N
N

N

HAL

open science

NONLINEAR POTENTIAL THEORY AND
QUASILINEAR EQUATIONS WITH MEASURE
DATA

Quoc-Hung Nguyen

» To cite this version:

Quoc-Hung Nguyen. NONLINEAR POTENTIAL THEORY AND QUASILINEAR EQUATIONS
WITH MEASURE DATA. Analysis of PDEs [math.AP]. Université Francois Rabelais - Tours, 2014.

English. NNT: . tel-01063365

HAL Id: tel-01063365
https://theses.hal.science/tel-01063365v1

Submitted on 12 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01063365v1
https://hal.archives-ouvertes.fr

7> hAY
Centre Val de Loire
UNIVERSITE UNIVERSITE

FRANCOIS - RABELAIS

TOURS

Spirit of the Loire Valley

UNIVERSITE FRANCOIS-RABELAIS DE TOURS

ECOLE DOCTORALE MIPTIS
Laboratoire de Mathématiques et Physique Théorique
CNRS UMR 7350

THESE présenté par :
Quoc-Hung NGUYEN
soutenue le : 25 septembre 2014

pour obtenir le grade de : Docteur de 'université Francois - Rabelais de Tours

Discipline/ Spécialité : Mathématiques

THEORIE NON LINEAIRE DU POTENTIEL ET EQUATIONS
QUASILINEAIRES AVEC DONNEES MESURES

THESE dirigée par :
Mme. BIDAUT-VERON Marie-Francoise

M.

VERON Laurent

RAPPORTEURS :

M.
M.
M.

KENIG Carlos
MINGIONE Giuseppe
PONCE Augusto

JURY :

M.

BETHUEL Fabrice

Mme. BIDAUT-VERON Marie-Francoise

228

. MIRONESCU Petru
. PONCE Augusto

. SANDIER Etienne

. SOUPLET Philippe
. VERON Laurent

Professeur, Université Frangois-Rabelais
Professeur, Université Frangois-Rabelais

Professeur, Université de Chicago
Professeur, Université de Parme
Professeur, Université Catholique de Louvain

Professeur, Université Pierre et Marie Curie
Professeur, Université Frangois-Rabelais
Professeur, Université Lyon 1

Professeur, Université Catholique de Louvain
Professeur, Université Paris 12 Val de Marne
Professeur, Université Paris XIII

Professeur, Université Frangois-Rabelais







Remerciements

Je remercie profondément mes directeurs de thése Madame Marie-Frangoise Bidaut-
Véron et Monsieur Laurent Véron pour avoir si bien pris soin de moi et m’avoir toujours
ouvert la porte pour répondre a mes questions. Avec eux, j’ai appris tant de choses, aussi
bien scientifiquement qu’humainement.

Mon séjour au LMPT a été fantastique et inoubliable. Je remercie tous les membres du
LMPT pour I'environnement plaisant avec plein de discussions mathématiques.

J’exprime toute ma gratitude a Messieurs Carlos Kenig, Giuseppe Mingione et Augusto
Ponce pour l'intérét qu’ils ont porté & mon travail en acceptant d’étre les rapporteurs de
ma thése.

Je tiens & remercier Messieurs Fabrice Bethuel, Etienne Sandier, Petru Mironescu et
Philippe Souplet qui m’ont fait 'honneur de faire partie de mon jury.

Finalement, je remercie ma famille et mes amis pour leur soutien constant pendant
toutes ces années.

Quoc-Hung NGUYEN



REMERCIEMENTS

ii



THEORIE NON LINEAIRE DU
POTENTIEL ET EQUATIONS
QUASILINEAIRES AVEC DONNEES
MESURES

Résumé

Cette thése concerne 'existence et la régularité de solutions d’équations non-linéaires
elliptiques, d’équations paraboliques et d’équations de Hesse avec mesures, et les critéres
de D'existence de solutions grandes d’équations elliptiques et paraboliques non-linéaires.

Liste de publications

1. Avec M. F. Bidaut-Véron, L. Véron ; Quasilinear Lane-Emden equations with absorption
and measure data, Journal des Mathématiques Pures et Appliquées, 102, 315-337
(2014).

2 Avec L. Véron; Quasilinear and Hessian type equations with exponential reaction and
measure data, Archive for Rational Mechanics and Analysis, 214, 235-267 (2014).

3 Avec L. Véron; Wiener criteria for existence of large solutions of quasilinear elliptic
equations with absorption, 17 pages, soumis, arXiv :1308.2956.

4 Avec M. F. Bidaut-Véron; Stability properties for quasilinear parabolic equations with
measure data, 29 pages, & apparaitre dans Journal of European Mathematical Society,
arXiv :1409.1518.

5 Avec M. F. Bidaut-Véron; FEvolution equations of p-Laplace type with absorption or
source terms and measure data, 21 pages, & apparaitre dans Communications in
Contemporary Mathematics, arXiv :1409.1520.

6 Potential estimates and quasilinear parabolic equations with measure data, 118 pages,
arXiv :1405.2587v1.

7 Avec L. Véron; Wiener criteria for existence of large solutions of nonlinear parabolic
equations with absorption in a non-cylindrical domain, 29 pages, soumis,
arXiv :1406.3850.

8 Avec M. F. Bidaut-Véron; Pointwise estimates and existence of solutions of porous
medium and p-Laplace evolution equations with absorption and measure data, 27
pages, soumis, arXiv :1407.2218.

iii



RESUME

Mots clés : équations quasi-linéaire elliptiques, équations quasi-linéaires paraboliques;
solutions renormalisée ; solutions maximales; solutions grandes; potentiel de Wolff; po-
tentiel de Riesz; potentiel de Bessel; potentiel maximal; Noyau de la chaleur; noyau de
Bessel parabolique ; Mesures de Radon ; capacités de Lorentz-Bessel ; capacités de Bessel ;
capacités de Hausdorff ; lemme de recouvrement de Vitali; espaces de Lorentz; domaines
épais uniformes; domaines plats de Reifenberg; estimations de décroissance; estimations
de Lorentz-Morrey ; estimations capacitaires; équations de milieu poreux; équations de
type Riccati.

v



NONLINEAR POTENTIAL THEORY
AND QUASILINEAR EQUATIONS WITH
MEASURE DATA

Summary
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Introduction générale

This thesis is devoted to study the following types of problems :

— Quasilinear elliptic and Hessian equations with measure data,

— Quasilinear parabolic equations with measure data,

— Wiener type criteria for existence of large solutions to nonlinear elliptic and parabolic
equations with absorption.

0.1 Quasilinear elliptic and Hessian equations with measure
data

Let Q ¢ RY(N > 2) be a bounded domain containing 0 and g : @ x R — R be a
Carathéodory function. We assume that for a.e x € Q, r — g(z,r) is nondecreasing and
odd. In Chapter 1, we consider the following problem

-Apu+g(z,u) =w in Q,

wu=0 in O, (0.1.1)

where Apu = div (]Vu\p*QVu), (1 <p < N), is the p-Laplacian and w is a bounded Radon
measure in 2. When p = 2 and g(z,u) = |u|?"'u the problem has been considered by Baras
and Pierre [3]. They proved that the corresponding problem to (0.1.1) admits a solution
if and only if the measure w is absolutely continuous with respect to (w.r.t) the Bessel
capacity Capsy ,, ¢' = q/(q — 1). Here, Cap, , is the capacity associated to the Sobolev
space W24 (RV), i.e,

Capy ,(E) = inf{||<p||(é‘//2,q,(RN) cp € S(RY), p > 1 in a neighborhood of E},

for any compact E C RV,
We utilize Kilpelainen and Maly’s result [12] (also see [11, 18]) to derive a pointwise
estimate of solutions to equation —Aju = w involving the Wolff potential W7 [|w|] and

nonlinear potential theory for investigating problem (0.1.1), where the Wolff potential is
defined by

T w 2\ V-1
{p[|w‘](x) = /0 <|’(BP<)>> CZ) for all z € RV.

pN=p

We introduce a new suitable class of Bessel capacities associated problem (0.1.1). If G,
is the Bessel kernel of order a > 0 and L%(RY) is the Lorentz space with order (s,q),



0.1. QUASILINEAR ELLIPTIC AND HESSIAN EQUATIONS WITH MEASURE
DATA

then capacity Capg,_ ;, of set Borel set £ C RY is defined by
Capa, o g(E) = WE{|fl[feagur) £ >0, Gax f>1 on B}
for any Borel set . When ¢ = s, we denote Capg, , s by Capg, 4 It is well known that

the capacity Caszyq/ is equivalent to Capz’q,.

In Chapter 1, we show that the problem (0.1.1) has a solution if one of the following
cases is satisfied :

a) g(z,s) = |z|?|s|97!s and w is absolutely continuous w.r.t Capg Ng P
PPNqg—(p—-1)(N-B)’q+1-p

b) g(z,s) = |z|7PG(s), G satisfies [~ G(s)s™ 7 'ds < oo and w is absolutely continuous
w.r.t Cap Ng ,
G N L

c) g(z,s) = sign(s)(e™** — 1) and |w| < f + v where f € LY (), v is a nonnegative
(=1 (-1)

bounded Radon measure which ||M @ [V]l| Lo () is small enough.

p,2di;m
Here a solution of (0.1.1) is understood in the sense of renormalized (see Definition 1.3.1
in Chapter 1) and we always assume that 0 < 3 < N,¢g>p—1,7 >0, > 1 and M{,,[v],
n>0,0<a< N,r>0is defined by

v(B,y(z
My, (o) = sup B

for all z € RY with h,(p) = min{(—Inp)~", (In2)~"}. When p = 2, 8 = 0, we obtain Baras
and Pierre’s sufficient condition in case a).

In Chapter 2, we are concern with the following problem

—Apu =g(u) +w in €,

u=0  in 9 (0.1.2)

where w is a nonnegative bounded Radon measure in 2 and g(u) ~ e“'“'ﬁ, a>0,0>1.

The case where g is a power function, i.e g(u) = u? for ¢ > p — 1 has been studied by
Phuc and Verbitsky in [18|. They established a sufficient and necessary conditions for the
existence of solutions of problem (0.1.2) expressed in terms of the capacity Capr

q .
q—p+1
For example, if w has compact support in €2, then a sufficient and necessary condition has
the following form

w(E) < CCapg, - (E) for all compact set £ C €2
’q—p

where C' is a constant only defending on N, p, g and d(supp(w), 92). Their construction is

based upon sharp estimates from above and below of solutions of the problem —Aju = w

combined with a deep analysis of the Wolff potential.

We give a new approach in order to treat analogous questions for problem (0.1.2) in

the case exponential function. We obtain a sufficient condition expressed in terms of the
(p—1)(B-1)

fractional maximal potential M, d.ﬁ [w] and a necessary condition expressed in terms
p,2diam(12) . . .

of Orlicz capacities, see Theorem 2.1.1 in Chapter 2. We also establish this results in the

case ) = RV,



0.2. QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA

Besides, in [22, 23, 24|, Trudinger and Wang developed the theory of the k—Hessian
measure and Labutin [13| obtained sharp estimates of solution of k—Hessian equation
expressed in terms of the Wolff potential. Solutions of k—Hessian equation inherit almost all
of properties from solutions to p—laplace equation. For this reason, we obtained analogous
results for (0.1.2) when p—laplacian operator is replaced by the k—Hessian operator, see
Theorem 2.1.3 and Theorem 2.1.4 in Chapter 2.

Furthermore, we also establish existence results for a general Wolff potential equation
under the form
u=W[lg(w)]+fin RY,

where 0 < R < 00, 0 < ap < N and f is a positive integrable function.

0.2 Quasilinear parabolic equations with measure data

Let Q be a bounded domain of RN (N > 2) and Qp = Q x (0,7), T > 0. We study the
problem
Ou — div (Ap(z,t,Vu)) =p in Qp,
u=0 on 00 x(0,7), (0.2.1)
u(0) =0 in 0,

where p is a bounded Radon measure in Q7, o is an integrable function in {2 and A, is a
Carathéodory function on Q7 xRY such that u — —div (A,(z,t, Vu)) is a nonlinear mono-
tone and coercive mapping from the space LP(0, T'; W2 (Q)) into its dual LP (0, T; W =17 (Q))
for p > 1.

It is well known that for any bounded Radon measure p in 7 can be written under
the form

p=f—divg+h + s,

where f € L'(Qr), g € (LP (Qr)N, h € L?(0,T, Wol’p(Q)) and ps is a bounded Radon
measure in Qp with support on a set of zero p—parabolic capacity, proved in [7]. In [17],
Petitta gave the definition of a renormalized solution for problem (0.2.1) associated above

decomposition and proved that a renormalized solution exists for p > 2]<,le1. This condition

ensures that the gradient of a renormalized solution belongs to L!(Qr).

In Chapter 3 (Theorem 3.2.1), we prove a stability Theorem for renormalized solutions

of problem (0.2.1) with p > 2]J\>7_:'11, extending the results of Dal Maso, Murat, Orsina and

Prignet [5] for the elliptic case. More precisely, if u, is a renormalized of problem (0.2.1)
where o = o, € L*(Q) and

o= n = fn - dngn + (hn)t + Hs,mns

with f, € LY (Qr), g, € (LY ()N, by, € LP(0, T, Wol’p(Q)) and fsp, is a bounded Radon
measure in )7 with support on a set of zero p—parabolic capacity and if o,, converges to o
in L}(Q) and measure p,, = fr, —div gn + (hp )t + fis,n converges to u = f —div g+hs+ps in
for some sense then u,, converges a.e in Q7 to a renormalized solution u of problem (0.2.1)
with data u,o. Moreover, Ty (u, — hy,) converges Ty(u — h) in LP(0,T, Wol’p(Q)) for any
k> 0.
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We apply this theorem and use the results mentioned in section 1 in order to solve the
following equations

Ou— Aput g(z,u) =p in Qp,
u=0 on 902 x (0,7), (0.2.2)
u(0) =0 in ),

where Radon measure p has a good behavior in time i.e |u| < w ® f with nonnegative
bounded Radon measure w in 2, f € L1 ((0,7)) and o € L'(2) and g is as in section 1.

In [8], Duzaar and Mingione gave a local pointwise estimate from above of solutions to
equation Oyu — div(As(z,t, Vu)) = p involving the Riesz parabolic potential
" pl(By(x) x (¢ = p?,t + p?)) dp
pN p’

I (|ul)(z. ) = /0

for all (x,t) € RN*! where Ay is A, with p = 2 and satisfies some natural conditions. On
the other hand, we always have [[I5[|ul]]| s @n+1y) =< [[Ga * |pl[| Ls@y+1y where s > 1,7 > 0
and G is the parabolic Bessel kernel of order 2, i.e.

_ Xeo)(®) I N+1
Go(z,t) = (dnt) V2 exp | —t m for all (z,t) e RV,

These are our motivation in Chapter 4 for developing nonlinear parabolic potential theory.
We use this theory to solve the following equations
O — div(Ag(x,t,Vu)) £ [ulTtu=p in Qf,
u=0 on 00 x (0,7), (0.2.3)
u(0) =0 in £,

where u, o are bounded Radon measures and ¢ € (1,00). More precisely, problem (0.2.3)
with absorption (i.e in case sign ” +”) has a solution if u, o are absolutely continuous with
respect to the capacities Capg, o, Capg, P respectively, see Theorem 4.2.8 in Chapter 4.

Where the capacity Capg, , of a Borel set £ C RN+ i defined by

Capg, ,(E) = inf{/ |fIPdxdt : f € Lﬁ(RN“),gQ x f > XE} .
RN+1

Problem (0.2.3) with source (i.e in case sign ” —”) has a solution if

Hl(E) < CCapg, »(B) and |o](0) < CCapg, 4(0)
q

hold for every compact sets £ C RVt O c RV, for some a constant C.

When As(z,t, Vu) = Vu, two previous results become Baras and Pierre’s results in
2, 4].

In Chapter 4, we also study the global gradient estimates for quasilinear parabolic

equation (0.2.1) in case p = 2. We obtain minimal conditions on the boundary of © and
on the nonlinearity As so that the following statement holds

IVullle < ClIMui[V]llx with v = || + |o] @ dr—oy,

4



0.2. QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA

here the constant C' does not depend on w and p, o and M;[v] is the first order fractional
maximal parabolic potential of v defined by

v(By(z) x (t = p*,t + p?))

M, [v](z, t) = sup e

p>0

for all (z,t) € RV*1

and K is a function space. The same question is as above for the elliptic framework studied
by N. C. Phuc in [19, 20, 21].

First, we take IC = LP5(Qp) for 1 < p < 2 and 0 < s < oo under a capacity density
condition on the domain Q where LP*(Qp) is the Lorentz space. The capacity density
condition is that the complement of €2 satisfies uniformly 2—thick. We remark that under
this condition, the Sobolev embedding H3(2) C L%(Q) for N > 2 is valid and it is
fulfilled by any domain with Lipschitz boundary, or even of corkscrew type.

Next, in order to obtain shaper results, we take K = L?%(Qqp, dw), the weighted Lorentz
spaces with weight in the Muckenhoupht class A for ¢ > 1, 0 < s < 00, we require some
stricter conditions on the domain € and nonlinearity As. A condition on §2 is flat enough
in the sense of Reifenberg, essentially, that at boundary point and every scale the boundary
of domain is between two hyperplanes at both sides (inside and outside) of the domain by a
distance which depends on the scale. Conditions on Asg are that the BMO type of Ay with
respect to the z—variable is small enough and the derivative of Ay(z,t, () with respect to
is uniformly bounded. By choosing an appropriate weight we obtained some new estimates,
in particular, Lorentz-Morrey estimates involving "calorie" and global capacitary estimates.

Finally, thanks to these estimates, we prove the existence of solutions of the quasilinear
Riccati type parabolic equation :

Oru — div(Ag(x,t,Vu)) = |[Vul?! +p  in Qp,
u=0 on 00 x (0,7), (0.2.4)
u(0) =0 in Q.
For example, problem (0.2.4) has a solution if there exists € > 0 such that

(Iul + lo| @ 61— )(E) < CCapg, (g+ey (E)

holds for any compact E C RV*! where C is a constant small enough, where G; is the
parabolic Bessel kernel of first order, i.e,

2
Gi(z,t) = Clm exp <—t - EL) for all (z,t) in RVTL
with C7 = ((47r)]\7/21“(1/2))_1 and the capacity Capg, (44 is defined as the capacity
Capgz,fI"

In Chapter 5, we solve problem (0.2.2) with absorption term in the case p > 2 without
all restriction on data p by using a result in [15] of a pointwise estimate for solutions to
problem (0.2.2) with ¢ = 0 and theory of parabolic potential introduced in Chapter 4.
Besides, we also prove that the porous medium equation with absorption term

Ou — A(Ju|™ ) + [ultu=p in Qf,
u=0 on 90 x (0,7),
u(0) =0 in
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admits a distribution solution for ¢ > max{m, 1} and m > %2 if bounded Radon measures
., o are absolutely continuous with respect to the capacities Capg, ., Capg, Jard ifm>1

and Ca 2 Ca 2 if X=2 <y < 1, respectively.
pg2’2(q—l)+(]1\7(1—m) ’ pG?—N(l—m) ’2(q—1)+(]1\7(1—m) N - P Y
q

0.3 Wiener criteria for existence of large solutions to elliptic
and parabolic equations with absorption

In Chapter 6, we study the existence of solutions to the following problems

—Apu+u? =0 in Q,

lims0 infg;(;) u = oo for all z € 912, (0.3.1)

and
—Apu+e*—1=0 in Q,

lims_0 infg;(;)u = oo for all z € 92, (0.32)

where N > 2,1 <p < N, qg>p—1and Q is a bounded open set in R. Solutions to
problems (0.3.1) and (0.3.2) are called large solutions.

It is well known that problems (0.3.1) and (0.3.2) have unique solutions for any bounded
smooth domain Q. Moreover, it is classical that problem (0.3.1) has a solution in the case
q < %jp}) for any bounded open set 2. When N > 3 and p = 2,q > %, a necessary
and sufficient condition for the existence of large solution of (0.3.1) expressed in term of

Wiener test, is

1 C / QC m Br
apa,q ( () dr _ oo forall z € 0. (0.3.3)
; N—2 r

In the case ¢ = 2 it was obtained by probabilistic methods based upon the Brownian sake
by Dhersin and Le Gall [6], this method could be extended for % < ¢ < 2 by using ideas
from [9, 10]. In the general case it was proved by Labutin by purely analytic methods [14].

Our main purpose of Chapter 6 is to establish a sufficient condition for the existence
of solutions to problems (0.3.1) and (0.3.2) for any ¢ > p — 1 and N > 2. More precisely,
a sufficient condition associated (0.3.1) is

1 1
Capg, a1 (N By(x))\ »1
/ < Prg3—p+1 > ﬁ =400 Ve 89, (0.3.4)
T

rN-—p
0

for some ¢ > % and associated (0.3.2) is

1 N—p c p+1
/ <’H (N Br<x>>> % — too Va € 99, (0.3.5)
0

rN-p

where HV =P is the (N — p)— dimensional Hausdorff capacity in a bounded set of RY. We
can see that condition (0.3.5) implies (0.3.4). In view of (0.3.3), then the condition (0.3.4)
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is not optimal in the case p = 2. Furthermore, we also establish behavior of high order
gradient of the solution to equation (0.3.1) near boundary of €, where € is a bounded
smooth domain.

In Chapter 7, we study analogous questions associated parabolic equation :

ou—Au+u?=0 in O, (0.3.6)
%ii% infong; (e, uw =00 for all z € 9,0, o
where N > 2, ¢ > %, O is a non-cylindrical bounded open set O C RY and 0,0 is the
parabolic boundary of O, i.e, the set all of points X = (z,¢) € 0O such that the intersection
of the cylinder Qs(z,t) := Bs(x) x (t — 6%,t) with O is not empty for any § > 0. When O
is a cylindrical i.e O = Q x (a, b) for some bounded open set €2 in R, Véron [25] showed
that if the problem (0.3.1) in case p = 2 has a solution, then (0.3.6) does too.

We extend Labutin’s idea in [14] to treat problem (0.3.6). Namely, we obtain a necessary
and a sufficient condition for the existence of solutions to problem (0.3.6) in a bounded
non-cylindrical domain O € RV*1! as follows : the necessary condition is

/1 Capg, ,(0°NQp(x,1)) dp
- ap
0 p p

=00 VY (z,t) € 9,0, (0.3.7)

the sufficient condition is

> C (0°N (B, t —1168r2,t — 113673
3 2P (070 (B () sz(v Tk W) - veneao 039
k=1 k

where r, =47% and N > 3 when ¢ = %

We also obtain a sufficient condition for the existence of solutions to equation (0.3.6)
in a bounded set of RV*! when replaced u¢ by e — 1, which is (0.3.8) where Capg, o 18
replaced by PHY the parabolic N—dimensional Hausdorff capacity.

Finally, we apply our results of problems (0.3.1) and (0.3.6) to some viscous Hamilton-
Jacobi equations : —Ayu + a1|Vu|? + bjuP™1 =0 for a;,by >0, p—1< ga < p <2 and
Ou — Au + az|Vul® + byu® = 0 for ag,by > 0,1 < g2 <2 and g3 > 1.
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Chapitre 1

Quasilinear Lane-Emden equations
with absorption and measure data

Abstract !

We study the existence of solutions to the equation —Aju + g(x,u) = p when g(z,.) is a
nondecreasing function and p a measure. We characterize the good measures, i.e. the ones
for which the problem has a renormalized solution. We study particularly the cases where
g(x,u) = |z|Pu|T u and g(z,u) = sign(u)(e™"* —1). The results state that a measure is
good if it is absolutely continuous with respect to an appropriate Lorentz-Bessel capacities.

1. Journal des Mathématiques Pures et Appliquées, 102, 315-337 (2014).
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1.1. INTRODUCTION

1.1 Introduction

Let © ¢ RY be a bounded domain containing 0 and ¢ : Q x R — R be a Carathéodory
function. We assume that for almost all z € Q, r — g(z,r) is nondecreasing and odd. In
this article we consider the following problem

—Apu+g(r,u) =p in Q,
u=0 in 09, (1.1.1)
where Apu = div (]Vu\p*QVu), (1 <p < N), is the p-Laplacian and p a bounded measure.
A measure for which the problem admits a solution, in an appropriate class, is called a good
measure. When p = 2 and g(z,u) = g(u) the problem has been considered by Benilan and
Brezis [3] in the subcritical case that is when any bounded measure is good. They prove
that such is the case if N > 3 and g satisfies

> _N-1
/ g(s)s” N=2ds < o0.
1

The supercritical case, always with p = 2, has been considered by Baras and Pierre [2] when
g(u) = |u|?"*u and ¢ > 1. They prove that the corresponding problem to (1.1.1) admits a
solution (always unique in that case) if and only if the measure p is absolutely continuous
with respect to the Bessel capacity Caps , (¢' = ¢/(q — 1)). In the case p # 2 it is shown
by Bidaut-Véron [5] that if problem (1.1.1) with g(z,s) = |s|%'s (¢ > p — 1) admits a
solution, then y is absolutely continuous with respect to any capacity Cap,, B for any
e > 0.

In this article we introduce a new class of Bessel capacities which are modeled on
Lorentz spaces LY instead of L? spaces. If G is the Bessel kernel of order o > 0, we
denote by L%*9(R¥) the Besov space which is the space of functions ¢ = Gg * f for
some f € L¥Y(RYN) and we set ||¢||lasq = ||flls,q (a norm which is defined by using
rearrangements). Then we set

Capgsq(E) = inf{||fllsq: >0, Gaxf>1 onE}

for any Borel set E. We say that a measure p in §2 is absolutely continuous with respect
to the capacity Cap, ,, if ,

VE C Q, E Borel , Cap,, 5 ,(E) = 0= |u|(E) = 0.

We also introduce the Wolff potential of a measure p € 9+ (RY) by

Wolulo) = [~ (“fﬁ”) i

if @ >0, 1< s < a'N. When we are dealing with bounded domains Q C Bgr and
€ MT(Q), it is useful to introduce truncated Wolff potentials.

Wi i) = [ (“Efj“”) &

12
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We prove the following existence results concerning

—Apu+ x| Pg(u) = p in Q,

wu=0 in 09, (1.1.2)

Theorem 1.1.1 Assume 1l <p< N,qg>p—1and0< 5 < N and i is a bounded Radon
measure in ).

1. If g(s) = |s|?"ts, then (1.1.2) admits a renormalized solution if u is absolutely conti-
nuous with respect to the capacity Cap

Ng q .
P Na=to-1)(N=B) a¥1-»p
2. If g satisfies

/ g(s)s 7 1ds < oo, (1.1.3)
1

then (1.1.2) admits a renormalized solution if p is absolutely continuous with respect
to the capacity Capp Ng

NN
Furthermore, in both case there holds

—chimm(Q) [17](z) <ulx) < cW%fl;am(Q) [](z) for almost all x € €, (1.1.4)

where ¢ 1s a positive constant depending on p and N.

In order to deal with exponential nonlinearities we introduce for 0 < o« < N the fractional
maximal operator (resp. the truncated fractional maximal operator), defined for a positive
measure p by

Nl(t‘]BVt—(:))’ (resp Ma,R[M](l’) = sup ,U,(.Bt(ﬂf))> ’

Moe[:u’] (.13) = sup iy N—a

t>0

and the n-fractional maximal operator (resp. the truncated 7n-fractional maximal operator)

M [ () = sup m, (resp M, glul(z) = S ﬁ;%) )

where 7 > 0 and hy,(t) = min{(—Int¢)™", (In2)~"} for all ¢ > 0.

Theorem 1.1.2 Assumel <p < N, 7T > 0 and X > 1. Then there exists M > 0 depending
on N,p, 7 and X such that if a measure in Q, u = ™ — u~ can be decomposed as follows

pt=fi+mn and p~ = fo + 1o,
where f; € LL(Q) and v; € ME(Q) (j =1,2), and if

(p=1H(A=1)

HMp,Qdigm(Q) Wil ) < M, (1.1.5)
there exists a renormalized solution to
—Apu + sign(u) (eﬂ“‘A - 1) =p in Q,
g (1.1.6)
u=0 in 0L,
and satisfies (1.1.4).

Our study is based upon delicate estimates on Wolff potentials and n-fractional maximal
operators which are developed in the first part of this paper.

13
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1.2 Lorentz spaces and capacities

1.2.1 Lorentz spaces

Let (X,%,a) be a measured space. If f : X — R is a measurable function, we set
S¢(t) :={x € X :|f|(x) >t} and Af(t) = a(Sf(t)). The decreasing rearrangement f* of f
is defined by

f5(t) =1inf{s > 0: As(s) < t}.
It is well known that (®(f))* = ®(f*) for any continuous and nondecreasing function
®: Ry — Ry. We set

t
=y [ e veso

and, for 1 <s < oo and 1 < g < o0,
1
(Je et (= m)1)" it g < o,
| fl|Lea =

sup esstéf**(t) if ¢ = 0.
>0

It is known that L®%(X, «) is a Banach space when endowed with the norm ||.||zs.q. Fur-
thermore there holds (see e.g. [11])

s
s—1

1 ., ER
16 £l e, sty < 1 llioa < 1185 £l paqae . (1.2.1)

the left-hand side inequality being valid only if s > 1. Finally, if f € L*9(RY) (with
1 < ¢,5 < 0o and « being the Lebesgue measure) and if {p,} € C°(RY) is a sequence
of mollifiers, f * p, — f and (fxg, ) * pn — f in L*9(RY), where X, is the indicator
function of the ball B, centered at the origin of radius n. In particular C2°(RY) is dense
in L®9(RN).

1.2.2 Wolff potentials, fractional and 7-fractional maximal operators

If D is either a bounded domain or whole RY, we denote by (D) (resp 9M°(D)) the set
of Radon measure (resp. bounded Radon measures) in D. Their positive cones are Mt (D)
and MY (D) respectively. If 0 < R < oo and p € M4 (D) and R > diam(D), we define, for
a>0and 1< s < a !N, the R-truncated Wolff-potential by

[P u(By(x)\ T dt
vas[u](x) = /0 <tNas> " for a.e. z € RY, (1.2.2)

If hy(t) = min{(—Int)™"7,(In2)7"} and 0 < a < N, the truncated n-fractional maximal

operator is
p(Bi(x))
M Llu)(z) = sup So—te
a’R[ @) 0<t<R tN_ahn(t)

If R = oo, we drop it in expressions (1.2.2) and (1.2.3). In particular

p(Bu(x)) < N hy ()M [y (). (1.2.4)

for a.e. z € RY. (1.2.3)

14
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We also define G, the Bessel potential of a measure p by
Golpl(z) = | Galz—y)du(y) Vo cRY,
R
where G,, is the Bessel kernel of order o in RY.

Definition 1.2.1 We denote by L**9(RY) the Besov space the of functions ¢ = G * f
for some f € L>U(RN) and we set ||llasq = IIflloq- If we set

Capp s q(B) = nf{[|fllsq: >0, Gaxf>1 onE},

for any Borel set E C RN, then Capy, 5,4 15 @ capacity, see [1].

1.2.3 Estimates on potentials

In the sequel, we denote by |A| the N-dimensional Lebesgue measure of a measurable
set A and, if F,G are functions defined in RV, we set {F > a} := {z € RV : F(2) > a},
{G <b}:={z e RN :G(z) <b} and {F > a,G < b} := {F > a}N{G < b}. The following

result is an extension of [12, Th 1.1]

Lemma 1.2.2 Let 0 <n<p—1,0< ap < N and r > 0. There exist cyg > 0 depending

on N,a,p,m and g9 > 0 depending on N, o, p,n,r such that, for all p € MT(RN) with
1

diam(supp(p)) < r and R € (0,00], € € (0,e0], A > (w(RY))»=1 I(r, R) there holds,

{WEul > 37, (M7, pli))71 < e}

p—1
11— o e
< coexp <— (M) " aphn2e Ppll") {Waplu >} (1.2.5)

ap —

N—ap N— N P
where I(r, R) = J\;_flyp (min{r, R} »-1 — R »1 ) if R < oo, l(r,R) = %r_ =1 gf
R = co. Furthermore, if n = 0, €q is independent of r and (1.2.5) holds for all ;i € M+ (RY)
with compact support in RN and R € (0,00], € € (0,e0], A > 0.

Proof. Case R = co. Let A > 0; since W, p[p] is lower semicontinuous, the set
Dy = {Waplu] > A}

is open. By Whitney covering lemma, there exists a countable set of closed cubes {Q;};

such that Dy = U;Q;, 651 N on = () for i # j and
diam(Q;) < dist(Q;, DY) < 4diam(Q;).

Let ¢ > 0 and F, ) = {me[u] > 3, (Mgp[,u})ril < 5)\}. We claim that there exist

co = co(N,a,p,n) > 0 and g = go(N,a,p,n,r) > 0 such that for any Q € {Q;}i,
1

e € (0,e0) and A > (u(RY))»=T I(r,00) there holds

p— 1— n % __p—1
|F57)\ N Q| S coexp | — m € p—1l-m O[pth |Q’ (126)
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The first we show that there exists ¢; > 0 depending on N, a,p and 7 such that for any
Q € {Qi}i there holds
F&)\ NnNQ C Eg’)\ Ve € (0,61],)\ > 0, (1.2.7)

where

Eop = {z € Q: Wil @j(@) > A\ (MJ,[W](@)7T <ex}. (128)

Infact, take @ € {Q;}; such that @ N F; y # 0 and let g € D such that dist(zg, Q) <
4diam(Q) and W p[ul(zg) < A. For k € N, rg = 5diam(Q) and x € F; y N Q, we have

2k +1r, p%
[ (e
2

kg tN—ocp
where
ok 1+2FFL 1 ok+1,. 1
A / s 0 (p(By(@) Nt " (Bul)) ) T dt
= —_— — al = —_— —_—.
2k tN—ap t SECLant tN—ap t
1+2
Since
p(By(x)) < N7 hy (£) M, (] (x) < V7P Ry (£) (€A (1.2.9)
Then

240 N=app () (AP 7T dt 2o dt
B< / < 2()e)) ) e E/\/ (hy(1)7 T .
2 2

ko 1p2k+1 tN—ap t & 1p2ktl
k70 Zad
12 1+2

Replacing h,(t) by its value we obtain B < c2eX27F after a lengthy computation where ¢
N—a
depends only on p and 7. Since § := (2,311) P—lp, then 1 —§ < 327" where ¢3 depends

N—ap .
only on e thus

(1-6)A< C32—’f/

2krq

Mt dt
< 327 FeA / (hy(t) 7T <
2

kro t

tN—ap

< 042_k6)\,

where ¢4 = c4(N, a,p,n) > 0.
By a change of variables and using that for any x € F. xNQ and ¢ € [ro(1+2%), ro(14+25F1)],
B i, (v) C Bi(zq), we get

1+2F
1

B p—1 1
sao [T HE 2 N < / e (/ﬁ(Bt(mQ)))pildt
ro(1+2%) tN=ap b Jrg(142k) tN—op t

Therefore
P CBa)\ Tt _ e [ u(Bu(ag)) \ T dt
“N-ap ) g SC2eAd “Neap )
2k7‘0 t t T0(1+2k) t t
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with ¢5 = ¢5(N, a, p,n) > 0. This implies

/:o <M(Bt(m))>pil % < 2c5e) + /:O (ﬁt(Bt(w))>zi1 % s (120

tN—oap ro tN—ap

since W p[u](zg) < A If € € (0, ¢1] with ¢; = (2¢5) ™! then
oe B =1 dt
/ (Mtgng)) ’ ry <2
ro
which implies (1.2.7).

1
Now, we let A > (u(RY)) =T I(r, 00). Let By be a ball with radius r such that supp(u) C By.
We denote Bs by the ball concentric to By with radius 2r. Since x ¢ Bo,

1

Wauli) = [ (Ut ) < R o)

Thus, we obtain D) C Bs. In particular, rg = 5diam(Q) < 20r.

Next we set mg = %’ so that 27™rg < 271 if m > my. Then for any = € . )
To % 70
p(Bi(x))\ > dt 1 dt
/ ( N—ap m S EA (hﬂ(t»pil o
27"™rg t t 2=Mrg t
2 mDrO dt 70 d
<6)\/ (—lnt)Pl—i—s)\/ (In2)p—1T—
2= Mg 13 27 ™M0rg
n
— 1)((m — mp) In2) "7
cen s 2= D(m = mo) )T
p—1-n

For the last inequality we have used R < (a—b)l_ﬁ valid for any a > b > 0.
Therefore,

1
T0 B —1 2 —1 _n 0 p—1
/ (,u,(t(x))> ’ % < Mml PN Yme N,m > (In2) lemg’l’".

2

—mpy \ VTP p—1—n
(1.2.11)
Set
—i 1
9—i+lp, w(By(x))\ 71 dt
9i(x) = 4 TiN—ap 1
27 rg
then
2(p — 1) 1—-"1_ —m
W0 [ (x) < py —_ r—Te+ W2 70 u](x)
2p—1) - n =
< 2l e Y )
p U i=m+1
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—1

p
for all m > mf™""". We deduce that, for 8 > 0,

Eoal<[{ze@: Y gila) > (1 _ 2@—l>m> \
i=m+1 p—1-—n
> - 2(]?— 1) __n_
: ; (i—m—1) 8 2(p—1) n
1=m-+1 i=m-+1
<2 {“” €Q:gi(x) > 277 (1 —27F) (1 _ %O—Uml—pile) AH .
(1.2.12)

Next we claim that

o€ Qi) > s} < VM ymiengieap (1.2.13)

To see that, we pick zg € E. ) and we use the Chebyshev’s inequality

Hz e Q:gi(x) > s} < e 1/ lgiP~ Ly

i 1 —1
1 02 (By(x) \ 7 dt
= 1 “N—a ) | @
S Q ro2—i t t
1 / #(Brop-i1 (@)
Q

— gp—1 (T02—i)N—ap

Thanks to Fubini’s theorem, the last term A of the above inequality can be rewritten as

1
A= sP— 1 T02 ap/ /RN 7‘02 H—l("lj )d/‘j“( )d
1

= XB, ,-i1(y)(2)dzdp(y)
sP=1 (o2~ )N “p /C»2+Br02—i+1(0)/Q Proz-s1 L

1 1 /
< - | B,y2-i+1(y)|du(y)
sp=1 (rg2—1)N—ap Q+B, o-i+1(0) ro2

< er(N) o= 127G (Q + Byya-i41(0))
1
< er(N) =2 PP (Byo(142-i+1y (20)),

since Q+ B, 9-i+1(0) C B, (142-i+1)(70). Using the fact that u(Bi(xo)) < (In 2)~mN=ap(g )Pt

for all ¢ > 0 and ry = 5 diam(Q), we obtain

1 [e} — — 1 —iQ -
A < ey(Nm) =27 rgP (ro(1 4+ 27 )N (AP < (N, m) 277 1QI ()"

18



1.2. LORENTZ SPACES AND CAPACITIES

which is (1.2.13). Consequently, (1.2.12) can be rewritten as

= & (N n
6 ) — _
|Eopl < > . S 2P (NP TR
Zmi1 (2786=m=n) (1 - 2-9) (1 - m'"77e) )
p—1 o
< cg(N, n)2~ (mHher 2(1)—1<)S -1 Q) <1 B 2_6>7p+1 Z 2(Pp-Dmep)mm-d),
L= 5=m rle i=m—+1
(1.2.14)
If we choose 8 = («a, p) so that S(p — 1) — ap < 0, we obtain
p—1
Eex| < crp2-me < Vm > (In2) 7 imi T, (1215
| 6,)\| — clO 1 2(17_1) 17%1 |Q‘ m > (n ) = mO 9 ( e )
T TE
where c19 = c10(N,a,p,mn) > 0. Put g9 = min{%’cl}' For any € € (0,&q], we
p—1-n

choose m € N such that

p— p—1 p—1

p_l_n prin 1_1 pfli _1<m< p_l_ p—lf‘l] 1_1 pflfn'
2(p—1) € 2(p €

Then
2(p— 1)
1- p—1-—n""
and
AQTL, p— 1 Aﬂgl, )
p—1l—n P = _ —— _
gmen < goror(i5)) (L7 < 29 exp ( ap1n2 1;7>p ’ Epp1’7> :

Combining these inequalities with (1.2.15) and (1.2.7), we get (1.2.6). In the case n = 0 we

still have for any m € N, \,e > 0 and z € E;

o0

W;(jp[,u] () < meX+ Z gi(x).
i=m-+1

Accordingly (1.2.15) reads as

3

p—1
|Ee\| < 1027 < ) Q| Vm € N, \,e > 0 with me < 1.

1 —me

Put g = min{3, ¢1}. For any € € (0,g¢] and m € N satisfies e —2 <m < 7!

finally get from (1.2.7)

[Fea N Q| < |E:p| < 102 exp (—ape ' In2) Q)]

19
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1.2. LORENTZ SPACES AND CAPACITIES

which ends the proof in the case R = oc.

Case R < oo. For A > 0, Dy = {W[ > X} is open. Using again Whitney covering

lemma, there exists a countable set of closed cubes Q := {Q;} such that U;Q; = Dy,
QiNQ;j =0 for i # j and dist(Q;, D$) < 4diam(Q;). If Q € Q : is such that diam(Q) > %,
there exists a finite number ng of closed dyadic cubes {P]Q};lfl such that U?:QIP]-,Q =Q,
PigNPig=0ifi#jand & <diam(P;o) < £ We set &' = {Q € Q: diam(Q) < £},
Q"={Pg:1<i<ng,Qe€ Q diam(Q) > £} and F= QU Q"

For ¢ > 0 we denote again F; y = {Wip[,u] > 3, (MZ%R[/L])P*ll < 6)\}. Let @ € F such

that F. N Q # 0 and ro = bdiam(Q).

If dist(DS,Q) < 4diam(Q), that is if there exists xg € DS such that dist(zg,Q) <
4diam(Q) and WE [1](zg) < A, we find, by the same argument as in the case R = oo,
(1.2.10), that for any = € F, x N Q there holds

/: <M<Bt(z))>pll % < (14 cpe), (1.2.17)

tN—ap

where ¢17 = ¢11(N, a,p,n) > 0.
If dist(D§, Q) > 4diam(Q), we have 1% < diam(Q) < % since Q € Q". Then, for all
x € I,y NQ, there holds

1
BB\ () AP T e
"o tN—aP t — % tN_ap m

a1
= (In2) 71 1n€6 e

< 2. (1.2.18)

Thus, if we take ¢ € (0, c12] with ¢12 = min{1, c;;'}, we derive
FE’)\QQ C E.», (1219)

where )
E. )= {ngp[u] > A, (sz,R[M]) p—1 < 5)\} '

Furthermore, since x ¢ By,

R 1
(B (z =T dt 1
Wi = [ (MEE T < () i )
min{r,R}
1

Thus, if A > (w(RY))»=T {(r, R) then D) C By which implies ro = 5diam(Q) < 20r.

The end of the proof is as in the case R = oo. [
In the next result we list a series of equivalent norms concerning Radon measures.

Theorem 1.2.3 Assume a > 0, 0 < p—1 < g< 00,0 < ap < N and 0 < s < o0.
Then there exists a constant c13 = c13(N, «,p,q,s) > 0 such that for any R € (0,00] and
p € MT(RY), there holds

1

cia W& Il pos vy < ||Map,R[:u]||? o <e|WE W pes@yy. (1.2.20)

p—1'p—T (RN) -
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1.2. LORENTZ SPACES AND CAPACITIES

For any R > 0, there exists c14 = c14(N, o, p, q, 5, R) > 0 such that for any p € M, (RN),

_1
cia W pltdll o @y < IIGap[M]H;%,pgl(RN) < cul Wil pos@y). (1.2.21)

1

In (1.2.21), ||W£p[u]]|Lq,s(RN) can be replaced by ||[Mayp r[p ]||p_

Proof. We denote u,, by xp,u for n € N*.
Step 1. We claim that

1

W plill oos vy < €15 [Mag, R[]I (1.2.22)

Lp*l’p‘iil(RN)‘

From Proposition 1.2.2 there exist positive constants ¢y = ¢o(N,a,p),a = a(a,p) and
g0 = €o(IN, o, p) such that for allmn e N*, t >0, 0 < R < oo and 0 < € < g¢, there holds

1
){wﬁp[un] > 38, (MY alua]) 77 < et}‘ < coexp (—as V) {WE (1] > )| (1.2.23)
In the case 0 < s < 0o and 0 < ¢ < oo, we have

s
q

HWap n] > 3t}‘§ < c¢15€xp (—:as > !{Wap n] > t}’§+c15 ‘{(MQPR[Mn])pll > et}

with ¢15 = ¢15(N, a, p, ¢, 5) > 0.
Multiplying by #*~1 and integrating over (0,c0), we obtain

s s dt 5 4 s s dt
/0 t }{Wap,un >3t}’q7§cl5exp <—qa5 )/0 t ’{Wapun >t}’q?
oo _ e dt
+015/0 ‘{MZpR[ n] > (et)” 1} !

By a change of variable, we derive

-
s dt
(3_5 — C15 €xp <—2a6_1>> / t’ ‘{Wap fin] > t}]9 -
0
ci5e” 5 [0 s
< p— 1 /0 tr=t {Map R[:u’n] > t}

We choose ¢ small enough so that 37° — cy5 exp <—§a£*1) > 0, we derive from (1.2.1) and
1 1
Htl/SIf*‘ _ 81/82 )\f/s1t

So < 00

g dt
7

for any f € L*1%2(RY) with 0 < 51 < 00,0 <

va(r %)

s (i )
1

ng,p[un]Hqus(RN) < CI13HMocp,R[Nn]Hp F

1 p— 1(RN)

and (1.2.22) follows by Fatou’s lemma. Similarly, we can prove (1.2.22) in the case s = cc.
Step 2. We claim that

1

W[l s vy = €13l [Map,rl1 s "y

1.2.24
e (1.2.24)
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1.2. LORENTZ SPACES AND CAPACITIES

For R > 0 we have

_ pn(Bi())\ 77 dt
Wgﬁb[ﬂn] (z) = Wc}zp[ﬂn] (z) + /R <tNap) 7

< Wi lin](2) + (W) o (1.2.25)
Thus
s W2 @) > 20} < o s WE inl(a) > o]+ | {o: 2] s ),

Consider {z;}™, C By such that By C | B%(zi). Thus Bog(z) € U Br(z+ Rz;) for
2
any « € RY and R > 0. Then

' (o iBonte) t}‘ S

Z }Q‘BNfap

=1

{ un(BE(w—FRzi)) 1 }‘
T 2 > — P71
RN-—ap m

{x — Rz; : LLH(B% () 1 ‘

" pn(Br(x + Rzi)) H
> Pl
RNfap

/—/H

NE

1

.
Il

=1
RNfap m

pn(Br(x) 1
X . RNiiap > Rtp .

1

n(Be(z))\ 7T
<HRNiap> < 2W§,p[ﬂn] (z),

I

1

7

|
3

Moreover

thus

RNfap

{x WE a(z) > 11t}'.

2mpr—1

{:z::M(BQR(l‘))>tp1H§m

This leads to

{z: W2R ) > 2t} < (m+1) H:): : Wg,p[un](:):) > ! - tH vt > 0.
2mpr-1

This implies

Wil s < c16l Wy ]

q
Lp p—1- p 1(RN) LE’P%(RNY

with c16 = c16(N, a, p, q, s) > 0. By Fatou’s lemma, we get

HW2R

awltl < c16| W 1]

(1.2.26)

_q_ _9q9_ _s_ .
Lp—1"p— I(RN) Lp—l’p—l(RN)

On the other hand, from the identity in (1.2.25) we derive that for any p € (0, R),

B,(x ﬁ
W) 2 Wi ) 2 e s (W) ,
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1.2. LORENTZ SPACES AND CAPACITIES

with ¢17 = ¢17(N, a, p) > 0, from which follows

1

Wl u)(2) > e1r (Mag,r[p)(2)) 77T . (1.2.27)

Combining (1.2.26) and (1.2.27) we obtain (1.2.24) and then (1.2.20). Notice that the
estimates are independent of R and thus valid if R = co.
Step 3.We claim that (1.2.21) holds. By the previous result we have also

cis (W o[pll] | s < [[Map, r[p]] < 15| Wy u]ll

LP-T'5-1(RN) LPoT 5T (RN) LoD 5T (RNY'
(1.2.28)
where ¢15 = c18(N, a,p,q,s) > 0. For R > 0, the Bessel kernel satisfies[14, V-3-1|
_1 ( xBg(2) XBg (z) _l=l RN
19 2]V —ap < Gop(z) < cig W +cige 2 Vz € ,
where c19 = c19(N, a, p, R) > 0. Therefore
XBgr
-1 XB L
19 <M> p < Gaplp] < crg (’|N7ap> *fLt+Cr9e 2 k. (1.2.29)

By integration by parts, we get

(9885) ) = (O — )W (o) + D > v = ) W o)

which implies

caol W ,[ull] < [|Gaplp]]]

|z

where co0 = c20(N, o, p,q,s) > 0. Furthermore e” 2 < co1xp, * €
2
c21(N, R) > 0, thus

(1.2.30)

Lp—1'p— T (RN) Lp%’ﬁ(RN)’

[l
2 (x) where co; =

e 2 xp < e (XBB *6_2>*M20216_7*<XBE *M)-
2 2

Since

XBy * p(z) = p(Br(z)) < C22W%,2[M](ﬂf),

2

where cog = co2(N, a, p, R) > 0, we derive with co3 = co1¢22

B B
e 2 x < coze 2 % Wap2[ -

Using Young inequality, we obtain

_ LI
||6 2 *’UlHLp%l’piil(RN) _623||6 2 *Wap Q[M]HL%YP%(RN)

R _ Ll
< C24||W%’2[H]HL%,ﬁ(RN)He 2| oo (rY

< 25| W, 5[] (1.2.31)

a4 s )
LP=T'7-T (RN)
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1.2. LORENTZ SPACES AND CAPACITIES

where co5 = co5(N, a, p, R) > 0.
Since by integration by parts there holds as above

XB;} % Nfap'UJ(Bg (l’)) R
i ) ) = (V= W () + 2V T < W (o),
where cog = c26(N, a, p) > 0 we obtain
(52 ) # < eorl[WE L [ll| oy (12.32)
H_’N—ap Lp p—T1'p— 1(RN) 27 L2 LT 5T’ L
where co7 = co7(N, a, p,q,s) > 0. Thus
Gl oy < W Dl oy e, (1.2:33)

where cag = ca8(N, o, p, ¢, s, R) > 0, follows by combining (1.2.29), (1.2.31) and (1.2.32).
Then, combining (1.2.30), (1.2.33) and using (1.2.28), (1.2.20) we obtain (1.2.21). ]

Remark 1.2.4 Proposition 5.1 in [13] is a particular case of the previous result.

Theorem 1.2.5 Let « > 0, p > 1,0 < np <p—-1,0 < ap < N and r > 0. Set

p
5o = (11”2_(;:{7)) Pt apln2. Then there exists cag > 0, depending on N, «, p, n and r such

that for any R € (0,00], 6 € (0,d0), t € M (RY), any ball By C RN with radius < r and
ball By concentric to By with radius double By’s radius, there holds

R e
(Wa,p[:u’Bl]( ))p K dr < C29

0o —0
IIM(X,,R[MBJHZOJ (B) ’

exp | ¢ (1.2.34)

|B2| /B,
where pup, = xB, - Furthermore, if n =0, cag is independent of r.

Proof. Let € M (RY) such that M := ||MapR[,uBl]||Loo(Bl) < 00. By Proposition 1.2.2-
(1.2.5) with p = pp,, there exist ¢g > 0 depending on N, a,p,n and g9 > 0 depending on

1
N, a,p,n and r such that, for all R € (0,00], € € (0,&0], t > (up, (RY)) > T i(r', R) where
r’ is radius of By there holds,

{WE lus,] > 3t, (M, plius, )7 < et}

p—1
—1- p—1-n p—
< ¢p exp (- (M) apln2e »=1- ”) ‘{Wap[/'LB1 >t}

1
Since (pp, (RM))» 111, R) < Niol‘p(ln 2)_%MP%1, thus in (1.2.5) we can choose

1 1 N —ap N U
1 ~1 —1
e=t" HMapR[MBl]HLoo(RN) =t""M»1 Vt>max{e,", P (In2) P=T}M»-1,
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1.2. LORENTZ SPACES AND CAPACITIES

and as in the proof of Proposition 1.2.2, {W [up,] > t} C Bs.

Then
p— 1— n p—1-7 1 p—1
|{W [uB,] > 3t} N By| < coexp BETEny apln2M~»=1=ntr=1=n | |By|.
(1.2.35)
This can be written under the form
[{F >t} N Ba| < |Ba|x(0,0] + coexp (—dot) | B2|X(tg,00) (1), (1.2.36)

—1

(In 2)—/7?1}) ==

—1
where = M 715 (Wg,p[“Bl])pr" and to = (3 max{e; !, ]\;_jp
Take § € (0,dp), by Fubini’s theorem

/ exp (0F(z)) dz = 5/00 exp (68) |{F > t} 1 Baldt.
B 0

Thus,
/B exp (0F(z))dz < 5/;0 exp (0t) dt|Bs| 4 cod tooexp (— (09 — 9) t) dt| Ba|
2 0
< (exp (dto) — 1)
which is the desired inequality. [

Remark 1.2.6 By the proof of Proposition 1.2.2, we see that €9 > where

€30
max(1,In40r)
c30 = c30(NV, a,p,m) > 0. Thus, tg < 31 (max(1,In 407’))? =3 Therefore,

_p—1
C29 < €32 €Xp (633 (max(1,1n 4()r))p—1—n> 7

where c3a and cs3 depend on N, a,p and .

1.2.4 Approximation of measures

The next result is an extension of a classical result of Feyel and de la Pradelle [10].
This type of result has been intensively used in the framework of Sobolev spaces since the
pioneering work of Baras and Pierre 2], but apparently it is new in the case of Bessel-
Lorentz spaces. We recall that a sequence of bounded measures {y,} in  converges to
some bounded measure g in €2 in the narrow topology of My(Q2) if

lim / ddp, = / pdp Vo e Cp(Q) == C(Q2) NL>(Q). (1.2.37)
Theorem 1.2.7 Assume Q is an open subset of RN. Let a >0, 1 < s < 00, 1 < ¢ < o0
and p € M4 (Q). If p is absolutely continuous with respect to Capy s 4 in Y, there exists a
nondecreasing sequence {y,} C I (Q) N (LY*URN))', with compact support in Q which
converges to pu weakly in the sense of measures. Furthermore, if u € Qﬁ;(ﬂ), then p, — u
wn the narrow topology.
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1.2. LORENTZ SPACES AND CAPACITIES

Proof. Step 1. Assume that x has compact support. Let ¢ € L%*(RY) and & its Capg, s 4-
quasicontinuous representative. Since p is abolutely continuous with respect to Cap, g 4,
we can define the mapping

0> P@) = [ i duly

where p|q is the extension of u by 0 in ¢. By Fatou’s lemma, P is lower semi-continuous
on L**4(RN). Furthermore it is convex and potitively homogeneous of degree 1. If Epi(P)
denotes the epigraph of P, i.e.

Epi(P) = {(¢,t) € LI RY) x R: t > P(¢)},

it is a closed convex cone. Let £ > 0 and ¢g € C2°, ¢o > 0. Since (¢, P(po) —¢€) ¢ Epi(P),
there exist £ € (L*9(RY)), a and b in R such that

a+bt+0¢)<0 V(b t) € Epi(P), (1.2.38)
a+b(P(¢o) —e) + £(¢o) > 0. (1.2.39)
Since (0,0) € Epi(P), a < 0. Since (s¢, st) € Epi(P) for all s > 0, s~ta + bt + £(¢) < 0,

which implies

bt+4(p) <0  V(¢,t) € Epi(P).

Finally, since (0,1) € Epi(P), b < 0. But if b = 0 we would have ¢(¢) < —a for all
¢ € LY*9(RN). which would lead to £ = 0 and a > 0 from (1.2.39), a contradiction.

Therefore b < 0. Then, we put 8(¢) = —@ and derive that, for any (¢, t) € Epi(P), there
holds 6(¢) < t, and in particular
0(¢p) < P(¢) Vo € LIRYN). (1.2.40)

Since ¢ <0 == P(¢) =0, 0 is a positive linear functional on L**%(RY). Furthermore

sup [0(¢)| = sup O(¢) < sup  P(¢) = P(1) = p(9).
¢ € O (RN) ¢ € O (RN) ¢ € O (RN)
6]l <1 6]l <1 l1¢llze <1

By the Riesz representation theorem, there exists o € M (RY) such that
0(p)= | édo Vo e CXRN). (1.2.41)
RN

Inequality (1.2.40) implies 0 < o < plq. Thus supp(o) C supp(ulq) = supp(p) and
o vanishes on Borel subsets of Cap,, ,, capacity zero, as p does it, besides (1.2.41) also
values for all ¢ € C(RY). From (1.2.39), we have

ggoda = 9(¢0) > P((bo) — &+ % > / (5od/LLQ—6.
RN RN

This implies

0< [ od(plg—0o) <e. (1.2.42)
RN
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1.2. LORENTZ SPACES AND CAPACITIES

It remains to prove that o € (L**9(RY))’. For all f € C®(RY), f > 0, there holds

. Galfldo = 0(Galf]) < 10]l(rosa@myyl|GalflllLosa@n), (1.2.43)
since § = —b~1¢ and ¢ € (L**9(RN)). Now, given f € L%4(RY), f > 0 and a sequence of
modifiers {pn}, (XB, f)*pn € C(RY) and (xp, f) *pn — f in L%(RY), where y, is the
indicator function of the ball B,, centered at the origin of radius n. Furthermore, there is
a subsequence {ny} such that limy, o Ga[(XB,, f) * pni (%) = Galf](2), Cap, s -quasi
everywhere. Using Fatou’s lemma and lower semicontinuity of the norm

G.[f]do < liminf Gul(xB,, f) * pn,|do
RN nE—00 JpN k

< lim inf ||9H Less:a(RN)) |Ga [(XBnk f) = pnk]HLQ’S’q(RN)

N —00
< |10 pesa @)y | Galfl| Leosa @y
Therefore (1.2.43) also holds for all f € L*¢(R"), f > 0. Consequently o € I (RY) N
(Ls9(RN)) satisfies

f]do' S HH‘|(La,s,q(RN))l‘|G’a[f]HLoc,s,q(RN) Vf S LS,(](RN). (1244)

Step 2. We assume that p has no longer compact support. Set Q, = {z € Q : dist(z, Q) >
n~L |z < n}, then Q, C Q, C Q1 C Q for n > ng such that Q,, # 0. Let {¢,} C
C(RYN) be an increasing sequence such that 0 < ¢, < 1, ¢,, = 1 in a neighborhood of Q,,
and supp(¢n) C Qn1. and let v, = ¢pp. For n > ng there is o,, € MG (RY) N (LSRN ))
with 0 <o, <y, and

- > / Gnd(vy — 0y) > d(pn —opn) = d(p — op).
Qn Q,

We set p, = sup{o1,09,...,0,}, then {u,} is nondecreasing and supp(p,) C Qp41, and
i € MG (RY)N(L*9(RY))'. Finally, let ¢ € C,(€2) and m € N* such that supp(¢) C Q..
For all n > m, we have

'/Qeéd/tn/gcbdﬂ'é'/gnd(uﬂn)

Thus p, — p weakly in the sense of measures.
Step 3. Assume that € 0 (). Then p,,(€2) < (). Thus

@] oo @y < EW’HL%(RN)-

1n(2) = pn () + Z fin (D1 \ Q).

k=ng

Since the sequence {u,} is nondecreasing and limg_ o0 fn (1 \ Q) = (st \ Q) b
the previous construction, we obtain by monotone convergence

T}LH;OMH(Q = 1(Qy, +kZ (g1 \ Qi) = ().
no
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Next we consider ¢ € Cp(£2) := C(2) N L>(R2), then

‘/¢dﬂn /qﬁdu‘ ‘/ (1 — pin)

Thus g, — p in the narrow topology of measures. ]
As a consequence of Theorem 1.2.7 and Theorem 1.2.3 we obtain the following :

9l zoo (@) < (1(2) — pn(2))][]| Lo () — 0.

Theorem 1.2.8 Let p—1 < s1 < o0, p—1 < 89 < o0, 0 < ap < N, R >0 and
wE€ My (Q). If pis absolutely continuous with respect to the capacity CapaP’ 52

s1 p+1’52 p+1
there exists a mondecreasing sequence {pn,} C MT(Q) with compact support in Q which

converges to pu in the weak sense of measures and such that ng[un] c L*v52(RN), for all
n. Furthermore, if p € 9)?;(9), n converges to to p in the narrow topology.

Proof. By Theorem 1.2.7 there exists a nondecreasing sequence {u,} of nonnegative mea-
S1 52

sures with compact support in €, all elements of (L*s1=#71752=»+1 (RV))’| which converges

weakly to pu. If p € fm;(Q), the convergence holds in the narrow topology. Noting that for

a positive measure o in RY,

Gaplo] € LFTH T (RY) 4= o € (L7t (RY)),

it implies Gapln] € Lpsfll’p%(]RN). Then, by Theorem 1.2.3, W[ [u,] € L52(RY).  m

1.3 Renormalized solutions

1.3.1 Classical results

Although the notion of renormalized solutions is becoming more and more present in the
theory of quasilinear equations with measure data, it has not yet acquainted a popularity
which could avoid us to present some of its main aspects. Let €2 be a bounded domain in
RN If € 9, (), we denote by pF and p~ respectively its positive and negative part. We
denote by M (€2) the space of measures in {2 which are absolutely continuous with respect
to the Cap?’p—capacity defined on a compact set K C €2 by

Capi,(K) = inf {/Q IVolPda : ¢ > xK, ¢ € CE"(Q)} : (1.3.1)

We also denote IM5(€2) the space of measures in 2 with support on a set of zero Cap%p—

capacity. Classically, any p € 9%(€2) can be written in a unique way under the form

W= po + s where pg € Mo(Q) N M(Q) and ps € Ms(2). We recall that any py €

Mo(Q2) N M(Q) can be written under the form py = f — divg where f € LY(Q) and
e (L ()N,

For k£ > 0 and s € R we set T(s) = max{min{s, k}, —k}. We recall that if u is a
measurable function defined and finite a.e. in €, such that Ty (u) € WO1 P(Q) for any k > 0,
there exists a measurable function v : Q — R such that VTj(u) = X|u|<k? a.e. in @ and
for all k& > 0. We define the gradient Vu of u by v = Vu. We recall the definition of a
renormalized solution given in [9].
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Theorem 1.3.1 Let pn = po + ps € Mp(L). A measurable function u defined in Q0 and
finite a.e. is called a renormalized solution of

—Apu=p inQ,
u=0 on oS, (1.3.2)
if T(u) € Wol’p(Q) for any k > 0, |[VuP™' € L"(Q) for any 0 < r < &5, and u has the
property that for any k > 0 there exist A", A, € 9)?;(9) NMy(Q), respectively concentrated
on the sets u = k and v = —k, with the property that )\k+ — uf, A, — Mg in the narrow
topology of measures, such that

/ |Vu\p_2VuV¢dx:/ ¢du0+/ qbd)\;—/qﬁd)\;, (1.3.3)
{lul<k} {Jul<k} Q Q

for every ¢ € WyP(Q) N L(Q).

Remark 1.3.2 If u is a renormalized solution of problem (1.3.2) and p € M (Q), then
u >0 in Q.

We recall the following important results, see [9, Th 4.1, Sec 5.1].

Theorem 1.3.3 Let {u,} C M(Q) be a sequence such that sup,, |u,|(2) < oo and let
{un} be renormalized solutions of

—Apuy = iy 0 €2,

u, =0  on €. (1.34)

Then, up to a subsequence, {u,} converges a.e. to a solution u of —Apu = p in the sense of
distributions in ), for some measure p € My(Q), and for every k >0, k=1 [ |[VTi(w)|P <
M for some M > 0.

Finally we recall the following fundamental stability result of [9] which extends Theorem
1.3.3.

Theorem 1.3.4 Let 1 = pg + puf — py € Mp(Q), with po = f — divg € Mo(Q), ud, u; €
ME(Q). Assume there are sequences {fn} C LY(Q), {gn} < (X' ()N, {ni}, {n2} c
M (Q) such that f, = f weakly in LY(Q), g — g in LY () and div g, is bounded in
My (Q), nt — pf and n2 — us in the narrow topology. If pn = fn — divg, +nL —n2 and
Uy 18 a renormalized solution of (1.8.4), then, up to a subsequence, u, converges a.e. to
a renormalized solution w of (1.3.2). Furthermore, Ty (un) — Ti(u) in Wol’p(Q) for any
k> 0.

1.3.2 Applications

We present below some interesting consequences of the above theorem.
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Corollary 1.3.5 Let € MMP(Q) with compact support in Q and w € My(Q). Let {f,} C
LY(2) which converges weakly to f € LY(Q) and i, = py * p where {p,} is a sequence of
mollifiers. If u, is a renormalized solution of

_Apun =fatpntw i,
Uy =0 on 082,

then, up to a subsequence, u, converges to a renormalized solution of

“Apu=f+p+w inQ,
u=>0 on 0f).

Proof. We write w = h— div j+w} —w; and p = h—div g+ pT — pg , with h, h € LY(Q),
9,5 € (LP(Q)N, h, g, uf and p; with support in a compact set K C Q. For ng large
enough, pp*h, pp*g, pp*pdand p,*uy have also their support in a fixed compact subset of
Q for all n > ng. Moreover py, * h — h and p, *g — g in L' (Q) and (L¥' (Q))N respectively
and divp, * g — div g in W17 (Q). Therefore

fn—l—un+w:fn+l~1—|—pn*h—div(§+pn*g)+wj+pn*uj—ws_—pn*ys_

is an approximation of the measure f + p + w in the sense of Theorem 1.3.4. This implies
the claim. -

Corollary 1.3.6 Let y; € M%(Q), i = 1,2, and {pin} C M8 (Q) be a nondecreasing and
converging to p; in M (). Let {f,} C L'(Q) which converges to some f weakly in L' ().
Let {9,} € MP(Q) which converges to some ¥ € M4(Q) in the narrow topology. For any
n € N let uy, be a renormalized solution of

_Apun = fn+ Hin — M2n + Oy in 2,
Up =0 on 0N.

Then, up to a subsequence, u, converges a.e. to a renormalized solution of problem

—Apu=f+pu —p2+9 inf,
u=20 on 01.

The proof of this results is based upon two lemmas

Lemma 1.3.7 For any g € Mo(Q) NMY(Q) there exists f € L'(Q) and h € W1 (Q)
such that u = f + h and

Al L) + [Pl -1 () + [1Allans ) < 5(92). (1.3.5)

Proof. Following [8] and the proof of |6, Th 2.1], one can write u = ¢y where v €
WP (Q) N9 (Q) and 0 < ¢ € LY(Q,7). Let {Q,}nen, be an increasing sequence of
compact subsets of Q such that U,2, = Q. We define the sequence of measures {v;, }nen,
by

v1 = T1(x,0)7, vn = Tn(x, )7 — Tn-1(x0,_,¢)y forn =>2.
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Since vy, > 0, then Y 3%, v = pu with strong convergence in (), vkl lom, () = vk(€2)
and D77 [|vk|lme ) = (). Let {pn} be a sequence of mollifiers. We may assume that
Nn = Pn * Vn € CSO(Q)a
I = vl oy < 20,

Set fr = > k=1 Mk then || fullpio) < Xpoy Imklloie) < 2per Wkl ) < p(). If we
define f = limy o0 fn, then f € L) with || f]| 1) < p(€). Set by, = D7), (vk—n), then
b € WHP(Q) N 9,(Q), Pl -1 () < 214(82) and s, converges strongly in w1 (Q)
to some h which satisfies HhHW_Lp/(Q) < 2u(Q). Since pp = f + h and [[h|on, @) < 2p(£2),
the result follows. u

Lemma 1.3.8 Let p € I (Q). If {u,} C M (Q) is a nondecreasing sequence which
converges to p in My(Q), there exist F,, F € LY(Q), Gp,G € W (Q) and pin s, pts €
M () such that

Hn:MnO+Mns:Fn+Gn+ﬂns and M:MO+Ms:F+G+N57

such that F, — F in LY(Q), G — G in W (Q) and in MO(Q) and pu, s — s in MP(Q),

and
) + 1Gnllw—10 ) + 1Gnllan, ) + |insllam, @) < 61(62). (1.3.6)

Proof. Since {p,} is nondecreasing {uno} and {u, s} share this property. Clearly

11— a2y = 11110 = bl laws ) + 115 = sl e .

thus fino — po and pins — s in My(2). Furthermore ||pn s|lon, () < 1s(2) < p(§2). Set
oo = 0 and fin0 = pno — n—10 for n € N,. From Lemma 1.3.7, for any n € N, one can
find f, € L*(Q), h, € W12 (Q) N M (Q) such that fi,o = fn + by and

fnllLr@) + [hnllw -1 ) + [Bnllon, () < Siino(€2).
If we define F,, = > }_, fr and G, = Y ;. h, then pno = F, + G, and
HFnHLl(Q) + HGTLHW*LP'(Q) + HGnHDﬁb(Q) < 5ﬂO(Q)-

Therefore the convergence statements and (1.3.6) hold. ]
Proof of Corollary 1.3.6. We set vy, = fi, + ptin,1 — pin2 +Up and v = f + 1 — p2 + 0.
From Lemma 1.3.8 we can write

Vn:fn+F1n_F2n+G1n_G2n+/~’f1ns_/1/2ns+19na

and
v=f+F —F+G —Gy+p1s — p2s + 9,

and the convergence properties listed in the lemma hold. Therefore we can apply Theorem
1.3.4 and the conclusion follows. ]
In the next result we prove the main pointwise estimates on renormalized solutions.
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Theorem 1.3.9 Let Q be a bounded domain of RN . Then there exists a constant ¢ > 0,
dependent on p and N such that if p € Mp(Q) and u is a renormalized solution of problem
(1.3.2) there holds

—cW%f“mQ[,u_] <u< CW%‘ff‘lmQ[uﬂ a.e. in Q. (1.3.7)

Proof. We claim the there exist renormalized solutions u; and ug of problem (1.3.2) with
respective data ut and = such that

—ug < u < a.e. in . (1.3.8)

We use the decomposition p = pt — u= = (ug — puf) — (ug — py ). We put uy, = Ti(u),
Mk = X{|u|<k}Mo + )‘Ij — Ay Uk = X{|u\<k},u(J)r + )\z. Since pr € Mo(2), problem (1.3.2)
with data pj admits a unique renormalized solution (see [6]), and clearly wy is such a
solution. Since vy, € My(§2), problem (1.3.2) with data v, admits a unique solution uy
which is furthermore nonnegative and dominates uy a.e. in 2. From Corollary 1.3.6, {uk71}
converges a.e. in ) to a renormalized solution u; of (1.3.2) with data pTand u < wg.
Similarly —u < ug where ug is a renormalized solution of (1.3.2) with p~. Finally, from
[13, Th 6.9] there is a positive constant ¢ dependent only on p and N such that

ui(x) < cWi‘]jf“mQ[,u'F] and ug(x) < CW%‘meQ[M_] a.e. in Q.

This implies the claim. [

1.4 Equations with absorption terms

1.4.1 The general case

Let g : @ x R — R be a Carathéodory function such that the map s — g(x,s) is
nondecreasing and odd for almost all x € Q. If U is a function defined in 2 we define the
function g o U in Q by

goU(x) =g(x,U(x)) for almost all z € Q.

We consider the problem
—Apu+gou=p in §,

u=0 1in 09Q. (1.4.1)

where p € My(Q). We say that u is a renormalized solution of problem (1.4.1) if gou €
LY(2) and u is a renormalized solution of

—Apu=p—gou in

u=0 1in 09Q. (1.4.2)

Theorem 1.4.1 Let u; € ﬂﬁi(ﬂ), 1 = 1,2, such that there exists a mondecreasing se-
quences {j1;.n} C MY (), with compact support in Q, converging to y; and go (cW%j,me[ui,n]) €
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LY(Q) with the same constant ¢ as in Theorem 1.5.9. Then there exists a renormalized so-
lution of
—Apu+gou=pg —pz in

u=20 in 0L, (1.4.3)
such that

—WE o] (2) < u(w) < WEG M u](2)  ace. in Q. (1.4.4)

Lemma 1.4.2 Assume g belongs to L (2 xR), besides the assumptions of Theorem 1.4.1.
Let \; € 9JTb+(Q) (i = 1,2), with compact support in Q. Then there exist renormalized
solutions u, u;, v; (i =1,2) to problems

—Apu+gou=XA —X in Q,

u=20 m OS2, (1.4.5)
—Apui +gou; =X\ in €,
u; =0 in 09, (1.4.6)
—Apvi = )\i m Q,
v; =0 in 09, (1.4.7)
such that
—eW15 " o) () < —va() < —uz(a) < ula)

< u(z) < vi(x) < W2 D] () (1.4.8)

for a.e x € Q).

Proof. Let {p,} be a sequence of mollifiers, A , = pn * i, (i = 1,2) and Ay, = A1 5, — A2p.
Then, for ng large enough, A1 ,, A2, and A, are bounded with compact support in € for
all » > np and by minimization there exist unique solutions in I/VO1 P(Q) to problems

—Apup +gou, =X, in Q,
up, =0 in 09,

_Apui,n +gouin= )\i,n in Q,
Ujn = 0 in 8(2,
—pr’n = )\i,n in Q,
Vip =0 in 00,

and by the maximum principle, they satisfy
—von(x) < —ugp(x) < up(z) <ury(z) <vip(r), VoeQ, Vn > ng. (1.4.9)

Since the \; are bounded measure and g € L*°(Q2 x R) the the sequences of measures
{Mn—Aon—gount, {Nin —gou;n}t and {\;,} are uniformly bounded in Mb(Q). Thus,
by Theorem 1.3.3 there exists a subsequence, still denoted by the index n such that {u,},
{win}, {vin} converge a.e. in Q to functions {u}, {u;}, {vi} ( = 1,2) when n — oc.
Furthermore ¢ o u, and g o u;, converge in LY() to g ou and g o u; respectively. By
Corollary 1.3.5, we can assume that {u}, {u;}, {v;} are renormalized solutions of (1.4.5)-
(1.4.7), and by theorem 1.3.9, v;(z) < cW%?lf“mQ[/\i](w), a.e. in . Thus we get (1.4.8).
[
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Lemma 1.4.3 Let g satisfy the assumptions of Theorem 1.4.1 and let \; € 93?;‘(9) (i =
1,2), with compact support in 0 such that g o (CWiimm ® [)\Z]> € LY(Q), where c is the

constant of Theorem 1.4.1. Then there exist renormalized solutions u, u; of the problems
(1.4.5)-(1.4.6) such that

2 diam ()

—CWLP

Dol(z) < —uz(z) < u(z) < ug(x) < WL D] (2) (1.4.10)

for a.e x € Q. Furthermore, if w;, 0; have the same properties as the A\; and satisfy w; <
Ai < 0;, one can find solutions u,, and ug, of problems (1.4.6) with right-hand respective
side w; and 0;, such that u,, < u; < ug,.

Proof. From Lemma 1.4.2 there exist renormalized solutions u,,, u;, to problems

—Apup +Th(gouy) =A1 — A2 in Q,
Uy =0 on 0f),

and
_Apui,n + Tn(g © ui,n) =X\ in{,
Uin =0 on 0f,

i = 1,2, and they satisfy

—eWTE O] (@) < —upn() < un(e) < wip(e) < W2 D) ¥ o € Q.
(1.4.11)
Since [q |Tn(g 0 un)ldz < A(Q) + A2(Q) and [, Tn(g © uin)de < Ai() thus as in Lemma
1.4.2 one can choose a subsequence, still denoted by the index n such that {w,, w1, uzn}
converges a.e. in  to {u,u1,us} for which (1.4.11) is satisfied a.e. in €.

Since go (cWiimm ) [)\Z]> € L'(2) we derive from (1.4.11) and the dominated convergence

theorem that 7,(gou,) — gou and Ty, (gou;,) — gou; in L1(£2). It follows from Theorem
1.3.4 that u and wu; are respective solutions of (1.4.5), (1.4.6). The last statement follows
from the same assertion in Lemma 1.4.2. |
Proof of Theorem 1.4.1. From Lemma 1.4.3, there exist renormalized solutions uy,, u;n
to problems

_Apun +gouUun =1 — Hon in Q,

Up =0 on 0f),
and
_Apui,n +goUin = Uin in €,
Ui =0 on 012,

i = 1,2 such that {u;,} is nonnegative and nondecreasing and they satisfy

— W D) (@) < (@) < o) < wru(@) < WHT () (1412)

a.e. in Q. As in the proof of Lemma 1.4.3, up to the same subsequence, {u1}, {uz,} and
{un} converge to wu;, ug and u a.e. in €. Since g o u;, are nondecreasing, positive and
fQ gouindr < p;n(2) < 1 (), it follows from the monotone convergence theorem that
{g o uin} converges to g owu; in LY(Q). Finally, since |gou,| < gouy + gowug, {gou,}
converges to gou in L'(Q) by dominated convergence. Applying Corollary 1.3.6 we conclude
that u is a renormalized solution of (1.4.3) and that (1.4.4) holds. ]
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1.4.2 Proofs of Theorem 1.1.1 and Theorem 1.1.2

We are now in situation of proving the two theorems stated in the introduction.
Proof of Theorem 1.1.1. 1. Since u is absolutely continuous with respect to the capacity
Cap Ng ¢, T and p~ share this property. By Theorem 1.2.8 there exist two

P Ng=-DN=8)) a+1-p

nondecreasing sequences {1} and {u2,} of positive bounded measures with compact

support in  which converge to u™ and p~ respectively and which have the property that
N

W (ki) € LN-5 “4(RN), for i = 1,2 and all n € N. Furthermore, with R = diam(2),

Lo Wil o< [ () 0 (WiSlke))” )"
<en [ (W) ()"

< eaa [Wiglhinlll? n
LN=B"Y(RN)

< Q.

Then the result follows from Theorem 1.4.1.

2. Because pu is absolutely continuous with respect to the capacity Cap Ng 17
’Ng—(p—1)(N—8))’

so are ' and . Applying again Theorem 1.2.8 there exist two nondecreasing sequences
{11,n} and {p2n} of positive bounded measures with compact support in € which converge

N
to u™ and p~ respectively and such that Wfp (pin] € Lﬁ’l(RN). This implies in parti-

cular Ns
(Wil ()" (8) < esst™ ¥a . VE>0,

for some c34 > 0. Therefore, by Theorem 1.2.3
1 2R 1\ R »
|  Wilinl@) de< | (75 ) (09 (¢ (Wlkaa)) () de

< c36 /OIQ ;BVQ (C (W%,I;[Mz’,n])* (t)) dt

9l _N-g
< 636/ —59 <6350t N ) dt
0 N

[o.¢]

< 037/ gty tdt
a

< 00,

where a > 0 depends on ||, c35¢, N, 3, q. Thus the result follows by Theorem 1.4.1. m
Proof of Theorem 1.1.2. Again we take R = diam (§2). Let {Q, }nen, be an increasing
sequence of compact subsets of €2 such that U,€2,, = Q. We define ; ,, = T, (xq,, fi) + X, Vi
(i =1,2). Then {p1,,} and {u2,,} are nondecreasing sequences of elements of M, (£2) with
compact support, and they converge to u+ and p~ respectively. Since for any € > 0 there
exists c. > 0 such that

(Wiklpinl)* < ccn? T + (14 2) (W),
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a.e. in (), it follows
exp (7’ (CW%%[MZ‘MD)\> < Cen,c €XP (7’(1 +¢) (cW%fZ[w])ﬁ .

If there holds

(p—=DH(A—-1)

p—1
=D pln2 B)
HMp,QR)\ Willl L) < <)\(12)\c)>‘> )
we can choose € > 0 small enough so that

pln2
(p=1)(A—-1) A

M1 +e)t < -
(12/\)/\”1\/[;),21«2A [Vzmz;}(g)

Hence, by Theorem 1.2.5 with n = w, exp (T(l +¢) (cW%f;[yi]))‘) € L'(Q2), which
implies exp (7’ (cW%f;[ui,n])/\) € L'(2). We conclude by Theorem 1.4.1. [
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Chapitre 2

Quasilinear and Hessian type
equations with exponential reaction
and measure data

Abstract !

We prove existence results concerning equations of the type —Apu = P(u) + p for p > 1
and Fy[—u] = P(u)+p with 1 < k < & in a bounded domain © or the whole RY, where p

is a positive Radon measure and P(u) ~ e’ with a > 0 and B > 1. Sufficient conditions
for existence are expressed in terms of the fractional maximal potential of p. Two-sided
estimates on the solutions are obtained in terms of some precise Wolff potentials of pu.
Necessary conditions are obtained in terms of Orlicz capacities. We also establish existence
results for a general Wolff potential equation under the form u = vap [P(u)] + f in RY,
where 0 < R < oo and f is a positive integrable function.

1. Archive for Rational Mechanics and Analysis, 214, 235-267 (2014).
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2.1. INTRODUCTION

2.1 Introduction

Let © ¢ RY be either a bounded domain or the whole RN, p > 1 and k € {1,2,...,N}.
We denote by
Apu = div (|VulP~2Vu)

the p-Laplace operator and by

Figlu] = > Aji Ada - Aji
1<51<ja<... <Gk <N

the k-Hessian operator where Ai,..., Ay are the eigenvalues of the Hessian matrix D?u.
Let p be a positive Radon measure in €2 ; our aim is to study the existence of nonnegative
solutions to the following boundary value problems if §2 is bounded,

—Apu=P(u)+p inQ,

w=0 on Y, (2.1.1)

and

Fil—u] = P() + 11 in

w= o on 99, (2.1.2)
where P is an exponential function. If @ = RY, we consider the same equations, but the
boundary conditions are replaced by infgy u = 0. When P(r) = r¢ with ¢ > p—1, Phuc and
Verbitsky published a seminal article [20] on the solvability of the corresponding problem
(2.1.1). They obtained necessary and sufficient conditions involving Bessel capacities or
Wolff potentials. For example, assuming that € is bounded, they proved that if u has
compact support in € it is equivalent to solve (2.1.1) with P(r) = r9, or to have

w(E) < cCapg,, s (E) for all compact set E C €, (2.1.3)

q+1—p

where ¢ is a suitable positive constant and CapGp g2 Bessel capacity, or to have
’g+1-p

[z (WiB[up)(x))? du < Cp(B) for all ball B s.t. B Nsuppu # 0, (2.1.4)

where R = diam(f2). Other conditions are expressed in terms of Riesz potentials and
maximal fractional potentials. Their construction is based upon sharp estimates of solutions
of the non-homogeneous problem

—Apu=w in (),

u=0 on 09, (2.1.5)

for positive measures w. We refer to [4, 5, 6, 7, 9, 13, 23] for the previous studies of these
and other related results. Concerning the k-Hessian operator in a bounded (k — 1)-convex
domain 2, they proved that if ;1 has compact support and ||¢||ze (@) is small enough, the
corresponding problem (2.1.2) with P(r) = r? with ¢ > k admits a nonnegative solution if
and only if

u(E) < cCapG%q%k(E) for all compact set E C (2, (2.1.6)
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or equivalently

k+1°

q
/B [WQQI‘;; e B(@)]| dz < Cp(B)  for all ball B s.t. BN suppu # 0. (2.1.7)

The results concerning the linear case p = 2 and k = 1, can be found in [2, 3, 28].
The main tools in their proofs are derived from recent advances in potential theory for
nonlinear elliptic equations obtained by Kilpelainen and Maly [15, 16], Trudinger and Wang
[24, 25, 26], and Labutin [18] thanks to whom the authors first provide global pointwise
estimates for solutions of the homogeneous Dirichlet problems in terms of Wolff potentials
of suitable order.

Fors >1,0<a< %, n>0and 0 < T < oo, we recall that the T-truncated Wolff
potential of a positive Radon measure p is defined in RY by

Wi = [ (A7) e (2.18)

t )
the T-truncated Riesz potential of a positive Radon measure p by

T = [ HED (2.1.9)
0

tN—a ¢~
and the T'-truncated n-fractional mazximal potential of u by

p(Bi())
N =Ny (1)

where hy(t) = (—Int) "x2-1)(t) + (In2)""x[2-1,00)(t). If n = 0, then h; = 1 and we
denote by M, r[u] the corresponding T'-truncated fractional mazimal potential of p. We
also denote by W, s[u] (resp In[u], M[pu] ) the oco-truncated Wolff potential (resp Riesz
Potential, n— fractional mazximal potential) of u. When the measures are only defined in
an open subset  C R, they are naturally extended by 0 in Q¢. For | € N*, we define the
[-truncated exponential function

M lpl(z) = sup{ 0<t< T} , (2.1.10)

Hy(r) :eT—ZQj (2.1.11)

=i
and for ¢ > 0 and 8 > 1, we set
Prap(r) = Hy(ar”). (2.1.12)
We put
o
@p(s) = g PR (2.1.13)

Hy(s") if p=2,

Qp(r) = max{rs — Qp(s) : s > 0} is the complementary function to Qp, and define the
corresponding Bessel and Riesz capacities respectively by

Capg,, q;(E) = inf{ Qy(f)dz : Gap* [ > x5, [ > 0,Q,(f) € Ll(RN)} . (2.1.14)

RN
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and

CaplamQ;(E) = inf{ Qp(f)dr - Topx f > xE, f 2 0,Q,(f) € LI(RN)} ,  (2.1.15)

RN
where E is a Borel set in RY, Gop(z) = F1 ((1 + ][2)_%> (x) is the Bessel kernel of
order ap and Ip(z) = (N — ap)*1‘$|*(Nfap).

The expressions a A b and a V b stand for min{a,b} and max{a,b} respectively. We
denote by B, the ball of center 0 and radius » > 0. Our main results are the following
theorems.

Theorem 2.1.1 Let 1 < p < N,a > 0,1 € N* and B8 > 1 such that I3 > p— 1. Let
Q C RY be a bounded domain. If i is a nonnegative Radon measure in Q, there exists
M > 0 depending on N,p,l,a, and diam () (the diameter of Q1) such that if

%
||Mp,2 diam (Q) [M] | |Loo(RN) <M,

(p—1)(B—1)

— _ ) 2-p 2diam (Q
andw = M|‘Mp,2di€1m(ﬂ)[l]”LL(IR{N)_'_M with ¢, = 1V 4r=1 then P, , 3 (2cpK1Wmem( )[w])
1s integrable in € and the following Dirichlet problem

—Apu =P ap(u)+p in €,
T as () o 50 (2.1.16)
admits a nonnegative renormalized solution u which satisfies
u(x) < 2cpK1Wiiwm @ w](z) Vze. (2.1.17)

The role of K1 = K1 (N, p) will be made explicit in Theorem 2.3.4.

Conversely, if (2.1.16) admits a nonnegative renormalized solution u and Py, g(u) is in-
tegrable in 2, then for any compact set K C ), there exists a positive constant C' depending
on N,p,l,a, and dist(K,0) such that

/ P o g(u)de + p(E) < C’C’apGp,Q;(E) for all Borel sets E C K. (2.1.18)
E

Furthermore, u € Wol’pl(Q) foralll < p; <p.
When Q = RY, we have a similar result provided p has compact suppport.

Theorem 2.1.2 Let 1 <p < N, a > 0,1 € N* and 8 > 1 such that I3 > %__;) and
R > 0. If i is a nonnegative Radon measure in RN with supp(p) C Bg there exists M > 0

depending on N,p,l,a,5 and R such that if

(p-1(-1)
IMp 7 [l ey < M,
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(r=1)(B-1)
and w = M||M,, * [XBR]HZolo(RN)XBR + 1, then P g5 (2cp, K1 W1 ,[w]) is integrable in

RN and the following problem

— Apu= P qp(u)+p in D'(RY),

infpn u = 0, (2.1.19)
admits a p-superharmonic solution u which satisfies
u(r) < 2c, Ky W plw](z) Vo € RY, (2.1.20)

(cp and Ky as in Theorem 2.1.1).

Conversely, if (2.1.19) has a solution u and Py, 5(u) is locally integrable in RY | then
there exists a positive constant C depending on N,p,l,a, 5 such that

/ P o g(u)dr + p(E) < CC’apIpvQ;(E) VE c RN, E Borel. (2.1.21)
E

Furthermore, u € Wli’fl (RN for all 1 < p; < p.

Concerning the k-Hessian operator we recall some notions introduced by Trudinger
and Wang [24, 25, 26|, and we follow their notations. For k = 1,..., N and u € C?(f2) the
k-Hessian operator F}, is defined by

Filu] = Sp(A\(D?u)),

where A\(D?u) = A = (A1, Ao, ..., Ay) denotes the eigenvalues of the Hessian matrix of
second partial derivatives D?u and S, is the k-th elementary symmetric polynomial that
is
Sp(\) = D A
1<it<...<ip <N
It is straightforward that
Fk[u] = [D2U]k,

where in general [A]j, denotes the sum of the k-th principal minors of a matrix A = (a;;). In
order that there exists a smooth k-admissible function which vanishes on 92, the boundary
0 must satisfy a uniformly (k-1)-convex condition, that is

Si—1(k) > co > 0on 09,

for some positive constant ¢y, where k = (k1, k2, ..., kn—1) denote the principal curvatures
of 00 with respect to its inner normal. We also denote by ®#(Q) the class of upper-
semicontinuous functions 2 — [ — 00, 00) which are k-convex, or subharmonic in the Per-
ron sense (see Definition 2.5.1). In this paper we prove the following theorem (in which
expression E[q| is the largest integer less or equal to q)

Theorem 2.1.3 Let k € {1,2,...,E[N/2]} such that 2k < N, 1 € N*, 8 > 1 such that

18 >k and a > 0. Let  be a bounded uniformly (k-1)-convex domain in RN . Let ¢ be a
nonnegative continuous function on 9Q and pu = py + f be a nonnegative Radon measure
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where py has compact support in Q and f € L1(Q) for some q > % Let Ky = Ko(N, k)

be the constant Ko which appears in Theorem 2.5.3. Then, there exist positive constants b,

M and My depending on N, k,l,a, and diam () such that, if maxgo @ < My and
k(8—1)

HM%Sdmm @ [l e mry < M,

then Ppq 5 <2K2W2$“21(?)

k+1°

(1] + b> is integrable in Q0 and the following Dirichlet problem

Fil~u] = Pos(u) + 1 in €,

w=o on 09, (2.1.22)
admits a nonnegative solution u, continuous near 052, with —u € ®*(Q) which satisfies
w(@) < 2K W24 Dy 1y vr e Q. (2.1.23)
m,k+1

Conversely, if (2.1.22) admits a nonnegative solution u, continuous near 0S), such that
—u € ®*(Q) and Py, 5(u) is integrable in S, then for any compact set K C ), there exists
a positive constant C' depending on N, k,l,a, and dist(K,08) such that there holds

/ P o pg(u)de + p(E) < CC@Z’G%,Q;H(E) VE C K, E Borel, (2.1.24)
E

where Qpy1(s) is defined by (2.1.13) with p = k+ 1, Qf, 1is its complementary function
and CQPG%,Q;H(E) is defined accordingly by (2.1.14).

The following extension holds when Q = RY.

Theorem 2.1.4 Letk € {1,2,...,E[N/2]} such that 2k < N, 1 € N*, 8 > 1 such that I3 >
ijlzk and a >0, R > 0. If 1 is a nonnegative Radon measure in RN with supp(p) C Bp
there exists M > 0 depending on N, k,l,a,3 and R such that if

Ko=)
[IMy,, " [l oo mrvy < M,

k(B-1)
and w = M||M,, ” [XBR]HZolo(RN)XBR + i, then P g5 (2K2W27k k+1[w]) is integrable in

k412

RN (K3 as in Theorem 2.1.3) and the following Dirichlet problem
Fyl-u] = Pag(u) +p in RY,

infry u =0, (2.1.25)
admits a nonnegative solution u with —u € ®*(RN) which satisfies
u(x) < 2KoW 2, [w](z) Vo e RV, (2.1.26)
k+1°

Conversely, if (2.1.25) admits a nonnegative solution u with —u € ®*(RN) and P, 4 5(v)
locally integrable in RY, then there exists a positive constant C depending on N, k.1, a,
such that there holds

/ P o p(u)de + p(E) < CCGPI%,Q;H(E) VE c RN, E Borel. (2.1.27)
E

where CapI%QZH(E) is defined accordingly by (2.1.15).
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The four previous theorems are connected to the following results which deals with a
class of nonlinear Wolff integral equations.

Theorem 2.1.5 Let « >0, p>1,a >0, >0, R > 0,1l € N and 8 > 1 such that
I>p—1and 0 < ap < N. Let f be a nonnegative measurable in RN with the property
that p1 = Prases(f) is locally integrable in RN and p € MT(RY). There exists M > 0
depending on N,a,p,l,a,B,e and R such that if

(p=1)(B-1) (p=1)(B-1)
M, " (Wlllpe@y) <M and My, 0 [lllge@y) <M, (2.1.28)

then there exists a nonnegative function u such that P4 g(u) is locally integrable in RN
which satisfies

u=WI [Pag(u)+pul+f in RY, (2.1.29)
and
u< F =20, W 1] + 2, W [wo] + f, Prag (F) € L, (RY), (2.1.30)
ESIEEVE CESIEES I
where wy = M||M,,, »° [1]HL°°(RN) +pand wy = MM, 5 [1]HLOO(RN) + p1.

Conversely, if (2.1.29) admits a nonnegative solution u and Py, g(u) is locally integrable
in RN, then there exists a positive constant C' depending on N, o, p,l,a, 3 and R such that
there holds

/ Pl,a”g(u)da:—i—/ P oyep(f)de+p(E) < C’C’apGap,Q;(E) VE Cc RN, E Borel. (2.1.31)
E E

When R = oo in the above theorem, we have a similar result provided f and u have
compact support in RV,

Theorem 2.1.6 Let a« >0, p>1,a >0, >0, R > 0,1l € N* and 8 > 1 such that
0<ap < N and I8 > 1\]7\[(;_,7;;' There exists M > 0 depending on N,a,p,l,a,B3,¢ and R
such that if f is a nonnegative measurable function in RN with support in Br such that
w1 = Py ayep(f) is locally integrable in RN and p is a positive measure in RN with support

in Br which verify
(p*l)ﬁgﬁfl) (p*l)ﬂ(ﬁfl)
| Map [l oory < M and  [|Map (]l oo vy < M, (2.1.32)

then there exists a nonnegative function u such that P, g(u) is integrable in RN which
satisfies

w=WaplPasu)+pu+f in RY, (2.1.33)
and
u < F =20, Woplwi] + 2, Waplwo] + f,  Prag (F) € LYRY), (2.1.34)
(p=1)(B—1) . (p=1)(8-1) .
where wy = MHM@P ? [XBR]"ZOO(RN)XBR—i_/“’[’ andwy = MHMOéP ? [XBR]HZOO(RN)XBR+
M.

45



2.1. INTRODUCTION

Conversely, if (2.1.33) admits a nonnegative solution u such that P, , g(u) is integrable
in RN, then there exists a positive constant C depending on N, o, p,l,a, 3 such that there
holds

/ P, o 5(u)dz —I—/ P og(f)de + p(E) < CC’apIapQ;(E) VE c RN, E Borel. (2.1.35)
E E

As an application of the Wolff integral equation we can notice that a = 1, equation
(2.1.33) is equivalent to

—Ap(u—f)=Praslu)+p in RV,

When a = ,f—fl and p = k + 1, it is equivalent to

Fy[~u+ f] = Pap(u) +p  inRY.
If p = 2 equation (2.1.33) becomes linear. If we set 7 = 2, then

Waalel(@) = [~ w(Bilo) mi

- /]RN </|:y| Wﬁli“) )

1 / dw(y)
- N =7 Jgy |z —y[NY

=1L, xw,

where I, is the Riesz kernel of order . Thus (2.1.33) is equivalent to
(=A)*(u— f) = Praplu) +pn in RV,

Remark 2.1.7 In case Q is a bounded open set, uniformly bounded of sequence {u,}
(2.2.22) is essential for the existence of solutions of equations (2.1.16), (2.1.22) and (2.1.29).
Moreover, conditions I3 > p — 1 in Theorem 2.1.1, 2.1.5 and I3 > k in Theorem 2.1.8 is
necessary so as to get (2.2.22) from iteration schemes (2.2.20). Besides, in case Q = RY,
equation (2.1.19) in Theorem 2.1.2 ( (2.1.25) in Theorem 2.1.4, (2.1.33) in Theorem 2.1.6
resp.) has nontrivial solution on RN if and only if I3 > Ne-1) (168> k18 > Ne=1)

N—p N—-2k> N—ap
resp.). In fact, here we only need to consider equation (2.1.19). Assume that [5 < N]S,p__pl),

using Holder inequality we have Pjq g(u) > cu” wherep —1 <y < N]Sf:pl) , so we get from

Theorem (2.3.4).

u> KWy pleuw +pu]  in RY

for some constant K. Therefore, we can verify that

2 (B)  VEC RN, E Borel.

y—

/ u'dr + p(E) < CCapy,
E

see Theorem 2.2.7, where C is a constant and Caplp I 15 a Riesz capacity.
'y—p
. N(p—1
Since N < g (& p-1<y< ]Sf%p)), C’apIpwiL1 (E) =0 for all Borel set E, see [1].
Immediately, we deduce u =0 and p = 0.
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2.2 Estimates on potentials and Wolff integral equations

We denote by B (a) the ball of center a and radius r > 0, B, = B;(0) and by xg the
characteristic function of a set E. The next estimates are crucial in the sequel.

Theorem 2.2.1 Let a >0, p > 1 such that 0 < ap < N.
1. There exists a positive constant c1, depending only on N,a,p such that for all u €
IMH(RY) and ¢ >p—1,0 < R < 0o we have

= R 1(2)) 7T da B ()" de < (c1g)? B (@) 7T da
1) 7 [ O l@) T de < [ (WE @) de < (o) [ (15 ful(@) (221}

2. Let R > 0. There exists a positive constant ca, depending only on N, a,p, R such that
for all i € MT(RYN) and ¢ > p — 1 we have

(c20) 7 [ @yl de < [ (WE (@) do < (c20)' [ (Galil(@)7

N RN

where Gaplt] := Gap * 1 denotes the Bessel potential of order ap of p.

3. There exists a positive constant c3, depending only on N,a, R such that for all p €
M (RY) and ¢ > 1 we have

o /]RN (Galp)(x))? dz < /RN (T2 () (2))? da < cg/ (Galp(z))? da. (2.2.3)

RN

Proof. Note that W% ,[u] = IZ[u]. We can find proof of (2.2.3) in [8, Step 3, Theorem
2 2
2.3]. By [8, Step 2, Theorem 2.3|, there is ¢4 > 0 such that

[ OWE @) o et [ (Mol Vo 2 po1, 0 < R < 00 and € (R

(2.2.4)
We recall that Mg, rlp] = Mgpﬂ[u] by (2.1.10). Next we show that for all ¢ > p — 1,

0 < R < oo and pu € M (RY) there holds

/ (Mo, rlul() 7 1de > (c5q)™ / (WE [u](z))"de, (2.2.5)
RN RN

for some positive constant c5 depending on N, «, p. Indeed, we denote u,, by xp,u for n €
N*. By [17, Theorem 1.2] or [8, Proposition 2.2], there exist constants c¢g = c¢(N, a, p) > 0,
a = a(a,p) > 0 and g9 = €(N, «,p) such that for all n € N*, ¢ > 0, 0 < R < oo and
0 < € < gg, there holds

|{W§pun > 3t}’ < cg exp (—as_l) }{ngun > t}‘ + ’{(Map,R,Un)p%l > et}‘ .

Multiplying by ¢t?~! and integrating over (0, c0), we obtain

oo o
/ qti! ‘{Wip,un > 3t}‘ dt < cgexp (—ae_l) / gt ‘{Wip,un > t}| dt
0 0

oo
+/ qt?! H(Map,R,un)P%l > et}‘ dt,
0
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which implies

€1 (379 — cexp (—az1)) /

A
(Wg,p[“"](x))qué/ (Map, rftn) P~ dz.
RN .

We see that sup &4 (3_‘1 — cg exp (—as_l)) > (c7q)~9 for some constant c¢; which does

0<e<eo
not depend on ¢q. Therefore (2.2.5) follows by Fatou’s lemma. Hence, it is easy to obtain
(2.2.1) from (2.2.4) and (2.2.5). At end, we obtain (2.2.2) from (2.2.1) and (2.2.3). ]

The next result is proved in [8].

Theorem 2.2.2 Let o« > 0, p > 1,0 < n <p—-—1,0< ap < N and L > 0. Set

D
5 = %(11)27(;:{7» " aplog(2). Then there exists C(L) > 0, depending on N, a, p, 1 and

L such that for any R € (0,00], u € MH(RN), any a € RN and 0 < r < L, there holds

p—1
Wh P
B 1((1)\ exp | & ( a’p[ﬂBr(a)](xL de < C(L), (226)
2r Bo(a) ‘ |MZp,R[’U’BT(a)] | ’fgol(};; (a))

where g, (q) = XB,(a)lt- Furthermore, if n =0, C 1is independent of L.

Theorem 2.2.3 Let a > 0, p > 1 with 0 < ap < N, 8 > 1 and R > 0. Assume
p € MH(RN) satisfies

%
HMap,R [M]HLO@(RN) <1, (2.2.7)
(p=1)(B-1)
and set w = |[M,, = [1]]\;&0(]@,) + w. Then there exist positive constants C, dy and c

independent on i such that exp (50 (Wﬁp [w])ﬁ) is locally integrable in RV,

W&, [exp (30(WE, 1)) <c, (2.2.8)

HLOO(RN) o
and

me [exp <50 (Wip [w])ﬁ)} < cWﬁp[w] in RV, (2.2.9)

Proof. Let ¢ be as in Theorem 2.2.2. From (2.2.7), we have

(pfl)ﬁ(ﬂfl)
M, " [Wlllpeemyy < 2.

Let z € RY. Since w(By(y)) < 2tN~*Ph, 1y5-1) (), for all 7 € (0, R) and y € RY we have
B

R 1
R _ r W(Bt(y)) p=1dt
W, Wl (y) = Wi, [w] (y) + /r (tN—aP s
21 _ Rv2~1 _
R e N S ) I U
’ rA2—1 t 2-1 t

< W2, W] (9) + es(—In(r A271))F + c.
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Thus,

(W2, ] ()" <377 (W, (] (1) + o ln <T A121> + co. (2.2.10)

5
Let 6 € (0,27 »-1], since exp (“$2) < exp (a) + exp (b) for all a,b € R, we get from (2.2.10)

exp <053*5 (WE | [w] (y))ﬁ> < exp (527F (W, [w] (y))ﬁ> + c1p exp <9011 In <r /\121>>

= exp (52 1 (Wo, W] (y))6> +ero (ra2t) 0
(2.2.11)

Forr > 0,0 <t <r,y € B,(z) there holds B(y) C Ba(z). Thus, Wy, ,[w] = W} [wp, ()]
in B, (z). Then, using (2.2.6) in Theorem 2.2.2 with n = Z=2=1 and L = 2R we get

[ e (2 m W b)) = [ e (027 (W L 0])7) < e

__B_
Therefore, taking § = 27 7=T A 522~ we deduce from (2.2.11)
11

W R 1
—fc ~— d
o [eXp (053_ﬁ( Wl [w])w)} () < / (Cmap +es(ra2 )’ “ro‘p)p 1 7T
0
R 1
_ap I,
< / (Clgrap + c13 (T’ A 2*1) 2prap> p—1 0T
0 T

< ci4.

2c11

5
Hence, we get (2.2.8) with dp = (2717?1 A 2L ) §37F ; we also get (2.2.9) since W [w]

m |V

c15 for some positive constant ci5 > 0.

We recall that H; and P, , 3 have been defined in (2.1.11) and (2.1.12).

Theorem 2.2.4 Leta>0,p>1,1 € N*" and 8 > 1 such that 0 < ap < N, I > ]\]7\,(37;110)
and R > 0. Assume that u € M (RYN) has support in Br and verifies

%ﬁ(ﬁﬂ
| Mayp [l ey < 1, (2.2.12)

(p=1)(B-1)
and setw = || Mgy, ° [XBR]HZOlo(RN)XBR—i_IU“ Then there exist C = C(N,a,p,l,5,R) >0

and 81 = 01(N,a, p,1, B, R) > 0 such that H; (51 (me[w])’g) is integrable in RN and

Wa, [Hl (51 (me[w])ﬁ)} (z) < CWo,lwl(z) Vo eRY, (2.2.13)
Proof. We have from (2.2.12)
(p=1)(B-1)

Map 7 W]l @ry < 2. (2.2.14)
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In particular, w(Bgr) < c16. Let 6; > 0 and z € RY fixed. We split the Wolff potential
W, plw] into lower and upper parts defined by

L., w)(x) = / " <w<1]j<>>> i

W1, wl(z) = / t (w(fj(rv))) ir

Using the convexity we have

and

Hy (81 (Waplw)?) < Hi (827 (L f)) ) + Hi (8127 (W ) ).

Thus,

W [Hi (81 (Waplo))) ] (2) < 17 /;m (W) : e /Om <w> B

where dwf = H, (6125 (Lta’p[w])ﬁ) dz and dw? = H, (6125 (Wﬁhp[w])ﬁ) dx. Inequality

(2.2.13) will follows from the two inequalities below,

too /ol (1 ﬁ
/0 (W) % < c18Wo plwl(), (2.2.15)
and
wZ(By(z)) < c13w(Ba(x)). (2.2.16)

Step 1 : Proof of (2.2.15). Since B, (y) C Bay(x) for y € By(x) and r > ¢, there holds

Lol < [ (A5 L )

,
It follows
wH(By()) < | B (Ot Hy (dre19 (L2, [w](x))”)
Thus,
1
oo L (By(z))\ Pt dt o
i (Bt

/0 <t]V—Oép) 7 < C20 : At(l')dt, (2217)

where

A(z) = (to‘le ((51019 (Lgf,p[w] (x))’B>> vt %
Since H;(s) < sl exp(s) for all s > 0,
Au(x) < e (tap (L2 [w)(@))" exp (51c19 (L2 [w] (g;))ﬁ)) =

IB—p+1

— eontr 1 (L2 [w](2)) P T exp (51@2 (L2 L] (x))ﬂ) L2 [w](x).
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Now we estimate L2 [w].

Case 1:t € (0,1). From (2.2.14) we deduce

12 1 w(Bg(x))\ 7~ 1 ds o0 ﬁ ds
2t < WBs / 22
La,p[w] (17) — /t/2 < SN ap > -t 1/2 SN ap s

1/2 1d 0 1 d
<023/ (—In(s HB S+ (Nap)p -
t/2 1/2 \$ S

< con (-m@/z))%,

which implies

A() < easti T (—In(t/2)) 75D exp (31c26(— In(t/2))) L2, [w](2)
= ortr T (= In(t/2)) FO0 D P2 ] ().

We take 61 <

(1% — 1) and obtain

2026

Ay(z) < oL w](z) Vt € (0,1). (2.2.18)

Case 2 :t > 1. We have

1
ot * (w(Bgr)\r1ds _N-ap
Ly pwl(z) < /2t <SN—ap> <= cogt” P=1 |

thus

ap _q _ (B—p+1)(N—op) B(N—ap)

Ap(z) < caotr—1 7t >-D?  exp (51031?5_ -1 > Ly, w)(@)

where v = ﬁ (M N) > 0.
Therefore, Ay(x) < eg3(tV 1)L [w](x) for all t > 0. Therefore, from (2.2.17)

[ () 2 [T

Using Fubini Theorem we get

/o+<>O <W> a % < e /OOO /Ot/2(s Vv 1)~17ds (M) 7T %

which follows (2.2.15).
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Step 2 : Proof of (2.2.16). For t > 0, r <t and y € B(z) we have B,.(y) C Ba(x), thus
B
B BN = [ (52 (Wl w)®)) dy
Bt(ﬂi)
By Theorem 2.2.2 there exists ¢z > 0 such that for 0 < 6; < 36, 0 < t < 2R, z € RV,
/ exp (5125 (me[wBQt(Z)](y))ﬂ) dy < czrt?. (2.2.19)
Bay(2)
We take 0 < 1 < c36.
Case 1 : x € Bp. If 0 <t < 2R, from (2.2.19) we get
w2 (Bi(x)) < ezt < ezgw(Bag(z)).
If t > 2R, since for any |y| > 2R,

1
* fw(B p=1 dt *  _{_N-oap _N-op
Wa,P[w](y) = / (t(Ni(ayp))) ? S C39/ t 1 p—1 dt S C40’y‘ p—1 ,

yl/2 yl/2
and thanks to (2.2.19) we have

BB < [ exp (522 (Wayfion)0)) du+ [

RN\ Bsg

< N H _ B(N—ap) 71 ap)
<enRY + ca2ly| dy
RN\ Bag

_lNi
<43+ 043/ Y| dy = c43 + caa R
RN\ Byg

Hy (512" (W [)(0))”) dy

ZB(N ap)
—1

< ¢45|Bat(z) N Br| < capw(Bar(x)).

From this we also have H; ((51 (Wa,plw ])B) c LY(RM).
Case 2 : x € RVM\Bg. If || > R+t then w? (Bt(:v)) = 0. Next we consider the case
R<|z| <R+t If0 <t < 2R, we have By ((R— )i) C Bat(x)N Bpg; thus from (2.2.19)

we get

t

w2 (By(z)) < eqrt™ = cug Byjs <(R - 2)|i|)' < ¢48 |Bat(x) N Bg| < cagw(Bar(x)).

Ift > 2R, as in Case 1 we also obtain w?(By(r)) < csow(Ba(x)) since Br C By (z). Hence,

we get (2.2.16). Therefore, the result follows with §; = <20126 (]% - )) A c36. |

In the next result we obtain estimate on a sequence of solutions of Wolff integral
inequations obtained by induction.

Theorem 2.2.5 Assume that the assumptions on a, p, L, a, B, €, f, w1 and p of Theorem
2.1.5 are fulfilled and R, K are positive real numbers. Suppose that {u,} is a sequence of
nonnegative measurable functions in RN that satisfies

Umt1 < ng,p[f)l,a,ﬁ(um) + ,u] +f VmeN,

(2.2.20)
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Then there exists M > 0 depending on N,a,p,l,a,B,e, K and R such that if

(p—1)(B—-1) (p=1)(B-1)
M, 7" [Wllpe@my <M and M, 5" [mlllpe@yy < M,
there holds
Prag (4, KWE wi] +4c, KWE [wa] + f) € L, (RY), (2.2.21)
and
U < 20, KWE [w1] + 2, KWE [wa] + f Vm €N, (2.2.22)
where
(p—l)ﬁ(ﬂ—l) 4
w1 = MHMap,R [1”|Loo(]RN) +,U,, (2223)
(p=1)(B=1) .
Wy = MHMO&p,Rﬂ [1”|L°°(RN) + M1, (2224)

2
and cp =1V =
Furthermore, if f =0 then (2.2.21) and (2.2.22) are satisfied with wy = 0.

8\
Proof. The proof is based upon Theorems 2.2.3 and 2.2.4. Set ¢, = 2 <1 — (a%'ﬁa) )

and a = a(4ca’ecpK)ﬁ. If 0 < M < 1 we define w; and wy by (2.2.23) and (2.2.24)
respectively. We now assume

(P—l)ﬁ(ﬁ—l) (P—l)g(ﬂ—l)
||Map7R [M]HLOO(RN) S M &nd HMap,R [Hl]”LOO(RN) S M

We prove first that

WE, [ (a(WEw)")] < WE ] for i=1,2 (2.2.25)

By Theorem 2.2.3, there exist ¢, dp > 0 independent on u such that exp <<50 (Wf,p [Mflwi] )ﬁ)

is locally integrable in RY and
W, lexp (60(WE, [M7wi])")| < eWE M w] in RY,
Since 87 Hy(s) < H;(6's) for all s > 0 and 0 < 6 < 1, it follows
Wi [Mmm o (Ws(ﬁ%) (wg,p[wipﬁ)} < WE, [ (8007 (WE )"
< Wﬁp [exp (50 (Wf;p[Mflwi])'B)}

1 p
<eM TP TWwil.

Bl

Wi [Hz (50M5<p’31%) (WE M)ﬁﬂ < cMﬁ(ﬁ*Qng[wi]_
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Therefore (2.2.25) is achieved if we prove

s <o EY and eprmn (1) <

which is equivalent to
M < (g ) BGEED) T p (i (1)
1 -1
Thus, we choose M = 1A (505_1)@(?%_%)) A c_(ﬁ(%_l» ; we obtain (2.2.25)
and the fact that H; (a (Wgyp[wi])ﬁ) € L (RM).

loc
Now, we prove (2.2.22) by induction. Clearly, (2.2.22) holds with m = 0. Next we assume
that (2.2.22) holds with m = n, and we claim that

Unt1 < 20, KW 1] + 20, KW [wo] + f. (2.2.26)
In fact, since (2.2.22) holds with m = n and P, , g is convex, we have

Prag (un) < Prag (A, KWE [w1] + 4, KW [wo] + f)

e\/8
< Pl,a,ﬁ (4Ca7ngKW§7p[wlD + Pl,e,a (4ca,acpKW§7p[w2]) + Pl,a,ﬁ <(1 + *) f)

=y (a(WE [n))”) + Hi (@ (WEw2]) ) + Prases ().

From this we derive (2.2.21). By the definition of u,+; and the sub-additive property of
W/ 1], we obtain

wnir < KW [H (@(WE o)) + Hy (@ (WE wa])”) + Plases(f) + 1] + f
< o, KWE, [Hi (a (WE 1)) | + e, KWE, [H (a (WE,fws])” ) |
+ KW [Prave ()] + o KWE, [u] + .

Hence follows (2.2.26) from (2.2.25). This completes the proof of the theorem. |

The next result is obtained by an easy adaptation of the proof Theorem 2.2.5.

Theorem 2.2.6 Assume that the assumptions on o, p, a, l, 8, €, f, 1 and u of Theorem
2.1.6 are fulfilled and R, K are positive real numbers. Suppose that {um} is a sequence of
nonnegative measurable functions in RN that satisfies

Umt1 < KW p[Pras(um) +pl+f YmeN,

(2.2.27)
ug < KWW[M] + f

Then there exists M > 0 depending on N,a,p,l,a,5,e, K and R such that if

(p=1)(B-1) (p=1)(B=1)
Map 7 [llpee@my <M and |[Map 7 [l ooy < M,
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there holds

Prap (4ep KW plws] + 4ep KW plwa] + ) € LY(RY), (2.2.28)
and
U < 2¢p KW plws] + 2, KW plws] + f Vm €N, (2.2.29)
where
(p=1)(B-1) 3
ws = M|[Map *  [XBrlll oo gy XBr + 1, (2.2.30)
and
(p=1)(B-1) ,
wq = MHMOGD g [XBR]HLoo(RN)XBR +,u1 (2231)

Furthermore, if f =0 then (2.2.28) and (2.2.29) are satisfied with wy = 0.

Let P € C(R") be a decreasing positive function. The («, P)-Orlicz-Bessel capacity of
a Borel set E C RY is defined by (see [1, Sect 2.6])

Capg,, p(E) = inf{/RN P(f)dx : Gox f > xg,f >0,P(f) € Ll(]RN)},

and the («, P)-Orlicz-Riesz capacity

Capy, p(F) = inf{/RN P(f)dz:1ox f > xg, [ >0,P(f) € LI(RN)}.

Theorem 2.2.7 Leta >0, p>1,a>0,¢c>0,l € N* and 8 > 1 such that I3 >p—1
and 0 < ap < N. Let pu € MH(RY).

1. Let 0 < R < oo. If u is a nonnegative Borel function in RY such that P, o 5(u) is locally
integrable in RN and

u(z) > CWOR;p[.Pl’a’B(U) + p)(zx) Vz e RY, (2.2.32)
then the following statements holds.

(i) If R < oo, there exists a positive constant Cy depending on N, o, p,l,a,B,c and R such
that

/ P o p(u)de + p(E) < Cy CapGa%Q;(E) VE c RY, E Borel. (2.2.33)
E
(ii) If R = oo, there exists a positive constant Co depending on N, o, p,l,a, B, c such that
/ P o p(u)dr + p(E) < Co Capr,,,.q; (E) VE c RY, E Borel. (2.2.34)
E

2. Let Q be a bounded domain in RN, u € MH(Q) and 6 € (0,1). If u is a nonnegative
Borel function in Q such that P q g(u) is locally integrable in 2 and

w(z) > cWEEIV[P | 5(u) + p)(z) Yz e, (2.2.35)
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then, for any compact set K C §2, there exists a positive constant C3 depending on N, a,p,l, a, 3,¢,d
and dist(K,09) such that

/ P o p(u)dz + p(E) < Cs CapGap,Q;(E) VE C K, E Borel, (2.2.36)
E

where Q,, is the complementary function to Q.

Proof. Set dw = P, , g(u)dx + dp.
1. We have
Pz (chyp[w]) dr < dw inRY,

Let M,, denote the centered Hardy-Littlewood maximal function which is defined for any
f € Lj, (RN, dw) by

1
Mof@) =sup s [ fld
“ t>0 W(B(7)) JB,(2)
If E Cc RN is a Borel set, we have

18 1
/ (MwXE)EPLa’ﬁ (ng,P[w]) dz < / (MwXE)pjdw-

Since M,, is bounded on L*(RY,dw), s > 1, we deduce from Fefferman’s result [11] that
18 R
. (MuxE)P TP qp (cWa’p[w]) dr < cs1w(F),
R
for some constant cs; only depends on N and plfﬁl. Since M, xg < 1, we derive

(MoX B (@) Plap (cWE w)(2)) = Pragp ((Moxn(@) 71 WE,[w](z))
> Pl,a,,B (CW(])?,p[WE] (.1‘)) )

where wg = xygpw. Thus
/ P s (chp[wE]) dzx < cs1w(E) VE c RN, E Borel. (2.2.37)
RN ’
From (2.2.1), (2.2.2) and (2.2.3) we get

/ Pras (ng,p[wE] (2)) dz > / Qp (c52Gaplwp](x))dr if R < oo,
RN RN

and

/R Pras (WE el @) do > [ Qp (esaloglor(@) o if R = oc,

—1
where @), is defined by (2.1.13) and ¢52 = (CQﬁ)*lapTcp*1 if p#£2, 50 = cg_la%c ifp=2
(the constants cg, c3 defined in (2.2.2) and (2.2.3), depend on R, therefore cso = c52(7x))
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—1
and c53 = (clﬁ)*lapTcp*1 if p#£2 c53 = afe if p = 2. Thus, from (2.2.37) we obtain that
for all Borel set E C R there holds

/RN Qp (C52Gozp[wE]($)) dx < C51W(E) if R< 00,

and
/R @y (eslaplor)(w) do < esio(B) if B = .

We recall that Qy(s) = sup;so{st — Qp(t)} satisfies the sub-additivity As-condition (see
Chapter 2 in [19]).
(i) We assume R < co. For every f >0, Q;(f) € LY(Q) such that Ggp * f > xg, we have

W(B) < [ Gy fiop = (2e50) ™! [ (csaGon ) (2em65 ) do
RN RN

< (2e51)7" /RN Qp (¢52Gap [wE]) dz + (2c51) " . Qp (2cs1¢5, f) da

<27'w(E)+ess [ Qh(f)da,
RN

the last inequality following from the As-condition. Notice that cs4, as well as the next
constant cgs, depends on rx. Thus,

W(E) < 254 / Q;(f) da.
RN
Then, we get
w(E) < C55C3pGQP,Q;(E) VE c RY, E Borel.

Which implies (2.2.33).

ii) We assume R = oo. For every f > 0, Q*(f) € L'(Q) such that I, * f > xg, since
( ) Yy p yY X

Loy xwp = Iyplwg], as above we have

w(E) < /RN Iy * fdwgp = /]RN (Iop xwEg) fdx = /RN Iy (wg] fdx
< 27Y(E) + cs6 Q; (f) dz,
RN

Then, it follows (2.2.34).
2. Let K C Q be compact. Set rx = dist(K,00) and Qx = {z € Q : d(z,K) < rx/2}.
We have

Praop (cwgfggwm [w]) dz < dw in Q.

Thus, for any Borel set £ C K

18 18
/ (Mosx)? " Pra,s (cWEKEOD[u] ) do < / (Myyx)71 dw.
& Q

As above we get

/Qpl’a’ﬁ (cwgﬁx’am [wE](w)) dx < csw(F) VE C K, E Borel. (2.2.38)
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Note that if z € Q and d(z,00Q) < ri /8, then Bi(z) C Q\Qg for all ¢ € (0,dd(x,0N));
indeed, for all y € By(x)

1
A(y,99) < d(z,09) + |z — y| < (1+ 8)d(x,00) < ric.

thus

1
d(y, K) > d(K,00) — d(y,09Q) > %n{ > STK,

which implies y ¢ Q. We deduce that

5,
W@ ID (0] (z) > WEL [wE] (z) Vo € Q,

a?p

and s
Wi wel(z) =0 Vo e Q-

Hence we obtain from (2.2.38),
H
/ P g (cWéij;,K [wEg] (x)) dx < cs1w(F) VE C K, E Borel. (2.2.39)
RN

As above we also obtain
w(E) < es7Capg,, q:(E)  VE C K, E Borel,

where the positive constant c¢s7 depends on rx. Inequality (2.2.36) follows and this com-
pletes the proof of the Theorem. [

Proof of Theorem 2.1.5. Consider the sequence {um}m>0 of nonnegative functions
defined by ug = f and

Ums1 = WE [Plag(um)]+ f in RN ¥m>0.

By Theorem 2.2.5, there exists M > 0 depending on N, a,p,l,a,3,e and R such that if
(2.1.28) holds, then {um,}m>0 is well defined and (2.2.21) and (2.2.22) are satisfied. It is
easy to see that {u,,} is nondecreasing. Hence, thanks to the dominated convergence theo-
rem, we obtain that u(z) = n%gnoo Um () is a solution of equation (2.1.29) which satisfies

(2.1.30).
Conversely, we obtain (2.1.31) directly from Theorem 2.2.7, Part 1, (i). ]

Proof of Theorem 2.1.6. The proof is similar to the previous one by using Theorem
2.2.6 and Theorem 2.2.7, Part 1, (ii). ]

2.3 Quasilinear Dirichlet problems

Let Q be a bounded domain in RY. If ;1 € (), we denote by T and p~ respectively
its positive and negative parts in the Jordan decomposition. We denote by 9t (£2) the space
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of measures in {2 which are absolutely continuous with respect to the c%p—capacity defined
on a compact set K C € by

c?’p(K) = inf {/Q [VolPdx : ¢ > xK, ¢ € ijo(Q)} )
We also denote M5(€2) the space of measures in 2 with support on a set of zero c%p—capacity.
Classically, any p € 91,(£2) can be written in a unique way under the form p = pg + s
where g € Mo(2)NM(2) and ps € M(Q). It is well known that any po € Mo () NM,(2)
can be written under the form pg = f — div g where f € L'(Q) and g € LV (Q,RN).

For k > 0 and s € R we set T(s) = max{min{s, k}, —k}. If u is a measurable function
defined in 2, finite a.e. and such that Ty(u) € szif(g) for any k > 0, there exists a
measurable function v : Q — R¥ such that VT}(u) = Xju|<k? a.e. in 2 and for all k£ > 0.
We define the gradient Vu of u by v = Vu. We recall the definition of a renormalized
solution given in [10].

Definition 2.3.1 Let p = po + ps € Mp(Q). A measurable function u defined in Q and
finite a.e. is called a renormalized solution of

—Apu=p n §,

u=0  ondQ, (2.3.1)

if Te(u) € Wol’p(Q) for any k >0, |[Vu[P~t € L"(Q) for any 0 < r < i, and u has the
property that for any k > 0 there exist A]Jg and X\, belonging to imlj NMy(QL), respectively
concentrated on the sets uw =k and u = —k, with the property that u;: =l py = Ay in
the narrow topology of measures and such that

/ IVulP~2? Vu.Vds = / wdp + / pd\ — / wd\,
{lul<k} {lul<k} Q Q
for every ¢ € Wol’p(Q) N L>(9).

Remark 2.3.2 We recall that if u is a renormalized solution to problem (2.3.1), then

% € LY(Q) for all r > 1. From this it follows by Hélder’s inequality that u € Wol’p1 (Q)

for all 1 < p; < p provided e € LY(2) for some a > 0. Furthermore, u > 0 a.e. in §) if
p € M ().

The following general stability result has been proved in [10, Th 4.1].

Theorem 2.3.3 Let p = pg + pf — py, with uyo = F —divg € Me(Q) and ul, p
belonging to MF(Q). Let p, = Fy — div gy + pp — nn with F, € L), g, € (L7 (Q)N
and pn, Nn belonging to M (). Assume that {F,} converges to F weakly in L*(2), {gn}
converges to g strongly in (L ()N and (div g,) is bounded in My(Q) ; assume also that
{pn} converges to put and {n,} to p; in the narrow topology. If {un} is a sequence of
renormalized solutions of (2.3.1) with data p,, then, up to a subsequence, it converges a.e.

in Q to a renormalized solution u of problem (2.53.1). Furthermore, Ty(u,) converges to
Ti(u) in Wol’p(ﬂ) for any k > 0.
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We also recall the following estimate [20, Th 2.1].

Theorem 2.3.4 Let Q be a bounded domain of R™V. Then there exists a constant K; > 0,
depending on p and N such that if p € EJJI;(Q) and u 1s a nonnegative renormalized solution
of problem (2.3.1) with data p, there holds

1 d(x,09)

W @) < ule) < KW () vee o, (2.3.2)
where the positive constant K1 only depends on N, p.

Proof of Theorem 2.1.1. Let {u;}men be a sequence of nonnegative renormalized
solutions of the following problems

—Apug =p in Q,
ug =0 on 01,

and, for m € N,
*Apum+1 = Pl,a,ﬂ(um) +p in Q,
Um+1 =0 on Of).

Clearly, we can assume that {u,,} is nondecreasing, see [21]. By Theorem 2.3.4 we have

xauo < KiW [ul,
XQUm+1 < K1Wﬁp[Pz,a,g(um) +p] YmeN,

where R = 2diam (2). Thus, by Theorem 2.2.5 with f = 0, there exists M > 0 depending
on N,p,l,a,B,K; and R such that P, 4 5(4¢c, KiW{ [w]) € L'(€) and

um(z) < 20, KTWT [w](z) Vo € Q,m €N, (2.3.3)

provided that
(p—1)(B—1)

1M, 7 [l @y < M,
(p—1)(B—-1) " 2-p

where w = MM, g g D”EW(RN) + p and ¢, = 1V 4r-1. This implies that {u,,} is
well defined and nondecreasing. Thus {u,,} converges a.e in ) to some function u which
satisfies (2.1.17) in Q. Furthermore, we deduce from (2.3.3) and the monotone convergence
theorem that P, g(um) — Prap(u) in L1(2). Finally, by Theorem 2.3.3 we obtain that u
is a renormalized solution of (2.1.16).

Conversely, assume that (2.1.16) admits a nonnegative renormalized solution u. By Theo-
rem 2.3.4 there holds

d(z,00)
u(z) > FWM’S [Pap(u) + pl(xz) forall x € Q.
1 ).
Hence, we achieve (2.1.18) from Theorem 2.2.7, Part 2. ]
Applications. We consider the case p =2, = 1. Then [ = 2 and

P apg(r)=e"" —1—ar.
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If Q is a bounded domain in R, there exists M > 0 such that if y is a positive Radon
measure in  which satisfies

p(Bi(z)) < MtN? vVt > 0 and almost all z € 2,
there exists a positive solution u to the following problem

—Au=e"™—1—au+pu in Q,

u=0 on Of).
Furthermore
2diamQ (B 2 diam (Q) B
u(z) < K(N)/O wdt - K(N)/O “(tNt_(‘f))dt +b Vreq.

where b = 2K (N)M||Ma 3 giam (Q)[lmzio(RN)]Bl\(diam 2)2. In the case N = 2 this result
has already been proved by Richard and Véron |22, Prop 2.4].

2.4 p-superharmonic functions and quasilinear equations in
RN

We recall some definitions and properties of p-superharmonic functions.

Definition 2.4.1 A function u is said to be p-harmonic in RN if u € I/Vli’p(]RN) NC(RY)

C
and —Apu = 0 in D'(RN). A function u is called a p-supersolution in RY if u € VVli’f(RN)
and —Apu > 0 in D'(RY).

Definition 2.4.2 A lower semicontinuous (L.s.c) function u : RN — (—o0,00] is called
p-super-

harmonic if u is not identically infinite and if, for all open D cC RY and all v € C(D),
p-harmonic in D, v < u on 0D implies v < u in D.

Let u be a p-superharmonic in RY. It is well known that u A k € whp (RN) is a p-

loc
supersolution for all £ > 0 and u < 0o a.e in RY, thus, u has a gradient (see the previous

section). We also have [Vu|P™t € LI (RV), (Hjiﬂp)r € L (RY) and u € Lj (RY) for

1<g< Pandr >1,1<s < YU (see [14, Theorem 7.46). In particular, if

edlul € L} (RN) for some a > 0, then u € WEPHRY) for all 1 < p; < p by Hélder’s

loc

inequality. Thus for any 0 < ¢ € C(£2), by the dominated convergence theorem,

(—Aju, ) = / VUl 2 Vulpde = im [ VARV (A RV > 0.
RN

—oo JRN

Hence, by the Riesz Representation Theorem we conclude that there is a nonnegative Ra-
don measure denoted by pu[u], called Riesz measure, such that —A,u = u[u] in D'(RY).

The following weak convergence result for Riesz measures proved in [27] will be used
to prove the existence of p-superharmonic solutions to quasilinear equations.
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Theorem 2.4.3 Suppose that {u,} is a sequence of nonnegative p-superharmonic func-
tions in RN that converges a.e to a p-superharmonic function w. Then the sequence of
measures {pu,|} converges to plu) in the weak sense of measures.

The next theorem is proved in [20]

Theorem 2.4.4 Let p be a measure in M (RY). Suppose that W1 p[u] < co a.e. Then
there exists a nonnegative p-superharmonic function w in RN such that —Apu = @ in
D'(RY), infgy u = 0 and
1
Wi lul(@) < ue) < KyW[p)(@), (2.4.1)

for all  in RN, where the constant K is as in Theorem 2.3.4. Furthermore any p-
superharmonic function u in RN, such that infgn v = 0 satisfies (2.4.1) with p = —Apu.

Proof of Theorem 2.1.2. Let {u, }men be a sequence of p-superharmonic solutions of
the following problems

~Apug=p i DRV,

infRN Uug = 0,
and, for m € N,

— Apum+1 = B,a,ﬁ(um) + /.,L in D/(RN),
infpwy wmy1 = 0.

Clearly, we can assume that {u,,} is nondecreasing. By Theorem 2.4.4 we have

Umt1 < KiWi 5P p(um) + 1] Ym e N.

Thus, by Theorem 2.2.6 with f = 0, there exists M > 0 depending on N, p,[,a, 5, K1 and
R such that P, 5(4c, K1 W1 p[w]) € LY(RY) and

Um < 2¢, KiW1 ,w] VYm e N, (2.4.2)

provided that
(r=1)(B-1)

1My 7 [lllgeqam < M,
(p=1)(B-1)

where w = M||M, * [XBR]HB}O(RN)XBR + p. This implies that {u,,} is well defined
and nondecreasing. Thus, {u,,} converges a.e in RV to some p-superharmonic function
u which satisfies (2.1.20) in RY. Furthermore, we deduce from (2.4.2) and the monotone
convergence theorem that Py, 5(um) — Prapg(u) in LY(RY). Finally, by Theorem 2.4.3 we
conclude that w is a p-superharmonic solution of (2.1.19).

Conversely, assume that (2.1.19) admits a nonnegative renormalized solution u. By Theo-
rem 2.4.4 there holds

1
u(x) > ?Wlp[ﬂ,aﬂ(u) + p)(x) for all z € RY.
1

Hence, we obtain (2.1.21) from Theorem 2.2.7, Part 1, (ii). |
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2.5 Hessian equations

In this section  C RY is either a bounded domain with a C? boundary or the whole
RN, For k =1,...,N and u € C?(Q) the k-hessian operator F}, is defined by

Fy[u] = Sk(A(Du)),

where A(D?u) = A = (A1, Ao, ..., Ay) denotes the eigenvalues of the Hessian matrix of
second partial derivative D?u and S}, is the k-th elementary symmetric polynomial that is

Sp(\) = )P

1<61<..<ip <N

We can see that
Fk[u] = [D2U]k,

where for a matrix A = (a;;), [A]; denotes the sum of the k-th principal minors. We assume
that 02 is uniformly (k-1)-convex, that is

Sk—1(Kk) > co >0 on 09,

for some positive constant ¢y, where k = (k1, k2, ..., kn—1) denote the principal curvatures
of Q) with respect to its inner normal.

Definition 2.5.1 An upper-semicontinuous function u : Q — [—o00,00) is k-convez (k-
subharmonic) if, for every open set ) C Q' cQand for every function v € C*(Q)NC ()
satisfying Fy[v] <0 in ', the following implication is true

u<vond)Y = u<wv in Q.

We denote by ®*(Q) the class of all k-subharmonic functions in Q which are not identically
equal to —oo.

The following weak convergence result for k-Hessian operators proved in [25] is fundamental
in our study.

Theorem 2.5.2 Let Q be either a bounded uniformly (k-1)-convex in RN or the whole RN .
For each u € ®%(Q), there exist a nonnegative Radon measure pxu] in Q such that

1 pglu] = Fi[u] for u e C*(Q).

2 If {un} is a sequence of k-convex functions which converges a.e to u, then pg[uy] — pgul

in the weak sense of measures.

As in the case of quasilinear equations with measure data, precise estimates of solutions
of k-Hessian equations with measures data are expressed in terms of Wolff potentials. The
next results are proved in [25, 18, 20|.
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Theorem 2.5.3 Let Q C RY be a bounded C?, uniformly (k-1)-convex domain. Let ¢ be
a nonnegative continuous function on 02 and p be a nonnegative Radon measure. Suppose
that v can be decomposed under the form

p=p1+f

where py is a measure with compact support in Q and f € L1(QY) for some q > % if k < %,
orp=1ifk> % Then there exists a nonnegative function u in Q such that —u € ®*(Q),
continuous near 9 and u is a solution of the problem

u=@ on 0.

Furthermore, any nonnegative function u such that —u € ®*(Q) which is continuous near
00 and is a solution of above equation, satisfies

1 d(z,09) .
. 8 2diam
W ] < ) < Ko (WSS ) S ) (25)

where Ko is a positive constant independent of x,u and ).

Theorem 2.5.4 Let ji be a measure in MT(RN) and 2k < N. Suppose that W pr1 k] <
E+1

oo a.e. Then there exists u, —u € ®F(RN) such that infgy u = 0 and Fy[—u] = in RN

and
LW (@) < u(e) < Ko W s [1](@), (2.5.2)

2 kD s

for all z in RN, where the constant Ky is the one of the previous Theorem. Furthermore,
if u is a nonnegative function such that infgn u = 0 and —u € ®F(RN), then (2.5.2) holds
with p = Fi[—u].

Proof of Theorem 2.1.3. We defined a sequence of nonnegative functions u,,, continuous
near S and such that —u,, € ®¥(Q), by the following iterative scheme

Fk[_u()] =M in Q7

o e o, (2.5.3)

and, for m > 0,
Fy[~umy1] = Pl,d,ﬂ(um) +p in €,

Umtl = @ on 0. (2:5.4)

Clearly, we can assume that {u,,} is nondecreasing, see [21]. By Theorem 2.5.3 we have
xauo < KoWH, o [u] + bo,
k417
XQumt1 < KoWT,  [Plag(um) + 1 + bo,

k+1°

(2.5.5)

where by = Ko maxpq ¢ and R = 2diam (2).
Then, by Theorem 2.2.5 with f = by and € = a, there exists M; > 0 depending on

N,k,l,a,, Ky and R such that P, 3 (ZLI(QWRQ,c wi] + 29 + bo) € LY(Q) and

um(z) < 26WH, L fo](@) +g+by Vo€ Q, Vm >0, (2.5.6)

k+1°
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provided that

K(B—1) k(B-1)
1My, o [l ooy < My and |[My i [Pr2a,5(00)]|| ooy < M,

e-ve-n ==y
where wy = MlHMQk [”HLOO(RN) T, w2 = MlHMQk [1”|Loo(RN) + P24,5(bo)
and g = QKQW%JCH[QJQ].
Since wo is constant, g has the same property and actually g = K2(|Bl|w2)%R2. On the
other hand, one can find constants My depending on N, k,l,a,3, R and M; such that if
k(B—1)
maxpq ¢ < My, then [|[My, 5 [Pr2a,6(b0)]||poe@yy < M.

Hence, we deduce from (2.5.6) that P, g <2K2WP§,€ k+1[“] + b) € L1(Q2) and
)
U () < 2K WH, pa (@) +b Vo e Q, ¥m >0, (2.5.7)
k+1°

for some constant b (= 2g + bg) depending on N, k,l,a,3, R and M;. Note that because
we can write

W= Pl,a,ﬂ(um) +p=(u1 + Xﬁapl,aﬁ(um)) +((1 - Xﬂé)Pl,a,B(um) +f),

where Q5 = {z € Q : d(z,0Q) > 0} and ¢ > 0 is small enough and since u,, is continuous
near 0f), then w satisfies the assumptions of the data in Theorem 2.5.3. Therefore the
sequence {u,,} is well defined and nondecreasing. Thus, {u,,} converges a.e in  to some
function w for which (2.1.23) is satisfied in Q. Furthermore, we deduce from (2.5.7) and the
monotone convergence theorem that P o g(tm) — Pras(uw) in L1(2). Finally, by Theorem
2.5.2, we obtain that u satisfies (2.1.22) and (2.1.23).

Conversely, assume that (2.1.22) admits nonnegative solution u, continuous near 92, such
that —u € ®*(Q) and P, s(u) € L(2). Then by Theorem 2.5.3 we have

1 d(z,00)

u(z) > Ewﬁkik’ﬂ[ﬂ’a’ﬁ(u) + ul(xz) for all x € Q.
Using the part 2 of Theorem 2.2.7, we conclude that (2.1.24) holds. |

Proof of Theorem 2.1.4. We define a sequence of nonnegative functions u,, with —u,, €
®F(RN), by the following iterative scheme

Fyl-uo] =p inRY

il’lfRN Uy = 0, (2'5'8>
and, for m > 0,
Fk[—um+1] = meg(um) +u n RN (2 5 9)
infpn Umy1 = 0. e
Clearly, we can assume that {u,,} is nondecreasing. By Theorem 2.5.4, we have
ug < KoW 2, [p],
e (2.5.10)

U1 < K2w%7k+1[Pl,a,ﬁ(um) =+ M'
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2.5. HESSIAN EQUATIONS

Thus, by Theorem 2.2.6 with f = 0, there exists M > 0 depending on N, k,l,a,5 and R
such that P, s (4K2Wk%’,€ +1[w]> e LY(RM),

Um, S 2K2Wﬂ k+1[w} Vm Z 0, (2.5.11)

k417
k(1) k(1)
provided that ||M,, ” (]| oo vy < M, where w = M||M,, * [XBR]HZiO(RN)XBR + p.
Therefore the sequence {u,,} is well defined and nondecreasing. By arguing as in the proof
of theorem 2.1.3 we obtain that u satisfies (2.1.25) and (2.1.26).
Conversely, assume that (2.1.25) admits a nonnegative solution u and —u € ®*(R") such
that P, p(u) € L}, .(RY), then by Theorem 2.5.4 we have

loc

1
u 2 —W 2k k+1[Pl,a,B(u) +M]

2 k+1°

Using the part 1, (ii) of Theorem 2.2.7, we conclude that (2.1.27) holds. ]
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Chapitre 3

Stability properties for quasilinear
parabolic equations with measure
data and applications

Abstract

Let © be a bounded domain of RY and Q = Q x (0,7'). We first study problems of the
model type

u=0 on 00 x (0,T),

up — Apu = 1 in Q,
u(0) = ug in Q,

where p > 1, u € 9M(Q) and ug € L(Q). Our main result is a stability theorem extending
the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear
operators u — A(u) =div(A(z,t, Vu)).

As an application, we consider perturbed problems of type

u — Apu+G(u) = p in Q,
u=20 on 09 x (0,7T),
u(0) = up in Q,

where G(u) may be an absorption or a source term. In the model case G(u) = + ]u\q_l u
(g > p—1), or G has an exponential type. We give existence results when ¢ is subcritical,
or when the measure p is good in time and satisfies suitable capacity conditions.

69
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3.1 Introduction

Let © be a bounded domain of RY, and Q = Q x (0,7), T > 0. We denote by 90,(9)
and 9, (Q) the sets of bounded Radon measures on €2 and @ respectively. We are concerned
with the problem

up — div(A(z,t, Vu)) = p in Q,
u=20 on 082 x (0,7, (3.1.1)
u(0) = ug in Q,

where 1 € My (Q), up € L' (Q) and A is a Caratheodory function on @ x R such that for
a.e. (x,t) € Q, and any &, € RV,

A(I,t,f).g >l ’€|p’ |A($,t,f)’ < a(x,t) +c2 ‘§|p71 ) c1,c2>0,a € Lp/(Q)v
(3.1.2)
(A(z,t, &) — A(x,t,¢)). (§E—¢) >0 if £ #£C. (3.1.3)

This includes the model problem

ug — Apu = in Q,
u=0 on 082 x (0,7, (3.1.4)
u(0) = ug in Q,

where A, is the p-Laplacian defined by Ayu = div(|Vul[P~2Vu) with p > 1.
As an application, we consider problems with a nonlinear term of order 0 :

u — div(A(z, Vu)) + G(u) = p in Q,
u=0 on 0f2 x (0,7, (3.1.5)
u(0) = wug in €2,

where A is a Caratheodory function on QxR such that, for a.e. z € , and any &, ¢ € RV,
A Ezaldl,  |A@ol<eldl, aa>0, (3.1.6)

(A(z,8) = A(x,¢)). (£ =¢) > 0if £ # ¢, (3.1.7)

and G(u) may be an absorption or a source term, and possibly depends on (z,t) € Q. The
model problem is the case where G has a power-type G(u) = + |u|7 " u (¢ > p— 1), or an
exponential type.

First make a brief survey of the elliptic associated problem :

—div(A(z, Vu)) = p in Q,
u=20 on 01},

with p € M(2) and assumptions (3.1.6), (3.1.7). When p = 2, A(z, Vu) = Vu existence
and uniqueness are proved for general elliptic operators by duality methods in [59]. For
p > 2 — 1/N, the existence of solutions in the sense of distributions is obtained in [23]
and [24]. The condition on p ensures that the gradient Vu is well defined in (L' (Q))V.
For general p > 1, new classes of solutions are introduced, first when u € L'(§), such
as entropy solutions, and renormalized solutions, see [13], and also [58], and existence and
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uniqueness is obtained. For any p € 91,(£2) the main work is done in [32, Theorems 3.1, 3.2,
where not only existence is proved, but also a stability result, fundamental for applications.
Uniqueness is still an open problem.

Next we make a brief survey about problem (3.1.1).

The first studies concern the case p € LY (Q) and ug € L?(Q), where existence and
uniqueness is obtained by variational methods, see [44]. In the general case p € M(Q) and
ug € Mp(Q), the pionner results come from [23|, proving the existence of solutions in the

sense of distributions for )

N+1’
see also [56, 57, 26]. The approximated solutions of (3.1.1) lie in Marcinkiewicz spaces
u € LPo> (Q) and |Vu| € L™= (Q), where

p>pL=2-— (3.1.8)

D N
—p—14+ £ =p— —. 1.
Pe =D +N’ Me=P~ N (3.1.9)
This condition (3.1.8) ensures that u and |Vu| belong to L' (Q), since m. > 1 means p > p;
and p. > 1 means p > 2N/(N + 1). Uniqueness follows in the case p = 2, A(z,t,Vu) = Vu
by duality methods, see [48].
For p € LY(Q), uniqueness is obtained in new classes of solutions : entropy solutions,
and renormalized solutions, see [19], [55], see also [3] for a semi-group approach.
A larger set of measures is studied in [33]. They use a notion of parabolic capacity
introduced in [33] also see [49, 50] that this was initiated and inspired by Pierre in [51],
defined by

c}?(E) = inf(EcUi(I)genCQ{HuHW cu€eWou>xy ae in Q}),

for any Borel set ' C (), where

X = 1P(0,T; Wi (@) 1 13(9),
W={z:2€X, 2z €X'}, embedded with the norm ||u||lw = ||u||x + |Ju¢||x".

Let My(Q) be the set of Radon measures 1 on @ that do not charge the sets of zero
cp -capacity :
VE Borel set C Q, cg(E) =0= |p/(E)=0.

Then existence and uniqueness of renormalized solutions holds for any measure p €
M, () N Mo(Q), called regular (or diffuse) and uy € L'(Q), and p > 1. The equiva-
lence with the notion of entropy solutions is shown in [34]; see also [20]| for more general
equations.

Next consider any measure p € 9My(Q). Let M(Q) be the set of all bounded Ra-
don measures on () with support on a set of zero ¢y capacity, also called singular. Let
M (Q), M (Q), M (Q) be the positive cones of My(Q), Mo(Q), M (Q). From [33], p can

be written (in a unique way) under the form

=g+ s, po €M(Q), ps=pd —ps,  pdps €MI(Q), (3.1.10)
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and pp € Mp(Q) admits (at least) a decomposition under the form
wo=f—divgt+h,  fELNQ) ge (LM@Y, heX, (3.1.11)

and we write o = (f, g, h). The solutions of (3.1.1) are searched in a renormalized sense
linked to this decomposition, introduced in [19, 49|. In the range (3.1.8) the existence of a
renormalized solution relative to the decomposition (3.1.11) is proved in [49], using suitable
approximations of po and ps. Uniqueness is still open, as well as in the elliptic case.

Next consider the problem (3.1.5). First we consider the case of an absorption term :
G(u)u > 0.

Let us recall the case p = 2, A(x, Vu) = Vu and G(u) = |u|?"'u (¢ > 1). The first results
concern the case u = 0 and g is a Dirac mass in {2, see [28] : existence holds if and only if
g < (N +2)/N. Then optimal results are given in [7], for any p € 9%(Q) and ug € MN(Q2).
Here two capacities are involved : the elliptic Bessel capacity Capg, 4, (o > 0,k > 1)
defined, for any Borel set E C RV, by

Capg, (E) = inf{||¢||r@n) : ¢ € L*RY), Gax o > xE},

where G, is the Bessel kernel of order a; and a capacity Capgy (k > 1) adapted to the

2
~N/2—|xf? /4t

operator of the heat equation of kernel G(z,t) = x(0,0)(t)(47t) : for any Borel

set £ C RNV*L
Capg p(£) = inf{||ol| e mns1y 1 g € LFRNY, G > xg).

From [7], there exists a solution if and only if 1z does not charge the sets of zero Capg, ,, —capacity
and ug does not charge the sets of zero Capy, ,—capacity.

For p # 2 such a linear parabolic capacity cannot be used. Most of the contributions
are relative to the case y = 0 with Q bounded, or 2 = R". The case where ug is a Dirac
mass in ) is studied in [35, 39] when p > 2, and [29] when p < 2. Existence and uniqueness
hold in the subcritical case ¢ < p.. If ¢ > p. and ¢ > 1, there is no solution with an isolated
singularity at t = 0. For ¢ < p., and ug € sm;(sz), the existence is obtained in the sense
of distributions in [61], and for any uy € 9,(2) in [16]. The case p € LY(Q), up = 0 is
treated in [30], and p € LY(Q), up = LY(Q) in [4] where G can be multivalued. The case
€ Mo(Q) is studied in [50], with a new formulation of the solutions, and existence and
uniqueness is obtained for any function G € C(R) such that G(u)u > 0.

The case of a source term G(u) = —u? with uw > 0 has been treated in [6] for p = 2,
where optimal conditions are given for existence. As in the absorption case the arguments
of proofs cannot be extended to general p.

3.2 Main results
In all the sequel we suppose that p satisfies (3.1.8). Since Wol’p(Q) C L?(),
X =IP0,T;WeP (), X =170, T; W17 ().
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We first study problem (3.1.1). In Section 3.3 we give some approximations of u €
My, (Q), useful for the applications. In Section 3.4 we recall the definition of renormalized
solutions, that we call R-solutions of (3.1.1), relative to the decomposition (3.1.11) of uo,
and study some of their properties.

Our main result is a stability theorem for problem (3.1.1), proved in Section 3.5, ex-
tending to the parabolic case the stability result of [32, Theorem 3.4|, and improving the
result of [49] :

Theorem 3.2.1 Let A: Q x RY — R satisfy (3.1.2) and (3.1.3). Let ug € L*(Q2), and
p=f—divg+h +pd —p; € M(Q),

with f € LNQ), g € (LP(Q)N, h € X and p, py € M (Q). Let ugn € L(Q),

fin = fn = divgn + (hn)t + pn — 1 € My(Q),
with f, € LYQ), gn € (LX (Q)N, hy, € X, and pp, 1, € M (Q), such that
pn =Py —divpl + pps, T =1 — AV + s,
with py,ny € LNQ), phym € (LP(Q))Y and pps,in,s € M (Q). Assume that

sup |pn| (Q) < oo,
n

and {upn} converges to ug strongly in L*(Q), {f.} converges to f weakly in L*(Q), {gn}
converges to g strongly in (LP (Q))N, {hn} converges to h strongly in X, {p,} converges
to ut and {n,} converges to ug in the narrow topology of measures; and {p}l} , {77711}
are bounded in L*(Q), and {p2},{n2} bounded in (LY (Q))N. Let {un} be a sequence of
R-solutions of

(un)t — div(A(z,t, Vuy)) = pn, in Q,

Up =0 on 092 x (0,7, (3.2.1)

un(0) = up n i Q.

relative to the decomposition (fn + pL — 0k, gn + p2 — 12, hy) of pno. Let vy = uy — ho,.
Then up to a subsequence, {u,} converges a.e. in Q to a R-solution u of (3.1.1), and {v,}
converges a.e. in Q to v =u—h. Moreover, {Vuy,},{Vuv,} converge respectively to Vu, Vv
a.e. i Q, and {Ty(v,)} converge to Ty (v) strongly in X for any k > 0.

In Section 3.6 we give applications to problems of type (3.1.5).

We first give an existence result of subcritical type, valid for any measure p € 0(Q) :

Theorem 3.2.2 Let A : Q x RN — RN satisfy (3.1.2) and (3.1.8) with a = 0. Let
(z,t,7) — G(x,t,7) be a Caratheodory function on QxR and G € C(R™) be a nondecreasing
function with values in R, such that

|G(z,t, )| < G(r]) forae. (z,t) € Q and any r € R, (3.2.2)
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/ G(s)s 1 Peds < oo. (3.2.3)
1

(i) Suppose that G(z,t,r)r > 0, fora.e. (z,t) in Q and any r € R. Then, for any p € Mp(Q)
and ug € L'(Q), there exists a R-solution u of problem

up — div(A(z,t,Vu)) + G(u) = p in Q,
u=0 in 00 x (0,7T), (3.2.4)
u(0) = up in Q.

(ii) Suppose that G(z,t,r)r < 0, for a.e. (x,t) € Q and any r € R, and ug > 0,u > 0.
There exists € > 0 such that for any A\ > 0, any p € Mp(Q) and ug € LY(Q) with
A+ [pl(Q) + [luollLr () <€, problem

up — div(A(z,t,Vu)) + A\G(u) = p in @,
wu=0  indQx(0,T), (3.2.5)
u(0) = ug in Q,

admits a nonnegative R-solution.

In particular if G(u) = \u|q*1 u, existence holds for any 0 < ¢ < p¢, for any measure
€ My(Q), small enough if G(u) = — |u|q_1 u. In the supercritical case ¢ > p., the class
of "admissible" measures, for which there exist solutions, is not known.

Next we give new results relative to measures that have a good behaviour in t, based
on recent results of [17] relative to the elliptic case. We recall the notions of (truncated)
Wolff potential for any nonnegative measure w € M (RY) any R > 0, 29 € RV,

R 1 r
Wl (20) = [ (7N Blan, ) 7T
0

Any measure w € My(Q) is identified with its extension by 0 to RY. In case of absorption,
we obtain the following :

Theorem 3.2.3 Let A: Q x RN — RY satisfy (3.1.6) and (3.1.7). Let p < N, ¢ > p — 1,
p€M(Q), feLYQ) and up € L1(Q). Assume that

u <weF, withweM(Q),F e LY0,7)),F >0, (3.2.6)

and w does not charge the sets of zero C’apprﬁ—capacity. Then there exists a R- solution
u of problem
ur — div(A(z, Vu)) + [ultu=f+pu  inQ,
u=0 on 092 x (0,7, (3.2.7)
u(0) = ug in Q.

From |7, Proposition 2.3|, a measure w € Mjy(£2) does not charge the sets of zero Capg, -
7q7

capacity if and only if w ® X(,7) does not charge the sets of zero Cap,; s _-capacity .

q
q—1
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Therefore, when A(z,Vu) = Vu and g = w ® x(o.1), uo € L*(Q), we find again the
existence result of [7]. Besides, in view of [33, Theorem 2.16], there exists data u € My(Q)
in Theorem 3.2.3 such that u ¢ M (Q), thus our result is the first one of existence for non
diffuse measure. Otherwise our result can be extended to a more general function G, see
Remark 3.6.8. We also consider a source term.

Theorem 3.2.4 Assume that A: Q x RN — RN satisfies (3.1.6) and (3.1.7). Let p < N,
qg>p—1. Let p € M (Q), and up € L>=(Q),up > 0. Assume that

p<w®xor), withw e M (Q).

Then there exist \g = Ao(INV, p, q, c3, cadiam(§2)) and by = bo(N, p, q, c3, cq,diam(Q2)) such
that, if

w(E) < XoCapg, _a _(E), VE compact C R, |uo ||, < bo, (3.2.8)

Prg—p+1

there exists a nonnegative R-solution u of problem

up — div(A(z, Vu)) =ul +p in Q,
u=20 on 0Q x (0,7, (3.2.9)
u(0) = ug in Q,

which satisfies, a.e. in Q,
u(z, t) < CWIS ™D 0] () + 2| fug 0,0 (3.2.10)

where a constant C' depends on N,p and the constants cs,cy in inequalities (3.1.6).

Corresponding results in case where G has exponential type are given at Theorems 3.6.9
and 3.6.14.

3.3 Approximations of measures

For any open set @ of R™ and F € (L*(w))", k € [1,00],m,v € N*, we set 1ENy =
Il (L (cmyy» -

We give approximations of nonnegative measures in 9%, (Q). We recall that any mea-
sure € Mo(Q) N M(Q) admits a decomposition under the form p = (f, g, h) given by
(3.1.11). Conversely, any measure of this form, such that h € L>*(Q), lies in My(Q), see
[50, Proposition 3.1].

Proposition 3.3.1 Let = po + ps € M; (Q) with po € MJ(Q) and ps € MF(Q).

(i) Then, we can find a decomposition ug = (f, g, h) with f € L*(Q),g € (L? (Q))N,h €
LP((0,T); Wy P(Q)) such that

Al + llglly @ + 12llx 4 1s(2) < 20(Q) (3.3.1)
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(1t) Furthermore, there exists sequences of measures pon = (fn,Gn,hn), tsn Such that
Frs Gy hn € C°(Q) strongly converge to f, g, h in L'(Q), (LPI(Q))N and LP((0,T); Wol’p(Q))
respectively, and ps,, € (C°(Q))T converges to ps and pin, := pon + psn converges to p in
the narrow topology, and satisfying |un,|(Q) < p(Q),

[ fnllnQ + llgnlly g + hnllx + psn(Q) < 2u(Q). (3.3.2)

Proof. (i) Step 1. Case where p has a compact support in Q. By [33], we can find a
decomposition pg = (f, g, h) with f, g, h have a compact support in Q. Let {,,} be sequence
of mollifiers in RY*1. Then Ko = ©n * o € C(Q) for n large enough. We see that
10,(Q) = p0(Q) and 1o, admits the decomposition g, = (fa, gy hn) = (9n * £, *

g, ¢n * h). Since {fn},{gn},{hn} strongly converge to f,g,h in L'(Q), (L (Q))N and
LP((0,T); I/VO1 P(Q1)) respectively, we have for ng large enough,

1
1 = fuollr@ + 119 = gnolly.@ + 17 = s lIx < S110(Q).

Then we obtain a decomposition y = (f, g, il) = (ttno + f — frnos 9 — Gng,  — hny ), such that

. - 3
11l + 1191l +11hllx + 1s(Q) < Su(Q) (3.3.3)

Step 2. General case. Let {6,,} be a nonnegative, nondecreasing sequence in C2°(Q) which
converges to 1, a.e. in Q. Set fig = Oy, and fip, = (6, — 0,—1) 1, for any n > 1. Since fi,, =
ﬂO,n + Ias,n € MO(Q) N MIJ)F(Q) has compact support with ,aO,n € MO(Q)aﬂs,n € MS(Q))
by Step 1, we can find a decomposition fig , = (fns Gns hn) such that

w\w

1full1@ + 13nll,y g + [1nllx + fisn(2) < 57n(Q)

Let ? Z fka In = ngv n = Z hk and Hsn = Zk O,U'sk Clearl}’a en,u() =

(Frs G P n), Gnus = [ls.n and {fn} {gn} {h } {fisn} converge strongly to some f,g,h
and 15 respectively in LH(Q),(LP(Q))N, X and M, (Q), and

H?n g Hp’,Q + ||7ln||X "‘ﬂS,n(Q) < Q)

Therefore, o = (f,g,h), and (3.3.1) holds.

(ii) We take a sequence {m,} in N such that f, = @m, * FrsGn = ©my, * Gn» hn
P * Ty O, * s € (C(Q))T, fQ Om, * fispdrdt = Ji5 5 (Q) and

= 1
, By — Bn|x < ——
p@+ llin = hallx < — - u(Q).

| fn = Fullig + llgn — Gl
Let pon = ©m, * (Ontto) = (fr, Gny bn)s thsn = Pmy, * fisn and iy, = fion + fisn. Therefore,

{fu},{gn},{hn} strongly converge to f,g,h in LY(Q), (L” (Q))" and X respectively. And
(3.3.2) holds. Furthermore, {115}, {pn} converge to s, p in the weak topology of measures,
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and Ns,n(Q) = fQ Ondpts, 1n(Q) = fQ Ondp converges to us(Q), 1(Q), thus {,U«s,n}v{/in}
converges to s, o in the narrow topology and |, |(Q) < u(Q). ]

Observe that part (i) of Proposition 3.3.1 was used in [49], even if there was no explicit
proof. Otherwise part (ii) is a key point for finding applications to the stability Theorem.
Note also a very useful consequence for approximations by nondecreasing sequences :

Proposition 3.3.2 Let u € M (Q). Let {un} be a nondecreasing sequence in M (Q)
converging to i in My(Q). Then, there exist fr, f € L'(Q), gn,g € (L (Q))N and hy,, h €
X, tnss pbs € MT(Q) such that

p=f—divg+h+ s, Mn:fn_dngn+(hn)t+Mn,Sa
and {fu} , {gn}, {hn} strongly converge to f,g,h in L(Q), (Lp/(Q))N and X respectively,
and {pn,s} converges to ps (strongly) in My(Q) and
I fnllrQ + llgnlly.@ + hnllx + pn,s(Q2) < 20(Q). (3.3.4)

Proof. Since {u,} is nondecreasing, then {p,0}, {n s} are nondecreasing too. Clearly,
1= il p, ) = Il = pn0 |Mb(Q) +{[ps — Mn,s||/\~4b(Q). Hence, {;LTS} converges to ps and
{pn,0} converges to po (strongly) in My(Q). Set 10,0 = 10,0, and fin o = M0~ Hn=10 for
any n > 1. By Proposition 3.3.1, (i), we can find f, € L'(Q), gn € (L*(Q))" and h, € X
such that fi, 0 = (fn, gn, hn) and

||fn||1,Q + ||§n||p’,Q + H;LnHX < Qﬂn,O(Q)

n o _ n n o
Let fo, = > fr, Gn = >, g and h,, = > hy. Clearly, pn0 = (fn, gn, hn) and the conver-
k=0 k=0 k=0
gence properties hold with (3.3.4), since
| fnllr@ +1l9al

p.Q T |Pallx < 2p0(Q).

3.4 Renormalized solutions

3.4.1 Notations and Definition

For any function f € L*(Q), we write fQ [/ instead of [, 0 fdxdt, and for any measurable
set E CQ, [ f instead of [, fdzdt.

We set Ty (r) = max{min{r, k}, —k}, for any £ > 0 and r € R. We recall that if u is a
measurable function defined and finite a.e. in @, such that Ty (u) € X for any k > 0, there
exists a measurable function w from @Q into R™ such that V7 (u) = Xju|<kW; @.€. in Q,
and for any k > 0. We define the gradient Vu of u by w = Vu.

Let p = po + pus € Mp(Q), and (f, g,h) be a decomposition of g given by (3.1.11), and
o = po — hy = f — div g. In the general case 19 ¢ M(Q), but we write, for convenience,

/wdﬂﬁ ::/(fw+g.Vw), Yw € XNL™(Q).
Q Q
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Definition 3.4.1 Let ug € L' (Q), u = po + ps € Mp(Q). A measurable function u is
a renormalized solution, called R-solution of (3.1.1) if there exists a decompostion

(f,g9,h) of uo such that

v=u—heL70,T; Wy " (W)NL=(0,T; L} (Q)), Voe[l,my); Ti(v)eX, Vk>0,
(3.4.1)
and :

(i) for any S € W2>(R) such that S' has compact support on R, and S(0) =0,

/ S(uo)p(0)dar — / 1S (v)
+ /Q S'(0)A(z, t, V) Vo + /Q S"()pA(x,t, Vu). Vv = /Q S'(w)pdi,  (34.2)

for any p € X N L>(Q) such that p; € X' + LY(Q) and o(.,T) =0;

(ii) for any ¢ € C(Q),
1
n}gnooa / PA(x,t,Vu).Vu = /Qqﬁd,u,j, (3.4.3)
{m<v<2m}
1
W}E)nooa / ¢A(z,t, Vu).Vuv = /Q¢du5_. (3.4.4)

{—-m>v>—-2m}

Remark 3.4.2 As a consequence, S(v) € C([0,T]; L*(2)) and S(v)(.,0) = S(uy) in
and u satisfies the equation

(S(v)),—div(S"(v)A(z, t, Vu)) + 8" (v)A(z, t, Vu). Vo= £S5 (v) — div(gS' (v)) + 5" (v)g.V,

(3.4.5)
in the sense of distributions in Q, see [49, Remark 3. Moreover
1@l 11y < [div(S @A, &, V)| +]|5" @) A8, Vu). V0|,
+ ‘S (U)le,Q + Hg.S (U)V’UHLQ + Hdiv(S (v)g)‘ o
Thus, if [-M, M] D suppS’,
IS@llxrs 11(g) < C ISl IV xpcarl 2 + (9P xpcar | o + N9 Tar ()2

1
+wmQ+me+wmQ+wmewmmﬁMm@+wmQ>
(3.4.6)

We also deduce that, for any ¢ € X N L>(Q), such that p1€ X'+ LY(Q),

/S(v( dac—/S up) P dac—/ oS (v /S’ (z,t,Vu).Ve
Q

—i—/QS”(v)A(w,t,Vu).vao—/QS’(v)godﬁB.
(3.4.7)
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Remark 3.4.3 Let u,v satisfy (3.4.1). It is easy to see that the condition (3.4.3) ( resp.
(8.4.4) ) is equivalent to

1
lim — / ¢A(x,t,Vu).Vu:/ pdpt (3.4.8)
m—o0 M, Q
{m<v<2m}
resp.
lim 1 / PA(x,t, Vu).Vu—/ dduy . (3.4.9)
m—oo M Q

{m>v>—-2m}

In particular, for any ¢ € LP (Q) there holds

1 1
lim — / |Vu|lp =0, lim — / |Vulp = 0. (3.4.10)

m—00 M m—0o0 M
m<|v|<2m m<|v|<2m

Remark 3.4.4 (i) Any function U € X such that Uy € X' + LY(Q) admits a unique -

quasi continuous representative, defined cf,?-quasi a.e. in Q, still denoted U. Furthermore,
if U € L*™(Q), then for any po € Mo(Q), there holds U € L>=(Q,duy), see [49, Theorem 3
and Corollary 1J.

(i) Let u be any R- solution of problem (3.1.1). Then, v = u — h admits a cg—quasi
continuous functions representative which is finite cg—quasi a.e. in Q, and u satisfies defi-
nition 3.4.1 for every decomposition (f,§,h) such that h—h € L(Q), see [49, Proposition
3 and Theorem / |.

3.4.2 Steklov and Landes approximations

A main difficulty for proving Theorem 3.2.1 is the choice of admissible test functions
(S, ) in (3.4.2), valid for any R-solution. Because of a lack of regularity of these solutions,
we use two ways of approximation adapted to parabolic equations :

Definition 3.4.5 Lete € (0,T) and z € L}, (Q). For anyl € (0,¢), we define the Steklov
time-averages [z];, [z]—; of z by

[z]i(x,t) = % / z(x, s)ds fora.e. (xz,t) € A x (0,T —¢),

~+

[z]i(z,t) = % / z(x, s)ds fora.e. (x,t) € Q x (¢,T).
t—l1

The idea to use this approximation for R-solutions can be found in [22]. Recall some
properties, see [50]. Let € € (0,7, and ¢1 € C°(2 x [0,T)), 2 € C(2 x (0,T1]) with
Suppy; C Q x [0,T — €], Suppps C Q X [e,T]. We have
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(i) If z € X, then p1[z]; and @a[z]_; € W.

(ii) If z € X and 2z € X'+ LY(Q), then, as I — 0, (¢1[z];) and (pa]z]_;) converge
respectively to p12z and @9z in X, and a.e. in Q; and (p1[2];),, (p2[2]-1), converge to
(1)1, (p22)¢ in X'+ LY(Q).

(iii) If moreover z € L*°(Q), then from any sequence {l,,} — 0, there exists a subsequence
v such that {|z]i, 1 ,1|2]|-1, t converge to z, ¢y -quasl everywhere 1n ().

Next we recall the approximation used in several articles |21, 30, 26], first introduced in
[41].

Definition 3.4.6 Let k > 0, and y € L>®(Q) and Y € X such that ||y||cco < k and
Y |loo,@ < k. For any v € N, a Landes-time approximation (Y), of the function Y is
defined as follows :

(Y),(xz,t) = I//OtY(SL', $)e’Dds + ez, (x)  for any (z,t) € Q

where {z,} is a sequence of functions in Wol’p(ﬂ) N L>(2), such that ||zy||0 < k, {2}
converges to y a.e. in 2, and V_IHZVH?;VLP(Q) converges to 0.
0

Therefore, we can verify that ((Y),); € X, (Y), € X N L™(Q), |[(Y )|, < k and
{{Y'),} converges to Y strongly in X and a.e. in Q. Moreover, (Y), satisfies the equation
((Y))e =v (Y —(Y),) in the sense of distributions in @, and (Y),(0) = z, in Q. In this
paper, we only use the Landes-time approximation of the function Y = Ty (U), where
y = Ty (uo).

3.4.3 First properties

In the sequel we use the following notations : for any function J € W1>°(R), nonde-
creasing with J(0) = 0, we set

J(r) = /07” J(T)dr, J(r) = /07‘ J'(T)7dT. (3.4.11)
It is easy to verify that J(r) >0,
T+ J(r)=J(r)r, and J(r)—J(s) > s(J(r) — J(s)) Vr,s € R, (3.4.12)

In particular we define, for any k£ > 0, and any r € R,
Ti(r) = / Ti(r)dr,  Ti(r) = / Ty (r)rdr, (3.4.13)
0 0

and we use several times a truncature used in [32] :

2m — |s|

Hm(T‘) = X[—m,m)] (T) + Xm<|s|§2m(r)a ?m(r) = /OT Hm(T)dT (3414)

m

The next Lemma allows to extend the range of the test functions in (3.4.2). Its proof,
given in the Appendix, is obtained by Steklov approximation of the solutions.
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Lemma 3.4.7 Letu be a R-solution of problem (3.1.1). Let J € WLH°(R) be nondecreasing
with J(0) =0, and J defined by (3.4.11). Then,

/ S'(v) A t, Vu).V (£J(S())) + / S"(0) Az, t, V). Ve J (S ()

Q Q

_ / £(0)7(S (o)) S (uo)dzx — / & T(S())
Q Q

< [ Swersw)m, (3.4.15)
Q

for any S € W2°(R) such that S’ has compact support on R and S(0) = 0, and for any
§eC@QNWh(Q),£ > 0.

Next we give estimates of the function and its gradient, following the first ones of [26],
inspired by the estimates of the elliptic case of [13|. In particular we extend the priori
estimates of |49, Proposition 4| given for solutions with smooth data; see also [33, 42].

Proposition 3.4.8 Ifu is a R-solution of problem (3.1.1), then there exists ¢ = c(p) such
that, for any k> 1 and £ > 0,

/ P+ / VolP < ckM (3.4.16)
(< |v|<l+Ek (< |v|<l+Ek
and
101l oo (0,720 () < (M +[€2]), (3.4.17)
where

M = |luolly o + lnsl (Q)+ Il + N9l o + 1211 + llally o-

As a consequence, for any k > 1,

meas {|v| > k} < C1M1k™Pe, meas {|Vv| > k} < CoMak™", (3.4.18)
meas {|u| > k} < C3Mak™Pe, meas {|Vu| > k} < CyMak™™¢, (3.4.19)
where C; = C;(N,p,c1,¢2), 1 = 1-4, and M} = (M—HQD%M and My = My + M.
Proof. Set for any » € R, and m, k,£ > 0,
Ty e(r) = max{min{r — ¢, k},0} + min{max{r + ¢, —k},0}.

For m > k + ¢, we can choose (J,S,&) = (Ts, Hm, &) as test functions in (3.4.15), where
H,, is defined at (3.4.14) and & € C*([0,T]) with values in [0, 1], independent on z. Since

Ty o(Hm(r)) = Ty (r) for all 7 € R, we obtain
— Jo €(0) T ¢ (wo) Hy (uo)dx — [ &Thee(Him(v))

+ i EA(z,t,Vu).Vo — £ i EA(z,t, Vu). Vv < [ Hi(0)ETke(v)dito.
{t<|v|<l+k} {m<|v|<2m}
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And
- k
/Hm(v)kavg(v)d,uO:/ Hpy, (0)ETy 0 (v) f+ / EVv.g—— / &Vu.qg.
Q Q m
{e<|v|<l+k} {m<|v|<2m}

Let m — 0o} then, for any k > 1, since v € L'(Q) and from (3.4.3), (3.4.4), and (3.4.10),
we find

- /Q & Ta(0)+ / EA(z,t, Vu). Vv < / £90.g+h(woll o+ s @)+ 1 £l ).

{(e<|v]<t+k} (e<|v]<t+k}
(3.4.20)
Next, we take £ = 1. We verify that there exists ¢ = ¢(p) such that

A(z,t,Vu).Vv — Vu.g Z%(|Vu\p + |VoulP) — c(]g]pl + |Vh]P + \a|p/)

where ¢; is the constant in (3.1.2). Hence (3.4.16) follows. Thus, from (3.4.20) and the
Holder inequality, we get, with another constant ¢, for any ¢ € C*([0,T]) with values in
[0,1],

—/ ftm(v) < ckM
Q

Thus [o, Te(v)(t)dz < ckM, for a.e. t € (0,T). We deduce (3.4.17) by taking k = 1,£ =0,
since Ty o(r) = Ty (r) > |r| — 1, for any r € R.

Next, from the Gagliardo-Nirenberg embedding Theorem, we have

p(N+1) 2
/Q|Tk(v)| N §01 ||1)H£voo((07T);L1(Q))/Q|VTk(U)|pa

where C1 = C1(N,p). Then, from (3.4.16) and (3.4.17), we get, for any k > 1,

(N+1) (N+1)
meas {[v] > k} < k"5 / (T (0) %
Q

D _ p(N+1)
< C ol o myin iy B /Q VL)
< CoMik™Pe,

with Cy = Cy(N, p, c1, c2). We obtain

I
meas {|Vv| > k} < > meas ({|Vv|P > s})ds
0

N 1™ N
< meas {]v| > N+ } + kp/ meas ({|Vv\p > s, | < BN+ }) ds
0
1

< CoMik™™e + r

/ ‘VU|p < CQMQkZ_mC,
N
| <k N+T
with C3 = C3(N, p, ¢1, ¢2). Furthermore, for any k > 1,
meas {|h| > k} + meas {|Vh| > k} < C4k7P||h|% ,

where Cy = C4(N,p, c1, c2). Therefore, we easily get (3.4.19). ]
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Remark 3.4.9 Ifu € LY(Q) anda =0 in (3.1.2), then (3.4.16) holds for all k > 0 and the
term || in inequality (3.4.17) can be removed where M = ||up|l1,0 + |1|(Q). Furthermore,
(3.4.19) is stated as follows :

meas {[u| > k} < CsM*N k7P, meas {|Vu| > k} < CAM N ™™ Wk > 0. (3.4.21)

To see last inequality, we do in the following way :
I

meas {|Vv| > k} < w meas ({|Vo|P > s})ds

0

1 N 1 kP 1 N
gmeas{|v| >Mmkm}+ﬁ meas{]Vv|p>s,|v] §Mmkm}ds
0
N2
< CyMN+1 ™ Me,
Proposition 3.4.10 Let {u,} C My(Q), and {uon} C L1(Q), with

sup |ua| (Q) < 0o, and sup |[ugn|l1,0 < co.
n n
Let uy, be a R-solution of (3.1.1) with data piy, = fin,0 + fn,s and ug ., relative to a decom-

position (fn, gn,hn) of tino, and v, = U, — hy. Assume that {f,} is bounded in L'(Q),
{gn} bounded in (LP (Q))N and {h,} bounded in X .

Then, up to a subsequence, {v,} converges a.e. to a function v, such that Ty(v) € X and
v e L7((0,T); Wy () N L®°((0,T); L' (2)) for any o € [1,m,). And

(i) {on} converges tov strongly in L°(Q) for any o € [1,mec), and sup |[vpl| 0 ((0.7):11(0)) <
o0,

(1) supy~q sup, k%—l fQ |VTi(v,)|P < o0,

(111) {Tx(vyn)} converges to Ty (v) wealkly in X, for any k > 0,

(i) {A(z,t,V (T (vy) + hn))} converges to some Fy, weakly in (LP' (Q))N.
Proof. Take S € W2 (R) such that S’ has compact support on R and S(0) = 0. We
combine (3.4.6) with (3.4.16), and deduce that {S(v,):} is bounded in X’ + L'(Q) and
{S(vy,)} bounded in X. Hence, {S(v,)} is relatively compact in L!(Q). On the other hand,

we choose S = Sy, such that Si(z) = z, if |z] < k and S(z) = 2k signz, if |z| > 2k. Thanks
to (3.4.17), we obtain

meas {|vy, — vy | > 0} < meas {|v,| > k} + meas {|vy,| > k} + meas {|Sk(vn) — Sk(vm)| > o}
1
< 2 Ulonlly g + llvmllyq) + meas {[Sk(vn) — Sk(vm)| > o}

< % + meas {|Sk(vn) — Sk(vm)| > 0} . (3.4.22)

Thus, up to a subsequence {u,,} is a Cauchy sequence in measure, and converges a.e. in @
to a function w. Thus, {Tj(v,)} converges to Tj(v) weakly in X, since sup,, ||Tx(vy )|l x < 00
for any k > 0. And {|V (Tj(vy) + hn) P72V (T (vn) 4 hp) } converges to some Fj, weakly
in (¥ (Q))N. Furthermore, from (3.4.18), {v,} converges to v strongly in L?(Q), for any
o < Pe. [
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3.5 The convergence theorem

We first recall some properties of the measures, see [49, Lemma 5|, [32].

Proposition 3.5.1 Let us = pf — py € My(Q), where pf and p; are concentrated,
respectively, on two disjoint sets ET and E~ of zero c?-capacz’ty. Then, for any § > 0,
there exist two compact sets K; C Et and K5 C E™ such that

pH(ENKS) <6 g (BT\K;) <6,

and there exist 1/)5 ,@Z)g € CHQ) with values in [0,1], such that ¢§r,¢g = 1 respectively on
K Ky, and supp(ip5 ) N supp(tpy ) =0, and

13l + 1 el lxrrg) <60 s llx + 115 )ellxry @) < 0.

There exist decompositions (@bgr)t = (1[}6 ) (1/)5) and (V5 )¢ = (wg)tl + (@Z)E)f in X'+
LY(Q), such that

|, <3 e

(
Both {w;} and {wg} converge to 0, *-weakly in L>=(Q), and strongly in L'(Q) and up to
subsequences, a.e. in Q, as & tends to 0.

Moreover if p, and n, are as in Theorem 3.2.1, we have, for any 0,61,d2 > 0,

/Q U5 dpa + /Q 0 d, = w(n, o), / Uy dut <6, /Q Giduy <6, (352)

/Q (1 =0 dpn = w(n, 61, 32), /Q (1= ) dpid < 81+ b, (3.5.3)

/Q(1 — 55 i = w(n,61,6), /Q(1 5T < 6+ B, (3.5.4)
Hereafter, if n, e, ..., v are real numbers, and a function ¢ depends on n, ¢, ..., v and even-
tual other parameters a,B,..,v, and n — ng,e — €y, .., ¥ — 1y, we write ¢ = w(n,e,..,v),
then this means hml,ﬁ,,0 hmf_:ﬁgohmnﬁn0 lp| = 0, when the parameters «,f,..,7 are
fixed. In the same way, ¢ < w(n,&,d,...,v) means lim,_,,,..Jim. . lim, ,,¢ < 0, and

¢ > w(n,e,..,v) means —¢ < w(n,e, ..,V).

Remark 3.5.2 In the sequel we use a convergence property, consequence of the Dunford-
Pettis theorem, still used in [32] : If {a1,} is a sequence in L'(Q) converging to a; weakly
in LY(Q) and {b1,,} a bounded sequence in L°(Q) converging to by, a.e. in Q, then

lim (Iljnbl’ndl‘dt:/ albl.dl'dt.
Q

n—o0 Q
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Next we prove Thorem 3.2.1.

Scheme of the proof. Let {p,}, {uon} and {u,} satisfying the assumptions of Theorem
3.2.1. Then we can apply Proposition 3.4.10. Setting v, = u, — hy,, up to subsequences,
{un} converges a.e. in @ to some function u, and {v,} converges a.e. to v = u — h, such
that T (v) € X and v € L"((O,T);WOI’U(Q)) N L®((0,T); LY(Q)) for every o € [1,m,).
And {v,} satisfies the conclusions (i) to (iv) of Proposition 3.4.10. We have

pin = (fr = div gn + (hn)e) + (pn — div pir) = (my, — diV ) + prs = s
= Hn,0 + (pn,s - nn,s)Jr - (pn,s - Tln,s)ia

where

Hn,0 = )\n,0+pn,0_77n,0a with >\n,0 = fn_div gn“‘(hn)ta Pn,0 = pr};_div Pi, o = ’I’],,ll—diV 777%
(3.5.5)

Hence
Pn,05Mn,0 € i)ﬁ(—,’—(Q) N i)ﬁO(Q)a and Pn = Pn,0, Tn > n,0- (356)

Let E, E~ be the sets where, respectively, uf and p; are concentrated. For any d1, d2 > 0,
let w;,wg; and 95,15, as in Proposition 3.5.1 and set

D5, 5, = U305 + 05 Vs,
Suppose that we can prove the two estimates, near E
I, = / O5, 5, A(x,t, Vuy).V (v, —(Tk(v))y) < w(n,v,61,62), (3.5.7)
{lvnl<k}
and far from E,
I = / (1= @5, 5,)A(x, t, Vuy,).V(v,—(Ti(v))r) < w(n,v,o1,02). (3.5.8)
{lvn|<k}

Then it follows that

T, / A, t, V).V (vn—(To(v)),) < 0, (3.5.9)
{vn| <k}
which implies
limy, 00 / A(z,t,Vuy).V (v, — Ti(v)) <0, (3.5.10)
{vn| <k}

since {(Ty(v)),} converges to Tj(v) in X. On the other hand, from the weak convergence
of {Tx(vn)} to Ti(v) in X, we verify that

Az, t, V(T (v) + hy)).V (T (vn) — Ti(v)) = w(n).

{lon|<k}
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Thus we get

(A(z,t,Vuy) — Az, t, V(T (v) + hy))) .V (un, — (Ti(v) + hy)) = w(n).
{lvn|<k}
Then, it is easy to show that, up to a subsequence,

{Vu,} converges to Vu, a.e. in Q. (3.5.11)

Therefore, {A(z,t, Vu,)} converges to A(z,t, Vu) weakly in (¥ (Q))" ; and from (3.5.10)
we find

limn%oo/ Az, t, Vuy).VTi(vy,) g/A(m,t,Vu)VTk(v).
Q Q

Otherwise, {A(z,t, V (T (vn) + hn))} converges weakly in (L (Q))Nto some Fj, from Pro-
position 3.4.10, and we obtain that Fy, = A(z,t,V (Tx(v) + h)). Hence

Tty o0 / Az, t, V(T () + b))V (Ti () + Bin)
Q

< limnﬁoo/ Az, t, Vuy,). VT (vy,) —|—limnﬁoo/ A(z,t,V(T(vy) + hy)).Vhy,
Q Q

< / A, £,V (Th(v) + 7).V (Th(v) + ).
Q
As a consequence
{Tx(vy)} converges to Ty (v), strongly in X, VEk > 0. (3.5.12)

Then to finish the proof we have to check that u is a solution of (3.1.1). [ ]

In order to prove (3.5.7) we need a first Lemma, inspired of [32, Lemma 6.1|, extending
[49, Lemma 6 and Lemma 7] :

Lemma 3.5.3 Let 114,125 € CHQ) be uniformly bounded in WH*°(Q) with values in
[0,1], such that [, ¢1sdug <6 and [, ¥2sdug < 6. Then,

1 1
- / |Vun|p¢2,5 == w(n,m,é), - / |VUn|p¢2,6 == w(n,m,é),
m m
{m<vp<2m} {m<vp<2m}
(3.5.13)
1 1
[ FwlPhs s, = [ Tl = wmd),
m m
—2m<v,<—m —2m<vp,<—m
(3.5.14)
and for any k > 0,
Van a5 = w(n, m, 8), / VonPibns = w(n,m,8), (3.5.15)

{m<vp,<m+k} {m<v,<m+k}
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|Vun|Pi1 5 = w(n,m,d), / Vo P15 = w(n,m, d).

{—-m—k<v,<—m} {—-m—k<v,<—-m}

(3.5.16)

Proof. (i) Proof of (3.5.13), (3.5.14). Set for any r € R and any m, ¢ > 1

"(—m+T dm +2h — 1
= e — d
Sim,e(r) /o ( oy Xm2m] (7) + X(2m,2m44(T) + om ¢ X(@m+tamt2h] (7')) T,

m

T —m o+
Sm(r)_/o ( = TX[m,2m] (T) + X (2m;,00) (T)> dr.

Note that S}, /= Xpm,2m]/ ™M~ X2m+,22m+0)]/(2m+£). We choose (&, J,5) = (12,6, 11, Spm,e)
as test functions in (3.4.15) for w,, and observe that, from (3.5.5),

,U//n?) = HUn,0 — (hn)t - )\n,O + Pn,0 — Tno = fn —div Gn + Pn,0 — "n,0- (3-5-17)

Thus we can write 2?21141' < Zili?Ai, where
- / U 5(O)T1 (S e (10.0)) St (tt0n), A = — /Q (2.5, T5 (Sme(on)),
Ay = / ! ()T (St (0)) A, £, Vi) Vi,

A= /Q (S (00) 2 s T4 (St () A £, Vi) Vi,

1
M=o [ TS At Vun) Vo,

{m<v,<2m}
Ag= —— 1 / o5 A, t, Vun)V
6 — om + ¢ 2,0 AT, 1, VUp )V Up,
{2m+L<v, <2(2m+-0)}

A7:/Qan,z(vn)Tl(Sm,e(vn))%,(sfm Ag:/QS;l’g(vn)Tl(vae(vn))gn'vwﬁ,

1
Ag = /Q( 10t (0n)) T (S (Vn)) 2,59 Vm,  Asg = - / Ty (St (V) 12.59n. V0,

m<v,<2m

1
Ay = T, / Y2 59n-Vup, A1z = / 0 (Vn)T1 (S e(vn))b2,6d (Pn.o — Mno) -

{2m+£<v, <2(2m+0)}

Since ||Sme(uon)io < [ uopdz, we find Ay = w(l,n,m). Otherwise
{m<uon}

[A2] < 25 lypieg / on 1Al < l2sllyreeg / (lal + ol Vun P71

{m<vn} {m<vn}
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which implies Ay = w(¢,n,m) and A3 = w(¢,n,m). Using (3.4.3) for u,, we have

As = _/ ¢275d(Pn,s - 77n,5)+ +w(l) = w(l,n,m,d).
Q

Hence Ag = w(f,n,m,d), since (pns — nns)’ converges to uf as n — oo in the narrow

topology, and [, ¥2,sdpf < d. We also obtain A1y = w(¢) from (3.4.10).

Now {S;mé(vn)Tl(Sm,g(vn)) }e converges to S, (Vn)T1(Sm(vn)), {Sh, (Un)T1(Sm(vn))},, converges

to S;,(v) T1(Sm(v)), {S),(v)T1(Sm(v))},, converges to 0, x-weakly in L>®(Q), and {f,}
converges to f weakly in L'(Q), {gn} converges to g strongly in (L (Q))". From Remark
3.5.2, we obtain

A7 = / S () T1 (S (1) o2 for + () = / S )Ty (Sma(0) g f +w(€,m) = w(€,m, m),
Q Q

Ag = / S () T1 (S (V3)) gn -V 5 + w(l) = / Sy (V)T (S (v)gVha 5 +w(l,n) = w(l,n,m).
Q Q

Otherwise, Ajs < fQ o 5dpy, and {fQ @Z)wdpn} converges to fQ Yo sdpt, thus Ap <
w(l,n,m,0).
Using Holder inequality and the condition (3.1.2) we have

G0 Von — Az, t, Vain) Vo, < Cy (|gn|p’ + VAP + |a|p’)

with C; = C1(p, ¢2), which implies
Ag — A4 S Cl /Q ( ;nj(vn))2T1,(Sm,£(vn))'[/}2,5 <|gn!p/ + |hn|p + |a|p,) = w(f,n,m).

Similarly we also show that Ajp — As5/2 < w(¢,n,m). Combining the estimates, we get
As/2 < w(l,n,m,d). Using Holder inequality we have

A, t, Vup) Vo, > %yvunw — Cy(|al’ + |Vha|P).

with Cy = Ca(p, c1, c2), which implies

1
— / Vg P12 sT1 (Sme(vn)) = w(l,n,m,d).

m
{m<v,<2m}

Note that for all m > 4, S, ¢(r) > 1 for any r € [3m, 2m]; hence T1(Sp,¢(r)) = 1. So,

1
— / |V, |Pi)es = w(l,n,m,d).

m
{%mgvn<2m}

Since |V, [P < 2P71|Vu,|P + 2P~1|Vh, [P, there also holds

1
— / |Vuy|Pipe s = w(l,n,m,0).

m
{%mgvn<2m}
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We deduce (3.5.13) by summing on each set {(3)'m < v, < (%)Hlm} for i = 0,1, 2. Simi-
larly, we can choose (¢, S) = (1,5, T1, Sm,) as test functions in (3.4.15) for u,, where
Sme(1) = Spme(—7), and we obtain (3.5.14).

(ii) Proof of (3.5.15), (3.5.16). We set, for any k,m,¢ > 1,

(k+l+m)—T1
k4+m+ ¢

r 2
Skm,e(r) = /0 (Tk(T = T (7)) X et + K X(k+m+€,2(k+m+é)]) dr

Stm(r) = / To(r — Ton (7)) X 7
0

We choose (§,1,5) = (¥2,5,T1, Skm,¢) as test functions in (3.4.15) for u,. In the same way
we also obtain

/ IV an P 5T1 (Some(vn)) = w(l, m, m, 6).

{m<v,<m+k}
Note that T1(Sk,m.¢(r)) = 1 for any r > m+1, thus i |V |Pipg 5 = w(n,m, o),
{m+1<v,<m+k}
which implies (3.5.15) by changing m into m — 1. Similarly, we obtain (3.5.16). ]

Next we look at the behaviour near E.
Lemma 3.5.4 Estimate (3.5.7) holds.
Proof. There holds

I :/ @5175214(1‘,15,Vun).VTk(Un)— / @5175214(1‘,15,vun).V<Tk(U)>V
Q

{lon|<k}

From Proposition 3.4.10, (iv), {A(z, ¢,V (T (vn) + hn)).V{Tk(v)),} converges weakly in
LY(Q) to F,V(Ti(v)), . And {X{|vn|§k}} converges to X|y|<k, a-e. in @ , and Pg, 5, converges
to 0 a.e. in Q as 61 — 0, and ®;, 5, takes its values in [0, 1]. Thanks to Remark 3.5.2, we
have

s, 5, Az, t, Vug).V(Ti(v)),

{lvn|<k}

= | X554 9 (Tio) + ha)) F{TH(),
= /QX|v|<k®51,52Fk"v<Tk(v)>y +w(n) = w(n,v,d1).
Therefore, if we prove that

/ 5, 5,A(x,t, Vuy,). VT (v,) < w(n,di,62), (3.5.18)
Q
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then we deduce (3.5.7). As noticed in [32, 49|, it is precisely for this estimate that we need
the double cut w;rlw;;. To do this, we set, for any m > k > 0, and any r € R,

Sm(r) = /O " (k= Tu(r)) Hon(r)dr,

where H,, is defined at (3.4.14). Hence suppgk,m C [-2m, k]; and 5’l’€’m = —x|[—k,k] +

%X[,Qm,,m]. We choose (¢, S) = (w(;rlwg;, Sp.m) as test functions in (3.4.2). From (3.5.17),
we can write

Ay + Ay — A3+ Ay + A5+ Ag =0,

where

Ay = — / (WE0E) St (), Ay = / (k= Ty (0n)) Hon (o) A(z, £, V) V(65 67,
Q Q

2k
Ay = /Q GO AW Vu) Vo), A, =20 [ g AGt V) Vo,

{—2m<v,<—m}

As = _/ (k - Tk(vn))Hm(Un)@bg?/)gdma Ag = / (k - Tk(vn))Hm(Un)w(;;¢(;;d (nn,O - pn,O);
Q Q

and we estimate As. As in [49, p.585], since {S’km(vn)} converges to Sk, (v) weakly in X,
and Sy (v) € L(Q), and from (3.5.1), there holds

A = /Q(T/J@ﬁ%gk,m(v)/cglb({ (lbg)tgkm(v) + w(n) = w(n,d).

Next consider Ay. Notice that v, = Tap, (vy,) on supp(H,, (vy,)). From Proposition 3.4.10,
(iv), the sequence {A(m, t,V (Tom(vpn) + hn)).V(zp;l 1/1(;;)} converges to FQm.V(wg“1 wg;) weakly

in L'(Q). Thanks to Remark 3.5.2 and the convergence of w;wg in X to 0 as 01 tends to
0, we find

4y = /Q (k — Th(0)) Hyn (0) Farn. V(5 05) + () = w(n, 51).
Then consider A4. Then for some C' = C(p, ¢2),
2k "\
a<cZ [ (1Tul Vel Ll ) v
{—2m<v,<—m}
Since ¢§r1 takes its values in [0, 1] , from Lemma 3.5.3, we get in particular Ay = w(n, é1,m, d2).

Now estimate As. The sequence {(k‘ — Tp(vn))H m(vn)wgrl 1/);2} converges weakly in X
to (k — Tk(v))Hm(v)w(;rld;g;, and {(k — Tk (vn))Hp(vy) } converges *-weakly in L*°(Q) and
a.e. in Q to (k — Tj(v))Hp(v). Otherwise {f,} converges to f weakly in L' (Q) and {g,}

converges to g strongly in (Lp/ (Q))N. Thanks to Remark 3.5.2 and the convergence of
1/1321/};2 to 0 in X and a.e. in @) as 1 — 0, we deduce that

A5 =~ /Q (k = Te(vn)) Hn (0)85, 05, + w(n) = w(n, 31),
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where 7y = f — divg.
Finally Ag < 2k fQ w(;wg;dnn; using (3.5.2) we also find Ag < w(n,d,m,ds). By
addition, since A3 does not depend on m, we obtain

Ay = / GEUE A2t Vi) VT (vn) < w(n, 61, 62).
Q

Reasoning as before with (¢ 15, Sk.m) as test function in (3.4.2), where S, (1) = —S’km(—r),
we get in the same way

/ V5, Vs, A, t, Vug ) VT (vy) < w(n, 61, 02).
Q

Then, (3.5.18) holds. |

Next we look at the behaviour far from E.
Lemma 3.5.5 . Estimate (3.5.8) holds.

Proof. Here we estimate Is; we can write
I, = / (1 —®s,.5,) Az, t, Vup)V (T (vn) — (Ti(v))0) -
{lvn|<k}
Following the ideas of [52], used also in [49], we define, for any € R and ¢ > 2k > 0,
R = Towk (vn—(Ti(v))v) = To—i (vn — Ti (vn)) -
Recall that [[(Tk(v))v |l o < k. and observe that

Ry 0 =2k sign(vy,) in {|lvg| > 0+2k},  |Ryuel <4k, Ry =w(n,vf) ae. in Q,

(3.5.19)
h_>m Ryvie="Torr (v—(Txv)),) = Tk (v — T (v)), a.e. in @, and weakly in X.
(3.5.20)

Next consider &1 ,,, € C°([0,7)),&2,n, € C°((0,T]) with values in [0, 1], such that (§1.,, ) <
0 and (€2,n,)¢ > 0; and {&1 ., (¢)} (resp. {&1ms(t)}) converges to 1,for any ¢ € [0,7T) (resp.

€ (0,7] ); and moreover, for any a € C([0,T]; L {fQ (&1.my) } and [, a(€2,n,),
converge respectively to — [a(.,T) and [ a(.,0). We set
Q Q

© = Py naydat = 1y (1=Poy 6, [Totk (Vn—(Th(v))0)]1; —E2,00 (1=Psy 65) [To—k (vn — Tie(vn))] 4, -
We can see that
©—(1—=®5,5,)Rnve=w(li,la,n1,n2) innorm in X and a.e. in Q. (3.5.21)

We can choose (,S) = (©n.ny noly1s.0, Hm) as test functions in (3.4.7) for uy,, where H,,
is defined at (3.4.14), with m > ¢ 4 2k. We obtain

A+ Ay + A3+ Ay + A5 = Ag + A,
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with

4= / (T (on(T))dz, Ay = — / OV Ty (g )i,
Q 9]

Ag = —/ 0t Hp (vn), Ay :/ Hp, (o) Az, t, Vuy,). Ve,
Q Q
A5—/ ©H! (vp)A(z,t, Vug,). Vo, A6—/ Hm(vn)god)\/n?),
Q Q

A7 = ‘/QHm('Un)(Pd (pn,O - nn,O) .

Estimate of A4. This term allows to study I5. Indeed, {H,,(v,)} converges to 1, a.e. in
@ ; thanks to (3.5.21), (3.5.19) (3.5.20), we have

Ay = / (1 — (1951,52)14(‘%, t, Vun).VRn’y,g — / Rn%gA(l’, t, VUn).V(I)(;h(gQ—i-w(ll, lo,n1,n9, m)
Q Q
:/ (1 — 5, 5,)A(x, t, Vuy). VR, ot+w(ly, l2, n1,n2,m,n, v, 0)
Q

=1y + / (1= @5, 5,)A(x,t, Vuy,). VR, , o+w(li, l2,n1,n2, m,n, v, £)
{lvn|>k}
- I2 + Bl + BQ + w(llal27n17n27m7 n, V7£)7

where

By = / (1- q)5777)(x\un—<Tk(u)>u|§£+k - X|\un|—kz\§£—k)A($7 t, Vuy).Vo,
{lon|>k}

By = — / (1 - ‘561,62)X|vn_<:rk(v))u’g@.kA(x’ta Vun)-v<Tk(U)>y-
{|vn|>k}

Now {A(x,t,V (Trs2k(vn) + hn)).V{Tk(v)), } converges to FyyoxV(T)(v)),, weakly in L1(Q).

Otherwise {len\>kx|vn—(Tk(v)>y\§€+k converges to X[ol>kX|o—(Ty (v), | <tk @€ in Q. And
{{Tx(v)),} converges to Tj(v) strongly in X. Thanks to Remark 3.5.2 we get

By =~ /Q (1 = Ps1.62) Xpol>k X|u (7, (0), | < rElr28-V (T (0)),, +w(n)
= - /Q (1= @5, 55) Xpo|>k X|o—Ts(0)| <tk Feror-VTi(v) + w(n,v) = w(n,v),
since VT(v) X|y|>k = 0. Besides, we see that, for some C' = C(p, c2),

|B1| < C / (1— 5, 5,) (|Vun|p+ Vo, [P + |a|p').

{0—2k<|v, |<l+2k}
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3.5. THE CONVERGENCE THEOREM

Using (3.5.3) and (3.5.4) and applying (3.5.15) and (3.5.16) to 1 — &5, 5,, we obtain, for
k>0

(|[Vun [P + [Vo, [P) (1 — @g, 5,) = w(n,m, b1, d2). (3.5.22)
{m<|vn|<m+4k}

Thus, By = w(n,v, ¢, d1,02), hence By + By = w(n,v,¥,01,92). Then
Ay =15 + w(ll, lo,n1,n9, m,n,v, 1,0, 52) (3.5.23)

Estimate of As. For m > ¢ + 2k, since |¢| < 2¢, and (3.5.21) holds, we get, from the
dominated convergence Theorem,

As = / (1-— @51752)Rn’l,,4H;1(vn)A(x,t, Vuy).Vu, +w(ly,l2,n1,n2)
Q

2k
= —E / (1 — (1)51752)14(.%',15, Vun).an—l—w(ll,lg,nl,ng);

{m<|vn|<2m}
here, the final equality followed from the relation, since m > ¢ + 2k,

2k .
R oH,, (vy) = — o Xm<o|<2m;  G-€- In Q. (3.5.24)

Next we go to the limit in m, by using (3.4.3), (3.4.4) for u,, with ¢ = (1 — @5, 5,). There
holds

As = _Qk/Q (1 - (1)61,62)d ((pn,s - nn,s)Jr + (pn,s - nn,s)i) +W(l17 l2’n17n27m)'

Then, from (3.5.3) and (3.5.4), we get A5 = w(ly,l,n1,n2, m,n,v,£,0d1,02).

Estimate of Ag. Again, from (3.5.21),
Ag = / Hm(”n)@fn +/ 9n-V (Hy(v) )
Q Q
= /QHm(Un)(l - ®61,52)Rn,u,€fn + /anv(Hm(Un)(l - ®61,62)Rn,u,€)+w(l17 127 ny, n2)~
Thus we can write Ag = Dy + Do + D3 + Dy + w(ly,l2,n1,n2), where
D, = /Q Ho0n)(1— @5, ) Ropefor Dy = /Q (1= @5, 5,) Rt Hy () Vo,
D3 = /QHm(Un)(l - q)51,52)gn~VRn,V,€a D4 = - /Q Hm(vn)Rn,V,Zgn~v(I)51762~

Since {f,} converges to f weakly in L!(Q), and (3.5.19)-(3.5.20) hold, we get from Remark
3.5.2,

Dy = /Q (1 —®5,5,) (Torr (v—(Ti(v)),) — Ty— (v — T (v))) fHw(m,n) = w(m,n,v, ).
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We deduce from (3.4.10) that Dy = w(m). Next consider D3. Note that H,(v,) = 1 + w(m),
and (3.5.20) holds, and {g,} converges to g strongly in (L” (Q))V, and (Tj(v)), converges
to Ty (v) strongly in X. Then we obtain successively that

Dy = /Q (1~ ®5,5,)0.V (Trk (v — (Th(0)),) — Tri (v — T (0) +eo(m, n)

= /Q (1= ®5,,6,)9-V (Tork (v = Tie(v)) = Toepp (v = Ti (v))) +w(m, 0, v)
=w(m,n,v,t).
Similarly we also get Dy = w(m,n,v, ). Thus Ag = w(ly,l2,n1,n2, m,n,v,£,01,92).

Estimate of A;. We have
g = ‘ /Q S (0n) (1 — B, 52) Ry (oo — m0)| + (b, I, m2)
< 4k/ (1 — @51,52) d(pn + T]n) + w(ll, I, nq, ng).
Q

From (3.5.3) and (3.5.4) we get Ay = w(ly,l2,n1,n2,m,n,v,£,01,0d2).
Estimate of A; + Ay + A3z. We set
Jr) =T (r=T (1)), Vr € R,

and use the notations J andJ of (3.4.11). From the definitions of &; ,,,, &1 n,, We can see
that

A1 + AQ = — /Q J(Un(T))Him(’Un(T)) — /QTZ+k(u0,n — ZV)E(UO,n) + w(ll, lg,nl,ng)
_ / T (on(T))on(T) — / Ty (o — 2 )0 + (I Loy iy, may ), (3.5.25)
Q Q

where z, = (T, (v)),(0). We can write A3 = F} + F5, where

F = —/Q <§n1(1 — D5y 5,) [ Tor (vn — <Tk(v)>u>]l1> Hi(vn),

¢
F, = /Q (§n2<1 — ®5,,6,) [To—r (vn — T, (vn)))]flz)tHim(vn)-
Estimate of Fy. We write Fy, = Gy + G2 + G, with

G =~ /Q ((1)61,52)t€n2 [TZ—"C (U" — Tk (Un))]—ZQHm(Un)’

Gy = /Q (1= @5,.6,) (o) [To—k (vn — T (V)] g, Hin (vn),
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3.5. THE CONVERGENCE THEOREM

We find easily
G = _/ (P56, )¢ (vn)vntw(ly, l2, 1, 2, m),
Q

Gy = / (1= B5,.5,) (Ena)y T (0) Fom (o) 40 (1, I2) = / T (o o (l1, Iy, 1, mz, m).
Q
Q

Next consider G3. Setting b = H,,(v,), there holds from (3.4.13) and (3.4.12),

Hence

(T2 (on = T wa)))_p,), Hnlon) = ([T Hnoa))] ) = (T @a)]),

t

since J is constant in {|r| > m + ¢+ 2k} . Integrating by parts in G, we find

Gz > / & n2 (1)51 52 (U")]—lz)

__ /Q (Eamp (1 = Bs,5), / € (T L (T)da

. /Q (Eama), (1 — B, 5,).7 (1)
+ /Qflng(q)él,ég)tj(vn) + /€2,n2(T)j(Un(T))+w(l1,lg)

Q

_ Q/ T(uon)dz + /Q (B5,.5,),T (vn) + Q/ T (on(T))+0(l1, Io, n1, 13).

Therefore, since J (vy,) — J (vn)vn, = —J(vy,) and J(ug,n) =J (w0 5 )uon—T (uo.n), We obtain

Fy > /J(uom)dx—/Q(q)glm)t,](vn)+/J(Un(T))dx+w(l1,l2,n1,n2,m). (3.5.26)
Q

Q

Estimate of Fy. Since m > ¢+2k, there holds Ty, (vn—(Tk(v)),,) = Trq (Hm(vn)—(Te(Hm (v))),,)
on suppH,, (v,). Hence we can write Fy = Ly + Lo, with

L= /Q (€1 (1 = @5,.8) [Tk (o (0) ~{ Tk (Haa @), )]y, ), (Hrn(0) (T (Hra(0)),)
o= [ (a1 = ) [Tows () =TT, )], ), T Fr ),
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Integrating by parts we have, by definition of the Landes-time approximation,

+ /Qfl,m(o) [Tesr (Hom (vn)—=(Te(Hm(v))),,)];, (0)(T(Hm (v))), (0)
= V/Q (1= ®5,.6,) Ter (0n—(Ti(v)),,) (Th(v) =(Th(v)),)

+ /Tg+k (won — 2v) zpdx + w(ly, la, N1, n2). (3.5.27)
Q

We decompose L into L1 = K1 + Ko + K3, where

K =— /Q (1m0 (1 = ®5,,5,) [Tork (Hon(0n) = (T (Hon(0))),,) ], (Him (0)— (T (

T ‘
3
VY

(4
N—
N—
=
]
N—

Ky = / 1 (®5,.0,), [Ter (H*m<vn>—<Tk<H7<v>>>,,)]h (Hon (00) (T (Hon(0))),)

m ‘
f\
\_/
=
]
SN—

/ &1 n1 (1)51 52 Tf+k (Him(vn)_<Tk(H7m(v))>y)]ll>t (H7m( ) <Tk(

Then we check easily that

K = / Tyt (0n—(Tu(0)},) (T) (0n—(Tu(0)},) (T)dz—+ (i, o, iy, iz, ),
Q

Ky = /Q (©5,.6,) Tk (0n—(Tie(v)),,) (vn—=(T1(v)),) +w (i, la, 1, 2, m).

Next consider K3. Here we use the function 7 defined at (3.4.13).
We set b = Hyy, (vn)—(Tk(Hp(v))),. Hence from (3.4.12),

([Tt )00 = D T )t +1) = Tera0)0)

§111(72+k(b)((.,t +14)) = Tesr(0) (1) = ([Terr )]y, )s-

Thus

96



3.5. THE CONVERGENCE THEOREM

Then

K2 = [ €1 (1= 0,5 ([Tovk (n—{T0), )]h)

t

- /Q (Exm ), (1~ @5, 5)[Tik (vn— (Ti(0) / €1 (®5,.5,), [T (o —(Tk(0)),)],

T / €1 (O)[Te 5 (va— (Ti(@)),)], (0)da
Q
- / Tosk (n(T) — (Ty(0)),(T)) dz — /Q (Bs,5,), Tos (vn—(T(0)),)
Q
+ /7E+k (wo,n — 2v) dz + w(ly, l2, n1, n2).

We find by addition, since Ty44(7) — T oyr(r) = Toqx(r) for any r € R,

Li> / Tean (o — 2) do + / Trok (0a(T) — (To(v)), (T)) de
Q Q

+/ ((1951752)75Tg+k (vn—<Tk(v)) )—l—w(h lo,n1,n2, m) (3528)
Q
We deduce from (3.5.28), (3.5.27), (3.5.26),

Az > /J(uo,n) + /7}+k (uon — 2p) dx + /THk (won — 2v) 2Zpdx (3.5.29)
Q Q Q
4 / T (0(T)— (Tu(0)),(T)) + / T (0a(T))dz + / (®51.50), (Tesk (n—(Th(0)),) — T(va))
Q Q Q

+ V/ (1= ®@5,,6,) T (00— (Tk(v)),)) (T () =(T1(v)),) +w(la, g, 1, 2, m).

o

Next we add (3.5.25) and (3.5.29). Note that J (v, (T)) — J (vn(T))vn(T) = —J (va(T)),
and also T o4k (uon — 20) — Tovk (on — 20) (20 — wom) = =T o4k (W0 — 2) - Then we find

Av+ A+ As > / (T (o) — Tosk (o — 2)) da + / Toan (wn(T) — (Te(w)),(T)) — T(on(T))) da
Q

Q

" /Q (@s,.5,), (Ten (on—(Ti(0)),) — T(v0))
+ V/Q (1= @5, 5,) Ttk (vn—(Tk(v)),) (Th(v)—(Tk(v)),) +w(l1,l2,n1, 2, Mm).
Notice that Ty, (r—s) — J(r) > 0 for any r, s € R such that |s| < k; thus

/ (T (0(T)~(Te()),(T)) — T(0a(T))) da > 0.

Q
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And {ug,} converges to ug in L*(Q2) and {v,} converges to v in L*(Q) from Proposition
3.4.10. Thus we obtain

Ar+ Az + A3 > [ (J(uo) = Tevr (o — 2)) dz + [ (Ps1,5,), (Terr (v—(Tie(v)),) — J(v))

+ Jo (1= Ps,.55) Lok (0—(Tie(v)),,) (T (v)—(Ti(v)),) +w(la, b2, 71, 2, m, ).

Moreover Tyt (r—s) (Tx(r) —s) > 0 for any 7, s € R such that |s| < k, hence

A1+A2+A3>/ J(v))

(J(uo) = Tovk (uo — 2,)) da + / (®51,5,), (Tern (v—(Ti(v)),) —
Q Q

_H")(lla l27 niy,n2,m, ’I’L)
As v — 00, {z,} converges to Ty (up), a.e. in Q, thus we get
Ay 4+ A + A > / (j(U()) — Tg+k (UO — Tk(uo))) dx + /Q ((I)51752)t (Tg_,_k (’U — Tk(’U)) — j(v))

Q
+w(l17127n17n27m7 n, l/)'

Finally |Toqp, (r—T5(r)) — J(r)| < 2k|r|x (s> for any r € R, thus
Al + A2 + A3 2 w(l1;l27n17n2amanal/7 6)

Combining all the estimates, we obtain Iy < w(ly,ls, n1,n2, m,n,v,£,51,02) which implies
(3.5.8), since I does not depend on [y, 2, n1,n2, m, L. [

Next we conclude the proof of Theorem 3.2.1 :
Lemma 3.5.6 The function u is a R-solution of (3.1.1).

Proof. (i) First show that u satisfies (3.4.2). Here we proceed as in [49]. Let ¢ € XNL*(Q)
such ¢; € X'+ LY(Q), ¢(.,T) = 0, and S € W*>(R), such that S’ has compact support
on R, S(0) = 0. Let M > 0 such that suppS’ C [—M, M]. Taking successively (¢, S) and
(gmpgt, S) as test functions in (3.4.2) applied to wu,, we can write

Ay 4+ Ag+ A3+ Ay = As + Ag + Az, Ass++Azs++Ass+ = As s+ + A s+ + Av s+,

where

A= —/QSO(O)S(Uom)a Ay = —/Q%S(vn% Azt = _/Q(S"wéi)ts(vn)’

Agz/ S'(vp) Az, t, Vuy,). Ve, A3757i:/ S’(vn)A(x,t,Vun).V(cp¢§t),
Q Q

A4:/ S"(vp) Az, t, Vug).Vn, Asss :/ S/’(vn)¢¢§tA(x7t,Vun).an,
Q Q
As :/ S,(vn)SOdm), A6 :/ S,(Un)@dpn,ov A7 = / S/(Un)wdnn,Oa

Q Q Q

Agss = /Q S ()i dhng,  Ags, = /Q S (vn)ptEdpng, Args = — /Q S (va)ptEdino.
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Since {upn} converges to ug in LY(2), and {S(v,)} converges to S(v) strongly in X and
weak® in L*°(Q), there holds, from (3.5.2),

A= — / ©(0)S(up) + w(n), Ay=— /Q peS(v) +w(n),  Ays e = w(n,d).
Q

Moreover Ths(vy,) converges to Tas(v), then Ths(vy,) + hy, converges to Ti(v) + h strongly
in X, thus

Ag = /QS’(vn)A(m,t,V(TM (vn) + ha)). Vo
_ /Q S'(0) A, t, V (Tos (v) + h)).Vep + w(n)
:/QS’(U)A(x,t,Vu).V<p+w(n);

and
Ay = / S (0n)pA (s £,V (Tat (o) + hn))-V'Tas ()
Q
_ / S () A(2, £,V (Thr (v) + 1))V Tat (v) + w(n)
Q
:/ S"(w)pA(z, t, Vu).Vv + w(n).
Q
In the same way, since wgc converges to 0 in X,
Ayse = [ S(0)A(w. 1, Va). V() + () = wln,3),
Q
Ayst = / S" ()b A, t, Vu).Vo + w(n) = w(n,d).
Q
And {g,} converges strongly in (L*'(Q))", thus
As = / S’(vn)apfn+/ S’(vn)gn.Vgﬁ-/ S" (01) 0 gn -V T (vy)
Q Q Q
— [ Swier+ [ S@0e+ [ $wea.VTuw) +w(n)
Q Q Q
:/ S’ (v)pdig + w(n).
Q
and As 5 += fQ S’(U)gp@bgtd)\/yi) +w(n) =w(n,d). Then Ag 5 ++A7 5+ = w(n,d). From (3.5.2)

we verify that A75. = w(n,d) and Ags— = w(n,d). Moreover, from (3.5.6) and (3.5.2),
we find

Ao — Agsi| < /Q 18" ()] (1 = 9 )dpno < 1S llyooqe 9l /Q (1= 4 )dpn = w(n, 5).
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Similarly we also have |[A7 — A7 5 _| < w(n,d). Hence Ag = w(n) and A7 = w(n). Therefore,
we finally obtain (3.4.2) :

_Q/QD(O)S(U())d.T—/Q(PtS(U)

+/QS'(U)A($,t,Vu).Vg0+/QS"(U)goA(:L‘,t,Vu).Vv:/QS'(U)@dﬁB. (3.5.30)

(ii) Next, we prove (3.4.3) and (3.4.4). We take ¢ € C°(Q) and take ((1 — ¢35 )¢, Hp,)
as test functions in (3.5.30), with H,, as in (3.4.14). We can write D1, + Do = D3 m +
Dy + D5y, where

D1 = —qf) (1 =95)@) Hn(v),
Do, :gHm(v)A(x,t, Vu).V ((1 — wg)go),
D3m ngm(v)(l — 5 )pdfno, (3.5.31)
Dy = % (1 =95 )pA(z,t, Vu).Vu,
m<v<2m
D5 = —% i (1 —95)pA(z,t, Vu)Vo.

—2m<v<—-m

Taking the same test functions in (3.4.2) applied to uy, there holds DY, + D3, = D3 . +
Dy, + Dg,,, where

Dy, = —g (1 =v5)¢) Hn(v,),
fH vn)A(z, t, Vuy,).V ((1 — ng)go) ,

D3, = fH () (1 = 95)ed(Ano + Pno — 1), (3.5.32)
D}, = % [ (1—=45)eA(z,t, Vuy). Vo, ,
m<v<2m

Dy, =—m [ (1—45)pAle,t,Vu,) Vo,

m
—2m<v,<—-m

In (3.5.32), we go to the limit as m — oc. Since {H,,(v,)} converges to v, and {Hp, (vn)}
converges to 1, a.e. in Q, and {VH,,(v,)} converges to 0, weakly in (LP(Q))" , we obtain
the relation DY + Dy = D3 + D", where

P = —/Q (1 =45)¢),on, Dy = /QA(:E,t, Vun)V (1= 15)p), D} = /Q (1= ¥ )odong
D" = / (1 =5 )ed(pno — nn,o)+/ (1= 95)ed((pns — )" = (Pns = Tns)”)
Q Q

- / (1= 45 )od(pn — 11n).
Q
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Clearly, D; , — D} = w(n,m) for i = 1,2,3. From Lemma (3.5.3) and (3.5.2)-(3.5.4), we
obtain Ds ,, = w(n,m,d), and

1
- / Y5 @A(x,t, Vu).Vv = w(n,m,d),

{m<v<2m}
thus,

)

1
Dy = p- / pA(x,t,Vu).Vo + w(n,m,d).
{m<v<2m}
Since )IQ (1 =95 )edn,| < |l fQ (1 — 45 )dny, it follows that fQ (1 =5 )pdn, =
w(n,m,d) from (3.5.4). And ‘fQ Vs edpn| < ||l 1o fQ Y5 dpy, thus, from (3.5.2),

/ (1 =5 )edpn :/ odpt + w(n,m, o).
Q Q

Then D" = fQ pdut + w(n,m,d). Therefore by substraction, we get

1
— pA(z,t,Vu).Vo :/ edpf +w(n,m,?),
m Q
{m<v<2m}
hence 1
lim — / gpA(x,t,Vu).Vv:/ edu?, (3.5.33)
m—oo M Q
{m<v<2m}

which proves (3.4.3) when ¢ € C°(Q). Next assume only ¢ € C*(Q). Then

limy,—yeo % i pA(x,t,Vu).Vou
{m<v<2m}

=limp o £ eYF Az, t, Vu)Vo + limpy, oo = [ (1 — ) A(x,t, Vu).Vo

{m<v<2m} {m<v<2m}

= Joevs dpd +limpy o %{ J } e(1 =) Ala,t,Vu).Vo = [, pdui + D,
m<v<2m

where,

D= / — i )dul + hm 1 / (1 — ) A(z, t, Vu).Vo = w(d).

oo m
{m<v<2m}

Therefore, (3.5.33) still holds for ¢ € C*°(Q), and we deduce (3.4.3) by density, and
similarly, (3.4.4). This completes the proof of Theorem 3.2.1. ]

As a consequence of Theorem 3.2.1, we get the following :
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Corollary 3.5.7 Let ug € L'(Q2) and u € IMy(Q). Then there exists a R-solution u to
the problem 3.1.1 with data (u,ug). Furthermore, if vg € L' (Q) and w € My(Q) such that
ug < v and p < w, then one can find R-solution v to the problem 3.1.1 with data (w,v)
such that u < v.

In particular, if a = 0 in (3.1.2), then u satisfies (3.4.21) and HUHLOO((O,T);B(Q)) <M
with M = ||uo||1,0 + |p¢[(Q)-

3.6 Equations with perturbation terms

Let A be a Caratheodory function on @ x RY and satisfy (3.1.2), (3.1.3) with a = 0.
Let G: Q% (0,7) x R — R be a Caratheodory function. If U is a function defined in @ we
define the function G(U) in @ by

GU)(x,t) = G(x,t,U(x,t)) for a.e. (z,t) € Q.
We consider the problem (3.1.5) :
u — div(A(z,t, Vu)) + G(u) = p  in Q,
w=0  indQx (0,T),
u(0) = ug in ©,

where 1 € My(Q), up € L*(Q). We say that u is a R-solution of problem (3.1.5) if G(u) €
L'(Q) and u is a R-solution of (3.1.1) with data (u — G(u),ug).

3.6.1 Subcritical type results

For proving Theorem 3.2.2, we begin by an integration Lemma :
Lemma 3.6.1 Let G satisfying (5.2.3). If a measurable function V in Q satisfies
meas {|V| >t} < Mt Pe, vt > 1,

for some M > 0, then for any L > 1,

G(|V]) < pcM/ G(s) s~ 1 Peds. (3.6.1)
L
{IVI=L}

Proof. Indeed, setting G1(s) = X|1,00)(5)G(5), we have

{V/L} G(|V|)dmdt:/QGL(|V|)d:vdt</OOOGL(|V|*(3))ds

where |V|* is and the rearrangement of |V'|, defined by

[V|*(s) = inf{a > 0 : meas {|V| > a}) < s}, Vs > 0.
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From the assumption, we get |V|*(s) < sup <(Ms*1)p51, 1>. Thus, for any L > 1,

9] B 3]
/ G(|V|)dzdt < / Gr, (sup ((Ms_l)p° 1, 1)) ds = pCM/ G (s) s 17Peds,
0 L
{Ivi>L}

which implies (3.6.1). ]
Proof of Theorem 3.2.2. Proof of (i) Let = up+pus € Mp(Q), with gy € Mo(Q), ps €
Ms(Q), and ug € L1(2). By Proposition 3.3.1, we can find f;, gn.i, hni € C°(Q) which
strongly converge to fi, gi, hi in LY(Q), (L? (Q))"N and Lp((O,T);WOl’p(Q)) respectively,
for i = 1,2, such that ug = (fi,91,h), g = (f2,92,h2), and pn0i = (fri» Gnsis Pnsi);
converging respectively for ¢ = 1,2 to Mg , Mo in the narrow topology; and we can find
nonnegative p,s; € CX(Q),i = 1,2, converging respectively to ut,u; in the narrow
topology.
Furthermore, if we set

Pn = Bn,0,1 — Un,0,2 T tn,sl — tn,s2;
then |p,|(Q) < |p|(Q). Consider a sequence {ug,} C C2°(€2) which strongly converges to
ug in L1(Q2) and satisfies ||ugn||1.0 < [Juol|10-

Let wu,, be a solution of

(un)e — div(A(z, t, Vuy)) + G(un) = pn in Q,
Up =0 on 99 x (0,T),
un(0) = uon in Q.

We can choose ¢ = ¢ 1T.(u,) as test function of above problem. Then we find

/Q(ElTE(un))t—i-/QelA(x,t, VTa(un)).VTa(un)—i—/Q g(m,t,un)ang(un):/Qe1Ta(un)d,un.

Since

1,9,

/Q (6 T (un)), = /Q VT (un (T)) s — / VT (uo )z > —luom

Q

there holds
/Qg(%ta un)e T (up) < |1al(Q) + [Juoml| (o) < 1WI(Q) + [luoll10-
Letting € — 0, we obtain
196t < 101@) + ol (36.2)

Next apply Proposition 3.4.8 and Remark 3.4.9 to w, with initial data ug, and measure
data i, — G(u,) € LY(Q), we get

p+N

meas {Jua| > s} < C(ul(@Q) + lluol [ 1) ¥ 7%, Vs> 0,¥n €N,
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for some C' = C(N,p,c1,c2). Since |G(z,t,u,)| < G(|uy|), we deduce from (3.6.1) that
{IG(un)|} is equi-integrable. Then, thanks to Proposition 3.4.10, up to a subsequence,
{uy} converges to some function u, a.e. in @Q, and {G(u,)} converges to G(u) in L'(Q).
Therefore, by Theorem 3.2.1, u is a R-solution of (3.2.4).

Proof of (ii). Let {u,},>1 be defined by induction as nonnegative R-solutions of

(ul)t - le(A(l', ta vul)) =p n Qa (un+1)t - le(A(ﬂj‘, ta Vun+1)) i Ag(un) in Qa
up =0 on 90 x (0,7), Up+1 = 0 on 92 x (0,7),
u1(0) = up in Q, Un+1(0) = up in Q.

Thanks to Corollary 3.5.7 we can assume that {u,} is nondecreasing and satisfies for any
s>0andneN
meas {|u,| > s} < C1K,s e, (3.6.3)

where C7 does not depend on s,n and

p+N
K1 = ([[uoll1,0 + [1/(Q) ~,
K1 = ([ul [ + |6l(Q) + MG (un) [10) T

for any n > 1.Take ¢ = A + |u|(Q) + [|uol|r1() < 1. Denoting by C; some constants
independent on n, e, there holds K7 < Cae, and for n > 1,

+%
K1 < Cse(|G(un)ll; o7 +1).

From (3.6.1) and (3.6.3), we find

1G(un) 1) < 1Q1G(2) + / G(|un|)ddt < Q| G(2) + CaK, /2 G (s) s~ Peds.

{un|>2}|

P
Thus, K11 < C55(K71L+N + 1). Therefore, if ¢ is small enough, {K,} is bounded. Then,
again from (3.6.1) and the relation |G(z,t, up)| < G(|uy|) we verify that {G(uy)} converges.
Then by Theorem 3.2.1, up to a subsequence, {u,} converges to a R-solution u of (3.2.5).m

3.6.2 General case with absorption terms

In the sequel we assume that A : @ x RY — R does not depend on t. We recall a result
obtained in [54, 17] in the elliptic case :

Theorem 3.6.2 Let Q be a bounded domain of RN andp < N. Assume that A : QxRN —
R satisfies (3.1.6),(3.1.7). Let w € Myp(Q) with compact support in 2. Suppose that uy, is
a solution of problem

—div(A(z, Vuy)) = op *w in Q,
Uy =0 on 0f,
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3.6. EQUATIONS WITH PERTURBATION TERMS

where {pn} is a sequence of mollifiers in RN . Then, up to subsequence, wu, converges a.e
in Q to a renormalized solution u of

—div(A(z,Vu)) = w in Q,
u=0 on 052,

in the elliptic sense of [32], satisfying

_ W%dzam( )[w—] g U

II/\

KW A [t (3.6.4)

where Kk is a constant which only depends of N, p,c1,ca.
Next we give a general result in case of absorption terms :

Theorem 3.6.3 Let p < N , A : Q x RN —— R satisfy (3.1.6) and (3.1.7), and G :
Q xR — R be a Caratheodory function such that the map s — G(x,t,s) is nondecreasing
and odd, for a.e. (z,t) in Q. Let 1, po € zmgf(Q) such that there exist wy, € Dﬁ;'(Q) and
nondecreasing sequences {ft1.n},{ft2n} n 93?;'(@) with compact support in Q, converging
to 1, o, respectively in the narrow topology, and

itz < wn @ X1y G+ kWIS D)) € LYQ),

where the constant k is given at Theorem 3.6.2. Let ug € L*(Q), and p = py — p2. Then
there exists a R-solution u of problem (3.1.5).

Moreover if ug € L>®(R2), and w, < v for any n € N, for some vy € 93?;‘(9), then a.e.
in Q,
fu(z, )] < kW™ V] (@) + luollc.0- (3.6.5)

For proving this result, we need two Lemmas :

Lemma 3.6.4 Let G satisfy the assumptions of Theorem 3.6.3 and G € L>®(Q x R) and
k be the constant in Theorem 3.6.2. For i = 1,2, let up; € L>®(2) be nonnegative, and
Ai=Xio+Nis € i)ﬁzr(Q) with compact support in Q, vy € imlj(Q) with compact support in
Q such that A\; <y ® Xx(o,1)- Let Xio = (fi, gi, hi) be a decomposition of \ig into functions
with compact support in Q. Then, there exist R-solutions u,uy,us, to problems

ur—div(A(z, Vu))+G(u) = A=Ay in Q, u=0 ond2x(0,T), u(0) = up,1—uo2,
(3.6.6)
(ui)e — div(A(x, Vu)) + G(u;)) = N in Q, u; =0 ondQx(0,7), u;(0) = uo;,
(3.6.7)
relative to decompositions (fin—fon—G(Un), 91n—92.n, Pin—hon), (fin—G(Win), Gin, hin),
such that a.e. in @,

— 10200~ HWQd‘am@)m( ) < —us(z,t) < ulz,t) < ug(a,t) < Wleam(Q) (] (2)+ 0.1 ||s0.02:
(3.6.8)
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/w <30 +hmml),MM(LQMSM@HHme7i=L2

(3.6.9)

Furthermore, assume that H, K have the same properties as G, and H(x,t,s) < G(x,t,s) <

K(z,t,s) for any s € (0,+00) and a.e. in Q. Then, one can find solutions w;(H),u;(KC),
corresponding to H, KC with data \;, such that u;(H) > w; > u;(K), i =1,2.

Assume that w;,0; have the same properties as A; and w; < N\; < 04, ug;1,U0i2 €

LT (D), ugi2 < uoi < ugi1. Then one can find solutions u;(w;),u;(6;), corresponding to

(Wi, u0,3,2), (0i,u0,4,1), such that u;(wi, uo2) < ui < ui(0i,uo41)-

Proof. Let {¢1,},{p2.,} be sequences of mollifiers in R and RY, and ¢, = ¢1 02, Set
Yn = P20 * 7, and for i = 1,2, ug;n = p2.n * ug,;,

Ai,n = Pn * )\7, = fi,n - diV(Qi,n) + (hi,n)t + )\i,s,ny
where fi,n = Pn * fi, gin = Pn * Gi, hi,n = Pn * hi, )\i,s,n = Pn * )\i,sa and
)\n = )\l,n - )\Z,n = fn - le(gn) + (hn)t + )\s,nv

where f, = fl,n - f2,n7 In = di,n — 92, hn = hl,n - h2,na )\s,n = >\1,s,n - )\2,3,17,- Then for
n large enough, A1, Ao, Ay € C°(Q), v € C°(R2). Thus there exist unique solutions
U, Ui m, Wn, ¢ = 1,2, of problems

(un)t — div(A(z, Vuy,)) + G(un) = Aipn — A2n in Q,
up, =0 on 99 x (0,7),
un(0) = uo,1,n — Uo2n in 0,

(win)e — div(A(z, Vuipn)) + G(uin) = Ain in Q,
Uip =0 on 02 x (0,7,

Uin(0) = ugipn  in

—div(A(z, Vwy)) = v, in Q, wp, =0 on 09,

Moreover, as in the Proof of Theorem 3.2.2, (i), there holds

/w%|< (()Hmmmm,wd/EMMSM@Hmmmmizw.
i Q

i=1,2

By Proposition 3.4.10, up to a common subsequence, {up,u1n, U2y} converge to some
(u,u1,u2), a.e. in Q. Since G is bounded, in particular, {G(u,)} converges to G(u) and
{G(ui )} converges to G(u;) in L1(Q). Thus, (3.6.9) is satisfied. Moreover {\;, — G(uin), fin
_g(ui,n)a Jin, hi,ny )\i,s,na uO,i,n} and {An - g(un)7 fn— g(un)7 Ins I, )\s,nv Uo,1,n — uO,Q,n} are
approximations of (A\;—G(w;), fi—G(wi), gi, hi, Mijs, wo,i) and (A —A2—G(u), f—G(u), g, h, Xs, up,1—
u0,2), in the sense of Theorem 3.2.1. Thus, we can find (different) subsequences converging
a.e. to wu,uy,us, R-solutions of (3.6.6) and (3.6.7). Furthermore, from Theorem 3.6.2, up
to a subsequence, {wy} converges a.e. in @ to a renormalized solution of

—div(A(z, Vw)) =7 in Q, w=0 on 09,
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such that w < nW%g[’y] a.e. in €. Hence, we get the inequality (3.6.8). The other conclu-
sions follow in the same way |

Lemma 3.6.5 Let G satisfy the assumptions of Theorem 3.6.3 and k be the constant in
Theorem 3.6.2 . For i = 1,2, let up,; € L*°(S2) be nonnegative, \; € SmgL(Q) with compact
support in Q, and v € ,’m;(Q) with compact support in €2, such that

w0+ EWGm @)y € LL(Q). (3.6.10)

Ai <R X(0,1)5 G((|uo,q

Then, there exist R-solutions u,uy,us of the problems (3.6.6) and (3.6.7), respectively re-
lative to the decompositions (f1 — fo — G(u), g1 — g2, h1 — h2), (fi — G(wi), gi, hi), satifying
(3.6.8) and (3.6.9).

Moreover, assume that w;, 0; have the same properties as \; and w; < Xy < 0;, 4.1, %0,i,2
L), w2 < wuop; < ugii. Then, one can find solutions u;(wi, uo;2), wi(6i,u0,i1), cor-
responding with (w;, uo2), (0i,v0,i1), such that w;(w;i, ugi2) < uj < ui(0;,uo41).

Proof. From Lemma 3.6.4 there exist R-solutions u,,, u;, to problems

(un)t — div(A(z, Vug)) + Tn(G(un)) = A1 — A2 in Q,
up =0 on 00 x (0,7T),
un(O) = Up,1 — Up,2 in Q,

(win)e — div(A(z, Vuin)) + Tn(G(uin)) = Ni in Q,

Uip =0 on 092 x (0,7),

uzyn(()) = UOJ', n Q,
relative to the decompositions (f1 — fo—T5,(G(un), 91 — g2, b1 —h2), (fi—Tn(G(win)), gi, hi);
and they satisfy

2di Q
o2l — kWIS ](2) < —usn(@, t) < un(a,t)

< urn(@, t) < KW ) (@) + [Jug,s

|0, (3.6.11)

/Q T ()| < 3 (A(Q) + [[uosllie), and /Q T, (G(uin) < M(Q) + luosllne:

i=1,2

As in Lemma 3.6.4, up to a common subsequence, {uy, w1 ,,u2,} converges a.e. in @ to
{w,u1,us} for which (3.6.8) is satisfied a.e. in Q. From (3.6.10), (3.6.11) and the dominated
convergence Theorem, we deduce that {T;,(G(uy))} converges to G(u) and {T,,(G(uin))}
converges to G(u;) in L*(Q). Thus, from Theorem 3.2.1, u and u; are respective R-solutions
of (3.6.6) and (3.6.7) relative to the decompositions (f1 — fo — G(u),g91 — g2,h1 — he),
(fi — G(ui), gi, hi), and (3.6.8) and (3.6.9 hold. The last statement follows from the same

assertion in Lemma 3.6.4. [ ]

Proof of Theorem 3.6.3. By Proposition 3.3.2, for i = 1,2, there exist f; ., fi € L}(Q),
gi,n,gi € (Lp (Q))N and h”i,’rl,a h’L S X; :U’Z',TL,S),LLZ',S € m;(@) Such that

pi = fi —divg + (hi)e + pas, Wi = fin — div gin + (hin)e + fin,s,
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and {fin},{gin},{hin} strongly converge to f;, g;, h; in LY(Q), (LPI(Q))N and X respec-
tively, and {pin}, {tin,s} converge to p;, pi s (strongly) in 9%(Q), and

X+ Hin,s () = 20(Q).

By Lemma 3.6.5, there exist R-solutions uy,, u; , to problems

(un>t - le(A(x; vun)) + g(un) = H1nm — H2n in Q,
Up =0 on 09 x (0,7T),
un(0) = Tufu)  n

[ finllt + llginllp.@ + [|hin

(ui,n)t - le(A(:L‘, vul,n)) + g(ul,n) = Hin in Qa
Ui =0 on 09 x (0,7),
i n(0) = T (u) in Q,

for i = 1,2, relative to the decompositions (fin — fon — G(Un), 91,0 — 92,0 R1n — h2n),
(fim — G(Uin), gin, hin), such that {u;,} is nonnegative and nondecreasing, and —ug,, <
Up < Uy and

/ G ()|, / Glusm)dzdt < 111 (Q) + 12(Q) + I[uol |1 (3.6.12)
Q Q

As in the proof of Lemma 3.6.5, up to a common subsequence {up, u1 p, u2n} converge a.e.
in @ to {u,us,uz}. Since {G(u; )} is nondecreasing, and nonnegative, from the monotone
convergence Theorem and (5.1.6), we obtain that {G(u;,)} converges to G(u;) in L'(Q),
i = 1,2. Finally, {G(uy)} converges to G(u) in LY(Q), since |G(un)| £ G(urn) + G(uan).
Thus, we can see that

{,Ul,n — H2n — g(un)a fl,n - f2,n - g(un)a 9in — 92,n, hl,n - h2,na H1,sm — H2.smn;5 Tn(UO)}

is an approximation of (u1 — p2 — G(u), fi — fa — G(u), g1 — g2, — ha, 1,5 — p2.s, uo),
in the sense of Theorem 3.2.1. Therefore, u is a R-solution of (3.1.5), and (3.6.5) holds if
ug € L*(Q) and w,, < 7 for any n € N and some vy € 9" (€2). |

As a consequence we prove Theorem 3.2.3. We use the following result of [17] :

Proposition 3.6.6 ( see [17]) Let ¢ > p—1, a > Oand v € M (Q). If v does not charge

the sets of zero CapGP = -capacity, there exists a nondecreasing sequence {vy,} C Dﬁ;(Q)
’q+1-p

with compact support in Q which converges to v strongly in My(?) and such that Wﬁp[un] €
LYRN), for anyn € N, R > 0.

Proof of Theorem 3.2.3. Let f € L'(Q), up € L(Q2), and pu € 9,(Q) such that |u| < w®
F, where F € L'((0,T)) and w does not charge the sets of zero Capg, g -capacity. From
7q+1-p

Proposition 3.6.6, there exists a nondecreasing sequence {w,} C 9, (€2) with compact

support in €2 which converges to w, strongly in 9t,(€2), such that W%ﬁam(ﬂ) [wn] € LI(RN).
We can write

fru=m—p2, p=f"4p",  pe=f+u, (3.6.13)
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and T, u” <w® F. We set
1 1 1
Qn = {(x,t) € Q x (E’T_E) d(z,00) > ﬁ}’ Fy=To(x1p_1yF),  (3.6.14)

fiin = Tn(xQu [ 1) +inf{p,wn®@Fn},  pon = Talx,f7)+inf{u~,w, @ F,}. (3.6.15)
Then {10}, {#2,n} are nondecreasing sequences with compact support in @, and 11 p, po,n <

On ® X(0,1), With &, = n(xq +w,) and (n + ﬁijﬁam(Q) [@n])? € LY(Q). Besides, w, ® F,
converges to w ® F' strongly in 9(Q) : indeed we easily check that

l|wn @ Fn —w @ Fllon, @) < [[Fnllzr o, llwn — wllon, @) + lwllan, @)1 Fn — Fllio,r)
Observe that for any measures v, 0,1 € MM (Q), there holds
finf{w, 0} — inf{v, n}| <0 — 7,

hence {1}, {p2,n} converge to p1, po respectively in M1, (Q). Therefore, the result follows
from Theorem 3.6.3. ]

Remark 3.6.7 Let G : Q x R — R be a Caratheodory function such that the map s —
G(z,t,5) is nondecreasing and odd, for a.e. (x,t) in Q. Let p € My(Q), f € LY(Q),ug €
LY(Q) and w € M () such that (3.2.6) holds.

If w{z : W%ﬁam(m[w](x) = oo}) = 0, then, (3.1.5) has a R-solution with data
(f + p,up). The ,proof is sitmilar to the one of Theorem 8.2.3, after replacing w, by
wad;am(ﬂ)[w]gnw. Note that w({z : W%Zlgam(m [W](z) = oo}) = 0 if and only if w is dif-

fuse, see [46].

Remark 3.6.8 As in [17], from Theorem 3.6.3, we can extend Theorem 3.2.3 given for
G(u) = |u|"t u, to the case of a function G(z,t,.), odd for a.e. (z,t) € Q, such that

G(a,t,u)| < G(Ju]), / " G(s)s™ s < oo,
1

where G is a nondecreasing continuous, under the condition that w does not charge the sets

of zero C’apGp’qizH’l—capacity, where for any Borel set E C RV,

. R B
Capg,, 1 1(E) = inf{]|¢]| ip e Lot (RY),  Gpx o> xp)

q q 4
q—p+1’ La—r+I"(RN)

where Lq*gH’I(RN) is the Lorentz space of order (q_;ﬁ, 1).

In case G is of exponential type, we introduce the notion of maximal fractional operator,
defined for any > 0, R > 0, zp € RN by

M) (o) = sup “APU00)

—_— where h,(t) = inf((—=Int)™", (In2)™")).
s S 1) = inf((~ 10 1)7, (1n2)7)

We obtain the following :
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Theorem 3.6.9 Let A : Q x RY +—— R satisfy (3.1.6) and (3.1.7). Let p < N and
7>0,8>1u€MQ), fe L (Q) and ug € LY(Q). Assume that |p| < w @ F, with
w €M (Q), F e LY(0,T)) be nonnegative. Assume that one of the following assumptions
1s satisfied :

(i) HFHLOO((O,T)) < 1 and fOT’ some MO = MO(N7p7/87T7 037647dia‘mQ)7

p—1
||Mp?2diam(ﬂ) [OJ]HLOQ(RN) < ]\407 (3616)

p—1

(ii) There exists By > [ such that Mp 2dmm(m[ w] € L>®(RY).

Then there exists a R-solution to the problem

up — div(A(z, Vu)) + (eT|u|B — 1)sign(u) = f 4+ p in Q,
u=20 on 92 x (0,T), (3.6.17)
u(0) = ug in Q.

For the proof we use the following result of [17] :

Proposition 3.6.10 (see [17], Theorem 2.4) Suppose 1 < p < N. Let v € M} (Q),
B > 1, and 6y = ((128)~1)PpIn2. There exists C = C(N,p, B, diamQ) such that, for any
b€ (0, 50),

lemQ
/fexp W D)) .
Q p71 i _50—(5

Proof of Theorem 3.6.9. Let Q,, be defined at (3.6.14), and w, = wxq,,, where Q, =
{z € Q:d(z,00) > 1/n}. We still consider pu1, pt2, Fp, pt1,n, ft2,n as in (3.6.13), (3.6.15).
Case 1 : Assume that ||F|‘Loo((0’T)) <1 and (3.6.16) holds. We have p1 p, 2., < nxa + w.
For any € > 0, there exists ¢. = c.(¢, N, p, 5, k,diam€2) > 0 such that

iam Bp iam
(?’L + W2d (Q)[HXQ +w]>6 < anpfl + (1 4 g)ﬂﬁ(wffu ) [w])ﬁ
a.e. in . Thus,
B
o W 1) < s (1 W)

If (3.6.16) holds with My = (50/7‘/@ﬂ)(p71)/6 then we can chose ¢ such that

_B_
(0L IV Do P E g, <o

From Proposition 3.6.10, we get exp(7(1 + a)mﬂwgdlam(ﬂ) [w])?) € LY(), which implies
exp(7(n + n5W2dlam( )[nXQ + w])?) € L1(Q) for all n. We conclude from Theorem 3.6.3.
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Case 2 : Assume that there exists ¢ > 0 such that M;p 5 diig@fg)g)/[w] € L=®(R"M). Now we

use the inequality p1p, 2, < n(xo + w). For any ¢ > 0 and n € N there exists ¢.,, > 0
such that

(n + W2d1am( )[ (xo —i—w)])ﬁ < cCem + g(W%diamQ[w])BO

Thus, from Proposition 3.6.10 we get exp(7(n + /{BWleam( )[ (xa +w)])?) € LY(Q) for
all n. We conclude from Theorem 3.6.3. [ |

3.6.3 Equations with source term

As a consequence of Theorem 3.6.3, we get a first result for problem (3.1.1) :

Corollary 3.6.11 Let A: Q x RN — R satisfy (3.1.6) and (3.1.7). Let ug € L>(R), and
p € My(Q) such that || < w @ x(o,1) for some w € M (Q). Then there exist a R-solution
u of (3.1.1), such that

lulz, 1) < KWIS D 0)(@) + [Juolloog,  forace. (z,1) € Q, (3.6.18)
where K is defined at Theorem 3.6.2.
Proof. Let {¢,} be a nonnegative, nondecreasing sequence in C2°(Q) which converges to

1, a.e. in Q. Since {¢pu™}, {dpp~} are nondecreasing sequences, the result follows from
Theorem 3.6.3. u

Our proof of Theorem 3.2.4 is based on a property of Wolf potentials :

Theorem 3.6.12 (see [54]) Let g >p—1,0<p < N, w € M (). If for some A > 0,

w(FE) < ACapg _—u

Prp—q+1

(E) for any compact set E C RN, (3.6.19)

then (W f?am(m[ ? € LY(Q), and there exists M = M(N,p,q,diam(Q)) such that, a.e.
in €,
2diam (02 2diam (02 a—pt] 2d1 m
Wi )[(Wl,pa ( )[w]) ] < MAG- D WSO ] < oo, (3.6.20)

We deduce the following :

Lemma 3.6.13 Let w € M (Q), and b > 0 and K > 0. Suppose that {wm}m>1 is a
sequence of nonnegative functions in ) that satisfies

u < KW O 4b, gy S KW Ol 4 w] 45 Ym > 1.

Assume that w satisfies (3.6.19) for some A > 0. Then there exist g and by, depending on
N,p,q, K, and diam(Q2), such that, if X < \g and b < by, then Wfi;am(m (1] € LYQ) and
for any m > 1,

2d1am(Q) [ }

U < 28, KW +9b, B, =max(1,371). (3.6.21)
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Proof. Clearly, (3.6.21) holds for m = 1. Now, assume that it holds at the order m. Then
ul, < 2071 (26,) KWV )7 + 2071 (20)°.

Using (3.6.20) we get
w1 < KW (207128, WIS D)) + 207 207 + ] +b

< ,Bp (A1W2d1arn( ) [(Wleam(Q)[ ]) +VV2d1am(Q) [(Qb)q] +W%:i;am(§2) [w]> +b

1p
+1 .
< By K (A MAG? 4 YW@ ) 4 g o 28m(@) (gp)0) 4 g
—p+1 .
= BpK (A1 MA ?pfl)Q + 1)W§j;am( )[W] + Azb”f1 + 0,

where M is as in (3.6.20) and

Ay = (207128, K1) 7Y Ay = 5, K29/ V| By V0D ()7L (2diam ()

Thus, (3.6.21) holds for m = n + 1 if we prove that

g—p+1

A1 MM\ (- (»-1)2 <1 and Agbp 1< b,

which is equivalent to
p—1

1)?
A< (AL M) 44T and b< A, TP

Therefore, we obtain the result with \g = (AlM)_(p_l) /(a=p+1) and by = A;(pfl)/(quﬂ).
|

Proof of Theorem 3.2.4. From Corollary 3.5.7 and 3.6.11, we can construct a sequence
of nonnegative nondecreasing R-solutions {u, }m>1 defined in the following way : u; is a
R-solution of (3.1.1), and wu,+1 is a nonnegative R-solution of

(um+1)t — div(A(z, Vi) =uh + . in Q,
Umt1 =0 on 09 x (0,7T),
um+1(0) = Up in Q.

Setting Uy, = supye (o) wm(t) for all m > 1, there holds

2d1am(Q) [fq

_ 2di Q
@ < AW 4 ugllon, Tt < KW + ]+ [luollee  Ym > 1.

From Lemma 3.6.13, we can find A\g = A\g(V, p, ¢,diam$Y) and by = by(N, p, ¢, diam€?) such
that if (3.2.8) is satisfied with Ao and bp, then

2diam(§2)

Um, < Uy, < QﬁpHWLp

W] +2[Juolloce  Ym > 1, (3.6.22)

Thus {u,,} converges a.e. in @ and in L'(Q) to some function u, for which (3.2.10) is
satisfied in ) with ¢ = 28,k. Finally, one can apply Theorem 3.2.1 to the sequence of
measures {uz, + p}, and obtain that u is a R-solution of (3.2.9). ]

Next we consider the exponential case.
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Theorem 3.6.14 Let A : Q x RN — R satisfy (3.1.6) and (3.1.7). Let 7 > 0,1 € N and
B >1 such that I > p— 1. Set

-1
S Sj

E(s) =¢€" — 2 ik Vs € R. (3.6.23)
j=0
Let € MH(Q), w € M (Q) such that p < X(o,r) ® w. Then, there exist by and My
depending on N,p, 3, 7,1 and diamf), such that if

(P*U‘#
IV, (e [ ey < Mo, o]l < bo,

the problem
uy — div( Az, Vu)) = E(tu’) + u in Q,
u=0 on 092 x (0,7, (3.6.24)
u(0) = up in

admits nonnegative R- solution u, which satisfies, a.e. in @, for some c, depending on

N7 b, C3,C4 2diam(Q)
iam

u(w,t) < Wy,

[w](z) + 2bo. (3.6.25)

For the proof we first recall an approximation property, which is a consequence of 47,
Theorem 2.5] :

Theorem 3.6.15 Let 7 >0,b>0, K >0,l €N and 8 > 1 such that Il >p—1. Let £
be defined by (3.6.23). Let {vm,} be a sequence of nonnegative functions in 0 such that, for
some K > 0,

vy < Kij)iam(Q) (1] + b, U1 < KWfi;am(Q) [E(TE) +ul+b, Ym>1.

Then, there exist by and My, depending on N,p, B3, 7,1, K and diam$ such that if b < by

and
(p—1)(B-1)

HMp,Qdi:m(Q) [1]]| o ry < Mo, (3.6.26)
2
then, setting ¢, = 2max(1,2p7—11)),
iam B
exp(r(K e, Wio™ Dl +200)) € L' (),
Um < Key W™ @) 425y, vm > 1. (3.6.27)

Proof of Theorem 3.6.14. From Corollary 3.5.7 and 3.6.11 we can construct a sequence
of nonnegative nondecreasing R-solutions {u, }m>1 defined in the following way : u; is a
R-solution of problem (3.1.1), and by induction, u,+; is a R-solution of

(U 1)t — AiV(A(@, V1)) = E(Tul) + 1 in Q,
Umt1 =0 on 092 x (0,7), (3.6.28)
Um+1(0) = ug in Q.
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And, setting Uy, = sup;c(o,r) Um(t), there holds

2diam

2Ot ol Trmsr < KW

W < KW Dleal) vl tluollon,  Ym>1.

Thus, from Theorem 3.6.15, there exist by € (0,1] and My > 0 depending on N,p, 3, 7,1
and diam{) such that, if (3.6.26) holds, then (3.6.27) is satisfied with v,, = Uy,. As a
consequence, U, is well defined. Thus, {u,,} converges a.e. in @ to some function u, for

which (3.6.25) is satisfied in 2. Furthermore, {E(Tugl)} converges to £(tu’) in LY(Q).

Finally, one can apply Theorem 3.2.1 to the sequence of measures {5 (T’Ufn) + ,u}, and
obtain that u is a R-solution of (3.6.24). |

Remark 3.6.16 In [47, Theorem 1.1], when div(A(z,Vu)) = Apu, we showed that there
exist M = M (N, p, B, 7,1, diam(Q2)) such that if

%ﬁ(ﬁ—l)
M, o giam [l Lo @y = M,

then the problem
{ ~Apu =E(TvP) +w in Q,

v=20 on 0f). (3.6.29)

has a renormalized solution in the sense of [17]. We claim the following :

Let div(A(z, Vu)) = Apu and ug = 0. If (3.6.29) has a renormalized solution v and w
is diffuse, then the problem (3.6.24) in Theorem 3.6.14 admits a R-solution u, satisfying
u(z,t) £ v(x) a.ein Q.

Indeed, since w is diffuse, there holds p € My(Q). Otherwise, for any measure n € My(Q)
the problem

u — Apu =1 n Q,

u=20 on 99 x (0,7,

u=20 in €,
has a (unique) R-solution, and the comparison principle is valid, see [50]. Thus, as in the
proof of Theorem 3.6.1/4, we can construct a unique sequence of nonnegative nondecreasing

R-solutions {wm }m,>1, defined in the following way : uy is a R-solution of problem (3.1.1)
and satisfies up < v a.e in Q; and by induction, upy1 18 a R-solution of (3.6.28) and

satisfies um+1 < v a.e in Q. Then {S(Tu&)} converges to E(Tu”) in LY(Q). Finally,

u = limy, 00 Uy 1S @ solution of (3.6.24). Clearly, this claim is also valid for power source
term.

3.7 Appendix

Proof of Lemma 3.4.7. Let J be defined by (3.4.11). Let ¢ € C}([0,T)) with values
in [0, 1], such that {; <0, and ¢ = (£[J(S(v))];. Clearly, ¢ € X N L*>(Q) ; we choose the
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pair of functions (¢, S) as test function in (3.4.2). Thanks to convergence properties of
Steklov time-averages, we easily will obtain (3.4.15) if we prove that

lggJ—é«ﬂ /@

We can write — [, (C€[J(S(v))];),S(v) = F + G, with

P [ QOUIEENSW, == [ eSS+~ K@),
Using (3.4.12) and integrating by parts we have
G2~ [ (67 (TSt +-T (50D 1)
- chau S = | @+ [ o (0)dz
> [ €T SEL,

since J(S(v)) > 0. Hence,
/ (€L (S@N])yS(v) Z/ (C&)t[J(S(U))]ﬁF:/ (€& ([T (S = [T(S(@)];5(v))
Q Q

J(S(v)) € C([0,T]; L1(Q)), thus {(¢&): ([T (S(w)]; — [T(S(u))];S(w))}

Otherwise, J(S(v)) and
€)¢J(S(u)) in L' (Q) as I — 0. Therefore,

converges to —((§)

bm (- /Q (IS, S(0) 2 lim (- /Q (€. T(s0)

1—0,(—1

which achieves the proof. ]
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Chapitre 4

Potential estimates and quasilinear
parabolic equations with measure
data

Abstract

In this paper, we study the existence and regularity of the quasilinear parabolic equations :
up — div(A(z, t, Vu)) = B(u, Vu) + p

in RN+ RY x (0, 00) and a bounded domain 2 x (0,7) € RV+1. Here N > 2, the nonlinea-
rity A fulfills standard growth conditions and B term is a continuous function and y is a ra-
don measure. Our first task is to establish the existence results with B(u, Vu) = +|u|9  u,
for ¢ > 1. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary esti-
mates on gradient of solutions with B = 0, under minimal conditions on the boundary
of domain and on nonlinearity A. Finally, due to these estimates, we solve the existence
problems with B(u, Vu) = |Vu|? for ¢ > 1.
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4.1 Introduction

In this article, we study a class of quasilinear parabolic equations :
up — div(A(z,t,Vu)) = B(z,t,u, Vu) + p (4.1.1)

in RV*! or RY x (0,00) or a bounded domain Q7 := Q x (0,7) € RV*!. Where N > 2,
A:RYN xR x RY = RY is a Carathéodory function which satisfies

|A(z,t,Q)| < A1[¢| and (4.1.2)
(A, t,¢) = A, 8,7),¢ = A) = Aaf¢ = AP, (4.1.3)

for every (X, ¢) € RV x RN and a.e. (z,t) € RN xR, here A1 and A, are positive constants,
B : RNt xR x RN — R is also a Carathéodory function and yx is a Radon measure.

The existence and regularity theory, the Wiener criteria and Harnack inequalities, Blow-
up at a finite time associated with above parabolic quasilinear operator was studied and
developed intensely over the past 50 years, one can found in [58, 44, 30, 48, 49, 25, 50,
60, 83, 75, 73|. Moreover, we also refer to [19]-[22] for LP—gradient estimates theory in
non-smooth domains and [63] Wiener criteria for existence of large solutions of nonlinear
parabolic equations with absorption in a non-cylindrical domain.

First, we are specially interested in the existence of solutions to quasilinear parabolic
equations with absorption, source terms and data measure :

up — div(A(z, t, Vu)) + |u|? u = g, (4.1.4)
up — div(A(z, t, Vu)) = |u|? u + p (4.1.5)

in RY*L and

up — div(A(z, t, Vu)) + [u|?'u = p, uw(0) =0 (4.1.6)
up — div(A(z, t, Vu)) = |u|? u+p, uw0) =0 (4.1.7)

in RV x (0,00) or a bounded domain Q7 C RN*! where ¢ > 1 and p,o are Radon
measures.

The linear case A(x,t, Vu) = Vu was studied in detail by Fujita, Brezis and Friedman,
Baras and Pierre.

In 18], showed that if 4 = 0 and o is a Dirac mass in €, the problem (4.1.6) in Q7 (with
Dirichlet boundary condition) admits a (unique) solution if and only if ¢ < (N + 2)/N.
Then, optimal results had been considered in [5], for any u € 9Mp(Qr) and o € My(Q) :
there exists a (unique) solution of (4.1.6) in Q7 if and only if i, o are absolutely continuous
with respect to the capacity Capy; »/, Capg, P (in Qp, Q) respectively, for simplicity we
write p << Capgq, and o << CapGQ/wq/, with ¢’ is the conjugate exponent of ¢, i.e

qd = qiil. Where these two capacities will be defined in section 2.

For source case, in [6], showed that for any p € 9" (Q7) and o € 97 (Q), the problem
(4.1.7) in bounded domain Q7 has a nonnegative solution if

p(E) < CCapyy ¢(E) and o(0) < CCapg, (0)
q
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hold for every compact sets E C R¥+*1 O ¢ RN here C = C(N,diam(f2),T) is small
enough. Conversely, the existence holds then for compact subset K CC €2, one find Cx > 0
such that

p(EN (K x[0,T])) < CkxCapyy (F) and o(ONK) < CkxCapg, ,(O)
q

hold for every compact sets E ¢ RV¥*!1 O ¢ RY. In unbounded domain R" x (0, c0), in
[30] asserted that an inequality

w—Au>ulu>0 in RY x (0, 00), (4.1.8)

i. if ¢ < (N +2)/N then the only nonnegative global (in time) solution of above inequality
isu =0,
ii. if ¢ > (N +2)/N then there exists global positive solution of above inequality.

More general, see [6], for u € MT(RY x (0,00)) and o € M (RY), (4.1.7) has a nonnegative
solution in RY x (0,00) (with A(z,t, Vu) = Vu) if and only if

w(E) < CCapy, »(F) and ¢(0) < CCapy, ,(O) (4.1.9)
a

hold for every compact sets £ C RV*1 O c RN, here C = C(N,q) is small enough,
two capacities Capy, ., Capy, » Will be defined in section 2. Note that a necessary and
q

sufficient condition for (4.1.9) holding with u € 9+ (RN x (0,00))\{0} or & € MM+ (RV)\{0}
is ¢ > (N + 2)/N. In particular, (4.1.8) has a (global) positive solution if and only if ¢ >
(N+2)/N. It is known that conditions for data u, o in problems with absorption are softer
than source. Recently, in exponential case, i.e |u|?9"1u is replaced by P(u) ~ exp(a|u|?), for
a > 0 and ¢ > 1 was established in [61].

We consider (4.1.6) and (4.1.7) in Q7 with Dirichlet boundary conditions when div(A(z, ¢, Vu))
is replaced by Ayu = div(|Vu[P"2Vu) for p € (2 — 1/N,N). In [66], showed that for
any ¢ > p — 1, (4.1.6) admits a (unique renormalized) solution provided o € L'(f2) and
€ My(Qr) is diffuse measure i.e absolutely continuous with respect to Cp—parabolic
capacity in Q7 defined on a compact set K C Qp :

Cp(K, Qr) = inf {[[o][x : ¢ = X, p € CZ(Qr)},

where X = {¢ : ¢ € LP(0,T} Wol’p(Q)), @r € LP(0,7; W1 (Q))} endowed with norm
llollx = H@HLP(O,T;W(}W(Q)) + 1l 1o (0. 7107 (@)) and Xk s the characteristic function of
K. An improving result was presented in [14] for measures that have good behavior in time,
it is based on results of [16] relative to the elliptic case. That is, (4.1.6) has a (renormalized)
solution for ¢ > p—1ifo € L'(Q) and |u| < f+w®F, where f € LY (Qr), F € L} ((0,T))
and w € M (Q) is absolutely continuous with respect to Capg,, - in Q. Also, (4.1.7) has
a (renormalized) nonnegative solution if o € LE(£2), 0 < 1 < w ® X (o) With w € M (€2)
and

w(E) < C1Capg,, (E) V¥ compact E C RV, l[o]| Lo () < Co

q
q—p+1
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for some C1, C small enough. Another improving results are also stated in [15], especially
ifg>p—1,p>2 pueM(Qr) and o € M(Q) are absolutely continuous with respect to
Capy 1 in Qr and Capg, , in  then (4.1.6) has a distribution solution.

q

In [15], we also obtain the existence of solutions for porous medium equation with
absorption and data measure : for ¢ > m > %, a sufficient condition for existence

solution to the problem
ug — A(Ju™ ) + [ulTlu=p in Qp, u=0o0n 9N x (0,T), and u(0) =0 in Q.

is p << Capyyq, 0 << Capg, it m > 1 and p << Capg 2q , 0 <<
s 2 2)2(g—1)+N(1—m)
if % < m < 1. A necessary condition is y << Capy ; q

7 g—max{m,1}

Ca 2
PGy vu-m) sk
q

and 0 << Cameax{m’l}’q_maz{mAl}. Moreover, if 1 = p1 ® xpo,7] With 1 € 9(Q2) and

q
o = 0 then a condition p; << Capg, 4 is not only a sufficient but also a necessary for
Yg—m

existence of solutions to above problem.

We would like to make a brief survey of quasilinear elliptic equations with absorption,
source terms and data measure :

— Apu+ |u]T = w, (4.1.10)
—Apu = |ulT u+w,u>0 (4.1.11)

in Q with Dirichlet boundary conditions where 1 < p < N, ¢ > p — 1. In [16], we proved
that the existence solution of equation (4.1.10) holds if w € M(£2) is absolutely continuous
with respect to CapGqung . Moreover, a necessary condition for existence was also showed
in |10, 11|. For problem with source term, it was solved in [68| (also see [69]). Exactly, if
w € i)ﬁl'f(Q) has compact support in €, then a sufficient and necessary condition for the

existence of solutions of problem (4.1.11) is

w(E) < CCapg,, s . (E) for all compact set E C

q—p+

where C' is a constant only depending on N, p, ¢ and d(supp(w), 9€2). Their construction is
based upon sharp estimates of solutions of the problem

—Apu=w in€, u=0 on 9,

for nonnegative Radon measures w in {2 and a deep analysis of the Wolff potential.
Corresponding results in case that u¢ term is changed by P(u) ~ exp(au?) for a > 0, A > 0,
was given in [16, 62].

In [27], Duzaar and Mingione gave a local pointwise estimate from above of solutions
to equation

up — div(A(z, t, Vu)) = p (4.1.12)

in Q7 involving the Wolff parabolic potential Iao[|u|] defined by

Hg[\ﬂ\](az,t):/ooowm?ppwc;p for all (z,t) € RN,
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here Q,(,t) := B,(z) x (t — p?/2,t + p?/2). Specifically if u € L?(0,T; H'(Q)) N C(Qr)
is a weak solution to above equation with data u € L?(Qr), then

2l (@Qp(a, 1)) dp

u(x, t)| < C udyd5+C/
u@nl <Cf L

QR(Z',t)

(4.1.13)

for any Qag(z,t) := Bar(z) x (t — (2R)?,t) C Qr, where a constant C only depends on N
and the structure of operator A. Moreover, in this paper we show that if u > 0,u > 0 we
also have local pointwise estimate from below :

2
(y’ >C 12 Qrk/S(y>N 128Tk)) (4114)
k=0 "k

for any Q,(y,s) C Qr, see section 5, where r, = 477,

From preceding two inequalities, we obtain global pointwise estimates of solution to
(4.1.12). For example, if p € MRV with Is[|u|](zo, to) < oo for some (zg,tg) € RV
then there exists a distribution solution to (4.1.12) in R¥*! such that

—Ko[u ](z,t) < u(z,t) < Klp[pT](z,t) for ae (z,t) € RV (4.1.15)

and we emphasize that if « > 0, u > 0 then

_ 4k—T7
.Tt>K ZMQ22k3l’t 35 x 27 ))

N+1
92Nk R,

for a.e (z,t) €
k=—00

and for ¢ > 1,

l[ull o1y 2 |[L2[p]]| a1y,

Where a constant K only depends on N and the structure of operator A.

Our first aim is to verify that

i. problems (4.1.4) and (4.1.6) have solutions if y, o are absolutely continuous with respect
to the capacity Cap,; ,, Capg, o respectively,
q

ii. problems (4.1.5) in RV*! and (4.1.7) in RY x (0,00) with data signed measure u,o
admit a solution if

[u[(E) < CCapyy, (E) and [o](0) < CCapy, 4(0) (4.1.16)

hold for every compact sets E ¢ R¥+1 O c R¥. Also, the equation (4.1.7) in a boun-
ded domain Qg has a solution if (4.1.16) holds where capacities Capy 1 4, Capg, ¢
g

are exploited instead of Capy, », Capy, 4
a

It is worth mention that solutions obtained of (4.1.5) in R¥*! and (4.1.7) in R x (0, 00)
obey

/E lu|?dzdt < CCapyy, (£) for all compact E C RNH1
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and we also have an analogous estimate for a solution of (4.1.7) in Qg ;
/ lu|?dzdt < CCapy; »(FE) for all compact E C RN+
E

for some a constant C > 0.

In case u = 0, solutions (4.1.7) in RY x (0, 00) and Qr are accepted the decay estimate
1 1
—Ct 1 <infu(z,t) <supu(z,t) < Ct 1 for any t > 0.
T T

The strategy for establishment above results that is, we rely upon the combination some
techniques of quasilinear elliptic equations in two articles [16, 68| with the global pointwise
estimate (4.1.15), delicate estimates on Wolff parabolic potential and the stability theorem
see [13], Proposition 4.3.17 of this paper. They will be demonstrated in section 6.

We next are interested in global regularity of solutions to quasilinear parabolic equations
up — div (A(z,t,Vu)) =p in Qp, u=0o0n 9N x (0,7) and u(0) =0 in Q. (4.1.17)

where domain Q7 and nonlinearity A are as mentioned at the beginning.

Our aim is to achieve minimal conditions on the boundary of €2 and on nonlinearity A
so that the following statement holds

[IValllc < ClIMi[w]][xc-

Here w = [u[ +|0| ® (4—gy and M} is the first order fractional Maximal parabolic potential
defined by 3
w(Qp(z,1))

N VY (z,t) € RNTL,

M [w](z,t) = sup

p>0

, a constant C' does not depend on u and p € My(Qr), 0 € M(2) and K is a function

space. The same question is as above for the elliptic framework studied by N. C. Phuc in
[70, 71, 72].

First, we take K = LP5(Qr) for 1 < p < 6 and 0 < s < co under a capacity density
condition on the domain 2 where LP*({dr) is the Lorentz space and a constant 6 > 2
depends on the structure of this condition and of nonlinearity A. It follows the recent
result in [7], see remark 4.2.18. The capacity density condition is that, the complement
of €) satisfies uniformly 2—thick, see section 2. We remark that under this condition, the

Sobolev embedding H} () C Lre (Q) for N > 2 is valid and it is fulfilled by any domain
with Lipschitz boundary, or even of corkscrew type. This condition was used in two papers
[70, 72]. Also, it is essentially sharp for higher integrability results, presented in [41, Remark
3.3]. Furthermore, we also assert that if % <p<0,2<y<N+20<s< o and
o =0 then

Vel iominary < Ol o, s

si(v—1) (v*l)p’(wfl)s;(,yfl)p
for some a constant C where LYV P(Qp), L, 7 7 (Qr) are the Lorentz-

Morrey spaces involving "calorie" introduced in section 2. We would like to refer to [55] as
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the first paper where Lorentz-Morrey estimates for solutions of quasilinear elliptic equations
via fractional operators have been obtained.

Next, in order to obtain shaper results, we take K = L?%(Qqp, dw), the weighted Lorentz
spaces with weight in the Muckenhoupht class Ay for ¢ > 1, 0 < s < 00, we require some
stricter conditions on the domain €2 and nonlinearity A. A condition on €2 is flat enough in
the sense of Reifenberg, essentially, that at boundary point and every scale the boundary
of domain is between two hyperplanes at both sides (inside and outside) of domain by
a distance which depends on the scale. Conditions on A are that BMO type of A with
respect to the z—variable is small enough and the derivative of A(z,t,() with respect to
¢ is uniformly bounded. By choosing an appropriate weight we can establish the following
important estimates :

a. The Lorentz-Morrey estimates involving "calorie" for 0 < k < N + 2 is obtained
IVull|pgsm ) < ClIML[|w]]]| L2 (0y,)-
b. Another Lorentz-Morrey estimates is also obtained for 0 < ¢ < N

VTl g0y < ClIM ol a0

where L5 (Qr) is introduced in section 2. This estimate implies global Holder-estimate
in space variable and L?—estimate in time, that is for all ball B, C RN

1
T q 9
(/0 |oschmQu(t)|th> < Cpl_EHMl[‘WHHL‘;f(QT) provided 0 < ¥ < min{q, N}.

In particular, there hold
1
</T| <t>"dt>q <Cp ol s, +CP ]
0OSC aU Eaile) 9 a 9
o | D0 =7 prtey 0 e a0

provided

1<QISq<2a

2 — 1 2
max{q, <2+q—q>}<0§N.
q—1q¢—-1 T

9q .
Where Lﬁ+2q*q’ﬁ(9) is the standard Morrey space and

az 1

9-—N T o a2
il Lazo (@, Lo (0,1y)) = sup_p © (/ (/ \u(y,t)\qldt> dy) )
p>0,2€Q B, ()N 0

: _ Yqq
with ¢z = (94+2+q)q1—2q"

Besides, we also find

T 1
a 9
([ loscpcqutolian)” < 0l

1 .
L (9+2+q)a1 —2¢ ’19(97[/11 ((0,7)))
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provided
c=0, ¢g>2,1<q1 <q,

1 2
<2+q—q><19§N.
q—1 Q@

c. A global capacitary estimate is also given

. <fK|w|dedt>§C . <|w|<K> ))q,

compact KCRN+1 Capgl ,q (K) compact KCRNt1 Capgl ,q (K
Capg, o/ (K)>0 Capg, o (K)>0

To obtain this estimate we employ profound techniques in nonlinear potential theory, see
section 4 and Theorem 4.2.22.

We utilize some ideas (in the quasilinear elliptic framework) in articles of N.C. Phuc
[70, 72, 71| during we establish above estimates.

We would like to emphasize that above estimates is also true for solutions to equation
(4.1.17) in RY¥+! with data p (of course still true for (4.1.17) in RY x (0, 00)) with data
p provided Ip[|ul](w0,t0) < oo for some (xg,tg) € RY*! see Theorem 4.2.25 and 4.2.27.
Moreover, a global pointwise estimates of gradient of solutions is obtained when A is
independent of space variable x, that is

\Vu(z,t)| < CL[|p)](z,t) ae (z,t) € RV

see Theorem 4.2.5.

Our final aim is to obtain existence results for the quasilinear Riccati type parabolic
problems (4.1.1) where B(x,t,u, Vu) = |Vu|? for ¢ > 1. The strategy we use in order to
prove these existence results is that using Schauder Fixed Point Theorem and all above
estimates and the stability Theorem see 13|, Proposition 4.3.17 in section 3. They will
be carried out in section 9. By our methods in the paper, we can treat general equations
(4.1.1), where

|B(x,t,u, Vu)| < Crlu|®™ 4+ Co|Vu|?, q1,q2 > 1,

with constant coefficients Cy,Cy > 0.
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4.2 Main Results

Throughout the paper, we assume that € is a bounded open subset of RN, N > 2 and
T > 0. Besides, we always denote Qr = Q x (0,7), Tp = diam(Q) + T2 and Q,(x,t) =
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B,(x) x (t — p?,t) Qp(z,t) = By(z) x (t — p?/2,t + p?/2) for (x,t) € RN*! and p > 0. We
always assume that A : RV x R x RV — RY is a Caratheodory vector valued function,
i.e. A is measurable in (z,t) and continuous with respect to Vu for each fixed (z,t) and
satisfies (4.1.2) and (4.1.3). This article is divided into three parts. First part, we study
the existence problems for the quasilinear parabolic equations with absorption and source

terms
ug — div(A(z, t, Vu)) + |u|? " u = p in Qp,
u=0 on 90 x (0,7), (4.2.1)
u(0) =0 in Q,

and
uy — div(A(z, t, Vu)) = |u|? u + p in Qp,
u=0 on 90 x (0,7), (4.2.2)
u(0) =0 in Q,

where ¢ > 1, and p, 0 are Radon measures.

In order to state our results, let us introduce some definitions and notations. If D
is either a bounded domain or whole R! for I € N, we denote by (D) (resp. M,(D))
the set of Radon measure (resp. bounded Radon measures) in D. Their positive cones
are MT (D) and M, (D) respectively. For R € (0,00], we define the R—truncated Riesz
parabolic potential I, and Fractional Maximal parabolic potential M, o € (0, N + 2), on
RN*! of a measure p € M (RVFL) by

R ) X ) X
1o 0) = [ MDD 1l et) = OEEERW (12.3)

for all (z,t) in RN+ If R = oo, we drop it in expressions of (4.2.3).
We denote by H, the Heat kernel of order aw € (0, N + 2) :

X(0,00) (1) ( ||

Ha(x,t):cam exp —) for (.T,t) in RN+1,

4t

and G, the parabolic Bessel kernel of order o > 0 :

_ o Xos)® 2 Nt
Gal(z,t) _Cat(N+27a)/2 exp [ —t 1 for (z,t) in R,

see 4], where C, = ((47r)N/2F(a/2))_1. It is known that F(Ha)(x,t) = (|z|?>+it)~*/? and
F(Go)(z,t) = (1 + |x|?> +it) /2. We define the parabolic Riesz potential H, of a measure
p€ MERNF) by

Halt)(@,8) = Mok 1)@, 8) = [ Halw —y,t — s)duly.s) forany (z,) in RN+,

RN+1

the parabolic Bessel potential G, of a measure p € 9MT (RN by

Galpl(z,1) = (Ga * p)(2,1) = / Galz —y,t = s)dp(y, s) for any (x,t) in RV,

RN+1
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We also define I, G4,0 < o < N the Riesz, Bessel potential of a measure u € MM (RY)
by

Lo[p](z) = /000 WCZ) and Gq[p](z) = ox Go(z — y)du(y) for any x in RY,

where G,, is the Bessel kernel of order «, see [2].
Several different capacities will be used over the paper. For 1 < p < oo, the (H,, p)-capacity,
(Ga, p)-capacity of a Borel set £ C RY*! are defined by

Capy, ,(E) = inf { [ st € RN o f > XE} and
RN+1
Capgmp(E) = inf {/RNH |fIPdxdt : f € Lﬁ(RNH),Qa xf > XE} .
The Wp2 ’1fcapacity of compact set £ C RVT! is defined by
Capzl,p(E) = inf {‘|()0H€V3,1(RN+1) OGNS S(RNH), ¢ > 1 in a neighborhood of E} ,

where

Oy 0%
||<P||W§’1(RN+1) = |||l Lp a1y + HEHLP(RNH) + IVl p@n+1y + ij; . HMHLP(RNH)-

We remark that thanks to Richard J. Bagby’s result (see [4]) we obtain the equivalent of
capacities Capy ; ,, and Capg, ,, i.e, for any compact set K C RN+ there holds

C'_lcapz,l,p(K) < Capg, ,(K) < CCapy ,(K)

for some C' = C'(N, p), see Corollary (4.4.18) in section 4.
The (I, p)-capacity, (G4, p)-capacity of a Borel set O C R are defined by

Capy, ,(O) = inf {/ [Pz : g € L (RY), 1y % g > XO} and
RN

Capg, ,(0) =nt { [ P g € L2(),Gurg > 0.
RN

In our first three Theorems, we present global pointwise potential estimates for solutions
to quasilinear parabolic problems

up — div (A(z,t, Vu)) = p in Qr,

u=20 on 90 x (0,7), (4.2.4)
u(0) =0 in Q,
and
uy — div (A(z,t,Vu)) = pin RY x (0, 00), (4.2.5)
u(0) =0 in RV, o
and
uy — div (A(z, t, Vu)) = p in RV (4.2.6)
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Theorem 4.2.1 There exists a constant K depending on N, A1, Ao such that for any p €
My(Qr), 0 € Mp(Q) there is a distribution solution u of (4.2.4) which satisfies

~KIP[u™ + 0~ ®@0p—gy) Su< KL + 0" @ 6p—py] in Qr (4.2.7)

O for any t # 0
(N+2—a)(2]t]) " 2

with 0 < o < N 4 2. Thus, if p = 0, then we obtain the decay estimate :
Ko (Q) Kot ()

+ < inf u(z,t) <supu(x,t) < ——=~ forany 0 <t <T.
N(2t)z =€l z€Q N(2t)2

Remark 4.2.2 Since sup,cpn Ly[o @ Si—op](w,1) <

Theorem 4.2.3 There exists a constant C' depending on N, A1, Ay such that for any p €
M (1), 0 € M (Q), there is a distribution solution u of (4.2.4) satisfying for a.e (y, s) €
Qr and B, (y) C Q2

N
= Tk k=0 Tk

y, >CZ Qrk/8(y7 128rk)> CZ U®6{t 0}>(Qrk/8(y, _ 12587"’%)) (428)

where ry, = 47 Fr

Remark 4.2.4 The Theorem 4.2.3 is also true when we replace the assumption (4.1.3) by
a weaker one

(A2, 1,0),¢) = AalC]?, (Al 1,0) — Az, 8, A),{ = X) > 0
for every (A, ¢) € RN x RN, A # ¢ and a.e. (z,t) € RNV x R.
Theorem 4.2.5 Let K be the constant in Theorem 4.2.1. Let w € IMM(RNTY) such that

L[|w|](zo,t0) < oo for some (xo,t0) € RNTL. Then, there is a distribution solution u to
(4.2.6) with data p = w satisfying

—Klhjw™] <u < Klplwt] in RN (4.2.9)
such that the following statements hold.
a. Ifw >0, there exists C; = C1(N, A1, As) such that for a.e (x,t) € RNF!

o0

w(sz%fs (l‘, t — 35 % 274]677))

u(z,t) > C Y R (4.2.10)
k=—oc0
In particular, for any q > N+2
Cy Mol pa@y+ry < [ullpa@nry < Col[Halw]l| pan+1)- (4.2.11)

with CQ = CQ(N, Al,Ag).

b. If A is independent of space variable x and satisfies (4.2.27), then there ezists Cy =
C2(N, A1, A2) such that

IVu| < Coli[jw]] in RNFL. (4.2.12)
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c. Ifw=p+0®dy_g with p € MRN x (0,00)) and o € MRY), then u = 0 in
RN x (—00,0) and UlRN « [0,00) @5 @ distribution solution to (4.2.5).

Remark 4.2.6 For g > %, we alway have the following claim :

[[Ha[p + w @ dpi—oy )| Lagensry = |[Ha[p]l Lara+1y + [[T2/qlo]]| Lamn+1)

for every pu € MT(RY x (0,00)) and o € MHT(RY).

Remark 4.2.7 For w € MH(RN*) 0 < o < N + 2 if Io[w](zo,t0) < oo for some
(z0,t0) € RNTL then for any 0 < B < «a, Iglw] € L3, (RN for any 0 < s < N]j—;gﬁ'
However, for 0 < B < a < N +2, one can find w € M (RN*Y) such that 1,[w] = 0o and

I5[w] < oo in RN see Appendiz section.

The next four theorems provide the existence of solutions to quasilinear parabolic equations

with absorption and source terms. For convenience, we always denote by ¢’ the conjugate

exponent of ¢ € (1,00) i.e ¢ = qfql.

Theorem 4.2.8 Let ¢ > 1, p € Mp(Qr) and o € Myp(QL). Suppose that p, o are absolutely
continuous with respect to the capacities Capy; o, Capg, o i Qp,§) respectively. Then

there exists a distribution solution u of (4.2.1) satisfying ’
—K]IQ[,U_ +o0 ® 5{15:0}] <u< K]IQ[,LL+ + ot ® 5{t:0}] m Qrp.

Here the constant K is in Theorem 4.2.1.

Theorem 4.2.9 Let K be the constant in Theorem 4.2.1. Let ¢ > 1, p € Mp(Qr) and
o € My(QQ). There exists a constant C; = C1(N, q, A1, Ao, diam(2),T) such that if

lul(E) < C1Capyy o (E) and [o](0) < C1Capg, 4(0). (4.2.13)
q
hold for every compact sets E C RNt O ¢ RN, then the problem (4.2.2) has a distribution
solution u satisfying

Kq
qg—1

L[p™ + 0~ @dp—n) <u< qfiqlﬂz W+ 0" ® 0] in Q. (4.2.14)
Besides, for every compact set E C RNTL there holds

/E lu|?dzdt < CoCapy ;o (F) (4.2.15)
where Cy = Co(N, q, A1, A2, Tp).

- N+2
Remark 4.2.10 From (4.2.15) we get if ¢ > ==,

/C~2 » lu|tdzdt < CpNT220 for any Q,(y,s) c RVTL
P Y,s
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- N+2
if g = 232,

/ |u|Ydxdt < C(log(l/p))fﬁ for any Q,(y,s) CRVNTL 0 < p<1/2
Qo(yss)

for some C = C(N,q,A1,A2,Ty), see Remark 4.4.14.

Remark 4.2.11 In the sub-critical case 1 < ¢ < %, since the capacity Capy 1 o, Capg, o
q

of a single are positive thus the conditions (4.2.13) hold for some constant C1 > 0 provided

w € My(Qr), 0 € Mp(L). Moreover, in the super-critical case q > %, we have

24’ 2
Capy 1 o (E) > c1|E]'" 2 and Capg, ,(0) > |0 @ %
q

(a—=1)N

N2
for every Borel sets E C RNt O C RN, thus if p € L2 " (Qg) and o € L™ 2 >°(Q)
then (4.2.13) holds for some constant Cy > 0. In addition, if p =0, then (4.2.14) implies
forany 0 <t < T,

1 1
—c3(Tp)t a1 < inf u(z,t) < supu(x,t) < c3(To)t a1,
zeQ €

since |o|(By(x)) < 04(To)pN7q%1 forallz € RN, 0 < p < 2Tp.

Theorem 4.2.12 Let K be the constant in Theorem 4.2.1 and q > 1. If w € MRN*1)
is absolutely continuous with respect to the capacity Capy; o in RN*L then there exists a

(R; WET(RNY) for any 1 <~ < ;qu to problem

distribution solution u € L7 o

loc
up — div (A(z,t, V) + u|?u = w in RV (4.2.16)

which satisfies
—Khw™] <u < Kl[w"] in RV (4.2.17)

Furthermore, when w = pu+ 0 ® Sg_gy with p € MRY x (0,00)), o € MRY) then u =0
in RY x (—00,0) and U/‘RNX[O’OO) 15 a distribution solution to problem

(4.2.18)

ug — div (A(x,t, V) + [ul? u = pin RY x (0, 00),
u(0) =0 in RN,

Remark 4.2.13 The measure w = p+ 0 ® dyy—qy is absolutely continuous with respect to
the capacity Capy; o in RN*L 4f and only if p, o are absolutely continuous with respect to
the capacities Capy 1 o, Capg, o in RN+ RN respectively.

a

Existence result of the problem (4.2.2) on RV*! or on RY x (0, 00) is similar to Theorem
4.2.9 presented in the following Theorem, where the capacities Capy, ,, Capy, , are used
q

in place of respectively Capy ; 4/, Capg, -
q
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Theorem 4.2.14 Let K be the constant in Theorem 4.2.1 and q > %, w € M(RNFL),
There exists a constant C; = C1(N, q, A1, A2) such that if

lw|(E) < C1Capy, o (E) (4.2.19)
for every compact set E C RNTL then the problem
up — div (A(z, t, V) = [u|? u + w in RV (4.2.20)

has a distribution solution u € L]

loc loc

(R; Wl"y(RN)) forany 1<~y < quql satisfying

Kq Ihw ] <u< K

: 1H2[w+] in RNVTL (4.2.21)
q- q-

Moreover, when w = p+ 0 ® dr4—gy with p € MRY x (0,00)), 0 € MRY) then u =0 in
RN x (—00,0) and UlpN y[0,00) @8 @ distribution solution to problem

ug — div (A(x,t, V) = [ul7 u + poin RY x (0, 00),
{ u(0) =0 in RN, (4.2.22)
In addition, for any compact set E C RN*L there holds
/ lu|?dzdt < CoCapyy, o (E) (4.2.23)
E

for some Cy = C2(N,q, A1, A9).
Remark 4.2.15 The measure w = 1+ 0 @ dgy—qy satisfies (4.2.19) if and only if
\u|(E) < CCapyy, o (E) and |o](0) < CCapy, 4(0).
q

for every compact sets E C RNt and O ¢ RN, where C = C3Cy, C3 = C3(N, q).

N2
Remark 4.2.16 If w € L2 °(RN*1) then (4.2.19) holds for some constant C; > 0.
Moreover, if w = 0®6—qy witho € M, (RY), then from (4.2.21) we get the decay estimate :

1 1
—cit a1 < inf wu(z,t) < sup u(z,t) < eyt a1 for any t >0,
zERN reRN

. N—L N
since |o|(Bp(x)) < cap” a1 for any B,(z) C RY.

Second part, we establish global regularity in weighted-Lorentz and Lorentz-Morrey
on gradient of solutions to problem (4.2.4). For this purpose, we need a capacity density
condition imposed on 2. That is, the complement of Q satisfies uniformly p-thick with
constants cg, g, i.e, for all 0 < r < rg and all x € RN\Q there holds

Cap,(B,(z) N (RM\Q), By, (2)) > coCap, (B (z), Bar(z)) (4.2.24)
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where the involved capacity of a compact set K C Ba,(x) is given as follows

Ba, ()

Cap, (K, Bar(r)) = inf {/ [VolPdy : ¢ € C°(Bar(x)), ¢ > XK} . (4.2.25)

In order to obtain better regularity we need a stricter condition on 2 which is expressed
in the following way. We say that Q is a (0, Ry)—Reifenberg flat domain for § € (0, 1) and
Ry > 0if for every xp € 9Q and every r € (0, Ro|, there exists a system of coordinates
{z1, 22, .., zn.}, which may depend on r and x¢, so that in this coordinate system z¢ = 0
and that

B, (0) N {zy, > 0r} C B(0)NQ C B (0) N {z, > —or}. (4.2.26)

We remark that this class of flat domains is rather wide since it includes C', Lipschitz
domains with sufficiently small Lipschitz constants and fractal domains. Besides, it has
many important roles in the theory of minimal surfaces and free boundary problems, this
class was first appeared in a work of Reifenberg (see [74]) in the context of a Plateau
problem. Its properties can be found in [37, 38, 78§|.

On the other hand, it is well-known that in general, conditions (4.1.2) and (4.1.3) on
the nonlinearity A(z,t,() are not enough to ensure higher integral of gradient of solutions
to problem (4.2.4), we need to assume that A satisfies

(Ac(z,1,0)€,6) = Mal€?,  |Ac(w,t,Q) < Ay (4.2.27)

for every (£,¢) € RY x RN¥\{(0,0)} and a.e (z,t) € RY x R, where A1, Ay are constants in
(4.1.2) and (4.1.3). We also require that the nonlinearity A satisfies a smallness condition
of BMO type in the z-variable. We say that A(z,t,() satisfies a (J, Rg)-BMO condition for
some 9§, Ry > 0 with exponent s > 0 if

s

[A]Fo .= sup (é( )(@(A,Br(y))(x,t))sdxdt> <94,

(y,5)eRN xR,0<r<Rg

where

OA, B, (), t) = sup 1O~ AB)(EC)
CERN\{0} [q

and Ap (,)(t,¢) is denoted the average of A(t,.,() over the cylinder B,(y), i.e,

1
1B ()| /B, ()

ZBT(y)(t,C) = ]i o Az, t,¢)dx = A(z,t,¢)dx.

The above condition was appeared in [21]. It is easy to see that the (d, Ry)—BMO
condition on A is satisfied when A is continuous or has small jump discontinuities with
respect to x.

In this paper, M denotes the Hardy-Littlewood maximal function defined for each
locally integrable function f in RN*! by

M) t) = sup |

p>0 Qﬂ ($,t)

£ (y, 8)|dyds V(x,t) € RN
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We verify that M is bounded operator from L'(RN*1) to L1°(RN*1) and L*(RN+)
(L*°°(RN+1)) to itself for s > 1, see [76, 77].

We recall that a positive function w € Ll (RN*1) is called an A if there are two
positive constants C' and v such that

= () wo

for all cylinder Q = Qp(az,t) and all measurable subsets E of Q). The pair (C,v) is called
the Ao constant of w and is denoted by [w]a_,

For a weight function w € A, the weighted Lorentz spaces L?*(D, dw) with 0 < g <
00, 0 < 5 < 0o and a Borel set D C RV*! is the set of measurable functions g on D such
that

s 1/8
(qfo (p?w ({(z,t) € D :|g(z,t)] > p}))a %) < oo if s < o0,

HQHLQ»S(D,dw) = 1/
sup,~o pw ({(z,t) € D« |g(z,1)] > p}) /T < oo if s=o0.

Here we write w(E) = [, w(x, t)dzdt for a measurable set E C RN*T!. Obviously, ||g|| a.q(p.aw) =
91| La(D,dw)> thus we have L% q(D dw) = LY(D, dw). As usual, when w = 1 we simply erte
L%*(D) instead of L?*(D,dw).

We now state the next results of the paper.

Theorem 4.2.17 Let p € IMy(Qr), 0 € My(Q), set w = |u| + |o| @ dy—oy. There exists
a distribution solution of (4.2.4) with data p and o such that if RN\Q satisfies uniformly
2—thick with constants co,rqg then for any 1 <p < @ and 0 < s < oo,

IIM(|Vul)|| s (7)) < CrlIMa[w]||pe.s(q)- (4.2.28)

Heref = H(N, A1, Al, Co) > 2 and Cl = Cl(N, Al, AQ,p, S, Co, T()/T’()) and Q = Bdiam(ﬂ) (.130) X
(0,T) which 2 C Bgigm()(To)-
Especially, when 1 < p < 2, then

[IM([Vul)[|ze@r) < Co (Hgl[WHHLP(RMl) + ”G§—1[|‘7HHLP(RN)> ’ (4.2.29)
where Cy = C'Q(N, A17A27Pa COaTO/TO)-

Remark 4.2.18 If {42 < p < 2, there hold

Hgl[‘ﬂ‘]HLP(RNH)SCIHUHL%(QT) and [|Gz_y[lollllzr@y) < Culloll ey @)

for some C1, = C1(N,p). From (4.2.29) we obtain

. N +2
\Y < C C ded
IVulllLr @) < 2\|M|1L%(Qﬂ+ QHUHL%(Q) provided o —

We should mention that if o =0, then

|[Mi [w]l] os mvi1y < Callp]] qavs2)
L N+2+qg° (QT)

and we get [7, Theorem 1.2 from estimate (4.2.28).
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In order to state the next results, we need to introduce Lorentz-Morrey spaces L¥%? (D)
involving "calorie" with a Borel set D € RVT! is the set of measurable functions g on D
such that

K=N—-2

gl D) = sup P gllLasa < o0,
T 0<p<diam(D),(z,t)eD L3(Qp(x,t)ND)

where 0 < k < N+2,0< g < 00, 0< s < oco. Clearly, LZ’S;NH(D) = L%%(D). Moreover,
when ¢ = s the space L¥*(D) will be denoted by LI (D).
The following theorem provides an estimate on gradient in Lorentz-Morrey spaces.

Theorem 4.2.19 Let i € IMy(Qr), 0 € M(Q), set w = [u| + |o| @ dyy—gy. There exists
a distribution solution of (4.2.4) with data p and o such that if RN\Q satisfies uniformly
2—thick with constants cg,ro then for any 1 <p <@ and 0 < s <00, 2 —y <y < N + 2,
v< NE2 4

— p 9

MV [y, < CrlIM ]l e

p(y—1)—N-2

+ Cy sup (R P M [x 5 s \W (5 s ) . (4.2.30)
0<R<To (50,50) € [IML [ QRr(yo,50) mL” (Qr(yo,50))

Here 6 is in Theorem 4.2.17, o = ~vo(IN, A1, A1, c0) € (0,1/2] and Cy = C1(N, A1, Ao, p, s,7,
CO)TO/TO); 02 - 02(N7A17A27p75)7760)' Besides, Zf 11 < p < 97 2 — 7 < Y < N+ 2;

(=Dp (v=1)s,

) ) -1
0<s<ooandpu € L, " 7 )p(
solution satisfied

v

Qr), o = 0, then w is a unique renormalized

S (4.2.31)

[IML([Vul) ||, psicv-1) < Gsllpll =1p G-vs.
2s0=0r L:'V e (-Ds, @)

where C3 = C3(N, A1, A2, p, s,7,co,To/T0).

Theorem 4.2.20 Suppose that A satisfies (4.2.27). Let p € Mp(Qr), o € M(Q), set
w = |p| + |o| @ dgy—oy- There exists a distribution solution of (4.2.4) with data p,o
such that the following holds. For any w € Ay, 1 < ¢ < 00, 0 < s < o0 we find
d =0(N,A1,A2,q,s,[w]a,) € (0,1) and so = so(N,A1,Aa2) > 0 such that if Q is (3, Ro)-
Reifenberg flat domain  and [A]EOO < § for some Ry then

IIM(IVu)||Las (@ dw) < ClIM W] Las (@, du)- (4.2.32)

Here C' depends on N,A1,A2,q,s,[w]a,, and To/Ryp.

oo

Next results are actually consequences of Theorem 4.2.20. For our purpose, we introduce
another Lorentz-Morrey spaces Lif;g(Ol x O3), is the set of measurable functions g on
071 x Og such that

9—N
l1g]] a0 = sup P 7 |lgllLas (B, @)n01)x0,)) < 0
LL5Y(01x02) 0<p<diam(O1),0€0: 25 ((Bp(x)NO1)x02)) ’
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where O1, Oy are Borel sets in RV and R respectively, 0 < 9 < N, 0 < ¢ < 00, 0 < s < 00.
Obviously, LLN (D) = L%%(D). For simplicity of notation, we write L%’ (D) instead of
Lgf;ﬂ(D) when g = s. Moreover,

HgHLg;“I;ﬂ(leoz) = HGHLQ§79(01)7

where G(z) = ||g(,.)||Ls(0,) and L%Y(0y) is the usual Morrey space, i.e the spaces of all
measurable functions f on O; with

o-N
[ fllLaso o) = sup p e N fllLas,ynoy) < oo
0<p<diam(O1),y€0

Theorem 4.2.21 Suppose that A satisfies (4.2.27). Let p € Mp(Qr), o € M(Q), set
w = |p| + o] @ dy—oy- Let so be in Theorem 4.2.20. There exists a distribution solution of
(4.2.4) with data p,o such that the following holds.

a. Foranyl <g<oo,0<s<ooand0 <k <N+2we findd=0N,A1,A2,q,8,K) €
(0,1) such that if Q is (d, Ro)-Reifenberg flat domain Q and [A]g)o < ¢ for some Ry
then

[IM(IVul)l[ 2@y < CrlIMaflwl]||Les=(@y)- (4.2.33)

Here Cy depends on N, A1, A2, q, s,k and Ty/Ry.

b. Foranyl<qg<o0,0<s<o0and0 <9 <N we findd =0(N,A1,A2,q,s,9) € (0,1)
such that if Q is (0, Ry)-Reifenberg flat domain  and [A]foo < for some Ry then

||M(]Vul) < Cy||My [Jwl] (4.2.34)

HLif‘“(QT) HLZf;ﬁ(QT)'

for some Coy = Co(N, A1, Ao, q,s,9,To/Ro). Especially, when ¢ = s and 0 < 9 <
min{N, ¢}, there holds for any ball B, C RY

1
T q 9
1-9
([ tosen,cautviiar) < Cop'F il o o, (42.35)
fOT’ some 03 = 03(N7 Ala A27 q, 197 TO/RO)
The following global capacitary estimates on gradient.

Theorem 4.2.22 Suppose that A satisfies (4.2.27). Let p € Mp(Qr), o € M(Q), set
w = |u| + |o| ® dg—gy- Let so be in Theorem 4.2.20. There exists a distribution solution
of (4.2.4) with data p,o such that following holds. For any 1 < q < oo, we find 6 =
§(N,A1,A2,q) € (0,1) such that if  is a (6, Ro)- Reifenberg flat domain and [AJf0 < 6
for some Ry then

Vul|ldzd w q
sup <meQT| | t> <0 sup <(IQIQ> , (4.2.36)

compact KCRN+1 Capgl ,q (K) compact KCRN+1 Capghql (
Capgl’q/(K)>0 Capglyq/(K)>O
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: N+2
andzfq>N7L,

s (meQT |Vu‘qd$dt) <Oy sup <W(K)K)>q (4.2.37)

compact KCRN+1 Oap?‘h 9 (K) compact KCRN+1 Oap?—ll ,q’ (
Cale’q/(K)>0 Caleyq/(K)>0

Where C1 = C1(N, A1, A2, q,To/Ro, To) and Co = Ca(N, A1, A2, q,To/Ro).

Remark 4.2.23 We have if 1 < q < 2, then

| ® dpp K 0
o sup <(’ | 9= )> < sup __1elo)
compact KCRN+1 C(lpgl ,q (K) compact OCRN Cap(;z L (O)
Capg, o (K)>0 Capczilyq, (0)>0 q
a

< sup <

compact KCRN+1
Capg, o (K)>0

(lo|® 5{t=o})(K)>
Capg, o (K)

for C=C(N,q), if %—ﬁ < ¢ < 2, then above estimate is true when two capacities Capg, o,

,Capg g are replaced by Capy, o ,Capy, o respectively, see Remark 4.4.34.
q- q-

Remark 4.2.24 Above results also hold when [A]Fo is replaced by {A}Fo -

S

|

(y,5)eRN xR,0<r<Ry

{A}Y o .= sup (72 ( )(@(A, Qr(y,9))(x,1))* d:pdt> <9

where

O(A, Qr(y,9))(z,t) == sup Az, 8, Q) = AQ, (4,5 ()]
CERN\{0} 1q

and ZQT(%S)(C) is denoted the average of A(.,.,() over the cylinder Q,(y, s), i.e,

ZQ?"(%S) (() = ][ A(l‘, t C)dwdt = A(J?, t, C)dl‘dt

Qr(y,s) ’QT (y7 3)‘ Qr(y,s)

Next results are corresponding estimates of gradient for domain RY x (0,00) or whole
RN—H.

Theorem 4.2.25 Let § € (2, N+2) be in Theorem 4.2.17 and w € MRV, There exists

a distribution solution u of (4.2.6) with data pn = w such that the following statements hold

a. Forany%—ﬁ<p<9and0<5§oo,

170l rov1y < CrllMa ]| e vy, (1.2.39)

for some C1 = C1(N, A1, A2, p, s).
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b. Forany%i%<p<t9and0<s§oo,2—’yg<’y<]\7+2 and’yﬁ%—{—l,

IVulll ppsint-0 gaviay < Col My [|w]][] oo vy

p(y—1)—N-2
¢ R |Mafxg & . (4.2.39
+ 2R>07(y:715156RN+1 < v M1 X6, (50,50) [l o (QR(yoyso))) ( )

provided Iz[|w|](z0,t0) < oo for some (wg,tp) € RVFL.

= 1)P7(’Y 1)5( —1)p
Also, if w € Ly v (RN*1Y with p > 17 then

|||V’LL| | ‘Lza3§("/—1)P(RN+1) < C3||w| ‘L*(W—WUP’ (’ijl)s ;(W_UP(]RN*l)’ (4240)

Jor some 70 = 70(N, A1, As) € (0, 3] and C; = Ci(N, A1, Ao, p,s,7), i = 2,3.

c. The statement ¢ in Theorem 4.2.5 is true.

Remark 4.2.26 Let s > 1. For w € MH RV Tj[w] € L5 (RN implies To[|w|] < oo
a.e in RN*L if and only if s < N + 2.

Theorem 4.2.27 Suppose that A satisfies (4.2.27). Let so be in Theorem 4.2.20. Let w €
IM(RNHL) with Ta[|w|] (w0, to) < oo for some (xo,to) € RNTL. There ewists a distribution
solution of (4.2.6) with data u = w such that following statements hold,

a. Foranyw € As, 1 < qg<o00,0< s < oo we findd=035N,A,ANo,q,s,[wla,) € (0,1)
such that if [A]3 < 0 then

70l e 1y < CallM ol s v (12.41)

Here Cy depends on N, A1, Ao, q, s, [w]a, .

b. ForanyNi2 <q<00,0<s<00and0 <k < N+2we findd=05N,A1,A2,q,5,K) €
(0,1) such that if [A]3S < 6 then

IVulllpgsn@a+ay < Cof IMu[[wl]f o @av+1)- (4.2.42)

Here Cy depends on N, A1, Ao, q, s, K.

c. ForanyN+2<q<oo 0<s<ooand0 <9 <N onefind§=035N,A,ANo,q,s,0) €
(0,1) such that if [A]3S < 0 then

H’vungf;ﬁ(RNH) < 03‘|M1[|WHHLgfﬂ9(RN+1)~ (4.2.43)

Here C3 depends on N, A1, A2, q,s,9. Especially, when ¢ = s and 0 < ¥ < min{N, ¢},
there holds for any ball B, C RN

1
q _9
</R loschu(t)|th> < Cyp' HM1[|WHHLZ:9(RN+1). (4.2.44)
for some Cy = Cy(N, A1, A2, q, 7).
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d. For any %i? < q < o0, one find 6 = 6(N, A1, A2, q) € (0,1) such that if [A]5y < & then

sup (W“"dm)gcs sup ('“'(%)q (42.45)

compact KCRN+1 C’ale 9 (K) compact KCRN+1 Cap'?-h .q (
Cale’q/(K)>O Cale’q/(K)>0

for some C5 = C5(N, A1, A, q).

e. The statement c in Theorem 4.2.5 is true.

The following some estimates for norms of M [w] in LE*(RV+1) and LI (RV+1)

Proposition 4.2.28 Let 1 < Kk < N+2,0< 9 < N and q,q1 > 1. Suppose that p €
M+ (RNHL). Then My [1] < 2N*214 [u] and

a. If ¢ > 5 then
[T [p]
Here Cy depends on N, q, k
b. If1 < q <2 then

aim(gN+1) < C1||u||Lq_~_P€ (]RN-H)' (4.2.46)

Il (Ml pagry < X2y [m](2) (4.2.47)

where py is a nonnegative radon measure in RN defined by pi1(A) = p(A x R) for
every Borel set A C RN . In particular,

0l g vy < 2 il e (12.45)

and if 9 > % there holds

H]Il[ ]HL‘I 19(]RN+1) < C2HM1HL19+2 x (]RN) (4'2'49)
for some Co = Co(N, q, ).
c. Ifq%r—q2<q1 < q then
T lpe) (2, Mlzay < Tz 2 [n2]() (4.2.50)
where duz(z) = ||p(z, .)|| L (rydw. In particular,
sl vy < s 2 ol e (1251)
and if 9 > 1 (2 +q— —) there holds
(ol oo aveny < Csllpall  vae 0 =Csllpll _ veey
o L (0+2+a)a1-24"(RN) L (0+2+q)q1 —2q° (RN L9 (R))
(4.2.52)

for some C5 = C3(N, q, ).
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The proof of Proposition 4.2.28 will performed at the end of section 8.

Remark 4.2.29 Let 1 <q¢<2,0<9 <N and o € MRYN). From (4.2.48) and (4.2.49)
in Proposition 4.2.28 we assert that

Miflo] @ Sg=opll o0 @y < [X2_yllof]l] Lo @),

and

: 2—q
Liflo| ® 5{t:0}]||L;1;19(RN+1) < CIHUHLﬁjQ{q;ﬁ(RN) if 0> ﬁ,

for some C1 = C1(N,q,9).
Furthermore, from preceding inequality and (4.2.52) in Proposition 4.2.28 we can state that

I Sgi— : <C C ,
[Tl @O0y + mHHLZ’*ﬂ(RN“) - 2HUHL#zq—qﬁ(RN) " 2|"u’|L4(19+2i($}314—2q;ﬂ(RN,LfH(R))

provided
I<qp <qg<2
max{2_(]71 <2+q—2q>} <U¥ <N,
g—1 g—1 an
for some Cy = C3(N,q,9). Where
2

1

9—N a q2

lell ooy @y = swp o (/ ([ o dy) |
p>0,2€RN B,(x) R

; — Yqq1
with qo = g i7"

Final part, we prove the existence solutions for the quasilinear Riccati type parabolic
problems
u — div(A(z,t,Vu)) = |Vul|?+ p  in Qp,
u=0 on 02 x (0,7), (4.2.53)
u(0) =0 in Q,

and
uy — div (A(x,t, Vu)) = |Vul|? + @ in RN x (0, 00),
{ u(0) =0 in RN, (4.2.54)
and
uy — div (A(z,t, Vu)) = |Vul|? + pin RVTL (4.2.55)
where ¢ > 1.

The following result is considered in subcritical case this means 1 < ¢ < %—ﬁ, to obtain

existence solutions in this case we need data u, o to be finite measures and small enough.
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Theorem 4.2.30 Let 1 < q < %—ﬁ and p € My(Qr), o € My(Q). There exists eg =

eo(N, A1, A2, q) > 0 such that if

Q7] 7R (|ul(Qr) + w](©) < <o,
the problem (4.2.53) has a distribution solution u, satisfied

IIValll 2, < C(|pl(Qr) + |w](€2))

“(Qr)
for some C = C(N,A1,A2,q) > 0.
In the next results are concerned in critical and supercritical case.

Theorem 4.2.31 Suppose that RN\Q satisfies uniformly 2—thick with constants cg,7o.
Let 0 be in Theorem 4.2.17, q € (N+2 N+2+9>, w € My(Qr) and o € My(Q). Assume

N+1> N+42

that 0 = 0 when q > %—ié‘. There exists g = e0(N, A1, A2, q, co, To/T0) > 0 such that if

[Tl L2y @100 vy + |1 “illollllpaveaa-n @y < o,

2
(N+2)(q—1)

then the problem (4.2.53) has a distribution solution u satisfying

IVl pa-vava.e @z < Ol ]Il Lov+2a-0.00 @41y +C| [T oIl Lov+2-n
(Qr) ( ) (RY)

(4.2.56)

ey o=yl
for some C = C(N, A1, A2, q,c0,To/r0).

We remark that a necessary condition for existence o € My (2)\{0} with My [|o| ®dg—gy] €

L(N+2)(q—1),oo(RN+1) ig V42 <g< N+4

N+1 N+2-°

Theorem 4.2.32 Suppose that A satisfies (4.2.27). Let sg be the constant in Theorem
4.2.20. Let ¢ > %—ﬁ and p € My(Qr), 0 € M(Q2), set w = [u| + 0| ® dyy—gy. There exists
0 =0(N,A1,A2,q) € (0,1) such that Q is (d, Ry)-Reifenberg flat domain Q and [A]g)o <4
for some Ry and the following holds. The problem (4.2.53) has a distribution solution u if
one of the following three cases is true :

Case a. A is a linear operator and
w(K) < C1Capg, (K)  for every compact subset K C RVH1 (4.2.57)

with a constant C1 small enough.

Case b. there holds

w(K) < CoCapg, g1y (K)  for every compact subset K C RNH1 (4.2.58)
where € > 0 and Cy is a constant small enough.
q > ﬁ |
q> NL if 0=0,

Case c.
||H1HHH|‘L(N+2)(q71),oo(RN+1)a ||I<N+2§w*1[|0|]HL(NH)(‘FI)(RN)

1s small enough.
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A solution u corresponds to Case a, b and c satisfying

/ |Vu|ldzdt < C3CY Capg, ,(K)  for every compact subset K C RNFL
K

/ \Vu|Tedzdt < C,CYT° Capg, (g+ey (K)  for every compact subset K C RN+
K
and

|||Vu] | |L(N+2)(q—1),oo(QT)

< Cs|M[lpllll pov+2ra-1.00 @1y + Cs| [T —allollllzovee-n @),

2
(N+2)(q—1

respectively. Where Cs,Cy,C5 are constants depended on N, Ay, Ao, q,e,Ty/ Ry, besides
C3,Cy also depend on Tj.

Since Capg, s(B(0) x {t = 0}) = 0 for all » > 0 and 0 < s < 2, see Remark 4.4.13 thus
if there is 0 € My(Q)\{0} satisfying (|o| ® dy—0y)(E) < Capg, ((E) for every compact
subsets F C RN+ then we must have s > 2.

The above results are not sharp in the case A is a nonlinear operator. However, if A is
Holder continuous with respect to x we can prove that problem (4.2.53) has a distribution
solution with data having compact support in Q7.

Theorem 4.2.33 Let Q be a bounded open subset in RN such that the boundary of Q is
in CY8 with B € (0,1). Suppose that A satisfies (4.2.27) and

|A(z,1,¢) — Ay, t,¢)| < Aslz — y|?|¢| (4.2.59)

for every z,y € Q andt > 0, € RN, Let Q' cC Q and set d = dist(,Q) > 0. Then, there
exist C = C(N,q,A1,Aa2,A3,5,d,Q2,T) >0 and A = A(N,q,A1,A2, A3, 8,d,Q,T) > 0 such
that for any pu € Mp(Qr), o € M(Q) with supp(pu) C Q' x[0,T], supp(o) C ', the problem
(4.2.53) has a distribution solution u, satisfying

(Vu(z,t)] < Ali[|u] + |o| @ 0y—y](2,t) a.e (x,t) € Qr (4.2.60)

provided that one of the following two cases is true :

Case a. 1 <g<2 and

lu|(E) < CCapg, ,(E) and |o|(O) < C’C’asz_lyq/(O) (4.2.61)
q
for all compact subsets E C RNt and O c RN.
Case b. ¢ > 2 and 0 =0,
lul(E) < CCapg, ,(F) (4.2.62)

for all compact subsets E C RNTL,
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Remark 4.2.34 If q > %—ﬁ, w =0 and Case a is satisfied then (4.2.60) gives the decay
esttmate : )

sup |Vu(z,t)| < et 26D VO<t<T,

€

. N72;q N
since |o|(By(x)) < ca(Tp)p a1 for any B,y(x) C R™Y.
We have an important Proposition.

Proposition 4.2.35 All the existence results considered the bounded domain Qr have re-
cently been presented in above Theorems, if o € L'(Q) then the solutions obtained in those
Theorems are renormalized solutions.

Theorem 4.2.36 Let 6 € (2,N +2) be in Theorem 4.2.17, q € (%g NA+U2$9) and w €
IMM(RNHL) . There exists C1 = C1(N, A1, Ag, q) > 0 such that if

HHI “WH ’ ‘L(N+2)(Q—1),OO(RN+1) <™y

then the problem (4.2.55) has a distribution solution u € L}, (R; WELRYN)Y) such that

loc

V|| pa-vve2.co @veny < Cof[IufJw[]l| Lovear-1).00 ma+1y (4.2.63)

for some Cy = C2(N, A1, Mg, q). Furthermore, when w = p1+ 0 ® dgy—gy with p € M(RN x
(0,00)) and o € MRY) then u = 0 in RN x (—o0,0) and UlpN «[0,00) @5 @ distribution
solution to problem (4.2.54).

Theorem 4.2.37 Suppose that A satisfies (4.2.27). Let ¢ > %i? and w € M(RYFL) such

that Ta[|w|] (w0, to) < oo for some (wg,tg) € RNFL. Let sq be the constant in Theorem 4.2.20,
§ in Theorem 4.2.82. There exists C1 = C1(N, A1, Aa, q) > 0 such that if [A]3) <6 and

L[]l v 260100 @41y < C (4.2.64)

then the problem (4.2.55) has a distribution solution w satisfying (4.2.63). Furthermore,
when w = p+ 0 ® ooy with p € M(RY x (0,00)) and 0 € MRYN) then u = 0 in
RN x (—00,0) and Ulpn «[0,00) B8 @ distribution solution to problem (4.2.54).

From Remark 4.2.26, we see that if ¢ < 2 then (4.2.64) follows the assumption Is[|w]|](x0, tg) <
oo for some (zq,tp) € RN*TL

When A is independent of space variable, we can improve the result of Theorem 4.2.37
as follows :

Theorem 4.2.38 Suppose that A is independent of space variable and satisfies (4.2.27).

Let q > %i% and w € MRV, Assume that Iz[|w|] (w0, to) < oo for some (wg,tg) € RVHL.

There exist constants A = A(N, A1, Aa,q) and C = C(N, A1, Aa, q) such that the problem

— div (A(t, Vu)) = |Vul|? + w in RNT! (4.2.65)
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has a distribution solution u, satisfying
\Vu| < Alj[w] in RVTL (4.2.66)
provided that for all compact subset E C RN*1
lw|(E) < CCapy, o (E). (4.2.67)

Furthermore, when w = p1+ 0 ® 04—y with p € M(RY x (0,00)) and o € M(RY) then

u=0 in RN x (—00,0) and UlpN «[0,00) B8 @ distribution solution to problem

— = q } N
{ut div (A(t, Vu)) = [Vul? + p in RN x (0,00), (4.2.68)

uw(0) =0 in RY,

Remark 4.2.39 If %—ﬁ <q<2,w=p+0®dy—gy satisfies (4.2.67) if and only if

(0) (4.2.69)

lu|(E) < C'CCapyy, (E) and |o](0) < C'/C'C'aplz_lyq
q

for all compact subsets E C RN and O C RN, where ' = C'(N, q).
Remark 4.2.40 Ifw = 0 ® djy—g) then (4.2.66) follows the decay estimate :

1
sup |[Vu(z,t)] < et @D V0O<t<T,
zeRN

. ]\/'—ﬂ N
since |o|(Bp(x)) < cap” 971 for any B,(z) C RY.

4.3 The notion of solutions and some properties

Although the notion of renormalized solutions becomes more and more familiar in
the theory of quasilinear parabolic equations with measure data, it is still necessary to
present below some main aspects concerning this notion. Let 2 be a bounded domain
in RV, (a,b) cC R. If u € M(Q x (a,b)), we denote by p™ and p~ respectively its
positive and negative part. We denote by 9ty (2 x (a, b)) the space of measures in Q x (a,b)
which are absolutely continuous with respect to the Cs-capacity defined on a compact set
K C Qx (a,b) by

Co(K,Q x (a,b)) =inf {||¢|lw : ¢ > xx,p € CZ(Q2 % (a,b))}. (4.3.1)

where W = {z : z € L*(a,b, H}(Q)), 2 € L*(a,b, H}(Q))} endowed with norm ||p||w =
el L2 (a,,m13 () T 19t 20 b, 1r-1(0)) and Xk is the characteristic function of K.

We also denote M5 (2 (a, b)) the space of measures in Q2 x (a, b) with support on a set of
zero Cy-capacity. Classically, any p € 0,(£2 X (a, b)) can be written in a unique way under
the form p = po + ps where pg € Mo(2 x (a,b)) NML(2 x (a,b)) and pus € M(Q x (a,b)).
We recall that any pg € 9Mo(2 x (a, b)) NME(2 X (a,b)) can be decomposed under the form
po = f—divg+hy where f € LY (Q x (a,b)), g € L*(Qx (a,b),RY) and h € L?(a,b, H}(2))
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and (f,g,h) is said to be decomposition of ug. Set 19 = po — he = f — divg. In the general
case [1g ¢ M(Q x (a,b)), but we write, for convenience,

/ wdpg = / (fw+ g.Vw)dxdt, Vw € L*(a,b, HY(Q2))NL>®(Q x (a,b)).
Qx(a,b) Qx(a,b)

However, for o € My(£2) and tg € (a,b) then 0 ® dy—yyy € Mo(Q2 x (a,b)) if and only
if o € L'(), see [26]. We also have that for o € 9(Q), 0 ® x[q.p) € Mo(Q2 X (a, b)) if and
only if o is absolutely continuous with respect to the Capg, o-capacity, see [26].

For £k > 0 and s € R we set Ti(s) = max{min{s, k}, —k}. We recall that if u is a
measurable function defined and finite a.e. in Q x (a, ), such that Ty (u) € L*(a,b, H}(2))
for any k > 0, there exists a measurable function v : Q x (a,b) — RY such that VT (u) =
X|u|<kV a-e. in £ x (a,b) and for all £ > 0. We define the gradient Vu of u by v = Vu.
We recall the definition of a renormalized solution given in [65].

Definition 4.3.1 Suppose that B € C(R x RN, R). Let p = po + s € Mp(Q x (a, b)) and
o € LY(Q). A measurable function u is a renormalized solution of

u=20 on 092 x (a,b), (4.3.2)

up — div(A(z,t,Vu)) = B(u, Vu) + p in Q x (a,b),
u(a) =0 in Q,

if there ezists a decomposition (f,g,h) of po such that

"N +1
Ty (v) € L*(a,b, HY(Q)) Yk > 0, B(u, Vu) € L*(Q x (a,b)) (4.3.3)

N+2
v:u—hELs(a,b,W&’s(Q))ﬂLoo(a,b,Ll(Q)) Vs € [1 i >

and :

(i) for any S € W2>(R) such that S’ has compact support on R, and S(0) =0,

—/ S(J)(p(a)dx—/ @tS(U)dxdt—i—/ S'(v)A(z, t, Vu)Vpdrdt
Q Qx (ab) Qx (a,b)

+/ S"(v)pA(z,t, Vu).Vvd:):dt—/ S'(U)ch(u,Vu)dacdt—i—/ S’ (v)pdjio,
Qx(a,b) Qx(

a,b) Qx(a,b)

(4.3.4)

for any ¢ € L*(a,b, H}(2))NL>®(Qx (a,b)) such that pr € L*(a,b, H1(Q))+L1(Q2x (a,b))
and p(.,b) =0;

(ii) for any ¢ € C(Q x [a, b)),

lim e / PA(x,t, Vu)Vvd:z:dt:/ dud  and (4.3.5)
m—00 1M Qx(a,b)
{m<v<2m}
lim e / PA(z,t, Vu)Vvdxdt—/ pduy . (4.3.6)
m=00 M Qx(a,b)

{—m>v>—-2m}
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Remark 4.3.2 If u € L'(Q x (a,b)), then we have the following estimates :

lull g2

<
@xtapy = (llollLro) + |l(Q x (a,b)))  and

IVl 2. g oy < O (lllncy 1112 ¢ (@)

where C1 = C1(N, A1, A2), see [13, Remark 4.9].

In particular,
[l L2 (@ (a)) < Coldiam(Q) + (b—a)'"*)? (llo][ L1 (o) + [1](2 x (a,b)))  and
1Vl Lt @x(apy) < Caldiam(Q) + (b — a)/?) (|lo]| L1y + |1I(Q x (a,b))),

where CQ == CQ(N, Al,Ag).

Remark 4.3.3 It is easy to see that u is a weak solution of problem (4.3.2) in Q x (a,b)
with p € L*(Q x (a,b)), 0 € Hy(Q) and B =0 then U = x[qpu is a unique renormalized
solution of

U — div (A(z,t,VU)) = X(@p)p + (X[ap0o)t in Qx (c,b),
U=0 on 02 x (¢, b),
U(c)=0 in 2,

for any ¢ < a.

Remark 4.3.4 Let Q' CcC Q and a < d < b < b. For a nonnegative function n €
CX(Q x (d,V)), from (4.3.4) we have

(nS(v)), — nS(v) + S (v)A(z,t, Vu)Vn — div (S/(’U)UA(ZC, t, Vu))
+ 5" (v)nA(z,t, Vu)Vu = S"(v)nf + V (5'(v)n) .g — div (5" (v)ng)
in D' (Y x (a’,b)) Thus, (nS(v)), € L*(a',t/, H-1(Y)) + L (D) and we have the following

estimate

(S W) 2w -1 @) +01(0) < ClISI w2y (0] 100y
+ 1IVullVnlllLy oy + 1InIVulxw<mllzzoy + [InIVul [ Volxo<allzz o)
+ [Inflleypy + H’IWU|2X|U\§M|HL1(D) + |’7I\9|2||L1(D) +H77|9|HL2(D)) (4.3.7)

with D = Q' x (', V') and supp(S’) C [-M, M].
We recall the following important results, see [13].

Proposition 4.3.5 Let {u,} be a bounded in My(2 x (a,b)) and o, be a bounded in
LY (). Let u, be a renormalized solution of (4.2.4) with data p, = Hn,0 + pn,s Telative
to a decomposition (fn, gn,hn) of fino and initial data on. If {fn} is bounded in L'(Qr),
{gn} bounded in L?(Q2 x (a,b),RY) and {h,} convergent in L?(a,b, H(Q)), then, up to
a subsequence, {u,} converges to a function u in L'(Q x (a,b)). Moreover, if {un} is a

bounded in L' (2 (a, b)) then {u,} is convergent in L*(a, b, Wol’s(Q)) forany s € [1, %—ﬁ) .
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We say that a sequence of bounded measures {u,} in Q x (a,b) converges to a bounded
measure 4 in X (a,b) in the narrow topology of measures if

n—oo

lim odjty, = / edp for all ¢ € C(2 x (a,b)) N L¥(2 x (a,b))).
Qx(a,b) Qx(a,b)

We recall the following fundamental stability result of [13].
Theorem 4.3.6 Suppose that B =0. Let o € L*(Q) and
p=f—divg+hy +p —pg € M(Q x (a,0)),

with f € LY( x (a,b)),g € L*(Q x (a,b),RN), h € L?(a,b, H}(Q)) and ut, puy € M (Q x
(a,b)). Let o, € L*(Q) and

Hn = fTL - dlvgn + (hn)t +)0n — Tn € mb(Q X (CL, b))

with  f, € LY(Q x (a,b)),9, € L*(Q x (a,b),RN), h, € L%(a,b, H}(R)), and pn,mn €
M, (2 x (a,b)), such that

pn=pp —divpZ + pps,  Na=1p — diveE 4+ nas,

with p,my, € LNQ X (a,0)), o,y € L2(Q2 % (a,b),RY) and pn,s, 1n,s € ME(Q x (a,b)).
Assume that {pn} is a bounded in My(Q x (a,b)), {on}, {fu},{gn}, {hn} converge to
o, f,g,h in LY (Q),weakly in L' (Q x (a,b)),in L?(Q x (a,b),RY),in L*(a, b, H} () respecti-
vely and {pn}, {nn} converge to uf, puy in the narrow topology of measures ; and {p}, } , {n}}
are bounded in L'(Q x (a,b)), and {p2},{n2} bounded in L*(Q x (a,b),R").

Let {u,} be a sequence of renormalized solutions of

(up)e — div(A(z, t, Vuy)) = py, in Q X (a,b),
Up =0 on 0 x (a,b), (4.3.8)
up(a) = o, in Q,

relative to the decomposition (fn + p}l — n}l,gn + p,% — 77721, hyn) of pno. Let v, = uy — hy,.
Then up to a subsequence, {u,} converges a.e. in X (a,b) to a renormalized solution u
of (4.3.2), and {v,} converges a.e. in Q x (a,b) to v = u — h. Moreover, {Vu,},{Vv,}
converge respectively to Vu, Vv a.e in Q X (a,b), and {Ty(vy,)} converges to Ty (v) strongly
in L*(a,b, H}(Q)) for any k > 0.

In order to apply above Theorem, we need some the following properties concerning ap-
proximate measures of p € M (Q x (a,b)), see [13].

Proposition 4.3.7 Let pn = po+ps € M (2% (a,b)) with po € Mo(Q x (a, b)) NI (Q x
(a,b)) and ps € ME(Q x (a,b)). Let {©,} be sequence of standard mollifiers in RNFL,
Then, there exist a decomposition (f,g,h) of po and fn, gn,hn € CZ(2 x (a,b)), pns €
C(Q % (a,b)) ﬂi)ﬁ;r(Q X (a,b)) such that {fn},{gn},{hn} strongly converge to f,g,h in
LY x (a,b)), L2 x (a,b),RY) and L*(a,b, HY(Q)), pn = fn —div gn + (hn)t + fins, fin.s
converge to i, s in the narrow topology respectively, 0 < py, < @y * p and

| fnllzr@xap) 19l 2(x (@p),ryy + 1l L2 (0,21 Q) + Hn,s (2 X (a,0)) < 20(2 x (a,b)).
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Proposition 4.3.8 Let = po + fts, on = fin,0 + fns € Sﬁ;r(Q X (a,b)) with po, pino €
Mo (2% (a,b))NM (2% (a, b)) and pun s, s € M (2% (a, b)) such that {4, } nondecreasingly
converges to p in My(Q x (a,b)). Then, {pns} is nondecreasing and converging to fis
in Mp(Q x (a,b)) and there exist decompositions (f, g, h) of po, (fnsGn,hn) of pno such
that {fn},{gn}, {hn} strongly converge to f,g,h in L'(Q x (a,b)), L?(Q x (a,b),RY) and
L%(a,b, H} () respectively satisfying

fnllLr@xab)) T 1901l 2(x (ap),r vy + 1l L2 0, m1 @) + Hin,s (X (a, b)) < 20(82 X (a,b)).
Remark 4.3.9 For 0 < p < % min{sup,cq d(z, 0Q), (b — a)'/?}, set

={z € Q:d(x,00) > jp} x (a+ (jp)% a+ ((b—a)/? = jp)?) for j=0,..kp,

min{sup, ¢ g d(z,00),(b—a)'/?}
2p
We can choose fn, gn, hn in above two Pmposz’tions such that for any j =1,....k,,

1all gy + 19nll gy vy + MlAnd +19halll 2y < 20(% ) ¥n €N (439)

where k, =

In fact, set p; = XQI;p—j\QI;p—jJ,-l,LL if g =1k, — 1, pj = X0 (a,b)\ 2L K if 5 = k, and
i = XQkp,u if 7 = 0. From the proof of above two Propositions in [13], for any € > 0 we
can assume supports of fn,dn,hn containing in supp(u) + QE(O 0). Thus for any p = p;
we have fn, g, R, correspondingly such that their supports contain in Q ” I 1/2\Q b I +3/2
ifj=1,...,k, —1 and QT\Q 3/2 if j =k, and Qkp 1/2 ifj=0. By u = Z?ZO/J,J, thus it
is allowed to choose f, = Z fn, fn = Zf:o gn, and h, = Z?io Rl and (4.3.9) satisfies

since

anHLl(Q%) + HgnHLQ(QzN]RN) + [|[n| + ’thmmm{))

k

< zp: (||f111||L1(Q§) + HgilHLQ(QZNRN) + H|h;| + |thHL2(Q{)))
k;—j+1 ' | | |

_ z; (HféHlez;) + |90l g2 vy + 1Bl + ywmmm%))
kp—j+1

< Y (2% (a,h) = 27,
i=j—1

Definition 4.3.10 Let p € 9Myp(Q2 X (a,b)) and o € Mp(2). A measurable function u is a
distribution solution to problem (4.3.2) if u € L*(a, b, WOIS(Q)) for any s € [1, %—ﬁ) and
B(u,Vu) € LY(2 x (a,b)) such that

—/ ug@td:cdt+/ A(z,t, Vu)Vodzdt
Qx(a,b) Qx(a,b)

:/ B(u, Vu)cpdxdt+/ godu—{—/ v(a)do
Qx (a,b) Qx(a,b) Q

for every ¢ € CL(Q x [a,b)).
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Remark 4.3.11 Let o/ € MM(Q) and o’ € (a,b), set w = p+ 0" @ dpy—gy. If u is a
distribution solution to problem (4.3.2) with data w and o = 0 such that supp(p) C 2 X
[a',b], and u =0, B(u,Vu) =0 in Q x (a,ad’), then 4 := Ulxar ) is @ distribution solution
to problem (4.3.2) in Q x (a’,b) with data p and o'. Indeed, for any ¢ € CH(Q x [a’,b)) we
defined

B, 1) = { o(x,t) if (z,t) € Q x [d,b),
’ (14e0)(t —a)pi(z,ad) + o(x, (1 +e9)d’ —eot) if (x,t) € Q X [a,d),

where g € <0

7a—(z

Clearly, ¢ € CL(2 x [a, b)), thus we have

- / uprdxdt + / Az, t, Vu)V@drdt
Qx(a,b) Qx(a,b)

= / B(u, Vu)gdxdt + / Pdw,
Qx(a,b) Qx(a,b)

which implies

—/ aaptda:dt—i-/ Az, t, Va)Vedxdt
Qx(a’,b) Qx(a’,b)

:/ B(ﬂ,Vﬂ)godxdt—F/ godu—i—/ o(a")do'.
Qx(a’,b) Qx(a’,b) Q

Definition 4.3.12 Let p € M(RY x [a, +00)), for a € R and o € M(RY). A measurable
function u is a distribution solution to problem

{ uy — div (A(w,t,Vu)) = B(u, Vu) + p in RY x (a, +00)
u(a)

L RN (4.3.10)

if u € Lj, .(a, 00, Wlx(RN)) for any s € [1, %—ﬁ) and B(u,Vu) € L} (RN x [a,00)) such
that

—/ ugotdmdt—i—/ Az, t, Vu)Vodxdt
RN x (a,00)

RN x (a,00)

:/ B(u, Vu)apdacdt—l—/ wdu—l—/ o(a)do
RN x (a,00) RN x (a,00) RN

for every p € CHRY x [a,0)).

Definition 4.3.13 Let w € M(RVFL). A measurable function u is a distribution solution
to problem

— div (A(z,t,Vu)) = B(u, Vu) + w in RN (4.3.11)

if ue L .(R; Wllo’cs(]RN)) for any s € [1, %—ﬁ) and B(u,Vu) € L}, (RNTY) such that

—/ ugotda:dt—i—/ Az, t, Vu)Vgodacdt:/ B(u,Vu)goda:dt—i—/ pdw,
RN—H RN—H RN+1

]RN+1

for every o € CHRNTY),
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Remark 4.3.14 Let i € M(RY x [a,+00)), for a € R and o € MRN). If u is a distribu-
tion solution to problem (4.3.11) with data w = p+0®0yy—q) such that u =0, B(u, Vu) =0

in RN x (—oco,a), then @ := UlRN «[a,00) B8 @ distribution solution to problem (4.3.10) in

RN x (a,00) with data p and o, see Remark 4.3.11.

To prove the existence distribution solution of problem (4.3.10) we need the following
results. First, we have local estimates of the renormalized solution which get from |13,
Proposition 2.8 |.

Proposition 4.3.15 Let u,v be in Definition 4.3.1. There exists C = C(A1,A3) > 0 such
that for k>1 and 0 <n € CX(Q x (a,b))

/|<kn]Vu|2dxdt+/<kn\Vv]2dxdt < CkA (4.3.12)

where
A = |lom| 1 x (ap)) + VUV L1 @x 0y + 10F 1|21 @x @)y + 719171 22 @ (ap))

+ 9l 2t axcasy + VAR xasy + / nds]-

Qx(a,b)
For our purpose, we recall the Landes-time approximation of functions w belonging to
L*(a,b, H}(£2)), introduced in [45], used in [24, 17, 8]. For v > 0 we define
min{t,b}
(w),(x,t) = 1// w(z, s)e’*Vds  for all (x,t) € Q x (a,b).
a
We have that (w), converges to w strongly in L*(a,b, Hj(Q)) and |[(w),||re(ax(ap) <
[ w|[La(x (a,p)) for every g € [1,00]. Moreover,
((w)y)e = v (w — (w),) in the sense of distributions

if we L*®(Q x (a,b)) then

/ ((w)y)pdrdt = 1// (w — (w),) pdxdt for all o € L*(a,b, H}(Q)).
Q)((g”b) QX(a,b)

Proposition 4.3.16 Let gy > 1 and 0 < o < 1/2 such that gqo > o+ 1. Let L : R — R be
continuous and nondecreasing such that L(0) = 0. If u is a solution of

up — div(A(z,t,Vu)) + L(u) = p in Q x (a,b),
u=20 on 092 X (a,b), (4.3.13)
u(a) =0 in Q,

with u € CX( x (a,b)) there exists C1 > 0 depending on Ai,Aa,,qo such that for
0<neCX(D) where D=Q x (a’,V), ¥ CCQ anda < d <V <b, then

1
/ |V Ty (u)*ndxdt
kJp

Vul?
+ [ e ardads + IVl + Il <GB, (4314

152



4.3. THE NOTION OF SOLUTIONS AND SOME PROPERTIES

_ go—a—1

where q1 TR

B = |Ine(jul + Dllzi o) + / (Ju] + 1) dadt + / IV |0 dd + / ndlyl.
D D D

Furthermore, for Ty.(w) € L?(a’,b', HY(Y)), the Landes-time approzimation (Ty(w)), of
the truncate function Ty(w) in D then for any e € (0,1) and v > 0

V/D N (Te(w) = (Th(w))y) Te(Th(uw) — (Th(w))v)dadt
+/ nA(x,t, VT (u)) VI (T (u) — (Tk(w))y)dxdt < Coe(1 + k)B, (4.3.15)
D
for some Cy = Co(A1, Ao,y qo).

Proposition 4.3.17 Let gy > 1, py, = pin,0 + fin,s € Mp(Br(0) x (—n?,n?)). Let u, be a
renormalized solution of

(un)i — div(A(z,t, Vuy)) = pn in Bp(0) x (=n?,n?),
Up =0 on 9B, (0) x (—n?,n?), (4.3.16)
un(—n?) =0 in B,(0),

relative to the decomposition (fy,Gn,hn) of pno satisfying (4.3.15) in Proposition 4.3.16
with L = 0. Assume that for any m € N and a € (0,1/2), Dy, := Bp(0) x (—m?,m?)

1 e
EmVTk(U)FHLl(Dm) + Vul*(ful + 1) 2 p,) + 1Vl (D) + |ial (D)
+ 1 fall (D) + gnll L2y, mYy + Bnl + [Vl 22D,y + unl Lo (p,,) < Clm, @)

for allm > m and hy, is convergent in L}, (RNTY). Then, there exists a subsequence of {uy},
(R; W (RY))

still denoted by {u,} such that u, converges to u a.e in RN*! and in L3 o

loc
for any s € [1, %—ﬁ)

Proofs of above two Propositions are given in the Appendix section. The following result
is as a consequence of Proposition 4.3.17.

Corollary 4.3.18 Let u, € LY(B,(0) x (—n?,n?)). Let u,, be a unique renormalized solu-
tion of problem 4.8.16. Assume that for any m € N,

SUp |pn|(Bm(0) x (—m?,m?)) < co and sup/ |up | dxdt < oo.
B (0) x (—m?2,m2)

n>m n>m

then there exists a subsequence of {uy,}, still denoted by {u,} such that u, converges to u
a.e in RN and in L (R; VVllo’CS(RN)) for any s € [1, %—ﬁ)

Finally, we would like to present a technical lemma which will be used several times in the
paper, specially in the proof of Theorem 4.2.17, 4.2.19 and 4.2.20. It is a consequence of
Vitali Covering Lemma, a proof of lemma can be seen in |22, 21, 54].
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Lemma 4.3.19 Let Q2 be a (Ro,d)- Reifenberg flat domain with § < 1/4 and let w be an A
weight. Suppose that the sequence of balls {B,(y;)}, with centers y; € Q and a common
radius v < Ro/4 covers Q. Set s; =T —ir?/2 for alli = 0,1, ..., [3—%’] Let E C F C Qr be
measurable sets for which there exists 0 < ¢ < 1 such that w(E) < ew(Q,(yi,s;)) for all
1=1,...,L,j=0,1,.., [%F] ;and for all (x,t) € Qp, p € (0,2r], we have Qp(x,t)ﬁQT CF
if W(ENQ,(x,t)) > ew(Q,(x,t)). Then w(E) < Bew(F) for a constant B depending only
on N and [w]a_, .

Clearly, the Lemma contains the following two Lemmas

Lemma 4.3.20 Let 0 < ¢ < 1,R > 0 and cylinder Qp := QR(xo,to) for some (xg,tg) €
RN and w € As. let E C F C Qg be two measurable sets in RN with w(E) <
sw(QR) and satisfying the following property : for all (z,t) € Qr and r € (0, R], we have
Qr(z,t) N Qr C F provided w(E N Qu(x,t)) > ew(Qy(z,t)). Then w(E) < Bew(F) for
some B = B(N,[w]a.,).

Lemma 4.3.21 Let 0 <e <1land R> R >0 and let E C F C Q = Br(zg) X (a,b) be
two measurable sets in RNTL with |E| < 5|QR/] and satisfying the following property : for
all (z,t) € Q and r € (0, R'], we have Q,(x,t)NQ C F if |[ENQ,(x,t)| > €|Q,(z,t)|. Then
|E| < Be|F| for a constant B depending only on N.

4.4 Estimates on Potential

In this section, we will develop nonlinear potential theory corresponding to quasilinear
parabolic equations.

First we introduce the Wolff parabolic potential of u € 9+ (RN*1) by

1

Wil (z, 1) = /OR (/W) a dpp for any (x,t) € RVN*L,

pN—i-Q—ocp

where @ > 0,1 <p < a ' (N +2) and 0 < R < co. For convenience, Wo, (1] := W2, [11].

The following result is an extension of [36, Theorem 1.1], [16, Proposition 2.2] to Para-
bolic potential.

Theorem 4.4.1 Let o« > 0,1 < p < a ' (N +2) and w € Ay, pp € MT(RVTY). There
exist constants C1,Cy > 0 and g9 € (0,1) depending on N, «,p,[w]a,, such that for any
A>0 ande € (0,¢9)

w({WE 1] > aX, (ME, () 7T < eA}) < Crexp(~Coe ™ uw({WE, (] > ) (4.4.1)

where a =2+ 3 »-1 .
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Proof of Theorem 4.4.1. We only consider case R < oo. Let {Qr(z;,t;)} be a cover
of RV guch that > XGp(ay ) < M in RN+ for some constant M = M(N) > 0. It

is enough to show that there exist constants cj,ca > 0 and g9 € (0,1) depending on
N,a,p, [w]a,, such that for any Q € {Qr(z;,t;)}, A >0 and € € (0,¢p)

w(@N{WE, ] > ), (ME[u]) 77 < 7)) < e1 exp(—cae Jw(@N{WE, [u] > A)). (442)

Fix A > 0 and 0 < ¢ < 1/10. We set
E=Qn{WE, 1] > aX, (ME[u])71 <eA} and F =Qn{WE [u] > A}.
Thanks to Lemma 4.3.20 we will get (4.4.2) if we verify the following two claims :
w(E) < czexp(—cie Hw(Q), (4.4.3)
and for any (z,t) € Q, 0 <r < R,
w(E N Qr(x,t)) < csexp(—cee Hw(Qy(,1)), (4.4.4)

provided that Qr(:z, HNQNFC#pand EN Qr(x, t) # (), where constants c3, ¢4, c5 and cg
depend on N, a,p and [w]a_,.

Claim (4.4.3) : Set
1
—k+1 ~ —1
gr(z t)—/2 Qe 1)) o
B 2-kR pN+2-ap P

We have for m € N and (z,t) € E

o R - 1
- _ p(Que.1) )7 dp
oup[lu](xa t) k:;rl 9k (1'7 t) + /ZmR < pN+2—aP P

< 3 grla,t) + mME (] (x, 1)) 7T
k=m+1

< Z gi(x,t) + me.
k=m+1

We deduce that for >0, m € N

El<1Qn{ D> gr> (1 —me)A)

k=m+1
=Qn{ > g> > 27F I —279)(1 - me)A}|
k=m+1 k=m+1
< Y 1R {gr > 27 PFTm N — 27F) (1 — me)A}.
k=m+1
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We can assume that (xg,%) € Q, (Mgp[u](xo,to))fil < €. Thus, by computing, see |16,
Proof of Proposition 2.2 | we have for any k € N

€7 ko _
QN {ge > s} < L2 hrIQl(er .

Consequently,

o

— E cr —ka Q -1
| | k=m+1 (2_'8(k_m 1)(1 -2 ﬂ)(l — ms))\)p_l | ’(6 )

1 00
3672—(m+1>ap< e >p 0| (1_2—13)*1”“ S D -en)homo),

1 —me
k=m+1

If we choose e 7! —2 <m < e~ ! —1and 8 = B(a,p) so that B(p — 1) — ap < 0, we obtain
|E| < cgexp(—apIn(2)e™1)|Q.

Thus, we get (4.4.3). .
Claim (4.4.4). Take (z,t) € @ and 0 <7 < R. Now assume that Q,(z,t) NQN F* # () and
ENQ,(x,t) # 0 i.e, there exist (z1,t1), (z2,t2) € Qr(z,t)NQ such that Wﬁp[u} (r1,t1) < A

and (MZ [1] (z2, tg))ﬁ < eX. We need to prove that

w(ENQyp(x,t)) < cgexp(—cioe Hw(Qy(,t)).

To do this, for all (y,s) € ENQ.(x,t). Qu(y,s) C Qsp(w1,t1) if p > 7.
If r <R/3,

R o B3 [ 1(Qply, 5)) Ty [n w@p(y:9)) T dp
Woplbl(y, s) = We 1y, s) + / (,)N+z-ap> o /R/3 (,)N+z—ap> o

R/3 Ve (1 p—1 1
< WG plul(y, 5) +/T <W> ?+2(M§p[u](y, 5))t

NA2—ap
< Waplul(y,s) +37 771 A+ 22N,
which follows Wy, [u](y,s) > A.
Ifr>R/3

" <u<@p<y,s>>> T dp

WE [1)(y,s) < W7, [ul(y, s) + / Ml )" 4

R/3
< W plul(y, s) + 22,

pN+27ap

which follows Wy, [u](y,s) > A.
Thus,

w(E N Qr(x,1)) < w(Qr(, t) N{WE 1] > A}).
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Since (2, t2) € Qn(x,1), (M (1] (w2, tg))l’%l < e, so as above we also obtain

w(Qy(x,t) N {WE ol > A}) <co exp(—croe Hw(Q,(z, 1)),

which implies (4.4.4). This completes the proof of the Theorem. ]

Theorem 4.4.2 Leta >0, 1 <p<a }(N+2),p—-1<qg<ooand0 < s < oo and
w € As. There holds

1 1
C_1||(M§p[ﬂ])p‘l ||quS(RN+1,dw) < ||W§,p[#]”quS(RN+1,dw) < C’\(Mgp[ﬂ])"‘l HL‘M(RNH,dw):
(4.4.5)
for all € ME RN and R € (0,00] where C is a positive constant only depending on
N,a,p,q,s and [w]a,, .

Proof. From (4.4.1) in Theorem (4.4.1), we have for 0 < s < c©

S S o S s d)\
[ [ —— /0 Nw({Wh[u] > axp)i S

i sdA o 1 sd
< crexp(-cae g [ AW > AT D 4 aas [ X w({Ga )7 > ex)i S
0 0
L S
=a eXp(_CQ€_1)|‘W(}x%,p[u”|SLq,5(RN+l7dw) + cze”| ’(Mgp[ﬂ])pfl HLLI»S(]RNJrl’dw)'
Choose 0 < € < g such that ¢; exp(—coe™!) < 1/2 we get

1
||W§,p[u]||iq,S(RN+l’dw) < c4]|(M§p[u])p—1 HSLq,s(RNH,dw)-

Similarly, we also get above inequality in case s = 0o. So, we proved the right-hand side
inequality of (4.4.5).

To complete the proof, we prove the left-hand side inequality of (4.4.5). Since for every
(z,t) € RVHL

(WE ), )77 < 5 | W2, u)(z,t) + (W) T ) an

(W) < oW, (),

thus it is enough to show that for any A > 0

w (x,t): ('me) o > A < crw (x,t): (MQR/QW> " > cgA

RN+2—ap RNA+2—ap
(4.4.6)
Let {Q;} = {QR/4(:Uj,tj)} be a cover of RV *1 such that for any Q; € {Q;}, there exist

- My
Qj1, - Qi € {Q;} with 3, S XQ;x < Mz and Q; + Q2r(0,0) C | @y for some
k=1
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integer constants M; = M;(N),i = 1,2. Then,

1

w (x,t):(W)N>A §Zw (m,t):<w>w>)\ NQ;

J

<D w | @)D orreay > AT P NQ;

J k=1

S (@) \TT 16 ,

<> w({ (@ FNTSap > M, A NQ;

| k=1

J "
=D ajw(Qy),

7 k=1

1
where a;;, =1 if ( 1(Qj.0) )p_l > Ml_l/(p_l))\ and a; = 0 if otherwise.

RN+27up
Using the strong doubling property of w, there is cg = co(IN, [w]a,,) such that w(Q;) <
1

cow(Qj k). On the other hand, if a;;, = 1 then Q1 C {(m,t) : <W> o > Mll/(pl))\}.

Therefore,

_1

- 4 My
oS (M) ) <5 S e

7 k=1
M ( 2 %
1 —
W Qry2(z,1)) " ~1/(p—
S ZZCQ’UJ (I,t) . (R]Vizap > Ml L/p 1)>\ N Qng s
7 k=1
which implies (4.4.6) since 3 S XQ,. < My in RNFL, n

Theorem 4.4.3 Let 0 < ap < N + 2 and w € Ao There exist C1,Cy > 0 depending on
N,a,p and [w]a,, such that for any p € MRV any cylinder Q, C RN*L there holds

(;22 ) /@ exp (C’1W§7p[uép](x,t)) dw(z,t) < Cy (4.4.7)
wWi2p 2p

provided HMgp[/‘Qp]HL"O(Qp) < 1, where 1g, = Xg,H-

Proof. Assume that |[MZ [“Qp]HL‘X’(Qp) < 1. We apply Theorem (4.4.1) to f1g,- Then,

ap
choose € = A~! for all A > Ao := max{e; ", szz:lap

}, we obtain

w({WE lig,) > ar} 1 Qzy) < Crexp(~Coe™ Yuw({WE,fug | > M) ¥ A > do,

a,p a,p
On the other hand, if p > R, clearly we have WaR’p[,qu] =0in RNH\sz, if p < R, for
any (x,t) € RN—H\QQ;)

~ 1 1
B (g (Qr(z,0)\ " dr N+2- @) "
R _ Q ap H
Woplug J(z,t) = /p <,f}v+2ap ST o pN+2fap <o
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So, we get {Wap[uQ ] > A} C Qg for all A > Xg. This can be written under the form

({Wa p[MQ ] > a)‘} N QQP) < (X(O,to] + Oy eXp(_CQ)‘)) w(QQp)a
for all A > 0. Therefore, we get (4.4.7). ]

In what follows, we need some estimates on Wolff parabolic potential :

Proposition 4.4.4 Letp > 1,0<ap < N+2 and g > 1,apq < N +2. There exist Cy,Coy
such that

_1
[Waplill orrze-n, < Cy(p(RNTH)p=T ¥ pe My (RN, (4.4.8)

@V

_1_
IWenlil] sgsmos < Collal sy ¥ i € LIS, 520, (449)

and
Waplulll apysnen < CQH'U’HLQ ey ¥ € LIRYT, p = 0. (4.4.10)
N+2—apqg (RN+1)
In particular, for s > (P=DN+2) -y define F(p) := (Wap(u])® for all p € 047 (RN
D ; N+2—ap J a,plM n b .
Then,
31
]|F(M)HL%§?—;}+1>(RM1) < Cs]|p] w vy and
_ <
I ovsnepen oy Cs|lul| " w o1y’

for some constant C; = C;(N,p, o, s) fori = 3,4.

Proof. Let s > 1 such that asp < N + 2. It is known that if y € LS*°(R¥*1) then

~ Ni2
11(@p(,0)) < erllpll e erenyp & ¥ p> 0.

Thus for & = ||l 22 sy (M) (2, £)) "7 we have
1 1
) A p—1 00 A p—1
_ #Qp(,1)) dp #(Qp(,1)) dp
Wa,il’[:u] (.%', t) - /O ( pN+2_ap ? + s pN+2—Otp ?

1 ap %1 __ N+2—asp
< e (M), )77 677 + ol |l e ey 700
asp

= 3 (M(u) (z, 1)) 7= 9 il oo gn 1y

So, for any A > 0

25p (p=1)(N+2)

HWaplp] > A < [{M(p) > C4HMHLW1)>‘WH-

Hence, since M is bounded from 90" (RV 1) to L1 (RN ) and LI(RV ) (L9°° (RN +1) resp.)
to itself, we get the result. ]
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Remark 4.4.5 Assume that ap = N 42 and R > 0. As above we also have for any e > 0

W) < O (R4, (M) o)l #4570 |

where C1 . = C1(N, a,p,€).
1
Therefore, for any X > Cg(|u|(RVNT1))p—1,

apte(p—1)

{WE (1] > A} < Capc <(|”|(RN;1))M 6 R, (4.4.11)

where Ca. = Co(N, a,p,€). In particular, if p € M (RN then WE [u] € Lf, (RVF)
for all s > 0.

Remark 4.4.6 Assume that p,q > 1,0 < apg < N +2. As in [59, Theorem 3], it is easy
to prove that if w € Aywi2—a), -6, 0 <w € L} (RNTY) and for any Q,(y,s) C RN+

loc
N+2—apq

(¢=1D)(N+2)

_ N+2—apg_ N+2-apq
sup ][~ wdzxdt ][~ w @H+2) drdt = < oo,
Qp(y,s)CRN+1 Qp(y,s) Qp(y,s)

then

rq
q

N42—a 1
(N+2) (N+2) o q
( / (Mop[| f[]) ¥+2-s3 wdmdt) <y ( / \f|qw1‘fv”+q2da:dt)q ,
RN+1 RN+1

for some a constant Cy = Co(N, ap, q,C1).
Therefore, from (4.4.5) in Theorem 4.4.2 we get a weighted version of (4.4.10)

(N+2)(p-1)g e L ap v
[ (a1 S35 wds <co( [ Iome )
RN+1 RN+1

The following another version of (4.4.10) in the Lorentz-Morrey spaces involving calorie.

Proposition 4.4.7 Let p,q > 1, and 0 < apg < 0 < N +2. There exists a constant C' > 0
such that

| (Waplln)P™ I, a0

0—apq

< Cllpllpao@n+ry Y € LRV, (4.4.12)

(RN+1)
Proof. As the proof of Proposition 4.4.4 we have

6—apq
0(p—1)

Wap[lul] < e1 (Moyqllul]) 0 (M|

Since My q[|pl] < c2 (M[|12|7])*4, above inequality becomes

0—apq

Waplul < e (Mo[|ul9]) 700 (M[p]) 71 . (4.4.13)
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Take Q,(y,s) C RN*1 we have

[ uw%iﬁwﬁ<c</ (Wi ) 5 i
B a, @ >~ C _ a, 3 Ay
Qo) T Qolys) © T Qelye)

9{;1(10 1)
[ (Wanltgu et WWM>
Qp(w)( X s, oneH)

= A+ B.
Using inequality (4.4.13) and boundless M from L¢(RV*1) to itself, yield

q
A<%AM<MMMDGW(MM%WMDth

ag?

< callalfoiney [ Iulvdod
XQ2p(y,9)
6q

< C7HMHZq 3PE§N+1)PN+270~

On the other hand, since |u|(Q,(z,t)) < Cg||u||Lq;e(RN+1)TN+2_§ for all Q,(x,t) c RN+,

1 951(17*1)
0 | ~ =1 —apq
(@ (x,t)) dr
Qo(y:s) \/p r r
0o 1 d Gg(p—l)
0 — —apq
<o [ (7 (o))
Qp(y78) r
6q
< CIOH/“L”LqG RN+1)PN+2_9.
Therefore,
0q(p B
f o Pl F it < el v
P
which follows (4.4.12). ]

In the next result we state a series of equivalent norms concerning potentials I, (1], 1% 1], Heo[11], Galpt)-

Proposition 4.4.8 Let ¢ > 1,0 < a < N + 2 and R > 0. There exist constants C1 =
C1(N,a,q) and Cy = Co(N, a, q, R) such that the following statements hold

a. for any p € MT(RNFY)
Cr M Talpll ornv+1y < [ Halulllpo@n+1y < Crlllalplll pagn+1y  and (4.4.14)
Cr H Talu]l] on+1y < ||7\fla[ﬂ]||Lq(RN+1) < Ch[Lafpl]| Lo+ (4.4.15)
b. for any p € MH (RN
Cy I ]l o1y < NGl o1y < Col L[]l pagrav+1y and (4.4.16)

\
Oy Il oy < NIGalulll Laev+1) < Col 51| o +1)- (4.4.17)
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where 7\'/104[#] is the backward parabolic Riesz potential, defined by
v v
Falil(a.t) = Gl s m)(o8) = [ Halo = y.s ~ Dduty,s),
RN+1

v
and Go 1] is the backward parabolic Bessel potential :

vV

Golpl(e.t) = Gt = [ oty =5 = )dn(y.s).

Proof. a. We have :

Cfl

1
A o < Ho(z,t) < ,
2 o X1>0X|a|<2vE (2 ) max{|x|, \/2|t|}N+2—e

which implies

1 [ XB )R 7»2)(” t) ar
021/ Nt2a 7<7'l alz,t) <

/Oo X,(0,0) (z,1) ﬁ

rN+2—a r

Thus,

co i (Bl,r) x (=12t =) g,
¢ /0 ( . )Ci < Holil(z,8) < oolalpl(z,0).  (44.18)

Thanks to Theorem 4.4.2 we will finish the proof of (4.4.14) when we show that
B o2t ! g
wn (Bt t-D) g\ e (@) e,
R 0 TN+2—04 r 7aN—i-Q a r :
)—k:

o (Bla,r) x (t— 12t —r2/4)) dr |
/0 rN+2—a -
=« ( g B x (it - ér,%)))q

Indeed, we have for ry = (

Sl

N+2 «
k=—0c0 k
00 2 1.2 q
1 (B(at,rk.) X (t—ri,t— §rk))
204 Z ( ,rNJera .
k=—00 k
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Thus,

< (B(z,r) x (t —r2t — 1r2)) qr !
/R</o e = )7«> t

o § (e S

Tk

— e i /(M(B(a?,rk) ]\(712 arkat—i- ))) dt

Tk

oo [ (Qr(x, 1)) ! dr
oy ( Qa.1)) dr,
Similarly, we also can prove (4.4.15).

b. Obviously

cg exp(—4R?)
%XO<?€<4R2X‘$|S2\/Z < ga(x7t)

Cg Cg
< ~ / )
- max{|z], \/2|t|}N+2—aXQR/z(Ov())(‘””’t) RN+2-a P ( max{z], 2“”)

Thus, we can assert that

2R XBT( 0)x (T 2)($ t) dr R X4, (0 0)(33775) dr
=< < R\
C7(R)\/0 TN+2 p , ga(m t) & /0 ,r,NJera r

+ co(R) /RN+1 exp (— max{|y|, \/2]3]}) X5 2(0.0) (x —y,t — s)dyds.

Immediately, we get

on p (Bla,r) x (t -2t —2)) 4,
C7(R)/O ( rN+2—a ) Cfa < ga[ ](x’t) < C8H§[N]($7t) + C9(R)F($vt)7
(4.4.19)

where F(x,t) = [pn+1 €xp (— max{ |y, /2 }) (QR/Q x—y,t— 8)) dyds.

As above, we can show that

q
(9] ZRM(B( ) (t—?“ t— )>d7’ ert qd?"
/0 /o TNt2—a s dt = c 0/ / T NtI—a |
Thus, thanks to Theorem 4.4.2 we get the left-hand side inequality of (4.4.16).

To show the right-hand side of (4.4.16), we use 4 (QR/Q(az —y,t— s)) < croR™WNH2=TR ] (2—
y,t — s) and Young inequality

1Ga | o1y < csllTRAl vy + eo(RIF Loy
< el TElaguovs + e RS gaguesy [ exp (—maxdlal, V2001 dod

= (R[] Loy,
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Similarly, we also can prove (4.4.17). This completes the proof of the Proposition. ]

Remark 4.4.9 Assume that 0 < o < N + 2. From (4.4.8) in Proposition 4.4.4 and

1Galu]ll L1 a1y < c1 (RN we deduce that for 1 < s < N]i;rza

1Galidl| s mr+1y < cop(RNTY) W g€ 00 RV

Next, we introduce the following kernel :

Ef(l’,t) = max{‘x’7 V 2’t’}7(N+27a)XQR(070)(‘/E7t)

where 0 < o« < N +2 and 0 < R < oo. We denote E5° by E,. It is easy to see that
Eoxp=(N+2—a)l,[u] and ||EE * ] s w1y is equivalent to HHg[,LL]HLs(RN+1) for every
p € MT (RN where 1 < s < oo.

We obtain equivalences of capacities Capg, ,,, Cap ER.ps Capy,, , and Capg,_ .

Corollary 4.4.10 Letp > 1, 1 < a« < N+ 2 and R > 0. There exist constants C; =
C1(N,a,p) and Cy = Co(N, a, p, R) such that the following statements hold

a. for any compact E C RN*!

Cy ' Capy, ,(E) < Capy, ,(E) < C1Capy, ,(E) (4.4.20)
b. for any compact E C RN*!

Cy ' Capg, ,(E) < Capgr ,(E) < CyCapg, ,(E) (4.4.21)

c. for any compact E C RN*H1

N+42

Capy, »(E) < Capg, ,(E) < Cy (Capﬂa,p(E) - (CapHmp(E))NH—ap) (4.4.22)
provided 1 < ap < N + 2.
Proof. By [2, Chapter 2|, we have

Capg, ,(E)'/? = sup{u(E) : p € MT(E), [|Ba * pl| 1 env1y < 1},
CapEﬁp(E)l/p = sup{u(E) : p € M"(E), HEf * MHLp’(RNH) <1},

v
Cap%a’p(E)l/p =sup{u(E) : p € SJJT+(E), HHa[U]HLp/(RNH) <1} and
v
Capga,p(E)l/p = sup{u(E) : p € M (E), Hga[lu’]HLp’(]RN+1) <1}

Thanks to (4.4.15), (4.4.17) in Proposition 4.4.8 and I,[u] = E, * p and ||EE % ] s mvy
is equivalent to ||H§[u]||Ls(RN+1), we get (4.4.20) and (4.4.21).

Since Go < Ha, thus Capy, ,(F) < Capg, ,(E) for any compact E' C RNFL Put Capg, ,(F)
a > 0. We need to prove that

N+2

Capp ,(E) < &1 (a n a7N+2—aP) . (4.4.23)
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We will follow a proof of Yu.V. Netrusov in [2, Chapter 5]. First, we can find f € LE (RNF1)
such that || f]|1» @v+1) < 2a and Ey * f > xg. Set Fo = E, — El, we have coF, < E} % F,
for some ¢; > 0. Thus, E C {E}L « f > 1/2YU{EL % (F, * f) > 02/2}

Since ||EL|/1 ®N+1) < 00, for c3 = co(4||EL| 11 RN+1)) 1

Eg # (Fo* f) < c2/4+ Eg % g With g = XFouf>csFa * [,
which follows E C {EL + f > 1/2} U{EL x g > co/4}.
Using the subadditivity of capacity, we have
Capgs ,(E) < Cappgy ,({Eq * f > 1/2}) + Cappy ,({Eq * g > e1/4})
< |1, s, + (4D llg1 e

. . (N +2)p
< 2p‘|f”§p(RN+l + (4/c)Pc Pl Eo + fI[7, N1y With pr = Ni2—op
On the other hand, from (4.4.10) in Proposition 4.4.4 we have
[Ea * fllpo-@n+1y < cal| fllp@n+ry-
Hence, we get (4.4.23). |

Remark 4.4.11 Since G, € L*(RN*1),

/ (Ga * )P dadt < Hgalel(RN+1) / fPdzdt Vf e LI-«)-<RN+1)
RN+1 ]RN+1

Thus, for any Borel set E C RN*+1

Capg, p(E) = C|E| with C = |Gal| 7 gr+1 (4.4.24)

)’

Remark 4.4.12 [t is well-known that Ho is the fundamental solution of the heat operator
— A. In [31], R. Gariepy and W. P. Ziemer introduced the following capacity :

Oy (K) = sup{p(K) : p € MT(K), Hap] < 1},
whenever K ¢ RNt is compact. Thanks to [2, Theorem 2.5.5], we obtain

Capyy, o(K) = Oy, (K).

Remark 4.4.13 For any Borel set E C R, then we always have Capg, o(E x{t = 0}) =0
In fact,

Cappy o(B1(0) % {t = 0}) = suplw(B1(0)) : w € M (By(0)), |1} # (@ )| zqevony < 1.
Since || Ef(w®d0)|| L2 y+1) = 00 if w # 0, thus Capg, o(B1(0)x{t = 0}) = Capp: 5(B1(0)x

{t = 0}) = 0. In particular, Capg, 5 is not absolutely continuous with respect to capacity
Ci2(.,Q x (a,b)). This capacity will be defined in next section.
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Remark 4.4.14 Letp > 1 and o > 0. Case ap > p+1, we always have |[|[Ha[p]|| o @y =
oo for any p € MH(RVN\{0} which implies C’apHa’p(Ql(O,O)) =0.If0<ap < N+ 2,
C’apHmp(Qp(O,O)) = cpNT2P for some constant c. From (4.4.22) in Corollary 4.4.10 we
get Capgavp(Qp(0,0)) ~ pNT2= for 0 < p < 1ifap < N+2. Since ||ga[5(070)]\|L,,/(RNH) <
oo thus Capg, ,((0,0)) >0 if ap > N + 2.

Ifap = N+2, C'apgmp(QP(O,O)) ~ (log(1/p))' ™ for any 0 < p < 1/2. In fact, we can prove
that ||]I1/2[ |l o mvy < 1 for any dp(x,t) = (log(1/p)) /¥ p*N*QX@ . O)da:dt it follows
Capg, ,(Qp(0,0)) = c2 (log(1/p))' P Moreover, for € M (Qp). if L[ gvery < 1.

/

3 ~ P
2, / K4
Q1(0,0\Q,(0,0) \ J2max{|z||2¢[1/2} T r

/

3 p
1 dr . ,

> | dwdip(Q,(0,0))

Q1 0,0)\Q,(0,0) /max{|x |2t[1/2} rN+2—a 4 > P )

> czlog(1/p)u(Q,(0,0
So Capg, ,(Q,(0,0)) < care(Q,(0,0))” < 5 (log(1/p))'~

Definition 4.4.15 The parabolic Bessel potential L5(RNTY), o > 0 and p > 1 is defined
by

LORNHY) = {f : f =Gaxg.g € LP(RNT)} (4.4.25)

with the norm || f|| 2o a1y == [|g|| Lo (ra+1y. We denote its dual space by (LR (RN+1))™

Definition 4.4.16 For k a positive integer, the Sobolev space ng’k(RN“) is defined by
8i1+..4+iN+i¢

WZk’,k’ RN+1 — . ‘ i
B =y e

e LP(RN*Y) for any iy + ... +in + 2i < 2k}

with the norm
ol | e
Plly2kkgN+1y = Z Ai1 AN A || LP(RNFL)
; e iy D2 a0

*
We denote its dual space by <W5k7k(RN+1)> . We also define a corresponding capacity on

compact set B C RN*TL
Capapkp(E) = inf{HcpHngk,k(RNH) cp € SRYTY), o > 1 in a neighborhood of E}.
Let us recall Richard J. Bagby’s result, proved in [4].

Theorem 4.4.17 Let p > 1 and k be a positive integer. Then, there exists a constant C
depending on N, k,p such that for any u € Egk(RN“),

071Hu||wgkak(RN+1) < Hu”ﬁgk(RN+1) < CHUHWPQ’“”“(RN-H)'
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Above Theorem gives the assertion of equivalence of capacity Capyy, . ,,, Capg,, -

Corollary 4.4.18 Let p > 1 and k be a positive integer. There exists a constant C depen-
ding on N, k,p such that for any compact set E C RN*+1

C~ ' Capyy, ., (E) < Capg,, ,(E) < CCapyy . ,(E). (4.4.26)

Next result provides some relations of Riesz, Bessel parabolic potential and Riesz, Bessel
potential.

Proposition 4.4.19 Let g > 1 and % <a< N+ %. There exists a constant C depending
on N,q,a such that for any w € MT(RY)

C_lula_%[meq(RN)
< |Halw ® Syl oy, 1ol @ Squmoplllaqenin) < Ol z oy (4427)
and
C—1||Ga,§[w]llm(w>
< ||Galw ® o]l a1y, Galw ® Si=oplllzart) < CllGq 3 [w]l| o) (44.28)

where d(1—gy 1s the Dirac mass in time at 0.

Proof. We have

* w(B(z,r))dr 1 w(B(z,r)) dr
Lo|w ® dp—gy] (2, 1) = / %77 Iy [w ® dg—0y] (7, 1) :/ %*
N r min{1,\/2¢[} T r

By [16, Theorem 2.3 | and Proposition 4.4.8, thus it is enough to show that
L[ (wBan) N _ [ ([ wBar) ' w(Blr) \dr
cl 0 TN+2—O¢—2/q r - R \/m TN+2*06 r =a 0 TN+2_a_2/q r ’
(4.4.29)
and
[ ((w(Blar) \dr
1 0 rN+2—a—2/q r

1 q 1 q
<[(/ AR wsa | (“;V(BH)) (4430
R min{l,\/ﬂ} riVte—a g 0 rN+2-a= /a r

Indeed, by changing of variables

[ ([ e o ([ BDY i
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Using Hardy’s inequality, we have

o0 * w(B(z,r)) dr\? *  (w(B(x,7))\*?
/o ¢ (/t TNtz—a . dt < 02/0 "\ T Ntz—a dr
and using the fact that

PN+2—a . = B Nt2—a

/°° w(B(x,r)) dr - w(B(z,r))

we get

Thus, we get (4.4.29). Likewise, we also obtain (4.4.30). [

We have comparisons of Capy,_ ,, Capg, ,,, Capr , ,, Capg e
a=5 a—27

2
P

Corollary 4.4.20 Letp > 1 and ]% <a< N+ %. There exists a constant C depending on
N, q, o such that for any compact K C RN

C™'Capy_, () < Capy, (K x {0}) < CCapy__, ,(K) (4.4.32)
P P
and
C—lcapGaig’p(K) < Capg,, ,(K x {0}) < CCapGaiz’p(K) (4.4.33)
P p

Proof. By |2, Chapter 2|, we have
Y
Capy, p(K x {07 = sup{u(K x {0}) : pp € M (K x {0}), [[Halulll 1o every < 1}

vV
= sup{w(K) : w € MK, [[Halw © S0y ll o vy < 1),

v
Capg,, ,(K x {0})1/p = sup{w(K) : w € MY (K), [|Galw @ 50]||Lp’(RN+1) <1},

Capy,_y oK) = sup{w(K) < 0 € M (K), T, 2 ]l oy < 1)
p
CapG%z’p(K)l/p = sup{w(K) : w € M (K), HGQ_%[w]HLp/(RNH) <1}
P
Therefore, thanks to Proposition (4.4.19) we get the results. ]

Corollary 4.4.21 Let p > 1 and k be a positive integer such that 2k < N + 2/p. There
ezists a constant C' depending on N, k,p such that for any compact set K C RN

C’_lCapGQk_Lp(K) < Capyy . p(K x {0}) < CCapg, (4.4.34)
r

k_%,p(K).

We also have comparisons of Capg,_ ,,, Capg,, ;-
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Proposition 4.4.22 Let0 < a < N, p > 1. Fora > 0 there exists a constant C' depending
on N, a,p,a such that for any compact K C RV,

C_lCapGa,p(K) < C’apgmp(K X [—a,a]) < CC’amep(K).

Proof. By [2], we have
CapI@ (K) < c1Capg,, ,(K),
o’ D
Va
for some ¢; = ¢1(N, o, p,a) > 0. So, we can find f € LE (RY) such that I.Z = f > xx and

/N |f|Pdx < 2¢1Capg,, ,(K).
R

- va -
Note that (EY?  f)(z,t) > ca(In2 * f)(z,t) for all (z,t) € RN x [—a,a] where f(z,t) =
J(2)X[~24,24](t) and constant cz = c2(N, a,p). So,

CapE&/gvp(K X [—a,a]) < c;? /RNH | f|Pdadt

— 165" [ |fPd.
RN
By Corollary 4.4.10, there is ¢; = ¢1(N, a, p,a) > 0 such that
Capg,, ,(K X [—a,a]) < C1CapE&/ap(K x [—a,al).

Thus, we get
Capga’p(K X [—a,al) < 03CapGa7p(K),
for some c3 = c3(N, , p,a).
Finally, we prove other one. It is easy to see that
Y [ @ Xl sy < Al 2 ]l ) ¥ @ € (RN,
for some ¢4 = ¢4(N, c, p), which implies
10012 ® Xl gty < e3lIGalilll g, ¥ w € HRNH)

for some ¢4 = ¢4(N, a, p,a).
It follows,
Capgmp(K X [—a,al) > CGCamep(K),

for some cg = c6(N, , p,a). |

The following proposition is useful for proving that many operators of classical analysis are
bounded in the space the space of functions f such that

/ \f[Pdadt < CCap(K)
K

for every compact set K € RV*! (1 < p < o0), if they are bounded in LI(RV*!, dw) with
wE As.
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Proposition 4.4.23 Let 0 < R < o0, 1 <p < a}(N+2),0<6 < aand f,g €
L (RN*Y). Suppose that

loc
1. There exists a positive constant C1 such that

/K |fldzdt < Cy CapEf’é,p(K) for any compact sets K ¢ RNTL, (4.4.35)

2. For all weights w € A1,

/]RNJrl lglwdzdt < Cy /RN+1 | flwdzdt, (4.4.36)

where the constant Cy depends only on N and [w] 4, .
Then,

/K lg|dzdt < Cs CapE}f*‘S,p(K) for any compact set K ¢ RN (4.4.37)

where the constant C3 depends only on N,a,p,d and C1,Cs.

The capacity is mentioned in the Proposition (4.4.23), that is (Eg ’5, p)-capacity defined by

Capyrs (E) = inf{/ \fPdadt : f € L (RNTY), B0 % f > XE},
a P RN+1

for all measurable sets £ C RV where 0 < R<o00,0<d <a < N +2,

=
Bz 1) = mas(jal, 2}~ min J 1 (ma’({‘ﬂ';; ! 2“”)

Remark 4.4.24 For 0 < ag < N + 2, the inequality (4.4.10) in Proposition 4.4.4 implies

a(N+2) 17Na7£2
( / (Ejjﬁ « f) N¥2-aq dxdt) <C Fldzdt Vf € LYRNTY), f > 0.
RN+1 RN+1
(4.4.38)
Hence, we get the isoperimetric inequality :
[B|'" %% < CCapyrs (E), (4.4.39)

for all measurable sets E C RN*TL,

Also, we recall that a positive function w € L}OC(RN +1) is called an A; weight, if the quality

1
[w] 4, := sup <][ wdyds> esssup —— | < 00,
Q (a.t)e@ W(E,t)
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where the supremum is taken over all cylinder Q = Qg(z,t) € RNT!. The constant [w]4
is called the Ay constant of w.

1

To prove the Proposition (4.4.23), we need to introduce the (R, d)—Wolff parabolic po-
tential,

[ u(Qule )" ) d
Wﬁ,’g[ﬂ](az,t)Z/O (%) mm{l,(g) }pp for any (z,t) € RVT1,

where p>1,0<ap< N +2,0< 6 < ap’ and R € (0,00] and p € MT(RNFL).
It is easy to see that

W (e, t) <C  sup WE)(y, 5). (4.4.40)
(y,s)€Esuppp

for some a constant C' = C(N, a,p,d) > 0.

Remark 4.4.25 We easily verify that the Theorem 4.4.1 also holds for WR‘SRl[ | and
Mgpé i ] -

_ 2,(x,1) . P\ —d(p-1)
M0/ (p—1),Ra t) = 7#(@,;(%, 1 (*) t) e RVHL
ap (1] (z, 1) Of;lle Vizap ML (5 for any (x,1) ,
where 0 < 6 < ap’, 1 <p < a }(N +2) and Ry > R > 0. This means, for w € As, it €
M+ (RN, there exist constants C1,Cy > 0 and g € (0,1) depending on N, o, p, 6, [w] 4
such that for any A > 0 and ¢ € (0, &0)

oo

_1
w{ WM ] > aX, (Mg P~ u)) =1 < eA}) < Crexp(—Coe™Yw({Wp M 1] > A}),

(4.4.41)

N+2—ap+6(p—1)
where a =2+ 3 p—1
Therefore, for g >p—1

1
HWi}f’Rl (] a@N+1 gwy < C3||(M§;36(p_1)’R1 (1) P~ Lo @V +1 duw) s
where C3 = C3(N, o, p, 9, q). Letting Ry — oo, we get
1
W (1]l pa R,y < Cll(MEPD[]) 7T || o mva1 gy (4.4.42)

where MR 9P 1)[ ] = ngfs(p*l)’oo[u].
We will need the following three Lemmas to prove the Proposition (4.4.23).

Lemma 4.4.26 Let 0 < p < a ' (N +2) and 0 < 8 < %&%. There exists a

constant ¢ depending on & such that for each Q, = Qr(x, t)

]g (Wi [y, 9)) dyds < c(Waplul(x,t))°. (4.4.43)
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Proof. We set

Ui = [ (W) *win{n(5) 1} o

1

i [ (4942) )

Thus,

][~ (Wi 1y, $)) dyds < 01]2 (Us plul(y, $))°dyds + 61][~ (Lo plH)(y, 5)) dyds.

T T

Since for each (y, s) € Q, and p > r we have Qp(y, s) C Qgp(a:,t), thus for each (y,s) € Q,,

Uapltl(y, s) < /TOO (W) . (max{l, ]p%}>—5ci)p
< Wil (1),

which implies

1, W2l o duds < cotwE Sl )

Since for each (y,s) € Q, and p < r we have Q,(y,s) C Qa(x,t) thus, L plu] =

R, LA .
L pl1X0,, (o)) < Wap 14Xy, (2] I Qr(2,t). We now consider two cases.
Case 1 : r < R. We have for a > 0,

F @yl )) dys < ]2 (W 15X, 0.y (s 9)) dyds

T

! R r ~
‘Q ’5/0 Aﬁ 1’{Wa’p[uxé2r(:c7t)] > )‘} mQr‘d)\

< af 4 ey N2 / N WS X, o) > AHAA

a7p

If ap= N +2, we use (4.4.11) in Remark 4.4.5 with ¢ = % and take a = (/L(QQT(ZL‘, 15)))1’%1

1 ap+6€(p—1)
][~ (L% )y, 5))Pdyds < af + car™N 2 / G ((M(Qm(ﬂ)ﬁ\; t)))“) PP\
< ea(Qar (1)) 71
< es (W [l (x,1))”.

If ap < N + 2, we use (4.4.8) in Proposition 4.4.4 and take a = pu(Qop(,t))7—17"  »-1 |
we get
. s - 1 _ N+2—ap\ B
(L i)y, 5) dyds < g (p(Qarlw, )7 ir 51"

r

< er(Weplul(e, 1)),
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Case 2 : r > R. As above case, we have

B
~ 1 _ NA2—ap+i(p—1)
£, a0l )09 s < c (11 )

. R,0
Since WEF G, wo) < BV g 1 ) s

B8
~ —ap+38(p—1)
f (L 1)(y, 5))Pdyds < cg (m@gr(x,t))p“rw S R‘S)
Q

r

< es(WE (=, 1))°.
Therefore, we get (4.4.43). The proof completes. [

Remark 4.4.27 It is easy to see that the inequality (4.4.43) does not true for WE [5(.0)]
where 0(o,0) is the Dirac mass at (v,t) = (0,0).

Remark 4.4.28 From Lemma (4.4.26), we have, if there exists (xo,tp) € RNT such that

6 1) _
WE;,, (1] (0, t0) < oo then Wg:p (n] € L?OC(RNH) for any 0 < B < %—?&(;)—1)'

Lemma 4.4.29 Let R € (0,00], 1 < p < a Y(N+2) and 0 < § < ap’. Assume that
ap < N + 2 if R = oco. Then, for any compact set K C RN*L there exists a pu € IMMF(K),
called a capacitary measure of K such that

CflcapEg,é/p’m(K) < u(K) < CiCap gy (K)

and Wg,’g[u](x,t) > C a.e in K and Wi’g[u} < C3 a.e in RN*L for some constants
=1,

a.
Ci = Ci(N,a,p), 1 2, 3.

Proof. We consider a measure v on M = RY¥T1 x Z as follows

(o ¢]
r=meg Z On,

n=—oo

where m is Lebesgue measure, and ¢,, denotes unit mass at n. Thus, f € LP(M, dv), means

f=A{fn}Z, with

Hf|’]£p(M,dl,) = Z an’|]2p(RN+1)-

n=—oo
Let ng € Z U {+00} such that 27"%# < R < 27""*Lif R < 400 and ng — < if R = +o0.
We define a kernel P, in RV*! x M = RNFL x RN+ x Z by

Py (x,t, 2’ t',n) = min{l, 2(”_"R)5/p/}2”(N+2_Q)XQ2_ (x —a',t—t).

n
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If f is v—measurable and nonnegative and p € 9T (RN*1), the corresponding potentials

Y
Pof, Pap and VIPf; p are everywhere well defined and given by

(Paf)(q:,t):/ Po(z,t, 2t/ n) f(2' ¢/ n)dv(2', ¥, n)

M
o'¢)
- Z min{la2(n_nR)6/p/}2”(N+2_a)(XQQ,H * fn)(x,t),
\
(Pa,u)(a:’,t',n) = / Pa(ﬂj‘,t, x',t',n)d,u(x,t)
RN+1

_ min{l, 2(n—nR)5/p’}2n(N+2—a) (XQ % ,U) (iL‘,, t/),

VE (0,8) = (Pa(Pap) ) (. 1)

o0

: n—n np’ —a -1
= ) min{1, 207 ygrr (NF270) <X@2n * (X@Tn * u) ) (1),

n=—00
for any (z,t,2',t',n) € RN+t x M.
Since for all (x,t) € RV+L,
- - , 1
@l Qs < (g, * (g, #) ) (@)
< 1Qu |27 N (( Qg (,1)))P

thus,
e 'V S W < eV, (4.4.44)

for some a positive constant c;.
We now define the LP—capacity with 1 < p < oo

Cape, p(E) = {|[f1, 010 ¢ F € L% (M, dv), Puf > x5}.

for any Borel set £ C RNt By [2, Theorem 2.5.1], for any compact set K c RV*!

v
CapPa,p(K)l/” = sup{u(K) : p € M*(K), HPaNHLp’(M,dV) <1}

By [2, Theorem 2.5.6], for any compact set K in RV+1 there exists u € 9+ (K), called
a capacitary measure for K, such that foip > 1 Capp, , — q.e. in K, Vﬁap <1 aein
supp(u) and p(K) = Capp, ,(K). Thanks to (4.4.44) and (4.4.40), we have ngg[u] >t
Capp, , — q.c. in K, W] < ¢z ae in RN and p(K) = Capp,, ,(K).

On the other hand,

e.9]
\Y / . _ 5/ _ /
HPQ“”ZP’(M@V) — E || min{1, 2(n—nR)3/P ygn(N+2 a)XQTn *MHZP’(]RNJA)

n=—oo
oo

= > minfL 20 SR [ dade,
e oo RN+1 2
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4.4. ESTIMATES ON POTENTIAL

this quantity is equivalent to

l

Fo I (M9 i, ()1t

So, thanks to (4.4.42) in Remark 4.4.25, we obtain

e | BRI st | < el EFOV s pll,

RN+1) — ||P06//’|‘Lp (Md RN+1)

for co = co(N, p, o, 0). It follows that two capacities Capp,, ,and Cap pRo/v , are equivalent.

Therefore, we obtain the desired results. [

Lemma 4.4.30 Let R € (0,00], 1 < p < o} (N +2) and 0 < § < ap’. Assume that
ap < N+2 if R = co. Then there exists C = C(N, a, p, ) such that for any p € WJ(RNH)

Cap r.s/ p({wgg (1] > A}) < CAPHLL RN v A > 0. (4.4.45)
In particular, ng[u] < 00 C’apER,(;/p/ , e in RN+L,
Proof. By Lemma 4.4.29, there is a capacitary measure o for a compact subset K of
{Wﬁ’g (] > A} such that Wﬁ’g [0](x,t) < c1 on suppo and Cap g/ p(K) ~ o(K) where

C1 = Cl(Na a,p, 5)

Set M[p, o)(z,t) = sup % for any (x,t) € suppo. Then, for any (z,t) € suppo

, S (@) oy dp
)\ < Wig[ﬂ](%t) S (M[N)U](x7t))p /0 (M) Hlln{]., (E) ?

1

< ¢ (Mp, o](, 1)) 77

-1
Thus, for any A > 0, suppo C {c2 (M[g, a])%l > A} = {M[u, 0] > (A)p }. By Vitali

Cc2
Covering Lemma one can cover suppo with a union of Q3p; (zi,t;) for i = 1,...,m(K) so
that Q,, (2;,t;) are disjoint and o/(Qsp, (i, ;) < (M ea) P u(Qp (ziy 1)) Tt follows that

CapEﬁ < Cc3 Z Q3pz xu 7 )

m(K)
< escdh AT " (@ (i, 1))
=1
< 63012)—1)\—;;+1N(RN+1>‘
So, for all compact subset K of {Wﬁ’g (1] > A},
Cap s (K) < crch  APH (R,

Therefore we obtain (4.4.45). |
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Remark 4.4.31 Let0<d < a < N+2 and d < 1. From the following inequality
| max{|z; — 2|, v/2[t1 — s[} V2T — max{|wg — 2|, /2]ta — 5|}V 2T
<a (max{|a;1 — 2,V/2lt1 — s|} N0 L max{ @y — 2|, /2|t — s|}*N*2+a*5)
3
X (\xl — 2| + [t — tz!m) ,

for all (x1,t1), (x2,t2), (2,8) € RNFL where c; is a constant depending on N,a,d. Thus,
for € MF (RN FL)

o [p](z1, 1) —Tafp] (w2, t2)] < co (Ta—s[p](z1,t1) + Ta—s[u] (w2, t2)) <\:n1 — x| + [t1 — t2|1/2)6’

for all (z1,t1), (2, t2) € RN and ¢y = cl%ﬁ.

Consequently, for any p € I (RNTY), 14[u] is 6—Holder Capy__, »-quasicontinuous this
3
means, for any € > 0 there exists a Borel set O. C RNT! and ¢, > 0 such that

5
Lalp] (21, t1) — Da[p) (w2, t2)| < ce (!m — xa| + |t1 — t2|1/2> V(z1,t1), (x2,t2) € O

and Capp_ ,(RVT\O,) < e.
T

Now we are ready to prove Proposition 4.4.23.

Proof of Proposition 4.4.23. By Lemma 4.4.26, 4.4.29 and 4.4.30, there is the capacitary
measure u of a compact subset K € RV*! such that Wi’,‘ff’ / (1] > 1 aein K, Wﬁ’gp / (] <
co a.e in RVF! and CapEg,a?p({Wﬁ’gp/ ] > A}) < cz)\*pHCapEg,s’p(K) for all A > 0,

(Wﬁ’gp / [u])? € Ay for any 0 < 8 < %m. From second assumption we have
Lo 6l OWE () dnar < Co [ 7|(OWERY ().
RN+1 P RN+1 P
Thus
[ doldzar < i? [ lglwE Y )P
K RN+1 ’

< oy / |FIWRSY [1])P dadt
]RN""l

C1
:c35// , | fldzdt\P~Ld.
0 JWEI >

By first assumption we get

/W s |fldzdt < C1Cap grs ({WE [4] > A}) < esAPH Capgrs ().

P

Therefore,
Cc1
/ \gldxdt < c56 / AP Cap r.s p(K)XHdA = coCapyrs (K),
K 0 «@ I [e3 ).
since one can choose d > p — 1. This completes the proof of the Proposition. [
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Definition 4.4.32 Let s > 1, a > 0. We define the space 9Mes(RN+1) OGes(RN+1)
resp.) to be the set of all measure p € MRV such that

[Wanrta.s w1y := sup {|ul(K)/ Capyy,, ((K) = Capy, (K) >0} < oo,

([u]mga,s(Rw+1) := sup {|u|(K)/Capg, (K) : Capg, (K) >0} < o0 resp.)

where the supremum is taken all compact sets K C RN*HL,
For simplicity, we will write M5 MIe5 to denote MMe-s (RNFTL) 9iGes(RNTL) resp.

We see that if as > N + 2, M-SRV = {0}, if as < N + 2, MHas(RV*H) ¢
9MNYes(RVH1), On the other hand, MMY-s(RVFL) o 0 (RVH) if as > N + 2.

We now have the following two remarks :
Remark 4.4.33 For s > 1, there is C = C(N,a,s) > 0 such that
[flonGar < C[[f\s];jégmp for all function f. (4.4.46)

Indeed, set a = [|f|*]ongaw, s0 for any compact set K in RN+L

/K |fI°dzdt < aCapg,, ,(K).

This gives 2aCapg,, ,(K) > [i (|fI® + c1a) dedt > coa~1/s [r | fldzdt, here we used (4.4.24)
in Remark 4.4.11 at the first inequality and Holder’s inequality at the second one. It follows
(4.4.46).

Remark 4.4.34 Assume that p > 1 and % <a< N+ %. Clearly, from Corollary 4.4.20
we assert that for w € MT(RV)

Cfl [w]gmlapr’? S [w ® 5{t:0}]gﬁ’){a,p S Cl [w]mlaprvp 9

02_1 [w]mca72/p’p S [w ® 6{t:0}:| MYa,p S 02 [W]mGa72/p,p ’

for some C; = Ci(N,p,«), i = 1,2. Where Mle—2/pP .= Smla—Q/P’p(RN) , MGa—2/pP =
IMGa—2/pP(RN) and

[W]mla72/p,p(RN) := sup {w(K)/CapIaiz/p’p(K) : C’apI%Q/p’p(K) > 0} ,
[w]mca_z/p,p(RN) = sup {w(K)/C’apGaﬂ/p’p(K) : C'apGWQ/p,p(K) > 0} ,
where the supremum is taken all compact sets K C RN

Clearly, Theorem 4.4.2 and Proposition 4.4.23 lead to the following result.

Proposition 4.4.35 Let ¢ > p—1, s > 1 and 0 < ap < N + 2. Then the following
quantities are equivalent

(W2 )] s (@)™

for every p € MT (RN and 0 < R < oo.

—_ and [(MR [u])E
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4.4. ESTIMATES ON POTENTIAL

In the next result, we present a characterization of the following trace inequality :
IEZ * fllpo@y+1,g < Cillfll oy Vf € LP(RNTY), (4.4.47)

Theorem 4.4.36 Let 0 < R< 00,1 <p<a ' (N+2),0<d<a and i be a nonnegative
Radon measure on RNTL. Then the following statements are equivalent.

1. The trace inequality (4.4.47) holds.
2. There holds

B 5 fll oyt awy < Collfllo@n+ry V€ LPRNTY), (4.4.48)

where dw = (I5° )P dadt.
3. There holds

HEOI?’(S * fllpooo @yt qp) < Csl|fllpo@yery Vf € LP(RNT). (4.4.49)

4. For every compact set E C RN*TL

u(E) < C4CapE§,5 p(E) (4.4.50)

5. IX[u] < 0o a.e and
IO (I [u)?] < CSIE ) ace. (4.4.51)

6. For every compact set E C RN
/E (52 [V dwdt < CoCapyns (E). (4.4.52)

7. For every compact set E C RVt1
/]R oy Tl ) dudt < Crp(E). (4.4.53)

8. For every compact set E C RN+,
/E (129 [y )V dadt < Cspu(E). (4.4.54)

We can find a simple sufficient condition on u so that trace inequality (4.4.47) is satisfied
from the isoperimetric inequality (4.4.39).

Proof of Theorem 4.4.36. As in [80] we can show that 1 & 2 < 3 <4< 6 < 7 and
7= 8,5 = 2. Thus, it is enough to show that 8. = 5. First, we need to show that

(/TOO W min{1, (%) a}cif)>pl_1 <cr @ <min{1, (;)5}>_1 (4.4.55)
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We have for any (y,s) € Q,(z, 1)

QT t ﬂQ ) . —6 d

I [1X G, (a,0) / o N+2 ap(y D ing1, (%) ?p
(2,0 N Quy, 5) -5.d

/ p(@ xN+22p(y ))mm{l,(g) dp

> CQM min{1, <%>_5}

In (4.4.54), we take E = Q(z,1)

/

(@, 1)) > /Q el )

4 (’W nin1, (;)“3) (a1
So 1(Qr(w, 1)) < carNTEmer (min{l, (%)“5}) " Which implies (4.4.55).

Next we set N R
o0 -5 d
Lol = [ M D g, (2) 72,

Vv

)

e = [P i, (£

7y

and
dw = (Iop)” dedt, doy, = (Le[u))? dedt, doo, = (Up[p])” dadt.

We have dw < 2°'~1 (doy . + doa,) . To prove (4.4.51) we need to show that

I 7@ minga, (5) 1Y < el (4.4.56)
/OOO W min{1, <%>75}g < 051[5’6“6](55’ t). (4.4.57)

Since, for all » > 0, 0 < p < r and (y, s) € Qr(:c,t) we have Qp(y, s) C QQT(IE,t). So,

o @l = [ Wiy ) duds = [ (U0l a)0:9) s

Thus, from (4.4.54) we get
ror @) < [ (Ui, o)) duds
QQT($,t) ’

p/
< / 1221uX 6, (w05 5) ) dyds
Q~2T(m7t) ( QQr( ,t) )

< C6M(Q2r(xv t))
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4.4. ESTIMATES ON POTENTIAL

Therefore, (4.4.57) follows. ) 3 3
Since, for all 7 > 0, p > r and (y,s) € Qr(z,t) we have Q,(y,s) C Q2y(x,1t). So, for all
(y,s) € Qr(x,t) we have

0 u(Qap(, 1)) pN\—5. dp
Ly [p)(y, s) < /T p]\ﬁﬁmm{l, <§) o
< erLy[p)(z, ).

Hence,

Since 7~ min{1, (%)_5} < L4 (ra min{1, (%)_6}), we deduce that

)

/0°° o1,(Qr(x, 1)) min{1, (;)—5}dr <

7,N—i—2—oc

. /O e (L ), 1) min, (;)_5}dr

< /Ooo ir <r°‘ min{1, (;)‘H) (L, [l 1) dr

<o [y MG D g, (7))

Therefore, we get (4.4.56) from (4.4.55). This completes the proof of Theorem. |

Remark 4.4.37 It is easy to assert that if 8. holds then for any 0 < f < N + 2
p/
1 | (154" | < 150 (1.458)
for some C = C(N,«, 3,0,p) > 0.

Corollary 4.4.38 Let p > 1,a > 0 such that 0 < ap < N + 2. There holds

7 lyea < |Wali)?| < Ol (4.4.59)
for all ;i € MH(RNF). Furthermore,
[on * ploprar < C2 [t]gprar (4.4.60)

forn € N, p € ME(RVTY) where {¢n} is a sequence of mollifiers in RN*L. Here C; =
Ci(Napv Oé), = 172

Proof. For R = 0o we have I3°[u] = I,[y] and EX® = E,. Thus, by (4.4.20) in Corollary
4.4.10 and Theorem 4.4.36 we get for every compact set E C RNVFL

u(E) < erCapy, ,(E)
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if and only if for every compact set E ¢ RNVFL,

/E (La[u])” dzdt < csCapyy ,(E).

It follows (4.4.59).
Since Lo [@p * 1] = n * o [1] < M (I4[1]) and M is bounded in LP' (RN*!, dw) with w € A,
yield

[ o aln s dw < ealfula,) [ (Gl du.
RN+1 RN+1

Thanks to Proposition 4.4.23 we have

(Gl s )] < ea[ali)]

MHap MHap ’

which implies (4.4.60). ]

Corollary 4.4.39 Letp>1,a>0 with0<ap< N+2,0<d<a and R,d> 0. There
holds

P’ /
[(]Ig,a[m ] < C1(d/R, R) [0 » (4.4.61)
mgavp
for all u € M (RN with diam(supp(p)) < d. Furthermore,
[on * M]gmga,p < Cy(d) [,U«]mga,p (4.4.62)

forn € N, p € MH(RNHL) with diam(supp(p)) < d where {¢n} is a sequence of standard
mollifiers in RN*L,

Proof. It is easy to see that
(c1(d/R) T NEL | o vy < B 5 il ot gveny < er(df REZ )| o govey

for any p € MM+ (RY*T!) with diam(supp(p)) < d, thus two quantities CapEg,(s’p(E) and
Cap Eg,p(E) are equivalent for every compact set £ C RV*! diam(F) < d where equi-
valent constants depend only on N,p,« and d/R. Therefore, by Corollary 4.4.10 we get
CapEg,s’p(E) ~ Capg,, ,(E) for every compact set E C RN+ diam(FE) < d where equiva-
lent constants depend on d/R and R. Thus, by Theorem 4.4.36 and diam(supp(p)) < d we
get, if for every compact set F C RN+

M(E) S CQ(d/R’ R)Capga,p(E)’
then for every compact set £ ¢ RN+
p/
[ (191)" dad < cala/ R R)Capys (B) < cs(d/ R R)Cag, ()
It follows (4.4.61). As in the Proof of Corollary 4.4.38 we also have for w € A,

[ @) dw < estiola,) [ (021)" du
RN+1 P RN+
Thanks to Proposition 4.4.23 and Theorem 4.4.36 we obtain (4.4.62). ]
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Remark 4.4.40 Likewise (see [71, Lemma 5.7]), we can verify that if% <a<N+ %,

[o1n il apr < Crlwi]g, or  and
[o10 ¥ wolgpa e < C2(d) [wolgrca aypr

forn € N and wy,ws € MH(RN) with diam(supp(ws)) < d where C1 = C1(N, a, p), Co(d) =
Ca(N,a,p,d), {10} is a sequence of standard mollifiers in R and |.]
was defined in Remark 4.4.34. Hence, we obtain

mla—Q/p’p7 [’]mGa—Q/p’p

[(@1,71 *wi) ® 5{t:0}]9ﬁna,p <Cs [Wl ® 5{15:0}}931%7@ ’

[(901,71 * w2) ® 6{t=0}] MYGap < 04(d) [w2 ® 5{t=0}]9ﬁga,p ’
forn € N and wi,ws € MHRVT), diam(supp(p)) < d where C3 = C3(N, a,p), Cy(d) =
Cy(N,a,p,d).

Proposition 4.4.41 Let ¢ > 1,0 < ag < N+2, 0< R<00,0<9d < aand K > 0.
Let 0 < f € L1 (RNTY). Let Cy,C5 be constants in inequalities (4.4.50) and (4.4.51) in
Theorem 4.4.36 with p = ¢'. Suppose that {u,} is a sequence of nonnegative measurable
functions in RNTL satisfying

Uny1 < KTR[wd] + f VneN

ug < f (4.4.63)
Then, if for every compact set E C RNTL,
/ Fldxdt < CCapyr.s y (E) (4.4.64)
E «@ b
with .
9—q+1 g—1 q\ 19—
c<cC 4.4.65
- <C5(q—1) <qK2‘1‘1> ) ’ (446
then Kagi-1
90—
Un < qq_il]l,{f»é[fq] +f VYneN. (4.4.66)

Proof. From (4.4.50) and (4.4.51) in Theorem 4.4.36, we see that (4.4.64) implies

TRS(TRI[0))7] < (54) oA L) (4.4.67)

Now we prove (4.4.66) by induction. Clearly, (4.4.66) holds with n = 0. Next we assume
that (4.4.66) holds with n = m. Then, by (4.4.65), (4.4.67) and (4.4.63) we have

Umy1 < KIZO[uld] + f

Kq24—1

< Ko < : >q IR [(IE0 ) 9] + K20 B0 f9) + f

q_
L (Kg2i7\*(C = R “17RS
< K21 | 54 CsI°[f9] + K29 I°[f9) + f
q—1
< Ry 4
q_
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Therefore (4.4.66) also holds true with n = m+1. This completes the proof of the Theorem.
[

Corollary 4.4.42 Let q > N{VF—ZFEa’ a>0and f € Li(RNH), There exists a constant

C > 0 depending on N,«,q such that if for every compact set E C RNTL, fE fldzdt <
CCapyy, o (E), then u = Hqa[ul] + f admits a positive solution u € L (RNT1).

loc

Proof. Consider the sequence {u,} of nonnegative functions defined by ug = f and up4+1 =
Holud] + f V¥V n > 0. It is easy to see that u,1 < cila[ul] + f Vn > 0. By Proposition
4.4.41 and Corollary 4.4.38, there exists a constant ca = c2(N,a,q) > 0 such that if for
every compact set £ C RNTL [ g fldzdt < coCapyy (E) then u, is well defined and

3e-1
< a4 g

nS T [f1+f ¥n>0.

Since {uy,} is nondecreasing, thus thanks to the dominated convergence theorem we obtain
u(z,t) = lim uy,(z,t) is a solution of u = Ha[u?]+ f which u € LI (RN*1). This completes
n—00

loc

the proof of the Corollary. |

Corollary 4.4.43 Let g > 1, a > 0,0 < R < 00,0 <6 < a and p € MRV, The
following two statements are equivalent.

a. for every compact set E C RN*L, fE f1<CCapyrs q,(E) for some a constant C > 0

b. There exists a function u € LL (RNT) such that u = HE’E[uq] + ef for somee > 0.

loc

Proof. We will prove b. = a. Set dw(x,t) = <<H§’6[uq]>q+6qfq) dxdt, thus we have

dw(zx,t) > (Io}jt ’5[w]>q dzdt. Let M, denote the centered Hardy-littlewoood maximal func-
tion which is defined for g € L}, (RNT! dw),

1
ng(.%',t) = sup / ’g’d(«U(JJ,t).

>0 W(Qp(7,1)) JG(a.t)

For E ¢ RN*! is a compact set, we have

/RN+1 (Muxg)? (}1576[@)‘1 dxdt < / (Moxp)? dw(z, t).

RN-H

Since M, is bounded on L*(RN*! dw) for s > 1 and (M, xg)? (HQ’JM)(J > <]I§’5[wXE])q,
thus

q
/]RNJrl (]Ig’é[wXE]) dzdt < cqw(E).

By Theorem 4.4.36, we get for any compact set £ C RV*!
w(E) < CQC&pE§,57q,(E).

It follows the results. [ |
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EQUATIONS

Remark 4.4.44 In [64], we also use Theorem (4.4.36) to show existence of mild solutions
to the Navier-Stokes Equations

{ Oru — Au+ Pdiv(u ® u) =PF in RN x (0,00), (4.4.68)

u(0) = uy in RY,

where u, F € RN | P = id — VA™IV. is the Helmholtz Leray projection onto the vector
fields of zero divergence, i.e, for f € RN, Pf = f — Vu and Au = divf. Namely, there
exists C = C(N) > 0 such that if div(ug) =0 and

/ D, t)dedt < C Capyy, 5(K), (4.4.69)
K
for any compact set K C RN where if (x,t) € RN x [0, +00),
t
Diat) = (cBun)(o) + [ (el PF)(a)ds,
0

and D(x,t) = 0 otherwise. Then, the (4.4.68) has global solution u satisfying
lu(z,t)| < |D(z,t)| + ci[| D] (x,t) (4.4.70)

for all (x,t) € RN x (0,00) for some ¢ = c(N).

4.5 Global point wise estimates of solutions to the parabolic
equations

First, we recall Duzzar and Mingione’s result [27], also see [42, 43| which involves local
pointwise estimates for solutions of equations (4.2.4).

Theorem 4.5.1 Then, there exists a constant C depending only N, A1, Ay such that if
u € L2(0, T, HY(Q)) N C(Qr) is a weak solution to (4.2.4) with u € L*(Qr) and u(0) = 0

u(z,t) <O Juldyds + CL"|ul](z, 1) (4.5.1)
QR(xvt)

for all Qap(x,t) C Q x (—o0,T).
Furthermore, if A is independent of space variable x, (4.2.27) is satisfied and Vu € C ()
then

Vu(z,t)| < C + |Vu|dyds + CT2R[|u]] (z, ) (4.5.2)
QR(Ivt)
for all Qar(x,t) C Q x (—o0,T).
Proof of Theorem 4.2.1. Let pu = po + ps € Mp(Qr), with pg € Mo(Qr), us € Ms(Q7).

By Proposition 4.3.7, there exist sequences of nonnegative measures fin, 05 = (fn,i> Gn.i hn,i)
and fu, s; such that fp i, gni, hni € C°(Q7) and strongly converge to some f;, g, h; in
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LI(QT)’ L2(QT7 RN) and L2(07 T, H&(Q)) respectively and Bn,1y Hn,2; Bn,s,1y Hn,s,2 € CSO(QT)
converge to pt, u”, uf, uy resp. in the narrow topology with p,; = pnoi + fn.si, for
i = 1,2 and satisfying ud = (f1,91,h1), g = (f2,92,h2) and 0 < 1 < @+ pt,0 <
pna < @n* u~, where {p,} is a sequence of standard mollifiers in RV *1.

Let 014,02, € CX(Q) be convergent to o™ and o~ in the narrow topology and in
LY(Q) if o € LY() resp. such that 0 < i < prn*x0T,0 <02, < p1,*0" where {¢1,}
is a sequence of standard mollifiers in RY. Set Hn = [in1 — Pn2 and o, = 01, — O2.5.

Let wp, un, 1, un 2 be solutions of equations

(up)t — div(A(z,t, Vuy)) = iy, in Qp,
up, =0 on 9N x (0,7), (4.5.3)
un(0) =0, on Q,

(tn)e — div(A(x,t, Vun1)) = XQppn1 in Bag, (7o) % (0,273),
Un1 =0 on dBar,(w0) x (0,2T4), (4.5.4)
un,1(0) =01, on Bapy (20),
(tn2)t + div(A(z, t, —Vun2)) = Xaptn2 in Bar (o) x (0,217),
Un2 =0 on dBar,(z0) x (0,2T3), (4.5.5)
un2(0) = 02, on Bagy (20),
where Q C By, (zg) for xg € 2.
We see that w1, un2 > 0 in Bar,(x0) X (0,273) and —up2 < uy < up g in Qr.
Now, we estimate u, 1. By Remark 4.3.3 and Theorem 4.3.6, a sequence {uy, 1,m} of solu-
tions to equations

(un,l,m)t - dZU(A(IL‘, t, vun,l,m)) - (gn,m)t + XQr MUn,1 in BQTO (CUO) X (_2T027 2T02)7
Un1m =0 on dBar,(z0) x (—21¢,2T3),
Un1,m(—2T3) =0 on Bar,(z0),
(4.5.6)
converges to u, 1 in Bar,(w0) x (0,273), where gy m(z,t) = o10(7) fizTg w2.m(s)ds and

{¢2.m} is a sequence of mollifiers in R.
By Remark 4.3.2, we have

Hu”vlymHLl(Q}TO(xo,o)) < ClTo2An,m, (4.5.7)

where Ay, = pn1 (1) + f@zTo (20,0) TLn ()2, (t)dadt.
Hence, thanks to Theorem 4.5.1 we have for (z,t) € Qr

Un,1m (T, t) < csTO_N_Q\|un71,mHL1(Q2To($070)) + cglla[pn,1](z, t) + cgla[o1 nom](z, t)
< oola[pn1](@, t) + cola[o1,niom] (@, 1).
Since 0 < pip1 < pp*xpt, o1 < prp ko,
Un,1m (2, 1) < coon * L[] (2, 1) 4 co(@rmpam) * Iao" ® dpoyl(x,t) V (2,t) € Q.
Letting m — oo, we get

un1 (2, 1) < copn * Do )(z, 1) + coprn * (Ialo™ @ dp—p] (-, 1)) (2) ¥ (2,) € Qp.
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Similarly, we also get
Un2(2,t) < copn * o[ ](2,) + coprn * (I2[0” @ p—gy] (1)) (2) V (2,t) € Q.
Consequently, by Proposition 4.3.5 and Theorem 4.3.6 , up to a subsequence, {u,, } converges

to a distribution solution (a renormalized solution if o € L'(£2)) u of (4.2.4) and satisfied
(4.2.7). ]

Remark 4.5.2 Obviously, if o = 0 and supp(p) C Qx[a,T], a > 0 thenu = 0 in 2x (0, a).

Remark 4.5.3 If A is independent of space variable x, (4.2.27) is satisfied then
IVu(z, )] < C(N, Ay, Ao, To/d)IT (|l + |o| @ 6i—oy) (2, 1) (4.5.8)

for any (z,t) € Q% (0,T) and 0 < d <  min{sup,cq d(x,@Q),Tolﬂ} where Q4 = {x € Q :
d(z,00) > d}. Indeed, by Remark 4.3.3 and Theorem 4.3.6, a sequence {v, m} of solutions
to equations

(Vn,m)t — div(A(t, Vupm)) = (Gnm), + XQrtn i QX (=212, 7),
Vpm =0 on 0Q x (—21¢,T), (4.5.9)
Vpm(—=2T2) =0 on Q,

converges to u, in L*(0,T, Wol’l(Q)), where gnm(z,t) = on(x) foTOg vam(s)ds and {p2m}

is a sequence of mollifiers in R.
By Theorem 4.5.1, we have for any (x,t) € Q% x (0,T)

‘vam\dyds + Cl]IlliHMn‘ + |on| ® 902,m] (z,1).

[Vt ()] < q][

Qay2(,t)

On the other hand, by remark 4.3.2,
0l s @ < 2To(lal + 0] © 2,)(2 x (~T3.T)).
Therefore, for any (z,t) € Q% x (0,T)
[Vonm(z, )] < csluflpn| + |on] @ pom] (2, 1),

where c3 depends on Ty/d.
Finally, letting m — oo and n — oo we get for any (z,t) € Q¢ x (0,T)

[Vu(z, )] < eslu[|u] + |o] @ dge—oy] (2, 1).
We conclude (4.5.8) since Iy [|u] + [0 @ dy—py] < a2y + |o| ® dgi=0y] in Qr.
Next, we will establish pointwise estimates from below for solutions of equations (4.2.4).
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Theorem 4.5.4 Ifu € C(Q,(y,s)) N L%(s — 1%, s, H'(B.(y))) is a nonnegative weak solu-
tion of (4.2.4) with data p € MT(Q,(y,s)) and u(s —r?) > 0, then there exists a constant
C depending on N, A1, Ay such that

[e7e] _ 35,2
u(y, S) > CZ M(Qrk/S(yvif 128Tk))7 (4510)
k=0 "k

where r, = 47 Fr.

Proof. It is enough to show that for p € (0,7)

35 2))

Qs fv_ 1257 <e¢i( inf w— inf w). (4.5.11)
IO Qp/4(y78) Qp(y78)

By [50, Theorem 6.18, p. 122 |, we have for any 0 € (0,1 + 2/N),

1/0
(f‘ (u—aﬁ> < ca(b—a), (4.5.12)
Qp/4(y757p2/4)

where b = ianp/4(y78) u, a =infg (, s u and a constant ¢z depends on N, Ay, Ag, 6.

Let n € C°(Q,(y,s)) such that 0 < n < 1, suppn C Q,/4(y,s — 1Y), n = 1in
Qp/g(y, 5 — %pZ) and |Vn| < c3/p?, |ni| < c3/p? where c3 = c3(N). We have

1(Q sy, s — %pQ)) < / n’dp(x,t)

Qp(y,5)
= / wn?dzdt + 2/ nA(z,t, Vu)Vndxdt
Qp(y,5) Qo (y,s)
= —2/ (u — a)nndzdt + 2/ nA(z,t, Vu)Vndzdt
Qp(y,s) Qp(y,5)

< 63r_2/ (u — a)dzdt + 2A4 / n|Vu||Vn|dzdt
Qp/a(y,s—%0?) (s

<car™(b—a)+ 04/ n|Vu||Vn|dzdt.
Qo(y,s)

Here we used (4.5.12) with § = 1 in the last inequality. It remains to show that
/ n|Vul|Vyldzdt < csr™ (b — a). (4.5.13)
Qr(y,s)
First, we verify that for € € (0, 1)

/ \Vul?(u — a) "¢ P dedt < Cﬁ/ (uw—a)'"= (nlne| + |Vn|?) dedt.  (4.5.14)
Qp(ys) Qp(ys)
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Indeed, for § € (0,1) we choose ¢ = (u — a + §)~°n? as test function in (4.2.4),

0< / ug(u — a + 0) *nPdxdt + / A(z,t, VUV ((u — a + 6)"n?) dadt
Qﬂ(yvs) Qﬂ(yvs)

<2(1 —5)/ (u— a+6)1_5|nt|nd:cdt—5A2/ \Vul|?(u — a+ 6) " nPdadt
Qp(y,s) Qp(y;9)
+2A1/ n|Vu|(u — a+ §)"°|Vn|dzdt.
Qn(y:5)

So, we deduce (4.5.14) from using the Holder inequality and letting 6 — 0.
Therefore, for € € (0,2/N) using the Holder inequality and we get

/ 0| Vu| V| dadt
Qr(y,s
< ( /
Qp
1/2 1/2
<cy (/ (u— a)l_6 (7I|77t| + \Vn|2) dmdt) (/ (u— a)5+1|V17|2dmdt)
Qp(yus) Qp(y1s)

1/2 1/2
< cgp 2 (/ (u— a)lsdxdt> (/ (u— a)EHda:dt) .
Qp/a(y,s—%p?) Qp/a(y,s—3p?)

Consequently, we get (4.5.11) from (4.5.12). |

1/2 1/2
|Vl (u — a)_5_1772d:1:dt> (/ (u— a)a“Vn\zd:rdt)
(y75) Qp(yvs)

Proof of Theorem 4.2.3. Let u, € (C°(Qr))t,0, € (CX(Q))T be in the proof of
Theorem 4.2.1. Let u, be a weak solution of equation

(un)¢ — div(A(z,t, Vuy,)) = p, in Qr,
u, =0 on 90 x (0,7),
un(0) = o, on Q.

As the proof of Theorem 4.2.1, thanks to Theorem 4.5.4 we get By Remark for any
Qr(y,5) C Q x (—diam(Q),T) and ry = 4%

o (@8 (Y. s — 3557 2 (00 ® m0)) (Qry /s (U s — 13577
un(y, ) 2012 ( k/S(TN i557i)) +clz( {t 0})( T?V/S( 128 k))
k=0 k k=0 k

Finally, by Proposition 4.3.5 and Theorem 4.3.6 we get the results. ]

Remark 4.5.5 If u € LY(Qr) satisfies (4.2.8) then Ga[xpu] € LYARN*Y) and Gz [xro] €
LYRYN) for every E CC Q x [0,T) and F CC Q. Indeed, for E CC Q x [0,T), ¢ =
dist(E,(Q x (0,T)) U (Q x {t =T})) > 0, we can see that for any (y,s) € Qr, r, = 4 /4

> (EN ,§ — o2
u(y,s) > c1 Al Q”’“/S:Jyv 128 ’“)), (4.5.15)
k=0 k
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where i = p+ 0 @ dgy—g} -
Moreover, for any (y,s) ¢ Qr

(EmQrk/S(ya 1258rl%))

N
Tk

=0.

k=0
Thus,

A(E N Qrk/S( 13258TI%))
OO>/RN+IZ< N dyds

k
q

/]R Z/ (/1 EﬁQrk/s( 128Tk))> dsdy
N k

/ Z/ (ﬂ EﬂQrk/s(y, ))) dady

]RN

€/64 q
202/ / (u En%p(y,s))) 3
RN+1 Jo P P

> c3(e) /R . (Goliixe])? dsdy.

Thus, from Proposition 4.4.19, we get the results.

Proof of Theorem 4.2.5. Set D,, = B,,(0) x (—n?n?). For n > 4, by Theorem 4.2.1,
there exists a renormalized solution wu,, to problem

(un)t - dZU(A(l‘)ta vun)) = XD,,_1W in Dn,
up, =0 on dB,(0) x (—n?,n?),
un(—n?) =0 on B,(0).

relative to a decomposition (fy, gn, hn) of xp,_,wo satisfying
—Kp[w |(z,t) < up(z,t) < Klglw")(z,t) V (z,t) € Dy, (4.5.16)

From the proof of Theorem 4.2.1 and Remark 4.3.9, we can assume that w,, satisfies (4.3.14)
and (4.3.15) in Proposition 4.3.16 with 1 < gy < 232, L =0 and

| fallzr oy + Ngnllz2 oy + M1kl + [V hall 20,y < 2w[(Dita) (4.5.17)

for any i = 1,...,n — 1 and h,, is convergent in LL (RN*1).

On the other hand, by Lemma 4.4.26 we have for any s € (1, 232)

/ | *dadt < K* / ([lw])) dadt

m m

<K () ded
Qam(xo,to)

< et MmN+, (4.5.18)
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for n > m > |xo| + |to|'/?. Consequently, we can apply Proposition 4.3.17 and obtain that
uy, converges to some u in L] (R; VV;)C1 (RMY).
Since for any « € (0,1/2)

Vu,|?
/D (|u||—il—tl|)°‘“d$dt§0m(a) vV n>m,

N+2

thus using (4.5.18) and Holder inequality, we get for any 1 < s1 < {77

/ \V|[*tdzdt < C(s1) for all n>m > |zo| + |to]"/?.

This yields u, — u in L} (R; VVI1 SHRYY).

Take ¢ € C°(RN*1) and mg € N with supp(¢) C Dyp,, we have for n > mqg + 1

_/ Un%d?:dt—i—/ Az, t, Vun)Vgoda?dt—/ odw
RN+1 RN+1 RN+1

Letting n — oo, we conclude that u is a distribution solution to problem (4.2.6) with data
i = w which satisfies (4.2.9).
Claim 1. If w > 0. By Theorem 4.2.3, we have for n > 4%+l (y s) € B, x (0,n?)

> ¢ Z Qrk/S Yy,Ss 128rk) N Dn 1)

ry ’
where 7, = 47%+ko_ This gives
o
wW(Qq-2k-3(y, s — 35 x 27*=") N B,,_1(0) x (0, (n — 1)2
) e S @@l 4 0B © % (O n = 17)
k=—ko

Letting n — oo and kg — oo we have (4.2.10). Finally, thanks to Proposition 4.4.8 and
Theorem 4.4.2, we will assert (4.2.11) if we show that for ¢ > 252

/ ( Z Ay 3(36; ;Ni:)@5><2 ub) > dmdt>03//+oo< Qp > t))) dpdmdt
R

k=—o00

Indeed,

o0 _ —4k=7\\\ ¢
/ ( Z W(Q22k3<3772t_21\3€5 X 2 ))> dxdt
R

k=—o00
> WQ22k3$t—35X24k7))
>k_zoo /R ( - dtdz
00
_ Z / (w Q2 2k2]$k.%' t))) dt
k=—o00 R 2

64/RN+1/0+00< prt») dp,

190



4.6. QUASILINEAR LANE-EMDEN TYPE PARABOLIC EQUATIONS

Claim 2. If A is independent of space variable x and (4.2.27) is satisfied. By Remark 4.5.3
we get for any (z,t) € Dy, /4

[Vun(z,1)| < esl[Jwl] (2, 1).

Letting n — oo, we get (4.2.12).

Claim 3. If w = p+ 0 ® dgy—gy with p € M(RN x (0,00)) and o € M(RY), then by
Remark (4.5.2) we can assume that u, = 0 in B,,(0) x (—n?,0). So, u = 0 in RV x (—o0, 0).
Therefore, clearly ulgn g o) is a distribution solution to (4.2.5). The proof is complete. m

Remark 4.5.6 If w € My(RN*L) then u satisfies

IVulll ez < C(N, Ag, Ag)[w| (R,

LN+ (RN+1) ™

Moreover, I[|w|] € L¥’°°(RN+1) and Lfjw|] < oo a.e in RN*L,

4.6 Quasilinear Lane-Emden Type Parabolic Equations

4.6.1 Quasilinear Lane-Emden Parabolic Equations in (r

To prove Theorem 4.2.8 we need the following proposition which was proved in [6].

Proposition 4.6.1 Assume O is an open subset of RN T, Let p > 1 and p € MT(O). If u

is absolutely continuous with respect to Capy 1 ,, in O, there exists a nondecreasing sequence
*

{pn} C 93?2‘(0) N (Wg’l(RNH)) , with compact support in O which converges to p weakly

in M(O). Moreover, if pn € M (O) then ||, — lon, (0) — 0 as n — oo.

Remark 4.6.2 By Theorem 4.4.17, Wy (RNT1) = LBRNHY), it follows {u,} € M (O)N

v v ,
(LE(RN+1))*. Note that \|un\|(ﬁg(RNH)>* = [|Golpnlll o mv+1y- S0 Galpn] € LP (RN+1),
Consequently, from (4.4.17) in Proposition 4.4.8, we obtain 1¥[u,] € LY (RN*Y) for any
n € N and R > 0. In particular, Ia[p,] € Lf;c(RNH) for any n € N.

Remark 4.6.3 As in the proof of Theorem 2.5 in [16], we can prove a general version of
Proposition 4.6.1, that is : for p > 1, if p is absolutely continuous with respect to Capg, ,,
in O, there exists a nondecreasing sequence {p,} C M (0) N (L'g(]RNH))*, with compact
support in O which converges to u weakly in M(O). Furthermore, I [un] € Lf;C(RN“) for

all n € N. Besides, we also obtain that for p € My(O) is absolutely continuous with respect
to Capg, ,, in O if and only if p = f + v where f € L'(O) and v € (EZ(RN“))* :

Proof of Theorem 4.2.8. First, assume that o € L'(£2). Because y is absolutely conti-
nuous with respect to the capacity Capy ; /, so are T and . Applying Proposition 4.6.1
there exist two nondecreasing sequences {u1,} and {u2,} of positive bounded measures
with compact support in Q7 which converge to u™ and p~ in 9, (Qr) respectively and
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such that Ip[p1 ], I2[pen] € L9(Q7).

For ¢ = 1,2, set fi;1 = pi1 and fi; j = ;5 — prij—1 > 0, 80 i p = Z?zl fti ;. We write
Min = Min,0F Min,s, i = fij,0+F ijs With 6.0, fino € Mo(Q7), tin,s, fLin,s € Ms(Qr).
As in the proof of Theorem 4.2.1, for any j € N and ¢ = 1, 2, there exist sequences of non-
negative measures fip i j0 = (fm.ijs Im,ij> Pm,ij) and fim i ;s such that fo, i 5, 9miij, Pmij €
C2(Qr) and strongly converge to some f; j, gi j, hi j in LY(Q7), L2(Qp, RY) and L?(0, T, HL(2))
respectively and fim, i j, fim,ij,s € Coo(Sdr) converge to fi; j, fli j,s resp. in the narrow topo-
logy with fim,ij = fim,ij0 + fim,ijs Which satisty ;50 = (fij; 9ijs hig) and 0 < fimi; <
©m * f1;,; and

[ fmigll 2t @) H9m.isl p2 o vy F 1 Pmi gl L2 0,1, 12 (@) FHmiigis (1) < 202,5(Qr). (4.6.1)

Here {,,} is a sequence of mollifiers in RV*1,
For any n, k,m € N, let wy g m, Ui nkm, U2 nkm € W wWithW ={2: 2 € L?(0,T, H&(Q)), zt €
L2(0, T, H~1(Q))} be solutions of problems

(Un m)t — div(A(z, t, Vg gm)) + Te(|Un gm| T n g m) = 2?21(/1%1,]‘ — fim2;) in Qp,
Up ym = 0 on 09 x (0,7),
Up jom(0) = Tp(0T) = Tp(o™) on €,
(4.6.2)
(utn,em)t — div(A(@, b, Vurnpem)) + Te(u] , 5 0n) = 5 fim1; in Qr,
Ul km =0 on 092 x (0,7), (4.6.3)
U1 km(0) = Th(o™) in Q,

(U2,n,k,m)t - d“}</~1(x7 t, vu?,n,k,m)) + Tk(ug7n7k7m) = Z?:l ﬂm,lj in Qp,
U2 nkm =0 on 992 x (0,7, (4.6.4)
U2 km(0) =Tp(0™) in Q,

where A(z,t,£) = —A(z, t, —£).
By Comparison Principle Theorem and Theorem 4.2.1, there holds, for any m, k the se-
quences {u1 . kmtn and {ugp km}n are increasing and

—KT» [Tn(J_) X 5{15:0}] — Kl [,UZ,n * Spm] < —U2 n,km < Un, k,m < U1,n,km
< Klg[pn % om) + Kl [Th(0F) @ d—y],

where a constant K is in Theorem 4.2.1. Thus,

_K]IQ [Tn(ai) ® 5{t:0}] - K]I2 [M?,n] * Pm < —U2 n,k,m < Un, k,m < U1, n,k;m
< Klo[p1,n] * om + Ko [Tn(0") @ dgioy ).

Moreover,

/ Tk(ugn ) dxdt < / Om * pipdzdt + |o|(2) < |p|(Qr) + |o|(92).
Qr U Qr

As in [14, Proof of Lemma 5.3|, thanks to Proposition 4.3.5 and Theorem 4.3.6, there
exist subsequences of {up km}tm {Winkmtm: {U2nkm}m, still denoted them, converging
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to renormalized solutions u, j Ui nk, U2,k Of equations (4.6.2) with data 1, — pon,
unk(0) = T,(c™) — Tn(a;) and the decomposition (3 7, fl,g‘ =i fog 2 91 —
Z?:l 927]‘,2?21 th — Zj:l h27]’) of H1n,0 — H2,n,0, (463) with data Hin, ul’n,k(O) =
Tn(0™) and the decomposition (3°7_; f1j, D7y G155 2 j=y P1,j) of p1n0, (4.6.4) with
data p2,n, u2nk(0) = Tn(c™) and the decomposition (3°7_; faj, D5y 92,4, 21—y h2,j) of
H2,n.0 respectively, which satisfy

—KIo[T(07) ® 6pp—oy) — Klo[p2n] < —uznp < Unk < U1 pnk
< Kop1,n] + Ko [Tn(g+) ® 6{t:()}]'
Next, as in [14, Proof of Lemma 5.4 since Ia[u; ] € LI(Q2r) for any n, thanks to Proposi-

tion 4.3.5 and Theorem 4.3.6, there exist subsequences of {uy k }r {w1,n.k} e, {U2.n.k}E, still
denoted them, converging to renormalized solutions u, u1 y, u2, of equations

(un)t — div(A(z, t, Vup)) + |un|" up = p1n — pon in Qr,
Up =0 on 082 x (0,7, (4.6.5)
un(0) = Ty(o") = Tp(o™) in Q,

(w1,n)e — div(A(z,t, Vurn)) +uf ,, = p1, in Qr,
Uty =0 on 99 x (0,7), (4.6.6)
u1,(0) =Ty(c") in Q,
(ugn )i — div(A(x,t, Vug,p)) + “g,n = p2, in Qrp,
ugy =0 on 99 x (0,7), (4.6.7)
UQ’n(O) = Tn(af) in Q,
relgtive to the decomposition (Z;;:l fij — ;?:1 f2.4, Zn:?:l 915 — D2i1 92 Z?:}L hij —
> j=192j > i=1 h2,j) of p2no respectively, which satisfy

_K]IQ[TTL(UQ_) & 5{15:0}] - K]IZ[FLQ,TL] < —U2.n S Un S ul,n

< Klp[p1n] + KLo[T(ug ) @ dgi—oy)-
and the sequences {uj n}yn and {ua,}, are increasing and
/ u;{ndwdt < |u|(Q27) + |o|(Q).
Qp
Note that from (4.6.1) we have
sl @) + 1955l 2iap mvy + WhigllL2 o @) < 2045 (Qr)

which implies

S Wil + YNl 2eryy + D il m ) < 200 Q1) < 2/pl(Qr).
j=1 j=1 j=1
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Finally, as in [14, Proof of Theorem 5.2] thanks to Proposition 4.3.5, Theorem 4.3.6 and Mo-
notone Convergence Theorem there exist subsequences of {wy, }n, {t1n}n, {u2.n}n, still de-
noted them, converging to renormalized solutions w, u1, ug of equations (4.6.5) with data g,
u(0) = o and the decomposition (3 72 f1j =3 72 f2.5, D51 91, = Dot 92,45 Dgeq P, —

> =1 haj) of po, (4.6.6) with data u*, u1(0) = o and the decomposition (3272 f1,5, 272, 91,5
> ey hj) of g > (4.6.7) with data =, u2(0) = o~ and the decomposition (D521 f2.55 20521 92,55
> 521 haj) of pg , respectively and

—Klylo™ @ bg—py] — Klo[p7] < —up < u <up < Ko[pt] 4+ Klb[o" @ dg—gy].

We now have remark : if o = 0 and supp(u) C Q x [a,T], a > 0, then u = u; = ug = 0 in
Q x (0,a) since Uy j = Uiy = Uz p k= 0in Q x (0,a).

Next, we will consider o € M;(2) such that o is absolutely continuous with respect to
the capacity Capg 2 in Q. So, Xap+ 0 ® d(4—gy is absolutely continuous with respect to

q
the capacity Capg o in Q x (=T,T). As above, we verify that there exists a renormalized
solution u of

ug — div(A(z, t, Vu) + |[ul? u = xopp + 0 @ gy in Q@ x (=T, 7),
u=0 on 00 x (=T,T), (4.6.8)
u(=T)=0 on £,

satisfying . = 0 in  x (=7',0) and
—Klplo™ @ 0pmpy] — Ko [p7] < u < Kl [p¥] 4+ Kla[o™ ® 6—gy].

Finally, from remark 4.3.11 we get the result. This completes the proof of the theorem. m

Proof of Theorem 4.2.9. Let {u,;} C C(Qr),0in € CX(Q) for i = 1,2 be as in
the proof of Theorem 4.2.1. We have 0 < py, 1 < oy, * ut,0 < tn2 < opxp,0 < opy, <
Vi x0T,0 < 02, < 1 %0 for any n € N where {p,} and {¢1,} are sequences of
standard mollifiers in RV RY respectively.

We prove that the problem (4.2.2) has a solution with data p = fin, = fing,1 — tng,2,0 =
Ong = Olmg — O2,n for ng € N. Put

K
J = {U € LI(Qr) 1u' < qq_ilﬂgTo’d[Mno,l + 1o @ Of1—0}]

_ K
and u” < (;]_71}137‘0,5[#“072 + 02ny ® 5{15:0}] } .
where max{—% +2,0} <d<2.
Clearly, J is closed under the strong topology of LI(27) and convex.
We consider a map S : J — J defined for each v € J by S(v) = u, where u € L*(Qr) is
the unique renormalized solution of

up — div(A(z,t, Vu)) = 0|97 + ping.1 — fing 2 in Qr,
u=0 on 90 x (0,7), (4.6.9)

uw(0) = 01ng — 02,y in €.
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By Theorem 4.2.1, we have

ut < KIP((v7)9] + KI5 [ftng,1 + 01,00 @ Spi—0y],
u” < KIP((v7)9] + KI5 [ftng 2 + 02,00 @ Spi—0y],

where K is the constant in Theorem 4.2.1. Thus,
K \? q
ut <K <qq—1> I {(HgTova[“nml 01y ® 5{t:0}}) } + KI5 [ng 1 + 01mp ® Sgi=0})s
_ K \? q
gK<£4>g%ﬂ@mﬂwﬂ+@%®%OM}+M@ﬂMw+@m®%ﬂﬂ

Thus, thanks to Theorem 4.4.36 there exists ¢; = c¢;(N, K, 0,q) such that if for every
compact sets £ C RN+,

ng l(B) + (193] © S0} (B) < e1Cap s, (B). (46.10)

then ]IZTO’(S[,unO,Z- + Oing @ Opp—oy] € LY(RN*1) and

q—1
HSTO’(S {<H2TO7 [:U'no i+ 0 ;10 & 5{15 0}]) :| = ((I{q))q]IQTO7 [,uno it 0o 100 ® 5{t 0}] i= 1 2.

which implies v € LY(Q7r) and

K

ut < LH2T0 [tng.1 + O1m,, 5{t:0}] and
K

v qqfil]IgTo [1ng,2 + 2,00 ® 6{t=0}]'

Now we assume that (4.6.10) is satisfied, so S is well defined. Therefore, if we can show
that the map S : J — J is continuous and S(J) is pre-compact under the strong topology
of LY(Qr) then by Schauder Fixed Point Theorem, S has a fixed point on J. Hence the
problem (4.2.2) has a solution with data u = pin,, 0 = op,.
Now we show that S is continuous. Let {v,} be a sequence in J such that v,, converges
strongly in L9(€r) to a function v € J. Set u,, = S(vy,). We need to show that u, — S(v)
in Lq(QT)

By Proposition 4.3.5, there exists a subsequence of {u,}, still denoted by it, converging
to uw a.e in Qp. Since

|Un| < Z q 2TD’ Nnoz+azno®5{t 0}] ELq(QT) VneN
= 12

Applying Dominated Convergence Theorem, we have u,, — u in L4(Q7). Hence, thanks to
Theorem 4.3.6 we get u = S(v).

Next we show that S is pre-compact. Indeed if {u,} = {S(v,)} is a sequence in S(J).
By Proposition 4.3.5, there exists a subsequence of {uy,}, still denoted by it, converging to
u a.e in Qp. Again, using get Dominated Convergence Theorem we get u,, — u in L1(Qy).
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So S is pre-compact.
Next, thanks to Corollary 4.4.39 and Remark 4.4.40 we have

[Mn,i +0in ® 6{t=0}]§);)192»fﬂ < C2[|M| + |0| ® 5{1&:0}]9}(@2,(1’ VneNi=1,2

for some ¢y = (N, q).
In addition, by the proof of Corollary 4.4.39 we get

(03(T0))*1Capg27q,(E) < CapEgTO,é’q,(E) < ¢3(To)Capg, 4 (E)

for every compact set E with diam(E) < 2Ty. Thus, there is ¢4 = ¢4(N, K, 0, q,Ty) such
that if

[l + o] @ S =0} lgpea.ar < 4 (4.6.11)

then (4.6.10) holds for any ng € N.

Now we suppose that (4.6.11) holds, it is equivalent to (4.2.13) holding for some constant
Cy = C1(Ty) by Remark 4.4.34. Therefore, for any n € N there exists a renormalized
solution wu,, of

(up)r — div(A(z,t, Vuy)) = |un\q_1un + fn1 — fn2 in Qp,
Up =0 on 00 x (0,T), (4.6.12)
un(0) =01 — 02, in €,

which satisfies

_ gK 12700
g—1"72

qK
[tn2 + 020 ® dpi—0y] < un < q_ilﬂgTo’é[um + 01,0 ® Sgi=0}]-

Thus, for every (z,t) € Qp,

qK _ K _
= oo B )@ 0) = e < (10T @ =gy, 0) (@) < unla, 1)
qK _ qK _
< oyt WD @D+ T enn x (Gl © g5 0) (@):

Since @n*ﬂgTO’é[ui](:v, t), cpl,n*(ﬂgTO’é[ai@é{t:O}] (.,t))(x) converge to HSTO"S[ui] (z,t), ]IgTO"s[ai@

dgi—0y) (2, 1) in LIRN*1) as n — oo, respectively, so |u,|? is equi-integrable.

By Proposition 4.3.5, there exists a subsequence of {uy,}, still denoted by its, converging
to u a.e in Qp. It follows |u, |7 u, — |[ul?tu in LY(Q7).

Consequently, by Proposition 4.3.5 and Theorem 4.3.6, we obtain that w is a distribution
(a renormalized solution if o € L'(Q)) of (4.2.2) with data u, o, and satisfies (4.2.14).
Furthermore, by Corollary 4.4.39 we have

(e5(T0)) " |l + |o| @ S=0}] g
0 1
< [(HgTO ] + |o] @5{t20}}) ng < e5(To) [ll + lo] @ 611=0}] gyaa.or

which implies [Ju|]yn6,.¢ < ca(To) and we get (4.2.15). This completes the proof of the
Theorem. u
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Remark 4.6.4 In view of above proof, we can see that

i. The Theorem 4.2.9 also holds when we replace assumption (4.2.13) by
lul(E) < CCapyy, o (E) and |o|(F) < CCapy, o(F).
q

for every compact sets E ¢ RNt F ¢ RN where C = C(NA1,Ag,q) is some a
constant.

ii. If o =0 and supp(n) C Qxa,T], a > 0, then we can show that a solution u in Theorem
4.2.9 satisfies u =0 in Q x (0,a) since we can replace the set E by E' :

K
E = {u € LYQr):u=01inQx (0,a) and u™ < d 1]I2T0’ [tng 1 + O1n @ Og1— 0}}
q —

_ K
and u” < qq_ 1]I2T°’ [ing.2 + 02,00 ® dp1—0y] }

4.6.2 Quasilinear Lane-Emden Parabolic Equations in RY x (0,00) and
RN+1

This section is devoted to proofs of Theorem 4.2.12 and 4.2.14.
Proof of the Theorem 4.2.12. Since w is absolutely continuous with respect to the
capacity Capy;, in RNT! |w]| is too. Set D, = B,(0) x (—n? n?). From the proof of
Theorem 4.2.8, there exist renormalized solutions u,, v, of

(un) — div(A(z, t, Vuy)) + |ug|9  uy, = xp,w  in Dy,
up, =0 on 9B, (0) x (—n?,n?),
up(—n?) =0 in B,(0),

and
(vn)t — div(A(z, t, Vo,)) + v = xp,|w| in Dy,
v, =0 on 0B,(0) x (—n?,n?),
vp(—n?) =0 in B,(0),

relative to decompositions (fy, gn, hn) of xp, wo and (f,,, Gy, hn) of X Bn (0)x (0,n2)|wol, satis-
fied (4.3.14), (4.3.15) in Proposition 4.3.16 with 1 < qo < q, L(up) = |un|? Yup, L(v,) = v
and p is replaced by xp,w and xp, |w| respectively. Moreover, there hold

~KDhwT]) <u, < Khw'], 0<v, < KL|w|]] in Dy, (4.6.13)

and vp1 > Up, |up| < vy in Dy,
By Remark 4.3.9, we can assume that

|l iy + llgnllz o, mry + | + [Vhall|2(p,) < 2|w|(Dit1) and
!IanLl(m + 11l z2(pyrv) + [[[hn] + |th”|L2(Di) < 2[w|(Dita),

for any i = 1,...,n — 1 and hy,, h,, are convergent in LlOC(RN *1). On the other hand, since
U, Vp, satisfy (4.3.14) in Proposition 4.3.16 with 1 < go < ¢, L(us) = |un|9  up, L(v,) = v
and thanks to Holder inequality : for any € € (0, 1)

(lun] + D < elupl? +c1(e) and  (Jup| + 1P < elv,|? + c1(e).
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Thus we get

/ |un | dzdt +/ |un |0 dxdt +/ vidxdt +/ v dzdt < C(i) + c2|lw|(Djt1).
D; D; D; D;
(4.6.14)

fori =1,...,n — 1, where the constant C(i) depends on N, A1, A, qo,q and 1.
Consequently, we can apply Proposition 4.3.17 with i, = —|uy, |7 u, +xp,w, —va+XxD, W
and obtain that there are subsequences of u,,, vy, still denoted by them, converging to some

v in Ll (R; Wit (RN)). So, X4 e L) (RN*1) for all a > 0 and u € Lf, (RV*1)

satisfies (4.2.17). In addition, using Holder inequality we get u € L] (R; Wﬁ)g (RM)) for
any 1 <~ < (ﬁqu'

Thanks to (4.6.14) and Monotone Convergence Theorem we get v, — v in L{ (RN F1).
After, we also have u, — uwin LI (RVT1) by |u,| < v, and Dominated Convergence Theo-
rem. Consequently, u is a distribution solution of problem (4.2.16) which satisfies (4.2.17).
If w=p+0®d4—y with p € MRY x (0,00)) and o € M(RY), then by the proof of
Theorem 4.2.8 we can assume that u, = 0 in B,(0) x (—n2,0). So, u = 0 in RY x (o0, 0).
Therefore, clearly U|RNx[o,oo) is a distribution solution to (4.2.18).

This completes the proof of the theorem. [

Proof of the Theorem 4.2.14. By the proof of Theorem 4.2.9 and Remark 4.6.4, 4.4.34,
there exists a constant ¢; = ¢1(N,q, A1, A2) such that if w satisfy for every compact set
EC H{IV471’

lw|(E) < c1Capy, o (E), (4.6.15)

then there is a renormalized solution u,, of

(un)s — div(A(z,t, Vuy)) = |un|" u, + xp,w in D,
up =0 on 9B, (0) x (—n?,n?),
un(—n?) =0 in B,(0),

relative to a decomposition (fy,, gn, hn) of X, wo, satisfying (4.3.14), (4.3.15) in Proposition
4.3.16 with go = ¢, L = 0 and p is replaced by |u,|9  u, + xp,w and

qK
qg—1

for a.e (2,t) in D,, and Lw*] € LE (RNT1).

Besides, thanks to Remark 4.3.9, we can assume that f,, gn, h, satisfies (4.5.17) in proof
of Theorem (4.2.5) and h,, is convergent in LL (RN*+1).

Consequently, we can apply Proposition 4.3.17 and obtain that there exist a subsequence
of uy,, still denoted by it, converging to some v a.e in R¥*! and in L} (R; Wl’l(]RN)). Also,

loc loc

u, — uwin LL (RVT1) by Dominated Convergence Theorem, % € L} (RN*Y) for

all a > 0. Using Holder inequality we get u € L (R; VVlig (RM)) for any 1 < vy < %.
Thus we obtain that u is a distribution solution of (4.2.20) which satisfies (4.2.21%. Since
(4.6.15) holds, thus by Theorem 4.4.36 we get

5 w12y < [T ) Tt < c2 [0

Lofw™](2,t) < up < qqf(lllg[wﬂ(x,t) (4.6.16)
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so we have [|u|?ys, ¢ < c3. It follows (4.2.23).
Ifw=p+o0®dy—g with p € M(RY x (0,00)) and o € M(RY), then by Remark 4.6.4

we can assume that u, = 0 in B,(0) x (—n2,0). So, u = 0 in R x (—o0,0). Therefore,
clearly ulpn o ) is a distribution solution to (4.2.22).
This completes the proof of the theorem. [

4.7 Interior Estimates and Boundary Estimates for Parabolic
Equations

In this section we always assume that u € C(=T,T, L*(Q)) N L?(=T,T, H}(Q)) is a
solution to equation (4.2.4) in Q x (=T, T) with u € L?*(Q x (=T, T)) and u(—T) = 0. We
extend u by zero to Q x (—oo, —T), clearly u is a solution to equation

u — div (A(z,t, Vu)) = x—rr)(Hp in Qx (=00, T), (4.7.1)
u=0 on 900X (—o0,T). h

4.7.1 Interior Estimates
For each ball Bog = Bag(z9) CC Q and tg € (=T, T), one considers the unique solution
w € Oty — 4R? to; L*(Bag)) N L*(tg — 4R? to; H' (Bag)) (4.7.2)
to the following equation

{ wy — div (A(z,t, Vw)) = 0 in Q2g, (4.7.3)

w=1u on 0pQ2r,
where QQR = BQRX(t0—4R2,t0) and 8pQgR = (6B23 X (to — 4R2,t0))U(BQR X {t =19 — 4R2}).

Theorem 4.7.1 There exist constants 61 > 2, f1 € (0, %] and C1,Cs,Cs depending on
N, A1, As such that the following estimates are true

p|(Q2r
]éw |Vu — Vw|dzdt < Cl|]|%(NE1)’ (4.7.4)
1
01
(f |Vw|91dxdt> < 02][ \Vwl|dzdt, (4.7.5)
Qp/Q(y’s) Qp(yvs)
1/2 5 1/2
_ 1% _
(72 » lw — wq,, (y,s)|2dxdt> < (s (p;) (][Q ) |w — prz(yﬂs)Fd:cdt) ,
p1\Y,8 p2\Y>S
(4.7.6)

and

1/2 Bi—1 1/2
(f |vw\2da:dt> < Cs (’”) (f wa|2dxdt> (4.7.7)
Qo1 (¥,5) P2 Qpy (y,5)

for any Q,(y,s) C Qa2r, and Qp, (y,5) C Qp,(y,s) C Qag.
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Proof. Inequalities (4.7.4), (4.7.5) and (4.7.6) were proved by Duzaar and Mingione in
[27]. So, it remains to prove (4.7.7) in case p1 < p2/2. By interior Caccioppoli inequality

we have
1/2 1/2
]Vw|2da:dt> < — <][ lw — WQ,, ( ,s)| da:dt) .
<]£2p1 (5,9) 1\ J @z, (:9) oy

On the other hand, by a Sobolev inequality there holds

1/2 1/2
(7[ lw —1wg,, (y’s)|2d:ndt> < cap2 (7[ |Vw]2dzdt> .
ng (y,5) ng (y,9)

Therefore, (4.7.7) follows from (4.7.6). |

Corollary 4.7.2 Let 81 be the constant in Theorem 4.7.1. For 2 — 51 < 6 < N + 2,
there exists a constant C = C(N, A1, A2,0) > 0 such that for any B,(y) C By, (y) CC Q,
se (=T,T)

3 T N+3-6
| (vt < 9((“) A1) IMollllimonry.  (478)
Q/J(yvs) ’00

Proof. Take B,,(y) CC Q and s € (=T, T). For any Q,, (y,s) C Qp,(y,s) with p1 < pa/2,
we take w as in Theorem 4.7.1 with Q2r = @, (v, s). Thus,

1 N+p1+1
/ |[Vw|dzdt < ¢; () / |Vwl|dzdt,
QP1 (y,s) ’02 QPQ (y,s)

/ ‘VU — Vw‘dxdt S chQ’/’L’(QPQ (yv 3))7
QPQ (y,s)

and we also have

631/ |Vul|dzdt < / |Vw|dzdt < 03/ |Vuldzdt.
ng (y,8) ng (y,s) QPQ (y,8)
It follows that
/ |Vu|dzdt < / |Vwl|dzdt + / |\Vu — Vw|dzdt
Qpy (y:9) Qpy (¥:9) Qp1(y:9)

N+B1+1
< ey <p1> / |Vwl|dzdt + / |Vu — Vw|dzdt
P2 Qpy (y,8) Qpy (¥,5)

1 N+p1+1
<ai(Z) [ (Vuldadto+capnlol @pn(o5))
p2 Qpy (¥:5)

This implies

1 N+p1+1 )
[ et () [ Suldads ot espd Ml
Qpl (y,s) p2 QP2 (yzs)
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Since N +3 — 8 < N + 51 + 1, applying [50, Lemma 4.6, page 54| we obtain

N+3-0
/ |Vul|dzdt < cg <p> IVl 1o, (—ry) + 6™ T2 Mgl Loo (x (—T,1))
Qp(y,9) £0

for any B,(y) C By, (y) CC Q, s € (=T,T). On the other hand, by Remark 4.3.2
IVl 1 ox -1y < erTolul(Q x (=T, T)) < esTy' Mg ull| oo (s (—1) -

Hence, we get the desired result. [

To continue, we consider the unique solution
v e C(ty — R%, to; L*(Bg)) N L*(to — R%, to; H*(BR)) (4.7.9)
to the following equation

{ VUt — div (ZBR(xo)(tv VU)) =01n QR,

s o Bom (4.7.10)

where Qpr = BR(.CL‘())X(to—RQ,to) and 8pQR = (833 X (to — R2,t0))U(BR X {t =19 — RQ})

Lemma 4.7.3 Let 6, be the constant in Theorem 4.7.1. There exist constants C; = C1(N, A1, Ag)
and Co = Cy(A1, A2) such that

1/2
(7[ |Vw — Vv|2d:ndt> <[4 ][ |Vwl|dzdt, (4.7.11)
R Q2r

with s1 = 6?9_12 and

02—1/ ]Vv|2dxdt§/ |Vw|*dzdt < 02/ |Vo|2dadt. (4.7.12)
Qr Qr Qr

Proof. We can choose ¢ = w — v as a test function for equations (4.7.3), (4.7.10) and
since

/Qth(w—v)d:vdt—/ v (w — v)dadt = ;/ (w — v)2(te)dz > 0,

R Br

we find

- Ap (o) (6 VO)V(w — v)dadt < — A(z,t, Vw)V(w — v)dxdt.
Qr Qr
By using inequalities (4.1.2) and (4.1.3) together with Holder’s inequality we get

cll/ |Vv|2d:ndt§/ |Vw|2dxdt§cl/ |Vo|2dzdt, (4.7.13)
Qr R Qr
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and we also have

A2/ |Vw — Vo2dzdt < / (App(ue) (t: VW) — App(0) (8, V) (Vw — Vo) dadt

R QRr

< / (App(ue) (t, VW) — A(z, t, Vw)) (Vw — Vv) dadt
R

< ©(A, Br(zo))(z,t)|Vw||Vw — Vu|dzdt.
Qr

Here we used the definition of ©(A, Br(xg)) in the last inequality. Using Holder’s inequality
with exponents s; = %, f, and 2 gives

1/81 1/91
Ag][ Vw — Vol2 < < @(A,BR(xo))(:n,t)Sldxdt> <][ |Vw|91dwdt>
R QR R

1/2
X (7[ |Vw — Vv|2dxdt) .
R
In other words,

1/2 1/61
(][ |Vw — Vv|2da;dt> < AMAE (f Vw|91da:dt> .
R Qr

After using the inequality (4.7.5) in Theorem 4.7.1 we get (4.7.11). ]

Lemma 4.7.4 Let 01 be the constant in Theorem 4.7.1. There exists a functions v €
C(to— R?,to; L*(Br)) N L?(to — R?, to; H' (Br)) N L>(to — 1 R, to; W (Bpy2)) such that

(@
IV]| 200 (Qp ) < C']é |Vu|dzdt + C”]’%(NEIR), (4.7.14)
2R
and
]é |Vu — Vo|dzdt < C% +ClA)E <][ |Vu|dxdt + %) , (4.7.15)
R 2R

where s1 = 0?9_12 and C' = C(N,A1,Az).

Proof. Let w and v be in equations (4.7.3) and (4.7.10). By standard interior regularity
and inequality (4.7.5) in Theorem 4.7.1 and (4.7.12) in Lemma 4.7.3 we have

1/2
||VUHL<>O(QR/2) <c <][ ]VU|2dxdt>
Qr

1/2
< (][ !Vw|2dxdt)
R

< 63][ |Vw|dzdt.
2R
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Thus, we get (4.7.14) from (4.7.4) in Theorem 4.7.1.
On the other hand, (4.7.11) in Lemma 4.7.3 and Holder’s inequality yield

Q2r

][ \Vw — Vo|dzdt < ca[A)E ][ |Vw|dzdt.
Qr
It leads

][ \Vu — Vo|dzdt < ][ \Vu — Vwl|dedt + ca[ AT ][ \Vwl|dadt.
Qr

Qr Q2R

Consequently, we get (4.7.15) from (4.7.4) in Theorem 4.7.1. The proof is complete. ]

4.7.2 Boundary Estimates

In this subsection, we focus on the corresponding estimates near the boundary.
Let 29 € 9Q be a boundary point and for R > 0 and tog € (—7,T), we set Qgr =

Qer(z0,t0) = (2N Ber(xo)) x (to — (6R)?, %) and Qsr = Qr (o, to).
We consider the unique solution w to the equation

{ wy — div (A(x, t, Vw)) = 0 in Qgr, (4.7.16)

w=1u on 0pQ%R.

In what follows we extend p and u by zero to (2 x (—oo,T))“ and then extend w by u to
RN\ Qg 5.

In order to obtain estimates for w as in Theorem 4.7.1 we require the domain 2 to be
satisfied 2—Capacity uniform thickness condition.

4.7.2.1 2-Capacity uniform thickness domain

It is well known that if RY \ 2 satisfies uniformly 2—thick with constants cy,r79 > 0,

there exist pg € (%, 2) and C' = C(N, ¢p) > 0 such that

Cap,, (Br(z) N (RMN\Q), By (z)) > CrVro, (4.7.17)
for all 0 < r < rp and all x € RN\, see [47, 57].

Theorem 4.7.5 Suppose that RN\Q satisfies uniformly 2—thick with constants co,ro. Let
w be in (4.7.16) with 0 < 6R < ro. There exist constants 03 > 2, B2 € (0, %], Cs,C3
depending on N, A1, Ao, co and Cy depending on N, A1, Ao such that

|1l(Q6r)
6R
1
02
][ |Vw|®2dzdt | < 02][ \Vwl|dzdt, (4.7.19)
QP/Q(Z,S) QSp(Zys)
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1/2 5 1/2
(][ |w\2da:dt> < (s (/)1) <][ ]w\2da:dt> , (4.7.20)
Qﬂl (y,s) p2 QPQ (y,s)
1/2 Byl 1/2
(f ]Vw|2dxdt> < C4 (’”) (f Vw|2d:rdt> : (4.7.21)
Qpy (2,8) P2 Qpy(2:5)

fO?” any Q3p(z7 8) C Q6R7 RS 897 Qpl (yv 8) C Qp2 (ya 8) C QGR and Qp1 (Za S) C ng (Za S) C
Qer

Proof. 1. For n € C([to — (6R)?,t)) , 0 <1 <1, ; < 0 and n(ty — (6R)?) = 1. Using
¢ = Ti(u —w)n, for any k > 0, as a test function for (4.7.1) and (4.7.16), we get

and

/ (u —w) Tk (u — w)ndzdt
Q6r

+ / (A(z,t,Vu) — Az, t, Vw)) VT (u — w)ndxdt = / T (uw — w)ndp.
Q6r Q

6R
Thanks to (4.1.3), we obtain
- / Tr(u — w)nedxdt + Ao / |VTi(u — w)[*ndxdt < k|pu|(Qr),
Qsr QR

where T (s) = [, Te(7)dr. As in |13, Proposition 2.8, we also verify that
- < Q6R).
11V (e = w)lll 2 < ealitl (or)

Hence we get (4.7.18).

2. We need to prove that

2
PO

1
][ \Vw|*dzdt < ][ \Vw|*dxdt + c; ][ |Vw[Podzdt |, (4.7.22)
Qrja(2,9) 2 JQag, (=) Qg (=)

for all Q26,.(2,5) C Qsr = Qsr(x0,t0). Here the constant pg is in inequality (4.7.17).

10
Suppose that B,(z) C Q. Take p € (0,7]. Let ¢ € C°(B,(2)), n € C((s — p?, s]) be such
that 0 < ¢,n <1, 9 =11in Byy(z), n = 11in [s — p*/4,s] and [V| < e1/p, || < e1/p?.
We denote

v = x)2dx w(x x)2dz.
pr<z><t>—</B P >d> / PRICHEEE

Using ¢ = (w — QDBp(Z))goznz as a test function for the equation (4.7.16) we have for all
s € [s—p*/4, s

(U) - QI)B z )t(w - QI)B z )@2772d56dt
/Bp o) o(2) o(2)

+ / Az, t, V)V ((w — szp(Z))chnQ) dxdt = 0.
Bp(2)x(s=p?.')
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Here we used the equality fBP(z)X(S*pQ,S/) (@Bp(z))t (w — pr(z))@QHQdmdt = 0.
Thus, we can write

; / (w(s') = Wp,()(s)*¢*dr + / Az, t, Vo) Vwpn?dzdt
2 By(z) B, (2)x(s—p2,s')
) _2/ Az, t, V) Vipon*(w = g, ) dadt
By(2)x(s—p,s")
" / (w — g, () 2 npdadt.
By(2)x(s—p2,')

From conditions (4.1.2) and (4.1.3), we get

1 -
5 / (w(s") — wBP(Z)(s'))ngzdx + As / \Vw|?p?n?dzdt
By(2) Bp(z)x(s—p?,s")
~ & ~
<2A4 / \Vwl||Ve|pn?|w — Wp, (- |dzdt + —2 (w — pr(Z))2d:Udt.
Bp(Z)X(S—p 781 p Qp(zas)

Using Holder inequality we can verify that

sup / (w(s') — g, ) () p2dx
By(2)

s'E[s—p2/4,s]
2 C9 ~ 2
—i—/ |Vw|“dzdt < 2/ lw —Wp, | "dzdt. (4.7.23)
Qp/2(278) p P(sz)
On the other hand, for any s’ € [s — p?/4, s]
BP(Z)

/ (w(s') =g, ,()(8')?de < 2(1 + 2N+2)/ (w(s') —dbp, ) (s) @ dx, (4.7.24)
B,/a(2)

where ¢1(z) = p(z + 2(z — 2)) for all v € B,/5(2) and

-1
pr/2(Z) = (/ ¥1 ($)2d$> / W(x,t)gol(x)Qdac.
Bp/2(Z) BP/Q(z)

In fact, since 0 < ¢ <1 and ¢ =1 in B,/5(2) thus
(w(s') = wp, () (s") da
LP/Z(Z) p/2( )
< 2/3 " (w(s') = W, z)(s)dw + 2V (g ) (s') — @B, (2)(s))?B,a(2)]
P
<2 ()~ (PP 42 [ () g0 ()Pt
BP(Z)

Bp/Q(Z)

1N /B 06 )l
p/2\Z
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which yields (4.7.24) due to the following inequality

/B ) B, () < / (w(s) — 12p2dz Vi€ R.
p/2\Z

Bp/2(Z)
Therefore,
swp [ ()~ ()P
s'€[s—p?/4,5] J B, 2 (2) :

+/ |Vw|*dzdt < 6120/ lw — g, (| dadt. (4.7.25)
Qp/2(2:3) p o(z,8

Now we use estimate (4.7.25) for p = r/2, we have

/ |Vw|?dzdt < 6120/ (w— ﬁ)BT/Q(z))dedt
Qr/4(zvs) r QT/2(27S)
_2

N+2
C10 / ~ "N\ 2
< = sup / (w(s') — wp, (s')"dz
r2 <3’6[5r2/478] B, 2(2) 72%)

s hEs
X / / (w—1Dp_ )2dx> dt.
s—r2/4 ( B, /2(2) r2(%)

After we again use estimate (4.7.25) for p = r we get

2

1 1 . N+2
Q'r/4(zvs) QT‘(ZVS)

s iz
X / / (w—1p ., )2dx> dt.
s—r2/4 ( B, /2(2) /2(2)

Thanks to a Sobolev-Poincare inequality, we obtain

2
N+2
/ Vel dedt < 2 (/ Vw|2d:rdt> / |Vaw| 42 dadt.
Qr/4(zzs) r QT(Z,S) QT/Q(Z»S)

Since pg € (]\2,—]):2, 2), thanks to Holder inequality we get (4.7.22).
Finally, we consider the case B,(z) N Q # (0. In this case we choose zp € 9 such that
|z — 20| = dist(z,09). Then |z — z| < r and thus $r < py < 37,

B%T(z) C B%T(ZQ) C Bp1+r(20) C Bpﬁ_%r(z:o) C B%T(z[)) C B%T(Z) C BGR(370)~ (4.7.26)
Let ¢ € Cgo(Bler%T(zo)) be such that 0 < ¢ <1, ¢ = 1in B, 4+,(20) and |Vp| < C/r.

For 1r < ps <1, let n € C((s — p3,s]) be such that 0 <5 <1, =11n [s — p3/4,s] and
Ine| < c/r?. Using ¢ = wp?n? as a test function for (4.7.16) we have for any s’ € (s — p3, s)

/ wwe?n?dadt
(B

12 o
1 1 (200X (53, 57)

+ / Az, t, V)V (wp?n?) dedt = 0.
(Bpl_‘_%?“(zo)ﬂﬂ)x(sfp%,s’)

206



4.7. INTERIOR ESTIMATES AND BOUNDARY ESTIMATES FOR PARABOLIC
EQUATIONS

As above we also get

sup / w?(s')dx
s'€[s—p3/4,s] 4 Bpy+r(20)

|Vw|*dzdt < C% w?dzdt.
T Bp1+%r(20)><(87p§,5)

<,
BPI —H"(ZO) X (5*P§/4’3)

In particular, for p; = %r, p2 = %r and using (4.7.26) yield

/ Vwl?dedt < 22 w2dadt, (4.7.27)
Q1,(z5) r Bag (20)x(s—12/4,s)
4 20
and p1 = (4 + &)rpe = 1,
sup / w?(s')dx < CL; wdzdt.
s'€ls=r2/4,8] /By, 11 (20) " By (20)x(s=129)

Set Ky = {w =0} N B, (20) and Ky = {w =0} N B1,, 11,(20), Since RN\ satisfies an
20 4 10
uniformly 2—thick,we have the following estimates

N-2 N—
Cap2(K1,B%T(zo)) > ci67 and Cappo(Kg,B%H%T(zo)) > cgr PO,

So, by Sobolev-Poincare’s inequality we get

][ w?dr < 0177“2][ \Vw|?dz, (4.7.28)
Bag (20) Bs (2)
20 3
and
2 2
PO PO
][ w?drdt < cigr? ][ |Vw|Podx < c1or? ][ |Vw[Pdz
By, 11, (20) Bi, 11, (20) Bs. (20)
4 I 4 I 2
Leads to
sup / w?(s')dx < 020/ |Vw|2dzdt, (4.7.29)
s'€[s—r2/4,s] leir+%1r(20) Q%T(z,s)
and
2
»0
/ w?(t)dr < cgyr’¥ 2 ][ |Vwl[Po(t)dx . (4.7.30)
By, . 11, (20) Bs, (20)
4 I 2
From (4.7.27), we have
][ |Vw|*dzdt < ICVZJZA / w?dzdt
Q%T(z,s) r lelr_’_%_(ljr(zo)x(sfﬂ/él,s)
_po o
s 2
< f\?i4 sup / w?(s")dx / / w? (t)dz dt.
r s'€[s—r2/4,s] B%er%r(ZO) s—r2/4 B%T“[’%T(zo)
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Using (4.7.30), (4.7.29) and Holder’s inequality we get

_ro
1 2

][ Vw2 dedt < 22 / \Vw|2dzdt 320N / Vaw[Podadt
Qy,(9) r Q3. (9) Q3,9

1—Eo

= o ][ |Vw|*dadt ][ |Vwl|Podzdt
Q%T(sz) Q%T(zvs)

2

Po

1
< ][ \Vw|2dzdt + co5 ][ |Vw|Podxdt
2JQa (=) Q35,(=9)

So we proved (4.7.22).

Therefore, By Gehring’s Lemma (see [60]) we get (4.7.19).

3. Now we prove (4.7.20). Let y € 0, Q,,(y,s) C Qp,(y,s) C Qsr with p1 < pa/4. First,
we will show that there exists a constant 8o = B2(N, A1, Ag, ¢o) € (0,1/2] such that

B2
osc(w, Qp, (1, 5)) < c26 <Z;> osc(w, Qpy2(y,5)), (4.7.31)

where osc(w, A) = sup 4 w — inf 4 w.
Indeed, since

N3 — = +o00 Vz € 0.

/1 Cap; (92° N Br(2), Bar(2)) dr
0 ’r‘

thus by the Wiener criterion (see [83]), we have w is continuous up to 8,Q6r. So, we can
choose ¢ = (V — My, )n* € L*(—00,T; H} (2 N Bsr(wo))) as test function in (4.7.16),
where

a. n € C%®(Qup (y,5)), 0 < n < 1 such that n = 1 in Q,, j2(y,s — %p%), supp(n) CC
Qi (y, 5 —4p) and | V| < cor/p1, |ne| < cas/pi. i .

b. My, = SUDQ,, (y.5) W and V = inf{My,, —w, My, } in Q¢r, V = My,, outside Qgp.
We have

/ wy (V — My, ) n*dadt
Q6r

+ /~ 2nA(z,t, Vw)Vn (V — My, ) dedt + / n? A(x,t, Vw)VVdrdt = 0,

Q6Rr QGR

which implies
/~ Az, t, —VV)(=VV)dzdt = / 2nA(z,t, —VV)Vn (V — My,,) dxdt
Q6r

Q6r

B / (V' = Map, ), (V = May,) n*dadt.
Q6r
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Using (4.1.2) and (4.1.3) we get
Ag/~ n?|VV | dxdt
Qsr

< 2A1[ n|VV||IVn||V — M4p1|dxdt — 1/2/~ ((V — M4p1)2 _ prl) (n2)tda:dt
Q6r

Q6r

< 2A1 My, / n|VV||Vnldxdt + 2My,, [ nV ne|dzdt.

QGR Q6R

Since supp(|VV]) Nsupp(n) C Qgr, thus

/ IV(nV)[2dxdt < cagMy,, (/ n|VV||Vn|dzdt +/ V (n|ne| + !Vn]2) dxdt)
RN+1 RN+1 RN+1

1
< 30 My, (/ n|VV||Vn|dzdt + 2/ Vd:cdt) .
RN+1 PT JQpy (y,5—4p7)
(4.7.32)

By [50, Theorem 6.31, p. 132], for any o € (0,1 + 2/N) there holds

1/c
<][ ngxdt> <z inf V =e31(Myy, — sup w) = c31(Ma,, — Mp,).
Qpy (y,5—4p3) Qpy (1) Qpy (4:9)
(4.7.33)

In particular,
1
= / Vdxdt < czop) (Myp, — M,,). (4.7.34)
pl Qpl (y,8—4p%)

We need to estimate f%Rn]VVHV?ﬂdxdt. Using Holder inequality and (4.7.33), for € €
(0, min{2/N, 1}) we have

1/2 1/2
[ n|VV||Vn|dzdt < ( / n2v<1+5>yvvy2dxdt> ( ~ V1+5|V77]2dxdt>
Q6r Q6r Q6r

1/2 1/2
< cag < / n2v—<1+f>\vw2dxdt> / Vitedpdt
Q6r Qpq (y,5—4p3)

1/2
< 33 ( / n2V_(1+5)\VV\2dxdt> PV (M, — M,,)+)/2

Q6r

1/2
To estimate (fQGR n2V_(1+5)|VV\2dxdt> , we can choose ¢ = ((V + 8)7¢ — (My,, +
§)~%)n?, for 6 > 0, as test function in (4.7.16), we will get

/ 2 (V +6)~F9) | vV 2 dedt
Q6r

<cu [ (V40 EIVVIIValdude -+ cun [V +0)! nldade.
Q6r

Q6r
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Thanks to Holder’s inequality, we obtain

[ VY Pdedt < o [ (V48! (abl + [ 0f?) o
Q6r

Q6r

< 636/)?/ (V + 6)'*dadt.
Qpy (y:5—4p7)
Letting 06 — 0 and using (4.7.33), we get

[ n?V =TV 2dadt < csep? / Vi=edzdt
Qsr Qpy (y,5—4p3)

< ezrpl (Mup, — M) %

Thus,

/anyvvuvmdxdt < caspt (Map, — M,,).
Combining this with (4.7.32) and (4.7.34),

[ 9V P < sl M, (Mg, ~ M),

Note that nV = My, in (Q°N B, ;2(y)) x (s — 2015 — %p%) thus

s—1Tp2
/ \V(nV)|2da:dtz/ ) 1/ IV (V) [2dadt
RN+1 sfgp% RN

17 2

s—4p1
> / M2, Capy (2 1 B, o). By (4))dt

9 2
—2P1
Z C40M42p1piv'
Here we used Capy o(Q2°N B, /2(y), By, (y)) > cpY 2 in the last inequality. Tt follows
Myp, < car(Myy, — My,).

So c
4.

sup w<~vy sup w where yv=
Qo1 (¥,5) Qapy (,5) ey +1

Of course, above estimate is also true when we replace w by —w. These give,

osc(w, Qp, (¥, 8)) < yosc(w, Qup, (¥, 5)).

It follows (4.7.31).
We come back the proof of (4.7.20).
Since w = 0 outside Q2 this leads to

1/2
(][Q (0.5) |w‘2dxdt> < C4QOSC(w, ng/z(y, S))
p1\Y,S
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On the other hand, By [50, Theorem 6.30, p. 132] we have

1/2
sup w < ey (7[ (w*)%xdt) and
Qp2/2(yvs) QPZ (y,s)

1/2
sup  (—w) < ey <][ (w_)Qda:dt> .
Qp2/2(y78) QPQ (y,S)

Thus, we get (4.7.20).
Next, we have (4.7.21) for case z = y € 9€ since from Caccippoli’s inequality,

/ Vw|2dzdt < 2 lw|dzdt,
Qpq (25) 1 7/ Q2p(2,9)

and using Sobolev-Poincare’s inequality as in (4.7.28),

/ lw|*dzdt < 046,0%/ |Vw|dadt.
Qpy(2,8) Qpy(2,5)

We now prove (4.7.21). Take Qp, (z,5) C Qp,(2,5) C Qgr, it is enough to consider the case
p1 < p2/20. Clearly, if B, /4(z) C ©Q then (4.7.21) follows from (4.7.7) in Theorem 4.7.1. We
consider B, /4(2) NOY # 0, let zg € B, /4(2) N0 such that [z — 20| = dist(z,09) < pa/4.
Obviously, if p1 < |z — 20|/4 and z ¢ €, then (4.7.21) is trivial. If p; < |z — 29|/4 and
z € Q, then (4.7.21) follows from (4.7.7) in Theorem 4.7.1.

Now assume p; > |z — zp|/4 then since Q,, (2,5) C @sp, (20, 5)

1/2 1/2
<][ |Vw\2dxdt> < car (7[ |Vw\2dxdt>
Qpy (2:9) @5p1 (20,9)
f2—1 1/2
< ca <p1> <][ ]Vw|2d:cdt>
P2 Qpy/4(20,5)
Byl 1/2
< a9 ('01> <][ |Vw|2d:cdt> ,
’02 Qp2/2(zvs)

which implies (4.7.21). ]

Corollary 4.7.6 Suppose that RN\Q satisfies uniformly 2—thick with constants co,ro. Let
Ba be the constant in Theorem 4.7.5. For 2 — Bo < 6 < N + 2, there exists a constant
C = C(N,A1,A2,0) > 0 such that for any B,(y) NN # 0, s € (-T,T), 0 < p<rg

B T N+3-0
[ (Sl < Cp 9((73) 1) Mol @xcray,  (47.35)
p\Y,s

where Ty = diam(QY) + T"/2.
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Proof. Take B, /4(y)N0Q # () and s € (=T, T), p2 < 2r0. Let yo € B, 4(y)NOQ such that

ly —yo| = dist(y, 0) < pa/4, thus Q,,/4(y, 8) C Q,,/2(Y0, s) For any Qp, (y,5) C Qpy(y, 5)
with p1 < pa/4, we take w as in Theorem 4.7.5 with Qer = Q,,/2(%0, s). Thus,

P N+p1+1
/ Vw|dzdt < ¢ (1> / \Vwl|dzdt,
Qo1 (0:9) p2 Qpa/au:9)

/ [V — Veoldadt < capall(@paa (90, 5)).
Qp2/2(y075)

As in the proof of Corollary 4.7.2, we get the result. ]

4.7.2.2 Reifenberg flat domain

In this subsection, we always assume that A satisfies (4.2.27). Also, we assume that
is a (0, Rp)- Reifenberg flat domain with 0 < 6 < 1/2 . Fix zp € 90 and 0 < R < Ry/6.
We have a density estimate

|Bi(2) N (RV\Q)| > ¢|By(z)| Vo € 99,0 < t < Ry, (4.7.36)

with ¢ = ((1 —6)/2)N > 47V,

In particular, RV\Q satisfies uniformly 2—thick with constants ¢, ry = Ry.

Next we set p = R(1 — §) so that 0 < p/(1 —J) < Ry/6. By the definition of Reifenberg
flat domains, there exists a coordinate system {y1,y2,...,yn} with the origin 0 € Q such
that in this coordinate system z¢ = (0, ...,0,—pd/(1 — §)) and

B (0) QN B,(0) € By(0) N {y = (y1,52, -, yn) s yn > —2p3/(1 = 0)}.
Since 0 < 1/2 we have
B;—(O) can BP(O) C BP(O) N {y = (ylay27""7yN) YN > _4p5}7

where B (0) := B,(0) N {y = (y1,%2,--,yn) : yn > 0}.
Furthermore we consider the unique solution

v € C(ty — p*,to; L*(2N B,(0))) N LA (tg — p*, to; H (2N B,(0))) (4.7.37)
to the following equation

{ vy — div (ZBP(O) (tl vv)) =01n QP(O)7

v=w on 0,£2,(0), (4.7.38)

where Q,(0) = (2N B,(0)) x (to — p*to) (=T < to < T).
We put v = w outside ©,(0). As Lemma 4.7.3 we have the following Lemma.

Lemma 4.7.7 Let 0y be the constant in Theorem 4.7.5. There exists constants C7 =
C1(N,A1,A2), Cy = Co(A1, A2) such that

1/2
][ |Vw — Vu|? <[Af ][ \Vwl|dzdt, (4.7.39)
Qp(O,to) Qp(o’tO)
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with s9 = 9292 and

cyt |Vo2dzdt < /

\Vw|*dzdt < Cy / |Vo|2dadt. (4.7.40)
Qo (0,t0) Qp(0,t0)

QP(()?tO)

We can see that if the boundary of  is bad enough, then the L°-norm of Vv up to
2N B,(0) x (to — p%,to) could be unbounded. For our purpose, we will consider another
equation :

{ Vi — div (Ap,)(t, VV)) =0 in Q}(0,t0), (4.7.41)

V=0 on T,(0,t),

where QF(0,9) = B, (0) x (to — p*,to) and T,(0,t0) = Q,(0,t0) N {wny = 0}.

A weak solution V' of above problem is understood in the following sense : the zero extension
of V to Q,(0,tp) is in V' € C(ty — p?,to; L*(B,(0))) N L2 .(to — p*, to; H(B,(0))) and for
every ¢ € C;(Q}(0,0)) there holds

—/ Vrdadt + / ZB,)(O) (t, VV)Vpdxdt = 0.
Q7 (0.t0) Q3 (0.t0)
We have the following gradient L*° estimate up to the boundary for V.

Lemma 4 7.8 (see [48, 49]) For any weak solution V € C(tg — p*, to; L*(BF(0))) N
L3, (to — o2, tos H' (B (0))) of (4.7.41), we have

IVV (o <C \VV 2dzdt ¥V 0 < o' < p. (4.7.42)
1@ 200 = Jor 00
for some constant C = C(N, A1, Az) > 0. Moreover, VV is continuous up to T,(0,1p).
Lemma 4.7.9 If V € C(ty — p2,t0;L2(B:;(O))) N L2(ty — pQ,to;Hl(B;{(O))) is a weak
solution of (4.7.41), then its zero extension from Qf (0,t0) to Q,(0,to) solves

oF

4.74
orn (4.7.43)

Vi — div (Ap,(0)(t,VV)) =

weakly in Qp(0,t0), for (z,t) = (', zn,t) € Q,(0,t0),
— —1 —2 —N —N
ABP(O) = (ABP(0)7 AB,;(O)’ ceey ABP(O))7 and F(IIZ, t) = XJ;N<0ABP(O) (t, VV(CC/, 0, t))

Proof. Let ¢ € C*(R) with ¢ = 0 on (—o00,1/2) and ¢ = 1 on (1,00). Then, for any
v € CX(Q,(0,t9)) and n € N. We have pp(z,t) = ¢p(2/,zn,t) = g(nen)e(z,t) €
C(Q(0,t0). Thus, we get

/ V;gondxdt—i—/ Ap,0)(t, VV)V (g(nen)p(x,t)) dedt = 0,
Q7 (0.to) Q3 (0sto

which implies
/ Vippdxdt + / Ap,0)(t, VV)Vo(x,t)g(nzy)dedt
Q5 (0,to0) Q7 (0,t0)

— /Op G(zn)g (nxy)ndry.
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where
Gla) / ! / AN (V)o@ s B)dadt € C([0,00))
N) = B,(0)\"% y LN ’ .
to—p? J |2/ |<y/p?—a? o (0)
Letting n — oo we get

/ Vipdxdt —|—/ ZBP(O) (t, VV)Vp(z,t)dzdt = —G(0)
Qg— (Oato) Qj; (O)tO)

- / 722 quar.
Q,(0t) OTN

Since VV =0,V = 0 outside Qz, therefore we get the result. [

We now consider a scaled version of equation (4.7.38)

vy — div (ZBl((D (t,Vv)) =0 in Q4(0),
{ w=0 on 9,00\ (Qx (=T,T)), (47.44)
under assumption
B (0) c QN B1(0) C B1(0) N {xyn > —46}. (4.7.45)

Lemma 4.7.10 For any € > 0 there exists a small 6 = §(N,A1,A2,€) > 0 such that if
v € Cltg—1,t0; L2(QN B1(0))) N L2(tg — 1,t0; H (2N B1(0))) is a solution of (4.7.44) and
(4.7.45) is satisfied and the bounded

][ \Vol2dedt < 1, (4.7.46)
Ql(ovtﬂ)

then there exists a weak solution V € C(tg — 1,to; L*(B{(0))) N L2(tg — 1,t0; HY(B{(0)))
of (4.7.41) with p =1, whose zero extension to Q1(0,t) satisfies

f v — V[2dadt < &2, (4.7.47)
Q1(0,t0)

Proof. We argue by contradiction. Suppose that the conclusion were false. Then, there
exist a constant g > 0, ¢y € R and a sequence of nonlinearities {Ay} satisfying (4.1.2)
and (4.2.27), a sequence of domains {Q2¥}, and a sequence of functions {v;} C C(tg —
1,to; L2(2F N B1(0))) N L2(tg — 1, to; HY(Q2¥ N B1(0))) such that

B (0) c QF N By(0) € B1(0) N {xy > —1/2k}, (4.7.48)
{ (Uk)t —div (Zk,B1 (0) (t’ vvk)) =0 in Qlf(()), (4 7 49)
~ k k . .
=0 on (B2HO)\(QF x (=T,T)),
and the zero extension of each vy to Q1(0,ty) satisfies

][ |Vog|2dzdt <1 but (4.7.50)

Ql(ovto)
][ o — Vi|2dadt > €2, (4.7.51)

Ql(ovto)
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for any weak solution Vj, of

{ (Vk)t — div (Zk,Bl(O) (t, VVk)) = O, n QT(O, to),

Vi, =0 on Ti(0,t0). (4.7.52)

By (4.7.48) and (4.7.50) and Poincare’s inequality it following that

okl L2 (t0—1,00: 17 (B1(0)) < €1l VORI L2(Qy (0,t0) < €25

and

(0r)ell L2t 1,001 (B1(0))) = 1 Ak,010.t0) (VU L2 (801 t0: 1 (51 (0)))

< / | Ak, (0) (t, Vog) [P dedt
1(0,t0)

<c3 / |V |2dzdt
Ql (Ovto)

< cy4.

Therefore, using Aubin—Lions Lemma, one can find vg and a subsequence, still denoted
by {v} such that

v, — v weakly in L%(tg — 1,19, HY(B1(0))) and strongly in L?(to — 1,tg, L%(B1(0))),

and

(&)t = (vo)r  weakly in L*(to — 1,0, H~'(B1(0))).
Moreover, vo = 0 in Q7 (0,9) := (B1(0) N {zx < 0}) x (1 — tp, 1) since vy = 0 on outside
QF N Q1(0,t) for all k.
To get a contradiction we take V;, to be the unique solution of (Vi) —div (A, g, 0)(t, VVi)) =
0 in Q7 (0,t9) and Vi, —vg € L2(to — 1,t9, H (B (0))) and Vi(to — 1) = vo(to — 1). As
above, one can find Vj and a subsequence, still denoted by {Vj} such that

Vi — Vo weakly in L%(tg — 1,to, H*(B1(0))) and strongly in L?(ty — 1,0, L?(B1(0))),
and
(Vi)e = (Vo)r  weakly in L*(to — 1, t0, H™ ' (By)),

for some Vg € vo + L2(tg — 1,t0, H}(B{ (0)) and Vy(to — 1) = vo(to — 1).
Thanks to (4.7.51), the proof would be complete if we could show that vy = Vp. In fact,
Let Ji : X — L?(Q7(0,%),RY) determined by

jk(¢($7t)) = Zk:,Bl(Cl) (ta V(b(ﬂf,t)) for any ¢ € X,

where X C L?(tg—1,ty, H*(B1(0))) is closures (in the strong topology of L?(to—1,tg, H'(B1(0))))
of convex combinations of {vy}r>1 U {Vi}r>1 U {0}.

Since vy, Vj converge weakly to wvg, Vo in L%(tg — 1,t, H'(B1(0))) resp., thus by Mazur
Theorem, X is compact subset of L?(tg — 1,to, H'(B1(0))) and v, Vy € X.

Thanks to (4.1.2) and (4.2.27), we get Jx(0) = 0 and

|’\7k(¢1) - jk(¢2)||L2(Qj(o,to),RN) < A1H¢1 - ¢2||L2(t071,t0,H1(Bl(0)))a
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for every ¢1, o € X and k € N. Thus, by Ascoli Theorem, there exist J € C(X, L%(Q{ (0,%), RY))
and a subsequence of {J}}, still denote by it, such that

zug [Tk (0) — j(qb)”Lz(QT(O,to),RN) —0 as k— oo, (4.7.53)
S

and also for any ¢, ¢2 € X,
(T (p1) = T(92)) - (Vo1 — V2) dadt > Ao||[Vd1 — Vool 120+ 04y (4:7.54)
QF (0.t0) (@7 (0,0))
1 )
From (4.7.48), we deduce
[ o= Vit — Voo
QY (0,0)

+ \/C)‘i’( ) (Zk,Bl(O) (t, V'Uk) — Zk,Bl(O) (t, VVk)) .V(’UO — Vb)dl’dt =0.
1 0,to

We have
/ |Zk731(0)(Vvk)|2d:I;dt < Cg/ |V |*dzdt < c19 and
QT(OvtO) QT(OvtO)
/ | Ak 51 (0)(VVi)[Pdadt < cg / |VVi|?dxdt < ;.
QF (0:to) QF (0:to)
for every k.

Thus there exists a subsequence, still denoted by {Ay g, (0)(t, Vur), Ag B, (0)(t, VVi)} and
a vector field Ay, Ay belonging to L2(Q7 (0,t9), RY) such that

Ap B0yt Vor) = A1 and A g, (0)(t, VVi) = Ag,

weakly in L2(Q7 (0,29), RY). Tt follows

/;2+( )(v() — V())t(’l)o — Vb)dl’dt + / (Al — AQ).V(U() — Vg)dl’dt =0.
1 0,to

QIF(OJO)
Since
/ (v — Vo)(vo — Vo)dadt — / (v — Vo)2(to)dz > 0,
QT (0,t0) B (0)
we get
/ (A1 — A9).V (0o — Vi)dadt < 0. (4.7.55)
QY (0,to)
For our purpose, we need to show that
/ (A1 — T (v9)).V(vo — Vo)dzdt > 0 and (4.7.56)
QT(O’tO)
/ (A — T (Vh)).V(Vh — vg)dxdt > 0. (4.7.57)
Q1 (0,t0)
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To do this, we fix a function g € X and any ¢ € C1(Q7(0,%)) such that ¢ > 0. We have
0 S /62+(0 ) %) (Zk,Bl(O) (t, V?)k) — Zk,Bl(O) (t, Vg)) (V?)k — Vg) Cl.%'dt
1 (0sto

= SOZk,Bl(O) (t, Vo) Vogdzdt — ©AL B, (0)(t, Vog)Vgdzdt
QF (0,t0) Qi (0.t0)

- / ¢ Ak,B,(0)(t, Vg) (Vo — Vg) dadt
Q7 (0,t0)
:= By + By + Bs.

It is easy to see that

lim By = —/ pA1Vgdxdt and lim Bsg = —/ ©J(g) (Vvg — Vg) dxdt.
k—oo QT(OvtO) QT(O’tO)

k—o00

Moreover, we have

B; = —/ (vg ) pupdadt —/ Zk7Q1(0,to)(vvk)V90dexdt
Q1 (0t0) Q7 (0,t0)

1 _
= / vigdadt —/ Ak,01(0,t0) (Vor) Vupdrdt.
QT(OrtO)

2 Qf (0.t0)
Thus,
. 1 9
lim By = 3 vpprdxdt — A1Vvodxdt
k=00 QY (0,t0) QY (0,t0)
= —/ (vo)rpvodxdt —/ A1V(g0v0)d:vdt+/ A1 Vugdadt
Q1 (0,t0) QY (0,t0) Q7 (0,t0)
_ / oA Vpdzdt.
QT(OvtO)
Hence,

0< / (A1 — T(9)) (Vvo — Vg) dadt
Q1+(07t0)

holds for all ¢ € CH(QT(0,%9)), ¢ > 0 and g € X. Now we choose g = vy — &(vg — Vo) =
(1 =&y +&Vh € X for £ € (0,1), so

0< / 0 (A — T(vo — E(vo — Vo)) (Vo — VVp) dadt
QT(OrtO)

Letting £ — 01 and ¢ — Xt (0.0)7 We et (4.7.56). Similarly, we also obtain (4.7.57).
Thus,

/ (Ar — A9)V (vy — Vo)dadt > / (T (00) — T(Vo)) V(w0 — Vo)dadt.
QT (0,t0) Q7 (0,t0)

Combining this with (4.7.54), (4.7.55) and vg — Vo € L2(to — 1,t0, HL (B (0))), yields
vo = Vp. This completes the proof of Lemma. [
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Lemma 4.7.11 For any € > 0 there exists a small 6 = §(N,A1,A2,€) > 0 such that if
v € C(tg—1,t0; L2(QN B1(0))) N L2(tg — 1, t0; H (2N B1(0))) is a solution of (4.7.44) and
(4.7.45) is satisfied and the bounded

][ \Vol2dzdt < 1, (4.7.58)
Q1(0,t0)

then there exists a weak solution V € C(tg — 1,to; L*(B{(0))) N L2(tg — 1,t0; HY(B{(0)))
of (4.7.41) with p =1, whose zero extension to Q1(0,t) satisfies

HVV||L°°(Q1/4(07150)) S C and (4759)

][ Vo — VV |2 dzdt < €2, (4.7.60)
Q1/8(0,t0)

for some C = C(N,A1,A2) > 0.
Proof. Given ¢; € (0, 1) by applying Lemma 4.7.10 one finds a small 6 = §(IV, Ay, Ag,e1) >

0 and a weak solution V' € C(tg — 1,to; L2(B; (0))) N L?(tg — 1,t0; H(B{ (0))) of (4.7.41)
with p = 1 such that

][ v — V|2dadt < €3, (4.7.61)
Ql(ovto)

Using ¢*V with ¢ € C2°(By x (to — 1,t0]), 0 < ¢ < 1 and ¢ = 1 in Qy2(0,t0) as test
function in (4.7.41), we can obtain

/ IVV |?dzdt < ¢; / |V|2dadt.
Q1/2(0,t0) Q1(0,to0)

This implies

/ \VV|2dadt < 02/ (Jo =V + [vf?) dadt
Q1/2(0,%0) 1(0,t0)

< C3/ (jo = V> + |V0|?) dadt
Ql(U,to)
S C4,

since (4.7.58), (4.7.61) and Poincare’s inequality. Thus, using Lemma 4.7.8 we get (4.7.59).
Next, we will prove (4.7.60). By Lemma 4.7.9, the zero extension of V' to Q1(0, ty) satisfies

. oF .
Vi — div (ABl(O) (t, VV)) = pr in weakly @1(0,t).

where F(x,t) = XxN<Ong(o) (t,VV(2',0,t)). Thus, we can write
/ (V —v)rpdxdt

+ / (Ap, (0)(t, VV) = A, o) (t, V) Vipdadt = — / 2% g,

Q1(0,t0) Q1(0,t0) Y9ITN
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for any ¢ € L%(tg — 1,to, Hi (2 N B1(0))).
We take ¢ = ¢*(V — v) where ¢ € C2°(By 4 x (to — (1/4)%,t9]) ,0< ¢ <1l and ¢ =1 on
@1/5(0,t0), so

/ &% (A, (0)(t. YV) — A, 0)(t. Vo)) (VV - Vo) dadt
Ql(o,to)

- / OV — 0) (A, (o) (t, VV) — A, (. V0)) Vdadt
Ql((],to)

_ / G2V — 0),(V — v)dadt
Ql(o,to)

- 2 M _ ai >
/Ql(oato) <¢ E oxn +20F(V U)axN dxdt.

We can rewrite Iy = I + Is + 1.
We see that

I, > C5/~ P*|VV — Vu|?dxdt
Q1(0,t0)
and using Holder’s inequality

Bl <c [ 6V = ul(VV|+ [Vo)|Velduas
1(0to

< 82[ S2(VV]? + |Vol2)dzdt + 07(52)/ WV — o2V e|2dudt.
Ql(o,to) Ql(o,to)
Similarly, we also have
11| < 52/ H*(IVV)? + |Vo|?)dzdt + 68(52)/ |V —v|?|Vo|*dxdt
1(0,t0) Ql(o,to)

e [ |FPSdod,
Ql(O,to)

and
I3 < / G p(V —v)’dwdt < @[ |V — v|2dadt.
91(07750) 91/4(O,t0)
Hence,
/ |VV — VU\Q
21/8(0:t0)
ewea [ (WVE Vo) ener) [ (VP4 FP)
€21,4(0,t0) 21,4(0,t0)
< crae2 + ci3(e2) | e + / |VV(2',0,t)|*dzdt
91/4(0,t0)ﬁ{745<$]\]<0}

< c12e2 + 014(52) (5% + 5) :

Finally, for any £ > 0 by choosing e2, 1 and 0 appropriately we get (4.7.60). This completes
the proof of Lemma. [
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Lemma 4.7.12 For any € > 0 there exists a small 6 = §(N,A1,A2,€) > 0 such that if
v e C(to— p?,to; L2(Q2N B,(0))) N L2 (tg — p?, to; HX(Q2 N B,(0))) is a solution of

vy — div (A L0) (s Vo)) = 0in Q,(0)
{ =0 on 80,00\ x (~T.T) (0620
and
BF(0) C 21 B,(0) C B,(0) N {zx > —4p3}. (4.7.63)

then there exists a weak solution V € C(to— p?, to; LQ(B;,“(O))) NL2(tg — p?, to; HI(B;(O)))
of (4.7.41), whose zero extension to Q1(0,ty) satisfies

\|VV||%W(QP/4(OM <C \Vol2dxzdt and (4.7.64)
QP(OvtO)
][ Vv — VV |*dzdt < 52][ |Vo|2dadt. (4.7.65)
Qp/S(Oth) QP(Oth)

for some C = C(N,A1,A9) > 0.
Proof. We set

Az, t, &) = A(pz, to + p*(t — to), k€)/k and ¥(x,t) = v(px, tg + p*(t — to))/(pk)

1/2
where k = (m pr(O o) \VU|2d1‘dt> . Then A satisfies conditions (4.1.2) and (4.2.27)

with the same constants A; and Ay. We can see that ¥ is a solution of

{ ¥y — div (Ap,(0)(t, VD)) =0 in QF(0)

v=20 on ((8Qp N Bl(O)) X (to — 1,t0)) U ((QP N Bl(O)) % {t =ty — 1}) (4766)

where QF = {z = x/p : v € Q} and satisfies le(o o) |Vo|?dzdt = 1. We also have
B (0) € Q° N B1(0) C B1(0) N {xy > —46}.

Therefore, applying Lemma 4.7.11 for any € > 0, there exist a constant § = §(V, A, Ag, €) >
0 and V satisfies

HVVHLOO(Ql/zl(O,tO)) <c and][ IV@ - V‘?|2dl‘dt < 82.
Q1/8(0,t0)

We complete the proof by choosing V (x,t) = kpV (z/p, to + (t — to)/p?). ]

Lemma 4.7.13 Let so be as in Lemma 4.7.7. For any € > 0 there exists a small 6 =
O(N,A1,Ao,e) > 0 such that the following holds. If Q is a (6, Ry)-Reifenberg flat domain
and u € C(0,T; L*(2))NL2(0,T; HY(Q)) is a solution to equation (4.2.4) with p € L?(2 x
(=T,T)) and uw(—=T) = 0, for zg € 0N, =T <ty < T and 0 < R < Ry/6 then there is
a function V€ L*(ty — (R/9)* to; H'(Bgyo(z0))) N L®(to — (R/9)*,to; W'>*(Bgg(0)))
such that

|| (Qsr (o, t0))

RN+1

19V o (@ua(eote)) < € ][ Vuldzdt + (4.7.67)

Qesr(zo,to)
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and
][ |Vu — VV|dzdt
Qr/9(z0:t0)
t
<cle+ [A]f;(’)][ \Vuldzdt 4 c(e + 1 + [A]QO)‘“‘(Q“}V(ff’ 0”, (4.7.68)
Qer(z0,t0) R

for some ¢ = ¢(N, Ay, Ay) > 0.

Proof. Let g € 0Q, =T < to < T and p = R(1 — §), we may assume that 0 € Q,
xo = (0,...,—dp/(1 — ¢)) and

BF(0) € 2N B,(0) C B,(0) N{zy > —4ps}. (4.7.69)
We also have

Qryo(To,t0) C Qp8(0,t0) C Q,/4(0,t0) C Q,(0,t0) C Qsp(0,t0) C Qor(wo,t0), (4.7.70)

provided that 0 < 6 < 1/625.

Let w and v be in Theorem 4.7.5 and Lemma 4.7.7. By Lemma 4.7.12 for any ¢ > 0 we
can find a small positive § = 0(N,a, 8,e) < 1/625 such that there is a function V' €
L%(to — p?,to; HY(B,(0))) N L (tg — p?, to; WH2(B,(0))) satisfying

IVV[7 < Cl][ |Vv|?dzdt and
L (Qp/4(07t0)) Qp(o’to)

][ Vo - VV|2 < 52][ |Vo|?dadt.
Qp/s(o:to) QP(OvtO)

Then, by (4.7.40) in Lemma 4.7.7 and (4.7.19) in Theorem 4.7.5 and (4.7.70) we get

1/2
HVVHLoo(QR/Q(xO,to)) <c <][ |Vw\2dxdt>
QP(OftO)

<cs3 ][ |Vw|dxdt (4.7.71)
Qer(z0,t0)

and

1/2
f Vv — VV|dzdt < cqe (7[ yvu}y?dxdt>
Qp/8(07t0) QP(O7tU)

< 055][ |Vw|dzdt. (4.7.72)
Qsr(zo,to)

Therefore, from (4.7.18) in Theorem 4.7.5 and (4.7.71) we get (4.7.67).
Now we prove (4.7.68), we have

][ |Vu — VV|dxdt < 06][ |\Vu — VV|dxdt
Qry9(zo,to) Q,/8(0,t0)
< 06][ |Vu — Vw|dzdt + 06][ |Vw — Vo|dzdt
Qp/S(OvtO) Qp/S(OutO)

+ 08][ Vv — VV|dzdt.
Qp/S(OvtO)
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From Lemma 4.7.7 and Theorem 4.7.5 and (4.7.72) it follows that

][ |Vu — Vwldzdt < ¢; 1l(Qsr(wo, o))
Qp/S(OrtO) B RN+1

][ Vv — Vw|dzdt < cg [A]SR;O ][ |Vw|dzdt
Qp/8(07t0) ﬁp(o’tO)

< cg [A]io ][ |Vw|dzdt
Qsr(o,t0)

< c1[ A ][ V| dadt + |M|(Q61}\f(ﬁ),to)) 7
Qer(z0,to) R

and

][ Vv — VV|dzdt < 01157[ |Vw|dxdt
Qp/B(OvtO)

Qer(o,t0)

. (][ - |u|<@6iav<ff,to)>> |
Qer(z0,t0) R

Hence we get (4.7.68).

4.8 Global Integral Gradient Bounds for Parabolic equations

4.8.1 Global estimates on 2-Capacity uniform thickness domains

We use the Theorem 4.7.1 and 4.7.5 to prove the following theorem.

Theorem 4.8.1 Suppose that RN\Q satisfies uniformly 2—thick with constants co,ro. Let
01,05 be in Theorem 4.7.1 and 4.7.5. Set § = min{6,6:} and Ty = diam(Q) + T/2.
Let Q = Byiame)(z0) x (0,T) that contains Qr. Let By = QRl(yO,so), By = 4By =
Qur, (Yo, 50) for Ry > 0. For i € My(Qr), 0 € M(Q), set w = |u| + |o] ® dg—0y, there
exist a distribution solution u of equation (4.2.4) with data u, ug = o and constants C, =
Cl<N,A1,A2,Co,Tg/T0),CQ >0, e = El(N,Al,AQ,CO,To/To),{;“Q = 81(N,A1,A2,Co) >0
such that

{M(|Vau]) > e YO0 M, [w] < e oA N Q| < Crel{M(|Vu|) > A} N Q) (4.8.1)
for all X > 0,e € (0,e1) and
{M(x5,|Vul) > e\ M, [xp,w] < e'73A} N By| < Cre|{M(x5,|Vul) > A} N By,
(4.8.2)

for all X > 6_1+%HquLl(QTmBQ)RQ_N_Q, e € (0,e2) with Ry = inf{rg, R1}/16.
Moreover, if o € LY(Q) then u is a renormalized solution.
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Proof of Theorem 4.8.1. Let {u,} C CX(Qr),{on} C C(2) be as in the proof of
Theorem 4.2.1. We have |u,| < ¢p, * |p| and |o,| < @14, * o] for any n € N, {pn}, {011}
are sequences of standard mollifiers in R¥*1 RN respectively.

Let u, be solution of equation

(un)¢ — div(A(z,t, Vuy)) = pn in Qr,
up, =0 on 0N x (0,7, (4.8.3)

By Proposition 4.3.5 and Theorem 4.3.6, there exists a subsequence of {u,}, still denoted

by {u,} converging to a distribution solution u of (4.2.4) with data p € 9 (Qr) and
ug = o such that u,, — u in L°(0, T, W()ls(Q)) for any s € [1, %—ﬁ) and if o € L'(2) then
u is a renormalized solution.

By Remark 4.3.3 and Theorem 4.3.6, a sequence {uy, y, }m of solutions to equations

(Un,m)t — div(A(z,t, Vupm)) = pinm in Q x (=T,T),
Upm =0 on dQ x (=T,T),
Un,m(—=T) =0 on Q,

converges to xq,u, in L*(=T,T, WOIS(Q)) for any s € [1, %—ﬁ), where finm = (gnm); +

XQrtns Gnm(2,t) = op(2) ij w2.m(s)ds and {2} is a sequence of mollifiers in R.
Set

B} = {M([Vul) > e /A Mi[w] <77A}NQ, F} = {M(|Vul) > A} NQ,
Ei,e = {M(X32|vu’) > 5_1/9)‘aM1[XBQW] < 51_%)‘} N B, F)% = {M(XBQ|VU|) > )‘} N B,

for e € (0,1) and A > 0.
We verify that )
\E)l\g\ < ci1€|Qprs| VA >0,e€(0,1) and (4.8.4)
~ 14l N—
BS el < coelQmol ¥ A>9I Vull i gopna Ry Y 2he € (0,1) (4.8.5)

for some ¢; = ¢1(To/r0),co > 0 and R3 = inf{rg, Ty} /16.
In fact, we can assume that E)l\yg # 0 so (Jul(Qr) + |o](R2)) < Té\”rlsl*%)\. We have

1 c3
’E)\,a‘ S 8_1/9)\/QT |Vu\d:zdt

By Remark 4.3.2, fQT |Vug|dedt < csTo (|un](Qr) + |on] () for all n. Letting n — oo we
get [o, [Vuldzdt < csTo (|u|(Q1) + |o](Q)). Thus,

C3C4
el

C3C4 N42_ 1-14 ~
< 7y Do (@) +101(9) € S5 T2 70 = eaelQn, |-

Hence, (4.8.4) holds with ¢; = ¢5(Tp/0).-

For any A > E_1+%|’vu‘|L1(QTQBQ)R2_N_2 we have

2 3 A
< —F .
|E>\,e| = e—1/6) /QT X32|vu‘dxdt < 025|QR2’
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Hence, (4.8.5) holds.

Next we verify that for all (z,t) € @ and r € (0,R3] and A > 0, € (0,1) we have
Q,(z,t)NQ C F} if ]E)l\a NQ,(x,t)| > c6e|Qr(x,t)| where the constant cg does not depend
on A and e. Indeed, take (z,t) € Q and 0 < 7 < R3. Now assume that Q,(z,t) N Q N
(F1) # 0 and E}\’E N Q. (x,t) # 0 i.e, there exist (z1,t1), (z2,t2) € Q,(2,) N Q such that

M(|Vul)(z1,t1) < X and M [w](x2,t2) < =3 \. We need to prove that
[EXe N Qr(, )] < coelQr(x,t)] (4.8.6)
Obviously, we have for all (y,s) € Q,(z,t) there holds
M(|Vul)(y, s) < max{M (XQQT(M)]VUD (y,s),3VF2A).
Leads to, for all A > 0 and ¢ € (0, ) with gg < 3=(N+2)¢,

E\.NQr(z,t) = {M (XQQTW)NUD > e YONMiw] <A N QN Or(z,8). (4.8.7)

In particular, E} _ N Q,(x,t) = 0 if By, (x) CC RN\Q. Thus, it is enough to consider the
case By,(z) CC Q and By () N Q # 0.

We consider the case By, (x) CC Q. Let wy, 1, be as in Theorem 4.7.1 with Qar = Qur(z, o)
and u = uy, ,, where tg = min{t + 2r% T'}. We have

|Vt m — Vwp m|dedt < c; | (Qar (2, t0)) and (4.8.8)
Qurlate) ’ riNH
(%
][ |an,m|9dxdt < cg ][ |Vwp, m|dadt | . (4.8.9)
Qar(x,t0) Qar(z,to)

From (4.8.7), we have

1B 1 Qe @, )] < M (Xq,, (o | Vitmanl ) > =™ °A/4} N Qu(ar, 1)}
1M (X 1)Vt = Vel > €™0/41 1 Qu(a, 1)
+ M (X, o)Vt = Vual ) > e™/O0/4} 01 Qr (e, 1)
M (Xq, oy |Vt = Vul ) > €70/41 0 Qr (e, 1)

< 095)\_9/ ]Vwmm\edzndt + et /N1 / |Vt m — Vwp m|dedt
QQr(xat)

Qar(z,t)
+ coet/ONT! / [V — Vg |dxdt + coet/OA™1 /

QQT(xvt) QQT (x7t)

|Vu, — Vu|dzdt.
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Thanks to (4.8.8) and (4.8.9) we can continue

0
|E\. N Qr(2,1)] < c10eA™°|Qr(,1)] (][ |Vun,m|d$dt>
Q

4r(2,t0)

0
-0\ n,m r(z,t 1A n,m r(x,t
+ c10eA "’ |Qr (2, 1) <|M ’ |E“?Vi1( 0))> + c10e'/O\ 1|Qr(l’,t)||u |(T,C}2Vi1( )
+ 01061/0)\_1/ |V, m — Vuy,|dedt + 61081/6')\—1 / |Vu, — Vu|dzdt.
Q2r(@,to) Q2r(z,to0)

Letting m — oo and n — oo, we get

4r (I7t0)

6
Exe (O 8)] < c10eA (G (2, 1) (7[ \Vu|da;dt>
Q

- 9 -
+ e10aA 1 @r (1) (W) +enoe G, )] AR 1),

Since, M(|Vul)(z1,t1) < A and M [w](x2,t2) < 1=\ we have

/ |Vu|dzdt < / |Vu|dzdt < [ \Vau|dzdt < Qo (z1,11)|A,
Qar(z,to) Qsr(z,t) Qor(1,t1)
and
w(Qar(@,10)) < w(Qsr(w,)) < w(Qor (w2, 12) < 77 A(9r)NFL.
Thus

|E>\,a N Qr(fvat)’ < 0115|Qr($7t)‘-

Next, we consider the case Byr(z) N Q2 # 0. Let x3 € 09 such that |z3 — z| = dist(z, 9Q).
Let wy, be as in Theorem 4.7.5 with Qsr = Q16 (3, %0) and u = uy, ,, where tg = min{t +
2’/“2, T}. We have ngr(x,to) C Qlﬁr(l‘g,to),

][ |Vtym — Vg |dedt < c12 |“n7m\(9;7(z1(:c3, to)) and
Q12r(z,to) r

0
][ |Vwn m |9dxdt <13 ][ |Vwp, m|dadt.
Q2r(z,to) Q12r(z,to)

As above we also obtain

0
|E/{,a NQy(z,1)] < c1aeX™|Qr (2, 1) <][ |Vu|d:1:dt)
Q

12r(x,to)

- 0 -
+ X ~1Qu(a. ) (‘W) F e OA7Q, ) X 10))
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Since, M(|Vul)(z1,t1) < A and M [w](z2,t2) < 179\ we have

/ Vulddt g/ Vuldzdt g/ Vuldzdt < |Gasn (21, 1)\
Q12r(z,t0) 24r(x,t) 257 (1,t1)
and

w(Q16r(23,t0)) < W(Q32r(3,1)) < w(Q36r(2,1)) < W(Q37,(w2,2)) < 81_%/\(377")]\[“-

Thus
|EX: N Qr(a,1)] < crsel Qr(a, ).

Hence, (4.8.6) holds with ¢g = 2max{c11,c15}.
Similarly, we also prove that for all (z,t) € By and r € (0, Rg] and A > 0,¢ € (0, 1) we have
Qr(x,t)NBy C F§if \E/Q\,aﬂQ,«(ac, t)| > c16e|@Qr(x, t)| where a constant cog does not depend
on A and e. Now, choose e1 = (2max{1,c1,cs}) ! and g3 = (2max{1, c2, c16} L. We apply
Lemma 4.3.21 with F = E>1\,s’ F = FY and ¢ is replaced by max{ci, cg}e for any 0 < e < &;
and A > 0 we get (4.8.1), for £ = Eie, F = F? and ¢ is replaced by max{cy, c17}e for any
0<e<eyand A > 8_1—"_%HVUHLI(QTQBQ)RQ_N_Q we get (4.8.2).
This completes the proof of the Theorem. [

Proof of Theorem 4.2.17. By theorem 4.8.1, there exist constants ¢c; > 0,0 < g9 < 1

and a renormalized solution u of equation (4.2.4) with data p, up = o such that for any
e€(0,1), A>0

{M(|Vau|) > e YO0 M [w] < e oA N Q| < erel{M(|Vu|) > A N Q).

Therefore, if 0 < s < 00
s d)
P —

)
s d)
P —

by
s d)
P —

A

S 2(6-p) s —8 s

= c}/Pe [IM(IVul| 2oy + € °Ma[w] [ 70,5 () -

IM(IVul)[[ 0.5y = 8_5/9]9/0 N{(z,t) € Q : M(|Vu|) > e VN

s s(6—p) S
< &P / N[{(2,1) € Q : M(IVul) > A}
0

el / S XNH(@t) € Q: Myfw] > e FAY
0

Since p < 0, we can choose 0 < € < g such that ci/ps% < 1/2 we get the result for
case 0 < s < o0o. Similarly, we also get the result for case s = occ.

Also, we get (4.2.29) by using (4.4.16) in Proposition 4.4.8, (4.4.28) in Proposition 4.4.19.
This completes the proof. [

Remark 4.8.2 Thanks to Proposition 4.4.4 we have for any s € (%—ﬁ, N]ﬁge) if p e
(s—1)(N+2)

L *(Qr) and 0 =0 then

IVl mnpen < eallul]? oo

) Q)

where constant co depends on N, Ay, A, s, co,To/ro.
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As the proof of Theorem 4.8.1, we also get

Theorem 4.8.3 Suppose that RN\Q satisfies uniformly 2—thick with constants co,ro. Let
0 be as in Theorem 4.8.1. Let 1 < p < 0,0 < s < oo and p € My(Qr), o € M(2),
set w = |u| + o] @ dy=gy. There exist C1 = C1(N, A1, A2, p,s,c0) > 0 and a distribution
solution u of equation (4.2.4) with data p and ug = o such that

M2 ~N-2
HM(XQ:;R(Z/O,SO)‘VUD"L”’S(QR(yo,So)) < CiR v inf{ro, R} HquLl(szR(yO,So))
+ ClHMl [XQ4R(y0,So)w] | ’LP’S(QR(Z/O7SO))’ (4810)

for any Qr(yo, s0) € RNTY and if o € LY(Q) then u is a renormalized solution.
Proof of Theorem 4.2.19. Let {uy n} and iy, be in the proof of Theorem 4.8.1. From

Corollary 4.7.2 and 4.7.6 we assert : for 2—inf{f1, f2} < v < N +2, there exists a constant
C = C(N,A1, A2, co,7v) > 0 such that for any 0 < p < Tj

/Q -, |Vt m|dwdt < C(N, A1, Mg, v, o, To/r0)p™ 77 [IMy [| i £oo (¢ (-7
p\Y,s

where 1, 82 are constants in Theorem 4.7.1 and Theorem 4.7.5. It is easy to see that

MLy [[tnm | Loe (x (=) < My W] Loe(x (=1,1)) = My [W][[ oo ()

for any n, m large enough.
Letting m — oo,n — oo, yield

/ |Vu\dacdt < C(N7 Ala A27 Y5 €o, TO/TO)pN—i_g_,Y‘ |M’Y [W] | ’LOO(QT)
Qp(y:9)
By Theorem 4.8.3 we get
N+2
V] o (0 o soynry < 1 (To/To)R 7 My (W]l oo )
+ e |My [XQR(yovso)w} | ’LP’S(QR(UO7SO))

for any Qr(yo,50) € RN*! and 0 < R < Tp. It follows (4.2.30).
(=Dp (y=Ds.\_1

Finally, if e L, = 7 O 7

lized solution. It suffices to show that

Qr) and o = 0, then clearly w is a unique renorma-

My [[el]ll Lo (o) < esllull aone aovs, .y, and (4.8.11)
L, v K (QT)
p(y—1)—N-2
7 IMiXG g0y M 2o (G o0 3C3”“'|Lf—”2”"’—“’;”s;mfl)p(QT) (4.8.12)
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for any QR(yg,so) c RVt and 0 < R < Ty, where ¢3 = c3(N, A1, Ao, p, 8,7, co, To/70)-
In fact, for 0 < p < Tp and (z,t) € Q7 we have

ull G-ve G-vs > lpll =vp
L. 7 7 (v 1)p(QT) L. 7 ,003(y 1>p( )

(=1)p=N-2

(y=1)p
> p 7 [l (=Vp .
L 7 7(Qp(z,t)NQr)

(y=1)p—N-2

(x=1)p

~ _ v ~
>cip 7 Qp(x, )T TR u|(Qp(x, t) N Q)

_ (@, ) N Or)
- 65 pN+2_’Y ’

which obviously implies (4.8.11).
Next, we note that

1-1 1
M XG0 1 8) < 6 (M (X sy 1) @0) Ml oy o
L* v ' v ’ (QT)

We derive
p(y=1)=N-2
R p "MI[XQR(%SO)‘IU’HHLPvS(QR(yo,So))
< cg P X" M) _ —1)s :u’ — —1)s
Qr(yo,50) e 'yl)p’%(QR(yg,so)) Liﬂ%”’,%m—npmﬂ
po=n-N-2 11 3
<cR P [l (v=Dp (y=Ds _ [l G=bp (v—D)s () '
L7 7 @Qr(yoso) L, 7 7 7T Pqp

(=Dp (v=1)s _
Here we used the boundedness property of M in L~ v * » (RN*1) for (le)p > 1.

Therefore, immediately we get (4.8.12). This completes the proof of theorem.
]

4.8.2 Global estimates on Reifenberg flat domains

Now we prove results for Reifenberg flat domain. First, we will use Lemma 4.7.4, 4.7.13
and Lemma 4.3.19 to get the following result.

Theorem 4.8.4 Suppose that A satisfies (4.2.27). Let s1, 82 be in Lemma 4.7.3 and 4.7.7,
set sp = max{si, s2}. Let w € Ao, p1 € My(Q27), 0 € MY(QY), set w = |u| + |o] @ =0y
There exists a distribution solution of (4.2.4) with data p and ug = o such that following
holds. For any € > 0,Ry > 0 one finds 61 = 01(N,A1,Aa, e, [w]a,) € (0,1) and 6y =
d2(N, A1, Ao, e, [w]a,, To/Ro) € (0,1) and A = A(N, A1, As) > 0 such that if Q is (61, Ro)-
Reifenberg flat domain and [AJf0 < &y then

w{M(|Va|) > AN, M [w] < 80} N Q7) < Bew({M(|Vul) > A} N Q) (4.8.13)

for all X > 0, where the constant B depends only on N, A1, Aa, To/Ro, [w]a
Furthermore, if o € L' () then u is a renormalized solution.

oo *
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Proof. Let {pn}, {on}, {ttnm}, {un}, {ttn.m},u be as in the proof of Theorem 4.8.1. Let ¢
be in (0, 1). Set E)\752 = {M(’VUD > A)\,Ml[w] < 52)\}QQT and Fy = {M(‘VUD > )\}QQT
for e € (0,1) and A > 0. Let {y;}£, C Q and a ball By with radius 27p such that

L
Qc U By, (yi) C Bo

1=1

where ro = min{R/1080,Tp}. Let s; = T — jr2/2 for all j = 0,1,...,[2L] and Qap, =
To
By x (T —4T¢,T). So,
Qr C UQTo(yivsj) C Qarp-
irj
We verify that .
w(Bxs,) < ew(Qro(yirs5)) Y A>0 (4.8.14)

for some 02 small enough, depended on n,p, o, B, €, [w]a.., To/Ro.

In fact, we can assume that Ey s, # 0 so |u|(Q7) + |o|(Q) < T 1\, We have

C1
E < — dxdt.
Bl < 55 [ 190l

We also have
/Q Vuldzdt < exTo(|ul(Qr) + o](Q).
T

Thus,

C C
[E)e| < A*?:\TO(IM!(QT) +10](2)) < A%\Té”zéz/\ = 402|Qar, |-

which implies

w(Eys,) <A <|’g;;2"> w(Qary) < A(csd2)” w(Qar,)

where (A,v) is a pair of A, constants of w. It is known that (see, e.g [33]) there exist
A; = A1(N,A,v) and v; = v1(N, A, v) such that

w(Qary) <A1< Qo | >V1 Vi j
) o

w(@ro(yi73j)) N ’Qm(yzﬁsj
So,
w(EA,(sz) < A ((3452)1/ Al <~QTO|> w(@ro(yi75j)) < 5w(©ro(yi’8j)) v i,j
|QT0(yi7Sj)‘

1/v
where (52 S (W) . It follows (4814) i
Next we verify that for all (z,t) € Qr and r € (0, 2rp] and A > 0 we have Q,(x,t)NQr C F)

. ~ 1/v
lf w(E)\762 n Qr(a:,t)) 2 Ew(Qr(I‘,t)) fOI' some (52 S (W) .
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Indeed, take (z,t) € Qr and 0 < r < 2rp. Now assume that Qr(z,t) N Qp N FY #
0 and Exs, N Qr(z,t) # 0 ie, there exist (z1,t1), (z2,t2) € Qr(x,t) N Qp such that
M(|Vu|)(z1,t1) < X and My [w](z2, t2) < daA. We need to prove that

w(Eys, N Qr(x,1))) < cw(Q,(x,1)). (4.8.15)
Clearly,
M(Vul) (9, 5) < max{M (X, .o Vul) (), 320} ¥(y,s) € Qula, ).
Therefore, for all A > 0 and A > 3V+2,
Ers, N Oz, t) = {M (XQQTW)\W;) > AN M ] < B0 N Qr N Oy (2, 1), (4.8.16)
In particular, Ey 5, N Q. (2,t) = 0 if B, (v) CC RV\Q. Thus, it is enough to consider the
case Bg,(x) CC Q and Bg,(z) N Q # 0.

We consider the case Bg,(z) CC Q. Let vy, be as in Lemma 4.7.4 with Qar = Qs,(z, o)
and u = uy, ,, where tg = min{t + 2r%, T'}. We have

’Nn,m|(Q8r(1:7t0))
[V Un,m | oo (Qon(2,t0)) < C6 ]é . |Vt i |dzdt + cg N , o (4.817)
and
n,m T 7t
][ IVn,m — Vupm|dedt < cg tin, |(C}2Vi1(x 0)) + cs[A] o 7[ |Vt | ddt
Qar(,t0) r Qsr(z,to)
+ ‘Nn,m’(Q8r<xv t0>)>
PN+1 .

Thanks to M(|Vu|)(z1,t1) < X and My[w](ze,t2) < d2A with (z1,11), (z2,t2) € Qr(z,1),
we get

— 3
lim sup lim sup ||V’Un,m||LOO(Q2r(x,t)) < Cg][~ ( | |Vu|dzdt + ng(QIZ’V(ff 2))
170 (T1,t1

n—00  M—o0
< g+ cgdo A
< 010)\7

and

lim sup lim sup ][ |Vu, — Vo, |dzdt
Q47‘(x7t0)

w(Q17, (w2, t2)) R w(Q17, (2, t2))
S CAUACEIL DR P Vuldedt + T2 12))
TN'H (0] Q17r(:c1,t1) TN+1
< c1102A + 011[14]20 (A +d22)
<11 (62 +61(1+d2)) A
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Here we used [A]0 < §; in the last inequality.
So, we can find ng large enough and a sequence {k,} such that

vanvaLO@(QQT(x,t)) == ||vvn,m|‘L°°(Q2T(:c,to)) S 2010)\ and (4.8.18)

7[ \Vumm — vam‘dl‘dt < 2c11 (52 + 51(1 + 52)) A, (4.8.19)
Qar(z,to)

for all n > ng and m > k,,.
In view of (4.8.18) we see that for A > max{3"V*2 8cio} and n > ng, m > ky,

M (XQy, (o) [ V0nml ) > AN/4} 0 Qo (,8)] = 0.
Leads to
[Brss 1 Q@) < M (Xgy, 0| Vitnm = Voam|) > AX/4} 01 G, 1)
+ M (Xy, 09| Vttn = Vttnm| ) > AN/4} 1 Q2 1)
1M (Xgy, |V = V] ) > AA/4} 01 Qr ().

Therefore, by (4.8.19) and Qa,(z,t) C Qu(x,tg) we obtain for any n > ng and m > k,

Brsn N Qulant)] < %2 [

IVnm — VU m|dedt

QQT(mvt)
+ a2 i |V, — Vg |dedt + 2 i |Vu — Vuy|dzdt
A S Gan(at) A J o)
< c13 (02 + 01(1+ 02)) |Qr(x,t)]
+ a2 i |V, — Vg, |dedt + oz /~ |Vu — Vuy|dzdt.
A o) A J Qo)
Letting m — oo and n — oo we get
|Exs, N Qr(x,t)] < c13 (02 + 01(1 + 62)) |Qp (0, ).
Thus,
. Eys, MOz, 0]\ -
w(Er s, N Q1) < O (' v (O ”) w(Qs (1)
|Qr (2, )]

< C ez (02 +01(1 +62)))" w(Qr(,1))
< Ew(Qr(a:,t)).

where 09,01 are appropriately chosen, (C,v) is a pair of Ay, constants of w.
Next we consider the case Bg,(x) N Q # 0. Let x3 € 09 such that |z3 — x| = dist(x, 09Q).
Set to = min{t + 22, T}. We have

Q2 (,t0) C Quor(23,t0) C Qsa0r(73,t0) C Qrosor(3,t) C Qrossr(,t) C Quosor(z1,t1)
(4.8.20)
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and
Qsa0r (73, t0) C Qosor(23,t) C Quossr(2,t) C Quoser (2, t2) (4.8.21)

Let Vi be as in Lemma 4.7.13 with Qsr = Qs40r(23,%0), ¥ = Unm and € = d3 € (0, 1).
We have

|Nn,m‘ (Q5407‘ ($37 tO))
RN+1

15 Vil |1 (@uon (s 0)) < €14 ][ Vatym|dadt + c1s

Qs40r(23,t0)

and

][ \Vunvm - VVom ’d:l?dt
Q1or(x3,t0)

n,m T X 7t
gcl5(53+[A]§§0)][ \Vun7m\d:zdt+cl5(53+1+[A]S’EO)W 7 K%’;@if 3t))
Qs40r(23,t0)

Since M(|Vul)(z1,t1) < A\, Mi[w](z2,t2) < d2A and (4.8.20), (4.8.21) we get

lim sup im sup ||V Vi || oo (Qa, (,t0)) < limsup Himsup [[VVa | £ (910, (25,t0))

(X3, T
< 014][ |Vu|dxdt + c14w(Q54ON(f13 0)
Qs40r(23,t0) R

) ¢
< C15 ][~ |Vu|dxdt + 615W(Q1089]\7;S_x127 2))
Q1089r (T1,t1) R

< c16 + c1602A
< ci7A

and

lim sup lim sup f |Vn,m — VVim|dadt
QQT(x7tU)

n—o0 m—0o0

r(23,1
< c15(05 + [A)0) ][ \Vu|dzdt 4 c15(03 + 1+ [A]QO)“(QMONSQ? o))
Qs40r (z3,t0) r
t
< c19(03 + [A]F0) ][ \Vul|dzdt + c1o(03 + 1+ [A]QO)W(QNSJ@% 2))
Q1089r(1,t1) r
< c20(83 + [AJE0)X + c21(63 + 1 + [A)50) 52
< e20 ((03 +01) + (03 + 1+ 01)d2) A.
Here we used [A]F0 < §; in the last inequality.
So, we can find ng large enough and a sequence {k,} such that
HVVTL,T)’L||LOO(Q~2T($¢)) - ||VVn7m||Loo(Q2T(x,t0)) S 2617)\ and (4.8.22)
7[ Vit — VW aldadt < 2031 (55 + 61) + (55 + 14 6)0) A, (4.8.23)
Q?T($7t0)
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for all n > ng and m > k,,.
Now set A = max{3¥+2 8cig,8¢c17}. As above we also have for n > ng, m > ky,

[Ers, N Q@) < M (Xg oy | Vitnm = TVaml) > AN/4} 1 @y (2, )|
+ M (Xqy. (o) [ Vttn = Vttmm|) > AN/4} 01 @y (2,1
1M (X 9| V1 = V) > AN/4) 0 Qe )]
Therefore from (4.8.23) we obtain

|Vuy,m — VVim|dadt

Brsn N Qulat)] < 2 [

QQT(CE’t)
+ 2V, - Vugldedt + 2 [ V= Vg |dedt
A Qo) Gar(a,t)
<23 ((03 +61) + (63 + 1+ 91)d2) |Qr(, 1)
+ 22 ) Vg, — Vg, m|dedt + 22 i |Vu — Vuy,|dzdt.
A JGo () A JGo ()

Letting m — oo and n — oo we get
[Exs, N Qr(m, 1) < can (03 + 61) + (83 + 1+ 61)2) |Qr(, 1)].
Thus

Exs, N0z, )]\ -
[Exs, N Qr(a >|> (G, 2)
|Qr (2, 1)]
< C (22 (03 + 61) + (63 + L+ 61)62))” w(Qp(, 1))
< ew(Q(, 1)),
where d3, 01, 2 are appropriately chosen, (C,v) is a pair of Ay, constants of w.
Therefore, for all (z,t) € Qp and r € (0,2r9] and A > 0 if w(Eys, N Qr(z,t)) >

cw(Qp(x,t)) then Q,(z,t) N Qr C Fy where §; = 6;(N, A1, Ag, e, [w]a.) € (0,1) and
d2 = 02(N, A1, Ao, e, [w]a,, To/Ro) € (0,1). Applying Lemma 4.3.19 we get the result. m

w(Ey s, N QT((IJ,t)) <C (

Proof of Theorem 4.2.20. As in the proof of Theorem 4.2.17, we can prove (4.2.32)
by using estimate (4.8.13) in Theorem 4.8.4. In particular, thanks to Proposition 4.4.4 for

(N+2)(g—=1)

q>%—ﬁ,u€lj s (Qr) and 0 =0,
IVull] ovinen o Zellpll? wize-y : (4.8.24)
L 4 () L q Q)
where the constant ¢ depends only on N, Ay, Ag, ¢ and T/ Ryp. [

Proof of Theorem 4.2.22. By Theorem 4.2.20, there exists a renormalized solution
of (4.2.4) with data p, u(0) = o satisfied

/ |Vu|?dw §cl/ (M [w])? dw (4.8.25)
Qr Qr
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for any w € Ao, where ¢; = ¢1(N, A1, A2, q,To/ Ry, [w]a,,)-
For 0 < § < 1 we have M, [w] < ¢l T0914] in Qp. Thus, (4.8.25) can be rewritten

/ |Vulldw < clcg/ (H%To’é[qu dw. (4.8.26)
QT QT
Thanks to Proposition 4.4.23 and Corollary 4.4.39 and 4.4.38 we obtain the result. ]

In follow that we usually employ the the Minkowski inequality, for convenience we recall
it, for any 0 < g1 < g2 < oo there holds

</X (/Y s y)|q1du2(y)) ' dm(m)) ; < (/Y </X |f(z, y)|q2dul(:c)) » dl@(y)) g

for any measure function f in X x Y, where u1, o are nonnegative measure in X and Y
respectively.

Proof of Theorem 4.2.21. We will consider only the case s # oo and leave the case
s = oo to the readers. Take xk; € (0,k). It is easy to see that for (zo,tp) € Qr and
0 < p < diam(Q) + T/2

w(z,t) = min{p V2R max{|x — x|, /2t — to]} VTR TRMY € A

where [w]a_ is independent of (zg,tp) and p. Thus, from (4.2.32) in Theorem 4.2.20 we
have
(N+2—
IMUNVUD 0 (0, o t0)1022) = P 1MV 1005 (8, (0 0) 622 0)
(N+2—k+K1)s s
<cp ¢ [IM W] 705 (2, o)

(N+2—r+K1)s d)\

—gap /O " (M) > A} n o) D

(N+2—r+r1)s 0 S 3 d\
= qcip q / ()\‘1/ {M;[w] > A\, w >7}N QT|dT> Y
0 0

(N+2—Kk+K1)s

=:c1p q A. (4.8.27)
Since w < p~N=2HR1 and {M[w] > A, w > 7} C {Mj[w] > A} NQ .Y (xo,to),
r—N—-2+r—kK1
) —N—-2+K—K] R 2 d)\
A< q/ <X1/ H{M;[w] > AN Q et (xo,t0) N QT|dT> 3
0 0 T T

We divide to two cases.
Case 1 : 0 < s < ¢q. We can verify that for any nonincreasing function F' in (0,00) and

0 < a <1 we have
(/OOO F(T)dT)a < 4/000(7-}7(7))“6?—.
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Hence,
—N 2+Kk—K]
- dT dA
A< 4q/ / )\qT]{Ml[w] > AN QT_N_Qi}M_N (0, t0) ﬂQT’) .
—2+K—K1
oo ~ d)\ dT
_ q
_4q/0 /0 (MM [w] > NG (z0,t0) N 1) il
p7N72+N7N1 sd’]‘
—1f I lline . papnan™ 7
p7N72+nfl~”~1 . = (N-&z-inn):) sdr
< 4 ) HMl[w]HLqﬂs?“(QT)T 1914 7

SK1

= el [My[wll[Lasn(@p 7 -

Case 2 : s > ¢. Using the Minkowski inequality, yields

o o d)\ z
A<cs /0 Tm (z0,0) N QT‘) A ) dr
pN-2tr=ry Cveaems N\ ®
S C4 A <‘|M1|:w”|iq’S;N(QT)T(—N—2+K—K1)q> dT

SKq

—N—-2+K—K]

([ (vipne> 210 @

:CBHMI[W]HSL%M(QT)/) .-

Therefore, we always have

SK

A < 6| MWl Zasinapyp 7 -
which implies (4.2.33) from (4.8.27).
Similarly, we obtain estimate (4.2.46) by adapting

w(z,t) = min{p VTV |z — o TV € A

in above argument, where 0 < U1 < ¥, g € Q and 0 < p < diam(Q?) and [w]a_ is
independent of x¢ and p.
Next, to archive (4.2.35) we need to show that for any ball B, ¢ RY

1
T q 9
1-2
( /0 oscBmu(t)wdt) < et IVl g0 0 (4.8.28)

Since the extension of u over (Qr)¢ is zero and u € L'(0, T, WOH(Q)) thus we have for a.e
t € (0,7), u(.,t) € WhHL(RY). Applying [32, Lemma 7.16] to a ball B, C RY, we get for
aete (0,T)and z € B,

ol ) = 0] < 32 i) I Ly

2N [Vu(y,t)]
- NIBl( N Bay(ay 2 = y[N

< 3p fBr(x) \Vu(y,t)|dy qr
=~ C8 TN_l 77
0

dy
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here up,(t) is the average of u(.,t) over By, i.e up,(t) = \Bilpﬂ pr u(x,t)dz.
Using the Minkowski and the Holder inequality, we discover that for a.e x € B,

1 1
! ‘ T30 [ [Vuly Oldy g\ T\
([ e -smia) s ([ ([ Bt
0 0 0
1
3p =
< Cs/ / (/ |Vu(y, )\th> ! dyd—;
3p B
<Cs/ (/ / |Vu(y,t) !thdy> ]Br(a:)\quﬂ
T

N—9 N(g—1) (

<alB@l [ 9l g,
0

1-2
= e 419l g0
Therefore, we find (4.8.28) with ¢7 = 2¢9. |

Proof of Proposition 4.2.28. Clearly, estimate (4.2.46) is followed by (4.4.12) in Pro-
position 4.4.7. We want to emphasize that almost every estimates in this proof will be used
the Minkowski inequality. For a ball B, C RY, we have for a.e z € RY

+o0o 00 A T r e %
[Talp] (2, ) ey = </_ (/0 Wﬁ) dt)

<[ ( / +°O<u<@7«<x,t>>>th)‘l’7ﬁ’;2. (1.8.29)

—00

1
Now, we need to estimate (fj;o(u(QT(x, t)))th> i
b. We have

Uj(u@r(x’t)))th); - (/:" </RN+1 XQr(at) @htl)du(a:l,tl))th);

1
+oo q
<[ ([T oot mar) duten )

— rip (B, (z))

Combining this with (4.8.29) we obtain (4.2.47) and (4.2.49).
Thus, we also assert (4.2.49) from [1, Theorem 3.1 |.
c. Set duz(x) = ||p(z, .)|| Lo (rydw. Using Holder’s inequality, yields

- 2(q1—1) t+§
WOl ) <7 /() / T w(er ) tdt | dy.
(@ t

P
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Leads to

+oo _ % 2(q1—1) +oo t+72
(/ w@mww@)sTﬂ /()/ [ wntan | at| don
—00 B (x —00 t77

Note that

Q=

NE

- </—:o </_:O X(t*éwé) (t1) (w (a1, tl))qldt1> o dt)

Hence

+ 3 2(q1—1)
o0 ~ q 91— 2
(/ m@mwm%)srw ﬂL(ﬂmmmewl

21 =1 4 2
= (B ().
Consequently, since (4.8.29) we derive (4.2.50) and (4.2.51).
We also obtain (4.2.52) from [1, Theorem 3.1 |. ]

4.8.3 Global estimates in RY x (0,00) and RV*!

Now, we present the proofs of Theorem 4.2.25 and 4.2.27.
Proof of Theorem 4.2.25 and Theorem 4.2.27. For any n > 1, it is easy to see that
i. RM\B,(0) satisfies uniformly 2—thick with constants cy = Caczgil?gf(%igffo()o))), 20 =
(1/2,0,...,0) € RY and 7y = n.
ii. for any § € (0,1), B,(0) is a (d,2n0)— Reifenberg flat domain.
i [A]7, < [ASS.

Assume that ||My[|w|]|[zp.sma+1) < 00. Thus by Remark 4.2.26 we have

L[|w|](z,t) < oo for a.e (z,t) € RVFL (4.8.30)

In view of the proof of the Theorem 4.2.5 and applying Theorem 4.2.17 to B,,(0) x (—n?, n?)

and with data X, _, (0)x (= (n—1)2,(n—1)2)w for any n > 2, there exists a sequence renormalized
solution {u,} ( we will take its subsequence if need ) of

(un)t — div(A(z,t, Vun)) = XB, 1 (0)x(—(n—1)2,(n—1)2)@ i1 By (0) x (—=n? n?),

up =0 on 0B,(0) x (—n?,n?),
un(—n?) =0 in B,(0),
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converging to a distribution solution u in L] (R; I/Vlicl (RM)) of 4.2.6 with data y = w such
that

IV unl|l Los (o (0) x (=n2.n2)) < c1lMilXB,_1 (0)x(=(n=1)2,(n=1)2) @Il L2:s (Ban (0)x (=02 n2))
< c1|[Ma[lwl]|| oo mv+1y-

To _ 2n+(1+n2)1/2 ~1
o= —~1L

Here ¢; = ¢1 (N, A1, Ao, p, s) is not depending on n since .

Using Fatou Lemma, we get estimate (4.2.38).

As above, we also obtain (4.2.39).

And similarly, we can prove Theorem 4.2.27 by this way.

This completes the proof of Theorem. ]

Remark 4.8.5 (sharpness) The inequality (4.2.41) is in a sense optimal as follows :
CHIML [Jwl)l] pora+1y < IVH2| * @]l Loy x0,00)) < ClMu[lw[]||a@y+1y  (4.8.31)
for every g > 1 where C = C(N, q). Indeed, we have

Ca X(0,00) (t)

VHQ(x7t) — _7W6Xp<_?)\/¥7

leads to

c—l

ey N XX iclal<avi < [VHa(,1)] <
2

c1
max{|z], \/2[t[}VF

Immediately, we get

o[ ((Bo(2)\Byyolw)) X (¢ = 1.t = r2/4)) dr
2 0

FNTL o < |VH| * |w|(z,t) < coly[w](2,1).

By Theorem 4.4.2, gives the right-hand side inequality of (4.8.31). So, it is enough to show
that

A ( /°° w ((By(2)\Byja(x)) x (t — 1%t —12/4)) dr
RN+1 0

q
rN+1 7"> dxdt > C3HM1[W”|%Q(RN+1)

(4.8.32)

To do this, we take ry = (3/2)F for k € Z,
( /oo w ((Br(2)\B,ja(w)) x (t — %t — 12 /4)) dr>q
0

rN+1 r

N1
Tk

- i (w ((By, (£)\Bay, ja(x)) x (t—ri,t—Qrﬁ/lG)))q'

N1
Tk

4> e i /M (w((B,,k(x)\Bg,mM(x)) x (t—rg,t—gr,z/w))) .
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For any k, puty =z + iry and s =t — 212, so By, ()\Bsy, ja(7) D By, 3(y) and

/ (“’«Brk(w\Bgm @) X “‘“3’“9“2/16))>qudt
RN+1

N+1
T
B —7r2/32,t +7r2/32))\’
Ei/ <w( re/s(y) X (s N:y T}/ ») dyds.
RN+1 k
Consequently,
2 2 q

By, js(y) x (s — Trg/32,t + Tr}/32))

Aza /RN+1 Z ( : I]€V+1 dyds.

It follows (4.8.32).

4.9 Quasilinear Riccati Type Parabolic Equations

4.9.1 Quasilinear Riccati Type Parabolic Equation in Q

We provide below only the proof of Theorem 4.2.30, 4.2.32 and 4.2.33. The proof of
Theorem 4.2.31 can be proceeded by a similar argument.

Proof of Theorem 4.2.30. Let {u,} C C°(Qr) be as in the proof of Theorem 4.2.1.
We have |pun|(Qr) < |u|(27) for any n € N. Let 0, € C2°(2) be converging to o in the
narrow topology of measures and in L'(Q) if o € L'(Q) such that llonllL1 @) < |o](2). For
ng € N, we prove that the problem (4.2.53) has a solution with data u = p,, and o = oy,
Now we put

Ea = {ue L'O.TW (@) IVall s <A

“(Qr)

N2 . .
where LN+1"°°(Qp) is Lorent space with norm

1
fll Na2 = sup <D _N+2/ f) .
I HLN“ Q1) o0<|D|<co = DNQp 7l

By Fatou’s lemma, Ey is closed under the strong topology of L'(0, T, Wol’l(Q)) and convex.
We consider a map S : Ep — Ej defined for each v € Ep by S(v) = u, where u €
LY0,T, Wol’l(ﬂ)) is the unique solution of

—div (A(z,t,Vu)) = |V|? + pin, in Qp,
u=0 on 092 x(0,T) (4.9.1)
u(0) = oy, -

By Remark 4.3.2, we have

IVulll 2 00,y < @ (VUL @r) + 1nol (Qr) + [lonol 1))
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for some c; = ¢1(N, A1, Ag). Tt leads to

a(N+

_aN+D)
IIVull] e <a (Cz\QT\l NVl v +!u!(QT)+!0|(Q)>
T) LNFT%(Qr)

LNFT°(Q

a(

1 av+1)
< e | efQp| N AT+ [u](Qr) + |o](€2) ]

for some co = ¢3(IV, ¢) > 0. Thus, we now suppose that

1

Q7] R (|](Q1) + [0]() < (2e1) e, T

then

< A=
IVulll 2, ) < A= 2a(l(@Q) + [0](Q)),

which implies that S is well defined.

Now we show that S is continuous. Let {v,} be a sequence in E, such that v,, converges
strongly in L(0, T, Wol’l(Q)) to a function v € Ey. Set u, = S(v,). We need to show that
up — S(v) in LY0,T, W, (€2)). We have

(un); — div (A(z, t, Vug)) = |Vou|? + pin, in Qr,
u, =0 on 00 x(0,7T), (4.9.2)
un(0) = op, in Q,

satisfied

Vunlll we2 o <A (lIVOll] 322, o <A

LN+1 (QT) LN+1 (QT)

Thus, |Vv,|? = |Vv|? in L'(Qr). Therefore, it is easy to see that we get u, — S(v) in
LY(0, T, W, (Q)) by Theorem 4.3.6.
Next we show that S is pre-compact. Indeed if {u,} = {S(v,)} is a sequence in
S(Ep). By Proposition 4.3.5, there exists a subsequence of {u,} converging to some u
in L1(0, T, WO1 1(Q)) Consequently, by Schauder Fixed Point Theorem, S has a fixed point
on E, this means : the problem (4.2.53) has a solution with data fin,, op,-
Therefore, for any n € N, there exists a renormalized solution u,, of

(un)t — div (A('Tv t, vun)) = |vun|q + pn in Qr,
u=0 on 00 x(0,7), (4.9.3)

un(0) = op,
which satisfies

IVunlll 242 o g, = 261 (1(R) + [o](2).

Thanks to Proposition 4.3.5, there exists a subsequence of {u,,} converging to u in L*(0, T, WO1 1(Q)).
So, H|VUH|L : < 2¢1(|p () +10](2) and [Vu,|? — |Vul? in LY(Q) since {|Vu,|?}
T

is equi-integrable. It follows the results by Proposition 4.3.5 and Theorem 4.3.6. ]

N42
NF1°(Q

Proof of Theorem 4.2.32. Case a. A is linear operator. By Theorem 4.2.22, there
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exist § = 0(N,A1,A2,q) € (0,1) and sg = so(INV, A1, Ag) > 0 such that € is (9, Rp)- Reifen-
berg flat domain and [A]f* < § for some Ry and a sequence {uy}, as distribution solutions
of

(u1)¢ — div(A(z,t, Vuy)) = p in Qr,
up =0 on 00 x(0,7T),
ui(0) =0 in Q,

and

(un+1)t — div(A(z, t, Vupy1)) = |Vup |7+ ¢ in Qp,
Uny1 =0 on 00 x (0,7),
un-l-l(o) =0 in Q7

which satisfy

[Vuns1llgpr .o < c1l|Vun|? +w]f g o ¥ =0 (4.9.4)

where up = 0 and constant ¢; depends only on N, Ay, Ay, q and Ty/ Ry, Ty. Moreover, if
o € LY(Q) then {u,} is the sequence of renormalized solutions.
i. Suppose

1

1 1N —
[Wlppor.o < (@ —1)7(ger24h) "o T, (4.9.5)

we prove that

qc 2971
) [w]mgl’q, Vn > 1. (4.9.6)

[Vun|']gyor.a <

Indeed, clearly, we have (4.9.6) when n = 1. Now assume that (4.9.6) is true with n = m,
that is,

gci 2971
qg—1 [w]gﬁgl«‘/'

IVt |*]gpe, .0 <
From (4.9.4) we obtain

[[Vums1]Tgper o < e1l[Vum|? + w]?

g):ngpq/
< 297! ([Wum‘q]gngm' - Mgngl,q’)
1 ger 2771\ 1 q(g—1) q
= o (<q_1 oy 1) Wy,
24—1
o 0
q—l MI1:9

Here, the last inequality is obtained by using (4.9.5). So, (4.9.6) is also true with n = m+1.
Thus, (4.9.6) is true for all n > 1.
ii. Clearly, u,4+1 — uy, is the unique renormalized solution of

up — div (A(z,t, Vu)) = |Vup|? — |Vuy—1|?7 in Qr,
u=0 on 90 x (0,7), (4.9.7)
u(0)=0 in Q.
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So, we have

[[Vtni1 — Vup|Tge,.o < c1l|[Vug|? — |Vun*1|q]gngl,q' Vn > 1.

Since, |s{ — sd| < q|s1 — sa|(max{s1, s2})97! for any s1, s2 > 0 and using Holder inequality,
we get

[[Vupsr — Vun|q]§mgl,q/ < caq?[|Vuy, — Vun_1|q]§mg1,q/ [(max{|Vuy|, |vun—1|})q]g:;g117q/
-1
<19’ [|Vuy, — vun—1|q]gm91,q’ ([|vun|q]gm91,q’ + [|vun—1|q]gm91¢q’)q
which follows from (4.9.6),

[Vttn i1 = Vatal g < ClIVtn — V1| lgger o ¥ > 1

-1
qe129\? —1
C=ciqf (q — 1) WIBE -

Hence, if C' < 1 then u,, converges to u = u1 + S.°°  (Un+1 — un) in LI(0, T, Wy'%(Q)) and
satisfied

where

q012q—1
g—1 [w]zmQM"

[Vl gpor.a <

Note that C' < 1 is equivalent to

1
1 [(qc29\ a
[wlgng, o < (c1g) =D <q_1>
Combining this with (4.9.5) and using Theorem 4.3.6, we conclude that the problem (4.2.53)
has a distribution solution u (a renormalized if o € L1(Q)) , if

1
1 _1 N 29\ "«
[w]imgl«q' < min {(q — 1)q (q612q—1) T (Cqu) q(qg—1) (qcll> q } .
q —

Next, we will prove Case b. and Case c..

Let {un} C C(Qr),0, € C(2) be as in the proof of Theorem 4.2.1. We have |u,| <
on * ||, |on] < w10 |o| for any n € N, {¢n}, {1} are sequences of standard mollifiers
in RVFL R respectively. Set wp = |pn| + |on| ® 60y and w = || + |o] @ g—y.-

Case b. For ng € N, € > 0, we prove that the problem (4.2.53) has a solution with data
W= lng, 0 = Op,. Now we put

By = {u e L0, T, Wg (Q)) : [Vul™ o, aser ) < A}

Qr
By Fatou’s lemma, E, is closed under the strong topology of L (0, T, Wol’l(ﬂ)) and convex.
We consider a map S : Ex — Ej defined for each v € Ep by S(v) = u, where u €
LY0,T, Wol’l(Q)) is the unique solution of problem (4.9.1). By Theorem 4.2.22, there exist
d =0(N, A1, Az, q+¢) € (0,1) and sg = so(NN, A1, A2) > 0 such that Q is (9, Rp)- Reifenberg
flat domain and [A]f° < § for some Ry we have

+
[Vl on6, ey < 2l VOI + wig I35, ooy
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where cg = co(N, A1, A2,q+ €, To/Ro, Tp). By Remark 4.4.33, we deduce that

_a_
va‘q]ﬁﬁg1v(q+5)’ < 03[|VU|q+€}§;gEl,(q+5)/,

where a constant c3 depends on N, g + €.

Thus,
qte
(VU gner ey < €2 (V0| gnar (arey + [Wioloner (o))
_a_ ate
< e <C3[|vu’q+s]{;—51»(tz+s)’ + [w”o]mgb(qw)’)
a_ qte
<c2 (CgAq+5 + [Wno]gmgl,(q-ﬁ-f)’)
<A,
A
provided that [Wno]gmgl&ﬁf)’ < ey =274 Cy q+e Cq " and A = 2‘1+602[wn0}g§1,(q+5)/.

which implies that S is well defined with [wn,]gy6, (4 1ey < ca.

Now we show that S is continuous. Let {v,} be a sequence in E, such that v,, converges
strongly in L'(0, T, W' () to a function v € Ej. Set u, = S(v,). We need to show that
un — S(v) in LY(0,T, WOM(Q)) We have u,, satisfied (4.9.2) and

Hvun‘q—i_a]mgwqﬁ)’ <A, [|vvn|q+a]img1;(q+6>’ <A

In particular, |[Vo,|[rate(q) < ACapg, (440 (Qr) for all n. Thus, [Vo,|? — [Vo|? in
LY(Qr). Therefore, it is easy to see that we get u, — S(v) in L(0,T, W&l(Q)) by Theorem
4.3.6. On the other hand, S is pre-compact. Therefore, by Schauder Fixed Point Theorem,
S has a fixed point on E,. Hence the problem (4.2.53) has a solution with data u = ., 0 =
Ong -

Thanks to Corollary 4.4.39 and Remark 4.4.40 we get

[Wnlgnar (arer < 5[Wlgnor ety ¥V nEN, (4.9.8)

where c5 = c5(N, q + ¢, Tp).
Assume that [w]gpg, (g+ey < cacst. So [Wnloner (arey < ca for all n.
Therefore, for any n € N, there exists a renormalized solution u,, of problem (4.9.3) which
satisfies
+ +er 1a+
Uvun|q+s]i)ﬁ91,(ll+€)’ < 2q+562[w”]gﬁ9617(q+5)’ < 2q+5626g 6[w]gﬁ9€1»(q+6)"
By Proposition 4.3.5, there exists a subsequence of {u,, } converging to v in L*(0, T, I/Vol’1 (Q)).
+ + : :
So, [|Vu|q+8]mgl,(q+a)/(QT) < 29Fecycd E[w]gn;p(ws)’(QT) and |Vu,|? — |Vu|? in LY(Q) since
{|Vun|?} is equi-integrable. It follows the result by Proposition 4.3.5 and Theorem 4.3.6.

Case c. For ny € N. We prove that the problem (4.2.53) has a solution with data
W= [iny,0 = Opy. Now we put

Ex = {u € L}(0, T, Wi () : [Vl oveoron e oy < Ab,
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where LIV+2)(a=1).20(Q) is Lorent space with norm

_1+%
HfHL(N+2)(q—1),oo(QT) = sup (’D| (N+2)(g—1) /
0<|D|<oc0 DNQr

]f\dxdt) .

By Fatou’s lemma, E, is closed under the strong topology of L' (0, T, WOU(Q)) and convex.
We consider a map S : Ex — Ej defined for each v € Ep by S(v) = u, where u €
LY0,T, Wol’l(Q)) is the unique solution of problem (4.9.1). By Theorem 4.2.20, there exist
d = 0(N,A1,A2,q9) € (0,1) and sg = so(N, A1, A2) > 0 such that Q is (d, Rg)- Reifenberg
flat domain and [A]f° < § for some Ry we have

H|VU’H’L(N+2)(q—1),°°(QT) < cp| M [[Vo]? + wno]HL(NJrz)(q—l),oo(QT)

< i (ML VoI oo agy + M ol v ) )

where cg = c6(N, A1, Az, ¢, To/Ro) and Ty = diam(Q) 4 T/2.
By Proposition 4.4.4 we have

MLl v 2 a1 .00 @nry < eIl FII| o2 a-1).00 a1y

S 68|’fH%(]\H'?)(q—l),oo(RnJrl) Vf € L(N+2)(q—1)7oo(Rn+1)7

where a constant cg only depends on N, q. Thus,

IVl vsria.e gy < 6 (slIVOG vy + ML B L ovsoriamn. )
< e (s + |IMi fong Il 20 )

1
which implies that S is well defined with |[Mi[wy] || v42)a-1).00 () < €9 = (2¢6) 9 cg "
and A = 2¢g|[Mi [wno ][ v +2)a-1),00 ()

As in Case b we can show that S : Ex — Ej is continuous and S(E,) is pre-compact,
thus by Schauder Fixed Point Theorem, S has a fixed point on Ej. Hence the problem
(4.2.53) has a solution with data p = pin,, 0 = op,.

To continue, we need to show that

My [wn] | |L(N+2)(q—1),oo(RN+1)

< ClOHHIUMH"L(N-F?)(q—l),oo(RNH) + CIOHIM%—l[’O—H"L(N+2)(q—l)(RN), (4.9.9)
for every n > ko. Where kg is a constant large enough and ¢19 = ¢10(N, ¢) Indeed, we have
M [wn] < ennlli[pn * | pl] + c11li [(p1,0 % |o]) @ df4—0y]. Thus, by Proposition 4.4.19 we deduce

|[M [Wn} | ’L(N+2)<q—1>,oo(RN+1)

< e[l fen * ]l Lov+2)a-1).00 @41y + C12| [T 1 lenn lollllLovoe-n @)

2
(N+2)(¢—1

= cutllen * L[|l pov+2)a-1).00 @41y + cr2][p1,n * 1 ol Lov+2y@—1) @y

2
=D !

= eI [[pl]]| Loviara—1),00 @1y + 12T Sillollpavsn@-n @y asn— oo

2
(N+2)(¢—1)
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It implies (4.9.9).
Now we assume that

Il pove2)a-1.00 ey, T Lol poveaa-n @y < co(2¢10) 7,

2
N+2)(g—1)

then |[Mi[wn]l| L (v+2)a-1).00ga+1) < 9 for all n > ko. Consequently, there exists a renor-
malized solution w,, of problem (4.9.3) satisfied

[ Vunll Lovi2)a-1.00(0) < 206/ M wn][ Lov+2)@-1).00 ()

S 206C10"]Il”/,b”"L(N+2)(q—l),oo(RN+1) + 266610‘|IW_IHO_|H’L(N+2)(q—1)(RN) = C

for any n > ko. Thanks to Proposition 4.3.5, there exists a subsequence of {u,} converging
to w in L0, T, W5 (). So, [[|Vulll pov+21a- 1000y < C and [Vug|? = [Vul? in L1(Q)
since {|Vuy|?} is equi-integrable.

It follows the result by Proposition 4.3.5 and Theorem 4.3.6. This completes the proof. m

Proof of Theorem 4.2.33. Let {u,} C CX(Qr),0n, € CP(Q) be as in the proof
of Theorem 4.2.1. We have |p,| < ¢n * |p|,|on] < @10 % |o| for any n € N, {¢,},
{¢1n} are sequences of standard mollifiers in RN+ RN respectively. We can assume that
supp(pn) C (' + Bg4(0)) x [0,T] and supp(on) C Q' + By4(0) for any n € N. Set
wn = |pn| + |on| ® d(1=0y and w = [u| + |o| @ (=}

First, we prove that the problem (4.2.53) has a solution with data u = pp,,0 = oy, for
ng € N. By Corollary 4.4.39 and Remark 4.4.40, we have

[Wn]gmgpq' < c1g0 Vn €N, (4.9.10)

where ¢; = ¢1(N, q,Tp) and g9 = [w]yyg,,¢- By Proposition 4.4.36 and Remark 4.4.37, we
have

12709 [(H?TW [wn])q} < el 0, aein RV and (4.9.11)
]Ig[(]I%TO"S[wan] < el Mylw,]  ae in RVFL (4.9.12)
for any n € N, where ¢y = c2(N, d,q,Tp) and 0 < § < 1. We set
Ex = {u e L'(0, T, Wy (Q)) : [Vu| < AT [wy,]}.

Clearly, Ey is closed under the strong topology of L'(0,T, VVO1 1(Q)) and convex.
We consider a map S : Ex — LY(0,T, WOU(Q)) defined for each v € Ej by S(v) = u,
where u € L'(0,T, VVO1 1(Q)) is the unique renormalized solution of problem (4.9.1). We
will show that S(Ej) is subset of E5 for some A > 0 and ¢y small enough.
We have

|Vl < Al [wp,] (4.9.13)
In particular, |HVUH’LOO(Qd/2X(O7T)) < AN +1)7Yd/2) "N 1w, (Qr), where Qg = {x €
Q:d(z,00) < d/2}.
From (4.9.11) and (4.9.12) lead to

H%Tg,6[|vv|q] S A(I]I%TO,(S [(H%To,é[wno])q} S Cqugg_l]I%TO,(S[Wno] and

q _
Io[|Vo|9] < AL, [(ﬁToﬁ[wno]) } < oA 9ed Ty fwn, .
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Clearly, from [27, Theorem 1.2], we have for any Q,(z,t) CC Q X (—oo,T) with r < rg

Vu(z,b)| ch]é( t)|vuydyds+C3H§T°=5[\vu\q+wn0](x,t)

<o ][ Vuldyds + 22 V0|7) (2, £) + s g (2, £)
Qr(z,t)

< cs][ |Vuldyds + c3 <c2Aq€g—1 1) 2703, (2, 1), (49.14)
Qr(z,t)

where ¢35 = c3(N, A1) and rg = ro(N, A1, A2, Ag, 5) > 0.
Since |||Vul|| 1 @) < T (H|VU\HLq(Q +wn0(@)), for any (z,t) € (Q\Qd/4) X (—00,T)
where 4/, = {z € Q : d(x,00) < d/4},

1

Qu@ 0] Jo, ( t)|Vu]dyds<C5d0N Ty (H|V“|HLq QT)JF%O({TT))
dg \T

< ey V|7 + w2, 1)
< ¢ (CQAqag—l + 1) 2709w, | (2, 1), (4.9.15)

where dyp = min{d/8, 79} and cg = c6(N, p, A1, Ao, T/ dp).
By regularity theory, we have

IVull Lo (0,4 x 07)) < cr(llullLoc @y 0% 0,7)) T V0 o0 (0% (0,7)))5

where Cr = 07(]\77 Al, AQ, A3, Q, T).
a. Estimate |[[Vv|?|[r(q, ,x(0,r))- Thanks to (4.9.13),

Vol Lo (@, x(0,1)) < < (A(d/2)"N M wno Q1))
Since wy, (Qr) < cleoCapghq,(QTo(xo,to)) = cg(N,q,p, To)eo with (zo,t0) € Qr, thus
11V019] o0 (0 p x (0,1)) < CoATel T [, (2, 8) V(z,t) € O,

where cg = cg(N, A1, A2, A3, q,d, Q,T).
b. Estimate ||ul[r(q,,,)- By Theorem 4.2.1 we have

u(z, )] < cr0l2[[Vol? + wno] (2, 1) V(z,1) € Qr,
where c¢19 = ¢10(N, A1, A2). Thus,
u(z, )] < cr0l2[[Vo]?](, 1) + crollz[wn] (2, 1)
< e <62Aq€g_1 + 1) o [wn ] (2, t),
which implies
ull 2y ooy < en1 (€A% ™+ 1) d o, (@)

< 1z (e20%f ™ + 1) T g J(2,) (o, 1) € O,

246



4.9. QUASILINEAR RICCATI TYPE PARABOLIC EQUATIONS

where C1p = Clg(N, Al, AQ, A3, q, To/d). Therefore,

||VU||L°°(Qd/4><(O,T)) < ci3 (014/\(15871 + 1) inf H%To’é[wno](fl}, t). (4916)
(z,t)eQr
where C13 = 613(N,A1,A27A37Qad,Q7T)'
Finally from (4.9.15) (4.9.16) and (4.9.14) we get for all (z,t) € Qr

Vu(z,t)| < ciq (chqsg*l + 1) 12700 (0] (2, 1),

where c14 = c14(N, A1, A2, A3,q,d,Q,T) and c15 = c15(N, 9, q).
1

So, we suppose that A = 2¢14 and gg < 01_5ﬁ (2014)71%1, it is equivalent to (4.2.61), (4.2.62)
holding for some C' > 0. Then for any (x,t) € Qr

Vu(z, t)] < AL [wy,) (2, 1),

and S is well defined.

On the other hand, we can see that S : Ey — E, is continuous and S(F) is pre-compact
under the strong topology of L(0, T, W&l(Q))

Thus, by Schauder Fixed Point Theorem, S has a fixed point on E,. This means : the
problem (4.2.53) has a solution with data p = pin,, 0 = op,.

Therefore, for any n € N, there exists a renormalized solution u,, of problem (4.9.3) which
satisfies

V(2 )] < AL [, (2,8) V (,t) € Q.

To,a[ 12704

Since I} 7 [wn) (2, £) < @n*I} O [|ul] (2, )+ 01,0 (1 (|0 @0 —y] (-, 1)) (x) =2 Ap(,t) and
A,, converges to ]IfTO’é[]uH +H?TO’§HU‘ ®0gi—oy] in LYRNFL), thus [Vu,|? is equi-integrable.
As in the proof of Theorem 4.2.32, we get the result by using Proposition 4.3.5 and Theo-
rem 4.3.6. This completes the proof. ]

4.9.2 Quasilinear Riccati Type Parabolic Equation in R" x (0,00) and
RN+1

In this subsection, we provide the proofs of Theorem 4.2.37 and 4.2.38. In the same
way, we can prove Theorem 4.2.36.
Proof of Theorem 4.2.37. As in the proof of Theorem 4.2.25 and Theorem 4.2.27, we
can apply Theorem 4.2.32 to obtain : there exists a constant ¢; = ¢1(N, A1, Az, q) that if
[A]5e < 6 and (4.2.64) holds with constant c; then we can find a sequence of renormalized
solutions {u,, } of

(uny )t — div(A(z,t, Vup, ) = [Vun, |7 + XD, _,w in Dy,,

Up, =0 on 0By, (0) x (—n2,n3),
Up, (—n3) =0 on By, (0).
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converging to some v in L] (R; Wlicl (RY)) and satisfying
H|vunk|HL(‘1_1)(N+2)»°°(an) < C2||H1[|WH||L(N+2)(q—1),oo(RN+1),

for some ¢y = c3(N, A1, Ag, q), where D, = B,,(0) x (—n?,n?). It follows |Vuy,, |7 — |Vul?
in LL _(RN*1). Thus, u is a distribution solution of (4.2.55) which satisfies (4.2.63).

loc

Furthermore, if w = p+ 0 ® dg—gy with u € MRY x (0,00)) and o € M(RY), then
Upn, = 0 in By, (0) x (—n2,0). So, u =0 in RN x (—o0,0). Therefore, clearly UlRN «[0,00) 18
a distribution solution to (4.2.54).

|
Proof of Theorem 4.2.38. Let w, = ¢, * (xp,_,w) for any n > 2. We have p,, €
C®(RN+1) with supp(wy,) C Dy, and w,, — w weakly in 9(RVF1).
According to Corollary 4.4.39 and Remark 4.4.40, we have

[wn]mﬂl,q/ <cigg YneN
where ¢; = ¢1(N, ¢) and [w]ypw, . < 0. Thus, thanks to Theorem 1.3 we get
Iy [(Ty [wn])?) < o6l ' [wn]  and (4.9.17)
Iy [(I1[wn))?] < coed lw,] VneN, (4.9.18)

where c3 = c2(N, q,c1).
We fix ng € N, put :

Ex = {u e L'(=n,n, o' (Bug(0)) + [V < Alifun,] in Byya(0) x (—nnd) } .
By using estimate (4.5.8) in Remark 4.5.3, we can apply the argument of the proof of
Theorem 4.2.9, with problem (4.6.9) replaced by

—div (A(t,Vu)) = X B,y /a(0)x (—n3,n3 2)|Vo|? + wn, in Dy,
u=0 on 0B (0) x (—n3,nd),
u(-n3) =0 in By, (0),

to obtain : the operator S (in the proof of Theorem 4.2.9) has a fixed point on E, for some
A = A(N,A1,A2,q) > 0 and g9 = €o(N, A1, A2,q) > 0. Therefore, for any n € N there
exists a solution u, of problem

(up)t — div (A(t, Vuy,)) = XBn/4(0)><(_n2 n2)| Vg|? + wp in D,
up, =0 on 0B,(0) x (—n?,n?),
un(—n?) =0 in B,(0),

which satisfies
|Vun(z,t)] < Ali[wy](2,t) V(z,t) € By, 4(0) % (—n?,n?).

Moreover, combining this with (4.9.18) and Theorem 4.2.1 we also obtain

[n(, )] < KTz [ X5, (0 (n22) | Vil + ] (1)

< KA, (I [|lwn )] + Kl [lon] (2, 1)
< eslly [lwnl] (2, 2)
< c3pp x o “Xanlw” (33775),
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for any (z,t) € B,(0) x (—n?,n?).

Since Ip[w](z0,tp) < oo for some (zg,ty) € RN*L thus sup, I, XD, |un|®dzdt < oo for
allmeN, 1< gy < 232

In addition, since Iy [w] € LL (RV*1), thus ¢, 11 [|[xp,_,w|] = Li[w] in L (RNF!) and

{XBn/4(0)x(—n2,n2)|Vun|q} is equi local integrable in RV+FL,

Therefore, we can apply Corollary 4.3.18 to obtain : u,, — u in L{ (R; I/Vli’cl (RM)) ((we will
take its subsequence if need) and u satisfies (4.2.66). Also, |Vu, |9 — |Vu|? in L}, (RNF1).,
Finally, we can conclude that u is a distribution solution of problem (4.2.65). Note that
the assumption [w]yyw, o < €0 is equivalent to (4.2.67) holding with C' = &o.

Furthermore, if w = p+0® dg_qy with € MRY x (0,00)) and o € M(RY), then u, = 0
in B,(0) x (—n2,a,) where supp(w,) C RY x (an,o0) and a,, — 0~ as n — 0. So, u = 0
in RV x (—o00,0). Therefore, clearly u|]RN><[0,oo) is a distribution solution to (4.2.68).

This completes the proof of the Theorem. [

4.10 Appendix

Proof of the Remark 4.2.7. Forw € MT(RVH) 0 < a < N+2if [, [w](zo,t0) < 00
for some (z9,tp) € RV*! then for any 0 < 8 < a, Ig[w] € L (RVF1) for any 0 < s <

loc

N]-Y-;EB' Indeed, by Remark 4.4.28 we have I,w] € L{ (RN for any 0 < s < NZYSE,B'

Take 0 < 8 < cand 0 < s < Nfigfﬂ. For R > 0, by Proposition 4.4.4 we have
I5[X@,n(0.00@] € Line(RYT). Thus,

loc

| (e 0) det
Qr(0,0)

§c/ I5lx5 w|(z,t dedzH—c/ I5lx5 wl(x, t sdxdt
1 QR(OO)(A Gan00l(@ D) ; QR(W(B[ Gan(00))(@1)

< e / Is[xs W(z,1)) dedt + ey R0 / (Io[w](x, t))* dadt
QR(0,0>< 92n(0,0) ) Qr(0,0)

< 00.

For 0 < 8 < a < N + 2, we consider

oo o
w(x,t) = < < X6 5 (x,t),
kZ:;l ’Qk-f—l (07 0)\Q/€(07 0)’ Qu+1(0,0NC(0.0)

where aj, = 2MV+2-9) if k = 2" and a = 0 otherwise with 6 € (8, .

It is easy to see that I,[w] = co and Ig[w] < oo in RN+, n
Proof of the Remark 4.2.26. For w € M (RV 1), since Ir[w] < ¢1 4 [[1[w]] thus :

If I [w] € L (RN¥+1) with 1 < s < N + 2, then by Proposition 4.4.4 in next section

o]l seven) < [T [w]l] .o @41y < 00
LN¥2=s" N+1)

If ) [w] € LN +2°(RN*1) then by Theorem 4.4.3,
I[w] € L (RNFL) v s > 1

loc
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So, Iz[w] < oo a.e in RV*Lif Ij [w] € L°(RN+1) with 1 < s < N + 2.
For s > N + 2, there exists w € MT(RV*1) such that Irjw] = co in RV*! and Tj[w] €
L*(RN*1). Indeed, consider

o0 k,N—l

= = X6 5 (x,t).
— 1Qr+1(0,0\Qx(0,0)] Qr+1(0,0)\Qx(0,0)

w(x,t) =
We have for (z,t) € RV*! and ng € N with ng > log, (max{|x|, /2[t|})

Mw](x,t)mz@;;;” ) Z 2’”00”

0o 2n—1-1 EN-1

=z 022&1— 22 <2Xk<2" 1 12nN> KN

On the other hand, for s; > %

ks(Nfl) 0 51(]\] 1)
witdzdt = <ec 7
/RN+1 . @ ; (k + 1)N+2 k‘N+2 s1—1 — kz:: (s1—=1)(N+1) <0

since (s — 1)(N +1) — s1(N — 1) > 1. Thus,

s < s :
Ml < clloll o <00

Proof of the Proposition 4.3.16. We will use an idea in [9, 10] to prove 4.3.14. For
5" e Whe(R) with S(0) =0, 5" >0, §'(r)7 > 0 for all 7 € R and ||5|| () < 1 we have

— / neS (u)dzdt —i—/ S'(u)A(z, t, Vu)Vndzdt
D D
—I-/ S"(u)nA(z,t, Vu)Vudzdt +/ S'(u)nL(u)dxdt = / S'(u)ndp.
D D D
Thus,
A2/ S” (u)n|Vu|*dxdt
D
+/ S'(u)nL(u)dzdt < Al/ |Vul||Vn|dzdt +/ nd| | +/ ||| w|dzdt.
D D D D

a. We choose S’ = ¢ 71T, for ¢ > 0 and let € — 0 we will obtain

/n|L(u)|dwdt§A1/ ]Vu|]Vn\dmdt—i—/nd|u|+/ |ne||u|dadt. (4.10.1)
D D D D
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b. for S’(u) = (1 — (Ju| + 1)~*)sign(u) for @ > 0 then

\V4 2
/|u|a+1ndxdt§01 (/ ywuvnydde/ nde/ \ntHudxdt),
D (Jul +1) D D D

Using Holder’s inequality, we have
1 |Vul?

Vau|[Vildedt < — [ —XU
\/D‘ H | 261 D (|U| + 1)CM+1

ndzdt + 02/ (lu] + 1)%ndzdt + CQ/ |Vt 0|8 ddt.
D D

Hence,

[Vul?
Vul||Vn dxdt—i—/ ——————ndxdt < c3B. 4.10.2
/D’ IV p (Ju] +1)>* ( )

—k+4d . .
c. for S'(u) = %M51gn(u)xk_5<|u|<k+5 + sign(u)X|y|>k+s, 0 < J < k then

1

— |Vul*ndzdt < c4 (/ |Vu||Vn|dzdt +/ nd|p| +/ \nt\uld:cdt) .
20 Jp—s<|ul<k+s D D D

(4.10.3)
In particular,

1
/ VT (w)|*ndxdt < c5 (/ |Vu||V17|d:cdt~l—/ 77d|u|+/ |17t||u|d1:dt> VEk > 0.
kJp D D D

(4.10.4)

Consequently, we deduce (4.3.14) from (4.10.1)-(4.10.4).
Next, take ¢ € C°(D) and S'(u) = Xjuj<k—s + k+gg‘u|)(k75<|u\<k+6, S(0) = 0 we have

—/ gomS(u)da:dt—i—/ S’(u)nA(x,t,Vu)chda:dt—i—/ S'(u)pA(z, t, Vu)Vndzdt
D D D
1

- % k—i<|u|<k+d
:/ S'(u)wndu—i-/ oneS (u)dxdt.
D D

Combining with (4.10.1), (4.10.2) and (4.10.3), we get

sign(u)pnA(zx,t, Vu)Vudacdt—i—/ S’ (w)pnL(u)dzdt
D

—/ LptnS(u)dxdt+/ S (u)nA(z, t, Vu)Vpdrdt < cs|¢l| Lo (p)B.
D D

Letting 6 — 0, we get

- /D Ty (w)dzdt + /D nA(x,t, VTi(u))Vedrdt < cs|lp|| e pyB-
By density, we can take ¢ = T.(Tk(u) — (Tp(w)),),

-/ O (L(Telw) — {Tiw)))) i)

+ /D nA(z, t, VI (u)) VT (T (u) — (Tk(w)),)dzdt < cseB.
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Using integration by part, we have

- / 8at (Te(Tio(u) = (Ti(w))y)) nTi(w)dzdt
D
- ;/D<T€(T’f(“) — (T (w))y))* edadt
+ /DTE(Tk‘(U) — (T3 (W)Y ) (The (w) )y dacdt

+v / N(T(w) — (Tu(w))) T2 (T (w) — (T(w)), )dadt.
D

Thus,
— [ 5 (T Tula) — {Tuw)) T )
D
> —<(1+ Rl + [ 0(Tw) = (D)) To(Ti(o) = (T, )dadt,

which follows (4.3.15). ]
Proof of the proposition 4.3.17. Let S € W2 (R) such that Sy(z) = z if |2| < k
and S(z) = sign(z)2k if |z| > 2k. For m € N, let 7,, be the cut off function on D,, with
respect to Dy,+1. It is easy to see that from the assumption and Remark 4.3.4, Proposition
4.3.15 we get Upy pn = NmSk(vn), Un = Up — hy,

iuPH (H (Um,n)t |’L2(—m2,m2,H*1(Bm(0)))+L1(Dm) + HUm,n\’L?(—m2,m2,Hg(Bm(o)))

+|unll L1 (Do) + vnll L1 (D)) < M < 00,

Thus, {Up.n}n>m+1 is relatively compact in L!(D,,). On the other hand, for any ny,ng >
m—+1

Hlvn, — vny| > A} 0 Din| = {0mVny — MmVny| > A} N Diy|

1 1

< % (anlHLl(Dm) + HUH2HL1(Dm)) + XHnmSk(v’m) - nmSk(vn2)HL1(Dm)
2M,, 1

< T + XHUm,m - Um,nzHLl(Dm)a

and hy, is convergent in L (RNT1). So, for any m € N there is a subsequence of {u,},

still denoted by {uy} such that {u,} is a Cauchy sequence (in measure) in D,,,. Therefore,
there is a subsequence of {u,}, still denoted by {u,} such that {u,} converges to u a.e in
RN*! for some u. Clearly, u € L (R; V[/llog (RM)). Now, we prove that Vu, — Vu a.e in

RN'H.
From (4.3.15) with D = Dy, 12, 7 = 0, and Ty(w) = Ti(nm+1u) we have
v /D N (T (Mt 1) — (T (m1w))w) Te (T (un) — (Tk(Mm+1w))y)dzdt
m—+2
+/ Az, t, VT (un)) VT (Tx (un) — (T (Mmr1u))y)dzdt
D2

<cie(l+k)B(n,m) Yn>m+2, (4.10.5)
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where
B(n,m) = [|(nm)t(|un] + DIl p1(D,0s2)

[ (a4 yendade s [ vam st [ g,
m+2 Dm+2

Dm+2

with g1 < ng_ol. By the assumption, we verify that the right hand side of (4.10.5) is bounded
by coe, where co does not depend on n.
Since {7k (un)}n>m-2 is bounded in L2(—(m + 2)%, (m + 2)2; H} (Bin12(0))), thus there

is a subsequence of {u,}, still denoted by {u,} such that

li_>m / MmA(x,t, VI (w)V (Ti(un) — Ti(u)) dedt = 0.
Tk (wn ) =(Th (Mmt1u))v|<e

Therefore, thanks to u, — u a.e in Dy, 1o and (Tx(Nmi1u))y — Tk(Mme1w) in L2(—(m +
212, (1m + 2) HY (B y2(0))), we get

V—r00 n—o0

lim sup lim sup / M,m P pdadt < coe Ve € (0,1),
1T (un) = (T (Mm1u))v|<e

where @, = (A(x,t, Ty (un)) — Az, t, T (w))) V (Tk (upn) — Tk (u)) . Using Holder inequa-
lity,

1/2 1/2
/ ’I’/m@k{ndxdt = / nmq)k,/nX|Tk(un)—(Tk(nm+1u)>u\§€dxdt
D2 D2

1/2
+ / T]m(pk‘,nXlTk(un)7<Tk(n7n+lu)>u|>€d$dt
Dm+2
1/2

/ Nin P kdxdt
Ty (un) =Tk (Nm+1u))v|<e

1/2
<lmmllfip, 0

1/2
+ [{|Tk (un) = (T (Nmy1u))u| >} N Dm-‘r1|1/2 (/ ngnq)k,ndxdt>

Dm+2

= An,u,e-

Clearly, lim sup lim sup limsup 4,, , - = 0. It follows
e—0 V—00 n—00

lim sup/ nmfb}c/jdajdt = 0.
Dm+2 ’

n—o0

Since @, & > Ao|VTk(uy) — VT (w)|?, thus VT (un) — VTk(u) in L1(Dy,).
Note that

1
[{IVtn, = Vny| > A0 Din| < = (Tl [21(0,0) + l[tna | (,0)

1
+ NV Te(uny) = VTi(ung)l £1(D,)
2My,
<

1
< — IV Te(uny) = V(o) 21(,)-
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Thus, we can show that there is a subsequence of {Vu,, } still denoted by {Vu,,} converging
Vu a.e in RV+L, [
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Chapitre 5

Pointwise estimates and existence of
solutions of porous medium and
p-Laplace evolution equations with
absorption and measure data

Abstract

Let  be a bounded domain of R™ (N > 2). We obtain a necessary and a sufficient condition,
expressed in terms of capacities, for existence of a solution to the porous medium equation
with absorption

u=0 ondQ x (0,T),

ug — A(Ju|™ ) + ulflu = p in Q x (0,7),
u(0) = o,

where o and p are bounded Radon measures, ¢ > max(m, 1), m > % We also obtain a

sufficient condition for existence of a solution to the p-Laplace evolution equation

u=0 on 9 x (0,7),

up — Apu+ |ul?lu = p in Q x (0,7T),
u(0) = o.

where ¢ > p—1 and p > 2.
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5.1 Introduction and main results

Let Q be a bounded domain of RV, N > 2 and T > 0, and Q7 = Q x (0,7). In this
paper we study the existence of solutions to the following two types of evolution problems :
the porous medium problem with absorption

ur — A(Ju|™ ) + [ultu = p in Qp,
u=0 on 9 x (0,7), (5.1.1)
u(0) = o,

where m > % and ¢ > max(1,m), and the p-Laplace evolution problem with absorption

ug — Apu+ |ulu = p in Qp,
u=0 ondQx(0,T), (5.1.2)
u(0) = o,

where ¢ > p—1 > 1, and p and ¢ are bounded Radon measures respectively on 2r and
Q. In the sequel, for any bounded domain O of R!(I > 1), we denote by 9,(O) the set of
bounded Radon measures in O, and by 9)?;(0) its positive cone. For any v € 9,(0), we
denote by v and v~ respectively its positive and negative part.

When m = 1,p = 2 and ¢ > 1 the problem has been studied by Brezis and Friedman
[13] with p = 0. It is shown that in the subcritical case ¢ < 1+ 2/N, the problem can be
solved for any o € 9M,(§2), and it has no solution when ¢ > 1+ 2/N and o is a Dirac mass.
The general case has been solved by Baras and Pierre 5] and their results are expressed in
terms of capacities. For s > 1, > 0, the capacity Capg,, ¢ of a Borel set E C RY, defined
by

Cava, o(E) = inf{|[gl[3-an) : 9 € LL(RY), Go 5 g > 1 on B},

where G, is the Bessel kernel of order o and the capacity Capy; s of a compact set
K c RN+ is defined by

Capy 1 4(K) = inf {||SO||?/V2’1(RN+1) cp € S(RV*Y), » > 1 in a neighborhood of K} ,
where

lellyyz gasny = @l ps @y Hlloel s @y H Vol || s @)+ > ewiag ey
G120 N

The capacity Cap,; , is extended to Borel sets by the usual method. Note the relation
between the two capacities :

C™'Capg, , +(E) < Capy, ((E x {0}) < CCapg__, (E)

s

for any Borel set £ C RY, see [35, Corollary 4.21]. In particular, for any w € 9%,(RY)
and a € R, the measure w ® dg—,y in RN+ is absolutely continuous with respect to the
capacity Capy; ¢ (in RYN*1) if and only if w is absolutely continuous with respect to the
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capacity CapG2 2.5 (in RN).
From [5], the proi)lem
—Au+ [ulu = p in Qp,

u=0 ondQx(0,T),

u(0) = o,
has a solution if and only if the measures 1 and o are absolutely continuous with respect
to the capacities Capy ; . in Q7 and Capg, , in Q respectively, where ¢’ = qfql.

g

In Section 5.2 we study problem (5.1.1).

For m > 1, Chasseigne [15] has extended the results of [13] for ¢ = 0 in the new
subcritical range m < ¢ < m + % The supercritical case ¢ > m + % with ¢ = 0 and o is
positive is studied in [14]. He has essentially proved that if problem (5.1.1) has a solution,
then o ® d(4—¢) is absolutely continuous with respect to the capacity Capy ;, g defined

for any compact set KX C RN*1 by

L
Capm,#’q,([() = inf {H@\ 5‘;2’”}1 (N1 P e S(RY), ¢ > 1 in a neighborhood of E} ,
qu

where

+ 1@t o mveny + 11TV ]

La— m(RN-H

+ Z ngzla;]HLq m(RN+1)
ij=1,2,..N

LTm (RN+1)

lellwar vy = llell
q—m 4

In this Section, we first give necessary conditions on the measures p and o for existence,
which cover the results mentioned above.

Theorem 5.1.1 Let ¢ > max(1,m) and p € My(Qr) and o € My(QY). If problem (5.1.1)
has a very weak solution then p and o ® dg—gy are absolutely continuous with respect to
the capacity Caps 4

’qmql

Remark 5.1.2 [t is easy to see that the capacity Capy, _a o s absolutely continuous
K 7q_m7q_

with respect to the capacity Capy, . . Therefore pn and c@04—qy are absolutely conti-

max{m

nuous with respect to the capacztzes Cap, 4 a An particular o is absolutely continuous

7 g—max{m,1}

with respect to the capacity Capg, _— .
max{m g—max{m

The main result of this Section is the following sufficient condition for existence,
where we use the notion of R-truncated Riesz parabolic potential Iy on RV*! of a measure
p € M (Qr) , defined by

R~
]Ig‘[,u](x,t):/o 'LL(QZ(WCZP for any (x,t) € RN

with R € (0,00], and Q,(z,t) = B,(z) x (t — p?,t + p?).

263



5.1. INTRODUCTION AND MAIN RESULTS

Theorem 5.1.3 Let m > 822, ¢ > max(1,m), pu € My(Qr) and o € My(Q).

i. Ifm>1 and p and o are absolutely continuous with respect to the capacities Capy 1 o in
Qr and Capg,, o in S, then there exists a very weak solution u of (5.1.1), satisfying
g

for a.e in Qp

< C ((“"(9) - '“'(“T)) 4 1ol(Q) + lul(©r) + 1+ B¥lo] © 5y + mn) ,

aN
(5.1.3)
where C' = C(N,m) >0 and
(N +2)(2mN +1)

= = diam(Q) + T/2.
my m(mN +2)(1 £ 2N’ d = diam(§2) +

ii. If % <m <1, and p and o are absolutely continuous with respect to the capacities

Capy 4 in Qrp and Caszfwafm in §Q, there exists a very

29 29
2(q— D)+ N(1—m) ) 2(q—1)FN(1—m)

q
weak solution w of (5.1.1), such that for a.e in Qrp

ol < o ((DLHEDN ™ 14 (101 0 53y + 1)) 7). 51

where C'= C(N,m) >0 and

IN(N +2)(m + 1)
24+ Nm)(2—N(1-m))(2+ N(1+m))

mo =

Remark 5.1.4 These estimates are not homogeneous in w. In particular if p = 0, w satis-
fies the decay estimates, for a.e. (x,t) € Qp,

utet) < ¢ ()" + oy 41+ G,

luz, )] < C ((@S?))m 1+ (‘;‘fﬁi)m) .

We also give other types of sufficient conditions for measures which are good in time,
that means such that

i if m>1,

i, ifm <1,

ceL*) and|p <f+w®F, where fe L (Qr),F e LL((0,7)), (5.1.5)

see Theorem 5.2.10. The proof is based on estimates for the stationary problem in terms
of elliptic Riesz potential.

In Section 5.3, we consider problem (5.1.2). Let us recall some former results about it.
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5.2. POROUS MEDIUM EQUATION

For ¢ > p —1 > 0, Pettitta, Ponce and Porretta [37| have proved that it admits a
(unique renormalized) solution provided o € L'(Q2) and p € 9, (Q7) is a diffuse measure,
i.e. absolutely continuous with respect to Cj-capacity in €27, defined on a compact set
K C Qr by

CP(K7 QT) = lnf{HQDHW tp e CCOO(QT)v ¢ >1on K}7 (516)

where
W ={z:ze LP(0,T,W,* () N L3(Q)), 2 € L¥ (0, T, W1 (Q) + L*(Q))}.

embedded with the norm

zllw = 12l oo rywt e @z T+ 12t Lo (0w -1 (@422

In the recent work |7, 8], we have proved a stability result for the p-Laplace parabolic
equation, see Theorem 5.3.5, for p > %lel. As a first consequence, in the new subcritical
range

p
<p—1+ =,
q<p +N

problem (5.1.2) admits a renormalized solution for any measures u € 9M(Qr) and o €
LY(€). Moreover, we have obtained sufficient conditions for existence, for measures that
have a good behavior in time, of the form (5.1.5). It is shown that (5.1.2) has a renormalized
solution if w € E)JTZF (Q) is absolutely continuous with respect to CapGp, a__. The proof is

g—p+1
based on estimates of [9] for the stationary problem which involve Wolff potentials.

Here we give new sufficient conditions when p > 2. The next Theorem is our second
main result :

Theorem 5.1.5 Let ¢ > p—1 > 1 and p € Mp(Qr) and o € M(Q). If p and o are
absolutely continuous with respect to the capacities Capy 1 o tn Qp and Capg, o in 2, then

q
there exists a distribution solution of problem (5.1.2) which satisfies the pointwise estimate

| < C <1 +D+ ("'m);]'ﬁ'(QT)) P (o] ® Sgoy + |M|]> (5.1.7)

for a.e in Qp with C = C(N,p) and

(N+p)(A+1)(p—1)
(p=1N+p)1+Ap—1))

A =min{1/(p —1),1/N}, D = diam() + T*/?.
(5.1.8)

ms =

Moreover, if o € LY(Q), u is a renormalized solution.

5.2 Porous medium equation

For k > 0 and s € R we set Ti(s) = max{min{s, k}, —k}. The solutions of (5.1.1) are
considered in a weak sense :
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5.2. POROUS MEDIUM EQUATION

Definition 5.2.1 Let p € My(Qr) and o € M(Q) and g € C(R).
t. A function u is a weak solution of problem
{ up — A(lu[™ ) + g(u) = pin Qr,

u=0 ondQx(0,T), (5.2.1)
u(@0)=0 n Q.

if u € C([0,T];L*()), |u|™ € L*((0,T); H:(Q)) and g(u) € LY (Qr), and for any ¢ €
Cc2H(Q x [0,T)),

—/ uprdxdt + V(|u™ ! u).Vgodxdt%—/
Qr Qp Qp

g(u)pdrdt = /

apd,u—i-/cp(O)do.
Qr Q

ii. A function u is a very weak solution of (5.2.1) if u € L™*m1N(Qr) and g(u) €
LY (), and for any ¢ € C21(Q x [0,T)),

—/ ugptdazdt—/ |u|m_1uAg0dazdt+/ g(u)gpda:dt:/ godu+/g0(0)da.
Qr Qr Qr Qr Q

First we give a priori estimates for the problem without perturbation term :

Proposition 5.2.2 Let u € L>®(Qr) with |u|™ € L*((0,T); H} () be a weak solution to
problem

u=0 ondQx(0,T1), (5.2.2)
u(0) =0 in 0,

with o € Cy() and p € Cyp(Qr). Then,

{ ug — A(lu|™ ) = p in Qr,

el oz < o) + 11l (@), (523
N+2
[l s/ gy < Cr(101() + 1 () 72, (5.2.4
mel m(N+1)+1
9™ ) < Co(lol(@) + ul(@r) T, (5.25)

([P

where C1 = C1(N,m),Cy = Co(N,m).

Proof of Proposition 5.2.2. For any 7 € (0,7), and k > 0 we have

[ (st + [ VTt Pdade = [Tl e, ),

where H(a) = [, Tk(|ly|™ 'y)dy. This leads to
/ VT4 (™) Pdadt < k(|o|(Q) + |4 () and (5.2.6)

Qp

A(Hk(U))(T)dw < k(lo|(€) + [ul (7)), V7 € (0,T).
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5.2. POROUS MEDIUM EQUATION

Since Hy(a) > k(|a] — ki) for any a and k > 0, we find

/Q (lul(r) — k% )dz < |o](Q) + |ul(Qr), ¥r € (0,T).

Letting k — 0, we get (5.2.3).
Next we prove (5.2.4). By the Gagliardo-Nirenberg embedding theorem, there holds

(N+1)
/ I Te(ju ™ )N
Qr

m— N m—
1Tl 1U)Hi/°°((0,T);L1(Q))/Q VT (Ju|™ ) *dedt
T

2/N —
< RSl o Q))/Q VT (™ L) Pdadt.
T

Thus, from (5.2.6) and (5.2.3) we get

N+2

(N+1) m 1 2V 2(m—1) Ni2
kv {ul >k}|§/ | T (™~ )| =N my(|o|(9) + |ul(Q) 3,

Qr

which implies (5.2.4). Finally, we prove (5.2.5). Thanks to (5.2.6) and (5.2.4) we have for
ko ko > 0

k2
{9l > 1 < 5 [ 9] > Hae
< I > o+ g [ 19 P
< Ciky ™ X (01(9) + () + kok~2(1o1(2) + (@)

Choosing ko = k¥miT (|o|(€2) + [l (7)) ¥, we get (5.2.5), "
Next we show the necessary conditions given at Theorem 5.1.1.
Proof of Theorem 5.1.1. As in [5, Proof of Proposition 3.1|, it is enough to claim
that for any compact K C € x [0,T) such that yu=(K) = 0, (67 ® dgy—0y)(K) = 0 and
Cale’q_Lm?q/(K) = 0 then p*(K) = 0 and (0" ® dy3—0y)(K) = 0. Let € > 0 and choose
an open set O such that (|u| + |o| ® 64—y)(O\K) < e and K C O C Q x (=T, T). One
can find a sequence {¢,} C C2°(O) which satisfies 0 < ¢,, <1, ¢yl =1 and ¢, = 0 in
Wy ¢ (RN+1) and almost everywhere in O (see [5, Proposition 2.2]). We get
—m

)

/ gond,u—l—/ gon(O)dcr:—/ u(gpn)tdmdt—/ \u|m_1uAg0nd:Bdt+/ |u| L up, dadt
Qr Q Qr Qr Qr

< (lullison) +lallZuan)lionllzy, @i+ | gt
i T

—m’qg—1

q

Note that

/Q S /Q on(0)do > 5 () + (o @ 610-0) () — (] + 0] ® 11)) (O\JS)

> W (K) + (0% @ Doy (K) — <.
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5.2. POROUS MEDIUM EQUATION

This implies

i (K)o @810 () < lullaan el B llnllyzy, vyt | lulpdadtee.
T

g—m’>q—1

Letting the limit we get pu*(K) + (07 ® dy—0})(K) < e. Therefore, p*(K) = (67 ®
Sgt=0}) (K) = 0. u

Next we look for sufficient conditions of existence . The crucial result used to establish
Theorem 5.1.3 is the following a priori estimates, due to of Liskevich and Skrypnik [32] for
m > 1 and Bogelein, Duzaar and Gianazza [12] for m < 1.

Theorem 5.2.3 Letm > Y22 and p € (Cy(Qr))T. Let u € LY (Qr) withu™ € L*(0,T, HL ()
be a weak solution to equation

up — A(u™) = pin Qp.

Then there exists C' = C(N,m) such that, for almost all (y,7) € Qr and any cylinder
Qr(y,7) = Bp(y) x (1 — 7“2,7 + 7"2) CC Qp, there holds
i.ifm>1

2N

1 L 112N
u(y,7) <C <TN+2/Q ( )‘“| = dxdt) Hlull oo (s r 2y (B w) T 1
r\Y,T

+ CI3 [ (y, 7).

i, ifm <1,

2N (m+1)

1 2(14+mN) (2—N(1-m))(2+N(1+m))
U(y,T) S C 7“]\7"'2/' ‘U| NQA+m) dxdt + 1
Qr(yvs)

+C (Bl (y, 7)) T

As a consequence we get a new priori estimate for the porous medium equation :

Corollary 5.2.4 Letm > Y22 and i € Cy(Qr). Letu € L>®(Qp) with [u|™ € L*(0,T, H3 ()
be the weak solution of problem

g — A(lu|™ ) = p in Qr,
u=0 ondQx(0,T),
u(0)=0 in Q.

Then there exists C = C(N, m) such that, for a.e. (y,7) € Qr,

i if m>1,

<o ((MR2) +uen + 1+ Bluen). 620
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ioifm<1,
u(y,7)| < C <(|“|C§2T)>m2 +1+ (H%dl[\u\](y, r)) ”(21’"”) : (5.2.8)

where m1,my and d are defined in Theorem 5.1.3.

Proof. Let g € Q, and Q = Bgy(x

0 (—(2d)?, (2d)?). Consider the function U €
(Co(Q)), with U™ € LP((—(2d)?, (2d)?)

X b
H{ (Bag(p))) such that U is weak solution of

)

Us — A(U™) = xarlpl  in Bag(zo) x (—(2d), (2d)?),
U=0 on 9Bag(wg) x (—(2d)?, (2d)?), (5.2.9)
U(—(2d)2) =0 in BQd(ﬂj‘o).

From Theorem 5.2.3, we get, for a.e (y,7) € Qr,

1 ! e
Uly,7) < <dN+2/Q y )!U|m+wdmdt> F U Lo ((r—a2 r 42y (Butwy)) + 1
d\y,T
+ a3 )y, 7),

if m > 1 and

2N (m+1)

1 2(14mN) 2—N{I-m) 2+ N(1tm))
Uy,7) <1 NQ/ |u| NO+m) dxdt +1
d * Qd(yzs)

2
+c (H%r[,u] (y’ 7_)) 2-N(1—m) ,

if m < 1. By Proposition 5.2.2, we have

NU | oo ((r—d2,7+d2):01 (Ba(y))) < 11[(Q27),
U] > 6} < ea(|ul(Q)) K 7% ™ e > 0.

Thus, for any £o > 0,

1 o
/QUm+21Ndxdt = (m+ 2N)/0 emren LU > 0}|de

1 to 1 1 © 1
= — A (}|ae — gmtan 0}|ae
(m 5 [, N > Ol ot ) [T e >

L 12
§03dN+2€6n+2N + cylZN N(WKQT))%

N+2

Choosing f = (“57) ™™ we get

(N+2)(2mN+1)
[ O Dt < s (!u!(QT) R
— dN .
Q
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Thus, for a.e (y,7) € Qrp,

o) < o ( (L) + @) + 1+ Bl ).

if m > 1. Similarly, we also obtain for a.e (y,7) € Qr,

Uty < er ((BIRE) ™ 1 (8 ) 7).

if m < 1. By the comparison principle we get |u| < U in Qr, and (5.2.7)-(5.2.8) follow. m

Lemma 5.2.5 Let g € Cy(R) be nondecreasing with g(0) = 0, and p € Cy(Qp). There
exists a weak solution u € L>®(Qr) with [u|™ € L*(0,T, H}(Q)) of problem

up — A(fu|™u) + g(u) = p in Qr,
u=0 ondQx(0,T), (5.2.10)
u(0)=0 in Q.

Moreover, the comparison principle holds for these solutions : if ui,us are weak solutions
of (5.2.10) when (u,g) is replaced by (pu1,91) and (u2,g2), where pi, pa € Cp(Qr) with
w1 > e and g1, go have the same properties as g with g1 < go in R then uy > ug in Qp.

Proof of Lemma 5.2.5. Set a,(s) = m|s|™ ! if 1/n < |s| < n and a,(s) = mn™ ! if
|s| > n, an(s) = m(1/n)™ 1if |s| < 1/n. Also An(7) = [; an(s)ds. Then one can find uy,
being a weak solution to the following equation

(un)e — div(an(un)Vun) + g(un) = p in Qg,
Up = 0 omn 082 x (O,T), (5.2.11)
un(0) =0 in Q.

It is easy to see that |u,(x,t)| < t||p]|pe () for all (z,t) € Qp. Thus, choosing Ay, (uy) as
a test function, we obtain

/Q IV Ay (up)|?dzdt < Cy(T, el oo (@) (5.2.12)
T
Now set ®,,(7) = [ |[An(s)|ds. Choosing |A,(un)|¢ as a test function in (5.2.11), where
¢ € C21(Qp), we get the relation in D'(Qp) :
(Pn(un))e — div(|An(un)[VAn(un)) + VAp(un).V[An(un)| + [An(un)|g(un) = [An(un)|p.
Hence,

(@ (un) el L @)+ 2201 @) < NN An(un) VA (un)l| 20y + IV An(un)l[ 1220y

+ HAn(un)g(un)HLl(QT) + HAN<U7L)NHL1(QT)-

Combining this with (5.2.12) and the estimate |Ay(u,)| < C2(T,||pl|pe(q)), we deduce
that

sup [[(@n(un))ellLr @)+ 220,751 (02)) < 00
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On the other hand, since |Ap(un)| < |up|an(un) < T'|p|| Lo (@)@n(un), there holds

/ \V(I)n(un)|2d:rdt:/ An(un)]2|Vun|2d:r:dt§T2||u||%oo(m/
Qr

| (un) 2|V, |2dadt
QT QT

< T2l B /Q 1V A ) Pddt < Co(T, 1l e ).
T

Therefore, ®,(u,) is relatively compact in L'(Q7). Note that

m(1)"|sPsign(s) if |s| < &
(m — 1)(%)”1 (]s| — L) sign(s) + #_H (|5|m+1 - (%)mﬂ) sign(s) if L <[s| <n.

So, for every ni,m2 > n and [s1], [s2| < T|pl|r~ (0,

D,(s) =

1
m+1

1 m
1151 = sal"sa] < Calm, Tlellieion) () + [ (o1) = (o)

Hence, for any € > 0,

1
{ ol = ] > 2 | < 10 ) = 1) > ),

for all ny,ng > (Ca(m, T||p|| Lo (0))/€) Lm, Thus, up to a subsequence {u,} converges a.e
in Q7 to a function u. From (5.2.11) we can write

—/ ungotda:dt—/ An(un)Agodxdth/ g(un)cpdxdt:/ ody,
QT QT QT QT

for any ¢ € 5 ’I(QT). Thanks to the dominated convergence Theorem we deduce that

—/ wprdxdt — / lu|™ M uApdzdt +/ g(u)pdzdt = / odji.

Qr Qr Qr Qr

By Fatou’s lemma and (5.2.12) we also get |u|™ € L2((0,T); H}(Q2)).

Furthermore, by the classic maximum principle, see [30, Theorem 9.7], if {@,} is a sequence
of solutions to equations (5.2.11) where (g, ) is replaced by (h,v) such that v € Cy(Qr)
with v > p and h has the same properties as g satisfying h < g in R, then, u, < 4,. As
n — 0o, we get u < 4. This achieves the proof. [

Lemma 5.2.6 Let m > % and g : R — R be a nondecreasing function, such that

g € Cyp(R), g(0) =0, and let u € M(Qr). There exists a very weak solution u of equation
(5.2.10) which satisfies (5.2.7)-(5.2.8) and

N+42
/ﬂ lg(w)|dzdt < [p|(Qr), |[ull pmra/noo @) < C(ul(Qp)) mr+2. (5.2.13)
T
where C = C(m, N) > 0. Moreover, the comparison principle holds for these solutions : if
uy,ug are very weak solutions of (5.2.10) when (u,g) is replaced by (u1,91) and (u2,g2),
where p1, po € My(Qr) with py > pe and g1, g2 have the same properties as g with g1 < go

m R then w1 > ug in Q.
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Proof. Let {u,} be a sequence in C°(Q7) converging to p in My(Qr), such that
ltin| < @n*|p] and |, |(Q7) < |p|(Qr) for any n € N where {¢,} is a sequence of mollifiers
in R¥*1. By Lemma 5.2.5 and corollary 5.2.4 there exists a very weak solution u, of

problem
{ (un)e — A(|Un|m_1un) + g(un) = pn in Qr,
u, =0 on 90 x (0,7),
2(0)=0 in Q,

which satisfies for a.e (y,7) € Qp,

=
=
)

(
)] < e (P ) @) + 1 o Bl)) > 1
[un(y 7 |<01<( dNT> +1+(¢n*ﬂédl[mn<y,r>)m) ifm < 1.
and

/ lg(u)|ddt < |u](©2r).
Qrp

Furthermore, by (5.2.4) in Proposition 5.2.2 and (5.2.6) in the proof of Proposition 5.2.2.

/ \VTe(Jun|™ Yuy) Pdedt < k|u|(Qr),  VE >0, (5.2.14)
Qr
{un| > £} < ol "X ™ |pu|(Qr) N0, V>0, (5.2.15)

For | > 0, we consider S; € C%(R) such that
Si(a) = |a|™a, for |a| <1, and Sj(a) = (20)"'sign(a), for |a| > 2I.
Then we find the relation in D' (Q7) :
(Su(atn))e = v (S)t) V(™ 100)) 72 ™ [Tt S (1) + 9 1) S} () = S}t

It leads to

(St (un))el 22 @)+ 220 0-1(0)) < 1157 () V (Jun| ™ un) | 1200
+ m[Jun| ™V 2S] (un)l L1 00y + 119(un) S (wn)l| 1) + 1157 (tn) pnl| 22 (007 -

Since |S](un)| < e3x(—a1,2(tn) and | S (un)] < calun|™ x[_21,2(tn), we obtain

(St (un )il Ly +22(0,7,H-1 ()
< ¢5 ([IVTpym ([un ™ un) | 200 + 191120 ) Q7] + |1al (Q1)) -

So from (5.2.14) we deduce that {(S;(uy,));} is bounded in L'(Q7) + L2((0,T); H-%(Q))
and for any n € N,

(St (un))ell L1 (@p)+L2((0,7): -1 () < C5 ((2l)m/2(|ﬂ|(QT))1/2 + 119l Loo () 27| + |M|(QT)) :
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Moreover, {S;(uy)} is bounded in L?(0, T, H}(Q)). Hence, {Si(u,)} is relatively compact
in L1(Q7) for any [ > 0. Thanks to (5.2.15) we find

{lwn ™ty = Juny [ uny | > O] < Kty | > B+ Kluns | > B+ [{[S1(un, ) = Si(un, )| > £}]
N+2

< 20l X () N A+ [{[S1(tny) — Si(uny)| > £}

Thus, up to a subsequence {u,} converges a.e in Qr to a function u. Consequently, u is a
very weak solution of equation (5.2.10) and satisfies (5.2.13) and (5.2.7)-(5.2.8). The other
conclusions follow in the same way. ]

Remark 5.2.7 If supp(p) C Q x [a,T] for a > 0, then the solution u in Lemma 5.2.6
satisfies u =0 in Q x [0, a).

Now we recall the important property of Radon measures which was proved in [6] and [35].

Proposition 5.2.8 Let s > 1 and p € WJ(QT) If 1 is absolutely continuous with respect
to Capy ;1 ¢ in Qr, there exists a nondecreasing sequence {un} C S)JT:(QT), with compact
support in Qp which converges to p weakly in My(Qr) and satisfies I [u,] € L3(RNFL) for
all R > 0.

Next we prove Theorem 5.1.3 in several steps of approximation :

Proof of Theorem 5.1.3. First suppose m > 1. Assume that u, o are absolutely conti-
nuous with respect to the capacities Capy ; s in 27 and Capg, , in Q. Then ot ®d4—0) +

o ® dgi—0y + p~ are absolutely continuous with respect ‘Eo the capacities Capg ; o in
Q x (=T, T). Applying Proposition 5.2.8 to 0+ @ d—o} +u*, 0~ @ dgy—gy + p~, there exist
two nondecreasing sequences {vy ,, } and {va,,} of positive bounded measures with compact
support in Q x (=T, T) which converge respectively to o™ ®0g1—0} +uT and o~ ®0g—oy T
in My(Q x (=T,T)) and such that 12%[vy ], 13%va ] € LI(Q x (=T, T)) for all n € N. By
Lemma 5.2.6, there exists a sequence {uy, n, k&, } Of of weak solution of the problems

(un1,n27k1,k2)t - A(|un1,n2,k1,k2|m_1un1,n27k1,k’2) + Tk1((ur+11,n27k1,k2)q)
—Tk2((u;17n27k17k2)q) =Vlp, — V2, inQx(=T,T),

Uny,ng,ki,ke = 0 on 990 x (—T, T),

Uny noder ko (=) =0 in Q,

which satisfy

al(9) + |pl(Qr)\™
imnir el < € ((FEEIIEDN T jo1(@) 4 (@) + 1+ B or + vl
(5.2.16)

and

/Q T (6, )"t + /Q Ty (o))t < 1 (1),
T T

Moreover, for any ni € N,ky > 0, {Un, no ki ks fno,k; 1S Donincreasing and for any ny €
N, k1 > 0, {wn; ny k1 ks by ko is nondecreasing. Therefore, thanks to the fact that H%d[vlm},
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13%vyn] € LY(Q x (=T, T)) and from (5.2.16) and the dominated convergence Theorem,

we deduce that u,, n, = lm Lm wy, p, kK, 18 & very weak solution of
k‘l —00 kQ*)OO

(unl»n2)t - A(|un17n2|m_1un1’n2) + |unl»n2|q_1un1>n2 = U17n1 - U27n2 ln Q X (_T7 T)’
Unyme =0 on 0Q x (=T,T),
Unyno(—T) =0 in Q.

And (5.2.16) is true when up, n, ky ky 1S replaced by wp, n,. Note that {w,, n,}n, is non-
increasing, {un, ny }n, is non-decreasing and

/ |un17n2|qudt < |;L|(QT) v niy,ngy € N.

Qr

From the monotone convergence Theorem we obtain that v = lim lim wup, », is a very
N9 —+00 N1 —00 ’

weak solution of

up — A(fu™ ) + |[ulf u = 0 @ Sy + xappu in Qx (=T,7T),
u=0 ondQx (=T,T),
uw(-T)=0 in Q.

which v = 0 in Q x (=7,0) and wu satisfies (5.1.3). Clearly, u is a very weak solution of
equation (5.1.1).

Next suppose m < 1. The proof is similar, with the new capacitary assumptions and (5.1.3)
is replaced by (5.1.4). |

We also obtain the subcritical case.

Theorem 5.2.9 Let m > % and 0 < g < m+ % Then problem (5.1.1) has a very weak
solution for any p € Mp(Qr) and o € NM(2).

Proof. As the proof of Theorem 5.1.3, we can reduce to the case ¢ = 0. By Lemma 5.2.6,
there exists a very weak solution uy, x, of

(W o )t = Aty o [ 0y k) + Ty (3] 1,)9) = Tho (g, 1)) = g 0 Q,
up, =0 on 00 x (0,7T),
un(0) =0 in .

such that {ug, g, }x, and {ug, k, }%, are monotone sequences and

N+2
[tk oo || mt2/v00 () < C Il (Q27)) V42,

In particular, {uy, x,} is a uniformly bounded in L*(Qr) for any 0 < s < m + %.

Therefore, we get that w = lim lim wy, x, is a very weak solution of (5.1.1). |
k2~>oo k‘1 —00

Next, from an idea of |8, Theorem 2.3|, we obtain an existence result for measures which
present a good behaviour in time :
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Theorem 5.2.10 Let m > Y22, ¢ > max(1,m) and f € LY(Qr), p € My(Qr), such that
| <w®F  for some w € M (Q) and F € L1 ((0,7)).

If w is absolutely continuous with respect to the capacity Capg, _a_ in €, then there exists
Yq—m
a very weak solution to problem

g — A(Ju|™ ) + [u|Tu = f+pin Qr,
u=0 ondQx(0,T), (5.2.17)
u(0) = 0.

Proof. For R € (0,00], we define the R-truncated Riesz elliptic potential of a measure
v € M (Q) by
R
B d
() :/ vBo@)dp g
0 P p
By [9, Theorem 2.6],there exists a nondecreasing sequence {w,} C 90/ (Q) with compact

support in € which converges to w in 9 (2) and such that Igdiam(m [wn] € LY™(Q) for
any n € N. We can write

frp=p—pe, = "+put, pe=f" 4,
and put, - <w® F. We set
Hin = Tn(f+) + inf{u+,wn ® Th(F)}, pon =Tn(f7) +inf{p™,w, ® T,(F)}.

Then {p1,n}, {12, } are nondecreasing sequences converging to i1, pa respectively in 9, ()

and M1y H2m < Wn @ X(0,T)» with @, = n(XQ +wn) and Igdlam(ﬂ) [(Iln] € Lq/m(Q). As in the

proof of Theorem 5.1.3, there exists a sequence of weak solution {uy, 5,k k. } Of equations
(um,m,kl,kz)t - A(|un1,n2,k1,k2 |m_1un17n27k17k2) + T, ((u;m?,kl,]@)q)

_Tkz((ughnz,khkg)q) = Hin = H2no in {r, (5.2.18)
Uny mgka by =0 on 02 x (0,7,
Uny,ng k1 k2 (0) =0 in Q.

Using the comparison principle as in [8], we can assume that
m—1
—Upy < |Un1,n2,k1,k2’ Uny g kiks < Ungs
where for any n € N, v, is a nonnegative weak solution of

{ —Av, = @, in €,

u, =0 on 0,
such that .
vy < cllgdlam(m [@n] VneN.

Hence, utilizing the arguments in the proof of Theorem 5.1.3, it is easy to obtain the result
as desired. -

It is easy to show that w ® x[o 7] is absolutely continuous with respect to the capacity
Capyy _a_ o, in Qp if any only if w is absolutely continuous with respect to the capacity
T g—m’

Capg,,_a_ in (2. Consequently, we obtain the following :

qg—m
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Corollary 5.2.11 Let m > Y22, ¢ > max(1,m) and w € My(Q). Then, w is absolutely
continuous with respect to the capacities Capg, o in Q if and only if there exists a very

qg—m

weak solution of problem

e — A ) + ful ' = w © Xz 0 O,
u=0 ondQx(0,T), (5.2.19)
u(0)=0 in Q.

5.3 p—Laplacian evolution equation

Here we consider solutions in the week sense of distributions, or in the renormalized
sense,.

5.3.1 Distribution solutions

Definition 5.3.1 Let u € My(2r), 0 € Mp(Q) and B € C(R). A measurable function u is
a distribution solution to problem (5.3.1) if u € L*(0,T, Wol’s(Q)) forany s € [1,p - NL_H> ,
and B(u) € LY(Qr), such that

—/ uLptdacdt—i—/ \Vu]p_QVu.dexdt+/ B(u)cpdxdt—/
Qr Qp Qp

pdp + / ¢(0)do,
Qr Q

for every ¢ € CH(Q x [0,T)).

Remark 5.3.2 Let o/ € My(Q) and o' € (0,T), set w = p+ 0’ @ Sy—qy- Let u is a
distribution solution to problem (5.3.1) with data w and o = 0, such that supp(p) C £ x
[a",T], and uw = 0,B(u) = 0 in Q@ x (0,a’). Then @ := ulqgy(, 1) is a distribution solution
to problem (5.3.1) in Q x (a/,T) with data p and o'.

5.3.2 Renormalized solutions

The notion of renormalized solution is stronger. It was first introduced by Blanchard
and Murat [11] to obtain uniqueness results for the p-Laplace evolution problem for L' data
w and o, and developed by Petitta [36] for measure data u. It requires a decomposition of
the measure u, that we recall now.

Let Mo (Q2r) be the space of Radon measures in Q7 which are absolutely continuous
with respect to the Cp-capacity, defined at (5.1.6), and 9ts(€Q27) be the space of measures
in Qp with support on a set of zero Cp-capacity. Classically, any p € 9(Qr) can be
written in a unique way under the form p = po + ps where pg € My(2r) N N(Q7) and
s € Ms(Q7). In turn pp can be decomposed under the form

po = f—div g+ hy,

where f € L'(Qr), g € (L (Q7))N and h € LP(0,T; Wol’p(Q)), see [21]; and we say that
(f,g,h) is a decomposition of . We say that a sequence of {uy,} in 9 (Q2r) converges to

276



5.3. P—LAPLACIAN EVOLUTION EQUATION

€ Mp(Qr) in the narrow topology of measures if

n—o0

lim odp, = / edp Yo € C(Qr) N L¥(Qr).
Qp Qr

We recall that if u is a measurable function defined and finite a.e. in 7, such that

Ti(u) € LP(0,T, W(}’p(Q)) for any k > 0, there exists a measurable function w : Q7 — RY
such that VT (u) = Xjyj<xw a.e. in Qr and for all £ > 0. We define the gradient Vu of u
by w = Vu.

Definition 5.3.3 Let p > 2]<[V++11 and j = po + ps € Mp(Q7), o € LY(Q) and B € C(R).
A measurable function u is a renormalized solution of

up — Apu+ B(u) = pin Qr,
u=0 on 0Q x (0,T), (5.3.1)
u(0) =0 in £,

if there exists a decomposition (f,g,h) of po such that

v=u—heL0,T);Wy*(Q) N L>®((0,T); L(Q)), Vs € [Lp - N]le) ’

Ti(v) € LP((0,T); Wy P () Vk > 0, B(u) € L*(Qr), (5.3.2)
and :

(i) for any S € W2>(R) such that S' has compact support on R, and S(0) =0,
- / S(o)e(0)dx — / oS (v)dzdt + S’ (v)|VuP~2VuVpdzdt

Q Qp Qr

+ 5" (v) | Vu|P~2VuVudzdt + S'(v)B(u)dxdt :/ (fS" (v)e + g.V (S (v)p)dzdt

QT QT QT
(5.3.3)

for any ¢ € LP((0,T); Wol’p(Q)) NL®(Qr) such that oy € LY ((0,T); W12 (Q)) + L (Qr)
and o(.,T)=0;

(ii) for any ¢ € C(Qr),

1
lim — / | VulP2VuVuvdedt = | ¢dut and (5.3.4)
m—oo M
{m<v<2m} o
1
lim — / B|Vu|P?VuVudrdt = pduy . (5.3.5)
m—oo M, QT

{—-m>v>-2m}
We first mention a convergence result of [7].
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Proposition 5.3.4 Let {u,} be bounded in My(Qr) and {o,} be bounded in L*(Q), and
B = 0. Let u,, be a renormalized solution of (5.3.1) with data p, = pno + pn,s relative
to a decomposition (fy,gn,hn) of pno and initial data oy. If {fn} is bounded in LY(Q7),
{gn} bounded in (L (7)™ and {h,} convergent in LP(0,T, Wy (2)), then, up to a subse-
quence, {u,} converges to a function u in L*(Qr). Moreover, if {un} is bounded in L'(Qr)

then {uy} is convergent in L*(0,T, Wol’s(Q)) for any s € [1,p - NLH)

Next we recall the fundamental stability result of [7].

Theorem 5.3.5 Suppose that p > 2]<,Vf11 and B=0. Let 0 € LY(Q) and

p=f—divg+h+pd —p; €M(Qr),

with f € LYQr),g € (LP (Qr)N, h € LP((0,T); WoP(Q)) and pf,u; € M (Qr). Let
o € LY(2) and

fin = fn — div gn + (hn)e + pn — M0 € Mp(Qr),
with  fn € LYQ1), g0 € (L' ()N, hn € LP((0,T); Wy (), and pp,nn € My (Qr),
such that

_ 1 . 2 1 . 2

Pn = Pp — div Pn + Pn,ss M ="My — div " + Mn,ss

with pj,my € LX), p2,m2 € (LY ()N and pp,s,mn,s € MT ().

Assume that {pn} is bounded in My(Q7), {on}, {fu},{gn}, {hn} converge to o, f,g,h in
LYQ), weakly in L (Qr), in (LY (Qr))N,in LP(0,T, Wol’p(Q)) respectively and {pn}, {nn}
converge to put, uy in the narrow topology of measures; and {p}b} , {n}L} are bounded in
LY(Qr), and {p2},{n2} bounded in (L¥ (Qr)N.

Let {uy,} be a sequence of renormalized solutions of

(Un)t - Apun = pp 0 Q,
up =0 on 09 x (0,7, (5.3.6)
un(0) = 0y in

relative to the decomposition (fn + pp — 1%, gn + P& — M2 hn) 0f kino- Let vy = un — hi.

Then up to a subsequence, {u,} converges a.e. in Qr to a renormalized solution u of
(5.3.1), and {vn} converges a.e. in Qp to v =u — h. Moreover, {Vv,} converge to Vv a.e
in Qp, and {Tx(v,)} converges to Ty (v) strongly in LP(0,T, Wol’p(Q)) for any k > 0.

In order to apply this Theorem, we need some the following properties concerning
approximate measures of 1 € M, (Qr), see also [7].

Proposition 5.3.6 Let u = po + s € M (Qr), po € Mo(Qr) NI (Qr) and ps €
Ms(Qr). Let {o1n}, {p2n} be sequences of mollifiers in RN R respectively. There exists
a sequence of measures fno = (fn,gn,hn), such that fn,gn,hn € CZ(Qr) and stron-
gly converge to f,g,h in L*(Qr), (LPI(QT))N and Lp((O,T);WOI’p(Q)) respectively, fin s €
C°(Qr) converges to ps € M (Qr), and pn, = pno + pn,s converges to p, in the narrow
topology, and satisfying 0 < iy, < (p1nP2,n) * @, and

L fallr@r) + HgnH(LP’(QT))N + thHLp(o,ﬂWOlvP(Q)) + tin,s (1) < 2u(Qr)  for any n € N.
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Proposition 5.3.7 Let p1 = po+fts, fin = fn,0+fin,s € SJTZ(QT) with o, pn,0 € Mo(Q7)N
M () and s, pps € M (Qr) such that {u,} is nondecreasing and converges to p
in My(Qr). Then, {pn.s} is nondecreasing and converging to s in My(r); and there

exist decompositions (f,g,h) of po, (fas Gn, hn) of o such that {fn},{gn},{hn} strongly
converge to f,g,h in LY(Qr), (L (Q7))N and LP((0,T); Wol’p(Q)) respectively, satisfying

||fn||L1(QT) + ||gn||(Lp’(QT))N + ||hnHLp((07T) whP () JFNTL,S(QT) <2u(Qr) for any n €N,

sl
o
5.3.3 Proof of Theorem 5.1.5

Here the crucial point is a result of Liskevich, Skrypnik and Sobol [31] for the p-Laplace
evolution problem without absorption :

Theorem 5.3.8 Letp > 2, and u € My(Qr). Ifu € C([0,T); L2, (Q))NLY

17
loc(o’ T’ VVlof(Q))
18 a distribution solution to equation

up — Apu = pin Qp,

then there exists C = C(N,p) such that, for every Lebesgue point (z,t) € Qp of u and any
p > 0 such that Qp pr(x,t) := B,(z) x (t — pP,t + pP) C Qr one has

1 A(l 1)
1 +A(p—
lu(z,t)] < C | 1+ N+p/ |u|MDE=D gy s +PO)(z,t) |, (5.3.7)
P Qp’pp(l’,t)
where A = min{1/(p —1),1/N} and

Polul(z,t) = 3 Dy(pi)(@,1).
=0

1 1l(Q, 72 (1))
p—1)p-t oY ’

with Pi = 2_ip; Qpﬁpp(xat) = BP(J") X (t - Tpp7t+7-pp)'

Dy(pi)(z,t) = inf {(p —9)r T 5

As a consequence, we deduce the following estimate :

Proposition 5.3.9 If u is a distribution solution of problem

up — Apu = pin Qr,
u=20 on 092 x (0,T),
u(0) =0 in £,

with data p € Cy(2r). Then there exists C = C(N,p) such that for a.e. (z,t) € Qp,

lu(z,t)| < C <1 +D + (Mé%T)) 3 + H%D[mﬂ(x,t)) , (5.3.8)

where mg and D are defined at (5.1.8).
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Proof. Let zp € Q and Q = Bap(xg) X (—(2D)P, (2D)P).
Let U € C(Q) N LP((—(2D)P, (2D)P); Wol’p(BQD(xg))) be the distribution solution of

{ Ur — AU = xap|pl  inQ,
u=0 on 0Bap(xp) X (—(2D)P, (2D)P), (5.3.9)
u(—(2D)?) =0 in Byp(xo),

where for zp € Q. Thus, by Theorem 5.3.8 we have, for any (z,t) € Qp,

1 1+A<1p—1>
Ula,t) <er | 1+ | 5agp / U FDE D dyds + P[]z, 1) | ,
Qp,pr(z,t)

(5.3.10)
where Qp pr(z,t) = Bp(x) x (t — DP,t + DP).
According to Proposition 2.8 and Remark 2.9 of [7], there exists a constant Cy > 0 such
that

p

{IU] > €}] < ea(|ul () F £PH-F e so.

Thus, for any £y > 0,

/|U|(A+1)(p_1)dxdt:()\+1)(p—1)/ (OFDE-D-1 117 > ¢} de
Q 0

o 00
A+ 1)p—1) (/ (OFDE-D-1 1|1 >€}|d€+/ (D E-D-1 7] >€}|d€>
0 Lo

—1)— _P
< egDNTPOTDE=D o pOFDETDTPEER )y B
N+p
Choosing £y = (%#) PN e get
Q (N{»(p)()l\;»]\];)(p71>
p— +p
/Q \U| MDD ggdt < e DNFP <‘“"15NT)> . (5.3.11)
Next we show that
P [u)(z,t) < (p = 2)D + 37|}, 1). (5.3.12)

Indeed, we have

1 1l (@p, (, 1))

Dy(pi)(,t) < (p—2)pi + TP = R a—

where p; = 27'D. Thus,

1 | 1l(@pi (1))
Pllu)(z,t) < (p—2)D+ =T ; f ;fv

2P (@p(, 1)) dp
pN P

S(p—Q)D—i—q/

0
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So from (5.3.11), (5.3.12) and (5.3.10) we get, for any (z,t) € Qp,

ol <e (1+0+ (L) 4 82ulen )

By the comparison principle we get |u| < U in Qp, thus (5.3.8) follows. |
Proposition 5.3.10 Let p > 2, and p € My(QLr), o € My(QL). There exists a distribution

solution u of problem
up — Apu = pin Qr,

u=0 ondQx(0,T), (5.3.13)
u(0) = o.
which satisfies for any (z,t) € Qp
|o1(€) + ||

]u(:c,t)|<C<1+D+< DN

Qr)\™
( T)) + 13 [lo] ® gm0y + |1] (:c,t)) , (5.3.14)
where C = C(N,p). Moreover, if o € L*(Q), u is a renormalized solution.

Proof. Let {¢1,},{¢2.,} be sequences of standard mollifiers in RN and R. Let p = pg +
s € My(Qr), with o € Mo(Qr), 1s € Ms(Qr). By Lemma 5.3.6, there exist sequences of
nonnegative measures fin 0 = (fnis Gn,is In,i) and py, s such that f, i, gni, hni € C°(Qr)
and strongly converge to some f, g;, h; in L*(Qr), (LP (7)) and LP((0,T); Wol’p(Q)) res-
pectively, and fin 1, fn,2, fin,s,15 fin,s,2 € C° () converge to p™, pu~, uf, py in the narrow
topology, with i, ; = tn,04 + finsq, for ¢ = 1,2, and satisfying

pa = (f1,91,h1), g = (f2,92,h2) and 0 < pin1 < (P1p2.0)* 0,0 < fin2 < (P1nP2.0)* 0

Let 015,02, € C°(Q) converge to o and ¢~ in the narrow topology, and in L!(Q) if
o € LY(Q), such that

0< O1,n < Pin *0'+70 < 02.n < Pin *0 .

Set Hn = Un1 — Hn,2 and o, = O1ln — 02n-
Let u,, be solution of the approximate problem

(un)t - Apun = pp in Qp,
up, =0 on dQ x (0,7), (5.3.15)
un(0) = oy, on Q.

Let gnm(z,t) = op(x) ffT ©2.m(s)ds. As in proof of Theorem 2.1 in [35], by Theorem 5.3.5,
there exists a sequence {uy m }m of solutions of the problem

(un,m)t - Apun,m = (gn,m)t + XQrln in 2 x (_T7 T)’
Upm =0 on dQ x (=T,T), (5.3.16)
Unm(—=T) =0 on Q,
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which converges to u, in Q x (0,7"). By Proposition 5.3.9, there holds, for any (z,t) € Qr,

|1l (1) + (|on| @ po,m) (2 x (=T, T))>m3>
DN

U, m (2, 1) < 1 (1 + D+ (

+ 1P [l + |ow] ® p2,m](2, ).

Therefore

[tn,m (2, 8)] < 1 <1 +D+ (“n|(QT) + (o] ®Dsjovz,m)((2 x (—T, T)))mS)

+e1(prnpam) * BP[ul + o] @ Sp—qpl(@, ).

Letting m — oo, we get

o) < e (14D (PACDEITIEN Y (13 4ol ) o)

Therefore, by Proposition 5.3.4 and Theorem 5.3.5 , up to a subsequence, {u,} converges to
a distribution solution u of (5.3.13) (a renormalized solution if o € L!(2)), and satisfying
(5.3.14). n
Proof of Theorem 5.1.5. Step 1. First, assume that o € L!(Q). Because y is absolutely
continuous with respect to the capacity Cap,; ./, so are u and p~. Applying Proposition
5.2.8 to ut,u”, there exist two nondecreasing sequences {u1,} and {p2,} of positive
bounded measures with compact support in Q7 which converge to u* and p~ in 9,(Qr)
respectively and such that 137 [p1 ], 137 [p1,,,] € LY(Qr) for all n € N.

For 1 = 1,2, set f1;1 = ;1 and fi; 5 = pj — pij—1 > 0, S0 i n = 2?21 fti ;. We write

Hin = Hin,0Fin,ss ﬂi,j = ﬂi,j,0+/1i,j,37 with Himn,0, Iai,n,O € i)ZRO(QT)a Hin,s, ,ai,n,s € 9:ns(QT)
Let {pm} be a sequence of mollifiers in RV*!. As in the proof of Proposition 5.3.10,
for any j € N and i = 1,2, there exist sequences of nonnegative measures fiy, ;o =
(fmsijs Gmijs hm,ij) and fim i s such that fo, i, gm.ij, hmij € Co°(Qr) strongly converge
to some f; ;, gi j, hij in L (Qr), (LP (Qr))N and LP(0, T, Wol’p(Q)) respectively ; and fiy, ; ;,
fim,ijs € C°(Sdr) converge to fi; j, fis j,s in the narrow topology with fim i = fimjo +
fimi,j,s» Which satisfy fi; jo = (fij, i, hij), and

0 < fim,ij < ©m * i, flm,ij () < i j (1),

Hfm7i,j||L1(QT) + ||gm7i,j”(LP'(QT))N + [|hmi g LP(0,T,W, P (2)) + pmigis (1) < 2725 (Qr).-

(5.3.17)
Note that, for any n,m € N,
> (img + fim25) < @m* (B1m + p2n) and Y (1,5 (Q7) + fim2,(Qr)) < |ul(Q7).
j=1 j=1

For any n,k,m € N, let up k. m, Vn km € W be solutions of problems

(un’k’m)t = Aptin fm + Tk(|un7k7m|q_1un,k,m) = Z;‘l:l(/]mﬂ,j - ﬂm,lj) in Qp,
Un,,m = 0 on 00 x (0,7),
un,k,m(O) = Tn(0'+) - Tn(O'_) on €,

(5.3.18)
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and

(Vnkm)t = Dpvngem + Ti(vl 1 0) = 251 (fm,1,j + fm,2,5) in Qr,
Unkem = 0 on 90 x (0,7T), (5.3.19)
vnvk,m(o) = Tn(‘o—’) on f.

By the comparison principle and Proposition 5.3.10 we have for any m, k the sequences
{vnk,m }n is increasing and

Q) + |ul(Qr)\™
|t | < Vnem < €1 (1+D+(’0'( )D]‘V“‘( T)> + 157 [Tn(raD@é{t:o}])

+ c1om * H%D [:u'l,n + ,U'Q,n] .

Moreover,

| Telof ot < u(20) + 0](9),
Qr

As in [8, Proof of Lemma 5.3|, thanks to Proposition 5.3.4 and Theorem 5.3.5, up to
subsequences, {uy, k.m }m converges to a renormalized solutions uy, j of problem

(Un,k)t - Apun,k + Tk(!un,qu_lun,k) = U1n — H2n in QOp,
Upp =0 on 082 x (0,7),
Unk(0) =Tp(ot) —Th(c7) on Q,

relative to the decomposition (Z;LZI fij — Z;L:1 f2.4 Z?Zl g1 — Z?Zl 92,5, Z;LZI hij —
> j=1h2j) of w10 — p2mos and {vnkm}tm converges to a solution vy, j of

(Un,k)t - Aprn,k + T (U;k) = U1n + U2n in Qp,
Upk =0 on 99 x (0,7,
Unk(0) = Th(lo]) on Q.

relative to the decomposition (Z?Zl fij+ 2?21 f2. 2?21 g1+ Z?:l 92,4, 2?21 hij +
> j=1h2;) of p1p0+ p2n0. And there holds

a|(Q) + |p|(Qr)\™

+ ClH%D [:U’l,n + M?,n] .

Observe that 13°[u1 ,, + pon] € LI(Qr) for any n € N. Then, as in [8, Proof of Lemma
5.4], thanks to Proposition 5.3.4 and Theorem 5.3.5, up to a subsequence, {u, i }x {vn.k i
converge to renormalized solutions u,, v, of problems

(un)t - Apun + ‘Un‘qflun = [1n — M2, ID Qrp,
un =0 on 99 x (0,T), (5.3.20)
Un(o) = Tn(0+) - Tn(O'i) in €,

(Un)t - Apvn + 'U'rql = U1in + H2.n n QT:
vn =0 on 92 x (0,7, (5.3.21)
un(0) = Tn(lo]) in €,
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which still satisfy

|| (€2) + |l
DN

Q ms
|un\ <wv, < <1 + D+ < ( T)> + I[gD [Tn(‘(}'D ® (5{15:0}])—{—01]1313 [Ml,n + /‘27"] .

and the sequence {vy, }, is increasing and

/ vldadt < ||(Q7) + |o](Q).

Qr

Note that from (5.3.17) we have

||fi,jHL1(QT) + ”gi,jH(Lp’(QT))N + Hhi,j||Lp(o,T7W01vP(Q)) < 2/]i,j(QT),

which implies

| Z fz}jHLl(QT) + | ZgiJH(LP/(QT))N + | ZhiJHLP(07T7W01’p(Q)) < 215 (Qr) < 2[p|(Qr).
j=1 j=1 j=1

Finally, as in [8, Proof of Theorem 5.2, from Proposition 5.3.4, Theorem 5.3.5 and the mo-

notone convergence Theorem, up to subsequences {uy, }n, {vpn }n converge to a renormalized
solutions u, v of problem

ug — Apu+ |ulTlu = p in Qr,
u=0 on 02 x (0,7),
u(0) =0 in Q,

relative to the decomposition (3272, f1,; — D252 fa, D ojey 915 — Doge1 92,5 2ojey MG —
> 721 ha,j) of po, and

vy — Apv +0v? = |u| in Qp,
v=20 on 00 x (0,7T),
v(0) =|o|] in Q,

relative to the decomposition (3272 f1,; + 3272 f25, D 501 91,5 + Die1 92,55 2 gy iy +
> i1 ha,j) of |uo| respectively ; and

Q) + |p[(Qr)\™
[ul <v<e <1+D+(‘G’( )D1\|/M|( T)> +13° [Ial®5{t0}+lul]>

Remark that, if ¢ = 0 and supp(u) C Q x [a,T], a > 0, then v = v = 0 in  x (0, a), since
Unk = Unk = 01in Q x (0,a).

Step 2. We consider any o € 9(2) such that o is absolutely continuous with respect
to the capacity Capg, , in Q. So, pt+ 0 ® d4—gy is absolutely continuous with respect to

q

the capacity Capy 1, in Q x (=7,T). As above, we verify that there exists a renormalized
solution u of

up — Apu+ |uli™ u = xapp+ 0 ® dg_gy in Qx (=T,T)

u=20 on 00 x (=T,T),

u(=T)=0 on Q,
satisfying u = 0 in Q x (=7,0) and (5.1.7). Finally, from Remark 5.3.2 we get the result.
This completes the proof of the Theorem. [
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Chapitre 6

Wiener criteria for existence of large
solutions of quasilinear elliptic
equations with absorption

Abstract

We obtain sufficient conditions, expressed in terms of Wiener type tests involving Hausdorff
or Bessel capacities, for the existence of large solutions to equations (1) —Apu+e*—1=0
or (2) —Apu+u? =0 in a bounded domain €2 when ¢ > p —1 > 0. We apply our results
to equations (3) —A,u+ a|Vu|?+bu®* =0, (4) Apu+u 7 =0with1 <p <2, 1<qg<p,
a>0b>0andg>p—1,s>p—1,v>0.
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6.1 Introduction

Let  be a bounded domain in RY (N > 2) and 1 < p < N. We denote Ayu =
div(|VulP~2 V), p(x) = dist(z, 99). In this paper we study some questions relative to the
existence of solutions to the problem

—Apu+ g(u)

lim w(z) =
p(z)—0 ( )

0 in Q,

, (6.1.1)
where ¢ is a continuous nondecreasing function vanishing at 0, and most often g(u) is
either sign(u)(el — 1) or |u|?7 ' u with ¢ > p — 1. A solution to problem (6.1.1) is called
a large solution. When the domain is regular in the sense that the Dirichlet problem with
continuous boundary data¢

—Apu+g(u) =0 in Q,

w—6 ond0, (6.1.2)

admits a solution, it is clear that problem (6.1.1) admits a solution. It is known that a
necessary and sufficient condition for the solvability of problem (6.1.2) is the the extended
Wiener criterion, due to Wiener [21] when p = 2 and Maz’ya [13], Kilpelainen and Maly
[7] when p # 2 (see [14] for a nice exposition). This condition is

1 =
Capl,p(Bt(x) NQe)\ p-1 @ — % YV € 90 (6.1.3)
0 tN=p ¢ 7

where Cap, ,, denotes the capacity associated to the space whp (RN ). The existence of a
large solution is guaranteed for a large class of nondecreasing nonlinearities g satisfying
the Vazquez condition[18]

o dt t
< oo where G(t) = / g(s)ds, 6.1.4

/a G(t) 0 ( )
for some a > 0. This is an extension of the Keller-Osserman condition [8|, [15], which is
the above relation when p = 2. If for R > diam/(2) there exists a function v which satisfies

—Apw+g(w)=0 in Bg\ {0},
v=0 on 0BRg, (6.1.5)
lim v(x) = oo,
z—0

then it is easy to see that the maximal solution of
—Apu+ g(u) =0 in €, (6.1.6)

is a large solution, without any assumption on the regularity of 9€). However the existence
of a (radial) solution to problem (6.1.5) needs the fact that equation (6.1.6) admits solutions
with isolated singularities, which is usually not true if the growth of g is too strong since
Vazquez and Véron prove in [19] that if

N(p—1)

liminf |r|” ¥= sign(r)g(r) >0 with p <N, (6.1.7)

|r|—o00
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isolated singularities of solutions of (6.1.6) are removable. Conversely, if p—1 < ¢ < %jp})
with p < N, Friedman and Véron [5] characterize the behavior of positive singular solutions
to

—Apu+ul =0 (6.1.8)

with an isolated singularities. In 2003, Labutin [9] show that a necessary and sufficient
condition in order the following problem be solvable

—Au+ [u/T ' u=0 inQ,

lim wu(x) = oo, (6.1.9)
p(xz)—0
is that
' Capy o (Bi(x) N Q) dt
/0 2,q o — = Vz € 09, (6.1.10)

where Cap, , is the capacity associated to the Sobolev space W24 (RN) and ¢’ = q/(¢—1),
N > 3. Notice that this condition is always satisfied if ¢ is subcritical, i.e. ¢ < N/(N — 2).
We refer to [12] for other related results. Concerning the exponential case of problem (6.1.1)
nothing is known, even in the case p = 2, besides the simple cases already mentioned.

In this article we give sufficient conditions, expressed in terms of Wiener tests, in order
problem (6.1.1) be solvable in the two cases g(u) = sign(u)(el*l — 1) and g(u) = |u|? " u,
g >p—1.For1l < p< N, we denote by Hiv_p(E) the Hausdorff capacity of a set E defined
by

’Hivfp(E) = inf ZhN_p(Bj) E C UB]', dzam(B]) <1l,, (6111)
J

where the B; are balls and h¥ ~P(B,.) = r¥ 7P, Our main result concerning the exponential
case is the following

Theorem 1. Let N >2 and 1 <p < N. If

1

1 N-p/c p—1
/ (Hl €N Br(l’))) g = 400 Vz €09, (6.1.12)
0

rN-p

then there exists u € C1(Q) satisfying

—Apu+e*—1=0 inQ,

lim wu(z) = oco. (6.1.13)
p(z)—0

Clearly, when p = N, we have Hiv_p({xo}) =1 for all 2o € RY thus, (6.1.12) is true
for any open domain €.

We also obtain a sufficient condition for the existence of a large solution in the power
case expressed in terms of some Cap,, ; Bessel capacity in RY associated to the Besov space
B*3(RN).
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Theorem 2. Let N > 2,1 <p< N and q1 > stfp_fpl). If

rN-p

1
Cap, a1 (Q°N Bp(x))\ 71
/( Dyt ) I _ o Ve, (6.1.14)
.

0

then, for any p —1 < q < B there exists u € CH(Q) satisfying

—Apu+u? =0 inQ,

lim wu(z) = oco. (6.1.15)
p(z)—0

We can see that condition (6.1.12) implies (6.1.14). In view of Labutin’s theorem this
previous result is not optimal in the case p = 2, since the involved capacity is 027(11 with
¢y and thus there exists a solution to

—Apu+u? =0 in

lim wu(x) =00 (6.1.16)
p(x)—0

with ¢1 > q.

At end we apply the previous theorem to quasilinear viscous Hamilton-Jacobi equa-
tions :
—Apu+ a|Vu|? +blul*lu =0 in Q,
ue CHR), lim u(x)= oo, (6.1.17)
p(x)—0

For g1 > p—1and 1 < p < 2, if equation (6.1.15) admits a solution with ¢ = ¢, then
for any a > 0,b > 0 and ¢ € (p — 1, qfill), s € [p —1,q1) there exists a positive solution
to (6.1.17). Conversely, if for some a,b > 0, s > p — 1 there exists a solution to equation
(6.1.17) with 1 <g=p <2, thenforany ¢y >p—1,1<q <p,s1 >p—1,a1,b4 >0
there exists a positive solution to equation (6.1.17) with parameters qi, s1, a1, b; replacing
q, s, a,b. Moreover, we also prove that the previous statement holds if for some v > 0 there

exists u € C(Q) N CHQ), u > 0 in Q satisfying

—Apu+u~7 =0 in €,

u=0 on 0f2. (6.1.18)

We would like to remark that the case p = 2 was studied in [10]. In particular, if the
boundary of €2 is smooth then (6.1.17) has a solution with s =land 1 < ¢ <2,a > 0,b > 0.

6.2 Morrey classes and Wolff potential estimates

In this section we assume that € is a bounded open subset of RY and 1 < p < N.
We also denote by B, (x) the open ball of center x and radius r and B, = B,(0). We also
recall that a solution of (6.1.1) belongs to CIIO’S(Q) for some a € (0,1), and is more regular
(depending on g) on the set {x € Q : |Vu(z)| # 0}.
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Definition 6.2.1 A function f € L'(Q2) belongs to the Morrey space M*(Q), 1 < s < o0,
if there is a constant K such that

/ \fldy < Kro Vr >0, Vo e RV, (6.2.1)
QNBy(z)

The norm is defined as the smallest constant K that satisfies this inequality ; it is denoted
by || fllmsq)- Clearly L*(2) C M*(£2).

Definition 6.2.2 Let R € (0,00] and u € M8 (Q), the set of nonnegative and bounded
Radon measures in Q. We define the (R-truncated) Wolff potential of 1 by

R 2NN\ =T
W [u](x) = /0 (%) % vz e RY, (6.2.2)

and the (R-truncated) fractional maximal potential of p by

B
M, z[u](z) = sup “(tNt(jj)) Vz € RV, (6.2.3)
0<t<R

where the measure is extended by 0 in Q°.
We recall a result proved in [6] (see also |2, Theorem 2.4]).

Theorem 6.2.3 Let u be a nonnegative Radon measure in R . There exist positive constants
C1,Cy depending on N,p such that

/ exp(01Wffp[XB,u])d:U < CyrhY,

2B

for all B = B,(z¢) C RY, 2B = By, (x0), R > 0 such that [[Mp, r[1]] oo vy < 1.
For k > 0, we set Tj(u) = sign(u) min{k, |u|}.

Definition 6.2.4 Assume f € L} (). We say that a measurable function u defined in

loc
is a renormalized supersolution of

—Aju+f=0 inQ (6.2.4)

if, for any k > 0, Tj,(u) € WEP(Q), |VulP™' € LL () and there holds

loc loc
/ (IVTe(u) P2V Tk (u) Ve + fo)dz >0 (6.2.5)
Q

for all o € WHP(Q) with compact support in Q and such that 0 < ¢ < k — Ty (u), and if
—Apu+ f is a positive distribution in €.

The following result is proved in [14, Theorem 4.35].
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N
—€

Theorem 6.2.5 If f € M#»=<(Q) for some ¢ € (0,p), u is a nonnegative renormalized
supersolution of (6.2.4) and set p:= —Apu+ f. Then there holds

1

u(@) + |IF117 2y
MPE ()

> COWE [ul(z)  VaeQ st Bi(z)CQ (6.2.6)

for some C' depending only on N, p, e, diam(S2).

Concerning renormalized solutions (see [3] for the definition) of
—Apu+ f=p in Q, (6.2.7)
where f € L'(Q) and p € 98 (Q), we have

Corollary 6.2.6 Let [ € M%(Q) and p € M (Q). If u is a renormalized solution
to (6.2.7) and infqu > —oo then there exists a positive constant C' depending only on
N, p,e,diam(S2) such that

d(z,09)

> igfu +CW,,* [u)(z) Vo e (6.2.8)

u(@) + || f]]

1
p—1

N
MP=2 (Q)
The next result, proved in |2, Theorem 1.1, 1.2|, is an important tool for the proof of

Theorems 1 and 2. Before presenting we introduce the notation.

Definition 6.2.7 Let s > 1 and o > 0. We denote by Cy s(E) the Bessel capacity of Borel
set E C RY,
Capg s (E) = f{[|¢][5: @y 0 ¢ € LLRY), Gax ¢ > xp}

where xg is the characteristic function of E and G, the Bessel kernel of order a.
We say that a measure p in §2 is absolutely continuous with respect to the capacity Cap,,
wn Q if

for all E CQ,E Borel, Cap,, ((E) =0 = |u|(E) = 0.

Theorem 6.2.8 Let € M (Q) and ¢ > p — 1.
a. If p 1s absolutely continuous with respect to the capacity Cap, = in 2, then there
’q+1-p
exists a nonnegative renormalized solution u to equation

—“Apu+ul=p in Q

u=0 on 09, (6.2.9)
which satisfies
u(z) < CWIS ™D Nyl(2) va e Q. (6.2.10)

where C' is a positive constant depending on p and N.

b. If exp(C’W%imm(Q) [1]) € LY(Q) where C is the previous constant, then there erists a

nonnegative renormalized solution u to equation

—Apu+e*—1=pu in Q

W=0  on 09 (6.2.11)

which satisfies (6.2.10).
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6.3 Estimates from below

If G is any domain in RY with a compact boundary and g is nondecreasing, g(0) =
g~ 1(0) = 0 and satisfies (6.1.7)) there always exists a maximal solution to (6.1.6) in G. It
is constructed as the limit, when n — oo, of the solutions of

—Apup +g(up) =0 in Gy

lim  up(z) =
ol tin (@) = 00 (6.3.1)

‘ 1|im up(z) =0 if G, is unbounded,
T|—0o0

where {G,}, is a sequence of smooth domains such that G, C G, C Gpyq for all n,
{0G,}, is a bounded and |J G, = G and p,(z) := dist(x, 0G,,). Our main estimates are

n=1

the following.

Theorem 6.3.1 Let K C By,\{0} be a compact set and let U; € C1(K°), j = 1,2, be the
mazimal solutions of

—Apu+e"—1=0 in K¢ (6.3.2)

for Uy and
—Apu+u! =0 in K¢ (6.3.3)

for Us, where p —1 < g < %. Then there exist constants Cy, k = 1,2,3,4, depending on
N, p and q such that

1

1 N-p p—1
H KnNnB, dr
U1(0) > —Cy +02/0 < 1 Tﬁvp )> — (6.3.4)
and X
1 / Cap qil(K N B)\ r-1
U2(0) > —Cs5 + 04/0 ( : ql‘:;l_p ) %. (6.3.5)

Proof. 1. For j € Z define r; = 277 and S; = {z : r; < |z| < rj_1}, Bj = B,,. Fix a
positive integer J such that K C {z : r; < |z| < 1/8}. Consider the sets K N S; for j =
3,...,J. By [17, Theorem 3.4.27|, there exists y; € M (RY) such that supp(p;) C KNS;,
”Mp,l[ﬂijoo(RN) < 1 and

FHYP(E N S) < py®Y) < aHY (KNS VS

for some ¢1 = ¢1 (N, p).
Now, we will show that for e = (N, p) > 0 small enough, there holds,

J
A= /131 exp <€Wi,p [Z ,uk] (a;)) dx < cg, (6.3.6)

k=3
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where ¢y does not depend on J.
Indeed, define p1; =0 for all j > J + 1 and j < 2. We have

oo J
= ex 9 1 T Z.
£ L[]

Since for any j

Jj+1
Wi, [ZM] ScpWi, | Y | +ec@Wi, | Y | +ep) D> Wil

k=3 k>j+2 k<j—2 k=max{j—1,3}

2— 5
with ¢(p) = max{1, 51’7—13} and exp(z i) < Z exp(ba;) for all a;. Thus,
i=1 =1

o0
Agz;/svexp c;;aWip Z pr | (x) dw—i—Z/exp 035W1p Z ug | (x) | de
= J

E>j42 E<j—2
J+1

+ Z Z / exp (c3e W1 ,[ug](2)) do == Ay + Ay + As, with c3 = 5¢(p).
J=1 k=max(j—1,3)

Estimate of As : We apply Theorem 6.2.3 for p = py and B = By_1,
/ exp (035W}’p[uk](x)) dr < cqr) 4
2Bj,_1
with ese € (0,C1], the constant C; is in Theorem 6.2.3. In particular,

/ exp (c;;eWip[uk](x)) dr < 04r,iv_1 fork=j—1,5,7+1,
S

J

which implies

+oo
Az < c5 erv = ¢5 < 00. (6.3.7)
j=1
Estimate of Ay : Since > g (Bi(z)) =0 for all x € Sj,t € (0,7;41). Thus,

k>j+2

1
o 1> mk(Bi(x)) pildt

_ k>j+2

Aq —Z/S'exp c3€ / N - dx

Jj=17ra

Tj+1

oo
p—1 -
gZeXp CSEN—p Z 1o (Sk) Tjﬁ ’Sj‘-
j=1

k>j+2
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Note that g (Sk) < pg(Bry_, (0)) < rp 17, which leads to

I N— -5 _(N—p)y———
> m(Sk) s < e rh =1 —2 W)
k>j+2 k>j+2

Therefore

Ap < exp (035]1; (1— 2—<N—p>)—pi1> |B1| = cs. (6.3.8)

Estimate of Ay : for x € S},

1

LS mBE)\ T e (8 B\ 7
W%,p Z 23 (x):/ —= +N—p -

k<j—2 i =1

S
Il
—

ol
A
<
L
=2
d
SE

Since r; <t <ri—1, . ur(Bi(x))=0,Vi=1,...,5— 1, thus

k<i—2
1
j—2 p—1 Jj—2 p—1
j—1 T[22 pe(Bi(z)) g LT > Hi(Sk)
1 _ k=i—1 at k=i—1 dat
Wi | 3w @=3 [ [ e :
k<j—2 =1 ri i=1 i
1 2 =
J— J— =l N_p 4N—p p—1
N—p - . . .
< ( Z T 1 ) r, ' < erj, with ¢7 = (1 — 2_(N_p)>
i=1 \k=i—1
Therefore,
o o
Ay < Z/ exp (czcrej) doe = erv exp (czcreg) |5
j j
o
= Zexp ((cgcre — N'log(2)) 7) 1S1] < cg for e < Nlog(2)/(2¢3c7). (6.3.9)
j=1

Consequently, from (6.3.8), (6.3.9) and (6.3.7), we obtain A < ¢y := ¢g + cg + ¢5 for

e = e(N,p) small enough. This implies
_p_
D J J 2N
1 1
exp <2N€W1,p [Z ,uk]> < cg (/B exp <5W1’p [Z Mk] (33)) d$> < c10,
k=3 1 k=3
(6.3.10)

where the constant ci9 does not depend on J. Set B = B1. For ¢g = (%)1/(7’*”, where C'
4

is the constant in 6.2.10, by Theorem 6.2.8 and estimate (6.3.10), there exists a nonnegative
renormalized solution u to equation

M P (B1)

—Apu+e* —1=¢g 23.123;@- in B

311
u=20 in 0B, (6:3.11)

297



6.3. ESTIMATES FROM BELOW

satisfying (6.2.10) with u = ¢g Z;.]:3 ptj. Thus, from Corollary 6.2.6 and estimate (6.3.10),

we have
J

1
uw(0) > —enn + 612Wf,p Zuj
=3

Therefore

1
- i=3 dt i42(By(0)\ 7T dt
U(O) > —011+012Z/ tN—p - —011+C1QZ/ <N+iN1; )) 7

Z:2Ti+l T2+1

iS]

2(Siv2) \ 77 dt - A=

= —C11 + c12 Z / (W) 7 Z —C11 -+ C13 Z <’]_[iv—p(K N Si+2)) p—1 Ti p—1

7'7,+1 =2

N T —hp

= —ci +ci3 Z (H1 KN Si)) T
i=4

From the inequality

1 1 1

(10 8)) 7 > —Le (WY (K N B = (WY PN BY)) T v

max(1,2P—1)

we deduce that

e L 1 _N-p
u(0) > —en +C132 ( (Hiv p (KN B;_ 1)) — (Hiv_p(KﬂBi)) P—1> T p—1
224 maX
]I\)] f N— pll —-2=r
2—611+013< 2L ) H1 meB)) r P
max(1,2P—1)
HY NB;)\"~ 1 dt
2—014—1—015/( ( )>
0

Since U; is the maximal solution in K€, u satisfies the same equation in B\K and U; >
u = 0 on 0B, it follows that U; dominates v in B\K. Then U;(0) > u(0) and we obtain
(6.3.4).

2. By [1, Theorem 2.5.3|, there exists p; € MF(RY) such that supp(p;) € K N S; and

uj(Kmsj):/(Gp[uj](x))p Tdz = Cap, o (KNS)).

q1—p+1
RN

By Jensen’s inequality, we have for any ay > 0,
00 S 00
(Sor) <3
k=0 k=0
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where 0}, , has the following expression with 6 > 0,

[ it s € (0,1],
(S 1O+ 1) s> 1,

Thus,

for 6 small enough. Here the third inequality follows from |2, Theorem 2.3| and the constant
c18 does not depend on J. Hence,

(v [2])

where cgp is independent of J. Take B = B1 Since Z s 1j is absolutely continuous with

q
< ecig < e, (6.3.12)

L91(By)

a
M a4 (By)

[

k=3

respect to the capacity Cap, i in B, thub by Theorem 6.2.8, there exists a nonnegative
’g+1-p
renormalized solution u to equation

—Apu+ul = Z;j:3 uj in B

6.3.13
u=~0 on 0B. ( )

satisfying (6.2.10) with p = Zj:?) ;. Thus, from Corollary 6.2.6 and estimate (6.3.12), we
have

1
u(0) > —co1 + 22 W1, Z“j
=3

As above, we also get that

u(0) > —co3 + 624/

0 TN*p

(Capp _a (KﬁB)) - ar

After we also have Us(0) > u(0). Therefore, we obtain(6.3.5). |
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6.4 Proof of the main results

First, we prove theorem 1 in the case case p = N. To do this we consider the function

N—-11 R .
One has
, 1 1 1 1 1
Ule)) = ——— — and U'(|z)) = ———— + —
o= 75 " ™V D=~y T e

thus, for any 0 < |z| < R,
’ " 1 /7
—ANU+eV —1=—(N -1)|U (Jz|)|V 2 <U (|=]) + HU (|xy)> +e¥ -1

~ (N-1RM N-11 £+1 .
— (RA[zN]zNV-1 7 2N+ RN\ [z

(N -1)RN! N N-11 2R
— (QR)N|x]N_1 IN+1 RN |x’
< -1

Hence, if u € C1(2) is the maximal solution of
—Anyu+e"—1=0 in Q (6.4.1)

and R = 2diam(2), then u(z) > U(|z — y|) for any = € Q and y € 0. Therefore, u is a
large solution and satisfies

N-11 R

Now, we prove theorem 1 in the case p < N and theorem 2. Let u,v € C*(Q) be the
maximal solutions of

(1) —Apu+e*—1=0 in Q,
(i7) —Apu+v?1=0 in Q.
Fix mg € 9. We can assume that x9 = 0. Let § € (0,1/12). For zg € Bs N Q. Set

K = Q°N By4(z0). Let Uy, Uy € CY(K®) be the maximal solutions of (6.3.2) and (6.3.3)
respectively. We have u > Uy and v > Us in €. By Theorem 6.3.1,

1 N-—p ﬁ
Ul(ZO) > ¢y + 62/ (Hl (KOBT(ZO))> %
1)

rN-p
N—p L
LOH P(KNB,_1,) \ 7' d
1 r—|zo| T .
> —¢; + o3 /5 ( B ) = (since By, C By(20)))
1
et / H (K0 By)\ " dr
et o
Z -+t 05 N—p ,
1
V2 (Y P(K N B,) \ " dr
> —C1+63/ ( ' gip 2 e
Ey T T
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We deduce
1
V2 (Y P(KNB,)\" " d
inf > inf U1>—01+03/ <%1§VT) —T%oo as 6 — 0.
BsNQ BsN$2 s riN—p r

Similarly, we also obtain

1
1/2 (Cap, _a (K NBy)\ 1,
inva—c4+C5/ < R & oo asd—0.
0

B;NQ riN=2 r

Therefore, u and v satisfy (6.1.13) and (6.1.15) respectively. This completes the proof.

6.5 Large solutions of quasilinear Hamilton-Jacobi equations

Let © be a bounded open subset of RY with N > 2. In this section we use our previous
results to give sufficient conditions for existence of solutions to the problem

—Apu+a|Vul!+bu®*=0 in Q,
lim u(z) = oo, (6.5.1)
p(z)—0
where a > 0,b>0and 1 <g<p<2,g>p—1,s>p—1.
First we have the result of existence solutions to equation (6.5.1).

Proposition 6.5.1 Leta > 0,b>0andg>p—1,s>p—1,1<qg<pandl <p<2.
There exists a mazimal nonnegative solution u € C1(Q) to equation

—Apu+a|Vul! +bu® =0 in Q (6.5.2)
which satisfies
1 p
u(z) < e(N,p,s)b” s=rFp(z) s=pF1 Vz € Q, (6.5.3)
ifs>p—1,

u(z) < ¢(N,p,q) (cf =1 p(a:)qupil + aquzlﬁl b*p%lp(x)—(p,l)(g,pﬂ)) Vo € Q, (6.5.4)

ifp—1l<g<pands=p-—1, and

p

u(z) < C(N,p)aflbfpljp(a:)fﬁ Vo € Q, (6.5.5)

ifg=pands=p—1.
Proof. Case s=p—1and p—1 < g < p. We consider

R — |:L,|p’ ) ~goptT

P RY1 +co € CI(BR(O)).

Ui(z) = Ui(|z]) = &1 (
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with p’ = 1% and c1,co > 0. We have

1
Ul(a) = AP =@ eV (R —Ja )
€T o
! g—p+1 R\ pRVT ’
_ 1
Uy (|2)) = 2 (P—@)(@ —1) |z (R — |\
T
! g—p+1 Rr'-1 \ p/RP-1

11\ 2 / A=
Lol —a) [l (R e T
(q—p+1)2 \ R PP !

A= —AU +a|VU |7+ bUP > —A Uy +a| VU |7+ b

and

Thus, for all z € Br(0)

N -1 ’ _ ’ ’ —
ﬁ\Ul(\wl)\p 2Up(|) + a|Uy (Ja])|* + b~

_(a—g@ — D\ (R =\ T p ot (o (e ’
B g—p+1 PRV R
-1 |=[\" W|p 1 m
g—p+1\ R R
a<01(p—q)>q o \wl o + bt
g—p+1
9
o (al—d@ —1\" RV —JaP\ T
- g—p+1 p/RP'—1

o _ q—p+1 P
L Ne-1D) 1 +G(C1(p CI)> <|ﬂb‘|>w+1 ol
p q—p+1 qg—p—+1 R

1
Clearly, one can find ¢; = ¢a(N,p,q)a a=»+1 > 0 and c3 = c3(N, p,q) > 0 such that

Az —(p = DU (|2)) P20y (Ja]) —

__p=1l ___q 1
A> —cza TR a—pHT + bcg .
1 —_—
Choosing ca = ¢f7'a” - P+1b P 1R I P we get

—A,UL +a|VU |7+ bUP™" > 0 in Bg(0). (6.5.6)

Likewise, we can verify that the function Us below

/

RP

Vol = s g (M, ) e
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belongs to C'! (Bg(0)) and satisfies
— AUz 4 a| VU [P + U2 >0 in Bg(0). (6.5.7)
While, if s >p—1,

belongs to C'(Bg(0)) and verifies
~A,Us +bUS >0 in Bg(0), (6.5.8)

for some positive constants cs = ¢4(N,p,q), c5 = ¢5(N,p,s) and 8 = B(N,p,q) > 1.

We emphasize the fact that with the condition 1 < p < 2 and ¢ > 1, equation (6.5.2)

satisfies a comparison principle, see [16, Theorem 3.5.1, corollary 3.5.2]. Take a sequence

—_ o0

of smooth domains ,, satisfying Q, C Q, C Q,41 for all n and |J Q, = Q. For each
n=1

n,k € N*, there exist nonnegative solution u,; = u € Wg’p(Qn) = Wol’p(Qn) + k of

equation (6.5.2) in €.

Since —Apuy, < 0in €, so using the maximum principle we get up < k in €, for all

n. Thus, by standard regularity (see [4] and [11]), u,x € CH¥(Q,,) for some a € (0,1). It

follows from the comparison principle and (6.5.6)-(6.5.8), that

Un, k < Un, k41 in €,

and (6.5.3)-(6.5.5) are satisfied with w, , and €, in place of u and 2 respectively. From
this, we derive uniform local bounds for {uw, ;}x, and by standard interior regularity (see
[4]) we obtain uniform local bounds for {u, j}; in C’llog(Qn) It implies that the sequence
{tp i} is pre-compact in C'. Therefore, up to a subsequence, Up, | — Up i C1(€2,). Hence,
we can verify that u, is a solution of (6.5.2) and satisfies (6.5.3)-(6.5.5) with u, and Q,
replacing v and  and wu,(z) = oo as d(x, 9Q,) — 0.

Next, since upp > Upy1p in Qp there holds u, > up4q in Q,. In particular, {u,} is
uniformly locally bounded in §2. Arguing as above, we obtain u, — u in C1(Q2), thus u is
a solution of (6.5.2) in © and satisfies (6.5.3)-(6.5.5). Clearly, u is the maximal solution of
(6.5.2). n

Theorem 6.5.2 Let g > p—1 and 1 < p < 2. Assume that equation (6.1.15) admits a

solution with ¢ = q1. Then for any a > 0,b > 0 and q € (p — 1, q’l’z}l), s€p—1,q)

equation (6.5.2) has a large solution satisfying (6.5.3) and (6.5.4).

Proof. Assume that equation (6.1.15) admits a solution v with ¢ = ¢; and set v = fw?
with 8 > 0,0 € (0,1), then w > 0 and

p
~Apw A+ (—o +1)(p— 1)M + guprHl gty ola—pt4p=1 — g iy Q. (6.5.9)
w

If we impose max{ ;1__’:;_11, (ﬁ —p+ 1) 7{11_1:%1} < o < 1, we can see that
[Vwl” —p+1_—p+1, olq—p+1)+p—1 s
(—o+1)(p—1) + pUTPTRgTPT o\ TPTHITPTL > | Vw|T+bw® in {z:w(x) > M},
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where a positive constant M depends on p, q1,q, s, a,b. Therefore
—Apw +a|Vw|?+bw®* <0 in {z:w(x)> M}

Now we take an open subset Q' of Q with &/ C Q such that the set {z : w(x) > M}
contains Q\Q'. So w is a subsolution of —A,u + a|Vu|? + bu® = 0 in O\’ and the same
property holds with w. := ew for any ¢ € (0,1). Let u be as in Proposition 6.5.1. Set
min{u(z) : € 90} = 0; > 0 and max{w(x) : x € IV} = b, > M. Thus w. < u on I
with € < min{z—;, 1}. Hence, from the construction of u in the proof of Proposition 6.5.1
and the comparison principle, we obtain w. < u in Q\{’. This implies the result. [

Remark 6.5.3 From the proof of above Theorem, we can show that under the assumption
as in Proposition 6.5.1, equation (6.5.2) has a large solution in Q if and only if equation
(6.5.2) has a large solution in Q\K for some a compact set K C Q with smooth boundary.

Now we deal with (6.5.1) in the case ¢ = p.

Theorem 6.5.4 Assume that equation (6.5.2) has a large solution in Q0 for some a,b > 0,
s>p—1andq=p>1. Then for anyay,by >0 andqg >p—1,81>p—1,1<q <p <2,
equation (6.5.2) also has a large solution u in Q0 with parameters ai,b1,q1,s1 in place of
a, b, q, s respectively, and it satisfies (6.5.3)-(6.5.5).

Proof. For o > 0 we set ©u = v7 thus

[Vol”

—Apv— (o =1)(p—1) + aov® | Vol + bo PHiglsmpHlotr=l —

s1—p+1
s—p+1

Choose o = + 2, it is easy to see that
—Apv + a1|Vo|" +bv™ <0 in {z:v(z) > M},

for some a positive constant M only depending on p, s, a, b, a1, b1, q1, s1. Similarly as in the
proof of Theorem 6.5.2, we get the result as desired. [

Remark 6.5.5 If we set u = e then v satisfies
— A, + belTPTIY = | Vul? (p — 1 — ae?) in Q.
From this, we can construct a large solution of

—Apu + bels7PHU = in Q\K,

for any a compact set K C ) with smooth boundary such that v > In (p;—l> in Q\K. In

case p = 2, It would be interesting to see what Wiener type criterion is implied by the
existence as such a large solution. We conjecture that this condition must be

1 /H{V72(Br(x) N Q°) dr
0 rN-2 T

r

=00 Yz € 0f).
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We now consider the function

RP — |z|8

T
BRI > in Br(0),v > 0. (6.5.10)

Us(z) = c (
As in the proof of proposition 6.5.1, it is easy to check that there exist positive constants
8 large enough and ¢ small enough so that inequality A,Us + U, "’ > 0 holds.
From this, we get the existence of minimal solution to equation

Apu+u~7 =0 in Q. (6.5.11)

Proposition 6.5.6 Assume v > 0. Then there exists a minimal solution u € C*(Q) to
equation (6.5.11) and it satisfies u(x) > C’p(:c)“ﬁ-z—l in €.

We can verify that if the boundary of € is satisfied (6.1.3), then above minimal solution

u belongs to C'(€2), vanishes on 02 and it is therefore a solution to the quenching problem

Apu+u~7 =0 in Q,

=0 on 0f). (6.5.12)

Theorem 6.5.7 Let v > 0. Assume that there exists a solution u € C() to problem
(6.5.12). Then, for any a,b >0 andg>p—1,s >p—1,1<q <p <2, equation (6.5.2)
admits a large solution in £ and it satisfies (6.5.3)-(6.5.5).

Proof. We set u = e_ﬁv, then v is a large solution of
p—1 a
—Ayv +a|Vol? + (@) er TP — g i Q (6.5.13)

So
—Apv+a|Vol?T+bv* <0 in{z:v(x)> M}

for some a positive constant M only depending on p, q, s, a, b,y. Similarly to the proof of
Theorem 6.5.2, we get the result as desired. ]
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6.6 Appendix

In this section is to establish behavior of high order gradient of the solution to equation
(6.1.15) near boundary of 2, where 9Q € C?.

It is well known that if 9Q € C? then there exists r > 0 such that B(y — riiy, r))N0Q =
B(y + riiy, 7)) N0 = {y} Vy € 0Q, where 7, is the unique outward normal unit vector at
y. Therefore, for any x € Q, := {z € Q: p(x) < r}, there exist a unique y € 9N such that
x =y — p(x)n,y, for simplicity we write y = Pragz. We prove

Theorem 6.6.1 Let 9Q € C? and r > 0 be the same as above. Then, problem (6.1.15) has
a unique solution u which satisfies

a. for any y € 002 and B > Py,

P P
—= B T = 1B\ -
Cg(\x—y—rny| _7,5> a—pt1 < u(@) S00<r5_1a:—y+rny| o

Brb-1 Brh-1
(6.6.1)
for any x € B(y — rﬁy, 1), where fiy is the outward normal unit vector at y and

(PP - D+ 1) e e d P (n=P)a—p+ 1)
CO_( (g—p+1) )  fo= {p—l’ p(p—1) }

b. There exists o € (0,7) depending on p,q, N, such that u € C5.(Qy,) where ..

c. Let gy, = (Ngyg,1, - Nayg,N) e the outward normal unit vector at xoq = Praqx for all
x € Q. For any m € N*, there exists a positive constant C' depending on p,q, N,m
such that m =iy +io + ... +in

m N
O"u(x , (z), 1
+m ,0
x))a- p+1 _ +7 -1 < — 2 )m+1
(pla))e=rs 633111 630 H ( g—p+1 J > kl;[l %97’“ r )

for all x € Q and p(z) < 13-
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Let u be a solution of problem (6.1.15). First we consider

D
B B\  q—p+1
Uz) = Co (RﬁRﬁ’_wl‘) Ve € B(0, R),

p
B _ pp q—p+1
V(z) =Cy <‘$B|Rﬁji> vz € RV\B(0, R),

where R > 0. By computing,
—APU +U? = AlB and — ApV + V9= AQB,

where

qap

p=1( pB _ B\ Tt

A= (a—2 ) (EkD :
g—p+1 BRA-1

ap
p—1 B _ pBY\ aprtl
p [z]” — R
Ao = N — i
2 (C'oq_p+1> ( BRP1 ) and

n—p pp-—1)\ |z pB-1 n—p xz |B-D-pr  (¢+1)(p—1)
B= - x - 1) | MW )
( E q—p+1)’R‘ 5 +r=1) 5] R

We see that B is decreasing with respect to ‘%‘ Which implies B > 0 Vz € B(0, R) and
B < 0Vz € RV\B(0, R). Thus,

—AU+U">0Vx € B(0,R),

and
—A,V + V1 <0z e RM\B(0, R).

So, thanks to the comparison principle we obtain (6.6.1). Hence,

D
1' —p+1 =
[im p(z)a=rru(z) = Co,

and w is a unique solution of problem (6.1.15).
To prove b. and c., we introduce the higher order divided differences.
For h € RN and k € Z, we set

Apfe(x) = f(z + (k4 1)h) — f(x + kh) forall z € RY.

By induction, we can define
A fre = Ap (A7 1)

for any positive integer n and
R AT fe = AR, (ARLE)
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for any hi,he € RY and positive integers n, m. By above definition, it is not difficult to
show that for any positive integers i1, ..., i, and hq, ..., h, € RY

Aln Aln 1 All f( )

ZE:WXN—WHAM%**%<”>m(%>f@+ﬁm+m+%m%
- - In

and if f € CY a =11 +i2+ ... + iy then

Ajr A LA f(x)

n

- / Daf($ + (th + t27k “+ ...+ tik,k)hk) (hlf, ey h%”) dtl,l-~-dtil,1~--dt1,n~--dtin,n-
0.1)° b=t
Hence,
S 3 (Caitebinihet, ( ; ) < " ) F@ 4 uht + o+ Gubn)
jnil jlil "

/ Daf LU + Z tl & + tQ [ O tlk k)hk) (hzll, ooy h%") dt171...dtihl...dtlm...dtimn.

01)° k=1

In particular,

AN Ai%:ieN,l AL f(z)

SNEN S1€1
71 . .
; s ; i i ) .
= Z Z (—1)nt gt N ( j11 ) < j]]\\[[ ) f(z+jisier + ...+ jnsnen)
jn=1 5=1

N
/ ot ax’N @+ D (b + ooe i k) sker)st s dtr1dtiy 1..dty n...dtiy N
N k=1
[0,1)*
(6.6.3)

for « = i1 + ... + iy and s1,s89,...,sy € R. Clearly, for any tq,...,txy € R, there exists
(t1,07-~-7tN,0) S [—tl,il — tl] X ... X [—tN,iN — tN] such that

N
o f o
/ W Z tlk‘ +t2k + .. +t1k k — tk)3k6k>3111-~-S?<7th1,1--~dtz‘1,1-~-dt1,n-~-dtiN,N
Ty X b1
[0,1]* -
N
0“f in
i A v Oskzek -5
81'211 Oz kz N

For this reason, we can find (¢1, ..., tx) € [0,41]x...x[0,in] ( depending on z, 51, ..SN, 41, ..., iN)
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such that t1 9 = ... =ty = 0, this means
0% f(x) v i i i i -
ST Sy = AL AL e Al [T — Ztkskek)
Ozt ...0zy P
o*f n . A
= ﬁ(iﬁ + Z (th + .o+t k— tk)Skek)Slll...S?n"dtLl...dtil’l...dtl,n...dtimn
Ox7'...0zy P

[0,1]
(6.6.4)

Now we assume that v € CJ7.(Q,,) where Q,, = {z € Q: p(z) <ri} and r; € (0,7].
Let € Q with p(x) < 7. Using (6.6.1) where y = Pragr = xpq and 8 = Sy + 2

us(2) < u(z) <ui(2) Yz € B(zoq — Mizyg,T)

where,

__ P
o ]
r5—|z—xa(2+rnxaﬂ|ﬁ> a=rt

1ma=%< g

and

— p
|z — 290 — T‘ﬁxaﬂ‘ﬁ - 7‘5) @t

zmw=%< g

Let § € (0, 5-) and m = iy + iy + ... + in. Using (6.6.4), we have

N

m m 8mu x 1 IN— I

8™ (p(x)) “7()”\[ = Aaf;)’(x)eNA(;;(;)eN_l...Aalp(x)elu(:c - Ztkdp(x)ek)
Oxy'...0x Y Pt

for some (t1,...,tn) € [0,i1] X ... X [0,in] depending on z, p(z), i1, ...,iN, p,q. We can write

N
A ren DAL e ulT — > twbp(x)er)
k=1

N
= A?f‘)’(w)eN Ag];’(‘;)eNil...A?p(x)elul(x - Ztkép(a:)ek)
k=1 N

A en Diien s Dby, (1 — ) (@ — ; trop(a)er).

Thus
A-B< 5m(p(x))mm <A+B (6.6.5)
ox...0xy

where,

N
A= A5 ren Btnwre 1 Loty 1 (7 = kZ trop(w)e),
=1
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B=) ) ( ;1 > ( oy > [(ur — u2) (z + (1 — t1)dp(z)er + ... + (v — tn)op(2)en)|

jnN=1 51=1 IN
We need to estimate A and B.
Estimate B. We have,

N
where @, =6 Y (ji — ti)ex with [T, < dm(< ). We now set
k=1

— P
mw:%C@«Hmwemm+@wwmmW—mm«mm+awwmmﬁ o
frit

for all t € [0, 1] and we can write
(ur —u2) (x4 (j1 —t1)dp(x)er + ... + (jn — tn)op(x)en) = H(1) — H(0).

, / 1 e L
We will show that |H'(t)] < Cyy: (p(x)) 17" for any ¢ € [0,1], for some a positive
constant C7. Then,

1

(= uz) (& + G = t)p(@)er + .+ (i — tx)dp(e)en)] < Cr- (pla)) 7571+

We conclude that

1 _
B < 2"Ci—(p(a)) e (6.6.6)
In fact, for t € [0,1]
__g+1
(—148)p(@) (= ig 5, 480 )+ | — |tp(2) (=T ey 4T ) briig s, |\ T PH
H'(t) — _q—£+100<| p(@)(=Tlzgg +7z) ﬁa:zﬁtl |to(@) (=Twpg +7z) a0 >

1 (=14 )p(@) (=i + o) + 171050 (<1 + )p(@) (<Tizgg + o) + 17100
~p(@) (<l + Te) + 1750”2 (tp(@) (~Tinggy + T2) + Tingg) ) P(&) (T + )

Since

1217722 — 1y)*~2y| < (B = 1)z =yl (12l + 1y}’ 2,y € RY,

thus we have
_ g+l
|H/(t)’ < p 100 ’(_1+t)P($)(_ﬁxan'*‘”w)"‘?"ﬁxgnﬂﬁl_|tP($)(_ﬁwaQ+vx)+TﬁwaQ|6> aptt (ﬁ . 1)(/)(:0))2
— q—p+ rf=
r@) i ayenm [V
+ |t=; ( Nzsa +U$)+nlm
g+1

1) oa (—148)p(@) ( — g g0, 4T )+ | P = [tp(@) (~ T +80 ) 4riia g | - PTL 5
< Z(_Bp+1)55 171n00<‘ ( e} ) g§ﬁ|_1 ‘ ( e} ) aQ| ) (p(a:))

l| - ﬁxaﬂ + 6x|2 (‘(_1 + t) olz) (_ﬁwan + 7795) + ﬁlm

T T
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On the other hand,

[(“148)p(2) (= Tlagg +T2 ) +riegg ‘B_‘tp(x)(_ﬁwan +T ) +riie g ‘B
pro-1

1
f ‘ —s+ t ﬁzm + 1796) p(rx) + ﬁwc’m
0

672 — — QP(I) — —
(5 = Dl ~naq + Tl 22 + (1 = fizgq i) ) ds

Since,
. . x . . . T T 1
'(_5+t)(_n1m +Uw)p(,r)+nxm 21— | = s+t Mgy + Ul P(r) > 1_2(7“) > 2
and
. . T . N T . T 1 1
(5 = Ol —7iugy + B2 1 (1 figpei) 2 —42 (1 jy 2 —a2D L5 L
r T T 274
Thus,
(=1 + 1)p(x) (—Tiagg T Ta) + Tinggl” = [tp(x) (—Tlapy + Te) + Milagel” . 5
>27Pp(x)
fri-1
(6.6.7)

We deduce |H'(1)] < C1 1 (p(x))” 771 where €y = 222056 1905 0
Estimate A.
Using 6.6.4, we have

O™y N
A=g§m m_ 9 (T — £1)0p(
()" 5o kz v — th)dp(x)er)

for some (1...,tn) € [0,71] X ... X [0,y].
We have

N N
4+ (E — te)op(x)er — voo = <—ﬁxan +6) (k- tk)é’k:) p(x) = (—Tizsq + Wa) p(a)

k=1 k=1

where W, = ¢ Z (tk — tr)ex with [w,| < om(< %)

It is easy to see that

. T . m(B1—2) N ip
’( Ngao T wx) P(T ) T Nggq <( Napo.k T wm,k) ,0( ) + ZaQ,k>
k=1
m+1
1 P = |(=Tg, + Wa) p(x) 4 ritg,, [P 7
+ r5m<p<x>>M< T Q).
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where |Q(z)| < C for some a positive constant C depending on p, ¢, N, m.
We have

rf— |(_ﬁxa§z + W) p(x) + Tﬁwan‘ﬁ
prb

00 g ) 2 )

1
o - x N
/’1_t nran+wr)p(7,)+nran
0

X (ﬁxag - wx) dt = p(l’)P(IL‘),

where
e T » <>
P(x) =|(1-1) (_nﬂcaﬂ + W) T + Nggq (1- t)|_n$an | — 1 = Wy
for some # € [0,1] and P(z) > 275.
Thus,
m(5-2)

A= §m(p(x))” 7+ Co H (87 +3 = 1) P@) 5" (<Tiagg + ) 22 +

N

H <(_nx{m,k + wz,k) (r,~) + nxan7k>lk + %6m(p(x))7q75+1+1p(x)7q75+1 7m+1Q(x)'
k=1

From (6.6.5) and (6.6.6) we deduce

—2mC T 4 P(a) T Q) B 4 T(w) < (pl) e T S < T(a)
SCl .
+P(x) T Q) 22) 4 9-m ey §meln)

where

We can rewrite

o)y (@) < (play) < (@) + a5 242

for some a positive constant Cy only depending on p, ¢, N and m.
The remaining task is to prove that

m N
_COH( X J_1>H”wankzk <CM+C5 (6.6.8)
In fact, we see that T is decomposed as the following
m D N
=Co H ( +Jj- 1> H (nxag k:) +T1( ) +T2(5L‘) +T3(ZL‘)
i Na el k=1
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where

k=1

m(8-2)
-1

T (—? N ple) gy
Ti(z) = Co H (q—p+1 +7- 1) <H <(—"wan,k + Wa k) — T nlBaQ,k) - H ok
=1 k=1

s p . . L opla)
Ty(z) = Cy H <q—p—|—1 +7 - 1) (‘(_nl‘ag + Wy) (7“) + Naya

and

It is obvious to see that

p(x) L) L MY p(x)
‘Tl(x)’ < 0477 |T2(x)‘ <Cs <_n$aﬂ + wﬂ?) T t Nzpg -1 < Ce r
and .
3(x)| < Cf z) et — 1| < Cg|P(x) — since P(x) > 277.
T Cy |P ™ _1] < Cg|P 1 P 27h
Furthermore,
B2
_ . . €T . _ . . T
PO =11 < (1D (it +8) 8 | (1= B + 02
N BN BT R
+ 1| (1 =) (=g + Wa) T T+ Napg = 1|1 = Tl Wa| + iy 0 Ws|
< Cy ( ) + |0 Wer |
<C()+|ﬂ<@ll+5
Thus

Ty(2)| < O 2 4 Cro

Consequently, we get (6.6.8).
Then, we get that

)

v OMu(@) TP ) Tl np(®)
(p(a) T (=t 1)]}:1 )| < On (7P 1)

11 TN
Oxy'...0z Jaie
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1
By choosing § = 5 (p(x)> “ we obtain for any z € Q, p(z) < 5

r

Mu(x - N , ), _1
(st S 0 [T (g 4= 1) T ama)®| < o™y,

i1 iN
Oxy'...0xy

j=1 k=1
(6.6.9)
where C12 = C12(p, ¢, m, N). From case m = 1, since u € CZIOC(Q) thus for any = € Q, p(z) <
* : @
2 _4+1 OU p P\ 1
‘(P(f))“’“ o1 mconxan,i < Cha( " )z.
It leads to
‘m@»rﬁﬁﬂvw—q_§+1a>SCBf“%%Vxempm%<$

for some a positive constant Ci3 only depending on p,q, N.

2
Put M = max { (%) ,16}, we have

L Co(ple) T <[Vl < 3L

~_ P (p(2)) T Vo € Q, p(z) < —
- xT)) er T , plx —
2g—p+1 0 p+1 0lp P

M

Therefore, by standard regularity theory, we obtain u € Cpy,(€,/5). Finally, from (6.6.9)
with 71 = r/M, we get (6.6.2).
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Chapitre 7

Wiener criteria for existence of large
solutions of nonlinear parabolic
equations with absorption in a
non-cylindrical domain

Abstract

We obtain a necessary and a sufficient condition expressed in terms of Wiener type tests
involving the parabolic W;,’l— capacity, where ¢/ = qﬁ—l, for the existence of large solutions
to equation dyu — Au + u? = 0 in non-cylindrical domain, where ¢ > 1. Also, we provide
a sufficient condition associated with equation dyu — Au + e* — 1 = 0 . Besides, we apply
our results to equation : dyu — Au + a|VulP + bu? =0 for a,b >0, 1 <p <2 and g > 1.
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7.1 Introduction

The aim of this paper is to study the problem of existence of large solutions to nonlinear
parabolic equations with superlinear absorption in an arbitrary bounded open set O C
RN*1 N > 2. These are solutions u € C%1(O) of equations

O — Au + |u|7 u =0 in O,

lim inf w=o00 forall (z,t) € 9,0, (7.1.1)
30 ONQs (a,1)

and
dru — Au + sign(u) (el —1) =0 in O,

lim inf w=o00 forall (zt) € 9,0, (7.1.2)

5—0 0NQs (1)
where ¢ > 1 and 9,0 is the parabolic boundary of O, i.e, the set all points X = (z,t) € 00
such that the intersection of the cylinder Qs(z,t) := Bs(x) x (t—62,t) with O€ is not empty
for any § > 0. By the maximal principle for parabolic equations we can assume that all
solutions of (7.1.1) and (7.1.2) are positive. Henceforth we consider only positive solutions
of the preceding equations.
In [22], we studied the existence and the uniqueness of solution of general equations in a
cylindrical domain,

Ou — Au+ f(u) =0 in Q x (0,00),
u

s in 9, (2 x (0,00)) (7.1.3)

where Q is a bounded open set in RY and f is a continuous real-valued function, nonde-
creasing on R such that f(0) > 0 and f(a) > 0 for some a > 0. In order to obtain the
existence of a maximal solution of dyu — Au + f(u) = 0in Q x (0,00) there is need to

(4) /: </0 f(T)dT>§ ds < oo, -

(i4) / (f(s) "t ds < co.

a

Condition (i), due to Keller and Osserman, is a necessary and sufficient for the existence
of a maximal solution to

—Au+ f(u) =0 in Q. (7.1.5)

Condition (ii) is a necessary and sufficient for the existence of a maximal solution of the
differential equation

o'+ flp)=0  in (0,00), (7.1.6)

and this solution tends to co at 0. In [22], it is shown that if for any m € R there exists
L = L(m) > 0 such that

for any z,y >m = f(z +y) = f(z) + f(y) - L,
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and if (7.1.5) has a large solution, then (7.1.3) admits a solution.

It is not alway true that the maximal solution to (7.1.5) is a large solution. However,
if f satisfies

/ sTXND/N=2) f(5)ds < 00 if N > 3,
1

or
inf{aEO:/ f(s)e™*ds < o0 }<oo if N =2,
0

then (7.1.5) has a large solution for any bounded domain (2, see [16].

When f(u) =u4, ¢ > 1 and N > 3, the first above condition is satisfied if and only if
q<qc:= %, this is called the sub-critical case. When q > q., a necessary and sufficient
condition for the existence of a large solution to

—Au+u?=0 in (7.1.7)
is expressed in term of a Wiener-type test,

1 Capy ,(Q°N B,
P2 ( @)dr _ 0 forall 200 (7.1.8)
o rN—2 r

In the case ¢ = 2 it is obtained by probabilistic methods involving the Brownian snake by
Dhersin and Le Gall [5], also see [13, 14]; this method can be extended for 1 < ¢ < 2 by
using ideas from [7, 8]. In the general case the result is proved by Labutin, by using purely
analytic methods [12]. Here, ¢’ = qqu and Cap, . is the capacity associated to the Sobolev

space W24 (RV).
In [19] we obtain sufficient conditions when f(u) = e" — 1, involving the Hausdorff
H{V ~2_capacity in RV, namely,

1 2/ N-2/0c
/ L (QNQBT(:E)) dr =oo forall =€ 90. (7.1.9)
0 T T

We refer to [17] for investigation of the initial trace theory of (7.1.3). In [9], Evans and
Gariepy establish a Wiener criterion for the regularity of a boundary point (in the sense of
potential theory) for the heat operator L = d; — A in an arbitrary bounded set of RN+,
We denote by 9(RN*!) the set of Radon measures in RN¥*! and, for any compact set
K C RV*1 by My (RV*H1) the subset of M(RVT!) of measures with support in K. Their
positive cones are respectively denoted by DT (RN+1) and 9 (RVT1). The capacity used
in this criterion is the thermal capacity defined by

Capy (K) = sup{u(K) : p € MRV H# p < 1},

for any K C RN*! compact, where H is the heat kernel in RN*1. It coincides with the
parabolic Bessel G; —capacity Capg, o,

Capg, o(K) = sup {/ |flPdxdt : f € Li(RNH), Gi*f> XK} ;
RN+1
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here G; is the parabolic Bessel kernel of first order, see |20, Remark 4.12|. Garofalo and
Lanconelli [10] extend this result to the parabolic operator L = 9; — div(A(x,t)V), where
Az, t) = (a;,5(z,t)), 4,5 = 1,2,..., N is a real, symmetric, matrix-valued function on RN+1
with C'* entries for which there holds

N
CHEP < ) aig(z, )€ < CIEP V(x,t) e RN Ve e RY,
i,j=1
for some constant C' > 0.

Less is known concerning the equation
Ou — Au+ f(u) =0 (7.1.10)

in a bounded open set O C of RN*! where f is a continuous function in R, Gariepy
and Ziemer [11, 23| prove that if there are (x¢,%y) € 9,0, | € R and a weak solution
u e WH2(0) N L®(0) of (7.1.10) such that n(—I — & +u)*,n(l — e —u)* € Wy(O) for
any ¢ > 0 and n € C°(B,(z9) x (=% +to, 72 + tg)) for some r > 0 and if

= oo for some o > 0

/ ! Capy (0° N (By(wo) x (to — §ap? to — §ap?))) dp
0 pN p

then lim  w(z,t) = I. This result is not easy to use because it is not clear whether
(z,t)—(z0,t0)

(7.1.10) has a weak solution v € W12(0). In this article we show that (7.1.10) admits a
maximal solution v € C*!(0) in an arbitrary bounded open set O, by approximation by
dyadic parabolic cubes from inside O, provided that f is as in (7.1.3) and satisfies (7.1.4).

Our main purpose of this article is to extend the result of Labutin [12] to nonlinear
parabolic equation (7.1.1). Namely, we give a necessary and a sufficient condition for the
existence of solutions to (7.1.1) in a bounded non-cylindrical domain O € RV*!, expressed
in terms of a Wiener test based upon the parabolic Wq?,’l—capacity in RN+1 We also give

a sufficient condition associated (7.1.2) where the parabolic Wq%’l—capacity is replaced the

parabolic Hausdorft P’Hi,v -capacity. These capacities are defined as follows : if K ¢ RNV *!
is compact set, we set

Capy; o (K) = inf{HgoH“J/;/Q’l(RNH) cp e SRV, o > 1 in a neighborhood of K},
q/

where
Oy 0%p
2,1 = ’ =+ || — / + ||V / + = — / .
H‘PHWq, (RN+1) !l q (RN+1) I ot o (RN+1) IVellLq (RN+1) % Haxiaxj Il 1a (RN+1)
and for Suslin set £ ¢ RVN+1
Capy 1 o (E) = sup{Capy; (D) : D C E, D compact}.

This capacity has been used in order to obtain potential theory estimates that are most
helpful for studying quasilinear parabolic equations (see e.g. [3, 4, 20]). Thanks to a result
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due to Richard and Bagby [2], the capacities Capy;, and Capg, , are equivalent in the
sense that, for any Suslin set & C RV*! there holds

C~'Capy 1 4 (K) < Capg, (K) < CCapy 1 ,(K),

for some C' = C(N, q), where Capg, s is the parabolic Bessel Go—capacity, see [20].
For E C RV*!, we define PH) (E) by

PHY(E) =inf{ Y ri¥ i EC| By (a;) x (t; =} t;+713), rj < p
J

It is easy to see that, for 0 < 0 < p and E C RVT!, there holds

PHY(E) < PHY(E) < C(N) (3)2 PHY (). (7.1.11)

g

With these notations, we can state the two main results of this paper.

Theorem 7.1.1 Let N > 2 and q > g4 := % Then
(i) The equation
Ou—Au+u?=01in O (7.1.12)
admits a large solution if there holds
> Ca (0°N (B, (z) x (t —1168r2,t — 113613

k=1 "k

for any (z,t) € 0,0, where r, = 47%, and N > 3 when q = g..
(i1) If equation (7.1.12) admits a large solution, then

1 Ca (0°NQ,(x,t)) d
/ P2.1,q ( = Q,D( ))7;0 — 0, (7'1'14)
0 P p
for any (z,t) € 9,0, where Q,(z,t) = B,y(z) x (t — p?,t).
Theorem 7.1.2 Let N > 2. The equation
Ou—Au+e*—1=01in O (7.1.15)
admits a large solution if there holds
< PHY (0¢N (B, () x (t — 116872, ¢ — 113612

k=1 "k

for any (z,t) € 9,0, with r), = 47F.
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From properties of the W;,’l—capacity and the PHY —capacity, relation (7.1.13) holds if

o)

D N0 N (B (x) x (t— 11687, ¢ — 1136r,3))\1’%+2 =00 when ¢ > g,
k=1
and
> _N
Zr,;NlogJr (‘OC N (Brk (x) x (t — 11687",%,t — 11367",%)) ‘_1) * — o0 when q = qs.
k=1

Similarly, identity (7.1.16) is verified if

= N
> V0N (Bry () x (t— 116877, — 1136r7) ) |7+ = oo
k=1

Therefore, when O = {(z,t) € RN*! . |22 + % < 1} for some A > 0, we see that
00 = 0,0, (7.1.14) holds for any (x,t) € 0,0, (7.1.13) and (7.1.16) hold for any (z,t) €
9,0\{(0,v/)\)}. However, (7.1.13) and (7.1.16) are also true at (x,t) = (0,v/)) if A\ > 22722
and not true if A < 22722

As a consequence of Theorem 7.1.1 we derive a sufficient condition for the existence of
large solution of some viscous Hamilton-Jacobi parabolic equations.

Theorem 7.1.3 Let g > 1. If there exists a large solution v € C*(O) of

v —Av+v' =0 in O,

then, for any a,b>0,1<q¢<q and 1 <p< q?‘ill, problem

Ou—Au+alVulP +bu? =0 in O,
u=o00 on 0,0,

(7.1.17)

admits a solution u € C%1(O) which satisfies

1 2—p 2

. _ 1 ,2* +# _ 1 7L+7 1
uw(z,t) > Cminqa pTR p-1 o@D p 1R a-1Tala-D b (y(z,t))a,

for all (z,t) € O where R > 0 is such that O C Qg(xo,t), C = C(N,p,q,q1) > 0 and

2(p—1 -1
a= max{(ql_(f)(g)_p), qqlil} € (0,1).

7.2 Preliminaries

Throughout the paper, we denote Q,(x,t) = B,(z) x (t — p?,t] and Q,(x,t) = B,(z) x

(t — p?,t + p?) for (z,t) € RN*L p > 0 and rp = 47F for all k € Z. We also denote
A< (2)Bif A< (>)CB for some C depending on some structural constants, A < B if
A< BSA
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Definition 7.2.1 Let R € (0,00] and p € MT(RNFY). We define R—truncated Riesz
parabolic potential I of v by

I (x, 1) = /O ’ dep Jor all (r.1) € RNH.

and the R—truncated fractional mazimal parabolic potential Mo of u by

M ] (z,t) = OEHER/W for all (z,t) € RNTL,
P

We recall two results in [20].

Theorem 7.2.2 Let ¢ > 1,R > 0 and K be a compact set in RNT1. There exists p :=
pr € M (RNTYY with compact support in K such that

() = Capy () = [ ()" dade

RN+1

where the constants of equivalence depend on N,q and R. The measure ug is called the
capacitary measure of K.

Theorem 7.2.3 For any R > 0, there exist positive constants C1,Ca such that for any
p € MT(RNTY) such that ||M§[M]HL@(RN+1) <1, there holds

7[ exp(Cl]Ié%[XQu])dxdt < (s,
Q

for all Q = Qr(y, s) C RNFL r >0, where xq is the indicator function of Q.

Frostman’s Lemma in [21, Th. 3.4.27| is at the basis of the dual definition of Hausdorff
capacities with doubling weight. It is easy to see that it is valid for the parabolic Hausdorff
777-[2[ —capacity version. As a consequence we have

Theorem 7.2.4 There holds
sup {u(K) - jr € BN, supp(s) € K |IMEJu] || pqun ) < 1} = PHY (K)
for any compact set K C RNt and p > 0, where equivalent constant depends on N

For our purpose, we need the some results about the behavior of the capacity with respect
to dilations.

Proposition 7.2.5 Let K C Qloo(O, 0) be a compact set and 1 < p < % Then
N
2

_ 2 2200(0, 0
Capy 1, () 2 |K|' %52, Cap, , v (K) 2 (1og (W)) S (T2
) T
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and
Capy 1 p(Kp) = p™ 272 Capy 1 ,(K), (7.2.2)

1 1
= + (log(2/p)™? 723
C“p2,1,¥<Kp) C'apm’#(_r{) (log(2/p)) ( )

for any 0 < p < 1, where K, = {(px, p°t) : (x,t) € K}.

Proposition 7.2.6 Let K C Ql(o,o) be a compact set and 1 < p < % Then, there
exists a function @ € Cgo(Qg/g(0,0)), 0<¢<1and ¢|p =1 for some open set D O K
such that

/RN+l (\D%\P + |Vl + [ofP + |0pplP) dadt S Capy  ,(K). (7.2.4)

We will give proofs of the above two propositions in the Appendix.
It is well know that there exists a semigroup e'® corresponding to equation

Oru—Au=p in Qg(0,0),

u=0 on J,Qr(0,0), (7.2.5)

with € C®°(Qr(0,0)), i.e, we can write a solution u of (7.2.5) as follows

u(z,t) = /t (e(t_S)Au) (z,s)ds for all (z,t) € Qr(0,0).

0
We denote by H the heat kernel :

We have
lu(z,t)| < (H* p)(z,t) for all (z,t) € Qr(0,0).
In |20, Proof of Proposition 4.8] we show that
(F ) (2, 6) < CLNER[l)(2,8) for all (2,8) € Or(0,0).
Here 4 is extended by 0 in (Qg(0,0))¢. Thus,

| /0 (e(t_s)Au> (z,8)ds| < CL(N)EE[|u|](z,¢) forall (z,1) € Qr(0,0).  (7.2.6)

Moreover, we also prove in [20], that if g > 0 then for (z,t) € Qg(0,0) and B,(z) C Bg(0),

0 ek (T, — 35 52
/t (e(t—S)AM) (2,5)ds > Co(N) Y “(Qs(xpN HSP’“)), (7.2.7)
0 k=0 k

with p = 47 %p.

It is easy to see that estimates (7.2.6) and (7.2.7) also holds for any bounded Radon
measure 4 in Q(0,0). The following result is proved in [3] and [18], and also in [20] in a
more general framework.
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Theorem 7.2.7 Let ¢ > 1, R > 0 and p be bounded Radon measure in Qg(0,0).

(i) If p is absolutely continuous with respect to Capy; , in Qr(0,0), then there exists a
unique weak solution u to equation

Ou— Au+ [ulTlu=p in QRKO, 0),
u=20 on 9,Qr(0,0).

(ii) If exp (C1(N)IZE[|ul]) € LY(Qr(0,0)) then there eists a unique weak solution v to
equation

v — Av + sign(v >(e‘”‘ ) =pu in Qr(0,0),
=0 on 9,Qr(0,0),
where the constant C1(N) is the one of inequality (7.2.6).

From estimates (7.2.6) and (7.2.7) and using comparison principle we get the estimates
from below of the solutions v and v obtained in Theorem 7.2.7.

Proposition 7.2.8 If u > 0 then the functions u and v of the previous theorem are non-
negative and satisfy

> 71@(1‘ t— 1325802))
ua,t) > Co(N) S 7 — CUN)TBR (R ()| (o) (728)
k=0
and
e i(x t— 13258/)%))
v(x,t) > Co(N Z s o — CL (NI [exp (C1(N)I3R[u]) — 1] (=, 1).
k=0

(7.2.9)
for any (z,t) € Qr(0,0) and B,(z) C Br(0) and py = 47 %p.

7.3 Maximal solutions

In this section we assume that O is an arbitrary non-cylindrical and bounded open set
in RM*1 and ¢ > 1. We will prove the existence of a maximal solution of

Ou—Au+u? =0 (7.3.1)

in O. We also get analogous result where u? is replaced by e* — 1.

It is easy to see that if u satisfies (7.3.1) in Q,(0,0) ( @-(0,0) ) then u,(z,t) = a= 2/ (@ Vu(az, at)
satisfies (7.3.1) in Qr/a(O, 0) (Qr/4(0,0)) for any a > 0.

If X = (x,t) € O, the parabolic distance from X to the parabolic boundary 9,0 of O is
defined by

1
d(X,0,0)= inf max{lz—y|,(t—s)2}.
00) = it sl sl ¢ =)
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It is easy to see that there exists C' = C (NN, q) > 0 such that the function V' defined by

2
V(z,t)=C <(p2 + t)_ﬁ + </)2—p|362)_<11> in B,(0) x (—p?,0)
satisfies
OV — AV +VI>0 in B,(0) x (—p*,0). (7.3.2)
Proposition 7.3.1 There exists a mazimal solution u € C*1(0) of (7.3.1) and it satisfies
u(z,t) < C(d((z,t),8,0)) 7T for all (z,t) € O (7.3.3)
for some C = C(N,q).

Proof. Let Dy, k € Z be the collection of all the dyadic parabolic cubes (abridged p-cubes)
of the form

{(@1, ey, t) :m27 8 <y < (mj+1)27%, 5 =1, .., Nymyd ™" <t < (myyq +1)475}

where m; € Z. The following properties hold,

a. for each integer k, Dj is a partition of RVt and all p-cubes in D have the same
sidelengths.

b. if the interiors of two p-cubes ) in Dy, and P in Dy,, denoted 52, ]g, have nonempty
intersection then either @) is contained in R or ) contains R.

c. BEach Q in Dy, is union of 2V*2 p-cubes in D41 with disjoint interiors.

Let ko € N be such that @ C O for some Q € Dy,. Set O, = |J Q Vk > ko, we

QeDy,
QCO
o
have O C Ogy1 and O = |J Or = |J Ok. More precisely, there exist real numbers
k>ko k>kg
a1, a2, ...y Ap(k) and open sets g, g, .., 2,3 in RY such that

a; < a; + 4=k < aiy1 < @41 + 4% for 1=1, ,n(k) -1

and
. n(k)—1
Ok = U (Qz X (a;, a; + 47k]) U (Qn(k) X (@n(k)s An(r) + 47k)> :
i=1
For k > kg, we claim that there exists a solution u; € CQ’I(CO)k) to problem

o

Opup, — Aug +uj =0 in O,

. (7.3.4)
ug(x,t) > 0o as d((z,t),0,0) — 0.

Indeed, by [6, 15] for m > 0, one can find nonnegative solutions v; € C*(Q; x (a;, a; +
47 N C(Qy x [ag, a; + 47F]) for i = 1, .., n(k) to equations

Oy — Avy + Ulll =0 in £y x (al, a1 + 4_k),
vi(z,t) =m  on O x (a1,a; +47F),
vi(z,t1) =m in Q,
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and
O; — Av; +vi =0 in Q; x (a;,a; +47F),
vi(z,t) =m on 98 x (a;,a; +47%),
vile, az) = { m in B if a; > ai-1 + 47k,
mxo\Q,_, () +vi1(z,ai-1 +47")xq,_,(z) otherwise .
Clearly,

Ukm = 0 In Q X (a;,a; + 47]“] for i =1,...,n(k)
is a solution in 02’1(5k) N C(O) to equation

o

Oty m — Augm + uz?m =0in Oy,

o
Upm = m on 0.

[¢]

Moreover, for (z,t) € 5k, we see that Ba(x) x (t — %,t} C 5k where d = d((x,t),0,0%).
2
From (7.3.2), we verify that

. 2y 2\ "1
U(yas)3=V(y—$,s—t):C<(p2+s—t)‘q—1+(p’pm) >

with p = d/2, satisfies

U —-—AU+UT>0 in Bg(:p) X (t—cf,t). (7.3.5)
Applying the comparison principle we get
e (y9) <ULy, 5) in By(a) x -0
which implies
U (z,) < C (d((a:,t),apék))(fl for all (z,t) € Op.. (7.3.6)

From this, we also obtain uniform local bounds for {uj , }m. By standard regularity theory
see [6, 15|, {ugm}m is uniformly locally bounded in C?*!. Hence, up to a subsequence,

o
Uk — U Cllo’g(Ok) . Passing the limit, we derive that uy is a weak solution of (7.3.4) in
[}

Oy, which satisfies ug(z,t) — oo as d((z, 1), 8p5k) — 0 and
2

up(z,t) < C (d((gg,t),ap(")k))_ﬁ for all (z,t) € Op.

Let m > 0 and k > ko. Since upy1m < m in Op and Op C Opqq, it follows by the

comparison principle applied to w41, and ug ,, in the sub-domains € x (a1, a1 + 4=k,
o

Qo x (ag,ay +47%),..., Q) X (A (), Ongr) + 47%) of O to obtain at end that ug 1., <

Uk,m in Ok, and thus ug1 < ug in Op. In particular, {uy}y is uniformly locally bounded

in Lys.. We use the same compactness property as above to obtain that u; — u where u is

a solution of (7.3.1) and satisfies (7.3.3). By construction u is the maximal solution. ]
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Remark 7.3.2 Let R > 2r > 2, K be a compact subset in QT(O,O). Arguing as one can
easily it is clear that there exists a maximal solution of

du—Au+ul=0 in Qr(0,0)\K
u=0 on 8RC~2 (0, ) (7:3.7)
which satisfies
u(e, t) < Cd((x,£), 8, (Qr(0,0)\)) 7T V (z,1) € Qr(0,0)\K, (7.3.8)

for some C = C(N, q). Furthermore, assume K1, Ka,,,, Ky, are compact subsets in Q,(0,0)
and K = K1U...UK,,. Let u,uy, ..., U, be the mazimal solutions of (7.3.7) in Qr(0,0)\K

Qr(0,0\K1, Qr(0,0\K2,,,,Qr(0,0)\ K, respectively, then

u < Em:uj in Qr(0,0)\K. (7.3.9)
j=1

Remark 7.3.3 If the equation (7.3.1) admits a large solution for some q > 1 then for any
1 < q1 <q, equation

ou —Au+u* =0 O (7.3.10)

admits also a large solution.
Indeed, assume that u is a large solution of (7.3.1) and v is the mazimal solution of (7.3.10).

Take R > 0 such that O C Br(0) x (—R?, R?), then the function V defined by
Viet) = (g = 1) 71 R +1) 7,
satisfies (7.3.1). It follows for all (z,t) € O

w(a,t) > inf V(z,t) > (q—1) TR =1 =: aq.
(y,8)€0O

a— q1 a-q1
Thus, @ = al*~" u is a subsolution of (7.3.10). Therefore v > af' " u in O, thus v is a large
solution.

Remark 7.3.4 (Sub-critical case) Assume that 1 < q < q.. One easily see that the
function

Ulz,t) = Cl' e~ I x>0 (7.3.11)

is a subsolution of (7.3.1) in RNT1\{(0,0)}, where C = (qz—l - %)ﬁ

Therefore, the mazimal solutions u of (7.3.1) in O verify

lz—y|2

1 _
w(z,t) > C—————¢ 105 xyus, (7.3.12)
(t—s)at
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for all (z,t) € O and (y,s) € O°.

If for any (z,t) € 0,0 there eziste € (0,1) and a decreasing sequence {6, } C (0,1) conver-
ging to 0 as n — oo such that (Bs, (z) x (=62 +t,—£62 + 1)) NO° # 0 for any n € N, then
u s a large solution. For proving this, we need to show that ;i_lz% Ifon(B, (2)x (—p2+t,p2+1) U =

0. Let 0 < p < ﬁcﬁ, and n € N such that \/génﬂ <p< \/gén.

Since (Bs, (x) x (=62 +t,—62 + 1)) NO° # 0, there is (xn, t,) € O° such that |z, —z| < by
and —02 +t < t, < —eb2 +t. So if (y,5) € ON (By(x) x (—p? + t,p*> + t)) then
ly — n| < (VE+ 1)0, and 562 < s — t, < (¢ + 1)02. Hence, thanks to (7.3.12) we
have for any (y,s) € O N (By(z) x (—p* +t,p* + 1))

1 _ly—=n|? 1 (Ve+D?2 2
u(y,s) > C———¢ 46— >Ce+1) ale 2 6,7 ",
(s —ty)a 1
which implies
B N V- L
inf uw>Ce+1) ate” 2 4§, 00 as p— 0.

ON(By () X (—p2+t,p2+1))

Remark 7.3.5 Note that if u € C*(O) is a solution of (7.3.1) for some q > 1 then, for
1
a,b>0and 1 <p<2, v=>b a1u is a super-solution of

0w — Av+alVolP +bv? =0 in O. (7.3.13)

Thus, we can apply the argument of the previous proof, with equation (7.3.1) replaced by
(7.3.13), and deduce that there exists a mazimal solution v € C*1(0) of (7.3.13) satisfying

v(z,t) < C’biz%l(d((ac,t),apO))iZ%1 for all (z,t) € O.

Furthermore, if 1 < q < q«, ¢ = 1%, a,b > 0 then the function U in Remark 7.3.4 is

a subsolution of (7.3.13) in RNT1\{(0,0)}, for some C = C(N,p,q,a,b). Therefore, we
conclude that every mazimal solution of v € C?1(0O) of (7.3.13) satisfy

1 _lz—y?
v(@,t) > O e AT g (7.3.14)
(t— sy

for all (x,t) € O and (y, s) € 0,0.

As in Remark 7.3.4, if for any (x,t) € 0,0 there exist € € (0,1) and a decreasing sequence
{6n} C (0,1) converging to 0 as n — oo such that (Bs, (x) x (=02 +t,—€d62 + 1)) NO° #
for any n € N, then v s a large solution.

Next, we consider the following equation
Ou —Au+e“ —1=0. (7.3.15)

It is easy to see that the two functions

‘42 2 (2
Vi(t) = —log <1—_t[;2> and Va(x) =C —2log (Pp|55>

329



7.3. MAXIMAL SOLUTIONS

satisfy
Vi+er—1>0 in (—p%0]

and
~AVa+e2-1>0 in B,(0)

for some C = C(N). Using e® + e* < e2™® — 1 for a,b > 0, we obtain that V; + V4
is a supersolution of equation (7.3.15) in B,(0) x (—p?,0]. By the same argument as in
Proposition 7.3.1 and the estimate of the above supersolution, we obtain

Proposition 7.3.6 There exists a mazimal solution u € C*1(0) of
Ou—Au+e*—1=0in O, (7.3.16)
and it satisfies

(d((x, 1), 5,0))°
4+ (d((x, 1), 8,0))?

u(z,t) < C —log ( ) for all (z,t) € O, (7.3.17)

for some C = C(N).

The next three propositions will be useful to prove Theorem 7.1.1-(ii).

Proposition 7.3.7 Let K C Ql(0,0) be a compact set and ¢ > 1, R > 100. Let u be
a solution of (7.3.7) in Qgr(0,0)\K and ¢ as in Proposition 7.2.6 with p = ¢'. Set £ =
(1 — @)%, Then,

L ulag+ V6] +0€]) dadt S Cap (), (73.18)
QR(Ovo)
__2 ~ ~
u(z,t) S Capyy o (K) + R a1 for any (z,t) € Qr/5(0,0)\Q2(0,0), (7.3.19)
and
/ uédrdt < Capy, o (K)+ R 1, (7.3.20)
Q2(070)

where the constants in above inequalities depend only on N, q.

Proof. Step 1. We claim that
/~ ulédzdt S Capy ;o (K). (7.3.21)
Qr(0,0)

Actually, using by parts integration and the Green formula, one has

/ wiedpdt = — / Opuédwdt + / (Au)édadt
QR(Ovo) QR(O7O) QR(070)

R2
= / ud€dxdt —I—/ uA&dxdt +/ / <§8u — ua§> dSdt
Gr(0,0) Gr(0,0) ~Rr2 Jopgpo) \"Ov OV
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where v is the outer normal unit vector on 0BRr(0). Clearly,

ou o€
— < _— =
ey <0 and £y 0 on 0Bg(0).

Thus,

/ ulédzdt S/ u]8t£|dxdt+/ u|A|dxdt
Qr(0,0) Qr(0,0) Qr(0,0)

< Zq’/~ u(l — 90)2q/_1|8t90|d:1:dt +24¢' (24 — 1)/ u(l— cp)Qq,_2|V<p|2d1:dt

Qr(0,0)
+ 2q'/~ u(1 — )% Y Ayp|dadt
Qr(0,0)

Qr(0,0)

< 2q’/~ w1 opp|dudt + 2¢' (24 — 1)/ w9V 2dudt
r(0,0) Qr(0,0)

+ 24’ / w9\ Ap|dzdt.
Qr(0,0)

(7.3.22)

In the last inequality, we have used the fact that (1 — ¢)2¢ 1 < (1 — ¢)20—2 = ¢l/a,

Hence, by Hélder’s inequality,

/ wIEddt < / |0yp| dadt + / V|2 dadt
Qr(0,0) Qr(0,0) Qr(0,0)

+ / |Ap|? dadt.
QR(Ovo)

By the Gagliardo-Nirenberg inequality,
VP dsdt Sl gy [ DRl dud
/QR(o,O) 12Qr(00) /G 5(0.0)

< / |D%|? dadt.
QR(Ovo)

Hence, we find

/ wi§dwdt 5/~ (1017 + | D?|” )dadt,
Qr(0,0) Qr(0,0)
and derive (7.3.21) from (7.2.4). In view of (7.3.22), we also obtain
[, o HISEL 0t S Capsy ()
R

)

and

/ u|VE|dxdt < Capy 1 o (K),
Qr(0,0)
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since
/ u|VE|dxdt = Qq'/~ ug 4 =024 |7 | dadt
Qr(0,0) Qr(0,0)

< Qq'/~ w1V p|dadt
Qr(0,0)

< / wiedudt + / IVeo| dasdt.
Qr(0,0) Qr(0,0)

It yields (7.3.18). )
Step 2. Relation (7.3.19) holds. Let 1 be a cut off function on Qg/4(0,0) with respect to
QR/3(O,O) such that |9yn] + |D?*n| < R72 and |Vn| < R™!. We have
(n&u) — A(ngu) = F € Ce(Qry3(0,0)).
Hence, we can write

lx—y |2
(néu)(x,t) / / —————xe I F(y,s)dsdy Y(x,t) e RVFL
RN (4 (t — s)

Now, we fix (z,t) € QR/g,(O, O)\QQ(O,O). Since supp{|Vn|} Nsupp{|V¢|} = 0 and

F =n€ (0w — Au) = 2(nVE+EVn) Vu + (§0m + 1o — 2VnVE — Ané —nA&)u
< =2(nVE+EVN) Vu + (£0m + ndé — EAn — nA) u

there holds

_lz—yl®
u(z,t) = (néu)(x,t) / / ——xe T S> (MVE + €Vn) Vudsdy
RN (4 (t — s)

le—y|? |2
+ [ / LT oy — nAE) udsdy
RN 47r t— 3

_le—y?
/ / —x¢ A9 (Om€ — EAN) udsdy.
RN (47 (t — s)
= Il =+ IQ -+ Ig.

By parts integration
|lz—y|?
= 2(4n) N/Q/ /RN 20— ) N+2)/ —— ¢ 1= (nVE 4 EVn) udyds
_lz—y|®
+2(47T)_N/2/ /]RN t—s)N ———gf S) (EAN + nAg) udyds.

Note that )
1 _lz—yl* -N
Gt 7R (max{lx—yl It—SIW}) ,
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O

TAt-s) ~N-1
’2@_8)(1\7—1—2)/26 i | < <max{]m —y|, |t — 3‘1/2}) ’

and

max{|z — y|, [t — s['/*} 21 V(y,s) € supp{| D*¢[} U supp{|9:]},

max{|z — y|,|t = s|'*} Z R V(y,s) € supp{|D*n[} U supp{|em|} V|a| > 1.
We deduce

12 —N—1
ns | (maxfle—yllt—s/?}) T @VEl+EVaDudyds
RN+1
1/2 -N
+ [ (maxfle —yl,lt—sIY2}) T (€lan] + nlAg) udyds
RN+1

< / (V€] + |AE]u dyds + / RV + RV Agludyds
RN+1 Qr/3(0,0\Qr/4(0,0)

5/ (Ve + A udyds+  swp  w,
RN+1 Qr/3(0,0\Qpr/4(0,0)

1/2 N
LS (max{lz = yl, [t = sI"2}) " (190€] + [ A udyds
RN+1

< / (04| + | A€ yu dyds,
RN-H

and
1/2 N
s [ (waxfle =l = s"2)) " (ol + [Anl)udyds
RN-H
S R0+ Aal)udyds
Qr/3(0,0\Qr/4(0,0)
< sup u.
Qr/3(0,0\Qr/4(0,0)
Hence,
u(z,t) Sh—f—fg—i—[gﬁ/ (10| + V€] + |AE)udyds + sup u.
RN+1 Qr/3(0,00\Qr,4(0,0)

Combining this with (7.3.18) and (7.3.8), we obtain (7.3.19). )
Step 3. End of the proof. Let 6 be a cut off function on @3(0,0) with respect to Q4(0,0).
As above, we have for any (z,t) € RV*!

(O€u)(2,t) < / (max{lz —yl, [t = s['/*}) "N 1O VE| + €[ VO] Judyds

RN+1

o,
RN+1

(max{|z — yl, |t — 5|2} "N (0] A¢| + £|Ab))u dyds
i /Rmﬁmaxﬂx =yl It = s[/1) "N (010i€] + 01AE] yu dyds
(

+ / max{|z — yl. [t — s|"/*}) TN (€]0,0] + €| A0))u dyds.
RN+1
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Hence, by Fubini theorem,
[ nudxdt = [ Onudxdt
QQ(OvO) QQ(OvO)
SA [ (OIVEl+ €701+ OIAE] + €|6| + 6101 + ]16]) udyds
RN+1

< / (0] + V€| + [ADudyds +  swp  w
RN+1

Q4(0,0\Q3(0,0)
where
A= sup / (max{]a —y|, |t = s|'"*}) N + (max{le — yl, [t = s'/*}) "V )dwdt.
(y,5)€Q4(0,0) Y Q2(0,0)
Therefore we obtain (7.3.20) from (7.3.18) and (7.3.19). ]

Proposition 7.3.8 Let K C {(x,1) : ¢ < max{|z|, t|1/2} < 1} be a compact set, 0 < & < 1
and u be the mazximal solution of (7.3.7) in Qr(0,0)\K with R > 100. Then

<72 Capy 1 (KN Q,. (0,0
sup u < P1a/( N @, (0,0) —|—j€R_q%1 if q> gy, (7.3.23)
Q./2(00)  j=_o Pj
and
Ca
_sup u Z P2 q —i—ng = if q=qs, (7.3.24)
Qc/4(0,0) —0 P

where p; =279, K; = {(x/pj+5,t/pj+3) c(z,t) e KN ijfg(0,0)} and je € N is such that
pjg S e< p]s—l

Proof. For j € N, we define S; = {z : p; < max{|z|, [t|"/?} < p;_1}.
Fix any 1 < j < j.. We cover S; by L = L(N) € N* closed cylinders

Qpyos(Thjites), k=1,..,L(N)

where (zj,t ;) € S;.
For k =1,...,L(N), let uj, uy ; be the maximal solutions of (7.3.7) where K is replaced by

Kn§jand KN ij+3 (%k,j,tk ), respectively. Clearly the function iy ; defined by

_2
g j(z,t) = plisuri(pjrs® + Thj, pF st + th )

is the maximal solution of (7.3.7) when (K} ;, QR/pj+3 (—k,5/pj+3 —tk7j/p?+3)) is replacing
(K, Qr(0,0)), with

Kij = {(/pj+3,5/0543) + (,8) € —(@hj. thg) + K N Qpy (s tij)} € Q1(0,0).
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Let i, ; be the maximal solution of (7.3.7) with (K, Qr(0,0)) replaced by (Kp;, Qaryp, 5 (0,0)).

Since QR/p]-+3( Tk j/Pj+3s tk]/p]+3) C QQR/p]+3 (0,0), then, by the comparison principle
as in the proof of Proposition 7.3.1 we get @y, ; < 1y, ; in QR/p]+3( Tk i/ Pj+3, —th,j /,0]+3)\Kk j
and thus

2
g, j(7,t) S Capy o (Kkj) + (R/pjs3) o1,

for any (z,t) € <Q2R/(5pj+3)(070) N QR/pyrs(—Thj/ Pt _tk,j/P?+3)) \@2(0,0) = D
Fix (iL'o, to) < Q5/4(0, 0). Clearly, ((.%'0 — xkyj)/qu_g, (t() — tk’j)/pj+3) € D, hence
__2
u,j (20, to) = p;fy " i (20 — wrg)/pjs, (to — thj)/ P} ys)
< Cap2,1,q'(Kk,j)

~ 2

q—1
Pj

+ R

Therefore, using (7.3.9) in Remark 7.3.2 and the fact that

Cap2,1,q' (Kka) = Capz,l,q'(Kk:,j + (xkvj/Pj+3>tk,j/Pj2‘+3)) < CapQ,l,q’(Kj)a

we derive

L(V)

Je Je
u(o.t) < ) uj(o, to) < Z > un (o, to)
=1k

Jj=1 =1
< jZE Capz,l,q/(K )

j=0 p;"l

+jeRTET,

which yields (7.3.24). If ¢ > q., then by (7.2.2) in Proposition 7.2.5, we have
Capy 1 (K)) S oyl 212 Capy 1 ¢ (K 1 Q4 (0,0)),

which implies (7.3.23). ]

Proposition 7.3.9 Let K,u,& be as in Proposition 7.3.7. For any compact set Kq in
Q1(0,0) with positive measure |Ky|, there exists € = (N, q, |Ko|) > 0 such that

Capyy o (K) <e=infu 3 / uédxdt,
Q2(0,0)

Ko

where the constant in the inequality < depends on Kq. In particular,

Capy 1 4 (K) <e= i}I{lfU S Capyy o (K) + R*q%l_ (7.3.25)
0

Proof. It is enough to prove that there exists € > 0 such that

Capy 1 ¢ (K) < = |Ki| > 1/2|K| (7.3.26)
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where K1 = {(z,t) € Ko : {(z,t) > 1/2}. By (7.2.1) in Proposition 7.2.5, we have the
following estimates

_ 24"
[Ko\K1|'~ ™+ < Capyy o (Ko\K1)

(10g (W)) < Capy 1 o (Ko\ K1)

if ¢ = ¢4+. On the other hand,

if ¢ > g, and

Sk

Cap2,1,q'(K0\K1) = Cap2,1,q'({K0 tp>1— (1/2)1/(2(1/)})
<= @V [ (1Dl Vel + ol + 0l ) dade
S Cap?,l,q’<K)
where ¢ is in Proposition 7.3.7. Henceforth, one can find ¢ = (N, ¢, |Kp|) > 0 such that
Capy ;1 (K) <e = |[Ko\Ki| < 1/2 |Ko|.

This implies (7.3.26). |

7.4 Large solutions

In the first part of this section, we prove theorem 7.1.1-(ii), then we prove theorems
7.1.1-(i) and 7.1.2, at end we consider a parabolic viscous Hamilton-Jacobi equation.

7.4.1 Proof of Theorem 7.1.1-(ii)

Let Ry > 4 such that O CC Qr,(0,0). Assume that the equation (7.1.12) has a large
solution u. Take any (z,t) € 9,0. We will to prove that (7.1.14) holds. We can assume
(z,t) = (0,0). Set K = Q2r,(0,0)\O and define

T, ={z: pj11 < max{|z|, 12} < pj,t < 0},

Ty = {z: pjys < max{|zl, [t|'/*} < pj_a,t <O},

Here p; = 277, For j > 3, let uy,uz,us,us be the maximal solutions of (7.3.7) when
K is replaced by K N Q,,,,(0,0), K N Tj, (KﬂQl(0,0)) \Qp,_,(0,0) and K\Q1(0,0)
respectively and R > 100Ry. From (7.3.9) in Remark 7.3.2, we can assert that

u<uy+up+uz+us in ON{(zx,t) e RVTL: ¢ <0}.
Thus,

inf u < [furl| oy + sl zoegry) + sl lzoe ) + inf . (7.4.1)

J J
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Case 1 : ¢ > q.. By (7.3.8) in Remark 7.3.2,
ual| Lo (1) S 1. (7.4.2)

y (7.3.23) in Proposition 7.3.8,

Ca Kﬂ 0,0 2
lollimiry 5 3 SR KOO0 jpmgic 7.43)
1=—2 i
Since (z,t) — wy(z,t) = p%(g )ul(,oj+3x,p?+3t) is the maximal solution of (7.3.7) when
(K, Qr(0,0)) is replaced by ({(y/pj+3,5/0513) * (4,5) € KN Qp,.4(0,0)}, Qryp, 5 (0,0)),
we derive, thanks to (7.3.19) in Proposition 7.3.7 and (7.2.2) in Proposition 7.2.5,

_ Cale ’(KOQ i (070)) — 2
[T ]| poe(1_y) S — pN+2_2§7+2 + (R/pj+s) o1,
J

from which follows
Capy 1 (KNQ,.. ,(0,0)) 2
| oo,y S ——2 o e +R T (7.4.4)
J

Since, (z,t) — ua(x,t) = p?é(g_l)ug(pj_gx,p?_Qt) is the maximal solution of (7.3.7) when

the couple (K, Qr(0,0)) is replaced by ({(y/pj_2, s/p?_g) :(y,8) € KNT;1, QR/pF? (0,0)),
Proposition 7.3.9 and relation (7.2.2) in Proposition 7.2.5 yield

Cap2,17q’ (K N j}) Cap2’1’q/ (K N f])

__2
N+2—2¢' <e= 1]{15@2 S N+2—2¢ + (R/p]—2) -t
-2 Pj—2
which implies
Ca (K NQpy_,(0,0 Ca (K NQ,y_,(0,0 2
Pag K0 Qs 00) _ o CopaaaK0Q0s00) | a0y
—a [ N
Pj—2 J Pi—2

for some € = (N, q) > 0.
First, we assume that there exists J € N, J > 10 such that

Cap271 q (K N pr (07 O)) <
N12_2¢' =€
pj 2

Then, from (7.4.1) and (7.4.2), (7.4.3), (7.4.4), (7.4.5), we have

V>

2 Capg (K N Q) (0,0))

~ N
T . Pi

2
+jRTTT 41,

2 Capg 1 (K N Qy,(0,0))

1:IF1fu§Z N + 1.
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Since infr; u — 0o as j — 0o, we get

= 00,

> Capy 1 (K NQ,(0,0))
> N
i=0 Pi

which implies that (7.1.14) holds with (z,t) = (0,0).
Alternatively, assume that for infinitely many j

Capy 1 o (K NQp,_5(0,0))

N+2—-24q'
Pj—2

>¢€

Then,

Ca / Kﬂ i 070
p2,1,q ( - QP]—S( )) > pJQ ;q e — 00 when _] — 00.
Pj—2

We also derive that (7.1.14) holds with (z,¢) = (0,0). This proves the case g > g.
Case 2 : ¢ = .. Similarly to Case 1, we have : for j > 6

[[ual|poo(r;) S 17 (7.4.6)

Jus||peo(r;) < Z ~ Capy l’q ) +jR & =y (7.4.7)

Jur||peo(r;) < Cp2p1]3/(KJ) + R_ﬁ, (7.4.8)
J

Capy,1 o (Kj5) <= infus S Capz’l’q;V(Kj o) g, (7.4.9)

T; Py

where K; = {(x/p]+3,t/pj+3) (z,t) € KNQp,_,(0,0)} and € = g(N) > 0.
From (7. 2 2) in Proposition 7.2.5, we have

1 S C + C]N/2
Capg 1 o (K NQp,;_5(0,0)) — Capyq o (K;)

for any j > 4 where ¢ = ¢(N). If there are infinitely many j > 4 such that

1
Cap2717q/(K N ij_S(O,O)) > W7
then (7.1.14) holds with (z,t) = (0,0) since

Cap?ylalI'(K N Qﬂjfs (07 0)) 273

> — — 0o when j — oo.
pé\f_g QC]N/Q

Now, we assume that there exists J > 6 such that

Capy 1, (KN Qp,_5(0,0)) < 2C]N/2
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Then,
Capy 1 ¢ (Kj) < 2cCapyy o (K NQp,_5(0,0)) Vj=>J
This leads to
Capy 1 4 (Kj) <2cCapy; (K NQp;_5(0,0)) <e  Vj> J + J,
for some J' = J'(N). Hence, from (7.4.6)-(7.4.9) we have, for any j > J' + J + 3,
ual| oo () S 1,

~

j—2
HugHLoo(Tj) S Z Cap21q (Kmez (0 0))

+C(J’+J)+jR‘q%1,

i=J'+J+1 pi
Cap /(KﬁQ . (0,0)) __2
”ul”Loo(Tj) S 22 N Pi=s +R i,
Pi
(K
1nfu2 5 Cap2 1,q ( r;Vijfs(OaO)) + R—ﬁ
j Pj

where C(J' 4+ J) = ZJ:J(SJ M.
Consequently we derive '

1nfu < Z Capg 1 ¢ KﬂQm(O 0))
pi

YO + D) 414+ R T V> T +J+3

from (7.4.1). Letting R — oo and j — oo we obtain

i Cap271’q/(K N Qpi (07 0))

N = 0,
i=0 Pi

e (7.1.14) holds with (x,t) = (0,0). This completes the proof of Theorem 7.1.1-(ii).

7.4.2 Proof of Theorem 7.1.1-(i) and Theorem 7.1.2
Fix (zo,t0) € 0,0. We can assume that (x,t9) = 0. Let 6 € (0,1/100). For (yo, so) €
(Bs(0) x (—62,6%)) N O, we set

—_— 1 1
Mk‘ = OC M (Brk+2 (y[)) X [50 — (73 + 5)7‘24_2, S0 — (70 + 2)T’%+2])
and X
Sk ={(x,t) : rpr1 < max{|z —yol, [t — s0]2} <7} for k=1,2,..,

where 7, = 47F, Note that My = () for k large enough and My C Sy, for all k. Let Ry > 4
such that O CC Qg,(0,0). By Theorem 7.2.2 and 7.2.4 and estimate (7.1.11) there exist
two sequences {py }r and {vg}r of nonnegative Radon measures such that

supp (1) C My, supp(vg) C My, (7.4.10)
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q
M) = Capy (M) = [ (18] ) dad (7.4.11)
RN+1

and
ve(Mi) < PHY (M), [IMF™ 1|l oo vy <1 for k=1,2, ..., (7.4.12)
where the constants of equivalence depend on NV, ¢q, Rp.

Take € > 0 such that exp <Cla]I3R° Dy zxk]) € L'(Qg,(0,0)) where the constant C; =

C1(N) is the one of inequality (7.2.6). By Theorem 7.2.7 and Proposition 7.2.8, there exist
two nonnegative solutions Uy, Uy of problems

Uy — AUy +Uf =2 " in Qg,(0,0),
k=1 _
U1 =0 on 8pQRO(0, 0).

and

OU; — AUz + €2 —1=e> 1y in Qgy(0,0),

k=1 N
Uy =0 on 9pQr,(0,0),
respectively which satisfy
e ,UJk(Bﬁ (yO) X (50 - 13278 12750 - %7‘3))
U > .
1(2J0,ZO)NZZE N
i=0 k=1 ’
[e’e) q
k=1
and
> X B” (o) x (s0 1322 3’50_%T12))
2(Y0,20) 2 ) Z € N
rt
i=0 k=1 ¢
oo
- I3 [eXp (Cﬂ@RO W2 ) ] Yo, %0) =: B (7.4.14)
k=1

and U,Us; € 02’1(0).
Let u1,ug2 be the maximal solutions of equations (7.3.1) and (7.3.16) respectively.
We have u1(yo, s0) > Ui(yo, so) and uz2(yo, So) > Ua(yo, o). Now, we claim that

A> o 4.
> N (7.4.15)
k=1 k
and
= PHY (M)
BZ —c1(Ro) + o (7.4.16)
k=1
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Proof of assertion (7.4.15). From (7.4.11) we have

o0
Cap2 1 /(Mk)
A>T T2 q 7.4.17

with

A =I5

(HgRO [Z Mk]) ] (%0, S0)-
k=1

Take ig € Z such that 7,11 < max{2Rp,1} < r;,. Then

> 9] q
Aoy / (H%Ro D m) dadt
i=io Qr; (y0,50) el
0o o o) q
= Z Z riN/ (H%RO [Z Mk]) dxdt
i=ig j=i Sj 1
© 00 q
= Z Zri_N/ (]IgRO [Z ud) dxdt
j=ko i=io S k=1
oo 00 q
<S> o / <H§R°[Z /%]) dzdt.
J=t0 Sj k=1

Here we have used the fact that Z?:io Ty N < %'rj_N for all j.
Setting pg = 0 for all 39 — 1 < k < 0, the previous inequality becomes

q

00 7j—1 00
Ap < Z rj_N/ H%RO (i + Z Hr + Z pil | dadt
j=io S; k=ig—1 k=j+1
S [ (B) deas
J=io S
00 7j—1 q
o2 D Il oo s,
Jj=to k=ip—1
o0 oo q
D i D I ]l sy
j=io  \k=j+1
= Ay + Ay + As. (7.4.18)
Using (7.4.11) we obtain
 Capy /(M)
A<y —=— (7.4.19)
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Next, using (7.4.10) we have for any (z,t) € S; if k> j +1,

2Ry _ 2Ry ,u,k(Qp(x,t))@ < Mk(RN—H)
]12 [/’I’k](xat) — N S
Ti41 P p T

and if k < j — 1

12Ro [P (@Qplat) dp _ (RN
2 [Mk](mat) — N — 5 ~
Tht1 p p T
Thus,
>0 i1 Naty )
R
Ay < 2 11 (
2 S r3 Z 7
J=0 k=ip—1 k
and
00 00 q
Ay TN YD Y
Jj=to k=j+1

Noticing that (a + b)4 — a? < g(a + b)4~1b for any a,b > 0, we get

00 Jj-1 N+1
_92 2 ,U'k(R )
(1-47) Z " Z N
j=io k=ip—1 k
o0 J-1 N+1 o0 i—2 N+1
— 2 ;uk(R ) 2 ,uk(R )
=2 2 T >l 2 T
Jj=to k=ip—1 k J=i0+1 k=ip—1 k
o L (RN ot RN+
2 (R pj—1(R
<D ai| X Tw m
J=1%0 k=io—1 Jj—1
Similarly, we also have
q
0. 9] oo
- 2-N
(1 _ 42 Nq) r; q Z Mk(RN+1)
Jj=to k=j+1

q—1
[eS)

o
<SS B ),

Jj=to k=j+1
Therefore,
o) 1 -1
- N+1 N+1
2 (R pi—1 (R
Ap+As S i | > N N
J=to k=io—1 k Jj—1
q—1
o (o]
2—N.
LS @) @,
J=to k=j+1

(7.4.20)
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/ 1
Since pp(RNT1) < r,ivw_gq if ¢ > . and pp(R¥*) <min{k~a1,1} if ¢ = ¢, for any k,
we infer that

j—1 ot
— N+1
23 pu(RY) <1
J T'N ~
k=io—1 k
and
q—1
o
2—Ngq N+1 N .
r; Z pr(RYTH) Srjyy forany g
k=j+1

In the case ¢ = g, we assume N > 3 in order to ensure that

o0 o0 1
P D
j=1 k=1

This leads to

RN+1
Ar+ay s 3 BT
k=1 Tk’

Combining this with (7.4.19) and (7.4.18), we deduce

AO < Cap2 1 q Mk)

~

Consequently, we obtain (7.4.15) from (7.4.17), for € small enough.
Proof of assertion (7.4.16). From (7.4.12) we get

00 N
B z 9 E T - .BO7
k=1

where

By = I3f0 [exp (Cl]lgRO [EZ l/k]> - 1] (Yo, S0)-

k=1

We show that
By < ¢(N,q,Ro) for e small enough. (7.4.22)

In fact, as above we have

By < Z r; / exp <015H2R0 Zuk]) dxdt.
k=1

J=to
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Consequently,

By < Z r;N /S exp (BClsﬂgRO [I/j]) dxdt
J

J=to
00 7j—1
+ > rZexp [ 3C1e Y (IOl pees))
j=io k=io—1
(o0} o
+ Z TJQ- exp | 3C1e Z H]IgRO W]l Lo (s;)
Jj=to k=j+1

:Bl+BQ+Bg.

(7.4.23)

Here we have used the inequality exp(a+b+c¢) < exp(3a) + exp(3b) 4+ exp(3c) for all a, b, c.

By Theorem 7.2.3, we have

/ exp (3015H§R0 [l/j]) dxdt < rjy” for all 7,
Sj

for € > 0 small enough. Hence,

o0
B; < Z 7“]2- < (max{2Ry, 1})%
J=to

Note that estimates (7.4.20) and (7.4.21) are also true with vy ; we deduce

00 J—1 N+1
R
By + B3 S E 7“]2- exp | coe E LN)

j=ig k=ig—1 "k
o0 o0 N+1
pr(RYT)
4 2 PRV
Z riexp [ coe Z N
J=10 k=j+1 J
From (7.4.12) we have y,(RV 1) < IV for all k, therefore
o0 oo
By + B3 < Z r? exp (c3e(j —io)) + Z r? exp (c3¢)
J=t0 J=t0
[e.e]
< Z exp (cse(j — o) — 4log(2)7) + 77,

Jj=io
< c¢4(N,q,Ryg) for e small enough.
Combining this with (7.4.24) and (7.4.23) we obtain (7.4.22).
This implies straightforwardly exp (C’lsﬂgRo D rey VkD € LY(Qg,(0,0)).
We conclude that for any (yo, so) € (Bs(0) x (—62,6%)) N O,

o0
Capy 1 (M (yo, 50))
ui(yo; 50) 2D = N
k=1 k
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and

> PHY (Mi(yo,
us(yo, 50) 2 —c1(Ro) + y_ —-1 (Mg, 50))

k=1 "k

where r, = 47% and

[ 1 1
Mk(yo, 8()) =0°N <Br,€+2(y0) X [So — (73 + 5)7“]%_’_2, S0 — (70 + 2)7‘]%4_2]) .

Take 74544 < 0 < 7,43, we have for 1 <k < ks

1 1
M;(yo, 50) D O°N <Brk+2_5(0) X (52 — (73 + §)r,%+2, —6% — (70 + 2)r,§+2>>

D 0°N (B, (0) x (=73ri40, —Tlr )
= 0°N (By,,,(0) x (—1168r} 5, 113677 3)) .

Finally

inf u s
(y0,50)€(B5s(0)x(—62,562))NO 1(%0, 50)

ks+3 (0°N (B —1168r2, —1136r2
2 Z Capy 1,4 (O ﬂ( s (0) 2( 08 36Tk))) —00 as § — 0,

k=4 "k

and

inf U .S Z —c R
(y0,50)€(Bs(0)x (—62,62))NO 2(%0, 50) 1(Ro)
+ I%ig PHY (0°N (B, (0) x (—1168r2, —113677)))

N
Tk

— 00 as 0 — 0.

k=4

This completes the proof of Theorem 7.1.1-(i) and Theorem 7.1.2.

7.4.3 The viscous Hamilton-Jacobi parabolic equations

In this section we apply our previous result to the question of existence of a large

solution of the following type of parabolic viscous Hamilton-Jacobi equation

Ou— Au+alVulP +bu? =0  in O,
u=o00 on 9,0,

(7.4.25)

where ¢ > 0,6 > 0 and 1 < p < 2, ¢ > 1. First, we show that such a large solution to
(7.4.25) does not exist when g = 1. Equivalently namely, for a > 0, b > 0 and p > 1 there

exists no function u € C*1(0) satisfying

Ou — Au+ alVulP > —bu  in O,
U = 00 on 0,0.

345

(7.4.26)



7.4. LARGE SOLUTIONS

Indeed, assuming that such a function u € C%1(0), exists, we define
€
U(xvt) = u(xat)ebt - §|$|21

for € > 0 and denote by (zo,tp) € O\0,O the point where U achieves it minimum in O,
i.e. Uz, to) = inf{U(z,t) : (x,t) € O}. Clearly, we have

OU (xo,t9) <0, AU(xo,t9) >0 and VU(xg,ty) = 0.
Thus,
Oru(wo, to) < —bu(wo, o), —Au(zo, to) < —eNe™™ and a|Vu(zo, to)[” = as|wol"e 7",
from which follows
dru(wo, to) — Au(zo, to) + a|Vu(zo, to)|P < —bu(zo, to) + ce 0 (—N + a5p71|xo\pe*(p*1)bt0)
< —bu(zg, to)

for € small enough, which is a contradiction.

Proof of Theorem 7.1.3. By Remark 7.3.3, we have
1 2
inf{v(z,t); (z,t) € O}y > (@1 — 1) @ TR a1,

Take V = \va € C21(0) for A > 0. Thus v = A=V,

inf{V (z,t); (z,t) € O} > 0} > XNq1 — 1)‘a(q1171> R‘a(qf—n,
and

favafl |VV|2

)\7(1(]1 VQQI .
v +

O — Av + 01 = A"V — adTVIAY + a1 — a)A

This leads to

[VV[?
+

- o y"e@-Dyen—atl _ g iy O

OV —AV+(1-a)
Using Holder’s inequality,

2
(1 B a)w“//‘ n (2a)*1)\*a(Q1*1)VOéq1*Ol+l > 61’VV|7’)\7 a(41*§)(27p) Va(417é)<2717)7(p71)

_ 2(p—1)
> co| VV[PA~ (P~ R P et

and
(204)_1)\_0‘(‘”_l)Vo‘ql_o‘Jrl > c;;)\_(q_l)R_%% V.
If we choose

1 1

i o7 T TV hin d T R e T a@=D p i p e ey
A=min{c) " ,c¢§ }minga TR p1Tal@-D p TR 4 alqr—1)
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then

_ 2(p—1)
CQ)\_(p_l)R 2+t Sa=D > a,

2(g—1)
e A" @D R a0 > p,

from what follows
0V — AV +a|lVVIP+bVI<0 in O.
By Remark 7.3.5, there exists a maximal solution u € C*!(O) of

Ou— Au+alVulP +bu? =0 in O.

Therefore, u >V = Ava and u is a large solution of (7.4.25). This completes the proof of
Theorem 7.1.3. ]

7.5 Appendix

Proof of Proposition 7.2.5.
Step 1. We claim that the following relation holds :

/ﬂwl (13l v, 1) ™ vt < /RN/ WAL gty (1)

In fact, we have for p; =277, j € Z,

Z /R o @ )t < / DL (a1

3 [ @y ) )

j=0

Note that for any j € Z

it /RNﬂ (#(Qpyo ()M dadt 5 | (0(Qp ()N dp(a )

RN
So NP (W@, ()N N dgeat,
RN+1
Thus,
s dr
ijN/ (10, (2, t)))(N+z>/Ndmdt</ / DL 1
Jj=2 RN+1 RN+1

W / (1@, 1))+ V.
=1 RN+1
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This yields

/RN+1 ( 1/4[ ](:E t)>(N+2)/ dwdt S /]RNJrl/ :L“ t)))Q/N%diUJ(:Evt)
L )
RN+1

By [20, Theorem 4.2],

(N+2)/N
[ o ()™ dwae = [ @) o,
RN+1 RN+1

thus we obtain (7.5.1).

Step 2. End of the proof. The first inequality in (7.2.1) is proved in [20]. We now prove the
second inequality. By Theorem 7.2.4 there is u € M (RV*1), supp(p) € K such that

V3l ey < 1 and (K = PHY (K) 2 K|V, (7.5.2)

Thanks to (7.5.1), we have for 6 = min{1, (u(K))"/N}

(N+2)/N 2 nd
H]Iz[ ]HL<N+2 )/N (RN+1) /RNH/ Qr / d,u(x t)

/RNH </ /> )Q/Nci dp(z, t)
/ o dr /sz+1 (2, 1) / % (/]RN‘H d,u(x’t))(N-i-Q)/N

< (WK ))<N+2>/N (1 +log, ((u(K))™))
(N+2)/N |, |@200(0,0)]
S () 1g< e )

|Q200(0.0)| ) ) —N/(N+2)
K]

It is well known that

Set fi = <1Og ( p/ (K), then |[I5[A]]] oveo /v gy S 1.

Capy y sz (K) = sup{(w(K) N 4272 o € M (K), B[]l vy vy S 1} (75.3)

see [20, Section 4]. This gives the second inequality in (7.2.1).
It is easy to prove (7.2.2) from its definition. Moreover, (7.5.3) implies that

1 . (N+2)/N
G = I R sy o0 € D (), () = 1)
21,755+

We deduce from (7.5.1) that

dr
v e N _
Cap2 1, N+2( 2/N = inf {/RN-H/ (z,t)) d“(fﬁ t):weM(K),w(K) } )

(7.5.4)
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As in [12, proof of Lemma 2.2|, it is easy to derive (7.2.3) from (7.5.4). ]

Proof of Proposition 7.2.6. Thanks to the Poincaré inequality, it is enough to show that
there exists p € C2°(Q3/2(0,0)) such that 0 < ¢ < 1, with ¢ = 1 in an open neighborhood
of K and

[ (D267 + 0upl )it S oy (). (7.5.5)
RN+1
By definition, one can find 0 < ¢ € S(RV*1), ¢ > 1 in a neighborhood of K such that

/R o (UDPGI7 + [VOP + 9 + 0017 dadt < 2Caps (K.

Let 1 be a cut off function on Ql(0,0) with respect to Qg/g(0,0) and H € C*(R) such
that

0< H®t)<t", [t|H"(t)| <1 forallt € R, H(t) =0 fort < 1/4 and H(t) = Ifor t > 3/4.

We claim that

[ (0%l oeydzat 5 [ (D617 + Vol + ol + or)dodt,  (750)
R 1

RN+1

where ¢ = nH(¢). Indeed, we have
D] < [D*n|H(¢) + [Vl [H'(6)[Vo| + nlH" (9)|IVe]* +nlH'(6)|| D¢

and

0wl S 10mIH (¢) +nlH'(9)l|dul, H(9) <, ¢|H"(9)] < 1.
Thus,

Lo A% wlwpl)dadt < [ (D00 + Vol + |6l + 01 dade
R

]RN+1

Vel
dzdt.
+/IRN+1 o

This implies (7.5.6) since, according to [1], one has

Vo) )
/RN o S /RN |D*¢(t)[Pdz Vt € R.
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