
defined as

c(X) =

∫
x∈X x dx

area (X)
.

For a discrete point set P , the center of mass of P is defined as the center of mass of the convex hull
of P . When we talk about the centroid of P , we refer to the center of mass of the convex hull (not
to be confused with the discrete centroid

∑
p/|P |). We will bound the Oja depth of the centroid of

a set. As we will see the Oja depth of the centroid is tight in the worst case. Our proof will rely on
the following two known results.
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Lemma 9.3. [Winternitz [Bla23]] Every line through the centroid of a convex object has at most 5
9 of

the total area on either side.

Lemma 9.4. [CDI+13] Let P be a convex object with unit area and let c be its centroid. Then every
simplex inside P that has c as a vertex has area at most 1

3 .

To simplify matters, we will use the following proposition.

Proposition 1. If we project an interior point p ∈ P radially outwards from the centroid c to the
boundary of the convex hull, the Oja depth of the point c does not decrease.

Proof. First, observe that the center of mass does not change. It suffices to show that every triangle
that has p as one of its vertices increases its area. Let T := ∆(c, p, q) be any triangle. The area of T
is 1

2‖c− p‖ · h, where h is the height of T with respect to p− c. If we move p radially outwards to a
point p′, h does not change, but ‖c− p′‖ > ‖c− p‖. See Fig. 9.1.

hp

c

q

p′

Figure 9.1: Moving points to the boundary increases the Oja depth

This implies that in order to prove an upper bound, we can assume that P is in convex position.
Note that the aforementioned transformation brings the point only in weakly convex position, that
is, some of the points lying on the boundary of the convex hull might not actually be vertices of the
convex hull. This, however, is sufficient for our proof and for brevity we will use “convex” to mean
“weakly convex”.

From now on, let P be a set of points in convex postion, and let c := c(conv(P )) denote its center
of mass as defined above. Further, let p1, . . . , pn denote the points sorted clockwise by angle from
c. We define the distance of two points pi, pj , i 6= j, as the difference of their position in this order
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(modulo n):

dist(pi, pj) := min{j − i mod n, i− j mod n} ∈ {1, . . . , bn/2c}.
A triangle that is formed by c and two points at distance i is called an i-triangle, or triangle of type
i. Observe that for each i, 1 ≤ i < bn/2c, there are exactly n triangles of type i. Further, if n is
even, then there are n/2 triangles of type bn/2c, otherwise there are n. These constitute all possible
triangles.

Let C ⊆ P , and let C be the boundary of the convex hull of C. This polygon will be called a cycle.
The length of a cycle is simply the number of elements in C. A cycle C of length i induces i triangles
that arise by taking all triangles formed by an edge in C and the center of mass c (of conv(P )). The
area induced by C is the sum of areas of these i triangles. See Fig. 9.1.

pi1pi6

pi5

pi4 pi3

pi2c

C

P

c

Figure 9.2: Cycles

The triangles induced by C = P form a partition of conv(P ). Thus

Lemma 9.5. The total area of all triangles of type 1 is exactly 1.

The following shows that we can generalize this lemma to bound the total area induced by any
cycle:

Lemma 9.6. Let C be a cycle. Then C induces a total area of at most 1.

Proof. We distinguish two cases.

Case 1: The centroid c lies inside C. In this case, all triangles are disjoint, so the area is at most one.

Case 2: c does not lie inside C (see Fig. 9.1). Then there is a line through c that has all the
triangles induced by C on one side. Then we can remove one triangle – the one induced by the pair
{pij , pij+1} that has c on the left side (the gray triangle shown in the figure) – to get a set of disjoint
triangles. By Lemma 9.3, the area of the remaining triangles can thus be at most 5/9. By Lemma
9.4, the removed triangle has an area of at most 1/3. Thus, the total area is at most 8/9.
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We now prove the key lemma, which is a general version of Lemma 9.5.

Lemma 9.7. The total area of all triangles of type i is at most i.

Proof. To prove this lemma for a fixed i, we will create n cycles. Each cycle will consist of one
triangle of type i, and n − i triangles of type 1 (counting multiplicities). We then determine the
total area of these cycles and subtract the area of all 1-triangles. This will give the desired result.

Let p1, . . . , pn be the points ordered by angles from the centroid c (recall that we could assume that
P is in convex position). For j = 1 . . . n, let Cj be the cycle consisting of the n − i + 1 points of P
{pj+i mod n, pj+i+1 mod n, . . . , pj−1 mod n, pj mod n}. This is a cycle that consists of one triangle of
type i (the one defined by the three points c, pj , pj+i), and n− i triangles of type 1.

By Lemma 9.6, every cycle Cj induces an area of at most 1. If we sum up the areas of all cycles Cj ,
1 ≤ j ≤ n, we thus get an area of at most n.

We now determine how often we have counted each triangle. Each i-triangle is counted exactly
once. Further, for every cycle we count n − i triangles of type 1. For reasons of symmetry, each
1-triangle is counted equally often. Indeed, each one is counted exactly n − i times over all the
cycles. By Lemma 9.5, their area is exactly n− i, which we can subtract from n to get the total area
of the i-triangles:

∑
i-triangle T

area(T ) ≤ n− (n− i) ·

 ∑
1-triangle T

area(T )

 = n− (n− i) = i.

Now we prove the main result of this section:

Theorem 9.8. Let P be any set of points in the plane with area(conv(P )) = 1, and let c be the centroid
of conv(P ). Then the Oja depth of c is at most n2

9 .

Proof. We will bound the area of the triangles depending on their type. For i-triangles with 1 ≤ i ≤
bn/3c, we will use Lemma 9.7. For i-triangles with bn/3c < i ≤ bn/2c, this would give us a bound
worse than n/3, so we will use Lemma 9.4 for each of these.

By Lemma 9.7, the sum of the areas of all triangles of type at most bn/3c is at most

bn/3c∑
i=1

i =
bn/3c(bn/3c+ 1)

2
=

1

2
bn

3
c2 +

1

2
bn

3
c.

If n is odd, there are n (bn/2c − bn/3c) triangles remaining, n for each type j, bn/3c < j ≤ bn/2c.
If n is even, there are only n/2 triangles of type n/2 and so n (bn/2c − bn/3c − 1/2) triangles
remaining. In either case the number of remaining triangles is n2/2 − nbn/3c − n/2. For these we
use Lemma 9.4 to bound the area of each by 1/3. Thus, the area of these remaining triangles is at
most n2

6 − n
3 bn3 c − n

6 .

So the Oja depth is at most 1
2bn3 c2 + 1

2bn3 c+ n2

6 − n
3 bn3 c − n

6 .
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To complete the proof we distinguish the cases when n is of the form 3k, 3k + 1 or 3k + 2.

Case n = 3k :

1
2bn3 c2 + 1

2bn3 c+ n2

6 − n
3 bn3 c − n

6 = k2

2 + k
2 + 3k2

2 − k2 − k
2 = k2 = n2

9

Case n = 3k + 1 :

1
2bn3 c2 + 1

2bn3 c+ n2

6 − n
3 bn3 c − n

6 = k2

2 + k
2 + 3k2

2 + k + 1
6 − k2 − k

3 − k
2 − 1

6 = k2 + 2k
3 ≤

(3k+1)2

9 = n2

9

Case n = 3k + 2 :

1
2bn3 c2 + 1

2bn3 c+ n2

6 − n
3 bn3 c− n

6 = k2

2 + k
2 + 3k2

2 +2k+ 2
3−k2− 2k

3 − k
2 − 1

3 = k2 + 4k
3 + 1

3 ≤
(3k+2)2

9 = n2

9

Thus, the Oja depth of the centroid is at most n2/9.

Remark: We note that c = c(conv(P )) can be computed in O(n log n) time by first computing
conv(P ) in O(n log n) time, and then triangulating conv(P ).

9.2 Higher Dimensions

We now present improved bounds for the Oja depth problem in dimensions greater than two.
Before the main theorem, we need the following two lemmas.

Lemma 9.9. Given any set P of n points in Rd and any point q ∈ Rd, any line l through q intersects
at most f(n, d) (d− 1)-simplices spanned by P , where f(n, d) = 2nd

2dd!
+O(nd−1).

Proof. Project P onto the hyperplaneH orthogonal to l to get the point set P ′ in Rd−1. The line l be-
comes a point onH, say point l∗. Then l intersects the (d−1)-simplex spanned by {p1, . . . , pd} if and
only if the convex hull of the corresponding points in P ′ contains the point l∗. By Bárány [Bár82],
given n points in Rk, any point in Rk is contained in at most this many k-simplices:

2n

n+ k + 1
·
(

(n+ k + 1)/2

k + 1

)
if n− k is odd

2(n− k)

n+ k + 2
·
(

(n+ k + 2)/2

k + 1

)
if n− k is even

Note that both the bounds above are within an additive term of O(nk), and simplifying the first, we
get:

2n

n+ k + 1
·
(

(n+ k + 1)/2

k + 1

)
≤ 2 ·

(
(n+ k + 1)/2

k + 1

)
≤ 2(n+ k + 1)k+1

2k+1(k + 1)!
≤ 2nk+1

2k+1(k + 1)!
+O(nk)

We apply this to P ′ in Rd−1 (setting k to d− 1) to get the desired result.
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Lemma 9.10. Given any set P of n points in Rd, there exists a point q such that any half-infinite ray
from q intersects at least 2d

(d+1)2(d+1)!

(
n
d

)
(d− 1)-simplices spanned by P .

Proof. This follows directly from a recent result of Gromov [Gro10], who showed that given any
set P , there exists a point q contained in at least 2d

(d+1)(d+1)!

(
n
d+1

)
simplices spanned by P . Now note

that any half-infinite ray from q must intersect exactly one (d−1)-dimensional face of each simplex
containing q and each such (d−1)-simplex can be counted at most n−d times. Simplifying, we get
the desired result.

Remark. There have been several improvements [MW10, KMS12] after the initial work of Gromov;
however as these improvements are significant only for small constant dimensions, we prefer to
give the above considerably simpler bound of Gromov. It is clear that any improvement in the
above bound gives a corresponding improvement for our result.

Given a set P and a point q, call a simplex a q-simplex if it is spanned by q and d other points of P .

Theorem 9.11. Given any set P of n points in Rd, there exists a point q with Oja depth at most

2nd

2dd!
− 2d

(d+ 1)2(d+ 1)!

(
n

d

)
+O(nd−1).

Proof. Let q be the point from Lemma 9.10. Assign a weight function, w(r), to each point r ∈
conv(P ), where w(r) is the number of q-simplices spanned by P and q that contain r. Then note
that if r is contained in a q-simplex, spanned by, say, {q, pi1 , . . . , pid}, then the half-infinite ray −→qr
intersects the (d − 1)-simplex spanned by {pi1 , . . . , pid}. Therefore w(r) is equal to the number of
(d − 1)-simplices intersected by the ray −→qr. To upper-bound this, note that the ray starting from q
but in the opposite direction to the ray −→qr, intersects at least 2d

(d+1)2(d+1)!

(
n
d

)
(d − 1)-simplices (by

Lemma 9.10). On the other hand, by Lemma 9.9, the entire line passing through q and r intersects
at most 2nd

2dd!
+ O(nd−1) (d − 1)-simplices spanned by P . These two together imply that the ray −→qr

intersects at most 2nd

2dd!
− 2d

(d+1)2(d+1)!

(
n
d

)
+ O(nd−1) (d− 1)-simplices spanned by P , and this is also

an upper bound on w(r). Finally, we have

Oja-depth(q, P ) =
∑

P ′⊆P,|P ′|=d

vol(conv({q} ∪ P ′)) =

∫
x∈conv(P )

w(x) dx

≤
(

2nd

2dd!
− 2d

(d+ 1)2(d+ 1)!

(
n

d

)
+O(nd−1)

)∫
x∈conv(P )

dx

=
2nd

2dd!
− 2d

(d+ 1)2(d+ 1)!

(
n

d

)
+O(nd−1),

finishing the proof.
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A. List of Basic Theorems

For a set P ⊂ Rd, conv(P ) denotes the convex hull of P .

Carathéodory’s Theorem. If a point q ∈ Rd lies in the convex-hull of a set of points P , then it
also lies in the convex-hull of a set Q ⊂ P of size at most d+ 1.

Colorful Carathéodory’s Theorem. Given d + 1 sets of points P1, . . . , Pd+1 in Rd and a point q
such that q ∈ conv(Pi) for all i = 1, . . . , d+ 1, there exists a set Q such that q ∈ conv(Q) and where
|Q ∩ Pi| = 1 for all i. Such a Q is called a ‘rainbow set’.

Helly’s Theorem. Given a set C of compact convex objects in Rd such that every (d + 1) of them
have a common intersection, all of them have a common intersection.

VC-dimension. Given a range space (X,F), a set X ′ ⊆ X is shattered if every subset of X ′ can
be obtained by intersecting X ′ with a member of the family F . The VC-dimension of (X,F) is the
size of the largest set that can be shattered.

ε-nets. The ε-net theorem [HW87] states that there exists a ε-net of size O(d/ε log 1/ε) for any
range space with VC-dimension d. This bound was later improved in [KPW92] to a near-optimal
bound of (1+o(1))(dε log(1/ε)). For example, given a set P of n points in Rd and a parameter ε > 0,
a set Q ⊆ P is an ε-net w.r.t. halfspaces if any halfspace containing at least εn points of P contains
a point of Q.

Radon’s theorem. Any set of d + 2 points in Rd can be partitioned into two sets A and B such
that conv(A) ∩ conv(B) 6= ∅.

Tverberg’s theorem. Given a set P of (r − 2)(d + 1) + (d + 2) points in Rd, one can partition P
into r sets P1, . . . , Pr, such that there exists a point p lying in each conv(Pi), i.e., ∩iconv(Pi) 6= ∅.
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Kirchberger’s Theorem. Let P1, . . . , Pr be r sets of points in Rd whose convex-hulls have non-
empty intersection, i.e., ∩iconv(Pi) 6= ∅. Then there exist subsets P ′1 ⊆ P1, . . . , P

′
r ⊆ Pr of total size

(r − 1)(d + 1) + 1 which also have a non-empty common intersection, i.e., ∩iconv(P ′i ) 6= ∅, and
| ∪i P ′i | = (r − 1)(d+ 1) + 1.

Ramsey’s theorem for hypergraphs. There exists a function f(n) such that given any 2-coloring
of the edges of a complete k-uniform hypergraph on at least f(n) vertices, there exists a subset of
size n such that all edges induced by this subset are monochromatic.

Hadwiger-Debrunner (p,q)-theorem. Given a set S of convex objects in Rd such that out of
every p ≥ d+ 1 objects, there is a point common to q ≥ (d+ 1) of them, then S has a hitting set of
size HDd(p, q) (independent of |S|).

Centerpoint depth. Given any set P of n points in Rd, the Tukey depth of a point q ∈ Rd is the
minimum number of points of P contained in any halfspace containing q. It is known that there
always exists a point of Tukey depth at least n/(d+ 1).
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