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Introduction 

Stage separation and cap jettison for space launcher are often performed by pyrotechnic cut 
process. The heavy pyrotechnic process triggers a high level shock wave. Since the location 
of the cut line is close to the payload adaptor, the high level shock wave can reach it directly 
and induce strong vibrations in it. The payload adaptor is assembled with and to support the 
satellite (payload) and the electronic equipments inside the space launcher. It is composed of 
two main parts. The upper part is connected to the payload directly. It is a cone structure 
(ACU) mainly made of honeycomb core sandwich composite shells expanded 100% or not. 
The lower one is a cylinder structure (Virole) of different aluminum shells. If the certain 
strong vibration propagates through the payload adaptor, it will probably damage the payload 
and the electronic equipments. To reduce the vibration in the payload adaptor and then protect 
all the equipments, it is mandatory to understand the vibration properties in it. Based on the 
above industrial requirements, research work on the dynamic behaviors of the payload 
adaptor of Ariane5 under a shock loading has already been presented (Inquiété 2008, Boullard 
2009, Tie and all 2009, Legay and Deü 2009).  

The industrial background of this topic comes partly from the research work on ACU. It is a 
complementary study based on J. M. Leclère, A. Boullard and A. Grède’s theses, which have 
already solved problems in three aspects: first is the development of adaptive and parallel 
dynamic solvers based on time discontinuous space-time Garlerkin method; second is the 
analysis of wave propagation in media with honeycomb cores; third is the analysis of wave 
propagation in plates and shells (Leclère 2001, Boullard 2009, Grédé 2009).  

The objective of the present work first focuses on studying the wave transmission, reflection 
and attenuation in honeycomb core sandwich composite plate/shell, more particularly in the 
honeycomb thin layer that is the middle layer of the sandwich structure. Furthermore, we look 
for an efficient and more appropriate way to model honeycomb sandwich plates/shells.  

As one kind of composite materials, honeycomb core sandwich plates/shells have been widely 
used in aerospace and automotive industry as they have lightweight physical but high strength 
mechanical properties. In previous work, to simulate the honeycomb core sandwich shells in 
ACU, classical homogenized models plus orthotropic plate/shell models have been considered 
to represent honeycomb sandwich structures. Because the considered honeycomb core 
sandwich shell is a structure with diameter of 2m and height of 1m, while the characteristics 
length of the honeycomb cells is about 5mm, for which we have a very large sandwich shell 
size compared with a very small honeycomb cell size. Obviously, if we apply a model that 
describes all the microstructures of the honeycomb cells of the core layer, the calculation will 
be very expensive or even prohibitive for the whole sandwich shell structure. The 
homogenized models take advantage of neglecting the micro-structural of the honeycomb 
core thin layer by using an equivalent constitutive law with continuous mechanical 
characteristics instead so that the models can save a large amount of calculation.  

However, it has been discussed in Grédé’s thesis and in our other previous work (Grédé 2009, 
Tie and all 2009) that the classical homogenized models offer an efficient and reliable 
solution to investigate the static or low frequency (LF) dynamic behaviors of the honeycomb 
core sandwich, but for the high frequency (HF) bending wave propagation, they fail to give 
appropriate simulation results.  

It has been analyzed that on one hand, for the HF ranges, the involved wavelengths are as 
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short as or even shorter than each honeycomb cellular characteristic length, so it is not 
reasonable any more to consider the whole middle layer as a homogeneous structure as the 
interactions between the waves and the honeycomb cellular microstructure become important. 
These interactions result in some complex deformations modes of the cellular walls that 
cannot be taken into account by the classical homogenized models. Besides, it is known that 
the periodicity of the honeycomb cells also influences the way waves propagate. For example 
it constrains the direction and the frequencies of the wave propagation. On the other hand, for 
the honeycomb sandwich structure, the two skin layers are thin and rigid and the honeycomb 
thin layer is relatively thick and flexible. The two skins play a major role in membrane waves 
propagation but the honeycomb thin layer is much more important for bending wave 
propagation when compared with the skins. Thus in HF range, the accuracy of the bending 
wave simulation is more affected. As a result, it is essential to investigate the wave 
propagation in the sandwich structure, especially the interactions between the waves and the 
cell walls within or when the waves cross the honeycomb cells, first and then try to provide a 
better sandwich plates/shells.  

In order to reach the above aims, it is believed that the model should consider and integrate 
the influence of the honeycomb cellular microstructure. Because the honeycomb thin layer is 
composed of topological isomorphic thin-walled hexagonal cells, we propose to take 
advantage of its periodicity to apply the Bloch wave theory to the modeling.  

The Bloch wave theory is largely employed in quantum mechanics and photonics crystal, and 
recently it has been applied in periodic mechanic structures as well. According to the theory, 
any non-periodic function defined on a periodic structure can be decomposed into its Bloch 
wave modes that are periodic functions and have the same periodicity as the periodic 
structure, so that the domain to be analyzed and modeled can be reduced from the entire 
structure to one primitive cell. That means the wave propagation phenomena through the 
honeycomb thin layer can be understood by investigating the Bloch wave functions only in 
one honeycomb cell, and lots of efforts can be saved. In addition, with the help of Bloch wave 
theorem, it is possible to obtain and study the detailed HF wave propagation phenomena in 
each cell. Since the honeycomb thin layer is discontinuous in geometry, it has been observed 
that special wave phenomena, such as frequency bandgaps, exist when wave propagating in 
the structure.  

Our research considers first the numerical modeling of elastic wave propagation in one-
dimensional (1D) periodic network and then two-dimensional (2D) periodic networks with 
rectangular and hexagonal cells. Finally the numerical model is applied to the honeycomb thin 
layer and the honeycomb sandwich as well. The dispersion relation, of each network, between 
the Bloch wave vectors and the eigenvalues is obtained and analyzed. The dispersive 
characteristics and the anisotropic behaviors of the periodic networks are observed by 
analyzing the phase and group wave velocities of several main modes. The first six Bloch 
eigenmodes of the networks are investigated.  

For the 1D periodic network, the dependency of the frequency bandgaps on the mismatch of 
the characteristic acoustic impedances within a primitive cell is highlighted. The diffracted 
waves caused by the periodic cells are also analytically calculated and the wave amplification 
phenomena are observed. For the 2D periodic networks and the honeycomb thin layer, the 
influence of the geometric and mechanical characteristics, such as the Young’s modulus, the 
internal angle, the double-thickness horizontal cellular wall on the frequency band-gap is 
studied. Besides, by comparing the wave velocities of several main wave modes with the 
equivalent homogenized model, we check whether and in which range the homogenized 
models work.  
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The thesis is organized as follows:  

Chapter 1 is first concentrated on introducing the honeycomb core sandwich panels, such as 
the manufacturing process and the classical cell types. Then it pays attention to analytically 
and numerically aspects of the dynamic behaviors of the homogenized models. The 
membrane and the bending and transverse shear behaviors comparisons between the 
homogenized models and the honeycomb sandwich reference model are given. In the end, a 
very brief view is proposed put on the recent researches on periodic networks. 

The second chapter is devoted to the theoretical Bloch wave analysis respectively on the 1D 
periodic beam network, the 2D periodic hexagonal and rectangular cell type beam networks, 
the honeycomb thin layer and finally the honeycomb sandwich plate. The corresponding first 
Brillouin zone of each periodic network is built, with special emphasis given on explaining 
the design of the zone for the 2D hexagonal network. The complete definition of the Bloch 
eigenproblem that combines the Bloch transform of equilibrium equation, the interface 
condition within the primitive cell and the periodic boundary condition at the end of the 
primitive cell is developed and explained for each periodic network. 

The third chapter focuses on the numerical results of the elastic wave propagation in the 1D 
and the 2D periodic hexagonal and rectangular networks. For the 1D network, the analytical 
dispersion curves are obtained respectively for the longitudinal and the bending and 
transverse shear waves. Then for the 2D networks, the numerical dispersion curves as well as 
the dispersion surfaces are obtained. The Bloch wave eigenmodes are analyzed for both the 
1D and 2D networks. The influence of the mechanical and geometric characteristics of the 
networks, such as the Young’s modulus, the beam thickness and the internal angle, on the 
bandgaps is looked into through parametric studies which can no doubt bring new ideas for 
the design of periodic networks in the furture. Finally, the phase and group wave velocities of 
several main wave modes of the periodic hexagonal beam network are analyzed to study the 
anisotropic and dispersive behaviors of the networks.  

In the end, in the fourth chapter, the numerical results of the elastic wave propagation in the 
honeycomb thin layer and the sandwich plate are presented. Important information as the 
dispersion relation and the Bloch wave eigenmodes are obtained. The influence of the double 
thickness horizontal plate and the internal angle on the dispersion curves are investigated by 
the parametric studied. The wave propagation velocities of several main modes are calculated 
and compared with the equivalent homogenized model. 
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Chapter 1 

Industrial and academic issues 

In this chapter, the aim is to introduce the industrial and research background of the present work. 

Therefore, a brief view of honeycomb core sandwich panels is given at first. Then the considered 

honeycomb core sandwich shell is presented, for which we have a multi-scale problem when doing the 

numerical simulation. Thirdly, the classical homogenized models usually applied to simulate 

honeycomb sandwiches are introduced and discussed. Their membrane and bending and transverse 

shear behaviors are studied analytically and then compared numerically to a reference model that 

keeps all the detailed information of the microstructure of the honeycomb sandwich. In the end, we get 

a very brief review of the theorems and the calculation methods that have been developed to look into 

the wave propagation in periodic networks.  

Summary 

1.1 Honeycomb core sandwich panel .................................................................................. 8 

1.2 Qualification of the homogenized models ................................................................... 10 

1.2.1 Homogenized models.............................................................................................. 10 

1.2.2 Theoretical analysis of wave propagation in homogenized model............................ 10 

1.2.3 Numerical simulation analysis of homogenized models........................................... 12 

1.3 Research work on periodic networks.......................................................................... 16 

Conclusion ......................................................................................................................... 17 
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1.1 Honeycomb core sandwich panel 

Honeycomb core sandwich panel is three-layered composite structure. The two cover layers 
are respectively a top skin and a bottom skin. The one in the middle is a honeycomb core thin 
layer, which usually contains repetitive regular cavities (Figure 1.1). Honeycomb core 
sandwich panels have been widely used in various engineering requirements as in one hand 
they can minimize amount of used material to reach special high bending stiffness and 
strength to weight and material cost ratio; in the other hand they can be easily manufactured 
from a large range of materials and their mechanical characteristics can be easily adapted. 

 

Figure 1.1 Honeycomb core sandwich panel 

Nowadays, numbers of cellular shapes and connection methods have been developed to have 
different kinds of honeycomb core thin layers. Generally, hexagonal, rectangle, triangle or 
vector cells are the most often used honeycomb cell types in engineering application (Figure 
1.2). 

 

Figure 1.2 Classical cell types of honeycomb core thin layer 

Taking the hexagonal cell type as an example, we look into the manufacturing method and 
process of honeycomb thin layer. To produce a honeycomb core thin layer, first is to press 
plates to be corrugated sheets by using gears. Then the corrugated sheets that contain a certain 
shape are bonded one by one to make a whole structure. In the mean while the hexagonal 
cavities will be formed between each two sheets (Figure 1.3). One point needs to be paid 
attention is that due to this kind of manufacturing process the horizontal cell walls are twice 
the thickness of other cell walls. 

 

Figure 1.3 Manufacturing processes of hexagonal cell type honeycomb core thin layer 

The sandwich shells used in the ACU are composed of carbon skins and an aluminum 
honeycomb core thin layer. More precisely, the skins are the combination of nine carbon-
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fiber-reinforced polymer layers, which are regarded as an orthotropic material. The aluminum 
honeycomb core thin layer has hexagonal type cells, which shows the inhomogeneous and 
anisotropic characteristics (Figure 1.4).  

 

Figure 1.4 Honeycomb core sandwich shells in ACU 

Based on our industrial object and requirements, we make numerical modeling of choc wave 
propagation in the considered sandwich shells. However, we meet a multi-scale problem 
when doing the numerical simulation. Firstly, the considered sandwich shell has very large 
shell size, the magnitude order of which is meter, while each honeycomb cell has a very small 
cell size, the magnitude order of which is millimeter. Especially, if we look into the cellular 
microstructure, we find that the magnitude order of the cell wall height is centimeter, the one 
of cell diameter is millimeter and the one of cell wall thickness is micrometer (Figure 1.5). 
Secondly, the characteristic time of the considered choc wave is about 10-4 (s), while this choc 
wave propagates through the whole shell needs about 10-2 (s). 

 

Figure 1.5 Typical geometry characteristics of the honeycomb core thin layer of the sandwich 
shells used in ACU 

Because of the spatial and the time multi-scale problem, we could not use a numerical model 
that maintains the detailed cellular microstructure, which costs enormous calculation 
quantities that probably make the calculation prohibitive. Therefore, classical homogenized 
models, which neglect ‘each real cell’ but look for an equivalent constitutive law with 
continuous mechanical characteristics instead, has been taken into account, for which, the 
way to calculate the equivalent mechanical characteristics becomes the key work.  
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1.2 Qualification of the homogenized models  

1.2.1 Homogenized models  

Two classical methods to calculate the equivalent mechanical characteristics of sandwich 
panels were put forward respectively by Gibson in 1988 and Burton in 1997 and have been 
applied to numbers of studies under their working conditions [Gibson (1988); Burton (1997)]. 
In the mean while, other viewpoint of the homogenization have also been looked for in order 
to make a more general validated method [Dal Maso (1993); Chen (1998); Davini (2011)]. 
Homogenized models offer an efficient and reliable solution to investigate the static or low 
frequency dynamic behaviors of honeycomb core sandwich panels and have been validated in 
various domains, such as viscoelastic honeycomb panel equipped with piezoelectric patchs 
[Florens (2010)].  

In our previous work, two types of homogenized models: mono-layered and multi-
layered, based on the Burton method, were investigated firstly to model a honeycomb core 
sandwich plate. The mono-layered homogenized model did not distinguish the skins and the 
honeycomb core thin layer, so that sandwich plate was homogenized entirely to one 
orthotropic plate with equivalent mechanical characteristics. Contrarily, the multi-layered 
homogenized model maintained three layers while only treating the honeycomb core thin 
layer to an equivalent homogenized orthotropic layer. In the multi-layered homogenized 
model, the mechanical characteristics of the skins and the homogenized honeycomb core thin 
layer were distinguished while the continuity of the displacements on the two interfaces was 
taken into account (Figure 1.6). Both the mono- and the multi-layered model used the 
Reissner-Mindlin kinematics for thick plate since the shear deformation can be taken into 
account appropriately [Grédé (2006); Grédé (2009)]. 

                 

Figure 1.6 Two types of homogenized models (left) Mono-layered homogenized model; 
(right) Multi-layered homogenized model 

1.2.2 Theoretical analysis of wave propagation in homogenized model 

In order to look into the qualification of the homogenized models, we need to investigate the 
dynamic behaviors of the homogenized models. Therefore, first of all, we study analytically 
the wave propagation velocities in the homogenized models, whose results will be 
numerically compared with the ones obtained by our new numerical approaches that are based 
on the Bloch wave theory in the chapter 3 and 4.  

Consider a mono-layered homogenized orthotropic plate, with C11, C22, C12, C44, C55 and C66 
the components of orthotropic 2D stiffness matrix, ρ the mass density and the thickness H. 
The homogenized plate is parameterized in its local plate basis (e1, e2, n), where (e1, e2) forms 
an orthonormed basis in the middle plane of the plate and the n is a unit vector perpendicular 
to the plate (Figure 1.7). 
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Figure 1.7 Mono-layered homogenized orthotropic plate 

Any point r of the plate is given in the plate’s local basis as: 

r(x
s
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with U0s, U0n and U1s the wave mode of u0s, u0n and u1s, sQ s
! ,

s
 !( ) the acoustic tensor in the 

plane S, !
s

= !
s
Ae

1
+ Be

2( ) the wave vector (Figure 1.8), Cst the transverse shear stiffness 

tensor and ω the angular frequency.  

 

Figure 1.8 Wave vector direction 

 (a) Membrane wave propagation 

Our previous work [Grédé (2009)] shown that the phase velocity of membrane wave could be 
obtained as: 
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We find that the membrane wave in the homogenized orthotropic plate is neither 
perpendicular nor parallel to the wave vector. In other words, no pure pressure wave or shear 
wave exists, while instead, a quasi-pressure wave and a quasi-transverse wave is found in the 
homogenized orthotropic plate. Second, the wave propagation velocities show anisotropic 
nature [Tie (2009)].  

(b) Bending and transverse shear wave propagation 

In parallel to the study of the membrane wave propagation in the homogenized orthotropic 
plate, we also study the bending and transverse shear waves propagation in the plate 
(Appendix A) and get a sixth-degree polynomial of the propagation velocities: 
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which can be numerically solved.  

1.2.3 Numerical simulation analysis of homogenized models 

Secondly, we investigate numerically the membrane and the bending and transverse shear 
waves behaviors of the homogenized models. Denote the mono-layered homogenized plate 
model by HM5 and the multi-layered homogenized plate model by 5/5/5. Furthermore, owing 
to the skins were much thinner and stiffer when compared to the honeycomb core thin layer, 
they in fact do not have the same contribution as the honeycomb core thin layer to the 
transverse shear stiffness of sandwich. Therefore, another adjusted type of mono-layered 
model, HM5Cs, with neglecting the transverse shear of skins is studied as well.  
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A 3D reference plate model is set up to exam whether the simulation results of the 
homogenized models correspond to the behaviors of a real sandwich plate. According to the 
studied honeycomb core sandwich shells, the reference model plate is constructed. Its skins 
are composed of nine carbon-fiber-reinforced polymer layers and its aluminum honeycomb 
core thin layer keeps all the cellular microstructure (Figure 1.9).  

 

Figure 1.9 3D reference model of honeycomb core sandwich plate 

Series of Ricker signal function respectively with the period, 3µs, 30µs and 90µs are triggered 
firstly in-plane of the plates to investigate the membrane wave behaviors of the four models. 
The corresponding frequencies of signal maximal amplitude were 666 KHz, 66 KHz and 22 
KHz, which cover a very large frequency range. Then the 30µs and 90µs Ricker signal is 
trigged separately perpendicular to the plates to study the bending and transverse shear wave 
behaviors (Figure 1.10).  

       

Figure 1.10 External loading: Ricker signal function (left) Time domain; (right) Frequency 
domain 

Two test points, one close to the edge of the model plate and the other in the middle of the 
plate, are chosen to observe the dynamic behaviors of the mono-layered homogenized model. 
For the reference model and the multi-layered homogenized model, four points are taken into 
account since the average results of the top and bottom skin are considered. 

(a) Membrane wave behaviors comparison 

The membrane wave behaviors of the models are investigated at first. The in-plane wave 
displacement of the four models is compared. It is found that both the mono- and the multi-
layered model match well with the reference model (Figure 1.11). Homogenized models 
could correctly represent the membrane wave behaviors of the sandwich plate. 
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Figure 1.11 In-plane wave displacement of four models on the test points close to the edge of 
plates 

 (b) Bending and transverse shear waves comparison 

Then the bending and transverse shear wave behaviors of the models are considered. The out-
of-plane displacement of the four models is compared. First it is noticed that contrary to the 
membrane wave behaviors, the bending and transverse shear wave behaviors of HM5 model 
has an evident difference from the reference model, while the adjusted model, HM5Cs, 
performs an improved simulation result. In other words, the shear stiffness of honeycomb 
core thin layer plays a main role in the bending and transverse shear wave behaviors of the 
sandwich plate. 

Second it is remarked that the multi-layered homogenized model could mostly correspond to 
the reference model in the considered frequency range, while its simulation performances 
become worse with the increase of frequency (Figure 1.12).  

 

Figure 1.12 Out-of-plane wave displacement of four models at the edge of the plate (left) 
Ricker loading maximal amplitude frequency 22 KHz; (right) Ricker loading maximal 

amplitude frequency 66 KHz 

Moreover, the bending and transverse shear wave propagation velocity in the four models can 
be numerically obtained, for which we find that the wave velocity of the multi-layered model 
can better coincide the one of the reference model (Figure 1.13). 
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Figure 1.13 Bending and transverse shear wave propagation velocity 

Now we know that the homogenized models could describe the membrane wave behaviors of 
the sandwich in a large frequency range but they fail to describe the bending and transverse 
shear wave behavior for the same frequency range. The errors come from two main aspects. 
Firstly, the honeycomb core thin layer plays a very important role in the bending and 
transverse shear behavior of the sandwich plate. Compared with the skins, the honeycomb 
core thin layer is a thick and soft structure composed of thin aluminum sheets. It has complex 
wave propagation situations and deformation modes in cells. It is not easy to find an accurate 
simulation model that is allowed to including all the complicated deformation information. 
For instance, the transverse shear warping was not taken into account by the Mindlin thick 
plate kinematics (Figure 1.14). 

 
 

Figure 1.14 Transverse shear warping in cells 

Second, in HF range, the involved wavelength is close to the honeycomb cellular size. In 
other words, HF wave is able to distinguish each honeycomb cell. Therefore it is not feasible 
to still use the homogenized models for HF wave simulation since they ignore the cells as 
well as the effects coming from the periodicity of the sandwich. 

To make a new numerical modeling of honeycomb sandwich that allows introducing the HF 
wave propagation phenomenon within honeycomb cells but not increasing the calculation 
efforts, we propose to take advantage of the periodicity of the honeycomb, thanks to which 
the analysis and study of wave propagation can be reduced to a primitive cell instead of a 
entire honeycomb plate.  
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1.3 Research work on periodic networks 

In 1883, the Floquet-Bloch theory that was first put forward by Floquet to study a 1D 
Mathieu’s equation in periodic media and then developed by Bloch to solve for a more 
general 3D problem of electrons in crystal lattices in 1928 [Floquet (1883); Bloch (1928)]. 
Nowadays, the Floquet-Bloch has become the foundation theory for the research on periodic 
networks. In 1946, Brillouin applied the Floquet-Bloch theory to analyze the elastic wave 
propagation in periodic networks, where the definition of Brillouin zone was first given to 
explain the wave vector in periodic networks was restricted in the reciprocal cell of the 
network [Brillouin (1946)].  

Periodic cellular networks are discontinuous in geometry and material properties. From 
1960’s, the growing attention has been paid to the study on periodic networks since they have 
been more and more used in engineering application. It has been firstly paid attention that a 
special wave phenomenon, wave attenuation, exists in periodic networks, which means when 
elastic wave propagating in a periodic network, within some frequency intervals, wave can 
not propagate through the network but is attenuated quickly within the periodic cells [Cremer 
(1967)]. The corresponding frequency intervals form the frequency bandgaps of the network. 

In 1970’s, the direction solution of wave propagation was deeply discussed by professor D. J. 
Mead from Southampton university first to the 1D periodically-supported beams and then to 
the 2D plates [Mead (1970); Mead (1979)]. The most important relation between the 
propagation constant µ and the system’s eigenvalue ω has been obtained and analyzed to 
explain the wave attenuation phenomenon [Mead (1973)], which was due to the creation of 
the stationary waves resulted from the wave reflection, transmission and conversion when 
across periodic cells. Other analogical studies were also developed at Southampton during 
1970-1996, such as studying the coupled bending-longitudinal wave motion in periodic 
beams, the free vibration in cylindrical shell and harmonic response of sandwich plates [Mead 
(1983); Mead (1987); Mead (1991)].  

In 1995, the dynamic stiffness matrix representation combined with the skew-symmetric 
matrix was used to solve for the eigensolutions of a symplectic eigenvalue problem by 
professor Zhong from Dalian university of Technology [Zhong (1995)]. A more general 
calculation method was applied to the study of the wave propagation in a periodic wave-guide 
by Mencik in 2005 [Mencik (2005)]. 

Since the frequency bandgaps is a most important and interesting characteristics for periodic 
networks, lots of investigations has already been developed in quantities of types periodic 
networks [Sigalas (1992); Sigalas (1993); Richards (2003); Tawfik (2004)]. It was found that 
the frequency bandgaps is anisotropic in the periodic network and depends on the impedance 
mismatch generated by periodic discontinuities in geometry or material properties within one 
cell or between adjacent cells [Langley (1997); Ruzzene (2003); Gonella et al. (2008); Tian 
(2011)]. As an important consequence, periodic cellular networks can be considered as 
frequency or spatial filters depending on different patterns or network designs.  

Generally, recent studies are concentrated on two main aspects: first was to explore the 
frequency bandgaps of different periodic networks with various types periodic cells [Jeong 
(2004); Srikantha Phani (2006); Spadoni (2009); Tee (2010);]. Second has been focused on 
bandgaps design on the viewpoint of vibration control [Jensen (2002); Sigmun (2003); 
Barbarosie (2004)]. Generally, engineers look for the bandgaps of periodic networks, take 
advantage of which the network can attenuate the vibration in the corresponding frequency 
ranges. Therefore, numbers of research has been developed on creating the bandgaps 
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artificially by adding a sub-network in the primitive cell, with which a locally resonant system 
can be formed and results in bandgaps [Liu (2000); Ho (2003)]. It is said that the bandgaps 
created by the locally resonant system are allowed to locate in a lower frequency range but 
with a narrower gap width when compared with natural bandgaps. Moreover, other emphases 
have also been paid to study the effects of boundary layer, the disordered periodic networks, 
the influence of damping and defects on bandgaps, and the HF vibration analysis on periodic 
networks under fluid loadings [Srikantha Phani (2008); Langley (1995); Bouzit (1995); 
Sorokin (2004); Zhang (2005); Collet (2011)]. Especially for the influence of defects on 
bandgaps, it has been studied that the imperfection of periodic networks effectively affects the 
structure of bandgaps and can create defect bandgaps [Sigalas (1998); Wu (2002); Martinsson  
(2003)].   

Most part of the work on periodic networks was done with the finite element method (FEM). 
In 1997, the periodic network theory combining with the statistic energy analysis method 
(SEA) on study of the modal density and energy flow was developed by Langley and in 2000 
the periodic network theory combining with the Boundary element method (BEM) was 
applied to study a large embedded network by Clouteau [(Langley (1997); Cotoni (2008); 
Clouteau (2000)].  

In the present work, the Floquet-Bloch theory with FEM will be developed and applied to 
study periodic networks and finally the honeycomb core sandwich plates. The special 
emphasis will be put on figuring out the frequency bandgaps, the influence of 
mechanic/geometric parameters on the bandgaps networks and the wave propagation and the 
energy flow situation.  

Conclusion 

Honeycomb core sandwich panels are a kind of composite materials that have been widely 
used in aeronautic engineering. The honeycomb core sandwich plate considered in present 
work is composed of two orthotropic carbon skins and an aluminum honeycomb core thin 
layer. The skins are thin and stiff but the honeycomb core thin layer is thick and soft.  

Based on the industrial requirement, a numerical modeling of HF frequency choc wave 
propagating in honeycomb sandwich plate by using mono- and multi-layered homogenized 
models was developed previously for the homogenized models neglected the honeycomb 
microstructure and offered an efficient numerical simulation. In the mean while, a 3D 
reference sandwich model with a small sample plate size was also been set up to compare 
with the mono- and multi-layered homogenized models. However, our studies indicated that 
the homogenized models failed to give reasonable simulation results for the HF bending and 
transverse shear waves behaviors of sandwich.  

By looking at the wave propagation in orthotropic plates, we found that the bending and 
transverse shear waves were mostly controlled by the honeycomb core thin layer, in which 
case the homogenized models were too simplified to considering all the complicated 
deformations, especially in HF range, much more interactions occurred between the wave and 
the periodic cells. In addition, because the mono-layered homogenized model did not 
distinguish the transverse shear between the skins and the honeycomb, it gave an even worse 
result.  

Therefore, we looked for a more precise numerical model but without augmenting the 
calculation efforts. As the honeycomb sandwich can be treated as a kind of periodic structure, 
we considered developing a model by only calculating the wave propagation situation in a 
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primitive cell of sandwich instead of the whole structure by means of using the Floquet-Bloch 
theory. A brief view was given to the recent researches that were based the Floquet-Bloch 
theory on analyzing the wave propagation in periodic structures. 
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Chapter 2 

Bloch wave analysis on periodic networks 

In the chapter, the Bloch wave theory is introduced at first, so its application to analyzing elastic wave 

propagation in periodic networks composed of elastic thin structures, by virtue of which we can take 

advantage of the periodicity of the networks in order to save calculation efforts. The definition of the 

first Brillouin zone, uniquely defined primitive cell in the reciprocal phase space of Bloch wave 

vectors is illustrated briefly as well. Then the way to analyze the dispersion relation between the Bloch 

wave vector and the eigenfrequency is presented in a one dimensional (1D) periodic beam network, 

for which analytic solutions are available and result in a straightforward investigation of the existence 

of frequency bandgaps. Then the relative first Brillouin zone of each periodic network is built and 

illustrated. Finally, analytic models based on the Bloch wave theory for two dimensional (2D) 

periodic hexagonal and rectangular beam networks and three dimensional (3D) periodic networks: a 

honeycomb thin layer and a honeycomb core sandwich plate, are defined.  
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2.1 Bloch wave approach  

Bloch wave or Bloch state is first discovered and applied to the quantum mechanics of 
electrons in crystal lattice by Felix Bloch [Bloch (1928)]. It describes the wave function of a 
particle, usually an electron, placed in a periodic potential. The simplest example is the 
Kronig-Penney model, an infinite 1D periodic lattice composed of the same type of atoms 
(Figure 2.1) [Atkins (2005)]. Suppose there exists an electron in the lattice. The aim is to 
solve the following time-independent Schrödinger equation of the model as: 

  

!
h
2

2m
e

d
2
" r( )

dr
2

+V r( )" r( ) = E" r( )                                              (2.1) 

where r is the coordinate of any point in the lattice and V(r) is the periodic potential of the 
electron, which is described as the "potential well" spreading along the periodic lattice of 
atoms. The period of the model under consideration is denoted by a: V(r) = V(r+a). E and ψ(r) 
are respectively the electron energy and the electron solution of the Schrödinger equation 
(2.1).  

 

Figure 2.1 1D Kronig-Penney model 

The Bloch wave theory states in fact that the electron solution, ψ(r), to the Schrödinger 
equation for such a system may be written as the product of a plane wave envelope function 
and a periodic Bloch wave function ψB(r, k) as: 

!
k
r( ) =

B
! r,  k( ) "ikr

e                                                       (2.2) 

with k the Bloch wave vector. In the 1D Kronig-Penney model, k is scalar. Actually, for each 
k, it corresponds to one Bloch wave function, ψB(r, k), which has the same periodicity as the 
model: 

B
! r,  k( ) =

B
! r + a,  k( )                                                    (2.3) 

By substituting (2.2) into (2.1), the Schrödinger equation can be in fact rewritten and regarded 
as an eigenvalue problem with the eigenvalue E(k) and the Bloch wave eigenmode ψB(r, k) 
as: 
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Because ψB(r, k) is periodic along the lattice, it gives the same results whether we solve it 
within one potential well or in the whole lattice. Consequently, it is enough to solve the 
equation (2.4) within one potential well, with which we can investigate the electronic waves 
in the whole lattice.  
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More generally, a Bloch-wave description has been extended to any wave-like phenomenon 
in a periodic medium. It can be expressed in several forms according to different application 
domains and requirements. For example, a periodic dielectric in electromagnetism leads to 
photonic crystals and a periodic acoustic medium leads to phononic crystals [Yeh (1977); 
Jones (2007)]. In mechanics, the Bloch wave theory is often used to study different periodic 
networks to look for periodic wave modes.  

2.1.1 Direct and inverse Bloch wave transforms 

Given a N-dimensional periodic cellular network Ω, with a primitive cell Q0, then any point r 
of Ω can be parameterized with respect to a point p of Q0 in the following way: 

r = p + n jg j                                                                 (2.5) 

with nj ∈Z and {gj}j=1,...,N the periodicity vectors basis of Ω, which is also called direct cell 
basis. {gj} is generally not orthonormal and its choice is not unique. The Einstein summation 

convention is used here: n jg j = n jg jj=1

N

! . 

The Bloch wave theory [Kittel (1962); Sanchez-Palencia (1989); Sjöberg (2005)] states that a 
non-periodic function u(r) defined on Ω can be transformed or decomposed into its Bloch 
wave mode UB(r, k): 

B
U r,  k( ) = u r + n jg j( ) � ik � r +n jg j( )e

{n j} Z
N#                                       (2.6) 

where k denotes the Bloch wave vector belonging to the reciprocal phase space to the 
periodic network Ω. Based on (2.6), it is straightforward that UB(r, k) is periodic and has the 
same periods as Ω as:  

 B
U p + n jg j,  k( ) = B

U p,  k( )                                                       (2.7) 

Inversely, the inverse Bloch wave transform reconstitute the original function u(r) in the 
following way: 

u r( ) =
1

vol Q
0( )

B
U r,  k( )  ik "r

e dk
Q
0#                                             (2.8) 

with Q0 the reciprocal cell dual to the primitive cell Q0. Q
0 is also known as the first Brillouin 

zone and has the following relationship with Q0 as: 

vol Q0( )vol Q0( ) = 2!( )
N                                                      (2.9) 

Taking Q0 as a primitive cell, a reciprocal periodic network can be formed along another 
periodicity vectors basis, {gl} l=1,...,N, which satisfies the following relationship with {gj} as: 

g j �g
l
= 2"# jl                                                              (2.10) 

with ! jl the Kronecker delta. {gl} is in fact the contravariant basis of the direct covariant basis 

{gj} and called the reciprocal cell basis. 

As a simple example, Figure 2.2 shows that a direct Bloch wave transform, with k = 5, of a 
Gauss function defined on a periodic network composed of rods with the period equal to 1. 
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Figure 2.2 (left) Gauss function; (right) Its bloch wave transform with the wave vector k = 5 

2.1.2 Bloch wave analysis of elastic wave propagation in periodic networks 

To analyze the elastic wave propagation in the periodic network Ω using the Bloch wave 
theory, we search for plane waves propagating at angular frequency ω with a Bloch wave 
mode UB(r, k) as wave mode defined as follows: 

u
k

r,  t( ) = U
B

r,  k( )e! i k "r!#t( )              (2.11) 

where t denotes the time variable. It is straightforward that for r = p + n jg j, we have: 

uk r,  t( ) = uk p,  t( )e
 ik " n jg j( )                (2.12) 

Therefore, the wave propagation phenomena, uk(r, t), in the whole periodic network Ω can be 
fully understood through their Bloch wave mode analysis, U

B
p,  k� � , within the primitive cell 

Q0. In addition, it has been also proven that, if   k = k + n jg
l, for !{ni}"Z

N, then we have: 

u
! k 

r,  t( ) = u
k

r,  t( )                                                                (2.13) 

Hence, the wave vector k is also periodic on the reciprocal network with 
  
{g

l
}l=1,L,N

 as basis of 

periodicity vectors [Jones (2007); Spadoni (2009); Tie (2012)]. It means that the solutions can 
be completely characterized by their behavior in a single period in the reciprocal network, 
which is in fact the first Brillouin zone Q0, since it gives the limitation of all the possible 
wave propagation directions for Ω. Full dispersion relation between the wave vector k and the 
angular frequency ω can be obtained by only evaluating it over Q0.  

It is known that the honeycomb sandwich plate that we are interested in is a periodic network 
with hexagonal cells of plates, so it is reasonable for us to apply the Bloch wave analysis on 
the wave propagation in honeycomb sandwich. Therefore lots of numerical efforts can be 
saved so that the numerical modeling and analysis taking into account the cellular 
microstructure of the honeycomb becomes feasible.  

2.1.3 Brillouin zone 

The first Brillouin zone is an essential concept of the Bloch wave analysis and so its 
identification constitutes a very important step of the application of the Bloch wave theory. In 
fact, the first Brillouin zone, Q0 is defined as the set of the points in the reciprocal network 
that can be reached from the origin without crossing any Bragg plane, which bisects the 
reciprocal cell basis [Kittle (1962)]. 
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For a first example, we consider a 1D periodic network with the primitive cell Q0, the period 
λ and the direct cell basis g1. Point O is the origin and ex is the Cartesian basis (Figure 2.3). 

 

Figure 2.3 1D periodic network 

According to (2.10), we can obtain the reciprocal cell basis in the same direction as g1 with 

the norm, g1 = 2! /" . Placing the origin, O, as the center of the first Brillouin zone, we then 

draw the perpendicular bisector of g1 as well as its symmetric line in the other side of origin. 
The interval delimited by those two lines is the first Brillouin zone Q0 of the 1D periodic 
network (Figure 2.4). 

 

Figure 2.4 The first Brillouin zone of the 1D periodic network 

As a second example, we consider a 2D periodic network built from a rectangular primitive 
cell Q0, with the horizontal period denoted by  λ1 and the vertical one by  λ2. Figure 2.5 shows 
(g1, g2) the direct cell basis vectors, (g1, g2) the reciprocal cell basis vectors and (ex, ey) the 
Cartesian basis vectors. Accordingly, the direct and reciprocal cell basis can be respectively 
expressed in the Cartesian basis as: 

g1 =  1ex,  g2 =  2ey

g
1
=
2"

!1

ex ,  g
2
=
2"

!2

ey

                                                     (2.14) 

 

Figure 2.5 2D periodic cellular network with rectangular primitive cell 

Place O as the center of the first Brillouin zone and draw the perpendicular bisectors of g1 and 
g2 as well as the symmetric lines. The closed polygon, Z1Z2Z3Z4, contoured by these 
perpendicular bisectors is taken as the first Brillouin zone of the network (Figure 2.6). 
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Figure 2.6 The first Brillouin zone of the 2D periodic rectangular network 

After introducing the essential concepts of the Bloch wave theory, now we can start applying 
it to study the wave propagation in periodic networks step by step. Our final objective is to 
analyze the phenomena of elastic wave propagation in the honeycomb core sandwich plate.  

2.2 Explicit analysis of dispersion relation in 1D periodic beam 
network 

First of all, the study of the elastic wave propagation in periodic cellular networks using the 
Bloch wave theory begins with a 1D infinite periodic network composed of elastic beams. For 
in this simple 1D case, analytical solutions are available, with the help of which we can 
explain the basic principles in a clear and easy way and we can explain the wave phenomena 
observed in the network mathematically as well as physically. Therefore, the 1D case 
constitutes in fact a valuable help to understand and analyze the wave propagation situations 
in 2D or 3D periodic networks. 

The 1D infinite periodic network considered here is described in Figure 2.7: It is composed of 
two types of elastic beams with different geometrical and mechanical characteristics 
displaying periodicity along the network. As for the primitive cell of the network we can use 
the substructure composed of two rigidly-jointed beams, B1 and B2, respectively of length l1 
and l2, therefore the period is λ = l1 + l2. The Lamé coefficients and the density are 
respectively (λ1, µ1, ρ1) and (λ2, µ2, ρ2). The whole network is considered under the Cartesian 
basis (ex, ey). The thickness of both beams in the direction ey is H. 

 

Figure 2.7 1D periodic beam network and its primitive cell 

Then any point r of the 1D network is given by the components of Cartesian coordinate 
system as: 
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r x,  !( ) = x ex + ! ey                                                    (2.15) 

where  ξ is the variable in the transverse section of beams. The Timoshenko kinematics for 
thick beams is used here for it takes into account the transverse shear deformation and the 
rotational inertia effects of beams. As only the displacements in the plane Oxy are considered 
herein, the displacement u in each beam reads as: 

u x,  !,  t( ) = u0x x,  t( )ex + u0y x,  t( )ey + ! u1 x,  t( )ex                       (2.16) 

where u0x(x, t) and u0y(x, t) are respectively the longitudinal displacement and the deflection 
of the neutral axis of beam in the plane Oxy and u1(x, t) the displacement in the thickness due 
to the rotation of its transverse sections. Consequently, both u0y(x, t) and u1(x, t) describe the 
transverse shear and the bending behaviors of the beam in the plane Oxy. Within the classical 
plane stresses assumption, then the dynamic equilibrium equations of the i-th beam read as: 
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with Ej the Young’s modulus. More precisely, in (2.17), the first single equation of u0x refers 
to the longitudinal wave along the beam axis and the other two refer to the bending and 
transverse shear waves in the plane Oxy. The two parts are completely uncoupled and so can 
be analyzed independently. 

2.2.1 Longitudinal wave propagation  

a) Dispersion relation analysis 

First of all, we are interested in studying the longitudinal wave propagation in the 1D periodic 
network. For simplicity concern, the subscript “0x” will be omitted hereafter u(x, t) = u0x(x, 
t), so the equilibrium equation of the j-th beam (j = 1, 2) reads simply as:  

   E j

d2u x,  t( )

dx2
=  j

d2u x,  t( )

dt 2
                                                 (2.18) 

According to (2.11), we look for the plane waves propagating defined as the following: 

u x,  t( ) = B
U x,  k( ) ! i(kx!"t )

e                                                (2.19) 

where ω denotes the anagular frequency, UB(x, k) the Bloch wave mode and k the Bloch 
wave vector. Substituting (2.19) to (2.18), we get the following Bloch wave transform of the 
equilibrium equation:  

E j

d2UB x,  k( )

dx2
 2ikE j

dUB x,  k( )

dx
 E jk

2UB x,  k( ) =  "j#
2UB x,  k( )                    (2.20) 

The equation (2.20) defines in fact an eigenvalue problem with the eigenvalue ω = 2πf, f the 
eigenfrequency, and the eigenmode UB(x, k). Consequently, from now on we look for the 
eigenvalue as well as the eigenmode of (2.20) within the primitive cell instead of the 
longitudinal wave propagation solutions in the whole 1D periodic network. 
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It is straightforward that the general solution of (2.20) has the following analytical form:  
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where cj = E j !j  is the longitudinal wave velocity in the j-th beam and (aj, bj) are two 

unknown constants for the j-th beam, which can be entirely determined when the following 
interface conditions between the two beams at their junction point and the periodic boundary 
conditions at the ends of the primitive cell are considered (Figure 2.8). 

 

Figure 2.8 Displacement and force components to be considered in the interface and boundary 
conditions within the primitive cell 
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where NB is the Bloch wave transform of the generalized longitudinal force reading as:  
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By substituting (2.21) into (2.22), we get the following system of four linear equations: 
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with a coefficient matrix A depending on the Bloch wave vector and the eigenvalue, which is 
defined as following: 
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with k
1p = k +

!

c1
,  k1m = k "

!
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,  k2p = k "

!

c2
,  k2m = k "

!

c2
.  

To ensure that the system (2.24) admits nontrivial solutions, the determinant of matrix A 
should vanish:det A( ) = 0, which gives rise to a dispersion relation between k and ω. For the 
longitudinal wave in the 1D periodic network, the dispersion relation can be written in the 
following analytical form: 
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where Z
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 with Zj = ρjcj the 

characteristic acoustic impedance of the j-th beam and Tj = lj/cj the time for the longitudinal 
waves to pass through it. Based on the equation (2.26), for each given ω, two kinds of 
solutions of the Bloch wave vector k = kr+ i kim can be obtained. Either k is a real number: 
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or k is a complex value: 
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and result in the following Bloch wave eigenmode in the i-th beam as: 

U j

B x, k( ) = a je
i k r +

!
cj

" 

# 
$ 

% 

& 
' x

e(k imx + b je
i k r (

!
cj

" 

# 
$ 

% 

& 
' x

e(k imx                                 (2.29) 

Therefore, when k is real (kim = 0), the Bloch wave eigenmode U j

B is a propagating mode: It 

is transmitted to the adjacent cells with the same amplitude and there is no energy loss when 
propagating through the periodic network. Otherwise, when k is complex or purly imaginary 
(kim ≠ 0), U j

B is an evanescent mode: It vanishes rapidly when propagating to the adjacent 

cells and the energy exchange between periodic cells is equal to zero [Mead (1973)].  

The above analytical results explain a special wave phenomenon, the frequency bandgaps, 
which exists when elastic wave are propagating in the periodic cellular networks. We call the 
intervals of eigenvalues that correspond to the real values of k as frequency pass band, for the 
waves can pass through the network. On the contrary, the intervals correspond to the complex 
or pure imaginary values of k as frequency stop band or bandgaps, for the waves are rapidly 
attenuated and cannot propagate through the network (Figure 2.9). 
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Figure 2.9 Frequency pass and stop bands of longitudinal wave in the 1D periodic network 

More studies indicate that this wave phenomenon is due to the creation of stationary waves 
resulting from the wave reflection, transmission and conversion when propagating across the 
cells. Physically, when an elastic wave propagates in a periodic network, reflected waves 
occur when the elastic wave crossing every cell. Generally, the reflected waves will be 
counteracted finally. However, for some particular wave lengths, due to reflected waves from 
each cell with the same phase, they will interfere between them and then form much more 
stronger reflected waves. In physics, we call this phenomenon as the Bragg reflection. The 
new reflected waves attenuate the propagation of elastic wave. Therefore, in the 
corresponding frequency ranges, we can observe the bandgaps. The waves lengths and their 
corresponding frequency ranges can be referred to the Bragg’s law [Sigalas (2005)].  

According to the equation (2.26) we find that the frequency bandgaps in the 1D periodic 
network mainly depends on the impedance mismatch generated by periodic discontinuities in 
geometry or material properties. For instance, in the special case where Z1/Z2 = 1, we can get 
(2.26) as: cos !k( ) = cos "T

m( ) , which leads to !k = "T
m

. Hence k = ω/cavg, with cavg = (l1 + 

l2)/(T1 + T2) the average longitudinal wave propagation velocity in the primitive cell. Since ω 
and cavg are both real values, there exists no imaginary value for the Bloch wave vector. In 
other words, all the U j

B are propagating in the network (Figure 2.10).  

           

Figure 2.10 Z1/Z2 = 1, no stop band of longitudinal wave existing in the 1D periodic network 
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Otherwise, these analytical results are used as the first reference to validate the numerical 
tools that we developed and used to obtain the numerical analyses presented in the next 
chapter. 

b) Diffracted wave analysis 

Now we consider an incident plane wave u
I
x,  t( ) = e i k Ix!" I t( ) , with the amplitude equal to 1, 

the incident wave vector kI and the incident wave angular frequency ωI. We are interested in 
investigating how it propagates through the 1D periodic network and how it is perturbed by 
the periodic cells. To do this, the wave solution u(x, t) in the 1D periodic network is 
decomposed into two parts in the following way: 

u x,  t( ) = u
I
x,  t( ) + u

d
x,  t( )                                                 (2.30) 

where ud(x, t) denotes the diffracted wave caused by the periodic cells and indicates in fact 
the difference between the wave motion in a periodic network and in a homogenous one.  

Substituting (2.30) into the equilibrium equation (2.18), we get: 
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where the second term of the left hand member can be considered as an external loading fe 
due to the incident wave. In order to fully exploit the advantages of the Bloch wave analysis, 
we write the Bloch wave transformU

d

B of the diffracted wave as a linear combination of the 
Bloch wave eigenmodes (2.29) already calculated: 
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with the coefficient αm(k), which can be finally calculated in the following way: 
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where Fm(k) is the coefficient of the linear combination of U
m

B  for the Bloch wave transform 
of fe as:  
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Finally, the diffracted wave ud is obtained by means of the inverse Bloch wave transformation 
in the primitive cell as well as in the nth cell of the network: 
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1

vol Q
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Ud

B
x,  k( ) "ik x+n!( )

e
" i# I te dk

Q
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Moreover, based on the analytical studies we can know that the diffracted wave is 
characterized certainly by the eigenmodes, the eigenvalues and but also the incident wave 
angular. 

For example, two incident waves with respectively two different wavelengths in the first 
beam, λ0, equal to 0.3 and 0.075 times of a given primitive cell’s size are considered. For 
these two incident waves, the involved frequencies, are respectively fI = 2.5kHz and fI = 
10kHz. Figure 2.11 presents the ratio of amplitude between the incident wave uI and the 
diffracted wave ud in the both cases. We observe firstly an important amplification 
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phenomenon of wave amplitude due to the diffraction caused by the periodic cellular 
structure. Secondly, we remark that the amplification level does not seem to be significantly 
affected by the incident wave’s frequency fI.  

 

Figure 2.11 Wave amplification inside the primitive cell  

2.2.2 Bending and transverse shear wave propagation  

Now we consider the bending and transverse shear waves in the plane Oxy propagating in the 
1D periodic network. For the j-th beam, the Bloch wave transform of the dynamic equilibrium 
eigen-equations are obtained: 
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with ω the eigenvalue and (U0y

B x,  k( ),U
1

B
x,  k( ) ) the Bloch wave modes of (u0y(x, t), u1(x, t)). 

Contrary to the case of the longitudinal wave, we do not have analytical general solutions of 
the bending and transverse shear waves. Therefore, in this case, we solve (2.36) numerically 
by searching for (ω, (U0y
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x,  k( ) )) within the frequency range of interest for each 
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The numerical simulation of bending and transverse shear waves is performed using Lagrange 
quadratic three nodes elements whose size is about 0.1mm a quarter of the wavelength of the 
bending waves at 100 kHz. The considered beam length l1+l2, which will be given in the next 
chapter, is about 55 times the element size. Besides, the first Brillouin zone Q0 is discretized 
into 114 elements.  

In parallel, we have compared two beam models respectively of the Timoshenko kinematics 
with Lagrange quadratic three nodes elements and of the Euler-Bernoulli kinematics with 
cubic Hermitian elements in order to check whether numerical locking phenomena take place 
when the Timoshenko kinematics is used to model thin beams. The size of the two kinds of 
elements is about 0.1mm. The considered geometric and mechanical characteristics that will 
be given in the next chapter, in which the period l1+l2 is about 300 times the thickness H of 
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beams. We find that the no numerical locking phenomena occur if we use the Timoshenko 
kinematics with the three nodes elements in the simulation. 

 

Figure 2.12 (left) Eigenfrequencies errors between the Timoshenko kinematics and the Euler-
Bernoulli kinematics for the considered thin beam  

To get the dispersion relation as well as the Bloch wave eigenmodes, the internal interface 
and the periodic boundary conditions for the bending and transverse shear waves should be 
probably imposed, constituting in the continuity of the displacement and the rotation, and in 
the equilibrium of the generalized beam forces and moments at both the junction point and the 
two ends of the primitive cell (Figure 2.13)  

 

Figure 2.13 Displacement, rotation, generalized beam force and moment at the junction point 
and the two ends of the primitive cell 

So, the interface internal conditions between the two beams at their junction point read as:  
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and also the periodic boundary conditions at the ends of the primitive cell read as: 
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where QB(x, k) is the Bloch wave transform of the generalized transverse shear force and 
MB(x, k) is the Bloch wave transform of the generalized bending moments: 

QB
= µH

dU0y

B

dx
! ikU0y

B
+U1

B
" 

# 
$ 

% 

& 
' 

MB
= E

H3

12

dU1

B

dx
! ikU1

B" 

# 
$ 

% 

& 
' 

                                        (2.39) 



 32 

Combining (2.36) with all the interface junction conditions and periodic boundary conditions 
(2.37) and (2.38), then we can get the complete definition of the Bloch wave eigenproblem of 
the bending and transverse shear waves, whose numerical solving allows obtaining the 
dispersion relation presented in the next chapter. Not like in the longitudinal wave case, when 
we solve directly this eigenproblem, we get the eigenvalues ω for each wave vector k of real 

value discretized in the first Brilluoin zone. Hence by plotting the dispersion curves k - ω, we 
can remark easily the stop bands, but we have no idea of the values of kim (see the next 
chapter).  

2.3 2D periodic beam networks 

In this section, the Bloch wave theory is applied to the analysis of the elastic wave 
propagation in 2D periodic beam networks. The focus is first given to the hexagonal cell type 
network. On the one hand, since the honeycomb sandwich plate is a periodic hexagonal 
network made of plates, it is interesting for us to study a network with the same cellular shape 
but composed of beams. Although the beam network has similar difficulties as those of plates, 
as the wave phenomena in the plane and out of the plane of the 2D network are completely 
uncoupled, so it is easier to discuss both the membrane and bending waves and have a better 
understanding, useful then for the honeycomb thin layer made of plates. On the other hand, 
some studies have already been done on looking for the dispersion relation of hexagonal or 
hexagonal chiral cell type beam networks, especially for the in-plane membrane waves 
[Srikantha Phani (2006); Spadoni (2009)], we can therefore, with the reference to those 
results, validate our approach and consider further the out-of-plane bending waves. Finally, as 
mentioned in chapter 1, rectangular cell type sandwich panels are also commonly used in 
engineering application, hence we investigate a periodic rectangular beam network as well. 

2.3.1 Hexagonal network 

The choice of the primitive cell is not unique. In the case of the periodic hexagonal network, 
we can choose, for example, either a primitive cell composed of three beams, used for 
example by Gonella et al. [Gonella (2008)], or another one composed of five beams primitive 
cell (Figure 2.14). In the present work, we propose to use the second one, for which the 
periodic conditions can be more easily imposed by COMSOL software. 

                     

Figure 2.14 Two possible primitive cells in the case of 2D periodic beam hexagonal network 
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To discretize k, we need to consider the first Brillouin zone of the hexagonal primitive cell. 
For the 2D hexagonal periodic network, we notice that there are three possible direct cell 
bases and so three corresponding reciprocal cell bases (Figure 2.15). By translating the 
primitive cell along any group of the three bases, we can obtain the tiling of the whole 
hexagonal periodic network. 

                            

                   (a) First group                   (b) Second group                   (c) Third group 

Figure 2.15 Three possible direct cell bases and the corresponding reciprocal cell bases 

For each reciprocal cell basis, we can have a relevant reciprocal primitive cell. The minimal 
intersection of the three cells, Z1Z2Z3Z4Z5Z6, is the first Brillouin zone of the hexagonal 
periodic network. It is found that Q0 is also a hexagonal cell (Figure 2.16).  

 

Figure 2.16 First Brillouin zone of the periodic hexagonal network 

Instead of considering the whole first Brillouin zone, we adopt another method, which consist 
in looking for the eigenvalues of the Bloch eigenproblem only for the k locating on the 
contour of a subdomain of the first Brillouin zone, called irreducible zone (Figure 2.17). 
Indeed, without rigorous proof, this method has been widely accepted in the related literatures 
and seems to offer an efficient solution and provides furthermore a clearer view on dispersion 
relation of periodic structures [Kittel 1962; Srikantha Phani 2006;]. Owing to the symmetry of 
the first Brillouin zone, it is believed that the maximal and minimal values of ω occur along 
the irreducible zone’s contour, so the dispersion relation obtained between those phase 
vectors k and the eigenvalues for the study of the frequency bandgaps estimated to be  
sufficient.  

For the numerical simulations presented in the present work, both the first Brillouin zone and 
the contour of the irreducible zone are discretized to obtain respectively 3D dispersion 
surfaces and 2D dispersion curves.  
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Figure 2.17 First Brillouin zone and irreducible zone of the hexagonal network 

Now back on the primitive cell, each beam is parameterized from its local beam basis (e1, e2, 
e3) first, where the axis e3 is the neutral axis of the beam, the axis e2 is perpendicular to the 
beam and located in the plane Oxy of 2D network and the axis e1 is perpendicular to the plane 
of the 2D network. The whole network is then considered in the global Cartesian basis (ex, ey, 
ez) (Figure 2.18). As for the geometric and mechanical characteristics of the primitive cell, 
they are defined as the following: the Lamé coefficients and the density of all the beams are 
(λ, µ, ρ), the length s of the horizontal beam BCEN is twice the length of the other four beams. 
The thickness (in the local direction e2) and the width (in the local direction e1) of BCEN are 
(H1, T) and of the others are (H0, T). Due to the manufacturing process of the periodic 
hexagonal network, H1 usually could be twice H0.  

                          

Figure 2.18 (left) 2D periodic hexagonal beam network in the global Cartesian basis (ex, ey, 
ez); (right) Primitive cell of the hexagonal network in the local beam basis (e1, e2, e3) draw 

here only for the center beam BCEN 

Any point r in each beam is given by its local coordinates in each beam local basis in the 
classical way: 

r(x! ,  x3) = x!e!!=1, 2" +  x
3
e

3
                                          (2.40) 

where x
!
 denotes the coordinates in the transverse sections with α = 1, 2 . The Timoshenko 

kinematics decomposes the displacement u of each beam as: 
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with u03 the displacements of the beam’s neutral axis along this axis, u
0 

 the deflection of the 

neutral axis in the directions eα, u11 and u12 the rotation of the transverse sections due to the 
bending of the beam and u13 the rotation of the transverse sections due to the twisting.  

Now we are interested in analyzing the wave phenomena in the plane of the 2D network, 
defined by Oxy, and out of this same plane, as fortunately, the equilibrium equations of the 
2D network allows a complete uncoupling of these two phenomena: 
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Hence, similar to the analysis of 1D periodic network, the in-plane membrane waves and the 
out-of-plane bending waves of the 2D periodic beam network can be considered 
independently. 

a) In-plane membrane wave propagation 

The Bloch wave transform of the equilibrium equations of the in-plane membrane waves are: 
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    (2.43) 

with ω the eigenvalue, k the Bloch wave vector, which is also a in plane vector and UB the 
Bloch wave modes. The analytical solutions of (2.43) are generally unavailable, so we 
numerically search for the eigenvalue and the corresponding Bloch wave eigenmodes in the 
primitive cell for each given discretized k within the first Brillouin zone Q0 of the 2D periodic 
hexagonal network.  

As for the finite element discretization of the 2D network, Lagrange quadratic three nodes 
elements with size about 0.09mm are used. We note that the wavelength of the bending waves 
in the present case at 0.6 MHz contains about 19 elements and the considered horizontal beam 
whose geometric characteristics will be given in the chapter contains about 34 elements. For 
discretizing the first Brillouin zone Q0, it is first discretized into 501 elements along the axis 
ey from Z2 to Z5 and then for each discretized element along Z2→Z5, it is discretized into 602 
elements. The corresponding irreducible zone’s contour is discretized into 200 elements. 

To complete the definition of the Bloch eigenproblem (2.43), the following interface 
conditions between the five beams at the interior junction points, A and B, and the periodic 
boundary conditions at the ends, (C, D, E, F), of the primitive cell are considered (Figure 
2.19).  
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Figure 2.19 Junction points and boundary ends of the hexagonal primitive cell 

More precisely, we write, for example at the point A, the continuity of the displacement and 
the rotation, and the equilibrium of the generalized beam forces and moments: 
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where NB, Q2

B and M
2

B are the Bloch wave transform of respectively the generalized 
longitudinal force, the generalized transverse shear force and the generalized bending 
moment. Their expressions read as: 
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Similar junction conditions are also written at point B. As for the boundary periodic 
conditions, they consist also in the continuity of the displacement and the rotation, and the 
equilibrium of the generalized beam forces and moments. More precisely, we write, for 
example for the pair of points C and E: 
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Similar boundary periodic conditions should also be written for the pair of the points D and F. 
Combining (2.43) with all the interface conditions and periodic conditions, then we can get 
the complete definition of the Bloch wave eigenproblem, whose numerical solving allows 
obtaining the dispersion relation presented in the next chapter.  
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b) Out-of-plane bending wave propagation 

For the out-of-plane bending waves propagation in the 2D periodic hexagonal network, the 
Bloch wave transform of the out-of-plane equilibrium equations are as the following: 
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with (U
01

B , U
12

B , U
13

B ) the Bloch wave eigenmodes.  

For the numerical simulation of the out-of-plane bending waves, we still use Lagrange 
quadratic three nodes elements of about 0.09 mm size, for which the wavelength of the 
bending waves of 0.4 MHz contains about 19 elements.  

The continuity of the displacement and the rotation, and the equilibrium of the generalized 
beam forces and moments between the five beams at point A for the out-of-plane waves read 
as: 
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where Q
1

B,M
1

B and M
3

B
 denote the Bloch wave transform of respectively the generalized 

transverse shear force, the generalized bending moment and the generalized twist moment: 
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Similar junction conditions are also imposed at point B. Besides, the boundary periodic 
conditions between the pair of the points C and E: 

U
01

B
e
1
B
NE( ) = U

01

B
e
1
B
SW( )

U
13

B
e
3
B
NE( ) +U

12

B
e
2
B
NE( ) = U

13

B
e
3
B
SW( ) +U

12

B
e
2
B
SW( )

Q
1

B
e
1
B
NE( ) +Q

1

B
e
1
B
SW( ) = 0

M
3

B
e
3
B
NE( ) +M

1

B
e
2
B
NE( ) +M

3

B
e
3
B
SW( ) +M

1

B
e
2
B
SW( ) = 0

                           (2.50) 

and the same kind of boundary periodic conditions are also imposed for the pair of the points 
D and F. These interior interface conditions and boundary periodic conditions complete the 
definition of the Bloch eigenproblem (2.47) for the bending wave case of the 2D periodic 
network. 
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2.3.2 Periodic rectangular network 

In parallel to the 2D periodic hexagonal beam network, we consider a 2D periodic rectangular 
beam network. Rectangular cell has a more simple structure as all the beams in the network 
perpendicular to each other. Therefore, both the direct cell basis and the reciprocal cell basis 
are coincide with the Cartesian basis, which makes the definition of its first Brillouin zone as 
well as the discretization of the latter easier than for the hexagonal network.  

The primitive cell Q0 of the network is composed of four rigidly-jointed elastic beams, BW, 
BE, BN and BS. The period in horizontal and vertical directions is respectively λ1 and λ2. The 
thickness and the width of the two horizontal beams, BW and BE, are denoted by (H1, T) and 
the ones of the two vertical beams, BN and BS, by (H0, T). The mechanical characteristics of 
the four beams are still (λ, µ, ρ) (Figure 2.20). 

 

Figure 2.20 (left) periodic rectangular network; (Right) Its primitive cell  

The Bloch wave transform of the equilibrium equations for in-plane membrane and out-of-
plane bending waves are always governed respectively by (2.43) and (2.47). For all the k 
belonging to the first Brillouin zone as well as those locating on the irreducible zone’s 
contour, the corresponding eigenvalue and Bloch wave eigenmode can be searched 
numerically by taking into account the interface conditions on the point E and the periodic 
conditions between the points B and D on the one hand and between the points A and C on 
the other hand (Figure 2.21)  

 

Figure 2.21 (left) First Brillouin zone and irreducible zone of the rectangular network; (right) 
Junction point and boundary points of the rectangular primitive cell 

For the numerical simulation of the rectangular network, we use Lagrange quadratic three 
nodes elements with size 0.03 mm, where the wavelength of the in-plane membrane waves in 
the present case at 0.6 MHz can contain about 56 elements and the one of the out-of-plane 
bending waves contains about 44 elements. The considered horizontal period λ1 that will be 
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given in the next chapter contains 100 elements. For discretizing the first Brillouin zone Q0, it 
is first discretized into 201 elements along the axis ey from Z2 to Z3 and then for each 
discretized element along Z2→Z3, it is discretized into 201 elements. The corresponding 
irreducible zone’s contour is discretized into 200 elements. 

2.4 3D periodic plate networks 

Finally, the Bloch wave theory is applied for the analysis of the wave propagation in the 
honeycomb thin layer and then in the honeycomb core sandwich plate. The honeycomb thin 
layer is a periodic hexagonal network made of plates, so the way to select a primitive cell and 
build the first Brillouin zone is much similar to the hexagonal beam network.  

2.4.1 Honeycomb thin layer 

The primitive cell Q0 of the honeycomb thin layer is composed of five rigidly-jointed elastic 
plates. The mechanic characteristics of all the plates are (λ, µ, ρ). The length of the horizontal 
plate PCEN, s, is twice the length of the other four plates. The thickness and the width of PCEN 
is (H1, T) and of the others is (H0, T). Similar to the beam network case, due to the 
manufactory process of the honeycomb thin layer, H1 is usually twice H0. Each plate is 
parameterized in its local plate basis (e1, e2, n) first, where (e1, e2) forms an orthonormed basis 
in the middle plane of the plate and the n is a unit vector perpendicular to the plate, while the 
whole network is finally considered under the global Cartesian basis (ex, ey, ez) (Figure 2.22). 

 

Figure 2.22 (left) Honeycomb thin layer under Cartesian basis (ex, ey, ez); (right) Primitive cell 
of honeycomb thin layer under local plate basis (e1, e2, n) 

Any point r of each plate is given in each plate’s local basis as: 

r(x
s
,   ) = x

s
+   n                                                      (2.51) 

with x
s
= s1e1 + s2e2  the points on the middle plane S and ξ the coordinate in the thickness of 

the plate in the range from  
H
m

2
 to 

�
m

2
 for m = 0 or 1. The 5 degrees of freedom (5dofs) 

Mindlin kinematics for the thick plate is used here for the shear deformation can be taken into 
account appropriately. According to the Mindlin model, the displacement u in the each plate 
reads as: 

u � u
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with u
0s
= u

0s1
e
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 and u0n respectively the membrane displacement and the deflection 

of the middle plane and u
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 the displacements in the thickness of the plate due 

to the rotation of the perpendicular fibers.  

The equilibrium equations of the plates read as: 
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with Ns the generalized membrane force tensor, Q the generalized transverse shear force 
vector and Ms the generalized bending moment tensor. They have the following forms: 
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2D Lamé constant in plane stress state. Consequently, the Bloch wave transformation of the 
equilibrium equations reads as: 
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with ω the eigenvalue, k the Bloch wave vector and (U
0s

B , U
0n

B , U
1s

B) the Bloch wave 
eigenmodes. We notice that, unlike the 2D beam network, no uncoupling is possible between 
the movement in the plane of the honeycomb thin layer, which is in our case the plane Oxy 
(Figure 2.22) and the one out of this plane.  

For the numerical simulation, Lagrange quadratic triangular elements with size about 0.6 mm 
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are used, for which the wavelength of bending waves of 13 kHz contains about 6 elements 
and the considered horizontal plate of the primitive cell whose geometric characteristics will 
be given in the chapter 4 contains about 5×20 elements. Because k is only periodic in the 
plane Oxy, the first Brillouin zone Q0 as well as the irreducible zone’s contour of the 
honeycomb thin layer are the same as in the 2D hexagonal beam network. In this case, we 
discretize first the Q0 into 201 elements along the axis ey from Z2 to Z5 and then for each 
discretized element along Z2→Z5, it is discretized into 201 elements. The corresponding 
irreducible zone’s contour is still discretized into 200 elements.  

Besides, we have compared a one-plate model (horizontal plate PCEN) and a five-plate 
(primitive cell) with respectively the Mindlin kinematics with Lagrange quadratic triangular 
elements and the Kirchhoff-Love kinematics with Argyris shell elements, so that we can 
check whether numerical locking phenomena take place in the present simulation. The 
element size in all case is about 0.6mm. The considered geometric and mechanical 
characteristics that will be given in the chapter 4, in which the length s of PCEN is 150 times 
the thickness H1.We find that the considered six eigenfrequencies obtained by the Mindlin. 
kinematics with quadratic triangular elements coincide well with the ones of Kirchhoff model 
(Figure 2.23). 

 

Figure 2.23 Eigenfrequencies errors between the plate models with Mindlin kinematics and 
the Kirchhoff kinematics 

To complete the definition of the Bloch eigenproblem (2.55), the following interface 
conditions between the five plates at the interior junction edge, ∑IW and ∑IE, and the periodic 
boundary conditions at the boundary edges, (∑PNW, ∑PSW, ∑PNE, ∑PSE), of the primitive cell 
are considered (Figure 2.22).  

 

Figure 2.24 Junction edges and boundary edges of the primitive cell of honeycomb thin layer 

More precisely, we write, for example on the junction edge ∑IW, the continuity of the 
displacement and the rotation, and the equilibrium of the generalized force and generalized 
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beam forces and moments: 
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where NB, QB and MB denote the Bloch wave transform of respectively the generalized 
membrane force tensor, the generalized transverse shear force vector and the generalized 
bending moment tensor. Similar junction conditions are also imposed on the edge ∑IE. 
Besides, the boundary periodic conditions between the pair of the edges ∑PNW and ∑PSE: 
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and the same kind of boundary periodic conditions are also imposed for the pair of the edges 
∑PNE and ∑PSW. These interior interface conditions and boundary periodic conditions 
complete the definition of the Bloch eigenproblem (2.55) for the honeycomb thin layer and 
allows obtaining the dispersion relation that will be presented in the chapter 4. 

When doing the numerical simulation, we add one more condition for each plate as θn = 0 in 
its local plate basis, where θn is the drilling rotation around the axis n perpendicular to each 
plate. It is because the membrane-bending equations (2.55) of the primitive cell do not imply 
the so-called drilling degree of freedom (dof). For one plate it can simply not be considered at 
all and eliminated, but here for the primitive cell composed of non-coplanar plates and 
especially along the junction edges, the bending components of one plate may be converted 
into the bending modes of another, this drilling degree of freedom should be take into 
account. To solve this problem and to circumvent the classical problem of singular stiffness 
matrix, a Lagrange multiplier has been associated with this constraint that is applied only 
weakly. This is compatible with the interface conditions at the junctions on the two interface 
edges, ∑IW and ∑IE, that only the rotation perpendicular to the plane Oxy is non-zero. The 
influence of junction condition on the dispersion characteristics as well as the cellular 
deformation will be analyzed in the chapter 4.  

2.4.2 Honeycomb core sandwich plate 

The honeycomb core sandwich plate is composed of a honeycomb core thin layer and two 
skins (Figure 2.23). Therefore, the primitive cell Q0 of the honeycomb core sandwich plate is 
composed of seven rigidly-jointed plates, PCEN, PNW, PSW, PNE, PSE, PTSKIN and PBSKIN, with 
PCEN, PNW, PSW, PNE and PSE the primitive cell of the honeycomb thin layer and PTSKIN and 

PBSKIN two rhombus plates of the skins. The edge length of PTSKIN and PBSKIN is 3s, the 
thickness is Hskin and the mechanical characteristics are (λskin, µskin, ρskin). Each plate is 
parameterized in its local plate basis (e1, e2, n) first, while the whole network is finally 
considered under the global Cartesian basis (ex, ey, ez) (Figure 2.24).  
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Figure 2.25 Honeycomb core sandwich plate 

 

Figure 2.26 Primitive cell of honeycomb core sandwich plate 

The Mindlin kinematics for thick plate is still used for the honeycomb core sandwich plate. 
The Bloch wave transform of the equilibrium equations are always governed by (2.55). The 
eigenvalue ω and its corresponding Bloch wave eigenmodes (U

0s

B , U
0n

B , U
1s

B) are searched for 
all the Bloch wave vectors in the first Brillouin zone and the irreducible zone’s contour 
(Figure 2.16 and 2.17).  

For the numerical simulation of the sandwich plate, we still use Lagrange quadratic triangular 
elements with size 0.6 mm, for which the wavelength of bending waves of the skins of 13 
kHz contains about 61 elements while the one of honeycomb core thin layer contains 6 
elements. The considered skins and the horizontal plate of the honeycomb core whose 
geometric characteristics will be given in the chapter 4 respectively contain about 9×9 
elements and 5×20 elements. The first Brillouin zone Q0 is discretized into 201×201 elements 
and the corresponding irreducible zone’s contour into 200 elements. 

To complete the definition of the Bloch eigenproblem of the honeycomb core sandwich plate, 
besides (2.56) - (2.59), we have the periodic conditions between PTSKIN and PBSKIN on the 
edges of: ΣNW_TSKIN and ΣSE_TSKIN, ΣSW_TSKIN and ΣNE_TSKIN, ΣNW_BSKIN and ΣSE_BSKIN, 

ΣSW_BSKIN and ΣNE_BSKIN.  
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Figure 2.27 Boundary edges of PTSKIN and PBSKIN 

Conclusion 

In this chapter, we apply the Bloch wave theory to the study of the elastic wave propagation 
in the 1D, 2D periodic beam networks and finally the honeycomb thin layer made of plates 
and honeycomb core sandwich plate.  

By combining the Bloch transform of the equilibrium equations with the interface conditions 
on the junction points/edges inside the primitive cell and also the periodic boundary 
conditions at the end of the primitive cell, we can obtain the complete definition of the Bloch 
wave eigenproblem of each periodic network, which allows to getting the dispersion relation 
between the eigenvalue and the discretized Bloch wave vector restricted in the first Brillouin 
zone as well as on the irreducible zone’s contour. More precisely, in the longitudinal wave 
propagation case of the 1D periodic beam network, the dispersion relation can be explicated 
in an analytical way, with which we can prove that the frequency bandgaps are mostly 
generated by the mismatch of characteristic acoustic impedances in the primitive cell.  
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Chapter 3 

Wave propagation in 1D and 2D periodic 
networks  

In this chapter, our approach is first applied in the 1D periodic beam network, comparing the 

dispersion relation and the corresponding Bloch wave eigenmodes calculated numerically to those 

obtained analytically. Then the influence of acoustic impedance ratio on the bandgaps of the 

longitudinal wave and the influence of Young’s modulus and thickness on the bandgaps of the 

bending/transverse shear waves is discussed respectively. In the second step, the numerical simulation 

of elastic wave propagation in the 2D periodic beam networks is presented in detail. The dispersion 

relation and the Bloch eigenmodes of the in-plane membrane and the out-of-plane bending waves are 

presented respectively for the hexagonal and rectangular networks. The influence of important 

material and structural properties, such as the Young’s modulus, the thickness and the internal angle, 

on the bandgaps is analyzed for the hexagonal network. In the end, the wave propagation velocities of 

several main wave modes are calculated numerically for the hexagonal network, according to which 

the anisotropic and dispersive nature of the network is highlighted. In parallel, these wave 

propagation velocities are also compared with a homogenized orthotropic plate model in order to 

check whether homogenized models can represent the membrane and bending wave behaviors of the 

network in low frequency (LF) range. 
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3.1 Analysis of the frequency bandgaps in 1D periodic beam 
network  

According to the Bloch wave analysis on the 1D periodic beam network in chapter 2, now we 
consider the numerical solving of the Bloch eigenproblem of the elastic wave propagation in 
the network. The mechanical characteristics of the 1D network considered here are shown in 
Table 3.1. The study on this kind of periodic network is similar to the one on periodic 
materials and can be analogized easily to the large amount of results already obtained in other 
research domains, like periodic materials in quantum mechanics or in photonic research field 
[Atkins (2005)].  

Table 3.1 Geometric and mechanical characteristics of primitive cell of 1D network 

 Young’s modulus  

Ej(j=1, 2) (GPa) 

Poisson’s ratio  

ν j(j=1, 2) 

Density  

ρ j(j=1, 2) (kg.m-3) 

Length  

lj(j=1, 2) (mm) 

Thickness  

H (mm) 

Beam1 50 0.33 2700 4 0.02 

Beam2 250 0.33 2700 1.5 0.02 

3.1.1 Dispersion relation  

It has been shown that for the longitudinal wave, the dispersion relation between k and ω can 
be derived from the linear system (2.24) in an explicit analytical form (2.26), with the help of 
which for each given ω, either real or complex k can be calculated. Contrarily, for the bending 
and transverse shear waves numerical solving of the Bloch eigenproblem is necessary, so the 
first Brilloun zone is discretized and for each dicretized k, we search for the eigenvalues and 
the eigenmodes. Hence, by this approach, it is not possible to obtain the complex values of k.  

First of all, we have calculated numerically the dispersion curves for the longitudinal wave 
and compared them to the theoretical dispersion curves. We find that the curves obtained by 
two methods match well (Figure 3.1). 

       

Figure 3.1 Dispersion curves of longitudinal wave obtained by theoretical and numerical 
analyses 
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Then the dispersion curves of the bending and transverse shear waves are numerically 
obtained as well (Figure 3.2(right)). Compared with the longitudinal wave, we find that the 
bandgaps of bending and transverse shear waves occur in a much lower eigenvalue range. In 
other words, the first stop band takes place in lower frequency range for the bending and 
transverse shear waves (Figure 3.3). 

        

Figure 3.2 (left) Dispersion curves of longitudinal wave; (right) Dispersion curves of bending 
and transverse shear waves 

          

Figure 3.3 Dispersion curves of coupled longitudinal and bending/transverse shear waves of 
1D periodic network 

3.1.2 Influence of structural and geometric characteristics on frequency 
bandgaps 

The parametric study is performed in the 1D periodic network in order to investigate the 
influence of material and structural properties on the frequency bandgaps. 

 (a) Influence of acoustic impedance on the longitudinal wave 

In the case of the longitudinal wave, the analytical dispersion equation (2.26) shows a strong 
dependence upon the characteristic acoustic impedance ratio, Z1/Z2, between the two beams, 
so our first investigation concerns the influence of this ratio on the frequency bandgaps. The 
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special case with Z1/Z2 = 1 is considered at first, and as indicated by the analytical result, no 
frequency bandgap is found. Then, the Young’s modulus E2 of the second beam of the 
primitive cell is changed to get six different values of the characteristic acoustics impedance 
ratio, to look into its influence on the bandgaps. Among these six ratios, the second one is 
considered here as the reference value (Table 3.2).  

Table 3.2 Six groups of characteristic acoustic impedance ratio  

E1 (GPa) 50 50 (Reference) 50 50 50 50 

E2 (GPa) 500 250 (Reference) 100 25 10 5 

Z
1
/Z

2
 1/ 10  1/ 5  (Reference) 1/ 2  2  5  10  

H (mm) 0.02 

In this part, we choose to use theoretical way to calculate the bandgaps of longitudinal wave 
as with the dispersion equation we can obtain the explicit values of kim. The first stop bands 
corresponding to the different acoustic impedance ratios are compared (Figure 3.4). We notice 
that the more different from one the acoustic impedance ratio, the larger the stop band and the 
stronger the attenuation. Finally, we note that, as by changing only the parameter E2, we 
change not only the ratio Z1/Z2 but also another parameter T2 of the dispersion equation 
(2.26), so it is normal that the first stop bands respectively obtained for Z1/Z2 equal to 1/ 10  
and 10  do not coincide. We notice that with the decrease of E2, the first stop band moves to 
lower frequency range.  

 

Figure 3.4 Influence of acoustic impedance ratio on longitudinal wave’s first stop band 

(b) Influence of Young’s modulus ratio on the bending and transverse shear waves 

For the bending and transverse shear waves, as no analytical dispersion equation is available 
to suggest special choices of the parameters to investigate, so it is natural to consider at first 
the mismatch of Young’s modulus within the primitive cell. Keeping other parameters as the 
same, six different values of the Young’s modulus ratio E1/E2 are considered here (Table 3.2). 
As results, the center location and the width of the six corresponding first stop bands are 
presented (Figure 3.5).  
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We obtained the same conclusions as in the case of longitudinal wave. The more the 
mismatch of Young’s modulus, the larger the stop band and with the decrease of E2, the first 
stop band moves to lower frequency range, but the relation is not linear. 

         

Figure 3.5 Influence of Young’s modulus ratio on bending and transverse shear waves’ first 
stop band 

(c) Influence of beam’s thickness on the bending and transverse shear waves 

As the thickness is an important parameter for bending wave velocity, we are interested in 
studying the influence of beam’s thickness on the bandgaps of bending and transverse shear 
waves, with five different values (Table 3.3), while the reference value of Young’s modulus is 
always used for each case.  

Table 3.3 Five groups of thickness, H 

H (mm) 0.02 (Reference) 0.05 0.2  0.4 0.6  

λ/H ≈300 ≈100 ≈30 ≈14 ≈9 

E1 (GPa) 50 

E2 (GPa) 250 

The center location and the width of the first stop band are still investigated. We remark that 
with the increase of thickness, the first stop band moves to high range and also becomes 
larger. Moreover, the order of magnitude of the location and the width links to the order of 
magnitude of the thickness. In other words, it is believed that the relation between the first 
stop band and the thickness is linear (Figure 3.6). 
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Figure 3.6 Influence of beam’s thickness on bending and transverse shear waves’ first stop 
band 

3.1.3 Bloch wave eigenmodes 

Each wave vector k locating in the first Brillouin zone can correspond to an infinite number of 
eigenvalues and Bloch eigenmodes. Here, six Bloch wave eigenmodes are presented 
respectively for the wave vector k locating at two points of the first Brillouin zone: its center 
k = 0, one of its two ends k = π/λ. The total displacement is illustrated in color, where the red 
color represents the maximal value and the blue color means zero. We find that at the end of 
Q0, the first mode of both longitudinal wave and bending and transverse shear wave is a rigid 
body mode.  
 

1st                                  2nd                               3rd                                              1st                              2nd                                 3rd  

         

4th                                  5th                               6th                                              4th                              5th                                 6th  

         

Figure 3.7 (left) Six Bloch wave eigenmodes of longitudinal for the k at the center of Q0; 
(right) Six Bloch wave eigenmodes of longitudinal wave for the k at the end of Q0 

      

Figure 3.8 (left) Six Bloch wave eigenmodes of bending and transverse shear waves for the k 
at the center of Q0; (right) Six Bloch wave eigenmodes of bending and transverse shear waves 

for the k at the end of Q0 

3.2 2D hexagonal and rectangular beam networks 

Based on the Bloch wave analysis on the 2D periodic beam network, the same kind of 
numerical simulations as in 1D network is also considered for the 2D periodic beam 
networks. The aim is to obtain important information of the networks with respect to the 
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elastic wave propagation, for example the dispersion relation, the frequency bandgaps 
[Spadoni (2009); Tee (2010)], the anisotropy and the Bloch wave eigenmodes. 

3.2.1 Dispersion relation  

(a) Periodic hexagonal beam network 

First of all, we concentrate with the periodic hexagonal network. The geometric and 
mechanical characteristics of the primitive cell are presented in Table 3.4.  

Table 3.4 Geometric and mechanical characteristics of primitive cell of 2D periodic 
hexagonal network 

 Horizontal beam Four oblique beams 

Young’s modulus E (GPa) 70 70 

Poisson’s ratio ν 0.33 0.33 

Density ρ(kg.m-3) 2700 2700 

Length s (mm) 3 1.5 

Width T (mm) 0.12 0.12 

Thickness Hm(m=0,1) (mm) 0.2 0.2 

Both the first Brillouin zone and the irreducible zone’s contour are considered here (Figure 
3.9), so that we obtain the 3D dispersion surfaces, which contains full information between ω 
and k, as well as the 2D curves, which highlight the frequency bandgaps (Figure 3.10). 

        

Figure 3.9 (left) First Brillouin zone and irreducible zone’s contour; (right) 3D dispersion 
surfaces of the periodic hexagonal network 
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Ten first eigenvalues are presented for both the in-plane membrane waves and the out-of-
plane bending waves. We find out that for the given geometric and mechanical characteristics, 
the first stop band of the in-plane membrane waves occurs between the sixth and the seventh 
eigenvalue, which is at about 2×106 rad.s-1, correspondingly 0.3 MHz. As for the out-of-plane 
waves, we remark that no stop band exists within the current eigenvalue range. However, if 
we search in a higher range, we observe the first stop band for the out-of-plane bending waves 
appears at about 6×106 rad.s-1, correspondingly 1 MHz. Compared to the in-plane waves, the 
first stop of the out-of-plane waves takes place in a much higher frequency range and is 
narrower. In addition, the common feature that the dispersion curves do not cross but “veer 
away” when they are to each other is observed [Srikantha Phani (2006)]. Furthermore, we 
remark that this kind of deflection of curve occurs in the most of the cases at the corner points 
of the irreducible zone: (O, Z0, Z1, Z2) (Figure 3.10, 3.11 and 3.12). 

             

Figure 3.10 (left) 3D dispersion surface; (right) 2D dispersion curve, of in-plane membrane 
waves 

             

ky (m
-1

) 
 

Figure 3.11 (left) 3D dispersion surface; (right) 2D dispersion curve, of out-of-plane bending 
waves  
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Figure 3.12 1st stop band of out-of-plane bending waves 

(b) Periodic rectangular network 

Then, we focus on the rectangular network. The first Brillouin zone and the irreducible zone’s 
contour are considered in order to obtain respectively the dispersion surfaces and curves 
(Figure 3.13). Table 3.5 lists the geometric and mechanical characteristics of the primitive 
cell.  

           

Figure 3.13 (left) First Brillouin zone and irreducible zone’s contour; (right) 3D dispersion 
surfaces of the periodic rectangular network 

Table 3.5 Geometric and mechanical characteristics of the primitive cell of 2D periodic 
rectangular network 

 E (GPa) ν ρ (kg.m-3) s (mm) Hm(m=0,1)  (mm) T (mm) 

Horizontal 
beams 

70 0.33 2700 1.5 0.2 0.12 

Vertical 
beams 

70 0.33 2700 1.5 0.2 0.12 

As an important result, we remark that for the rectangular network, no complete frequency 
bandgaps exist for neither the in-plane membrane nor the out-of-plane bending waves in the 
considered frequency range (Figure 3.14 and 3.15), this phenomenon is also reported by 
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Wang et al. [Wang (2012)]. In other words, for any frequency belonging to the considered 
frequency range, there is always at least one propagating mode in at least one direction in the 
rectangular networks. Besides, we find that the dispersion curves of both the in-plane waves 
and the out-of-plane waves are symmetric, based on which, it is believed that a smaller 
irreducible zone contour can be chosen for the rectangular network (Figure 3.14 and 3.15).  

  

ky (m
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) 
 

Figure 3.14 (left) 3D dispersion surface; (right) 2D dispersion curve of in-plane membrane 
waves 
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Figure 3.15 (left) 3D dispersion surface; (right) 2D dispersion curve of out-of-plane bending 
waves 

3.2.2 Influence of structural and geometric characteristics on frequency 
bandgaps of hexagonal network  

Similarly as for the 1D case, we are interested in the influence on the frequency bandgaps of 
important structural and geometric parameters, such as the Young’s modulus E, the beam’s 
thickness H and the internal angle θ between the horizontal beam and the oblique one. In the 
present work, these studies are only performed for the hexagonal network. 

(a) Influence of Young’s modulus 

Five different Young’s moduli are considered here, among which the value of 70 GPa is taken 
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as the reference value (Table 3.6).  

Table 3.6 Young’s modulus of five beams in the primitive hexagonal cell  

E (GPa) 130 100 70 (Reference) 40 7 

H0 (mm) 0.2 

H1 (mm) 0.2 

θ (°) 60 

Ten first eigenvalues of both the in-plane membrane and out-of-plane bending waves are 
obtained for each Young’s modulus case. We find that with the decrease of Young’s modulus, 
the eigenvalues of network move down to lower range while the structure of dispersion curves 
is not affected. Consequently, the first stop band of in-plane waves moves down too. In other 
words, it is possible to obtain stop bands in LF range if we select “soft” materials for periodic 
networks (Figure 3.16 and 3.17). 

      

(a) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, E = 130 (GPa) 

       

(b) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, E = 100 (GPa) 
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(c) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, E = 70 (GPa) 

         

(d) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, E = 40 (GPa) 

          

(e) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, E = 7 (GPa) 

Figure 3.16 Influence of Young’s Modulus on the bandgaps of hexagonal beam network 
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Figure 3.17 Influence of Young’s Modulus on the 1st stop band of in-plane waves of the 
hexagonal beam network 

(b) Influence of beam’s thickness 

As for the study of the influence of thickness Hm with m = 0, 1, we consider at first the case 
where the thickness of the oblique beams H0 is equal to the one of horizontal beam H1, but 
takes respectively four different values, among which 0.2 mm is the reference value (Table 
3.7).  

Table 3.7 Thickness, H0 = H1 

H0 (mm) 0.4 0.2 (Reference) 0.1 0.02 

E (GPa) 70 

θ (°) 60 

We notice that there are two stop bands of the in-plane waves with H0 = 0.4 mm and 0.1 mm, 
while only one stop band exists with H0 = 0.2 mm and 0.02 mm (Figure 3.18). With the 
decrease of H0, the eigenvalues of the in-plane waves go down to low frequency range but the 
magnitude order of the center location of the 1st stop bands take place, is not significantly 
affected (Figure 3.19), which is enormously different from the phenomenon we observed in 
the 1D network. Therefore, it is believed no LF stop bands can be obtained of the in-plane 
waves of the hexagonal networks no matter what value of H is chosen. The thickness does not 
affect the dispersion curves of the bending waves, which are in fact governed by the width T. 

              

(a) (left) Dispersion curves, H0 = 0.4mm; (right) Dispersion curves, H0 = 0.2mm 
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(b) (left) Dispersion curves; (right) First stop band, H0 = 0.1mm 

           

(c) (left) Dispersion curves; (right) First stop band, H0 = 0.02mm 

Figure 3.18 Influence of beam’s thickness on the bandgaps of in-plane membrane waves of 
the hexagonal beam network 

            

Figure 3.19 Influence of beam’s thickness on bending and transverse shear waves’ first stop 
band 

 (c) Influence of thickness mismatch 

Due to the manufacturing process of periodic hexagonal networks, usually the horizontal 
beam is a double-thickness beam. Therefore, two situations, H1 = H0 and H1 = 2H0, are 
investigated in order to take into account the effects of the mismatch between H1 and H0 
(Figure 3.20 and Table 3.8).  
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Figure 3.20 Double thickness of the horizontal beam 

Table 3.8 Thickness, H0 ≠ H1 

H0 (mm) H1 (mm) 

0.2 0.2 (H1 = H0) 0.4 (H1 = 2H0) 

E = 70 (GPa) 

θ = 60° 

Here we only study the in-plane waves. We remark that the double-thickness horizontal beam 
does change the dispersion curves of the in-plane waves. In the case with H1 = 2H0, there 
exists no more the first stop that occurs between the 6th and 7th eigenvalues as privously 
observed in the case with H1 = H0 (Figure 3.21). 

             

Figure 3.21 (left) Dispersion curves, H1 = H0; (right) Dispersion curves, H1 = 2H0, Influence 
of double thickness horizontal beam on the bandgaps of in-plane waves of hexagonal beam 

network 

(d) Influence of internal angle 

Now let us focus our attention on the influence of internal angle, θ (Figure 3.22). The purpose 
is to know how the different cellular geometry works on the frequency bandgaps of the 
periodic network and also to validate our numerical tools by comparing our results to the 
previous research work presented by Gonella et al. [Gonella (2008)]who has already studied 
the cases of θ equal to 60°, 80° and 100°. Six values of the internal angle θ are considered 
here from 15° to 90° by a sweeping step of 15°. The 60° is our reference angle (Table 3.9). 
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Figure 3.22 Internal angle 

Table 3.9 Internal angle, θ 

θ 15° 30° 45° 60° (Reference) 75° 90° 

H0 (mm) 0.2 

H1 (mm) 0.2 

E (GPa) 70 

We find that the dispersion curves of the six θ cases vary from each other but stay in the 
frequency range nearly of the same order of magnitude. In the cases with θ = 30°, 45°, 60° 
and 75°, the first stop band of the in-plane waves can be observed in the considered 
eigenvalue range. More precisely, when θ = 30° and 45°, the first stop band appears between 
the 8th and 9th eigenvalue while it appears between the 6th and 7th eigenvalue when θ = 60° 
and 75°. No stop band is obtained for the out-of-plane waves in the considered frequency 
range (Figure 3.23). 

Comparing our results with the work of Gonella, we find that in the case of 60°, the similar 
dispersion curves have also been obtained by Gonella with the first stop of the in-plane waves 
takes place between 6th and 7th eigenvalue. Besides, in their research work, when θ changes to 
80° and 100°, no stop band can be observed neither. 

            

(a) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, θ = 15° 
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(b) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, θ = 30° 

             

(c) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, θ = 45° 

              

(d) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, θ = 60° 
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(e) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, θ = 75° 

               

(f) (left) Dispersion curves of in-plane waves; (right) Dispersion curves of out-of-plane 
waves, θ = 90° 

Figure 3.23 Influence of internal angle on the bandgaps of hexagonal beam network 

3.2.3 Bloch wave eigenmodes 

After having discussed the dispersion relation of the two 2D periodic beam networks in detail, 
now we look at their Bloch wave eigenmodes. 

(a) Hexagonal beam network 

Six Bloch wave eigenmodes of both the in-plane membrane and out-of-plane bending waves 
are presented respectively for four angular points, O, Z0, Z1 and Z2 on the irreducible zone’s 
contour. The total displacement is displayed in color, where the red color represents the 
maximal value and the blue color means zero. We notice that on the point O, the first two 
modes of in-plane waves and the first mode of out-of-plane waves are rigid body modes. 
Some classical bending and shear modes can be found in low-ordered Bloch modes and other 
complicated modes are observed in higher order (Figure 3.24, 3.25, 3.26 and 3.27).  
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Figure 3.24 (left) Bloch wave eigenmodes of in-plane waves at point O; (right) Bloch wave 
eigenmodes of in-plane waves at the point Z0 

           

Figure 3.25 (left) Bloch wave eigenmodes of in-plane waves at point Z1; (right) Bloch wave 
eigenmodes of in-plane waves at point Z2 

         

Figure 3.26 (left) Bloch wave eigenmodes of out-of-plane waves at point O; (right) Bloch 
wave eigenmodes of out-of-plane waves at point Z0 

         

Figure 3.27 (left) Bloch wave eigenmodes of out-of-plane waves at point Z1; (right) Bloch 
wave eigenmodes of out-of-plane waves at point Z2 
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(b) Rectangular beam network 

Similar to the hexagonal network, six Bloch wave eigenmodes of the in-plane membrane 
waves and the out-of-plane bending waves are presented respectively for four angular points, 
O, Z0, Z1 and Z2 on the irreducible zone’s contour. The total displacement is shown in color, 
where the red color represents the maximal value and the blue color means zero. As expected, 
on point O, two rigid body modes are observed for the in-plane waves and one for the out-of-
plane waves. The Bloch wave eigenmodes at the point Z0 are symmetric with the ones at the 
point Z2 (Figure 3.28, 3.29, 3.30 and 3.31).  

                 

Figure 3.28 (left) Bloch wave eigenmodes of in-plane waves at point O; (right) Bloch wave 
eigenmodes of in-plane waves at point Z0 

             

Figure 3.29 (left) Bloch wave eigenmodes of in-plane waves at point Z1; (right) Bloch wave 
eigenmodes of in-plane waves at point Z2 

                

Figure 3.30 (left) Bloch wave eigenmodes of out-of-plane waves at point O; (right) Bloch 
wave eigenmodes of out-of-plane waves at point Z0 
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Figure 3.31 (left) Bloch wave eigenmodes of out-of-plane waves at point Z1; (right) Bloch 
wave eigenmodes of out-of-plane waves at point Z2 

3.3 Wave propagation velocities analysis in hexagonal beam 
network 

Using the dispersion surfaces, the phase velocity and the group velocity of each Bloch wave 
mode can be evaluated and allow considering the anisotropic behavior and the dispersive 
characteristics of the periodic network [Gonella (2008); Spadoni (2009); Tie (2012)]. More 
particularly, it is interesting to consider the first two eigenmodes of in-plane waves that 
emanate from the origin O, as they can be considered respectively as the membrane shear 
wave mode (S-mode) and the membrane pressure wave mode (P-mode) [Srikantha Phani 
(2006)]. Indeed, these modes should coincide, at least in sufficiently LF range, when the 
wavelength is sufficiently large compared to the primitive cell size, with the classical S and P 
wave modes of the equivalent homogenous solid. In 2D dispersion curves, the tangent to the 
first two branches of the curves at any point gives the group velocity of S-mode and P-mode, 
while the slope of the point on two branches to the origin gives their phase velocities. 
Therefore, in this section, the dispersion surfaces of the 1st and 2nd in-plane membrane modes 
and the 1st out-of-plane bending wave mode of the hexagonal network are used to calculate 
numerically their phase and group velocities, which allow characterizing the periodic network 
with respect to the wave propagation. 

3.3.1 Membrane S-mode and P-mode 

First of all, let us consider the S-mode propagation in the hexagonal network, which 
corresponds to the first dispersion surface of the in-plane Bloch waves modes (Figure 3.32, 
see also Figure 3.9).  

           

Figure 3.32 Dispersion surface of the 1st in-plane Bloch wave mode (S-mode) 
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We remark firstly that, as expected, in LF range, such as 3.2 kHz, even up to 6 kHz, when the 
involved wavelength is about ten times the primitive cell size, the network dynamics is more 
isotropic since the phase and group velocities are approximately independent on directions. 
The anisotropic characteristics of the network become more pronounced for the two velocities 
as the frequency increases. Otherwise we notice that the network shows dispersive 
characteristics varying in the space and remains non-dispersive in precisely six directions 
corresponding to the hexagonal symmetry of the network. Furthermore, according to the 
group velocity that in fact represents the wave fronts, it is found that the S-mode has very 
complex wave fronts in HF range. The velocity caustics phenomena appear for the two modes 
with the increase of frequency, which has also been observed in anisotropic media [Wolfe 
1998] (Figure 3.33). 

Thirdly, by comparing the wave velocities of the S-mode obtained by the 1st dispersion 
surface with the theoretical results of an equivalent homogenized orthotropic plate, we find 
that, in LF range, the wave velocities of the network and the one of the orthotropic plate are in 
the same order of magnitude, but the orthotropic plate cannot represent the dispersive 
characteristics of the S-mode of the network. In addition, we find that the S-mode of the 
orthotropic plate displays anisotropic in horizontal and vertical direction, while the S-mode of 
the network becomes more and more anisotropic, with the increase of frequency, in the six 
directions corresponding to the hexagonal symmetry (Figure 3.33). 

                         

Figure 3.33 Comparison of the wave velocity of the membrane S wave mode between the 
hexagonal network and its equivalent homogenized plate (left) Phase velocity ω/⎪k⎪; (right) 

Group velocity Dkω  

Secondly, let us consider the P-mode propagation in the network. It corresponds to the second 
dispersion surface of the in-plane Bloch waves modes (Figure 3.34, see also Figure 3.9).  

 

Figure 3.34 Dispersion surface of the 2nd in-plane Bloch wave mode (P-mode) 

Similar conclusions can also be got for the P-mode propagation in the network. The network 
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dynamics performed isotropic in LF range, while more anisotropic in high frequency (HF) 
range. For example at 11 kHz, when the involved wavelength is about 40 times the primitive 
cell size, the P-mode wave velocities are approximately independent on direction, while at 62 
kHz, whose involved wavelength decreases to 3 times the primitive cell size, the P-mode 
wave velocities shows anisotropy on the six directions corresponding to the hexagonal 
symmetry. Besides, compared to the S-mode, the P-mode of the network shows much 
stronger dispersive characteristics, where an enormous velocity caustics phenomenon occurs 
when the frequency increases (Figure 3.35).  

The same, we also compared the wave velocities of the P-mode of the network with the 
theoretical results of the equivalent homogenized orthotropic plate. As expected, in LF range, 
the homogenized plate could represent the P-mode of the network as the wave velocities 
obtained by two models are in the same order of magnitude, but failed when the frequency 
increases (Figure 3.35). 

                   

Figure 3.35 Comparison of the wave velocity of the membrane P wave mode between the 
hexagonal network and its equivalent homogenized plate (left) Phase velocity ω/⎪k⎪; (right) 

Group velocity Dkω 

3.3.2 Bending mode 

Now we consider the 1st and 2nd dispersion surface of out-of-plane waves (Figure 3.36). We 
believe that the out-of-plane wave modes should coincide with the bending wave mode of the 
equivalent homogenized orthotropic plate. 

               

Figure 3.36 (left) Dispersion surface of 1st out-of-plane Bloch wave mode; (right) Dispersion 
surface of 2nd out-of-plane Bloch wave mode 
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Therefore in LF range, where the 1st out-of-plane mode is taken into account, genrally, the 
bending mode of the network gives isotropic nature and can be correctly represented by the 
homogenized plate, but it has a more and more complex wave front with the increase of 
frequency (Figure 3.37, 3.38 and 3.39). 

             

(a) f = 1600Hz                                      (b) f = 2865Hz 

              

(c) f = 4770Hz                                      (d) f = 8000Hz 

Figure 3.37 Comparison of the phase velocity ω/⎪k⎪of the 1st out-of-plane bending wave 
mode of the periodic network and the bending mode of the equivalent homogenized plate 

           

Figure 3.38 Comparison of the phase velocity ω/⎪k⎪of the 1st out-of-plane bending wave 
mode of the periodic network and the bending mode of the equivalent homogenized plate 

(left) Along the axis ex; (right) Along the axis ey 
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(a) f = 1600Hz                                    (b) f = 2865Hz 

             

(c) f = 4770Hz                                     (d) f = 8000Hz 

Figure 3.39 Comparison of the group velocity Dkω of the 1st out-of-plane bending wave mode 
of the periodic network and the bending mode of the equivalent homogenized plate 

Then in HF range, where the 2nd out-of-plane wave mode is taken into account, we notice that 
the homogenized orthotropic plate cannot give correct simulation result. The 2nd out-of-plane 
wave mode of the network does not show strong anisotropic characteristics but is dispersed 
much faster than the bending wave in the homogenized plate. Besides, the velocity caustics 
phenomena occur to the group velocity when the frequency goes up (Figure 3.40, 3.41 and 
42). 

            

(a) f = 12.7kHz                                   (b) f = 19.1kHz 
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(c) f = 23.9kHz                                  (d) f = 28.6kHz 

Figure 3.40 Comparison of the phase velocity ω/⎪k⎪of the 2nd out-of-plane bending wave 
mode of the periodic network and the bending mode of the equivalent homogenized plate  

            

Figure 3.41 Comparison of the phase velocity ω/⎪k⎪of the 2nd out-of-plane bending wave 
mode of the periodic network and the bending mode of the equivalent homogenized plate 

(left) Along the axis ex; (right) Along the axis ey 

            

(a) f = 12.7kHz                                        (b) f = 19.1kHz 
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(c) f = 23.9kHz                                 (d) f = 28.6kHz 

Figure 3.42 Comparison of the group velocity Dkω of the 2nd out-of-plane bending wave 
mode of the periodic network and the bending mode of the equivalent homogenized plate 

Besides, for the 2nd bending mode, we also notice that, the group velocity is negative, which 
means that group velocity vector is always in the inverse direction of the wave vector k 
(Figure 3.43). In other words, the wave front of this mode propagates backward. 

        

Figure 3.43 Projection of group velocity of the 2nd out-of-plane bending wave mode on the 
direction of the wave vector (Dkω.k)/|k| (left) Along the axis ex; (right) Along the axis ey 

Conclusion  

In this chapter, the numerical simulation of elastic wave propagation, based on the Bloch 
wave analysis, has been developed in 1D and 2D periodic beam networks. For the 1D 
network, the dispersion curves have been obtained for both the longitudinal and the bending 
and transverse shear waves, where the bandgaps of the bending and transverse shear waves 
was found in a lower frequency range when compared to the longitudinal wave. In the 1D 
network, we noticed that the more the mismatch between two beams in the primitive cell is 
present, the larger and stronger the stop bands are.  

Then, for the 2D periodic hexagonal and rectangular beam network, the dispersion curves as 
well as the dispersion surfaces have been obtained both for in- and out-of-plane waves. The 
first stop band of in-plane waves of the hexagonal network was observed at about 3×105Hz 
and the one of out-of-plane waves at about 3×106Hz, while no frequency bandgaps obtained 
for the rectangular network. Furthermore, we remarked that the thickness mismatch in the 
primitive cell of the hexagonal network leads to the disappearance of the first stop band of in-
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plane waves. In addtion, in-plane waves’ stop bands could also be got under different internal 
angle cases, 30°, 45°, 60° and 75°. 

In the end, by the wave velocities analysis of the periodic hexagonal beam network, it has 
been pointed out that the hexagonal beam network provides more and more anisotropic and 
dispersive characteristics when the frequency moves to a higher range. The homogenized 
model represented correctly the membrane L-mode and the bending wave mode of the 
network in LF range but failed in HF range. The wave front of the 2nd bending wave mode of 
the network retro-propagates. 
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Chapter 4 

Wave propagation in honeycomb core 
sandwich plate  

In this chapter, our numerical approach is applied to the honeycomb thin layer and the honeycomb 

core sandwich plate. The effect of the strong junction condition on the numerical simulation results is 

considered first by comparing a beam-sized honeycomb thin layer with the 2D hexagonal beam 

network. Then the dispersion relation and the corresponding Bloch wave transform eigenmodes are 

obtained for the thin layer as well as for the sandwich plate. In parallel, the influence of the double-

thickness horizontal plate and the internal angle between the horizontal plate and the oblique plates 

on the dispersion relation for the thin layer is discussed. In the end, the wave propagation velocities 

are calculated for several main wave modes and compared with the homogenized model in order to 

analyze the anisotropic and dispersive nature of the honeycomb core sandwich.  
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4.1 Dispersion relation and Bloch wave eigenmodes 

The final purpose arises to apply our numerical approach to analyze elastic wave propagation 
in the honeycomb thin layer and the sandwich plate. In the literature, there are many research 
results concerning the periodic beam networks, but relatively little about the periodic plate 
networks, as the honeycomb thin layer. Nevertheless, we can mention the research work has 
done for the auxetic tetrachiral honeycombs by Tee et al. in 2010 in order to obtain the 
dispersion curves and surfaces of the network [Tee (2010)]. Hence, in our present work, it is 
expected to gain a more precise understanding of the wave behaviors in the hexagonal cell 
type honeycomb sandwich, especially the interactions between periodic cells and waves. 
Otherwise, our numerical results based on the Bloch wave analysis are compared with 
equivalent homogenized models to check whether the homogenized models can represent the 
dynamic behavior of the honeycomb thin layer and the sandwich plate.   

4.1.1 Discussion on the modeling of the junction conditions in the primitive 
cell  

We have pointed out in chapter 2 that the condition θn = 0 implies a less flexible junction 
condition as only the rotation perpendicular to the plane Oxy on the two interface edges, ∑IW 
and ∑IE, is non-zero. Consequently, it is interesting to consider first the influence brought by 
the condition θn = 0 on the numerical simulation of honeycomb thin layer. Hence, a 
honeycomb thin layer model, Plate-Hex, with the same geometric and mechanical 
characteristics as the 2D hexagonal beam network model (Table 4.1) is designed. The Plate-
Hex model is used to compare with two 2D hexagonal beam network models, Beam-Hex (θn 
= 0) and Beam-Hex, which respectively means: θn = 0 and θn ≠ 0 of the 2D network. For the 
Plate-Hex model, it is impossible to uncouple the in-plane and out-of-plane waves, thus for 
the Beam-Hex models, coupled in-plane and out-of-plane waves are considered here as well. 

Table 4.1 Geometric and mechanical characteristics of the primitive cell of Plate-Hex and 
Beam-Hex 

 Plate-Hex 

(Horizontal plate)  

Beam-Hex 

(Horizontal beam)  

Young’s modulus E (GPa) 70 70 

Poisson’s ratio ν 0.33 0.33 

Density ρ (kg.m-3) 2700 2700 

Plate/Beam size  3mm×0.12mm 3mm×0.12mm 

Thickness H (mm) 0.02 0.02 

The first three dispersion curves for the three models have been compared in detail. We 
remark that for the 1st dispersion curve, the model Plate-Hex presents large overlaps with the 
Beam-Hex (θn = 0) as well as the Beam-Hex. Slight differences appear on the point Z1, Z2 and 
the points close to the origin. Also, the junction condition does not bring much difference to 
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the dispersion relation between the two Beam-Hex models (Figure 4.1).  

Then looking at the 2nd and 3rd mode, we notice that, the dispersion curves of Plate-Hex agree 
in principle with the ones of Beam-Hex (θn = 0) along Z0 → Z2 but not for the k around the 
origin. It is highlighted in the 3rd mode that the Plate-Hex shows more similarities with the 
Beam-Hex in the very beginning of the curve and then is close with the Beam-Hex (θn = 0) 
after a sharp turn. In parallel, the junction condition affects the dispersion curves of the two 
beam models, where the discretized k of Beam-Hex (θn = 0) model along O → Z0 and along 
Z1 → Z2 gives a higher eigenvalue (Figure 4.1).  

The same conclusion can also be obtained by observing the corresponding Bloch eigenmodes. 
For instance, concerning the 2nd mode of the three hexagonal models at point Z0, we find the 
corresponding Bloch eigenmode of Plate-Hex can be identified by the one of Beam-Hex (θn = 
0) but differs from the one of Beam-Hex (Figure 4.2). 

As expected, the dispersion characteristics of the honeycomb thin layer model are very similar 
with the hexagonal beam network with the condition (θn = 0). However, it is also confirmed 
that the strong junction condition caused by this condition results in higher eigenvalues that 
affects probably the dispersion relation and also the corresponding Bloch eigenmodes. 

 

Figure 4.1 Comparison of the dispersion curves between three models: Plate-Hex, Beam-Hex 
(θn = 0) and Beam-Hex (left) 1st mode; (middle) 2nd mode; (right) 3rd mode 

                       

Figure 4.2 2nd Bloch wave transform eigenmode for the k on the point Z0 (left) Plate-Hex; 
(middle) Beam-Hex (θn = 0); (right) Beam-Hex 

4.1.2 Dispersion relation  

The geometric and mechanical characteristics of the primitive cells of the honeycomb thin 
layer and of the skins of sandwich plate are shown in Table 4.2. 
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Table 4.2 Geometric and mechanical characteristics of the primitive cell of honeycomb thin 
layer and the skins of sandwich plate 

 E (GPa) ν ρ (kg.m-3) Plate size H (mm) 

Honeycomb thin layer 

(Horizontal plate) 

70 0.33 2700 3mm×12mm 0.018 

Skins 130 0.34 1666.7 5.2mm×5.2mm 1 

The 3D dispersion surface and 2D dispersion curve of the honeycomb thin layer and of the 
sandwich plate are obtained, among which the first ten eigenvalues for coupled in-plan 
membrane and out-of-plane bending modes is given. Frequency bandgaps are observed 
neither for the honeycomb thin layer nor for the sandwich plate in the considered frequency 
range. Besides, we notice that the eigenvlues of the sandwich plate move towards to a higher 
frequency range when compared to the honeycomb thin layer. Finally, we remark that, as in 
the case of beam networks, the group velocities become negative in some spatial directions 
for some modes: from the 6th mode in the honeycomb thin layer on the one hand, and from the 
4th mode in the sandwich plate (Figure 4.3 and 4.4) 

   
ky (m
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) 

                     

Figure 4.3 Dispersion relation of the honeycomb thin layer (left) 3D dispersion surface; 
(right) 2D dispersion curve 

  
ky (m

-1
) 

                  

Figure 4.4 Dispersion relation of the honeycomb sandwich plate (left) 3D dispersion surface; 
(right) 2D dispersion curve 
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4.1.3 Influence of structural and geometric characteristics on dispersion 
relation 

In this section, the parametric study of the mismatch of the thickness and of the internal angle 
θ between the horizontal plate and the oblique plates of the honeycomb thin layer is 
performed to study their influence on the dispersion relation of the honeycomb thin layer.  

 (a) Influence of double-thickness of horizontal plate 

Similar to the 2D hexagonal beam network, the horizontal plate PCEN of the primitive cell of 
the honeycomb thin layer normally is a double-thickness plate, with thickness H1 equal to 
twice the one of the other four plates H0 (Figure 4.5). Consequently, two cases, H1 = H0 and 
H1 = 2H0, are considered here for both the honeycomb thin layer and the sandwich plate 
(Table 4.3).  

 

Figure 4.5 Double thickness of the horizontal plate of the honeycomb thin layer 

Table 4.3 Thickness, H0 and H1 

H0 (mm) H1 (mm) 

0.018 0.018 (H1 = H0) 0.036 (H1 = 2H0) 

In the case of the honeycomb thin layer, except the first Bloch eigenmode, the double 
thickness of the horizontal plate makes the eigenvalues move up to a higher frequency range, 
also the phase wave velocity (Figure 4.6). It makes sense when we analyze the shape of the 
Bloch eigenmodes, indeed the first Bloch eigenmode is almost not affected by the variation of 
the thickness of the horizontal plate as the latter is not mainly involved with bendings (Figure 
4.10 and 4.11). Otherwise, in the case of the sandwich plate, all the ten first eigenvalues are 
influenced by the thickness H1 of the horizontal plate, they move up to higher frequency range 
when H1 increases (Figure 4.7 see also Figure 4.12 and 4.13). 

                

Figure 4.6 Influence of the double thickness of horizontal plate on the dispersion curves of the 
honeycomb thin layer (left) H1 = H0; (right) H1 = 2H0 
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Figure 4.7 Influence of the double thickness of horizontal plate on the dispersion curves of the 
honeycomb core sandwich plate (left) H1 = H0; (right) H1 = 2H0,  

(b) Influence of internal angle on honeycomb thin layer 

Then, we consider the influence of different internal angle θ (Figure 4.8), which is swept from 
15° to 90° by the step of 15°. Similarly, the 60° is our reference angle (Table 4.4). 

 

Figure 4.8 Internal angle 

Table 4.4 Internal angle, θ 

θ 15° 30° 45° 60° (reference 75° 90° 

We find that the different internal angles do change the dispersion curves of the honeycomb 
thin layer but do not influence the range of eigenvalue. No stop band is observed for all the 
six θ cases in the considered frequency range (Figure 4.9). 

           

 (a)                                                     (b) 

 



 79 

           

(c)                                                           (d)  

           

  (e)                                                         (f) 

Figure 4.9 Influence of the internal angle on the dispersion curves of honeycomb thin layer (a) 
θ = 15°; (b) θ = 30°; (c) θ = 45°; (d) θ = 60°; (e) θ = 75°; (f) θ = 90° 

4.1.4 Bloch wave eigenmodes 

Six Bloch wave eigenmodes of both the honeycomb thin layer and the sandwich plate are 
presented respectively for four angular points, O, Z0, Z1 and Z2. The total displacement is 
displayed in color, where the red color represents the maximal value and the blue color means 
zero. As expected we firstly notice that on the point O, the first three modes are rigid body 
modes of the honeycomb thin layer as well as the sandwich plate. Then some classical 
membrane and bending modes can be found in low-ordered Bloch modes and other 
complicated modes are observed in higher order. Importantly, we also notice that, for the 
sandwich plate, due to the large difference between the thickness and the mechanical 
characteristics of the honeycomb thin layer and the skins, all modes distort mainly the 
honeycomb thin layer rather than the skins (Figure 4.10, 4.11, 4.12 and 4.13).   
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(A) Honeycomb thin layer 

     

Figure 4.10 Bloch wave eigenmodes of honeycomb thin layer (left) At point O; (right) At 
point Z0 

     

Figure 4.11 Bloch wave eigenmodes of honeycomb thin layer (left) At point Z1; (right) At 
point Z2 

 (B) Honeycomb core sandwich plates 

     

Figure 4.12 Bloch wave eigenmodes of honeycomb core sandwich plate (left) At point O; 
(right) At point Z0 

     

Figure 4.13 Bloch wave eigenmodes of honeycomb core sandwich plate (left) At point Z1; 
(right) At point Z2 
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4.2 Wave propagation velocities analysis 

Now we look into the phase and group velocities of several main wave modes of the 
honeycomb thin layer and also of the sandwich plate to analyze the anisotropic and the 
dispersive characteristics of the networks. The results are compared with the equivalent 
homogenized models to check whether and in which frequency range the classical 
homogenized models can represent the dynamic behavior of the honeycomb thin layer and the 
sandwich plate. 

4.2.1 Membrane S-mode and bending modes of honeycomb thin layer 

Let us first consider the honeycomb thin layer, whose 1st Bloch wave mode displays a 
similarity with the S-mode of the 2D periodic hexagonal beam network. Therefore, it is 
believed that the 1st Bloch wave mode of the honeycomb thin layer should coincide with the 
membrane shear wave mode (S-mode) of the equivalent homogenized plate (Figure 4.14).  

 

Figure 4.14 Dispersion surface of the 1st Bloch wave mode (S-mode) of the honeycomb thin 
layer 

We find that the phase and group velocities of the honeycomb thin layer become more and 
more anisotropic when the frequency is increased. Complex wave front and group velocity 
caustics phenomena are observed. Similarly with the 2D beam network, the honeycomb layer 
shows dispersive characteristics varying in the space except in the six directions 
corresponding to the hexagonal cellular shape (Figure 4.15).  

We compare now the honeycomb thin layer and the equivalent homogenized model. We find 
that, up to 1100Hz at least, the wave velocities of the two models are not too far, but the S-
mode of the homogenized model is not dispersive. Besides, we find that the S-mode of the 
homogenized model displays anisotropic in 0°, 180° and ±90°, while the S-mode of the 
honeycomb thin layer displays more and more anisotropic only in the six directions 
corresponding to the hexagonal symmetry (Figure 4.15). 
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Figure 4.15 Comparison of the wave velocity of the membrane S wave mode between the 
honeycomb thin layer and its equivalent homogenized plate (left) Phase velocity ω/⎪k⎪; 

(right) Group velocity Dkω  

Then, we consider the 2nd wave mode of the honeycomb thin layer (Figure 4.16). Since for the 
honeycomb thin layer, the membrane and bending waves are coupled, it is not as easy as in 
the 2D periodic hexagonal beam network case to compare the Bloch wave modes and the 
equivalent homogenized model modes. Here, by comparing the phase wave velocity of the 2nd 
Bloch wave mode with the equivalent homogenized model in LF range, we find that the 2nd 
Bloch wave mode of the honeycomb thin layer is close enough with the bending mode of the 
homogenized model.  

 

Figure 4.16 Dispersion surface of 2nd Bloch wave mode (bending mode) of the honeycomb 
thin layer 

We notice that in the LF range, from 0 to about 5000Hz, the 2nd wave mode of the honeycomb 
thin layer shows slight anisotropic characteristics and its phase wave propagation velocity can 
be, on the whole, represented by the homogenized plate. However, in HF range, beyond about 
5000Hz, both the phase and group velocities decrease rapidly in the honeycomb thin layer but 
not in the homogenized model, so that the homogenized model totally fails to simulate the 
honeycomb thin layer (Figure 4.17, 4.18, 4.19(a) and 4.19(b)). Besides, in HF range, the 2nd 
Bloch wave mode of the honeycomb thin layer has complex anisotropic wave fronts (Figure 
4.19 (c)). 
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(a) f = 1591Hz                  (b) f = 5093Hz                     (c) f = 6048Hz 

Figure 4.17 Comparison of the phase velocity ω/⎪k⎪of the 2nd Bloch wave mode of the 
honeycomb thin layer and the bending mode of the equivalent homogenized plate 

 

Figure 4.18 Comparison of the phase velocity ω/⎪k⎪of the 2nd Bloch wave mode of the 
honeycomb thin layer and the bending mode of the equivalent homogenized plate (left) Along 

the axis ex; (right) Along the axis ey 

 

(a) f = 1591Hz; (b) f = 6048Hz; (c) the 2nd Bloch wave eigenmode, f = 5093Hz and f = 
6048Hz 

Figure 4.19 Comparison of the group velocity Dkω of the 2nd Bloch wave mode of the 
honeycomb thin layer and the bending mode of the equivalent homogenized plate 
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4.2.2 1st Bloch wave mode of the honeycomb core sandwich plate 

Let us now consider the 1st Bloch wave mode of the honeycomb core sandwich plate (Figure 
4.20). Being similar with the 1st Bloch wave mode of the honeycomb core thin layer, we still 
compare it to the bending mode of its equivalent homogenized model. 

 

Figure 4.20 Dispersion surface of the 1st Bloch wave mode of the honeycomb core sandwich 
plate 

We first notice that in this case, the 1st Bloch wave mode of the honeycomb sandwich plate 
shows anisotropic characteristics in the frequency range from 0 to about 5000Hz, while from 
about 5000Hz to 7000Hz, it displays more isotropic properties. After 7000Hz, complex wave 
fronts take place. Second, we notice that significant wave velocity caustics phenomena occur 
in about 5500Hz for the phase and group velocities varying in the space.  

Finally, when the phase wave velocity of the first Bloch eigenmode is compared to the one of 
the equivalent homogenized model, we remark that in the LF range, up to about 5000Hz, the 
tendency is similar but quantitatively the comparison is not satisfactory. A relatively coarse 
discretization of k and the strong junction conditions used in our modeling may partly explain 
difference. Then in the HF range, beyond about 5000Hz, both the phase and group velocities 
decrease rapidly, so that the homogenized model totally fails to simulate the sandwich plate. 
Hence, we recognize that the previously presented property of the second bending mode of 
the homogenized thin layer, which confirms the important role played by the honeycomb core 
in the bending behavior of sandwich plate (Figure 4.21, 4.22 and 4.23). 

               

(a) f = 4775Hz                                         (b) f = 5570Hz 
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(c) f = 6400Hz                                     (d) f = 7162Hz 

Figure 4.21 Comparison of the phase velocity ω/⎪k⎪of the 1st Bloch wave mode of the 
honeycomb core sandwich plate and the bending mode of the equivalent homogenized plate 

         

Figure 4.22 Comparison of the phase velocity ω/⎪k⎪of the 1st Bloch wave mode of the 
honeycomb core sandwich plate and the bending mode of the equivalent homogenized plate 

(left) Along the axis ex; (right) Along the axis ey 

 

(a) f = 4775Hz; (b) f = 5570Hz; (c) 1st Bloch wave eigenmode, f = 5570Hz, f = 6400Hz and f 
= 7162Hz 

Figure 4.23 Comparison of the group velocity Dkω of the 1st Bloch wave mode of the 
honeycomb core sandwich plate and the bending mode of the equivalent homogenized plate 
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Conclusion 

In this chapter, we focus on the numerical results of the elastic wave propagation in the 
honeycomb thin layer as well as in the honeycomb core sandwich plate.  

First of all, the strong junction between the plates caused by the condition θn = 0 in globally in 
the whole primitive has been analyzed. It has been confirmed that apart from the first Bloch 
wave eigenvalue, the way to model the junction affects all the other Bloch wave eigenvalues 
of the honeycomb thin layer. 

Then, the dispersion relation and the Bloch wave eigenmodes have been obtained for both the 
honeycomb thin layer and the sandwich plate. It has been studied that the variation of the 
thickness of the horizontal plate makes the Bloch wave eigenvalues of the honeycomb thin 
layer and the sandwich plate move to higher frequency ranges, except the first mode of the 
honeycomb thin layer, which is a membrane S-mode. In parallel, it has also been investigated 
that the internal angle that indicates the cellular shape of the primitive cell does not affect 
significantly the dispersion relation of the honeycomb thin layer. We note that, for the 
considered frequency range up to about 12kHz, no stop band has been found for all cases 
considered here. 

In the end, through wave velocities analysis of the 1st and 2nd Bloch wave modes, we find that 
the honeycomb thin layer provides more and more anisotropic and dispersive characteristics 
with the frequency increases. The equivalent homogenized model represents correctly the 
membrane S-mode, while for the bending wave mode, it is correct only in the frequency range 
from 0 to about 5000Hz. For the higher frequency range, an interesting rapid decreasing of 
wave velocities occurs, the mode tends to be “localized” or locally “trapped”, as its 
propagation velocity tends to zero. For the honeycomb core sandwich plate, the 1st Bloch 
wave mode is considered. Significant wave velocity caustics phenomena take place at about 
5500Hz. We believe that the first Bloch wave mode is a bending mode. Its phase and group 
velocities are then compared to the ones of the classical equivalent homogenized model. It is 
found that in the LF range, up to about 5000Hz, the tendency is similar but quantitatively the 
comparison is not satisfactory, and in the HF range, beyond about 5000Hz, both the phase and 
group velocities decrease rapidly, so that the homogenized model totally fails to simulate the 
sandwich plate. Hence, important role played by the honeycomb core in the bending behavior 
of the sandwich plate is confirmed. 
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Conclusion 

Honeycomb core sandwich composite panels, composed of two skins with a honeycomb core 
thin layer, are commonly applied in aviation or aeronautic engineering. Based on the 
industrial requirements, previously a numerical modeling of HF shock wave propagating in 
the considered honeycomb core sandwich shells by using the classical homogenized models 
has been undertaken. The studies have indicated that the homogenized models can simulate 
the membrane wave behaviors of the sandwich in a large frequency range but fail to give 
accurate simulation results for the HF bending and transverse shear waves behaviors.  

It has been analyzed that the bending and transverse shear waves of the sandwich are mostly 
controlled by the honeycomb core thin layer, which in our case is produced by bonding 
several corrugated sheets, which allows the thin layer to contain hexagonal cavities, where 
complicated wave propagation takes place through the sandwich. Especially in HF range, 
much more interactions occur between the wave and the honeycomb cells since the involved 
wavelength is small enough with respect to each cell.  

Therefore, a more accurate numerical model has been proposed with the introduction of the 
honeycomb thin layer microstructure. Since the honeycomb sandwich may be considered as a 
periodic network, the Bloch wave theory has been proposed, according to which the 
calculation can be reduced to look for the periodic Bloch wave eigenmodes in a primitive cell 
instead of looking for the wave solution in the whole sandwich network. 

Our study has been focused on giving the complete definition of the Bloch eigenproblem 
respectively for a 1D periodic beam network, 2D periodic hexagonal and rectangular beam 
networks, the honeycomb core thin layer and the honeycomb core sandwich plate. By solving 
the Bloch eigenproblem of the periodic networks, important informations, such as the 
dispersion relation between the Bloch wave vector and the eigenvalue, the Bloch wave 
eigenmodes and the phase and group velocities of the wave propagation in the networks have 
been obtained and analyzed.  

For the 1D periodic beam structure, the dispersion relation has been obtained for the 
longitudinal wave and the bending and transverse shear waves. For the longitudinal wave, it 
has been found that the more different from one the acoustic impedance ratio, the larger the 
stop bands and the stronger the attenuation. The frequency bandgaps move to low frequency 
range with the decrease of Young’s modulus. For the bending and transverse shear waves, it 
has been found that their bandgaps begin in a lower frequency range when compared to the 
ones of longitudinal wave. The more the mismatch of Young’s modulus is, the larger the stop 
bands. The decrease of Young’s modulus makes the bandgaps move to lower frequency 
range. Besides, it has also been found that for the bending and transverse shear waves there is 
a relation between the order of magnitude of the eigenvalue and the order of magnitude of 
beam’s thickness. 

For the 2D periodic hexagonal beam structure, emphasis has been dedicated to the analysis of 
the dispersion relation of the in-plane membrane and the out-of-plane bending waves of the 
network. The first stop band of the in-plane waves has been found at about 3×105Hz and the 
one of out-of-plane waves at about 3×106Hz. The influence of the Young’s modulus, the 
beam’s thickness H, the double-thickness horizontal beam and the internal angle on the 
bandgaps has been studied. For the Young’s modulus, we have obtained the same kind of 
conclusion as in the 1D study, while for the beam’s thickness, we notice that, with the 
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decrease of the thickness, the in-plane waves’ bandgaps decrease to low frequency range but 
the location of the first stop band remains fixed. For the double-thickness horizontal beam, we 
notice that the first stop band of the in-plane waves observed in the case of single-thickness 
horizontal beam could not be obtained in this case. For the internal angle, the first stop band 
of the in-plane waves could be obtained when θ = 30°, 45°, 60° and 75° in the considered 
frequency range and no stop band has been produced for the out-of-plane waves. By 
analyzing the wave velocities of several main wave modes of the network, it has been pointed 
out that the periodic hexagonal network provides more and more anisotropic and dispersive 
characteristics in the six corresponding hexagonal symmetric directions when the frequency 
moves to higher range. In HF range, complex wave front takes place and the wave velocity 
caustic phenomenon occurs. Equivalent homogenized model can simulate the in-plane 
membrane waves and also the out-of-plane bending waves in LF range.  

In parallel, the same kind of study has also been done to obtain the dispersion relation of the 
2D periodic rectangular beam network. It has been noticed that no complete frequency 
bandgaps has been observed for both the in-plane membrane and the out-of-plane bending 
waves in the considered frequency range. 

Finally, the investigation has been extended to the honeycomb thin layer and the honeycomb 
core sandwich plate. We have first discussed the influence of the strong junction condition 
caused by the condition of the drilling rotation around the axis n, θn = 0, in each local plate’s 
basis. It has been noticed that the junction condition does not affect the first Bloch 
eigenmode, while it changes the dispersion curves of the other higher-order modes and makes 
the eigenvalue move to higher frequency range. Then, the dispersion surfaces as well as the 
curves of the honeycomb thin layer and the sandwich plate have been obtained. The effects of 
the double-thickness horizontal plate and the internal angle have been investigated. We have 
found that the double-thickness horizontal plate makes the dispersion curves of the 
honeycomb thin layer as well as the sandwich plate move to higher frequency range and the 
internal angle does change the shapes of the dispersion curves. Finally, the anisotropic and 
dispersive nature of the honeycomb thin layer and the sandwich has been studied by analyzing 
the phase and group velocities of several main modes. Similar conclusions can be obtained as 
in the 2D hexagonal beam case, but now the homogenized model gives acceptable results for 
the bending wave of the honeycomb thin layer before 5000Hz and fails to coincide with the 
sandwich. 

In the further, we hope to improve the classical homogenized models according to our 
approach. Then we also wish to further develop our numerical approach in several aspects 
such as: applying viscoelastic mechanical characteristics to the honeycomb sandwich, taking 
into account curvature effects and the design of the honeycomb sandwich with respect to 
vibration control.  
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Appendix A 

Bending wave velocity in homogenized 
model 

According to the equilibrium equation (1.3), we have the equilibrium equation of the bending 
and transverse shear waves: 
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with the coefficient matrix B:  
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To ensure that the system (A.2) admits nontrivial solutions, the determinant of matrix B 
should vanish:det B( ) = 0 , which gives rise to the equations (1.5) and (1.6). 

 


