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3.1 T 1 and T 2 relaxation times of gray and white matter at 1.5T (from http://users.fmrib.ox.ac.uk/ peterj/lectures/), 3T (from [START_REF] Wansapura | Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri[END_REF]) and 7T ( [START_REF] Rooney | Magnetic field and tissue dependencies of human brain longitudinal 1h2o relaxation in vivo[END_REF] are the two emerging modalities that successfully allowed to push forward this strategy to go beyond the imaging in resolution. Both modalities now provide insights about the microstructure of white matter, and this thesis is fully dedicated to investigate their potential to finally analyse the structure of white matter at the cellular scale.

For instance, in white matter, water can be separated in two compartments, the first one corresponding to the bulk of extra and intracellular water characterized by long T1 and T2 relaxation times and the second one corresponding to the bulk of water trapped in the myelin sheath with shorter T1 and T2 relaxation times due to their interaction with macromolecules such as cholesterol. By means of observation of differences in such relaxation times, and using a multicompartment model of the NMR signal, it is possible to have access to their respective volume fraction and thus characterizing the myelin content of white matter. Such a model offers novel biomarkers of myelin water fraction useful for instance to characterize diseases where myelin damage occurs or to probe the myelination process occuring during the early brain development.

Looking at the displacement of water molecules in brain tissues with diffusion MRI is another way to characterize its cellular environment. Indeed, due to their interaction with natural barriers such as cell membranes, the diffusion pattern of water molecules embeds unique information on the tissue microstructure corresponding to a kind of fingerprint of their membrane geometry restricting or hindering their displacement. Diffusion MRI has been very popular to probe the geometry of myelinated axons revealed by the strong anisotropy of the displacement of water molecules where the probability of motion is much higher along the direction of axons than other directions, thus allowing to infer the anatomical connectivity of the human brain in vivo using now well-established tractography techniques. More recently, more elaborated multicompartmental models have been introduced to go a step beyond, not only by looking at the angular profile of anisotropy of the diffusion process, but also by aiming at characterizing cell species and trying to infer more specifically their characteristics such as the local distribution of their dimensions and density. Such microstructural models also rely on a multicompartmental modelling of the diffusion-weighted MR signal attenuation. One example of these models is the CHARMED model ( [START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF]) dedicated to the white matter including two compartments, one corresponding to the bulk of restricted water within the axons modeled as simple cylinders, and the other gathering the extra-cellular space and glial cells where the diffusion process is assumed to be hindered only. Such a model was successfully investigated to characterize locally the axon radii and density and yield a novel modality called diffusion MR microscopy (μ-dMRI).

Motivations

The main goal of this thesis is to take advantage of these two modalities to set up the methodology to study white matter microstructure of the human brain in vivo in order to develop normative atlases. Nowadays, the use of both quantitative and diffusion MRI in clinical routine is extremely limited due to the high constraint on scan duration.

However, these modalities could provide useful biomarkers to diagnose diseases affecting the brain microstructure: myelin water fraction has been shown to reveal myelin loss in multiple sclerosis while the inference of axon radius by diffusion MRI could help to observe any modification of the brain microstructure thus being potentially useful to fully characterize alterations of tissues occuring during the evolution of disease. The scan duration associated with these modalities is still quite long for clinical routine, but some studies ( [Deoni et al., 2005a], [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF]) are focused on their clinical feasibility.

On one hand, the challenge is to to keep the accuracy of inferred microstructural parameters (validated using histological data) while reducing the scan duration. Hopefully high and ultra field MRI systems together with improved gradient open a new opportunity to reduce the scan duration while providing accurate quantitative parameters. On the other hand, the relationship between the actual underlying microstructure and these parameters extracted at a resolution of the order of 1mm remains unclear. This is one of the reason that motivated the two international consortium focused on human brain microstructure: the European project CONNECT (Consortium of NeuroImagers for the Non-invasive Exploration of Brain connectivity and Tracts) and the American Human Connectome Project both focused on the compilation of data from a large number of subjects to better understand the brain microstructure and connectivity.

The first part of this thesis is directly linked to the CONNECT project and aims at developing high resolution healthy normative atlases of T1 and T2 relaxation times from the individual maps of the 79 healthy subjects of the Archi database acquired in the frame of this project at NeuroSpin on the 3T Tim Trio Siemens MRI system. Profiles of quantitative relaxometric and diffusion parameters were computed along major white matter bundles using T1, T2 and connectivity atlases (Fractional Anisotropy, Apparent Diffusion Coefficient, axial and radial diffusivity maps) and were analyzed from an anatomical point of view and compared to study their correlation. Interhemispheric asymmetry was addressed comparing the left and right profile for each bundle. This part therefore provides the first high resolution atlases of T1 and T2 from a large database that can be used as a reference for comparative studies. Moreover, the ARCHI connectivity atlas allows to project any kind of information along the white matter bundles, thus providing an unique way to study microstructure along major white matter bundles.

Because common diffusion parameters remain global and suffer from a lack of specificity about the microstructural organization of the tissue, the second part of this thesis focuses on the field of diffusion MR microscopy to characterize the microstructure of white matter bundle providing maps of their axonradii and axonal density and to provide tools to perform it in clinical conditions. Two aspects have been considered : the diffusion sequence used to infer the signal and the tissue model itself. A variety of sequences have been derived from the common PGSE sequence, varying the diffusion gradient waveform. For example, using oscillating gradient waveforms allows to reach smaller diffusion time and therefore to be more sensitive to smallest structure than when using two squared gradients. However, in clinical conditions such waveforms lead to a reduced diffusion weighting of the signal and therefore are inappropriate because of a loss of sensitivity to microstructure due to the limited gradient strength (since the weighting is proportional to the area of the waveform). Recent studies [START_REF] Drobnjak | Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted mr[END_REF]) have

shown that it is possible to increase sensitivity to microstructure using an optimization scheme taking into account the tissue model and the hardware constraints to provide optimized waveforms that can be played on clinical scanner. Following this idea, we developed an unique diffusion sequence on the 3T and 7T Siemens clinical MRI systems of NeuroSpin, able to play any kind of gradient waveforms from PGSE scheme to totally arbitrary gradient waveforms. This sequence allows for the first time to acquire diffusion data of human brain subjects with arbitrary waveforms. This sequence was first used to map the axon radii and density in the corpus callosum of 14 healthy subjects on the 7T clinical MRI system of NeuroSpin. The aim of this study was to take advantage of the high static field and to study the profile of the axon radii and density at the group level. An ongoing study aims at comparing the results obtained using an optimized oscillating trapezoidal gradient waveform to those obtained using PGSE schemes. Finally, we proposed a new model taking into account the biphasic behavior of the water in the living tissue, dividing the water molecules into two pools characterized by a slow and fast diffusivity. This new model could help to limit the overestimation of the smallest radii occuring in the majority of axon calibration frameworks. This work allows to open up new prospects by using our sequence to perform axon calibration on patients suffering from diseases where the white matter could be affected and also in the future to compare PGSE sequence and optimized arbitrary gradient waveforms on healthy subjects. Next section will describe in details the organization of this manuscript.

Thesis organization

This thesis is organized in seven chapters, including introduction and conclusion.

Chapitre 2: Human Brain Anatomy

This chapter describes the basis of human brain anatomy required for this thesis from a macroscopic level to the cell level, describing the tissue organization and the specificities of grey and white matter.

Chapitre 3: MRI modalities dedicated to tissue microstructure

This chapter first presents the basis of Magnetic Resonance Imaging, before focusing on specific sequences dedicated to microstructure imaging : relaxometry and diffusion MRI.

Chapitre 4: Brain white matter relaxometric atlases

This chapter describes our first contribution: the construction of two super-resolved atlases of the T1 and T2 relaxation times ant their combination to the connectivity atlas built from the CONNECT/Archi database. 

Chapter 7: Conclusion and future work

This chapter summarizes the contributions of this thesis and discusses future work on this topic.

Chapter 2

Human Brain Anatomy

Introduction

This thesis aims at inferring microstructure information from MRI data. We expose in this chapter the basic features of the human brain anatomy. The first part of this chapter deals with macroscopic anatomy, starting from the global description of the encephalon followed by the description of grey and white matter major structures. The second part goes deeper in the tissue at the cell level, describing the main neural cells of the brain, establishing the frame where this MRI application is conducted. The information related in this part principally comes from the book "Anatomie" of C. Cabrol, the websites http://teachinganatomy.blogspot.fr/ and http://www.db-gersite.com, from [START_REF] Marrakchi-Kacem | Connectivit 'e anatomique des noyaux gris centraux : d 'eveloppements m 'ethodologiques et application aux troubles moteurs[END_REF] and some illustrations are taken from wikipedia.

Macroscopic Anatomy

Global description

The human brain is one part of the encephalon, which also includes the cerebrum, the cerebellum and the brain stem composing the central nervous system with the spinal cord. The brain is protected by the skull, and surrounded by several layers of meninges : the dura mater (the thicker layer), the arachnoid and the pia maters. The pia mater covers the entire surface of the central nervous system and is surrounded by the arachnoid. The cerebrospinal fluid is located between the pia mater and the arachnoid, in the subarachnoid space. Its surface, called the cortex, is composed of layers of grey matter. We can divide the internal brain anatomy into two main parts : the telencephalon (composed by the left and right hemispheres) and the diencephalon or "interbrain". As part of the brain stem, we find the mesencephalon. The two hemispheres are linked by the inter-hemispheric commissures and the diencephalon and separated by the medial longitudinal fissure, where the falx cerebri relies. Each hemisphere is divided into lobes.

Cortex lobes, gyri, and sulci

The surface of the brain, which corresponds to the grey matter of the cortex, has a complex structure. It is characterized by circonvolutions, also called gyri, delineated by the sulci, which are depressions of the surface. The main sulci, the lateral (or Sylvian)

and the central (or Rolandic) fissures allow to segment the lateral part of the cortex of each hemisphere into four lobes: the frontal, parietal, occipital and temporal lobes (see Figure 2.1). Two additional lobes could be added: the insula, located deep in the lateral fissure, completely hidden on a lateral view by the neighboring parts of the frontal, parietal and temporal lobes (opercula); and the limbic lobe, reunion of several structures located at the medial aspect of the hemisphere, around the corpus callosum and diencephalon. Each of them is implicated in different functional tasks. 

Frontal lobe

The frontal lobe is separated from the parietal lobe by the central sulcus, and from the temporal lobe by the lateral sulcus. Its lateral aspect is subdivided into the precentral gyrus (motor area), the superior, inferior (that includes Broca area on the left hemisphere, one of the language area) and middle frontal gyri. Its inferior aspect contains the orbital and rectus gyri, whereas its medial aspect surrounds the cingulate gyrus.

The frontal lobe can be functionally divided into four different areas : the prefrontal cortex (involved in reasoning skills), the orbitofrontal cortex (involved in risk and reward assessment, and moral judgment), the primary motor cortex (involved in the control of movements), and the premotor cortex (involved for example in planification and organization of movements or in charge of attention). The frontal lobe also plays a role in decision-making.

Parietal lobe

It contains the postcentral gyrus anteriorly and is divided into superior and inferior parietal lobules posteriorly. The parietal lobe is involved in the integration of information coming from different senses : vision, touch, sense of smell and audition. It receives sensory information from the tongue and skin, and visual and auditory information from the other lobes.

Occipital lobe

It contains the primary and secondary visual cortex. Several sulci go through the occipital lobe : the superior, middle and inferior sulci on its lateral aspect occipital and the calcarinus sulcus on its medial aspect. The occipital lobe processes the visual information (received from the retina) and sends it to the temporal and parietal lobes for complementary processes.

Temporal lobe

The temporal lobe is separated from the frontal and parietal lobes by the lateral fissure and contains three circonvolutions on its lateral aspect, called inferior, middle and superior temporal gyri, separated by the superior and inferior temporal sulci. Its ventro medial aspect contains 2 other gyri, which are continued into the occipital lobe : the lateral (or fusiform) and medial occipito-temporal gyri. The medial occipito-temporal gyrus is subdivided into temporal (parahippocampal gyrus) and occipital parts (lingual gyrus). The temporal lobe is also involved in auditory and visual information processing and receives information from the occipital lobe. It plays a major role in object and pattern recognition (faces for example).

Insula and limbic lobe

The insual is a triangular piece of cortex limited from the frontal, temporal and parietal opercular by the circular sulcus, and subdivided in short and long insular gyri. It is involved in vegetative control and emotions. The limbic lobe is a circle of gyru located around the junction between both hemispheres (corpus callosum and diencephalon).

It contains the subcalllosal area anteriorly, the cingulate gyrus and also includes the parahippocampal gyrus of the temporal lobe. It is involved in emotions, mood and memory.

Brodmann areas

This brain division into different lobes has been extended from the observations by microscopy of differences in the organization of the cortex cytoarchitecture. Several http://spot.colorado.edu

Internal anatomy

The internal anatomy of the brain is divided into three main parts : grey matter, white matter and ventricles.

Blood supply of the brain

Blood supply of the brain originates from an anastomotic system located at the surface of the inferior aspect of the brain. This arterial circle of the brain is fed by the paired internal carotid arteries and by the basilar artery (fusion of both vertebral arteries).

The arterial circle gives rise to several types of branches : cortical branches (for the surface of the brain), ventricular branches for the choroid plexuses and deep brain and perforators for the deep brain (basal ganglia, internal capsule...). http://surgery.med.miami.edu

Ventricles

The cerebro-spinal fluid (CSF) bathes the human brain, protecting it from mechanical shocks. It is secreted by the plexus choroideus and circulates from two central cavities (located in each hemispheres), called lateral ventricles (see Figure 2.4). Each lateral ventricle has three horns (temporal, frontal and occipital). The CSF leaves the lateral ventricles to a third ventricle located in the diencephalon (through the Monroe intraventricular foramen) and finally to the fourth ventricle, located in the brain stem through the cerebral aqueduct (of Sylvius). Outside the brain, the CSF is bounded by the arachnoid mater. 

Grey matter

Grey matter that composes the surface of the brain is called the cortical mantel or cortex and has a thickness varying from 1 to 4.5 mm. The cerebral cortex depicts three main kind of cortices : the neocortex (external aspects of the hemispheres), including six different cortical layers, characterized by different types of cells and density (described in the section 2.6), the paleocortex with four or five layers, covering the olfactory bulb and in the parahippocampal gyrus and the archicortex (with three cortical layers), found in the hippocampus. Another type of grey matter is located deeper in the brain, forming the central nuclei, which will be described below.

Nuclei of the cerebellum, the brain stem and the mesencephalon

The cerebellum contains four major nuclei : the dentate, the globose and emboliform nuclei and the fastigial nucleus. The nuclei of the cranial nerves are located in the brain stem. The mesencephalon also contains the substantia nigra, near the crus cerebri.

Dopaminergic neurons are found in this region that mainly acts on the motor control.

It also contains the red nucleus.

Grey matter of the diencephalon

The diencephalon regroups the thalamus, the hypothalamus, the epithalamus and the subthalamus. The thalamus, which forms the side walls of the third ventricle represents 80% of the diencephalon and is located on the top of the brain stem. It plays a role in the sensory and sensitive functions, in the motor control, in the consciousness and the regulation of the states of sleep and wakefulness. It contains several nuclei. The hypothalamus contains several vegetatives nuclei and has an endocrinian role. The mammillar body is part of the hypothalamus and is implicated in the limbic system.

The hypothalamus is separated from the thalamus by the Monro sulcus. Below, the subthalamic nucleus or corpus of Luys has a sensitive and motor role. Finally the epithalamus is characterized by the epiphyse and the habenula. http://brainmind.com

Grey matter of the telencephalon

Deep nuclei

In the telencephalon, we can distinguish several nuclei in the deep grey matter (see Figure 2.5). The striated nuclei designate the caudate nucleus and the putamen, forming the basal ganglia with the globus pallidum, the subthalamus nuclei and the substantia nigra. The internal capsule separates, in its anterior limb the caudate nucleus from the lenticular nucleus and the thalamus from the lenticular nuclus in its posterior part. Together with the claustrum, they play a role in the motor control and equilibrium.

Cortex

The deep grey matter also includes limbic system, composed of the hippocampus (the Amon Horn and the gyrus dentatus) and the amygdala. They control emotions, memory and representation of space. Finally, the insula is a also a part of the telencephalon cortex.

White matter

This thesis is particularly focused on the white matter microstructure. The white matter is located under the cortex and is made of fibers, corresponding to the axons of the neurons, responsible for the connections between different functional areas of the brain.

These connections allow to carry signals from one location to another, in the form of action potentials. The fibers, of a diameter from 1μm to 25 μm, appear white because of the myelin sheath (mainly composed of lipids) covering their membranes. But in the brain, myelinated and unmyelinated axons coexist. The unmyelinated axons are generally small and slowly conduct the signals in comparison with the myelinated fibers.

The fibers can be divided into three major classes : the projection fibers, the association fibers and the commissural fibers. In the next subsections, we define these three classes of fibers which are of main interest in the scope of this thesis. they include the thalamic radiations, auditory and optic radiations. • The cingulum fasciculus, connecting the cingulate gyrus to the enthorinal cortex (cortex between the neocortex and hippocampus). These fibers have therefore a major role in communication of the limbic system. The anterior part plays a role in emotion and the posterior part is rather linked to cognitive functions,

Projection fibers

Association fibers

• The uncinate fasciculus, connecting the frontal lobe to the temporal lobe is also considered as part of the limbic system,

• The superior longitudinal fasciculus including arcuate fasciculus, connecting the frontal lobe to the temporal and parietal lobes is involved in the language function.

It connects Wernicke's and Broca's language areas in the left hemisphere,

• The inferior longitudinal fasciculus connecting the occipital lobe to the temporal lobe,

• The inferior-fronto-occipital fasciculus, connecting the occipital lobe to the frontal lobe.

The fornix connects the hippocampus to the mammillar corpus in each hemispheres. It contains fibers coming from the hippocampus. From the alveus, the fibers converge to form the fimbria. The fimbria of each hemisphre finally merge in the midline of the brain to form the body of the fornix. The body also divides near the anterior commissure.

Interhemispheric commissures

The interhemispheric commissures are white matter pathways connecting the hemispheres of the brain. The corpus callosum is the wider one, located deep in the interhemispheric fissure and is separated from the fornix by the septum lucidum. It connects the hemispheres and exhibits four major parts, in the antero-posterior direction : the genu, the body, the isthmus and the splenium (see Figure 2.8). The anterior commissure [START_REF] Highley | The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study[END_REF] crosses perpendicularly the anterior wall of the third ventricle connecting the olfactory bulbs, while the posterior commissure crosses the posterior wall of the third ventricle.

The two fimbria are connected by the hippocampal commissure, connecting the two hippocampus. The Habenular commisure, a smaller bundle of fibers passing in the superior stalk of the epiphyse, connects the habenular nuclei.

We have defined the major macroscopic structures of the brain, dividing the cerebral matter into two major parts : the grey and white matter. This thesis focusing on the brain microstructure, the following section goes deeper in the tissue, describing white and grey matter at the cellular level.

Brain tissue microstructure

The brain microstructure is very complex exhibiting various types of cells, of different sizes and shapes. The macroscopic brain division into grey and white matter comes from their cytoarchitectural differences : the white matter is mainly composed of myelinated axons (giving the white color) and cells responsible for the myelination while the grey matter contains neuron cell bodies and astrocytes. We here describe the main components of the cytoarchitecture of the brain.

Brain cells

Neurons

Responsible for the transmission of the nerve signals, it is the main cellular corpus we can find in the brain. There are about 100 billion of neurons in a human brain. Their size varies from 4 microns to 100 microns. We can separate the neurons into the cell body, called pericaryon, the signal receivers called dendrites, and the projections, the axons (the main part of the white matter), conducting the nerve impulse (see Figure 2.9).

In the cell body, we find the nucleus that contains the DNA with the nucleole, containing proteins and RNA. Surrounding the nucleus, the cytoplasm contains the Nissl corpus (granular endoplasmic reticulum) and free ribosomes, synthesizing the proteins. We also find neurofilaments and neurotubules, organizing themselves in parallel within the axons. They are responsible for chemical transport. Finally, as we can find in other cells, the neuron cell contains different organites, such as mitochondrion (breathing of the cell and energy supply), the Golgi apparatus, which regulates the transport of molecules through the membranes and transforms the proteins and the lysosomes (digestion of the cell).

The dendrite contains the same types of organites as the cell body does, excepting the nucleus and the lysosome.

The axon part emerging from the neuron is not myelinated, but further from the cell body, a myelin sheath covers the axon. Those ramifications end with synapses, responsible of the transmission of the neuron In the cortex, several kind of neurons can be found :

• The pyramidal cells, characterized by a pyramidal cell body. Their diameters varie from 10 to 70 microns. They have long axons leaving the cortex to connect other cortical areas.

• The granular cells which are smaller (diameters lower than 10 microns). They are interneurons, their axons stay in the cortex.

• The cells of Martinotti, having small dendrites and their axons run towards the surface and turn to follow the superficial layers of the cortex. They make contact with pyramidal cells through their synapses.

• Fusiform cells : their axons reach the surface and their dendrites connect other cortical layers.

Oligodendrocytes

The oligodendrocytes are mainly responsible for the myelin production. These cells are present in the grey matter, where they play a metabolic role and in the white matter, where they product the myelin, surrounding the axon with their prolongations. Their cell bodies, appearing oval or round, have an average length of 6-8μm. Few processes emanate from the cell body (see Figure 2.11). 

Astrocytes

Astrocytes are part of the conjunctive tissue and highly present in the brain (see Figure 2.12). These cells have big nuclei. The astrocytes are narrow, with several prolongations and they have a star-like shape. In the grey matter, the protoplasmic astrocytes exhibit short prolongations. In the white matter, they have fewer but longer prolongations, they are called fibrous astrocytes and they have an average size of 10-12μm. Their processes form the glial sheets between axons. Astrocytes play several roles in the nervous tissue :

they regulate the blood flow, they sustain the hemato-encephalic barrier, they maintain the pH level, and the ionic concentration, they participate to the brain fixing in case of damages (gliosi) and nerve communication, they secrete substances for oligodendrocyte survey, myelin formation and myelin reformation.

Microglia

The last cells of the glia are the microglia cells. We can find them in both grey and white matter, but their density varies from a region to another. They represent about 13 % of the cells but are more present in white matter than in grey matter. They have an ovoid nucleus (≈ 5.1μm by 2.2μm) and a small cell body but their shape varies. They are macrophage cells.

Cortex histology

The previously described cells are found in the neocortex which can be divided into six different cell layers (see Figure 2.13) : • Layer II : the external granular layer with granular, star-shaped, pyramidal cells and axons/dendrites connections,

• Layer III : the external pyramidal layer, including medium sized pyramidal cells and Martinotti cells,

• Layer IV : the internal granular layer, including dense packing of granular cells,

• Layer V : the ganglonic layer, with big pyramidal cells and Martinotti cells,

• Layer VI : the polymorph layer, including all type of cells 

White matter histology

White matter mainly contains myelinated and unmyelinated axons, surrouned by oligodendrocytes and fibrous astrocytes.

Brain diseases and microstructure

Brain pathologies affect the microstructure. In the case of neurodegenerative diseases, neuron death occurs in different regions of the brain. In Parkinson's, for example, we observe a loss of dopaminergic neurons in the substantia nigra. This kind of modifications changes the local organization of the microstructure, for example a reduced neuron density. Accessing to the brain microstructure in vivo could therefore help to study the evolution of brain pathologies.

Conclusion

We described here the main features of human brain anatomy, at both macroscopic and microscopic levels. The human brain has a very complex structure, and the task of studying its microstructure by MRI is therefore very difficult. The idea behind the work of this thesis is to extract indirect or more direct parameters able to characterize the microstructure, despite its complexity. We need then to explore the hidden information contained in the MRI signal, and the potential of the wide variety of MRI sequences to get closer to the microscopy by MRI. The following chapter describes the principle of MRI and the sequences used in this work.

Chapter 3

MRI modalities dedicated to the study of tissue microstructure

Introduction

Magnetic Resonance Imaging, introduced by [START_REF] Lauterbur | Image formation by induced local interactions: Examples employing nuclear magnetic resonance[END_REF] and [START_REF] Mansfield | Multi-planar image formation using nmr spin echoes[END_REF] is a key modality in the human brain study, since it relies on the magnetic resonance phenomenon of water protons, which represent around 80% of the brain. Moreover, it gives access to different kinds of information. First, mapping the anatomy of the brain structures is possible thanks to T 1 and T 2 weighted contrasts, T 1 and T 2 being the two characteristic times of the relaxation phenomenon. Second, a functional analysis of the brain is accessible using the susceptibility effects in activated regions induced by the oxyhemoglobine carying the oxygen required to brain activity. Finally, MRI has became a powerful tool to probe brain architecture at the cellular scale, corresponding to a scale inferior to the resolution of the acquired images. There is growing interest in quantitative MRI of T 1 and T 2 parameters since various multi-compartment models allow today to quantify the volume fractions of the different pools of water in the tissue. Diffusion MRI or dMRI is sensitive to the movement of water molecules in the tissue and thus allows to measure for example the orientation of axons, packed in large fascicles of fibers, paving the way in the last decade for exploring the anatomical connectivity of the brain and considering the study of the anatomical and functional networks of the human brain in vivo. Moreover, dMRI is becoming a way to explore not only the anatomical connectivity but also its microstructural organization. Indeed, the membrane geometry of the different cells of the brain hindering or restricting the movement of water molecules, leaving its signature in the diffusion weighted signal. The community presently works to develop biophysical models from which it is possible to extract characteristic quantities 

Principles of magnetic resonance imaging

This section describes the basic principles of magnetic resonance imaging (MRI). We explain how it is possible to obain contrast between tissues from the induced magnetic resonance of the protons of water molecules. This chapter is inspired by the book [START_REF] Kastler | Comprendre l'IRM. Manuel d'autoapprentissage[END_REF], the courses of Pr Fessler (http://web.eecs.umich.edu) and the website www.imaios.fr, the chapters of [START_REF] Brion | Towards real-time diffusion imaging : noise correction and inference of the human brain connectivity[END_REF], [Marrakchi-Kacem, 2011], .

Magnetic resonance phenomenon

Magnetic moments of protons

The magnetic resonance imaging finds its basis in the magnetic resonance of protons, [START_REF] Bloch | Nuclear induction[END_REF], and mainly from protons from the hydrogene nucleus. These particles have the characteristic of rotating on themselves, around an axis passing through their centers (see Figure 3.1). Protons are also charged particles, and while spinning, they create a magnetic moment -→ μ , called spin. The summation of all these spins gives a net magnetization -→ M . In the absence of any additional magnetic field, the individual spins have random orientations, resulting in a null magnetization : But in the presence of a static magnetic field B 0 , all the spins align with it, giving birth to two populations of spins : those having spins parallel to B 0 and those having spins antiparallel to it (see Figure 3.2). The protons precess around B0 with the angular frequency equals to the Larmor frequency ω 0 :

-→ μ = -→ M = -→ 0 .
ω 0 = γB 0 ,
with γ the gyromanetic ratio (γ = 267, 5 × 10 6 rad s -1 T -1 for the hydrogene nucleus).

This phenomenon of precession was first described by [START_REF] Pruessmann | Resonance absorption by nuclear magnetic moments in a solid[END_REF] as a double precession, with a transversal and longitudinal component. Higher number of protons precesses in the parallel direction, giving a non-null magnetic moment aligned in the same direction as B 0 , along the longitudinal direction. In the transversal direction, spins are not phased, leading to a null component on average.

Perturbation of the equilibrium by a radio frequence B 1 : excitation

If we perpendicularly add to B 0 a rotating electro-magnetic field B 1 (called radio frequence, RF), with an angular frequency equals to the Larmor frequency, there is a transfer of energy to the protons aligned with B 0 : this is the magnetic resonance phenomenon. This rotating field excites the protons, that precess not only around B 0 , but also around B 1 . It "tilts" the global magnetization into the orthogonal plane to B 0 (in the case of a 90 • pulse), inducing a magnetic resonance. At the microscopic level, the protons change of energy level, from parallel state to antiparallel state. The longitudinal magnetization then decays, and a tranversal component appears, stemming from in phase spins. Depending on the duration of the B 1 application, one can get a 90 • tilt yielding a transverse magnetization, or a 180 • tilt where the entire macroscopic magnetization is inversed along the longitudinal axis. When B 1 is stopped, the system returns back to its equilibrium state : this is the relaxation phenomenon. This phenomenon is described in Figure 3.3. 

Bloch equations, T 1 and T 2 relaxation times

We assume a referential (x,y,z) where B 0 is aligned in the z direction and B 1 is applied perpendicularly, in the (xOy) plane. The temporal evolution of magnetization can be described with the Bloch equations, [START_REF] Bloch | Nuclear induction[END_REF]:

dM x (t) dt = γ (M y (t)B z (t) -M z (t)B y (t)) -Mx(t) T 2 , (3.1) dM y (t) dt = γ (M z (t)B x (t) -M x (t)B z (t)) - My(t) T 2 , (3.2) dM z (t) dt = γ (M x (t)B y (t) + M y (t)B x (t)) -Mz(t)-M 0 T 1 , (3.3) 
where M is the magnetization, γ the gyromagnetic ratio, B the magnetic field, T 1 and T 2 two characteristic relaxation times. If we apply an RF B 1 of frequency ω 1 :

B 1x (t) = B 1 cos(ω 1 t), (3.4) B 1y (t) = B 1 sin(ω 1 t), (3.5) 
B 1z (t) =0. (3.6) We introduce the rotative frame (x'Oy') where B 1 is aligned to the axis (Ox') (see Figure 3.4). We define the transverse magnetization as : M x y = M x + iM y . Right after the 

M x y (t) = M zeq exp( -t T 2 ), (3.7) M z (t) = M z (0) exp(- t T 1 ) + M zeq (1 -exp(- t T 1 
)), (3.8) with M zeq the longitudinal magnetization at the equilibrium, M z (0) is the longitudinal magnetization immediately after the RF pulse. Equation 3.8 describes the behaviour of the longitudinal relaxation : during the phase of the relaxation, protons which have moved from parallel to antiparallel state will return to their original state, exchanging the energy with their molecular environment, leading to a growth of the longitudinal magnetization, going back to its original value. The longitudinal growth of the global magnetization follows an exponential behaviour, characterized by the T 1 relaxation time defining the necessary duration to recover 63% of the initial value. T 1 is called spinlattice relaxation time because it involves an exchange of energy between water molecules and proteins, lipids and macromolecules. This T 1 depends on the characteristics of the tissue and of B 0 , and varies with the molecular environment. For example, T 1 is longer in liquids. Equation 3.8 describes the behaviour of the transverse magnetization.

Inhomogeneities of the B 0 field induced by different molecular environments create a dephasing between the spins, thus having an angular frequency slightly different from ω 0 . During the excitation, the spins are all phased but when B 1 is stopped, they naturally return back to a dephased state, and the transverse global magnetization reduces. This reduction follows an exponential decay, characterized by the T 2 relaxation time defining the necessary duration to the transverse magnetization to decrease of 37% of its initial value. The temporal evolutions of the longitudinal and transverse magnetizations after a 90 • are depicted in Figure 3.5. Like T 1 , T 2 depends on the tissue and its molecular composition, and it is longer in liquids. It is called spin-spin relaxation time, because T 2 relaxation involves the dephasing of protons due to interactions with each other. T 2 relaxation is faster than T 1 relaxation, so T 2 is always longer than T 1 . Both T 1 and T 2 depends on the static magnetic field.

3.2.1.5

T 1 and T 2 relaxation times for different tissues and different fields Table 3.1 shows some T 1 and T 2 values for gray and white matter at different fields.

The T 1 and T 2 differences among the tissues creates the MRI contrast with proton [START_REF] Wansapura | Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri[END_REF]) and 7T ( [START_REF] Rooney | Magnetic field and tissue dependencies of human brain longitudinal 1h2o relaxation in vivo[END_REF] density. Depending on the MRI sequence used to acquire the signal, we can get different constrast weighting in T 1 , T 2 or ρ. The T 1 contrast is called "anatomical contrast" since the gray matter appears gray and the white matter appears brighter. We find the inverse contrast in a T 2 -weighted image. Figure 3.6 shows T 1 and T 2 -weighted images obtained at 3 Teslas. Mechanisms of T 1 and T 2 weighted contrasts will be described later.

T 1 -GM T 1 -WM T 2 -GM T 2 -WM 1.

Origin of the signal acquired in MRI

The variation of the transverse and longitudinal magnetization is used to get the MRI signal. The reception coil, placed in the transverse plane of the MRI system (see figure 3.7) receives the signal coming from the transverse magnetization, called Free Induction Decay (FID). This signal is a sinusoid weighted by the T 2 exponential. Back into the initial referential we have from 3.8 :

M xy (t) = M x y (t) * exp(-iω 0 t) = M zeq * exp(-iω 0 t) * exp(- t T 2
). In fact, this signal doesn't depend on T 2 but on T * 2 because of molecular inhomogeneities and B 0 microscopic inhomogenities. We define : 1

T * 2 = 1
T 2 + γΔB 0 . Then the transverse magnetization follows :

M xy (t) = M zeq exp(-iω 0 t) exp(- t T * 2 )
(3.9) 

3.2.3

From FID to image

Spatial encoding

We just explained the origin of the signal acquired by the coil of the MRI scanner, the FID. But how can we form the image from this signal ? In fact, during a typical MRI sequence, several magnetic gradients will be applied in different directions in order to encode the information (see Figure 3.8). There exists 2D and 3D imaging. In the case of 2D imaging, one gradient is applied along the z direction, in order to select the slice, another one is applied in the x direction, the phase gradient, and finally the readout gradient is applied in the y direction. These gradients, differentiating the spins by their phases and frequencies, encode them by their frequencies and dephasing. 

Slice gradient

A magnetic gradient of strength G s is applied in the same direction as B 0 , perpendicularly to the slice to acquire. Thanks to the gradient, a different gradient field, proportionnal to G s , will be applied in each position along z. The protons at the position z precess with the same Larmor frequency, corresponding to ω z = γ(B 0 + G s * z).

On each slice of the volume, the protons all process at the same frequency, but this frequency differs from one slice to another. A rotating magnetic field B 1 at the frequency ω 1 corresponding to the frequency of one slice is applied. Finally, only the protons of this slice will be excited, this is the slice selection. This gradient is applied during the RF application, allowing to select only the desired spins. The resolution in z is defined by the width of the RF or by the gradient strength. In fact, in the common MRI sequences, the slice selection gradient has two lobes, one negative and one positive, allowing to rephase the spins because applying a gradient will necessarly involve a dephasing : the first lobe will dephase the spins, while applying the desired frequency, and the second lobe will rephase them, in order to get rid of the dephasing. when the gradient is turned off, all the spins are rephased : this is called "a gradient echo".

Phase encoding

A second gradient G φ is applied, perpendicularly to the future lines of the image, this is the phase gradient. This gradient is applied during a short time, and induces a dephasing of the spins depending on the lines where they belong to, all the spin on one line have therefore the same phase at the end of the gradient application. This encoding has to be repeated the number of lines, with different gradient strength.

Frequency encoding

Once G s and G φ are applied, each line of the selected slice can be distinguished because there spins present different dephasing. One final gradient, the readout gradient, G ω , is applied perpendicularly to the columns, so each columns is encoded with its own frequency. Finally, each proton is characterized by a single association (phase, frequency).

The same problem of cumulated dephasing between the acquisitions occurs for the frequency gradient, this is the reason why it will also be bipolar, allowing to rephase the spins. But, in this case, the measure of the signal is located at the time of the spin echo but it is not immediate, so the reader gradient has to have one negative lobe followed by two positive lobes, since the gradient echo will occur at the end of the second lobe.

The three gradients G φ , G ω and G s ensure the 3D encoding and localization (see Figure 3.8), however this does not take place in a cartesian space but in the Fourier domain, called K-space and described in the next subsection.

3D imaging

We have described the specificity of spatial encoding in 2D MRI acquisition. This encoding can be generalized for 3D acquisition. In this case, a whole volume is excited.

The third direction is phase encoded using a second phase-encoding gradient.

K-space and FFT

During the acquisition, each couple frequency/phase is registered in a matrix called "Kspace" (see Figure 3.9). Each FID contains the informations coming from all the spins and a decoding part is necessary to recover the initial image. This is possible thanks to the 2D-Fourier transform. In each point (k x ,k y ) of the k-space, we can write :

S(k x (t), k y (t)) =
x y M (x, y)(t) exp -i(k x (t)x + k y (t)y)dxdy (3.10) where k x (t) = γ t 0 G ω (t )dt and k y (t) = γ t 0 G φ (t )dt The maximum value of k x will determine, the resolution of the final image taking its inverse value. Therefore, the higher the gradient strength, the higher the resolution. Equation 3.10 shows that a simple 2D Fourier transform links the image to its signal measurement in the K-space.

As a consequence, applying an inverse 2D-Fast Fourier Transform, one can reconstruct the image from the mix of all signals coming from protons. In the case of 3D acquisition, a 3D K-space is filled and the image is reconstructed using a 3D-FFT. This way, the center of the k-space corresponds to low frequencies and the extremities to high frequencies.

One particularity of the K-Space, coming from the general property of the Fourier space, is the conjugate symmetry between all quadrants. This property can be used to reduce the acquisition time, acquiring only a subset of the lines of the K-space and re-building the entire space by symmetry.

Parallel imaging

It is possible to increase the signal to noise ratio and reduce the acquisition time using parallel imaging technique. Instead of using a single reception coil, several coils can be combined to measure the signal, each of them receiving the signal from each region [START_REF] Pruessmann | Resonance absorption by nuclear magnetic moments in a solid[END_REF]) algorithm merges the field of view acquired by each coil to reconstruct the image using the sensitivity of the coils while techniques such as GRAPPA (generalized autocalibrating partially parallel acquisition, [START_REF] Griswold | Generalized autocalibrating partially parallel acquisitions (grappa)[END_REF]) method compute the missing lines of the K-space before reconstructing the image using the Fourier transform.

MRI sequences used in this thesis

We previously introduced the phenomenon of excitation-relaxation of the spins in the tissue and how to exploit this phenomenon to obtain tissue images thanks to magnetic gradients applied along the three space directions. The basic sequence therefore requires an excitation pulse, and the encoding gradients. From this basis, a wide variety of MRI sequences was developed, depending on the desired contrast or acquisition duration.

One of the first sequence, called Spin Echo was introduced by [START_REF] Hahn | Spin echoes[END_REF]. It contains one 90 • excitation pulse, spatial encoding gradients and one 180 • refocusing pulse. Only one K-space line is filled between two excitation pulses (i.e during the repetition time TR of the sequence).

Usually, the K-space is filled line by line and one line is read thanks to the frequency encoding gradient. One needs to increment the phase gradient to go from one line to another. But in clinical applications the acquisition duration has to be limited.

Several sequences use different strategies of displacement to cover the K-space, acquiring several lines in one TR (MultiShot RARE, Echo Planar Imaging (EPI), Fast Spin Echo), reducing the repetition time using gradient echo (reducing the flip angle) or exploiting the symmetry properties of the K-space (Half-Fourier acquisition, Spiral acquisition).

We limit our presentation of the MRI sequences to Spin Echo, Echo Planar Imaging and Gradient Echo used in the frame of this thesis. Some specific sequences derived from Spin Echo and EPI dedicated to relaxometry and diffusion studies will be introduced in the next sections.

Spin Echo Sequence

The first MRI sequence is the spin echo sequence [START_REF] Hahn | Spin echoes[END_REF] depending on T 1 and T 2 relaxation time. After a 90 • pulse, all the spins are phased and will progressively dephase because of molecular inhomogeneities. After a given time TE/2 (TE being the echo time), a 180 • pulse is applied, so the spins are rephased at TE, inducing a spin echo. This trick allows to get rid of B 0 inhomogeneities, and to have access to the real T 2 , and not T 2 * corresponding to the relaxation time integrating B 0 inhomogeneities.

The sequence diagram is shown in Figure 3.10. In a Spin Echo sequence, only one line is acquired between the 90 • and the 180 • pulses. The duration between the two 90 • pulses corresponding to two consecutive lines is called the repetition time (TR). To cover the entire k-space, one needs as many TR as lines in the K-space. In sequences like the RARE sequence, additional 180 • pulses create other echoes following the first one and a new phase encoding is applied before the next echo to acquire several lines of the K-Space. In the case of the Spin Echo sequence, the transverse magnetization can be expressed as follows for t > T E:

M ⊥ = M z (0)exp(1 -T R/T 1 )exp(-T E/T 2 ) .
(3.11)

Gradient Echo Sequence

We already described the phenomenon for the gradient echo when two negative and positive gradients of the same strength are applied successively. The gradient echo sequence differs from the spin echo by the use of a flip angle below 90 • and the abscence of 180 • refocussing pulse. The required angle to get the maximal information, called Ernst angle is defined as θ = acos(exp(-T R/T 1 )). Using greater angle (in particular a 90 • angle) tion is lower too. The gradient echo is created by a bipolar gradient, corresponding to the frequency encoding gradient. During this sequence, reduction of TR below T 2 will induce residual transverse magnetization for the next repetition. This drawback can be managed using spoiling techniques such as RF spoiling or gradient spoiling.

Fast K-space acquisition: Echo Planar Imaging

The Echo Planar Imaging, EPI, (Figure 3.11) introduced by [START_REF] Mansfield | Multi-planar image formation using nmr spin echoes[END_REF] allows to acquire the entire K-space in a single shot, but the resolution is limited and the acquisition is prone to many sources of artefacts. In a single RF excitation scheme (one TR), EPI allows to acquire several or the entire K-space. This technique uses the phenomenon of gradient echoes. After the combination of 90 • and 180 • pulses, G ω , the gradient encoding for the frequency is applied, alternating quickly and therefore generating a spin echo for each oscillation. Each oscillation corresponds to a given line of the K-space. Phase-encoding blips are then applied for each echo, moving from one line to the next. EPI imaging can be either single or multi-shots, depending on the number of TR required to cover the k-space. This kind of imaging suffers from any field inhomogeneity that is integrated along the echo train, thus increasing its effect.

Artefacts will be discuss later. 

Contrast

The final constrast of the image comes from a trade-off between proton density, T 1 and T 2 ponderation, depending on the values of TR and TE. The repetition time influences directly the T 1 -weigthing : if TR is long, the longitudinal magnetization of all the different tissues will be totally recovered, but if TR is short, the tissues having different T 1 times won't totally recover their longitudinal magnetization, so the tissue with the shorter T 1 will appear brighter than the tissue with a longer T 1 . In the same manner, a short TE won't allow to differentiate two tissues with different T 2 and the T 2 -weighting will be obtained with longer TE. Finally, T 1 -weighted is obtained with short TR and TE, T 2 -weighting with long TR and TE and a proton density contrast is obtained with long TR and short TE, to reduce the T 1 and T 2 -weighting. Figure 3.12 shows different constrast with varying TR and TE.

In this section, we described Spin Echo and EPI sequences, used to obtain T 1 -weighted, T 2 -weighted or proton density-weighted images. The next sections will expose sequences dedicated to the extraction of parameters close to tissue microstructure.

Relaxometry and quantitative imaging

As we previously exposed, the contrast of images obtained by Spin Echo sequence are a mix of ρ, T 1 and T 2 weighting and are acquisition-dependent. This kind of sequences cannot directly provide quantitative parameters. Quantitative MRI, and in particular relaxometry studies focus on the extraction of parameters such as magnetization transfer ratio (MTR), T 1 , T 2 and T 2 * relaxations times, etc... These parameters can be directly used to characterize a tissue and differentiate it from another.

Magnetization transfer sequences [START_REF] Wolff | Magnetization transfer contrast (mtc) and tissue water proton relaxation in vivo[END_REF]] provide a contrast dependent on the magnetization exchange between free protons and protons restricted to macromolecules. The latter have an extremely short T 2 relaxation times and cannot be directly imaged. This modality is widely used in the study of myelin and its destruction, in particular in the Multiple-Sclerosis disease, because, as we presented it in the chapter 2, myelin sheath contains macromolecules such as cholesterol. MT thus gives a quantitative information through the computation of the magnetization transfer ratio, on the microstructure through the signal arising from the protons bounded to these macromolecules. Magnetization transfer studies are beyond the scope of this work, this section, partly inspired by [START_REF] Deoni | Quantitative relaxometry of the brain[END_REF] and [START_REF] Hashemi | MRI : the basics[END_REF], will focus on a particular field of quantitative MRI : T 1 and T 2 relaxometry.

T 1 and T 2 relaxation times provide contrast between tissues in clinical routine and they have been shown to be clearly related to the brain microstructure, and more precisely to the different water compartments defined by the cytoarchitecture of the white matter tissue: mainly the pool of water molecules trapped in the myelin sheats and the water in the extra and intra cellular spaces [START_REF] Barkovich | Concepts of myelin and myelination in neuroradiology[END_REF]. The former is characterized by short T 1 and T 2 , because of the interaction of water molecules with large molecules such as cholesterol, highly present in myelin, the latter exhibits longer T 1 and T 2 times since molecules don't interact with such molecules, the water is more free. Therefore, mapping these times may certainly provide insights about the brain microstructure and imaging-based biomarkers of pathological tissues [START_REF] Stevenson | Variations in t1 and t2 relaxation times of normal appearing white matter and lesions in multiple sclerosis[END_REF]]. The T 2 relaxation time has been popular to map the iron content of the humain brain [START_REF] Hasan | Human brain iron mapping using atlas-based t2 relaxometry[END_REF], but one even more popular application of relaxometry study is the characterization of myelination maturation [START_REF] Deoni | Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping[END_REF] or demyelination in pathologies thanks to the sensitivity of relaxation times to myelin water content [START_REF] Deoni | Investigating the relationships between t1 and t2 relaxation times and myelin water fraction during neurodevelopment[END_REF].

In this kind of studies, the T 1 -weighted and T 2 -weighted signals are modelled using linear mixtures of signals stemming from several compartments [START_REF] Deoni | Gleaning multicomponent t1 and t2 information from steady-state imaging data[END_REF], [START_REF] Deoni | Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping[END_REF], with a short time compartment (corresponding to the water trapped in the myelin), a long time compartment (intra/extra cellular water) and sometimes an additional compartment corresponding to free water to deal with Cerebrospinal Fluid contamination. In order to be feasible in clinical routine, T 1 and T 2 mappings should remain short but fully reliable. The next subsections present the sequences used to map T 1 and T 2 relaxation times. 

Common T 1 and T 2 sequences

Usually, the T 2 relaxation time is computed from several spin echo sequences with varying echo times and T 1 relaxation time is computed from several inversion times from gradient spin echo sequences. But to obtain a good accuracy of the estimation of the parameters, we have to densely sample echo times or inversion times, and this requires an acquisition time that is too long for clinical use. [Deoni et al., 2005a] proposed alternative approaches to historical spin echo and inversion recovery spin echo sequences to efficiently map the T 1 and T 2 relaxation times on the entire brain in a clinical acceptable time (on the order of half an hour). Another alternative is to use EPI sequences [START_REF] Poupon | Real-time epi t1, t2 and t2* mapping at 3t[END_REF]), reducing the achievable resolution in comparison to spin echo but allowing to acquire several inversion and echo times in an acceptable time (5 minutes for each T 1 , T 2 maps for a tens of sample points). However, the price to pay is the presence of more geometrical distorsions, that must be corrected afterwards. The following sections present the common sequences used to map T 1 and T 2 relaxometry times.

T 1 mapping : Inversion/Recovery sequence

This sequence has been designed to obtain a strong T 1 -weighted constrast. We have explained before that Spin Echo sequence provides a contrast dependent on ρ, T 1 and T 2 . In order to double the constrast to noise ratio, this sequence begins with a 180 • pulse, leading to the complete inversion of the macroscopic longitudinal magnetization : M z becomes -M z . Then a 90 • pulse is applied after a duration TI, called inversion time (see Figure 3.13). This pulse will occur during the regrowth of M z and will tilt the residual longitudinal magnetization in the transverse plane. A simple spin echo follows the magnetization preparation. This sequence is therefore weighted in T 1 and can also be used for fat signal supression. One particularity of this sequence is that TR has to be long to allow the total longitudinal regrowth of the magnetization before the next acquisition. The final signal at the end of an IR sequence is then given by :

S(T I) = ρ 1 -2 exp - T I T 1 (3.12)
Therefore, varying the inversion times provides a set of measurements that can be fitted to equation 3.12 to retrieve the T 1 relaxation time at each voxel.

T 2 mapping : multiple echo times Spin-Echo

The T 2 can be directly inferred from the usual spin echo sequence. The signal follows the equation :

S(T E) = ρ exp - T E T 2 (3.13)
The T 2 value can then be extracted acquiring a set of images at different echo times. 

Advanced Sequences

The basic sequences presented in the previous section required long acquisition times, to obtain sufficient number of samples and therefore a good accuracy of the parameter T 1 )/DESPOT2(driven equilibrium single pulse observation of T 2 )) [START_REF] Deoni | Rapid combined t1 and t2 mapping using gradient recalled acquisition in the steady state[END_REF], [Deoni et al., 2005a], mcDESPOT [START_REF] Deoni | Gleaning multicomponent t1 and t2 information from steady-state imaging data[END_REF] to accurately map T 1 and T 2 relaxation times in a reduced scan time. These new sequences rely on variable flip angles instead of the inversion trick : a Spoiled Gradient Recalled-Echo sequence (SPGR) for T 1 mapping and the Steady-State free precession sequence (SSFP) for T 2 mapping.

T 1 mapping using RF spoiling

The T 1 relaxation time can be inferred using a spoiled gradient recalled-echo sequence (SPGR) over a range of flip angle α (DESPOT1, [START_REF] Deoni | Rapid combined t1 and t2 mapping using gradient recalled acquisition in the steady state[END_REF]), keeping a constant TR described in Figure 3.15. This sequence relies on gradient echoes obtained applying a negative gradient followed by the same gradient but with opposite sign. After the gradient echo, a residual transverse magnetization could be observed and this magnetization reaches a steady state after several subsequent TR. This residual magnetization will be added to the transverse magnetization induced by the RF pulse and will lead to an increase of the T 2 * weighting. For T 1 mapping, a reducing effect of the T 2 * weighting is desired. This is the reason why the SPGR starts by the destruction of this transverse 

S SP GR sin(α) = S SP GR exp(-T R/T 1 ) tan(α) + M 0 (1 -exp(-T R/T 1 )).
(3.14)

T 2 mapping using steady state free precession

The T 2 relaxation time can be inferred using a steady-state free precession sequence (SSFP), over a range of flip angle α (DESPOT2( [START_REF] Deoni | Rapid combined t1 and t2 mapping using gradient recalled acquisition in the steady state[END_REF]) see Figure 3.16).

In this sequence, steady state is induced by the rapid excitation of the spins using low flip angles, with a short TR. Here, the transverse magnetization has to be preserved and is therefore refocused between two successive RF pulses. Because this technique uses a repetition time such that T R < T 2 and T R < T 1 , both transverse and longitudinal magnetizations reach a steady-state, leading to a signal depending on T 1 and T 2 (see equation 3.15). Practically, successive RF pulses create additional "Hahn echoes" from the residual transverse magnetization and act as refocussing pulses.

The obtained signal follows the equation :

S SSF P sin(α) = S SSF P (exp(-T R/T 1 ) -exp(-T R/T 2 )) tan(α)(1 -exp(-T R/T 1 ) exp(-T R/T 2 )) + M 0 (1 -exp(-T R/T 1 )) 1 -exp(-T R/T 1 ) exp(-T R/T 2 )
.

(3.15)

Then, using previous estimation of T 1 obtained with DESPOT1 technique, one can easily derive T 2 values, measuring the signal varying the flip angle α. These two techniques allow to reach a good accuracy in T 1 and T 2 mappings with a reduced time in comparison with the commonly used inversion recovery and multi echoes spin echo sequences (half an hour instead of several hours required with conventional spin echo or in recovery spin echo). However, this technique is sensitive to B 0 and B 1 inhomogeneities and therefore requires additional B 1 and B 0 mappings.

Quite recently, qMRI was proven to be useful to somewhat characterize the microstructure of tissues through its water content and multiple compartment modeling. The same stands for diffusion MRI that we propose to introduce in the following section.

Diffusion weighted imaging

During the last two decades, diffusion MRI has become a key tool to probe the anatomical connectivity in vivo : within the brain, the displacement of water molecules is random due to interactions between molecules, but also to phenomena of hindrance and restriction caused by the barriers present along their trajectories, such as cell membranes. As a consequence, observing and decoding these displacements may provide a unique way to probe the local microstructure of brain tissues in vivo.

Back in 1950, [START_REF] Hahn | Spin echoes[END_REF] was the first to report the attenuation of the NMR signal of the spin echo, because of the movement of spins during the application of the different gradients pulses of a sequence, leading to an unperfect rephasing of spins. [START_REF] Carr | Effects of diffusion on free precession in nuclear magnetic resonance experiments[END_REF] established the first basics for diffusion measurement, followed by [Stejskal and Tanner, 1965a] who introduced the Pulse Gradient Spin Echo (PGSE) a few years later, giving the first MRI sequence providing information about the displacement of water molecules and enabling the inference of apparent diffusion coefficients.

This sequence has been widely used in the clinical setting, allowing for example a quick diagnosis of acute ischemia (characterized by the reduction of the Apparent Diffusion Coefficient, representing the average diffusion coefficient of water) or cerebrovascular accident as well as the study of white matter damages in several pathologies ( [START_REF] Moseley | Early detection of ischemic injury: Comparison of spectroscopy, diffusion-, t2-, and magnetic susceptibility-weighted mri in cats[END_REF], [START_REF] Le Bihan | Diffusion mr imaging: clinical applications[END_REF], [START_REF] Benveniste | Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy[END_REF]). The most popular application of diffusion is obviously the in vivo inference of the structural brain connectivity and microstructure, using the motion of the water molecules and its preferential directionnality to probe the direction of white matter fibers. More recently, the diffusion MRI has became a new tool able to perfom in vivo microscropy, allowing for instance to measure axon diameters and density locally. This chapter describes the diffusion process of water molecules in brain tissues before explaining the main principles of the PGSE sequence, followed by the presentation of the local modelings of the diffusion process.

This part is inspired by the courses of C. Poupon and the book [Johansen-Berg and Behren, 2009].

Diffusion process in tissues

Water molecules naturally moves randomly and interact with each other because of thermal agitation. In the presence of a free environment, without restrictions, the water molecules undergo a Brownian motion. The process of diffusion can be described mathematically as follows.

The diffusion of the water molecules follows the first Fick's law :

J = -D∇C, (3.16) 
with D the diffusion coefficient (m 2 s -1 ), J the flux (mol m -2 s -1 ), C the concentration (mol m -3 ). The second law describes the evolution of the concentration in the time :

∂C ∂t = D∇ 2 C. (3.17) 
In diffusion MRI, the concentration is replaced by the diffusion propagator P(r,t), the probability that a particle, initially at the position r 0 moves to the position r 1 during a time t. The diffusion propagator then follows the second Fick's law :

∂P (r 0 , r 1 , t) ∂t = D∇ 2 P (r 0 , r 1 , t).

(3.18)

Free diffusion

The process of free diffusion, detailed by [START_REF] Einstein | Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen[END_REF], is described as a random walk of water molecules in an environment without restriction. This behavior can be found, for instance, in the ventricular system of the brain. In this case, the mean-squared displacement (the average length travelled by water molecules during a given time t) is a linear function of the time, following Einstein's equation : .19) with D the diffusion coefficient (around 2 × 10 -9 m 2 s -1 for pure water at 20 • ) and Δt the time allowed to the water molecules to diffuse, n the dimensionality. In the case of free diffusion, the diffusion propagator is modeled by a Gaussian distribution of the 

x = √ 2nDΔt. ( 3 
P (r 0 , r 1 , t) = exp(-(r 1 -r 0 ) 2 4Dt ) √ 4πDt . (3.20)
Equation (3.19) can be found using the mean-squared displacement expression with the gaussian propagator :

(r 1 -r 0 ) 2 = ∞ -∞ (r 1 -r 0 ) 2 ρ(r 0 )P (r o , r 1 , t)dr 0 dr 1 .
(3.21)

Anisotropy and restricted diffusion

The phenomenon of restricted diffusion allows, to infer structural parameters from diffusion MRI. Indeed, when water molecules move in the brain tissue, they encounter several barriers such as membranes, etc, structuring the tissue. In white matter, the mean-displacement depends on the direction : along the fibers the motion is not really constrained and the mean-displacement is greater than the perpendicular one, where the diffusion is highly restricted by the myelin sheath of axons. The diffusion is therefore anisotropic. In an even more complex environment, water molecule motion is either hindered or fully restricted, and the propagator is no longer Gaussian, the mean displacement is quickly restricted in any direction and the diffusion time therefore defines this mean-displacement, that is shortened (see Figure 3.17 

Basic sequence dedicated to diffusion MRI and signal equation

Diffusion MRI data are obtained using a specific MRI sequence, including strong diffusion gradients to "tag" the position of spins. The simpler diffusion scheme is called Pulse Gradient Spin Echo ( PGSE, [Stejskal and Tanner, 1965b]). This subsection presents the details of the PGSE sequence and describes the common artefacts that may occur in diffusion MRI, followed by the expression of the diffusion signal obtained with this sequence.

Pulse Gradient Spin Echo

In [START_REF] Hahn | Spin echoes[END_REF], it was noticed that the diffusion of spins during the spin echo leads to a natural attenuation of the signal. [START_REF] Torrey | Bloch equations with diffusion terms[END_REF] modified the Bloch equations to take the effect of spin diffusion into account. [Stejskal and Tanner, 1965b] introduced the first sequence able to enhanced this diffusion phenomenon : the Pulse Gradient Spin Echo (PGSE). [START_REF] Lebihan | Imagerie de Diffusion In Vivo par Résonance Magnétique Nucléaire[END_REF] developed the idea to use the PGSE sequence in a clinical context to visualize ischemia for example. The basic diffusion sequence is the Pulse Gradient Spin Echo, depicted in Figure 3.18. It consists in applying two linear gradients before and after the 180 • pulse in the spin echo. The gradient strengths and durations have to be the same on each side. The first gradient induces a dephasing of the spins along the direction of application. The second rephases them. But when a spin moves between the two gradients, it won't be rephased, its contribution to the signal is "lost". The signal from a diffusion sequence is therefore an attenuation from the initial signal S 0 , without any gradient of diffusion. Major parameters of this sequence is the gradient strength G, the duration of the gradients δ, the separation between the two gradients Δ. The spin echo readout sequence is often replaced by an EPI echo train. 

Artefacts and noise in diffusion MRI

Several artefacts, stemming from the use of EPI echo train for diffusion experiments are listed here. These artefacts were described in [Le Bihan et al., 2006].

• Eddy Currents : When strong gradients are switched during the MRI sequences, currents, called eddy currents, are created in the conductive structures of the scanner. These currents create additional magnetic field, combined with gradient pulses, that modify the initial magnetic field experienced by the spins, leading to geometrical distortions (shrinking, dilation, scaling, translation, shearing) in the final image. In diffusion MRI, the extracted parameters come from a large set of data acquired with different diffusion sensitizations thus giving birth to different eddy currents and consequently different geometrical distorsions. It is therefore important to correct them adequately previous to any advanced analysis [START_REF] Mangin | Eddy-current distortion correction and robust tensor estimation for mr diffusion imaging[END_REF], [START_REF] Reese | Reduction of eddy-current-induced distortion in diffusion mri using a twice-refocused spin echo[END_REF]).

• Ghosting : The additional magnetic field created by Eddy Currents, inducing modification of gradient shape and area can lead to a phase offset between odd and even echoes using EPI, because of the particular manner of filling the K-space using oscillating readout gradients and a back-and-forth trajectory (the negative lobe of the readout gradient won't be the exact opposite of the positive lobe, due to the presence of Eddy Currents). This will lead to a misalignment of the acquired echoes in the K-space, leading to the creation of a "ghost" image in the phase direction, shifted by N/2, N corresponding to the number of lines. This is called N/2 ghosting (see Figure 3.19). • Gradient Non-Linearity :

The non-linearity of the gradient system can also induce geometrical distorsions in the image and the diffusion weighting won't be exactly the same, depending on the position. This can be corrected by the estimation of the deformation using the spherical harmonics decomposition of the non linearities usually provided by the gradient manufacturer or estimated using hardware grid phantoms. In addition, gradient non linearities lead to unhomogeneous b-value over the field of view.

• Motion artefact: If a motion occurs during the acquisition (respiratory, heartbeat...)in the direction of the phase encoding gradient, it will induce errors in the phase : if a voxel is moving, it will be present at different phase and frequency in the K-space, and will then appear at several positions). Moreover, in diffusion experiments, the observed dephasing have to be the result of the application of diffusion gradients but in case of motion, this is no longer the spin motion itself that is encoded but also the patient motion, leading to errors in parameter estimation.

• Susceptibility effects : The susceptibility artefact comes from the juxtaposition between two kind of tissue having too different magnetic susceptibilities and inducing a local magnetic field, leading to distortion of the image (geometrical as well as intensity distorsions). This problem typically occurs at the air/tissue interface (sinus). The image can be corrected using the acquisition of further calibration field map ( [START_REF] Jezzard | Correction for geometric distortion in echo planar images from b0 field variations[END_REF],see Figure 3.20).

• Noise : A major problem, commonly met in diffusion MRI is the noise. This part has been documented from [START_REF] Brion | Towards real-time diffusion imaging : noise correction and inference of the human brain connectivity[END_REF]. Like for all kind of MRI images, the diffusion data suffers from non-central χ noise (nc-χ). In the case of diffusion, the bias introduced by nc-χ noise is very important since, as we just exposed, the diffusion experiment is in fact, a measure of a signal loss. The highest the diffusion gradient strength will be, the greater the signal attenuation will be. In case of signal loss, it is straightforward that the signal to noise ratio (SNR) for this kind of data could be extremely low (see Figure 3.21). In MRI, thermal noise coming from random motion of charge carriers in electrical conductors of the MRI scanner system, but also in the subject's body, which is also conductive. The SNR form of the spin echo EPI commonly used in diffusion studies is given by :

SN R ∝ exp(-T E/T 2 )(ΔxΔyΔz)( NxNyN acq )B 0 (RBW ) (R)G . (3.22)
where TE is the echo time, T 2 the transverse relaxation time, Δx Δy Δz the resolution of the image (size of the voxel), Nx and Ny are the acquisition matrix dimensions, N acq is the number of repetitions, R is the parallel accelaration factor, RBW is the read bandwith of the electronic chain, B 0 is the static magnetic field and G is the quality factor of the receiving antenna. From this equation, it is clear that the SNR could increase with higher static fields. But T 2 values decrease when the static field increase. Thus, one has to pay attention to the exponential part that will also decrease the SNR. The acquisitions must have reasonable TE to limit this effect, requiring strong gradients. The read bandwith, filtering around the MRI signal frequency, can be lowered in order to reduce SNR but this will inevitably lead to geometrical distortions.

As we already mentionned, the signal measured on the N channels of the receiving coil is a complex signal, but in MRI images this is the magnitude of this signal that is exploited:

M = N c=1 (S rc + noise rc ) 2 + (S ic + noise ic ) 2 .
(3.23) where r and i indicates real and imaginary parts of the signal or the noise. The noise is initially considered as gaussian for real and imaginary part. But when the modulus of the signal is performed on the signal measured from multiple channels, it is not longer Gaussian, it becomes a non-central χ noise ( [START_REF] Constantinides | Signal to noise measurements in magnitude images from nmr phased arrays[END_REF]). Assuming the same standard deviation for each channel, σ, the probability distribution is then :

p(M, σ) = S σ 2 ( M S ) n exp(-M 2 +S 2 2σ 2 )I n-1 ( MS σ 2 ) (3.24)
where M is the measured signal and I n-1 is the modified bessel function of n-1 order. When only one coil is used, the noise becomes Rician ( [START_REF] Bernstein | Improved detectability in low signal to noise ratio magnetic resonance images by means of a phase corrected real reconstruction[END_REF]], [START_REF] Rice | Mathematical analysis of random noise -and appendixes[END_REF])and has the following form :

p(M, σ) = M σ 2 exp(-M 2 +S 2 2σ 2 )I 0 ( MS σ 2 ) (3.25)
where I 0 is the modified bessel function of zero order. The figure 3.22 shows the probability density function for several values of S/σ. In the case of S = 0, the noise follows a Rayleigh distribution function (dark blue curve on the figure).

Different methods have been developed to denoise the diffusion data, but they are beyond the scope of this thesis, and are well described in [START_REF] Brion | Towards real-time diffusion imaging : noise correction and inference of the human brain connectivity[END_REF].

Diffusion signal expression

We here present the expression of the diffusion signal obtained using the PGSE sequence. [START_REF] Torrey | Bloch equations with diffusion terms[END_REF] extended the initial Bloch equations of the temporal evolution of the magnetization to include a diffusion term. This evolution can then be expressed as :

∂M (r,t) ∂t = γM × B(r, t) -(Mz-M 0 )z T 1 - Mxx-Myy T 2 + ∇(D∇M) (3.26) with M = M x + M y + M z .
In case of anisotropy, the signal expression is :

S(t) S 0 = exp(- t 0 k(t ) T Dk(t )dt ), (3.27) with k(t) = γ t 0 G(t )
dt , S 0 the signal without diffusion weighting, D the diffusion tensor and G the diffusion gradient. When the sample is isotropic, the signal 3.27 becomes :

S(t) = S 0 exp(-bD).
(3.28)

The b-value expresses the diffusion weighting of the sequence. The higher this value, the higher the attenuation. In the PGSE framework : assuming rectangular diffusion gradient pulses, one obtains :

b = γ 2 G 2 δ 2 (Δ - δ 3 
). (3.29) From this value, we can extract a effective diffusion time : Δ -δ 3 . These expressions above are valid in the case of free water, for the Gaussian diffusion propagator. If the environment exhibits restrictions, one can replace the diffusion coefficient D by the Apparent Diffusion Coefficient (ADC), that does not correspond to the true diffusion coefficient but that represents an average diffusion coefficient, integrating the constraints of displacements of water molecules by the natural barriers of tissue. In the case of a hindered environment, where the restrictions not fully constrain the mobility of water molecules, the ADC can be defined as the ratio between the true diffusion coefficient and a tortuosity coefficient Λ. The ADC can be sufficient to characterize some brain damages, even if the environment is not free. In fact, diffusion MRI experiments can provide more information than just the ADC, and different local models were established to infer angular and radial information of the probability of displacement of water molecules getting closer and closer to the tissue microstructure. The next section proposes a summary of the various models introduced during the last decade aiming at modeling the diffusion propagator, or more simply, the orientation distribution function.

3.4.3

Review of local models

Q-space analysis : dODF, fODF and diffusion propagator

We have introduced in the previous section the b-value, depending on the diffusion time and the gradient strength. [START_REF] Callaghan | Principles of nuclear magnetic resonance microscopy[END_REF] introduced the Q-space formalism, based on the relationship between the diffusion propagator and the diffusion signal measured in the space of the wave vector using the Fourier Transform [START_REF] Callaghan | Principles of nuclear magnetic resonance microscopy[END_REF] :

E(q, τ) = R 3 P (r, τ) exp(-iπq T r)dr , (3.30)
where E is the signal attenuation, P the diffusion propagator, q the wavevector :

q = γGδq (3.31)
The Q-space is therefore the dual space to the propagator space. The b-value can then be expressed by : b = q 2 T dif f , T dif f being the diffusion time. This relation is valid if the gradient pulses are very short but it is not technically possible to reach short enough gradient pulses. If this assumption is not verified, the relationship only allows to retrieve the ensemble average propagator, that still can provide significant angular and radial information on the diffusion process. This equation is the basis of a number of techniques developed to access to angular information of the propagator : different local models were proposed, trying to recover a probabilistic information on water diffusion, and exploit it to better understand the tissue microstructure. Usually, the propagator is not easily accessible and requires long acquisition schemes. In the community two other measures is often use to characterize the diffusion process in the white matter:

the orientation distribution function of the diffusion process (dODF) or the orientation distribution function of the fibers (fODF). They both give angular information about the local displacement. The dODF is the integration of the propagator along all the distances r :

dODF (o) = ∞ 0 P (r, t)r 2 dr. (3.32)
The fODF ( [START_REF] Tournier | Direct estimation of the fiber orientation density function from diffusion-weighted {MRI} data using spherical deconvolution[END_REF]) gives the fraction of fibers aligned along a certain orientation, thus providing a direct information on fibers configuration. The dODF and fODF give angular but no radial information, while diffusion propagator gives both information. These probabilistic functions can be inferred, as it is done for the diffusion propagator by Q-space sampling of the diffusion signal using relation 3.30. Different models were derived from this equation. We present some of them in the next section. models [START_REF] Tuch | Diffusion MRI of complex tissue structure[END_REF] were introduced, considering that each fiber population follows a

Gaussian diffusion process and the final model being the sum of the contributions of each population. Following the idea of [START_REF] Wansapura | Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri[END_REF] and to be able to approach the real fiber configuration within a voxel, a pletora of high angular resolution diffusion imaging (HARDI) models and hybrid diffusion imaging (HYDI) models were developed.

Most of these models inherit the former Fourier relationship and aim at decomposing the diffusion weighted signal on a basis of spherical functions. In these models, the Q-space sampling is optimized and is performed on a sphere, with optimized gradient orientations to cover the sphere (see Figure 3.23). Only few of the models exploit the radial component of the diffusion propagator, using multi-shell sampling ( [START_REF] Assaf | Composite hindered and restricted model of diffusion (charmed) {MR} imaging of the human brain[END_REF], [START_REF] Assemlal | Efficient and robust computation of {PDF} features from diffusion {MR} signal[END_REF], [START_REF] Descoteaux | Multiple q-shell diffusion propagator imaging[END_REF], [START_REF] Alexander | Hybrid diffusion imaging (hydi)[END_REF]), and most of them only rely on its angular profile. While the diffusion propagator is supposed to be the holy grail, few microstructural scalar features have been introduced but they generally suffer from a lack of specificity : a drop of the GFA value in a region cannot be directly linked to tissue microstructural modifications. More recently, [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diffusion mri[END_REF] have demonstrated that modeling the diffusion process with two separated hindered and restricted compartments and measuring the diffusion weighted signal at different diffusion times can create the adequate contrast to infer the local axon density and radii, thus turning diffusion MRI into virtual microscopy. The challenge is then to be able to get an analytical solution of the diffusion attenuation within a geometrical shape mimicking the membrane restricting the displacement of molecules as well as optimizing the number of samples (corresponding to a specific gradient magnitude, orientation and diffusion time) in order to maintain the feasibility of the scan in clinical routine ( [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF], [START_REF] Drobnjak | Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted mr[END_REF], [Zhang et al., 2011a]). [START_REF] Zhang | Noddi: Practical in vivo neurite orientation dispersion and density imaging of the human brain[END_REF] went further, starting to investigate the grey matter introducing the NODDI model to infer neurite orientation dispersion and density within the cortical mantle. These models will be discussed in Chapter 5.

All the methods issued from HARDI acquisitions can be separated into two major groups:

model-free techniques and model-depedent techniques. The latter use a-priori knowledge on the diffusion propagator. We summarize here the major techniques of these two groups, and we may not be exhaustive due to the pletora of models introduced since the last decade.

Model-free techniques :

• Diffusion Spectrum Imaging (DSI, [START_REF] Wansapura | Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri[END_REF]),

• The Q-Ball Imaging (QBI) ( [START_REF] Tuch | Diffusion MRI of complex tissue structure[END_REF]) introduces a spherical sampling of the Q-space, reducing the acquisition time of the DSI technique despite the decrease in angular resolution. It reconstructs the dODF from equation 3.32 using the Funk-Radon Transform,

• The Analytical QBall Imaging (aQBI) ( [START_REF] Descoteaux | Regularized, fast and robust analytical q-ball imaging[END_REF]) uses the same acquisition scheme as QBI but decomposes the signal into a modified spherical harmonics basis,

• The Diffusion Orientation Transform (DOT) ( [ Özarslan et al., 2006] provides an alternative to the dODF function, giving the propagator at a unique radius,

• The General Diffusion Tensor Imaging (gDTI)/Higher Order Tensor (HOT) ( [START_REF] Liu | Generalized diffusion tensor imaging (gdti): A method for characterizing and imaging diffusion anisotropy caused by non-gaussian diffusion[END_REF]) extends the diffusion tensor using a generalization of Fick's Law to a higher-order differential equation,

• The Persistent Angular Structure Imaging (PAS-MRI, [START_REF] Jansons | Persistent angular structure: New insights from diffusion mri data. dummy version[END_REF]) also extracts an alternative to the dODF, called Persistent Angular Structure, representing the mobility of spins in each direction,

• The Kurtosis Imaging technique (DKI, [START_REF] Jensen | Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging[END_REF]) quantifies the degree of non gaussianity of the diffusion process.

Model-based techniques :

• Composite hindered and restricted model of diffusion (CHARMED, [START_REF] Assaf | Composite hindered and restricted model of diffusion (charmed) {MR} imaging of the human brain[END_REF]] combines a hindered diffusion process corresponding to the extracellular compartment in the white matter voxel and a restricted compartment defined by the diffusion process in axons, modeled by a cylinder. The acquisition scheme required several b-values and several diffusion times,

• The Spherical Deconvolution (SD) ( [START_REF] Tournier | Direct estimation of the fiber orientation density function from diffusion-weighted {MRI} data using spherical deconvolution[END_REF])allows to retrieve the fODF, considering that each measurement is the convolution of the fODF with the impulse response of one homogeneous fiber population to the fiber process. The deconvolution technique uses a decomposition of the signal in spherical harmonics,

• The Constrained super-resolved spherical deconvolution (CSD, [START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion mri: Non-negativity constrained super-resolved spherical deconvolution[END_REF]) follows the idea of the SD,

• The Spherical Deconvolution Transform (SDT)( [START_REF] Descoteaux | High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography[END_REF] described in the next subsections,

• The Ball and Stick model [START_REF] Basser | Characterization and propagation of uncertainty in diffusion-weighted mr imaging[END_REF]) considers two compartments, the first one undergoing a Gaussian and highly anisotropic diffusion process (corresponding to fibers) and the second one corresponds to a fully isotropic gaussian diffusion process. Similar models were derived, using stick, cylinder or a distribution of cylinder for the restricted compartments, and ball, tensor or zeppelin for the extra-cellular part where an additional isotropically restricted compartment can sometimes be inserted (see [START_REF] Panagiotaki | Compartment models of the diffusion {MR} signal in brain white matter: A taxonomy and comparison[END_REF]),

• Multi Gaussian mixtures ( [START_REF] Tuch | Diffusion MRI of complex tissue structure[END_REF]) and Wisharts Mixtures ( [Jian and Vemuri, 2007]).

Some of the model-based techniques will be developed in Chapter 5, in the context of inference of microstructure parameters modeling the diffusion propagator. Next sections will expose a selection of these models, which are used in this thesis : the DTI, the analytical QBall and the SDT.

DTI

As previously explained, in white matter fibers, the diffusion parallel to the direction of the axon is not restricted but the diffusion phenomenon perpendicularly to this direction is contrained by membranes. This anisotropic behavior is described by the diffusion tensor model ( [START_REF] Basser | Estimation of the effective self-diffusion tensor from the nmr spin echo[END_REF]). This model is based on the observation that in tissues, the water molecules' motion can be approximated by a Gaussian distribution depending on a principal direction of diffusion assumed to be aligned with the direction of the fibers within the white matter. Therefore the propagator of (3.20) is adapted to take the different directions into account. The diffusion is not only characterized by a single D coefficient but by a matrix, the diffusion tensor D (Figure 3.24), corresponding to the covariance matrix of diffusion displacements. Finally the propagator has the form of a multivariate gaussian model :

P (r 0 , r 1 , t) = exp(-(r 1 -r 0 ) T D -1 (r 1 -r 0 ) 4t ) 4πt 3 |D| , (3.33) with D = ⎛ ⎜ ⎜ ⎝ D xx D xy D xz D yx D yy D yz D zx D zy D zz ⎞ ⎟ ⎟ ⎠ .
The final signal equation using a PGSE sequence is given by :

E(q, τ ) = exp(- T E T 2
) exp(-τ q T Dq).

Diagonalization of this matrix provides three eigenvectors : e 1 , e 2 , e 3 corresponding to the eigenvalues λ 1 , λ 2 , λ 3 ( in decreasing order), being the apparent diffusivities along the three principal directions of the tensor, the highest one corresponding to the apparent diffusivity along the main direction (along the fibers in white matter). When all the eigenvalues are equals, the diffusion is isotropic (see Figure 3.24). By measuring the signal attenuation in six directions, we can construct the tensor in each voxel and get the main axis of diffusion. This local model provides several measures such as fractional anisotropy (FA) (see Figure 3.25, right), apparent diffusion coefficient(ADC), the radial diffusivity λ ⊥ , the axial diffusivity λ :

λ = λ 1 λ ⊥ = λ 2 + λ 3 2 F A = (λ 1 -λ 2 ) 2 + (λ 2 -λ 3 ) 2 + (λ 1 -λ 3 ) 2 ) 2(λ 2 1 + λ 2 2 + λ 2 3 ) ADC = λ 1 + λ 2 + λ 3 3 .
From these data one can also infer the principal direction of motion of water molecules.

A common manner to represent it is the colour-encoded orientation map (RGB map), encoding the direction using RGB representations : the red, green and blue colors indicate respectively the x, y and z directions (see Figure 3.25). This technique, widely used this limitation, a multi-tensor model using a Gaussian mixture has been developed by [START_REF] Tuch | High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity[END_REF], before moving to high angular resolution diffusion imaging or HARDI models.

Numerical and analytical Qball imaging

New acquisition schemes were developed, using the relation (3.30), relying on the sampling of the Q-space to characterize the diffusion propagator. Indeed, to overcome the limitations of the DTI, and therefore access to the non-gaussianity of the diffusion process, more measurements were required. Alternative imaging such as High Angular Resolution Diffusion Imaging including the QBall ( [START_REF] Tuch | Q-ball imaging[END_REF]) and the analytical QBall ( [START_REF] Descoteaux | Regularized, fast and robust analytical q-ball imaging[END_REF]) arose. QBall imaging includes an acquisition scheme sampling the Q-space on a sphere (of radius corresponding to a high b-value ≥ 3000s/mm 2 ) to provide the angular information of the propagator, and therefore to obtain the dODF at each voxel. To reach sufficient precision, this technique requires a high number of diffusion orientation (> 60). In QBI, the diffusion orientation distribution function of the diffusion process (dODF) can be approximated from the signal measurements by the Funk-Radon Transform : [START_REF] Descoteaux | Regularized, fast and robust analytical q-ball imaging[END_REF]) uses the fact that any function on the sphere can be decomposed on a set of orthogonal functions, defined as spherical harmonics. In this model, the spherical harmonics have been modified to take into account the positiveness and the symmetry of the signal :

F RT (S(o, q 0 )) = 2πq 0 S 2 P (r, θ, z)J 0 (2πq 0 r)rdrdθdz. ( 3 
S(o) = K k=1 C DW I k Y k (θ(o), φ(o)),
with C DW I the coefficients obtained from the least square solution and using a Thikonov regularization :

C DW I = (B T B + λL) -1 B T S/S 0
with L the Laplace-Beltrami matrix and B the matrix of modified spherical harmonics :

Y k (θ, φ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ √ 2Re( (2l+1)(l-|m|)! 4π(l+|m|)! P | l m|(cosθ) exp i|m|φ -l ≤ m < 0 ( (2l+1)(l-m)! 4π(l+m)! P m l (cosθ) exp imφ m = 0 (-1) m+1 √ 2Im(( (2l+1)(l-|m|)! 4π(l+|m|)! P | l m|(cosθ) exp i|m|φ) 0 < m ≤ l
The Funk-Hecke theorem shows that the decomposition of the signal in spherical harmonics can be linked to the dODF :

dODF (o) = K k=1 C dODF k Y k (θ(o), φ(o))
with C dODF k = P C DW I and P the Funk-Hecke matrix (where the diagonal element are 2πP l(j) (0) with P l(j) the Legendre Polynomial of order l(j). An example using the analytical QBall model is presented in Figure 3.26. This technique provides improved information in comparison to DTI. First, we can derive here more than one principal diffusion direction : observing the peaks of the dODF or fODF provides the directions with the highest probabilities. The plurality of principal directions gives the opportunity of resolving fiber crossings. Second, we can extract a General Fractional Anisotropy :

GF A = n n i=1 (dODF (o i ) -1/n) 2 (n -1) n i=1 dODF (o i ) 2 , (3.36)
with n the number of orientations o i .

Spherical Deconvolution Techniques

The Spherical Deconvolution model introduced by [START_REF] Tournier | Direct estimation of the fiber orientation density function from diffusion-weighted {MRI} data using spherical deconvolution[END_REF] relies on the hypothesis that during the diffusion time, no exchange occurs between fibers and the final signal can then be decomposed as the sum of the response of all the different populations of fibers. Furthermore it assumes that the individual response of each fiber population are the same, except their orientations. This method can provide the fODF for which the signal is expressed as the convolution of the response of a single fiber R and the fODF :

S(q) = fODF(x)R(q, x)dx, (3.37) 
This approach has been improved in [START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion mri: Non-negativity constrained super-resolved spherical deconvolution[END_REF], who proposed a Constrained Spherical Deconvolution (CSD) approach, to optimize the resolution of the system when few sample points are acquired. [START_REF] Descoteaux | High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography[END_REF] introduced the Spherical Deconvolution Transform (SDT) where the fODF can be obtained from a spherical deconvolution of the dODF. The dODF is expressed as the convolution of the fODF with the impulse response of a single fiber R to the diffusion process :

dODF (o) = R(o, o )f ODF (o )do (3.38)
where R is expressed as a prolate tensor and, as we already presented before, this convolution can be performed analytically using a decomposition of the dODF in spherical harmonics (c j being the coefficients of this decomposition) and therefore obtain the coefficients d j of the decomposition of the fODF using:

f ODF (o) ≈ R j=1 2 * π * P l(j) (0) c j f j Y j (o), (3.39) with d j = c j f j , f j = 2π 1 -1 P l(j) (t)R(t)
. This technique will be used in the next chapter. We have just developed the major local modelings of the diffusion process. The next subsection will then present the applications of the diffusion weighted MRI.

Application of the diffusion weighted imaging

Through all these models, diffusion weighting imaging is now a powerful tool to infer structural information studying the displacement of water molecules in the tissue, particularly in white matter tissues where this displacement is highly constrained, due to the presence of the myelin sheath, considered impermeable regarding the diffusion time of the PGSE experiments. We already mentionned the use of DTI to characterize ischemia, only by exploiting the ADC maps coming from the diffusion data. One major application of diffusion weighted imaging in the white matter is the in vivo inference of the brain connectivity, by following the major pathways defined by the mobility of the molecules. These major paths reflect the actual fiber bundles, made of axons, in the brain but we can only define them by "numerical" fibers, since they are not real.

The second application of diffusion weighted imaging is the microscopic diffusion MRI, going further in the study of brain microstructure, modeling the diffusion propagator to extract structural parameters such as axon diameter and density in the white matter using models as the CHARMED ( [START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF]) model presented in the previous subsection. We only present here the tractography application, since the microstructure by diffusion MRI will be developed in the Chapter 5.

Inference of structural connectivity using tractography

The various local models of the diffusion process give in each voxel the angular probability of the displacements of water molecules. Following the direction(s) with the highest probability(ies) can provide the principal pathways of water motion, corresponding to the paths where the motion of water molecules is less restricted. In white matter, the direction where the molecules are less constrained corresponds to the parallel direction to fibers. That is the idea of tractography introduced by [Basser]. Tractography is still the unique tool to provide access to the anatomical connectivity of the brain in vivo and non invasively. Tractography techniques vary in their way to manage the reconstruction of the fiber paths.

The first and widely used technique is the streamline deterministic tractography. This technique was used in [START_REF] Basser | Characterization and propagation of uncertainty in diffusion-weighted mr imaging[END_REF] to compute the tractogram from DTI data.

The streamline is a 3D curve characterized by the fact that, at each point, the tangent at this streamline is always parallel to the main vector field represented, for the DTI example, by the principal direction of the tensor. At each step of the algorithm, a line is propagated, following the orientation having the highest probability according to the given local orientation field. In each voxel, several lines are drawn from different "seeds", where the dODF or fODF is interpolated. Taking into account the low curvature of fibers, streamling algorithms generally consider at each step of the propagator an aperture cone forwards or backwards restricting the domain of propagation within the cone thus speeding up the streamlining process (see Figure 3.28). Only the voxels belonging to a brain mask are considered, giving then a stopping criterion, usually defined using a FA or GFA threshold. More robust T 1 -based masks were also proposed by [Guevara et al., 2011a] to define the domain of propagation of streamlines without depending on an arbitrary FA threshold that quite often misses some pieces of white matter. Streamline tractography is very fast but, even if it is not limited to the tensor model, it cannot always resolve fiber configurations such as crossings or kissings and is sensitive to noise and potentially creates false positive fibers (noise can produce an artificial peak in the dODF) or miss fibers. An example of a deterministic streamline tractography is shown in Figure 3.27. The streamline probabilistic tractography algo- rithms [START_REF] Parker | Probabilistic monte carlo based mapping of cerebral connections utilising whole-brain crossing fibre information[END_REF], [Perrin et al., 2005b], [START_REF] Chao | A multiple streamline approach to high angular resolution diffusion tractography[END_REF], [START_REF] Berman | Probabilistic streamline q-ball tractography using the residual bootstrap[END_REF], [START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF] ) are an alternative, keeping a degree of uncertainty at each voxel. In such algorithms, the highest probability is not systematically followed. For example, a random orientation can be randomly chosen within the angular cone, centered on the highest probability given by the local model. Several particles are drawned randomly for each voxel, each of them following a process where the principal direction provided by the ODF field is not systematically followed. Probabilistic streamline algorithms can better handle fiber crossings and are more robust to noise as they can overcome propagation of errors. However, they take a longer time to reconstruct the whole tractrogram. Other algorithms were proposed such as Bayesian probabilistic tractography [START_REF] Basser | Characterization and propagation of uncertainty in diffusion-weighted mr imaging[END_REF], [START_REF] Friman | A Bayesian approach for stochastic white matter tractography[END_REF], [START_REF] Jbabdi | A bayesian framework for global tractography[END_REF], [START_REF] Morris | Probabilistic fibre tracking: Differentiation of connections from chance events[END_REF]), providing maps of probabilistic connectivity maps between regions using a Bayesian Framework, and Monte Carlo Markov Chain process to infer the probability of connection. Geodesic tractography ( [START_REF] Jbabdi | A level set method for building anatomical connectivity paths between brain areas using dti[END_REF], [START_REF] Jbabdi | Accurate anisotropic fast marching for diffusion-based geodesic tractography[END_REF])aims at finding for the shortest path linking two points in a specific space, corresponding to the diffusion space with a specific metric of the dODFs. Finally global gractography techniques ( [START_REF] Poupon | Détection des faisceaux de fibres de la substance blanche pour l'étude de la connectivité anatomique cérébrale[END_REF], [START_REF] Cointepas | A spin glass based framework to reconstruct brain fiber bundles from images of the water diffusion process[END_REF], [START_REF] Kreher | Gibbs tracking: A novel approach for the reconstruction of neuronal pathways[END_REF], [START_REF] Fillard | A novel global tractography algorithm based on an adaptive spin glass model[END_REF], [START_REF] Reisert | Global fiber reconstruction becomes practical[END_REF]) were developed to infer the whole set of brain connections globally rather than locally like the other techniques where each pathway is built independently of the other. [START_REF] Fillard | A novel global tractography algorithm based on an adaptive spin glass model[END_REF] introduced the use of "spin-glass" approach to infer white matter tracts. These spin-glasses are considered as pieces of tracts, and the idea is to optimize their configuration minimizing a global energy, attracting the spins to be oriented along the main fiber directions, and to form long chains with low curvature. If the number of spins is not enough to solve the local configuration (such as crossings), the algorithm allows them to be replicated. These global techniques are efficient since they are less blind than others but take longer computation time requiring strong optimization of the code and the use of high performance computing hardware.

Conclusion

We summarized the main knowledge about MRI we need to develop the contributions of this thesis work. Quantitative MRI and diffusion MRI are clearly two complementary modalities to investigate the cytoarchitecture. Before presenting the use of diffusion MRI to infer microstructural information, we will move to the first main contribution : the use of relaxometry data to extract information about microstructure and the interest of combining it with diffusion MRI in order to better characterize the white matter.

Chapter 4

Brain white matter relaxometry atlases

Introduction

The previous chapter introduced the basis of relaxometry and diffusion MRI. We have shown that both of them can provide information about tissue microstructure. On one hand, T 1 and T 2 relaxation times are generally used to characterize specific water compartments within tissues, such as water trapped in the myelin thus providing the associated myelin water fraction, which is an accurate biomarker for diseases inducing a demyelination of axons. On the other hand, diffusion MRI uses the interaction of water molecules with the surrounding tissue membranes to reveal the tissue organization and to provide for example the orientation of fibers within white matter, useful to study the anatomical connectivity of the brain in vivo. Therefore, relaxometry and diffusion MRI provide similar and complementary information on tissue microstructure, and it could be of great interest to combine them in order to study how they both characterize the white matter structure.

Relaxometry data have been used to study grey matter microstructure of the healthy brain (cortex or deep structures) providing mean values of T 1 and T 2 in predefined regions of interest ( [START_REF] Lee | Normal regional t1 and t2 relaxation times of the brain at 3t[END_REF], [START_REF] Wansapura | Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri[END_REF]) or using T 1 and T 2 mapping to delineate substructures ( [Deoni et al., 2005b]). However, these studies didn't involve the use of diffusion MRI data. Moreover, several studies have combined relaxometry and diffusion MRI data in the study of white matter to explore the structural variations along white matter bundles or the maturation of the infant brain ( [START_REF] Dubois | Quantification of tissues' maturation in the infant brain with multi-parametric mri[END_REF])

and better understand the link between these relaxation times and the underlying microstructure [START_REF] Chen | Characterization of white matter fiber bundles with t2 × relaxometry and diffusion tensor imaging[END_REF], [START_REF] Herve | Structural properties of the corticospinal tract in the human brain: a magnetic resonance imaging study at 7 tesla[END_REF], [START_REF] Russell-Schulz | What causes the hyperintense t2-weighting and increased short t2 signal in the cortico-spinal tract?[END_REF]).

To our knowledge, all studies were performed at the individual level and group analysis were generally performed directly from the average T 1 and T 2 values measured at the individual scale on specific ROIs. A more comprehensive analysis should include diffusion or relaxation parameters computed along the bundles, using the projection of scalar values onto a streamline or a surface representing the bundles [START_REF] Corouge | Fiber tract-oriented statistics for quantitative diffusion tensor {MRI} analysis[END_REF], [START_REF] Goodlett | Group analysis of {DTI} fiber tract statistics with application to neurodevelopment[END_REF], [START_REF] O'donnell | Tract-based morphometry for white matter group analysis[END_REF], [START_REF] Zhang | A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features[END_REF], [Jones and [START_REF] Johansen-Berg | Diffusion MRI : From quantitative measurement to in-vivo neuroanatomy[END_REF]. Concerning DTI parameters, [START_REF] Yeatman | Tract profiles of white matter properties: Automating fiber-tract quantification[END_REF] explored the FA variation along several bundles and [START_REF] Mårtensson | Spatial analysis of diffusion tensor tractography statistics along the inferior fronto-occipital fasciculus with application in progressive supranuclear palsy[END_REF] built a FA profile along the Inferior-Fronto Occipital fasciculus in progressive supranuclear palsy. [START_REF] Reich | Quantitative characterization of the corticospinal tract at 3t[END_REF], added to the DTI parameters the T 1 & T 2 values investigation along the corticospinal tract.

Only recently, [START_REF] Santis | Why diffusion tensor {MRI} does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain[END_REF] addressed the variation of combined diffusion parameters and relaxation times along several white matter bundles.

The first contribution of this thesis was to combine diffusion parameters and relaxation times along major white matter bundles in a large population of healthy subjects. To attain this goal, we first constructed reference quantitative atlases of profiles of the T 1 and T 2 relaxation times along white matter bundles and second studied their variability across the subjects, as well as the asymmetry of the profiles between the two hemispheres. These profiles were then compared to the profiles of diffusion parameters such as ADC, FA, λ and λ ⊥ . Therefore the ultimate goal is to provide a normative atlas of quantitative features along white matter bundles against which to compare pathological cases. In this chapter, we first briefly describe the CONNECT/Archi database used in the frame of this study, and we detail the processing pipeline developed to construct the two super-resolved quantitative atlases of T 1 and T 2 relaxation times. Then we develop the construction of the T 1 and T 2 profiles along long white matter tracts. From these profiles, we compute an asymmetry index useful to compare profiles between the right and left hemispheres. Finally we analyze the correlation between T 1 and T 2 values with diffusion parameters along the bundles.

The ARCHI database

The CONNECT/ARCHI database is a large human brain MRI database acquired in the frame of the European CONNECT project [START_REF] Assaf | The {CONNECT} project: Combining macro-and micro-structure[END_REF]] which aimed at inferring the connectome atlas of the human brain from functional and anatomical MRI data at 3T. Data were collected on a population of 79 healthy young subjects on a Tim Trio 3T

MRI system equipped with a 12-channel head coil (Siemens, Erlangen), and the part of the MRI protocol used to investigate diffusion MRI includes acquisition of the following datasets :

• a high resolution T 1 -weighted dataset using a MPRAGE sequence (160 slices; FOV 256mm, Phase FOV 93.8 % ; TH 1.10mm; TE/TR=2.98/2300ms; TI=900ms; FA=9deg; matrix 256x240; RBW=240Hz/pixel),

• a B0 fieldmap using a double echo gradient echo sequence for a posteriori correction of susceptibility artefacts,

• a single-shell HARDI dataset along 60 optimized diffusion directions [START_REF] Dubois | Optimized diffusion gradient orientation schemes for corrupted clinical dti data sets[END_REF] Usually, the T 2 relaxation time is computed from several spin echo sequences with varying echo times and T 1 relaxation time is computed from several inversion times from gradient spin echo sequences. But an accurate estimation of T 1 and T 2 in each voxel requires a sufficient sampling of echo times and inversion times, and therefore a too long scan duration for a clinical application. [Deoni et al., 2005a] proposed alternative approaches to historical spin echo and inversion recovery spin echo sequences to efficiently map the T 1 and T 2 relaxation times on the entire brain in a clinical acceptable time (on the order of half an hour for both). But these sequences require additional mapping of B 1 and of the inhomogeneties of B 0 since the model depends on varying flip angles. Another alternative is to use EPI sequences [START_REF] Poupon | Real-time epi t1, t2 and t2* mapping at 3t[END_REF], allowing to acquire several inversion and echo times in a reasonable time (5 minutes for each T 1 & T 2 map). These short acquisitions can even be used for the study of myelin formation on newborns or children where the scan time is even more limited [START_REF] Dubois | Quantification of tissues' maturation in the infant brain with multi-parametric mri[END_REF]. However, the use of EPI echo train reduces the achievable spatial resolution. Since the spatial resolution of the present study is obviously limited by the resolution of the diffusion data, the resolution provided by EPI sequences is therefore acceptable. Another consequence of the use of EPI sequence is the additional geometrical distorsions, which are also found in diffusion weighted data. Consequently, diffusion and relaxometry dataset will share a similar preprocessing step to correct for geometrical distorsions, thus yielding similar residual errors, before going to the main processing pipelines. First, a connectivity atlas was built from the diffusion data, providing well-known white matter bundles for each subject in a common space and scalar atlases of diffusion parameters. Second, relaxometry data were analyzed to built two super-resolved atlas of T 1 and T 2 relaxation times. Third, the relaxation times were projected on each bundle and hemisphere asymmetry as well as correlation between T 1 and T 2 and diffusion parameters were studied. The next sections will present in details these three steps.

Inference of an atlas of the structural connectivity

Using the method of [Guevara et al., 2011b], a probabilistic atlas of the human brain connectivity was built from the HARDI dataset as well as probabilistic atlases of several diffusion-based features such as FA and mean/transverse/parallel diffusivities [Duclap et al., 2013b], [START_REF] Assaf | The {CONNECT} project: Combining macro-and micro-structure[END_REF] 

Quality check and correction of imaging artefacts

Because the diffusion MRI data were acquired using an echoplanar imaging technique, it is sensitive to any local field inhomogeneities that are integrated (and consequently "amplified" during the long acquisition echotrain). As we described in chapter 3, artefacts can be classified in two categories: those due to hardware imperfections, and those due to the subject itself. The first class of artefacts includes eddy currents stemming from the commutation of strong diffusion gradients that can take longer to be switched off thus adding residual gradients at the same time of the application of the gradients along phase and read directions yielding geometrical distorsions. Post-processing techniques exist to correct a posteriori the distorsion that can be approximated to a combination of a translation, a scaling and a shearing along the phase encoding axis when the eddy currents are assumed short ( [START_REF] Mangin | Eddy-current distortion correction and robust tensor estimation for mr diffusion imaging[END_REF]). An alternative is to use assymetric bipolar gradients with two refocusing pulses as proposed by [START_REF] Reese | Reduction of eddy-current-induced distortion in diffusion mri using a twice-refocused spin echo[END_REF]] that compensate eddy currents to the first order. Spikes or vibration effects are also part of the first class. Spikes are due to RF contamination of the signal by a frequency generally equal to 50 Hz for instance due to an external device present in the magnet room but with a poorly filtered supplier. They can also be due to failing coil antennas (typically with dysfunctionning preamplifiers). They correspond to a strip pattern on the image that can be easily detected. Vibrations are a typical phenomenon present in dMRI due to the commutation of very strong gradients. They result from a mechanical coupling between the gradient coil, the patient bed and the subject itself. They lead to loss of signal in large areas and can also be detected quite easily [START_REF] Gallichan | Addressing a systematic vibration artifact in diffusion-weighted mri[END_REF]). Last for this first class of artefacts is the non Gaussian noise, being either Rician or χ-non centered depending on the parallel reconstruction algorithm. Siemens systems provides the GRAPPA reconstruction algorithm delivering reconstructed data characterized by a χ-non centered noise (see [START_REF] Brion | Towards real-time diffusion imaging : noise correction and inference of the human brain connectivity[END_REF]). The quality check pipeline of Connectomist 2.0 proposes automatic corrections for eddy currents, spikes and vibration effects, non Gaussian noise that was used to preprocess the diffusion MR data of the CONNECT/Archi database. The second class of artefacts is linked to the subject itself. First, susceptibility effects at the place of air-tissue interfaces like for instance close to the sinus or the bones induce field inhomogeneities leading to non linear distorsions and distorsions of the grey level intensity. Two solutions exist to correct for them : the first solution relies on the acquisition of a field map calibration scan from which the correction field can be inferred [START_REF] Jezzard | Correction for geometric distortion in echo planar images from b0 field variations[END_REF]) and the second solution consists of non linear registration of the distorted data to a T 1 -weighted anatomical reference free of susceptibility artefacts ( [START_REF] Bhushan | Correcting susceptibility-induced distortion in diffusion-weighted mri using constrained nonrigid registration[END_REF]). The two techniques are also available in Connectomist 2.0, but since B 0 field maps were acquired, the first solution was used to correct for susceptibility artefacts. Motion of the subject must also be dealt. Each diffusion weighting volume can be corrected to a b=0 s/mm 2 reference volume using a rigid transformation but the diffusion directions have also to be corrected by the rotation matrix stemming from the rigid transformation. Connectomist 2.0 also provides such a motion correction.

Local modeling and tractography

After the correction of artefacts, we computed a field of local diffusion models, providing the Orientation Distribution Function for each voxel. Several local models described in the previous chapter were applied in the Archi database and for the present study, Spherical Deconvolution Transform (SDT, [Descoteaux et al., 2009a]) was used. The SDT model was computed using a spherical harmonic order SH=6, a regularization factor λ = 0.0006. The Gaussian deconvolution kernel was estimated using the 300 most anisotropic (of FA at least equal to 0.65) voxels within the corpus callosum, assuming a cylindrical symmetry of the kernel (λ 2 = λ 3 ). A regularized streamline deterministic tractography [Perrin et al., 2005a] was performed with a propagation domain computed from the associated T 1 -weighted data ( [Guevara et al., 2011a]) using BrainVisa [START_REF] Cointepas | A freely available anatomist/brainvisa package for analysis of diffusion mr images[END_REF] / Morphologist [START_REF] Rivière | Automatic recognition of cortical sulci of the human brain using a congregation of neural networks[END_REF]. The regularized streamline deterministic tractography algorithm was chosen over the probabilistic algorithm in order to be compatible with the use of the bundle atlas of Guevara et al. [2011b]. Contrary to most existing tractography tools using a simple thresholded FA map where the choice of the threshold can be debated, our tractography domain is computed from the robust brain mask resulting from the Morphologist pipeline. An homotic erosion was applied using a skeleton of the sulci, in order to prevent any connection between the two sides of each sulcus, (this can happen at the millimeter resolution of the T 1 -weighted MRI).

We added to this mask a mesh of the deep nuclei to ensure a good delineation of the deep structures (see Figure 4.2). The parameters were as follows : aperture angle of 30 degrees, forward step of 0.2mm (corresponding to a eigth of the diffusion weighting spatial resolution), one seed per voxel of the propagation domain uniformly sampled. It provided an average of 30 millions of fibers per subject. 

Intra-subject and inter-subjects clustering

The fibers of each subject were clustered into small fascicles using the automatic technique of [Guevara et al., 2011b]. All the details about the algorithm are provided in [Guevara et al., 2011b] and [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multisubject bundle atlas[END_REF] but to summarize, the tractogram is first divided into four parts, fibers in the right hemisphere, fibers in the left hemisphere, fibers partly in each hemisphere, and fibers passing through the cerebellum. Secondly, these groups are again splitted in ten groups of different lengths (20-35mm, 35-50mm, 50-65mm, 65-80mm, 80-95mm, 95-110mm, 110-130mm, 130-150mm, 150-175mm, 175-200mm) and a hierarchical clustering is performed on white matter parcels using a 

Labelling

Centroids of the bundles of each subject obtained during the previous step are computed and compared, using a specific distance (corresponding to the maximum of the Euclidian distance between two points of the two centroids normalized by the difference between their lengths) to the centroids of all bundles of bundle atlas previously built by [Guevara et al., 2011b]. Each centroid of each subject receives the label corresponding to the closest bundle centroid of the atlas. In this way, we obtain all the well-known long white matter bundles for each subject. Figure 4.4 depicts the long white matter bundles combining the labelling bundles of the 79 subjects of the CONNECT/Archi database.

Diffeomorphic registration of subjects using DTI-TK

A common space is needed to build quantitative and probabilistic atlases. A simple affine transformation is not sufficient to register diffusion data because of the intersubject variability. Because our work focuses explicitly on white matter connectivity, the orientation information embedded in the orignal DTI or HARDI data have to be preserved. Different techniques have been proposed using either DTI or HARDI data.

[ [START_REF] Alexander | Spatial transformations of diffusion tensor magnetic resonance images[END_REF] described a method allowing to register DTI data keeping the original orientations of the tensor and DTI-TK proposed in [START_REF] Zhang | Deformable registration of diffusion tensor {MR} images with explicit orientation optimization[END_REF] provided a diffeomorphic tensor-based coregistration optimized for aligning white matter anatomy. With the emergence of HARDI-models going beyond DTI, new techniques were developped that took benefit of the high angular resolution of the ODFs or fODFs.

In [START_REF] Raffelt | Symmetric diffeomorphic registration of fibre orientation distributions[END_REF], diffusion weighted data were registered using a diffeomorphic transformation based on the decomposition of the fiber orientation distribution on a modified spherical harmonics basis. Another alternative was proposed by [START_REF] Yap | Sphere: {SPherical} harmonic elastic {REgistration} of {HARDI} data[END_REF] using an elastic registration of HARDI data based on the spherical harmonics decomposition of the diffusion orientation distribution function.

In our study, we chose the available DTI-TK software ( [START_REF] Zhang | Deformable registration of diffusion tensor {MR} images with explicit orientation optimization[END_REF], dti-tk.sourceforge.net)

which has been validated and used in several studies ( [START_REF] Wang | {DTI} registration in atlas based fiber analysis of infantile krabbe disease[END_REF], [START_REF] Keihaninejad | White matter tract changes in mild-to-moderate alzheimer's disease revealed by tensor-based registration analyses of diffusion tensor imaging[END_REF], [START_REF] Liu | Disrupted anatomic white matter network in left mesial temporal lobe epilepsy[END_REF],...) (in future analysis it could be useful to compare the results obtained with the DTI-TK software and the recent HARDI-based coregistration techniques). All the subjects' data were first coregistered to the IXI template (http://biomedic.doc.ic.ac.uk). Then, a new template was built from the DTI maps of all subjects. All subjects' data were then coregistered to this new template using the DTI-TK approach. In their approach, the authors first define a new distance between two tensors D 1 and D 2 in the space of diffusion tensor, defined as follows : 

||D 1 -D 2 || D = 8π 15 (||D 1 -D 2 || 2 C - 1 3 T r(D 1 -D 2 ) 2 ) (4.1) with ||D 1 -D 2 || C = T r((D 1 -D 2 ) 2 ),
φ(p) = Ω ||I s ((QS)x + T) -QI t (x)Q T || 2 dx (4.3)
for a region Ω and for p the parameters of the affine transform. Using this similarity measure allows to take into account the reorientation of the tensor during the optimization. The template is then divided hierarchically into several regions with a multi-scales approach (dividing each dimension by 4, 8, 16 and 32), and the optimization algorithm researches the best affine transformation between this region and the subject image.

The following regularization term is imposed on the borders of each region :

ψ(p i , p j ) = Ω i ∩Ω j ||F i (x) -F j (x)||dx, (4.4)
with F i the affine transformation corresponding to the region i. The final deformation vector field is computed by interpolating the deformation on borders to smooth the discontinuities between the obtained transformations of the regions separated by these borders. 

Super resolved quantitative atlases

Connectivity Atlas

Finally, several probabilistic atlases were computed from the 79 individual maps using the super-resolution technique, thus providing atlases at the initial resolution of 1.7mm 

High resolution relaxometric 3D atlases

Inference of individual relaxometry maps

As mentioned previously, echoplanar sequences were used to acquire the T 1 and T 2 datasets in order to significantly decrease the acquisition time to less than 5 minutes per dataset. Thus, the datasets suffer from the same geometric distortions as for the HARDI dataset, and were corrected for geometric distortions induced from susceptibility effects using the same approach based on the use of B0 field maps. Then, the corrected dataset was matched to the T 1 -weighted anatomy using a rigid 3D transformation and masked 

Inference of high resolution atlases

From the 79 individual T 1 and T 2 maps, high-resolution T 1 and T 2 atlases were built using the same approach as for the connectivity atlas. The individual T 1 and T 2 quantitative maps were coregistered to the diffusion-weighted data and were then transformed using the same diffeomorphic transformation in order to create a novel relaxometry atlas. 

4.5

T 1 and T 2 profiles along white matter bundles

Profile Computation

Our analysis relies on the combination of white matter and relaxometry atlases. Here, we present the mean profiles of T 1 , T 2 , ADC, FA, λ ⊥ and λ along 8 well-known bundles (arcuate, anterior arcuate, posterior arcuate, long cingulum, corticospinal, inferior fronto-occipital, inferior longitudinal and uncinate bundles) computed for the subjects of the CONNECT/Archi database. The thalamic radiations originally included in the To get the final profile for each bundle, there were several steps to be followed. First, a centroid was obtained from the merged bundles of all subjects. The centroid of each bundle was divided into 1mm length sections using a curvilinear coordinate system and a distance map was computed, assigning to each voxel the label of the nearest section.

The scalar values from relaxometry and diffusion data analysis of the high resolution atlases were computed along each fiber of each subject's bundle (each fiber is defined by a set of consecutive points and was resampled to get a regular distance of 0.1 mm between two consecutive points). The values obtained along each fiber of each subject's bundle were then projected onto the centroid providing an individual profile based on a group centroid. The average scalar value attributed to a section is obtained by integrating the interpolated values along the pieces of fibers intersecting the corresponding labelled region (see Figure 4.11). Finally, an average bundle profile was computed merging all individual profiles per bundle. One of the goals of this study was to be able to compare right and left hemispheres and to do so, the centroid sections have to be comparable.

Matching the profiles is a challenging task. [START_REF] Mårtensson | Spatial analysis of diffusion tensor tractography statistics along the inferior fronto-occipital fasciculus with application in progressive supranuclear palsy[END_REF] proposed a technique to register left and right profiles using anatomical landmarks (such as anterior and posterior commissures, internal capsule...). But this approach is limited and require manual delineation of these anatomical structures. [START_REF] Durrleman | Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents[END_REF] offered an alternative modeling bundles as currents. We here used a simpler technique. At the group level, we projected the left bundle onto the right hemisphere, using the symmetry with respect to the midplane between the two hemispheres of the brain. The right and left bundles were then merged and a common centroid was computed. Finally, the left centroid was obtained projecting the computed centroid back to the left hemisphere which allowed the comparison between the profiles of each hemisphere. 

Profiles of T 1 and T 2 along WM bundles

Main results are given in figures 4.13-4.18, showing the average group profiles for T 1 & T 2 as well as FA, ADC, λ ⊥ ,λ profiles (obtained from the SDT analysis of the diffusion data) of eight chosen white matter bundles and out of the 19 long available bundles in the high resolution atlas: the corticospinal tract, the group of the arcuate tract and anterior/posterior arcuate, the uncinate, the inferior longitudinal, the cingulum and the fronto-occipital fasciculi. Right hemisphere profiles are plotted in green and left profiles in blue.

Anatomical analysis of the profiles

As it was already exposed in section 3.3, for the white matter, the pool of water located inside the myelin sheath is caracterized by short T 1 and T 2 and the pool of water located outside the myelin sheath, including intra and extra axonal water is characterized by longer T 1 and T 2 relaxation times. Variations of T 1 and T 2 could then partially be explained by the degree of myelination with respect to free water. But other complicated chemical exchanges could also affect these relaxation times. Fiber configurations could also affect the T 1 and T 2 values such as highly packed fibers or crossings. The comparison with diffusion parameters profile can potentially help us to understand fluctuations of values in T 1 and T 2 profiles. In this section, we discuss the obtained profiles from an anatomical point of view.

General observations

T 1 profiles exhibit a similar pattern for all the bundles. The middle section relies on an area with packed and highly myelinated fibers for the chosen bundles, leading to low values for the T 1 relaxation times. When the fibers reach the cortex (at both extremities of the profiles), the fanning configuration, the partial volume effect with grey matter as well as potential crossings with U-fibers lead to higher values of T 1 . T 2 profiles generally follow the variations of the corresponding T 1 profiles, but the differences between the extremities and the middle of the bundles are not always as clear as for T 1 . Beyond these general considerations, we can notice some differences between the profiles of the different fasciculus, and for some of them we can correlate the variations along the profiles with the underlying anatomy along the bundles.

Arcuate Group (Figures 4.13-4.15 )

T 1 and T 2 profiles for three bundles of the arcuate group generally exhibit a simple pattern with low values in the middle of the fasciculus (corresponding to the deep white matter, without partial volume effect from grey matter). T 2 profiles have a larger variation across the subjects than T 1 profiles for these bundles. For the posterior arcuate bundle, T 2 values are still high in the middle of the tract while the FA remains high in this region.

Cingulum Tract (Figure 4.16)

T 1 and T 2 profiles show a little decrease from the anterior part to the posterior pregion, revealing microstructural differences between these regions, suggesting different fiber configurations, such as variation in the density or in the orientation dispersion. This differences are also indicated by a similar pattern of the radial diffusivity.

CorticoSpinal fasciculus (Figure 4.17)

The first consideration about the corticospinal tract concerns T 2 values significantly higher (between 80ms-105ms) than for all the other bundles (between 65ms-80ms), this has been reported previously in [START_REF] Reich | Quantitative characterization of the corticospinal tract at 3t[END_REF], [START_REF] Herve | Structural properties of the corticospinal tract in the human brain: a magnetic resonance imaging study at 7 tesla[END_REF], [START_REF] Russell-Schulz | What causes the hyperintense t2-weighting and increased short t2 signal in the cortico-spinal tract?[END_REF], that could be explained by the presence of large and sparsly distributed axons. T 1 and T 2 profiles of the corticospinal tract exhibits two peaks of hyperintensities (around the 25th and 60th sections) corresponding to the crus cerebri and the internal capsule respectively(small peak but in concordance with [START_REF] Russell-Schulz | What causes the hyperintense t2-weighting and increased short t2 signal in the cortico-spinal tract?[END_REF] and [START_REF] Herve | Structural properties of the corticospinal tract in the human brain: a magnetic resonance imaging study at 7 tesla[END_REF]). One hypothesis for the internal capsule peak is related to the presence of higher radii and sparsity of fibers in this region [START_REF] Russell-Schulz | What causes the hyperintense t2-weighting and increased short t2 signal in the cortico-spinal tract?[END_REF]).

An additional characteristic of CST profiles is that T 1 and T 2 profiles don't exhibit a clear variation at the level of Corpus Callosum fibers (around the 80th section), while FA and λ profiles clearly do, being sensitive to crossings.

Inferior Fronto Occipital fasciculus (Figure 4.18)

One particularity of the IFO profiles is the presence of a peak around the 100th section for both relaxation times, corresponding to the beginning of the external capsule which may be due to partial volume effect with nuclei surrounding this region. T 2 profile follows the trend of FA and λ from the 40th section, with a decrease from the posterior part to the anterior part of the fascicle ; T 1 , ADC and λ ⊥ exhibits a similar behaviour.

Inferior Longitudinal Fasciculus (Figure 4.19)

All the profiles of the inferior longitudinal fasciculus follow the same trend (except the T 2 profiles more stable), with a high-low-high pattern for T 1 , T 2 , ADC, λ ⊥ and low-highlow for the other parameters (that may be explained by the contamination of the signal by partial volume effect with gray matter at the extremities).

Uncinate fasciculus (Figure 4.20)

T 1 and T 2 profiles globally decrease along the bundles from the temporal lobe to the orbitofrontal cortex. The observed peaks in FA and λ profiles around the 40th section, where the fibers of the inferior fronto occipital fasciculus join the fibers of the uncinate, are less visible in T 1 and T 2 profiles.

Corpus Callosum

The profiles obtained for the corpus callosum (see Appendix C) depict spurious peaks probably stemming from partial volume effects due to the presence of neighborhing ventricles characterized by much higher T 1 and T 2 values. This indicates that partial volume effect should be considered in the future to improve profiling of quantitative parameters.

Study of inter-hemispheric asymmetries

For each measurement m, an asymmetry index was computed for each section of the centroid :

A(s) = (m(s) lef t -m(s) right )/(m(s) right + m(s) lef t ).
To compare the differences between right and left hemispheres, we performed a Wilcoxon test on each section of the profiles to compare the difference between right and left profiles of white matter tracts. Differences are considered significant for p-value< 0.01.

Results have been corrected for multiple comparisons using the False Discovery Rate.

Finally, we only considered series of at least four significantly consecutive sections. The second column of figures 4.13 -4.18 shows the median asymmetry index profiles for each bundle. The observed asymmetries are mostly small, inferior to 10% as already reported in [START_REF] Reich | Quantitative characterization of the corticospinal tract at 3t[END_REF] for the Corticospinal tract. In the figures, in red are depicted the asymmetries that were significantly different from 0. The higher asymmetry values are found for FA profiles. The difference of lateralization of the three segments of the arcuate has already been discussed in [START_REF] Hugdahl | Information processing in the cerebral hemispheres[END_REF], in terms of size. The long segment has a larger tract on the left side, the anterior segment has larger right tract and the posterior part is rather symmetrical. These observations are consistent with our findings, indicating more fibers (and then more myelin fraction, as T 1 and T 2 profiles suggest) on the left side for the long segment and on the right side for the anterior segment.

Cingulum asymmetries (Figure 4.16)

Differences have also been detected for the cingulum bundle with higher anisotropy of the left side that may indicate a higher myelination or fiber density in this hemisphere, confirmed by higher T 1 , ADC, λ , λ ⊥ on the right side. T 2 values seem to be slightly higher on the left side, but the asymmetry values are very low in comparison to the other parameters. Another interesting observation is that the asymmetry is clearly higher on the anterior part of the cingulum. This is interesting since anterior and posterior cingulum are implicated differently in different cognitive functions. This specificity was already found in other studies [START_REF] Gong | Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging[END_REF], and the decrease of this asymmetry has been reported in schizophrenic subjects in [START_REF] Wang | Anterior cingulum abnormalities in male patients with schizophrenia determined through diffusion tensor imaging[END_REF].

CorticoSpinal asymmetries (Figure 4.17)

The asymmetry profiles along the corticospinal tract indicate a higher anisotropy for the left side for most sections, confirmed by a higher right ADC, λ , λ ⊥ and T 2 . Surprisingly,

T 1 exhibits higher values on the left side. But for both T 1 and T 2 values the asymmetry values remain low in comparison to FA. This left domination could be explained by the handedness, since the Archi database is almost entirely composed of right-handed subjects (only three left-handed subjects). Several studies focus on this topic such as [START_REF] Seizeur | Corticospinal tract asymmetry and handedness in right-and left-handers by diffusion tensor tractography[END_REF] and [START_REF] Westerhausen | Corticospinal tract asymmetries at the level of the internal capsule: Is there an association with handedness?[END_REF], discussing the uncertainty about the origin of this asymmetry.

Inferior Fronto Occipital asymmetries (Figure 4.18)

No specific pattern was found for this tract. The T 1 and T 2 values seem to be higher in the right hemisphere in the posterior part, and higher in the left hemisphere for the anterior part. This trend is not the one followed by diffusion parameters, showing higher right values for ADC and λ ⊥ in the middle of the tract and higher left values for the rest of the tract.

Inferior Longitudinal asymmetries (Figure 4.19)

We cannot observe any global asymmetry for T 1 and T 2 profiles, while for diffusion parameters, the asymmetry profiles show a right lateralization (reported in [START_REF] Santis | Why diffusion tensor {MRI} does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain[END_REF]) for the region between the 20th and 60th sections (but only significant for ADC and λ ⊥ ) and higher values in the left hemispheres for the rest of the tract.

Uncinate asymmetries (Figure 4.20)

T 1 ,T 2 , λ , λ ⊥ and ADC values shows higher values on the left side while FA shows greater values on the right side. A right lateralization for the numbers of fibers was already found in healthy subjects in a comparison study with schizophrenic patients [START_REF] Highley | Asymmetry of the uncinate fasciculus: A post-mortem study of normal subjects and patients with schizophrenia[END_REF], indicating a greater right-sided fronto-temporal connectivity.

Comparison with the profiles of diffusion structural parameters

We computed the Pearson correlation coefficient of each section for each pair of dif- FA and T 2 is less evident, since sometimes there is a positive correlation and sometimes a weak negative correlation between the two. λ seems to be negatively correlated with T 1 but sometimes positively correlated with both T 1 and T 2 . Finally, λ ⊥ is globally positively correlated with T 1 , but T 2 has both positive and negative correlation with this parameter. These observations are consistent with the known existing link between T 1 & T 2 and the water compartments within white matter tissues. Both parameters are sensitive to myelination: in highly myelinated regions, relaxation time is shorten and the fractional anisotropy would be naturally higher, because myelination highly constrains the directionality of the water molecules. In this configuration, λ ⊥ is reduced, explaining the positive correlation with T 1 and T 2 values. Finally, when there is more free water and less myelin, the ADC increases as well as T 1 or T 2 relaxation times. We also noticed that generally, T 1 values show greater correlation with diffusion parameters than T 2 values, which could indicate that T 1 and diffusion parameters share a similar sensitivity to the microstructure variations. Interestingly, the observed correlations are not always homogeneously distributed along the bundles, some regions being more correlated than others. This observation can be related to the presence of one or more fiber populations as discussed in [START_REF] Santis | Why diffusion tensor {MRI} does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain[END_REF], since the impact of different fiber organizations is not the same for all parameters (FA is, for example, reduced in the presence of multiple fiber populations). We also observed positive and negative correlations between the same couple of parameters along the same bundle. This singularity confirms the complementarity of relaxation times and diffusion parameters to characterize the microstructure of white matter bundles. We list here some specificities of several bundles.

We observed positive correlation between ADC, T 1 , λ ⊥ and T 1 but not with T 2 in the fanning part of the corticospinal tract (Figure 4.23), while a negative correlation occurs between FA and T 1 . In this region, where a high partial volume effect is present, T 2 values don't seem to exhibit the same trend than the other parameters, pointing out a difference of sensitivity, maybe to free water fraction of T 1 in comparison to T 2 . We further obeserved positivie correlation between FA and T 1 and T 2 at the level of crossing with callosal fibers. It can be explained by the fact that crossing fibers lead to a decrease in FA values which are sensitive to the orientation dispersion and on the other hand lead to larger concentration of myelin, which is characterized by the domination of the shortest T 1 and T 2 component.

Arcuate group (Figure 4.21-4.22) exhibits a high negative correlation between T 1 and FA profiles for most of the bundles. This is less evident for T 2 relaxation times. Some regions exhibit negative correlation between T 1 and λ but whereas the T 2 and λ correlation is sometimes positive (for the posterior arcuate tract). Finally, positive correlation exists between T 1 and λ .

The correlations observed in the cingulum tract (Figure 4.22) show differences between the anterior and posterior parts, differences that we already noticed in the asymmetry analysis. ADC and λ ⊥ have positive correlation with both T 1 and T 2 values while this correlation is negative with FA and λ . In this tract, where the profile is stable, we can see that T 1 and T 2 are strongly correlated to diffusion parameters and therefore sensitive to the anisotropy of the tissue. The inferior-fronto-occipital (Figure 4.23), inferior longitudinal and uncinate tracts (Figure 4.24) show the same trend. This study confirms the T 1 & T 2 link with the different water compartments but also that their combination with diffusion parameters can help to reveal particular structural organization, fiber packing, density and orientation dispersion for example. Furthermore, the T 2 profiles seem to be less related to the diffusion parameters' profiles. Relaxometry and diffusion measures provide individually important information about the underlying microstructure, but more importantly the relationship between them can improve our understanding about the structural variations within the white matter.

Conclusion

The quantitative mapping of T 1 and T 2 relaxation times may be complementary to diffusion MRI and bring new insights about the cellular organization of white matter. In this chapter, we have developed two novel high (500μm isotropic) resolution quantitative atlases of T 1 and T 2 relaxation times within white matter from a large sample of healthy subjects. We combined the atlas of long white matter bundles stemming from the CON-NECT/Archi database with our relaxometry atlases to propose a first atlas of mean T 1 and T 2 profiles along white matter bundles. Our results demonstrate that T 1 and T 2 values are clearly sensitive to the microstructure and can be related to other structural parameters such as the anisotropy or the ADC. The differences we could observe between T 1 and T 2 profiles and profiles stemming from diffusion parameters indicate that they don't exactly provide the same information, but complementary information. The analysis of asymmetries between right and left hemispheres shows that some differences that remain moderate (<10%) for both T 1 and T 2 exist. Even if the level of asymmetry is often low, it appears significant for several bundles such as the corticospinal, the arcuate or the cingulum tracts. Moreover, the noticed asymmetry has been previously reported from a morphological point of view (volume asymmetry, differences of fiber numbers, etc...). Finally the correlations between T 1 and T 2 relaxation times and the diffusion parameters show again the clear relationship between the variation of the relaxation times and the variations in the microstructure. The findings of this work complete the observations made in [START_REF] Santis | Why diffusion tensor {MRI} does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain[END_REF].

The current analysis pipeline is reliable but it could be improved in the future. For instance, the profiles are computed using a centroid which is highly dependent on the obtained bundle relying itself on the tract clustering step. Moreover, it could also not be accurately representative of the bundle. For example, in the corpus callosum where it is not in the antero-posterior direction or in the case of fanning configuration. This part could be improved using surface modeling of bundles as introduced in [START_REF] Zhang | A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features[END_REF]. HARDI-based registration technique could also improve the accuracy of the profile computation. As we already explained, the relaxometry data were acquired with a very limited scan duration with the aim of allowing such a protocol to be used in clinical routine. The T 1 and T 2 mappings could then be improved using different acquisition strategies, but the results we obtained already give the opportunity to get structural information on the scanned population. The computation of the profiles along the bundles extracted and labelled from the tractography of each subject allowed to access to more local information along bundles. This is a further step towards the understanding of the white matter microstructure, and future work will consist in correlating the T 1 & T 2 information with the axon density and radii maps available today with diffusion-based axon calibration techniques. In the same manner, we can build atlases from patients suffering from different pathologies such as Alzheimer's or Parkinson's diseases, and compare the profiles to the healthy average profiles provided by our atlas now considered as a normative atlas. The profiles of these parameters could also be used to study variations of the white matter microstructure with respect to the age as well as white matter maturation during early brain development. This work has been presented at the ISMRM conference in 2013 ( [Lebois et al., 2013a]) and recently submitted to the NeuroImage Journal. This work focused on different parameters such as T 1 , T 2 , FA, ADC, λ or λ ⊥ . We have shown that they can provide different contrasts depending on the underlying microstructure. But all these parameters suffer from a lack of specificity, and it is often difficult to understand which modification in the cytoarchitecture can explain the differences we observed for these parameters. The following chapter proposes to address the problem of this specificity, trying to get closer to an in vivo microscopy of the tissue. Diffusion MRI could provide a unique tool to reach this ultimate goal. We will describe how it is now possible to probe the cytoarchitecture using specific diffusion MRI schemes and how this thesis contributes to these new techniques.

Chapter 5

Microstructure mapping using diffusion MRI

In the previous chapter, we used the combination of diffusion MRI and relaxometry to build an atlas of profiles of relevant related features along the white matter bundles,

showing the ability of these modalities to give complementary information and help to characterize part of their microstructure. T1, T2, FA, ADC, λ , λ ⊥ are all sensitive to the microstrucure but they suffer from a lack of specificity: a variation in fractional anisotropy reveals change in the tissue, but we can't clearly assess whether this variation comes from a variation of the axonal compartment or of the extracellular compartment.

This part looks even further in the microstructure study at the cell level. Here, we intend to access to specific parameters such as cell sizes and densities to come closer to an in vivo microscopic scale, using diffusion MRI. Diffusion ensemble average propagator (EAP), the holy grail of the dMRI, can be obtained from multiple-shell spherical sampling of the Q-space (see [START_REF] Assemlal | Efficient and robust computation of {PDF} features from diffusion {MR} signal[END_REF], [START_REF] Descoteaux | Multiple q-shell diffusion propagator imaging[END_REF]) or cartesian sampling of the Q-space (see DSI [Wedeen et al., 2000]). But astonishingly, few information about tissue microstructure can be computed from EAPs, as of today. An alternative to EAP imaging relies on the modeling of the restriction effects occuring in cells, using models of the diffusion attenuation within simple (quite often oversimplistic) models of the geometry of cells. In the case of white matter, the signal attenuation depends on structural parameters such as axon radius or distribution and on sequence parameters. By measuring the diffusion attenuation with an adequate sampling of the Q-space (typically, in a PGSE experiment, the gradient strength, the pulse width and the diffusion time), the signal expression can be fitted to derive microstructure features. The first difficult task is the tissue modeling, because of the complexity of the brain cytoarchitecture. In diffusion MRI, the model must remain not too complicated, for several reasons. The first reason is that the diffusion propagator expression is well known for geometry such as spheres or cylinders, but is far more difficult to find for more complex geometries. Secondly, a complicated model induces a high number of parameters, and therefore a higher number of measurements is required to be able to estimate them accurately. For clinical application, the acquisition time is limited to 1h30, and doesn't allow to obtain the sufficient number of measurements for complex model. In In this chapter, we describe the different models and sequence schemes of the literature focused on this new field of dMRI : diffusion MR microscopy (μdMRI). We also expose the contributions of this thesis on the subject : first, the derivation of a novel model of axon and cells, taking into account the biphasic behavior of the water in the cells and second the development of a novel Arbitrary Gradient Spin Echo sequence able to run on any 3T and 7T Siemens MRI system.

Microstructure modeling of the brain tissue

Inferring microstructure parameters such as cell sizes or density using diffusion MRI requires to develop mathematical models of the diffusion process in the tissue. The diffusion signal is in fact the result of a composition of signals coming from different compartments of the tissue, usually corresponding to the main cell species of the tissue, such as neuron bodies, axons, dendrites, glial cells, oligodendrocytes and astrocytes. These different components have to be modelled, and since dMRI is sensitive to the movement of water molecules, the issue of exchange between these different compartments has to be addressed. Natural barriers such as membranes are indeed not impermeable and allows the water molecules to go from one compartment to the other. These different aspects of tissue modeling will be discussed before reviewing the current white and grey matter models. Principles of diffusion MR microscopy and the associated sequences will also be presented as well as contributions of this thesis on this topic. In grey matter, the extra-cellular space, neural cells, astrocytes and dendrites are considered. Once these comparments are defined, we have to take into account the exchange of water between these compartments. In addition, CSF compartment is generally added to take into account any partial volume effect due to the limited spatial resolution of dMRI data. 

Exchange between compartments

As it was presented in the previous section, modeling the diffusion process in brain tissues requires the definition of different compartments of the tissue. But a very difficult task is to take into account the fact that in the human brain, the water compartments are not fully isolated but are in permanent exchange. This exchange process comes from the nature of cell membranes. Cell structure is depicted in Figure 5. and proteins channels allow for those substances to travel between the two spaces. The pumps are responsible for the transport of ions and small molecules. A specific channel called aquaporin (see Figure 5.3) is responsible for water molecule transport. The main aquaporin existing in the human brain is the AQP4, found in the membranes of the astrocytes. The presence of myelin will slow down the water exchange, therefore the exchange is higher in astrocytes than in axon. In diffusion modeling, the permeability is characterized by the p parameter, (in cm s -1 ) directly linked to an exchange rate k = pS V with S the surface of the membrane and V the volume of the structure. The exchange rate is the inverse of the residence time τ . In [START_REF] Stanisz | Diffusion mr in biological systems: Tissue compartments and exchange[END_REF] this question is addressed. The permeability has a variable impact on the diffusion signal strongly depending on the diffusion sequence parameters , especially the diffusion time of the experiment. Depending on the type of exchange we consider, the model has to be adapted. We can distinguish slow, fast and intermediate exchanges. The notions of slow/fast is of course relative to the diffusion time of the observation.

In the case of slow exchange between the intra and extra-cellular water for example, the [START_REF] Ayus | Brain cell volume regulation in hyponatremia: role of sex, age, vasopressin, and hypoxia[END_REF] PGSE signal can be described as the weighted sum of the two compartments :

S S 0 = f exp(-bADC i ) + (1 -f ) exp(-bADC e ) (5.1)
where f is the volume fraction of the first compartment and ADC k are the apparent diffusion coefficients of the two compartments. Intermediate and fast regimes can be solved using Karger equations. The residence time varies between 12 ms and 600ms in the human tissue, and axon has a residence time of about 500ms [START_REF] Quirk | Equilibrium water exchange between the intra-and extracellular spaces of mammalian brain[END_REF]. The residence time for glial cells is significantly shorter. Therefore, if the diffusion time of the experiment is short enough, the axon membrane can be considered as impermeable and the glial cells are just barriers hindering the water molecules. Grey and white matter models have been developed taking the multi-comparment aspect of the tissue and the exchange issue into consideration. We will now list the major models developed in the field of diffusion MRI in the past up to now.

State of the art of tissue modeling

Current white matter models

White matter composition has been described in Chapter 2. It contains mainly myelinated axons, surrounded by glial cells and CSF. Various models have been proposed

to describe white matter tissues, starting from the simple biexponential model to the CHARMED model [START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF]). In these models, axons are often modeled as packed cylinders whose diameters correspond to the inner diameter, not taking into account the myelin layers. The main differences between the various models consist of the number of compartments that are chosen, the possibility to deal with the orientation dispersion of the axons and to take into account the membrane permeability. Most models were developed assuming that the acquisitions are performed using PGSE sequences.

However, they can be used with alternative sequences that we will describe later.

Beyond monoexponential model : biexponential model of white matter

The monoexponential model defined using a Gaussian propagator has been shown to not perfectly describe the signal. A biexponential model, with slow and fast ADC was found to be more accurate, especially for high b-values. This very simple model is described as follows :

S = S 0 (f slow exp(-bD slow ) + f fast exp(-bD fast )) (5.2)
The expected volume fractions would correspond to the extra and intra cellular fractions, since the diffusion in the extra-cellular (20%) is much faster than in the restricted part (80%). But in several studies, it has been shown that the fractions don't match with the extra and intra cellular fractions : f slow ≈ 20%. This model is therefore not very descriptive of the tissue microstructure and it doesn't well fit the signal at very high b-values. This model will be discussed in the next section, where we see that slow and fast pools can be used to extend the current axon model.

First analytical model with cell geometrical model

In 1997, [START_REF] Stanisz | An analytical model of restricted diffusion in bovine optic nerve[END_REF] 

ADC E = D λ .
The diffusion coefficient for the ellipsoid and spheres is defined as the diffusion coefficient of water molecules between two flat and impermeable barriers of spacing corresponding to the cell diameters. This model shows the ability of the PGSE sequence to provide structural information through tissue modeling. But this experiment was performed in ex vivo conditions, and the model has to be adapted for in vivo application.

Ball and Stick model

In [START_REF] Basser | Characterization and propagation of uncertainty in diffusion-weighted mr imaging[END_REF]), the ball and stick model has been introduced defining the signal in the white matter as the sum of one isotropic compartment ( corresponding to the extra-cellular space) and one completely anisotropic compartment, corresponding to axons, represented by one stick. The signal model is then expressed, in a PGSE framework, as follows :

S = S 0 ((1 -f ) exp(-bD) + f exp(-bD(g T n) 2 )) (5.3)
with b the b-value, D the mean diffusivity, g the gradient orientation, n the fiber orientation. This model can be extended to several fiber populations. Different models were derived from this kind of model : the extra-cellular part is either modeled as a complete isotropic ball or as a zeppelin (a tensor with cylindrical symmetry) or a full tensor; the [START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF] intra-cellular cellular part is modeled using sticks or cylinders. Advanced models of this type, such as the ball and racket model adds a support for fanning configuration of the fibers [START_REF] Sotiropoulos | Ball and rackets: Inferring fiber fanning from diffusion-weighted {MRI}[END_REF].

The composite hindered and restricted model of diffusion (CHARMED)

A major model has been introduced in [START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF] decomposing the signal in white matter into two different compartments : an hindered compartment corresponding to the signal coming from the extra-axonal space and a restricted compartment coming from molecules trapped in the axon (see Figure 5.5). This model considers the myelin sheath as impermeable, considering the diffusion time used in the experiment. The signal equation is then expressed as follows :

E(q) = f hindered E hindered + f restricted E restricted (5.4)
with f h and f r the volume fraction of the hindered and restricted compartment. The hindered compartment is following a Gaussian distribution and the restricted compartment is modelled using the diffusion propagator of a population of parallel cylinders, representing the axons. Diffusion in cylinders with different boundary conditions was introduced in [START_REF] Callaghan | Pulsed-gradient spin-echo {NMR} for planar, cylindrical, and spherical pores under conditions of wall relaxation[END_REF]. The CHARMED model have been used in two major frameworks : the AxCaliber framework developed by [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diffusion mri[END_REF] and the ActiveAx framework developed by [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF]. These frameworks define specific protocols to infer white matter microstructure, and were used to study in particular in the corpus callosum. The protocols will be detailed in the section 5.5. In the AxCaliber framework model, the restricted part of the CHARMED model corresponds to a whole distribution of axon diameters (using a gamma Γ distribution, chosen for its consistency with axon diameter distribution observed in the corpus callosum using electron microscopy). Axons are represented as packed parallel and impermeable cylinders. In the ActiveAx framework, white matter is defined as a collection of axons with the same diameter (corresponding to the average diameter of the real distribution). In the recent work derived from ActiveAx [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion {MRI}[END_REF], two other compartments were added : the signal from the CSF (considered as gaussian and isotropic) existing because of partial volume effects and the signal stemming from the resident water, trapped in glial cells.

Extension of CHARMED model for orientation dispersion

But in these models only one fiber orientation was considered, which is acceptable in the corpus callosum configuration, where all the fibers are strongly structured with few orientation dispersion but which fails in other part of the white matter. For this reason, the model used in ActiveAx has been extended by [Zhang et al., 2011b], introducing in the model the possibility to characterize the dispersion of the orientations of the axons by the use of an axonal orientation distribution, modeled as a Watson's distribution.

Models including myelin sheaths

All the models such as the CHARMED model, do not include myelin sheath in their model, and only consider its effect on the permeability of the axons. Several studies extended the cylinder model using a thick layer arount the inner cylinder corresponding to the axon. [START_REF] Sen | A model for diffusion in white matter in the brain[END_REF] studied the apparent diffusion coefficients of different configuration of arrays of cylinders having a thick layer corresponding to the myelin sheath. Inner core, membrane and myelin sheath were considered as distinct compartments. This model has the advantage of being closer to the real tissue structure of white matter but necessarily adds additional parameters to characterize the tissue, making the inference more complex from a computational point of view.

Comparison of the white matter models

In [START_REF] Panagiotaki | Compartment models of the diffusion {MR} signal in brain white matter: A taxonomy and comparison[END_REF] all the existing white matter models were compared and it is shown that the model including the restricted part corresponding to the axons better explains the data than the others. Considering the actual size of axons and the diffusion process in the extracellular space as described in CHARMED model improves the fitting process, and the results using a whole distribution of axon diameter (AxCaliber) is less stable than with an average axon diameter (ActiveAx) when targetting clinical applications.

Grey matter models and mixed models

Modelling grey matter is a difficult task in comparison to white matter. The tissue is not well structured, with random orientations and a high permeability. It is common to reduce the geometry of neuron bodies to a sphere. In grey matter models, the permeability must to be taken into account. The experiments on grey matter to infer the cell diameter are constrained by the presence of high membrane permeability of cells.

Indeed, the sensitivity of the signal to the cell membranes are therefore reduced in comparison to the highly restricted compartment of the axons. Adding the permeability parameters in the model increases the complexity of the model and consequently also increases the instability of the fitting procedure. However some studies focussed on grey matter trying to map the density of dendrites. [START_REF] Jespersen | Modeling dendrite density from magnetic resonance diffusion measurements[END_REF] and [START_REF] Jespersen | Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy[END_REF] introduced a two-compartment model: one characterizing the diffusion inside axons and dendrites (neurites) using cylinders, and the other corresponding to the diffusion component coming from the other compartments. An orientation distribution function was also used to extract neurite orientations. This approach showed good agreement with electron microscopy data and allowed to characterize both white and grey matter tissues. [START_REF] Zhang | Noddi: Practical in vivo neurite orientation dispersion and density imaging of the human brain[END_REF] This study differs from the previous one by the will of the authors to map neurite density in clinical routine, relying on the same protocol optimization as ActiveAx, that will be develop in the next section.

Figure 5.6 summarizes the geometrical models for white and grey matter. 

Beyond the CHARMED model : axon model using a two-pool model cylinder

Several studies [START_REF] Niendorf | Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion-weighted imaging[END_REF], [START_REF] Assaf | Non-mono-exponential attenuation of water andn-acetyl aspartate signals due to diffusion in brain tissue[END_REF]], [START_REF] Clark | Water diffusion compartmentation and anisotropy at high b values in the human brain[END_REF]) revealed the fact that the behavior of diffusion inside the cell is not monoexponential, thus revealing the existence of fast and slow pools inside the cell. This approach was mainly used in the study of the decrease of ADC in the case of stroke.

Several hypothesis were introduced to explain this phenomenon : the cellular swelling, the changes in membrane permeability or the decrease of water mobility in the cell.

But in fact, ADC doesn't depend on permeability, so the explanation could be either in swelling or decrease of water mobility in the cell. However, the biological effects are still debated and controversy.

Do the fast and slow pools correspond to extra and intra-cellular space ?

The first idea to explain this biexponenital behaviour is to match the fast pool to the extra-cellular space (since the diffusion is only hindered, the ADC has to be relatively high) and the slow pool the intra-cellular space (because of the restriction). If this configuration is the right one, we should find f fast = f extra and f slow = f intra . But [START_REF] Niendorf | Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion-weighted imaging[END_REF] found in the rat that the volume fractions corresponding to a fast/slow two pool model don't correspond to the extra and intra cellular volume fractions with f slow ≈ 0.2% and f fast ≈ 0.8, while f extra ≈ 0.3 and f intra ≈ 0.7. Similar results were presented in [START_REF] Clark | Water diffusion compartmentation and anisotropy at high b values in the human brain[END_REF] in the human brain, suggesting that the two pools don't match the extra and intra cellular spaces. [START_REF] Assaf | Non-mono-exponential attenuation of water andn-acetyl aspartate signals due to diffusion in brain tissue[END_REF]] and [START_REF] Sehy | Evidence that both fast and slow water adc components arise from intracellular space[END_REF] showed that this biexponential behaviour is also found in the cell itself, revealing the presence of two compartments inside the cell.

A biexponential diffusion behaviour inside the cell

But it can't be directly applied to the human brain. [Le [START_REF] Bihan | The 'wet mind': water and functional neuroimaging[END_REF] suggested that the signal coming from the axon is in fact stemming from two different pools : one near the membranes, characterized by a slow diffusivity coefficient and one far from the membranes, characterized by a higher diffusivity. This model suggests that water in cell could have a different organization than in simple bulks of water. In the cell, the cytoplasm contains many molecules and proteins and membrane itself is made up of two layers of phospholipids with proteins. It has been shown that by their negative charges, the proteins will naturally attract dipolar water molecules. This attraction will then induce a particular organization of the water molecules around the proteins, giving "structured water". If in the litterature this organization has been found uniquely in the range of one or two layers of molecules [START_REF] Clark | Water diffusion compartmentation and anisotropy at high b values in the human brain[END_REF], [START_REF] Stiopkin | Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy[END_REF], representing a distance from the proteins of 0.3nm, other studies [START_REF] Rorschach | Diffusion of water in biological tissues[END_REF] extended this behaviour to several layers, suggesting that a high proportion of the cell would contain structured water. More recenlty [START_REF] Xu | Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface[END_REF]] and [START_REF] Shelton | Collective molecular rotation in water and other simple liquids[END_REF] studies support the idea of a long range of the cooperative effect of the proteins, up to 200nm around the protein. This effect would be reinforced near the membrane, because of the thick matrix around the membranes containing proteins (glycocalyse and cytoskeleton).

In the presence of highly structured water, the diffusion coefficient is strongly reduced, leading to the formation of a "slow pool". In this configuration, the two-pool model can be defined as follows : the fast pool contains water molecules interacting with the water hydration shell around macromolecules. The slow pool corresponds to structured water molecules with reduced mobility, explained by the spatial distribution of charges at the membrane surface, leading to an increase of structural order [START_REF] Francesco Sciortino | Effect of defects on molecular mobility in liquid water[END_REF].

The slow pool will also include the water molecule around the macromolecules in the cell, but the molecules near the membranes are in much greater proportions. This model can be used assuming a slow exchange between the two pools but it can be modified using the Karger equations to take into account an intermediate exchange. This hypothesis is supported by the findings of [START_REF] Buckley | The effect of ouabain on water diffusion in the rat hippocampal slice measured by high resolution nmr imaging[END_REF] and more recently of [START_REF] Jelescu | Effects of hypotonic stress and ouabain on the apparent diffusion coefficient of water at cellular and tissue levels in aplysia[END_REF], where ouabain was used to cause cell swelling. It has been found that in this case, the slow pool fraction increase but neither the fast or slow diffusion coefficient change.

One plausible explanation is therefore that the membrane surface increasing during the swelling, the slow pool fraction will therefore increase too. This model could explain the ADC drop in the case of a stroke, and findings using simulation of [START_REF] Yeh | Diffusion microscopist simulator: A general monte carlo simulation system for diffusion magnetic resonance imaging[END_REF] confirms that this ADC drops could be explained by the increase of the surface of the membranes, leading to an increase of slow pool volume fraction, finally giving a drop in the ADC. For a cell with a 1 μm radius, [Le [START_REF] Bihan | The 'wet mind': water and functional neuroimaging[END_REF] computes a slow layer of 50nm around the membranes. We here propose this new model for a new application in axon calibration to maybe overcome the recurrent overestimation of the smallest axon diameters using the CHARMED model.

Cytoarchitectural modeling of the grey matter : beyond the sphere model

The same assumption can be used in grey matter. We can apply the two-pool model on the sphere to model biphasic cell in grey matter. 

Diffusion MR microscopy

This section presents the different approaches in diffusion MRI microscopy. Diffusion MRI microscopy aims at extracting microstructural features by modeling the tissue and measuring the diffusion signal to fit the model parameters. We already listed the different models for white and grey matter. This part introduces the various frameworks differing in the sequence they use. If the PGSE remains the commonly used sequence in diffusion MRI microscopy, alternative sequences have been shown to be efficient such as double PGSE or Oscillating Gradient Spin Echo. The main idea governing all these studies is the exploitation of the parameters of the sequence to be sensitive to restrictions induced by the membranes. By tuning these sequences, it is possible to create the adequate constrast to extract cytoarchitectural parameters.

Principles of diffusion MRI microscopy

Using varying diffusion time to probe tissue microstructure

Let us remind that the PGSE sequence is characterized by the following parameters :

δ, the diffusion gradient duration; Δ, the duration between the two gradients and G, the gradient magnitude. The behaviour of the signal will strongly depend on δ and Δ in comparison to the dimensions of the structure. On one hand, δ and Δ defines the effective diffusion time. We have seen before that for PGSE experiment, the effective diffusion time is given by t dif f = Δδ/3. From the mean-square displacement expression, the typical length water molecules will travel during the diffusion time is a ≈ t dif f × D with D the diffusion coefficient. Therefore, for a size pore r longer than this typical length, the spins won't feel the restrictions induced by membranes. If we increase the diffusion time, then the spins will encounter the membranes and their displacement will be restricted. Varying the effective diffusion time thus creates a contrast between the different population of axons, depending on their specific size. From a collection of measurements using different diffusion times, it is possible to extract tissue characteristics such as axon diameter, white matter fraction, ... computing the signal associated to the combination of the tissue model with the used diffusion sequence. We define in the next part the mathematical framework for the computation of this signal.

Diffusion MRI simulation

Diffusion MRI microscopy aims at allowing to measure microstructure parameters thanks to MRI experiments. But to understand the complexity of the diffusion process, the Monte Carlo simulation experiments, simulating the diffusion signal from the brownian motion of particles in the geometrical environment of the model can be very helpful.

Tools such as the diffusion simulator provided in the Camino [START_REF] Cook | Camino: Open-source diffusion-mri reconstruction and processing[END_REF] toolkit or the Diffusion Microscopist Simulator introduced in [START_REF] Yeh | Diffusion microscopist simulator: A general monte carlo simulation system for diffusion magnetic resonance imaging[END_REF] provides new insights on how diffusion works in complex tissues. From various 3D tissue models and sequences schemes, the simulator provides the resulting synthetic dMRI signal. This approach can also help when there is not analytical expression for the considered tissue model. This approach was often used to validate analytical expression of the models we have presented before and study the deviation between them. As we will see in the next subsection, approximations are used to compute signal in the different geometries, and simulation experiments give the possibility to assess the validity of these approximations.

Even if simulation experiments are not the main topic of this thesis, it is important to know that all the models coud be validated using simulations and simulation tools are very useful to test a model in all of its aspects.

Mathematical framework of signal attenuation computation : Short

Pulse Gradient and Gaussian Phase Distribution approximations

Diffusion MRI microscopy relies on the establishment of an analytical signal attenuation equation depending on the tissue model and the type of the diffusion sequence. Let's first discuss the effect of the gradient duration δ. In chapter 3, it was shown that a Fourier relationship exists between the signal attenuation measured in the Q-space and the propagator of the diffusion process of water molecules. But this relationship remains available only if δ is infinitely short, ideally corresponding to a Dirac pulse. Unfortunately, MRI systems (in particular clinical scanners) cannot always provide inifinitely short gradient pulses, and under the condition δ << Δ, the signal will be computed using the Short Gradient Pulse approximation (SGP). When the δ duration is sufficiently short, it is possible to neglect the motion of the spins during δ : this is the short gradient pulse approximation. The phase change of the spin at the initial position r 0 during the first gradient and moving to r 1 during the second gradient is then directly given by : Δφ = γGδ(r 1r 0 ), (5.5) with G the gradient magnitude and γ the gyromagnetic ratio.

The signal attenuation is then expressed as follows :

E(q, Δ) = ρ(r 0 )P (r 0 , r 1 , Δ) exp iγδG(r 1 -r 0 )dr 0 dr 1 . (5.6) 
If we set R = r 1r 0 , then we can define P (R, Δ) = ρ(r 0 )P (R|r 0 , Δ) as the average

propagator. But we will see tha the b-value is also a key point to be sensitive to small pore sizes. Clinical MR scanners have very limited gradient strength so to have a high enough b-value, the δ and Δ parameters are increased. But increasing Δ will lead to longer echo time and therefore lower SNR due to the combination of diffusion decay and T2 decay. This is why the clinical conditions are often δ ≈ Δ. In this condition, we must take into account the spin movement during the gradient pulse. If δ is not sufficiently low in comparison to Δ, the water molecule motion during the gradient duration δ.

has to be taken into account. Under certain conditions, a Gaussian probability of the gradient phase distribution during the gradient application can be assumed, leading to the Gaussian Phase Distribution approximation (GPD). Before the refocusing pulse of the spin echo sequence (at t=TE/2), during the application of the first diffusion gradient (applied, for example along the x axis, at time t 1 ), the phase shifting induced can be expressed as :

φ(T E/2) = γB 0 (T E/2) + γG t 1 +δ t 1 x(t)dt, (5.7) 
TE being the echo time. At the end of the sequence, the total phase shift for each spin is then expressed as :

φ(T E) = γG t 1 +δ t 1 x(t)dt - Δ+δ+t1 t 1 +Δ x(t )dt (5.8)
We can then expressed the signal as follows :

S(T E) = S 0 (T E) ∞ -∞
P (φ, T E)e iφ dφ (5.9) with φ the phase. [START_REF] Douglass | Diffusion in paraffin hydrocarbons[END_REF] demonstrated that for free water, the phase distribution function can be expressed as a Gaussian distribution function :

P (φ, T E) = exp -φ 2 2<φ 2 > 2π < φ 2 > (5.10)
with < φ 2 > the mean-squared phase change :

< φ 2 >= γ 2 G 2 < { t1+δ t1 x i (t)dt - t1+Δ+δ t1+Δ x i (t)dt} 2 > (5.11) < φ 2 >= γ 2 G 2 { t1+δ t1 t1+δ t1 dt a dt b -2 t1+δ t1 t1+δ+Δ t1+Δ dt a dt b + t1+δ+Δ t1+Δ t1+δ+Δ t1+Δ dt a dt b } < x(t a )x(t b ) > and < x(t a )x(t b ) >= ∞ -∞ ∞ -∞ ∞ -∞
(r 1 -r 0 ) x (r 2 -r 0 ) x ρ(r 0 )P (r 0 , r 1 , t a )P (r 1 , r 2 , t b -t a )dr 0 dr 1 dr 2

(5.12) the mean-squared displacement. This is valid for free water, but when the water motion is restricted, this distribution is theoritically non Gaussian. But in some cases, the phase distribution can be approximated by a Gaussian distribution function. This approximation is valid for short gradient duration, when spins don't encounter the restrictions. At long diffusion times, the position of a spin will be independent of its initial position, so the phase distribution can also be considered as a Gaussian. But it has been shown that even for δ of the order of the pore size, for simple geometries, the distribution can be well approximated using Gaussian distribution [START_REF] Neuman | Spin echo of spins diffusing in a bounded medium[END_REF], [START_REF] Balinov | The {NMR} self-diffusion method applied to restricted diffusion. simulation of echo attenuation from molecules in spheres and between planes[END_REF]).

After computing the diffusion propagator for the geometry of the tissue (for example a cylinder), it is straightforward to compute the mean-squared displacement in the direction of the gradient, and finally the mean-squared phase change and the attenuation.

For free diffusion, the signal from the PGSE is expressed as follows :

E(q) = S(q)/S 0 = exp(-q 2 (Δ - δ 3 )D) (5.13)
with D being the diffusion coefficient.

Equation of the diffusion propagator

The computation of the signal attenuation requires the definition of the diffusion propagator of the tissue. The models we described in the previous part, often relies on the combination of one hindered compartment, described by a Gaussian diffusion behaviour and one restricted compartment, modeled as a sphere or cylinder. For restriced compartments, the simplest way to get the propagator is to compute its eigen mode expansion [START_REF] Neuman | Spin echo of spins diffusing in a bounded medium[END_REF], [START_REF] Callaghan | Pulsed-gradient spin-echo {NMR} for planar, cylindrical, and spherical pores under conditions of wall relaxation[END_REF]). The problem is posed as follows :

P (r|r , t) = ∞ n=0 exp(-α n t)u n (r)u * n (r ), (5.14) 
The initial condition :

P (r|r , 0) = δ(r -r ), (5.15) 
The boundary conditions ( M is the permeability ): Dn∇P + MP = 0.

(5.16)

Diffusion propagator expression for the axon : cylinder geometry

In the case of the axon, the majority of the models assume M = 0, since they are considered as impermeable in the diffusion time scale. The diffusion propagator of the cylinder of radius a is given by :

u n (r) = A nn J n ( β nn r a ) exp(inθ)
with

A nn = 2β nn πa 2 Jn(β nn ) 2 ( Ma D ) 2 + β 2 nn -n 2 , A 0n = β nn πa 2 J 0 (β nn ) 2 ( Ma D ) 2 + β 2 0n
and β nn are the zeros of the equations :

β nn J n (β nn ) J n (β nn ) + Ma D = 0
.

Diffusion propagator expression for neural cells : sphere geometry

For a sphere of radius a :

u n (r) = A nn Jn( β nn r a )P n (cosθ) with A nn = 1/ 2π 2n + 1 a 3 (j n (β nn ) 2 ) -j n-1 (β nn )j n+1 (β nn ),
and β nn are the zeros of the equations :

β nn j n (β nn ) j n (β nn ) + Ma D = 0.
These zeros can be computed using interlacing properties of bessel function roots and using Newton-Raphson's or/and bisection methods.

Once the propagator is found, the signal attenuation is obtained using either the GPD or the SGP approximations. We established here the context of diffusion MRI microscopy and the constrains imposed by the sequence parameters. The following sections describes the different sequences used to infer microstructural features and the signal attenuation associated to them, following either the SGP or GPD approximations.

Diffusion MRI microscopy using Pulse Gradient Spin Echo

Several studies attempted to extract microstructural features using Pulse Gradient Spin Echo. Two major frameworks were developed to address the inference of axon radii and density: AxCaliber developed by [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diffusion mri[END_REF] and ActiveAx [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF].

Both of them establishes a particular protocol dedicated to the inference of microstructure parameters from several measurements using PGSE sequence under SGP or GPD conditions, varying the sequence parameters in order to sample the signal efficiently to fit the tissue model from the experimental measurements. Another less common approach, is the exploitation of diffraction pattern occuring for the long time limit of the PGSE signal, giving a signature of the underlying microstructure. We first explain AxCaliber and ActiveAx framework, before introducing the long time limit PGSE framework.

AxCaliber Framework

The AxCaliber Framework introduced by [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diffusion mri[END_REF] aims at measuring a distribution of axon diameters using PGSE experiments and remains limited to preclinical studies (requiring huge sampling and SGP assumption).

Tissue model :

This framework uses the CHARMED model to describe the tissue, where the restricted part integrates the contributions of several fiber populations, each of them being characterized by a specific diameter. From the observation of tissues by electron microscopy, a gamma Γ distribution has been chosen to model the actual axon diameter distribution.

Acquisition schemes :

This technique requires to know the orientation of the axon in the observed region. This is why this framework is primarely applied in the study of the corpus callosum, where most of the fibers are in the left-right direction. Knowing this orientation, the different diffusion measurements are performed applying the diffusion gradients perpendicularly to the axon direction, in order to be sensitive to the restricted part of the signal attenuation induced by the cylinder membrane. The gradient duration δ is fixed and kept short (δ ≈ 3/4ms) in comparison with Δ. The protocol is made of several measurements corresponding to a large sampling of Δ : typically from 10ms to 150 ms in order to get the appropriate contrast between the different axon diameters. For each Δ, the gradient strength is incremented several times (sixteen in [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diffusion mri[END_REF] with a high maximum gradient strength (G max ≈ 300T/m)).

Signal Attenuation :

Under these conditions, the signal attenuation is computed from the CHARMED model assuming a contribution corresponding to and hindered compartment (the extra-axonal space) and to a restricted compartment (the intra-axonal space) :

E(q) = f h E h (q) + f r E r (q), (5.17) 
E r (q) = E ⊥ E , (5.18) 
In the case of the AxCaliber protocol, the measurements are only performed perpendicularly to the fiber direction. The hindered part is therefore expressed as a 1D Gaussian diffusion problem:

E h (q) = exp (-(Δ -δ/3)q 2 D h ) (5.19)
with D h the hindered diffusion coefficient. The restricted part, corresponding to the diffusion process in the packed impermeable cylinders representing axons, is expressed from [START_REF] Callaghan | Pulsed-gradient spin-echo {NMR} for planar, cylindrical, and spherical pores under conditions of wall relaxation[END_REF] with no relaxation (the membrane is considered impermeable) :

E ⊥ = k 4 exp(-β 2 0k * D * Δ/a 2 ) 2πqaJ 0 (2πqa) ((2πqa) 2 -β 2 0k ) 2 + nk 8 exp(-β 2 nk * D * Δ/a 2 ) β 2 nk β 2 nk -n 2 2πqaJ n (2πqa) ((2πqa) 2 -β 2 nk ) 2 (5.20)
Assuming the existence of different fiber populations, we obtain :

E ⊥ = i f i πa 2 i ( k 4 exp(-β 2 0k * D * Δ/a 2 i ) 2πqa i J 0 (2πqa i ) ((2πqa i ) 2 -β 2 0k ) 2 + nk 8 exp(-β 2 nk * D * Δ/a 2 i ) β 2 nk β 2 nk -n 2 2πqa i J n (2πqa i ) ((2πqa i ) 2 -β 2 nk ) 2 ) (5.21)
with f i and a i the volume fraction and the radius corresponding to the fiber population i. The different axon radii are weighted using a Γ distribution defined as :

w i (a i , α, β) = a α-1 i exp (-a i /β) β α Γ(α)
.

Results and limits :

This framework has been shown to be efficient, for example in the original paper [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diffusion mri[END_REF] in ex-vivo porcine optic and sciatic nerves or in the corpus callosum of rodents [START_REF] Barazany | In-vivo measurement of the axon diameter distribution in the rat's corpus callosum[END_REF], where an additional isotropic Gaussian compartment was added to deal with the contamination of the signal by the Cerebro Spinal Fluid component. Results from [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diffusion mri[END_REF] (Figure 5.9) assessed the ability of this technique to recover the axon diameter distribution using electron microscopy as ground truth. The limitation of this work is that these protocols cannot be used in clinical applications, since the scan duration is too long, the required gradient strength is high and the short δ condition is difficult to obtain with clinical gradient coils, because of the finite duration of the gradients. Moreover, it requires the knowledge of the fiber orientation and it relies on the assumption of the Γ distribution of the axon diameter, that cannot be assumed anymore when moving from healthy tissues to diseased tissues.

ActiveAx Framework : optimization of acquisition scheme for clinical routine

The ActiveAx framework was first proposed in [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF] to perform axon calibration in vivo, and the major constrain of being usable for clinical applications. This framework relies on a first step of optimization to obtain the best set of sequence parameters and measurements given hardware and safety constraints to perform axon calibration with the highest accuracy in a limited scan duration. The protocol is thus reduced to only M PGSE profiles, each of them being applied along N diffusion directions (4 combinations of G/δ/Δ and 30 directions for example), by optimizing it to reduce the variance of the parameter estimates given a geometrical model. The different steps are :

• Definition of a tissue model : for white matter model application, the CHARMED model is used with a restricted part corresponding to packed and impermeable cylinders that can be correlated to an average diameter over the fiber populations, but any kind of model can be used. • Protocol optimization : find M PGSE profiles to acquire along N directions over a single shell chosen to minimize the variance of the estimates of the model parameters using the Cramer-Rao lower bound criterion and a noise model (typically the Rician noise).

• Acquisition of measurements using the optimized protocol

• Inference of the axon diameter using a Monte Carlo Markov Chain procedure to draw the posterior distributions of the parameters (see Appendix B).

The optimization process is constrained by several requirements : the scan duration (leading to a small M of measurements), the hardware constraints (the maximum gradient strength of the system, the static field, leading to a limited echo time and therefore a limited diffusion time), the safety constraints for the human volunteer, and the possibility to be orientationnaly invariant, contrary to AxCaliber protocols. The latter naturally leads to single shell Q-space samplings. The objective function to minimize is built from the Cramer-Rao lower bounds of the tissue model parameters, providing the lower bound of the variance of the estimates using the Fisher matrix :

f obj = P i=1 CRLB i /p 2 i
with f obj the objective function, CRLB i the Cramer-Rao lower bound of the parameter

i p i . CRLB i = (J) -1
ii with J the Fisher matrix defined as J ij = E( ∂L ∂p i ∂p j ) where L is the likelihood of the measurement. The likelihood of the measurements depends on the tissue model parameters but moreover on a noise model. As we have seen before, the Rician noise is often considered for MRI experiments, and therefore the Rician probability distribution is used to compute the likelihood. This optimization framework then provides M sets of G,δ,Δ parameters allowing to obtain a minimum variance of the estimates of the model parameters. The computation of the objective function also depends on prior knowledge of the parameters, such as the intra-axonal and extra axonal diffusivities. Measurements obtained using this acquisition scheme can then be analyzed using a MCMC procedure to obtain posterior distribution of each parameter. The decoding part of this technique relies on the expression of the signal using GPD approximation.

In clinical applications, the SGP approximation cannot be used because the gradient strength being limited, it is not possible to reduce the δ parameter sufficiently. The signal model in this condition is therefore :

Signal model :

• Hindered Compartment for the GPD approximation :

E h (q) = exp -(Δ -δ/3)q T Dq (5.22)
Restricted Compartment for the GPD approximation :

The restricted component is the signal coming from the intra-axonal water molecules.

Using the cylinder model, the restricted part is the product of the signal perpendicular to the axon and parallel to the axon. The parallel restricted part is modeled as a 1D Gaussian diffusion process :

E (q) = exp(-(Δ -δ/3)|q | 2 D ) (5.23)
The perpendicular part is the diffusion process perpendicular to a cylinder, expressed by Van Gelderen [START_REF] Van Gelderen | Evaluation of restricted diffusion in cylinders. phosphocreatine in rabbit leg muscle[END_REF] :

ln(E ⊥ ) = -2γ 2 g 2 ⊥ m=1 2Dα 2 m δ -2 + 2e -Dα 2 m δ + 2e -Dα 2 m * Δ D 2 α 6 m r 2 i α 2 m -1 + -e -Dα 2 m (Δ-δ) -e -Dα 2 m (Δ+δ) D 2 α 6 m r 2 i α 2 m -1 (5.24) with α m J 1 (α m r i ) = 0

Results and Limits :

This framework was applied in [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion {MRI}[END_REF] using the CHARMED model but the restricted part was simplified to consider only one axon diameter, not a distribution.

This framework aims at providing an orientationnaly invariant axon index, the signal is therefore not measured along the unique perpendicular direction. The hindered part is represented by a tensor. Additional compartments were included in the model : an isotropic compartement following a Gaussian diffusion to characterize the contamination by Cerebro Spinal Fluid and a compartment for the bulk of stationnary water molecules.

This work proved the accuracy of the optimized protocols to recover axon diameter in both fixed monkey brains and in vivo human brain, using a 3T clinical scanner, with a maximum gradient strength of 60 mT/m, N = 90 orientations of four multiple shell PGSE profiles. Figure 5.10 shows the optimized protocol for the human study. This protocol shows that a combination of low and high b-values are useful. In this study, only one radius is extracted, expecting to correlate with the mean diameter of the axon distribution. This parameter, called "axon diameter index", a', is suggested to in fact correlate with the mean axon diameter weighted by volume : α = p(a)a 3 da p(a)a 2 da , p being the actual distribution of axons. In the same way, an index of axon density is characterized as 4ν πa 2 , ν being the extracted ratio between the intra-axonal fraction and the sum of the intra and extra cellular spaces. Results of this study are shown in Figure 5.11, where we can see that this model allows to find a low-high-low profile of the axon radius estimate and the high-low-high behavior of the axon density along the corpus callosum, expected from the results of histology. In [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF], different aspects of the axon calibration were adressed using simulated data. The range of axon radii that can be well estimated is limited by the sequence parameters. High gradient strength for example allows a better accuracy of the estimation (partly because of the reducing echo time, increasing the Signal-to-noise ratio). Since δ cannot be reduced, this limits the smallest radii that can be accurately extracted. But simulations in this study shows that even if it is not possible to distinguish small radii (≤ 2μm), it is possible to define them as "small".

This question of accuracy and stability of the estimation was also adressed in [START_REF] Dyrby | Contrast and stability of the axon diameter index from microstructure imaging with diffusion mri[END_REF]. Several ActiveAx protocols were tested on a 4.7T Varian Imaging system on a fixed monkey brain and simulated data, varying the gradient strength from 60mT /m to 300mT /m, and the δ and Δ parameters. The authors simulated data assuming different axon diameter distribution and compared the estimated radius from 100 repeated fitting of the data to the idealized axon diameter α of the distribution for the different gradient strength and for different SNR conditions (see Figure 5.12). It is shown that the gradient strength has a strong influence on variance of axon diameter index and smallest axons cannot be well estimated since the diffusion gradient duration cannot be sufficiently reduced. The actual distribution of axons also strongly influences the deviation between the index and α. This study confirms the existence of a lower and upper bounds of radii that can be identified using ActiveAx imaging. The presence of lower bound is explained by the minimum achievable diffusion time coming from the limited gradient strength (limiting its sensitivity to the smaller radii) and the upper bound by the insufficient diffusion time of the experiment (limited by the echo time to preserve a high SNR).

The conclusion of this work is that using high gradient strength provides more accurate estimates and higher SNR could also help to reduce the variability of the mean axon diameter index (but its impact is less pronounced than for higher gradient strength). In this thesis, we will address the the lower bound issue using two different approaches: the development of an arbitrary gradient waveform diffusion sequence, allowing to reduce the diffusion time in comparison with PGSE and the development of the two pool model that may help to reduce this overestimation.

This framework allowed to perform for the first time in vivo axon calibration on humans and to study the sensitivity of the ActiveAx protocol to the microstructure parameters and the influence of the different sequence parameters. Even if the estimation is better for higher gradient strengths, this protocol obviously provides contrast allowing to distinguish different regions based on its microstructure. Moreover, it is not constrained by the knowledge of the orientation of the axons. This work has been extended [Zhang et al., 2011a] to tackle the problem of fiber dispersions using the same model but adding a Watson's distribution to model the orientation dispersion. This gives the opportunity to get extra structural parameters in regions where the configuration is not as simple as one fiber population with one direction. This model is expressed as the sum of the intra and extra cellular compartments, such as CHARMED model but includes the orientation dispersion function. The intra axonal part is thus expressed as

E restricted = ρ(n)E cylinder (n)dn, (5.25) 
with ρ(n) the axonal orientation distribution, E cylinder (n) the attenuation of the population of axons oriented along n. The extra-cellular part is modelled using an Gaussian anisotropic process, with the diffusion tensor D ec depending on both the volume fraction of the intra-cellular part and the orientation distribution. Its signal is expressed as:

D ec (ρ, f restricted ) = ρ(n)D h (n, f restricted )dn (5.26)
with D h the tensor of population characterized by the direction n. ρ(n) is expressed as a Watson distribution :

ρ(n) = M ( 1 2 , 3 2 , κ) -1 exp((κ(μ -n)) 2 ), (5.27) 
where M is a confluent hypergeometric function (see Appendix A), μ the unit vector about which the distribution is cylindrically symmetric and κ controling the extent of the orientation dispersion. [START_REF] Zhang | Noddi: Practical in vivo neurite orientation dispersion and density imaging of the human brain[END_REF] uses the same model to map neurite density, replacing the cylinder model by a stick and therefore proposing to study density in white and grey matter. All the various studies dealing with axon calibration stress the fact that the estimates of axon small radii often overestimates the actual axon radii in comparison with histology.

One possible explanation is the limited gradient strength, allowing to only distinguish radii higher than 2μm. However, it is not the only explanation and it could also come from the tissue model itself (orientation dispersion, exchange between compartments, nature of the compartments...). We here propose an alternative model to the cylinder, to partly explain this overestimation. As we described in section 5.7, a two-pool model was proposed by [START_REF] Assaf | Non-mono-exponential attenuation of water andn-acetyl aspartate signals due to diffusion in brain tissue[END_REF]] and [START_REF] Sehy | Evidence that both fast and slow water adc components arise from intracellular space[END_REF] to explain the biexponential behavior of the diffusion leading to consider one pool, near the membranes and characterized by a slow diffusion coefficient and another pool of water molecules, far from the membranes and characterized by a fast diffusion coefficient. The slow behavior has been explained by the structural organization of the water near the layer of lipids and proteins of the membrane. In this thesis, we extended the cylinder model to a thick cylinder with two different diffusivities in the layer and around. This model has been integrated in ActiveAx-like protocols using PGSE sequences. We here expose the computation of the signal attenuation for this model and sequence, under clinical conditions leading to the use of GPD approximation. The attenuation signal coming from a circular layer under SGP approximation was derived in [START_REF] Ghadirian | Restricted diffusion in annular geometrical pores[END_REF].

Development of the PGSE signal attenuation for the two-pool cylinder model:

Let's consider E fast the echo attenuation for the fast pool within the cylinder (between 0 and r i ), and E slow the echo attenuation within the thick layer of the cylinder (between radius r i and r o , see Figure 5.13), the total attenuation is given by the following mixture:

E = f fast E fast + f slow E slow = f fast E fast⊥ E fast + f slow E slow⊥ E slow ,
with f fast + f slow = 1. separating the diffusion attenuation perpendicular and parallel to the cylinder. Both slow and fast parallel attenuations can be modeled using Gaussian propagators. D fast and D slow are the diffusivity of each compartment.

Fast pool perpendicular attenuation

Within the cylinder, the signal attenuation is given by the GPD approximation on a simple cylinder model of radius r i (the inner radius). The attenuation perpendicular to the fiber assuming a PGSE scheme is given by [START_REF] Van Gelderen | Evaluation of restricted diffusion in cylinders. phosphocreatine in rabbit leg muscle[END_REF].

ln(E fast⊥ ) = -2γ 2 g 2 ⊥ m=1 2D fast α 2 m δ -2 + 2e -D f ast α 2 m δ + 2e -D f ast α 2 m * Δ D 2 fast α 6 m r 2 i α 2 m -1 + -e -D f ast α 2 m (Δ-δ) -e -D f ast α 2 m (Δ+δ) D 2 fast α 6 m r 2 i α 2 m -1
(5.28) with α m J 1 (α m r i ) = 0 The α m are computed numerically using Newton and bisection method.

Slow pool perpendicular attenuation

Propagator in cylindrical coordinates :

(J n and Y n are respectively first and second kind Bessel's functions (see Appendix A for definition)

P s r, r , θ, θ , t -t ⊥ = A 00 + 1 π mn A nm J n β mn r r i J n β mn r r i - J n (β mn ) Y n (β mn ) Y n β mn r r i Y n β mn r r i cos (nθ) cos nθ + sin (nθ) sin nθ e -β 2 mn D r 2 i (t -t)
(5.29)

A 00 = 1 π r 2 o -r 2 i (5.30) and A -1 nm = Y n (β mn ) A nm = ro r i r [R(r)] 2 dr (5.31) with R(r) = J n β mn r r i Y n (β mn ) -Y n β mn r r i J n (β mn ) (5.32)
Boundary conditions : R (a) = 0 and R (b) = 0 so β mn are the roots of P slow (r, r 0 , θ, θ 0 , t) P slow r , r, θ , θ, tt [rcos (θ)r 0 cos (θ 0 )] r cos θr 0 cos (θ 0 ) (5.33) After some simplifications we get :

J n βmnro r i Y n (β mn ) -Y n βmnro r i J n (β mn ) = 0,
π r 2 o -r 2 i r(t)r(t ) = π r 4 o -r 4 i 4 - m=1 A 1m I πe -β 2 1m D slow r 2 i t -πe -β 2 1m D slow r 2 i (t -t) + πe -β 2 1m D slow r 2 i t
(5.34)

I = r 6 i β 2 1m × ⎛ ⎝ Y 1 (β 1m ) ⎡ ⎣ J 2 β 1m ro r i r 2 o r 2 i -J 2 (β 1m ) ⎤ ⎦ -J 1 (β 1m ) ⎡ ⎣ Y 2 β 1m ro r i r 2 o r 2 i -Y 2 (β 1m ) ⎤ ⎦ ⎞ ⎠ 2 A -1 1m = r 2 i 2β 2 1m [ β 2 1m r 2 o r 2 i -1 J 1 β 1m r o r i Y 1 (β 1m ) -Y 1 β 1m r o r i J 1 (β 1m ) 2 -β 2 1m -1 J 1 (β 1m ) Y 1 (β 1m ) -Y 1 (β 1m ) J 1 (β 1m ) 2 ]
Mean-squared phase change: (δ is the pulse duration and Δ the separation time of the PGSE ) Signal attenuation for the thick layer sphere using PGSE:

< φ 2 >= γ 2 g 2 δ 0 dt δ 0 dt -2 δ 0 dt Δ+δ Δ dt + Δ+δ Δ dt Δ+δ Δ dt < r(t)r(t ) > < φ 2 >= 2γ 2 g 2 1 r 2 o -r 2 i m=1 A 1m I [ 2D slow β 2 1m r 2 i δ -2 + 2e - β 2 1m r 2 i D slow δ + 2e - β 2 1m r 2 i D slow Δ -e - β 2 1m r 2 i D slow (Δ+δ) -e - β 2 
We can also extend the two-pool model for a sphere model, useful to model spherical cells for instance. This part exposes the result assuming an impermeable membrane, but one needs to keep in mind that for cell modeling, permeability has to be introduced and therefore leading to different boundary conditions.

If E fast is the echo attenuation for the fast pool, inside the sphere ( between 0 and r i ),

and E slow the echo attenuation inside the thick layer of the sphere (between radius r i and r o ), the total attenuation is given by: E = E fast + E slow with D fast and D slow the diffusivity of each compartment.

Fast pool attenuation

Inside the sphere, the signal attenuation is given by the GPD approximation on a simple sphere model of radius r i (the inner radius).

ln (5.37)

(E fast ) = - 2γ 2 g 2 D fast ∞ m=1 α -4 m α 2 m r 2 i -2 [2δ- 2 + exp - α 2 m D f ast (Δ-δ) r 2 i -2 exp - α 2 m D f ast δ r 2 i α 2 m D fast + -2 exp - α 2 m D f ast Δ r 2 i + exp - α 2 m D f ast (Δ+δ) r 2 i α 2 m D fast ] (5.36) with α m j 1 (α m r i ) = 0 2.
A 00 = 3 4π r 3 o -r 3 i and A -1 nm = y n (β mn ) A nm = ro r i r 2 [R(r)] 2 dr
with R(r) = j n β mn r r i y n (β mn )y n β mn r r i j n (β mn ) and no φ dependence P slow (r, r 0 , θ, θ 0 , t) P slow r , r, θ , θ, tt [rcos (θ)r 0 cos (θ 0 )] r cos θr 0 cos (θ 0 ) (5.38) θ is the angle between the gradient and r.

After some simplifications we get :

r 3 o -r 3 i r(t)r(t ) = r 5 o -r 5 i 20 -2 m=1 A 1m I e -β 2 1m D slow r 2 i t -e -β 2 1m D slow r 2 i (t -t) + e -β 2 1m D slow r 2 i t with I = r 8 i β 2 1m × ⎛ ⎝ y 1 (β 1m ) ⎡ ⎣ j 2 β 1m ro r i r 3 o r 3 i -j 2 (β 1m ) ⎤ ⎦ -j 1 (β 1m ) ⎡ ⎣ y 2 β 1m ro r i r 3 o r 3 i -y 2 (β 1m ) ⎤ ⎦ ⎞ ⎠ A -1 1m = r 3 i 2β 2 1m [ β 2 1m r 2 o r 2 i -2 j 1 β 1m r o r i y 1 (β 1m ) -y 1 β 1m r o r i j 1 (β 1m ) 2 -β 2 1m -2 j 1 (β 1m ) y 1 (β 1m ) -y 1 (β 1m ) j 1 (β 1m ) 2 ]
Mean-squared phase change:

< φ 2 >= γ 2 g 2 δ 0 dt δ 0 dt -2 δ 0 dt Δ+δ Δ dt + Δ+δ Δ dt Δ+δ Δ dt < r(t)r(t ) > < φ 2 >= 4γ 2 g 2 1 r 3 o -r 3 i m=1 A 1m I[ 2D slow β 2 1m r 2 i δ -2 + 2e - β 2 1m r 2 i D slow δ + 2e - β 2 1m r 2 i D slow Δ D 2 slow β 4 1m r 4 i - e - β 2 1m r 2 i D slow (Δ+δ) -e - β 2 1m r 2 i D slow (Δ-δ) D 2 slow β 4 1m r 4 i ] (5.39)
Signal attenuation :

E slow = exp -< φ 2 > /2
The obtained signal attenuations are consistent with those found in [START_REF] Grebenkov | Analytical solution for restricted diffusion in circular and spherical layers under inhomogeneous magnetic fields[END_REF].

This new model was implemented in the PTK toolbox of the UNIRS lab of NeuroSpin and the roots β nk were computed using the iterative algorithm [START_REF] Sorolla | Algorithm to calculate a large number of roots of the cross-product of bessel functions[END_REF].

This work has been presented ar the ISMRM Workshop on diffusion MRI as a probe of microstructure in 2013( [Lebois et al., 2013b] and [Lebois et al., 2013c]). Next chapters will present how these models can be used to putatively explain the overestimation of smaller radii. We have presented here the two major frameworks using PGSE sequence to map axon diameters introducing the context of contributions of this thesis. We presented the second contribution of this work, the development of a novel two-pool model for the axon and cell modeling taking into account the biphasic behaviour of the water in the neural cells. We now move to the long time limit application of diffusion MRI using PGSE before introducing alternative diffusion sequences.

Long time limit : diffusive-diffraction experiments

For the case of a long Δ, the diffusion propagator doesn't depend on the initial starting positions of the spins and becomes equal to the spin density. The signal attenuation is then expressed as follows :

E(q, ∞) = ρ(r 0 ) exp(-i2πqr 0 )dr 0 ρ(r 1 ) exp(i2πqr 1 )dr 1 = |S(q)| 2 (5.40)

S being the Fourier Transform of the spin density : S(q) = drρ(r) exp(i2πqr) In the case of ordered and regularly packed cylindrical or spherical pores, the signal will exhibit a diffraction pattern, with several minima occuring, which can be directly used to extract the characteristic length of the geometries. The typical geometries in tissue modeling are the parallel planes, the cylinder and the sphere. For these three geometries, the FT of the spin density is given in the following table :   Parallel planes separated by R S(q) = sin(πqR) exp(iπqR) πqR Cylinder (radius=R) S(q) = J 1 (2πqR) πqR Sphere (radius=R) S(q) = 3[2πqR cos(2πqR)-sin(2πqR)] (2πqR) 3 From table 5.14, the minima will occur when |S(q)| 2 = 0 : at q = n/R for parallel planes with n an integer. This pattern is of course very sensitive to the gradient direction and can be observable when the gradient is perpendicular to the main axis of the structure (for example, in the cylidner, perpendicular the main axis).. The diffraction pattern is shown in figure 5.15 for the case of diffusion between parallel planes at a distance of 2R

(left) and in a sphere of radius R (right). The equation 5.14 underlines an important requirement for diffusion diffraction experiment : to infer a pore size R, we need q ≈ 1/R.

This means that the smaller the pore, the higher the required q value. The gradients strength are usually limited, in particular on clinical systems. Usually, a longer gradient duration is used but all the theory developed in the long time limit relies on the Short Gradient Pulse approximation. Using longer δ in the PGSE experiment will therefore lead to a violation of the SGP approximation, and the dips of the pattern will occur at even higher q value, decreasing the estimation accuracy (leading to an underestimation of the actual pore size). PGSE diffusive diffractions is also limited by the fact that in the presence of a distribution of diameters, the diffraction pattern won't be visible. We focus here on double PGSE.

Extracting microstructure features from diffraction patterns

In 1995, [START_REF] Mitra | Multiple wave-vector extensions of the nmr pulsedfield-gradient spin-echo diffusion measurement[END_REF] investigated multi-PGSE experiments, showing the dependence of the signal on the angle between the two pairs of diffusion gradients, indicating a high sensitivity to microscopic anisotropy, even higher than PGSE [ Özarslan, 2009]. This sequence allows to study the correlation of the net displacement of the spins, revealing information on the microstructure of tissues, especially in ordered configuration. As for PGSE experiments, the signal attenuation strongly depends on the different sequence parameters, in particular on the angle between the two gradient sets, the gradient duration and strength and the mixing time. Main applications of dPGSE use the conditions where the gradient duration δ → 0, Δ → ∞ and either the mixing time t mixing = 0 or t mixing → ∞. The first kind of application is an extension of the diffusive diffraction experiment for a single PGSE. In [START_REF] Özarslan | Mr diffusion-"diffraction" phenomenon in multipulse-field-gradient experiments[END_REF], the diffraction patterns were studied for different numbers of PGSE-like experiments applied using the same gradient strength, the same separation duration and the same angle of application of the diffusion gradients. As for the single PGSE experiment, the signal in the case of long diffusion times can be expressed as a function of the FT of the spin density. For double PGSE experiment, the mixing time will introduce some differences :

• For t mixing → ∞ : E(q) = S(q) 4

• For t mixing = 0 : E(q) = S(q) 2 S(-2q)

From these equations, it appears that for a infinite mixing time, the pattern for the double PGSE experiment won't drastically differs from the one obtained with single PGSE, in fact the signal will be more attenuated with higher number of PGSE in comparison with single PGSE, but the minima will occur at the same places. But when null mixing time is used, the minima appear at half the q-value in comparison to the single PGSE diffaction pattern, allowing to reduce the required q values and therefore to probe small pore sizes. It has also been shown that for an even number of PGSE experiments, like for instance the double PGSE, the signal is less sensitive to the decrease of Δ and even if the mixing time is not strictly reduced to zero, the first lobes of the pattern are preserved. Finally, they are also preserved in the case of a broad distribution of the pore sizes, allowing to compute an average size. But, even if this approach leads to better results than using sPGSE diffusive diffraction, those experiments still require high q-values. This sequence is widely used in high q value domain, using the diffraction pattern to infer microstructure parameters thus limiting its use to preclinical MRI systems. If quasi-null mixing times is required to probe pore sizes, long mixing time can be used to reveal local anisotropy ( [START_REF] Callaghan | Locally anisotropic motion in a macroscopically isotropic system: displacement correlations measured using double pulsed gradient spin-echo nmr[END_REF]).

Signal angular dependency

Another approach is then to use the dependence of the attenuation on the angle between the two pairs of gradients. In [START_REF] Shemesh | Measuring small compartmental dimensions with low-q angular double-pgse nmr: The effect of experimental parameters on signal decay[END_REF], using the dependency at low q-value on the angle (previously described by [START_REF] Mitra | Multiple wave-vector extensions of the nmr pulsedfield-gradient spin-echo diffusion measurement[END_REF] between the two pair of gradients expressed in [START_REF] Ozarslan | Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters[END_REF], it is shown that for moderate qvalue, the signal will exhibit a dependence on the angle. Choosing a pair of gradients applied perpendicularly to the pore and varying the angle between them can provide an estimation of the pore size and reveal the underlying anisotropy of the samples.

Application to white matter structure

Protocols including variation of the angle between the two gradients with null mixing times have been employed to map structural parameters. This sequence has been used to extract axon sizes in [START_REF] Zhou | Measurement of axon radii distribution in orientationally unknown tissue using angular double-pulsed gradient spin echo (double-pgse) nmr[END_REF]. This study extends the Ax-Caliber framework to double PGSE experiments using the angular dependence of the signal, adapting the CHARMED model to double PGSE. It shows that using this angular dependence, axon diameter can be estimated in a limited scan duration, with limited gradient strength (70mT/m). [START_REF] Koch | Double wave vector diffusion weighting in the human corticospinal tract in vivo[END_REF]] also used double PGSE signal angular dependency to extract pore sizes along the corticospinal tract of human volunteers at 3T. [START_REF] Komlosh | Pore diameter mapping using double pulsedfield gradient mri and its validation using a novel glass capillary array phantom[END_REF] validated the ability of using double PGSE to infer pore sizes using a phantom made of capillaries.

Oscillating gradient sequences : OGSE and SW-OGSE

In PGSE and double PGSE experiment, the size of the pores we can extract is limited by the gradient strength and to probe very small pores, the gradient magnitude needs to be very high. To reach smaller diffusion times, the trapezoidal gradient waveform of the Pulse Gradient Spin Echo could be replaced by an oscillating gradient waveform : a sine, a cosine or oscillating trapezoids, the frequency of the waveform defining the diffusion time. This kind of sequence is depicted in 5.17. These sequences are commonly used on preclinical systems, since they require high gradient strength and gradient slewrate.

Indeed, when the frequency is increased, the diffusion time reduces but one needs to have sufficient gradient strength to keep a high diffusion sensitivity. This sequence could be a way to be more sensitive to axon radii, in particular to smaller ones in axon calibration studies. OGSE sequences can be both used in temporal diffusion spectroscopy experiments or in replacement of PGSE in Q-space experiments. We describe these two applications in the following subsections.

OGSE and temporal diffusion spectroscopy

This kind of sequence allows to have a complete different approach, using the analysis of a diffusion spectrum. This application of diffusion is called temporal diffusion spectroscopy, different from the q-space approach. For this purpose, we define a frequencydependent diffusion tensor D(ω). 5.41) This is the Fourier transform of the autocorrelation of the particles' velocity (v i ). If the molecule moves in a restricted environment, the velocity will exhibit a correlation with itself, leading to a characteristic shape of the autocorrelation function and therefore of the frequency diffusion tensor. In the presence of a diffusion gradient g(t), the signal is given by :

D i,j = ∞ 0 dt exp(iωt ) < v i (t )v j (0) > ( 
S = S 0 exp(- 1 π ∞ 0 F (ω)D(ω)F (-ω)dω) (5.42)
with F the fourier transform of the time integral of the gradient. Thus, the OGSE allows to vary the gradient frequencies ω, sampling the frequency space and therefore providing the frequency diffusion tensor. [START_REF] Gore | Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy[END_REF] sums up the use of the OGSE in temporal diffusion spectroscopy to probe microstructure. In [START_REF] Xu | Quantitative characterization of tissue microstructure with temporal diffusion spectroscopy[END_REF],

the expression of OGSE signal is expressed for parallel planes, cylindrical array and a three-compartment model distinguishing the cytoplasm, the nucleus of the cell and the extracellular cell. The employed gradient waveforms were a cosine and sine profiles and several b-values and gradient frequencies were used to fit the simulated data in these structures. This study shows that it is possible to use OGSE to discriminate different tissues. Widely used on the rat brain, OGSE signal can also provide a surface to volume (S/V) ratio of the studied pores. By analyzing the behaviour of the diffusion coefficient in function of the diffusion time, in particular for the short and long diffusion time limits, the S/V ratio can be inferred as described in [START_REF] Sen | Time-dependent diffusion coefficient as a probe of geometry[END_REF]. As explained in [START_REF] Novikov | Surface-to-volume ratio with oscillating gradients[END_REF], at very short diffusion time (t << r 2 D , with D the intrinsic diffusion coefficient and r the characteristing length of the pores), the molecules don't have the time to encounter the membranes of the tissue and the diffusion coefficient depends on the diffusion time in a linear way : 5.43) where D 0 = D(0). At very long diffusion times, all the molecules have already interacted with the membranes, and the diffusion coefficient is then linear linked to the frequency of the gradient and to the inverse of the diffusion time :

D(t) = D 0 (1 - 4S 9 √ πV D 0 t), ( 
D(ω) = D 0 (1 -C d S V D 0 ω
), (5.44) where C d is a factor depending on the sequence. Therefore, assuming for example that the tissue can be considered as random arrangement of flat, permeable and thin membranes (these conditions come from the very short diffusion time that is considered, the molecules cannot feel the "curvature" effect of the membrane) the ratio s/V can provide a useful information on average density of the membranes and average distance between them. But this analysis relies on very strong gradient strength to reach short enough diffusion time.

OGSE for cell calibration

The OGSE can be used in classical Q-space approach, instead of PGSE or double PGSE.

GPD approximation can be used to express the signal attenuation using oscillating gradient. Only the temporal part of the signal expression will change, since the radial part contained in the diffusion propagator is not dependent on the used sequence. [START_REF] Ianuş | Gaussian phase distribution approximations for oscillating gradient spin echo diffusion {MRI}[END_REF] lists the expression of signal for OGSE using the GPD approximation, especially for trapezoidal waveforms. In the case of restricted diffusion in a cylinder, the signal expression is given by : (5.45) with Γ n depending on the used sequence.

S = exp(- 2γ 2 D 2 n=0 B n λ 2 n Γ n ),
B n = 2(R/μn ) 2 μ 2 n -1 with λ n = μ 2 n R 2 
and μ n is the root of equation J 1 (x) = 0, J being the Bessel's function of order 1. For sine waveforms of frequency ω :

Γ n = G 2 ω 2 /(λ n D) 2 (1 + ω 2 /(λ n D) 2 ) 2 × ( λ n Dδ(λ 2 n D 2 + ω 2 ) 2ω 2 + 1 -exp(-λ n Dδ) -exp(-λ n DΔ)(1 -cosh(λ n Dδ)))) (5.46)
For cosine waveforms of frequency ω:

Γ n = G 2 (1 + ω 2 /(λ n D) 2 ) 2 × ( (λ 2 n D 2 + ω 2 ) λ n D (δ/2 + sin(2ωδ) 4ω ) -1 + exp(-λ n Dδ) + exp(-λ n DΔ)(1 -cosh(λ n Dδ))))
(5.47)

Trapezoidal expression can be also derived, but results in a more complicated expression.

[ [START_REF] Siow | Axon radius estimation with oscillating gradient spin echo (ogse) diffusion mri. The Open-Access[END_REF] explored the differences between several sequences using the ActiveAx protocol to infer axon diameters in the corpus callosum. They compared the results of PGSE and OGSE sequences, showing that oscillating trapezoid gradient (SW-OGSE)

gives a higher accuracy on the estimation. Moreover, in comparison with sine oscillations, trapezoidal waveforms allow to obtain higher diffusion sensitivity for short diffusion times, and then could be more sensitive to small diameters.

Beyond the PGSE : spin echo sequence diffusion weighted with arbitrary gradient waveforms (AGWSE)

We just described the common sequences used in diffusion MRI, starting from the PGSE.

We saw that each of them presents drawbacks and advantages, and also that modifying the waveform of the diffusion gradients could help us to reach smaller diffusion times and thus smaller structures. But the requirement of high gradient strength and often long scan duration limits their applications in clinical routine. We cited above the work introduced in [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF], addressing this problem, proposing a framework optimizing PGSE sequence parameters to guarantee a limited variance of the estimates of the tissue model parameters (the CHARMED model). This technique showed great results in [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion {MRI}[END_REF] allowing to recover the axon diameter in the corpus callosum. Keeping the idea of optimization of the sequence, why not including the all waveform of the gradient in the optimization scheme ? This is the idea of Arbitrary Gradient Waveform Spin Echo (AGWSE). Since the waveform seems to have an impact of the accuracy of axon diameter estimation, optimizing it with respect the tissue model and hardware constraints could help to reach better estimation. This idea was developed by [START_REF] Drobnjak | Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted mr[END_REF], proposing to optimize the all gradient waveform, points by points, covering all kind of waveforms from the PGSE to the OGSE. In [START_REF] Drobnjak | Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted {MR}[END_REF], the authors go even further, allowing to also varying the orientation at each time points. An example of these kind of waveforms are depicted in Figure 5.18.

The optimization follows exactly the framework of [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF]. Signal expression can be obtained using the matrix framework introduced in [START_REF] Callaghan | A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms[END_REF]. A simple matrix formalism is proposed to compute the expression of restricted diffusion signal for any kind of waveforms. In fact, the gradient are decomposed into several narrow pulses, separated by a time step τ . We recall that for the case of two narrow pulses separated by a 180• pulse, as it is the case for the SGP approximation of the PGSE, :

E(q) = ρ(r)P (r, r , Δ) exp(i2πqr) exp(-i2πqr )drdr (5.48) For a general gradient waveform decomposed into N narrow pulses, we have :

E(q)
= dr 1 dr 2 ... dr N ρ(r 1 ) exp(i2πq 1 r 1 )P (r 1 , r 2 , τ) exp(i2πq 2 r 2 ) P (r 2 , r 3 , τ)... exp(i2πq N -1 r N -1 )P (r N -1 , r N , τ) exp(i2πq N r N ) (5.49) With q n = m n γδg step , g step being the unit of the gradient amplitude. m n could be either positive or negative. Using the decomposition in eigenfunctions of the propagator, we can express (5.49) as a matrix product :

E = S(q)R[A(q)] m 1 ...R[A(q)] m N RS(q) (5.50) with S k (q) = V -1/2 dru k (r)exp(i2πqr) (5.51) R kk = exp(-λ k τ ) (5.52) A kk (q) = dru * k (r)u k (r) exp(i2πqr) (5.53)
with V the volume of the pore, and u k the eigenfunctions of the propagator expansion.

This matrix framework has been extended by [START_REF] Drobnjak | Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted {MR}[END_REF] for varying gradient orientation. Experiments of [START_REF] Drobnjak | Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted {MR}[END_REF] were focused on the study of the generated waveform for a cylinder model varying the a priori radii from 1μm to 5 μm and allowing different orientations of the gradients in the three directions.

They tested it on simulated data. This study provides several insights : optimizing the direction of the gradients in the plane parallel to cylinder increase the accuracy of the estimation, confirming that the sampling of directions all over the sphere of the Ac-tiveAx protocol could provide better results that in a single perpendicular direction as it is done in [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diffusion mri[END_REF]. Moreover it shows that the typical waveform obtained in the perpendicular plane to the cylinder with a complete arbitrary waveform seems to approximate a trapezoidal oscillating gradient spin echo. The waveform oscillates between -G max and G max with variable frequency, frequency increasing while radius decreases.

In [START_REF] Siow | Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted {NMR} sequence[END_REF], applications of the generalized gradient waveforms were applied for the estimation of pore size in a microstructure phantoms, made of capillaries with an unique radius per phantom. Optimized protocols using PGSE and AGWSE sequences were computed with different prior pore radii and for different gradient strengths. The measurements made perpendicularly to the phantoms on a 9.4T Varian scanner with a gradient of 1T.m -1 were then compared. This experiment shows that variance of estimates are reduced using the generalized waveforms in comparison to PGSE optimized protocol. The lower bound of radii we can estimate is reduced using AGWSE, being then around 2.5μm at 40mT /m. The AGWSE gives better estimates when the protocol is optimzed using the true value of the radius, but still provides good estimates for the other protocols. The following part will expose the contributions of this thesis on AGWSE sequences and its use to probe microstructure parameters. et al., 2008], [START_REF] Fillard | Quantitative evaluation of 10 tractography algorithms on a realistic diffusion {MR} phantom[END_REF])using a totally arbitrary gradient waveform (sequence c) in 5.19 on the 3T clinical MR system of NeuroSpin. The fiberCup phantom has been developed to the study and the validation of HARDI models. This phantom is made of acrylic fibers with a diameter d=17μm. Fibers were disposed in bundles following the scheme (Figure 5.21) in order to mimick different configurations and crossings of the fiber bundles of the human brain. The finaly density of fibers was 1900 fibers/mm 2 .

The container was filled using pure distilled water. We compared the RGB maps and The parameters of the sequence was FOV=256mm, TH=2mm, matrix = 128x128, Partial Fourier = 6/8, TR=4s, TE=110ms. Figure 5.24 shows the obtained RGB map and ODF fields. This first experiment of arbitrary gradient waveform on an healthy subject shows again the validity of the sequence and the possibility to use it to be more sensitive to microstructural features. This novel sequence has been presented at the ESMRMB 2012 conference ( [START_REF] Lebois | A novel diffusion weighted arbitrary spin echo pulse sequence to customize diffusion gradient shapes[END_REF]). The idea is first to test ActiveAx-like protocols, using several PGSE profiles and after to compare with optimized AGWSE sequence on human volunteers (see next chapter). 

Conclusion of this chapter

We have described how diffusion MRI can be used, through tissue modeling to obtain micrsotructural information. Diffusion MRI microscopy allows to go further in comparison to model such as DTI or QBall, giving not only angular but also radial information locally. Several models of white and grey matter have been derived, often based on simple geometries such as cylinders and spheres, for which it is relatively simple to derive the diffusion propagator. Differences between the approach differs from the different compartments that are considered and the exchange between them. We also listed the Next chapter presents the experiments performed on the 7T scanner on a dozen of human subjects to map the axon radii of their corpus callosum and we will demonstrate how the two-pool model can help to reduce the overestimation of the smaller radii.

Chapter 6

White Matter Microstructure

Mapping

We previously exposed how diffusion MRI can be used to infer structural information at a resolution much higher than the image resolution, thus allowing to characterize the cytoarchitecture. Modeling the tissue and matching the diffusion signal to this model provides then parameters such as cell sizes or density. Diseases such as Alzheimer's, Parkinson's or Autism, are known to induce modifications of the tissue microstructure but that could only be revealed using dMRI by a drop in fractional anisotropy (FA), or an increased apparent diffusion coefficient (ADC), but for now it is difficult to know precisely what causes these differences from these tensor invariants. Diffusion microscopy tries to answer this question and to make the link between differences in non-specific parameters such as FA and differences in microstructure organization, that can be revealed by cell radii and density mapping for example. This task is difficult to achieve, in particular because of the limitations that clinical routine implies : limited scan duration, limited gradient strength, limited static field... But active imaging, represented by ActiveAx protocols, has shown that with a reduced set of diffusion experiments, it is possible to obtain good contrast in terms of cytoarchitectural parameters, providing an average axon radius and density in white matter, for example. These experiments have to use a tissue model describing the actual cytoarchitecture but remaining sufficiently simple to preserve a limited amount of required measurements. Few studies of brain microstructure mapping using ActiveAx protocols have been perfomed on 3T scanners with a maximum gradient strength of 60mT/m using four optimized PGSE measurements, sampling along 90 directions.

Our approach completes these previous works. Our study proposes to take advantage of high-field MRI, scanning the subjects on a 7T equipped with a 80mT/m gradient coil but the actual achievable gradient strength was until now limited to 50mT/m (but this limitation will be raised in future work). We focused on the Corpus Callosum microstructure mapping, scanning 14 healthy subjects and extending the initial four measurements to ten along 60 directions. Higher number of measurements allows to improve complexity of the model of axons, including for example the two-pool model we presented in the previous section. We also scanned an healthy subject using the Arbitrary Gradient Waveform Spin Echo (AGWSE) sequence and we here propose to compare the results with PGSE experiments. Finally, the protocol was adapted and used to scan autistic patients and controls in the frame of a clinical study performed on the 3T scanner of the NeuroSpin center.

6.1

Mapping the white matter using the PGSE sequence

Methods

One of the major goal of this work is the construction of the first atlas of axon radii and density of the corpus callosum on a clinical 7T MRI system on healthy subjects.

MRI data acquisition

To this purpose, fourteen healthy subjects (3 females and 11 males between 23 and 45 years old) underwent the same protocol, composed of ten different PGSE profiles, along 60 directions on a Tim Trio 7T Siemens scanner, equipped with a 80mT/m gradient coil (but limited to 50mT/m) using a 32-channel head coil. The idea was to extend the initial ActiveAx protocol using a higher number of profiles (initially set to 4 profiles), in order to reduce the variability of the axon mean radius observed when using only 4

profiles by increasing the range of diffusion times and b-values, mase possible because of the increased SNR obtained at ultra high field. This choice was motivated by a previous work [Duclap et al., 2013a] aiming at building an atlas of the axon radii, white matter fraction and orientation dispersion along major white matter bundles, including the corpus callosum for 10 subjects of the Archi database. This former work was performed on a 3T Philips Achieva MRI system, equipped with a 80mT/m gradient (but the maximum gradient strength was actually limited to 60mT/m), using 4 PGSE shells along 60 directions. This study provided profiles along white matter bundles such as the corticospinal, arcuate and corpus callosum tracts using the CHARMED model including orientation dispersion modeling. Interesting information were extracted, in particular in orientation dispersion along the different bundles but some limitations arose on the reproducibility of the axon diameter parameter, in particular in the corpus callosum.

For this reason and since our scanner couldn't deliver higher gradient strength than 50mT/m at the time of the scans, we considered to increase the number of shells. This protocol respects the time constraint of a clinical application : the scan duration remains limited to 1h20. Our protocol is therefore a mixture of ActiveAx and AxCaliber protocol : the number of profiles is limited in order to be applied in clinical conditions, and we sample not only along the direction perpendicular to the axons, but along 60 optimized diffusion directions (plus three b=0 s/mm 2 images). 24 slices were acquired centered on the corpus callosum. For each profile, the acquisition was divided into three blocks Comparison between the protocol used in [Duclap et al., 2013a] and our protocol is described in table 6.2.It also important to have low and high b-value to better distinguish the restricted from the hindered compartments.

White matter model

The model we used in this part was the CHARMED model. We delibarately kept the model simple, to further investigate the new two-pool in the subsequent section. The signal attenuation is therefore assumed to follow equation 6.1.

E = f r E r + f h E h + f i E i (6.1)
The restricted part E r is expressed following the equation (5.24). The hindered part follows (5.22) and an additional isotropic part was added to deal with partial volume effect with CSF. f r , f h and f i are the respective volume fractions of the compartments.

The model parameters were consequently: the perpendicular diffusivity corresponding to the diffusivity perpendicular to the axons in the Diffusion Tensor Model(D ⊥ ), the parallel diffusivity, corresponding to the diffusivity parallel to the axons(D ), the main direction of the fibers (n), the radius (r), the signal without diffusion (S 0 ), the restricted fraction (f r ) and the isotropic volume fraction (f i ).

Axon Calibration Algorithm

A toolbox was developped in the PTK toolbox to perform axon calibration. The estimation follows the algorithm described in [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion {MRI}[END_REF]. then also corrected using the rotation matrix of the transform. Second, we extracted the diffusion tensor for each profile in each voxel and the derived parameters : FA, ADC, λ and λ ⊥ . This part provides the principal direction in each voxel and will allow to compare the diffusion parameters to the microstructure paramters. The DTI model can be assumed for the orientation detection as the corpus callosum is highly anisotropic and characterized by an unique direction. But it could have been infered from HARDI or HYDI more elaborated models, which is mandatory for more complex white matter bundles. In order to reduce the computation time, the corpus callosum was delineated in each volunteer using FA maps, and three slices were selected, one in the mid-sagittal plane, the two other on each side of the first one. The axon calibration algorithm was run on these three slices. We derived the fourteen maps of radii, white matter fraction and axon density computing following the relation : ρ = fr πr 2 (axon density index of [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion {MRI}[END_REF]). A profile was computed for each parameter of each subject projecting the values onto a centroid created from the skeleton of the mask. This centroid was splitted into sections every 2mm. Each point of the mask was then projected onto the nearest section of the centroid. Finally, average profiles of microstructure parameters were computed from the profiles of the fourteen subjects. We extracted the maximum number of sections over the profiles of each subject and redefined new profiles using this maximum number of sections in order to be able to compare and average them. This approach allows to observe the local variations of the parameters along the corpus callosum and to compare them with local variations of DTI-based parameters. The detailed steps of the data processing are depicted in Figure 6.3.

Results

Microstructure mapping

Figure 6.4 and 6.5 present the results on the midsagittal plane from the fitting procedure using the ten profiles on 14 healthy subjects. First column depicts the axon radii, the second column the white matter fraction and the third the axon density. 

Average profile

Stability of the results

We compared the results for one subject from different initializations of the axon radius with R ini = 2μm, 3μm, 4μm, 6μm and 8μm as well as the results using a white matter fraction initialization of f = 0.5. Figure 6.10 depicts the maps obtained from the different initial values. We observe that the MCMC procedure is not strongly affected by the initial value when initial radius is set in the range of 3 -8μm or f = 0.5, leading to a reasonable differences and a similar global pattern. The higher differences in radius estimates are located in the genu and the splenium, maybe coming from the limited sensitivity of our protocol to the smaller radii, inducing higher variability and therefore higher depedency on the initial values in these regions. But these differences are very limited (5 % ). However, starting from a smaller value (2μm) shows more differences and a slight increase of the standard deviation of the estimates. The differences are however limited to 12% for the radius and 4% for the white matter fraction. .13 shows the results extracted from our previous study [Duclap et al., 2013a] along the corpus callosum. This study provided profiles characterized by lower mean values of the radii (maybe due to the higher used gradient strength) but an increased standard deviation in both white matter fraction and radius profile in comparison with our results. Moreover, the profiles obtained from the 10 profiles protocol are more consistent with histological observations. These differences may come from the protocol differences but also from the highest SNR provided by the 7T. proportionnal to the squared radius). These correlations are similar that those found in previous works ([ [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion {MRI}[END_REF], [START_REF] Barazany | In-vivo measurement of the axon diameter distribution in the rat's corpus callosum[END_REF]) except the positive (but very small) correlation of the axial diffusion coefficient with the radius and the negative correlation of the axial diffusion coefficient with the white matter fraction and density.

Conclusion and discussion

We here demonstrated the feasibility of axon radii and density mapping of 14 healthy subjects at 7T. Our results are consistent with previous studies and histology. The inter and intra subject variability indicate a good reproducibility of the results, probably coming from the use of ultra high static field (7T). Nonetheless, the estimated axon radii shows an overestimation of the smaller radii we reported previously. First, the axon radius index is correlated with an averaged radius weighted by the cross-section area, therefore larger radii will contribute more to this value. We propose now to investigate the use of the two-pool model presented in the previous chapter to tackle this overestimation. To conclude, we have shown that in vivo axon calibration is feasible and increased gradient strength as well as increased SNR could help us to estimate microstructure features more accurately. We have established a new protocol including ten PGSE schemes, allowing a larger sampling of the diffusion time, and therefore opening the way to the study of more elaborated models of white matter to go beyond the CHARMED model, such as our two-pool cylinder model.

Theoretical study of the two-pool model to improve axon calibration

The previous section showed that increasing the SNR using a higher static magnetic field improves the reproducibility of the axon calibration and reduces the variability of the results. But we have shown that small radii are still overestimated. As we described before, the limited gradient strength is one of the reason of the limited access to small radii : smaller radii can be detected as "small" but cannot be distinguished. In this thesis, we presented a new model for the restricted part corresponding to the axons. We added a thin layer around the membrane of the axon, corresponding to a pool of water molecules with slower diffusivity than inside the axon, represented by a cylinder. We present a purely theoretical study of the behavior of the signal attenuation in clinical conditions (δ ≈ Δ).

Single-pool vs the two-pool model

Assuming a PGSE experiment with δ = 29ms and Δ = 35ms leading to an effective diffusion time of T dif f = 25ms, the signal attenuation using the two-pool model with the assumed slow and fast diffusivity : D slow = 10 -10 mm 2 /s and D fast = 10 -9 mm2/s ([Le [START_REF] Bihan | The 'wet mind': water and functional neuroimaging[END_REF]) was computed for 100 bvalues from 0 to 10000 s/mm 2 increasing the gradient strength from 0 to 80mT /m (corresponding to the achievable gradient strength on the advanced MRI systems). We computed the signal attenuation for three axon radii:

R=1μm, R=2μm and R=3μm. We assumed that the signal is measured perpendicularly to the axons (like in AxCaliber studies). The signal was then fitted using this time a one-pool model. Figures 6.16,6.17 and 6.18 shows the signal attenuation with respect to the b-value for the three chosen radii. First column depicts the attenuation obtained using a two-pool model, second column the attenuation obtained using a single pool model fitting (where the diffusivity is equal to D fast the two-pool attenuation and the third column shows the surimposed signal attenuations. For small radii, here R=1μm and R=2μm the signal attenuation coming from a two-pool cylinder model with a thin layer (e.g. 100nm) can perfectly match the signal attenuation using a single-pool model, but with a larger radius. For example, for an axon radius equals to 1μm and a layer thickness of 100nm, the single-pool model estimates the radius to be 1.69μm and for an axon radius equals to 2μm, the radius is estimated at 2.28μm. This overestimation disappears with larger radii and for 3μm, the difference becomes negligible. 

Origin of the overestimation

For small radii, a layer of 100nm corresponds to a significant fraction of the restricted compartment. The attenuation in the layer is the combination of the attenuation along the radial coordinates and along the angular coordinates. For thin layers (see [START_REF] Grebenkov | Analytical solution for restricted diffusion in circular and spherical layers under inhomogeneous magnetic fields[END_REF]), the attenuation is mainly driven by the attenuation along the boundaries, assimilated thefore to diffusion in the interval [0, π L], L being the outer radius of the cylinder ( see Figure 6.19). Since the diffusion coefficient is lower in the layer, the motion of the molecules is less constrained than in the core cylinder, where the diffusion coefficient is ten times higher. Therefore, the signal is more attenuated in the layer than inside the cylinder (along the boundaries, the mean-squared displacement corresponding to the slow diffusivity (L slow =1.6×10 -6 μm) is inferior to the perimeter, while inside the cylinder the mean squared displacement corresponding to the fast diffusivity (L fast =5×10 -6 μm) is lower than the inner radius). The combination of both of the compartments therefore corresponding to a simple cylinder with larger radius. For larger axon radii, the signal in the layer becomes less attenuated than in the inner cylinder and moreover, the volume fraction corresponding to the layer becomes negligible. 

Limitations of the model

This model relies on several assumptions that needs to be verified. First, the ratio between the two diffusion coefficients will change the minimum radii for which the overestimation can be observed. Second, the diffusion time also influences this minimum radius (for example, for a longer diffusion time T dif f = 76ms even at 3μm, the radii ( [START_REF] Lebois | On the use of the two pool model to improve axon radius estimation[END_REF]).

6.3

Ongoing studies

Arbitrary Gradient Waveform Spin Echo versus PGSE : in vivo comparison

We presented in the previous chapter the development of a diffusion sequence allowing to play any kind of waveform. The optimized AGWSE sequence has been proven to improve the accuracy of axon calibration ( [START_REF] Siow | Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted {NMR} sequence[END_REF], [START_REF] Siow | Axon radius estimation with oscillating gradient spin echo (ogse) diffusion mri. The Open-Access[END_REF]). In completely arbitrary gradient waveform could be computationly intensive, the waveform was contrained to be oscillating trapezoids with varying frequencies (see Figure 6.20).

The signal was measured along 60 optimized directions. An ongoing project thus focuses on the comparison of optimized PGSE and AGWSE in clinical conditions from several subjects.

Towards characterization of diseases through axon calibration : application to a cohort of autistic patients

Axon diameter mapping could provide interesting biomarkers of diseases and microstructural information on region where a decrease of connectivity or fractional anisotropy for example is observed in patients. Clinical systems are constrained by their limited gradient strength and static field but it could be of interest to apply an ActiveAx-like protocol to study if it is possible to observe differences between controls and patients, even if the parameter estimates cannot be as accurate as those obtained using higher TE=130ms, SlewRate = 150T/m/s, matrix=102x102. 30 slices were acquired centered on the corpus callosum of each volunteer. Since the 3T is equipped with a 40mT/m gradient but limited to 26mT/m, we don't expect to have the accuracy we obtained at 7T but we wanted to test whether it was possible to find differences between the two populations, even at low gradient strength. The axon calibration procedure was run on the corpus callosum at the level of the midsagittal plane. The burnin steps of the MCMC procedure was increased up to 50000, the intervals were fixed to 1000 and the number of samples was extended to 300. A profile along the corpus callosum was computed following the same method described before. We also extracted the fractional anisotropy along the corpus callosum from the computation of the diffusion tensor from the profile with the highest b-value. of the parameters is quite high (up to 0.1 for white matter fraction and 2.5 μm for axon radius). If the radius seems to be higher in the body of the corpus callosum, the white matter fraction doesn't change much along the corpus callosum for controls. We computed the differences across the subjects on each section using a Mann-Whitney test.

Significative section (see Figure 6.22) are located in the posterior part of the genu and at the level of the isthmus, it indicates lower white matter fraction, radius and FA for the population of autists at the level of the posterior part of the genu and a lower white matter fraction in the isthmus. Previous studies [START_REF] Alexander | Diffusion tensor imaging of the corpus callosum in autism[END_REF],[ [START_REF] Barnea-Goraly | White matter structure in autism: preliminary evidence from diffusion tensor imaging[END_REF], [Chen et al.]) reported a reduced volume of the corpus callosum as well as a reduced fractional anisotropy in the genu and the splenium and at the global level of the corpus callosum and an increased mean diffusivity in all regions except the splenium.

Both FA and mean diffusivity differences were explained by the increase of the radial diffusivity. Here, we don't observe a global difference. Lower FA can be explained by a lower white matter fraction (and lower average radii) as suggested by our results. These results have to be taken with caution, considering the variability of the results. The number of subjects included in our study will be increased in the future (to 40 autistic subjects and 30 healthy subjects). And results could be improved using a similar protocol, with more orientations and profiles. The relaxometry data acquired in the same imaging protocol could be used to characterize a potential difference in myelination. 

Conclusion

In this chapter, we first presented axon radii and density maps obtained for 14 subjects (50mT/m) and by the too simple CHARMED model. However, the inter and intrasubject variability of the estimates were reasonable and thanks to the 10 profiles and the higher SNR provided by the 7T scanner, the results were reproducible and their sensitivity to the initial parameters are limited. We also observed significant correlations between the microstructural parameters and the DTI-based parameters, proving that such a method could provide insights at the microstructure scale of increase or decrease of DTI parameters such as FA, ADC, λ ⊥ and λ in patients in comparison with controls.

This work could be improved using the achievable gradient strength of the 7T (80mT/m, limited to 50mT/m at the time of our study) and also using an improved model, since the sampling provided by the ten profiles allows to add model parameters. The two-pool axon model described in the previous chapter from a mathematical point of view could be an interesting extension of the present model. We have shown through a theoretical study in clinical conditions that using a single-pool cylinder model instead of the twopool model for the axon could lead to an overestimation of the actual axon radius when the measurement are made perpendicularly to the fiber. The reality of this model is still discussed and it will be of great interest to run the axon calibration procedure on our data using this new model (for now, the computation of the signal being too long due to the algorithm computing the roots of the boundary equations, the axon radii mapping using the two-pool model couldn't be done at the end of this thesis, but optimization of the algorithm is ongoing and will allow us to include this model in our toolbox and compare the results with the single pool model). Finally, improvement of our methodology can also be done using an optimized Arbitrary Gradient Waveform Spin Echo sequence to improve the accuracy of the radius and density estimates. This chapter ends with a clinical application on a autistic cohort at 3T. Our results showed significantly differences in regions of the corpus callosum between patients and controls but due to the limited gradient strength of ou 3T MRI system and the choice of the orientations that could be improved by using a set of directions in the midsagital plane, the variability of the estimates remains high but an increase of the number of profiles and orientations as well as the gradient strength (like for the 7T, we are able now to push the gradient strength to 40mT/m instead of 26mT/m) could help to be more discriminant between the two populations and therefore provide reliable biomarkers of autism.

Chapter 7

Conclusion and Future Work

General conclusion and contributions

This thesis aimed at developing methodological tools to map brain microstructure using both quantitative and diffusion MRI. This work was driven by the need to be able to map microstructure under clinical conditions, inducing limited scan duration, limited gradient strength and static field as well as safety constraints. Because of the complexity of the brain microstrcture and given these constraints, measuring microstructural parameters is a real challenge. The main idea of this thesis was to provide maps of parameters characterizing the microstructure of white matter (T1, T2, diffusion parameters, axon radii and density...) and study their variations across healthy subjects in order provide a normative atlas of these features along white matter bundles, useful then to address pathological cases. We summarize here the major contributions of this work.

Atlas of T1 and T2 relaxation times from the 79 subjects of the CONNECT/Archi database

The first contribution of our work was focused on the construction of high resolution atlases of relaxation times combined with a connectivity atlas, providing profiles of T1, T2 and diffusion parameters along major white matter bundles of the 79 subjects of the CONNECT/Archi database, that will be open to the scientific community. These atlases could be used as normative atlases of quantitative features to be compared to pathological cases. This work has been presented at the ISMRM conference ([Lebois et al., 2013a]) and submitted to the NeuroImage journal.

Contributions to axon calibration methods

The common axon calibration methods are now able to provide axon radii and density consistent with histology but they are still limited by hardware constraints and scan duration imposed by clinical applications. This leads to a reduced accuracy of the estimates and a difficulty to distinguish small radii from each other (which are therefore overestimated). Optimization methods of the sequence parameters could improve the accuracy of the estimates. The other contributions of this thesis deal with this problem.

Implementation and validation of an Arbitrary Gradient Waveform

Spin Echo sequence

We developed a new diffusion weighted sequence on the 3T and 7T Siemens clinical MRI systems of NeuroSpin ( [START_REF] Lebois | A novel diffusion weighted arbitrary spin echo pulse sequence to customize diffusion gradient shapes[END_REF]), able to play any kind of diffusion gradient waveforms. This sequence was validated on a phantom using a totally arbitrary gradient waveform. Optimizing the gradient waveform using hardware and safety constraints and according to a prior model of the tissues have been shown to increase the accuracy of measures of microstructural parameters( [START_REF] Drobnjak | Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted mr[END_REF]).

A novel geometrical model of the axon

Our third contribution was the proposition of a new geometrical model of the axon, taking into account the biphasic behaviour of the water in the living tissue and relying on a thick cylinder model of axons with fast and slow pools of water ([Lebois et al., 2013b], [Lebois et al., 2013c]). This may help to reduce the overestimation of the smallest radii observed when using the conventional CHARMED model.

Axon radii and density mapping of the corpus callosum at 7T

We proposed a new protocol, made of ten PGSE profiles sampling several diffusion times with increasing b-values to perform axon calibration in the corpus callosum of 14 healthy subjects to take advantage of the high static field provided by the 7T in comparison with previous studies performed at 3T. We showed that this protocol provide an acceptable intra and inter subjects variability, but we still observed an overestimation of the smallest radii. Our results showed correlations with usual DTI parameters indicating that they provide real insights to explain the observed variations of these parameters (as a FA drop for example) from a microstructural point of view at a cellular scale.

Software contribution

A toolbox dedicated to axon calibration, integrating tissue and sequence models was developped in the PTK library and is about to be integrated into the BrainVisa/Connectomist toolbox.

Future Work

Construction of further atlases based on the CONNECT/Archi

MRI database

The diversity of the data acquired in the Archi database allows to build other atlases to improve our knowledge about white matter microstructure. We could for example extract the myelin white matter fraction from the relaxometry data that would increase the understanding of the variability of the microstructure along the bundles and their relationship to variation of myelination.

In vivo axon calibration at 7T

The experiments using the ten PGSE profiles on the 7T scanner showed improved compared to 3T results and we still have the opportunity to improve this study by increasing the gradient strength up to the maximum gradient strength (80mT/m). The two-pool model we introduced in this thesis has also to be validated in vivo and compared to the single pool model to study the potential improvement it could bring. The axon calibration procedure we developed will be thus optimized and parallelized to be able to map the axon radius and density using this novel model on the same subjects. A model of orientation dispersion will also be included in our model to allow axon calibration in other regions of the brain exhibiting a higher dispersion than in the corpus callosum. Finally, maps of microstructure parameters will be derived scanning the subjects of the Archi databse using a similar protocol in order to go further in the comparison with other quantitative parameters of the microstructure such as T1 and T2 relaxation times.

In vivo comparative study of AGWSE vs PGSE

Acquisitions are currently conducted on human subjects on the 7T scanner using an AG-WSE sequence. The protocol was optimized using a CHARMED model as a tissue model and including hardware constraintes of the scanner. The waveform was constrained to be trapezoidal, the optimization process provided 5 protocols with oscillating trapezoidal gradients at different frequencies. The subjects will also undergo an optimized PGSE protocol. Oscillating gradients were proven to provide more accurate estimates ( [Siow et al., 2013]) and we would like to compare the results obtained with AGWSE and PGSE protocols on the 7T scanner.

Towards clinical applications

We presented in the last chapter the beginning of a study on a cohort of autistic patients at 3T. The obtained results on the midsagittal plane shows high variability, due to the limited gradient strength and number of orientations. The first improvement is to increase the maximum gradient strength (since in our study it was limited to 26mT/m but it is possible to reach the 40mT/m) but also to optimize the orientations, in order to be more sensitive to the restricted compartment. The preliminary analysis showed decrease white matter fraction in the posterior part of the genu in the autistic population in comparison with the controls. More patients and controls will be included to increase the statistical power of the study. We will also improve the profile computation, projecting the values on the centroid obtained from the corpus callosum tract extracted from the tractogram of each subject. We are also implicated in the DYSBRAIN project initiated by F. Ramus (Laboratory of cognitive sciences and pyscholinguistics, ENS Paris) to study the hypothesis of abnormal microstructure in cortical areas in dyslexia (dyslexic brains show neural migration anomalies). This study will required to develop a novel model to characterize the grey matter cells integrating permeability effects.

Real-time axon calibration

Finally, a real time project, conducted by F. Poupon of NeuroSpin (PediART) aims at estimating microstructure parameters in real time during the acquisition. This project could offer the possibility to control the accuracy of the estimation during the ongoing acquisition and to modify sequence parameters in real time to improve the accuracy. Our sequence and MCMC procedure will be included in this work involving high performance computing. The first application of this project will be the study of microstructure in a pediatric population of patients suffering from metachromatic leukodistrophy and focal epilepsy.

every n draws, called intervals to guarantee the independance of the draws. At the end, the algorithm provides samples of the posterior distribution of each parameter. The estimates of the model can for example be computed from the average value of this distribution.
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  Magnetic resonance imaging (MRI) has become a key tool to investigate brain function and anatomy in vivo. More than understanding which brain structures and functional networks are damaged for any pathology, clinicians are now willing to understand what are the pathophysiological mechanisms involved at the cellular scale. To answer this, MR physicists are now developing novel methods going beyond the use of conventional T1-weighted and T2-weighted MRI contrasts which are not quantitative and replacing them by quantitative approaches based on multicompartmental biophysical modelling of brain tissues. Quantitative relaxometry (qMRI) and diffusion MR microscopy (μ-dMRI)

1. 3 .4 Chapitre 5 :

 35 Microstructure mapping using diffusion MRIThis chapter exposes the state of the art of diffusion MRI microscopy, describing the different white matter models and diffusion sequences. We describe then two other contributions: the development of a novel clinical diffusion sequence able to play general gradient waveform and we propose an alternative model to the CHARMED model of white matter: the two-pool model.1.3.5 Chapitre 6: Brain microstructure mappingThis chapter summarizes our contribution on microstructure mapping : the construction of the first atlas of axon radii and density at 7T, the description of the two-pool model and how it could help to overcome the overestimation of smaller radii; finally we expose the ongoing studies focusing on the comparison of Arbitray Gradient Wave Spin Echo and PGSE sequences and the first clinical application to Asperger's autism.

Figure 2 . 1 :

 21 Figure 2.1: The four brain lobes http://www.md-health.com/Lobes-Of-The-Brain.html

  atlases of cortical areas had been proposed. The most known was proposed by Brodmann in 1909, dividing the surface of the cortex into 52 areas. Each area participates to a specific function (see Figure 2.2). A similar atlas was proposed by Campbell (1905) and a topographic atlas of the cortex was published by Smith (1907). Alternative atlases were proposed by Von Economo and Koskinas in 1925, Sarkisov in 1949 and Bailey and Von Bonin in 1951. All these atlases are still used in clinical studies.
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 22 Figure 2.2: Brodmann's areas.
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 23 Figure 2.3: Brain blood supply.
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 2 Figure 2.4: Ventricles system
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 25 Figure 2.5: Nuclei of the telencephalon on an axial slice.
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 26 Figure 2.6: Projection fibers and corpus callosum http://apbrwww5.apsu.edu
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 2 Figure 2.7: Association fibers wikipedia

Figure 2 . 8 :

 28 Figure 2.8: Corpus Callosum sections from[START_REF] Highley | The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study[END_REF] 
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 292 Figure 2.9: Description of the different parts of the neuron.http://www.positscience.com/
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 2 Figure 2.11: Oligodendrocyte. Adapted from http://cnx.org
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 2 Figure 2.12: Astrocyte. Adapted from http://cnx.org
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 2 Figure 2.13: Cortex microstructure

Figure 2 .

 2 Figure 2.14: Brain tissue microstructure
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 31 Figure 3.1: Magnetic Moment of a proton

Figure 3 . 2 :

 32 Figure 3.2: Left : Protons behavior in the absence of magnetic field , Right : Alignment in the presence of an external magnetic moment

Figure 3 . 3 :

 33 Figure 3.3: Excitation and relaxation phenomena.

Figure 3 . 4 :

 34 Figure 3.4: Laboratory frame and rotative frame.http://web.eecs.umich.edu 90 • RF application, M z = 0 and M xy = iM zeq . Then the relaxation phenomenon can be expressed as follows in the new referential (x',y',z) :
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 35 Figure 3.5: Temporal longitudinal and transverse magnetization evolution
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 36 Figure 3.6: T 1 -weighted image (left) and T 2 -weighted image (right) from one subject of the Archi database

Figure 3 . 7 :

 37 Figure 3.7: MRI system : With G φ the phase encoding gradient, G s the slice gradient, G ω the frequency encoding gradient, B 0 the static magnetic field

Figure 3 . 8 :

 38 Figure 3.8: Spatial encoding. Top line : spatial encoding, bottom line : basic MRI sequence diagram
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 3 Figure 3.9: K-space from www.imaios.fr
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 3 Figure 3.10: Spin Echo sequence adapted from www.imaios.fr
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 3 Figure 3.11: Spin Echo Echo Planar Imaging sequence from www.imaios.fr.
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 3 Figure 3.12: MRI contrast with varying TR and TE. TR is constant across rows and increasing down columns (TR=500ms, 1000ms, 2000ms, 4000ms, 8000ms, 12000ms from the top to the bottom line). TE is constant across the columns and increases across the rows (TE=25ms, 50ms,75ms,100ms from left to right).
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 3 Figure 3.13: Inversion Recovery sequence www.imaios.fr .

Figure 3 .

 3 Figure 3.14: T 1 and T 2 mapping sequences : a) IR-EPI b) EPI.

Figure 3 .

 3 Figure 3.14 depicts the inversion-recovery sequence and the multiple echo time Spin-Echo.

Figure 3 .

 3 Figure 3.15: Spoiled Gradient Recalled Echo sequence.

Figure 3 .

 3 Figure 3.16: Stead State Free Precession sequence.

Figure 3 .

 3 Figure 3.17: Restricted diffusion phenomenon [Assaf et al., 2008]: Δ x is the meansquared displacement and Δ the diffusion time

  ). From a given model of the tissue, one can infer the diffusion propagator. It is possible to infer structural parameters of the tissue from a model of this restricted diffusion phenomenon. Advanced local models of tissues will be discussed later in3.4.3. 
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 3 Figure 3.18: Pulse Gradient Spin Echo Sequence.

Figure 3 .

 3 Figure 3.19: N/2 Ghosting Artefact.

Figure 3 .

 3 Figure 3.20: Susceptibility artefact

Figure 3 .

 3 Figure 3.21: nc-χ noise in diffusion MRI data (adapted from[START_REF] Brion | Towards real-time diffusion imaging : noise correction and inference of the human brain connectivity[END_REF] 

Figure 3 .

 3 Figure 3.22: Rician probability distribution function (figure from[START_REF] Brion | Towards real-time diffusion imaging : noise correction and inference of the human brain connectivity[END_REF]) for different ratios S/σ.
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 3 Figure 3.23: Diffusion weighted images (b=1500 s.mm 2 ) for three different orientations

Figure 3 .

 3 Figure 3.24: Reprenstation of the diffusion tensor D in the cases of isotropic and anisotropic diffusion

Figure 3 .

 3 Figure 3.25: RGB and FA maps

2 P

 2 (r, θ, z)δ(r)δ(θ)rdrdθdz.(3.35) The Funk Radon Transform of a function at a given point on a sphere is in fact the integral over the equator of the sphere perpendicular to the orientation corresponding to this point and passing by the origin. The first step of QBI is to interpolate the values along these great circles from the set of measurements. From these interpolated values, the Funk Radon Transform can be computed and it then provides the dODF at each point. This technique overcomes the DTI problem by solving fiber crossings. The analytical QBI ([START_REF] Descoteaux | Regularized, fast and robust analytical q-ball imaging[END_REF]) differs from the previous technique by changing the interpolation step along the equators. Indeed, the Funk Radon Transform is already a first approximation of the dODF, and the additional approximation brought by the interpolation step leads to a decrease in accuracy of the estimation of the orientation distribution function. In order to solve this problem ([
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 3 Figure 3.26: Analytical QBall field (computed using CONNECTOMIST 2.0).

Figure 3 .

 3 Figure 3.27: Streamline deterministic tractography (from one subject of the Archi Database).

Figure 3 .

 3 Figure 3.28: Deterministic versus Probabilistic tractography.

  using a twice-refocused single-shot EPI sequence at a b-value of 1500s/mm 2 (70 slices; FOV 220mm, Phase FOV 100%; Slice thickness 1.7mm; TE=93ms; TR=14s; flip angle FA=90deg; matrix 128x128; read bandwidth RBW=1502Hz/pixel; echo-spacing ES=0.75ms; 1 excitation; partial Fourier factor PF=6/8; parallel acceleration factor GRAPPA=2; total scan time 16min46s).The ARCHI database was originally dedicated to perform HARDI imaging, thus constraining the amount of time remaining to perform relaxometry. Taking into account this constrain, spin echo EPI sequences were developped specifically and to perform T 1 and T 2 mapping respectively, allowing to scan 10 values for the inversion times and the echo times in a very short duration (< 5 minutes) :• T 1 mapping dataset : spin echo EPI single-shot sequence (FOV 220mm ; TH=1.7mm ; 70 slices ; TE/TR=30ms/20.6s ; flip angle FA=90deg; 128x128 ; GRAPPA2 ; PF=5/8 ; RBW=1502Hz/Pixel ; 10 uniformly distributed inversion times TI between 300ms-3000ms),• T 2 mapping dataset : a spin echo EPI single-shot sequence (FOV 220mm ; TH=1.7mm ; 70 slices ; TR=23.2s ; flip angle FA=90deg; 128x128 ; GRAPPA2 ;PF=6/8 ; RBW=1502Hz/Pixel ; 10 uniformly distributed echo times TE between 30ms-200ms).

  . This probabilistic atlas includes 38 well-known long WM bundles : 15 in each hemisphere and 4 interhemispheric (the Anterior Arcuate fasciculus (AArc), the Posterior Arcuate fasciculus (PArc), the Arcuate (Arc), the Short Cingulum fasciculus (SCing), the Temporal Cingulum fasciculus (TCing), the Long Cingulum fasciculus (LCing), the Inferior-FrontoOccipital fasciculus (IFO), the Inferior-Longitudinal fasciculus (IL), the Fornix (Fx), the Uncinate (Unc), the Anterior, Inferior, Motor, Parietal and Posterior Thalamic Radiations(ATR, ITR, MTR, PaTR, PoTR), the Corpus Callosum divided into four parts (Rostrum, Genu, Body, Splenium))as well as for 94 short white matter bundles found in all subjects of the database. This atlas is the fundamental referential to study quantitative information on brain tissue of healthy subjects and therefore to go further into the study of brain microstructure, combining different modalities. We describe here the different steps required to build the connectivity atlas. All the processing was done using BrainVISA and Connectomist 2.0 softwares ([START_REF] Duclap | Connectomist-2.0: a novel diffusion analysis toolbox for brainvisa[END_REF]) and are summarized in Figure4.1. Let's now focus on the description of the details of the processing of diffusion MR data yielding such bundle maps at the individual scale.

Figure 4 . 1 :

 41 Figure 4.1: Connectomist pipeline leading to the fiber bundle labelling

Figure 4 . 2 :

 42 Figure 4.2: Robust Tractography mask (figure from[Guevara et al., 2011a]).First line: mask with a simple FA threshold, second line: T 1 -based mask. many important areas of white matter are missed when using FA based masks

  connectivity-based segmentation. Fascicles are then differentiated using another clustering based on their extremities. Centroids of the obtained fascicles are computed and used in a second level clustering to provide the final bundles. The clustering step is illustrated in Figure 4.3.

Figure 4 . 3 :

 43 Figure 4.3: Clustering. Step 1 : hierarchical decomposition, Step 2: length-based segmentation, Step 3: voxel-based clustering, Step 4: extremity-based clustering, andStep 5: fascicle merge. From[START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multisubject bundle atlas[END_REF].
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 44 Figure 4.4: Major white matter bundles of the 79 subjects of the ARCHI database: corpus callosum (rostrum: dark pink, genu: dark blue, body: dark green, splenium : brown), arcuate tracts (arcuate: red, anterior arcuate: green, posterior arcuate: yellow), uncinate tract: cyan, Inferior Fronto Occipital tract: pink, Inferior Longitudinal Tract: purple, Cingulum: brown

  Tr being the trace of the tensor. This new metric is used in the optimization scheme. The registration is defined as an optimization problem expressed in the form : arg v∈V min(φ(I t , I s , v) + ψ(v)) (4.2) with I t the template image, I s the subject image, v the transformation, φ the similarity measure between the two images, ψ a regularization term. The optimization scheme includes the problem of reorientation of the tensors. Global transformation (if smooth) between the images can be expressed locally by an affine transformation. The rotation matrix required for tensor reorientation can be extracted from the Jacobian of the tranformation. The Jacobian matrix can be decomposed as the product of an orthogonal matrix Q, corresponding to the rotation part and a symmetric and a positive-definite matrix S. The local affine tranformation F is expressed as F = (QS)x + T, Q being the rotation matrix, S the deformation matrix, and T the translation vector and the similarity measure is defined by

  While still controversal, super-resolution techniques can efficiently improve the spatial resolution of diffusion-based quantitative maps such as FA or color-encoded maps[START_REF] Buckley | The effect of ouabain on water diffusion in the rat hippocampal slice measured by high resolution nmr imaging[END_REF]. This technique consists in projecting any quantitative information onto dense streamline-based tractograms constructed at a high spatial resolution (for instance corresponding to the forward step during the fiber tracking) and secondly projecting the information back to a Cartesian grid of a higher spatial resolution compared to the acquisition resolution (see Figure4.5). Working at the resolution offered by the tractogram allows thus to preserve fine anatomical details naturally embedded in the diffusion-weighted signal that are lost when staying at the acquisition resolution[Duclap et al., 2013c]. We extended this approach originally developed at the individual scale to the group level. It was then applied to the coregistered maps of the Archi database subjects to create a 500μm isotropic resolution (a higher resolution would not provide additional information since it is limited by the initial tractography density) atlas of the white matter connectivity (Figure4.6 shows the results the FA atlas from an original resolution of 1.7mm isotropic to 1mm, 0.75mm and 0.5mm). The super-resolved maps using the tractograms of the subjects, obtained using 27 seeds per voxels, an aperture angle of 30 degrees and a forward step of 0.2mm.
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 45 Figure 4.5: Super resolution technique

Figure 4 . 6 :

 46 Figure 4.6: Super resolution technique : FA maps obtained from the combination of the 79 subjects' maps from the initial resolution 1.7mm isotropic (a) to 1mm (b), 0.75mm (c) and 0.5mm (d)

Figure 4 . 7 :

 47 Figure 4.7: Super-resolved (0.5mm isotropic) FA map (top line), ADC map (second line), Axial Diffusivity (third line), Radial Diffusivity (bottom line)

Figure 4 . 8 :

 48 Figure 4.8: Individual T 1 maps of 6 subjects from the Archi database using a T1-based mask

Figure 4 . 9 :

 49 Figure 4.9: Individual T 2 maps of 6 subjects from the Archi database using a T1-based mask
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 410 Figure 4.10: First line: 1.7 mm isotropic resolution atlases of quantitative T 1 (left) and T 2 (right) relaxation times obtained from the 79 subjects of the CONNECT/Archi database, second line : 500μm isotropic resolution atlases using the super resolution technique

Figure 4 . 11 :

 411 Figure 4.11: Profile computation. Top : Computed centroid of left corticospinal tract and corresponding density map. Bottom : sections computed from the centroid defining the domain of integration

Figure 4 . 12 :

 412 Figure 4.12: Differences between profiles using orignal centroids and symmetrized centroids

Figure 4 .

 4 Figure4.12 shows the accuracy of the registration of the profiles using the symmetrized left and right centroids computed from the merged bundles of both hemispheres. The first two graphs depict the difference between the T 1 profile of the IFO tract using the centroids computed from left and right bundles separately and using the centroids computed originally from the merged bundles obtained by projection of the left bundles onto the right hemisphere. The last graph shows the final left and right profiles computed from the symmetrized centroids. This technique clearly preserves the shape of the profiles to accurately match right and left profiles.

  The anterior part of the arcuate group doesn't depict any global asymmetry, but locally in the middle, a right lateralization is shown for FA and λ , corresponding to the left lateralization of T 2 and λ ⊥ in this region. The T 1 and T 2 values for the posterior part exhibit a lateralization mainly close to the extremities, corresponding to regions corrupted by high partial volume effect. The arcuate tract is the only tract of the group that clearly shows an asymmetry between the two hemispheres. FA values are clearly higher on the left part, while ADC, T 1 and T 2 values are higher on the right.

  fusion parameter (ADC,FA,λ ⊥ ,λ ) & T 1 relaxation time and diffusion parameter & T 2 relaxation time. Figures 4.21-4.24 represent the correlations between each diffusion parameters and T 1 or T 2 relaxation times, along the bundles. From a global point of view, for all the bundles, positive correlations have been found between ADC and T 2 /T 1 relaxation times. FA shows strong negative correlation with T 1 . The relationship between

Figure 4 .

 4 Figure 4.13: Left Columns : Average T 1 , T 2 , FA, ADC, λ and λ ⊥ profiles of the anterior arcuate tracts (In green : right bundle profiles, in blue left bundle profiles). Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries (red lines correspond to regions with at least 4 significantly asymmetric sections)

Figure 4 .

 4 Figure 4.14: Left Columns : Average T 1 , T 2 , FA, ADC, λ and λ ⊥ profiles of the posterior arcuate tracts In green : right bundle profiles, in blue left bundle profiles. Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries (red lines correspond to regions with at least 4 significantly asymmetric sections)

Figure 4 .

 4 Figure 4.15: Left Columns : Average T 1 , T 2 , FA, ADC, λ and λ ⊥ profiles of the arcuate tracts In green : right bundle profiles, in blue left bundle profiles. Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries (red lines correspond to regions with at least 4 significantly asymmetric sections)

Figure 4 .

 4 Figure 4.16: Left Columns : Average T 1 , T 2 , FA, ADC, λ and λ ⊥ profiles of the cingulum tracts In green : right bundle profiles, in blue left bundle profiles. Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries (red lines correspond to regions with at least 4 significantly asymmetric sections)

Figure 4 .

 4 Figure 4.17: Left Columns : Average T 1 , T 2 , FA, ADC, λ and λ ⊥ profiles of the right/left corticospinal tracts. In green : right bundle profiles, in blue left bundle profiles. Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries (red lines correspond to regions with at least 4 significantly asymmetric sections)
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 4 Figure 4.18: Left Columns : Average T 1 , T 2 , FA, ADC, λ and λ ⊥ profiles of the right/left inferior fronto occipital tracts. In green : right bundle profiles, in blue left bundle profiles Right Columns : Interhemispheric asymmetries (red lines correspond to regions with at least 4 significantly asymmetric sections)

Figure 4 .

 4 Figure 4.19: Left Columns : Average T 1 , T 2 , FA, ADC, λ and λ ⊥ profiles of the right/left inferior longitudinal tracts. In green : right bundle profiles, in blue left bundle profiles. Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries (red lines correspond to regions with at least 4 significantly asymmetric sections)

Figure

  Figure 4.21: Correlation between T 1 /T 2 relaxation times and diffusion parameters : Anterior/Posterior Arcuate tracts

Figure

  Figure 4.23: Correlation between T 1 /T 2 relaxation times and diffusion parameters :corticospinal and inferior occipital tracts

Figure

  Figure 4.24: Correlation between T 1 /T 2 relaxation times and diffusion parameters : inferior longitudinal and uncinate tracts
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 512 Figure 5.1: Tissue microstructure (astrocyte and oligodendrocytes) (from http://www.db-gersite.com)

Figure 5 . 2 :

 52 Figure 5.2: Cell membrane structure adapted from wikipedia

2 .

 2 It is made of two layers of phospholipids with embedded proteins. It is surrounded in the extra cellular space by the glycocalix made up of glycoproteins and by the cytoskeleton in the intra cellular space. The membrane has a key role in the transport of different substances between the intra and extracellular spaces. The membrane is selectively permeable, and only specific substances can cross this natural barrier. Pumps, carriers

Figure 5 . 3 :

 53 Figure 5.3: Cell membrane and molecules transfers from[START_REF] Ayus | Brain cell volume regulation in hyponatremia: role of sex, age, vasopressin, and hypoxia[END_REF] 

  developed an analytical model of the ex-vivo bovine optic nerve from PGSE experiment. From a transmission electron microscope study, a model for the optic nerve was developed. In this first study, cylinders were not used to represent the axons but prolate ellipsoids instead. They are characterized by short perpendicular direction and longer parallel direction. The glial cells are modeled as spheres with a unique diameter. The cell membranes are considered permeable with different values of permeability used for axons and other cells. Stanisz et al specified two different diffusion coefficients, one for the water molecules inside the intracellular space, the other for those in the extracellular space. The model is therefore a three compartment model: the prolate ellipsoid modeling the axons, the spheres modeling the glial cells and the extracellular space (see Figure 5.4). Each compartment follows a monoexponential decay, each characterized by a specific diffusion coefficient, and permeability has been included in the differential equations of the magnetization. The extracellular ADC was defined as
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 54 Figure 5.4: Optic nerve model : axons are modelled as prolate ellipsoid with a axial radius r p and the transverse radius r t , glial cells are modeled as spheres of radius r s and an additional compartment corresponds to the extra-cellular space

Figure 5 . 5 :

 55 Figure 5.5: CHARMED model of white matter[START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF] 

  extended this neurite model to map the density and orientation dispersion of the neurites. In this model, the cylinder model is replaced by a stick model and the orientation distribution function follows a Watson's distribution.
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 56 Figure 5.6: Geometrical models of brain tissue components

Figure 5 . 8 :

 58 Figure 5.8: Two-pool sphere model

Figure 5 . 9 :

 59 Figure 5.9: AxCaliber Framework results from [Assaf et al., 2008] for ex-vivo porcine optic and sciatic nerves : a. Multi diffusion time diffusion spectroscopy signal decay of an optic nerve sample. b. Multi diffusion time diffusion spectroscopy signal decay of a sciatic nerve sample. c. Extracted AxCaliber axon diameter distribution based on the signal decays given in (a) and (b). d. Axon diameter distribution derived from electron microscopy section of the two nerve samples. e,f. Electron microscope section of one optic nerve (e) and one sciatic nerve samples upon which the data in (a-d) is based.

Figure 5 .

 5 Figure 5.10: Human optimized protocol extracted from [Alexander et al., 2010] (RF pulses are also shown)

Figure 5 .

 5 Figure 5.12: Comparison of the estimated axon radius a' versus the ideal axon diameter index α from simulated data at different gradient strength (60mT/m, 140 mT/m, 200 mT/m, 300mT/m) and with various SNR (from[START_REF] Dyrby | Contrast and stability of the axon diameter index from microstructure imaging with diffusion mri[END_REF]). In blue: the mean of the repetitions of the fitting, in red: the estimates for each repetition

  Signal attenuation :E slow⊥ = exp -< φ 2 > /2

  Boundary conditions :R (a) = 0 and R (b) = 0 so β mn are the roots of j Initial condition : P (r , r, t = 0) = δ [rr ] Mean-squared displacement :(δ is the pulse duration and Δ the separation time of the PGSE )

Figure 5 .

 5 Figure 5.14: PGSE signal expression in long time limit for several geometries

Figure 5 .Figure 5

 55 Figure 5.15: Diffraction pattern for parallel planes separated by a 2R distance (left)and in a sphere of radius R (right). Figures extracted from[START_REF] Price | Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion, part 1: Basic theory[END_REF] 

Figure 5 .

 5 Figure 5.17: OGSE diagram

Figure 5 .

 5 Figure 5.18: AGWSE diagram from[START_REF] Drobnjak | Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted mr[END_REF] 

  be a promising way to probe microstructural parameters in clinical routine. For now, this kind of protocol have been used on preclinical scanners, proving their ability to provide information on microstructure. This thesis aims at characterizing the tissue microstructure of the human brain in vivo. This part of this work aims at setting the methodology to perfom axon calibration in vivo. To this purpose we developed a new diffusion gradient weighted sequence on the 3T and 7T clinical Siemens systems of NeuroSpin (VB17-IDEA Toolkit). The implementation on the 7T scanner is of great interest since this system provides higher SNR than the 3T scanner and the actual maximum gradient strength of the 7T is 80mT/m. With this new sequence, any kind of waveform can be played, from the usual PGSE sequence to the OGSE and to the fully arbitrary sequences, respecting the gradient slewrate and maximum strength of the systems (seeFigure 5.19). The use only need to provide a file describing the waveform indicating first the number of time points followed by the profile of the gradient waveforms on each axis. Since this sequence was developed to perform axon calibration, this file can contain the gradient waveforms for several profiles. The other parameter of the sequence can be tuned in a panel dedicated to this special sequence in the Siemens interface (seeFigure 5.20). From this panel it is possible to select the kind of wanted sequence: a simple Spin-Echo, a PGSE (it is then possible to directly set delta, Delta and G max on the panel) or an AGWSE. In this last case, it is possible to set

Figure 5 .

 5 Figure 5.19: PGSE, OGSE and totally arbitrary gradient waveform from the AGWSE sequence

Figure 5 .

 5 Figure 5.22 shows the validation of our sequence on the fiberCup phantom ([Poupon

  ODF fields obtained from a standard PGSE sequence and with the totally arbitrary gradient waveform for a common b-value = 480s/mm 2 . For both protocols, FOV=240mm, TH=10mm, Matrix = 128x128, PF=6/8, TR = 4s. For the PGSE protocol, δ=25ms and Δ =35ms, TE = 84ms and G max = 20mT /m. For the AGWSE protocol, the gradient duration was 49ms, TE = 110ms and G max = 22mT /m. The signal was measured along 10 optimized directions.Figures 5.22 and 5.23 show the results on the fiberCup

Figure 5 .

 5 Figure 5.20: Panel dedicated to our novel diffusion sequence. For an AGWSE sequence, it is possible to set the time duration between each time point, the maximum gradient strength along each axis, the number of T2-weighted images, the number of diffusion orientations, the number of profiles, the number of orientation blocks and finally the kind of sequence

Figure 5 .

 5 Figure 5.21: FiberCup phantom. Fiber pathways are highlighted in colors. Arrows indicate the directions of the synthetic fiber bundles.

Figure 5 .

 5 Figure 5.22: AGWSE tests at 3T on the fibercup phantom : comparison between the PGSE and the AGWSE protocol

Figure 5 .

 5 Figure 5.23: AGWSE tests at 3T on the fibercup phantom : zoom on the odf field

Figure 5 .

 5 Figure 5.24: AGWSE tests at 3T on a human subject : RGB map and ODF fields

  of 20 directions to limit individual scans to a few minutes thus improving the subject comfort. The sequences parameters were : TR = 5.2s, TE = 95 ms, FOV = 256mm, TH=2mm, Matrix = 128x128, Gmax=50mT/m, SlewRate = 333T/m/s. The different profiles are plotted in the figure 6.1. They allow to cover a range of diffusion times from 19ms to 61ms. This protocol also covers a range of b-value from 700 s/mm 2 to 6000 s/mm 2 . Varying the diffusion times increases the sensitivity to cell populations of different sizes.

Figure 6 . 1 :

 61 Figure 6.1: Diffusion PGSE protocol

Figure 6 .Figure 6 . 3 :

 663 Figure 6.6 shows the average profile computed from the 14 profiles of each subject of white matter fraction, radius and the derived axon density as well as the standard deviation across the subjects.

Figure 6 . 4 :

 64 Figure 6.4: Individual axon calibration obtained on 7 of 14 healthy subjects using the protocol described in section 6.1.1.1 at 7T (50mT/m, SR=333mT/m) including 10 different diffusion times and b-values. On the right : axon radius maps, in the middle : white matter fraction, on the left : density index.
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 65 Figure 6.5: Individual axon calibration obtained on 7 of 14 healthy subjects using the protocol described in section 6.1.1.1 at 7T (50mT/m, SR=333mT/m) including 10 different diffusion times and b-values. On the right : axon radius maps, in the middle : white matter fraction, on the left : density index.
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 666768 Figure 6.6: Average profile of white matter fraction and radius estimates and the derived axon density along the Corpus Callosum from 14 subjects
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 6966 Figure 6.9: Comparison of the radius estimates with different initial values (on one subject)
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 6 Figure 6.11: Comparison of the radius estimates using 4 and 10 PGSE profiles
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 6 Figure 6.12: Comparison of the white matter fraction estimates using 4 and 10 PGSE profiles
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 66 Figure 6.13: Wm fraction and radius profiles from the 10 subjects of the Archi database using the protocol of[Duclap et al., 2013a] 

Figure 6 .

 6 Figure 6.14: Correlations between microstructure parameters derived from the model and dti parameters (pvalue<0.05). First row : FA vs radius/WM fraction/ Axon density, second row : λ vs radius/WM fraction/ Axon density, third row : λ ⊥ vs radius/WM fraction/ Axon density, fourth row : ADC vs radius/WM fraction/ Axon density.
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 6 Figure 6.15 shows the correlations between the microstructure parameters. Radius shows negative correlation with white matter fraction. It can be explained by the higher density
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 6 Figure 6.15: Correlations between microstructure parameters (pvalue<0.05).
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 6 Figure 6.16: Signal attenuation for an axon of radius of 1μm; Left: using the two-pool model and right: using the simple cylinder model

Figure 6 .

 6 Figure 6.17: Signal attenuation for an axon of radius of 2μm; Left: using the two-pool model and right: using the simple cylinder model

Figure 6 .

 6 Figure 6.19: Diffusion in a circular layer : the attenuation comes from the attenuation along the boundaries and perpendicular to them

  is overestimated using the single pool model at 4.6 μm assuming a 100nm layer thickness). The model assumes slow exchange between the two compartments considering the diffusion time achievable on clinical MRI systems. It will be more realistic to consider intermediate exchange. Including exchange complicates the model (the Neuman's conditions simplifies the computation of the analytical expression of the signal) and introduces a new parameter to estimate. For now, we did not apply this new model to our 14 subjects, since the signal computation is very long due to the computation of the roots defined by the boundary conditions). Optimization of the algorithm will be part of our future work, in order to test the model on healthy subjects and compare with the actual model. This study is the beginning of more investigations on the biophysical reality of the two-pool model and the possibility to improve the accuracy of axon calibration algorithms. This work has been presented at the ISMRM conference in 2014

Figure 6 .

 6 Figure 6.20: Optimized protocol using trapezoidal oscillating gradients (courtesy of Dr. I. Drobnjak)

  order to compare AGWSE to PGSE protocol on human subjects at 7T, two volunteers have been scanned using an optimized AGWSE-based protocol (provided by Dr. Ivana Drobnjak from the CMIC, University College of London). This protocol was optimized considering the CHARMED model as tissue model, characterized by a priori parameters f r = 0.7,D = 1.7 × 10 -9 mm 2 /s and r = 5μm. The characteristics of the 7T Siemens scanner was also included in the constraints of the optimization algorithm. Since a

  gradient strength. In a feasibility study, we included 4 PGSE profiles along 30 directions (plus 2 b=0s/mm 2 images) into an imaging protocol dedicated to the study of autistic patients suffering from Asperger's syndrome (in collaboration with the team of Dr Marion Leboyer and Dr Josselin Houenou of the Albert Chenevier center of the Mondor Institute in the Fondamental Institute). This study (approved by the local ethical commitee C07-33, INSERM) focuses on the biomarkers of autism under a multimodal approach : MRI, clinical evaluation, eye-tracking (cognitive and social tasks), immunoinflammatory dosage, neuropsychological test. The imaging protocol includes T1, T2 flair, T2 mapping, resting-state fMRI and diffusion weighted MRI. The acquisition takes approximately 70 minutes including our protocol. The study is actually conducted on a Tim Trio 3T MRI system equipped with a 12-channel head coil on 40 autistic patients and 30 controls. It is important to stress that the number of profiles and orientations was imposed by the remaining scan time of the imaging protocol for our study. and 10 controls have already been included in this preliminary study at the time of the writing of this manuscript. The parameters of the PGSE profiles were : δ = 12ms/Δ = 56.8ms/G = 26mT /m/bvalue = 368s/mm 2 , δ = 24ms/Δ = 28.8ms/G = 26mT /m/bvalue = 580s/mm 2 , δ = 28ms/Δ = 72.8ms/G = 26mT /m/bvalue = 2400s/mm 2 , δ = 23ms/Δ = 77.8ms/G = 26mT /m/bvalue = 1795s/mm 2 . The acquisition parameters were : FOV = 210mm, TH=2mm, TR=6s,
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 66 Figure 6.21: Average profiles of axon radii and white matter fraction. On the left : autistic patients. On the right : controls

Figure 6 .

 6 Figure 6.22: Significative regions (p < 0.05) for radius, white matter fraction and FA along the corpus callosum

  using a new protocol dedicated to axon calibration with ten PGSE profiles along 60 directions on a 7T clinical scanner. A previous work([Duclap et al., 2013a]) based on only 4 profiles showing some limitations mainly on the reproducibility of the results, we have chosen to extend our protocol to ten profiles, to obtain a larger sampling of the diffusion times and low, medium and strong b-values (strong b-values allowing to be more sensitive to the restricted part of the signal). The tissue model was kept simple, corresponding to a CHARMED model with an additional isotropic compartment to deal with CSF contaminations. Results were in good agreement with histological observations, despite an overestimation of the smallest radii partly explained by the limited gradient strength
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5 Teslas 1000

  

		ms 700ms	110ms	100ms
	3 Teslas	1330 ms 830ms	90ms	80ms
	7 Teslas	2130 ms 1220ms	55ms	45ms

Table 3

 3 

	.1: T 1 and T 2 relaxation times of gray and white matter at 1.5T (from
	http://users.fmrib.ox.ac.uk/ peterj/lectures/), 3T (from

  addition, clinical MRI systems are limited in terms of gradient magnitude and slew rate, such that the sampling of the diffusion time can remain strongly limited to a short range of values to preserve SNR and sufficient diffusion sensitivity. However, even a simple model can already provide useful insights on tissue microstructure and help to differentate tissues, putatively offering nice imaging biomarkers of atrophiated tissues in many disease inducing microstructure alterations. The second problem of diffusion MRI is to choose the adequate sequence and protocol to map microstructure features accurately : PGSE is the most common sequence in diffusion MRI and diffusion MRI microscopy, but other sequences have appeared dedicated to cytoarchitecture imaging, such as double PGSE, Oscillating gradient Spin Echo or Arbitrary Gradient Spin Echo.

  Slow pool attenuationPropagator in spherical coordinates: (j n and y n are respectively first and second

	kind spherical bessel functions)							
	P s r, r , θ, θ , φ, φ , t -t ⊥ = A 00 +	2n + 1 2π mn	A nm		
	(j n	β mn r r i	j n	β mn r r i	-	j n (β mn ) y n (β mn )	y n	β mn r r i	y n	β mn r r i	)
					P n cos (θ) P n cos θ	e	-β 2 mn D slow i r 2	(t -t)
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Protocols

Protocol of [Duclap et al., 2013a] Our 6.2: Comparison between the protocol of [Duclap et al., 2013a] and our protocol

• We extracted DTI data for each profile of each subject

• We set the principal direction to the direction obtained from one of the profile at b= 3000 s/mm 2 (avoiding to deconvoluate but it could also be done using b = 1500s/mm 2 ). It will remain fixed during the optimization process.

• We set the intrinsic diffusivity of water to 1.7×10 -9 m 2 /s, the transverse diffusivity as follows D ⊥ = (1 -fr fr+f h )D

• We set the initial value of the radius by default to 4μm and the initial S 0 to the average of the values extracted from the b=0 images.

• An Monte Carlo Markov Chain (MCMC, see Appendix B) optimizer, taking into account the Rician noise model was applied to obtain the posterior distributions of the non fixed parameters : S 0 , the radius, the volume fractions of the compartment, the transverse diffusivity. 10000 burn-in steps were used as well as 100 samples with 1000 intervals. The authorized range of values for each parameter were : 0μm < radius < 20μm and 0 < S 0 < 10000. The volume fractions were forced to be between 0 and 1 and their sum equals to 1. The radial diffusivity was computed at each step : D ⊥ = (1 -fr fr+f h )D (corresponding to a tortuosity model).

• Each output parameter was chosen as the mean of the posterior distribution

Post-processing

First, the data were corrected for motion. This step is essential to guarantee a good match between the different profiles. All the images were registered to the images of the first block of the first profile using a 3D rigid transform. The diffusion orientations were [START_REF] Aboitiz | Fiber composition of the human corpus callosum[END_REF] described the fiber composition of the corpus callosum using light microscopy. Small fiber diameters were found in a greater amount in the genu and the splenium while larger fiber diameters (> 3μm) are mainly found in the body. Moreover, the fiber density is higher on both genu and splenium regions than in the body. The authors explain the differences of density not only by the presence of large axon diameter but also by an increase of the extra-cellular volume (inter-fiber distance). Our results are thus in good agreement with histological data, since we observe a high-low-high density profile and a low-high-low average radius profile (consistent with previous in vivo studies : [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion {MRI}[END_REF], [McNab et al.]). The white matter fraction globally follows the trend of the density. These observations were mainly made on the midsagittal plane.

Discussion

Results versus histology

The mean profiles confirm these observations but shows a local increase of the white matter fraction in the posterior body, just before the isthmus. It could be explained by the presence of larger axon radii in these regions.The obtained radii remain high in comparison with histological data, highlighting the overestimation already mentioned in the last chapter (probably stemming from the limited gradient strength combined to the simplicity of the model). This phenomenon of overestimation reduces the actual amplitudes between the genu, the body and the splenium. From figure 6.6, the inter-subject variability seems to be quite low, in particular for the radius parameter. This can be explained by the fact that with 10 profiles the MCMC procedure converges more easily to a global minima, but also that the 7T static field provides higher SNR, allowing to reduce the noise contamination of the measurement.

Intra and Inter-subject variability

Extension of the study to grey matter

It is far more difficult to extract cell sizes and density in grey matter. One of the biggest limitation is the permeability of their membranes, makes the model more complex. An interesting extension would be therefore to adapt our two-pool model to grey matter to provide biomarkers of diseases affecting the grey matter.

Human Brain Project

Last this work will be continued in the frame of the Human Brain Project, a large project unifying scientific resources with the ultimate goal of mimicking the human brain.

Publications

We list here the different publications arising from this work. 
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(n integer)

A.1.2 Neuman Functions (second kind)

Y n (x) = lim λ→+n J λ (x)cos(λπ) -J -λ (x) sin(λπ)

A.2 Modified Bessel Functions of the first kind

A.3 Spherical Bessel Functions

A.3.1 Spherical Bessel Functions of the first kind

(n integer)

A.3.2 Spherical Bessel Functions of the second kind

A.4 Legendre Polynomials

The Legendre Polynomials can be defined in several ways, we here describe them through the Rodrigues formula :

where a (0) = 1 and a (n) = a(a + 1)(a + 2)...(a + n -1)

Appendix B

MCMC Procedure

We here describe the MCMC procedure used to draw samples of posterior distribution of each parameter of the model from the measurements. This procedure does not require the knowledge of partial derivatives of the signal to optimize with respect to the parameters.

1. Computation of the signal using current parameters (initial values)

2. New parameters are computed, perturbating the current parameters using a Gaussian perturbation. This procedure is first repeated a large number of times, to let the Markov Chain become stable: this is the burnin period. The final samples of the posterior distribution are kept

Corpus Callosum T1 and T2 profiles

We here provide the profile of T1 and T2 relation times along the corpus callosum.