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Contents

Acknowledgements i

Contents iii

List of Figures x

List of Tables xvi

Symbols xvii

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Chapitre 2: Human Brain Anatomy . . . . . . . . . . . . . . . . . 4

1.3.2 Chapitre 3: MRI modalities dedicated to tissue microstructure . . 4

1.3.3 Chapitre 4: Brain white matter relaxometric atlases . . . . . . . . 5

1.3.4 Chapitre 5: Microstructure mapping using diffusion MRI . . . . . 5

1.3.5 Chapitre 6: Brain microstructure mapping . . . . . . . . . . . . . 5

1.3.6 Chapter 7: Conclusion and future work . . . . . . . . . . . . . . . 5

2 Human Brain Anatomy 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Macroscopic Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Global description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Cortex lobes, gyri, and sulci . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Frontal lobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.2 Parietal lobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 Occipital lobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.4 Temporal lobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.5 Insula and limbic lobe . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.6 Brodmann areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Internal anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Blood supply of the brain . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 Ventricles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.3 Grey matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iii



Contents iv

2.5.3.1 Nuclei of the cerebellum, the brain stem and the mes-
encephalon . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3.2 Grey matter of the diencephalon . . . . . . . . . . . . . 11

2.5.3.3 Grey matter of the telencephalon . . . . . . . . . . . . . 12

Deep nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.4 White matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.4.1 Projection fibers . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.4.2 Association fibers . . . . . . . . . . . . . . . . . . . . . . 14

2.5.4.3 Interhemispheric commissures . . . . . . . . . . . . . . . 15

2.6 Brain tissue microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 Brain cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1.2 Oligodendrocytes . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1.3 Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1.4 Microglia . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.2 Cortex histology . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.3 White matter histology . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Brain diseases and microstructure . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 MRI modalities dedicated to the study of tissue microstructure 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Principles of magnetic resonance imaging . . . . . . . . . . . . . . . . . . 23

3.2.1 Magnetic resonance phenomenon . . . . . . . . . . . . . . . . . . . 23

3.2.1.1 Magnetic moments of protons . . . . . . . . . . . . . . . 23

3.2.1.2 Equilibrium state in the presence of a magnetic field B0 24

3.2.1.3 Perturbation of the equilibrium by a radio frequence B1

: excitation . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1.4 Bloch equations, T1 and T2 relaxation times . . . . . . . 25

3.2.1.5 T1 and T2 relaxation times for different tissues and dif-
ferent fields . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Origin of the signal acquired in MRI . . . . . . . . . . . . . . . . 27

3.2.3 From FID to image . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.4 Spatial encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.4.1 Slice gradient . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4.2 Phase encoding . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.4.3 Frequency encoding . . . . . . . . . . . . . . . . . . . . 31

3.2.4.4 3D imaging . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.5 K-space and FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.6 Parallel imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.7 MRI sequences used in this thesis . . . . . . . . . . . . . . . . . . 33

3.2.7.1 Spin Echo Sequence . . . . . . . . . . . . . . . . . . . . 34

3.2.7.2 Gradient Echo Sequence . . . . . . . . . . . . . . . . . . 34

3.2.7.3 Fast K-space acquisition: Echo Planar Imaging . . . . . 35

3.2.8 Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Relaxometry and quantitative imaging . . . . . . . . . . . . . . . . . . . 36



Contents v

3.3.1 Common T1 and T2 sequences . . . . . . . . . . . . . . . . . . . . 39

3.3.1.1 T1 mapping : Inversion/Recovery sequence . . . . . . . 39

3.3.2 T2 mapping : multiple echo times Spin-Echo . . . . . . . . . . . . 40

3.3.3 Advanced Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3.1 T1 mapping using RF spoiling . . . . . . . . . . . . . . . 41

3.3.3.2 T2 mapping using steady state free precession . . . . . . . 42

3.4 Diffusion weighted imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Diffusion process in tissues . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1.1 Free diffusion . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1.2 Anisotropy and restricted diffusion . . . . . . . . . . . . 45

3.4.2 Basic sequence dedicated to diffusion MRI and signal equation . 46

3.4.2.1 Pulse Gradient Spin Echo . . . . . . . . . . . . . . . . . 46

3.4.2.2 Artefacts and noise in diffusion MRI . . . . . . . . . . . . 47

3.4.2.3 Diffusion signal expression . . . . . . . . . . . . . . . . 51

3.4.3 Review of local models . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3.1 Q-space analysis : dODF, fODF and diffusion propagator 52

3.4.3.2 Local modeling review . . . . . . . . . . . . . . . . . . . 53

3.4.3.3 DTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3.4 Numerical and analytical Qball imaging . . . . . . . . . . 58

3.4.3.5 Spherical Deconvolution Techniques . . . . . . . . . . . . 60

3.4.4 Application of the diffusion weighted imaging . . . . . . . . . . . 60

3.4.4.1 Inference of structural connectivity using tractography . 61

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Brain white matter relaxometry atlases 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The ARCHI database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Inference of an atlas of the structural connectivity . . . . . . . . . . . . . 67

4.3.1 Quality check and correction of imaging artefacts . . . . . . . . . . 68

4.3.2 Local modeling and tractography . . . . . . . . . . . . . . . . . . . 69

4.3.3 Intra-subject and inter-subjects clustering . . . . . . . . . . . . . . 70

4.3.4 Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.5 Diffeomorphic registration of subjects using DTI-TK . . . . . . . . 72

4.3.6 Super resolved quantitative atlases . . . . . . . . . . . . . . . . . . 74

4.3.7 Connectivity Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 High resolution relaxometric 3D atlases . . . . . . . . . . . . . . . . . . . 76

4.4.1 Inference of individual relaxometry maps . . . . . . . . . . . . . . 76

4.4.2 Inference of high resolution atlases . . . . . . . . . . . . . . . . . . 77

4.5 T1 and T2 profiles along white matter bundles . . . . . . . . . . . . . . . 78

4.5.1 Profile Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.2 Validation of the symmetrized centroids . . . . . . . . . . . . . . 81

4.5.3 Profiles of T1 and T2 along WM bundles . . . . . . . . . . . . . . . 82

4.5.4 Anatomical analysis of the profiles . . . . . . . . . . . . . . . . . . 82

4.5.4.1 General observations . . . . . . . . . . . . . . . . . . . . . 82

4.5.4.2 Arcuate Group (Figures 4.13-4.15 ) . . . . . . . . . . . 83

4.5.4.3 Cingulum Tract (Figure 4.16) . . . . . . . . . . . . . . . 83

4.5.4.4 CorticoSpinal fasciculus (Figure 4.17) . . . . . . . . . . . 83



Contents vi

4.5.4.5 Inferior Fronto Occipital fasciculus (Figure 4.18) . . . . . 83

4.5.4.6 Inferior Longitudinal Fasciculus (Figure 4.19) . . . . . . . 84

4.5.4.7 Uncinate fasciculus (Figure 4.20) . . . . . . . . . . . . . . 84

4.5.4.8 Corpus Callosum . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Study of inter-hemispheric asymmetries . . . . . . . . . . . . . . . . . . . 84

4.6.1 Arcuate asymmetries (Figure 4.13-4.15) . . . . . . . . . . . . . . . 85

4.6.2 Cingulum asymmetries (Figure 4.16) . . . . . . . . . . . . . . . . . 85

4.6.3 CorticoSpinal asymmetries (Figure 4.17) . . . . . . . . . . . . . . . 85

4.6.4 Inferior Fronto Occipital asymmetries (Figure 4.18) . . . . . . . . . 86

4.6.5 Inferior Longitudinal asymmetries (Figure 4.19) . . . . . . . . . . . 86

4.6.6 Uncinate asymmetries (Figure 4.20) . . . . . . . . . . . . . . . . . 86

4.7 Comparison with the profiles of diffusion structural parameters . . . . . 86

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Microstructure mapping using diffusion MRI 103

5.1 Microstructure modeling of the brain tissue . . . . . . . . . . . . . . . . 104

5.1.1 Compartmentalization and exchange . . . . . . . . . . . . . . . . 105

5.1.2 Compartmentalization of the brain tissue . . . . . . . . . . . . . . 105

5.1.3 Exchange between compartments . . . . . . . . . . . . . . . . . . 106

5.2 State of the art of tissue modeling . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Current white matter models . . . . . . . . . . . . . . . . . . . . 107

5.2.1.1 Beyond monoexponential model : biexponential model
of white matter . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1.2 First analytical model with cell geometrical model . . . . 108

5.2.1.3 Ball and Stick model . . . . . . . . . . . . . . . . . . . . 109

5.2.1.4 The composite hindered and restricted model of diffu-
sion (CHARMED) . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1.5 Extension of CHARMED model for orientation dispersion111

5.2.1.6 Models including myelin sheaths . . . . . . . . . . . . . . 111

5.2.1.7 Comparison of the white matter models . . . . . . . . . 112

5.2.2 Grey matter models and mixed models . . . . . . . . . . . . . . . 112

5.3 Beyond the CHARMED model : axon model using a two-pool model
cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Do the fast and slow pools correspond to extra and intra-cellular
space ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.2 A biexponential diffusion behaviour inside the cell . . . . . . . . . 114

5.4 Cytoarchitectural modeling of the grey matter : beyond the sphere model 115

5.5 Diffusion MR microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5.1 Principles of diffusion MRI microscopy . . . . . . . . . . . . . . . 116

5.5.1.1 Using varying diffusion time to probe tissue microstructure116

5.5.1.2 Diffusion MRI simulation . . . . . . . . . . . . . . . . . . 117

5.5.1.3 Mathematical framework of signal attenuation compu-
tation : Short Pulse Gradient and Gaussian Phase Dis-
tribution approximations . . . . . . . . . . . . . . . . . . 117

5.5.1.4 Equation of the diffusion propagator . . . . . . . . . . . 120

Diffusion propagator expression for the axon : cylinder ge-
ometry . . . . . . . . . . . . . . . . . . . . . . . 120



Contents vii

Diffusion propagator expression for neural cells : sphere
geometry . . . . . . . . . . . . . . . . . . . . . . 120

5.5.2 Diffusion MRI microscopy using Pulse Gradient Spin Echo . . . . 121

5.5.2.1 AxCaliber Framework . . . . . . . . . . . . . . . . . . . 121

5.5.2.2 ActiveAx Framework : optimization of acquisition scheme
for clinical routine . . . . . . . . . . . . . . . . . . . . . 123

Signal model : . . . . . . . . . . . . . . . . . . . . . . . . . 125

Results and Limits : . . . . . . . . . . . . . . . . . . . . . . 126

5.5.2.3 Second contribution : signal attenuation for the two-
pool model . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Development of the PGSE signal attenuation for the two-
pool cylinder model: . . . . . . . . . . . . . . . . 131

Signal attenuation for the thick layer sphere using PGSE: . 134

5.5.2.4 Long time limit : diffusive-diffraction experiments . . . . 136

5.5.3 Diffusion MRI microscopy using double PGSE . . . . . . . . . . . 138

5.5.3.1 Extracting microstructure features from diffraction pat-
terns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5.3.2 Signal angular dependency . . . . . . . . . . . . . . . . . 139

Application to white matter structure . . . . . . . . . . . . 139

5.5.4 Oscillating gradient sequences : OGSE and SW-OGSE . . . . . . 140

5.5.4.1 OGSE and temporal diffusion spectroscopy . . . . . . . . 141

5.5.4.2 OGSE for cell calibration . . . . . . . . . . . . . . . . . . 142

5.5.5 Beyond the PGSE : spin echo sequence diffusion weighted with
arbitrary gradient waveforms (AGWSE) . . . . . . . . . . . . . . 143

5.5.5.1 Developpment and implementation of an AGSWE se-
quence in a clinical routine at 3 Teslas and 7 Teslas . . . 145

5.6 Conclusion of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 White Matter Microstructure Mapping 151

6.1 Mapping the white matter using the PGSE sequence . . . . . . . . . . . 152

6.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.1.1 MRI data acquisition . . . . . . . . . . . . . . . . . . . 152

6.1.1.2 White matter model . . . . . . . . . . . . . . . . . . . . 153

6.1.1.3 Axon Calibration Algorithm . . . . . . . . . . . . . . . 153

6.1.1.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.1.2.1 Microstructure mapping . . . . . . . . . . . . . . . . . . . 156

6.1.2.2 Average profile . . . . . . . . . . . . . . . . . . . . . . . . 156

6.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.1.3.1 Results versus histology . . . . . . . . . . . . . . . . . . . 161

6.1.3.2 Intra and Inter-subject variability . . . . . . . . . . . . . 161

6.1.3.3 Stability of the results . . . . . . . . . . . . . . . . . . . . 162

6.1.3.4 Comparison with 4 profiles . . . . . . . . . . . . . . . . . 164

6.1.3.5 Comparison with our previous study . . . . . . . . . . . . 164

6.1.3.6 Correlations between microstructure parameters and dti
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.1.3.7 Conclusion and discussion . . . . . . . . . . . . . . . . . . 167



Contents viii

6.2 Theoretical study of the two-pool model to improve axon calibration . . 168

6.2.1 Single-pool vs the two-pool model . . . . . . . . . . . . . . . . . . 168

6.2.2 Origin of the overestimation . . . . . . . . . . . . . . . . . . . . . . 169

6.2.3 Limitations of the model . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3 Ongoing studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.1 Arbitrary Gradient Waveform Spin Echo versus PGSE : in vivo
comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.2 Towards characterization of diseases through axon calibration :
application to a cohort of autistic patients . . . . . . . . . . . . . . 172

6.3.2.1 MRI protocol and methods . . . . . . . . . . . . . . . . . 173

6.3.2.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . 174

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7 Conclusion and Future Work 178

7.1 General conclusion and contributions . . . . . . . . . . . . . . . . . . . . . 178

7.1.1 Atlas of T1 and T2 relaxation times from the 79 subjects of the
CONNECT/Archi database . . . . . . . . . . . . . . . . . . . . . . 178

7.1.2 Contributions to axon calibration methods . . . . . . . . . . . . . 179

7.1.2.1 Implementation and validation of an Arbitrary Gradient
Waveform Spin Echo sequence . . . . . . . . . . . . . . . 179

7.1.2.2 A novel geometrical model of the axon . . . . . . . . . . 179

7.1.2.3 Axon radii and density mapping of the corpus callosum
at 7T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.1.3 Software contribution . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2.1 Construction of further atlases based on the CONNECT/Archi
MRI database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2.2 In vivo axon calibration at 7T . . . . . . . . . . . . . . . . . . . . 180

7.2.3 In vivo comparative study of AGWSE vs PGSE . . . . . . . . . . 180

7.2.4 Towards clinical applications . . . . . . . . . . . . . . . . . . . . . 181

7.2.5 Real-time axon calibration . . . . . . . . . . . . . . . . . . . . . . . 181

7.2.6 Extension of the study to grey matter . . . . . . . . . . . . . . . . 182

7.2.7 Human Brain Project . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2.8.1 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2.8.2 Conference Papers . . . . . . . . . . . . . . . . . . . . . . 182

A Mathematical Functions used in this thesis 184

A.1 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.1.1 Bessel Functions of the first kind . . . . . . . . . . . . . . . . . . . 184

A.1.2 Neuman Functions (second kind) . . . . . . . . . . . . . . . . . . . 184

A.2 Modified Bessel Functions of the first kind . . . . . . . . . . . . . . . . . . 184

A.3 Spherical Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.3.1 Spherical Bessel Functions of the first kind . . . . . . . . . . . . . 185

A.3.2 Spherical Bessel Functions of the second kind . . . . . . . . . . . . 185

A.4 Legendre Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



Contents ix

A.5 Confluent hypergeometric function . . . . . . . . . . . . . . . . . . . . . . 185

B MCMC Procedure 186

C Corpus Callosum T1 and T2 profiles 188

Bibliography 189



List of Figures

2.1 The four brain lobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Brodmann’s areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Brain blood supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Ventricles system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Nuclei of the telencephalon on an axial slice. . . . . . . . . . . . . . . . . 12

2.6 Projection fibers and corpus callosum . . . . . . . . . . . . . . . . . . . . 13

2.7 Association fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Corpus Callosum sections from [Highley et al., 1999] . . . . . . . . . . . . 15

2.9 Description of the different parts of the neuron. . . . . . . . . . . . . . . . 16

2.10 Transmission electron micrograph of a myelinated axon . . . . . . . . . . 16

2.11 Oligodendrocyte. Adapted from http://cnx.org . . . . . . . . . . . . . . . 17

2.12 Astrocyte. Adapted from http://cnx.org . . . . . . . . . . . . . . . . . . . 18

2.13 Cortex microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.14 Brain tissue microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Magnetic Moment of a proton . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Left : Protons behavior in the absence of magnetic field , Right : Align-
ment in the presence of an external magnetic moment . . . . . . . . . . . 24

3.3 Excitation and relaxation phenomena. . . . . . . . . . . . . . . . . . . . . 25

3.4 Laboratory frame and rotative frame. . . . . . . . . . . . . . . . . . . . . 26

3.5 Temporal longitudinal and transverse magnetization evolution . . . . . . . 28

3.6 T1-weighted image (left) and T2-weighted image (right) from one subject
of the Archi database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 MRI system : With Gφ the phase encoding gradient, Gs the slice gradient,
Gω the frequency encoding gradient, B0 the static magnetic field . . . . . 30

3.8 Spatial encoding. Top line : spatial encoding, bottom line : basic MRI
sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 K-space from www.imaios.fr . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.10 Spin Echo sequence adapted from www.imaios.fr . . . . . . . . . . . . . 35

3.11 Spin Echo Echo Planar Imaging sequence from www.imaios.fr. . . . . . . 36

3.12 MRI contrast with varying TR and TE. TR is constant across rows and
increasing down columns (TR=500ms, 1000ms, 2000ms, 4000ms, 8000ms,
12000ms from the top to the bottom line). TE is constant across the
columns and increases across the rows (TE=25ms, 50ms,75ms,100ms from
left to right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.13 Inversion Recovery sequence www.imaios.fr . . . . . . . . . . . . . . . . . 39

3.14 T1 and T2 mapping sequences : a) IR-EPI b) EPI. . . . . . . . . . . . . . 40

3.15 Spoiled Gradient Recalled Echo sequence. . . . . . . . . . . . . . . . . . 41

x



List of Figures xi

3.16 Stead State Free Precession sequence. . . . . . . . . . . . . . . . . . . . . 42

3.17 Restricted diffusion phenomenon [Assaf et al., 2008]: Δx is the mean-
squared displacement and Δ the diffusion time . . . . . . . . . . . . . . . 45

3.18 Pulse Gradient Spin Echo Sequence. . . . . . . . . . . . . . . . . . . . . . 46

3.19 N/2 Ghosting Artefact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.20 Susceptibility artefact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.21 nc-χ noise in diffusion MRI data (adapted from [Brion, 2013]) . . . . . . . 49

3.22 Rician probability distribution function (figure from [Brion, 2013]) for
different ratios S/σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.23 Diffusion weighted images (b=1500 s.mm2) for three different orientations 53

3.24 Reprenstation of the diffusion tensor D in the cases of isotropic and
anisotropic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.25 RGB and FA maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.26 Analytical QBall field (computed using CONNECTOMIST 2.0). . . . . . 59

3.27 Streamline deterministic tractography (from one subject of the Archi
Database). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.28 Deterministic versus Probabilistic tractography. . . . . . . . . . . . . . . . 63

4.1 Connectomist pipeline leading to the fiber bundle labelling . . . . . . . . 68

4.2 Robust Tractography mask (figure from [Guevara et al., 2011a]).First line:
mask with a simple FA threshold, second line: T1-based mask. many
important areas of white matter are missed when using FA based masks . 70

4.3 Clustering. Step 1 : hierarchical decomposition, Step 2: length-based
segmentation, Step 3: voxel-based clustering, Step 4: extremity-based
clustering, and Step 5: fascicle merge. From [Guevara et al., 2012]. . . . . 71

4.4 Major white matter bundles of the 79 subjects of the ARCHI database:
corpus callosum (rostrum: dark pink, genu: dark blue, body: dark green,
splenium : brown), arcuate tracts (arcuate: red, anterior arcuate: green,
posterior arcuate: yellow), uncinate tract: cyan, Inferior Fronto Occipital
tract: pink, Inferior Longitudinal Tract: purple, Cingulum: brown . . . . 72

4.5 Super resolution technique . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Super resolution technique : FA maps obtained from the combination of
the 79 subjects’ maps from the initial resolution 1.7mm isotropic (a) to
1mm (b), 0.75mm (c) and 0.5mm (d) . . . . . . . . . . . . . . . . . . . . 75

4.7 Super-resolved (0.5mm isotropic) FA map (top line), ADC map (second
line), Axial Diffusivity (third line), Radial Diffusivity (bottom line) . . . 76

4.8 Individual T1 maps of 6 subjects from the Archi database using a T1-
based mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Individual T2 maps of 6 subjects from the Archi database using a T1-
based mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 First line: 1.7 mm isotropic resolution atlases of quantitative T1(left) and
T2(right) relaxation times obtained from the 79 subjects of the CONNEC-
T/Archi database, second line : 500μm isotropic resolution atlases using
the super resolution technique . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Profile computation. Top : Computed centroid of left corticospinal tract
and corresponding density map. Bottom : sections computed from the
centroid defining the domain of integration . . . . . . . . . . . . . . . . . 80

4.12 Differences between profiles using orignal centroids and symmetrized cen-
troids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



List of Figures xii

4.13 Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the an-
terior arcuate tracts (In green : right bundle profiles, in blue left bundle
profiles). Individual profiles are also plotted. Right Columns : Inter-
hemispheric asymmetries (red lines correspond to regions with at least 4
significantly asymmetric sections) . . . . . . . . . . . . . . . . . . . . . . . 87

4.14 Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the pos-
terior arcuate tracts In green : right bundle profiles, in blue left bundle
profiles. Individual profiles are also plotted. Right Columns : Inter-
hemispheric asymmetries (red lines correspond to regions with at least 4
significantly asymmetric sections) . . . . . . . . . . . . . . . . . . . . . . 88

4.15 Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
arcuate tracts In green : right bundle profiles, in blue left bundle profiles.
Individual profiles are also plotted. Right Columns : Interhemispheric
asymmetries (red lines correspond to regions with at least 4 significantly
asymmetric sections) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.16 Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
cingulum tracts In green : right bundle profiles, in blue left bundle profiles.
Individual profiles are also plotted. Right Columns : Interhemispheric
asymmetries (red lines correspond to regions with at least 4 significantly
asymmetric sections) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.17 Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
right/left corticospinal tracts. In green : right bundle profiles, in blue
left bundle profiles. Individual profiles are also plotted. Right Columns
: Interhemispheric asymmetries (red lines correspond to regions with at
least 4 significantly asymmetric sections) . . . . . . . . . . . . . . . . . . 91

4.18 Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
right/left inferior fronto occipital tracts. In green : right bundle profiles,
in blue left bundle profiles Right Columns : Interhemispheric asymmetries
(red lines correspond to regions with at least 4 significantly asymmetric
sections) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.19 Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
right/left inferior longitudinal tracts. In green : right bundle profiles,
in blue left bundle profiles. Individual profiles are also plotted. Right
Columns : Interhemispheric asymmetries (red lines correspond to regions
with at least 4 significantly asymmetric sections) . . . . . . . . . . . . . . 93

4.20 Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
right/left uncinate tracts. In green : right bundle profiles, in blue left
bundle profiles. Individual profiles are also plotted. Right Columns :
Interhemispheric asymmetries (red lines correspond to regions with at
least 4 significantly asymmetric sections) . . . . . . . . . . . . . . . . . . 94

4.21 Correlation between T1/T2 relaxation times and diffusion parameters :
Anterior/Posterior Arcuate tracts . . . . . . . . . . . . . . . . . . . . . . 96

4.22 Correlation between T1/T2 relaxation times and diffusion parameters :
arcuate and cingulum tracts . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.23 Correlation between T1/T2 relaxation times and diffusion parameters :cor-
ticospinal and inferior occipital tracts . . . . . . . . . . . . . . . . . . . . 98

4.24 Correlation between T1/T2 relaxation times and diffusion parameters :
inferior longitudinal and uncinate tracts . . . . . . . . . . . . . . . . . . . 99



List of Figures xiii

5.1 Tissue microstructure (astrocyte and oligodendrocytes) (from http://www.db-
gersite.com) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Cell membrane structure adapted from wikipedia . . . . . . . . . . . . . . 106

5.3 Cell membrane and molecules transfers from [Ayus et al., 2008] . . . . . . 107

5.4 Optic nerve model : axons are modelled as prolate ellipsoid with a axial
radius rp and the transverse radius rt, glial cells are modeled as spheres of
radius rs and an additional compartment corresponds to the extra-cellular
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 CHARMED model of white matter [Assaf et al., 2004] . . . . . . . . . . . 110

5.6 Geometrical models of brain tissue components . . . . . . . . . . . . . . . 113

5.7 Two-pool cylinder model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Two-pool sphere model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.9 AxCaliber Framework results from [Assaf et al., 2008] for ex-vivo porcine
optic and sciatic nerves : a. Multi diffusion time diffusion spectroscopy
signal decay of an optic nerve sample. b. Multi diffusion time diffusion
spectroscopy signal decay of a sciatic nerve sample. c. Extracted AxCal-
iber axon diameter distribution based on the signal decays given in (a)
and (b). d. Axon diameter distribution derived from electron microscopy
section of the two nerve samples. e,f. Electron microscope section of one
optic nerve (e) and one sciatic nerve samples upon which the data in (a–
d) is based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.10 Human optimized protocol extracted from [Alexander et al., 2010] (RF
pulses are also shown) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.11 Results of ActiveAx framework on the corpus callosum of human subjects
from [Alexander et al., 2010] . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.12 Comparison of the estimated axon radius a’ versus the ideal axon diameter
index α from simulated data at different gradient strength (60mT/m, 140
mT/m, 200 mT/m, 300mT/m) and with various SNR (from [Dyrby et al.,
2013]). In blue: the mean of the repetitions of the fitting, in red: the
estimates for each repetition . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.13 Two-pool cylinder and sphere model : in blue the slow pool, in red the
fast pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.14 PGSE signal expression in long time limit for several geometries . . . . . 137

5.15 Diffraction pattern for parallel planes separated by a 2R distance (left)
and in a sphere of radius R (right). Figures extracted from [Price, 1997] . 137

5.16 Double PGSE diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.17 OGSE diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.18 AGWSE diagram from [Drobnjak et al., 2010] . . . . . . . . . . . . . . . . 144

5.19 PGSE, OGSE and totally arbitrary gradient waveform from the AGWSE
sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.20 Panel dedicated to our novel diffusion sequence. For an AGWSE se-
quence, it is possible to set the time duration between each time point, the
maximum gradient strength along each axis, the number of T2-weighted
images, the number of diffusion orientations, the number of profiles, the
number of orientation blocks and finally the kind of sequence . . . . . . . 147

5.21 FiberCup phantom. Fiber pathways are highlighted in colors. Arrows
indicate the directions of the synthetic fiber bundles. . . . . . . . . . . . . 148

5.22 AGWSE tests at 3T on the fibercup phantom : comparison between the
PGSE and the AGWSE protocol . . . . . . . . . . . . . . . . . . . . . . . 148



List of Figures xiv

5.23 AGWSE tests at 3T on the fibercup phantom : zoom on the odf field . . 149

5.24 AGWSE tests at 3T on a human subject : RGB map and ODF fields . . . 150

6.1 Diffusion PGSE protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Comparison between the protocol of [Duclap et al., 2013a] and our protocol155

6.3 Processing steps from the data acquisition to the computation of the
average profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Individual axon calibration obtained on 7 of 14 healthy subjects using
the protocol described in section 6.1.1.1 at 7T (50mT/m, SR=333mT/m)
including 10 different diffusion times and b-values. On the right : axon
radius maps, in the middle : white matter fraction, on the left : density
index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.5 Individual axon calibration obtained on 7 of 14 healthy subjects using
the protocol described in section 6.1.1.1 at 7T (50mT/m, SR=333mT/m)
including 10 different diffusion times and b-values. On the right : axon
radius maps, in the middle : white matter fraction, on the left : density
index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.6 Average profile of white matter fraction and radius estimates and the
derived axon density along the Corpus Callosum from 14 subjects . . . . . 160

6.7 Standard deviations of the radius posterior distribution from the MCMC
fitting on the mid-sagittal plane of one subject. Top : radius estimates,
bottom: radius standard deviation . . . . . . . . . . . . . . . . . . . . . . 162

6.8 Standard deviations of the radius posterior distribution from the MCMC
fitting on the mid-sagittal plane of one subject. Top : white matter
fraction estimates, bottom: white matter fraction standard deviation . . 162

6.9 Comparison of the radius estimates with different initial values (on one
subject) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.10 Comparison of the white matter fraction estimates with different initial
values (on one subject) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.11 Comparison of the radius estimates using 4 and 10 PGSE profiles . . . . . 164

6.12 Comparison of the white matter fraction estimates using 4 and 10 PGSE
profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.13 Wm fraction and radius profiles from the 10 subjects of the Archi database
using the protocol of [Duclap et al., 2013a] . . . . . . . . . . . . . . . . . . 165

6.14 Correlations between microstructure parameters derived from the model
and dti parameters (pvalue<0.05). First row : FA vs radius/WM frac-
tion/ Axon density, second row : λ‖ vs radius/WM fraction/ Axon den-
sity, third row : λ⊥ vs radius/WM fraction/ Axon density, fourth row :
ADC vs radius/WM fraction/ Axon density. . . . . . . . . . . . . . . . . 166

6.15 Correlations between microstructure parameters (pvalue<0.05). . . . . . . 167

6.16 Signal attenuation for an axon of radius of 1μm; Left: using the two-pool
model and right: using the simple cylinder model . . . . . . . . . . . . . . 169

6.17 Signal attenuation for an axon of radius of 2μm; Left: using the two-pool
model and right: using the simple cylinder model . . . . . . . . . . . . . . 170

6.18 Signal attenuation for an axon of radius of 3μm; Left: using the two-pool
model and right: using the simple cylinder model . . . . . . . . . . . . . . 170

6.19 Diffusion in a circular layer : the attenuation comes from the attenuation
along the boundaries and perpendicular to them . . . . . . . . . . . . . . 171



List of Figures xv

6.20 Optimized protocol using trapezoidal oscillating gradients (courtesy of
Dr. I. Drobnjak) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.21 Average profiles of axon radii and white matter fraction. On the left :
autistic patients. On the right : controls . . . . . . . . . . . . . . . . . . . 174

6.22 Significative regions (p < 0.05) for radius, white matter fraction and FA
along the corpus callosum . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



List of Tables

3.1 T1 and T2 relaxation times of gray and white matter at 1.5T (from
http://users.fmrib.ox.ac.uk/ peterj/lectures/), 3T (from [Wansapura et al.,
1999]) and 7T ([Rooney et al., 2007]) . . . . . . . . . . . . . . . . . . . . . 27

xvi



Symbols

λ‖ Axial diffusivity

λ⊥ Radial diffusivity

μdMRI diffusion Magnetic Resonance Imaging Microscopy

ADC Apparent Diffusion Coefficient

AGWSE Arbitrary Gradient Waveform Spin Echo

dMRI diffusion Magnetic Resonance Imaging

dODF diffusion Orientation Distribution Function

dPGSE Double Pulse Gradient Spin Echo

fODF fiber Orientation Distribution Function

DSI Diffusion Spectrum Imaging

DTI Diffusion Tensor Imaging

FA Fraction Anisotropy

GFA Generalized Fraction Anisotropy

HARDI High Angular Resolution Diffusion Imaging

HYDI Hybrid Diffusion Imaging

MCMC Monte Carlo Markov Chain

MRI Magnetic Resonance Imaging

OGSE Oscillating Gradient Spin Echo

PGSE Pulse Gradient Spin Echo

QBI Q-ball Imaging

SDT Spherical Deconvolution Transform

WM White matter

xvii



Chapter 1

Introduction

1.1 Context

Magnetic resonance imaging (MRI) has become a key tool to investigate brain function

and anatomy in vivo. More than understanding which brain structures and functional

networks are damaged for any pathology, clinicians are now willing to understand what

are the pathophysiological mechanisms involved at the cellular scale. To answer this,

MR physicists are now developing novel methods going beyond the use of conventional

T1-weighted and T2-weighted MRI contrasts which are not quantitative and replacing

them by quantitative approaches based on multicompartmental biophysical modelling of

brain tissues. Quantitative relaxometry (qMRI) and diffusion MR microscopy (μ-dMRI)

are the two emerging modalities that successfully allowed to push forward this strategy

to go beyond the imaging in resolution. Both modalities now provide insights about

the microstructure of white matter, and this thesis is fully dedicated to investigate their

potential to finally analyse the structure of white matter at the cellular scale.

For instance, in white matter, water can be separated in two compartments, the first

one corresponding to the bulk of extra and intracellular water characterized by long T1

and T2 relaxation times and the second one corresponding to the bulk of water trapped

in the myelin sheath with shorter T1 and T2 relaxation times due to their interaction

with macromolecules such as cholesterol. By means of observation of differences in such

relaxation times, and using a multicompartment model of the NMR signal, it is possible

to have access to their respective volume fraction and thus characterizing the myelin

content of white matter. Such a model offers novel biomarkers of myelin water fraction

useful for instance to characterize diseases where myelin damage occurs or to probe the

myelination process occuring during the early brain development.

1
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Looking at the displacement of water molecules in brain tissues with diffusion MRI is an-

other way to characterize its cellular environment. Indeed, due to their interaction with

natural barriers such as cell membranes, the diffusion pattern of water molecules embeds

unique information on the tissue microstructure corresponding to a kind of fingerprint of

their membrane geometry restricting or hindering their displacement. Diffusion MRI has

been very popular to probe the geometry of myelinated axons revealed by the strong

anisotropy of the displacement of water molecules where the probability of motion is

much higher along the direction of axons than other directions, thus allowing to in-

fer the anatomical connectivity of the human brain in vivo using now well-established

tractography techniques. More recently, more elaborated multicompartmental models

have been introduced to go a step beyond, not only by looking at the angular profile

of anisotropy of the diffusion process, but also by aiming at characterizing cell species

and trying to infer more specifically their characteristics such as the local distribution

of their dimensions and density. Such microstructural models also rely on a multicom-

partmental modelling of the diffusion-weighted MR signal attenuation. One example

of these models is the CHARMED model ([Assaf et al., 2004]) dedicated to the white

matter including two compartments, one corresponding to the bulk of restricted water

within the axons modeled as simple cylinders, and the other gathering the extra-cellular

space and glial cells where the diffusion process is assumed to be hindered only. Such

a model was successfully investigated to characterize locally the axon radii and density

and yield a novel modality called diffusion MR microscopy (μ-dMRI).

1.2 Motivations

The main goal of this thesis is to take advantage of these two modalities to set up the

methodology to study white matter microstructure of the human brain in vivo in or-

der to develop normative atlases. Nowadays, the use of both quantitative and diffusion

MRI in clinical routine is extremely limited due to the high constraint on scan duration.

However, these modalities could provide useful biomarkers to diagnose diseases affecting

the brain microstructure: myelin water fraction has been shown to reveal myelin loss in

multiple sclerosis while the inference of axon radius by diffusion MRI could help to ob-

serve any modification of the brain microstructure thus being potentially useful to fully

characterize alterations of tissues occuring during the evolution of disease. The scan

duration associated with these modalities is still quite long for clinical routine, but some

studies ([Deoni et al., 2005a],[Alexander, 2008]) are focused on their clinical feasibility.

On one hand, the challenge is to to keep the accuracy of inferred microstructural pa-

rameters (validated using histological data) while reducing the scan duration. Hopefully
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high and ultra field MRI systems together with improved gradient open a new opportu-

nity to reduce the scan duration while providing accurate quantitative parameters. On

the other hand, the relationship between the actual underlying microstructure and these

parameters extracted at a resolution of the order of 1mm remains unclear. This is one

of the reason that motivated the two international consortium focused on human brain

microstructure: the European project CONNECT (Consortium of NeuroImagers for the

Non-invasive Exploration of Brain connectivity and Tracts) and the American Human

Connectome Project both focused on the compilation of data from a large number of

subjects to better understand the brain microstructure and connectivity.

The first part of this thesis is directly linked to the CONNECT project and aims at de-

veloping high resolution healthy normative atlases of T1 and T2 relaxation times from

the individual maps of the 79 healthy subjects of the Archi database acquired in the

frame of this project at NeuroSpin on the 3T Tim Trio Siemens MRI system. Pro-

files of quantitative relaxometric and diffusion parameters were computed along major

white matter bundles using T1, T2 and connectivity atlases (Fractional Anisotropy, Ap-

parent Diffusion Coefficient, axial and radial diffusivity maps) and were analyzed from

an anatomical point of view and compared to study their correlation. Interhemispheric

asymmetry was addressed comparing the left and right profile for each bundle. This part

therefore provides the first high resolution atlases of T1 and T2 from a large database

that can be used as a reference for comparative studies. Moreover, the ARCHI connec-

tivity atlas allows to project any kind of information along the white matter bundles,

thus providing an unique way to study microstructure along major white matter bundles.

Because common diffusion parameters remain global and suffer from a lack of specificity

about the microstructural organization of the tissue, the second part of this thesis fo-

cuses on the field of diffusion MR microscopy to characterize the microstructure of white

matter bundle providing maps of their axonradii and axonal density and to provide tools

to perform it in clinical conditions. Two aspects have been considered : the diffusion

sequence used to infer the signal and the tissue model itself. A variety of sequences

have been derived from the common PGSE sequence, varying the diffusion gradient

waveform. For example, using oscillating gradient waveforms allows to reach smaller

diffusion time and therefore to be more sensitive to smallest structure than when using

two squared gradients. However, in clinical conditions such waveforms lead to a reduced

diffusion weighting of the signal and therefore are inappropriate because of a loss of

sensitivity to microstructure due to the limited gradient strength (since the weighting is

proportional to the area of the waveform). Recent studies ([Drobnjak et al., 2010]) have

shown that it is possible to increase sensitivity to microstructure using an optimization

scheme taking into account the tissue model and the hardware constraints to provide

optimized waveforms that can be played on clinical scanner. Following this idea, we

developed an unique diffusion sequence on the 3T and 7T Siemens clinical MRI systems
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of NeuroSpin, able to play any kind of gradient waveforms from PGSE scheme to totally

arbitrary gradient waveforms. This sequence allows for the first time to acquire diffusion

data of human brain subjects with arbitrary waveforms. This sequence was first used

to map the axon radii and density in the corpus callosum of 14 healthy subjects on the

7T clinical MRI system of NeuroSpin. The aim of this study was to take advantage of

the high static field and to study the profile of the axon radii and density at the group

level. An ongoing study aims at comparing the results obtained using an optimized os-

cillating trapezoidal gradient waveform to those obtained using PGSE schemes. Finally,

we proposed a new model taking into account the biphasic behavior of the water in the

living tissue, dividing the water molecules into two pools characterized by a slow and fast

diffusivity. This new model could help to limit the overestimation of the smallest radii

occuring in the majority of axon calibration frameworks. This work allows to open up

new prospects by using our sequence to perform axon calibration on patients suffering

from diseases where the white matter could be affected and also in the future to compare

PGSE sequence and optimized arbitrary gradient waveforms on healthy subjects. Next

section will describe in details the organization of this manuscript.

1.3 Thesis organization

This thesis is organized in seven chapters, including introduction and conclusion.

1.3.1 Chapitre 2: Human Brain Anatomy

This chapter describes the basis of human brain anatomy required for this thesis from a

macroscopic level to the cell level, describing the tissue organization and the specificities

of grey and white matter.

1.3.2 Chapitre 3: MRI modalities dedicated to tissue microstructure

This chapter first presents the basis of Magnetic Resonance Imaging, before focusing

on specific sequences dedicated to microstructure imaging : relaxometry and diffusion

MRI.
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1.3.3 Chapitre 4: Brain white matter relaxometric atlases

This chapter describes our first contribution: the construction of two super-resolved

atlases of the T1 and T2 relaxation times ant their combination to the connectivity

atlas built from the CONNECT/Archi database.

1.3.4 Chapitre 5: Microstructure mapping using diffusion MRI

This chapter exposes the state of the art of diffusion MRI microscopy, describing the

different white matter models and diffusion sequences. We describe then two other

contributions: the development of a novel clinical diffusion sequence able to play general

gradient waveform and we propose an alternative model to the CHARMED model of

white matter: the two-pool model.

1.3.5 Chapitre 6: Brain microstructure mapping

This chapter summarizes our contribution on microstructure mapping : the construction

of the first atlas of axon radii and density at 7T, the description of the two-pool model

and how it could help to overcome the overestimation of smaller radii; finally we expose

the ongoing studies focusing on the comparison of Arbitray Gradient Wave Spin Echo

and PGSE sequences and the first clinical application to Asperger’s autism.

1.3.6 Chapter 7: Conclusion and future work

This chapter summarizes the contributions of this thesis and discusses future work on

this topic.



Chapter 2

Human Brain Anatomy

2.1 Introduction

This thesis aims at inferring microstructure information from MRI data. We expose in

this chapter the basic features of the human brain anatomy. The first part of this chapter

deals with macroscopic anatomy, starting from the global description of the encephalon

followed by the description of grey and white matter major structures. The second part

goes deeper in the tissue at the cell level, describing the main neural cells of the brain,

establishing the frame where this MRI application is conducted. The information related

in this part principally comes from the book ”Anatomie” of C. Cabrol, the websites

http://teachinganatomy.blogspot.fr/ and http://www.db-gersite.com, from [Marrakchi-

Kacem, 2011] and some illustrations are taken from wikipedia.

2.2 Macroscopic Anatomy

2.3 Global description

The human brain is one part of the encephalon, which also includes the cerebrum, the

cerebellum and the brain stem composing the central nervous system with the spinal

cord. The brain is protected by the skull, and surrounded by several layers of meninges

: the dura mater (the thicker layer), the arachnoid and the pia maters. The pia mater

covers the entire surface of the central nervous system and is surrounded by the arach-

noid. The cerebrospinal fluid is located between the pia mater and the arachnoid, in the

subarachnoid space. Its surface, called the cortex, is composed of layers of grey mat-

ter. We can divide the internal brain anatomy into two main parts : the telencephalon

6
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(composed by the left and right hemispheres) and the diencephalon or ”interbrain”. As

part of the brain stem, we find the mesencephalon. The two hemispheres are linked by

the inter-hemispheric commissures and the diencephalon and separated by the medial

longitudinal fissure, where the falx cerebri relies. Each hemisphere is divided into lobes.

2.4 Cortex lobes, gyri, and sulci

The surface of the brain, which corresponds to the grey matter of the cortex, has a

complex structure. It is characterized by circonvolutions, also called gyri, delineated by

the sulci, which are depressions of the surface. The main sulci, the lateral (or Sylvian)

and the central (or Rolandic) fissures allow to segment the lateral part of the cortex

of each hemisphere into four lobes: the frontal, parietal, occipital and temporal lobes

(see Figure 2.1). Two additional lobes could be added: the insula, located deep in

the lateral fissure, completely hidden on a lateral view by the neighboring parts of the

frontal, parietal and temporal lobes (opercula); and the limbic lobe, reunion of several

structures located at the medial aspect of the hemisphere, around the corpus callosum

and diencephalon. Each of them is implicated in different functional tasks.

Figure 2.1: The four brain lobes

http://www.md-health.com/Lobes-Of-The-Brain.html
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2.4.1 Frontal lobe

The frontal lobe is separated from the parietal lobe by the central sulcus, and from the

temporal lobe by the lateral sulcus. Its lateral aspect is subdivided into the precentral

gyrus (motor area), the superior, inferior (that includes Broca area on the left hemi-

sphere, one of the language area) and middle frontal gyri. Its inferior aspect contains

the orbital and rectus gyri, whereas its medial aspect surrounds the cingulate gyrus.

The frontal lobe can be functionally divided into four different areas : the prefrontal

cortex (involved in reasoning skills), the orbitofrontal cortex (involved in risk and reward

assessment, and moral judgment), the primary motor cortex (involved in the control of

movements), and the premotor cortex (involved for example in planification and orga-

nization of movements or in charge of attention). The frontal lobe also plays a role in

decision-making.

2.4.2 Parietal lobe

It contains the postcentral gyrus anteriorly and is divided into superior and inferior

parietal lobules posteriorly. The parietal lobe is involved in the integration of information

coming from different senses : vision, touch, sense of smell and audition. It receives

sensory information from the tongue and skin, and visual and auditory information

from the other lobes.

2.4.3 Occipital lobe

It contains the primary and secondary visual cortex. Several sulci go through the oc-

cipital lobe : the superior, middle and inferior sulci on its lateral aspect occipital and

the calcarinus sulcus on its medial aspect. The occipital lobe processes the visual infor-

mation (received from the retina) and sends it to the temporal and parietal lobes for

complementary processes.

2.4.4 Temporal lobe

The temporal lobe is separated from the frontal and parietal lobes by the lateral fissure

and contains three circonvolutions on its lateral aspect, called inferior, middle and su-

perior temporal gyri, separated by the superior and inferior temporal sulci. Its ventro

medial aspect contains 2 other gyri, which are continued into the occipital lobe : the

lateral (or fusiform) and medial occipito-temporal gyri. The medial occipito-temporal

gyrus is subdivided into temporal (parahippocampal gyrus) and occipital parts (lingual
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gyrus). The temporal lobe is also involved in auditory and visual information processing

and receives information from the occipital lobe. It plays a major role in object and

pattern recognition (faces for example).

2.4.5 Insula and limbic lobe

The insual is a triangular piece of cortex limited from the frontal, temporal and parietal

opercular by the circular sulcus, and subdivided in short and long insular gyri. It is

involved in vegetative control and emotions. The limbic lobe is a circle of gyru located

around the junction between both hemispheres (corpus callosum and diencephalon).

It contains the subcalllosal area anteriorly, the cingulate gyrus and also includes the

parahippocampal gyrus of the temporal lobe. It is involved in emotions, mood and

memory.

2.4.6 Brodmann areas

This brain division into different lobes has been extended from the observations by

microscopy of differences in the organization of the cortex cytoarchitecture. Several

atlases of cortical areas had been proposed. The most known was proposed by Brodmann

in 1909, dividing the surface of the cortex into 52 areas. Each area participates to a

specific function (see Figure 2.2). A similar atlas was proposed by Campbell (1905) and

a topographic atlas of the cortex was published by Smith (1907). Alternative atlases

were proposed by Von Economo and Koskinas in 1925, Sarkisov in 1949 and Bailey and

Von Bonin in 1951. All these atlases are still used in clinical studies.

Figure 2.2: Brodmann’s areas.

http://spot.colorado.edu
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2.5 Internal anatomy

The internal anatomy of the brain is divided into three main parts : grey matter, white

matter and ventricles.

2.5.1 Blood supply of the brain

Blood supply of the brain originates from an anastomotic system located at the surface

of the inferior aspect of the brain. This arterial circle of the brain is fed by the paired

internal carotid arteries and by the basilar artery (fusion of both vertebral arteries).

The arterial circle gives rise to several types of branches : cortical branches (for the

surface of the brain), ventricular branches for the choroid plexuses and deep brain and

perforators for the deep brain (basal ganglia, internal capsule...).

Figure 2.3: Brain blood supply.

http://surgery.med.miami.edu

2.5.2 Ventricles

The cerebro-spinal fluid (CSF) bathes the human brain, protecting it from mechanical

shocks. It is secreted by the plexus choroideus and circulates from two central cavities

(located in each hemispheres), called lateral ventricles (see Figure 2.4). Each lateral

ventricle has three horns (temporal, frontal and occipital). The CSF leaves the lat-

eral ventricles to a third ventricle located in the diencephalon (through the Monroe

intraventricular foramen) and finally to the fourth ventricle, located in the brain stem

through the cerebral aqueduct (of Sylvius). Outside the brain, the CSF is bounded by

the arachnoid mater.
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Figure 2.4: Ventricles system

2.5.3 Grey matter

Grey matter that composes the surface of the brain is called the cortical mantel or

cortex and has a thickness varying from 1 to 4.5 mm. The cerebral cortex depicts three

main kind of cortices : the neocortex (external aspects of the hemispheres), including six

different cortical layers, characterized by different types of cells and density (described in

the section 2.6), the paleocortex with four or five layers, covering the olfactory bulb and

in the parahippocampal gyrus and the archicortex (with three cortical layers), found in

the hippocampus. Another type of grey matter is located deeper in the brain, forming

the central nuclei, which will be described below.

2.5.3.1 Nuclei of the cerebellum, the brain stem and the mesencephalon

The cerebellum contains four major nuclei : the dentate, the globose and emboliform

nuclei and the fastigial nucleus. The nuclei of the cranial nerves are located in the brain

stem. The mesencephalon also contains the substantia nigra, near the crus cerebri.

Dopaminergic neurons are found in this region that mainly acts on the motor control.

It also contains the red nucleus.

2.5.3.2 Grey matter of the diencephalon

The diencephalon regroups the thalamus, the hypothalamus, the epithalamus and the

subthalamus. The thalamus, which forms the side walls of the third ventricle represents

80% of the diencephalon and is located on the top of the brain stem. It plays a role

in the sensory and sensitive functions, in the motor control, in the consciousness and

the regulation of the states of sleep and wakefulness. It contains several nuclei. The
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hypothalamus contains several vegetatives nuclei and has an endocrinian role. The

mammillar body is part of the hypothalamus and is implicated in the limbic system.

The hypothalamus is separated from the thalamus by the Monro sulcus. Below, the

subthalamic nucleus or corpus of Luys has a sensitive and motor role. Finally the

epithalamus is characterized by the epiphyse and the habenula.

2.5.3.3 Grey matter of the telencephalon

Figure 2.5: Nuclei of the telencephalon on an axial slice.

http://brainmind.com

Deep nuclei In the telencephalon, we can distinguish several nuclei in the deep grey

matter (see Figure 2.5). The striated nuclei designate the caudate nucleus and the

putamen, forming the basal ganglia with the globus pallidum, the subthalamus nuclei

and the substantia nigra. The internal capsule separates, in its anterior limb the caudate

nucleus from the lenticular nucleus and the thalamus from the lenticular nuclus in its

posterior part. Together with the claustrum, they play a role in the motor control and

equilibrium.

Cortex The deep grey matter also includes limbic system, composed of the hip-

pocampus (the Amon Horn and the gyrus dentatus) and the amygdala. They control

emotions, memory and representation of space. Finally, the insula is a also a part of the

telencephalon cortex.
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2.5.4 White matter

This thesis is particularly focused on the white matter microstructure. The white matter

is located under the cortex and is made of fibers, corresponding to the axons of the

neurons, responsible for the connections between different functional areas of the brain.

These connections allow to carry signals from one location to another, in the form of

action potentials. The fibers, of a diameter from 1μm to 25 μm, appear white because

of the myelin sheath (mainly composed of lipids) covering their membranes. But in

the brain, myelinated and unmyelinated axons coexist. The unmyelinated axons are

generally small and slowly conduct the signals in comparison with the myelinated fibers.

The fibers can be divided into three major classes : the projection fibers, the association

fibers and the commissural fibers. In the next subsections, we define these three classes

of fibers which are of main interest in the scope of this thesis.

2.5.4.1 Projection fibers

Figure 2.6: Projection fibers and corpus callosum

http://apbrwww5.apsu.edu

They designate the afferent and efferent fibers, connecting the cortex to the deep struc-

tures (see Figure 2.6). They project onto/from the cortex with a fanning configuration,

corresponding to the corona radiata. The principal descending pathway is the cortico-

spinal fasciculus, regrouping all the fibers of the motor tract. These fibers pass through

the posterior limb and the genu of the internal capsule, between the thalamus and the

lenticulate nucleus. The corticobulbar and corticopontine fibers, connecting the cortex

to the brainstem run into the genu of the internal capsule. Some projection fibers form

the external capsule, passing between the lenticular nucleus and the claustrum, and

other forms the extreme capsule, passing between the claustrum and the cortex. At the
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level of the mesencephalon, the descending projection fibers composes the middle part

of the cerebral peduncles. Ascending fibers project from the thalamus to the cortex :

they include the thalamic radiations, auditory and optic radiations.

2.5.4.2 Association fibers

Figure 2.7: Association fibers

wikipedia

Association fibers link different areas of the same hemisphere (see Figure 2.7). The short

association fibers, called ”U-fibers” are located under the cortical mantel, connecting

different gyri. The long association fibers include :

• The cingulum fasciculus, connecting the cingulate gyrus to the enthorinal cortex

(cortex between the neocortex and hippocampus). These fibers have therefore a

major role in communication of the limbic system. The anterior part plays a role

in emotion and the posterior part is rather linked to cognitive functions,

• The uncinate fasciculus, connecting the frontal lobe to the temporal lobe is also

considered as part of the limbic system,

• The superior longitudinal fasciculus including arcuate fasciculus, connecting the

frontal lobe to the temporal and parietal lobes is involved in the language function.

It connects Wernicke’s and Broca’s language areas in the left hemisphere,

• The inferior longitudinal fasciculus connecting the occipital lobe to the temporal

lobe,

• The inferior-fronto-occipital fasciculus, connecting the occipital lobe to the frontal

lobe.

The fornix connects the hippocampus to the mammillar corpus in each hemispheres. It

contains fibers coming from the hippocampus. From the alveus, the fibers converge to

form the fimbria. The fimbria of each hemisphre finally merge in the midline of the brain

to form the body of the fornix. The body also divides near the anterior commissure.
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2.5.4.3 Interhemispheric commissures

The interhemispheric commissures are white matter pathways connecting the hemi-

spheres of the brain. The corpus callosum is the wider one, located deep in the inter-

hemispheric fissure and is separated from the fornix by the septum lucidum. It connects

the hemispheres and exhibits four major parts, in the antero-posterior direction : the

genu, the body, the isthmus and the splenium (see Figure 2.8). The anterior commissure

Figure 2.8: Corpus Callosum sections from [Highley et al., 1999]

crosses perpendicularly the anterior wall of the third ventricle connecting the olfactory

bulbs, while the posterior commissure crosses the posterior wall of the third ventricle.

The two fimbria are connected by the hippocampal commissure, connecting the two hip-

pocampus. The Habenular commisure, a smaller bundle of fibers passing in the superior

stalk of the epiphyse, connects the habenular nuclei.

We have defined the major macroscopic structures of the brain, dividing the cerebral

matter into two major parts : the grey and white matter. This thesis focusing on the

brain microstructure, the following section goes deeper in the tissue, describing white

and grey matter at the cellular level.

2.6 Brain tissue microstructure

The brain microstructure is very complex exhibiting various types of cells, of different

sizes and shapes. The macroscopic brain division into grey and white matter comes

from their cytoarchitectural differences : the white matter is mainly composed of myeli-

nated axons (giving the white color) and cells responsible for the myelination while the

grey matter contains neuron cell bodies and astrocytes. We here describe the main

components of the cytoarchitecture of the brain.
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2.6.1 Brain cells

2.6.1.1 Neurons

Responsible for the transmission of the nerve signals, it is the main cellular corpus we

can find in the brain. There are about 100 billion of neurons in a human brain. Their

size varies from 4 microns to 100 microns. We can separate the neurons into the cell

body, called pericaryon, the signal receivers called dendrites, and the projections, the

axons (the main part of the white matter), conducting the nerve impulse (see Figure

2.9).

In the cell body, we find the nucleus that contains the DNA with the nucleole, containing

proteins and RNA. Surrounding the nucleus, the cytoplasm contains the Nissl corpus

(granular endoplasmic reticulum) and free ribosomes, synthesizing the proteins. We

also find neurofilaments and neurotubules, organizing themselves in parallel within the

axons. They are responsible for chemical transport. Finally, as we can find in other cells,

the neuron cell contains different organites, such as mitochondrion (breathing of the cell

and energy supply), the Golgi apparatus, which regulates the transport of molecules

through the membranes and transforms the proteins and the lysosomes (digestion of the

cell).

The dendrite contains the same types of organites as the cell body does, excepting the

nucleus and the lysosome.

The axon part emerging from the neuron is not myelinated, but further from the cell

body, a myelin sheath covers the axon.

Figure 2.9: Description of the differ-
ent parts of the neuron.

http://www.positscience.com/

Figure 2.10: Transmission electron
micrograph of a myelinated axon

http://commons.wikimedia.org/

This myelin sheath (Figure 2.10) is regularly interrupted by the Ranvier nodes, playing

a major part in the action potential propagation. The myelin contains several layers,

alternating bewteen protein (30%) and lipid (70%) susbtances. This layer has an average

length of 12 μm. The axons exhibits further ramifications to nerve or muscular cells.

Those ramifications end with synapses, responsible of the transmission of the neuron
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Figure 2.11: Oligodendrocyte. Adapted from http://cnx.org

signal. A neuron could be either efferent (motor neurons) or afferent (sensory neurons),

the former carrying away the nerve impulses, the latter from receptors to the central

nervous system.

In the cortex, several kind of neurons can be found :

• The pyramidal cells, characterized by a pyramidal cell body. Their diameters varie

from 10 to 70 microns. They have long axons leaving the cortex to connect other

cortical areas.

• The granular cells which are smaller (diameters lower than 10 microns). They are

interneurons, their axons stay in the cortex.

• The cells of Martinotti, having small dendrites and their axons run towards the

surface and turn to follow the superficial layers of the cortex. They make contact

with pyramidal cells through their synapses.

• Fusiform cells : their axons reach the surface and their dendrites connect other

cortical layers.

2.6.1.2 Oligodendrocytes

The oligodendrocytes are mainly responsible for the myelin production. These cells are

present in the grey matter, where they play a metabolic role and in the white matter,

where they product the myelin, surrounding the axon with their prolongations. Their

cell bodies, appearing oval or round, have an average length of 6-8μm. Few processes

emanate from the cell body (see Figure 2.11).
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Figure 2.12: Astrocyte. Adapted from http://cnx.org

2.6.1.3 Astrocytes

Astrocytes are part of the conjunctive tissue and highly present in the brain (see Figure

2.12). These cells have big nuclei. The astrocytes are narrow, with several prolongations

and they have a star-like shape. In the grey matter, the protoplasmic astrocytes exhibit

short prolongations. In the white matter, they have fewer but longer prolongations, they

are called fibrous astrocytes and they have an average size of 10-12μm. Their processes

form the glial sheets between axons. Astrocytes play several roles in the nervous tissue :

they regulate the blood flow, they sustain the hemato-encephalic barrier, they maintain

the pH level, and the ionic concentration, they participate to the brain fixing in case of

damages (gliosi) and nerve communication, they secrete substances for oligodendrocyte

survey, myelin formation and myelin reformation.

2.6.1.4 Microglia

The last cells of the glia are the microglia cells. We can find them in both grey and

white matter, but their density varies from a region to another. They represent about

13 % of the cells but are more present in white matter than in grey matter. They have

an ovoid nucleus (≈ 5.1μm by 2.2μm) and a small cell body but their shape varies. They

are macrophage cells.

2.6.2 Cortex histology

The previously described cells are found in the neocortex which can be divided into six

different cell layers (see Figure 2.13) :
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Figure 2.13: Cortex microstructure

• Layer I : the molecular layer, with few neurons, several dendrites and axons in

contact through their synapses,

• Layer II : the external granular layer with granular, star-shaped, pyramidal cells

and axons/dendrites connections,

• Layer III : the external pyramidal layer, including medium sized pyramidal cells

and Martinotti cells,

• Layer IV : the internal granular layer, including dense packing of granular cells,

• Layer V : the ganglonic layer, with big pyramidal cells and Martinotti cells,

• Layer VI : the polymorph layer, including all type of cells
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Figure 2.14: Brain tissue microstructure

2.6.3 White matter histology

White matter mainly contains myelinated and unmyelinated axons, surrouned by oligo-

dendrocytes and fibrous astrocytes.

2.7 Brain diseases and microstructure

Brain pathologies affect the microstructure. In the case of neurodegenerative diseases,

neuron death occurs in different regions of the brain. In Parkinson’s, for example, we

observe a loss of dopaminergic neurons in the substantia nigra. This kind of modifications

changes the local organization of the microstructure, for example a reduced neuron

density. Accessing to the brain microstructure in vivo could therefore help to study the

evolution of brain pathologies.
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2.8 Conclusion

We described here the main features of human brain anatomy, at both macroscopic and

microscopic levels. The human brain has a very complex structure, and the task of

studying its microstructure by MRI is therefore very difficult. The idea behind the work

of this thesis is to extract indirect or more direct parameters able to characterize the

microstructure, despite its complexity. We need then to explore the hidden information

contained in the MRI signal, and the potential of the wide variety of MRI sequences to

get closer to the microscopy by MRI. The following chapter describes the principle of

MRI and the sequences used in this work.



Chapter 3

MRI modalities dedicated to the

study of tissue microstructure

3.1 Introduction

Magnetic Resonance Imaging, introduced by [Lauterbur, 1973] and [Mansfield, 1977]

is a key modality in the human brain study, since it relies on the magnetic resonance

phenomenon of water protons, which represent around 80% of the brain. Moreover, it

gives access to different kinds of information. First, mapping the anatomy of the brain

structures is possible thanks to T1 and T2 weighted contrasts, T1 and T2 being the two

characteristic times of the relaxation phenomenon. Second, a functional analysis of the

brain is accessible using the susceptibility effects in activated regions induced by the

oxyhemoglobine carying the oxygen required to brain activity. Finally, MRI has became

a powerful tool to probe brain architecture at the cellular scale, corresponding to a scale

inferior to the resolution of the acquired images. There is growing interest in quantita-

tive MRI of T1 and T2 parameters since various multi-compartment models allow today

to quantify the volume fractions of the different pools of water in the tissue. Diffusion

MRI or dMRI is sensitive to the movement of water molecules in the tissue and thus

allows to measure for example the orientation of axons, packed in large fascicles of fibers,

paving the way in the last decade for exploring the anatomical connectivity of the brain

and considering the study of the anatomical and functional networks of the human brain

in vivo. Moreover, dMRI is becoming a way to explore not only the anatomical con-

nectivity but also its microstructural organization. Indeed, the membrane geometry of

the different cells of the brain hindering or restricting the movement of water molecules,

leaving its signature in the diffusion weighted signal. The community presently works to

develop biophysical models from which it is possible to extract characteristic quantities

22
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Figure 3.1: Magnetic Moment of a proton

of the various populations of cells. This thesis being focused on quantitative T1 and T2

MRI and diffusion MRI microscopy, it is important to introduce here the physical basis

of MRI and present in particular the sequences related to quantitative and diffusion

MRI.

3.2 Principles of magnetic resonance imaging

This section describes the basic principles of magnetic resonance imaging (MRI). We

explain how it is possible to obain contrast between tissues from the induced magnetic

resonance of the protons of water molecules. This chapter is inspired by the book

[Kastler et al., 2001], the courses of Pr Fessler (http://web.eecs.umich.edu) and the

website www.imaios.fr, the chapters of [Brion, 2013], [Marrakchi-Kacem, 2011], .

3.2.1 Magnetic resonance phenomenon

3.2.1.1 Magnetic moments of protons

The magnetic resonance imaging finds its basis in the magnetic resonance of protons,

[Bloch, 1946], and mainly from protons from the hydrogene nucleus. These particles

have the characteristic of rotating on themselves, around an axis passing through their

centers (see Figure 3.1). Protons are also charged particles, and while spinning, they

create a magnetic moment −→μ , called spin. The summation of all these spins gives a net

magnetization
−→
M . In the absence of any additional magnetic field, the individual spins

have random orientations, resulting in a null magnetization :
∑−→μ =

−→
M =

−→
0 .
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Figure 3.2: Left : Protons behavior in the absence of magnetic field , Right : Align-
ment in the presence of an external magnetic moment

3.2.1.2 Equilibrium state in the presence of a magnetic field B0

But in the presence of a static magnetic field B0, all the spins align with it, giving birth

to two populations of spins : those having spins parallel to B0 and those having spins

antiparallel to it (see Figure 3.2). The protons precess around B0 with the angular

frequency equals to the Larmor frequency ω0 :

ω0 = γB0,

with γ the gyromanetic ratio (γ = 267, 5× 106 rad s−1 T−1 for the hydrogene nucleus).

This phenomenon of precession was first described by [Purcell et al., 1946] as a double

precession, with a transversal and longitudinal component. Higher number of protons

precesses in the parallel direction, giving a non-null magnetic moment aligned in the

same direction as B0, along the longitudinal direction. In the transversal direction,

spins are not phased, leading to a null component on average.

3.2.1.3 Perturbation of the equilibrium by a radio frequence B1 : excitation

If we perpendicularly add to B0 a rotating electro-magnetic field B1 (called radio fre-

quence, RF), with an angular frequency equals to the Larmor frequency, there is a

transfer of energy to the protons aligned with B0: this is the magnetic resonance phe-

nomenon. This rotating field excites the protons, that precess not only around B0, but

also around B1. It ”tilts” the global magnetization into the orthogonal plane to B0 (in

the case of a 90◦ pulse), inducing a magnetic resonance. At the microscopic level, the

protons change of energy level, from parallel state to antiparallel state. The longitudi-

nal magnetization then decays, and a tranversal component appears, stemming from in

phase spins. Depending on the duration of the B1 application, one can get a 90◦ tilt

yielding a transverse magnetization, or a 180◦ tilt where the entire macroscopic magne-

tization is inversed along the longitudinal axis. When B1 is stopped, the system returns
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back to its equilibrium state : this is the relaxation phenomenon. This phenomenon is

described in Figure 3.3.

Figure 3.3: Excitation and relaxation phenomena.

3.2.1.4 Bloch equations, T1 and T2 relaxation times

We assume a referential (x,y,z) where B0 is aligned in the z direction and B1 is applied

perpendicularly, in the (xOy) plane. The temporal evolution of magnetization can be

described with the Bloch equations, [Bloch, 1946]:

dMx(t)

dt
= γ (My(t)Bz(t)−Mz(t)By(t))− Mx(t)

T2
, (3.1)

dMy(t)

dt
= γ (Mz(t)Bx(t)−Mx(t)Bz(t))− My(t)

T2
, (3.2)

dMz(t)

dt
= γ (Mx(t)By(t) +My(t)Bx(t))− Mz(t)−M0

T1
, (3.3)
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where M is the magnetization, γ the gyromagnetic ratio, B the magnetic field, T1 and

T2 two characteristic relaxation times. If we apply an RF B1 of frequency ω1 :

B1x(t) = B1cos(ω1t), (3.4)

B1y(t) = B1sin(ω1t), (3.5)

B1z(t) = 0. (3.6)

We introduce the rotative frame (x’Oy’) where B1 is aligned to the axis (Ox’) (see Figure

3.4). We define the transverse magnetization as : Mx′y′ = Mx′ + iMy′ . Right after the

Figure 3.4: Laboratory frame and rotative frame.

http://web.eecs.umich.edu

90◦ RF application, Mz = 0 and Mxy = iMzeq. Then the relaxation phenomenon can

be expressed as follows in the new referential (x’,y’,z) :

Mx′y′(t) = Mzeq exp(
−t

T2
), (3.7)

Mz(t) = Mz(0) exp(− t

T1
) +Mzeq(1− exp(− t

T1
)), (3.8)

with Mzeq the longitudinal magnetization at the equilibrium, Mz(0) is the longitudinal

magnetization immediately after the RF pulse. Equation 3.8 describes the behaviour

of the longitudinal relaxation : during the phase of the relaxation, protons which have

moved from parallel to antiparallel state will return to their original state, exchanging

the energy with their molecular environment, leading to a growth of the longitudinal

magnetization, going back to its original value. The longitudinal growth of the global

magnetization follows an exponential behaviour, characterized by the T1 relaxation time

defining the necessary duration to recover 63% of the initial value. T1 is called spin-

lattice relaxation time because it involves an exchange of energy between water molecules

and proteins, lipids and macromolecules. This T1 depends on the characteristics of

the tissue and of B0, and varies with the molecular environment. For example, T1 is

longer in liquids. Equation 3.8 describes the behaviour of the transverse magnetization.

Inhomogeneities of the B0 field induced by different molecular environments create a
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dephasing between the spins, thus having an angular frequency slightly different from

ω0. During the excitation, the spins are all phased but whenB1 is stopped, they naturally

return back to a dephased state, and the transverse global magnetization reduces. This

reduction follows an exponential decay, characterized by the T2 relaxation time defining

the necessary duration to the transverse magnetization to decrease of 37% of its initial

value. The temporal evolutions of the longitudinal and transverse magnetizations after

a 90◦ are depicted in Figure 3.5. Like T1, T2 depends on the tissue and its molecular

composition, and it is longer in liquids. It is called spin-spin relaxation time, because

T2 relaxation involves the dephasing of protons due to interactions with each other. T2

relaxation is faster than T1 relaxation, so T2 is always longer than T1. Both T1 and T2

depends on the static magnetic field.

3.2.1.5 T1 and T2 relaxation times for different tissues and different fields

Table 3.1 shows some T1 and T2 values for gray and white matter at different fields.

The T1 and T2 differences among the tissues creates the MRI contrast with proton

T1-GM T1-WM T2-GM T2-WM

1.5 Teslas 1000 ms 700ms 110ms 100ms

3 Teslas 1330 ms 830ms 90ms 80ms

7 Teslas 2130 ms 1220ms 55ms 45ms

Table 3.1: T1 and T2 relaxation times of gray and white matter at 1.5T (from
http://users.fmrib.ox.ac.uk/ peterj/lectures/), 3T (from [Wansapura et al., 1999]) and

7T ([Rooney et al., 2007])

density. Depending on the MRI sequence used to acquire the signal, we can get different

constrast weighting in T1, T2 or ρ. The T1 contrast is called ”anatomical contrast” since

the gray matter appears gray and the white matter appears brighter. We find the inverse

contrast in a T2-weighted image. Figure 3.6 shows T1 and T2-weighted images obtained

at 3 Teslas. Mechanisms of T1 and T2 weighted contrasts will be described later.

3.2.2 Origin of the signal acquired in MRI

The variation of the transverse and longitudinal magnetization is used to get the MRI

signal. The reception coil, placed in the transverse plane of the MRI system (see figure

3.7) receives the signal coming from the transverse magnetization, called Free Induction

Decay (FID). This signal is a sinusoid weighted by the T2 exponential. Back into the

initial referential we have from 3.8 :

Mxy(t) = Mx′y′(t) ∗ exp(−iω0t) = Mzeq ∗ exp(−iω0t) ∗ exp(− t

T2
).
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Figure 3.5: Temporal longitudinal and transverse magnetization evolution

In fact, this signal doesn’t depend on T2 but on T ∗
2 because of molecular inhomogeneities

and B0 microscopic inhomogenities. We define : 1
T ∗

2

= 1
T2

+ γΔB0. Then the transverse

magnetization follows :

Mxy(t) = Mzeq exp(−iω0t) exp(− t

T ∗
2

) (3.9)
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Figure 3.6: T1-weighted image (left) and T2-weighted image (right) from one subject
of the Archi database

By using combinations of 90◦ and 180◦ impulsions, in MRI sequences,we can acquire

signal more or less sensitive to either T1 or T2 relaxation times. The following section

presents the basis of the MRI sequences.

3.2.3 From FID to image

3.2.4 Spatial encoding

We just explained the origin of the signal acquired by the coil of the MRI scanner, the

FID. But how can we form the image from this signal ? In fact, during a typical MRI

sequence, several magnetic gradients will be applied in different directions in order to

encode the information (see Figure 3.8). There exists 2D and 3D imaging. In the case

of 2D imaging, one gradient is applied along the z direction, in order to select the slice,

another one is applied in the x direction, the phase gradient, and finally the readout

gradient is applied in the y direction. These gradients, differentiating the spins by their

phases and frequencies, encode them by their frequencies and dephasing.
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Figure 3.7: MRI system : With Gφ the phase encoding gradient, Gs the slice gradient,
Gω the frequency encoding gradient, B0 the static magnetic field

3.2.4.1 Slice gradient

A magnetic gradient of strength Gs is applied in the same direction as B0, perpen-

dicularly to the slice to acquire. Thanks to the gradient, a different gradient field,

proportionnal to Gs, will be applied in each position along z. The protons at the posi-

tion z precess with the same Larmor frequency, corresponding to ωz = γ(B0 +Gs ∗ z).
On each slice of the volume, the protons all process at the same frequency, but this fre-

quency differs from one slice to another. A rotating magnetic field B1 at the frequency

ω1 corresponding to the frequency of one slice is applied. Finally, only the protons of this

slice will be excited, this is the slice selection. This gradient is applied during the RF

application, allowing to select only the desired spins. The resolution in z is defined by

the width of the RF or by the gradient strength. In fact, in the common MRI sequences,

the slice selection gradient has two lobes, one negative and one positive, allowing to

rephase the spins because applying a gradient will necessarly involve a dephasing : the

first lobe will dephase the spins, while applying the desired frequency, and the second

lobe will rephase them, in order to get rid of the dephasing. when the gradient is turned

off, all the spins are rephased : this is called ”a gradient echo”.
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3.2.4.2 Phase encoding

A second gradient Gφ is applied, perpendicularly to the future lines of the image, this is

the phase gradient. This gradient is applied during a short time, and induces a dephasing

of the spins depending on the lines where they belong to, all the spin on one line have

therefore the same phase at the end of the gradient application. This encoding has to

be repeated the number of lines, with different gradient strength.

3.2.4.3 Frequency encoding

Once Gs and Gφ are applied, each line of the selected slice can be distinguished because

there spins present different dephasing. One final gradient, the readout gradient, Gω,

is applied perpendicularly to the columns, so each columns is encoded with its own fre-

quency. Finally, each proton is characterized by a single association (phase, frequency).

The same problem of cumulated dephasing between the acquisitions occurs for the fre-

quency gradient, this is the reason why it will also be bipolar, allowing to rephase the

spins. But, in this case, the measure of the signal is located at the time of the spin echo

but it is not immediate, so the reader gradient has to have one negative lobe followed

by two positive lobes, since the gradient echo will occur at the end of the second lobe.

The three gradients Gφ, Gω and Gs ensure the 3D encoding and localization (see Figure

3.8), however this does not take place in a cartesian space but in the Fourier domain,

called K-space and described in the next subsection.

3.2.4.4 3D imaging

We have described the specificity of spatial encoding in 2D MRI acquisition. This

encoding can be generalized for 3D acquisition. In this case, a whole volume is excited.

The third direction is phase encoded using a second phase-encoding gradient.

3.2.5 K-space and FFT

During the acquisition, each couple frequency/phase is registered in a matrix called ”K-

space” (see Figure 3.9). Each FID contains the informations coming from all the spins

and a decoding part is necessary to recover the initial image. This is possible thanks to

the 2D-Fourier transform. In each point (kx,ky) of the k-space, we can write :

S(kx(t), ky(t)) =

∫
x

∫
y
M(x, y)(t) exp−i(kx(t)x+ ky(t)y)dxdy (3.10)
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Figure 3.8: Spatial encoding. Top line : spatial encoding, bottom line : basic MRI
sequence diagram

where kx(t) = γ
∫ t
0 Gω(t

′)dt′ and ky(t) = γ
∫ t
0 Gφ(t

′)dt′ The maximum value of kx will

determine, the resolution of the final image taking its inverse value. Therefore, the

higher the gradient strength, the higher the resolution. Equation 3.10 shows that a

simple 2D Fourier transform links the image to its signal measurement in the K-space.

As a consequence, applying an inverse 2D-Fast Fourier Transform, one can reconstruct

the image from the mix of all signals coming from protons. In the case of 3D acquisition, a

3D K-space is filled and the image is reconstructed using a 3D-FFT. This way, the center

of the k-space corresponds to low frequencies and the extremities to high frequencies.

One particularity of the K-Space, coming from the general property of the Fourier space,

is the conjugate symmetry between all quadrants. This property can be used to reduce

the acquisition time, acquiring only a subset of the lines of the K-space and re-building

the entire space by symmetry.

3.2.6 Parallel imaging

It is possible to increase the signal to noise ratio and reduce the acquisition time using

parallel imaging technique. Instead of using a single reception coil, several coils can

be combined to measure the signal, each of them receiving the signal from each region
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Figure 3.9: K-space from www.imaios.fr

located in front of them. The array of reception coils (or channels) allows to acquire a

reduced amount of K-space data. Different algorithms have been developed to recon-

struct the image from the different signals : the SENSE (sensitivity encoding for fast

MRI, [Pruessmann et al., 1999]) algorithm merges the field of view acquired by each

coil to reconstruct the image using the sensitivity of the coils while techniques such

as GRAPPA (generalized autocalibrating partially parallel acquisition, [Griswold et al.,

2002]) method compute the missing lines of the K-space before reconstructing the image

using the Fourier transform.

3.2.7 MRI sequences used in this thesis

We previously introduced the phenomenon of excitation-relaxation of the spins in the

tissue and how to exploit this phenomenon to obtain tissue images thanks to magnetic

gradients applied along the three space directions. The basic sequence therefore requires

an excitation pulse, and the encoding gradients. From this basis, a wide variety of MRI

sequences was developed, depending on the desired contrast or acquisition duration.

One of the first sequence, called Spin Echo was introduced by [Hahn, 1950]. It contains

one 90◦ excitation pulse, spatial encoding gradients and one 180◦ refocusing pulse. Only

one K-space line is filled between two excitation pulses (i.e during the repetition time

TR of the sequence).

Usually, the K-space is filled line by line and one line is read thanks to the frequency

encoding gradient. One needs to increment the phase gradient to go from one line
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to another. But in clinical applications the acquisition duration has to be limited.

Several sequences use different strategies of displacement to cover the K-space, acquiring

several lines in one TR (MultiShot RARE, Echo Planar Imaging (EPI), Fast Spin Echo),

reducing the repetition time using gradient echo (reducing the flip angle) or exploiting

the symmetry properties of the K-space (Half-Fourier acquisition, Spiral acquisition).

We limit our presentation of the MRI sequences to Spin Echo, Echo Planar Imaging and

Gradient Echo used in the frame of this thesis. Some specific sequences derived from

Spin Echo and EPI dedicated to relaxometry and diffusion studies will be introduced in

the next sections.

3.2.7.1 Spin Echo Sequence

The first MRI sequence is the spin echo sequence [Hahn, 1950] depending on T1 and

T2 relaxation time. After a 90◦ pulse, all the spins are phased and will progressively

dephase because of molecular inhomogeneities. After a given time TE/2 (TE being the

echo time), a 180◦ pulse is applied, so the spins are rephased at TE, inducing a spin

echo. This trick allows to get rid of B0 inhomogeneities, and to have access to the real

T2, and not T2* corresponding to the relaxation time integrating B0 inhomogeneities.

The sequence diagram is shown in Figure 3.10. In a Spin Echo sequence, only one line is

acquired between the 90◦ and the 180◦ pulses. The duration between the two 90◦ pulses

corresponding to two consecutive lines is called the repetition time (TR). To cover the

entire k-space, one needs as many TR as lines in the K-space. In sequences like the

RARE sequence, additional 180◦ pulses create other echoes following the first one and

a new phase encoding is applied before the next echo to acquire several lines of the

K-Space. In the case of the Spin Echo sequence, the transverse magnetization can be

expressed as follows for t > TE:

M⊥ = Mz(0)exp(1 − TR/T1)exp(−TE/T2) . (3.11)

3.2.7.2 Gradient Echo Sequence

We already described the phenomenon for the gradient echo when two negative and pos-

itive gradients of the same strength are applied successively. The gradient echo sequence

differs from the spin echo by the use of a flip angle below 90◦ and the abscence of 180◦

refocussing pulse. The required angle to get the maximal information, called Ernst angle

is defined as θ = acos(exp(−TR/T1)). Using greater angle (in particular a 90◦ angle)
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Figure 3.10: Spin Echo sequence adapted from www.imaios.fr

doesn’t provide more information. These sequence also allows to decrease the acquisi-

tion time : the longitudinal magnetization regrows faster for lower flip angles. It allows

shorter TR and TE. The measured signal is weighted in T2* since the inhomogeneities

are not corrected in this sequence, since the flip angle is low, the transverse magnetiza-

tion is lower too. The gradient echo is created by a bipolar gradient, corresponding to

the frequency encoding gradient. During this sequence, reduction of TR below T2 will

induce residual transverse magnetization for the next repetition. This drawback can be

managed using spoiling techniques such as RF spoiling or gradient spoiling.

3.2.7.3 Fast K-space acquisition: Echo Planar Imaging

The Echo Planar Imaging, EPI, (Figure 3.11) introduced by [Mansfield, 1977] allows

to acquire the entire K-space in a single shot, but the resolution is limited and the

acquisition is prone to many sources of artefacts. In a single RF excitation scheme

(one TR), EPI allows to acquire several or the entire K-space. This technique uses the

phenomenon of gradient echoes. After the combination of 90◦ and 180◦ pulses, Gω,

the gradient encoding for the frequency is applied, alternating quickly and therefore

generating a spin echo for each oscillation. Each oscillation corresponds to a given line

of the K-space. Phase-encoding blips are then applied for each echo, moving from one

line to the next. EPI imaging can be either single or multi-shots, depending on the

number of TR required to cover the k-space. This kind of imaging suffers from any

field inhomogeneity that is integrated along the echo train, thus increasing its effect.

Artefacts will be discuss later.
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Figure 3.11: Spin Echo Echo Planar Imaging sequence from www.imaios.fr.

3.2.8 Contrast

The final constrast of the image comes from a trade-off between proton density, T1 and

T2 ponderation, depending on the values of TR and TE. The repetition time influences

directly the T1-weigthing : if TR is long, the longitudinal magnetization of all the

different tissues will be totally recovered, but if TR is short, the tissues having different

T1 times won’t totally recover their longitudinal magnetization, so the tissue with the

shorter T1 will appear brighter than the tissue with a longer T1. In the same manner, a

short TE won’t allow to differentiate two tissues with different T2 and the T2-weighting

will be obtained with longer TE. Finally, T1-weighted is obtained with short TR and

TE, T2-weighting with long TR and TE and a proton density contrast is obtained with

long TR and short TE, to reduce the T1 and T2-weighting. Figure 3.12 shows different

constrast with varying TR and TE.

In this section, we described Spin Echo and EPI sequences, used to obtain T1-weighted,

T2-weighted or proton density-weighted images. The next sections will expose sequences

dedicated to the extraction of parameters close to tissue microstructure.

3.3 Relaxometry and quantitative imaging

As we previously exposed, the contrast of images obtained by Spin Echo sequence are

a mix of ρ, T1 and T2 weighting and are acquisition-dependent. This kind of sequences

cannot directly provide quantitative parameters. Quantitative MRI, and in particular
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Figure 3.12: MRI contrast with varying TR and TE. TR is constant across rows and
increasing down columns (TR=500ms, 1000ms, 2000ms, 4000ms, 8000ms, 12000ms
from the top to the bottom line). TE is constant across the columns and increases

across the rows (TE=25ms, 50ms,75ms,100ms from left to right).
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relaxometry studies focus on the extraction of parameters such as magnetization transfer

ratio (MTR), T1, T2 and T2* relaxations times, etc... These parameters can be directly

used to characterize a tissue and differentiate it from another.

Magnetization transfer sequences [Wolff and Balaban, 1989] provide a contrast depen-

dent on the magnetization exchange between free protons and protons restricted to

macromolecules. The latter have an extremely short T2 relaxation times and cannot be

directly imaged. This modality is widely used in the study of myelin and its destruc-

tion, in particular in the Multiple-Sclerosis disease, because, as we presented it in the

chapter 2, myelin sheath contains macromolecules such as cholesterol. MT thus gives a

quantitative information through the computation of the magnetization transfer ratio,

on the microstructure through the signal arising from the protons bounded to these

macromolecules. Magnetization transfer studies are beyond the scope of this work, this

section, partly inspired by [Deoni, 2010] and [Hashemi et al., 2010], will focus on a par-

ticular field of quantitative MRI : T1 and T2 relaxometry.

T1 and T2 relaxation times provide contrast between tissues in clinical routine and they

have been shown to be clearly related to the brain microstructure, and more precisely

to the different water compartments defined by the cytoarchitecture of the white matter

tissue: mainly the pool of water molecules trapped in the myelin sheats and the water

in the extra and intra cellular spaces [Barkovich, 2000]. The former is characterized

by short T1 and T2, because of the interaction of water molecules with large molecules

such as cholesterol, highly present in myelin, the latter exhibits longer T1 and T2 times

since molecules don’t interact with such molecules, the water is more free. Therefore,

mapping these times may certainly provide insights about the brain microstructure and

imaging-based biomarkers of pathological tissues [Stevenson et al., 2000]. The T2 relax-

ation time has been popular to map the iron content of the humain brain [Hasan et al.,

2012], but one even more popular application of relaxometry study is the characteri-

zation of myelination maturation [Deoni et al., 2012] or demyelination in pathologies

thanks to the sensitivity of relaxation times to myelin water content [Deoni et al., 2010].

In this kind of studies, the T1-weighted and T2-weighted signals are modelled using lin-

ear mixtures of signals stemming from several compartments [Deoni et al., 2008], [Deoni

et al., 2012], with a short time compartment (corresponding to the water trapped in

the myelin), a long time compartment (intra/extra cellular water) and sometimes an

additional compartment corresponding to free water to deal with Cerebrospinal Fluid

contamination. In order to be feasible in clinical routine, T1 and T2 mappings should

remain short but fully reliable. The next subsections present the sequences used to map

T1 and T2 relaxation times.
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Figure 3.13: Inversion Recovery sequence www.imaios.fr .

3.3.1 Common T1 and T2 sequences

Usually, the T2 relaxation time is computed from several spin echo sequences with varying

echo times and T1 relaxation time is computed from several inversion times from gradient

spin echo sequences. But to obtain a good accuracy of the estimation of the parameters,

we have to densely sample echo times or inversion times, and this requires an acquisition

time that is too long for clinical use. [Deoni et al., 2005a] proposed alternative approaches

to historical spin echo and inversion recovery spin echo sequences to efficiently map the

T1 and T2 relaxation times on the entire brain in a clinical acceptable time (on the

order of half an hour). Another alternative is to use EPI sequences ([Poupon et al.,

2010]), reducing the achievable resolution in comparison to spin echo but allowing to

acquire several inversion and echo times in an acceptable time (5 minutes for each T1,

T2 maps for a tens of sample points). However, the price to pay is the presence of

more geometrical distorsions, that must be corrected afterwards. The following sections

present the common sequences used to map T1 and T2 relaxometry times.

3.3.1.1 T1 mapping : Inversion/Recovery sequence

This sequence has been designed to obtain a strong T1-weighted constrast. We have

explained before that Spin Echo sequence provides a contrast dependent on ρ, T1 and

T2. In order to double the constrast to noise ratio, this sequence begins with a 180◦

pulse, leading to the complete inversion of the macroscopic longitudinal magnetization

: Mz becomes −Mz. Then a 90◦ pulse is applied after a duration TI, called inversion

time (see Figure 3.13). This pulse will occur during the regrowth of Mz and will tilt the

residual longitudinal magnetization in the transverse plane. A simple spin echo follows

the magnetization preparation. This sequence is therefore weighted in T1 and can also

be used for fat signal supression. One particularity of this sequence is that TR has to
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Figure 3.14: T1 and T2 mapping sequences : a) IR-EPI b) EPI.

be long to allow the total longitudinal regrowth of the magnetization before the next

acquisition. The final signal at the end of an IR sequence is then given by :

S(TI) = ρ

∣∣∣∣1− 2 exp

(
−TI

T1

)∣∣∣∣ (3.12)

Therefore, varying the inversion times provides a set of measurements that can be fitted

to equation 3.12 to retrieve the T1 relaxation time at each voxel.

3.3.2 T2 mapping : multiple echo times Spin-Echo

The T2 can be directly inferred from the usual spin echo sequence. The signal follows

the equation :

S(TE) = ρ exp

(
−TE

T2

)
(3.13)

The T2 value can then be extracted acquiring a set of images at different echo times.

Figure 3.14 depicts the inversion-recovery sequence and the multiple echo time Spin-

Echo.

3.3.3 Advanced Sequences

The basic sequences presented in the previous section required long acquisition times,

to obtain sufficient number of samples and therefore a good accuracy of the parameter
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Figure 3.15: Spoiled Gradient Recalled Echo sequence.

estimates. T1 and T2 mapping are widely used in clinical applications, since they can

provide quantitatives markers of diseases in comparison to the conventional T1-weighted

and T2-weighted MRI. The scan duration is limited in clinical routine (it must not exceed

1 hour, and is quite often restricted to half an hour). For this reason, novel sequence

schemes have been introduced (DESPOT1(driven equilibrium single pulse observation of

T1)/DESPOT2(driven equilibrium single pulse observation of T2 )) [Deoni et al., 2003],

[Deoni et al., 2005a], mcDESPOT [Deoni et al., 2008] to accurately map T1 and T2

relaxation times in a reduced scan time. These new sequences rely on variable flip angles

instead of the inversion trick : a Spoiled Gradient Recalled-Echo sequence (SPGR) for

T1 mapping and the Steady-State free precession sequence (SSFP) for T2 mapping.

3.3.3.1 T1 mapping using RF spoiling

The T1 relaxation time can be inferred using a spoiled gradient recalled-echo sequence

(SPGR) over a range of flip angle α (DESPOT1, [Deoni et al., 2003]), keeping a constant

TR described in Figure 3.15. This sequence relies on gradient echoes obtained applying

a negative gradient followed by the same gradient but with opposite sign. After the

gradient echo, a residual transverse magnetization could be observed and this magneti-

zation reaches a steady state after several subsequent TR. This residual magnetization

will be added to the transverse magnetization induced by the RF pulse and will lead to

an increase of the T2* weighting. For T1 mapping, a reducing effect of the T2* weighting

is desired. This is the reason why the SPGR starts by the destruction of this transverse
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Figure 3.16: Stead State Free Precession sequence.

magnetization by RF spoiling. At each RF pulse, a phase offset is added inducing the

cancellation of the residual transverse magnetization. To summarize, variable flip angles

α are applied to obtain T1-weighting (this experiment needs a long TR and a relatively

low flip angle to reduce T2* and ρ weighting) through the following equation :

SSPGR

sin(α)
=

SSPGR exp(−TR/T1)

tan(α)
+M0(1− exp(−TR/T1)). (3.14)

3.3.3.2 T2 mapping using steady state free precession

The T2 relaxation time can be inferred using a steady-state free precession sequence

(SSFP), over a range of flip angle α (DESPOT2([Deoni et al., 2003]) see Figure 3.16).

In this sequence, steady state is induced by the rapid excitation of the spins using low

flip angles, with a short TR. Here, the transverse magnetization has to be preserved and

is therefore refocused between two successive RF pulses. Because this technique uses

a repetition time such that TR < T2 and TR < T1, both transverse and longitudinal

magnetizations reach a steady-state, leading to a signal depending on T1 and T2 (see

equation 3.15). Practically, successive RF pulses create additional ”Hahn echoes” from

the residual transverse magnetization and act as refocussing pulses.

The obtained signal follows the equation :

SSSFP

sin(α)
=

SSSFP (exp(−TR/T1)− exp(−TR/T2))

tan(α)(1 − exp(−TR/T1) exp(−TR/T2))
+

M0(1− exp(−TR/T1))

1− exp(−TR/T1) exp(−TR/T2)
.

(3.15)
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Then, using previous estimation of T1 obtained with DESPOT1 technique, one can easily

derive T2 values, measuring the signal varying the flip angle α. These two techniques

allow to reach a good accuracy in T1 and T2 mappings with a reduced time in comparison

with the commonly used inversion recovery and multi echoes spin echo sequences (half

an hour instead of several hours required with conventional spin echo or in recovery spin

echo). However, this technique is sensitive to B0 and B1 inhomogeneities and therefore

requires additional B1 and B0 mappings.

Quite recently, qMRI was proven to be useful to somewhat characterize the microstruc-

ture of tissues through its water content and multiple compartment modeling. The same

stands for diffusion MRI that we propose to introduce in the following section.

3.4 Diffusion weighted imaging

During the last two decades, diffusion MRI has become a key tool to probe the anatomi-

cal connectivity in vivo : within the brain, the displacement of water molecules is random

due to interactions between molecules, but also to phenomena of hindrance and restric-

tion caused by the barriers present along their trajectories, such as cell membranes. As

a consequence, observing and decoding these displacements may provide a unique way

to probe the local microstructure of brain tissues in vivo.

Back in 1950, [Hahn, 1950] was the first to report the attenuation of the NMR signal of

the spin echo, because of the movement of spins during the application of the different

gradients pulses of a sequence, leading to an unperfect rephasing of spins. [Carr and

Purcell, 1954] established the first basics for diffusion measurement, followed by [Stejskal

and Tanner, 1965a] who introduced the Pulse Gradient Spin Echo (PGSE) a few years

later, giving the first MRI sequence providing information about the displacement of

water molecules and enabling the inference of apparent diffusion coefficients.

This sequence has been widely used in the clinical setting, allowing for example a quick

diagnosis of acute ischemia (characterized by the reduction of the Apparent Diffusion

Coefficient, representing the average diffusion coefficient of water) or cerebrovascular

accident as well as the study of white matter damages in several pathologies ([Moseley

et al., 1990], [Le Bihan et al., 1992], [Benveniste et al., 1992]). The most popular appli-

cation of diffusion is obviously the in vivo inference of the structural brain connectivity

and microstructure, using the motion of the water molecules and its preferential direc-

tionnality to probe the direction of white matter fibers. More recently, the diffusion

MRI has became a new tool able to perfom in vivo microscropy, allowing for instance to

measure axon diameters and density locally. This chapter describes the diffusion process

of water molecules in brain tissues before explaining the main principles of the PGSE
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sequence, followed by the presentation of the local modelings of the diffusion process.

This part is inspired by the courses of C. Poupon and the book [Johansen-Berg and

Behren, 2009].

3.4.1 Diffusion process in tissues

Water molecules naturally moves randomly and interact with each other because of

thermal agitation. In the presence of a free environment, without restrictions, the water

molecules undergo a Brownian motion. The process of diffusion can be described math-

ematically as follows.

The diffusion of the water molecules follows the first Fick’s law :

J = −D∇C, (3.16)

with D the diffusion coefficient (m2s−1), J the flux (mol m−2 s−1), C the concentration

(mol m−3). The second law describes the evolution of the concentration in the time :

∂C

∂t
= D∇2C. (3.17)

In diffusion MRI, the concentration is replaced by the diffusion propagator P(r,t), the

probability that a particle, initially at the position r0 moves to the position r1 during a

time t. The diffusion propagator then follows the second Fick’s law :

∂P (r0, r1, t)

∂t
= D∇2P (r0, r1, t). (3.18)

3.4.1.1 Free diffusion

The process of free diffusion, detailed by [Einstein, 1905], is described as a random walk

of water molecules in an environment without restriction. This behavior can be found,

for instance, in the ventricular system of the brain. In this case, the mean-squared

displacement (the average length travelled by water molecules during a given time t) is

a linear function of the time, following Einstein’s equation :

x =
√
2nDΔt. (3.19)

with D the diffusion coefficient (around 2 × 10−9m2s−1 for pure water at 20◦) and Δt

the time allowed to the water molecules to diffuse, n the dimensionality. In the case

of free diffusion, the diffusion propagator is modeled by a Gaussian distribution of the
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Figure 3.17: Restricted diffusion phenomenon [Assaf et al., 2008]: Δx is the mean-
squared displacement and Δ the diffusion time

form :

P (r0, r1, t) =
exp(− (r1−r0)2

4Dt )√
4πDt

. (3.20)

Equation (3.19) can be found using the mean-squared displacement expression with the

gaussian propagator :

〈(r1 − r0)
2〉 =

∫ ∞

−∞
(r1 − r0)

2ρ(r0)P (ro, r1, t)dr0dr1. (3.21)

3.4.1.2 Anisotropy and restricted diffusion

The phenomenon of restricted diffusion allows, to infer structural parameters from dif-

fusion MRI. Indeed, when water molecules move in the brain tissue, they encounter

several barriers such as membranes, etc, structuring the tissue. In white matter, the

mean-displacement depends on the direction : along the fibers the motion is not really

constrained and the mean-displacement is greater than the perpendicular one, where the

diffusion is highly restricted by the myelin sheath of axons. The diffusion is therefore

anisotropic. In an even more complex environment, water molecule motion is either

hindered or fully restricted, and the propagator is no longer Gaussian, the mean dis-

placement is quickly restricted in any direction and the diffusion time therefore defines

this mean-displacement, that is shortened (see Figure 3.17). From a given model of the

tissue, one can infer the diffusion propagator. It is possible to infer structural parame-

ters of the tissue from a model of this restricted diffusion phenomenon. Advanced local

models of tissues will be discussed later in 3.4.3.
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Figure 3.18: Pulse Gradient Spin Echo Sequence.

3.4.2 Basic sequence dedicated to diffusion MRI and signal equation

Diffusion MRI data are obtained using a specific MRI sequence, including strong diffu-

sion gradients to ”tag” the position of spins. The simpler diffusion scheme is called Pulse

Gradient Spin Echo ( PGSE, [Stejskal and Tanner, 1965b]). This subsection presents

the details of the PGSE sequence and describes the common artefacts that may occur

in diffusion MRI, followed by the expression of the diffusion signal obtained with this

sequence.

3.4.2.1 Pulse Gradient Spin Echo

In [Hahn, 1950], it was noticed that the diffusion of spins during the spin echo leads to

a natural attenuation of the signal. [Torrey, 1956] modified the Bloch equations to take

the effect of spin diffusion into account. [Stejskal and Tanner, 1965b] introduced the first

sequence able to enhanced this diffusion phenomenon : the Pulse Gradient Spin Echo

(PGSE). [Lebihan and Breton, 1985] developed the idea to use the PGSE sequence in

a clinical context to visualize ischemia for example. The basic diffusion sequence is the

Pulse Gradient Spin Echo, depicted in Figure 3.18. It consists in applying two linear

gradients before and after the 180◦ pulse in the spin echo. The gradient strengths and

durations have to be the same on each side. The first gradient induces a dephasing of

the spins along the direction of application. The second rephases them. But when a spin

moves between the two gradients, it won’t be rephased, its contribution to the signal is

”lost”. The signal from a diffusion sequence is therefore an attenuation from the initial

signal S0, without any gradient of diffusion. Major parameters of this sequence is the

gradient strength G, the duration of the gradients δ, the separation between the two

gradients Δ. The spin echo readout sequence is often replaced by an EPI echo train.
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Figure 3.19: N/2 Ghosting Artefact.

3.4.2.2 Artefacts and noise in diffusion MRI

Several artefacts, stemming from the use of EPI echo train for diffusion experiments are

listed here. These artefacts were described in [Le Bihan et al., 2006].

• Eddy Currents : When strong gradients are switched during the MRI sequences,

currents, called eddy currents, are created in the conductive structures of the

scanner. These currents create additional magnetic field, combined with gradient

pulses, that modify the initial magnetic field experienced by the spins, leading to

geometrical distortions (shrinking, dilation, scaling, translation, shearing) in the

final image. In diffusion MRI, the extracted parameters come from a large set of

data acquired with different diffusion sensitizations thus giving birth to different

eddy currents and consequently different geometrical distorsions. It is therefore

important to correct them adequately previous to any advanced analysis ([Mangin

et al., 2001],[Reese et al., 2003]).

• Ghosting : The additional magnetic field created by Eddy Currents, inducing

modification of gradient shape and area can lead to a phase offset between odd

and even echoes using EPI, because of the particular manner of filling the K-space

using oscillating readout gradients and a back-and-forth trajectory (the negative

lobe of the readout gradient won’t be the exact opposite of the positive lobe, due to

the presence of Eddy Currents). This will lead to a misalignment of the acquired

echoes in the K-space, leading to the creation of a ”ghost” image in the phase

direction, shifted by N/2, N corresponding to the number of lines. This is called

N/2 ghosting (see Figure 3.19).
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(a) Effect of the susceptibility arte-
fact on the corpus callosum (Fusion
of RGB map and T1-weighted image

(b) Corrected image using the phase
map

(c) Phase Map superimposed to the
anatomical image

Figure 3.20: Susceptibility artefact

• Gradient Non-Linearity :

The non-linearity of the gradient system can also induce geometrical distorsions

in the image and the diffusion weighting won’t be exactly the same, depending on

the position. This can be corrected by the estimation of the deformation using the

spherical harmonics decomposition of the non linearities usually provided by the

gradient manufacturer or estimated using hardware grid phantoms. In addition,

gradient non linearities lead to unhomogeneous b-value over the field of view.

• Motion artefact: If a motion occurs during the acquisition (respiratory, heart-

beat...)in the direction of the phase encoding gradient, it will induce errors in the

phase : if a voxel is moving, it will be present at different phase and frequency

in the K-space, and will then appear at several positions). Moreover, in diffusion

experiments, the observed dephasing have to be the result of the application of dif-

fusion gradients but in case of motion, this is no longer the spin motion itself that

is encoded but also the patient motion, leading to errors in parameter estimation.

• Susceptibility effects : The susceptibility artefact comes from the juxtaposi-

tion between two kind of tissue having too different magnetic susceptibilities and

inducing a local magnetic field, leading to distortion of the image (geometrical

as well as intensity distorsions). This problem typically occurs at the air/tissue

interface (sinus). The image can be corrected using the acquisition of further

calibration field map ([Jezzard and Balaban, 1995],see Figure 3.20).

• Noise : A major problem, commonly met in diffusion MRI is the noise. This

part has been documented from [Brion, 2013]. Like for all kind of MRI images,

the diffusion data suffers from non-central χ noise (nc-χ). In the case of diffusion,

the bias introduced by nc-χ noise is very important since, as we just exposed,

the diffusion experiment is in fact, a measure of a signal loss. The highest the

diffusion gradient strength will be, the greater the signal attenuation will be. In

case of signal loss, it is straightforward that the signal to noise ratio (SNR) for

this kind of data could be extremely low (see Figure 3.21).
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Figure 3.21: nc-χ noise in diffusion MRI data (adapted from [Brion, 2013])

In MRI, thermal noise coming from random motion of charge carriers in electrical

conductors of the MRI scanner system, but also in the subject’s body, which is

also conductive. The SNR form of the spin echo EPI commonly used in diffusion

studies is given by :

SNR ∝ exp(−TE/T2)(ΔxΔyΔz)(
√

NxNyNacq)B0√
(RBW )

√
(R)G . (3.22)

where TE is the echo time, T2 the transverse relaxation time, Δx Δy Δz the

resolution of the image (size of the voxel), Nx and Ny are the acquisition matrix

dimensions, Nacq is the number of repetitions, R is the parallel accelaration factor,

RBW is the read bandwith of the electronic chain, B0 is the static magnetic field

and G is the quality factor of the receiving antenna. From this equation, it is

clear that the SNR could increase with higher static fields. But T2 values decrease

when the static field increase. Thus, one has to pay attention to the exponential

part that will also decrease the SNR. The acquisitions must have reasonable TE to

limit this effect, requiring strong gradients. The read bandwith, filtering around

the MRI signal frequency, can be lowered in order to reduce SNR but this will

inevitably lead to geometrical distortions.

As we already mentionned, the signal measured on the N channels of the receiving

coil is a complex signal, but in MRI images this is the magnitude of this signal

that is exploited:

M =

√√√√ N∑
c=1

(Src + noiserc)2 + (Sic + noiseic)2. (3.23)
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Figure 3.22: Rician probability distribution function (figure from [Brion, 2013]) for
different ratios S/σ.

where r and i indicates real and imaginary parts of the signal or the noise. The

noise is initially considered as gaussian for real and imaginary part. But when the

modulus of the signal is performed on the signal measured from multiple channels,

it is not longer Gaussian, it becomes a non-central χ noise ([Constantinides et al.,

1997]). Assuming the same standard deviation for each channel, σ, the probability

distribution is then :

p(M,σ) = S
σ2 (

M
S )n exp(−M2+S2

2σ2 )In−1(
MS
σ2 ) (3.24)

where M is the measured signal and In−1 is the modified bessel function of n-1

order. When only one coil is used, the noise becomes Rician ([Bernstein et al.,

1989], [Rice, 1952])and has the following form :

p(M,σ) = M
σ2 exp(−M2+S2

2σ2 )I0(
MS
σ2 ) (3.25)

where I0 is the modified bessel function of zero order. The figure 3.22 shows

the probability density function for several values of S/σ. In the case of S = 0,

the noise follows a Rayleigh distribution function (dark blue curve on the figure).

Different methods have been developed to denoise the diffusion data, but they are

beyond the scope of this thesis, and are well described in [Brion, 2013].
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3.4.2.3 Diffusion signal expression

We here present the expression of the diffusion signal obtained using the PGSE se-

quence.[Torrey, 1956] extended the initial Bloch equations of the temporal evolution of

the magnetization to include a diffusion term. This evolution can then be expressed as :

∂M(r,t)
∂t = γM×B(r, t)− (Mz−M0)z

T1
− Mxx−Myy

T2
+∇(D∇M) (3.26)

with M = Mx +My +Mz. In case of anisotropy, the signal expression is :

S(t)

S0
= exp(−

∫ t

0
k(t′)TDk(t′)dt′), (3.27)

with k(t) = γ
∫ t
0 G(t′)dt′, S0 the signal without diffusion weighting, D the diffusion tensor

and G the diffusion gradient. When the sample is isotropic, the signal 3.27 becomes :

S(t) = S0exp(−bD). (3.28)

The b-value expresses the diffusion weighting of the sequence. The higher this value,

the higher the attenuation. In the PGSE framework : assuming rectangular diffusion

gradient pulses, one obtains :

b = γ2G2δ2(Δ− δ

3
). (3.29)

From this value, we can extract a effective diffusion time : Δ − δ
3 . These expressions

above are valid in the case of free water, for the Gaussian diffusion propagator. If

the environment exhibits restrictions, one can replace the diffusion coefficient D by the

Apparent Diffusion Coefficient (ADC), that does not correspond to the true diffusion

coefficient but that represents an average diffusion coefficient, integrating the constraints

of displacements of water molecules by the natural barriers of tissue. In the case of a

hindered environment, where the restrictions not fully constrain the mobility of water

molecules, the ADC can be defined as the ratio between the true diffusion coefficient and

a tortuosity coefficient Λ. The ADC can be sufficient to characterize some brain damages,

even if the environment is not free. In fact, diffusion MRI experiments can provide more

information than just the ADC, and different local models were established to infer

angular and radial information of the probability of displacement of water molecules

getting closer and closer to the tissue microstructure. The next section proposes a

summary of the various models introduced during the last decade aiming at modeling

the diffusion propagator, or more simply, the orientation distribution function.
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3.4.3 Review of local models

3.4.3.1 Q-space analysis : dODF, fODF and diffusion propagator

We have introduced in the previous section the b-value, depending on the diffusion time

and the gradient strength. [Callaghan, 1991] introduced the Q-space formalism, based

on the relationship between the diffusion propagator and the diffusion signal measured

in the space of the wave vector using the Fourier Transform [Callaghan, 1991] :

E(q, τ) =
∫
R3 P (r, τ) exp(−iπqT r)dr , (3.30)

where E is the signal attenuation, P the diffusion propagator, q the wavevector :

q = γGδq (3.31)

The Q-space is therefore the dual space to the propagator space. The b-value can then

be expressed by : b = q2Tdiff , Tdiff being the diffusion time. This relation is valid

if the gradient pulses are very short but it is not technically possible to reach short

enough gradient pulses. If this assumption is not verified, the relationship only allows to

retrieve the ensemble average propagator, that still can provide significant angular and

radial information on the diffusion process. This equation is the basis of a number of

techniques developed to access to angular information of the propagator : different local

models were proposed, trying to recover a probabilistic information on water diffusion,

and exploit it to better understand the tissue microstructure. Usually, the propagator

is not easily accessible and requires long acquisition schemes. In the community two

other measures is often use to characterize the diffusion process in the white matter:

the orientation distribution function of the diffusion process (dODF) or the orientation

distribution function of the fibers (fODF). They both give angular information about

the local displacement. The dODF is the integration of the propagator along all the

distances r :

dODF (o) =

∫ ∞

0
P (r, t)r2dr. (3.32)

The fODF ([Tournier et al., 2004]) gives the fraction of fibers aligned along a certain

orientation, thus providing a direct information on fibers configuration. The dODF and

fODF give angular but no radial information, while diffusion propagator gives both in-

formation. These probabilistic functions can be inferred, as it is done for the diffusion

propagator by Q-space sampling of the diffusion signal using relation 3.30. Different

models were derived from this equation. We present some of them in the next section.
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Figure 3.23: Diffusion weighted images (b=1500 s.mm2) for three different orienta-
tions

3.4.3.2 Local modeling review

[Basser et al., 1994] introduced the popular Diffusion Tensor Imaging (DTI) model,

assuming a Gaussian distribution of displacements. This technique has been widely

used, even now in clinical applications because of is reasonable acquition time. But

this technique suffers from several drawbacks, in particular because of its incapacity to

detect more than one fiber population within a voxel and therefore to not detect fiber

crossings. In [Wedeen et al., 2000], using the Fourier relationship between Q-space and

the propagator space introduced in [Callaghan, 1991], Van Wedeen published the Diffu-

sion Spectrum Imaging model (DSI), discretizing the relationship into a Cartesian grid

limited to a sphere in the Q-space of radius corresponding to a large b-value. While pro-

viding access directly to the 3D probability density function of spin displacement (PDF),

DSI requires long acquisitions not always compatible with clinical applications. In or-

der to overcome the limitations of the DTI model, new models such as multi-Gaussian

models [Tuch, 2002] were introduced, considering that each fiber population follows a

Gaussian diffusion process and the final model being the sum of the contributions of

each population. Following the idea of [Wedeen et al., 2000] and to be able to approach

the real fiber configuration within a voxel, a pletora of high angular resolution diffusion

imaging (HARDI) models and hybrid diffusion imaging (HYDI) models were developed.

Most of these models inherit the former Fourier relationship and aim at decomposing

the diffusion weighted signal on a basis of spherical functions. In these models, the

Q-space sampling is optimized and is performed on a sphere, with optimized gradient

orientations to cover the sphere (see Figure 3.23). Only few of the models exploit the

radial component of the diffusion propagator, using multi-shell sampling ([Assaf and

Basser, 2005], [Assemlal et al., 2009], [Descoteaux et al., 2011], [Alexander et al., 2006]),

and most of them only rely on its angular profile. While the diffusion propagator is

supposed to be the holy grail, few microstructural scalar features have been introduced

but they generally suffer from a lack of specificity : a drop of the GFA value in a region

cannot be directly linked to tissue microstructural modifications. More recently, [Assaf
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et al., 2008] have demonstrated that modeling the diffusion process with two separated

hindered and restricted compartments and measuring the diffusion weighted signal at

different diffusion times can create the adequate contrast to infer the local axon density

and radii, thus turning diffusion MRI into virtual microscopy. The challenge is then to be

able to get an analytical solution of the diffusion attenuation within a geometrical shape

mimicking the membrane restricting the displacement of molecules as well as optimiz-

ing the number of samples (corresponding to a specific gradient magnitude, orientation

and diffusion time) in order to maintain the feasibility of the scan in clinical routine

([Alexander, 2008], [Drobnjak et al., 2010], [Zhang et al., 2011a]). [Zhang et al., 2012]

went further, starting to investigate the grey matter introducing the NODDI model to

infer neurite orientation dispersion and density within the cortical mantle. These models

will be discussed in Chapter 5.

All the methods issued from HARDI acquisitions can be separated into two major groups:

model-free techniques and model-depedent techniques. The latter use a-priori knowl-

edge on the diffusion propagator. We summarize here the major techniques of these two

groups, and we may not be exhaustive due to the pletora of models introduced since the

last decade.

Model-free techniques :

• Diffusion Spectrum Imaging (DSI, [Wedeen et al., 2000]),

• The Q-Ball Imaging (QBI) ([Tuch, 2002]) introduces a spherical sampling of the

Q-space, reducing the acquisition time of the DSI technique despite the decrease

in angular resolution. It reconstructs the dODF from equation 3.32 using the

Funk-Radon Transform,

• The Analytical QBall Imaging (aQBI) ([Descoteaux et al., 2007]) uses the same

acquisition scheme as QBI but decomposes the signal into a modified spherical

harmonics basis,

• The Diffusion Orientation Transform (DOT) ([Özarslan et al., 2006] provides an

alternative to the dODF function, giving the propagator at a unique radius,

• The General Diffusion Tensor Imaging (gDTI)/Higher Order Tensor (HOT) ([Liu

et al., 2003]) extends the diffusion tensor using a generalization of Fick’s Law to a

higher-order differential equation,

• The Persistent Angular Structure Imaging (PAS-MRI, [Jansons and Alexander,

2003]) also extracts an alternative to the dODF, called Persistent Angular Struc-

ture, representing the mobility of spins in each direction,
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• The Kurtosis Imaging technique (DKI, [Jensen et al., 2005]) quantifies the degree

of non gaussianity of the diffusion process.

Model-based techniques :

• Composite hindered and restricted model of diffusion (CHARMED, [Assaf and

Basser, 2005] combines a hindered diffusion process corresponding to the extra-

cellular compartment in the white matter voxel and a restricted compartment

defined by the diffusion process in axons, modeled by a cylinder. The acquisition

scheme required several b-values and several diffusion times,

• The Spherical Deconvolution (SD) ([Tournier et al., 2004])allows to retrieve the

fODF, considering that each measurement is the convolution of the fODF with the

impulse response of one homogeneous fiber population to the fiber process. The

deconvolution technique uses a decomposition of the signal in spherical harmonics,

• The Constrained super-resolved spherical deconvolution (CSD, [Tournier et al.,

2007]) follows the idea of the SD,

• The Spherical Deconvolution Transform (SDT)([Descoteaux, 2008] described in

the next subsections,

• The Ball and Stick model ([Behrens et al., 2003]) considers two compartments,

the first one undergoing a Gaussian and highly anisotropic diffusion process (cor-

responding to fibers) and the second one corresponds to a fully isotropic gaussian

diffusion process. Similar models were derived, using stick, cylinder or a distribu-

tion of cylinder for the restricted compartments, and ball, tensor or zeppelin for

the extra-cellular part where an additional isotropically restricted compartment

can sometimes be inserted (see [Panagiotaki et al., 2012]),

• Multi Gaussian mixtures ([Tuch, 2002]) and Wisharts Mixtures ([Jian and Vemuri,

2007]).

Some of the model-based techniques will be developed in Chapter 5, in the context of

inference of microstructure parameters modeling the diffusion propagator. Next sections

will expose a selection of these models, which are used in this thesis : the DTI, the

analytical QBall and the SDT.

3.4.3.3 DTI

As previously explained, in white matter fibers, the diffusion parallel to the direction of

the axon is not restricted but the diffusion phenomenon perpendicularly to this direction
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Figure 3.24: Reprenstation of the diffusion tensor D in the cases of isotropic and
anisotropic diffusion

is contrained by membranes. This anisotropic behavior is described by the diffusion

tensor model ([Basser et al., 1994]). This model is based on the observation that in

tissues, the water molecules’ motion can be approximated by a Gaussian distribution

depending on a principal direction of diffusion assumed to be aligned with the direction

of the fibers within the white matter. Therefore the propagator of (3.20) is adapted to

take the different directions into account. The diffusion is not only characterized by a

single D coefficient but by a matrix, the diffusion tensor D (Figure 3.24), corresponding

to the covariance matrix of diffusion displacements. Finally the propagator has the form

of a multivariate gaussian model :

P (r0, r1, t) =
exp(− (r1−r0)TD−1(r1−r0)

4t )√
4πt3|D|

, (3.33)

with

D =

⎛
⎜⎜⎝
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞
⎟⎟⎠ .

The final signal equation using a PGSE sequence is given by :

E(q, τ) = exp(−TE

T2
) exp(−τqTDq).

Diagonalization of this matrix provides three eigenvectors : e1, e2, e3 corresponding to

the eigenvalues λ1, λ2, λ3 ( in decreasing order), being the apparent diffusivities along the



Chapter 3. MRI modalities dedicated to the study of tissue microstructure 57

three principal directions of the tensor, the highest one corresponding to the apparent

diffusivity along the main direction (along the fibers in white matter). When all the

eigenvalues are equals, the diffusion is isotropic (see Figure 3.24). By measuring the

signal attenuation in six directions, we can construct the tensor in each voxel and get

the main axis of diffusion. This local model provides several measures such as fractional

anisotropy (FA) (see Figure 3.25, right), apparent diffusion coefficient(ADC), the radial

diffusivity λ⊥, the axial diffusivity λ‖ :

λ‖ = λ1

λ⊥ =
λ2 + λ3

2

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2)√

2(λ2
1 + λ2

2 + λ2
3)

ADC =
λ1 + λ2 + λ3

3
.

From these data one can also infer the principal direction of motion of water molecules.

A common manner to represent it is the colour-encoded orientation map (RGB map),

encoding the direction using RGB representations : the red, green and blue colors indi-

cate respectively the x, y and z directions (see Figure 3.25). This technique, widely used

Figure 3.25: RGB and FA maps

by the physicians because of the simplicity of the model (very few parameters) and its

acceptable acquisition duration, relies on the strong hypothesis of a Gaussian probability

of displacement, which is not always valid, and moreover, it allows to only model one

population of fibers within a single voxel and cannot resolve fiber crossings. To overcome

this limitation, a multi-tensor model using a Gaussian mixture has been developed by
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[Tuch et al., 2002], before moving to high angular resolution diffusion imaging or HARDI

models.

3.4.3.4 Numerical and analytical Qball imaging

New acquisition schemes were developed, using the relation (3.30), relying on the sam-

pling of the Q-space to characterize the diffusion propagator. Indeed, to overcome the

limitations of the DTI, and therefore access to the non-gaussianity of the diffusion pro-

cess, more measurements were required. Alternative imaging such as High Angular Res-

olution Diffusion Imaging including the QBall ([Tuch, 2004]) and the analytical QBall

([Descoteaux et al., 2007]) arose. QBall imaging includes an acquisition scheme sampling

the Q-space on a sphere (of radius corresponding to a high b-value ≥ 3000s/mm2) to

provide the angular information of the propagator, and therefore to obtain the dODF

at each voxel. To reach sufficient precision, this technique requires a high number of

diffusion orientation (> 60). In QBI, the diffusion orientation distribution function of

the diffusion process (dODF) can be approximated from the signal measurements by the

Funk-Radon Transform :

FRT (S(o, q0)) = 2πq0

∫
S2

P (r, θ, z)J0(2πq0r)rdrdθdz. (3.34)

dODF (o) =

∫
S2

P (r, θ, z)δ(r)δ(θ)rdrdθdz. (3.35)

The Funk Radon Transform of a function at a given point on a sphere is in fact the

integral over the equator of the sphere perpendicular to the orientation corresponding

to this point and passing by the origin. The first step of QBI is to interpolate the

values along these great circles from the set of measurements. From these interpolated

values, the Funk Radon Transform can be computed and it then provides the dODF at

each point. This technique overcomes the DTI problem by solving fiber crossings. The

analytical QBI ([Descoteaux et al., 2007]) differs from the previous technique by changing

the interpolation step along the equators. Indeed, the Funk Radon Transform is already

a first approximation of the dODF, and the additional approximation brought by the

interpolation step leads to a decrease in accuracy of the estimation of the orientation

distribution function. In order to solve this problem ([Descoteaux et al., 2007]) uses

the fact that any function on the sphere can be decomposed on a set of orthogonal

functions, defined as spherical harmonics. In this model, the spherical harmonics have

been modified to take into account the positiveness and the symmetry of the signal :

S(o) =
K∑
k=1

CDWI
k Yk(θ(o), φ(o)),
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with CDWI the coefficients obtained from the least square solution and using a Thikonov

regularization :

CDWI = (BTB + λL)−1BTS/S0

with L the Laplace-Beltrami matrix and B the matrix of modified spherical harmonics :

Yk(θ, φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2Re(

√
(2l+1)(l−|m|)!
4π(l+|m|)! P

|
lm|(cosθ) exp i|m|φ −l ≤ m < 0

(
√

(2l+1)(l−m)!
4π(l+m)! Pm

l (cosθ) exp imφ m = 0

(−1)m+1
√
2Im((

√
(2l+1)(l−|m|)!
4π(l+|m|)! P

|
lm|(cosθ) exp i|m|φ) 0 < m ≤ l

The Funk-Hecke theorem shows that the decomposition of the signal in spherical har-

monics can be linked to the dODF :

dODF (o) =

K∑
k=1

CdODF
k Yk(θ(o), φ(o))

with CdODF
k = PCDWI and P the Funk-Hecke matrix (where the diagonal element

are 2πPl(j)(0) with Pl(j) the Legendre Polynomial of order l(j). An example using the

analytical QBall model is presented in Figure 3.26. This technique provides improved

Figure 3.26: Analytical QBall field (computed using CONNECTOMIST 2.0).

information in comparison to DTI. First, we can derive here more than one principal

diffusion direction : observing the peaks of the dODF or fODF provides the directions

with the highest probabilities. The plurality of principal directions gives the opportunity

of resolving fiber crossings. Second, we can extract a General Fractional Anisotropy :

GFA =

√
n
∑n

i=1(dODF (oi)− 1/n)2

(n− 1)
∑n

i=1 dODF (oi)2
, (3.36)
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with n the number of orientations oi.

3.4.3.5 Spherical Deconvolution Techniques

The Spherical Deconvolution model introduced by [Tournier et al., 2004] relies on the

hypothesis that during the diffusion time, no exchange occurs between fibers and the

final signal can then be decomposed as the sum of the response of all the different

populations of fibers. Furthermore it assumes that the individual response of each fiber

population are the same, except their orientations. This method can provide the fODF

for which the signal is expressed as the convolution of the response of a single fiber R

and the fODF :

S(q) =

∫
fODF(x)R(q, x)dx, (3.37)

This approach has been improved in [Tournier et al., 2007], who proposed a Constrained

Spherical Deconvolution (CSD) approach, to optimize the resolution of the system when

few sample points are acquired.

[Descoteaux, 2008] introduced the Spherical Deconvolution Transform (SDT) where the

fODF can be obtained from a spherical deconvolution of the dODF. The dODF is ex-

pressed as the convolution of the fODF with the impulse response of a single fiber R to

the diffusion process :

dODF (o) =

∫
R(o, o′)fODF (o′)do′ (3.38)

where R is expressed as a prolate tensor and, as we already presented before, this con-

volution can be performed analytically using a decomposition of the dODF in spherical

harmonics (cj being the coefficients of this decomposition) and therefore obtain the

coefficients dj of the decomposition of the fODF using:

fODF (o) ≈
R∑

j=1

2 ∗ π ∗ Pl(j)(0)
cj
fj

Yj(o), (3.39)

with dj =
cj
fj
, fj = 2π

∫ 1
−1 Pl(j)(t)R(t). This technique will be used in the next chapter.

We have just developed the major local modelings of the diffusion process. The next

subsection will then present the applications of the diffusion weighted MRI.

3.4.4 Application of the diffusion weighted imaging

Through all these models, diffusion weighting imaging is now a powerful tool to infer

structural information studying the displacement of water molecules in the tissue, par-

ticularly in white matter tissues where this displacement is highly constrained, due to
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the presence of the myelin sheath, considered impermeable regarding the diffusion time

of the PGSE experiments. We already mentionned the use of DTI to characterize is-

chemia, only by exploiting the ADC maps coming from the diffusion data. One major

application of diffusion weighted imaging in the white matter is the in vivo inference

of the brain connectivity, by following the major pathways defined by the mobility of

the molecules. These major paths reflect the actual fiber bundles, made of axons, in

the brain but we can only define them by ”numerical” fibers, since they are not real.

The second application of diffusion weighted imaging is the microscopic diffusion MRI,

going further in the study of brain microstructure, modeling the diffusion propagator

to extract structural parameters such as axon diameter and density in the white matter

using models as the CHARMED ([Assaf et al., 2004]) model presented in the previous

subsection. We only present here the tractography application, since the microstructure

by diffusion MRI will be developed in the Chapter 5.

3.4.4.1 Inference of structural connectivity using tractography

The various local models of the diffusion process give in each voxel the angular probabil-

ity of the displacements of water molecules. Following the direction(s) with the highest

probability(ies) can provide the principal pathways of water motion, corresponding to

the paths where the motion of water molecules is less restricted. In white matter, the

direction where the molecules are less constrained corresponds to the parallel direction

to fibers. That is the idea of tractography introduced by [Basser]. Tractography is still

the unique tool to provide access to the anatomical connectivity of the brain in vivo and

non invasively. Tractography techniques vary in their way to manage the reconstruction

of the fiber paths.

The first and widely used technique is the streamline deterministic tractography. This

technique was used in [Basser et al., 2000] to compute the tractogram from DTI data.

The streamline is a 3D curve characterized by the fact that, at each point, the tan-

gent at this streamline is always parallel to the main vector field represented, for the

DTI example, by the principal direction of the tensor. At each step of the algorithm,

a line is propagated, following the orientation having the highest probability according

to the given local orientation field. In each voxel, several lines are drawn from different

”seeds”, where the dODF or fODF is interpolated. Taking into account the low curva-

ture of fibers, streamling algorithms generally consider at each step of the propagator

an aperture cone forwards or backwards restricting the domain of propagation within

the cone thus speeding up the streamlining process (see Figure 3.28). Only the voxels

belonging to a brain mask are considered, giving then a stopping criterion, usually de-

fined using a FA or GFA threshold. More robust T1-based masks were also proposed
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by [Guevara et al., 2011a] to define the domain of propagation of streamlines without

depending on an arbitrary FA threshold that quite often misses some pieces of white

matter. Streamline tractography is very fast but, even if it is not limited to the tensor

model, it cannot always resolve fiber configurations such as crossings or kissings and

is sensitive to noise and potentially creates false positive fibers (noise can produce an

artificial peak in the dODF) or miss fibers. An example of a deterministic streamline

tractography is shown in Figure 3.27. The streamline probabilistic tractography algo-

Figure 3.27: Streamline deterministic tractography (from one subject of the Archi
Database).

rithms([Parker and Alexander, 2003], [Perrin et al., 2005b], [Chao et al., 2008], [Berman

et al., 2008], [Descoteaux et al., 2009b] ) are an alternative, keeping a degree of uncer-

tainty at each voxel. In such algorithms, the highest probability is not systematically

followed. For example, a random orientation can be randomly chosen within the angular

cone, centered on the highest probability given by the local model. Several particles are

drawned randomly for each voxel, each of them following a process where the principal

direction provided by the ODF field is not systematically followed. Probabilistic stream-

line algorithms can better handle fiber crossings and are more robust to noise as they

can overcome propagation of errors. However, they take a longer time to reconstruct

the whole tractrogram. Other algorithms were proposed such as Bayesian probabilistic

tractography ([Behrens et al., 2003], [Friman et al., 2006], [Jbabdi et al., 2007], [Morris

et al., 2008]), providing maps of probabilistic connectivity maps between regions using

a Bayesian Framework, and Monte Carlo Markov Chain process to infer the probability

of connection. Geodesic tractography ([Jbabdi et al., 2004], [Jbabdi et al., 2008])aims

at finding for the shortest path linking two points in a specific space, corresponding to

the diffusion space with a specific metric of the dODFs. Finally global gractography

techniques ([Poupon, 1999], [Cointepas et al., 2002], [Kreher et al., 2008], [Fillard et al.,

2009], [Reisert et al., 2011]) were developed to infer the whole set of brain connections
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Figure 3.28: Deterministic versus Probabilistic tractography.

globally rather than locally like the other techniques where each pathway is built inde-

pendently of the other. [Fillard et al., 2009] introduced the use of ”spin-glass” approach

to infer white matter tracts. These spin-glasses are considered as pieces of tracts, and

the idea is to optimize their configuration minimizing a global energy, attracting the

spins to be oriented along the main fiber directions, and to form long chains with low

curvature. If the number of spins is not enough to solve the local configuration (such

as crossings), the algorithm allows them to be replicated. These global techniques are

efficient since they are less blind than others but take longer computation time requiring

strong optimization of the code and the use of high performance computing hardware.

3.5 Conclusion

We summarized the main knowledge about MRI we need to develop the contributions

of this thesis work. Quantitative MRI and diffusion MRI are clearly two complementary

modalities to investigate the cytoarchitecture. Before presenting the use of diffusion

MRI to infer microstructural information, we will move to the first main contribution :

the use of relaxometry data to extract information about microstructure and the interest

of combining it with diffusion MRI in order to better characterize the white matter.



Chapter 4

Brain white matter relaxometry

atlases

4.1 Introduction

The previous chapter introduced the basis of relaxometry and diffusion MRI. We have

shown that both of them can provide information about tissue microstructure. On

one hand, T1 and T2 relaxation times are generally used to characterize specific water

compartments within tissues, such as water trapped in the myelin thus providing the

associated myelin water fraction, which is an accurate biomarker for diseases inducing a

demyelination of axons. On the other hand, diffusion MRI uses the interaction of water

molecules with the surrounding tissue membranes to reveal the tissue organization and

to provide for example the orientation of fibers within white matter, useful to study the

anatomical connectivity of the brain in vivo. Therefore, relaxometry and diffusion MRI

provide similar and complementary information on tissue microstructure, and it could

be of great interest to combine them in order to study how they both characterize the

white matter structure.

Relaxometry data have been used to study grey matter microstructure of the healthy

brain (cortex or deep structures) providing mean values of T1 and T2 in predefined re-

gions of interest ([Lee et al., 2006], [Wansapura et al., 1999]) or using T1 and T2 mapping

to delineate substructures ([Deoni et al., 2005b]). However, these studies didn’t involve

the use of diffusion MRI data. Moreover, several studies have combined relaxometry

and diffusion MRI data in the study of white matter to explore the structural variations

along white matter bundles or the maturation of the infant brain ([Dubois et al., 2010])

and better understand the link between these relaxation times and the underlying mi-

crostructure ([Cherubini et al., 2009],[Herve et al., 2011], [Russell-Schulz et al., 2013]).

64
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To our knowledge, all studies were performed at the individual level and group analysis

were generally performed directly from the average T1 and T2 values measured at the in-

dividual scale on specific ROIs. A more comprehensive analysis should include diffusion

or relaxation parameters computed along the bundles, using the projection of scalar

values onto a streamline or a surface representing the bundles [Corouge et al., 2006],

[Goodlett et al., 2009], [O’Donnell et al., 2009], [Zhang et al., 2010], [Jones and Deoni,

2006]. Concerning DTI parameters, [Yeatman et al., 2012] explored the FA variation

along several bundles and [Mårtensson et al., 2013] built a FA profile along the Inferior-

Fronto Occipital fasciculus in progressive supranuclear palsy. [Reich et al., 2006], added

to the DTI parameters the T1 & T2 values investigation along the corticospinal tract.

Only recently, [De Santis et al., 2014] addressed the variation of combined diffusion pa-

rameters and relaxation times along several white matter bundles.

The first contribution of this thesis was to combine diffusion parameters and relaxation

times along major white matter bundles in a large population of healthy subjects. To

attain this goal, we first constructed reference quantitative atlases of profiles of the T1

and T2 relaxation times along white matter bundles and second studied their variability

across the subjects, as well as the asymmetry of the profiles between the two hemi-

spheres. These profiles were then compared to the profiles of diffusion parameters such

as ADC, FA, λ‖ and λ⊥. Therefore the ultimate goal is to provide a normative atlas of

quantitative features along white matter bundles against which to compare pathological

cases. In this chapter, we first briefly describe the CONNECT/Archi database used in

the frame of this study, and we detail the processing pipeline developed to construct the

two super-resolved quantitative atlases of T1 and T2 relaxation times. Then we develop

the construction of the T1 and T2 profiles along long white matter tracts. From these

profiles, we compute an asymmetry index useful to compare profiles between the right

and left hemispheres. Finally we analyze the correlation between T1 and T2 values with

diffusion parameters along the bundles.

4.2 The ARCHI database

The CONNECT/ARCHI database is a large human brain MRI database acquired in the

frame of the European CONNECT project [Assaf et al., 2013] which aimed at inferring

the connectome atlas of the human brain from functional and anatomical MRI data at

3T. Data were collected on a population of 79 healthy young subjects on a Tim Trio 3T

MRI system equipped with a 12-channel head coil (Siemens, Erlangen), and the part of

the MRI protocol used to investigate diffusion MRI includes acquisition of the following

datasets :
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• a high resolution T1-weighted dataset using a MPRAGE sequence (160 slices; FOV

256mm, Phase FOV 93.8 % ; TH 1.10mm; TE/TR=2.98/2300ms; TI=900ms;

FA=9deg; matrix 256x240; RBW=240Hz/pixel),

• a B0 fieldmap using a double echo gradient echo sequence for a posteriori correction

of susceptibility artefacts,

• a single-shell HARDI dataset along 60 optimized diffusion directions [Dubois et al.,

2006] using a twice-refocused single-shot EPI sequence at a b-value of 1500s/mm2

(70 slices; FOV 220mm, Phase FOV 100%; Slice thickness 1.7mm; TE=93ms;

TR=14s; flip angle FA=90deg; matrix 128x128; read bandwidth RBW=1502Hz/pixel;

echo-spacing ES=0.75ms; 1 excitation; partial Fourier factor PF=6/8; parallel ac-

celeration factor GRAPPA=2; total scan time 16min46s).

The ARCHI database was originally dedicated to perform HARDI imaging, thus con-

straining the amount of time remaining to perform relaxometry. Taking into account

this constrain, spin echo EPI sequences were developped specifically and to perform T1

and T2 mapping respectively, allowing to scan 10 values for the inversion times and the

echo times in a very short duration (< 5 minutes) :

• T1 mapping dataset : spin echo EPI single-shot sequence (FOV 220mm ; TH=1.7mm

; 70 slices ; TE/TR=30ms/20.6s ; flip angle FA=90deg; 128x128 ; GRAPPA2 ;

PF=5/8 ; RBW=1502Hz/Pixel ; 10 uniformly distributed inversion times TI be-

tween 300ms-3000ms),

• T2 mapping dataset : a spin echo EPI single-shot sequence (FOV 220mm ; TH=1.7mm

; 70 slices ; TR=23.2s ; flip angle FA=90deg; 128x128 ; GRAPPA2 ;PF=6/8

; RBW=1502Hz/Pixel ; 10 uniformly distributed echo times TE between 30ms-

200ms).

Usually, the T2 relaxation time is computed from several spin echo sequences with varying

echo times and T1 relaxation time is computed from several inversion times from gradient

spin echo sequences. But an accurate estimation of T1 and T2 in each voxel requires a

sufficient sampling of echo times and inversion times, and therefore a too long scan

duration for a clinical application. [Deoni et al., 2005a] proposed alternative approaches

to historical spin echo and inversion recovery spin echo sequences to efficiently map the T1

and T2 relaxation times on the entire brain in a clinical acceptable time (on the order of

half an hour for both). But these sequences require additional mapping of B1 and of the

inhomogeneties of B0 since the model depends on varying flip angles. Another alternative

is to use EPI sequences [Poupon et al., 2010], allowing to acquire several inversion
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and echo times in a reasonable time (5 minutes for each T1 & T2 map). These short

acquisitions can even be used for the study of myelin formation on newborns or children

where the scan time is even more limited [Dubois et al., 2010]. However, the use of EPI

echo train reduces the achievable spatial resolution. Since the spatial resolution of the

present study is obviously limited by the resolution of the diffusion data, the resolution

provided by EPI sequences is therefore acceptable. Another consequence of the use of

EPI sequence is the additional geometrical distorsions, which are also found in diffusion

weighted data. Consequently, diffusion and relaxometry dataset will share a similar

preprocessing step to correct for geometrical distorsions, thus yielding similar residual

errors, before going to the main processing pipelines. First, a connectivity atlas was built

from the diffusion data, providing well-known white matter bundles for each subject in

a common space and scalar atlases of diffusion parameters. Second, relaxometry data

were analyzed to built two super-resolved atlas of T1 and T2 relaxation times. Third, the

relaxation times were projected on each bundle and hemisphere asymmetry as well as

correlation between T1 and T2 and diffusion parameters were studied. The next sections

will present in details these three steps.

4.3 Inference of an atlas of the structural connectivity

Using the method of [Guevara et al., 2011b], a probabilistic atlas of the human brain

connectivity was built from the HARDI dataset as well as probabilistic atlases of several

diffusion-based features such as FA and mean/transverse/parallel diffusivities [Duclap

et al., 2013b], [Assaf et al., 2013] . This probabilistic atlas includes 38 well-known

long WM bundles : 15 in each hemisphere and 4 interhemispheric (the Anterior Ar-

cuate fasciculus (AArc), the Posterior Arcuate fasciculus (PArc), the Arcuate (Arc),

the Short Cingulum fasciculus (SCing), the Temporal Cingulum fasciculus (TCing), the

Long Cingulum fasciculus (LCing), the Inferior-FrontoOccipital fasciculus (IFO), the

Inferior-Longitudinal fasciculus (IL), the Fornix (Fx), the Uncinate (Unc), the Anterior,

Inferior, Motor, Parietal and Posterior Thalamic Radiations(ATR, ITR, MTR, PaTR,

PoTR), the Corpus Callosum divided into four parts (Rostrum, Genu, Body, Splenium))

as well as for 94 short white matter bundles found in all subjects of the database. This

atlas is the fundamental referential to study quantitative information on brain tissue

of healthy subjects and therefore to go further into the study of brain microstructure,

combining different modalities. We describe here the different steps required to build

the connectivity atlas. All the processing was done using BrainVISA and Connectomist

2.0 softwares ([Duclap et al., 2012]) and are summarized in Figure 4.1. Let’s now focus

on the description of the details of the processing of diffusion MR data yielding such

bundle maps at the individual scale.
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Figure 4.1: Connectomist pipeline leading to the fiber bundle labelling

4.3.1 Quality check and correction of imaging artefacts

Because the diffusion MRI data were acquired using an echoplanar imaging technique, it

is sensitive to any local field inhomogeneities that are integrated (and consequently ”am-

plified” during the long acquisition echotrain). As we described in chapter 3, artefacts

can be classified in two categories: those due to hardware imperfections, and those due

to the subject itself. The first class of artefacts includes eddy currents stemming from

the commutation of strong diffusion gradients that can take longer to be switched off

thus adding residual gradients at the same time of the application of the gradients along

phase and read directions yielding geometrical distorsions. Post-processing techniques

exist to correct a posteriori the distorsion that can be approximated to a combination

of a translation, a scaling and a shearing along the phase encoding axis when the eddy

currents are assumed short ([Mangin et al., 2001]). An alternative is to use assymetric

bipolar gradients with two refocusing pulses as proposed by [Reese et al., 2003] that

compensate eddy currents to the first order. Spikes or vibration effects are also part of

the first class. Spikes are due to RF contamination of the signal by a frequency generally

equal to 50 Hz for instance due to an external device present in the magnet room but

with a poorly filtered supplier. They can also be due to failing coil antennas (typically

with dysfunctionning preamplifiers). They correspond to a strip pattern on the image

that can be easily detected. Vibrations are a typical phenomenon present in dMRI due

to the commutation of very strong gradients. They result from a mechanical coupling

between the gradient coil, the patient bed and the subject itself. They lead to loss of

signal in large areas and can also be detected quite easily ([Gallichan et al., 2010]). Last

for this first class of artefacts is the non Gaussian noise, being either Rician or χ-non

centered depending on the parallel reconstruction algorithm. Siemens systems provides

the GRAPPA reconstruction algorithm delivering reconstructed data characterized by a

χ-non centered noise (see [Brion, 2013]). The quality check pipeline of Connectomist 2.0

proposes automatic corrections for eddy currents, spikes and vibration effects, non Gaus-

sian noise that was used to preprocess the diffusion MR data of the CONNECT/Archi

database. The second class of artefacts is linked to the subject itself. First, suscepti-

bility effects at the place of air-tissue interfaces like for instance close to the sinus or

the bones induce field inhomogeneities leading to non linear distorsions and distorsions
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of the grey level intensity. Two solutions exist to correct for them : the first solution

relies on the acquisition of a field map calibration scan from which the correction field

can be inferred ([Jezzard and Balaban, 1995]) and the second solution consists of non

linear registration of the distorted data to a T1-weighted anatomical reference free of

susceptibility artefacts ([Bhushan et al., 2012]). The two techniques are also available

in Connectomist 2.0, but since B0 field maps were acquired, the first solution was used

to correct for susceptibility artefacts. Motion of the subject must also be dealt. Each

diffusion weighting volume can be corrected to a b=0 s/mm2 reference volume using a

rigid transformation but the diffusion directions have also to be corrected by the rotation

matrix stemming from the rigid transformation. Connectomist 2.0 also provides such a

motion correction.

4.3.2 Local modeling and tractography

After the correction of artefacts, we computed a field of local diffusion models, provid-

ing the Orientation Distribution Function for each voxel. Several local models described

in the previous chapter were applied in the Archi database and for the present study,

Spherical Deconvolution Transform (SDT,[Descoteaux et al., 2009a]) was used. The

SDT model was computed using a spherical harmonic order SH=6, a regularization fac-

tor λ = 0.0006. The Gaussian deconvolution kernel was estimated using the 300 most

anisotropic (of FA at least equal to 0.65) voxels within the corpus callosum, assuming

a cylindrical symmetry of the kernel (λ2 = λ3). A regularized streamline deterministic

tractography [Perrin et al., 2005a] was performed with a propagation domain computed

from the associated T1-weighted data ([Guevara et al., 2011a]) using BrainVisa [Coin-

tepas et al., 2003] / Morphologist [Rivière et al., 2002]. The regularized streamline

deterministic tractography algorithm was chosen over the probabilistic algorithm in or-

der to be compatible with the use of the bundle atlas of Guevara et al. [2011b]. Contrary

to most existing tractography tools using a simple thresholded FA map where the choice

of the threshold can be debated, our tractography domain is computed from the robust

brain mask resulting from the Morphologist pipeline. An homotic erosion was applied

using a skeleton of the sulci, in order to prevent any connection between the two sides

of each sulcus, (this can happen at the millimeter resolution of the T1-weighted MRI).

We added to this mask a mesh of the deep nuclei to ensure a good delineation of the

deep structures (see Figure 4.2). The parameters were as follows : aperture angle of

30 degrees, forward step of 0.2mm (corresponding to a eigth of the diffusion weighting

spatial resolution), one seed per voxel of the propagation domain uniformly sampled. It

provided an average of 30 millions of fibers per subject.
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Figure 4.2: Robust Tractography mask (figure from [Guevara et al., 2011a]).First
line: mask with a simple FA threshold, second line: T1-based mask. many important

areas of white matter are missed when using FA based masks

4.3.3 Intra-subject and inter-subjects clustering

The fibers of each subject were clustered into small fascicles using the automatic tech-

nique of [Guevara et al., 2011b]. All the details about the algorithm are provided in

[Guevara et al., 2011b] and [Guevara et al., 2012] but to summarize, the tractogram is

first divided into four parts, fibers in the right hemisphere, fibers in the left hemisphere,

fibers partly in each hemisphere, and fibers passing through the cerebellum. Secondly,

these groups are again splitted in ten groups of different lengths (20-35mm, 35-50mm,

50-65mm, 65-80mm, 80-95mm, 95-110mm, 110-130mm, 130-150mm, 150-175mm, 175-

200mm) and a hierarchical clustering is performed on white matter parcels using a

connectivity-based segmentation. Fascicles are then differentiated using another clus-

tering based on their extremities. Centroids of the obtained fascicles are computed and

used in a second level clustering to provide the final bundles. The clustering step is

illustrated in Figure 4.3.

4.3.4 Labelling

Centroids of the bundles of each subject obtained during the previous step are computed

and compared, using a specific distance (corresponding to the maximum of the Euclidian

distance between two points of the two centroids normalized by the difference between
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Figure 4.3: Clustering. Step 1 : hierarchical decomposition, Step 2: length-based
segmentation, Step 3: voxel-based clustering, Step 4: extremity-based clustering, and

Step 5: fascicle merge. From [Guevara et al., 2012].
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Figure 4.4: Major white matter bundles of the 79 subjects of the ARCHI database:
corpus callosum (rostrum: dark pink, genu: dark blue, body: dark green, splenium :
brown), arcuate tracts (arcuate: red, anterior arcuate: green, posterior arcuate: yellow),
uncinate tract: cyan, Inferior Fronto Occipital tract: pink, Inferior Longitudinal Tract:

purple, Cingulum: brown

their lengths) to the centroids of all bundles of bundle atlas previously built by [Guevara

et al., 2011b]. Each centroid of each subject receives the label corresponding to the

closest bundle centroid of the atlas. In this way, we obtain all the well-known long white

matter bundles for each subject. Figure 4.4 depicts the long white matter bundles

combining the labelling bundles of the 79 subjects of the CONNECT/Archi database.

4.3.5 Diffeomorphic registration of subjects using DTI-TK

A common space is needed to build quantitative and probabilistic atlases. A simple

affine transformation is not sufficient to register diffusion data because of the inter-

subject variability. Because our work focuses explicitly on white matter connectivity,

the orientation information embedded in the orignal DTI or HARDI data have to be

preserved. Different techniques have been proposed using either DTI or HARDI data.

[Alexander et al., 2001] described a method allowing to register DTI data keeping the

original orientations of the tensor and DTI-TK proposed in [Zhang et al., 2006] pro-

vided a diffeomorphic tensor-based coregistration optimized for aligning white matter

anatomy. With the emergence of HARDI-models going beyond DTI, new techniques

were developped that took benefit of the high angular resolution of the ODFs or fODFs.

In [Raffelt et al., 2011], diffusion weighted data were registered using a diffeomorphic

transformation based on the decomposition of the fiber orientation distribution on a

modified spherical harmonics basis. Another alternative was proposed by [Yap et al.,

2011] using an elastic registration of HARDI data based on the spherical harmonics

decomposition of the diffusion orientation distribution function.

In our study, we chose the available DTI-TK software ([Zhang et al., 2006], dti-tk.sourceforge.net)

which has been validated and used in several studies ([Wang et al., 2011], [Keihanine-

jad et al., 2012], [Liu et al., 2014],...) (in future analysis it could be useful to compare
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the results obtained with the DTI-TK software and the recent HARDI-based coregis-

tration techniques). All the subjects’ data were first coregistered to the IXI template

(http://biomedic.doc.ic.ac.uk). Then, a new template was built from the DTI maps

of all subjects. All subjects’ data were then coregistered to this new template using the

DTI-TK approach. In their approach, the authors first define a new distance between

two tensors D1 and D2 in the space of diffusion tensor, defined as follows :

||D1 −D2||D =

√
8π

15
(||D1 −D2||2C − 1

3
Tr(D1 −D2)2) (4.1)

with ||D1 − D2||C =
√

Tr((D1 −D2)2), Tr being the trace of the tensor. This new

metric is used in the optimization scheme. The registration is defined as an optimization

problem expressed in the form :

arg
v∈V

min(φ(It, Is, v) + ψ(v)) (4.2)

with It the template image, Is the subject image, v the transformation, φ the similarity

measure between the two images, ψ a regularization term. The optimization scheme

includes the problem of reorientation of the tensors. Global transformation (if smooth)

between the images can be expressed locally by an affine transformation. The rotation

matrix required for tensor reorientation can be extracted from the Jacobian of the tran-

formation. The Jacobian matrix can be decomposed as the product of an orthogonal

matrix Q, corresponding to the rotation part and a symmetric and a positive-definite

matrix S. The local affine tranformation F is expressed as F = (QS)x + T, Q being

the rotation matrix, S the deformation matrix, and T the translation vector and the

similarity measure is defined by

φ(p) =

∫
Ω
||Is((QS)x+T)−QIt(x)Q

T ||2dx (4.3)

for a region Ω and for p the parameters of the affine transform. Using this similarity

measure allows to take into account the reorientation of the tensor during the optimiza-

tion. The template is then divided hierarchically into several regions with a multi-scales

approach (dividing each dimension by 4, 8, 16 and 32), and the optimization algorithm

researches the best affine transformation between this region and the subject image.

The following regularization term is imposed on the borders of each region :

ψ(pi, pj) =

∫
Ωi∩Ωj

||Fi(x)− Fj(x)||dx, (4.4)

with Fi the affine transformation corresponding to the region i. The final deformation

vector field is computed by interpolating the deformation on borders to smooth the
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discontinuities between the obtained transformations of the regions separated by these

borders.

4.3.6 Super resolved quantitative atlases

While still controversal, super-resolution techniques can efficiently improve the spatial

resolution of diffusion-based quantitative maps such as FA or color-encoded maps [Cala-

mante et al., 2012]. This technique consists in projecting any quantitative information

onto dense streamline-based tractograms constructed at a high spatial resolution (for

instance corresponding to the forward step during the fiber tracking) and secondly pro-

jecting the information back to a Cartesian grid of a higher spatial resolution compared

to the acquisition resolution (see Figure 4.5). Working at the resolution offered by the

tractogram allows thus to preserve fine anatomical details naturally embedded in the

diffusion-weighted signal that are lost when staying at the acquisition resolution [Duclap

et al., 2013c]. We extended this approach originally developed at the individual scale

to the group level. It was then applied to the coregistered maps of the Archi database

subjects to create a 500μm isotropic resolution (a higher resolution would not provide

additional information since it is limited by the initial tractography density) atlas of the

white matter connectivity (Figure 4.6 shows the results the FA atlas from an original

resolution of 1.7mm isotropic to 1mm, 0.75mm and 0.5mm). The super-resolved maps

using the tractograms of the subjects, obtained using 27 seeds per voxels, an aperture

angle of 30 degrees and a forward step of 0.2mm.

Figure 4.5: Super resolution technique

4.3.7 Connectivity Atlas

Finally, several probabilistic atlases were computed from the 79 individual maps using

the super-resolution technique, thus providing atlases at the initial resolution of 1.7mm
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Figure 4.6: Super resolution technique : FA maps obtained from the combination
of the 79 subjects’ maps from the initial resolution 1.7mm isotropic (a) to 1mm (b),

0.75mm (c) and 0.5mm (d)

isotropic and at the high resolution of 500μm. Figure 4.7 depicts the FA, ADC, axial

and radial diffusivities maps at the 500 μm isotropic resolution. These maps show good

anatomical contrast and the super resolution method provides an unique way to look at

fine anatomical details along white matter bundles.
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Figure 4.7: Super-resolved (0.5mm isotropic) FA map (top line), ADC map (second
line), Axial Diffusivity (third line), Radial Diffusivity (bottom line)

4.4 High resolution relaxometric 3D atlases

4.4.1 Inference of individual relaxometry maps

As mentioned previously, echoplanar sequences were used to acquire the T1 and T2

datasets in order to significantly decrease the acquisition time to less than 5 minutes per

dataset. Thus, the datasets suffer from the same geometric distortions as for the HARDI

dataset, and were corrected for geometric distortions induced from susceptibility effects

using the same approach based on the use of B0 field maps. Then, the corrected dataset

was matched to the T1-weighted anatomy using a rigid 3D transformation and masked
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Figure 4.8: Individual T1 maps of 6 subjects from the Archi database using a T1-based
mask

with the same T1-based mask used as tractography mask of the diffusion data. The

T1 & T2 quantitative maps of each subject were computed by fitting the following two

equations to the T1 and T2 datasets, respectively:

S = ρ |1− 2 exp (−TI/T1)| and S = ρ exp (−TE/T2) ,

ρ being the proton density, TI the inversion time and TE the echo time. A Levenberg-

Marquardt non-linear fit algorithm was used to obtain the optimum parameters at the

voxel level. The initial parameters were chosen carefully in order to take into account

the high sensitivity of the algorithm to its initialization. We initialized T1 & T2 close to

the mean values for grey and white matter found in the litterature at 3T ([Wansapura

et al., 1999]): T1=1000ms, T2=90ms. Figure 4.8 and 4.9 show the obtained individual

T1 and T2 maps of 6 subjects, showing good contrast between grey and white matters

and a good delineation of the nuclei, especially in T2 maps.

4.4.2 Inference of high resolution atlases

From the 79 individual T1 and T2 maps, high-resolution T1 and T2 atlases were built using

the same approach as for the connectivity atlas. The individual T1 and T2 quantitative

maps were coregistered to the diffusion-weighted data and were then transformed using

the same diffeomorphic transformation in order to create a novel relaxometry atlas.



Chapter 4. Brain white matter relaxometry atlases 78

Figure 4.9: Individual T2 maps of 6 subjects from the Archi database using a T1-based
mask

Therefore, the bundle maps, the scalar diffusion maps and the T1 and T2 maps of all

the subjects are all coregistered to a common space, defined by the Archi template

built from the DTI maps of the 79 subjects. The super-resolution technique was also

applied to reach a 500μm resolution. Figure 4.10 depicts the half-millimeter resolution

quantitative atlases of T1 and T2 relaxation times.

The maps clearly show a good contrast between the various brain structures, such as

the cortex, the deep nuclei and the white matter anatomy. The T1 values are between

600ms and 1200ms, and the T2 values are between 50 and 120ms, corresponding to the

expected values at 3T.

4.5 T1 and T2 profiles along white matter bundles

4.5.1 Profile Computation

Our analysis relies on the combination of white matter and relaxometry atlases. Here,

we present the mean profiles of T1, T2, ADC, FA, λ⊥ and λ‖ along 8 well-known bun-

dles (arcuate, anterior arcuate, posterior arcuate, long cingulum, corticospinal, inferior

fronto-occipital, inferior longitudinal and uncinate bundles) computed for the subjects

of the CONNECT/Archi database. The thalamic radiations originally included in the
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Figure 4.10: First line: 1.7 mm isotropic resolution atlases of quantitative T1(left)
and T2(right) relaxation times obtained from the 79 subjects of the CONNECT/Archi
database, second line : 500μm isotropic resolution atlases using the super resolution

technique

extracted bundles from the clustering were excluded because of the difficulty to repre-

sent the fasciculus by a centroid due to its fanning configuration.

To get the final profile for each bundle, there were several steps to be followed. First,

a centroid was obtained from the merged bundles of all subjects. The centroid of each

bundle was divided into 1mm length sections using a curvilinear coordinate system and

a distance map was computed, assigning to each voxel the label of the nearest section.

The scalar values from relaxometry and diffusion data analysis of the high resolution at-

lases were computed along each fiber of each subject’s bundle (each fiber is defined by a

set of consecutive points and was resampled to get a regular distance of 0.1 mm between

two consecutive points). The values obtained along each fiber of each subject’s bundle

were then projected onto the centroid providing an individual profile based on a group

centroid. The average scalar value attributed to a section is obtained by integrating

the interpolated values along the pieces of fibers intersecting the corresponding labelled

region (see Figure 4.11). Finally, an average bundle profile was computed merging all

individual profiles per bundle. One of the goals of this study was to be able to compare
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Figure 4.11: Profile computation. Top : Computed centroid of left corticospinal tract
and corresponding density map. Bottom : sections computed from the centroid defining

the domain of integration

right and left hemispheres and to do so, the centroid sections have to be comparable.

Matching the profiles is a challenging task.[Mårtensson et al., 2013] proposed a technique

to register left and right profiles using anatomical landmarks (such as anterior and pos-

terior commissures, internal capsule...). But this approach is limited and require manual

delineation of these anatomical structures.[Durrleman et al., 2011] offered an alternative

modeling bundles as currents. We here used a simpler technique. At the group level, we

projected the left bundle onto the right hemisphere, using the symmetry with respect

to the midplane between the two hemispheres of the brain. The right and left bundles

were then merged and a common centroid was computed. Finally, the left centroid was

obtained projecting the computed centroid back to the left hemisphere which allowed

the comparison between the profiles of each hemisphere.
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Figure 4.12: Differences between profiles using orignal centroids and symmetrized
centroids

4.5.2 Validation of the symmetrized centroids

Figure 4.12 shows the accuracy of the registration of the profiles using the symmetrized

left and right centroids computed from the merged bundles of both hemispheres. The

first two graphs depict the difference between the T1 profile of the IFO tract using the

centroids computed from left and right bundles separately and using the centroids com-

puted originally from the merged bundles obtained by projection of the left bundles

onto the right hemisphere. The last graph shows the final left and right profiles com-

puted from the symmetrized centroids. This technique clearly preserves the shape of

the profiles to accurately match right and left profiles.
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4.5.3 Profiles of T1 and T2 along WM bundles

Main results are given in figures 4.13-4.18, showing the average group profiles for T1 &

T2 as well as FA, ADC, λ⊥,λ‖ profiles (obtained from the SDT analysis of the diffusion

data) of eight chosen white matter bundles and out of the 19 long available bundles

in the high resolution atlas: the corticospinal tract, the group of the arcuate tract and

anterior/posterior arcuate, the uncinate, the inferior longitudinal, the cingulum and the

fronto-occipital fasciculi. Right hemisphere profiles are plotted in green and left profiles

in blue.

4.5.4 Anatomical analysis of the profiles

As it was already exposed in section 3.3, for the white matter, the pool of water located

inside the myelin sheath is caracterized by short T1 and T2 and the pool of water located

outside the myelin sheath, including intra and extra axonal water is characterized by

longer T1 and T2 relaxation times. Variations of T1 and T2 could then partially be

explained by the degree of myelination with respect to free water. But other complicated

chemical exchanges could also affect these relaxation times. Fiber configurations could

also affect the T1 and T2 values such as highly packed fibers or crossings. The comparison

with diffusion parameters profile can potentially help us to understand fluctuations of

values in T1 and T2 profiles. In this section, we discuss the obtained profiles from an

anatomical point of view.

4.5.4.1 General observations

T1 profiles exhibit a similar pattern for all the bundles. The middle section relies on an

area with packed and highly myelinated fibers for the chosen bundles, leading to low

values for the T1 relaxation times. When the fibers reach the cortex (at both extremities

of the profiles), the fanning configuration, the partial volume effect with grey matter as

well as potential crossings with U-fibers lead to higher values of T1. T2 profiles generally

follow the variations of the corresponding T1 profiles, but the differences between the

extremities and the middle of the bundles are not always as clear as for T1. Beyond

these general considerations, we can notice some differences between the profiles of the

different fasciculus, and for some of them we can correlate the variations along the

profiles with the underlying anatomy along the bundles.
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4.5.4.2 Arcuate Group (Figures 4.13-4.15 )

T1 and T2 profiles for three bundles of the arcuate group generally exhibit a simple pat-

tern with low values in the middle of the fasciculus (corresponding to the deep white

matter, without partial volume effect from grey matter). T2 profiles have a larger vari-

ation across the subjects than T1 profiles for these bundles. For the posterior arcuate

bundle, T2 values are still high in the middle of the tract while the FA remains high in

this region.

4.5.4.3 Cingulum Tract (Figure 4.16)

T1 and T2 profiles show a little decrease from the anterior part to the posterior pregion,

revealing microstructural differences between these regions, suggesting different fiber

configurations, such as variation in the density or in the orientation dispersion. This

differences are also indicated by a similar pattern of the radial diffusivity.

4.5.4.4 CorticoSpinal fasciculus (Figure 4.17)

The first consideration about the corticospinal tract concerns T2 values significantly

higher (between 80ms-105ms) than for all the other bundles (between 65ms-80ms), this

has been reported previously in [Reich et al., 2006], [Herve et al., 2011], [Russell-Schulz

et al., 2013], that could be explained by the presence of large and sparsly distributed

axons. T1 and T2 profiles of the corticospinal tract exhibits two peaks of hyperintensities

(around the 25th and 60th sections) corresponding to the crus cerebri and the internal

capsule respectively(small peak but in concordance with [Russell-Schulz et al., 2013]

and [Herve et al., 2011]). One hypothesis for the internal capsule peak is related to the

presence of higher radii and sparsity of fibers in this region ([Russell-Schulz et al., 2013]).

An additional characteristic of CST profiles is that T1 and T2 profiles don’t exhibit a

clear variation at the level of Corpus Callosum fibers (around the 80th section), while

FA and λ‖ profiles clearly do, being sensitive to crossings.

4.5.4.5 Inferior Fronto Occipital fasciculus (Figure 4.18)

One particularity of the IFO profiles is the presence of a peak around the 100th section

for both relaxation times, corresponding to the beginning of the external capsule which

may be due to partial volume effect with nuclei surrounding this region. T2 profile

follows the trend of FA and λ‖ from the 40th section, with a decrease from the posterior

part to the anterior part of the fascicle ; T1, ADC and λ⊥ exhibits a similar behaviour.
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4.5.4.6 Inferior Longitudinal Fasciculus (Figure 4.19)

All the profiles of the inferior longitudinal fasciculus follow the same trend (except the

T2 profiles more stable), with a high-low-high pattern for T1, T2, ADC, λ⊥ and low-high-

low for the other parameters (that may be explained by the contamination of the signal

by partial volume effect with gray matter at the extremities).

4.5.4.7 Uncinate fasciculus (Figure 4.20)

T1 and T2 profiles globally decrease along the bundles from the temporal lobe to the

orbitofrontal cortex. The observed peaks in FA and λ‖ profiles around the 40th section,

where the fibers of the inferior fronto occipital fasciculus join the fibers of the uncinate,

are less visible in T1 and T2 profiles.

4.5.4.8 Corpus Callosum

The profiles obtained for the corpus callosum (see Appendix C) depict spurious peaks

probably stemming from partial volume effects due to the presence of neighborhing

ventricles characterized by much higher T1 and T2 values. This indicates that partial

volume effect should be considered in the future to improve profiling of quantitative

parameters.

4.6 Study of inter-hemispheric asymmetries

For each measurement m, an asymmetry index was computed for each section of the

centroid :

A(s) = (m(s)left −m(s)right)/(m(s)right +m(s)left).

To compare the differences between right and left hemispheres, we performed a Wilcoxon

test on each section of the profiles to compare the difference between right and left

profiles of white matter tracts. Differences are considered significant for p-value< 0.01.

Results have been corrected for multiple comparisons using the False Discovery Rate.

Finally, we only considered series of at least four significantly consecutive sections. The

second column of figures 4.13 - 4.18 shows the median asymmetry index profiles for each

bundle. The observed asymmetries are mostly small, inferior to 10% as already reported

in [Reich et al., 2006] for the Corticospinal tract. In the figures, in red are depicted the
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asymmetries that were significantly different from 0. The higher asymmetry values are

found for FA profiles.

4.6.1 Arcuate asymmetries (Figure 4.13-4.15)

The anterior part of the arcuate group doesn’t depict any global asymmetry, but locally

in the middle, a right lateralization is shown for FA and λ‖, corresponding to the left

lateralization of T2 and λ⊥ in this region. The T1 and T2 values for the posterior

part exhibit a lateralization mainly close to the extremities, corresponding to regions

corrupted by high partial volume effect. The arcuate tract is the only tract of the

group that clearly shows an asymmetry between the two hemispheres. FA values are

clearly higher on the left part, while ADC, T1 and T2 values are higher on the right.

The difference of lateralization of the three segments of the arcuate has already been

discussed in [Hugdahl and Westerhausen, 2010], in terms of size. The long segment

has a larger tract on the left side, the anterior segment has larger right tract and the

posterior part is rather symmetrical. These observations are consistent with our findings,

indicating more fibers (and then more myelin fraction, as T1 and T2 profiles suggest) on

the left side for the long segment and on the right side for the anterior segment.

4.6.2 Cingulum asymmetries (Figure 4.16)

Differences have also been detected for the cingulum bundle with higher anisotropy of

the left side that may indicate a higher myelination or fiber density in this hemisphere,

confirmed by higher T1, ADC, λ‖, λ⊥ on the right side. T2 values seem to be slightly

higher on the left side, but the asymmetry values are very low in comparison to the other

parameters. Another interesting observation is that the asymmetry is clearly higher

on the anterior part of the cingulum. This is interesting since anterior and posterior

cingulum are implicated differently in different cognitive functions. This specificity was

already found in other studies [Gong et al., 2005], and the decrease of this asymmetry

has been reported in schizophrenic subjects in [Wang et al., 2004].

4.6.3 CorticoSpinal asymmetries (Figure 4.17)

The asymmetry profiles along the corticospinal tract indicate a higher anisotropy for the

left side for most sections, confirmed by a higher right ADC, λ‖, λ⊥ and T2. Surprisingly,

T1 exhibits higher values on the left side. But for both T1 and T2 values the asymmetry

values remain low in comparison to FA. This left domination could be explained by

the handedness, since the Archi database is almost entirely composed of right-handed
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subjects (only three left-handed subjects). Several studies focus on this topic such as

[Seizeur et al., 2013] and [Westerhausen et al., 2007], discussing the uncertainty about

the origin of this asymmetry.

4.6.4 Inferior Fronto Occipital asymmetries (Figure 4.18)

No specific pattern was found for this tract. The T1 and T2 values seem to be higher

in the right hemisphere in the posterior part, and higher in the left hemisphere for the

anterior part. This trend is not the one followed by diffusion parameters, showing higher

right values for ADC and λ⊥ in the middle of the tract and higher left values for the

rest of the tract.

4.6.5 Inferior Longitudinal asymmetries (Figure 4.19)

We cannot observe any global asymmetry for T1 and T2 profiles, while for diffusion

parameters, the asymmetry profiles show a right lateralization (reported in [De Santis

et al., 2014]) for the region between the 20th and 60th sections (but only significant for

ADC and λ⊥) and higher values in the left hemispheres for the rest of the tract.

4.6.6 Uncinate asymmetries (Figure 4.20)

T1,T2, λ‖, λ⊥ and ADC values shows higher values on the left side while FA shows

greater values on the right side. A right lateralization for the numbers of fibers was

already found in healthy subjects in a comparison study with schizophrenic patients

[Highley et al., 2002], indicating a greater right-sided fronto-temporal connectivity.

4.7 Comparison with the profiles of diffusion structural

parameters

We computed the Pearson correlation coefficient of each section for each pair of dif-

fusion parameter (ADC,FA,λ⊥,λ‖) & T1 relaxation time and diffusion parameter & T2

relaxation time. Figures 4.21-4.24 represent the correlations between each diffusion pa-

rameters and T1 or T2 relaxation times, along the bundles. From a global point of view,

for all the bundles, positive correlations have been found between ADC and T2/T1 re-

laxation times. FA shows strong negative correlation with T1. The relationship between
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Figure 4.13: Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
anterior arcuate tracts (In green : right bundle profiles, in blue left bundle profiles).
Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries

(red lines correspond to regions with at least 4 significantly asymmetric sections)
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Figure 4.14: Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
posterior arcuate tracts In green : right bundle profiles, in blue left bundle profiles.
Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries

(red lines correspond to regions with at least 4 significantly asymmetric sections)
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Figure 4.15: Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
arcuate tracts In green : right bundle profiles, in blue left bundle profiles. Individual
profiles are also plotted. Right Columns : Interhemispheric asymmetries (red lines

correspond to regions with at least 4 significantly asymmetric sections)
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Figure 4.16: Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
cingulum tracts In green : right bundle profiles, in blue left bundle profiles. Individual
profiles are also plotted. Right Columns : Interhemispheric asymmetries (red lines

correspond to regions with at least 4 significantly asymmetric sections)
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Figure 4.17: Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
right/left corticospinal tracts. In green : right bundle profiles, in blue left bundle pro-
files. Individual profiles are also plotted. Right Columns : Interhemispheric asymme-
tries (red lines correspond to regions with at least 4 significantly asymmetric sections)
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Figure 4.18: Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
right/left inferior fronto occipital tracts. In green : right bundle profiles, in blue left
bundle profiles Right Columns : Interhemispheric asymmetries (red lines correspond to

regions with at least 4 significantly asymmetric sections)
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Figure 4.19: Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
right/left inferior longitudinal tracts. In green : right bundle profiles, in blue left
bundle profiles. Individual profiles are also plotted. Right Columns : Interhemispheric
asymmetries (red lines correspond to regions with at least 4 significantly asymmetric

sections)
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Figure 4.20: Left Columns : Average T1, T2, FA, ADC, λ‖ and λ⊥ profiles of the
right/left uncinate tracts. In green : right bundle profiles, in blue left bundle profiles.
Individual profiles are also plotted. Right Columns : Interhemispheric asymmetries

(red lines correspond to regions with at least 4 significantly asymmetric sections)
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FA and T2 is less evident, since sometimes there is a positive correlation and sometimes

a weak negative correlation between the two. λ‖ seems to be negatively correlated with

T1 but sometimes positively correlated with both T1 and T2. Finally, λ⊥ is globally

positively correlated with T1, but T2 has both positive and negative correlation with

this parameter. These observations are consistent with the known existing link between

T1 & T2 and the water compartments within white matter tissues. Both parameters are

sensitive to myelination: in highly myelinated regions, relaxation time is shorten and

the fractional anisotropy would be naturally higher, because myelination highly con-

strains the directionality of the water molecules. In this configuration, λ⊥ is reduced,

explaining the positive correlation with T1 and T2 values. Finally, when there is more

free water and less myelin, the ADC increases as well as T1 or T2 relaxation times. We

also noticed that generally, T1 values show greater correlation with diffusion parameters

than T2 values, which could indicate that T1 and diffusion parameters share a similar

sensitivity to the microstructure variations.
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Interestingly, the observed correlations are not always homogeneously distributed along

the bundles, some regions being more correlated than others. This observation can be

related to the presence of one or more fiber populations as discussed in [De Santis et al.,

2014], since the impact of different fiber organizations is not the same for all parameters

(FA is, for example, reduced in the presence of multiple fiber populations). We also ob-

served positive and negative correlations between the same couple of parameters along

the same bundle. This singularity confirms the complementarity of relaxation times and

diffusion parameters to characterize the microstructure of white matter bundles. We list

here some specificities of several bundles.

We observed positive correlation between ADC, T1, λ⊥ and T1 but not with T2 in the

fanning part of the corticospinal tract (Figure 4.23), while a negative correlation occurs

between FA and T1. In this region, where a high partial volume effect is present, T2

values don’t seem to exhibit the same trend than the other parameters, pointing out

a difference of sensitivity, maybe to free water fraction of T1 in comparison to T2. We

further obeserved positivie correlation between FA and T1 and T2 at the level of cross-

ing with callosal fibers. It can be explained by the fact that crossing fibers lead to a

decrease in FA values which are sensitive to the orientation dispersion and on the other

hand lead to larger concentration of myelin, which is characterized by the domination

of the shortest T1 and T2 component.

Arcuate group (Figure 4.21-4.22) exhibits a high negative correlation between T1 and FA

profiles for most of the bundles. This is less evident for T2 relaxation times. Some regions

exhibit negative correlation between T1 and λ‖ but whereas the T2 and λ‖ correlation is

sometimes positive (for the posterior arcuate tract). Finally, positive correlation exists

between T1 and λ‖.

The correlations observed in the cingulum tract (Figure 4.22) show differences between

the anterior and posterior parts, differences that we already noticed in the asymmetry

analysis. ADC and λ⊥ have positive correlation with both T1 and T2 values while this

correlation is negative with FA and λ‖. In this tract, where the profile is stable, we can

see that T1 and T2 are strongly correlated to diffusion parameters and therefore sensitive

to the anisotropy of the tissue. The inferior-fronto-occipital (Figure 4.23), inferior longi-

tudinal and uncinate tracts (Figure 4.24) show the same trend. This study confirms the

T1 & T2 link with the different water compartments but also that their combination with

diffusion parameters can help to reveal particular structural organization, fiber packing,

density and orientation dispersion for example. Furthermore, the T2 profiles seem to be

less related to the diffusion parameters’ profiles. Relaxometry and diffusion measures

provide individually important information about the underlying microstructure, but

more importantly the relationship between them can improve our understanding about

the structural variations within the white matter.
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4.8 Conclusion

The quantitative mapping of T1 and T2 relaxation times may be complementary to dif-

fusion MRI and bring new insights about the cellular organization of white matter. In

this chapter, we have developed two novel high (500μm isotropic) resolution quantitative

atlases of T1 and T2 relaxation times within white matter from a large sample of healthy

subjects. We combined the atlas of long white matter bundles stemming from the CON-

NECT/Archi database with our relaxometry atlases to propose a first atlas of mean T1

and T2 profiles along white matter bundles. Our results demonstrate that T1 and T2

values are clearly sensitive to the microstructure and can be related to other structural

parameters such as the anisotropy or the ADC. The differences we could observe be-

tween T1 and T2 profiles and profiles stemming from diffusion parameters indicate that

they don’t exactly provide the same information, but complementary information. The

analysis of asymmetries between right and left hemispheres shows that some differences

that remain moderate (<10%) for both T1 and T2 exist. Even if the level of asymmetry is

often low, it appears significant for several bundles such as the corticospinal, the arcuate

or the cingulum tracts. Moreover, the noticed asymmetry has been previously reported

from a morphological point of view (volume asymmetry, differences of fiber numbers,

etc...). Finally the correlations between T1 and T2 relaxation times and the diffusion

parameters show again the clear relationship between the variation of the relaxation

times and the variations in the microstructure. The findings of this work complete the

observations made in [De Santis et al., 2014].

The current analysis pipeline is reliable but it could be improved in the future. For

instance, the profiles are computed using a centroid which is highly dependent on the

obtained bundle relying itself on the tract clustering step. Moreover, it could also not be

accurately representative of the bundle. For example, in the corpus callosum where it is

not in the antero-posterior direction or in the case of fanning configuration. This part

could be improved using surface modeling of bundles as introduced in [Zhang et al.,

2010]. HARDI-based registration technique could also improve the accuracy of the pro-

file computation. As we already explained, the relaxometry data were acquired with a

very limited scan duration with the aim of allowing such a protocol to be used in clinical

routine. The T1 and T2 mappings could then be improved using different acquisition

strategies, but the results we obtained already give the opportunity to get structural

information on the scanned population. The computation of the profiles along the bun-

dles extracted and labelled from the tractography of each subject allowed to access to

more local information along bundles.

This is a further step towards the understanding of the white matter microstructure,

and future work will consist in correlating the T1 & T2 information with the axon density

and radii maps available today with diffusion-based axon calibration techniques. In the
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same manner, we can build atlases from patients suffering from different pathologies such

as Alzheimer’s or Parkinson’s diseases, and compare the profiles to the healthy average

profiles provided by our atlas now considered as a normative atlas. The profiles of these

parameters could also be used to study variations of the white matter microstructure

with respect to the age as well as white matter maturation during early brain develop-

ment. This work has been presented at the ISMRM conference in 2013 ([Lebois et al.,

2013a]) and recently submitted to the NeuroImage Journal. This work focused on dif-

ferent parameters such as T1, T2, FA, ADC, λ‖ or λ⊥. We have shown that they can

provide different contrasts depending on the underlying microstructure. But all these

parameters suffer from a lack of specificity, and it is often difficult to understand which

modification in the cytoarchitecture can explain the differences we observed for these

parameters. The following chapter proposes to address the problem of this specificity,

trying to get closer to an in vivo microscopy of the tissue. Diffusion MRI could pro-

vide a unique tool to reach this ultimate goal. We will describe how it is now possible

to probe the cytoarchitecture using specific diffusion MRI schemes and how this thesis

contributes to these new techniques.



Chapter 5

Microstructure mapping using

diffusion MRI

In the previous chapter, we used the combination of diffusion MRI and relaxometry to

build an atlas of profiles of relevant related features along the white matter bundles,

showing the ability of these modalities to give complementary information and help to

characterize part of their microstructure. T1, T2, FA, ADC, λ‖, λ⊥ are all sensitive

to the microstrucure but they suffer from a lack of specificity: a variation in fractional

anisotropy reveals change in the tissue, but we can’t clearly assess whether this variation

comes from a variation of the axonal compartment or of the extracellular compartment.

This part looks even further in the microstructure study at the cell level. Here, we

intend to access to specific parameters such as cell sizes and densities to come closer to

an in vivo microscopic scale, using diffusion MRI. Diffusion ensemble average propaga-

tor (EAP), the holy grail of the dMRI, can be obtained from multiple-shell spherical

sampling of the Q-space (see [Assemlal et al., 2009], [Descoteaux et al., 2011]) or carte-

sian sampling of the Q-space (see DSI [Wedeen et al., 2000]). But astonishingly, few

information about tissue microstructure can be computed from EAPs, as of today. An

alternative to EAP imaging relies on the modeling of the restriction effects occuring in

cells, using models of the diffusion attenuation within simple (quite often oversimplistic)

models of the geometry of cells. In the case of white matter, the signal attenuation

depends on structural parameters such as axon radius or distribution and on sequence

parameters. By measuring the diffusion attenuation with an adequate sampling of the

Q-space (typically, in a PGSE experiment, the gradient strength, the pulse width and

the diffusion time), the signal expression can be fitted to derive microstructure fea-

tures. The first difficult task is the tissue modeling, because of the complexity of the

brain cytoarchitecture. In diffusion MRI, the model must remain not too complicated,

for several reasons. The first reason is that the diffusion propagator expression is well

103



Chapter 5. Microstructure mapping using diffusion MRI 104

known for geometry such as spheres or cylinders, but is far more difficult to find for

more complex geometries. Secondly, a complicated model induces a high number of

parameters, and therefore a higher number of measurements is required to be able to

estimate them accurately. For clinical application, the acquisition time is limited to

1h30, and doesn’t allow to obtain the sufficient number of measurements for complex

model. In addition, clinical MRI systems are limited in terms of gradient magnitude and

slew rate, such that the sampling of the diffusion time can remain strongly limited to a

short range of values to preserve SNR and sufficient diffusion sensitivity. However, even

a simple model can already provide useful insights on tissue microstructure and help to

differentate tissues, putatively offering nice imaging biomarkers of atrophiated tissues

in many disease inducing microstructure alterations. The second problem of diffusion

MRI is to choose the adequate sequence and protocol to map microstructure features

accurately : PGSE is the most common sequence in diffusion MRI and diffusion MRI

microscopy, but other sequences have appeared dedicated to cytoarchitecture imaging,

such as double PGSE, Oscillating gradient Spin Echo or Arbitrary Gradient Spin Echo.

In this chapter, we describe the different models and sequence schemes of the literature

focused on this new field of dMRI : diffusion MR microscopy (μdMRI). We also expose

the contributions of this thesis on the subject : first, the derivation of a novel model of

axon and cells, taking into account the biphasic behavior of the water in the cells and

second the development of a novel Arbitrary Gradient Spin Echo sequence able to run

on any 3T and 7T Siemens MRI system.

5.1 Microstructure modeling of the brain tissue

Inferring microstructure parameters such as cell sizes or density using diffusion MRI

requires to develop mathematical models of the diffusion process in the tissue. The dif-

fusion signal is in fact the result of a composition of signals coming from different com-

partments of the tissue, usually corresponding to the main cell species of the tissue, such

as neuron bodies, axons, dendrites, glial cells, oligodendrocytes and astrocytes. These

different components have to be modelled, and since dMRI is sensitive to the movement

of water molecules, the issue of exchange between these different compartments has to

be addressed. Natural barriers such as membranes are indeed not impermeable and

allows the water molecules to go from one compartment to the other. These different

aspects of tissue modeling will be discussed before reviewing the current white and grey

matter models. Principles of diffusion MR microscopy and the associated sequences will

also be presented as well as contributions of this thesis on this topic.
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Figure 5.1: Tissue microstructure (astrocyte and oligodendrocytes) (from
http://www.db-gersite.com)

5.1.1 Compartmentalization and exchange

5.1.2 Compartmentalization of the brain tissue

In the early years of diffusion MRI, the diffusion in white matter was principally con-

sidered as a Gaussian process, depending on the b value and an apparent diffusion

coefficient, averaging the complexity of the tissue. Microstructure modeling of the brain

tissue aims at describing the diffusion signal not only by one monoexponential compo-

nent but by the combination of the signals arising from distinct compartments of the

tissue. The chosen model has to be sufficiently simple in order to enable the computa-

tion of its corresponding propagator in a simple way, but it must reflect the behavior of

the various diffusion processes occuring in the complex environment of the brain tissue

(see Figure 5.1).

All the models introduced in the literature rely on natural compartimentalization of

the tissue. Each main component of the tissue can be a compartment, with a given

volume fraction in the voxel and characterized by different diffusion processes. In white

matter, the natural compartments are the axons, the glial cells and the extra-cellular

space. In grey matter, the extra-cellular space, neural cells, astrocytes and dendrites

are considered. Once these comparments are defined, we have to take into account

the exchange of water between these compartments. In addition, CSF compartment is

generally added to take into account any partial volume effect due to the limited spatial

resolution of dMRI data.
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Figure 5.2: Cell membrane structure adapted from wikipedia

5.1.3 Exchange between compartments

As it was presented in the previous section, modeling the diffusion process in brain tissues

requires the definition of different compartments of the tissue. But a very difficult task

is to take into account the fact that in the human brain, the water compartments are

not fully isolated but are in permanent exchange. This exchange process comes from

the nature of cell membranes. Cell structure is depicted in Figure 5.2. It is made

of two layers of phospholipids with embedded proteins. It is surrounded in the extra

cellular space by the glycocalix made up of glycoproteins and by the cytoskeleton in

the intra cellular space. The membrane has a key role in the transport of different

substances between the intra and extracellular spaces. The membrane is selectively

permeable, and only specific substances can cross this natural barrier. Pumps, carriers

and proteins channels allow for those substances to travel between the two spaces. The

pumps are responsible for the transport of ions and small molecules. A specific channel

called aquaporin (see Figure 5.3) is responsible for water molecule transport. The main

aquaporin existing in the human brain is the AQP4, found in the membranes of the

astrocytes. The presence of myelin will slow down the water exchange, therefore the

exchange is higher in astrocytes than in axon. In diffusion modeling, the permeability

is characterized by the p parameter, (in cm s−1) directly linked to an exchange rate

k = pS
V with S the surface of the membrane and V the volume of the structure. The

exchange rate is the inverse of the residence time τ . In [Stanisz, 2003] this question

is addressed. The permeability has a variable impact on the diffusion signal strongly

depending on the diffusion sequence parameters , especially the diffusion time of the

experiment. Depending on the type of exchange we consider, the model has to be

adapted. We can distinguish slow, fast and intermediate exchanges. The notions of

slow/fast is of course relative to the diffusion time of the observation.

In the case of slow exchange between the intra and extra-cellular water for example, the
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Figure 5.3: Cell membrane and molecules transfers from [Ayus et al., 2008]

PGSE signal can be described as the weighted sum of the two compartments :

S

S0
= f exp(−bADCi) + (1− f) exp(−bADCe) (5.1)

where f is the volume fraction of the first compartment and ADCk are the apparent

diffusion coefficients of the two compartments. Intermediate and fast regimes can be

solved using Karger equations. The residence time varies between 12 ms and 600ms in

the human tissue, and axon has a residence time of about 500ms [Quirk et al., 2003]. The

residence time for glial cells is significantly shorter. Therefore, if the diffusion time of the

experiment is short enough, the axon membrane can be considered as impermeable and

the glial cells are just barriers hindering the water molecules. Grey and white matter

models have been developed taking the multi-comparment aspect of the tissue and the

exchange issue into consideration. We will now list the major models developed in the

field of diffusion MRI in the past up to now.

5.2 State of the art of tissue modeling

5.2.1 Current white matter models

White matter composition has been described in Chapter 2. It contains mainly myeli-

nated axons, surrounded by glial cells and CSF. Various models have been proposed

to describe white matter tissues, starting from the simple biexponential model to the

CHARMED model ([Assaf et al., 2004]). In these models, axons are often modeled as
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packed cylinders whose diameters correspond to the inner diameter, not taking into ac-

count the myelin layers. The main differences between the various models consist of the

number of compartments that are chosen, the possibility to deal with the orientation

dispersion of the axons and to take into account the membrane permeability. Most mod-

els were developed assuming that the acquisitions are performed using PGSE sequences.

However, they can be used with alternative sequences that we will describe later.

5.2.1.1 Beyond monoexponential model : biexponential model of white

matter

The monoexponential model defined using a Gaussian propagator has been shown to not

perfectly describe the signal. A biexponential model, with slow and fast ADC was found

to be more accurate, especially for high b-values. This very simple model is described

as follows :

S = S0(fslow exp(−bDslow) + ffast exp(−bDfast)) (5.2)

The expected volume fractions would correspond to the extra and intra cellular fractions,

since the diffusion in the extra-cellular (20%) is much faster than in the restricted part

(80%). But in several studies, it has been shown that the fractions don’t match with

the extra and intra cellular fractions : fslow ≈ 20%. This model is therefore not very

descriptive of the tissue microstructure and it doesn’t well fit the signal at very high

b-values. This model will be discussed in the next section, where we see that slow and

fast pools can be used to extend the current axon model.

5.2.1.2 First analytical model with cell geometrical model

In 1997, Stanisz et al. [1997] developed an analytical model of the ex-vivo bovine optic

nerve from PGSE experiment. From a transmission electron microscope study, a model

for the optic nerve was developed. In this first study, cylinders were not used to represent

the axons but prolate ellipsoids instead. They are characterized by short perpendicular

direction and longer parallel direction. The glial cells are modeled as spheres with a

unique diameter. The cell membranes are considered permeable with different values of

permeability used for axons and other cells. Stanisz et al specified two different diffusion

coefficients, one for the water molecules inside the intracellular space, the other for those

in the extracellular space. The model is therefore a three compartment model: the

prolate ellipsoid modeling the axons, the spheres modeling the glial cells and the extra-

cellular space (see Figure 5.4). Each compartment follows a monoexponential decay,

each characterized by a specific diffusion coefficient, and permeability has been included

in the differential equations of the magnetization. The extracellular ADC was defined as
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Figure 5.4: Optic nerve model : axons are modelled as prolate ellipsoid with a axial
radius rp and the transverse radius rt, glial cells are modeled as spheres of radius rs

and an additional compartment corresponds to the extra-cellular space

the ratio between the free diffusion coefficient and a tortuosity factor λ, since the water

molecules move almost freely but are hindered by several barriers (the representation is

valid if the mean-squared displacement of the molecules during the diffusion time exceeds

the cell dimensions), creating tortuosity : ADCE = D
λ . The diffusion coefficient for the

ellipsoid and spheres is defined as the diffusion coefficient of water molecules between two

flat and impermeable barriers of spacing corresponding to the cell diameters. This model

shows the ability of the PGSE sequence to provide structural information through tissue

modeling. But this experiment was performed in ex vivo conditions, and the model has

to be adapted for in vivo application.

5.2.1.3 Ball and Stick model

In ([Behrens et al., 2003]), the ball and stick model has been introduced defining the

signal in the white matter as the sum of one isotropic compartment ( corresponding to

the extra-cellular space) and one completely anisotropic compartment, corresponding

to axons, represented by one stick. The signal model is then expressed, in a PGSE

framework, as follows :

S = S0((1− f) exp(−bD) + f exp(−bD(gTn)2)) (5.3)

with b the b-value, D the mean diffusivity, g the gradient orientation, n the fiber orien-

tation. This model can be extended to several fiber populations. Different models were

derived from this kind of model : the extra-cellular part is either modeled as a complete

isotropic ball or as a zeppelin (a tensor with cylindrical symmetry) or a full tensor; the
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Figure 5.5: CHARMED model of white matter [Assaf et al., 2004]

intra-cellular cellular part is modeled using sticks or cylinders. Advanced models of this

type, such as the ball and racket model adds a support for fanning configuration of the

fibers [Sotiropoulos et al., 2012].

5.2.1.4 The composite hindered and restricted model of diffusion (CHARMED)

A major model has been introduced in [Assaf et al., 2004] decomposing the signal in

white matter into two different compartments : an hindered compartment corresponding

to the signal coming from the extra-axonal space and a restricted compartment coming

from molecules trapped in the axon (see Figure 5.5). This model considers the myelin

sheath as impermeable, considering the diffusion time used in the experiment. The

signal equation is then expressed as follows :

E(q) = fhinderedEhindered + frestrictedErestricted (5.4)

with fh and fr the volume fraction of the hindered and restricted compartment. The

hindered compartment is following a Gaussian distribution and the restricted compart-

ment is modelled using the diffusion propagator of a population of parallel cylinders,

representing the axons. Diffusion in cylinders with different boundary conditions was

introduced in [Callaghan, 1995]. The CHARMED model have been used in two ma-

jor frameworks : the AxCaliber framework developed by [Assaf et al., 2008] and the
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ActiveAx framework developed by [Alexander, 2008]. These frameworks define specific

protocols to infer white matter microstructure, and were used to study in particular in

the corpus callosum. The protocols will be detailed in the section 5.5. In the AxCaliber

framework model, the restricted part of the CHARMED model corresponds to a whole

distribution of axon diameters (using a gamma Γ distribution, chosen for its consis-

tency with axon diameter distribution observed in the corpus callosum using electron

microscopy). Axons are represented as packed parallel and impermeable cylinders. In

the ActiveAx framework, white matter is defined as a collection of axons with the same

diameter (corresponding to the average diameter of the real distribution). In the re-

cent work derived from ActiveAx [Alexander et al., 2010], two other compartments were

added : the signal from the CSF (considered as gaussian and isotropic) existing because

of partial volume effects and the signal stemming from the resident water, trapped in

glial cells.

5.2.1.5 Extension of CHARMED model for orientation dispersion

But in these models only one fiber orientation was considered, which is acceptable in

the corpus callosum configuration, where all the fibers are strongly structured with few

orientation dispersion but which fails in other part of the white matter. For this reason,

the model used in ActiveAx has been extended by [Zhang et al., 2011b], introducing in

the model the possibility to characterize the dispersion of the orientations of the axons

by the use of an axonal orientation distribution, modeled as a Watson’s distribution.

5.2.1.6 Models including myelin sheaths

All the models such as the CHARMED model, do not include myelin sheath in their

model, and only consider its effect on the permeability of the axons. Several studies

extended the cylinder model using a thick layer arount the inner cylinder correspond-

ing to the axon. [Sen and Basser, 2005] studied the apparent diffusion coefficients of

different configuration of arrays of cylinders having a thick layer corresponding to the

myelin sheath. Inner core, membrane and myelin sheath were considered as distinct

compartments. This model has the advantage of being closer to the real tissue structure

of white matter but necessarily adds additional parameters to characterize the tissue,

making the inference more complex from a computational point of view.
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5.2.1.7 Comparison of the white matter models

In [Panagiotaki et al., 2012] all the existing white matter models were compared and it

is shown that the model including the restricted part corresponding to the axons better

explains the data than the others. Considering the actual size of axons and the diffusion

process in the extracellular space as described in CHARMED model improves the fitting

process, and the results using a whole distribution of axon diameter (AxCaliber) is

less stable than with an average axon diameter (ActiveAx) when targetting clinical

applications.

5.2.2 Grey matter models and mixed models

Modelling grey matter is a difficult task in comparison to white matter. The tissue is

not well structured, with random orientations and a high permeability. It is common

to reduce the geometry of neuron bodies to a sphere. In grey matter models, the per-

meability must to be taken into account. The experiments on grey matter to infer the

cell diameter are constrained by the presence of high membrane permeability of cells.

Indeed, the sensitivity of the signal to the cell membranes are therefore reduced in com-

parison to the highly restricted compartment of the axons. Adding the permeability

parameters in the model increases the complexity of the model and consequently also

increases the instability of the fitting procedure. However some studies focussed on grey

matter trying to map the density of dendrites. [Jespersen et al., 2007] and [Jespersen

et al., 2010] introduced a two-compartment model: one characterizing the diffusion in-

side axons and dendrites (neurites) using cylinders, and the other corresponding to the

diffusion component coming from the other compartments. An orientation distribution

function was also used to extract neurite orientations. This approach showed good agree-

ment with electron microscopy data and allowed to characterize both white and grey

matter tissues. [Zhang et al., 2012] extended this neurite model to map the density and

orientation dispersion of the neurites. In this model, the cylinder model is replaced by

a stick model and the orientation distribution function follows a Watson’s distribution.

This study differs from the previous one by the will of the authors to map neurite density

in clinical routine, relying on the same protocol optimization as ActiveAx, that will be

develop in the next section.

Figure 5.6 summarizes the geometrical models for white and grey matter.
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Figure 5.6: Geometrical models of brain tissue components

Figure 5.7: Two-pool cylinder model
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5.3 Beyond the CHARMED model : axon model using a

two-pool model cylinder

Several studies ([Niendorf et al., 1996], [Assaf and Cohen, 1998], [Clark and Le Bi-

han, 2000]) revealed the fact that the behavior of diffusion inside the cell is not mono-

exponential, thus revealing the existence of fast and slow pools inside the cell. This

approach was mainly used in the study of the decrease of ADC in the case of stroke.

Several hypothesis were introduced to explain this phenomenon : the cellular swelling,

the changes in membrane permeability or the decrease of water mobility in the cell.

But in fact, ADC doesn’t depend on permeability, so the explanation could be either in

swelling or decrease of water mobility in the cell. However, the biological effects are still

debated and controversy.

5.3.1 Do the fast and slow pools correspond to extra and intra-cellular

space ?

The first idea to explain this biexponenital behaviour is to match the fast pool to the

extra-cellular space (since the diffusion is only hindered, the ADC has to be relatively

high) and the slow pool the intra-cellular space (because of the restriction). If this

configuration is the right one, we should find ffast = fextra and fslow = fintra. But

[Niendorf et al., 1996] found in the rat that the volume fractions corresponding to a

fast/slow two pool model don’t correspond to the extra and intra cellular volume frac-

tions with fslow ≈ 0.2% and ffast ≈ 0.8, while fextra ≈ 0.3 and fintra ≈ 0.7. Similar

results were presented in [Clark and Le Bihan, 2000] in the human brain, suggesting

that the two pools don’t match the extra and intra cellular spaces.

5.3.2 A biexponential diffusion behaviour inside the cell

[Assaf and Cohen, 1998] and [Sehy et al., 2002] showed that this biexponential behaviour

is also found in the cell itself, revealing the presence of two compartments inside the cell.

But it can’t be directly applied to the human brain. [Le Bihan, 2007] suggested that

the signal coming from the axon is in fact stemming from two different pools : one

near the membranes, characterized by a slow diffusivity coefficient and one far from

the membranes, characterized by a higher diffusivity. This model suggests that water

in cell could have a different organization than in simple bulks of water. In the cell,

the cytoplasm contains many molecules and proteins and membrane itself is made up

of two layers of phospholipids with proteins. It has been shown that by their negative

charges, the proteins will naturally attract dipolar water molecules. This attraction will
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then induce a particular organization of the water molecules around the proteins, giving

”structured water”. If in the litterature this organization has been found uniquely in the

range of one or two layers of molecules [Clegg, 1984], [Stiopkin et al., 2011], representing

a distance from the proteins of 0.3nm, other studies [Rorschach et al., 1991] extended

this behaviour to several layers, suggesting that a high proportion of the cell would con-

tain structured water. More recenlty [Xu and Yeung, 1998] and [Shelton, 2000] studies

support the idea of a long range of the cooperative effect of the proteins, up to 200nm

around the protein. This effect would be reinforced near the membrane, because of the

thick matrix around the membranes containing proteins (glycocalyse and cytoskeleton).

In the presence of highly structured water, the diffusion coefficient is strongly reduced,

leading to the formation of a ”slow pool”. In this configuration, the two-pool model can

be defined as follows : the fast pool contains water molecules interacting with the water

hydration shell around macromolecules. The slow pool corresponds to structured water

molecules with reduced mobility, explained by the spatial distribution of charges at the

membrane surface, leading to an increase of structural order [Francesco Sciortino, 1991].

The slow pool will also include the water molecule around the macromolecules in the cell,

but the molecules near the membranes are in much greater proportions. This model can

be used assuming a slow exchange between the two pools but it can be modified using

the Karger equations to take into account an intermediate exchange. This hypothesis is

supported by the findings of [Buckley et al., 1999] and more recently of [Jelescu et al.,

2014], where ouabain was used to cause cell swelling. It has been found that in this case,

the slow pool fraction increase but neither the fast or slow diffusion coefficient change.

One plausible explanation is therefore that the membrane surface increasing during the

swelling, the slow pool fraction will therefore increase too. This model could explain

the ADC drop in the case of a stroke, and findings using simulation of [Yeh et al., 2013]

confirms that this ADC drops could be explained by the increase of the surface of the

membranes, leading to an increase of slow pool volume fraction, finally giving a drop

in the ADC. For a cell with a 1 μm radius, [Le Bihan, 2007] computes a slow layer of

50nm around the membranes. We here propose this new model for a new application in

axon calibration to maybe overcome the recurrent overestimation of the smallest axon

diameters using the CHARMED model.

5.4 Cytoarchitectural modeling of the grey matter : be-

yond the sphere model

The same assumption can be used in grey matter. We can apply the two-pool model on

the sphere to model biphasic cell in grey matter.
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Figure 5.8: Two-pool sphere model

5.5 Diffusion MR microscopy

This section presents the different approaches in diffusion MRI microscopy. Diffusion

MRI microscopy aims at extracting microstructural features by modeling the tissue and

measuring the diffusion signal to fit the model parameters. We already listed the different

models for white and grey matter. This part introduces the various frameworks differing

in the sequence they use. If the PGSE remains the commonly used sequence in diffusion

MRI microscopy, alternative sequences have been shown to be efficient such as double

PGSE or Oscillating Gradient Spin Echo. The main idea governing all these studies is

the exploitation of the parameters of the sequence to be sensitive to restrictions induced

by the membranes. By tuning these sequences, it is possible to create the adequate

constrast to extract cytoarchitectural parameters.

5.5.1 Principles of diffusion MRI microscopy

5.5.1.1 Using varying diffusion time to probe tissue microstructure

Let us remind that the PGSE sequence is characterized by the following parameters :

δ, the diffusion gradient duration; Δ, the duration between the two gradients and G,

the gradient magnitude. The behaviour of the signal will strongly depend on δ and

Δ in comparison to the dimensions of the structure. On one hand, δ and Δ defines

the effective diffusion time. We have seen before that for PGSE experiment, the effec-

tive diffusion time is given by tdiff = Δ − δ/3. From the mean-square displacement

expression, the typical length water molecules will travel during the diffusion time is

a ≈ √
tdiff ×D with D the diffusion coefficient. Therefore, for a size pore r longer

than this typical length, the spins won’t feel the restrictions induced by membranes. If

we increase the diffusion time, then the spins will encounter the membranes and their
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displacement will be restricted. Varying the effective diffusion time thus creates a con-

trast between the different population of axons, depending on their specific size. From a

collection of measurements using different diffusion times, it is possible to extract tissue

characteristics such as axon diameter, white matter fraction, ... computing the signal

associated to the combination of the tissue model with the used diffusion sequence. We

define in the next part the mathematical framework for the computation of this signal.

5.5.1.2 Diffusion MRI simulation

Diffusion MRI microscopy aims at allowing to measure microstructure parameters thanks

to MRI experiments. But to understand the complexity of the diffusion process, the

Monte Carlo simulation experiments, simulating the diffusion signal from the brownian

motion of particles in the geometrical environment of the model can be very helpful.

Tools such as the diffusion simulator provided in the Camino [Cook et al., 2006] toolkit

or the Diffusion Microscopist Simulator introduced in [Yeh et al., 2013] provides new

insights on how diffusion works in complex tissues. From various 3D tissue models and

sequences schemes, the simulator provides the resulting synthetic dMRI signal. This

approach can also help when there is not analytical expression for the considered tissue

model. This approach was often used to validate analytical expression of the models we

have presented before and study the deviation between them. As we will see in the next

subsection, approximations are used to compute signal in the different geometries, and

simulation experiments give the possibility to assess the validity of these approximations.

Even if simulation experiments are not the main topic of this thesis, it is important to

know that all the models coud be validated using simulations and simulation tools are

very useful to test a model in all of its aspects.

5.5.1.3 Mathematical framework of signal attenuation computation : Short

Pulse Gradient and Gaussian Phase Distribution approximations

Diffusion MRI microscopy relies on the establishment of an analytical signal attenuation

equation depending on the tissue model and the type of the diffusion sequence. Let’s

first discuss the effect of the gradient duration δ. In chapter 3, it was shown that a

Fourier relationship exists between the signal attenuation measured in the Q-space and

the propagator of the diffusion process of water molecules. But this relationship remains

available only if δ is infinitely short, ideally corresponding to a Dirac pulse. Unfortu-

nately, MRI systems (in particular clinical scanners) cannot always provide inifinitely

short gradient pulses, and under the condition δ << Δ, the signal will be computed us-

ing the Short Gradient Pulse approximation (SGP). When the δ duration is sufficiently
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short, it is possible to neglect the motion of the spins during δ : this is the short gradient

pulse approximation. The phase change of the spin at the initial position r0 during the

first gradient and moving to r1 during the second gradient is then directly given by :

Δφ = γGδ(r1 − r0), (5.5)

with G the gradient magnitude and γ the gyromagnetic ratio.

The signal attenuation is then expressed as follows :

E(q,Δ) =

∫ ∫
ρ(r0)P (r0, r1,Δ) exp iγδG(r1 − r0)dr0dr1. (5.6)

If we set R = r1 − r0, then we can define P (R,Δ) = ρ(r0)P (R|r0,Δ) as the average

propagator. But we will see tha the b-value is also a key point to be sensitive to small

pore sizes. Clinical MR scanners have very limited gradient strength so to have a high

enough b-value, the δ and Δ parameters are increased. But increasing Δ will lead to

longer echo time and therefore lower SNR due to the combination of diffusion decay and

T2 decay. This is why the clinical conditions are often δ ≈ Δ. In this condition, we must

take into account the spin movement during the gradient pulse. If δ is not sufficiently

low in comparison to Δ, the water molecule motion during the gradient duration δ.

has to be taken into account. Under certain conditions, a Gaussian probability of the

gradient phase distribution during the gradient application can be assumed, leading to

the Gaussian Phase Distribution approximation (GPD). Before the refocusing pulse of

the spin echo sequence (at t=TE/2), during the application of the first diffusion gradient

(applied, for example along the x axis, at time t1), the phase shifting induced can be

expressed as :

φ(TE/2) = γB0(TE/2) + γG

∫ t1+δ

t1

x(t)dt, (5.7)

TE being the echo time. At the end of the sequence, the total phase shift for each spin

is then expressed as :

φ(TE) = γG

(∫ t1+δ

t1

x(t)dt−
∫ Δ+δ+t1

t1+Δ
x(t′)dt′

)
(5.8)

We can then expressed the signal as follows :

S(TE) = S0(TE)

∫ ∞

−∞
P (φ, TE)eiφdφ (5.9)
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with φ the phase. [Douglass and McCall, 1958] demonstrated that for free water, the

phase distribution function can be expressed as a Gaussian distribution function :

P (φ, TE) =
exp −φ2

2<φ2>√
2π < φ2 >

(5.10)

with < φ2 > the mean-squared phase change :

< φ2 >= γ2G2 < {
∫ t1+δ

t1
xi(t)dt−

∫ t1+Δ+δ

t1+Δ
xi(t)dt}2 > (5.11)

< φ2 >= γ2G2{
∫ t1+δ

t1

∫ t1+δ

t1
dtadtb

−2

∫ t1+δ

t1

∫ t1+δ+Δ

t1+Δ
dtadtb+∫ t1+δ+Δ

t1+Δ

∫ t1+δ+Δ

t1+Δ
dtadtb}

< x(ta)x(tb) >

and

< x(ta)x(tb) >=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(r1−r0)x(r2−r0)xρ(r0)P (r0, r1, ta)P (r1, r2, tb−ta)dr0dr1dr2

(5.12)

the mean-squared displacement. This is valid for free water, but when the water motion

is restricted, this distribution is theoritically non Gaussian. But in some cases, the phase

distribution can be approximated by a Gaussian distribution function. This approxima-

tion is valid for short gradient duration, when spins don’t encounter the restrictions. At

long diffusion times, the position of a spin will be independent of its initial position, so

the phase distribution can also be considered as a Gaussian. But it has been shown that

even for δ of the order of the pore size, for simple geometries, the distribution can be

well approximated using Gaussian distribution (Neuman [1974], Balinov et al. [1993]).

After computing the diffusion propagator for the geometry of the tissue (for example a

cylinder), it is straightforward to compute the mean-squared displacement in the direc-

tion of the gradient, and finally the mean-squared phase change and the attenuation.

For free diffusion, the signal from the PGSE is expressed as follows :

E(q) = S(q)/S0 = exp(−q2(Δ− δ

3
)D) (5.13)

with D being the diffusion coefficient.
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5.5.1.4 Equation of the diffusion propagator

The computation of the signal attenuation requires the definition of the diffusion prop-

agator of the tissue. The models we described in the previous part, often relies on the

combination of one hindered compartment, described by a Gaussian diffusion behaviour

and one restricted compartment, modeled as a sphere or cylinder. For restriced compart-

ments, the simplest way to get the propagator is to compute its eigen mode expansion

(Neuman [1974], Callaghan [1995]). The problem is posed as follows :

P (r|r′, t) =
∞∑
n=0

exp(−αnt)un(r)u
∗
n(r

′), (5.14)

The initial condition : P (r|r′, 0) = δ(r − r′), (5.15)

The boundary conditions ( M is the permeability ): Dn∇P +MP = 0. (5.16)

Diffusion propagator expression for the axon : cylinder geometry

In the case of the axon, the majority of the models assume M = 0, since they are consid-

ered as impermeable in the diffusion time scale. The diffusion propagator of the cylinder

of radius a is given by :

un(r) = Ann′Jn(
βnn′r

a
) exp(inθ)

with

Ann′ =

√√√√ 2βnn′

πa2Jn(βnn′ )2

(Ma
D )2 + β2

nn′ − n2

,

A0n′ =

√√√√ βnn′

πa2J0(βnn′ )2

(Ma
D )2 + β2

0n′

and βnn′ are the zeros of the equations :

βnn′

Jn(βnn′)′

Jn(βnn′)
+

Ma

D
= 0

.

Diffusion propagator expression for neural cells : sphere geometry

For a sphere of radius a :

un(r) = Ann′Jn(
βnn′r

a
)Pn(cosθ)



Chapter 5. Microstructure mapping using diffusion MRI 121

with

Ann′ = 1/

√
2π

2n+ 1
a3(jn(βnn′)2)− jn−1(βnn′)jn+1(βnn′),

and βnn′ are the zeros of the equations :

βnn′

jn(βnn′)′

jn(βnn′)
+

Ma

D
= 0.

These zeros can be computed using interlacing properties of bessel function roots and

using Newton-Raphson’s or/and bisection methods.

Once the propagator is found, the signal attenuation is obtained using either the GPD or

the SGP approximations. We established here the context of diffusion MRI microscopy

and the constrains imposed by the sequence parameters. The following sections describes

the different sequences used to infer microstructural features and the signal attenuation

associated to them, following either the SGP or GPD approximations.

5.5.2 Diffusion MRI microscopy using Pulse Gradient Spin Echo

Several studies attempted to extract microstructural features using Pulse Gradient Spin

Echo. Two major frameworks were developed to address the inference of axon radii and

density: AxCaliber developed by Assaf et al. [2008] and ActiveAx Alexander [2008].

Both of them establishes a particular protocol dedicated to the inference of microstruc-

ture parameters from several measurements using PGSE sequence under SGP or GPD

conditions, varying the sequence parameters in order to sample the signal efficiently to fit

the tissue model from the experimental measurements. Another less common approach,

is the exploitation of diffraction pattern occuring for the long time limit of the PGSE

signal, giving a signature of the underlying microstructure. We first explain AxCaliber

and ActiveAx framework, before introducing the long time limit PGSE framework.

5.5.2.1 AxCaliber Framework

The AxCaliber Framework introduced by [Assaf et al., 2008] aims at measuring a dis-

tribution of axon diameters using PGSE experiments and remains limited to preclinical

studies (requiring huge sampling and SGP assumption).

Tissue model :

This framework uses the CHARMED model to describe the tissue, where the restricted

part integrates the contributions of several fiber populations, each of them being charac-

terized by a specific diameter. From the observation of tissues by electron microscopy, a

gamma Γ distribution has been chosen to model the actual axon diameter distribution.
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Acquisition schemes :

This technique requires to know the orientation of the axon in the observed region. This

is why this framework is primarely applied in the study of the corpus callosum, where

most of the fibers are in the left-right direction. Knowing this orientation, the different

diffusion measurements are performed applying the diffusion gradients perpendicularly

to the axon direction, in order to be sensitive to the restricted part of the signal atten-

uation induced by the cylinder membrane. The gradient duration δ is fixed and kept

short (δ ≈ 3/4ms) in comparison with Δ. The protocol is made of several measure-

ments corresponding to a large sampling of Δ : typically from 10ms to 150 ms in order

to get the appropriate contrast between the different axon diameters. For each Δ, the

gradient strength is incremented several times (sixteen in [Assaf et al., 2008] with a high

maximum gradient strength (Gmax ≈ 300T/m)).

Signal Attenuation :

Under these conditions, the signal attenuation is computed from the CHARMED model

assuming a contribution corresponding to and hindered compartment (the extra-axonal

space) and to a restricted compartment (the intra-axonal space) :

E(q) = fhEh(q) + frEr(q), (5.17)

Er(q) = E⊥E‖, (5.18)

In the case of the AxCaliber protocol, the measurements are only performed perpendic-

ularly to the fiber direction. The hindered part is therefore expressed as a 1D Gaussian

diffusion problem:

Eh(q) = exp (−(Δ − δ/3)q2Dh) (5.19)

with Dh the hindered diffusion coefficient. The restricted part, corresponding to the

diffusion process in the packed impermeable cylinders representing axons, is expressed

from Callaghan [1995] with no relaxation (the membrane is considered impermeable) :

E⊥ =
∑
k

4 exp(−β2
0k ∗D ∗Δ/a2)

2πqaJ ′
0(2πqa)

((2πqa)2 − β2
0k)

2
+

∑
nk

8 exp(−β2
nk ∗D ∗Δ/a2)

β2
nk

β2
nk − n2

2πqaJ ′
n(2πqa)

((2πqa)2 − β2
nk)

2
(5.20)

Assuming the existence of different fiber populations, we obtain :

E⊥ =
∑
i

fi
πa2i

(
∑
k

4 exp(−β2
0k ∗D ∗Δ/a2i )

2πqaiJ
′
0(2πqai)

((2πqai)2 − β2
0k)

2
+

∑
nk

8 exp(−β2
nk ∗D ∗Δ/a2i )

β2
nk

β2
nk − n2

2πqaiJ
′
n(2πqai)

((2πqai)2 − β2
nk)

2
) (5.21)
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with fi and ai the volume fraction and the radius corresponding to the fiber pop-

ulation i. The different axon radii are weighted using a Γ distribution defined as :

wi(ai, α, β) =
aα−1

i exp (−ai/β)
βαΓ(α) .

Results and limits :

This framework has been shown to be efficient, for example in the original paper [Assaf

et al., 2008] in ex-vivo porcine optic and sciatic nerves or in the corpus callosum of

rodents [Barazany et al., 2009], where an additional isotropic Gaussian compartment

was added to deal with the contamination of the signal by the Cerebro Spinal Fluid

component. Results from [Assaf et al., 2008] (Figure 5.9) assessed the ability of this

technique to recover the axon diameter distribution using electron microscopy as ground

truth. The limitation of this work is that these protocols cannot be used in clinical

applications, since the scan duration is too long, the required gradient strength is high

and the short δ condition is difficult to obtain with clinical gradient coils, because of

the finite duration of the gradients. Moreover, it requires the knowledge of the fiber

orientation and it relies on the assumption of the Γ distribution of the axon diameter,

that cannot be assumed anymore when moving from healthy tissues to diseased tissues.

5.5.2.2 ActiveAx Framework : optimization of acquisition scheme for clin-

ical routine

The ActiveAx framework was first proposed in Alexander [2008] to perform axon cali-

bration in vivo, and the major constrain of being usable for clinical applications. This

framework relies on a first step of optimization to obtain the best set of sequence pa-

rameters and measurements given hardware and safety constraints to perform axon

calibration with the highest accuracy in a limited scan duration. The protocol is thus

reduced to only M PGSE profiles, each of them being applied along N diffusion directions

(4 combinations of G/δ/Δ and 30 directions for example), by optimizing it to reduce

the variance of the parameter estimates given a geometrical model. The different steps

are :

• Definition of a tissue model : for white matter model application, the CHARMED

model is used with a restricted part corresponding to packed and impermeable

cylinders that can be correlated to an average diameter over the fiber populations,

but any kind of model can be used.
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Figure 5.9: AxCaliber Framework results from [Assaf et al., 2008] for ex-vivo porcine
optic and sciatic nerves : a. Multi diffusion time diffusion spectroscopy signal decay of
an optic nerve sample. b. Multi diffusion time diffusion spectroscopy signal decay of a
sciatic nerve sample. c. Extracted AxCaliber axon diameter distribution based on the
signal decays given in (a) and (b). d. Axon diameter distribution derived from electron
microscopy section of the two nerve samples. e,f. Electron microscope section of one
optic nerve (e) and one sciatic nerve samples upon which the data in (a– d) is based.

• Protocol optimization : find M PGSE profiles to acquire along N directions over a

single shell chosen to minimize the variance of the estimates of the model parame-

ters using the Cramer-Rao lower bound criterion and a noise model (typically the

Rician noise).
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• Acquisition of measurements using the optimized protocol

• Inference of the axon diameter using a Monte Carlo Markov Chain procedure to

draw the posterior distributions of the parameters (see Appendix B).

The optimization process is constrained by several requirements : the scan duration

(leading to a small M of measurements), the hardware constraints (the maximum gradi-

ent strength of the system, the static field, leading to a limited echo time and therefore

a limited diffusion time), the safety constraints for the human volunteer, and the pos-

sibility to be orientationnaly invariant, contrary to AxCaliber protocols. The latter

naturally leads to single shell Q-space samplings. The objective function to minimize is

built from the Cramer-Rao lower bounds of the tissue model parameters, providing the

lower bound of the variance of the estimates using the Fisher matrix :

fobj =

P∑
i=1

CRLBi/p
2
i

with fobj the objective function, CRLBi the Cramer-Rao lower bound of the parameter

i pi. CRLBi = (J)−1
ii with J the Fisher matrix defined as Jij = E( ∂L

∂pi∂pj
) where L is

the likelihood of the measurement. The likelihood of the measurements depends on the

tissue model parameters but moreover on a noise model. As we have seen before, the

Rician noise is often considered for MRI experiments, and therefore the Rician proba-

bility distribution is used to compute the likelihood. This optimization framework then

provides M sets of G,δ,Δ parameters allowing to obtain a minimum variance of the esti-

mates of the model parameters. The computation of the objective function also depends

on prior knowledge of the parameters, such as the intra-axonal and extra axonal diffusiv-

ities. Measurements obtained using this acquisition scheme can then be analyzed using

a MCMC procedure to obtain posterior distribution of each parameter. The decoding

part of this technique relies on the expression of the signal using GPD approximation.

In clinical applications, the SGP approximation cannot be used because the gradient

strength being limited, it is not possible to reduce the δ parameter sufficiently. The

signal model in this condition is therefore :

Signal model :

• Hindered Compartment for the GPD approximation :

Eh(q) = exp−(Δ− δ/3)qTDq (5.22)
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Restricted Compartment for the GPD approximation :

The restricted component is the signal coming from the intra-axonal water molecules.

Using the cylinder model, the restricted part is the product of the signal perpendic-

ular to the axon and parallel to the axon. The parallel restricted part is modeled

as a 1D Gaussian diffusion process :

E‖(q) = exp(−(Δ− δ/3)|q‖|2D‖) (5.23)

The perpendicular part is the diffusion process perpendicular to a cylinder, ex-

pressed by Van Gelderen [Van Gelderen et al., 1994] :

ln(E⊥) = −2γ2g2⊥
∑
m=1

2Dα2
mδ − 2 + 2e−Dα2

mδ + 2e−Dα2
m∗Δ

D2α6
m

(
r2i α

2
m − 1

) +

−e−Dα2
m(Δ−δ) − e−Dα2

m(Δ+δ)

D2α6
m

(
r2i α

2
m − 1

) (5.24)

with αmJ1 (αmri)
′ = 0

Results and Limits :

This framework was applied in [Alexander et al., 2010] using the CHARMED model but

the restricted part was simplified to consider only one axon diameter, not a distribution.

This framework aims at providing an orientationnaly invariant axon index, the signal

is therefore not measured along the unique perpendicular direction. The hindered part

is represented by a tensor. Additional compartments were included in the model : an

isotropic compartement following a Gaussian diffusion to characterize the contamination

by Cerebro Spinal Fluid and a compartment for the bulk of stationnary water molecules.

This work proved the accuracy of the optimized protocols to recover axon diameter in

both fixed monkey brains and in vivo human brain, using a 3T clinical scanner, with

a maximum gradient strength of 60 mT/m, N = 90 orientations of four multiple shell

PGSE profiles. Figure 5.10 shows the optimized protocol for the human study. This

protocol shows that a combination of low and high b-values are useful. In this study,

only one radius is extracted, expecting to correlate with the mean diameter of the axon

distribution. This parameter, called ”axon diameter index”, a’, is suggested to in fact

correlate with the mean axon diameter weighted by volume : α =
∫
p(a)a3da∫
p(a)a2da

, p being the

actual distribution of axons. In the same way, an index of axon density is characterized

as 4ν′

πa′2
, ν ′ being the extracted ratio between the intra-axonal fraction and the sum of

the intra and extra cellular spaces. Results of this study are shown in Figure 5.11,

where we can see that this model allows to find a low-high-low profile of the axon radius

estimate and the high-low-high behavior of the axon density along the corpus callosum,
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Figure 5.10: Human optimized protocol extracted from [Alexander et al., 2010] (RF
pulses are also shown)
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Figure 5.11: Results of ActiveAx framework on the corpus callosum of human subjects
from [Alexander et al., 2010]

expected from the results of histology. In [Alexander, 2008], different aspects of the axon

calibration were adressed using simulated data. The range of axon radii that can be well

estimated is limited by the sequence parameters. High gradient strength for example

allows a better accuracy of the estimation (partly because of the reducing echo time,

increasing the Signal-to-noise ratio). Since δ cannot be reduced, this limits the smallest

radii that can be accurately extracted. But simulations in this study shows that even

if it is not possible to distinguish small radii (≤ 2μm), it is possible to define them as

”small”.

This question of accuracy and stability of the estimation was also adressed in [Dyrby

et al., 2013]. Several ActiveAx protocols were tested on a 4.7T Varian Imaging system on

a fixed monkey brain and simulated data, varying the gradient strength from 60mT/m to

300mT/m, and the δ and Δ parameters. The authors simulated data assuming different

axon diameter distribution and compared the estimated radius from 100 repeated fitting

of the data to the idealized axon diameter α of the distribution for the different gradient

strength and for different SNR conditions (see Figure 5.12). It is shown that the gradient

strength has a strong influence on variance of axon diameter index and smallest axons

cannot be well estimated since the diffusion gradient duration cannot be sufficiently

reduced. The actual distribution of axons also strongly influences the deviation between

the index and α. This study confirms the existence of a lower and upper bounds of radii

that can be identified using ActiveAx imaging. The presence of lower bound is explained

by the minimum achievable diffusion time coming from the limited gradient strength

(limiting its sensitivity to the smaller radii) and the upper bound by the insufficient

diffusion time of the experiment (limited by the echo time to preserve a high SNR).
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The conclusion of this work is that using high gradient strength provides more accurate

estimates and higher SNR could also help to reduce the variability of the mean axon

diameter index (but its impact is less pronounced than for higher gradient strength). In

this thesis, we will address the the lower bound issue using two different approaches: the

development of an arbitrary gradient waveform diffusion sequence, allowing to reduce

the diffusion time in comparison with PGSE and the development of the two pool model

that may help to reduce this overestimation.

This framework allowed to perform for the first time in vivo axon calibration on humans

and to study the sensitivity of the ActiveAx protocol to the microstructure parameters

and the influence of the different sequence parameters. Even if the estimation is better

for higher gradient strengths, this protocol obviously provides contrast allowing to dis-

tinguish different regions based on its microstructure. Moreover, it is not constrained

by the knowledge of the orientation of the axons. This work has been extended [Zhang

et al., 2011a] to tackle the problem of fiber dispersions using the same model but adding

a Watson’s distribution to model the orientation dispersion. This gives the opportunity

to get extra structural parameters in regions where the configuration is not as simple as

one fiber population with one direction. This model is expressed as the sum of the intra

and extra cellular compartments, such as CHARMEDmodel but includes the orientation

dispersion function. The intra axonal part is thus expressed as

Erestricted =

∫
ρ(n)Ecylinder(n)dn, (5.25)

with ρ(n) the axonal orientation distribution, Ecylinder(n) the attenuation of the popu-

lation of axons oriented along n. The extra-cellular part is modelled using an Gaussian

anisotropic process, with the diffusion tensor Dec depending on both the volume fraction

of the intra-cellular part and the orientation distribution. Its signal is expressed as:

Dec(ρ, frestricted) =

∫
ρ(n)Dh(n, frestricted)dn (5.26)

with Dh the tensor of population characterized by the direction n. ρ(n) is expressed as

a Watson distribution :

ρ(n) = M(
1

2
,
3

2
, κ)−1 exp((κ(μ − n))2), (5.27)

where M is a confluent hypergeometric function (see Appendix A), μ the unit vector

about which the distribution is cylindrically symmetric and κ controling the extent of

the orientation dispersion. [Zhang et al., 2012] uses the same model to map neurite

density, replacing the cylinder model by a stick and therefore proposing to study density

in white and grey matter.
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Figure 5.12: Comparison of the estimated axon radius a’ versus the ideal axon diam-
eter index α from simulated data at different gradient strength (60mT/m, 140 mT/m,
200 mT/m, 300mT/m) and with various SNR (from [Dyrby et al., 2013]). In blue: the

mean of the repetitions of the fitting, in red: the estimates for each repetition
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Figure 5.13: Two-pool cylinder and sphere model : in blue the slow pool, in red the
fast pool

5.5.2.3 Second contribution : signal attenuation for the two-pool model

All the various studies dealing with axon calibration stress the fact that the estimates of

axon small radii often overestimates the actual axon radii in comparison with histology.

One possible explanation is the limited gradient strength, allowing to only distinguish

radii higher than 2μm. However, it is not the only explanation and it could also come

from the tissue model itself (orientation dispersion, exchange between compartments,

nature of the compartments...). We here propose an alternative model to the cylinder,

to partly explain this overestimation. As we described in section 5.7, a two-pool model

was proposed by [Assaf and Cohen, 1998] and [Sehy et al., 2002] to explain the biex-

ponential behavior of the diffusion leading to consider one pool, near the membranes

and characterized by a slow diffusion coefficient and another pool of water molecules,

far from the membranes and characterized by a fast diffusion coefficient. The slow be-

havior has been explained by the structural organization of the water near the layer of

lipids and proteins of the membrane. In this thesis, we extended the cylinder model

to a thick cylinder with two different diffusivities in the layer and around. This model

has been integrated in ActiveAx-like protocols using PGSE sequences. We here expose

the computation of the signal attenuation for this model and sequence, under clinical

conditions leading to the use of GPD approximation. The attenuation signal coming

from a circular layer under SGP approximation was derived in [Ghadirian et al., 2013].

Development of the PGSE signal attenuation for the two-pool cylinder model:

Let’s consider Efast the echo attenuation for the fast pool within the cylinder (between
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0 and ri), and Eslow the echo attenuation within the thick layer of the cylinder (be-

tween radius ri and ro, see Figure 5.13), the total attenuation is given by the following

mixture:

E = ffastEfast + fslowEslow = ffastEfast⊥Efast‖ + fslowEslow⊥Eslow‖,

with ffast+fslow = 1. separating the diffusion attenuation perpendicular and parallel to

the cylinder. Both slow and fast parallel attenuations can be modeled using Gaussian

propagators. Dfast and Dslow are the diffusivity of each compartment.

1. Fast pool perpendicular attenuation

Within the cylinder, the signal attenuation is given by the GPD approximation

on a simple cylinder model of radius ri (the inner radius). The attenuation per-

pendicular to the fiber assuming a PGSE scheme is given by [Van Gelderen et al.,

1994].

ln(Efast⊥) = −2γ2g2⊥
∑
m=1

2Dfastα
2
mδ − 2 + 2e−Dfastα

2
mδ + 2e−Dfastα

2
m∗Δ

D2
fastα

6
m

(
r2i α

2
m − 1

) +

−e−Dfastα
2
m(Δ−δ) − e−Dfastα

2
m(Δ+δ)

D2
fastα

6
m

(
r2i α

2
m − 1

) (5.28)

with αmJ1 (αmri)
′ = 0 The αm are computed numerically using Newton and

bisection method.

2. Slow pool perpendicular attenuation

Propagator in cylindrical coordinates :

(Jn and Yn are respectively first and second kind Bessel’s functions (see Appendix

A for definition)

Ps

(
r, r′, θ, θ′, t′ − t

)
⊥
= A00+

1

π

∑
mn

Anm

(
Jn

(
βmnr

ri

)
Jn

(
βmnr

′

ri

)
− Jn (βmn)

′

Yn (βmn)
′Yn

(
βmnr

ri

)
Yn

(
βmnr

′

ri

))

(
cos (nθ) cos

(
nθ′

)
+ sin (nθ) sin

(
nθ′

))
e

−β2
mnD

r2
i

(t′−t)
(5.29)
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A00 =
1

π
(
r2o − r2i

) (5.30)

and A′−1
nm =

Yn (βmn)
′

Anm
=

∫ ro

ri

r [R(r)]2 dr (5.31)

with R(r) = Jn

(
βmnr

ri

)
Yn (βmn)

′ − Yn

(
βmnr

ri

)
Jn (βmn)

′ (5.32)

Boundary conditions : R′(a) = 0 and R′(b) = 0 so βmn are the roots of

Jn

(
βmnro

ri

)′
Yn (βmn)

′ − Yn

(
βmnro

ri

)′
Jn (βmn)

′ = 0, θ is the angle between the

gradient and r.

〈
r(t)r(t′)

〉
=

1

π
(
r2o − r2i

) ∫ 2π

0
dθ

∫ 2π

0
dθ0

∫ 2π

0
dθ′
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ri

dr

∫ ro

ri

dr0
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ri

dr′r0rr
′

Pslow (r, r0, θ, θ0, t)Pslow

(
r′, r, θ′, θ, t′ − t

)
[rcos (θ)− r0cos (θ0)]

[
r′cos

(
θ′
)− r0cos (θ0)

]
(5.33)

After some simplifications we get :
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(5.34)
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Mean-squared phase change: (δ is the pulse duration and Δ the separation time of

the PGSE )

< φ2 >= γ2g2
[∫ δ

0
dt

∫ δ
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∫ δ
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Δ
dt′ +

∫ Δ+δ

Δ
dt

∫ Δ+δ

Δ
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]
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< φ2 >= 2γ2g2
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(5.35)

Signal attenuation : Eslow⊥ = exp
(− < φ2 > /2

)

Signal attenuation for the thick layer sphere using PGSE:

We can also extend the two-pool model for a sphere model, useful to model spherical

cells for instance. This part exposes the result assuming an impermeable membrane,

but one needs to keep in mind that for cell modeling, permeability has to be introduced

and therefore leading to different boundary conditions.

If Efast is the echo attenuation for the fast pool, inside the sphere ( between 0 and ri),

and Eslow the echo attenuation inside the thick layer of the sphere (between radius ri

and ro), the total attenuation is given by: E = Efast + Eslow with Dfast and Dslow the

diffusivity of each compartment.

1. Fast pool attenuation

Inside the sphere, the signal attenuation is given by the GPD approximation on a

simple sphere model of radius ri (the inner radius).
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] (5.36)

with αmj1 (αmri)
′ = 0

2. Slow pool attenuation
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Propagator in spherical coordinates: (jn and yn are respectively first and second

kind spherical bessel functions)
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θ is the angle between the gradient and r.

After some simplifications we get :
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Signal attenuation : Eslow = exp
(− < φ2 > /2

)

The obtained signal attenuations are consistent with those found in [Grebenkov, 2008].

This new model was implemented in the PTK toolbox of the UNIRS lab of NeuroSpin

and the roots βnk were computed using the iterative algorithm [Sorolla et al., 2013].

This work has been presented ar the ISMRM Workshop on diffusion MRI as a probe of

microstructure in 2013([Lebois et al., 2013b] and [Lebois et al., 2013c]). Next chapters

will present how these models can be used to putatively explain the overestimation of

smaller radii. We have presented here the two major frameworks using PGSE sequence

to map axon diameters introducing the context of contributions of this thesis. We

presented the second contribution of this work, the development of a novel two-pool

model for the axon and cell modeling taking into account the biphasic behaviour of the

water in the neural cells. We now move to the long time limit application of diffusion

MRI using PGSE before introducing alternative diffusion sequences.

5.5.2.4 Long time limit : diffusive-diffraction experiments

For the case of a long Δ, the diffusion propagator doesn’t depend on the initial starting

positions of the spins and becomes equal to the spin density. The signal attenuation is

then expressed as follows :

E(q,∞) =
∫
ρ(r0) exp(−i2πqr0)dr0

∫
ρ(r1) exp(i2πqr1)dr1 = |S(q)|2 (5.40)

S being the Fourier Transform of the spin density : S(q) =
∫
drρ(r) exp(i2πqr) In the

case of ordered and regularly packed cylindrical or spherical pores, the signal will exhibit

a diffraction pattern, with several minima occuring, which can be directly used to extract
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the characteristic length of the geometries. The typical geometries in tissue modeling

are the parallel planes, the cylinder and the sphere. For these three geometries, the FT

of the spin density is given in the following table :

Parallel planes separated by R S(q) = sin(πqR) exp(iπqR)
πqR

Cylinder (radius=R) S(q) = J1(2πqR)
πqR

Sphere (radius=R) S(q) = 3[2πqR cos(2πqR)−sin(2πqR)]
(2πqR)3

Figure 5.14: PGSE signal expression in long time limit for several geometries

From table 5.14, the minima will occur when |S(q)|2 = 0 : at q = n/R for parallel planes

with n an integer. This pattern is of course very sensitive to the gradient direction and

can be observable when the gradient is perpendicular to the main axis of the structure

(for example, in the cylidner, perpendicular the main axis).. The diffraction pattern is

shown in figure 5.15 for the case of diffusion between parallel planes at a distance of 2R

(left) and in a sphere of radius R (right). The equation 5.14 underlines an important

requirement for diffusion diffraction experiment : to infer a pore size R, we need q ≈ 1/R.

This means that the smaller the pore, the higher the required q value. The gradients

strength are usually limited, in particular on clinical systems. Usually, a longer gradient

duration is used but all the theory developed in the long time limit relies on the Short

Gradient Pulse approximation. Using longer δ in the PGSE experiment will therefore

lead to a violation of the SGP approximation, and the dips of the pattern will occur at

even higher q value, decreasing the estimation accuracy (leading to an underestimation

of the actual pore size). PGSE diffusive diffractions is also limited by the fact that in

the presence of a distribution of diameters, the diffraction pattern won’t be visible.

Figure 5.15: Diffraction pattern for parallel planes separated by a 2R distance (left)
and in a sphere of radius R (right). Figures extracted from [Price, 1997]
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Figure 5.16: Double PGSE diagram

5.5.3 Diffusion MRI microscopy using double PGSE

The double PGSE, introduced by [Cory, 1990] is an alternative of the Pulse Gradient

Spin Echo. The sequence diagram is exposed in Figure 5.16, characterized by two

consecutives PGSE schemes with (G1,Δ1,δ1) the parameters of the first PGSE scheme

and (G2, Δ2, δ2) the parameters of the second PGSE scheme. The two PGSE are

separated by a mixing time tm. The two pairs of gradients can be applied in different

directions. More thant two PGSEs can be used, leading to multi-PGSE experiments.

We focus here on double PGSE.

5.5.3.1 Extracting microstructure features from diffraction patterns

In 1995, [Mitra, 1995] investigated multi-PGSE experiments, showing the dependence

of the signal on the angle between the two pairs of diffusion gradients, indicating a high

sensitivity to microscopic anisotropy, even higher than PGSE [Özarslan, 2009]. This

sequence allows to study the correlation of the net displacement of the spins, revealing

information on the microstructure of tissues, especially in ordered configuration. As for

PGSE experiments, the signal attenuation strongly depends on the different sequence

parameters, in particular on the angle between the two gradient sets, the gradient dura-

tion and strength and the mixing time. Main applications of dPGSE use the conditions

where the gradient duration δ → 0, Δ → ∞ and either the mixing time tmixing = 0 or

tmixing → ∞. The first kind of application is an extension of the diffusive diffraction

experiment for a single PGSE. In [Özarslan and Basser, 2007], the diffraction patterns

were studied for different numbers of PGSE-like experiments applied using the same

gradient strength, the same separation duration and the same angle of application of

the diffusion gradients. As for the single PGSE experiment, the signal in the case of

long diffusion times can be expressed as a function of the FT of the spin density. For

double PGSE experiment, the mixing time will introduce some differences :
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• For tmixing → ∞ : E(q) = ‖S(q)‖4

• For tmixing = 0 : E(q) = S(q)2S(−2q)

From these equations, it appears that for a infinite mixing time, the pattern for the

double PGSE experiment won’t drastically differs from the one obtained with single

PGSE, in fact the signal will be more attenuated with higher number of PGSE in com-

parison with single PGSE, but the minima will occur at the same places. But when null

mixing time is used, the minima appear at half the q-value in comparison to the single

PGSE diffaction pattern, allowing to reduce the required q values and therefore to probe

small pore sizes. It has also been shown that for an even number of PGSE experiments,

like for instance the double PGSE, the signal is less sensitive to the decrease of Δ and

even if the mixing time is not strictly reduced to zero, the first lobes of the pattern

are preserved. Finally, they are also preserved in the case of a broad distribution of

the pore sizes, allowing to compute an average size. But, even if this approach leads

to better results than using sPGSE diffusive diffraction, those experiments still require

high q-values. This sequence is widely used in high q value domain, using the diffrac-

tion pattern to infer microstructure parameters thus limiting its use to preclinical MRI

systems. If quasi-null mixing times is required to probe pore sizes, long mixing time can

be used to reveal local anisotropy ([Callaghan and Komlosh, 2002]).

5.5.3.2 Signal angular dependency

Another approach is then to use the dependence of the attenuation on the angle between

the two pairs of gradients. In [Shemesh et al., 2009], using the dependency at low

q-value on the angle (previously described by [Mitra, 1995] between the two pair of

gradients expressed in [Ozarslan and Basser, 2008], it is shown that for moderate q-

value, the signal will exhibit a dependence on the angle. Choosing a pair of gradients

applied perpendicularly to the pore and varying the angle between them can provide an

estimation of the pore size and reveal the underlying anisotropy of the samples.

Application to white matter structure

Protocols including variation of the angle between the two gradients with null mix-

ing times have been employed to map structural parameters. This sequence has been

used to extract axon sizes in Zhou and Laidlaw [2011]. This study extends the Ax-

Caliber framework to double PGSE experiments using the angular dependence of the

signal, adapting the CHARMED model to double PGSE. It shows that using this angu-

lar dependence, axon diameter can be estimated in a limited scan duration, with limited
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Figure 5.17: OGSE diagram

gradient strength (70mT/m). [Koch and Finsterbusch, 2011] also used double PGSE

signal angular dependency to extract pore sizes along the corticospinal tract of human

volunteers at 3T. [Komlosh et al., 2011] validated the ability of using double PGSE to

infer pore sizes using a phantom made of capillaries.

5.5.4 Oscillating gradient sequences : OGSE and SW-OGSE

In PGSE and double PGSE experiment, the size of the pores we can extract is limited

by the gradient strength and to probe very small pores, the gradient magnitude needs to

be very high. To reach smaller diffusion times, the trapezoidal gradient waveform of the

Pulse Gradient Spin Echo could be replaced by an oscillating gradient waveform : a sine,

a cosine or oscillating trapezoids, the frequency of the waveform defining the diffusion

time. This kind of sequence is depicted in 5.17. These sequences are commonly used

on preclinical systems, since they require high gradient strength and gradient slewrate.

Indeed, when the frequency is increased, the diffusion time reduces but one needs to

have sufficient gradient strength to keep a high diffusion sensitivity. This sequence

could be a way to be more sensitive to axon radii, in particular to smaller ones in axon

calibration studies. OGSE sequences can be both used in temporal diffusion spectroscopy

experiments or in replacement of PGSE in Q-space experiments. We describe these two

applications in the following subsections.
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5.5.4.1 OGSE and temporal diffusion spectroscopy

This kind of sequence allows to have a complete different approach, using the analysis

of a diffusion spectrum. This application of diffusion is called temporal diffusion spec-

troscopy, different from the q-space approach. For this purpose, we define a frequency-

dependent diffusion tensor D(ω).

Di,j =

∫ ∞

0
dt′exp(iωt′) < vi(t

′)vj(0) > (5.41)

This is the Fourier transform of the autocorrelation of the particles’ velocity (vi). If the

molecule moves in a restricted environment, the velocity will exhibit a correlation with

itself, leading to a characteristic shape of the autocorrelation function and therefore of

the frequency diffusion tensor. In the presence of a diffusion gradient g(t), the signal is

given by :

S = S0exp(− 1

π

∫ ∞

0
F (ω)D(ω)F (−ω)dω) (5.42)

with F the fourier transform of the time integral of the gradient. Thus, the OGSE

allows to vary the gradient frequencies ω, sampling the frequency space and therefore

providing the frequency diffusion tensor. [Gore et al., 2010] sums up the use of the

OGSE in temporal diffusion spectroscopy to probe microstructure. In [Xu et al., 2009],

the expression of OGSE signal is expressed for parallel planes, cylindrical array and a

three-compartment model distinguishing the cytoplasm, the nucleus of the cell and the

extracellular cell. The employed gradient waveforms were a cosine and sine profiles and

several b-values and gradient frequencies were used to fit the simulated data in these

structures. This study shows that it is possible to use OGSE to discriminate different

tissues. Widely used on the rat brain, OGSE signal can also provide a surface to volume

(S/V) ratio of the studied pores. By analyzing the behaviour of the diffusion coefficient

in function of the diffusion time, in particular for the short and long diffusion time limits,

the S/V ratio can be inferred as described in [Sen, 2004]. As explained in [Novikov and

Kiselev, 2011], at very short diffusion time (t << r2

D , with D the intrinsic diffusion

coefficient and r the characteristing length of the pores), the molecules don’t have the

time to encounter the membranes of the tissue and the diffusion coefficient depends on

the diffusion time in a linear way :

D(t) = D0(1− 4S

9
√
πV

√
D0t), (5.43)

where D0 = D(0). At very long diffusion times, all the molecules have already interacted

with the membranes, and the diffusion coefficient is then linear linked to the frequency
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of the gradient and to the inverse of the diffusion time :

D(ω) = D0(1− Cd
S

V

√
D0

ω
), (5.44)

where Cd is a factor depending on the sequence. Therefore, assuming for example

that the tissue can be considered as random arrangement of flat, permeable and thin

membranes (these conditions come from the very short diffusion time that is considered,

the molecules cannot feel the ”curvature” effect of the membrane) the ratio s/V can

provide a useful information on average density of the membranes and average distance

between them. But this analysis relies on very strong gradient strength to reach short

enough diffusion time.

5.5.4.2 OGSE for cell calibration

The OGSE can be used in classical Q-space approach, instead of PGSE or double PGSE.

GPD approximation can be used to express the signal attenuation using oscillating

gradient. Only the temporal part of the signal expression will change, since the radial

part contained in the diffusion propagator is not dependent on the used sequence. [Ianuş

et al., 2013] lists the expression of signal for OGSE using the GPD approximation,

especially for trapezoidal waveforms. In the case of restricted diffusion in a cylinder, the

signal expression is given by :

S = exp(−2γ2

D2

∑
n=0

Bn

λ2
n

Γn), (5.45)

with Γn depending on the used sequence. Bn = 2(R/μn)2

μ2
n−1

with λn = μ2
n

R2 and μn is the

root of equation J ′
1(x) = 0, J being the Bessel’s function of order 1. For sine waveforms

of frequency ω :

Γn =
G2ω2/(λnD)2

(1 + ω2/(λnD)2)2
×

(
λnDδ(λ2

nD
2 + ω2)

2ω2
+ 1− exp(−λnDδ)− exp(−λnDΔ)(1− cosh(λnDδ)))) (5.46)

For cosine waveforms of frequency ω:

Γn =
G2

(1 + ω2/(λnD)2)2
×

(
(λ2

nD
2 + ω2)

λnD
(δ/2 +

sin(2ωδ)

4ω
)− 1+ exp(−λnDδ) + exp(−λnDΔ)(1− cosh(λnDδ))))

(5.47)
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Trapezoidal expression can be also derived, but results in a more complicated expression.

[Siow et al., 2013] explored the differences between several sequences using the ActiveAx

protocol to infer axon diameters in the corpus callosum. They compared the results of

PGSE and OGSE sequences, showing that oscillating trapezoid gradient (SW-OGSE)

gives a higher accuracy on the estimation. Moreover, in comparison with sine oscillations,

trapezoidal waveforms allow to obtain higher diffusion sensitivity for short diffusion

times, and then could be more sensitive to small diameters.

5.5.5 Beyond the PGSE : spin echo sequence diffusion weighted with

arbitrary gradient waveforms (AGWSE)

We just described the common sequences used in diffusion MRI, starting from the PGSE.

We saw that each of them presents drawbacks and advantages, and also that modifying

the waveform of the diffusion gradients could help us to reach smaller diffusion times

and thus smaller structures. But the requirement of high gradient strength and often

long scan duration limits their applications in clinical routine. We cited above the

work introduced in [Alexander, 2008], addressing this problem, proposing a framework

optimizing PGSE sequence parameters to guarantee a limited variance of the estimates

of the tissue model parameters (the CHARMED model). This technique showed great

results in [Alexander et al., 2010] allowing to recover the axon diameter in the corpus

callosum. Keeping the idea of optimization of the sequence, why not including the all

waveform of the gradient in the optimization scheme ? This is the idea of Arbitrary

Gradient Waveform Spin Echo (AGWSE). Since the waveform seems to have an impact

of the accuracy of axon diameter estimation, optimizing it with respect the tissue model

and hardware constraints could help to reach better estimation. This idea was developed

by [Drobnjak et al., 2010], proposing to optimize the all gradient waveform, points by

points, covering all kind of waveforms from the PGSE to the OGSE. In [Drobnjak and

Alexander, 2011], the authors go even further, allowing to also varying the orientation

at each time points. An example of these kind of waveforms are depicted in Figure 5.18.

The optimization follows exactly the framework of [Alexander, 2008]. Signal expression

can be obtained using the matrix framework introduced in [Callaghan, 1997]. A simple

matrix formalism is proposed to compute the expression of restricted diffusion signal for

any kind of waveforms. In fact, the gradient are decomposed into several narrow pulses,

separated by a time step τ . We recall that for the case of two narrow pulses separated

by a 180◦ pulse, as it is the case for the SGP approximation of the PGSE, :

E(q) =

∫ ∫
ρ(r)P (r, r′,Δ) exp(i2πqr) exp(−i2πqr′)drdr′ (5.48)
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Figure 5.18: AGWSE diagram from [Drobnjak et al., 2010]

For a general gradient waveform decomposed into N narrow pulses, we have :

E(q) =

∫
dr1

∫
dr2...

∫
drNρ(r1) exp(i2πq1r1)P (r1, r2, τ) exp(i2πq2r2)

P (r2, r3, τ)... exp(i2πqN−1rN−1)P (rN−1, rN , τ) exp(i2πqNrN ) (5.49)

With qn = mnγδgstep, gstep being the unit of the gradient amplitude. mn could be either

positive or negative. Using the decomposition in eigenfunctions of the propagator, we

can express (5.49) as a matrix product :

E = S(q)R[A(q)]m1 ...R[A(q)]mNRS(q) (5.50)

with

Sk(q) = V −1/2

∫
druk(r)exp(i2πqr) (5.51)

Rkk = exp(−λkτ) (5.52)

Akk(q) =

∫
dru∗k(r)uk′(r) exp(i2πqr) (5.53)

with V the volume of the pore, and uk the eigenfunctions of the propagator expansion.

This matrix framework has been extended by [Drobnjak and Alexander, 2011] for varying

gradient orientation. Experiments of [Drobnjak and Alexander, 2011] were focused on

the study of the generated waveform for a cylinder model varying the a priori radii from

1μm to 5 μm and allowing different orientations of the gradients in the three directions.

They tested it on simulated data. This study provides several insights : optimizing

the direction of the gradients in the plane parallel to cylinder increase the accuracy of

the estimation, confirming that the sampling of directions all over the sphere of the Ac-

tiveAx protocol could provide better results that in a single perpendicular direction as it

is done in [Assaf et al., 2008]. Moreover it shows that the typical waveform obtained in



Chapter 5. Microstructure mapping using diffusion MRI 145

the perpendicular plane to the cylinder with a complete arbitrary waveform seems to ap-

proximate a trapezoidal oscillating gradient spin echo. The waveform oscillates between

-Gmax and Gmax with variable frequency, frequency increasing while radius decreases.

In [Siow et al., 2012], applications of the generalized gradient waveforms were applied

for the estimation of pore size in a microstructure phantoms, made of capillaries with an

unique radius per phantom. Optimized protocols using PGSE and AGWSE sequences

were computed with different prior pore radii and for different gradient strengths. The

measurements made perpendicularly to the phantoms on a 9.4T Varian scanner with a

gradient of 1T.m−1 were then compared. This experiment shows that variance of esti-

mates are reduced using the generalized waveforms in comparison to PGSE optimized

protocol. The lower bound of radii we can estimate is reduced using AGWSE, being

then around 2.5μm at 40mT/m. The AGWSE gives better estimates when the proto-

col is optimzed using the true value of the radius, but still provides good estimates for

the other protocols. The following part will expose the contributions of this thesis on

AGWSE sequences and its use to probe microstructure parameters.

5.5.5.1 Developpment and implementation of an AGSWE sequence in a

clinical routine at 3 Teslas and 7 Teslas

AGWSE seems to be a promising way to probe microstructural parameters in clinical

routine. For now, this kind of protocol have been used on preclinical scanners, proving

their ability to provide information on microstructure. This thesis aims at characterizing

the tissue microstructure of the human brain in vivo. This part of this work aims

at setting the methodology to perfom axon calibration in vivo. To this purpose we

developed a new diffusion gradient weighted sequence on the 3T and 7T clinical Siemens

systems of NeuroSpin (VB17-IDEA Toolkit). The implementation on the 7T scanner

is of great interest since this system provides higher SNR than the 3T scanner and the

actual maximum gradient strength of the 7T is 80mT/m. With this new sequence,

any kind of waveform can be played, from the usual PGSE sequence to the OGSE

and to the fully arbitrary sequences, respecting the gradient slewrate and maximum

strength of the systems (see Figure 5.19). The use only need to provide a file describing

the waveform indicating first the number of time points followed by the profile of the

gradient waveforms on each axis. Since this sequence was developed to perform axon

calibration, this file can contain the gradient waveforms for several profiles. The other

parameter of the sequence can be tuned in a panel dedicated to this special sequence

in the Siemens interface (see Figure 5.20). From this panel it is possible to select the

kind of wanted sequence: a simple Spin-Echo, a PGSE (it is then possible to directly set

delta, Delta and Gmax on the panel) or an AGWSE. In this last case, it is possible to set
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Figure 5.19: PGSE, OGSE and totally arbitrary gradient waveform from the AGWSE
sequence

the gradient amplitude along the three axis, to define the time duration between each

time point of the waveform, the number of desired T2-weighted images to acquired, the

orientation count (the corresponding orientations are then extracted from a file where

optimized diffusion orientations are stored). It is also possible to specify if the sequence

is a sine, cosine or trapezoidal Oscillating Gradient Spin Echo. This allows to define only

the gradient frequency instead of the whole waveform. Finally, it possible to segment

the aquisition of the different orientations in blocks in order to decrease the scan time

of each individual scan. The profile counter button allows to select the wanter profile if

several profiles were described in the waveform file.

Figure 5.22 shows the validation of our sequence on the fiberCup phantom ([Poupon

et al., 2008], [Fillard et al., 2011])using a totally arbitrary gradient waveform (sequence

c) in 5.19 on the 3T clinical MR system of NeuroSpin. The fiberCup phantom has been

developed to the study and the validation of HARDI models. This phantom is made of

acrylic fibers with a diameter d=17μm. Fibers were disposed in bundles following the

scheme (Figure 5.21) in order to mimick different configurations and crossings of the

fiber bundles of the human brain. The finaly density of fibers was 1900 fibers/mm2.

The container was filled using pure distilled water. We compared the RGB maps and

ODF fields obtained from a standard PGSE sequence and with the totally arbitrary gra-

dient waveform for a common b-value = 480s/mm2. For both protocols, FOV=240mm,

TH=10mm, Matrix = 128x128, PF=6/8, TR = 4s. For the PGSE protocol, δ=25ms

and Δ =35ms, TE = 84ms and Gmax = 20mT/m. For the AGWSE protocol, the gradi-

ent duration was 49ms, TE = 110ms and Gmax = 22mT/m. The signal was measured

along 10 optimized directions. Figures 5.22 and 5.23 show the results on the fiberCup
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Figure 5.20: Panel dedicated to our novel diffusion sequence. For an AGWSE se-
quence, it is possible to set the time duration between each time point, the maximum
gradient strength along each axis, the number of T2-weighted images, the number of
diffusion orientations, the number of profiles, the number of orientation blocks and

finally the kind of sequence

phantom, showing the RGB and GFA maps as well as ODF fields computed from a

Q-ball local model. This experiment shows that this novel sequence with arbitrary gra-

dient waveform is valid and provides angular information stemming from the anisotropy

of the diffusion process. The comparison between the PGSE and AGWSE sequence in

figure 5.23 depicts the ODF fields obtained in both cases, showing that the arbitrary

gradient waveform allows to reconstruct accurate ODF fields. We also performed the

first clinical test of AGWSE on a human subject, using the same arbitrary sequence.

The parameters of the sequence was FOV=256mm, TH=2mm, matrix = 128x128, Par-

tial Fourier = 6/8, TR=4s, TE=110ms. Figure 5.24 shows the obtained RGB map and

ODF fields. This first experiment of arbitrary gradient waveform on an healthy subject

shows again the validity of the sequence and the possibility to use it to be more sensitive

to microstructural features. This novel sequence has been presented at the ESMRMB

2012 conference ([Lebois et al., 2012]). The idea is first to test ActiveAx-like protocols,

using several PGSE profiles and after to compare with optimized AGWSE sequence on

human volunteers (see next chapter).
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Figure 5.21: FiberCup phantom. Fiber pathways are highlighted in colors. Arrows
indicate the directions of the synthetic fiber bundles.

Figure 5.22: AGWSE tests at 3T on the fibercup phantom : comparison between the
PGSE and the AGWSE protocol

5.6 Conclusion of this chapter

We have described how diffusion MRI can be used, through tissue modeling to obtain

micrsotructural information. Diffusion MRI microscopy allows to go further in compar-

ison to model such as DTI or QBall, giving not only angular but also radial information

locally. Several models of white and grey matter have been derived, often based on sim-

ple geometries such as cylinders and spheres, for which it is relatively simple to derive

the diffusion propagator. Differences between the approach differs from the different

compartments that are considered and the exchange between them. We also listed the
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Figure 5.23: AGWSE tests at 3T on the fibercup phantom : zoom on the odf field

different sequences that are used in diffusion MRI microscopy, each of them providing

useful insights on microstructure of the tissue. A part of the community focused on

the necessity to perform these kind of experiments on human subjects. But clinical

experiments are constraining, imposing a limited scan duration, hardware and safety

constraints. The challenge is to obtain the best estimates of microstructure parameters

taking into account those constraints. The Active Imaging, represented by the ActiveAx

protocols have shown, optimizing the acquisition schemes, to be able to provide contrast

based on microstructure in clinical routine. A new kind of sequence, with arbitrary

gradient waveform allows to obtain even more accurate estimation of parameters and
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Figure 5.24: AGWSE tests at 3T on a human subject : RGB map and ODF fields

reduces the minimal radius that can be estimated. This kind of sequence could provide

additional degree of freedom in comparison with PGSE or OGSE, allowing to be more

sensitive to the microstructure. The contributions of this thesis on this topic is two-fold

: we have implemented AGWSE sequences to perform the first human in vivo experi-

ments on a 3T and 7T Siemens scanners and we also propose a new model for axon and

cell, including a layer around the membrane with lower diffusivity than the core water.

Next chapter presents the experiments performed on the 7T scanner on a dozen of hu-

man subjects to map the axon radii of their corpus callosum and we will demonstrate

how the two-pool model can help to reduce the overestimation of the smaller radii.



Chapter 6

White Matter Microstructure

Mapping

We previously exposed how diffusion MRI can be used to infer structural information

at a resolution much higher than the image resolution, thus allowing to characterize the

cytoarchitecture. Modeling the tissue and matching the diffusion signal to this model

provides then parameters such as cell sizes or density. Diseases such as Alzheimer’s,

Parkinson’s or Autism, are known to induce modifications of the tissue microstructure

but that could only be revealed using dMRI by a drop in fractional anisotropy (FA), or

an increased apparent diffusion coefficient (ADC), but for now it is difficult to know pre-

cisely what causes these differences from these tensor invariants. Diffusion microscopy

tries to answer this question and to make the link between differences in non-specific

parameters such as FA and differences in microstructure organization, that can be re-

vealed by cell radii and density mapping for example. This task is difficult to achieve,

in particular because of the limitations that clinical routine implies : limited scan du-

ration, limited gradient strength, limited static field... But active imaging, represented

by ActiveAx protocols, has shown that with a reduced set of diffusion experiments, it is

possible to obtain good contrast in terms of cytoarchitectural parameters, providing an

average axon radius and density in white matter, for example. These experiments have

to use a tissue model describing the actual cytoarchitecture but remaining sufficiently

simple to preserve a limited amount of required measurements. Few studies of brain

microstructure mapping using ActiveAx protocols have been perfomed on 3T scanners

with a maximum gradient strength of 60mT/m using four optimized PGSE measure-

ments, sampling along 90 directions.

Our approach completes these previous works. Our study proposes to take advantage of

high-field MRI, scanning the subjects on a 7T equipped with a 80mT/m gradient coil but

151
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the actual achievable gradient strength was until now limited to 50mT/m (but this limi-

tation will be raised in future work). We focused on the Corpus Callosum microstructure

mapping, scanning 14 healthy subjects and extending the initial four measurements to

ten along 60 directions. Higher number of measurements allows to improve complex-

ity of the model of axons, including for example the two-pool model we presented in

the previous section. We also scanned an healthy subject using the Arbitrary Gradient

Waveform Spin Echo (AGWSE) sequence and we here propose to compare the results

with PGSE experiments. Finally, the protocol was adapted and used to scan autistic

patients and controls in the frame of a clinical study performed on the 3T scanner of

the NeuroSpin center.

6.1 Mapping the white matter using the PGSE sequence

6.1.1 Methods

One of the major goal of this work is the construction of the first atlas of axon radii and

density of the corpus callosum on a clinical 7T MRI system on healthy subjects.

6.1.1.1 MRI data acquisition

To this purpose, fourteen healthy subjects (3 females and 11 males between 23 and 45

years old) underwent the same protocol, composed of ten different PGSE profiles, along

60 directions on a Tim Trio 7T Siemens scanner, equipped with a 80mT/m gradient

coil (but limited to 50mT/m) using a 32-channel head coil. The idea was to extend the

initial ActiveAx protocol using a higher number of profiles (initially set to 4 profiles),

in order to reduce the variability of the axon mean radius observed when using only 4

profiles by increasing the range of diffusion times and b-values, mase possible because of

the increased SNR obtained at ultra high field. This choice was motivated by a previous

work [Duclap et al., 2013a] aiming at building an atlas of the axon radii, white matter

fraction and orientation dispersion along major white matter bundles, including the

corpus callosum for 10 subjects of the Archi database. This former work was performed

on a 3T Philips Achieva MRI system, equipped with a 80mT/m gradient (but the

maximum gradient strength was actually limited to 60mT/m), using 4 PGSE shells

along 60 directions. This study provided profiles along white matter bundles such as the

corticospinal, arcuate and corpus callosum tracts using the CHARMED model including

orientation dispersion modeling. Interesting information were extracted, in particular

in orientation dispersion along the different bundles but some limitations arose on the

reproducibility of the axon diameter parameter, in particular in the corpus callosum.
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For this reason and since our scanner couldn’t deliver higher gradient strength than

50mT/m at the time of the scans, we considered to increase the number of shells. This

protocol respects the time constraint of a clinical application : the scan duration remains

limited to 1h20. Our protocol is therefore a mixture of ActiveAx and AxCaliber protocol

: the number of profiles is limited in order to be applied in clinical conditions, and we

sample not only along the direction perpendicular to the axons, but along 60 optimized

diffusion directions (plus three b=0 s/mm2 images). 24 slices were acquired centered

on the corpus callosum. For each profile, the acquisition was divided into three blocks

of 20 directions to limit individual scans to a few minutes thus improving the subject

comfort. The sequences parameters were : TR = 5.2s, TE = 95 ms, FOV = 256mm,

TH=2mm, Matrix = 128x128, Gmax=50mT/m, SlewRate = 333T/m/s. The different

profiles are plotted in the figure 6.1. They allow to cover a range of diffusion times

from 19ms to 61ms. This protocol also covers a range of b-value from 700 s/mm2 to

6000 s/mm2. Varying the diffusion times increases the sensitivity to cell populations

of different sizes. Comparison between the protocol used in [Duclap et al., 2013a] and

our protocol is described in table 6.2.It also important to have low and high b-value to

better distinguish the restricted from the hindered compartments.

6.1.1.2 White matter model

The model we used in this part was the CHARMED model. We delibarately kept the

model simple, to further investigate the new two-pool in the subsequent section. The

signal attenuation is therefore assumed to follow equation 6.1.

E = frEr + fhEh + fiEi (6.1)

The restricted part Er is expressed following the equation (5.24). The hindered part

follows (5.22) and an additional isotropic part was added to deal with partial volume

effect with CSF. fr, fh and fi are the respective volume fractions of the compartments.

The model parameters were consequently: the perpendicular diffusivity corresponding

to the diffusivity perpendicular to the axons in the Diffusion Tensor Model(D⊥), the

parallel diffusivity, corresponding to the diffusivity parallel to the axons(D‖), the main

direction of the fibers (n), the radius (r), the signal without diffusion (S0), the restricted

fraction (fr) and the isotropic volume fraction (fi).

6.1.1.3 Axon Calibration Algorithm

A toolbox was developped in the PTK toolbox to perform axon calibration. The esti-

mation follows the algorithm described in [Alexander et al., 2010].
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Figure 6.1: Diffusion PGSE protocol
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Protocols Protocol of [Duclap et al.,
2013a]

Our protocol

Number of profiles 4 10

Orientation count 61 60

Diffusion time range 74.5ms/81ms/74ms/18ms 19.7ms/21.1ms/22.9ms/24.5ms/26.9ms
28.8ms/30.5ms/31.9ms/43.3ms/61.3ms

b-values 2625s.mm−2/858s.mm−2

2710s.mm−2/668s.mm−2
700s.mm−2/1000s.mm−2/1500s.mm−2

2000s.mm−2/3000s.mm−2(×3)
4000s.mm−2/5000s.mm−2/6000s.mm−2

Echo time 88.5ms 95ms

Magnetic field 3T 7T

Gmax 70mT/m 50mT/m

Voxel size 2mm × 2mm × 3.9mm 2mm × 2mm × 2mm

Figure 6.2: Comparison between the protocol of [Duclap et al., 2013a] and our pro-
tocol

• We extracted DTI data for each profile of each subject

• We set the principal direction to the direction obtained from one of the profile

at b= 3000 s/mm2 (avoiding to deconvoluate but it could also be done using

b = 1500s/mm2). It will remain fixed during the optimization process.

• We set the intrinsic diffusivity of water to 1.7×10−9m2/s, the transverse diffusivity

as follows D⊥ = (1− fr
fr+fh

)D‖

• We set the initial value of the radius by default to 4μm and the initial S0 to the

average of the values extracted from the b=0 images.

• An Monte Carlo Markov Chain (MCMC, see Appendix B) optimizer, taking into

account the Rician noise model was applied to obtain the posterior distributions of

the non fixed parameters : S0, the radius, the volume fractions of the compartment,

the transverse diffusivity. 10000 burn-in steps were used as well as 100 samples

with 1000 intervals. The authorized range of values for each parameter were :

0μm < radius < 20μm and 0 < S0 < 10000. The volume fractions were forced to

be between 0 and 1 and their sum equals to 1. The radial diffusivity was computed

at each step : D⊥ = (1− fr
fr+fh

)D‖ (corresponding to a tortuosity model).

• Each output parameter was chosen as the mean of the posterior distribution

6.1.1.4 Post-processing

First, the data were corrected for motion. This step is essential to guarantee a good

match between the different profiles. All the images were registered to the images of the

first block of the first profile using a 3D rigid transform. The diffusion orientations were



Chapter 6. White matter microstructure mapping 156

then also corrected using the rotation matrix of the transform. Second, we extracted the

diffusion tensor for each profile in each voxel and the derived parameters : FA, ADC,

λ‖ and λ⊥. This part provides the principal direction in each voxel and will allow to

compare the diffusion parameters to the microstructure paramters. The DTI model can

be assumed for the orientation detection as the corpus callosum is highly anisotropic

and characterized by an unique direction. But it could have been infered from HARDI

or HYDI more elaborated models, which is mandatory for more complex white matter

bundles. In order to reduce the computation time, the corpus callosum was delineated

in each volunteer using FA maps, and three slices were selected, one in the mid-sagittal

plane, the two other on each side of the first one. The axon calibration algorithm was

run on these three slices. We derived the fourteen maps of radii, white matter fraction

and axon density computing following the relation : ρ = fr
πr2

(axon density index of

[Alexander et al., 2010]). A profile was computed for each parameter of each subject

projecting the values onto a centroid created from the skeleton of the mask. This centroid

was splitted into sections every 2mm. Each point of the mask was then projected onto

the nearest section of the centroid. Finally, average profiles of microstructure parameters

were computed from the profiles of the fourteen subjects. We extracted the maximum

number of sections over the profiles of each subject and redefined new profiles using

this maximum number of sections in order to be able to compare and average them.

This approach allows to observe the local variations of the parameters along the corpus

callosum and to compare them with local variations of DTI-based parameters. The

detailed steps of the data processing are depicted in Figure 6.3.

6.1.2 Results

6.1.2.1 Microstructure mapping

Figure 6.4 and 6.5 present the results on the midsagittal plane from the fitting procedure

using the ten profiles on 14 healthy subjects. First column depicts the axon radii, the

second column the white matter fraction and the third the axon density.

6.1.2.2 Average profile

Figure 6.6 shows the average profile computed from the 14 profiles of each subject

of white matter fraction, radius and the derived axon density as well as the standard

deviation across the subjects.
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Figure 6.3: Processing steps from the data acquisition to the computation of the
average profiles
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Figure 6.4: Individual axon calibration obtained on 7 of 14 healthy subjects using
the protocol described in section 6.1.1.1 at 7T (50mT/m, SR=333mT/m) including 10
different diffusion times and b-values. On the right : axon radius maps, in the middle

: white matter fraction, on the left : density index.
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Figure 6.5: Individual axon calibration obtained on 7 of 14 healthy subjects using
the protocol described in section 6.1.1.1 at 7T (50mT/m, SR=333mT/m) including 10
different diffusion times and b-values. On the right : axon radius maps, in the middle

: white matter fraction, on the left : density index.
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Figure 6.6: Average profile of white matter fraction and radius estimates and the
derived axon density along the Corpus Callosum from 14 subjects
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6.1.3 Discussion

6.1.3.1 Results versus histology

[Aboitiz et al., 1992] described the fiber composition of the corpus callosum using light

microscopy. Small fiber diameters were found in a greater amount in the genu and the

splenium while larger fiber diameters (> 3μm) are mainly found in the body. Moreover,

the fiber density is higher on both genu and splenium regions than in the body. The

authors explain the differences of density not only by the presence of large axon diameter

but also by an increase of the extra-cellular volume (inter-fiber distance). Our results are

thus in good agreement with histological data, since we observe a high-low-high density

profile and a low-high-low average radius profile (consistent with previous in vivo studies

: [Alexander et al., 2010],[McNab et al.]). The white matter fraction globally follows the

trend of the density. These observations were mainly made on the midsagittal plane.

The mean profiles confirm these observations but shows a local increase of the white

matter fraction in the posterior body, just before the isthmus. It could be explained

by the presence of larger axon radii in these regions.The obtained radii remain high in

comparison with histological data, highlighting the overestimation already mentioned

in the last chapter (probably stemming from the limited gradient strength combined to

the simplicity of the model). This phenomenon of overestimation reduces the actual

amplitudes between the genu, the body and the splenium.

6.1.3.2 Intra and Inter-subject variability

Figure 6.7 and 6.8 shows the standard deviation map of each posterior distribution of

radius and white matter fraction estimates of one subject obtained from the MCMC pro-

cedure. The standard deviation of the radius is lower in the body region (around 0.3um

for the axon radius) than at the extremities of the corpus callosum especially(around

0.8um), maybe explained by a higher angular dispersion on the extremities of the cor-

pus callosum or the partial volume effect. The standard deviation of the white matter

fraction doesn’t change much along the corpus callosum (around 0.03 on average).

From figure 6.6, the inter-subject variability seems to be quite low, in particular for the

radius parameter. This can be explained by the fact that with 10 profiles the MCMC

procedure converges more easily to a global minima, but also that the 7T static field

provides higher SNR, allowing to reduce the noise contamination of the measurement.
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Figure 6.7: Standard deviations of the radius posterior distribution from the MCMC
fitting on the mid-sagittal plane of one subject. Top : radius estimates, bottom: radius

standard deviation

Figure 6.8: Standard deviations of the radius posterior distribution from the MCMC
fitting on the mid-sagittal plane of one subject. Top : white matter fraction estimates,

bottom: white matter fraction standard deviation

6.1.3.3 Stability of the results

We compared the results for one subject from different initializations of the axon radius

with Rini = 2μm, 3μm, 4μm, 6μm and 8μm as well as the results using a white matter

fraction initialization of f = 0.5. Figure 6.10 depicts the maps obtained from the

different initial values. We observe that the MCMC procedure is not strongly affected

by the initial value when initial radius is set in the range of 3− 8μm or f = 0.5, leading

to a reasonable differences and a similar global pattern. The higher differences in radius

estimates are located in the genu and the splenium, maybe coming from the limited

sensitivity of our protocol to the smaller radii, inducing higher variability and therefore

higher depedency on the initial values in these regions. But these differences are very

limited (5 % ). However, starting from a smaller value (2μm) shows more differences

and a slight increase of the standard deviation of the estimates. The differences are

however limited to 12% for the radius and 4% for the white matter fraction.
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Figure 6.9: Comparison of the radius estimates with different initial values (on one
subject)

Figure 6.10: Comparison of the white matter fraction estimates with different initial
values (on one subject)



Chapter 6. White matter microstructure mapping 164

6.1.3.4 Comparison with 4 profiles

Figures 6.11 and 6.12 show the comparison of the white matter and radius estimates

using only 4 selected profiles using a mix of low and high-bvalue as well as short and

long diffusion times : δ = 14.5ms/Δ = 24.5ms/G = 50mT/m/bvalue = 700s/mm2, δ =

21ms/Δ = 31ms/G = 50mT/m/bvalue = 2000s/mm2, δ = 16.9ms/Δ = 66.9ms/G =

50mT/m/bvalue = 3000s/mm2, δ = 32.8ms/Δ = 42.8ms/G = 50mT/m/bvalue =

6000s/mm2 against the results obtained from 10 profiles. As expected, the standard

deviation of the MCMC posterior distributions is significantly reduced for both axon and

white matter fraction estimates using 10 profiles. Moreover, using 10 profiles increases

the contrast between the different regions, thus assessing the protocol we developped.

Figure 6.11: Comparison of the radius estimates using 4 and 10 PGSE profiles

Figure 6.12: Comparison of the white matter fraction estimates using 4 and 10 PGSE
profiles

6.1.3.5 Comparison with our previous study

Figure 6.13 shows the results extracted from our previous study [Duclap et al., 2013a]

along the corpus callosum. This study provided profiles characterized by lower mean

values of the radii (maybe due to the higher used gradient strength) but an increased

standard deviation in both white matter fraction and radius profile in comparison with

our results. Moreover, the profiles obtained from the 10 profiles protocol are more

consistent with histological observations. These differences may come from the protocol

differences but also from the highest SNR provided by the 7T.
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Figure 6.13: Wm fraction and radius profiles from the 10 subjects of the Archi
database using the protocol of [Duclap et al., 2013a]

6.1.3.6 Correlations between microstructure parameters and dti parame-

ters

Figure 6.14 shows the Pearson’s correlation coefficient computed between microstructure

parameters (radius, fraction and density) and DTI parameters (FA, ADC, λ‖, λ⊥). The

correlation coefficients were computed from the combined values of all the sections of all

the subjects, but restricting the analysis to the voxel presenting limited contamination

from CSF ( e.g. CSF fraction < 0.2). FA values show negative correlation with the radius

(r=-0.4), white matter fraction (r=0.73) and density (r=0.61). In regions were radii are

large, the radial diffusivity increases (the correlation between the radius and D⊥ is r=

0.35 ), leading to a decrease of the anisotropy. Similarly, a high white matter fraction or

density indicates more restriction effects (the water molecules are more constrained in

the perpendicular direction), leading to a decrease of the perpendicular diffusivity (also

indicated by the negative correlation coefficient between D⊥ and the density or white

matter fraction) inducing a higher global anisotropy. Axial diffusivity shows relatively

poor correlations with the three parameters in comparison with the other correlation

coefficient. Corresponding to the diffusivity along the fibers, it is not surprising that

change in radius does not affect its values. However, white matter fraction and density

seem to have greater negative correlations with it. This results may come from the

increasing hindrance of the extra-cellular water molecules in regions with high axon
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Figure 6.14: Correlations between microstructure parameters derived from the model
and dti parameters (pvalue<0.05). First row : FA vs radius/WM fraction/ Axon
density, second row : λ‖ vs radius/WM fraction/ Axon density, third row : λ⊥ vs
radius/WM fraction/ Axon density, fourth row : ADC vs radius/WM fraction/ Axon

density.

density, therefore reducing the axial diffusivity. It may also come from the limitations

of the model (orientation dispersion of the fibers for example). Finally, ADC values

show similar behaviour (for the same reasons) exhibiting a positive correlation with the

radius and negative correlations with the white matter fraction and the axon density.

Figure 6.15 shows the correlations between the microstructure parameters. Radius shows

negative correlation with white matter fraction. It can be explained by the higher density
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of the smallest radii in the corpus callosum, that could lead to a higher white matter

volume fraction. This is confirmed by the strong correlation (r=-0.85) of the radius

with the axon density (coming from the definition of the axon density, being inversely

proportionnal to the squared radius). These correlations are similar that those found in

Figure 6.15: Correlations between microstructure parameters (pvalue<0.05).

previous works ([Alexander et al., 2010], [Barazany et al., 2009]) except the positive (but

very small) correlation of the axial diffusion coefficient with the radius and the negative

correlation of the axial diffusion coefficient with the white matter fraction and density.

6.1.3.7 Conclusion and discussion

We here demonstrated the feasibility of axon radii and density mapping of 14 healthy

subjects at 7T. Our results are consistent with previous studies and histology. The in-

ter and intra subject variability indicate a good reproducibility of the results, probably

coming from the use of ultra high static field (7T). Nonetheless, the estimated axon

radii shows an overestimation of the smaller radii we reported previously. First, the

axon radius index is correlated with an averaged radius weighted by the cross-section

area, therefore larger radii will contribute more to this value. We propose now to in-

vestigate the use of the two-pool model presented in the previous chapter to tackle this

overestimation. To conclude, we have shown that in vivo axon calibration is feasible

and increased gradient strength as well as increased SNR could help us to estimate mi-

crostructure features more accurately. We have established a new protocol including

ten PGSE schemes, allowing a larger sampling of the diffusion time, and therefore open-

ing the way to the study of more elaborated models of white matter to go beyond the

CHARMED model, such as our two-pool cylinder model.
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6.2 Theoretical study of the two-pool model to improve

axon calibration

The previous section showed that increasing the SNR using a higher static magnetic

field improves the reproducibility of the axon calibration and reduces the variability of

the results. But we have shown that small radii are still overestimated. As we described

before, the limited gradient strength is one of the reason of the limited access to small

radii : smaller radii can be detected as ”small” but cannot be distinguished. In this

thesis, we presented a new model for the restricted part corresponding to the axons. We

added a thin layer around the membrane of the axon, corresponding to a pool of water

molecules with slower diffusivity than inside the axon, represented by a cylinder. We

present a purely theoretical study of the behavior of the signal attenuation in clinical

conditions (δ ≈ Δ).

6.2.1 Single-pool vs the two-pool model

Assuming a PGSE experiment with δ = 29ms and Δ = 35ms leading to an effective

diffusion time of Tdiff = 25ms, the signal attenuation using the two-pool model with

the assumed slow and fast diffusivity : Dslow = 10−10mm2/s and Dfast = 10−9mm2/s

([Le Bihan, 2007]) was computed for 100 bvalues from 0 to 10000 s/mm2 increasing the

gradient strength from 0 to 80mT/m (corresponding to the achievable gradient strength

on the advanced MRI systems). We computed the signal attenuation for three axon radii:

R=1μm, R=2μm and R=3μm. We assumed that the signal is measured perpendicularly

to the axons (like in AxCaliber studies). The signal was then fitted using this time a

one-pool model. Figures 6.16, 6.17 and 6.18 shows the signal attenuation with respect

to the b-value for the three chosen radii. First column depicts the attenuation obtained

using a two-pool model, second column the attenuation obtained using a single pool

model fitting (where the diffusivity is equal to Dfast the two-pool attenuation and the

third column shows the surimposed signal attenuations. For small radii, here R=1μm

and R=2μm the signal attenuation coming from a two-pool cylinder model with a thin

layer (e.g. 100nm) can perfectly match the signal attenuation using a single-pool model,

but with a larger radius. For example, for an axon radius equals to 1μm and a layer

thickness of 100nm, the single-pool model estimates the radius to be 1.69μm and for

an axon radius equals to 2μm, the radius is estimated at 2.28μm. This overestimation

disappears with larger radii and for 3μm, the difference becomes negligible.
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Figure 6.16: Signal attenuation for an axon of radius of 1μm; Left: using the two-pool
model and right: using the simple cylinder model

6.2.2 Origin of the overestimation

For small radii, a layer of 100nm corresponds to a significant fraction of the restricted

compartment. The attenuation in the layer is the combination of the attenuation

along the radial coordinates and along the angular coordinates. For thin layers (see

[Grebenkov, 2008]), the attenuation is mainly driven by the attenuation along the bound-

aries, assimilated thefore to diffusion in the interval [0, π L], L being the outer radius of

the cylinder ( see Figure 6.19). Since the diffusion coefficient is lower in the layer, the

motion of the molecules is less constrained than in the core cylinder, where the diffusion

coefficient is ten times higher. Therefore, the signal is more attenuated in the layer

than inside the cylinder (along the boundaries, the mean-squared displacement corre-

sponding to the slow diffusivity (Lslow=1.6×10−6μm) is inferior to the perimeter, while

inside the cylinder the mean squared displacement corresponding to the fast diffusivity

(Lfast=5×10−6μm) is lower than the inner radius). The combination of both of the com-

partments therefore corresponding to a simple cylinder with larger radius. For larger

axon radii, the signal in the layer becomes less attenuated than in the inner cylinder

and moreover, the volume fraction corresponding to the layer becomes negligible.
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Figure 6.17: Signal attenuation for an axon of radius of 2μm; Left: using the two-pool
model and right: using the simple cylinder model

Figure 6.18: Signal attenuation for an axon of radius of 3μm; Left: using the two-pool
model and right: using the simple cylinder model
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Figure 6.19: Diffusion in a circular layer : the attenuation comes from the attenuation
along the boundaries and perpendicular to them

6.2.3 Limitations of the model

This model relies on several assumptions that needs to be verified. First, the ratio

between the two diffusion coefficients will change the minimum radii for which the over-

estimation can be observed. Second, the diffusion time also influences this minimum

radius (for example, for a longer diffusion time Tdiff = 76ms even at 3μm, the radii

is overestimated using the single pool model at 4.6 μm assuming a 100nm layer thick-

ness). The model assumes slow exchange between the two compartments considering

the diffusion time achievable on clinical MRI systems. It will be more realistic to con-

sider intermediate exchange. Including exchange complicates the model (the Neuman’s

conditions simplifies the computation of the analytical expression of the signal) and in-

troduces a new parameter to estimate. For now, we did not apply this new model to

our 14 subjects, since the signal computation is very long due to the computation of the

roots defined by the boundary conditions). Optimization of the algorithm will be part

of our future work, in order to test the model on healthy subjects and compare with

the actual model. This study is the beginning of more investigations on the biophysical

reality of the two-pool model and the possibility to improve the accuracy of axon cal-

ibration algorithms. This work has been presented at the ISMRM conference in 2014

([Lebois et al., 2014]).

6.3 Ongoing studies

6.3.1 Arbitrary Gradient Waveform Spin Echo versus PGSE : in vivo

comparison

We presented in the previous chapter the development of a diffusion sequence allowing

to play any kind of waveform. The optimized AGWSE sequence has been proven to
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Figure 6.20: Optimized protocol using trapezoidal oscillating gradients (courtesy of
Dr. I. Drobnjak)

improve the accuracy of axon calibration ([Siow et al., 2012],[Siow et al., 2013]). In

order to compare AGWSE to PGSE protocol on human subjects at 7T, two volunteers

have been scanned using an optimized AGWSE-based protocol (provided by Dr. Ivana

Drobnjak from the CMIC, University College of London). This protocol was optimized

considering the CHARMED model as tissue model, characterized by a priori parameters

fr = 0.7,D‖ = 1.7 × 10−9mm2/s and r = 5μm. The characteristics of the 7T Siemens

scanner was also included in the constraints of the optimization algorithm. Since a

completely arbitrary gradient waveform could be computationly intensive, the waveform

was contrained to be oscillating trapezoids with varying frequencies (see Figure 6.20).

The signal was measured along 60 optimized directions. An ongoing project thus focuses

on the comparison of optimized PGSE and AGWSE in clinical conditions from several

subjects.

6.3.2 Towards characterization of diseases through axon calibration :

application to a cohort of autistic patients

Axon diameter mapping could provide interesting biomarkers of diseases and microstruc-

tural information on region where a decrease of connectivity or fractional anisotropy for

example is observed in patients. Clinical systems are constrained by their limited gra-

dient strength and static field but it could be of interest to apply an ActiveAx-like

protocol to study if it is possible to observe differences between controls and patients,

even if the parameter estimates cannot be as accurate as those obtained using higher
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gradient strength. In a feasibility study, we included 4 PGSE profiles along 30 direc-

tions (plus 2 b=0s/mm2 images) into an imaging protocol dedicated to the study of

autistic patients suffering from Asperger’s syndrome (in collaboration with the team

of Dr Marion Leboyer and Dr Josselin Houenou of the Albert Chenevier center of the

Mondor Institute in the Fondamental Institute). This study (approved by the local

ethical commitee C07-33, INSERM) focuses on the biomarkers of autism under a mul-

timodal approach : MRI, clinical evaluation, eye-tracking (cognitive and social tasks),

immunoinflammatory dosage, neuropsychological test. The imaging protocol includes

T1, T2 flair, T2 mapping, resting-state fMRI and diffusion weighted MRI. The acqui-

sition takes approximately 70 minutes including our protocol. The study is actually

conducted on a Tim Trio 3T MRI system equipped with a 12-channel head coil on 40

autistic patients and 30 controls. It is important to stress that the number of profiles

and orientations was imposed by the remaining scan time of the imaging protocol for

our study.

6.3.2.1 MRI protocol and methods

10 autistics patients and 10 controls have already been included in this preliminary

study at the time of the writing of this manuscript. The parameters of the PGSE

profiles were : δ = 12ms/Δ = 56.8ms/G = 26mT/m/bvalue = 368s/mm2, δ =

24ms/Δ = 28.8ms/G = 26mT/m/bvalue = 580s/mm2, δ = 28ms/Δ = 72.8ms/G =

26mT/m/bvalue = 2400s/mm2 , δ = 23ms/Δ = 77.8ms/G = 26mT/m/bvalue =

1795s/mm2. The acquisition parameters were : FOV = 210mm, TH=2mm, TR=6s,

TE=130ms, SlewRate = 150T/m/s, matrix=102x102. 30 slices were acquired centered

on the corpus callosum of each volunteer. Since the 3T is equipped with a 40mT/m

gradient but limited to 26mT/m, we don’t expect to have the accuracy we obtained

at 7T but we wanted to test whether it was possible to find differences between the

two populations, even at low gradient strength. The axon calibration procedure was

run on the corpus callosum at the level of the midsagittal plane. The burnin steps of

the MCMC procedure was increased up to 50000, the intervals were fixed to 1000 and

the number of samples was extended to 300. A profile along the corpus callosum was

computed following the same method described before. We also extracted the fractional

anisotropy along the corpus callosum from the computation of the diffusion tensor from

the profile with the highest b-value.
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Figure 6.21: Average profiles of axon radii and white matter fraction. On the left :
autistic patients. On the right : controls

6.3.2.2 Preliminary results

Figure 6.22 depicts respectively the average profile of axon radii and white matter frac-

tion of autistic patients and controls. As expected the inter and intra-subject variance

of the parameters is quite high (up to 0.1 for white matter fraction and 2.5 μm for axon

radius). If the radius seems to be higher in the body of the corpus callosum, the white

matter fraction doesn’t change much along the corpus callosum for controls. We com-

puted the differences across the subjects on each section using a Mann-Whitney test.

Significative section (see Figure 6.22) are located in the posterior part of the genu and

at the level of the isthmus, it indicates lower white matter fraction, radius and FA for

the population of autists at the level of the posterior part of the genu and a lower white

matter fraction in the isthmus. Previous studies ([Alexander et al., 2007],[Barnea-Goraly

et al., 2004],[Chen et al.]) reported a reduced volume of the corpus callosum as well as a

reduced fractional anisotropy in the genu and the splenium and at the global level of the

corpus callosum and an increased mean diffusivity in all regions except the splenium.

Both FA and mean diffusivity differences were explained by the increase of the radial

diffusivity. Here, we don’t observe a global difference. Lower FA can be explained by a

lower white matter fraction (and lower average radii) as suggested by our results. These

results have to be taken with caution, considering the variability of the results. The

number of subjects included in our study will be increased in the future (to 40 autistic

subjects and 30 healthy subjects). And results could be improved using a similar pro-

tocol, with more orientations and profiles. The relaxometry data acquired in the same

imaging protocol could be used to characterize a potential difference in myelination.
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Figure 6.22: Significative regions (p < 0.05) for radius, white matter fraction and FA
along the corpus callosum
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6.4 Conclusion

In this chapter, we first presented axon radii and density maps obtained for 14 subjects

using a new protocol dedicated to axon calibration with ten PGSE profiles along 60

directions on a 7T clinical scanner. A previous work ([Duclap et al., 2013a]) based on only

4 profiles showing some limitations mainly on the reproducibility of the results, we have

chosen to extend our protocol to ten profiles, to obtain a larger sampling of the diffusion

times and low, medium and strong b-values (strong b-values allowing to be more sensitive

to the restricted part of the signal). The tissue model was kept simple, corresponding

to a CHARMED model with an additional isotropic compartment to deal with CSF

contaminations. Results were in good agreement with histological observations, despite

an overestimation of the smallest radii partly explained by the limited gradient strength

(50mT/m) and by the too simple CHARMED model. However, the inter and intra-

subject variability of the estimates were reasonable and thanks to the 10 profiles and

the higher SNR provided by the 7T scanner, the results were reproducible and their

sensitivity to the initial parameters are limited. We also observed significant correlations

between the microstructural parameters and the DTI-based parameters, proving that

such a method could provide insights at the microstructure scale of increase or decrease

of DTI parameters such as FA, ADC, λ⊥ and λ‖ in patients in comparison with controls.

This work could be improved using the achievable gradient strength of the 7T (80mT/m,

limited to 50mT/m at the time of our study) and also using an improved model, since

the sampling provided by the ten profiles allows to add model parameters. The two-pool

axon model described in the previous chapter from a mathematical point of view could

be an interesting extension of the present model. We have shown through a theoretical

study in clinical conditions that using a single-pool cylinder model instead of the two-

pool model for the axon could lead to an overestimation of the actual axon radius when

the measurement are made perpendicularly to the fiber. The reality of this model is

still discussed and it will be of great interest to run the axon calibration procedure

on our data using this new model (for now, the computation of the signal being too

long due to the algorithm computing the roots of the boundary equations, the axon

radii mapping using the two-pool model couldn’t be done at the end of this thesis, but

optimization of the algorithm is ongoing and will allow us to include this model in our

toolbox and compare the results with the single pool model). Finally, improvement of

our methodology can also be done using an optimized Arbitrary Gradient Waveform

Spin Echo sequence to improve the accuracy of the radius and density estimates. This

chapter ends with a clinical application on a autistic cohort at 3T. Our results showed

significantly differences in regions of the corpus callosum between patients and controls

but due to the limited gradient strength of ou 3T MRI system and the choice of the

orientations that could be improved by using a set of directions in the midsagital plane,
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the variability of the estimates remains high but an increase of the number of profiles and

orientations as well as the gradient strength (like for the 7T, we are able now to push the

gradient strength to 40mT/m instead of 26mT/m) could help to be more discriminant

between the two populations and therefore provide reliable biomarkers of autism.



Chapter 7

Conclusion and Future Work

7.1 General conclusion and contributions

This thesis aimed at developing methodological tools to map brain microstructure using

both quantitative and diffusion MRI. This work was driven by the need to be able to map

microstructure under clinical conditions, inducing limited scan duration, limited gradient

strength and static field as well as safety constraints. Because of the complexity of the

brain microstrcture and given these constraints, measuring microstructural parameters

is a real challenge. The main idea of this thesis was to provide maps of parameters

characterizing the microstructure of white matter (T1, T2, diffusion parameters, axon

radii and density...) and study their variations across healthy subjects in order provide

a normative atlas of these features along white matter bundles, useful then to address

pathological cases. We summarize here the major contributions of this work.

7.1.1 Atlas of T1 and T2 relaxation times from the 79 subjects of the

CONNECT/Archi database

The first contribution of our work was focused on the construction of high resolution

atlases of relaxation times combined with a connectivity atlas, providing profiles of T1,

T2 and diffusion parameters along major white matter bundles of the 79 subjects of

the CONNECT/Archi database, that will be open to the scientific community. These

atlases could be used as normative atlases of quantitative features to be compared to

pathological cases. This work has been presented at the ISMRM conference ([Lebois

et al., 2013a]) and submitted to the NeuroImage journal.
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7.1.2 Contributions to axon calibration methods

The common axon calibration methods are now able to provide axon radii and density

consistent with histology but they are still limited by hardware constraints and scan

duration imposed by clinical applications. This leads to a reduced accuracy of the

estimates and a difficulty to distinguish small radii from each other (which are therefore

overestimated). Optimization methods of the sequence parameters could improve the

accuracy of the estimates. The other contributions of this thesis deal with this problem.

7.1.2.1 Implementation and validation of an Arbitrary Gradient Waveform

Spin Echo sequence

We developed a new diffusion weighted sequence on the 3T and 7T Siemens clinical MRI

systems of NeuroSpin ([Lebois et al., 2012]), able to play any kind of diffusion gradient

waveforms. This sequence was validated on a phantom using a totally arbitrary gradient

waveform. Optimizing the gradient waveform using hardware and safety constraints and

according to a prior model of the tissues have been shown to increase the accuracy of

measures of microstructural parameters( [Drobnjak et al., 2010]).

7.1.2.2 A novel geometrical model of the axon

Our third contribution was the proposition of a new geometrical model of the axon,

taking into account the biphasic behaviour of the water in the living tissue and relying

on a thick cylinder model of axons with fast and slow pools of water([Lebois et al.,

2013b],[Lebois et al., 2013c]). This may help to reduce the overestimation of the smallest

radii observed when using the conventional CHARMED model.

7.1.2.3 Axon radii and density mapping of the corpus callosum at 7T

We proposed a new protocol, made of ten PGSE profiles sampling several diffusion times

with increasing b-values to perform axon calibration in the corpus callosum of 14 healthy

subjects to take advantage of the high static field provided by the 7T in comparison with

previous studies performed at 3T. We showed that this protocol provide an acceptable

intra and inter subjects variability, but we still observed an overestimation of the smallest

radii. Our results showed correlations with usual DTI parameters indicating that they

provide real insights to explain the observed variations of these parameters (as a FA

drop for example) from a microstructural point of view at a cellular scale.
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7.1.3 Software contribution

A toolbox dedicated to axon calibration, integrating tissue and sequence models was

developped in the PTK library and is about to be integrated into the BrainVisa/Con-

nectomist toolbox.

7.2 Future Work

7.2.1 Construction of further atlases based on the CONNECT/Archi

MRI database

The diversity of the data acquired in the Archi database allows to build other atlases

to improve our knowledge about white matter microstructure. We could for example

extract the myelin white matter fraction from the relaxometry data that would increase

the understanding of the variability of the microstructure along the bundles and their

relationship to variation of myelination.

7.2.2 In vivo axon calibration at 7T

The experiments using the ten PGSE profiles on the 7T scanner showed improved com-

pared to 3T results and we still have the opportunity to improve this study by increasing

the gradient strength up to the maximum gradient strength (80mT/m). The two-pool

model we introduced in this thesis has also to be validated in vivo and compared to

the single pool model to study the potential improvement it could bring. The axon

calibration procedure we developed will be thus optimized and parallelized to be able to

map the axon radius and density using this novel model on the same subjects. A model

of orientation dispersion will also be included in our model to allow axon calibration

in other regions of the brain exhibiting a higher dispersion than in the corpus callo-

sum. Finally, maps of microstructure parameters will be derived scanning the subjects

of the Archi databse using a similar protocol in order to go further in the comparison

with other quantitative parameters of the microstructure such as T1 and T2 relaxation

times.

7.2.3 In vivo comparative study of AGWSE vs PGSE

Acquisitions are currently conducted on human subjects on the 7T scanner using an AG-

WSE sequence. The protocol was optimized using a CHARMED model as a tissue model
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and including hardware constraintes of the scanner. The waveform was constrained to be

trapezoidal, the optimization process provided 5 protocols with oscillating trapezoidal

gradients at different frequencies. The subjects will also undergo an optimized PGSE

protocol. Oscillating gradients were proven to provide more accurate estimates ( [Siow

et al., 2013]) and we would like to compare the results obtained with AGWSE and PGSE

protocols on the 7T scanner.

7.2.4 Towards clinical applications

We presented in the last chapter the beginning of a study on a cohort of autistic patients

at 3T. The obtained results on the midsagittal plane shows high variability, due to the

limited gradient strength and number of orientations. The first improvement is to in-

crease the maximum gradient strength (since in our study it was limited to 26mT/m but

it is possible to reach the 40mT/m) but also to optimize the orientations, in order to be

more sensitive to the restricted compartment. The preliminary analysis showed decrease

white matter fraction in the posterior part of the genu in the autistic population in com-

parison with the controls. More patients and controls will be included to increase the

statistical power of the study. We will also improve the profile computation, projecting

the values on the centroid obtained from the corpus callosum tract extracted from the

tractogram of each subject. We are also implicated in the DYSBRAIN project initiated

by F. Ramus (Laboratory of cognitive sciences and pyscholinguistics, ENS Paris) to

study the hypothesis of abnormal microstructure in cortical areas in dyslexia (dyslexic

brains show neural migration anomalies). This study will required to develop a novel

model to characterize the grey matter cells integrating permeability effects.

7.2.5 Real-time axon calibration

Finally, a real time project, conducted by F. Poupon of NeuroSpin (PediART) aims at

estimating microstructure parameters in real time during the acquisition. This project

could offer the possibility to control the accuracy of the estimation during the ongoing

acquisition and to modify sequence parameters in real time to improve the accuracy. Our

sequence and MCMC procedure will be included in this work involving high performance

computing. The first application of this project will be the study of microstructure in a

pediatric population of patients suffering from metachromatic leukodistrophy and focal

epilepsy.
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7.2.6 Extension of the study to grey matter

It is far more difficult to extract cell sizes and density in grey matter. One of the biggest

limitation is the permeability of their membranes, makes the model more complex. An

interesting extension would be therefore to adapt our two-pool model to grey matter to

provide biomarkers of diseases affecting the grey matter.

7.2.7 Human Brain Project

Last this work will be continued in the frame of the Human Brain Project, a large project

unifying scientific resources with the ultimate goal of mimicking the human brain.

7.2.8 Publications

We list here the different publications arising from this work.

7.2.8.1 Journal Papers

A. Lebois , D. Duclap , P. Guevara , C. Santos , D. LeBihan , J.F. Mangin , C. Poupon.

A novel quantitative atlas of T1, T2 relaxation times along white matter bundles : asym-

metry study and comparison with diffusion MRI. Submitted to NeuroImage.

Y. Assaf, D. C. Alexander, D. K. Jones, A. Bizzi, T. E. Behrens, C. A. Clark, Y. Cohen,

T. B. Dyrby, P. S. Huppi, T. R. Knoesche, D. LeBihan, G. J. Parker, and C. Poupon. The

CONNECT project: Combining macro- and micro-structure. NeuroImage, 80 (0):273

– 282, 2013. ISSN 1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage. 2013.05.055

7.2.8.2 Conference Papers

A. Lebois, C.H. Yeh, D. Le Bihan, J.F. Mangin, C.P Lin, C. Poupon. On the use of the

two pool model to improve axon radius estimation. In Proceedings of the International

Society Magnetic Resonance in Medicine, 2014.

A. Lebois, C.H. Yeh, , D. Le Bihan, J.F. Mangin, C.P. Lin, and C. Poupon. Axon

diameter mapping : Gaussian phase distribution approximation of the diffusion signal

attenuation using a two pool thick layer cylinder model. In Proceedings of the Inter-

national Society Magnetic Resonance in Medicine Workshop : Diffusion as a probe of
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neural tissue microstructure, 2013

A. Lebois, C.H. Yeh, , D. Le Bihan, J.F. Mangin, C..P. Lin, and C. Poupon. Cell

diameter mapping : Gaussian phase distribution approximation of the diffusion signal

attenuation using a two pool thick layer sphere model. In Proceedings of the Inter-

national Society Magnetic Resonance in Medicine Workshop : Diffusion as a probe of

neural tissue microstructure, 2013.

D. Duclap, P. Hubbard, H. Zhang, P. Guevara, A. Lebois, D. Le Bihan, J.F. Mangin, D.

Alexander, G. Parker, and C. Poupon. A novel microstructural atlas of the white matter

bundles. In Proceedings of the International Society Magnetic Resonance in Medicine

Workshop : Diffusion as a probe of neural tissue microstructure, 2013

A. Lebois, D. Duclap, B. Schmitt, C. Dos Santos, P. Guevara, H. Zhang, D. Le Bihan,

J.F. Mangin, and C. Poupon. Towards probabilistic atlases of the t1/t2 relaxation times

from the connect/archi database. In Proceedings of the International Society Magnetic

Resonance in Medicine, 2013

D. Duclap, B. Schmitt, A. Lebois, P. Guevara, H. Zhang, Y. Assaf, P. F, R. Denis, Y.

Cointepas, D. Le Bihan, J.F. Mangin, and C. Poupon. A novel probabilistic connec-

tivity atlas for the human connectome: the connect/archi atlas. In Proceedings of the

International Society Magnetic Resonance in Medicine, 2013

D. Duclap, B. Schmitt, A. Lebois, P. Guevara, H. Zhang, C. Dos Santos, D. Le Bihan,

J.F. Mangin, and C. Poupon. Towards a super-resolution connect/archi atlas of the

white matter connectivity. In Proceedings of the International Society Magnetic Reso-

nance in Medicine, 2013

A. Lebois, B. Schmitt, D. Duclap, F. Poupon, and C. Poupon. A novel diffusion weighted

arbitrary spin echo pulse sequence to customize diffusion gradient shapes. In Proceed.

ings of the European Society Magnetic Resonance in Medicine and Biology, 2012

D. Duclap, A. Lebois, B. Schmitt, O. Riff, P. Guevara, L. Marrakchi, V. Brion, F.

Poupon, J.F Mangin, C. Poupon, Connectomist.2.0: a novel diffusion analysis toolbox

for brainvisa. In Proceedings of the European Society Magnetic Resonance in Medicine

and Biology, 2012.

A. Lebois, C. Poupon, L. Ciobanu, D. Le Bihan, B. Djemai, N. Pyatigorskaya, J.F Man-

gin, I. Kezele, Short.time diffusion analysis at ultra-high field (17T) to infer surface-to-

volume ratio in the grey matter of rat brain in vivo and ex vivo. In Proceedings of the

European Society Magnetic Resonance in Medicine and Biology, 2011.



Appendix A

Mathematical Functions used in

this thesis

A.1 Bessel Functions

A.1.1 Bessel Functions of the first kind

Jn(x) =
∞∑
p=0

(−1)p

p!(n+ p)!
(
x

2
)2p+n

(n integer)

A.1.2 Neuman Functions (second kind)

Yn(x) = lim
λ→+n

Jλ(x)cos(λπ) − J−λ(x)

sin(λπ)

A.2 Modified Bessel Functions of the first kind

In(x) = (
1

2
x)n

∞∑
k=0

(14x
2)k

k!Γ(n+ k + 1)

(n integer)
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A.3 Spherical Bessel Functions

A.3.1 Spherical Bessel Functions of the first kind

jn(x) =

√
π

2x
Jn+1/2(x)

(n integer)

A.3.2 Spherical Bessel Functions of the second kind

yn(x) =

√
π

2x
Yn+1/2(x)

A.4 Legendre Polynomials

The Legendre Polynomials can be defined in several ways, we here describe them through

the Rodrigues formula :

Pn(x) =
1

2nn!

dn

dxn
((x2 − 1)n)

A.5 Confluent hypergeometric function

M(a, b, c) =

∞∑
n=0

a(n)zn

b(n)n!
,

where a(0) = 1 and a(n) = a(a+ 1)(a+ 2)...(a + n− 1)



Appendix B

MCMC Procedure

We here describe the MCMC procedure used to draw samples of posterior distribution

of each parameter of the model from the measurements. This procedure does not re-

quire the knowledge of partial derivatives of the signal to optimize with respect to the

parameters.

1. Computation of the signal using current parameters (initial values)

2. New parameters are computed, perturbating the current parameters using a Gaus-

sian perturbation.

3. New parameters are accepted if they respect the prior conditions (typically, if the

value belongs to the range of authorized values)

4. Computation of the signal with new parameters.

5. Computation of the likelihood ratio (LR) between the new signal using the per-

turbed parameters and the old signal with current parameters using, in the case

of Rician noise :

LRrician(Smeasured) =
Smeasured × I0(

SmeasuredSnew

σ2 ) exp(
−S2

measured
−S2

new

2σ2 )

Smeasured × I0(
SmeasuredSold

σ2 ) exp(
−S2

measured
−S2

old

2σ2 )

6. The new parameters are kept if the likelihood ratio is greater than one or greater

than a random value (drawned from a uniform probability)

7. The procedure returns to step 2

This procedure is first repeated a large number of times, to let the Markov Chain become

stable: this is the burnin period. The final samples of the posterior distribution are kept
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every n draws, called intervals to guarantee the independance of the draws. At the end,

the algorithm provides samples of the posterior distribution of each parameter. The

estimates of the model can for example be computed from the average value of this

distribution.



Appendix C

Corpus Callosum T1 and T2

profiles

We here provide the profile of T1 and T2 relation times along the corpus callosum.
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N. Shemesh, E. Özarslan, P. J. Basser, and Y. Cohen. Measuring small compart-

mental dimensions with low-q angular double-pgse nmr: The effect of experimen-

tal parameters on signal decay. Journal of Magnetic Resonance, 198(1):15 – 23,

2009. ISSN 1090-7807. doi: http://dx.doi.org/10.1016/j.jmr.2009.01.004. URL

http://www.sciencedirect.com/science/article/pii/S1090780709000081.

B. Siow, I. Drobnjak, A. Chatterjee, M. F. Lythgoe, and D. C. Alexander. Estima-

tion of pore size in a microstructure phantom using the optimised gradient waveform

diffusion weighted {NMR} sequence. Journal of Magnetic Resonance, 214(0):51 –

60, 2012. ISSN 1090-7807. doi: http://dx.doi.org/10.1016/j.jmr.2011.10.004. URL

http://www.sciencedirect.com/science/article/pii/S1090780711003806.

B. Siow, I. Drobnjak, A. Ianus, I. Christie, M. Lythgoe, and D. Alexander. Axon radius

estimation with oscillating gradient spin echo (ogse) diffusion mri. The Open-Access

Journal for the Basic Principles of Diffusion Theory, Experiment and Application, 18:

1–6, 2013.

E. Sorolla, J. Mosig, and M. Mattes. Algorithm to calculate a large number of roots of

the cross-product of bessel functions. Antennas and Propagation, IEEE Transactions

on, 61(4):2180–2187, April 2013. ISSN 0018-926X. doi: 10.1109/TAP.2012.2231929.

S. N. Sotiropoulos, T. E. Behrens, and S. Jbabdi. Ball and rackets: Inferring fiber

fanning from diffusion-weighted {MRI}. NeuroImage, 60(2):1412 – 1425, 2012.

ISSN 1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage.2012.01.056. URL

http://www.sciencedirect.com/science/article/pii/S1053811912000730.

G. J. Stanisz. Diffusion mr in biological systems: Tissue compart-

ments and exchange. Israel Journal of Chemistry, 43(1-2):33–44,

2003. ISSN 1869-5868. doi: 10.1560/E0WU-7FFH-31M6-VLYT. URL

http://dx.doi.org/10.1560/E0WU-7FFH-31M6-VLYT.



Bibliography 208

G. J. Stanisz, G. A. Wright, R. M. Henkelman, and A. Szafer. An analytical model

of restricted diffusion in bovine optic nerve. Magnetic Resonance in Medicine,

37(1):103–111, 1997. ISSN 1522-2594. doi: 10.1002/mrm.1910370115. URL

http://dx.doi.org/10.1002/mrm.1910370115.

E. O. Stejskal and J. E. Tanner. Spin diffusion measurements: Spin echoes in

the presence of a time dependent field gradient. The Journal of Chemical

Physics, 42(1):288–292, 1965a. doi: http://dx.doi.org/10.1063/1.1695690. URL

http://scitation.aip.org/content/aip/journal/jcp/42/1/10.1063/1.1695690.

E. O. Stejskal and J. E. Tanner. Spin diffusion measurements: Spin echoes in

the presence of a time dependent field gradient. The Journal of Chemical

Physics, 42(1):288–292, 1965b. doi: http://dx.doi.org/10.1063/1.1695690. URL

http://scitation.aip.org/content/aip/journal/jcp/42/1/10.1063/1.1695690.

V. Stevenson, G. Parker, G. Barker, K. Birnie, P. Tofts, D. Miller, and A. Thompson.

Variations in t1 and t2 relaxation times of normal appearing white matter and lesions

in multiple sclerosis. Journal of the neurological sciences, 178:81–87, 2000.

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner,

and A. V. Benderskii. Hydrogen bonding at the water surface revealed by iso-

topic dilution spectroscopy. Nature, 474(7350):192–5, 2011. ISSN 1476-4687. URL

http://www.biomedsearch.com/nih/Hydrogen-bonding-at-water-surface/21654801.html.

H. C. Torrey. Bloch equations with diffusion terms. Phys. Rev.,

104:563–565, Nov 1956. doi: 10.1103/PhysRev.104.563. URL

http://link.aps.org/doi/10.1103/PhysRev.104.563.

J.-D. Tournier, F. Calamante, D. G. Gadian, and A. Connelly. Direct esti-

mation of the fiber orientation density function from diffusion-weighted {MRI}
data using spherical deconvolution. NeuroImage, 23(3):1176 – 1185, 2004.

ISSN 1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage.2004.07.037. URL

http://www.sciencedirect.com/science/article/pii/S1053811904004100.

J.-D. Tournier, F. Calamante, and A. Connelly. Robust determination of

the fibre orientation distribution in diffusion mri: Non-negativity constrained

super-resolved spherical deconvolution. NeuroImage, 35(4):1459 – 1472, 2007.

ISSN 1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage.2007.02.016. URL

http://www.sciencedirect.com/science/article/pii/S1053811907001243.

D. S. Tuch. Diffusion MRI of complex tissue structure. PhD thesis, Massachusetts

Institute of Technology, Cambridge, MA, Jan. 2002.



Bibliography 209

D. S. Tuch. Q-ball imaging. Magnetic Resonance in Medicine, 52(6):

1358–1372, 2004. ISSN 1522-2594. doi: 10.1002/mrm.20279. URL

http://dx.doi.org/10.1002/mrm.20279.

D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and

V. J. Wedeen. High angular resolution diffusion imaging reveals intravoxel white

matter fiber heterogeneity. Magn. Reson. Med., 48(4):577–582, 2002. URL

http://www3.interscience.wiley.com/cgi-bin/fulltext/98518419/HTMLSTART.

P. Van Gelderen, D. DesPres, P. van Zijl, and C. Moonen. Evaluation of restricted

diffusion in cylinders. phosphocreatine in rabbit leg muscle. J.Magn.Reson B, 103:

255–260, 1994.

F. Wang, Z. Sun, L. Cui, X. Du, X. Wang, H. Zhang, Z. Cong, N. Hong, and D. Zhang.

Anterior cingulum abnormalities in male patients with schizophrenia determined

through diffusion tensor imaging. Am J Psychiatry, 161(3):573–5, 2004. ISSN 0002-

953X.

Y. Wang, A. Gupta, Z. Liu, H. Zhang, M. L. Escolar, J. H. Gilmore, S. Gouttard,

P. Fillard, E. Maltbie, G. Gerig, and M. Styner. {DTI} registration in atlas based

fiber analysis of infantile krabbe disease. NeuroImage, 55(4):1577 – 1586, 2011.

ISSN 1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage.2011.01.038. URL

http://www.sciencedirect.com/science/article/pii/S1053811911000735.

J. P. Wansapura, S. K. Holland, R. S. Dunn, and W. S. Ball. Nmr

relaxation times in the human brain at 3.0 tesla. Journal of Mag-

netic Resonance Imaging, 9(4):531–538, 1999. ISSN 1522-2586. doi:

10.1002/(SICI)1522-2586(199904)9:4〈531::AID-JMRI4〉3.0.CO;2-L. URL

http://dx.doi.org/10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L.

V. Wedeen, T. Reese, D. Tuch, M. Weigel, J.-G. Dou, R. Weiskoff, and D. Chessler.

Mapping fiber orientation spectra in cerebral white matter with fourier-transform

diffusion mri. In Proceedings of the International Society Magnetic Resonance in

Medicine 8, 2000.

R. Westerhausen, R. J. Huster, F. Kreuder, W. Wittling, and E. Schweiger. Corticospinal

tract asymmetries at the level of the internal capsule: Is there an association with

handedness? NeuroImage, 37(2):379 – 386, 2007. ISSN 1053-8119. doi: http://dx.

doi.org/10.1016/j.neuroimage.2007.05.047.

S. D. Wolff and R. S. Balaban. Magnetization transfer contrast (mtc) and tis-

sue water proton relaxation in vivo. Magnetic Resonance in Medicine, 10



Bibliography 210

(1):135–144, 1989. ISSN 1522-2594. doi: 10.1002/mrm.1910100113. URL

http://dx.doi.org/10.1002/mrm.1910100113.

J. Xu, M. D. Does, and J. C. Gore. Quantitative characterization of tissue microstructure

with temporal diffusion spectroscopy. Journal of Magnetic Resonance, 200(2):189 –

197, 2009. ISSN 1090-7807. doi: http://dx.doi.org/10.1016/j.jmr.2009.06.022. URL

http://www.sciencedirect.com/science/article/pii/S109078070900189X.

X. H. Xu and E. S. Yeung. Long-range electrostatic trapping of single-protein molecules

at a liquid-solid interface. Science, 281(5383):1650–3, 1998. ISSN 0036-8075. URL

http://www.biomedsearch.com/nih/Long-range-electrostatic-trapping-single/9733506.ht

P.-T. Yap, Y. Chen, H. An, Y. Yang, J. H. Gilmore, W. Lin, and

D. Shen. Sphere: {SPherical} harmonic elastic {REgistration} of

{HARDI} data. NeuroImage, 55(2):545 – 556, 2011. ISSN 1053-

8119. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.12.015. URL

http://www.sciencedirect.com/science/article/pii/S1053811910015971.

J. D. Yeatman, R. F. Dougherty, N. J. Myall, B. A. Wandell, and H. M. Feldman. Tract

profiles of white matter properties: Automating fiber-tract quantification, 2012.

C. Yeh, B. Schmitt, D. Le Bihan, J. Li-Schlittgen, C. Lin, and P. C. Diffusion mi-

croscopist simulator: A general monte carlo simulation system for diffusion magnetic

resonance imaging. PLoS ONE, 8(10), 2013.

H. Zhang, P. A. Yushkevich, D. C. Alexander, and J. C. Gee. Deformable registration of

diffusion tensor {MR} images with explicit orientation optimization. Medical Image

Analysis, 10(5):764 – 785, 2006. ISSN 1361-8415. doi: http://dx.doi.org/10.1016/j.

media.2006.06.004. ¡ce:title¿The Eighth International Conference on Medical Imaging

and Computer Assisted Intervention – {MICCAI} 2005¡/ce:title¿ ¡xocs:full-name¿The

Eighth International Conference on Medical Imaging and Computer Assisted Inter-

vention – {MICCAI} 2005¡/xocs:full-name¿.

H. Zhang, S. P. Awate, S. R. Das, J. H. Woo, E. R. Melhem, J. C. Gee, and P. A.

Yushkevich. A tract-specific framework for white matter morphometry combining

macroscopic and microscopic tract features. Medical Image Analysis, 14(5):666 – 673,

2010. ISSN 1361-8415. doi: http://dx.doi.org/10.1016/j.media.2010.05.002. Spe-

cial Issue on the 12th International Conference on Medical Image Computing and

Computer-Assisted Intervention (MICCAI) 2009.

H. Zhang, P. L. Hubbard, G. P. J.M., and D. C. Alexander. Axon diameter mapping

in the presence of orientation dispersion with diffusion mri. NeuroImage, 56(3):1301–

1315, 2011a.



Bibliography 211

H. Zhang, P. L. Hubbard, G. J. Parker, and D. C. Alexander. Axon

diameter mapping in the presence of orientation dispersion with dif-

fusion {MRI}. NeuroImage, 56(3):1301 – 1315, 2011b. ISSN 1053-

8119. doi: http://dx.doi.org/10.1016/j.neuroimage.2011.01.084. URL

http://www.sciencedirect.com/science/article/pii/S1053811911001376.

H. Zhang, T. Schneider, C. A. Wheeler-Kingshott, and D. C. Alexander.

Noddi: Practical in vivo neurite orientation dispersion and density imag-

ing of the human brain. NeuroImage, 61(4):1000 – 1016, 2012. ISSN

1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage.2012.03.072. URL

http://www.sciencedirect.com/science/article/pii/S1053811912003539.

W. Zhou and W. Laidlaw. Measurement of axon radii distribution in orientationally

unknown tissue using angular double-pulsed gradient spin echo (double-pgse) nmr,

2011.
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