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QUASILINÉAIRES AVEC DONNÉES
MESURES
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Summary
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Introduction générale

This thesis is devoted to study the following types of problems :
– Quasilinear elliptic and Hessian equations with measure data,
– Quasilinear parabolic equations with measure data,
– Wiener type criteria for existence of large solutions to nonlinear elliptic and parabolic

equations with absorption.

0.1 Quasilinear elliptic and Hessian equations with measure
data

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain containing 0 and g : Ω × R → R be a

Carathéodory function. We assume that for a.e x ∈ Ω, r 7→ g(x, r) is nondecreasing and
odd. In Chapter 1, we consider the following problem

−∆pu+ g(x, u) = ω in Ω,
u = 0 in ∂Ω,

(0.1.1)

where ∆pu = div
(
|∇u|p−2∇u

)
, (1 < p < N), is the p-Laplacian and ω is a bounded Radon

measure in Ω. When p = 2 and g(x, u) = |u|q−1u the problem has been considered by Baras
and Pierre [3]. They proved that the corresponding problem to (0.1.1) admits a solution
if and only if the measure ω is absolutely continuous with respect to (w.r.t) the Bessel
capacity Cap2,q′ , q

′ = q/(q − 1). Here, Cap2,q′ is the capacity associated to the Sobolev
space W 2,q′(RN ), i.e,

Cap2,q′(E) = inf{||ϕ||q′
W 2,q′ (RN )

: ϕ ∈ S(RN ), ϕ ≥ 1 in a neighborhood of E},

for any compact E ⊂ R
N .

We utilize Kilpelainen and Malý’s result [12] (also see [11, 18]) to derive a pointwise
estimate of solutions to equation −∆pu = ω involving the Wolff potential Wr

1,p[|ω|] and
nonlinear potential theory for investigating problem (0.1.1), where the Wolff potential is
defined by

W
r
1,p[|ω|](x) =

ˆ r

0

( |ω|(Bρ(x))
ρN−p

)1/(p−1) dρ

ρ
for all x ∈ R

N .

We introduce a new suitable class of Bessel capacities associated problem (0.1.1). If Gα

is the Bessel kernel of order α > 0 and Ls,q(RN ) is the Lorentz space with order (s, q),

1



0.1. QUASILINEAR ELLIPTIC AND HESSIAN EQUATIONS WITH MEASURE
DATA

then capacity CapGα,s,q of set Borel set E ⊂ R
N is defined by

CapGα,s,q(E) = inf{||f ||sLs,q(RN ) : f ≥ 0, Gα ∗ f ≥ 1 on E}

for any Borel set E. When q = s, we denote CapG2,q,s by CapG2,q. It is well known that
the capacity CapG2,q′ is equivalent to Cap2,q′ .

In Chapter 1, we show that the problem (0.1.1) has a solution if one of the following
cases is satisfied :

a) g(x, s) = |x|−β |s|q−1s and ω is absolutely continuous w.r.t Cap
Gp,

Nq
Nq−(p−1)(N−β)

, q
q+1−p

,

b) g(x, s) = |x|−βG(s), G satisfies
´∞
1 G(s)s−q−1ds < ∞ and ω is absolutely continuous

w.r.t Cap
Gp,

Nq
Nq−(p−1)(N−β)

,1
,

c) g(x, s) = sign(s)(eτ |s|
λ − 1) and |ω| ≤ f + ν where f ∈ L1

+(Ω), ν is a nonnegative

bounded Radon measure which ||M
(p−1)(λ−1)

λ

p,2diam(Ω)[ν]||L∞(Ω) is small enough.

Here a solution of (0.1.1) is understood in the sense of renormalized (see Definition 1.3.1
in Chapter 1) and we always assume that 0 ≤ β < N, q > p− 1, τ > 0, λ ≥ 1 and M

η
α,r[ν],

η > 0, 0 < α < N, r > 0 is defined by

M
η
α,r[ν](x) = sup

0<ρ<r

ν(Bρ(x))

ρN−αhη(ρ)
,

for all x ∈ R
N with hη(ρ) = min{(− ln ρ)−η, (ln 2)−η}. When p = 2, β = 0, we obtain Baras

and Pierre’s sufficient condition in case a).

In Chapter 2, we are concern with the following problem

−∆pu = g(u) + ω in Ω,
u = 0 in ∂Ω,

(0.1.2)

where ω is a nonnegative bounded Radon measure in Ω and g(u) ∼ ea|u|
β
, a > 0, β ≥ 1.

The case where g is a power function, i.e g(u) = uq for q > p− 1 has been studied by
Phuc and Verbitsky in [18]. They established a sufficient and necessary conditions for the
existence of solutions of problem (0.1.2) expressed in terms of the capacity CapGp,

q
q−p+1

.
For example, if ω has compact support in Ω, then a sufficient and necessary condition has
the following form

ω(E) ≤ CCapGp,
q

q−p+1
(E) for all compact set E ⊂ Ω

where C is a constant only defending on N, p, q and d(supp(ω), ∂Ω). Their construction is
based upon sharp estimates from above and below of solutions of the problem −∆pu = ω
combined with a deep analysis of the Wolff potential.

We give a new approach in order to treat analogous questions for problem (0.1.2) in
the case exponential function. We obtain a sufficient condition expressed in terms of the

fractional maximal potential M
(p−1)(β−1)

β

p,2diam(Ω)[ω] and a necessary condition expressed in terms
of Orlicz capacities, see Theorem 2.1.1 in Chapter 2. We also establish this results in the
case Ω = R

N .

2



0.2. QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA

Besides, in [22, 23, 24], Trudinger and Wang developed the theory of the k−Hessian
measure and Labutin [13] obtained sharp estimates of solution of k−Hessian equation
expressed in terms of the Wolff potential. Solutions of k−Hessian equation inherit almost all
of properties from solutions to p−laplace equation. For this reason, we obtained analogous
results for (0.1.2) when p−laplacian operator is replaced by the k−Hessian operator, see
Theorem 2.1.3 and Theorem 2.1.4 in Chapter 2.

Furthermore, we also establish existence results for a general Wolff potential equation
under the form

u = W
R
α,p[g(u)] + f in R

N ,

where 0 < R ≤ ∞, 0 < αp < N and f is a positive integrable function.

0.2 Quasilinear parabolic equations with measure data

Let Ω be a bounded domain of RN (N ≥ 2) and ΩT = Ω× (0, T ), T > 0. We study the
problem

∂tu− div (Ap(x, t,∇u)) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),

u(0) = σ in Ω,
(0.2.1)

where µ is a bounded Radon measure in ΩT , σ is an integrable function in Ω and Ap is a
Carathéodory function on ΩT×R

N , such that u 7→ −div (Ap(x, t,∇u)) is a nonlinear mono-
tone and coercive mapping from the space Lp(0, T ;W p

0 (Ω)) into its dual Lp
′
(0, T ;W−1,p′(Ω))

for p > 1.

It is well known that for any bounded Radon measure µ in ΩT can be written under
the form

µ = f − div g + ht + µs,

where f ∈ L1(ΩT ), g ∈ (Lp
′
(ΩT ))

N , h ∈ Lp(0, T,W 1,p
0 (Ω)) and µs is a bounded Radon

measure in ΩT with support on a set of zero p−parabolic capacity, proved in [7]. In [17],
Petitta gave the definition of a renormalized solution for problem (0.2.1) associated above
decomposition and proved that a renormalized solution exists for p > 2N+1

N+1 . This condition
ensures that the gradient of a renormalized solution belongs to L1(ΩT ).

In Chapter 3 (Theorem 3.2.1), we prove a stability Theorem for renormalized solutions
of problem (0.2.1) with p > 2N+1

N+1 , extending the results of Dal Maso, Murat, Orsina and
Prignet [5] for the elliptic case. More precisely, if un is a renormalized of problem (0.2.1)
where σ = σn ∈ L1(Ω) and

µ = µn = fn − div gn + (hn)t + µs,n,

with fn ∈ L1(ΩT ), gn ∈ (Lp
′
(ΩT ))

N , hn ∈ Lp(0, T,W 1,p
0 (Ω)) and µs,n is a bounded Radon

measure in ΩT with support on a set of zero p−parabolic capacity and if σn converges to σ
in L1(Ω) and measure µn = fn−div gn+(hn)t+µs,n converges to µ = f−div g+ht+µs in
for some sense then un converges a.e in ΩT to a renormalized solution u of problem (0.2.1)
with data µ, σ. Moreover, Tk(un − hn) converges Tk(u − h) in Lp(0, T,W 1,p

0 (Ω)) for any
k > 0.

3



0.2. QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA

We apply this theorem and use the results mentioned in section 1 in order to solve the
following equations

∂tu−∆pu± g(x, u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),

u(0) = σ in Ω,
(0.2.2)

where Radon measure µ has a good behavior in time i.e |µ| ≤ ω ⊗ f with nonnegative
bounded Radon measure ω in Ω, f ∈ L1

+((0, T )) and σ ∈ L1(Ω) and g is as in section 1.

In [8], Duzaar and Mingione gave a local pointwise estimate from above of solutions to
equation ∂tu− div(A2(x, t,∇u)) = µ involving the Riesz parabolic potential

I
r
2[|µ|](x, t) =

ˆ r

0

|µ|(Bρ(x)× (t− ρ2, t+ ρ2))

ρN
dρ

ρ
,

for all (x, t) ∈ R
N+1, where A2 is Ap with p = 2 and satisfies some natural conditions. On

the other hand, we always have ||Ir2[|µ|]||Ls(RN+1) ≍ ||G2 ∗ |µ|||Ls(RN+1) where s > 1, r > 0
and G2 is the parabolic Bessel kernel of order 2, i.e.

G2(x, t) =
χ(0,∞)(t)

(4πt)N/2
exp

(
−t− |x|2

4t

)
for all (x, t) ∈ R

N+1.

These are our motivation in Chapter 4 for developing nonlinear parabolic potential theory.

We use this theory to solve the following equations

∂tu− div(A2(x, t,∇u))± |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),

u(0) = σ in Ω,
(0.2.3)

where µ, σ are bounded Radon measures and q ∈ (1,∞). More precisely, problem (0.2.3)
with absorption (i.e in case sign ”+”) has a solution if µ, σ are absolutely continuous with
respect to the capacities CapG2,q′ ,CapG2/q ,q

′ respectively, see Theorem 4.2.8 in Chapter 4.

Where the capacity CapG2,q′ of a Borel set E ⊂ R
N+1 is defined by

CapG2,p(E) = inf

{
ˆ

RN+1

|f |pdxdt : f ∈ Lp+(R
N+1),G2 ∗ f ≥ χE

}
.

Problem (0.2.3) with source (i.e in case sign ”− ”) has a solution if

|µ|(E) ≤ CCapG2,q′(E) and |σ|(O) ≤ CCapG 2
q
,q′(O)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N , for some a constant C.

When A2(x, t,∇u) = ∇u, two previous results become Baras and Pierre’s results in
[2, 4].

In Chapter 4, we also study the global gradient estimates for quasilinear parabolic
equation (0.2.1) in case p = 2. We obtain minimal conditions on the boundary of Ω and
on the nonlinearity A2 so that the following statement holds

|||∇u|||K ≤ C||M1[ν]||K with ν = |µ|+ |σ| ⊗ δ{t=0},

4



0.2. QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA

here the constant C does not depend on u and µ, σ and M1[ν] is the first order fractional
maximal parabolic potential of ν defined by

M1[ν](x, t) = sup
ρ>0

ν(Bρ(x)× (t− ρ2, t+ ρ2))

ρN+1
for all (x, t) ∈ R

N+1,

and K is a function space. The same question is as above for the elliptic framework studied
by N. C. Phuc in [19, 20, 21].

First, we take K = Lp,s(ΩT ) for 1 ≤ p ≤ 2 and 0 < s ≤ ∞ under a capacity density
condition on the domain Ω where Lp,s(ΩT ) is the Lorentz space. The capacity density
condition is that the complement of Ω satisfies uniformly 2−thick. We remark that under
this condition, the Sobolev embedding H1

0 (Ω) ⊂ L
2N
N−2 (Ω) for N > 2 is valid and it is

fulfilled by any domain with Lipschitz boundary, or even of corkscrew type.

Next, in order to obtain shaper results, we take K = Lq,s(ΩT , dw), the weighted Lorentz
spaces with weight in the Muckenhoupht class A∞ for q ≥ 1, 0 < s ≤ ∞, we require some
stricter conditions on the domain Ω and nonlinearity A2. A condition on Ω is flat enough
in the sense of Reifenberg, essentially, that at boundary point and every scale the boundary
of domain is between two hyperplanes at both sides (inside and outside) of the domain by a
distance which depends on the scale. Conditions on A2 are that the BMO type of A2 with
respect to the x−variable is small enough and the derivative of A2(x, t, ζ) with respect to ζ
is uniformly bounded. By choosing an appropriate weight we obtained some new estimates,
in particular, Lorentz-Morrey estimates involving "calorie" and global capacitary estimates.

Finally, thanks to these estimates, we prove the existence of solutions of the quasilinear
Riccati type parabolic equation :

∂tu− div(A2(x, t,∇u)) = |∇u|q + µ in ΩT ,
u = 0 on ∂Ω× (0, T ),

u(0) = σ in Ω.
(0.2.4)

For example, problem (0.2.4) has a solution if there exists ε > 0 such that

(|µ|+ |σ| ⊗ δ{t=0})(E) ≤ CCapG1,(q+ε)′(E)

holds for any compact E ⊂ R
N+1 where C is a constant small enough, where G1 is the

parabolic Bessel kernel of first order, i.e,

G1(x, t) = C1

χ(0,∞)(t)

t(N+1)/2
exp

(
−t− |x|2

4t

)
for all (x, t) in R

N+1,

with C1 =
(
(4π)N/2Γ(1/2)

)−1
and the capacity CapG1,(q+ε)′ is defined as the capacity

CapG2,q′ .

In Chapter 5, we solve problem (0.2.2) with absorption term in the case p > 2 without
all restriction on data µ by using a result in [15] of a pointwise estimate for solutions to
problem (0.2.2) with g ≡ 0 and theory of parabolic potential introduced in Chapter 4.
Besides, we also prove that the porous medium equation with absorption term

∂tu−∆(|u|m−1u) + |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),

u(0) = σ in Ω,

5
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ELLIPTIC AND PARABOLIC EQUATIONS WITH ABSORPTION

admits a distribution solution for q > max{m, 1} andm > N−2
N if bounded Radon measures

µ, σ are absolutely continuous with respect to the capacities CapG2,q′ ,CapG2/q ,q
′ if m > 1

and CapG2,
2q

2(q−1)+N(1−m)
,Cap

G 2−N(1−m)
q

, 2q
2(q−1)+N(1−m)

if N−2
N < m ≤ 1, respectively.

0.3 Wiener criteria for existence of large solutions to elliptic
and parabolic equations with absorption

In Chapter 6, we study the existence of solutions to the following problems

−∆pu+ uq = 0 in Ω,
limδ→0 infBδ(x) u = ∞ for all x ∈ ∂Ω,

(0.3.1)

and
−∆pu+ eu − 1 = 0 in Ω,
limδ→0 infBδ(x) u = ∞ for all x ∈ ∂Ω,

(0.3.2)

where N ≥ 2, 1 < p < N , q > p − 1 and Ω is a bounded open set in R
N . Solutions to

problems (0.3.1) and (0.3.2) are called large solutions.

It is well known that problems (0.3.1) and (0.3.2) have unique solutions for any bounded
smooth domain Ω. Moreover, it is classical that problem (0.3.1) has a solution in the case
q < N(p−1)

N−p for any bounded open set Ω. When N ≥ 3 and p = 2, q ≥ N
N−2 , a necessary

and sufficient condition for the existence of large solution of (0.3.1) expressed in term of
Wiener test, is

ˆ 1

0

Cap2,q′(Ω
c ∩Br(x))

rN−2

dr

r
= ∞ for all x ∈ ∂Ω. (0.3.3)

In the case q = 2 it was obtained by probabilistic methods based upon the Brownian sake
by Dhersin and Le Gall [6], this method could be extended for N

N−2 ≤ q ≤ 2 by using ideas
from [9, 10]. In the general case it was proved by Labutin by purely analytic methods [14].

Our main purpose of Chapter 6 is to establish a sufficient condition for the existence
of solutions to problems (0.3.1) and (0.3.2) for any q > p − 1 and N ≥ 2. More precisely,
a sufficient condition associated (0.3.1) is

1
ˆ

0

(
Cap

Gp,
q1

q1−p+1
(Ωc ∩Br(x))

rN−p

) 1
p−1

dr

r
= +∞ ∀x ∈ ∂Ω, (0.3.4)

for some q1 >
Nq
p and associated (0.3.2) is

ˆ 1

0

(HN−p(Ωc ∩Br(x))
rN−p

) 1
p−1 dr

r
= +∞ ∀x ∈ ∂Ω, (0.3.5)

where HN−p is the (N − p)− dimensional Hausdorff capacity in a bounded set of RN . We
can see that condition (0.3.5) implies (0.3.4). In view of (0.3.3), then the condition (0.3.4)

6
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is not optimal in the case p = 2. Furthermore, we also establish behavior of high order
gradient of the solution to equation (0.3.1) near boundary of Ω, where Ω is a bounded
smooth domain.

In Chapter 7, we study analogous questions associated parabolic equation :

∂tu−∆u+ uq = 0 in O,
lim
δ→0

infO∩Qδ(x,t) u = ∞ for all x ∈ ∂pO,
(0.3.6)

where N ≥ 2, q ≥ N+2
N , O is a non-cylindrical bounded open set O ⊂ R

N and ∂pO is the
parabolic boundary of O, i.e, the set all of points X = (x, t) ∈ ∂O such that the intersection
of the cylinder Qδ(x, t) := Bδ(x)× (t− δ2, t) with Oc is not empty for any δ > 0. When O
is a cylindrical i.e O = Ω× (a, b) for some bounded open set Ω in R

N , Véron [25] showed
that if the problem (0.3.1) in case p = 2 has a solution, then (0.3.6) does too.

We extend Labutin’s idea in [14] to treat problem (0.3.6). Namely, we obtain a necessary
and a sufficient condition for the existence of solutions to problem (0.3.6) in a bounded
non-cylindrical domain O ⊂ R

N+1, as follows : the necessary condition is

ˆ 1

0

CapG2,q′(O
c ∩Qρ(x, t))
ρN

dρ

ρ
= ∞ ∀ (x, t) ∈ ∂pO, (0.3.7)

the sufficient condition is

∞∑

k=1

CapG2,q′
(
Oc ∩

(
Brk(x)×

(
t− 1168r2k, t− 1136r2k

)))

rNk
= ∞, ∀ (x, t) ∈ ∂pO (0.3.8)

where rk = 4−k, and N ≥ 3 when q = N+2
N .

We also obtain a sufficient condition for the existence of solutions to equation (0.3.6)
in a bounded set of RN+1 when replaced uq by eu − 1, which is (0.3.8) where CapG2,q′ is
replaced by PHN the parabolic N−dimensional Hausdorff capacity.

Finally, we apply our results of problems (0.3.1) and (0.3.6) to some viscous Hamilton-
Jacobi equations : −∆pu + a1|∇u|q1 + b1u

p−1 = 0 for a1, b1 > 0, p − 1 < q2 < p ≤ 2 and
∂tu−∆u+ a2|∇u|q2 + b2u

q3 = 0 for a2, b2 > 0, 1 < q2 < 2 and q3 > 1.
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Chapitre 1

Quasilinear Lane-Emden equations

with absorption and measure data

Abstract 1

We study the existence of solutions to the equation −∆pu + g(x, u) = µ when g(x, .) is a
nondecreasing function and µ a measure. We characterize the good measures, i.e. the ones
for which the problem has a renormalized solution. We study particularly the cases where
g(x, u) = |x|−β |u|q−1u and g(x, u) = sign(u)(eτ |u|

λ −1). The results state that a measure is
good if it is absolutely continuous with respect to an appropriate Lorentz-Bessel capacities.

1. Journal des Mathématiques Pures et Appliquées, 102, 315-337 (2014).
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1.1. INTRODUCTION

1.1 Introduction

Let Ω ⊂ R
N be a bounded domain containing 0 and g : Ω×R → R be a Carathéodory

function. We assume that for almost all x ∈ Ω, r 7→ g(x, r) is nondecreasing and odd. In
this article we consider the following problem

−∆pu+ g(x, u) = µ in Ω,
u = 0 in ∂Ω,

(1.1.1)

where ∆pu = div
(
|∇u|p−2∇u

)
, (1 < p < N), is the p-Laplacian and µ a bounded measure.

A measure for which the problem admits a solution, in an appropriate class, is called a good
measure. When p = 2 and g(x, u) = g(u) the problem has been considered by Benilan and
Brezis [3] in the subcritical case that is when any bounded measure is good. They prove
that such is the case if N ≥ 3 and g satisfies

ˆ ∞

1
g(s)s−

N−1
N−2ds <∞.

The supercritical case, always with p = 2, has been considered by Baras and Pierre [2] when
g(u) = |u|q−1u and q > 1. They prove that the corresponding problem to (1.1.1) admits a
solution (always unique in that case) if and only if the measure µ is absolutely continuous
with respect to the Bessel capacity Cap2,q′ (q′ = q/(q − 1)). In the case p 6= 2 it is shown
by Bidaut-Véron [5] that if problem (1.1.1) with g(x, s) = |s|q−1s (q > p − 1) admits a
solution, then µ is absolutely continuous with respect to any capacity Capp, q

q−p+1
+ε for any

ε > 0.

In this article we introduce a new class of Bessel capacities which are modeled on
Lorentz spaces Ls,q instead of Lq spaces. If Gα is the Bessel kernel of order α > 0, we
denote by Lα,s,q(RN ) the Besov space which is the space of functions φ = Gα ∗ f for
some f ∈ Ls,q(RN ) and we set ||φ||α,s,q = ||f ||s,q (a norm which is defined by using
rearrangements). Then we set

Capα,s,q(E) = inf{||f ||s,q : f ≥ 0, Gα ∗ f ≥ 1 on E}

for any Borel set E. We say that a measure µ in Ω is absolutely continuous with respect
to the capacity Capα,s,q if ,

∀E ⊂ Ω, E Borel , Capα,s,q(E) = 0 =⇒ |µ|(E) = 0.

We also introduce the Wolff potential of a measure µ ∈ M
+(RN ) by

Wα,s[µ](x) =

ˆ ∞

0

(
µ(Bt(x))

tN−αs

) 1
s−1 dt

t
,

if α > 0, 1 < s < α−1N . When we are dealing with bounded domains Ω ⊂ BR and
µ ∈ M

+(Ω), it is useful to introduce truncated Wolff potentials.

W
R
α,s[µ](x) =

ˆ R

0

(
µ(Bt(x))

tN−αs

) 1
s−1 dt

t
.
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We prove the following existence results concerning

−∆pu+ |x|−βg(u) = µ in Ω,
u = 0 in ∂Ω,

(1.1.2)

Theorem 1.1.1 Assume 1 < p < N , q > p− 1 and 0 ≤ β < N and µ is a bounded Radon
measure in Ω.

1. If g(s) = |s|q−1s, then (1.1.2) admits a renormalized solution if µ is absolutely conti-
nuous with respect to the capacity Cap

p, Nq
Nq−(p−1)(N−β)

, q
q+1−p

.

2. If g satisfies
ˆ ∞

1
g(s)s−q−1ds <∞, (1.1.3)

then (1.1.2) admits a renormalized solution if µ is absolutely continuous with respect
to the capacity Cap

p, Nq
Nq−(p−1)(N−β)

,1
.

Furthermore, in both case there holds

−cW2diam(Ω)
1,p [µ−](x) ≤ u(x) ≤ cW

2diam(Ω)
1,p [µ+](x) for almost all x ∈ Ω, (1.1.4)

where c is a positive constant depending on p and N .

In order to deal with exponential nonlinearities we introduce for 0 < α < N the fractional
maximal operator (resp. the truncated fractional maximal operator), defined for a positive
measure µ by

Mα[µ](x) = sup
t>0

µ(Bt(x))

tN−α ,

(
resp Mα,R[µ](x) = sup

0<t<R

µ(Bt(x))

tN−α

)
,

and the η-fractional maximal operator (resp. the truncated η-fractional maximal operator)

M
η
α[µ](x) = sup

t>0

µ(Bt(x))

tN−αhη(t)
,

(
resp M

η
α,R[µ](x) = sup

0<t<R

µ(Bt(x))

tN−αhη(t)

)
,

where η ≥ 0 and hη(t) = min{(− ln t)−η, (ln 2)−η} for all t > 0.

Theorem 1.1.2 Assume 1 < p < N , τ > 0 and λ ≥ 1. Then there exists M > 0 depending
on N, p, τ and λ such that if a measure in Ω, µ = µ+ − µ− can be decomposed as follows

µ+ = f1 + ν1 and µ− = f2 + ν2,

where fj ∈ L1
+(Ω) and νj ∈ M

b
+(Ω) (j = 1, 2), and if

||M
(p−1)(λ−1)

λ

p,2diam(Ω)[νj ]||L∞(Ω) < M, (1.1.5)

there exists a renormalized solution to

−∆pu+ sign(u)
(
eτ |u|

λ − 1
)
= µ in Ω,

u = 0 in ∂Ω,
(1.1.6)

and satisfies (1.1.4).

Our study is based upon delicate estimates on Wolff potentials and η-fractional maximal
operators which are developed in the first part of this paper.
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1.2 Lorentz spaces and capacities

1.2.1 Lorentz spaces

Let (X,Σ, α) be a measured space. If f : X → R is a measurable function, we set
Sf (t) := {x ∈ X : |f |(x) > t} and λf (t) = α(Sf (t)). The decreasing rearrangement f∗ of f
is defined by

f∗(t) = inf{s > 0 : λf (s) ≤ t}.
It is well known that (Φ(f))∗ = Φ(f∗) for any continuous and nondecreasing function
Φ : R+ → R+. We set

f∗∗(t) =
1

t

ˆ t

0
f∗(τ)dτ ∀t > 0,

and, for 1 ≤ s <∞ and 1 < q ≤ ∞,

||f ||Ls,q =





(
´∞
0 t

q
s (f∗∗(t))q dtt

) 1
q

if q <∞,

sup
t>0

ess t
1
s f∗∗(t) if q = ∞.

It is known that Ls,q(X,α) is a Banach space when endowed with the norm ||.||Ls,q . Fur-
thermore there holds (see e.g. [11])

||t 1s f∗||Lq(R+, dt
t
) ≤ ||f ||Ls,q ≤ s

s− 1
||t 1s f∗||Lq(R+, dt

t
), (1.2.1)

the left-hand side inequality being valid only if s > 1. Finally, if f ∈ Ls,q(RN ) (with
1 ≤ q, s < ∞ and α being the Lebesgue measure) and if {ρn} ⊂ C∞

c (RN ) is a sequence
of mollifiers, f ∗ ρn → f and (fχBn

) ∗ ρn → f in Ls,q(RN ), where χBn
is the indicator

function of the ball Bn centered at the origin of radius n. In particular C∞
c (RN ) is dense

in Ls,q(RN ).

1.2.2 Wolff potentials, fractional and η-fractional maximal operators

If D is either a bounded domain or whole RN , we denote by M(D) (resp M
b(D)) the set

of Radon measure (resp. bounded Radon measures) in D. Their positive cones are M+(D)
and M

b
+(D) respectively. If 0 < R ≤ ∞ and µ ∈ M+(D) and R ≥ diam(D), we define, for

α > 0 and 1 < s < α−1N , the R-truncated Wolff-potential by

W
R
α,s[µ](x) =

ˆ R

0

(
µ(Bt(x))

tN−αs

) 1
s−1 dt

t
for a.e. x ∈ R

N . (1.2.2)

If hη(t) = min{(− ln t)−η, (ln 2)−η} and 0 < α < N , the truncated η-fractional maximal
operator is

M
η
α,R[µ](x) = sup

0<t<R

µ(Bt(x))

tN−αhη(t)
for a.e. x ∈ R

N . (1.2.3)

If R = ∞, we drop it in expressions (1.2.2) and (1.2.3). In particular

µ(Bt(x)) ≤ tN−αhη(t)M
η
α,R[µ](x). (1.2.4)
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1.2. LORENTZ SPACES AND CAPACITIES

We also define Gα the Bessel potential of a measure µ by

Gα[µ](x) =

ˆ

RN

Gα(x− y)dµ(y) ∀x ∈ R
N ,

where Gα is the Bessel kernel of order α in R
N .

Definition 1.2.1 We denote by Lα,s,q(RN ) the Besov space the of functions φ = Gα ∗ f
for some f ∈ Ls,q(RN ) and we set ||φ||α,s,q = ||f ||s,q. If we set

Capα,s,q(E) = inf{||f ||s,q : f ≥ 0, Gα ∗ f ≥ 1 on E},

for any Borel set E ⊂ R
N , then Capα,s,q is a capacity, see [1].

1.2.3 Estimates on potentials

In the sequel, we denote by |A| the N-dimensional Lebesgue measure of a measurable
set A and, if F,G are functions defined in R

N , we set {F > a} := {x ∈ R
N : F (x) > a},

{G ≤ b} := {x ∈ R
N : G(x) ≤ b} and {F > a,G ≤ b} := {F > a}∩{G ≤ b}. The following

result is an extension of [12, Th 1.1]

Lemma 1.2.2 Let 0 ≤ η < p − 1, 0 < αp < N and r > 0. There exist c0 > 0 depending
on N,α, p, η and ε0 > 0 depending on N,α, p, η, r such that, for all µ ∈ M

+(RN ) with

diam(supp(µ)) ≤ r and R ∈ (0,∞], ε ∈ (0, ε0], λ >
(
µ(RN )

) 1
p−1 l(r,R) there holds,

∣∣∣
{
W

R
α,p[µ] > 3λ, (Mη

αp,R[µ])
1

p−1 ≤ ελ
}∣∣∣

≤ c0 exp

(
−
(
p− 1− η

4(p− 1)

) p−1
p−1−η

αp ln 2 ε
− p−1

p−1−η

)
∣∣{WR

α,p[µ] > λ}
∣∣ (1.2.5)

where l(r,R) = N−αp
p−1

(
min{r,R}−

N−αp
p−1 −R

−N−αp
p−1

)
if R < ∞, l(r,R) = N−αp

p−1 r
−N−αp

p−1 if

R = ∞. Furthermore, if η = 0, ε0 is independent of r and (1.2.5) holds for all µ ∈ M
+(RN )

with compact support in R
N and R ∈ (0,∞], ε ∈ (0, ε0], λ > 0.

Proof. Case R = ∞. Let λ > 0 ; since Wα,p[µ] is lower semicontinuous, the set

Dλ := {Wα,p[µ] > λ}

is open. By Whitney covering lemma, there exists a countable set of closed cubes {Qi}i
such that Dλ = ∪iQi,

o
Qi ∩

o
Qj = ∅ for i 6= j and

diam(Qi) ≤ dist(Qi, Dc
λ) ≤ 4 diam(Qi).

Let ε > 0 and Fε,λ =
{
Wα,p[µ] > 3λ, (Mη

αp[µ])
1

p−1 ≤ ελ
}

. We claim that there exist

c0 = c0(N,α, p, η) > 0 and ε0 = ε0(N,α, p, η, r) > 0 such that for any Q ∈ {Qi}i,
ε ∈ (0, ε0] and λ >

(
µ(RN )

) 1
p−1 l(r,∞) there holds

|Fε,λ ∩Q| ≤ c0 exp

(
−
(
p− 1− η

4(p− 1)

) p−1
p−1−η

ε
− p−1

p−1−ηαp ln 2

)
|Q|. (1.2.6)
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1.2. LORENTZ SPACES AND CAPACITIES

The first we show that there exists c1 > 0 depending on N,α, p and η such that for any
Q ∈ {Qi}i there holds

Fε,λ ∩Q ⊂ Eε,λ ∀ε ∈ (0, c1], λ > 0, (1.2.7)

where
Eε,λ =

{
x ∈ Q : W5 diam(Q)

α,p [µ](x) > λ, (Mη
αp[µ](x))

1
p−1 ≤ ελ

}
. (1.2.8)

Infact, take Q ∈ {Qi}i such that Q ∩ Fε,λ 6= ∅ and let xQ ∈ Dc
λ such that dist(xQ, Q) ≤

4 diam(Q) and Wα,p[µ](xQ) ≤ λ. For k ∈ N, r0 = 5 diam(Q) and x ∈ Fε,λ ∩Q, we have

ˆ 2k+1r0

2kr0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
= A+B,

where

A =

ˆ 2k 1+2k+1

1+2k
r0

2kr0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
and B =

ˆ 2k+1r0

2k 1+2k+1

1+2k
r0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
.

Since
µ(Bt(x)) ≤ tN−αphη(t)M

η
αp[µ](x) ≤ tN−αphη(t)(ελ)

p−1. (1.2.9)

Then

B ≤
ˆ 2k+1r0

2k 1+2k+1

1+2k
r0

(
tN−αphη(t)(ελ)p−1

tN−αp

) 1
p−1 dt

t
= ελ

ˆ 2k+1r0

2k 1+2k+1

1+2k
r0

(hη(t))
1

p−1
dt

t
.

Replacing hη(t) by its value we obtain B ≤ c2ελ2
−k after a lengthy computation where c2

depends only on p and η. Since δ := ( 2k

2k+1
)
N−αp
p−1 , then 1 − δ ≤ c32

−k where c3 depends

only on N−αp
p−1 , thus

(1− δ)A ≤ c32
−k

ˆ 2k+1r0

2kr0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t

≤ c32
−kελ

ˆ 2k+1r0

2kr0

(hη(t))
1

p−1
dt

t

≤ c42
−kελ,

where c4 = c4(N,α, p, η) > 0.
By a change of variables and using that for any x ∈ Fε,λ∩Q and t ∈ [r0(1+2k), r0(1+2k+1)],
B 2kt

1+2k

(x) ⊂ Bt(xQ), we get

δA =

ˆ r0(1+2k+1)

r0(1+2k)



µ(B 2kt

1+2k

(x))

tN−αp




1
p−1

dt

t
≤
ˆ r0(1+2k+1)

r0(1+2k)

(
µ(Bt(xQ))

tN−αp

) 1
p−1 dt

t
.

Therefore
ˆ 2k+1r0

2kr0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
≤ c52

−kελ+

ˆ r0(1+2k+1)

r0(1+2k)

(
µ(Bt(xQ))

tN−αp

) 1
p−1 dt

t
,
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1.2. LORENTZ SPACES AND CAPACITIES

with c5 = c5(N,α, p, η) > 0. This implies

ˆ ∞

r0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
≤ 2c5ελ+

ˆ ∞

2r0

(
µ(Bt(xQ))

tN−αp

) 1
p−1 dt

t
≤ (1 + 2c5ε)λ, (1.2.10)

since Wα,p[µ](xQ) ≤ λ. If ε ∈ (0, c1] with c1 = (2c5)
−1 then

ˆ ∞

r0

(
µ(Bt(x)

tN−αp

) 1
p−1 dt

t
≤ 2λ

which implies (1.2.7).

Now, we let λ >
(
µ(RN )

) 1
p−1 l(r,∞). Let B1 be a ball with radius r such that supp(µ) ⊂ B1.

We denote B2 by the ball concentric to B1 with radius 2r. Since x /∈ B2,

Wα,p[µ](x) =

ˆ ∞

r

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
≤
(
µ(RN )

) 1
p−1 l(r,∞).

Thus, we obtain Dλ ⊂ B2. In particular, r0 = 5diam(Q) ≤ 20r.
Next we set m0 =

max(1,ln(40r))
ln 2 , so that 2−mr0 ≤ 2−1 if m ≥ m0. Then for any x ∈ Eε,λ

ˆ r0

2−mr0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
≤ ελ

ˆ r0

2−mr0

(hη(t))
1

p−1
dt

t

≤ ελ

ˆ 2−m0r0

2−mr0

(− ln t)
−η
p−1

dt

t
+ ελ

ˆ r0

2−m0r0

(ln 2)
−η
p−1

dt

t

≤ m0ελ+
(p− 1)((m−m0) ln 2)

1− η
p−1

p− 1− η
ελ.

For the last inequality we have used a1−
η

p−1 −b1−
η

p−1 ≤ (a−b)1−
η

p−1 valid for any a ≥ b ≥ 0.
Therefore,

ˆ r0

2−mr0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
≤ 2(p− 1)

p− 1− η
m

1− η
p−1 ελ ∀m ∈ N,m > (ln 2)

− η
p−1m

p−1
p−1−η

0 .

(1.2.11)
Set

gi(x) =

ˆ 2−i+1r0

2−ir0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
,

then

W
r0
α,p[µ](x) ≤

2(p− 1)

p− 1− η
m

1− η
p−1 ελ+W

2−mr0
α,p [µ](x)

≤ 2(p− 1)

p− 1− η
m

1− η
p−1 ελ+

∞∑

i=m+1

gi(x),
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1.2. LORENTZ SPACES AND CAPACITIES

for all m > m
p−1

p−1−η

0 . We deduce that, for β > 0,

|Eε,λ| ≤
∣∣∣∣∣

{
x ∈ Q :

∞∑

i=m+1

gi(x) >

(
1− 2(p− 1)

p− 1− η
m

1− η
p−1 ε

)
λ

}∣∣∣∣∣

≤
∣∣∣∣∣

{
x ∈ Q :

∞∑

i=m+1

gi(x) >
∞∑

i=m+1

2−β(i−m−1)(1− 2−β)

(
1− 2(p− 1)

p− 1− η
m

1− η
p−1 ε

)
λ

}∣∣∣∣∣

≤
∞∑

i=m+1

∣∣∣∣
{
x ∈ Q : gi(x) > 2−β(i−m−1)(1− 2−β)

(
1− 2(p− 1)

p− 1− η
m

1− η
p−1 ε

)
λ

}∣∣∣∣ .

(1.2.12)

Next we claim that

|{x ∈ Q : gi(x) > s}| ≤ c6(N, η)

sp−1
2−iαp|Q|(ελ)p−1. (1.2.13)

To see that, we pick x0 ∈ Eε,λ and we use the Chebyshev’s inequality

|{x ∈ Q : gi(x) > s}| ≤ 1

sp−1

ˆ

Q
|gi|p−1dx

=
1

sp−1

ˆ

Q

(
ˆ r02−i+1

r02−i

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t

)p−1

dx

≤ 1

sp−1

ˆ

Q

µ(Br02−i+1(x))

(r02−i)N−αp := A.

Thanks to Fubini’s theorem, the last term A of the above inequality can be rewritten as

A =
1

sp−1

1

(r02−i)N−αp

ˆ

Q

ˆ

RN

χBr02
−i+1 (x)(y)dµ(y)dx

=
1

sp−1

1

(r02−i)N−αp

ˆ

Q+Br02
−i+1 (0)

ˆ

Q
χBr02

−i+1 (y)(x)dxdµ(y)

≤ 1

sp−1

1

(r02−i)N−αp

ˆ

Q+Br02
−i+1 (0)

|Br02−i+1(y)|dµ(y)

≤ c7(N)
1

sp−1
2−iαprαp0 µ(Q+Br02−i+1(0))

≤ c7(N)
1

sp−1
2−iαprαp0 µ(Br0(1+2−i+1)(x0)),

sinceQ+Br02−i+1(0) ⊂ Br0(1+2−i+1)(x0). Using the fact that µ(Bt(x0)) ≤ (ln 2)−ηtN−αp(ελ)p−1

for all t > 0 and r0 = 5 diam(Q), we obtain

A ≤ c8(N, η)
1

sp−1
2−iαprαp0 (r0(1 + 2−i+1))N−αp(ελ)p−1 ≤ c9(N, η)

1

sp−1
2−iαp|Q|(ελ)p−1,
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which is (1.2.13). Consequently, (1.2.12) can be rewritten as

|Eε,λ| ≤
∞∑

i=m+1

c6(N, η)(
2−β(i−m−1)(1− 2−β)

(
1− 2(p−1)

p−1−ηm
1− η

p−1 ε
)
λ
)p−1 2

−iαp(ελ)p−1|Q|

≤ c6(N, η)2
−(m+1)αp


 ε

1− 2(p−1)
p−1−ηm

1− η
p−1 ε



p−1

|Q|
(
1− 2−β

)−p+1
∞∑

i=m+1

2(β(p−1)−αp)(i−m−1).

(1.2.14)

If we choose β = β(α, p) so that β(p− 1)− αp < 0, we obtain

|Eε,λ| ≤ c102
−mαp


 ε

1− 2(p−1)
p−1−ηm

1− η
p−1 ε



p−1

|Q| ∀m > (ln 2)
− η

p−1m
p−1

p−1−η

0 , (1.2.15)

where c10 = c10(N,α, p, η) > 0. Put ε0 = min

{
1

4(p−1)
p−1−η

m0+1
, c1

}
. For any ε ∈ (0, ε0], we

choose m ∈ N such that

(
p− 1− η

2(p− 1)

) p−1
p−1−η

(
1

ε
− 1

) p−1
p−1−η

− 1 < m ≤
(
p− 1− η

2(p− 1)

) p−1
p−1−η

(
1

ε
− 1

) p−1
p−1−η

.

Then 
 ε

1− 2(p−1)
p−1−ηm

1− η
p−1 ε



p−1

≤ 1,

and

2−mαp ≤ 2
αp−αp

(

p−1−η
2(p−1)

)

p−1
p−1−η ( 1

ε
−1)

p−1
p−1−η

≤ 2αp exp

(
−αp ln 2

(
p− 1− η

4(p− 1)

) p−1
p−1−η

ε
− p−1

p−1−η

)
.

Combining these inequalities with (1.2.15) and (1.2.7), we get (1.2.6). In the case η = 0 we
still have for any m ∈ N, λ, ε > 0 and x ∈ Eε,λ

W
r0
α,p[µ](x) ≤ mελ+

∞∑

i=m+1

gi(x).

Accordingly (1.2.15) reads as

|Eε,λ| ≤ c102
−mαp

(
ε

1−mε

)p−1

|Q| ∀m ∈ N, λ, ε > 0 with mε < 1.

Put ε0 = min{1
2 , c1}. For any ε ∈ (0, ε0] and m ∈ N satisfies ε−1 − 2 < m ≤ ε−1 − 1, we

finally get from (1.2.7)

|Fε,λ ∩Q| ≤ |Eε,λ| ≤ c102
2αp exp

(
−αpε−1 ln 2

)
|Q| (1.2.16)
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which ends the proof in the case R = ∞.
Case R < ∞. For λ > 0, Dλ = {WR

α,p > λ} is open. Using again Whitney covering
lemma, there exists a countable set of closed cubes Q := {Qi} such that ∪iQi = Dλ,
o
Qi∩

o
Qj = ∅ for i 6= j and dist(Qi, Dc

λ) ≤ 4 diam(Qi). If Q ∈ Q : is such that diam(Q) > R
8 ,

there exists a finite number nQ of closed dyadic cubes {Pj,Q}nQ

j=1 such that ∪nQ

j=1Pj,Q = Q,
o

Pi,Q ∩
o

Pj,Q = ∅ if i 6= j and R
16 < diam(Pj,Q) ≤ R

8 . We set Q′ =
{
Q ∈ Q : diam(Q) ≤ R

8

}
,

Q′′ =
{
Pi,Q : 1 ≤ i ≤ nQ, Q ∈ Q, diam(Q) > R

8

}
and F = Q′ ∪ Q′′.

For ε > 0 we denote again Fε,λ =
{
W

R
α,p[µ] > 3λ, (Mη

αp,R[µ])
1

p−1 ≤ ελ
}

. Let Q ∈ F such

that Fε,λ ∩Q 6= ∅ and r0 = 5diam(Q).
If dist(Dc

λ, Q) ≤ 4 diam(Q), that is if there exists xQ ∈ Dc
λ such that dist(xQ, Q) ≤

4 diam(Q) and W
R
α,p[µ](xQ) ≤ λ, we find, by the same argument as in the case R = ∞,

(1.2.10), that for any x ∈ Fε,λ ∩Q there holds

ˆ R

r0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
≤ (1 + c11ε)λ, (1.2.17)

where c11 = c11(N,α, p, η) > 0.
If dist(Dc

λ, Q) > 4 diam(Q), we have R
16 < diam(Q) ≤ R

8 since Q ∈ Q′′. Then, for all
x ∈ Fε,λ ∩Q, there holds

ˆ R

r0

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
≤
ˆ R

5R
16

(
tN−αp(ln 2)−η(ελ)p−1

tN−αp

) 1
p−1 dt

t

= (ln 2)
− η

p−1 ln
16

5
ελ

≤ 2ελ. (1.2.18)

Thus, if we take ε ∈ (0, c12] with c12 = min{1, c−1
11 }, we derive

Fε,λ ∩Q ⊂ Eε,λ, (1.2.19)

where

Eε,λ =

{
W

r0
α,p[µ] > λ,

(
M

η
αp,R[µ]

) 1
p−1 ≤ ελ

}
.

Furthermore, since x /∈ B2,

W
R
α,p[µ](x) =

ˆ R

min{r,R}

(
µ(Bt(x))

tN−αp

) 1
p−1 dt

t
≤
(
µ(RN )

) 1
p−1 l(r,R).

Thus, if λ >
(
µ(RN )

) 1
p−1 l(r,R) then Dλ ⊂ B2 which implies r0 = 5diam(Q) ≤ 20r.

The end of the proof is as in the case R = ∞.
In the next result we list a series of equivalent norms concerning Radon measures.

Theorem 1.2.3 Assume α > 0, 0 < p − 1 < q < ∞, 0 < αp < N and 0 < s ≤ ∞.
Then there exists a constant c13 = c13(N,α, p, q, s) > 0 such that for any R ∈ (0,∞] and
µ ∈ M

+(RN ), there holds

c−1
13 ||WR

α,p[µ]||Lq,s(RN ) ≤ ||Mαp,R[µ]||
1

p−1

L
q

p−1 , s
p−1 (RN )

≤ c13||WR
α,p[µ]||Lq,s(RN ). (1.2.20)
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For any R > 0, there exists c14 = c14(N,α, p, q, s, R) > 0 such that for any µ ∈ M+(R
N ),

c−1
14 ||WR

α,p[µ]||Lq,s(RN ) ≤ ||Gαp[µ]||
1

p−1

L
q

p−1 , s
p−1 (RN )

≤ c14||WR
α,p[µ]||Lq,s(RN ). (1.2.21)

In (1.2.21), ||WR
α,p[µ]||Lq,s(RN ) can be replaced by ||Mαp,R[µ]||

1
p−1

L
q

p−1 , s
p−1 (RN )

.

Proof. We denote µn by χBnµ for n ∈ N
∗.

Step 1. We claim that

||WR
α,p[µ]||Lq,s(RN ) ≤ c′13||Mαp,R[µ]||

1
p−1

L
q

p−1 , s
p−1 (RN )

. (1.2.22)

From Proposition 1.2.2 there exist positive constants c0 = c0(N,α, p), a = a(α, p) and
ε0 = ε0(N,α, p) such that for all n ∈ N

∗, t > 0, 0 < R ≤ ∞ and 0 < ε ≤ ε0, there holds
∣∣∣
{
W

R
α,p[µn] > 3t, (Mη

αp,R[µn])
1

p−1 ≤ εt
}∣∣∣ ≤ c0 exp

(
−aε−1

) ∣∣{WR
α,p[µn] > t}

∣∣ . (1.2.23)

In the case 0 < s <∞ and 0 < q <∞, we have

∣∣{WR
α,p[µn] > 3t

}∣∣ sq ≤ c15 exp

(
−s
q
aε−1

) ∣∣{WR
α,p[µn] > t}

∣∣ sq+c15
∣∣∣
{
(Mη

αp,R[µn])
1

p−1 > εt
}∣∣∣

s
q
,

with c15 = c15(N,α, p, q, s) > 0.
Multiplying by ts−1 and integrating over (0,∞), we obtain

ˆ ∞

0
ts
∣∣{WR

α,p[µn] > 3t
}∣∣ sq dt

t
≤ c15 exp

(
−s
q
aε−1

)
ˆ ∞

0
ts
∣∣{WR

α,p[µn] > t}
∣∣ sq dt

t

+ c15

ˆ ∞

0
ts
∣∣∣
{
M

η
αp,R[µn] > (εt)p−1

}∣∣∣
s
q dt

t
.

By a change of variable, we derive
(
3−s − c15 exp

(
−s
q
aε−1

))
ˆ ∞

0
ts
∣∣{WR

α,p[µn] > t}
∣∣ sq dt

t

≤ c15ε
−s

p− 1

ˆ ∞

0
t

s
p−1

∣∣∣
{
M

η
αp,R[µn] > t

}∣∣∣
s
q dt

t
.

We choose ε small enough so that 3−s− c15 exp
(
− s
qaε

−1
)
> 0, we derive from (1.2.1) and

∥∥t1/s1f∗
∥∥
Ls2(R, dtt )

= s
1/s2
1

∥∥∥λ1/s1f t
∥∥∥
Ls2(R, dtt )

for any f ∈ Ls1,s2(RN ) with 0 < s1 < ∞, 0 <

s2 ≤ ∞
||WR

α,p[µn]||Lq,s(RN ) ≤ c′13||Mαp,R[µn]||
1

p−1

L
q

p−1 , s
p−1 (RN )

,

and (1.2.22) follows by Fatou’s lemma. Similarly, we can prove (1.2.22) in the case s = ∞.
Step 2. We claim that

||WR
α,p[µ]||Lq,s(RN ) ≥ c

′′
13||Mαp,R[µ]||

1
p−1

L
q

p−1 , s
p−1 (RN )

. (1.2.24)
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For R > 0 we have

W
2R
α,p[µn](x) = W

R
α,p[µn](x) +

ˆ 2R

R

(
µn(Bt(x))

tN−αp

) 1
p−1 dt

t

≤ W
R
α,p[µn](x) +

(
µn(B2R(x))

RN−αp

) 1
p−1

. (1.2.25)

Thus

∣∣{x : W2R
α,p[µn](x) > 2t

}∣∣ ≤
∣∣{x : WR

α,p[µn](x) > t
}∣∣+

∣∣∣∣
{
x :

µn(B2R(x))

RN−αp > tp−1

}∣∣∣∣ .

Consider {zj}mi=1 ⊂ B2 such that B2 ⊂
⋃m
i=1B 1

2
(zi). Thus B2R(x) ⊂

⋃m
i=1BR

2
(x+Rzi) for

any x ∈ R
N and R > 0. Then
∣∣∣∣
{
x :

µn(B2R(x))

RN−αp > tp−1

}∣∣∣∣ ≤
∣∣∣∣∣

{
x :

m∑

i=1

µn(BR
2
(x+Rzi))

RN−αp > tp−1

}∣∣∣∣∣

≤
m∑

i=1

∣∣∣∣∣

{
x :

µn(BR
2
(x+Rzi))

RN−αp >
1

m
tp−1

}∣∣∣∣∣

≤
m∑

i=1

∣∣∣∣∣

{
x−Rzi :

µn(BR
2
(x))

RN−αp >
1

m
tp−1

}∣∣∣∣∣

= m

∣∣∣∣∣

{
x :

µn(BR
2
(x))

RN−αp >
1

m
tp−1

}∣∣∣∣∣ .

Moreover (
µn(BR

2
(x))

RN−αp

) 1
p−1

≤ 2WR
α,p[µn](x),

thus ∣∣∣∣
{
x :

µn(B2R(x))

RN−αp > tp−1

}∣∣∣∣ ≤ m

∣∣∣∣
{
x : WR

α,p[µn](x) >
1

2m
1

p−1

t

}∣∣∣∣ .

This leads to

∣∣{x : W2R
α,p[µn](x) > 2t

}∣∣ ≤ (m+ 1)

∣∣∣∣
{
x : WR

α,p[µn](x) >
1

2m
1

p−1

t

}∣∣∣∣ ∀t > 0.

This implies
||W2R

α,p[µn]||
L

q
p−1 , s

p−1 (RN )
≤ c16||WR

α,p[µn]||
L

q
p−1 , s

p−1 (RN )
,

with c16 = c16(N,α, p, q, s) > 0. By Fatou’s lemma, we get

||W2R
α,p[µ]||

L
q

p−1 , s
p−1 (RN )

≤ c16||WR
α,p[µ]||

L
q

p−1 , s
p−1 (RN )

. (1.2.26)

On the other hand, from the identity in (1.2.25) we derive that for any ρ ∈ (0, R),

W
2R
α,p[µ](x) ≥ W

2ρ
α,p[µ](x) ≥ c17 sup

0<ρ≤R

(
µ(Bρ(x))

ρN−αp

) 1
p−1

,
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with c17 = c17(N,α, p) > 0, from which follows

W
2R
α,p[µ](x) ≥ c17 (Mαp,R[µ](x))

1
p−1 . (1.2.27)

Combining (1.2.26) and (1.2.27) we obtain (1.2.24) and then (1.2.20). Notice that the
estimates are independent of R and thus valid if R = ∞.
Step 3.We claim that (1.2.21) holds. By the previous result we have also

c−1
18 ||WR

αp
2
,2[µ]||L q

p−1 , s
p−1 (RN )

≤ ||Mαp,R[µ]||
L

q
p−1 , s

p−1 (RN )
≤ c18||WR

αp
2
,2[µ]||L q

p−1 , s
p−1 (RN )

.

(1.2.28)
where c18 = c18(N,α, p, q, s) > 0. For R > 0, the Bessel kernel satisfies[14, V-3-1]

c−1
19

(
χBR

(x)

|x|N−αp

)
≤ Gαp(x) ≤ c19

(
χBR

2

(x)

|x|N−αp

)
+ c19e

− |x|
2 ∀x ∈ R

N ,

where c19 = c19(N,α, p,R) > 0. Therefore

c−1
19

(
χBR

|.|N−αp

)
∗ µ ≤ Gαp[µ] ≤ c19

( χBR
2

|.|N−αp

)
∗ µ+ c19e

− |.|
2 ∗ µ. (1.2.29)

By integration by parts, we get
(

χBR

|.|N−αp

)
∗ µ(x) = (N − αp)WR

αp
2
,2[µ](x) +

µ(BR(x))

RN−αp ≥ (N − αp)WR
αp
2
,2[µ](x),

which implies
c20||WR

αp
2
,2[µ]||L q

p−1 , s
p−1 (RN )

≤ ||Gαp[µ]||
L

q
p−1 , s

p−1 (RN )
, (1.2.30)

where c20 = c20(N,α, p, q, s) > 0. Furthermore e−
|x|
2 ≤ c21χBR

2

∗ e− |.|
2 (x) where c21 =

c21(N,R) > 0, thus

e−
|.|
2 ∗ µ ≤ c21

(
χBR

2

∗ e−
|.|
2

)
∗ µ = c21e

− |.|
2 ∗
(
χBR

2

∗ µ
)
.

Since
χBR

2

∗ µ(x) = µ(BR
2
(x)) ≤ c22W

R
αp
2
,2[µ](x),

where c22 = c22(N,α, p,R) > 0, we derive with c23 = c21c22

e−
|.|
2 ∗ µ ≤ c23e

− |.|
2 ∗WR

αp
2
,2[µ].

Using Young inequality, we obtain

||e−
|.|
2 ∗ µ||

L
q

p−1 , s
p−1 (RN )

≤ c23||e−
|.|
2 ∗WR

αp
2
,2[µ]||L q

p−1 , s
p−1 (RN )

≤ c24||WR
αp
2
,2[µ]||L q

p−1 , s
p−1 (RN )

||e−
|.|
2 ||L1,∞(RN )

≤ c25||WR
αp
2
,2[µ]||L q

p−1 , s
p−1 (RN )

, (1.2.31)
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where c25 = c25(N,α, p,R) > 0.
Since by integration by parts there holds as above

( χBR
2

|.|N−αp

)
∗ µ(x) = (N − αp)W

R
2
αp
2
,2
[µ](x) + 2N−αp

µ(BR
2
(x))

RN−αp ≤ c26W
R
αp
2
,2[µ](x),

where c26 = c26(N,α, p) > 0 we obtain

||
(

χBR

||.|N−αp

)
∗ µ||

L
q

p−1 , s
p−1 (RN )

≤ c27||WR
αp
2
,2[µ]||L q

p−1 , s
p−1

, (1.2.32)

where c27 = c27(N,α, p, q, s) > 0. Thus

||Gαp[µ]||
L

q
p−1 , s

p−1 (RN )
≤ c28||WR

αp
2
,2[µ]||L q

p−1 , s
p−1

, (1.2.33)

where c28 = c28(N,α, p, q, s, R) > 0, follows by combining (1.2.29), (1.2.31) and (1.2.32).
Then, combining (1.2.30), (1.2.33) and using (1.2.28), (1.2.20) we obtain (1.2.21).

Remark 1.2.4 Proposition 5.1 in [13] is a particular case of the previous result.

Theorem 1.2.5 Let α > 0, p > 1, 0 ≤ η < p − 1, 0 < αp < N and r > 0. Set

δ0 =
(
p−1−η
12(p−1)

) p−1
p−1−η

αp ln 2. Then there exists c29 > 0, depending on N , α, p, η and r such

that for any R ∈ (0,∞], δ ∈ (0, δ0), µ ∈ M+(R
N ), any ball B1 ⊂ R

N with radius ≤ r and
ball B2 concentric to B1 with radius double B1’s radius, there holds

1

|B2|

ˆ

B2

exp


δ
(
W

R
α,p[µB1 ](x)

) p−1
p−1−η

||Mη
αp,R[µB1 ]||

1
p−1−η

L∞(B1)


 dx ≤ c29

δ0 − δ
(1.2.34)

where µB1 = χB1µ. Furthermore, if η = 0, c29 is independent of r.

Proof. Let µ ∈ M+(R
N ) such that M := ||Mη

αp,R[µB1 ]||L∞(B1) <∞. By Proposition 1.2.2-
(1.2.5) with µ = µB1 , there exist c0 > 0 depending on N,α, p, η and ε0 > 0 depending on

N,α, p, η and r such that, for all R ∈ (0,∞], ε ∈ (0, ε0], t >
(
µB1(R

N )
) 1

p−1 l(r′, R) where
r′ is radius of B1 there holds,
∣∣∣
{
W

R
α,p[µB1 ] > 3t, (Mη

αp,R[µB1 ])
1

p−1 ≤ εt
}∣∣∣

≤ c0 exp

(
−
(
p− 1− η

4(p− 1)

) p−1
p−1−η

αp ln 2 ε
− p−1

p−1−η

)
∣∣{WR

α,p[µB1 ] > t}
∣∣ .

Since
(
µB1(R

N )
) 1

p−1 l(r′, R) ≤ N−αp
p−1 (ln 2)

− η
p−1M

1
p−1 , thus in (1.2.5) we can choose

ε = t−1||Mη
αp,R[µB1 ]||

1
p−1

L∞(RN )
= t−1M

1
p−1 ∀t > max{ε−1

0 ,
N − αp

p− 1
(ln 2)

− η
p−1 }M

1
p−1 ,
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and as in the proof of Proposition 1.2.2,
{
W

R
α,p[µB1 ] > t

}
⊂ B2.

Then

∣∣{WR
α,p[µB1 ] > 3t

}
∩B2

∣∣ ≤ c0 exp

(
−
(
p− 1− η

4(p− 1)

) p−1
p−1−η

αp ln 2M
− 1

p−1−η t
p−1

p−1−η

)
|B2|.

(1.2.35)
This can be written under the form

|{F > t} ∩B2| ≤ |B2|χ(0,t0] + c0 exp (−δ0t) |B2|χ(t0,∞)(t), (1.2.36)

where F =M
− 1

p−1−η
(
W

R
α,p[µB1 ]

) p−1
p−1−η and t0 =

(
3max{ε−1

0 , N−αp
p−1 (ln 2)

− η
p−1 }

) p−1
p−1−η

.

Take δ ∈ (0, δ0), by Fubini’s theorem
ˆ

B2

exp (δF (x)) dx = δ

ˆ ∞

0
exp (δt) |{F > t} ∩B2|dt.

Thus,
ˆ

B2

exp (δF (x)) dx ≤ δ

ˆ t0

0
exp (δt) dt|B2|+ c0δ

ˆ ∞

t0

exp (− (δ0 − δ) t) dt|B2|

≤ (exp (δt0)− 1) |B2|+
c0δ

δ0 − δ
|B2|

which is the desired inequality.

Remark 1.2.6 By the proof of Proposition 1.2.2, we see that ε0 ≥ c30
max(1,ln 40r) where

c30 = c30(N,α, p, η) > 0. Thus, t0 ≤ c31 (max(1, ln 40r))
p−1

p−1−η . Therefore,

c29 ≤ c32 exp
(
c33 (max(1, ln 40r))

p−1
p−1−η

)
,

where c32 and c33 depend on N,α, p and η.

1.2.4 Approximation of measures

The next result is an extension of a classical result of Feyel and de la Pradelle [10].
This type of result has been intensively used in the framework of Sobolev spaces since the
pioneering work of Baras and Pierre [2], but apparently it is new in the case of Bessel-
Lorentz spaces. We recall that a sequence of bounded measures {µn} in Ω converges to
some bounded measure µ in Ω in the narrow topology of Mb(Ω) if

lim
n→∞

ˆ

Ω
φdµn =

ˆ

Ω
φdµ ∀φ ∈ Cb(Ω) := C(Ω) ∩ L∞(Ω). (1.2.37)

Theorem 1.2.7 Assume Ω is an open subset of RN . Let α > 0, 1 < s < ∞, 1 ≤ q < ∞
and µ ∈ M+(Ω). If µ is absolutely continuous with respect to Capα,s,q in Ω, there exists a
nondecreasing sequence {µn} ⊂ M

+
b (Ω) ∩ (Lα,s,q(RN ))′, with compact support in Ω which

converges to µ weakly in the sense of measures. Furthermore, if µ ∈ M
+
b (Ω), then µn ⇀ µ

in the narrow topology.
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Proof. Step 1. Assume that µ has compact support. Let φ ∈ Lα,s,q(RN ) and φ̃ its Capα,s,q-
quasicontinuous representative. Since µ is abolutely continuous with respect to Capα,s,q,
we can define the mapping

φ 7→ P (φ) =

ˆ

RN

φ̃+dµ⌊Ω

where µ⌊Ω is the extension of µ by 0 in Ωc. By Fatou’s lemma, P is lower semi-continuous
on Lα,s,q(RN ). Furthermore it is convex and potitively homogeneous of degree 1. If Epi(P )
denotes the epigraph of P , i.e.

Epi(P ) = {(φ, t) ∈ Lα,s,q(RN )× R : t ≥ P (φ)},

it is a closed convex cone. Let ε > 0 and φ0 ∈ C∞
c , φ0 ≥ 0. Since (φ0, P (φ0)− ε) /∈ Epi(P ),

there exist ℓ ∈ (Lα,s,q(RN ))′, a and b in R such that

a+ bt+ ℓ(φ) ≤ 0 ∀(φ, t) ∈ Epi(P ), (1.2.38)

a+ b(P (φ0)− ε) + ℓ(φ0) > 0. (1.2.39)

Since (0, 0) ∈ Epi(P ), a ≤ 0. Since (sφ, st) ∈ Epi(P ) for all s > 0, s−1a + bt + ℓ(φ) ≤ 0,
which implies

bt+ ℓ(φ) ≤ 0 ∀(φ, t) ∈ Epi(P ).

Finally, since (0, 1) ∈ Epi(P ), b ≤ 0. But if b = 0 we would have ℓ(φ) ≤ −a for all
φ ∈ Lα,s,q(RN ). which would lead to ℓ = 0 and a > 0 from (1.2.39), a contradiction.
Therefore b < 0. Then, we put θ(φ) = − ℓ(φ)

b and derive that, for any (φ, t) ∈ Epi(P ), there
holds θ(φ) ≤ t, and in particular

θ(φ) ≤ P (φ) ∀φ ∈ Lα,s,q(RN ). (1.2.40)

Since φ ≤ 0 =⇒ P (φ) = 0, θ is a positive linear functional on Lα,s,q(RN ). Furthermore

sup
φ ∈ C∞

c (RN )
||φ||L∞ ≤ 1

|θ(φ)| = sup
φ ∈ C∞

c (RN )
||φ||L∞ ≤ 1

θ(φ) ≤ sup
φ ∈ C∞

c (RN )
||φ||L∞ ≤ 1

P (φ) = P (1) = µ(Ω).

By the Riesz representation theorem, there exists σ ∈ M+(R
N ) such that

θ(φ) =

ˆ

RN

φdσ ∀φ ∈ C∞
c (RN ). (1.2.41)

Inequality (1.2.40) implies 0 ≤ σ ≤ µ⌊Ω. Thus supp(σ) ⊂ supp(µ⌊Ω) = supp(µ) and
σ vanishes on Borel subsets of Capα,s,q capacity zero, as µ does it, besides (1.2.41) also
values for all φ ∈ C∞(RN ). From (1.2.39), we have

ˆ

RN

φ̃0dσ = θ(φ0) > P (φ0)− ε+
a

b
≥
ˆ

RN

φ̃0dµ⌊Ω−ε.

This implies

0 ≤
ˆ

RN

φ̃0d(µ⌊Ω−σ) ≤ ε. (1.2.42)
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It remains to prove that σ ∈ (Lα,s,q(RN ))′. For all f ∈ C∞
c (RN ), f ≥ 0, there holds

ˆ

RN

Gα[f ]dσ = θ(Gα[f ]) ≤ ||θ||(Lα,s,q(RN ))′ ||Gα[f ]||Lα,s,q(RN ), (1.2.43)

since θ = −b−1ℓ and ℓ ∈ (Lα,s,q(RN ))′. Now, given f ∈ Ls,q(RN ), f ≥ 0 and a sequence of
modifiers {ρn}, (χBnf)∗ρn ∈ C∞

c (RN ) and (χBnf)∗ρn → f in Ls,q(RN ), where χBn
is the

indicator function of the ball Bn centered at the origin of radius n. Furthermore, there is
a subsequence {nk} such that limnk→∞Gα[(χBnk

f) ∗ ρnk
](x) → Gα[f ](x), Capα,s,q-quasi

everywhere. Using Fatou’s lemma and lower semicontinuity of the norm
ˆ

RN

Gα[f ]dσ ≤ lim inf
nk→∞

ˆ

RN

Gα[(χBnk
f) ∗ ρnk

]dσ

≤ lim inf
nk→∞

||θ||(Lα,s,q(RN ))′ ||Gα[(χBnk
f) ∗ ρnk

]||Lα,s,q(RN )

≤ ||θ||(Lα,s,q(RN ))′ ||Gα[f ]||Lα,s,q(RN ).

Therefore (1.2.43) also holds for all f ∈ Ls,q(RN ), f ≥ 0. Consequently σ ∈ M
+
b (R

N ) ∩
(Lα,s,q(RN ))′ satisfies

∣∣∣∣
ˆ

RN

Gα[f ]dσ

∣∣∣∣ ≤ ||θ||(Lα,s,q(RN ))′ ||Gα[f ]||Lα,s,q(RN ) ∀f ∈ Ls,q(RN ). (1.2.44)

Step 2. We assume that µ has no longer compact support. Set Ωn = {x ∈ Ω : dist(x,Ωc) ≥
n−1, |x| ≤ n}, then Ωn ⊂ Ωn ⊂ Ωn+1 ⊂ Ω for n ≥ n0 such that Ωn0 6= ∅. Let {φn} ⊂
C∞
c (RN ) be an increasing sequence such that 0 ≤ φn ≤ 1, φn = 1 in a neighborhood of Ωn

and supp(φn) ⊂ Ωn+1. and let νn = φnµ. For n ≥ n0 there is σn ∈ M
+
b (R

N )∩(Lα,s,q(RN ))′

with 0 ≤ σn ≤ νn and

1

n
>

ˆ

Ω
φnd(νn − σn) ≥

ˆ

Ωn

d(µn − σn) =

ˆ

Ωn

d(µ− σn).

We set µn = sup{σ1, σ2, ..., σn}, then {µn} is nondecreasing and supp(µn) ⊂ Ωn+1, and
µn ∈ M

+
b (R

N )∩(Lα,s,q(RN ))′. Finally, let φ ∈ Cc(Ω) and m ∈ N
∗ such that supp(φ) ⊂ Ωm.

For all n ≥ m, we have
∣∣∣∣
ˆ

Ω
φdµn −

ˆ

Ω
φdµ

∣∣∣∣ ≤
∣∣∣∣
ˆ

Ωn

d(µ− µn)

∣∣∣∣ ||φ||L∞(RN ) ≤
1

n
||φ||L∞(RN ).

Thus µn ⇀ µ weakly in the sense of measures.
Step 3. Assume that µ ∈ M

+
b (Ω). Then µn(Ω) ≤ µ(Ω). Thus

µn(Ω) = µn(Ωn0) +
∞∑

k=n0

µn(Ωk+1 \ Ωk).

Since the sequence {µn} is nondecreasing and limk→∞ µn(Ωk+1 \ Ωk) = µ(Ωk+1 \ Ωk) by
the previous construction, we obtain by monotone convergence

lim
n→∞

µn(Ω) = µ(Ωn0) +
∞∑

k=n0

µ(Ωk+1 \ Ωk) = µ(Ω).
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Next we consider φ ∈ Cb(Ω) := C(Ω) ∩ L∞(Ω), then
∣∣∣∣
ˆ

Ω
φdµn −

ˆ

Ω
φdµ

∣∣∣∣ ≤
∣∣∣∣
ˆ

Ω
d(µ− µn)

∣∣∣∣ |φ||L∞(Ω) ≤ (µ(Ω)− µn(Ω))||φ||L∞(Ω) → 0.

Thus µn ⇀ µ in the narrow topology of measures.
As a consequence of Theorem 1.2.7 and Theorem 1.2.3 we obtain the following :

Theorem 1.2.8 Let p − 1 < s1 < ∞, p − 1 < s2 ≤ ∞, 0 < αp < N , R > 0 and
µ ∈ M+(Ω). If µ is absolutely continuous with respect to the capacity Capαp, s1

s1−p+1
,

s2
s2−p+1

,

there exists a nondecreasing sequence {µn} ⊂ M
+(Ω) with compact support in Ω which

converges to µ in the weak sense of measures and such that WR
α,p[µn] ∈ Ls1,s2(RN ), for all

n. Furthermore, if µ ∈ M
+
b (Ω), µn converges to to µ in the narrow topology.

Proof. By Theorem 1.2.7 there exists a nondecreasing sequence {µn} of nonnegative mea-

sures with compact support in Ω, all elements of (Lαp,
s1

s1−p+1
,

s2
s2−p+1 (RN ))′, which converges

weakly to µ. If µ ∈ M
+
b (Ω), the convergence holds in the narrow topology. Noting that for

a positive measure σ in R
N ,

Gαp[σ] ∈ L
s1
p−1

,
s2
p−1 (RN ) ⇐⇒ σ ∈ (L

αp,
s1

s1−p+1
,

s2
s2−p+1 (RN ))′,

it implies Gαp[µn] ∈ L
s1
p−1

,
s2
p−1 (RN ). Then, by Theorem 1.2.3, WR

α,p[µn] ∈ Ls1,s2(RN ).

1.3 Renormalized solutions

1.3.1 Classical results

Although the notion of renormalized solutions is becoming more and more present in the
theory of quasilinear equations with measure data, it has not yet acquainted a popularity
which could avoid us to present some of its main aspects. Let Ω be a bounded domain in
R
N . If µ ∈ Mb(Ω), we denote by µ+ and µ− respectively its positive and negative part. We

denote by M0(Ω) the space of measures in Ω which are absolutely continuous with respect
to the CapΩ

1,p-capacity defined on a compact set K ⊂ Ω by

CapΩ
1,p(K) = inf

{
ˆ

Ω
|∇φ|pdx : φ ≥ χK , φ ∈ C∞

c (Ω)

}
. (1.3.1)

We also denote Ms(Ω) the space of measures in Ω with support on a set of zero CapΩ
1,p-

capacity. Classically, any µ ∈ Mb(Ω) can be written in a unique way under the form
µ = µ0 + µs where µ0 ∈ M0(Ω) ∩ Mb(Ω) and µs ∈ Ms(Ω). We recall that any µ0 ∈
M0(Ω) ∩ Mb(Ω) can be written under the form µ0 = f − divg where f ∈ L1(Ω) and
g ∈ (Lp

′
(Ω))N .

For k > 0 and s ∈ R we set Tk(s) = max{min{s, k},−k}. We recall that if u is a
measurable function defined and finite a.e. in Ω, such that Tk(u) ∈W 1,p

0 (Ω) for any k > 0,
there exists a measurable function v : Ω → R

N such that ∇Tk(u) = χ|u|≤kv a.e. in Ω and
for all k > 0. We define the gradient ∇u of u by v = ∇u. We recall the definition of a
renormalized solution given in [9].
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Theorem 1.3.1 Let µ = µ0 + µs ∈ Mb(Ω). A measurable function u defined in Ω and
finite a.e. is called a renormalized solution of

−∆pu = µ in Ω,
u = 0 on ∂Ω,

(1.3.2)

if Tk(u) ∈ W 1,p
0 (Ω) for any k > 0, |∇up−1 ∈ Lr(Ω) for any 0 < r < N

N−1 , and u has the
property that for any k > 0 there exist λ+k , λ

−
k ∈ M

+
b (Ω)∩M0(Ω), respectively concentrated

on the sets u = k and u = −k, with the property that λ+k ⇀ µ+s , λ−k ⇀ µ−s in the narrow
topology of measures, such that

ˆ

{|u|<k}
|∇u|p−2∇u∇φdx =

ˆ

{|u|<k}
φdµ0 +

ˆ

Ω
φdλ+k −

ˆ

Ω
φdλ−k , (1.3.3)

for every φ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

Remark 1.3.2 If u is a renormalized solution of problem (1.3.2) and µ ∈ M
+
b (Ω), then

u ≥ 0 in Ω.

We recall the following important results, see [9, Th 4.1, Sec 5.1].

Theorem 1.3.3 Let {µn} ⊂ Mb(Ω) be a sequence such that supn |µn|(Ω) < ∞ and let
{un} be renormalized solutions of

−∆pun = µn in Ω,
un = 0 on ∂Ω.

(1.3.4)

Then, up to a subsequence, {un} converges a.e. to a solution u of −∆pu = µ in the sense of
distributions in Ω, for some measure µ ∈ Mb(Ω), and for every k > 0, k−1

´

Ω |∇Tk(u)|p ≤
M for some M > 0.

Finally we recall the following fundamental stability result of [9] which extends Theorem
1.3.3.

Theorem 1.3.4 Let µ = µ0 + µ+s − µ−s ∈ Mb(Ω), with µ0 = f − divg ∈ M0(Ω), µ+s , µ
−
s ∈

M
+
s (Ω). Assume there are sequences {fn} ⊂ L1(Ω), {gn} ⊂ (Lp

′
(Ω))N , {η1n}, {η2n} ⊂

M
+
b (Ω) such that fn ⇀ f weakly in L1(Ω), gn → g in Lp

′
(Ω) and div gn is bounded in

Mb(Ω), η1n ⇀ µ+s and η2n ⇀ µ−s in the narrow topology. If µn = fn − divgn + η1n − η2n and
un is a renormalized solution of (1.3.4), then, up to a subsequence, un converges a.e. to
a renormalized solution u of (1.3.2). Furthermore, Tk(un) → Tk(u) in W 1,p

0 (Ω) for any
k > 0.

1.3.2 Applications

We present below some interesting consequences of the above theorem.
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Corollary 1.3.5 Let µ ∈ M
b(Ω) with compact support in Ω and ω ∈ Mb(Ω). Let {fn} ⊂

L1(Ω) which converges weakly to f ∈ L1(Ω) and µn = ρn ∗ µ where {ρn} is a sequence of
mollifiers. If un is a renormalized solution of

−∆pun = fn + µn + ω in Ω,
un = 0 on ∂Ω,

then, up to a subsequence, un converges to a renormalized solution of

−∆pu = f + µ+ ω in Ω,
u = 0 on ∂Ω.

Proof. We write ω = h̃−div g̃+ω+
s −ω−

s and µ = h−div g+µ+s −µ−s , with h, h̃ ∈ L1(Ω),
g, g̃ ∈ (Lp

′
(Ω))N , h, g, µ+s and µ−s with support in a compact set K ⊂ Ω. For n0 large

enough, ρn∗h, ρn∗g, ρn∗µ+s and ρn∗µ−s have also their support in a fixed compact subset of
Ω for all n ≥ n0. Moreover ρn ∗h→ h and ρn ∗ g → g in L1(Ω) and (Lp

′
(Ω))N respectively

and divρn ∗ g → div g in W−1,p′(Ω). Therefore

fn + µn + ω = fn + h̃+ ρn ∗ h− div (g̃ + ρn ∗ g) + ω+
s + ρn ∗ µ+s − ω−

s − ρn ∗ µ−s

is an approximation of the measure f + µ+ ω in the sense of Theorem 1.3.4. This implies
the claim.

Corollary 1.3.6 Let µi ∈ M
b
+(Ω), i = 1, 2, and {µi,n} ⊂ M

b
+(Ω) be a nondecreasing and

converging to µi in M
+
b (Ω). Let {fn} ⊂ L1(Ω) which converges to some f weakly in L1(Ω).

Let {ϑn} ⊂ M
b(Ω) which converges to some ϑ ∈ Ms(Ω) in the narrow topology. For any

n ∈ N let un be a renormalized solution of

−∆pun = fn + µ1,n − µ2,n + ϑn in Ω,
un = 0 on ∂Ω.

Then, up to a subsequence, un converges a.e. to a renormalized solution of problem

−∆pu = f + µ1 − µ2 + ϑ in Ω,
u = 0 on ∂Ω.

The proof of this results is based upon two lemmas

Lemma 1.3.7 For any µ ∈ M0(Ω) ∩ M
b
+(Ω) there exists f ∈ L1(Ω) and h ∈ W−1,p′(Ω)

such that µ = f + h and

||f ||L1(Ω) + ||h||W−1,p′ (Ω) + ||h||Mb(Ω) ≤ 5µ(Ω). (1.3.5)

Proof. Following [8] and the proof of [6, Th 2.1], one can write µ = φγ where γ ∈
W−1,p′(Ω) ∩ M

+
b (Ω) and 0 ≤ φ ∈ L1(Ω, γ). Let {Ωn}n∈N∗ be an increasing sequence of

compact subsets of Ω such that ∪nΩn = Ω. We define the sequence of measures {νn}n∈N∗
by

ν1 = T1(χΩ1φ)γ, νn = Tn(χΩnφ)γ − Tn−1(χΩn−1φ)γ for n ≥ 2.
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Since νk ≥ 0, then
∑∞

k=1 νk = µ with strong convergence in M
b(Ω), ||νk||Mb(Ω) = νk(Ω)

and
∑∞

k=1 ||νk||Mb(Ω) = µ(Ω). Let {ρn} be a sequence of mollifiers. We may assume that
ηn = ρn ∗ νn ∈ C∞

c (Ω),
||ηn − νn||W−1,p′ (Ω) ≤ 2−nµ(Ω).

Set fn =
∑n

k=1 ηk, then ||fn||L1(Ω) ≤ ∑n
k=1 ||ηk||L1(Ω) ≤ ∑n

k=1 ||νk||Mb(Ω) ≤ µ(Ω). If we
define f = limn→∞ fn, then f ∈ L1(Ω) with ||f ||L1(Ω) ≤ µ(Ω). Set hn =

∑n
k=1(νk−ηk), then

hn ∈ W−1,p′(Ω) ∩Mb(Ω), ||hn||W−1,p′ (Ω) ≤ 2µ(Ω) and hn converges strongly in W−1,p′(Ω)

to some h which satisfies ||h||W−1,p′ (Ω) ≤ 2µ(Ω). Since µ = f + h and ||h||Mb(Ω) ≤ 2µ(Ω),
the result follows.

Lemma 1.3.8 Let µ ∈ M
+
b (Ω). If {µn} ⊂ M

+
b (Ω) is a nondecreasing sequence which

converges to µ in Mb(Ω), there exist Fn, F ∈ L1(Ω), Gn, G ∈ W−1,p′(Ω) and µn s, µs ∈
Ms(Ω) such that

µn = µn 0 + µn s = Fn +Gn + µn s and µ = µ0 + µs = F +G+ µs,

such that Fn → F in L1(Ω), Gn → G in W−1,p′(Ω) and in M
b(Ω) and µn s → µs in M

b(Ω),
and

||Fn||L1(Ω) + ||Gn||W−1,p′ (Ω) + ||Gn||Mb(Ω) + ||µn s||Mb(Ω) ≤ 6µ(Ω). (1.3.6)

Proof. Since {µn} is nondecreasing {µn 0} and {µn s} share this property. Clearly

||µ− µn||Mb(Ω) = ||µ0 − µn 0||Mb(Ω) + ||µs − µn s||Mb(Ω),

thus µn 0 → µ0 and µn s → µs in Mb(Ω). Furthermore ||µn s||Mb(Ω) ≤ µs(Ω) ≤ µ(Ω). Set
µ̃0 0 = 0 and µ̃n 0 = µn 0 − µn−1 0 for n ∈ N∗. From Lemma 1.3.7, for any n ∈ N, one can
find fn ∈ L1(Ω), hn ∈W−1,p′(Ω) ∩Mb(Ω) such that µ̃n 0 = fn + hn and

||fn||L1(Ω) + ||hn||W−1,p′ (Ω) + ||hn||Mb(Ω) ≤ 5µ̃n 0(Ω).

If we define Fn =
∑n

k=1 fk and Gn =
∑n

k=1 hk, then µn 0 = Fn +Gn and

||Fn||L1(Ω) + ||Gn||W−1,p′ (Ω) + ||Gn||Mb(Ω) ≤ 5µ̃0(Ω).

Therefore the convergence statements and (1.3.6) hold.
Proof of Corollary 1.3.6. We set νn = fn + µn,1 − µn,2 + ϑn and ν = f + µ1 − µ2 + ϑ.
From Lemma 1.3.8 we can write

νn = fn + F1n − F2n +G1n −G2n + µ1n s − µ2n s + ϑn,

and
ν = f + F1 − F2 +G1 −G2 + µ1 s − µ2 s + ϑ,

and the convergence properties listed in the lemma hold. Therefore we can apply Theorem
1.3.4 and the conclusion follows.
In the next result we prove the main pointwise estimates on renormalized solutions.
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Theorem 1.3.9 Let Ω be a bounded domain of RN . Then there exists a constant c > 0,
dependent on p and N such that if µ ∈ Mb(Ω) and u is a renormalized solution of problem
(1.3.2) there holds

−cW2 diamΩ
1,p [µ−] ≤ u ≤ cW2 diamΩ

1,p [µ+] a.e. in Ω. (1.3.7)

Proof. We claim the there exist renormalized solutions u1 and u2 of problem (1.3.2) with
respective data µ+ and µ− such that

−u2 ≤ u ≤ u1 a.e. in Ω. (1.3.8)

We use the decomposition µ = µ+ − µ− = (µ+0 − µ+s ) − (µ−0 − µ−s ). We put uk = Tk(u),
µk = χ{|u|<k}µ0 + λ+k − λ−k , vk = χ{|u|<k}µ

+
0 + λ+k . Since µk ∈ M0(Ω), problem (1.3.2)

with data µk admits a unique renormalized solution (see [6]), and clearly uk is such a
solution. Since vk ∈ M0(Ω), problem (1.3.2) with data vk admits a unique solution uk,1
which is furthermore nonnegative and dominates uk a.e. in Ω. From Corollary 1.3.6, {uk,1}
converges a.e. in Ω to a renormalized solution u1 of (1.3.2) with data µ+ and u ≤ u1.
Similarly −u ≤ u2 where u2 is a renormalized solution of (1.3.2) with µ−. Finally, from
[13, Th 6.9] there is a positive constant c dependent only on p and N such that

u1(x) ≤ cW2 diamΩ
1,p [µ+] and u2(x) ≤ cW2 diamΩ

1,p [µ−] a.e. in Ω.

This implies the claim.

1.4 Equations with absorption terms

1.4.1 The general case

Let g : Ω × R → R be a Carathéodory function such that the map s 7→ g(x, s) is
nondecreasing and odd for almost all x ∈ Ω. If U is a function defined in Ω we define the
function g ◦ U in Ω by

g ◦ U(x) = g(x, U(x)) for almost all x ∈ Ω.

We consider the problem
−∆pu+ g ◦ u = µ in Ω,

u = 0 in ∂Ω.
(1.4.1)

where µ ∈ Mb(Ω). We say that u is a renormalized solution of problem (1.4.1) if g ◦ u ∈
L1(Ω) and u is a renormalized solution of

−∆pu = µ− g ◦ u in Ω,
u = 0 in ∂Ω.

(1.4.2)

Theorem 1.4.1 Let µi ∈ M
b
+(Ω), i = 1, 2, such that there exists a nondecreasing se-

quences {µi,n} ⊂ M
b
+(Ω), with compact support in Ω, converging to µi and g◦

(
cW2 diamΩ

1,p [µi,n]
)
∈
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L1(Ω) with the same constant c as in Theorem 1.3.9. Then there exists a renormalized so-
lution of

−∆pu+ g ◦ u = µ1 − µ2 in Ω,
u = 0 in ∂Ω,

(1.4.3)

such that
−cW2 diamΩ

1,p [µ2](x) ≤ u(x) ≤ cW2 diamΩ
1,p [µ1](x) a.e. in Ω. (1.4.4)

Lemma 1.4.2 Assume g belongs to L∞(Ω×R), besides the assumptions of Theorem 1.4.1.
Let λi ∈ M

+
b (Ω) (i = 1, 2), with compact support in Ω. Then there exist renormalized

solutions u, ui, vi (i = 1, 2) to problems

−∆pu+ g ◦ u = λ1 − λ2 in Ω,
u = 0 in ∂Ω,

(1.4.5)

−∆pui + g ◦ ui = λi in Ω,
ui = 0 in ∂Ω,

(1.4.6)

−∆pvi = λi in Ω,
vi = 0 in ∂Ω,

(1.4.7)

such that

−cW2 diam (Ω)
1,p [λ2](x) ≤ −v2(x) ≤ −u2(x) ≤ u(x)

≤ u1(x) ≤ v1(x) ≤ cW
2 diam (Ω)
1,p [λ1](x) (1.4.8)

for a.e x ∈ Ω.

Proof. Let {ρn} be a sequence of mollifiers, λi,n = ρn ∗ λi, (i = 1, 2) and λn = λ1,n− λ2,n.
Then, for n0 large enough, λ1,n, λ2,n and λn are bounded with compact support in Ω for
all n ≥ n0 and by minimization there exist unique solutions in W 1,p

0 (Ω) to problems

−∆pun + g ◦ un = λn in Ω,
un = 0 in ∂Ω,

−∆pui,n + g ◦ ui,n = λi,n in Ω,
ui,n = 0 in ∂Ω,

−∆pvi,n = λi,n in Ω,
vi,n = 0 in ∂Ω,

and by the maximum principle, they satisfy

−v2,n(x) ≤ −u2,n(x) ≤ un(x) ≤ u1,n(x) ≤ v1,n(x), ∀x ∈ Ω, ∀n ≥ n0. (1.4.9)

Since the λi are bounded measure and g ∈ L∞(Ω × R) the the sequences of measures
{λ1,n − λ2,n − g ◦ un}, {λi,n − g ◦ ui,n} and {λi,n} are uniformly bounded in M

b(Ω). Thus,
by Theorem 1.3.3 there exists a subsequence, still denoted by the index n such that {un},
{ui,n}, {vi,n} converge a.e. in Ω to functions {u}, {ui}, {vi} (i = 1, 2) when n → ∞.
Furthermore g ◦ un and g ◦ ui,n converge in L1(Ω) to g ◦ u and g ◦ ui respectively. By
Corollary 1.3.5, we can assume that {u}, {ui}, {vi} are renormalized solutions of (1.4.5)-
(1.4.7), and by theorem 1.3.9, vi(x) ≤ cW2 diamΩ

1,p [λi](x), a.e. in Ω. Thus we get (1.4.8).
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Lemma 1.4.3 Let g satisfy the assumptions of Theorem 1.4.1 and let λi ∈ M
+
b (Ω) (i =

1, 2), with compact support in Ω such that g ◦
(
cW

2 diam (Ω)
1,p [λi]

)
∈ L1(Ω), where c is the

constant of Theorem 1.4.1. Then there exist renormalized solutions u, ui of the problems
(1.4.5)-(1.4.6) such that

−cW2 diam (Ω)
1,p [λ2](x) ≤ −u2(x) ≤ u(x) ≤ u1(x) ≤ cW

2 diam (Ω)
1,p [λ1](x) (1.4.10)

for a.e x ∈ Ω. Furthermore, if ωi, θi have the same properties as the λi and satisfy ωi ≤
λi ≤ θi, one can find solutions uωi and uθi of problems (1.4.6) with right-hand respective
side ωi and θi, such that uωi ≤ ui ≤ uθi .

Proof. From Lemma 1.4.2 there exist renormalized solutions un, ui,n to problems

−∆pun + Tn(g ◦ un) = λ1 − λ2 in Ω,
un = 0 on ∂Ω,

and
−∆pui,n + Tn(g ◦ ui,n) = λi in Ω,

ui,n = 0 on ∂Ω,

i = 1, 2, and they satisfy

−cW2 diam (Ω)
1,p [λ2](x) ≤ −u2,n(x) ≤ un(x) ≤ u1,n(x) ≤ cW

2 diam (Ω)
1,p [λ1](x) ∀ x ∈ Ω.

(1.4.11)
Since

´

Ω |Tn(g ◦ un)|dx ≤ λ1(Ω) + λ2(Ω) and
´

Ω Tn(g ◦ ui,n)dx ≤ λi(Ω) thus as in Lemma
1.4.2 one can choose a subsequence, still denoted by the index n such that {un, u1,n, u2,n}
converges a.e. in Ω to {u, u1, u2} for which (1.4.11) is satisfied a.e. in Ω.

Since g◦
(
cW

2 diam (Ω)
1,p [λi]

)
∈ L1(Ω) we derive from (1.4.11) and the dominated convergence

theorem that Tn(g ◦un) → g ◦u and Tn(g ◦ui,n) → g ◦ui in L1(Ω). It follows from Theorem
1.3.4 that u and ui are respective solutions of (1.4.5), (1.4.6). The last statement follows
from the same assertion in Lemma 1.4.2.
Proof of Theorem 1.4.1. From Lemma 1.4.3, there exist renormalized solutions un, ui,n
to problems

−∆pun + g ◦ un = µ1,n − µ2,n in Ω,
un = 0 on ∂Ω,

and
−∆pui,n + g ◦ ui,n = µi,n in Ω,

ui,n = 0 on ∂Ω,

i = 1, 2 such that {ui,n} is nonnegative and nondecreasing and they satisfy

−cW2 diam (Ω)
1,p [µ2](x) ≤ −u2,n(x) ≤ un(x) ≤ u1,n(x) ≤ cW

2 diam (Ω)
1,p [µ1](x) (1.4.12)

a.e. in Ω. As in the proof of Lemma 1.4.3, up to the same subsequence, {u1,n}, {u2,n} and
{un} converge to u1, u2 and u a.e. in Ω. Since g ◦ ui,n are nondecreasing, positive and
´

Ω g ◦ ui,ndx ≤ µi,n(Ω) ≤ µi(Ω), it follows from the monotone convergence theorem that
{g ◦ ui,n} converges to g ◦ ui in L1(Ω). Finally, since |g ◦ un| ≤ g ◦ u1 + g ◦ u2, {g ◦ un}
converges to g◦u in L1(Ω) by dominated convergence. Applying Corollary 1.3.6 we conclude
that u is a renormalized solution of (1.4.3) and that (1.4.4) holds.
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1.4.2 Proofs of Theorem 1.1.1 and Theorem 1.1.2

We are now in situation of proving the two theorems stated in the introduction.
Proof of Theorem 1.1.1. 1. Since µ is absolutely continuous with respect to the capacity
Cap

p, Nq
Nq−(p−1)(N−β))

, q
q+1−p

, µ+ and µ− share this property. By Theorem 1.2.8 there exist two

nondecreasing sequences {µ1,n} and {µ2,n} of positive bounded measures with compact
support in Ω which converge to µ+ and µ− respectively and which have the property that

W
R
1,p[µi,n] ∈ L

Nq
N−β

,q
(RN ), for i = 1, 2 and all n ∈ N. Furthermore, with R = diam(Ω),

ˆ

RN

1

|x|β
(
W

2R
1,p[µi,n](x)

)q
dx ≤

ˆ ∞

0

(
1

|.|β
)∗

(t)
((

W
2R
1,p[µi,n]

)∗
(t)
)q
dt

≤ c34

ˆ ∞

0

1

t
β
N

((
W

2R
1,p[µi,n]

)∗
(t)
)q
dt

≤ c34||W2R
1,p[µi,n]||q

L
Nq

N−β
,q
(RN )

<∞.

Then the result follows from Theorem 1.4.1.
2. Because µ is absolutely continuous with respect to the capacity Cap

p, Nq
Nq−(p−1)(N−β))

,1
,

so are µ+ and µ−. Applying again Theorem 1.2.8 there exist two nondecreasing sequences
{µ1,n} and {µ2,n} of positive bounded measures with compact support in Ω which converge

to µ+ and µ− respectively and such that W
R
1,p[µi,n] ∈ L

Nq
N−β

,1
(RN ). This implies in parti-

cular (
W

2R
1,p[µi,n](.)

)∗
(t) ≤ c35t

−N−β
Nq , ∀t > 0,

for some c34 > 0. Therefore, by Theorem 1.2.3
ˆ

Ω

1

|x|β g
(
cW2R

1,p[µi,n](x)
)
dx ≤

ˆ |Ω|

0

(
1

|.|β
)∗

(t)g
(
c
(
W

2R
1,p[µi,n]

)∗
(t)
)
dt

≤ c36

ˆ |Ω|

0

1

t
β
N

g
(
c
(
W

2R
1,p[µi,n]

)∗
(t)
)
dt

≤ c36

ˆ |Ω|

0

1

t
β
N

g
(
c35ct

−N−β
Nq

)
dt

≤ c37

ˆ ∞

a
g(t)t−q−1dt

<∞,

where a > 0 depends on |Ω|, c35c, N , β, q. Thus the result follows by Theorem 1.4.1.
Proof of Theorem 1.1.2. Again we take R = diam (Ω). Let {Ωn}n∈N∗ be an increasing
sequence of compact subsets of Ω such that ∪nΩn = Ω. We define µi,n = Tn(χΩnfi)+χΩnνi
(i = 1, 2). Then {µ1,n} and {µ2,n} are nondecreasing sequences of elements of M+

b (Ω) with
compact support, and they converge to µ+ and µ− respectively. Since for any ε > 0 there
exists cε > 0 such that

(
W

2R
1,p[µi,n]

)λ ≤ cεn
λ

p−1 + (1 + ε)
(
W

2R
1,p[νi]

)λ
,
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a.e. in Ω, it follows

exp
(
τ
(
cW2R

1,p[µi,n]
)λ) ≤ cε,n,c exp

(
τ(1 + ε)

(
cW2R

1,p[νi]
)λ)

.

If there holds

||M
(p−1)(λ−1)

λ
p,2R [νi]||L∞(Ω) <

(
p ln 2

λ(12λc)λ

) p−1
λ

,

we can choose ε > 0 small enough so that

λ(1 + ε)cλ <
p ln 2

(12λ)λ||M
(p−1)(λ−1)

λ
p,2R [νi]||

λ
p−1

L∞(Ω)

.

Hence, by Theorem 1.2.5 with η = (p−1)(λ−1)
λ , exp

(
τ(1 + ε)

(
cW2R

1,p[νi]
)λ) ∈ L1(Ω), which

implies exp
(
τ
(
cW2R

1,p[µi,n]
)λ) ∈ L1(Ω). We conclude by Theorem 1.4.1.
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Chapitre 2

Quasilinear and Hessian type

equations with exponential reaction

and measure data

Abstract 1

We prove existence results concerning equations of the type −∆pu = P (u) + µ for p > 1
and Fk[−u] = P (u)+µ with 1 ≤ k < N

2 in a bounded domain Ω or the whole R
N , where µ

is a positive Radon measure and P (u) ∼ eau
β

with a > 0 and β ≥ 1. Sufficient conditions
for existence are expressed in terms of the fractional maximal potential of µ. Two-sided
estimates on the solutions are obtained in terms of some precise Wolff potentials of µ.
Necessary conditions are obtained in terms of Orlicz capacities. We also establish existence
results for a general Wolff potential equation under the form u = W

R
α,p[P (u)] + f in R

N ,
where 0 < R ≤ ∞ and f is a positive integrable function.

1. Archive for Rational Mechanics and Analysis, 214, 235-267 (2014).
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2.1. INTRODUCTION

2.1 Introduction

Let Ω ⊂ R
N be either a bounded domain or the whole R

N , p > 1 and k ∈ {1, 2, ..., N}.
We denote by

∆pu := div
(
|∇u|p−2∇u

)

the p-Laplace operator and by

Fk[u] =
∑

1≤j1<j2<...<jk≤N
λj1λj2 ...λjk

the k-Hessian operator where λ1, ..., λN are the eigenvalues of the Hessian matrix D2u.
Let µ be a positive Radon measure in Ω ; our aim is to study the existence of nonnegative
solutions to the following boundary value problems if Ω is bounded,

−∆pu = P (u) + µ in Ω,
u = 0 on ∂Ω,

(2.1.1)

and

Fk[−u] = P (u) + µ in Ω,
u = ϕ on ∂Ω,

(2.1.2)

where P is an exponential function. If Ω = R
N , we consider the same equations, but the

boundary conditions are replaced by infRN u = 0. When P (r) = rq with q > p−1, Phuc and
Verbitsky published a seminal article [20] on the solvability of the corresponding problem
(2.1.1). They obtained necessary and sufficient conditions involving Bessel capacities or
Wolff potentials. For example, assuming that Ω is bounded, they proved that if µ has
compact support in Ω it is equivalent to solve (2.1.1) with P (r) = rq, or to have

µ(E) ≤ cCapGp,
q

q+1−p
(E) for all compact set E ⊂ Ω, (2.1.3)

where c is a suitable positive constant and CapGp,
q

q+1−p
a Bessel capacity, or to have

´

B

(
W

2R
1,p[µB](x)

)q
dx ≤ Cµ(B) for all ball B s.t. B ∩ suppµ 6= ∅, (2.1.4)

where R = diam(Ω). Other conditions are expressed in terms of Riesz potentials and
maximal fractional potentials. Their construction is based upon sharp estimates of solutions
of the non-homogeneous problem

−∆pu = ω in Ω,
u = 0 on ∂Ω,

(2.1.5)

for positive measures ω. We refer to [4, 5, 6, 7, 9, 13, 23] for the previous studies of these
and other related results. Concerning the k-Hessian operator in a bounded (k − 1)-convex
domain Ω, they proved that if µ has compact support and ||ϕ||L∞(∂Ω) is small enough, the
corresponding problem (2.1.2) with P (r) = rq with q > k admits a nonnegative solution if
and only if

µ(E) ≤ cCapG2k,
q

q−k
(E) for all compact set E ⊂ Ω, (2.1.6)
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2.1. INTRODUCTION

or equivalently
ˆ

B

[
W

2R
2k
k+1

,k+1
[µB(x)]

]q
dx ≤ Cµ(B) for all ball B s.t. B ∩ suppµ 6= ∅. (2.1.7)

The results concerning the linear case p = 2 and k = 1, can be found in [2, 3, 28].
The main tools in their proofs are derived from recent advances in potential theory for
nonlinear elliptic equations obtained by Kilpelainen and Malý [15, 16], Trudinger and Wang
[24, 25, 26], and Labutin [18] thanks to whom the authors first provide global pointwise
estimates for solutions of the homogeneous Dirichlet problems in terms of Wolff potentials
of suitable order.

For s > 1, 0 < α < N
s , η ≥ 0 and 0 < T ≤ ∞, we recall that the T -truncated Wolff

potential of a positive Radon measure µ is defined in R
N by

W
T
α,s[µ](x) =

ˆ T

0

(
µ(Bt(x))

tN−αs

) 1
s−1 dt

t
, (2.1.8)

the T -truncated Riesz potential of a positive Radon measure µ by

I
T
α [µ](x) =

ˆ T

0

µ(Bt(x))

tN−α
dt

t
, (2.1.9)

and the T -truncated η-fractional maximal potential of µ by

M
η
α,T [µ](x) = sup

{
µ(Bt(x))

tN−αhη(t)
: 0 < t ≤ T

}
, (2.1.10)

where hη(t) = (− ln t)−ηχ(0,2−1)(t) + (ln 2)−ηχ[2−1,∞)(t). If η = 0, then hη = 1 and we
denote by Mα,T [µ] the corresponding T -truncated fractional maximal potential of µ. We
also denote by Wα,s[µ] (resp Iα[µ], M

η
α[µ] ) the ∞-truncated Wolff potential (resp Riesz

Potential, η− fractional maximal potential) of µ. When the measures are only defined in
an open subset Ω ⊂ R

N , they are naturally extended by 0 in Ωc. For l ∈ N
∗, we define the

l-truncated exponential function

Hl(r) = er −
l−1∑

j=0

rj

j!
, (2.1.11)

and for a > 0 and β ≥ 1, we set

Pl,a,β(r) = Hl(ar
β). (2.1.12)

We put

Qp(s) =





∞∑
q=l

s
βq
p−1

q
βq
p−1 q!

if p 6= 2,

Hl(s
β) if p = 2,

(2.1.13)

Q∗
p(r) = max {rs−Qp(s) : s ≥ 0} is the complementary function to Qp, and define the

corresponding Bessel and Riesz capacities respectively by

CapGαp,Q∗
p
(E) = inf

{
ˆ

RN

Q∗
p(f)dx : Gαp ∗ f ≥ χE , f ≥ 0, Q∗

p(f) ∈ L1(RN )

}
, (2.1.14)
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2.1. INTRODUCTION

and

CapIαp,Q∗
p
(E) = inf

{
ˆ

RN

Q∗
p(f)dx : Iαp ∗ f ≥ χE , f ≥ 0, Q∗

p(f) ∈ L1(RN )

}
, (2.1.15)

where E is a Borel set in R
N , Gαp(x) = F−1

(
(1 + |.|2)−αp

2

)
(x) is the Bessel kernel of

order αp and Iαp(x) = (N − αp)−1|x|−(N−αp).

The expressions a ∧ b and a ∨ b stand for min{a, b} and max{a, b} respectively. We
denote by Br the ball of center 0 and radius r > 0. Our main results are the following
theorems.

Theorem 2.1.1 Let 1 < p < N , a > 0, l ∈ N
∗ and β ≥ 1 such that lβ > p − 1. Let

Ω ⊂ R
N be a bounded domain. If µ is a nonnegative Radon measure in Ω, there exists

M > 0 depending on N, p, l, a, β and diam (Ω) (the diameter of Ω) such that if

||M
(p−1)(β−1)

β

p,2 diam (Ω)[µ]||L∞(RN ) ≤M,

and ω =M ||M
(p−1)(β−1)

β

p,2 diam(Ω)[1]||
−1
L∞(RN )

+µ with cp = 1 ∨ 4
2−p
p−1 , then Pl,a,β

(
2cpK1W

2 diam (Ω)
1,p [ω]

)

is integrable in Ω and the following Dirichlet problem

−∆pu = Pl,a,β(u) + µ in Ω,
u = 0 on ∂Ω,

(2.1.16)

admits a nonnegative renormalized solution u which satisfies

u(x) ≤ 2cpK1W
2 diam (Ω)
1,p [ω](x) ∀x ∈ Ω. (2.1.17)

The role of K1 = K1(N, p) will be made explicit in Theorem 2.3.4.

Conversely, if (2.1.16) admits a nonnegative renormalized solution u and Pl,a,β(u) is in-
tegrable in Ω, then for any compact set K ⊂ Ω, there exists a positive constant C depending
on N, p, l, a, β and dist(K, ∂Ω) such that

ˆ

E
Pl,a,β(u)dx+ µ(E) ≤ CCapGp,Q∗

p
(E) for all Borel sets E ⊂ K. (2.1.18)

Furthermore, u ∈W 1,p1
0 (Ω) for all 1 ≤ p1 < p.

When Ω = R
N , we have a similar result provided µ has compact suppport.

Theorem 2.1.2 Let 1 < p < N , a > 0, l ∈ N
∗ and β ≥ 1 such that lβ > N(p−1)

N−p and

R > 0. If µ is a nonnegative Radon measure in R
N with supp(µ) ⊂ BR there exists M > 0

depending on N, p, l, a, β and R such that if

||M
(p−1)(β−1)

β
p [µ]||L∞(RN ) ≤M,
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2.1. INTRODUCTION

and ω = M ||M
(p−1)(β−1)

β
p [χBR

]||−1
L∞(RN )

χBR
+ µ, then Pl,a,β (2cpK1W1,p[ω]) is integrable in

R
N and the following problem

−∆pu = Pl,a,β(u) + µ in D′(RN ),
infRN u = 0,

(2.1.19)

admits a p-superharmonic solution u which satisfies

u(x) ≤ 2cpK1W1,p[ω](x) ∀x ∈ R
N , (2.1.20)

(cp and K1 as in Theorem 2.1.1).

Conversely, if (2.1.19) has a solution u and Pl,a,β(u) is locally integrable in R
N , then

there exists a positive constant C depending on N, p, l, a, β such that
ˆ

E
Pl,a,β(u)dx+ µ(E) ≤ CCapIp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (2.1.21)

Furthermore, u ∈W 1,p1
loc (RN ) for all 1 ≤ p1 < p.

Concerning the k-Hessian operator we recall some notions introduced by Trudinger
and Wang [24, 25, 26], and we follow their notations. For k = 1, ..., N and u ∈ C2(Ω) the
k-Hessian operator Fk is defined by

Fk[u] = Sk(λ(D
2u)),

where λ(D2u) = λ = (λ1, λ2, ..., λN ) denotes the eigenvalues of the Hessian matrix of
second partial derivatives D2u and Sk is the k-th elementary symmetric polynomial that
is

Sk(λ) =
∑

1≤i1<...<ik≤N
λi1 ...λik .

It is straightforward that
Fk[u] =

[
D2u

]
k
,

where in general [A]k denotes the sum of the k-th principal minors of a matrix A = (aij). In
order that there exists a smooth k-admissible function which vanishes on ∂Ω, the boundary
∂Ω must satisfy a uniformly (k-1)-convex condition, that is

Sk−1(κ) ≥ c0 > 0 on ∂Ω,

for some positive constant c0, where κ = (κ1, κ2, ..., κn−1) denote the principal curvatures
of ∂Ω with respect to its inner normal. We also denote by Φk(Ω) the class of upper-
semicontinuous functions Ω → [−∞,∞) which are k-convex, or subharmonic in the Per-
ron sense (see Definition 2.5.1). In this paper we prove the following theorem (in which
expression E[q] is the largest integer less or equal to q)

Theorem 2.1.3 Let k ∈ {1, 2, ...,E[N/2]} such that 2k < N , l ∈ N
∗, β ≥ 1 such that

lβ > k and a > 0. Let Ω be a bounded uniformly (k-1)-convex domain in R
N . Let ϕ be a

nonnegative continuous function on ∂Ω and µ = µ1 + f be a nonnegative Radon measure
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where µ1 has compact support in Ω and f ∈ Lq(Ω) for some q > N
2k . Let K2 = K2(N, k)

be the constant K2 which appears in Theorem 2.5.3. Then, there exist positive constants b,
M1 and M2 depending on N, k, l, a, β and diam (Ω) such that, if max∂Ω ϕ ≤M2 and

||M
k(β−1)

β

2k,2diam (Ω)[µ]||L∞(RN ) ≤M1,

then Pl,a,β

(
2K2W

2 diam (Ω)
2k
k+1

,k+1
[µ] + b

)
is integrable in Ω and the following Dirichlet problem

Fk[−u] = Pl,a,β(u) + µ in Ω,
u = ϕ on ∂Ω,

(2.1.22)

admits a nonnegative solution u, continuous near ∂Ω, with −u ∈ Φk(Ω) which satisfies

u(x) ≤ 2K2W
2diam (Ω)
2k
k+1

,k+1
[µ](x) + b ∀x ∈ Ω. (2.1.23)

Conversely, if (2.1.22) admits a nonnegative solution u, continuous near ∂Ω, such that
−u ∈ Φk(Ω) and Pl,a,β(u) is integrable in Ω, then for any compact set K ⊂ Ω, there exists
a positive constant C depending on N, k, l, a, β and dist(K, ∂Ω) such that there holds

ˆ

E
Pl,a,β(u)dx+ µ(E) ≤ CCapG2k,Q

∗
k+1

(E) ∀E ⊂ K,E Borel, (2.1.24)

where Qk+1(s) is defined by (2.1.13) with p = k + 1, Q∗
k+1 is its complementary function

and CapG2k,Q
∗
k+1

(E) is defined accordingly by (2.1.14).

The following extension holds when Ω = R
N .

Theorem 2.1.4 Let k ∈ {1, 2, ...,E[N/2]} such that 2k < N , l ∈ N
∗, β ≥ 1 such that lβ >

Nk
N−2k and a > 0, R > 0. If µ is a nonnegative Radon measure in R

N with supp(µ) ⊂ BR
there exists M > 0 depending on N, k, l, a, β and R such that if

||M
k(β−1)

β

2k [µ]||L∞(RN ) ≤M,

and ω =M ||M
k(β−1)

β

2k [χBR
]||−1
L∞(RN )

χBR
+ µ, then Pl,a,β

(
2K2W 2k

k+1
,k+1[ω]

)
is integrable in

R
N (K2 as in Theorem 2.1.3) and the following Dirichlet problem

Fk[−u] = Pl,a,β(u) + µ in R
N ,

infRN u = 0,
(2.1.25)

admits a nonnegative solution u with −u ∈ Φk(RN ) which satisfies

u(x) ≤ 2K2W 2k
k+1

,k+1[ω](x) ∀x ∈ R
N . (2.1.26)

Conversely, if (2.1.25) admits a nonnegative solution u with −u ∈ Φk(RN ) and Pl,a,β(u)
locally integrable in R

N , then there exists a positive constant C depending on N, k, l, a, β
such that there holds

ˆ

E
Pl,a,β(u)dx+ µ(E) ≤ CCapI2k,Q∗

k+1
(E) ∀E ⊂ R

N , E Borel. (2.1.27)

where CapI2k,Q∗
k+1

(E) is defined accordingly by (2.1.15).
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The four previous theorems are connected to the following results which deals with a
class of nonlinear Wolff integral equations.

Theorem 2.1.5 Let α > 0, p > 1, a > 0, ε > 0, R > 0, l ∈ N
∗ and β ≥ 1 such that

lβ > p − 1 and 0 < αp < N . Let f be a nonnegative measurable in R
N with the property

that µ1 = Pl,a+ε,β(f) is locally integrable in R
N and µ ∈ M

+(RN ). There exists M > 0
depending on N,α, p, l, a, β, ε and R such that if

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤M and ||M
(p−1)(β−1)

β

αp,R [µ1]||L∞(RN ) ≤M, (2.1.28)

then there exists a nonnegative function u such that Pl,a,β(u) is locally integrable in R
N

which satisfies
u = W

R
α,p[Pl,a,β(u) + µ] + f in R

N , (2.1.29)

and

u ≤ F := 2cpW
R
α,p[ω1] + 2cpW

R
α,p[ω2] + f, Pl,a,β (F ) ∈ L1

loc(R
N ), (2.1.30)

where ω1 =M ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN )

+ µ and ω2 =M ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN )

+ µ1.

Conversely, if (2.1.29) admits a nonnegative solution u and Pl,a,β(u) is locally integrable
in R

N , then there exists a positive constant C depending on N,α, p, l, a, β and R such that
there holds
ˆ

E
Pl,a,β(u)dx+

ˆ

E
Pl,a+ε,β(f)dx+µ(E) ≤ CCapGαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (2.1.31)

When R = ∞ in the above theorem, we have a similar result provided f and µ have
compact support in R

N .

Theorem 2.1.6 Let α > 0, p > 1, a > 0, ε > 0, R > 0, l ∈ N
∗ and β ≥ 1 such that

0 < αp < N and lβ > N(p−1)
N−αp . There exists M > 0 depending on N,α, p, l, a, β, ε and R

such that if f is a nonnegative measurable function in R
N with support in BR such that

µ1 = Pl,a+ε,β(f) is locally integrable in R
N and µ is a positive measure in R

N with support
in BR which verify

||M
(p−1)(β−1)

β
αp [µ]||L∞(RN ) ≤M and ||M

(p−1)(β−1)
β

αp [µ1]||L∞(RN ) ≤M, (2.1.32)

then there exists a nonnegative function u such that Pl,a,β(u) is integrable in R
N which

satisfies
u = Wα,p[Pl,a,β(u) + µ] + f in R

N , (2.1.33)

and
u ≤ F := 2cpWα,p[ω1] + 2cpWα,p[ω2] + f, Pl,a,β (F ) ∈ L1(RN ), (2.1.34)

where ω1 =M ||M
(p−1)(β−1)

β
αp [χBR

]||−1
L∞(RN )

χBR
+µ and ω2 =M ||M

(p−1)(β−1)
β

αp [χBR
]||−1
L∞(RN )

χBR
+

µ1.
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Conversely, if (2.1.33) admits a nonnegative solution u such that Pl,a,β(u) is integrable
in R

N , then there exists a positive constant C depending on N,α, p, l, a, β such that there
holds
ˆ

E
Pl,a,β(u)dx+

ˆ

E
Pl,a,β(f)dx+ µ(E) ≤ CCapIαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (2.1.35)

As an application of the Wolff integral equation we can notice that α = 1, equation
(2.1.33) is equivalent to

−∆p(u− f) = Pl,a,β(u) + µ in R
N .

When α = 2k
k+1 and p = k + 1, it is equivalent to

Fk[−u+ f ] = Pl,a,β(u) + µ in R
N .

If p = 2 equation (2.1.33) becomes linear. If we set γ = 2α, then

Wα,2[ω](x) =

ˆ ∞

0
ω(Bt(x))

dt

tN−γ+1

=

ˆ

RN

(
ˆ ∞

|x−y|

dt

tN−γ+1

)
dµ(y)

=
1

N − γ

ˆ

RN

dω(y)

|x− y|N−γ

= Iγ ∗ ω,

where Iγ is the Riesz kernel of order γ. Thus (2.1.33) is equivalent to

(−∆)α(u− f) = Pl,a,β(u) + µ in R
N .

Remark 2.1.7 In case Ω is a bounded open set, uniformly bounded of sequence {un}
(2.2.22) is essential for the existence of solutions of equations (2.1.16), (2.1.22) and (2.1.29).
Moreover, conditions lβ > p − 1 in Theorem 2.1.1, 2.1.5 and lβ > k in Theorem 2.1.3 is
necessary so as to get (2.2.22) from iteration schemes (2.2.20). Besides, in case Ω = R

N ,
equation (2.1.19) in Theorem 2.1.2 ( (2.1.25) in Theorem 2.1.4, (2.1.33) in Theorem 2.1.6
resp.) has nontrivial solution on R

N if and only if lβ > N(p−1)
N−p ( lβ > Nk

N−2k , lβ >
N(p−1)
N−αp

resp.). In fact, here we only need to consider equation (2.1.19). Assume that lβ ≤ N(p−1)
N−p ,

using Holder inequality we have Pl,a,β(u) ≥ cuγ where p− 1 < γ ≤ N(p−1)
N−p , so we get from

Theorem (2.3.4).
u ≥ KW1,p[cu

γ + µ] in R
N

for some constant K. Therefore, we can verify that
ˆ

E
uγdx+ µ(E) ≤ CCapIp, γ

γ−p+1
(E) ∀E ⊂ R

N , E Borel.

see Theorem 2.2.7, where C is a constant and CapIp, γ
γ−p+1

is a Riesz capacity.

Since N ≤ pγ
γ−p+1 (⇔ p− 1 < γ ≤ N(p−1)

N−p ), CapIp, γ
γ−p+1

(E) = 0 for all Borel set E, see [1].
Immediately, we deduce u ≡ 0 and µ ≡ 0.

46



2.2. ESTIMATES ON POTENTIALS AND WOLFF INTEGRAL EQUATIONS

2.2 Estimates on potentials and Wolff integral equations

We denote by Br(a) the ball of center a and radius r > 0, Br = Br(0) and by χE the
characteristic function of a set E. The next estimates are crucial in the sequel.

Theorem 2.2.1 Let α > 0, p > 1 such that 0 < αp < N .
1. There exists a positive constant c1, depending only on N,α, p such that for all µ ∈
M

+(RN ) and q ≥ p− 1, 0 < R ≤ ∞ we have

(c1q)
− q

p−1

ˆ

RN

(
I
R
αp[µ](x)

) q
p−1 dx ≤

ˆ

RN

(
W

R
α,p[µ](x)

)q
dx ≤ (c1q)

q

ˆ

RN

(
I
R
αp[µ](x)

) q
p−1 dx,

(2.2.1)

2. Let R > 0. There exists a positive constant c2, depending only on N,α, p,R such that
for all µ ∈ M

+(RN ) and q ≥ p− 1 we have

(c2q)
− q

p−1

ˆ

RN

(Gαp[µ](x))
q

p−1 dx ≤
ˆ

RN

(
W

R
α,p[µ](x)

)q
dx ≤ (c2q)

q

ˆ

RN

(Gαp[µ](x))
q

p−1 dx,

(2.2.2)
where Gαp[µ] := Gαp ∗ µ denotes the Bessel potential of order αp of µ.

3. There exists a positive constant c3, depending only on N,α,R such that for all µ ∈
M

+(RN ) and q ≥ 1 we have

c−q3

ˆ

RN

(Gα[µ](x))
q dx ≤

ˆ

RN

(
I
R
α [µ](x)

)q
dx ≤ cq3

ˆ

RN

(Gα[µ](x))
q dx. (2.2.3)

Proof. Note that W
R
α
2
,2[µ] = I

R
α [µ]. We can find proof of (2.2.3) in [8, Step 3, Theorem

2.3]. By [8, Step 2, Theorem 2.3], there is c4 > 0 such that
ˆ

RN

(
W

R
α,p[µ](x)

)q
dx ≥ cq4

ˆ

RN

(Mαp,R[µ](x))
q

p−1dx ∀q ≥ p−1, 0 < R ≤ ∞ and µ ∈ M
+(RN ).

(2.2.4)
We recall that Mαp,R[µ] = M

0
αp,R[µ] by (2.1.10). Next we show that for all q ≥ p − 1,

0 < R ≤ ∞ and µ ∈ M
+(RN ) there holds

ˆ

RN

(Mαp,R[µ](x))
q

p−1dx ≥ (c5q)
−q

ˆ

RN

(
W

R
α,p[µ](x)

)q
dx, (2.2.5)

for some positive constant c5 depending on N,α, p. Indeed, we denote µn by χBnµ for n ∈
N
∗. By [17, Theorem 1.2] or [8, Proposition 2.2], there exist constants c6 = c6(N,α, p) > 0,

a = a(α, p) > 0 and ε0 = ε(N,α, p) such that for all n ∈ N
∗, t > 0, 0 < R ≤ ∞ and

0 < ε < ε0, there holds
∣∣{WR

α,pµn > 3t
}∣∣ ≤ c6 exp

(
−aε−1

) ∣∣{WR
α,pµn > t

}∣∣+
∣∣∣
{
(Mαp,Rµn)

1
p−1 > εt

}∣∣∣ .

Multiplying by qtq−1 and integrating over (0,∞), we obtain
ˆ ∞

0
qtq−1

∣∣{WR
α,pµn > 3t

}∣∣ dt ≤ c6 exp
(
−aε−1

) ˆ ∞

0
qtq−1

∣∣{WR
α,pµn > t

}∣∣ dt

+

ˆ ∞

0
qtq−1

∣∣∣
{
(Mαp,Rµn)

1
p−1 > εt

}∣∣∣ dt,
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which implies

εq
(
3−q − c6 exp

(
−aε−1

)) ˆ

RN

(
W

R
α,p[µn](x)

)q
dx ≤

ˆ

RN

(Mαp,Rµn)
q

p−1dx.

We see that sup
0<ε<ε0

εq
(
3−q − c6 exp

(
−aε−1

))
≥ (c7q)

−q for some constant c7 which does

not depend on q. Therefore (2.2.5) follows by Fatou’s lemma. Hence, it is easy to obtain
(2.2.1) from (2.2.4) and (2.2.5). At end, we obtain (2.2.2) from (2.2.1) and (2.2.3).

The next result is proved in [8].

Theorem 2.2.2 Let α > 0, p > 1, 0 ≤ η < p − 1, 0 < αp < N and L > 0. Set

δ = 1
2

(
p−1−η
12(p−1)

) p−1
p−1−η

αp log(2). Then there exists C(L) > 0, depending on N , α, p, η and

L such that for any R ∈ (0,∞], µ ∈ M
+(RN ), any a ∈ R

N and 0 < r ≤ L, there holds

1

|B2r(a)|

ˆ

B2r(a)
exp


δ

(
W

R
α,p[µBr(a)](x)

) p−1
p−1−η

||Mη
αp,R[µBr(a)]||

1
p−1−η

L∞(Br(a))


 dx ≤ C(L), (2.2.6)

where µBr(a) = χBr(a)µ. Furthermore, if η = 0, C is independent of L.

Theorem 2.2.3 Let α > 0, p > 1 with 0 < αp < N , β ≥ 1 and R > 0. Assume
µ ∈ M

+(RN ) satisfies

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ 1, (2.2.7)

and set ω = ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN )

+ µ. Then there exist positive constants C, δ0 and c

independent on µ such that exp
(
δ0
(
W

R
α,p [ω]

)β)
is locally integrable in R

N ,

∥∥∥WR
α,p

[
exp

(
δ0
(
W

R
α,p [ω]

)β)]∥∥∥
L∞(RN )

≤ C, (2.2.8)

and
W

R
α,p

[
exp

(
δ0
(
W

R
α,p [ω]

)β)] ≤ cWR
α,p[ω] in R

N . (2.2.9)

Proof. Let δ be as in Theorem 2.2.2. From (2.2.7), we have

||M
(p−1)(β−1)

β

αp,R [ω]||L∞(RN ) ≤ 2.

Let x ∈ R
N . Since ω(Bt(y)) ≤ 2tN−αph (p−1)(β−1)

β

(t), for all r ∈ (0, R) and y ∈ R
N we have

W
R
α,p [ω] (y) = W

r
α,p [ω] (y) +

ˆ R

r

(
ω(Bt(y))

tN−αp

) 1
p−1 dt

t

≤ W
r
α,p [ω] (y) + 2

1
p−1

ˆ 2−1

r∧2−1

(− ln t)
−β−1

β
dt

t
+ 2

1
p−1

ˆ R∨2−1

2−1

(− ln t)
−β−1

β
dt

t

≤ W
r
α,p [ω] (y) + c8(− ln(r ∧ 2−1))

1
β + c8.
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Thus,

(
W

R
α,p [ω] (y)

)β ≤ 3β−1
(
W

r
α,p [ω] (y)

)β
+ c9 ln

(
1

r ∧ 2−1

)
+ c9. (2.2.10)

Let θ ∈ (0, 2
− β

p−1 ], since exp (a+b2 ) ≤ exp (a) + exp (b) for all a, b ∈ R, we get from (2.2.10)

exp
(
θδ3−β

(
W

R
α,p [ω] (y)

)β) ≤ exp
(
δ2

− β
p−1
(
W

r
α,p [ω] (y)

)β)
+ c10 exp

(
θc11 ln

(
1

r ∧ 2−1

))

= exp
(
δ2

− β
p−1
(
W

r
α,p [ω] (y)

)β)
+ c10

(
r ∧ 2−1

)−θc11 .
(2.2.11)

For r > 0, 0 < t ≤ r, y ∈ Br(x) there holdsBt(y) ⊂ B2r(x). Thus, Wr
α,p[ω] = W

r
α,p[ωB2r(x)]

in Br(x). Then, using (2.2.6) in Theorem 2.2.2 with η = (p−1)(β−1)
β and L = 2R we get

ˆ

Br(x)
exp

(
δ2

− β
p−1
(
W

r
α,p [ω]

)γ)
=

ˆ

Br(x)
exp

(
δ2

− β
p−1
(
W

r
α,p

[
ωB2r(x)

])γ) ≤ c12r
N .

Therefore, taking θ = 2
− β

p−1 ∧ αp
2c11

, we deduce from (2.2.11)

W
R
α,p

[
exp

(
θδ3−β

(
W

R
α,p [ω]

)γ)]
(x) ≤

ˆ R

0

(
c12r

αp + c13
(
r ∧ 2−1

)−θc11rαp
) 1

p−1 dr

r

≤
ˆ R

0

(
c12r

αp + c13
(
r ∧ 2−1

)−αp
2 rαp

) 1
p−1 dr

r

≤ c14.

Hence, we get (2.2.8) with δ0 =
(
2
− β

p−1 ∧ αp
2c11

)
δ3−β ; we also get (2.2.9) since W

R
α,p[ω] ≥

c15 for some positive constant c15 > 0.

We recall that Hl and Pl,a,β have been defined in (2.1.11) and (2.1.12).

Theorem 2.2.4 Let α > 0, p > 1, l ∈ N
∗ and β ≥ 1 such that 0 < αp < N , lβ > N(p−1)

N−αp
and R > 0. Assume that µ ∈ M

+(RN ) has support in BR and verifies

||M
(p−1)(β−1)

β
αp [µ]||L∞(RN ) ≤ 1, (2.2.12)

and set ω = ||M
(p−1)(β−1)

β
αp [χBR

]||−1
L∞(RN )

χBR
+µ. Then there exist C = C(N,α, p, l, β, R) > 0

and δ1 = δ1(N,α, p, l, β, R) > 0 such that Hl

(
δ1 (Wα,p[ω])

β
)

is integrable in R
N and

Wα,p

[
Hl

(
δ1 (Wα,p[ω])

β
)]

(x) ≤ CWα,p[ω](x) ∀ x ∈ R
N . (2.2.13)

Proof. We have from (2.2.12)

||M
(p−1)(β−1)

β
αp [ω]||L∞(RN ) ≤ 2. (2.2.14)
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In particular, ω(BR) ≤ c16. Let δ1 > 0 and x ∈ R
N fixed. We split the Wolff potential

Wα,p[ω] into lower and upper parts defined by

L
t
α,p[ω](x) =

ˆ +∞

t

(
ω(Br(x))

rN−αp

) 1
p−1 dr

r
,

and

W
t
α,p[ω](x) =

ˆ t

0

(
ω(Br(x))

rN−αp

) 1
p−1 dr

r
.

Using the convexity we have

Hl

(
δ1 (Wα,p[ω])

β
)
≤ Hl

(
δ12

β
(
L
t
α,p[ω]

)β)
+Hl

(
δ12

β
(
W

t
α,p[ω]

)β)
.

Thus,

Wα,p

[
Hl

(
δ1 (Wα,p[ω])

β
)]

(x) ≤ c17

ˆ +∞

0

(
ω1
t (Bt(x))

tN−αp

) 1
p−1 dt

t
+c17

ˆ +∞

0

(
ω2
t (Bt(x))

tN−αp

) 1
p−1 dt

t
,

where dω1
t = Hl

(
δ12

β
(
L
t
α,p[ω]

)β)
dx and dω2

t = Hl

(
δ12

β
(
W

t
α,p[ω]

)β)
dx. Inequality

(2.2.13) will follows from the two inequalities below,

ˆ +∞

0

(
ω1
t (Bt(x))

tN−αp

) 1
p−1 dt

t
≤ c18Wα,p[ω](x), (2.2.15)

and
ω2
t (Bt(x)) ≤ c18ω(B4t(x)). (2.2.16)

Step 1 : Proof of (2.2.15). Since Br(y) ⊂ B2r(x) for y ∈ Bt(x) and r ≥ t, there holds

L
t
α,p[ω](y) ≤

ˆ +∞

t

(
ω(B2r(x))

rN−αp

) 1
p−1 dr

r
= 2

N−αp
p−1 L

2t
α,p[ω](x).

It follows
ω1
t (Bt(x)) ≤ |B1(0)|tNHl

(
δ1c19

(
L
2t
α,p[ω](x)

)β)
.

Thus,
ˆ +∞

0

(
ω1
t (Bt(x))

tN−αp

) 1
p−1 dt

t
≤ c20

ˆ ∞

0
At(x)dt, (2.2.17)

where

At(x) =
(
tαpHl

(
δ1c19

(
L
2t
α,p[ω](x)

)β)) 1
p−1 1

t
.

Since Hl(s) ≤ sl exp(s) for all s ≥ 0,

At(x) ≤ c21

(
tαp
(
L
2t
α,p[ω](x)

)lβ
exp

(
δ1c19

(
L
2t
α,p[ω](x)

)β)) 1
p−1 1

t

= c21t
αp
p−1

−1 (
L
2t
α,p[ω](x)

) lβ−p+1
p−1 exp

(
δ1c22

(
L
2t
α,p[ω](x)

)β)
L
2t
α,p[ω](x).
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Now we estimate L
2t
α,p[ω].

Case 1 : t ∈ (0, 1). From (2.2.14) we deduce

L
2t
α,p[ω](x) ≤

ˆ 1/2

t/2

(
ω(Bs(x))

sN−αp

) 1
p−1 ds

s
+

ˆ ∞

1/2

(
ω(Bs(x))

sN−αp

) 1
p−1 ds

s

≤ c23

ˆ 1/2

t/2
(−ln(s))−1+ 1

β
ds

s
+

ˆ ∞

1/2

(
ω(BR)

sN−αp

) 1
p−1 ds

s

≤ c24 (− ln(t/2))
1
β ,

which implies

At(x) ≤ c25t
αp
p−1

−1
(− ln(t/2))

lβ−p+1
β(p−1) exp (δ1c26(− ln(t/2)))L2t

α,p[ω](x)

= c27t
αp
p−1

−1
(− ln(t/2))

lβ−p+1
β(p−1) t−δ1c26L2t

α,p[ω](x).

We take δ1 ≤ 1
2c26

(
αp
p−1 − 1

)
and obtain

At(x) ≤ c28L
2t
α,p[ω](x) ∀t ∈ (0, 1). (2.2.18)

Case 2 : t ≥ 1. We have

L
2t
α,p[ω](x) ≤

ˆ ∞

2t

(
ω(BR)

sN−αp

) 1
p−1 ds

s
= c29t

−N−αp
p−1 ,

thus

At(x) ≤ c30t
αp
p−1

−1
t
− (lβ−p+1)(N−αp)

(p−1)2 exp

(
δ1c31t

−β(N−αp)
p−1

)
L
2t
α,p[ω](x)

≤ c32t
−1−γ

L
2t
α,p[ω](x),

where γ = 1
p−1

(
lβ(N−αp)

p−1 −N
)
> 0.

Therefore, At(x) ≤ c33(t ∨ 1)−1−γ
L
2t
α,p[ω](x) for all t > 0. Therefore, from (2.2.17)

ˆ +∞

0

(
ω1
t (Bt(x))

tN−αp

) 1
p−1 dt

t
≤ c34

ˆ ∞

0
(t ∨ 1)−1−γ

L
2t
α,p[ω](x)dt.

Using Fubini Theorem we get

ˆ +∞

0

(
ω1
t (Bt(x))

tN−αp

) 1
p−1 dt

t
≤ c34

ˆ ∞

0

ˆ t/2

0
(s ∨ 1)−1−γds

(
ω(Bt(x))

tN−αp

) 1
p−1 dt

t

≤ c35

ˆ ∞

0

(
ω(Bt(x))

tN−αp

) 1
p−1 dt

t

= c35Wα,p[µ](x),

which follows (2.2.15).
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Step 2 : Proof of (2.2.16). For t > 0, r ≤ t and y ∈ Bt(x) we have Br(y) ⊂ B2t(x), thus

ω2
t (Bt(x)) =

ˆ

Bt(x)
Hl

(
δ12

β
(
W

t
α,p[ωB2t(x)](y)

)β)
dy.

By Theorem 2.2.2 there exists c36 > 0 such that for 0 < δ1 ≤ c36, 0 < t < 2R, z ∈ R
N ,

ˆ

B4t(z)
exp

(
δ12

β
(
Wα,p[ωB2t(z)](y)

)β)
dy ≤ c37t

N . (2.2.19)

We take 0 < δ1 ≤ c36.

Case 1 : x ∈ BR. If 0 < t < 2R, from (2.2.19) we get

ω2
t (Bt(x)) ≤ c37t

N ≤ c38ω(B4t(x)).

If t ≥ 2R, since for any |y| ≥ 2R,

Wα,p[ω](y) =

ˆ ∞

|y|/2

(
ω(Bt(y))

tN−αp

) 1
p−1 dt

t
≤ c39

ˆ ∞

|y|/2
t
−1−N−αp

p−1 dt ≤ c40|y|−
N−αp
p−1 ,

and thanks to (2.2.19) we have

ω2
t (Bt(x)) ≤

ˆ

B2R

exp
(
δ12

β (Wα,p[ωBR
](y))β

)
dy +

ˆ

RN\B2R

Hl

(
δ12

β (Wα,p[ω](y))
β
)
dy

≤ c41R
N +

ˆ

RN\B2R

Hl

(
c42|y|−

β(N−αp)
p−1

)
dy

≤ c43 + c43

ˆ

RN\B2R

|y|−
lβ(N−αp)

p−1 dy = c43 + c44R
N− lβ(N−αp)

p−1

≤ c45|B4t(x) ∩BR| ≤ c46ω(B4t(x)).

From this we also have Hl

(
δ1 (Wα,p[ω])

β
)
∈ L1(RN ).

Case 2 : x ∈ R
N\BR. If |x| > R + t then ω2

t (Bt(x)) = 0. Next we consider the case
R < |x| ≤ R+ t. If 0 < t < 2R, we have Bt/2((R− t

2)
x
|x|) ⊂ B4t(x)∩BR ; thus from (2.2.19)

we get

ω2
t (Bt(x)) ≤ c47t

N = c48

∣∣∣∣Bt/2
(
(R− t

2
)
x

|x|

)∣∣∣∣ ≤ c48 |B4t(x) ∩BR| ≤ c49ω(B4t(x)).

If t ≥ 2R, as in Case 1 we also obtain ω2
t (Bt(x)) ≤ c50ω(B4t(x)) since BR ⊂ B4t(x). Hence,

we get (2.2.16). Therefore, the result follows with δ1 =
(

1
2c26

(
αp
p−1 − 1

))
∧ c36.

In the next result we obtain estimate on a sequence of solutions of Wolff integral
inequations obtained by induction.

Theorem 2.2.5 Assume that the assumptions on α, p, l, a, β, ε, f , µ1 and µ of Theorem
2.1.5 are fulfilled and R,K are positive real numbers. Suppose that {um} is a sequence of
nonnegative measurable functions in R

N that satisfies

um+1 ≤ KW
R
α,p[Pl,a,β(um) + µ] + f ∀m ∈ N,

u0 ≤ KW
R
α,p[µ] + f.

(2.2.20)

52



2.2. ESTIMATES ON POTENTIALS AND WOLFF INTEGRAL EQUATIONS

Then there exists M > 0 depending on N,α, p, l, a, β, ε,K and R such that if

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤M and ||M
(p−1)(β−1)

β

αp,R [µ1]||L∞(RN ) ≤M,

there holds
Pl,a,β

(
4cpKW

R
α,p[ω1] + 4cpKW

R
α,p[ω2] + f

)
∈ L1

loc(R
N ), (2.2.21)

and
um ≤ 2cpKW

R
α,p[ω1] + 2cpKW

R
α,p[ω2] + f ∀m ∈ N, (2.2.22)

where

ω1 =M ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN )

+ µ, (2.2.23)

ω2 =M ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN )

+ µ1, (2.2.24)

and cp = 1 ∨ 4
2−p
p−1 .

Furthermore, if f ≡ 0 then (2.2.21) and (2.2.22) are satisfied with ω2 ≡ 0.

Proof. The proof is based upon Theorems 2.2.3 and 2.2.4. Set ca,ε = 2

(
1−

(
a
a+ε

)1/β)−1

and a = a (4ca,εcpK)β . If 0 < M ≤ 1 we define ω1 and ω2 by (2.2.23) and (2.2.24)
respectively. We now assume

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤M and ||M
(p−1)(β−1)

β

αp,R [µ1]||L∞(RN ) ≤M.

We prove first that

W
R
α,p

[
Hl

(
a
(
W

R
α,p[ωi]

)β)] ≤ W
R
α,p[ωi] for i = 1, 2. (2.2.25)

By Theorem 2.2.3, there exist c, δ0 > 0 independent on µ such that exp
(
δ0
(
W

R
α,p

[
M−1ωi

])β)

is locally integrable in R
N and

W
R
α,p

[
exp

(
δ0
(
W

R
α,p

[
M−1ωi

])β)] ≤ cWR
α,p[M

−1ωi] in R
N .

Since θ−lHl(s) ≤ Hl(θ
−1s) for all s ≥ 0 and 0 < θ ≤ 1, it follows

W
R
α,p

[
M

− 1
2

(

βl
p−1

+1
)

Hl

(
δ0M

− 1
2

(

β
p−1

− 1
l

) (
W

R
α,p[ωi]

)β
)]

≤ W
R
α,p

[
Hl

(
δ0M

− β
p−1
(
W

R
α,p[ωi]

)β)]

≤ W
R
α,p

[
exp

(
δ0
(
W

R
α,p[M

−1ωi]
)β)]

≤ cM
− 1

p−1W
R
α,p[ωi].

Hence,

W
R
α,p

[
Hl

(
δ0M

− 1
2

(

β
p−1

− 1
l

) (
W

R
α,p[ωi]

)β
)]

≤ cM
1

2(p−1)

(

βl
p−1

−1
)

W
R
α,p[ωi].
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Therefore (2.2.25) is achieved if we prove

a ≤ δ0M
− 1

2

(

β
p−1

− 1
l

)

and cM
1

2(p−1)

(

βl
p−1

−1
)

≤ 1,

which is equivalent to

M ≤
(
δ0a

−1
)( 1

2

(

β
p−1

− 1
l

))−1

∧ c−
(

1
2(p−1)

(

βl
p−1

−1
))−1

.

Thus, we choose M = 1 ∧
(
δ0a

−1
)( 1

2

(

β
p−1

− 1
l

))−1

∧ c−
(

1
2(p−1)

(

βl
p−1

−1
))−1

; we obtain (2.2.25)

and the fact that Hl

(
a
(
W

R
α,p[ωi]

)β) ∈ L1
loc(R

N ).

Now, we prove (2.2.22) by induction. Clearly, (2.2.22) holds with m = 0. Next we assume
that (2.2.22) holds with m = n, and we claim that

un+1 ≤ 2cpKW
R
α,p[ω1] + 2cpKW

R
α,p[ω2] + f. (2.2.26)

In fact, since (2.2.22) holds with m = n and Pl,a,β is convex, we have

Pl,a,β (un) ≤ Pl,a,β
(
4cpKW

R
α,p[ω1] + 4cpKW

R
α,p[ω2] + f

)

≤ Pl,a,β
(
4ca,εcpKW

R
α,p[ω1]

)
+ Pl,ε,a

(
4ca,εcpKW

R
α,p[ω2]

)
+ Pl,a,β

((
1 +

ε

a

)1/β
f

)

= Hl

(
a
(
W

R
α,p[ω1]

)β)
+Hl

(
a
(
W

R
α,p[ω2]

)β)
+ Pl,a+ε,β(f).

From this we derive (2.2.21). By the definition of un+1 and the sub-additive property of
W

R
α,p[.], we obtain

un+1 ≤ KW
R
α,p

[
Hl

(
a
(
W

R
α,p[ω1]

)β)
+Hl

(
a
(
W

R
α,p[ω2]

)β)
+ Pl,a+ε,β(f) + µ

]
+ f

≤ cpKW
R
α,p

[
Hl

(
a
(
W

R
α,p[ω1]

)β)]
+ cpKW

R
α,p

[
Hl

(
a
(
W

R
α,p[ω2]

)β)]

+ cpKW
R
α,p [Pl,a+ε,β(f)] + cpKW

R
α,p [µ] + f.

Hence follows (2.2.26) from (2.2.25). This completes the proof of the theorem.

The next result is obtained by an easy adaptation of the proof Theorem 2.2.5.

Theorem 2.2.6 Assume that the assumptions on α, p, a, l, β, ε, f , µ1 and µ of Theorem
2.1.6 are fulfilled and R,K are positive real numbers. Suppose that {um} is a sequence of
nonnegative measurable functions in R

N that satisfies

um+1 ≤ KWα,p[Pl,a,β(um) + µ] + f ∀m ∈ N,

u0 ≤ KWα,p[µ] + f.
(2.2.27)

Then there exists M > 0 depending on N,α, p, l, a, β, ε,K and R such that if

||M
(p−1)(β−1)

β
αp [µ]||L∞(RN ) ≤M and ||M

(p−1)(β−1)
β

αp [µ1]||L∞(RN ) ≤M,
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there holds
Pl,a,β (4cpKWα,p[ω3] + 4cpKWα,p[ω4] + f ) ∈ L1(RN ), (2.2.28)

and
um ≤ 2cpKWα,p[ω3] + 2cpKWα,p[ω4] + f ∀m ∈ N, (2.2.29)

where

ω3 =M ||M
(p−1)(β−1)

β
αp [χBR

]||−1
L∞(RN )

χBR
+ µ, (2.2.30)

and

ω4 =M ||M
(p−1)(β−1)

β
αp [χBR

]||−1
L∞(RN )

χBR
+ µ1. (2.2.31)

Furthermore, if f ≡ 0 then (2.2.28) and (2.2.29) are satisfied with ω4 ≡ 0.

Let P ∈ C(R+) be a decreasing positive function. The (α, P )-Orlicz-Bessel capacity of
a Borel set E ⊂ R

N is defined by (see [1, Sect 2.6])

CapGα,P (E) = inf

{
ˆ

RN

P (f)dx : Gα ∗ f ≥ χE , f ≥ 0, P (f) ∈ L1(RN )

}
,

and the (α, P )-Orlicz-Riesz capacity

CapIα,P (E) = inf

{
ˆ

RN

P (f)dx : Iα ∗ f ≥ χE , f ≥ 0, P (f) ∈ L1(RN )

}
.

Theorem 2.2.7 Let α > 0, p > 1, a > 0, c > 0, l ∈ N
∗ and β ≥ 1 such that lβ > p − 1

and 0 < αp < N . Let µ ∈ M
+(RN ).

1. Let 0 < R ≤ ∞. If u is a nonnegative Borel function in R
N such that Pl,a,β(u) is locally

integrable in R
N and

u(x) ≥ cWR
α,p[Pl,a,β(u) + µ](x) ∀x ∈ R

N , (2.2.32)

then the following statements holds.
(i) If R <∞, there exists a positive constant C1 depending on N,α, p, l, a, β, c and R such
that

ˆ

E
Pl,a,β(u)dx+ µ(E) ≤ C1CapGαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (2.2.33)

(ii) If R = ∞, there exists a positive constant C2 depending on N,α, p, l, a, β, c such that

ˆ

E
Pl,a,β(u)dx+ µ(E) ≤ C2CapIαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (2.2.34)

2. Let Ω be a bounded domain in R
N , µ ∈ M

+(Ω) and δ ∈ (0, 1). If u is a nonnegative
Borel function in Ω such that Pl,a,β(u) is locally integrable in Ω and

u(x) ≥ cWδd(x,∂Ω)
α,p [Pl,a,β(u) + µ](x) ∀x ∈ Ω, (2.2.35)
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then, for any compact set K ⊂ Ω, there exists a positive constant C3 depending on N,α, p, l, a, β, c, δ
and dist(K, ∂Ω) such that

ˆ

E
Pl,a,β(u)dx+ µ(E) ≤ C3CapGαp,Q∗

p
(E) ∀E ⊂ K,E Borel, (2.2.36)

where Q∗
p is the complementary function to Qp.

Proof. Set dω = Pl,a,β(u)dx+ dµ.
1. We have

Pl,a,β
(
cWR

α,p[ω]
)
dx ≤ dω in R

N .

Let Mω denote the centered Hardy-Littlewood maximal function which is defined for any
f ∈ L1

loc(R
N , dω) by

Mωf(x) = sup
t>0

1

ω(Bt(x))

ˆ

Bt(x)
|f |dω.

If E ⊂ R
N is a Borel set, we have

ˆ

RN

(MωχE)
lβ

p−1Pl,a,β
(
cWR

α,p[ω]
)
dx ≤

ˆ

RN

(MωχE)
lβ

p−1dω.

Since Mω is bounded on Ls(RN , dω), s > 1, we deduce from Fefferman’s result [11] that
ˆ

RN

(MωχE)
lβ

p−1Pl,a,β
(
cWR

α,p[ω]
)
dx ≤ c51ω(E),

for some constant c51 only depends on N and lβ
p−1 . Since MωχE ≤ 1, we derive

(MωχE(x))
lβ

p−1Pl,a,β
(
cWR

α,p[ω](x)
)
≥ Pl,a,β

(
c (MωχE(x))

1
p−1 W

R
α,p[ω](x)

)

≥ Pl,a,β
(
cWR

α,p[ωE ](x)
)
,

where ωE = χEω. Thus
ˆ

RN

Pl,a,β
(
cWR

α,p[ωE ]
)
dx ≤ c51ω(E) ∀E ⊂ R

N , E Borel. (2.2.37)

From (2.2.1), (2.2.2) and (2.2.3) we get
ˆ

RN

Pl,a,β
(
cWR

α,p[ωE ](x)
)
dx ≥

ˆ

RN

Qp (c52Gαp[ωE ](x)) dx if R <∞,

and
ˆ

RN

Pl,a,β
(
cWR

α,p[ωE ](x)
)
dx ≥

ˆ

RN

Qp (c53Iαp[ωE ](x)) dx if R = ∞,

where Qp is defined by (2.1.13) and c52 = (c2β)
−1a

p−1
β cp−1 if p 6= 2, c52 = c−1

3 a
1
β c if p = 2

(the constants c2, c3 defined in (2.2.2) and (2.2.3), depend on R, therefore c52 = c52(rK))
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and c53 = (c1β)
−1a

p−1
β cp−1 if p 6= 2, c53 = a

1
β c if p = 2. Thus, from (2.2.37) we obtain that

for all Borel set E ⊂ R
N there holds

ˆ

RN

Qp (c52Gαp[ωE ](x)) dx ≤ c51ω(E) if R <∞,

and
ˆ

RN

Qp (c53Iαp[ωE ](x)) dx ≤ c51ω(E) if R = ∞.

We recall that Q∗
p(s) = supt>0{st − Qp(t)} satisfies the sub-additivity ∆2-condition (see

Chapter 2 in [19]).
(i) We assume R <∞. For every f ≥ 0, Q∗

p(f) ∈ L1(Ω) such that Gαp ∗ f ≥ χE , we have

ω(E) ≤
ˆ

RN

Gαp ∗ fdωE = (2c51)
−1

ˆ

RN

(c52Gαp [ωE ])
(
2c51c

−1
52 f

)
dx

≤ (2c51)
−1

ˆ

RN

Qp (c52Gαp [ωE ]) dx+ (2c51)
−1

ˆ

RN

Q∗
p

(
2c51c

−1
52 f

)
dx

≤ 2−1ω(E) + c54

ˆ

RN

Q∗
p (f) dx,

the last inequality following from the ∆2-condition. Notice that c54, as well as the next
constant c55, depends on rK . Thus,

ω(E) ≤ 2c54

ˆ

RN

Q∗
p (f) dx.

Then, we get
ω(E) ≤ c55CapGαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel.

Which implies (2.2.33).
(ii) We assume R = ∞. For every f ≥ 0, Q∗

p(f) ∈ L1(Ω) such that Iαp ∗ f ≥ χE , since
Iαp ∗ ωE = Iαp[ωE ], as above we have

ω(E) ≤
ˆ

RN

Iαp ∗ fdωE =

ˆ

RN

(Iαp ∗ ωE) fdx =

ˆ

RN

Iαp [ωE ] fdx

≤ 2−1ω(E) + c56

ˆ

RN

Q∗
p (f) dx,

Then, it follows (2.2.34).
2. Let K ⊂ Ω be compact. Set rK = dist(K, ∂Ω) and ΩK = {x ∈ Ω : d(x,K) < rK/2}.
We have

Pl,a,β

(
cWδd(x,∂Ω)

α,p [ω]
)
dx ≤ dω in Ω.

Thus, for any Borel set E ⊂ K
ˆ

Ω
(MωχE)

lβ
p−1Pl,a,β

(
cWδd(x,∂Ω)

α,p [ω]
)
dx ≤

ˆ

Ω
(MωχE)

lβ
p−1dω.

As above we get
ˆ

Ω
Pl,a,β

(
cWδd(x,∂Ω)

α,p [ωE ](x)
)
dx ≤ c51ω(E) ∀E ⊂ K,E Borel. (2.2.38)
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Note that if x ∈ Ω and d(x, ∂Ω) ≤ rK/8, then Bt(x) ⊂ Ω\ΩK for all t ∈ (0, δd(x, ∂Ω)) ;
indeed, for all y ∈ Bt(x)

d(y, ∂Ω) ≤ d(x, ∂Ω) + |x− y| < (1 + δ)d(x, ∂Ω) <
1

4
rK ,

thus
d(y,K) ≥ d(K, ∂Ω)− d(y, ∂Ω) >

3

4
rK >

1

2
rK ,

which implies y /∈ ΩK . We deduce that

W
δd(x,∂Ω)
α,p [ωE ](x) ≥ W

δ
8
rK

α,p [ωE ](x) ∀x ∈ Ω,

and
W

δ
8
rK

α,p [ωE ](x) = 0 ∀x ∈ Ωc.

Hence we obtain from (2.2.38),
ˆ

RN

Pl,a,β

(
cW

δ
8
rK

α,p [ωE ](x)

)
dx ≤ c51ω(E) ∀E ⊂ K, E Borel. (2.2.39)

As above we also obtain

ω(E) ≤ c57CapGαp,Q∗
p
(E) ∀E ⊂ K, E Borel,

where the positive constant c57 depends on rK . Inequality (2.2.36) follows and this com-
pletes the proof of the Theorem.

Proof of Theorem 2.1.5. Consider the sequence {um}m≥0 of nonnegative functions
defined by u0 = f and

um+1 = W
R
α,p[Pl,a,β(um)] + f in R

N ∀m ≥ 0.

By Theorem 2.2.5, there exists M > 0 depending on N,α, p, l, a, β, ε and R such that if
(2.1.28) holds, then {um}m≥0 is well defined and (2.2.21) and (2.2.22) are satisfied. It is
easy to see that {um} is nondecreasing. Hence, thanks to the dominated convergence theo-
rem, we obtain that u(x) = lim

m→∞
um(x) is a solution of equation (2.1.29) which satisfies

(2.1.30).
Conversely, we obtain (2.1.31) directly from Theorem 2.2.7, Part 1, (i).

Proof of Theorem 2.1.6. The proof is similar to the previous one by using Theorem
2.2.6 and Theorem 2.2.7, Part 1, (ii).

2.3 Quasilinear Dirichlet problems

Let Ω be a bounded domain in R
N . If µ ∈ Mb(Ω), we denote by µ+ and µ− respectively

its positive and negative parts in the Jordan decomposition. We denote by M0(Ω) the space
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of measures in Ω which are absolutely continuous with respect to the cΩ1,p-capacity defined
on a compact set K ⊂ Ω by

cΩ1,p(K) = inf

{
ˆ

Ω
|∇ϕ|pdx : ϕ ≥ χK , ϕ ∈ C∞

c (Ω)

}
.

We also denote Ms(Ω) the space of measures in Ω with support on a set of zero cΩ1,p-capacity.
Classically, any µ ∈ Mb(Ω) can be written in a unique way under the form µ = µ0 + µs
where µ0 ∈ M0(Ω)∩Mb(Ω) and µs ∈ Ms(Ω). It is well known that any µ0 ∈ M0(Ω)∩Mb(Ω)
can be written under the form µ0 = f − div g where f ∈ L1(Ω) and g ∈ Lp

′
(Ω,RN ).

For k > 0 and s ∈ R we set Tk(s) = max{min{s, k},−k}. If u is a measurable function
defined in Ω, finite a.e. and such that Tk(u) ∈ W 1,p

loc (Ω) for any k > 0, there exists a
measurable function v : Ω → R

N such that ∇Tk(u) = χ|u|≤kv a.e. in Ω and for all k > 0.
We define the gradient ∇u of u by v = ∇u. We recall the definition of a renormalized
solution given in [10].

Definition 2.3.1 Let µ = µ0 + µs ∈ Mb(Ω). A measurable function u defined in Ω and
finite a.e. is called a renormalized solution of

−∆pu = µ in Ω,
u = 0 on ∂Ω,

(2.3.1)

if Tk(u) ∈ W 1,p
0 (Ω) for any k > 0, |∇u|p−1 ∈ Lr(Ω) for any 0 < r < N

N−1 , and u has the
property that for any k > 0 there exist λ+k and λ−k belonging to M

+
b ∩M0(Ω), respectively

concentrated on the sets u = k and u = −k, with the property that µ+k ⇀ µ+s , µ−k ⇀ λ−s in
the narrow topology of measures and such that

ˆ

{|u|<k}
|∇u|p−2∇u.∇ϕdx =

ˆ

{|u|<k}
ϕdµ0 +

ˆ

Ω
ϕdλ+k −

ˆ

Ω
ϕdλ−k ,

for every ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

Remark 2.3.2 We recall that if u is a renormalized solution to problem (2.3.1), then
|∇u|p

(|u|+1)r ∈ L1(Ω) for all r > 1. From this it follows by Hölder’s inequality that u ∈W 1,p1
0 (Ω)

for all 1 ≤ p1 < p provided ea|u| ∈ L1(Ω) for some a > 0. Furthermore, u ≥ 0 a.e. in Ω if
µ ∈ M

+
b (Ω).

The following general stability result has been proved in [10, Th 4.1].

Theorem 2.3.3 Let µ = µ0 + µ+s − µ−s , with µ0 = F − div g ∈ M0(Ω) and µ+s , µ−s
belonging to M

+
s (Ω). Let µn = Fn − div gn + ρn − ηn with Fn ∈ L1(Ω), gn ∈ (Lp

′
(Ω))N

and ρn, ηn belonging to M
+
b (Ω). Assume that {Fn} converges to F weakly in L1(Ω), {gn}

converges to g strongly in (Lp
′
(Ω))N and (div gn) is bounded in Mb(Ω) ; assume also that

{ρn} converges to µ+s and {ηn} to µ−s in the narrow topology. If {un} is a sequence of
renormalized solutions of (2.3.1) with data µn, then, up to a subsequence, it converges a.e.
in Ω to a renormalized solution u of problem (2.3.1). Furthermore, Tk(un) converges to
Tk(u) in W 1,p

0 (Ω) for any k > 0.
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We also recall the following estimate [20, Th 2.1].

Theorem 2.3.4 Let Ω be a bounded domain of RN . Then there exists a constant K1 > 0,
depending on p and N such that if µ ∈ M

+
b (Ω) and u is a nonnegative renormalized solution

of problem (2.3.1) with data µ, there holds

1

K1
W

d(x,∂Ω)
3

1,p [µ](x) ≤ u(x) ≤ K1W
2 diam (Ω)
1,p [µ](x) ∀x ∈ Ω, (2.3.2)

where the positive constant K1 only depends on N, p.

Proof of Theorem 2.1.1. Let {um}m∈N be a sequence of nonnegative renormalized
solutions of the following problems

−∆pu0 = µ in Ω,
u0 = 0 on ∂Ω,

and, for m ∈ N,
−∆pum+1 = Pl,a,β(um) + µ in Ω,

um+1 = 0 on ∂Ω.

Clearly, we can assume that {um} is nondecreasing, see [21]. By Theorem 2.3.4 we have

χΩu0 ≤ K1W
R
1,p[µ],

χΩum+1 ≤ K1W
R
1,p[Pl,a,β(um) + µ] ∀m ∈ N,

where R = 2 diam (Ω). Thus, by Theorem 2.2.5 with f ≡ 0, there exists M > 0 depending
on N, p, l, a, β,K1 and R such that Pl,a,β(4cpK1W

R
1,p[ω]) ∈ L1(Ω) and

um(x) ≤ 2cpK1W
R
1,p[ω](x) ∀x ∈ Ω,m ∈ N, (2.3.3)

provided that

||M
(p−1)(β−1)

β

p,R [µ]||L∞(RN ) ≤M,

where ω = M ||M
(p−1)(β−1)

β

p,R [1]||−1
L∞(RN )

+ µ and cp = 1 ∨ 4
2−p
p−1 . This implies that {um} is

well defined and nondecreasing. Thus {um} converges a.e in Ω to some function u which
satisfies (2.1.17) in Ω. Furthermore, we deduce from (2.3.3) and the monotone convergence
theorem that Pl,a,β(um) → Pl,a,β(u) in L1(Ω). Finally, by Theorem 2.3.3 we obtain that u
is a renormalized solution of (2.1.16).
Conversely, assume that (2.1.16) admits a nonnegative renormalized solution u. By Theo-
rem 2.3.4 there holds

u(x) ≥ 1

K1
W

d(x,∂Ω)
3

1,p [Pl,a,β(u) + µ](x) for all x ∈ Ω.

Hence, we achieve (2.1.18) from Theorem 2.2.7, Part 2.

Applications. We consider the case p = 2, β = 1. Then l = 2 and

Pl,a,β(r) = ear − 1− ar.
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If Ω is a bounded domain in R
N , there exists M > 0 such that if µ is a positive Radon

measure in Ω which satisfies

µ(Bt(x)) ≤MtN−2 ∀t > 0 and almost all x ∈ Ω,

there exists a positive solution u to the following problem

−∆u = eau − 1− au+ µ in Ω,
u = 0 on ∂Ω.

Furthermore

u(x) ≤ K(N)

ˆ 2 diamΩ

0

ω(Bt(x))

tN−1
dt = K(N)

ˆ 2 diam (Ω)

0

µ(Bt(x))

tN−1
dt+ b ∀x ∈ Ω.

where b = 2K(N)M ||M2,2 diam (Ω)[1]||−1
L∞(RN )

|B1|(diamΩ)2. In the case N = 2 this result
has already been proved by Richard and Véron [22, Prop 2.4].

2.4 p-superharmonic functions and quasilinear equations in
R
N

We recall some definitions and properties of p-superharmonic functions.

Definition 2.4.1 A function u is said to be p-harmonic in R
N if u ∈W 1,p

loc (R
N )∩C(RN )

and −∆pu = 0 in D′(RN ). A function u is called a p-supersolution in R
N if u ∈W 1,p

loc (R
N )

and −∆pu ≥ 0 in D′(RN ).

Definition 2.4.2 A lower semicontinuous (l.s.c) function u : RN → (−∞,∞] is called
p-super-
harmonic if u is not identically infinite and if, for all open D ⊂⊂ R

N and all v ∈ C(D),
p-harmonic in D, v ≤ u on ∂D implies v ≤ u in D.

Let u be a p-superharmonic in R
N . It is well known that u ∧ k ∈ W 1,p

loc (R
N ) is a p-

supersolution for all k > 0 and u < ∞ a.e in R
N , thus, u has a gradient (see the previous

section). We also have |∇u|p−1 ∈ Lqloc(R
N ), |∇u|p

(|u|+1)r ∈ L1
loc(R

N ) and u ∈ Lsloc(R
N ) for

1 ≤ q < N
N−1 and r > 1, 1 ≤ s < N(p−1)

N−p (see [14, Theorem 7.46]). In particular, if

ea|u| ∈ L1
loc(R

N ) for some a > 0, then u ∈ W 1,p1
loc (RN ) for all 1 ≤ p1 < p by Hölder’s

inequality. Thus for any 0 ≤ ϕ ∈ C1
c (Ω), by the dominated convergence theorem,

〈−∆pu, ϕ〉 =
ˆ

RN

|∇u|p−2∇u∇ϕdx = lim
k→∞

ˆ

RN

|∇(u ∧ k)|p−2∇(u ∧ k)∇ϕ ≥ 0.

Hence, by the Riesz Representation Theorem we conclude that there is a nonnegative Ra-
don measure denoted by µ[u], called Riesz measure, such that −∆pu = µ[u] in D′(RN ).

The following weak convergence result for Riesz measures proved in [27] will be used
to prove the existence of p-superharmonic solutions to quasilinear equations.
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2.4. P-SUPERHARMONIC FUNCTIONS AND QUASILINEAR EQUATIONS IN R
N

Theorem 2.4.3 Suppose that {un} is a sequence of nonnegative p-superharmonic func-
tions in R

N that converges a.e to a p-superharmonic function u. Then the sequence of
measures {µ[un]} converges to µ[u] in the weak sense of measures.

The next theorem is proved in [20]

Theorem 2.4.4 Let µ be a measure in M
+(RN ). Suppose that W1,p[µ] < ∞ a.e. Then

there exists a nonnegative p-superharmonic function u in R
N such that −∆pu = µ in

D′(RN ), infRN u = 0 and

1

K1
W1,p[µ](x) ≤ u(x) ≤ K1W1,p[µ](x), (2.4.1)

for all x in R
N , where the constant K1 is as in Theorem 2.3.4. Furthermore any p-

superharmonic function u in R
N , such that infRN u = 0 satisfies (2.4.1) with µ = −∆pu.

Proof of Theorem 2.1.2. Let {um}m∈N be a sequence of p-superharmonic solutions of
the following problems

−∆pu0 = µ in D′(RN ),
infRN u0 = 0,

and, for m ∈ N,
−∆pum+1 = Pl,a,β(um) + µ in D′(RN ),
infRN um+1 = 0.

Clearly, we can assume that {um} is nondecreasing. By Theorem 2.4.4 we have

u0 ≤ K1W1,p[µ],

um+1 ≤ K1W1,p[Pl,a,β(um) + µ] ∀m ∈ N.

Thus, by Theorem 2.2.6 with f ≡ 0, there exists M > 0 depending on N, p, l, a, β,K1 and
R such that Pl,a,β(4cpK1W1,p[ω]) ∈ L1(RN ) and

um ≤ 2cpK1W1,p[ω] ∀m ∈ N, (2.4.2)

provided that

||M
(p−1)(β−1)

β
p [µ]||L∞(RN ) ≤M,

where ω = M ||M
(p−1)(β−1)

β
p [χBR

]||−1
L∞(RN )

χBR
+ µ. This implies that {um} is well defined

and nondecreasing. Thus, {um} converges a.e in R
N to some p-superharmonic function

u which satisfies (2.1.20) in R
N . Furthermore, we deduce from (2.4.2) and the monotone

convergence theorem that Pl,a,β(um) → Pl,a,β(u) in L1(RN ). Finally, by Theorem 2.4.3 we
conclude that u is a p-superharmonic solution of (2.1.19).
Conversely, assume that (2.1.19) admits a nonnegative renormalized solution u. By Theo-
rem 2.4.4 there holds

u(x) ≥ 1

K1
W1,p[Pl,a,β(u) + µ](x) for all x ∈ R

N .

Hence, we obtain (2.1.21) from Theorem 2.2.7, Part 1, (ii).
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2.5 Hessian equations

In this section Ω ⊂ R
N is either a bounded domain with a C2 boundary or the whole

R
N . For k = 1, ..., N and u ∈ C2(Ω) the k-hessian operator Fk is defined by

Fk[u] = Sk(λ(D
2u)),

where λ(D2u) = λ = (λ1, λ2, ..., λN ) denotes the eigenvalues of the Hessian matrix of
second partial derivative D2u and Sk is the k-th elementary symmetric polynomial that is

Sk(λ) =
∑

1≤i1<...<ik≤N
λi1 ...λik .

We can see that

Fk[u] =
[
D2u

]
k
,

where for a matrix A = (aij), [A]k denotes the sum of the k-th principal minors. We assume
that ∂Ω is uniformly (k-1)-convex, that is

Sk−1(κ) ≥ c0 > 0 on ∂Ω,

for some positive constant c0, where κ = (κ1, κ2, ..., κn−1) denote the principal curvatures
of ∂Ω with respect to its inner normal.

Definition 2.5.1 An upper-semicontinuous function u : Ω → [−∞,∞) is k-convex (k-
subharmonic) if, for every open set Ω′ ⊂ Ω

′ ⊂ Ω and for every function v ∈ C2(Ω′)∩C(Ω′)
satisfying Fk[v] ≤ 0 in Ω′, the following implication is true

u ≤ v on ∂Ω′ =⇒ u ≤ v in Ω′.

We denote by Φk(Ω) the class of all k-subharmonic functions in Ω which are not identically
equal to −∞.

The following weak convergence result for k-Hessian operators proved in [25] is fundamental
in our study.

Theorem 2.5.2 Let Ω be either a bounded uniformly (k-1)-convex in R
N or the whole R

N .
For each u ∈ Φk(Ω), there exist a nonnegative Radon measure µk[u] in Ω such that

1 µk[u] = Fk[u] for u ∈ C2(Ω).

2 If {un} is a sequence of k-convex functions which converges a.e to u, then µk[un]⇀ µk[u]
in the weak sense of measures.

As in the case of quasilinear equations with measure data, precise estimates of solutions
of k-Hessian equations with measures data are expressed in terms of Wolff potentials. The
next results are proved in [25, 18, 20].
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2.5. HESSIAN EQUATIONS

Theorem 2.5.3 Let Ω ⊂ R
N be a bounded C2, uniformly (k-1)-convex domain. Let ϕ be

a nonnegative continuous function on ∂Ω and µ be a nonnegative Radon measure. Suppose
that µ can be decomposed under the form

µ = µ1 + f

where µ1 is a measure with compact support in Ω and f ∈ Lq(Ω) for some q > N
2k if k ≤ N

2 ,
or p = 1 if k > N

2 . Then there exists a nonnegative function u in Ω such that −u ∈ Φk(Ω),
continuous near ∂Ω and u is a solution of the problem

Fk[−u] = µ in Ω,
u = ϕ on ∂Ω.

Furthermore, any nonnegative function u such that −u ∈ Φk(Ω) which is continuous near
∂Ω and is a solution of above equation, satisfies

1

K2
W

d(x,∂Ω)
8

2k
k+1

,k+1
[µ] ≤ u(x) ≤ K2

(
W

2diamΩ
2k
k+1

,k+1
[µ](x) + max

∂Ω
ϕ

)
, (2.5.1)

where K2 is a positive constant independent of x, u and Ω.

Theorem 2.5.4 Let µ be a measure in M
+(RN ) and 2k < N . Suppose that W 2k

k+1
,k+1[µ] <

∞ a.e. Then there exists u, −u ∈ Φk(RN ) such that infRN u = 0 and Fk[−u] = µ in R
N

and
1

K2
W 2k

k+1
,k+1[µ](x) ≤ u(x) ≤ K2W 2k

k+1
,k+1[µ](x), (2.5.2)

for all x in R
N , where the constant K2 is the one of the previous Theorem. Furthermore,

if u is a nonnegative function such that infRN u = 0 and −u ∈ Φk(RN ), then (2.5.2) holds
with µ = Fk[−u].

Proof of Theorem 2.1.3. We defined a sequence of nonnegative functions um, continuous
near ∂Ω and such that −um ∈ Φk(Ω), by the following iterative scheme

Fk[−u0] = µ in Ω,
u0 = ϕ on ∂Ω,

(2.5.3)

and, for m ≥ 0,
Fk[−um+1] = Pl,a,β(um) + µ in Ω,

um+1 = ϕ on ∂Ω.
(2.5.4)

Clearly, we can assume that {um} is nondecreasing, see [21]. By Theorem 2.5.3 we have

χΩu0 ≤ K2W
R
2k
k+1

,k+1
[µ] + b0,

χΩum+1 ≤ K2W
R
2k
k+1

,k+1
[Pl,a,β(um) + µ] + b0,

(2.5.5)

where b0 = K2max∂Ω ϕ and R = 2 diam (Ω).
Then, by Theorem 2.2.5 with f = b0 and ε = a, there exists M1 > 0 depending on

N, k, l, a, β,K2 and R such that Pl,a,β

(
4K2W

R
2k
k+1

,k+1
[ω1] + 2g + b0

)
∈ L1(Ω) and

um(x) ≤ 2K2W
R
2k
k+1

,k+1
[ω1](x) + g + b0 ∀x ∈ Ω, ∀m ≥ 0, (2.5.6)
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provided that

||M
k(β−1)

β

2k,R [µ]||L∞(RN ) ≤M1 and ||M
k(β−1)

β

2k,R [Pl,2a,β(b0)]||L∞(RN ) ≤M1,

where ω1 = M1||M
(p−1)(β−1)

β

2k [1]||−1
L∞(RN )

+ µ, ω2 = M1||M
(p−1)(β−1)

β

2k [1]||−1
L∞(RN )

+ Pl,2a,β(b0)

and g = 2K2W
R
2k
k+1

,k+1
[ω2].

Since ω2 is constant, g has the same property and actually g = K2(|B1|ω2)
1
kR2. On the

other hand, one can find constants M2 depending on N, k, l, a, β,R and M1 such that if

max∂Ω ϕ ≤M2, then ||M
k(β−1)

β

2k,R [Pl,2a,β(b0)]||L∞(RN ) ≤M1.

Hence, we deduce from (2.5.6) that Pl,a,β

(
2K2W

R
2k
k+1

,k+1
[µ] + b

)
∈ L1(Ω) and

um(x) ≤ 2K2W
R
2k
k+1

,k+1
[µ](x) + b ∀x ∈ Ω, ∀m ≥ 0, (2.5.7)

for some constant b (= 2g + b0) depending on N, k, l, a, β,R and M1. Note that because
we can write

ω = Pl,a,β(um) + µ = (µ1 + χΩδ
Pl,a,β(um)) + ((1− χΩδ

)Pl,a,β(um) + f) ,

where Ωδ = {x ∈ Ω : d(x, ∂Ω) > δ} and δ > 0 is small enough and since um is continuous
near ∂Ω, then ω satisfies the assumptions of the data in Theorem 2.5.3. Therefore the
sequence {um} is well defined and nondecreasing. Thus, {um} converges a.e in Ω to some
function u for which (2.1.23) is satisfied in Ω. Furthermore, we deduce from (2.5.7) and the
monotone convergence theorem that Pl,a,β(um) → Pl,a,β(u) in L1(Ω). Finally, by Theorem
2.5.2, we obtain that u satisfies (2.1.22) and (2.1.23).
Conversely, assume that (2.1.22) admits nonnegative solution u, continuous near ∂Ω, such
that −u ∈ Φk(Ω) and Pl,a,β(u) ∈ L1(Ω). Then by Theorem 2.5.3 we have

u(x) ≥ 1

K2
W

d(x,∂Ω)
8

2k
k+1

,k+1
[Pl,a,β(u) + µ](x) for all x ∈ Ω.

Using the part 2 of Theorem 2.2.7, we conclude that (2.1.24) holds.

Proof of Theorem 2.1.4. We define a sequence of nonnegative functions um with −um ∈
Φk(RN ), by the following iterative scheme

Fk[−u0] = µ in R
N

infRN u0 = 0,
(2.5.8)

and, for m ≥ 0,
Fk[−um+1] = Pl,a,β(um) + µ in R

N

infRN um+1 = 0.
(2.5.9)

Clearly, we can assume that {um} is nondecreasing. By Theorem 2.5.4, we have

u0 ≤ K2W 2k
k+1

,k+1[µ],

um+1 ≤ K2W 2k
k+1

,k+1[Pl,a,β(um) + µ].
(2.5.10)
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Thus, by Theorem 2.2.6 with f ≡ 0, there exists M > 0 depending on N, k, l, a, β and R

such that Pl,a,β
(
4K2W 2k

k+1
,k+1[ω]

)
∈ L1(RN ),

um ≤ 2K2W 2k
k+1

,k+1[ω] ∀m ≥ 0, (2.5.11)

provided that ||M
k(β−1)

β

2k [µ]||L∞(RN ) ≤M, where ω =M ||M
k(β−1)

β

2k [χBR
]||−1
L∞(RN )

χBR
+ µ.

Therefore the sequence {um} is well defined and nondecreasing. By arguing as in the proof
of theorem 2.1.3 we obtain that u satisfies (2.1.25) and (2.1.26).
Conversely, assume that (2.1.25) admits a nonnegative solution u and −u ∈ Φk(RN ) such
that Pl,a,β(u) ∈ L1

loc(R
N ), then by Theorem 2.5.4 we have

u ≥ 1

K2
W 2k

k+1
,k+1[Pl,a,β(u) + µ].

Using the part 1, (ii) of Theorem 2.2.7, we conclude that (2.1.27) holds.
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Chapitre 3

Stability properties for quasilinear

parabolic equations with measure

data and applications

Abstract

Let Ω be a bounded domain of RN and Q = Ω × (0, T ). We first study problems of the
model type 




ut −∆pu = µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

where p > 1, µ ∈ Mb(Q) and u0 ∈ L1(Ω). Our main result is a stability theorem extending
the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear
operators u 7−→ A(u) =div(A(x, t,∇u)).
As an application, we consider perturbed problems of type





ut −∆pu+ G(u) = µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

where G(u) may be an absorption or a source term. In the model case G(u) = ± |u|q−1 u
(q > p− 1), or G has an exponential type. We give existence results when q is subcritical,
or when the measure µ is good in time and satisfies suitable capacity conditions.
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3.1. INTRODUCTION

3.1 Introduction

Let Ω be a bounded domain of RN , and Q = Ω× (0, T ), T > 0. We denote by Mb(Ω)
and Mb(Q) the sets of bounded Radon measures on Ω and Q respectively. We are concerned
with the problem 




ut − div(A(x, t,∇u)) = µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

(3.1.1)

where µ ∈ Mb(Q), u0 ∈ L1(Ω) and A is a Caratheodory function on Q×R
N , such that for

a.e. (x, t) ∈ Q, and any ξ, ζ ∈ R
N ,

A(x, t, ξ).ξ ≥ c1 |ξ|p , |A(x, t, ξ)| ≤ a(x, t) + c2 |ξ|p−1 , c1, c2 > 0, a ∈ Lp
′
(Q),
(3.1.2)

(A(x, t, ξ)−A(x, t, ζ)). (ξ − ζ) > 0 if ξ 6= ζ. (3.1.3)

This includes the model problem




ut −∆pu = µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

(3.1.4)

where ∆p is the p-Laplacian defined by ∆pu = div(|∇u|p−2∇u) with p > 1.
As an application, we consider problems with a nonlinear term of order 0 :





ut − div(A(x,∇u)) + G(u) = µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

(3.1.5)

where A is a Caratheodory function on Ω×R
N , such that, for a.e. x ∈ Ω, and any ξ, ζ ∈ R

N ,

A(x, ξ).ξ ≥ c1 |ξ|p , |A(x, ξ)| ≤ c2 |ξ|p−1 , c3, c4 > 0, (3.1.6)

(A(x, ξ)−A(x, ζ)). (ξ − ζ) > 0 if ξ 6= ζ, (3.1.7)

and G(u) may be an absorption or a source term, and possibly depends on (x, t) ∈ Q. The
model problem is the case where G has a power-type G(u) = ± |u|q−1 u (q > p− 1), or an
exponential type.

First make a brief survey of the elliptic associated problem :
{

−div(A(x,∇u)) = µ in Ω,
u = 0 on ∂Ω,

with µ ∈ Mb(Ω) and assumptions (3.1.6), (3.1.7). When p = 2, A(x,∇u) = ∇u existence
and uniqueness are proved for general elliptic operators by duality methods in [59]. For
p > 2 − 1/N, the existence of solutions in the sense of distributions is obtained in [23]
and [24]. The condition on p ensures that the gradient ∇u is well defined in (L1 (Ω))N .
For general p > 1, new classes of solutions are introduced, first when µ ∈ L1(Ω), such
as entropy solutions, and renormalized solutions, see [13], and also [58], and existence and
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uniqueness is obtained. For any µ ∈ Mb(Ω) the main work is done in [32, Theorems 3.1, 3.2],
where not only existence is proved, but also a stability result, fundamental for applications.
Uniqueness is still an open problem.

Next we make a brief survey about problem (3.1.1).

The first studies concern the case µ ∈ Lp
′
(Q) and u0 ∈ L2(Ω), where existence and

uniqueness is obtained by variational methods, see [44]. In the general case µ ∈ Mb(Q) and
u0 ∈ Mb(Ω), the pionner results come from [23], proving the existence of solutions in the
sense of distributions for

p > p1 = 2− 1

N + 1
, (3.1.8)

see also [56, 57, 26]. The approximated solutions of (3.1.1) lie in Marcinkiewicz spaces
u ∈ Lpc,∞ (Q) and |∇u| ∈ Lmc,∞ (Q) , where

pc = p− 1 +
p

N
, mc = p− N

N + 1
. (3.1.9)

This condition (3.1.8) ensures that u and |∇u| belong to L1 (Q), since mc > 1 means p > p1
and pc > 1 means p > 2N/(N +1). Uniqueness follows in the case p = 2, A(x, t,∇u) = ∇u
by duality methods, see [48].

For µ ∈ L1(Q), uniqueness is obtained in new classes of solutions : entropy solutions,
and renormalized solutions, see [19], [55], see also [3] for a semi-group approach.

A larger set of measures is studied in [33]. They use a notion of parabolic capacity
introduced in [33] also see [49, 50] that this was initiated and inspired by Pierre in [51],
defined by

cQp (E) = inf( inf
E⊂U open⊂Q

{||u||W : u ∈W,u ≥ χU a.e. in Q}),

for any Borel set E ⊂ Q, where

X = Lp(0, T ;W 1,p
0 (Ω) ∩ L2(Ω)),

W =
{
z : z ∈X, zt ∈ X ′} , embedded with the norm ||u||W = ||u||X + ||ut||X′ .

Let M0(Q) be the set of Radon measures µ on Q that do not charge the sets of zero
cQp -capacity :

∀E Borel set ⊂ Q, cQp (E) = 0 =⇒ |µ|(E) = 0.

Then existence and uniqueness of renormalized solutions holds for any measure µ ∈
Mb(Ω) ∩ M0(Q), called regular (or diffuse) and u0 ∈ L1(Ω), and p > 1. The equiva-
lence with the notion of entropy solutions is shown in [34] ; see also [20] for more general
equations.

Next consider any measure µ ∈ Mb(Q). Let Ms(Q) be the set of all bounded Ra-
don measures on Q with support on a set of zero cQp capacity, also called singular. Let
M

+
b (Q),M+

0 (Q),M+
s (Q) be the positive cones of Mb(Q),M0(Q),Ms(Q). From [33], µ can

be written (in a unique way) under the form

µ = µ0 + µs, µ0 ∈ M0(Q), µs = µ+s − µ−s , µ+s , µ
−
s ∈ M

+
s (Q), (3.1.10)
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and µ0 ∈ M0(Q) admits (at least) a decomposition under the form

µ0 = f − div g + ht, f ∈ L1(Q), g ∈ (Lp
′
(Q))N , h ∈ X, (3.1.11)

and we write µ0 = (f, g, h). The solutions of (3.1.1) are searched in a renormalized sense
linked to this decomposition, introduced in [19, 49]. In the range (3.1.8) the existence of a
renormalized solution relative to the decomposition (3.1.11) is proved in [49], using suitable
approximations of µ0 and µs. Uniqueness is still open, as well as in the elliptic case.

Next consider the problem (3.1.5). First we consider the case of an absorption term :
G(u)u ≥ 0.

Let us recall the case p = 2, A(x,∇u) = ∇u and G(u) = |u|q−1u (q > 1). The first results
concern the case µ = 0 and u0 is a Dirac mass in Ω, see [28] : existence holds if and only if
q < (N +2)/N. Then optimal results are given in [7], for any µ ∈ Mb(Q) and u0 ∈ Mb(Ω).
Here two capacities are involved : the elliptic Bessel capacity CapGα,k, (α > 0, k > 1)

defined, for any Borel set E ⊂ R
N , by

CapGα,k(E) = inf{||ϕ||Lk(RN ) : ϕ ∈ Lk(RN ), Gα ∗ ϕ ≥ χE},

where Gα is the Bessel kernel of order α ; and a capacity CapG,k (k > 1) adapted to the

operator of the heat equation of kernel G(x, t) = χ(0,∞)(t)(4πt)
−N/2e−|x|2/4t : for any Borel

set E ⊂ R
N+1,

CapG,k(E) = inf{||ϕ||Lk(RN+1) : ϕ ∈ Lk(RN+1), G ∗ ϕ ≥ χE}.

From [7], there exists a solution if and only if µ does not charge the sets of zero CapG,q′−capacity
and u0 does not charge the sets of zero Cap2/q,q′−capacity.

For p 6= 2 such a linear parabolic capacity cannot be used. Most of the contributions
are relative to the case µ = 0 with Ω bounded, or Ω = R

N . The case where u0 is a Dirac
mass in Ω is studied in [35, 39] when p > 2, and [29] when p < 2. Existence and uniqueness
hold in the subcritical case q < pc. If q ≥ pc and q > 1, there is no solution with an isolated
singularity at t = 0. For q < pc, and u0 ∈ M

+
b (Ω), the existence is obtained in the sense

of distributions in [61], and for any u0 ∈ Mb(Ω) in [16]. The case µ ∈ L1(Q), u0 = 0 is
treated in [30], and µ ∈ L1(Q), u0 = L1(Ω) in [4] where G can be multivalued. The case
µ ∈ M0(Q) is studied in [50], with a new formulation of the solutions, and existence and
uniqueness is obtained for any function G ∈ C(R) such that G(u)u ≥ 0.

The case of a source term G(u) = −uq with u ≥ 0 has been treated in [6] for p = 2,
where optimal conditions are given for existence. As in the absorption case the arguments
of proofs cannot be extended to general p.

3.2 Main results

In all the sequel we suppose that p satisfies (3.1.8). Since W 1,p
0 (Ω) ⊂ L2(Ω),

X = Lp(0, T ;W 1,p
0 (Ω)), X

′
= Lp

′
(0, T ;W−1,p′(Ω)).
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We first study problem (3.1.1). In Section 3.3 we give some approximations of µ ∈
Mb(Q), useful for the applications. In Section 3.4 we recall the definition of renormalized
solutions, that we call R-solutions of (3.1.1), relative to the decomposition (3.1.11) of µ0,
and study some of their properties.

Our main result is a stability theorem for problem (3.1.1), proved in Section 3.5, ex-
tending to the parabolic case the stability result of [32, Theorem 3.4], and improving the
result of [49] :

Theorem 3.2.1 Let A : Q× R
N → R satisfy (3.1.2) and (3.1.3). Let u0 ∈ L1(Ω), and

µ = f − div g + ht + µ+s − µ−s ∈ Mb(Q),

with f ∈ L1(Q), g ∈ (Lp
′
(Q))N , h ∈ X and µ+s , µ

−
s ∈ M

+
s (Q). Let u0,n ∈ L1(Ω),

µn = fn − div gn + (hn)t + ρn − ηn ∈ Mb(Q),

with fn ∈ L1(Q), gn ∈ (Lp
′
(Q))N , hn ∈ X, and ρn, ηn ∈ M

+
b (Q), such that

ρn = ρ1n − div ρ2n + ρn,s, ηn = η1n − div η2n + ηn,s,

with ρ1n, η
1
n ∈ L1(Q), ρ2n, η

2
n ∈ (Lp

′
(Q))N and ρn,s, ηn,s ∈ M

+
s (Q). Assume that

sup
n

|µn| (Q) <∞,

and {u0,n} converges to u0 strongly in L1(Ω), {fn} converges to f weakly in L1(Q), {gn}
converges to g strongly in (Lp

′
(Q))N , {hn} converges to h strongly in X, {ρn} converges

to µ+s and {ηn} converges to µ−s in the narrow topology of measures ; and
{
ρ1n
}
,
{
η1n
}

are bounded in L1(Q), and
{
ρ2n
}
,
{
η2n
}

bounded in (Lp
′
(Q))N . Let {un} be a sequence of

R-solutions of 



(un)t − div(A(x, t,∇un)) = µn in Q,
un = 0 on ∂Ω× (0, T ),
un(0) = u0,n in Ω.

(3.2.1)

relative to the decomposition (fn + ρ1n − η1n, gn + ρ2n − η2n, hn) of µn,0. Let vn = un − hn.
Then up to a subsequence, {un} converges a.e. in Q to a R-solution u of (3.1.1), and {vn}
converges a.e. in Q to v = u−h. Moreover, {∇un} , {∇vn} converge respectively to ∇u,∇v
a.e. in Q, and {Tk(vn)} converge to Tk(v) strongly in X for any k > 0.

In Section 3.6 we give applications to problems of type (3.1.5).

We first give an existence result of subcritical type, valid for any measure µ ∈ Mb(Q) :

Theorem 3.2.2 Let A : Q × R
N → R

N satisfy (3.1.2) and (3.1.3) with a ≡ 0. Let
(x, t, r) 7→ G(x, t, r) be a Caratheodory function on Q×R and G ∈ C(R+) be a nondecreasing
function with values in R

+, such that

|G(x, t, r)| ≤ G(|r|) for a.e. (x, t) ∈ Q and any r ∈ R, (3.2.2)
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ˆ ∞

1
G(s)s−1−pcds <∞. (3.2.3)

(i) Suppose that G(x, t, r)r ≥ 0, for a.e. (x, t) in Q and any r ∈ R. Then, for any µ ∈ Mb(Q)
and u0 ∈ L1(Ω), there exists a R-solution u of problem





ut − div(A(x, t,∇u)) + G(u) = µ in Q,
u = 0 in ∂Ω× (0, T ),
u(0) = u0 in Ω.

(3.2.4)

(ii) Suppose that G(x, t, r)r ≤ 0, for a.e. (x, t) ∈ Q and any r ∈ R, and u0 ≥ 0, µ ≥ 0.
There exists ε > 0 such that for any λ > 0, any µ ∈ Mb(Q) and u0 ∈ L1(Ω) with
λ+ |µ|(Q) + ||u0||L1(Ω) ≤ ε, problem





ut − div(A(x, t,∇u)) + λG(u) = µ in Q,
u = 0 in ∂Ω× (0, T ),
u(0) = u0 in Ω,

(3.2.5)

admits a nonnegative R-solution.

In particular if G(u) = |u|q−1 u, existence holds for any 0 < q < pc, for any measure
µ ∈ Mb(Q), small enough if G(u) = − |u|q−1 u. In the supercritical case q ≥ pc, the class
of "admissible" measures, for which there exist solutions, is not known.

Next we give new results relative to measures that have a good behaviour in t, based
on recent results of [17] relative to the elliptic case. We recall the notions of (truncated)
Wolff potential for any nonnegative measure ω ∈ M

+(RN ) any R > 0, x0 ∈ R
N ,

W
R
1,p[ω] (x0) =

ˆ R

0

(
rp−Nω(B(x0, r))

) 1
p−1

dr

r
.

Any measure ω ∈ Mb(Ω) is identified with its extension by 0 to R
N . In case of absorption,

we obtain the following :

Theorem 3.2.3 Let A : Ω×R
N → R

N satisfy (3.1.6) and (3.1.7). Let p < N , q > p− 1,
µ ∈ Mb(Q), f ∈ L1(Q) and u0 ∈ L1(Ω). Assume that

|µ| ≤ ω ⊗ F, with ω ∈ M
+
b (Ω), F ∈ L1((0, T )), F ≥ 0, (3.2.6)

and ω does not charge the sets of zero CapGp,
q

q+1−p
-capacity. Then there exists a R- solution

u of problem 



ut − div(A(x,∇u)) + |u|q−1u = f + µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω.

(3.2.7)

From [7, Proposition 2.3], a measure ω ∈ Mb(Ω) does not charge the sets of zero CapG2,
q

q−1
-

capacity if and only if ω ⊗ χ(0,T ) does not charge the sets of zero Cap2,1, q
q−1

-capacity .
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Therefore, when A(x,∇u) = ∇u and µ = ω ⊗ χ(0,T ), u0 ∈ L1(Ω), we find again the
existence result of [7]. Besides, in view of [33, Theorem 2.16], there exists data µ ∈ Mb(Q)
in Theorem 3.2.3 such that µ /∈ M0(Q), thus our result is the first one of existence for non
diffuse measure. Otherwise our result can be extended to a more general function G, see
Remark 3.6.8. We also consider a source term.

Theorem 3.2.4 Assume that A : Ω×R
N → R

N satisfies (3.1.6) and (3.1.7). Let p < N ,
q > p− 1. Let µ ∈ M

+
b (Q), and u0 ∈ L∞(Ω), u0 ≥ 0. Assume that

µ ≤ ω ⊗ χ(0,T ), with ω ∈ M
+
b (Ω).

Then there exist λ0 = λ0(N, p, q, c3, c4diam(Ω)) and b0 = b0(N, p, q, c3, c4, diam(Ω)) such
that, if

ω(E) ≤ λ0CapGp,
q

q−p+1
(E), ∀E compact ⊂ R

N , ||u0||∞,Ω ≤ b0, (3.2.8)

there exists a nonnegative R-solution u of problem




ut − div(A(x,∇u)) = uq + µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

(3.2.9)

which satisfies, a.e. in Q,

u(x, t) ≤ CW
2diam(Ω)
1,p [ω](x) + 2||u0||∞,Ω, (3.2.10)

where a constant C depends on N, p and the constants c3, c4 in inequalities (3.1.6).

Corresponding results in case where G has exponential type are given at Theorems 3.6.9
and 3.6.14.

3.3 Approximations of measures

For any open set ̟ of Rm and F ∈ (Lk(̟))ν , k ∈ [1,∞] ,m, ν ∈ N
∗, we set ‖F‖k,̟ =

‖F‖(Lk(̟))ν .

We give approximations of nonnegative measures in Mb(Q). We recall that any mea-
sure µ ∈ M0(Q) ∩ Mb(Q) admits a decomposition under the form µ = (f, g, h) given by
(3.1.11). Conversely, any measure of this form, such that h ∈ L∞(Q), lies in M0(Q), see
[50, Proposition 3.1].

Proposition 3.3.1 Let µ = µ0 + µs ∈ M+
b (Q) with µ0 ∈ M+

0 (Q) and µs ∈ M+
s (Q).

(i) Then, we can find a decomposition µ0 = (f, g, h) with f ∈ L1(Q), g ∈ (Lp
′
(Q))N , h ∈

Lp((0, T );W 1,p
0 (Ω)) such that

||f ||1,Q + ‖g‖p′,Q + ||h||X + µs(Ω) ≤ 2µ(Q) (3.3.1)
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(ii) Furthermore, there exists sequences of measures µ0,n = (fn, gn, hn), µs,n such that
fn, gn, hn ∈ C∞

c (Q) strongly converge to f, g, h in L1(Q), (Lp
′
(Q))N and Lp((0, T );W 1,p

0 (Ω))
respectively, and µs,n ∈ (C∞

c (Q))+ converges to µs and µn := µ0,n+µs,n converges to µ in
the narrow topology, and satisfying |µn|(Q) ≤ µ(Q),

||fn||1,Q + ‖gn‖p′,Q + ||hn||X + µs,n(Q) ≤ 2µ(Q). (3.3.2)

Proof. (i) Step 1. Case where µ has a compact support in Q. By [33], we can find a
decomposition µ0 = (f, g, h) with f, g, h have a compact support inQ. Let {ϕn} be sequence
of mollifiers in R

N+1. Then µ0,n = ϕn ∗ µ0 ∈ C∞
c (Q) for n large enough. We see that

µ0,n(Q) = µ0(Q) and µ0,n admits the decomposition µ0,n = (fn, gn, hn) = (ϕn ∗ f, ϕn ∗
g, ϕn ∗ h). Since {fn} , {gn} , {hn} strongly converge to f, g, h in L1(Q), (Lp

′
(Q))N and

Lp((0, T );W 1,p
0 (Ω)) respectively, we have for n0 large enough,

||f − fn0 ||1,Q + ||g − gn0 ||p′,Q + ||h− hn0 ||X ≤ 1

2
µ0(Q).

Then we obtain a decomposition µ = (f̂ , ĝ, ĥ) = (µn0 + f − fn0 , g− gn0 , h−hn0), such that

||f̂ ||1,Q + ||ĝ||p′,Q + ||ĥ||X + µs(Q) ≤ 3

2
µ(Q) (3.3.3)

Step 2. General case. Let {θn} be a nonnegative, nondecreasing sequence in C∞
c (Q) which

converges to 1, a.e. in Q. Set µ̃0 = θ0µ, and µ̃n = (θn − θn−1)µ, for any n ≥ 1. Since µ̃n =
µ̃0,n + µ̃s,n ∈ M0(Q) ∩M+

b (Q) has compact support with µ̃0,n ∈ M0(Q), µ̃s,n ∈ Ms(Q),
by Step 1, we can find a decomposition µ̃0,n = (f̃n, g̃n, h̃n) such that

||f̃n||1,Q + ‖g̃n‖p′,Q + ||h̃n||X + µ̃s,n(Ω) ≤
3

2
µ̃n(Q)

Let fn =
n∑
k=0

f̃k, gn =
n∑
k=0

g̃k, h̄n =
n∑
k=0

h̃k and µ̄s,n =
∑n

k=0 µ̃s,k. Clearly, θnµ0 =

(fn, gn, h̄n), θnµs = µ̄s,n and
{
fn
}
, {gn} ,

{
h̄n
}
, {µ̄s,n} converge strongly to some f, g, h,

and µs respectively in L1(Q),(Lp
′
(Q))N , X and M+

b (Q), and

||fn||1,Q + ||gn||p′,Q + ||h̄n||X + µ̄s,n(Q) ≤ 3

2
µ(Q)

Therefore, µ0 = (f, g, h), and (3.3.1) holds.

(ii) We take a sequence {mn} in N such that fn = ϕmn ∗ fn, gn = ϕmn ∗ gn, hn =
ϕmn ∗ h̄n, ϕmn ∗ µ̄s,n ∈ (C∞

c (Q))+,
´

Q ϕmn ∗ µ̄s,ndxdt = µ̄s,n(Q) and

||fn − fn||1,Q + ||gn − gn||p′,Q + ||hn − h̄n||X ≤ 1

n+ 2
µ(Q).

Let µ0,n = ϕmn ∗ (θnµ0) = (fn, gn, hn), µs,n = ϕmn ∗ µ̄s,n and µn = µ0,n + µs,n. Therefore,
{fn} , {gn} , {hn} strongly converge to f, g, h in L1(Q), (Lp

′
(Q))N and X respectively. And

(3.3.2) holds. Furthermore, {µs,n} , {µn} converge to µs, µ in the weak topology of measures,
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and µs,n(Q) =
´

Q θndµs, µn(Q) =
´

Q θndµ converges to µs(Q), µ(Q), thus {µs,n} , {µn}
converges to µs, µ in the narrow topology and |µn|(Q) ≤ µ(Q).

Observe that part (i) of Proposition 3.3.1 was used in [49], even if there was no explicit
proof. Otherwise part (ii) is a key point for finding applications to the stability Theorem.
Note also a very useful consequence for approximations by nondecreasing sequences :

Proposition 3.3.2 Let µ ∈ M+
b (Q). Let {µn} be a nondecreasing sequence in M+

b (Q)

converging to µ in Mb(Q). Then, there exist fn, f ∈ L1(Q), gn, g ∈ (Lp
′
(Q))N and hn, h ∈

X, µn,s, µs ∈ M+
s (Q) such that

µ = f − div g + ht + µs, µn = fn − div gn + (hn)t + µn,s,

and {fn} , {gn} , {hn} strongly converge to f, g, h in L1(Q), (Lp
′
(Q))N and X respectively,

and {µn,s} converges to µs (strongly) in Mb(Q) and

||fn||1,Q + ||gn||p′,Q + ||hn||X + µn,s(Ω) ≤ 2µ(Q). (3.3.4)

Proof. Since {µn} is nondecreasing, then {µn,0}, {µn,s} are nondecreasing too. Clearly,
‖µ− µn‖Mb(Q) = ‖µ0 − µn,0‖Mb(Q)+‖µs − µn,s‖Mb(Q). Hence, {µn,s} converges to µs and
{µn,0} converges to µ0 (strongly) in Mb(Q). Set µ̃0,0 = µ0,0, and µ̃n,0 = µn,0 − µn−1,0 for
any n ≥ 1. By Proposition 3.3.1, (i), we can find f̃n ∈ L1(Q), g̃n ∈ (Lp

′
(Q))N and h̃n ∈ X

such that µ̃n,0 = (f̃n, g̃n, h̃n) and

||f̃n||1,Q + ||g̃n||p′,Q + ||h̃n||X ≤ 2µ̃n,0(Q)

Let fn =
n∑
k=0

f̃k, Gn =
n∑
k=0

g̃k and hn =
n∑
k=0

h̃k. Clearly, µn,0 = (fn, gn, hn) and the conver-

gence properties hold with (3.3.4), since

||fn||1,Q + ||gn||p′,Q + ||hn||X ≤ 2µ0(Q).

3.4 Renormalized solutions

3.4.1 Notations and Definition

For any function f ∈ L1(Q), we write
´

Q f instead of
´

Q fdxdt, and for any measurable
set E ⊂Q,

´

E f instead of
´

E fdxdt.

We set Tk(r) = max{min{r, k},−k}, for any k > 0 and r ∈ R. We recall that if u is a
measurable function defined and finite a.e. in Q, such that Tk(u) ∈ X for any k > 0, there
exists a measurable function w from Q into R

N such that ∇Tk(u) = χ|u|≤kw, a.e. in Q,
and for any k > 0. We define the gradient ∇u of u by w = ∇u.
Let µ = µ0 + µs ∈ Mb(Q), and (f, g, h) be a decomposition of µ0 given by (3.1.11), and
µ̂0 = µ0 − ht = f − div g. In the general case µ̂0 /∈ M(Q), but we write, for convenience,

ˆ

Q
wdµ̂0 :=

ˆ

Q
(fw + g.∇w), ∀w ∈ X∩L∞(Q).
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Definition 3.4.1 Let u0 ∈ L1(Ω), µ = µ0 + µs ∈ Mb(Q). A measurable function u is
a renormalized solution, called R-solution of (3.1.1) if there exists a decompostion
(f, g, h) of µ0 such that

v = u−h ∈ Lσ(0, T ;W 1,σ
0 (Ω))∩L∞(0, T ;L1(Ω)), ∀σ ∈ [1,mc) ; Tk(v) ∈ X, ∀k > 0,

(3.4.1)
and :

(i) for any S ∈W 2,∞(R) such that S′ has compact support on R, and S(0) = 0,

−
ˆ

Ω
S(u0)ϕ(0)dx−

ˆ

Q
ϕtS(v)

+

ˆ

Q
S′(v)A(x, t,∇u).∇ϕ+

ˆ

Q
S′′(v)ϕA(x, t,∇u).∇v =

ˆ

Q
S′(v)ϕdµ̂0, (3.4.2)

for any ϕ ∈ X ∩ L∞(Q) such that ϕt ∈ X ′ + L1(Q) and ϕ(., T ) = 0 ;

(ii) for any φ ∈ C(Q),

lim
m→∞

1

m

ˆ

{m≤v<2m}

φA(x, t,∇u).∇v =

ˆ

Q
φdµ+s , (3.4.3)

lim
m→∞

1

m

ˆ

{−m≥v>−2m}

φA(x, t,∇u).∇v =

ˆ

Q
φdµ−s . (3.4.4)

Remark 3.4.2 As a consequence, S(v) ∈ C([0, T ];L1(Ω)) and S(v)(., 0) = S(u0) in Ω;
and u satisfies the equation

(S(v))t−div(S′(v)A(x, t,∇u)) + S′′(v)A(x, t,∇u).∇v= fS′(v)− div(gS′(v)) + S′′(v)g.∇v,
(3.4.5)

in the sense of distributions in Q, see [49, Remark 3]. Moreover

‖S(v)t‖X′+L1(Q) ≤
∥∥∥div(S′

(v)A(x, t,∇u))
∥∥∥
X′

+
∥∥∥S′′

(v)A(x, t,∇u).∇v
∥∥∥
1,Q

+
∥∥∥S′

(v)f
∥∥∥
1,Q

+
∥∥∥g.S′′

(v)∇v
∥∥∥
1,Q

+
∥∥∥div(S′

(v)g)
∥∥∥
X′
.

Thus, if [−M,M ] ⊃ suppS′,

‖S(v)t‖X′+L1(Q) ≤ C ‖S‖W 2,∞(R) (
∥∥|∇u|pχ|v|≤M

∥∥1/p′
1,Q

+
∥∥|∇u|pχ|v|≤M

∥∥
1,Q

+ ‖|∇TM (v)|‖pp,Q
+ ‖a‖p′,Q + ‖a‖p′p′,Q + ‖f‖1,Q + ‖g‖p′,Q

∥∥|∇u|p χ|v|≤M
∥∥1/p
1,Q

+ ‖g‖p′,Q )

(3.4.6)

We also deduce that, for any ϕ ∈ X ∩ L∞(Q), such that ϕt∈ X ′ + L1(Q),
ˆ

Ω
S(v(T ))ϕ(T )dx−

ˆ

Ω
S(u0)ϕ(0)dx−

ˆ

Q
ϕtS(v) +

ˆ

Q
S′(v)A(x, t,∇u).∇ϕ

+

ˆ

Q
S′′(v)A(x, t,∇u).∇vϕ =

ˆ

Q
S′(v)ϕdµ̂0.

(3.4.7)
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Remark 3.4.3 Let u, v satisfy (3.4.1). It is easy to see that the condition (3.4.3) ( resp.
(3.4.4) ) is equivalent to

lim
m→∞

1

m

ˆ

{m≤v<2m}

φA(x, t,∇u).∇u =

ˆ

Q
φdµ+s (3.4.8)

resp.

lim
m→∞

1

m

ˆ

{m≥v>−2m}

φA(x, t,∇u).∇u =

ˆ

Q
φdµ−s . (3.4.9)

In particular, for any ϕ ∈ Lp
′
(Q) there holds

lim
m→∞

1

m

ˆ

m≤|v|<2m

|∇u|ϕ = 0, lim
m→∞

1

m

ˆ

m≤|v|<2m

|∇v|ϕ = 0. (3.4.10)

Remark 3.4.4 (i) Any function U ∈ X such that Ut ∈ X ′ + L1(Q) admits a unique cQp -
quasi continuous representative, defined cQp -quasi a.e. in Q, still denoted U. Furthermore,
if U ∈ L∞(Q), then for any µ0 ∈ M0(Q), there holds U ∈ L∞(Q, dµ0), see [49, Theorem 3
and Corollary 1].

(ii) Let u be any R- solution of problem (3.1.1). Then, v = u − h admits a cQp -quasi
continuous functions representative which is finite cQp -quasi a.e. in Q, and u satisfies defi-
nition 3.4.1 for every decomposition (f̃ , g̃, h̃) such that h− h̃ ∈ L∞(Q), see [49, Proposition
3 and Theorem 4 ].

3.4.2 Steklov and Landes approximations

A main difficulty for proving Theorem 3.2.1 is the choice of admissible test functions
(S, ϕ) in (3.4.2), valid for any R-solution. Because of a lack of regularity of these solutions,
we use two ways of approximation adapted to parabolic equations :

Definition 3.4.5 Let ε ∈ (0, T ) and z ∈ L1
loc(Q). For any l ∈ (0, ε), we define the Steklov

time-averages [z]l, [z]−l of z by

[z]l(x, t) =
1

l

t+l
ˆ

t

z(x, s)ds for a.e. (x, t) ∈ Ω× (0, T − ε),

[z]−l(x, t) =
1

l

t
ˆ

t−l

z(x, s)ds for a.e. (x, t) ∈ Ω× (ε, T ).

The idea to use this approximation for R-solutions can be found in [22]. Recall some
properties, see [50]. Let ε ∈ (0, T ), and ϕ1 ∈ C∞

c (Ω × [0, T )), ϕ2 ∈ C∞
c (Ω × (0, T ]) with

Suppϕ1 ⊂ Ω× [0, T − ε], Suppϕ2 ⊂ Ω× [ε, T ]. We have
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(i) If z ∈ X, then ϕ1[z]l and ϕ2[z]−l ∈W.

(ii) If z ∈ X and zt ∈ X ′ + L1(Q), then, as l → 0, (ϕ1[z]l) and (ϕ2[z]−l) converge
respectively to ϕ1z and ϕ2z in X, and a.e. in Q; and (ϕ1[z]l)t, (ϕ2[z]−l)t converge to
(ϕ1z)t, (ϕ2z)t in X ′ + L1(Q).

(iii) If moreover z ∈ L∞(Q), then from any sequence {ln} → 0, there exists a subsequence
{lν} such that {[z]lν} , {[z]−lν} converge to z, cQp -quasi everywhere in Q.

Next we recall the approximation used in several articles [21, 30, 26], first introduced in
[41].

Definition 3.4.6 Let k > 0, and y ∈ L∞(Ω) and Y ∈ X such that ||y||∞,Ω ≤ k and
||Y ||∞,Q ≤ k. For any ν ∈ N, a Landes-time approximation 〈Y 〉ν of the function Y is
defined as follows :

〈Y 〉ν(x, t) = ν

ˆ t

0
Y (x, s)eν(s−t)ds+ e−νtzν(x) for any (x, t) ∈ Q

where {zν} is a sequence of functions in W 1,p
0 (Ω) ∩ L∞(Ω), such that ||zν ||∞,Ω ≤ k, {zν}

converges to y a.e. in Ω, and ν−1||zν ||p
W 1,p

0 (Ω)
converges to 0.

Therefore, we can verify that (〈Y 〉ν)t ∈ X, 〈Y 〉ν ∈ X ∩ L∞(Q), ||〈Y 〉ν ||∞,Q ≤ k and
{〈Y 〉ν} converges to Y strongly in X and a.e. in Q. Moreover, 〈Y 〉ν satisfies the equation
(〈Y 〉ν)t = ν (Y − 〈Y 〉ν) in the sense of distributions in Q, and 〈Y 〉ν(0) = zν in Ω. In this
paper, we only use the Landes-time approximation of the function Y = Tk(U), where
y = Tk(u0).

3.4.3 First properties

In the sequel we use the following notations : for any function J ∈ W 1,∞(R), nonde-
creasing with J(0) = 0, we set

J(r) =

ˆ r

0
J(τ)dτ, J (r) =

ˆ r

0
J ′(τ)τdτ. (3.4.11)

It is easy to verify that J (r) ≥ 0,

J (r) + J(r) = J(r)r, and J (r)− J (s) ≥ s (J(r)− J(s)) ∀r, s ∈ R. (3.4.12)

In particular we define, for any k > 0, and any r ∈ R,

Tk(r) =

ˆ r

0
Tk(τ)dτ, Tk(r) =

ˆ r

0
T ′
k(τ)τdτ, (3.4.13)

and we use several times a truncature used in [32] :

Hm(r) = χ[−m,m](r) +
2m− |s|

m
χm<|s|≤2m(r), Hm(r) =

ˆ r

0
Hm(τ)dτ. (3.4.14)

The next Lemma allows to extend the range of the test functions in (3.4.2). Its proof,
given in the Appendix, is obtained by Steklov approximation of the solutions.
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Lemma 3.4.7 Let u be a R-solution of problem (3.1.1). Let J ∈W 1,∞(R) be nondecreasing
with J(0) = 0, and J defined by (3.4.11). Then,

ˆ

Q
S′(v)A(x, t,∇u).∇ (ξJ(S(v))) +

ˆ

Q
S′′(v)A(x, t,∇u).∇vξJ(S(v))

−
ˆ

Ω
ξ(0)J(S(u0))S(u0)dx−

ˆ

Q
ξtJ(S(v))

≤
ˆ

Q
S′(v)ξJ(S(v))dµ̂0, (3.4.15)

for any S ∈ W 2,∞(R) such that S′ has compact support on R and S(0) = 0, and for any
ξ ∈ C1(Q) ∩W 1,∞(Q), ξ ≥ 0.

Next we give estimates of the function and its gradient, following the first ones of [26],
inspired by the estimates of the elliptic case of [13]. In particular we extend the priori
estimates of [49, Proposition 4] given for solutions with smooth data ; see also [33, 42].

Proposition 3.4.8 If u is a R-solution of problem (3.1.1), then there exists c = c(p) such
that, for any k ≥ 1 and ℓ ≥ 0,

ˆ

ℓ≤|v|≤ℓ+k

|∇u|p+
ˆ

ℓ≤|v|≤ℓ+k

|∇v|p ≤ ckM (3.4.16)

and
‖v‖L∞((0,T );L1(Ω)) ≤ c(M + |Ω|), (3.4.17)

where
M = ‖u0‖1,Ω + |µs| (Q)+ ‖f‖1,Q + ‖g‖p′p′,Q + ‖h‖pX + ||a||p′p′,Q.

As a consequence, for any k ≥ 1,

meas {|v| > k} ≤ C1M1k
−pc , meas {|∇v| > k} ≤ C2M2k

−mc , (3.4.18)

meas {|u| > k} ≤ C3M2k
−pc , meas {|∇u| > k} ≤ C4M2k

−mc , (3.4.19)

where Ci = Ci(N, p, c1, c2), i = 1-4, and M1 = (M+|Ω|)
p
NM and M2 =M1 +M.

Proof. Set for any r ∈ R, and m, k, ℓ > 0,

Tk,ℓ(r) = max{min{r − ℓ, k}, 0}+min{max{r + ℓ,−k}, 0}.

For m > k + ℓ, we can choose (J, S, ξ) = (Tk,ℓ, Hm, ξ) as test functions in (3.4.15), where
Hm is defined at (3.4.14) and ξ ∈ C1([0, T ]) with values in [0, 1], independent on x. Since
Tk,ℓ(Hm(r)) = Tk,ℓ(r) for all r ∈ R, we obtain

−
´

Ω ξ(0)Tk,ℓ(u0)Hm(u0)dx−
´

Q ξtTk,ℓ(Hm(v))

+
´

{ℓ≤|v|<ℓ+k}
ξA(x, t,∇u).∇v − k

m

´

{m≤|v|<2m}
ξA(x, t,∇u).∇v ≤

´

QHm(v)ξTk,ℓ(v)dµ̂0.
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And
ˆ

Q
Hm(v)ξTk,ℓ(v)dµ̂0 =

ˆ

Q
Hm(v)ξTk,ℓ(v)f+

ˆ

{ℓ≤|v|<ℓ+k}

ξ∇v.g− k

m

ˆ

{m≤|v|<2m}

ξ∇v.g.

Let m → ∞ ; then, for any k ≥ 1, since v ∈ L1(Q) and from (3.4.3), (3.4.4), and (3.4.10),
we find

−
ˆ

Q
ξtTk,ℓ(v)+

ˆ

{ℓ≤|v|<ℓ+k}

ξA(x, t,∇u).∇v ≤
ˆ

{ℓ≤|v|<ℓ+k}

ξ∇v.g+k(‖u0‖1,Ω+ |µs| (Q)+ ‖f‖1,Q).

(3.4.20)
Next, we take ξ ≡ 1. We verify that there exists c = c(p) such that

A(x, t,∇u).∇v −∇v.g ≥c1
4
(|∇u|p + |∇v|p)− c(|g|p′ + |∇h|p + |a|p′)

where c1 is the constant in (3.1.2). Hence (3.4.16) follows. Thus, from (3.4.20) and the
Hölder inequality, we get, with another constant c, for any ξ ∈ C1([0, T ]) with values in
[0, 1],

−
ˆ

Q
ξtTk,ℓ(v) ≤ ckM

Thus
´

Ω Tk,ℓ(v)(t)dx ≤ ckM, for a.e. t ∈ (0, T ). We deduce (3.4.17) by taking k = 1, ℓ = 0,
since T1,0(r) = T1(r) ≥ |r| − 1, for any r ∈ R.

Next, from the Gagliardo-Nirenberg embedding Theorem, we have
ˆ

Q
|Tk(v)|

p(N+1)
N ≤ C1 ‖v‖

p
N

L∞((0,T );L1(Ω))

ˆ

Q
|∇Tk(v)|p,

where C1 = C1(N, p). Then, from (3.4.16) and (3.4.17), we get, for any k ≥ 1,

meas {|v| > k} ≤ k−
p(N+1)

N

ˆ

Q
|Tk(v)|

p(N+1)
N

≤ C ‖v‖
p
N

L∞((0,T );L1(Ω))
k−

p(N+1)
N

ˆ

Q
|∇Tk(v)|p

≤ C2M1k
−pc ,

with C2 = C2(N, p, c1, c2). We obtain

meas {|∇v| > k} ≤ 1

kp

ˆ kp

0
meas ({|∇v|p > s}) ds

≤ meas
{
|v| > k

N
N+1

}
+

1

kp

ˆ kp

0
meas

({
|∇v|p > s, |v| ≤ k

N
N+1

})
ds

≤ C2M1k
−mc +

1

kp

ˆ

|v|≤k
N

N+1

|∇v|p ≤ C2M2k
−mc ,

with C3 = C3(N, p, c1, c2). Furthermore, for any k ≥ 1,

meas {|h| > k}+meas {|∇h| > k} ≤ C4k
−p ‖h‖pX ,

where C4 = C4(N, p, c1, c2). Therefore, we easily get (3.4.19).
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Remark 3.4.9 If µ ∈ L1(Q) and a ≡ 0 in (3.1.2), then (3.4.16) holds for all k > 0 and the
term |Ω| in inequality (3.4.17) can be removed where M = ||u0||1,Ω + |µ|(Q). Furthermore,
(3.4.19) is stated as follows :

meas {|u| > k} ≤ C3M
p+N
N k−pc , meas {|∇u| > k} ≤ C4M

N+2
N+1k−mc , ∀k > 0. (3.4.21)

To see last inequality, we do in the following way :

meas {|∇v| > k} ≤ 1

kp

ˆ kp

0
meas ({|∇v|p > s}) ds

≤ meas
{
|v| > M

1
N+1k

N
N+1

}
+

1

kp

ˆ kp

0
meas

{
|∇v|p > s, |v| ≤M

1
N+1k

N
N+1

}
ds

≤ C4M
N+2
N+1k−mc .

Proposition 3.4.10 Let {µn} ⊂ Mb(Q), and {u0,n} ⊂ L1(Ω), with

sup
n

|µn| (Q) <∞, and sup
n

||u0,n||1,Ω <∞.

Let un be a R-solution of (3.1.1) with data µn = µn,0 + µn,s and u0,n, relative to a decom-
position (fn, gn, hn) of µn,0, and vn = un − hn. Assume that {fn} is bounded in L1(Q),
{gn} bounded in (Lp

′
(Q))N and {hn} bounded in X.

Then, up to a subsequence, {vn} converges a.e. to a function v, such that Tk(v) ∈ X and
v ∈ Lσ((0, T );W 1,σ

0 (Ω)) ∩ L∞((0, T );L1(Ω)) for any σ ∈ [1,mc). And

(i) {vn} converges to v strongly in Lσ(Q) for any σ ∈ [1,mc), and sup ‖vn‖L∞((0,T );L1(Ω)) <
∞,

(ii) supk>0 supn
1

k+1

´

Q |∇Tk(vn)|p <∞,

(iii) {Tk(vn)} converges to Tk(v) wealkly in X, for any k > 0,

(iv) {A (x, t,∇ (Tk(vn) + hn))} converges to some Fk weakly in (Lp
′
(Q))N .

Proof. Take S ∈ W 2,∞(R) such that S′ has compact support on R and S(0) = 0. We
combine (3.4.6) with (3.4.16), and deduce that {S(vn)t} is bounded in X ′ + L1(Q) and
{S(vn)} bounded in X. Hence, {S(vn)} is relatively compact in L1(Q). On the other hand,
we choose S = Sk such that Sk(z) = z, if |z| < k and S(z) = 2k signz, if |z| > 2k. Thanks
to (3.4.17), we obtain

meas {|vn − vm| > σ} ≤ meas {|vn| > k}+meas {|vm| > k}+meas {|Sk(vn)− Sk(vm)| > σ}

≤ 1

k
(‖vn‖1,Q + ‖vm‖1,Q) + meas {|Sk(vn)− Sk(vm)| > σ}

≤ C

k
+meas {|Sk(vn)− Sk(vm)| > σ} . (3.4.22)

Thus, up to a subsequence {un} is a Cauchy sequence in measure, and converges a.e. in Q
to a function u. Thus, {Tk(vn)} converges to Tk(v) weakly in X, since supn ‖Tk(vn)‖X <∞
for any k > 0. And

{
|∇ (Tk(vn) + hn) |p−2∇ (Tk(vn) + hn)

}
converges to some Fk weakly

in (Lp
′
(Q))N . Furthermore, from (3.4.18), {vn} converges to v strongly in Lσ(Q), for any

σ < pc.
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3.5 The convergence theorem

We first recall some properties of the measures, see [49, Lemma 5], [32].

Proposition 3.5.1 Let µs = µ+s − µ−s ∈ Mb(Q), where µ+s and µ−s are concentrated,
respectively, on two disjoint sets E+ and E− of zero cQp -capacity. Then, for any δ > 0,
there exist two compact sets K+

δ ⊆ E+ and K−
δ ⊆ E− such that

µ+s (E
+\K+

δ ) ≤ δ, µ−s (E
−\K−

δ ) ≤ δ,

and there exist ψ+
δ , ψ

−
δ ∈ C1

c (Q) with values in [0, 1] , such that ψ+
δ , ψ

−
δ = 1 respectively on

K+
δ ,K

−
δ , and supp(ψ+

δ ) ∩ supp(ψ−
δ ) = ∅, and

||ψ+
δ ||X + ||(ψ+

δ )t||X′+L1(Q) ≤ δ, ||ψ−
δ ||X + ||(ψ−

δ )t||X′+L1(Q) ≤ δ.

There exist decompositions (ψ+
δ )t =

(
ψ+
δ

)1
t
+
(
ψ+
δ

)2
t

and (ψ−
δ )t =

(
ψ−
δ

)1
t
+
(
ψ−
δ

)2
t

in X ′ +
L1(Q), such that

∥∥∥
(
ψ+
δ

)1
t

∥∥∥
X′

≤ δ

3
,

∥∥∥
(
ψ+
δ

)2
t

∥∥∥
1,Q

≤ δ

3
,

∥∥∥
(
ψ−
δ

)1
t

∥∥∥
X′

≤ δ

3
,

∥∥∥
(
ψ−
δ

)2
t

∥∥∥
1,Q

≤ δ

3
.

(3.5.1)
Both

{
ψ+
δ

}
and

{
ψ−
δ

}
converge to 0, ∗-weakly in L∞(Q), and strongly in L1(Q) and up to

subsequences, a.e. in Q, as δ tends to 0.

Moreover if ρn and ηn are as in Theorem 3.2.1, we have, for any δ, δ1, δ2 > 0,

ˆ

Q
ψ−
δ dρn +

ˆ

Q
ψ+
δ dηn = ω(n, δ),

ˆ

Q
ψ−
δ dµ

+
s ≤ δ,

ˆ

Q
ψ+
δ dµ

−
s ≤ δ, (3.5.2)

ˆ

Q
(1− ψ+

δ1
ψ+
δ2
)dρn = ω(n, δ1, δ2),

ˆ

Q
(1− ψ+

δ1
ψ+
δ2
)dµ+s ≤ δ1 + δ2, (3.5.3)

ˆ

Q
(1− ψ−

δ1
ψ−
δ2
)dηn = ω(n, δ1, δ2),

ˆ

Q
(1− ψ−

δ1
ψ−
δ2
)dµ−s ≤ δ1 + δ2. (3.5.4)

Hereafter, if n, ε, ..., ν are real numbers, and a function φ depends on n, ε, ..., ν and even-
tual other parameters α, β, .., γ, and n→ n0, ε→ ε0, .., ν → ν0, we write φ = ω(n, ε, .., ν),
then this means limν→ν0 ..limε→ε0 limn→n0 |φ| = 0, when the parameters α, β, .., γ are
fixed. In the same way, φ ≤ ω(n, ε, δ, ..., ν) means limν→ν0 ..limε→ε0 limn→n0φ ≤ 0, and
φ ≥ ω(n, ε, .., ν) means −φ ≤ ω(n, ε, .., ν).

Remark 3.5.2 In the sequel we use a convergence property, consequence of the Dunford-
Pettis theorem, still used in [32] : If {a1,n} is a sequence in L1(Q) converging to a1 weakly
in L1(Q) and {b1,n} a bounded sequence in L∞(Q) converging to b1, a.e. in Q, then

lim
n→∞

ˆ

Q
a1,nb1,ndxdt =

ˆ

Q
a1b1.dxdt.
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Next we prove Thorem 3.2.1.

Scheme of the proof. Let {µn}, {u0,n} and {un} satisfying the assumptions of Theorem
3.2.1. Then we can apply Proposition 3.4.10. Setting vn = un − hn, up to subsequences,
{un} converges a.e. in Q to some function u, and {vn} converges a.e. to v = u − h, such
that Tk(v) ∈ X and v ∈ Lσ((0, T );W 1,σ

0 (Ω)) ∩ L∞((0, T );L1(Ω)) for every σ ∈ [1,mc).
And {vn} satisfies the conclusions (i) to (iv) of Proposition 3.4.10. We have

µn = (fn − div gn + (hn)t) + (ρ1n − div ρ2n)− (η1n − div η2n) + ρn,s − ηn,s

= µn,0 + (ρn,s − ηn,s)
+ − (ρn,s − ηn,s)

−,

where

µn,0 = λn,0+ρn,0−ηn,0, with λn,0 = fn−div gn+(hn)t, ρn,0 = ρ1n−div ρ2n, ηn,0 = η1n−div η2n.
(3.5.5)

Hence
ρn,0, ηn,0 ∈ M

+
b (Q) ∩M0(Q), and ρn ≥ ρn,0, ηn ≥ ηn,0. (3.5.6)

Let E+, E− be the sets where, respectively, µ+s and µ−s are concentrated. For any δ1, δ2 > 0,
let ψ+

δ1
, ψ+

δ2
and ψ−

δ1
, ψ−

δ2
as in Proposition 3.5.1 and set

Φδ1,δ2 = ψ+
δ1
ψ+
δ2
+ ψ−

δ1
ψ−
δ2
.

Suppose that we can prove the two estimates, near E

I1 :=

ˆ

{|vn|≤k}

Φδ1,δ2A(x, t,∇un).∇ (vn−〈Tk(v)〉ν) ≤ ω(n, ν, δ1, δ2), (3.5.7)

and far from E,

I2 :=

ˆ

{|vn|≤k}

(1− Φδ1,δ2)A(x, t,∇un).∇(vn−〈Tk(v)〉ν) ≤ ω(n, ν, δ1, δ2). (3.5.8)

Then it follows that

limn,ν

ˆ

{|vn|≤k}

A(x, t,∇un).∇ (vn−〈Tk(v)〉ν) ≤ 0, (3.5.9)

which implies

limn→∞

ˆ

{|vn|≤k}

A(x, t,∇un).∇ (vn − Tk(v)) ≤ 0, (3.5.10)

since {〈Tk(v)〉ν} converges to Tk(v) in X. On the other hand, from the weak convergence
of {Tk(vn)} to Tk(v) in X, we verify that

ˆ

{|vn|≤k}

A(x, t,∇(Tk(v) + hn)).∇ (Tk(vn)− Tk(v)) = ω(n).
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Thus we get
ˆ

{|vn|≤k}

(A(x, t,∇un)−A(x, t,∇(Tk(v) + hn))) .∇ (un − (Tk(v) + hn)) = ω(n).

Then, it is easy to show that, up to a subsequence,

{∇un} converges to ∇u, a.e. in Q. (3.5.11)

Therefore, {A(x, t,∇un)} converges to A(x, t,∇u) weakly in (Lp
′
(Q))N ; and from (3.5.10)

we find

limn→∞

ˆ

Q
A(x, t,∇un).∇Tk(vn) ≤

ˆ

Q
A(x, t,∇u)∇Tk(v).

Otherwise, {A(x, t,∇ (Tk(vn) + hn))} converges weakly in (Lp
′
(Q))N to some Fk, from Pro-

position 3.4.10, and we obtain that Fk = A(x, t,∇ (Tk(v) + h)). Hence

limn→∞

ˆ

Q
A(x, t,∇(Tk(vn) + hn)).∇(Tk(vn) + hn)

≤ limn→∞

ˆ

Q
A(x, t,∇un).∇Tk(vn) + limn→∞

ˆ

Q
A(x, t,∇(Tk(vn) + hn)).∇hn

≤
ˆ

Q
A(x, t,∇(Tk(v) + h)).∇(Tk(v) + h).

As a consequence

{Tk(vn)} converges to Tk(v), strongly in X, ∀k > 0. (3.5.12)

Then to finish the proof we have to check that u is a solution of (3.1.1).

In order to prove (3.5.7) we need a first Lemma, inspired of [32, Lemma 6.1], extending
[49, Lemma 6 and Lemma 7] :

Lemma 3.5.3 Let ψ1,δ, ψ2,δ ∈ C1(Q) be uniformly bounded in W 1,∞(Q) with values in
[0, 1], such that

´

Q ψ1,δdµ
−
s ≤ δ and

´

Q ψ2,δdµ
+
s ≤ δ. Then,

1

m

ˆ

{m≤vn<2m}

|∇un|pψ2,δ = ω(n,m, δ),
1

m

ˆ

{m≤vn<2m}

|∇vn|pψ2,δ = ω(n,m, δ),

(3.5.13)
1

m

ˆ

−2m<vn≤−m

|∇un|pψ1,δ = ω(n,m, δ),
1

m

ˆ

−2m<vn≤−m

|∇vn|pψ1,δ = ω(n,m, δ),

(3.5.14)
and for any k > 0,

ˆ

{m≤vn<m+k}

|∇un|pψ2,δ = ω(n,m, δ),

ˆ

{m≤vn<m+k}

|∇vn|pψ2,δ = ω(n,m, δ), (3.5.15)
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ˆ

{−m−k<vn≤−m}

|∇un|pψ1,δ = ω(n,m, δ),

ˆ

{−m−k<vn≤−m}

|∇vn|pψ1,δ = ω(n,m, δ).

(3.5.16)

Proof. (i) Proof of (3.5.13), (3.5.14). Set for any r ∈ R and any m, ℓ ≥ 1

Sm,ℓ(r) =

ˆ r

0

(−m+ τ

m
χ[m,2m](τ) + χ(2m,2m+ℓ](τ) +

4m+ 2h− τ

2m+ ℓ
χ(2m+ℓ,4m+2h](τ)

)
dτ,

Sm(r)=

ˆ r

0

(−m+ τ

m
χ[m,2m](τ) + χ(2m,∞)(τ)

)
dτ.

Note that S′′
m,ℓ= χ[m,2m]/m−χ[2m+ℓ,2(2m+ℓ)]/(2m+ℓ).We choose (ξ, J, S) = (ψ2,δ, T1, Sm,ℓ)

as test functions in (3.4.15) for un, and observe that, from (3.5.5),

µ̂n,0 = µn,0 − (hn)t = λ̂n,0 + ρn,0 − ηn,0 = fn − div gn + ρn,0 − ηn,0. (3.5.17)

Thus we can write
∑6

i=1Ai ≤
∑12

i=7Ai, where

A1 = −
ˆ

Ω

ψ2,δ(0)T1(Sm,ℓ(u0,n))Sm,ℓ(u0,n), A2 = −
ˆ

Q
(ψ2,δ)tT1(Sm,ℓ(vn)),

A3 =

ˆ

Q
S′
m,ℓ(vn)T1(Sm,ℓ(vn))A(x, t,∇un)∇ψ2,δ,

A4 =

ˆ

Q
(S′
m,ℓ(vn))

2ψ2,δT
′
1(Sm,ℓ(vn))A(x, t,∇un)∇vn,

A5 =
1

m

ˆ

{m≤vn≤2m}

ψ2,δT1(Sm,ℓ(vn))A(x, t,∇un)∇vn,

A6 = − 1

2m+ ℓ

ˆ

{2m+ℓ≤vn<2(2m+ℓ)}

ψ2,δA(x, t,∇un)∇vn,

A7 =

ˆ

Q
S′
m,ℓ(vn)T1(Sm,ℓ(vn))ψ2,δfn, A8 =

ˆ

Q
S′
m,ℓ(vn)T1(Sm,ℓ(vn))gn.∇ψ2,δ,

A9 =

ˆ

Q

(
S′
m,ℓ(vn)

)2
T ′
1(Sm,ℓ(vn))ψ2,δgn.∇vn, A10 =

1

m

ˆ

m≤vn≤2m

T1(Sm,ℓ(vn))ψ2,δgn.∇vn,

A11 = − 1

2m+ ℓ

ˆ

{2m+ℓ≤vn<2(2m+ℓ)}

ψ2,δgn.∇vn, A12 =

ˆ

Q
S′
m,ℓ(vn)T1(Sm,ℓ(vn))ψ2,δd (ρn,0 − ηn,0) .

Since ||Sm,ℓ(u0,n)||1,Ω ≤
´

{m≤u0,n}
u0,ndx, we find A1 = ω(ℓ, n,m). Otherwise

|A2| ≤ ‖ψ2,δ‖W 1,∞(Q)

ˆ

{m≤vn}

vn, |A3| ≤ ‖ψ2,δ‖W 1,∞(Q)

ˆ

{m≤vn}

(
|a|+ c2|∇un|p−1

)
,
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which implies A2 = ω(ℓ, n,m) and A3 = ω(ℓ, n,m). Using (3.4.3) for un, we have

A6 = −
ˆ

Q
ψ2,δd(ρn,s − ηn,s)

+ + ω(ℓ) = ω(ℓ, n,m, δ).

Hence A6 = ω(ℓ, n,m, δ), since (ρn,s − ηn,s)
+ converges to µ+s as n → ∞ in the narrow

topology, and
´

Q ψ2,δdµ
+
s ≤ δ. We also obtain A11 = ω(ℓ) from (3.4.10).

Now
{
S′
m,ℓ(vn)T1(Sm,ℓ(vn))

}
ℓ
converges to S′

m(vn)T1(Sm(vn)), {S′
m(vn)T1(Sm(vn))}n converges

to S′
m(v) T1(Sm(v)), {S′

m(v)T1(Sm(v))}m converges to 0, ∗-weakly in L∞(Q), and {fn}
converges to f weakly in L1(Q), {gn} converges to g strongly in (Lp

′
(Q))N . From Remark

3.5.2, we obtain

A7 =

ˆ

Q
S′
m(vn)T1(Sm(vn))ψ2,δfn + ω(ℓ) =

ˆ

Q
S′
m(v)T1(Sm(v))ψ2,δf + ω(ℓ, n) = ω(ℓ, n,m),

A8 =

ˆ

Q
S′
m(vn)T1(Sm(vn))gn.∇ψ2,δ + ω(ℓ) =

ˆ

Q
S′
m(v)T1(Sm(v))g∇ψ2,δ + ω(ℓ, n) = ω(ℓ, n,m).

Otherwise, A12 ≤
´

Q ψ2,δdρn, and
{
´

Q ψ2,δdρn

}
converges to

´

Q ψ2,δdµ
+
s , thus A12 ≤

ω(ℓ, n,m, δ).

Using Holder inequality and the condition (3.1.2) we have

gn.∇vn −A(x, t,∇un)∇vn ≤ C1

(
|gn|p

′
+ |∇hn|p + |a|p′

)

with C1 = C1(p, c2), which implies

A9 −A4 ≤ C1

ˆ

Q

(
S′
m,ℓ(vn)

)2
T ′
1(Sm,ℓ(vn))ψ2,δ

(
|gn|p

′
+ |hn|p + |a|p′

)
= ω(ℓ, n,m).

Similarly we also show that A10 − A5/2 ≤ ω(ℓ, n,m). Combining the estimates, we get
A5/2 ≤ ω(ℓ, n,m, δ). Using Holder inequality we have

A(x, t,∇un)∇vn ≥ c1
2
|∇un|p − C2(|a|p

′
+ |∇hn|p).

with C2 = C2(p, c1, c2), which implies

1

m

ˆ

{m≤vn<2m}

|∇un|pψ2,δT1(Sm,ℓ(vn)) = ω(ℓ, n,m, δ).

Note that for all m > 4, Sm,ℓ(r) ≥ 1 for any r ∈ [32m, 2m]; hence T1(Sm,ℓ(r)) = 1. So,

1

m

ˆ

{ 3
2
m≤vn<2m}

|∇un|pψ2,δ = ω(ℓ, n,m, δ).

Since |∇vn|p ≤ 2p−1|∇un|p + 2p−1|∇hn|p, there also holds

1

m

ˆ

{ 3
2
m≤vn<2m}

|∇vn|pψ2,δ = ω(ℓ, n,m, δ).
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We deduce (3.5.13) by summing on each set
{
(43)

im ≤ vn ≤ (43)
i+1m

}
for i = 0, 1, 2. Simi-

larly, we can choose (ξ, ψ, S) = (ψ1,δ, T1, S̃m,ℓ) as test functions in (3.4.15) for un, where
S̃m,ℓ(r) = Sm,ℓ(−r), and we obtain (3.5.14).

(ii) Proof of (3.5.15), (3.5.16). We set, for any k,m, ℓ ≥ 1,

Sk,m,ℓ(r) =

ˆ r

0

(
Tk(τ − Tm(τ))χ[m,k+m+ℓ] + k

2(k + ℓ+m)− τ

k +m+ ℓ
χ(k+m+ℓ,2(k+m+ℓ)]

)
dτ

Sk,m(r) =

r
ˆ

0

Tk(τ − Tm(τ))χ[m,∞)dτ.

We choose (ξ, ψ, S) = (ψ2,δ, T1, Sk,m,ℓ) as test functions in (3.4.15) for un. In the same way
we also obtain

ˆ

{m≤vn<m+k}

|∇un|pψ2,δT1(Sk,m,ℓ(vn)) = ω(ℓ, n,m, δ).

Note that T1(Sk,m,ℓ(r)) = 1 for any r ≥ m+1, thus
´

{m+1≤vn<m+k}
|∇un|pψ2,δ = ω(n,m, δ),

which implies (3.5.15) by changing m into m− 1. Similarly, we obtain (3.5.16).

Next we look at the behaviour near E.

Lemma 3.5.4 Estimate (3.5.7) holds.

Proof. There holds

I1 =

ˆ

Q
Φδ1,δ2A(x, t,∇un).∇Tk(vn)−

ˆ

{|vn|≤k}

Φδ1,δ2A(x, t,∇un).∇〈Tk(v)〉ν .

From Proposition 3.4.10, (iv), {A(x, t,∇ (Tk(vn) + hn)).∇〈Tk(v)〉ν} converges weakly in
L1(Q) to Fk∇〈Tk(v)〉ν . And

{
χ{|vn|≤k}

}
converges to χ|v|≤k, a.e. inQ , and Φδ1,δ2 converges

to 0 a.e. in Q as δ1 → 0, and Φδ1,δ2 takes its values in [0, 1]. Thanks to Remark 3.5.2, we
have

ˆ

{|vn|≤k}

Φδ1,δ2A(x, t,∇un).∇〈Tk(v)〉ν

=

ˆ

Q
χ{|vn|≤k}Φδ1,δ2A(x, t,∇ (Tk(vn) + hn)).∇〈Tk(v)〉ν

=

ˆ

Q
χ|v|≤kΦδ1,δ2Fk.∇〈Tk(v)〉ν + ω(n) = ω(n, ν, δ1).

Therefore, if we prove that
ˆ

Q
Φδ1,δ2A(x, t,∇un).∇Tk(vn) ≤ ω(n, δ1, δ2), (3.5.18)
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then we deduce (3.5.7). As noticed in [32, 49], it is precisely for this estimate that we need
the double cut ψ+

δ1
ψ+
δ2
. To do this, we set, for any m > k > 0, and any r ∈ R,

Ŝk,m(r) =

ˆ r

0
(k − Tk(τ))Hm(τ)dτ,

where Hm is defined at (3.4.14). Hence suppŜk,m ⊂ [−2m, k] ; and Ŝ′′
k,m = −χ[−k, k] +

2k
mχ[−2m,−m]. We choose (ϕ, S) = (ψ+

δ1
ψ+
δ2
, Ŝk,m) as test functions in (3.4.2). From (3.5.17),

we can write
A1 +A2 −A3 +A4 +A5 +A6 = 0,

where

A1 = −
ˆ

Q
(ψ+

δ1
ψ+
δ2
)
t
Ŝk,m(vn), A2 =

ˆ

Q
(k − Tk(vn))Hm(vn)A(x, t,∇un).∇(ψ+

δ1
ψ+
δ2
),

A3 =

ˆ

Q
ψ+
δ1
ψ+
δ2
A(x, t,∇un).∇Tk(vn), A4

=
2k

m

ˆ

{−2m<vn≤−m}

ψ+
δ1
ψ+
δ2
A(x, t,∇un).∇vn,

A5 = −
ˆ

Q
(k − Tk(vn))Hm(vn)ψ

+
δ1
ψ+
δ2
dλ̂n,0, A6 =

ˆ

Q
(k − Tk(vn))Hm(vn)ψ

+
δ1
ψ+
δ2
d (ηn,0 − ρn,0) ;

and we estimate A3. As in [49, p.585], since
{
Ŝk,m(vn)

}
converges to Ŝk,m(v) weakly in X,

and Ŝk,m(v) ∈ L∞(Q), and from (3.5.1), there holds

A1 = −
ˆ

Q
(ψ+

δ1
)
t
ψ+
δ2
Ŝk,m(v)−

ˆ

Q
ψ+
δ1
(ψ+

δ2
)
t
Ŝk,m(v) + ω(n) = ω(n, δ1).

Next consider A2. Notice that vn = T2m(vn) on supp(Hm(vn)). From Proposition 3.4.10,

(iv), the sequence
{
A(x, t,∇ (T2m(vn) + hn)).∇(ψ+

δ1
ψ+
δ2
)
}

converges to F2m.∇(ψ+
δ1
ψ+
δ2
) weakly

in L1(Q). Thanks to Remark 3.5.2 and the convergence of ψ+
δ1
ψ+
δ2

in X to 0 as δ1 tends to
0, we find

A2 =

ˆ

Q
(k − Tk(v))Hm(v)F2m.∇(ψ+

δ1
ψ+
δ2
) + ω(n) = ω(n, δ1).

Then consider A4. Then for some C = C(p, c2),

|A4| ≤ C
2k

m

ˆ

{−2m<vn≤−m}

(
|∇un|p + |∇vn|p + |a|p′

)
ψ+
δ1
ψ+
δ2
.

Since ψ+
δ1

takes its values in [0, 1] , from Lemma 3.5.3, we get in particular A4 = ω(n, δ1,m, δ2).

Now estimate A5. The sequence
{
(k − Tk(vn))Hm(vn)ψ

+
δ1
ψ+
δ2

}
converges weakly in X

to (k− Tk(v))Hm(v)ψ
+
δ1
ψ+
δ2
, and {(k − Tk(vn))Hm(vn)} converges ∗-weakly in L∞(Q) and

a.e. in Q to (k − Tk(v))Hm(v). Otherwise {fn} converges to f weakly in L1 (Q) and {gn}
converges to g strongly in (Lp

′
(Q))N . Thanks to Remark 3.5.2 and the convergence of

ψ+
δ1
ψ+
δ2

to 0 in X and a.e. in Q as δ1 → 0, we deduce that

A5 = −
ˆ

Q
(k − Tk(vn))Hm(v)ψ

+
δ1
ψ+
δ2
dν̂0 + ω(n) = ω(n, δ1),
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where ν̂0 = f − div g.

Finally A6 ≤ 2k
´

Q ψ
+
δ1
ψ+
δ2
dηn ; using (3.5.2) we also find A6 ≤ ω(n, δ1,m, δ2). By

addition, since A3 does not depend on m, we obtain

A3 =

ˆ

Q
ψ+
δ1
ψ+
δ2
A(x, t,∇un)∇Tk(vn) ≤ ω(n, δ1, δ2).

Reasoning as before with (ψ−
δ1
ψ−
δ2
, Šk,m) as test function in (3.4.2), where Šk,m(r) = −Ŝk,m(−r),

we get in the same way
ˆ

Q
ψ−
δ1
ψ−
δ2
A(x, t,∇un)∇Tk(vn) ≤ ω(n, δ1, δ2).

Then, (3.5.18) holds.

Next we look at the behaviour far from E.

Lemma 3.5.5 . Estimate (3.5.8) holds.

Proof. Here we estimate I2; we can write

I2 =

ˆ

{|vn|≤k}

(1− Φδ1,δ2)A(x, t,∇un)∇ (Tk(vn)−〈Tk(v)〉ν) .

Following the ideas of [52], used also in [49], we define, for any r ∈ R and ℓ > 2k > 0,

Rn,ν,ℓ = Tℓ+k (vn−〈Tk(v)〉ν)− Tℓ−k (vn − Tk (vn)) .

Recall that ‖〈Tk(v)〉ν‖∞,Q ≤ k, and observe that

Rn,ν,ℓ = 2k sign(vn) in {|vn| ≥ ℓ+ 2k} , |Rn,ν,ℓ| ≤ 4k, Rn,ν,ℓ = ω(n, ν, ℓ) a.e. in Q,
(3.5.19)

lim
n→∞

Rn,ν,ℓ = Tℓ+k (v − 〈Tk(v)〉ν)− Tℓ−k (v − Tk (v)) , a.e. in Q, and weakly in X.

(3.5.20)
Next consider ξ1,n1 ∈ C∞

c ([0, T )), ξ2,n2 ∈ C∞
c ((0, T ]) with values in [0, 1], such that (ξ1,n1)t ≤

0 and (ξ2,n2)t ≥ 0 ; and {ξ1,n1(t)} (resp. {ξ1,n2(t)}) converges to 1, for any t ∈ [0, T ) (resp.

t ∈ (0, T ] ) ; and moreover, for any a ∈ C([0, T ];L1(Ω)),
{
´

Q a(ξ1,n1)t

}
and

´

Q a(ξ2,n2)t
converge respectively to −

´

Ω

a(., T ) and
´

Ω

a(., 0). We set

ϕ = ϕn,n1,n2,l1,l2,ℓ = ξ1,n1(1−Φδ1,δ2)[Tℓ+k (vn−〈Tk(v)〉ν)]l1−ξ2,n2(1−Φδ1,δ2)[Tℓ−k (vn − Tk(vn))]−l2 .

We can see that

ϕ− (1− Φδ1,δ2)Rn,ν,ℓ = ω(l1, l2, n1, n2) in norm in X and a.e. in Q. (3.5.21)

We can choose (ϕ, S) = (ϕn,n1,n2,l1,l2,ℓ, Hm) as test functions in (3.4.7) for un, where Hm

is defined at (3.4.14), with m > ℓ+ 2k. We obtain

A1 +A2 +A3 +A4 +A5 = A6 +A7,
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with

A1 =

ˆ

Ω

ϕ(T )Hm(vn(T ))dx, A2 = −
ˆ

Ω

ϕ(0)Hm(u0,n)dx,

A3 = −
ˆ

Q
ϕtHm(vn), A4 =

ˆ

Q
Hm(vn)A(x, t,∇un).∇ϕ,

A5 =

ˆ

Q
ϕH ′

m(vn)A(x, t,∇un).∇vn, A6 =

ˆ

Q
Hm(vn)ϕdλ̂n,0,

A7 =

ˆ

Q
Hm(vn)ϕd (ρn,0 − ηn,0) .

Estimate of A4. This term allows to study I2. Indeed, {Hm(vn)} converges to 1, a.e. in
Q ; thanks to (3.5.21), (3.5.19) (3.5.20), we have

A4 =

ˆ

Q
(1− Φδ1,δ2)A(x, t,∇un).∇Rn,ν,ℓ −

ˆ

Q
Rn,ν,ℓA(x, t,∇un).∇Φδ1,δ2+ω(l1, l2, n1, n2,m)

=

ˆ

Q
(1− Φδ1,δ2)A(x, t,∇un).∇Rn,ν,ℓ+ω(l1, l2, n1, n2,m, n, ν, ℓ)

= I2 +

ˆ

{|vn|>k}

(1− Φδ1,δ2)A(x, t,∇un).∇Rn,ν,ℓ+ω(l1, l2, n1, n2,m, n, ν, ℓ)

= I2 +B1 +B2 + ω(l1, l2, n1, n2,m, n, ν, ℓ),

where

B1 =

ˆ

{|vn|>k}

(1− Φδ,η)(χ|vn−〈Tk(v)〉ν |≤ℓ+k − χ||vn|−k|≤ℓ−k)A(x, t,∇un).∇vn,

B2 = −
ˆ

{|vn|>k}

(1− Φδ1,δ2)χ|vn−〈Tk(v)〉ν |≤ℓ+kA(x, t,∇un).∇〈Tk(v)〉ν .

Now {A(x, t,∇ (Tℓ+2k(vn) + hn)).∇〈Tk(v)〉ν} converges to Fℓ+2k∇〈Tk(v)〉ν , weakly in L1(Q).

Otherwise
{
χ|vn|>kχ|vn−〈Tk(v)〉ν |≤ℓ+k

}
converges to χ|v|>kχ|v−〈Tk(v)〉ν |≤ℓ+k, a.e. in Q. And

{〈Tk(v)〉ν} converges to Tk(v) strongly in X. Thanks to Remark 3.5.2 we get

B2 = −
ˆ

Q
(1− Φδ1,δ2) χ|v|>k χ|v−〈Tk(v)〉ν |≤ℓ+kFℓ+2k.∇〈Tk(v)〉ν + ω(n)

= −
ˆ

Q
(1− Φδ1,δ2) χ|v|>k χ|v−Tk(v)|≤ℓ+kFℓ+2k.∇Tk(v) + ω(n, ν) = ω(n, ν),

since ∇Tk(v) χ|v|>k = 0. Besides, we see that, for some C = C(p, c2),

|B1| ≤ C

ˆ

{ℓ−2k≤|vn|<ℓ+2k}

(1− Φδ1,δ2)
(
|∇un|p + |∇vn|p + |a|p′

)
.
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Using (3.5.3) and (3.5.4) and applying (3.5.15) and (3.5.16) to 1− Φδ1,δ2 , we obtain, for
k > 0

ˆ

{m≤|vn|<m+4k}

(|∇un|p + |∇vn|p)(1− Φδ1,δ2) = ω(n,m, δ1, δ2). (3.5.22)

Thus, B1 = ω(n, ν, ℓ, δ1, δ2), hence B1 +B2 = ω(n, ν, ℓ, δ1, δ2). Then

A4 = I2 + ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2). (3.5.23)

Estimate of A5. For m > ℓ + 2k, since |ϕ| ≤ 2ℓ, and (3.5.21) holds, we get, from the
dominated convergence Theorem,

A5 =

ˆ

Q
(1− Φδ1,δ2)Rn,ν,ℓH

′
m(vn)A(x, t,∇un).∇vn + ω(l1, l2, n1, n2)

= −2k

m

ˆ

{m≤|vn|<2m}

(1− Φδ1,δ2)A(x, t,∇un).∇vn+ω(l1, l2, n1, n2);

here, the final equality followed from the relation, since m > ℓ+ 2k,

Rn,ν,ℓH
′
m(vn) = −2k

m
χm≤|vn|≤2m, a.e. in Q. (3.5.24)

Next we go to the limit in m, by using (3.4.3), (3.4.4) for un, with φ = (1− Φδ1,δ2). There
holds

A5 = −2k

ˆ

Q
(1− Φδ1,δ2)d

(
(ρn,s − ηn,s)

+ + (ρn,s − ηn,s)
−)+ω(l1, l2, n1, n2,m).

Then, from (3.5.3) and (3.5.4), we get A5 = ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2).

Estimate of A6. Again, from (3.5.21),

A6 =

ˆ

Q
Hm(vn)ϕfn +

ˆ

Q
gn.∇(Hm(vn)ϕ)

=

ˆ

Q
Hm(vn)(1− Φδ1,δ2)Rn,ν,ℓfn +

ˆ

Q
gn.∇(Hm(vn)(1− Φδ1,δ2)Rn,ν,ℓ)+ω(l1, l2, n1, n2).

Thus we can write A6 = D1 +D2 +D3 +D4 + ω(l1, l2, n1, n2), where

D1 =

ˆ

Q
Hm(vn)(1− Φδ1,δ2)Rn,ν,ℓfn, D2 =

ˆ

Q
(1− Φδ1,δ2)Rn,ν,ℓH

′
m(vn)gn.∇vn,

D3 =

ˆ

Q
Hm(vn)(1− Φδ1,δ2)gn.∇Rn,ν,ℓ, D4 = −

ˆ

Q
Hm(vn)Rn,ν,ℓgn.∇Φδ1,δ2 .

Since {fn} converges to f weakly in L1(Q), and (3.5.19)-(3.5.20) hold, we get from Remark
3.5.2,

D1 =

ˆ

Q
(1− Φδ1,δ2) (Tℓ+k (v−〈Tk(v)〉ν)− Tℓ−k (v − Tk (v))) f+ω(m,n) = ω(m,n, ν, ℓ).
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We deduce from (3.4.10) thatD2 = ω(m). Next considerD3.Note thatHm(vn) = 1 + ω(m),
and (3.5.20) holds, and {gn} converges to g strongly in (Lp

′
(Q))N , and 〈Tk(v)〉ν converges

to Tk(v) strongly in X. Then we obtain successively that

D3 =

ˆ

Q
(1− Φδ1,δ2)g.∇ (Tℓ+k (v − 〈Tk(v)〉ν)− Tℓ−k (v − Tk (v)))+ω(m,n)

=

ˆ

Q
(1− Φδ1,δ2)g.∇ (Tℓ+k (v − Tk(v))− Tℓ−k (v − Tk (v)))+ω(m,n, ν)

= ω(m,n, ν, ℓ).

Similarly we also get D4 = ω(m,n, ν, ℓ). Thus A6 = ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2).

Estimate of A7. We have

|A7| =
∣∣∣∣
ˆ

Q
S′
m(vn) (1− Φδ1,δ2)Rn,ν,ℓd (ρn,0 − ηn,0)

∣∣∣∣+ ω(l1, l2, n1, n2)

≤ 4k

ˆ

Q
(1− Φδ1,δ2) d (ρn + ηn) + ω(l1, l2, n1, n2).

From (3.5.3) and (3.5.4) we get A7 = ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2).

Estimate of A1 +A2 +A3. We set

J(r) = Tℓ−k (r−Tk (r)) , ∀r ∈ R,

and use the notations J andJ of (3.4.11). From the definitions of ξ1,n1 , ξ1,n2 , we can see
that

A1 +A2 = −
ˆ

Ω
J(vn(T ))Hm(vn(T ))−

ˆ

Ω
Tℓ+k(u0,n − zν)Hm(u0,n) + ω(l1, l2, n1, n2)

= −
ˆ

Ω
J(vn(T ))vn(T )−

ˆ

Ω
Tℓ+k(u0,n − zν)u0,n + ω(l1, l2, n1, n2,m), (3.5.25)

where zν = 〈Tk(v)〉ν(0). We can write A3 = F1 + F2, where

F1 = −
ˆ

Q

(
ξn1(1− Φδ1,δ2)[Tℓ+k (vn − 〈Tk(v)〉ν)]l1

)
t
Hm(vn),

F2 =

ˆ

Q

(
ξn2(1− Φδ1,δ2)[Tℓ−k (vn − Tk (vn)))]−l2

)
t
Hm(vn).

Estimate of F2. We write F2 = G1 +G2 +G3, with

G1 = −
ˆ

Q
(Φδ1,δ2)tξn2 [Tℓ−k (vn − Tk (vn))]−l2Hm(vn),

G2 =

ˆ

Q
(1− Φδ1,δ2)(ξn2)t[Tℓ−k (vn − Tk (vn))]−l2Hm(vn),

G3 =

ˆ

Q
ξn2(1− Φδ1,δ2)

(
[Tℓ−k (vn − Tk (vn))]−l2

)
t
Hm(vn).
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We find easily

G1 = −
ˆ

Q
(Φδ1,δ2)tJ(vn)vn+ω(l1, l2, n1, n2,m),

G2 =

ˆ

Q
(1− Φδ1,δ2)(ξn2)tJ(vn)Hm(vn)+ω(l1, l2) =

ˆ

Ω

J(u0,n)u0,n+ω(l1, l2, n1, n2,m).

Next consider G3. Setting b = Hm(vn), there holds from (3.4.13) and (3.4.12),

(([J(b)]−l2)tb)(., t) =
b(., t)

l2
(J(b)(., t)−J(b)(., t− l2)).

Hence

(
[Tℓ−k (vn − Tk (vn))]−l2

)
t
Hm(vn) ≥

([
J (Hm(vn))

]
−l2

)
t
=
(
[J (vn)]−l2

)
t
,

since J is constant in {|r| ≥ m+ ℓ+ 2k} . Integrating by parts in G3, we find

G3 ≥
ˆ

Q
ξ2,n2(1− Φδ1,δ2)

(
[J (vn)]−l2

)
t

= −
ˆ

Q
(ξ2,n2(1− Φδ1,δ2))t[J (vn)]−l2 +

ˆ

Ω

ξ2,n2(T )[J (vn)]−l2(T )dx

= −
ˆ

Q
(ξ2,n2)t(1− Φδ1,δ2)J (vn)

+

ˆ

Q
ξ2,n2(Φδ1,δ2)tJ (vn) +

ˆ

Ω

ξ2,n2(T )J (vn(T ))+ω(l1, l2)

= −
ˆ

Ω

J (u0,n)dx+

ˆ

Q
(Φδ1,δ2)tJ (vn)+

ˆ

Ω

J (vn(T ))+ω(l1, l2, n1, n2).

Therefore, since J (vn)− J(vn)vn = −J(vn) and J(u0,n) =J(u0,n)u0,n−J (u0,n), we obtain

F2 ≥
ˆ

Ω

J(u0,n)dx−
ˆ

Q
(Φδ1,δ2)tJ(vn) +

ˆ

Ω

J (vn(T ))dx+ ω(l1, l2, n1, n2,m). (3.5.26)

Estimate of F1. Sincem > ℓ+2k, there holds Tℓ+k (vn−〈Tk(v)〉ν) = Tℓ+k
(
Hm(vn)−〈Tk(Hm(v))〉ν

)

on suppHm(vn). Hence we can write F1 = L1 + L2, with

L1 = −
ˆ

Q

(
ξ1,n1(1− Φδ1,δ2)

[
Tℓ+k

(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1

)
t

(
Hm(vn)−〈Tk(Hm(v)〉ν

)

L2 = −
ˆ

Q

(
ξ1,n1(1− Φδ1,δ2)

[
Tℓ+k

(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1

)
t
〈Tk(Hm(v))〉ν .
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Integrating by parts we have, by definition of the Landes-time approximation,

L2 =

ˆ

Q
ξ1,n1(1− Φδ1,δ2)

[
Tℓ+k

(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1

(
〈Tk(Hm(v))〉ν

)
t

+

ˆ

Ω
ξ1,n1(0)

[
Tℓ+k

(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1
(0)〈Tk(Hm(v))〉ν(0)

= ν

ˆ

Q
(1− Φδ1,δ2)Tℓ+k (vn−〈Tk(v)〉ν) (Tk(v)−〈Tk(v)〉ν)

+

ˆ

Ω

Tℓ+k (u0,n − zν) zνdx+ ω(l1, l2, n1, n2). (3.5.27)

We decompose L1 into L1 = K1 +K2 +K3, where

K1 = −
ˆ

Q
(ξ1,n1)t(1− Φδ1,δ2)

[
Tℓ+k

(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1

(
Hm(vn)−〈Tk(Hm(v))〉ν

)

K2 =

ˆ

Q
ξ1,n1(Φδ1,δ2)t

[
Tℓ+k

(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1

(
Hm(vn)−〈Tk(Hm(v))〉ν

)

K3 = −
ˆ

Q
ξ1,n1(1− Φδ1,δ2)

([
Tℓ+k

(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1

)
t

(
Hm(vn)−〈Tk(Hm(v)〉ν

)
.

Then we check easily that

K1 =

ˆ

Ω

Tℓ+k (vn−〈Tk(v)〉ν) (T ) (vn−〈Tk(v)〉ν) (T )dx+ω(l1, l2, n1, n2,m),

K2 =

ˆ

Q
(Φδ1,δ2)tTℓ+k (vn−〈Tk(v)〉ν) (vn−〈Tk(v)〉ν)+ω(l1, l2, n1, n2,m).

Next consider K3. Here we use the function Tk defined at (3.4.13).
We set b = Hm(vn)−〈Tk(Hm(v))〉ν . Hence from (3.4.12),

(([Tℓ+k(b)]l1)tb)(., t) =
b(., t)

l1
(Tℓ+k(b)(., t+ l1)− Tℓ+k(b)(., t))

≤ 1

l1
(Tℓ+k(b)((., t+ l1))− Tℓ+k(b)(., t)) = ([Tℓ+k(b)]l1)t.

Thus

([
Tℓ+k

(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1

)
t

(
Hm(vn)−〈Tk(Hm(v))〉ν

)

≤
([

Tℓ+k
(
Hm(vn)−〈Tk(Hm(v))〉ν

)]
l1

)
t
=
(
[Tℓ+k(vn−〈Tk(v)〉ν ]l1

)
t
.
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Then

K3 ≥ −
ˆ

Q
ξ1,n1(1− Φδ1,δ2)

(
[Tℓ+k (vn−〈Tk(v)〉ν)]l1

)
t

=

ˆ

Q
(ξ1,n1)t(1− Φδ1,δ2)[Tℓ+k (vn−〈Tk(v)〉ν)]l1 −

ˆ

Q
ξ1,n1(Φδ1,δ2)t[Tℓ+k (vn−〈Tk(v)〉ν)]l1

+

ˆ

Ω

ξ1,n1(0)[Tℓ+k (vn−〈Tk(v)〉ν)]l1(0)dx

= −
ˆ

Ω

Tℓ+k (vn(T )− 〈Tk(v)〉ν(T )) dx−
ˆ

Q
(Φδ1,δ2)tTℓ+k (vn−〈Tk(v)〉ν)

+

ˆ

Ω

Tℓ+k (u0,n − zν) dx+ ω(l1, l2, n1, n2).

We find by addition, since Tℓ+k(r)− T ℓ+k(r) = T ℓ+k(r) for any r ∈ R,

L1 ≥
ˆ

Ω

T ℓ+k (u0,n − zν) dx+

ˆ

Ω

T ℓ+k (vn(T )− 〈Tk(v)〉ν(T )) dx

+

ˆ

Q
(Φδ1,δ2)tT ℓ+k (vn−〈Tk(v)〉ν)+ω(l1, l2, n1, n2,m). (3.5.28)

We deduce from (3.5.28), (3.5.27), (3.5.26),

A3 ≥
ˆ

Ω

J(u0,n) +

ˆ

Ω

Tℓ+k (u0,n − zν) dx+

ˆ

Ω

Tℓ+k (u0,n − zν) zνdx (3.5.29)

+

ˆ

Ω

T ℓ+k (vn(T )−〈Tk(v)〉ν(T )) +
ˆ

Ω

J (vn(T ))dx+

ˆ

Q
(Φδ1,δ2)t

(
T ℓ+k (vn−〈Tk(v)〉ν)− J(vn)

)

+ ν

ˆ

Q
(1− Φδ1,δ2)Tℓ+k (vn−〈Tk(v)〉ν) (Tk(v)−〈Tk(v)〉ν)+ω(l1, l2, n1, n2,m).

Next we add (3.5.25) and (3.5.29). Note that J (vn(T ))− J(vn(T ))vn(T ) = −J(vn(T )),
and also T ℓ+k (u0,n − zν)− Tℓ+k (u0,n − zν) (zν − u0,n) = −T ℓ+k (u0,n − zν) . Then we find

A1 +A2 +A3 ≥
ˆ

Ω

(
J(u0,n)− T ℓ+k (u0,n − zν)

)
dx+

ˆ

Ω

(
T ℓ+k (vn(T )− 〈Tk(v)〉ν(T ))− J(vn(T ))

)
dx

+

ˆ

Q
(Φδ1,δ2)t

(
T ℓ+k (vn−〈Tk(v)〉ν)− J(vn)

)

+ ν

ˆ

Q
(1− Φδ1,δ2)Tℓ+k (vn−〈Tk(v)〉ν) (Tk(v)−〈Tk(v)〉ν)+ω(l1, l2, n1, n2,m).

Notice that T ℓ+k (r−s)− J(r) ≥ 0 for any r, s ∈ R such that |s| ≤ k; thus
ˆ

Ω

(
T ℓ+k (vn(T )−〈Tk(v)〉ν(T ))− J(vn(T ))

)
dx ≥ 0.
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And {u0,n} converges to u0 in L1(Ω) and {vn} converges to v in L1(Q) from Proposition
3.4.10. Thus we obtain

A1 +A2 +A3 ≥
´

Ω

(
J(u0)− T ℓ+k (u0 − zν)

)
dx+

´

Q (Φδ1,δ2)t
(
T ℓ+k (v−〈Tk(v)〉ν)− J(v)

)

+ν
´

Q (1− Φδ1,δ2)Tℓ+k (v−〈Tk(v)〉ν) (Tk(v)−〈Tk(v)〉ν)+ω(l1, l2, n1, n2,m, n).

Moreover Tℓ+k (r−s) (Tk(r)− s) ≥ 0 for any r, s ∈ R such that |s| ≤ k, hence

A1 +A2 +A3 ≥
ˆ

Ω

(
J(u0)− T ℓ+k (u0 − zν)

)
dx+

ˆ

Q
(Φδ1,δ2)t

(
T ℓ+k (v−〈Tk(v)〉ν)− J(v)

)

+ω(l1, l2, n1, n2,m, n).

As ν → ∞, {zν} converges to Tk(u0), a.e. in Ω, thus we get

A1 +A2 +A3 ≥
ˆ

Ω

(
J(u0)− T ℓ+k (u0 − Tk(u0))

)
dx+

ˆ

Q
(Φδ1,δ2)t

(
T ℓ+k (v − Tk(v))− J(v)

)

+ ω(l1, l2, n1, n2,m, n, ν).

Finally
∣∣T ℓ+k (r−Tk(r))− J(r)

∣∣ ≤ 2k|r|χ{|r|≥ℓ} for any r ∈ R, thus

A1 +A2 +A3 ≥ ω(l1, l2, n1, n2,m, n, ν, ℓ).

Combining all the estimates, we obtain I2 ≤ ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2) which implies
(3.5.8), since I2 does not depend on l1, l2, n1, n2,m, ℓ.

Next we conclude the proof of Theorem 3.2.1 :

Lemma 3.5.6 The function u is a R-solution of (3.1.1).

Proof. (i) First show that u satisfies (3.4.2). Here we proceed as in [49]. Let ϕ ∈ X∩L∞(Q)
such ϕt ∈ X ′ + L1(Q), ϕ(., T ) = 0, and S ∈ W 2,∞(R), such that S′ has compact support
on R, S(0) = 0. Let M > 0 such that suppS′ ⊂ [−M,M ]. Taking successively (ϕ, S) and
(ϕψ±

δ , S) as test functions in (3.4.2) applied to un, we can write

A1 +A2 +A3 +A4 = A5 +A6 +A7, A2,δ,± +A3,δ,± +A4,δ,± = A5,δ,± +A6,δ,± +A7,δ,±,

where

A1 = −
ˆ

Ω
ϕ(0)S(u0,n), A2 = −

ˆ

Q
ϕtS(vn), A2,δ,± = −

ˆ

Q
(ϕψ±

δ )tS(vn),

A3 =

ˆ

Q
S′(vn)A(x, t,∇un).∇ϕ, A3,δ,± =

ˆ

Q
S′(vn)A(x, t,∇un).∇(ϕψ±

δ ),

A4 =

ˆ

Q
S′′(vn)ϕA(x, t,∇un).∇vn, A4,δ,± =

ˆ

Q
S′′(vn)ϕψ

±
δ A(x, t,∇un).∇vn,

A5 =

ˆ

Q
S′(vn)ϕdλ̂n,0, A6 =

ˆ

Q
S′(vn)ϕdρn,0, A7 = −

ˆ

Q
S′(vn)ϕdηn,0,

A5,δ,± =

ˆ

Q
S′(vn)ϕψ

±
δ dλ̂n,0, A

6,δ,± =

ˆ

Q
S′(vn)ϕψ

±
δ dρn,0, A7,δ,± = −

ˆ

Q
S′(vn)ϕψ

±
δ dηn,0.
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Since {u0,n} converges to u0 in L1(Ω), and {S(vn)} converges to S(v) strongly in X and
weak∗ in L∞(Q), there holds, from (3.5.2),

A1 = −
ˆ

Ω

ϕ(0)S(u0) + ω(n), A2 = −
ˆ

Q
ϕtS(v) + ω(n), A2,δ,ψ±

δ
= ω(n, δ).

Moreover TM (vn) converges to TM (v), then TM (vn) + hn converges to Tk(v) + h strongly
in X, thus

A3 =

ˆ

Q
S′(vn)A(x, t,∇ (TM (vn) + hn)).∇ϕ

=

ˆ

Q
S′(v)A(x, t,∇ (TM (v) + h)).∇ϕ+ ω(n)

=

ˆ

Q
S′(v)A(x, t,∇u).∇ϕ+ ω(n);

and

A4 =

ˆ

Q
S′′(vn)ϕA(x, t,∇ (TM (vn) + hn)).∇TM (vn)

=

ˆ

Q
S′′(v)ϕA(x, t,∇ (TM (v) + h)).∇TM (v) + ω(n)

=

ˆ

Q
S′′(v)ϕA(x, t,∇u).∇v + ω(n).

In the same way, since ψ±
δ converges to 0 in X,

A3,δ,± =

ˆ

Q
S′(v)A(x, t,∇u).∇(ϕψ±

δ ) + ω(n) = ω(n, δ),

A4,δ,± =

ˆ

Q
S′′(v)ϕψ±

δ A(x, t,∇u).∇v + ω(n) = ω(n, δ).

And {gn} converges strongly in (Lp
′
(Ω))N , thus

A5 =

ˆ

Q
S′(vn)ϕfn+

ˆ

Q
S′(vn)gn.∇ϕ+

ˆ

Q
S′′(vn)ϕgn.∇TM (vn)

=

ˆ

Q
S′(v)ϕf+

ˆ

Q
S′(v)g.∇ϕ+

ˆ

Q
S′′(v)ϕg.∇TM (v) + ω(n)

=

ˆ

Q
S′(v)ϕdµ̂0 + ω(n).

andA5,δ,±=
´

Q S
′(v)ϕψ±

δ dλ̂n,0 + ω(n) =ω(n, δ). ThenA6,δ,±+A7,δ,± = ω(n, δ). From (3.5.2)
we verify that A7,δ,+ = ω(n, δ) and A6,δ,− = ω(n, δ). Moreover, from (3.5.6) and (3.5.2),
we find

|A6 −A6,δ,+| ≤
ˆ

Q

∣∣S′(vn)ϕ
∣∣ (1− ψ+

δ )dρn,0 ≤ ‖S‖W 2,∞(R)‖ϕ‖L∞(Q)

ˆ

Q
(1− ψ+

δ )dρn = ω(n, δ).
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Similarly we also have |A7 −A7,δ,−| ≤ ω(n, δ). Hence A6 = ω(n) and A7 = ω(n). Therefore,
we finally obtain (3.4.2) :

−
ˆ

Ω

ϕ(0)S(u0)dx−
ˆ

Q
ϕtS(v)

+

ˆ

Q
S′(v)A(x, t,∇u).∇ϕ+

ˆ

Q
S′′(v)ϕA(x, t,∇u).∇v =

ˆ

Q
S′(v)ϕdµ̂0. (3.5.30)

(ii) Next, we prove (3.4.3) and (3.4.4). We take ϕ ∈ C∞
c (Q) and take ((1− ψ−

δ )ϕ,Hm)
as test functions in (3.5.30), with Hm as in (3.4.14). We can write D1,m +D2,m = D3,m +
D4,m +D5,m, where

D1,m = −
´

Q

(
(1− ψ−

δ )ϕ
)
t
Hm(v),

D2,m =
´

Q

Hm(v)A(x, t,∇u).∇
(
(1− ψ−

δ )ϕ
)
,

D3,m =
´

Q

Hm(v)(1− ψ−
δ )ϕdµ̂0,

D4,m = 1
m

´

m≤v≤2m

(1− ψ−
δ )ϕA(x, t,∇u).∇v,

D5,m = − 1
m

´

−2m≤v≤−m
(1− ψ−

δ )ϕA(x, t,∇u)∇v.

(3.5.31)

Taking the same test functions in (3.4.2) applied to un, there holds Dn
1,m+Dn

2,m = Dn
3,m+

Dn
4,m +Dn

5,m, where

Dn
1,m = −

´

Q

(
(1− ψ−

δ )ϕ
)
t
Hm(vn),

Dn
2,m =

´

Q

Hm(vn)A(x, t,∇un).∇
(
(1− ψ−

δ )ϕ
)
,

Dn
3,m =

´

Q

Hm(vn)(1− ψ−
δ )ϕd(λ̂n,0 + ρn,0 − ηn,0),

Dn
4,m = 1

m

´

m≤v≤2m

(1− ψ−
δ )ϕA(x, t,∇un).∇vn,

Dn
5,m = − 1

m

´

−2m≤vn≤−m
(1− ψ−

δ )ϕA(x, t,∇un).∇vn.

(3.5.32)

In (3.5.32), we go to the limit as m→ ∞. Since
{
Hm(vn)

}
converges to vn and {Hm(vn)}

converges to 1, a.e. in Q, and {∇Hm(vn)} converges to 0, weakly in (Lp(Q))N , we obtain
the relation Dn

1 +Dn
2 = Dn

3 +Dn, where

Dn
1 = −

ˆ

Q

(
(1− ψ−

δ )ϕ
)
t
vn, D

n
2 =

ˆ

Q
A(x, t,∇un)∇

(
(1− ψ−

δ )ϕ
)
, Dn

3 =

ˆ

Q
(1− ψ−

δ )ϕdλ̂n,0

Dn =

ˆ

Q
(1− ψ−

δ )ϕd(ρn,0 − ηn,0)+

ˆ

Q
(1− ψ−

δ )ϕd((ρn,s − ηn,s)
+ − (ρn,s − ηn,s)

−)

=

ˆ

Q
(1− ψ−

δ )ϕd(ρn − ηn).
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Clearly, Di,m −Dn
i = ω(n,m) for i = 1, 2, 3. From Lemma (3.5.3) and (3.5.2)-(3.5.4), we

obtain D5,m = ω(n,m, δ), and

1

m

ˆ

{m≤v<2m}

ψ−
δ ϕA(x, t,∇u).∇v = ω(n,m, δ),

thus,

D4,m =
1

m

ˆ

{m≤v<2m}

ϕA(x, t,∇u).∇v + ω(n,m, δ).

Since
∣∣∣
´

Q (1− ψ−
δ )ϕdηn

∣∣∣ ≤ ‖ϕ‖L∞
´

Q (1− ψ−
δ )dηn, it follows that

´

Q (1− ψ−
δ )ϕdηn =

ω(n,m, δ) from (3.5.4). And
∣∣∣
´

Q ψ
−
δ ϕdρn

∣∣∣ ≤ ‖ϕ‖L∞
´

Q ψ
−
δ dρn, thus, from (3.5.2),

ˆ

Q
(1− ψ−

δ )ϕdρn =

ˆ

Q
ϕdµ+s + ω(n,m, δ).

Then Dn =
´

Q ϕdµ
+
s + ω(n,m, δ). Therefore by substraction, we get

1

m

ˆ

{m≤v<2m}

ϕA(x, t,∇u).∇v =

ˆ

Q
ϕdµ+s + ω(n,m, δ),

hence

lim
m→∞

1

m

ˆ

{m≤v<2m}

ϕA(x, t,∇u).∇v =

ˆ

Q
ϕdµ+s , (3.5.33)

which proves (3.4.3) when ϕ ∈ C∞
c (Q). Next assume only ϕ ∈ C∞(Q). Then

limm→∞ 1
m

´

{m≤v<2m}
ϕA(x, t,∇u).∇v

= limm→∞ 1
m

´

{m≤v<2m}
ϕψ+

δ A(x, t,∇u)∇v + limm→∞ 1
m

´

{m≤v<2m}
ϕ(1− ψ+

δ )A(x, t,∇u).∇v

=
´

Q ϕψ
+
δ dµ

+
s + limm→∞ 1

m

´

{m≤v<2m}
ϕ(1− ψ+

δ )A(x, t,∇u).∇v =
´

Q ϕdµ
+
s +D,

where,

D =

ˆ

Q
ϕ(1− ψ+

δ )dµ
+
s + lim

n→∞
1

m

ˆ

{m≤v<2m}

ϕ(1− ψ+
δ )A(x, t,∇u).∇v = ω(δ).

Therefore, (3.5.33) still holds for ϕ ∈ C∞(Q), and we deduce (3.4.3) by density, and
similarly, (3.4.4). This completes the proof of Theorem 3.2.1.

As a consequence of Theorem 3.2.1, we get the following :
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Corollary 3.5.7 Let u0 ∈ L1(Ω) and µ ∈ Mb(Q). Then there exists a R-solution u to
the problem 3.1.1 with data (µ, u0). Furthermore, if v0 ∈ L1(Ω) and ω ∈ Mb(Q) such that
u0 ≤ v0 and µ ≤ ω, then one can find R-solution v to the problem 3.1.1 with data (ω, v0)
such that u ≤ v.

In particular, if a ≡ 0 in (3.1.2), then u satisfies (3.4.21) and ‖v‖L∞((0,T );L1(Ω)) ≤ M
with M = ||u0||1,Ω + |µ|(Q).

3.6 Equations with perturbation terms

Let A be a Caratheodory function on Q × R
N and satisfy (3.1.2), (3.1.3) with a ≡ 0.

Let G : Ω× (0, T )×R → R be a Caratheodory function. If U is a function defined in Q we
define the function G(U) in Q by

G(U)(x, t) = G(x, t, U(x, t)) for a.e. (x, t) ∈ Q.

We consider the problem (3.1.5) :




ut − div(A(x, t,∇u)) + G(u) = µ in Q,
u = 0 in ∂Ω× (0, T ),
u(0) = u0 in Ω,

where µ ∈ Mb(Q), u0 ∈ L1(Ω). We say that u is a R-solution of problem (3.1.5) if G(u) ∈
L1(Q) and u is a R-solution of (3.1.1) with data (µ− G(u), u0).

3.6.1 Subcritical type results

For proving Theorem 3.2.2, we begin by an integration Lemma :

Lemma 3.6.1 Let G satisfying (3.2.3). If a measurable function V in Q satisfies

meas {|V | ≥ t} ≤Mt−pc , ∀t ≥ 1,

for some M > 0, then for any L > 1,
ˆ

{|V |≥L}

G(|V |) ≤ pcM

ˆ ∞

L
G(s) s−1−pcds. (3.6.1)

Proof. Indeed, setting GL(s) = χ[L,∞)(s)G(s), we have

ˆ

{|V |≥L}

G(|V |)dxdt =
ˆ

Q
GL(|V |)dxdt ≤

ˆ ∞

0
GL(|V |∗(s))ds

where |V |∗ is and the rearrangement of |V |, defined by

|V |∗(s) = inf{a > 0 : meas {|V | > a}) ≤ s}, ∀s ≥ 0.
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From the assumption, we get |V |∗(s) ≤ sup
(
(Ms−1)p

−1
c , 1

)
. Thus, for any L > 1,

ˆ

{|V |≥L}

G(|V |)dxdt ≤
ˆ ∞

0
GL

(
sup

(
(Ms−1)p

−1
c , 1

))
ds = pcM

ˆ ∞

L
G (s) s−1−pcds,

which implies (3.6.1).

Proof of Theorem 3.2.2. Proof of (i) Let µ = µ0+µs ∈ Mb(Q), with µ0 ∈ M0(Q), µs ∈
Ms(Q), and u0 ∈ L1(Ω). By Proposition 3.3.1, we can find fn,i, gn,i, hn,i ∈ C∞

c (Q) which
strongly converge to fi, gi, hi in L1(Q), (Lp

′
(Q))N and Lp((0, T );W 1,p

0 (Ω)) respectively,
for i = 1, 2, such that µ+0 = (f1, g1, h1), µ

−
0 = (f2, g2, h2), and µn,0,i = (fn,i, gn,i, hn,i),

converging respectively for i = 1, 2 to µ+0 , µ
−
0 in the narrow topology ; and we can find

nonnegative µn,s,i ∈ C∞
c (Q), i = 1, 2, converging respectively to µ+s , µ

−
s in the narrow

topology.

Furthermore, if we set
µn = µn,0,1 − µn,0,2 + µn,s,1 − µn,s,2,

then |µn|(Q) ≦ |µ|(Q). Consider a sequence {u0,n} ⊂ C∞
c (Ω) which strongly converges to

u0 in L1(Ω) and satisfies ||u0,n||1,Ω ≦ ||u0||1,Ω.

Let un be a solution of




(un)t − div(A(x, t,∇un)) + G(un) = µn in Q,
un = 0 on ∂Ω× (0, T ),
un(0) = u0,n in Ω.

We can choose ϕ = ε−1Tε(un) as test function of above problem. Then we find
ˆ

Q

(
ε−1Tε(un)

)
t
+

ˆ

Q
ε−1A(x, t,∇Tε(un)).∇Tε(un)+

ˆ

Q
G(x, t, un)ε−1Tε(un) =

ˆ

Q
ε−1Tε(un)dµn.

Since
ˆ

Q

(
ε−1Tε(un)

)
t
=

ˆ

Ω
ε−1Tε(un(T ))dx−

ˆ

Ω
ε−1Tε(u0,n)dx ≥ −||u0,n||1,Ω,

there holds
ˆ

Q
G(x, t, un)ε−1Tε(un) ≤ |µn|(Q) + ||u0,n||L1(Ω) ≤ |µ|(Q) + ||u0||1,Ω.

Letting ε→ 0, we obtain
ˆ

Q
|G(x, t, un)| ≤ |µ|(Q) + ||u0||1,Ω. (3.6.2)

Next apply Proposition 3.4.8 and Remark 3.4.9 to un with initial data u0,n and measure
data µn − G(un) ∈ L1(Q), we get

meas {|un| ≥ s} ≤ C(|µ|(Q) + ||u0||L1(Ω))
p+N
N s−pc , ∀s > 0, ∀n ∈ N,
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for some C = C(N, p, c1, c2). Since |G(x, t, un)| ≤ G(|un|), we deduce from (3.6.1) that
{|G(un)|} is equi-integrable. Then, thanks to Proposition 3.4.10, up to a subsequence,
{un} converges to some function u, a.e. in Q, and {G(un)} converges to G(u) in L1(Q).
Therefore, by Theorem 3.2.1, u is a R-solution of (3.2.4).

Proof of (ii). Let {un}n≥1 be defined by induction as nonnegative R-solutions of





(u1)t − div(A(x, t,∇u1)) = µ in Q,
u1 = 0 on ∂Ω× (0, T ),
u1(0) = u0 in Ω,





(un+1)t − div(A(x, t,∇un+1)) = µ− λG(un) in Q,
un+1 = 0 on ∂Ω× (0, T ),
un+1(0) = u0 in Ω.

Thanks to Corollary 3.5.7 we can assume that {un} is nondecreasing and satisfies for any
s > 0 and n ∈ N

meas {|un| ≥ s} ≤ C1Kns
−pc , (3.6.3)

where C1 does not depend on s, n and

K1 = (||u0||1,Ω + |µ|(Q))
p+N
N ,

Kn+1 = (||u0||1,Ω + |µ|(Q) + λ||G(un)||1,Q)
p+N
N ,

for any n ≥ 1.Take ε = λ + |µ|(Q) + ||u0||L1(Ω) ≤ 1. Denoting by Ci some constants
independent on n, ε, there holds K1 ≤ C2ε, and for n ≥ 1,

Kn+1 ≤ C3ε(||G(un)||
1+ p

N
1,Q + 1).

From (3.6.1) and (3.6.3), we find

‖G(un)‖L1(Q) ≤ |Q|G(2) +
ˆ

{un|≥2}|

G(|un|)dxdt ≤ |Q|G(2) + C4Kn

ˆ ∞

2
G (s) s−1−pcds.

Thus, Kn+1 ≤ C5ε(K
1+ p

N
n + 1). Therefore, if ε is small enough, {Kn} is bounded. Then,

again from (3.6.1) and the relation |G(x, t, un)| ≤ G(|un|) we verify that {G(un)} converges.
Then by Theorem 3.2.1, up to a subsequence, {un} converges to a R-solution u of (3.2.5).

3.6.2 General case with absorption terms

In the sequel we assume that A : Ω×R
N → R does not depend on t. We recall a result

obtained in [54, 17] in the elliptic case :

Theorem 3.6.2 Let Ω be a bounded domain of RN and p < N . Assume that A : Ω×R
N →

R satisfies (3.1.6),(3.1.7). Let ω ∈ Mb(Ω) with compact support in Ω. Suppose that un is
a solution of problem

{
−div(A(x,∇un)) = ϕn ∗ ω in Ω,
un = 0 on ∂Ω,
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where {ϕn} is a sequence of mollifiers in R
N . Then, up to subsequence, un converges a.e

in Ω to a renormalized solution u of

{
−div(A(x,∇u)) = ω in Ω,
u = 0 on ∂Ω,

in the elliptic sense of [32], satisfying

−κW2diam(Ω)
1,p [ω−] ≦ u ≦ κW

2diam(Ω)
1,p [ω+] (3.6.4)

where κ is a constant which only depends of N, p, c1, c2.

Next we give a general result in case of absorption terms :

Theorem 3.6.3 Let p < N , A : Ω × R
N 7−→ R satisfy (3.1.6) and (3.1.7), and G :

Q×R 7−→ R be a Caratheodory function such that the map s 7→ G(x, t, s) is nondecreasing
and odd, for a.e. (x, t) in Q. Let µ1, µ2 ∈ M

+
b (Q) such that there exist ωn ∈ M

+
b (Ω) and

nondecreasing sequences {µ1,n} , {µ2,n} in M
+
b (Q) with compact support in Q, converging

to µ1, µ2, respectively in the narrow topology, and

µ1,n, µ2,n ≤ ωn ⊗ χ(0,T ), G((n+ κW
2diam(Ω)
1,p [ωn])) ∈ L1(Q),

where the constant κ is given at Theorem 3.6.2. Let u0 ∈ L1(Ω), and µ = µ1 − µ2. Then
there exists a R-solution u of problem (3.1.5).

Moreover if u0 ∈ L∞(Ω), and ωn ≤ γ for any n ∈ N, for some γ ∈ M
+
b (Ω), then a.e.

in Q,
|u(x, t)| ≤ κW

2diam(Ω)
1,p [γ](x) + ||u0||∞,Ω. (3.6.5)

For proving this result, we need two Lemmas :

Lemma 3.6.4 Let G satisfy the assumptions of Theorem 3.6.3 and G ∈ L∞(Q × R) and
κ be the constant in Theorem 3.6.2. For i = 1, 2, let u0,i ∈ L∞(Ω) be nonnegative, and
λi = λi,0 + λi,s ∈ M

+
b (Q) with compact support in Q, γ ∈ M

+
b (Ω) with compact support in

Ω such that λi ≤ γ ⊗ χ(0,T ). Let λi,0 = (fi, gi, hi) be a decomposition of λi,0 into functions
with compact support in Q. Then, there exist R-solutions u, u1, u2, to problems

ut−div(A(x,∇u))+G(u) = λ1−λ2 in Q, u = 0 on ∂Ω×(0, T ), u(0) = u0,1−u0,2,
(3.6.6)

(ui)t − div(A(x,∇ui)) + G(ui) = λi in Q, ui = 0 on ∂Ω× (0, T ), ui(0) = u0,i,
(3.6.7)

relative to decompositions (f1,n−f2,n−G(un), g1,n−g2,n, h1,n−h2,n), (fi,n−G(ui,n), gi,n, hi,n),
such that a.e. in Q,

−||u0,2||∞,Ω−κW2diam(Ω)
1,p [γ](x) ≤ −u2(x, t) ≤ u(x, t) ≤ u1(x, t) ≤ κW

2diam(Ω)
1,p [γ](x)+||u0,1||∞,Ω,

(3.6.8)
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and
ˆ

Q
|G(u)| ≤

∑

i=1,2

(
λi(Q) + ||u0,i||L1(Ω)

)
, and

ˆ

Q
G(ui) ≤ λi(Q) + ||u0,i||1,Ω, i = 1, 2.

(3.6.9)
Furthermore, assume that H,K have the same properties as G, and H(x, t, s) ≤ G(x, t, s) ≤
K(x, t, s) for any s ∈ (0,+∞) and a.e. in Q. Then, one can find solutions ui(H), ui(K),
corresponding to H,K with data λi, such that ui(H) ≥ ui ≥ ui(K), i = 1, 2.

Assume that ωi, θi have the same properties as λi and ωi ≤ λi ≤ θi, u0,i,1, u0,i,2 ∈
L∞+(Ω), u0,i,2 ≤ u0,i ≤ u0,i,1. Then one can find solutions ui(ωi), ui(θi), corresponding to
(ωi, u0,i,2), (θi, u0,i,1), such that ui(ωi, u0,i,2) ≤ ui ≤ ui(θi, u0,i,1).

Proof. Let {ϕ1,n} , {ϕ2,n} be sequences of mollifiers in R and R
N , and ϕn = ϕ1,nϕ2,n. Set

γn = ϕ2,n ∗ γ, and for i = 1, 2, u0,i,n = ϕ2,n ∗ u0,i,

λi,n = ϕn ∗ λi = fi,n − div(gi,n) + (hi,n)t + λi,s,n,

where fi,n = ϕn ∗ fi, gi,n = ϕn ∗ gi, hi,n = ϕn ∗ hi, λi,s,n = ϕn ∗ λi,s, and

λn = λ1,n − λ2,n = fn − div(gn) + (hn)t + λs,n,

where fn = f1,n − f2,n, gn = g1,n − g2,n, hn = h1,n − h2,n, λs,n = λ1,s,n − λ2,s,n. Then for
n large enough, λ1,n, λ2,n, λn ∈ C∞

c (Q), γn ∈ C∞
c (Ω). Thus there exist unique solutions

un, ui,n, wn, i = 1, 2, of problems




(un)t − div(A(x,∇un)) + G(un) = λ1,n − λ2,n in Q,
un = 0 on ∂Ω× (0, T ),
un(0) = u0,1,n − u0,2,n in Ω,





(ui,n)t − div(A(x,∇ui,n)) + G(ui,n) = λi,n in Q,
ui,n = 0 on ∂Ω× (0, T ),
ui,n(0) = u0,i,n in Ω,

−div(A(x,∇wn)) = γn in Ω, wn = 0 on ∂Ω,

Moreover, as in the Proof of Theorem 3.2.2, (i), there holds
ˆ

Q
|G(un)| ≤

∑

i=1,2

(λi(Q) + ||u0,i,n||1,Ω) , and
ˆ

Q
G(ui,n) ≤ λi(Q)+||u0,i,n||1,Ω, i = 1, 2.

By Proposition 3.4.10, up to a common subsequence, {un, u1,n, u2,n} converge to some
(u, u1, u2), a.e. in Q. Since G is bounded, in particular, {G(un)} converges to G(u) and
{G(ui,n)} converges to G(ui) in L1(Q). Thus, (3.6.9) is satisfied. Moreover {λi,n − G(ui,n), fi,n
−G(ui,n), gi,n, hi,n, λi,s,n, u0,i,n} and {λn − G(un), fn − G(un), gn, hn, λs,n, u0,1,n − u0,2,n} are
approximations of (λi−G(ui), fi−G(ui), gi, hi, λi,s, u0,i) and (λ1−λ2−G(u), f−G(u), g, h, λs, u0,1−
u0,2), in the sense of Theorem 3.2.1. Thus, we can find (different) subsequences converging
a.e. to u, u1, u2, R-solutions of (3.6.6) and (3.6.7). Furthermore, from Theorem 3.6.2, up
to a subsequence, {wn} converges a.e. in Q to a renormalized solution of

−div(A(x,∇w)) = γ in Ω, w = 0 on ∂Ω,
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such that w ≦ κW2D
1,p [γ] a.e. in Ω. Hence, we get the inequality (3.6.8). The other conclu-

sions follow in the same way

Lemma 3.6.5 Let G satisfy the assumptions of Theorem 3.6.3 and κ be the constant in
Theorem 3.6.2 . For i = 1, 2, let u0,i ∈ L∞(Ω) be nonnegative, λi ∈ M

+
b (Q) with compact

support in Q, and γ ∈ M
+
b (Ω) with compact support in Ω, such that

λi ≤ γ ⊗ χ(0,T ), G((||u0,i||∞,Ω + κW
2diam(Ω)
1,p γ)) ∈ L1(Q). (3.6.10)

Then, there exist R-solutions u, u1, u2 of the problems (3.6.6) and (3.6.7), respectively re-
lative to the decompositions (f1 − f2 − G(u), g1 − g2, h1 − h2), (fi − G(ui), gi, hi), satifying
(3.6.8) and (3.6.9).

Moreover, assume that ωi, θi have the same properties as λi and ωi ≤ λi ≤ θi, u0,i,1, u0,i,2 ∈
L∞+(Ω), u0,i,2 ≤ u0,i ≤ u0,i,1. Then, one can find solutions ui(ωi, u0,i,2), ui(θi, u0,i,1), cor-
responding with (ωi, u0,i,2), (θi, u0,i,1), such that ui(ωi, u0,i,2) ≤ ui ≤ ui(θi, u0,i,1).

Proof. From Lemma 3.6.4 there exist R-solutions un, ui,n to problems




(un)t − div(A(x,∇un)) + Tn(G(un)) = λ1 − λ2 in Q,
un = 0 on ∂Ω× (0, T ),
un(0) = u0,1 − u0,2 in Ω,





(ui,n)t − div(A(x,∇ui,n)) + Tn(G(ui,n)) = λi in Q,
ui,n = 0 on ∂Ω× (0, T ),
ui,n(0) = u0,i, in Ω,

relative to the decompositions (f1−f2−Tn(G(un), g1−g2, h1−h2), (fi−Tn(G(ui,n)), gi, hi);
and they satisfy

−||u0,2||∞,Ω − κW
2diam(Ω)
1,p [γ](x) ≤ −u2,n(x, t) ≤ un(x, t)

≤ u1,n(x, t) ≤ κW
2diam(Ω)
1,p [γ](x) + ||u0,1||∞,Ω, (3.6.11)

ˆ

Q
|Tn (G(un)) | ≤

∑

i=1,2

(λi(Q) + ||u0,i||1,Ω), and
ˆ

Q
Tn (G(ui,n)) ≤ λi(Q) + ||u0,i||1,Ω.

As in Lemma 3.6.4, up to a common subsequence, {un, u1,n, u2,n} converges a.e. in Q to
{u, u1, u2} for which (3.6.8) is satisfied a.e. in Q. From (3.6.10), (3.6.11) and the dominated
convergence Theorem, we deduce that {Tn(G(un))} converges to G(u) and {Tn(G(ui,n))}
converges to G(ui) in L1(Q). Thus, from Theorem 3.2.1, u and ui are respective R-solutions
of (3.6.6) and (3.6.7) relative to the decompositions (f1 − f2 − G(u), g1 − g2, h1 − h2),
(fi − G(ui), gi, hi), and (3.6.8) and (3.6.9 hold. The last statement follows from the same
assertion in Lemma 3.6.4.

Proof of Theorem 3.6.3. By Proposition 3.3.2, for i = 1, 2, there exist fi,n, fi ∈ L1(Q),
gi,n, gi ∈ (Lp

′
(Q))N and hi,n, hi ∈ X, µi,n,s, µi,s ∈ M

+
s (Q) such that

µi = fi − div gi + (hi)t + µi,s, µi,n = fi,n − div gi,n + (hi,n)t + µi,n,s,
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and {fi,n} , {gi,n} , {hi,n} strongly converge to fi, gi, hi in L1(Q), (Lp
′
(Q))N and X respec-

tively, and {µi,n} , {µi,n,s} converge to µi, µi,s (strongly) in Mb(Q), and

||fi,n||1,Q + ||gi,n||p′,Q + ||hi,n||X + µi,n,s(Ω) ≦ 2µ(Q).

By Lemma 3.6.5, there exist R-solutions un, ui,n to problems




(un)t − div(A(x,∇un)) + G(un) = µ1,n − µ2,n in Q,
un = 0 on ∂Ω× (0, T ),
un(0) = Tn(u0) in Ω,





(ui,n)t − div(A(x,∇ui,n)) + G(ui,n) = µi,n in Q,
ui,n = 0 on ∂Ω× (0, T ),
ui,n(0) = Tn(u

±
0 ) in Ω,

for i = 1, 2, relative to the decompositions (f1,n − f2,n − G(un), g1,n − g2,n, h1,n − h2,n),
(fi,n − G(ui,n), gi,n, hi,n), such that {ui,n} is nonnegative and nondecreasing, and −u2,n ≦

un ≦ u1,n ; and
ˆ

Q
|G(un)|dxdt,

ˆ

Q
G(ui,n)dxdt ≦ µ1(Q) + µ2(Q) + ||u0||1,Ω. (3.6.12)

As in the proof of Lemma 3.6.5, up to a common subsequence {un, u1,n, u2,n} converge a.e.
in Q to {u, u1, u2}. Since {G(ui,n)} is nondecreasing, and nonnegative, from the monotone
convergence Theorem and (5.1.6), we obtain that {G(ui,n)} converges to G(ui) in L1(Q),
i = 1, 2. Finally, {G(un)} converges to G(u) in L1(Q), since |G(un)| ≦ G(u1,n) + G(u2,n).
Thus, we can see that

{µ1,n − µ2,n − G(un), f1,n − f2,n − G(un), g1,n − g2,n, h1,n − h2,n, µ1,s,n − µ2,s,n, Tn(u0)}

is an approximation of (µ1 − µ2 − G(u), f1 − f2 − G(u), g1 − g2, h1 − h2, µ1,s − µ2,s, u0),
in the sense of Theorem 3.2.1. Therefore, u is a R-solution of (3.1.5), and (3.6.5) holds if
u0 ∈ L∞(Ω) and ωn ≤ γ for any n ∈ N and some γ ∈ M

+
b (Ω).

As a consequence we prove Theorem 3.2.3. We use the following result of [17] :

Proposition 3.6.6 ( see [17]) Let q > p− 1, α > 0and ν ∈ M
+
b (Ω). If ν does not charge

the sets of zero CapGp,
q

q+1−p
-capacity, there exists a nondecreasing sequence {νn} ⊂ M

+
b (Ω)

with compact support in Ω which converges to ν strongly in Mb(Ω) and such that WR
1,p[νn] ∈

Lq(RN ), for any n ∈ N, R > 0.

Proof of Theorem 3.2.3. Let f ∈ L1(Q), u0 ∈ L1(Ω), and µ ∈ Mb(Q) such that |µ| ≤ ω⊗
F, where F ∈ L1((0, T )) and ω does not charge the sets of zero CapGp,

q
q+1−p

-capacity. From

Proposition 3.6.6, there exists a nondecreasing sequence {ωn} ⊂ M
+
b (Ω) with compact

support in Ω which converges to ω, strongly in Mb(Ω), such that W2diam(Ω)
1,p [ωn] ∈ Lq(RN ).

We can write

f + µ = µ1 − µ2, µ1 = f+ + µ+, µ2 = f− + µ−, (3.6.13)
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and µ+, µ− ≤ ω ⊗ F. We set

Qn = {(x, t) ∈ Ω× (
1

n
, T − 1

n
) : d(x, ∂Ω) >

1

n
}, Fn = Tn(χ( 1

n
T− 1

n
)F ), (3.6.14)

µ1,n = Tn(χQnf
+)+inf{µ+, ωn⊗Fn}, µ2,n = Tn(χQnf

−)+inf{µ−, ωn⊗Fn}. (3.6.15)

Then {µ1,n} , {µ2,n} are nondecreasing sequences with compact support inQ, and µ1,n, µ2,n ≤
ω̃n ⊗ χ(0,T ), with ω̃n = n(χΩ + ωn) and (n+ κW

2diam(Ω)
1,p [ω̃n])

q ∈ L1(Q). Besides, ωn ⊗ Fn
converges to ω ⊗ F strongly in Mb(Q) : indeed we easily check that

||ωn ⊗ Fn − ω ⊗ F ||Mb(Q) ≤ ||Fn||L1((0,T ))||ωn − ω||Mb(Ω) + ||ω||Mb(Ω)||Fn − F ||L1((0,T ))

Observe that for any measures ν, θ, η ∈ Mb(Q), there holds

|inf{ν, θ} − inf{ν, η}| ≤ |θ − η| ,

hence {µ1,n} , {µ2,n} converge to µ1, µ2 respectively in Mb(Q). Therefore, the result follows
from Theorem 3.6.3.

Remark 3.6.7 Let G : Q × R → R be a Caratheodory function such that the map s 7→
G(x, t, s) is nondecreasing and odd, for a.e. (x, t) in Q. Let µ ∈ Mb(Q), f ∈ L1(Q), u0 ∈
L1(Ω) and ω ∈ M+

b (Ω) such that (3.2.6) holds.

If ω({x : W
2diam(Ω)
1,p [ω](x) = ∞}) = 0, then, (3.1.5) has a R-solution with data

(f + µ, u0). The proof is similar to the one of Theorem 3.2.3, after replacing ωn by
χ
W

2diam(Ω)
1,p [ω]≦n

ω. Note that ω({x : W
2diam(Ω)
1,p [ω](x) = ∞}) = 0 if and only if ω is dif-

fuse, see [46].

Remark 3.6.8 As in [17], from Theorem 3.6.3, we can extend Theorem 3.2.3 given for
G(u) = |u|q−1 u, to the case of a function G(x, t, .), odd for a.e. (x, t) ∈ Q, such that

|G(x, t, u)| ≤ G(|u|),
ˆ ∞

1
G(s)s−q−1ds <∞,

where G is a nondecreasing continuous, under the condition that ω does not charge the sets
of zero CapGp,

q
q−p+1

,1-capacity, where for any Borel set E ⊂ R
N ,

CapGp,
q

q−p+1
,1(E) = inf{||ϕ||

L
q

q−p+1 ,1
(RN )

: ϕ ∈ L
q

q−p+1
,1
(RN ), Gp ∗ ϕ ≥ χE}

where L
q

q−p+1
,1
(RN ) is the Lorentz space of order ( q

q−p+1 , 1).

In case G is of exponential type, we introduce the notion of maximal fractional operator,
defined for any η ≥ 0, R > 0, x0 ∈ R

N by

M
η
p,R[ω](x0) = sup

t∈(0,R)

ω(B(x0, t))

tN−phη(t)
, where hη(t) = inf((− ln t)−η, (ln 2)−η)).

We obtain the following :
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Theorem 3.6.9 Let A : Ω × R
N 7−→ R satisfy (3.1.6) and (3.1.7). Let p < N and

τ > 0, β > 1, µ ∈ Mb(Q), f ∈ L1(Q) and u0 ∈ L1(Ω). Assume that |µ| ≤ ω ⊗ F, with
ω ∈ M

+
b (Ω), F ∈ L1((0, T )) be nonnegative. Assume that one of the following assumptions

is satisfied :

(i) ||F ||L∞((0,T )) ≤ 1 and for some M0 =M0(N, p, β, τ, c3, c4, diamΩ),

||M
p−1
β′
p,2diam(Ω)[ω]||L∞(RN ) < M0, (3.6.16)

(ii) There exists β0 > β such that M
p−1

β′0
p,2diam(Ω)[ω] ∈ L∞(RN ).

Then there exists a R-solution to the problem





ut − div(A(x,∇u)) + (eτ |u|
β − 1)sign(u) = f + µ in Q,

u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω.

(3.6.17)

For the proof we use the following result of [17] :

Proposition 3.6.10 (see [17], Theorem 2.4) Suppose 1 < p < N. Let ν ∈ M
+
b (Ω),

β > 1, and δ0 = ((12β)−1)βp ln 2. There exists C = C(N, p, β, diamΩ) such that, for any
δ ∈ (0, δ0),

ˆ

Ω
exp


δ

(W
2diam(Ω)
1,p [ν])β

||M
p−1
β′
p,2diam(Ω)[ν]||

β
p−1

L∞(RN )


 dx ≤ C

δ0 − δ
.

Proof of Theorem 3.6.9. Let Qn be defined at (3.6.14), and ωn = ωχΩn , where Ωn =
{x ∈ Ω : d(x, ∂Ω) > 1/n}. We still consider µ1, µ2, Fn, µ1,n, µ2,n as in (3.6.13), (3.6.15).
Case 1 : Assume that ||F ||L∞((0,T )) ≤ 1 and (3.6.16) holds. We have µ1,n, µ2,n ≤ nχΩ + ω.
For any ε > 0, there exists cε = cε(ε,N, p, β, κ, diamΩ) > 0 such that

(n+ κW
2diam(Ω)
1,p [nχΩ + ω])β ≤ cεn

βp
p−1 + (1 + ε)κβ(W

2diam(Ω)
1,p [ω])β

a.e. in Ω. Thus,

exp
(
τ(n+ κW

2diam(Ω)
1,p [nχΩ + ω])β

)
≤ exp

(
τcεn

βp
p−1

)
exp

(
τ(1 + ε)κβ(W

2diam(Ω)
1,p [ω])β

)

If (3.6.16) holds with M0 =
(
δ0/τκ

β
)(p−1)/β

then we can chose ε such that

τ(1 + ε)κβ ||M
p−1
β′
p,2diam(Ω)[ν]||

β
p−1

L∞(RN )
<δ0.

From Proposition 3.6.10, we get exp(τ(1 + ε)κβW
2diam(Ω)
1,p [ω])β) ∈ L1(Ω), which implies

exp(τ(n+ κβW
2diam(Ω)
1,p [nχΩ + ω])β) ∈ L1(Ω) for all n. We conclude from Theorem 3.6.3.
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Case 2 : Assume that there exists ε > 0 such that M
(p−1)/(β+ε)′

p,2diam(Ω) [ω] ∈ L∞(RN ). Now we
use the inequality µ1,n, µ2,n ≤ n(χΩ + ω). For any ε > 0 and n ∈ N there exists cε,n > 0
such that

(n+ κW
2diam(Ω)
1,p [n(χΩ + ω)])β ≤ cε,n + ε(W2diamΩ

1,p [ω])β0

Thus, from Proposition 3.6.10 we get exp(τ(n + κβW
2diam(Ω)
1,p [n(χΩ + ω)])β) ∈ L1(Ω) for

all n. We conclude from Theorem 3.6.3.

3.6.3 Equations with source term

As a consequence of Theorem 3.6.3, we get a first result for problem (3.1.1) :

Corollary 3.6.11 Let A : Ω× R
N → R satisfy (3.1.6) and (3.1.7). Let u0 ∈ L∞(Ω), and

µ ∈ Mb(Q) such that |µ| ≤ ω ⊗ χ(0,T ) for some ω ∈ M
+
b (Ω). Then there exist a R-solution

u of (3.1.1), such that

|u(x, t)| ≤ κW
2diam(Ω)
1,p [ω](x) + ||u0||∞,Ω, for a.e. (x, t) ∈ Q, (3.6.18)

where κ is defined at Theorem 3.6.2.

Proof. Let {φn} be a nonnegative, nondecreasing sequence in C∞
c (Q) which converges to

1, a.e. in Q. Since {φnµ+}, {φnµ−} are nondecreasing sequences, the result follows from
Theorem 3.6.3.

Our proof of Theorem 3.2.4 is based on a property of Wölf potentials :

Theorem 3.6.12 (see [54]) Let q > p− 1, 0 < p < N , ω ∈ M
+
b (Ω). If for some λ > 0,

ω(E) ≤ λCapGp,
q

p−q+1
(E) for any compact set E ⊂ R

N , (3.6.19)

then (W
2diam(Ω)
1,p [ω])q ∈ L1(Ω), and there exists M = M(N, p, q, diam(Ω)) such that, a.e.

in Ω,

W
2diam(Ω)
1,p

[(
W

2diam(Ω)
1,p [ω]

)q]
≤Mλ

q−p+1

(p−1)2 W
2diam(Ω)
1,p [ω] <∞. (3.6.20)

We deduce the following :

Lemma 3.6.13 Let ω ∈ M
+
b (Ω), and b ≥ 0 and K > 0. Suppose that {um}m≥1 is a

sequence of nonnegative functions in Ω that satisfies

u1 ≤ KW
2diam(Ω)
1,p [ω] + b, um+1 ≤ KW

2diam(Ω)
1,p [uqm + ω] + b ∀m ≥ 1.

Assume that ω satisfies (3.6.19) for some λ > 0. Then there exist λ0 and b0, depending on
N, p, q,K, and diam(Ω), such that, if λ ≤ λ0 and b ≤ b0, then W

2diam(Ω)
1,p [µ] ∈ Lq(Ω) and

for any m ≥ 1,

um ≤ 2βpKW
2diam(Ω)
1,p [ω] + 2b, βp = max(1, 3

2−p
p−1 ). (3.6.21)
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Proof. Clearly, (3.6.21) holds for m = 1. Now, assume that it holds at the order m. Then

uqm ≤ 2q−1(2βp)
qKq(W

2diam(Ω)
1,p [ω])q + 2q−1(2b)q.

Using (3.6.20) we get

um+1 ≤ KW
2diam(Ω)
1,p

[
2q−1(2βp)

qKq(W
2diam(Ω)
1,p [ω])

q
+ 2q−1(2b)q + ω

]
+ b

≤ βpK
(
A1W

2diam(Ω)
1,p

[
(W

2diam(Ω)
1,p [ω])

q]
+W

2diam(Ω)
1,p [(2b)q] +W

2diam(Ω)
1,p [ω]

)
+ b

≤ βpK(A1Mλ
q−p+1

(p−1)2 + 1)W
2diam(Ω)
1,p [ω] + βpKW

2diam(Ω)
1,p [(2b)q] + b

= βpK(A1Mλ
q−p+1

(p−1)2 + 1)W
2diam(Ω)
1,p [ω] +A2b

q
p−1 + b,

where M is as in (3.6.20) and

A1 =
(
2q−1(2βp)

qKq
)1/(p−1)

, A2 = βpK2q/(p−1)|B1|1/(p−1)(p′)−1(2diam(Ω))p
′
.

Thus, (3.6.21) holds for m = n+ 1 if we prove that

A1Mλ
q−p+1

(p−1)2 ≤ 1 and A2b
q

p−1 ≤ b,

which is equivalent to

λ ≤ (A1M)
− (p−1)2

q−p+1 and b ≤ A
− p−1

q−p+1

2 .

Therefore, we obtain the result with λ0 = (A1M)−(p−1)2/(q−p+1) and b0 = A
−(p−1)/(q−p+1)
2 .

Proof of Theorem 3.2.4. From Corollary 3.5.7 and 3.6.11, we can construct a sequence
of nonnegative nondecreasing R-solutions {um}m≥1 defined in the following way : u1 is a
R-solution of (3.1.1), and um+1 is a nonnegative R-solution of





(um+1)t − div(A(x,∇um+1)) = uqm + µ in Q,
um+1 = 0 on ∂Ω× (0, T ),
um+1(0) = u0 in Ω.

Setting um = supt∈(0,T ) um(t) for all m ≥ 1, there holds

u1 ≤ κW
2diam(Ω)
1,p [ω] + ||u0||∞,Ω, um+1 ≤ κW

2diam(Ω)
1,p [uqm + ω] + ||u0||∞,Ω ∀m ≥ 1.

From Lemma 3.6.13, we can find λ0 = λ0(N, p, q,diamΩ) and b0 = b0(N, p, q, diamΩ) such
that if (3.2.8) is satisfied with λ0 and b0, then

um ≤ um ≤ 2βpκW
2diam(Ω)
1,p [ω] + 2||u0||∞,Ω ∀m ≥ 1. (3.6.22)

Thus {um} converges a.e. in Q and in L1(Q) to some function u, for which (3.2.10) is
satisfied in Ω with c = 2βpκ. Finally, one can apply Theorem 3.2.1 to the sequence of
measures {uqm + µ} , and obtain that u is a R-solution of (3.2.9).

Next we consider the exponential case.
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Theorem 3.6.14 Let A : Ω × R
N → R satisfy (3.1.6) and (3.1.7). Let τ > 0, l ∈ N and

β ≥ 1 such that lβ > p− 1. Set

E(s) = es −
l−1∑

j=0

sj

j!
, ∀s ∈ R. (3.6.23)

Let µ ∈ M
+
b (Q), ω ∈ M

+
b (Ω) such that µ ≤ χ(0,T ) ⊗ ω. Then, there exist b0 and M0

depending on N, p, β, τ, l and diamΩ, such that if

||M
(p−1)(β−1)

β

p,2diam(Ω)[ω]||L∞(RN ) ≤M0, ||u0||∞,Ω ≤ b0,

the problem 



ut − div(A(x,∇u)) = E(τuβ) + µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω

(3.6.24)

admits nonnegative R- solution u, which satisfies, a.e. in Q, for some c, depending on
N, p, c3, c4

u(x, t) ≤ cW
2diam(Ω)
1,p [ω](x) + 2b0. (3.6.25)

For the proof we first recall an approximation property, which is a consequence of [47,
Theorem 2.5] :

Theorem 3.6.15 Let τ > 0, b ≥ 0, K > 0, l ∈ N and β ≥ 1 such that lβ > p − 1. Let E
be defined by (3.6.23). Let {vm} be a sequence of nonnegative functions in Ω such that, for
some K > 0,

v1 ≤ KW
2diam(Ω)
1,p [µ] + b, vm+1 ≤ KW

2diam(Ω)
1,p [E(τvβm) + µ] + b, ∀m ≥ 1.

Then, there exist b0 and M0, depending on N, p, β, τ, l,K and diamΩ such that if b ≤ b0
and

||M
(p−1)(β−1)

β

p,2diam(Ω)[µ]||∞,RN ≤M0, (3.6.26)

then, setting cp = 2max(1,2
2−p
p−1 ),

exp(τ(KcpW
2diam(Ω)
1,p [µ] + 2b0)

β
) ∈ L1(Ω),

vm ≤ KcpW
2diam(Ω)
1,p [µ] + 2b0, ∀m ≥ 1. (3.6.27)

Proof of Theorem 3.6.14. From Corollary 3.5.7 and 3.6.11 we can construct a sequence
of nonnegative nondecreasing R-solutions {um}m≥1 defined in the following way : u1 is a
R-solution of problem (3.1.1), and by induction, um+1 is a R-solution of





(um+1)t − div(A(x,∇um+1)) = E(τuβm) + µ in Q,
um+1 = 0 on ∂Ω× (0, T ),
um+1(0) = u0 in Ω.

(3.6.28)
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And, setting um = supt∈(0,T ) um(t), there holds

u1 ≤ κW
2diam(Ω)
1,p [ω]+||u0||∞,Ω, um+1 ≤ κW

2diam(Ω)
1,p [E(τuβm)+ω]+||u0||∞,Ω, ∀m ≥ 1.

Thus, from Theorem 3.6.15, there exist b0 ∈ (0, 1] and M0 > 0 depending on N, p, β, τ, l
and diamΩ such that, if (3.6.26) holds, then (3.6.27) is satisfied with vm = um. As a
consequence, um is well defined. Thus, {um} converges a.e. in Q to some function u, for

which (3.6.25) is satisfied in Ω. Furthermore,
{
E(τuβm)

}
converges to E(τuβ) in L1(Q).

Finally, one can apply Theorem 3.2.1 to the sequence of measures
{
E(τuβm) + µ

}
, and

obtain that u is a R-solution of (3.6.24).

Remark 3.6.16 In [47, Theorem 1.1], when div(A(x,∇u)) = ∆pu, we showed that there
exist M =M(N, p, β, τ, l, diam(Ω)) such that if

||M
(p−1)(β−1)

β

p,2diam(Ω)[ω]||L∞(RN ) ≦M,

then the problem {
−∆pv = E(τvβ) + ω in Ω,
v = 0 on ∂Ω.

(3.6.29)

has a renormalized solution in the sense of [17]. We claim the following :

Let div(A(x,∇u)) = ∆pu and u0 ≡ 0. If (3.6.29) has a renormalized solution v and ω
is diffuse, then the problem (3.6.24) in Theorem 3.6.14 admits a R-solution u, satisfying
u(x, t) ≦ v(x) a.e in Q.

Indeed, since ω is diffuse, there holds µ ∈ M0(Q). Otherwise, for any measure η ∈ M0(Q)
the problem 




ut −∆pu = η in Q,
u = 0 on ∂Ω× (0, T ),
u = 0 in Ω,

has a (unique) R-solution, and the comparison principle is valid, see [50]. Thus, as in the
proof of Theorem 3.6.14, we can construct a unique sequence of nonnegative nondecreasing
R-solutions {um}m≧1, defined in the following way : u1 is a R-solution of problem (3.1.1)
and satisfies u1 ≦ v a.e in Q ; and by induction, um+1 is a R-solution of (3.6.28) and

satisfies um+1 ≦ v a.e in Q. Then
{
E(τuβm)

}
converges to E(τuβ) in L1(Q). Finally,

u := limn→∞ un is a solution of (3.6.24). Clearly, this claim is also valid for power source
term.

3.7 Appendix

Proof of Lemma 3.4.7. Let J be defined by (3.4.11). Let ζ ∈ C1
c ([0, T )) with values

in [0, 1], such that ζt ≤ 0, and ϕ = ζξ[J(S(v))]l. Clearly, ϕ ∈ X ∩ L∞(Q) ; we choose the
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pair of functions (ϕ, S) as test function in (3.4.2). Thanks to convergence properties of
Steklov time-averages, we easily will obtain (3.4.15) if we prove that

lim
l→0,ζ→1

(−
ˆ

Q
(ζξ[J(S(v))]l)tS(v)) ≥ −

ˆ

Q
ξtJ(S(v)).

We can write −
´

Q (ζξ[J(S(v))]l)tS(v) = F +G, with

F = −
ˆ

Q
(ζξ)t[J(S(v))]lS(v), G = −

ˆ

Q
ζξS(v)

1

l
(J(S(v))(x, t+ l)− J(S(v))(x, t)) .

Using (3.4.12) and integrating by parts we have

G ≥ −
ˆ

Q
ζξ

1

l
(J (S(v))(x, t+ l)−J (S(v))(x, t))

= −
ˆ

Q
ζξ
∂

∂t
([J (S(v))]l) =

ˆ

Q
(ζξ)t[J (S(v))]l +

ˆ

Ω
ζ(0)ξ(0)[J (S(v))]l(0)dx

≥
ˆ

Q
(ζξ)t[J (S(v))]l,

since J (S(v)) ≥ 0. Hence,

−
ˆ

Q
(ζξ[j(S(v))]l)tS(v) ≥

ˆ

Q
(ζξ)t[J (S(v))]l+F =

ˆ

Q
(ζξ)t ([J (S(v))]l − [J(S(v))]lS(v))

Otherwise, J (S(v)) and J(S(v)) ∈ C([0, T ] ;L1(Ω)), thus {(ζξ)t ([J (S(u))]l − [J(S(u))]lS(u))}
converges to −(ζξ)tJ(S(u)) in L1(Q) as l → 0. Therefore,

lim
l→0,ζ→1

(−
ˆ

Q
(ζξ[J(S(v))]l)tS(v)) ≥ lim

ζ→1

(
−
ˆ

Q
(ζξ)tJ(S(v))

)

≥ lim
ζ→1

(
−
ˆ

Q
ζξtJ(S(v))

)
= −

ˆ

Q
ξtJ(S(v)),

which achieves the proof.
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Chapitre 4

Potential estimates and quasilinear

parabolic equations with measure

data

Abstract

In this paper, we study the existence and regularity of the quasilinear parabolic equations :

ut − div(A(x, t,∇u)) = B(u,∇u) + µ

in R
N+1, RN×(0,∞) and a bounded domain Ω×(0, T ) ⊂ R

N+1. Here N ≥ 2, the nonlinea-
rity A fulfills standard growth conditions and B term is a continuous function and µ is a ra-
don measure. Our first task is to establish the existence results with B(u,∇u) = ±|u|q−1u,
for q > 1. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary esti-
mates on gradient of solutions with B ≡ 0, under minimal conditions on the boundary
of domain and on nonlinearity A. Finally, due to these estimates, we solve the existence
problems with B(u,∇u) = |∇u|q for q > 1.
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4.1. INTRODUCTION

4.1 Introduction

In this article, we study a class of quasilinear parabolic equations :

ut − div(A(x, t,∇u)) = B(x, t, u,∇u) + µ (4.1.1)

in R
N+1 or R

N × (0,∞) or a bounded domain ΩT := Ω × (0, T ) ⊂ R
N+1. Where N ≥ 2,

A : RN × R× R
N → R

N is a Carathéodory function which satisfies

|A(x, t, ζ)| ≤ Λ1|ζ| and (4.1.2)

〈A(x, t, ζ)−A(x, t, λ), ζ − λ〉 ≥ Λ2|ζ − λ|2, (4.1.3)

for every (λ, ζ) ∈ R
N ×R

N and a.e. (x, t) ∈ R
N ×R, here Λ1 and Λ2 are positive constants,

B : RN+1 × R× R
N → R is also a Carathéodory function and µ is a Radon measure.

The existence and regularity theory, the Wiener criteria and Harnack inequalities, Blow-
up at a finite time associated with above parabolic quasilinear operator was studied and
developed intensely over the past 50 years, one can found in [58, 44, 30, 48, 49, 25, 50,
60, 83, 75, 73]. Moreover, we also refer to [19]-[22] for Lp−gradient estimates theory in
non-smooth domains and [63] Wiener criteria for existence of large solutions of nonlinear
parabolic equations with absorption in a non-cylindrical domain.

First, we are specially interested in the existence of solutions to quasilinear parabolic
equations with absorption, source terms and data measure :

ut − div(A(x, t,∇u)) + |u|q−1u = µ, (4.1.4)

ut − div(A(x, t,∇u)) = |u|q−1u+ µ (4.1.5)

in R
N+1 and

ut − div(A(x, t,∇u)) + |u|q−1u = µ, u(0) = σ (4.1.6)

ut − div(A(x, t,∇u)) = |u|q−1u+ µ, u(0) = σ (4.1.7)

in R
N × (0,∞) or a bounded domain ΩT ⊂ R

N+1, where q > 1 and µ, σ are Radon
measures.

The linear case A(x, t,∇u) = ∇u was studied in detail by Fujita, Brezis and Friedman,
Baras and Pierre.

In [18], showed that if µ = 0 and σ is a Dirac mass in Ω, the problem (4.1.6) in ΩT (with
Dirichlet boundary condition) admits a (unique) solution if and only if q < (N + 2)/N .
Then, optimal results had been considered in [5], for any µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω) :
there exists a (unique) solution of (4.1.6) in ΩT if and only if µ, σ are absolutely continuous
with respect to the capacity Cap2,1,q′ ,CapG2/q ,q

′ (in ΩT ,Ω) respectively, for simplicity we
write µ << Cap2,1,q′ and σ << CapG2/q ,q

′ , with q′ is the conjugate exponent of q, i.e
q′ = q

q−1 . Where these two capacities will be defined in section 2.

For source case, in [6], showed that for any µ ∈ M
+
b (ΩT ) and σ ∈ M

+
b (Ω), the problem

(4.1.7) in bounded domain ΩT has a nonnegative solution if

µ(E) ≤ CCap2,1,q′(E) and σ(O) ≤ CCapG 2
q
,q′(O)
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4.1. INTRODUCTION

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N here C = C(N, diam(Ω), T ) is small
enough. Conversely, the existence holds then for compact subset K ⊂⊂ Ω, one find CK > 0
such that

µ(E ∩ (K × [0, T ])) ≤ CKCap2,1,q′(E) and σ(O ∩K) ≤ CKCapG 2
q
,q′(O)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N . In unbounded domain R
N × (0,∞), in

[30] asserted that an inequality

ut −∆u ≥ uq, u ≥ 0 in R
N × (0,∞), (4.1.8)

i. if q < (N +2)/N then the only nonnegative global (in time) solution of above inequality
is u ≡ 0,

ii. if q > (N + 2)/N then there exists global positive solution of above inequality.

More general, see [6], for µ ∈ M
+(RN×(0,∞)) and σ ∈ M

+(RN ), (4.1.7) has a nonnegative
solution in R

N × (0,∞) (with A(x, t,∇u) = ∇u) if and only if

µ(E) ≤ CCapH2,q′(E) and σ(O) ≤ CCapI 2
q
,q′(O) (4.1.9)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N , here C = C(N, q) is small enough,
two capacities CapH2,q′ ,CapI 2

q
,q′ will be defined in section 2. Note that a necessary and

sufficient condition for (4.1.9) holding with µ ∈ M
+(RN×(0,∞))\{0} or σ ∈ M

+(RN )\{0}
is q ≥ (N + 2)/N . In particular, (4.1.8) has a (global) positive solution if and only if q ≥
(N+2)/N . It is known that conditions for data µ, σ in problems with absorption are softer
than source. Recently, in exponential case, i.e |u|q−1u is replaced by P (u) ∼ exp(a|u|q), for
a > 0 and q ≥ 1 was established in [61].

We consider (4.1.6) and (4.1.7) in ΩT with Dirichlet boundary conditions when div(A(x, t,∇u))
is replaced by ∆pu := div(|∇u|p−2∇u) for p ∈ (2 − 1/N,N). In [66], showed that for
any q > p − 1, (4.1.6) admits a (unique renormalized) solution provided σ ∈ L1(Ω) and
µ ∈ Mb(ΩT ) is diffuse measure i.e absolutely continuous with respect to Cp−parabolic
capacity in ΩT defined on a compact set K ⊂ ΩT :

Cp(K,ΩT ) = inf {||ϕ||X : ϕ ≥ χK , ϕ ∈ C∞
c (ΩT )} ,

where X = {ϕ : ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)), ϕt ∈ Lp

′
(0, T ;W−1,p′(Ω))} endowed with norm

||ϕ||X = ||ϕ||
Lp(0,T ;W 1,p

0 (Ω))
+ ||ϕt||Lp′ (0,T ;W−1,p′ (Ω)) and χK is the characteristic function of

K. An improving result was presented in [14] for measures that have good behavior in time,
it is based on results of [16] relative to the elliptic case. That is, (4.1.6) has a (renormalized)
solution for q > p−1 if σ ∈ L1(Ω) and |µ| ≤ f +ω⊗F , where f ∈ L1

+(ΩT ), F ∈ L1
+((0, T ))

and ω ∈ M
+
b (Ω) is absolutely continuous with respect to CapGp,

q
q−p+1

in Ω. Also, (4.1.7) has

a (renormalized) nonnegative solution if σ ∈ L∞
+ (Ω), 0 ≤ µ ≤ ω ⊗ χ(0,T ) with ω ∈ M

+
b (Ω)

and

ω(E) ≤ C1CapGp,
q

q−p+1
(E) ∀ compact E ⊂ R

N , ||σ||L∞(Ω) ≤ C2
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4.1. INTRODUCTION

for some C1, C2 small enough. Another improving results are also stated in [15], especially
if q > p− 1, p > 2, µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω) are absolutely continuous with respect to
Cap2,1,q′ in ΩT and CapG 2

q
,q′ in Ω then (4.1.6) has a distribution solution.

In [15], we also obtain the existence of solutions for porous medium equation with
absorption and data measure : for q > m > N−2

N , a sufficient condition for existence
solution to the problem

ut −∆(|u|m−1u) + |u|q−1u = µ in ΩT , u = 0 on ∂Ω× (0, T ), and u(0) = σ in Ω.

is µ << Cap2,1,q′ , σ << CapG 2
q
,q′ if m ≥ 1 and µ << CapG2,

2q
2(q−1)+N(1−m)

, σ <<

Cap
G 2−N(1−m)

q

, 2q
2(q−1)+N(1−m)

if N−2
N < m ≤ 1. A necessary condition is µ << Cap2,1, q

q−max{m,1}

and σ << CapG 2max{m,1}
q

, q
q−max{m,1}

. Moreover, if µ = µ1 ⊗ χ[0,T ] with µ1 ∈ Mb(Ω) and

σ ≡ 0 then a condition µ1 << CapG2,
q

q−m
is not only a sufficient but also a necessary for

existence of solutions to above problem.

We would like to make a brief survey of quasilinear elliptic equations with absorption,
source terms and data measure :

−∆pu+ |u|q−1u = ω, (4.1.10)

−∆pu = |u|q−1u+ ω, u ≥ 0 (4.1.11)

in Ω with Dirichlet boundary conditions where 1 < p < N , q > p − 1. In [16], we proved
that the existence solution of equation (4.1.10) holds if ω ∈ Mb(Ω) is absolutely continuous
with respect to CapGp,

q
q−p+1

. Moreover, a necessary condition for existence was also showed

in [10, 11]. For problem with source term, it was solved in [68] (also see [69]). Exactly, if
ω ∈ M

+
b (Ω) has compact support in Ω, then a sufficient and necessary condition for the

existence of solutions of problem (4.1.11) is

ω(E) ≤ CCapGp,
q

q−p+1
(E) for all compact set E ⊂ Ω

where C is a constant only depending on N, p, q and d(supp(ω), ∂Ω). Their construction is
based upon sharp estimates of solutions of the problem

−∆pu = ω in Ω, u = 0 on ∂Ω,

for nonnegative Radon measures ω in Ω and a deep analysis of the Wolff potential.
Corresponding results in case that uq term is changed by P (u) ≈ exp(auλ) for a > 0, λ > 0,
was given in [16, 62].

In [27], Duzaar and Mingione gave a local pointwise estimate from above of solutions
to equation

ut − div(A(x, t,∇u)) = µ (4.1.12)

in ΩT involving the Wolff parabolic potential I2[|µ|] defined by

I2[|µ|](x, t) =
ˆ ∞

0

|µ|(Q̃ρ(x, t))
ρN

dρ

ρ
for all (x, t) ∈ R

N+1,
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here Q̃ρ(x, t) := Bρ(x) × (t − ρ2/2, t + ρ2/2). Specifically if u ∈ L2(0, T ;H1(Ω)) ∩ C(ΩT )
is a weak solution to above equation with data µ ∈ L2(ΩT ), then

|u(x, t)| ≤ C

 

Q̃R(x,t)
|u|dyds+ C

ˆ 2R

0

|µ|(Q̃ρ(x, t))
ρN

dρ

ρ
, (4.1.13)

for any Q2R(x, t) := B2R(x)× (t− (2R)2, t) ⊂ ΩT , where a constant C only depends on N
and the structure of operator A. Moreover, in this paper we show that if u ≥ 0, µ ≥ 0 we
also have local pointwise estimate from below :

u(y, s) ≥ C−1
∞∑

k=0

µ(Qrk/8(y, s− 35
128r

2
k))

rNk
(4.1.14)

for any Qr(y, s) ⊂ ΩT , see section 5, where rk = 4−kr.

From preceding two inequalities, we obtain global pointwise estimates of solution to
(4.1.12). For example, if µ ∈ M(RN+1) with I2[|µ|](x0, t0) < ∞ for some (x0, t0) ∈ R

N+1

then there exists a distribution solution to (4.1.12) in R
N+1 such that

−KI2[µ
−](x, t) ≤ u(x, t) ≤ KI2[µ

+](x, t) for a.e (x, t) ∈ R
N+1 (4.1.15)

and we emphasize that if u ≥ 0, µ ≥ 0 then

u(x, t) ≥ K−1
∞∑

k=−∞

µ(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk
for a.e (x, t) ∈ R

N+1,

and for q > 1,

||u||Lq(RN+1) ≈ ||I2[µ]||Lq(RN+1).

Where a constant K only depends on N and the structure of operator A.

Our first aim is to verify that

i. problems (4.1.4) and (4.1.6) have solutions if µ, σ are absolutely continuous with respect
to the capacity Cap2,1,q′ ,CapG 2

q
,q′ respectively,

ii. problems (4.1.5) in R
N+1 and (4.1.7) in R

N × (0,∞) with data signed measure µ, σ
admit a solution if

|µ|(E) ≤ CCapH2,q′(E) and |σ|(O) ≤ CCapI 2
q
,q′(O) (4.1.16)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N . Also, the equation (4.1.7) in a boun-
ded domain ΩT has a solution if (4.1.16) holds where capacities Cap2,1,q′ ,CapG 2

q
,q′

are exploited instead of CapH2,q′ ,CapI 2
q
,q′ .

It is worth mention that solutions obtained of (4.1.5) in R
N+1 and (4.1.7) in R

N × (0,∞)
obey

ˆ

E
|u|qdxdt ≤ CCapH2,q′(E) for all compact E ⊂ R

N+1
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and we also have an analogous estimate for a solution of (4.1.7) in ΩT ;
ˆ

E
|u|qdxdt ≤ CCap2,1,q′(E) for all compact E ⊂ R

N+1

for some a constant C > 0.

In case µ ≡ 0, solutions (4.1.7) in R
N × (0,∞) and ΩT are accepted the decay estimate

−Ct−
1

q−1 ≤ inf
x
u(x, t) ≤ sup

x
u(x, t) ≤ Ct

− 1
q−1 for any t > 0.

The strategy for establishment above results that is, we rely upon the combination some
techniques of quasilinear elliptic equations in two articles [16, 68] with the global pointwise
estimate (4.1.15), delicate estimates on Wolff parabolic potential and the stability theorem
see [13], Proposition 4.3.17 of this paper. They will be demonstrated in section 6.

We next are interested in global regularity of solutions to quasilinear parabolic equations

ut − div (A(x, t,∇u)) = µ in ΩT , u = 0 on ∂Ω× (0, T ) and u(0) = σ in Ω. (4.1.17)

where domain ΩT and nonlinearity A are as mentioned at the beginning.

Our aim is to achieve minimal conditions on the boundary of Ω and on nonlinearity A
so that the following statement holds

|||∇u|||K ≤ C||M1[ω]||K.

Here ω = |µ|+ |σ|⊗ δ{t=0} and M1 is the first order fractional Maximal parabolic potential
defined by

M1[ω](x, t) = sup
ρ>0

ω(Q̃ρ(x, t))

ρN+1
∀ (x, t) ∈ R

N+1,

, a constant C does not depend on u and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω) and K is a function
space. The same question is as above for the elliptic framework studied by N. C. Phuc in
[70, 71, 72].

First, we take K = Lp,s(ΩT ) for 1 ≤ p ≤ θ and 0 < s ≤ ∞ under a capacity density
condition on the domain Ω where Lp,s(ΩT ) is the Lorentz space and a constant θ > 2
depends on the structure of this condition and of nonlinearity A. It follows the recent
result in [7], see remark 4.2.18. The capacity density condition is that, the complement
of Ω satisfies uniformly 2−thick, see section 2. We remark that under this condition, the
Sobolev embedding H1

0 (Ω) ⊂ L
2N
N−2 (Ω) for N > 2 is valid and it is fulfilled by any domain

with Lipschitz boundary, or even of corkscrew type. This condition was used in two papers
[70, 72]. Also, it is essentially sharp for higher integrability results, presented in [41, Remark
3.3]. Furthermore, we also assert that if γ

γ−1 < p < θ, 2 ≤ γ < N + 2, 0 < s ≤ ∞ and
σ ≡ 0 then

|||∇u|||
L
p,s;(γ−1)p
∗ (ΩT )

≤ C||µ||
L

(γ−1)p
γ ,

(γ−1)s
γ ;(γ−1)p

∗ (ΩT )

for some a constant C where L
p,s;(γ−1)p
∗ (ΩT ), L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT ) are the Lorentz-
Morrey spaces involving "calorie" introduced in section 2. We would like to refer to [55] as
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the first paper where Lorentz-Morrey estimates for solutions of quasilinear elliptic equations
via fractional operators have been obtained.

Next, in order to obtain shaper results, we take K = Lq,s(ΩT , dw), the weighted Lorentz
spaces with weight in the Muckenhoupht class A∞ for q ≥ 1, 0 < s ≤ ∞, we require some
stricter conditions on the domain Ω and nonlinearity A. A condition on Ω is flat enough in
the sense of Reifenberg, essentially, that at boundary point and every scale the boundary
of domain is between two hyperplanes at both sides (inside and outside) of domain by
a distance which depends on the scale. Conditions on A are that BMO type of A with
respect to the x−variable is small enough and the derivative of A(x, t, ζ) with respect to
ζ is uniformly bounded. By choosing an appropriate weight we can establish the following
important estimates :

a. The Lorentz-Morrey estimates involving "calorie" for 0 < κ ≤ N + 2 is obtained

|||∇u|||Lq,s;κ
∗ (ΩT ) ≤ C||M1[|ω|]||Lq,s;κ

∗ (ΩT ).

b. Another Lorentz-Morrey estimates is also obtained for 0 < ϑ ≤ N

||M(|∇u|)||
Lq,s;ϑ
∗∗ (ΩT )

≤ C||M1[|ω|]||Lq,s;ϑ
∗∗ (ΩT )

,

where Lq,s;ϑ∗∗ (ΩT ) is introduced in section 2. This estimate implies global Holder-estimate
in space variable and Lq−estimate in time, that is for all ball Bρ ⊂ R

N

(
ˆ T

0
|oscBρ∩Ωu(t)|

qdt

) 1
q

≤ Cρ
1−ϑ

q ||M1[|ω|]||Lq;ϑ
∗∗ (ΩT )

provided 0 < ϑ < min{q,N}.

In particular, there hold

(
ˆ T

0
|oscBρ∩Ωu(t)|

qdt

) 1
q

≤ Cρ
1−ϑ

q ||σ||
L

ϑq
ϑ+2−q

;ϑ
(Ω)

+ Cρ
1−ϑ

q ||µ||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(Ω,Lq1 ((0,T )))

provided

1 < q1 ≤ q < 2,

max

{
2− q

q − 1
,

1

q − 1

(
2 + q − 2q

q1

)}
< ϑ ≤ N.

Where L
ϑq

ϑ+2−q
;ϑ
(Ω) is the standard Morrey space and

||µ||Lq2;ϑ(Ω,Lq1 ((0,T ))) = sup
ρ>0,x∈Ω

ρ
ϑ−N
q2

(
ˆ

Bρ(x)∩Ω

(
ˆ T

0
|µ(y, t)|q1dt

) q2
q1

dy

) 1
q2

.

with q2 =
ϑqq1

(ϑ+2+q)q1−2q . Besides, we also find

(
ˆ T

0
|oscBρ∩Ωu(t)|

qdt

) 1
q

≤ Cρ
1−ϑ

q ||µ||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(Ω,Lq1 ((0,T )))
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provided

σ ≡ 0, q ≥ 2, 1 < q1 ≤ q,

1

q − 1

(
2 + q − 2q

q1

)
< ϑ ≤ N.

c. A global capacitary estimate is also given

sup
compact K⊂R

N+1

CapG1,q′ (K)>0

(´
K |∇u|qdxdt
CapG1,q′(K)

)
≤ C sup

compact K⊂R
N+1

CapG1,q′ (K)>0

( |ω|(K)

CapG1,q′(K)

)q
.

To obtain this estimate we employ profound techniques in nonlinear potential theory, see
section 4 and Theorem 4.2.22.

We utilize some ideas (in the quasilinear elliptic framework) in articles of N.C. Phuc
[70, 72, 71] during we establish above estimates.

We would like to emphasize that above estimates is also true for solutions to equation
(4.1.17) in R

N+1 with data µ (of course still true for (4.1.17) in R
N × (0,∞)) with data

µ provided I2[|µ|](x0, t0) < ∞ for some (x0, t0) ∈ R
N+1 see Theorem 4.2.25 and 4.2.27.

Moreover, a global pointwise estimates of gradient of solutions is obtained when A is
independent of space variable x, that is

|∇u(x, t)| ≤ CI1[|µ|](x, t) a.e (x, t) ∈ R
N+1

see Theorem 4.2.5.

Our final aim is to obtain existence results for the quasilinear Riccati type parabolic
problems (4.1.1) where B(x, t, u,∇u) = |∇u|q for q > 1. The strategy we use in order to
prove these existence results is that using Schauder Fixed Point Theorem and all above
estimates and the stability Theorem see [13], Proposition 4.3.17 in section 3. They will
be carried out in section 9. By our methods in the paper, we can treat general equations
(4.1.1), where

|B(x, t, u,∇u)| ≤ C1|u|q1 + C2|∇u|q2 , q1, q2 > 1,

with constant coefficients C1, C2 > 0.
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4.2 Main Results

Throughout the paper, we assume that Ω is a bounded open subset of RN , N ≥ 2 and
T > 0. Besides, we always denote ΩT = Ω × (0, T ), T0 = diam(Ω) + T 1/2 and Qρ(x, t) =
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4.2. MAIN RESULTS

Bρ(x)× (t− ρ2, t) Q̃ρ(x, t) = Bρ(x)× (t− ρ2/2, t+ ρ2/2) for (x, t) ∈ R
N+1 and ρ > 0. We

always assume that A : RN × R × R
N → R

N is a Caratheodory vector valued function,
i.e. A is measurable in (x, t) and continuous with respect to ∇u for each fixed (x, t) and
satisfies (4.1.2) and (4.1.3). This article is divided into three parts. First part, we study
the existence problems for the quasilinear parabolic equations with absorption and source
terms 




ut − div(A(x, t,∇u)) + |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(4.2.1)

and 



ut − div(A(x, t,∇u)) = |u|q−1u+ µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(4.2.2)

where q > 1, and µ, σ are Radon measures.

In order to state our results, let us introduce some definitions and notations. If D
is either a bounded domain or whole R

l for l ∈ N, we denote by M(D) (resp. Mb(D))
the set of Radon measure (resp. bounded Radon measures) in D. Their positive cones
are M

+(D) and M
+
b (D) respectively. For R ∈ (0,∞], we define the R−truncated Riesz

parabolic potential Iα and Fractional Maximal parabolic potential Mα, α ∈ (0, N + 2), on
R
N+1 of a measure µ ∈ M

+(RN+1) by

I
R
α [µ](x, t) =

ˆ R

0

µ(Q̃ρ(x, t))

ρN+2−α
dρ

ρ
and M

R
α [µ](x, t) = sup

0<ρ<R

µ(Q̃ρ(x, t))

ρN+2−α (4.2.3)

for all (x, t) in R
N+1. If R = ∞, we drop it in expressions of (4.2.3).

We denote by Hα the Heat kernel of order α ∈ (0, N + 2) :

Hα(x, t) = Cα
χ(0,∞)(t)

t(N+2−α)/2 exp

(
−|x|2

4t

)
for (x, t) in R

N+1,

and Gα the parabolic Bessel kernel of order α > 0 :

Gα(x, t) = Cα
χ(0,∞)(t)

t(N+2−α)/2 exp

(
−t− |x|2

4t

)
for (x, t) in R

N+1,

see [4], where Cα =
(
(4π)N/2Γ(α/2)

)−1
. It is known that F(Hα)(x, t) = (|x|2+ it)−α/2 and

F(Gα)(x, t) = (1+ |x|2 + it)−α/2. We define the parabolic Riesz potential Hα of a measure
µ ∈ M

+(RN+1) by

Hα[µ](x, t) = (Hα ∗ µ)(x, t) =
ˆ

RN+1

Hα(x− y, t− s)dµ(y, s) for any (x, t) in R
N+1,

the parabolic Bessel potential Gα of a measure µ ∈ M
+(RN+1) by

Gα[µ](x, t) = (Gα ∗ µ)(x, t) =
ˆ

RN+1

Gα(x− y, t− s)dµ(y, s) for any (x, t) in R
N+1.
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We also define Iα,Gα, 0 < α < N the Riesz, Bessel potential of a measure µ ∈ M
+(RN )

by

Iα[µ](x) =

ˆ ∞

0

µ(Bρ(x))

ρN−α
dρ

ρ
and Gα[µ](x) =

ˆ

RN

Gα(x− y)dµ(y) for any x in R
N ,

where Gα is the Bessel kernel of order α, see [2].
Several different capacities will be used over the paper. For 1 < p <∞, the (Hα, p)-capacity,
(Gα, p)-capacity of a Borel set E ⊂ R

N+1 are defined by

CapHα,p(E) = inf

{
ˆ

RN+1

|f |pdxdt : f ∈ Lp+(R
N+1),Hα ∗ f ≥ χE

}
and

CapGα,p(E) = inf

{
ˆ

RN+1

|f |pdxdt : f ∈ Lp+(R
N+1),Gα ∗ f ≥ χE

}
.

The W 2,1
p −capacity of compact set E ⊂ R

N+1 is defined by

Cap2,1,p(E) = inf

{
||ϕ||p

W 2,1
p (RN+1)

: ϕ ∈ S(RN+1), ϕ ≥ 1 in a neighborhood of E
}
,

where

||ϕ||
W 2,1

p (RN+1)
= ||ϕ||Lp(RN+1) + ||∂ϕ

∂t
||Lp(RN+1) + ||∇ϕ||Lp(RN+1) +

∑

i,j=1,2,...,N

|| ∂2ϕ

∂xi∂xj
||Lp(RN+1).

We remark that thanks to Richard J. Bagby’s result (see [4]) we obtain the equivalent of
capacities Cap2,1,p and CapG2,p, i.e, for any compact set K ⊂ R

N+1 there holds

C−1Cap2,1,p(K) ≤ CapG2,p(K) ≤ CCap2,1,p(K)

for some C = C(N, p), see Corollary (4.4.18) in section 4.
The (Iα, p)-capacity, (Gα, p)-capacity of a Borel set O ⊂ R

N are defined by

CapIα,p(O) = inf

{
ˆ

RN

|g|pdx : g ∈ Lp+(R
N ), Iα ∗ g ≥ χO

}
and

CapGα,p(O) = inf

{
ˆ

RN

|g|pdx : g ∈ Lp+(R
N ),Gα ∗ g ≥ χO

}
.

In our first three Theorems, we present global pointwise potential estimates for solutions
to quasilinear parabolic problems





ut − div (A(x, t,∇u)) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(4.2.4)

and {
ut − div (A(x, t,∇u)) = µ in R

N × (0,∞),
u(0) = σ in R

N ,
(4.2.5)

and

ut − div (A(x, t,∇u)) = µ in R
N+1. (4.2.6)
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Theorem 4.2.1 There exists a constant K depending on N,Λ1,Λ2 such that for any µ ∈
Mb(ΩT ), σ ∈ Mb(Ω) there is a distribution solution u of (4.2.4) which satisfies

−KI
2T0
2 [µ− + σ− ⊗ δ{t=0}] ≤ u ≤ KI

2T0
2 [µ+ + σ+ ⊗ δ{t=0}] in ΩT (4.2.7)

Remark 4.2.2 Since supx∈RN Iα[σ
± ⊗ δ{t=0}](x, t) ≤ σ±(Ω)

(N+2−α)(2|t|)
N+2−α

2

for any t 6= 0

with 0 < α < N + 2. Thus, if µ ≡ 0, then we obtain the decay estimate :

−Kσ
−(Ω)

N(2t)
N
2

≤ inf
x∈Ω

u(x, t) ≤ sup
x∈Ω

u(x, t) ≤ Kσ+(Ω)

N(2t)
N
2

for any 0 < t < T.

Theorem 4.2.3 There exists a constant C depending on N,Λ1,Λ2 such that for any µ ∈
M

+
b (ΩT ), σ ∈ M

+
b (Ω), there is a distribution solution u of (4.2.4) satisfying for a.e (y, s) ∈

ΩT and Br(y) ⊂ Ω

u(y, s) ≥ C
∞∑

k=0

µ(Qrk/8(y, s− 35
128r

2
k))

rNk
+ C

∞∑

k=0

(σ ⊗ δ{t=0})(Qrk/8(y, s− 35
128r

2
k))

rNk
(4.2.8)

where rk = 4−kr.

Remark 4.2.4 The Theorem 4.2.3 is also true when we replace the assumption (4.1.3) by
a weaker one

〈A(x, t, ζ), ζ〉 ≥ Λ2|ζ|2, 〈A(x, t, ζ)−A(x, t, λ), ζ − λ〉 > 0

for every (λ, ζ) ∈ R
N × R

N , λ 6= ζ and a.e. (x, t) ∈ R
N × R.

Theorem 4.2.5 Let K be the constant in Theorem 4.2.1. Let ω ∈ M(RN+1) such that
I2[|ω|](x0, t0) < ∞ for some (x0, t0) ∈ R

N+1. Then, there is a distribution solution u to
(4.2.6) with data µ = ω satisfying

−KI2[ω
−] ≤ u ≤ KI2[ω

+] in R
N+1 (4.2.9)

such that the following statements hold.

a. If ω ≥ 0, there exists C1 = C1(N,Λ1,Λ2) such that for a.e (x, t) ∈ R
N+1

u(x, t) ≥ C1

∞∑

k=−∞

ω(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk
(4.2.10)

In particular, for any q > N+2
N

C−1
2 ||H2[ω]||Lq(RN+1) ≤ ||u||Lq(RN+1) ≤ C2||H2[ω]||Lq(RN+1). (4.2.11)

with C2 = C2(N,Λ1,Λ2).

b. If A is independent of space variable x and satisfies (4.2.27), then there exists C2 =
C2(N,Λ1,Λ2) such that

|∇u| ≤ C2I1[|ω|] in R
N+1. (4.2.12)

131



4.2. MAIN RESULTS

c. If ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then u = 0 in
R
N × (−∞, 0) and u|

RN×[0,∞) is a distribution solution to (4.2.5).

Remark 4.2.6 For q > N+2
N , we alway have the following claim :

||H2[µ+ ω ⊗ δ{t=0}]||Lq(RN+1) ≈ ||H2[µ]||Lq(RN+1) + ||I2/q[σ]||Lq(RN+1)

for every µ ∈ M
+(RN × (0,∞)) and σ ∈ M

+(RN ).

Remark 4.2.7 For ω ∈ M
+(RN+1), 0 < α < N + 2 if Iα[ω](x0, t0) < ∞ for some

(x0, t0) ∈ R
N+1 then for any 0 < β ≤ α, Iβ [ω] ∈ Lsloc(R

N+1) for any 0 < s < N+2
N+2−β .

However, for 0 < β < α < N + 2, one can find ω ∈ M
+(RN+1) such that Iα[ω] ≡ ∞ and

Iβ [ω] <∞ in R
N+1, see Appendix section.

The next four theorems provide the existence of solutions to quasilinear parabolic equations
with absorption and source terms. For convenience, we always denote by q′ the conjugate
exponent of q ∈ (1,∞) i.e q′ = q

q−1 .

Theorem 4.2.8 Let q > 1, µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω). Suppose that µ, σ are absolutely
continuous with respect to the capacities Cap2,1,q′ , CapG 2

q
,q′ in ΩT ,Ω respectively. Then

there exists a distribution solution u of (4.2.1) satisfying

−KI2[µ
− + σ− ⊗ δ{t=0}] ≤ u ≤ KI2[µ

+ + σ+ ⊗ δ{t=0}] in ΩT .

Here the constant K is in Theorem 4.2.1.

Theorem 4.2.9 Let K be the constant in Theorem 4.2.1. Let q > 1, µ ∈ Mb(ΩT ) and
σ ∈ Mb(Ω). There exists a constant C1 = C1(N, q,Λ1,Λ2, diam(Ω), T ) such that if

|µ|(E) ≤ C1Cap2,1,q′(E) and |σ|(O) ≤ C1CapG 2
q
,q′(O). (4.2.13)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N , then the problem (4.2.2) has a distribution
solution u satisfying

− Kq

q − 1
I2[µ

− + σ− ⊗ δ{t=0}] ≤ u ≤ Kq

q − 1
I2[µ

+ + σ+ ⊗ δ{t=0}] in ΩT . (4.2.14)

Besides, for every compact set E ⊂ R
N+1 there holds

ˆ

E
|u|qdxdt ≤ C2Cap2,1,q′(E) (4.2.15)

where C2 = C2(N, q,Λ1,Λ2, T0).

Remark 4.2.10 From (4.2.15) we get if q > N+2
N ,

ˆ

Q̃ρ(y,s)
|u|qdxdt ≤ CρN+2−2q′ for any Q̃ρ(y, s) ⊂ R

N+1,
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if q = N+2
N ,

ˆ

Q̃ρ(y,s)
|u|qdxdt ≤ C (log(1/ρ))

− 1
q−1 for any Q̃ρ(y, s) ⊂ R

N+1, 0 < ρ < 1/2

for some C = C(N, q,Λ1,Λ2, T0), see Remark 4.4.14.

Remark 4.2.11 In the sub-critical case 1 < q < N+2
N , since the capacity Cap2,1,q′ ,CapG 2

q
,q′

of a single are positive thus the conditions (4.2.13) hold for some constant C1 > 0 provided
µ ∈ Mb(ΩT ), σ ∈ Mb(Ω). Moreover, in the super-critical case q > N+2

N , we have

Cap2,1,q′(E) ≥ c1|E|1−
2q′
N+2 and CapG 2

q
,q′(O) ≥ c2|O|1−

2
(q−1)N

for every Borel sets E ⊂ R
N+1, O ⊂ R

N , thus if µ ∈ L
N+2
2q′ ,∞(ΩT ) and σ ∈ L

(q−1)N
2

,∞(Ω)
then (4.2.13) holds for some constant C1 > 0. In addition, if µ ≡ 0, then (4.2.14) implies
for any 0 < t < T ,

−c3(T0)t−
1

q−1 ≤ inf
x∈Ω

u(x, t) ≤ sup
x∈Ω

u(x, t) ≤ c3(T0)t
− 1

q−1 ,

since |σ|(Bρ(x)) ≤ c4(T0)ρ
N− 2

q−1 for all x ∈ R
N , 0 < ρ < 2T0.

Theorem 4.2.12 Let K be the constant in Theorem 4.2.1 and q > 1. If ω ∈ M(RN+1)
is absolutely continuous with respect to the capacity Cap2,1,q′ in R

N+1, then there exists a

distribution solution u ∈ Lγloc(R;W
1,γ
loc (R

N )) for any 1 ≤ γ < 2q
q+1 to problem

ut − div (A(x, t,∇u)) + |u|q−1u = ω in R
N+1, (4.2.16)

which satisfies
−KI2[ω

−] ≤ u ≤ KI2[ω
+] in R

N+1. (4.2.17)

Furthermore, when ω = µ+ σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)), σ ∈ M(RN ) then u = 0

in R
N × (−∞, 0) and u|

RN×[0,∞) is a distribution solution to problem

{
ut − div (A(x, t,∇u)) + |u|q−1u = µ in R

N × (0,∞),
u(0) = σ in R

N .
(4.2.18)

Remark 4.2.13 The measure ω = µ+ σ ⊗ δ{t=0} is absolutely continuous with respect to
the capacity Cap2,1,q′ in R

N+1 if and only if µ, σ are absolutely continuous with respect to
the capacities Cap2,1,q′ , CapG 2

q
,q′ in R

N+1,RN respectively.

Existence result of the problem (4.2.2) on R
N+1 or on R

N × (0,∞) is similar to Theorem
4.2.9 presented in the following Theorem, where the capacities CapH2,q′ ,CapI 2

q
,q′ are used

in place of respectively Cap2,1,q′ ,CapG 2
q
,q′ .
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Theorem 4.2.14 Let K be the constant in Theorem 4.2.1 and q > N+2
N , ω ∈ M(RN+1).

There exists a constant C1 = C1(N, q,Λ1,Λ2) such that if

|ω|(E) ≤ C1CapH2,q′(E) (4.2.19)

for every compact set E ⊂ R
N+1, then the problem

ut − div (A(x, t,∇u)) = |u|q−1u+ ω in R
N+1 (4.2.20)

has a distribution solution u ∈ Lγloc(R;W
1,γ
loc (R

N )) for any 1 ≤ γ < 2q
q+1 satisfying

− Kq

q − 1
I2[ω

−] ≤ u ≤ Kq

q − 1
I2[ω

+] in R
N+1. (4.2.21)

Moreover, when ω = µ+ σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)), σ ∈ M(RN ) then u = 0 in
R
N × (−∞, 0) and u|

RN×[0,∞) is a distribution solution to problem

{
ut − div (A(x, t,∇u)) = |u|q−1u+ µ in R

N × (0,∞),
u(0) = σ in R

N .
(4.2.22)

In addition, for any compact set E ⊂ R
N+1 there holds

ˆ

E
|u|qdxdt ≤ C2CapH2,q′(E) (4.2.23)

for some C2 = C2(N, q,Λ1,Λ2).

Remark 4.2.15 The measure ω = µ+ σ ⊗ δ{t=0} satisfies (4.2.19) if and only if

|µ|(E) ≤ CCapH2,q′(E) and |σ|(O) ≤ CCapI 2
q
,q′(O).

for every compact sets E ⊂ R
N+1 and O ⊂ R

N , where C = C3C1, C3 = C3(N, q).

Remark 4.2.16 If ω ∈ L
N+2
2q′ ,∞(RN+1) then (4.2.19) holds for some constant C1 > 0.

Moreover, if ω = σ⊗δ{t=0} with σ ∈ Mb(R
N ), then from (4.2.21) we get the decay estimate :

−c1t−
1

q−1 ≤ inf
x∈RN

u(x, t) ≤ sup
x∈RN

u(x, t) ≤ c1t
− 1

q−1 for any t > 0,

since |σ|(Bρ(x)) ≤ c2ρ
N− 2

q−1 for any Bρ(x) ⊂ R
N .

Second part, we establish global regularity in weighted-Lorentz and Lorentz-Morrey
on gradient of solutions to problem (4.2.4). For this purpose, we need a capacity density
condition imposed on Ω. That is, the complement of Ω satisfies uniformly p-thick with
constants c0, r0, i.e, for all 0 < r ≤ r0 and all x ∈ R

N\Ω there holds

Capp(Br(x) ∩ (RN\Ω), B2r(x)) ≥ c0Capp(Br(x), B2r(x)) (4.2.24)
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where the involved capacity of a compact set K ⊂ B2r(x) is given as follows

Capp(K,B2r(x)) = inf

{
ˆ

B2r(x)
|∇φ|pdy : φ ∈ C∞

c (B2r(x)), φ ≥ χK

}
. (4.2.25)

In order to obtain better regularity we need a stricter condition on Ω which is expressed
in the following way. We say that Ω is a (δ,R0)−Reifenberg flat domain for δ ∈ (0, 1) and
R0 > 0if for every x0 ∈ ∂Ω and every r ∈ (0, R0], there exists a system of coordinates
{z1, z2, ..., zn}, which may depend on r and x0, so that in this coordinate system x0 = 0
and that

Br(0) ∩ {zn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {zn > −δr}. (4.2.26)

We remark that this class of flat domains is rather wide since it includes C1, Lipschitz
domains with sufficiently small Lipschitz constants and fractal domains. Besides, it has
many important roles in the theory of minimal surfaces and free boundary problems, this
class was first appeared in a work of Reifenberg (see [74]) in the context of a Plateau
problem. Its properties can be found in [37, 38, 78].

On the other hand, it is well-known that in general, conditions (4.1.2) and (4.1.3) on
the nonlinearity A(x, t, ζ) are not enough to ensure higher integral of gradient of solutions
to problem (4.2.4), we need to assume that A satisfies

〈Aζ(x, t, ζ)ξ, ξ〉 ≥ Λ2|ξ|2, |Aζ(x, t, ζ)| ≤ Λ1 (4.2.27)

for every (ξ, ζ) ∈ R
N ×R

N\{(0, 0)} and a.e (x, t) ∈ R
N ×R, where Λ1,Λ2 are constants in

(4.1.2) and (4.1.3). We also require that the nonlinearity A satisfies a smallness condition
of BMO type in the x-variable. We say that A(x, t, ζ) satisfies a (δ,R0)-BMO condition for
some δ,R0 > 0 with exponent s > 0 if

[A]R0
s := sup

(y,s)∈RN×R,0<r≤R0

(
 

Qr(y,s)
(Θ(A,Br(y))(x, t))

s dxdt

) 1
s

≤ δ,

where

Θ(A,Br(y))(x, t) := sup
ζ∈RN\{0}

|A(x, t, ζ)−ABr(y)(t, ζ)|
|ζ|

and ABr(y)(t, ζ) is denoted the average of A(t, ., ζ) over the cylinder Br(y), i.e,

ABr(y)(t, ζ) :=

 

Br(y)
A(x, t, ζ)dx =

1

|Br(y)|

ˆ

Br(y)
A(x, t, ζ)dx.

The above condition was appeared in [21]. It is easy to see that the (δ,R0)−BMO
condition on A is satisfied when A is continuous or has small jump discontinuities with
respect to x.

In this paper, M denotes the Hardy-Littlewood maximal function defined for each
locally integrable function f in R

N+1 by

M(f)(x, t) = sup
ρ>0

 

Q̃ρ(x,t)
|f(y, s)|dyds ∀(x, t) ∈ R

N+1.
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We verify that M is bounded operator from L1(RN+1) to L1,∞(RN+1) and Ls(RN+1)
(Ls,∞(RN+1)) to itself for s > 1, see [76, 77].

We recall that a positive function w ∈ L1
loc(R

N+1) is called an A∞ if there are two
positive constants C and ν such that

w(E) ≤ C

( |E|
|Q|

)ν
w(Q)

for all cylinder Q = Q̃ρ(x, t) and all measurable subsets E of Q. The pair (C, ν) is called
the A∞ constant of w and is denoted by [w]A∞ .

For a weight function w ∈ A∞, the weighted Lorentz spaces Lq,s(D, dw) with 0 < q <
∞, 0 < s ≤ ∞ and a Borel set D ⊂ R

N+1, is the set of measurable functions g on D such
that

||g||Lq,s(D,dw) :=





(
q
´∞
0 (ρqw ({(x, t) ∈ D : |g(x, t)| > ρ}))

s
q dρ
ρ

)1/s
<∞ if s <∞,

supρ>0 ρw ({(x, t) ∈ D : |g(x, t)| > ρ})1/q <∞ if s = ∞.

Here we write w(E) =
´

E w(x, t)dxdt for a measurable set E ⊂ R
N+1. Obviously, ||g||Lq,q(D,dw) =

||g||Lq(D,dw), thus we have Lq,q(D, dw) = Lq(D, dw). As usual, when w ≡ 1 we simply write
Lq,s(D) instead of Lq,s(D, dw).
We now state the next results of the paper.

Theorem 4.2.17 Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}. There exists
a distribution solution of (4.2.4) with data µ and σ such that if RN\Ω satisfies uniformly
2−thick with constants c0, r0 then for any 1 ≤ p < θ and 0 < s ≤ ∞,

||M(|∇u|)||Lp,s(ΩT ) ≤ C1||M1[ω]||Lp,s(Q). (4.2.28)

Here θ = θ(N,Λ1,Λ1, c0) > 2 and C1 = C1(N,Λ1,Λ2, p, s, c0, T0/r0) and Q = Bdiam(Ω)(x0)×
(0, T ) which Ω ⊂ Bdiam(Ω)(x0).
Especially, when 1 < p < 2, then

||M(|∇u|)||Lp(ΩT ) ≤ C2

(
||G1[|µ|]||Lp(RN+1) + ||G 2

p
−1[|σ|]||Lp(RN )

)
, (4.2.29)

where C2 = C2(N,Λ1,Λ2, p, c0, T0/r0).

Remark 4.2.18 If N+2
N+1 < p < 2, there hold

||G1[|µ|]||Lp(RN+1) ≤ C1||µ||
L

p(N+2)
N+2+p (ΩT )

and ||G 2
p
−1[|σ|]||Lp(RN ) ≤ C1||σ||

L
pN

N+2−p (Ω)

for some C1 = C1(N, p). From (4.2.29) we obtain

|||∇u|||Lp(ΩT ) ≤ C2||µ||
L

p(N+2)
N+2+p (ΩT )

+ C2||σ||
L

pN
N+2−p (Ω)

provided
N + 2

N + 1
< p < 2.

We should mention that if σ ≡ 0, then

||M1[ω]||Lp,s(RN+1) ≤ C2||µ||
L

q(N+2)
N+2+q

,s
(ΩT )

.

and we get [7, Theorem 1.2] from estimate (4.2.28).
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In order to state the next results, we need to introduce Lorentz-Morrey spaces Lq,s;θ∗ (D)
involving "calorie" with a Borel set D ⊂ R

N+1, is the set of measurable functions g on D
such that

||g||Lq,s;κ
∗ (D) := sup

0<ρ<diam(D),(x,t)∈D
ρ

κ−N−2
q ||g||Lq,s(Q̃ρ(x,t)∩D) <∞,

where 0 < κ ≤ N + 2, 0 < q < ∞, 0 < s ≤ ∞. Clearly, Lq,s;N+2
∗ (D) = Lq,s(D). Moreover,

when q = s the space Lq,s;θ∗ (D) will be denoted by Lq;θ∗ (D).
The following theorem provides an estimate on gradient in Lorentz-Morrey spaces.

Theorem 4.2.19 Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}. There exists
a distribution solution of (4.2.4) with data µ and σ such that if RN\Ω satisfies uniformly
2−thick with constants c0, r0 then for any 1 ≤ p < θ and 0 < s ≤ ∞, 2− γ0 < γ < N + 2,
γ ≤ N+2

p + 1,

||M (|∇u|) ||
L
p,s;p(γ−1)
∗ (ΩT )

≤ C1||Mγ [ω]||L∞(ΩT )

+ C2 sup
0<R≤T0,(y0,s0)∈ΩT

(
R

p(γ−1)−N−2
p ||M1[χQ̃R(y0,s0)

ω]||Lp,s(Q̃R(y0,s0))

)
. (4.2.30)

Here θ is in Theorem 4.2.17, γ0 = γ0(N,Λ1,Λ1, c0) ∈ (0, 1/2] and C1 = C1(N,Λ1,Λ2, p, s, γ,
c0, T0/r0), C2 = C2(N,Λ1,Λ2, p, s, γ, c0). Besides, if γ

γ−1 < p < θ, 2 − γ0 < γ < N + 2,

0 < s ≤ ∞ and µ ∈ L
(γ−1)p

γ
,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT ), σ ≡ 0, then u is a unique renormalized
solution satisfied

||M (|∇u|) ||
L
p,s;(γ−1)p
∗ (ΩT )

≤ C3||µ||
L

(γ−1)p
γ ,

(γ−1)s
γ ;(γ−1)p

∗ (ΩT )

, (4.2.31)

where C3 = C3(N,Λ1,Λ2, p, s, γ, c0, T0/r0).

Theorem 4.2.20 Suppose that A satisfies (4.2.27). Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set
ω = |µ| + |σ| ⊗ δ{t=0}. There exists a distribution solution of (4.2.4) with data µ, σ
such that the following holds. For any w ∈ A∞, 1 ≤ q < ∞, 0 < s ≤ ∞ we find
δ = δ(N,Λ1,Λ2, q, s, [w]A∞) ∈ (0, 1) and s0 = s0(N,Λ1,Λ2) > 0 such that if Ω is (δ,R0)-
Reifenberg flat domain Ω and [A]R0

s0 ≤ δ for some R0 then

||M(|∇u|)||Lq,s(ΩT ,dw) ≤ C||M1[ω]||Lq,s(ΩT ,dw). (4.2.32)

Here C depends on N,Λ1,Λ2, q, s, [w]A∞ and T0/R0.

Next results are actually consequences of Theorem 4.2.20. For our purpose, we introduce
another Lorentz-Morrey spaces Lq,s;θ∗∗ (O1 × O2), is the set of measurable functions g on
O1 ×O2 such that

||g||
Lq,s;ϑ
∗∗ (O1×O2)

:= sup
0<ρ<diam(O1),x∈O1

ρ
ϑ−N

q ||g||Lq,s((Bρ(x)∩O1)×O2)) <∞,
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where O1, O2 are Borel sets in R
N and R respectively, 0 < ϑ ≤ N , 0 < q <∞, 0 < s ≤ ∞.

Obviously, Lq,s;N∗∗ (D) = Lq,s(D). For simplicity of notation, we write Lq;ϑ∗∗ (D) instead of
Lq,s;ϑ∗∗ (D) when q = s. Moreover,

||g||
Lq,q;ϑ
∗∗ (O1×O2)

= ||G||Lq;ϑ(O1),

where G(x) = ||g(x, .)||Lq(O1) and Lq;ϑ(O1) is the usual Morrey space, i.e the spaces of all
measurable functions f on O1 with

||f ||Lq;ϑ(O1) := sup
0<ρ<diam(O1),y∈O1

ρ
ϑ−N

q ||f ||Lq(Bρ(y)∩O1) <∞.

Theorem 4.2.21 Suppose that A satisfies (4.2.27). Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set
ω = |µ|+ |σ| ⊗ δ{t=0}. Let s0 be in Theorem 4.2.20. There exists a distribution solution of
(4.2.4) with data µ, σ such that the following holds.

a. For any 1 ≤ q < ∞, 0 < s ≤ ∞ and 0 < κ ≤ N + 2 we find δ = δ(N,Λ1,Λ2, q, s, κ) ∈
(0, 1) such that if Ω is (δ,R0)-Reifenberg flat domain Ω and [A]R0

s0 ≤ δ for some R0

then
||M(|∇u|)||Lq,s;κ

∗ (ΩT ) ≤ C1||M1[|ω|]||Lq,s;κ
∗ (ΩT ). (4.2.33)

Here C1 depends on N,Λ1,Λ2, q, s, κ and T0/R0.

b. For any 1 ≤ q <∞, 0 < s ≤ ∞ and 0 < ϑ ≤ N we find δ = δ(N,Λ1,Λ2, q, s, ϑ) ∈ (0, 1)
such that if Ω is (δ,R0)-Reifenberg flat domain Ω and [A]R0

s0 ≤ δ for some R0 then

||M(|∇u|)||
Lq,s;ϑ
∗∗ (ΩT )

≤ C2||M1[|ω|]||Lq,s;ϑ
∗∗ (ΩT )

. (4.2.34)

for some C2 = C2(N,Λ1,Λ2, q, s, ϑ, T0/R0). Especially, when q = s and 0 < ϑ <
min{N, q}, there holds for any ball Bρ ⊂ R

N

(
ˆ T

0
|oscBρ∩Ωu(t)|

qdt

) 1
q

≤ C3ρ
1−ϑ

q ||M1[|ω|]||Lq;ϑ
∗∗ (ΩT )

. (4.2.35)

for some C3 = C3(N,Λ1,Λ2, q, ϑ, T0/R0).

The following global capacitary estimates on gradient.

Theorem 4.2.22 Suppose that A satisfies (4.2.27). Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set
ω = |µ| + |σ| ⊗ δ{t=0}. Let s0 be in Theorem 4.2.20. There exists a distribution solution
of (4.2.4) with data µ, σ such that following holds. For any 1 < q < ∞, we find δ =
δ(N,Λ1,Λ2, q) ∈ (0, 1) such that if Ω is a (δ,R0)- Reifenberg flat domain and [A]R0

s0 ≤ δ
for some R0 then

sup
compact K⊂R

N+1

CapG1,q′ (K)>0

(
´

K∩ΩT
|∇u|qdxdt

CapG1,q′(K)

)
≤ C1 sup

compact K⊂R
N+1

CapG1,q′ (K)>0

(
ω(K)

CapG1,q′(K)

)q
, (4.2.36)
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and if q > N+2
N+1 ,

sup
compact K⊂R

N+1

CapH1,q
′ (K)>0

(
´

K∩ΩT
|∇u|qdxdt

CapH1,q′(K)

)
≤ C2 sup

compact K⊂R
N+1

CapH1,q
′ (K)>0

(
ω(K)

CapH1,q′(K)

)q
. (4.2.37)

Where C1 = C1(N,Λ1,Λ2, q, T0/R0, T0) and C2 = C2(N,Λ1,Λ2, q, T0/R0).

Remark 4.2.23 We have if 1 < q < 2, then

C−1 sup
compact K⊂R

N+1

CapG1,q′ (K)>0

(
(|σ| ⊗ δ{t=0})(K)

CapG1,q′(K)

)
≤ sup

compact O⊂R
N

Cap
G 2

q−1
,q′ (O)>0


 |σ|(O)

CapG 2
q−1

,q′(O)




≤ C sup
compact K⊂R

N+1

CapG1,q′ (K)>0

(
(|σ| ⊗ δ{t=0})(K)

CapG1,q′(K)

)

for C = C(N, q), if N+2
N+1 < q < 2, then above estimate is true when two capacities CapG1,q′ ,

,CapG 2
q−1

,q′ are replaced by CapH1,q′ ,CapI 2
q−1

,q′ respectively, see Remark 4.4.34.

Remark 4.2.24 Above results also hold when [A]R0
s is replaced by {A}R0

s :

{A}R0
s := sup

(y,s)∈RN×R,0<r≤R0

(
 

Qr(y,s)
(Θ(A,Qr(y, s))(x, t))

s dxdt

) 1
s

≤ δ

where

Θ(A,Qr(y, s))(x, t) := sup
ζ∈RN\{0}

|A(x, t, ζ)−AQr(y,s)(ζ)|
|ζ|

and AQr(y,s)(ζ) is denoted the average of A(., ., ζ) over the cylinder Qr(y, s), i.e,

AQr(y,s)(ζ) :=

 

Qr(y,s)
A(x, t, ζ)dxdt =

1

|Qr(y, s)|

ˆ

Qr(y,s)
A(x, t, ζ)dxdt.

Next results are corresponding estimates of gradient for domain R
N × (0,∞) or whole

R
N+1.

Theorem 4.2.25 Let θ ∈ (2, N+2) be in Theorem 4.2.17 and ω ∈ M(RN+1). There exists
a distribution solution u of (4.2.6) with data µ = ω such that the following statements hold

a. For any N+2
N+1 < p < θ and 0 < s ≤ ∞,

|||∇u|||Lp,s(RN+1) ≤ C1||M1[|ω|]||Lp,s(RN+1), (4.2.38)

for some C1 = C1(N,Λ1,Λ2, p, s).

139



4.2. MAIN RESULTS

b. For any N+2
N+1 < p < θ and 0 < s ≤ ∞, 2− γ0 < γ < N + 2 and γ ≤ N+2

p + 1,

|||∇u|||
L
p,s;p(γ−1)
∗ (RN+1)

≤ C2||Mγ [|ω|]||L∞(RN+1)

+ C2 sup
R>0,(y0,s0)∈RN+1

(
R

p(γ−1)−N−2
p ||M1[χQ̃R(y0,s0)

|ω|]||Lp,s(Q̃R(y0,s0))

)
, (4.2.39)

provided I2[|ω|](x0, t0) <∞ for some (x0, t0) ∈ R
N+1.

Also, if ω ∈ L
(γ−1)p

γ
,
(γ−1)s

γ
;(γ−1)p

∗ (RN+1) with p > γ
γ−1 then

|||∇u|||
L
p,s;(γ−1)p
∗ (RN+1)

≤ C3||ω||
L

(γ−1)p
γ ,

(γ−1)s
γ ;(γ−1)p

∗ (RN+1)

, (4.2.40)

for some γ0 = γ0(N,Λ1,Λ2) ∈ (0, 12 ] and Ci = Ci(N,Λ1,Λ2, p, s, γ), i = 2, 3.

c. The statement c in Theorem 4.2.5 is true.

Remark 4.2.26 Let s > 1. For ω ∈ M
+(RN+1), I1[ω] ∈ Ls,∞(RN+1) implies I2[|ω|] <∞

a.e in R
N+1 if and only if s ≤ N + 2.

Theorem 4.2.27 Suppose that A satisfies (4.2.27). Let s0 be in Theorem 4.2.20. Let ω ∈
M(RN+1) with I2[|ω|](x0, t0) < ∞ for some (x0, t0) ∈ R

N+1. There exists a distribution
solution of (4.2.6) with data µ = ω such that following statements hold,

a. For any w ∈ A∞, 1 ≤ q < ∞, 0 < s ≤ ∞ we find δ = δ(N,Λ1,Λ2, q, s, [w]A∞) ∈ (0, 1)
such that if [A]∞s0 ≤ δ then

|||∇u|||Lq,s(RN+1,dw) ≤ C1||M1[|ω|]||Lq,s(RN+1,dw) (4.2.41)

Here C1 depends on N,Λ1,Λ2, q, s, [w]A∞ .

b. For any N+2
N+1 < q <∞, 0 < s ≤ ∞ and 0 < κ ≤ N+2 we find δ = δ(N,Λ1,Λ2, q, s, κ) ∈

(0, 1) such that if [A]∞s0 ≤ δ then

|||∇u|||Lq,s;κ
∗ (RN+1) ≤ C2||M1[|ω|]||Lq,s;κ

∗ (RN+1). (4.2.42)

Here C2 depends on N,Λ1,Λ2, q, s, κ.

c. For any N+2
N+1 < q < ∞, 0 < s ≤ ∞ and 0 < ϑ ≤ N one find δ = δ(N,Λ1,Λ2, q, s, ϑ) ∈

(0, 1) such that if [A]∞s0 ≤ δ then

|||∇u|||
Lq,s;ϑ
∗∗ (RN+1)

≤ C3||M1[|ω|]||Lq,s;ϑ
∗∗ (RN+1)

. (4.2.43)

Here C3 depends on N,Λ1,Λ2, q, s, ϑ. Especially, when q = s and 0 < ϑ < min{N, q},
there holds for any ball Bρ ⊂ R

N

(
ˆ

R

|oscBρu(t)|qdt
) 1

q

≤ C4ρ
1−ϑ

q ||M1[|ω|]||Lq;ϑ
∗∗ (RN+1)

. (4.2.44)

for some C4 = C4(N,Λ1,Λ2, q, ϑ).
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d. For any N+2
N+1 < q <∞, one find δ = δ(N,Λ1,Λ2, q) ∈ (0, 1) such that if [A]∞s0 ≤ δ then

sup
compact K⊂R

N+1

CapH1,q
′ (K)>0

(´
K |∇u|qdxdt
CapH1,q′(K)

)
≤ C5 sup

compact K⊂R
N+1

CapH1,q
′ (K)>0

( |ω|(K)

CapH1,q′(K)

)q
, (4.2.45)

for some C5 = C5(N,Λ1,Λ2, q).

e. The statement c in Theorem 4.2.5 is true.

The following some estimates for norms of M1[ω] in Lq;κ∗ (RN+1) and Lq;ϑ∗∗ (RN+1)

Proposition 4.2.28 Let 1 < κ ≤ N + 2, 0 < ϑ ≤ N and q, q1 > 1. Suppose that µ ∈
M

+(RN+1). Then M1[µ] ≤ 2N+2
I1[µ] and

a. If q > κ
κ−1 then

||I1[µ]||Lq;κ
∗ (RN+1) ≤ C1||µ||

L
qκ
q+κ ;κ

∗ (RN+1)
. (4.2.46)

Here C1 depends on N, q, κ.

b. If 1 < q < 2 then

||I1[µ](x, .)||Lq(R) ≤ I 2
q
−1[µ1](x) (4.2.47)

where µ1 is a nonnegative radon measure in R
N defined by µ1(A) = µ(A × R) for

every Borel set A ⊂ R
N . In particular,

||I1[µ]||Lq;ϑ
∗∗ (RN+1)

≤ ||I 2
q
−1[µ1]||Lq;ϑ(RN ) (4.2.48)

and if ϑ > 2−q
q−1 there holds

||I1[µ]||Lq;ϑ
∗∗ (RN+1)

≤ C2||µ1||
L

ϑq
ϑ+2−q

;ϑ
(RN )

(4.2.49)

for some C2 = C2(N, q, ϑ).

c. If 2q
q+2 < q1 ≤ q then

||I1[µ](x, .)||Lq(R) ≤ I 2
q
+1− 2

q1

[µ2](x) (4.2.50)

where dµ2(x) = ||µ(x, .)||Lq1 (R)dx. In particular,

||I1[µ]||Lq;ϑ
∗∗ (RN+1)

≤ ||I 2
q
+1− 2

q1

[µ2]||Lq;ϑ(RN ) (4.2.51)

and if ϑ > 1
q−1

(
2 + q − 2q

q1

)
there holds

||I1[µ]||Lq;ϑ
∗∗ (RN+1)

≤ C3||µ2||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(RN )

= C3||µ||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(RN ,Lq1 (R))

(4.2.52)

for some C3 = C3(N, q, ϑ).
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The proof of Proposition 4.2.28 will performed at the end of section 8.

Remark 4.2.29 Let 1 < q < 2, 0 < ϑ ≤ N and σ ∈ M(RN ). From (4.2.48) and (4.2.49)
in Proposition 4.2.28 we assert that

||I1[|σ| ⊗ δ{t=0}]||Lq;ϑ
∗∗ (RN+1)

≤ ||I 2
q
−1[|σ|]||Lq;ϑ(RN ),

and

||I1[|σ| ⊗ δ{t=0}]||Lq;ϑ
∗∗ (RN+1)

≤ C1||σ||
L

ϑq
ϑ+2−q

;ϑ
(RN )

if ϑ >
2− q

q − 1
,

for some C1 = C1(N, q, ϑ).
Furthermore, from preceding inequality and (4.2.52) in Proposition 4.2.28 we can state that

||I1[|σ| ⊗ δ{t=0} + |µ|]||
Lq;ϑ
∗∗ (RN+1)

≤ C2||σ||
L

ϑq
ϑ+2−q

;ϑ
(RN )

+ C2||µ||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(RN ,Lq1 (R))

,

provided

1 < q1 ≤ q < 2,

max

{
2− q

q − 1
,

1

q − 1

(
2 + q − 2q

q1

)}
< ϑ ≤ N,

for some C2 = C2(N, q, ϑ). Where

||µ||Lq2;ϑ(RN ,Lq1 (R)) = sup
ρ>0,x∈RN

ρ
ϑ−N
q2

(
ˆ

Bρ(x)

(
ˆ

R

|µ(y, t)|q1dt
) q2

q1

dy

) 1
q2

,

with q2 =
ϑqq1

(ϑ+2+q)q1−2q .

Final part, we prove the existence solutions for the quasilinear Riccati type parabolic
problems 




ut − div(A(x, t,∇u)) = |∇u|q + µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(4.2.53)

and {
ut − div (A(x, t,∇u)) = |∇u|q + µ in R

N × (0,∞),
u(0) = σ in R

N ,
(4.2.54)

and

ut − div (A(x, t,∇u)) = |∇u|q + µ in R
N+1, (4.2.55)

where q > 1.

The following result is considered in subcritical case this means 1 < q < N+2
N+1 , to obtain

existence solutions in this case we need data µ, σ to be finite measures and small enough.
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Theorem 4.2.30 Let 1 < q < N+2
N+1 and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω). There exists ε0 =

ε0(N,Λ1,Λ2, q) > 0 such that if

|ΩT |−1+ q′
N+2 (|µ|(ΩT ) + |ω|(Ω)) ≤ ε0,

the problem (4.2.53) has a distribution solution u, satisfied

|||∇u|||
L

N+2
N+1

,∞
(ΩT )

≤ C (|µ|(ΩT ) + |ω|(Ω))

for some C = C(N,Λ1,Λ2, q) > 0.

In the next results are concerned in critical and supercritical case.

Theorem 4.2.31 Suppose that R
N\Ω satisfies uniformly 2−thick with constants c0, r0.

Let θ be in Theorem 4.2.17, q ∈
(
N+2
N+1 ,

N+2+θ
N+2

)
, µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω). Assume

that σ ≡ 0 when q ≥ N+4
N+2 . There exists ε0 = ε0(N,Λ1,Λ2, q, c0, T0/r0) > 0 such that if

||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + ||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) ≤ ε0,

then the problem (4.2.53) has a distribution solution u satisfying

|||∇u|||L(q−1)(N+2),∞(ΩT ) ≤ C||I1[|µ|]||L(N+2)(q−1),∞(RN+1)+C||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN )

(4.2.56)
for some C = C(N,Λ1,Λ2, q, c0, T0/r0).

We remark that a necessary condition for existence σ ∈ Mb(Ω)\{0} with M1[|σ|⊗δ{t=0}] ∈
L(N+2)(q−1),∞(RN+1) is N+2

N+1 ≤ q < N+4
N+2 .

Theorem 4.2.32 Suppose that A satisfies (4.2.27). Let s0 be the constant in Theorem
4.2.20. Let q ≥ N+2

N+1 and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ|+ |σ| ⊗ δ{t=0}. There exists
δ = δ(N,Λ1,Λ2, q) ∈ (0, 1) such that Ω is (δ,R0)-Reifenberg flat domain Ω and [A]R0

s0 ≤ δ
for some R0 and the following holds. The problem (4.2.53) has a distribution solution u if
one of the following three cases is true :

Case a. A is a linear operator and

ω(K) ≤ C1CapG1,q′(K) for every compact subset K ⊂ R
N+1 (4.2.57)

with a constant C1 small enough.

Case b. there holds

ω(K) ≤ C2CapG1,(q+ε)′(K) for every compact subset K ⊂ R
N+1 (4.2.58)

where ε > 0 and C2 is a constant small enough.

Case c.





q > N+2
N+1 ,

q ≥ N+4
N+2 if σ ≡ 0,

||I1[|µ|]||L(N+2)(q−1),∞(RN+1), ||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN )

is small enough.
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A solution u corresponds to Case a, b and c satisfying
ˆ

K
|∇u|qdxdt ≤ C3C

q
1CapG1,q′(K) for every compact subset K ⊂ R

N+1,

ˆ

K
|∇u|q+εdxdt ≤ C4C

q+ε
2 CapG1,(q+ε)′(K) for every compact subset K ⊂ R

N+1,

and

|||∇u|||L(N+2)(q−1),∞(ΩT )

≤ C5||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + C5||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ),

respectively. Where C3, C4, C5 are constants depended on N,Λ1,Λ2, q, ε, T0/R0, besides
C3, C4 also depend on T0.

Since CapG1,s(Br(0) × {t = 0}) = 0 for all r > 0 and 0 < s ≤ 2, see Remark 4.4.13 thus
if there is σ ∈ Mb(Ω)\{0} satisfying (|σ| ⊗ δ{t=0})(E) ≤ CapG1,s(E) for every compact
subsets E ⊂ R

N+1 then we must have s > 2.

The above results are not sharp in the case A is a nonlinear operator. However, if A is
Holder continuous with respect to x we can prove that problem (4.2.53) has a distribution
solution with data having compact support in ΩT .

Theorem 4.2.33 Let Ω be a bounded open subset in R
N such that the boundary of Ω is

in C1,β with β ∈ (0, 1). Suppose that A satisfies (4.2.27) and

|A(x, t, ζ)−A(y, t, ζ)| ≤ Λ3|x− y|β |ζ| (4.2.59)

for every x, y ∈ Ω and t > 0, ζ ∈ R
N . Let Ω′ ⊂⊂ Ω and set d = dist(Ω′,Ω) > 0. Then, there

exist C = C(N, q,Λ1,Λ2,Λ3, β, d,Ω, T ) > 0 and Λ = Λ(N, q,Λ1,Λ2,Λ3, β, d,Ω, T ) > 0 such
that for any µ ∈ Mb(ΩT ), σ ∈ Mb(Ω) with supp(µ) ⊂ Ω′× [0, T ], supp(σ) ⊂ Ω′, the problem
(4.2.53) has a distribution solution u, satisfying

|∇u(x, t)| ≤ ΛI1[|µ|+ |σ| ⊗ δ{t=0}](x, t) a.e (x, t) ∈ ΩT (4.2.60)

provided that one of the following two cases is true :

Case a. 1 < q < 2 and

|µ|(E) ≤ CCapG1,q′(E) and |σ|(O) ≤ CCapG 2
q−1

,q′(O) (4.2.61)

for all compact subsets E ⊂ R
N+1 and O ⊂ R

N .

Case b. q ≥ 2 and σ ≡ 0,
|µ|(E) ≤ CCapG1,q′(E) (4.2.62)

for all compact subsets E ⊂ R
N+1.
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Remark 4.2.34 If q > N+2
N+1 , µ ≡ 0 and Case a is satisfied then (4.2.60) gives the decay

estimate :
sup
x∈Ω

|∇u(x, t)| ≤ c1t
− 1

2(q−1) ∀ 0 < t < T,

since |σ|(Bρ(x)) ≤ c2(T0)ρ
N− 2−q

q−1 for any Bρ(x) ⊂ R
N .

We have an important Proposition.

Proposition 4.2.35 All the existence results considered the bounded domain ΩT have re-
cently been presented in above Theorems, if σ ∈ L1(Ω) then the solutions obtained in those
Theorems are renormalized solutions.

Theorem 4.2.36 Let θ ∈ (2, N + 2) be in Theorem 4.2.17, q ∈
(
N+2
N+1 ,

N+2+θ
N+2

)
and ω ∈

M(RN+1) . There exists C1 = C1(N,Λ1,Λ2, q) > 0 such that if

||I1[|ω|]||L(N+2)(q−1),∞(RN+1) ≤ C1

then the problem (4.2.55) has a distribution solution u ∈ L1
loc(R;W

1,1
loc (R

N )) such that

|||∇u|||L(q−1)(N+2),∞(RN+1) ≤ C2||I1[|ω|]||L(N+2)(q−1),∞(RN+1) (4.2.63)

for some C2 = C2(N,Λ1,Λ2, q). Furthermore, when ω = µ+ σ ⊗ δ{t=0} with µ ∈ M(RN ×
(0,∞)) and σ ∈ M(RN ) then u = 0 in R

N × (−∞, 0) and u|
RN×[0,∞) is a distribution

solution to problem (4.2.54).

Theorem 4.2.37 Suppose that A satisfies (4.2.27). Let q > N+2
N+1 and ω ∈ M(RN+1) such

that I2[|ω|](x0, t0) <∞ for some (x0, t0) ∈ R
N+1. Let s0 be the constant in Theorem 4.2.20,

δ in Theorem 4.2.32. There exists C1 = C1(N,Λ1,Λ2, q) > 0 such that if [A]∞s0 ≤ δ and

||I1[|ω|]||L(N+2)(q−1),∞(RN+1) ≤ C1 (4.2.64)

then the problem (4.2.55) has a distribution solution u satisfying (4.2.63). Furthermore,
when ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ) then u = 0 in
R
N × (−∞, 0) and u|

RN×[0,∞) is a distribution solution to problem (4.2.54).

From Remark 4.2.26, we see that if q ≤ 2 then (4.2.64) follows the assumption I2[|ω|](x0, t0) <
∞ for some (x0, t0) ∈ R

N+1.

When A is independent of space variable, we can improve the result of Theorem 4.2.37
as follows :

Theorem 4.2.38 Suppose that A is independent of space variable and satisfies (4.2.27).
Let q > N+2

N+1 and ω ∈ M(RN+1). Assume that I2[|ω|](x0, t0) <∞ for some (x0, t0) ∈ R
N+1.

There exist constants Λ = Λ(N,Λ1,Λ2, q) and C = C(N,Λ1,Λ2, q) such that the problem

ut − div (A(t,∇u)) = |∇u|q + ω in R
N+1 (4.2.65)
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has a distribution solution u, satisfying

|∇u| ≤ ΛI1[ω] in R
N+1, (4.2.66)

provided that for all compact subset E ⊂ R
N+1

|ω|(E) ≤ CCapH1,q′(E). (4.2.67)

Furthermore, when ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ) then
u = 0 in R

N × (−∞, 0) and u|
RN×[0,∞) is a distribution solution to problem

{
ut − div (A(t,∇u)) = |∇u|q + µ in R

N × (0,∞),
u(0) = σ in R

N .
(4.2.68)

Remark 4.2.39 If N+2
N+1 < q < 2, ω = µ+ σ ⊗ δ{t=0} satisfies (4.2.67) if and only if

|µ|(E) ≤ C ′CCapH1,q′(E) and |σ|(O) ≤ C ′CCapI 2
q−1

,q′(O) (4.2.69)

for all compact subsets E ⊂ R
N+1 and O ⊂ R

N , where C ′ = C ′(N, q).

Remark 4.2.40 If ω = σ ⊗ δ{t=0} then (4.2.66) follows the decay estimate :

sup
x∈RN

|∇u(x, t)| ≤ c1t
− 1

2(q−1) ∀ 0 < t < T,

since |σ|(Bρ(x)) ≤ c2ρ
N− 2−q

q−1 for any Bρ(x) ⊂ R
N .

4.3 The notion of solutions and some properties

Although the notion of renormalized solutions becomes more and more familiar in
the theory of quasilinear parabolic equations with measure data, it is still necessary to
present below some main aspects concerning this notion. Let Ω be a bounded domain
in R

N , (a, b) ⊂⊂ R. If µ ∈ Mb(Ω × (a, b)), we denote by µ+ and µ− respectively its
positive and negative part. We denote by M0(Ω× (a, b)) the space of measures in Ω× (a, b)
which are absolutely continuous with respect to the C2-capacity defined on a compact set
K ⊂ Ω× (a, b) by

C2(K,Ω× (a, b)) = inf {||ϕ||W : ϕ ≥ χK , ϕ ∈ C∞
c (Ω× (a, b))} . (4.3.1)

where W = {z : z ∈ L2(a, b,H1
0 (Ω)), zt ∈ L2(a, b,H−1(Ω))} endowed with norm ||ϕ||W =

||ϕ||L2(a,b,H1
0 (Ω)) + ||ϕt||L2(a,b,H−1(Ω)) and χK is the characteristic function of K.

We also denote Ms(Ω×(a, b)) the space of measures in Ω×(a, b) with support on a set of
zero C2-capacity. Classically, any µ ∈ Mb(Ω× (a, b)) can be written in a unique way under
the form µ = µ0 +µs where µ0 ∈ M0(Ω× (a, b))∩Mb(Ω× (a, b)) and µs ∈ Ms(Ω× (a, b)).
We recall that any µ0 ∈ M0(Ω× (a, b))∩Mb(Ω× (a, b)) can be decomposed under the form
µ0 = f−divg+ht where f ∈ L1(Ω× (a, b)), g ∈ L2(Ω× (a, b),RN ) and h ∈ L2(a, b,H1

0 (Ω))
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and (f, g, h) is said to be decomposition of µ0. Set µ̂0 = µ0 − ht = f − divg. In the general
case µ̂0 /∈ M(Ω× (a, b)), but we write, for convenience,
ˆ

Ω×(a,b)
wdµ̂0 :=

ˆ

Ω×(a,b)
(fw + g.∇w)dxdt, ∀w ∈ L2(a, b,H1

0 (Ω))∩L∞(Ω× (a, b)).

However, for σ ∈ Mb(Ω) and t0 ∈ (a, b) then σ ⊗ δ{t=t0} ∈ M0(Ω × (a, b)) if and only
if σ ∈ L1(Ω), see [26]. We also have that for σ ∈ Mb(Ω), σ ⊗ χ[a,b] ∈ M0(Ω× (a, b)) if and
only if σ is absolutely continuous with respect to the CapG1,2-capacity, see [26].

For k > 0 and s ∈ R we set Tk(s) = max{min{s, k},−k}. We recall that if u is a
measurable function defined and finite a.e. in Ω× (a, b), such that Tk(u) ∈ L2(a, b,H1

0 (Ω))
for any k > 0, there exists a measurable function v : Ω× (a, b) → R

N such that ∇Tk(u) =
χ|u|≤kv a.e. in Ω× (a, b) and for all k > 0. We define the gradient ∇u of u by v = ∇u.
We recall the definition of a renormalized solution given in [65].

Definition 4.3.1 Suppose that B ∈ C(R×R
N ,R). Let µ = µ0 + µs ∈ Mb(Ω× (a, b)) and

σ ∈ L1(Ω). A measurable function u is a renormalized solution of




ut − div(A(x, t,∇u)) = B(u,∇u) + µ in Ω× (a, b),
u = 0 on ∂Ω× (a, b),
u(a) = σ in Ω,

(4.3.2)

if there exists a decomposition (f, g, h) of µ0 such that

v = u− h ∈ Ls(a, b,W 1,s
0 (Ω)) ∩ L∞(a, b, L1(Ω)) ∀s ∈

[
1,
N + 2

N + 1

)

Tk(v) ∈ L2(a, b,H1
0 (Ω)) ∀k > 0, B(u,∇u) ∈ L1(Ω× (a, b)) (4.3.3)

and :

(i) for any S ∈W 2,∞(R) such that S′ has compact support on R, and S(0) = 0,

−
ˆ

Ω
S(σ)ϕ(a)dx−

ˆ

Ω×(a,b)
ϕtS(v)dxdt+

ˆ

Ω×(a,b)
S′(v)A(x, t,∇u)∇ϕdxdt

+

ˆ

Ω×(a,b)
S′′(v)ϕA(x, t,∇u).∇vdxdt =

ˆ

Ω×(a,b)
S′(v)ϕB(u,∇u)dxdt+

ˆ

Ω×(a,b)
S′(v)ϕdµ̂0,

(4.3.4)

for any ϕ ∈ L2(a, b,H1
0 (Ω))∩L∞(Ω×(a, b)) such that ϕt ∈ L2(a, b,H−1(Ω))+L1(Ω×(a, b))

and ϕ(., b) = 0 ;

(ii) for any φ ∈ C(Ω× [a, b]),

lim
m→∞

1

m

ˆ

{m≤v<2m}

φA(x, t,∇u)∇vdxdt =
ˆ

Ω×(a,b)
φdµ+s and (4.3.5)

lim
m→∞

1

m

ˆ

{−m≥v>−2m}

φA(x, t,∇u)∇vdxdt =
ˆ

Ω×(a,b)
φdµ−s . (4.3.6)
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Remark 4.3.2 If µ ∈ L1(Ω× (a, b)), then we have the following estimates :

||u||
L

N+2
N

,∞(Ω×(a,b))
≤ C1

(
||σ||L1(Ω) + |µ|(Ω× (a, b))

)
and

|||∇u|||
L

N+2
N+1

,∞
(Ω×(a,b))

≤ C1

(
||σ||L1(Ω) + |µ|(Ω× (a, b))

)
,

where C1 = C1(N,Λ1,Λ2), see [13, Remark 4.9].
In particular,

||u||L1(Ω×(a,b)) ≤ C2(diam(Ω) + (b− a)1/2)2
(
||σ||L1(Ω) + |µ|(Ω× (a, b))

)
and

|||∇u|||L1(Ω×(a,b)) ≤ C2(diam(Ω) + (b− a)1/2)
(
||σ||L1(Ω) + |µ|(Ω× (a, b))

)
,

where C2 = C2(N,Λ1,Λ2).

Remark 4.3.3 It is easy to see that u is a weak solution of problem (4.3.2) in Ω × (a, b)
with µ ∈ L2(Ω × (a, b)), σ ∈ H1

0 (Ω) and B ≡ 0 then U = χ[a,b]u is a unique renormalized
solution of





Ut − div (A(x, t,∇U)) = χ(a,b)µ+ (χ[a,b)σ)t in Ω× (c, b),

U = 0 on ∂Ω× (c, b),
U(c) = 0 in Ω,

for any c < a.

Remark 4.3.4 Let Ω′ ⊂⊂ Ω and a < a′ < b′ < b. For a nonnegative function η ∈
C∞
c (Ω′ × (a′, b′)), from (4.3.4) we have

(ηS(v))t − ηtS(v) + S′(v)A(x, t,∇u)∇η − div
(
S′(v)ηA(x, t,∇u)

)

+ S′′(v)ηA(x, t,∇u)∇v = S′(v)ηf +∇
(
S′(v)η

)
.g − div

(
S′(v)ηg

)

in D′(Ω′ × (a′, b′)) Thus, (ηS(v))t ∈ L2(a′, b′, H−1(Ω′)) +L1(D) and we have the following
estimate

|| (ηS(v))t ||L2(a′,b′,H−1(Ω′))+L1(D) ≤ C||S||W 2,∞(R)

(
||ηtv||L1(D)

+ |||∇u||∇η|||L1(D) + ||η|∇u|χ|v|≤M ||L2(D) + ||η|∇u||∇v|χ|v|≤M ||L2(D)

+ ||ηf ||L1(D) + ||η|∇u|2χ|v|≤M |||L1(D) + ||η|g|2||L1(D) +||η|g|||L2(D)

)
(4.3.7)

with D = Ω′ × (a′, b′) and supp(S′) ⊂ [−M,M ].

We recall the following important results, see [13].

Proposition 4.3.5 Let {µn} be a bounded in Mb(Ω × (a, b)) and σn be a bounded in
L1(Ω). Let un be a renormalized solution of (4.2.4) with data µn = µn,0 + µn,s relative
to a decomposition (fn, gn, hn) of µn,0 and initial data σn. If {fn} is bounded in L1(ΩT ),
{gn} bounded in L2(Ω × (a, b),RN ) and {hn} convergent in L2(a, b,H1

0 (Ω)), then, up to
a subsequence, {un} converges to a function u in L1(Ω × (a, b)). Moreover, if {µn} is a

bounded in L1(Ω×(a, b)) then {un} is convergent in Ls(a, b,W 1,s
0 (Ω)) for any s ∈

[
1, N+2

N+1

)
.
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We say that a sequence of bounded measures {µn} in Ω × (a, b) converges to a bounded
measure µ in Ω× (a, b) in the narrow topology of measures if

lim
n→∞

ˆ

Ω×(a,b)
ϕdµn =

ˆ

Ω×(a,b)
ϕdµ for all ϕ ∈ C(Ω× (a, b)) ∩ L∞(Ω× (a, b))).

We recall the following fundamental stability result of [13].

Theorem 4.3.6 Suppose that B ≡ 0. Let σ ∈ L1(Ω) and

µ = f − div g + ht + µ+s − µ−s ∈ Mb(Ω× (a, b)),

with f ∈ L1(Ω× (a, b)), g ∈ L2(Ω× (a, b),RN ), h ∈ L2(a, b,H1
0 (Ω)) and µ+s , µ

−
s ∈ M

+
s (Ω×

(a, b)). Let σn ∈ L1(Ω) and

µn = fn − div gn + (hn)t + ρn − ηn ∈ Mb(Ω× (a, b))

with fn ∈ L1(Ω × (a, b)), gn ∈ L2(Ω × (a, b),RN ), hn ∈ L2(a, b,H1
0 (Ω)), and ρn, ηn ∈

M
+
b (Ω× (a, b)), such that

ρn = ρ1n − div ρ2n + ρn,s, ηn = η1n − div η2n + ηn,s,

with ρ1n, η
1
n ∈ L1(Ω× (a, b)), ρ2n, η

2
n ∈ L2(Ω× (a, b),RN ) and ρn,s, ηn,s ∈ M

+
s (Ω× (a, b)).

Assume that {µn} is a bounded in Mb(Ω × (a, b)), {σn}, {fn}, {gn}, {hn} converge to
σ, f, g, h in L1(Ω),weakly in L1(Ω×(a, b)),in L2(Ω×(a, b),RN ),in L2(a, b,H1

0 (Ω)) respecti-
vely and {ρn}, {ηn} converge to µ+s , µ

−
s in the narrow topology of measures ; and

{
ρ1n
}
,
{
η1n
}

are bounded in L1(Ω× (a, b)), and
{
ρ2n
}
,
{
η2n
}

bounded in L2(Ω× (a, b),RN ).
Let {un} be a sequence of renormalized solutions of





(un)t − div(A(x, t,∇un)) = µn in Ω× (a, b),
un = 0 on ∂Ω× (a, b),
un(a) = σn in Ω,

(4.3.8)

relative to the decomposition (fn + ρ1n − η1n, gn + ρ2n − η2n, hn) of µn,0. Let vn = un − hn.
Then up to a subsequence, {un} converges a.e. in Ω × (a, b) to a renormalized solution u
of (4.3.2), and {vn} converges a.e. in Ω × (a, b) to v = u − h. Moreover, {∇un} , {∇vn}
converge respectively to ∇u,∇v a.e in Ω× (a, b), and {Tk(vn)} converges to Tk(v) strongly
in L2(a, b,H1

0 (Ω)) for any k > 0.

In order to apply above Theorem, we need some the following properties concerning ap-
proximate measures of µ ∈ M

+
b (Ω× (a, b)), see [13].

Proposition 4.3.7 Let µ = µ0+µs ∈ M
+
b (Ω× (a, b)) with µ0 ∈ M0(Ω× (a, b))∩M

+
b (Ω×

(a, b)) and µs ∈ M
+
s (Ω × (a, b)). Let {ϕn} be sequence of standard mollifiers in R

N+1.
Then, there exist a decomposition (f, g, h) of µ0 and fn, gn, hn ∈ C∞

c (Ω × (a, b)), µn,s ∈
C∞
c (Ω× (a, b)) ∩M

+
b (Ω× (a, b)) such that {fn} , {gn} , {hn} strongly converge to f, g, h in

L1(Ω× (a, b)), L2(Ω× (a, b),RN ) and L2(a, b,H1
0 (Ω)), µn = fn− div gn+(hn)t+µn,s, µn,s

converge to µ, µs in the narrow topology respectively, 0 ≤ µn ≤ ϕn ∗ µ and

||fn||L1(Ω×(a,b)) + ‖gn‖L2(Ω×(a,b),RN ) + ||hn||L2(a,b,H1
0 (Ω)) + µn,s(Ω× (a, b)) ≤ 2µ(Ω× (a, b)).
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Proposition 4.3.8 Let µ = µ0 + µs, µn = µn,0 + µn,s ∈ M
+
b (Ω × (a, b)) with µ0, µn,0 ∈

M0(Ω×(a, b))∩M+
b (Ω×(a, b)) and µn,s, µs ∈ M

+
s (Ω×(a, b)) such that {µn} nondecreasingly

converges to µ in Mb(Ω × (a, b)). Then, {µn,s} is nondecreasing and converging to µs
in Mb(Ω × (a, b)) and there exist decompositions (f, g, h) of µ0, (fn, gn, hn) of µn,0 such
that {fn} , {gn} , {hn} strongly converge to f, g, h in L1(Ω× (a, b)), L2(Ω× (a, b),RN ) and
L2(a, b,H1

0 (Ω)) respectively satisfying

||fn||L1(Ω×(a,b)) + ‖gn‖L2(Ω×(a,b),RN ) + ||hn||L2(a,b,H1
0 (Ω)) + µn,s(Ω× (a, b)) ≤ 2µ(Ω× (a, b)).

Remark 4.3.9 For 0 < ρ ≤ 1
3 min{supx∈Ω d(x, ∂Ω), (b− a)1/2}, set

Ωjρ = {x ∈ Ω : d(x, ∂Ω) > jρ} × (a+ (jρ)2, a+ ((b− a)1/2 − jρ)2) for j = 0, ..., kρ,

where kρ =
[
min{supx∈Ω d(x,∂Ω),(b−a)1/2}

2ρ

]
.

We can choose fn, gn, hn in above two Propositions such that for any j = 1, ..., kρ,

||fn||L1(Ωj
ρ)
+ ‖gn‖L2(Ωj

ρ,RN )
+ |||hn|+ |∇hn|||L2(Ωj

ρ)
≤ 2µ(Ωj−1

ρ ) ∀n ∈ N (4.3.9)

In fact, set µj = χ
Ω

kρ−j
ρ \Ωkρ−j+1

ρ
µ if j = 1, ..., kρ − 1, µj = χΩ×(a,b)\Ω1

ρ
µ if j = kρ and

µj = χ
Ω

kρ
ρ
µ if j = 0. From the proof of above two Propositions in [13], for any ε > 0 we

can assume supports of fn, gn, hn containing in supp(µ) + Q̃ε(0, 0). Thus, for any µ = µj

we have f jn, g
j
n, h

j
n correspondingly such that their supports contain in Ω

kρ−j−1/2
ρ,T \Ωkρ−j+3/2

ρ,T

if j = 1, ..., kρ − 1 and ΩT \Ω3/2
ρ,T if j = kρ and Ω

kρ−1/2
ρ,T if j = 0. By µ =

∑kρ
j=0 µj, thus it

is allowed to choose fn =
∑kρ

j=0 f
j
n, fn =

∑kρ
j=0 g

j
n and hn =

∑kρ
j=0 h

j
n and (4.3.9) satisfies

since

||fn||L1(Ωj
ρ)
+ ‖gn‖L2(Ωj

ρ,RN )
+ |||hn|+ |∇hn|||L2(Ωj

ρ)

≤
kρ∑

i=0

(
||f in||L1(Ωj

ρ)
+
∥∥gin
∥∥
L2(Ωj

ρ,RN )
+ |||hin|+ |∇hin|||L2(Ωj

ρ)

)

=

kρ−j+1∑

i=0

(
||f in||L1(Ωj

ρ)
+
∥∥gin
∥∥
L2(Ωj

ρ,RN )
+ |||hin|+ |∇hin|||L2(Ωj

ρ)

)

≤
kρ−j+1∑

i=j−1

2µj(Ω× (a, b)) = 2µ(Ωj−1
ρ ).

Definition 4.3.10 Let µ ∈ Mb(Ω× (a, b)) and σ ∈ Mb(Ω). A measurable function u is a

distribution solution to problem (4.3.2) if u ∈ Ls(a, b,W 1,s
0 (Ω)) for any s ∈

[
1, N+2

N+1

)
and

B(u,∇u) ∈ L1(Ω× (a, b)) such that

−
ˆ

Ω×(a,b)
uϕtdxdt+

ˆ

Ω×(a,b)
A(x, t,∇u)∇ϕdxdt

=

ˆ

Ω×(a,b)
B(u,∇u)ϕdxdt+

ˆ

Ω×(a,b)
ϕdµ+

ˆ

Ω
ϕ(a)dσ

for every ϕ ∈ C1
c (Ω× [a, b)).
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Remark 4.3.11 Let σ′ ∈ Mb(Ω) and a′ ∈ (a, b), set ω = µ + σ′ ⊗ δ{t=a′}. If u is a
distribution solution to problem (4.3.2) with data ω and σ = 0 such that supp(µ) ⊂ Ω ×
[a′, b], and u = 0, B(u,∇u) = 0 in Ω× (a, a′), then ũ := u|Ω×[a′,b) is a distribution solution
to problem (4.3.2) in Ω× (a′, b) with data µ and σ′. Indeed, for any ϕ ∈ C1

c (Ω× [a′, b)) we
defined

ϕ̃(x, t) =

{
ϕ(x, t) if (x, t) ∈ Ω× [a′, b),
(1 + ε0)(t− a′)ϕt(x, a′) + ϕ(x, (1 + ε0)a

′ − ε0t) if (x, t) ∈ Ω× [a, a′),

where ε0 ∈
(
0, b−a

′
a′−a

)
.

Clearly, ϕ̃ ∈ C1
c (Ω× [a, b)), thus we have

−
ˆ

Ω×(a,b)
uϕ̃tdxdt+

ˆ

Ω×(a,b)
A(x, t,∇u)∇ϕ̃dxdt

=

ˆ

Ω×(a,b)
B(u,∇u)ϕ̃dxdt+

ˆ

Ω×(a,b)
ϕ̃dω,

which implies

−
ˆ

Ω×(a′,b)
ũϕtdxdt+

ˆ

Ω×(a′,b)
A(x, t,∇ũ)∇ϕdxdt

=

ˆ

Ω×(a′,b)
B(ũ,∇ũ)ϕdxdt+

ˆ

Ω×(a′,b)
ϕdµ+

ˆ

Ω
ϕ(a′)dσ′.

Definition 4.3.12 Let µ ∈ M(RN × [a,+∞)), for a ∈ R and σ ∈ M(RN ). A measurable
function u is a distribution solution to problem

{
ut − div (A(x, t,∇u)) = B(u,∇u) + µ in R

N × (a,+∞)
u(a) = σ in R

N (4.3.10)

if u ∈ Lsloc(a,∞,W 1,s
loc (R

N )) for any s ∈
[
1, N+2

N+1

)
and B(u,∇u) ∈ L1

loc(R
N × [a,∞)) such

that

−
ˆ

RN×(a,∞)
uϕtdxdt+

ˆ

RN×(a,∞)
A(x, t,∇u)∇ϕdxdt

=

ˆ

RN×(a,∞)
B(u,∇u)ϕdxdt+

ˆ

RN×(a,∞)
ϕdµ+

ˆ

RN

ϕ(a)dσ

for every ϕ ∈ C1
c (R

N × [a,∞)).

Definition 4.3.13 Let ω ∈ M(RN+1). A measurable function u is a distribution solution
to problem

ut − div (A(x, t,∇u)) = B(u,∇u) + ω in R
N+1 (4.3.11)

if u ∈ Lsloc(R;W
1,s
loc (R

N )) for any s ∈
[
1, N+2

N+1

)
and B(u,∇u) ∈ L1

loc(R
N+1) such that

−
ˆ

RN+1

uϕtdxdt+

ˆ

RN+1

A(x, t,∇u)∇ϕdxdt =
ˆ

RN+1

B(u,∇u)ϕdxdt+
ˆ

RN+1

ϕdω,

for every ϕ ∈ C1
c (R

N+1).
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Remark 4.3.14 Let µ ∈ M(RN × [a,+∞)), for a ∈ R and σ ∈ M(RN ). If u is a distribu-
tion solution to problem (4.3.11) with data ω = µ+σ⊗δ{t=a} such that u = 0, B(u,∇u) = 0

in R
N × (−∞, a), then ũ := u|

RN×[a,∞) is a distribution solution to problem (4.3.10) in

R
N × (a,∞) with data µ and σ, see Remark 4.3.11.

To prove the existence distribution solution of problem (4.3.10) we need the following
results. First, we have local estimates of the renormalized solution which get from [13,
Proposition 2.8 ].

Proposition 4.3.15 Let u, v be in Definition 4.3.1. There exists C = C(Λ1,Λ2) > 0 such
that for k ≥ 1 and 0 ≤ η ∈ C∞

c (Ω× (a, b))
ˆ

|v|≤k
η|∇u|2dxdt+

ˆ

|v|≤k
η|∇v|2dxdt ≤ CkA (4.3.12)

where

A = ||vηt||L1(Ω×(a,b)) + |||∇u||∇η|||L1(Ω×(a,b)) + ||ηf ||L1(Ω×(a,b)) + ||η|g|2||L1(Ω×(a,b))

+ |||∇η||g|||L1(Ω×(a,b)) + ||η|∇h|2||L1(Ω×(a,b)) +

ˆ

Ω×(a,b)
ηd|µs|.

For our purpose, we recall the Landes-time approximation of functions w belonging to
L2(a, b,H1

0 (Ω)), introduced in [45], used in [24, 17, 8]. For ν > 0 we define

〈w〉ν(x, t) = ν

ˆ min{t,b}

a
w(x, s)eν(s−t)ds for all (x, t) ∈ Ω× (a, b).

We have that 〈w〉ν converges to w strongly in L2(a, b,H1
0 (Ω)) and ||〈w〉ν ||Lq(Ω×(a,b)) ≤

||w||Lq(Ω×(a,b)) for every q ∈ [1,∞]. Moreover,

(〈w〉ν)t = ν (w − 〈w〉ν) in the sense of distributions

if w ∈ L∞(Ω× (a, b)) then
ˆ

Ω×(a,b)
(〈w〉ν)tϕdxdt = ν

ˆ

Ω×(a,b)
(w − 〈w〉ν)ϕdxdt for all ϕ ∈ L2(a, b,H1

0 (Ω)).

Proposition 4.3.16 Let q0 > 1 and 0 < α < 1/2 such that q0 > α+ 1. Let L : R → R be
continuous and nondecreasing such that L(0) = 0. If u is a solution of





ut − div(A(x, t,∇u)) + L(u) = µ in Ω× (a, b),
u = 0 on ∂Ω× (a, b),
u(a) = 0 in Ω,

(4.3.13)

with µ ∈ C∞
c (Ω × (a, b)) there exists C1 > 0 depending on Λ1,Λ2, α, q0 such that for

0 ≤ η ∈ C∞
c (D) where D = Ω′ × (a′, b′), Ω′ ⊂⊂ Ω and a < a′ < b′ < b, then

1

k

ˆ

D
|∇Tk(u)|2ηdxdt

+

ˆ

D

|∇u|2
(|u|+ 1)α+1

ηdxdt+ |||∇u||∇η|||L1(D) + ||L(u)η||L1(D) ≤ C1B, (4.3.14)
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where q1 =
q0−α−1

2q0
,

B = ||ηt(|u|+ 1)||L1(D) +

ˆ

D
(|u|+ 1)q0ηdxdt+

ˆ

D
|∇η1/q1 |q1dxdt+

ˆ

D
ηd|µ|.

Furthermore, for Tk(w) ∈ L2(a′, b′, H1
0 (Ω

′)), the Landes-time approximation 〈Tk(w)〉ν of
the truncate function Tk(w) in D then for any ε ∈ (0, 1) and ν > 0

ν

ˆ

D
η (Tk(w)− 〈Tk(w)〉ν)Tε(Tk(u)− 〈Tk(w)〉ν)dxdt

+

ˆ

D
ηA(x, t,∇Tk(u))∇Tε(Tk(u)− 〈Tk(w)〉ν)dxdt ≤ C2ε(1 + k)B, (4.3.15)

for some C2 = C2(Λ1,Λ2, α, q0).

Proposition 4.3.17 Let q0 > 1, µn = µn,0 + µn,s ∈ Mb(Bn(0) × (−n2, n2)). Let un be a
renormalized solution of





(un)t − div(A(x, t,∇un)) = µn in Bn(0)× (−n2, n2),
un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

(4.3.16)

relative to the decomposition (fn, gn, hn) of µn,0 satisfying (4.3.15) in Proposition 4.3.16
with L ≡ 0. Assume that for any m ∈ N and α ∈ (0, 1/2), Dm := Bm(0)× (−m2,m2)

1

k
|||∇Tk(u)|2||L1(Dm) + |||∇u|2(|u|+ 1)−α−1||L1(Dm) + |||∇u|||L1(Dm) + |µn|(Dm)

+ ||fn||L1(Dm) + ||gn||L2(Dm,RN ) + |||hn|+ |∇hn|||L2(Dm) + ||un||Lq0 (Dm) ≤ C(m,α)

for all n ≥ m and hn is convergent in L1
loc(R

N+1). Then, there exists a subsequence of {un},
still denoted by {un} such that un converges to u a.e in R

N+1 and in Lsloc(R;W
1,s
loc (R

N ))
for any s ∈ [1, N+2

N+1).

Proofs of above two Propositions are given in the Appendix section. The following result
is as a consequence of Proposition 4.3.17.

Corollary 4.3.18 Let µn ∈ L1(Bn(0)× (−n2, n2)). Let un be a unique renormalized solu-
tion of problem 4.3.16. Assume that for any m ∈ N,

sup
n≥m

|µn|(Bm(0)× (−m2,m2)) <∞ and sup
n≥m

ˆ

Bm(0)×(−m2,m2)
|un|q0dxdt <∞.

then there exists a subsequence of {un}, still denoted by {un} such that un converges to u
a.e in R

N+1 and in Lsloc(R;W
1,s
loc (R

N )) for any s ∈ [1, N+2
N+1).

Finally, we would like to present a technical lemma which will be used several times in the
paper, specially in the proof of Theorem 4.2.17, 4.2.19 and 4.2.20. It is a consequence of
Vitali Covering Lemma, a proof of lemma can be seen in [22, 21, 54].
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Lemma 4.3.19 Let Ω be a (R0, δ)- Reifenberg flat domain with δ < 1/4 and let w be an A∞
weight. Suppose that the sequence of balls {Br(yi)}Li=1 with centers yi ∈ Ω and a common
radius r ≤ R0/4 covers Ω. Set si = T − ir2/2 for all i = 0, 1, ..., [2T

r2
]. Let E ⊂ F ⊂ ΩT be

measurable sets for which there exists 0 < ε < 1 such that w(E) < εw(Q̃r(yi, sj)) for all
i = 1, ..., L, j = 0, 1, ..., [2T

r2
] ; and for all (x, t) ∈ ΩT , ρ ∈ (0, 2r], we have Q̃ρ(x, t)∩ΩT ⊂ F

if w(E ∩ Q̃ρ(x, t)) ≥ εw(Q̃ρ(x, t)). Then w(E) ≤ Bεw(F ) for a constant B depending only
on N and [w]A∞ .

Clearly, the Lemma contains the following two Lemmas

Lemma 4.3.20 Let 0 < ε < 1, R > 0 and cylinder Q̃R := Q̃R(x0, t0) for some (x0, t0) ∈
R
N+1 and w ∈ A∞. let E ⊂ F ⊂ Q̃R be two measurable sets in R

N+1 with w(E) <
εw(Q̃R) and satisfying the following property : for all (x, t) ∈ Q̃R and r ∈ (0, R], we have
Q̃r(x, t) ∩ Q̃R ⊂ F provided w(E ∩ Q̃r(x, t)) ≥ εw(Q̃r(x, t)). Then w(E) ≤ Bεw(F ) for
some B = B(N, [w]A∞).

Lemma 4.3.21 Let 0 < ε < 1 and R > R′ > 0 and let E ⊂ F ⊂ Q = BR(x0) × (a, b) be
two measurable sets in R

N+1 with |E| < ε|Q̃R′ | and satisfying the following property : for
all (x, t) ∈ Q and r ∈ (0, R′], we have Qr(x, t)∩Q ⊂ F if |E∩ Q̃r(x, t)| ≥ ε|Q̃r(x, t)|. Then
|E| ≤ Bε|F | for a constant B depending only on N .

4.4 Estimates on Potential

In this section, we will develop nonlinear potential theory corresponding to quasilinear
parabolic equations.

First we introduce the Wolff parabolic potential of µ ∈ M
+(RN+1) by

W
R
α,p[µ](x, t) =

ˆ R

0

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1 dρ

ρ
for any (x, t) ∈ R

N+1,

where α > 0, 1 < p < α−1(N + 2) and 0 < R ≤ ∞. For convenience, Wα,p[µ] := W
∞
α,p[µ].

The following result is an extension of [36, Theorem 1.1], [16, Proposition 2.2] to Para-
bolic potential.

Theorem 4.4.1 Let α > 0, 1 < p < α−1(N + 2) and w ∈ A∞, µ ∈ M
+(RN+1). There

exist constants C1, C2 > 0 and ε0 ∈ (0, 1) depending on N,α, p, [w]A∞ such that for any
λ > 0 and ε ∈ (0, ε0)

w({WR
α,p[µ] > aλ, (MR

αp[µ])
1

p−1 ≤ ελ}) ≤ C1 exp(−C2ε
−1)w({WR

α,p[µ] > λ}) (4.4.1)

where a = 2 + 3
N+2−αp

p−1 .
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Proof of Theorem 4.4.1. We only consider case R < ∞. Let {Q̃R(xj , tj)} be a cover
of R

N+1 such that
∑

j χQ̃R(xj ,tj)
≤ M in R

N+1 for some constant M = M(N) > 0. It
is enough to show that there exist constants c1, c2 > 0 and ε0 ∈ (0, 1) depending on
N,α, p, [w]A∞ such that for any Q ∈ {Q̃R(xj , tj)}, λ > 0 and ε ∈ (0, ε0)

w(Q∩{WR
α,p[µ] > aλ, (MR

αp[µ])
1

p−1 ≤ ελ}) ≤ c1 exp(−c2ε−1)w(Q∩{WR
α,p[µ] > λ}). (4.4.2)

Fix λ > 0 and 0 < ε < 1/10. We set

E = Q ∩ {WR
α,p[µ] > aλ, (MR

αp[µ])
1

p−1 ≤ ελ} and F = Q ∩ {WR
α,p[µ] > λ}.

Thanks to Lemma 4.3.20 we will get (4.4.2) if we verify the following two claims :

w(E) ≤ c3 exp(−c4ε−1)w(Q), (4.4.3)

and for any (x, t) ∈ Q, 0 < r ≤ R,

w(E ∩ Q̃r(x, t)) < c5 exp(−c6ε−1)w(Q̃r(x, t)), (4.4.4)

provided that Q̃r(x, t)∩Q∩F c 6= ∅ and E ∩ Q̃r(x, t) 6= ∅, where constants c3, c4, c5 and c6
depend on N,α, p and [w]A∞ .
Claim (4.4.3) : Set

gk(x, t) =

ˆ 2−k+1R

2−kR

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1 dρ

ρ
.

We have for m ∈ N and (x, t) ∈ E

W
R
α,p[µ](x, t) =

∞∑

k=m+1

gk(x, t) +

ˆ R

2−mR

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1 dρ

ρ

≤
∞∑

k=m+1

gk(x, t) +m(MR
αp[µ](x, t))

1
p−1

≤
∞∑

k=m+1

gk(x, t) +mελ.

We deduce that for β > 0, m ∈ N

|E| ≤ |Q ∩ {
∞∑

k=m+1

gk > (1−mε)λ}|

= |Q ∩ {
∞∑

k=m+1

gk >
∞∑

k=m+1

2−β(k−m−1)(1− 2−β)(1−mε)λ}|

≤
∞∑

k=m+1

|Q ∩ {gk > 2−β(k−m−1)(1− 2−β)(1−mε)λ}|.
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We can assume that (x0, t0) ∈ Q, (MR
αp[µ](x0, t0))

1
p−1 ≤ ελ. Thus, by computing, see [16,

Proof of Proposition 2.2 ] we have for any k ∈ N

|Q ∩ {gk > s}| ≤ c7
sp−1

2−kαp|Q|(ελ)p−1.

Consequently,

|E| ≤
∞∑

k=m+1

c7(
2−β(k−m−1)(1− 2−β)(1−mε)λ

)p−1 2
−kαp|Q|(ελ)p−1

≤ c72
−(m+1)αp

(
ε

1−mε

)p−1

|Q|
(
1− 2−β

)−p+1
∞∑

k=m+1

2(β(p−1)−αp)(k−m−1).

If we choose ε−1 − 2 < m ≤ ε−1 − 1 and β = β(α, p) so that β(p− 1)− αp < 0, we obtain

|E| ≤ c8 exp(−αp ln(2)ε−1)|Q|.

Thus, we get (4.4.3).
Claim (4.4.4). Take (x, t) ∈ Q and 0 < r ≤ R. Now assume that Q̃r(x, t)∩Q∩F c 6= ∅ and
E∩Q̃r(x, t) 6= ∅ i.e, there exist (x1, t1), (x2, t2) ∈ Q̃r(x, t)∩Q such that WR

α,p[µ](x1, t1) ≤ λ

and (MR
αp[µ](x2, t2))

1
p−1 ≤ ελ. We need to prove that

w(E ∩ Q̃r(x, t)) < c9 exp(−c10ε−1)w(Q̃r(x, t)).

To do this, for all (y, s) ∈ E ∩ Q̃r(x, t). Q̃ρ(y, s) ⊂ Q̃3ρ(x1, t1) if ρ > r.
If r ≤ R/3,

W
R
α,p[µ](y, s) = W

r
α,p[µ](y, s) +

ˆ R/3

r

(
µ(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1 dρ

ρ
+

ˆ R

R/3

(
µ(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1 dρ

ρ

≤ W
r
α,p[µ](y, s) +

ˆ R/3

r

(
µ(Q̃3ρ(x1, t1))

ρN+2−αp

) 1
p−1 dρ

ρ
+ 2(MR

αp[µ](y, s))
1

p−1

≤ W
r
α,p[µ](y, s) + 3

N+2−αp
p−1 λ+ 2ελ.

which follows W
r
α,p[µ](y, s) > λ.

If r ≥ R/3

W
R
α,p[µ](y, s) ≤ W

r
α,p[µ](y, s) +

ˆ R

R/3

(
µ(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1 dρ

ρ

≤ W
r
α,p[µ](y, s) + 2ελ,

which follows W
r
α,p[µ](y, s) > λ.

Thus,

w(E ∩ Q̃r(x, t)) ≤ w(Q̃r(x, t) ∩ {Wr
α,p[µ] > λ}).
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Since (x2, t2) ∈ Q̃r(x, t), (MR
αp[µ](x2, t2))

1
p−1 ≤ ελ, so as above we also obtain

w(Q̃r(x, t) ∩ {Wr
α,p[µ] > λ}) ≤ c9 exp(−c10ε−1)w(Q̃r(x, t)),

which implies (4.4.4). This completes the proof of the Theorem.

Theorem 4.4.2 Let α > 0, 1 < p < α−1(N + 2), p − 1 < q < ∞ and 0 < s ≤ ∞ and
w ∈ A∞. There holds

C−1||(MR
αp[µ])

1
p−1 ||Lq,s(RN+1,dw) ≤ ||WR

α,p[µ]||Lq,s(RN+1,dw) ≤ C||(MR
αp[µ])

1
p−1 ||Lq,s(RN+1,dw),

(4.4.5)
for all µ ∈ M

+(RN+1) and R ∈ (0,∞] where C is a positive constant only depending on
N,α, p, q, s and [w]A∞ .

Proof. From (4.4.1) in Theorem (4.4.1), we have for 0 < s <∞

||WR
α,p[µ]||sLq,s(RN+1,dw) = asq

ˆ ∞

0
λsw({WR

α,p[µ] > aλ})
s
q
dλ

λ

≤ c1 exp(−c2ε−1)q

ˆ ∞

0
λsw({WR

α,p[µ] > λ})
s
q
dλ

λ
+ c3s

ˆ ∞

0
λsw({(MR

αp[µ])
1

p−1 > ελ})
s
q
dλ

λ

= c1 exp(−c2ε−1)||WR
α,p[µ]||sLq,s(RN+1,dw) + c3ε

−s||(MR
αp[µ])

1
p−1 ||sLq,s(RN+1,dw).

Choose 0 < ε < ε0 such that c1 exp(−c2ε−1) < 1/2 we get

||WR
α,p[µ]||sLq,s(RN+1,dw) ≤ c4||(MR

αp[µ])
1

p−1 ||sLq,s(RN+1,dw).

Similarly, we also get above inequality in case s = ∞. So, we proved the right-hand side
inequality of (4.4.5).
To complete the proof, we prove the left-hand side inequality of (4.4.5). Since for every
(x, t) ∈ R

N+1

(WR
αp[µ](x, t))

1
p−1 ≤ c5


W

R
α,p[µ](x, t) +

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1


 and

(
µ(Q̃R/2(x, t))

RN+2−αp

) 1
p−1

≤ c6W
R
α,p[µ](x, t),

thus it is enough to show that for any λ > 0

w





(x, t) :

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1

> λ






 ≤ c7w





(x, t) :

(
µ(Q̃R/2(x, t))

RN+2−αp

) 1
p−1

> c8λ






 .

(4.4.6)

Let {Qj} = {Q̃R/4(xj , tj)} be a cover of RN+1 such that for any Qj ∈ {Qj}, there exist

Qj,1, ..., Qj,M1 ∈ {Qj} with
∑

j

∑M1
k=1 χQj,k

≤ M2 and Qj + Q̃2R(0, 0) ⊂
M1⋃
k=1

Qj,k for some
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integer constants Mi =Mi(N), i = 1, 2. Then,

w





(x, t) :

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1

> λ






 ≤

∑

j

w





(x, t) :

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1

> λ



 ∩Qj




≤
∑

j

w

({
(x, t) :

M1∑

k=1

µ(Qj,k)

RN+2−αp > λp−1

}
∩Qj

)

≤
∑

j

M1∑

k=1

w

({
(x, t) :

(
µ(Qj,k)

RN+2−αp

) 1
p−1

> M
−1/(p−1)
1 λ

}
∩Qj

)

=
∑

j

M1∑

k=1

aj,kw(Qj),

where aj,k = 1 if
(

µ(Qj,k)

RN+2−αp

) 1
p−1

> M
−1/(p−1)
1 λ and aj,k = 0 if otherwise.

Using the strong doubling property of w, there is c9 = c9(N, [w]A∞) such that w(Qj) ≤

c9w(Qj,k). On the other hand, if aj,k = 1 thenQj,k ⊂
{
(x, t) :

(
µ(Q̃R/2(x,t))

RN+2−αp

) 1
p−1

> M
−1/(p−1)
1 λ

}
.

Therefore,

w





(x, t) :

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1

> λ






 ≤

∑

j

M1∑

k=1

c9aj,kw(Qj,k)

≤
∑

j

M1∑

k=1

c9w





(x, t) :

(
µ(Q̃R/2(x, t))

RN+2−αp

) 1
p−1

> M
−1/(p−1)
1 λ



 ∩Qj,k


 ,

which implies (4.4.6) since
∑

j

∑M1
k=1 χQj,k

≤M2 in R
N+1.

Theorem 4.4.3 Let 0 < αp < N + 2 and w ∈ A∞ There exist C1, C2 > 0 depending on
N,α, p and [w]A∞ such that for any µ ∈ M

+(RN+1), any cylinder Q̃ρ ⊂ R
N+1 there holds

1

w(Q̃2ρ)

ˆ

Q̃2ρ

exp
(
C1W

R
α,p[µQ̃ρ

](x, t)
)
dw(x, t) ≤ C2 (4.4.7)

provided ||MR
αp[µQ̃ρ

]||L∞(Q̃ρ)
≤ 1, where µQ̃ρ

= χQ̃ρ
µ.

Proof. Assume that ||MR
αp[µQ̃ρ

]||L∞(Q̃ρ)
≤ 1. We apply Theorem (4.4.1) to µQ̃ρ

. Then,

choose ε = λ−1 for all λ ≥ λ0 := max{ε−1
0 , N+2−αp

p−1 }, we obtain

w({WR
α,p[µQ̃ρ

] > aλ} ∩ Q̃2ρ) ≤ C1 exp(−C2ε
−1)w({WR

α,p[µQ̃ρ
] > λ}) ∀ λ ≥ λ0,

On the other hand, if ρ > R, clearly we have W
R
α,p[µQ̃ρ

] ≡ 0 in R
N+1\Q̃2ρ, if ρ ≤ R, for

any (x, t) ∈ R
N+1\Q̃2ρ

W
R
α,p[µQ̃ρ

](x, t) =

ˆ R

ρ

(
µQ̃ρ

(Q̃r(x, t))

rN+2−αp

) 1
p−1

dr

r
≤ N + 2− αp

p− 1

(
µ(Q̃ρ)

ρN+2−αp

) 1
p−1

≤ λ0.
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So, we get {WR
α,p[µQ̃ρ

] > λ} ⊂ Q̃2ρ for all λ ≥ λ0. This can be written under the form

w({WR
α,p[µQ̃ρ

] > aλ} ∩ Q̃2ρ) ≤
(
χ(0,t0] + C1 exp(−C2λ)

)
w(Q̃2ρ),

for all λ > 0. Therefore, we get (4.4.7).

In what follows, we need some estimates on Wolff parabolic potential :

Proposition 4.4.4 Let p > 1, 0 < αp < N +2 and q > 1, αpq < N +2. There exist C1, C2

such that

||Wα,p[µ]||
L

(N+2)(p−1)
N+2−αp

,∞
(RN+1)

≤ C1(µ(R
N+1))

1
p−1 ∀ µ ∈ M

+
b (R

N+1), (4.4.8)

||Wα,p[µ]||
L

q(N+2)(p−1)
N+2−αpq

,∞
(RN+1)

≤ C2||µ||
1

p−1

Lq,∞(RN+1)
∀ µ ∈ Lq,∞(RN+1), µ ≥ 0, (4.4.9)

and

||Wα,p[µ]||
L

q(N+2)(p−1)
N+2−αpq (RN+1)

≤ C2||µ||
1

p−1

Lq(RN+1)
∀ µ ∈ Lq(RN+1), µ ≥ 0. (4.4.10)

In particular, for s > (p−1)(N+2)
N+2−αp , we define F (µ) := (Wα,p[µ])

s for all µ ∈ M
+
b (R

N+1).
Then,

||F (µ)||
L

(N+2)(s−p+1)
αsp (RN+1)

≤ C3||µ||
s

p−1

L
(N+2)(s−p+1)

αsp (RN+1)

and

||F (µ)||
L

(N+2)(s−p+1)
αsp ,∞

(RN+1)
≤ C3||µ||

s
p−1

L
(N+2)(s−p+1)

αsp ,∞
(RN+1)

,

for some constant Ci = Ci(N, p, α, s) for i = 3, 4.

Proof. Let s ≥ 1 such that αsp < N + 2. It is known that if µ ∈ Ls,∞(RN+1) then

|µ|(Q̃ρ(x, t)) ≤ c1||µ||Ls,∞(RN+1)ρ
N+2
s′ ∀ ρ > 0.

Thus for δ = ||µ||
s

N+2

Ls,∞(RN+1)
(M(µ)(x, t))−

s
N+2 we have

Wα,p[µ](x, t) =

ˆ δ

0

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1 dρ

ρ
+

ˆ ∞

δ

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1 dρ

ρ

≤ c2 (M(µ)(x, t))
1

p−1 δ
αp
p−1 + c2||µ||

1
p−1

Ls,∞(RN+1)
δ
−N+2−αsp

s(p−1)

= c3 (M(µ)(x, t))
N+2−αsp

(p−1)(N+2) ||µ||
αsp

(p−1)(N+2)

Ls,∞(RN+1)
.

So, for any λ > 0

|{Wα,p[µ] > λ}| ≤ |{M(µ) > c4||µ||
− αsp

N+2−αsp

Ls,∞(RN+1)
λ

(p−1)(N+2)
N+2−αsp }|.

Hence, since M is bounded from M
+
b (R

N+1) to L1,∞(RN+1) and Lq(RN+1) (Lq,∞(RN+1) resp.)
to itself, we get the result.

159



4.4. ESTIMATES ON POTENTIAL

Remark 4.4.5 Assume that αp = N +2 and R > 0. As above we also have for any ε > 0

W
R
α,p[µ](x, t) ≤ C1,εmax

{
(|µ|(RN+1))

1
p−1 ,

(
(M(µ)(x, t))ε(|µ|(RN+1))

αp
p−1Rεαp

) 1
αp+ε(p−1)

}

where C1,ε = C1(N,α, p, ε).

Therefore, for any λ > Cε(|µ|(RN+1))
1

p−1 ,

|{WR
α,p[µ] > λ}| ≤ C2,ε

(
(|µ|(RN+1))

1
p−1

λ

)αp+ε(p−1)
ε

Rαp, (4.4.11)

where C2,ε = C2(N,α, p, ε). In particular, if µ ∈ M
+
b (R

N+1) then W
R
α,p[µ] ∈ Lsloc(R

N+1)
for all s > 0.

Remark 4.4.6 Assume that p, q > 1, 0 < αpq < N + 2. As in [59, Theorem 3], it is easy
to prove that if w ∈ A q(N+2−α)

N+2−αpq

, i.e, 0 < w ∈ L1
loc(R

N+1) and for any Q̃ρ(y, s) ⊂ R
N+1

sup
Q̃ρ(y,s)⊂RN+1



(
 

Q̃ρ(y,s)
wdxdt

)(
 

Q̃ρ(y,s)
w

− N+2−αpq
(q−1)(N+2)dxdt

) (q−1)(N+2)
N+2−αpq


 = C1 <∞,

then

(
ˆ

RN+1

(Mαp[|f |])
(N+2)q

N+2−αpq wdxdt

)N+2−αpq
(N+2)q

≤ C2

(
ˆ

RN+1

|f |qw1− αpq
N+2dxdt

) 1
q

,

for some a constant C2 = C2(N,αp, q, C1).
Therefore, from (4.4.5) in Theorem 4.4.2 we get a weighted version of (4.4.10)

(
ˆ

RN+1

(Wα,p[|f |])
(N+2)(p−1)q
N+2−αpq wdxdt

)N+2−αpq
(N+2)q

≤ C2

(
ˆ

RN+1

|f |pw1− αp
N+2dxdt

) 1
p

.

The following another version of (4.4.10) in the Lorentz-Morrey spaces involving calorie.

Proposition 4.4.7 Let p, q > 1, and 0 < αpq < θ ≤ N +2. There exists a constant C > 0
such that

|| (Wα,p[|µ|])p−1 ||
L

θq
θ−αpq

;θ
(RN+1)

≤ C||µ||Lq;θ(RN+1) ∀µ ∈ Lq;θ(RN+1). (4.4.12)

Proof. As the proof of Proposition 4.4.4 we have

Wα,p[|µ|] ≤ c1
(
Mθ/q[|µ|]

) αpq
θ(p−1) (M[|µ|])

θ−αpq
θ(p−1) .

Since Mθ/q[|µ|] ≤ c2 (Mθ[|µ|q])1/q, above inequality becomes

Wα,p[µ] ≤ c3 (Mθ[|µ|q])
αp

θ(p−1) (M[µ])
θ−αpq
θ(p−1) . (4.4.13)
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Take Q̃ρ(y, s) ⊂ R
N+1, we have

ˆ

Q̃ρ(y,s)
(Wα,p[µ])

θq(p−1)
θ−αpq dxdt ≤ c4

(
ˆ

Q̃ρ(y,s)

(
Wα,p[χQ̃2ρ(y,s)

µ]
) θq(p−1)

θ−αpq
dxdt

+

ˆ

Q̃ρ(y,s)

(
Wα,p[χ(Q̃2ρ(y,s))c

µ]
) θq(p−1)

θ−αpq
dxdt

)

= A+B.

Using inequality (4.4.13) and boundless M from Lq(RN+1) to itself, yield

A ≤ c5

ˆ

RN+1

(Mθ[|µ|q])
αq

θ−αpq

(
M[χQ̃2ρ(y,s)

µ]
)q
dxdt

≤ c6||µ||
αq2

θ−αpq

Lq;θ(RN+1)

ˆ

χQ̃2ρ(y,s)

|µ|qdxdt

≤ c7||µ||
θq

θ−αpq

Lq;θ(RN+1)
ρN+2−θ.

On the other hand, since |µ|(Q̃r(x, t)) ≤ c8||µ||Lq;θ(RN+1)r
N+2− θ

q for all Q̃r(x, t) ⊂ R
N+1,

B ≤
ˆ

Q̃ρ(y,s)



ˆ ∞

ρ

(
|µ|(Q̃r(x, t))
rN+2−αp

) 1
p−1 dr

r




θq(p−1)
θ−αpq

dxdt

≤ c9

ˆ

Q̃ρ(y,s)

(
ˆ ∞

ρ

(
||µ||Lq;θ(RN+1)r

− θ
q
+α
) 1

p−1 dr

r

) θq(p−1)
θ−αpq

dxdt

≤ c10||µ||
θq

θ−αpq

Lq;θ(RN+1)
ρN+2−θ.

Therefore,
ˆ

Q̃ρ(y,s)
(Wα,p[µ])

θq(p−1)
θ−αpq dxdt ≤ c11||µ||

θq
θ−αpq

Lq;θ(RN+1)
ρN+2−θ,

which follows (4.4.12).
In the next result we state a series of equivalent norms concerning potentials Iα[µ], IRα [µ],Hα[µ],Gα[µ].

Proposition 4.4.8 Let q > 1, 0 < α < N + 2 and R > 0. There exist constants C1 =
C1(N,α, q) and C2 = C2(N,α, q, R) such that the following statements hold

a. for any µ ∈ M
+(RN+1)

C−1
1 ||Iα[µ]||Lq(RN+1) ≤ ||Hα[µ]||Lq(RN+1) ≤ C1||Iα[µ]||Lq(RN+1) and (4.4.14)

C−1
1 ||Iα[µ]||Lq(RN+1) ≤ ||

∨
Hα[µ]||Lq(RN+1) ≤ C1||Iα[µ]||Lq(RN+1). (4.4.15)

b. for any µ ∈ M
+(RN+1)

C−1
2 ||IRα [µ]||Lq(RN+1) ≤ ||Gα[µ]||Lq(RN+1) ≤ C2||IRα [µ]||Lq(RN+1) and (4.4.16)

C−1
2 ||IRα [µ]||Lq(RN+1) ≤ ||

∨
Gα[µ]||Lq(RN+1) ≤ C2||IRα [µ]||Lq(RN+1). (4.4.17)
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where
∨
Hα[µ] is the backward parabolic Riesz potential, defined by

∨
Hα[µ](x, t) = (

∨
Hα ∗ µ)(x, t) =

ˆ

RN+1

Hα(x− y, s− t)dµ(y, s),

and
∨
Gα[µ] is the backward parabolic Bessel potential :

∨
Gα[µ](x, t) = (

∨
Gα ∗ µ)(x, t) =

ˆ

RN+1

Gα(y − x, s− t)dµ(y, s).

Proof. a. We have :

c−1
1

t
N+2−α

2

χt>0χ|x|≤2
√
t ≤ Hα(x, t) ≤

c1

max{|x|,
√

2|t|}N+2−α ,

which implies

c−1
2

ˆ ∞

0

χ
Br(0)×( r

2

4
,r2)

(x, t)

rN+2−α
dr

r
≤ Hα(x, t) ≤ c2

ˆ ∞

0

χQ̃r(0,0)
(x, t)

rN+2−α
dr

r
.

Thus,

c−1
2

ˆ ∞

0

µ
(
B(x, r)× (t− r2, t− r2

4 )
)

rN+2−α
dr

r
≤ Hα[µ](x, t) ≤ c2Iα[µ](x, t). (4.4.18)

Thanks to Theorem 4.4.2 we will finish the proof of (4.4.14) when we show that

ˆ

R



ˆ ∞

0

µ
(
B(x, r)× (t− r2, t− r2

4 )
)

rN+2−α
dr

r



q

dt ≥ c3

ˆ

R

ˆ +∞

0

(
µ(Q̃r(x, t))

rN+2−α

)q
dr

r
dt.

Indeed, we have for rk = ( 2√
3
)−k,

(
ˆ ∞

0

µ
(
B(x, r)× (t− r2, t− r2/4)

)

rN+2−α
dr

r

)q

≥ c4

( ∞∑

k=−∞

µ
(
B(x, rk)× (t− r2k, t− 1

3r
2
k)
)

rN+2−α
k

)q

≥ c4

∞∑

k=−∞

(
µ
(
B(x, rk)× (t− r2k, t− 1

3r
2
k)
)

rN+2−α
k

)q
.
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Thus,
ˆ

R

(
ˆ ∞

0

µ
(
B(x, r)× (t− r2, t− 1

4r
2)
)

rN+2−α
dr

r

)q
dt

≥ c4

∞∑

k=−∞

ˆ

R

(
µ
(
B(x, rk)× (t− r2k, t− 1

3r
2
k)
)

rN+2−α
k

)q
dt

= c4

∞∑

k=−∞

ˆ

R

(
µ
(
B(x, rk)× (t− 1

3r
2
k, t+

1
3r

2
k)
)

rN+2−α
k

)q
dt

≥ c5

ˆ

R

ˆ +∞

0

(
µ(Q̃r(x, t))

rN+2−α

)q
dr

r
dt.

Similarly, we also can prove (4.4.15).
b. Obviously

c−1
6 exp(−4R2)

t
N+2−α

2

χ0<t<4R2χ|x|≤2
√
t ≤ Gα(x, t)

≤ c6

max{|x|,
√

2|t|}N+2−αχQ̃R/2(0,0)
(x, t) +

c6
RN+2−α exp

(
−max{|x|,

√
2|t|}

)
.

Thus, we can assert that

c7(R)

ˆ 2R

0

χ
Br(0)×( r

2

4
,r2)

(x, t)

rN+2−α
dr

r
≤ Gα(x, t) ≤ c8

ˆ R

0

χQ̃r(0,0)
(x, t)

rN+2−α
dr

r

+ c9(R)

ˆ

RN+1

exp
(
−max{|y|,

√
2|s|}

)
χQ̃R/2(0,0)

(x− y, t− s)dyds.

Immediately, we get

c7(R)

ˆ 2R

0

µ
(
B(x, r)× (t− r2, t− r2

4 )
)

rN+2−α
dr

r
≤ Gα[µ](x, t) ≤ c8I

R
α [µ](x, t) + c9(R)F (x, t),

(4.4.19)

where F (x, t) =
´

RN+1 exp
(
−max{|y|,

√
2|s|}

)
µ
(
Q̃R/2(x− y, t− s)

)
dyds.

As above, we can show that

ˆ ∞

0



ˆ 2R

0

µ
(
B(x, r)× (t− r2, t− r2

4 )
)

rN+2−α
dr

r



q

dt ≥ c10

ˆ ∞

0

ˆ R

0

(
µ(Q̃r(x, t))

rN+2−α

)q
dr

r
.

Thus, thanks to Theorem 4.4.2 we get the left-hand side inequality of (4.4.16).

To show the right-hand side of (4.4.16), we use µ
(
Q̃R/2(x− y, t− s)

)
≤ c10R

−(N+2−α)
I
R
α [µ](x−

y, t− s) and Young inequality

||Gα[µ]||Lq(RN+1) ≤ c8||IRα [µ]||Lq(RN+1) + c9(R)||F ||Lq(RN+1)

≤ c8||IRα [µ]||Lq(RN+1) + c11(R)||IRα [µ]||Lq(RN+1)

ˆ

RN+1

exp
(
−max{|x|,

√
2|t|}

)
dxdt

= c12(R)||IRα [µ]||Lq(RN+1).
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Similarly, we also can prove (4.4.17). This completes the proof of the Proposition.

Remark 4.4.9 Assume that 0 < α < N + 2. From (4.4.8) in Proposition 4.4.4 and
||Gα[µ]||L1(RN+1) ≤ c1µ(R

N+1) we deduce that for 1 ≤ s < N+2
N+2−α

||Gα[µ]||Ls(RN+1) ≤ c2µ(R
N+1) ∀ µ ∈ M

+
b (R

N+1)

Next, we introduce the following kernel :

ERα (x, t) = max{|x|,
√
2|t|}−(N+2−α)χQ̃R(0,0)(x, t)

where 0 < α < N + 2 and 0 < R ≤ ∞. We denote E∞
α by Eα. It is easy to see that

Eα ∗µ = (N +2−α)Iα[µ] and ||ERα ∗µ||Ls(RN+1) is equivalent to ||IRα [µ]||Ls(RN+1) for every
µ ∈ M

+(RN+1) where 1 ≤ s <∞.
We obtain equivalences of capacities CapEα,p,CapER

α ,p
,CapHα,p and CapGα,p.

Corollary 4.4.10 Let p > 1, 1 < α < N + 2 and R > 0. There exist constants C1 =
C1(N,α, p) and C2 = C2(N,α, p,R) such that the following statements hold

a. for any compact E ⊂ R
N+1

C−1
1 CapHα,p(E) ≤ CapEα,p(E) ≤ C1CapHα,p(E) (4.4.20)

b. for any compact E ⊂ R
N+1

C−1
2 CapGα,p(E) ≤ CapER

α ,p
(E) ≤ C2CapGα,p(E) (4.4.21)

c. for any compact E ⊂ R
N+1

CapHα,p(E) ≤ CapGα,p(E) ≤ C1

(
CapHα,p(E) +

(
CapHα,p(E)

) N+2
N+2−αp

)
(4.4.22)

provided 1 < αp < N + 2.

Proof. By [2, Chapter 2], we have

CapEα,p(E)1/p = sup{µ(E) : µ ∈ M
+(E), ||Eα ∗ µ||Lp′ (RN+1) ≤ 1},

CapER
α ,p

(E)1/p = sup{µ(E) : µ ∈ M
+(E), ||ERα ∗ µ||Lp′ (RN+1) ≤ 1},

CapHα,p(E)1/p = sup{µ(E) : µ ∈ M
+(E), ||

∨
Hα[µ]||Lp′ (RN+1) ≤ 1} and

CapGα,p(E)1/p = sup{µ(E) : µ ∈ M
+(E), ||

∨
Gα[µ]||Lp′ (RN+1) ≤ 1}.

Thanks to (4.4.15), (4.4.17) in Proposition 4.4.8 and Iα[µ] = Eα ∗ µ and ||ERα ∗ µ||Ls(RN+1)

is equivalent to ||IRα [µ]||Ls(RN+1), we get (4.4.20) and (4.4.21).
Since Gα ≤ Hα, thus CapHα,p(E) ≤ CapGα,p(E) for any compact E ⊂ R

N+1. Put CapEα,p(E) =
a > 0. We need to prove that

CapE1
α,p

(E) ≤ c1

(
a+ a

N+2
N+2−αp

)
. (4.4.23)
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We will follow a proof of Yu.V. Netrusov in [2, Chapter 5]. First, we can find f ∈ Lp+(R
N+1)

such that ||f ||Lp(RN+1) ≤ 2a and Eα ∗ f ≥ χE . Set Fα = Eα−E1
α, we have c2Fα ≤ E1

α ∗Fα
for some c1 > 0. Thus, E ⊂ {E1

α ∗ f ≥ 1/2} ∪ {E1
α ∗ (Fα ∗ f) ≥ c2/2}.

Since ||E1
α||L1(RN+1) <∞, for c3 = c2(4||E1

α||L1(RN+1))
−1

E1
α ∗ (Fα ∗ f) ≤ c2/4 + E1

α ∗ g with g = χFα∗f≥c3Fα ∗ f,

which follows E ⊂ {E1
α ∗ f ≥ 1/2} ∪ {E1

α ∗ g ≥ c2/4}.
Using the subadditivity of capacity, we have

CapE1
α,p

(E) ≤ CapE1
α,p

({E1
α ∗ f ≥ 1/2}) + CapE1

α,p
({E1

α ∗ g ≥ c1/4})
≤ 2p||f ||p

Lp(RN+1)
+ (4/c1)

p||g||p
Lp(RN+1)

≤ 2p||f ||p
Lp(RN+1)

+ (4/c1)
pcp∗−p3 ||Eα ∗ f ||p∗

Lp∗(RN+1)
, with p∗ =

(N + 2)p

N + 2− αp
.

On the other hand, from (4.4.10) in Proposition 4.4.4 we have

||Eα ∗ f ||Lp∗(RN+1) ≤ c4||f ||Lp(RN+1).

Hence, we get (4.4.23).

Remark 4.4.11 Since Gα ∈ L1(RN+1),
ˆ

RN+1

(Gα ∗ f)p dxdt ≤ ||Gα||pL1(RN+1)

ˆ

RN+1

fpdxdt ∀f ∈ Lp+(R
N+1)

Thus, for any Borel set E ⊂ R
N+1

CapGα,p(E) ≥ C|E| with C = ||Gα||−pL1(RN+1)
. (4.4.24)

Remark 4.4.12 It is well-known that H2 is the fundamental solution of the heat operator
∂
∂t −∆. In [31], R. Gariepy and W. P. Ziemer introduced the following capacity :

CH2(K) = sup{µ(K) : µ ∈ M
+(K),H2[µ] ≤ 1},

whenever K ⊂ R
N+1 is compact. Thanks to [2, Theorem 2.5.5], we obtain

CapH1,2(K) = CH2(K).

Remark 4.4.13 For any Borel set E ⊂ R
N , then we always have CapG1,2(E×{t = 0}) = 0

In fact,

CapE1
1 ,2

(B1(0)× {t = 0}) = sup{ω(B1(0)) : ω ∈ M
+(B1(0)), ||E1

1 ∗ (ω ⊗ δ0)||L2(RN+1) ≤ 1}.

Since ||E1
1∗(ω⊗δ0)||L2(RN+1) = ∞ if ω 6= 0, thus CapG1,2(B1(0)×{t = 0}) = CapE1

1 ,2
(B1(0)×

{t = 0}) = 0. In particular, CapG1,2 is not absolutely continuous with respect to capacity
C1,2(.,Ω× (a, b)). This capacity will be defined in next section.
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Remark 4.4.14 Let p > 1 and α > 0. Case αp ≥ p+1, we always have ||Hα[µ]||Lp′ (RN ) =

∞ for any µ ∈ M
+(RN )\{0} which implies CapHα,p(Q̃1(0, 0)) = 0. If 0 < αp < N + 2,

CapHα,p(Q̃ρ(0, 0)) = cρN+2−αp for some constant c. From (4.4.22) in Corollary 4.4.10 we
get CapGα,p(Q̃ρ(0, 0)) ≈ ρN+2−αp for 0 < ρ < 1 if αp < N+2. Since ||Gα[δ(0,0)]||Lp′ (RN+1) <

∞ thus CapGα,p((0, 0)) > 0 if αp > N + 2.
If αp = N+2, CapGα,p(Q̃ρ(0, 0)) ≈ (log(1/ρ))1−p for any 0 < ρ < 1/2. In fact, we can prove

that ||I1/2α [µ]||Lp′ (RN ) ≤ c1 for any dµ(x, t) = (log(1/ρ))−1/p′ ρ−N−2χQ̃ρ(0,0)
dxdt it follows

CapGα,p(Q̃ρ(0, 0)) ≥ c2 (log(1/ρ))
1−p. Moreover, for µ ∈ M

+(Q̃ρ), if ||I3α[µ]||p
′

Lp′ (RN+1)
≤ 1,

1 ≥
ˆ

Q̃1(0,0)\Q̃ρ(0,0)

(
ˆ 3

2max{|x|,|2t|1/2}

µ(Q̃r(x, t))

rN+2−α
dr

r

)p′
dxdt

≥
ˆ

Q̃1(0,0)\Q̃ρ(0,0)

(
ˆ 3

2max{|x|,|2t|1/2}

1

rN+2−α
dr

r

)p′
dxdtµ(Q̃ρ(0, 0))

p′

≥ c3 log(1/ρ)µ(Q̃ρ(0, 0))
p′ .

So CapGα,p(Q̃ρ(0, 0)) ≤ c4µ(Q̃ρ(0, 0))
p ≤ c5 (log(1/ρ))

1−p.

Definition 4.4.15 The parabolic Bessel potential Lpα(RN+1), α > 0 and p > 1 is defined
by

Lpα(RN+1) = {f : f = Gα ∗ g, g ∈ Lp(RN+1)} (4.4.25)

with the norm ||f ||Lp
α(RN+1) := ||g||Lp(RN+1). We denote its dual space by

(
Lpα(RN+1)

)∗
.

Definition 4.4.16 For k a positive integer, the Sobolev space W 2k,k
p (RN+1) is defined by

W 2k,k
p (RN+1) = {ϕ :

∂i1+...+iN+iϕ

∂xi11 ...∂x
iN
N ∂ti

∈ Lp(RN+1) for any i1 + ...+ iN + 2i ≤ 2k}

with the norm

||ϕ||
W 2k,k

p (RN+1)
=

∑

i1+...+iN+2i≤2k

|| ∂
i1+...+iN+iϕ

∂xi11 ...∂x
iN
N ∂ti

||Lp(RN+1).

We denote its dual space by
(
W 2k,k
p (RN+1)

)∗
. We also define a corresponding capacity on

compact set E ⊂ R
N+1,

Cap2k,k,p(E) = inf{||ϕ||p
W 2k,k

p (RN+1)
: ϕ ∈ S(RN+1), ϕ ≥ 1 in a neighborhood of E}.

Let us recall Richard J. Bagby’s result, proved in [4].

Theorem 4.4.17 Let p > 1 and k be a positive integer. Then, there exists a constant C
depending on N, k, p such that for any u ∈ Lp2k(RN+1),

C−1||u||
W 2k,k

p (RN+1)
≤ ||u||Lp

2k(R
N+1) ≤ C||u||

W 2k,k
p (RN+1)

.
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Above Theorem gives the assertion of equivalence of capacity Cap2k,k,p,CapG2k,p
.

Corollary 4.4.18 Let p > 1 and k be a positive integer. There exists a constant C depen-
ding on N, k, p such that for any compact set E ⊂ R

N+1

C−1Cap2k,k,p(E) ≤ CapG2k,p
(E) ≤ CCap2k,k,p(E). (4.4.26)

Next result provides some relations of Riesz, Bessel parabolic potential and Riesz, Bessel
potential.

Proposition 4.4.19 Let q > 1 and 2
q′ < α < N + 2

q′ . There exists a constant C depending

on N, q, α such that for any ω ∈ M
+(RN )

C−1||Iα− 2
q′
[ω]||Lq(RN )

≤ ||Hα[ω ⊗ δ{t=0}]||Lq(RN+1), ||
∨
Hα[ω ⊗ δ{t=0}]||Lq(RN+1) ≤ C||Iα− 2

q′
[ω]||Lq(RN ) (4.4.27)

and

C−1||Gα− 2
q′
[ω]||Lq(RN )

≤ ||Gα[ω ⊗ δ{t=0}]||Lq(RN+1), ||
∨
Gα[ω ⊗ δ{t=0}]||Lq(RN+1) ≤ C||Gα− 2

q′
[ω]||Lq(RN ) (4.4.28)

where δ{t=0} is the Dirac mass in time at 0.

Proof. We have

Iα[ω ⊗ δ{t=0}](x, t) =
ˆ ∞
√

2|t|

ω(B(x, r))

rN+2−α
dr

r
, I1α[ω ⊗ δ{t=0}](x, t) =

ˆ 1

min{1,
√

2|t|}

ω(B(x, r))

rN+2−α
dr

r
.

By [16, Theorem 2.3 ] and Proposition 4.4.8, thus it is enough to show that

c−1
1

ˆ ∞

0

(
ω(B(x, r))

rN+2−α−2/q

)q dr
r

≤
ˆ

R

(
ˆ ∞
√

2|t|

ω(B(x, r))

rN+2−α
dr

r

)q
dt ≤ c1

ˆ ∞

0

(
ω(B(x, r))

rN+2−α−2/q

)q dr
r
,

(4.4.29)

and

c−1
1

ˆ 1/2

0

(
ω(B(x, r))

rN+2−α−2/q

)q dr
r

≤
ˆ

R

(
ˆ 1

min{1,
√

2|t|}

ω(B(x, r))

rN+2−α
dr

r

)q
dt ≤ c1

ˆ 1

0

(
ω(B(x, r))

rN+2−α−2/q

)q dr
r

(4.4.30)

Indeed, by changing of variables

ˆ ∞

−∞

(
ˆ ∞
√

2|t|

ω(B(x, r))

rN+2−α
dr

r

)q
dt = 2

ˆ ∞

0
t

(
ˆ ∞

t

ω(B(x, r))

rN+2−α
dr

r

)q
dt. (4.4.31)
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Using Hardy’s inequality, we have

ˆ ∞

0
t

(
ˆ ∞

t

ω(B(x, r))

rN+2−α
dr

r

)q
dt ≤ c2

ˆ ∞

0
r

(
ω(B(x, r))

rN+2−α

)q
dr

and using the fact that

ˆ ∞

t

ω(B(x, r))

rN+2−α
dr

r
≥ c3

ω(B(x, r))

rN+2−α ,

we get

ˆ ∞

0
t

(
ˆ ∞

t

ω(B(x, r))

rN+2−α
dr

r

)q
dt ≥ c3

ˆ ∞

0
r

(
ω(B(x, r))

rN+2−α

)q
dr.

Thus, we get (4.4.29). Likewise, we also obtain (4.4.30).
We have comparisons of CapHα,p,CapGα,p,CapI

α− 2
p
,p,CapG

α− 2
p
,p.

Corollary 4.4.20 Let p > 1 and 2
p < α < N + 2

p . There exists a constant C depending on

N, q, α such that for any compact K ⊂ R
N

C−1CapI
α− 2

p
,p(K) ≤ CapHα,p(K × {0}) ≤ CCapI

α− 2
p
,p(K) (4.4.32)

and
C−1CapG

α− 2
p
,p(K) ≤ CapGα,p(K × {0}) ≤ CCapG

α− 2
p
,p(K) (4.4.33)

Proof. By [2, Chapter 2], we have

CapHα,p(K × {0})1/p = sup{µ(K × {0}) : µ ∈ M
+(K × {0}), ||

∨
Hα[µ]||Lp′ (RN+1) ≤ 1}

= sup{ω(K) : ω ∈ M
+(K), ||

∨
Hα[ω ⊗ δ{t=0}]||Lp′ (RN+1) ≤ 1},

CapGα,p(K × {0})1/p = sup{ω(K) : ω ∈ M
+(K), ||

∨
Gα[ω ⊗ δ0]||Lp′ (RN+1) ≤ 1},

CapI
α− 2

p
,p(K)1/p = sup{ω(K) : ω ∈ M

+(K), ||Iα− 2
p
[ω]||Lp′ (RN+1) ≤ 1},

CapG
α− 2

p
,p(K)1/p = sup{ω(K) : ω ∈ M

+(K), ||Gα− 2
p
[ω]||Lp′ (RN+1) ≤ 1}.

Therefore, thanks to Proposition (4.4.19) we get the results.

Corollary 4.4.21 Let p > 1 and k be a positive integer such that 2k < N + 2/p. There
exists a constant C depending on N, k, p such that for any compact set K ⊂ R

N

C−1CapG
2k− 2

p
,p(K) ≤ Cap2k,k,p(K × {0}) ≤ CCapG

2k− 2
p
,p(K). (4.4.34)

We also have comparisons of CapGα,p,CapGα,p.
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Proposition 4.4.22 Let 0 < α < N , p > 1. For a > 0 there exists a constant C depending
on N,α, p, a such that for any compact K ⊂ R

N ,

C−1CapGα,p(K) ≤ CapGα,p(K × [−a, a]) ≤ CCapGα,p(K).

Proof. By [2], we have
Cap

I

√
a
2

α ,p

(K) ≤ c1CapGα,p(K),

for some c1 = c1(N,α, p, a) > 0. So, we can find f ∈ Lp+(R
N ) such that I

√
a
2
α ∗ f ≥ χK and

ˆ

RN

|f |pdx ≤ 2c1CapGα,p(K).

Note that (E
√
a

α ∗ f̃)(x, t) ≥ c2(I

√
a
2
α ∗ f)(x, t) for all (x, t) ∈ R

N × [−a, a] where f̃(x, t) =
f(x)χ[−2a,2a](t) and constant c2 = c2(N,α, p). So,

Cap
E

√
a

α ,p
(K × [−a, a]) ≤ c−p2

ˆ

RN+1

|f̃ |pdxdt

= 4c−p2 a

ˆ

RN

|f |pdx.

By Corollary 4.4.10, there is c1 = c1(N,α, p, a) > 0 such that

CapGα,p(K × [−a, a]) ≤ c1Cap
E

√
a

α ,p
(K × [−a, a]).

Thus, we get
CapGα,p(K × [−a, a]) ≤ c3CapGα,p(K),

for some c3 = c3(N,α, p, a).
Finally, we prove other one. It is easy to see that

||I
√

a
2

α [ω ⊗ χ[−a,a]]||Lp′ (RN+1) ≤ c4||I
√

a
2

α [ω]||Lp′ (RN ) ∀ ω ∈ M
+(RN ),

for some c4 = c4(N,α, p), which implies

||Gα[ω ⊗ χ[−a,a]]||Lp′ (RN+1) ≤ c5||Gα[ω]||Lp′ (RN ) ∀ ω ∈ M
+(RN+1)

for some c4 = c4(N,α, p, a).
It follows,

CapGα,p(K × [−a, a]) ≥ c6CapGα,p(K),

for some c6 = c6(N,α, p, a).

The following proposition is useful for proving that many operators of classical analysis are
bounded in the space the space of functions f such that

ˆ

K
|f |pdxdt ≤ CCap(K)

for every compact set K ⊂ R
N+1, (1 < p <∞), if they are bounded in Lq(RN+1, dw) with

w ∈ A∞.
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Proposition 4.4.23 Let 0 < R ≤ ∞, 1 < p ≤ α−1(N + 2), 0 < δ < α and f, g ∈
L1
loc(R

N+1). Suppose that

1. There exists a positive constant C1 such that
ˆ

K
|f |dxdt ≤ C1Cap

ER,δ
α ,p

(K) for any compact sets K ⊂ R
N+1. (4.4.35)

2. For all weights w ∈ A1,
ˆ

RN+1

|g|wdxdt ≤ C2

ˆ

RN+1

|f |wdxdt, (4.4.36)

where the constant C2 depends only on N and [w]A1 .

Then,
ˆ

K
|g|dxdt ≤ C3Cap

ER,δ
α ,p

(K) for any compact set K ⊂ R
N+1, (4.4.37)

where the constant C3 depends only on N,α, p, δ and C1, C2.

The capacity is mentioned in the Proposition (4.4.23), that is (ER,δα , p)-capacity defined by

Cap
ER,δ

α ,p
(E) = inf

{
ˆ

RN+1

|f |pdxdt : f ∈ Lp+(R
N+1), ER,δα ∗ f ≥ χE

}
,

for all measurable sets E ⊂ R
N+1, where 0 < R ≤ ∞, 0 < δ < α < N + 2,

ER,δα (x, t) = max{|x|,
√

2|t|}−(N+2−α)min



1,

(
max{|x|,

√
2|t|}

R

)−δ


 .

Remark 4.4.24 For 0 < αq < N + 2, the inequality (4.4.10) in Proposition 4.4.4 implies

(
ˆ

RN+1

(
ER,δα ∗ f

) q(N+2)
N+2−αq

dxdt

)1− αq
N+2

≤ C

ˆ

RN+1

f qdxdt ∀f ∈ Lq(RN+1), f ≥ 0.

(4.4.38)
Hence, we get the isoperimetric inequality :

|E|1−
αp

N+2 ≤ CCap
ER,δ

α ,p
(E), (4.4.39)

for all measurable sets E ⊂ R
N+1.

Also, we recall that a positive function w ∈ L1
loc(R

N+1) is called an A1 weight, if the quality

[w]A1 := sup

((
 

Q
wdyds

)
ess sup
(x,t)∈Q

1

w(x, t)

)
<∞,
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where the supremum is taken over all cylinder Q = Q̃R(x, t) ⊂ R
N+1. The constant [w]A1

is called the A1 constant of w.

To prove the Proposition (4.4.23), we need to introduce the (R, δ)−Wolff parabolic po-
tential,

W
R,δ
α,p [µ](x, t) =

ˆ ∞

0

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

min

{
1,
( ρ
R

)−δ} dρ

ρ
for any (x, t) ∈ R

N+1,

where p > 1, 0 < αp ≤ N + 2, 0 < δ < αp′ and R ∈ (0,∞] and µ ∈ M
+(RN+1).

It is easy to see that

W
R,δ
α,p [µ](x, t) ≤ C sup

(y,s)∈suppµ
W
R,δ
α,p [µ](y, s). (4.4.40)

for some a constant C = C(N,α, p, δ) > 0.

Remark 4.4.25 We easily verify that the Theorem 4.4.1 also holds for W
R,δ,R1
α,p [µ] and

M
R,δ,R1
αp [µ] :

W
R,δ,R1
α,p [µ](x, t) =

ˆ R1

0

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

min

{
1,
( ρ
R

)−δ} dρ

ρ
,

M
R,δ/(p−1),R1
α,p [µ](x, t) = sup

0<ρ<R1

(
µ(Q̃ρ(x, t))

ρN+2−αp min

{
1,
( ρ
R

)−δ(p−1)
})

for any (x, t) ∈ R
N+1,

where 0 < δ < αp′, 1 < p < α−1(N + 2) and R1 > R > 0. This means, for w ∈ A∞, µ ∈
M

+(RN+1), there exist constants C1, C2 > 0 and ε0 ∈ (0, 1) depending on N,α, p, δ, [w]A∞
such that for any λ > 0 and ε ∈ (0, ε0)

w({WR,δ,R1
α,p [µ] > aλ, (MR,δ(p−1),R1

αp [µ])
1

p−1 ≤ ελ}) ≤ C1 exp(−C2ε
−1)w({WR,δ,R1

α,p [µ] > λ}),
(4.4.41)

where a = 2 + 3
N+2−αp+δ(p−1)

p−1 .
Therefore, for q > p− 1

||WR,δ,R1
α,p [µ]||Lq(RN+1,dw) ≤ C3||(MR,δ(p−1),R1

αp [µ])
1

p−1 ||Lq(RN+1,dw),

where C3 = C3(N,α, p, δ, q). Letting R1 → ∞, we get

||WR,δ
α,p [µ]||Lq(RN+1,dw) ≤ C3||(MR,δ(p−1)

αp [µ])
1

p−1 ||Lq(RN+1,dw), (4.4.42)

where M
R,δ(p−1)
αp [µ] := M

R,δ(p−1),∞
αp [µ].

We will need the following three Lemmas to prove the Proposition (4.4.23).

Lemma 4.4.26 Let 0 < p ≤ α−1(N + 2) and 0 < β < (N+2)(p−1)
N+2−αp+δ(p−1) . There exists a

constant c depending on δ such that for each Q̃r = Q̃r(x, t)
 

Q̃r

(WR,δ
α,p [µ](y, s))

βdyds ≤ c(WR,δ
α,p [µ](x, t))

β . (4.4.43)
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Proof. We set

U rα,p[µ](y, s) =

ˆ ∞

r

(
|µ|(Q̃ρ(y, s))
ρN+2−αp

) 1
p−1

min

{
1,
( ρ
R

)−δ} dρ

ρ
and

Lrα,p[µ](y, s) =

ˆ r

0

(
µ(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1

min

{
1,
( ρ
R

)−δ} dρ

ρ
.

Thus,
 

Q̃r

(WR,δ
α,p [µ](y, s))

δdyds ≤ c1

 

Q̃r

(U rα,p[µ](y, s))
δdyds+ c1

 

Q̃r

(Lrα,p[µ](y, s))
δdyds.

Since for each (y, s) ∈ Q̃r and ρ ≥ r we have Q̃ρ(y, s) ⊂ Q̃2ρ(x, t), thus for each (y, s) ∈ Q̃r,

U rα,p[µ](y, s) ≤
ˆ ∞

r

(
µ(Q̃2ρ(x, t))

ρN+2−αp

) 1
p−1 (

max{1, ρ
R
}
)−δ dρ

ρ

≤ c2W
R,δ
α,p [µ](x, t),

which implies
 

Q̃r

(U rα,p[µ](y, s))
δdyds ≤ c2(W

R,δ
α,p [µ](x, t))

δ.

Since for each (y, s) ∈ Q̃r and ρ ≤ r we have Q̃ρ(y, s) ⊂ Q̃2r(x, t) thus, Lrα,p[µ] =

Lrα,p[µχQ̃2r(x,t)
] ≤ W

R,δ
α,p [µχQ̃2r(x,t)

] in Q̃r(x, t). We now consider two cases.
Case 1 : r ≤ R. We have for a > 0,

 

Q̃r

(Lrα,p[µ](y, s))
βdyds ≤

 

Q̃r

(Wr
α,p[µχQ̃2r(x,t)

](y, s))βdyds

=
1

|Q̃r|
β

ˆ ∞

0
λβ−1|{Wr

α,p[µχQ̃2r(x,t)
] > λ} ∩ Q̃r|dλ

≤ aβ + c2r
−N−2

ˆ ∞

a
λβ−1|{Wr

α,p[µχQ̃2r(x,t)
] > λ}|dλ.

If αp = N +2, we use (4.4.11) in Remark 4.4.5 with ε = αp
β and take a = (µ(Q̃2r(x, t)))

1
p−1

 

Q̃r

(Lrα,p[µ](y, s))
βdyds ≤ aβ + c3r

−N−2

ˆ ∞

a
λβ−1

(
(µ(Q̃2r(x, t)))

1
p−1

λ

)αp+ε(p−1)
ε

rαpdλ

≤ c4(µ(Q̃2r(x, t)))
β

p−1

≤ c5(W
R,δ
α,p [µ](x, t))

β .

If αp < N + 2, we use (4.4.8) in Proposition 4.4.4 and take a = µ(Q̃2r(x, t))
1

p−1 r
−N+2−αp

p−1 ,
we get

 

Q̃r

(Lrα,p[µ](y, s))
βdyds ≤ c6

(
µ(Q̃2r(x, t))

1
p−1 r

−N+2−αp
p−1

)β

≤ c7(W
R,δ
α,p [µ](x, t))

β .
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Case 2 : r ≥ R. As above case, we have

 

Q̃r

(Wα− δ
p′ ,p

[µχQ̃2r(x,t)
](y, s))βdyds ≤ c6

(
µ(Q̃2r(x, t))

1
p−1 r

−N+2−αp+δ(p−1)
p−1

)β
.

Since W
R,δ
α,p [µχQ̃2r(x,t)

] ≤ RδWα− δ
p′ ,p

[µχQ̃2r(x,t)
], thus

 

Q̃r

(Lrα,p[µ](y, s))
βdyds ≤ c6

(
µ(Q̃2r(x, t))

1
p−1 r

−N+2−αp+δ(p−1)
p−1 Rδ

)β

≤ c5(W
R,δ
α,p [µ](x, t))

β .

Therefore, we get (4.4.43). The proof completes.

Remark 4.4.27 It is easy to see that the inequality (4.4.43) does not true for W
R
α,p[δ(0,0)]

where δ(0,0) is the Dirac mass at (x, t) = (0, 0).

Remark 4.4.28 From Lemma (4.4.26), we have, if there exists (x0, t0) ∈ R
N+1 such that

W
R,δ
α,p [µ](x0, t0) <∞ then W

R,δ
α,p [µ] ∈ Lβloc(R

N+1) for any 0 < β < (N+2)(p−1)
N+2−αp+δ(p−1) .

Lemma 4.4.29 Let R ∈ (0,∞], 1 < p ≤ α−1(N + 2) and 0 < δ < αp′. Assume that
αp < N + 2 if R = ∞. Then, for any compact set K ⊂ R

N+1 there exists a µ ∈ M
+(K),

called a capacitary measure of K such that

C−1
1 Cap

E
R,δ/p′
α ,p

(K) ≤ µ(K) ≤ C1Cap
E

R,δ/p′
α ,p

(K)

and W
R,δ
α,p [µ](x, t) ≥ C2 a.e in K and W

R,δ
α,p [µ] ≤ C3 a.e in R

N+1 for some constants
Ci = Ci(N,α, p), i = 1, 2, 3.

Proof. We consider a measure ν on M = R
N+1 × Z as follows

ν = m⊗
∞∑

n=−∞
δn,

where m is Lebesgue measure, and δn denotes unit mass at n. Thus, f ∈ Lp(M,dν), means
f = {fn}∞−∞, with

||f ||pLp(M,dν) =
∞∑

n=−∞
||fn||pLp(RN+1)

.

Let nR ∈ Z ∪ {+∞} such that 2−nR ≤ R < 2−nR+1 if R < +∞ and nR −∞ if R = +∞.
We define a kernel Pα in R

N+1 ×M = R
N+1 × R

N+1 × Z by

Pα(x, t, x
′, t′, n) = min{1, 2(n−nR)δ/p′}2n(N+2−α)χQ̃2−n

(x− x′, t− t′).
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If f is ν−measurable and nonnegative and µ ∈ M
+(RN+1), the corresponding potentials

Pαf ,
∨
Pαµ and V µ

Pα,p
are everywhere well defined and given by

(Pαf)(x, t) =
ˆ

M
Pα(x, t, x

′, t′, n)f(x′, t′, n)dν(x′, t′, n)

=

∞∑

n=−∞
min{1, 2(n−nR)δ/p′}2n(N+2−α)(χQ̃2−n

∗ fn)(x, t),

(
∨
Pαµ)(x

′, t′, n) =
ˆ

RN+1

Pα(x, t, x
′, t′, n)dµ(x, t)

= min{1, 2(n−nR)δ/p′}2n(N+2−α)(χQ̃2−n
∗ µ)(x′, t′),

V µ
Pα,p

(x, t) = (Pα(
∨
Pαµ)

p′−1)(x, t)

=

∞∑

n=−∞
min{1, 2(n−nR)δ}2np′(N+2−α)

(
χQ̃2−n

∗
(
χQ̃2−n

∗ µ
)p′−1

)
(x, t),

for any (x, t, x′, t′, n) ∈ R
N+1 ×M .

Since for all (x, t) ∈ R
N+1,

|Q̃1|2−(n+1)(N+2)(µ(Q̃2−n−1(x, t)))p
′−1 ≤

(
χQ̃2−n

∗
(
χQ̃2−n

∗ µ
)p′−1

)
(x, t)

≤ |Q̃1|2−n(N+2)(µ(Q̃2−n+1(x, t)))p
′−1,

thus,
c−1
1 V µ

Pα,p
≤ W

R,δ
α,p [µ] ≤ c1V

µ
Pα,p

, (4.4.44)

for some a positive constant c1.
We now define the Lp−capacity with 1 < p <∞

CapPα,p(E) = inf{||f ||pLp(M,dν) : f ∈ Lp+(M,dν),Pαf ≥ χE}.

for any Borel set E ⊂ R
N+1. By [2, Theorem 2.5.1], for any compact set K ⊂ R

N+1

CapPα,p(K)1/p = sup{µ(K) : µ ∈ M
+(K), ||

∨
Pαµ||Lp′ (M,dν) ≤ 1}.

By [2, Theorem 2.5.6], for any compact set K in R
N+1, there exists µ ∈ M

+(K), called
a capacitary measure for K, such that V µ

Pα,p
≥ 1 CapPα,p − q.e. in K, V µ

Pα,p
≤ 1 a.e in

supp(µ) and µ(K) = CapPα,p(K). Thanks to (4.4.44) and (4.4.40), we have W
R,δ
α,p [µ] ≥ c−1

1

CapPα,p − q.e. in K, WR,δ
α,p [µ] ≤ c2 a.e in R

N+1 and µ(K) = CapPα,p(K).
On the other hand,

||
∨
Pαµ||p

′

Lp′ (M,dν)
=

∞∑

n=−∞
||min{1, 2(n−nR)δ/p′}2n(N+2−α)χQ̃2−n

∗ µ||p′
Lp′ (RN+1)

=

∞∑

n=−∞
min{1, 2(n−nR)δ}2np′(N+2−α)

ˆ

RN+1

(χQ̃2−n
∗ µ)p′dxdt,
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this quantity is equivalent to

ˆ

RN+1

ˆ ∞

0

(
µ(Q̃ρ(x, t))

ρN+2−α

)p′
min{1,

( ρ
R

)−δ
}dρ
ρ
dxdt.

So, thanks to (4.4.42) in Remark 4.4.25, we obtain

c−1
2 ||ER,δ/p′α ∗ µ||p′

Lp′ (RN+1)
≤ ||

∨
Pαµ||p

′

Lp′ (M,dν)
≤ c2||ER,δ/p

′
α ∗ µ||p′

Lp′ (RN+1)
.

for c2 = c2(N, p, α, δ). It follows that two capacities CapPα,pand Cap
E

R,δ/p′
α ,p

are equivalent.
Therefore, we obtain the desired results.

Lemma 4.4.30 Let R ∈ (0,∞], 1 < p ≤ α−1(N + 2) and 0 < δ < αp′. Assume that
αp < N+2 if R = ∞. Then there exists C = C(N,α, p, δ) such that for any µ ∈ M

+
b (R

N+1)

Cap
E

R,δ/p′
α ,p

({WR,δ
α,p [µ] > λ}) ≤ Cλ−p+1µ(RN+1) ∀ λ > 0. (4.4.45)

In particular, WR,δ
α,p [µ] <∞ Cap

E
R,δ/p′
α ,p

−q.e. in R
N+1.

Proof. By Lemma 4.4.29, there is a capacitary measure σ for a compact subset K of
{WR,δ

α,p [µ] > λ} such that W
R,δ
α,p [σ](x, t) ≤ c1 on suppσ and Cap

E
R,δ/p′
α ,p

(K) ≈ σ(K) where

c1 = c1(N,α, p, δ).

Set M[µ, σ](x, t) = sup
ρ>0

µ(Q̃ρ(x,t))

σ(Q̃3ρ(x,t))
for any (x, t) ∈ suppσ. Then, for any (x, t) ∈ suppσ

λ <W
R,δ
α,p [µ](x, t) ≤ (M[µ, σ](x, t))

1
p−1

ˆ ∞

0

(
σ(Q̃3ρ(x, t))

ρN+2−αp

) 1
p−1

min{1,
( ρ
R

)−δ
}dρ
ρ

≤ c2 (M[µ, σ](x, t))
1

p−1 .

Thus, for any λ > 0, suppσ ⊂ {c2 (M[µ, σ])
1

p−1 > λ} = {M[µ, σ] >
(
λ
c2

)p−1
}. By Vitali

Covering Lemma one can cover suppσ with a union of Q̃3ρi(xi, ti) for i = 1, ...,m(K) so
that Q̃ρi(xi, ti) are disjoint and σ(Q̃3ρi(xi, ti)) < (λ/c2)

−p+1µ(Q̃ρi(xi, ti)). It follows that

CapER
α ,p

(K) ≤ c3

m(K)∑

i=1

σ(Q̃3ρi(xi, ti))

≤ c3c
p−1
2 λ−p+1

m(K)∑

i=1

µ(Q̃ρi(xi, ti))

≤ c3c
p−1
2 λ−p+1µ(RN+1).

So, for all compact subset K of {WR,δ
α,p [µ] > λ},

Cap
E

R,δ/p′
α ,p

(K) ≤ c1c
p−1
2 λ−p+1µ(RN+1).

Therefore we obtain (4.4.45).
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Remark 4.4.31 Let 0 < δ < α < N + 2 and δ ≤ 1. From the following inequality

|max{|x1 − z|,
√

2|t1 − s|}−N−2+α −max{|x2 − z|,
√

2|t2 − s|}−N−2+α|
≤ c1

(
max{|x1 − z|,

√
2|t1 − s|}−N−2+α−δ +max{|x2 − z|,

√
2|t2 − s|}−N−2+α−δ

)

×
(
|x1 − x2|+ |t1 − t2|1/2

)δ
,

for all (x1, t1), (x2, t2), (z, s) ∈ R
N+1, where c1 is a constant depending on N,α, δ. Thus,

for µ ∈ M
+
b (R

N+1)

|Iα[µ](x1, t1)−Iα[µ](x2, t2)| ≤ c2 (Iα−δ[µ](x1, t1) + Iα−δ[µ](x2, t2))
(
|x1 − x2|+ |t1 − t2|1/2

)δ
,

for all (x1, t1), (x2, t2) ∈ R
N+1 and c2 = c1

N+2−α+δ
N+2−α .

Consequently, for any µ ∈ M
+
b (R

N+1), Iα[µ] is δ−Holder CapEα−δ
2
,2-quasicontinuous this

means, for any ε > 0 there exists a Borel set Oε ⊂ R
N+1 and cε > 0 such that

|Iα[µ](x1, t1)− Iα[µ](x2, t2)| ≤ cε

(
|x1 − x2|+ |t1 − t2|1/2

)δ
∀(x1, t1), (x2, t2) ∈ Oε

and CapEα−δ
2
,2(R

N+1\Oε) < ε.

Now we are ready to prove Proposition 4.4.23.
Proof of Proposition 4.4.23. By Lemma 4.4.26, 4.4.29 and 4.4.30, there is the capacitary
measure µ of a compact subset K ⊂ R

N+1 such that W
R,δp′
α,p [µ] ≥ c1 a.e in K, WR,δp′

α,p [µ] ≤
c2 a.e in R

N+1 and Cap
ER,δ

α ,p
({WR,δp′

α,p [µ] > λ}) ≤ c2λ
−p+1Cap

ER,δ
α ,p

(K) for all λ > 0,

(WR,δp′
α,p [µ])β ∈ A1 for any 0 < β < (N+2)(p−1)

N+2−αp+δp . From second assumption we have
ˆ

RN+1

|g|(WR,δp′
α,p [µ])βdxdt ≤ C2

ˆ

RN+1

|f |(WR,δp′
α,p [µ])βdxdt.

Thus
ˆ

K
|g|dxdt ≤ c−δ1

ˆ

RN+1

|g|(WR,δp′
α,p [µ])βdxdt

≤ c3

ˆ

RN+1

|f |(WR,δp′
α,p [µ])βdxdt

= c3β

ˆ c1

0

ˆ

W
R,δp′
α,p [µ]>λ

|f |dxdtλβ−1dλ.

By first assumption we get
ˆ

W
R,δp′
α,p [µ]>λ

|f |dxdt ≤ C1Cap
ER,δ

α ,p
({WR,δp′

α,p [µ] > λ}) ≤ c4λ
−p+1Cap

ER,δ
α ,p

(K).

Therefore,
ˆ

K
|g|dxdt ≤ c5δ

ˆ c1

0
λ−p+1Cap

ER,δ
α ,p

(K)λδ−1dλ = c6Cap
ER,δ

α ,p
(K),

since one can choose δ > p− 1. This completes the proof of the Proposition.
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Definition 4.4.32 Let s > 1, α > 0. We define the space M
Hα,s(RN+1) (MGα,s(RN+1)

resp.) to be the set of all measure µ ∈ M(RN+1) such that

[µ]MHα,s(RN+1) := sup
{
|µ|(K)/CapHα,s(K) : CapHα,s(K) > 0

}
<∞,

(
[µ]MGα,s(RN+1) := sup

{
|µ|(K)/CapGα,s(K) : CapGα,s(K) > 0

}
<∞ resp.

)

where the supremum is taken all compact sets K ⊂ R
N+1.

For simplicity, we will write M
Hα,s,MGα,s to denote M

Hα,s(RN+1),MGα,s(RN+1) resp.

We see that if αs ≥ N + 2, M
Hα,s(RN+1) = {0}, if αs < N + 2, M

Hα,s(RN+1) ⊂
M

Gα,s(RN+1). On the other hand, MGα,s(RN+1) ⊃ Mb(R
N+1) if αs > N + 2.

We now have the following two remarks :

Remark 4.4.33 For s > 1, there is C = C(N,α, s) > 0 such that

[f ]MGα,p ≤ C[|f |s]1/s
MGα,p for all function f. (4.4.46)

Indeed, set a = [|f |s]MGα,p , so for any compact set K in R
N+1,

ˆ

K
|f |sdxdt ≤ aCapGα,p(K).

This gives 2aCapGα,p(K) ≥
´

K (|f |s + c1a) dxdt ≥ c2a
1−1/s

´

K |f |dxdt, here we used (4.4.24)
in Remark 4.4.11 at the first inequality and Holder’s inequality at the second one. It follows
(4.4.46).

Remark 4.4.34 Assume that p > 1 and 2
p < α < N + 2

p . Clearly, from Corollary 4.4.20

we assert that for ω ∈ M
+(RN )

C−1
1 [ω]

M
Iα−2/p,p ≤

[
ω ⊗ δ{t=0}

]
MHα,p ≤ C1 [ω]

M
Iα−2/p,p ,

C−1
2 [ω]

M
Gα−2/p,p ≤

[
ω ⊗ δ{t=0}

]
MGα,p ≤ C2 [ω]

M
Gα−2/p,p ,

for some Ci = Ci(N, p, α), i = 1, 2. Where M
Iα−2/p,p := M

Iα−2/p,p(RN ) , M
Gα−2/p,p :=

M
Gα−2/p,p(RN ) and

[ω]
M

Iα−2/p,p(RN )
:= sup

{
ω(K)/CapIα−2/p,p

(K) : CapIα−2/p,p
(K) > 0

}
,

[ω]
M

Gα−2/p,p(RN )
:= sup

{
ω(K)/CapGα−2/p,p

(K) : CapGα−2/p,p
(K) > 0

}
,

where the supremum is taken all compact sets K ⊂ R
N .

Clearly, Theorem 4.4.2 and Proposition 4.4.23 lead to the following result.

Proposition 4.4.35 Let q > p − 1, s > 1 and 0 < αp < N + 2. Then the following
quantities are equivalent

[(
W
R
α,p[µ]

)q]
MHα,s

,
[(
I
R
αp[µ]

) q
p−1

]
MHα,s

and
[(
M
R
αp[µ]

) q
p−1

]
MHα,s

,

for every µ ∈ M
+(RN+1) and 0 < R ≤ ∞.
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In the next result, we present a characterization of the following trace inequality :

||ER,δα ∗ f ||Lp(RN+1,dµ) ≤ C1||f ||Lp(RN+1) ∀f ∈ Lp(RN+1). (4.4.47)

Theorem 4.4.36 Let 0 < R ≤ ∞,1 < p < α−1(N +2), 0 < δ < α and µ be a nonnegative
Radon measure on R

N+1. Then the following statements are equivalent.

1. The trace inequality (4.4.47) holds.

2. There holds

||ER,δα ∗ f ||Lp(RN+1,dω) ≤ C2||f ||Lp(RN+1) ∀f ∈ Lp(RN+1), (4.4.48)

where dω = (IR,δα µ)p
′
dxdt.

3. There holds

||ER,δα ∗ f ||Lp,∞(RN+1,dµ) ≤ C3||f ||Lp(RN+1) ∀f ∈ Lp(RN+1). (4.4.49)

4. For every compact set E ⊂ R
N+1,

µ(E) ≤ C4CapER,δ
α ,p

(E). (4.4.50)

5. I
R,δ
α [µ] <∞ a.e and

I
R,δ
α [(IR,δα [µ])p

′
] ≤ C5I

R,δ
α [µ] a.e. (4.4.51)

6. For every compact set E ⊂ R
N+1,

ˆ

E
(IR,δα [µ])p

′
dxdt ≤ C6CapER,δ

α ,p
(E). (4.4.52)

7. For every compact set E ⊂ R
N+1,

ˆ

RN+1

(IR,δα [µχE ])
p′dxdt ≤ C7µ(E). (4.4.53)

8. For every compact set E ⊂ R
N+1,
ˆ

E
(IR,δα [µχE ])

p′dxdt ≤ C8µ(E). (4.4.54)

We can find a simple sufficient condition on µ so that trace inequality (4.4.47) is satisfied
from the isoperimetric inequality (4.4.39).
Proof of Theorem 4.4.36. As in [80] we can show that 1 ⇔ 2 ⇔ 3 ⇔ 4 ⇔ 6 ⇔ 7 and
7 ⇒ 8, 5 ⇒ 2. Thus, it is enough to show that 8.⇒ 5. First, we need to show that

(
ˆ ∞

r

µ(Q̃ρ(x, t))

ρN+2−α min{1,
( ρ
R

)−δ
}dρ
ρ

)p′−1

≤ c1r
−α
(
min{1,

( r
R

)−δ
}
)−1

(4.4.55)
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We have for any (y, s) ∈ Q̃r(x, t)

I
R,δ
α [µχQ̃r(x,t)

](y, s) =

ˆ ∞

0

µ(Q̃r(x, t) ∩ Q̃ρ(y, s))
ρN+2−α min{1,

( ρ
R

)−δ
}dρ
ρ

≥
ˆ 4r

2r

µ(Q̃r(x, t) ∩ Q̃ρ(y, s))
ρN+2−α min{1,

( ρ
R

)−δ
}dρ
ρ

≥ c2
µ(Q̃r(x, t))

rN+2−α min{1,
( r
R

)−δ
}.

In (4.4.54), we take E = Q̃r(x, t)

cµ(Q̃r(x, t)) ≥
ˆ

Q̃r(x,t)
(Iα[µχQ̃r(x,t)

])p
′

≥ cp
′

2

(
µ(Q̃r(x, t))

rN+2−α min{1,
( r
R

)−δ
}
)p′

|Q̃r(x, t)|.

So µ(Q̃r(x, t)) ≤ c3r
N+2−αp

(
min{1,

(
r
R

)−δ}
)−p

which implies (4.4.55).

Next we set

Lr[µ](x, t) =

ˆ +∞

r

µ(Q̃ρ(x, t))

ρ
min{1,

( ρ
R

)−δ
}dρ
ρ
,

Ur[µ](x, t) =

ˆ r

0

µ(Q̃ρ(x, t))

ρ
min{1,

( ρ
R

)−δ
}dρ
ρ
,

and
dω = (Iαµ)

p′dxdt, dσ1,r = (Lr[µ])
p′ dxdt, dσ2,r = (Ur[µ])

p′ dxdt.

We have dω ≤ 2p
′−1 (dσ1,r + dσ2,r) . To prove (4.4.51) we need to show that

ˆ ∞

0

σ1,r(Q̃r(x, t))

rN+2−α min{1,
( r
R

)−δ
}dr
r

≤ c4I
R,δ
α [µ](x, t), (4.4.56)

ˆ ∞

0

σ2,r(Q̃r(x, t))

rN+2−α min{1,
( r
R

)−δ
}dr
r

≤ c5I
R,δ
α [µ](x, t). (4.4.57)

Since, for all r > 0, 0 < ρ < r and (y, s) ∈ Q̃r(x, t) we have Q̃ρ(y, s) ⊂ Q̃2r(x, t). So,

σ2,r(Q̃r(x, t)) =

ˆ

Q̃r(x,t)
(Ur[µ](y, s))

p′ dyds =

ˆ

Q̃r(x,t)

(
Ur[µχQ̃2r(x,t)

](y, s)
)p′

dyds.

Thus, from (4.4.54) we get

σ2,r(Q̃r(x, t)) ≤
ˆ

Q̃2r(x,t)

(
Ur[µχQ̃2r(x,t)

](y, s)
)p′

dyds

≤
ˆ

Q̃2r(x,t)

(
I
R,δ
α [µχQ̃2r(x,t)

](y, s)
)p′

dyds

≤ c6µ(Q̃2r(x, t)).
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Therefore, (4.4.57) follows.
Since, for all r > 0, ρ ≥ r and (y, s) ∈ Q̃r(x, t) we have Q̃ρ(y, s) ⊂ Q̃2ρ(x, t). So, for all
(y, s) ∈ Q̃r(x, t) we have

Lr[µ](y, s) ≤
ˆ +∞

r

µ(Q̃2ρ(x, t))

ρN+2−α min{1,
( ρ
R

)−δ
}dρ
ρ

≤ c7Lr[µ](x, t).

Hence,

σ1,r(Q̃r(x, t)) =

ˆ

Q̃r(x,t)
(Lr[µ](y, s))

p′ dyds

≤ c8r
N+2 (Lr[µ](x, t))

p′ .

Since rα−1min{1,
(
r
R

)−δ} ≤ 1
α−δ

d
dr

(
rαmin{1,

(
r
R

)−δ}
)
, we deduce that

ˆ ∞

0

σ1,r(Q̃r(x, t))

rN+2−α min{1,
( r
R

)−δ
}dr
r

≤ c7

ˆ ∞

0
rα−1 (Lr[µ](x, t))

p′ min{1,
( r
R

)−δ
}dr

≤ c7
α− δ

ˆ ∞

0

d

dr

(
rαmin{1,

( r
R

)−δ
}
)
(Lr[µ](x, t))

p′ dr

≤ c8

ˆ ∞

0
rα (Lr[µ](x, t))

p′−1 µ(Q̃r(x, t))

rN+2−α min{1,
( r
R

)−δ
}2dr

r
.

Therefore, we get (4.4.56) from (4.4.55). This completes the proof of Theorem.

Remark 4.4.37 It is easy to assert that if 8. holds then for any 0 < β < N + 2

Iβ

[(
I
R,δ
α [µ]

)p′]
≤ CIβ [µ], (4.4.58)

for some C = C(N,α, β, δ, p) > 0.

Corollary 4.4.38 Let p > 1, α > 0 such that 0 < αp < N + 2. There holds

C−1
1 [µ]p

′

MHα,p ≤
[
(Iα[µ])

p′
]
MHα,p

≤ C1 [µ]
p′

MHα,p (4.4.59)

for all µ ∈ M
+(RN+1). Furthermore,

[ϕn ∗ µ]MHα,p ≤ C2 [µ]MHα,p (4.4.60)

for n ∈ N, µ ∈ M
+(RN+1) where {ϕn} is a sequence of mollifiers in R

N+1. Here Ci =
Ci(N, p, α), i = 1, 2.

Proof. For R = ∞ we have I
R,δ
α [µ] = Iα[µ] and ER,δα = Eα. Thus, by (4.4.20) in Corollary

4.4.10 and Theorem 4.4.36 we get for every compact set E ⊂ R
N+1,

µ(E) ≤ c1CapHα,p(E)
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if and only if for every compact set E ⊂ R
N+1,

ˆ

E
(Iα[µ])

p′ dxdt ≤ c2CapHα,p(E).

It follows (4.4.59).
Since Iα[ϕn ∗µ] = ϕn ∗ Iα[µ] ≤ M (Iα[µ]) and M is bounded in Lp

′
(RN+1, dw) with w ∈ Ap′

yield
ˆ

RN+1

(Iα[ϕn ∗ µ])p
′
dw ≤ c3([w]Ap′ )

ˆ

RN+1

(Iα[µ])
p′ dw.

Thanks to Proposition 4.4.23 we have
[
(Iα[ϕn ∗ µ])p

′]
MHα,p

≤ c4

[
(Iα[µ])

p′
]
MHα,p

,

which implies (4.4.60).

Corollary 4.4.39 Let p > 1, α > 0 with 0 < αp ≤ N + 2, 0 < δ < α and R, d > 0. There
holds [(

I
R,δ
α [µ]

)p′]

MGα,p

≤ C1(d/R,R) [µ]
p′

MGα,p (4.4.61)

for all µ ∈ M
+(RN+1) with diam(supp(µ)) ≤ d. Furthermore,

[ϕn ∗ µ]MGα,p ≤ C2(d) [µ]MGα,p (4.4.62)

for n ∈ N, µ ∈ M
+(RN+1) with diam(supp(µ)) ≤ d where {ϕn} is a sequence of standard

mollifiers in R
N+1.

Proof. It is easy to see that

(c1(d/R))
−1||ERα [µ]||Lp′ (RN+1) ≤ ||ER,δα ∗ µ||Lp′ (RN+1) ≤ c1(d/R)||ERα [µ]||Lp′ (RN+1)

for any µ ∈ M
+(RN+1) with diam(supp(µ)) ≤ d, thus two quantities Cap

ER,δ
α ,p

(E) and

CapER
α ,p

(E) are equivalent for every compact set E ⊂ R
N+1, diam(E) ≤ d where equi-

valent constants depend only on N, p, α and d/R. Therefore, by Corollary 4.4.10 we get
Cap

ER,δ
α ,p

(E) ≈ CapGα,p(E) for every compact set E ⊂ R
N+1, diam(E) ≤ d where equiva-

lent constants depend on d/R and R. Thus, by Theorem 4.4.36 and diam(supp(µ)) ≤ d we
get, if for every compact set E ⊂ R

N+1,

µ(E) ≤ c2(d/R,R)CapGα,p(E),

then for every compact set E ⊂ R
N+1,

ˆ

E

(
I
R,δ
α [µ]

)p′
dxdt ≤ c3(d/R,R)Cap

ER,δ
α ,p

(E) ≤ c4(d/R,R)CapGα,p(E).

It follows (4.4.61). As in the Proof of Corollary 4.4.38 we also have for w ∈ Ap′

ˆ

RN+1

(
I
1,δ
α [ϕn ∗ µ]

)p′
dw ≤ c5([w]Ap′ )

ˆ

RN+1

(
I
1,δ
α [µ]

)p′
dw.

Thanks to Proposition 4.4.23 and Theorem 4.4.36 we obtain (4.4.62).
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Remark 4.4.40 Likewise (see [71, Lemma 5.7]), we can verify that if 2
p < α < N + 2

p ,

[ϕ1,n ∗ ω1]
M

Iα−2/p,p ≤ C1 [ω1]
M

Iα−2/p,p and

[ϕ1,n ∗ ω2]
M

Gα−2/p,p ≤ C2(d) [ω2]
M

Gα−2/p,p ,

for n ∈ N and ω1, ω2 ∈ M
+(RN ) with diam(supp(ω2)) ≤ d where C1 = C1(N,α, p), C2(d) =

C2(N,α, p, d), {ϕ1,n} is a sequence of standard mollifiers in R
N and [.]

M
Iα−2/p,p , [.]MGα−2/p,p

was defined in Remark 4.4.34. Hence, we obtain
[
(ϕ1,n ∗ ω1)⊗ δ{t=0}

]
MHα,p ≤ C3

[
ω1 ⊗ δ{t=0}

]
MHα,p ,[

(ϕ1,n ∗ ω2)⊗ δ{t=0}
]
MGα,p ≤ C4(d)

[
ω2 ⊗ δ{t=0}

]
MGα,p ,

for n ∈ N and ω1, ω2 ∈ M
+(RN+1), diam(supp(µ)) ≤ d where C3 = C3(N,α, p), C4(d) =

C4(N,α, p, d).

Proposition 4.4.41 Let q > 1, 0 < αq < N + 2, 0 < R ≤ ∞, 0 < δ < α and K > 0.
Let 0 ≤ f ∈ Lqloc(R

N+1). Let C4, C5 be constants in inequalities (4.4.50) and (4.4.51) in
Theorem 4.4.36 with p = q′. Suppose that {un} is a sequence of nonnegative measurable
functions in R

N+1 satisfying

un+1 ≤ KI
R,δ
α [uqn] + f ∀n ∈ N

u0 ≤ f (4.4.63)

Then, if for every compact set E ⊂ R
N+1,

ˆ

E
f qdxdt ≤ CCap

ER,δ
α ,q′(E) (4.4.64)

with

C ≤ C4

(
2−q+1

C5(q − 1)

(
q − 1

qK2q−1

)q)q−1

, (4.4.65)

then

un ≤ Kq2q−1

q − 1
I
R,δ
α [f q] + f ∀n ∈ N. (4.4.66)

Proof. From (4.4.50) and (4.4.51) in Theorem 4.4.36, we see that (4.4.64) implies

I
R,δ
α [(IR,δα [f q])q] ≤

(
C

C4

) 1
q−1

C5I
R,δ
α [f q]. (4.4.67)

Now we prove (4.4.66) by induction. Clearly, (4.4.66) holds with n = 0. Next we assume
that (4.4.66) holds with n = m. Then, by (4.4.65), (4.4.67) and (4.4.63) we have

um+1 ≤ KI
R,δ
α [uqn] + f

≤ K2q−1

(
Kq2q−1

q − 1

)q
I
R,δ
α [(IR,δα [f q])q] +K2q−1

I
R,δ
α [f q] + f

≤ K2q−1

(
Kq2q−1

q − 1

)q (
C

C4

) 1
q−1

C5I
R,δ
α [f q] +K2q−1

I
R,δ
α [f q] + f

≤ Kq2q−1

q − 1
I
R,δ
α [f q] + f.
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Therefore (4.4.66) also holds true with n = m+1. This completes the proof of the Theorem.

Corollary 4.4.42 Let q > N+2
N+2−α , α > 0 and f ∈ Lq+(R

N+1). There exists a constant
C > 0 depending on N,α, q such that if for every compact set E ⊂ R

N+1,
´

E f
qdxdt ≤

CCapHα,q′(E), then u = Hα[u
q] + f admits a positive solution u ∈ Lqloc(R

N+1).

Proof. Consider the sequence {un} of nonnegative functions defined by u0 = f and un+1 =
Hα[u

q
n] + f ∀ n ≥ 0. It is easy to see that un+1 ≤ c1I2[u

q
n] + f ∀n ≥ 0. By Proposition

4.4.41 and Corollary 4.4.38, there exists a constant c2 = c2(N,α, q) > 0 such that if for
every compact set E ⊂ R

N+1,
´

E f
qdxdt ≤ c2CapHα,q′(E) then un is well defined and

un ≤ c1q3
q−1

q − 1
Iα[f

q] + f ∀n ≥ 0.

Since {un} is nondecreasing, thus thanks to the dominated convergence theorem we obtain
u(x, t) = lim

n→∞
un(x, t) is a solution of u = Hα[u

q]+f which u ∈ Lqloc(R
N+1). This completes

the proof of the Corollary.

Corollary 4.4.43 Let q > 1, α > 0, 0 < R ≤ ∞, 0 < δ < α and µ ∈ M
+(RN+1). The

following two statements are equivalent.

a. for every compact set E ⊂ R
N+1,

´

E f
q ≤ CCap

ER,δ
α ,q′(E) for some a constant C > 0

b. There exists a function u ∈ Lqloc(R
N+1) such that u = I

R,δ
α [uq] + εf for some ε > 0.

Proof. We will prove b. ⇒ a. Set dω(x, t) =
((

I
R,δ
α [uq]

)q
+ εqf q

)
dxdt, thus we have

dw(x, t) ≥
(
IR,δα [ω]

)q
dxdt. Let Mω denote the centered Hardy-littlewoood maximal func-

tion which is defined for g ∈ L1
loc(R

N+1, dω),

Mωg(x, t) = sup
ρ>0

1

ω(Q̃ρ(x, t))

ˆ

Q̃ρ(x,t)
|g|dω(x, t).

For E ⊂ R
N+1 is a compact set, we have

ˆ

RN+1

(MωχE)
q
(
I
R,δ
α [ω]

)q
dxdt ≤

ˆ

RN+1

(MωχE)
q dω(x, t).

Since Mω is bounded on Ls(RN+1, dω) for s > 1 and (MωχE)
q
(
I
R,δ
α [ω]

)q
≥
(
I
R,δ
α [ωχE ]

)q
,

thus
ˆ

RN+1

(
I
R,δ
α [ωχE ]

)q
dxdt ≤ c1ω(E).

By Theorem 4.4.36, we get for any compact set E ⊂ R
N+1

ω(E) ≤ c2Cap
ER,δ

α ,q′(E).

It follows the results.
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Remark 4.4.44 In [64], we also use Theorem (4.4.36) to show existence of mild solutions
to the Navier-Stokes Equations

{
∂tu−∆u+ Pdiv(u⊗ u) = PF in R

N × (0,∞),
u(0) = u0 in R

N ,
(4.4.68)

where u, F ∈ R
N , P = id − ∇∆−1∇. is the Helmholtz Leray projection onto the vector

fields of zero divergence, i.e, for f ∈ R
N , Pf = f − ∇u and ∆u = divf . Namely, there

exists C = C(N) > 0 such that if div(u0) = 0 and
ˆ

K
|D(x, t)|2dxdt ≤ CCapH1,2(K), (4.4.69)

for any compact set K ⊂ R
N+1, where if (x, t) ∈ R

N × [0,+∞),

D(x, t) = (et∆u0)(x) +

ˆ t

0
(e(t−s)∆PF )(x)ds,

and D(x, t) = 0 otherwise. Then, the (4.4.68) has global solution u satisfying

|u(x, t)| ≤ |D(x, t)|+ cI1[|D|2](x, t) (4.4.70)

for all (x, t) ∈ R
N × (0,∞) for some c = c(N).

4.5 Global point wise estimates of solutions to the parabolic
equations

First, we recall Duzzar and Mingione’s result [27], also see [42, 43] which involves local
pointwise estimates for solutions of equations (4.2.4).

Theorem 4.5.1 Then, there exists a constant C depending only N,Λ1,Λ2 such that if
u ∈ L2(0, T,H1(Ω)) ∩ C(ΩT ) is a weak solution to (4.2.4) with µ ∈ L2(ΩT ) and u(0) = 0

|u(x, t)| ≤ C

 

Q̃R(x,t)
|u|dyds+ CI2R2 [|µ|](x, t) (4.5.1)

for all Q2R(x, t) ⊂ Ω× (−∞, T ).
Furthermore, if A is independent of space variable x, (4.2.27) is satisfied and ∇u ∈ C(ΩT )
then

|∇u(x, t)| ≤ C

 

Q̃R(x,t)
|∇u|dyds+ CI2R1 [|µ|](x, t) (4.5.2)

for all Q2R(x, t) ⊂ Ω× (−∞, T ).

Proof of Theorem 4.2.1. Let µ = µ0 + µs ∈ Mb(ΩT ), with µ0 ∈ M0(ΩT ), µs ∈ Ms(ΩT ).
By Proposition 4.3.7, there exist sequences of nonnegative measures µn,0,i = (fn,i, gn,i, hn,i)
and µn,s,i such that fn,i, gn,i, hn,i ∈ C∞

c (ΩT ) and strongly converge to some fi, gi, hi in
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L1(ΩT ), L
2(ΩT ,R

N ) and L2(0, T,H1
0 (Ω)) respectively and µn,1, µn,2, µn,s,1, µn,s,2 ∈ C∞

c (ΩT )
converge to µ+, µ−, µ+s , µ

−
s resp. in the narrow topology with µn,i = µn,0,i + µn,s,i, for

i = 1, 2 and satisfying µ+0 = (f1, g1, h1), µ
−
0 = (f2, g2, h2) and 0 ≤ µn,1 ≤ ϕn ∗ µ+, 0 ≤

µn,2 ≤ ϕn ∗ µ−, where {ϕn} is a sequence of standard mollifiers in R
N+1.

Let σ1,n, σ2,n ∈ C∞
c (Ω) be convergent to σ+ and σ− in the narrow topology and in

L1(Ω) if σ ∈ L1(Ω) resp. such that 0 ≤ σ1,n ≤ ϕ1,n ∗σ+, 0 ≤ σ2,n ≤ ϕ1,n ∗σ− where {ϕ1,n}
is a sequence of standard mollifiers in R

N . Set µn = µn,1 − µn,2 and σn = σ1,n − σ2,n.
Let un, un,1, un,2 be solutions of equations





(un)t − div(A(x, t,∇un)) = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn on Ω,

(4.5.3)





(un,1)t − div(A(x, t,∇un,1)) = χΩT
µn,1 in B2T0(x0)× (0, 2T 2

0 ),
un,1 = 0 on ∂B2T0(x0)× (0, 2T 2

0 ),
un,1(0) = σ1,n on B2T0(x0),

(4.5.4)





(un,2)t + div(A(x, t,−∇un,2)) = χΩT
µn,2 in B2T0(x0)× (0, 2T 2

0 ),
un,2 = 0 on ∂B2T0(x0)× (0, 2T 2

0 ),
un,2(0) = σ2,n on B2T0(x0),

(4.5.5)

where Ω ⊂ BT0(x0) for x0 ∈ Ω.
We see that un,1, un,2 ≥ 0 in B2T0(x0)× (0, 2T 2

0 ) and −un,2 ≤ un ≤ un,1 in ΩT .
Now, we estimate un,1. By Remark 4.3.3 and Theorem 4.3.6, a sequence {un,1,m} of solu-
tions to equations




(un,1,m)t − div(A(x, t,∇un,1,m)) = (gn,m)t + χΩT
µn,1 in B2T0(x0)× (−2T 2

0 , 2T
2
0 ),

un,1,m = 0 on ∂B2T0(x0)× (−2T 2
0 , 2T

2
0 ),

un,1,m(−2T 2
0 ) = 0 on B2T0(x0),

(4.5.6)
converges to un,1 in B2T0(x0) × (0, 2T 2

0 ), where gn,m(x, t) = σ1,n(x)
´ t
−2T 2

0
ϕ2,m(s)ds and

{ϕ2,m} is a sequence of mollifiers in R.
By Remark 4.3.2, we have

||un,1,m||L1(Q̃2T0
(x0,0))

≤ c1T
2
0An,m, (4.5.7)

where An,m = µn,1(ΩT ) +
´

Q̃2T0
(x0,0)

σ1,n(x)ϕ2,m(t)dxdt.

Hence, thanks to Theorem 4.5.1 we have for (x, t) ∈ ΩT

un,1,m(x, t) ≤ c8T
−N−2
0 ||un,1,m||L1(Q̃2T0

(x0,0))
+ c8I2[µn,1](x, t) + c8I2[σ1,nϕm](x, t)

≤ c9I2[µn,1](x, t) + c9I2[σ1,nϕm](x, t).

Since 0 ≤ µn,1 ≤ ϕn ∗ µ+, σ1,n ≤ ϕ1,n ∗ σ+,

un,1,m(x, t) ≤ c9ϕn ∗ I2[µ+](x, t) + c9(ϕ1,nϕ2,m) ∗ I2[σ+ ⊗ δ{t=0}](x, t) ∀ (x, t) ∈ ΩT .

Letting m→ ∞, we get

un,1(x, t) ≤ c9ϕn ∗ I2[µ+](x, t) + c9ϕ1,n ∗
(
I2[σ

+ ⊗ δ{t=0}](., t)
)
(x) ∀ (x, t) ∈ ΩT .
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Similarly, we also get

un,2(x, t) ≤ c9ϕn ∗ I2[µ−](x, t) + c9ϕ1,n ∗
(
I2[σ

− ⊗ δ{t=0}](., t)
)
(x) ∀ (x, t) ∈ ΩT .

Consequently, by Proposition 4.3.5 and Theorem 4.3.6 , up to a subsequence, {un} converges
to a distribution solution (a renormalized solution if σ ∈ L1(Ω)) u of (4.2.4) and satisfied
(4.2.7).

Remark 4.5.2 Obviously, if σ ≡ 0 and supp(µ) ⊂ Ω×[a, T ], a > 0 then u = 0 in Ω×(0, a).

Remark 4.5.3 If A is independent of space variable x, (4.2.27) is satisfied then

|∇u(x, t)| ≤ C(N,Λ1,Λ2, T0/d)I
2T0
1 [|µ|+ |σ| ⊗ δ{t=0}](x, t) (4.5.8)

for any (x, t) ∈ Ωd×(0, T ) and 0 < d ≤ 1
2 min{supx∈Ω d(x, ∂Ω), T 1/2

0 } where Ωd = {x ∈ Ω :
d(x, ∂Ω) > d}. Indeed, by Remark 4.3.3 and Theorem 4.3.6, a sequence {vn,m} of solutions
to equations





(vn,m)t − div(A(t,∇un,m)) = (gn,m)t + χΩT
µn in Ω× (−2T 2

0 , T ),
vn,m = 0 on ∂Ω× (−2T 2

0 , T ),
vn,m(−2T 2

0 ) = 0 on Ω,
(4.5.9)

converges to un in L1(0, T,W 1,1
0 (Ω)), where gn,m(x, t) = σn(x)

´ t
−2T 2

0
ϕ2,m(s)ds and {ϕ2,m}

is a sequence of mollifiers in R.
By Theorem 4.5.1, we have for any (x, t) ∈ Ωd × (0, T )

|∇vn,m(x, t)| ≤ c1

 

Q̃d/2(x,t)
|∇vn,m|dyds+ c1I

d
1[|µn|+ |σn| ⊗ ϕ2,m](x, t).

On the other hand, by remark 4.3.2,

|||∇vn,m|||L1(Ω×(−T 2
0 ,T ))

≤ c2T0(|µn|+ |σn| ⊗ ϕ2,m)(Ω× (−T 2
0 , T )).

Therefore, for any (x, t) ∈ Ωd × (0, T )

|∇vn,m(x, t)| ≤ c3I1[|µn|+ |σn| ⊗ ϕ2,m](x, t),

where c3 depends on T0/d.
Finally, letting m→ ∞ and n→ ∞ we get for any (x, t) ∈ Ωd × (0, T )

|∇u(x, t)| ≤ c3I1[|µ|+ |σ| ⊗ δ{t=0}](x, t).

We conclude (4.5.8) since I1[|µ|+ |σ| ⊗ δ{t=0}] ≤ c4I
2T0
1 [|µ|+ |σ| ⊗ δ{t=0}] in ΩT .

Next, we will establish pointwise estimates from below for solutions of equations (4.2.4).

186



4.5. GLOBAL POINT WISE ESTIMATES OF SOLUTIONS TO THE PARABOLIC
EQUATIONS

Theorem 4.5.4 If u ∈ C(Qr(y, s))∩L2(s− r2, s,H1(Br(y))) is a nonnegative weak solu-
tion of (4.2.4) with data µ ∈ M

+(Qr(y, s)) and u(s− r2) ≥ 0, then there exists a constant
C depending on N,Λ1,Λ2 such that

u(y, s) ≥ C
∞∑

k=0

µ(Qrk/8(y, s− 35
128r

2
k))

rNk
, (4.5.10)

where rk = 4−kr.

Proof. It is enough to show that for ρ ∈ (0, r)

µ(Qρ/8(y, s− 35
128ρ

2))

ρN
≤ c1( inf

Qρ/4(y,s)
u− inf

Qρ(y,s)
u). (4.5.11)

By [50, Theorem 6.18, p. 122 ], we have for any θ ∈ (0, 1 + 2/N),

(
 

Qρ/4(y,s−ρ2/4)
(u− a)θ

)1/θ

≤ c2(b− a), (4.5.12)

where b = infQρ/4(y,s) u, a = infQρ(y,s) u and a constant c2 depends on N,Λ1,Λ2, θ.

Let η ∈ C∞
c (Qρ(y, s)) such that 0 ≤ η ≤ 1, suppη ⊂ Qρ/4(y, s − 1

4ρ
2), η = 1 in

Qρ/8(y, s− 35
128ρ

2) and |∇η| ≤ c3/ρ
2, |ηt| ≤ c3/ρ

2 where c3 = c3(N). We have

µ(Qρ/8(y, s−
35

128
ρ2)) ≤

ˆ

Qρ(y,s)
η2dµ(x, t)

=

ˆ

Qρ(y,s)
utη

2dxdt+ 2

ˆ

Qρ(y,s)
ηA(x, t,∇u)∇ηdxdt

= −2

ˆ

Qρ(y,s)
(u− a)ηtηdxdt+ 2

ˆ

Qρ(y,s)
ηA(x, t,∇u)∇ηdxdt

≤ c3r
−2

ˆ

Qρ/4(y,s− 1
4
ρ2)

(u− a)dxdt+ 2Λ1

ˆ

Qρ(y,s)
η|∇u||∇η|dxdt

≤ c4r
N (b− a) + c4

ˆ

Qρ(y,s)
η|∇u||∇η|dxdt.

Here we used (4.5.12) with θ = 1 in the last inequality. It remains to show that

ˆ

Qr(y,s)
η|∇u||∇η|dxdt ≤ c5r

N (b− a). (4.5.13)

First, we verify that for ε ∈ (0, 1)

ˆ

Qρ(y,s)
|∇u|2(u− a)−ε−1η2dxdt ≤ c6

ˆ

Qρ(y,s)
(u− a)1−ε

(
η|ηt|+ |∇η|2

)
dxdt. (4.5.14)
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Indeed, for δ ∈ (0, 1) we choose ϕ = (u− a+ δ)−εη2 as test function in (4.2.4),

0 ≤
ˆ

Qρ(y,s)
ut(u− a+ δ)−εη2dxdt+

ˆ

Qρ(y,s)
A(x, t,∇u)∇

(
(u− a+ δ)−εη2

)
dxdt

≤ 2(1− ε)

ˆ

Qρ(y,s)
(u− a+ δ)1−ε|ηt|ηdxdt− εΛ2

ˆ

Qρ(y,s)
|∇u|2(u− a+ δ)−ε−1η2dxdt

+ 2Λ1

ˆ

Qρ(y,s)
η|∇u|(u− a+ δ)−ε|∇η|dxdt.

So, we deduce (4.5.14) from using the Holder inequality and letting δ → 0.
Therefore, for ε ∈ (0, 2/N) using the Holder inequality and we get
ˆ

Qr(y,s)
η|∇u||∇η|dxdt

≤
(
ˆ

Qρ(y,s)
|∇u|2(u− a)−ε−1η2dxdt

)1/2(
ˆ

Qρ(y,s)
(u− a)ε+1|∇η|2dxdt

)1/2

≤ c7

(
ˆ

Qρ(y,s)
(u− a)1−ε

(
η|ηt|+ |∇η|2

)
dxdt

)1/2(
ˆ

Qρ(y,s)
(u− a)ε+1|∇η|2dxdt

)1/2

≤ c8ρ
−2

(
ˆ

Qρ/4(y,s− 1
4
ρ2)

(u− a)1−εdxdt

)1/2(
ˆ

Qρ/4(y,s− 1
4
ρ2)

(u− a)ε+1dxdt

)1/2

.

Consequently, we get (4.5.11) from (4.5.12).

Proof of Theorem 4.2.3. Let µn ∈ (C∞
c (ΩT ))

+, σn ∈ (C∞
c (Ω))+ be in the proof of

Theorem 4.2.1. Let un be a weak solution of equation




(un)t − div(A(x, t,∇un)) = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn on Ω.

As the proof of Theorem 4.2.1, thanks to Theorem 4.5.4 we get By Remark for any
Qr(y, s) ⊂ Ω× (−diam(Ω), T ) and rk = 4−kr

un(y, s) ≥ c1

∞∑

k=0

µn(Qrk/8(y, s− 35
128r

2
k))

rNk
+ c1

∞∑

k=0

(σn ⊗ δ{t=0})(Qrk/8(y, s− 35
128r

2
k))

rNk
.

Finally, by Proposition 4.3.5 and Theorem 4.3.6 we get the results.

Remark 4.5.5 If u ∈ Lq(ΩT ) satisfies (4.2.8) then G2[χEµ] ∈ Lq(RN+1) and G 2
q
[χFσ] ∈

Lq(RN ) for every E ⊂⊂ Ω × [0, T ) and F ⊂⊂ Ω. Indeed, for E ⊂⊂ Ω × [0, T ), ε =
dist (E, (Ω× (0, T )) ∪ (Ω× {t = T})) > 0, we can see that for any (y, s) ∈ ΩT , rk = 4−kε/4

u(y, s) ≥ c1

∞∑

k=0

µ̃(E ∩Qrk/8(y, s− 35
128r

2
k))

rNk
, (4.5.15)
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where µ̃ = µ+ σ ⊗ δ{t=0}.
Moreover, for any (y, s) /∈ ΩT

∞∑

k=0

µ̃(E ∩Qrk/8(y, s− 35
128r

2
k))

rNk
= 0.

Thus,

∞ >

ˆ

RN+1

∞∑

k=0

(
µ̃(E ∩Qrk/8(y, s− 35

128r
2
k))

rNk

)q
dyds

=

ˆ

RN

∞∑

k=0

ˆ

R

(
µ̃(E ∩Qrk/8(y, s− 35

128r
2
k))

rNk

)q
dsdy

≥
ˆ

RN

∞∑

k=0

ˆ

R

(
µ̃(E ∩ Q̃rk/8(y, s))

rNk

)q
dsdy

≥ c2

ˆ

RN+1

ˆ ε/64

0

(
µ̃(E ∩ Q̃ρ(y, s))

ρN

)q
dρ

ρ
dsdy

≥ c3(ε)

ˆ

RN+1

(G2[µ̃χE ])
q dsdy.

Thus, from Proposition 4.4.19, we get the results.

Proof of Theorem 4.2.5. Set Dn = Bn(0) × (−n2, n2). For n ≥ 4, by Theorem 4.2.1,
there exists a renormalized solution un to problem





(un)t − div(A(x, t,∇un)) = χDn−1ω in Dn,
un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 on Bn(0).

relative to a decomposition (fn, gn, hn) of χDn−1ω0 satisfying

−KI2[ω
−](x, t) ≤ un(x, t) ≤ KI2[ω

+](x, t) ∀ (x, t) ∈ Dn. (4.5.16)

From the proof of Theorem 4.2.1 and Remark 4.3.9, we can assume that un satisfies (4.3.14)
and (4.3.15) in Proposition 4.3.16 with 1 < q0 <

N+2
N , L ≡ 0 and

||fn||L1(Di) + ||gn||L2(Di) + |||hn|+ |∇hn|||L2(Di) ≤ 2|ω|(Di+1) (4.5.17)

for any i = 1, ..., n− 1 and hn is convergent in L1
loc(R

N+1).
On the other hand, by Lemma 4.4.26 we have for any s ∈ (1, N+2

N )

ˆ

Dm

|un|sdxdt ≤ Ks

ˆ

Dm

(I2[|ω|])sdxdt

≤ Ks

ˆ

Q̃4m(x0,t0)
(I2[|ω|])sdxdt

≤ c1MmN+2, (4.5.18)
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for n ≥ m ≥ |x0|+ |t0|1/2. Consequently, we can apply Proposition 4.3.17 and obtain that
un converges to some u in L1

loc(R;W
1,1
loc (R

N )).
Since for any α ∈ (0, 1/2)

ˆ

Dm

|∇un|2
(|un|+ 1)α+1

dxdt ≤ Cm(α) ∀ n ≥ m,

thus using (4.5.18) and Holder inequality, we get for any 1 ≤ s1 <
N+2
N+1

ˆ

Dm

|∇un|s1dxdt ≤ Cm(s1) for all n ≥ m ≥ |x0|+ |t0|1/2.

This yields un → u in Ls1loc(R;W
1,s1
loc (RN )).

Take ϕ ∈ C∞
c (RN+1) and m0 ∈ N with supp(ϕ) ⊂ Dm0 , we have for n ≥ m0 + 1

−
ˆ

RN+1

unϕtdxdt+

ˆ

RN+1

A(x, t,∇un)∇ϕdxdt =
ˆ

RN+1

ϕdω

Letting n→ ∞, we conclude that u is a distribution solution to problem (4.2.6) with data
µ = ω which satisfies (4.2.9).
Claim 1. If ω ≥ 0. By Theorem 4.2.3, we have for n ≥ 4k0+1, (y, s) ∈ B4k0 × (0, n2)

un(y, s) ≥ c2

∞∑

k=0

ω(Qrk/8(y, s− 35
128r

2
k) ∩Dn−1)

rNk
,

where rk = 4−k+k0 . This gives

un(y, s) ≥ c2

∞∑

k=−k0

ω(Q2−2k−3(y, s− 35× 2−4k−7) ∩Bn−1(0)× (0, (n− 1)2))

2−2Nk
.

Letting n → ∞ and k0 → ∞ we have (4.2.10). Finally, thanks to Proposition 4.4.8 and
Theorem 4.4.2, we will assert (4.2.11) if we show that for q > N+2

N

ˆ

R

( ∞∑

k=−∞

ω(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk

)q
dxdt ≥ c3

ˆ

R

ˆ +∞

0

(
ω(Q̃ρ(x, t))

ρN

)q
dρ

ρ
dxdt.

Indeed,

ˆ

R

( ∞∑

k=−∞

ω(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk

)q
dxdt

≥
∞∑

k=−∞

ˆ

R

(
ω(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk

)q
dtdx

=

∞∑

k=−∞

ˆ

R

(
ω(Q̃2−2k−3(x, t))

2−2Nk

)q
dt

≥ c4

ˆ

RN+1

ˆ +∞

0

(
ω(Q̃ρ(x, t))

ρN

)q
dρ

ρ
dxdt.
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Claim 2. If A is independent of space variable x and (4.2.27) is satisfied. By Remark 4.5.3
we get for any (x, t) ∈ Dn/4

|∇un(x, t)| ≤ c5I1[|ω|](x, t).

Letting n→ ∞, we get (4.2.12).
Claim 3. If ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then by
Remark (4.5.2) we can assume that un = 0 in Bn(0)×(−n2, 0). So, u = 0 in R

N ×(−∞, 0).
Therefore, clearly u|

RN×[0,∞) is a distribution solution to (4.2.5). The proof is complete.

Remark 4.5.6 If ω ∈ Mb(R
N+1) then u satisfies

|||∇u|||
L

N+2
N+1

,∞
(RN+1)

≤ C(N,Λ1,Λ2)|ω|(RN+1).

Moreover, I2[|ω|] ∈ L
N+2
N

,∞(RN+1) and I2[|ω|] <∞ a.e in R
N+1.

4.6 Quasilinear Lane-Emden Type Parabolic Equations

4.6.1 Quasilinear Lane-Emden Parabolic Equations in ΩT

To prove Theorem 4.2.8 we need the following proposition which was proved in [6].

Proposition 4.6.1 Assume O is an open subset of RN+1. Let p > 1 and µ ∈ M
+(O). If µ

is absolutely continuous with respect to Cap2,1,p in O, there exists a nondecreasing sequence

{µn} ⊂ M
+
b (O)∩

(
W 2,1
p (RN+1)

)∗
, with compact support in O which converges to µ weakly

in M(O). Moreover, if µ ∈ M
+
b (O) then ||µn − µ||Mb(O) → 0 as n→ ∞.

Remark 4.6.2 By Theorem 4.4.17, W 2,1
p (RN+1) = Lp2(RN+1), it follows {µn} ⊂ M

+
b (O)∩

(
Lp2(RN+1)

)∗
. Note that ||µn||(Lp

2(R
N+1))

∗ = ||
∨
G2[µn]||Lp′ (RN+1). So

∨
G2[µn] ∈ Lp

′
(RN+1).

Consequently, from (4.4.17) in Proposition 4.4.8, we obtain I
R
2 [µn] ∈ Lp

′
(RN+1) for any

n ∈ N and R > 0. In particular, I2[µn] ∈ Lp
′

loc(R
N+1) for any n ∈ N.

Remark 4.6.3 As in the proof of Theorem 2.5 in [16], we can prove a general version of
Proposition 4.6.1, that is : for p > 1, if µ is absolutely continuous with respect to CapGα,p

in O, there exists a nondecreasing sequence {µn} ⊂ M
+
b (O) ∩

(
Lpα(RN+1)

)∗
, with compact

support in O which converges to µ weakly in M(O). Furthermore, Iα[µn] ∈ Lp
′

loc(R
N+1) for

all n ∈ N. Besides, we also obtain that for µ ∈ Mb(O) is absolutely continuous with respect
to CapGα,p in O if and only if µ = f + ν where f ∈ L1(O) and ν ∈

(
Lpα(RN+1)

)∗
.

Proof of Theorem 4.2.8. First, assume that σ ∈ L1(Ω). Because µ is absolutely conti-
nuous with respect to the capacity Cap2,1,q′ , so are µ+ and µ−. Applying Proposition 4.6.1
there exist two nondecreasing sequences {µ1,n} and {µ2,n} of positive bounded measures
with compact support in ΩT which converge to µ+ and µ− in Mb(ΩT ) respectively and
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such that I2[µ1,n], I2[µ2,n] ∈ Lq(ΩT ).

For i = 1, 2, set µ̃i,1 = µi,1 and µ̃i,j = µi,j − µi,j−1 ≥ 0, so µi,n =
∑n

j=1 µ̃i,j . We write
µi,n = µi,n,0+µi,n,s, µ̃i,j = µ̃i,j,0+µ̃i,j,s with µi,n,0, µ̃i,n,0 ∈ M0(ΩT ), µi,n,s, µ̃i,n,s ∈ Ms(ΩT ).
As in the proof of Theorem 4.2.1, for any j ∈ N and i = 1, 2, there exist sequences of non-
negative measures µ̃m,i,j,0 = (fm,i,j , gm,i,j , hm,i,j) and µ̃m,i,j,s such that fm,i,j , gm,i,j , hm,i,j ∈
C∞
c (ΩT ) and strongly converge to some fi,j , gi,j , hi,j in L1(ΩT ), L

2(ΩT ,R
N ) and L2(0, T,H1

0 (Ω))
respectively and µ̃m,i,j , µ̃m,i,j,s ∈ C∞

c (ΩT ) converge to µ̃i,j , µ̃i,j,s resp. in the narrow topo-
logy with µ̃m,i,j = µ̃m,i,j,0 + µ̃m,i,j,s which satisfy µ̃i,j,0 = (fi,j , gi,j , hi,j) and 0 ≤ µ̃m,i,j ≤
ϕm ∗ µ̃i,j and

||fm,i,j ||L1(ΩT )+‖gm,i,j‖L2(ΩT ,RN )+||hm,i,j ||L2(0,T,H1
0 (Ω))+µm,i,j,s(ΩT ) ≤ 2µ̃i,j(ΩT ). (4.6.1)

Here {ϕm} is a sequence of mollifiers in R
N+1.

For any n, k,m ∈ N, let un,k,m, u1,n,k,m, u2,n,k,m ∈W withW = {z : z ∈ L2(0, T,H1
0 (Ω)), zt ∈

L2(0, T,H−1(Ω))} be solutions of problems




(un,k,m)t − div(A(x, t,∇un,k,m)) + Tk(|un,k,m|q−1un,k,m) =
∑n

j=1(µ̃m,1,j − µ̃m,2,j) in ΩT ,

un,k,m = 0 on ∂Ω× (0, T ),
un,k,m(0) = Tn(σ

+)− Tn(σ
−) on Ω,

(4.6.2)



(u1,n,k,m)t − div(A(x, t,∇u1,n,k,m)) + Tk(u
q
1,n,k,m) =

∑n
j=1 µ̃m,1,j in ΩT ,

u1,n,k,m = 0 on ∂Ω× (0, T ),
u1,n,k,m(0) = Tn(σ

+) in Ω,

(4.6.3)





(u2,n,k,m)t − div(Ã(x, t,∇u2,n,k,m)) + Tk(u
q
2,n,k,m) =

∑n
j=1 µ̃m,2,j in ΩT ,

u2,n,k,m = 0 on ∂Ω× (0, T ),
u2,n,k,m(0) = Tn(σ

−) in Ω,

(4.6.4)

where Ã(x, t, ξ) = −A(x, t,−ξ).
By Comparison Principle Theorem and Theorem 4.2.1, there holds, for any m, k the se-
quences {u1,n,k,m}n and {u2,n,k,m}n are increasing and

−KI2[Tn(σ
−)⊗ δ{t=0}]−KI2[µ2,n ∗ ϕm] ≤ −u2,n,k,m ≤ un,k,m ≤ u1,,n,k,m

≤ KI2[µ1,n ∗ ϕm] +KI2[Tn(σ
+)⊗ δ{t=0}],

where a constant K is in Theorem 4.2.1. Thus,

−KI2[Tn(σ
−)⊗ δ{t=0}]−KI2[µ2,n] ∗ ϕm ≤ −u2,n,k,m ≤ un,k,m ≤ u1,,n,k,m

≤ KI2[µ1,n] ∗ ϕm +KI2[Tn(σ
+)⊗ δ{t=0}].

Moreover,
ˆ

ΩT

Tk(u
q
i,n,k,m)dxdt ≤

ˆ

ΩT

ϕm ∗ µi,ndxdt+ |σ|(Ω) ≤ |µ|(ΩT ) + |σ|(Ω).

As in [14, Proof of Lemma 5.3], thanks to Proposition 4.3.5 and Theorem 4.3.6, there
exist subsequences of {un,k,m}m {u1,n,k,m}m, {u2,n,k,m}m, still denoted them, converging
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to renormalized solutions un,k u1,n,k, u2,n,k of equations (4.6.2) with data µ1,n − µ2,n,
un,k(0) = Tn(σ

+) − Tn(σ
−) and the decomposition (

∑n
j=1 f1,j −

∑n
j=1 f2,j ,

∑n
j=1 g1,j −∑n

j=1 g2,j ,
∑n

j=1 h1,j −
∑n

j=1 h2,j) of µ1,n,0 − µ2,n,0, (4.6.3) with data µ1,n, u1,n,k(0) =

Tn(σ
+) and the decomposition (

∑n
j=1 f1,j ,

∑n
j=1 g1,j ,

∑n
j=1 h1,j) of µ1,n,0, (4.6.4) with

data µ2,n, u2,n,k(0) = Tn(σ
−) and the decomposition (

∑n
j=1 f2,j ,

∑n
j=1 g2,j ,

∑n
j=1 h2,j) of

µ2,n,0 respectively, which satisfy

−KI2[Tn(σ
−)⊗ δ{t=0}]−KI2[µ2,n] ≤ −u2,n,k ≤ un,k ≤ u1,n,k

≤ KI2[µ1,n] +KI2[Tn(σ
+)⊗ δ{t=0}].

Next, as in [14, Proof of Lemma 5.4] since I2[µi,n] ∈ Lq(ΩT ) for any n, thanks to Proposi-
tion 4.3.5 and Theorem 4.3.6, there exist subsequences of {un,k}k {u1,n,k}k, {u2,n,k}k, still
denoted them, converging to renormalized solutions un u1,n, u2,n of equations





(un)t − div(A(x, t,∇un)) + |un|q−1un = µ1,n − µ2,n in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = Tn(σ

+)− Tn(σ
−) in Ω,

(4.6.5)





(u1,n)t − div(A(x, t,∇u1,n)) + uq1,n = µ1,n in ΩT ,

u1,n = 0 on ∂Ω× (0, T ),
u1,n(0) = Tn(σ

+) in Ω,

(4.6.6)





(u2,n)t − div(Ã(x, t,∇u2,n)) + uq2,n = µ2,n in ΩT ,

u2,n = 0 on ∂Ω× (0, T ),
u2,n(0) = Tn(σ

−) in Ω,

(4.6.7)

relative to the decomposition (
∑n

j=1 f1,j −
∑n

j=1 f2,j ,
∑n

j=1 g1,j −
∑n

j=1 g2,j ,
∑n

j=1 h1,j −∑n
j=1 h2,j) of µ1,n,0 − µ2,n,0, (

∑n
j=1 f1,j ,

∑n
j=1 g1,j ,

∑n
j=1 h1,j) of µ1,n,0 and (

∑n
j=1 f2,j ,∑n

j=1 g2,j ,
∑n

j=1 h2,j) of µ2,n,0 respectively, which satisfy

−KI2[Tn(u
−
0 )⊗ δ{t=0}]−KI2[µ2,n] ≤ −u2,n ≤ un ≤ u1,n

≤ KI2[µ1,n] +KI2[Tn(u
+
0 )⊗ δ{t=0}].

and the sequences {u1,n}n and {u2,n}n are increasing and

ˆ

ΩT

uqi,ndxdt ≤ |µ|(ΩT ) + |σ|(Ω).

Note that from (4.6.1) we have

||fi,j ||L1(ΩT ) + ‖gi,j‖L2(ΩT ,RN ) + ||hi,j ||L2(0,T,H1
0 (Ω)) ≤ 2µ̃i,j(ΩT )

which implies

n∑

j=1

||fi,j ||L1(ΩT ) +

n∑

j=1

||gi,j ||L2(ΩT ,RN ) +

n∑

j=1

||hi,j ||L2(0,T,H1
0 (Ω)) ≤ 2µi,n(ΩT ) ≤ 2|µ|(ΩT ).
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Finally, as in [14, Proof of Theorem 5.2] thanks to Proposition 4.3.5, Theorem 4.3.6 and Mo-
notone Convergence Theorem there exist subsequences of {un}n, {u1,n}n, {u2,n}n, still de-
noted them, converging to renormalized solutions u, u1, u2 of equations (4.6.5) with data µ,
u(0) = σ and the decomposition (

∑∞
j=1 f1,j−

∑∞
j=1 f2,j ,

∑∞
j=1 g1,j−

∑∞
j=1 g2,j ,

∑∞
j=1 h1,j−∑∞

j=1 h2,j) of µ0, (4.6.6) with data µ+, u1(0) = σ+ and the decomposition (
∑∞

j=1 f1,j ,
∑∞

j=1 g1,j ,∑∞
j=1 h1,j) of µ+0 , (4.6.7) with data µ−, u2(0) = σ− and the decomposition (

∑∞
j=1 f2,j ,

∑∞
j=1 g2,j ,∑∞

j=1 h2,j) of µ−0 , respectively and

−KI2[σ
− ⊗ δ{t=0}]−KI2[µ

−] ≤ −u2 ≤ u ≤ u1 ≤ KI2[µ
+] +KI2[σ

+ ⊗ δ{t=0}].

We now have remark : if σ ≡ 0 and supp(µ) ⊂ Ω× [a, T ], a > 0, then u = u1 = u2 = 0 in
Ω× (0, a) since un,k = u1,n,k = u2,n,k = 0 in Ω× (0, a).
Next, we will consider σ ∈ Mb(Ω) such that σ is absolutely continuous with respect to
the capacity CapG 2

q ,q′
in Ω. So, χΩT

µ+σ⊗ δ{t=0} is absolutely continuous with respect to

the capacity Cap2,1,q′ in Ω× (−T, T ). As above, we verify that there exists a renormalized
solution u of





ut − div(A(x, t,∇u)) + |u|q−1u = χΩT
µ+ σ ⊗ δ{t=0} in Ω× (−T, T ),

u = 0 on ∂Ω× (−T, T ),
u(−T ) = 0 on Ω,

(4.6.8)

satisfying u = 0 in Ω× (−T, 0) and

−KI2[σ
− ⊗ δ{t=0}]−KI2[µ

−] ≤ u ≤ KI2[µ
+] +KI2[σ

+ ⊗ δ{t=0}].

Finally, from remark 4.3.11 we get the result. This completes the proof of the theorem.

Proof of Theorem 4.2.9. Let {µn,i} ⊂ C∞
c (ΩT ), σi,n ∈ C∞

c (Ω) for i = 1, 2 be as in
the proof of Theorem 4.2.1. We have 0 ≤ µn,1 ≤ ϕn ∗ µ+, 0 ≤ µn,2 ≤ ϕn ∗ µ−, 0 ≤ σ1,n ≤
ϕ1,n ∗ σ+, 0 ≤ σ2,n ≤ ϕ1,n ∗ σ− for any n ∈ N where {ϕn} and {ϕ1,n} are sequences of
standard mollifiers in R

N+1,RN respectively.
We prove that the problem (4.2.2) has a solution with data µ = µn0 = µn0,1 − µn0,2, σ =
σn0 = σ1,n0 − σ2,n0 for n0 ∈ N. Put

J =

{
u ∈ Lq(ΩT ) : u

+ ≤ qK

q − 1
I
2T0,δ
2 [µn0,1 + σ1,n0 ⊗ δ{t=0}]

and u− ≤ qK

q − 1
I
2T0,δ
2 [µn0,2 + σ2,n0 ⊗ δ{t=0}]

}
.

where max{−N+2
q′ + 2, 0} < δ < 2.

Clearly, J is closed under the strong topology of Lq(ΩT ) and convex.
We consider a map S : J → J defined for each v ∈ J by S(v) = u, where u ∈ L1(ΩT ) is
the unique renormalized solution of





ut − div(A(x, t,∇u)) = |v|q−1v + µn0,1 − µn0,2 in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ1,n0 − σ2,n0 in Ω.

(4.6.9)
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By Theorem 4.2.1, we have

u+ ≤ KI
2T0
2 [(v+)q] +KI

2T0
2 [µn0,1 + σ1,n0 ⊗ δ{t=0}],

u− ≤ KI
2T0
2 [(v−)q] +KI

2T0
2 [µn0,2 + σ2,n0 ⊗ δ{t=0}],

where K is the constant in Theorem 4.2.1. Thus,

u+ ≤ K

(
qK

q − 1

)q
I
2T0,δ
2

[(
I
2T0,δ
2 [µn0,1 + σ1,n0 ⊗ δ{t=0}]

)q]
+KI

2T0,δ
2 [µn0,1 + σ1,n0 ⊗ δ{t=0}],

u− ≤ K

(
qK

q − 1

)q
I
2T0,δ
2

[(
I
2T0,δ
2 [µn0,2 + σ2,n0 ⊗ δ{t=0}]

)q]
+KI

2T0,δ
2 [µn0,2 + σ2,n0 ⊗ δ{t=0}].

Thus, thanks to Theorem 4.4.36 there exists c1 = c1(N,K, δ, q) such that if for every
compact sets E ⊂ R

N+1,

|µn0,i|(E) + (|σi,n0 | ⊗ δ{t=0})(E) ≤ c1Cap
E

2T0,δ
2 ,q′

(E). (4.6.10)

then I
2T0,δ
2 [µn0,i + σi,n0 ⊗ δ{t=0}] ∈ Lq(RN+1) and

I
2T0,δ
2

[(
I
2T0,δ
2 [µn0,i + σi,n0 ⊗ δ{t=0}]

)q]
≤ (q − 1)q−1

(Kq)q
I
2T0,δ
2 [µn0,i + σi,n0 ⊗ δ{t=0}] i = 1, 2.

which implies u ∈ Lq(ΩT ) and

u+ ≤ qK

q − 1
I
2T0
2 [µn0,1 + σ1,nn ⊗ δ{t=0}] and

u− ≤ qK

q − 1
I
2T0
2 [µn0,2 + σ2,n0 ⊗ δ{t=0}].

Now we assume that (4.6.10) is satisfied, so S is well defined. Therefore, if we can show
that the map S : J → J is continuous and S(J) is pre-compact under the strong topology
of Lq(ΩT ) then by Schauder Fixed Point Theorem, S has a fixed point on J . Hence the
problem (4.2.2) has a solution with data µ = µn0 , σ = σn0 .
Now we show that S is continuous. Let {vn} be a sequence in J such that vn converges
strongly in Lq(ΩT ) to a function v ∈ J . Set un = S(vn). We need to show that un → S(v)
in Lq(ΩT ).

By Proposition 4.3.5, there exists a subsequence of {un}, still denoted by it, converging
to u a.e in ΩT . Since

|un| ≤
∑

i=1,2

qK

q − 1
I
2T0,δ
2 [µn0,i + σi,n0 ⊗ δ{t=0}] ∈ Lq(ΩT ) ∀ n ∈ N

Applying Dominated Convergence Theorem, we have un → u in Lq(ΩT ). Hence, thanks to
Theorem 4.3.6 we get u = S(v).
Next we show that S is pre-compact. Indeed if {un} = {S(vn)} is a sequence in S(J).
By Proposition 4.3.5, there exists a subsequence of {un}, still denoted by it, converging to
u a.e in ΩT . Again, using get Dominated Convergence Theorem we get un → u in Lq(ΩT ).
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So S is pre-compact.
Next, thanks to Corollary 4.4.39 and Remark 4.4.40 we have

[µn,i + σi,n ⊗ δ{t=0}]MG2,q′ ≤ c2[|µ|+ |σ| ⊗ δ{t=0}]MG2,q′ ∀ n ∈ N, i = 1, 2,

for some c2 = c2(N, q).
In addition, by the proof of Corollary 4.4.39 we get

(c3(T0))
−1CapG2,q′(E) ≤ Cap

E
2T0,δ
2 ,q′

(E) ≤ c3(T0)CapG2,q′(E)

for every compact set E with diam(E) ≤ 2T0. Thus, there is c4 = c4(N,K, δ, q, T0) such
that if

[|µ|+ |σ| ⊗ δ{t=0}]MG2,q′ ≤ c4, (4.6.11)

then (4.6.10) holds for any n0 ∈ N.
Now we suppose that (4.6.11) holds, it is equivalent to (4.2.13) holding for some constant
C1 = C1(T0) by Remark 4.4.34. Therefore, for any n ∈ N there exists a renormalized
solution un of





(un)t − div(A(x, t,∇un)) = |un|q−1un + µn,1 − µn,2 in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σ1,n − σ2,n in Ω,

(4.6.12)

which satisfies

− qK

q − 1
I
2T0,δ
2 [µn,2 + σ2,n ⊗ δ{t=0}] ≤ un ≤ qK

q − 1
I
2T0,δ
2 [µn,1 + σ1,n ⊗ δ{t=0}].

Thus, for every (x, t) ∈ ΩT ,

− qK

q − 1
ϕn ∗ I2T0,δ2 [µ−](x, t)− qK

q − 1
ϕ1,n ∗ (I2T0,δ2 [σ− ⊗ δ{t=0}](., t))(x) ≤ un(x, t)

≤ qK

q − 1
ϕn ∗ (I2T0,δ2 [µ−])(x, t) +

qK

q − 1
ϕ1,n ∗ (I2T0,δ2 [σ− ⊗ δ{t=0}](., t))(x).

Since ϕn∗I2T0,δ2 [µ±](x, t), ϕ1,n∗(I2T0,δ2 [σ±⊗δ{t=0}](., t))(x) converge to I
2T0,δ
2 [µ±](x, t), I2T0,δ2 [σ±⊗

δ{t=0}](x, t) in Lq(RN+1) as n→ ∞, respectively, so |un|q is equi-integrable.
By Proposition 4.3.5, there exists a subsequence of {un}, still denoted by its, converging
to u a.e in ΩT . It follows |un|q−1un → |u|q−1u in L1(ΩT ).
Consequently, by Proposition 4.3.5 and Theorem 4.3.6, we obtain that u is a distribution
(a renormalized solution if σ ∈ L1(Ω)) of (4.2.2) with data µ, σ, and satisfies (4.2.14).
Furthermore, by Corollary 4.4.39 we have

(c5(T0))
−1
[
|µ|+ |σ| ⊗ δ{t=0}

]q
MG2,q′

≤
[(

I
2T0,δ
2 [|µ|+ |σ| ⊗ δ{t=0}]

)q]
MG2,q′

≤ c5(T0)
[
|µ|+ |σ| ⊗ δ{t=0}

]q
MG2,q′

which implies [|u|q]
MG2,q′ ≤ c4(T0) and we get (4.2.15). This completes the proof of the

Theorem.
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Remark 4.6.4 In view of above proof, we can see that

i. The Theorem 4.2.9 also holds when we replace assumption (4.2.13) by

|µ|(E) ≤ CCapH2,q′(E) and |σ|(F ) ≤ CCapI 2
q
,q′(F ).

for every compact sets E ⊂ R
N+1, F ⊂ R

N where C = C(NΛ1,Λ2, q) is some a
constant.

ii. If σ ≡ 0 and supp(µ) ⊂ Ω×[a, T ], a > 0, then we can show that a solution u in Theorem
4.2.9 satisfies u = 0 in Ω× (0, a) since we can replace the set E by E′ :

E′ =

{
u ∈ Lq(ΩT ) : u = 0 in Ω× (0, a) and u+ ≤ qK

q − 1
I
2T0,δ
2 [µn0,1 + σ1,n0 ⊗ δ{t=0}]

and u− ≤ qK

q − 1
I
2T0,δ
2 [µn0,2 + σ2,n0 ⊗ δ{t=0}]

}
.

4.6.2 Quasilinear Lane-Emden Parabolic Equations in R
N × (0,∞) and

R
N+1

This section is devoted to proofs of Theorem 4.2.12 and 4.2.14.
Proof of the Theorem 4.2.12. Since ω is absolutely continuous with respect to the
capacity Cap2,1,q′ in R

N+1, |ω| is too. Set Dn = Bn(0) × (−n2, n2). From the proof of
Theorem 4.2.8, there exist renormalized solutions un, vn of





(un)t − div(A(x, t,∇un)) + |un|q−1un = χDnω in Dn,
un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

and 



(vn)t − div(A(x, t,∇vn)) + vqn = χDn |ω| in Dn,
vn = 0 on ∂Bn(0)× (−n2, n2),
vn(−n2) = 0 in Bn(0),

relative to decompositions (fn, gn, hn) of χDnω0 and (fn, gn, hn) of χBn(0)×(0,n2)|ω0|, satis-
fied (4.3.14), (4.3.15) in Proposition 4.3.16 with 1 < q0 < q, L(un) = |un|q−1un, L(vn) = vqn
and µ is replaced by χDnω and χDn |ω| respectively. Moreover, there hold

−KI2[ω−] ≤ un ≤ KI2[ω
+], 0 ≤ vn ≤ KI2[|ω|] in Dn, (4.6.13)

and vn+1 ≥ vn, |un| ≤ vn in Dn.
By Remark 4.3.9, we can assume that

||fn||L1(Di) + ||gn||L2(Di,RN ) + |||hn|+ |∇hn|||L2(Di) ≤ 2|ω|(Di+1) and

||fn||L1(Di) + ||gn||L2(Di,RN ) + |||hn|+ |∇hn|||L2(Di) ≤ 2|ω|(Di+1),

for any i = 1, ..., n− 1 and hn, hn are convergent in L1
loc(R

N+1). On the other hand, since
un, vn satisfy (4.3.14) in Proposition 4.3.16 with 1 < q0 < q, L(un) = |un|q−1un, L(vn) = vqn
and thanks to Holder inequality : for any ε ∈ (0, 1)

(|un|+ 1)q0 ≤ ε|un|q + c1(ε) and (|vn|+ 1)q0 ≤ ε|vn|q + c1(ε).

197



4.6. QUASILINEAR LANE-EMDEN TYPE PARABOLIC EQUATIONS

Thus we get
ˆ

Di

|un|qdxdt+
ˆ

Di

|un|q0dxdt+
ˆ

Di

vqndxdt+

ˆ

Di

vq0n dxdt ≤ C(i) + c2|ω|(Di+1).

(4.6.14)

for i = 1, ..., n− 1, where the constant C(i) depends on N,Λ1,Λ2, q0, q and i.
Consequently, we can apply Proposition 4.3.17 with µn = −|un|q−1un+χDnω,−vqn+χDn |ω|
and obtain that there are subsequences of un, vn, still denoted by them, converging to some
u, v in L1

loc(R;W
1,1
loc (R

N )). So, |∇u|2
(|u|+1)α+1 ∈ L1

loc(R
N+1) for all α > 0 and u ∈ Lqloc(R

N+1)

satisfies (4.2.17). In addition, using Holder inequality we get u ∈ Lγloc(R;W
1,γ
loc (R

N )) for
any 1 ≤ γ < 2q

q+1 .

Thanks to (4.6.14) and Monotone Convergence Theorem we get vn → v in Lqloc(R
N+1).

After, we also have un → u in Lqloc(R
N+1) by |un| ≤ vn and Dominated Convergence Theo-

rem. Consequently, u is a distribution solution of problem (4.2.16) which satisfies (4.2.17).
If ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then by the proof of
Theorem 4.2.8 we can assume that un = 0 in Bn(0)× (−n2, 0). So, u = 0 in R

N × (−∞, 0).
Therefore, clearly u|

RN×[0,∞) is a distribution solution to (4.2.18).
This completes the proof of the theorem.

Proof of the Theorem 4.2.14. By the proof of Theorem 4.2.9 and Remark 4.6.4, 4.4.34,
there exists a constant c1 = c1(N, q,Λ1,Λ2) such that if ω satisfy for every compact set
E ⊂ R

N+1,
|ω|(E) ≤ c1CapH2,q′(E), (4.6.15)

then there is a renormalized solution un of




(un)t − div(A(x, t,∇un)) = |un|q−1un + χDnω in Dn

un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

relative to a decomposition (fn, gn, hn) of χDnω0, satisfying (4.3.14), (4.3.15) in Proposition
4.3.16 with q0 = q, L ≡ 0 and µ is replaced by |un|q−1un + χDnω and

− qK

q − 1
I2[ω

−](x, t) ≤ un ≤ qK

q − 1
I2[ω

+](x, t) (4.6.16)

for a.e (x, t) in Dn and I2[ω±] ∈ Lqloc(R
N+1).

Besides, thanks to Remark 4.3.9, we can assume that fn, gn, hn satisfies (4.5.17) in proof
of Theorem (4.2.5) and hn is convergent in L1

loc(R
N+1).

Consequently, we can apply Proposition 4.3.17 and obtain that there exist a subsequence
of un, still denoted by it, converging to some u a.e in R

N+1 and in L1
loc(R;W

1,1
loc (R

N )). Also,

un → u in Lqloc(R
N+1) by Dominated Convergence Theorem, |∇u|2

(|u|+1)α+1 ∈ L1
loc(R

N+1) for

all α > 0. Using Holder inequality we get u ∈ Lγloc(R;W
1,γ
loc (R

N )) for any 1 ≤ γ < 2q
q+1 .

Thus we obtain that u is a distribution solution of (4.2.20) which satisfies (4.2.21). Since
(4.6.15) holds, thus by Theorem 4.4.36 we get

c−1
2 [|ω|]q

MH2,q
′ ≤ [(I2[|ω|])q]MH2,q

′ ≤ c2 [|ω|]q
MH2,q

′ ,
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so we have [|u|q]
MH2,q

′ ≤ c3. It follows (4.2.23).
If ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then by Remark 4.6.4
we can assume that un = 0 in Bn(0) × (−n2, 0). So, u = 0 in R

N × (−∞, 0). Therefore,
clearly u|

RN×[0,∞) is a distribution solution to (4.2.22).
This completes the proof of the theorem.

4.7 Interior Estimates and Boundary Estimates for Parabolic
Equations

In this section we always assume that u ∈ C(−T, T, L2(Ω)) ∩ L2(−T, T,H1
0 (Ω)) is a

solution to equation (4.2.4) in Ω× (−T, T ) with µ ∈ L2(Ω× (−T, T )) and u(−T ) = 0. We
extend u by zero to Ω× (−∞,−T ), clearly u is a solution to equation

{
ut − div (A(x, t,∇u)) = χ(−T,T )(t)µ in Ω× (−∞, T ),

u = 0 on ∂Ω× (−∞, T ).
(4.7.1)

4.7.1 Interior Estimates

For each ball B2R = B2R(x0) ⊂⊂ Ω and t0 ∈ (−T, T ), one considers the unique solution

w ∈ C(t0 − 4R2, t0;L
2(B2R)) ∩ L2(t0 − 4R2, t0;H

1(B2R)) (4.7.2)

to the following equation
{
wt − div (A(x, t,∇w)) = 0 in Q2R,
w = u on ∂pQ2R,

(4.7.3)

whereQ2R = B2R×(t0−4R2, t0) and ∂pQ2R =
(
∂B2R × (t0 − 4R2, t0)

)
∪
(
B2R ×

{
t = t0 − 4R2

})
.

Theorem 4.7.1 There exist constants θ1 > 2, β1 ∈ (0, 12 ] and C1, C2, C3 depending on
N,Λ1,Λ2 such that the following estimates are true

 

Q2R

|∇u−∇w|dxdt ≤ C1
|µ|(Q2R)

RN+1
, (4.7.4)

(
 

Qρ/2(y,s)
|∇w|θ1dxdt

) 1
θ1

≤ C2

 

Qρ(y,s)
|∇w|dxdt, (4.7.5)

(
 

Qρ1 (y,s)
|w − wQρ1 (y,s)

|2dxdt
)1/2

≤ C3

(
ρ1
ρ2

)β1 ( 

Qρ2 (y,s)
|w − wQρ2 (y,s)

|2dxdt
)1/2

,

(4.7.6)
and

(
 

Qρ1 (y,s)
|∇w|2dxdt

)1/2

≤ C3

(
ρ1
ρ2

)β1−1
(
 

Qρ2 (y,s)
|∇w|2dxdt

)1/2

(4.7.7)

for any Qρ(y, s) ⊂ Q2R, and Qρ1(y, s) ⊂ Qρ2(y, s) ⊂ Q2R.
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Proof. Inequalities (4.7.4), (4.7.5) and (4.7.6) were proved by Duzaar and Mingione in
[27]. So, it remains to prove (4.7.7) in case ρ1 ≤ ρ2/2. By interior Caccioppoli inequality
we have

(
 

Qρ1 (y,s)
|∇w|2dxdt

)1/2

≤ c1
ρ1

(
 

Q2ρ1 (y,s)
|w − wQ2ρ1 (y,s)

|2dxdt
)1/2

.

On the other hand, by a Sobolev inequality there holds

(
 

Qρ2 (y,s)
|w − wQρ2 (y,s)

|2dxdt
)1/2

≤ c2ρ2

(
 

Qρ2 (y,s)
|∇w|2dxdt

)1/2

.

Therefore, (4.7.7) follows from (4.7.6).

Corollary 4.7.2 Let β1 be the constant in Theorem 4.7.1. For 2 − β1 < θ < N + 2,
there exists a constant C = C(N,Λ1,Λ2, θ) > 0 such that for any Bρ(y) ⊂ Bρ0(y) ⊂⊂ Ω,
s ∈ (−T, T )

ˆ

Qρ(y,s)
|∇u|dxdt ≤ CρN+3−θ

((
T0
ρ0

)N+3−θ
+ 1

)
||Mθ[µ]||L∞(Ω×(−T,T )). (4.7.8)

Proof. Take Bρ2(y) ⊂⊂ Ω and s ∈ (−T, T ). For any Qρ1(y, s) ⊂ Qρ2(y, s) with ρ1 ≤ ρ2/2,
we take w as in Theorem 4.7.1 with Q2R = Qρ2(y, s). Thus,

ˆ

Qρ1 (y,s)
|∇w|dxdt ≤ c1

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2 (y,s)
|∇w|dxdt,

ˆ

Qρ2 (y,s)
|∇u−∇w|dxdt ≤ c2ρ2|µ|(Qρ2(y, s)),

and we also have

c−1
3

ˆ

Qρ2 (y,s)
|∇u|dxdt ≤

ˆ

Qρ2 (y,s)
|∇w|dxdt ≤ c3

ˆ

Qρ2 (y,s)
|∇u|dxdt.

It follows that
ˆ

Qρ1 (y,s)
|∇u|dxdt ≤

ˆ

Qρ1 (y,s)
|∇w|dxdt+

ˆ

Qρ1 (y,s)
|∇u−∇w|dxdt

≤ c4

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2 (y,s)
|∇w|dxdt+

ˆ

Qρ2 (y,s)
|∇u−∇w|dxdt

≤ c5

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2 (y,s)
|∇u|dxdt+ c5ρ2|µ|(Qρ2(y, s)).

This implies

ˆ

Qρ1 (y,s)
|∇u|dxdt ≤ c5

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2 (y,s)
|∇u|dxdt+ c5ρ

N+3−θ
2 ||Mθ[µ]||L∞(Ω×(−T,T )).
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Since N + 3− β < N + β1 + 1, applying [50, Lemma 4.6, page 54] we obtain

ˆ

Qρ(y,s)
|∇u|dxdt ≤ c6

(
ρ

ρ0

)N+3−θ
||∇u||L1(Ω×(−T,T )) + c6ρ

N+3−θ||Mθ[µ]||L∞(Ω×(−T,T )),

for any Bρ(y) ⊂ Bρ0(y) ⊂⊂ Ω, s ∈ (−T, T ). On the other hand, by Remark 4.3.2

||∇u||L1(Ω×(−T,T )) ≤ c7T0|µ|(Ω× (−T, T )) ≤ c8T
N+3−θ
0 ||Mθ[µ]||L∞(Ω×(−T,T )).

Hence, we get the desired result.

To continue, we consider the unique solution

v ∈ C(t0 −R2, t0;L
2(BR)) ∩ L2(t0 −R2, t0;H

1(BR)) (4.7.9)

to the following equation

{
vt − div

(
ABR(x0)(t,∇v)

)
= 0 in QR,

v = w on ∂pQR,
(4.7.10)

whereQR = BR(x0)×(t0−R2, t0) and ∂pQR =
(
∂BR × (t0 −R2, t0)

)
∪
(
BR ×

{
t = t0 −R2

})
.

Lemma 4.7.3 Let θ1 be the constant in Theorem 4.7.1. There exist constants C1 = C1(N,Λ1,Λ2)
and C2 = C2(Λ1,Λ2) such that

(
 

QR

|∇w −∇v|2dxdt
)1/2

≤ C1[A]
R
s1

 

Q2R

|∇w|dxdt, (4.7.11)

with s1 = 2θ1
θ1−2 and

C−1
2

ˆ

QR

|∇v|2dxdt ≤
ˆ

QR

|∇w|2dxdt ≤ C2

ˆ

QR

|∇v|2dxdt. (4.7.12)

Proof. We can choose ϕ = w − v as a test function for equations (4.7.3), (4.7.10) and
since

ˆ

QR

wt(w − v)dxdt−
ˆ

QR

vt(w − v)dxdt =
1

2

ˆ

BR

(w − v)2(t0)dx ≥ 0,

we find

−
ˆ

QR

ABR(x0)(t,∇v)∇(w − v)dxdt ≤ −
ˆ

QR

A(x, t,∇w)∇(w − v)dxdt.

By using inequalities (4.1.2) and (4.1.3) together with Holder’s inequality we get

c−1
1

ˆ

QR

|∇v|2dxdt ≤
ˆ

QR

|∇w|2dxdt ≤ c1

ˆ

QR

|∇v|2dxdt, (4.7.13)
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and we also have

Λ2

ˆ

QR

|∇w −∇v|2dxdt ≤
ˆ

QR

(
ABR(x0)(t,∇w)−ABR(x0)(t,∇v)

)
(∇w −∇v) dxdt

≤
ˆ

QR

(
ABR(x0)(t,∇w)−A(x, t,∇w)

)
(∇w −∇v) dxdt

≤
ˆ

QR

Θ(A,BR(x0))(x, t)|∇w||∇w −∇v|dxdt.

Here we used the definition of Θ(A,BR(x0)) in the last inequality. Using Holder’s inequality
with exponents s1 = 2θ1

θ1−2 , θ1 and 2 gives

Λ2

 

QR

|∇w −∇v|2 ≤
(
 

QR

Θ(A,BR(x0))(x, t)
s1dxdt

)1/s1 ( 

QR

|∇w|θ1dxdt
)1/θ1

×
(
 

QR

|∇w −∇v|2dxdt
)1/2

.

In other words,

(
 

QR

|∇w −∇v|2dxdt
)1/2

≤ Λ−1
2 [A]Rs1

(
 

QR

|∇w|θ1dxdt
)1/θ1

.

After using the inequality (4.7.5) in Theorem 4.7.1 we get (4.7.11).

Lemma 4.7.4 Let θ1 be the constant in Theorem 4.7.1. There exists a functions v ∈
C(t0−R2, t0;L

2(BR))∩L2(t0−R2, t0;H
1(BR))∩L∞(t0− 1

4R
2, t0;W

1,∞(BR/2)) such that

||∇v||L∞(QR/2) ≤ C

 

Q2R

|∇u|dxdt+ C
|µ|(Q2R)

RN+1
, (4.7.14)

and
 

QR

|∇u−∇v|dxdt ≤ C
|µ|(Q2R)

RN+1
+ C[A]Rs1

(
 

Q2R

|∇u|dxdt+ |µ|(Q2R)

RN+1

)
, (4.7.15)

where s1 = 2θ1
θ1−2 and C = C(N,Λ1,Λ2).

Proof. Let w and v be in equations (4.7.3) and (4.7.10). By standard interior regularity
and inequality (4.7.5) in Theorem 4.7.1 and (4.7.12) in Lemma 4.7.3 we have

||∇v||L∞(QR/2) ≤ c1

(
 

QR

|∇v|2dxdt
)1/2

≤ c2

(
 

QR

|∇w|2dxdt
)1/2

≤ c3

 

Q2R

|∇w|dxdt.
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Thus, we get (4.7.14) from (4.7.4) in Theorem 4.7.1.
On the other hand, (4.7.11) in Lemma 4.7.3 and Holder’s inequality yield

 

QR

|∇w −∇v|dxdt ≤ c4[A]
R
s1

 

Q2R

|∇w|dxdt.

It leads
 

QR

|∇u−∇v|dxdt ≤
 

QR

|∇u−∇w|dxdt+ c4[A]
R
s1

 

Q2R

|∇w|dxdt.

Consequently, we get (4.7.15) from (4.7.4) in Theorem 4.7.1. The proof is complete.

4.7.2 Boundary Estimates

In this subsection, we focus on the corresponding estimates near the boundary.
Let x0 ∈ ∂Ω be a boundary point and for R > 0 and t0 ∈ (−T, T ), we set Ω̃6R =
Ω̃6R(x0, t0) = (Ω ∩B6R(x0))× (t0 − (6R)2, t0) and Q6R = Q6R(x0, t0).
We consider the unique solution w to the equation

{
wt − div (A(x, t,∇w)) = 0 in Ω̃6R,

w = u on ∂pΩ̃6R.
(4.7.16)

In what follows we extend µ and u by zero to (Ω× (−∞, T ))c and then extend w by u to
R
N+1\Ω̃6R.

In order to obtain estimates for w as in Theorem 4.7.1 we require the domain Ω to be
satisfied 2−Capacity uniform thickness condition.

4.7.2.1 2-Capacity uniform thickness domain

It is well known that if R
N\Ω satisfies uniformly 2−thick with constants c0, r0 > 0,

there exist p0 ∈ ( 2N
N+2 , 2) and C = C(N, c0) > 0 such that

Capp0(Br(x) ∩ (RN\Ω), B2r(x)) ≥ CrN−p0 , (4.7.17)

for all 0 < r ≤ r0 and all x ∈ R
N\Ω, see [47, 57].

Theorem 4.7.5 Suppose that RN\Ω satisfies uniformly 2−thick with constants c0, r0. Let
w be in (4.7.16) with 0 < 6R ≤ r0. There exist constants θ2 > 2, β2 ∈ (0, 12 ], C2, C3

depending on N,Λ1,Λ2, c0 and C1 depending on N,Λ1,Λ2 such that

 

Q6R

|∇u−∇w|dxdt ≤ C1
|µ|(Ω̃6R)

RN+1
, (4.7.18)

(
 

Qρ/2(z,s)
|∇w|θ2dxdt

) 1
θ2

≤ C2

 

Q3ρ(z,s)
|∇w|dxdt, (4.7.19)
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(
 

Qρ1 (y,s)
|w|2dxdt

)1/2

≤ C3

(
ρ1
ρ2

)β2 ( 

Qρ2 (y,s)
|w|2dxdt

)1/2

, (4.7.20)

and
(
 

Qρ1 (z,s)
|∇w|2dxdt

)1/2

≤ C3

(
ρ1
ρ2

)β2−1
(
 

Qρ2 (z,s)
|∇w|2dxdt

)1/2

, (4.7.21)

for any Q3ρ(z, s) ⊂ Q6R, y ∈ ∂Ω, Qρ1(y, s) ⊂ Qρ2(y, s) ⊂ Q6R and Qρ1(z, s) ⊂ Qρ2(z, s) ⊂
Q6R

Proof. 1. For η ∈ C∞
c ([t0 − (6R)2, t0)) , 0 ≤ η ≤ 1, ηt ≤ 0 and η(t0 − (6R)2) = 1. Using

ϕ = Tk(u− w)η, for any k > 0, as a test function for (4.7.1) and (4.7.16), we get
ˆ

Ω̃6R

(u− w)tTk(u− w)ηdxdt

+

ˆ

Ω̃6R

(A(x, t,∇u)−A(x, t,∇w))∇Tk(u− w)ηdxdt =

ˆ

Ω̃6R

Tk(u− w)ηdµ.

Thanks to (4.1.3), we obtain

−
ˆ

Ω̃6R

T k(u− w)ηtdxdt+ Λ2

ˆ

Ω̃6R

|∇Tk(u− w)|2ηdxdt ≤ k|µ|(Ω̃6R),

where T k(s) =
´ s
0 Tk(τ)dτ . As in [13, Proposition 2.8], we also verify that

|||∇(u− w)|||
L

N+2
N+1

,∞
(Ω̃6R)

≤ c1|µ|(Ω̃6R).

Hence we get (4.7.18).

2. We need to prove that

 

Qr/4(z,s)
|∇w|2dxdt ≤ 1

2

 

Q 26
10 r

(z,s)
|∇w|2dxdt+ c7



 

Q 26
10 r

(z,s)
|∇w|p0dxdt




2
p0

,(4.7.22)

for all Q 26
10
r(z, s) ⊂ Q6R = Q6R(x0, t0). Here the constant p0 is in inequality (4.7.17).

Suppose that Br(z) ⊂ Ω. Take ρ ∈ (0, r]. Let ϕ ∈ C∞
c (Bρ(z)), η ∈ C∞

c ((s− ρ2, s]) be such
that 0 ≤ ϕ, η ≤ 1, ϕ = 1 in Bρ/2(z), η = 1 in [s − ρ2/4, s] and |∇ϕ| ≤ c1/ρ, |ηt| ≤ c1/ρ

2.
We denote

w̃Bρ(z)(t) =

(
ˆ

Bρ(z)
ϕ(x)2dx

)−1
ˆ

Bρ(z)
w(x, t)ϕ(x)2dx.

Using ϕ = (w − w̃Bρ(z))ϕ
2η2 as a test function for the equation (4.7.16) we have for all

s′ ∈ [s− ρ2/4, s]
ˆ

Bρ(z)×(s−ρ2,s′)
(w − w̃Bρ(z))t(w − w̃Bρ(z))ϕ

2η2dxdt

+

ˆ

Bρ(z)×(s−ρ2,s′)
A(x, t,∇w)∇

(
(w − w̃Bρ(z))ϕ

2η2
)
dxdt = 0.

204



4.7. INTERIOR ESTIMATES AND BOUNDARY ESTIMATES FOR PARABOLIC
EQUATIONS

Here we used the equality
´

Bρ(z)×(s−ρ2,s′)
(
w̃Bρ(z)

)
t
(w − w̃Bρ(z))ϕ

2η2dxdt = 0.
Thus, we can write

1

2

ˆ

Bρ(z)
(w(s′)− w̃Bρ(z)(s

′))2ϕ2dx+

ˆ

Bρ(z)×(s−ρ2,s′)
A(x, t,∇w)∇wϕ2η2dxdt

= −2

ˆ

Bρ(z)×(s−ρ2,s′)
A(x, t,∇w)∇ϕϕη2(w − w̃Bρ(z))dxdt

+

ˆ

Bρ(z)×(s−ρ2,s′)
(w − w̃Bρ(z))

2ϕ2ηηtdxdt.

From conditions (4.1.2) and (4.1.3), we get

1

2

ˆ

Bρ(z)
(w(s′)− w̃Bρ(z)(s

′))2ϕ2dx+ Λ2

ˆ

Bρ(z)×(s−ρ2,s′)
|∇w|2ϕ2η2dxdt

≤ 2Λ1

ˆ

Bρ(z)×(s−ρ2,s′)
|∇w||∇ϕ|ϕη2|w − w̃Bρ(z)|dxdt+

c8
ρ2

ˆ

Qρ(z,s)
(w − w̃Bρ(z))

2dxdt.

Using Holder inequality we can verify that

sup
s′∈[s−ρ2/4,s]

ˆ

Bρ(z)
(w(s′)− w̃Bρ(z)(s

′))2ϕ2dx

+

ˆ

Qρ/2(z,s)
|∇w|2dxdt ≤ c9

ρ2

ˆ

Qρ(z,s)
|w − w̃Bρ(z)|2dxdt. (4.7.23)

On the other hand, for any s′ ∈ [s− ρ2/4, s]

ˆ

Bρ/2(z)
(w(s′)− w̃Bρ/2(z)(s

′))2dx ≤ 2(1 + 2N+2)

ˆ

Bρ(z)
(w(s′)− w̃Bρ(z)(s

′))2ϕ2dx, (4.7.24)

where ϕ1(x) = ϕ(z + 2(x− z)) for all x ∈ Bρ/2(z) and

w̃Bρ/2(z) =

(
ˆ

Bρ/2(z)
ϕ1(x)

2dx

)−1
ˆ

Bρ/2(z)
w(x, t)ϕ1(x)

2dx.

In fact, since 0 ≤ ϕ ≤ 1 and ϕ = 1 in Bρ/2(z) thus

ˆ

Bρ/2(z)
(w(s′)− w̃Bρ/2(z)(s

′))2dx

≤ 2

ˆ

Bρ/2(z)
(w(s′)− w̃Bρ(z)(s

′))2dx+ 2N+1(w̃Bρ/2(z)(s
′)− w̃Bρ(z)(s

′))2|Bρ/4(z)|

≤ 2

ˆ

Bρ(z)
(w(s′)− w̃Bρ(z)(s

′))2ϕ2dx+ 2N+2

ˆ

Bρ/2(z)
(w(s′)− w̃Bρ/2(z)(s

′))2ϕ2
1dx

+2N+2

ˆ

Bρ/2(z)
(w(s′)− w̃Bρ(z)(s

′))2ϕ2
1dx.
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which yields (4.7.24) due to the following inequality
ˆ

Bρ/2(z)
(w(s′)− w̃Bρ/2(z)(s

′))2ϕ2
1dx ≤

ˆ

Bρ/2(z)
(w(s′)− l)2ϕ2

1dx ∀l ∈ R.

Therefore,

sup
s′∈[s−ρ2/4,s]

ˆ

Bρ/2(z)
(w(s′)− w̃Bρ/2(z)(s

′))2dx

+

ˆ

Qρ/2(z,s)
|∇w|2dxdt ≤ c10

ρ2

ˆ

Qρ(z,s)
|w − w̃Bρ(z)|2dxdt. (4.7.25)

Now we use estimate (4.7.25) for ρ = r/2, we have
ˆ

Qr/4(z,s)
|∇w|2dxdt ≤ c10

r2

ˆ

Qr/2(z,s)
(w − w̃Br/2(z))

2dxdt

≤ c10
r2

(
sup

s′∈[s−r2/4,s]

ˆ

Br/2(z)
(w(s′)− w̃Br/2(z)(s

′))2dx

) 2
N+2

×
ˆ s

s−r2/4

(
ˆ

Br/2(z)
(w − w̃Br/2(z))

2dx

) N
N+2

dt.

After we again use estimate (4.7.25) for ρ = r we get

ˆ

Qr/4(z,s)
|∇w|2dxdt ≤ c11

r2

(
1

r2

ˆ

Qr(z,s)
|w − w̃Br(z)|2dxdt

) 2
N+2

×
ˆ s

s−r2/4

(
ˆ

Bρ/2(z)
(w − w̃Br/2(z))

2dx

) N
N+2

dt.

Thanks to a Sobolev-Poincare inequality, we obtain

ˆ

Qr/4(z,s)
|∇w|2dxdt ≤ c12

r2

(
ˆ

Qr(z,s)
|∇w|2dxdt

) 2
N+2 ˆ

Qr/2(z,s)
|∇w| 2N

N+2dxdt.

Since p0 ∈ ( 2N
N+2 , 2), thanks to Holder inequality we get (4.7.22).

Finally, we consider the case Br(z) ∩ Ω 6= ∅. In this case we choose z0 ∈ ∂Ω such that
|z − z0| = dist(z, ∂Ω). Then |z0 − z| < r and thus 1

4r ≤ ρ1 ≤ 1
2r,

B 1
4
r(z) ⊂ B 5

4
r(z0) ⊂ Bρ1+r(z0) ⊂ Bρ1+ 11

10
r(z0) ⊂ B 16

10
r(z0) ⊂ B 26

10
r(z) ⊂ B6R(x0). (4.7.26)

Let ϕ ∈ C∞
c (Bρ1+ 11

10
r(z0)) be such that 0 ≤ ϕ ≤ 1, ϕ = 1 in Bρ1+r(z0) and |∇ϕ| ≤ C/r.

For 1
2r ≤ ρ2 ≤ r, let η ∈ C∞

c ((s− ρ22, s]) be such that 0 ≤ η ≤ 1, η = 1 in [s− ρ22/4, s] and
|ηt| ≤ c/r2. Using φ = wϕ2η2 as a test function for (4.7.16) we have for any s′ ∈ (s− ρ22, s)

ˆ

(B
ρ1+

11
10 r

(z0)∩Ω)×(s−ρ22,s′)
wtwϕ

2η2dxdt

+

ˆ

(B
ρ1+

11
10 r

(z0)∩Ω)×(s−ρ22,s′)
A(x, t,∇w)∇

(
wϕ2η2

)
dxdt = 0.

206



4.7. INTERIOR ESTIMATES AND BOUNDARY ESTIMATES FOR PARABOLIC
EQUATIONS

As above we also get

sup
s′∈[s−ρ22/4,s]

ˆ

Bρ1+r(z0)
w2(s′)dx

+

ˆ

Bρ1+r(z0)×(s−ρ22/4,s)
|∇w|2dxdt ≤ c13

r2

ˆ

B
ρ1+

11
10 r

(z0)×(s−ρ22,s)
w2dxdt.

In particular, for ρ1 = 1
4r, ρ2 =

1
2r and using (4.7.26) yield

ˆ

Q 1
4 r

(z,s)
|∇w|2dxdt ≤ c14

r2

ˆ

B 29
20 r

(z0)×(s−r2/4,s)
w2dxdt, (4.7.27)

and ρ1 = (14 + 1
10)r, ρ2 = r,

sup
s′∈[s−r2/4,s]

ˆ

B 1
4 r+11

10 r
(z0)

w2(s′)dx ≤ c15
r2

ˆ

B 29
20 r

(z0)×(s−r2,s)
w2dxdt.

Set K1 = {w = 0} ∩ B 29
20
r(z0) and K2 = {w = 0} ∩ B 1

4
r+ 11

10
r(z0), Since R

N\Ω satisfies an
uniformly 2−thick,we have the following estimates

Cap2(K1, B 29
10
r(z0)) ≥ c16r

N−2 and Capp0(K2, B 1
2
r+ 11

5
r(z0)) ≥ c16r

N−p0 .

So, by Sobolev-Poincare’s inequality we get
 

B 29
20 r

(z0)
w2dx ≤ c17r

2

 

B 5
2 r

(z)
|∇w|2dx, (4.7.28)

and

 

B 1
4 r+11

10 r
(z0)

w2dxdt ≤ c18r
2



 

B 1
4 r+11

10 r
(z0)

|∇w|p0dx




2
p0

≤ c19r
2



 

B 5
2 r

(z0)
|∇w|p0dx




2
p0

.

Leads to

sup
s′∈[s−r2/4,s]

ˆ

B 1
4 r+11

10 r
(z0)

w2(s′)dx ≤ c20

ˆ

Q 5
2 r

(z,s)
|∇w|2dxdt, (4.7.29)

and

ˆ

B 1
4 r+11

10 r
(z0)

w2(t)dx ≤ c21r
N+2



 

B 5
2 r

(z0)
|∇w|p0(t)dx




2
p0

. (4.7.30)

From (4.7.27), we have
 

Q 1
4 r

(z,s)
|∇w|2dxdt ≤ c22

rN+4

ˆ

B 1
4 r+11

10 r
(z0)×(s−r2/4,s)

w2dxdt

≤ c22
rN+4


 sup
s′∈[s−r2/4,s]

ˆ

B 1
4 r+11

10 r
(z0)

w2(s′)dx




1− p0
2
ˆ s

s−r2/4



ˆ

B 1
4 r+11

10 r
(z0)

w2(t)dx




p0
2

dt.
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Using (4.7.30), (4.7.29) and Holder’s inequality we get

 

Q 1
4 r

(z,s)
|∇w|2dxdt ≤ c23

rN+4



ˆ

Q 5
2 r

(z,s)
|∇w|2dxdt




1− p0
2

r
N+2

2
p0−N

ˆ

Q 5
2 r

(z,s)
|∇w|p0dxdt

= c24



 

Q 5
2 r

(z,s)
|∇w|2dxdt




1− p0
2
 

Q 5
2 r

(z,s)
|∇w|p0dxdt

≤ 1

2

 

Q 26
10 r

(z,s)
|∇w|2dxdt+ c25



 

Q 26
10 r

(z,s)
|∇w|p0dxdt




2
p0

.

So we proved (4.7.22).
Therefore, By Gehring’s Lemma (see [60]) we get (4.7.19).
3. Now we prove (4.7.20). Let y ∈ ∂Ω, Qρ1(y, s) ⊂ Qρ2(y, s) ⊂ Q6R with ρ1 ≤ ρ2/4. First,
we will show that there exists a constant β2 = β2(N,Λ1,Λ2, c0) ∈ (0, 1/2] such that

osc(w,Qρ1(y, s)) ≤ c26

(
ρ1
ρ2

)β2
osc(w,Qρ2/2(y, s)), (4.7.31)

where osc(w,A) = supAw − infAw.
Indeed, since

ˆ 1

0

Cap1,2(Ω
c ∩Br(z), B2r(z))

rN−2

dr

r
= +∞ ∀z ∈ ∂Ω.

thus by the Wiener criterion (see [83]), we have w is continuous up to ∂pΩ̃6R. So, we can
choose ϕ = (V −M4ρ1) η

2 ∈ L2(−∞, T ;H1
0 (Ω ∩ B6R(x0))) as test function in (4.7.16),

where
a. η ∈ C∞(Q4ρ1(y, s)), 0 ≤ η ≤ 1 such that η = 1 in Qρ1/2(y, s − 17

4 ρ
2
1), supp(η) ⊂⊂

Qρ1(y, s− 4ρ21) and |∇η| ≤ c27/ρ1, |ηt| ≤ c28/ρ
2
1.

b. M4ρ1 = supQ4ρ1 (y,s)
w and V = inf{M4ρ1 − w,M4ρ1} in Ω̃6R, V =M4ρ1 outside Ω̃6R.

We have
ˆ

Ω̃6R

wt (V −M4ρ1) η
2dxdt

+

ˆ

Ω̃6R

2ηA(x, t,∇w)∇η (V −M4ρ1) dxdt+

ˆ

Ω̃6R

η2A(x, t,∇w)∇V dxdt = 0,

which implies

ˆ

Ω̃6R

η2A(x, t,−∇V )(−∇V )dxdt =

ˆ

Ω̃6R

2ηA(x, t,−∇V )∇η (V −M4ρ1) dxdt

−
ˆ

Ω̃6R

(V −M4ρ1)t (V −M4ρ1) η
2dxdt.

208



4.7. INTERIOR ESTIMATES AND BOUNDARY ESTIMATES FOR PARABOLIC
EQUATIONS

Using (4.1.2) and (4.1.3) we get

Λ2

ˆ

Ω̃6R

η2|∇V |2dxdt

≤ 2Λ1

ˆ

Ω̃6R

η|∇V ||∇η||V −M4ρ1 |dxdt− 1/2

ˆ

Ω̃6R

(
(V −M4ρ1)

2 −M2
4ρ1

)
(η2)tdxdt

≤ 2Λ1M4ρ1

ˆ

Ω̃6R

η|∇V ||∇η|dxdt+ 2M4ρ1

ˆ

Ω̃6R

ηV |ηt|dxdt.

Since supp(|∇V |) ∩ supp(η) ⊂ Ω̃6R, thus
ˆ

RN+1

|∇(ηV )|2dxdt ≤ c29M4ρ1

(
ˆ

RN+1

η|∇V ||∇η|dxdt+
ˆ

RN+1

V
(
η|ηt|+ |∇η|2

)
dxdt

)

≤ c30M4ρ1

(
ˆ

RN+1

η|∇V ||∇η|dxdt+ 1

ρ21

ˆ

Qρ1 (y,s−4ρ21)
V dxdt

)
.

(4.7.32)

By [50, Theorem 6.31, p. 132], for any σ ∈ (0, 1 + 2/N) there holds

(
 

Qρ1 (y,s−4ρ21)
V σdxdt

)1/σ

≤ c31 inf
Qρ1 (y,s)

V = c31(M4ρ1 − sup
Qρ1 (y,s)

w) = c31(M4ρ1 −Mρ1).

(4.7.33)
In particular,

1

ρ21

ˆ

Qρ1 (y,s−4ρ21)
V dxdt ≤ c32ρ

N
1 (M4ρ1 −Mρ1). (4.7.34)

We need to estimate
´

Ω̃6R
η|∇V ||∇η|dxdt. Using Holder inequality and (4.7.33), for ε ∈

(0,min{2/N, 1}) we have

ˆ

Ω̃6R

η|∇V ||∇η|dxdt ≤
(
ˆ

Ω̃6R

η2V −(1+ε)|∇V |2dxdt
)1/2(ˆ

Ω̃6R

V 1+ε|∇η|2dxdt
)1/2

≤ c28

(
ˆ

Ω̃6R

η2V −(1+ε)|∇V |2dxdt
)1/2

(
ˆ

Qρ1 (y,s−4ρ21)
V 1+εdxdt

)1/2

≤ c33

(
ˆ

Ω̃6R

η2V −(1+ε)|∇V |2dxdt
)1/2

ρ
N/2
1 (M4ρ1 −Mρ1)

(1+ε)/2.

To estimate
(
´

Ω̃6R
η2V −(1+ε)|∇V |2dxdt

)1/2
, we can choose ϕ = ((V + δ)−ε − (M4ρ1 +

δ)−ε)η2, for δ > 0, as test function in (4.7.16), we will get
ˆ

Ω̃6R

η2(V + δ)−(1+ε)|∇V |2dxdt

≤ c34

ˆ

Ω̃6R

η(V + δ)−ε|∇V ||∇η|dxdt+ c34

ˆ

Ω̃6R

η(V + δ)1−ε|ηt|dxdt.
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Thanks to Holder’s inequality, we obtain
ˆ

Ω̃6R

η2(V + δ)−(1+ε)|∇V |2dxdt ≤ c35

ˆ

Ω̃6R

(V + δ)1−ε
(
η|ηt|+ |∇η|2

)
dxdt

≤ c36ρ
2
1

ˆ

Qρ1 (y,s−4ρ21)
(V + δ)1−εdxdt.

Letting δ → 0 and using (4.7.33), we get
ˆ

Ω̃6R

η2V −(1+ε)|∇V |2dxdt ≤ c36ρ
2
1

ˆ

Qρ1 (y,s−4ρ21)
V 1−εdxdt

≤ c37ρ
N
1 (M4ρ1 −Mρ1)

1−ε .

Thus,
ˆ

Ω̃6R

η|∇V ||∇η|dxdt ≤ c38ρ
N
1 (M4ρ1 −Mρ1).

Combining this with (4.7.32) and (4.7.34),
ˆ

RN+1

|∇(ηV )|2dxdt ≤ c39ρ
N
1 M4ρ1 (M4ρ1 −Mρ1) .

Note that ηV =M4ρ1 in
(
Ωc ∩Bρ1/2(y)

)
× (s− 9

2ρ
2
1, s− 17

4 ρ
2
1) thus

ˆ

RN+1

|∇(ηV )|2dxdt ≥
ˆ s− 17

4
ρ21

s− 9
2
ρ21

ˆ

RN

|∇(ηV )|2dxdt

≥
ˆ s− 17

4
ρ21

s− 9
2
ρ21

M2
4ρ1Cap1,2(Ω

c ∩Bρ1/2(y), Bρ1(y))dt

≥ c40M
2
4ρ1ρ

N
1 .

Here we used Cap1,2(Ω
c ∩Bρ1/2(y), Bρ1(y)) ≥ cρN−2

1 in the last inequality. It follows

M4ρ1 ≤ c41(M4ρ1 −Mρ1).

So
sup

Qρ1 (y,s)
w ≤ γ sup

Q4ρ1 (y,s)
w where γ =

c41
c41 + 1

< 1.

Of course, above estimate is also true when we replace w by −w. These give,

osc(w,Qρ1(y, s)) ≤ γosc(w,Q4ρ1(y, s)).

It follows (4.7.31).
We come back the proof of (4.7.20).
Since w = 0 outside ΩT this leads to

(
 

Qρ1 (y,s)
|w|2dxdt

)1/2

≤ c42osc(w,Qρ2/2(y, s)).
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On the other hand, By [50, Theorem 6.30, p. 132] we have

sup
Qρ2/2

(y,s)
w ≤ c43

(
 

Qρ2 (y,s)
(w+)2dxdt

)1/2

and

sup
Qρ2/2

(y,s)
(−w) ≤ c44

(
 

Qρ2 (y,s)
(w−)2dxdt

)1/2

.

Thus, we get (4.7.20).
Next, we have (4.7.21) for case z = y ∈ ∂Ω since from Caccippoli’s inequality,

ˆ

Qρ1 (z,s)
|∇w|2dxdt ≤ c45

ρ21

ˆ

Q2ρ1 (z,s)
|w|2dxdt,

and using Sobolev-Poincare’s inequality as in (4.7.28),

ˆ

Qρ2 (z,s)
|w|2dxdt ≤ c46ρ

2
2

ˆ

Qρ2 (z,s)
|∇w|2dxdt.

We now prove (4.7.21). Take Qρ1(z, s) ⊂ Qρ2(z, s) ⊂ Q6R, it is enough to consider the case
ρ1 ≤ ρ2/20. Clearly, if Bρ2/4(z) ⊂ Ω then (4.7.21) follows from (4.7.7) in Theorem 4.7.1. We
consider Bρ2/4(z)∩ ∂Ω 6= ∅, let z0 ∈ Bρ2/4(z)∩ ∂Ω such that |z− z0| = dist(z, ∂Ω) ≤ ρ2/4.
Obviously, if ρ1 < |z − z0|/4 and z /∈ Ω, then (4.7.21) is trivial. If ρ1 < |z − z0|/4 and
z ∈ Ω, then (4.7.21) follows from (4.7.7) in Theorem 4.7.1.
Now assume ρ1 ≥ |z − z0|/4 then since Qρ1(z, s) ⊂ Q5ρ1(z0, s)

(
 

Qρ1 (z,s)
|∇w|2dxdt

)1/2

≤ c47

(
 

Q5ρ1 (z0,s)
|∇w|2dxdt

)1/2

≤ c48

(
ρ1
ρ2

)β2−1
(
 

Qρ2/4
(z0,s)

|∇w|2dxdt
)1/2

≤ c49

(
ρ1
ρ2

)β2−1
(
 

Qρ2/2
(z,s)

|∇w|2dxdt
)1/2

,

which implies (4.7.21).

Corollary 4.7.6 Suppose that RN\Ω satisfies uniformly 2−thick with constants c0, r0. Let
β2 be the constant in Theorem 4.7.5. For 2 − β2 < θ < N + 2, there exists a constant
C = C(N,Λ1,Λ2, θ) > 0 such that for any Bρ(y) ∩ ∂Ω 6= ∅, s ∈ (−T, T ), 0 < ρ ≤ r0

ˆ

Qρ(y,s)
|∇u|dxdt ≤ CρN+3−θ

((
T0
r0

)N+3−θ
+ 1

)
||Mθ[µ]||L∞(Ω×(−T,T )), (4.7.35)

where T0 = diam(Ω) + T 1/2.

211



4.7. INTERIOR ESTIMATES AND BOUNDARY ESTIMATES FOR PARABOLIC
EQUATIONS

Proof. Take Bρ2/4(y)∩∂Ω 6= ∅ and s ∈ (−T, T ), ρ2 ≤ 2r0. Let y0 ∈ Bρ2/4(y)∩∂Ω such that
|y− y0| = dist(y, ∂Ω) ≤ ρ2/4, thus Qρ2/4(y, s) ⊂ Qρ2/2(y0, s) For any Qρ1(y, s) ⊂ Qρ2(y, s)
with ρ1 ≤ ρ2/4, we take w as in Theorem 4.7.5 with Q6R = Qρ2/2(y0, s). Thus,

ˆ

Qρ1 (y,s)
|∇w|dxdt ≤ c1

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2/4
(y,s)

|∇w|dxdt,
ˆ

Qρ2/2
(y0,s)

|∇u−∇w|dxdt ≤ c2ρ2|µ|(Qρ2/2(y0, s)).

As in the proof of Corollary 4.7.2, we get the result.

4.7.2.2 Reifenberg flat domain

In this subsection, we always assume that A satisfies (4.2.27). Also, we assume that Ω
is a (δ,R0)- Reifenberg flat domain with 0 < δ < 1/2 . Fix x0 ∈ ∂Ω and 0 < R < R0/6.
We have a density estimate

|Bt(x) ∩ (RN\Ω)| ≥ c|Bt(x)| ∀x ∈ ∂Ω, 0 < t < R0, (4.7.36)

with c = ((1− δ)/2)N ≥ 4−N .
In particular, RN\Ω satisfies uniformly 2−thick with constants c, r0 = R0.
Next we set ρ = R(1 − δ) so that 0 < ρ/(1 − δ) < R0/6. By the definition of Reifenberg
flat domains, there exists a coordinate system {y1, y2, ..., yN} with the origin 0 ∈ Ω such
that in this coordinate system x0 = (0, ..., 0,−ρδ/(1− δ)) and

B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {y = (y1, y2, ...., yN ) : yN > −2ρδ/(1− δ)}.

Since δ < 1/2 we have

B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {y = (y1, y2, ...., yN ) : yN > −4ρδ},

where B+
ρ (0) := Bρ(0) ∩ {y = (y1, y2, ..., yN ) : yN > 0}.

Furthermore we consider the unique solution

v ∈ C(t0 − ρ2, t0;L
2(Ω ∩Bρ(0))) ∩ L2(t0 − ρ2, t0;H

1(Ω ∩Bρ(0))) (4.7.37)

to the following equation
{
vt − div

(
ABρ(0)(t,∇v)

)
= 0 in Ω̃ρ(0),

v = w on ∂pΩ̃ρ(0),
(4.7.38)

where Ω̃ρ(0) = (Ω ∩Bρ(0))× (t0 − ρ2, t0) (−T < t0 < T ).
We put v = w outside Ω̃ρ(0). As Lemma 4.7.3 we have the following Lemma.

Lemma 4.7.7 Let θ2 be the constant in Theorem 4.7.5. There exists constants C1 =
C1(N,Λ1,Λ2), C2 = C2(Λ1,Λ2) such that

(
 

Qρ(0,t0)
|∇w −∇v|2

)1/2

≤ [A]Rs2

 

Qρ(0,t0)
|∇w|dxdt, (4.7.39)
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with s2 = 2θ2
θ2−2 and

C−1
2

ˆ

Qρ(0,t0)
|∇v|2dxdt ≤

ˆ

Qρ(0,t0)
|∇w|2dxdt ≤ C2

ˆ

Qρ(0,t0)
|∇v|2dxdt. (4.7.40)

We can see that if the boundary of Ω is bad enough, then the L∞-norm of ∇v up to
∂Ω ∩Bρ(0)× (t0 − ρ2, t0) could be unbounded. For our purpose, we will consider another
equation : {

Vt − div
(
ABρ(0)(t,∇V )

)
= 0 in Q+

ρ (0, t0),

V = 0 on Tρ(0, t0),
(4.7.41)

where Q+
ρ (0, t0) = B+

ρ (0)× (t0 − ρ2, t0) and Tρ(0, t0) = Qρ(0, t0) ∩ {xN = 0}.
A weak solution V of above problem is understood in the following sense : the zero extension
of V to Qρ(0, t0) is in V ∈ C(t0 − ρ2, t0;L

2(Bρ(0))) ∩ L2
loc(t0 − ρ2, t0;H

1(Bρ(0))) and for
every ϕ ∈ C1

c (Q
+
ρ (0, t0)) there holds

−
ˆ

Q+
ρ (0,t0)

V ϕtdxdt+

ˆ

Q+
ρ (0,t0)

ABρ(0)(t,∇V )∇ϕdxdt = 0.

We have the following gradient L∞ estimate up to the boundary for V .

Lemma 4.7.8 (see [48, 49]) For any weak solution V ∈ C(t0 − ρ2, t0;L
2(B+

ρ (0))) ∩
L2

loc(t0 − ρ2, t0;H
1(B+

ρ (0))) of (4.7.41), we have

||∇V ||L∞(Q+
ρ′/2(0,t0))

≤ C

 

Q+
ρ′ (0,t0)

|∇V |2dxdt ∀ 0 < ρ′ ≤ ρ. (4.7.42)

for some constant C = C(N,Λ1,Λ2) > 0. Moreover, ∇V is continuous up to Tρ(0, t0).

Lemma 4.7.9 If V ∈ C(t0 − ρ2, t0;L
2(B+

ρ (0))) ∩ L2(t0 − ρ2, t0;H
1(B+

ρ (0))) is a weak
solution of (4.7.41), then its zero extension from Q+

ρ (0, t0) to Qρ(0, t0) solves

Vt − div
(
ABρ(0)(t,∇V )

)
=

∂F

∂xN
, (4.7.43)

weakly in Qρ(0, t0), for (x, t) = (x′, xN , t) ∈ Qρ(0, t0),

ABρ(0) = (A
1
Bρ(0), A

2
Bρ(0), ..., A

N
Bρ(0)), and F (x, t) = χxN<0A

N
Bρ(0)(t,∇V (x′, 0, t)).

Proof. Let g ∈ C∞(R) with g = 0 on (−∞, 1/2) and g = 1 on (1,∞). Then, for any
ϕ ∈ C∞

c (Qρ(0, t0)) and n ∈ N. We have ϕn(x, t) = ϕn(x
′, xN , t) = g(nxN )ϕ(x, t) ∈

C∞
c (Q+

ρ (0, t0). Thus, we get
ˆ

Q+
ρ (0,t0)

Vtϕndxdt+

ˆ

Q+
ρ (0,t0

ABρ(0)(t,∇V )∇ (g(nxN )ϕ(x, t)) dxdt = 0,

which implies
ˆ

Q+
ρ (0,t0)

Vtϕndxdt+

ˆ

Q+
ρ (0,t0)

ABρ(0)(t,∇V )∇ϕ(x, t)g(nxN )dxdt

= −
ˆ ρ

0
G(xN )g

′(nxN )ndxN .
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where

G(xN ) =

ˆ t0

t0−ρ2

ˆ

|x′|<
√
ρ2−x2N

A
N
Bρ(0)(t,∇V )ϕ(x′, xN , t)dx

′dt ∈ C([0,∞)).

Letting n→ ∞ we get
ˆ

Q+
ρ (0,t0)

Vtϕdxdt+

ˆ

Q+
ρ (0,t0)

ABρ(0)(t,∇V )∇ϕ(x, t)dxdt = −G(0)

= −
ˆ

Qρ(0,t0)
F
∂ϕ

∂xN
dxdt.

Since ∇V = 0, V = 0 outside Q+
ρ , therefore we get the result.

We now consider a scaled version of equation (4.7.38)
{
vt − div

(
AB1(0)(t,∇v)

)
= 0 in Ω̃1(0),

v = 0 on ∂pΩ̃1(0)\ (Ω× (−T, T )) , (4.7.44)

under assumption
B+

1 (0) ⊂ Ω ∩B1(0) ⊂ B1(0) ∩ {xN > −4δ}. (4.7.45)

Lemma 4.7.10 For any ε > 0 there exists a small δ = δ(N,Λ1,Λ2, ε) > 0 such that if
v ∈ C(t0−1, t0;L

2(Ω∩B1(0)))∩L2(t0−1, t0;H
1(Ω∩B1(0))) is a solution of (4.7.44) and

(4.7.45) is satisfied and the bounded
 

Q1(0,t0)
|∇v|2dxdt ≤ 1, (4.7.46)

then there exists a weak solution V ∈ C(t0 − 1, t0;L
2(B+

1 (0))) ∩ L2(t0 − 1, t0;H
1(B+

1 (0)))
of (4.7.41) with ρ = 1, whose zero extension to Q1(0, t0) satisfies

 

Q1(0,t0)
|v − V |2dxdt ≤ ε2, (4.7.47)

Proof. We argue by contradiction. Suppose that the conclusion were false. Then, there
exist a constant ε0 > 0, t0 ∈ R and a sequence of nonlinearities {Ak} satisfying (4.1.2)
and (4.2.27), a sequence of domains {Ωk}, and a sequence of functions {vk} ⊂ C(t0 −
1, t0;L

2(Ωk ∩B1(0))) ∩ L2(t0 − 1, t0;H
1(Ωk ∩B1(0))) such that

B+
1 (0) ⊂ Ωk ∩B1(0) ⊂ B1(0) ∩ {xN > −1/2k}, (4.7.48)

{
(vk)t − div

(
Ak,B1(0)(t,∇vk)

)
= 0 in Ω̃k1(0),

vk = 0 on (∂pΩ̃
k
1(0))\(Ωk × (−T, T )), (4.7.49)

and the zero extension of each vk to Q1(0, t0) satisfies
 

Q1(0,t0)
|∇vk|2dxdt ≤ 1 but (4.7.50)

 

Q1(0,t0)
|vk − Vk|2dxdt ≥ ε20, (4.7.51)
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for any weak solution Vk of
{

(Vk)t − div
(
Ak,B1(0)(t,∇Vk)

)
= 0, in Q+

1 (0, t0),

Vk = 0 on T1(0, t0).
(4.7.52)

By (4.7.48) and (4.7.50) and Poincare’s inequality it following that

||vk||L2(t0−1,t0;H1(B1(0))) ≤ c1||∇vk||L2(Q1(0,t0) ≤ c2,

and

||(vk)t||L2(t0−1,t0;H−1(B1(0))) = ||Ak,Q1(0,t0)(∇vk)||L2(t0−1,t0;H−1(B1(0)))

≤
ˆ

Q1(0,t0)
|Ak,B1(0)(t,∇vk)|2dxdt

≤ c3

ˆ

Q1(0,t0)
|∇vk|2dxdt

≤ c4.

Therefore, using Aubin−Lions Lemma, one can find v0 and a subsequence, still denoted
by {vk} such that

vk → v0 weakly in L2(t0 − 1, t0, H
1(B1(0))) and strongly in L2(t0 − 1, t0, L

2(B1(0))),

and
(vk)t → (v0)t weakly in L2(t0 − 1, t0, H

−1(B1(0))).

Moreover, v0 = 0 in Q−
1 (0, t0) := (B1(0) ∩ {xN < 0})× (1− t0, 1) since vk = 0 on outside

Ωk ∩Q1(0, t0) for all k.
To get a contradiction we take Vk to be the unique solution of (Vk)t−div

(
Ak,B1(0)(t,∇Vk)

)
=

0 in Q+
1 (0, t0) and Vk − v0 ∈ L2(t0 − 1, t0, H

1
0 (B

+
1 (0))) and Vk(t0 − 1) = v0(t0 − 1). As

above, one can find V0 and a subsequence, still denoted by {Vk} such that

Vk → V0 weakly in L2(t0 − 1, t0, H
1(B1(0))) and strongly in L2(t0 − 1, t0, L

2(B1(0))),

and
(Vk)t → (V0)t weakly in L2(t0 − 1, t0, H

−1(B1)),

for some V0 ∈ v0 + L2(t0 − 1, t0, H
1
0 (B

+
1 (0)) and V0(t0 − 1) = v0(t0 − 1).

Thanks to (4.7.51), the proof would be complete if we could show that v0 = V0. In fact,
Let Jk : X → L2(Q+

1 (0, t0),R
N ) determined by

Jk(φ(x, t)) = Ak,B1(0)(t,∇φ(x, t)) for any φ ∈ X,

whereX ⊂ L2(t0−1, t0, H
1(B1(0))) is closures (in the strong topology of L2(t0−1, t0, H

1(B1(0))))
of convex combinations of {vk}k≥1 ∪ {Vk}k≥1 ∪ {0}.
Since vk, Vk converge weakly to v0, V0 in L2(t0 − 1, t0, H

1(B1(0))) resp., thus by Mazur
Theorem, X is compact subset of L2(t0 − 1, t0, H

1(B1(0))) and v0, V0 ∈ X.
Thanks to (4.1.2) and (4.2.27), we get Jk(0) = 0 and

||Jk(φ1)− Jk(φ2)||L2(Q+
1 (0,t0),RN ) ≤ Λ1||φ1 − φ2||L2(t0−1,t0,H1(B1(0))),
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for every φ1, φ2 ∈ X and k ∈ N. Thus, by Ascoli Theorem, there exist J ∈ C(X,L2(Q+
1 (0, t0),R

N ))
and a subsequence of {Jk}, still denote by it, such that

sup
φ∈X

||Jk(φ)− J (φ)||L2(Q+
1 (0,t0),RN ) → 0 as k → ∞, (4.7.53)

and also for any φ1, φ2 ∈ X,
ˆ

Q+
1 (0,t0)

(J (φ1)− J (φ2)) . (∇φ1 −∇φ2) dxdt ≥ Λ2|||∇φ1 −∇φ2|||L2(Q+
1 (0,t0))

. (4.7.54)

From (4.7.48), we deduce
ˆ

Q+
1 (0,t0)

(vk − Vk)t(v0 − V0)dxdt

+

ˆ

Q+
1 (0,t0)

(
Ak,B1(0)(t,∇vk)−Ak,B1(0)(t,∇Vk)

)
.∇(v0 − V0)dxdt = 0.

We have
ˆ

Q+
1 (0,t0)

|Ak,B1(0)(∇vk)|2dxdt ≤ c9

ˆ

Q+
1 (0,t0)

|∇vk|2dxdt ≤ c10 and

ˆ

Q+
1 (0,t0)

|Ak,B1(0)(∇Vk)|2dxdt ≤ c9

ˆ

Q+
1 (0,t0)

|∇Vk|2dxdt ≤ c11.

for every k.
Thus there exists a subsequence, still denoted by {Ak,B1(0)(t,∇vk), Ak,B1(0)(t,∇Vk)} and
a vector field A1, A2 belonging to L2(Q+

1 (0, t0),R
N ) such that

Ak,B1(0)(t,∇vk) → A1 and Ak,B1(0)(t,∇Vk) → A2,

weakly in L2(Q+
1 (0, t0),R

N ). It follows
ˆ

Q+
1 (0,t0)

(v0 − V0)t(v0 − V0)dxdt+

ˆ

Q+
1 (0,t0)

(A1 −A2).∇(v0 − V0)dxdt = 0.

Since
ˆ

Q+
1 (0,t0)

(v0 − V0)t(v0 − V0)dxdt =

ˆ

B+
1 (0)

(v0 − V0)
2(t0)dx ≥ 0,

we get
ˆ

Q+
1 (0,t0)

(A1 −A2).∇(v0 − V0)dxdt ≤ 0. (4.7.55)

For our purpose, we need to show that
ˆ

Q+
1 (0,t0)

(A1 − J (v0)).∇(v0 − V0)dxdt ≥ 0 and (4.7.56)

ˆ

Q+
1 (0,t0)

(A2 − J (V0)).∇(V0 − v0)dxdt ≥ 0. (4.7.57)
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To do this, we fix a function g ∈ X and any ϕ ∈ C1
c (Q

+
1 (0, t0)) such that ϕ ≥ 0. We have

0 ≤
ˆ

Q+
1 (0,t0)

ϕ
(
Ak,B1(0)(t,∇vk)−Ak,B1(0)(t,∇g)

)
(∇vk −∇g) dxdt

=

ˆ

Q+
1 (0,t0)

ϕAk,B1(0)(t,∇vk)∇vkdxdt−
ˆ

Q+
1 (0,t0)

ϕAk,B1(0)(t,∇vk)∇gdxdt

−
ˆ

Q+
1 (0,t0)

ϕAk,B1(0)(t,∇g) (∇vk −∇g) dxdt

:= B1 +B2 +B3.

It is easy to see that

lim
k→∞

B2 = −
ˆ

Q+
1 (0,t0)

ϕA1∇gdxdt and lim
k→∞

B3 = −
ˆ

Q+
1 (0,t0)

ϕJ (g) (∇v0 −∇g) dxdt.

Moreover, we have

B1 = −
ˆ

Q+
1 (0,t0)

(vk)tϕvkdxdt−
ˆ

Q+
1 (0,t0)

Ak,Q1(0,t0)(∇vk)∇ϕvkdxdt

=
1

2

ˆ

Q+
1 (0,t0)

v2kϕtdxdt−
ˆ

Q+
1 (0,t0)

Ak,Q1(0,t0)(∇vk)∇ϕvkdxdt.

Thus,

lim
k→∞

B1 =
1

2

ˆ

Q+
1 (0,t0)

v20ϕtdxdt−
ˆ

Q+
1 (0,t0)

A1∇ϕv0dxdt

= −
ˆ

Q+
1 (0,t0)

(v0)tϕv0dxdt−
ˆ

Q+
1 (0,t0)

A1∇(ϕv0)dxdt+

ˆ

Q+
1 (0,t0)

ϕA1∇v0dxdt

=

ˆ

Q+
1 (0,t0)

ϕA1∇v0dxdt.

Hence,

0 ≤
ˆ

Q+
1 (0,t0)

ϕ (A1 − J (g)) (∇v0 −∇g) dxdt

holds for all ϕ ∈ C1
c (Q

+
1 (0, t0)), ϕ ≥ 0 and g ∈ X. Now we choose g = v0 − ξ(v0 − V0) =

(1− ξ)v0 + ξV0 ∈ X for ξ ∈ (0, 1), so

0 ≤
ˆ

Q+
1 (0,t0)

ϕ (A− J (v0 − ξ(v0 − V0))) (∇v0 −∇V0) dxdt

Letting ξ → 0+ and ϕ→ χQ+
1 (0,t0)

, we get (4.7.56). Similarly, we also obtain (4.7.57).
Thus,

ˆ

Q+
1 (0,t0)

(A1 −A2)∇(v0 − V0)dxdt ≥
ˆ

Q+
1 (0,t0)

(J (v0)− J (V0))∇(v0 − V0)dxdt.

Combining this with (4.7.54), (4.7.55) and v0 − V0 ∈ L2(t0 − 1, t0, H
1
0 (B

+
1 (0))), yields

v0 = V0. This completes the proof of Lemma.
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Lemma 4.7.11 For any ε > 0 there exists a small δ = δ(N,Λ1,Λ2, ε) > 0 such that if
v ∈ C(t0−1, t0;L

2(Ω∩B1(0)))∩L2(t0−1, t0;H
1(Ω∩B1(0))) is a solution of (4.7.44) and

(4.7.45) is satisfied and the bounded
 

Q1(0,t0)
|∇v|2dxdt ≤ 1, (4.7.58)

then there exists a weak solution V ∈ C(t0 − 1, t0;L
2(B+

1 (0))) ∩ L2(t0 − 1, t0;H
1(B+

1 (0)))
of (4.7.41) with ρ = 1, whose zero extension to Q1(0, t0) satisfies

||∇V ||L∞(Q1/4(0,t0)) ≤ C and (4.7.59)
 

Q1/8(0,t0)
|∇v −∇V |2dxdt ≤ ε2, (4.7.60)

for some C = C(N,Λ1,Λ2) > 0.

Proof. Given ε1 ∈ (0, 1) by applying Lemma 4.7.10 one finds a small δ = δ(N,Λ1,Λ2, ε1) >
0 and a weak solution V ∈ C(t0 − 1, t0;L

2(B+
1 (0))) ∩ L2(t0 − 1, t0;H

1(B+
1 (0))) of (4.7.41)

with ρ = 1 such that
 

Q1(0,t0)
|v − V |2dxdt ≤ ε21, (4.7.61)

Using φ2V with φ ∈ C∞
c (B1 × (t0 − 1, t0]), 0 ≤ φ ≤ 1 and φ = 1 in Q1/2(0, t0) as test

function in (4.7.41), we can obtain
ˆ

Q1/2(0,t0)
|∇V |2dxdt ≤ c1

ˆ

Q1(0,t0)
|V |2dxdt.

This implies
ˆ

Q1/2(0,t0)
|∇V |2dxdt ≤ c2

ˆ

Q1(0,t0)

(
|v − V |2 + |v|2

)
dxdt

≤ c3

ˆ

Q1(0,t0)

(
|v − V |2 + |∇v|2

)
dxdt

≤ c4,

since (4.7.58), (4.7.61) and Poincare’s inequality. Thus, using Lemma 4.7.8 we get (4.7.59).
Next, we will prove (4.7.60). By Lemma 4.7.9, the zero extension of V to Q1(0, t0) satisfies

Vt − div
(
AB1(0)(t,∇V )

)
=

∂F

∂xN
in weakly Q1(0, t0).

where F (x, t) = χxN<0A
N
Bρ(0)(t,∇V (x′, 0, t)). Thus, we can write

ˆ

Ω̃1(0,t0)
(V − v)tϕdxdt

+

ˆ

Ω̃1(0,t0)

(
AB1(0)(t,∇V )−AB1(0)(t,∇v)

)
∇ϕdxdt = −

ˆ

Ω̃1(0,t0)
F
∂ϕ

∂xN
dxdt,
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for any ϕ ∈ L2(t0 − 1, t0, H
1
0 (Ω ∩B1(0))).

We take ϕ = φ2(V − v) where ϕ ∈ C∞
c (B1/4 × (t0 − (1/4)2, t0]) , 0 ≤ φ ≤ 1 and φ = 1 on

Q1/8(0, t0), so
ˆ

Ω̃1(0,t0)
φ2
(
AB1(0)(t,∇V )−AB1(0)(t,∇v)

)
(∇V −∇v) dxdt

= −2

ˆ

Ω̃1(0,t0)
φ(V − v)

(
AB1(0)(t,∇V )−AB1(0)(t,∇v)

)
∇φdxdt

−
ˆ

Ω̃1(0,t0)
φ2(V − v)t(V − v)dxdt

−
ˆ

Ω̃1(0,t0)

(
φ2F

∂(V − v)

∂xN
+ 2φF (V − v)

∂φ

∂xN

)
dxdt.

We can rewrite I1 = I2 + I3 + I4.
We see that

I1 ≥ c5

ˆ

Ω̃1(0,t0)
φ2|∇V −∇v|2dxdt

and using Holder’s inequality

|I2| ≤ c6

ˆ

Ω̃1(0,t0)
φ|V − v|(|∇V |+ |∇v|)|∇φ|dxdt

≤ ε2

ˆ

Ω̃1(0,t0)
φ2(|∇V |2 + |∇v|2)dxdt+ c7(ε2)

ˆ

Ω̃1(0,t0)
|V − v|2|∇φ|2dxdt.

Similarly, we also have

|I4| ≤ ε2

ˆ

Ω̃1(0,t0)
φ2(|∇V |2 + |∇v|2)dxdt+ c8(ε2)

ˆ

Ω̃1(0,t0)
|V − v|2|∇φ|2dxdt

+ c8(ε2)

ˆ

Ω̃1(0,t0)
|F |2φ2dxdt,

and

I3 ≤
ˆ

Ω̃1(0,t0)
φtφ(V − v)2dxdt ≤ c9

ˆ

Ω̃1/4(0,t0)
|V − v|2dxdt.

Hence,
ˆ

Ω̃1/8(0,t0)
|∇V −∇v|2

≤ c10ε2

ˆ

Ω̃1/4(0,t0)
(|∇V |2 + |∇v|2) + c11(ε2)

ˆ

Ω̃1/4(0,t0)
(|V − v|2 + |F |2)

≤ c12ε2 + c13(ε2)

(
ε21 +

ˆ

Ω̃1/4(0,t0)∩{−4δ<xN<0}
|∇V (x′, 0, t)|2dxdt

)

≤ c12ε2 + c14(ε2)
(
ε21 + δ

)
.

Finally, for any ε > 0 by choosing ε2, ε1 and δ appropriately we get (4.7.60). This completes
the proof of Lemma.
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Lemma 4.7.12 For any ε > 0 there exists a small δ = δ(N,Λ1,Λ2, ε) > 0 such that if
v ∈ C(t0 − ρ2, t0;L

2(Ω ∩Bρ(0))) ∩ L2(t0 − ρ2, t0;H
1(Ω ∩Bρ(0))) is a solution of

{
vt − div

(
ABρ(0)(t,∇v)

)
= 0 in Ω̃ρ(0)

v = 0 on ∂pΩ̃ρ(0)\(Ω× (−T, T )) (4.7.62)

and
B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {xN > −4ρδ}. (4.7.63)

then there exists a weak solution V ∈ C(t0−ρ2, t0;L2(B+
ρ (0)))∩L2(t0−ρ2, t0;H1(B+

ρ (0)))
of (4.7.41), whose zero extension to Q1(0, t0) satisfies

||∇V ||2L∞(Qρ/4(0,t0))
≤ C

 

Qρ(0,t0)
|∇v|2dxdt and (4.7.64)

 

Qρ/8(0,t0)
|∇v −∇V |2dxdt ≤ ε2

 

Qρ(0,t0)
|∇v|2dxdt. (4.7.65)

for some C = C(N,Λ1,Λ2) > 0.

Proof. We set

A(x, t, ξ) = A(ρx, t0 + ρ2(t− t0), κξ)/κ and ṽ(x, t) = v(ρx, t0 + ρ2(t− t0))/(ρκ)

where κ =
(

1
|Qρ(0,t0)|

´

Qρ(0,t0)
|∇v|2dxdt

)1/2
. Then A satisfies conditions (4.1.2) and (4.2.27)

with the same constants Λ1 and Λ2. We can see that ṽ is a solution of
{
ṽt − div

(
AB1(0)(t,∇ṽ)

)
= 0 in Ω̃ρ1(0)

ṽ = 0 on ((∂Ωρ ∩B1(0))× (t0 − 1, t0)) ∪ ((Ωρ ∩B1(0))× {t = t0 − 1}) (4.7.66)

where Ωρ = {z = x/ρ : x ∈ Ω} and satisfies
ffl

Q1(0,t0)
|∇ṽ|2dxdt = 1. We also have

B+
1 (0) ⊂ Ωρ ∩B1(0) ⊂ B1(0) ∩ {xN > −4δ}.

Therefore, applying Lemma 4.7.11 for any ε > 0, there exist a constant δ = δ(N,Λ1,Λ2, ε) >
0 and Ṽ satisfies

||∇Ṽ ||L∞(Q1/4(0,t0)) ≤ c1 and
 

Q1/8(0,t0)
|∇ṽ −∇Ṽ |2dxdt ≤ ε2.

We complete the proof by choosing V (x, t) = kρṼ (x/ρ, t0 + (t− t0)/ρ
2).

Lemma 4.7.13 Let s2 be as in Lemma 4.7.7. For any ε > 0 there exists a small δ =
δ(N,Λ1,Λ2, ε) > 0 such that the following holds. If Ω is a (δ,R0)-Reifenberg flat domain
and u ∈ C(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) is a solution to equation (4.2.4) with µ ∈ L2(Ω×
(−T, T )) and u(−T ) = 0, for x0 ∈ ∂Ω, −T < t0 < T and 0 < R < R0/6 then there is
a function V ∈ L2(t0 − (R/9)2, t0;H

1(BR/9(x0))) ∩ L∞(t0 − (R/9)2, t0;W
1,∞(BR/9(x0)))

such that

||∇V ||L∞(QR/9(x0,t0)) ≤ c

 

Q6R(x0,t0)
|∇u|dxdt+ c

|µ|(Q6R(x0, t0))

RN+1
(4.7.67)
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and
 

QR/9(x0,t0)
|∇u−∇V |dxdt

≤ c(ε+ [A]R0
s2 )

 

Q6R(x0,t0)
|∇u|dxdt+ c(ε+ 1 + [A]R0

s2 )
|µ|(Q6R(x0, t0))

RN+1
, (4.7.68)

for some c = c(N,Λ1,Λ2) > 0.

Proof. Let x0 ∈ ∂Ω, −T < t0 < T and ρ = R(1 − δ), we may assume that 0 ∈ Ω,
x0 = (0, ...,−δρ/(1− δ)) and

B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {xN > −4ρδ}. (4.7.69)

We also have

QR/9(x0, t0) ⊂ Qρ/8(0, t0) ⊂ Qρ/4(0, t0) ⊂ Qρ(0, t0) ⊂ Q6ρ(0, t0) ⊂ Q6R(x0, t0), (4.7.70)

provided that 0 < δ < 1/625.
Let w and v be in Theorem 4.7.5 and Lemma 4.7.7. By Lemma 4.7.12 for any ε > 0 we
can find a small positive δ = δ(N,α, β, ε) < 1/625 such that there is a function V ∈
L2(t0 − ρ2, t0;H

1(Bρ(0))) ∩ L∞(t0 − ρ2, t0;W
1,∞(Bρ(0))) satisfying

||∇V ||2L∞(Qρ/4(0,t0))
≤ c1

 

Qρ(0,t0)
|∇v|2dxdt and

 

Qρ/8(0,t0)
|∇v −∇V |2 ≤ ε2

 

Qρ(0,t0)
|∇v|2dxdt.

Then, by (4.7.40) in Lemma 4.7.7 and (4.7.19) in Theorem 4.7.5 and (4.7.70) we get

||∇V ||L∞(QR/9(x0,t0)) ≤ c2

(
 

Qρ(0,t0)
|∇w|2dxdt

)1/2

≤ c3

 

Q6R(x0,t0)
|∇w|dxdt (4.7.71)

and
 

Qρ/8(0,t0)
|∇v −∇V |dxdt ≤ c4ε

(
 

Qρ(0,t0)
|∇w|2dxdt

)1/2

≤ c5ε

 

Q6R(x0,t0)
|∇w|dxdt. (4.7.72)

Therefore, from (4.7.18) in Theorem 4.7.5 and (4.7.71) we get (4.7.67).
Now we prove (4.7.68), we have

 

QR/9(x0,t0)
|∇u−∇V |dxdt ≤ c6

 

Qρ/8(0,t0)
|∇u−∇V |dxdt

≤ c6

 

Qρ/8(0,t0)
|∇u−∇w|dxdt+ c6

 

Qρ/8(0,t0)
|∇w −∇v|dxdt

+ c8

 

Qρ/8(0,t0)
|∇v −∇V |dxdt.
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From Lemma 4.7.7 and Theorem 4.7.5 and (4.7.72) it follows that

 

Qρ/8(0,t0)
|∇u−∇w|dxdt ≤ c7

|µ|(Q6R(x0, t0))

RN+1
,

 

Qρ/8(0,t0)
|∇v −∇w|dxdt ≤ c8[A]

R0
s2

 

Q6ρ(0,t0)
|∇w|dxdt

≤ c9[A]
R0
s2

 

Q6R(x0,t0)
|∇w|dxdt

≤ c10[A]
R0
s2

(
 

Q6R(x0,t0)
|∇u|dxdt+ |µ|(Q6R(x0, t0))

RN+1

)
,

and
 

Qρ/8(0,t0)
|∇v −∇V |dxdt ≤ c11ε

 

Q6R(x0,t0)
|∇w|dxdt

≤ c12ε

(
 

Q6R(x0,t0)
|∇u|dxdt+ |µ|(Q6R(x0, t0))

RN+1

)
.

Hence we get (4.7.68).

4.8 Global Integral Gradient Bounds for Parabolic equations

4.8.1 Global estimates on 2-Capacity uniform thickness domains

We use the Theorem 4.7.1 and 4.7.5 to prove the following theorem.

Theorem 4.8.1 Suppose that RN\Ω satisfies uniformly 2−thick with constants c0, r0. Let
θ1, θ2 be in Theorem 4.7.1 and 4.7.5. Set θ = min{θ1, θ2} and T0 = diam(Ω) + T 1/2.
Let Q = Bdiam(Ω)(x0) × (0, T ) that contains ΩT . Let B1 = Q̃R1(y0, s0), B2 = 4B1 :=

Q̃4R1(y0, s0) for R1 > 0. For µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}, there
exist a distribution solution u of equation (4.2.4) with data µ, u0 = σ and constants C1 =
C1(N,Λ1,Λ2, c0, T0/r0), c2 > 0, ε1 = ε1(N,Λ1,Λ2, c0, T0/r0), ε2 = ε1(N,Λ1,Λ2, c0) > 0
such that

|{M(|∇u|) > ε−1/θλ,M1[ω] ≤ ε1−
1
θλ} ∩Q| ≤ C1ε|{M(|∇u|) > λ} ∩Q|, (4.8.1)

for all λ > 0, ε ∈ (0, ε1) and

|{M(χB2 |∇u|) > ε−1/θλ,M1[χB2ω] ≤ ε1−
1
θλ} ∩B1| ≤ C1ε|{M(χB2 |∇u|) > λ} ∩B1|,

(4.8.2)
for all λ > ε−1+ 1

θ ||∇u||L1(ΩT∩B2)R
−N−2
2 , ε ∈ (0, ε2) with R2 = inf{r0, R1}/16.

Moreover, if σ ∈ L1(Ω) then u is a renormalized solution.
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Proof of Theorem 4.8.1. Let {µn} ⊂ C∞
c (ΩT ), {σn} ⊂ C∞

c (Ω) be as in the proof of
Theorem 4.2.1. We have |µn| ≤ ϕn ∗ |µ| and |σn| ≤ ϕ1,n ∗ |σ| for any n ∈ N, {ϕn}, {ϕ1,n}
are sequences of standard mollifiers in R

N+1,RN , respectively.
Let un be solution of equation





(un)t − div(A(x, t,∇un)) = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn in Ω.

(4.8.3)

By Proposition 4.3.5 and Theorem 4.3.6, there exists a subsequence of {un}, still denoted
by {un} converging to a distribution solution u of (4.2.4) with data µ ∈ Mb(ΩT ) and

u0 = σ such that un → u in Ls(0, T,W 1,s
0 (Ω)) for any s ∈

[
1, N+2

N+1

)
and if σ ∈ L1(Ω) then

u is a renormalized solution.
By Remark 4.3.3 and Theorem 4.3.6, a sequence {un,m}m of solutions to equations





(un,m)t − div(A(x, t,∇un,m)) = µn,m in Ω× (−T, T ),
un,m = 0 on ∂Ω× (−T, T ),
un,m(−T ) = 0 on Ω,

converges to χΩT
un in Ls(−T, T,W 1,s

0 (Ω)) for any s ∈
[
1, N+2

N+1

)
, where µn,m = (gn,m)t +

χΩT
µn, gn,m(x, t) = σn(x)

´ t
−T ϕ2,m(s)ds and {ϕ2,m} is a sequence of mollifiers in R.

Set

E1
λ,ε = {M(|∇u|) > ε−1/θλ,M1[ω] ≤ ε1−

1
θλ} ∩Q, F 1

λ = {M(|∇u|) > λ} ∩Q,
E2
λ,ε = {M(χB2 |∇u|) > ε−1/θλ,M1[χB2ω] ≤ ε1−

1
θλ} ∩B1, F 2

λ = {M(χB2 |∇u|) > λ} ∩B1,

for ε ∈ (0, 1) and λ > 0.
We verify that

|E1
λ,ε| ≤ c1ε|Q̃R3 | ∀ λ > 0, ε ∈ (0, 1) and (4.8.4)

|E2
λ,ε| ≤ c2ε|Q̃R2 | ∀ λ > ε−1+ 1

θ ||∇u||L1(ΩT∩A)R
−N−2
2 , ε ∈ (0, 1) (4.8.5)

for some c1 = c1(T0/r0), c2 > 0 and R3 = inf{r0, T0}/16.
In fact, we can assume that E1

λ,ε 6= ∅ so (|µ|(ΩT ) + |σ|(Ω)) ≤ TN+1
0 ε1−

1
θλ. We have

|E1
λ,ε| ≤

c3

ε−1/θλ

ˆ

ΩT

|∇u|dxdt.

By Remark 4.3.2,
´

ΩT
|∇un|dxdt ≤ c4T0 (|µn|(ΩT ) + |σn|(Ω)) for all n. Letting n→ ∞ we

get
´

ΩT
|∇u|dxdt ≤ c4T0 (|µ|(ΩT ) + |σ|(Ω)). Thus,

|E1
λ,ε| ≤

c3c4

ε−1/θλ
T0 (|µ|(ΩT ) + |σ|(Ω)) ≤ c3c4

ε−1/θλ
TN+2
0 ε1−

1
θλ = c5ε|Q̃R3 |.

Hence, (4.8.4) holds with c1 = c5(T0/r0).
For any λ > ε−1+ 1

θ ||∇u||L1(ΩT∩B2)R
−N−2
2 we have

|E2
λ,ε| ≤

c3

ε−1/θλ

ˆ

ΩT

χB2 |∇u|dxdt < c2ε|Q̃R2 |.
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Hence, (4.8.5) holds.
Next we verify that for all (x, t) ∈ Q and r ∈ (0, R3] and λ > 0, ε ∈ (0, 1) we have
Q̃r(x, t)∩Q ⊂ F 1

λ if |E1
λ,ε∩ Q̃r(x, t)| ≥ c6ε|Q̃r(x, t)| where the constant c6 does not depend

on λ and ε. Indeed, take (x, t) ∈ Q and 0 < r ≤ R3. Now assume that Q̃r(x, t) ∩ Q ∩
(F 1

λ )
c 6= ∅ and E1

λ,ε ∩ Q̃r(x, t) 6= ∅ i.e, there exist (x1, t1), (x2, t2) ∈ Q̃r(x, t) ∩Q such that

M(|∇u|)(x1, t1) ≤ λ and M1[ω](x2, t2) ≤ ε1−
1
θλ. We need to prove that

|E1
λ,ε ∩ Q̃r(x, t))| < c6ε|Q̃r(x, t)| (4.8.6)

Obviously, we have for all (y, s) ∈ Q̃r(x, t) there holds

M(|∇u|)(y, s) ≤ max{M
(
χQ̃2r(x,t)

|∇u|
)
(y, s), 3N+2λ}.

Leads to, for all λ > 0 and ε ∈ (0, ε0) with ε0 ≤ 3−(N+2)θ,

E1
λ,ε ∩ Q̃r(x, t) = {M

(
χQ̃2r(x,t)

|∇u|
)
> ε−1/θλ,M1[ω] ≤ ε1−

1
θλ} ∩Q ∩ Q̃r(x, t). (4.8.7)

In particular, E1
λ,ε ∩ Q̃r(x, t) = ∅ if B4r(x) ⊂⊂ R

N\Ω. Thus, it is enough to consider the
case B4r(x) ⊂⊂ Ω and B4r(x) ∩ Ω 6= ∅.
We consider the case B4r(x) ⊂⊂ Ω. Let wn,m be as in Theorem 4.7.1 with Q2R = Q4r(x, t0)
and u = un,m where t0 = min{t+ 2r2, T}. We have

 

Q4r(x,t0)
|∇un,m −∇wn,m|dxdt ≤ c7

|µn,m|(Q4r(x, t0))

rN+1
and (4.8.8)

 

Q2r(x,t0)
|∇wn,m|θdxdt ≤ c8

(
 

Q4r(x,t0)
|∇wn,m|dxdt

)θ
. (4.8.9)

From (4.8.7), we have

|E1
λ,ε ∩ Q̃r(x, t)| ≤ |{{M

(
χQ̃2r(x,t)

|∇wn,m|
)
> ε−1/θλ/4} ∩ Q̃r(x, t)}|

+ |{M
(
χQ̃2r(x,t)

|∇un,m −∇wn,m|
)
> ε−1/θλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇un,m −∇un|
)
> ε−1/θλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇un −∇u|
)
> ε−1/θλ/4} ∩ Q̃r(x, t)|

≤ c9ελ
−θ

ˆ

Q̃2r(x,t)
|∇wn,m|θdxdt+ c9ε

1/θλ−1

ˆ

Q̃2r(x,t)
|∇un,m −∇wn,m|dxdt

+ c9ε
1/θλ−1

ˆ

Q̃2r(x,t)
|∇un,m −∇un|dxdt+ c9ε

1/θλ−1

ˆ

Q̃2r(x,t)
|∇un −∇u|dxdt.
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Thanks to (4.8.8) and (4.8.9) we can continue

|E1
λ,ε ∩ Q̃r(x, t)| ≤ c10ελ

−θ|Q̃r(x, t)|
(
 

Q4r(x,t0)
|∇un,m|dxdt

)θ

+ c10ελ
−θ|Q̃r(x, t)|

( |µn,m|(Q4r(x, t0))

rN+1

)θ
+ c10ε

1/θλ−1|Q̃r(x, t)|
|µn,m|(Q4r(x, t0))

rN+1

+ c10ε
1/θλ−1

ˆ

Q2r(x,t0)
|∇un,m −∇un|dxdt+ c10ε

1/θλ−1

ˆ

Q2r(x,t0)
|∇un −∇u|dxdt.

Letting m→ ∞ and n→ ∞, we get

|Eλ,ε ∩ Q̃r(x, t)| ≤ c10ελ
−θ|Q̃r(x, t)|

(
 

Q4r(x,t0)
|∇u|dxdt

)θ

+ c10ελ
−θ|Q̃r(x, t)|

(
ω(Q4r(x, t0))

rN+1

)θ
+ c10ε

1/θλ−1|Q̃r(x, t)|
ω(Q4r(x, t0))

rN+1
.

Since, M(|∇u|)(x1, t1) ≤ λ and M1[ω](x2, t2) ≤ ε1−
1
θλ we have

ˆ

Q4r(x,t0)
|∇u|dxdt ≤

ˆ

Q̃8r(x,t)
|∇u|dxdt ≤

ˆ

Q̃9r(x1,t1)
|∇u|dxdt ≤ |Q̃9r(x1, t1)|λ,

and

ω(Q4r(x, t0)) ≤ ω(Q̃8r(x, t)) ≤ ω(Q̃9r(x2, t2) ≤ ε1−
1
θλ(9r)N+1.

Thus
|Eλ,ε ∩ Q̃r(x, t)| ≤ c11ε|Q̃r(x, t)|.

Next, we consider the case B4r(x) ∩ Ω 6= ∅. Let x3 ∈ ∂Ω such that |x3 − x| = dist(x, ∂Ω).
Let wn be as in Theorem 4.7.5 with Ω̃6R = Ω̃16r(x3, t0) and u = un,m where t0 = min{t+
2r2, T}. We have Q12r(x, t0) ⊂ Q16r(x3, t0),

 

Q12r(x,t0)
|∇un,m −∇wn,m|dxdt ≤ c12

|µn,m|(Ω̃16r(x3, t0))

rN+1
and

(
 

Q2r(x,t0)
|∇wn,m|θdxdt

) 1
θ

≤ c13

 

Q12r(x,t0)
|∇wn,m|dxdt.

As above we also obtain

|E1
λ,ε ∩ Q̃r(x, t)| ≤ c14ελ

−θ|Q̃r(x, t)|
(
 

Q12r(x,t0)
|∇u|dxdt

)θ

+ c14ελ
−θ|Q̃r(x, t)|

(
ω(Q16r(x3, t0))

rN+1

)θ
+ c14ε

1/θλ−1|Q̃r(x, t)|
ω(Q16r(x3, t0))

rN+1
.

225



4.8. GLOBAL INTEGRAL GRADIENT BOUNDS FOR PARABOLIC EQUATIONS

Since, M(|∇u|)(x1, t1) ≤ λ and M1[ω](x2, t2) ≤ ε1−
1
θλ we have

ˆ

Q12r(x,t0)
|∇u|dxdt ≤

ˆ

Q̃24r(x,t)
|∇u|dxdt ≤

ˆ

Q̃25r(x1,t1)
|∇u|dxdt ≤ |Q̃25r(x1, t1)|λ

and

ω(Q16r(x3, t0)) ≤ ω(Q̃32r(x3, t)) ≤ ω(Q̃36r(x, t)) ≤ ω(Q̃37r(x2, t2)) ≤ ε1−
1
θλ(37r)N+1.

Thus
|E1

λ,ε ∩ Q̃r(x, t)| ≤ c15ε|Q̃r(x, t)|.
Hence, (4.8.6) holds with c6 = 2max{c11, c15}.
Similarly, we also prove that for all (x, t) ∈ B1 and r ∈ (0, R2] and λ > 0, ε ∈ (0, 1) we have
Q̃r(x, t)∩B1 ⊂ F 2

λ if |E2
λ,ε∩Q̃r(x, t)| ≥ c16ε|Q̃r(x, t)| where a constant c26 does not depend

on λ and ε. Now, choose ε1 = (2max{1, c1, c6})−1 and ε2 = (2max{1, c2, c16}−1. We apply
Lemma 4.3.21 with E = E1

λ,ε, F = F 1
λ and ε is replaced by max{c1, c6}ε for any 0 < ε < ε1

and λ > 0 we get (4.8.1), for E = E2
λ,ε, F = F 2

λ and ε is replaced by max{c1, c17}ε for any

0 < ε < ε2 and λ > ε−1+ 1
θ ||∇u||L1(ΩT∩B2)R

−N−2
2 we get (4.8.2).

This completes the proof of the Theorem.

Proof of Theorem 4.2.17. By theorem 4.8.1, there exist constants c1 > 0, 0 < ε0 < 1
and a renormalized solution u of equation (4.2.4) with data µ, u0 = σ such that for any
ε ∈ (0, 1), λ > 0

|{M(|∇u|) > ε−1/θλ,M1[ω] ≤ ε1−
1
θλ} ∩Q| ≤ c1ε|{M(|∇u|) > λ} ∩Q|.

Therefore, if 0 < s <∞

||M(|∇u|)||sLp,s(Q) = ε−s/θp
ˆ ∞

0
λs|{(x, t) ∈ Q : M(|∇u|) > ε−1/θλ}|

s
p
dλ

λ

≤ c
s/p
1 ε

s(θ−p)
θp p

ˆ ∞

0
λs|{(x, t) ∈ Q : M(|∇u|) > λ}|

s
p
dλ

λ

+ ε−s/θp
ˆ ∞

0
λs|{(x, t) ∈ Q : M1[ω] > ε1−

1
θλ}|

s
p
dλ

λ

= c
s/p
1 ε

s(θ−p)
θp ||M(|∇u|)||sLp,s(Q) + ε−s||M1[ω]||sLp,s(Q).

Since p < θ, we can choose 0 < ε < ε0 such that cs/p1 ε
s(θ−p)

θp ≤ 1/2 we get the result for
case 0 < s <∞. Similarly, we also get the result for case s = ∞.
Also, we get (4.2.29) by using (4.4.16) in Proposition 4.4.8, (4.4.28) in Proposition 4.4.19.
This completes the proof.

Remark 4.8.2 Thanks to Proposition 4.4.4 we have for any s ∈
(
N+2
N+1 ,

N+2+θ
N+2

)
if µ ∈

L
(s−1)(N+2)

s
,∞(ΩT ) and σ ≡ 0 then

|||∇u|s||
L

(s−1)(N+2)
s ,∞(ΩT )

≤ c2||µ||s
L

(s−1)(N+2)
s ,∞(ΩT )

,

where constant c2 depends on N,Λ1,Λ2, s, c0, T0/r0.
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As the proof of Theorem 4.8.1, we also get

Theorem 4.8.3 Suppose that RN\Ω satisfies uniformly 2−thick with constants c0, r0. Let
θ be as in Theorem 4.8.1. Let 1 ≤ p < θ, 0 < s ≤ ∞ and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω),
set ω = |µ| + |σ| ⊗ δ{t=0}. There exist C1 = C1(N,Λ1,Λ2, p, s, c0) > 0 and a distribution
solution u of equation (4.2.4) with data µ and u0 = σ such that

||M(χQ̃4R(y0,s0)
|∇u|)||Lp,s(Q̃R(y0,s0))

≤ C1R
N+2
p inf{r0, R}−N−2||∇u||L1(Q̃4R(y0,s0))

+ C1||M1[χQ̃4R(y0,s0)
ω]||Lp,s(Q̃R(y0,s0))

, (4.8.10)

for any Q̃R(y0, s0) ⊂ R
N+1 and if σ ∈ L1(Ω) then u is a renormalized solution.

Proof of Theorem 4.2.19. Let {un,m} and µn,m be in the proof of Theorem 4.8.1. From
Corollary 4.7.2 and 4.7.6 we assert : for 2− inf{β1, β2} < γ < N+2, there exists a constant
C = C(N,Λ1,Λ2, c0, γ) > 0 such that for any 0 < ρ ≤ T0

ˆ

Qρ(y,s)
|∇un,m|dxdt ≤ C(N,Λ1,Λ2, γ, c0, T0/r0)ρ

N+3−γ ||Mγ [|µn,m|]||L∞(Ω×(−T,T )),

where β1, β2 are constants in Theorem 4.7.1 and Theorem 4.7.5. It is easy to see that

||Mγ [|µn,m|]||L∞(Ω×(−T,T )) ≤ ||Mγ [ω]||L∞(Ω×(−T,T )) = ||Mγ [ω]||L∞(ΩT ),

for any n,m large enough.
Letting m→ ∞, n→ ∞, yield

ˆ

Qρ(y,s)
|∇u|dxdt ≤ C(N,Λ1,Λ2, γ, c0, T0/r0)ρ

N+3−γ ||Mγ [ω]||L∞(ΩT )

By Theorem 4.8.3 we get

|||∇u|||Lp,s(Q̃R(y0,s0)∩ΩT ) ≤ c1(T0/r0)R
N+2
p

+1−γ ||Mγ [ω]||L∞(ΩT )

+ c2||M1[χQ̃R(y0,s0)
ω]||Lp,s(Q̃R(y0,s0))

for any Q̃R(y0, s0) ⊂ R
N+1 and 0 < R ≤ T0. It follows (4.2.30).

Finally, if µ ∈ L
(γ−1)p

γ
,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT ) and σ ≡ 0, then clearly u is a unique renorma-
lized solution. It suffices to show that

||Mγ [|µ|]||L∞(ΩT ) ≤ c3||µ||
L

(γ−1)p
γ ,

(γ−1)s
γ ;(γ−1)p

∗ (ΩT )

and (4.8.11)

R
p(γ−1)−N−2

p ||M1[χQ̃R(y,s0)
|µ|]||Lp,s(Q̃R(y0,s0))

≤ c3||µ||
L

(γ−1)p
γ ,

(γ−1)s
γ ;(γ−1)p

∗ (ΩT )

(4.8.12)
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for any Q̃R(y0, s0) ⊂ R
N+1 and 0 < R ≤ T0, where c3 = c3(N,Λ1,Λ2, p, s, γ, c0, T0/r0).

In fact, for 0 < ρ < T0 and (x, t) ∈ ΩT we have

||µ||
L

(γ−1)p
γ ,

(γ−1)s
γ ;(γ−1)p

∗ (ΩT )

≥ ||µ||
L

(γ−1)p
γ ,∞;(γ−1)p

∗ (ΩT )

≥ ρ

(γ−1)p−N−2
(γ−1)p

γ ||µ||
L

(γ−1)p
γ ,∞

(Q̃ρ(x,t)∩ΩT )

≥ c4ρ

(γ−1)p−N−2
(γ−1)p

γ |Q̃ρ(x, t)|−1+ γ
(γ−1)p |µ|(Q̃ρ(x, t) ∩ ΩT )

= c5
|µ|(Q̃ρ(x, t) ∩ ΩT )

ρN+2−γ ,

which obviously implies (4.8.11).
Next, we note that

M1[χQ̃R(y0,s0)
|µ|](x, t) ≤ c6

(
M

(
χQ̃R(y0,s0)

|µ|
)
(x, t)

)1− 1
γ ||µ||

1
γ

L
(γ−1)p

γ ,
(γ−1)s

γ ;(γ−1)p

∗ (ΩT )

.

We derive

R
p(γ−1)−N−2

p ||M1[χQ̃R(y,s0)
|µ|]||Lp,s(Q̃R(y0,s0))

≤ c6R
p(γ−1)−N−2

p ||M
(
χQ̃R(y0,s0)

|µ|
)
||1−

1
γ

L
(γ−1)p

γ ,
(γ−1)s

γ (Q̃R(y0,s0))

||µ||
1
γ

L
(γ−1)p

γ ,
(γ−1)s

γ ;(γ−1)p

∗ (ΩT )

≤ c7R
p(γ−1)−N−2

p |||µ|||1−
1
γ

L
(γ−1)p

γ ,
(γ−1)s

γ (Q̃R(y0,s0))

||µ||
1
γ

L
(γ−1)p

γ ,
(γ−1)s

γ ;(γ−1)p

∗ (ΩT )

.

Here we used the boundedness property of M in L
(γ−1)p

γ
,
(γ−1)s

γ (RN+1) for (γ−1)p
γ > 1.

Therefore, immediately we get (4.8.12). This completes the proof of theorem.

4.8.2 Global estimates on Reifenberg flat domains

Now we prove results for Reifenberg flat domain. First, we will use Lemma 4.7.4, 4.7.13
and Lemma 4.3.19 to get the following result.

Theorem 4.8.4 Suppose that A satisfies (4.2.27). Let s1, s2 be in Lemma 4.7.3 and 4.7.7,
set s0 = max{s1, s2}. Let w ∈ A∞, µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}.
There exists a distribution solution of (4.2.4) with data µ and u0 = σ such that following
holds. For any ε > 0, R0 > 0 one finds δ1 = δ1(N,Λ1,Λ2, ε, [w]A∞) ∈ (0, 1) and δ2 =
δ2(N,Λ1,Λ2, ε, [w]A∞ , T0/R0) ∈ (0, 1) and Λ = Λ(N,Λ1,Λ2) > 0 such that if Ω is (δ1, R0)-
Reifenberg flat domain and [A]R0

s0 ≤ δ1 then

w({M(|∇u|) > Λλ,M1[ω] ≤ δ2λ} ∩ ΩT ) ≤ Bεw({M(|∇u|) > λ} ∩ ΩT ) (4.8.13)

for all λ > 0, where the constant B depends only on N,Λ1,Λ2, T0/R0, [w]A∞ .
Furthermore, if σ ∈ L1(Ω) then u is a renormalized solution.
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Proof. Let {µn}, {σn}, {µn,m}, {un}, {un,m}, u be as in the proof of Theorem 4.8.1. Let ε
be in (0, 1). Set Eλ,δ2 = {M(|∇u|) > Λλ,M1[ω] ≤ δ2λ}∩ΩT and Fλ = {M(|∇u|) > λ}∩ΩT
for ε ∈ (0, 1) and λ > 0. Let {yi}Li=1 ⊂ Ω and a ball B0 with radius 2T0 such that

Ω ⊂
L⋃

i=1

Br0(yi) ⊂ B0

where r0 = min{R0/1080, T0}. Let sj = T − jr20/2 for all j = 0, 1, ..., [2T
r20
] and Q2T0 =

B0 × (T − 4T 2
0 , T ). So,

ΩT ⊂
⋃

i,j

Qr0(yi, sj) ⊂ Q2T0 .

We verify that
w(Eλ,δ2) ≤ εw(Q̃r0(yi, sj)) ∀ λ > 0 (4.8.14)

for some δ2 small enough, depended on n, p, α, β, ǫ, [w]A∞ , T0/R0.
In fact, we can assume that Eλ,δ2 6= ∅ so |µ|(ΩT ) + |σ|(Ω) ≤ TN+1

0 δ2λ. We have

|Eλ,δ2 | ≤
c1
Λλ

ˆ

ΩT

|∇u|dxdt.

We also have
ˆ

ΩT

|∇u|dxdt ≤ c2T0(|µ|(ΩT ) + |σ|(Ω)).

Thus,

|Eλ,ε| ≤
c3
Λλ

T0(|µ|(ΩT ) + |σ|(Ω)) ≤ c3
Λλ

TN+2
0 δ2λ = c4δ2|Q2T0 |.

which implies

w(Eλ,δ2) ≤ A

( |Eλ,δ2 |
|Q2T0 |

)ν
w(Q2T0) ≤ A (c4δ2)

ν w(Q2T0)

where (A, ν) is a pair of A∞ constants of w. It is known that (see, e.g [33]) there exist
A1 = A1(N,A, ν) and ν1 = ν1(N,A, ν) such that

w(Q̃2T0)

w(Q̃r0(yi, sj))
≤ A1

(
|Q̃2T0 |

|Q̃r0(yi, sj)|

)ν1
∀i, j.

So,

w(Eλ,δ2) ≤ A (c4δ2)
ν A1

(
|Q̃T0 |

|Q̃r0(yi, sj)|

)ν1
w(Q̃r0(yi, sj)) < εw(Q̃r0(yi, sj)) ∀ i, j

where δ2 ≤
(

ε
2c5(T0r

−1
0 )(N+2)ν1

)1/ν
. It follows (4.8.14).

Next we verify that for all (x, t) ∈ ΩT and r ∈ (0, 2r0] and λ > 0 we have Q̃r(x, t)∩ΩT ⊂ Fλ

if w(Eλ,δ2 ∩ Q̃r(x, t)) ≥ εw(Qr(x, t)) for some δ2 ≤
(

ε
2c5(T0r

−1
0 )(N+2)ν1

)1/ν
.

229



4.8. GLOBAL INTEGRAL GRADIENT BOUNDS FOR PARABOLIC EQUATIONS

Indeed, take (x, t) ∈ ΩT and 0 < r ≤ 2r0. Now assume that Q̃r(x, t) ∩ ΩT ∩ F cλ 6=
∅ and Eλ,δ2 ∩ Q̃r(x, t) 6= ∅ i.e, there exist (x1, t1), (x2, t2) ∈ Q̃r(x, t) ∩ ΩT such that
M(|∇u|)(x1, t1) ≤ λ and M1[ω](x2, t2) ≤ δ2λ. We need to prove that

w(Eλ,δ2 ∩ Q̃r(x, t))) < εw(Q̃r(x, t)). (4.8.15)

Clearly,

M(|∇u|)(y, s) ≤ max{M
(
χQ̃2r(x,t)

|∇u|
)
(y, s), 3N+2λ} ∀(y, s) ∈ Q̃r(x, t).

Therefore, for all λ > 0 and Λ ≥ 3N+2,

Eλ,δ2 ∩ Q̃r(x, t) = {M
(
χQ̃2r(x,t)

|∇u|
)
> Λλ,M1[ω] ≤ δ2λ} ∩ ΩT ∩ Q̃r(x, t). (4.8.16)

In particular, Eλ,δ2 ∩ Q̃r(x, t) = ∅ if B8r(x) ⊂⊂ R
N\Ω. Thus, it is enough to consider the

case B8r(x) ⊂⊂ Ω and B8r(x) ∩ Ω 6= ∅.
We consider the case B8r(x) ⊂⊂ Ω. Let vn,m be as in Lemma 4.7.4 with Q2R = Q8r(x, t0)
and u = un,m where t0 = min{t+ 2r2, T}. We have

||∇vn,m||L∞(Q2r(x,t0)) ≤ c6

 

Q8r(x,t0)
|∇un,m|dxdt+ c6

|µn,m|(Q8r(x, t0))

rN+1
, (4.8.17)

and

 

Q4r(x,t0)
|∇un,m −∇vn,m|dxdt ≤ c8

|µn,m|(Q8r(x, t0))

rN+1
+ c8[A]

R0
s0

(
 

Q8r(x,t0)
|∇un,m|dxdt

+
|µn,m|(Q8r(x, t0))

rN+1

)
.

Thanks to M(|∇u|)(x1, t1) ≤ λ and M1[ω](x2, t2) ≤ δ2λ with (x1, t1), (x2, t2) ∈ Qr(x, t),
we get

lim sup
n→∞

lim sup
m→∞

||∇vn,m||L∞(Q2r(x,t)) ≤ c9

 

Q̃17r(x1,t1)
|∇u|dxdt+ c9

ω(Q̃17r(x2, t2))

rN+1

≤ c9λ+ c9δ2λ

≤ c10λ,

and

lim sup
n→∞

lim sup
m→∞

 

Q4r(x,t0)
|∇un −∇vn|dxdt

≤ c11
ω(Q̃17r(x2, t2))

rN+1
+ c11[A]

R0
s0

(
 

Q̃17r(x1,t1)
|∇u|dxdt+ ω(Q̃17r(x2, t2))

rN+1

)

≤ c11δ2λ+ c11[A]
R0
s0 (λ+ δ2λ)

≤ c11 (δ2 + δ1(1 + δ2))λ.
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Here we used [A]R0
s0 ≤ δ1 in the last inequality.

So, we can find n0 large enough and a sequence {kn} such that

||∇vn,m||L∞(Q̃2r(x,t))
= ||∇vn,m||L∞(Q2r(x,t0)) ≤ 2c10λ and (4.8.18)

 

Q4r(x,t0)
|∇un,m −∇vn,m|dxdt ≤ 2c11 (δ2 + δ1(1 + δ2))λ, (4.8.19)

for all n ≥ n0 and m ≥ kn.
In view of (4.8.18) we see that for Λ ≥ max{3N+2, 8c10} and n ≥ n0, m ≥ kn,

|{M
(
χQ̃2r(x,t)

|∇vn,m|
)
> Λλ/4} ∩ Q̃r(x, t)| = 0.

Leads to

|Eλ,δ2 ∩ Q̃r(x, t)| ≤ |{M
(
χQ̃2r(x,t)

|∇un,m −∇vn,m|
)
> Λλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇un −∇un,m|
)
> Λλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇u−∇un|
)
> Λλ/4} ∩ Q̃r(x, t)|.

Therefore, by (4.8.19) and Q̃2r(x, t) ⊂ Q4r(x, t0) we obtain for any n ≥ n0 and m ≥ kn

|Eλ,δ2 ∩ Q̃r(x, t)| ≤
c12
λ

ˆ

Q̃2r(x,t)
|∇un,m −∇vn,m|dxdt

+
c12
λ

ˆ

Q̃2r(x,t)
|∇un −∇un,m|dxdt+

c12
λ

ˆ

Q̃2r(x,t)
|∇u−∇un|dxdt

≤ c13 (δ2 + δ1(1 + δ2)) |Qr(x, t)|

+
c12
λ

ˆ

Q̃2r(x,t)
|∇un −∇un,m|dxdt+

c12
λ

ˆ

Q̃2r(x,t)
|∇u−∇un|dxdt.

Letting m→ ∞ and n→ ∞ we get

|Eλ,δ2 ∩ Q̃r(x, t)| ≤ c13 (δ2 + δ1(1 + δ2)) |Q̃r(x, t)|.

Thus,

w(Eλ,δ2 ∩ Q̃r(x, t)) ≤ C

(
|Eλ,δ2 ∩ Q̃r(x, t)|

|Q̃r(x, t)|

)ν
w(Q̃r(x, t))

≤ C (c13 (δ2 + δ1(1 + δ2)))
ν w(Q̃r(x, t))

< εw(Q̃r(x, t)).

where δ2, δ1 are appropriately chosen, (C, ν) is a pair of A∞ constants of w.
Next we consider the case B8r(x) ∩ Ω 6= ∅. Let x3 ∈ ∂Ω such that |x3 − x| = dist(x, ∂Ω).
Set t0 = min{t+ 2r2, T}. We have

Q2r(x, t0) ⊂ Q10r(x3, t0) ⊂ Q540r(x3, t0) ⊂ Q̃1080r(x3, t) ⊂ Q̃1088r(x, t) ⊂ Q̃1089r(x1, t1)
(4.8.20)
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and
Q540r(x3, t0) ⊂ Q̃1080r(x3, t) ⊂ Q̃1088r(x, t) ⊂ Q̃1089r(x2, t2) (4.8.21)

Let Vn,m be as in Lemma 4.7.13 with Q6R = Q540r(x3, t0), u = un,m and ε = δ3 ∈ (0, 1).
We have

||∇Vn,m||L∞(Q10r(x3,t0)) ≤ c14

 

Q540r(x3,t0)
|∇un,m|dxdt+ c14

|µn,m|(Q540r(x3, t0))

RN+1

and
 

Q10r(x3,t0)
|∇un,m −∇Vn,m|dxdt

≤ c15(δ3 + [A]R0
s0 )

 

Q540r(x3,t0)
|∇un,m|dxdt+ c15(δ3 + 1 + [A]R0

s0 )
|µn,m|(Q540r(x3, t0))

RN+1
.

Since M(|∇u|)(x1, t1) ≤ λ, M1[ω](x2, t2) ≤ δ2λ and (4.8.20), (4.8.21) we get

lim sup
n→∞

lim sup
m→∞

||∇Vn,m||L∞(Q2r(x,t0)) ≤ lim sup
n→∞

lim sup
m→∞

||∇Vn,m||L∞(Q10r(x3,t0))

≤ c14

 

Q540r(x3,t0)
|∇u|dxdt+ c14

ω(Q540r(x3, t0))

RN+1

≤ c15

 

Q̃1089r(x1,t1)
|∇u|dxdt+ c15

ω(Q̃1089r(x2, t2))

RN+1

≤ c16λ+ c16δ2λ

≤ c17λ

and

lim sup
n→∞

lim sup
m→∞

 

Q2r(x,t0)
|∇un,m −∇Vn,m|dxdt

≤ c18(δ3 + [A]R0
s0 )

 

Q540r(x3,t0)
|∇u|dxdt+ c18(δ3 + 1 + [A]R0

s0 )
ω(Q540r(x3, t0))

rN+1

≤ c19(δ3 + [A]R0
s0 )

 

Q̃1089r(x1,t1)
|∇u|dxdt+ c19(δ3 + 1 + [A]R0

s0 )
ω(Q̃1089(x2, t2))

rN+1

≤ c20(δ3 + [A]R0
s0 )λ+ c21(δ3 + 1 + [A]R0

s0 )δ2λ

≤ c20 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2)λ.

Here we used [A]R0
s ≤ δ1 in the last inequality.

So, we can find n0 large enough and a sequence {kn} such that

||∇Vn,m||L∞(Q̃2r(x,t))
= ||∇Vn,m||L∞(Q2r(x,t0)) ≤ 2c17λ and (4.8.22)

 

Q2r(x,t0)
|∇un,m −∇Vn,m|dxdt ≤ 2c21 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2)λ, (4.8.23)
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for all n ≥ n0 and m ≥ kn.
Now set Λ = max{3N+2, 8c10, 8c17}. As above we also have for n ≥ n0, m ≥ kn

|Eλ,δ2 ∩ Q̃r(x, t)| ≤ |{M
(
χQ̃2r(x,t)

|∇un,m −∇Vn,m|
)
> Λλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇un −∇un,m|
)
> Λλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇u−∇un|
)
> Λλ/4} ∩ Q̃r(x, t)|.

Therefore from (4.8.23) we obtain

|Eλ,δ2 ∩ Q̃r(x, t)| ≤
c22
λ

ˆ

Q̃2r(x,t)
|∇un,m −∇Vn,m|dxdt

+
c22
λ

ˆ

Q̃2r(x,t)
|∇un −∇un,m|dxdt+

c22
λ

ˆ

Q̃2r(x,t)
|∇u−∇un|dxdt

≤ c23 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2) |Q̃r(x, t)|

+
c22
λ

ˆ

Q̃2r(x,t)
|∇un −∇un,m|dxdt+

c22
λ

ˆ

Q̃2r(x,t)
|∇u−∇un|dxdt.

Letting m→ ∞ and n→ ∞ we get

|Eλ,δ2 ∩ Q̃r(x, t)| ≤ c22 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2) |Q̃r(x, t)|.

Thus

w(Eλ,δ2 ∩ Q̃r(x, t)) ≤ C

(
|Eλ,δ2 ∩ Q̃r(x, t)|

|Q̃r(x, t)|

)ν
w(Q̃r(x, t))

≤ C (c22 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2))
ν w(Q̃r(x, t))

< εw(Q̃r(x, t)),

where δ3, δ1, δ2 are appropriately chosen, (C, ν) is a pair of A∞ constants of w.
Therefore, for all (x, t) ∈ ΩT and r ∈ (0, 2r0] and λ > 0 if w(Eλ,δ2 ∩ Q̃r(x, t)) ≥
εw(Q̃r(x, t)) then Q̃r(x, t) ∩ ΩT ⊂ Fλ where δ1 = δ1(N,Λ1,Λ2, ε, [w]A∞) ∈ (0, 1) and
δ2 = δ2(N,Λ1,Λ2, ε, [w]A∞ , T0/R0) ∈ (0, 1). Applying Lemma 4.3.19 we get the result.

Proof of Theorem 4.2.20. As in the proof of Theorem 4.2.17, we can prove (4.2.32)
by using estimate (4.8.13) in Theorem 4.8.4. In particular, thanks to Proposition 4.4.4 for

q > N+2
N+1 , µ ∈ L

(N+2)(q−1)
q

,∞
(ΩT ) and σ ≡ 0,

|||∇u|q||
L

(N+2)(q−1)
q ,∞

(ΩT )
≤ c||µ||q

L
(N+2)(q−1)

q ,∞
(ΩT )

, (4.8.24)

where the constant c depends only on N,Λ1,Λ2, q and T0/R0.

Proof of Theorem 4.2.22. By Theorem 4.2.20, there exists a renormalized solution
of (4.2.4) with data µ, u(0) = σ satisfied

ˆ

ΩT

|∇u|qdw ≤ c1

ˆ

ΩT

(M1[ω])
q dw (4.8.25)
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for any w ∈ A∞, where c1 = c1(N,Λ1,Λ2, q, T0/R0, [w]A∞).
For 0 < δ < 1 we have M1[ω] ≤ c2I

2T0,δ
1 [ω] in ΩT . Thus, (4.8.25) can be rewritten

ˆ

ΩT

|∇u|qdw ≤ c1c
q
2

ˆ

ΩT

(
I
2T0,δ
1 [ω]

)q
dw. (4.8.26)

Thanks to Proposition 4.4.23 and Corollary 4.4.39 and 4.4.38 we obtain the result.

In follow that we usually employ the the Minkowski inequality, for convenience we recall
it, for any 0 < q1 ≤ q2 <∞ there holds

(
ˆ

X

(
ˆ

Y
|f(x, y)|q1dµ2(y)

) q2
q1

dµ1(x)

) 1
q2

≤
(
ˆ

Y

(
ˆ

X
|f(x, y)|q2dµ1(x)

) q1
q2

dµ2(y)

) 1
q1

for any measure function f in X × Y , where µ1, µ2 are nonnegative measure in X and Y
respectively.
Proof of Theorem 4.2.21. We will consider only the case s 6= ∞ and leave the case
s = ∞ to the readers. Take κ1 ∈ (0, κ). It is easy to see that for (x0, t0) ∈ ΩT and
0 < ρ < diam(Ω) + T 1/2

w(x, t) = min{ρ−N−2+κ−κ1 ,max{|x− x0|,
√

2|t− t0|}−N−2+κ−κ1} ∈ A∞

where [w]A∞ is independent of (x0, t0) and ρ. Thus, from (4.2.32) in Theorem 4.2.20 we
have

||M(|∇u|)||s
Lq,s(Q̃ρ(x0,t0)∩ΩT )

= ρ
(N+2−κ+κ1)s

q ||M(|∇u|)||s
Lq,s(Q̃ρ(x0,t0)∩ΩT ,dw)

≤ c1ρ
(N+2−κ+κ1)s

q ||M1[ω]||sLq,s(ΩT ,dw)

= qc1ρ
(N+2−κ+κ1)s

q

ˆ ∞

0
(λqw({M1[ω] > λ} ∩ ΩT ))

s
q
dλ

λ

= qc1ρ
(N+2−κ+κ1)s

q

ˆ ∞

0

(
λq

ˆ ∞

0
|{M1[ω] > λ,w > τ} ∩ ΩT |dτ

) s
q dλ

λ

=: c1ρ
(N+2−κ+κ1)s

q A. (4.8.27)

Since w ≤ ρ−N−2+κ−κ1 and {M1[ω] > λ,w > τ} ⊂ {M1[ω] > λ} ∩ Q̃
τ

1
−N−2+κ−κ1

(x0, t0),

A ≤ q

ˆ ∞

0

(
λq

ˆ ρ−N−2+κ−κ1

0
|{M1[ω] > λ} ∩ Q̃

τ
1

−N−2+κ−κ1
(x0, t0) ∩ ΩT |dτ

) s
q dλ

λ
.

We divide to two cases.
Case 1 : 0 < s ≤ q. We can verify that for any nonincreasing function F in (0,∞) and
0 < a ≤ 1 we have

(
ˆ ∞

0
F (τ)dτ

)a
≤ 4

ˆ ∞

0
(τF (τ))a

dτ

τ
.
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Hence,

A ≤ 4q

ˆ ∞

0

ˆ ρ−N−2+κ−κ1

0

(
λqτ |{M1[ω] > λ} ∩ Q̃

τ
1

−N−2+κ−κ1
(x0, t0) ∩ ΩT |

) s
q dτ

τ

dλ

λ

= 4q

ˆ ρ−N−2+κ−κ1

0

ˆ ∞

0

(
λq|{M1[ω] > λ} ∩ Q̃

τ
1

−N−2+κ−κ1
(x0, t0) ∩ ΩT |

) s
q dλ

λ
τ

s
q
dτ

τ

= 4

ˆ ρ−N−2+κ−κ1

0
||M1[ω]||sLq,s(Q̃

τ

1
−N−2+κ−κ1

(x0,t0)∩ΩT )
τ

s
q
dτ

τ

≤ 4

ˆ ρ−N−2+κ−κ1

0
||M1[ω]||sLq,s;κ(ΩT )τ

(N+2−κ)s
(−N−2+κ−κ1)q τ

s
q
dτ

τ

= c2||M1[ω]||sLq,s;κ(ΩT )ρ
− sκ1

q .

Case 2 : s > q. Using the Minkowski inequality, yields

A ≤ c3

(
ˆ ρ−N−2+κ−κ1

0

(
ˆ ∞

0

(
λq|{M1[ω] > λ} ∩ Q̃

τ
1

−N−2+κ−κ1
(x0, t0) ∩ ΩT |

) s
q dλ

λ

) q
s

dτ

) s
q

≤ c4

(
ˆ ρ−N−2+κ−κ1

0

(
||M1[ω]||sLq,s;κ(ΩT )τ

(N+2−κ)s
(−N−2+κ−κ1)q

) q
s

dτ

) s
q

= c5||M1[ω]||sLq,s;κ(ΩT )ρ
− sκ1

q .

Therefore, we always have

A ≤ c6||M1[ω]||sLq,s;κ(ΩT )ρ
− sκ1

q .

which implies (4.2.33) from (4.8.27).
Similarly, we obtain estimate (4.2.46) by adapting

w(x, t) = min{ρ−N+ϑ−ϑ1 , |x− x0|−N+ϑ−ϑ1} ∈ A∞

in above argument, where 0 < ϑ1 < ϑ, x0 ∈ Ω and 0 < ρ < diam(Ω) and [w]A∞ is
independent of x0 and ρ.
Next, to archive (4.2.35) we need to show that for any ball Bρ ⊂ R

N

(
ˆ T

0
|oscBρ∩Ωu(t)|

qdt

) 1
q

≤ c7ρ
1−ϑ

q |||∇u|||
Lq;ϑ
∗∗ (ΩT )

(4.8.28)

Since the extension of u over (ΩT )
c is zero and u ∈ L1(0, T,W 1,1

0 (Ω)) thus we have for a.e
t ∈ (0, T ), u(., t) ∈ W 1,1(RN ). Applying [32, Lemma 7.16] to a ball Bρ ⊂ R

N , we get for
a.e t ∈ (0, T ) and x ∈ Bρ

|u(x, t)− uBρ(t)| ≤
2N

N |B1(0)|

ˆ

Bρ

|∇u(y, t)|
|x− y|N−1

dy

≤ 2N

N |B1(0)|

ˆ

B2ρ(x)

|∇u(y, t)|
|x− y|N−1

dy

≤ c8

ˆ 3ρ

0

´

Br(x)
|∇u(y, t)|dy
rN−1

dr

r
,
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here uBρ(t) is the average of u(., t) over Bρ, i.e uBρ(t) = 1
|Bρ|

´

Bρ
u(x, t)dx.

Using the Minkowski and the Holder inequality, we discover that for a.e x ∈ Bρ

(
ˆ T

0
|u(x, t)− uBρ(t)|qdt

) 1
q

≤ c8

(
ˆ T

0

(
ˆ 3ρ

0

´

Br(x)
|∇u(y, t)|dy
rN−1

dr

r

)q
dt

) 1
q

≤ c8

ˆ 3ρ

0

ˆ

Br(x)

(
ˆ T

0
|∇u(y, t)|qdt

) 1
q

dy
dr

rN

≤ c8

ˆ 3ρ

0

(
ˆ

Br(x)

ˆ T

0
|∇u(y, t)|qdtdy

) 1
q

|Br(x)|
q−1
q
dr

rN

≤ c8|B1(x)|
q−1
q

ˆ 3ρ

0
r

N−ϑ
q r

N(q−1)
q

dr

rN
|||∇u|||

Lq;ϑ
∗∗ (ΩT )

= c9ρ
1−ϑ

q |||∇u|||
Lq;ϑ
∗∗ (ΩT )

.

Therefore, we find (4.8.28) with c7 = 2c9.

Proof of Proposition 4.2.28. Clearly, estimate (4.2.46) is followed by (4.4.12) in Pro-
position 4.4.7. We want to emphasize that almost every estimates in this proof will be used
the Minkowski inequality. For a ball Bρ ⊂ R

N , we have for a.e x ∈ R
N

||I1[µ](x, .)||Lq(R) =

(
ˆ +∞

−∞

(
ˆ ∞

0

µ(Q̃r(x, t))

rN+1

dr

r

)q
dt

) 1
q

≤
ˆ ∞

0

(
ˆ +∞

−∞
(µ(Q̃r(x, t)))

qdt

) 1
q dr

rN+2
. (4.8.29)

Now, we need to estimate
(
´ +∞
−∞ (µ(Q̃r(x, t)))

qdt
) 1

q
.

b. We have

(
ˆ +∞

−∞
(µ(Q̃r(x, t)))

qdt

) 1
q

=

(
ˆ +∞

−∞

(
ˆ

RN+1

χQ̃r(x,t)
(x1, t1)dµ(x1, t1)

)q
dt

) 1
q

≤
ˆ

RN+1

(
ˆ +∞

−∞
χQ̃r(x,t)

(x1, t1)dt

) 1
q

dµ(x1, t1)

= r
2
qµ1(Br(x))

Combining this with (4.8.29) we obtain (4.2.47) and (4.2.49).
Thus, we also assert (4.2.49) from [1, Theorem 3.1 ].
c. Set dµ2(x) = ||µ(x, .)||Lq1 (R)dx. Using Holder’s inequality, yields

µ(Q̃r(x, t)) ≤ r
2(q1−1)

q1

ˆ

Br(x)



ˆ t+ ρ2

2

t− ρ2

2

(w(x1, t1))
q1dt1




1
q1

dx1.
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Leads to

(
ˆ +∞

−∞
(µ(Q̃r(x, t)))

qdt

) 1
q

≤ r
2(q1−1)

q1

ˆ

Br(x)



ˆ +∞

−∞



ˆ t+ ρ2

2

t− ρ2

2

(w(x1, t1))
q1dt1




q
q1

dt




1
q

dx1.

Note that


ˆ +∞

−∞



ˆ t+ ρ2

2

t− ρ2

2

(w(x1, t1))
q1dt1




q
q1

dt




q1
q

=

(
ˆ +∞

−∞

(
ˆ +∞

−∞
χ(

t− ρ2

2
,t+ ρ2

2

)(t1)(w(x1, t1))
q1dt1

) q
q1

dt

) q1
q

≤
ˆ +∞

−∞

(
ˆ +∞

−∞
χ(

t− ρ2

2
,t+ ρ2

2

)(t1)dt

) q1
q

(w(x1, t1))
q1dt1

= ρ
2q1
q

ˆ +∞

−∞
(w(x1, t1))

q1dt1.

Hence
(
ˆ +∞

−∞
(µ(Q̃r(x, t)))

qdt

) 1
q

≤ r
2(q1−1)

q1
+ 2

q

ˆ

Br(x)
||µ(x1, .)||Lq1 (R)dx1

= r
2(q1−1)

q1
+ 2

qµ2(Br(x)).

Consequently, since (4.8.29) we derive (4.2.50) and (4.2.51).
We also obtain (4.2.52) from [1, Theorem 3.1 ].

4.8.3 Global estimates in R
N × (0,∞) and R

N+1

Now, we present the proofs of Theorem 4.2.25 and 4.2.27.
Proof of Theorem 4.2.25 and Theorem 4.2.27. For any n ≥ 1, it is easy to see that

i. R
N\Bn(0) satisfies uniformly 2−thick with constants c0 =

Capp(B1/4(z0),B2(0))

Capp(B1(0),B2(0))
, z0 =

(1/2, 0, ..., 0) ∈ R
N and r0 = n.

ii. for any δ ∈ (0, 1), Bn(0) is a (δ, 2nδ)− Reifenberg flat domain.

iii. [A]ns0 ≤ [A]∞s0 .

Assume that ||M1[|ω|]||Lp,s(RN+1) <∞. Thus by Remark 4.2.26 we have

I2[|ω|](x, t) <∞ for a.e (x, t) ∈ R
N+1. (4.8.30)

In view of the proof of the Theorem 4.2.5 and applying Theorem 4.2.17 to Bn(0)×(−n2, n2)
and with data χBn−1(0)×(−(n−1)2,(n−1)2)ω for any n ≥ 2, there exists a sequence renormalized
solution {un} ( we will take its subsequence if need ) of





(un)t − div(A(x, t,∇un)) = χBn−1(0)×(−(n−1)2,(n−1)2)ω in Bn(0)× (−n2, n2),
un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),
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converging to a distribution solution u in L1
loc(R;W

1,1
loc (R

N )) of 4.2.6 with data µ = ω such
that

|||∇un|||Lp,s(Bn(0)×(−n2,n2)) ≤ c1||M1[χBn−1(0)×(−(n−1)2,(n−1)2)|ω|]||Lp,s(B2n(0)×(−n2,n2))

≤ c1||M1[|ω|]||Lp,s(RN+1).

Here c1 = c1(N,Λ1,Λ2, p, s) is not depending on n since T0
r0

= 2n+(1+n2)1/2

n ≈ 1.
Using Fatou Lemma, we get estimate (4.2.38).
As above, we also obtain (4.2.39).
And similarly, we can prove Theorem 4.2.27 by this way.
This completes the proof of Theorem.

Remark 4.8.5 (sharpness) The inequality (4.2.41) is in a sense optimal as follows :

C−1||M1[|ω|]||Lq(RN+1) ≤ |||∇H2| ∗ |ω|||Lq(RN×(0,∞)) ≤ C||M1[|ω|]||Lq(RN+1) (4.8.31)

for every q > 1 where C = C(N, q). Indeed, we have

∇H2(x, t) = −Cα
2

χ(0,∞)(t)

t(N+1)/2
exp(−|x|2

4t
)
x√
t
,

leads to

c−1
1

t
N+1

2

χt>0χ 1
2

√
t≤|x|≤2

√
t ≤ |∇Hα(x, t)| ≤

c1

max{|x|,
√

2|t|}N+1
.

Immediately, we get

c−1
2

ˆ ∞

0

ω
(
(Br(x)\Br/2(x))× (t− r2, t− r2/4)

)

rN+1

dr

r
≤ |∇H2| ∗ |ω|(x, t) ≤ c2I1[ω](x, t).

By Theorem 4.4.2, gives the right-hand side inequality of (4.8.31). So, it is enough to show
that

A :=

ˆ

RN+1

(
ˆ ∞

0

ω
(
(Br(x)\Br/2(x))× (t− r2, t− r2/4)

)

rN+1

dr

r

)q
dxdt ≥ c3||M1[ω]||qLq(RN+1)

(4.8.32)

To do this, we take rk = (3/2)k for k ∈ Z,
(
ˆ ∞

0

ω
(
(Br(x)\Br/2(x))× (t− r2, t− r2/4)

)

rN+1

dr

r

)q

≥ c4

∞∑

k=−∞

(
ω
(
(Brk(x)\B3rk/4(x))× (t− r2k, t− 9r2k/16)

)

rN+1
k

)q
.

We deduce that

A ≥ c4

∞∑

k=−∞

ˆ

RN+1

(
ω
(
(Brk(x)\B3rk/4(x))× (t− r2k, t− 9r2k/16)

)

rN+1
k

)q
dxdt.
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For any k, put y = x+ 7
8rk and s = t− 25

32r
2
k, so Brk(x)\B3rk/4(x) ⊃ Brk/8(y) and

ˆ

RN+1

(
ω
(
(Brk(x)\B3rk/4(x))× (t− r2k, t− 9r2k/16)

)

rN+1
k

)q
dxdt

≥
ˆ

RN+1

(
ω
(
Brk/8(y)× (s− 7r2k/32, t+ 7r2k/32)

)

rN+1
k

)q
dyds.

Consequently,

A ≥ c4

ˆ

RN+1

∞∑

k=−∞

(
ω
(
Brk/8(y)× (s− 7r2k/32, t+ 7r2k/32)

)

rN+1
k

)q
dyds.

It follows (4.8.32).

4.9 Quasilinear Riccati Type Parabolic Equations

4.9.1 Quasilinear Riccati Type Parabolic Equation in ΩT

We provide below only the proof of Theorem 4.2.30, 4.2.32 and 4.2.33. The proof of
Theorem 4.2.31 can be proceeded by a similar argument.

Proof of Theorem 4.2.30. Let {µn} ⊂ C∞
c (ΩT ) be as in the proof of Theorem 4.2.1.

We have |µn|(ΩT ) ≤ |µ|(ΩT ) for any n ∈ N. Let σn ∈ C∞
c (Ω) be converging to σ in the

narrow topology of measures and in L1(Ω) if σ ∈ L1(Ω) such that ||σn||L1(Ω) ≤ |σ|(Ω). For
n0 ∈ N, we prove that the problem (4.2.53) has a solution with data µ = µn0 and σ = σn0 .
Now we put

EΛ = {u ∈ L1(0, T,W 1,1
0 (Ω)) : |||∇u|||

L
N+2
N+1

,∞
(ΩT )

≤ Λ},

where L
N+2
N+1

,∞(ΩT ) is Lorent space with norm

||f ||
L

N+2
N+1

,∞
(ΩT )

:= sup
0<|D|<∞

(
|D|− 1

N+2

ˆ

D∩ΩT

|f |
)
.

By Fatou’s lemma, EΛ is closed under the strong topology of L1(0, T,W 1,1
0 (Ω)) and convex.

We consider a map S : EΛ → EΛ defined for each v ∈ EΛ by S(v) = u, where u ∈
L1(0, T,W 1,1

0 (Ω)) is the unique solution of





ut − div (A(x, t,∇u)) = |∇v|q + µn0 in ΩT ,
u = 0 on ∂Ω× (0, T )
u(0) = σn0 .

(4.9.1)

By Remark 4.3.2, we have

|||∇u|||
L

N+2
N+1

,∞
(ΩT )

≤ c1
(
|||∇v|q||L1(ΩT ) + |µn0 |(ΩT ) + ||σn0 ||L1(Ω)

)
,
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for some c1 = c1(N,Λ1,Λ2). It leads to

|||∇u|||
L

N+2
N+1

,∞
(ΩT )

≤ c1

(
c2|ΩT |1−

q(N+1)
N+2 |||∇v|||q

L
N+2
N+1

,∞
(ΩT )

+ |µ|(ΩT ) + |σ|(Ω)
)

≤ c1

(
c2|ΩT |1−

q(N+1)
N+2 Λq + |µ|(ΩT ) + |σ|(Ω)

)
,

for some c2 = c2(N, q) > 0. Thus, we now suppose that

|ΩT |−1+ q′
N+2 (|µ|(ΩT ) + |σ|(Ω)) ≤ (2c1)

−q′c
− 1

q−1

2 ,

then
|||∇u|||

L
N+2
N+1

,∞
(ΩT )

≤ Λ := 2c1(|µ|(Ω) + |σ|(Ω)),

which implies that S is well defined.
Now we show that S is continuous. Let {vn} be a sequence in EΛ such that vn converges
strongly in L1(0, T,W 1,1

0 (Ω)) to a function v ∈ EΛ. Set un = S(vn). We need to show that
un → S(v) in L1(0, T,W 1,1

0 (Ω)). We have





(un)t − div (A(x, t,∇un)) = |∇vn|q + µn0 in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn0 in Ω,

(4.9.2)

satisfied
|||∇un|||

L
N+2
N+1

,∞
(ΩT )

≤ Λ, |||∇vn|||
L

N+2
N+1

,∞
(ΩT )

≤ Λ.

Thus, |∇vn|q → |∇v|q in L1(ΩT ). Therefore, it is easy to see that we get un → S(v) in
L1(0, T,W 1,1

0 (Ω)) by Theorem 4.3.6.
Next we show that S is pre-compact. Indeed if {un} = {S(vn)} is a sequence in
S(EΛ). By Proposition 4.3.5, there exists a subsequence of {un} converging to some u
in L1(0, T,W 1,1

0 (Ω)). Consequently, by Schauder Fixed Point Theorem, S has a fixed point
on EΛ this means : the problem (4.2.53) has a solution with data µn0 , σn0 .
Therefore, for any n ∈ N, there exists a renormalized solution un of





(un)t − div (A(x, t,∇un)) = |∇un|q + µn in ΩT ,
u = 0 on ∂Ω× (0, T ),
un(0) = σn,

(4.9.3)

which satisfies
|||∇un|||

L
N+2
N+1

,∞
(ΩT )

≤ 2c1(|µ|(Ω) + |σ|(Ω)).

Thanks to Proposition 4.3.5, there exists a subsequence of {un} converging to u in L1(0, T,W 1,1
0 (Ω)).

So, |||∇u|||
L

N+2
N+1

,∞
(ΩT )

≤ 2c1(|µ|(Ω)+ |σ|(Ω)) and |∇un|q → |∇u|q in L1(Ω) since {|∇un|q}
is equi-integrable. It follows the results by Proposition 4.3.5 and Theorem 4.3.6.

Proof of Theorem 4.2.32. Case a. A is linear operator. By Theorem 4.2.22, there
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exist δ = δ(N,Λ1,Λ2, q) ∈ (0, 1) and s0 = s0(N,Λ1,Λ2) > 0 such that Ω is (δ,R0)- Reifen-
berg flat domain and [A]R0

s0 ≤ δ for some R0 and a sequence {un}n as distribution solutions
of





(u1)t − div(A(x, t,∇u1)) = µ in ΩT ,
u1 = 0 on ∂Ω× (0, T ),
u1(0) = σ in Ω,

and




(un+1)t − div(A(x, t,∇un+1)) = |∇un|q + µ in ΩT ,
un+1 = 0 on ∂Ω× (0, T ),
un+1(0) = σ in Ω,

which satisfy
[|∇un+1|q]MG1,q′ ≤ c1[|∇un|q + ω]q

MG1,q′
∀n ≥ 0 (4.9.4)

where u0 ≡ 0 and constant c1 depends only on N,Λ1,Λ2, q and T0/R0, T0. Moreover, if
σ ∈ L1(Ω) then {un} is the sequence of renormalized solutions.
i. Suppose

[ω]
MG1,q′ ≤ (q − 1)

1
q (qc12

q−1)
− 1

q−1 , (4.9.5)

we prove that

[|∇un|q]MG1,q′ ≤
qc12

q−1

q − 1
[ω]q

MG1,q′
∀n ≥ 1. (4.9.6)

Indeed, clearly, we have (4.9.6) when n = 1. Now assume that (4.9.6) is true with n = m,
that is,

[|∇um|q]MG1,q′ ≤
qc12

q−1

q − 1
[ω]q

MG1,q′
.

From (4.9.4) we obtain

[|∇um+1|q]MG1,q′ ≤ c1[|∇um|q + ω]q
MG1,q′

≤ c12
q−1
(
[|∇um|q]q

MG1,q′
+ [ω]q

MG1,q′

)

≤ c12
q−1

((
qc12

q−1

q − 1

)q
[ω]

q(q−1)

MG1,q′
+ 1

)
[ω]q

MG1,q′

≤ qc12
q−1

q − 1
[ω]q

MG1,q′
.

Here, the last inequality is obtained by using (4.9.5). So, (4.9.6) is also true with n = m+1.
Thus, (4.9.6) is true for all n ≥ 1.
ii. Clearly, un+1 − un is the unique renormalized solution of





ut − div (A(x, t,∇u)) = |∇un|q − |∇un−1|q in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω.

(4.9.7)
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So, we have

[|∇un+1 −∇un|q]MG1,q′ ≤ c1[|∇un|q − |∇un−1|q]q
MG1,q′

∀n ≥ 1.

Since, |sq1− s
q
2| ≤ q|s1− s2|(max{s1, s2})q−1 for any s1, s2 ≥ 0 and using Holder inequality,

we get

[|∇un+1 −∇un|q]MG1,q′ ≤ c1q
q [|∇un −∇un−1|q]MG1,q′ [(max{|∇un|, |∇un−1|})q]q−1

MG1,q′

≤ c1q
q [|∇un −∇un−1|q]MG1,q′

(
[|∇un|q]MG1,q′ + [|∇un−1|q]MG1,q′

)q−1

which follows from (4.9.6),

[|∇un+1 −∇un|q]MG1,q′ ≤ C [|∇un −∇un−1|q]MG1,q′ ∀ n ≥ 1

where

C = c1q
q

(
qc12

q

q − 1

)q−1

[ω]
q(q−1)

MG1,q′
.

Hence, if C < 1 then un converges to u = u1 +
∑∞

n=1(un+1 − un) in Lq(0, T,W 1,q
0 (Ω)) and

satisfied

[|∇u|q]
MG1,q′ ≤

qc12
q−1

q − 1
[ω]q

MG1,q′
.

Note that C < 1 is equivalent to

[ω]
MG1,q′ ≤ (c1q

q)
− 1

q(q−1)

(
qc12

q

q − 1

)− 1
q

Combining this with (4.9.5) and using Theorem 4.3.6, we conclude that the problem (4.2.53)
has a distribution solution u (a renormalized if σ ∈ L1(Ω)) , if

[ω]
MG1,q′ ≤ min

{
(q − 1)

1
q (qc12

q−1)
− 1

q−1 , (c1q
q)

− 1
q(q−1)

(
qc12

q

q − 1

)− 1
q

}
.

Next, we will prove Case b. and Case c..
Let {µn} ⊂ C∞

c (ΩT ), σn ∈ C∞
c (Ω) be as in the proof of Theorem 4.2.1. We have |µn| ≤

ϕn ∗ |µ|, |σn| ≤ ϕ1,n ∗ |σ| for any n ∈ N, {ϕn}, {ϕ1,n} are sequences of standard mollifiers
in R

N+1,RN respectively. Set ωn = |µn|+ |σn| ⊗ δ{t=0} and ω = |µ|+ |σ| ⊗ δ{t=0}.
Case b. For n0 ∈ N, ε > 0, we prove that the problem (4.2.53) has a solution with data
µ = µn0 , σ = σn0 . Now we put

EΛ = {u ∈ L1(0, T,W 1,1
0 (Ω)) : [|∇u|q+ε]

MG1,(q+ε)′ (ΩT ) ≤ Λ}.

By Fatou’s lemma, EΛ is closed under the strong topology of L1(0, T,W 1,1
0 (Ω)) and convex.

We consider a map S : EΛ → EΛ defined for each v ∈ EΛ by S(v) = u, where u ∈
L1(0, T,W 1,1

0 (Ω)) is the unique solution of problem (4.9.1). By Theorem 4.2.22, there exist
δ = δ(N,Λ1,Λ2, q+ε) ∈ (0, 1) and s0 = s0(N,Λ1,Λ2) > 0 such that Ω is (δ,R0)- Reifenberg
flat domain and [A]R0

s0 ≤ δ for some R0 we have

[|∇u|q+ε]
MG1,(q+ε)′ ≤ c2[|∇v|q + ωn0 ]

q+ε

MG1,(q+ε)′ ,
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where c2 = c2(N,Λ1,Λ2, q + ε, T0/R0, T0). By Remark 4.4.33, we deduce that

[|∇v|q]
MG1,(q+ε)′ ≤ c3[|∇v|q+ε]

q
q+ε

MG1,(q+ε)′ ,

where a constant c3 depends on N, q + ε.
Thus,

[|∇u|q+ε]
MG1,(q+ε)′ ≤ c2

(
[|∇v|q]

MG1,(q+ε)′ + [ωn0 ]MG1,(q+ε)′
)q+ε

≤ c2

(
c3[|∇u|q+ε]

q
q+ε

MG1,(q+ε)′ + [ωn0 ]MG1,(q+ε)′

)q+ε

≤ c2

(
c3Λ

q
q+ε + [ωn0 ]MG1,(q+ε)′

)q+ε

≤ Λ,

provided that [ωn0 ]MG1,(q+ε)′ ≤ c4 := 2−q
′
c
− q′

q+ε

2 c
− 1

q−1

3 and Λ := 2q+εc2[ωn0 ]
q+ε

MG1,(q+ε)′ .
which implies that S is well defined with [ωn0 ]MG1,(q+ε)′ ≤ c4.
Now we show that S is continuous. Let {vn} be a sequence in EΛ such that vn converges
strongly in L1(0, T,W 1,1

0 (Ω)) to a function v ∈ EΛ. Set un = S(vn). We need to show that
un → S(v) in L1(0, T,W 1,1

0 (Ω)). We have un satisfied (4.9.2) and

[|∇un|q+ε]MG1,(q+ε)′ ≤ Λ, [|∇vn|q+ε]MG1,(q+ε)′ ≤ Λ.

In particular, ||∇vn||Lq+ε(ΩT ) ≤ ΛCapG1,(q+ε)′(ΩT ) for all n. Thus, |∇vn|q → |∇v|q in

L1(ΩT ). Therefore, it is easy to see that we get un → S(v) in L1(0, T,W 1,1
0 (Ω)) by Theorem

4.3.6. On the other hand, S is pre-compact. Therefore, by Schauder Fixed Point Theorem,
S has a fixed point on EΛ. Hence the problem (4.2.53) has a solution with data µ = µn0 , σ =
σn0 .
Thanks to Corollary 4.4.39 and Remark 4.4.40 we get

[ωn]MG1,(q+ε)′ ≤ c5[ω]MG1,(q+ε)′ ∀ n ∈ N, (4.9.8)

where c5 = c5(N, q + ε, T0).
Assume that [ω]

MG1,(q+ε)′ ≤ c4c
−1
5 . So [ωn]MG1,(q+ε)′ ≤ c4 for all n.

Therefore, for any n ∈ N, there exists a renormalized solution un of problem (4.9.3) which
satisfies

[|∇un|q+ε]MG1,(q+ε)′ ≤ 2q+εc2[ωn]
q+ε

MG1,(q+ε)′ ≤ 2q+εc2c
q+ε
5 [ω]q+ε

MG1,(q+ε)′ .

By Proposition 4.3.5, there exists a subsequence of {un} converging to u in L1(0, T,W 1,1
0 (Ω)).

So, [|∇u|q+ε]
MG1,(q+ε)′ (ΩT ) ≤ 2q+εc2c

q+ε
5 [ω]q+ε

MG1,(q+ε)′ (ΩT )
and |∇un|q → |∇u|q in L1(Ω) since

{|∇un|q} is equi-integrable. It follows the result by Proposition 4.3.5 and Theorem 4.3.6.

Case c. For n0 ∈ N. We prove that the problem (4.2.53) has a solution with data
µ = µn0 , σ = σn0 . Now we put

EΛ = {u ∈ L1(0, T,W 1,1
0 (Ω)) : |||∇u|||L(N+2)(q−1),∞(ΩT ) ≤ Λ},
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where L(N+2)(q−1),∞(ΩT ) is Lorent space with norm

||f ||L(N+2)(q−1),∞(ΩT ) := sup
0<|D|<∞

(
|D|−1+ 1

(N+2)(q−1)

ˆ

D∩ΩT

|f |dxdt
)
.

By Fatou’s lemma, EΛ is closed under the strong topology of L1(0, T,W 1,1
0 (Ω)) and convex.

We consider a map S : EΛ → EΛ defined for each v ∈ EΛ by S(v) = u, where u ∈
L1(0, T,W 1,1

0 (Ω)) is the unique solution of problem (4.9.1). By Theorem 4.2.20, there exist
δ = δ(N,Λ1,Λ2, q) ∈ (0, 1) and s0 = s0(N,Λ1,Λ2) > 0 such that Ω is (δ,R0)- Reifenberg
flat domain and [A]R0

s0 ≤ δ for some R0 we have

|||∇u|||L(N+2)(q−1),∞(ΩT ) ≤ c6||M1[|∇v|q + ωn0 ]||L(N+2)(q−1),∞(ΩT )

≤ c6

(
||M1[|∇v|q]||L(N+2)(q−1),∞(ΩT ) + ||M1[ωn0 ]||L(N+2)(q−1),∞(ΩT )

)
,

where c6 = c6(N,Λ1,Λ2, q, T0/R0) and T0 = diam(Ω) + T 1/2.
By Proposition 4.4.4 we have

||M1[|f |q]||L(N+2)(q−1),∞(Rn+1) ≤ c7||I1[|f |q]||L(N+2)(q−1),∞(Rn+1)

≤ c8||f ||qL(N+2)(q−1),∞(Rn+1)
∀f ∈ L(N+2)(q−1),∞(Rn+1),

where a constant c8 only depends on N, q. Thus,

|||∇u|||L(N+2)(q−1),∞(ΩT ) ≤ c6

(
c8|||∇v|||qL(N+2)(q−1),∞(ΩT )

+ ||M1[ωn0 ]||L(N+2)(q−1),∞(ΩT )

)

≤ c6

(
c8Λ

q + ||M1[ωn0 ]||L(N+2)(q−1),∞(ΩT )

)
,

which implies that S is well defined with ||M1[ωn0 ]||L(N+2)(q−1),∞(ΩT ) ≤ c9 := (2c6)
−q′c

− 1
q−1

8

and Λ := 2c6||M1[ωn0 ]||L(N+2)(q−1),∞(ΩT ).
As in Case b we can show that S : EΛ → EΛ is continuous and S(EΛ) is pre-compact,
thus by Schauder Fixed Point Theorem, S has a fixed point on EΛ. Hence the problem
(4.2.53) has a solution with data µ = µn0 , σ = σn0 .
To continue, we need to show that

||M1[ωn]||L(N+2)(q−1),∞(RN+1)

≤ c10||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + c10||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ), (4.9.9)

for every n ≥ k0. Where k0 is a constant large enough and c10 = c10(N, q) Indeed, we have
M1[ωn] ≤ c11I1[ϕn ∗ |µ|]+ c11I1[(ϕ1,n ∗ |σ|)⊗δ{t=0}]. Thus, by Proposition 4.4.19 we deduce

||M1[ωn]||L(N+2)(q−1),∞(RN+1)

≤ c11||I1[ϕn ∗ |µ|]||L(N+2)(q−1),∞(RN+1) + c12||I 2
(N+2)(q−1)

−1[ϕ1,n ∗ |σ|]||L(N+2)(q−1)(RN )

= c11||ϕn ∗ I1[|µ|]||L(N+2)(q−1),∞(RN+1) + c12||ϕ1,n ∗ I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN )

→ c11||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + c12||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) as n→ ∞.
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It implies (4.9.9).
Now we assume that

||I1[|µ|]||L(N+2)(q−1),∞(RN+1), ||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) ≤ c9(2c10)
−1,

then ||M1[ωn]||L(N+2)(q−1),∞(RN+1) ≤ c9 for all n ≥ k0. Consequently, there exists a renor-
malized solution un of problem (4.9.3) satisfied

|||∇un|||L(N+2)(q−1),∞(ΩT ) ≤ 2c6||M1[ωn]||L(N+2)(q−1),∞(ΩT )

≤ 2c6c10||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + 2c6c10||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) =: C

for any n ≥ k0. Thanks to Proposition 4.3.5, there exists a subsequence of {un} converging
to u in L1(0, T,W 1,1

0 (Ω)). So, |||∇u|||L(N+2)(q−1),∞(ΩT ) ≤ C and |∇un|q → |∇u|q in L1(Ω)
since {|∇un|q} is equi-integrable.
It follows the result by Proposition 4.3.5 and Theorem 4.3.6. This completes the proof.

Proof of Theorem 4.2.33. Let {µn} ⊂ C∞
c (ΩT ), σn ∈ C∞

c (Ω) be as in the proof
of Theorem 4.2.1. We have |µn| ≤ ϕn ∗ |µ|, |σn| ≤ ϕ1,n ∗ |σ| for any n ∈ N, {ϕn},
{ϕ1,n} are sequences of standard mollifiers in R

N+1,RN respectively. We can assume that
supp(µn) ⊂ (Ω′ + Bd/4(0)) × [0, T ] and supp(σn) ⊂ Ω′ + Bd/4(0) for any n ∈ N. Set
ωn = |µn|+ |σn| ⊗ δ{t=0} and ω = |µ|+ |σ| ⊗ δ{t=0}.
First, we prove that the problem (4.2.53) has a solution with data µ = µn0 , σ = σn0 for
n0 ∈ N. By Corollary 4.4.39 and Remark 4.4.40, we have

[ωn]MG1,q′ ≤ c1ε0 ∀n ∈ N, (4.9.10)

where c1 = c1(N, q, T0) and ε0 = [ω]
MG1,q′ . By Proposition 4.4.36 and Remark 4.4.37, we

have
I
2T0,δ
1

[(
I
2T0,δ
1 [ωn]

)q]
≤ c2ε

q−1
0 I

2T0,δ
1 [ωn] a.e in R

N+1 and (4.9.11)

I2[
(
I
2T0,δ
1 [ωn]

)q
] ≤ c2ε

q−1
0 I2[ωn] a.e in R

N+1, (4.9.12)

for any n ∈ N, where c2 = c2(N, δ, q, T0) and 0 < δ < 1. We set

EΛ = {u ∈ L1(0, T,W 1,1
0 (Ω)) : |∇u| ≤ ΛI2T0,δ1 [ωn0 ]}.

Clearly, EΛ is closed under the strong topology of L1(0, T,W 1,1
0 (Ω)) and convex.

We consider a map S : EΛ → L1(0, T,W 1,1
0 (Ω)) defined for each v ∈ EΛ by S(v) = u,

where u ∈ L1(0, T,W 1,1
0 (Ω)) is the unique renormalized solution of problem (4.9.1). We

will show that S(EΛ) is subset of EΛ for some Λ > 0 and ε0 small enough.
We have

|∇v| ≤ ΛI1[ωn0 ]. (4.9.13)

In particular, |||∇v|||L∞(Ωd/2×(0,T )) ≤ Λ(N + 1)−1(d/2)−N−1ωn0(ΩT ), where Ωd/2 = {x ∈
Ω : d(x, ∂Ω) ≤ d/2}.
From (4.9.11) and (4.9.12) lead to

I
2T0,δ
1 [|∇v|q] ≤ ΛqI2T0,δ1

[(
I
2T0,δ
1 [ωn0 ]

)q]
≤ c2Λ

qεq−1
0 I

2T0,δ
1 [ωn0 ] and

I2[|∇v|q] ≤ ΛqI2

[(
I
2T0,δ
1 [ωn0 ]

)q]
≤ c2Λ

qεq−1
0 I2[ωn0 ].
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Clearly, from [27, Theorem 1.2], we have for any Qr(x, t) ⊂⊂ Ω× (−∞, T ) with r ≤ r0

|∇u(x, t)| ≤ c3

 

Qr(x,t)
|∇u|dyds+ c3I

2T0,δ
1 [|∇v|q + ωn0 ](x, t)

≤ c3

 

Qr(x,t)
|∇u|dyds+ c3I

2T0,δ
1 [|∇v|q](x, t) + c3I

2T0,δ
1 [ωn0 ](x, t)

≤ c3

 

Qr(x,t)
|∇u|dyds+ c3

(
c2Λ

qεq−1
0 + 1

)
I
2T0,δ
1 [ωn0 ](x, t), (4.9.14)

where c3 = c3(N,Λ1) and r0 = r0(N,Λ1,Λ2,Λ3, β) > 0.

Since |||∇u|||L1(ΩT ) ≤ c4T0

(
|||∇v|||qLq(ΩT ) + ωn0(ΩT )

)
, for any (x, t) ∈ (Ω\Ωd/4)×(−∞, T )

where Ωd/4 = {x ∈ Ω : d(x, ∂Ω) ≤ d/4},

1

|Qd0(x, t)|

ˆ

Qd0
(x,t)

|∇u|dyds ≤ c5d
−N−2
0 T0

(
|||∇v|||qLq(ΩT ) + ωn0(ΩT )

)

≤ c6I
2T0,δ
1 [|∇v|q + ωn0 ](x, t)

≤ c6

(
c2Λ

qεq−1
0 + 1

)
I
2T0,δ
1 |[ωn0 ](x, t), (4.9.15)

where d0 = min{d/8, r0} and c6 = c6(N, p,Λ1,Λ2, T0/d0).
By regularity theory, we have

||∇u||L∞(Ωd/4×(0,T )) ≤ c7(||u||L∞(Ωd/2×(0,T )) + |||∇v|q||L∞(Ωd/2×(0,T ))),

where c7 = c7(N,Λ1,Λ2,Λ3,Ω, T ).
a. Estimate |||∇v|q||L∞(Ωd/2×(0,T )). Thanks to (4.9.13),

|||∇v|q||L∞(Ωd/2×(0,T )) ≤
(
Λ(d/2)−N−1(ωn0(ΩT ))

)q
.

Since ωn0(ΩT ) ≤ c1ε0CapG1,q′(Q̃T0(x0, t0)) = c8(N, q, p, T0)ε0 with (x0, t0) ∈ ΩT , thus

|||∇v|q||L∞(Ωd/2×(0,T )) ≤ c9Λ
qεq−1

0 I
2T0,δ
1 [ωn0 ](x, t) ∀(x, t) ∈ ΩT ,

where c9 = c9(N,Λ1,Λ2,Λ3, q, d,Ω, T ).
b. Estimate ||u||L∞(Ωd/2). By Theorem 4.2.1 we have

|u(x, t)| ≤ c10I2[|∇v|q + ωn0 ](x, t) ∀(x, t) ∈ ΩT ,

where c10 = c10(N,Λ1,Λ2). Thus,

|u(x, t)| ≤ c10I2[|∇v|q](x, t) + c10I2[ωn0 ](x, t)

≤ c10

(
c2Λ

qεq−1
0 + 1

)
I2[ωn0 ](x, t),

which implies

||u||L∞(Ωd/2×(0,T )) ≤ c11

(
c2Λ

qεq−1
0 + 1

)
d−Nωn0(ΩT )

≤ c12

(
c2Λ

qεq−1
0 + 1

)
I
2T0,δ
1 [ωn0 ](x, t) ∀(x, t) ∈ ΩT ,
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where c12 = c12(N,Λ1,Λ2,Λ3, q, T0/d). Therefore,

||∇u||L∞(Ωd/4×(0,T )) ≤ c13

(
c14Λ

qεq−1
0 + 1

)
inf

(x,t)∈ΩT

I
2T0,δ
1 [ωn0 ](x, t). (4.9.16)

where c13 = c13(N,Λ1,Λ2,Λ3, q, d,Ω, T ).
Finally from (4.9.15) (4.9.16) and (4.9.14) we get for all (x, t) ∈ ΩT

|∇u(x, t)| ≤ c14

(
c15Λ

qεq−1
0 + 1

)
I
2T0,δ
1 [ωn0 ](x, t).

where c14 = c14(N,Λ1,Λ2,Λ3, q, d,Ω, T ) and c15 = c15(N, δ, q).

So, we suppose that Λ = 2c14 and ε0 ≤ c
− 1

q−1

15 (2c14)
− q

q−1 , it is equivalent to (4.2.61), (4.2.62)
holding for some C > 0. Then for any (x, t) ∈ ΩT

|∇u(x, t)| ≤ ΛI2T0,δ1 [ωn0 ](x, t),

and S is well defined.
On the other hand, we can see that S : EΛ → EΛ is continuous and S(E) is pre-compact
under the strong topology of L1(0, T,W 1,1

0 (Ω)).
Thus, by Schauder Fixed Point Theorem, S has a fixed point on EΛ. This means : the
problem (4.2.53) has a solution with data µ = µn0 , σ = σn0 .
Therefore, for any n ∈ N, there exists a renormalized solution un of problem (4.9.3) which
satisfies

|∇un(x, t)| ≤ ΛI2T0,δ1 [ωn](x, t) ∀ (x, t) ∈ ΩT .

Since I2T0,δ1 [ωn](x, t) ≤ ϕn∗I2T0,δ1 [|µ|](x, t)+ϕ1,n∗(I2T0,δ1 [|σ|⊗δ{t=0}](., t))(x) =: An(x, t) and

An converges to I
2T0,δ
1 [|µ|]+ I

2T0,δ
1 [|σ|⊗ δ{t=0}] in Lq(RN+1), thus |∇un|q is equi-integrable.

As in the proof of Theorem 4.2.32, we get the result by using Proposition 4.3.5 and Theo-
rem 4.3.6. This completes the proof.

4.9.2 Quasilinear Riccati Type Parabolic Equation in R
N × (0,∞) and

R
N+1

In this subsection, we provide the proofs of Theorem 4.2.37 and 4.2.38. In the same
way, we can prove Theorem 4.2.36.
Proof of Theorem 4.2.37. As in the proof of Theorem 4.2.25 and Theorem 4.2.27, we
can apply Theorem 4.2.32 to obtain : there exists a constant c1 = c1(N,Λ1,Λ2, q) that if
[A]∞s0 ≤ δ and (4.2.64) holds with constant c1 then we can find a sequence of renormalized
solutions {unk

} of





(unk
)t − div(A(x, t,∇unk

)) = |∇unk
|q + χDnk−1ω in Dnk

,

unk
= 0 on ∂Bnk

(0)× (−n2k, n2k),
unk

(−n2k) = 0 on Bnk
(0).

247



4.9. QUASILINEAR RICCATI TYPE PARABOLIC EQUATIONS

converging to some u in L1
loc(R;W

1,1
loc (R

N )) and satisfying

|||∇unk
|||L(q−1)(N+2),∞(Dnk

) ≤ c2||I1[|ω|]||L(N+2)(q−1),∞(RN+1),

for some c2 = c2(N,Λ1,Λ2, q), where Dn = Bn(0)× (−n2, n2). It follows |∇unk
|q → |∇u|q

in L1
loc(R

N+1). Thus, u is a distribution solution of (4.2.55) which satisfies (4.2.63).
Furthermore, if ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then
unk

= 0 in Bnk
(0)× (−n2k, 0). So, u = 0 in R

N × (−∞, 0). Therefore, clearly u|
RN×[0,∞) is

a distribution solution to (4.2.54).

Proof of Theorem 4.2.38. Let ωn = ϕn ∗ (χDn−1ω) for any n ≥ 2. We have µn ∈
C∞
c (RN+1) with supp(ωn) ⊂ Dn and ωn → ω weakly in M(RN+1).

According to Corollary 4.4.39 and Remark 4.4.40, we have

[ωn]MH1,q
′ ≤ c1ε0 ∀n ∈ N

where c1 = c1(N, q) and [ω]
MH1,q

′ ≤ ε0. Thus, thanks to Theorem 1.3 we get

I1 [(I1[ωn])
q] ≤ c2ε

q−1
0 I1[ωn] and (4.9.17)

I2 [(I1[ωn])
q] ≤ c2ε

q−1
0 I2[ωn] ∀n ∈ N, (4.9.18)

where c2 = c2(N, q, c1).
We fix n0 ∈ N, put :

EΛ =
{
u ∈ L1(−n20, n20,W 1,1

0 (Bn0(0))) : |∇u| ≤ ΛI1[ωn0 ] in Bn0/4(0)× (−n20, n20)
}
.

By using estimate (4.5.8) in Remark 4.5.3, we can apply the argument of the proof of
Theorem 4.2.9, with problem (4.6.9) replaced by





ut − div (A(t,∇u)) = χBn0/4
(0)×(−n2

0,n
2
0)
|∇v|q + ωn0 in Dn0 ,

u = 0 on ∂Bn0(0)× (−n20, n20),
u(−n20) = 0 in Bn0(0),

to obtain : the operator S (in the proof of Theorem 4.2.9) has a fixed point on EΛ for some
Λ = Λ(N,Λ1,Λ2, q) > 0 and ε0 = ε0(N,Λ1,Λ2, q) > 0. Therefore, for any n ∈ N there
exists a solution un of problem





(un)t − div (A(t,∇un)) = χBn/4(0)×(−n2,n2)|∇un|q + ωn in Dn,

un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

which satisfies

|∇un(x, t)| ≤ ΛI1[ωn](x, t) ∀(x, t) ∈ Bn/4(0)× (−n2, n2).
Moreover, combining this with (4.9.18) and Theorem 4.2.1 we also obtain

|un(x, t)| ≤ KI2

[
χBn/4(0)×(−n2,n2)|∇un|q + |ωn|

]
(x, t)

≤ KΛqI2 [(I1[|ωn|])q] +KI2 [|ωn|] (x, t)
≤ c3I2 [|ωn|] (x, t)
≤ c3ϕn ∗ I2

[
|χDn−1ω|

]
(x, t),
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for any (x, t) ∈ Bn(0)× (−n2, n2).
Since I2[ω](x0, t0) < ∞ for some (x0, t0) ∈ R

N+1, thus supn
´

Dm
χDn |un|q0dxdt < ∞ for

all m ∈ N, 1 < q0 <
N+2
N .

In addition, since I1[ω] ∈ Lqloc(R
N+1), thus ϕn ∗ I1

[
|χDn−1ω|

]
→ I1[ω] in Lqloc(R

N+1) and
{χBn/4(0)×(−n2,n2)|∇un|q} is equi local integrable in R

N+1.

Therefore, we can apply Corollary 4.3.18 to obtain : un → u in L1
loc(R;W

1,1
loc (R

N )) ( we will
take its subsequence if need) and u satisfies (4.2.66). Also, |∇un|q → |∇u|q in L1

loc(R
N+1).

Finally, we can conclude that u is a distribution solution of problem (4.2.65). Note that
the assumption [ω]

MH1,q
′ ≤ ε0 is equivalent to (4.2.67) holding with C = ε0.

Furthermore, if ω = µ+σ⊗δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then un = 0

in Bn(0)× (−n2, an) where supp(ωn) ⊂ R
N × (an,∞) and an → 0− as n → ∞. So, u = 0

in R
N × (−∞, 0). Therefore, clearly u|

RN×[0,∞) is a distribution solution to (4.2.68).
This completes the proof of the Theorem.

4.10 Appendix

Proof of the Remark 4.2.7. For ω ∈ M
+(RN+1), 0 < α < N+2 if Iα[ω](x0, t0) <∞

for some (x0, t0) ∈ R
N+1 then for any 0 < β ≤ α, Iβ [ω] ∈ Lsloc(R

N+1) for any 0 < s <
N+2

N+2−β . Indeed, by Remark 4.4.28 we have Iα[ω] ∈ Lsloc(R
N+1) for any 0 < s < N+2

N+2−β .

Take 0 < β ≤ α and 0 < s < N+2
N+2−β . For R > 0, by Proposition 4.4.4 we have

Iβ [χQ̃2R(0,0)ω] ∈ Lsloc(R
N+1). Thus,

ˆ

Q̃R(0,0)
(Iβ [ω](x, t))

s dxdt

≤ c1

ˆ

Q̃R(0,0)

(
Iβ [χQ̃2R(0,0)ω](x, t)

)s
dxdt+ c1

ˆ

Q̃R(0,0)

(
Iβ [χQ̃2R(0,0)cω](x, t)

)s
dxdt

≤ c1

ˆ

Q̃R(0,0)

(
Iβ [χQ̃2R(0,0)ω](x, t)

)s
dxdt+ c1R

−s(α−β)
ˆ

Q̃R(0,0)
(Iα[ω](x, t))

s dxdt

<∞.

For 0 < β < α < N + 2, we consider

ω(x, t) =
∞∑

k=4

ak

|Q̃k+1(0, 0)\Q̃k(0, 0)|
χQ̃k+1(0,0)\Q̃k(0,0)

(x, t),

where ak = 2n(N+2−θ) if k = 2n and ak = 0 otherwise with θ ∈ (β, α].
It is easy to see that Iα[ω] ≡ ∞ and Iβ [ω] <∞ in R

N+1.
Proof of the Remark 4.2.26. For ω ∈ M

+(RN+1), since I2[ω] ≤ c1I1[I1[ω]] thus :
If I1[ω] ∈ Ls,∞(RN+1) with 1 < s < N + 2, then by Proposition 4.4.4 in next section

||I2[ω]||
L

s(N+1)
N+2−s

,∞
(RN+1)

≤ c1||I1[ω]||Ls,∞(RN+1) <∞

If I1[ω] ∈ LN+2,∞(RN+1), then by Theorem 4.4.3,

I2[ω] ∈ Ls0loc(R
N+1) ∀ s0 > 1
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So, I2[ω] <∞ a.e in R
N+1 if I1[ω] ∈ Ls,∞(RN+1) with 1 < s ≤ N + 2.

For s > N + 2, there exists ω ∈ M
+(RN+1) such that I2[ω] ≡ ∞ in R

N+1 and I1[ω] ∈
Ls(RN+1). Indeed, consider

ω(x, t) =

∞∑

k=1

kN−1

|Q̃k+1(0, 0)\Q̃k(0, 0)|
χQ̃k+1(0,0)\Q̃k(0,0)

(x, t).

We have for (x, t) ∈ R
N+1 and n0 ∈ N with n0 > log2(max{|x|,

√
2|t|})

I2[ω](x, t) ≥ c2

∞∑

n0

ω(Q̃2n(x, t))

2nN
≥ c2

∞∑

n0

ω(Q̃2n−1(0, 0))

2nN

≥ c2

∞∑

n0

∑2n−1−1
k=1 kN−1

2nN
= c2

∞∑

k=1

( ∞∑

n0

χk≤2n−1−1
1

2nN

)
kN−1

≥ c4

∞∑

k=n0

k−1 = ∞.

On the other hand, for s1 > N+2
2

ˆ

RN+1

ωs1dxdt = c5

∞∑

k=1

ks(N−1)

((k + 1)N+2 − kN+2)s1−1
≤ c6

∞∑

k=1

ks1(N−1)

k(s1−1)(N+1)
<∞,

since (s1 − 1)(N + 1)− s1(N − 1) > 1. Thus,

||I1[ω]||Ls(RN+1) ≤ c7||ω||
L

s(N+2)
N+2+s (RN+1)

<∞.

Proof of the Proposition 4.3.16. We will use an idea in [9, 10] to prove 4.3.14. For
S′ ∈W 1,∞(R) with S(0) = 0, S′′ ≥ 0, S′(τ)τ ≥ 0 for all τ ∈ R and ||S′||L∞(R) ≤ 1 we have

−
ˆ

D
ηtS(u)dxdt+

ˆ

D
S′(u)A(x, t,∇u)∇ηdxdt

+

ˆ

D
S′′(u)ηA(x, t,∇u)∇udxdt+

ˆ

D
S′(u)ηL(u)dxdt =

ˆ

D
S′(u)ηdµ.

Thus,

Λ2

ˆ

D
S′′(u)η|∇u|2dxdt

+

ˆ

D
S′(u)ηL(u)dxdt ≤ Λ1

ˆ

D
|∇u||∇η|dxdt+

ˆ

D
ηd|µ|+

ˆ

D
|ηt||u|dxdt.

a. We choose S′ ≡ ε−1Tε for ε > 0 and let ε→ 0 we will obtain
ˆ

D
η|L(u)|dxdt ≤ Λ1

ˆ

D
|∇u||∇η|dxdt+

ˆ

D
ηd|µ|+

ˆ

D
|ηt||u|dxdt. (4.10.1)
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b. for S′(u) = (1− (|u|+ 1)−α)sign(u) for α > 0 then
ˆ

D

|∇u|2
(|u|+ 1)α+1 ηdxdt ≤ c1

(
ˆ

D
|∇u||∇η|dxdt+

ˆ

D
ηd|µ|+

ˆ

D
|ηt||u|dxdt

)
,

Using Holder’s inequality, we have
ˆ

D
|∇u||∇η|dxdt ≤ 1

2c1

ˆ

D

|∇u|2
(|u|+ 1)α+1 ηdxdt+ c2

ˆ

D
(|u|+ 1)q0ηdxdt+ c2

ˆ

D
|∇η1/q1 |q1dxdt.

Hence,
ˆ

D
|∇u||∇η|dxdt+

ˆ

D

|∇u|2
(|u|+ 1)α+1 ηdxdt ≤ c3B. (4.10.2)

c. for S′(u) = −k+δ+|u|
2δ sign(u)χk−δ<|u|<k+δ + sign(u)χ|u|≥k+δ, 0 < δ ≤ k then

1

2δ

ˆ

k−δ<|u|<k+δ
|∇u|2ηdxdt ≤ c4

(
ˆ

D
|∇u||∇η|dxdt+

ˆ

D
ηd|µ|+

ˆ

D
|ηt||u|dxdt

)
.

(4.10.3)

In particular,

1

k

ˆ

D
|∇Tk(u)|2ηdxdt ≤ c5

(
ˆ

D
|∇u||∇η|dxdt+

ˆ

D
ηd|µ|+

ˆ

D
|ηt||u|dxdt

)
∀k > 0.

(4.10.4)

Consequently, we deduce (4.3.14) from (4.10.1)-(4.10.4).
Next, take ϕ ∈ C∞

c (D) and S′(u) = χ|u|≤k−δ +
k+δ−|u|

2δ χk−δ<|u|<k+δ, S(0) = 0 we have

−
ˆ

D
ϕtηS(u)dxdt+

ˆ

D
S′(u)ηA(x, t,∇u)∇ϕdxdt+

ˆ

D
S′(u)ϕA(x, t,∇u)∇ηdxdt

− 1

2δ

ˆ

k−δ<|u|<k+δ
sign(u)ϕηA(x, t,∇u)∇udxdt+

ˆ

D
S′(u)ϕηL(u)dxdt

=

ˆ

D
S′(u)ϕηdµ+

ˆ

D
ϕηtS(u)dxdt.

Combining with (4.10.1), (4.10.2) and (4.10.3), we get

−
ˆ

D
ϕtηS(u)dxdt+

ˆ

D
S′(u)ηA(x, t,∇u)∇ϕdxdt ≤ c5||ϕ||L∞(D)B.

Letting δ → 0, we get

−
ˆ

D
ϕtηTk(u)dxdt+

ˆ

D
ηA(x, t,∇Tk(u))∇ϕdxdt ≤ c5||ϕ||L∞(D)B.

By density, we can take ϕ = Tε(Tk(u)− 〈Tk(w)〉ν),

−
ˆ

D

∂

∂t
(Tε(Tk(u)− 〈Tk(w)〉ν)) ηTk(u)dxdt

+

ˆ

D
ηA(x, t,∇Tk(u))∇Tε(Tk(u)− 〈Tk(w)〉ν)dxdt ≤ c5εB.
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Using integration by part, we have

−
ˆ

D

∂

∂t
(Tε(Tk(u)− 〈Tk(w)〉ν)) ηTk(u)dxdt

=
1

2

ˆ

D
(Tε(Tk(u)− 〈Tk(w)〉ν))2ηtdxdt

+

ˆ

D
Tε(Tk(u)− 〈Tk(w)〉ν)〈Tk(w)〉νηtdxdt

+ ν

ˆ

D
η(Tk(w)− 〈Tk(w)〉ν)Tε(Tk(u)− 〈Tk(w)〉ν)dxdt.

Thus,

−
ˆ

D

∂

∂t
(Tε(Tk(u)− 〈Tk(w)〉ν)) ηTk(u)dxdt

≥ −ε(1 + k)||ηt||L1(D) + ν

ˆ

D
η (Tk(w)− 〈Tk(w)〉ν)Tε(Tk(u)− 〈Tk(w)〉ν)dxdt,

which follows (4.3.15).
Proof of the proposition 4.3.17. Let Sk ∈ W 2,∞(R) such that Sk(z) = z if |z| ≤ k
and Sk(z) = sign(z)2k if |z| > 2k. For m ∈ N, let ηm be the cut off function on Dm with
respect to Dm+1. It is easy to see that from the assumption and Remark 4.3.4, Proposition
4.3.15 we get Um,n = ηmSk(vn), vn = un − hn

sup
n≥m+1

(
|| (Um,n)t ||L2(−m2,m2,H−1(Bm(0)))+L1(Dm) + ||Um,n||L2(−m2,m2,H1

0 (Bm(0)))

+||un||L1(Dm) + ||vn||L1(Dm)

)
≤Mm <∞.

Thus, {Um,n}n≥m+1 is relatively compact in L1(Dm). On the other hand, for any n1, n2 ≥
m+ 1

|{|vn1 − vn2 | > λ} ∩Dm| = |{|ηmvn1 − ηmvn2 | > λ} ∩Dm|

≤ 1

k

(
||vn1 ||L1(Dm) + ||vn2 ||L1(Dm)

)
+

1

λ
||ηmSk(vn1)− ηmSk(vn2)||L1(Dm)

≤ 2Mm

k
+

1

λ
||Um,n1 − Um,n2 ||L1(Dm),

and hn is convergent in L1
loc(R

N+1). So, for any m ∈ N there is a subsequence of {un},
still denoted by {un} such that {un} is a Cauchy sequence (in measure) in Dm. Therefore,
there is a subsequence of {un}, still denoted by {un} such that {un} converges to u a.e in
R
N+1 for some u. Clearly, u ∈ L1

loc(R;W
1,1
loc (R

N )). Now, we prove that ∇un → ∇u a.e in
R
N+1.

From (4.3.15) with D = Dm+2, η = ηm and Tk(w) = Tk(ηm+1u) we have

ν

ˆ

Dm+2

ηm (Tk(ηm+1u)− 〈Tk(ηm+1u)〉ν)Tε(Tk(un)− 〈Tk(ηm+1u)〉ν)dxdt

+

ˆ

Dm+2

ηmA(x, t,∇Tk(un))∇Tε(Tk(un)− 〈Tk(ηm+1u)〉ν)dxdt

≤ c1ε(1 + k)B(n,m) ∀ n ≥ m+ 2, (4.10.5)
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where

B(n,m) = ||(ηm)t(|un|+ 1)||L1(Dm+2)

+

ˆ

Dm+2

(|un|+ 1)q0ηdxdt+

ˆ

Dm+2

|∇η1/q1m |q1dxdt+
ˆ

Dm+2

ηmd|µn|,

with q1 <
q0−1
2q0

. By the assumption, we verify that the right hand side of (4.10.5) is bounded
by c2ε, where c2 does not depend on n.
Since {ηmTk(un)}n≥m+2 is bounded in L2(−(m+ 2)2, (m+ 2)2;H1

0 (Bm+2(0))), thus there
is a subsequence of {un}, still denoted by {un} such that

lim
n→∞

ˆ

|Tk(un)−〈Tk(ηm+1u)〉ν |≤ε

ηmA(x, t,∇Tk(u))∇ (Tk(un)− Tk(u)) dxdt = 0.

Therefore, thanks to un → u a.e in Dm+2 and 〈Tk(ηm+1u)〉ν → Tk(ηm+1u) in L2(−(m +
2)2, (m+ 2)2;H1

0 (Bm+2(0))), we get

lim sup
ν→∞

lim sup
n→∞

ˆ

|Tk(un)−〈Tk(ηm+1u)〉ν |≤ε

η1,mΦn,kdxdt ≤ c2ε ∀ ε ∈ (0, 1),

where Φn,k = (A(x, t, Tk(un))−A(x, t, Tk(u)))∇ (Tk(un)− Tk(u)) . Using Holder inequa-
lity,

ˆ

Dm+2

ηmΦ
1/2
k,ndxdt =

ˆ

Dm+2

ηmΦ
1/2
k,nχ|Tk(un)−〈Tk(ηm+1u)〉ν |≤εdxdt

+

ˆ

Dm+2

ηmΦ
1/2
k,nχ|Tk(un)−〈Tk(ηm+1u)〉ν |>εdxdt

≤ ||η1,m||1/2L1(Dm+2)




ˆ

|Tk(un)−〈Tk(ηm+1u)〉ν |≤ε

ηmΦn,kdxdt




1/2

+ |{|Tk(un)− 〈Tk(ηm+1u)〉ν | > ε} ∩Dm+1|1/2
(
ˆ

Dm+2

η2mΦk,ndxdt

)1/2

= An,ν,ε.

Clearly, lim sup
ε→0

lim sup
ν→∞

lim sup
n→∞

An,ν,ε = 0. It follows

lim sup
n→∞

ˆ

Dm+2

ηmΦ
1/2
k,ndxdt = 0.

Since Φn,k ≥ Λ2|∇Tk(un)−∇Tk(u)|2, thus ∇Tk(un) → ∇Tk(u) in L1(Dm).
Note that

|{|∇un1 −∇un2 | > λ} ∩Dm| ≤
1

k

(
||un1 ||L1(Dm) + ||un2 ||L1(Dm)

)

+
1

λ
|||∇Tk(un1)−∇Tk(un2)||L1(Dm)

≤ 2Mm

k
+

1

λ
|||∇Tk(un1)−∇Tk(un2)|||L1(Dm).
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Thus, we can show that there is a subsequence of {∇un} still denoted by {∇un} converging
∇u a.e in R

N+1.

254



Bibliographie

[1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42, no. 4, 765-778 (1975).

[2] D. R. Adams, L.I. Heberg, Function Spaces and Potential Theory, Grundlehren der
Mathematischen Wisenschaften 31, Springer-Verlag (1999).

[3] D.R. Adams, R.J. Bagby, Translation-dilation invariant estimates for Riesz potentials,
Indiana Univ. Math. J. 23, 1051-1067 (1974).

[4] R.J. Bagby, Lebesgue spaces of parabolic potentials, Ill. J. Math. 15, 610-634 (1971).

[5] P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures,
Applicable Anal. 18, 111-149 (1984).

[6] P. Baras, M. Pierre, Critère d’existence des solutions positives pour des équations semi-
linéaires non monotones, Ann. Inst. H. Poincaré, Anal. Non Lin. 3, 185-212 (1985).

[7] P. Baroni, A. D. Castro, G. Palatucci, Global estimates for nonlinear parabolic equa-
tions To appear in J. Evol. Equations.

[8] D. Blanchard and A. Porretta, Nonlinear parabolic equations with natural growth terms
and measure initial data, Ann.Scuola Norm. Su. Pisa Cl Sci. 30, 583-622 (2001).

[9] M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of
Emden-Fowler type, Arch. Ration. Mech. Anal. 107, 293-324 (1989).

[10] M. F. Bidaut-Véron, Necessary conditions of existence for an elliptic equation with
source term and measure data involving p-Laplacian, in : Proc. 2001 Luminy Conf. on
Quasilinear Elliptic and Parabolic Equations and Systems, Electron. J. Differ. Equ.
Conf. 8, 23-34 (2002).

[11] M. F. Bidaut-Véron, Removable singularities and existence for a quasilinear equa-
tion with absorption or source term and measure data, Adv. Nonlinear Stud. 3, 25-63
(2003).

[12] M. F. Bidaut-Véron, S. Pohozaev, Nonexistence results and estimates for some nonli-
near elliptic problems, J. Anal. Math. 84, 1-49 (2001).

[13] M. F. Bidaut-Véron, Quoc-Hung Nguyen, Stability properties for quasilinear parabolic
equations with measure data. to appear Journal of European Mathematical Society.

[14] M. F. Bidaut-Véron, Quoc-Hung Nguyen, Evolution equations of p-Laplace type with
absorption or source terms and measure data, submitted.

[15] M. F. Bidaut-Véron, Quoc-Hung Nguyen, The porous medium and p−Laplacian evo-
lution equations with absorption and measure data, submitted.

255



BIBLIOGRAPHIE

[16] M. F. Bidaut-Véron, H. Nguyen Quoc, L. Véron, Quasilinear Lane-Emden equations
with absorption and measure data, Journal des Math. Pures Appl. 102, 315-337 (2014).

[17] L. Boccardo, A. Dall’Aglio, T. Gallouet and L. Orsina, Nonlinear parabolic equations
with measure data, J. Funct. Anal. 147, 237-258 (1997).

[18] Brezis H. and Friedman A., Nonlinear parabolic equations involving measures as initial
conditions, J.Math.Pures Appl. 62 , 73-97 (1983).

[19] S.S. Byun, J. Ok, S. Ryu, Global gradient estimates for general nonlinear parabolic
equations in nonsmooth domains. J. Differential Equations, 254 , no. 11, 4290-4326
(2013).

[20] S.S. Byun, L. Wang, Parabolic equations with BMO nonlinearity in Reifenberg do-
mains, J. Reine Angew. Math. 615, 1-24 (2008).

[21] S.S. Byun, L. Wang, Parabolic equations in time dependent Reifenberg domains, Adv.
Math. 212 , no. 2, 797-818. (2007).

[22] S.S. Byun, L. Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech.
Anal. 176 , no. 2, 271-301 (2005).

[23] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic
equations with general measure data, Ann. Sc. Norm. Sup. Pisa, 28 , 741-808 (1999).

[24] A. Dall’Aglio and L. Orsina, Existence results for some nonlinear parabolic equations
with nonregular data, Diff. Int. Equ. 5, 1335-1354 (1992).

[25] E. DiBenedetto, Degenerate parabolic equations. Universitext. Springer-Verlag, New
York, (1993).

[26] J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for
nonlinear equations, Potential Anal. 19, 99-161 (2003).

[27] F. Duzaar, G. Mingione, Gradient estimate via non-linear potentials, the American
Journal of Mathematics, 133, no. 4, 1093-1149 (2011).

[28] D. Feyel, A. de la Pradelle, Topologies fines et compactifications associées à certains
espaces de Dirichlet, Ann. Inst. Fourier Grenoble 27, 121-146 (1977).

[29] A. Friedman : Partial differential equations of parabolic type, Prentice Hall, (1964).

[30] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u+ u1+α

, J. Fac. Sci. Univ. Tokyo Sect. A Math. pp. 16 105-113, (1966).

[31] R. Gariery and W. P. Ziemer, Thermal Capacity and Boundary Regularity , J. Diffe-
rential Equations 45, 374-388 (1982).

[32] D. Gilbarg and N.S. Trudinger, Elliptic partial dierential equations of second order,
2nd Springer-Verlag, Berlin-Heidelberg-New York-Tokyo,(1983).

[33] L. Grafakos,Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper
Saddle River, NJ, (2004), xii+931 pp.

[34] L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier
(Grenoble), 33, 161-187 (1983).

[35] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate ellip-
tic equations. Unabridged republication of the 1993 original. Dover Publications, Inc.,
Mineola, NY, (2006) xii+404 pp.

256



BIBLIOGRAPHIE

[36] P. Honzik, B. Jaye, On the good-λ inequality for nonlinear potentials, Proc. Amer.
Math. Soc. 140, 4167-4180, (2012).

[37] C. Kenig and T. Toro, Free boundary regularity for harmonic measures and the Poisson
kernel, Ann. Math. 150, 367-454 (1999).

[38] C. Kenig and T. Toro, Poisson kernel characterization of Reifenberg at chord arc
domains, Ann. Sci.Ecole Norm. Sup. 36, 323-401 (2003).

[39] T. Kilpelainen, J. Malý, Degenerate elliptic equation with measure data and nonlinear
potentials, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 19, 591-613 (1992).

[40] T. Kilpeläinen, J. Malý, The Wiener test and potential estimates for quasilinear elliptic
equations, Acta Math. 172, 137-161 (1994).

[41] T. Kilpelainen, P. Koskela, Global integrability of the gradients of solutions to partial
differential equations. Nonlinear Anal. 23, no. 7, 899-909 (1994).

[42] T. Kuusi, G. Mingione, Riesz potentials and nonlinear parabolic equations J. archive
for rational mechanics analysis 212 727-780 (2014).

[43] T. Kuusi, G. Mingione, the wolff gradient bound for degenerate parabolic equations J.
Eur. Math. Soc. 16, 835-892 (2014).

[44] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. UralíCeva, Linear and Quasilinear
Equations of Parabolic Type, Transl. Math. Monogr. 23, Amer. Math. Soc., Provi-
dence, (1968).

[45] R. Landes, On the existence of weak solutions for quasilinear parabolic initial boundary-
value problems, Proc. Royal Soc. Edinburg Sect A, 89, 217-237 (1981).

[46] T. Leonori and F. Petitta, Local estimates for parabolic equations with nonlinear gra-
dient terms, Calc. Var. Partial Diff. Equ. 42, 153-187 (2011).

[47] J.L. Lewis, Uniformly fat sets, Trans. Math. Soc. 308, 177-196 (1988).

[48] G.M. Lieberman, Boundary regularity for solutions of degenerate parabolic equations,
Nonlinear Anal. 14, no. 6, 501-524 (1990).

[49] G.M. Lieberman, Boundary and initial regularity for solutions of degenerate parabolic
equations, Nonlinear Anal. 20, no. 5, 551-569 (1993).

[50] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific
press, River Edge, (1996).

[51] J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential
Equations. Math. Surveys Monogr. 51, Amer. Math. Soc., Providence, RI, (1997).

[52] V.G.Maz’ya, E.I. Verbitsky, E.I., Capacitary inequalities for fractional integrals, with
applications to partial differential equations and Sobolev multipliers. Ark. Mat. 33,
81-115 (1995).

[53] T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on
Reifenberg flat domains. Archive for Rational Mechanics and Analysis 203, 189-216
(2012).

[54] T. Mengesha and N. C. Phuc, Weighted and regularity estimates for nonlinear equa-
tions on Reifenberg flat domains. Journal of Differential Equations 250, 1485-2507
(2011).

257



BIBLIOGRAPHIE

[55] Mingione, Giuseppe Gradient estimates below the duality exponent. Math. Ann. 346,
no. 3, 571âĂŞ627 (2010).

[56] G. Mingione : Nonlinear measure data problems Milan journal of mathematics 79,
429-496 (2011).

[57] P. Mikkonen, On the Wolff potential and quasilinear elliptic equations involving mea-
sures, Ann. Acad. Sci. Fenn., Ser AI, Math. Dissert. 104, 1-71 (1996).

[58] J. Moser, A Harnack inequality for parabolic differential equations. Comm. Pure Appl.
Math. 17, 101-134 (1964). Corrections in : Comm. Pure Appl. Math. 20, 231-236
(1967).

[59] B. Muckenhoupt and R. Wheeden, Weight norm inequality for fractional integrals
Trans. A.M.S, 192, 279-294 (1974).

[60] J. Naumann and J. Wolf, Interior integral estimates on weak solutions of nonlinear
parabolic systems. Inst. fur Math., Humboldt Universitet, Bonn (1994).

[61] Phuoc-Tai Nguyen, Parabolic equations with exponential nonlinearity and measure data
arXiv :1312.2509.

[62] Quoc-Hung Nguyen and L. Véron, Quasilinear and Hessian type equations with expo-
nential reaction and measure data, Archive for Rational Mechanics and Analysis, 214,
235-267 (2014).

[63] Quoc-Hung Nguyen and L. Véron, Wiener criteria for existence of large solutions of
nonlinear parabolic equations with absorption in a non-cylindrical domain submitted.

[64] Quoc-Hung Nguyen, Mild Solutions of the Navier-Stokes Equations, works in progress.

[65] F. Petitta, Renormalized solutions of nonlinear parabolic equations with general mea-
sure data, Ann. Math. Pura Appl. 187, 563-604 (2008).

[66] F. Petitta, A. Ponce and A. Porretta, Diffuse measures and nonlinear parabolic equa-
tions, J. Evol. Equ. 11, 861-905 (2011).

[67] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence
of truncations, Ann. Mat. Pura Apll. 177, 143-172 (1999).

[68] N. C. Phuc, I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,
Ann. Math. 168, 859-914 (2008).

[69] N. C. Phuc, I. E. Verbitsky, Singular quasilinear and Hessian equation and inequalities,
J. Functional Analysis,256, 1875-1906 (2009).

[70] N.C.Phuc, Global integral gradient bounds for quasilinear equations below or near the
natural exponent. To appear in Arkiv for Matematik.

[71] N. C. Phuc, Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains,
with applications to quasilinear Riccati type equations. To appear in Advances in
Mathematics.

[72] N. C. Phuc, Morrey global bounds and quasilinear Riccati type equations below the
natural exponent. To appear in Journal des Mathématiques Pures et Appliquées.

[73] P. Quittner, P. Souplet, Superlinear parabolic problems. Blow-up, global existence and
steady states, Birkhauser Advanced Texts, (2007), 584 p.+xi. ISBN : 978-3-7643-8441-8

258



BIBLIOGRAPHIE

[74] E. Reinfenberg, Solutions of the Plateau Problem for m-dimensional surfaces of varying
topological type, Acta Math, 104, 1-92 (1960).

[75] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailiov, Blow-up in
Quasilinear Parabolic Equations, Walter de Gruyter, Berlin and New York, (1995).

[76] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton
Mathematical Series, 30, Princeton University Press, Princeton, (1970).

[77] E.M. Stein, Harmonic analysis : real-variable methods, orthogonality, and oscillatory
integral 43, Princeton University Press, Princeton, (1993).

[78] T. Toro, Doubling and flatness : geometry of measures, Notices Amer. Math. Soc. 44,
1087-1094 (1997).

[79] B. O. Tureson, Nonlinear Potential Theory and weighted Sobolev Spaces, Lecture Notes
in Mathematics, 1736, Springer-Verlag (2000).

[80] I.E. Verbitsky, Nonlinear potential and trace inequalities Oper. Theory, Adv. Appl.
110, 323-343 (1999).

[81] I.E. Verbitsky and Richard L. Wheeden,Weighted norm inequalities for integral ope-
rators. Transactions of the A.M.S 350, 8, 3371-3391, (1988).

[82] L. Véron, Elliptic equations involving measures, in Stationary Partial Differential
Equations, vol. I, Handbook of Equations, Elsevier B.V., pp. 593-712 (2004).

[83] W.P. Ziemer, Behavior at the Boundary of Solutions of Quasilinear Parabolic Equa-
tions, J. D.E, 35, 291-305 (1980).

259



BIBLIOGRAPHIE

260



Chapitre 5

Pointwise estimates and existence of

solutions of porous medium and

p-Laplace evolution equations with

absorption and measure data

Abstract

Let Ω be a bounded domain of RN (N ≥ 2). We obtain a necessary and a sufficient condition,
expressed in terms of capacities, for existence of a solution to the porous medium equation
with absorption





ut −∆(|u|m−1u) + |u|q−1u = µ in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(0) = σ,

where σ and µ are bounded Radon measures, q > max(m, 1), m > N−2
N . We also obtain a

sufficient condition for existence of a solution to the p-Laplace evolution equation




ut −∆pu+ |u|q−1u = µ in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(0) = σ.

where q > p− 1 and p > 2.
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5.1 Introduction and main results

Let Ω be a bounded domain of RN , N ≥ 2 and T > 0, and ΩT = Ω × (0, T ). In this
paper we study the existence of solutions to the following two types of evolution problems :
the porous medium problem with absorption





ut −∆(|u|m−1u) + |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ,

(5.1.1)

where m > N−2
N and q > max(1,m), and the p-Laplace evolution problem with absorption





ut −∆pu+ |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ,

(5.1.2)

where q > p − 1 > 1, and µ and σ are bounded Radon measures respectively on ΩT and
Ω. In the sequel, for any bounded domain O of Rl(l ≥ 1), we denote by Mb(O) the set of
bounded Radon measures in O, and by M

+
b (O) its positive cone. For any ν ∈ Mb(O), we

denote by ν+ and ν− respectively its positive and negative part.

When m = 1, p = 2 and q > 1 the problem has been studied by Brezis and Friedman
[13] with µ = 0. It is shown that in the subcritical case q < 1 + 2/N , the problem can be
solved for any σ ∈ Mb(Ω), and it has no solution when q ≥ 1+2/N and σ is a Dirac mass.
The general case has been solved by Baras and Pierre [5] and their results are expressed in
terms of capacities. For s > 1, α > 0, the capacity CapGα,s of a Borel set E ⊂ R

N , defined
by

CapGα,s(E) = inf{||g||sLs(RN ) : g ∈ Ls+(R
N ),Gα ∗ g ≥ 1 on E},

where Gα is the Bessel kernel of order α and the capacity Cap2,1,s of a compact set
K ⊂ R

N+1 is defined by

Cap2,1,s(K) = inf
{
||ϕ||s

W 2,1
s (RN+1)

: ϕ ∈ S(RN+1), ϕ ≥ 1 in a neighborhood of K
}
,

where

||ϕ||
W 2,1

s (RN+1)
= ||ϕ||Ls(RN+1)+||ϕt||Ls(RN+1)+|| |∇ϕ| ||Ls(RN+1)+

∑

i,j=1,2,...,N

||ϕxixj ||Ls(RN+1).

The capacity Cap2,1,s is extended to Borel sets by the usual method. Note the relation
between the two capacities :

C−1CapG
2− 2

s
,s(E) ≤ Cap2,1,s(E × {0}) ≤ CCapG

2− 2
s
,s(E)

for any Borel set E ⊂ R
N , see [35, Corollary 4.21]. In particular, for any ω ∈ Mb(R

N )
and a ∈ R, the measure ω ⊗ δ{t=a} in R

N+1 is absolutely continuous with respect to the
capacity Cap2,1,s ( in R

N+1) if and only if ω is absolutely continuous with respect to the
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5.1. INTRODUCTION AND MAIN RESULTS

capacity CapG
2− 2

s
,s (in R

N ).

From [5], the problem 



ut −∆u+ |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ,

has a solution if and only if the measures µ and σ are absolutely continuous with respect
to the capacities Cap2,1,q′ in ΩT and CapG 2

q
,q′ in Ω respectively, where q′ = q

q−1 .

In Section 5.2 we study problem (5.1.1).

For m > 1, Chasseigne [15] has extended the results of [13] for µ = 0 in the new
subcritical range m < q < m+ 2

N . The supercritical case q ≥ m+ 2
N with µ = 0 and σ is

positive is studied in [14]. He has essentially proved that if problem (5.1.1) has a solution,
then σ⊗ δ{t=0} is absolutely continuous with respect to the capacity Cap2,1, q

q−m
,q′ , defined

for any compact set K ⊂ R
N+1 by

Cap2,1, q
q−m

,q′(K) = inf

{
||ϕ||

q
q−m

W 2,1
q

q−m,q′ (R
N+1)

: ϕ ∈ S(RN ), ϕ ≥ 1 in a neighborhood of E

}
,

where

||ϕ||
W 2,1

q
q−m,q′ (R

N+1)
= ||ϕ||

L
q

q−m (RN+1)
+ ||ϕt||Lq′ (RN+1) + || |∇ϕ| ||

L
q

q−m (RN+1)

+
∑

i,j=1,2,...,N

||ϕxixj ||L q
q−m (RN+1)

.

In this Section, we first give necessary conditions on the measures µ and σ for existence,
which cover the results mentioned above.

Theorem 5.1.1 Let q > max(1,m) and µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω). If problem (5.1.1)
has a very weak solution then µ and σ ⊗ δ{t=0} are absolutely continuous with respect to
the capacity Cap2,1, q

q−m
, q
q−1

.

Remark 5.1.2 It is easy to see that the capacity Cap2,1, q
q−m

, q
q−1

is absolutely continuous
with respect to the capacity Cap2,1, q

q−max{m,1}
. Therefore µ and σ⊗δ{t=0} are absolutely conti-

nuous with respect to the capacities Cap2,1, q
q−max{m,1}

.In particular σ is absolutely continuous

with respect to the capacity CapG 2max{m,1}
q

, q
q−max{m,1}

.

The main result of this Section is the following sufficient condition for existence,
where we use the notion of R-truncated Riesz parabolic potential I2 on R

N+1 of a measure
µ ∈ M

+
b (ΩT ) , defined by

I
R
2 [µ](x, t) =

ˆ R

0

µ(Q̃ρ(x, t))

ρN
dρ

ρ
for any (x, t) ∈ R

N+1,

with R ∈ (0,∞], and Q̃ρ(x, t) = Bρ(x)× (t− ρ2, t+ ρ2).

263



5.1. INTRODUCTION AND MAIN RESULTS

Theorem 5.1.3 Let m > N−2
N , q > max(1,m), µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω).

i. If m > 1 and µ and σ are absolutely continuous with respect to the capacities Cap2,1,q′ in
ΩT and CapG 2

q
,q′ in Ω, then there exists a very weak solution u of (5.1.1), satisfying

for a.e in ΩT

|u| ≤ C

(( |σ|(Ω) + |µ|(ΩT )
dN

)m1

+ |σ|(Ω) + |µ|(ΩT ) + 1 + I
2d
2 [|σ| ⊗ δ{t=0} + |µ|]

)
,

(5.1.3)
where C = C(N,m) > 0 and

m1 =
(N + 2)(2mN + 1)

m(mN + 2)(1 + 2N)
, d = diam(Ω) + T 1/2.

ii. If N−2
N < m ≤ 1, and µ and σ are absolutely continuous with respect to the capacities

Cap2,1, 2q
2(q−1)+N(1−m)

in ΩT and Cap
G 2−N(1−m)

q

, 2q
2(q−1)+N(1−m)

in Ω, there exists a very

weak solution u of (5.1.1), such that for a.e in ΩT

|u| ≤ C

(( |σ|(Ω) + |µ|(ΩT )
dN

)m2

+ 1 +
(
I
2d
2 [|σ| ⊗ δ{t=0} + |µ|]

) 2
2−N(1−m)

)
, (5.1.4)

where C = C(N,m) > 0 and

m2 =
2N(N + 2)(m+ 1)

(2 +Nm)(2−N(1−m))(2 +N(1 +m))
.

.

Remark 5.1.4 These estimates are not homogeneous in u. In particular if µ ≡ 0, u satis-
fies the decay estimates, for a.e. (x, t) ∈ ΩT ,

i. if m > 1,

|u(x, t)| ≤ C

(( |σ|(Ω)
dN

)m1

+ |σ|(Ω) + 1 +
|σ|(Ω)
NtN/2

)
,

ii. if m < 1,

|u(x, t)| ≤ C

(( |σ|(Ω)
dN

)m2

+ 1 +

( |σ|(Ω)
NtN/2

) 2
2−N(m−1)

)
.

We also give other types of sufficient conditions for measures which are good in time,
that means such that

σ ∈ L1(Ω) and |µ| ≤ f + ω ⊗ F, where f ∈ L1
+(ΩT ), F ∈ L1

+((0, T )), (5.1.5)

see Theorem 5.2.10. The proof is based on estimates for the stationary problem in terms
of elliptic Riesz potential.

In Section 5.3, we consider problem (5.1.2). Let us recall some former results about it.
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For q > p − 1 > 0, Pettitta, Ponce and Porretta [37] have proved that it admits a
(unique renormalized) solution provided σ ∈ L1(Ω) and µ ∈ Mb(ΩT ) is a diffuse measure,
i.e. absolutely continuous with respect to Cp-capacity in ΩT , defined on a compact set
K ⊂ ΩT by

Cp(K,ΩT ) = inf {||ϕ||W : ϕ ∈ C∞
c (ΩT ), ϕ ≥ 1 on K} , (5.1.6)

where

W = {z : z ∈ Lp(0, T,W 1,p
0 (Ω) ∩ L2(Ω)), zt ∈ Lp

′
(0, T,W−1,p′(Ω) + L2(Ω))}.

embedded with the norm

||z||W = ||z||
Lp((0,T );W 1,p

0 (Ω)∩L2(Ω))
+ ||zt||Lp′ ((0,T );W−1,p′ (Ω)+L2(Ω)).

In the recent work [7, 8], we have proved a stability result for the p-Laplace parabolic
equation, see Theorem 5.3.5, for p > 2N+1

N+1 . As a first consequence, in the new subcritical
range

q < p− 1 +
p

N
,

problem (5.1.2) admits a renormalized solution for any measures µ ∈ Mb(ΩT ) and σ ∈
L1(Ω). Moreover, we have obtained sufficient conditions for existence, for measures that
have a good behavior in time, of the form (5.1.5). It is shown that (5.1.2) has a renormalized
solution if ω ∈ M

+
b (Ω) is absolutely continuous with respect to CapGp,

q
q−p+1

. The proof is

based on estimates of [9] for the stationary problem which involve Wolff potentials.

Here we give new sufficient conditions when p > 2. The next Theorem is our second
main result :

Theorem 5.1.5 Let q > p − 1 > 1 and µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω). If µ and σ are
absolutely continuous with respect to the capacities Cap2,1,q′ in ΩT and CapG 2

q
,q′ in Ω, then

there exists a distribution solution of problem (5.1.2) which satisfies the pointwise estimate

|u| ≤ C

(
1 +D +

( |σ|(Ω) + |µ|(ΩT )
DN

)m3

+ I
2D
2

[
|σ| ⊗ δ{t=0} + |µ|

])
(5.1.7)

for a.e in ΩT with C = C(N, p) and

m3 =
(N + p)(λ+ 1)(p− 1)

((p− 1)N + p)(1 + λ(p− 1))
, λ = min{1/(p− 1), 1/N}, D = diam(Ω) + T 1/p.

(5.1.8)
Moreover, if σ ∈ L1(Ω), u is a renormalized solution.

5.2 Porous medium equation

For k > 0 and s ∈ R we set Tk(s) = max{min{s, k},−k}. The solutions of (5.1.1) are
considered in a weak sense :
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Definition 5.2.1 Let µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω) and g ∈ C(R).

i. A function u is a weak solution of problem




ut −∆(|u|m−1u) + g(u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω.

(5.2.1)

if u ∈ C([0, T ] ;L2(Ω)), |u|m ∈ L2((0, T );H1
0 (Ω)) and g(u) ∈ L1(ΩT ), and for any ϕ ∈

C2,1
c (Ω× [0, T )),

−
ˆ

ΩT

uϕtdxdt+

ˆ

ΩT

∇(|u|m−1 u).∇ϕdxdt+
ˆ

ΩT

g(u)ϕdxdt =

ˆ

ΩT

ϕdµ+

ˆ

Ω
ϕ(0)dσ.

ii. A function u is a very weak solution of (5.2.1) if u ∈ Lmax{m,1}(ΩT ) and g(u) ∈
L1(ΩT ), and for any ϕ ∈ C2,1

c (Ω× [0, T )),

−
ˆ

ΩT

uϕtdxdt−
ˆ

ΩT

|u|m−1u∆ϕdxdt+

ˆ

ΩT

g(u)ϕdxdt =

ˆ

ΩT

ϕdµ+

ˆ

Ω
ϕ(0)dσ.

First we give a priori estimates for the problem without perturbation term :

Proposition 5.2.2 Let u ∈ L∞(ΩT ) with |u|m ∈ L2((0, T );H1
0 (Ω)) be a weak solution to

problem 



ut −∆(|u|m−1u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(5.2.2)

with σ ∈ Cb(Ω) and µ ∈ Cb(ΩT ). Then,

||u||L∞((0,T );L1(Ω)) ≤ |σ|(Ω) + |µ|(ΩT ), (5.2.3)

||u||Lm+2/N,∞(ΩT ) ≤ C1(|σ|(Ω) + |µ|(ΩT ))
N+2

mN+2 , (5.2.4)

|||∇(|u|m−1u)|||
L

mN+2
mN+1

,∞
(ΩT )

≤ C2(|σ|(Ω) + |µ|(ΩT ))
m(N+1)+1

mN+2 , (5.2.5)

where C1 = C1(N,m), C2 = C2(N,m).

Proof of Proposition 5.2.2. For any τ ∈ (0, T ), and k > 0 we have
ˆ

Ωτ

(Hk(u))tdxdt+

ˆ

Ωτ

|∇Tk(|u|m−1u)|2dxdt =
ˆ

Ωτ

Tk(|u|m−1u)dµ(x, t),

where H(a) =
´ a
0 Tk(|y|m−1y)dy. This leads to
ˆ

ΩT

|∇Tk(|u|m−1u)|2dxdt ≤ k(|σ|(Ω) + |µ|(ΩT )) and (5.2.6)
ˆ

Ω
(Hk(u))(τ)dx ≤ k(|σ|(Ω) + |µ|(ΩT )), ∀τ ∈ (0, T ).
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Since Hk(a) ≥ k(|a| − k
1
m ) for any a and k > 0, we find

ˆ

Ω
(|u|(τ)− k

1
m )dx ≤ |σ|(Ω) + |µ|(ΩT ), ∀τ ∈ (0, T ).

Letting k → 0, we get (5.2.3).
Next we prove (5.2.4). By the Gagliardo-Nirenberg embedding theorem, there holds
ˆ

ΩT

|Tk(|u|m−1u)|
2(N+1)

N dxdt ≤ C1||Tk(|u|m−1u)||2/N
L∞((0,T );L1(Ω))

ˆ

ΩT

|∇Tk(|u|m−1u)|2dxdt

≤ C1k
2(m−1)

mN ||u||2/N
L∞((0,T );L1(Ω))

ˆ

ΩT

|∇Tk(|u|m−1u)|2dxdt.

Thus, from (5.2.6) and (5.2.3) we get

k
2(N+1)

N |{|u|m > k}| ≤
ˆ

ΩT

|Tk(|u|m−1u)|
2(N+1)

N dxdt ≤ c1k
2(m−1)

mN
+1(|σ|(Ω) + |µ|(ΩT ))

N+2
N ,

which implies (5.2.4). Finally, we prove (5.2.5). Thanks to (5.2.6) and (5.2.4) we have for
k, k0 > 0

|{|∇(|u|m−1u)| > k}| ≤ 1

k2

ˆ k2

0
|{|∇(|u|m−1u)| > ℓ}|dℓ

≤ |{|u|m > k0}|+
1

k2

ˆ

ΩT

|∇Tk0(|u|m−1u)|2dxdt

≤ C1k
− 2

mN
−1

0 (|σ|(Ω) + |µ|(ΩT ))
N+2
N + k0k

−2(|σ|(Ω) + |µ|(ΩT )).

Choosing k0 = k
Nm

Nm+1 (|σ|(Ω) + |µ|(ΩT ))
m

Nm+1 , we get (5.2.5).

Next we show the necessary conditions given at Theorem 5.1.1.
Proof of Theorem 5.1.1. As in [5, Proof of Proposition 3.1], it is enough to claim
that for any compact K ⊂ Ω × [0, T ) such that µ−(K) = 0, (σ− ⊗ δ{t=0})(K) = 0 and
Cap2,1, q

q−m
,q′(K) = 0 then µ+(K) = 0 and (σ+ ⊗ δ{t=0})(K) = 0. Let ε > 0 and choose

an open set O such that (|µ| + |σ| ⊗ δ{t=0})(O\K) < ε and K ⊂ O ⊂ Ω × (−T, T ). One
can find a sequence {ϕn} ⊂ C∞

c (O) which satisfies 0 ≤ ϕn ≤ 1, ϕn|K = 1 and ϕn → 0 in
W 2,1

q
q−m

,q′(R
N+1) and almost everywhere in O (see [5, Proposition 2.2]). We get

ˆ

ΩT

ϕndµ+

ˆ

Ω
ϕn(0)dσ = −

ˆ

ΩT

u(ϕn)tdxdt−
ˆ

ΩT

|u|m−1u∆ϕndxdt+

ˆ

ΩT

|u|q−1uϕndxdt

≤ (||u||Lq(ΩT ) + ||u||mLq(ΩT ))||ϕn||W 2,1
q

q−m,
q

q−1
(RN+1)

+

ˆ

ΩT

|u|qϕndxdt.

Note that
ˆ

ΩT

ϕndµ+

ˆ

Ω
ϕn(0)dσ ≥ µ+(K) + (σ+ ⊗ δ{t=0})(K)− (|µ|+ |σ| ⊗ δ{t=0})(O\K)

≥ µ+(K) + (σ+ ⊗ δ{t=0})(K)− ε.
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This implies

µ+(K)+(σ+⊗δ{t=0})(K) ≤ (||u||Lq(ΩT )+||u||mLq(ΩT ))||ϕn||W 2,1
q

q−m,
q

q−1
(RN+1)

+

ˆ

ΩT

|u|qϕndxdt+ε.

Letting the limit we get µ+(K) + (σ+ ⊗ δ{t=0})(K) ≤ ε. Therefore, µ+(K) = (σ+ ⊗
δ{t=0})(K) = 0.

Next we look for sufficient conditions of existence . The crucial result used to establish
Theorem 5.1.3 is the following a priori estimates, due to of Liskevich and Skrypnik [32] for
m ≥ 1 and Bogelein, Duzaar and Gianazza [12] for m ≤ 1.

Theorem 5.2.3 Let m > N−2
N and µ ∈ (Cb(ΩT ))

+. Let u ∈ L∞
+ (ΩT ) with um ∈ L2(0, T,H1

loc(Ω))
be a weak solution to equation

ut −∆(um) = µ in ΩT .

Then there exists C = C(N,m) such that, for almost all (y, τ) ∈ ΩT and any cylinder
Q̃r(y, τ) = Br(y)× (τ − r2, τ + r2) ⊂⊂ ΩT , there holds

i. if m > 1

u(y, τ) ≤ C



(

1

rN+2

ˆ

Q̃r(y,τ)
|u|m+ 1

2N dxdt

) 2N
1+2N

+ ||u||L∞((τ−r2,τ+r2);L1(Br(y))) + 1




+ CI2r2 [µ](y, τ),

ii. if m ≤ 1,

u(y, τ) ≤ C



(

1

rN+2

ˆ

Q̃r(y,s)
|u|

2(1+mN)
N(1+m) dxdt

) 2N(m+1)
(2−N(1−m))(2+N(1+m))

+ 1




+ C
(
I
2r
2 [µ](y, τ)

) 2
2−N(1−m)

As a consequence we get a new priori estimate for the porous medium equation :

Corollary 5.2.4 Let m > N−2
N and µ ∈ Cb(ΩT ). Let u ∈ L∞(ΩT ) with |u|m ∈ L2(0, T,H1

0 (Ω))
be the weak solution of problem





ut −∆(|u|m−1u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω.

Then there exists C = C(N,m) such that, for a.e. (y, τ) ∈ ΩT ,

i. if m > 1,

|u(y, τ)| ≤ C

(( |µ|(ΩT )
dN

)m1

+ |µ|(ΩT ) + 1 + I
2d
2 [|µ|](y, τ)

)
, (5.2.7)

268



5.2. POROUS MEDIUM EQUATION

ii. if m ≤ 1,

|u(y, τ)| ≤ C

(( |µ|(ΩT )
dN

)m2

+ 1 +
(
I
2d1
2 [|µ|](y, τ)

) 2
2−N(1−m)

)
, (5.2.8)

where m1,m2 and d are defined in Theorem 5.1.3.

Proof. Let x0 ∈ Ω, and Q = B2d(x0) × (−(2d)2, (2d)2). Consider the function U ∈
(Cb(Q))+, with Um ∈ Lp((−(2d)2, (2d)2);H1

0 (B2d(x0))) such that U is weak solution of




Ut −∆(Um) = χΩT
|µ| in B2d(x0)× (−(2d)2, (2d)2),

U = 0 on ∂B2d(x0)× (−(2d)2, (2d)2),
U(−(2d)2) = 0 in B2d(x0).

(5.2.9)

From Theorem 5.2.3, we get, for a.e (y, τ) ∈ ΩT ,

U(y, τ) ≤ c1



(

1

dN+2

ˆ

Q̃d(y,τ)
|U |m+ 1

2N dxdt

) 2N
1+2N

+ ||U ||L∞((τ−d2,τ+d2);L1(Bd(y))) + 1




+ c1I
2d
2 [|µ|](y, τ),

if m > 1 and

U(y, τ) ≤ c1



(

1

dN+2

ˆ

Q̃d(y,s)
|u|

2(1+mN)
N(1+m) dxdt

) 2N(m+1)
(2−N(1−m))(2+N(1+m))

+ 1




+ c1
(
I
2r
2 [µ](y, τ)

) 2
2−N(1−m) ,

if m ≤ 1. By Proposition 5.2.2, we have

||U ||L∞((τ−d2,τ+d2);L1(Bd(y))) ≤ |µ|(ΩT ),
|{|U | > ℓ}| ≤ c2(|µ|(ΩT ))

2+N
N ℓ−

2
N
−m ∀ℓ > 0.

Thus, for any ℓ0 > 0,

ˆ

Q
Um+ 1

2N dxdt = (m+
1

2N
)

ˆ ∞

0
ℓm+ 1

2N
−1|{U > ℓ}|dℓ

= (m+
1

2N
)

ˆ ℓ0

0
ℓm+ 1

2N
−1|{U > ℓ}|dℓ+ (m+

1

2N
)

ˆ ∞

ℓ0

ℓm+ 1
2N

−1|{U > ℓ}|dℓ

≤ c3d
N+2ℓ

m+ 1
2N

0 + c4ℓ
1

2N
− 2

N
0 (|µ|(ΩT ))

2+N
N .

Choosing ℓ0 =
(
|µ|(ΩT )
dN

) N+2
mN+2

, we get

ˆ

Q
U (λ+1)(p−1)dxdt ≤ c5d

N+2

( |µ|(ΩT )
dN

) (N+2)(2mN+1)
2mN(mN+2)

.
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Thus, for a.e (y, τ) ∈ ΩT ,

U(y, τ) ≤ c6

(( |µ|(ΩT )
dN

)m1

+ |µ|(ΩT ) + 1 + I
2d
2 [|µ|](y, τ)

)
,

if m > 1. Similarly, we also obtain for a.e (y, τ) ∈ ΩT ,

U(y, τ) ≤ c7

(( |µ|(ΩT )
dN

)m2

+ 1 +
(
I
2d1
2 [|µ|](y, τ)

) 2
2−N(1−m)

)
,

if m ≤ 1. By the comparison principle we get |u| ≤ U in ΩT , and (5.2.7)-(5.2.8) follow.

Lemma 5.2.5 Let g ∈ Cb(R) be nondecreasing with g(0) = 0, and µ ∈ Cb(ΩT ). There
exists a weak solution u ∈ L∞(ΩT ) with |u|m ∈ L2(0, T,H1

0 (Ω)) of problem




ut −∆(|u|m−1u) + g(u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω.

(5.2.10)

Moreover, the comparison principle holds for these solutions : if u1, u2 are weak solutions
of (5.2.10) when (µ, g) is replaced by (µ1, g1) and (µ2, g2), where µ1, µ2 ∈ Cb(ΩT ) with
µ1 ≥ µ2 and g1, g2 have the same properties as g with g1 ≤ g2 in R then u1 ≥ u2 in ΩT .

Proof of Lemma 5.2.5. Set an(s) = m|s|m−1 if 1/n ≤ |s| ≤ n and an(s) = mnm−1 if
|s| ≥ n, an(s) = m(1/n)m−1 if |s| ≤ 1/n. Also An(τ) =

´ τ
0 an(s)ds. Then one can find un

being a weak solution to the following equation




(un)t − div(an(un)∇un) + g(un) = µ in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = 0 in Ω.

(5.2.11)

It is easy to see that |un(x, t)| ≤ t||µ||L∞(ΩT ) for all (x, t) ∈ ΩT . Thus, choosing An(un) as
a test function, we obtain

ˆ

ΩT

|∇An(un)|2dxdt ≤ C1(T, ||µ||L∞(ΩT )). (5.2.12)

Now set Φn(τ) =
´ τ
0 |An(s)|ds. Choosing |An(un)|ϕ as a test function in (5.2.11), where

ϕ ∈ C2,1
c (ΩT ), we get the relation in D′(ΩT ) :

(Φn(un))t − div(|An(un)|∇An(un)) +∇An(un).∇|An(un)|+ |An(un)|g(un) = |An(un)|µ.

Hence,

||(Φn(un))t||L1(ΩT )+L2((0,T );H−1(Ω)) ≤ ||An(un)∇An(un)||L2(ΩT ) + ||∇An(un)|||2L2(ΩT )

+ ||An(un)g(un)||L1(ΩT ) + ||An(un)µ||L1(ΩT ).

Combining this with (5.2.12) and the estimate |An(un)| ≤ C2(T, ||µ||L∞(Ω)), we deduce
that

sup
n

||(Φn(un))t||L1(ΩT )+L2(0,T,H−1(Ω)) <∞.
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On the other hand, since |An(un)| ≤ |un|an(un) ≤ T ||µ||L∞(Ω)an(un), there holds
ˆ

ΩT

|∇Φn(un)|2dxdt =
ˆ

ΩT

|An(un)|2|∇un|2dxdt ≤ T 2||µ||2L∞(Ω)

ˆ

ΩT

|an(un)|2|∇un|2dxdt

≤ T 2||µ||2L∞(Ω)

ˆ

ΩT

|∇An(un)|2dxdt ≤ C3(T, ||µ||L∞(Ω)).

Therefore, Φn(un) is relatively compact in L1(ΩT ). Note that

Φn(s) =

{
m
2

(
1
n

)m|s|2sign(s) if |s| ≤ 1
n

(m− 1)
(
1
n

)m (|s| − 1
n

)
sign(s) + 1

m+1

(
|s|m+1 −

(
1
n

)m+1
)

sign(s) if 1
n ≤ |s| ≤ n.

So, for every n1, n2 ≥ n and |s1|, |s2| ≤ T ||µ||L∞(Ω),

1

m+ 1
||s1|ms1 − |s2|ms2| ≤ C4(m,T ||µ||L∞(Ω))

(
1

n

)m
+ |Φn1(s1)− Φn2(s2)|.

Hence, for any ε > 0,
∣∣∣∣
{

1

m+ 1
||un1 |mun1 − |un2 |mun2 | > 2ε

}∣∣∣∣ ≤ | {|Φn1(un1)− Φn2(un2)| > ε} |,

for all n1, n2 ≥
(
C4(m,T ||µ||L∞(Ω))/ε

)1/m. Thus, up to a subsequence {un} converges a.e
in ΩT to a function u. From (5.2.11) we can write

−
ˆ

ΩT

unϕtdxdt−
ˆ

ΩT

An(un)∆ϕdxdt+

ˆ

ΩT

g(un)ϕdxdt =

ˆ

ΩT

ϕdµ,

for any ϕ ∈ C2,1
c (ΩT ). Thanks to the dominated convergence Theorem we deduce that

−
ˆ

ΩT

uϕtdxdt−
ˆ

ΩT

|u|m−1u∆ϕdxdt+

ˆ

ΩT

g(u)ϕdxdt =

ˆ

ΩT

ϕdµ.

By Fatou’s lemma and (5.2.12) we also get |u|m ∈ L2((0, T );H1
0 (Ω)).

Furthermore, by the classic maximum principle, see [30, Theorem 9.7], if {ũn} is a sequence
of solutions to equations (5.2.11) where (g, µ) is replaced by (h, ν) such that ν ∈ Cb(ΩT )
with ν ≥ µ and h has the same properties as g satisfying h ≤ g in R, then, un ≤ ũn. As
n→ ∞, we get u ≤ ũ. This achieves the proof.

Lemma 5.2.6 Let m > N−2
N and g : R → R be a nondecreasing function, such that

g ∈ Cb(R), g(0) = 0, and let µ ∈ Mb(ΩT ). There exists a very weak solution u of equation
(5.2.10) which satisfies (5.2.7)-(5.2.8) and

ˆ

ΩT

|g(u)|dxdt ≤ |µ|(ΩT ), ||u||Lm+2/N,∞(ΩT ) ≤ C(|µ|(ΩT ))
N+2

mN+2 . (5.2.13)

where C = C(m,N) > 0. Moreover, the comparison principle holds for these solutions : if
u1, u2 are very weak solutions of (5.2.10) when (µ, g) is replaced by (µ1, g1) and (µ2, g2),
where µ1, µ2 ∈ Mb(ΩT ) with µ1 ≥ µ2 and g1, g2 have the same properties as g with g1 ≤ g2
in R then u1 ≥ u2 in ΩT .

271



5.2. POROUS MEDIUM EQUATION

Proof. Let {µn} be a sequence in C∞
c (ΩT ) converging to µ in Mb(ΩT ), such that

|µn| ≤ ϕn ∗|µ| and |µn|(ΩT ) ≤ |µ|(ΩT ) for any n ∈ N where {ϕn} is a sequence of mollifiers
in R

N+1. By Lemma 5.2.5 and corollary 5.2.4 there exists a very weak solution un of
problem 




(un)t −∆(|un|m−1un) + g(un) = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = 0 in Ω,

which satisfies for a.e (y, τ) ∈ ΩT ,

|un(y, τ)| ≤ c1

(( |µ|(ΩT )
dN

)m1

+ |µ|(ΩT ) + 1 + ϕn ∗ I2d2 [|µ|](y, τ)
)

if m > 1,

|un(y, τ)| ≤ c1

(( |µ|(ΩT )
dN

)m2

+ 1 +
(
ϕn ∗ I2d12 [|µ|](y, τ)

) 2
2−N(1−m)

)
if m ≤ 1,

and
ˆ

ΩT

|g(un)|dxdt ≤ |µ|(ΩT ).

Furthermore, by (5.2.4) in Proposition 5.2.2 and (5.2.6) in the proof of Proposition 5.2.2.
ˆ

ΩT

|∇Tk(|un|m−1un)|2dxdt ≤ k|µ|(ΩT ), ∀k > 0, (5.2.14)

|{|un| > ℓ}| ≤ c2ℓ
− 2

N
−m|µ|(ΩT )

N+2
N , ∀ℓ > 0, (5.2.15)

For l > 0, we consider Sl ∈ C2
c (R) such that

Sl(a) = |a|ma, for |a| ≤ l, and Sl(a) = (2l)m+1sign(a), for |a| ≥ 2l.

Then we find the relation in D′
(ΩT ) :

(Sl(un))t−div
(
S′
l(un)∇(|un|m−1un)

)
+m|un|m−1|∇un|2S′′

l (un)+g(un)S
′
l(un) = S′

l(un)µn.

It leads to

||(Sl(un))t||L1(ΩT )+L2(0,T,H−1(Ω)) ≤ ||S′
l(un)∇(|un|m−1un)||L2(ΩT )

+m|||un|m−1|∇un|2S′′
l (un)||L1(ΩT ) + ||g(un)S′

l(un)||L1(ΩT ) + ||S′
l(un)µn||L1(ΩT ).

Since |S′
l(un)| ≤ c3χ[−2l,2l](un) and |S′′

l (un)| ≤ c4|un|m−1χ[−2l,2l](un), we obtain

||(Sl(un))t||L1(ΩT )+L2(0,T,H−1(Ω))

≤ c5
(
||∇T(2l)m(|un|m−1un)||L2(ΩT ) + ||g||L∞(R)|ΩT |+ |µn|(ΩT )

)
.

So from (5.2.14) we deduce that {(Sl(un))t} is bounded in L1(ΩT ) + L2((0, T );H−1(Ω))
and for any n ∈ N,

||(Sl(un))t||L1(ΩT )+L2((0,T );H−1(Ω)) ≤ c5

(
(2l)m/2(|µ|(ΩT ))1/2 + ||g||L∞(R)|ΩT |+ |µ|(ΩT )

)
.
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Moreover, {Sl(un)} is bounded in L2(0, T,H1
0 (Ω)). Hence, {Sl(un)} is relatively compact

in L1(ΩT ) for any l > 0. Thanks to (5.2.15) we find

|{||un1 |mun1 − |un1 |mun1 | > ℓ}| ≤ |{|un1 | > l}|+ |{|un2 | > l}|+ |{|Sl(un1)− Sl(un2)| > ℓ}|
≤ 2c2l

− 2
N
−m|µ|(ΩT )

N+2
N + |{|Sl(un1)− Sl(un2)| > ℓ}|.

Thus, up to a subsequence {un} converges a.e in ΩT to a function u. Consequently, u is a
very weak solution of equation (5.2.10) and satisfies (5.2.13) and (5.2.7)-(5.2.8). The other
conclusions follow in the same way.

Remark 5.2.7 If supp(µ) ⊂ Ω × [a, T ] for a > 0, then the solution u in Lemma 5.2.6
satisfies u = 0 in Ω× [0, a).

Now we recall the important property of Radon measures which was proved in [6] and [35].

Proposition 5.2.8 Let s > 1 and µ ∈ M
+
b (ΩT ). If µ is absolutely continuous with respect

to Cap2,1,s′ in ΩT , there exists a nondecreasing sequence {µn} ⊂ M
+
b (ΩT ), with compact

support in ΩT which converges to µ weakly in Mb(ΩT ) and satisfies I
R
2 [µn] ∈ Ls(RN+1) for

all R > 0.

Next we prove Theorem 5.1.3 in several steps of approximation :

Proof of Theorem 5.1.3. First suppose m > 1. Assume that µ, σ are absolutely conti-
nuous with respect to the capacities Cap2,1,q′ in ΩT and CapG 2

q
,q′ in Ω. Then σ+⊗δ{t=0}+

µ+, σ− ⊗ δ{t=0} + µ− are absolutely continuous with respect to the capacities Cap2,1,q′ in
Ω× (−T, T ). Applying Proposition 5.2.8 to σ+⊗ δ{t=0}+µ+, σ−⊗ δ{t=0}+µ−, there exist
two nondecreasing sequences {υ1,n} and {υ2,n} of positive bounded measures with compact
support in Ω×(−T, T ) which converge respectively to σ+⊗δ{t=0}+µ

+ and σ−⊗δ{t=0}+µ
−

in Mb(Ω × (−T, T )) and such that I
2d
2 [υ1,n], I

2d
2 [υ2,n] ∈ Lq(Ω × (−T, T )) for all n ∈ N. By

Lemma 5.2.6, there exists a sequence {un1,n2,k1,k2} of of weak solution of the problems





(un1,n2,k1,k2)t −∆(|un1,n2,k1,k2 |m−1un1,n2,k1,k2) + Tk1((u
+
n1,n2,k1,k2

)q)

−Tk2((u−n1,n2,k1,k2
)q) = υ1,n1 − υ2,n2 in Ω× (−T, T ),

un1,n2,k1,k2 = 0 on ∂Ω× (−T, T ),
un1,n2,k1,k2(−T ) = 0 in Ω,

which satisfy

|un1,n2,k1,k2 | ≤ C

(( |σ|(Ω) + |µ|(ΩT )
dN

)m1

+ |σ|(Ω) + |µ|(ΩT ) + 1 + I
2d
2 [υ1,n1 + υ2,n2 ]

)
,

(5.2.16)

and
ˆ

ΩT

Tk1((u
+
n1,n2,k1,k2

)q)dxdt+

ˆ

ΩT

Tk2((u
−
n1,n2,k1,k2

)q)dxdt ≤ |µ|(ΩT ).

Moreover, for any n1 ∈ N, k2 > 0, {un1,n2,k1,k2}n2,k1 is nonincreasing and for any n2 ∈
N, k1 > 0, {un1,n2,k1,k2}n1,k2 is nondecreasing. Therefore, thanks to the fact that I

2d
2 [υ1,n],
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I
2d
2 [υ2,n] ∈ Lq(Ω × (−T, T )) and from (5.2.16) and the dominated convergence Theorem,

we deduce that un1,n2 = lim
k1→∞

lim
k2→∞

un1,n2,k1,k2 is a very weak solution of





(un1,n2)t −∆(|un1,n2 |m−1un1,n2) + |un1,n2 |q−1un1,n2 = υ1,n1 − υ2,n2 in Ω× (−T, T ),
un1,n2 = 0 on ∂Ω× (−T, T ),
un1,n2(−T ) = 0 in Ω.

And (5.2.16) is true when un1,n2,k1,k2 is replaced by un1,n2 . Note that {un1,n2}n2 is non-
increasing, {un1,n2}n1 is non-decreasing and

ˆ

ΩT

|un1,n2 |qdxdt ≤ |µ|(ΩT ) ∀ n1, n2 ∈ N.

From the monotone convergence Theorem we obtain that u = lim
n2→∞

lim
n1→∞

un1,n2 is a very

weak solution of




ut −∆(|u|m−1u) + |u|q−1u = σ ⊗ δ{t=0} + χΩT
µ in Ω× (−T, T ),

u = 0 on ∂Ω× (−T, T ),
u(−T ) = 0 in Ω.

which u = 0 in Ω × (−T, 0) and u satisfies (5.1.3). Clearly, u is a very weak solution of
equation (5.1.1).
Next suppose m ≤ 1. The proof is similar, with the new capacitary assumptions and (5.1.3)
is replaced by (5.1.4).

We also obtain the subcritical case.

Theorem 5.2.9 Let m > N−2
N and 0 < q < m+ 2

N . Then problem (5.1.1) has a very weak
solution for any µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω).

Proof. As the proof of Theorem 5.1.3, we can reduce to the case σ = 0. By Lemma 5.2.6,
there exists a very weak solution uk1,k2 of





(uk1,k2)t −∆(|uk1,k2 |m−1uk1,k2) + Tk1((u
+
k1,k2

)q)− Tk2((u
−
k1,k2

)q) = µ in ΩT ,

un = 0 on ∂Ω× (0, T ),
un(0) = 0 in Ω.

such that {uk1,k2}k1 and {uk1,k2}k2 are monotone sequences and

||uk1,k2 ||Lm+2/N,∞(ΩT ) ≤ C(|µ|(ΩT ))
N+2

mN+2 .

In particular, {uk1,k2} is a uniformly bounded in Ls(ΩT ) for any 0 < s < m+ 2
N .

Therefore, we get that u = lim
k2→∞

lim
k1→∞

uk1,k2 is a very weak solution of (5.1.1).

Next, from an idea of [8, Theorem 2.3], we obtain an existence result for measures which
present a good behaviour in time :

274



5.2. POROUS MEDIUM EQUATION

Theorem 5.2.10 Let m > N−2
N , q > max(1,m) and f ∈ L1(ΩT ), µ ∈ Mb(ΩT ), such that

|µ| ≤ ω ⊗ F for some ω ∈ M
+
b (Ω) and F ∈ L1

+((0, T )).

If ω is absolutely continuous with respect to the capacity CapG2,
q

q−m
in Ω, then there exists

a very weak solution to problem




ut −∆(|u|m−1u) + |u|q−1u = f + µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0.

(5.2.17)

Proof. For R ∈ (0,∞], we define the R-truncated Riesz elliptic potential of a measure
ν ∈ M

+
b (Ω) by

I
R
2 [ν](x) =

ˆ R

0

ν(Bρ(x))

ρN−2

dρ

ρ
∀x ∈ Ω.

By [9, Theorem 2.6],there exists a nondecreasing sequence {ωn} ⊂ M
+
b (Ω) with compact

support in Ω which converges to ω in Mb(Ω) and such that I
2diam(Ω)
2 [ωn] ∈ Lq/m(Ω) for

any n ∈ N. We can write

f + µ = µ1 − µ2, µ1 = f+ + µ+, µ2 = f− + µ−,

and µ+, µ− ≤ ω ⊗ F. We set

µ1,n = Tn(f
+) + inf{µ+, ωn ⊗ Tn(F )}, µ2,n = Tn(f

−) + inf{µ−, ωn ⊗ Tn(F )}.
Then {µ1,n} , {µ2,n} are nondecreasing sequences converging to µ1, µ2 respectively in Mb(ΩT )

and µ1,n, µ2,n ≤ ω̃n⊗χ(0,T ), with ω̃n = n(χΩ+ωn) and I
2diam(Ω)
2 [ω̃n] ∈ Lq/m(Ω). As in the

proof of Theorem 5.1.3, there exists a sequence of weak solution {un1,n2,k1,k2} of equations




(un1,n2,k1,k2)t −∆(|un1,n2,k1,k2 |m−1un1,n2,k1,k2) + Tk1((u
+
n1,n2,k1,k2

)q)

−Tk2((u−n1,n2,k1,k2
)q) = µ1,n1 − µ2,n2 in ΩT ,

un1,n2,k1,k2 = 0 on ∂Ω× (0, T ),
un1,n2,k1,k2(0) = 0 in Ω.

(5.2.18)

Using the comparison principle as in [8], we can assume that

−vn2 ≤ |un1,n2,k1,k2 |m−1un1,n2,k1,k2 ≤ vn1 ,

where for any n ∈ N, vn is a nonnegative weak solution of
{

−∆vn = ω̃n in Ω,
un = 0 on ∂Ω,

such that
vn ≤ c1I

2diam(Ω)
2 [ω̃n] ∀ n ∈ N.

Hence, utilizing the arguments in the proof of Theorem 5.1.3, it is easy to obtain the result
as desired.

It is easy to show that ω ⊗ χ[0,T ] is absolutely continuous with respect to the capacity
Cap2,1, q

q−m
,q′ in ΩT if any only if ω is absolutely continuous with respect to the capacity

CapG2,
q

q−m
in Ω. Consequently, we obtain the following :
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Corollary 5.2.11 Let m > N−2
N , q > max(1,m) and ω ∈ Mb(Ω). Then, ω is absolutely

continuous with respect to the capacities CapG2,
q

q−m
in Ω if and only if there exists a very

weak solution of problem




ut −∆(|u|m−1u) + |u|q−1u = ω ⊗ χ[0,T ] in ΩT ,

u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω.

(5.2.19)

5.3 p−Laplacian evolution equation

Here we consider solutions in the week sense of distributions, or in the renormalized
sense,.

5.3.1 Distribution solutions

Definition 5.3.1 Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω) and B ∈ C(R). A measurable function u is

a distribution solution to problem (5.3.1) if u ∈ Ls(0, T,W 1,s
0 (Ω)) for any s ∈

[
1, p− N

N+1

)
,

and B(u) ∈ L1(ΩT ), such that

−
ˆ

ΩT

uϕtdxdt+

ˆ

ΩT

|∇u|p−2∇u.∇ϕdxdt+
ˆ

ΩT

B(u)ϕdxdt =

ˆ

ΩT

ϕdµ+

ˆ

Ω
ϕ(0)dσ,

for every ϕ ∈ C1
c (Ω× [0, T )).

Remark 5.3.2 Let σ′ ∈ Mb(Ω) and a′ ∈ (0, T ), set ω = µ + σ′ ⊗ δ{t=a′}. Let u is a
distribution solution to problem (5.3.1) with data ω and σ = 0, such that supp(µ) ⊂ Ω ×
[a′, T ], and u = 0, B(u) = 0 in Ω × (0, a′). Then ũ := u|Ω×[a′,T ) is a distribution solution
to problem (5.3.1) in Ω× (a′, T ) with data µ and σ′.

5.3.2 Renormalized solutions

The notion of renormalized solution is stronger. It was first introduced by Blanchard
and Murat [11] to obtain uniqueness results for the p-Laplace evolution problem for L1 data
µ and σ, and developed by Petitta [36] for measure data µ. It requires a decomposition of
the measure µ, that we recall now.

Let M0(ΩT ) be the space of Radon measures in ΩT which are absolutely continuous
with respect to the Cp-capacity, defined at (5.1.6), and Ms(ΩT ) be the space of measures
in ΩT with support on a set of zero Cp-capacity. Classically, any µ ∈ Mb(ΩT ) can be
written in a unique way under the form µ = µ0 + µs where µ0 ∈ M0(ΩT ) ∩Mb(ΩT ) and
µs ∈ Ms(ΩT ). In turn µ0 can be decomposed under the form

µ0 = f − div g + ht,

where f ∈ L1(ΩT ), g ∈ (Lp
′
(ΩT ))

N and h ∈ Lp(0, T ;W 1,p
0 (Ω)), see [21] ; and we say that

(f, g, h) is a decomposition of µ0. We say that a sequence of {µn} in Mb(ΩT ) converges to
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µ ∈ Mb(ΩT ) in the narrow topology of measures if

lim
n→∞

ˆ

ΩT

ϕdµn =

ˆ

ΩT

ϕdµ ∀ϕ ∈ C(ΩT ) ∩ L∞(ΩT ).

We recall that if u is a measurable function defined and finite a.e. in ΩT , such that

Tk(u) ∈ Lp(0, T,W 1,p
0 (Ω)) for any k > 0, there exists a measurable function w : ΩT → R

N

such that ∇Tk(u) = χ|u|≤kw a.e. in ΩT and for all k > 0. We define the gradient ∇u of u
by w = ∇u.

Definition 5.3.3 Let p > 2N+1
N+1 and µ = µ0 + µs ∈ Mb(ΩT ), σ ∈ L1(Ω) and B ∈ C(R).

A measurable function u is a renormalized solution of




ut −∆pu+B(u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(5.3.1)

if there exists a decomposition (f, g, h) of µ0 such that

v = u− h ∈ Ls((0, T );W 1,s
0 (Ω)) ∩ L∞((0, T );L1(Ω)), ∀s ∈

[
1, p− N

N + 1

)
,

Tk(v) ∈ Lp((0, T );W 1,p
0 (Ω)) ∀k > 0, B(u) ∈ L1(ΩT ), (5.3.2)

and :

(i) for any S ∈W 2,∞(R) such that S′ has compact support on R, and S(0) = 0,

−
ˆ

Ω
S(σ)ϕ(0)dx−

ˆ

ΩT

ϕtS(v)dxdt+

ˆ

ΩT

S′(v)|∇u|p−2∇u∇ϕdxdt

+

ˆ

ΩT

S′′(v)ϕ|∇u|p−2∇u∇vdxdt+
ˆ

ΩT

S′(v)ϕB(u)dxdt =

ˆ

ΩT

(fS′(v)ϕ+ g.∇(S′(v)ϕ)dxdt

(5.3.3)

for any ϕ ∈ Lp((0, T );W 1,p
0 (Ω))∩L∞(ΩT ) such that ϕt ∈ Lp

′
((0, T );W−1,p′(Ω)) +L1(ΩT )

and ϕ(., T ) = 0 ;

(ii) for any φ ∈ C(ΩT ),

lim
m→∞

1

m

ˆ

{m≤v<2m}

φ|∇u|p−2∇u∇vdxdt =
ˆ

ΩT

φdµ+s and (5.3.4)

lim
m→∞

1

m

ˆ

{−m≥v>−2m}

φ|∇u|p−2∇u∇vdxdt =
ˆ

ΩT

φdµ−s . (5.3.5)

We first mention a convergence result of [7].
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Proposition 5.3.4 Let {µn} be bounded in Mb(ΩT ) and {σn} be bounded in L1(Ω), and
B ≡ 0. Let un be a renormalized solution of (5.3.1) with data µn = µn,0 + µn,s relative
to a decomposition (fn, gn, hn) of µn,0 and initial data σn. If {fn} is bounded in L1(ΩT ),
{gn} bounded in (Lp

′
(ΩT ))

N and {hn} convergent in Lp(0, T,W 1,p
0 (Ω)), then, up to a subse-

quence, {un} converges to a function u in L1(ΩT ). Moreover, if {µn} is bounded in L1(ΩT )

then {un} is convergent in Ls(0, T,W 1,s
0 (Ω)) for any s ∈

[
1, p− N

N+1

)
.

Next we recall the fundamental stability result of [7].

Theorem 5.3.5 Suppose that p > 2N+1
N+1 and B ≡ 0. Let σ ∈ L1(Ω) and

µ = f − div g + ht + µ+s − µ−s ∈ Mb(ΩT ),

with f ∈ L1(ΩT ), g ∈ (Lp
′
(ΩT ))

N , h ∈ Lp((0, T );W 1,p
0 (Ω)) and µ+s , µ

−
s ∈ M

+
s (ΩT ). Let

σn ∈ L1(Ω) and
µn = fn − div gn + (hn)t + ρn − ηn ∈ Mb(ΩT ),

with fn ∈ L1(ΩT ), gn ∈ (Lp
′
(ΩT ))

N , hn ∈ Lp((0, T );W 1,p
0 (Ω)), and ρn, ηn ∈ M

+
b (ΩT ),

such that
ρn = ρ1n − div ρ2n + ρn,s, ηn = η1n − div η2n + ηn,s,

with ρ1n, η
1
n ∈ L1(ΩT ), ρ

2
n, η

2
n ∈ (Lp

′
(ΩT ))

N and ρn,s, ηn,s ∈ M
+
s (ΩT ).

Assume that {µn} is bounded in Mb(ΩT ), {σn}, {fn}, {gn}, {hn} converge to σ, f, g, h in
L1(Ω), weakly in L1(ΩT ), in (Lp

′
(ΩT ))

N ,in Lp(0, T,W 1,p
0 (Ω)) respectively and {ρn}, {ηn}

converge to µ+s , µ
−
s in the narrow topology of measures ; and

{
ρ1n
}
,
{
η1n
}

are bounded in
L1(ΩT ), and

{
ρ2n
}
,
{
η2n
}

bounded in (Lp
′
(ΩT ))

N .
Let {un} be a sequence of renormalized solutions of





(un)t −∆pun = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn in Ω,

(5.3.6)

relative to the decomposition (fn + ρ1n − η1n, gn + ρ2n − η2n, hn) of µn,0. Let vn = un − hn.

Then up to a subsequence, {un} converges a.e. in ΩT to a renormalized solution u of
(5.3.1), and {vn} converges a.e. in ΩT to v = u− h. Moreover, {∇vn} converge to ∇v a.e
in ΩT , and {Tk(vn)} converges to Tk(v) strongly in Lp(0, T,W 1,p

0 (Ω)) for any k > 0.

In order to apply this Theorem, we need some the following properties concerning
approximate measures of µ ∈ M

+
b (ΩT ), see also [7].

Proposition 5.3.6 Let µ = µ0 + µs ∈ M
+
b (ΩT ), µ0 ∈ M0(ΩT ) ∩ M

+
b (ΩT ) and µs ∈

Ms(ΩT ). Let {ϕ1,n} , {ϕ2,n} be sequences of mollifiers in R
N ,R respectively. There exists

a sequence of measures µn,0 = (fn, gn, hn), such that fn, gn, hn ∈ C∞
c (ΩT ) and stron-

gly converge to f, g, h in L1(ΩT ), (L
p′(ΩT ))

N and Lp((0, T );W 1,p
0 (Ω)) respectively, µn,s ∈

C∞
c (ΩT ) converges to µs ∈ M

+
s (ΩT ), and µn = µn,0 + µn,s converges to µ, in the narrow

topology, and satisfying 0 ≤ µn ≤ (ϕ1,nϕ2,n) ∗ µ, and

||fn||L1(ΩT ) + ‖gn‖(Lp′ (ΩT ))N + ||hn||Lp(0,T,W 1,p
0 (Ω))

+ µn,s(ΩT ) ≤ 2µ(ΩT ) for any n ∈ N.
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Proposition 5.3.7 Let µ = µ0+µs, µn = µn,0+µn,s ∈ M
+
b (ΩT ) with µ0, µn,0 ∈ M0(ΩT )∩

M
+
b (ΩT ) and µn,s, µs ∈ M

+
s (ΩT ) such that {µn} is nondecreasing and converges to µ

in Mb(ΩT ). Then, {µn,s} is nondecreasing and converging to µs in Mb(ΩT ); and there
exist decompositions (f, g, h) of µ0, (fn, gn, hn) of µn,0 such that {fn} , {gn} , {hn} strongly
converge to f, g, h in L1(ΩT ), (L

p′(ΩT ))
N and Lp((0, T );W 1,p

0 (Ω)) respectively, satisfying

||fn||L1(ΩT ) + ‖gn‖(Lp′ (ΩT ))N + ||hn||Lp((0,T );W 1,p
0 (Ω))

+µn,s(ΩT ) ≤ 2µ(ΩT ) for any n ∈ N.

5.3.3 Proof of Theorem 5.1.5

Here the crucial point is a result of Liskevich, Skrypnik and Sobol [31] for the p-Laplace
evolution problem without absorption :

Theorem 5.3.8 Let p > 2, and µ ∈ Mb(ΩT ). If u ∈ C([0, T ];L2
loc(Ω))∩L

p
loc(0, T,W

1,p
loc (Ω))

is a distribution solution to equation

ut −∆pu = µ in ΩT ,

then there exists C = C(N, p) such that, for every Lebesgue point (x, t) ∈ ΩT of u and any
ρ > 0 such that Qρ,ρp(x, t) := Bρ(x)× (t− ρp, t+ ρp) ⊂ ΩT one has

|u(x, t)| ≤ C


1 +

(
1

ρN+p

ˆ

Qρ,ρp (x,t)
|u|(λ+1)(p−1)dyds

) 1
1+λ(p−1)

+P
ρ
p[µ](x, t)


 , (5.3.7)

where λ = min{1/(p− 1), 1/N} and

P
ρ
p[µ](x, t) =

∞∑

i=0

Dp(ρi)(x, t),

Dp(ρi)(x, t) = inf
τ>0

{
(p− 2)τ

− 1
p−2 +

1

2(p− 1)p−1

|µ|(Qρi,τρpi (x, t))
ρNi

}
,

with ρi = 2−iρ, Qρ,τρp(x, t) = Bρ(x)× (t− τρp, t+ τρp).

As a consequence, we deduce the following estimate :

Proposition 5.3.9 If u is a distribution solution of problem




ut −∆pu = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω,

with data µ ∈ Cb(ΩT ). Then there exists C = C(N, p) such that for a.e. (x, t) ∈ ΩT ,

|u(x, t)| ≤ C

(
1 +D +

( |µ|(ΩT )
DN

)m3

+ I
2D
2 [|µ|](x, t)

)
, (5.3.8)

where m3 and D are defined at (5.1.8).
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Proof. Let x0 ∈ Ω and Q = B2D(x0)× (−(2D)p, (2D)p).
Let U ∈ C(Q) ∩ Lp((−(2D)p, (2D)p);W 1,p

0 (B2D(x0))) be the distribution solution of





Ut −∆pU = χΩT
|µ| in Q,

u = 0 on ∂B2D(x0)× (−(2D)p, (2D)p),
u(−(2D)p) = 0 in B2D(x0),

(5.3.9)

where for x0 ∈ Ω. Thus, by Theorem 5.3.8 we have, for any (x, t) ∈ ΩT ,

U(x, t) ≤ c1


1 +

(
1

DN+p

ˆ

QD,Dp (x,t)
|U |(λ+1)(p−1)dyds

) 1
1+λ(p−1)

+P
D
p [µ](x, t)


 ,

(5.3.10)
where QD,Dp(x, t) = BD(x)× (t−Dp, t+Dp).

According to Proposition 2.8 and Remark 2.9 of [7], there exists a constant C2 > 0 such
that

|{|U | > ℓ}| ≤ c2(|µ|(ΩT ))
p+N
N ℓ−p+1− p

N ∀ℓ > 0.

Thus, for any ℓ0 > 0,

ˆ

Q
|U |(λ+1)(p−1)dxdt = (λ+ 1)(p− 1)

ˆ ∞

0
ℓ(λ+1)(p−1)−1|{|U | > ℓ}|dℓ

= (λ+ 1)(p− 1)

(
ˆ ℓ0

0
ℓ(λ+1)(p−1)−1|{|U | > ℓ}|dℓ+

ˆ ∞

ℓ0

ℓ(λ+1)(p−1)−1|{|U | > ℓ}|dℓ
)

≤ c3D
N+pℓ

(λ+1)(p−1)
0 + c4ℓ

(λ+1)(p−1)−p+1− p
N

0 (|µ|(ΩT ))
p+N
N .

Choosing ℓ0 =
(
|µ|(ΩT )
DN

) N+p
(p−1)N+p

, we get

ˆ

Q
|U |(λ+1)(p−1)dxdt ≤ c5D

N+p

( |µ|(ΩT )
DN

) (N+p)(λ+1)(p−1)
(p−1)N+p

. (5.3.11)

Next we show that
P
D
p [µ](x, t) ≤ (p− 2)D + c6I

2D
2 [|µ|](x, t). (5.3.12)

Indeed, we have

Dp(ρi)(x, t) ≤ (p− 2)ρi +
1

2(p− 1)p−1

|µ|(Q̃ρi(x, t))
ρNi

,

where ρi = 2−iD. Thus,

P
D
p [µ](x, t) ≤ (p− 2)D +

1

2(p− 1)p−1

∞∑

i=0

|µ|(Q̃ρi(x, t))
ρNi

≤ (p− 2)D + c7

ˆ 2D

0

|µ|(Q̃ρ(x, t))
ρN

dρ

ρ
.
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So from (5.3.11), (5.3.12) and (5.3.10) we get, for any (x, t) ∈ ΩT ,

|U(x, t)| ≤ c8

(
1 +D +

( |µ|(ΩT )
DN

)m3

+ I
2D
2 [|µ|](x, t)

)
.

By the comparison principle we get |u| ≤ U in ΩT , thus (5.3.8) follows.

Proposition 5.3.10 Let p > 2, and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω). There exists a distribution
solution u of problem 




ut −∆pu = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ.

(5.3.13)

which satisfies for any (x, t) ∈ ΩT

|u(x, t)| ≤ C

(
1 +D +

( |σ|(Ω) + |µ|(ΩT )
DN

)m3

+ I
2D
2

[
|σ| ⊗ δ{t=0} + |µ|

]
(x, t)

)
, (5.3.14)

where C = C(N, p). Moreover, if σ ∈ L1(Ω), u is a renormalized solution.

Proof. Let {ϕ1,n}, {ϕ2,n} be sequences of standard mollifiers in R
N and R. Let µ = µ0 +

µs ∈ Mb(ΩT ), with µ0 ∈ M0(ΩT ), µs ∈ Ms(ΩT ). By Lemma 5.3.6, there exist sequences of
nonnegative measures µn,0,i = (fn,i, gn,i, hn,i) and µn,s,i such that fn,i, gn,i, hn,i ∈ C∞

c (ΩT )

and strongly converge to some fi, gi, hi in L1(ΩT ), (L
p′(ΩT ))

N and Lp((0, T );W 1,p
0 (Ω)) res-

pectively, and µn,1, µn,2, µn,s,1, µn,s,2 ∈ C∞
c (ΩT ) converge to µ+, µ−, µ+s , µ

−
s in the narrow

topology, with µn,i = µn,0,i + µn,s,i, for i = 1, 2, and satisfying

µ+0 = (f1, g1, h1), µ
−
0 = (f2, g2, h2) and 0 ≤ µn,1 ≤ (ϕ1,nϕ2,n)∗µ+, 0 ≤ µn,2 ≤ (ϕ1,nϕ2,n)∗µ−.

Let σ1,n, σ2,n ∈ C∞
c (Ω) converge to σ+ and σ− in the narrow topology, and in L1(Ω) if

σ ∈ L1(Ω), such that

0 ≤ σ1,n ≤ ϕ1,n ∗ σ+, 0 ≤ σ2,n ≤ ϕ1,n ∗ σ−.

Set µn = µn,1 − µn,2 and σn = σ1,n − σ2,n.
Let un be solution of the approximate problem





(un)t −∆pun = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn on Ω.

(5.3.15)

Let gn,m(x, t) = σn(x)
´ t
−T ϕ2,m(s)ds. As in proof of Theorem 2.1 in [35], by Theorem 5.3.5,

there exists a sequence {un,m}m of solutions of the problem





(un,m)t −∆pun,m = (gn,m)t + χΩT
µn in Ω× (−T, T ),

un,m = 0 on ∂Ω× (−T, T ),
un,m(−T ) = 0 on Ω,

(5.3.16)
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which converges to un in Ω× (0, T ). By Proposition 5.3.9, there holds, for any (x, t) ∈ ΩT ,

|un,m(x, t)| ≤ c1

(
1 +D +

( |µn|(ΩT ) + (|σn| ⊗ ϕ2,m)(Ω× (−T, T ))
DN

)m3
)

+ c1I
2D
2 [|µn|+ |σn| ⊗ ϕ2,m](x, t).

Therefore

|un,m(x, t)| ≤ c1

(
1 +D +

( |µn|(ΩT ) + (|σn| ⊗ ϕ2,m)(Ω× (−T, T ))
DN

)m3
)

+ c1(ϕ1,nϕ2,m) ∗ I2D2 [|µ|+ |σ| ⊗ δ{t=0}](x, t).

Letting m→ ∞, we get

|un(x, t)| ≤ c1

(
1 +D +

( |µn|(ΩT ) + |σn|(Ω)
DN

)m3
)
+c1(ϕ1,n)∗(I2D2 [|µ|+|σ|⊗δ{t=0}](., t))(x).

Therefore, by Proposition 5.3.4 and Theorem 5.3.5 , up to a subsequence, {un} converges to
a distribution solution u of (5.3.13) (a renormalized solution if σ ∈ L1(Ω)), and satisfying
(5.3.14).
Proof of Theorem 5.1.5. Step 1. First, assume that σ ∈ L1(Ω). Because µ is absolutely
continuous with respect to the capacity Cap2,1,q′ , so are µ+ and µ−. Applying Proposition
5.2.8 to µ+, µ−, there exist two nondecreasing sequences {µ1,n} and {µ2,n} of positive
bounded measures with compact support in ΩT which converge to µ+ and µ− in Mb(ΩT )
respectively and such that I

2D
2 [µ1,n], I

2D
2 [µ2,n] ∈ Lq(ΩT ) for all n ∈ N.

For i = 1, 2, set µ̃i,1 = µi,1 and µ̃i,j = µi,j − µi,j−1 ≥ 0, so µi,n =
∑n

j=1 µ̃i,j . We write

µi,n = µi,n,0+µi,n,s, µ̃i,j = µ̃i,j,0+µ̃i,j,s, with µi,n,0, µ̃i,n,0 ∈ M0(ΩT ), µi,n,s, µ̃i,n,s ∈ Ms(ΩT ).

Let {ϕm} be a sequence of mollifiers in R
N+1. As in the proof of Proposition 5.3.10,

for any j ∈ N and i = 1, 2, there exist sequences of nonnegative measures µ̃m,i,j,0 =
(fm,i,j , gm,i,j , hm,i,j) and µ̃m,i,j,s such that fm,i,j , gm,i,j , hm,i,j ∈ C∞

c (ΩT ) strongly converge
to some fi,j , gi,j , hi,j in L1(ΩT ), (L

p′(ΩT ))
N and Lp(0, T,W 1,p

0 (Ω)) respectively ; and µ̃m,i,j ,
µ̃m,i,j,s ∈ C∞

c (ΩT ) converge to µ̃i,j , µ̃i,j,s in the narrow topology with µ̃m,i,j = µ̃m,i,j,0 +
µ̃m,i,j,s, which satisfy µ̃i,j,0 = (fi,j , gi,j , hi,j), and

0 ≤ µ̃m,i,j ≤ ϕm ∗ µ̃i,j , µ̃m,i,j(ΩT ) ≤ µ̃i,j(ΩT ),

||fm,i,j ||L1(ΩT ) + ‖gm,i,j‖(Lp′ (ΩT ))N + ||hm,i,j ||Lp(0,T,W 1,p
0 (Ω))

+ µm,i,j,s(ΩT ) ≤ 2µ̃i,j(ΩT ).

(5.3.17)
Note that, for any n,m ∈ N,

n∑

j=1

(µ̃m,1,j + µ̃m,2,j) ≤ ϕm ∗ (µ1,n + µ2,n) and
n∑

j=1

(µ̃m,1,j(ΩT ) + µ̃m,2,j(ΩT )) ≤ |µ|(ΩT ).

For any n, k,m ∈ N, let un,k,m, vn,k,m ∈W be solutions of problems




(un,k,m)t −∆pun,k,m + Tk(|un,k,m|q−1un,k,m) =
∑n

j=1(µ̃m,1,j − µ̃m,2,j) in ΩT ,

un,k,m = 0 on ∂Ω× (0, T ),
un,k,m(0) = Tn(σ

+)− Tn(σ
−) on Ω,

(5.3.18)
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and




(vn,k,m)t −∆pvn,k,m + Tk(v
q
n,k,m) =

∑n
j=1(µ̃m,1,j + µ̃m,2,j) in ΩT ,

vn,k,m = 0 on ∂Ω× (0, T ),
vn,k,m(0) = Tn(|σ|) on Ω.

(5.3.19)

By the comparison principle and Proposition 5.3.10 we have for any m, k the sequences
{vn,k,m}n is increasing and

|un,k,m| ≤ vn,k,m ≤ c1

(
1 +D +

( |σ|(Ω) + |µ|(ΩT )
DN

)m3

+ I
2D
2

[
Tn(|σ|)⊗ δ{t=0}

])

+ c1ϕm ∗ I2D2 [µ1,n + µ2,n] .

Moreover,
ˆ

ΩT

Tk(v
q
n,k,m)dxdt ≤ |µ|(ΩT ) + |σ|(Ω).

As in [8, Proof of Lemma 5.3], thanks to Proposition 5.3.4 and Theorem 5.3.5, up to
subsequences, {un,k,m}m converges to a renormalized solutions un,k of problem





(un,k)t −∆pun,k + Tk(|un,k|q−1un,k) = µ1,n − µ2,n in ΩT ,
un,k = 0 on ∂Ω× (0, T ),
un,k(0) = Tn(σ

+)− Tn(σ
−) on Ω,

relative to the decomposition (
∑n

j=1 f1,j −
∑n

j=1 f2,j ,
∑n

j=1 g1,j −
∑n

j=1 g2,j ,
∑n

j=1 h1,j −∑n
j=1 h2,j) of µ1,n,0 − µ2,n,0 ; and {vn,k,m}m converges to a solution vn,k of





(vn,k)t −∆pvn,k + Tk(v
q
n,k) = µ1,n + µ2,n in ΩT ,

vn,k = 0 on ∂Ω× (0, T ),
vn,k(0) = Tn(|σ|) on Ω.

relative to the decomposition (
∑n

j=1 f1,j +
∑n

j=1 f2,j ,
∑n

j=1 g1,j +
∑n

j=1 g2,j ,
∑n

j=1 h1,j +∑n
j=1 h2,j) of µ1,n,0 + µ2,n,0. And there holds

|un,k| ≤ vn,k ≤ c1

(
1 +D +

( |σ|(Ω) + |µ|(ΩT )
DN

)m3

+ I
2D
2

[
Tn(|σ|)⊗ δ{t=0}

])

+ c1I
2D
2 [µ1,n + µ2,n] .

Observe that I
2D
2 [µ1,n + µ2,n] ∈ Lq(ΩT ) for any n ∈ N. Then, as in [8, Proof of Lemma

5.4], thanks to Proposition 5.3.4 and Theorem 5.3.5, up to a subsequence, {un,k}k {vn,k}k
converge to renormalized solutions un, vn of problems





(un)t −∆pun + |un|q−1un = µ1,n − µ2,n in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = Tn(σ

+)− Tn(σ
−) in Ω,

(5.3.20)





(vn)t −∆pvn + vqn = µ1,n + µ2,n in ΩT ,
vn = 0 on ∂Ω× (0, T ),
vn(0) = Tn(|σ|) in Ω,

(5.3.21)
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which still satisfy

|un| ≤ vn ≤ c1

(
1 +D +

( |σ|(Ω) + |µ|(ΩT )
DN

)m3

+ I
2D
2

[
Tn(|σ|)⊗ δ{t=0}

])
+c1I

2D
2 [µ1,n + µ2,n] .

and the sequence {vn}n is increasing and
ˆ

ΩT

vqndxdt ≤ |µ|(ΩT ) + |σ|(Ω).

Note that from (5.3.17) we have

||fi,j ||L1(ΩT ) + ‖gi,j‖(Lp′ (ΩT ))N + ||hi,j ||Lp(0,T,W 1,p
0 (Ω))

≤ 2µ̃i,j(ΩT ),

which implies

||
n∑

j=1

fi,j ||L1(ΩT ) + ||
n∑

j=1

gi,j ||(Lp′ (ΩT ))N + ||
n∑

j=1

hi,j ||Lp(0,T,W 1,p
0 (Ω))

≤ 2µi,n(ΩT ) ≤ 2|µ|(ΩT ).

Finally, as in [8, Proof of Theorem 5.2], from Proposition 5.3.4, Theorem 5.3.5 and the mo-
notone convergence Theorem, up to subsequences {un}n, {vn}n converge to a renormalized
solutions u, v of problem





ut −∆pu+ |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

relative to the decomposition (
∑∞

j=1 f1,j −
∑∞

j=1 f2,j ,
∑∞

j=1 g1,j −
∑∞

j=1 g2,j ,
∑∞

j=1 h1,j −∑∞
j=1 h2,j) of µ0, and





vt −∆pv + vq = |µ| in ΩT ,
v = 0 on ∂Ω× (0, T ),
v(0) = |σ| in Ω,

relative to the decomposition (
∑∞

j=1 f1,j +
∑∞

j=1 f2,j ,
∑∞

j=1 g1,j +
∑∞

j=1 g2,j ,
∑∞

j=1 h1,j +∑∞
j=1 h2,j) of |µ0| respectively ; and

|u| ≤ v ≤ c1

(
1 +D +

( |σ|(Ω) + |µ|(ΩT )
DN

)m3

+ I
2D
2

[
|σ| ⊗ δ{t=0} + |µ|

])

Remark that, if σ ≡ 0 and supp(µ) ⊂ Ω× [a, T ], a > 0, then u = v = 0 in Ω× (0, a), since
un,k = vn,k = 0 in Ω× (0, a).

Step 2. We consider any σ ∈ Mb(Ω) such that σ is absolutely continuous with respect
to the capacity CapG 2

q
,q′ in Ω. So, µ+ σ ⊗ δ{t=0} is absolutely continuous with respect to

the capacity Cap2,1,q′ in Ω× (−T, T ). As above, we verify that there exists a renormalized
solution u of 




ut −∆pu+ |u|q−1u = χΩT
µ+ σ ⊗ δ{t=0} in Ω× (−T, T )

u = 0 on ∂Ω× (−T, T ),
u(−T ) = 0 on Ω,

satisfying u = 0 in Ω × (−T, 0) and (5.1.7). Finally, from Remark 5.3.2 we get the result.
This completes the proof of the Theorem.
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Chapitre 6

Wiener criteria for existence of large

solutions of quasilinear elliptic

equations with absorption

Abstract

We obtain sufficient conditions, expressed in terms of Wiener type tests involving Hausdorff
or Bessel capacities, for the existence of large solutions to equations (1) −∆pu+ e

u−1 = 0
or (2) −∆pu + uq = 0 in a bounded domain Ω when q > p − 1 > 0. We apply our results
to equations (3) −∆pu+ a|∇u|q + bus = 0, (4) ∆pu+ u−γ = 0 with 1 < p ≤ 2, 1 ≤ q ≤ p,
a > 0, b > 0 and q > p− 1, s ≥ p− 1, γ > 0.
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6.1 Introduction

Let Ω be a bounded domain in R
N (N ≥ 2) and 1 < p ≤ N . We denote ∆pu =

div(|∇u|p−2∇u), ρ(x) = dist(x, ∂Ω). In this paper we study some questions relative to the
existence of solutions to the problem

−∆pu+ g(u) = 0 in Ω,
lim

ρ(x)→0
u(x) = ∞, (6.1.1)

where g is a continuous nondecreasing function vanishing at 0, and most often g(u) is
either sign(u)(e|u| − 1) or |u|q−1 u with q > p − 1. A solution to problem (6.1.1) is called
a large solution. When the domain is regular in the sense that the Dirichlet problem with
continuous boundary dataφ

−∆pu+ g(u) = 0 in Ω,
u = φ on ∂Ω,

(6.1.2)

admits a solution, it is clear that problem (6.1.1) admits a solution. It is known that a
necessary and sufficient condition for the solvability of problem (6.1.2) is the the extended
Wiener criterion, due to Wiener [21] when p = 2 and Maz’ya [13], Kilpelainen and Maly
[7] when p 6= 2 (see [14] for a nice exposition). This condition is

ˆ 1

0

(
Cap1,p(Bt(x) ∩ Ωc)

tN−p

) 1
p−1 dt

t
= ∞ ∀x ∈ ∂Ω, (6.1.3)

where Cap1,p denotes the capacity associated to the space W 1,p(RN ). The existence of a
large solution is guaranteed for a large class of nondecreasing nonlinearities g satisfying
the Vazquez condition[18]

ˆ ∞

a

dt
p
√
G(t)

<∞ where G(t) =

ˆ t

0
g(s)ds, (6.1.4)

for some a > 0. This is an extension of the Keller-Osserman condition [8], [15], which is
the above relation when p = 2. If for R > diam(Ω) there exists a function v which satisfies

−∆pv + g(v) = 0 in BR \ {0},
v = 0 on ∂BR,

lim
x→0

v(x) = ∞,
(6.1.5)

then it is easy to see that the maximal solution of

−∆pu+ g(u) = 0 in Ω, (6.1.6)

is a large solution, without any assumption on the regularity of ∂Ω. However the existence
of a (radial) solution to problem (6.1.5) needs the fact that equation (6.1.6) admits solutions
with isolated singularities, which is usually not true if the growth of g is too strong since
Vazquez and Véron prove in [19] that if

lim inf
|r|→∞

|r|−
N(p−1)
N−p sign(r)g(r) > 0 with p < N, (6.1.7)
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isolated singularities of solutions of (6.1.6) are removable. Conversely, if p−1 < q < N(p−1)
N−p

with p < N , Friedman and Véron [5] characterize the behavior of positive singular solutions
to

−∆pu+ uq = 0 (6.1.8)

with an isolated singularities. In 2003, Labutin [9] show that a necessary and sufficient
condition in order the following problem be solvable

−∆u+ |u|q−1 u = 0 in Ω,
lim

ρ(x)→0
u(x) = ∞, (6.1.9)

is that
ˆ 1

0

Cap2,q′(Bt(x) ∩ Ωc)

tN−2

dt

t
= ∞ ∀x ∈ ∂Ω, (6.1.10)

where Cap2,q′ is the capacity associated to the Sobolev space W 2,q′(RN ) and q′ = q/(q−1),
N ≥ 3. Notice that this condition is always satisfied if q is subcritical, i.e. q < N/(N − 2).
We refer to [12] for other related results. Concerning the exponential case of problem (6.1.1)
nothing is known, even in the case p = 2, besides the simple cases already mentioned.

In this article we give sufficient conditions, expressed in terms of Wiener tests, in order
problem (6.1.1) be solvable in the two cases g(u) = sign(u)(e|u| − 1) and g(u) = |u|q−1 u,
q > p−1. For 1 < p ≤ N , we denote by HN−p

1 (E) the Hausdorff capacity of a set E defined
by

HN−p
1 (E) = inf




∑

j

hN−p(Bj) : E ⊂
⋃
Bj , diam(Bj) ≤ 1



 , (6.1.11)

where the Bj are balls and hN−p(Br) = rN−p. Our main result concerning the exponential
case is the following

Theorem 1. Let N ≥ 2 and 1 < p ≤ N . If

ˆ 1

0

(
HN−p

1 (Ωc ∩Br(x))
rN−p

) 1
p−1 dr

r
= +∞ ∀x ∈ ∂Ω, (6.1.12)

then there exists u ∈ C1(Ω) satisfying

−∆pu+ eu − 1 = 0 in Ω,
lim

ρ(x)→0
u(x) = ∞. (6.1.13)

Clearly, when p = N , we have HN−p
1 ({x0}) = 1 for all x0 ∈ R

N thus, (6.1.12) is true
for any open domain Ω.

We also obtain a sufficient condition for the existence of a large solution in the power
case expressed in terms of some Capα,s Bessel capacity in R

N associated to the Besov space
Bα,s(RN ).
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Theorem 2. Let N ≥ 2, 1 < p < N and q1 >
N(p−1)
N−p . If

1
ˆ

0

(
Capp, q1

q1−p+1
(Ωc ∩Br(x))

rN−p

) 1
p−1

dr

r
= +∞ ∀x ∈ ∂Ω, (6.1.14)

then, for any p− 1 < q < pq1
N there exists u ∈ C1(Ω) satisfying

−∆pu+ uq = 0 in Ω,
lim

ρ(x)→0
u(x) = ∞. (6.1.15)

We can see that condition (6.1.12) implies (6.1.14). In view of Labutin’s theorem this
previous result is not optimal in the case p = 2, since the involved capacity is C2,q′1

with
q′1 and thus there exists a solution to

−∆pu+ uq1 = 0 in Ω
lim

ρ(x)→0
u(x) = ∞ (6.1.16)

with q1 > q.

At end we apply the previous theorem to quasilinear viscous Hamilton-Jacobi equa-
tions :

−∆pu+ a |∇u|q + b|u|s−1u = 0 in Ω,

u ∈ C1(Ω), lim
ρ(x)→0

u(x) = ∞, (6.1.17)

For q1 > p − 1 and 1 < p ≤ 2, if equation (6.1.15) admits a solution with q = q1, then
for any a > 0, b > 0 and q ∈ (p − 1, pq1

q1+1), s ∈ [p − 1, q1) there exists a positive solution
to (6.1.17). Conversely, if for some a, b > 0, s > p − 1 there exists a solution to equation
(6.1.17) with 1 < q = p ≤ 2, then for any q1 > p − 1, 1 ≤ q1 ≤ p, s1 ≥ p − 1, a1, b1 > 0
there exists a positive solution to equation (6.1.17) with parameters q1, s1, a1, b1 replacing
q, s, a, b. Moreover, we also prove that the previous statement holds if for some γ > 0 there
exists u ∈ C(Ω) ∩ C1(Ω), u > 0 in Ω satisfying

−∆pu+ u−γ = 0 in Ω,
u = 0 on ∂Ω.

(6.1.18)

We would like to remark that the case p = 2 was studied in [10]. In particular, if the
boundary of Ω is smooth then (6.1.17) has a solution with s = 1 and 1 < q ≤ 2, a > 0, b > 0.

6.2 Morrey classes and Wolff potential estimates

In this section we assume that Ω is a bounded open subset of R
N and 1 < p < N .

We also denote by Br(x) the open ball of center x and radius r and Br = Br(0). We also
recall that a solution of (6.1.1) belongs to C1,α

loc (Ω) for some α ∈ (0, 1), and is more regular
(depending on g) on the set {x ∈ Ω : |∇u(x)| 6= 0}.
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Definition 6.2.1 A function f ∈ L1(Ω) belongs to the Morrey space Ms(Ω), 1 ≤ s ≤ ∞,
if there is a constant K such that

ˆ

Ω∩Br(x)
|f |dy ≤ Kr

N
s′ ∀r > 0, ∀x ∈ R

N . (6.2.1)

The norm is defined as the smallest constant K that satisfies this inequality ; it is denoted
by ||f ||Ms(Ω). Clearly Ls(Ω) ⊂ Ms(Ω).

Definition 6.2.2 Let R ∈ (0,∞] and µ ∈ M
b
+(Ω), the set of nonnegative and bounded

Radon measures in Ω. We define the (R-truncated) Wolff potential of µ by

W
R
1,p[µ](x) =

ˆ R

0

(
µ(Bt(x))

tN−p

) 1
p−1 dt

t
∀x ∈ R

N , (6.2.2)

and the (R-truncated) fractional maximal potential of µ by

Mp,R[µ](x) = sup
0<t<R

µ(Bt(x))

tN−p ∀x ∈ R
N , (6.2.3)

where the measure is extended by 0 in Ωc.

We recall a result proved in [6] (see also [2, Theorem 2.4]).

Theorem 6.2.3 Let µ be a nonnegative Radon measure in R
N . There exist positive constants

C1, C2 depending on N, p such that
ˆ

2B
exp(C1W

R
1,p[χBµ])dx ≤ C2r

N ,

for all B = Br(x0) ⊂ R
N , 2B = B2r(x0), R > 0 such that ||Mp,R[µ]||L∞(RN ) ≤ 1.

For k ≥ 0, we set Tk(u) = sign(u)min{k, |u|}.

Definition 6.2.4 Assume f ∈ L1
loc(Ω). We say that a measurable function u defined in Ω

is a renormalized supersolution of

−∆pu+ f = 0 in Ω (6.2.4)

if, for any k > 0, Tk(u) ∈W 1,p
loc (Ω), |∇u|

p−1 ∈ L1
loc(Ω) and there holds

ˆ

Ω
(|∇Tk(u)|p−2∇Tk(u)∇ϕ+ fϕ)dx ≥ 0 (6.2.5)

for all ϕ ∈ W 1,p(Ω) with compact support in Ω and such that 0 ≤ ϕ ≤ k − Tk(u), and if
−∆pu+ f is a positive distribution in Ω.

The following result is proved in [14, Theorem 4.35].
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Theorem 6.2.5 If f ∈ M
N

p−ǫ (Ω) for some ǫ ∈ (0, p), u is a nonnegative renormalized
supersolution of (6.2.4) and set µ := −∆pu+ f . Then there holds

u(x) + ||f ||
1

p−1

M
N

p−ε (Ω)
≥ CW

r
4
1,p[µ](x) ∀x ∈ Ω s.t. Br(x) ⊂ Ω, (6.2.6)

for some C depending only on N, p, ε, diam(Ω).

Concerning renormalized solutions (see [3] for the definition) of

−∆pu+ f = µ in Ω, (6.2.7)

where f ∈ L1(Ω) and µ ∈ M
b
+(Ω), we have

Corollary 6.2.6 Let f ∈ M
N

p−ǫ (Ω) and µ ∈ M
+
b (Ω). If u is a renormalized solution

to (6.2.7) and infΩ u > −∞ then there exists a positive constant C depending only on
N, p, ε, diam(Ω) such that

u(x) + ||f ||
1

p−1

M
N

p−ε (Ω)
≥ inf

Ω
u+ CW

d(x,∂Ω)
4

1,p [µ](x) ∀x ∈ Ω. (6.2.8)

The next result, proved in [2, Theorem 1.1, 1.2], is an important tool for the proof of
Theorems 1 and 2. Before presenting we introduce the notation.

Definition 6.2.7 Let s > 1 and α > 0. We denote by Cα,s(E) the Bessel capacity of Borel
set E ⊂ R

N ,

Capα,s(E) = inf{||φ||sLs(RN ) : φ ∈ Ls+(R
N ), Gα ∗ φ ≥ χE}

where χE is the characteristic function of E and Gα the Bessel kernel of order α.
We say that a measure µ in Ω is absolutely continuous with respect to the capacity Capα,s
in Ω if

for all E ⊂ Ω, E Borel,Capα,s(E) = 0 ⇒ |µ|(E) = 0.

Theorem 6.2.8 Let µ ∈ M
b
+(Ω) and q > p− 1.

a. If µ is absolutely continuous with respect to the capacity Capp, q
q+1−p

in Ω, then there
exists a nonnegative renormalized solution u to equation

−∆pu+ uq = µ in Ω
u = 0 on ∂Ω,

(6.2.9)

which satisfies

u(x) ≤ CW
2diam(Ω)
1,p [µ](x) ∀x ∈ Ω. (6.2.10)

where C is a positive constant depending on p and N .

b. If exp(CW
2diam(Ω)
1,p [µ]) ∈ L1(Ω) where C is the previous constant, then there exists a

nonnegative renormalized solution u to equation

−∆pu+ eu − 1 = µ in Ω
u = 0 on ∂Ω,

(6.2.11)

which satisfies (6.2.10).
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6.3 Estimates from below

If G is any domain in R
N with a compact boundary and g is nondecreasing, g(0) =

g−1(0) = 0 and satisfies (6.1.7)) there always exists a maximal solution to (6.1.6) in G. It
is constructed as the limit, when n→ ∞, of the solutions of

−∆pun + g(un) = 0 in Gn
lim

ρn(x)→0
un(x) = ∞

lim
|x|→∞

un(x) = 0 if Gn is unbounded,
(6.3.1)

where {Gn}n is a sequence of smooth domains such that Gn ⊂ Gn ⊂ Gn+1 for all n,

{∂Gn}n is a bounded and
∞⋃
n=1

Gn = G and ρn(x) := dist(x, ∂Gn). Our main estimates are

the following.

Theorem 6.3.1 Let K ⊂ B1/4\{0} be a compact set and let Uj ∈ C1(Kc), j = 1, 2, be the
maximal solutions of

−∆pu+ eu − 1 = 0 in Kc (6.3.2)

for U1 and
−∆pu+ uq = 0 in Kc (6.3.3)

for U2, where p − 1 < q < pq1
N . Then there exist constants Ck, k = 1, 2, 3, 4, depending on

N , p and q such that

U1(0) ≥ −C1 + C2

ˆ 1

0

(
HN−p

1 (K ∩Br)
rN−p

) 1
p−1 dr

r
(6.3.4)

and

U2(0) ≥ −C3 + C4

ˆ 1

0

(
Capp, q1

q1−p+1
(K ∩Br)

rN−p

) 1
p−1

dr

r
. (6.3.5)

Proof. 1. For j ∈ Z define rj = 2−j and Sj = {x : rj ≤ |x| ≤ rj−1}, Bj = Brj . Fix a
positive integer J such that K ⊂ {x : rJ ≤ |x| < 1/8}. Consider the sets K ∩ Sj for j =
3, ..., J . By [17, Theorem 3.4.27], there exists µj ∈ M

+(RN ) such that supp(µj) ⊂ K ∩ Sj ,
‖Mp,1[µj ]‖L∞(RN ) ≤ 1 and

c−1
1 HN−p

1 (K ∩ Sj) ≤ µj(R
N ) ≤ c1HN−p

1 (K ∩ Sj) ∀j,

for some c1 = c1(N, p).
Now, we will show that for ε = ε(N, p) > 0 small enough, there holds,

A :=

ˆ

B1

exp

(
εW1

1,p

[
J∑

k=3

µk

]
(x)

)
dx ≤ c2, (6.3.6)
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6.3. ESTIMATES FROM BELOW

where c2 does not depend on J .
Indeed, define µj ≡ 0 for all j ≥ J + 1 and j ≤ 2. We have

A =

∞∑

j=1

ˆ

Sj

exp

(
εW1

1,p

[
J∑

k=3

µk

]
(x)

)
dx.

Since for any j

W
1
1,p

[
J∑

k=3

µk

]
≤ c(p)W1

1,p


 ∑

k≥j+2

µk


+ c(p)W1

1,p


 ∑

k≤j−2

µk


+ c(p)

j+1∑

k=max{j−1,3}
W

1
1,p[µk]

with c(p) = max{1, 5
2−p
p−1 } and exp(

5∑
i=1

ai) ≤
5∑
i=1

exp(5ai) for all ai. Thus,

A ≤
∞∑

j=1

ˆ

Sj

exp


c3εW1

1,p


 ∑

k≥j+2

µk


 (x)


 dx+

∞∑

j=1

ˆ

Sj

exp


c3εW1

1,p


 ∑

k≤j−2

µk


 (x)


 dx

+
∞∑

j=1

j+1∑

k=max(j−1,3)

ˆ

Sj

exp
(
c3εW

1
1,p[µk](x)

)
dx := A1 +A2 +A3, with c3 = 5c(p).

Estimate of A3 : We apply Theorem 6.2.3 for µ = µk and B = Bk−1,
ˆ

2Bk−1

exp
(
c3εW

1
1,p[µk](x)

)
dx ≤ c4r

N
k−1

with c3ε ∈ (0, C1], the constant C1 is in Theorem 6.2.3. In particular,

ˆ

Sj

exp
(
c3εW

1
1,p[µk](x)

)
dx ≤ c4r

N
k−1 for k = j − 1, j, j + 1,

which implies

A3 ≤ c5

+∞∑

j=1

rNj = c5 <∞. (6.3.7)

Estimate of A1 : Since
∑

k≥j+2

µk (Bt(x)) = 0 for all x ∈ Sj , t ∈ (0, rj+1). Thus,

A1 =
∞∑

j=1

ˆ

Sj

exp


c3ε

1
ˆ

rj+1




∑
k≥j+2

µk(Bt(x))

tN−p




1
p−1

dt

t


 dx

≤
∞∑

j=1

exp


c3ε

p− 1

N − p


 ∑

k≥j+2

µk(Sk)




1
p−1

r
−N−p

p−1

j+1


|Sj |.
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Note that µk(Sk) ≤ µk(Brk−1
(0)) ≤ rN−p

k−1 , which leads to


 ∑

k≥j+2

µk(Sk)




1
p−1

r
−N−p

p−1

j+1 ≤


 ∑

k≥j+2

rN−p
k−1




1
p−1

r
−N−p

p−1

j+1 = (1− 2−(N−p))−
1

p−1 .

Therefore

A1 ≤ exp

(
c3ε

p− 1

N − p
(1− 2−(N−p))−

1
p−1

)
|B1| = c6. (6.3.8)

Estimate of A2 : for x ∈ Sj ,

W
1
1,p


 ∑

k≤j−2

µk


 (x) =

1
ˆ

rj−1




∑
k≤j−2

µk(Bt(x))

tN−p




1
p−1

dt

t
=

j−1∑

i=1

ri−1
ˆ

ri




∑
k≤j−2

µk(Bt(x))

tN−p




1
p−1

dt

t
.

Since ri < t < ri−1,
∑

k≤i−2

µk(Bt(x)) = 0, ∀i = 1, ..., j − 1, thus

W
1
1,p


 ∑

k≤j−2

µk


 (x) =

j−1∑

i=1

ri−1
ˆ

ri




j−2∑
k=i−1

µk(Bt(x))

tN−p




1
p−1

dt

t
≤

j−1∑

i=1

ri−1
ˆ

ri




j−2∑
k=i−1

µk(Sk)

tN−p




1
p−1

dt

t

≤
j−1∑

i=1

(
j−2∑

k=i−1

rN−p
k−1

) 1
p−1

r
−N−p

p−1

i ≤ c7j, with c7 =
(

4N−p

1− 2−(N−p)

) 1
p−1

.

Therefore,

A2 ≤
∞∑

j=1

ˆ

Sj

exp (c3c7εj) dx =

∞∑

j=1

rNj exp (c3c7εj) |S1|

=

∞∑

j=1

exp ((c3c7ε−N log(2)) j) |S1| ≤ c8 for ε ≤ N log(2)/(2c3c7). (6.3.9)

Consequently, from (6.3.8), (6.3.9) and (6.3.7), we obtain A ≤ c2 := c6 + c8 + c5 for
ε = ε(N, p) small enough. This implies

∥∥∥∥∥exp
(

p

2N
εW1

1,p

[
J∑

k=3

µk

])∥∥∥∥∥
M

2N
p (B1)

≤ c9

(
ˆ

B1

exp

(
εW1

1,p

[
J∑

k=3

µk

]
(x)

)
dx

) p
2N

≤ c10,

(6.3.10)
where the constant c10 does not depend on J . Set B = B 1

4
. For ε0 = ( pε

2NC )
1/(p−1), where C

is the constant in 6.2.10, by Theorem 6.2.8 and estimate (6.3.10), there exists a nonnegative
renormalized solution u to equation

−∆pu+ eu − 1 = ε0
∑J

j=3 µj in B

u = 0 in ∂B,
(6.3.11)
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satisfying (6.2.10) with µ = ε0
∑J

j=3 µj . Thus, from Corollary 6.2.6 and estimate (6.3.10),
we have

u(0) ≥ −c11 + c12W
1
4
1,p




J∑

j=3

µj


 (0).

Therefore

u(0) ≥ −c11 + c12

∞∑

i=2

ri
ˆ

ri+1




J∑
j=3

µj(Bt(0))

tN−p




1
p−1

dt

t
≥ −c11 + c12

J−2∑

i=2

ri
ˆ

ri+1

(
µi+2(Bt(0))

tN−p

) 1
p−1 dt

t

= −c11 + c12

J−2∑

i=2

ri
ˆ

ri+1

(
µi+2(Si+2)

tN−p

) 1
p−1 dt

t
≥ −c11 + c13

J−2∑

i=2

(
HN−p

1 (K ∩ Si+2)
) 1

p−1
r
−N−p

p−1

i

= −c11 + c13

∞∑

i=4

(
HN−p

1 (K ∩ Si)
) 1

p−1
r
−N−p

p−1

i .

From the inequality

(
HN−p

1 (K ∩ Si)
) 1

p−1 ≥ 1

max(1,2
2−p
p−1 )

(
HN−p

1 (K ∩Bi−1)
) 1

p−1 −
(
HN−p

1 (K ∩Bi)
) 1

p−1 ∀i,

we deduce that

u(0) ≥ −c11 + c13

∞∑

i=4

(
1

max(1,2
2−p
p−1 )

(
HN−p

1 (K ∩Bi−1)
) 1

p−1 −
(
HN−p

1 (K ∩Bi)
) 1

p−1

)
r
−N−p

p−1

i

≥ −c11 + c13

(
2
N−p
p−1

max(1,2
2−p
p−1 )

− 1

) ∞∑

i=4

(
HN−p

1 (K ∩Bi)
) 1

p−1
r
−N−p

p−1

i

≥ −c14 + c15

1
ˆ

0

(
HN−p

1 (K ∩Bt)
tN−p

) 1
p−1 dt

t
.

Since U1 is the maximal solution in Kc, u satisfies the same equation in B\K and U1 ≥
u = 0 on ∂B, it follows that U1 dominates u in B\K. Then U1(0) ≥ u(0) and we obtain
(6.3.4).

2. By [1, Theorem 2.5.3], there exists µj ∈ M
+(RN ) such that supp(µj) ⊂ K ∩ Sj and

µj(K ∩ Sj) =
ˆ

RN

(Gp[µj ](x))
q1
p−1dx = Capp, q1

q1−p+1
(K ∩ Sj).

By Jensen’s inequality, we have for any ak ≥ 0,
( ∞∑

k=0

ak

)s
≤

∞∑

k=0

θk,sa
s
k

298



6.3. ESTIMATES FROM BELOW

where θk,r has the following expression with θ > 0,

θk,s =

{
1 if s ∈ (0, 1],(
θ+1
θ

)s−1
(θ + 1)k(s−1) if s > 1.

Thus,

ˆ

B1

(
W

1
1,p

[
J∑

k=3

µk

]
(x)

)q1
dx ≤

ˆ

B1

(
J∑

k=3

θk, 1
p−1

W
1
1,p[µk](x)

)q1
dx

≤
J∑

k=3

θq1
k, 1

p−1

θk,q1

ˆ

B1

(
W

1
1,p[µk](x)

)q1dx

≤ c16

J∑

k=3

θq1
k, 1

p−1

θk,q1

ˆ

RN

(Gp ∗ µk(x))
q1
p−1dx

= c16

J∑

k=3

θq1
k, 1

p−1

θk,q1Capp, q1
q1−p+1

(K ∩ Sk)

≤ c17

J∑

k=3

θq1
k, 1

p−1

θk,q12
−k

(

N− pq1
q1−p+1

)

≤ c18,

for θ small enough. Here the third inequality follows from [2, Theorem 2.3] and the constant
c18 does not depend on J . Hence,

∥∥∥∥∥

(
W

1
1,p

[
J∑

k=3

µk

])q∥∥∥∥∥
M

q1
q (B1)

≤ c19

∥∥∥∥∥W
1
1,p

[
J∑

k=3

µk

]∥∥∥∥∥

q

Lq1 (B1)

≤ c20, (6.3.12)

where c20 is independent of J . Take B = B 1
4
. Since

∑J
j=3 µj is absolutely continuous with

respect to the capacity Capp, q
q+1−p

in B, thus by Theorem 6.2.8, there exists a nonnegative
renormalized solution u to equation

−∆pu+ uq =
∑J

j=3 µj in B

u = 0 on ∂B.
(6.3.13)

satisfying (6.2.10) with µ =
∑J

j=3 µj . Thus, from Corollary 6.2.6 and estimate (6.3.12), we
have

u(0) ≥ −c21 + c22W
1
4
1,p




J∑

j=3

µj


 (0).

As above, we also get that

u(0) ≥ −c23 + c24

ˆ 1

0

(
Capp, q1

q1−p+1
(K ∩Br)

rN−p

) 1
p−1

dr

r
.

After we also have U2(0) ≥ u(0). Therefore, we obtain(6.3.5).
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6.4 Proof of the main results

First, we prove theorem 1 in the case case p = N . To do this we consider the function

x 7→ U(x) = U(|x|) = log

(
N − 1

2N+1

1

RN

(
R

|x| + 1

))
in BR(0)\{0}.

One has

U
′
(|x|) = 1

R+ |x| −
1

|x| and U
′′
(|x|) = − 1

(R+ |x|)2 +
1

|x|2 ,

thus, for any 0 < |x| < R,

−∆NU + eU − 1 = −(N − 1)|U ′
(|x|)|N−2

(
U

′′
(|x|) + 1

|x|U
′
(|x|)

)
+ eU − 1

= − (N − 1)RN−1

(R+ |x|)N |x|N−1
+
N − 1

2N+1

1

RN

(
R

|x| + 1

)
− 1

≤ −(N − 1)RN−1

(2R)N |x|N−1
+
N − 1

2N+1

1

RN
2R

|x|
≤ −1.

Hence, if u ∈ C1(Ω) is the maximal solution of

−∆Nu+ eu − 1 = 0 in Ω (6.4.1)

and R = 2diam(Ω), then u(x) ≥ U(|x − y|) for any x ∈ Ω and y ∈ ∂Ω. Therefore, u is a
large solution and satisfies

u(x) ≥ log

(
N − 1

2N+1

1

RN

(
R

ρ(x)
+ 1

))
∀ x ∈ Ω.

Now, we prove theorem 1 in the case p < N and theorem 2. Let u, v ∈ C1(Ω) be the
maximal solutions of

(i) −∆pu+ eu − 1 = 0 in Ω,

(ii) −∆pv + vq = 0 in Ω.

Fix x0 ∈ ∂Ω. We can assume that x0 = 0. Let δ ∈ (0, 1/12). For z0 ∈ Bδ ∩ Ω. Set
K = Ωc ∩ B1/4(z0). Let U1, U2 ∈ C1(Kc) be the maximal solutions of (6.3.2) and (6.3.3)
respectively. We have u ≥ U1 and v ≥ U2 in Ω. By Theorem 6.3.1,

U1(z0) ≥ −c1 + c2

ˆ 1

δ

(
HN−p

1 (K ∩Br(z0))
rN−p

) 1
p−1 dr

r

≥ −c1 + c2

ˆ 1

δ

(
HN−p

1 (K ∩Br−|z0|)

rN−p

) 1
p−1

dr

r
(since Br−|z0| ⊂ Br(z0)))

≥ −c1 + c2

ˆ 1

2δ

(
HN−p

1 (K ∩B r
2
)

rN−p

) 1
p−1

dr

r

≥ −c1 + c3

ˆ 1/2

δ

(
HN−p

1 (K ∩Br)
rN−p

) 1
p−1 dr

r
.
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We deduce

inf
Bδ∩Ω

u ≥ inf
Bδ∩Ω

U1 ≥ −c1 + c3

ˆ 1/2

δ

(
HN−p

1 (K ∩Br)
rN−p

) 1
p−1 dr

r
→ ∞ as δ → 0.

Similarly, we also obtain

inf
Bδ∩Ω

v ≥ −c4 + c5

ˆ 1/2

δ

(
Capp, q1

q1−p+1
(K ∩Br)

rN−2

) 1
p−1

dr

r
→ ∞ as δ → 0.

Therefore, u and v satisfy (6.1.13) and (6.1.15) respectively. This completes the proof.

6.5 Large solutions of quasilinear Hamilton-Jacobi equations

Let Ω be a bounded open subset of RN with N ≥ 2. In this section we use our previous
results to give sufficient conditions for existence of solutions to the problem

−∆pu+ a |∇u|q + bus = 0 in Ω,
lim

ρ(x)→0
u(x) = ∞, (6.5.1)

where a > 0, b > 0 and 1 ≤ q < p ≤ 2, q > p− 1, s ≥ p− 1.

First we have the result of existence solutions to equation (6.5.1).

Proposition 6.5.1 Let a > 0, b > 0 and q > p − 1, s ≥ p − 1, 1 ≤ q ≤ p and 1 < p ≤ 2.
There exists a maximal nonnegative solution u ∈ C1(Ω) to equation

−∆pu+ a |∇u|q + bus = 0 in Ω (6.5.2)

which satisfies

u(x) ≤ c(N, p, s)b
− 1

s−p+1 ρ(x)
− p

s−p+1 ∀x ∈ Ω, (6.5.3)

if s > p− 1,

u(x) ≤ c(N, p, q)
(
a
− 1

q−p+1 ρ(x)
− p−q

q−p+1 + a
− 1

q−p+1 b
− 1

p−1 ρ(x)
− q

(p−1)(q−p+1)

)
∀x ∈ Ω, (6.5.4)

if p− 1 < q < p and s = p− 1, and

u(x) ≤ c(N, p)a−1b
− 1

p−1 ρ(x)
− p

p−1 ∀x ∈ Ω, (6.5.5)

if q = p and s = p− 1.

Proof. Case s = p− 1 and p− 1 < q < p. We consider

U1(x) = U1(|x|) = c1

(
Rp

′ − |x|p′

p′Rp′−1

)− p−q
q−p+1

+ c2 ∈ C1(BR(0)).
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with p′ = p
p−1 and c1, c2 > 0. We have

U
′
1(|x|) =

c1(p− q)

q − p+ 1

|x|p′−1

Rp′−1

(
Rp

′ − |x|p′

p′Rp′−1

)− 1
q−p+1

,

U
′′
1 (|x|) =

c1(p− q)(p′ − 1)

q − p+ 1

|x|p′−2

Rp′−1

(
Rp

′ − |x|p′

p′Rp′−1

)− 1
q−p+1

+
c1(p− q)

(q − p+ 1)2

(
|x|p′−1

Rp′−1

)2(
Rp

′ − |x|p′

p′Rp′−1

)− 1
q−p+1

−1

,

and

A = −∆pU1 + a|∇U1|q + bUp−1
1 ≥ −∆pU1 + a|∇U1|q + bcp−1

2 .

Thus, for all x ∈ BR(0)

A ≥ −(p− 1)|U ′
1(|x|)|p−2U

′′
1 (|x|)−

N − 1

|x| |U ′
1(|x|)|p−2U

′
1(|x|) + a|U ′

1(|x|)|q + bcp−1
1

=

(
c1(p− q)(p′ − 1)

q − p+ 1

)p−1
(
Rp

′ − |x|p′

p′Rp′−1

)− q
q−p+1

{
−(p− 1)

p′ − 1

p′

(
1−

( |x|
R

)p′)

− 1

q − p+ 1

( |x|
R

)p′
− N − 1

p′

( |x|
R

)p′ (
1−

( |x|
R

)p′)

+a

(
c1(p− q)

q − p+ 1

)q−p+1( |x|
R

) q
q−p+1

}
+ bcp−1

2

≥
(
c1(p− q)(p′ − 1)

q − p+ 1

)p−1
(
Rp

′ − |x|p′

p′Rp′−1

)− q
q−p+1

×
{
−N(p− 1)

p
− 1

q − p+ 1
+ a

(
c1(p− q)

q − p+ 1

)q−p+1( |x|
R

) q
q−p+1

}
+ bcp−1

2 .

Clearly, one can find c1 = c2(N, p, q)a
− 1

q−p+1 > 0 and c3 = c3(N, p, q) > 0 such that

A ≥ −c3a−
p−1

q−p+1R
− q

q−p+1 + bcp−1
2 .

Choosing c2 = c
1

p−1

3 a
− 1

q−p+1 b
− 1

p−1R
− q

(p−1)(q−p+1) , we get

−∆pU1 + a|∇U1|q + bUp−1
1 ≥ 0 in BR(0). (6.5.6)

Likewise, we can verify that the function U2 below

U2(x) = c4a
−1 log

(
Rp

′

Rp′ − |x|p′
)

+ c4a
−1b

− 1
p−1R

− p
p−1
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belongs to C1
+(BR(0)) and satisfies

−∆pU2 + a|∇U2|p + bUp−1
2 ≥ 0 in BR(0). (6.5.7)

While, if s > p− 1,

U3(x) = c5b
− 1

s−p+1

(
Rβ − |x|β
βRβ−1

)− p
s−p+1

belongs to C1(BR(0)) and verifies

−∆pU3 + bU s3 ≥ 0 in BR(0), (6.5.8)

for some positive constants c4 = c4(N, p, q), c5 = c5(N, p, s) and β = β(N, p, q) > 1.
We emphasize the fact that with the condition 1 < p ≤ 2 and q ≥ 1, equation (6.5.2)
satisfies a comparison principle, see [16, Theorem 3.5.1, corollary 3.5.2]. Take a sequence

of smooth domains Ωn satisfying Ωn ⊂ Ωn ⊂ Ωn+1 for all n and
∞⋃
n=1

Ωn = Ω. For each

n, k ∈ N
∗, there exist nonnegative solution un,k = u ∈ W 1,p

k (Ωn) := W 1,p
0 (Ωn) + k of

equation (6.5.2) in Ωn.
Since −∆puk,n ≤ 0 in Ωn, so using the maximum principle we get un,k ≤ k in Ωn for all
n. Thus, by standard regularity (see [4] and [11]), un,k ∈ C1,α(Ωn) for some α ∈ (0, 1). It
follows from the comparison principle and (6.5.6)-(6.5.8), that

un,k ≤ un,k+1 in Ωn

and (6.5.3)-(6.5.5) are satisfied with un,k and Ωn in place of u and Ω respectively. From
this, we derive uniform local bounds for {un,k}k, and by standard interior regularity (see
[4]) we obtain uniform local bounds for {un,k}k in C1,η

loc (Ωn). It implies that the sequence
{un,k}k is pre-compact in C1. Therefore, up to a subsequence, un,k → un in C1(Ωn). Hence,
we can verify that un is a solution of (6.5.2) and satisfies (6.5.3)-(6.5.5) with un and Ωn
replacing u and Ω and un(x) → ∞ as d(x, ∂Ωn) → 0.
Next, since un,k ≥ un+1,k in Ωn there holds un ≥ un+1 in Ωn. In particular, {un} is
uniformly locally bounded in Ω. Arguing as above, we obtain un → u in C1(Ω), thus u is
a solution of (6.5.2) in Ω and satisfies (6.5.3)-(6.5.5). Clearly, u is the maximal solution of
(6.5.2).

Theorem 6.5.2 Let q1 > p − 1 and 1 < p ≤ 2. Assume that equation (6.1.15) admits a
solution with q = q1. Then for any a > 0, b > 0 and q ∈ (p − 1, pq1

q1+1), s ∈ [p − 1, q1)
equation (6.5.2) has a large solution satisfying (6.5.3) and (6.5.4).

Proof. Assume that equation (6.1.15) admits a solution v with q = q1 and set v = βwσ

with β > 0, σ ∈ (0, 1), then w > 0 and

−∆pw + (−σ + 1)(p− 1)
|∇w|p
w

+ βq1−p+1σ−p+1wσ(q1−p+1)+p−1 = 0 in Ω. (6.5.9)

If we impose max{ s−p+1
q1−p+1 ,

(
q
p−q − p+ 1

)
1

q1−p+1} < σ < 1, we can see that

(−σ+1)(p−1)
|∇w|p
w

+βq1−p+1σ−p+1wσ(q1−p+1)+p−1 ≥ a|∇w|q+bws in {x : w(x) ≥M},
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where a positive constant M depends on p, q1, q, s, a, b. Therefore

−∆pw + a |∇w|q + bws ≤ 0 in {x : w(x) ≥M}.

Now we take an open subset Ω′ of Ω with Ω′ ⊂ Ω such that the set {x : w(x) ≥ M}
contains Ω\Ω′. So w is a subsolution of −∆pu + a |∇u|q + bus = 0 in Ω\Ω′ and the same
property holds with wε := εw for any ε ∈ (0, 1). Let u be as in Proposition 6.5.1. Set
min{u(x) : x ∈ ∂Ω′} = θ1 > 0 and max{w(x) : x ∈ ∂Ω′} = θ2 ≥ M . Thus wε < u on ∂Ω′

with ε < min{ θ1θ2 , 1}. Hence, from the construction of u in the proof of Proposition 6.5.1

and the comparison principle, we obtain wε ≤ u in Ω\Ω′. This implies the result.

Remark 6.5.3 From the proof of above Theorem, we can show that under the assumption
as in Proposition 6.5.1, equation (6.5.2) has a large solution in Ω if and only if equation
(6.5.2) has a large solution in Ω\K for some a compact set K ⊂ Ω with smooth boundary.

Now we deal with (6.5.1) in the case q = p.

Theorem 6.5.4 Assume that equation (6.5.2) has a large solution in Ω for some a, b > 0,
s > p−1 and q = p > 1. Then for any a1, b1 > 0 and q1 > p−1, s1 ≥ p−1, 1 ≤ q1 ≤ p ≤ 2,
equation (6.5.2) also has a large solution u in Ω with parameters a1, b1, q1, s1 in place of
a, b, q, s respectively, and it satisfies (6.5.3)-(6.5.5).

Proof. For σ > 0 we set u = vσ thus

−∆pv − (σ − 1)(p− 1)
|∇v|p
v

+ aσvσ−1 |∇v|p + bσ−p+1v(s−p+1)σ+p−1 = 0.

Choose σ = s1−p+1
s−p+1 + 2, it is easy to see that

−∆pv + a1|∇v|q1 + b2v
s1 ≤ 0 in {x : v(x) ≥M},

for some a positive constant M only depending on p, s, a, b, a1, b1, q1, s1. Similarly as in the
proof of Theorem 6.5.2, we get the result as desired.

Remark 6.5.5 If we set u = ev then v satisfies

−∆pv + be(s−p+1)v = |∇v|p (p− 1− aev) in Ω.

From this, we can construct a large solution of

−∆pu+ be(s−p+1)u = 0 in Ω\K,

for any a compact set K ⊂ Ω with smooth boundary such that v ≥ ln
(
p−1
a

)
in Ω\K. In

case p = 2, It would be interesting to see what Wiener type criterion is implied by the
existence as such a large solution. We conjecture that this condition must be

ˆ 1

0

HN−2
1 (Br(x) ∩ Ωc)

rN−2

dr

r
= ∞ ∀x ∈ ∂Ω.
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We now consider the function

U4(x) = c

(
Rβ − |x|β
βRβ−1

) p
γ+p−1

in BR(0), γ > 0. (6.5.10)

As in the proof of proposition 6.5.1, it is easy to check that there exist positive constants
β large enough and c small enough so that inequality ∆pU4 + U−γ

4 ≥ 0 holds.
From this, we get the existence of minimal solution to equation

∆pu+ u−γ = 0 in Ω. (6.5.11)

Proposition 6.5.6 Assume γ > 0. Then there exists a minimal solution u ∈ C1(Ω) to
equation (6.5.11) and it satisfies u(x) ≥ Cρ(x)

p
γ+p−1 in Ω.

We can verify that if the boundary of Ω is satisfied (6.1.3), then above minimal solution
u belongs to C(Ω), vanishes on ∂Ω and it is therefore a solution to the quenching problem

∆pu+ u−γ = 0 in Ω,
u = 0 on ∂Ω.

(6.5.12)

Theorem 6.5.7 Let γ > 0. Assume that there exists a solution u ∈ C(Ω) to problem
(6.5.12). Then, for any a, b > 0 and q > p − 1, s ≥ p− 1, 1 ≤ q ≤ p ≤ 2, equation (6.5.2)
admits a large solution in Ω and it satisfies (6.5.3)-(6.5.5).

Proof. We set u = e
− a

p−1
v, then v is a large solution of

−∆pv + a |∇v|p +
(
p−1
a

)p−1
e

a
p−1

(γ+p−1)v
= 0 in Ω. (6.5.13)

So
−∆pv + a |∇v|q + bvs ≤ 0 in {x : v(x) ≥M}

for some a positive constant M only depending on p, q, s, a, b, γ. Similarly to the proof of
Theorem 6.5.2, we get the result as desired.
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6.6 Appendix

In this section is to establish behavior of high order gradient of the solution to equation
(6.1.15) near boundary of Ω, where ∂Ω ∈ C2.

It is well known that if ∂Ω ∈ C2 then there exists r > 0 such that B(y − r~ny, r))∩∂Ω =

B(y + r~ny, r))∩ ∂Ω = {y} ∀y ∈ ∂Ω, where ~ny is the unique outward normal unit vector at
y. Therefore, for any x ∈ Ωr := {x ∈ Ω : ρ(x) < r}, there exist a unique y ∈ ∂Ω such that
x = y − ρ(x)~ny, for simplicity we write y = Pr∂Ωx. We prove

Theorem 6.6.1 Let ∂Ω ∈ C2 and r > 0 be the same as above. Then, problem (6.1.15) has
a unique solution u which satisfies

a. for any y ∈ ∂Ω and β ≥ β0,

C0

(
|x− y − r−→n y|β − rβ

βrβ−1

)− p
q−p+1

≤ u(x) ≤ C0

(
rβ − |x− y + r−→n y|β

βrβ−1

)− p
q−p+1

(6.6.1)
for any x ∈ B(y − r−→n y, r), where ~ny is the outward normal unit vector at y and

C0 =

(
pp−1(p− 1)(q + 1)

(q − p+ 1)p

) 1
q−p+1

, β0 = max

{
p

p− 1
,
(n− p)(q − p+ 1)

p(p− 1)

}
.

b. There exists r0 ∈ (0, r) depending on p, q,N,Ω such that u ∈ C∞
loc(Ωr0) where Ωr0 .

c. Let ~nx∂Ω = (nx∂Ω,1, ..., nx∂Ω,N ) be the outward normal unit vector at x∂Ω = Pr∂Ωx for all
x ∈ Ωr. For any m ∈ N

∗, there exists a positive constant C depending on p, q,N,m
such that m = i1 + i2 + ...+ iN
∣∣∣∣∣∣
(ρ(x))

p
q−p+1

+m ∂mu(x)

∂xi11 ...∂x
iN
N

− C0

m∏

j=1

(
p

q − p+ 1
+ j − 1

) N∏

k=1

nikx∂Ω,k

∣∣∣∣∣∣
≤ C(

ρ(x)

r
)

1
m+1

(6.6.2)
for all x ∈ Ω and ρ(x) < r0

16 .
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Let u be a solution of problem (6.1.15). First we consider

U(x) = C0

(
Rβ − |x|β
βRβ−1

)− p
q−p+1

∀x ∈ B(0, R),

V (x) = C0

(
|x|β −Rβ

βRβ−1

)− p
q−p+1

∀x ∈ R
N\B(0, R),

where R > 0. By computing,

−∆pU + U q = A1B and −∆pV + V q = A2B,

where

A1 =

(
C0

p

q − p+ 1

)p−1
(
Rβ − |x|β
βRβ−1

)− qp
q−p+1

,

A2 =

(
C0

p

q − p+ 1

)p−1
(
|x|β −Rβ

βRβ−1

)− qp
q−p+1

and

B =

(
n− p

β
− p(p− 1)

q − p+ 1

) ∣∣∣ x
R

∣∣∣
p(β−1)

−
(
n− p

β
+ p− 1

) ∣∣∣ x
R

∣∣∣
β(p−1)−p

+
(q + 1)(p− 1)

q − p+ 1
.

We see that B is decreasing with respect to
∣∣ x
R

∣∣. Which implies B ≥ 0 ∀x ∈ B(0, R) and
B ≤ 0 ∀x ∈ R

N\B(0, R). Thus,

−∆pU + U q ≥ 0 ∀x ∈ B(0, R),

and
−∆pV + V q ≤ 0 ∀x ∈ R

N\B(0, R).

So, thanks to the comparison principle we obtain (6.6.1). Hence,

lim
x→∂Ω

ρ(x)
p

q−p+1u(x) = C0,

and u is a unique solution of problem (6.1.15).
To prove b. and c., we introduce the higher order divided differences.
For h ∈ R

N and k ∈ Z, we set

∆hfk(x) = f(x+ (k + 1)h)− f(x+ kh) for all x ∈ R
N .

By induction, we can define
∆n
hfk = ∆h

(
∆n−1
h fk

)
,

for any positive integer n and

∆n
h2∆

m
h1fk = ∆n

h2

(
∆m
h1fk

)
,
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for any h1, h2 ∈ R
N and positive integers n,m. By above definition, it is not difficult to

show that for any positive integers i1, ..., in and h1, ..., hn ∈ R
N

∆in
hn
∆
in−1

hn−1
...∆i1

h1
f(x)

=

in∑

jn=1

...

i1∑

j1=1

(−1)i1+...+in+j1+...+jn
(
i1
j1

)
...

(
in
jn

)
f(x+ j1h1 + ...+ jnhn),

and if f ∈ Cα, α = i1 + i2 + ...+ in then

∆in
hn
∆
in−1

hn−1
...∆i1

h1
f(x)

=

ˆ

[0,1]α

Dαf(x+
n∑

k=1

(t1,k + t2,k + ...+ tik,k)hk)
(
hi11 , ..., h

in
n

)
dt1,1...dti1,1...dt1,n...dtin,n.

Hence,

in∑

jn=1

...

i1∑

j1=1

(−1)i1+...+in+j1+...+jn
(
i1
j1

)
...

(
in
jn

)
f(x+ j1h1 + ...+ jnhn)

=

ˆ

[0,1]α

Dαf(x+
n∑

k=1

(t1,k + t2,k + ...+ tik,k)hk)
(
hi11 , ..., h

in
n

)
dt1,1...dti1,1...dt1,n...dtin,n.

In particular,

∆iN
sNeN

∆
iN−1
sN−1eN−1 ...∆

i1
s1e1f(x)

=

iN∑

jN=1

...

i1∑

j1=1

(−1)i1+...+iN+j1+...+jN

(
i1
j1

)
...

(
iN
jN

)
f(x+ j1s1e1 + ...+ jNsNeN )

=

ˆ

[0,1]α

∂αf

∂xi11 ...∂x
iN
N

(x+

N∑

k=1

(t1,k + ...+ tik,k)skek)s
i1
1 ...s

iN
N dt1,1...dti1,1...dt1,n...dtiN ,N

(6.6.3)

for α = i1 + ... + iN and s1, s2, ..., sN ∈ R. Clearly, for any t1, ..., tN ∈ R, there exists
(t1,0, ..., tN,0) ∈ [−t1, i1 − t1]× ...× [−tN , iN − tN ] such that

ˆ

[0,1]α

∂αf

∂xi11 ...∂x
iN
N

(x+

N∑

k=1

(t1,k + t2,k + ...+ tik,k − tk)skek)s
i1
1 ...s

iN
N dt1,1...dti1,1...dt1,n...dtiN ,N

=
∂αf

∂xi11 ...∂x
iN
N

(x+
N∑

k=1

tk,0skek)s
i1
1 ...s

iN
N

For this reason, we can find (t1, ..., tN ) ∈ [0, i1]×...×[0, iN ] ( depending on x, s1, ..sN , i1, ..., iN )
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such that t1,0 = ... = tN,0 = 0, this means

∂αf(x)

∂xi11 ...∂x
in
n

si11 ...s
in
n = ∆in

snen∆
in−1
sn−1en−1

...∆i1
s1e1f(x−

n∑

k=1

tkskek)

=

ˆ

[0,1]α

∂αf

∂xi11 ...∂x
in
n

(x+

n∑

k=1

(t1,k + ...+ tik,k − tk)skek)s
i1
1 ...s

in
n dt1,1...dti1,1...dt1,n...dtin,n

(6.6.4)

Now we assume that u ∈ Cmloc(Ωr1) where Ωr1 = {x ∈ Ω : ρ(x) < r1} and r1 ∈ (0, r].
Let x ∈ Ω with ρ(x) < r1

16 . Using (6.6.1) where y = Pr∂Ωx = x∂Ω and β = β0 + 2

u2(z) ≤ u(z) ≤ u1(z) ∀z ∈ B(x∂Ω − r~nx∂Ω , r)

where,

u1(z) = C0

(
rβ − |z − x∂Ω + r~nx∂Ω |β

βrβ−1

)− p
q−p+1

,

and

u2(z) = C0

(
|z − x∂Ω − r~nx∂Ω |β − rβ

βrβ−1

)− p
q−p+1

.

Let δ ∈ (0, 1
2m) and m = i1 + i2 + ...+ iN . Using (6.6.4), we have

δm(ρ(x))m
∂mu(x)

∂xi11 ...∂x
iN
N

= ∆iN
δρ(x)eN

∆
iN−1

δρ(x)eN−1
...∆i1

δρ(x)e1
u(x−

N∑

k=1

tkδρ(x)ek)

for some (t1, ..., tN ) ∈ [0, i1]× ...× [0, iN ] depending on x, ρ(x), i1, ..., iN , p, q. We can write

∆iN
δρ(x)eN

∆
iN−1

δρeN−1
...∆i1

δρ(x)e1
u(x−

N∑

k=1

tkδρ(x)ek)

= ∆iN
δρ(x)eN

∆
iN−1

δρ(x)eN−1
...∆i1

δρ(x)e1
u1(x−

N∑

k=1

tkδρ(x)ek)

+ ∆iN
δρ(x)eN

∆
iN−1

δρ(x)eN−1
...∆i1

δρ(x)e1
(u− u1)(x−

N∑

k=1

tkδρ(x)ek).

Thus

A−B ≤ δm(ρ(x))m
∂mu(x)

∂xi11 ...∂x
iN
N

≤ A+B (6.6.5)

where,

A = ∆iN
δρ(x)eN

∆
iN−1

δρ(x)eN−1
...∆i1

δρ(x)e1
u1(x−

N∑

k=1

tkδρ(x)ek),
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B =

iN∑

jN=1

...

i1∑

j1=1

(
i1
j1

)
...

(
iN
jN

)
|(u1 − u2) (x+ (j1 − t1)δρ(x)e1 + ...+ (jN − tN )δρ(x)eN )|

We need to estimate A and B.
Estimate B. We have,

x+ (j1 − t1)δρ(x)e1 + ...+ (jN − tN )δρ(x)eN − x∂Ω =

(
−~nx∂Ω + δ

N∑

k=1

(jk − tk)ek

)
ρ(x)

= (−~nx∂Ω + ~vx) ρ(x),

where ~vx = δ
N∑
k=1

(jk − tk)ek with |~vx| ≤ δm(≤ 1
2). We now set

H(t) = C0

(
|(−1 + t)ρ(x)(−~nx∂Ω + ~vx) + r~nx∂Ω |β − |tρ(x)(−~nx∂Ω + ~vx) + r~nx∂Ω |β

βrβ−1

)− p
q−p+1

for all t ∈ [0, 1] and we can write

(u1 − u2) (x+ (j1 − t1)δρ(x)e1 + ...+ (jN − tN )δρ(x)eN ) = H(1)−H(0).

We will show that |H ′(t)| ≤ C1
1
r (ρ(x))

− p
q−p+1

+1 for any t ∈ [0, 1], for some a positive
constant C1. Then,

|(u1 − u2) (x+ (j1 − t1)δρ(x)e1 + ...+ (jN − tN )δρ(x)eN )| ≤ C1
1

r
(ρ(x))

− p
q−p+1

+1
.

We conclude that
B ≤ 2mC1

1

r
(ρ(x))

− p
q−p+1

+1 (6.6.6)

In fact, for t ∈ [0, 1]

H ′(t) = − p
q−p+1C0

(
|(−1+t)ρ(x)(−~nx∂Ω

+~vx)+r~nx∂Ω |β−|tρ(x)(−~nx∂Ω
+~vx)+r~nx∂Ω |β

βrβ−1

)− q+1
q−p+1

1
rβ−1

(
|(−1 + t)ρ(x) (−~nx∂Ω + ~vx) + r~nx∂Ω |β−2 ((−1 + t)ρ(x) (−~nx∂Ω + ~vx) + r~nx∂Ω)

−|tρ(x) (−~nx∂Ω + ~vx) + r~nx∂Ω |β−2 (tρ(x) (−~nx∂Ω + ~vx) + r~nx∂Ω)
)
ρ(x) (−~nx∂Ω + ~vx)

Since ∣∣∣|x|β−2x− |y|β−2y
∣∣∣ ≤ (β − 1) |x− y| (|x|+ |y|)β−2 x, y ∈ R

N ,

thus we have

|H ′(t)| ≤ p
q−p+1C0

(
|(−1+t)ρ(x)(−~nx∂Ω

+vx)+r~nx∂Ω |β−|tρ(x)(−~nx∂Ω
+vx)+r~nx∂Ω |β

βrβ−1

)− q+1
q−p+1

(β − 1)(ρ(x))2

1
r | − ~nx∂Ω + ~vx|2

(∣∣∣(−1 + t)ρ(x)r (−~nx∂Ω + ~vx) + ~nx∂Ω

∣∣∣+
∣∣∣tρ(x)r (−~nx∂Ω + ~vx) + ~nx∂Ω

∣∣∣
)β−2

≤ p(β−1)
q−p+1 5

β−1 1
rC0

(
|(−1+t)ρ(x)(−~nx∂Ω

+~vx)+r~nx∂Ω |β−|tρ(x)(−~nx∂Ω
+~vx)+r~nx∂Ω |β

βrβ−1

)− q+1
q−p+1

(ρ(x))2
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On the other hand,

|(−1+t)ρ(x)(−~nx∂Ω
+~vx)+r~nx∂Ω |β−|tρ(x)(−~nx∂Ω

+~vx)+r~nx∂Ω |β
βrβ−1

= ρ(x)
1́

0

∣∣∣(−s+ t) (−~nx∂Ω + ~vx)
ρ(x)
r + ~nx∂Ω

∣∣∣
β−2 (

(s− t)|−~nx∂Ω + ~vx|2 ρ(x)r + (1− ~nx∂Ω~vx)
)
ds

Since,
∣∣∣∣(−s+ t) (−~nx∂Ω + ~vx)

ρ(x)

r
+ ~nx∂Ω

∣∣∣∣ ≥ 1− | − s+ t| |−~nx∂Ω + ~vx|
ρ(x)

r
≥ 1− 2

ρ(x)

r
≥ 1

2
,

and

(s− t)|−~nx∂Ω + ~vx|2
ρ(x)

r
+ (1− ~nx∂Ω~vx) ≥ −4

ρ(x)

r
+ (1− |~vx|) ≥ −4

ρ(x)

r
+

1

2
≥ 1

4
.

Thus,

|(−1 + t)ρ(x) (−~nx∂Ω + ~vx) + r~nx∂Ω |β − |tρ(x) (−~nx∂Ω + ~vx) + r~nx∂Ω |β
βrβ−1

≥ 2−βρ(x).

(6.6.7)

We deduce |H ′(t)| ≤ C1
1
r (ρ(x))

− p
q−p+1

+1 where C1 =
p(β−1)
q−p+1 5

β−12
(q+1)β
q−p+1C0

Estimate A.
Using 6.6.4, we have

A = δm(ρ(x))m
∂mu1

∂xi11 ...∂x
iN
N

(x+

N∑

k=1

(tk − tk)δρ(x)ek)

for some (t1..., tN ) ∈ [0, i1]× ...× [0, in].
We have

x+

N∑

k=1

(tk − tk)δρ(x)ek − x∂Ω =

(
−~nx∂Ω + δ

N∑

k=1

(tk − tk)ek

)
ρ(x) = (−~nx∂Ω + ~wx) ρ(x)

where ~wx = δ
N∑
k=1

(tk − tk)ek with |~wx| ≤ δm(≤ 1
2).

It is easy to see that,

A = δm(ρ(x))mC0

m∏

j=1

(
p

q − p+ 1
+ j − 1

)(
rβ − |(−~nx∂Ω + ~wx) ρ(x) + r~nx∂Ω |β

βrβ−1

)− p
q−p+1

−m

∣∣∣∣(−~nx∂Ω + ~wx)
ρ(x)

r
+ ~nx∂Ω

∣∣∣∣
m(β1−2) N∏

k=1

(
(−nx∂Ω,k + wx,k)

ρ(x)

r
+ nx∂Ω,k

)ik

+
1

r
δm(ρ(x))m

(
rβ − |(−~nx∂Ω + ~wx) ρ(x) + r~nx∂Ω |β

βrβ−1

)− p
q−p+1

−m+1

Q(x),
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where |Q(x)| ≤ C for some a positive constant C depending on p, q,N,m.
We have

rβ − |(−~nx∂Ω + ~wx) ρ(x) + r~nx∂Ω |β
βrβ

= ρ(x)

1
ˆ

0

∣∣∣∣(1− t) (−~nx∂Ω + ~wx)
ρ(x)

r
+ ~nx∂Ω

∣∣∣∣
β−2(

(1− t) (−~nx∂Ω + ~wx)
ρ(x)

r
+ ~nx∂Ω

)

× (~nx∂Ω − ~wx) dt = ρ(x)P (x),

where

P (x) =

∣∣∣∣(1− t) (−~nx∂Ω + ~wx)
ρ(x)

r
+ ~nx∂Ω

∣∣∣∣
β1−2(

−(1− t)|−~nx∂Ω + ~wx|2
ρ(x)

r
+ 1− ~nx∂Ω ~wx

)

for some t ∈ [0, 1] and P (x) ≥ 2−β .
Thus,

A = δm(ρ(x))
− p

q−p+1C0

m∏
j=1

(
p

q−p+1 + j − 1
)
P (x)

− p
q−p+1

−m
∣∣∣(−~nx∂Ω + ~wx)

ρ(x)
r + ~nx∂Ω

∣∣∣
m(β−2)

N∏
k=1

(
(−nx∂Ω,k + wx,k)

ρ(x)
r + nx∂Ω,k

)ik
+ 1

r δ
m(ρ(x))

− p
q−p+1

+1
P (x)

− p
q−p+1

−m+1
Q(x).

From (6.6.5) and (6.6.6) we deduce

−2mC1δ
−mρ(x)

r + P (x)
− p

q−p+1
−m+1

Q(x)ρ(x)r + T (x) ≤ (ρ(x))
p

q−p+1
+m ∂mu(x)

∂x
i1
1 ...∂x

iN
N

≤ T (x)

+P (x)
− p

q−p+1
−m+1

Q(x)ρ(x)r + 2−mC1δ
−mρ(x)

r ,

where

T (x) = C0

m∏
j=1

(
p

q−p+1 + j − 1
)
P (x)

− p
q−p+1

−m
∣∣∣(−~nx∂Ω + ~wx)

ρ(x)
r + ~nx∂Ω

∣∣∣
m(β1−2)

N∏
k=1

(
(−nx∂Ω,k + wx,k)

ρ(x)
r + nx∂Ω,k

)ik
.

We can rewrite

−C2δ
−m ρ(x)

r
+ T (x) ≤ (ρ(x))

p
q−p+1

+m ∂mu(x)

∂xi11 ...∂x
iN
N

≤ T (x) + C2δ
−m ρ(x)

r

for some a positive constant C2 only depending on p, q,N and m.
The remaining task is to prove that

∣∣∣∣∣∣
T (x)− C0

m∏

j=1

(
p

q − p+ 1
+ j − 1

) N∏

k=1

(nx∂Ω,k)
ik

∣∣∣∣∣∣
≤ C3

ρ(x)

r
+ C3δ (6.6.8)

In fact, we see that T is decomposed as the following

T (x) = C0

m∏

j=1

(
p

q − p+ 1
+ j − 1

) N∏

k=1

(nx∂Ω,k)
ik + T1(x) + T2(x) + T3(x)
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where

T1(x) = C0

m∏

j=1

(
p

q − p+ 1
+ j − 1

)( N∏

k=1

(
(−nx∂Ω,k + wx,k)

ρ(x)

r
+ nx∂Ω,k

)ik
−

N∏

k=1

nikx∂Ω,k

)
,

T2(x) = C0

m∏

j=1

(
p

q − p+ 1
+ j − 1

)(∣∣∣∣(−~nx∂Ω + ~wx)
ρ(x)

r
+ ~nx∂Ω

∣∣∣∣
m(β−2)

− 1

)

×
N∏

k=1

(
(−nx∂Ω,k + wx,k)

ρ(x)

r
+ nx∂Ω,k

)ik
,

and

T3(x) = C0

m∏

j=1

(
p

q − p+ 1
+ j − 1

)(
P (x)

− p
q−p+1

−m − 1
)

×
∣∣∣∣(−~nx∂Ω + ~wx)

ρ(x)

R
+ ~nx∂Ω

∣∣∣∣
m(β−2) N∏

k=1

(
(−nx∂Ω,k + wx,k)

ρ(x)

r
+ nx∂Ω,k

)ik

It is obvious to see that

|T1(x)| ≤ C4
ρ(x)

r
, |T2(x)| ≤ C5

∣∣∣∣∣

∣∣∣∣(−~nx∂Ω + ~wx)
ρ(x)

r
+ ~nx∂Ω

∣∣∣∣
m(β−2)

− 1

∣∣∣∣∣ ≤ C6
ρ(x)

r

and
|T3(x)| ≤ C7

∣∣∣P (x)−
p

q−p+1
−m − 1

∣∣∣ ≤ C8 |P (x)− 1| since P (x) ≥ 2−β .

Furthermore,

|P (x)− 1| ≤
∣∣∣∣(1− t) (−~nx∂Ω + ~wx)

ρ(x)

r
+ ~nx∂Ω

∣∣∣∣
β−2

(1− t)|−~nx∂Ω + ~wx|2
ρ(x)

r

+

∣∣∣∣∣

∣∣∣∣(1− t) (−~nx∂Ω + ~wx)
ρ(x)

r
+ ~nx∂Ω

∣∣∣∣
β−2

− 1

∣∣∣∣∣ |1− ~nx∂Ω ~wx|+ |~nx∂Ω ~wx|

≤ C9
ρ(x)

r
+ |~nx∂Ω ~wx|

≤ C9
ρ(x)

r
+ |~wx| ≤ C9

ρ(x)

r
+ δm

Thus

|T3(x)| ≤ C10
ρ(x)

r
+ C10δ

Consequently, we get (6.6.8).
Then, we get that
∣∣∣∣∣∣
(ρ(x))

p
q−p+1

+m ∂mu(x)

∂xi11 ...∂x
iN
N

− C0

m∏

j=1

(
p

q − p+ 1
+ j − 1

) N∏

k=1

(nx∂Ω,k)
ik

∣∣∣∣∣∣
≤ C11(δ

−m ρ(x)
r

+δ)
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By choosing δ = 1
2m

(
ρ(x)
r

) 1
m+1

, we obtain for any x ∈ Ω, ρ(x) < r1
16

∣∣∣∣∣∣
(ρ(x))

p
q−p+1

+m ∂mu(x)

∂xi11 ...∂x
iN
N

− C0

m∏

j=1

(
p

q − p+ 1
+ j − 1

) N∏

k=1

(nx∂Ω,k)
ik

∣∣∣∣∣∣
≤ C12(

ρ(x)

r
)

1
m+1 .

(6.6.9)
where C12 = C12(p, q,m,N). From casem = 1, since u ∈ C1

loc(Ω) thus for any x ∈ Ω, ρ(x) <
r
16 ∣∣∣∣(ρ(x))

p
q−p+1

+1 ∂u

∂xi
− p

q − p+ 1
C0nx∂Ω,i

∣∣∣∣ ≤ C12(
ρ(x)

r
)
1
2 .

It leads to
∣∣∣∣(ρ(x))

p
q−p+1

+1|∇u| − p

q − p+ 1
C0

∣∣∣∣ ≤ C13(
ρ(x)

r
)
1
2 ∀x ∈ Ω, ρ(x) <

r

16

for some a positive constant C13 only depending on p, q,N .

Put M = max

{(
2C13(q−p+1)

pC0

)2
, 16

}
, we have

1

2

p

q − p+ 1
C0(ρ(x))

− q+1
q−p+1 ≤ |∇u| ≤ 3

2

p

q − p+ 1
C0(ρ(x))

− q+1
q−p+1 ∀x ∈ Ω, ρ(x) <

r

M

Therefore, by standard regularity theory, we obtain u ∈ C∞
loc(Ωr/M ). Finally, from (6.6.9)

with r1 = r/M , we get (6.6.2).
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Chapitre 7

Wiener criteria for existence of large

solutions of nonlinear parabolic

equations with absorption in a

non-cylindrical domain

Abstract

We obtain a necessary and a sufficient condition expressed in terms of Wiener type tests
involving the parabolic W 2,1

q′ - capacity, where q′ = q
q−1 , for the existence of large solutions

to equation ∂tu −∆u + uq = 0 in non-cylindrical domain, where q > 1. Also, we provide
a sufficient condition associated with equation ∂tu−∆u+ eu − 1 = 0 . Besides, we apply
our results to equation : ∂tu−∆u+ a|∇u|p + buq = 0 for a, b > 0, 1 < p < 2 and q > 1.

317



7.1. INTRODUCTION

7.1 Introduction

The aim of this paper is to study the problem of existence of large solutions to nonlinear
parabolic equations with superlinear absorption in an arbitrary bounded open set O ⊂
R
N+1, N ≥ 2. These are solutions u ∈ C2,1(O) of equations

∂tu−∆u+ |u|q−1u = 0 in O,
lim
δ→0

inf
O∩Qδ(x,t)

u = ∞ for all (x, t) ∈ ∂pO, (7.1.1)

and
∂tu−∆u+ sign(u)(e|u| − 1) = 0 in O,

lim
δ→0

inf
O∩Qδ(x,t)

u = ∞ for all (x, t) ∈ ∂pO, (7.1.2)

where q > 1 and ∂pO is the parabolic boundary of O, i.e, the set all points X = (x, t) ∈ ∂O
such that the intersection of the cylinder Qδ(x, t) := Bδ(x)×(t−δ2, t) with Oc is not empty
for any δ > 0. By the maximal principle for parabolic equations we can assume that all
solutions of (7.1.1) and (7.1.2) are positive. Henceforth we consider only positive solutions
of the preceding equations.
In [22], we studied the existence and the uniqueness of solution of general equations in a
cylindrical domain,

∂tu−∆u+ f(u) = 0 in Ω× (0,∞),
u = ∞ in ∂p (Ω× (0,∞)) ,

(7.1.3)

where Ω is a bounded open set in R
N and f is a continuous real-valued function, nonde-

creasing on R such that f(0) ≥ 0 and f(a) > 0 for some a > 0. In order to obtain the
existence of a maximal solution of ∂tu − ∆u + f(u) = 0 in Ω × (0,∞) there is need to
assume

(i)

ˆ ∞

a

(
ˆ s

0
f(τ)dτ

)− 1
2

ds <∞,

(ii)

ˆ ∞

a
(f(s))−1 ds <∞.

(7.1.4)

Condition (i), due to Keller and Osserman, is a necessary and sufficient for the existence
of a maximal solution to

−∆u+ f(u) = 0 in Ω. (7.1.5)

Condition (ii) is a necessary and sufficient for the existence of a maximal solution of the
differential equation

ϕ′ + f(ϕ) = 0 in (0,∞), (7.1.6)

and this solution tends to ∞ at 0. In [22], it is shown that if for any m ∈ R there exists
L = L(m) > 0 such that

for any x, y ≥ m⇒ f(x+ y) ≥ f(x) + f(y)− L,
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7.1. INTRODUCTION

and if (7.1.5) has a large solution, then (7.1.3) admits a solution.

It is not alway true that the maximal solution to (7.1.5) is a large solution. However,
if f satisfies

ˆ ∞

1
s−2(N−1)/(N−2)f(s)ds <∞ if N ≥ 3,

or

inf

{
a ≥ 0 :

ˆ ∞

0
f(s)e−asds <∞

}
<∞ if N = 2,

then (7.1.5) has a large solution for any bounded domain Ω, see [16].

When f(u) = uq, q > 1 and N ≥ 3, the first above condition is satisfied if and only if
q < qc :=

N
N−2 , this is called the sub-critical case. When q ≥ qc, a necessary and sufficient

condition for the existence of a large solution to

−∆u+ uq = 0 in Ω; (7.1.7)

is expressed in term of a Wiener-type test,
ˆ 1

0

Cap2,q′(Ω
c ∩Br(x))

rN−2

dr

r
= ∞ for all x ∈ ∂Ω. (7.1.8)

In the case q = 2 it is obtained by probabilistic methods involving the Brownian snake by
Dhersin and Le Gall [5], also see [13, 14] ; this method can be extended for 1 < q ≤ 2 by
using ideas from [7, 8]. In the general case the result is proved by Labutin, by using purely
analytic methods [12]. Here, q′ = q

q−1 and Cap2,q′ is the capacity associated to the Sobolev

space W 2,q′(RN ).

In [19] we obtain sufficient conditions when f(u) = eu − 1, involving the Hausdorff
HN−2

1 −capacity in R
N , namely,
ˆ 1

0

HN−2
1 (Ωc ∩Br(x))

rN−2

dr

r
= ∞ for all x ∈ ∂Ω. (7.1.9)

We refer to [17] for investigation of the initial trace theory of (7.1.3). In [9], Evans and
Gariepy establish a Wiener criterion for the regularity of a boundary point (in the sense of
potential theory) for the heat operator L = ∂t −∆ in an arbitrary bounded set of RN+1.
We denote by M(RN+1) the set of Radon measures in R

N+1 and, for any compact set
K ⊂ R

N+1, by MK(RN+1) the subset of M(RN+1) of measures with support in K. Their
positive cones are respectively denoted by M

+(RN+1) and M
+
K(RN+1). The capacity used

in this criterion is the thermal capacity defined by

CapH(K) = sup{µ(K) : µ ∈ M
+
K(RN+1),H ∗ µ ≤ 1},

for any K ⊂ R
N+1 compact, where H is the heat kernel in R

N+1. It coincides with the
parabolic Bessel G1−capacity CapG1,2,

CapG1,2(K) = sup

{
ˆ

RN+1

|f |2dxdt : f ∈ L2
+(R

N+1), G1 ∗ f ≥ χK

}
,
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here G1 is the parabolic Bessel kernel of first order, see [20, Remark 4.12]. Garofalo and
Lanconelli [10] extend this result to the parabolic operator L = ∂t − div(A(x, t)∇), where
A(x, t) = (ai,j(x, t)), i, j = 1, 2, ..., N is a real, symmetric, matrix-valued function on R

N+1

with C∞ entries for which there holds

C−1|ξ|2 ≤
N∑

i,j=1

ai,j(x, t)ξiξj ≤ C|ξ|2 ∀(x, t) ∈ R
N+1, ∀ξ ∈ R

N ,

for some constant C > 0.

Less is known concerning the equation

∂tu−∆u+ f(u) = 0 (7.1.10)

in a bounded open set O ⊂ of R
N+1, where f is a continuous function in R, Gariepy

and Ziemer [11, 23] prove that if there are (x0, t0) ∈ ∂pO, l ∈ R and a weak solution
u ∈ W 1,2(O) ∩ L∞(O) of (7.1.10) such that η(−l − ε + u)+, η(l − ε − u)+ ∈ W 1,2

0 (O) for
any ε > 0 and η ∈ C∞

c (Br(x0)× (−r2 + t0, r
2 + t0)) for some r > 0 and if

ˆ 1

0

CapH

(
Oc ∩

(
Bρ(x0)× (t0 − 9

4αρ
2, t0 − 5

4αρ
2)
))

ρN
dρ

ρ
= ∞ for some α > 0

then lim
(x,t)→(x0,t0)

u(x, t) = l. This result is not easy to use because it is not clear whether

(7.1.10) has a weak solution u ∈ W 1,2(O). In this article we show that (7.1.10) admits a
maximal solution u ∈ C2,1(O) in an arbitrary bounded open set O, by approximation by
dyadic parabolic cubes from inside O, provided that f is as in (7.1.3) and satisfies (7.1.4).

Our main purpose of this article is to extend the result of Labutin [12] to nonlinear
parabolic equation (7.1.1). Namely, we give a necessary and a sufficient condition for the
existence of solutions to (7.1.1) in a bounded non-cylindrical domain O ⊂ R

N+1, expressed
in terms of a Wiener test based upon the parabolic W 2,1

q′ -capacity in R
N+1. We also give

a sufficient condition associated (7.1.2) where the parabolic W 2,1
q′ -capacity is replaced the

parabolic Hausdorff PHN
ρ -capacity. These capacities are defined as follows : if K ⊂ R

N+1

is compact set, we set

Cap2,1,q′(K) = inf{||ϕ||q′
W 2,1

q′ (RN+1)
: ϕ ∈ S(RN+1), ϕ ≥ 1 in a neighborhood of K},

where

||ϕ||
W 2,1

q′ (RN+1)
= ||ϕ||Lq′ (RN+1) + ||∂ϕ

∂t
||Lq′ (RN+1) + ||∇ϕ||Lq′ (RN+1) +

∑

i,j

|| ∂2ϕ

∂xi∂xj
||Lq′ (RN+1).

and for Suslin set E ⊂ R
N+1,

Cap2,1,q′(E) = sup{Cap2,1,q′(D) : D ⊂ E,D compact}.

This capacity has been used in order to obtain potential theory estimates that are most
helpful for studying quasilinear parabolic equations (see e.g. [3, 4, 20]). Thanks to a result
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due to Richard and Bagby [2], the capacities Cap2,1,p and CapG2,p are equivalent in the
sense that, for any Suslin set K ⊂ R

N+1, there holds

C−1Cap2,1,q′(K) ≤ CapG2,q′(K) ≤ CCap2,1,p(K),

for some C = C(N, q), where CapG2,q′ is the parabolic Bessel G2−capacity, see [20].
For E ⊂ R

N+1, we define PHN
ρ (E) by

PHN
ρ (E) = inf




∑

j

rNj : E ⊂
⋃
Brj (xj)× (tj − r2j , tj + r2j ), rj ≤ ρ



 .

It is easy to see that, for 0 < σ ≤ ρ and E ⊂ R
N+1, there holds

PHN
ρ (E) ≤ PHN

σ (E) ≤ C(N)
(ρ
σ

)2
PHN

ρ (E). (7.1.11)

With these notations, we can state the two main results of this paper.

Theorem 7.1.1 Let N ≥ 2 and q ≥ q∗ := N+2
N . Then

(i) The equation

∂tu−∆u+ uq = 0 in O (7.1.12)

admits a large solution if there holds

∞∑

k=1

Cap2,1,q′
(
Oc ∩

(
Brk(x)×

(
t− 1168r2k, t− 1136r2k

)))

rNk
= ∞, (7.1.13)

for any (x, t) ∈ ∂pO, where rk = 4−k, and N ≥ 3 when q = q∗.

(ii) If equation (7.1.12) admits a large solution, then

ˆ 1

0

Cap2,1,q′(O
c ∩Qρ(x, t))
ρN

dρ

ρ
= ∞, (7.1.14)

for any (x, t) ∈ ∂pO, where Qρ(x, t) = Bρ(x)× (t− ρ2, t).

Theorem 7.1.2 Let N ≥ 2. The equation

∂tu−∆u+ eu − 1 = 0 in O (7.1.15)

admits a large solution if there holds

∞∑

k=1

PHN
1

(
Oc ∩

(
Brk(x)×

(
t− 1168r2k, t− 1136r2k

)))

rNk
= ∞, (7.1.16)

for any (x, t) ∈ ∂pO, with rk = 4−k.
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From properties of the W 2,1
q′ −capacity and the PHN

1 −capacity, relation (7.1.13) holds if

∞∑

k=1

r−Nk
∣∣Oc ∩

(
Brk(x)×

(
t− 1168r2k, t− 1136r2k

))∣∣1− 2q′
N+2 = ∞ when q > q∗,

and

∞∑

k=1

r−Nk log+

(∣∣Oc ∩
(
Brk(x)×

(
t− 1168r2k, t− 1136r2k

))∣∣−1
)−N

2
= ∞ when q = q∗.

Similarly, identity (7.1.16) is verified if

∞∑

k=1

r−Nk
∣∣Oc ∩

(
Brk(x)×

(
t− 1168r2k, t− 1136r2k

))∣∣ N
N+2 = ∞.

Therefore, when O = {(x, t) ∈ R
N+1 : |x|2 + |t|2

λ < 1} for some λ > 0, we see that
∂O = ∂pO, (7.1.14) holds for any (x, t) ∈ ∂pO, (7.1.13) and (7.1.16) hold for any (x, t) ∈
∂pO\{(0,

√
λ)}. However, (7.1.13) and (7.1.16) are also true at (x, t) = (0,

√
λ) if λ > 22722

and not true if λ < 22722.

As a consequence of Theorem 7.1.1 we derive a sufficient condition for the existence of
large solution of some viscous Hamilton-Jacobi parabolic equations.

Theorem 7.1.3 Let q1 > 1. If there exists a large solution v ∈ C2,1(O) of

∂tv −∆v + vq1 = 0 in O,

then, for any a, b > 0, 1 < q < q1 and 1 < p < 2q1
q1+1 , problem

∂tu−∆u+ a|∇u|p + buq = 0 in O,
u = ∞ on ∂pO,

(7.1.17)

admits a solution u ∈ C2,1(O) which satisfies

u(x, t) ≥ Cmin

{
a
− 1

p−1R
− 2−p

p−1
+ 2

α(q1−1) , b
− 1

q−1R
− 2

q−1
+ 2

α(q1−1)

}
(v(x, t))

1
α ,

for all (x, t) ∈ O where R > 0 is such that O ⊂ Q̃R(x0, t0), C = C(N, p, q, q1) > 0 and

α = max
{

2(p−1)
(q1−1)(2−p) ,

q−1
q1−1

}
∈ (0, 1).

7.2 Preliminaries

Throughout the paper, we denote Qρ(x, t) = Bρ(x)× (t− ρ2, t] and Q̃ρ(x, t) = Bρ(x)×
(t − ρ2, t + ρ2) for (x, t) ∈ R

N+1, ρ > 0 and rk = 4−k for all k ∈ Z. We also denote
A . (&)B if A ≤ (≥)CB for some C depending on some structural constants, A ≍ B if
A . B . A.
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Definition 7.2.1 Let R ∈ (0,∞] and µ ∈ M
+(RN+1). We define R−truncated Riesz

parabolic potential I2 of µ by

I
R
2 [µ](x, t) =

ˆ R

0

µ(Q̃ρ(x, t))

ρN
dρ

ρ
for all (x, t) ∈ R

N+1,

and the R−truncated fractional maximal parabolic potential M2 of µ by

M
R
2 [µ](x, t) = sup

0<ρ<R

µ(Q̃ρ(x, t))

ρN
for all (x, t) ∈ R

N+1.

We recall two results in [20].

Theorem 7.2.2 Let q > 1, R > 0 and K be a compact set in R
N+1. There exists µ :=

µK ∈ M
+(RN+1) with compact support in K such that

µ(K) ≍ Cap2,1,q′(K) ≍
ˆ

RN+1

(
I
2R
2 [µ]

)q
dxdt

where the constants of equivalence depend on N, q and R. The measure µK is called the
capacitary measure of K.

Theorem 7.2.3 For any R > 0, there exist positive constants C1, C2 such that for any
µ ∈ M

+(RN+1) such that ||MR
2 [µ]||L∞(RN+1) ≤ 1, there holds

 

Q
exp(C1I

R
2 [χQµ])dxdt ≤ C2,

for all Q = Q̃r(y, s) ⊂ R
N+1, r > 0 , where χQ is the indicator function of Q.

Frostman’s Lemma in [21, Th. 3.4.27] is at the basis of the dual definition of Hausdorff
capacities with doubling weight. It is easy to see that it is valid for the parabolic Hausdorff
PHN

ρ −capacity version. As a consequence we have

Theorem 7.2.4 There holds

sup
{
µ(K) : µ ∈ M

+(RN+1), supp(µ) ⊂ K, ||Mρ
2[µ]||L∞(RN+1) ≤ 1

}
≍ PHN

ρ (K)

for any compact set K ⊂ R
N+1 and ρ > 0, where equivalent constant depends on N

For our purpose, we need the some results about the behavior of the capacity with respect
to dilations.

Proposition 7.2.5 Let K ⊂ Q̃100(0, 0) be a compact set and 1 < p < N+2
2 . Then

Cap2,1,p(K) & |K|1−
2p

N+2 ,Cap2,1,N+2
2

(K) &

(
log

(
|Q̃200(0, 0)|

|K|

))−N
2

, (7.2.1)

323



7.2. PRELIMINARIES

and

Cap2,1,p(Kρ) ≍ ρN+2−2pCap2,1,p(K), (7.2.2)
1

Cap2,1,N+2
2

(Kρ)
≍ 1

Cap2,1,N+2
2

(K)
+ (log(2/ρ))N/2 (7.2.3)

for any 0 < ρ < 1, where Kρ = {(ρx, ρ2t) : (x, t) ∈ K}.

Proposition 7.2.6 Let K ⊂ Q̃1(0, 0) be a compact set and 1 < p ≤ N+2
2 . Then, there

exists a function ϕ ∈ C∞
c (Q̃3/2(0, 0)), 0 ≤ ϕ ≤ 1 and ϕ|D = 1 for some open set D ⊃ K

such that
ˆ

RN+1

(
|D2ϕ|p + |∇ϕ|p + |ϕ|p + |∂tϕ|p

)
dxdt . Cap2,1,p(K). (7.2.4)

We will give proofs of the above two propositions in the Appendix.
It is well know that there exists a semigroup et∆ corresponding to equation

∂tu−∆u = µ in Q̃R(0, 0),

u = 0 on ∂pQ̃R(0, 0),
(7.2.5)

with µ ∈ C∞(Q̃R(0, 0)), i.e, we can write a solution u of (7.2.5) as follows

u(x, t) =

ˆ t

0

(
e(t−s)∆µ

)
(x, s)ds for all (x, t) ∈ Q̃R(0, 0).

We denote by H the heat kernel :

H(x, t) =
1

(4πt)
N
2

e−
|x|2
4t χt>0.

We have

|u(x, t)| ≤ (H ∗ µ)(x, t) for all (x, t) ∈ Q̃R(0, 0).

In [20, Proof of Proposition 4.8] we show that

|(H ∗ µ)|(x, t) ≤ C1(N)I2R2 [|µ|](x, t) for all (x, t) ∈ Q̃R(0, 0).

Here µ is extended by 0 in (Q̃R(0, 0))
c. Thus,

|
ˆ t

0

(
e(t−s)∆µ

)
(x, s)ds| ≤ C1(N)I2R2 [|µ|](x, t) for all (x, t) ∈ Q̃R(0, 0). (7.2.6)

Moreover, we also prove in [20], that if µ ≥ 0 then for (x, t) ∈ Q̃R(0, 0) and Bρ(x) ⊂ BR(0),

ˆ t

0

(
e(t−s)∆µ

)
(x, s)ds ≥ C2(N)

∞∑

k=0

µ(Q ρk
8
(x, t− 35

128ρ
2
k))

ρNk
, (7.2.7)

with ρk = 4−kρ.
It is easy to see that estimates (7.2.6) and (7.2.7) also holds for any bounded Radon
measure µ in Q̃R(0, 0). The following result is proved in [3] and [18], and also in [20] in a
more general framework.
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Theorem 7.2.7 Let q > 1, R > 0 and µ be bounded Radon measure in Q̃R(0, 0).

(i) If µ is absolutely continuous with respect to Cap2,1,q′ in Q̃R(0, 0), then there exists a
unique weak solution u to equation

∂tu−∆u+ |u|q−1u = µ in Q̃R(0, 0),

u = 0 on ∂pQ̃R(0, 0).

(ii) If exp
(
C1(N)I2R2 [|µ|]

)
∈ L1(Q̃R(0, 0)) then there exists a unique weak solution v to

equation

∂tv −∆v + sign(v)(e|v| − 1) = µ in Q̃R(0, 0),

v = 0 on ∂pQ̃R(0, 0),

where the constant C1(N) is the one of inequality (7.2.6).

From estimates (7.2.6) and (7.2.7) and using comparison principle we get the estimates
from below of the solutions u and v obtained in Theorem 7.2.7.

Proposition 7.2.8 If µ ≥ 0 then the functions u and v of the previous theorem are non-
negative and satisfy

u(x, t) ≥ C2(N)

∞∑

k=0

µ(Q ρk
8
(x, t− 35

128ρ
2
k))

ρNk
− C1(N)q+1

I
2R
2

[(
I
2R
2 [µ]

)q]
(x, t) (7.2.8)

and

v(x, t) ≥ C2(N)

∞∑

k=0

µ(Q ρk
8
(x, t− 35

128ρ
2
k))

ρNk
− C1(N)I2R2

[
exp

(
C1(N)I2R2 [µ]

)
− 1
]
(x, t).

(7.2.9)
for any (x, t) ∈ Q̃R(0, 0) and Bρ(x) ⊂ BR(0) and ρk = 4−kρ.

7.3 Maximal solutions

In this section we assume that O is an arbitrary non-cylindrical and bounded open set
in R

N+1 and q > 1. We will prove the existence of a maximal solution of

∂tu−∆u+ uq = 0 (7.3.1)

in O. We also get analogous result where uq is replaced by eu − 1.
It is easy to see that if u satisfies (7.3.1) in Q̃r(0, 0) (Qr(0, 0) ) then ua(x, t) = a−2/(q−1)u(ax, a2t)
satisfies (7.3.1) in Q̃r/a(0, 0) (Qr/a(0, 0)) for any a > 0.
If X = (x, t) ∈ O, the parabolic distance from X to the parabolic boundary ∂pO of O is
defined by

d(X, ∂pO) = inf
(y,s)∈∂pO
s≤t

max{|x− y|, (t− s)
1
2 }.
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It is easy to see that there exists C = C(N, q) > 0 such that the function V defined by

V (x, t) = C

(
(ρ2 + t)

− 1
q−1 +

(
ρ2 − |x|2

ρ

)− 2
q−1

)
in Bρ(0)× (−ρ2, 0)

satisfies

∂tV −∆V + V q ≥ 0 in Bρ(0)× (−ρ2, 0). (7.3.2)

Proposition 7.3.1 There exists a maximal solution u ∈ C2,1(O) of (7.3.1) and it satisfies

u(x, t) ≤ C(d((x, t), ∂pO))
− 2

q−1 for all (x, t) ∈ O (7.3.3)

for some C = C(N, q).

Proof. Let Dk, k ∈ Z be the collection of all the dyadic parabolic cubes (abridged p-cubes)
of the form

{(x1, ..., xN , t) : mj2
−k ≤ xj ≤ (mj + 1)2−k, j = 1, ..., N,mN+14

−k ≤ t ≤ (mN+1 + 1)4−k}

where mj ∈ Z. The following properties hold,

a. for each integer k, Dk is a partition of R
N+1 and all p-cubes in Dk have the same

sidelengths.

b. if the interiors of two p-cubes Q in Dk1 and P in Dk2 , denoted
◦
Q,

◦
P , have nonempty

intersection then either Q is contained in R or Q contains R.

c. Each Q in Dk is union of 2N+2 p-cubes in Dk+1 with disjoint interiors.

Let k0 ∈ N be such that Q ⊂ O for some Q ∈ Dk0 . Set Ok =
⋃

Q∈Dk
Q⊂O

Q ∀k ≥ k0, we

have Ok ⊂ Ok+1 and O =
⋃
k≥k0

Ok =
⋃
k≥k0

◦
Ok. More precisely, there exist real numbers

a1, a2, ...., an(k) and open sets Ω1,Ω2, ..,Ωn(k) in R
N such that

ai < ai + 4−k ≤ ai+1 < ai+1 + 4k for i = 1, ..., n(k)− 1

and
◦
Ok =

n(k)−1⋃

i=1

(
Ωi × (ai, ai + 4−k]

)⋃(
Ωn(k) × (an(k), an(k) + 4−k)

)
.

For k ≥ k0, we claim that there exists a solution uk ∈ C2,1(
◦
Ok) to problem

∂tuk −∆uk + uqk = 0 in
◦
Ok,

uk(x, t) → ∞ as d((x, t), ∂p
◦
Ok) → 0.

(7.3.4)

Indeed, by [6, 15] for m > 0, one can find nonnegative solutions vi ∈ C2,1(Ωi × (ai, ai +
4−k]) ∩ C(Ωi × [ai, ai + 4−k]) for i = 1, .., n(k) to equations

∂tv1 −∆v1 + vq1 = 0 in Ω1 × (a1, a1 + 4−k),
v1(x, t) = m on ∂Ω1 × (a1, a1 + 4−k),
v1(x, t1) = m in Ω1,
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and

∂tvi −∆vi + vqi = 0 in Ωi × (ai, ai + 4−k),

vi(x, t) = m on ∂Ωi × (ai, ai + 4−k),

vi(x, ai) =

{
m in Ωi if ai > ai−1 + 4−k,
mχΩi\Ωi−1

(x) + vi−1(x, ai−1 + 4−k)χΩi−1(x) otherwise .

Clearly,

uk,m = vi in Ωi × (ai, ai + 4−k] for i = 1, ..., n(k)

is a solution in C2,1(
◦
Ok) ∩ C(Ok) to equation

{
∂tuk,m −∆uk,m + uqk,m = 0 in

◦
Ok,

uk,m = m on ∂p
◦
Ok.

Moreover, for (x, t) ∈
◦
Ok, we see that B d

2
(x)× (t− d2

4 , t) ⊂
◦
Ok where d = d((x, t), ∂p

◦
Ok).

From (7.3.2), we verify that

U(y, s) := V (y − x, s− t) = C

(
(ρ2 + s− t)

− 1
q−1 +

(
ρ2 − |x− y|2

ρ

)− 2
q−1

)

with ρ = d/2, satisfies

∂tU −∆U + U q ≥ 0 in B d
2
(x)× (t− d2

4
, t). (7.3.5)

Applying the comparison principle we get

uk,m(y, s) ≤ U(y, s) in B d
2
(x)× (t− d2

4
, t],

which implies

uk,m(x, t) ≤ C
(
d((x, t), ∂p

◦
Ok)

)− 2
q−1

for all (x, t) ∈
◦
Ok. (7.3.6)

From this, we also obtain uniform local bounds for {uk,m}m. By standard regularity theory
see [6, 15], {uk,m}m is uniformly locally bounded in C2,1. Hence, up to a subsequence,

uk,m → uk C
1,0
loc (

◦
Ok) . Passing the limit, we derive that uk is a weak solution of (7.3.4) in

◦
Ok, which satisfies uk(x, t) → ∞ as d((x, t), ∂p

◦
Ok) → 0 and

uk(x, t) ≤ C
(
d((x, t), ∂p

◦
Ok)

)− 2
q−1

for all (x, t) ∈
◦
Ok.

Let m > 0 and k ≥ k0. Since uk+1,m ≤ m in Ok and Ok ⊂ Ok+1, it follows by the
comparison principle applied to uk+1,m and uk,m in the sub-domains Ω1 × (a1, a1 + 4−k),

Ω2 × (a2, a2 + 4−k),..., Ωn(k) × (an(k), an(k) + 4−k) of
◦
Ok to obtain at end that uk+1,m ≤

uk,m in
◦
Ok, and thus uk+1 ≤ uk in

◦
Ok. In particular, {uk}k is uniformly locally bounded

in L∞
loc. We use the same compactness property as above to obtain that uk → u where u is

a solution of (7.3.1) and satisfies (7.3.3). By construction u is the maximal solution.
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Remark 7.3.2 Let R ≥ 2r ≥ 2, K be a compact subset in Q̃r(0, 0). Arguing as one can
easily it is clear that there exists a maximal solution of

∂tu−∆u+ uq = 0 in Q̃R(0, 0)\K,
u = 0 on ∂pQ̃R(0, 0),

(7.3.7)

which satisfies

u(x, t) ≤ C(d((x, t), ∂p(Q̃R(0, 0)\K))
− 2

q−1 ∀ (x, t) ∈ Q̃R(0, 0)\K, (7.3.8)

for some C = C(N, q). Furthermore, assume K1,K2, , , ,Km are compact subsets in Q̃r(0, 0)
and K = K1∪ ...∪Km. Let u, u1, ..., um be the maximal solutions of (7.3.7) in Q̃R(0, 0)\K,
Q̃R(0, 0)\K1, Q̃R(0, 0)\K2, , , , Q̃R(0, 0)\Km, respectively, then

u ≤
m∑

j=1

uj in Q̃R(0, 0)\K. (7.3.9)

Remark 7.3.3 If the equation (7.3.1) admits a large solution for some q > 1 then for any
1 < q1 < q, equation

∂tu−∆u+ uq1 = 0 in O (7.3.10)

admits also a large solution.
Indeed, assume that u is a large solution of (7.3.1) and v is the maximal solution of (7.3.10).
Take R > 0 such that O ⊂ BR(0)× (−R2, R2), then the function V defined by

V (x, t) = (q − 1)
− 1

q−1 (2R2 + t)
− 1

q−1 ,

satisfies (7.3.1). It follows for all (x, t) ∈ O

u(x, t) ≥ inf
(y,s)∈O

V (x, t) ≥ (q − 1)
− 1

q−1R
− 2

q−1 =: a0.

Thus, ũ = a
q−q1
q1−1

0 u is a subsolution of (7.3.10). Therefore v ≥ a
q−q1
q1−1

0 u in O, thus v is a large
solution.

Remark 7.3.4 (Sub-critical case) Assume that 1 < q < q∗. One easily see that the
function

U(x, t) =
C

t
1

q−1

e−
|x|2
4t χt>0 (7.3.11)

is a subsolution of (7.3.1) in R
N+1\{(0, 0)}, where C =

(
2
q−1 − N

2

) 1
q−1

.

Therefore, the maximal solutions u of (7.3.1) in O verify

u(x, t) ≥ C
1

(t− s)
1

q−1

e
− |x−y|2

4(t−s) χt>s, (7.3.12)
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for all (x, t) ∈ O and (y, s) ∈ Oc.
If for any (x, t) ∈ ∂pO there exist ε ∈ (0, 1) and a decreasing sequence {δn} ⊂ (0, 1) conver-
ging to 0 as n→ ∞ such that

(
Bδn(x)× (−δ2n + t,−εδ2n + t)

)
∩Oc 6= ∅ for any n ∈ N, then

u is a large solution. For proving this, we need to show that lim
ρ→0

infO∩(Bρ(x)×(−ρ2+t,ρ2+t)) u =

∞. Let 0 < ρ <
√

ε
2δ1, and n ∈ N such that

√
ε
2δn+1 ≤ ρ <

√
ε
2δn.

Since
(
Bδn(x)× (−δ2n + t,−εδ2n + t)

)
∩Oc 6= ∅, there is (xn, tn) ∈ Oc such that |xn−x| < δn

and −δ2n + t < tn < −εδ2n + t. So if (y, s) ∈ O ∩ (Bρ(x) × (−ρ2 + t, ρ2 + t)) then
|y − xn| < (

√
ε + 1)δn and ε

2δ
2
n < s − tn < (ε + 1)δ2n. Hence, thanks to (7.3.12) we

have for any (y, s) ∈ O ∩ (Bρ(x)× (−ρ2 + t, ρ2 + t))

u(y, s) ≥ C
1

(s− tn)
1

q−1

e
− |y−xn|2

4(s−tn) ≥ C(ε+ 1)
− 1

q−1 e−
(
√

ε+1)2

2ε δ
− 2

q−1
n ,

which implies

inf
O∩(Bρ(x)×(−ρ2+t,ρ2+t))

u ≥ C(ε+ 1)
− 1

q−1 e−
(
√
ε+1)2

2ε δ
− 2

q−1
n → ∞ as ρ→ 0.

Remark 7.3.5 Note that if u ∈ C2,1(O) is a solution of (7.3.1) for some q > 1 then, for

a, b > 0 and 1 < p ≤ 2, v = b
− 1

q−1u is a super-solution of

∂tv −∆v + a|∇v|p + bvq = 0 in O. (7.3.13)

Thus, we can apply the argument of the previous proof, with equation (7.3.1) replaced by
(7.3.13), and deduce that there exists a maximal solution v ∈ C2,1(O) of (7.3.13) satisfying

v(x, t) ≤ Cb
− 1

q−1 (d((x, t), ∂pO))
− 2

q−1 for all (x, t) ∈ O.

Furthermore, if 1 < q < q∗, q = 2p
p+1 , a, b > 0 then the function U in Remark 7.3.4 is

a subsolution of (7.3.13) in R
N+1\{(0, 0)}, for some C = C(N, p, q, a, b). Therefore, we

conclude that every maximal solution of v ∈ C2,1(O) of (7.3.13) satisfy

v(x, t) ≥ C
1

(t− s)
1

q−1

e
− |x−y|2

4(t−s) χt>s (7.3.14)

for all (x, t) ∈ O and (y, s) ∈ ∂pO.

As in Remark 7.3.4, if for any (x, t) ∈ ∂pO there exist ε ∈ (0, 1) and a decreasing sequence
{δn} ⊂ (0, 1) converging to 0 as n→ ∞ such that

(
Bδn(x)× (−δ2n + t,−εδ2n + t)

)
∩Oc 6= ∅

for any n ∈ N, then v is a large solution.

Next, we consider the following equation

∂tu−∆u+ eu − 1 = 0. (7.3.15)

It is easy to see that the two functions

V1(t) = − log

(
t+ ρ2

1 + ρ2

)
and V2(x) = C − 2 log

(
ρ2 − |x|2

ρ

)
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satisfy
V ′
1 + eV1 − 1 ≥ 0 in (−ρ2, 0]

and
−∆V2 + eV2 − 1 ≥ 0 in Bρ(0)

for some C = C(N). Using ea + eb ≤ ea+b − 1 for a, b ≥ 0, we obtain that V1 + V2
is a supersolution of equation (7.3.15) in Bρ(0) × (−ρ2, 0]. By the same argument as in
Proposition 7.3.1 and the estimate of the above supersolution, we obtain

Proposition 7.3.6 There exists a maximal solution u ∈ C2,1(O) of

∂tu−∆u+ eu − 1 = 0 in O, (7.3.16)

and it satisfies

u(x, t) ≤ C − log

(
(d((x, t), ∂pO))3

4 + (d((x, t), ∂pO))2

)
for all (x, t) ∈ O, (7.3.17)

for some C = C(N).

The next three propositions will be useful to prove Theorem 7.1.1-(ii).

Proposition 7.3.7 Let K ⊂ Q̃1(0, 0) be a compact set and q > 1, R ≥ 100. Let u be
a solution of (7.3.7) in Q̃R(0, 0)\K and ϕ as in Proposition 7.2.6 with p = q′. Set ξ =
(1− ϕ)2q

′
. Then,

ˆ

Q̃R(0,0)
u (|∆ξ|+ |∇ξ|+ |∂tξ|) dxdt . Cap2,1,q′(K), (7.3.18)

u(x, t) . Cap2,1,q′(K) +R
− 2

q−1 for any (x, t) ∈ Q̃R/5(0, 0)\Q̃2(0, 0), (7.3.19)

and
ˆ

Q̃2(0,0)
uξdxdt . Cap2,1,q′(K) +R

− 2
q−1 , (7.3.20)

where the constants in above inequalities depend only on N, q.

Proof. Step 1. We claim that
ˆ

Q̃R(0,0)
uqξdxdt . Cap2,1,q′(K). (7.3.21)

Actually, using by parts integration and the Green formula, one has
ˆ

Q̃R(0,0)
uqξdxdt = −

ˆ

Q̃R(0,0)
∂tuξdxdt+

ˆ

Q̃R(0,0)
(∆u)ξdxdt

=

ˆ

Q̃R(0,0)
u∂tξdxdt+

ˆ

Q̃R(0,0)
u∆ξdxdt+

ˆ R2

−R2

ˆ

∂BR(0)

(
ξ
∂u

∂ν
− u

∂ξ

∂ν

)
dSdt
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where ν is the outer normal unit vector on ∂BR(0). Clearly,

∂u

∂ν
≤ 0 and

∂ξ

∂ν
= 0 on ∂BR(0).

Thus,
ˆ

Q̃R(0,0)
uqξdxdt ≤

ˆ

Q̃R(0,0)
u|∂tξ|dxdt+

ˆ

Q̃R(0,0)
u|∆ξ|dxdt

≤ 2q′
ˆ

Q̃R(0,0)
u(1− ϕ)2q

′−1|∂tϕ|dxdt+ 2q′(2q′ − 1)

ˆ

Q̃R(0,0)
u(1− ϕ)2q

′−2|∇ϕ|2dxdt

+ 2q′
ˆ

Q̃R(0,0)
u(1− ϕ)2q

′−1|∆ϕ|dxdt

≤ 2q′
ˆ

Q̃R(0,0)
uξ1/q|∂tϕ|dxdt+ 2q′(2q′ − 1)

ˆ

Q̃R(0,0)
uξ1/q|∇ϕ|2dxdt

+ 2q′
ˆ

Q̃R(0,0)
uξ1/q|∆ϕ|dxdt. (7.3.22)

In the last inequality, we have used the fact that (1− φ)2q
′−1 ≤ (1− φ)2q

′−2 = ξ1/q.
Hence, by Hölder’s inequality,

ˆ

Q̃R(0,0)
uqξdxdt .

ˆ

Q̃R(0,0)
|∂tϕ|q

′
dxdt+

ˆ

Q̃R(0,0)
|∇ϕ|2q′dxdt

+

ˆ

Q̃R(0,0)
|∆ϕ|q′dxdt.

By the Gagliardo-Nirenberg inequality,
ˆ

Q̃R(0,0)
|∇ϕ|2q′dxdt . ||ϕ||q′

L∞(Q̃R(0,0))

ˆ

Q̃R(0,0)
|D2ϕ|q′dxdt

.

ˆ

Q̃R(0,0)
|D2ϕ|q′dxdt.

Hence, we find
ˆ

Q̃R(0,0)
uqξdxdt .

ˆ

Q̃R(0,0)
(|∂tϕ|q

′
+ |D2ϕ|q′)dxdt,

and derive (7.3.21) from (7.2.4). In view of (7.3.22), we also obtain
ˆ

Q̃R(0,0)
u(|∆ξ|+ |∂tξ|)dxdt . Cap2,1,q′(K)

and
ˆ

Q̃R(0,0)
u|∇ξ|dxdt . Cap2,1,q′(K),

331



7.3. MAXIMAL SOLUTIONS

since
ˆ

Q̃R(0,0)
u|∇ξ|dxdt = 2q′

ˆ

Q̃R(0,0)
uξ(2q

′−1)/2q′ |∇ϕ|dxdt

≤ 2q′
ˆ

Q̃R(0,0)
uξ1/q|∇ϕ|dxdt

.

ˆ

Q̃R(0,0)
uqξdxdt+

ˆ

Q̃R(0,0)
|∇ϕ|q′dxdt.

It yields (7.3.18).
Step 2. Relation (7.3.19) holds. Let η be a cut off function on Q̃R/4(0, 0) with respect to
Q̃R/3(0, 0) such that |∂tη|+ |D2η| . R−2 and |∇η| . R−1. We have

∂t(ηξu)−∆(ηξu) = F ∈ Cc(Q̃R/3(0, 0)).

Hence, we can write

(ηξu)(x, t) =

ˆ

RN

ˆ t

−∞

1

(4π(t− s))
N
2

e
− |x−y|2

4(t−s) F (y, s)dsdy ∀(x, t) ∈ R
N+1.

Now, we fix (x, t) ∈ Q̃R/5(0, 0)\Q̃2(0, 0). Since supp{|∇η|} ∩ supp{|∇ξ|} = ∅ and

F = ηξ (∂tu−∆u)− 2 (η∇ξ + ξ∇η)∇u+ (ξ∂tη + η∂tξ − 2∇η∇ξ −∆ηξ − η∆ξ)u

≤ −2 (η∇ξ + ξ∇η)∇u+ (ξ∂tη + η∂tξ − ξ∆η − η∆ξ)u,

there holds

u(x, t) = (ηξu)(x, t) ≤ −2

ˆ

RN

ˆ t

−∞

1

(4π(t− s))
N
2

e
− |x−y|2

4(t−s) (η∇ξ + ξ∇η)∇udsdy

+

ˆ

RN

ˆ t

−∞

1

(4π(t− s))
N
2

e
− |x−y|2

4(t−s) (η∂tξ − η∆ξ)udsdy

+

ˆ

RN

ˆ t

−∞

1

(4π(t− s))
N
2

e
− |x−y|2

4(t−s) (∂tηξ − ξ∆η)udsdy.

= I1 + I2 + I3.

By parts integration

I1 = 2(4π)−N/2
ˆ t

−∞

ˆ

RN

(x− y)

2(t− s)(N+2)/2
e
− |x−y|2

4(t−s) (η∇ξ + ξ∇η)udyds

+ 2(4π)−N/2
ˆ t

−∞

ˆ

RN

1

(t− s)N/2
e
− |x−y|2

4(t−s) (ξ∆η + η∆ξ)u dyds.

Note that
1

(t− s)N/2
e
− |x−y|2

4(t−s) .
(
max{|x− y|, |t− s|1/2}

)−N
,
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∣∣∣∣
(x− y)

2(t− s)(N+2)/2
e
− |x−y|2

4(t−s)

∣∣∣∣ .
(
max{|x− y|, |t− s|1/2}

)−N−1
,

and

max{|x− y|, |t− s|1/2} & 1 ∀(y, s) ∈ supp{|Dαξ|} ∪ supp{|∂tξ|},
max{|x− y|, |t− s|1/2} & R ∀(y, s) ∈ supp{|Dαη|} ∪ supp{|∂tη|} ∀|α| ≥ 1.

We deduce

I1 .

ˆ

RN+1

(
max{|x− y|, |t− s|1/2}

)−N−1
(η|∇ξ|+ ξ|∇η|)u dyds

+

ˆ

RN+1

(
max{|x− y|, |t− s|1/2}

)−N
(ξ|∆η|+ η|∆ξ|)u dyds

.

ˆ

RN+1

(|∇ξ|+ |∆ξ|)u dyds+
ˆ

Q̃R/3(0,0)\Q̃R/4(0,0)
(R−N−1|∇η|+R−N |∆η|)u dyds

.

ˆ

RN+1

(|∇ξ|+ |∆ξ|)u dyds+ sup
Q̃R/3(0,0)\Q̃R/4(0,0)

u,

I2 .

ˆ

RN+1

(
max{|x− y|, |t− s|1/2}

)−N
(|∂tξ|+ |∆ξ|)u dyds

.

ˆ

RN+1

(|∂tξ|+ |∆ξ|)u dyds,

and

I3 .

ˆ

RN+1

(
max{|x− y|, |t− s|1/2}

)−N
(|∂tη|+ |∆η|)u dyds

.

ˆ

Q̃R/3(0,0)\Q̃R/4(0,0)
R−N (|∂tη|+ |∆η|)u dyds

. sup
Q̃R/3(0,0)\Q̃R/4(0,0)

u.

Hence,

u(x, t) ≤ I1 + I2 + I3 .

ˆ

RN+1

(|∂tξ|+ |∇ξ|+ |∆ξ|)u dyds+ sup
Q̃R/3(0,0)\Q̃R/4(0,0)

u.

Combining this with (7.3.18) and (7.3.8), we obtain (7.3.19).
Step 3. End of the proof. Let θ be a cut off function on Q̃3(0, 0) with respect to Q̃4(0, 0).
As above, we have for any (x, t) ∈ R

N+1

(θξu)(x, t) .

ˆ

RN+1

(max{|x− y|, |t− s|1/2})−N−1(θ|∇ξ|+ ξ|∇θ|)u dyds

+

ˆ

RN+1

(max{|x− y|, |t− s|1/2})−N (θ|∆ξ|+ ξ|∆θ|)u dyds

+

ˆ

RN+1

(max{|x− y|, |t− s|1/2})−N (θ|∂tξ|+ θ|∆ξ|)u dyds

+

ˆ

RN+1

(max{|x− y|, |t− s|1/2})−N (ξ|∂tθ|+ ξ|∆θ|)u dyds.
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Hence, by Fubini theorem,
ˆ

Q̃2(0,0)
ηudxdt =

ˆ

Q̃2(0,0)
θηudxdt

. A

ˆ

RN+1

(θ|∇ξ|+ ξ|∇θ|+ θ|∆ξ|+ ξ|∆θ|+ θ|∂tξ|+ ξ|∂tθ|)u dyds

.

ˆ

RN+1

(|∂tξ|+ |∇ξ|+ |∆ξ|)u dyds+ sup
Q̃4(0,0)\Q̃3(0,0)

u

where

A = sup
(y,s)∈Q̃4(0,0)

ˆ

Q̃2(0,0)
((max{|x− y|, |t− s|1/2})−N + (max{|x− y|, |t− s|1/2})−N−1)dxdt.

Therefore we obtain (7.3.20) from (7.3.18) and (7.3.19).

Proposition 7.3.8 Let K ⊂ {(x, t) : ε < max{|x|, |t|1/2} < 1} be a compact set, 0 < ε < 1
and u be the maximal solution of (7.3.7) in Q̃R(0, 0)\K with R ≥ 100. Then

sup
Q̃ε/4(0,0)

u .

jε−2∑

j=−2

Cap2,1,q′(K ∩ Q̃ρj (0, 0))
ρNj

+ jεR
− 2

q−1 if q > q∗, (7.3.23)

and

sup
Q̃ε/4(0,0)

u .

jε∑

j=0

Cap2,1,q′(Kj)

ρNj
+ jεR

− 2
q−1 if q = q∗, (7.3.24)

where ρj = 2−j, Kj = {(x/ρj+3, t/ρ
2
j+3) : (x, t) ∈ K ∩ Q̃ρj−2(0, 0)} and jε ∈ N is such that

ρjε ≤ ε < ρjε−1.

Proof. For j ∈ N , we define Sj = {x : ρj ≤ max{|x|, |t|1/2} ≤ ρj−1}.
Fix any 1 ≤ j ≤ jε. We cover Sj by L = L(N) ∈ N

∗ closed cylinders

Q̃ρj+3(xk,j , tk,j), k = 1, ..., L(N)

where (xk,j , tk,j) ∈ Sj .
For k = 1, ..., L(N), let uj , uk,j be the maximal solutions of (7.3.7) where K is replaced by

K ∩ Sj and K ∩ Q̃ρj+3(xk,j , tk,j), respectively. Clearly the function ũk,j defined by

ũk,j(x, t) = ρ
2

q−1

j+3uk,j(ρj+3x+ xk,j , ρ
2
j+3t+ tk,j)

is the maximal solution of (7.3.7) when (Kk,j , Q̃R/ρj+3
(−xk,j/ρj+3,−tk,j/ρ2j+3)) is replacing

(K, Q̃R(0, 0)), with

Kk,j = {(y/ρj+3, s/ρ
2
j+3) : (y, s) ∈ −(xk,j , tk,j) +K ∩ Q̃ρj+3(xk,j , tk,j)} ⊂ Q̃1(0, 0).
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Let uk,j be the maximal solution of (7.3.7) with (K, Q̃R(0, 0)) replaced by (Kk,j , Q̃2R/ρj+3
(0, 0)).

Since Q̃R/ρj+3
(−xk,j/ρj+3,−tk,j/ρ2j+3) ⊂ Q̃2R/ρj+3

(0, 0), then, by the comparison principle

as in the proof of Proposition 7.3.1 we get ũk,j ≤ uk,j in Q̃R/ρj+3
(−xk,j/ρj+3,−tk,j/ρ2j+3)\Kk,j

and thus

ũk,j(x, t) . Cap2,1,q′(Kk,j) + (R/ρj+3)
− 2

q−1 ,

for any (x, t) ∈
(
Q̃2R/(5ρj+3)(0, 0) ∩ Q̃R/ρj+3

(−xk,j/ρj+3,−tk,j/ρ2j+3)
)
\Q̃2(0, 0) = D.

Fix (x0, t0) ∈ Q̃ε/4(0, 0). Clearly, ((x0 − xk,j)/ρj+3, (t0 − tk,j)/ρj+3) ∈ D, hence

uk,j(x0, t0) = ρ
− 2

q−1

j+3 ũk,j((x0 − xk,j)/ρj+3, (t0 − tk,j)/ρ
2
j+3)

.
Cap2,1,q′(Kk,j)

ρ
2

q−1

j

+R
− 2

q−1 .

Therefore, using (7.3.9) in Remark 7.3.2 and the fact that

Cap2,1,q′(Kk,j) = Cap2,1,q′(Kk,j + (xk,j/ρj+3, tk,j/ρ
2
j+3)) ≤ Cap2,1,q′(Kj),

we derive

u(x0, t0) ≤
jε∑

j=1

uj(x0, t0) ≤
jε∑

j=1

L(N)∑

k=1

uk,j(x0, t0)

.

jε∑

j=0

Cap2,1,q′(Kj)

ρ
2

q−1

j

+ jεR
− 2

q−1 ,

which yields (7.3.24). If q > q∗, then by (7.2.2) in Proposition 7.2.5, we have

Cap2,1,q′(Kj) . ρ−N−2+2q′

j+3 Cap2,1,q′(K ∩ Q̃ρj−2(0, 0)),

which implies (7.3.23).

Proposition 7.3.9 Let K,u, ξ be as in Proposition 7.3.7. For any compact set K0 in
Q̃1(0, 0) with positive measure |K0|, there exists ε = ε(N, q, |K0|) > 0 such that

Cap2,1,q′(K) ≤ ε⇒ inf
K0

u .

ˆ

Q̃2(0,0)
uξdxdt,

where the constant in the inequality . depends on K0. In particular,

Cap2,1,q′(K) ≤ ε⇒ inf
K0

u . Cap2,1,q′(K) +R
− 2

q−1 . (7.3.25)

Proof. It is enough to prove that there exists ε > 0 such that

Cap2,1,q′(K) ≤ ε⇒ |K1| ≥ 1/2|K0| (7.3.26)
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where K1 = {(x, t) ∈ K0 : ξ(x, t) ≥ 1/2}. By (7.2.1) in Proposition 7.2.5, we have the
following estimates

|K0\K1|1−
2q′
N+2 . Cap2,1,q′(K0\K1)

if q > q∗, and (
log

(
|Q̃200(0, 0)|
|K0\K1|

))−N
2

. Cap2,1,q′(K0\K1)

if q = q∗. On the other hand,

Cap2,1,q′(K0\K1) = Cap2,1,q′({K0 : ϕ > 1− (1/2)1/(2q
′)})

≤ (1− (1/2)1/(2q
′))−q

′
ˆ

RN+1

(
|D2ϕ|q′ + |∇ϕ|q′ + |ϕ|q′ + |∂tϕ|q

′
)
dxdt

. Cap2,1,q′(K)

where ϕ is in Proposition 7.3.7. Henceforth, one can find ε = ε(N, q, |K0|) > 0 such that

Cap2,1,q′(K) ≤ ε⇒ |K0\K1| ≤ 1/2 |K0|.

This implies (7.3.26).

7.4 Large solutions

In the first part of this section, we prove theorem 7.1.1-(ii), then we prove theorems
7.1.1-(i) and 7.1.2, at end we consider a parabolic viscous Hamilton-Jacobi equation.

7.4.1 Proof of Theorem 7.1.1-(ii)

Let R0 ≥ 4 such that O ⊂⊂ Q̃R0(0, 0). Assume that the equation (7.1.12) has a large
solution u. Take any (x, t) ∈ ∂pO. We will to prove that (7.1.14) holds. We can assume
(x, t) = (0, 0). Set K = Q̃2R0(0, 0)\O and define

Tj = {x : ρj+1 ≤ max{|x|, |t|1/2} ≤ ρj , t ≤ 0},
T̃j = {x : ρj+3 ≤ max{|x|, |t|1/2} ≤ ρj−2, t ≤ 0}.

Here ρj = 2−j . For j ≥ 3, let u1, u2, u3, u4 be the maximal solutions of (7.3.7) when

K is replaced by K ∩ Qρj+3(0, 0), K ∩ T̃j ,
(
K ∩Q1(0, 0)

)
\Qρj−2(0, 0) and K\Q1(0, 0)

respectively and R ≥ 100R0. From (7.3.9) in Remark 7.3.2, we can assert that

u ≤ u1 + u2 + u3 + u4 in O ∩ {(x, t) ∈ R
N+1 : t ≤ 0}.

Thus,

inf
Tj
u ≤ ||u1||L∞(Tj) + ||u3||L∞(Tj) + ||u4||L∞(Tj) + inf

Tj
u2. (7.4.1)
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Case 1 : q > q∗. By (7.3.8) in Remark 7.3.2,

||u4||L∞(Tj) . 1. (7.4.2)

By (7.3.23) in Proposition 7.3.8,

||u3||L∞(Tj) .

j−4∑

i=−2

Cap2,1,q′(K ∩Qρi(0, 0))
ρNi

+ jR
− 2

q−1 . (7.4.3)

Since (x, t) 7→ u1(x, t) = ρ
2/(q−1)
j+3 u1(ρj+3x, ρ

2
j+3t) is the maximal solution of (7.3.7) when

(K, Q̃R(0, 0)) is replaced by ({(y/ρj+3, s/ρ
2
j+3) : (y, s) ∈ K ∩ Qρj+3(0, 0)}, Q̃R/ρj+3

(0, 0)),
we derive, thanks to (7.3.19) in Proposition 7.3.7 and (7.2.2) in Proposition 7.2.5,

||u1||L∞(T−3) .
Cap2,1,q′(K ∩Qρj+2(0, 0))

ρN+2−2q′
j

+ (R/ρj+3)
− 2

q−1 ,

from which follows

||u1||L∞(Tj) .
Cap2,1,q′(K ∩Qρj+2(0, 0))

ρNj
+R

− 2
q−1 . (7.4.4)

Since, (x, t) 7→ u2(x, t) = ρ
2/(q−1)
j−2 u2(ρj−2x, ρ

2
j−2t) is the maximal solution of (7.3.7) when

the couple (K, Q̃R(0, 0)) is replaced by ({(y/ρj−2, s/ρ
2
j−2) : (y, s) ∈ K∩ T̃j}, Q̃R/ρj−2

(0, 0)),
Proposition 7.3.9 and relation (7.2.2) in Proposition 7.2.5 yield

Cap2,1,q′(K ∩ T̃j)
ρN+2−2q′
j−2

≤ ε⇒ inf
T2
u2 .

Cap2,1,q′(K ∩ T̃j)
ρN+2−2q′
j−2

+ (R/ρj−2)
− 2

q−1 ,

which implies

Cap2,1,q′(K ∩Qρj−3(0, 0))

ρN+2−2q′
j−2

≤ ε⇒ inf
Tj
u2 .

Cap2,1,q′(K ∩Qρj−3(0, 0))

ρNj−2

+R
− 2

q−1 , (7.4.5)

for some ε = ε(N, q) > 0.
First, we assume that there exists J ∈ N, J ≥ 10 such that

Cap2,1,q′(K ∩Qρj−3(0, 0))

ρN+2−2q′
j−2

≤ ε ∀ j ≥ J.

Then, from (7.4.1) and (7.4.2), (7.4.3), (7.4.4), (7.4.5), we have

inf
Tj
u .

j+2∑

i=−2

Cap2,1,q′(K ∩Qρi(0, 0))
ρNi

+ jR
− 2

q−1 + 1,

for any j ≥ J . Letting R→ ∞,

inf
Tj
u .

j+2∑

i=−2

Cap2,1,q′(K ∩Qρi(0, 0))
ρNi

+ 1.
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Since infTj u→ ∞ as j → ∞, we get

∞∑

i=0

Cap2,1,q′(K ∩Qρi(0, 0))
ρNi

= ∞,

which implies that (7.1.14) holds with (x, t) = (0, 0).
Alternatively, assume that for infinitely many j

Cap2,1,q′(K ∩Qρj−3(0, 0))

ρN+2−2q′
j−2

> ε

Then,

Cap2,1,q′(K ∩Qρj−3(0, 0))

ρNj−2

> ρ2−2q′

j−2 ε→ ∞ when j → ∞.

We also derive that (7.1.14) holds with (x, t) = (0, 0). This proves the case q > q∗.

Case 2 : q = q∗. Similarly to Case 1, we have : for j ≥ 6

||u4||L∞(Tj) . 1, (7.4.6)

||u3||L∞(Tj) .

j−2∑

i=0

Cap2,1,q′(Kj)

ρNi
+ jR

− 2
q−1 , (7.4.7)

||u1||L∞(Tj) .
Cap2,1,q′(Kj)

ρNj
+R

− 2
q−1 , (7.4.8)

Cap2,1,q′(Kj−5) ≤ ε⇒ inf
Tj
u2 .

Cap2,1,q′(Kj−5)

ρNj
+R

− 2
q−1 , (7.4.9)

where Kj = {(x/ρj+3, t/ρ
2
j+3) : (x, t) ∈ K ∩Qρj−3(0, 0)} and ε = ε(N) > 0.

From (7.2.2) in Proposition 7.2.5, we have

1

Cap2,1,q′(K ∩Qρj−3(0, 0))
≤ c

Cap2,1,q′(Kj)
+ cjN/2

for any j ≥ 4 where c = c(N). If there are infinitely many j ≥ 4 such that

Cap2,1,q′(K ∩Qρj−3(0, 0)) >
1

2cjN/2
,

then (7.1.14) holds with (x, t) = (0, 0) since

Cap2,1,q′(K ∩Qρj−3(0, 0))

ρNj−3

>
2j−3

2cjN/2
→ ∞ when j → ∞.

Now, we assume that there exists J ≥ 6 such that

Cap2,1,q′(K ∩Qρj−3(0, 0)) ≤
1

2cjN/2
.
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Then,

Cap2,1,q′(Kj) ≤ 2cCap2,1,q′(K ∩Qρj−3(0, 0)) ∀ j ≥ J.

This leads to

Cap2,1,q′(Kj) ≤ 2cCap2,1,q′(K ∩Qρj−3(0, 0)) ≤ ε ∀ j ≥ J ′ + J,

for some J ′ = J ′(N). Hence, from (7.4.6)-(7.4.9) we have, for any j ≥ J ′ + J + 3,

||u4||L∞(Tj) . 1,

||u3||L∞(Tj) .

j−2∑

i=J ′+J+1

Cap2,1,q′(K ∩Qρi−3(0, 0))

ρNi
+ C(J ′ + J) + jR

− 2
q−1 ,

||u1||L∞(Tj) .
Cap2,1,q′(K ∩Qρj−3(0, 0))

ρNj
+R

− 2
q−1 ,

inf
Tj
u2 .

Cap2,1,q′(K ∩Qρj−8(0, 0))

ρNj
+R

− 2
q−1 ,

where C(J ′ + J) =
∑J ′+J

i=0

Cap2,1,q′ (Kj)

ρNi
.

Consequently we derive

inf
Tj
u .

j∑

i=0

Cap2,1,q′(K ∩Qρi(0, 0))
ρNi

+ C(J ′ + J) + 1 + jR
− 2

q−1 ∀ j ≥ J ′ + J + 3

from (7.4.1). Letting R→ ∞ and j → ∞ we obtain

∞∑

i=0

Cap2,1,q′(K ∩Qρi(0, 0))
ρNi

= ∞,

i.e (7.1.14) holds with (x, t) = (0, 0). This completes the proof of Theorem 7.1.1-(ii).

7.4.2 Proof of Theorem 7.1.1-(i) and Theorem 7.1.2

Fix (x0, t0) ∈ ∂pO. We can assume that (x0, t0) = 0. Let δ ∈ (0, 1/100). For (y0, s0) ∈
(Bδ(0)× (−δ2, δ2)) ∩O, we set

Mk = Oc ∩
(
Brk+2

(y0)× [s0 − (73 +
1

2
)r2k+2, s0 − (70 +

1

2
)r2k+2]

)

and
Sk = {(x, t) : rk+1 ≤ max{|x− y0|, |t− s0|

1
2 } < rk} for k = 1, 2, ...,

where rk = 4−k. Note that Mk = ∅ for k large enough and Mk ⊂ Sk for all k. Let R0 ≥ 4
such that O ⊂⊂ Q̃R0(0, 0). By Theorem 7.2.2 and 7.2.4 and estimate (7.1.11) there exist
two sequences {µk}k and {νk}k of nonnegative Radon measures such that

supp(µk) ⊂Mk, supp(νk) ⊂Mk, (7.4.10)
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µk(Mk) ≍ Cap2,1,q′(Mk) ≍
ˆ

RN+1

(
I
2R0
2 [µk]

)q
dxdt (7.4.11)

and
νk(Mk) ≍ PHN

1 (Mk), ||M2R0
1 [νk]||L∞(RN+1) ≤ 1 for k = 1, 2, ..., (7.4.12)

where the constants of equivalence depend on N, q,R0.

Take ε > 0 such that exp
(
C1εI

2R0
2 [

∑∞
k=1 νk]

)
∈ L1(Q̃R0(0, 0)) where the constant C1 =

C1(N) is the one of inequality (7.2.6). By Theorem 7.2.7 and Proposition 7.2.8, there exist
two nonnegative solutions U1, U2 of problems

∂tU1 −∆U1 + U q1 = ε
∞∑

k=1

µk in Q̃R0(0, 0),

U1 = 0 on ∂pQ̃R0(0, 0).

and

∂tU2 −∆U2 + eU2 − 1 = ε

∞∑

k=1

νk in Q̃R0(0, 0),

U2 = 0 on ∂pQ̃R0(0, 0),

respectively which satisfy

U1(y0, z0) &

∞∑

i=0

∞∑

k=1

ε
µk(B ri

8
(y0)× (s0 − 37

128r
2
i , s0 − 35

128r
2
i ))

rNi

− I
2R0
2

[(
I
2R0
2 [ε

∞∑

k=1

µk]

)q]
(y0, s0) =: A (7.4.13)

and

U2(y0, z0) &

∞∑

i=0

∞∑

k=1

ε
νk(B ri

8
(y0)× (s0 − 37

128r
2
i , s0 − 35

128r
2
i ))

rNi

− I
2R0
2

[
exp

(
C1I

2R0
2 [ε

∞∑

k=1

νk]

)
− 1

]
(y0, s0) =: B (7.4.14)

and U1, U2 ∈ C2,1(O).
Let u1, u2 be the maximal solutions of equations (7.3.1) and (7.3.16) respectively.
We have u1(y0, s0) ≥ U1(y0, s0) and u2(y0, s0) ≥ U2(y0, s0). Now, we claim that

A &

∞∑

k=1

Cap2,1,q′(Mk)

rNk
(7.4.15)

and

B & −c1(R0) +

∞∑

k=1

PHN
1 (Mk)

rNk
. (7.4.16)
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Proof of assertion (7.4.15). From (7.4.11) we have

A & ε
∞∑

k=1

Cap2,1q′(Mk)

rNk
− εqA0 (7.4.17)

with

A0 = I
2R0
2

[(
I
2R0
2 [

∞∑

k=1

µk]

)q]
(y0, s0).

Take i0 ∈ Z such that ri0+1 < max{2R0, 1} ≤ ri0 . Then

A0 .

∞∑

i=i0

r−Ni

ˆ

Q̃ri (y0,s0)

(
I
2R0
2 [

∞∑

k=1

µk]

)q
dxdt

=
∞∑

i=i0

∞∑

j=i

r−Ni

ˆ

Sj

(
I
2R0
2 [

∞∑

k=1

µk]

)q
dxdt

=

∞∑

j=k0

j∑

i=i0

r−Ni

ˆ

Sj

(
I
2R0
2 [

∞∑

k=1

µk]

)q
dxdt

.

∞∑

j=i0

r−Nj

ˆ

Sj

(
I
2R0
2 [

∞∑

k=1

µk]

)q
dxdt.

Here we have used the fact that
∑j

i=i0
r−Ni ≤ 4

3r
−N
j for all j.

Setting µk ≡ 0 for all i0 − 1 ≤ k ≤ 0, the previous inequality becomes

A0 .

∞∑

j=i0

r−Nj

ˆ

Sj


I

2R0
2 [µj +

j−1∑

k=i0−1

µk +

∞∑

k=j+1

µk]



q

dxdt

.

∞∑

j=i0

r−Nj

ˆ

Sj

(
I
2R0
2 [µj ]

)q
dxdt

+

∞∑

j=i0

r2j




j−1∑

k=i0−1

||I2R0
2 [µk]||L∞(Sj)



q

+
∞∑

j=i0

r2j




∞∑

k=j+1

||I2R0
2 [µk]||L∞(Sj)



q

= A1 +A2 +A3. (7.4.18)

Using (7.4.11) we obtain

A1 ≤
∞∑

k=1

Cap2,1,q′(Mk)

rNk
. (7.4.19)
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Next, using (7.4.10) we have for any (x, t) ∈ Sj if k ≥ j + 1,

I
2R0
2 [µk](x, t) =

ˆ 2R0

rj+1

µk(Q̃ρ(x, t))

ρN
dρ

ρ
.
µk(R

N+1)

rNj
(7.4.20)

and if k ≤ j − 1

I
2R0
2 [µk](x, t) =

ˆ 2R0

rk+1

µk(Q̃ρ(x, t))

ρN
dρ

ρ
.
µk(R

N+1)

rNk
. (7.4.21)

Thus,

A2 .

∞∑

j=i0

r2j




j−1∑

k=i0−1

µk(R
N+1)

rNk



q

and

A3 .

∞∑

j=i0

r2−Nqj




∞∑

k=j+1

µk(R
N+1)



q

.

Noticing that (a+ b)q − aq ≤ q(a+ b)q−1b for any a, b ≥ 0, we get

(1− 4−2)

∞∑

j=i0

r2j




j−1∑

k=i0−1

µk(R
N+1)

rNk



q

=
∞∑

j=i0

r2j




j−1∑

k=i0−1

µk(R
N+1)

rNk



q

−
∞∑

j=i0+1

r2j




j−2∑

k=i0−1

µk(R
N+1)

rNk



q

≤
∞∑

j=i0

qr2j




j−1∑

k=i0−1

µk(R
N+1)

rNk



q−1

µj−1(R
N+1)

rNj−1

.

Similarly, we also have

(1− 42−Nq)
∞∑

j=i0

r2−Nqj




∞∑

k=j+1

µk(R
N+1)



q

≤
∞∑

j=i0

qr2−Nqj




∞∑

k=j+1

µk(R
N+1)



q−1

µj+1(R
N+1).

Therefore,

A2 +A3 .

∞∑

j=i0

r2j




j−1∑

k=i0−1

µk(R
N+1)

rNk



q−1

µj−1(R
N+1)

rNj−1

+

∞∑

j=i0

r2−Nqj




∞∑

k=j+1

µk(R
N+1)



q−1

µj+1(R
N+1).
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Since µk(RN+1) . rN+2−2q′

k if q > q∗ and µk(R
N+1) . min{k−

1
q−1 , 1} if q = q∗ for any k,

we infer that

r2j




j−1∑

k=i0−1

µk(R
N+1)

rNk



q−1

. 1

and

r2−Nqj




∞∑

k=j+1

µk(R
N+1)



q−1

. r−Nj+1 for any j.

In the case q = q∗ we assume N ≥ 3 in order to ensure that

∞∑

j=1

µk(R
N+1) .

∞∑

k=1

k
− 1

q−1 <∞.

This leads to

A2 +A3 .

∞∑

k=1

µk(R
N+1)

rNk
.

Combining this with (7.4.19) and (7.4.18), we deduce

A0 .

∞∑

k=1

Cap2,1,q′(Mk)

rNk
.

Consequently, we obtain (7.4.15) from (7.4.17), for ε small enough.

Proof of assertion (7.4.16). From (7.4.12) we get

B & ε

∞∑

k=1

PHN
1 (Mk)

rNk
−B0,

where

B0 = I
2R0
2

[
exp

(
C1I

2R0
2 [ε

∞∑

k=1

νk]

)
− 1

]
(y0, s0).

We show that

B0 ≤ c(N, q,R0) for ε small enough. (7.4.22)

In fact, as above we have

B0 .

∞∑

j=i0

r−Nj

ˆ

Sj

exp

(
C1εI

2R0
2 [

∞∑

k=1

νk]

)
dxdt.
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Consequently,

B0 .

∞∑

j=i0

r−Nj

ˆ

Sj

exp
(
3C1εI

2R0
2 [νj ]

)
dxdt

+
∞∑

j=i0

r2j exp


3C1ε

j−1∑

k=i0−1

||I2R0
2 [νk]||L∞(Sj)




+
∞∑

j=i0

r2j exp


3C1ε

∞∑

k=j+1

||I2R0
2 [νk]||L∞(Sj)




= B1 +B2 +B3. (7.4.23)

Here we have used the inequality exp(a+b+c) ≤ exp(3a)+exp(3b)+exp(3c) for all a, b, c.
By Theorem 7.2.3, we have

ˆ

Sj

exp
(
3C1εI

2R0
2 [νj ]

)
dxdt . rN+2

j for all j,

for ε > 0 small enough. Hence,

B1 .

∞∑

j=i0

r2j . (max{2R0, 1})2. (7.4.24)

Note that estimates (7.4.20) and (7.4.21) are also true with νk ; we deduce

B2 +B3 .

∞∑

j=i0

r2j exp


c2ε

j−1∑

k=i0−1

µk(R
N+1)

rNk




+
∞∑

j=i0

r2j exp


c2ε

∞∑

k=j+1

µk(R
N+1)

rNj


 .

From (7.4.12) we have µk(RN+1) . rNk for all k, therefore

B2 +B3 .

∞∑

j=i0

r2j exp (c3ε(j − i0)) +
∞∑

j=i0

r2j exp (c3ε)

.

∞∑

j=i0

exp (c3ε(j − i0)− 4 log(2)j) + r2i0

≤ c4(N, q,R0) for ε small enough.

Combining this with (7.4.24) and (7.4.23) we obtain (7.4.22).

This implies straightforwardly exp
(
C1εI

2R0
2 [

∑∞
k=1 νk]

)
∈ L1(Q̃R0(0, 0)).

We conclude that for any (y0, s0) ∈ (Bδ(0)× (−δ2, δ2)) ∩O,

u1(y0, s0) &

∞∑

k=1

Cap2,1q′ (Mk(y0, s0))

rNk

344



7.4. LARGE SOLUTIONS

and

u2(y0, s0) & −c1(R0) +
∞∑

k=1

PHN
1 (Mk(y0, s0))

rNk
,

where rk = 4−k and

Mk(y0, s0) = Oc ∩
(
Brk+2

(y0)× [s0 − (73 +
1

2
)r2k+2, s0 − (70 +

1

2
)r2k+2]

)
.

Take rkδ+4 ≤ δ < rkδ+3, we have for 1 ≤ k ≤ kδ

Mk(y0, s0) ⊃ Oc ∩
(
Brk+2−δ(0)×

(
δ2 − (73 +

1

2
)r2k+2,−δ2 − (70 +

1

2
)r2k+2

))

⊃ Oc ∩
(
Brk+3

(0)×
(
−73r2k+2,−71r2k+2

))

= Oc ∩
(
Brk+3

(0)×
(
−1168r2k+3,−1136r2k+3

))
.

Finally

inf
(y0,s0)∈(Bδ(0)×(−δ2,δ2))∩O

u1(y0, s0)

&

kδ+3∑

k=4

Cap2,1,q′
(
Oc ∩

(
Brk(0)×

(
−1168r2k,−1136r2k

)))

rNk
→ ∞ as δ → 0,

and

inf
(y0,s0)∈(Bδ(0)×(−δ2,δ2))∩O

u2(y0, s0) & −c1(R0)

+

kδ+3∑

k=4

PHN
1

(
Oc ∩

(
Brk(0)×

(
−1168r2k,−1136r2k

)))

rNk
→ ∞ as δ → 0.

This completes the proof of Theorem 7.1.1-(i) and Theorem 7.1.2.

7.4.3 The viscous Hamilton-Jacobi parabolic equations

In this section we apply our previous result to the question of existence of a large
solution of the following type of parabolic viscous Hamilton-Jacobi equation

∂tu−∆u+ a|∇u|p + buq = 0 in O,
u = ∞ on ∂pO,

(7.4.25)

where a > 0, b > 0 and 1 < p ≤ 2, q ≥ 1. First, we show that such a large solution to
(7.4.25) does not exist when q = 1. Equivalently namely, for a > 0, b > 0 and p > 1 there
exists no function u ∈ C2,1(O) satisfying

∂tu−∆u+ a|∇u|p ≥ −bu in O,
u = ∞ on ∂pO.

(7.4.26)
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Indeed, assuming that such a function u ∈ C2,1(O), exists, we define

U(x, t) = u(x, t)ebt − ε

2
|x|2,

for ε > 0 and denote by (x0, t0) ∈ O\∂pO the point where U achieves it minimum in O,
i.e. U(x0, t0) = inf{U(x, t) : (x, t) ∈ O}. Clearly, we have

∂tU(x0, t0) ≤ 0, ∆U(x0, t0) ≥ 0 and ∇U(x0, t0) = 0.

Thus,

∂tu(x0, t0) ≤ −bu(x0, t0), −∆u(x0, t0) ≤ −εNe−bt0 and a|∇u(x0, t0)|p = aεp|x0|pe−pbt0 ,

from which follows

∂tu(x0, t0)−∆u(x0, t0) + a|∇u(x0, t0)|p ≤ −bu(x0, t0) + εe−bt0
(
−N + aεp−1|x0|pe−(p−1)bt0

)

< −bu(x0, t0)

for ε small enough, which is a contradiction.

Proof of Theorem 7.1.3. By Remark 7.3.3, we have

inf{v(x, t); (x, t) ∈ O} ≥ (q1 − 1)
− 1

q1−1R
− 2

q1−1 .

Take V = λv
1
α ∈ C2,1(O) for λ > 0. Thus v = λ−αV α,

inf{V (x, t); (x, t) ∈ O} > 0} ≥ λ(q1 − 1)
− 1

α(q1−1)R
− 2

α(q1−1) ,

and

∂tv −∆v + vq1 = αλ−αV α−1∂tV − αλ−αV α−1∆V + α(1− α)λ−αV α−1 |∇V |2
V

+ λ−αq1V αq1 .

This leads to

∂tV −∆V + (1− α)
|∇V |2
V

+ α−1λ−α(q1−1)V αq1−α+1 = 0 in O.

Using Hölder’s inequality,

(1− α)
|∇V |2
V

+ (2α)−1λ−α(q1−1)V αq1−α+1 ≥ c1|∇V |pλ−
α(q1−1)(2−p)

2 V
α(q1−1)(2−p)

2
−(p−1)

≥ c2|∇V |pλ−(p−1)R
−2+p+

2(p−1)
α(q1−1)

and

(2α)−1λ−α(q1−1)V αq1−α+1 ≥ c3λ
−(q−1)R

−2+
2(q−1)
α(q1−1)V q.

If we choose

λ = min{c
1

p−1

2 , c
1

q−1

3 }min

{
a
− 1

p−1R
− 2−p

p−1
+ 2

α(q1−1) , b
− 1

q−1R
− 2

q−1
+ 2

α(q1−1)

}
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then

c2λ
−(p−1)R

−2+p+
2(p−1)
α(q1−1) ≥ a,

c3λ
−(q−1)R

−2+
2(q−1)
α(q1−1) ≥ b,

from what follows

∂tV −∆V + a|∇V |p + bV q ≤ 0 in O.

By Remark 7.3.5, there exists a maximal solution u ∈ C2,1(O) of

∂tu−∆u+ a|∇u|p + buq = 0 in O.

Therefore, u ≥ V = λv
1
α and u is a large solution of (7.4.25). This completes the proof of

Theorem 7.1.3.

7.5 Appendix

Proof of Proposition 7.2.5.

Step 1. We claim that the following relation holds :
ˆ

RN+1

(
I
1
2[µ](x, t)

)(N+2)/N
dxdt ≍

ˆ

RN+1

ˆ 1

0
(µ(Q̃r(x, t)))

2/N dr

r
dµ(x, t). (7.5.1)

In fact, we have for ρj = 2−j , j ∈ Z,

∞∑

j=1

ˆ

RN+1

(µ(Q̃ρj (x, t)))
2/Ndµ(x, t) .

ˆ

RN+1

ˆ 1

0
(µ(Q̃r(x, t)))

2/N dr

r
dµ(x, t)

.

∞∑

j=0

ˆ

RN+1

(µ(Q̃ρj (x, t)))
2/Ndµ(x, t).

Note that for any j ∈ Z

ρ−N−2
j

ˆ

RN+1

(µ(Q̃ρj+1(x, t)))
(N+2)/Ndxdt .

ˆ

RN+1

(µ(Q̃ρj (x, t)))
2/Ndµ(x, t)

. ρ−N−2
j

ˆ

RN+1

(µ(Q̃ρj−1(x, t)))
(N+2)/Ndxdt.

Thus,

∞∑

j=2

ρ−Nj

ˆ

RN+1

(µ(Q̃ρj (x, t)))
(N+2)/Ndxdt .

ˆ

RN+1

ˆ 1

0
(µ(Q̃r(x, t)))

2/N dr

r
dµ(x, t)

.

∞∑

j=−1

ρ−Nj

ˆ

RN+1

(µ(Q̃ρj (x, t)))
(N+2)/Ndxdt.
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This yields
ˆ

RN+1

(
M

1/4
2 [µ](x, t)

)(N+2)/N
dxdt .

ˆ

RN+1

ˆ 1

0
(µ(Q̃r(x, t)))

2/N dr

r
dµ(x, t)

.

ˆ

RN+1

(
I
4
2[µ](x, t)

)(N+2)/N
dxdt.

By [20, Theorem 4.2],
ˆ

RN+1

(
M

1/4
2 [µ](x, t)

)(N+2)/N
dxdt ≍

ˆ

RN+1

(
I
4
2[µ](x, t)

)(N+2)/N
dxdt,

thus we obtain (7.5.1).

Step 2. End of the proof. The first inequality in (7.2.1) is proved in [20]. We now prove the
second inequality. By Theorem 7.2.4 there is µ ∈ M

+(RN+1), supp(µ) ⊂ K such that

||M2
2[µ]||L∞(RN+1) ≤ 1 and µ(K) ≍ PHN

2 (K) & |K|N/(N+2). (7.5.2)

Thanks to (7.5.1), we have for δ = min{1, (µ(K))1/N}

||I12[µ]||
(N+2)/N

L(N+2)/N (RN+1)
≍
ˆ

RN+1

ˆ 1

0
(µ(Q̃r(x, t)))

2/N dr

r
dµ(x, t)

≍
ˆ

RN+1

(
ˆ δ

0
+

ˆ 1

δ

)
(µ(Q̃r(x, t)))

2/N dr

r
dµ(x, t)

.

ˆ δ

0
r2
dr

r

ˆ

RN+1

dµ(x, t) +

ˆ 1

δ

dr

r

(
ˆ

RN+1

dµ(x, t)

)(N+2)/N

. (µ(K))(N+2)/N
(
1 + log+

(
(µ(K))−1

))

. (µ(K))(N+2)/N log

(
|Q̃200(0, 0)|

|K|

)
.

Set µ̃ =
(
log
(
|Q̃200(0,0)|

|K|

))−N/(N+2)
µ/µ(K), then ||I12[µ̃]||L(N+2)/N (RN+1) . 1.

It is well known that

Cap2,1,N+2
2

(K) ≍ sup{(ω(K))(N+2)/2 : ω ∈ M
+(K), ||I12[ω]||L(N+2)/N (RN+1) . 1} (7.5.3)

see [20, Section 4]. This gives the second inequality in (7.2.1).
It is easy to prove (7.2.2) from its definition. Moreover, (7.5.3) implies that

1

Cap2,1,N+2
2

(K)2/N
≍ inf{||I12[ω]||

(N+2)/N

L(N+2)/N (RN+1)
: ω ∈ M

+(K), ω(K) = 1}.

We deduce from (7.5.1) that

1

Cap2,1,N+2
2

(K)2/N
≍ inf

{
ˆ

RN+1

ˆ 1

0
(ω(Q̃r(x, t)))

2/N dr

r
dµ(x, t) : ω ∈ M

+(K), ω(K) = 1

}
.

(7.5.4)

348



7.5. APPENDIX

As in [12, proof of Lemma 2.2], it is easy to derive (7.2.3) from (7.5.4).

Proof of Proposition 7.2.6. Thanks to the Poincaré inequality, it is enough to show that
there exists ϕ ∈ C∞

c (Q̃3/2(0, 0)) such that 0 ≤ ϕ ≤ 1, with ϕ = 1 in an open neighborhood
of K and

ˆ

RN+1

(|D2ϕ|p + |∂tϕ|p)dxdt . Cap2,1,p(K). (7.5.5)

By definition, one can find 0 ≤ φ ∈ S(RN+1), φ ≥ 1 in a neighborhood of K such that
ˆ

RN+1

(|D2φ|p + |∇φ|p + |φ|p + |∂tφ|p)dxdt ≤ 2Cap2,1,p(K).

Let η be a cut off function on Q̃1(0, 0) with respect to Q̃3/2(0, 0) and H ∈ C∞(R) such
that

0 ≤ H(t) ≤ t+, |t||H ′′(t)| . 1 for all t ∈ R, H(t) = 0 for t ≤ 1/4 and H(t) = 1for t ≥ 3/4.

We claim that
ˆ

RN+1

(|D2ϕ|p + |∂tϕ|p)dxdt .
ˆ

RN+1

(|D2φ|p + |∇φ|p + |φ|p + |∂tφ|p)dxdt, (7.5.6)

where ϕ = ηH(φ). Indeed, we have

|D2ϕ| . |D2η|H(φ) + |∇η||H ′(φ)||∇φ|+ η|H ′′(φ)||∇φ|2 + η|H ′(φ)||D2φ|

and
|∂tϕ| . |∂tη|H(φ) + η|H ′(φ)||φt|, H(φ) ≤ φ, φ|H ′′(φ)| . 1.

Thus,
ˆ

RN+1

(|D2ϕ|p + |∂tϕ|p)dxdt .
ˆ

RN+1

(|D2φ|p + |∇φ|p + |φ|p + |∂tφ|p)dxdt

+

ˆ

RN+1

|∇φ|2p
φp

dxdt.

This implies (7.5.6) since, according to [1], one has

ˆ

RN

|∇φ(t)|2p
φ(t)p

dx .

ˆ

RN

|D2φ(t)|pdx ∀t ∈ R.
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