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Introduction

Algebraic geometry studies algebraic varieties, which are the loci of points
in space satisfying a set of polynomial equations in several variables. This is
an ancient and popular subject of mathematics, connected to many other areas
such as algebraic topology, singularity theory, representation theory, combina-
torics, commutative algebra, and perhaps even theoretical physics and compu-
tational complexity.

Vector bundles can be though of as vector spaces varying continuously
along a given variety. These geometric objects offer a valuable point of view on
algebraic geometry, and represent the technical core of this work.

The first example of vector bundles that we will encounter are logarithmic
vector fields along a (reduced) divisor D in projective space Pn.

This bundle, denoted by TPn(− log D), was originally introduced by Deligne
and Saito (cf. [97, 277]) to study the Hodge theory of the complement of D.
It is actually not a bundle in general but only a reflexive sheaf, obtained as a
modification of the tangent bundle along the Jacobian ideal JD of D. More ex-
plicitly, JD is generated by the n+1 partial derivatives of a defining polynomial
f of D, i.e. JD is the image of the gradient map ∇( f ), and the restriction of JD

to D is the equisingular normal sheaf of D. The sheaf TPn(− log D) is the kernel
of ∇( f ), or in other words the first (sheafified) syzygy of JD.

The ideal JD and the sheaf TPn(− log D) carry deep geometric information
on the hypersurface D and the embedding j of D in Pn. Work in this direction
was started by Griffiths [154], and we know that TPn(− log D) captures part of
the primitive cohomology of the normalization of D, and controls the deforma-
tions of j, cf. [288]. The Chern classes of TPn(− log D) give invariants of the
polarity map associated with D, well-studied especially for homaloidal polyno-
mials (i.e. when the polarity map is birational). This ties in with classical geom-
etry of Cremona transformations, and also with the theory of prehomogeneous
vector spaces, invariant hypersurfaces and Severi varieties. In a different direc-
tion, relying on projective duality and on Kempf-Lascoux-Weyman’s method for
studying syzygies, one can compute in some cases the graded free resolution of
TPn(− log D), and this is also relevant in the calculation of classical invariants
such as discriminants, resultants etc.

vii



viii Introduction

In spite of these nice properties, several features of the sheaf of logarithmic
derivations remain quite mysterious. One of them will attract our attention,
namely the observation that for special choices of D, the sheaf TPn(− log D)
“splits”, i.e., it is a direct sum of line bundles; or in other words the associated
graded module is free - the hypersurface D is thus called free. In this nice
case, the divisor is expressed as determinant of the square matrix presenting
the logarithmic bundle.

We should be aware that this phenomenon is quite rare. In fact, the sin-
gularities of D have to be very rich to force freeness (the singular locus has
to be maximal Cohen-Macaulay of codimension 1). On the other hand, free
hypersurfaces are very interesting and arise naturally in several contexts. For-
mal free divisors occur, for instance, as discriminants of versal deformations of
singularities (cf. [61,226], see also [93] for a survey).

For projective divisors, freeness has been extensively studied for hyperplane
arrangements, i.e., divisors consisting of the union of finitely many hyperplanes
in Pn. An important instance of free arrangements arises when taking the
set of reflecting hyperplanes of a Coxeter group W . The quotient XW of the
complement of this hypersurface by the action of W is an Eilenberg-Mac Lane
space whose fundamental group is an Artin-Tits group, as shown by funda-
mental work of Deligne [98] and Brieskorn [53]. From the point of view of
derivations, this has been widely studied cf. [250, 298], and interesting free
arrangements arise when adding integral translates to the reflecting hyper-
planes, [318]. A tool to study freeness in this framework is given by Ziegler’s
multiarrangements, where logarithmic derivations are asked to be tangent with
a certain multiplicity to each hyperplane.

One of the main issues related to freeness of hyperplane arrangements is
whether it depends only on combinatorics, i.e., on the intersection lattice of
the hyperplanes under consideration: this is Terao’s conjecture. We will briefly
discuss this conjecture in Chapter 1. More generally, the problem of determin-
ing the projective dimension of the sheaf of logarithmic derivations is far from
being understood. Freeness has been examined also for other divisors such as
unions of lines and conics in the plane, [282]. In this case, strictly speaking,
freeness is not combinatorial, although it might be so if combinatorics were to
be taken in a broader sense (cf. the discussion below of Milnor vs. Tjurina
numbers). However, irreducible projective free divisors are, in general, not
quite easy to find (cf. [289,290]).

To study freeness, we carried out in [139] an approach based on vector
bundles and projective duality. It turns out that, if Z is the set of points dual to
the arrangement given by a divisor D, then TPn(− log D) is the direct image of
IZ/P̌n(1) under the standard point-hyperplane incidence. This method allows
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to quickly reprove many known results on (multi)arrangements (Saito’s crite-
rion, addition-deletion etc), and to show that freeness of a divisor D given by
2k + r + 1 lines in P2 is automatic in case c2(TP2(− log D)) = k(k + r) and D
has a point of multiplicity h ∈ [k, k+ r + 1], see Theorem II.9 of Chapter 1. So
in this case a strong version of Terao’s conjecture holds, for c2 is a very weak
combinatorial invariant of D.

The second main feature of the sheaf of logarithmic derivations (or dually,
logarithmic differentials) that we will be interested in, is a version of the Torelli
problem, namely the question of whether, or when, this sheaf determines the
divisor D we started with. We will give a brief survey of what is known about
this question, rooted in work of Clemens, Griffiths, Donagi, up to Comessatti
and Torelli himself.

Although a general answer to the Torelli problem is not known, several im-
portant cases are indeed well-understood, for instance smooth hypersurfaces
and, again, hyperplane arrangementsA . The case whenA is generic (or nor-
mal crossing) was solved in [107, 306]. To tackle the general case, one first
has to adopt a modified version, due to Dolgachev [105] (cf. also [76]), of
the sheaf of logarithmic differentials. This new sheaf is not even reflexive in
general (its double dual is indeed the classical sheaf of logarithmic differen-
tials), but carries a much richer information on the arrangement A . Having
this in mind, we gave in [138] a general Torelli theorem for arrangementsA ,
that states that A satisfies the Torelli property if and only if the dual set of
points Z in P̌n does not lie in what we called a Kronecker-Weierstrass variety.
These are defined by the 2× 2 minors of a 2× n matrix of linear forms, and
in this sense they constitute a possibly degenerate version of rational normal
curves. We refer to Theorem IV.6 of Chapter 1 for a more precise statement. We
will also sketch a proof of this result, based on integral functors and unstable
hyperplanes.

Next we outline a generic Torelli theorem, asserting that for a general choice
of sufficiently many hypersurfaces of various degrees in Pn, our sheaf of loga-
rithmic derivations determines the union of such hypersurfaces. Although this
result is far from being sharp, it provides a wide region where the Torelli prop-
erty does hold, and leaves to test only finitely many cases for each choice of
degrees of the components of D. It is the content of Theorem IV.8 of Chapter 1.

The next topic that we will treat is a particular class of vector bundles
(or sheaves), namely arithmetically Cohen-Macaulay (ACM) and Ulrich sheaves,
traditionally important in commutative algebra and representation theory of
rings, and recently much studied also in view of their connection with Boij-
Söderberg theory, cf. [122, 285], derived categories of singularities, cf. [253,
254] and non-commutative desingularization [64].
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ACM sheaves over an embedded variety X ⊂ Pn are characterized by the
vanishing of intermediate cohomology, or equivalently by fact that the mini-
mal graded free resolution of the associated module of global sections over the
polynomial ring is as short as possible, namely of length equal to the codimen-
sion of X . For Ulrich sheaves, one further requires that the resolution is linear.
ACM sheaves are the object of Chapter 2.

These sheaves offer a tight connection with determinantal representations.
Indeed, an ACM sheaf F on an integral hypersurface D of Pn defined as van-
ishing of a polynomial f provides a matrix factorization, [118] i.e. a square
matrix M whose determinant is a power of f , and the entries of M is linear
if F is Ulrich. One may further require the matrix to be symmetric or skew-
symmetric, in which case ACM bundles are related to theta characteristics and
Pfaffian representations. A survey of results on existence and classification of
ACM and Ulrich bundles on hypersurfaces will be given in Chapter 2. We will
also mention some speculations on the minimal rank of these bundles, related
to the conjectural minimality attained by the rank of the terms of the Koszul
complex among Betti numbers of an ACM sheaf.

In a different direction, determinantal hypersurfaces are closely related to
representations of a convex region in affine space as a linear matrix inequality
(LMI), i.e. as the set of points where a given symmetric matrix M of affine linear
forms is positive semidefinite. A beautiful theorem of Helton-Vinnikov provides
an LMI for real plane curves with a maximum number of nested ovals; however
existence of LMI’s in higher dimension is the object of an important conjecture
of P. Lax, see again Chapter 2 for details.

One main issue concerning ACM sheaves is to describe as completely as
possible the class of ACM bundles on a given variety. For some particular vari-
eties this boils down to an exhaustive classification, tightly related to splitting
criteria. For instance on projective spaces and quadrics, ACM indecomposable
bundles are either of rank 1 or, for quadrics, isomorphic to spinor bundles
(cf. [173,206], see also [258] for extensions of Horrocks’ splitting criterion).

However, this extremely simplified behaviour is very rare, for few varieties
X admit finitely many indecomposable isomorphism classes of ACM bundles up
to twist by line bundles (X is called of finite CM type), and their classification is
completed in [121]. Besides projective spaces, quadrics, and rational normal
curves, only two more CM-finite varieties of positive dimension exist: a rational
cubic scroll in P4 and the Veronese surface in P5. This classification, rooted
in work of Auslander, Buchweitz, Greuel, Schreyer and others, ties in with
Bertini’s classification of varieties of minimal degree.

Some other varieties, for instance curves of genus ≥ 2, admit families of
arbitrarily large dimension of such bundles (the variety is thus called of wild
CM type), which makes the classification a bit hopeless. We will give a brief
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survey of the very large class of varieties which are known to be of this type,
which include most Segre products (cf. [90]), the triple Veronese embedding
of any variety (cf. [237]), and hypersurfaces of degree ≥ 4 in Pn, with n ≥ 3
(cf. [92]).

However, not all varieties are of finite or wild CM type. A smooth projective
curve of genus 1, for instance, is of tame CM type, namely, although isomor-
phism classes of ACM indecomposable bundles are indeed infinitely many, any
family parametrizing such classes has dimension 1 at most, [14]. Conjecturally
this trichotomy exhausts all smooth varieties (not singular ones, however, as for
instance quadric cones over a point support countably many indecomposable
ACM sheaves).

In Theorem IV.2 of Chapter 2, we prove that P1 × P1, embedded by
OP1×P1(1, 2), is of tame CM type. The proof, given in some detail, goes through
a classification based on a semiorthogonal decomposition of the derived cat-
egory of P1 × P1 adapted to our purpose. This surface can also be seen as a
scroll P(OP1(2)2), embedded by the relatively ample line bundle. Although we
do not study this here, the scroll P(OP1(1)⊕OP1(3)), also should be of tame CM
type (this is actually work in progress). One should be warned that no other
smooth projective variety of this kind is known today, besides the elliptic curve
we already mentioned. We conjecture that this is for the good reason that there
is actually no other such variety at least in positive dimension.

In a different direction, one can hope to classify ACM bundles with special
properties. Among them, a notable one is rigidity (i.e. no non-trivial infinitesi-
mal deformation of our sheaf exists). For some Veronese rings, this is has been
done in [189], see also [200], making use of cluster tilting in triangulated cat-
egories. We will give a different proof of this result based on vector bundles
methods and classical results of Beilinson and Kac, [34,193], see Theorem III.1
and Theorem III.3 of Chapter 2.

The last chapter of this work is devoted to another special class of vector
bundles, namely instantons. These arose in the algebrization of solutions of the
Yang-Mills differential equation, via the fundamental work of Penrose, Atiyah,
and others [15, 16, 262]. In terms of algebraic geometry, they are defined as
stable vector bundles E of rank 2 on the complex projective space P3, having
c1(E) = 0 and with the prescribed cohomology vanishing H1(P3, E(−2)) = 0.
We speak of k-instanton if c2(E) = k.

The main questions on k-instantons concern geometric properties of their
moduli space MIP3(k) such as smoothness, irreducibility and so forth. The
analysis in this sense was arguably started by Barth, Hartshorne and oth-
ers, [23, 24, 163], and has recently come to show smoothness [191] and ir-
reducibility at least for odd k, cf. [300].
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An extension of the notion of instanton to a slightly broader class of base
manifolds has been proposed in [133,220], namely Fano threefolds X of Picard
number 1. In this case, the canonical bundle of X is of the form OX (−iX h), for
some integer 1≤ iX ≤ 4 called the index of X , where h is the positive generator
of the Picard group of X . Somehow these varieties provide a natural framework
to extend notions typical of projective spaces; one advantage in dimension 3
is that they are completely classified (even neglecting the assumption on the
Picard number), we refer to the book [188] for an extensive treatment.

For a given Fano threefold X of Picard number 1 and index iX , we set
q = biX/2c and define a k-instanton to be a stable vector bundle E of rank
2, such that c1(E(−q)) = −iX and H1(X , E(−q)) = 0. Indeed, for iX = 4 (so
q = 2), if c1(E) = 0 we get c1(E(−2)) = −4, and our notion gives back usual
k-instantons. However, when iX is odd, c1(E) is also odd, and we speak thus of
odd instantons.

A survey of results on instantons and more generally on moduli spaces of
stable sheaves on Fano threefolds will be given at the beginning of Chapter
3, including some sketches of related topics such as the map of periods and
derived categories. In fact, one of the main classical tools to analyze the moduli
space MIP3(k) is provided by monads, via Beilinson’s theorem, cf. [26]. We will
overview the way to set up this tool, relying on the structure of the derived
category of X , for the other Fano threefolds X with trivial intermediate Jacobian
arriving to a parametrization of MIP3(k) as geometric quotient of a space of self-
dual monads.

Even when the intermediate Jacobian J(X ) of our threefold X is not trivial,
the situation is quite well understood at least when X is rational. In this case,
J(X ) is the Jacobian of a curve C of positive genus, related to X by Kuznetsov’s
homological projective duality, cf. [217]. In fact the curve C in this case pro-
vides the non-trivial component of the derived category Db(X ), in the sense
that this category is orthogonal to an exceptional sequence of maximal length.
This subcategory conjecturally captures important features of a given variety,
as for instance a smooth cubic fourfold should be rational if and only if this
category is equivalent to the derived category of a K3 surface (Kuznetsov’s con-
jecture, [211]); while a cubic threefolds is determined by such subcategory
(categorical Torelli of [35]). Homological projective duality gives a very ef-
ficient tool to control this subcategory in terms of the dual variety, the only
drawback being the little number of examples available today, essentially pro-
jective bundles and two Grassmannians, G(2, 6) and G(2,7). We hope that at
least one more construction could come from the Cayley plane via the desingu-
larization of the Cartan cubic, with applications to cubic sevenfolds, [137,182].
The point we would like to stress here is however focused on the use of this
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setup in the study of moduli of vector bundles, replacing exceptional sequences
and monads by semiorthogonal decompositions and Fourier-Mukai functors.

We look at this situation in detail in a specific case, namely that of prime
Fano threefolds of genus 10. Such a threefold X is obtained as double hyperplane
section of a variety Σ of dimension 5, homogeneous under the exceptional Lie
group G2. The dual variety of Σ is a sextic hypersurface in P̌13, and the pencil
of hyperplanes defining X cuts this sextic at 6 points. Taking the associated
double cover of P1, we get the homologically dual curve C which in this case
has genus 2.

We will rely on the method developed in [48,50] to describe this curve as
a moduli space of bundles of rank 3 on X (Theorem II.1), whereby refining a
result of Kapustka and Ranestad, [198]. This will allow us to provide a descrip-
tion of the Hilbert schemes of lines, conics, and rational cubics contained in X
in terms of divisor of class 3Θ in J(C) (for lines), or J(C) itself (for conics), or,
for cubics, as a projective bundle P(V ), where V is a particular stable vector
bundle on C , of rank 3, and with trivial determinant. This will allow us to pa-
rametrize odd k-instanton on X as simple bundles on C , with rank and degree
k with at least k− 1 independent morphisms from V ∗ (plus two slightly more
technical conditions).

Moreover, we will see in Theorem II.7 that the bundle V lies in a special
divisor of the moduli space MC(3) of stable bundles of rank 3 with trivial de-
terminant on C , called the Coble-Dolgachev sextic. Indeed, the so-called theta
map provides a 2 : 1 morphism MC(3)→ P8, which is ramified along a sextic
hypersurface, dual to the Coble cubic in P̌8 (cf. [255]). We conjecture that
the general fibre of the period map of Fano threefolds of genus 10 is an open
dense subset of the Coble-Dolgachev sextic. In other words, the choice of V
should allow us to recover X , although for the moment we have not been able
to check this. This is closely related to conjectures of Mukai (on realisation
of X as a Brill-Noether locus) and of Kuznetsov (on the relation between X
and the intersection of two quadrics in P5 in terms of instantons and derived
categories).

The three main chapters of this work contain a short discussion of open
problems that seem interesting to me. Most results cited here are cited without
proof. Besides some exceptions, detailed arguments are only given in case they
have not appeared so far (at least to my knowledge).

-
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CHAPTER 0

Preliminaries and background

Our point of view on algebraic varieties is based on vector bundles, or
more generally on sheaves, together with a collection of related notions, such
as characteristic classes, moduli spaces, deformation theory, derived categories,
and so forth.

We give here a reminder of some of these notions, essentially aimed at
fixing terminology and notation. We refer mainly to [162] and [178].

I. Notation and conventions

By k we will always denote a base field, in principle an arbitrary one. How-
ever, we will mainly deal with algebraically closed field of characteristic zero
(in practice, with C).

I.1. Polynomial rings. Let V be a vector space over k. Given an integer
d ≥ 0, we will denote by Sd V the d-th symmetric power of V , i.e., the quotient
of V⊗ d by the subspace generated by u1⊗· · ·⊗ud−uσ1⊗· · ·uσd for all σ ∈Sd

and all u1, . . . , ud ∈ V . One has the multiplication map Sd V ⊗Se V → Sd+e V ,
and the comultiplication Sd V →

⊕

e Se V ⊗Sd−e V , which is induced by the
diagonal inclusion V → V ⊕ V .

For a positive integer n, we will denote by S the polynomial ring
k[x0, . . . ,xn], and by Sd the homogeneous piece of degree d of S. If V has
dimension n+ 1, then Sd can be identified with Sd V and S is the symmetric
algebra ⊕d≥0 Sd V . We write m for the maximal ideal (x0, . . . , xn) of S.

Given a multiindex i, we will write xi for the monomial
∏

j x
i j

j , so in this

situation x is implicitly written as indexed variable. In this framework,
� i

k

�

is

defined as
∏

j

� i j
k j

�

. We also denote by ∂i the derivation in S with respect to the

variable xi .

Given a polynomial f in S, or more generally and ideal I of S, we denote
the zero-locus of f , or of I , in An by V( f ). If f , or I , are homogeneous, V( f )
will be thought of as a subvariety of the projective space.

I.2. Projective spaces and Grassmannians. Let V be a vector space of
dimension n + 1 over k. We will write P(V ) for the projective space of 1-
dimensional quotients of V . We will set Pn = Pn

k = P(k
n+1). The set P̌n of

1
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hyperplanes of Pn is called the dual projective space. This is the space of 1-
dimensional vector subspaces of V , and is identified with P(V ∗), we also write
P̌(V ) = P(V ∗). Accordingly, Γ(P(V ),OP(V )(1)) is naturally identified with V
while Γ(P̌(V ),OP̌(V )(1))' V ∗.

Likewise, we will write G(V, k) for the Grassmannian of k-dimensional quo-
tient spaces of V , and G(k, V ) for the k-dimensional subspaces of V , so that
G(k, V ) is identified with G(V ∗, k).

Also, there are natural vector bundles U and Q on G(V, k), called tau-
tological bundles, whose fibres over a point Λ of G(V, k) corresponding to a
quotient space Λ of V are given by QΛ = Λ and UΛ = ker(V → Λ). So we have
rk(Q) = k, rk(U ) = n+ 1− k, and an exact sequence:

(I.1) 0→U → V ⊗OG(V,k)→Q → 0.

Beware that, when dealing with G(k, V ), the tautological bundles will have
different conventions, namely we will have rk(U ) = k, rk(Q) = n+ 1− k.

Given integers 0 < n1 < . . . < ns < n, we will occasionally use the notation
F(n1, . . . , ns) for the flag manifold of subspaces Λ1 ⊂ · · · ⊂ Λs of V having
dimension dim(Λi) = ni .

I apologize with the reader for this “double notation” issue, which is due
to the contrast between the more familiar notion of projective space (with sub-
spaces), and the better sheaf-theoretic behaviour of the dual notion (with quo-
tient spaces). In a minute, we will see set up the notation for the relative case
too.

I.3. Varieties. Let us fix a base field k. A variety X over k will mean a
separated scheme of finite type over k. A point of a variety, of a scheme X will
usually mean a closed point of X , although in two or three occasions we will
use S-valued points, S being an arbitrary k-scheme, but this will be pointed out
explicitly. A manifold will mean a smooth variety. We will write Xsm for the set
of smooth points of a reduced variety X .

Given a subscheme Y of a variety X , we will denote by IY /X the ideal sheaf
of Y in X , and by NY /X the normal sheaf of Y in X . Given a coherent sheaf E
on X , we will sometimes write EY for E|Y = E⊗OY .

If s is a global section of a coherent sheaf E on X , the scheme-theoretic
zero-locus of s will also be denoted by V(s).

Given a variety X , we will use the cohomology groups Hi(X , E) attached
to a coherent sheaf E on X , which are finitely-dimensional k-vector spaces,
and we will write hi(X , E) for dimHi(X , E). For a pair of coherent sheaves
E, F on X , we will write χ(E, F) =

∑

(−1)i exti
X (E, F) (where exti

X (E, F) =
dimk Exti

X (E, F)) and χ(E) = χ(OX , E).
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For a pair of varieties X and Y , we will write πX and πY for the projections
from X ×Y onto X and Y . If E and F are coherent sheaves defined respectively
on X and Y , we write E � F for π∗X (E)⊗π

∗
Y (F).

I.4. Divisors, polarized varieties. A polarized variety will mean a pair
consisting of a variety X and the linear equivalence class of an ample Cartier
divisor h over X . Given the class h, we will write OX (h) for the associated line
bundle. In case there is a morphism f : Y → X , we will write by abuse of
notation OY (h) for OY ( f ∗(h)).

A Weil divisor D on a (geometrically) integral variety X has simple (or strict)
normal crossings if, locally in the Zariski topology, in the algebraic closure of k,
all the irreducible components of D are smooth and intersect transversely. If, in
the algebraic closure of k, all the components of D intersect transversely locally
in the étale topology, then D has normal crossings.

II. Basic material on coherent sheaves

We will need several notions concerning coherent sheaves on algebraic va-
rieties, which are a geometric counterpart or finitely generated modules over
commutative rings. We refer to [162] for the basics on coherent sheaves, vector
bundles (i.e., locally free sheaves), sheaf cohomology, and so forth.

II.1. Semistable sheaves and moduli spaces. Let X be an m-dimensional
connected manifold over a field k.

II.1.1. Chern classes. The Chern classes ck(F) are defined for any coherent
sheaf F on X . According to the specific situation, we will consider them as
elements of the Chow ring CH∗(X ) (see [146]), or, when k = C as elements of
Hk,k(X ) (see for instance [69]). In the sequel, the Chern classes will be written
as integers as soon as the corresponding ambient space has dimension 1 and
the choice of a generator is made. All these conventions should be clear from
the context.

The Chern polynomial of a coherent sheaf F on X is defined as cF (t) =
1+c1(F)t+. . .+cm(F)tm. Let Z be an integral subscheme of X , of codimension
p ≥ 1, denote by [Z] its fundamental class in Hp,p(X ) (or in CHp(X )). We recall
that when a sheaf T is supported at Z , and has rank r at a generic point of Z ,
then we have ck(T ) = 0 for 1≤ k ≤ p− 1 and:

cp(T ) = (−1)p−1r[Z].

If Z is not integral, a similar formula holds by taking the sum over all integral
components of minimal codimension appearing in the support of T , weighted
by their multiplicity.
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II.1.2. Torsion-free, reflexive sheaves. Let X be an integral, locally factorial
variety over k. Given a coherent sheaf F on X , we write rk(F) for the rank of F
at a general point of X . We denote by F∗ =H omX (F,OX ) the dual of F . Recall
that a coherent sheaf F on X is reflexive if the natural map F → F∗∗ of F to its
double dual is an isomorphism. Anyway F∗∗ is called the reflexive hull of F , the
map F → F∗∗ is injective if F is torsion-free, and the support of its cokernel is
has codimension at least 2 in X . Moreover, any locally free sheaf is reflexive,
and any reflexive sheaf is torsion-free (recall that a coherent sheaf E on X is
torsion-free if, for all points x of X , and all 0 6= f ∈ OX ,x the multiplication by
f : Ex → Ex is injective). It is true that a coherent sheaf F on X is reflexive if
and only if it can be included into a locally free sheaf E with E/F torsion-free,
see [165, Proposition 1.1]. Moreover, by [165, Proposition 1.9], any reflexive
rank-1 sheaf is invertible (because X is integral and locally factorial).

Finally, we will use a straightforward generalization of [165, Proposition
2.6] which implies that the third Chern class c3(F) of a rank 2 reflexive sheaf F
on a smooth projective threefold satisfies c3(F) ≥ 0, with equality attained iff
F is locally free.

II.1.3. Hilbert polynomial. Let (X , hX ) be a polarized variety of dimension
m. Given a coherent sheaf F on X , we usually simplify F(thX ) to F(t). We de-
note by p(F, t) the Hilbert polynomial of F namely χ(F(t)). If F is torsion-free
of generic rank r 6= 0, the dominant term of this polynomial is rk(F)deg(X )/m!.
We write p(F, t) for the reduced Hilbert polynomial:

p(F, t) =
χ(F(t))

r
.

Given polynomials p, q ∈ Q[t], we write p(t) � q(t) if p(t) ≥ q(t) for
t � 0 and p(t) � q(t) if p(t) > q(t) for t � 0. We let Hilbp(X ) be the
Hilbert scheme of subschemes Y of X having Hilbert polynomial χ(OY (t)) equal
to p(t). Given integers d, g, we let H d

g (X ) be the union of components of
Hilbd t+1−g(X ) containing locally Cohen-Macaulay curves Y ⊂ X (i.e., curves
Y with no isolated or embedded components) having degree d and arithmetic
genus g.

II.1.4. Summary on semistable vector bundles and sheaves. We will deal with
with semistable sheaves in characteristic zero only, even though many con-
structions can be carry out in greater generality (cf. [222]). However we set
char(k) = 0, and assume k algebraically closed.

Let X be a connected m-dimensional manifold over k, and let hX be an
ample divisor class on X . A torsion-free coherent sheaf F on X is hX -semistable
in the sense of Gieseker-Maruyama if, for any coherent subsheaf E of F , with
rk(E)< rk(F), one has the inequality of reduced Hilbert polynomials:

p(F, t)� p(E, t).
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The words “in the sense of Gieseker-Maruyama” will be tacitly omitted. The
sheaf F is called stable if for all E as above we have p(F, t) � p(E, t). A
semistable sheaf is called polystable if it is the direct sum of stable sheaves
having the same reduced Hilbert polynomial.

The slope of a torsion-free sheaf F 6= 0, sometimes denoted by µ(F) is the
rational number defined as deg(F)/ rk(F), where deg(F) = hm−1

X · c1(F). The
normalized twist Fnorm of F is set to be the unique sheaf F(t) whose slope is in
(−1, 0]. In general, we say that a coherent sheaf F on X has a certain property
up to a twist if there is t such that F(t) has that property.

A torsion-free coherent sheaf F is semistable in the sense of Mumford-
Takemoto, or slope-semistable if the slope of any coherent subsheaf E with
rk(E) < rk(F), is at most the slope of F . The sheaf F is called slope-stable if
we require strict inequality. We define the discriminant of F as:

∆(F) = 2rc2(F)− (r − 1)c1(F)
2.

Bogomolov’s inequality, see for instance [178, Theorem 3.4.1], states that if F
is µ-semistable, then we have:

∆(F) · hn−2
X ≥ 0.

Another useful tool is Hoppe’s criterion, see [172, Lemma 2.6], or [5, The-
orem 1.2]. It says that, if the line bundle hX is very ample and generates Pic(X ),
and F is a vector bundle on X of rank r, we have:

if H0(X , (∧pF)norm) = 0, ∀0< p < r, then the bundle F is slope-stable.

A basic property of semistable sheaves is that their tensor product remains
semistable, see for instance [178, Theorem 3.1.4].

II.1.5. Moduli spaces. Let again k be algebraically closed of characteris-
tic zero. We introduce here some notation concerning moduli spaces. Recall
that two semistable sheaves are S-equivalent if the direct sum of all successive
quotients associated with their Jordan-Hölder filtrations are isomorphic. We
denote by MX (r, c1, . . . , cm) the moduli space of S-equivalence classes of rank r
torsion-free semistable sheaves on X with Chern classes c1, . . . , cm, considered
as elements of the intersection ring. We will drop the values of the classes ck

from k0 on when they are zero from k0 on. The class in MX (r, c1, . . . , cm) of a
given sheaf F will be denoted again by F .

The moduli space MX (r, c1, . . . , cm) is a projective separated k-scheme of
finite type; however not much more is known about it in general. The Zariski
tangent space of this space at the point corresponding to a stable sheaf F is
naturally identified with Ext1

X (F, F). The obstructions at F lie in Ext2
X (F, F), so

if this space is zero then MX (r, c1, . . . , cm) is smooth at F .
We and refer to the book [178] for more details on these notions.
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II.2. Cohomology and derived categories. Let us introduce some nota-
tion and recall some notions concerning some of the cohomological tools that
we will use.

II.2.1. Cohomology of sheaves and modules. Let (X , hX ) be a polarized vari-
ety, and F be a coherent sheaf on X . The following notation is standard:

Hi
∗(X , F) =

⊕

t∈Z
Hi(X , F(t)), Γ∗(X , F) = H0

∗(X , F).

Here, Γ∗(X ,OX ) is a graded k-algebra, and the Hi
∗(X , F) are modules over it.

By Serre’s vanishing, Hi
∗(X , F) is zero in sufficiently high degree for i > 0. Also,

F is said to have natural cohomology if, for all t ∈ Z, there is at most one value
of i such that Hi(X , F(t)) 6= 0.

Let now X ⊂ Pn be an embedded variety. Then we write IX for the homo-
geneous ideal of X in S, and SX for the graded quotient k-algebra S/IX . This
is a subalgebra of Γ∗(X ,OX ). If F is a coherent sheaf on X then Hi

∗(X , F) is a
graded SX -module, whose component in degree j is Hi(X , F( j)).

Further, for a given S-module F , we write Hi
m(F) for the local cohomology

of F with respect to m. The S-module H0
m(F) is defined as:

H0
m(F) = {v ∈ F | mk ·v = 0, for some k ≥ 0},

and Hi
m(−) is the right derived functor of order i of the functor H0

m(−). The
dimension and depth of F are, respectively, the maximum and the minimum i
such that Hi

m(F) 6= 0.
Given a coherent sheaf F on X , set F = Γ∗(X , F). This is an SX -module

whose sheafification is F . On the other hand, if F is a module over SX , if we let
F be its sheafification, then there is a long exact sequence:

0→ H0
m(F)→ F → Γ∗(X , F)→ H1

m(F)→ 0,

while for i > 0 there are isomorphisms:

Hi+1
m (F)' Hi

∗(X , F).

We refer for instance to [119, Appendix 4] and [292].

II.2.2. Derived categories. Let X be a smooth projective variety over k. We
will use the derived category Db(X ) of bounded complexes of coherent sheaves
on X . We refer to [149, 177] for a detailed account of this triangulated cate-
gory, and to [69] for a very nice survey on its basic features.

An object E of Db(X ) is a bounded complex of coherent sheaves on X :

· · · → E−1→E0→E1→ ·· ·

As usual, we write [ j] for the j-th shift to the left in the derived category,
so E[ j]i = E i+ j . The coherent sheaves H i(E ) are defined as cohomology in
degree i of the complex E . We will denote by Hi(X ,E ) the hypercohomology in
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degree i of E , associated to the functor of global sections of E . This is identified
with HomDb(X )(OX ,E[i]). Similarly, given two complexes E and F of Db(X ),
the hypercohomology Exti

X (E ,F [i]) is identified with HomDb(X )(E ,F [i]).
An object E of Db(X ) is exceptional if Exti

X (E ,E ) is 0 when i 6= 0 and k
when i = 0 (this last condition says that E is simple). A sequence (E1, . . . ,Es)
of objects of Db(X ) is an exceptional collection if all the Ei are exceptional, and
Exti

X (E j ,Ek) = 0 for all 1 ≤ k < j ≤ s and all i. Given a set S of objects of
Db(X ), we denote by 〈S〉 the smallest full triangulated subcategory of Db(X )
containing S. A sequence (E1, . . . ,Es) of objects of Db(X ) is a full exceptional
collection if it is an exceptional collection, and 〈E1, . . . ,Es〉= Db(X ).

Given a full subcategoryA of Db(X ), we writeA ⊥ for the right orthogonal
of A , namely the full triangulated subcategory of objects F of Db(X ) such
that HomX (E ,F ) = 0 for all objects E of A . Similarly one defines the left
orthogonal ⊥A . A subcategory A of Db(X ) is called left or right admissible
if the inclusion iA : A ,→ Db(X ) has a left or right adjoint, which will be
denoted as usual by i∗A and i !

A . Also, A is called admissible if it is so in both
ways. AssumingA admissible, we have Db(X ) = 〈A ,⊥A〉= 〈A ⊥,A〉,A ⊥ is
left admissible and ⊥A is right admissible. In this situation, the left and right
mutations throughA are defined respectively as:

LA = iA ⊥ i∗A ⊥ and RA = i⊥A i !
⊥A .

We refer to [40,150] for more details.
If A is generated by an exceptional object A, and B is an object of Db(X ),

the left and right mutations of B through A are defined, respectively, by the
triangles:

LA B[−1]→ Hom(A, B)⊗ A→ B→ LA B,

RA B→ A→ Hom(A, B)∗⊗ B→ RA B[1].

We will make use a couple of times of Grothendieck duality, we refer to
[177, Theorem 3.34] for a statement sufficient for our purposes.

III. Projective and Grassmann bundles and cokernel sheaves

Let W be a quasi-projective variety over k, and let F be a coherent
sheaf over W . For any integer k, there is a variety G(F , k), parametriz-
ing k-dimensional quotient modules of F , see for instance [178, Example
2.2.3]. This variety, called the k-th Grassmann bundle of F , is a special case
of Grothendieck’s Quot-scheme, and as such it is universal for families of k-
quotients of F and is equipped with a projective morphism π :G(F , k)→W .

As a functor of points, G(F , k) is described as follows. Take a k-scheme S
and a morphism f : S → W , and write FS = f ∗F . Then, the corresponding
S-point [λ] of G(F , k) is given by the set of equivalence classes of surjective
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maps λ : FS → V , with V locally free of rank k on S, where λ′ : FS → V ′ is
equivalent to λ if there is an isomorphism ϕ : V ' V ′ such that λ′ = ϕ ◦λ. We
refer again to [178] for related material on S-valued points of a k-variety. A
closed point (or a k-point) of G(F , k), lying over a point x ∈W , is a k-vector
space Λ of dimension k, equipped with a surjective linear map λ :Fx → Λ. On
the Grassmann bundle, there is a natural rank-k quotient bundleQF of π∗(F ),
and we sometimes denote byUF the kernel of the canonical projection, so that
we have:

0→UF → π∗(F )→QF → 0.

The subscript F will be frequently omitted. Of course, in case W is a point,
thenF is just a k-vector space V , soG(F , k)'G(V, k) and the above sequence
becomes (I.1). We have π∗(StQ) ' StF , for all t ≥ 0, where St denotes the
t-th symmetric power of Q.

The most important special case is that of the projective P(F ) arising
as G(F , 1), in which case one writes QF is a line bundle, usually denoted
by OF (1), namely the Grothendieck tautological line bundle. In this case
π∗(OF (t)) ' StF , for all t ≥ 0. Some important instances of this arise when
F is a vector bundle or rank r on W , in which case π is a Zariski-locally trivial
fibration over W whose fibres are projective spaces of dimension r − 1; and
when F ' IZ/W ⊗L , where Z is a subvariety of W and L is a line bundle on
W , in which case P(F ) is the blow-up of W along Z .

III.1. Grassmann bundles and morphisms of vector bundles. Let now
W be an integral variety over k, and let E and F be coherent sheaves on W .
Set u = rk(E ) and v = rk(F ) and let φ : E → F be a morphism of coherent
sheaves. Set Cφ = coker(φ). For any 1 ≤ k ≤ v, we consider the Grassmann
bundle G(F , k). There is a natural isomorphism:

HomW (E ,F )' HomG(F ,k)(π
∗(E ),Q).

Let us write sφ for the image of φ under the above isomorphism, and consider
its vanishing locus Yφ = V(sφ).

Lemma III.1. There is an isomorphism Yφ 'G(Cφ , k).

PROOF. By Yoneda’s lemma, we are authorized to prove that the functors
of points induced by Yφ and G(Cφ , k) are isomorphic. Set C = Cφ . The
surjection g : F → C induces a closed embedding g∗ : G(C , k) ,→ G(F , k),
which is given explicitly as follows. For any k-scheme S, an S-valued point
[λ] of G(C , k) is given by a morphism f : S → W and the class of a quotient
λ : CS → V where V is locally free or rank k on S. So, with [λ] we associate
the class [µ] of µ = λ ◦ g :FS →V . Clearly, µ ◦φS = 0. In fact, it is also clear
that the condition µ ◦φS = 0 defines G(C , k) as a subscheme of G(F , k), for a
quotient µ of FS factors through CS if µ ◦φS = 0.
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It remains to see that the condition µ ◦φS = 0 is also equivalent the van-
ishing of sφ at [µ]. Of course µ◦φS = 0 is equivalent to ask that, for all a ∈ ES ,
one has µ(φS(a)) = 0. Now we identify ES and π∗(ES) via π∗, and use the
identification QS ' V given by µ and the structure formula in QS:

sφ(b)(µ) = µφ(π∗(b)), for all b ∈ π∗(ES).

This says that [µ] is an S-point of G(C , k) if and only if sφ(b) vanishes at [µ]
for all b ∈ ES , i.e., if and only if [µ] lies in V(sφ). Summing up we have proved
the isomorphism V(sφ)'G(C , k). �

In particular, P(C ) is the subvariety of P(F ) defined as the zero-locus of
the global section sφ of π∗(E ∗)⊗OF (1) naturally given by φ.

III.2. Grassmann bundles and degeneracy loci. Let again W be a con-
nected manifold, and assume E and F locally free, again of rank, respectively,
u and v, with v ≤ u. Let 1≤ r ≤ v be an integer, and consider the r-th degener-
acy locus Dr(φ) of φ, defined set-theoretically by:

Dr(φ) = {x ∈W | rk(φx)≤ r}.

Of course, Dk(φ) is naturally a subvariety of W , defined by the minors of order
r + 1 of φ, locally on a trivializing cover of E and F .

Lemma III.2. Set k = v − r. Assume that, for x general in any component of
Dr(φ), we have rk(φx) = r. Then Dr(φ) is birational to V(sφ).

PROOF. Set C for the cokernel sheaf Cφ = coker(φ), and recall that
V(sφ) ' G(C , k). Note that π(V(sφ)) ⊂ Dr(φ) (at least set theoretically). In-
deed, if x ∈W is a closed point lying in the image of π, then a point in π−1({x})
is given by a k-dimensional vector space Λ and a quotient map Cx → Λ, i.e. a
quotient µ : Fx → Λ with µ ◦φx = 0. For such quotient to exist at all, φ has
must have corank at least k at x , i.e. φx has rank at most r, hence x lies in the
degeneracy locus Dr(φ). Working with S-valued points on a trivializing cover
of E and F , we see analogously that π maps V(sφ) to Dr(φ) as schemes.

Under our assumption, the locus U = Dr(φ)\Dr−1(φ) is open and dense in
Dr(φ). Also, over the open subset U , the sheaf C is locally free of rank k, and
therefore G(CU , k) ' U , which says that U ' V(sφ)×Dr (φ) U , so that Dr(φ) is
birational to V(sφ). �





CHAPTER 1

Logarithmic vector fields along a divisor

In this chapter, I will give an introduction to the sheaves of logarithmic vec-
tor fields and logarithmic 1-forms, mainly for divisors of the projective space,
with a focus on freeness issues and Torelli problems.

I will describe these sheaves under various points of view, sketch the proof
of two theorems extracted from [138] and [139], show one result essentially
from the Ph. D. thesis of E. Angelini, and mention many well-known theorems
and constructions, few of which will be proposed with a proof, variably similar
to the original one.

I. Logarithmic derivations and syzygies of the Jacobian ideal

Let D ⊂ Pn be a hypersurface over a field k, defined by a homogeneous
polynomial f ∈ S of degree d. The singularities of D are controlled by the
Jacobian ideal JD given by the partial derivatives of f .

JD = (∂0 f , . . . ,∂n f ).

The generators of JD are thus given by the gradient of f :

∇ f : Sn+1 (∂0 f ,...,∂n f )
−−−−−−→ JD(d − 1).

Definition I.1. The graded module of logarithmic derivations Der0(− log D) of
D is defined as ker(∇ f ).

0→ DerS(− log D)0→ Sn+1 (∂0 f ,...,∂n f )
−−−−−−→ JD(d − 1)→ 0.

Formally, once fixed a k-vector space V of dimension n + 1, so that
Pn = P(V ), we have V ∗ = 〈∂0, . . . ,∂n〉. The derivation map Sd ⊗V ∗ → Sd−1

is induced by the comultiplication Sd → V ⊗Sd−1. In characteristic zero, the
module DerS(− log D)0 is as a direct summand of the reduced module of loga-
rithmic derivations, DerS(− log D), which we now define (hence the subscript
0). Let DerS be the free S-module of polynomial first-order differential opera-
tors of order on S, so:

DerS = ∂0S⊕ · · · ⊕ ∂nS.

An element θ ∈ S is a derivation of the form g0∂0 + · · ·+ gn∂n. We define the
graded S-module of affine logarithmic derivations:

DerS(− log D) = {θ ∈ DerS | θ( f )⊂ ( f )}.

11
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Consider the quotient ring S(D) = S/( f ), and set J D
D for the polar ideal of D,

i.e., the image in S(D) of JD. Then we have the defining exact sequence:

(I.1) 0→ DerS(− log D)→ Sn+1 ∇ f
−→ J D

D (d − 1)→ 0.

If char(k) does not divide deg( f ), then J D
D ' JD/S(−d) because of the Euler

relation
∑

xi∂i f = deg( f ) f , and the Euler derivation gives a splitting:

DerS(− log D)' DerS(− log D)0⊕ S(−1).

Both the modules DerS(− log D) and DerS(− log D)0 are called, in the literature,
modules of logarithmic derivations, although we added the adjective “affine” to
the first of them. Anyway, the context should always make clear of which of
them one is speaking.

Occasionally, we will prefer speaking of logarithmic derivations for non-
homogeneous polynomials, i.e., for hypersurfaces of an affine space An. In this
case, given a hypersurface D = V( f ) ⊂ An we write Dh = V( fh) ⊂ Pn, where
fh is the homogenization of f . Else, one could study the affine hypersurface
given by a homogeneous polynomial, i.e. the affine cone D̂ over the projective
hypersurface D. For D ⊂ An, we also have the cone cD = D̂h ⊂ An+1. This
terminology is quite frequent in the literature devoted to hyperplane arrange-
ments; the cones cD are in this case called central arrangements.

I.1. Logarithmic vector fields and differentials. The definition proposed
above of the graded module of logarithmic derivations has a natural sheaf-
theoretic counterpart: Deligne-Saito’s sheaf of vector fields with logarithmic
poles along a reduced hypersurface D. Dually, we have a sheaf of 1-forms with
logarithmic poles along D. This sheaf, together the whole complex of higher or-
der forms with logarithmic poles, was extensively used for the study of Hodge
theory of quasiprojective manifolds, as a refinement of the Grothendieck de
Rham complex of forms with arbitrary meromorphic poles along D, [155]. It
was defined by Deligne for divisors with normal crossing, cf. [97], and gener-
alized by Saito to arbitrary reduced divisors, cf. [277]. Let is review briefly the
construction here.

I.1.1. Logarithmic vector fields. Let D ⊂ Pn be a reduced hypersurface. The
sheaf of logarithmic vector fields along D is the sheafification:

TPn(− log D) = DerS(− log D)0̃ .

of DerS(− log D)0 as a subsheaf of the tangent bundle TPn . We denote by JD

the Jacobian ideal sheaf, so that our defining exact sequence of TPn(− log D)
reads:

0→TPn(− log D)→O n+1
Pn

∇ f
−→JD(d − 1)→ 0.
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One can work more generally over a smooth connected variety W over k
and a reduced subvariety X ⊂ W . Then, the equisingular normal sheaf N ′X/W ,
cf. [287] is defined by the exact sequence: D

(I.2) 0→TX →TW |X →N ′X/W → 0.

Then we have an exact commutative diagram:

0
��

0
��

IX/W ⊗TW

����

IX/W ⊗TW

����
0 // TW 〈X 〉 //

��

TW
//

��

N ′X/W // 0

0 // TX
//

��

TW |X //

��

N ′X/W // 0

0 0

Where the sheaf TW 〈X 〉 of logarithmic differentials (general version), is de-
fined by the sequence.

If D is a reduced hypersurface of W , the sheaf TW 〈D〉 is given, in terms of
local sections, on a open subset U ⊂ W by taking an equation fU ∈ Γ(U ,OW )
locally defining D ∩ U and considering:

{θ ∈ Γ(U ,TW ) | θ( fU)⊂ ( fU)}.

If X = D is a hypersurface of degree d in W = Pn, the equisingular normal
sheaf N ′D/Pn is precisely the sheafified polar ideal J D

D (d). So the two modules
of logarithmic derivations TPn〈D〉 and TPn(− log D) are related just by a shift
by one in degree:

(I.3) TPn〈D〉 ' TPn(− log D)⊗OPn(1).

One defines the sheaf of logarithmic 1-forms ΩW (log D) as:

ΩW (log D) = TX 〈D〉∗.

Example I.2 (char(k) 6= 2). Let D = V( f ) ⊂ Pn is a quadric hypersurface of
rank m+1, and L be the kernel of f . We consider the projection Pn ¹¹Ë Pm. Let
P̃n be the blow-up of P(L), so that this projection factors through the natural
morphisms πL : P̃n → Pm and σL : P̃n → Pn. Then TPn(− log D) ' O n−m

Pn ⊕
σL∗(π

∗
L(ΩPm(1))). In particular, the sheaf TPn(− log D) is locally free if and only

if D is smooth, in which case we get an isomorphism TPn(− log D)' ΩPn(1).

I.1.2. Logarithmic 1-forms. Here we work over C, in order to sketch the
original definition of ΩW (log D), which goes as follows. Let W be a connected
complex manifold, and D be a reduced divisor on W . Then, for a given open
subset U of W , if sU is a an equation locally defining D ∩ U , the local sections
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of ΩW (log D) are the meromorphic 1-forms ω such that both fω and f dω are
holomorphic. If D has simple normal crossings and W has dimension m, given a
point x of W , we can choose local coordinates (z1, . . . , zn) in a neighborhood U
of x such that the irreducible components D1, . . . , Dk of D ∩ U passing through
x are defined by Di = V(zi) so D ∩ U = V(z1 · · · zk). In this case ΩW (log D)
restricts to U as:

ΩW (log D)|U ' 〈
dz1

z1
, . . . ,

dzk

zk
〉⊗OU ⊕ 〈dzk+1, . . . , dzm〉⊗OU .

The relation d log zi =
dzi

zi
should thus explain the name “logarithmic forms”.

In this case, it is clear that ΩW (log D) is locally free of rank m, and tak-
ing residues we obtain a surjection onto

⊕

i=1,...,k ODi
, whose kernel are just

holomorphic 1-forms. Globally, this gives the residue exact sequence:

0→ ΩW → ΩW (log D)→
⊕

j=1,...,`

OD j
→ 0,

where D1, . . . , D` are the irreducible components of D.

I.2. Dolgachev’s logarithmic forms and residue sequence. Assume k al-
gebraically closed of characteristic zero. Let W be a connected manifold over
k, and let D be a reduced hypersurface of W . There is a second type of logarith-
mic sheaf associated to D ⊂ W , namely Dolgachev’s sheaf, see [105] that we
denote by eΩW (log D). This sheaf has worse local properties than ΩW (log D), in
particular it is rarely locally free. On the other hand, ΩW (log D) is recovered as
double dual of the refined sheaf eΩW (log D). Something might be lost however
in the process of taking reflexive hull, and for this reason eΩW (log D) carries
richer information on D.

Dolgachev’s definition of eΩW (log D) goes as follow. We consider an embed-
ded resolution of singularities of D, namely a proper birational map:

µ : fW →W,

such that the strict transform D̃ is smooth. Then µ∗(D) = D̃ + F , where
F is supported the exceptional locus of µ. The adjoint ideal is defined as
µ∗(ωW̃/W (−F)), and the conductor ideal sheaf cD is the image of the adjoint
ideal in OD. This ideal contains J D

D , and there is a natural chain of morphisms:

ΩW (log D)→E x t1
W (J

D
D (D),OW )→E x t2

W (cD /J
D
D (D),OW ).

The sheaf eΩW (log D) is the kernel of this composition. One has:

eΩW (log D)∗∗ ' ΩW (log D).

Dolgachev proves that eΩW (log(D)) is locally free if D has simple normal
crossings, and that it agrees with ΩW (log(D)) if D has normal crossings in
codimension ≤ 2. However, what will be most relevant to us is that eΩW (log D)
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always fits into a functorial residue exact sequence:

0→ ΩW → eΩW (log D)→ v∗(OD̃)→ 0,

where ν : D̃→ D is the restriction of µ to D̃. If D has simple normal crossings,
then D̃ is the disjoint union of the irreducible components D1, . . . , D` of D, so
v∗(OD̃) '

⊕

j=1,...,`OD j
and the two residue exact sequences we have written

are the same thing.

I.3. Logarithmic vector fields and deformations. Here we follow [287].
Assume k algebraically closed. The sheaf of logarithmic vector fields can be
seen in connection with the general framework of deformations of closed em-
beddings. Indeed, let W be a smooth connected manifold over k.

Take a reduced subvariety X of W , and let j be the embedding. We can
consider the functor of infinitesimal locally trivial Def j deformations of X , [287,
Section 3.4.4]. This functor takes a local Artinian k-algebra A with residue field
k to the set of deformations Def j(A) of j over Spec(A). These are isomorphism
classes of diagrams of the following form:

X //

j
��

X
J��

W //

��

W × Spec(A)
ψ��

Spec(k)
a0 // Spec(A)

where J and ψJ are flat, and the vertical morphisms on the left column are
induced by the ones on the right column by pull-back via a0. Locally trivial
here means that J induces locally a trivial deformation. Roughly speaking, we
put j into a slightly larger family of maps J parametrized by Spec(A), which
specializes to j at the point a0.

The deformation theory of j is controlled by the sheaf of logarithmic deriva-
tions in the sense that, as it turns out, the functor Def j has a formal semiuni-
versal deformation space, whose tangent space is H1(W,TW 〈X 〉), and whose
obstruction space is H2(W,TW 〈X 〉). By (I.3) we get H1(Pn,TPn(− log D)(1)) as
tangent space to those deformations of the embedding of D in Pn, along which
the polar ideal of D is deformed flatly (equisingular deformations). The space
H2(Pn,TPn(− log D)(1)) contains the local obstructions to such deformations.

I.4. Logarithmic vector fields and duality. Here k is an arbitrary field.
As a reference for this part the reader may consult [299]. We start with an
integral variety X embedded in the dual projective space P(V ∗) = P̌n = P̌n.
Write (I.2) and twist by OX (−1). This reads:

0→TX (−1)→TP̌n(−1)|X →N ′X/P̌n(−1)→ 0.
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We consider the variety FX = P(N ′X/P̌n(−1)). There is a chain of surjections:

V ⊗OP̌n →TP̌n(−1)→TP̌n(−1)|X →N ′X/P̌n(−1)

Therefore, FX sits in F(1, n) ' P(TP̌n(−1)) ⊂ P̌n × Pn. In fact, the variety FX is
the Zariski closure in P̌n× Pn of:

F◦X = {(x , y) ∈ Xsm× Pn | H y is tangent to X at x}.

Let D ⊂ Pn be the dual variety of X , i.e. the variety of tangent hyperplanes to
X . The integral variety D is the image of FX by the second projection πPn . We
have thus the diagram:

(I.4) FX πPn

$$IIIIIπP̌n

zzuuu
uu

P̌n ⊃ X D ⊂ Pn

The reflexivity theorem asserts that the dual of D is X . This is based on the
identification:

FX = P(N ′X/P̌n(−1))' P(N ′D/Pn(−1)) = FD.

Since πPn and πP̌n are the morphism associated, respectively, with the tauto-
logical line bundles ON ′

X/P̌n
(1) and ON ′

D/Pn
(1) on FX ' FD, we obtain:

(I.5) πP̌n∗(π
∗
Pn(OX (1)))'N ′X/P̌n(−1)), πPn∗(π

∗
P̌n(OX (1)))'N ′D/Pn(−1)).

Assume now that X is positive-dimensional, embedded by the complete
linear system associated with OX (1), so that H0(X ,OX (1)) is identified with
V ∗. Denote by bTX the affine tangent bundle of X , fitting into the canonical
extension:

(I.6) 0→OX → bTX →TX → 0.

Then we have the natural exact sequence:

0→ bTX (−1)→ V ⊗OX →N ′X/P̌n(−1)→ 0.

We rewrite (I.4) in the extended form:

FX
πX

~~~~~
~~

� � //

πD $$III
III

I X × Pn
πPn

$$HHH
HHH

X D � � // Pn

Now, the exact sequence (I.6) says that FX is cut in X × Pn linearly on the
fibres of πPn by a (co)section of the pull-back of bTX (−1). Since such cosection
vanishes in the expected codimension, we may write the Koszul resolution:

· · · → ∧2
bTX (−2)�OPn(−2)→ bTX (−1)�OPn(−1)→OX×Pn →OFX

→ 0,

where the image of the map with target into OX×Pn is of course IFX /X×Pn .
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Assume now that D is a hypersurface of Pn, and let D = V( f ). We tensor
the Koszul complex above with π∗X (OX (1)) and take direct image via πPn . Using
(I.5), since V ∗ is identified with H0(X ,OX (1)), we get an exact sequence:

0→ πPn(IFX /X×Pn(1, 0))→ V ∗⊗OPn →N ′D/Pn

The map V ∗⊗OPn →N ′D/Pn is identified with∇( f ), and it is therefore surjective
(although perhaps not on global sections). After sheafifying (I.1), we have thus
proved:

Lemma I.3. Let X be a reduced variety of positive dimension embedded in P̌n by
the complete linear series |OX (1)|, and assume that the dual of X is a hypersurface
D of Pn. Then we have:

DerS(− log D)̃ ' πPn(IFX /X×Pn(1, 0)).

In view of this lemma, we have a strategy to calculate DerS(− log D) based
on Weyman’s method (cf. [317]) that computes a graded free resolution of the
S-module J D

D (deg f −1) by a complex F• = (F0← F1← ·· · ) whose term F i is:

(I.7) F i =
⊕

j≥0

H j(X ,
i+ j
∧

bTX (1− i− j))⊗S(−i− j).

I.5. Logarithmic vector fields, Jacobian ring and primitive cohomol-
ogy. For this part we follow [288], and we work over C. The Jacobian ring of
a reduced hypersurface D ⊂ Pn defined by a homogeneous polynomial f ∈ Sd

is RD = S/JD. In case D is smooth, RD is an Artinian Gorenstein ring, with socle
degree (n+ 1)(d − 2). We have an isomorphism of graded S-modules:

RD ' H1
∗(P

n,TPn(− log D))(1− d).

As shown by Griffiths in [154], this ring carries information on the primitive
cohomology in middle dimension of D and on the period map of D (see also
[314]).

On the other hand, if D is singular, the degree-0 local cohomology of R is
better behaved. Indeed there is a canonical isomorphism:

H0
m(RD)(d − 1)' H1

∗(P
n,TPn(− log D)).

The result of Griffiths has been rephrased in [288] to hypersurfaces D ⊂ Pn

of degree d with simple normal crossings in the following sense. Let D1, . . . , Ds

be the irreducible components of D. Then, we have:
⊕

i=1,...,s

Hn−1,0(Di)' H1
∗(P

n,TPn(− log D))−n.
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II. Free hypersurfaces

Let k be a base field. A hypersurface in Pn over k is free if its module of
logarithmic derivations is free. This notion turns out to be very interesting, as
free hypersurfaces tend to be quite special and to often exhibit unique prop-
erties. Still, it is not quite clear how to decide whether a hypersurface is free
relying on partial information such as local singularities or other combinatorial
data, or topological invariants of the complement of the hypersurface.

I will give here an account of this notion and of some of the problems
related to it, with emphasis to the case of hyperplane arrangements. These will
be described in a little proportion of their many aspects, mainly a sketch of their
invariants (Poincaré polynomial, Orlik-Solomon algebra) and a brief discussion
of free arrangements, where I will mention some results from my paper with J.
Vallès [139].

Definition II.1. Let D ⊂ Pn be a reduced hypersurface. Then D is said to be
free if DerS(− log D)0 is a free graded S-module. In this case, D is said to be free
with exponents (a1, . . . , an) if:

DerS(− log D)0 ' S(−a1)⊕ · · · ⊕ S(−an).

If DerS(− log D)' S(−a0)⊕ · · ·⊕S(−an) it is also common to say that D is
free with exponents (a0, . . . , an). Note that the number of exponents typically
allows to understand which module is stated to be free. Sometimes one writes
the exponents as (ar1

1 , . . . , ars
s ) where ari

i means ai repeated ri times.
For instance, any hypersurface D is free if n = 1. The exponent in this case

is deg(D)− 1.

Example II.2 (Boolean arrangement). Set f = x0x1 · · ·xn, so that D = V( f )
is the union of the coordinate hyperplanes. Then D is free with exponents
(1, . . . , 1). Indeed, we have the obvious resolution:

0→ S(−1)n 7→ Sn+1 (x1···xn,...,x0···xn−1)−−−−−−−−−−→ JD(n)→ 0

where the syzygy matrix is given (e.g. for n= 4) by:
















x0 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x3

−x4 −x4 −x4 −x4

















Example II.3. Another free divisors of P2 is the union of a smooth conic and
a tangent line. We can see that this example and the previous one give, up to
projective equivalence, the only free divisors of P2 with exponents (1,1).
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• •

•

x0

x1 x2

(1 : 0 : 0)

x0x2+ x2
1

x2

FIGURE 1. Free divisors with exponents (1,1) in P2.

Indeed, such a divisor must have degree 3. But we can compute, as an
exercise, the resolution of TP2(− log D) of one divisor D for each projective
equivalence class of divisors of degree 3.

If D is the union of three lines meeting at one point, then T ' OP2 ⊕
OP2(−2). If D is the union of a conic and a secant line, or if D is a cuspidal cubic,
then we have a sheafified minimal graded free resolution of TP2(− log D):

0→OP2(−3)→OP2(−1)⊕OP2(−2)2→TP2(− log D)→ 0.

If D is a nodal cubic, the resolution of TP2(− log D) reads:

0→OP2(−2)2→OP2(−1)4→TP2(− log D)→ 0.

If D is a smooth cubic, then we have a resolution:

0→OP2(−4)→OP2(−2)3→TP2(− log D)→ 0.

Lemma II.4. The hypersurface D is free with exponents (a1, . . . , an) if and only if
the blow-up of the Jacobian ideal is a complete intersection in Pn×P̌n of n divisors
A1, . . . , An with Ai of bidegree (ai , 1).

PROOF. We use the setting of Lemma III.1. We have the defining exact se-
quence of the sheaf of logarithmic derivations:

0→TPn(− log D)→ V ∗⊗OPn
∇ f
−→JD(d − 1)→ 0.

The surjection V ∗⊗OPn → JD(d − 1) induces a closed embedding P(JD) ⊂
Pn× P̌n, because the trivial bundle V ∗⊗OPn is naturally identified with Pn× P̌n.
By the previous exact sequence, the pull-back of TPn(− log D) to Pn × P̌n cuts
P(JD(d − 1)) ' P(JD), linearly along the fibres of the projection πP̌n , i.e., we
have an exact sequence:

TPn(− log D)�OP̌n(−1)→OPn×P̌n →OP(JD)→ 0.

In other words, P(JD) is obtained as the vanishing locus of a global cosec-
tion of TPn(− log D)� OP̌n(−1), taking place in expected codimension, indeed
codim(P(JD)) = rk(TPn(− log D)) = n. Then, TPn(− log D)� OP̌n(−1) splits as
the direct sum ⊕iOPn×P̌n(−ai ,−1) if and only if P(JD) is the complete intersec-
tion of divisors of bidegrees (a1, 1), . . . , (an, 1), which proves our claim. �
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The next lemma says that freeness is an open property. Let D be a family of
hypersurfaces parametrized by the points s of an integral base scheme S, and
write Ds ⊂ Pn for the hypersurface corresponding to s ∈ S.

Lemma II.5. Assume that Ds0
is free with exponents (a1, . . . , an), for some s0 ∈ S,

and that ci(TPn(− log Ds)) = ci(TPn(− log Ds0
)) for all s in S. Then there is a

Zariski-open dense subset U of S such that Ds0
is free with exponents (a1, . . . , an),

for all s ∈ U.

PROOF. Set Ts = TPn(− log Ds). Since Ts is torsion-free, we have that Ds

is free if and only if Hk(Pn,Ts(t)) = 0 for all t ∈ Z and 0 < k < n, cf. for
instance [37] for this generalization of Horrocks splitting criterion [173] (or
use [166, Lemma 1.1] to reduce to the locally free case).

The assumption that the Chern classes of Ts are constant on s guarantees
that the coherent sheaf TPn×S(− log(D× S)) is flat over S. Therefore, by semi-
continuity of cohomology, since Hk(Pn,Ts0

(t)) = 0 for all t ∈ Z and 0 < k < n,
the same vanishing takes place for all s in a non-empty Zariski-open neigh-
bourhood U of s0, so that Ds is free for all s in U . Since S is irreducible, U is
dense in S. Finally, we have

∑

i=0,...,n cih
i =
∏

j=1,...,n 1− a jh, so the exponents
are determined by the Chern classes. This says that Ds is free with exponents
(a1, . . . , an) for all s in U . �

II.1. Free hyperplane arrangements. For this part, we refer to [251], see
also [281] for a nice survey of this topic. Here the base field is arbitrary, ex-
cept for some considerations on the topology of the complement of hyperplane
arrangement divisors, where we will work over C.

A hyperplane arrangement in Pn is a collectionA = (H1, . . . , H`) of distinct
hyperplanes Hi of Pn. In other words all the irreducible components of our
hypersurface D have degree 1, and we speak of D as a hyperplane arrangement
divisor, written as DA = H1∪· · ·∪H`. In this situation, it is natural to introduce
some combinatorial invariants of D = DA , and we will see that these invariants
actually capture many deep features of A , although some of them, and in
particular freeness, only conjecturally.

II.1.1. Intersection lattice and combinatorial type. We define thus the inter-
section lattice, or Hasse diagram ofA , usually denoted by LA as follows:

LA = {Hi1 ∩ · · · ∩His 6= ; | i1 ≤ · · · ≤ is, s = 0, . . . ,`}.

That is to say, LA is the set of all non-empty intersections of elements of A .
This set is partially ordered by reverse inclusion, and is equipped with a rank
function given by codimension, that makes it a geometric lattice. The combina-
torial type ofA is the isomorphism class of this lattice.

It is thus natural to ask which invariants of A are combinatorial, i.e., de-
pend only on the isomorphism class of LA , and which are not.



Chapter 1. Logarithmic vector fields along a divisor 21

x1 x2 x1 − x2 x0 − x1 − x2

(1 : 0 : 0) (1 : 1 : 0)(1 : 0 : 1) (2 : 1 : 1)

P2

FIGURE 2. The Hasse diagram of x1x2(x1− x2)(x0− x1− x2)⊂ P2.

II.1.2. Poincaré polynomial. The first combinatorial invariant is the
Poincaré polynomial. Its definition goes as follows. First one defines the Möbius
function µ : LA → Z recursively, starting with µ(Pn) = 1 and setting µ(X ) as
the sum of −µ(Y ) for all Y strictly containing X . Then, the Poincaré polynomial
π(A , t) ofA is defined as:

π(A , t) =
∑

X∈LA

µ(X )(−t)codim X .

We also write π(A , t) =
∑

i bi(A )t i , for some integers bi . For instance, the
arrangement of Figure II.1.1 has π(A , t) = 1+ 4t + 5t2.

The Poincaré polynomial has the following nice geometric interpretation:

i) If k = R, andA is an essential affine arrangement (not all hyperplanes are
parallel to a single direction), then |π(A , 1)| is the number of connected
components of Rn \DA , while |π(A ,−1)| is the number of bounded com-
ponents, cf. [319].

ii) If k = C, andA is a central arrangement, then the coefficients of π(A , t)
are the Betti numbers of Cn \ DA , cf. [249].

iii) If k is the finite field Fq with q elements, then π(A , q) is the number of
points in Fn

q \ DA , cf. [251, Theorem 2.69].

II.1.3. Orlik-Solomon algebra. One of the main combinatorial invariants of
a complex hyperplane arrangement is the cohomology algebra of the comple-
ment MA ofA in Pn. To better fit the classical notation, we take the affine cone
overA , which is a central arrangement in Cn+1, and we denote by H1, . . . , Hm

the corresponding vector hyperplanes. We thus consider the vector space E
generated by m vectors e1, . . . , em, and the exterior algebra ∧E. Given a subset
B = i1, . . . , ik ⊂ {1, . . . , m}, we set eB = ei1 ∧ · · · ∧ eik . We also set ∂ for the
standard differential of ∧E namely ∂ eB =

∑

j(−1) jeB\{i j}. We then define the
ideal IA of ∧E generated by non-transverse intersections: set

IA = (∂ eB | B ⊂ {1, . . . , m}, codim(∩ j∈BH j)< |B|).
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The algebra ∧E/IA is called the Orlik-Solomon algebra. It was proved in [249]
that this algebra is isomorphic to the cohomology algebra H∗(MA ,Z), equipped
with the cup product.

II.1.4. Logarithmic forms and cohomology algebra. LetA be a complex hy-
perplane arrangement in Pn, and denote by Â = (H1, . . . , Hm) the collection of
affine cones over the hyperplanes of A , so that Â is a central arrangement in
Cn+1. Let fi be a linear form defining Hi as ker( fi). Consider the meromorphic
1-forms:

ωk =
1

2πi

d fk

fk
.

It was proved by Brieskorn in [55], answering a question of Arnold [10]
that the ring of differential forms generated by the cohomology classes of
(ω1, . . . ,ωm) is isomorphic to the cohomology ring H∗(MA ,C).

For free (affine) arrangements, there is a surprising and beautiful rela-
tion between the exponents and the Poincaré polynomial. Indeed, in [296]
Terao proved that, if A is a free central affine arrangement with exponents
(a1, . . . , an) then:

π(A , t) =
∏

i

(1+ ai t).

Of course, much more is known concerning the geometry of the comple-
ment Cn \ DA , and on its partial dependency on LA . Just to mention a few
results in this framework, let us recall that the topology of the complement of
a complexified real arrangements is computed by the Salvetti complex, [278],
generalized in [39] to arbitrary arrangements (a more efficient complex for line
arrangements was given in [140]). However combinatorics are not enough to
determine the topology of the complement, as there are combinatorially equiv-
alent arrangements whose complements have different fundamental group,
cf. [276]. In a different spirit, the diffeomorphism type of Cn \ DA is also
quite well understood, see e.g. [192].

In a different direction, by a theorem of Deligne, [98], if A is the set of
complexified reflecting hyperplanes of a Coxeter group W , then Cn \ DA is an
Eilenberg-Mac Lane space, and the same property holds for the quotient XW

of this space by W . The space XW is homeomorphic to the discriminant locus
in the parameter space of the versal deformation of the corresponding rational
singularity, [54]. The fundamental group of XW is an Artin-Tits group (for
instance, the braid group in n strands if A is the braid arrangement and W =
Sn). A presentation for these groups was first given by Brieskorn, [53]. Also, it
was originally conjectured by Saito that free arrangements are Eilenberg-Mac
Lane spaces, but this implication is not always true, cf. [142] for a discussion.

II.1.5. Examples and families of free arrangements. Some basic examples of
free arrangements are the following.
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Example II.6 (Braid arrangement). LetA be the central arrangement in kn+1

defined by the Vandermonde determinant:

f (x) =
∏

0≤i< j≤n

xi − x j .

Then A is free with exponents (0, 1, . . . , n). This can be checked easily for
instance using Saito’s criterion, cf [251] indeed an explicit basis of derivations
is known in this case. The appearance of 0 among the exponents corresponds
to the fact that the set Z of points in dual space given by A is contained in a
hyperplane, namely the sum of the coordinates of these points is zero. In fact,
the exponent 0r appears if and only if Z is contained in a linear subspace of
codimension r.

Example II.7 (Finite field arrangement). Let A be the central arrange-
ments given by all hyperplanes in Fn+1

q . Then A is free with exponents
(1, q, q2, . . . , qn).

We gave these arrangements in the affine space because the exponents are
“nicer”, however they can be defined of course also in projective space.

As a method to analyze the sheaf TPn(− log DA ) associated with an ar-
rangement A , one may try to remove hyperplanes one by one (deletion) and
see how the sheaf changes, or to start from the empty set and add arrangements
one by one (addition). Removing a hyperplane H0 ' Pn−1 from A creates a
triple (A ,A ′,A ′′) whereA ′ isA \ {H0} andA ′′ is the arrangement in Pn−1

obtained intersecting the hyperplane of A ′ with H0. Freeness in this case can
be controlled, up to a certain extent, via the addition-deletion theorem. It asserts
that any two of the following three statements implies the third:

i) A is free with exponents (a1, . . . , an−1, an);
ii) A ′ is free with exponents (a1, . . . , an−1, an−1);

iii) A ′′ is free with exponents (a1, . . . , an−1).

In the definition of A ′′, we could have chosen to take hyperplanes with
multiplicity, by attaching to any hyperplane H ∩H0 the number of hyperplanes
H ′ of A such that H ∩ H0 = H ′ ∩ H0. This leads to Ziegler’s multiarrange-
ments, [320]. A natural definition of weighted derivation module is attached to
multiarrangements, and the study of this module is already interesting for mul-
tiarrangements of P1, [316] as it controls the splitting type of TP2(− log DA )
on the lines of A (this is in fact the one of the main results of [318]). Mul-
tiarrangements have been extensively studied, and addition-deletion theorem
is known also in this setting, see [3]; cf. also [2] for the characteristic poly-
nomial of a multiarrangement. However, we will not pursue the analysis of
multiarrangements further here.

We turn instead to families of free hyperplane arrangements of Pn. One
such family is that of inductively free arrangements. They are the smallest set
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of arrangements I F containing the empty arrangement and all arrangements
A that admit a hyperplane H0 of such that, looking at the associated triple
(A ,A ′,A ′′), we get A ′ and A ′′ in I F , with the exponents of A ′′ contained
in those ofA ′. The braid arrangement for instance is inductively free.

There are more interesting classes of free arrangements, such as recursively
free, supersolvable (cf. [251, Pages 121-122]) and reflection arrangements (see
[251, Chapter 6]), but we omit this analysis for lack of space.

Finally, the following is among my favourite examples of free arrangements.

Example II.8 (Hesse arrangements). The Hesse arrangement arises as follows.
Consider a a smooth complex plane cubic curve C ⊂ P2, and its 9 inflection
points (x1, . . . , x9) ∈ P2. Then, for any i 6= j, it turns out that any line passing
through x i and x j passes through a third point xk with i 6= j. There are 12 such
lines.

i) The Hesse arrangement consists of the union of these 12 lines. It is free
with exponents (4,7).

ii) The dual Hesse arrangement is the collection of 9 inflection lines. It free
with exponents (4,4).

iii) The union of these two sets of 9 and 12 lines respectively forms another
free arrangement, this time with exponents (7, 13).

•

•

• •

•

•

•

•

•x1

x2

x3

FIGURE 3. Hesse arrangement.

II.1.6. Free arrangements and duality. For hyperplane arrangements,
Lemma I.3 takes a slightly different form, as we pointed out in [139]. In-
deed, let us consider the dual projective space P̌n. To a finite (reduced) set of
` points Z in P̌n corresponds the arrangement AZ = (Hz | z ∈ Z), where we
denote by Hz the hyperplane in Pn corresponding to z ∈ P̌n. Write DZ for DAZ

.
Then, we consider the incidence variety F(1, n) ' P(TPn(−1)) ⊂ Pn × P̌n,

so F(1, n) is the set of pairs (x , y), with x ∈ Pn and y ∈ P̌n, such that x lies in
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H y . We have then the diagram:

F(1, n)
πP̌n

##HHH
HHπPn

{{vvv
vv

Pn P̌n

Let us denote by πPn and πP̌n also the projections from F(1, n) onto Pn and P̌n.
Now, the first main result of [139] is that there is a natural isomorphism:

TPn(− log DZ)' πPn∗(π
∗
P̌n(IZ/P̌n(1))).

This point, rooted in [307,308], is actually the key of our method.
The next results of [139] are mainly devoted to line arrangements. As

for Chern classes of a line arrangement A = AZ in P2, denoting by bA ,t the
number of points of multiplicity t in DA , we have the simple relations (cf.
also [283]):

∑

j≥2

� j
2

�

bA , j =
�`

2

�

,(II.1)
∑

j≥2

� j
2

�

bA , j+1 =
�`−1

2

�

− c2(TPn(− log DA )).(II.2)

For instance we proved the following result.

Theorem II.9. Let k ≥ 1, r ≥ 0 be integers, set `= 2k+ r+1, and consider a line
arrangement A of ` lines with a point of multiplicity h with k ≤ h ≤ k+ r + 1.
Then A is free with exponents (k, k + r) if and only if c2(TP2(− log DA )) =
k(k+ r).

Here is a sketch of the proof. One direction is obvious. The other is indeed
related to duality, for the point of multiplicity h becomes a line L in the dual
space P̌2 containing h points of the set of ` points Z dual to A . Setting Z ′ =
Z \ L, we get an exact sequence:

0→IZ ′ →IZ(1)→OL(1− h)→ 0.

Applying to this sequence our functor πPn∗ ◦π∗P̌n , we thus obtain:

0→OP2(h− `)→TP2(− log DA )→IΓ(1− h)→ 0,

for some finite-length subscheme Γ ⊂ P2. It turns out by computing Chern
classes that Γ has positive length. However, an easy lemma on vector bundles
on P2 shows that, under the assumption c2(TP2(− log DA )) = k(k + r), A is
not free if and only if:

H0(P2,TP2(− log DA )⊗OP2(k− 1)) 6= 0.

So in this case we would have H0(P2,IΓ(k−h)) = 0, which contradicts Γ being
non-empty since k ≤ h.

II.1.7. Terao’s conjecture. One main issue in the theory of arrangements
is to what extent the sheaf TPn(− log DA ) depends on the combinatorial type



26 II. Free hypersurfaces

of A , defined as the isomorphism type of the lattice LA . A very important
conjecture of Terao (reported in [251]) asserts that if A and A ′ have the
same combinatorial type, and A is free with exponents (a1, . . . , an), then A ′

is also free with exponents (a1, . . . , an).
Terao’s conjecture is known to hold for several classes of arrangements,

most notably:

i) inductively free arrangements;
ii) fibre type arrangements, reflection arrangements (cf. [251]), Shi and

Catalan arrangements (which are generalized Weyl arrangements cf. Sec-
tion V.1);

iii) arrangements of up to 12 lines;
iv) line arrangements with exponents (a, b) such that a ≤ 5 (cf. [139, Theo-

rem 6]);
v) line arrangements admitting a line containing double and triple points

only.

For line arrangements, the main point is that, even though the Chern classes
of TPn(− log DZ) are easily determined by combinatorics, its generic splitting is
only presumed to do so. However a proof is lacking at the moment, even
though it would entail a very significant progress in all the theory of arrange-
ments.

We contribute to this with [139, Theorem 4]. This asserts that, writing the
splitting of TPn(− log DZ) on a general line H in P2 as OH(−a)⊕OH(−b), with
a ≤ b, the number a is equal to the smallest integer d such that, for a general
point y ∈ P̌2, there exists a curve of degree d + 1 in P̌2, containing Z , with a
point of multiplicity d at y .

II.2. Free hypersurfaces with components of higher degree. Let us give
here a very brief outline of free hypersurfaces besides the case of hyperplane
arrangements.

II.2.1. Buchsbaum problem. One interesting problem, usually attributed to
Buchsbaum (cf. [289, Introduction]), and originally formulated in terms of
depth of the Jacobian ideal, is whether one can produce free irreducible hyper-
surfaces D ⊂ Pn.

This question has been recently addressed by Simis and Tohaneanu for
plane curves of any degree, [290]. These curves are defined by polynomials
of the form:

f (x0,x1,x2) = xd−1
2 x0+ a1xd

1 + a2x2
1xd−2

2 + a3x1xd−1
2 + a4xd

2 ,

with a1, a2 6= 0, and are free with exponents (2, d − 3). However, I don’t have
a geometric intuition on these examples, except perhaps if they are related to
Conjecture V.4. Also, I do not know which sequences of integers are exponents



Chapter 1. Logarithmic vector fields along a divisor 27

of free irreducible hypersurfaces in Pn, for any n ≥ 2. To my knowledge, the
first example of free irreducible plane curve was given in [289].

We are going to see in a minute that some discriminants of forms in several
variables are also free.

II.2.2. Discriminants. This section is almost entirely contained in [148].
Let k be a field, m, d ≥ 1 be integers. Consider the polynomial ring S in m
variables over k, the space Sd of homogeneous forms of degree d in m + 1
variables, and let P̌N = P̌(Sd). The discriminant hypersurface D of P̌N is the
dual of the Veronese embedding Vd of Pm = P(V ) in PN = P(Sd V ) = P(Sd). In
this case we get the following result (certainly well-known, cf. for instance [94]
for the case m= 1):

Proposition II.10. The discriminant hypersurface D is free if and only (m, d) is
one the following pairs:

i) (1, d), in which case D has exponents (14, 2d−3);
ii) (2,3), with exponents (19, 3);

iii) (2,4), with exponents (19, 36);
iv) (3,3), with exponents (116, 44).

PROOF. We use Lemma I.3 and Weyman’s complex F• whose terms are given
by formula (I.7). In this case, X is Pm embedded by the complete linear sys-
tem |OPm(d)| so the affine tangent bundle bTPm(−1) is just the trivial bundle
V ∗⊗OPm . The condition that D is free amounts to ask that F• is concentrated
in degrees 0 and 1 only, and that F0 is V ⊗S. Indeed, for each t, OPm(t) has
cohomology in degree 0 or m only, so no cancellation takes place in F•.

This in turn implies that d ≥ 3, for otherwise we have the non-trivial term
H0(Pn,∧2V ∗⊗OPm(2− d))⊗S(−2) in F2. Moreover, looking at F0 our condi-
tion imposes, for m> 0, the vanishing:

Hm(Pm,∧mV ∗⊗OPm(m− (m− 1)d)) = 0.

By Serre duality, this cannot happen for any m ≥ 2 in the range d ≥ 2+ 3
m−1

,
which leaves out precisely the cases of (m, d) of our list. Conversely, for these
cases a direct computation of F−1 gives the desired answer. �

Clearly this setup is invariant under the action of GL(V ), and one might
wish to know the representations of GL(V ) occurring in the summands of
TP̌N (− log D) in the cases of the above list. These are:

i) for (1, d), TP̌N (− log D)' End(V )⊗S(−1)⊕ Sd−4 V ∗⊗S(−2);
ii) for (2, 3), TP̌N (− log D)' End(V )⊗S(−1)⊕ S(−3);

iii) for (2, 4), TP̌N (− log D)' End(V )⊗S(−1)⊕ S2 V ∗⊗S(−3);
iv) for (3, 3), TP̌N (− log D)' End(V )⊗S(−1)⊕ V ∗⊗S(−4).

One can compute this way the resolution of TP̌N (− log D) for many more
classical invariant hypersurfaces D. Freeness of such hypersurfaces is quite
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rare, however the resolution tends to be much shorter than for random hyper-
surfaces.

II.2.3. Conic-line arrangements. Let us work over C for the following dis-
cussion. Freeness has been investigated for conic-line arrangements by Schenck
and Tohaneanu in [282]. These are hypersurfaces in P2 whose irreducible com-
ponents are lines or smooth conics. Let us recall that, according to [87], the
cohomology ring of the complement of a (reduced) divisor D in P2 consisting of
a union of rational curves is determined by the number of components of D and
the number of analytic branches through the singular points of D. One defines
also in this case the intersection poset of the components of D and attaches to
the vertices corresponding to singular points x ∈ D the Milnor number:

µx(D) = dimC(C{x,y}/( ∂ g
∂ x

, ∂ g
∂ y
)),

where in a suitable local chart x is the point (0,0) ∈ C2 and D is locally defined
as V(g). One also defines the Tjurina in the same setting as:

τx(D) = dimC(C{x,y}/(g, ∂ g
∂ x

, ∂ g
∂ y
)).

It turns out that these numbers may differ, i.e., it may happen that τx(D) <
µx(D). They are equal if and only if the singularity of D at x is quasi-
homogeneous, which is to say that under a convenient holomorphic change of
variables the defining polynomial g(x,y) of D at 0 becomes homogeneous when
x and y are raised to suitable rational exponents. However the contribution at a
singular point x of D to the length of the Jacobian ideal of D (and hence to the
logarithmic tangent sheaf) is provided by the Tjurina number τx(D). It turns
out, cf. [282], that freeness of conic-line arrangements is not purely combina-
torial, for there are such arrangements D and D′ with the same combinatorial
type, such that D is free and D′ is not. However the reason is that freeness of D′

is spoiled by a jump of Tjurina number, so that D′ is not even numerically free,
i.e. TP2(− log D′) does not have the Chern classes of a decomposable bundle.
So one should ask that D and D′ have the same intersection graph with the
same Tjurina numbers at each point to obtain a “non-cheating” extension of
Terao’s conjecture. Counterexamples to this refined conjecture are not known
to me.

III. Polar map

Let D ⊂ Pn be a hypersurface, defined by a homogeneous polynomial f ∈ S
of degree d. The linear system 〈∂0 f , . . . ,∂n f 〉 defines the polar map:

PD : Pn ¹¹Ë P̌n

Definition III.1. The polar degree of D is the degree of the rational map PD.
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P

(a) Free divisor

P

(b) Non free divisor

FIGURE 4. Free and non-free conic-line arrangements

Blowing up the Jacobian ideal, we get:

P(JD)

##GGG
GG

{{www
ww

Pn
PD

//______ P̌n

III.1. Polar map and logarithmic derivations. There is a visible connec-
tion between the features of the polar map associated with D and those of
the logarithmic sheaf TPn(− log D). One instance of this is the following well-
known lemma.

Lemma III.2. If PD is generically finite, then:

deg(PD) = (−1)ncn(TPn(− log D)).

PROOF. If the degree of PD is finite, it equals the length of a subscheme Z
of P(JD) ⊂ Pn × P̌n obtained as general fibre of PD over a point, say y , of P̌n.
In other words, if we let (s1, . . . , sn) be independent linear forms vanishing at
y , the subscheme Z is the intersection of P(JD) with the span of (s1, . . . , sn),
i.e., Z = P(JD) ∩ P〈s1, . . . , sn〉 ⊂ Pn × P̌n. Therefore, the image Z ′ of Z in Pn

(which has the same length as Z) is obtained as common zero locus of the
sections s̃1, . . . , s̃n of JD(d − 1), where s̃i is obtained from si by the natural
isomorphism:

H0(P(JD(d − 1)),OJD(d−1)(1))' H0(Pn,JD(d − 1)).

We write thus the exact diagram:

〈s1, . . . , sn〉⊗OPn

��
TPn(− log D) //

��

V ∗⊗OPn //

��

JD(d − 1)

��
IZ ′/Pn //

��

OPn //

��

OZ ′(d − 1)

��
0 0 0
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Then the 0-dimensional subscheme Z ′ ⊂ Pn appears as zero locus of the co-
section s̃ : TPn(− log D) → OPn . Hence its length is just cn((TPn(− log D)∗) =
(−1)ncn(TPn(− log D)). �

III.2. Homaloidal polynomials. Let D ⊂ Pn be a reduced hypersurface. A
particularly interesting, and historically well-studied case is when D has polar
degree 1, which is to say that PD is birational. In this case D is said to be
homaloidal. In fact, as far as the polar degree is concerned and we are working
over the complex numbers, we might even work with non-reduced D, since the
polar degree of D and of its reduced locus are the same, cf. [102]. See [144]
for a different approach. An algebraic proof of this fact is not known to me
except for line arrangements, [59]. Anyway, we carry out this discussion over
C, except for the last proposition.

Irreducible homaloidal hypersurfaces of arbitrarily large degree in Pn for
any n ≥ 3 were produced in [82]. We refer to this paper for a more detailed
account, including many interesting references and a historical perspective, on
homaloidal polynomials and on the related notion of homogeneous polynomi-
als f with vanishing Hessian, i.e. such that the determinant h( f ) of the Hesse
matrix (∂ f /∂ xi∂ x j) is identically zero.

An important notion in this setting is that of prehomogeneous vector space,
cf. [279], i.e. a complex vector space V equipped with a representation G →
GL(V ) of an algebraic group G, possessing an open G-orbit whose complement
in V is a hypersurface V( f ). The function given by polynomial f , which we
may assume to be square-free, is then G-equivariant, up the choice of a suitable
character of G. The space V is said to be regular if h( f ) 6= 0, and f is called
a relative invariant of V . Relative invariants of regular prehomogeneous vector
spaces for G reductive are classified, cf. [279].

The point of recalling these notions in this context is the fact that relative
invariants of regular prehomogeneous vector spaces are homaloidal polynomi-
als, cf. [116,128]; see [210]. In this sense, homaloidal divisors D of degree 3
correspond precisely to Severi varieties (cf. also [78]), in the sense that D is
the dual (or the secant) variety of a Severi variety. These are the V2 ⊂ P5 (and
the dual is the determinant of symmetric matrices of size 3); P2×P2 ⊂ P8 (and
the dual is the determinant of matrices of size 3); G(2,6) ⊂ P14 (and the dual
is the Pfaffian of skew-symmetric matrices of size 6); OP2 ⊂ P26 (and the dual
is the Cartan cubic).

A conjecture of Dimca-Papadima, recently proved by J. Huh in [174], is
that if D is homaloidal with isolated singularities, then D is a smooth quadric,
or the union of 3 lines not passing through a point in P2, or the union of a
conic and a tangent line again in P2. Huh’s proof is of topological nature, I
don’t know of any algebraic proof. For curves, this was already a result of
Dolgachev, [104], of which we give an alternative proof here.
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Proposition III.3. Let k be an algebraically closed field, and let D be a reduced
homaloidal curve in P2. Then D is a smooth conic, or a union of 3 lines not
passing through a point, or the union of a conic and a tangent line.

PROOF. We have seen in Lemma III.2 that, if D is a reduced homaloidal
curve of degree d, then T = TP2(− log D) has c1(T ) = 1− d and c2(T ) = 1.

We look first at the range d ≥ 4, in which case we have to look for a
contradiction. The argument is more easily dealt with if we divide into cases
according to whether d is even or odd. So we assume that d is even (the case
when d is odd is completely analogous and we omit it).

So assume d = 2a and a ≥ 2, hence c1(T ) = 1−2a. We compute χ(T (a−
1)) = a(a−1)> 0, so h0(P2,T (a−1)) = 0 implies h2(P2,T (a−1)) 6= 0. But by
Serre duality, since T ∗ ' T (2a− 1), this value equals h0(P2,T (a− 3)) which
vanishes if h0(P2,T (a− 1)) = 0. So h0(P2,T (a− 1)) 6= 0.

Choose now the greatest integer b such that h0(P2,T (a− 1− b)) 6= 0. We
have just proved that b ≥ 0. Also, since T is a subbundle of O 3

P2 , we obviously
get b ≤ a−1. In fact we rather obtain b ≤ a−2 for if b = a−1, composing the
inclusion of OP2 into T with the injection of T into O 3

P2 we see OP2 splits off as
a direct summand of T , so c2(T ) = 0, which is not the case.

Now, it is very easy to show that c2(T (a−1− b))≥ 0 for a non-zero global
section of T (a − 1− b) vanishes on a subscheme of P2 having precisely this
length. Now we compute this length, and find −a2 + b2 + a+ b+ 1, which is
easily seen to be negative for 0≤ b ≤ a− 2. A contradiction!

The range d ≥ 3 is easily studied with a case-by-case analysis. If d = 1, we
know that T ' O 2

P2 . In case d = 2, we know that T ' OP2 ⊕OP2(−1) if D is the
union of two distinct lines and T ' ΩP2(1) if D is a smooth conic. If d = 3, the
statement is clear after computing Chern classes in Example II.3. �

Interesting questions concern hypersurfaces of low polar degree. For in-
stance, J. Huh proposed a conjecturally complete list of complex projective
hypersurfaces with isolated singularities of polar degree 2, which should be:

i) a normal cubic surface containing one line or two lines, or three lines and
three binodes;

ii) two smooth conics meeting at a single point, with or without their common
tangent;

iii) a smooth conic, a tangent line, and a line passing through the tangency
point;

iv) a smooth conic and two tangent lines;
v) three lines passing through a point x and a line disjoint from x;

vi) a cuspidal cubic, and its tangent at the cusp;
vii) a cuspidal cubic and its tangent at the flex;

viii) a cuspidal cubic;
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ix) a smooth conic and a secant line.

One may think that, once fixed k, there should be no hypersurface of degree d
in Pn of polar degree k with isolated singularities, if d and n are large enough.

IV. Torelli problem for hypersurfaces

Generally speaking, a Torelli problem consists in asking whether a variety X
can be reconstructed from a particular invariant, typically related to the Hodge
structure of X .

For instance, a smooth complex projective curve is determined up to iso-
morphism by its its Jacobian J(C), polarized by Riemann’s Theta divisor. This
is the content of the original Torelli theorem, [302]. We refer to [81] for a very
nice account of this result, with a proof and a historical perspective. The theo-
rem holds, however, over any field, cf. for instance Serre’s appendix of [225] -
one has to assume C geometrically integral. Torelli theorems also exist for more
general curves (e.g. stable curves, cf. [70]), invariants of different kind (cf. the
global Torelli theorem [153]) or other manifolds such as K3 surfaces [263],
smooth cubic threefolds [84], and generic hypersurfaces of degree d in Pn for
n≥ 3, except when n= d = 3, or d | n+ 1 or d = 4, n≡ 1 modulo 4, or d = 6,
n≡ 2 modulo 6, [108].

Let us formulate the precise Torelli problem that we are going to be inter-
ested in, for reduced hypersurface of projective space, over a field k.

Problem IV.1. Let D and D′ be reduced projective hypersurfaces of Pn. Assume
TPn(− log D)' TPn(− log D′). Then, do we have D = D′?

If the answer is positive, we will say that D is Torelli. We have said that
eΩPn(log D) is a refinement of the dual of TPn(− log D), so another Torelli prob-
lem arises for Dolgachev’s sheaf. This apparently innocent modification of the
problem turns out to give a totally different answer, as we shall see.

Problem IV.2. Let D and D′ be reduced projective hypersurfaces of Pn. Assume
eΩPn(log D)' eΩPn(log D′). Then, do we have D = D′?

Also in this case we will say that D is Torelli if it satisfies the above property:
the problem under consideration should be clear from the context. Should it
not be so, we will refer to the first property as strong Torelli. A tightly related
question is, however, the following:

Problem IV.3. Assume the reduced projective hypersurface D is not Torelli. Then,
how to describe the set of hypersurfaces D′ such that eΩPn(log D)' eΩPn(log D′)?

Let us mention some of the Torelli theorems available in the literature
directly related to our problem. Ueda-Yoshinaga proved in [304] that a
smooth complex hypersurface V( f ) ⊂ Pn is Torelli if and only if f is not of
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Thom-Sebastiani type, i.e. it cannot be split non-trivially as f (x0, . . . ,xn) =
f1(x0, . . . ,xk) + f2(xk+1, . . . ,xn). This reproves the theorem of [303], namely
that a smooth plane cubic over C is Torelli if and only if its J invariant is non-
zero.

We would like to give here an overview of these two problems in some in-
teresting situations, namely hyperplane arrangements (with normal crossings
or not), and “generic” arrangements of hypersurfaces with components of arbi-
trary degree.

IV.1. Torelli theorems for hyperplane arrangement. Let us first look at
the case when all the irreducible components of D have degree 1, in other
words, when D is a hyperplane arrangement divisor.

The results of this section are originally formulated over C, but hold in fact
for any field k.

IV.1.1. Generic hyperplane arrangements. Let D be a hyperplane arrange-
ment divisor with normal crossings, so D corresponds to an arrangement
A = (H1, . . . , H`), such that any k distinct hyperplanes among the Hi ’s meet
along a Pn−k. Then, D is said to be a generic arrangement.

In this case, Problems IV.1 and IV.2 are the same thing. Indeed, in view
of [105], we know that eΩPn(log(DA )) is locally free if and only if DA is generic,
and that it agrees with eΩPn(log(DA )) if DA has normal crossings in codimen-
sion ≤ 2.

For generic arrangements, the answer to Problems IV.1 and IV.2 is the main
result of [107]. It is proved there that, if ` ≥ 2n+ 3, then A is Torelli if and
only if A does not osculate a rational normal curve. The result was extended
to the range `≥ n+ 2 in [306].

However this result only covers generic arrangement. On the other hand,
typically the most interesting arrangements are quite far from being generic.
For instance, the Hesse arrangements A that me mentioned in Example II.8

is free with exponents (4, 7), for whatever smooth cubic curve C we may start
with. Then, of course we cannot reconstruct our C , nor the 12 lines of our
arrangement, from TP2(− log DA ) ' OP2(−4)⊕ OP2(−7). Anyway, we will be
able to recover the 12 lines from eΩP2(log DA ). This also explains the big dif-
ference between Problems IV.1 and IV.2. However, one should be aware that,
by [315], A can be recovered from JDA . This last result is closely related
to [108, Proposition 1.1], where it is proved that any hypersurface D in Pn is
recovered from JD up to projective equivalence for n≥ 3.

IV.1.2. Arbitrary hyperplane arrangements. According to the observations
contained in the previous paragraph, for an arbitrary hyperplane arrangement
we study Problem IV.2 rather than IV.1. This part is a sketch of the results
of [138].
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As in Section II.1.6, we use our approach based on projective duality. So
again we write H = Hz for the hyperplane of Pn given by the point z of P̌n,
and A = AZ for the hyperplane arrangement corresponding to a finite set Z
of points of P̌n (i.e. a reduced subscheme of finite length of P̌n). Of course, if
A consists of ` hyperplanes, then Z has length `. We write DZ for DAZ

. We
say that Z ⊂ P̌n is Torelli according to whether DZ is Torelli or not. This will
depend on whether Z is contained in a certain type of varieties, that we call
Kronecker-Weierstrass varieties.

Definition IV.4. Let s ≥ 0 and (d, n1, . . . , ns) be a string of s+1 positive integers
such that n= d+n1 · · ·+ns. Then Y ⊂ P̌n is a Kronecker-Weierstrass (KW) variety
of type (d; s) if Y = C ∪ L1 ∪ · · · ∪ Ls ⊂ P̌n, where the Li ’s are linear subspaces
of dimension ni and C is a smooth rational curve of degree d (called the curve
part of Y ) spanning a linear space L of dimension d such that:

i) for all i, L ∩ Li is a single point which lies in C;
ii) the span of L ∪ L1 ∪ · · · ∪ Ls is all of P̌n.

If d = 0 and s ≥ 2 a KW variety of type (0; s) is defined as Y = L1 ∪ · · · ∪
Ls ⊂ P̌n spanning P̌n where the Li ’s are linear subspaces of dimension ni with
n = n1 + · · ·+ ns and all the linear spaces Li meet only at a point y , which is
called the distinguished point of Y .

FIGURE 5. KW varieties of types (n; 0) and (d; 2).

Some examples of KW are the following.

i) A rational normal curve is a KW variety of type (n; 0).
ii) A union of two lines in P2 is a KW variety in three ways, two of them of

type (1;1), and one of type (0; 2).

Remark IV.5. We will use the previous definition in a minute to assert that a
finite-length subscheme Z of P̌n, whose reduced structure is contained in no hy-
perplane, is not Torelli if and only if Z lies in a KW variety (whose distinguished
point lies away from Z in case d = 0).

With a little abuse of terminology, we state the result here even for Z non-
reduced. In fact, in the outline of the proof, we will give a more general defini-
tion of eΩPn(log DZ), which is meaningful even when Z is not reduced.

Also, since Z is non-denerate, in Definition IV.4, still assuming n = d +
n1 · · · + ns, condition (ii) can be omitted, and (i) can be replaced by the re-
quirement that L ∩ Li have non-empty intersection along C .
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Theorem IV.6. Let Z ⊂ P̌n be a finite-length, set-theoretically non-degenerate
subscheme. Then Z fails to be Torelli if and only if Z is contained in a KW variety
Y ⊂ P̌n of type (d; s) such that either d > 0, s ≥ 0, or d = 0, s ≥ 2, and the
distinguished point of Y does not lie in Z.

A key ingredient is the notion of unstable hyperplane, which we now define.

Definition IV.7. Given y ∈ P̌n, H y is an unstable hyperplane for eΩPn(log DZ) if:

Hn−1(H y , eΩPn(log DZ)|H y
(−n)) 6= 0.

Let us now sketch the proof of the above theorem.

Step 1. Give an alternative definition of eΩPn(log DZ) via integral functors.
This is a derived version of the construction of Section II.1.6, and goes as fol-
lows. Again, consider the projective bundle P(TPn(−1)), and the diagram:

F(1, n)
πP̌n

##HHH
HHπPn

{{vvv
vv

Pn P̌n

Then, take the ideal sheaf IZ/P̌n(1), and the derived direct image:

RπPn∗(π
∗
P̌n(IZ/P̌n(1))).

This is a 2-term complex that is easily seen to be quasi-isomorphic, at least
when Z is (scheme-theoretically) non-generate, to a complex of the form:

O `−1
Pn (−1)→O `−n−1

Pn .

Note that this makes sense even when Z is non-reduced, and that Z must have
length `≥ n+ 1 in order to be non-degenerate.

Finally, apply RH omPn(−,OPn(−1)), to the direct image complex above,
and show that the result is a pure sheaf, which is in fact isomorphic to
eΩPn(log DZ) (if Z is reduced, otherwise we get the announced generalization
of this sheaf for non-reduces subschemes). This sheaf is thus a Steiner sheaf, as
already proved by Dolgachev, i.e. we can see it as cokernel of the transpose of
the above matrix:

0→O `−n−1
Pn (−1)→O `−1

Pn → eΩPn(log DZ)→ 0.

Step 2. Give a condition on y ∈ P̌n \ Z and IZ/P̌n equivalent to H y being an
unstable hyperplane for eΩPn(log DZ).
Given y ∈ P̌n, consider n independent linear forms (s1, . . . , sn) vanishing at y ,
and define the torsion-free sheaf Sy :

0→OP̌n

(s1,...,sn)−−−−→ O n
P̌n
(1)→Sy → 0.

Now, in view of the alternative definition we have given of eΩPn(log DZ), we
argue using the properties of integral functors under consideration that H y is
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unstable for eΩPn(log DZ) if and only if:

H0(P̌n,Sy ⊗IZ) 6= 0.

Step 3. Use the previous step to show that, if y ∈ P̌n \ Z is unstable for
eΩPn(log DZ), then Z is contained in some KW variety.
To achieve this, we note that a non-zero element s of H0(P̌n,Sy ⊗IZ) lifts to s̃
as in the diagram:

OP̌n

s
��

s̃

ww
0 // OP̌n

(s1,...,sn) // O n
P̌n
(1) // Sy // 0.

Now s̃ is given by (t1, . . . , tn), where the t i ’s are linear forms and the row
(t1, . . . , tn) is not proportional to (s1, . . . , sn). Then s vanishes on Z only if Z is
contained in the locus Y cut by the 2× 2 minors of the matrix:

M =

�

t1 · · · tn

s1 · · · sn

�

,

Note that Y is not all of P̌n, because the two rows of M are not proportional.
Now, one uses the approach of Lemma III.1 of Chapter 0 to show that

P(coker(M)) is isomorphic to P(coker(N)), where N is the matrix:

N : OP1(−1)n→O n+1
P1 ,

defined using the rows of M to index the variables of N , and the variables
of M to index the rows of N . The degeneracy locus Y is the image in P̌n of
P(coker(M))' P(coker(N)), and coker(N) is the direct sum of a line bundle of
degree d ≥ 0 on P1 (which gives the curve part of Y if d > 0) and of torsion
sheaves at points of P1 (which give the linear part of Y ). In fact, we will see in
detail how to work with matrices of linear forms in Chapter 2, cf. in particular
Section IV.4.2.

The final point is to check that, since Z is set-theoretically non-degenerate,
Y is reduced, so it satisfies precisely our definition of KW variety.

To conclude the proof, one argues that, as remarked by Dolgachev, all
points of Z give unstable hyperplanes for eΩPn(log DZ). If there were points
y not in Z , giving unstable hyperplanes, then Z would be contained in a KW
variety Y (suppose, for simplicity, with a curve part). Hence if Z is not con-
tained in any such variety from the beginning, it means that the points of Z are
precisely the only unstable hyperplanes of eΩPn(log DZ), and Z is reconstructed
this way, so that Torelli holds. It Y has no curve part one has to pay a little
more attention, but this is really a detail and we skip it here.

IV.2. Generic Torelli theorem for hypersurfaces. Let us now go back to
our Torelli problem for hypersurfaces having irreducible components of higher
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degree. First of all, we formulate the problem a bit more explicitly, in a frame-
work involving projective duality.

Let us fix n≥ 2, an integer s ≥ 1, and a degree vector d, i.e. d = (d1, . . . , ds)
with 1 ≤ d1 < . . . < ds. For any integer d, we consider the projective space
P̌(Sd) as the parameter space of hypersurfaces of degree d. Of course, the space
P̌(S1) is just the dual projective space P̌n, and in this sense will generalize the
approach of the previous section. So, given a degree vector d we let:

P̌(Sd) =
∐

i=1,...,s

P̌(Sdi
).

Set Ni =
�n+di

n

�

− 1. Clearly, we have P̌(Sd)'
∐

i=1,...,s P̌
Ni .

Let ` = (`1, . . . ,`s) be a sequence of integers. A reduced hypersurface D
having for all i, a number `i of irreducible components of degree di corresponds
uniquely to a collection Zi of `i points of P̌(Sdi

). The degree of D is
∑

i `idi . Set
` =

∑

i `i . The collection of ` points Z = ∪i Zi lives in the space P̌(Sd), and we
denote by DZ the hypersurface in Pn corresponding to Z . The hypersurface DZ

consists of the union of components ∪z∈Z Dz .
When D consists of many sufficiently general hypersurfaces in P̌n, the

Torelli problem has a positive answer. This is what we call generic Torelli theo-
rem. This result has been obtained in collaboration with Elena Angelini, and is
in great proportion contained in her thesis, [7] and in the preprint [6]. How-
ever, the result has never appeared so far, so we present it with a full proof.

So let Z = ∪i Zi and Z ′ = ∪i Z
′
i be finite sets of points in P̌(Sd), with Zi

and Z ′i in P̌(Sdi
). Consider the hypersurfaces D = DZ and D′ = DZ ′ of Pn

associated with Z and Z ′. The following result says that, under some generality
assumptions, ΩPn(log D) and ΩPn(log D′) are not the same, unless D and D′ are
the same.

Theorem IV.8. Fix notations as above, and assume D and D′ simple normal cross-
ings. Suppose that, for all i, Zi is in general linear position and does not lie in a
rational normal curve of degree Ni .

Then, whenever ΩPn(log D)' ΩPn(log D′), we must have Z = Z ′.

PROOF. Since D is a divisor with simple normal crossings, ΩPn(log D) is lo-
cally free, and we have the residue exact sequence:

0→ ΩPn → ΩPn(log D)→
⊕

z∈Z

ODz
→ 0.

From the above sequence we deduce that, for all z ∈ Z we have:

(IV.1) HomPn(ΩPn(log D),ODz
) 6= 0.

In analogy with Definition IV.7 for unstable hyperplanes, given y ∈ P̌(Se),
we say that the corresponding hypersurface Dy is an unstable hypersurface for
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ΩPn(log D) if:

(IV.2) HomPn(ΩPn(log D),ODy
) 6= 0.

So (IV.1) says that the hypersurfaces of Z are unstable for ΩPn(log D). Note
that, by Serre duality, since ΩPn(log D) is locally free, this condition boils down
to Definition IV.7 in case y ∈ P̌(S1) = P̌n.

Likewise, the hypersurfaces of Z ′ are unstable for ΩPn(log D′), i.e., we also
have HomPn(ΩPn(log D′),ODz

) 6= 0 for all z ∈ Z ′. Therefore, by the assumption
ΩPn(log D)' ΩPn(log D′), we get (IV.2) for all y ∈ Z ′.

What we want to show is that, under our assumptions, ΩPn(log D) has no
unstable hypersurfaces other than Z . In other words, to conclude Z = Z ′, we
have to show that, if z 6∈ Z , then:

(IV.3) HomPn(ΩPn(log D),ODz
) = 0.

We divide the proof of this fact into several steps.

Step 1. Set up of multiple Veronese product. Let us set Ni = Ndi
, and consider

the product space PNd =
∏s

i=1 P
Ni . This space contains the diagonal Veronese

image Vd of the projective space Pn, embedded in PNi by the monomials of
degree di in n+ 1 variables.

Pn→ Vd ,→ PNd .

We have the obvious exact sequence:

(IV.4) 0→IVd/PN →OPN →OVd
→ 0.

Each of the sets of points Zi ⊂ P̌(Sdi
) = P̌Ni gives an arrangement Ai =AZi

of
hyperplanes in PNi , and the collection of components of Di is given asAi ∩ Vd .
In detail, for any z belonging to some Zi ⊂ Z , we have a hyperplane in PNi , and
thus its pull-back Hz ⊂ PNd , and Dz = Hz ∩ Vd . Denote by πi : PNd → PNi be the
i-th projection, and hi = c1(π∗i (OPNi (1)). We get an arrangement A = ∪iAi

of hypersurfaces of PNd , where Ai is an irreducible divisor of class hi . Given
z ∈ P̌Ni , we have:

(IV.5) 0→OPNd (−hi)→OPd →OHz
→ 0.

Step 2. Get restricted unstable hyperplanes from unstable hypersurfaces. Since
each component of D is smooth, the manifold Vd intersects transversely the hy-
perplanes ofAi , so that by [105, Proposition 2.11] we get an exact sequence:

(IV.6) 0→N ∗Vd
→ ΩPNd (logA )|Vd

→ ΩPn(log D)→ 0.

By contradiction with (IV.3), let z 6∈ Z satisfy (IV.2). By the previous sequence,
it follows that HomPn(ΩPNd (logA )|Vd

,ODz
) 6= 0, i.e.:

(IV.7) H0(Vd ,ΩPNd (logA )∗|Vd∩Hz
) 6= 0.
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We say that Hz is a restricted unstable hyperplane for ΩPNd (logA ) when
the above non-vanishing condition holds. We have thus proved that unstable
hypersurfaces for ΩPn(log D) give rise to restricted unstable hyperplanes for the
sheaf ΩPNd (logA ).

Step 3. Prove that, for all z ∈ P̌Ns , we have the vanishing:

(IV.8) H1(PNd ,IVd/PNd ⊗ΩPNd (logA )∗|Hz
) = 0.

This is the most technical part. First of all, since PNd is a product and each
subarrangement Ai of A is a pull-back via the projection map πi , we get a
splitting:

ΩPNd (logA )∗ '
⊕

i=1,...,s

π∗i (ΩPNi (logAi)
∗).

Let us look at the single summands ΩPNi (logAi)∗. Since Zi ⊂ P̌Ni is gen-
eral linear position and is not contained in a rational normal curve of degree
Ni , we have that Zi is non-degenerate, so [107, Theorem 3.5] implies that
ΩPNi (logAi)∗ is a vector bundle fitting into an exact sequence of the form:

0→ ΩPNi (logAi)
∗→O `i−1

PNi
→OPNi (1)`i−Ni−1→ 0.

Summing over all i we get:

0→ ΩPNd (logA )∗→O `−s
PNd
→

⊕

i=1,...,s

OPNd (hi)
`i−Ni−1→ 0.

Now we tensor this sequence with IVd/PNd and we restrict to Hz , i.e., we
tensor with IVd∩Hz/Hz

. To prove (IV.8), it suffices thus to prove:

(IV.9) H1−k(Hz ,IVd∩Hz/Hz
(khi)), for k = 0, 1, for all i = 1, . . . , s if z ∈ P̌Ns .

To accomplish this, we put together (IV.5) and (IV.4) to form the following
exact commutative diagram.

0
��

0
��

0
��

0 // IVd/PNd (hi − h j) //

��

OPNd (hi − h j) //

��

OPn(di − d j) //

��

0

0 // IVd/PNd (hi) //

��

OPNd (hi) //

��

OPn(di) //

��

0

0 // IVd∩Hz/Hz
(hi) //

��

OHz
(hi) //

��

OVd∩Hz
(di) //

��

0

0 0 0

Clearly, the map H0(PNd ,OPNd (hi))→ H0(Pn,OPn(di)) is an isomorphism, so
we get the vanishing:

(IV.10) H0(PNd ,IVd/PNd (hi)) = H1(PNd ,IVd/PNd (hi)) = 0.
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Assume j = s, i.e., z ∈ P̌Ns , so that ds ≥ di for all i = 1, . . . , s. In this case,
looking at the first row of the above diagram, we see that:

(IV.11) H1(PNd ,IVd/PNd (hi − h j)) = 0, for j = s.

which is obvious for i = j, and follows from H0(Pn,OPn(di − d j)) = 0 for i 6= j
since in any case H1(PNd ,OPNd (hi − h j)) = 0.

Putting together (IV.10) and (IV.11), we obtain, by the leftmost column of
the above diagram:

H0(Hz ,IVd∩Hz/Hz
(hi)) = 0, for all i = 1, . . . , s, for all z ∈ P̌Ns .

Moreover, since Vd ∩Hz is connected, we get the vanishing:

H1(Hz ,IVd∩Hz/Hz
) = 0.

We have finally proved (IV.9), so the proof of this step is finished.

Step 4. Deduce that Zs = Z ′s . Tensoring by ΩPNd (logA )∗|Hz
the sequence (IV.4),

by the previous steps (i.e., using (IV.7) and (IV.8)), we get, for any z ∈ P̌Ns :

H0(PNd ,ΩPNd (logA )∗|Hz
) 6= 0.

In other words, the hyperplanes corresponding to z ∈ P̌Ns , i.e., to hypersurfaces
of maximal degree, are unstable for ΩPNd (logA ). Namely, we have lifted the
restricted unstable hyperplanes to true unstable hyperplanes, at least in maxi-
mal degree.

Now we use the previously mentioned results of [107, 306] which assert
that, as soon as Zs is not contained in a rational normal curve of degree Ns, the
unstable hyperplanes of ΩPNs (logAs) are exactly the ones of As. This means
that the unstable hypersurfaces of degree s of ΩPNd (logA ) are precisely the
points of Zs. We conclude that Zs = Z ′s .

Step 5. Use reduction to conclude Z = Z ′. So far we have shown Zs = Z ′s . Set:

Z s =
⋃

i=1,...,s−1

Zi , A s =AZ s .

We go back to the residue exact sequence, this time for ΩPNd (logA ), that reads:

0→ ΩPNd → ΩPNd (logA )→
⊕

z∈Z

OHz
→ 0.
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We now reduce ΩPNd (logA ) via the hyperplanes of Zs, i.e., we consider the
projection onto

⊕

z∈Zs
OHz

and take the kernel F , thus getting the diagram:

0

��

0
��

0 // ΩPNd
// F //

��

⊕

z∈Z s OHz
//

��

0

0 // ΩPNd
// ΩPNd (logA ) //

��

⊕

z∈Z OHz
//

��

0

⊕

z∈Zs
OHz

��

⊕

z∈Zs
OHz

//

��

0

0 0

We want to prove that F ' ΩPNd (logA s). To show this, first note that F is
locally free, as one sees applying H omPNd (−,OPNd ) to the central column of
the diagram and checking that E x tk

PNd
(F ,OPNd ) = 0 for all k > 0, which in

turn easily follows from the fact that ΩPNd (logA ) is locally free.
Further, we know that F is given as an extension associated with:

ξ ∈
⊕

z∈Z s

Ext1
PNd
(OHz

,ΩPNd ).

Write ξz for the component of ξ along Ext1
PNd
(OHz

,ΩPNd ). By the residue exact
sequence, ΩPNd (logA s) is given by another element, say ξ′, in the same space.
All the components ξz and ξ′z must be non-zero, for otherwise the associated
extensions would not give locally free sheaves. Moreover, if z ∈ P̌(Sd j

), we have
RH omPNd (OHz

,OPNd )' OHz
(h j)[−1], which easily implies:

Ext1
PNd
(OHz

,ΩPNd )' H0(PNd ,ΩPNd (h j)|Hz
)'

'
⊕

i 6= j

H0(PNi ,ΩPNi )⊕H0(PN j ,ΩPNj (h j)|Hz
)' k,

where we have used ΩPNd '
⊕

i=1,...,sπ
∗
i (ΩPNi ). Therefore, since ξz 6= 0 and

ξ′z 6= 0 for all z ∈ Z s, the extension ξ is taken to ξ′ by the automorphism
(ξ′z/ξz)z∈Z s of

⊕

z∈Zs
OHz

, and we deduce F ' ΩPNd (logA s).
Restricting the central column of the previous diagram to Vd , and using

again (IV.6), we get the following exact sequence, called the reduction sequence:

0→ ΩPn(log(Ds))→ ΩPn(log D)→
⊕

z∈Zs

ODz
→ 0.

For any i < s, applying HomPn(−,ODw
) to this sequence, for all w ∈ P̌Ni , we

easily see that ΩPn(log(Ds)) and ΩPn(log(D)) share the same unstable hyper-
surfaces of degree smaller than s. Therefore, repeating the previous steps for
ΩPn(log(Ds)) instead of ΩPn(log(D)), we conclude that Zs−1 = Z ′s−1. Iterating
this procedure, we finally obtain Z = Z ′.
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�

It should be noted that this theorem is very far from being sharp, in the
sense that Z might very well be Torelli even if it does not satisfy the condition
of the theorem. However, it says that Torelli holds for generic arrangements of
many hypersurfaces.

Corollary IV.9. Let Z = ∪Zi be a finite set in P̌(Sd), with Zi ⊂ P̌(Sdi
) of length

`i . If `i ≥ Ni + 4 for all i and each Zi is sufficiently general, then Z is Torelli.

PROOF. In the range `i ≥ Ni + 4, there is no rational normal curve in PNi

through a general set of `i points of PNi . All the conditions of Theorem IV.8 are
open, so the proof is finished. �

V. Open questions

We already mentioned some open problems and conjectures related to log-
arithmic sheaves, in particular the general Torelli problems, Terao’s conjecture
on the combinatorial nature of freeness for hyperplane arrangements, Buchs-
baum problem of producing free irreducible hypersurfaces, and Huh’s conjec-
tural classification of hypersurfaces of polar degree 2. Let us review briefly
some more speculations.

V.1. Generalized Weyl arrangements. A very interesting class of arrange-
ments comes from root systems.

Let V be a Euclidean vector space, equipped with the scalar product (−,−).
Given 0 6= α ∈ V , write sα for the reflection along the hyperplane Hα = α⊥. A
(reduced) crystallographic root system Φ is a finite set of non-zero vectors of V ,
such that:

i) the set Φ spans V ;
ii) for all α ∈ Φ, tα lies in Φ if and only if t =±1;

iii) for all α ∈ Φ, the set Φ is stable for sα;
iv) for any α,β ∈ Φ, the value 〈β ,α〉= (α,β)

(α,α) is an integer.

A root system is irreducible if it does not arise as product of two root systems.
The classification of irreducible root systems, or equivalently of simple Lie

algebras over C, relies on beautiful work of Killing, Cartan, Dynkin. These root
systems are in bijection with Dynkin diagrams of types An, Bn, Cn, Dn, E6, E7,
E8, F4, G2. We refer to [45,175].

Choosing a hyperplane of V skew to Φ results in dividing Φ into the positive
and negative parts Φ±. The simple roots ∆ of Φ are an integral basis of Φ. The
Weyl group of Φ is the subgroup of GLn(R) generated by the reflections sα, for
α ∈ Φ. Taking the product of the sα, for all α ∈∆, we obtain a Coxeter element
of W , and its order is called the Coxeter number of Φ, usually denoted by h.
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The eigenvalues of a Coxeter element acting of V are powers of e2iπ/h, say
a1, . . . , an, which are called the exponents of Φ. In fact, a1 = 1, and an = h− 1.

The Weyl arrangement is the affine arrangement of hyperplanes given by
Hα for α ∈ Φ+. These arrangements are free, and their exponents are given by
the so-called dual partition of the height distribution. We refer to [1] for an
arrangement-theoretic approach. The first proof not based on classification of
root system was given in [209].

Given the root system Φ, one can further construct the arrangements of Shi
and Catalan, as follows. First, we define the translated hyperplanes Hα,k =
{x ∈ V | α(x) = k}. Then, we denote, for a given pair of integers a ≤ b ∈ Z:

A [a,b]
Φ = (Hα,k | α ∈ Φ+, k ∈ Z, a ≤ k ≤ b).

An important result of Yoshinaga (cf. [318]) characterizes the free arrange-
ments arising this way. These are the cones (cf. [251, Section 1.15] or Section
I) cA [−k,k]

Φ (Catalan) and cA [1−k,k]
Φ (Shi) overA [−k,k]

Φ andA [1−k,k]
Φ .

Besides the cases giving rise to free arrangements, not much is known.
However, combining a guess of Yoshinaga (private communication) with some
experimental evidence, we propose the following.

Conjecture V.1. Let h be the Coxeter number of Φ, −1 ≤ a ≤ b two integers,
(−1,−1) 6= (a, b) 6= (−1, 0).

i) The logarithmic sheaf associated with cA [−a,b]
Φ and its dual, twisted with

OPn(−(a+ b+ 1)h), have the same graded Betti numbers;
ii) The logarithmic sheaf associated with cA [−a−1,b+1]

Φ , twisted with OPn(h),
also has the same graded Betti numbers.

iii) Let Φ be a root system of rank n (for instance An). Then the projective dimen-
sion of the logarithmic sheaf associated with cA [−a−1,b+1]

Φ is the minimum
among n− 1 and b− a− 1.

iv) The logarithmic sheaf associated with cA [−a−1,b+1]
An

has a linear resolution.

In fact, the best result would be to explicitly compute these Betti numbers;
the conjectural values of these numbers are some binomial coefficients at least
for root systems of type An. Together with T. Abe and J. Vallès, I recently
obtained a proof of all conjectures for the root system A2. The expectation of
writing explicitly a resolution for any Φ, a, b is less optimistic.

Example V.2. This example has been worked out with Macaulay2, [151]. The
reader is redirected to the file http://web.univ-pau.fr/~dfaenzi1/code/
coxeter-arrangements-examples.m2 for the code of this computation. More
experimental material on logarithmic derivations of generalized Coxeter arrangements
of typeA [a,b]

Φ for root systems of type A2, A3, A4, B2, can be found in this file.
Let Φ be the root system of type A4, so the exponents are (1,2, 3,4) and the Coxeter

number is 5. ConsiderA = P̌cA [1,1]
Φ , which consists of 11 hyperplanes in P4.

http://web.univ-pau.fr/~dfaenzi1/code/coxeter-arrangements-examples.m2
http://web.univ-pau.fr/~dfaenzi1/code/coxeter-arrangements-examples.m2
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It turns out that TPn(− logA ) and its dual twisted by OP4(−5), are Steiner sheaves
defined as cokernel of matrices say M and N of the form:

OP4(−5)4→OP4(−4)10.

However, N gives rise to 11 unstable hyperplanes, for in fact N is just the matrix
presenting eΩPn(logA ), tensored with OPn(−4).

On the other hand M gives only 6 unstable hyperplanes! So the two sheaves under
considerations are not isomorphic. However, they share the same Betti numbers, and
they both fail to be locally free (in this case, along 20 lines).

V.2. Free divisors associated with fibrations. The following idea is based
on some computations and discussions done this year with Enrique Artal, José
Ignacio Cogolludo and Jean Vallès, aiming at the construction of free plane
curves. The statement of the conjectures is due to Enrique Artal.

Conjecture V.3. Let D ⊂ P2 be a curve such that there exists a locally trivial
fibration ϕ : P2 \ D→ Y , where Y is a quasi-projective curve. Then D is free.

This conjecture is true, even in higher dimension, for hyperplane arrange-
ments. Such arrangements are called fibre-type according to terminology of
Falk and Randell, [141]. Being fibre-type is in fact a combinatorial property,
equivalent to being supersolvable, cf. [297], and supersolvable arrangements
are free.

In fact, even more should be true, namely this conjecture generalizes to the
orbifold setting in the following sense. Let ϕ : U → ∆n be a holomorphic map
where U is a complex surface and ∆ is an open disk in C such that the origin is
an orbifold point of index n. Then ϕ is partially locally trivial if its pull-back by
t 7→ tnm, for some m, is locally trivial.

Conjecture V.4. Let D ⊂ P2 be a curve such that there exists a partially locally
trivial fibration map ϕ : P2 \ D→ X orb, where X orb is a quasi-projective rational
orbicurve. Then D is free.

For instance, the Hesse arrangement A naturally arises when looking at
the singular fibres of the pencil generated by a smooth complex cubic in P2

and its Hessian. Removing these fibres we obtain a locally trivial fibration
P2 \ DA → P1 \ x1, . . . , x4. Adding an arbitrary number of smooth cubics in
this pencil to the Hesse arrangement still gives a free arrangement. The point
is that this phenomenon should be general.



CHAPTER 2

Cohen-Macaulay bundles

This chapter is devoted to maximal Cohen-Macaulay modules and arith-
metically Cohen-Macaulay bundles, a notion that ties together tightly algebraic
geometry and commutative algebra. I will first give a survey of their main fea-
tures, focusing on existence and classification problems. Doing so, I will give a
couple of alternative proofs of well-known results; these are sketched in some
detail for they look a bit simpler (for me!) than the original ones. Then, I will
describe ACM bundles in detail in a special situation, showing that a certain
surface in P5 admits only families of dimension at most 1 of such (indecompos-
able) bundles. This part has never appeared before, so it will be presented with
a “full” proof.

I. ACM varieties and bundles

We first define ACM varieties, which are projective varieties whose graded
coordinate ring has a minimal graded free resolution over S which is as short as
it can be, namely of length equal to the codimension of the variety. We will then
define in similar fashion ACM sheaves and MCM modules. After that, we will
say some words on a class of particularly nice bundles, namely Ulrich bundles,
characterized by the fact that the minimal graded free resolution is not only
short but also linear.

I.1. ACM varieties. Let k be a field, and m ≥ 0 and n ≥ 1 be integers.
Consider a subvariety X ⊂ Pn over k, embedded by the complete linear series
defined by a divisor class h, and denote by IX the homogeneous saturated ideal
of X . We have defined the graded algebra SX = S/IX , and the ideal sheaf IX/Pn .

Definition I.1. The variety X is ACM (for arithmetically Cohen-Macaulay) if SX

is a Cohen-Macaulay ring, i.e., depth(SX ) = m+ 1.

Equivalently, X is ACM if the projective dimension of SX as an S-module
equals codim(X ,Pn) = n−m, which is to say that the ideal IX has a free reso-
lution over S of the form:

0→ F n−m→ ·· · → F1→ IX → 0.

This is also equivalent to the following vanishing conditions:

H1
∗(P

n,IX/Pn) = 0; Hi
∗(X ,OX ) = 0, for 0< i < m.

45
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Of course this notion depends on the divisor class h on X .

Example I.2. The following examples are classical.

i) Complete intersections in Pn are ACM.
ii) Determinantal varieties are ACM, cf. for instance [234]. The resolution of

SX as an S-module is called the Eagon-Northcott complex.

The following example is also well-known. Take a reductive algebraic
group G over an algebraically closed field k of characteristic zero and a pro-
jective manifold X homogeneous under the action of G (for a related result in
positive characteristic see [274]).

Lemma I.3. An equivariant embedding of X is ACM.

PROOF. Let P be the parabolic subgroup of G given by the stabilizer of a
point of X . An equivariant embedding of X is defined by a lined bundle Lλ
associated with a dominant weight λ of G. If P is given by the choice of simple
roots α1, . . . ,αs of G, then λ = a1λ1 + · · ·+ asλs, where the λi ’s are the corre-
sponding fundamental weights and ai ’s are positive integers. So, denoting by
Vλ the G-module given by the weight λ, we have Pn = P(Vλ).

It is clear that Hi
∗(X ,OX ) for 0< i < m (see e.g. [317]), so we should check

H1
∗(P

n,IX ) = 0. This holds if the restriction map H0(Pn,OPn(t))→ H0(X ,Ltλ)
is surjective for any integer t ≥ 0. In turn, this is clear since this map is the
canonical projection:

H0(Pn,OPn(t))' St Vλ� Vtλ ' H0(X ,Ltλ).

�

I.2. ACM sheaves. Let us now proceed to define arithmetically Cohen-
Macaulay sheaves. Again k is a field.

Definition I.4. Let X ⊂ Pn be an ACM subvariety of dimension m > 0 and let
E be a coherent sheaf on a X . Then E is an ACM sheaf if E is locally maximal
CM, and if E has no intermediate cohomology:

Hi
∗(X , E) = 0, for all 0< i < m.

A sheaf E is ACM if Γ∗(X , E) is a maximal Cohen-Macaulay (MCM) S-
module, i.e., its depth is m + 1. If E is ACM, then Γ∗(X , E) has a minimal
graded free resolution of the form:

(I.1) 0→ F n−m→ ·· · → F0→ Γ∗(X , E)→ 0.

The condition of being locally maximal CM amounts to ask that the depth
of any localization of E equals the dimension of the corresponding local ring. It
can be replaced by H0(X , E(t)) = 0 for t � 0, for in this case Γ∗(X , E) is finitely
generated over SX and Hi

∗(X , E) = 0 for 0 < i < m makes it into an MCM
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module. The fact that E is locally maximal CM is also equivalent to Hi
∗(X , E)

being a finite dimensional vector space for all 0< i < m. If X is smooth, locally
maximal CM sheaves are precisely locally free sheaves.

Example I.5. Of course, a vector bundle on a curve is an ACM sheaf. The next
well-known examples will be fundamental for us.

i) A line bundle on a projective space is an ACM sheaf. It is important to
keep in mind the opposite implication, the already mentioned theorem of
Horrocks [173], which asserts that an ACM indecomposable sheaf on Pn,
up to twist, is just OPn .

ii) Spinor bundles on smooth quadrics are ACM sheaves. There are two non-
isomorphic spinor bundles on a smooth quadric of even dimension, or just
one of them in odd dimension, cf. [62,257,293].

This time too, something very precise can be said in the opposite direc-
tion. Indeed, an important result of Knörrer, [206] says that an indecom-
posable ACM sheaf on a smooth quadric hypersurface is, up to a twist, the
structure sheaf or a spinor bundle. We refer to [256, 258] for the discus-
sion of splitting criteria on quadrics, and to [196,197] for spinor bundles
in connection with full exceptional collections on quadrics.

iii) Determinantal varieties support various ACM sheaves. The graded free
resolution as S-modules of the associated MCM modules is given by the
Buchsbaum-Rim complexes cf. for instance [119,317].

Once again, in some cases one can go in the other direction: this works
well for instance for projective hypersurfaces. For a modern account of
this procedure, going back at least to [100,103], we refer for e.g. to [28,
270]. Indeed, once given an ACM sheaf E over an integral hypersurface X
embedded in Pn by ι, we have a minimal graded free resolution:

0→ F1
M−→ F0→ Γ∗(X , E)→ 0,

and its sheafification:

(I.2) 0→ F1
M−→ F0→ ι∗(E)→ 0,

where the Fi ’s are split bundles. The determinant of the square matrix M
above is a power of the defining equation of X , and this power is just the
generic rank of E. We will see below a slightly more detailed survey on
various kinds of determinantal representations of hypersurfaces.

I.3. Ulrich sheaves. Let again X ⊂ Pn be an an m-dimensional ACM sub-
variety, m > 0, and E be a coherent sheaf on X . We say that E is initialized if
H0(X , E) 6= 0 and H0(X , E(−1)) = 0, i.e. if Γ∗(X , E) is zero in negative degrees
and non-zero in positive degrees. Of course we have to specify with respect
to which line bundle is a sheaf initialized, should it be unclear from the con-
text. Any coherent sheaf E with no 0-dimensional torsion part has an initialized
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twist, i.e. there is a unique integer t such that E(t) is initialized. In particular
an ACM sheaf has a normalized twist if m> 0.

Given an ACM sheaf E of rank r on X , its initialized twist E(t0) satisfies the
inequality (cf. [305]):

(I.3) h0(X , E(t0))≤ r deg(X ).

Of course the degree of X here is the degree with respect to h, i.e. hm.

Definition I.6. We say that E is Ulrich if equality is attained in (I.3).

Ulrich bundles have been studied intensively, and are related to many fea-
tures of X . In first place, in view of [125], they are related to linear resolutions
(and to the theory of Chow forms), which is to say that E is Ulrich if and only
if all differentials in (I.1) are matrices of linear forms. In this case, the rank
of the Fi ’s is particularly easy to determine as some prescribed multiples of bi-
nomial coefficients. Ulrich bundles are characterized by an even more extreme
cohomology vanishing than just intermediate cohomology, namely:

Hi(X , E(−i)) = H j(X , E(− j− 1)) = 0, for all i > 0 and j < m.

Second, Ulrich bundles are connected to Boij-Söderberg theory, cf. [122–
124]. Indeed, by [285], the existence of a single Ulrich sheaf on a given inte-
gral projective variety X entails equality between the Boij-Söderberg cones of
coherent sheaves on X and of a projective space of dimension dim(X ).

Here is a (very partial) survey of varieties that admit Ulrich bundles.

i) Any projective curve, over any field, admits an Ulrich sheaf, by [122, Corol-
lary 4.5].

ii) Hypersurfaces admit Ulrich bundles, [52, 170]. In general the rank of
these bundles is exponential in the number of variables.

iii) Veronese varieties admit Ulrich bundles. See [125, Section 5] for a proof
relying on representation theory and on Borel-Bott-Weil’s. See [122] for a
very simple proof valid over arbitrary fields.

iv) Many K3 surface (cf. [8]) and all smooth quartic surfaces (cf. [88]) admit
Ulrich bundles of rank 2.

Ulrich bundles are known to exist also on determinantal varieties, on Grass-
mannians (work in progress of L. Costa and R. M. Miró-Roig), Segre-Veronese
products, etc. The class of varieties admitting Ulrich bundles is closed under
Segre products and transverse intersection. However a general existence result
is far from being clear.

II. CM type of varieties

By analogy with the case of representations of quivers, keeping in mind
the subdivision of quivers into finite, tame, and wild representation types (see
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[36,147] for a classification of quivers of the former two types related to simply
laced Dynkin diagrams, and [193] for an analysis of the latter type), a notion of
finite, tame, and wild representation type for ACM varieties has been proposed
recently, cf. [72,111].

Definition II.1. Let X ⊂ Pn be an integral ACM variety of positive dimension.
Then X is said to be of finite representation type, or of finite CM type if it supports
only finitely many isomorphism classes of indecomposable ACM sheaves, up to
twist.

If X is not of this type, it is said to be of tame representation type or of
tame CM type if, for each rank r, the indecomposable ACM sheaves of rank
r form a finite number of families of dimension at most one, up to twist and
isomorphism, and not all such families are zero-dimensional.

Finally if, up to twist and isomorphism, there are m-dimensional families
of indecomposable ACM sheaves, for arbitrarily large m, then X is said to be of
wild representation type, or of wild CM type.

In these definitions it makes sense to restrict, in the singular case, to locally
free sheaves ACM sheaves, in which case one speakes of VB (vector bundle)
type of a variety.

The simplest framework to test these notions is given by curves. A smooth
projective curve in X of genus g embedded in Pn is either of finite, tame, or
wild CM type according to whether g is 0, 1 or ≥ 2.

i) For g = 0 (i.e., for X = P1) of course we have finite CM type, as any vector
bundle on P1 splits as a direct sum of line bundles. This works over any
field.

ii) For g = 1, X is of tame CM type. Indeed, a famous result of Atiyah (cf. [14,
Theorem 7]) stipulates that, for any given pair of integers (r, d), the set of
isomorphism classes of indecomposable vector bundles on X having rank
r and degree d is identified with X itself. Atiyah’s theorem holds over any
algebraically closed field.

iii) For g ≥ 2, X is of wild CM type. Indeed, once fixed (r, d) as above, the
moduli space of stable bundles on X having rank r and degree d has dimen-
sion r2(g−1)−1, so there are arbitrarily large families of non-isomorphic
bundles of rank r on X .

These definitions can be naturally given also in the framework of local or
graded rings, replacing ACM sheaves with MCM modules (or even in a more
general setting: non-commutative etc). In the local analytic setting, over an
algebraically closed field k of characteristic different from 2, a remarkable fact
is that simple hypersurface singularities are precisely the local rings over k of
finite CM type, see again [63,206].
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For surfaces, simple singularities are exactly the rational double points, in-
dexed by the simply laced Dynkin diagrams, and the characterization of finite
CM rings among surface singularities goes back to [13,18,127,169], and works
even in characteristic 2. In this case (say if k = C) there is a bijection between
CM modules over the coordinate ring of a rational double point and the irre-
ducible representations of the associated subgroup of SL2(C), called the McKay
correspondence.

Minimally elliptic surface singularities are of tame CM type, cf. [101, 112,
195]. A detailed study of several classes of non-isolated surface singularities,
some of which are of tame CM type, has been carried out recently, see [67].

Going back to curves, in the singular case Drozd and Greuel proved in
[110, 111] that nodal projective curves are VB finite, tame or wild, according
to their arithmetic genus being 0, 1, or ≥ 2.

The finite-tame-wild trichotomy, however, does not take place in general
for ACM sheaves over singular varieties. Indeed, [63, §4], quadric cones over
a point have an infinite discrete set of ACM sheaves. It is unclear whether the
trichotomy holds in the class of smooth projective ACM varieties.

II.1. Varieties of finite CM type. Let us now briefly describe the easiest
situation, namely when our variety has finite CM type. It turns out that these
varieties are classified, as we shall recall in a minute. We will then sketch a
method to classify ACM sheaves on these varieties.

II.1.1. Classification of varieties of finite CM type. We have already encoun-
tered three classes of varieties of CM finite type, namely projective spaces,
quadrics, and rational curves. In fact, these exhaust all three infinite series
of ACM varieties of finite CM type, at least over an algebraically closed field
of characteristic zero. A theorem of Eisenbud and Herzog gives the complete
classification of such varieties, [121]. They are the following:

i) three or fewer distinct points;
ii) projective spaces;

iii) smooth quadric hypersurfaces;
iv) rational normal curves;
v) the Veronese surface in P5;

vi) a smooth cubic scroll in P4.

The theorem follows from [152] for dim(X ) = 0. For positive dimension,
a key ingredient is the case of hypersurfaces, treated in [63]. Besides hyper-
surfaces, with the help of a theorem of Auslander [17] controlling the singu-
larities of X , one reduces to the classification of varieties of minimal degree of
Del Pezzo and Bertini (i.e., integral non-degenerate varieties attaining equality
in the universal bound deg(X )≥ 1+ codim(X ), cf. [120] for an account of this
notion). In turn CM-finite varieties of this kind are classified in [19].
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II.1.2. Classification of ACM bundles on varieties of CM finite type. As we
have just mentioned, the classification of ACM bundles on the Veronese surface
in P5 is well-known, see [19,291]. We give here an elementary proof based on
Beilinson’s theorem. It is valid over any field.

Proposition II.2. Let E be an ACM indecomposable bundle on (P2,OP2(2)). Then,
up to twist by OP2(2t) for a certain t ∈ Z, the bundle E is isomorphic to one of the
three bundles OP2 , OP2(1), ΩP2(1).

We use the theorem of Beilinson, [34]. We refer for instance to [177, Chap-
ter 8] for a detailed description of this fundamental result. A nice description
of it with several applications is also given in [4,260].

This theorem states that, for a given bundle E on Pn, there is a complex of
coherent sheaves F , whose cohomology is E:

· · · → F−1 d0−→ F0 d1−→ F1→ ·· · ,

with H 0(F) ' E and H i(F) = 0 for i 6= 0. In other words F is acyclic except
in degree 0, and the 0-th cohomology of F is E. For any j, the term F j is:

(II.1) F j =
⊕

k

Hk+ j(Pn, E(−k))⊗Ωk
Pn(k).

The theorem of Beilinson also says that F is minimal, which means that all
mapsΩk

Pn(k)→ Ωk
Pn(k) induced by the differential of F is zero. This terminology

comes from minimal graded free resolutions of modules over a polynomial ring.
Indeed, such resolution is minimal if and only if any map of degree 0 extracted
from the differentials vanishes, and this condition amounts to ask that there is
no resolution with terms of smaller rank of the same module.

PROOF. Let E be an ACM indecomposable bundle on (P2,OP2(2)). The com-
plex F of Beilinson then reads:

→ ΩP2(1)h
0(P2,E(−1)) d0−→

OP2(−1)h
2(P2,E(−2))

⊕
ΩP2(1)h

1(P2,E(−1))

⊕
O h0(P2,E)
P2

d1−→ ΩP2(1)h
2(P2,E(−1))→

Since the complex is minimal, the central term ΩP2(1)h
1(P2,E(−1)) is sent by d1 to

0 ∈ F1. Likewise, the image of d0 has intersection zero with ΩP2(1)h
1(P2,E(−1)).

Therefore, ΩP2(1)h
1(P2,E(−1)) is a direct summand of E. It follows, since E is

indecomposable, that E ' ΩP2(1), or H1(P2, E(−1)) = 0.
In the second case, we look at E(2). By the same argument, E(2)' ΩP2(1),

or H1(P2, E(1)) = 0. Continuing this way, we deduce that, if E(2t) is not
isomorphic to ΩP2(1) for any t ∈ Z, then H1(P2, E(2t + 1)) = 0 for all t ∈ Z .
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But in this case E is ACM on (P2,OP2(1)), so it splits by Horrock’s criterion. It
is thus isomorphic to OP2 or OP2(1) up to a twist by OP2(2t). �

II.2. Some varieties of wild CM type. The class of varieties which are
known to be of wild representation type is quite large.

i) Hypersurfaces of degree d ≥ 4 in Pn with n ≥ 2 are of wild CM type
according to [92,113]. The same happens for complete intersections in Pn

of codimension ≥ 3, having one defining polynomial of degree ≥ 3.
ii) Segre varieties are of wild CM type except for the well-known cases of

finite CM type appearing in the list of Section II.1.1, according to [90].
We will see in a while that Segre-Veronese varieties have an interesting
behaviour.

iii) Smooth rational ACM surfaces in P4 other than the cubic scroll are of wild
CM type, cf. [236]. Del Pezzo surfaces are CM wild, [267], see also [89].

iv) The third Veronese embedding of any variety is of wild CM type, [237].
v) Given integers s > 0 and 0 > a1 ≥ · · · ≥ as, the rational normal scroll

S(a1, . . . , as) is the variety P(⊕iOP1(ai)) embedded in projective space by
the tautological ample line bundle. Rational normal scrolls are almost
always of wild CM type according to [235]. Indeed, this happens unless
s = 1, or s = 2, and a1 + a2 ≤ 4. It should be noted that, in [235], it is
claimed that even S(2, 2) and S(1,3) should be of wild CM type, while we
will show in the next section that S(2,2) actually leads to a variety of tame
CM type. The same should happen to S(1, 3) (work in progress). However,
the argument of [235] fails for these cases only.

III. Existence and classification problems for ACM bundles

We have mentioned in Section I the problem of existence of nontrivial ACM
and Ulrich bundles, and in the previous section the question of measuring how
many, or how large families of such bundles exist on a given variety. We would
like to go here a bit further in this analysis, showing some known results on
existence of ACM and Ulrich with special properties (small rank, symmetry,
etc), and on their classification in some bounded region (rigid bundles, or again
bundles of small rank), with a view towards related topics in real and convex
algebraic geometry.

III.1. Hypersurfaces. We have mentioned the relation between ACM bun-
dles and determinantal representations. Let us go into a bit more detailed
account of this phenomenon.

III.1.1. Symmetric and linear determinants. Let us work over an alge-
braically closed field k of characteristic other than 2 for this subsection. Given
an irreducible polynomial f ∈ Sd , it is clear by (I.2) an ACM line bundle E on
D = V( f )⊂ Pn gives an expression of f as det(M). We call this a determinantal
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representation of f , or of D, and we say that is nontrivial if the associated bun-
dle is not a direct sum

⊕

OX (ai) (which is to say that M is not just a diagonal
matrix with f on the diagonal). The entries of M are linear forms if and only if
E is Ulrich, in which case we speak of a linear determinantal representation of
f . If f is not irreducible, one usually treats each component at a time.

While any plane curve D ⊂ P2 has a linear determinantal representation
(we refer again e.g. to [28]), not every surface of degree d ≥ 4 in P3 has
determinantal representations (linear or not), nor does any smooth D in Pn for
n≥ 4, as it is clear from Grothendieck-Lefschetz.

A smooth cubic surface D, instead, has 72 non-equivalent linear determi-
nantal representations, in natural correspondence with double-sixers (cf. [106,
Chapter 9]), and 27 determinantal representations with quadratic and linear
forms (plus with their transpose), which are, as the reader will have undoubt-
edly imagined, in natural bijection with lines contained in D.

On can specify even more M , by requiring that it is symmetric. This
amounts to ask that E be equipped with a symmetric duality E ' E∗(t), for
some t ∈ Z. A symmetric determinantal hypersurface V(det(M)) in Pn is nec-
essarily singular if n≥ 3. In fact singular determinantal surfaces, together with
their double covers, have been deeply studied in [75], and play an important
role (in a slightly generalized form) while seeking surfaces with many nodes,
cf. [77].

On the other hand, any plane curve D in P2 has a linear symmetric de-
terminantal representation. Indeed, D can be taken to be integral, and one
just needs to find, on the normalization D̃ of D, a theta characteristic E (i.e.
E⊗2 ' ωD̃), with H0(D̃, E) = 0. But the existence of such E is guaranteed by
Riemann’s singularity theorem (cf. again [28] and references therein).

III.1.2. Determinantal representations and LMI’s. Determinantal represen-
tations of polynomials play an important role in control theory and semidefinite
programming via the notion of linear matrix inequality (LMI). Let us review this
briefly here, referring to [311] for an excellent survey.

Fix k = R and S = R[x1, . . . ,xn]. Take M to be a symmetric matrix of size
` whose entries are affine linear forms in the variables x1, . . . ,xn. Then the
spectrahedron associated with M is the set:

SM = {x ∈ Rn | M(x)� 0},

where M(x)� 0 means that the evaluation of M at x is positive semidefinite. It
is clear this locus is convex. If it has non-empty interior, then by conveniently
reducing the size of M , we may assume that M(x) � 0 for all x in the interior
of SM . A convex set C ⊂ Rn (with non-empty interior) is said to admit an LMI
representation if C = SM for some M as above.
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A polynomial f ∈ S is real-zero with respect to x ∈ Rn if, for any y ∈ Rn,
the following polynomial in t has only real solutions:

f (x+ ty).

Given 0 6= f ∈ S and x ∈ Rn, we set Ix( f ) for the connected component
containing x of {y ∈ Rn | f (y) > 0}. A set C ⊂ Rn is called algebraic interior if
C = Ix( f ) for some f as above.

It turns out that, if a convex set C ⊂ Rn with interior I 6= ; has an LMI
representation M , then it is an algebraic interior with respect to a real-zero
polynomial f which is positive at a point of I . Further, det(M) = f (x)g(x), for
some polynomial g positive on I .

A beautiful result of Helton-Vinnikov (see [167]) asserts that, when n= 2,
given any real-zero polynomial f , the algebraic interior Ix( f ) has an LMI repre-
sentation, of size `= deg( f ), and with M(x) = I`. The result is rooted in [310],
where a condition on existence of LMI representations was given in terms of
nesting of the ovals of the real algebraic curve V( f ). In turn, this analysis is a
refinement of the fact, that we have already observed, that curves in complex
projective plane have a linear determinantal representation: indeed positivity
and reality issues will now forbid some choices of our theta characteristic E.

The construction has been carried out in an algorithmic form in [265]. For
plane quartics, an explicit LMI representation can be constructed starting from
bitangents , cf. [264]. For rational curves a very explicit description of this is
given in [168]. For elliptic curves, see [280].

III.1.3. Rank two bundles and Pfaffian hypersurfaces. We mentioned sym-
metric determinants already, in connection with theta characteristics and con-
vex geometry. Skew-symmetric matrices M of even size, on the other hand, are
related to ACM bundles of rank 2, which is readily understood if we think that,
on a point of V(det(M)), the matrix M will generally have corank 2, hence
determine a rank-2 kernel (and cokernel). In this case the relevant invariant is
the Pfaffian Pf(M) of M , that satisfies Pf(M)2 = det(M), so we speak of Pfaffian
and linear Pfaffian representations of a hypersurface D ⊂ Pn.

It is immediate to see that any plane curve has a linear Pfaffian representa-
tion, and one can even try to parametrize all such representations for a given
smooth projective plane curve D. A detailed analysis of this parametrization in
terms of the moduli space MD(2,ωD) has been carried out in [65,66].

For surfaces, it is known that a general surface D of degree d in P3 has
a linear Pfaffian representation if and only if d ≤ 15, [28, Appendix]. The
same result holds if we replace linear Pfaffian with “almost” linear Pfaffian,
namely we allow one row and column of M to have higher degree, [131].
These two results are tightly related since, in both cases, for any rank-2 ACM
bundle E on D giving such presentation, the vanishing locus of a general global
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section of E vanishes on a codimension-2 subscheme of D, whose resolution as
a codimension-3 subscheme of Pn is linear, cf. [60].

For surfaces of low degree d, the situation is analyzed in detail in [79,132].
It turns out that, for any d, we have bounds 3− d ≤ c1(E) ≤ d − 1 and the
implications:

c1(E) = 3− d ⇐⇒ c2(E) = 1,

c1(E) = 4− d ⇐⇒ c2(E) = 2,

c1(E) = d − 2=⇒ c2(E) =
d (d − 1) (d − 2)

3
,

c1(E) = d − 1=⇒ c2(E) =
d (d − 1) (2 d − 1)

6
.

Ulrich bundles here correspond to extremal values c1(E) = d − 1, c2(E) =
d (d−1) (2 d−1)

6
. For d ≤ 5, any intermediate value of c2 is actually attained.

If X is a smooth cubic surface X ⊂ P3, the classification is a bit more intri-
cate. Indeed, the rich structure of Pic(X ) allows for existence of more classes
ACM bundles E on X , and for some of these classes c1(E) is not a multiple of h.
As it turns out, these are precisely the bundles that do not extend to a general
cubic threefold containing X . The classification of all these cases is the content
of [132].

For hypersurfaces of dimension n − 1 ≥ 3, the situation is settled by the
work of [238, 239] (cf. also [272]), together with [80, 227]. It turns out
that, for n = 4 and d ≥ 6, a general hypersurface X in P4 does not support
ACM bundles of rank 2, so X has no Pfaffian representations. These bundles
are classified for d ≤ 5. For n ≥ 5, the same non-existence phenomenon takes
place for d ≥ 3. For n ≥ 6, only singular hypersurfaces can support such
bundles (cf. [203]).

III.1.4. Higher rank ACM bundles on cubics. Stable Ulrich bundles of arbi-
trary rank have been found on cubic surfaces in [72]. The construction goes
through a higher-rank analogue of the Hartshorne-Serre construction, in the
spirit of [312]. It shown in [73] that their moduli space of stable bundles,
even when c1 is not a multiple of h, is smooth and irreducible, as soon as it is
non-empty. It is also proved in loc. cit. that stable Ulrich bundles exist of any
rank exist on a general cubic threefold.

A more sophisticated approach was developed in [221] to study ACM bun-
dles on cubic threefolds and cubic fourfolds containing a plane H, relying on
the quadric bundle structure of the cubic X . In this setting, one considers the
quadric bundle structure induced by the projection X ¹¹Ë P2 from a line in X
(when n = 4), or from H (when n = 5), and looks at the induced sheaf of
(even parts of) Clifford algebrasB over P2. A semiorthogonal summand of the
derived category Db(X ) of X has been described by Kuznetsov’s in [218] as the
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derived category of B-modules over P2, denoted by Db(P2,B). In [221] this
category is used to construct stable Ulrich bundles, and, when n= 5, to recover
the K3 surface associated with X as a moduli space of Ulrich bundles on X .

III.2. Fano threefolds. A Fano manifold, for us, is a smooth connected
complex projective variety X of dimension m, such that the anticanonical line
bundle ω∗X is ample. The interest in studying ACM bundles on Fano threefolds
is perhaps rooted in the following remark: let iX be the index of X , i.e. the
largest integer such that ωX ' OX (−iX h), for some (ample) divisor class h on
X . By a famous result of Kobayashi-Ochiai [207] (see also [208]), one has
1 ≤ iX ≤ m+ 1, and if iX = m+ 1 then X ' Pm, while if iX = m then X is a
quadric hypersurface (cf. also [194] for the extension of this result to positive
characteristic).

Since in the cases iX = m+1 and iX = m ACM bundles are well understood,
one may hope for similar results in slightly lower index, at least for m ≤ 3
for these varieties are then classified (cf. [188]). However, it soon appeared
that even when m = 2 and iX = 1 (del Pezzo surfaces) one should expect the
situation to be much more complicated (cf. the already mentioned case of cubic
surfaces).

In spite of this, for rank 2 some nice classification results are available.
Indeed, ACM bundles of rank 2 on del Pezzo threefolds (i.e. iX = 2) of Picard
number 1 were classified in [11]. For higher Picard number, we tackled the
problem in [74]. The main difficulty is to control the zero locus of a general
section of the initialized twist of such a bundle, for in this case it might happen,
in principle, that it vanishes along a divisor. It turns out, however, that this
phenomenon happens only for decomposable bundles.

The situation for threefolds of index 1 and Picard number 1 is discussed
in [49], where also some moduli spaces are computed (see also [12] for three-
folds of maximal genus).

III.3. Classification of rigid ACM bundles on Veronese varieties. Here,
we rephrase in terms of vector bundles a couple of very interesting results of
Iyama and Yoshino, cf. [189, Theorem 1.2 and Theorem 1.3], on the classifi-
cation of rigid indecomposable MCM modules over two Veronese embeddings
in P9 given, respectively, by plane cubics and space quadrics. The theorem pre-
sented below is not exactly stated in the same way as the result just mentioned,
however it is strictly equivalent to it. The proof of Iyama and Yoshino relies on
techniques of cluster tilting.

There is also at least another proof, that makes use of Orlov’s singularity
category, cf. [200]. “At least”, since [201] seems to contain yet another argu-
ment. In spite of the title of [200], these three papers go far beyond the scope
of the next theorem.
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The simple-minded proof presented here is essentially a refinement of
Proposition II.2. I assume k = C, because a couple of results are used where
this assumption is made, namely [109, 161]. However, everthing seems to
work smoothly if k is algebraically closed or finite.

III.3.1. ACM bundles on the third Veronese surface. Consider P2, and the
polarization h given by plane cubics, which is to say that h is associated with
OP2(3), so that the linear system |OP2(h)| embeds P2 as the third Veronese surface
in P9. A coherent sheaf E on P2 is ACM with respect to h if and only if E is
locally free and :

(III.1) H1(P2, E(3t)) = 0, for all t ∈ Z.

We are going to classify simple ACM sheaves E on the third Veronese
surface, with a special attention to the case of rigid bundles, namely when
Ext1
P2(E, E) = 0. To do this, we define the Fibonacci numbers, starting from an

integer ` and setting:

a`,k =
(`+

p

`2− 4)k − (`−
p

`2− 4)k

2k
p

`2− 4
.

Equivalently, a`,k is defined by the relations:

a`,0 = 0, a`,1 = 1, a`,k+1 = `a`,k − a`,k−1.

For instance (a3,k)k is given by the odd values of the Fibonacci sequence:

k 0 1 2 3 4 5 6

a3,k 0 1 3 8 21 55 144

Theorem III.1. Let E be a bundle on P2 satisfying (III.1).

i) If E is simple, then there are integers a, b ≥ 0 such that, up to a twist by
OP2(s), E or E∗ have a resolution of the form:

0→OP2(−2)b→OP2(−1)a→ E→ 0.

ii) If E is rigid, then there is k ≥ 1 such that, up to tensoring with OP2(s), E or
E∗ have a resolution of the form:

0→OP2(−2)a3,k−1 →OP2(−1)a3,k → E→ 0.

iii) Conversely for any k ≥ 1, there is a unique indecomposable bundle E having
resolution of the form:

0→OP2(−2)a3,k−1
M−→ OP2(−1)a3,k → E→ 0,

and both E and E∗ are ACM and exceptional.

Remark III.2. The rank of the bundle Ek is given the Fibonacci number be-
tween a3,k−1 and a3,k. Also, E2k (respectively, E2k+1) is the k-th sheafified
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syzygy occurring in the resolution of OP2(1) (respectively, of OP2(2)) over the
Veronese ring, twisted by OP2(3(k− 1)).

It should be noted that, in [189, Theorem 1.2 and Theorem 1.3], the
ACM bundle E on the given Veronese variety is assumed to have a rigid
module of global sections. This implies, respectively, Ext1

P2(E, E(3t)) = 0, or
Ext1
P3(E, E(2t)) = 0, for all t ∈ Z. A priori, this is a stronger requirement than

just Ext1
Pn(E, E) = 0. However, our proof shows that the two conditions are

actually equivalent for ACM bundles.
Also in (i), we actually need the weaker assumption that E has no endo-

morphism factoring through OP2(3t) for any t ∈ Z.

PROOF. Let us first prove (i). So let E be a simple vector bundle on P2

satisfying (III.1). Let E0 be the initialized twist of E with respect to OP2(1) and
set αi, j = hi(P2, E0(− j)). Of course we have α0, j = 0 if and only if j > 0. The
Beilinson complex F associated with E0, see (II.1) reads:

0→OP2(−1)α1,2
d0−→

OP2(−1)α2,2

⊕
ΩP2(1)α1,1

⊕
O α0,0

P2

d1−→
ΩP2(1)α2,1

⊕
O α1,0

P2

d2−→ O α2,0

P2 → 0.

The term consisting of three summands in the above complex sits in degree
0 (we call it “middle term”), and the cohomology of this complex is E0. By
condition (III.1), at least one of the α1, j is zero, for j = 0, 1,2.

If α1,2 = 0, then d0 = 0. By minimality of the Beilinson complex the re-
striction of d1 to the summand O α0,0

P2 of the middle term is also zero. Therefore

O α0,0

P2 is a direct summand of E0, so E0 ' OP2 by indecomposability of E.
If α1,1 = 0, then the non-zero component of d0 is just a map OP2(−1)α1,2 →

O α0,0

P2 , and a direct summand of E0 is the cokernel of this map. By indecom-
posability of E, in this case E0(−1) has a resolution of the desired form with
a = α0,0 and b = α1,2.

Let us look at the case α1,0 = 0. Note that the restriction of d1 to
ΩP2(1)α1,1 ⊕ O α0,0

P2 is zero, which implies that a direct summand of E0 (hence
all of E0 by indecomposability) has the resolution:

(III.2) 0→OP2(−1)α1,2
d0−→ ΩP2(1)α1,1 ⊕O α0,0

P2 → E0→ 0

and we have α2, j = 0 for j = 0,1, 2. Now, we compute χ(E0(−3)) = 3α1,2 −
3α1,1+α0,0, so:

h0(P2, E∗0) = h2(P2, E0(−3)) = 3α1,2− 3α1,1+α0,0.
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If this value is positive, then there is a non-trivial morphism g : E0 → OP2 , and
since α0,0 6= 0 there also exists 0 6= f : OP2 → E0. If E0 is not isomorphic to OP2 ,
then f ◦ g is not a multiple of the identity, so that E0 is not simple.

Hence we may assume 3α1,2−3α1,1+α0,0, in other words α0,3 = 0. There-
fore, the Beilinson complex associated with E0(−1) gives a resolution:

0→ E0(−1)→ ΩP2(1)α1,2 →O α1,1

P2 → 0.

It it classical to convert this resolution into the form we want. Namely we
consider the diagram:

0

��

0

��
0 // E0(−1) //

��

ΩP2(1)α1,2 //

��

O α1,1

P2
// 0

0 // O 3α1,2−α1,1

P2
//

��

O 3α1,2

P2
//

��

O α1,1

P2
// 0

OP2(1)α1,2

��

OP2(1)α1,2

��
0 0

From the leftmost column, it follows that E∗0 has a resolution of the desired
form, with a = 3α1,2−α1,1 and b = α1,2. Claim (i) is thus proved.

Let us now prove (ii). By [109, Corollaire 7], if E is rigid then E is a direct
sum of exceptional bundles (this result seems to be true over perfect fields).
Therefore we can apply (i), so that E or E∗ have a resolution by a matrix of
linear forms.

Then, we apply a result of Kac [193] (that works if k is algebraically closed
or finite), see also [46,47] (over C). Indeed, an indecomposable vector bundle
E with a resolution as in (i) is rigid if and only if (a, b) is a real Schur root
of the Kronecker quiver with two vertices and 3 arrows pointing in the same
direction. This in turn is equivalent to ask that a and b are two consecutive
Fibonacci numbers of the form a3,k and a3,k−1.

In this case, there is a unique such bundle, up to isomorphism, let us call
it Ek. It turns out that Ek is an exceptional bundle, and that a general matrix
of linear forms OP2(−2)a3,k−1 → OP2(−1)a3,k defines Ek, cf. [46]. This implies
that Ek has natural cohomology (cf. [171, Corollaire 3.1], this holds if k is
algebraically closed). So H1(P2, Ek(3t)) = 0 for all t ∈ Z because:

χ(Ek(3t)) =
3t

2
(3t(a3,k − a3,k−1) + a3,k + a3,k−1)≥ 0,

for all t ∈ Z. This inequality, in turn, follows from the elementary fact that
a3,k + a3,k−1 ≤ 3(a3,k − a3,k−1), easily proved by induction on k.
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The fact that E∗ is also ACM is obvious by Serre duality. �

III.3.2. ACM bundles on the second Veronese threefold. The techniques we
have just seen apply to the embedding of P3 in P9 by |OP3(2)|. This time, an
ACM sheaf is a vector bundle E on P3 with:

(III.3) H1(P3, E(2t)) = H2(P3, E(2t)) = 0, for all t ∈ Z.

Theorem III.3. Let E be an indecomposable bundle on P3 satisfying (III.3).

i) If E is simple, then there are a, b ≥ 0 such that, up to a twist by OP3(s), E or
E∗ have a resolution of the form:

0→ Ω2
P3(1)b→OP3(−1)a→ E→ 0.

ii) If E is rigid, then there is k ≥ 1 such that, up to a twist by OP3(s), E or E∗

have a resolution of the form:

0→ Ω2
P3(1)a6,k−1 →OP3(−1)a6,k−1 → E→ 0.

iii) For any k ≥ 1, there is a unique indecomposable bundle E having resolution:

0→ Ω2
P3(1)a6,k−1 →OP3(−1)a6,k → E→ 0,

and both E and E∗ are ACM and exceptional.

PROOF. The proof goes in the same way as in the previous theorem. Namely
we consider the initialized twist E0 of E and we set αi, j = hi(P3, E0(− j)). If
(III.3) gives α1,1 = α2,1 = 0, then E0(−1) has the desired resolution. On the
other hand, if (III.3) tells α1,0 = α2,0 = α1,2 = α2,2 = 0, then we are left with a
resolution of the form:

0→OP3(−1)α1,3
d0−→ ΩP3(1)α1,1 ⊕O α0,0

P3 → E0→ 0.

This time we also have α0,4 = 0, and α1,4 = α2,4 = 0 again by (III.3), and
simplicity of E gives α3,4 = h0(P3, E∗0) = 0. So E0(−1) has a resolution of the
form:

0→ E0(−1)→ Ω2
P2(2)α1,3 →O α1,1

P3 → 0.

Then, using the same trick as in the proof of the previous theorem, we see that
E∗0 has the desired resolution, with a = 6α1,3−α1,1 and b = α1,3.

This proves the first statement. The rest follows again by [46, 47, 193],
where Drezet’s theorem has to be replaced by [161]. �

IV. A smooth projective surface of tame CM type

Here I will show that a smooth projective surface obtained as product of a
line and a conic is of tame representation type. This result has been announced
in [136]. However, the complete proof has not yet appeared, and for this
reason I present it here in some detail.
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IV.1. Segre-Veronese varieties. Given an integer s and a sequence n =
(n1, . . . , ns) of s integers, we write Pn for Pn1 × · · · × Pns . Given a sequence
d = (d1, . . . , ds) of s integers, we write OPn (d) = OPn (d1, . . . , ds) for the line
bundle on Pn obtained by taking the tensor product of all the line bundles
obtained as the pull-back to Pn of OPni (di) under the projection to the i-th
factor Pni , when i varies from 1 to s. If all the integers di are positive, we
denote by Vn(d) the variety Pn polarized by the divisor class h= c1(OPn (d)).

It can be shown, although we will not do it here, that Vn(d) is of wild
representation type except in the following cases:

(1) s = 1 and d = (1) (projective spaces);
(2) s = 1 and n = (1) (rational normal curves);
(3) s = 1 and n = d = (2) (second Veronese surface);
(4) s = 2 and n = d = (1, 1) (quadric surface);
(5) s = 2 and n = (1, 1) and d = (1,2) (product of line and conic).

We have said that the first four cases are of finite CM type. In most cases,
we have even learned which are the finitely many ACM bundles supported by
these varieties.

The goal of this section is to prove that the last example is, instead, of tame
CM type. This surface can also be seen as the scroll S(2, 2), cf. (v) at Section
II.2. Although this is actually work in progress, let us mention that the other
quartic scroll S(1,3) in P5 also seems to be of tame CM type, even if structure
of ACM bundles on it a slightly more complicated than on S(2,2).

We also mentioned the fact that, besides the elliptic curve, no other smooth
projective variety of tame CM type is known. This, together with the analysis
of some other cases (homogeneous spaces, K3 surfaces, etc) leads to formulate
the following.

Conjecture IV.1. Let X ⊂ Pn be a smooth projective positive-dimensional ACM
variety of tame CM type. Then X is an elliptic curve or a quartic scroll in P5.

Let us now go back to our theorem. So let U be a 2-dimensional k-vector
space, and let P1 = P(U) so that U∗ = H0(P1,OP1(1)). Let X = P1 × P1, h =
c1(OX (1,2)) and consider X = V1,1(1,2) = (X , h). As already mentioned, the
polarized variety X sits in P5 as an ACM submanifold of degree 4, namely the
rational quartic scroll S(2, 2).

Theorem IV.2. Let (X , h) = V1,1(1,2).

(i) Up to a twist, any indecomposable ACM bundle on X is isomorphic either to
OX , or OX (−1, 0) or OX (−1,−1), or to an Ulrich bundle Eξ fitting into:

0→OX (0,−1)a→ Eξ→OX (−1,1)b→ 0,

for some integers a, b with |a− b| ≤ 1 and a class ξ ∈ U∗⊗k b⊗ka.
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(ii) For any (a, b) with a = b± 1, there exists a unique indecomposable bundle
of the form Eξ as above, and moreover this bundle is exceptional.

(iii) For any a = b, the isomorphism classes of indecomposable bundles of the
form Eξ, form a 1-dimensional rational family.

In particular, (X , h) is of tame representation type.

IV.2. ACM line bundles. Let us first classify ACM line bundles on X .

Lemma IV.3. LetL be an initialized ACM line bundle on X . ThenL is isomorphic
to OX , or to OX (0,1) or OX (0,2) or to one of the two Ulrich line bundles OX (1, 1)
and OX (0,3).

PROOF. Of course, any line bundle L on X is isomorphic to OX (a, b) for
some a, b ∈ Z, and assuming L to be initialized amounts to assume that a = 0
and b ≥ 0, or a ≥ 0 and 0≤ b ≤ 1.

In the first case a = 0, we have H1(X ,L (−2,−4)) 6= 0 as soon as b ≥
4, so L ACM implies 0 ≤ b ≤ 3. On the other hand OX , OX (0, 1), OX (0,2)
and OX (0, 3) are immediately seen to be ACM on X , with moreover OX (0,3) is
clearly Ulrich.

In the second case b = 0 implies H1(X ,L (−1,−2)) 6= 0 if a ≥ 1, while
b = 1 implies H1(X ,L (−2,−4)) 6= 0 if a ≥ 2. This leaves L ' OX (1,1) as the
only case, and L is easily proved to be an Ulrich bundle on X . �

IV.3. Computing resolutions of ACM bundles. Let π be the projection of
X = P1×P1 onto the second factor, and recall that, by a result of Orlov [252]:

(IV.1) Db(X ) = 〈π∗Db(P1)⊗OX (−1,0),π∗Db(P1)〉.

In turn, we have Db(P1) = 〈OP1(t − 1),OP1(t)〉, for any t ∈ Z by Beilinson’s
theorem, see for instance [177].

IV.3.1. The unbalanced exceptional collection. We define here two full ex-
ceptional collections in Db(X ), dual to each other, adapted to the study of ACM
bundles on X . We denote:

E3 = OX , E2 = OX (0,−1), E1 = OX (−1,−1), E0 = OX (−1,−2).

Then (E3, . . . ,E0) forms a strongly exceptional collection. We call it the unbal-
anced exceptional collection. In view of (IV.1), we have the semiortohogonal
decomposition:

Db(X ) = 〈E0,E1,E2,E3〉.

According to [150], the objects Fi of the dual collection (F0, . . . ,F3) are de-
fined for all i by Fi = LE ∗3 · · ·LE ∗i−1

E ∗i [−1]. An easy computation gives:

F3 ' OX , F2 ' OX (0,−1), F1 ' OX (−1, 1)[−1], F0 ' OX (−1,0)[−1].



Chapter 2. Cohen-Macaulay bundles 63

The Stokes matrix of the dual collection is:

(χ(Fi ,F j))i, j =













1 2 0 −2
1 2 0

1 2
1













,

and in fact for all i we have:

HomDb(X )(F1,F3[i]) = HomDb(X )(F0,F2[i]) = 0.

IV.3.2. Computing resolutions using the unbalanced collection. Let Γ ⊂ X ×
P1 be the graph of the projection π : X → P1 onto the second factor. Note that
OΓ is given by:

(IV.2) 0→OX×P1(0,−1,−1)→OX×P1 →OΓ→ 0.

Denote by ϕ and ψ the projections of X × P1 onto X and onto P1 re-
spectively. Given a line bundle L = OX×P1(a, b, c), we define the func-
tor ΨL = Rϕ∗(ψ∗(−)⊗L ⊗OΓ). By computing ΨL on OP1 and OP1(−1),
since Db(P1) = 〈OP1(−1),OP1〉 we easily see that ΨL is the composition of
π∗ : Db(P1) → Db(X ) and of the tensor product with OX (a, b + c). In order
to define π∗ as ΨL , we can thus choose L = OX×P1(0,1,−1). Similarly, the
functor π∗(−)⊗OX (−1,0) is given as ΨL ′ withL ′ = OX×P1(−1, 0,0). We have
chosen here L and L ′ in order to adapt them to the unbalanced exceptional
collection.

The derived dual of OΓ in Db(X × P1) is OΓ(0,1, 1)[−1]. Therefore, the
right adjoint functor of Ψ=ΨL is:

Ψ! =Rψ∗(ϕ
∗(−)⊗OΓ(0, 1,1)[−1]⊗L ∗⊗ψ∗(ωP1[1]))'

'Rψ∗(ϕ
∗(−)⊗OΓ).

Next, the factor π∗(Db(P1))⊗OX (−1,0) of Db(X ), is the image of the functor
Θ=ΨL ′ . The left adjoint functor of Θ is:

Θ∗ =Rψ∗(ϕ
∗(−)⊗OΓ(0,1, 1)[−1]⊗(L ′)∗⊗ϕ∗(ωX [2]))'

'Rψ∗(ϕ
∗(−)⊗OΓ(−1,−1, 1)[1]).

Given a coherent sheaf E on X , we have a functorial distinguished triangle:

(IV.3) ΨΨ!E
γ
−→ E

δ−→ΘΘ∗E.

Using (IV.2), we see that the complex Ψ!E, that lies in Db(P1), fits into a
functorial distinguished triangle:

(IV.4) H•(X , E(0,−1))⊗OP1(−1)→ H•(X , E)⊗OP1 →Ψ!E.
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Since Ψ' π∗, we have that ΨΨ!E fits into a functorial distinguished triangle:

H•(X , E(0,−1))⊗OX (0,−1)
α−→ H•(X , E)⊗OX →ΨΨ!E,

i.e., ΨΨ!E is the cone of α. Similarly, ΘΘ∗E[−1] is the cone of a map β:

(IV.5) H•(X , E(−1,−2))⊗OX (−1, 0)
β
−→ H•(X , E(−1,−1))⊗OX (−1,1).

IV.3.3. Splitting of ACM bundles. Let us prove the first part of Theorem IV.2.

Proposition IV.4. Let E be an indecomposable ACM bundle on (X , h). Then, up
to a twist, either E is isomorphic to OX , or OX (−1, 0) or OX (−1,−1), either there
are integers a, b such that E fits into:

0→OX (0,−1)a→ E→OX (−1, 1)b→ 0.

PROOF. Set a = h1(X , E(0,−1)) and b = h1(X , E(−1,−1)).
Let us look at the cohomology of ΨΨ!E. Since H1(X , E) = 0, we have exact

sequences:

· · ·
f2−→ H0(X , E)⊗OX

f1−→H 0(ΨΨ!E)
f0−→ OX (0,−1)a→ 0,(IV.6)

0→H 1(ΨΨ!E)→ H2(X , E(0,−1))⊗OX (0,−1)→ ·· · .(IV.7)

Looking at the cohomology of ΘΘ∗E, since H1(X , E(−1,−2)) = 0, we get:

0→OX (−1, 1)b
g0−→H 0(ΘΘ∗E)

g1−→ H2(X , E(−1,−2))⊗OX (−1, 0)
g2−→ · · ·

and also:

(IV.8) · · · → H0(X , E(−1,−1))⊗OX (−1, 1)→H −1(ΘΘ∗E)→ 0.

With a slight abuse of notation, we still denote by δ and γ the maps obtained
by taking cohomology of (IV.3), and we have a long exact sequence:
(IV.9)

0→H −1(ΘΘ∗E)→H 0(ΨΨ!E)
γ
−→ E

δ−→H 0(ΘΘ∗E)→H 1(ΨΨ!E)→ 0.

Claim IV.5. Let I be the image of f1 and J be the image of g1. Then:

H 0(ΨΨ!E) = I ⊕OX (0,−1)a, H 0(ΘΘ∗E) = J ⊕OX (−1,1)b.

PROOF OF CLAIM IV.5. We use (IV.6) to look more closely atH 0(ΨΨ!E), and
we have to prove that f0 splits. To see this, we can write the cohomology of
(IV.4):

· · ·
h2−→ H0(X , E)⊗OP1

h1−→H 0(Ψ!E)
h0−→ OP1(−1)a→ 0.

It suffices to check that h0 splits since applying Ψ to the above sequence we
get (IV.6). To check that h0 splits, we let M be the image of h1 and we prove
that Ext1

P1(OP1(−1), M) = 0. Note that this extension space is isomorphic to
H1(P1, M(1)), and that since M is dominated by H0(X , E)⊗OP1 we have a sur-
jection:

H0(X , E)⊗H1(P1,OP1(1))� H1(P1, M(1))
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We deduce that H1(P1, M(1)) = 0 so h0 splits. In a similar way one proves that
g0 splits. �

Now observe that the restriction of γ to the summand OX (0,−1)a of
H 0(ΨΨ!E) is injective, since ker(γ) ' H −1(ΘΘ∗E) is dominated by the bun-
dle H0(X , E(−1,−1))⊗OX (−1,1) in view of (IV.8), and there are no nontrivial
maps OX (−1, 1) → OX (0,−1). Similarly, δ is surjective onto OX (−1,1)b. We
can define thus the sheaves P and Q by the exact sequences:

0→Q→ J →H 1(ΨΨ!E)→ 0,(IV.10)

0→H −1(ΘΘ∗E)→ I → P → 0,(IV.11)

and (IV.9) becomes:

0→ P ⊕OX (0,−1)a
γ
−→ E

δ−→Q⊕OX (−1, 1)b→ 0.

Claim IV.6. We have Ext1
X (Q,OX (0,−1)) = Ext1

X (OX (−1, 1), P) = 0.

PROOF OF CLAIM IV.6. We show only Ext1
X (Q,OX (0,−1)) = 0, the other

vanishing being analogous. Note that this extension space is dual to
Ext1

X (OX (0,−1),Q(−2,−2)) which in turn is isomorphic to H1(X ,Q(−2,−1)).
We have an exact sequence:

H0(X ,H 1(ΨΨ!E)⊗OX (−2,−1))→ H1(X ,Q(−2,−1))→ H1(X , J(−2,−1)),

and we show that the outer terms of this sequence vanish. To check that the
leftmost term is zero, we use (IV.7) twisted by OX (−2,−1). Taking global sec-
tions gives the result. To show that the rightmost term vanishes, we recall
that J is the image of g1, we let K be the image of g2, and we use the exact
sequences (obtained since ΘΘ∗E[−1] is the cone of (IV.5)):

0→ J
g1−→ H2(X , E(−1,−2))⊗OX (−1,0)→ K → 0,(IV.12)

0→ K → H2(X , E(−1,−1))⊗OX (−1, 1)→ ·· ·(IV.13)

Twisting these sequences with OX (−2,−1) and taking cohomology, we get
H1(X , J(−2,−1)) = 0 since both H1(X ,OX (−3,−1)) and H0(X ,OX (−3, 0)) van-
ish. �

Now, in view of the above claim, we deduce that E is the direct sum of E′

and E′′, where E′ fits into an exact sequence:

0→OX (0,−1)a→ E′→OX (−1, 1)b→ 0,

and E′′ fits into:
0→ P → E′′→Q→ 0,

and satisfies:
H1(X , E′′(0,−1)) = H1(X , E′′(−1,−1)) = 0.
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Letting t vary in Z, and calculating for each twist E(t, 2t) the spaces
H1(X , E(t, 2t − 1)) and H1(X , E(t − 1,2t − 1)), we use the process just de-
scribed to split off from E finitely many extension bundles, until we reduce E
to an ACM bundle E0 such that:

(IV.14) H1(X , E0(t, 2t−1)) = 0, H1(X , E0(t−1,2t−1)) = 0, for all t ∈ Z.

The proof of the proposition will be completed by the following lemma, in
combination with Lemma IV.3. �

Lemma IV.7. An ACM bundle E0 satisfying (IV.14) splits as a direct sum of line
bundles.

PROOF. We set E = E0, and borrow the notation from the proof of the above
proposition, where we assume a = b = 0. We can assume that E is initialized,
hence H0(X , E(−1,−2)) = 0. We get:

H −2(ΘΘ∗E) =H −1(ΨΨ!E) = 0,

H −1(ΘΘ∗E)' H0(X , E(−1,−1))⊗OX (−1,1).(IV.15)

Rewriting (IV.6), since a = 0 we get:

(IV.16) 0→ H0(X , E(0,−1))⊗OX (0,−1)
f2−→ H0(X , E)⊗OX

f1−→ I → 0.

Claim IV.8. Given P and Q as above and E = E0 satisfying (IV.14), we have:

(IV.17) Ext1
X (Q, P) = 0.

PROOF OF CLAIM IV.8. The show this, we apply HomX (Q,−) to (IV.11), ob-
taining:

Ext1
X (Q, I)→ Ext1

X (Q, P)→ Ext2
X (Q,H −1(ΘΘ∗E)).

We want to show that the outer terms of this exact sequence vanish. For the
leftmost term, using (IV.16), we are reduced to show:

Ext1
X (Q,OX )' H1(X ,Q(−2,−2))∗ = 0,(IV.18)

Ext2
X (Q,OX (0,−1))' H0(X ,Q(−2,−1))∗ = 0,(IV.19)

where the isomorphisms are given by Serre duality. For the rightmost term,
making use (IV.15) we need to prove:

Ext2
X (Q,OX (−1, 1))' H0(X ,Q(−1,−3))∗ = 0.(IV.20)

In order to prove these vanishing results, by (IV.10), it suffices to show:

H0(X , J(−2,−1)) = H0(X , J(−1,−3)) = 0, for (IV.19), (IV.20),

(IV.21)

H1(X , J(−2,−2)) = H0(X ,H 1(ΨΨ!E)⊗OX (−2,−2)) = 0, for (IV.18).

(IV.22)
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Now, (IV.21) easily follows from taking global sections of (IV.12), twisted
by OX (−2,−1), or by OX (−1,−3). On the other hand, the first vanishing
required for (IV.22) follows from (IV.12) since H1(X ,OX (−3,−2)) = 0 and
H0(X , K(−2,−2)) = 0, which in turn is easily derived from (IV.13). The second
vanishing appearing in (IV.22) follows taking global sections of (IV.7), twisted
by OX (−2,−2). �

Let us proceed to finish the proof of our lemma. In view of (IV.17), we have
that E is the direct sum of P and Q. To conclude, it remains to prove that P is
a direct sum of line bundles (by splitting off P from E and using induction on
the rank, the proof of our lemma will be settled). To check this we note that P
is locally free (it is a direct summand of E) so I is torsion-free, hence by (IV.16)
we have:

I '
⊕

i=1,...,r

OX (0, ai),

for some integers r ≥ 1 and ai ≥ 0. Using (IV.15), the exact sequence (IV.11)
becomes:

0→ H0(X , E(−1,−1))⊗OX (−1, 1)→
⊕

i=1,...,r

OX (0, ai)→ P → 0.

Twisting this sequence by OX (−1,−3), since Hk(X ,OX (−1, ai − 3)) = 0 for any
ai and any k, we get:

H1(X , P(−1,−3))' H0(X , E(−1,−1)).

On the other hand, this space must be zero since P is a direct summand of E,
and E = E0 satisfies (IV.14). We deduce that: P '

⊕

i=1,...,r OX (0, ai). �

Remark IV.9. Lemma IV.7 can be proved also by using the notion of regularity
developed in [20,21].

IV.4. Kronecker-Weierstrass canonical form for extension bundles. Let
A, B be k-vector spaces, set a = dim(A), b = dim(B). We keep also in mind
our 2-dimensional k-vector space U . The aim of this section is to classify the
bundles E fitting into:

0→ B⊗OX (0,−1)→ E→ A∗⊗OX (−1,1)→ 0.

IV.4.1. Parametrizing rank-2 extension bundles. Let us now construct the
basic family of extension bundles. First of all, note that:

Ext1
X (OX (−1, 1),OX (0,−1))' H1(X ,OX (1,−2))' U∗.

Given a ∈ U∗, we have an extension bundle Ea of the form:

(IV.23) 0→OX (0,−1)→ Ea→OX (−1,1)→ 0.
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If a 6= 0 then Ea depends on the class a of a in the projective line P = P(U∗)
so we also write Ea = Ea. There is a universal extension bundle U over X × P
parametrizing the bundles of the form Ea, in such a way that for all a ∈ P we
have U |X×{a} ' Ea.

Call σ : X × P → P and τ : X × P → X the projections and consider the
functor Φ : Db(X )→ Db(P) defined as Φ = Rτ∗(σ∗(−)⊗U ). The right adjoint
functor of Φ is Φ! = Rσ∗(τ∗(−)⊗U ∗⊗σ∗(ωP)[1]).

Lemma IV.10. The universal extension U fits into:

(IV.24) 0→OX×P(0,−1, 0)→U →OX×P(−1,1,−1)→ 0.

Furthermore Φ is fully faithful and we have Φ(Db(P)) = 〈F2,F1〉, and:

(IV.25) Φ(OP1)' OX (0,−1), Φ(OP1(−1))' OX (−1,1)[−1], Ea ' Φ(Oa).

Finally, we have:

(IV.26) Φ!(OX (0,−1))' OP1 , Φ!(OX (−1, 1))' OP1(−1)[1].

PROOF. For the first claim, we know that there are line bundles L and L ′

on P such that U fits into:

0→ τ∗(OX (0,−1))⊗σ∗(L ′)→U → τ∗(OX (−1,1))⊗σ∗(L )→ 0.

Further,U is determined up to a twist by a line bundle on P, so we can assume
L ′ ' OP , and say L ' OP(t). The extension corresponding to U is clearly
non-zero and PGL2(k)-invariant, and lies in:

Ext1
X×P(OX×P(−1,1, t),OX×P(0,−1, 0))' U∗⊗S−t U ,

where we take S−t U = 0 for positive t. So t = −1, since only in this case
U∗⊗S−t U contains a non-zero invariant element.

For the second claim, first of all the isomorphisms (IV.25) are clear, for
it suffices to compute Φ(OP1) and Φ(OP1(−1)) making use of (IV.24), and to
observe that Φ(Oa) is just U |X×{a} ' Ea.

Note that (IV.25) amounts to say that Φ(OP) ' F2 and Φ(OP(−1)) ' F1.
Observe now that:

HomDb(P)(OP1(−1),OP1)' HomDb(X )(F1,F2)' U∗.

Since Db(P) = 〈OP1(−1),OP1〉, this implies that Φ is fully faithful, and that
Φ(Db(P)) = 〈F2,F1〉. Finally, the isomorphisms (IV.26) are clear since Φ! ◦Φ is
the identity functor. �

Note that the isomorphisms (IV.26) can also be derived directly by comput-
ing Φ! making use of the exact sequence:

0→OX×P(1,−1,−1)→U ∗⊗σ∗(ωP)→OX×P(0, 1,−2)→ 0.



Chapter 2. Cohen-Macaulay bundles 69

IV.4.2. Kronecker-Weierstrass theory for matrix pencils. Consider the vector
space A⊗B⊗U∗, and remark that:

HomP1(A∗⊗OP1(−1), B⊗OP1)' A⊗B⊗U∗.

Therefore, an element ξ of A⊗B⊗U∗ corresponds to a matrix Mξ of linear
forms on P1, or a matrix pencil:

Mξ : A∗⊗OP1(−1)→ B⊗OP1 .

The pencil M = Mξ can be classified according to its Kronecker-Weierstrass
canonical form. Let us sketch this here, and refer to [68, Chapter 19.1] for
proofs.

First of all, the classification takes place up to linear coordinate change on
A and B, and one writes M ' M ′ � M ′′ if M is equivalent to a block matrix
having M ′ and M ′′ on the diagonal and zero off the diagonal. Fixing variables
x,y on P1, and given positive integers u, v, one defines:

Cu =



















x
y x

y
. . .
. . . x

y



















, Bv =















x y
x y

. . . . . .

x y















,

where Cu has size (u+1)×u and Bv has size v× (v+1). Also, given a ∈ k and
a positive integer n one defines:

Ja,n =















a 1
... . . .

a 1
a















∈ kn×n, and: Ja,n = xIn+ yJa,n.

The next proposition is obtained combining [68, Theorem 19.2 and 19.3],
with the caveat that, up to changing basis in P1, we can assume that a ma-
trix pencil M has no infinite elementary divisors, i.e., the morphism Mξ :
A∗⊗OP1(−1)→ B⊗OP1 has constant rank around∞= (0 : 1) ∈ P.

Lemma IV.11. Up to possibly changing basis in P1, any matrix pencil M is equiv-
alent to:

Cu1
� · · ·� Cur

�Bv1
� · · ·�Bvs

�Jn1,a1
� · · ·� Jnt ,at

�Za0,b0
,

for some integers r, s, t, a0, b0 and ui , v j , nk, and some a1, . . . ,at ∈ k, where Za0,b0

is the zero pencil of size a0× b0.

We say that a matrix pencil is irreducible if only one summand appears in
the above decomposition, and this summand is not Za0,b0

with (a0, b0) 6= (1, 0)
or (0, 1).
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We have the following straightforward isomorphisms:

coker(Cu)∼= OP(u), ker(Bv)∼= OP(−v− 1), coker(Jn,a)∼= Ona,

where Ona is the skyscraper sheaf over the point a with multiplicity n. Allowing
a to vary in P instead of k only amounts to authorizing infinite elementary
divisors too.

IV.4.3. From extension bundles to matrix pencils. We consider the space:

Ext1
X (A

∗⊗OX (−1,1), B⊗OX (0,−1))' A⊗B⊗U∗.

The extension associated to an element ξ of A⊗B⊗U∗ gives a bundle that we
denote by Eξ, fitting into:

(IV.27) 0→ B⊗OX (0,−1)→ Eξ→ A∗⊗OX (−1,1)→ 0.

In other words, ξ lies in HomDb(X )(A
∗⊗F1, B⊗F2) and Eξ is the cone of the

morphism ξ.
Applying Φ! to the exact sequence defining Eξ, and using Lemma IV.10,

we find a matrix pencil Mξ. Equivalently, Φ! transforms the morphism ξ :
A∗⊗F1 → B⊗F2 into the morphism Mξ : A∗⊗OP(−1) → B⊗OP . Likewise,
applying Φ to a matrix pencil Mξ and using again Lemma IV.10, we find an
exact sequence like (IV.27). Clearly, these are mutually inverse equivalences.

Lemma IV.12. Set E = Eξ, let M = Mξ be the associated matrix pencil and set
F = Φ!(E). Then E ' Φ(F ), and, for all i, we have:

(IV.28) Exti
X (E, E)' Exti

P(F ,F ).

Further, E is a semistable Ulrich bundle, which is indecomposable if and only if M
is irreducible, and this happens if and only if F ' OP(t) for some t up to a shift,
or F ' Ona for some n≥ 1 and a ∈ P.

PROOF. The isomorphism E ' Φ(F ) is clear by Lemma IV.10, since E lies
in 〈F2,F1〉, and the restriction of Φ! to 〈F2,F1〉 is the inverse functor of
Φ : Db(P) → Db(X ), whose image is 〈F2,F1〉. Since Φ is fully faithful, we
immediately get (IV.28).

Next, note that E is an ACM bundle, since the exact sequence (IV.27) im-
mediately gives H1

∗(X , E) = 0, and moreover E(1,2) is initialized and in fact
an Ulrich bundle, since again (IV.27) gives H0(X , E) = 0 and h0(X , E(1, 2)) =
4(a+ b) = deg(X ) rk(E).

Furthermore, E is semistable, since it is an extension of line bundles having
the same Hilbert polynomial.

Let us now look at indecomposability of E. If M = M ′�M ′′ then A= A′⊕A′′

and B = B′ ⊕ B′′ and there are ξ′ ∈ A′⊗B′⊗U∗ and ξ′′ ∈ A′′⊗B′′⊗U∗ such
that M ′ = Mξ′ and M ′′ = Mξ′′ . It is clear that E ' Eξ′ ⊕ Eξ′′ . This proves that
M is irreducible if E is indecomposable.
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Conversely, assume that M is irreducible. Then M is equivalent to Cu for
some u ≥ 1, or Bv for some v ≥ 1, or Jn,a for some n ≥ 1 and a ∈ P, or to Z1,0

or to Z0,1. Let us analyze each case.
First, let us look at Cu. In this case we have F ' coker(Cu) ' OP(u) (with

u≥ 1). Using (IV.28) we get that E is an exceptional bundle, hence E is simple,
and a fortiori indecomposable. For the case Bv , we have F ' ker(Bv)[1] '
OP(−v − 1)[1] (with v ≥ 1). Again F is exceptional, hence so is E by (IV.28),
so E is indecomposable too. The same argument works for Z1,0 in which case
we get F ' OP(−1)[1] and E ' OX (−1, 1), and for Z0,1, that gives F ' OP

and E ' OX (0,1).
Let us look at the case when M is of the form Jn,a, so that F ' Ona.

Note that F is filtered by the sheaves Gm = Oma, for 1 ≤ m ≤ n and
Gm/Gm−1 ' G1. This induces a filtration of E be the sheaves Em = Φ(Gm)
having quotients Em/Em−1 ' Ea (recall (IV.25)). Note that Ea is a simple bun-
dle with Ext1

X (Ea, Ea) ' k by (IV.28), and that (IV.23) gives its Jordan-Hölder
filtration. Therefore, any indecomposable summand of E must have a Jordan-
Hölder filtration with quotients of the form OX (0,−1) or OX (−1, 1), i.e., it must
be of the form Eξ′ for some ξ′ ∈ A′⊗B′⊗U∗, with A= A′⊕A′′ and B = B′⊕B′′.
This would induce a decomposition of M into M ′�M ′′, a contradiction.

The proof of the lemma is now finished. �

IV.4.4. Classification of extension bundles. The next result proves the re-
maining claims of Theorem IV.2.

Proposition IV.13. Let ξ be an element of A⊗B⊗U∗ and set E = Eξ. Then E is
a semistable Ulrich bundle.

Further, if E is indecomposable, then Ext2
X (E, E) = 0, |a− b| ≤ 1 and:

(i) if a = b± 1 then E is exceptional;
(ii) if a = b then E varies in a 1-dimensional family.

PROOF. We have already proved that E is a semistable Ulrich bundle. Con-
sider another element ξ′ of A⊗B⊗U∗, define E′ = Eξ′ , and assume that Eξ is
also indecomposable. SettingF = Φ!(E) andF ′ = Φ!(E′). Using that Φ is fully
faithful and E ' Φ(F ) and E′ ' Φ(F ′) we strengthen (IV.28) to:

Exti
X (E, E′)' Exti

P(F ,F ′),

for all i. Therefore, using the analysis of Lemma IV.12, we get Ext2
X (E, E′) = 0

by dimension reasons unless F ' OP(−v − 1) for some v ≥ 1, in which case
this Ext2 space is isomorphic to H1(P,F ′(v + 1)). This space is zero unless
F ′ ' OP(−v′ − 1), for some v′ ≥ 3 and in this case this H1 space is dual to
H0(P,OP(v′− v− 2)). This shows Ext2

X (E, E) = 0 in case E is indecomposable.
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By the classification of Lemma IV.11, together with the correspondence es-
tablished by Lemma IV.12, we see that, if E is indecomposable, then the asso-
ciated matrix pencil is of the form Cu for some u ≥ 1 or Bv for some v ≥ 1,
or Z1,0 or Z0,1 (and in all these cases |a− b| = 1) or of the form Ja,n for some
a ∈ P and n ≥ 1, (in which case a = b). In case |a− b| = 1, we have seen in
the case-by-case analysis of Lemma IV.12 that the associated bundle E is excep-
tional. In case a = b, again in the proof of Lemma IV.12 we have seen that the
bundle E is given as Φ(Ona), and the deformation space of E is exactly that of
Ona, i.e., the motions of a in the projective line P itself. �

V. Open questions

We have sketched already several problems and conjectures throughout the
chapter. Les us outline a few more here.

V.1. ACM and Ulrich bundles. A challenging problem, appearing as main
conjecture in [125], is to determine whether any given variety X admits Ulrich
bundles at all.

It seems also difficult to determine what would be the minimal rank of
such bundle, and more generally to determine the minimal rank of an ACM
bundle, not containing line bundles as direct summands. In fact an important
conjecture stated in [63] asserts that, if X is a smooth hypersurface in Pn, this
rank should be at least 2b

n
2
c−1. The bound would be sharp, for smooth quadric

hypersurfaces support spinor bundles, which have precisely this rank.
We propose the following “generic” analogue.

Conjecture V.1. Let X be a sufficiently general hypersurface in Pn of degree d � 0,
and E an ACM non-split vector bundle on X . Then, the rank of E is at least 2n−2.

A first step would be to prove that, for n = 4, a threefold hypersurface of
degree d � 0 supports no ACM bundles of rank 3 (the case of rank 2 being
settled, as already mentioned, in [239]). Anyway, the bundle is sharp also in
this case, for the ACM bundle associated with a point contained in X has rank
precisely 2n−2 and is, in general, not split. This conjecture is somehow related
to the rank conjecture of Buchsbaum-Eisenbud-Horrocks, see [60, Page 453]
and [164, Problem 24].

Another interesting question is whether smooth cubic hypersurfaces in Pn,
for n ≥ 3, are always of wild representation type (as for higher degree this is
settled, as we have said, cf. [92]).

V.2. Families of determinantal varieties. We mentioned already several
problems concerning determinantal varieties or more generally degeneracy loci
of morphisms of vector bundles φ : E → F on a connected projective man-
ifold W . A general issue concerning these varieties is the question of when
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one can parametrize completely their infinitesimal families by morphisms in a
neighbourhood of φ, or if our degeneracy locus Xφ can deform (flatly) to a
non-determinantal variety.

So let u = rk(E ), v = rk(F ), assume u ≥ v and choose an integer 0 ≤
r ≤ v − 1. Assume that for a general choice of φ the variety Dr(φ) is of the
expected dimension and that its singularities also lie in the expected dimension
(this can be ensured, at least in characteristic zero, by asking E ∗⊗F to be
globally generated).

Denote by Y a smooth variety representing an open dense subset of the
quotient HomW (E ,F )/Aut(E ) × Aut(F ) (since this group is in general not
reductive, we are contented with “some” open set, which exists by [275]).
Write H for the union of components of the Hilbert scheme of subschemes of
W having the same Hilbert polynomial as Xφ , for general φ. Let ρ : Y ¹¹ËH
be the rational map sending [φ] to Dr(φ).

Problem V.2. For which choices of E , F , r and W is ρ birational?

This problem is rooted in early work of Ellingsrud [126], who studied
the case W = Pn with n ≥ 3 and E , F split bundles, and r = v − 1 =
u−2. Ellingsrud’s result, relying on Hilbert-Burch’s theorem (cf. [119, Chapter
20.4]), says that ACM subvarieties X of codimension 2 in Pn, with n ≥ 3 fill
in a smooth open subset of the Hilbert scheme, which is covered by connected
subsets determined by the Betti numbers of X . The answer is also affirmative
when E and F are split bundles (with a certain positivity condition), W = Pn,
r = v−1 and n+u≥ v+3 (which amounts to dim(Xφ)≥ 2), as proved in [134]
(this was conjectured in [204,205]). When W = Pn, F is trivial, E ' TPn(−2)
and r = v− 1, the answer is also affirmative for a wide range of choices of n, v
(cf. [27, 135, 294] for the precise range). However answers for more general
choices of r are lacking.

V.3. Generalized Lax conjecture. We go back to LMI representations of
Section III.1.2, and we borrow notation from there. The result of Helton-
Vinnikov originally answered a question of P. Lax. A generalization to higher
dimension would sound as follows.

Conjecture V.3. Let f ∈ S be a real-zero polynomial and x ∈ Rn with f (x) = 1.
Then there is a real-zero polynomial g, with Ix( f )⊂ Ix(g), such that f g has an
LMI representation M of size `= deg( f g) with M(x) = I`.

The relevant theory of determinantal representations of singular hypersur-
faces has been developed in [202]. It should be noted that the naive gen-
eralization of Helton-Vinnikov’s result, namely by taking g = 1, fails by easy
dimension counts (cf. for instance [266]), and even taking g to be a power of
f will not be enough as shown in [51].
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Another approach in this direction is to study in more detail some particular
situations, such as Itenberg-Degtyarev’s [96] construction of a linear symmetric
real quartic surface whose 10 nodes all lie in the innermost oval. Similar con-
structions for singular real plane curves are unknown, even for rational curves.



CHAPTER 3

Odd instantons on Fano threefolds

In this chapter I will describe a class of vector bundles defined on certain
threefolds, that may serve as generalization of instanton bundles on projective
3-space. The overview appearing in the next chapter is inspired mostly on
[48, 50, 133]. My personal interest for this subject goes back my thesis, and
was first stimulated by a series of lectures on the cubic threefold delivered
in Florence by Fabio Bardelli, many years ago. I should also mention that
some of the topics covered here are studied as well in the independent work of
Kuznetsov, cf. [220].

The main focus will be on Fano threefolds of genus 10. The material ap-
pearing in Section II devoted to this class of manifolds has never appeared
before. Accordingly, the new results come with (hopefully) full proofs.

Throughout the chapter the base field will be C.

I. Introduction to even and odd instantons

Instanton bundle have been widely studied by several authors, starting
from the foundational papers [15, 16], relating instantons on P3 satisfy-
ing a reality condition to self-dual Yang-Mills Sp(1)-connections over the 4-
dimensional sphere via the Penrose-Ward twistor transform. In terms of alge-
braic geometry, an instanton bundle on P3 is a slope-stable vector bundle E of
rank 2 with trivial determinant and H1(P3, E(−2)) = 0. If c2(E) = k, we say
that E is a k-instanton, or an instanton of charge k and we denote the moduli
space of k-instantons by MIP3(k). This space is a subscheme of the Maruyama’s
moduli space of stable sheaves, which is a quasi-projective algebraic variety.
We refer to [178] for an exhaustive treatment. The space of instantons is de-
fined by open conditions in this space, namely a cohomology vanishing and
slope-stability.

Alternatively a k-instanton can be defined as the cohomology of a self-dual
monad (see [26]), i.e., a complex of coherent sheaves with cohomology in
degree zero only, of the following form:

OP3(−1)k
JAt

−→ O 2k+2
P3

A−→ OP3(1)k,

where J is a fixed skew-symmetric duality of C2k+2. So, the abstract concept
of moduli space of instantons of charge k is translated in the following concrete

75
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terms: the space of matrices A of size (2k + 2) × k, whose entries are linear
forms, such that A is surjective at every point and satisfies AJAt = 0, up to
coordinate change in C2k+2×Ck.

The history of the study of MIP3(k) is quite long; however a culminating
point has been reached recently, for a number of long-standing conjectures
concerning nice properties of this space have now been established. Indeed,
smoothness of MIP3(k) has been shown for all k in [190,191] with methods of
hyperkähler geometry. An algebraic proof is lacking at the moment. Irreducibil-
ity of MIP3(k) for odd k has also been proved recently, see [300]. Rationality of
MIP3(k), conditional to irreducibility, has been announced as well, see [231].
In contrast to this, the number of irreducible components of MP3(2, c1, c2) tends
to infinity as c2 increases, see [115]. The same holds for the moduli space of
stable rank-2 bundles over any smooth polarized threefold having c2 of growing
degree, see [22].

It is perhaps worth mentioning here that, for instanton bundles which are
general enough (in the main component), several more properties are known:
for instance that they have natural cohomology [166], their minimal free reso-
lution [271], their jumping lines [57], their restriction to planes [58].

This is even more pertinent here, for this good knowledge of general in-
stantons has been exploited recently in quite different directions, for instance
in Boij-Söderberg theory, cf. [122], and in the construction of matrices of linear
forms of constant rank, as we did in [44].

Let us now try to move to other 3-dimensional manifolds. A class of vari-
eties that share a certain similarity with P3 is that of Fano threefolds X of Picard
number 1, say Pic(X ) is generated by the ample divisor class hX . The even co-
homology ring of X looks as follows: H2,2(X ) and H3,3(X ) are one-dimensional,
generated respectively by the classes `X and pX of a line and a point contained
in X , with the relation h2

X = deg(X )`X , where deg(X ) = h3
X (Chern classes will

be denoted as integers from now on, with obvious meaning). A more subtle
invariant of X comes from H3(X ). Indeed the non-trivial Hodge theory of X is
encoded by the intermediate Jacobian J(X ). This is an abelian variety, whose
structure of complex torus is defined as H2,1(X )∗/H3(X ,Z), where H3(X ,Z) is
viewed as a lattice in H2,1(X )∗ via a higher-dimensional analogue of the Abel-
Jacobi map. Also, we have ωX ' OX (−iX hX ) for some integer 1 ≤ iX ≤ 4, that
we called the index of X (cf. Section III.2 of Chapter 2), another basic invariant
of X .

It is worth recalling immediately that Fano threefolds are completely clas-
sified. For Picard number 1 there are 17 deformation families, see for in-
stance [188, Chapter 12.2]. If iX = 4 then X = P3, and if iX = 3, then X
is a smooth quadric. On the other hand, in case iX = 2 one speaks of Del Pezzo
threefolds of Picard number 1: they come in 5 deformation families, one for
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each degree 1 ≤ deg(X ) ≤ 5. For iX = 1, one speaks of prime Fano three-
folds (beware that terminology is not uniform in the literature!) of genus g,
namely g is the genus of the canonical curve obtained as general linear section
of codimension 2 in X . One has 2g−2= deg(X ), and there are 10 deformation
families of these varieties, one for each g in [2, 12] \ {11}.

So much for our class of threefolds; let us now describe our class of bundles.
Denote by q and ε be the quotient and the remainder of the division of iX by
2. Let E be a stable bundle of rank 2 on X with c1(E) = −ε. Then, F = E(−q)
satisfies F ' F∗⊗ωX . We say that E is a k-instanton on X if c2(E) = k, and
H1(X , F) = 0. In this case, it is easy to check that Hk(X , F) = 0 for all k, so
that F is right-orthogonal to OX , in the sense of semiorthogonal decomposi-
tions [42]. When X = P3, this notion gives back the classical k-instantons.
Sometimes, when ε = 1, to emphasize the fact that E has odd determinant
we say that E is an odd instanton. Anyway, we denote by MIX (k) the space of
k-instantons on X , or instantons of charge k.

These bundles occur, sometimes unexpectedly, and especially for low
charge, in several aspects of the study of Fano threefolds, and have attracted
considerable attention. Yet, some of their properties are still unclear. For in-
stance, we don’t know if, at least when X is general in its moduli space, the
space MIX (k) is smooth and/or irreducible. But more elementary questions
are also open, for instance given F in MIX (k), we don’t know if there is a line
L ⊂ X with ordinary splitting, i.e. F |L ' OL ⊕ OL(ε). See Section III for more
open questions. We give here a quick overview of some of the main results and
questions concerning these bundles.

I.1. Existence of instantons. Let k ≥ 1. It is not difficult to show that
MIX (k), and in fact all of MX (2,ε, k), are empty for iX = 2,3, k = 1, and for
iX = 1 and 2k < g + 2. In the second case, the lowest value of k such that
MX (2,1, k) is not empty is mg = d

g+2
2
e. We call this the minimal charge. The

value mg +1 is also important for us, we will call it almost minimal charge (see
below for an overview of these cases).

Above these bounds, combining the results of [48, 133], we are ensured
that MIX (k) is not empty, at least for threefolds with a mild generality assump-
tion, namely the existence of a generically reduced component in the Hilbert
scheme Hilbt+1(X ) (cf. Section II.1.3 of Chapter 0 for notation) of lines in case
iX = 1: a condition equivalent to the existence of an ordinary line L ⊂ X , i.e.,
such thatNL ' OL⊕OL(−1). We call these threefolds ordinary, in contrast with
exotic threefolds where this Hilbert scheme is nowhere reduced.

One should be aware that, in principle, a Fano threefold can be ordinary
and exotic at the same time, if Hilbt+1(X ) has two or more components, one
generically reduced and the other not. However, we need ordinary, and non-
exotic implies ordinary. By the way, if g ≥ 9, in view of [156, 269] we know
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that X is non-exotic unless it is isomorphic to Mukai-Umemura’s threefold (cf.
[244]), which is the union of three orbits for SL2(C) acting on binary forms of
degree 12, in which case Hilbt+1(X ) is a double conic. In fact, the only other
known examples of exotic prime Fano threefolds are those containing a cone,
for instance the Fermat quartic threefold in P4 (g = 3), then Hilbt+1(X ) is a
curve with 40 irreducible components, each of multiplicity 2 so this threefold
is not ordinary (see [295]). Also, in case iX = 1, one has to assume that X is
not hyperelliptic, which means that |OX (1)| is very ample. This excludes the
case g = 2 and a proper closed subset of the moduli space of Fano threefolds
of genus 3.

Proposition I.1. Let X be a smooth Fano threefolds of index iX , and assume X
ordinary and non-hyperelliptic of genus g in case iX = 1. Then, the moduli space
MIX (k) admits a generically smooth component of dimension δX :

iX 4 3 2 1

δ 8k− 3 6k− 6 4k− 3 2k− g − 2

The proof of this fact works by induction on k. As basis of the recursion,
one has to study MIX (k) for minimal k. This is a bit easier in case iX ≥ 2, but
requires a case-by-case analysis for iX = 1. In fact, the whole MX (2,ε, k) can
be described in detail for minimal k; this has been done in a series of papers.
We refer to [240] for g even and ≥ 6 (cf. also [158] for g = 6, [159, 160]
for g = 8 and [130, 212, 284] for g = 12). One may look at [38, 49, 227] for
g = 3 and to [49, 228]. We refer to [184, 214], for g = 7, and to [49, 186]
for g = 9. This list, though very long, certainly forgets some contributions to
this problem, and we apologize for this. The final outcome in this case is the
following (see [49, Theorem 3.2]).

Proposition I.2. Let X be a smooth non-hyperelliptic Fano threefold of index 1
and genus g. Then any sheaf F lying in MX (2,1, mg) is locally free and ACM,
is globally generated if g ≥ 4, and there is a line L ⊂ X where F has generic
splitting. Further, MX (2,1, mg) can be described as follows:

i) the curve Hilbt+1(X ) parametrizing lines contained in X if g = 3;
ii) a length-2 scheme if g = 4, reduced iff X is contained in a smooth quadric;

iii) a double cover of the discriminant septic curve if g = 5;
iv) a single smooth point if g = 6,8, 10,12;
v) a smooth non-tetragonal curve of genus 7 if g = 7;

vi) a smooth plane quartic if g = 9.

Moreover, assuming X ordinary for g = 3, or X contained in a smooth quadric for
g = 4, then there is a sheaf F in MX (2,1, mg) with Ext2

X (F, F) = 0.

To run the induction argument, we add a line. This, in turn, is done in two
steps. First, one takes a sheaf F in MIX (k) with Ext2

X (F, F) = 0, and a line L ⊂ X
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such that F has generic splitting on L (these data exist by induction hypothesis,
except in the case g = 4 and X contained in no smooth quadric, but this case
can be worked out separately). Then, we obtain a modification of F along L as
the sheaf F ′ defined as kernel of a surjection F →OL . Unfortunately, this sheaf
is not locally free, in fact it fails to be reflexive since its double dual is just F .
However, the sheaf F ′ turns out to be stable, and to lie in MX (2,ε, k+ 1).

Second, one checks that F ′ is unobstructed, has generic splitting on any
line L′ near L in Hilbt+1(X ), and still satisfies H1(X , F ′(−q)) = 0. It turns out
that F ′ can be deformed to a locally free sheaf with the same cohomological
vanishing. This deformed sheaf now lies in MIX (k + 1), and the induction
process can continue.

I.2. Instantons with small charge, Jacobians, periods. Although there
is apparently no precise explanation for this, it seems that moduli space of
bundles with minimal invariants on X capture some of the key features of X ,
such as intermediate Jacobian, periods, Hilbert scheme of curves of low degree,
and so forth.

I.2.1. Small charge for index 2. To have a first impression of this phenom-
enon, let us look at the case iX = 2 (i.e. Del Pezzo threefolds of Picard number
1 and degree d = h3

X ), we have:

i) if d = 4 (i.e., X is the complete intersection of two quadrics in P5), the
space MX (2, 0,2) is a smooth curve of genus 2. This result (cf. [42, 242])
is quite paradigmatic of the phenomena we will encounter in the sequel,
namely the modular relation between a threefold X and a curve, dual to X
in some sense. It is a counterpart to another classical fact: the description
of X as moduli space of rank-2 bundles on C with fixed odd determinant,
cf. [99].

ii) if d = 3 (i.e., X is a cubic threefold), the space MX (2,0, 2) is the blow-up of
J(X ) along a translate of the Fano surface of lines in X , cf. [29,114,229].
This beautiful result, closely related to foundational material of [84,301],
will turn out to have many “cousins” in different situations, see below.

Cubic threefolds X are related also to many other interesting objects.
We mentioned that the structure of conic bundle on X obtained via the
projection X ¹¹Ë P2 from line contained in X has been used to study
higher rank bundles (which are even ACM) in terms of sheaves on a non-
commutative P2, cf. [218, 221]. We will also see that cubic threefolds X
are naturally related to threefolds of genus 8, via the Palatini quartic.

iii) if d = 2 (i.e., X is a double cover of P3 ramified along a quartic surface),
in view of [230] we know that MX (2, 0,3) maps 84 : 1 onto a theta divisor
in J(X ) via the Abel-Jacobi map: this again is related to more classical
work [83,313].
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I.2.2. One-dimensional homological dual: genus 7 and 9. Let us now turn
to Fano threefolds of index 1 (and still of Picard number 1). In this case, an
interesting behaviour appears for (almost) minimal charge, i.e., when k = mg

or k = mg + 1. Indeed, the moduli space MIX (2,1, mg + 1) can be studied in
detail, and is often related to nice geometric properties of X . I have studied
particularly the case when X has a 1-dimensional homological dual (e.g. g =
7, 9), since in this case vector bundles on X can be studied in terms of a smooth
curve, a priori a much simpler object.

For Fano threefolds of genus 7, minimal charge corresponds to m7 = 5.
The moduli space MIX (5) = MX (2,1, 5) is a smooth projective non-tetragonal
curve C of genus 7, which is the homological dual of X , in fact the first example
of such duality, according to [214]. This moduli space and the one of almost
minimal charge MX (2, 1,6) are studied in detail in [48, 184, 185]. It turns
out that MX (2, 1,6) is related to the singular locus of Riemann’s Θ divisor in
Pic6(C), namely it is isomorphic to the locus of line bundles of degree 6 with 2
independent global sections. Instantons of higher charge are related to higher-
rank Brill-Noether loci in C .

For genus 9, we have m9 = 6, and MIX (6) = MX (2,1, 6) also in this case
is a smooth projective curve C which is the homological dual of X , cf. [216].
On the other hand, the space MIX (2,1, 7) of sheaves of almost minimal charge
is the blow-up of Pic2(C) along Hilbt+1(X ). Much of the geometry here is
controlled by a rank-2 bundle V on C , having the property that Hilb2t+1(X ) '
P(V ), and X can be defined as a certain Brill-Noether locus of stable rank-
2 bundles on C that have enough sections when twisted with V . We refer
to [49,179,186,242]. The moduli of V in this case give the periods of X .

I.2.3. Genus 8. We describe a bit this case since, besides being particularly
beautiful, it provides a conjectural model for other constructions (cf. Section
III).

A smooth prime Fano threefold X of genus 8 is birational to a smooth cu-
bic threefold Y in P4. This correspondence can be explicitly described via an
instanton bundle on Y , according to [213]. Indeed, X is the complete intersec-
tion of G(2, V ), where V ' C6, with a P9 in P̌(∧2V ). WriteUX for the universal
rank-2 subbundle on X . The associated choice of 5 independent hyperplane
sections gives a 5-dimensional subspace W ⊂ ∧2V ∗, so that X lives in P̌(W⊥),
where W⊥ is the kernel of ∧2V →W ∗. Over P4 = P̌(W ), we obtain a morphism
V → V ∗⊗H0(P4,OP4(1)). This gives rise to the following datum:

0→ V ⊗OP4(−1)→ V ∗⊗OP4 → E(1)→ 0,

where the middle map, given by our morphism V → V ∗⊗W ∗, is skew symmet-
ric and injective. The Pfaffian of this map is a cubic form that defines Y in P4,
and its cokernel E(1) is a vector bundle of rank 2 on Y , in fact E lies in MIY (2).
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On the other hand, one could consider P5 = P̌(V ), and recall that
H0(P5,ΩP5(2))' ∧2V ∗. Then we would interpret W ,→∧2V ∗ as a map:

W ⊗OP5 → ΩP5(2).

The degeneracy locus of this map is a quartic in P5, called the Palatini quar-
tic Z . It turns out that P(U ∗X ) and P(E(1)) are both birational to Z , by the
relatively ample linear system, that naturally maps to P5 since H0(Y, E(1)) '
V ∗ ' H0(X ,U ∗X ). The Palatini quartic Z is singular along a curve C , which is
the image of the universal line over X ×Hilbt+1(X ). Let us mention that X can
be recovered from the curve C , together with its embedding in P5, according
to [145]. Let us also mention that the Hilbert scheme of the degeneracy loci
of maps O m

P(V ) → ΩPn(2) have been studied in [135], and more recently by
F. Tanturri in his thesis, [294]. See also [134] for the Hilbert scheme of de-
terminantal varieties in this spirit, related to the framework of Problem V.2 of
Chapter 2.

This correspondence goes further. Indeed, the “non-trivial components”
⊥〈OX ,U ∗X 〉 ⊂ Db(X ) and 〈OY ,OY (1)〉⊥ ⊂ Db(Y ) are equivalent by [213], see
also [215]. This subcategory also determines Y by [35].

In terms of moduli spaces, we have m8 = 5, and we know by [180] that
MX (2,1, 8) is isomorphic to the Hilbert scheme of lines in Y .

I.2.4. Periods. The period map ℘ associated with a smooth Fano threefold
X with fixed index and degree its intermediate Jacobian J(X ) as a principally
polarized abelian variety. This map can be viewed in families (at least stack-
theoretically), from the “moduli space” of Fano threefolds with fixed index and
degree to a moduli space of polarized abelian varieties. Closely related to this
is the Torelli-type problem, i.e., the question whether ℘ is injective. For in-
stance, the Torelli-type result that a smooth cubic threefold Y is determined by
(J(Y ),Θ) goes back to Clemens-Griffiths, [84], a more precise result being due
to Mumford [245], cf. also [71] for a converse statement. Of course this is also
related to the discussion of Chapter 1, Section IV.

However it turns out that ℘ need not always be injective, as shown for
instance by Fano threefolds of index 1 and genus 12, that have trivial inter-
mediate Jacobian, despite having 6-dimensional moduli. Its fibres however,
for given index and degree, are of particular interest since they describe non-
isomorphic threefolds with the same Hodge theory.

In spite of this, sometimes one can reconstruct X from some other da-
tum, for instance for iX = 1 and g = 8 or g = 12, X is recovered from the
Hilbert scheme Hilbt+1(X ) parametrizing lines in X , together with a theta-
characteristic on it (we mentioned already [145] for g = 8, and we refer
to [241,243] for g = 12); or one could look at categorical invariants cf. [35].
We will see more on this later on.
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Going back to the period map ℘, the link with vector bundles appears in a
quite interesting fashion, precisely in view of the previous subsection. Indeed,
for Fano threefolds of index 1 and genus 14, the fibres of the period map (i.e.
families of Fano threefolds of genus 8 birational to the same cubic threefold
Y ) are birational to J(Y ), which is in turn birational to MY (2,0, 2) as we have
seen.

And there are more examples. For genus 6 (so m6 = 4), it is proved in
[95] that the general fibres of ℘ have at least two connected components, one
of them is Hilb2t+1(X ), an the other is the space of almost minimal charge
MX (2,1, 5).

Periods for Fano threefolds of genus 10 are still to be determined. We set a
possible starting point for this question in the next section.

I.3. Instantons on Fano threefolds with trivial Hodge theory. Next, we
focus on the case when the variety X satisfies H3(X ) = 0, i.e. the intermediate
Jacobian of X is trivial. This holds if the derived category Db(X ) of coherent
sheaves on X admits a full strongly exceptional collection, and a case-by-case
analysis shows that in fact the two conditions are equivalent. Indeed, there are
only 4 classes of such varieties, one for each index, namely:

i) the projective space P3, for iX = 4;
ii) a quadric hypersurface in P4, for iX = 3;

iii) a linear section X = P6 ∩G(2,C5)⊂ P9, with H3
X = 5, for iX = 2;

iv) a prime Fano threefold X ⊂ P13 of genus 12, in case iX = 1.

In all these case, there are vector bundles Ei on X such that:

Db(X ) =



E0,E1,E2,E3
�

,

and the Ei ’s can chosen in such a way that:

(I.1) E0 ' OX (−q− ε), E ∗3 (−ε)' E1, E ∗2 (−ε)' E2.

Set U = HomX (E2,E3), and note that U ' HomX (E1,E2). To obtain a monadic
description of MIX (k), given an integer k, fix vector spaces I and W , and an
isomorphism D : W →W ∗ with Dt = (−1)ε+1D (an (ε+1)-symmetric duality).
According to the values of iX and k, we need to choose the dimension of I and
W as follows:

iX k dim(I) dim(W )

4 k ≥ 1 k 2k+ 2
3 k ≥ 2 k− 1 k
2 k ≥ 2 k 4k+ 2
1 k ≥ 8 k− 7 3k− 20

The lower bounds for k appear in order to ensure non-emptiness of MIX (k).
Let us write G(W, D) for the symplectic group Sp(W, D), or for the orthogonal
group O(W, D) depending on whether ε= 0 or 1, so that η ∈ G(W, D) operates
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on W and satisfies ηtDη= D. We look at an element A of I⊗W ⊗U as a map:

A : W ∗⊗E2→ I⊗E3,

and, under the dualities (I.1), we can consider:

D At : I∗⊗E1→W ∗⊗E2.

We define the subvariety QX ,k of I⊗W ⊗U by:

QX ,k = {A∈ I⊗W ⊗U | AD At = 0},

and its open piece:

Q◦X ,k = {A∈QX ,k | A : W ∗⊗E2→ I⊗E3 is surjective}.

We also define the group:

Gk = GL(I)×G(W, D),

acting on I⊗W ⊗U on the left by (ξ,η).A = (ξAηt). The group Gk acts on
the variety QX ,k, since, for all A ∈ QX ,k, we have ξAηtDηAtξ

t
= ξADAtξ

t
= 0.

Clearly, Gk acts also onQ◦X ,k. Then, MIX (k) is described by the following result.

Proposition I.3. Let X be a smooth Fano threefold of Picard number 1 and
H3(X ) = 0. Let I , W, D and the Ei ’s be as above. Then a k-instanton E on X
is the cohomology of a monad of the form:

I∗⊗E1
D At

−−→W ∗⊗E2
A−→ I⊗E3,

and conversely the cohomology of such a monad is a k-instanton. The moduli
space MIX (k) is isomorphic to the geometric quotient:

Q◦X ,k/Gk.

More specific results can be given for each threefold. When X is a quadric
threefold, it turns out that MIX (k) is affine, in analogy with the same result,
valid on Pn, proved in [91]. A detailed analysis of MX (2, c1, k) for low k is
carried out in [117, 261]. Also, the behaviour of stability with respect to re-
striction to hyperplane sections is developed in [85].

When H3(X ) 6= 0, there are not enough exceptional objects on X to gener-
ate Db(X ). However, as we already pointed out, one can rely on a semiorthog-
onal decomposition of Db(X ) containing a subcategory equivalent to Db(C),
where C is a curve whose Jacobian is isomorphic to the intermediate Jacobian
of X , cf. [216]. This allows to describe instantons in terms of vector bundles
over C , as it is done in [48, 50] (for threefolds of index 1 and genus 7, 9)
and [133,220] (for threefolds of index 2 and degree 4).

In the next section I will show how to extend these methods to genus 10.



84 II. Fano threefolds of genus 10

I.4. Summary of basic formulas for Fano threefolds. Let X be a smooth
Fano threefold of Picard number 1 and index 1, i.e. such that ωX ' OX (−hX ),
with hX ample and Pic(X ) ' 〈hX 〉. The genus g of X , i.e., the genus a curve
obtained as vanishing locus of a general pencil of hyperplane sections, satisfies
deg(X ) = 2g − 2, where deg(X ) = deg(hX ) = h3

X .
Given a smooth projective curve D ⊂ X of degree d and genus pa, we have:

c1(OD) = 0, c2(OD) =−d, c3(OD) = 2− 2pa − d.

Applying the theorem of Riemann-Roch to a coherent sheaf F on X , of
(generic) rank r and with Chern classes c1, c2, c3, we obtain the following for-
mulas:

χ(F) = r +
11+ g

6
c1+

g − 1

2
c2
1 −

1

2
c2+

g − 1

3
c3
1 −

1

2
c1 c2+

1

2
c3,

χ(F, F) = r2−
1

2
∆(F).

Recall that if T 6= 0 is a torsion sheaf supported in codimension p > 0, then
ck(T ) = 0 for k < p, while (−1)p−1cp(T ) is the class of the scheme-theoretic
support of T in Hp,p(X ) (see e.g. [146]). Moreover since χ(T (t)) is positive for
t � 0, looking at the dominant term of χ(T (t)), we see that (−1)p−1cp(T )> 0.

A hyperplane section of S is a K3 surface, namely S is a simply connected
surface with ωS ' OS . If E is a stable sheaf of rank r on S, with ci(E) = ci ∈
Hi,i(S). Then (see [178, Chapter 6]), the dimension of MS(r, c1, c2) at E is:

(I.2) 2rc2− (r − 1)c2
1 − 2(r2− 1)

II. Fano threefolds of genus 10

In this section, I will outline a study of odd instantons on a Fano threefold
of genus 10, pointing out a link with the theory of binary sextics. Indeed,
given such threefold, the homologically dual genus-2 curve C is equipped with
a stable vector bundle of rank 3 that lies in the Coble-Dolgachev sextic in P8 via
the theta map that sends SUC(3) to P8. This bundle, obtained as direct image
of the universal bundle on X via the Fourier-Mukai kernel on X × C , plays
an important role in many features of X , such as Hilbert scheme of curves,
instanton bundles, and (hopefully) fibres of the period map and the Torelli
problem.

II.1. Basic features of Fano threefolds of genus 10. A smooth Fano
threefold X of genus 10 is a double hyperplane section of a 5-dimensional
manifold Σ, homogeneous under the complex Lie group G2, naturally embed-
ded in P13. The projective dual of Σ is a sextic hypersurface in P̌13, and we let
Γ be the double cover of P̌13 ramified along this sextic. The line in P̌13 dual
to the pencil of hyperplanes containing X cuts this sextic at six points, and the
associated double cover of P1 is a smooth projective curve C ⊂ Γ of genus 2.
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The hyperplane class on P̌13 induced via C → P1 a divisor class hC , and clearly
ωC ' OC(hC). The curve C is called the homological projective dual of X , in the
sense of Kuznetsov, see [217]. We denote by ι the hyperelliptic involution of
C , exchanging the fibres of C → P1.

II.1.1. The G2-manifold and the 5-dimensional quadric. We consider the
simple complex Lie group G2, see [45]. This group can be obtained by fix-
ing a 7-dimensional vector space V over the field C of complex numbers, and a
general alternating 3-formω ∈ ∧3V ∗. Then, G2 is the closed subgroup of SL(V )
of linear transformations preserving ω. The group G2 has two simple positive
roots α1 and α2.

G2

α1 α2

The fundamental weights λ1 and λ2 give two basic representations of G2:
the first one is just V . The second one, denoted by W , has dimension 14: it
is obtained using contraction with ω to send V into ∧2V ∗, and setting W =
∧2V ∗/V .

Two homogeneous spaces for G2 appear as minimal orbits into P(V ) and
P(W ): they are a 5-dimensional quadric Q5 = G2 /Pα1

in P5 = P̌(V ), and the
so-called G2-manifold Σ = G2 /Pα2

, which also has dimension 5 and Picard
number 1. We have ωΣ ' OΣ(−3).

Q5 Σ

α1 α2 α1 α2

The manifold Σ naturally sits in the Grassmannian G(2, V ) of 2-
dimensional vector subspaces of V . This Grassmannian is equipped with
two tautological bundles, namely a rank 2 subbundle of the trivial bundle
V ⊗OG(2,V ), and the quotient bundle of rank 5, which we denote by Q, that
fit into the exact sequence:

0→U → V ⊗OG(2,V )→Q → 0.

We have H0(G(2, V ),Q∗(1)) ' ∧3V ∗, and the manifold Σ is defined in G(2, V )
as the vanishing locus of the global section sω of Q∗(1) corresponding to ω ∈
∧3V ∗. The space of global sections H0(Σ,OΣ(1)) is identified with W .

These two G2-homogeneous varieties are connected by the complete G2-
flag G2 /B, where B is a Borel subgroup of G2. This manifold has Picard number
2 and appears as P(U ∗), or equivalently as P(C ), where C is the so-called
Cayley bundle on Q5, cf. for instance [259]. This is a stable G2-homogeneous
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bundle of rank 2 with c1(C ) = 3 and H0(Q5,C )'W . We have thus a diagram:

G2 /B
q

""EE
EEE

Ep

{{xx
xx

x

Q5 Σ

and natural isomorphisms:

q∗(p
∗(OQ5

(1)))'U ∗Σ, p∗(q
∗(OΣ(1)))'C .

Another way to see C is the following. We consider P6 = P̌(V ) and iden-
tify H0(P6,Ω2(3)) ' ∧3V ∗ with the space of skew-symmetric morphisms
TP6(−1)→ ΩP6(2). Then ω gives an exact sequence:

0→TP6(−1)
ω−→ ΩP6(2)→C → 0.

II.1.2. The G2-manifold and Fano threefolds of genus 10. A smooth Fano
threefold X of genus 10 is cut in Σ by a pencil of hyperplane sections. We have
ωX ' OX (−1). Let S be a smooth hyperplane section surface of X . Then S is
a K3 surface of sectional genus 10. Also, choosing S generally in the system of
surfaces through x ∈ X , we get that S has Picard number 1. We have

(II.1) 0→OX (−1)→OX →OS → 0.

Taking a further smooth hyperplane section, we get a curve of genus 10,
embedded by its canonical system. As a side remark, we recall that this curve
is not general in the moduli space of curves of genus 10, in fact curves arising
this way fill a divisor of the moduli space, that turns out to be quite interesting
for other purposes, cf. [143].

Let us continue now the description of X . The tautological exact sequence
restricted to X becomes:

(II.2) 0→UX → V ⊗OX →QX → 0.

Applying the theorem of Borel-Bott-Weil (cf. for instance [317]) to the ho-
mogeneous bundles ∧pUΣ(t) and ∧pQΣ(t), making use of the Koszul complex
defining X and S in Σ, together with Hoppe’s criterion, one easily sees that the
bundles UX and QX are stable, and that, and that US and QS are stable too as
soon as S has Picard number 1.

It is not hard to see (cf. [48, Lemma 3.1]) that a semistable sheaf F of rank
2 with c1(F) = 1 must satisfy c2(F) ≥ 6, and in fact we must have F ' U ∗X
as soon as c2(F) = 6, so MIX (2, 1,6) consists of a single point which is also
reduced cf. [49, Theorem 3.2].

II.1.3. Semiorthogonal decomposition and bundles of rank 3. An analogue
of Beilinson’s theorem on P3, suitable for our threefold X , is provided by
Kuznetsov’s homological projective duality approach, see in particular [216,
Section 8]. The outcome is as follows. First, OX and U ∗X are exceptional and
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U ∗X is left-orthogonal to OX , i.e. Hi(X ,UX ) = 0 for all i. Second, there exists a
vector bundle F of rank 3 over X × C , giving rise to the integral functor:

Φ = ΦF : Db(C)→ Db(X ), Φ(E) = RπX ∗(π
∗
C(E)⊗F ),

and to its right and left adjoints Φ! and Φ∗:

Φ!(E) = RπC ∗(π
∗
X (E)⊗F

∗[1])⊗ωC , Φ∗(E) = RπC ∗(π
∗
X (E(−1))⊗F ∗[3]).

Third, the functor Φ provided by F is fully faithful, and gives the
semiorthogonal decomposition:

〈OX ,U ∗X ,Φ(Db(C))〉.

This means several things. One of them is the following: denote by Fy (or
Fx) the restriction of F to X ' X × {y} for y ∈ C (or to C ' {x} × C for
x ∈ X ). Then Hi(X ,F ∗y) = Hi(X ,U ∗X ⊗F

∗
y) = 0 for all i. Also, Fy is simple and

Exti
X (Fy ,Fy ′) = 0 for y 6= y ′ and all i. The main consequence is that, for any

coherent sheaf E on X , we have a distinguished triangle:

(II.3) ΦΦ!(E)→ E→ΨΨ∗(E),

where Ψ is the embedding of 〈OX ,U ∗X 〉 into Db(X ).
Fourth, ΨΨ∗(E) is a minimal complex whose k-th term is:

(II.4) ΨΨ∗(E)k = H3+k(X , E(−1))⊗OX ⊕H2+k(X ,QX ⊗ E(−1))⊗U ∗X .

By minimal complex here we mean that any endomorphism of OX or of U ∗X
induced by the differential actually vanishes.

In the next section, we are going to relate this construction with the mod-
uli spaces MX (3, 2,17, 12) and MX (3,1, 9,2), which will turn out to be both
isomorphic to C , by proving that F is in fact a universal bundle for the mod-
uli space MX (3, 2,17, 12). Note that the correspondence E 7→ E∗(1) identi-
fies the open pieces consisting of locally free sheaves in MX (3,2, 17,12) and
MX (3, 1,9, 2). We will see in a minute that these open pieces coincide in fact
with the whole moduli space.

II.2. Rank-3 bundles and homological projective duality. The main goal
of this section is to prove the following result, that serves as basis of our analy-
sis of Fano threefolds of genus 10. The ideas to tackle this kind of result appear
in [48,49].

Theorem II.1. The curve C is identified with MX (3,2, 17,12) and F is a univer-
sal bundle for this moduli space. For any y ∈ C, the corresponding sheaf Fy is
locally free, F ∗ι y(1) is globally generated, and we have the exact sequences:

0→Fy(−1)→O 6
X →F

∗
ι y(1)→ 0,(II.5)

0→F ∗ι y(1)→ (U
∗
X )

3→Fy → 0.(II.6)
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PROOF. Our first task will be to show, for any F in MX (3, 1,9, 2):

(II.7) Hk(X , F(−1)) = 0,

for all k. To do this, we first check H2(X , F) = 0. Note that this space is dual to
Ext1

X (F,OX (−1)), so a non-zero element in it would give a non-split extension:

(II.8) 0→OX (−1)→ F̃ → F → 0.

One checks that F̃ is slope-semistable. Indeed, note that c1(F̃) = 0, consider
a stable destabilizing quotient Q, and let K be the kernel of F̃ → Q. Set K ′ =
K ∩ OX (−1) ⊂ F̃ and K ′′ = K/K ′. Note that K ′ = OX (−1) or K ′ = 0, because
OX (−1)/K sits in the torsion-free sheaf Q. If rk(Q) = 1, then c1(Q)≤−1 would
entail, by stability of F , a non-zero map OX (−1)→ Q, hence c1(Q) = −1 and
in fact Q ' OX (−1) so (II.8) would split, which is absurd. If rk(Q) ≥ 2, then,
both choosing K ′ = 0 or K ′ = OX (−1), we get that K ′′ destabilizes F , which is
again absurd. We have proved that F̃ is slope-semistable. But this contradicts
Bogomolov’s inequality. This shows H2(X , F) = 0.

Next, we let S be a general hyperplane section surface of X , and we observe
that F |S is stable. To check this, first note that F∗ is also a slope-stable sheaf,
for a destabilizing quotient of F∗ would destabilize F∗∗ hence also F since the
cokernel of F ,→ F∗∗ has trivial c1 (i.e., a torsion-free sheaf and its reflexive hull
only differ in codimension 2). Then, we observe that χ(F) = 6 by Riemann-
Roch, hence there is a non-zero global section s : OX → F because H2(X , F) = 0.
By stability of F , we have H0(X , F(−1)) = 0, so the transpose of s gives an exact
sequence:

0→ F s→ F∗→ID/X → 0,

for some D ⊂ X of codimension 2 and some rank-2 torsion-free sheaf F s, which
is clearly slope-stable. Restricting this sequence to S, we get that F s|S is stable
by Maruyama’s theorem (see [232]), so that F∗|S is also stable, hence F |S as
well.

To continue the proof of (II.7), we work again on S and show that
H1(S, F |S) = 0. Note that this group is dual to Ext1

S(F |S ,OS), hence a non-zero
element of this space would give a non-split extension of the form:

0→OS →ÝF |S → F |S → 0.

Now, with the same argument used above for F̃ , we can check that the sheaf
ÝF |S is slope-stable. Indeed, a destabilizing quotient Q cannot have rank 1 and
c1(Q) ≤ 0 for otherwise we would easily get a splitting of the above sequence;
nor Q can have higher rank because this would give a destabilizing subsheaf of
F |S . But the dimension count (I.2) gives a negative number: a contradiction.
We have proved H1(S, F |S) = 0. We can now use:

0→ F(−1)→ F → F |S → 0
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and stability of F to deduce (II.7). Indeed, H0(X , F(−1)) = 0 is clear,
H3(X , F(−1)) is dual to HomX (F,OX ) which vanishes by stability, so the van-
ishing of H1(S, F |S) and H2(X , F), combined with Riemann-Roch, give (II.7)
for all k.

Now, we use [198] and [216]. It is proved in [198] that C is indeed a
component of MX (3, 1,9, 2), and that, denoting by Fy the sheaf over X corre-
sponding to y ∈ C , we have an exact sequence:

(II.9) 0→ F∗ι y →O
6
X → Fy → 0.

On the other hand, following [216, Page 525]we see that the vector bundle
F of rank 3 over X × C associated with Φ is built in such a way that, for any
y ∈ C , we have an exact sequence:

(II.10) 0→OX → (U ∗X )
2→Fy →ωD→ 0,

where D ⊂ X is a curve of degree 3 and arithmetic genus 0. By [48, Lemma
3.2], the curve D is locally Cohen-Macaulay (we call such curve a twisted cubic).
It is then clear that H0(X ,Fy(−1)) = 0 and HomX (Fy ,OX ) = 0, which says that
Fy is stable by Hoppe’s criterion. A Chern class computation now shows that
Fy lies in MX (3, 2,17, 12). In fact, up to twisting F with a line bundle on C ,
one can deduce the Chern classes in H∗(X×C) ofF by Grothendieck-Riemann-
Roch using the relations:

Φ!(OX ) = Φ
!(U ∗X ) = 0, Φ!(Fy)' Oy .

Denoting by pC the cohomology class of a point in C , the result reads:

c1(F ) = 2hX + 2pC , c2(F ) = 27`X + 3hX pC +η, c3(F ) = 7pX + 22`X pC ,

where η lies in H3(X ,Z)⊗H1(C ,Z) and satisfies η2 = 4.
Let now F be any sheaf in MX (3, 1,9, 2). By Serre duality, since (II.7) holds

for all k, we have Extk
X (F,OX ) = 0 for all k. Then, applying HomX (F,−) to

(II.9), we get:

H3−i(X , F∗y ⊗ F(−1))∗ ' Exti
X (F, Fy)' Exti+1

X (F, F∗ι y)' H2−i
X (Fι y ⊗ F(−1))∗,

where we also used Serre duality. This space vanishes for i = 3 and i = 2 by
stability. Also, we have χ(F, Fy) = 0. On the other hand, if HomX (F, Fy) 6= 0,
then F ' Fy . So Exti

X (F, Fy) = 0 for all i if F 6' Fy .
Setting F = F ∗y ′(1) and letting y ′ vary in C , we get Φ!(F∗y) = 0 unless

F∗y ' Fy ′(−1) for some y ′ ∈ C , and in this case clearly y = y ′. But, using
Grothendieck-Riemann-Roch, one sees that the Chern character of Φ!(F∗y) is
non-zero, so Φ!(F∗y) 6= 0, hence F∗y ' Fy(−1). We have now identified the
component C of [198] with Kuznetsov’s construction of C as homological dual
of X . The same argument now shows that any F in MX (3, 1,9, 2) is of the form
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F ∗y(1) for some y ∈ C , so:

C 'MX (3, 1,9, 2)'MX (3, 2,17, 12),

and (II.5) is just (II.9). At this point, [198] tells that any F in MX (3,1, 9,2) is
a globally generated vector bundle, with h0(X , F) = 6, Hi(X , F) = 0 for i > 0,
and Hi(X , F∗) = 0 for all i.

It remains to prove (II.6). We will first show the vanishing:

(II.11) Hi(X ,UX ⊗Fy) = 0,

for all Fy in C , and all i > 0, which will give h0(X ,UX ⊗Fy) = 3 by Riemann-
Roch. First note that hi(X ,UX ⊗Fy) = h3−i(X ,UX ⊗F ∗y) = 0 by Serre duality,
since U ∗X (−1) ' UX . Stability gives this vanishing for i = 3. Also, tensoring
(II.2) with F ∗y then gives (II.11) for i = 2 since Hi(X ,F ∗y) = 0 for all i and
H0(X ,QX ⊗F ∗y) = 0 by stability.

It follows that H0(X ,UX ⊗Fy) has dimension 3 at least: let us consider a
non-zero element s of this space as a map F ∗y(1) → U

∗
X . By stability of these

two bundles, the image of s must have slope 1/2, so ker(s) is a reflexive sheaf
of rank 1 so that c1(ker(s)) = 0 tells ker(s)' OX . Computing Chern classes and
dualizing, we see that (the transpose of) s gives rise to the exact sequence:

(II.12) 0→U ∗X
s−→Fy →ID/X (1)→ 0,

where D ⊂ X is a twisted cubic. What we have to prove now is that, for any
twisted cubic D ⊂ X , we have:

h j(X ,UX ⊗ID/X ) = ext3− j
X (ID/X ,UX ) = δ2, j ,(II.13)

hk(X ,U ∗X ⊗ID/X ) = 2δ0,k,(II.14)

where δi, j is the Kronecker symbol. Note that the relation between h j and
ext3− j in (II.13) is given by Serre duality, so by stability the equality with δ2, j

is also clear for j = 0,3. By Riemann-Roch, (II.13) will be proved if we show it
for j = 1. Further, observe that H j(X ,ID/X ) = 0 for all j by [48, Lemma 3.2].
Then, tensoring (II.2) by ID/X , we reduce to prove H0(X ,QX ⊗ID/X ) = 0. But
this is given by the following claim: a non-zero global section of Q vanishes
nowhere, or on a line contained in X , or on a point of X .

In turn, to prove the claim, we let s be such a section. Using Borel-Bott-
Weil, it is easy to see that s lifts to a global section s̃ of QG(2,V ) on G(2, V ),
which vanishes on a P5. Also, Q∗G(2,V )(1) restricts to P5 as ΩP5(2). Then, ω
corresponds to a global section of sω of ΩP5(2), and as such vanishes nowhere,
or on a P3, or on a line. Then, V(s) is the intersection of V(sω) with the linear
span of X , and as such is ;, or a linear space. But since Pic(X ) is generated by
the hyperplane section of X , this linear space can be at most of dimension 1.
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So far we have proved (II.13). To prove (II.14), we first dualize (II.2)
and tensor with ID/X . Then, we observe that H3(X ,QX ⊗ID/X ) = 0 holds by
stability, so (II.14) holds for k = 2, 3. By Riemann-Roch, it remains to show
(II.14) for k = 1. We consider again the hyperplane section S, and we intersect
D with S to obtain a subscheme Z ⊂ S of length 3. We have thus:

0→ID/X →ID/X (1)→IZ/S(1)→ 0,

and we tensor this sequence with UX . In view of (II.13), to prove it suffices
now to show h1(S,U ∗S ⊗IZ/S) = 1. By Serre duality, if this value was greater
than 1, we would have a non-split extension:

0→U 2
S → E→IZ/S → 0,

for a torsion-free sheaf E of slope −2/5 on S. With the same method as above,
one shows that E is stable, while the parameter count (I.2) of Chapter 0, ap-
plied to E, givens a negative number. This is a contradiction, and the proof of
(II.14) is thus finished. Applying HomX (U ∗,−) to (II.12), since U ∗ is excep-
tional, using (II.14) we get (II.11).

We can now finish the proof of (II.6). First of all, let us show that the
evaluation map ey : (U ∗X )

3 → Fy is surjective for all y ∈ C . Dualizing (II.10)
we get an exact sequence:

0→F ∗y(1)→ (U
∗
X )

2→ID/X (1)→ 0,

for some twisted cubic D ⊂ X . Also, we have proved in (II.13) that
ext1

X (ID/X (1),U ∗X ) = 1. We claim that this corresponds to an extension:

0→U ∗X →Fy ′ →ID/X (1)→ 0,

for some y ′ ∈ C . Indeed, the extension sheaf is easily seen to have the correct
Chern classes and to be stable. Therefore, the maps the surjection (U ∗X )

2 →
ID/X (1) and the section U ∗X →Fy ′ patch together to give an exact sequence:

0→F ∗y(1)→ (U
∗
X )

3
ey′
−→Fy ′ → 0.

Dualizing and tensoring with OX (1)we get that ey is surjective. Finally, we must
have y ′ = ι y since the previous sequence is an element of Ext1

X (Fy ′ ,F ∗y(1)) '
Ext2

X (Fy , F∗y)
∗ (with the previous convention Fy ' F∗y(1)) and we have seen

that this space vanishes for y ′ 6= ι y . �

II.3. Curves of low degree. The study of curves of low degree in X is
quite essential for us. Indeed, curves of degree up to 3 are tightly related to
some structural objects on X , such as the homologically dual curve C , its Picard
variety, the Coble cubic, the theta divisors in Pic1(C) and so forth. We will start
this analysis here, with conics and rational cubics, and end it a bit further on
with lines.
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II.3.1. Conics. It is well-known that the Hilbert scheme of conics contained
in X is isomorphic to the Jacobian of C . This has been proved at least two
times: in [198, Corollary 1.4] and [181, Proposition 3]. We provide a third
proof, of homological flavour.

Proposition II.2. The map D 7→ Φ!(ID/X (1))[−1] defines an isomorphism:

Hilb2t+1(X )' Pic0(C).

PROOF. Note that in this case H 2
0 (X ) = Hilb2t+1(X ) (cf. Section II.1.3 of

Chapter 0 for notation) by [48, Lemma 3.2]. First of all we prove that, given a
conic D ⊂ X (i.e., a subvariety of X of dimension 1 whose Hilbert polynomial
in t is 2t + 1), we have ID/X (1) ' Φ(Φ!(ID/X (1)). By [48, Lemma 3.2], we
have Hi(X ,ID/X ) = 0 for all k. It is easy to see, using using stability and
Serre duality, that H3(X ,QX ⊗ID/X ) = 0. By the same reason, we get that
Hk(X ,UX ⊗ID/X ) vanishes for k = 0 and k = 3. Hence, tensoring (II.2) with
ID/X we obtain H2(X ,QX ⊗ID/X ) = 0. Moreover, by the claim emphasized in
the proof of Theorem II.1, we see that H0(X ,QX ⊗ID/X ) = 0. By Riemann-
Roch, we also get H1(X ,QX ⊗ID/X ) = 0. It follows from (II.3) that ID/X (1) '
Φ(Φ!(ID/X (1)).

Now let us check that Φ!(ID/X (1))[−1] is a line bundle of degree 0. By
the vanishing we have just proved, tensoring (II.5) with ID/X and (II.6) with
ID/X (−1), we get:

Hi(X ,F ∗y ⊗ID/X (1))' Hi+2(X ,F ∗y ⊗ID/X ).

These groups obviously vanish for i ≥ 2, and also for i = 1, as one eas-
ily checks again using stability and Serre duality. By Riemann-Roch, we get
h0(X ,F ∗y ⊗ID/X (1)) = 1, so Φ!(ID/X (1))[−1] is a locally free sheaf ND of rank
1. By Grothendieck-Riemann-Roch, we see that deg(ND) = 0.

We have thus a morphism from Hilb2t+1(X ) to Pic0(C) defined by D 7→ ND,
and this morphism is clearly an embedding for ID/X (1) ' Φ(ND)[1]. But
Pic0(C) is an irreducible surface and any component of Hilb2t+1(X ) has di-
mension ≥ 2 by [187], so Hilb2t+1(X )' Pic0(C). �

II.3.2. The first anti-autoequivalence. We now define a useful anti-
autoequivalence τ of the subcategory 〈OX (1)〉⊥ of Db(X ). Given E in Db(X ),
we set:

τ(E) = OX (1)⊗LOX
(RH omX (E(−1),OX )))[−2].

Lemma II.3. The functor τ is an involutive anti-autoequivalence of 〈OX (1)〉⊥ that
fixes Φ(Db(C)), and for E in Db(C) we have:

τ(Φ(E))' Φ(RH omC(ι
∗E,OC)).

PROOF. The anti-equivalence RH omX (−,OX (1)) sends 〈OX (1)〉⊥ onto
⊥〈OX 〉, while LOX

is an equivalence of ⊥〈OX 〉 onto 〈OX 〉⊥ by [41]. Tensoring
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with OX (1) (and shifting), we get an anti-autoequivalence of 〈OX (1)〉⊥. To see
that τ2 is the identity, we note that for any E in Db(X ) there is an exact triangle:

R HomX (E(−1),OX )⊗OX (1)→ RH omX (E(−1),OX (1))→ τ(E)[2]

Tensoring with OX (−1) and dualizing, we get:

RH omX (τ(E),OX (1))[−2]→ E(−1)→ R HomX (E(−1),OX )
∗⊗OX .

Of course, one has LOX
(OX ) = 0, and assuming that E lies in 〈OX (1)〉⊥ we have

LOX
(E(−1)) ' E(−1). So, applying LOX

to the previous triangle and tensoring
with OX (1) we see that τ2(E)' E.

Next, since we have a parametrization of Φ(Db(C)) by the points of C ,
to check that τ fixes Φ(Db(C)) it suffices to see that τ(Fy) lies in Φ(Db(C)).
But τ is the composition of (−⊗OX (−1)), RH omC(−,OX ), LOX

, and again
−⊗OX (1), so it transforms Fy into Fι y[−1] via:

Fy 7→ Fy(−1) 7→ F ∗y(1) 7→ Fι y(−1)[−1] 7→Fι y[−1],

where we have used (II.6) to apply LOX
[−2]. To see the induced anti-

autoequivalence τC on Db(C), we recall from [43, Theorem 3.1] that any
antiequivalence of Db(C) is the composition of RH omC(−,OC) and of an au-
tomorphism of C , the operation of taking tensor product with a line bundle on
C , and a shift in the triangulated category. Rewriting the previous display as
τ(Φ(Oy)) ' Φ(Oι y[−1]), and using the fact that RH omC(Oy ,OC) ' Oy[−1],
we get that τC is N ⊗ ι∗RH omC(−,OC), for some line bundle N on C .

It remains to check that N is OC . To get this, consider a conic D con-
tained in X . Note that τ(ID/X (1)) ' ID/X (1)[−2], indeed ωD ' OD(−1) gives
RH omX (OD/X ,OX )' OD[−2], which easily implies LOX

(RH omX (ID/X ,OX ))'
ID/X . By the previous proposition, ND = Φ!(ID/X (1))[−1] is a line bundle of
degree zero. Also, we have τ(Φ(ND[1])) ' Φ(ND)[−1], hence τC(ND[1]) '
ND[−1], i.e., ι∗(N ∗D)⊗N ' ND. Therefore, N ' OC and we are done. �

II.3.3. Twisted cubics. One of the main characters here is a rank-3 vector
bundle on C , obtained as direct image of U ∗X . This bundle is directly related
to twisted cubics contained in X , but also to the other important actor in this
story: the Coble cubic.

Definition II.4. Set V = Φ∗(U ∗X )
∗.

We have seen in Theorem II.1 that, for any y ∈ C , Hi(X ,F ∗y ⊗U
∗
X ) = 0 for

i 6= 3, and that H3(X ,F ∗y ⊗U
∗
X ) has constant dimension 3. So, V is a vector

bundle of rank 3 on C . By Grothendieck duality one can easily check:

V ' πC ∗(F ⊗π
∗
X (UX )).

Also, by Grothendieck-Riemann-Roch we see that V has degree zero.
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Lemma II.5. We have V ∗ ' ι∗V , and:

H 0(Φ(V ∗))'U ∗X , H 1(Φ(V ∗))'Q∗X (1).

PROOF. Set A = Φ(Db(C)). Consider the decomposition Db(X ) =
〈OX ,U ∗X ,A〉 and apply LOX

to U ∗X in order to mutate it to 〈Q∗X ,OX ,A〉. In this
setting (cf. [40]) we have Q∗X (1)[−3] ' RA ROX

Q∗X ' RA U ∗X [−1], because
right-mutating a generator E of Db(X ) all around a semiorthogonal decompo-
sition we must get E⊗ω∗X [dim X ]. Hence Q∗X (1)[−2] ' RA U ∗X . But we have
an exact mutation triangle:

RA U ∗X →U
∗
X → Φ(Φ

∗(U ∗X )),

Note that this triangle reads:

Q∗X (1)[−2]→U ∗X → Φ(V
∗).

Taking cohomology we obtain the displayed isomorphisms.
To see that V ∗ ' ι∗V , we apply the anti-autoequivalence τ to the above

mutation triangle. Using (II.2), we easily see that this reads:

Q∗X (1)[−2]→U ∗X → τ(Φ(V
∗)).

But HomX (Q∗X (1)[−2],U ∗X ) ' Ext1
X (U

∗
X ,Q∗X )

∗ by Serre duality, and this group
is easily seen to be one-dimensional. Therefore, the two previous triangles
are isomorphic, and τ(Φ(V ∗)) ' Φ(V ∗). This implies V ∗ ' ι∗(V ) by Lemma
II.3. �

Proposition II.6. There is an isomorphism Hilb3t+1(X )' P(V ∗). For any x ∈ X ,
there is a triple cover of C parametrizing twisted cubics in X through x.

PROOF. Actually, we have almost completed the proof of the first state-
ment already in Theorem II.1. Again, we have H 3

0 (X ) = Hilb3t+1(X ) by [48,
Lemma 3.2]. We have shown in Theorem II.1, that, given a twisted cubic
D ⊂ X , we have Hi(X ,ID/X ) = 0 for all i and that h j(X ,UX ⊗ID/X ) = δ2, j

so that Ψ(Φ∗(ID/X (1))) is U ∗X [1]. Also, we have obtained the exact sequence
(II.12), so that applying Φ! we see that ID/X (1) gives a point y ∈ C via
Φ!(ID/X (1)) ' Oy . Also, again by (II.12) the curve D ⊂ X gives a non-zero
section s ∈ H0(X ,UX ⊗Fy) ' Vy . The transpose of s is then a point of P(V ∗y ).
This is defines a morphism Hilb3t+1(X )→ P(V ∗).

The inverse morphism is defined again in the proof of Theorem II.1. Indeed,
given a point y ∈ C and a non-zero global section s ∈ H0(X ,UX ⊗Fy) we
have said that the cokernel of the corresponding map U ∗X →Fy is ID/X (1) for
some D in Hilb3t+1(X ). Clearly these maps are mutually inverse, so our first
statement is proved.

Let us now globalize (II.6). We have a natural map π∗C(V )→ π
∗
X (UX )⊗F

and hence a map e : U ∗X � V → F on the product X × C , which is surjective
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by (II.6) as it restricts to ey for any y ∈ C . For simplicity, we denote by ι also
the product idX ×ι. Of course, ker(e) restricts to F ∗ι y(1) by (II.6), so ker(e) '
ι∗F ∗(hX + `) for some divisor ` in C . We have thus an exact sequence:

0→ ι∗F ∗(hX + `)→U ∗X �V →F → 0.

Taking its dual, applying ι∗ and tensoring with OX×C(hX + `), we get:

0→ ι∗F ∗(hX + `)→U ∗X � ι
∗V ∗(`)→F → 0.

In order to lift the identity of F to a morphism between the middle terms of
these sequences, we prove:

Ext1
X×C(U

∗
X �V , ι∗F ∗(hX + `))' H1(X × C ,UX �V ∗⊗ ι∗F ∗(hX + `)) = 0.

By the Leray spectral sequence, this is clear since RπC(UX � V ∗⊗ ι∗F ∗(hX +
`))) = 0, which in turn follows from the fact that, for any y ∈ C , we have
Hi(X ,F ∗ι y ⊗U

∗
X ) = 0 for all i, which is equivalent to saying that U ∗X is in the

right-orthogonal to Φ(Db(C)) in Db(X ).
We have now a non-zero morphism f :U ∗X �V →U

∗
X � ι

∗V ∗(`). In fact, f
is an isomorphism, as it can be easily seen along a fibre of y ∈ C by stability of
the involved bundles. This induces an isomorphism V (−`) ' ι∗V ∗. Then, by
Lemma II.5, we get `≡ 0.

Finally, let us define the coherent sheaf W = πC ∗(ι
∗F ∗(hX )) on C . Since

we proved hk(X ,F ∗y(1)) = 6δk,0, we have that W is a vector bundle of rank 6
on C , and by Grothendieck-Riemann-Roch we see that it has degree −6. Note
that, by definition, ι∗W ⊗ωC ' Φ!(OX (1))[−1]. Observe also that the natural
map f : π∗C(W )→ ι

∗F ∗(hX ) is surjective by (II.5) so that ker( f )'F (−hX−m)
for some divisor m of C , and it turns out that OC(m) lies in Pic2(C). We would
like to show that (II.6) and (II.5) globalize in fact to an exact diagram:

0 F (−hX − hC) OX �W U ∗X �V F 0.

ι∗F ∗(hX )

The extension corresponding to the rightmost half of this diagram lies in:

H1(X × C ,F ∗⊗ ι∗F ∗(hX )).

Now, Hk(X ,F ∗y) for all k and all y ∈ C , so RπC ∗(OX �W ⊗F ∗) = 0 hence:

RiπC ∗(F
∗⊗ ι∗F ∗(hX ))' Ri+1πC ∗(F

∗⊗F (−hX −m)).

Using Grothendieck duality, we see that this sheaf is isomorphic to:

OC(−m)⊗(R2−iπC ∗(F
∗⊗F ))∗ '







OC(−m) for i=2,
ωC(−m) for i=1,

0 otherwise.
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By the Leray spectral sequence, for our extension to be non-split we must then
have H0(C ,ωC(−m)) 6= 0, i.e., hC = m, and we have obtained our diagram.

Consider now the universal curve C over X ×Hilb3t+1(X ). To describe it,
we consider the tautological relatively ample line bundle OV ∗(1) over P(V ∗)
and we let π : P(V ∗) → C be the natural projection. To simplify notation
we denote by π also the projection X × P(V ∗) → X × C . We have a natural
map OV ∗(−1) → π∗(V ), and hence a morphism U ∗X � OV ∗(−1) → π∗F . It is
now clear that, chosen any y ∈ C and any 0 6= s ∈ H0(X ,UX ⊗Fy), this map
restricts to natural map appearing in(II.12), whose cokernel is ID/X (1) where
D is the twisted cubic associated with s. This says that the ideal of the universal
curve C in X ×Hilb3t+1(X ) has the following resolution:

0→U ∗X �OV ∗(−1)→ π∗F →IC ⊗ N → 0,

for some line bundle N over X ×Hilb3t+1(X ). Restricting to a point of X and
to a point of C , we get 3 points as degeneracy locus of a 2× 3 matrix of linear
forms, that are the 3 fibres of our desired cover. �

II.4. Fano threefolds of genus 10 and Coble cubic. Here, we carry out a
construction relating a smooth Fano threefold X of genus 10 to the Coble cubic
associated to the genus-2 curve, homologically dual to X .

II.4.1. Introduction to theta map and Coble cubic. Let us first give an ac-
count of the Coble cubic, and related material on moduli spaces of bundles on
curves, particularly in genus 2. We will mainly follow [32, 255] to introduce
the construction of the theta map, going back to [246]. So we start with a
smooth complex projective curve C of genus g ≥ 2, and consider the abelian
variety Picg−1(C) parametrizing line bundles of degree g − 1 on C . This con-
tains Riemann’s theta divisor Θ, defined (set-theoretically) by:

Θ= {N ∈ Picg−1(C) | H0(C , L) 6= 0}.

This is an ample Cartier divisor, and the linear system |rΘ| has dimension
r g − 1.

Consider now the moduli space MC(r, d) of semistable vector bundles of
rank r and degree d on C (sometimes denoted by UC(r, d)). Taking determi-
nant gives a fibration MC(r, d)→ Picd(C) whose fibre over a line bundle N is
the moduli space MC(r, N) of semistable bundles E of rank r with ∧r E ' N .
When N = OC , we write MC(r) = MC(r,OC) (or sometimes SUC(r)). The
closed points in MC(r) are isomorphisms classes of vector bundles with trivial
determinant, that are direct sums of stable vector bundles of degree zero.

This space is an integral, normal, unirational projective variety of dimen-
sion (r2 − 1)(g − 1), with Gorenstein singularities. The singular locus of
MC(r) is given by decomposable bundles, except for g = r = 2, in which case
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MC(2) ' P3. The Picard number of MC(r) is 1, and it is generated by the so-
called determinant line bundle L given as follows: choose N ∈ Picg−1(C), and
consider:

∆N = {E ∈MC(r) | H0(C , E⊗N) 6= 0}.

This is a Cartier divisor in |L |, and does not depend on N . Also,ω∗MC (r)
'L⊗2.

Viceversa, for any E in MC(r) we let:

θ(E) = {N ∈ Picg−1(C) | H0(C , E⊗N) 6= 0}.

It turns out that either θ(E) = Picg−1(C), or θ(E) is a divisor of class rΘ (in
which case one says that E has a theta), cf. [33], see also [32]. This way we
define a rational map:

θ : MC(r) ¹¹Ë |rΘ|.

By [33], there is a natural way to identify |rΘ| and |L |∗.
The map θ has been widely investigated. Here are some of its properties,

and some questions on about it.

i) The base locus can be non-empty, the first examples being due to Raynaud
[273]. More examples are given in [9,268].

ii) For rank 2, if C is not hyperelliptic, θ is an embedding, see [99,309]. Also,
θ is everywhere defined for r = 2, and for r = 3 in case C is generic, or
has genus 2 or 3 [31,273]).

iii) For g ≥ 3, is it true that θ is generically 2 : 1 if C is hyperelliptic, and
generically 1 : 1 if C is not hyperelliptic? Cf. [32, Speculation 6.1].

iv) Is it true that θ is everywhere defined if r = 3? Cf. [32, Conjecture 6.2].

Let us now turn to the case g = 2, the most relevant for us. In this case,
some numerical coincidences make the situation even more interesting. This
time, θ is generically finite (cf. [31]), and in fact an isomorphism for r = 2
(cf. [246, 247]), but not always a morphism for r ≥ 4 (cf. [273]). Raynaud’s
bundle has rank 4 and slope 1/4, and gives 16 base points for θ . This bundle
also appears in the analysis of instanton bundles over the complete intersection
of 2 quadrics in P5, cf. [133,220].

For r = 3, according to [224], θ is a 2 : 1 cover, whose branch locus is,
by [255] (see also [248]), a sextic hypersurface, in fact the projective dual
of the Coble cubic in P̌8. This was originally conjectured by Dolgachev (as
reported in [224]); we call this sextic the Coble-Dolgachev sextic in P8.

This cubic mentioned above first arose in Coble’s paper [86]. He claimed
(and Barth proved in [25]) that the image of the Jacobian J(C) in P̌8 by the
linear system 3Θ is the singular locus of a cubic, whose partial derivatives
generate the ideal of J(C). We refer to [176, Remark 5.3.1] for a nice treatment
of this cubic. More material on MC(3) and Coble’s cubic can be found in [30,
233]. For more on the local structure of MC(3) in this case, see [286].
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II.4.2. Fano threefold of genus 10 and Coble-Dolgachev sextic. Now let us go
back to our situation, so X is a smooth Fano threefold of genus 10, and C is the
homological projective dual of X , which is a smooth projective curve of genus
2. This curve is equipped with the rank-3 bundle V ∗, obtained as direct image
of U ∗X from the universal bundle coming from the the interpretation of C as
moduli space of rank-3 bundles on X . The result is the following.

Theorem II.7. The sheaf V ∗ is a stable bundle of rank 3 with trivial determinant,
satisfying ι∗V ' V ∗, so that its image via θ lies in the Coble-Dolgachev sextic.

PROOF. We have proved ι∗V ' V ∗ in Lemma II.5. The fact that a stable
bundle with trivial determinant is mapped via θ to a point in the dual of the
Coble cubic is proved in [255].

Let us check that V is stable. It suffices to prove that, given any line bundle
N on C of degree 0, there cannot be a non-trivial map V ∗ → N . Indeed, in
this case V contains no line bundle N ′ of non-negative degree (i.e., V cannot
be destabilized by quotient sheaves of rank 2), since any such N ′ contains a
line bundle N of degree 0, so that V ∗ maps non-trivially to N ∗. But then V is
not destabilized by quotient sheaves of rank 1 either, since any such sheaf is
contained into a line bundle N of degree zero, so V ∗ would map non-trivially
to ι∗(N).

Now we show that, given a line bundle N in Pic0(C), we have
HomC(V ∗, N) = 0. Observe that, since Φ∗(U ∗X ) ' V

∗ and Φ∗ is left-adjoint
to Φ, this space is isomorphic to HomX (U ∗X ,Φ(N)). Recall by Proposition II.2
that there exists a conic D ⊂ X such that N ' Φ!(ID/X (1))[−1]. We have also
seen that Φ(N)[1]' ID/X (1). We obtain:

HomC(V ∗, N)' HomX (U ∗X ,ID/X (1)[−1]) = 0.

To check that V has trivial determinant, first recall that deg(V ) = 0. Then,
we use again the construction of Kuznetsov. More precisely, we recall that the
variety Γ, that turns out to be a double cover of P6 ramified along a sextic
hypersurface, is constructed in [216, Section 5] as a certain moduli space of
representations of the Kronecker quiver

QV : • V−→ •

This quiver is the oriented graph with 2 vertices, called the source and the
target, and 7 arrows pointing from the source to the target (the notation QV

is supposed to remind the reader that dim(V ) = 7 so the 7 arrows are in-
dexed by a basis of V ). The moduli space in question is that of representations
of QV with dimension vector (6,3), semistable with respect to the character
ϑ : GL6×GL3→ C∗ of weight vector (−1, 2), i.e. ϑ(g1, g2) = det(g2)2/det(g1)
(see for instance [56] for an overview of representations of quivers and
their moduli spaces). Since Pic(Γ) is generated by the hyperplane section of
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P6, it suffices to show that V and W lift to Γ to prove det(V ) ' OC and
det(W ) ' OC(−3hC). So, to complete the argument, we can show, for each
y ∈ C , the ϑ-semistability of the representation of QV provided by the dia-
gram of Proposition (II.6) via the identification H0(X ,U ∗X ) = V ∗. This way, the
diagram itself will be a pull-back to X × C of the diagram at [216, Page 524].

To achieve this, given y ∈ C , we regard the map O 6
X → (U

∗
X )

3 corre-
sponding to y as a representation of QV , and we we consider a destabilizing
subrepresentation ρ of it, of dimension vector (a, b) hence 2b − a ≤ 0 with
(0, 0) 6= (a, b) 6= (6,3). Denote by F ′, F and F ′′ the kernel, image and cokernel
of the map O a

X → (U
∗
X )

b corresponding to ρ. We have a commutative exact
diagram:

0 // Fy(−1) // O 6
X

//

&&MMM
M (U ∗X )

3 // Fy // 0

F ∗ι y(1)

77nnnn

0 // F ′ //

OO

O a
X

//

''OOOOOO

OO

(U ∗X )
b //

OO

F ′′ //

OO

0

F

OO

66llllll

The slope of F ∗ι y(1) is 1/3, so c1(F)≤ 0 or F has slope 1/3.
In the first case, since c1(F ′) ≤ 0 and c1(F ′) = −c1(F) we get c1(F) =

c1(F ′) = 0 which implies F ′ = 0 since F ′ ⊂ Fy(−1). Therefore F ′ ' O a
X hence

F ′′ has slope b
2b−a

and this value is thus ≤ 2/3. But this is compatible with
2b ≤ 0 only if (a, b) = (0,0): contradiction!

In the second case, c1(F ′) = −1 implies that a = 6 for otherwise F ′ would
destabilize F ∗ι y(1). Then the slope of F ′′ is b−1

2b−3
. Imposing to this value to be

at most 2/3, we get b = 3, so (a, b) = (6, 3), again a contradiction. �

II.5. Instanton bundles. Here is our description of the moduli space of
(odd) instanton bundles on Fano threefolds of genus 10.

Theorem II.8. For any k ≥ 1, the space MIX (k+ 6) is isomorphic to the moduli
space of simple bundles E of rank and degree k on C with E 'ωC ⊗ ι∗E∗, and:

(II.15) h0(C ,V ⊗ E) = h1(C ,V ⊗ E) = k−1, H1(C ,Fx ⊗ E) = 0, ∀ x ∈ X .

Any F in MIX (k+ 6) fits into a functorial exact sequence:

(II.16) 0→ (U ∗X )
k−1→ Φ(Φ!(F))→ F → 0.

PROOF. Let us first show that, for any F in MIX (k+6), we have the extension
(II.16). We do this using (II.3) in the explicit formulation given by (II.4). Then
we note that, for any F in MX (2,1, k+6) satisfying H1(X , F(−1)) = 0 we obtain
Hi(X , F(−1)) = 0 for all i, or equivalently Ext j

X (F,OX ) for all j (this is proved
in [48, Lemma 5.1]). So the component along OX of Ψ(Ψ∗(F)) is zero
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Let us now compute Hi(X ,QX ⊗ F(−1)). For i = 0 this space vanishes by
stability. For i = 3, this space is dual to HomX (F,Q∗X ), which is zero by stability.
To obtain the vanishing for i = 2 we apply HomX (F,−) to the dual of (II.2) and
use Exti

X (F,OX ) = 0 for all i to reduce to HomX (F,U ∗X ) = 0. In turn, this space is
zero since it is isomorphic to HomX (UX , F∗) = 0, any map UX → F∗ should be
an isomorphism, while we have c2(F∗) > c2(UX ) = 6 (we have used here that
F is locally free). By Riemann-Roch we have now h1(X ,QX ⊗ F(−1)) = k− 1.
We have obtained (II.16), and Φ(Φ!(F)) is a vector bundle of rank 2k, left-
orthogonal to U ∗X .

Let us now show that, for any sheaf F in MX (2, 1, k + 6) with
H1(X , F(−1)) = 0, and any y ∈ C , φ!(F) is a vector bundle of rank and de-
gree k on C . To do this, we have to prove Hi(X ,F ∗y ⊗ F) = 0 for i 6= 1. For
i = 0 and i = 3, again this is clear by stability. For i = 2, we apply ι∗ to (II.5)
and we tensor with F(−1). Via Serre duality, we reduce thus the vanishing to
HomX (F(−1),F ∗y) = 0, which is clear by stability. Riemann-Roch now implies

that h1(X ,F ∗y ⊗ F) = k, so E = Φ!(F) is a vector bundle of rank k on C . By
Grothendieck-Riemann-Roch E has degree k.

The next step is to show that our bundle E = Φ!(F) has the required prop-
erties. First, since we have proved that Φ(E) is concentrated in degree 0, by
base change we get that H1(C ,Fx ⊗ E) = 0 for all x ∈ X .

Then, to finish the proof of (II.15), by Riemann-Roch it suffices to prove
h0(C ,V ⊗ E) = k − 1. In turn, this is equivalent to h0(X ,UX ⊗Φ(E)) = k − 1
because Φ∗ is left adjoint to Φ and V ∗ ' Φ∗(U ∗X ). Tensoring (II.16) with UX ,
since UX is exceptional, we just have to check H0(X ,UX ⊗ F) = 0. But this is
clear since there is no non-zero map U ∗X → F , as we already pointed out.

We still haven’t checked that E is simple and satisfies E∗⊗ωC ' ι∗(E).
To check the first property, we apply HomX (−, F) to (II.16) and again we use
HomX (U ∗X , F) = 0 to check that HomX (Φ(E), F) ' C. But Φ! is right-adjoint to
Φ, so HomX (E, E)' C and E is simple.

In order to show E∗⊗ωC ' ι∗(E), we define a second anti-autoequivalence
on a Φ(Db(C)). This time we set, for any G in Db(X ),

σ(G) = RU ∗X RH omX (G,OX (1)).

To check that σ operates on Φ(Db(C)), we let y ∈ C and we compute
σ(Fy). Clearly RH omX (Fy ,OX (1)) is just F ∗y(1). Using (II.6), we see that

RU ∗X (cF∗y(1)) ' Fι y[−1]. Then σ is an anti-autoequivalence of Φ(Db(C)).
Again, this says that σ is induced by an anti-autoequivalence σC of Db(C)
of the form σC = N ⊗ ι∗RH omC(−,OC), for some line bundle N on C .

We will see in a minute that N 'ωC . Prior to this, let us check the property
that will be useful to us, namely that for any F in MIX (k + 6), once set E =
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Φ!(F), we have:
σ(Φ(E))' Φ(E).

Indeed, fist of all note that (II.16) says that Φ(E) ' RU ∗X (F). Then, applying
RH omX (−,OX (1)) to (II.16), and using F ' RH omX (F,OX (1)), we get an
exact sequence:

0→ F → RH omX (Φ(E)),OX (1))→ (U ∗X )
k−1→ 0.

Applying RU ∗X we get that σ fixes Φ(E) since RU ∗X U
∗
X = 0 and Φ(E)' RU ∗X (F).

Let us now go ahead to check N ' ωC . Let F lie in MX (2,1, 7). We have
said that E = Φ!(F) is a line bundle of degree 1 on C , and that σ(Φ(E))' Φ(E)
so that E ' σC(E) hence E ' N ⊗ ι∗E∗. Then, N is a line bundle of degree 2
which is invariant by ι and as such is must beωC . In conclusion we have proved
that, for any F in MIX (k + 6), once set E = Φ!(F), there is an isomorphism
E 'ωC ⊗ ι∗E∗.

To define the inverse map of Φ! from our moduli space of bundles on C to
MIX (k + 6), we consider a vector bundle E over C and let G = Φ(E). By the
assumption H1(C ,Fx ⊗ E) = 0 for all x ∈ X , we identify G with a vector bundle
on X which is left-orthogonal to OX and U ∗X . Note that σ(G) ' G because
E 'ωC ⊗ ι∗E∗. This means G ' RU ∗X (G

∗(1)). Writing down the mutation exact
triangle and taking cohomology we get a long exact sequence:

0→ H1(X ,UX ⊗G)∗⊗U ∗X → G→ G∗(1)→ H0(X ,UX ⊗G)∗⊗U ∗X → 0,

together with its dual, tensored with OX (1):

(II.17) 0→ H0(X ,UX ⊗G)⊗U ∗X → G→ G∗(1)→ H1(X ,UX ⊗G)⊗U ∗X → 0.

Note that, for all i:

Hi(X ,UX ⊗G)' Exti
X (U

∗
X ,Φ(E))' Exti

C(Φ
∗(U ∗X ), E)' Hi(C ,V ⊗ E).

Hi(C ,V ⊗ E)' H1−i(C ,V ∗⊗ E∗⊗ωC)
∗ ' H1−i(C , ι∗(V ⊗ E))∗.

Let F be the image of the middle map in (II.17). In view of the previous
isomorphisms, hi(X ,UX ⊗G) = k−1 for i = 0, 1, and the Chern classes of G are
computed by Grothendieck-Riemann-Roch, so that F is a vector bundle of rank
2 on X with c1(F) = 1 and c2(F) = k. Moreover, applying HomX (−,OX ) we see
that Exti

X (F,OX ) = 0 for all i so that F is stable and actually lies in MIX (k+ 6).
Clearly, applying Φ! to the exact sequence defining F we see that E '

Φ!(G) ' Φ!(F). Also, the left half of the exact sequence defining F is just
(II.16), so that the instanton associated with Φ!(F) is F . So our maps are mu-
tually inverse. �

II.6. Lines and Theta divisors. The Hilbert scheme Hilbt+1(X ) of lines
contained in a smooth Fano threefold X of index 1, sometimes called the Fano
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variety of lines of X , has also been very well studied, see [188, Theorem 4.2.7]
and, references therein for an account on this. In the case of genus 10 that we
are interested in here, this curve has arithmetic genus 10, and is smooth and
connected for X general enough.

Here, we show that Hilbt+1(X ) is isomorphic to θ(V ). We have said that
θ(V ) is a divisor of class 3Θ in Pic1(C), cf. [273]. This agrees with the well-
known fact that Hilbt+1(X ) has dimension 1, see the results of Iskovskih in
[187].

Theorem II.9. The map L 7→ Φ!(IL/X ) defines an isomorphism:

Hilbt+1(X )' θ(V ) = {E ∈ Pic1(C) | H0(C ,V ⊗ E) 6= 0}.

Moreover, MX (2,1, 7)' Pic1(C), and MIX (7) is the complement of θ(V ).

PROOF. As a preliminary step, given a line L ⊂ X , we compute a
resolution of OL in terms of our semiorthogonal decomposition Db(X ) =
〈OX ,U ∗X ,Φ(Db(C))〉. In other words, we write a resolution of OL via (II.3)
using the expression (II.4).

First, we have Hi(X ,OL(−1)) = 0 for all i. Second, note that QL is a
globally generated bundle of rank 5 and degree 1, and as such it splits as O 4

L ⊕
OL(1). Then hi(X ,QX ⊗OL(−1)) = δi,3. We have thus computed Ψ(Ψ∗(OL)),
and we deduce that:

H −1(Φ(Φ!(OL)))'U ∗X , H 0(Φ(Φ!(OL)))' OL .

Our task is now to show that our map Hilbt+1(X )→ Pic1(C) is well-defined.
Remark that Φ!(OL) ' Φ!(IL/X )[1] since Φ!(OX ) = 0. We have to check that
Φ!(OL)[−1] is a line bundle on C . For any y ∈ C , consider (F ∗y(1))|L . Again,
this is a globally generated vector bundle of rank 3 and degree 1, so it must
split as O 2

L ⊕OL(1). So, F ∗y |L ' O
2
L (−1)⊕OL , hence hi(X ,F ∗y ⊗OL) = δi,0. This

says that NL = Φ!(OL)[−1] ' Φ!(OL) is a line bundle on C , and Grothendieck-
Riemann-Roch shows that NL has degree 1.

Next, we show that NL belongs to θ(V ). We have to prove that
HomC(V ∗, NL) is 1-dimensional. This follows from the isomorphisms:

HomC(V ∗, NL)' HomX (Φ(V ∗),OL[−1])' HomX (H 1(Φ(V ∗)),OL),

where the last isomorphism is given by a degenerate hypercohomology spec-
tral sequence. In fact, the last space in the previous display is isomorphic to
H0(X ,QX (−1)⊗OL), and we have seen that this space is 1-dimensional.

So far we have shown that L 7→ Φ!(IL/X ) defines a morphism Hilbt+1(X )→
θ(V ), which is clearly an embedding since for any line L in X we have
H 0(Φ(Φ!(OL)))' OL .

We pass now to the description of MX (2, 1,7). We resume the setting of
Theorem II.8 in the case of bundles with c1 = 1 and almost minimal charge
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namely with c2 = 7, but this time not only for MIX (7) but for the full mod-
uli space MX (2, 1,7). By [48, Proposition 3.4], we have that any sheaf F in
MX (2,1, 7) satisfies H1(X , F(−1)) = 0 hence again Hi(X , F(−1)) = 0 for all i,
so the component along OX of Ψ(Ψ∗(F)) is sill zero. In other words, the com-
plement of MIX (7) in MX (2,1, 7) consists of the sheaves that are not locally
free. Moreover, again by [48, Proposition 3.4], F is either locally free (i.e., it
lies in MIX (7)) or fits into:

(II.18) 0→ F →U ∗X →OL → 0,

for some line L ⊂ X . In the latter case we have E ' Φ!(OL)[−1]. In any case,
Φ! maps MX (2,1, 7) to Pic1(C).

Let us look at the component along U ∗X of Ψ(Ψ∗(F)) for non-locally free F .
Again we have Hi(X ,QX ⊗ F(−1)) = 0 for i = 0, 3 and we compute as in the
proof of Theorem II.8:

H2(X ,QX ⊗ F(−1))' HomX (F,U ∗X )
∗.

This space is non-zero if and only if it is 1-dimensional, and this happens pre-
cisely F is not locally free: we checked one implication in Theorem II.8, and
the converse is clear by (II.18). Also, by Riemann-Roch we have:

h2(X ,QX ⊗ F(−1)) = h1(X ,QX ⊗ F(−1)).

So, if F in MX (2,1, 7) is not locally free we get a long exact sequence:

0→U ∗X →H
0(Φ(E))→ F →U ∗X →H

1(Φ(E))→ 0.

Comparing with (II.18), we get:

(II.19) H 0(Φ(E))'U ∗X , H 1(Φ(E))' OL .

Moreover, recall the hypercohomology spectral sequence:

Exti+ j
C (V

∗,Φ!(F))' Exti+ j
X (Φ(V

∗), F)⇐ Exti
X (H

− jΦ(V ∗), F),

Hence, since Hi(X ,UX ⊗ F) = 0 for all i, from Lemma II.5, we get:

h2(X ,QX ⊗ F(−1)) = h0(C ,V ⊗ E).

Therefore, h0(C ,V ⊗ E) is either zero or one, and the second case takes place
if and only if F fails to be locally free.

Summing up, we have proved that Φ! defines a morphism MIX (2, 1,7) →
Pic1(C). The restriction to MIX (7) of this morphism is an embedding since
F ' Φ(E) for any F ∈ MIX (7). Also, the image of MIX (7) actually lies in the
complement of θ(V ) since H0(C ,V ⊗ E) = 0 when F lies in MIX (7) (equiva-
lently when F is locally free), while h0(C ,V ⊗ E) = 1 if F lies in the comple-
ment of MIX (7).
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In fact, any irreducible component of MIX (7) has dimension at least 2 by
the usual dimension estimate, so MIX (7) is open and dense in Pic1(C). Since
MX (2,1, 7) is projective and Pic1(C) is irreducible, we conclude that the map
MX (2,1, 7)→ Pic1(C) is also surjective.

To continue the proof we show that, given E in θ(V ), there is a line
L ⊂ X such that H 1(Φ(E)) ' OL . This will provide an inverse to our map
Hilbt+1(X ) → θ(V ). Since our morphism MX (2,1, 7) → Pic1(C) is surjective,
there is a non-locally free sheaf F ∈ MX (2,1, 7) such that Φ!(F) ' E. But we
have just proved that H 1(Φ(E)) ' OL in (II.19). This shows Hilbt+1(X ) '
θ(V ).

Finally, by (II.19) the complex Φ(E) is given by an element s ∈
HomX (OL[−2],U ∗) ' H1(X ,UX ⊗OL(−1)), which is non-zero. Indeed, oth-
erwise Φ(E) ' U ∗X ⊕ OL[−1], in which case HomX (Φ(E),Φ(E)) contains at
least C2, while we know HomX (Φ(E),Φ(E)) ' HomC(E, E) ' C. Also, note
that h1(X ,U ⊗OL(−1)) = 1 so s is obtained (up to multiplication by a non-
zero scalar) by applying RH omX (−OX (1)) to the natural projection U ∗X →OL ,
whose kernel is F . This says that the functor E 7→ RH omX (Φ(E),OX (1)) pro-
vides an inverse to our morphism MX (2,1, 7) → Pic1(C). The proof of the
theorem is now finished. �

Corollary II.10. There is an isomorphism of θ(V ) and the locus:

δ(V ) = {E ∈MC(2,1) | H0(C ,V ⊗ E) 6= 0}.

The resulting isomorphism Hilbt+1(X ) → δ(E) is realized by L 7→
Φ!(IL/X (1))[−1].

PROOF. First of all we note that, given N ∈ θ(E), we have in fact
h0(C ,V ⊗N) = 1. Indeed, for any such N there is a line L ⊂ X such that
N ' NL = Φ!(OL)[−1], and we have said that H0(C ,V ⊗NL) = 1. Therefore,
for any N ∈ θ(V ), we have a canonical evaluation map e : V ∗→ N , and we ob-
serve that e is surjective. Indeed, otherwise we would have a quotient bundle
of V ∗, of rank 1 and degree ≤ 0, contradicting stability of V .

Next, we consider the bundle ker(e), fitting into:

(II.20) 0→ ker(e)→V ∗→ N → 0.

We note that ker(e) is a stable bundle of rank 2 and degree 1. Indeed, a destabi-
lizing line bundle contained in ker(e) should have degree ≥ 0, hence it would
also destabilize V ∗. We can consider thus the bundle EN = ι∗(ker(e))∗. We
also denote EN by EL when N ' φ!(OL)[−1]. Now, since V ∗ ' ι∗V , we
have H0(C ,V ⊗ EN ) 6= 0 so that EN lies in δ(V ). This defines a morphism
θ(V )→ δ(V ). But in fact this construction is clearly reversible, since for any
E ∈ δ(V ), and any non-zero map s : V ∗→ E, stability of V and E easily implies
that s is surjective, so that ι∗(ker(s))∗ lies in θ(V ).
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The required isomorphism is thus established. Let us now see that the
composition of this isomorphism with the one of Theorem II.9 is given by
L 7→ Φ!(IL/X (1))[−1]. To this purpose, given a line L ⊂ X , we compute a
resolution of IL/X (1) in terms of (II.3) using (II.4). We have Hi(X ,IL/X ) = 0
for all i, and H3(X ,QX ⊗IL/X ) = 0 by stability of QX and Serre duality, and
similarly we see that H3(X ,UX ⊗IL/X ) = 0. Tensoring (II.2) with IL/X we
get H2(X ,QX ⊗IL/X ) = 0. By the claim emphasized in the proof of Theorem
II.1, we see that h0(X ,QX ⊗IL/X ) ≤ 1, since if there were two independent
global sections of QX vanishing on L then X would contain a plane, which
is not the case as we know from Pic(X ) ' 〈hX 〉. By Riemann-Roch, we get
H1(X ,QX ⊗IL/X ) = 0, and in fact h0(X ,QX ⊗IL/X ) = 1. Therefore, setting
GL = Φ!(IL/X (1))[−1], we have a distinguished triangle:

(II.21) U ∗X [1]→ Φ(GL)[1]→IL/X (1),

where the middle term is a vector bundle of rank 3, which is easily seen to be
simple.

Moreover, it is clear that IL/X (1) and OL belong to 〈OX (1)〉⊥. Also, we
compute τ(IL/X (1))' OL[−3] since from RH omX (OL ,OX )' OL(−1)[−2] we
get the exact triangle:

OL(−1)[−2]→OX → RH omX (IL/X ,OX ),

which gives the result once we apply LOX
and tensor with OX (1)[−2]. There-

fore, applying τ to (II.21) and using LOX
(U ∗X ) ' Q

∗
X (1)[1], we get the exact

triangle:

(II.22) OL[−1]→ τ(Φ(GL))[1]→Q∗X (1)

We now look back to (II.20), apply Φ to it, and set K = Φ(ker(e)). Since
the mapH 0(Φ(N))→U ∗X is an isomorphism, we haveH 0(K) = 0 so that K is
concentrated in degree 1. We have then the distinguished triangle:

(II.23) OL[−1]→ K[1]→Q∗X (1).

Now, both triangles (II.22) and (II.23) are given by elements of
HomX (Q∗X (1),OL) ' H0(L,Q(−1)|L) ' C (recall that QL ' O 4

L ⊕OL(1)). Both
these elements are non-zero. Indeed, otherwise the middle terms K[1] or
τ(Φ(GL))[1] would be of the form OL[−1]⊕Q∗X (1), and hence their endomor-
phism spaces would contain at least a C2, while we know that both K[1] and
τ(Φ(GL))[1] are simple, i.e. their endomorphism spaces are one-dimensional.
From the fact that HomX (Q∗X (1),OL) is also one-dimensional, we now deduce
that K ' τ(Φ(GL)). This implies that GL ' ι∗(ker(e))∗. We conclude that
Φ!(IL/X (1))[1]' ι∗(ker(e))∗, which is what we wanted. �
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II.7. Instantons of charge 8. Here we study one space of instanton bun-
dles, still for low charge, but this time above the maximum by 2. This
kind of study, in the spirit of the early works on instanton bundles such
as [24, 157, 199], tries to give a detailed description of manageable moduli
space. The approach is based on the study of bundles over the homologically
dual curve C .

Proposition II.11. The space MIX (8) is a smooth fourfold in MC(2, 2).

PROOF. Let us check that, for any F in MIX (8), the rank-2 bundle E = Φ!(F)
is stable. We have seen that E is simple, and satisfies H0(C ,V ⊗ E) 6= 0. It
suffices to show that E cannot be destabilized by a quotient bundle N of rank
1 and degree 1. By contradiction, consider such a line bundle N , let f : E→ N
be a surjection, and set K = ker( f ). Note that K and N both lie in Pic1(C), and
write the exact sequence:

0→ K → E→ N → 0.

Observe now that any map V ∗→ E is zero when composed with f . Indeed,
otherwise N would lie in θ(E) by Theorem II.9, so that H 0(Φ( f )) would be
a non-zero map Φ(E) → U ∗X . But HomX (Φ(E),U ∗X ) ' HomC(E,Φ!(U ∗X )) = 0.
Then, once set F ′ = Φ(N), we have that F ′ lies in MIX (7). Moreover, any map
V ∗→ E factors through K , so that K ' Φ!(OL)[−1], for some line L ⊂ X , again
by Theorem II.9. In this case, applying Φ to the previous display and taking
cohomology, we get a long exact sequence:

0→U ∗X → Φ(E)→ F ′→OL → 0,

where the image of the middle map is F . It follows that F is not locally free,
precisely along L, and that F∗∗ ' F ′. However, this contradicts the assumption
that F lies in MIX (8).

It remains to check that, if F lies in MIX (8), then E is a smooth point of
the divisor defined by H0(C ,V ⊗ E) 6= 0. Consider then any non-zero element
s of H0(C ,V ⊗ E). This gives a map s : V ∗ → E. Note that, since V ∗ and E are
stable bundles of slope 0 and 1, the image I of s cannot be a line bundle, so
rk(I) = 2. We have now two possibilities.

i) s is surjective. In this case, we apply HomC(−,V ∗) to the sequence:

0→ ker(s)→V ∗→ E→ 0.

We get a long exact sequence, where πE is the Petri map:

· · · → Ext1
C(E, E)

πE−→ Ext1
C(V

∗, E)→ Ext1
C(ker(s), E)→ 0.

Hence, the kernel of πE is naturally identified with the fibre of the
cotangent sheaf at F of MIX (8). But the rightmost term is dual to
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H0(C , E∗(hC)⊗ker(s)∗), which vanishes by stability. So ker(πE) has di-
mension 4, and MIX (8) is smooth at F .

ii) s is not surjective. In this case, the image of s has rank 2 and degree 1, and
we immediately see that Im(s) must be stable and to lie in fact in δ(V ),
cf. Corollary II.10. Therefore, we have Im(s) ' Φ!(IL/X (1))[−1] for some
line L ⊂ X . We write:

0→ Im(s)→ E→Oy → 0,

for some y ∈ C . Applying Φ to this sequence, by II.10 we get:

0→ F →Fy →IL/X (1)→ 0.

Applying HomX (−, F) to this sequence, we get:

→ H2(X ,F ∗y ⊗ F)→ Ext2
X (F, F)→ Ext3

X (IL/X (1), F)→

The leftmost space vanishes: indeed we have seen that Hi(X ,F ∗y ⊗ F) = 0
for i 6= 1; the rightmost one does too, since it is dual to HomX (F,IL/X )
which vanishes by stability. Then MIX (8) is smooth at F .

�

II.8. Bundles of rank 3 with canonical determinant. We propose here a
result that allows to think of X as a moduli space of stable bundles of rank 3
with canonical determinant over C , by means of the universal bundle F . We
show that all bundles corresponding to points of X have a fixed number of
sections when twisted with V , which makes X into some Brill-Noether locus
over C .

Theorem II.12. The threefold X is a subvariety of MC(3,ωC), and any bundle E
corresponding to a point of X satisfies h0(C ,V ∗⊗ E) = 2.

PROOF. We have the vector bundle F over X × C , and we would like to
check that, for any x ∈ X , the rank-3 bundle Fy over C is stable, has canonical
determinant, and satisfies h0(C ,V ∗⊗Fx) = 2.

To start the proof, we show three preliminary facts. The first one is that,
for any point x in X , we have:

(II.24) 0→OX → (U ∗X )
5→H 0(Φ(F ∗x ⊗ωC))→ 0,

and H 1(Φ(F ∗x ⊗ωC)) ' Ox . To see this, note that by definition Φ!(Ox) '
F ∗y ⊗ωC[1]. Further, computing a resolution of Ox via (II.3) we get

hi(X ,Ox(−1)) = δ0,i and hi(X ,Qx(−1)) = 5δ0,i . Then, writing (II.3) for Ox

via II.4 and taking cohomology we get our claim.
The second fact we prove is that the map D 7→ Φ!(OD) is an isomor-

phism of Hilb2t+1(X ) onto Pic2(C), which is the composition of the isomor-
phism of Proposition II.2 with the isomorphism Pic0(C)→ Pic2(C) defined by
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N 7→ ωC ⊗ ι∗N ∗. Indeed, let D ⊂ X be a conic, and set N = Φ!(ID/X (1))[−1].
Since Hi(X ,ID/X ) = 0 for all i, we have, tensoring with ID/X the leftmost part
of the diagram of Proposition II.6, we get:

N ' RπC ∗(π
∗
X (ID/X (−1))⊗ ι∗F )[1].

We deduce, since Hi(X ,Fy(−1)) = 0 for all i and all y ∈ C , we have, by the
exact sequence defining ID/X as kernel of OX →OD:

N ' RπC ∗(π
∗
X (OD(−1))⊗ ι∗F ).

Using Grothendieck duality, since RH omX (OD,OX )' OD[−2], we obtain thus:

N ∗ ' RπC ∗(π
∗
X (OD)⊗ ι∗F ∗)[1].

This sheaf is ι∗Φ!(OD)⊗ω∗C , which implies our claim.
The third thing we do is to compute a resolution of OD in the sense of (II.3).

We have hi(X ,OD(−1)) = δi,1. Of course, the vanishing Hi(X ,QD(−1)) = 0
takes place for i = 2, 3. We would like to show H0(X ,QD(−1)) = 0. Note that
it is enough to check H1(X ,QX ⊗ID/X (−1)) = 0. To do this, we consider a
general hyperplane section S of X (so in particular we assume Pic(S) ' 〈hS〉),
and we let Z = D ∩ S, so that Z is a subscheme of length 2 of S. We
tensor with QX ⊗ID/X the exact sequence (II.1). Since we already proved
Hi(X ,Q⊗ID/X ) = 0 for all i in Proposition II.2, we are reduced to prove
H0(S,QS⊗IZ/S) = 0. But the claim emphasized in the proof of Theorem II.1
can be rephrased on S, asserting that a global section of QS vanishes nowhere,
or on a reduced point of S. Indeed, this vanishing locus is obtained as in-
tersection of a linear subspace of Σ with the span of S, and this cannot have
positive dimension since S contains no line by assumption. The consequence is
that no non-zero section of QS vanishes on Z , so H0(S,QS⊗IZ/S) = 0. Sum-
ming up, Hi(X ,QX ⊗ID/X (−1)) = 0 for i 6= 1, and by Riemann-Roch we get
h1(X ,QD(−1)) = 3.

The conclusion is that, given D in Hilb2t+1(X ), we have:

(II.25) 0→OX → (U ∗X )
3→ Φ(Φ!(OD))→OD→ 0.

Let us now check that Fx is stable. First we prove that, given any line
bundle of degree 0 on C , there are no non-trivial morphisms from Fx to it.
We write N ∗⊗ωC such a line bundle. Note that the maps Fx → N ∗⊗ωC are
transpose of maps N →F ∗x ⊗ωC ' Φ!(Ox)[−1]. Since N has degree 2, by the
previous step there is a conic D ⊂ X such that Φ!(OD)' N , so that in particular
Φ(N)' Φ(Φ!(OD)). We have thus:

HomC(F , N ∗⊗ωC)' HomC(N ,Φ!(Ox)[−1])' HomX (Φ(N),Ox[−1]),

which is zero because Φ(N) is concentrated in degree zero by (II.25).
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Next we show that, given any line bundle of degree 1 on C , there are no
non-trivial morphisms from it to Fx . We write this line bundle M∗⊗ωC for
some M in Pic1(C), and again given a morphism M∗⊗ωC →Fx we transpose
to F ∗x ⊗ωC → M . By Theorem II.9 there is F in MX (2, 1,7) such that M '
Φ!(F), so that:

HomC(F ∗x ⊗ωC , M)' HomX (Φ(F ∗x ⊗ωC), F).

So this space is zero, by a spectral sequence argument, if we prove:

Exti
X (H

i(Φ(F ∗x ⊗ωC)), F) = 0.

By the first step of this proof, we have to deal with i = 0,1. As for i = 0, we
apply HomX (−, F) to the exact sequence appearing in (II.24), and we conclude
because HomX (U ∗X , F) = 0, since any non-zero element in this space would give
U ∗ ' F . On the other hand, for i = 1 we recall that H 1(Φ(F ∗x ⊗ωC)) ' Ox .
So the vanishing is clear by Serre duality if F is locally free. But F is not,
applying HomX (Ox ,−) to (II.18), we easily see that Ext1

X (Ox , F) = 0 since
Ext1

X (Ox ,U ∗X ) = 0 (obvious by Serre duality since UX is locally free) and
HomX (Ox ,OL) = 0 (obvious since Ox is torsion over L).

This shows that Fx is stable. To see its determinant, recall that ∧3Fy is a
line bundle of degree 2 (cf. proof of Theorem II.1). However, by the diagram
of Proposition II.6, we have, for any x ∈ X an exact sequence of the form:

0→ ι∗F ∗x →V
2→Fx → 0,

and ∧3V ' OC . Then ∧3Fy is invariant for ι, hence it is isomorphic to ωC .
It remains to check that h0(C ,V ∗⊗Fx) = 2. This is obtained by the fol-

lowing isomorphisms:

H0(C ,Fx ⊗V ∗)∗ ' HomC(V ∗,F ∗x ⊗ωΓ[1])'

' HomC(V ∗,Φ!(Ox))'

' HomX (Φ(V ∗),Ox)'

' HomX (H 0(Φ(V ∗)),Ox)'

' HomX (U ∗X ,Ox)' C2.

�

III. Open questions

I give here a brief account of some of the questions related to the material
above, that seem important to me. Some of them are explicitly formulated
as conjectures in the literature; others are the subject of work currently in
progress. I will be rather sloppy here on the language concerning moduli spaces
(actually I do not know to what extent these spaces are defined as schemes).
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III.1. Properties of the moduli space of instantons. Perhaps the most
important questions on the moduli space MIX (k) concern its smoothness, and
irreducibility. It might be natural to conjecture that these properties hold when
X is general in its moduli space. In some cases these properties do hold, in
particular for low values of k. For instance, this is the case for iX = 3 (i.e. X is a
quadric threefold) and k = 2,3 (see [261]), for most Del Pezzo threefolds (i.e.
iX = 2) when k = 2, (see [129,229,230]), and for many prime Fano threefolds
(i.e. iX = 1) when gX

2
+ 1 ≤ k ≤ gX+1

2
+ 2. Some papers where these cases are

studied in detail are [48–50,180,183,185].
However, it should be clear that these properties do not necessarily hold

when X is not general in its moduli space. For instance, for iX = 1 and gX = 5
(i.e. X is the intersection of 3 quadrics in P6), the moduli space MIX (4) is iso-
morphic to a double cover of the discriminant septic, as proved in [49]. For
special X , this septic can be singular and can have many irreducible compo-
nents. Examples of threefolds X with iX = 1 and gX = 7 such that MIX (6) is
singular are given in [48]. Still MIX (6) is always connected in this case. Finally,
A. Langer outlined an argument based on [223] that suggests that MIX (k) can-
not be smooth and irreducible for all k when X is a smooth quadric threefold.

III.2. A conjecture of Kuznetsov. This is taken from [219]. Let Yd be
the moduli space of smooth Fano threefolds of index 2, Picard number 1, and
degree d, and Xg be the moduli space of smooth Fano threefold of index 1,
Picard number 1, and genus g. It turns out that, for any element X in X2d+2,
there is a semiorthogonal decomposition:

Db(X ) = 〈AX ,EX ,OX 〉,

where EX is an exceptional bundle of rank 2, and AX is a certain admissible
triangulated subcategory of Db(X ). There is also a semiorthogonal decomposi-
tion, for any Y in Yd :

Db(Y ) = 〈BY ,OY ,OY (1)〉,

withBY admissible in Db(X ). Let us also write IXg
(k) for the moduli space of

pairs (F, X ), where X lies in Xg and E lies in MIX (k), and similarly for IYd
(k).

Kuznetsov’s conjectures [219, Conjectures 3.7 and 4.12] look as follows.

i) There should be a correspondence Z ⊂ Yd ×X2d+2, dominant on each
factor, such that for any pair (Y, X ) of Z one hasBY 'AX .

ii) For all d ∈ [1,5] there is some k for which there is an isomorphism
IYd
(k)→ IX2d+2

(2k + d + 1), whose graph is Z , such that, if (X , F) cor-
responds to (Y, E), then H0(X , F∗) ' H0(Y, E(1)), and there is a birational
map P(E)→ P(F) commuting with this isomorphism.

The first part is true for d = 3, 4,5, see again [219]. The proof is a case-
by-case analysis: could one imagine a uniform proof? The second part, to my
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knowledge, has been established only for d = 3, cf. [213]. The previous section
might serve as basis to look at the case d = 4.

III.3. A conjecture of Mukai. The question whether a Fano threefold X of
genus 10 can expressed as a Brill-Noether locus of stable bundle over a curve
of genus 2 goes back to Mukai. However, Theorem II.12 does not fully answer
the question, that would be: given a smooth projective curve C of genus 2
with hyperelliptic involution ι, and a stable vector bundle V in MC(3) with
ι∗V ' V ∗, is it true that the subvariety X of MC(3,ωC), given by bundles
E having h0(C ,V ∗⊗ E) = 2 is a smooth Fano threefold of genus 10 (or at
least does this happen generically)? If so, Theorem II.12 says that any such
threefolds arise this way.

Closely related to this is the problem of periods of Fano threefolds of genus
10. It is natural to expect that, given a smooth projective curve C of genus 2,
an open dense subset of the Coble-Dolgachev sextic is the fibre of the period
map from X10 to the moduli space of principally polarized abelian varieties of
genus 2.

III.4. Instantons and the non-commutative plane. We already quoted a
nice result, again by Kuznetsov, that gives a semiorthogonal decomposition of
an intersection of quadrics, in terms of modules over a sheaves of Clifford al-
gebras , see [218]. A Fano threefold of genus 5 is the complete intersection
of 3 quadrics in P6. So, for genus 5, the space MIX (k) can be probably de-
scribed satisfactory in terms of monads over a non-commutative P2: this seems
to deserve a closer look.
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