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Summary

Malaria is a global health problem present in over 109 countries in the world.

According to the World Health Organization, malaria a�ected 219 million people

worldwide and caused 660,000 deaths in 2010. Inaccurate estimation of the level of

infection may have adverse clinical and therapeutic implications for patients, and

for epidemiological endpoint measurements. The level of infection, expressed as

the parasite density (PD), is classically de�ned as the number of asexual parasites

relative to a microliter of blood. Microscopy of Giemsa-stained thick blood smears

(TBSs) is the gold standard for parasite enumeration. Parasites are counted in

a predetermined number of high-power �elds (HPFs) or against a �xed number of

leukocytes. The project was born out of a need to accurately and consistently assess

the PD in epidemiological surveys, which is becoming increasingly important.

PD estimation methods usually involve threshold values; either the number of

leukocytes counted or the number of HPFs read. However, the statistical properties

of PD estimators generated by these methods have largely been overlooked. We

studied the statistical properties (mean error, coe�cient of variation, false negative

rates) of PD estimators of commonly used threshold-based counting techniques de-

pending on variable threshold values. We also assessed the in�uence of the thresholds

on the cost-e�ectiveness of PD estimation methods. In addition, we gave more in-

sights on the behavior of measurement errors according to varying threshold values,

and on what should be the optimal threshold values that minimize this variability.

Furthermore, data on parasite and leukocyte counts per HPF are of broad sci-

enti�c value. However, in published studies, most of the information on PD is pre-

sented as summary statistics (e.g. PD per microliter, prevalence, absolute/assumed

white blood cell counts), but original data sets are not readily available. Besides,

the number of parasites and the number of leukocytes per HPF are assumed to be

Poisson-distributed. However, count data rarely �t the restrictive assumptions of

the Poisson distribution. The violation of these assumptions commonly results in

overdispersion. Undetected heterogeneity in parasite and leukocyte data may en-

tail important misleading inferences, when they are related to other explanatory

variables (malariometric or environmental), so its detection is essential.

We constituted and published the �rst dataset on parasite and leukocyte counts

per HPF. The data comprise the records of three TBSs of 12-month-old children from

a �eld study of Plasmodium falciparum malaria in Tori Bossito, Benin. All HPFs

were examined systemically by visually scanning the �lm horizontally from edge to

edge. The numbers of parasites and leukocytes per HPF were recorded. Pearson's

test was used to check for overdispersion. Two sources of overdispersion in data

are investigated: latent heterogeneity and spatial dependence. We accounted for

unobserved heterogeneity in data by considering more �exible models that allow for

overdispersion. Of particular interest were the negative binomial model (NB) and

mixture models. The dependent structure in data was modeled with hidden Markov
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models (HMMs). We found evidence that the Poisson assumptions are inconsistent

with parasite and leukocyte distributions. Among simple parametric models, the

NB model is the closest to the unknown distribution that generates the data. On

the basis of model selection criteria AIC and BIC, the NB-HMMs provide a better

�t to data than Poisson mixtures.

An alternative PD estimation method that accounts for heterogeneity and

spatial dependence should be seriously considered in epidemiological studies with

�eld-collected parasite and leukocyte data. We devised a reduced reading procedure

of the PD that aims to a better operational optimization and a practical assessing

of the heterogeneity in the distribution of parasites in TBSs. The motivations

behind the design of this alternative protocol are the need to optimize the cost of

epidemiological surveys and to reduce the inescapable loss of information. A patent

application process has been launched in October, 2012. A prototype development

of the counter is in process.

Keywords: Malaria epidemiology, threshold-based counting techniques, PD esti-

mators, mean error, coe�cient of variation, false-negative rates, cost-e�ectiveness,

parasite and leukocyte counts per high-power �eld, Poisson distribution, overdis-

persion, heterogeneity, negative binomial distribution, mixture models, HMMs,

AIC, BIC, patent.
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Chapter 1

Introduction

�The mere formulation of a problem

is often far more essential than its

solution, which may be merely a

matter of mathematical or

experimental skills. To raise new

questions, new possibilities, to

regard old problems from a new

angle requires creative imagination

and marks real advances in

science.�

Albert Einstein
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1.1 Background

Malaria is a global health problem present in over 109 countries in the world.

According to the World Health Organization [WHO 2011b], malaria a�ected 219

million people worldwide and caused 660,000 [490,000-836,000] deaths in 2010. De-

spite these high numbers of malaria assignable fatalities, a reduction of malaria

burden has been achieved during the last decade. The estimated incidence rates

decreased by 17% worldwide between 2001 and 2010, and the estimated mortality

rates decreased by 26% in the same period. This decline is due to unprecedented

�nancial investments by governments and funders in malaria control and prevention.

While malaria burden has abated, history has shown that it is far too soon to

cry victory in the battle against the disease. Malaria has been eradicated from

37 countries in 1961 [WHO 1959], but it has resurged with revenge in the following
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years as elimination e�orts weren't sustained. Malaria history is mostly told through

numbers. These numbers, however, are a matter of controversy. Although both

sides agree upon the decrease in malaria burden over the last decade, a recent study

published in The Lancet, reports that the worldwide malaria deaths may be almost

twice as high as previously estimated by WHO [Murray 2012]. The study claims

that malaria caused 1,238,000 [929,000-1,685,000] deaths worldwide in 2010, and

shows more deaths across all ages and regions than the WHO report [WHO 2011b].

The Murray et al. study estimated substantially more deaths in adults in Africa

(8.11 fold higher than the WHO estimates for children aged �ve years or older in

Africa). The WHO study, however, claims that this large number is unexpected

in African countries, since acquired immunity developed at early ages will prevent

adults from death [WHO 2012].

The huge discrepancy between Murray and WHO sets of estimates reveal alarm-

ing de�ciencies at one or more of the following steps: data collection, reporting,

analysis or interpretation. Morbidity and mortality statistics are based on clinical

records, death certi�cates, verbal autopsy and governmental returns. However, each

one of these direct factors are a potential source of error and may a�ect the accu-

racy of estimates. Many malaria cases occur in rural communities of sub-Saharan

Africa that are seriously su�ering from critical lack of healthcare facilities. Report-

ing systems in most of these areas remain poor and produce limited and imprecise

informations. In addition, uncertainty about malaria statistics call into question

the mathematical models used to generate them. Murray et al. claims that the

WHO only takes into account the e�ect of vector control and population growth to

estimate the mortality burden, and do not include the e�ect of drug resistance and

increased use of e�ective malaria treatments, in addition to omitting environments

and socio-economic factors. As stated in the latest WHO report [WHO 2012], the

WHO mortality and morbidity estimation model takes into account the changes in

intervention coverage, but ignores the possible changes in climatic conditions from

year to year. The latter factor may directly in�uence malaria endemicity levels.

Another question arises from the di�ering set of estimates and the wild uncer-

tainty ranges accompanying them as to the accuracy of the clinical records used in

the two models. Available tools for malaria diagnosis are used to derive the para-

site density estimates included in these models. However, diagnosis methods could

be inaccurate and sources of misleading information [Amexo 2004, Reyburn 2004,

Zurovac 2006]. To date, there is no standardized way to determine the parasite

density. Methodological di�erences can make comparison and examination of over-

all trends very di�cult. This question is even more relevant given that parasite

density data are used at both individual and populational levels, respectively to

detect malaria in clinically suspected patients and to assess the epidemiological

characteristics of malaria as in previous examples. The importance of accurate par-

asite density estimation has been recognized for a long time [Christophers 1924,

Wilson 1936, Earle 1939, Schwetz 1941, Parrot 1950, Wilson 1950, Miller 1958].

Light microscopy of Giemsa-stained thick blood smears is accepted as the current

universal gold standard for the diagnosis of malaria. Great e�orts have been devoted
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to accurately diagnose the infection and assess the parasite density through micro-

scopic methods [Ross 1910, Raghavan 1966, Trape 1985, Greenwood 1991]. Numer-

ous counting methods have been proposed [Thomson 1911, Sinton 1924, Earle 1932,

Boyd 1949, Field 1963, Russel 1963]. According to each estimation method, the

blood smears are sampled in a speci�c way. A common way is to undertake a �eld-

adapted sampling of a given amount of blood on the thick smear, thus suggesting

an even distribution of the parasites on the slide. A second way involves making

a thick smear with a known, small volume of blood [Warhurst 1996, Planche 2001]

and then counting all the parasites on the smear. The parasite density is usually

assessed either by counting parasites per high-power �eld (HPF) or by counting

parasites per white blood cells [Wintrobe 1967, Trape 1985, Warhurst 1996]. These

estimates usually involve threshold-based counting techniques (ex: if one see less

than n parasites in the m �rst readings then do this, else do that. . . ) which thresh-

old values may vary a lot from a health organism or another. So little methodology,

on which the evaluation of these methods depends, have been published. Only some

empirical comparisons of parasite density estimation methods on thick blood smears

are re�ected in the literature [Dowling 1966, Greenwood 1991, Petersen 1996b,

Dubey 1999, Planche 2001, Prudhomme O'Meara 2006b, Coleman 2006].

1.2 Goal Statement

The thesis project was born out of a need to accurately and consistently as-

sess the parasite density in epidemiological surveys, which is becoming increas-

ingly important. Current counting methods mislead or could mislead the micro-

scopist, who will make his own subjective and possibly arbitrary understanding of

the HPF limits (to avoid overlapping). Moreover, thresholds are �xed in a biased

and discriminatory way, most of the time regardless of parasitemia levels and ac-

ceptable variability. It is of great importance for epidemiologists, who makes use

of parasite density data, to know and assess the in�uence of these thresholds in

the accuracy of their estimates. Health organisms or research teams also need to

be aware of the impact the thresholds can have on the cost-e�ectiveness of the

counting procedures (in term of time, and hence, of money). One of the com-

mon assumptions underlying these methods is that the distribution of the thickness

of the smear, and hence, of parasites and leukocytes on the smear, is homoge-

neous. These distributions are modeled, most of the time, using the Poisson dis-

tribution [Student 1907, Petersen 1996a, Bejon 2006, Hammami 2013]; a hypothesis

that wasn't supported by evidence from real data. In addition, variation of parasite

density within a slide is expected even when prepared from a homogeneous sample

[Alexander 2010]. The sampling variability is a source of interest when studying the

e�ciency of estimation methods and, then, it should be taken into account through

appropriate statistical models. As cited before, parasite density measures are used

in epidemiological models [Mwangi 2005, Becher 2005, Chandler 2006, Enosse 2006,

Färnert 2009a, Damien 2010, Liljander 2011]. In the light of this, it is of primary
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importance to know the consequences of the quality of these measures, when used

as a covariate, on models outcomes.

1.3 Solution Statement

In the �rst part, we studied the statistical properties of parasite density estima-

tors derived from four commonly used threshold-based counting techniques accord-

ing to varying threshold values. For each estimator, we computed three measures

of variability (mean error, coe�cient of variation and false negative rates) and we

assessed the cost-e�ectiveness of methods. Firstly, the exact distribution of the par-

asite density estimator is computed through recursive formulas. Secondly, based

on this probability density function, measures of variability are derived. Finally,

cost-e�ectiveness is de�ned for each method as the required number of HPFs that

has to be read until the threshold is reached. The calculations are performed under

two assumptions (1) the distribution of the thickness of the smear, and hence of the

parasites within the smear, is homogeneous, and (2) the distribution of the parasites

in the HPFs is uniform, and thus can be modeled through a Poisson distribution

[Petersen 1996a, Kirkwood 2001, Alexander 2010].

An important step ful�lled in the second part of the project was the collection

of parasite and leukocytes counts per high-power �eld in three thick blood smears

(entirely examined). These counts allowed to investigate overdispersion in the distri-

bution of parasites and leukocytes in the thick blood smear. We �rst considered the

problem of testing whether our data comes from a single Poisson distribution. The

basic null hypothesis of interest is that "variance = mean" (homogeneity hypothesis).

We used the Pearson's test to testing the Poisson assumption. When the Poisson

assumption is violated, we focus on alternatives that are overdispersed, in the sense

that "variance > mean". We used the Kolmogorov-Smirnov (k.s) goodness-of-�t

test [Chakravarti 1967] to test the validity of the assumed distribution for the data.

In order to estimate models parameters, we performed a direct optimization of the

log-likelihood. Model selection criteria are used to determine which of the simple

parametric models best �ts the data. Secondly, we investigated the �rst source of

overdispersion in count data, which is unobserved heterogeneity. We explored the

unobserved heterogeneity among parasite and leukocyte data using mixture models.

The motivation behind the use of mixture models is that they can handle situations

where a single parametric family is unable to provide a satisfactory model for local

variations in data. The objective here is to describe the data as a �nite collection of

homogeneous populations on thick blood smears. The form of these sub-populations

was modeled using Poisson and negative binomial distributions. Thirdly, we con-

sidered the second source of overdispersion, which is positive contagion [King 1989]

(e.g. high number of parasites in one HPF lead to correspondingly high numbers

of parasites in neighboring HPFs or low number of parasites in one HPF drive

down counts for other neighboring HPFs). This data-generating process may have

important implications for the observed level of dispersion in data. We check for
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spatial dependence in data using autocorrelation plots [Box 1976b]. We used hid-

den Markov models (HMMs) to account for this autocorrelations, since HMMs are

an extension of mixture models with spatial dependence taken into consideration.

The state-dependent distribution was modeled using Poisson and negative binomial

distributions. The proposed mixture models and HMMs were �tted by maximum

likelihood using the EM algorithm, and validated by direct numerical maximization.

1.4 Application

An important step, ful�lled at the �rst beginning of the project, was the �eld

study in Benin. It enlightened my way of understanding the problem of the parasite

density estimation. I was able to approach, in practical terms, the parasite density

estimation constraints faced by microscopists. I noticed the weakness of existing es-

timation methods in the matter of variability, left-censoring and cost-e�ectiveness,

which suggested possible improvements by designing more e�cient and cost-e�ective

alternative procedures. We attempted to accomplish this by developing, implement-

ing and evaluating a new counting method. The motivations behind this design are

(1) the economic and operational optimization of �eld studies, and (2) the practical

assessment of the heterogeneity in the distribution of parasites and leukocytes in

the thick blood smears.

This new device is an appropriate protocol for �eld experience, since it requires

neither special equipments, nor operator decisions that might bias the outcome. This

methodology is potentially useful for laboratories that routinely perform malaria

parasite enumeration. It requires less work load from �eld operators, and then allow

to examine more slides with the same manpower, thus optimizing �eld operations.

Furthermore, this method allows for heterogeneity detection and is proved at least

as accurate and precise as existing threshold-based counting techniques.

1.5 Thesis Outline

The present chapter brie�y describes what the thesis is about and how the

design for this research project has been growing throughout the last three years.

An outline of the major themes and questions, the main points to be made about

each one and the statistical evidence of each one are presented.

Chapter 2 reviews the past and current burden of malaria, and de�nes the con-

text where the problem lies. This chapter re�ects my own understanding of malaria

burden, as a non-expert, and does not give an account to the complex Plasmodium

biology, which goes far beyond the scope of this chapter.

Chapter 3 highlights the importance of the parasite density estimation. It is

also devoted to a summary and discussion of the commonly used threshold-based

counting techniques.

Chapter 4 studies the statistical properties (mean error, coe�cient of variation,

false negative rates) of parasite density estimators derived from these methods and
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depending on variable threshold values. This part of the dissertation also assesses

the in�uence of the thresholds on the cost-e�ectiveness of parasite density estimation

methods. In addition, it gives more insights on the behavior of measurement errors

according to varying threshold values, and on what should be the optimal threshold

values that minimize this variability. This chapter was the subject of Article 1.

Chapter 5 describes the EM algorithm for mixture models and HMMs, where

observations are Poisson- and negative binomial-distributed.

Chapter 6 describes the �rst open-source dataset on parasite density per HPF.

The problem considered in this chapter is to test whether parasites and leukocytes

are spread evenly throughout the �lm. Unobserved heterogeneity in the data is

accounted for by considering more �exible models that allow for overdispersion.

This chapter was the subject of Article 2.

Chapter 7 summarizes and discusses the key points from the previous chapters

and provides suggestions and insights for their possible improvements.

1.6 Scienti�c Publications & Communications

Scienti�c Publications

Article 1 Imen Hammami, Grégory Nuel, André Garcia. Statistical properties

of parasite density estimators in malaria. PLoS ONE, 8:e51987, 2013.

Article 2 Imen Hammami, André Garcia, Grégory Nuel. Evidence for overdis-

persion in the distribution of malaria parasites and leukocytes in

thick blood smears. Malaria Journal, 12:398, 2013.

International Communications

� Statistical properties of parasite density estimators in malaria.

ICSA Applied Statistics Symposium 2011, New York, USA.

� Statistical properties of parasite density estimators in malaria and �eld appli-

cations. 43ième Journées de Statistique de la SFDS 2011, Tunis,Tunisia.

� Evidence for overdispersion in the distribution of malaria parasites and leuko-

cytes in thick blood smears.

XXVIth International Biometric Conference 2012, Kobe, Japan.

� A new method to reliably count parasites in thick blood smears.

Infectious Disease Week 2012, San Diego, USA.

Others:

� ESOF - Euroscience Open Forum 2010, Torino, Italy.

� Paris Interdisciplinary PhD Symposium 2011, Paris, France.

Patent

In order to protect the intellectual property related to the method brie�y men-

tioned in (1.4), a patent application process has been launched in October, 2012.

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051987
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051987
http://www.malariajournal.com/content/12/1/398
http://www.malariajournal.com/content/12/1/398
http://www.malariajournal.com/content/12/1/398
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A prototype development of the counter is in process. Public (written or oral) dis-

closure of the invention prior to the �ling of the original patent application may

invalidate the patent. For this reason, details and speci�cations of the invention are

not included in this manuscript.

1.7 Interdisciplinarity

Even if this project is �rst a statistical one, it has been developed in close collab-

oration with the University of Paris Descartes and the UMR 216 IRD team, which

is specialized in malaria. UMR 216 provided �eld data, valuable feedback and prac-

tical �eld experiment of the alternative estimation methodology. This collaboration

added a real interdisciplinary dimension to the project. Besides, this project has

been developed in close collaboration with the "Faculté des Sciences de la Santé"

(FSS), University of Abomey-Calavi, Cotonou, Benin. This partnership have been

essential, since it provided expertise on malaria epidemiology, operational experience

of the data collection, availability of real data sets and �eld experiments.

The project covers several disciplines while being solidly founded within the

�eld of biostatistics. It has the particularity to start from the �eld, to go through

innovative statistical developments, before returning to the �eld. Besides, it focuses

on the problem of malaria, which remains, to date, a major public health problem

in the developing countries. From a statistical point of view, it deals with a problem

as appealing as critical, particularly regarding the quality of the threshold-based

estimators commonly used in parasite density estimations. Finally, it should be

noted that this project naturally �ts one of the priority axes of research of the

University of Paris Descartes, namely the "Institute for the Development and the

International solidarity".





Chapter 2

Malaria

�Worse than the sun in March.

This praise doth nourish agues.�

Shakespeare, Henry IV
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This chapter is dedicated to the general characteristics of malaria. They are

described in broad strokes without going deep into the complex biology of malaria

parasites. Nevertheless, this brief overview is su�cient in itself, whatever else might

be added, to draw the attention to the longstanding issues surrounding this poten-

tially lethal disease, and to de�ne the context where the problem lies. The World

Health Organization and its partner, Roll Back Malaria, o�er exhaustive web-based

portals that give access to a wide range of informations for people who are eager to

learn more about malaria.

The word malaria (from Italian origin) hides a part of its history. The contrac-

tion of "mala aria" means "bad air". We owe this name to the Italian physician
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Francesco Torti (1658-1741). Occurrences of this word can be found in numerous

Shakespearean plays. In Shakespeare's time, people thought that the sun raise

up the bad air in marshy areas that caused symptoms of ague (what we now call

malaria). This thought continued on until 1898, when Ronald Ross (1857-1932)

discovered that malaria was a mosquito-vectored disease.

2.1 Introduction

Malaria, a widespread and potentially fatal infectious disease, has wreak havoc

on our world for much of human history. Malaria history can be depicted through

unprecedented �ndings that has been, most of time, rewarded with remarkable No-

bel prizes. Since the discovery of the parasite causing malaria in 1880, researches

have been carried out in science and medicine for hundreds of years, and have ex-

panded, considerably, from preventive and treatment strategies to include a better

understanding of its biology. Within a short time frame (from 1880 to 1899), basic

knowledge of malaria has been produced at a fast pace.

Nevertheless, more than a century after the �rst discoveries, the scourge is still

present and malaria situation is still showing a daunting �gure. Malaria, once

triumphantly held to be eradicable, causes approximately one million deaths each

year. Many of the antimalarial drugs are losing e�ectiveness, as the parasite evolves

high levels of drug resistance. Besides, no e�ective malaria vaccine has yet been

developed. The world's �rst potential malaria vaccine proved only 16.8% e�ective

over the four-year period, calling into question whether it can be a useful weapon

in the �ght against the deadly disease.

This unblemished record of failure leaves humans bewildered and depressed. As

malaria remains a major public health problem, understanding its history is a key

to address some important questions concerning the present situation.

2.2 History of malaria

Malaria preciously concealed some of its parasitological secrets, so that a com-

plete century was needed to score the �rst (temporary) victory of humanity against

the disease in 1961. A brief overview of the recent history of malaria by the end

of the nineteenth century show important breakthroughs that enlarged the under-

standing of the disease, and provided important weapons to �ght malaria-causing

parasite. The roots of this process of scienti�c discovery began in the 1880s.

Earlier theories postulated that malaria was caused by bad air (�mala aria�)

from marshy areas. However, the hypothesis of a bacterial origin of malaria became

increasingly attractive after the discoveries of Louis Pasteur that most infectious

diseases are caused by microbial germs, known as the �germ theory�.

However, as deaths due to malaria were frequent in the army by 1880, Charles

Louis Alphonse Laveran (1845-1922), a French army surgeon, studied the disease's

clinical aspects and its anatomic pathology. While he examined the blood of a
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patient who had been febrile for 15 days, Laveran saw �... on the edges of a pig-

mented spherical body, �liform elements which move with great vivacity, displacing

the neighboring red blood cells�. He also saw the ex�agellation of a male gametocyte,

a phase in the life cycle of malaria parasites which usually occurs in the stomach

of the Anopheles mosquito. These �ndings convinced him that he had discovered

the malaria agent, which is a protozoan parasite. Hence, Laveran was the �rst to

notice parasites in the blood of a patient su�ering from malaria in 1880. During

the following years, Laveran looked for the parasite in the environment surrounding

the human host (air, water, soil of marshy areas ...). His e�orts were unsuccessful,

which makes him suspect that the parasite could develop inside the body of the

mosquito. However, the quest to prove this hypothesis took him years. Laveran's

�ndings were generally met with skepticism, especially among Louis Pasteur' dis-

ciples, the defenders of a bacterial cause hypothesis. In 1884, Laveran shared his

discovery with Pasteur who was immediately convinced (Roux, 1915). Few years

later, the parasitic origin of malaria was accepted. Laveran was awarded the Nobel

Prize in Physiology or Medicine in 1907 for his discovery.

In the years 1886-1892, Camillo Golgi (1843-1926), an Italian neurophysiologist,

provided fundamental contributions to the study of malaria. He elucidated the cycle

of the malaria agent in red blood cells, and distinguished two forms of the disease.

He found correlation between febrile episodes and the release of parasites into the

blood stream. Golgi was awarded a Nobel Prize in Physiology or Medicine in 1906.

At the beginning, Laveran had believed that there was only one species, Oscil-

laria malariae. Other species were discovered during the following years. In 1890,

P. vivax and P. malariae was revealed by the Italian investigators Giovanni Battista

Grassi (1854-1925), and Raimondo Filetti. In 1897, William Henry Welch (1850-

1934), reviewed the discovery made by Laveran and described the malignant tertian

malaria parasite P. falciparum. P. ovale was discovered by John William Wat-

son Stephens (1865-1946) in 1922, while P. knowlesi was �rst described by Robert

Knowles (1883-1936) and Biraj Mohan Das Gupta (1885-1956) in 1931 in macaques.

It was not until 1957 that Garnham (1901-1994) et al. suggested that P. knowlesi

could also cause malaria in humans.

In 1878, Patrick Manson (1844-1922), the father of tropical medicine, formu-

lated his theory of mosquito transmission. Manson claimed that a parasite that

causes human disease could be spread by a mosquito. He had discovered that the

�lariae of su�erers from Lymphatic �lariasis 1, commonly known as elephantiasis,

were ingested by mosquitoes. Along the same lines of the latter discovery, Manson

had suspectd the mosquito to be a vector for malaria, and that the ex�agellation,

described by Laveran, could not take place within the bloodstream, and requires

moisture and a lower temperature outside of the human body, such as within the

stomach of mosquitoes.

Manson's hypothesis inspired Ross and dissipated his early doubts about the

1. a disease characterized by the thickening of the skin and underlying tissues, and can result

in an altered lymphatic system and the abnormal enlargement of body parts, causing pain and

severe disability.
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existence of the parasite. On the basis of the Laveran's discovery, Ross studied the

trasmission of protozoan from the mosquito to the host. In 1898, Ross identi�ed

the mosquito species Anopheles as the carrier of malaria. His studies led to ground

breaking discovery of the life cycle of malaria parasite, which earned him the Nobel

Prize in Physiology or Medicine in 1902.

Following Ross's discoveries, a series of innovative breakthroughs pioneered new

routes and set new goals in malaria research. Robert Koch (1843-1910) favored the

mosquito-malaria theory and con�rmed Ronald Ross's discovery of malaria para-

site's life cycle. He was awarded the Nobel Prize in Physiology or Medicine in 1905.

In 1899, Giovanni Battista Grassi, Amico Bignami (1862-1929) and Giuseppe Bas-

tianelli (1862-1959) demonstrated that the Anopheles mosquito carries the plasmod-

ium of malaria in its digestive tract, and they determined the complete sporogonic

cycle of P. falciparum, P. vivax, and P. malariae.

The very �rst initiatives in malaria control concerned war areas. A chapter in

the The Prevention of Malaria book by Ronald Ross, entitled The Prevention of

Malaria in War [Melville 1910] presents malaria as the most stubborn enemy of

American soldiers during wars. During World War I and World War II, important

�nancial investment devoted to malaria control have been made to supply soldiers

with existing anti-malarial agents and to develop alternative drugs.

Peruvian Indians were the �rst to use the original antimalarial agent called qui-

nine in the 17th century. The drug is extracted from the bark of the cinchona tree

in Peru mountains. During the Spanish colonization of the Americas, the Span-

ish discovered the miraculous cure and used it to protect soldiers in malaria-prone

countries. Until World War I, quinine was the only e�ective treatment for malaria.

However, the increased need of quinine after the colonization of malarious countries

caused inconsistent supplies of this natural anti-malaria drug from South America.

Hence, it was critical, at that point of time, to develop a synthetic alternative to

this drug. By 1944, arti�cial syntheses of quinine were developed, but none of them

have been as economically viable as the natural anti-malarial drug. Due to a number

of limitations, including drug resistance, ine�ectiveness against Plasmodium game-

tocytes and side e�ects, the quinine was not a permanent solution to cure malaria

[White 1999a]. Hence, alternative drugs (such as chloroquine and primaquine) re-

placed quinine during World War II. More recently, artemisinin, which had been

used for more than two thousand years in traditional Chinese medicine in the treat-

ment of many diseases including malaria, has become the treatment of choice for

malaria in 2006.

Another turning point in the �ght against malaria is the discovery of the in-

secticide Dichloro-diphenyl-trichloroethane (DDT) in 1942 by Paul Hermann Müller

(1899-1965), the Nobel Prize Laureate in Physiology or Medicine in 1948. DDT

may be viewed, through history, as a double-edged sword. At �rst, it was hailed as

a miracle weapon, which has be proven to be very e�ective against malaria-carrying

mosquitoes. This potent pesticide was cheap and long-lasting. This had made its

use appealing in World War II. DDT had also initiated The Global Malaria Erad-

ication Program in 1955 that showed (temporary) promising results. The program
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was based on two fundamental activities: (1) the treatment of infected individuals

with chloroquine and (2) the use of DDT for mosquito control [WHO 1959]. These

global e�orts to eradicate malaria successfully eliminated the disease from 37 of 143

endemic countries by 1961. Despite initial success, elimination e�orts weren't sus-

tained in the following years, which caused the resurgence of malaria. This is in a

great part due to the emergence and widespread of DDT resistance. In countries

committed to the use of DDT, governments were so caught up in the maelstrom of

the unequal battle against malaria, that they ignored the toxicity of DDT and failed

to sustain an e�cient application of control measures.

At the beginning of the twentieth century, the humanity had access to important

informations about malaria (agent, vector, Plasmodium life cycle, prevention and

treatment). One century after, the humanity stands at such a point in the history

of malaria with an overwhelming evidence of failure. The bottom line is that the

scienti�c community does not know enough about the very complex malaria dis-

ease. They are back at square one in knowing how to eliminate the parasite due to

anti-malarial drug resistance. Hence, square two would be a heck of a long way o�.

The contradiction between the avalanche of discoveries between 1880 and 1899, and

this record of failure leads us back to the initial question whether it can be a useful

weapon in the �ght against the disease. The most pessimistic voices emerging from

the scienti�c community describe the vaccine research as a scienti�c boondoggle.

They claim that investing more in malaria control and prevention is crucial and can

be su�cient to eliminate malaria. E�ective control measures, however, rely on accu-

rate estimation of malaria endemicity to bring to completion malaria "eradication".

Here too, there is a problem of imprecise statistics.

2.3 Epidemiology of malaria and Plasmodium species

The ravages of malaria have been etched into human history. It is claimed that

the devastating disease has killed half of people who have ever lived [Finkel 2007]. As

mentioned in the previous section, the complexity of the disease is, in part, respon-

sible for the failure in control. In this section, we shall look at the question of the

heterogeneity in the distribution of malaria burden and species. This heterogeneity

adds more complexity and undermines the overall situation.

A combination of speci�c climate features directly in�uences the distribution and

the seasonality of malaria, and allow the existence of an endemic malaria transmis-

sion. The tropical climate characteristics (high temperatures, humidity and abun-

dant rainfall year-round) favors the presence of malaria in tropical regions. The

standing water spots after rainfalls provide mosquitos with a suitable environment,

in which they can breed and mature [Jamieson 2006]. In drier regions, mapping rain-

fall episodes allow to predict e�ectively, and quite accurately, outbreaks of malaria

[Abeku 2007]. However, the climate-disease model, on its own, is insu�cient to

account for the heterogeneous distribution of malaria endemicity.

An e�ective global strategy for malaria control needs accurate estimates of
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malaria endemicity. In order to better understand endemicity, and to support

malaria control planning, many projects provided a detailed mapping of malaria

risk and endemicity in Africa. These mapping are based on accurate estimates of

the burden of malaria at regional or district level. In 1999, the MARA/ARMA

project has provided the �rst continental maps of malaria distribution in Africa

[Craig 1999]. More recently, Malaria Atlas Project focussed on analysing climate

and weather information required to accurately predict the spread of malaria and

to provide contemporary and robust tools to assess malaria burden [Guerra 2007].

This e�ort led to the publication of a map of P. falciparum endemicity in 2010

(Figure 2.1) that shows the global spatial limits of the disease.

Using the term malaria as a whole hides a more complex species heterogeneity.

Five malaria species are known to cause malaria in humans: P. falciparum, P. vivax,

P. ovale, P. malariae, and P. knowlesi. Prevalences of the �ve Plasmodium species

are heterogeneously distributed.

P. falciparum has its origins in West Africa and P. vivax appears in West and

Central Africa. Human migrations led to the global spread of the disease and

malaria becomes the world's deadliest disease. P. falciparum and P. vivax are the

most common forms of malaria. P. falciparum is the most life-threatening species

of malaria. This species is present accros much of tropical and subtropical areas,

but it is much more prevalent in sub-Saharan Africa. P. falciparum showed re-

sistance to many antimalarial drugs. As a consequence, P. falciparum reemerged

with a vengeance in some areas, where it was thought to have been eradicated

[Sharma 1996, Rab 2001, Faulde 2007, Wangai 2011].

P. vivax is the most geographically widespread of the human malaria species. It

accounts for 100-300 million cases in much regions of South-East Asia, The Americas

and The Middle East, where the wide majority of malaria burden is caused by this

species.

P. ovale is generally not fatal. Its spread is restricted to tropical Africa, New

Guinea, and the Philippines. Symptoms are similar to those of P. vivax. P. ovale

and P. vivax can remain in a dormant stage in the liver, without causing illness. If

untreated, they can cause relapses (malaria attacks) months or years after the �rst

infection.

The sporadic presence of P. malariae has been reported in Africa, India, South

America and Western Paci�c. The diagnosis of this species is di�cult due to the

presence of very few parasites in the blood. If untreated, latent P. malariae in-

fections may be present for many years. P. vivax and P. malariae were the most

widespread forms of malaria in the past, but P. malariae has lost its predominance,

and it is now less common than the other forms.

P. knowlesi, similar morphologically to P. malariae, has been identi�ed by molec-

ular methods in patients in Malaysia, the Philippines, Thailand, and Myanmar. P.

knowlesi causes malaria in macaques. It has not yet been proven to be trans-

mitted from humans to mosquitoes. A monkey reservoir may be required to infect

mosquitoes. High levels of P. knowlesi infections may lead to organ failure or death.

Estimates by WHO of the number of cases and deaths from malaria from 2000
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to 2010 were published in the World Malaria Report 2011 [WHO 2011b]. In 2010,

the WHO estimated that 219 million people worldwide are a�ected by malaria and

that 660,000 people died from the disease. Malaria a�ects over 109 countries in

the world. The disease is presently endemic in countries along the Equator, in The

Americas, in South East Asia regions, however, the vast majority of estimated cases

(80%) and deaths (91%) occur in sub-Saharan Africa, where P. falciparum is by

far the deadliest of human malarias (85% of deaths). Children under 5 years old

accounts for the majority of deaths (86%).

Precise statistics are unavailable. A recent study, published in The Lancet,

reports that the worldwide malaria deaths may be almost twice as high as previously

estimated by WHO [Murray 2012]. The Murray et al. systematic analysis of 1980-

2010 global malaria mortality brings discredit to the WHO estimates. The study

claims that malaria caused 1,238,000 [929,000-1,685,000] deaths worldwide in 2010

in comparison to the WHO estimates of 660,000 [490,000-836,000]. Moreover, the

study shows that mortality is higher across all ages and regions than the WHO

report (1.3 fold higher for children under �ve years old in Africa, 8.11 fold higher

for children aged �ve years or older in Africa, and 1.8 fold higher for all ages outside

of Africa).

Murray claims that the WHO only takes into account the e�ect of vector control

and population growth to estimate the mortality burden, and do not include the

e�ect of drug resistance and increased use of ACT, in addition to environments and

socio-economic factors. In the latest report [WHO 2012], WHO states that the two

sets of estimates are not signi�cantly di�erent since the ranges overlap (for deaths in

people under 5 years old in Africa, deaths in people 5 years old outside Africa, and

deaths in people aged �ve or older outside Africa) with the exception of deaths in

people aged �ve or older in Africa. According to WHO, the large number of deaths

in people aged �ve or older relative to those under �ve years old estimated by Murray

et al. is unexpected in African countries, since acquired immunity developed at early

ages will prevent adults from death. A study published in 2011 by [Cibulskis 2011],

based on con�rmed microscopic diagnosis, shows that the adult-to-child death ratios

in much lower. However, Murray et al. maintain, on the basis of vital registration,

verbal autopsy and hospital data, that an important number of deaths occur in

people aged 15 years or older in sub-Saharan Africa contrary to what have been

stated. Both studies, however, agree that investments made by governments and

funders, although a�ected by the global crisis, have substantially decreased the

burden of malaria in the last �ve years. If these e�orts are maintained, malaria

mortality will fall below 100,000 in 2020.

Due to the dramatic consequences these substantial discrepancies can have on

political decisions, it may be worthwhile to question the reasons of this heterogene-

ity. Huge di�erences between Murray and WHO sets of estimates reveal alarming

de�ciencies in current data collection, reporting, analysis and interpretation. Mor-

bidity and mortality statistics are based on clinical records, death certi�cates, verbal

autopsy and governmental returns. However, each one of these direct factors are a

potential source of error and may a�ect the accuracy of estimation. Many malaria
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cases occur in rural communities of sub-Saharan Africa that are seriously su�ering

from critical lack of healthcare amenities. Reporting systems in most of these areas

remain poor and produce limited and imprecise informations. Verbal autopsy is

also an imprecise estimator of malaria mortality, since it is subjective and unable

to distinguish severe malaria from other febrile illnesses. Available tools for malaria

diagnosis and parasite density estimation methods can also be sources of misleading

information. Indeed, diagnosis methods could obviously be inaccurate, and there

is no standardized way to determine the parasite density. Methodological di�er-

ences can make comparison and examination of overall trends very di�cult. These

issues are discussed in more details in Chapter 3. Finally, much uncertainty exists

about malaria statistics, which call into question the mathematical models used to

provide them. Important resources are invested in malaria control and prevention

campaigns, but there are no reliable tools to assess their e�ectiveness.

2.4 Life cycle of Plasmodium

The agent responsible of the disturbing number of deaths, although subject of

controversy, is the Plasmodium protozoan. Understanding the parasite life cycles is

of primary importance, since it predicts the parasite's involvement in disease, and

gives informations about the disease pathogenesis and clinical signs. The parasite life

cycle also provides information of epidemiological signi�cance and, then, facilitates

the development of control and prevention strategies. A detailed understanding of

parasite life cycles is also needed before any discussing about a potential malaria

vaccine, as a vaccine could act at one or many stages during the parasite life cycle.

The life cycle of Plasmodium involves several stages, including sporozoites (the

infectious form injected by the mosquito), merozoites (the stage invading the ery-

throcytes), trophozoites (the form multiplying in erythrocytes), schizonts (found (1)

in the liver; when sporozoites are mature, (2) within erythrocytes; when trophozoites

mature and divide), and gametocytes (sexual stages).

The mosquito injectes parasites (sporozoites) into the human host. Parasites

travel into the bloodstream to the liver, where they mature and release another

form of the parasite (merozoite). The merozoites leave the liver, and invade red

blood cells (RBCs). In RBCs, merozoites reproduce and develop into trophozoites

and schizonts, which, in turn, produce more merozoites. New merozoites burst out

and seek for new RBCs to infect. A small proportion of asexual parasites di�erenti-

ate in the human bloodstream into sexual erythrocytic stages (gametocytes), which

are infectious to mosquitoes. Parasite transition from host (the human) to vector

(the mosquito) is mediated by gametocytes. The gametocytes, which are the trans-

missible parasite form, are taken up into the mosquito when it feeds. Soon after the

blood meal, gametocytes rapidly undergo sexual reproduction in the midgut of the

mosquito, and create sporozoite forms, which are infectious to humans. Hence, the

life cycle of the parasite is completed (Figure 2.2).

As the parasite invades RBCs, malaria can be transmitted through organ trans-
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Figure 2.2: Life cycle of Plasmodium falciparum.
Three primary stages can be distinguished according to whether parasites are in the liver, the blood-

stream or the mosquito's stomach. [A] Human liver stages (exo-erythrocytic cycle) (1) The female

anopheles mosquito injects parasites (sporozoites) into the human after a blood meal. Sporozoites

travel into the bloodstream to the liver. (2) Sporozoites invade the liver cells (hepatocytes). (3)

Sporozoites mature into schizonts. (4) Schizonts rupture and release merozoites. [B] Human blood

stages (erythrocytic cycle) (5) Merozoites leave the liver and invade red blood cells, in which they

reproduce and develop into trophozoites. (6) Trophozoites mature into schizonts, which in turn

rupture and release merozoites. (7) A proportion of parasites di�erentiate into gametocytes (sexual

forms). [C] Mosquito stages (sporogonic cycle) (8) Gametocytes are taken up by a mosquito when

it feeds. (9-12) Gametocytes undergo sexual reproduction in the midgut of the mosquito and de-

velop into sporozoites, which migrate to the salivary glands. (1) The mosquito injects sporozoites

through saliva into another human. source: Centers for Disease Control and Prevention (CDC)

http://www.cdc.gov/malaria/about/biology/
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plant, shared use of syringes, and blood transfusion. Infected mothers transmit

parasites to their child during pregnancy before or during delivery (birth), which is

known as "congenital malaria".

2.5 Signs and symptoms

The reproduction of Plasmodium parasites in the liver, and their spread into the

bloodstream, produce typical malaria symptoms. As shown in Figure 2.2, parasites

invade RBCs in the bloodstream. Some of them stay and multiply in the liver and

periodically send more merozoites into the bloodstream. This action comes with

repeated bouts of symptoms. The patient develops a high fever. The frequency of

febrile and afebrile episodes depends on the species causing malaria.

People su�ering from uncomplicated malaria will complain (in addition to fever)

of headache, nausea, shaking chills, sweating and weakness. Anemia is common in

patients with malaria, in part due to the destruction of the RBCs. In countries with

limited malaria transmission, these symptoms may be attributed to more common

infections, or simply to cold or in�uenza. On the contrary, in countries with high

risk of malaria, the symptoms are, often, indiscriminately recognized and treated as

malaria without evidence-based clinical diagnosis.

Severe malaria happens when P. falciparum infections are compounded by seri-

ous failure of the body's major organs or by metabolic disorders. The manifestations

of severe malaria include (in addition to fever) severe anemia, kidney failure, pul-

monary edema, cerebral malaria, coma, or death.

The high risk populations for malaria are pregnant women and children under

5 years old. Symptoms in children may be nonspeci�c, leading to delays in di-

agnosis. Pregnant women are particularly vulnerable to the burden of malaria,

since malaria can make worse a pre-existing anemia and causes prematurity,

spontaneous abortion or stillbirth. Moreover, some genetically determined para-

sites are sequestred in the placenta causing what is classically called "placental

malaria" infection (PMI) or pregnancy-associated malaria (PAM). This PMI is

primarily caused by P. falciparum and is responsible of low birth weight (LBW),

which is associated with a higher risk of mortality during the �rst months of live

[Jelli�en 1968, Guyatt 2004, Aribodor 2009, Tiono 2009]. Moreover, children born

of mother with PMI are more vulnerable to malaria infections during their �rst

months of life [Le Hesran 1997, Le Port 2011a].

In tropical areas, multiple infections (helminths, dengue,tuberculosis, �lariasis,

typhoid, schistosomiasis, leptospirosis, HIV...) is the general rule and not the ex-

ception. Co-existence of several infectious agents within the same host has conse-

quences on immunity against those infections. In such a situation, the host im-

mune system interacts with the di�erent infectious agents leading, in some cases, to

modi�ed clinical manifestation (classical clinical signs can be exacerbated or mod-

erated). In the particular case of HIV, co-infection with malaria causes increased

mortality. HIV-infected individuals show increased vulnerability to malaria infec-
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tion [Cohen 2005, Patnaik 2005, Kamya 2006]. Acute malaria is associated with

an increase in HIV viral load [Kublin 2005], and a more rapid decline in CD4 cell

count 2 [Mermin 2006]. These interactions adversely impact the outcome of both

diseases, and may facilitate both diseases spread.

Once clinical symptoms appear, the development of the disease depends in part

on the host's immunity and on the treatment received. Immunity speci�c to malaria

infection is a particularly complex aspect of the disease that goes far beyond the

scope of this thesis. It will be brie�y addressed in the following section.

2.6 Immunity against malaria

Following infection, the clinical manifestations of malaria may be acute in non-

immune patients, and the infection may progress to severe disease and death. With

more infections, anti-disease immunity develops and eliminates clinical symptoms,

and also decreases the risk of severe disease. The human body's defenses against

infection with malaria fall, in general terms, into innate (non-speci�c) resistance

and acquired (speci�c) immunity.

The innate resistance is constitutively present in the host and does not depend

on any previous infection. Innate immunity is activated immediately upon infection.

It is termed non-speci�c because the protective response is the same regardless of

the initial infection. This is in contrast to the adaptive immunity which is slower,

responds speci�cally, and generates an immunological memory. Acquired or adaptive

immunity against malaria develops after infection with multiple strains of malaria

[Färnert 2009b]. Its protective e�cacy depends on several factors as the host, his

environment and the number of infections.

In man, acquired immunity against plasmodia is a mixture of anti-disease im-

munity, anti-parasite immunity and premunition (or sterilizing immunity). Anti-

disease immunity confers protection against clinical disease and a�ects the disease

morbidity. Anti-parasite immunity confers protection against high parasitemia and

a�ects the density of parasites. Premunition is due to persistent latent infection.

It protects against new infections by maintaining a low-level and asymptomatic

parasitemia [Sergent 1935, Carter 2002, Doolan 2009].

People who have lived for years in areas with malaria may develop enough immu-

nity to protect them from malarial illness, but not from malarial infection. Finding

malaria parasites in the bloodstream does not necessarily mean that the person has

active malaria. This partial immunity may wane if the person leaves the malari-

ous area. In this case, the acquired immunity turns ine�ective, and once again the

individual becomes vulnerable to the full impact of a malarial infection.

Asymptomatic parasitemia is another aspect of the complex interactions between

the parasite and the host's immunity. Asymptomatic carriers are people infected

but not ill. This non sterilizing immunity (or premunition) is very frequently en-

2. A type of white blood involved in protecting against viral, fungal, and protozoal infections,

and orchestrating the immune response
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countered in endemic areas. Asymptomatic carriers do not show any clinical signs.

However, they act as a parasite reservoir (as they continuously feed mosquitoes).

Hence, patients with asymptomatic malaria contribute to the spread of the disease

in the population. Taking into account both clinical and asymptomatic infections

will help to establish e�ective tools for malaria elimination.

2.7 Diagnosis of malaria

Tools available for the diagnosis of malaria are used at both individual level to

detect malaria in clinically suspected patients, and populational level to assessment

the epidemiological characteristics of malaria.

Clinical malaria is de�ned as the presence of acute fever (> 38◦C) (or other

symptoms) and malaria parasites. Health authorities in malaria endemic countries

have recommended for long decades to consider every fever case as malaria. Hence,

a presumptive treatment of every febrile child or suspected malaria cases has to

be directly initiated. Presumptive treatment can be explained by the fear of rapid

exacerbation of malaria, especially in children. This instruction is until recently

strictly applied in most African health settings, and the diagnosis of malaria in

children is most often only based on the presence of fever. Moreover, even if a

biological diagnosis is used and proved negative, in the great majority of cases a

doctor confronted with a young febrile child do not hesitate to prescribe an anti-

malarial drug.

However, e�ective treatment of clinical malaria requires prompt and precise lab-

oratory diagnosis. Hence, when malaria is suspected, the clinical diagnosis (based on

the patient history, symptoms and clinical �ndings) must always be con�rmed by a

laboratory diagnosis. Laboratory diagnosis of malaria involves a direct identi�cation

of malaria parasite or the presence of antigens in the blood of the patient.

At a population level, public health or research teams also need accurate di-

agnostic tools to assess the Plasmodium endemicity or to control the e�ciency of

a preventive action. Here, public health authorities or research programs can be

interested in both clinical or asymptomatic infections.

2.7.1 Microscopic diagnosis: blood �lms

Microscopic examination of thick and thin blood smears is the "gold stan-

dard" for laboratory con�rmation of malaria [Christophers 1951, Colbourne 1971,

Draper 1971, Collier 1983, Trape 1985, Kilian 2000, Bejon 2006]. This method is

used in both clinical and asymptomatic infections to assess the existence of an

infection, to determine the parasite density and to identify the parasitic species

causing the infection. It has the advantage of being reliable, technically simple and

economic 3. However, the e�ciency of this method is closely tied to the quality of

the smear, the parasite density, the reading technique and the microscopist skills.

3. In the endemic countries, one slide costs about 12 to 40 US cents.
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A drop of the patient's blood is collected by �ngerprick, or from a larger venous

blood specimen. A small volume of blood is then spread on a glass slide (blood

smear), dipped in Giemsa stain 4. Blood smears are examined under a microscope

at a 1000-fold magni�cation. Each of the four major parasite species can be dis-

tinguished by its physical features and by the appearance of the red blood cells

that they have infected. The staining process slightly colourises the red blood cells

(RBCs) but highlights Plasmodium species parasites, white blood cells (WBC), and

platelets or artefacts. To prevent false diagnosis, the "stained" objects have to be

analysed very carefully to determine if they are parasites or not. For this purpose,

two sorts of blood �lm are examined: thick and thin blood smears.

Thick blood smears are used to detect infection, and to estimate parasite con-

centration. In thick blood smears, RBCs are hemolyzed 5. As a consequence, only

leukocytes and malaria parasites are detectable. However, due to the hemolysis and

slow drying (30 minutes), the appearance of the parasite are distorted, which makes

di�cult the identi�cation of species. A large volume of blood is examined (approx-

imately 5-10 µl in thick smear against 1 µl in thin smear). An experienced micro-

scopist can detect parasite levels as few as 5 parasites/µl of blood [Guerrant 2006].

Hence, picking up low levels of infection is easier on the thick �lm, which are about

eleven times more sensitive than the thin �lm.

Thin �lms allow species identi�cation, because the parasite's appearance is best

preserved, which is important for giving the patient appropriate treatment. Here,

the drop of blood is spread across a large area of the slide. It is dried for 10 minutes,

and �xed in methanol after drying. Usually, both thin and thick �lms are made on

the same slide. Hence, while �xing the thin smear, all care should be taken to avoid

exposure of the thick smear to methanol. Both thick and thin smears shoud be used

to make a de�nitive diagnosis [Warhurst 1996].

Microscopy can be time-consuming (requiring at least 60 minutes from time of

sample collection to diagnosis). Another drawback of this method is that very low

intensity infections can sometimes be missed, given a low number of parasites in

the blood. Besides, diagnosis of species may be tedious as early trophozoites of all

Plasmodium species look identical. Species identi�cation is always based on several

trophozoites. As mentioned in section 2.5, P. malariae and P. knowlesi look very

similar under the microscope. P. knowlesi parasitemia increases rapidly, and causes

more severe disease than P. malariae. Hence, infections must be recognized and

treated promptly. Modern methods, such as PCR (see 2.7.4) or antigen tests (see

2.7.3), should be used to distinguish between the two species, especially in South-

east Asia, where the two infections are prevalent [Murray 2008, McCutchan 2008].

An important point of controversy about microscopy concerns the reliability of

the parasite density estimation using thick blood smears. Since there is no stan-

dardized way to count parasites and blood cells in thick blood �lms, the accuracy of

the parasite density estimation will vary depending on the method used. This issue

4. Giemsa is a reagent that stains malaria parasites and allow for detection and recognition of

Plasmodium species.
5. TBSs are not �xed with methanol.
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is thoroughly discussed in Chapter 3.

2.7.2 Quantitative Bu�y Coat (QBC)

The Quantitative Bu�y Coat (QBC) is a laboratory test that detects infection

with malaria or other blood parasites based on acridine orange staining of centrifuged

blood samples. The Bu�y Coat, also known as leukocyte concentrate, is the fraction

of an anticoagulated blood sample containing the majority of the white blood cells

and platelets after centrifugation of blood specimens.

Some studies indicate that infected red blood cells (RBCs) containing older

trophozoites of P. vivax, P. ovale, and possibly P. malariae tend to concentrate

above the RBC layer. The parasitized erythrocytes are concentrated in a small part

of the RBCs column (immediately below the Bu�y Coat). They are pressed against

the wall of the tube, where they can be viewed by ultraviolet light microscopy. This

helps to rapidly scan malaria parasites [Krishna 2003].

Concern over the ability of the QBC method in identi�cation of species has been

noted [Pinto 2001]. Hence, QBC cannot be considered as an acceptable alternative

to microscopy for routine laboratory diagnosis. Additionally, special equipments are

required, which make the QBC relatively expensive. One more disadvantage of QBC

technique is that a permanent record of the test cannot be saved [Krishna 2003].

2.7.3 Antigen tests

In the presence of febrile episode, the Rapid Diagnostic Test (RDT) (also called

Antigen-Capture Assay or Dipstick) allow to quickly establish the diagnosis of

malaria infection by detecting speci�c malaria antigens in a patient's �nger-stick

or venous blood. RDT only requires a drop of blood. The test takes 15-20 minutes,

and the results are read visually on the dipstick, as the presence or absence of col-

ored stripes. These advantages make the RDT suitable for �eld experience. RDTs

can be coupled with microscopic examination of thick blood smears.

Many healthcare settings, where an appropriate microscopy expertise is not avail-

able, either save blood samples for malaria microscopy until a quali�ed person is

available to perform the test, or send the blood samples to commercial or reference

laboratories, which result in long delays in diagnosis. In this case, the use of RDT

is particularly appealing, since it allows a prompt diagnosis. TBSs are used later to

quantify the parasite density. Yet not every fever is caused by malaria, RDTs were

systematically performed for each case of fever for some years. However, none of

the existing rapid tests are currently as sensitive 6 as thick blood �lms, nor as cheap

[WHO 2011a]. In addition, RDT results are only qualitative. Hence, RDT can not

replace on its own malaria microscopy.

6. The threshold of detection is about 100 parasites/µl by RDT against only 5 parasites/µl

using TBS.
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2.7.4 Molecular methods

Although thin blood smears are usually used to di�erentiate malaria parasite

species, this task may become tedious when the morphologic characteristics of

species are very similar (for P. vivax and P. ovale), or when the parasite morphology

is distorted due to the bad quality of the smear or to drug treatment. Molecular

diagnostic tests, such as polymerase chain reaction (PCR), can be used to bypass

this di�culty. Moreover, PCR can detect very low levels of parasitemia, where thick

blood smears may fail.

Developed in 1983 by Kary Mullis, Nobel Prize laureate, PCR is a technique in

molecular genetics that allows the analysis of any short sequence of DNA (or RNA)

even in samples containing very small quantities of DNA (or RNA). PCR is used to

amplify (reproduce) selected sections of DNA (or RNA) for analysis. Thousands to

millions of copies can be made of the DNA in a few hours [Bartlett 2003].

Although microscopy remains the gold standard diagnostic test for malaria in

clinical settings, PCR-based assays can be 10 to 100-fold more sensitive than mi-

croscopy [Milne 1994, Hermsen 2001], especially in the setting of low parasitemia

[Coleman 2006] or subclinical infections [Roshanravan 2003]. The PCR test has

also been found useful in unraveling the diagnosis of malaria in cases of undiag-

nosed fever. Although this technique may be more sensitive than smear microscopy,

it is of limited utility for malaria diagnosis standard healthcare settings. PCR is

in�nitely more expensive. Moreover, PCR results are usually not available rapidly

enough to inform clinical decision-making in real-time. PCR is most of the time a

e�cient tool used by research teams.

2.8 Treatment

The lack of precise malaria diagnosis remains an important obstacle to the treat-

ment, together with other relevant factors including drug resistance and availability

and sustainability of drugs. These factors substantially increase the permanent

challenge of malaria treatment in tropical areas.

In this section, we not give an account of the exhaustive list of drugs available and

the di�erent therapeutic schedules proposed. The aim of this section, however, is to

present the recent evolution in malaria treatment that contributed to the improve-

ment of the overall situation. This evolution has been required as drug resistance

emerged. The widespread and indiscriminate use of antimalarials exerted a strong

selective pressure on malaria parasites to develop high levels of resistance. This re-

sistance is re�ected by the ability of the parasite strains to survive and to multiply,

despite the administration of proper doses of antimalarial drugs. Therefore, almost

all available drugs have been compromised by the high adaptability of plasmodia.

The limited number of e�ective drugs and the emergence of multi-resistant strains

consolidate the need for new antimalarials.

The treatment of malaria depends on the assessment of the severity of the disease

by the clinician. If uncomplicated malaria is diagnosed, the patient is given oral
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drugs. In the case of severe malaria, the patient must be immediately admitted.

The treatment of uncomplicated malaria aims to block the aggravation of the

disease and to completely eradicate the infection from the body. Patients must be

followed for long enough for treatment outcomes to occur and until full recovery.

Public health treatment strategies aim to reduce the transmission of infections, and

to avert the emergence and spread of resistance to antimalarial drugs. Nowadays

and since the beginning of the 21st century, depending on the countries, the �rst

line treatment used worldwide for P. falciparum infections is the combination of

artemisinins with other antimalarials, which is known as Artemisinin-Combination

Therapy (ACT) [Kokwaro 2009, WHO 2010a, WHO 2010b]. This is done to re-

duce the risk of resistance against artemisinin. Indeed, resistance can be prevented

or slowed down, by combining antimalarials with di�erent modes of action and,

then, di�erent resistance mechanisms. Probability of developing resistance to both

drugs is the product of the two probabilities. Although the theory underlying com-

bination treatment is well known in treating tuberculosis, leprosy and HIV 7 infec-

tions, it has recently been applied to malaria 8, and many malaria-endemic countries

switched antimalarial drug policy to ACTs [Curtis 1986, White 1999a, White 1999b,

Mutabingwa 2005, Garner 2005, Huho 2012]. Infection with P. vivax, P. ovale or

P. malariae is usually treated on an outpatient basis. The treatment involves the

treatment of blood stages using chloroquine or ACT, and the clearance of liver forms

using primaquine [WHO 2010b, Waters 2012].

The top task of severe malaria treatment is to prevent death and neuro-

logical disabilities. Parenteral administration of antimalarial drugs is required

for severe malaria treatment. Quinine remained the mainstay of malaria treat-

ment until 1920, but artesunate has been shown to be superior to quinine

[PrayGod 2008, Mathew 2010, Dondorp 2010, Achan 2011]. Severe malaria is most

often caused by P. falciparum. In severe P. falciparum malaria, intravenous or

intramuscular artesunate is recommended (for adults). Quinine is an acceptable

alternative if parenteral artesunate is not available. Treatment of severe malaria

requires additional measures, including management of high fevers and resulting

subsequent seizures, and monitoring for respiratory depression, hypoglycemia, and

hypokalemia [Sarkar 2010].

As previously mentioned, pregnant women are particularly vulnerable to malaria,

since pregnancy reduces women's immunity. Since the beginning of the 21st cen-

tury, things have changed. For a very long time, the prevention of malaria during

pregnancy was based on chloroquine together with the recommendation of using

insecticide impregnated bed net. Currently, the protection of pregnant women in

endemic areas rests upon an intermittent preventive treatment (IPTp), which con-

sists in two curative doses of drug given after the �rst trimester. The drug usually

used is a combination of Sulfadoxine-Pyrimethamine. However, due to high level of

resistance, alternative drugs are needed. Pregnancy narrows the scope of alterna-

7. Combination therapy is made available to HIV/AIDS patients for the �rst time in 1996,

leading to a dramatic decline in AIDS-related deaths.
8. In early 2004, the World Health Organization recommended that countries adopt ACTs.
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tives among available drugs. However, many researches are currently undertaken to

solve this question and me�oquine could be an alternative that is already available

[WHO 2007b, Menéndez 2007, Briand 2009]. Here too, insecticide impregnated bed

net use is strongly recommended.

Due to drug resistance, the prevention of malaria is argued to be more cost-

e�ective than the treatment of the disease in the long run.

2.9 Prevention

Control strategy for malaria involves three living beings and their environment:

human (the host), plasmodia (the agent), and anopheles mosquito (the vector),

which implies a complex chain of measures that often complement one another.

Humans on the move not only transmit the disease, but spread antimalarials'

resistance as well. Mosquitoes are also moving, they highly adaptable and have

shown resistance to insecticides (see 2.9.1). The parasite, which hides in humans

and mosquitoes, is also highly adaptable, and has also developed resistance to an-

timalarial drugs (see 2.8). Hence, an e�ective malaria control would target human

�rst, control mosquitoes next, and keep trying to tackle the parasite with develop-

ment of e�ective drugs and vaccines.

Sustainable malaria control requires a comprehensive set of solutions including

the distribution and spraying of insecticide, mosquito nets, availability of antimalar-

ial drugs and education in endemic countries. Research into vaccines is also crucial

in the e�ort to eradicate the disease.

2.9.1 Vector control

Vector control remains the most generally e�ective measure to prevent malaria

transmission. Its e�ect on morbidity and mortality is still under debate. Two

commonly used and e�ective approaches in the vector control of mosquitoes are

Insecticide Treated Nets (ITNs) and Indoor Residual Spraying (IRS). These methods

vary considerably in their applicability, cost and the sustainability of their results.

IRS is the organized and timely spraying of insecticides on the inside walls of

houses or dwellings in malaria-a�ected areas. The �rst pesticide used for IRS was

DDT [CDC 2010]. Controversy concerns the health e�ects of IRS. Awareness of the

negative environmental impactâ of the abusive use of DDT increased in the 1960s,

when DDT became one of the largest used pesticides. Overspraying of DDT on crops

contributed to the emergence and spread of DDT resistance in Anopheles mosquitoes

and, ultimately, it was banned for agricultural use in many countries in the 1970s

[van den Berg 2009]. The deterioration of IRS programs in some countries renewed

interest in anti-larval and personal protection measures for reduction of malaria

transmission.

ITNs, or bednets, are widely believed to be an e�ective way of controlling

malaria. They are treated with insecticides that directly kill or inactivate mosquitoes

and drive them away before they �nd the holes. Hence, even a treated net with holes
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can provide a good protection. ITNs o�er more than 70% protection compared with

no net. Treated nets are twice as e�ective as untreated nets [Raghavendra 2011].

Global malaria control strategies has enabled endemic countries to greatly in-

crease the access to prevention measures (ITN and IRS). ITN ownership in sub-

Saharan Africa rose from 3% in 2000 to 50% in 2011. The majority of owners

(96%) claimed that they make e�ective use of ITNs. The proportion of households

protected by IRS in this area increased from less than 5% in 2005 to 11% in 2010

[WHO 2010a]. IRS requires the acceptance of the population of spraying insecti-

cides once or twice a year and the preservation of sprayed surfaces. In contrast,

ITNs requires the continuous use of the treated nets. Hence, IRS is more suitable

for the rapid protection of a population, and ITNs are more suitable for progressive

introduction and incorporation into sustainable population habits.

2.9.2 Vaccination

During its complex, multi-stage life cycle, malaria parasite not only expresses a

great variety of proteins at di�erent stages, but these proteins also keep changing

often. This complexity makes the development of a malaria vaccine a very di�-

cult task. Given this, there is currently no commercially available malaria vaccine,

despite many decades of intense research and development e�ort [Geels 2011].

Malaria vaccines candidates traditionally target the di�erent stages of the par-

asite's life cycle (pre-erythrocytic stage, asexual and sexual stages). Contrary to

most malaria vaccines that target one of the three stages of the parasite's life cycle,

SPf66 was based on both pre-erythrocytic and asexual blood stages. SPf66 was

massively tested in human �eld trials, in both low and high disease transmission

areas, in the 1990s, but evidence of e�cacy was not enough to develop the vac-

cine [Graves 2006c]. Some vaccine candidates, who target the blood-stage, has been

proven to be insu�cient to meet the desired e�cacy [Graves 2006a]. One of the

most promising vaccines, who target the pre-erythrocytic stage, is undoubtedly the

RTS,S vaccine [Graves 2006b].

RTS,S is the most advanced vaccine candidate against P. falciparum. During a

phase II trial in Kenya, this vaccine has shown 53% e�cacy in reducing all episodes

of clinical malaria in infants aged 5-17 months, the duration of follow-up varied

according to the time of recruitment, between 4.5 and 10.5 months (mean, 7.9)

[Bejon 2008]. While 53% percent protection is not very e�ective 9 even that much

protection potentially can be translated into tens of millions of cases of malaria in

children averted annually which would save millions of lives over a decade.

Initial results from larger ongoing phase III revealed that RTS,S decreased

malaria by a half in young children, and by one-third in infants over 12 months

[The RTS S Clinical Trials Partnership 2011]. However, new �ndings on long-term

follow-up of earlier phase II study showed that the e�cacy of RTS,S vaccine over the

4-year period was 16.8%. E�cacy declined over time and with increasing malaria

9. most vaccines are not released until they do better than 90 percent.
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exposure 10 [Olotu 2013].

2.9.3 Chemoprophylaxis

Malaria can be severe in a non-immune individual. Travelers from non-malarious

area to a malarious area should be protected. As there is no vaccine available for

protection against malaria, despite intensive research for decades, an alternative

method that o�ers a fairly reliable protection against malaria is needed. Use of

antimalarial drugs to prevent the development of malaria is known as chemoprophy-

laxis.

Chloroquine has been used extensively where the parasite was sensitive

[Jacquerioz 2009]. This molecule is no more indicated [Sidhu 2002]. Alternative

strategies include (1) me�oquine (Lariam), (2) doxycycline (available generically),

and (3) the combination of atovaquone and proguanil hydrochloride (Malarone)

[Jacquerioz 2009]. Since (1) is classically associated with higher rates of neuropsy-

chiatric adverse e�ects [Jacquerioz 2009], (2) and (3) are the best tolerated.

Any malaria prophylaxis must be taken before, during, and especially after trav-

eling to a malarious area. Proguanil, me�oquine, and doxycycline are only e�ective

once the parasite has entered the erythrocytic stage (see Figure 2.2), and therefore

have no e�ect until the liver stage is complete. Hence, these prophylactics must con-

tinue to be taken for four weeks after leaving the endemic area. This is in contrast

with Malarone and primaquine prophylactics that target the blood stage as well as

the initial liver stage. Thus, the user only have to take the medicine for 7 days after

traveling rather than 4 weeks.

Medications for malaria prophylaxis do not provide a complete protection.

Hence, travellers to malaria endemic areas should take measures to prevent mosquito

bites in addition to good compliance with chemoprophylaxis. Malaria prophylaxis

is not recommended for people living in malarious area, and it is not prescribed as

a remedy to prevent re-infections as well.

Malaria treatment, control and prevention measures dramatically impute on the

budget allocated to health care in malaria endemic countries that remain trapped

in a downward spiral of poverty.

2.10 The socio-economic burden of malaria

Malaria costs lives, and money. The socio-economic impact of malaria is tied to a

vicious spiral of poverty-malaria-poverty. Any discussion about the two causalities

would be incomplete without de�ning poverty. A simplistic and nuanced under-

standing of poverty draws poverty as insu�cient income or consumption. However,

poverty has also non-monetary dimensions, as insu�cient outcomes in education,

healthcare infrastructure, environment quality, research and control, political and

civil rights and many others. A click at the poverty site shows malaria as one of

10. Vaccine e�cacy was 43.6% in the �rst year but was -0.4% in the fourth year.
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the top seven problems of poverty. Malaria death counter (per hour), posted in this

website, will undoubtedly leave you puzzled.

Poverty causes malaria. This paradigm leaps to the conclusion that malaria is a

disease of the poor. The anophele mosquito, of course, does not distinguish between

the rich and the poor. However, the geography and the environment, in which poor

communities are living, are particularly appealing for mosquitoes. 58% of malaria

deaths occurs in the poorest 20% of the world's population [Ricci 2012]. Risk for

malaria increases in children from poor householders [Kre�s 2010]. Correlations be-

tween febrile episodes in children and low householders income have been observed

in Sub-Saharan Africa [Filmer 2005]. Poor householders cannot a�ord malaria pre-

vention tools such as bednets, good-quality drugs, doctors' fees and health facilities

access. Low education and lack of awareness about the scourge of malaria disarm

people in their struggle against this disease of poverty. Wars, political turmoil and

upheavals have also been marred by malaria [Melville 1910].

Malaria causes poverty. From 1965 to 1999, growth rate in endemic countries

was 1.3% lower than in non-endemic countries. Direct costs include prevention and

treatment expenditures by personal protection measures and government health

authorities. In Africa, these direct costs have been estimated to be 12 billions

dollars per year, which maintains and furthers poverty. Indirect cost involves labor

time loss due to illness or death, which accounts for 75% of the total malaria cost per

household. Absenteeism is a thorn in the side of growth. Intangible costs inevitably

exacerbate the detrimental economic impact of malaria. They includes low birth

weights, su�ering, physical disabilities (anemia, neuro-disability, cognitive de�cits),

deschooling and social exclusion. The combination of the factors cited below results

in deep-seated inequalities between endemic countries and non-endemic countries.

On a more positive note, governments, today, are more and more investing in

malaria R&D, which is highly cost-e�ective. Investing in malaria R&D reduces

malaria incidence and yields positive economic bene�ts. Saved costs may be rein-

vested to fund other health initiatives and to reduce poverty.

2.11 Discussion

Malaria as a disease was unveiled by several remarkable Nobel Prize Laureates,

who discovered separate parts of its pathology at di�erent points in time. Lav-

eran had made discerning observations on the parasitic cause of malaria. Manson

toyed with the idea that the disease might be carried by mosquitoes. However,

it was Ronald Ross who attempted to gather together these fragments of innova-

tive thoughts into one �nal concept. Since Ross's discovery, the situation of people

su�ering from malaria has signi�cantly changed, but still not enough.

After the disappointing results from RTS,S malaria vaccine trials, irrepressible

optimism have again given way to a grimmer reality: the struggle against malaria

persists. Since immunity given by a natural malaria infection wanes in the absence

of continued exposure, chances that a vaccine confers lasting immunity are slim
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to none. However, there remains a glimmer of hope: country-level elimination of

malaria may be completely achieved with sustainable malaria control programs.

Important measures for reducing the burden of malaria morbidity and mortality

include more sensitive diagnostic tools, e�ective use of antimalarial drugs, improved

personal protection and mosquito control. Moving from malaria control towards per-

manent reduction to zero of all malaria cases, is a complex and di�cult process that

will only occur if there is sustained leadership, innovation, �nancial commitment,

political will and concerted community e�orts.

The role and importance of community involvement is often over-looked in con-

trol programs. Many malaria programs focus on providing the communities with

vector control interventions (indoor spraying and bednets). ITNs and IRSs are of-

fered to the community for free, and without expecting any action on the part of

the community. Awareness campaigns often consists in providing information at

healthcare utilities and through the media. However, rural communities' accessibil-

ity to pertinent information still remain largely unmet because of lack of facilities

and/or low levels of education. These campaigns usually emphasis on preventive

measures at individual level by motivating inhabitants of rural areas to use bednets

and to protect themselves from mosquito bites, but, they omit to focus on the di-

rect impact of individual behavior on the overall e�ectiveness of the local malaria

control interventions. Due to the lack of rural community members' involvement,

these practices often results in a culture of dependency, in which the a�ected in-

dividuals in rural areas completely rely on formal control policies to protect them

from mosquitoes. Although rural community members' usually do not have enough

resources or knowledge, they can actively, and e�ciently, participate in the control

of malaria in di�erent ways.

During a �eld study in Tori Bossito (Benin), I was able to notice that, in some

villages, a variety of risks could be easily avoided by local inhabitants with little or

no resources. This made me remember when I �rst announced to my father, who is

engineer at the Ministry of Environment and Sustainable Development of Tunisia,

and who participated to the campaigns for the eradication of malaria in Tunisia in

1979 [Chadli 1986], that I decided to work on malaria for my phd, with �eld appli-

cations in Benin, he just said: "... People do not need mathematical models to solve

the problem of malaria. They �rst need environmental sanitation". For example,

small puddles of standing water, often gathered in and around rural villages in the

rainy season, can easily be �lled in by nearby householders. This intervention do

not require any material or technical resources. Although these puddles are not

perceived as a thread by local inhabitants, they do provide breeding sites to thou-

sands of vector mosquitoes, which not only increase the risk of malaria, but also

participate to the nuisance factor. Another example is the inappropriate use of bed-

nets. Most of bednets in rural areas are in poor conditions, or used inappropriately.

Deteriorated bednets are a poor physical barrier against blood-seeking mosquitoes.

Without such local commitment to strengthening malaria control interventions e�-

cacy and sustainability, malaria may never be eliminated, and the picture would be

far more bleak, with millions of deaths over years.
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While these weapons have proven to be potent in the �ght against malaria,

one of the major technical problems facing malaria eradication in certain areas

is the development of drug resistance. Drug resistant cases of P. falciparum are

the most alarming, since this species causes the most fatal and medically severe

form of the disease. At this point it has no known cure. In the fact of such a

tragic dilemma: what hope can there be? Vaccine would be the backbone of public

health interventions against malaria, especially in poor countries, where it would

help contain or even eradicate this global killer. Despite global e�orts to wipe out

this disease, no e�ective vaccine currently exists. The need for a vaccine is great,

but biology is complex and economics are disadvantageous.

Although P. falciparum is the most dangerous type of malaria, all Plasmodium

species are potentially life threatening, especially when managed inappropriately.

In the case of missed or delayed diagnosis, the harm could be devastating. A pa-

tient may go from mild through complicated to severe disease. Prompt, reliable and

accurate diagnosis of malaria is one of the cornerstones of e�ective disease man-

agement. Studies on the �eld show the rates of agreement between microscopical

and serological diagnosis of malaria are surprisingly low [Mitiku 2003]. Estimation

of the parasite density on thick blood smears is a task of major importance. The

accuracy of parasite density estimation depends on the reading method, the time

spent in reading and the microscopist skills. A standardized tool, which is able to

perform diagnosis with the same ground criteria uniformly everywhere, is therefore

needed.
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Parasite Density Estimation

�You can't control what you can't

measure.�

Tom DeMarco, 1986
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In this chapter, we review the commonly used parasite density estimation meth-

ods. Emphasis is laid on the importance of the parasite density estimation according

to clinical malaria diagnosis and epidemiological studies.

3.1 Introduction

In Chapter 2, we pointed out the enormous burden of malaria. It is therefore very

essential that every case of malaria be assessed thoroughly. Positive and negative

diagnosis is usually considered su�cient for the assessment of therapeutic outcome.

However, assessing the burden of malaria in terms of morbidity and level of infection

require measuring the parasite density (PD) of malaria infection as a primary end-

point. This is an important factor in assessing the e�cacy of a vaccine candidate

or a drug in clinical trials. Despite some inherent limitations [Bejon 2006], thick

blood smears (TBSs) are the most established, and widely-used technique for PD

quanti�cation in the blood [WHO 1999].

3.2 Field experience

At the �rst beginning of my PhD, the malaria issue was completely foreign to

me because, �rst of all, I belong to a country in which malaria has been completely

eradicated since 1979, secondly, at that moment, the only African country I had

ever been in was Tunisia. For these reasons, I could not have expected a better

initiation than a �eld experience in Benin from the word 'go'.
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The main objectif of this �eld experience was to establish a �rst contact with

the teams that collect data in the �eld. I started out by mostly observing to better

understand their techniques and to identify their potential di�culties, constraints

and needs. Through this �eld study, I took a closer look at the TBSs reading

methods, and I proudly read ones! But, as time went on, di�erent aspects of the

problem, that we wouldn't expect at the beginning, came into light.

A TBS is considered acceptable if it is well made and of even thickness. Errors

in TBS preparation may a�ect the examination, and then the outcome for the

patient. Routine examination of a thick �lm is based on the examination of a

predetermined number of "good" high-power �elds (HPFs) (see Figure 3.1), which

varies by program. A slide is declared negative if no parasites have been seen in

these �elds. Microscopists are asked to select a readable and a thick area of the �lm,

away from feather and lateral edges, that is well stained, free of staining precipitate

and well populated with white blood cells (WBCs).

Figure 3.1: High power microscopic �eld.
The circular area corresponds to the part of the TBS viewed through the lens of the microscope,

namely the high-power �eld (HPF). The picture depicts two types of stained objects: numerous

small specks which represent ring-form P. falciparum trophozoites lysed from the RBC's, as well

as a number of huge purple dots representing the white blood cells.

In addition, TBSs must be examined in a speci�c way for consistency. They are

examined following the pattern of movement shown in Figure 3.2; that is, starting

at the "x" mark, the �lm should be carefully examined, �eld by �eld, by moving to

each contiguous �eld along the edge of the thick �lm, then moving the slide inwards

by one �eld (without overlapping with the previous �eld), returning in a vertical

movement and so on. For e�cient examination, the microscopist continuously focus

and refocus using the �ne adjustment throughout examination of each �eld.

However, in practice, these instructions are not being fully complied with. In

addition, even under optimal conditions, the distribution of blood thickness within

the TBS will never be completely homogeneous [Dowling 1966, Kilian 2000], and

then the choice of the "good" readable area for examination could in�uence the
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Figure 3.2: Examination of a thick blood �lm.
Thick (left) and thin (right) �lms are normally made on the same slide. For consistency, TBS must

be examined following the pattern of movement shown in this reading diagram.

source: [WHO 2010a]

PD estimation. Additionally, the microscopist may make his own subjective and

possibly arbitrary understanding of the HPF limits to avoid overlapping. Moreover,

examining 200 HPFs takes approximately 15 to 20 minutes for an experienced mi-

croscopist. The choice of the predetermined number of HPFs (or WBCs) that have

to be read (or seen) is �xed in a biased and discriminatory way, most of the time

regardless of parasitemia levels or acceptable variability. The choice of this num-

ber, however, may have a critical impact on the overall cost of the epidemiological

survey. Finally, malaria microscopy is a skilled exercise requiring great care at each

step of the procedure (from the sample collection to the examination) and precise

visual and di�erential skills. The microscopy results are then as reliable as the mi-

croscopist performing the examination. Hence, allowing operator decision making

adds further bias to the microscopy outcomes and increases discrepancies between

malaria slide readings.

Despite my unfortunate and accidental stay with a "giant" lizard (three years

later and I am still not over it), my �eld experience in Benin in�uenced my work

in a very positive, scienti�cally sound way. It allowed me to approach in practical

terms the PD estimation constraints faced by microscopists during the examination

of TBSs. It enlightened my way of understanding the importance of PD estimation.

We shall dwell on this last point in the following section. Furthermore, this �eld

experience enabled me to notice the weakness of existing methods in the matter of

left-censoring and cost-e�ectiveness, points that we shall take up in Chapter 4. This

elements provided additional food for thought for this work and suggested possible

improvements by designing more e�cient and cost-e�ective alternative protocols.

Finally, I was able to gain a broad perspective of the extent of malaria burden in

rural areas of the Benin and the challenges facing elimination.

3.3 The importance of PD estimation

Accurate estimation of the PD is an important endpoint in epidemiological stud-

ies and clinical trials, both as a direct measure of the level of infection in a popula-

tion and when de�ning parasitemia thresholds to diagnose malaria in case of fever

episodes. Malaria PD estimates are also used to assess the development of naturally
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acquired immunity [Rogier 1993] and in malaria vaccine investigations [Alonso 1994,

Petersen 1996a, Small 2010]. Therefore, inaccurate estimation of PD can lead to pa-

tient mismanagement, failure of clinical trials of drugs and vaccine candidates and

public health misinformation [Dini 2003, Bates 2004, Prudhomme O'Meara 2006a].

However, two approaches must be distinguished. The �rst approach concerns

clinical malaria diagnosis and two problems can be pointed out depending on

whether the question concerns an individual or a population. At the individual level,

recent studies have highlighted the massive problem of misdiagnosis in malaria en-

demic countries [Amexo 2004, Reyburn 2004, Zurovac 2006]. From a clinical point

of view the question is to determine whether a person presenting fever su�ers from

malaria or not and, in that sense, the main problem is a false negative result. Here,

if a measure is falsely negative, the patient will be miscategorized and incorrectly

treated, and measurement errors can lead to poor patient outcome. Nevertheless,

although the level of infection is considered as a controversial sign of potential sever-

ity [WHO 2000], treatment and medical supervision must be immediately started

even if the PD is not accurately determined.

From an epidemiological point of view (e.g. to determine the incidence or preva-

lence of clinical malaria in an area or in a population under close medical surveil-

lance) clinical malaria is often considered as any case of fever or fever-related symp-

toms (headache, vomiting, subjective sensation of fever) associated with a P. falci-

parum parasite/leukocyte ratio higher than an age-dependent pyrogenic threshold

of PD previously identi�ed in the patient [Rogier 1996, Milet 2010]. In this case,

a feverish individual harboring a PD under his age-speci�c threshold is not consid-

ered as a malaria case and will be monitored by the medical team involved in the

study. In such a situation the accuracy of PD determination is obviously of great

importance, not only for the patient but also for the outcomes and the conclusions

of the study.

A second approach concerns the assessment of PD in epidemiological studies,

when PD is used as the variable of interest or as a covariate, independently of clinical

disease. For example, genetic epidemiology studies often focused on a mean level

of P. falciparum infection during a follow-up period [Garcia 1998, Timmann 2007,

Sakuntabhai 2008, Milet 2010]. Great care must also be taken in the analysis of PD

estimates when PD is related to other explanatory variables, malariometric (e.g.

parasite ratio, gametocyte ratio, mixed infection) or not (age, environmental or

behavioral factors, medicine intake in clinical trials), when using statistical models

as logistic regression and linear mixed e�ect models. In these cases as well as in

population studies using a pyrogenic threshold to de�ne clinical malaria, inaccurate

estimates of PD might in�uence the parameters of associations between drug e�cacy

and the incidence of clinical malaria episodes in �eld trials [Kilian 2000], or between

risk factors in epidemiological studies.

Several methods for PD estimation by microscopic examination of TBSs

are used [Dowling 1966, Trape 1985, Kremsner 1988, Planche 2001, Garcia 2004,

WHO 2010a, Le Port 2011b]. In most of these methods, the number of asexual par-

asites seen is usually counted either relative to a given number of HPFs, or according
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to a �xed number of WBCs. To express PD as the number of parasite per microliter

of blood, parasite counts are converted to parasites per microliter using appropriate

multiplicative factors depending on whether parasites are counted relative to WBCs

or HPFs. In the following, the "given" (of predetermined) number of WBCs or

HPFs will be referred to as the threshold value. PD estimation methods involving

threshold values are called threshold-based counting techniques.

3.4 Threshold-based counting techniques

Threshold type and value may vary from one method to another. In the �rst

case, parasites are counted relative to a given number of HPFs. The conversion to

counts per microliter relies on the assumption that the volume of blood per HPF

is approximately 0.002 µl [Dowling 1966, Bruce-Chwatt 1985, Warrell 2002]. Par-

asites are usually counted in 100 [Earle 1932, WHO 1961, Dowling 1966] or 200

[Molineaux 1980, Trape 1985] consecutive HPFs. Since the volume of blood corre-

sponding to 200 HPF of a thick �lm is 0.4 µl, examining 200 HPFs was considered

as the best compromise between the need to reduce the risk of missing parasites

and the need to minimize the reading time [Trape 1985]. A variant of this method

adapts the reading e�ort to how numerous the parasites are. If less than p para-

sites are counted in the n �rst HPFs, then an additional number of �elds m has to

be read. Generally, a predetermined number of HPFs has to be examined before

deeming a slide to be negative.

The relative quantity of blood examined in a predetermined number of HPFs is

unknown. In addition, usually the thickest part of the slide is examined in the �rst

type of threshold-based counting methods. However, the volume of blood examined

and the thickness of the smear depend on the experience of the microscopist. The

exact volume of blood examined is then required to give a precise estimation of the

PD, since it allows a direct conversion of counts per a �xed number of HPFs to

counts per µl. To bypass this di�culty, some methods suggest to count parasites in

a �xed volume of blood.

The Lambaréné method [Kremsner 1988] of counting is applied by dropping and

evenly distributing 10µl of blood on a 10×18−mm area of a microscope slide. The

number of parasites is counted per 3, 5, 10, 50, or 100 HPFs. Then, the count is

multiplied by an appropriate multiplication factor to yield to the total number of

parasites per microliter of blood. The value of this multiplication factor depends on

the microscope magni�cation (×1, 000 usually) and the area of the microscope slide,

and it is most of the time 400− 800 for counts per HPFs. A variant of this method

was brie�y mentioned in [Planche 2001]. The Lambaréné method has the advantage

of direct quanti�cation of the PD, being rapid, and sensitive. This method showed

similar results to those of quantifying the parasitaemia according to the standard

number of leukocytes and may also be preferable to the �rst type of methods in

terms of accuracy and reliability [Planche 2001].

In the second case, parasites are counted against a �xed number of WBCs.
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The number of parasites is counted on one tally counter and the number of WBCs

is counted on a second one. The conversion to counts per microliter depends on

an assumed mean of 8, 000 WBCs per microliter of blood [Bruce-Chwatt 1958,

Greenwood 1987]. The average value of 8, 000 WBCs per µl is accepted as rea-

sonably accurate by The World Health Organization (WHO) [WHO 2010a]. The

number of parasite is usually counted against 200WBCs and multiplied by 40 to give

the number of parasites per µl [Chippaux 1991, Greenwood 1991, Warhurst 1996,

Prudhomme O'Meara 2006a]. In more adaptative methods, the WBC threshold

depends on how numerous the parasites are. In these methods, if parasites are

not numerous in the �rst readings, then an additional number of WBCs should be

counted. Hence, the lower the number of parasites counted, the higher the num-

ber of WBCs that should be counted. According to the WHO recommendations

[WHO 2010a], parasites are counted until 200 WBCs are seen. If less than 100 are

found, then counting should be continued up to 500 leukocytes. During a research

program conducted in the Tori Bossito area in Southern Benin [Le Port 2011b],

the PD was determined by simultaneously counting parasites and leukocytes. The

counting stops when either 500 WBCs or 500 parasites are seen whichever comes

�rst.

The accuracy of the mean number of 8, 000 WBCs per µl has been investigated

in many studies. Leukopenia (decreased WBC count) and leukocytosis (increased

WBC count) may confound population studies that estimate parasite densities on

the basis of the assumed WBC count. Using of assumed WBC count rather the

absolute WBC count may lead to over-estimation, or under-estimation of the PD in

malaria infections [Jeremiah 2007]. This number is shown to be lower in adults, e.g.

7, 000 µl in [Wintrobe 1967], and between 5000 and 6500 per µl in [Blistein 1950,

Acker 1967, Rougemont 1991]. This number is higher in children, e.g. 10,000 per

µl in children between two and four years in [Cartwright 1968], the same average

is recorded in children less than �ve years in [Adu-Gyasi 2012]. Hence, there is a

signi�cant correlation between the WBC count and the age. WHO recommended

an age-group system for malaria studies [WHO 1963]. Regional-based WBC counts

are suggested to improve the accuracy of PD estimation in epidemiological surveys

[Trape 1985, Adu-Gyasi 2012]. However, most malaria-endemic countries in sub-

Saharan Africa may not be able to express the PD on the basis of the "real" WBC

count [Olliaro 2011]. The use of the assumed WBC count is considered as reasonable

for use in PD estimation [WHO 2010a]. It has been demonstrated to be fairly

accurate as it counterbalances the loss of parasites after the dehaemoglobinization

and staining of thick �lms in [Bruce-Chwatt 1958, Dowling 1966].

Some counting methods based on the "real" WBC count have been proposed by

research teams in order to optimize the assessment of PD. Among them, Garcia et

al. (2004) proposed the following methods, which proceeded in two independent

steps. Firstly, only WBCs were counted in 30 HPFs and expressed as the number

of WBCs by HPFs. Secondly, parasites were counted in 10, 50 or 200 HPFs, and

expressed as the number of parasites by HPFs. The number of HPFs read depended

on how numerous the parasites were and the result was computed by dividing the
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mean number of parasites by the mean number of leucocytes and expressed as a

number of parasites per 100 leucocytes. A TBS has been declared negative when no

parasite was detected in 200 �elds. This method has been used for a genome wide

association study using the data of a cohort of children followed-up in Niakhar area

in Senegal [Milet 2010].

3.5 Discussion

The accuracy and e�ciency of conventional malaria microscopy of TBSs have

been investigated in the scienti�c litterature [Dowling 1966, Trape 1985, Bland 1986,

Payne 1988, Greenwood 1991, Clendennen 1995, Mulder 1998, Dubey 1999,

Dini 2003, Prudhomme O'Meara 2005, Bejon 2006, Prudhomme O'Meara 2006a,

WHO 2007a, Alexander 2010]. These studies have shown that many factors may

in�uence the reliability of estimation methods, including the microscopist skills,

the sample preparation, the method features (number and type of thresholds),

the loss of parasites during the staining and the dehaemoglobinization of TBSs,

assumptions made on the volume of blood per HPF and the assumed number

of WBCs per µl. Errors in PD estimation have major consequences for the

patient management, the results of epidemiological surveys, the public health

initiatives, and the e�ectiveness of clinical trials of drugs and vaccine candidates

[Dini 2003, Bates 2004, Prudhomme O'Meara 2006a].

In an attempt to understand how the thresholds involved in parasite enumeration

methods contribute to the magnitude of discrepancies in PD determination, their

impact in variability measures generated by commonly used threshold-based count-

ing techniques are studied in Chapter 4. Furthermore, the accuracy and e�ciency of

PD estimation methods in malaria need to be improved through the enhancement

of operational training and the standardization of laboratory diagnosis. The latter

issue is discussed in Chapter 6.





Chapter 4

Statistical Properties of Parasite

Density Estimators

�It is really just as bad technique to

make a measurement more

accurately than is necessary as it is

to make it not accurately enough.�

Arthur David Ritchie, 1923
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4.1 Introduction

Epidemiological interpretations must rely on solid evidence. The reproducibility

for parasite density (PD) data is of major interest. However, all the methods used to

determine the PD (see section 3.4), potentially induce variability. To deal with this

potential inaccurate estimation of PD, research teams tend to analyze more slides

and subjects. By taking duplicate readings or larger sample sizes, we can statistically

improve our knowledge of the PD being measured. Then, we can decrease the

variability in microscope slide readings and improve the accuracy and reproducibility

of the measurements. However, one of the problems the research teams have to deal

with is that during large scale studies the number of thick blood smears performed

can be greater than 10, 000. Then, the repetition of the microscope slide examination
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leads to an important cost overrun in terms of both money and time. One may

wonder whether such practices have a signi�cant interest for the �nal results. With

low parasitemias, it is probably worth the e�ort of reading more slides. But in some

situations it is not needed, for example, with large parasitemias levels.

To our knowledge, none of the studies of variability have dealt with the sampling

error generated by the threshold-based counting techniques or evaluated the impact

of the existing threshold values in endpoint measurements. In addition, the accuracy

and consistency of these methods have largely been overlooked. Furthermore, there

is no general agreement on the optimal method for estimating the PD according

to threshold values. Further experimental evidence is needed to determine which

parasite counting technique is most accurate, reproducible, and e�cient. The aim

of this chapter is to explore the variability of four frequently used threshold-based

counting methods of determination of PD. For each of these methods, we assessed

the consequences that a modi�cation of the threshold can have on variability.

4.2 Materials and Methods

4.2.1 Threshold-based counting techniques

PD estimates accuracy vary signi�cantly depending on the methodology from

which they are derived. The estimation method di�ers from one healthcare organ-

isation to another. Here, we are interested in four basic types of threshold-based

counting techniques commonly used in epidemiological surveys. In these methods,

parasites are usually counted either relative to a given number of high-power �elds

(HPFs), or according to a �xed number of white blood cells (WBCs). References to

these (and other) methods can be found in Chapter 3.

The �rst method consists in counting parasites in 200 consecutive HPFs

[Molineaux 1980, Trape 1985]. This method will be referred to as Method A. Here,

the number of HPFs read is the threshold value. We investigate the in�uence of this

number on the reliability of the PD estimation.

The second method consists in counting parasites against 200 WBCs

[Chippaux 1991, Greenwood 1991, Warhurst 1996, Prudhomme O'Meara 2006a].

This method will be referred to as Method B. In this method, only one thresh-

old value is speci�ed, which is the number of leukocytes seen `. We are interested

in how the value of ` a�ects measures of variability.

The third method considered is the one recommended by The World Health

Organization [WHO 2010a]. In this method, parasites are counted until 200 WBCs

have been seen. If 100 parasites or more are found, the number of parasites per

200 WBCs is then recorded. Else, counting should be continued up to 500 WBCs.

This method will be referred to as Method C. Three parameters are speci�ed : the

required number of parasites p, the required number of leukocytes in the �rst step `1,

and the required number of leukocytes in the second step `2. Modeling, estimating

and validating multidimensional distribution functions cast di�cult problems, both

conceptual and technical. For that reason, it is more convenient to �x `2 = 500 and
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to study the method's performance by varying the two parameters p and `1. Hence,

we obtain the in�uence of adding an extra threshold value on the �nal estimation.

The last method considered was used during a research program conducted in

the Tori Bossito area in Southern Benin. In this program, the PD is determined by

simultaneously counting parasites and leukocytes. The counting stops when either

500 WBCs or 500 parasites are seen whichever comes �rst [Le Port 2011b]. This

method will be referred to as method D. Two parameters are speci�ed : the required

number of parasites p and the required number of leukocytes `. We analyze the

performance of the method with respect to e�ectiveness and e�ciency for di�erent

values of parameters p and `.

Unlike methods A and B, methods C and D are adaptative methods. In these

methods, counting stops when parasites are found in su�cient number. Hence, their

cost is reduced for high parasitemias.

4.2.2 Measures of variability

The source and scale of measurement error depends on several parameters, such

as sample preparation, staining process, counting technique, microscopist perfor-

mance, etc. However, variation of the PD within a slide is expected even when

prepared from a homogeneous sample [Alexander 2010]. The sampling variability

is a source of interest when studying the e�ciency of estimation methods. It refers

to the di�erent values which a given function of the data takes when it is com-

puted for two or more samples drawn from the same population. In this chapter, we

are interested in the sampling errors and biases induced by threshold-based count-

ing techniques and more particularly in the impact of threshold values in endpoint

measurements.

Let θ be the parameter that denotes the real value of the PD per microliter of

blood and let θ̂ be its estimate. Since θ̂ is a random variable, it can never been said

with certainty that this estimate is close to the true value of θ. For that reason, we

consider its statistical properties, that is, its probability distribution P (θ̂), or some

restricted aspects thereof. Here, we focuss on variability measures : mean error

(ME), coe�cient of variation (CV) and false negative rate (FNR).

4.2.2.1 Mean Error

In order to de�ne the variability measures, we need to introduce the concept of

mathematical expectation. The expected value of the estimator θ̂ denoted as E(θ̂)
is an average taken over all possible values of θ̂. Suppose θ̂ takes value s1 with

probability p1 = P (θ̂ = s1), value s2 with probability p2 = P (θ̂ = s2), and so on, up

to value sn with probability pn = P (θ̂ = sn). Then the expectation of θ̂ is de�ned

as

E(θ̂) =
∑
k

skpk.



44 Chapter 4. Statistical Properties of Parasite Density Estimators

The sampling bias occurs when the true value (in the population) di�ers from

the observed value (in the study) due to a �aw in the sample selection process. An

estimator bias is the di�erence between the estimator's expected value E(θ̂) and

the true value of the estimated parameter θ. Hence, in computing the bias induced

by di�erent counting techniques, we used bias =
∑

k skpk − θ. An estimator with

zero bias is called unbiased. Mean error is the bias expressed as a percentage of θ,

i.e. ME = bias(θ̂)
θ . It provides a measure of the magnitude of the bias and allows

comparing di�erent methods.

4.2.2.2 Coe�cient of variation

A measure of the sampling error is the standard deviation which is the square

root of its variance. Standard deviation is a measure of dispersion from the mean,

or the expected value and it is commonly used to compute con�dence intervals in

statistical inferences. The reported margin of error is typically about twice the

standard deviation (1.96), the radius of a 95 percent con�dence interval. Sampling

variability can also be expressed relative to the estimate itself through the coe�cient

of variation (CV), which is de�ned as the ratio of the standard deviation σ to the

true value θ. In computing the CV induced by di�erent estimation methods, we

used

CV =

√∑
k(sk − E(θ̂))2pk

θ
.

Then, CV is expressed as a percentage of θ.

4.2.2.3 False negative rate

The last measure of variability we study is the false negative rate (FNR), also

known as Type II error or β error, which is the error of failing to reject a false null

hypothesis. The false negative rate indicates the probability of a counting method

to estimate PD as null when it is not, i.e. P (θ̂ = 0 | θ > 0).

4.2.2.4 Cost

In addition to the variability, we are also interested in the cost-e�ectiveness of

each method. We de�ne the method's cost as the number of HPFs that has to be

read to reach the threshold value. Once it is reached, we stop the examination of

the smear. Depending on the method being used, the cost is based on the number

of parasites (or WBCs) required to stop the reading of the thick blood smear. Let

T denote the required number of HPFs to stop the counting. We �rst compute

P (T = t). Then, we express the Method cost as E(T ).

4.2.3 Methodology

The following methodology is used to compute the three measures of variability

(ME, CV and FNR) and to assess cost-e�ectiveness of methods. Firstly, the ex-
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act distribution of θ̂ is computed through recursive formulas. Secondly, based on

this probability density function, measures of variability are derived. Finally, cost-

e�ectiveness is de�ned for each method as the required number of HPFs that has to

be read until the threshold is reached. A C++ program is used to implement these

recursive formulas. The calculations are performed under two assumptions :

A1. The distribution of the thickness of the smear, and hence of the parasites

within the smear, is homogeneous.

A2. The distribution of the parasites in the HPFs is uniform, and thus can

be modeled through a Poisson distribution [Petersen 1996a, Kirkwood 2001,

Alexander 2010].

Notations

Let Xi be a random variable that represents the number of parasites in the i-th

HPF. Suppose that Xi are independent and identically distributed (i.i.d.).

Under an assumption of uniformity, the number of parasites per �eld can be modeled

using Poisson distribution (assumption A2). If the expected number of parasites per

HPF is λp, then Xi ∼ P(λp). Thus E(Xi) = V (Xi) = λp.

Let Yi be a random variable that represents the number of leukocytes in the i-th

HPF. Suppose that Yi are independent and identically distributed (i.i.d.). Leuko-

cytes are supposed evenly distributed over the thick smear. Therefore, the number

of leukocytes per �eld can be modeled using the Poisson distribution. If the expected

number of parasites per HPF is λ`, then Yi ∼ P(λ`). Thus, E(Yi) = V (Yi) = λ`.

� Let φ denote the parasite density per WBC.

� Let St be the sum of parasites in t consecutive HPFs.

Then, St =
∑t

i=1Xi ∼ P(tλp).

� Let Rt be the sum of leukocytes in t consecutive HPFs.

Then, Rt =
∑t

i=1 Yi ∼ P(tλ`).

� Let Up be the minimum number of HPFs required to obtain p parasites.

Up can be expressed in terms of Xi as follows

Up = argmin
t
{

t∑
i=1

Xi ≥ p}

Probability of Up is given by

P (Up = t) = P (St ≥ p, St−1 < p)

=

p−1∑
s=0

P (Xt ≥ p− s) ·P (St−1 = s) (4.1)

� Let V` be the minimum number of HPFs required to obtain ` leukocytes.

V` can be expressed in terms of Yi as follows

V` = argmin
t
{

t∑
i=1

Yi ≥ `}
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The probability mass function of V` is given by

P (V` = t) = P (Rt ≥ `, Rt−1 < `)

=

`−1∑
r=0

P (Yt ≥ `− r) ·P (Rt−1 = r) (4.2)

4.2.3.1 PD estimation

For method A, natural estimator of θ is used and the exacts formulas of ME,

CV and FNR are given. However, the estimation of θ is not straightforward for

the remaining methods (B, C, D). Hence, recurrence formulas are used to derive

variability measures.

Let θ̂A be the estimator of θ for Method A. Let n be the number of HPF read.

Since Xi ∼ P(λp) and Xi are iid, we have Sn ∼ P(nλp). The number of parasite per

�eld λp is then estimated by λ̂p where λ̂p = Sn
n . Assuming the average amount of

blood in each �eld as 0.002 µl [Dowling 1966], the PD is estimated by θ̂A = λ̂p×500.

Since E
[
θ̂A

]
= θ, θ̂A is unbiased. Thus, the ME is null.

In order to evaluate the e�ciency of this estimator, the variance is to be com-

pared against the Fisher Information I(θ). The variance of this unbiased estimator

is bounded by the inverse of the I(θ); namely the Cramer-Rao Bound (CRB). We

show that the variance of the proposed estimation technique reaches the Cramer-Rao

lower bound as follows

var(λ̂p) ≥
1

nI(λp)

where

I(λp) = −Eλp

[
∂2 logL(X,λp)

∂2λp

]
The log likelihood function is de�ned by

L(xi, λp) = logL(xi, λp)

= log p(xi, λp)

= −λp − log(xi!) + xi log(λp)

∂ logL(xi, λp)
∂θ

= −1 +
xi
λp

∂2 logL(xi, λp)
∂2θ

= − xi
λ2p

E
[
∂2 logL(xi, λp)

∂2θ

]
= − 1

λp

Then, I(λp) =
1
λp
, which gives CRB =

λp

n .
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The variance of the estimator is de�ned by

var(λ̂p) = var(
1

n

n∑
i=1

Xi)

=
1

n2

n∑
i=1

var(Xi)

=
1

n
var(Xi)

=
λp
n

Hence, var(λ̂p) reaches the CRB. Hence, θ̂A is an e�cient estimator of θ.

The coe�cient of variation (CV) is de�ned as the ratio of the standard deviation

σ to θ, which is equal to 1√
nλp

.

In practice, false negatives occur when diagnosing by mistake PD as null after

reading n HPFs, i.e. P (Sn = 0), which gives FNR = e−nλp .

For Method B, φ is estimated by φ̂B =
SV`
RV`

. Then, θ is estimated by θ̂B =

φ̂B × 8, 000.

To derive statistical properties of the PD estimate, we �rst need to compute the

probability of seeing k parasites (resp. r leukocytes) in V` HPFs. These probabilities

can be expressed as follows

P (SV`
= k) =

∑
t

P (St = k) ·P (V` = t) (4.3)

P (RV`
= r) =

∑
t

P (Rt = r) ·P (V` = t)

St and Rt are Poisson-distributed and the probability of V` is computed according

to Equation (4.2).

The probability density function of φ̂B is

P (φ̂B = s) =
∑
k
r
=s

P (SV`
= k) ·P (RV`

= r)

Let p be the required number of parasites for Method C. Let V`1 be the minimum

number of HPF required to obtain `1 leukocytes and V`2 be the minimum number of

HPF required to obtain `2 leukocytes. Let U`1,`2 be the minimum number of HPFs

required to obtain p parasites. The probability mass function of U`1,`2 is as follows

P (U`1,`2 = t) = P (V`1 = t) ·P (SV`1
≥ p) + P (V`2 = t) ·P (SV`1

< p)

Probabilities of V`1 and V`2 are computed according to Equation (4.2).

Probability of SV`1
is computed according to Equation (4.3).

Then, θ is estimated as follows θ̂C = φ̂C × 8, 000, where φ̂C =
SU`1,`2
RU`1,`2

.
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The probability density function of φ̂C is

P (φ̂C = s) =
∑
k
r
=s

P (SU`1,`2
= k) ·P (RU`1,`2

= r)

For Method D, U`,p denotes the minimum number of HPF required to obtain

either ` leukocytes or p parasites, i.e. U`,p = min (V`, Up). The probability mass

function of U`,p is as follows

P (U`,p = t) = P (V` = t) ·P (Up > t) + P (Up = t) ·P (V` > t)

Probabilities of Up and V` are computed according to Equation (4.1) and

Equation (4.2).

Then, θ is estimated by θ̂D = φ̂D × 8, 000, where φ̂D =
SU`,p

RU`,p
.

The probability density function of φ̂D is

P (φ̂D = s) =
∑
k
r
=s

P (SU`,p
= k) ·P (RU`,p

= r)

4.2.3.2 Validation study

Simulations are used to study the accuracy of our mathematical models, and to

validate the theoretical results derived from estimators' probability functions. For

the purpose of simulations, we prede�ne a data-generating model of θ. Given λp and

λ`, PD data are sequentially generated for each HPF. In that way, random samples

of θ are generated under the Poisson assumption. Then, we investigate properties

of sample means, variances and FNR. We use the statistical software package R to

perform 10, 000 simulations. In each simulation step, we generate 1, 000 random

drawings of θ and we save the sample ME, CV, FNR and cost in a vector. In that

way, we were able to investigate the results of all simulation steps. We compare the

simulated results to the theoretical ones. Simulations are computationally expensive.

Then, it is burdensome to have to perform 10, 000 simulations to estimate each PD

value according to methods A, B, C and D. Hence, computing the exact distribution

of θ is a most useful alternative.

4.2.3.3 Colormaps

The recursive formulas described above are used to compute the exact distribu-

tion of variables. Each computation takes as input : λ` the number of leukocytes

per �eld, λp the number of parasites per �eld and the threshold values (the number

of HPFs or the number of WBCs or the number of parasites). The outputs are

ME, CV, FNR and cost values. This approach is computationally expensive due

to recursive formulas that precisely compute probability of getting r WBCs (resp.

k parasites) according to each counting technique. These probabilities are used to

compute P (θ̂). Statistical properties of PD estimators are then derived. These
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data sets are gridded into colormaps where the values taken by a variable (ME,

CV, FNR, cost) in a two-dimensional table (X,Y) are represented as colors. Each

rectangle in this grid is a pixel (or a color sample). This program sets each pixel

to a color index according to its coordinates. Each pixel has an X and Y position

where the X coordinate is the PD value and the Y coordinate is the threshold value.

The X axis spans the range of 0 to 20,000 parasite per µl (400 values). The Y axis

ranges from 0 to 500 (500 values). Hence, we used a resolution of 400× 500 pixels.

Contour lines are overlaid over the colormaps. A contour line connects points where

the function has constant value. Linear interpolation is used in generating contour

data. A higher resolution is needed to achieve a smoother mapping and to avoid

artifacts (jagged contours), which arise due to interpolation.

We believe that if data mappings are addressed simultaneously in a single frame-

work, the resulting approach will facilitate visual comparisons of methods. At that

point, we consider the problem of scale. The methods use either di�erent numbers of

arguments or di�erent types of arguments. We got rid of this by expressing variabil-

ity measures for all methods as functions of parasity density and WBCs count. To do

so, we convert threshold values used in each method into WBCs count. For Method

A, we assume an average of 8, 000 WBCs per microliter of blood [WHO 2010a] and

an average of 0.002 microliter of blood in each �eld [Dowling 1966]. The number

of HPFs read n is then multiplied by λ` = 16 WBCs to give the number of WBCs

counted in n HPFs. For Method B, the thresold value is the number of WBCs

counted `. For Method C, we consider the case where `1 = p
2 and we �x `2 = 500.

For Method D, we consider equal numbers of parasites p and leukocytes ` that have

to be seen to stop the counting, hence ` = p. Theses decisions are based on common

use and can be considered reasonable assumptions. Moreover, this two-dimensional

representation has the conceptual advantage of reducing the number of arguments

and ensures a common approach for assessing methods performance.
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4.3 Results

In the following, parasitemia was categorized as either low (PD 6 100

parasites/µl), intermediate (100 < PD < 10, 000 parasites/µl) or high (PD > 10, 000

parasites/µl).

Method C involves three threshold values, which leads to a multidimensional

problem. For this reason, we chose to express the parasite count in the �rst step as

the half of the leukocyte count. We �xed the leukocyte count in the second step to

500 WBCs.

4.3.1 Impact of thresholds on variability measures

4.3.1.1 Mean error

The mean value of the Method A estimator equals the true value of the PD.

Therefore this estimator is called an unbiased estimator. In addition to having the

lowest variance among unbiased estimators (so called Minimum Variance Unbiased

Estimator), this estimator also satis�es the Cramér-Rao bound, which is an absolute

lower bound on variance for statistics of a variable and thus is an unbiased e�cient

estimator.

As shown in Figure 4.1, the ME of Method B only depends on threshold values.

In Method B, parasites are counted until a �xed number of WBCs are seen and

the number of parasites seen is not involved in the stopping rule of this counting

process. Hence, the ME is independent from the PD. The colormap of the ME shows

that the mean error decreases as threshold values increase. For instance, counting

parasites until 400 WBCs instead of 200 WBCs decreases the bias by 0.5% of the

PD. This can help choose the threshold value that allows to decrease the bias to a

reasonable value.

For Method C, three parts can be distinguished. For PD 6 4, 000 parasites/µl,

contour lines are increasing functions of the PD and the thresholds. The darkest

part on the map represents a constant ME. Due to the limited number of parasites

in this area, counting is carried out until 500 WBCs are seen. Hence, Method C

has similar behavior to Method B for WBCs= 500. By counting up to 500 WBCs,

the mean error is �xed to 0.4%. For 1, 000 < PD < 10, 000 parasites/µl, ME

values are represented by a set of bell-shaped density curves with a peak reached

at PD = 4, 000 parasites/µl. 4, 000 is half the standard number of WBCs per µl.

For Method C, the number of parasites counted is half the number of leukocytes.

For PD 6 4, 000 parasites/µl, increasing the PD increases the leukocyte count for

a �xed ME value. If the microscopist wants to estimate for constant ME a higher

PD, he needs to count more leukocytes. A higher threshold value is then required

due to the small number of parasites present in this area. For PD > 4, 000, lower

leukocyte counts are needed to maintain a constant ME value. A steady state will be

reached afterwards whereby the ME is density independent. Due to the abundance

of parasites, the ME only depends on the WBCs count. This steady-state region

starts at PD = 6, 650 parasites/µl for ME = 0.5%.



4.3. Results 51

Note that the same ME level may be reached by more than one threshold value (eg.

two contour lines for ME = 10%).

For PD 6 6, 000 parasites/µl, the ME generated by Method D is density in-

dependent (see Figure 4.1). In this interval, leukocytes are more abundant than

parasites. Hence, parasites are counted until a predetermined number of leukocytes

is reached. We notice that increasing the leukocyte count will not signi�cantly re-

duce the bias. For instance, counting parasites until 400 WBCs are seen, instead

of 200, decreases the bias only by 0.5% of the PD. For 6, 000 < PD < 10, 000

parasites/µl, contour lines reach their minimum at PD = 8, 000 parasites/µl. In

this area, the number of leukocytes per �eld (λ`) and the number of parasites per

�eld (λp) are very close. Lower threshold values are needed to maintain a constant

ME. For high parasitemia, parasites are more numerous than leukocytes. The ME

is therefore density dependent. If the microscopist wants to estimate for constant

ME a higher PD, he needs to count more parasites.

4.3.1.2 Coe�cient of variation

The CV of Method A is the inverse square root of λp times the number of �elds

(see Materials & Methods). If the counting does not exceed 12 HPFs (i.e. WBCs 6
200), CV values are higher than 9.94% of the real PD for low and intermediate

parasitemias (see Figure 4.2). Above 20, 000 parasites/µl, CV values are less than

3%. Counting up to 31 HPFs (i.e. WBCs ≈ 500) instead of 12 HPFs (i.e. WBCs ≈
200), decreases the CV by approximately 10% of the PD.

For Method B, CV values lie midway between 10% and 20% of the PD for high

parasitemias when WBCs > 100 (see Figure 4.2). Notice that increasing the number

of WBCs counted will not signi�cantly decrease the CV for high parasitemias.

For Method C, the vertical lines indicate that the CV only depends on PD for

low parasitemias. Due to the small number of parasites, CV levels are obtained

by counting parasites until 500 WBCs are seen. Notice that CV values exactly

match those obtained by Method B with WBCs = 500. Figure 4.2 shows bell-

shaped patterns for higher densities (for 1, 000 < PD < 10, 000 parasites/µl) with

a peak reached at PD = 4, 000 parasites/µl. Along the same line as Method B, a

constant CV level may be reached by more than one threshold value for PD > 13, 500

parasites/µl.

For Method D, the negative slope of the contour lines captures the indirect

relationship between the threshold and the densities for PD < 8, 000 parasites/µl.

For a �xed CV level, threshold values decline with density. In this interval, the

counting stops when the �xed number of leukocytes (i.e: the threshold value) is

obtained. The minimum is reached at PD = 8, 000 parasites/µl. For PD > 8, 000

parasites/µl, positively sloped CV curves re�ect the direct relationship between the

threshold and the PD. In this area, parasites are more abundant than leukocytes.

Therefore, the counting stops when the �xed number of parasites (i.e: the threshold

value) is reached. If the microscopist wants to estimate with the same level of

precision (i.e: for constant CV) a higher PD, he needs to count more parasites. A
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Figure 4.1: Mean error colormap.
The colormap is drawn given a two-dimensional array of ME values. To allow for direct point-to-

point numerical and visual comparison, we express the ME as a function of the parasite density

(on the x-axis) and the WBC count (on the y-axis) in each of the four methods. Parasite density

values are generated starting with 0, at increments of 50, and ending with 20, 000. Threshold

values (WBCs) are generated starting with 0, at increments of 1, and ending with 500. Then, each

pixel is assigned a value that represents the ME-level. A color scale grading was applied to show

levels. 7 degree intervals are depicted using a red-to-yellow colorspace with increasing intensity.

We contour the ME at 0.5, 0.75, 1, 1.5, 3 and 10. The gaps between each pair of neighboring

contour lines is �lled with a color.
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higher threshold value is then required.

4.3.1.3 False negative rates

For Method A, FNR decreases exponentially with increasing number of �elds

(n) and increasing number of parasites per �eld (λp) (see Materials & Methods).

If the counting does not exceed 20 HPFs (i.e. WBCs 6 320), the probability of

misdiagnosis is high for low parasitemia levels (see Figure 4.3). For intermediate

densities, this probability is less than 1% when the threshold is above 30 HPFs. For

high parasitemias, false negatives occur much less frequently (< 0.001%). Despite

unbiasedness and e�ciency, this estimator generates a high number of false negatives

when the problem is di�cult (low parasitemia).

Figure 4.3 shows that the FNRs of Method B vary from 5% to 80% for low

parasitemia levels. For intermediate densities, this probability is less than 5%. False

negatives do not occur for high parasitemia levels.

For Method C, the FNRs are threshold independent for PD 6 200 parasites/µl

and WBCs > 20. The number of false negatives arises from counting up to 500

WBCs. For 200 < PD 6 2, 000 parasites/µl and 10 6 WBCs 6 20, FNR values

varies from 0.001% to 0.5%. For PD 6 2, 000 parasites/µl and WBCs < 10, FNR

values are higher than 0.5%. False negatives do not occur for high parasitemia levels

(PD > 10, 000 parasites/µl).

For low parasitemias, we point out striking similarities between the FNRs in

Method D and the FNRs in Method B. Due to the scarcity of parasites in this area,

estimates are based on the leukocyte count in Method D.

4.3.1.4 Cost-e�ectiveness

Method A does not adapt to the variation of PD from one individual to another

and costs a �xed HPFs number for all PD values.

The cost of Method B is an increasing linear function of the threshold values

(see Figure 4.4). The cost here is independent from PD. This can be explained by

the homogeneous distribution of leukocytes within the �elds. Since we assumed a

�xed number of leukocytes per �eld (λ`), the number of �elds needed will indeed be

independent of the PD.

For low parasitemia levels and WBCs > 5, the darkest color in the cost colormap

of Method C indicates a constant cost of approximately 31 HPFs, which corresponds

to the number of �elds needed to reach 500 WBCs. For intermediate parasitemia

levels, the cost varies depending on both the threshold value and how numerous the

parasites are. The cost is independent from PD for high parasitemia levels. The

number of �elds needed is the ratio of WBCs to λ`.

Method D is highly adapted to parasitemia levels in terms of cost. For PD 6
8, 000 parasites/µl, the cost is density independent. For PD > 8, 000 parasites/µl,

the cost decreases with density for a �xed threshold value. In this interval, parasites

are more abundant than leukocytes. A lower number of �elds is then needed to

reach a predetermined threshold value.
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Figure 4.4: Cost-e�ectiveness colormap.
The colormap is drawn given a two-dimensional array of cost values. To allow for direct point-to-

point numerical and visual comparison, we express the cost as a function of the parasite density

(on the x-axis) and the WBC count (on the y-axis) in each of the four methods. Parasite density

values are generated starting with 0, at increments of 50, and ending with 20, 000. Threshold

values (WBCs) are generated starting with 0, at increments of 1, and ending with 500. Then, each

pixel is assigned a value that represents the cost-level. A color scale grading was applied to show

levels. 7 degree intervals are depicted using a red-to-yellow colorspace with increasing intensity.

We contour the cost at 5, 10, 15, 20, 25 and 30. The gaps between each pair of neighboring contour

lines is �lled with a color.
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4.3.2 Methods comparison for three parasitemia levels

To explore similarities and di�erences in method behaviors, we look more closely

at the statistical properties of PD estimates. We choose three cut-o�s for low (100

parasites/µl), intermediate (1, 000 parasites/µl) and high (10, 000 parasites/µl) par-

asitemias.

As Method A was shown to be unbiased, it was excluded from the ME analysis.

As shown in Figure 4.5, Method B and Method D seem to have similar behaviors

in terms of ME for low and intermediate parasitemias insofar as the two estimates

are based on the leukocyte count in this density interval. For high parasitemias,

Method B and Method C give the same results. The parasite count in Method C

does not in�uence the accuracy of the method as long as parasites are numerous.

For this reason, the two methods basically behave the same way.

To understand how the threshold values in�uence the variability of PD estimates,

we plotted the CV according to threshold values. Figure 4.5 shows that the CV is

highly sensitive to any variation of low thresholds (6 100). However, we see very

few variations of the CV as threshold values increase (> 100). Both Methods B

and D generate very close CV values for low and intermediate parasitemia levels.

This result is expected since the number of WBCs seen is greater than the parasite

number in the considered PD intervals. Hence, the two methods have the same

stopping rules. For high parasitemias, Method B and Method C generate similar

variability whereas Method A is signi�cantly more precise than the other methods

(B, C, D). However, Method A generates higher FNR for intermediate parasitemia

than other methods when the count does not exceed 20 HPFs. For high PD levels,

false negatives do not occur when the count exceeds 5 HPFs.

Figure 4.5 point out the high level of accuracy and precision performance of

Method C for low and intermediate parasitemias. Thus, adding a supplementary

stopping rule to the counting process and taking into account the parasite counts

have enhanced the method performance, which raises questions regarding the reper-

cussions in terms of cost-e�ectiveness. As shown in Figure 4.5, Method C is more

expensive and time-consuming for low and intermediate parasitemias and requires

constant cost (31.5 HPFs). As leukocytes are more present than parasites in the

considered PD intervals the counting will be carried out until 500 WBCs are seen.

Method A and B costs are density independent and increase linearly with threshold

values. Method D outperformed the three other methods in terms of cost for high

parasitemia levels.

4.3.3 Variability of measurements at equal cost-e�ectiveness

The duality between variability and cost illustrated in the previous section

prompted a more detailed analysis of method performance di�erences at equal cost-

e�ectiveness. In order to do this, we represent the variability measures as a function

of cost. As shown in Figure 4.6, Methods B and D behave the same in terms of

ME and CV for low and intermediate PD levels. For Method C, ME, CV and FNR
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Figure 4.5: Statistical properties of PD estimators cut-o�s according to

threshold values for three PD levels: low (100 parasites/µl), intermediate

(1, 000 parasites/µl) and high (10, 000 parasites/µl).
Variability measures (ME, CV, FNR) and cost are expressed as functions of the WBCs count

(threshold) for the four methods (A, B, C, D). This graph gives the required number of WBCs

for each method according to an expected amount of variability or cost, and favours a direct

comparison between methods in terms of WBCs count. A logarithmic scale is used on the x-axis

for FNR.
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are density independent for low and intermediate parasitemias. For high PD levels,

Methods B, C and D present similar results for ME, CV and FNR. Method A has

the lowest CV values but generates higher FNR.
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Figure 4.6: Statistical properties of PD estimators cut-o�s according to

methods cost for three PD levels: low (100 parasites/µl), intermediate (1, 000

parasites/µl) and high (10, 000 parasites/µl).
Variability measures (ME, CV, FNR) are expressed as functions of the cost (the number of HPFs

needed to stop the counting) for the four methods (A, B, C, D). This graph gives the cost for each

method according to an expected amount of variability, and favours a direct comparison between

methods in terms of cost. A logarithmic scale is used on the x-axis for FNR.

4.3.4 Methods comparison for standards threshold values

To identify both similarities and di�erences between the commonly used

threshold-based counting techniques, we estimate ME, CV, FNR and cost as a

percentage of PD according to three parasitemia levels (low, intermediate, high)

for commonly used threshold values. We used 200 HPFs for Method A, 200 WBCs

for Method B, 100 parasites and 200 WBCs for Method C and 500 WBCs or 500

parasites for Method D.

Table 4.1 shows that Method A is the most e�cient method in terms of accuracy
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Low parasitemia

θ = 100 parasites/µl

Method A B C D

ME (%θ) 0.00 1.01 0.40 0.40

CV (%θ) 15.81 64.20 40.68 40.68

FNR (%) 0.00 7.56 0.18 0.18

Cost 200 12.50 31.75 31.75

Intermediate parasitemia

θ = 1, 000 parasites/µl

Method A B C D

ME (%θ) 0.00 1.01 0.40 0.40

CV (%θ) 5.00 23.53 14.85 14.85

FNR (%) 0.00 0.00 0.00 0.00

Cost 200 12.50 31.75 31.75

High parasitemia

θ = 10, 000 parasites/µl

Method A B C D

ME (%θ) 0.00 1.01 1.01 0.45

CV (%θ) 1.58 14.03 14.03 9.31

FNR (%) 0.00 0.00 0.00 0.00

Cost 200 12.50 13 25.50

Table 4.1: Threshold-based counting techniques comparison for low (100

parasites/µl), intermediate (1, 000 parasites/µl) and high (10, 000 parasites/µl)

parasitemias.
Measures of variability (ME, CV, FNR) and cost-e�ectiveness of methods are compared for �xed

threshold values : 200 HPFs for Method A, 200 WBCs for Method B, 100 parasites and 200 WBCs

for Method C, and 500 WBCs or 500 parasites for Method D.



4.4. Discussion 61

(ME) and precision (CV), but has an important cost (200 HPF). Conversely, Method

B is less accurate and precise than Method A while much more cost-e�ective (12.5

HPFs). Method C and Method D present similar properties for low and intermediate

parasitemia levels. In fact, Method C behaves as Method D with a �xed leukocyte

count (500 WBCs) due to the scanty presence of parasites. Hence, the mean error

is density independent in these PD intervals. For high PD levels, Methods B and

C behave the same. Due to the abundance of parasites, the enumeration is stopped

when 200 WBCs are seen in both counting procedures. However, Method D is better

suited to high parasitemia levels in terms of accuracy and precision compared to

Methods B and C but results in up to a 2-fold increase in costs.

4.4 Discussion

To the best of our knowledge, this is the �rst study of threshold-based count-

ing technique performance using the theoretical properties of PD estimators. We

considered four commonly used threshold-based counting techniques, and assessed

the performances of these methods according to threshold values. These thresholds

may be �xed or variable. We showed that adaptative methods are more e�cient

than the ones involving �xed threshold values. To de�ne the theoretical properties

of the estimators we hypothesized that the distribution of parasites within HPFs fol-

lows a Poisson distribution. We demonstrated that Method A estimator is unbiased

and e�cient. However, this estimator generates a high number of false negatives,

especially for low parasitemia levels when the counting does not exceed few HPFs.

Moreover, Method A is time-consuming. We showed that the ME of Method B is

independent from PD, and only depends on the threshold value. This helps to han-

dle the amount of bias with an appropriate choice of the WBC threshold value. We

showed that adding a new parameter to the stopping rules (the number of parasites

seen) implies more accuracy and precision without increasing the method's cost for

low and intermediate parasitemias. Method B and Method D have similar behav-

iors for low and intermediate parasitemia levels while Method D is more accurate

and precise in the considered PD intervals. For high parasitemia levels, Method

B and Method C have similar behaviors and are more accurate and precise than

Method D. However, for high parasitemias, Method D outperformed the three other

methods in terms of cost. For each method, di�erent threshold values may be �xed,

which raises questions regarding the accuracy and reproducibility of these parasite

counting techniques.

The importance of parasite density data reproducibility stems from the need for

epidemiological interpretations to be based on solid evidence. However, variation of

parasite density within a slide is expected even when prepared from a homogeneous

sample [Alexander 2010]. The source and scale of measurement error (sample

preparation, staining process, counting technique, microscopist performance) have

been investigated. The notion of inter-rater reliability is a source of concern in this

context. It refers to a metric for raters' consistency that measures the degree of



62 Chapter 4. Statistical Properties of Parasite Density Estimators

agreement among raters. Many techniques were developed to measure inter-rater

reliability. Some reports deal with the variability in the methods for detecting and

counting parasites in thick smears. They attempt to evaluate the inter-rater relia-

bility of malaria microscopy in epidemiological studies by looking at the variation

of results due to the microscopist's reading. The variability of these methods has

been assessed using statistical approaches [Dowling 1966, Trape 1985, Bland 1986,

Payne 1988, Greenwood 1991, Clendennen 1995, Mulder 1998, Dubey 1999,

Prudhomme O'Meara 2005, Alexander 2010]. These methods used several criteria

to assess the inter-rater reliability and to quantify the degree of agreement between

malaria slide density readings. For continuous data, Analysis of Variance (ANOVA)

is the method of choice. Bland & Altman (1986) [Bland 1986] plotted the di�er-

ences in log-transformed data versus average in mean counts. They expanded on

this idea by plotting the di�erence of each point, the mean di�erence, and the

con�dence limits on the vertical axis against the average of the two ratings on the

horizontal axis. The resulting Bland & Altman plot [Bland 1986] demonstrates not

only the overall degree of agreement, but also whether the agreement is related to

the underlying value of the item. For instance, two raters might nearly agree in

estimating the size of small items, but disagree about larger ones. Alexander et

al. (2010) [Alexander 2010] assessed agreement between replicate slide readings

of malaria parasite density using as criterion the repeatability, that is to say the

value below which the absolute di�erence between results may be expected to lie

with a 95% probability [Braun-Munzinger 1992]. This metric is linked to Bland &

Altman limits of agreement [Bland 1986]. It is half the distance between the upper

and lower limits of agreements. For nominal data, the kappa coe�cient of Cohen

[Fleiss 1973] and its many variants and the Scott 's pi [Scott 1955] are the preferred

statistics.

However, very few studies have examined the threshold-based counting tech-

niques or evaluated the impact of the sampling error in endpoint measurements.

In Nigeria, Dowling & Shute (1966) [Dowling 1966] showed that only 43% of infec-

tions in adults were detected by examining 200 �elds, 61% by examining 600 �elds

and 70% by examining 1, 000 �elds. In the Garki Project, Molineaux & Gramiccia

(1980) [Molineaux 1980] showed that the prevalence observed by the examination

of 400 HPFs compared to 200 HPFs was increased by 10% for P. falciparum, by

24% for P. malariae and by 21% for P. ovale. Trape (1985) [Trape 1985] com-

pared the results of the examination of 100 and 200 �elds of the thick �lm in 245

schoolchildren aged 6 to 16 from Linzolo (Congo). He concluded that the systemic

examination of 200 oil immersion �elds of the thick smear is the best compromise

between the need for precision and rapidity. Prudhomme O'Meara et al. (2006)

[Prudhomme O'Meara 2006b] showed empirically that counting beyond 200 WBCs

may not signi�cantly improve parasite density measurements.

In addition, the accuracy and consistency of these methods have been generally

overlooked. There is no general agreement on the optimal method for estimating

parasite density according to threshold values. Further experimental evidence is

needed to determine which parasite counting technique is most accurate, repro-
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ducible, and e�cient. Ultimately, the question is: to which extent would threshold

values (speci�cally the number of WBCs counted and HPFs seen) in�uence the

variability in parasite density estimates? However, there remains the issue of homo-

geneity. The distribution of the thickness of the smear and hence the distribution of

parasites within the smear is not completely homogeneous [Alexander 2010]. There-

fore, a proportion of the variability may be explained by this homogeneity factor.

To understand how the thresholds involved in parasite enumeration methods

contribute to the magnitude of discrepancies in density determination, we studied

their impact in variability measures generated by commonly used threshold-based

counting techniques. We showed that estimators perform quite di�erently according

to threshold values, and that an overall performance measure probably hides a lot

of complexity in the behavior of each estimator. Another important aspect of this

study is that we observed how estimators perform at di�erent parasitemia levels,

and how much the choice of threshold values may in�uence the performance of

estimators relative to each parasitemia level.

In summary, while all four estimators had some de�ciencies, Method D out-

performed all the other estimators for accuracy, precision measures and cost-

e�ectiveness, and should therefore be seriously considered in future studies of com-

parative performance of PD estimators with �eld-collected data. In this chapter,

we explored the duality between cost-e�ectiveness and precision implied by estima-

tion methods. An open question remains: To what extent is it possible to reduce

methods' cost while staying accurate and precise in estimation measures?

In further support of the arguments cited in this chapter, empirical validation

of the theoretical results is needed through a rereading experience conducted in the

�eld. And toward a better understanding of threshold e�ects, we are interested in

the study of the consequences of the quality of these estimators in models classically

used and starting from these measures (mixed e�ects linear and logistic regression,

generalized linear models, etc).
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EM for Mixtures and HMMs

�I'm not very good with numbers.�

Arthur Dempster

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 EM Algorithm for Mixture Models . . . . . . . . . . . . . . . 67

5.2.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 The E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.3 The M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 EM Algorithm for Hidden Markov Models . . . . . . . . . . 71

5.3.1 HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Forward and backward probabilities . . . . . . . . . . . . . . 74

5.3.3 The E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.4 The M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

The purpose of this chapter is to introduce the tools that are used in Chap-

ter 6 to �t the distribution of parasites and leukocytes per HPF. The EM algo-

rithm is presented with applications to mixture models and Hidden Markov Models

(HMMs). A thorough introduction to HMMs with many applications can be found

in [Zucchini 2009].

Notation

X = X1:T Observed variables.

Xt The value of X at time t.

Xt:t
′ Vector of observations (Xt, ..., Xt

′ ).

S = S1:T Latent (unobserved) variables.

Θ(k) The estimate of the parameters at iteration k.

logP (X | Θ) The marginal log-likelihood.

P (S | X,Θ) The posterior distribution.

logP (X,S | Θ) The complete data log-likelihood (CDLL).

Q(Θ | Θ(k)) The expected CDLL
∑

S P (S | X,Θ(k)) logP (X,S | Θ).
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5.1 Introduction

The expectation-maximization (EM) algorithm is a numerical method for per-

forming maximum likelihood estimation in missing data problems [Dempster 1977].

For a statistical model which is speci�ed through a set of observed data X, a set

of unobserved latent data S, and a vector of unknown parameters Θ, along with a

likelihood function L(Θ | X,S) = P (X,S | Θ), the maximum likelihood estimate

(MLE) of Θ is determined by maximizing the marginal likelihood of the observed

data

L(Θ | X) = P (X | Θ) =
∑
S

P (X,S | Θ) (5.1)

hence

Θ̂MLE = argmax
Θ

L(Θ | X)

Maximizing L(Θ | X) can be quite tedious because it contains a sum over a large

number of S con�gurations. The EM algorithm allows to circumvent this problem.

The algorithm estimates parameters of model Θ that maximize the incomplete data

log-likelihood, logP (X | Θ), by iteratively maximizing the expectation of the com-

plete data log-likelihood, logP (X,S | Θ). The expected CDLL, with respect to the

conditional distribution of S given X, is de�ned in the EM as an auxiliary function,

Q, of current parameter set Θ(k) and new parameter set Θ given by

Q(Θ | Θ(k)) = ES|X,Θ(k) [logL(Θ | X,S)]

=
∑
S

P (S | X,Θ(k)) logP (X,S | Θ) (5.2)

If the CDLL is factorizable, optimizing the Q-function could be much easier than

optimizing the log-likelihood.

Each iteration consists of an expectation (E) step and a maximization (M) step.

After choosing starting values for Θ, the algorithm proceeds as follows :

� E-step : Compute Q(Θ | Θ(k)), which gives the conditional expectations of

the unobserved data given the observations and given the current estimate of

Θ.

� M-step : Maximize Q(Θ | Θ(k)), using instead of the unobserved values

their conditional expectations from the E-step, that is, solve the optimization

problem

Θ(k+1) = argmax
Θ

Q(Θ | Θ(k))

These two steps are repeated until convergence. A �xed stopping rule determines

in advance the desired accuracy of the estimation. For instance, the algorithm may

be stopped when
∑

i | θ(k)i − θ
(k−1)
i |< c, where c is the convergence criterion.

De�ning this stopping rule and the starting values for Θ are crucial. The algorithm is
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conceptually simple and easy to implement. Under mild conditions (e.g. exponential

families in [Dempster 1977]), each iteration k of the algorithm is guaranteed to

increase the log-likelihood L(Θ(k) | X), and Θ(k) is guaranteed to converge to a

Θ̂MLE .

5.2 EM Algorithm for Mixture Models

5.2.1 Mixture models

We assume that X belongs to a heterogeneous population consisting of m ho-

mogeneous subpopulations. We assume that, for t ∈ J1 ;T K and i ∈ J1 ;mK, Xt

is distributed in the ith component with the probability pi(Xt | θi). Let δi be

the proportion of the ith component, such that
∑m

i=1 δi = 1. Hence, the marginal

probability is

P (Xt | Θ) =

m∑
i=1

δipi(Xt | θi)

The marginal mean of the independent mixture is given by

E(Xt) =
m∑
i=1

δiE (Xt | θi)

To compute the unconditional variance of the mixture, we use the law of total

variance

V (Xt) = E[V (Xt | Θ)] + V [E(Xt | Θ)]

The expected value of conditional variances is given by

E[V (Xt | Θ)] =
m∑
i=1

δiV (Xt | θi)

The variance of the conditional means is given by

V [E(Xt | Θ)] =

m∑
i=1

δiE (Xt | θi)2 −

(
m∑
i=1

δiE(Xt | θi)

)2

In the case of a two-component mixture model with weights δi, means µi and

variances σ2i , the total mean and variance will be

E(Xt) = δ1µ1 + δ2µ2 (5.3)

V (Xt) = δ1σ
2
1 + δ2σ

2
2 + δ1δ2(µ1 − µ2)

2 (5.4)

We will show later that the variance of the mixture model is greater than its

expectation, which allows to account for overdispersion in data.
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The incomplete-data log-likelihood expression is given by

logL(Θ | X) = log

T∏
t=1

P (Xt | Θ) =

T∑
t=1

log

(
m∑
i=1

δipi(Xt | θi)

)
The incomplete-data log likelihood may be di�cult to maximize. The numerical

di�culty is due to the sum inside the log. However, if we assume that observations

X are incomplete and that they are generated by an unobserved process S, the

likelihood expression can be dramatically simpli�ed, which motivates the use of the

EM algorithm. Before we proceed to the computation of Q(Θ | Θ(k)) in (5.2), we

�rst need to derive the distribution of the complete data and the distribution of the

unobserved data. We have

logP (X,S | Θ) =

T∑
t=1

log (P (Xt = xt | st)P (St = st | Θ))

=

T∑
t=1

m∑
i=1

1{st=i} log (δipi(xt | θi)) (5.5)

and

P (S | X,Θ(k)) =

T∏
t=1

P (st | xt,Θ(k)) (5.6)

where

P (st = i | xt,Θ(k)) =
δki pi(xt | θ

(k)
i )

p(xt | Θ(k))
=

δki pi(xt | θ
(k)
i )∑m

j=1 δ
k
j pj(xt | θ

(k)
j )

5.2.2 The E-step

In the context of �nite mixtures, the Q-function can be rewritten from (5.2)

using (5.5) and (5.6) as

Q(Θ | Θ(k)) =
∑
S

P (S | X,Θ(k)) logP (X,S | Θ)

=
∑
s

T∑
t=1

m∑
i=1

1{st=i} log (δipi(xt | θi))P (st | xt,Θ(k))

=

m∑
i=1

T∑
t=1

log(δipi(xt | θi))P (st = i | xt,Θ(k))

=
m∑
i=1

T∑
t=1

log(δi)P (st = i | xt,Θ(k))

+

m∑
i=1

T∑
t=1

log(pi(xt | θi))P (st = i | xt,Θ(k)) (5.7)
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5.2.3 The M-step

Equation (5.7) can be decomposed in two parts. We maximize the �rst part with

respect to δi, the second part with respect to θi (λi for the Poisson distribution, ri
and πi for the negative binomial (NB) distribution).

We use a Lagrange multiplier to �nd the expression of δi, since
∑m

i=1 δi = 1.

Maximizing the Q-function in (5.7), subject to the constraint
∑m

i=1 δi = 1, comes

down to solving the following equation

∂

∂δi

[
m∑
i=1

T∑
t=1

log(δi)P (st = i | xt,Θ(k)) + λ

(
m∑
i=1

δi − 1

)]
= 0

Then

T∑
t=1

1

δi
P (st = i | xt,Θ(k)) + λ = 0 (5.8)

or

T∑
t=1

P (st = i | xt,Θ(k)) = −λδi

Summing over m yields

m∑
i=1

T∑
t=1

P (st = i | xt,Θ(k)) = −λ
m∑
i=1

δi = −λ

As
∑m

i=1 P (st = i | xt,Θ(k)) = 1, we get λ = −T .
The maximizing value of δi from Equation (5.8) is

δ̂i =
1

T

T∑
t=1

P (st = i | xt,Θ(k))

5.2.3.1 M-step for Poisson mixture

Under the Poisson assumption, the maximization is computationally tractable.

Since

pi(xt | θ(k)) = e−λi
λxt
i

xt!

di�erentiating the second term in (5.7), with respect to λi, and equating to zero

yields
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T∑
t=1

P (st = i | xt,Θ(k))

(
−1 +

xt
λi

)
= 0

It follows immediately that

λ̂i =

∑T
t=1 P (st = i | xt,Θ(k))xt∑T
t=1 P (st = i | xt,Θ(k))

Note that the Poisson mixture model is able to accommodate overdispersion

better than the Poisson model with one component. For a two-state Poisson mixture,

it follows immediately from (5.3) and (5.4) that the variance exceeds the mean by

δ1δ2(λ1 − λ2)
2.

5.2.3.2 M-step for NB mixture

Di�erent parameterizations for the negative binomial distribution exist. We

choose the distribution function given by

pi(xt | Θ(k)) =
Γ(xt + ri)

Γ(xt + 1)Γ(ri)
πi

ri(1− πi)
xt

where Γ denotes the Gamma-function; ri > 0 and πi ∈ [0; 1] are the parameters

of the NB.

We rewrite the Gamma-functions as exp log(Γ) in the second part of (5.7) as

follows

m∑
i=1

T∑
t=1

P (st = i | xt,Θ(k)) log(pi(xt | θi)) =
m∑
i=1

T∑
t=1

P (st = i | xt,Θ(k))

(log Γ(xt + ri)− log Γ(ri)− log Γ(xt)

+ri log πi + xt log(1− πi)) (5.9)

Di�erentiating (5.9) with respect to πi and equating the derivative to zero yields

T∑
t=1

P (st = i | xt,Θ(k))

(
ri
πi

− xt
1− πi

)
= 0

That is

T∑
t=1

P (st = i | xt,Θ(k))(ri − πi(ri + xt)) = 0

The solution is as follows
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πi =
ri
∑T

t=1 P (st = i | xt,Θ(k))∑T
t=1 P (st = i | xt,Θ(k))(ri + xt)

(5.10)

Maximizing (5.9) with respect to ri gives

T∑
t=1

P (st = i | xt,Θ(k)) (ψ(ri + xt)− ψ(ri) + log πi) = 0 (5.11)

where

ψ(x) =
∂ log Γ(x)

∂x
=

Γ′(x)

Γ(x)

Substituting πi from Equation (5.10) in Equation (5.11) yields

T∑
t=1

P (st = i | xt,Θ(k))

(
ψ(ri + xt)− ψ(ri) + log

[
r
∑T

t=1 P (st = i | xt,Θ(k))∑T
t=1 P (st = i | xt,Θ(k))(ri + xt)

])
= 0

Accurate solution of ri is obtained with a direct numerical maximization using

optim in R [Nelder 1965]. The maximizing value of ri is then substituted in (5.10)

to derive πi.

5.2.4 Example

We consider a Poisson mixture model Θ with δ = (0.1, 0.4, 0.5) and λ =

(10, 20, 30). This model is composed of three sub-populations. We generate a sample

of 1, 000 observations from Θmodel. We apply the EM algorithm to �t the simulated

data. We use the k-means algorithm to set the initial starting values for the EM al-

gorithm [Hartigan 1979]. The algorithm is stopped when
∑

i | θ
(k)
i −θ(k−1)

i |< 0.001

After 36 iterations, the EM algorithm provides fair estimate of Θ with δ̂ =

(0.0949, 0.4244, 0.4808) and λ̂ = (10.0410, 19.6433, 30.2550). The 36 iterations are

plotted in Figure 5.1. In this example, the EM algorithm works e�ciently and

converges to the same estimates under di�erent starting values. In the case of NB

mixtures, however, the EM algorithm is more sensitive to the choice of initial values,

and it should be run several times using di�erent starting values to avoid convergence

to a local minimum.

5.3 EM Algorithm for Hidden Markov Models

5.3.1 HMMs

For a sequence data, the assumption of independent samples is too restrictive.

The statistical dependence between sets of data may hide critical information. Hid-

den Markov models (HMMs) are a kind of mixture models where the mixing dis-

tribution is a Markov chain, in which, given present, the future is independent of
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Figure 5.1: EM algorithm convergence.
The EM algorithm is applied to a three states Poisson mixture model Θ in Example 5.2.4.

After 36 iterations, the EM algorithm converges to δ̂ = (0.0949, 0.4244, 0.4808) and λ̂ =

(10.0410, 19.6433, 30.2550). The model log-likelihood log(L) is −3524.6410.
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the past. Hidden states are treated as missing data in the estimation of HMM pa-

rameters. HMMs are an e�ective tool for modelling the dependence structure in

data.

The model is composed of an observed sequence {Xt : t ≥ 1} and an unobserved

(hidden) sequence {St : t ≥ 1}. An observation Xt is generated by a hidden state

St. Given the state St, the observation Xt is independent of other observations and

states and only depends on the current state St. For a �xed state, the observation

Xt is generated according to a �xed probability. If the markov chain {St : t ≥ 1}
has m states, {Xt : t ≥ 1} is called an m-state HMM. The process can be drawn as

a diagram of states (nodes) and transitions (edges) (see Figure 5.2).

Figure 5.2: Basic HMM architecture.
S1, ..., S5 are the hidden states and X1,...,X5 are the generated observations. Observations are

independent of each other and only depend on the current state.

The HMM parameters are transition probabilities and emission probabilities.

The transition probabilities γij = P (st = j | st−1 = i) control the way the hidden

state at time t is chosen given the hidden state at time t − 1. The process can

remain in the state i with probability γii. Γ denotes the state transition matrix.

The emission probabilities P (Xt = xt | St = i) = pi(xt) govern the distribution of

the observed variable X at time t given the state of the hidden variable at that time.

δi = P (S1 = i) denotes the initial state probability that speci�es the starting

state. δi may be �xed by specifying a particular state as starting state or under the

stationary assumption of HMMs, δ = δΓ.

We can summarize parameters features by

P (St | S1:(t−1)) = P (St | St−1) ∀t ∈ J2 ;T K
P (Xt | X1:(t−1), S1:t) = P (Xt | St) ∀t ∈ J2 ;T K

The complete-data likelihood is given by

P (X,S | Θ) = P (S1 | Θ)
T∏
t=2

P (St−1, St | Θ)
T∏
t=1

P (Xt | St,Θ)

The CDLL may be straightforward to maximize even if the maximization of the ob-

served data likelihood is tedious. This claim motivates the use of the EM algorithm

to �t the HMMs.
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5.3.2 Forward and backward probabilities

In order to apply the EM algorithm to HMMs, we need to compute the following

probabilities

σi(t) = P (St = i | X = x)

φij(t) = P (St−1 = i, St = j | X = x)

To do so, we shall �rst de�ne the forward probabilities, αi(t), and the backward

probabilities, βi(t).

De�nition 1. The forward probability αt(i) is the probability of the HMM emitting

the output symbols X1:t , and then ending up in state i at time t.

αt(i) = P (X1:t = x1:t, St = i) ∀i ∈ J1 ;mK ∀t ∈ J1 ;T K
De�nition 2. The backward probability βt(i) is the probability of emitting symbols

X(t+1):T , then ending up in the �nal state, given the state at time t is i.

βi(t) = P (Xt+1:T = xt+1:T | St = i) ∀i ∈ J1 ;mK ∀t ∈ J1 ;T K
βi(T ) = 1 ∀i ∈ J1 ;mK

Theorem 1. Given a state sequence {St : t ∈ J1 ;T K} and an observed sequence

{Xt : t ∈ J1 ;T K}, the probability that X visits the state i at the time t is given by

P (X = x, St = i) = αt(i)βt(i) (5.12)

proof 1.

P (X1:T , St = i) = P (X1:t, X(t+1):T , St = i)

= P (X1:t, X(t+1):T | St = i)P (St = i)

= P (X1:t | St = i)P (X(t+1):T | St = i)P (St = i)

= P (X1:t, St = i)P (X(t+1):T | St = i)

= αt(i)βt(i)

Proposition 1. Summing Equation (5.12) over m yields

m∑
i=1

αt(i)βt(i) = P (X = x)

Theorem 2. The probability that X visited the state j at the time t− 1 and enters

the state i at time t is given by

P (X = x, St−1 = i, St = j) = αi(t− 1)pj(xt)γijβj(t) (5.13)
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proof 2.

P (X1:T = x1:T , St−1 = i, St = j) = P (X1:t−1, Xt:T , St−1 = i, St = j)

= P (X1:t−1, St−1 = i)P (Xt:T , St = j | X1:t−1, St−1 = i)

= P (X1:t−1, St−1 = i)P (Xt:T , St = j | St−1 = i)

= P (X1:t−1, St−1 = i)P (Xt, Xt+1:T , St = j | St−1 = i)

= P (X1:t−1, St−1 = i)P (Xt+1:T | Xt, St = j, St−1 = i)

P (Xt, St = j | St−1 = i)

= P (X1:t−1, St−1 = i)P (Xt+1:T | St = j)

P (Xt, St = j | St−1 = i)

= P (X1:t−1, St−1 = i)P (Xt+1:T | St = j)

P (St = j | St−1 = i)P (Xt = xt | St = j)

= αt−1(i)βt(j)γijpj(xt)

Proposition 2. αt(i) is computed by a recursion forward in time.

αt(i) =
m∑
j=1

αt−1(j)γjipi(xt)

βt(i) is computed by a recursion backward in time.

βi(t) =

m∑
j=1

βi(t+ 1)γijpj(xt+1)

proof 3. The proof can be easily deduced from Equation (5.12) and (5.13).

P (X1:T , St = j) =

m∑
i=1

P (X1:T , St−1 = i, St = j)

αt(j)βt(j) =

m∑
i=1

αt−1(i)βt(j)γijpj(xt)

αt(j) =

m∑
i=1

αt−1(i)γijpj(xt)

The same holds for the second recursion.

P (X1:T , St = i) =

m∑
j=1

P (X1:T , St = i, St+1 = j)

αt(i)βt(i) =

m∑
j=1

αt(i)βt+1(j)γijpj(xt+1)

βt(i) =

m∑
j=1

βt+1(j)γijpj(xt+1)
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Proposition 3. The probability that the process visits the state i at time t given the

observed sequence is

σi(t) = P (St = i | X = x)

=
P (X = x, St = i)

P (X = x)

=
αt(i)βt(i)

P (X = x)
(5.14)

Proposition 4. The probability that the process left state i at time t− 1 and enters

state j at t given the observed sequence is

φij(t) = P (St−1 = i, St = j | X = x)

=
P (St−1 = i, St = j,X = x)

P (X = x)

=
αt−1(i)γijpj(xt)βt(j)

P (X = x)
(5.15)

5.3.3 The E-step

The CDLL is given by

logL(Θ | X,S) = log

(
δs1

T∏
t=2

γst−1,st

T∏
t=1

pst(xt)

)

= log(δs1) +

T∑
t=2

log γst−1,st +

T∑
t=1

log pst(xt)

=
m∑
i=1

1{s1=i} log δi +
m∑
i=1

m∑
j=1

(
T∑
t=2

1{st=i,st−1=j}

)
log γij

+

m∑
i=1

T∑
t=1

1{st=i} log pi(xt) (5.16)

Hence

Q(Θ | Θ(k)) = ES|X,Θ(k) [logL(Θ | X,S)]

=

m∑
i=1

σi(1) log δi +

m∑
i=1

m∑
j=1

(
T∑
t=2

φij(t)

)
log γij

+

m∑
i=1

T∑
t=1

σi(t) log pi(xt) (5.17)

where σi(t) and φij(t) are given in (5.14) and (5.15).



5.3. EM Algorithm for Hidden Markov Models 77

5.3.4 The M-step

In the M-step, we maximize the CDLL in (5.16) with respect to the parameter

Θ. We maximize the �rst part with respect to the initial distribution δi. We use a

Lagrange multiplier to maximize δi subject to the constraint
∑m

i=1 δi = 1 as follows

∂

∂δi

[
m∑
i=1

log(δi)σi(1) + λ

(
m∑
i=1

δi − 1

)]
= 0

Then

1

δi
σi(1) + λ = 0 (5.18)

or

σi(1) = −λδi

Summing over m yields

m∑
i=1

σi(1) = −λ
m∑
i=1

δi = −λ

As
∑m

i=1 σi(1) = 1, we get λ = −1.

The maximizing value of δi from Equation (5.18) is

δ̂i = σi(1)

We maximize the second part of the CDLL in (5.16) with regard to γij as follows

∂

∂γij

 m∑
j=1

(
T∑
t=2

φij(t)

)
log γij

 = 0

Equating the derivative to zero yields

∑T
t=2 φij(t)

γij
−
∑T

t=2 φii(t)

1−
∑

k 6=i γik
= 0

or

∑T
t=2 φij(t)

γij
−
∑T

t=2 φii(t)

γii
= 0
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This implies that

γij

T∑
t=2

φii(t) = γii

T∑
t=2

φij(t)

Summing over m gives

γii

m∑
j=1

T∑
t=2

φij(t) =

 m∑
j=1

γij

 T∑
t=2

φii(t)

As
∑m

j=1 γij = 1, then

γ̂ii =

∑T
t=2 φii(t)∑T

t=2

∑m
j=1 φij(t)

Likewise, the maximizing value of γij is then given by

γ̂ij =

∑T
t=2 φij(t)∑T

t=2

∑m
k=1 φik(t)

The maximization of the third part of the CDLL in (5.16) depends on the nature

of the state-dependent distribution (λi for the Poisson distribution, ri and πi for

the NB distribution). For the Poisson distribution, analytic solutions are given.

However, the maximization with respect to the parameters is not straightforward

under the NB assumption. Hence, numerical maximization is needed. Maximizing

values for λi and (ri,πi) are given in section 5.2.3. Note that for HMMs, P (st = i |
xt,Θ

(k)) should be substituted from (5.14).

5.3.5 Example

We consider a NB-HMM model Θ = (η, λ, r) with m states. The transition

probability matrix Γ = (γij) is de�ned as follow

γij =

{
1− ηi if i = j
ηi

m−1 if i 6= j

With this parametrization of Γ, the second part of the CDLL in (5.16) becomes

m∑
j=1

(
T∑
t=2

φij(t)

)
log γij = log(1− ηi)

(
T∑
t=2

φii(t)

)
+ log

(
ηi

1−m

) m∑
j=1
j 6=i

(
T∑
t=2

φij(t)

)

Maximizing with regard to ηi and equating the derivative to zero yields
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ηi

(
T∑
t=2

φii(t)

)
= (1− ηi)

m∑
j=1
j 6=i

(
T∑
t=2

φij(t)

)

It follows immediately that

η̂i =

∑m
j=1
j 6=i

∑T
t=2 φij(t)∑m

j=1

∑T
t=2 φij(t)

We �nally substitute η̂i in (5.15) to derive φij(t).

We simulated 1, 000 observations from Θ model given η = (0.1, 0.2, 0.5), λ =

(5, 10, 20) and r = (10, 10, 10). We apply the EM algorithm to �t the simulated

data. We run the algorithm several times using di�erent starting values to avoid

convergence to a local minimum. The stopping rule is
∑

i | θ(k) − θ(k−1) |< 0.001.

After 34 iterations, the EM algorithm provides fair estimate of Θ with

η̂ = (0.0902, 0.1568, 0.5109), λ̂ = (4.9011, 10.9209, 22.4128) and r̂ =

(14.2621, 5.4561, 16.0113). The estimated transition probability matrix is

Γ̂ =

 0.9098 0.0451 0.0451

0.0784 0.8432 0.0784

0.2555 0.2555 0.4891


The model log-likelihood is −2947.769.

5.4 Discussion

In the context of independent mixtures and HMMs, a task of major importance is

the choice of the optimal state-dependent distribution and number of statesm of the

latent process, since the choice of the optimal model leads to the improvement of the

goodness-of-�t. The model �t can be increased with increasing m due to the model

likelihood. However, increasing m implies an increase in the number of parameters.

Without making assumptions on the transition probability matrix, the problem is

quadratic, since the number of parameters is m2 + 2m − 1 in the case of Poisson-

HMMs andm2+3m−1 in the case of NB-HMMs. In Example 5.3.5, we made speci�c

assumptions on Γ to reduce the complexity of the model. Under such assumptions,

the problem is linear, since the number of parameters is 3m−1 in the case of Poisson-

HMM and 4m − 1 in the case of NB-HMM. Hence, a compromise has to be found

between the model �t and the model complexity. Model selection criteria are used to

balance the two situations. They are either based on the full-model log-likelihood

(AIC and BIC) [Rydén 1995, MacDonald 1997, Gassiat 2003, Dannemann 2008],

or on reducing the number of parameters by making assumptions on the state-

dependent distribution or on the transition probability matrix in the case of HMMs

[Zucchini 2000, Poskitt 2005]. Hypothesis tests, as LRT, can also be used in this
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context. They have the advantage to allow decisions with a signi�cance level. To

the best of our knowledge, there is no common acceptance of the best criteria for

determining the number of states. This issue can best be summarized by a quote

from famous Bayesian statistician George Box, who said: "All Models are wrong,

but some are useful" [Box 1976a].



Chapter 6

Overdispersion in the Distribution

of Malaria Parasites and

Leukocytes in Thick Blood Smears

�Beware of the problem of testing

too many hypotheses; the more you

torture the data, the more likely

they are to confess, but confessions

obtained under duress may not be

admissible in the court of scienti�c

opinion.�

Stephen M. Stigler, 1987
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The aim of this chapter is to explore overdispersion in parasite and leukocyte

counts collected from the �eld. In the context of overdispersion, emphasis is laid

on �tting data to appropriate models. The �tting models are fully presented in

Chapter 5.

6.1 Introduction

Most of PD estimation methods assume that the distribution of the thick-

ness of the TBS, and hence the distribution of parasites and leukocytes within
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the TBS, is homogeneous; and that parasites and leukocytes are evenly dis-

tributed in TBSs, and thus can be modelled through a Poisson-distribution

[Student 1907, Petersen 1996a, Bejon 2006, Hammami 2013]. PD data-based in-

ferences also rely on such assumptions [Becher 2005, Damien 2010, Chandler 2006,

Färnert 2009a, Mwangi 2005, Liljander 2011, Enosse 2006].

Identifying the distribution of parasite and leukocyte data on TBSs is the key

to an appropriate analysis. Raghavan [Raghavan 1966] recognized that parasites

may be missed due to the random variation within a slide. He used the binomial

distribution to estimate the probability of missing a positive slide, when only a �xed

number of HPFs is read. He assumed that parasites were randomly distributed in the

blood �lm, and that each parasite has the same chance of occupying any of the HPFs

read. Dowling & Shute [Dowling 1966] showed that leukocytes are evenly distributed

in thick �lms, and that their number varies directly according to the thickness of the

smear. They indicated a normal distribution of leukocytes per HPFs. In addition,

they claim that parasites are also distributed evenly throughout the thick blood

smear. However, they noticed, in the case of scanty parasitaemia, a phenomenon

of �grouping�, in which parasites tend to aggregate together in a speci�c area of

the smear. Petersen et al. [Petersen 1996a] claimed that estimating the PD from

the proportion of parasite-positive HPFs, instead of counting parasites in each �eld,

underestimates the PD in TBSs, since a parasite-positive �eld may contain more

than one parasite. To get ride of this problem, they suggested a correction of the

estimation method. Their model was built under the assumption that parasites are

Poisson-distributed on the TBSs. Under this assumption, the estimate of the mean

number of parasite per �eld (λ) is then λ̂ = − log(1− p), where p is the percentage

of parasite-positive HPFs. However, due to the clustering of parasites in TBSs, λ̂

was corrected by a factor of 2. This factor of two was empirically chosen without

a clear analytical proof. Bejon et al. [Bejon 2006] used the Poisson distribution to

calculate the likelihood of sampling a parasite within the blood volume examined

in microscopy. Alexander et al. [Alexander 2010] described the variation across

the sample by a homogeneous Poisson distribution of parasites on TBSs. They

unpacked -under the Poisson assumption- similar results to Raghavan's -under the

Binomial assumption- at low densities, but he argued for the evidence of discrepancy

as density increases.

Two assumptions speci�c to the Poisson model have been identi�ed as sources

of misspeci�cation. The �rst is the assumption that variance equals the mean.

The second is the assumption that events occur evenly. That assumption preludes,

for instance, that occurrences in a �eld in�uence the probability of occurrences in

neighbouring �elds. But this type of contagion is to be suspected in the distribution

of parasites and leukocytes in TBS. Violations of both assumptions lead to the

same symptom: a violation of the Poisson variance assumption. Overdispersion, or

extra-Poisson variation, denotes a situation in which the variance exceeds the mean.

Unobserved heterogeneity and positive contagion lead to overdispersion [Selby 1965,

Darwin 1957, Cox 1983, McCullagh 1989]. Undetected heterogeneity may entail

important misleading inferences, so its detection is essential.
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Three lines of research exist to account for overdispersion. Firstly, an overdis-

persion test is helpful, since the lack of signi�cance in testing overdispersion

might indicate that a further investigation of latent heterogeneity might not

be necessary. Various tests for detecting overdispersion have been developed

[Dean 1989, Gurmu 1991, Dean 1992, Lee 1986, Lu 1997]. Secondly, the e�ect of

overdispersion has been analysed and corrected within the maintained Poisson model

[Gourieroux 1984, Petersen 1996a]. Thirdly, various models have been proposed that

account for unobserved heterogeneity while nesting the Poisson model as a special

case [Cameron 1986, Gschlöÿl 2008, J.F. 1987, Winkelmann 1991, Mullahy 1986,

Joe 2005, Winkelmann 2003, Yau 2003]. Standard approaches employ mixture dis-

tributions, either parametrically by introducing models that accommodate overdis-

persion, for example the negative binomial models, or semiparametrically by leaving

the mixing distribution unspeci�ed [Gurmu 1998, Petersen 1996a]. These paramet-

ric and semiparametric models involve an extra-dispersion parameter, which requires

numerical methods for its estimation [Clark 1989, Piegorsch 1990, Boes 2007].

In published studies, malariological data are presented as summary statistics

(e.g. parasite density per microlitre, prevalence, absolute or assumed WBC count).

Parasite and leukocyte counts per �eld, while of great importance, are not available

in the open literature or in archived sources. A dataset of parasite and leukocyte

counts per HPF was then constituted and published in this study. Three TBSs

of 12-month-old children were entirely examined. All HPFs were read sequentially.

The number of parasites and the number of leukocytes per HPF were recorded. The

aim of this study is twofold: to examine the presence of overdispersion in the distri-

bution of parasites and leukocytes in TBSs, and to �t the appropriate model that

allows for overdispersion in these data. To do so, two sources of overdispersion are

explored: the latent heterogeneity in parasite and leukocyte counts, i.e. the presence

of homogeneous zones (where the data have a similar distribution) associated to an

unobserved state, and the spatial dependence in data, i.e: the correlation between

neighbouring occurrences.

The aim of this chapter is twofold: to examine the presence of overdispersion

in the distribution of parasites and leukocytes in TBSs, and to �t the appropriate

model that allows for overdispersion in the data.

6.2 Materials and methods

6.2.1 Epidemiological data

The data accompanying this study were gathered from a �eld study of Plasmod-

ium falciparum malaria in the district of Tori Bossito located 40 km North-East

of Cotonou, South Benin. Across this �eld study, 550 infants were followed weekly

from birth to 12 months [Le Port 2011a, Le Port 2012]. Malaria is perennial in the

study area, and according to a recent entomological survey P. falciparum is the

commonest species (95%), Plasmodium malariae and Plasmodium ovale represent-

ing respectively 3% and 2% [Djenontin 2010]. From the Tori-Bossito study, three
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thick �lms of 12-month-old children were randomly selected among positive slides

and included in this study. TBSs were stained with Giemsa. All high power �elds

(HPFs), de�ned as oil immersion microscopic �elds (×1, 000), were re-examined by

visually scanning the entire �lm horizontally from edge to edge. The number of para-

sites (p) per �eld and the number of leukocytes (`) per �eld were derived. The letters

�a�, �b� �c� denote the three selected TBSs throughout this paper. A summary of

the data is given in Table 6.1. Histograms of the data are plotted in Figure 6.1 in

order to help for visualizing the shape of the data before the distributions are �tted.

TBS a b c

Number of HPFs 754 938 836

Volume of blood∗ (µl) 1.51 1.88 1.67

PD† (parasites /µl) 16,190.79 31,783.18 3,725.95

Parasites and leukocytes pa `a pb `b pc `c
Total number 20621 10189 38112 9593 5989 12859

Mean (per HPF) 27.35 13.51 40.63 10.23 7.16 15.38

Median 25 13 37 10 7 14

Range 0-111 0-43 0-131 0-35 0-22 2-47

IQR‡ 12-40 8-17 20-60 6-14 4-10 11-19

Standard deviation 18.76 7.22 25.94 5.90 3.92 6.62

% negative§ 1.06 1.06 0.75 1.39 1.08 0.00

Table 6.1: Descriptive statistics of parasite and leukocyte counts on TBSs.
Three thick blood smears are studied �a�, �b�, �c�.

Parasite and leukocyte counts for each TBS are denoted (pa, `a), (pb, `b) et (pc, `c).
∗ Assuming that the volume of blood in one HPF is approximately 0.002 µl [Dowling 1966,

Bruce-Chwatt 1985, Warrell 2002]
† PD = p

`
× 8, 000, assuming that the number of leukocytes per microlitre of blood is 8, 000

[Bruce-Chwatt 1958, Greenwood 1987, WHO 2010a].
‡ Inter-Quartile Range.
§ Percentage of negative high-power �elds (HPFs) where no parasites and/or no leukocytes are

seen.

6.2.2 Statistical models for parasite and leukocyte data

Some laboratory counting techniques consist in reading a certain volume of blood

(say u µl) before the �lm is declared negative. If parasites are seen in u µl, then

an additional volume (say v µl) is read. The volume of blood contained in one

HPF is approximately 0.002 µl [Dowling 1966, Bruce-Chwatt 1985, Warrell 2002].

The assumed number of white blood cells per microlitre of blood is 8, 000

[Greenwood 1987, WHO 2010a]. In practice, u µl may correspond to 100 HPFs

(i.e. u = 0.2 µl), and v µl may correspond to 200 white blood cells (i.e. v = 0.025

µl) [Reyburn 2007, WHO 2010a, Allen 2011, Adu-Gyasi 2012]. In this example,

parasites are assumed to be spread evenly throughout the TBS with density θ µl.

Under the Poisson assumption, the probability of seeing no parasites in u volume
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Figure 6.1: Histograms of parasite and leukocyte counts per HPF.
The empirical density function and the �tted distributions (Poisson, NB) are displayed on the top

of each histogram.

of blood is e−θu, and the probability of seeing exactly x parasites (x > 0) is then

(1−eθu)e−θv(θv)x−1/(x−1)!. The latter probability is the product of the probability

of seeing at least one parasite in volume u, and the probability of seeing (x−1) more

parasites in volume v. Under this procedure, the estimation of the PD depends on

volumes u and v, which are not the same for all slides.

The restrictive nature of the equidispersion assumption in the Poisson model led

to the development of numerous techniques both for detecting and modelling overdis-

persion [Zorn 1996, Gurmu 1991, Lee 1986, Cameron 1986, Dean 1989, King 1989,

Hausman 1984]. This section details alternative models used to �t the PD and

leukocyte data.

6.2.2.1 Simple parametric models

The typical alternative to the Poisson model is the negative binomial (NB)

model, which is an attractive model that allows overdispersion. The dispersion

parameter φ in the NB controls the deviation from the Poisson. This makes the NB

distribution suitable as a robust alternative to the Poisson. However, it is useful to

obtain more general speci�cations through other modelling frameworks that handle

overdispersion or zero-in�ation (NB, geometric, logistic, Gaussian, exponential, zero-
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in�ated Poisson (ZIP), Poisson hurdle (HP), zero-in�ated negative binomial (ZINB),

negative binomial hurdle (HNB)). The main motivation behind using zero-in�ated

[Lambert 1992, W. 1994] and hurdle count models [Mullahy 1986, Heilbron 1994] is

that PD data frequently display excess zeros at low parasitaemia levels. Zero-in�ated

and hurdle count models provide a way of modelling the excess zeros in addition to

allowing for overdispersion. These models include two possible data generation pro-

cesses (one generates only zero counts, whereas the other process generates counts

from either a Poisson or a negative binomial model).

6.2.2.2 Finite mixture models

One method of dealing with overdispersed observations with a bimodal or more

generally multimodal distribution is to use a �nite mixture model. Mixture models

are designed to account for unobserved heterogeneity in a set of data. The sample

may consist of unobserved groups, each having a distinct distribution for the ob-

served variable. Consider for example the distribution of parasites per HPF,Xt. The

�elds can be divided into groups according to its locations, e.g. edges and center of

the �lm. Even if the number of parasites within each group was Poisson-distributed,

the distribution ofXt would be overdispersed relative to the Poisson. In the case of a

two-component mixture with weights (δ1, δ2), means (λ1, λ2) and variances (σ21, σ
2
2),

the total variance exceeds the mean by δ1δ2(λ1−λ2)2 (details of the proof are given
in Additional �le 2). Hence, the two-state Poisson mixture is able to accommodate

overdispersion better than the Poisson model with one component. The mixture

component identities are de�ned by some latent variables (also called the param-

eter process). If the latent variables are independent, the resulting distribution is

called independent mixture. An independent mixture distribution consists of a �nite

number, say m, of component distributions and a mixing distribution which selects

from these components. Note, however, that the above de�nition of mixture models

ignores the possibility of spatial dependence in data, a point that shall be addressed

by introducing Hidden Markov Models (HMMs), which connect the latent variables

into a Markov chain instead of assuming that they are independent.

6.2.2.3 Hidden Markov models (HMMs)

Unlike the mixture models, where observations are assumed independent of each

other and the spatial relationship between neighbouring data is not taken into ac-

count, HMMs incorporate this spatial relationship, and show promise as �exible

general purpose models to account for such dependency [Baum 1966, Baum 1967,

Rabiner 1989]. HMMs can be used to describe observable events that depend on

underlying factors, which are not directly observable, namely the hidden states. A

HMM consists of two stochastic processes: an invisible process of hidden states,

namely the hidden process (also called the parameter process), and a visible process

of observable events, namely the observed process (or the state-dependent process).

The hidden states follow a Markov chain, in which, given the present state, the
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future is independent of the past. Modelling observations in these two layers, one

visible and the other invisible, is very useful to classify observations into a number

of classes, or clusters, and to incorporate the spatial-dependent information among

neighbouring observations. In the context of parasite and leukocyte counts per

HPF, emphasis is put on predicting the sequence of regions on the TBS (i.e. the

states) that gave rise to the actual parasite and leukocyte counts (i.e. the observa-

tions). Since a variation in the distribution of parasites and leukocytes in the TBS

is suspected, these regions cannot be directly observed, and need to be predicted.

Inference in HMMs is often carried out using the expectation-maximization (EM)

algorithm [Baum 1970, Dempster 1977, Cappé 2005], but examples of Bayesian es-

timation implemented through Markov chain Monte Carlo (MCMC) sampling are

also frequent in the literature [Robert 2000, Rydén 2008]. In most practical cases,

the number of hidden states is unknown and has to be estimated. We shall return

to the latter point later in the discussion.

6.2.3 Methodology

Firstly, the problem of testing whether the data come from a single Poisson dis-

tribution is considered. The basic null hypothesis of interest is that �variance =

mean� (equidispersion). In a context such as this, the focus is put on alternatives

that are overdispersed, in the sense that �variance > mean�. The hypothesis being

tested is commonly referred to as the homogeneity hypothesis. A commonly used

statistic for testing the Poisson assumption is Pearson's test, which in spatial statis-

tics is known as the index of dispersion test [Fisher 1950, Rao 1956]. The statistic

is the ratio of the sample variance to the sample mean, multiplied by (n− 1), where

n is the sample size.

In the case of the Poisson distribution, the variance is equal to the mean, i.e. the

index of dispersion is equal to one. In the case of the binomial distribution, the index

of dispersion is less than 1; this situation is called underdispersion. For all mixed

Poisson distributions, that show overdispersion in data, the index of dispersion is

greater than 1. Fisher [Fisher 1950] showed that under the assumption that data are

generated by a Poisson distribution with some parameter λ, then the test statistic

approximately has a Chi-squared distribution (χ2) with (n− 1) degrees of freedom.

If the Poisson assumption is violated, the goodness of �t of alternative simple

parametric models should be assessed. In order to estimate model parameters, a

direct optimization of the log-likelihood is performed using optim [Nelder 1965].

The Kolmogorov-Smirnov (k.s) goodness-of-�t test is used [Chakravarti 1967] to

test the validity of the assumed distribution for the data. The test evaluates the

null hypotheses (that the data are governed by the assumed distribution) against

the alternative (that the data are not drawn from the assumed distribution). Model

selection criteria are used to determine which of the simple parametric models best

�ts the data. The selection criteria used in this paper are presented in the next

section.

Secondly, the �rst source of overdispersion in count data is investigated, which
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is unobserved heterogeneity. The unobserved heterogeneity among parasite and

leukocyte data is explored using mixture models. The motivation behind the use of

mixture models is that they can handle situations where a single parametric family is

unable to provide a satisfactory model for local variations in data. The objective here

is to describe the data as a �nite collection of homogeneous populations on TBSs.

The form of these sub-populations is modelled using Poisson and NB distributions.

Thirdly, the second source of overdispersion is explored, which is positive conta-

gion [King 1989]. When contagion is present, the value of Xt positively in�uences

the value of Xt′ (t 6= t
′
). For example, a high number of parasites in one HPF leads

to correspondingly high numbers of parasites in neighbouring HPFs; likewise, a low

number of parasites in one HPF drive down counts for other neighbouring HPFs.

Since this data-generating process directly in�uences the occurrence of parasites in

HPFs, it has important implications for the observed level of dispersion in data.

The autocorrelation plots [Box 1976b] are a commonly-used tool for checking

randomness and spatial dependence in data. The autocorrelation function (ACF)

will �rst test whether adjacent observations are autocorrelated; that is, whether

there is correlation between observations x1 and x2, x2 and x3, x3 and x4, etc. This

is known as lag one autocorrelation, since one of the pair of tested observations lags

the other by one period (ie. one HPF). Similarly, it will test at other lags. For

instance, the autocorrelation at lag �ve tests whether observations x1 and x6, x2
and x7, ..., x27 and x32, etc, are correlated. If random, such autocorrelations should

be �near zero� for any and all time-lag separations. If non-random, then one or more

of the autocorrelations will be signi�cantly non-zero. HMMs are used to account

for autocorrelations in data. The state-dependent distribution is modelled using

Poisson and NB. Note that HMMs are an extension of mixture models with spatial

dependence taken into consideration, and the two types of models are nested.

The proposed mixture models and HMMs are �tted by maximum likelihood

using the EM algorithm, and validated by direct numerical maximization using nlm

in R [Dennis 1983, Schnabel 1985]. Initialization of the EM algorithm is based on

incremental k-means [Hartigan 1979]. Details on the maximization of the complete-

data log-likelihood with regard to parameters of the unobserved state distribution

(Poisson, NB) for mixture models and HMMs are given in chapter 5.

6.2.4 Model selection and checking

Models comparison was based on three measures. One is the deviance statis-

tic, also called the likelihood-ratio test statistic or likelihood-ratio chi-squared test

statistic, which is a measure of the di�erence in log-likelihood between two models.

If data have been generated by Model A (a simpler model) and are analysed with

Model B (a more complex model within which model A is nested), the expected

distribution of the test statistic, which is twice the di�erence in log-likelihoods

2(LB − LA) computed using the data, follows a χ2-distribution with degrees of

freedom equal to the di�erence in the number of parameters. Hence, LRT permits

a probabilistic decision as to whether one model is adequate or whether an alter-
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native model is superior. This statistic is appropriate when one model is nested

within another model. Negative binomial and Poisson models are nested because as

φ converges to 0, the negative binomial distribution converges to Poisson. But the

situation is non-standard, because under the null hypothesis the extra parameter φ

lies on the boundary of its parameter space. The standard asymptotic result of a

χ2-distribution is not applicable. For this purpose, Akaike's Information Criterion

(AIC) [Akaike 1973] and the Bayesian Information Criterion (BIC) [Schwarz 1978]

are used. These two measures penalize for model complexity and permit comparison

of nonnested models. Models are nonnested if there is no parametric restriction on

one model that produces the second model speci�cation. The AIC (resp. BIC) can

be thought of as the amount of information lost when a speci�c model to approxi-

mate the real distribution of data is being used. Thus, the model with the smallest

AIC (resp. BIC) is favored.

In the area of statistical modelling (e.g: regression, generalised linear models),

residuals are broadly used to check the validity of the �tted model. In this context,

residuals are calculated from the model predictions and the observed data. In the

context of HMMs, no strict analog to a residual exists since the value of a resid-

ual depends on the unobservable state. Pseudo-residuals o�er a convenient way for

model checking in HMMs [MacDonald 1997, Patterson 2009]. The HMM version of

residuals is used to check the validity of the model as well as to identify outliers,

since their absolute value indicate the deviation from the median of the distribution.

While information criteria for model selection compare the relative goodness-of-�t,

the analysis of pseudo-residuals provides a measure of the absolute goodness-of-�t.

Zucchini and MacDonald [MacDonald 1997] provide details for calculating and as-

sessing two types of pseudo-residuals (ordinary and forecast), for both continuous

and discrete state distributions. Model pseudo-residuals can also be extracted us-

ing the function �Residuals� in the R package HiddenMarkov. Here, the ordinary

pseudo-residuals are used to evaluate the suitability of selected HMMs. The ordinary

pseudo-residual for the observation xt is based on its conditional distribution given

all other data. In the case of discrete observations, pseudo-residuals are de�ned as

intervals [r−t , r
+
t ] as

r−t = Φ−1 (P (Xt < xt | xt−1, xt−2, ..., x1)) ∀t ∈ J1 ;T K
r+t = Φ−1 (P (Xt ≤ xt | xt−1, xt−2, ..., x1)) ∀t ∈ J1 ;T K

where Φ is the c.d.f. of a standard normal-distributed random variable. If the �tted

model is correct, the pseudo-residuals are standard normal-distributed. Graphi-

cally, QQ-plots and pseudo-residual ACFs were used to assess the goodness-of-�t of

selected HMMs.
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6.3 Results

6.3.1 Overdispersion in parasite and leukocyte distributions

Histograms in Figure 6.1 show that parasite and leukocyte counts are clearly

skewed to the right. The �tted �candidate� distributions, Poisson and NB, are dis-

played on the top of each histogram and compared to the empirical density function

in order to visualize how well they match the data. The Poisson distribution clearly

does not �t the data. On the other hand, the NB distribution �ts the data much

more closely than the Poisson distribution. This result was expected because of the

implicit restriction of the Poisson model on the distribution of the observed counts.

It is true that the negative binomial distribution converges to the Poisson distribu-

tion, but the former will be always more skewed to the right than the latter with

similar parameters.

The initial visualization of the histograms motivates the use of Pearson's test

to check for overdispersion. In all TBSs, the Poisson model was highly signi�cantly

rejected in favor of a model with heterogeneity (p � .0001 using Pearson's test).

The authors considered �tting data to alternative models allowing for overdispersion:

NB, geometric, logistic, Gaussian, exponential. The k.s test was signi�cant (p �
.0001), then it indicated that the distribution of the parasite and leukocyte data was

signi�cantly di�erent from the distribution against which it was being compared.

However, this test is frequently found to be too sensitive. Given a large enough

sample size, it can detect di�erences that are meaningless to the present purpose,

in the sense that even very small divergences of the model from the data would

be �agged up and cause signi�cance of the test. It is certainly worth judging the

results of the test in light of other statistical measures. The AIC is used to assess

the goodness-of-�t of alternative models to data. The di�erence in �t between

the Poisson model (resp. NB model) and its corresponding ZIP and HP models

(resp. ZINB and HNB models) is trivial. This result might be expected due to the

non-excess of zeros in data (see Table 6.1). The AIC selects the NB model, which

is estimated to be �closest� to the unknown distribution that generated the data

(4AIC � 10) (see Table 6.2).

The maximum likelihood estimators (MLE) for the dispersion parameter of the

negative binomial models (φ) are: φ̂MLE(pa) = 0.53, φ̂MLE(pb) = 0.53, φ̂MLE(pc) =

0.18, φ̂MLE(`a) = 0.23, φ̂MLE(`b) = 0.28, φ̂MLE(`c) = 0.12 (the maximum likelihood

equations are solved iteratively). The positivity of the dispersion parameter of

the negative binomial models indicates that parasites (resp. leukocytes) tend to

be aggregated together, leaving some areas with high parasite (resp. leukocyte)

densities, and other areas with very few parasites (resp. leukocytes) [Bliss 1953].

These �ndings indicate that there is signi�cant overdispersion in the distribution of

parasites and leukocytes across all TBSs used in the analysis.
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Poisson Negative Binomial

−L AIC BIC −L AIC BIC

pa 6801.59 13605.17 13609.80 3200.63 6405.25 6414.50

pb 10838.95 21679.91 21684.75 4344.27 8692.54 8702.23

pc 2472.18 4946.36 4951.08 2302.96 4609.92 4619.38

`a 3108.25 6218.51 6223.13 2532.77 5069.53 5078.79

`b 3547.53 7097.06 7101.90 2965.34 5934.69 5944.38

`c 3051.08 6104.15 6108.88 2728.46 5460.91 5470.37

Geometric Logistic

−L AIC BIC −L AIC BIC

pa 3249.22 6500.44 6505.06 3287.80 6579.60 6588.86

pb 4413.13 8828.26 8833.10 4407.19 8818.38 8828.06

pc 2488.96 4979.93 4984.65 2344.83 4693.66 4703.12

`a 2719.04 5440.09 5444.72 2560.46 5124.92 5134.17

`b 3122.84 6247.69 6252.53 2998.50 6001.01 6010.69

`c 3122.55 6247.11 6251.84 2762.37 5528.74 5538.20

Gaussian Exponential

−L AIC BIC −L AIC BIC

pa 3279.99 6563.99 6573.24 3248.74 6499.48 6504.10

pb 4384.43 8772.85 8782.54 4412.85 8827.71 8832.55

pc 2327.71 4659.41 4668.87 2482.13 4966.25 4970.98

`a 2560.19 5124.39 5133.64 2717.17 5436.34 5440.96

`b 2995.11 5994.21 6003.90 3118.89 6239.77 6244.62

`c 2765.26 5534.51 5543.97 3120.93 6243.86 6248.59

Table 6.2: Comparison of simple parametric models �tted to parasite and

leukocyte counts per �eld.
Parasite (pa, pb, pc) and leukocyte (`a, `b, `c) counts are �tted to Poisson, Negative Binomial,

Geometric, Logistic, Gaussian and Exponential models. Minus log-likelihood (−L) and information

measures (AIC and BIC) are given. Direct optimization of the log-likelihood was performed using

optim in R. The best AIC and BIC values are highlighted in bold.

6.3.2 Modeling heterogeneity in parasite and leukocyte data

Mixture models �tted to parasite and leukocyte counts are presented in Table 6.3.

Using a two-state Poisson mixture instead of a one-state Poisson model dramatically

improved the �t to data as judged by the AIC and BIC contrary to NB case. The

simple parametric NB model was preferred to NB mixtures. The goodness-of-�t of

Poisson mixtures increased withm values. Poisson mixtures (slightly) outperformed

the one-state NB model according to AIC for TBSs �a� and �b�. However, the one-

state NB model was preferred to the Poisson mixtures according to BIC for all

TBSs.

Spatial dependence between data is explored through autocorrelation plots (see

Figure 6.2). Autocorrelations should be near-zero for randomness, which was not
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Poisson mixture Negative binomial mixture

m = 1 −L AIC BIC −L AIC BIC

pa 6801.59 13605.17 13609.80 3200.63 6405.25 6414.50

pb 10838.95 21679.91 21684.75 4344.27 8692.54 8702.23

pc 2472.18 4946.36 4951.08 2302.96 4609.92 4619.38

`a 3108.25 6218.51 6223.13 2532.77 5069.53 5078.79

`b 3547.53 7097.06 7101.90 2965.34 5934.69 5944.38

`c 3051.08 6104.15 6108.88 2728.46 5460.91 5470.37

m = 2 −L AIC BIC −L AIC BIC

pa 3962.18 7930.35 7944.23 3200.63 6409.25 6430.53

pb 5882.41 11770.81 11785.34 4344.27 8696.54 8718.69

pc 2289.73 4585.47 4599.65 2302.96 4613.93 4635.61

`a 2633.87 5273.75 5287.62 2532.77 5073.54 5094.81

`b 3029.67 6065.33 6079.86 2965.35 5938.69 5960.84

`c 2756.98 5519.97 5534.15 2728.45 5464.91 5486.59

m = 3 −L AIC BIC −L AIC BIC

pa 3397.75 6805.50 6828.63 3200.63 6413.25 6447.60

pb 4761.19 9532.38 9556.60 4344.27 8700.54 8736.20

pc 2288.39 4586.77 4610.41 2302.96 4617.93 4652.89

`a 2527.85 5065.70 5088.83 2532.77 5077.54 5111.88

`b 2945.87 5901.74 5925.95 2965.35 5942.69 5978.35

`c 2729.21 5468.42 5492.06 2728.45 5468.90 5503.87

m = 4 −L AIC BIC −L AIC BIC

pa 3267.46 6548.92 6581.29 3189.16 6394.32 6442.42

pb 4470.16 8954.33 8988.24 4344.27 8704.54 8754.38

pc 2288.21 4590.42 4623.52 2302.96 4621.93 4670.85

`a 2519.22 5052.44 5084.81 2532.77 5081.54 5129.63

`b 2938.52 5891.05 5924.95 2965.35 5946.69 5996.53

`c 2721.23 5456.47 5489.57 2728.45 5472.90 5521.82

Table 6.3: Comparison of independent mixture models �tted to parasite

and leukocyte counts by AIC and BIC.
Parasite (pa, pb, pc) and leukocyte (`a, `b, `c) counts are �tted to Poisson mixtures and negative

binomial mixtures. The number of components is m. Minus log-likelihood (−L) and informa-

tion measures (AIC and BIC) are given. Models were �tted by maximum likelihood using the

expectation-maximization (EM) algorithm, and validated by direct numerical maximization using

nlm in R.

the case for parasite and leukocyte data. Thus, the randomness assumption failed

as expected. The con�dence limits are provided to show when ACF appears to be

signi�cantly di�erent from zero. Lags having values outside these limits (shown as

blue dotted bars) should be considered to have signi�cant correlations. For �pa�,

�pb� and �`a�, the autocorrelation plots start with a moderate autocorrelation at lag

1 (between 0.5 and 0.6) that gradually decreases. The decreasing autocorrelation
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is generally linear, but with signi�cant noise. Such a pattern is the autocorrelation

plot signature of a �moderate autocorrelation�, which in turn provides moderate

predictability if modelled properly. For parasite data �pc�, a very few lags > 4

slightly lie outside the 95% con�dence limits. For leukocyte data �`b� and �`c�,

with the exception of lags < 5, almost all of the autocorrelations fall within the

95% con�dence limits. For all TBSs, the ACF suggests the existence of a spatial

dependence between data. HMMs are therefore used to account for this dependence.
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Figure 6.2: Sample autocorrelation function (ACF).
Autocorrelation plots for parasite (pa, pb, pc) and leukocyte (`a, `b, `c) counts show correlations

between values xi and lagged values of the counts for lags from 0 to 30. The lagged values can be

written as xi−1, xi−2, xi−3, and so on. ACF gives correlations between xi and xi−1, xi and xi−2,

and so on. The lag is shown along the x-axis, and the autocorrelation is on the y-axis. The blue

dotted lines indicate bounds for statistical signi�cance.

The comparison of independent mixture models in Table 6.3 and HMMs in Ta-

ble 6.4 shows that, on the basis of AIC and BIC, HMMs are superior to mixture

models. Although more parameters need to be evaluated for HMMs than for com-

parable independent mixtures, the corresponding AIC and BIC were lower than

those obtained for the independent mixtures. Given the spatial depedence shown

in Figure 6.2, one would expect that independent mixture models will not perform

well relative to HMMs.

Due to its higher complexity, an m-state model will always have a higher like-

lihood than an (m-1)-state model. Model selection criteria are used to see if the

improvement in the likelihood was great enough to indicate that the m-state model
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Poisson HMM Negative binomial HMM

m = 1 −L AIC BIC −L AIC BIC

pa 6801.59 13605.17 13609.80 3200.63 6405.25 6414.50

pb 10838.95 21679.91 21684.75 4344.27 8692.54 8702.23

pc 2472.18 4946.36 4951.08 2302.96 4609.92 4619.38

`a 3108.25 6218.51 6223.13 2532.77 5069.53 5078.79

`b 3547.53 7097.06 7101.90 2965.34 5934.69 5944.38

`c 3051.08 6104.15 6108.88 2728.46 5460.91 5470.37

m = 2 −L AIC BIC −L AIC BIC

pa 3877.14 7764.27 7787.40 3043.31 6098.62 6126.37

pb 5794.89 11599.77 11623.99 4166.23 8344.45 8373.51

pc 2228.73 4467.47 4491.11 2224.71 4461.42 4489.79

`a 2578.83 5167.66 5190.79 2433.86 4879.72 4907.47

`b 2993.67 5997.35 6021.57 2889.88 5791.76 5820.82

`c 2667.70 5345.41 5369.05 2640.61 5293.22 5321.59

m = 3 −L AIC BIC −L AIC BIC

pa 6447.60 3265.54 6553.09 6603.97 3008.87 6035.74

pb 4634.75 9291.50 9344.78 4126.32 8270.64 8314.23

pc 2210.74 4443.48 4495.49 2215.95 4449.90 4492.46

`a 2414.70 4851.41 4902.28 2394.82 4807.64 4849.27

`b 2898.08 5818.17 5871.45 2884.03 5786.06 5829.65

`c 2609.50 5241.00 5293.01 2619.57 5257.14 5299.69

m = 4 −L AIC BIC −L AIC BIC

pa 3096.91 6231.82 6319.70 2985.36 5994.73 6050.23

pb 4322.77 8683.53 8775.57 4117.57 8259.14 8317.27

pc 2206.93 4451.87 4541.71 2214.22 4452.45 4509.19

`a 2380.19 4798.38 4886.26 2390.87 4805.74 4861.24

`b 2880.72 5799.44 5891.48 2881.97 5787.95 5846.07

`c 2599.52 5237.05 5326.89 2615.98 5255.96 5312.71

Table 6.4: Comparison of hidden Markov models �tted to parasite and

leukocyte counts by AIC and BIC.
Parasite (pa, pb, pc) and leukocyte (`a, `b, `c) counts are �tted to Poisson HMMs and negative

binomial HMMs. The number of components is m. Minus log-likelihood (−L) and informa-

tion measures (AIC and BIC) are given. Models were �tted by maximum likelihood using the

expectation-maximization (EM) algorithm, and validated by direct numerical maximization using

nlm in R.

captures more heterogeneity in data than the (m-1)-state model. Both AIC and

BIC, try to identify a model that optimally balances model �t and model complex-

ity. These two criteria are plotted against the number of states m of the negative

binomial HMM in Figure 6.3. Several comments arise from Figure 6.3. Unlike the

NB mixtures, using two-state NB-HMM instead of one-state NB-HMM dramatically

improves the �t to data. Little to no improvement in AIC is gained for m ≥ 3. Ac-
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cording to both AIC and BIC, the model with four states is the most appropriate

for pa. For the other counts, AIC and BIC selected di�erent models. The Optimal

numbers of states selected by LRT (p� .0001), AIC and BIC are given in Table 6.5.

AIC and LRT selected the same models. Models selected by AIC and LRT are more

complex than those selected by BIC since BIC penalizes larger models more. As it

turns out, there is no clear �best� �nal model. One can narrow down his decision

to the two selected NB-HMMs or investigate whether BIC, which selected a smaller

�best� model, is more appropriate than AIC in this situation. This would be hard

to pin down without extra-statistical information (scienti�c or practical). It should

be noted, however, that the BIC increases consistently after a minimum is attained,

while the AIC is more �at around the minimum. This evidence weighs in favour of

the BIC.
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Figure 6.3: Model selection criteria of the �tted NB-HMMs.
AIC and BIC are plotted against the number of states m of the negative binomial HMMs �tted to

parasite (pa, pb, pc) and leukocyte (`a, `b, `c) counts.

Even though the AIC and BIC selected two or three-state NB-HMMs for the

parasite data pc, one may consider the Poisson-HMMs as an acceptable alterna-

tive, since its AIC and BIC scores were only marginally higher than the competing

models (4AIC < 10 and 4BIC < 10). The latter has the advantage of being com-

putationally tractable, while the NB-HMM is more complex as shown in Additional

�le 2 (higher number of parameters, no analytical solution for the MLE). Hence,

one may check whether the Poisson-HMMs provides an adequate �t for the parasite
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pa pb pc `a `b `c
LRT 4 6 3 5 3 5

AIC 4 6 3 5 3 5

BIC 4 3 2 3 2 3

Table 6.5: Selection of the number of states of the �tted NB-HMMs.
Three selection criteria (LRT, AIC and BIC) were used to select the optimal number of states of

the negative binomial HMMs �tted to parasite (pa, pb, pc) and leukocyte (`a, `b, `c) counts.

data pc using pseudo-residuals. Figure 6.4 shows that the single Poisson distribution

is de�nitely not appropriate since the pseudo-residuals deviate substantially from

the standard normal distribution. In addition, many pseudo-residuals segments lie

outside the bands of 0.5% and 99.5%. For the other models, very few observations

stand out as extreme, histograms of pseudo-residuals are approximately normal-

shaped and autocorrelations are �near zero� indicating low correlation in the resid-

uals. However, the QQ-plots show that the upper quantiles are badly represented

for the three and four-state Poisson-HMMs. Considering only the diagnostic plots,

and not the model selection criteria, one can accept the two-state Poisson-HMM as

the �nal �tting model for pc.

6.4 Discussion

The Poisson formulation is seductive in its simplicity. It captures the discrete

and nonnegative nature of count data, and naturally accounts for heteroscedastic

and skewed distributions through its equidispersion property [Winkelmann 1995].

However, in most real data situations, equidispersion rarely occurs. The primary

objective of the analysis reported in this paper was to test overdispersion in the

distribution of parasites and leukocytes per HPF. Pearson's test was used to test

for overdispersion in data. The data are shown to have too much variability to be

represented by the Poisson distribution. The primary focus is on �tting the ap-

propriate alternative model to parasite and leukocyte data. The goodness-of-�t of

alternative models, designed to address the problem of overdispersion, is illustrated

and discussed. The results show that the negative binomial (NB) model is the

most appropriate (among simple parametric models), which suggests that parasites

and leukocytes tend to aggregate together. The negative binomial has been widely

used to in�ate the Poisson dispersion as needed [Anderson 1993], and to analyse

extra-dispersed count data [Shaw 1995, Alexander 2000, Saha 2009]. In addition,

typical justi�cations for using the negative binomial formulation for count data go

far beyond the existing critiques of overdispersion. Using the negative binomial dis-

tribution instead of the Poisson, allow to �x important errors in model speci�cation

[Berk 2008]. However, both the Poisson and the negative binomial distributions

impose some special requirements the credibility of which also needs to be seriously

assessed when statistical models for count data are constructed.
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To explicitly account for the heterogeneity factor, an alternative model with

additional free parameters may provide a better �t. In the case of the parasite

and leukocytes counts, the Poisson mixture model and the negative binomial mix-

ture model are proposed. The four-state Poisson model is prefered for two of the

three TBSs. In order to further the analysis in the light of the authors' �rst in-

tuition (that data tend to aggregate together), autocorrelation plots are examined.

ACF suggests the existence of spatial dependence between neighbouring parasite

and leukocyte counts. Moreover, investigating sources of overdispersion in data is

enhanced by contrasting mixture models to HMMs. On the basis of AIC and BIC,

HMMs are prefered. Information from neighbouring regions on TBSs is needed to

better estimate this spatial dependence.

In this study, LRT and AIC select the same NB-HMMs, which seem to be the

best �t for parasite and leukocyte distributions per �eld on selected TBSs. However,

BIC selects less complex NB-HMMs. While it is true that, when �tted to the parasite

and leukocyte data, the NB-HMM performed slightly better than the Poisson-HMM

on the basis of AIC and BIC, both are reasonable models capable of describing the

principal features of the data without using an excessive number of parameters. The

NB-HMM perhaps has the advantage to incorporate an extra parameter to allow

for overdispersion in parasite and leukocyte counts. However, with small di�erences

in AIC (or BIC) score, i.e: 4AIC < 10 (or 4BIC < 10), a statistician may be

tempted to choose the Poisson-HMM, which is computationally tractable, rather

than its NB counterpart. Either more observations from TBSs or a convincing

biological interpretation for one model rather than the other would be needed to

take the discussion further. Contrary to the assumptions implicit within widely

used simple parametric models, the �t to mixtures and HMMs viewed together are

a re�ection of the need for an heterogeneous modelling approach that explores the

overdispersion in parasite and leukocyte counts.

While at �rst glance intuitively appealing for a statistician, detecting overdis-

persion in data is of highly questionable utility for malariologists. From a statistical

standpoint, failure to take overdispersion into account leads to serious underestima-

tion of the standard errors, biased parameter estimates and misleading inferences

[Wang 1996]. In addition, changes in deviance (likelihood ratio statistic) will be very

large and overly complex models will be selected accordingly. When overdispersion

is present and ignored, using the Poisson model may overstate the signi�cance of

some covariates[Lee 2012] or give inconclusive evidence of interactions among them

[McCullagh 1989]. From an epidemiological point of view, the importance of check-

ing for overdispersion in parasite and leukocyte data stems from the need for epi-

demiological interpretations to be based on solid evidence. However, most existing

PD estimation methods assume homogeneity in the distribution of parasites and

leukocytes in TBSs. This assumption clearly does not hold. Likewise, the distri-

bution of blood thickness within the smear will never be completely homogeneous

[Dowling 1966], even under optimal conditions. Hence, the validity of the results of

many statistical analyses, where PD is related to other explanatory variables, be-

comes suspect. For example, Enosse et al. [Enosse 2006] used a Poisson regression
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to estimate the RTS,S/AS02A malaria vaccine e�ect, adjusted for parasite density,

age, and time to infection. However, the comparison of the analysis outcomes with

the primary outcomes of a non-parametric analysis using Mann-Whitney U test ap-

pears to show discrepancies. The authors concluded that the Poisson distribution

did not adequately describe the data. Another example is the use of logistic regres-

sion to model the risk of fever as a continuous function of parasite density in order to

estimate the fraction of fever attributable to malaria and to establish a case de�ni-

tion for the diagnosis of clinical malaria [Smith 1994, Mwangi 2005, Chandler 2006].

Case de�nition for symptomatic malaria is widely used in endemic areas. It requires

fever together with a parasite density above a speci�c threshold. Even under de-

clining levels of malaria endemicity, this method remains the reference method for

discriminating malaria from other causes of fever and assessing malaria burden and

trends [Roucher 2012]. Such estimates of the attributable fraction may be imprecise

if the PD is not being estimated correctly. Furthermore, PD estimation methods

potentially induce variability [Hammami 2013]. A proportion of this variability may

be explained by the heterogeneity factor. An alternative PD estimation method that

accounts for heterogeneity and spatial dependence between parasites and leukocytes

in TBSs should be seriously considered in future epidemiological studies with �eld-

collected PD data.
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Chapter 7

Conclusion & Perspectives

�Do not follow where the path may

lead. Go instead where there is no

path and leave a trail.�

Ralph Waldo Emerson

The work presented within these pages started from a �eld reality; namely,

the problem of parasite density estimation in malaria. Accurate estimation of the

parasite density is an essential clinical and epidemiological endpoint. Operational

issues, as observed in the �eld, hided a more complex dilemma, which is the need to

accurately assess the parasite density with a reasonable cost. Against this backdrop,

we used a toolkit of statistical treatments to address the problem. Finally, we

returned back to the �eld with an innovative parasite density estimation method.

Firstly, we studied the statistical properties (mean error, coe�cient of variation,

false negative rates) of parasite density estimators of commonly used threshold-based

counting techniques depending on variable threshold values. We also assessed the

in�uence of the thresholds on the cost-e�ectiveness of parasite density estimation

methods. We were interested in the variability generated by these methods. We

showed that this variability is a function of the parasite density and the threshold

value. In addition, we gave more insights on the behavior of measurement errors

according to varying threshold values, and on what should be the optimal thresh-

old values that minimize this variability. Another important aspect of this study is

that we observed how estimators perform at di�erent parasitemia levels, and how

much the choice of threshold values may in�uence the performance of estimators

relative to each parasitemia level. We showed that estimators perform quite di�er-

ently according to threshold values and the level of parasitemia, and that an overall

performance measure probably hides a lot of complexity in the behavior of each

estimator. While all estimators that have been considered had some de�ciencies,

adaptative methods, which take into account the level of parasitemia (and/or the

abundance of leukocytes), outperformed non-adaptative methods in terms of accu-

racy and cost-e�ectiveness, and should therefore be seriously considered in future

epidemiological surveys. In further support of the arguments cited here, empirical

validation of the theoretical results is needed through a re-reading experience con-

ducted in the �eld. Towards a better understanding of threshold e�ects, we are also

interested in the study of the consequences of the quality of the parasite density esti-

mators in models classically used in epidemiology and starting from these measures
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(mixed e�ects linear and logistic regression, generalized linear models, etc). These

aspects of the problem are now under consideration, and will be the subject of a

publication at a later stage. Furthermore, variability in parasite density measure-

ments may be explained by other sources including the reader skills, the inter-rater

reliability, the quality of the slide, the amount of blood examined, the loss of para-

site during the staining and the dehaemoglobinization of the thick blood smear and

the distribution of parasites and leukocytes in thick blood smears. These sources of

error have also to be addressed and assessed. The training of microscopists and the

standardization of estimation methods could potentially reduce this variability, and

then increase the accuracy and the e�ciency of parasite density estimates.

Secondly, in order to investigate overdispersion in the distribution of parasite

and leukocyte in thick blood smears, we constituted and published the �rst dataset

on parasite and leukocyte counts per high power �eld. Based on these data, we

found evidence that the Poisson assumption is inconsistent with the parasite and

leukocyte distributions. Among simple parametric models considered, the negative

binomial (NB) model is the closest to the unknown distribution that generates

the data. On the basis of model selection criteria AIC and BIC, the NB-HMMs

provide a better �t to data than Poisson mixtures. While it is true that, when

�tted to the parasite and leukocyte counts, the NB-HMM is a slightly better choice

than the Poisson-HMM model on the basis of AIC and BIC, both are reasonable

models capable of describing the principal features of the data without using an

excessive number of parameters. The NB-HMM model perhaps has the advantage

to incorporate an extra parameter to allow for overdispersion in the parasite and

leukocytes data. Either more observations from thick blood smears or a convincing

biological interpretation for one model rather than the other would be needed to

take the discussion further. Contrary to the assumptions implicit within widely

used simple parametric models, the �t to mixtures and HMMs viewed together are

a re�ection of the need for an heterogeneous modeling approach that explores the

overdispersion in parasite and leukocyte counts.

Finally, we devised a reduced reading procedure for the examination of the thick

blood smears that aims to a better operational optimization and to a practical as-

sessing of the heterogeneity in the distribution of parasites in the thick �lm. The

motivations behind the design of this alternative protocol are the need to optimize

the cost of epidemiological surveys and to reduce the inescapable loss of informa-

tion. This new counting device is an appropriate protocol for �eld experience. It

allows for heterogeneity detection. It is at least as accurate and precise as threshold-

based counting methods. This technique is potentially useful for laboratories that

routinely perform malaria parasite enumeration, since it requires neither special

equipments, nor operator decisions that might bias the outcome. A patent applica-

tion process has been launched in October, 2012. A prototype development of the

counter is in process. The outcomes and impact of the new counting method are

under consideration and can be viewed as a starting point for further developments.

Looking back, I got to notice that until now di�erent steps have been tackled

in the project, but much still needs to be done. The problem of parasite density
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estimation is as appealing as critical. The overall aim of this work was to make a

small contribution towards better understanding of the malaria issue in an attempt

to improve malaria diagnostic tools. We deeply believe that the overall contributions

and results generated by the scienti�c community, in all �elds of science, from both

a public health and a socio-economic perspective, will make a di�erence. Perhaps

in some years from now, the reader of these pages will �nd the subject completely

outdated.
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Statistical properties of parasite density estimators in

malaria and field applications

Abstract: Malaria is a devastating global health problem that a�ected 219 million

people and caused 660,000 deaths in 2010. Inaccurate estimation of the level of

infection may have adverse clinical and therapeutic implications for patients, and

for epidemiological endpoint measurements. The level of infection, expressed as

the parasite density (PD), is classically de�ned as the number of asexual parasites

relative to a microliter of blood. Microscopy of Giemsa-stained thick blood smears

(TBSs) is the gold standard for parasite enumeration. Parasites are counted in

a predetermined number of high-power �elds (HPFs) or against a �xed number

of leukocytes. PD estimation methods usually involve threshold values; either

the number of leukocytes counted or the number of HPFs read. Most of these

methods assume that (1) the distribution of the thickness of the TBS, and hence

the distribution of parasites and leukocytes within the TBS, is homogeneous; and

that (2) parasites and leukocytes are evenly distributed in TBSs, and thus can

be modeled through a Poisson-distribution. The violation of these assumptions

commonly results in overdispersion. Firstly, we studied the statistical properties

(mean error, coe�cient of variation, false negative rates) of PD estimators of

commonly used threshold-based counting techniques and assessed the in�uence of

the thresholds on the cost-e�ectiveness of these methods. Secondly, we constituted

and published the �rst dataset on parasite and leukocyte counts per HPF. Two

sources of overdispersion in data were investigated: latent heterogeneity and spatial

dependence. We accounted for unobserved heterogeneity in data by considering

more �exible models that allow for overdispersion. Of particular interest were the

negative binomial model (NB) and mixture models. The dependent structure in

data was modeled with hidden Markov models (HMMs). We found evidence that

assumptions (1) and (2) are inconsistent with parasite and leukocyte distributions.

The NB-HMM is the closest model to the unknown distribution that generates

the data. Finally, we devised a reduced reading procedure of the PD that aims

to a better operational optimization and a practical assessing of the heterogeneity

in the distribution of parasites and leukocytes in TBSs. A patent application

process has been launched and a prototype development of the counter is in process.

Keywords: Malaria epidemiology, threshold-based counting techniques, para-

site density estimators, mean error, coe�cient of variation, false-negative rates,

cost-e�ectiveness, parasite and leukocyte counts per high-power �eld, Poisson

distribution, overdispersion, heterogeneity, negative binomial distribution, mixture

models, HMMs, patent.
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