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ED 518: Matière Condensée et Interfaces

Laboratoire Matériaux et Phénomènes Quantiques
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Polariton-Polariton interactions in a

cavity-embedded 2D-electron gas

Interactions polariton-polariton dans un gaz
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Résumé

Les polaritons inter-sous-bandes sont des excitations issues du couplage fort entre la

transition inter-sous-bande d’un puits quantique et un mode photonique d’une cav-

ity micrométrique. Dans la limite de faible densité d’excitations, c’est-à-dire quand

seule une infime fraction de la mer de Fermi est excitée, ces excitations sont bien

décrites par un Hamiltonien effectif bosonique et quadratique. Cependant, quand le

nombre d’excitations augmente, on s’attend à observer des écarts par rapport aux

prédictions issues de cet Hamiltonien. Dans cette thèse nous adaptons la méthode

des commutateurs pour bosons composites aux polaritons inter-sous-bandes afin

étudier les effets conjoints de l’interaction de Coulomb et du principe d’exclusion

de Pauli sur leur comportement à plus haute densité. Suivant une approche mi-

croscopique, nous calculons la valeur de l’interaction à deux corps entre polaritons

et nous expliquons comment elle peut être encodée dans un Hamiltonien effectif

bosonique et quartique. Finalement, en utilisant des paramètres réalistes, nous

montrons que l’interaction entre polaritons inter-sous-bandes peut-être importante,

et ce, particulièrement dans le THz. Ce résultat ouvre la voie à de futurs travaux en

optique non linéaire à base de polaritons inter-sous-bandes. Les principaux résultats

de ce travail sont publiés dans la référence [1]
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Abstract

Intersubband polaritons are light-matter excitations originating from the strong cou-

pling between an intersubband quantum well electronic transition and a microcavity

photon mode. In the low density limit, i.e., when only a tiny fraction of the Fermi

sea is excited, these excitations are well described by a quadratic effective bosonic

Hamiltonian. However, when the number of excitations in the system increases,

deviations from this behavior occur. In this thesis we study how the Coulomb

electron-electron interaction and the Pauli saturation of the electronic transitions

affect the physics of intersubband polaritons by adapting a commutator technique

for composite bosons. We develop a microscopic theory to derive the polariton-

polariton interactions and explain how it can be encoded in effective quartic bosonic

Hamiltonian. Using realistic set of parameters we predict that polariton-polariton

interactions can be signicant, especially in the THz range. This work paves the way

to promising future studies in nonlinear optics with intersubband polaritons. The

main results of this work are published in Ref. [1].
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supporté et encouragé tout au long de ce travail (et même un peu entretenu sur la

fin).



Contents

Introduction 11

1 Introduction on intersubband polaritons 15
1.1 The electronic part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 The physical system . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.2 Ground state and excitations . . . . . . . . . . . . . . . . . . 17

1.2 The photonic part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 The light-matter coupling . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Weak, strong and ultra-strong coupling . . . . . . . . . . . . . 21
1.3.2 Intersubband polaritons . . . . . . . . . . . . . . . . . . . . . 22
1.3.3 Experimental realisations . . . . . . . . . . . . . . . . . . . . . 26

2 Hamiltonian models for intersubband polaritons 35
2.1 Fermionic Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Electron-Electron Hamiltonian . . . . . . . . . . . . . . . . . . 36
2.1.2 Simplified electron-hole Hamiltonian . . . . . . . . . . . . . . 42

2.2 Intersubband excitations and bosonic Hamiltonian . . . . . . . . . . . 45
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2 Simple effective bosonic Hamiltonian . . . . . . . . . . . . . . 46
2.2.3 Bogoliubov transformation . . . . . . . . . . . . . . . . . . . . 49

3 Polariton-polariton interactions 53
3.1 Intersubband excitations commutator formalism . . . . . . . . . . . . 54

3.1.1 Non-bosonicity and Pauli blocking term . . . . . . . . . . . . 54
3.1.2 Free electron gas . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.3 Photon scattering . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.4 Intrasubband Coulomb interaction . . . . . . . . . . . . . . . 60

3.2 Matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Scalar products and normalization . . . . . . . . . . . . . . . 63
3.2.2 One-excitation subspace . . . . . . . . . . . . . . . . . . . . . 67
3.2.3 Antiresonant terms . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.4 Two-excitation subspace . . . . . . . . . . . . . . . . . . . . . 68
3.2.5 Generalization to higher numbers of excitations . . . . . . . . 75

3.3 Effective bosonic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 75
3.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9



10 CONTENTS

3.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Testing the quartic part of the Hamiltonian . . . . . . . . . . . . . . 83

3.4.1 Saturation of the light-matter coupling . . . . . . . . . . . . . 83
3.4.2 Transition probabilities, Fermi Golden Rule . . . . . . . . . . 85
3.4.3 General argument . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Polariton Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Conclusion 91

A Details about the formalism 93

B Second-quantized Hamiltonian 95
B.1 Quasi two-dimensional gas of independent electrons . . . . . . . . . . 96
B.2 Light-matter coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.2.1 Absorption and emission of photons . . . . . . . . . . . . . . . 98
B.2.2 Photon scattering and A2-term . . . . . . . . . . . . . . . . . 100

B.3 Coulomb interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C Calculation with the Fermionic Hamiltonian 103
C.1 Transition probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 103
C.2 Fermi Golden Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 109



Introduction

Quantum electrodynamics is the study of the light-matter coupling in a regime

where the quantum nature of the excitations is significant. The system under study

is composed of two interacting subsytems: the electromagnetic field on the one

hand, and an electronic medium (atom, semiconductor, superconductor,...) on the

other hand. In the absence of a cavity, the radiative properties of an excited atom

are determined by its coupling to the continuum of modes of the electromagnetic

field, resulting to the relaxation to the ground state via the spontaneous emission

of photons. In 1946, Purcell [2] discovered that this emission rate and, thus, the

coupling can be dramatically affected by confining the system in a cavity. The

fundamental idea of cavity quantum electrodynamics is, thus, to tune the light-

matter coupling by carefully engineering the cavity [3].

Since then, experiments with ever growing light-matter couplings and cavity

quality factors have been realized [4, 5, 6, 7, 8]. Eventually, the strong coupling

regime was reached [9, 10, 11], when the photon lifetime in the cavity is much

larger than the emission rate of the atom. In this case, a photon can be absorbed

and emitted by the atom several times before it leaves the cavity, leading to a

quasi-reversible energy transfer between the two subsystems. The normal modes

of the system are then hybrid light-matter excitations called dressed states. Such

systems were proposed as potential candidates for quantum information due the

long coherence lifetimes and the possibility to control entanglement. Because of

their simplicity, they were also used to test the fondations of quantum mechanics

and explore the frontier between classical and quantum physics [12].

In condensed matter physics, the strong coupling regime has been reached in

cavity embedded quantum wells [13, 14] and quantum dots [15, 16, 17] or artificial

atoms based on Josephson junctions in superconducting circuits [18, 19].

In this PhD thesis manuscript, we will focus on the nonlinear interactions of

cavity excitations in planar microcavities strongly coupled to doped quantum wells.

If the wells are undoped, the role of the atom is played by excitons, i.e., electron-
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hole pairs bounded by the Coulomb interaction, where holes lie in the valence band

and electrons in the conduction band. The normal modes of the coupled system,

called exciton polaritons, can be seen as bosons, interacting, because of their matter

part, through dipole-dipole and dipole exchange interactions [20, 21, 22]. Thanks

to these interactions, spectacular nonlinear effects have been observed like paramet-

ric amplification [23] and oscillation [24], light hydrodynamics and even superfluid-

ity [25, 26, 27, 28, 29]. Bose-Einstein condensation was also observed and, due to ex-

citon polariton’s small effective mass, it was achieved at a temperature of only a few

kelvin, compared to hundreds of nanokelvin for atomic condensates. Electrolumines-

cent [30] and lasing [31, 32] devices have also been realized, presenting remarkable

performances at room-temperature. Recently, theoretical results [33, 34, 35, 36] have

shown that it is possible to simulate complex bosonic systems, like out-of-equilibrium

Bose-Hubbard models [37], using exciton polaritons in coupled cavities.

In 2003, the strong coupling regime was also observed in doped, instead of un-

doped, quantum wells in planar cavities [14]. In this case, electrons are present in at

least one conduction subband of the well. An excitation is thus due to the promotion

of an electron from an occupied subband to a higher and empty subband leaving a

hole in the Fermi sea. In contrast to excitons, which are interband excitations, they

are named intersubband excitations and the corresponding dressed states are inter-

subband polaritons. These excitations differ from excitons on several points, namely

their energy range (from the mid infrared to the terahertz (THz) region of the

spectrum) and their nature (intersubband transitions do not involve bound state).

Moreover, a key difference is the possibility to control their coupling to photons.

Indeed, in such systems, the light-matter coupling is collectively enhanced by the

presence of the Fermi sea in the conduction subbands and scales like the square root

of the density of electrons in the wells. The doping can, thus, be increased until the

strong coupling regime is reached. In fact, it is possible to go even further [38] and

the coupling strength can become comparable to the energy of the transition. Then,

the system enters a new qualitatively different regime called ultra-strong coupling

regime. This regime presents exciting original features. In particular, the ground

state of the system is a squeezed vacuum [38] and pairs of photons can be extracted

from the cavity by non-adiabatic tuning of the coupling [39], a manifestation of the

dynamical Casimir effect [40]. The in situ fast tuning of the ligth-matter coupling

has also been exploited to study the onset of the strong and ultra-strong coupling

regimes [41, 42]. Benefiting from the maturity of quantum cascade structures [43],

photovoltaic probes [44] and electroluminescent devices [45, 46, 47] have been re-
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alised. Original structures allowing lasing without population inversion have also

been proposed [48, 49]. Realizing such structures is still an active research field [50].

Intersubband polaritonics is, thus, a very rich, promising and exciting field, both

from the fundamental and applied point of view. However, while much effort has

been devoted so far to explore the ultra-strong coupling regime and realise devices,

very little is known about the nonlinear physics of intersubband polaritons. Indeed,

structures studied so far work in the low density limit, where only a tiny fraction of

the Fermi sea is excited. The number of polaritons in the cavity is then much smaller

than the number of electrons and the system is well described by a linear theory

(quadratic Hamiltonian). The physics happening when the number of polaritons

increases has proved to be a highly relevant one in the case of exciton polaritons,

and should be adressed for intersubband polaritons too. But, at the exception

of polariton bleaching under intense coherent pumping [42], little so far has been

explored in the nonlinear regime. Here, we propose to fill in the gap by providing

a comprehensive theory of polariton-polariton interactions and deriving an effective

Hamiltonian taking them into account.

In the first chapter, we give a general presentation of the system. We introduce

separately its electronic and photonic parts and describe their excitations. We then

present the different coupling regimes between these excitations. When the coupling

is strong enough, the normal modes of the system are hybrid light-matter excitations

called intersubband polaritons. We describe such excitations in a very simple fashion

and give an overview of the experimental realizations. All results presented in this

chapter correspond to the linear regime, where the number of excitations is small

compared to the number of electrons in the Fermi sea.

In the second chapter, we present the second-quantized Hamiltonian of the sys-

tem. Because of its complexity, we introduce some simplifications, which leads us

to define more precisely the notion of intersubband excitation. In particular, we de-

fine creation and annihilation operators for intersubband excitations, and we show

that these excitations are almost bosonic. Based on simple physical ideas, we then

derive a quadratic bosonic Hamiltonian and we show that, in the linear regime, it

correctly describes our system. This approach is very convenient, since it allows to

solve problems with few and simple calculations. However, this approach is limited

to the linear regime.

In the third chapter, we show how to extend the previous Hamiltonian to treat

the nonlinear regime in a rigorous and controlled manner. We first present the al-
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gebra of the intersubband excitations. We then present a rigorous method allowing

us to include many-body interactions in our models. We are then able to develop

these interactions in a perturbative way, controled by the ratio of the number of

polariton and the number of electrons in the system. Limiting ourselves to the first

order, we obtain an effective bosonic Hamiltonian with quartic terms describing ef-

fective polariton-polariton interactions. Numerical results are given for realistic set

of parameters and conclusions are drawn. Our work paves the way to the explo-

ration and control of nonlinear dynamics due to polariton-polariton interactions in

semiconductor intersubband systems and quantum cascade devices operating in the

strong coupling regime.



Chapter 1

Introduction on intersubband

polaritons

In this chapter, we will introduce the semiconductor heterostructures in which in-

tersubband polaritons can be observed. Intersubband polaritons are excitations

resulting from the strong coupling between an electronic transition and a photon

in microcavity embedded doped quantum wells. First, we will review the physical

properties of quantum wells and semiconductor microcavities separatly. We will

then discuss the notion of strong coupling between their excitations. To illustrate

this, we will present and solve a simplified model of the system exhibiting intersub-

band polaritons. Results are in agreement with the experiments in the linear regime,

where the number of excitations is much smaller than the number of electrons in the

quantum wells. We will finish with an overview of some recent developments in the

field. All systems presented here, at the exception of the one presented in Ref. [42],

are working in this linear regime.

1.1 The electronic part

1.1.1 The physical system

The matter part of the system is a semiconductor multi-quantum wells structure

where materials are doped with donors so that electrons are present in the conduction

band (figure 1.1). If the quantum wells are thin enough and/or the barriers are

high enough, wells can have several bound states and the electronic dynamics is

dramatically affected: motion along the growth axis is quantified while it remains

free in the plane. The conduction band is then split into several subbands and
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Energy

0
In-plane wavevector

kF−kF

EF

�ω12

z

Figure 1.1: Left: energy profile of one quantum well in the z direction and its
two lowest bound states. Right: Electronic dispersion of the first two conduction
subbands in each well as a function of the in-plane wave vector. Because the wells
are doped, electrons are present in the lowest subband even in the ground state.
The Fermi energy EF, the Fermi wave vector kF and the energy difference between
the two bound states ~ω12 are highlighted.

electrons behave as an effective two-dimensional electron gas.

Realizations of such systems can be made of an alternance of AlGaAs and GaAs

layers, where the percentage of aluminum in the barriers can be adapted to tune

their height. The energy between the wells’ bound states can then cover an energy

range from the mid infrared [46] to the THz [51]. The doping can be achieved by

adding silicon atoms in the wells or the barriers. Other possibilities are InAs/AlSb

or GaInAs/AlInAs heterostructures [50, 52].

In the following we will use the effective mass approximation and neglect the

dependence of the mass over the energy. The conduction subbands are then parabolic

and parallel and the one-electron wavefunction for the nth subband is

ψk,n(r, z) =
1

√

S
eik.r χn(z), (1.1)

where S is the sample area, r is the two-dimensional position in the plane of the

wells, k is the two-dimensional wave vector and χn is the wavefunction of the nth

bound state of the quantum wells. The associated energy is

~ωn,k = ~ωn +
~
2k2

2m∗
. (1.2)

In the previous expressions, spin indices have been omitted. Similar expressions can

be derived for the valence subbands but we do not consider them here. For sake
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of simplicity, we will also assume that the wells are identical, symmetric, square

and infinitely deep, even if some interesting effects are predicted for non-symmetric

wells [53]. Analytical expressions for χn and ~ωn are then obtained

χn(z) =

√

2

L
sin
(

nπ
z

L

)

,

~ωn =
~
2π2n2

2m∗L2
, (1.3)

where L is the length of the well.

1.1.2 Ground state and excitations

We will now describe the ground state and the excitations of the system for inde-

pendent electrons. For the moment, we will thus neglect the Coulomb interaction.

In the ground state, every electronic state whose energy is below the Fermi energy

is filled, taking into account the spin degeneracy. Because of the doping, the Fermi

energy, which lies in the gap for bare semiconductors, is shifted above the minimum

of the lowest conduction subband. In the following we will assume that it is below

the minimum of the second subband so that only the first subband is populated

(figure 1.1).

An excitation of the system is the promotion of an electron from a state below the

Fermi energy to a state above, thus creating an electron-hole pair. Even if electrons

can come both from the valence subbands and the lowest conduction subband we will

neglect the former case as we are interested only in the physics inside the conduction

band. Electron-hole excitations can be of different types: while the hole is necessarily

in the Fermi sea, the electron can be in the lowest or in a higher subband, defining

respectively an intrasubband or an intersubband excitation (figure 1.2a). Note that

an electron-hole pair is then indexed by two wave vectors and one subband index.

Now that we know what the excitations look like, we need to calculate the

corresponding energies and dispersions. For the case of intersubband excitations we

consider an electron with wave vector k in the Fermi sea, promoted to a state with

wave vector k + q in a higher subband (n > 1). The wave vector carried by this

excitation is then q and the associated energy is

Eq,1→n = ~ω1n +
~
2

2m∗

(

2k.q + q2
)

, (1.4)

where ω1n = ωn − ω1. The k wave vector’s modulus can be as high as the Fermi
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(a)

Energy

In-plane wavevector

�ω12

(b)

q/kF ! 1

(c)

Figure 1.2: (a) The different types of excitations: intrasubband (left arrow) and
intersubband excitations (right arrow). (b) Dispersions of the intrasubband exci-
tations (lowest dispersion) and intersubband excitations (top dispersion). Red line
is the dispersion of the intersubband plasmon. (c) Dispersions in the long wave-
length limit. Black line: highly degenerated electron-hole continuum. Red line:
intersubband plasmon.

wave vector kF and the angle between k and q can take any value so the energy is

bounded below and above by two parabola (figure 1.2b)

~
2

2m∗

(

q2 − 2kFq
)

≤ Eq,1→n − ~ω1n ≤
~
2

2m∗

(

q2 + 2kFq
)

. (1.5)

The case of intrasubband excitations is more complicated to describe due to Pauli

blocking. Nevertheless, it is very similar in spite of the fact that the energy of the

excitation cannot be negative. Equation (1.5) is still valid in this case with ~ω11 = 0

only when the lower bound is positive. When it is not, the energy is bounded below

by zero and above by the upper parabola (figure 1.2b).

As we shall see, only some intersubband excitations are coupled to light and for

our study we can restrict ourselves to the two lowest subbands. The subband index

can then be dropped and only two wave vectors are necessary to characterize an

electron-hole pair. Moreover, only the limit q ≪ kF (long wavelength approximation)

is relevant so the dispersion is reduced to a flat line at the energy ~ω12 (figure 1.2c).

From a classical point of view, such an excitation is an oscillation of the electrons

along the z direction. They can thus be created by an oscillating electric field with

a non-zero z component.

Until now Coulomb interactions have not been mentioned. However, electron

densities can be high in our system, so many-body effects cannot be neglected.
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The main effect of the Coulomb interaction is to give a collective character to the

elementary excitations, namely creating the so-called intersubband plasmons. Its

energy is blue-shifted with respect to the electron-hole continuum and it concentrates

(almost) all the oscillator strength of the transition [51, 54, 55].

1.2 The photonic part

The light-matter coupling is a key quantity to consider when optimizing the efficiency

of optical emitters and detectors, or to explore some exotic physics [12, 29, 41]. In

both cases the basic rule is: the more, the better. A solution is to confine photons

in a cavity, an effect known as Purcell effect [2]. Here we consider only planar mi-

crocavities (figure 1.3a), where photons are sandwiched between two mirrors made

of metallic or low refractive-index dielectric layers or even a semiconductor/air in-

terface. In the last two cases, the confinement is then ensured by total reflections

at the interface.

The motion of the photons is quantified in the direction normal to the plane

and photons acquire an effective two-dimensional dynamics. The modes are then

indexed by an integer j > 1, a two-dimensional wave vector q and a polarization

σ = TM/TE (magnetic/electric field in the plane of the cavity), and their dispersion

is given by the following relation

~ωcav,j,σ(q) =
~c

n

√

q2 + qj2. (1.6)

Here qj is the quantized z component of the wave vector, c is the speed of light

in the vacuum and n is the refractive index of the medium enclosed in the cavity.

A typical photonic dispersion of the lowest mode is plotted in figure 1.3b. In the

following we will treat cavities whose lower branch lies in the mid infrared or the THz

range. The typical wave vector q will then be of the order of 10−2 to 10−1 µm−1.

As a comparison, the Fermi wave vector of a two-dimensional electron gas with

density nel = 1011 cm−1 is around 100µm−1, which justifies the long wavelength

approximation mentionned in the previous section.

Note that all modes have a parabolic shape for small wave vectors, with a non-

zero frequency and that the linear dispersion is recovered only for high wave vectors.

Each mode is twice degenerate, but the TE polarization has no electric field along the

z direction, so only the TM polarization is coupled to the intersubband excitations.

To further simplify the problem we will now assume that only the lowest cavity
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Figure 1.3: (a) Schematic of the cavity and electric field for a TM mode. In this
configuration, the magnetic field is parallel to ey, in the plane of the cavity. (b) Solid
line: dispersion of the lowest cavity mode. Dashed line: dispersion in free space.

branch can be resonant with the electronic excitations so we can drop the others.

The frequency of the only remaining branch will be denoted ωcav,q with no mention

of the polarization or the mode index since it is no longer ambiguous. We are then

left with one photonic mode coupled to an intersubband excitation (plasmon).

This analysis is sligthly modified for double metal cavities, where another TM

mode with index j = 0 and linear dispersion is present. This mode is coupled to the

intersubband excitations presented in the previous section and the confinement can

be much better than with other types of cavities. However it is poorly coupled to the

field outside the cavity making it difficult to measure. To overcome this difficulty,

one can change the cavity shape to obtain a two or three-dimensional confinement

(figure 1.13b). The current highest light-matter coupling has been obtained in the

THz regime with such geometries [51]. But, as we focus here only on planar cavities,

we will not consider this mode.

1.3 The light-matter coupling

Both parts of the system have now been introduced, but as isolated subsystems.

We also saw that some of their excitations are coupled—namely the intersubband

plasmon and the lowest TM mode—but without discussing the effect of this coupling

on the physics of the whole system. We will now present different kinds of coupling

regimes in a general fashion. We will then apply these general considerations to our
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case.

1.3.1 Weak, strong and ultra-strong coupling

Consider two states, one in each subsystem. For sake of simplicity, assume that

these states are resonant at the energy ~ω. When these wo states are coupled

with strength ~Ω, the energy is transferred from one subsystem to the other with

frequency Ω [56]. These oscillations are called Rabi oscillations and Ω is the vacuum

Rabi frequency. The new eigenstates of the whole system then have energy ~ω±~Ω.

They are, thus, separated by 2~Ω (figure 1.4a), i.e., energy levels repel each other.

The more general case of non resonant excitations is given in Eq. (1.14).

Before coupling our two subsystems together, we must also consider their cou-

pling to the environment. Because of this coupling, the energy injected into them is

irreversibly transferred to the environment and lost. The system is said to be dis-

sipative. Excited states then acquire a finite lifetime τ , corresponding to the mean

time the system remains in this state before it relaxes. In the frequency domain,

this translates into a finite linewidth γ = 1/τ (figures 1.4b and 1.4c). For the pho-

tonic part, the environment can be the electromagnetic field outside the cavity, and

losses come from the finite reflectivity of the mirrors. For the electronic part, the

environment can be a phononic field and losses are due to the interaction between

electrons and ions of the lattice.

The dynamics of the coupled system is then the result of the interplay between

reversible energy transfer between the two subsystems and energy losses in the en-

vironment. Depending on the value of the ratio γ/Ω, different regimes can be

identified.

If ~Ω < ~γ, the system is in the weak coupling regime. In average, an excitation is

lost before a single Rabi oscillation has occured. It might be transferred to the other

subsystem but it will not be transferred back. For example, a cavity photon can be

converted into an electron-hole pair, but this pair will recombine non-radiatively. In

the frequency domain, the two levels repel each other but they remain too close in

energy and cannot be resolved (figure 1.4b).

If ~Ω > ~γ, the system is in the strong coupling regime. In average, an excitation

is transfered back and forth between the two subsystems before it is lost in the

environment. We thus observe damped Rabi oscillations [57]. Cavity photons are

absorbed and reemited several times before they leave the cavity or an electron-hole

pair recombines non-radiatively. The new energy levels are well separated in energy
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2�Ω

(a) (b) (c)

Figure 1.4: (a) Two coupled resonant energy levels. The new eigenstates of the
system are states separeted in energy by twice the Rabi frequency. (b) Typical
absorption shape for uncoupled (black) and coupled (red) two resonant levels in
the weak coupling regime. (c) The same in the strong coupling regime. The Rabi
splitting is now large enough to resolve the absorption peaks of the two states.

and can be resolved in frequency domain (figure 1.4c).

When the coupling increases enough to become comparable to the transition

energy—in our case ~ω12—the system enters a third qualitatively different regime

called ultra-strong coupling regime [38]. In this regime, the ground state is a two-

mode squeezed vacuum, which contains virtual excitations. These excitations cannot

be observed directly due to the energy conservation. But if the coupling is varied

non-adiabatically, these virtual excitations can be turned into real entangled ones

and observed [58, 41, 39, 59].

1.3.2 Intersubband polaritons

The light-matter coupling between single atoms and cavity photons is very small [60],

so the strong coupling regime can be obtained only for extremely high quality cav-

ities and atoms in vacuum [12]. In condensed matter physics, such cavities cannot

be obtained. However, the strong coupling regime has been reached for atom-like

structures like quantum dots [15, 16, 17] in nanocavities or Josephson junctions

in supraconducting circuits [18, 19]. In our system, the coupling between a single

electron and cavity photons is small, so the strong coupling regime is very unlikely

to be reached. However, the situation is dramatically different when considering a

large number of electrons interacting collectively with the cavity photons. If the

number of electrons is large enough, the light-matter coupling between photons and
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(a) (b)

Figure 1.5: Typical shape of the polaritonic dispersions (figure (a)) and Hopfield
coefficients (figure (b)).

some collective excitation is enhanced and can be larger than the linewidth of the

bare excitations. In our case, this large assembly of electrons is our effective two-

dimensional electron gas.

To understand this last point, let’s consider the following simplified model, with

one quantum well and no Coulomb interaction. Moreover, we assume that only

one excitation is injected in the system. Then, it can either contain a photon of

wave vector q, |ph : q〉, or an electron-hole pair, indexed by k and q, |e-h : k,q〉.
There are Nel electron-hole pair states, where Nel is the number of electrons the

well, all at the same energy ~ω12 (because the Coulomb interaction is omitted in

this simplified model) and equally coupled to the cavity field. Let’s denote ~χq the

coupling between a single electron-hole pair and a cavity photon. We will see in

chapter 2 that it is inversely proportional to the sqare root of the surface of the

cavity S, and proportional to the electric dipole of the electron-hole pairs. The

Hamiltonian, restricted to the one-excitation subspace can then be written

Hq =















~ωcav,q ~χq . . . ~χq

~χ∗
q ~ω12 0 . . .

... 0
. . .

~χ∗
q

... ~ω12















. (1.7)
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This problem can be greatly simplified thanks to a change of basis for the matter

part,

{|e-h : k,q〉}k → {|e-h : i,q〉}i, (1.8)

where index i runs from zero to Nel − 1. State |0,q〉 is defined as

|e-h : 0,q〉 =
1

nQWNel

∑

k

|e-h : k,q〉 , (1.9)

while the others are obtained by an orthonormalization procedure. In this new basis

the Hamiltonian is

H̄q =













~ωcav,q

√
Nel ~χq 0 . . .√

Nel ~χ
∗
q ~ω12 0 . . .

0 0 ~ω12

...
...

. . .













. (1.10)

This matrix is almost diagonal and the interesting part, the light-matter coupling,

can be studied in the smaller subspace generated by |ph : q〉 and |e-h : 0,q〉. State

|e-h : 0,q〉 is called bright excitation, while orthogonal uncoupled states are said to

be dark. Then, it has the simpler form

H̃q =

(

~ωcav,q ~Ωq

~Ω∗
q ~ω12

)

, (1.11)

where ~Ωq =
√
Nel ~χq is the vacuum Rabi frequency. It is proportional to the areal

electronic density in the quantum well and is the relevant quantity to consider when

coupling the electron gas to the cavity field. It is now clear that the photon is cou-

pled to only one collective excitation, the bright excitation, and that the coupling

strength is greatly enhanced as the number of electrons increases. In other words,

instead of an assembly of small dipoles, the cavity field sees a giant collective dipole.

This drastic enhancement of the coupling between a collection of collectively excited

oscillators and a radiation field was discovered by Dicke [61, 62, 63, 64]. Histori-

cally, these collective excitations were first introduced to explain the surprisingly

high spontaneous emission rate of an assembly of molecules interacting with the

same field. Even if the original treatment was a little different from the one pre-

sented above, this high spontaneous emission rate is, of course, due to the collective

enhancement of the light-matter coupling. This phenomenon is known as the Dicke
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superradiance. In our case, this means that, by simply increasing the electronic

density in the wells, the strong coupling regime can be reached even with a cavity

quality much lower than with single atom [12] or in exciton polaritons [13] experi-

ments. Moreover, contrary to the two aforementioned cases, the coupling strength

is now a tunable parameter, which opens new possibilities in cavity quantum elec-

trodynamics [39, 41, 42].

The eigenstates of this reduced Hamiltonian are called upper and lower inter-

subband polaritons. They are linear superpositions of one photon and one bright

excitation,

|U,q〉 = wU,q |ph : q〉+ xU,q |e-h : 0,q〉
|L,q〉 = wL,q |ph : q〉+ xL,q |e-h : 0,q〉 , (1.12)

where wL,q and xL,q are the Hopfield coefficients [65],

wL,q = − 1
√

1 +
(

ωL,q−ωcav,q

Ωq

)2
, xL,q =

1
√

1 +
(

Ωq

ωL,q−ωcav,q

)2
, (1.13)

obeying the following relation: wU,q = xL,q and xU,q = −wL,q. The associated

energies are

~ωU/L,q =
~ωcav,q + ~ω12

2
± 1

2

√

(~ωcav,q − ~ω12)2 + 4~ |Ωq|2. (1.14)

The polaritonic dispersion, with the anticrossing typical of strong or ultra-strong

coupling, is plotted in figure 2.2. The Hopfield coefficients of the lower polaritons are

also given (figure 1.5b). For small wave vectors, before the resonance, the lower po-

laritons are almost photons, while for higher wave vectors, after the resonance, they

are bare intersubband excitations. At the resonance, they are mixed light-matter

states. Notice that, contrary to what is observed in zero-dimensional cavities [51],

there is no polariton gap in the dispersion shown in figure 2.2. This is due to the

planar geometry of the cavity and the selection rules, which impose that the Rabi

frequency vanishes for small wave vectors. A quick comparison with experimental

results shown in figure 1.6 shows that this simple model qualitatively describe the

physics of intersubband polaritons. However, this model is limited, e.g., it does not

take into the Coulomb interaction. It, thus, cannot explain the plasmonic nature

of intersubband excitations, nor some intersubband excitation dipole-dipole inter-
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Figure 1.6: Experimental data from Ref. [14]. Reflectance for different angles of
incidence for the TM polarization. Left inset: position of the peaks. Right inset:
results for the TE polarization. Because it is not coupled to the electron gas, only
one peak is observed corresponding the cavity mode.

action. These features will be presented in chapters 2 and 3. Moreover, this is a

one-excitation model. As such, it fails to describe polariton-polarion interactions,

which appeared to be extremely relevant in the case of exciton polaritons [29]. Be-

cause of this limitation, this model is limited to the linear regime, where the number

of polaritons is much smaller than the number of electrons in the Fermi sea. We

will explain in Chapter 3 how to treat the non linear regime.

1.3.3 Experimental realisations

We have just seen that the light-matter coupling can be much higher than could

naively be expected. But is it high enough to reach the strong coupling regime?

It turns out that the answer is positive. The first observation of intersubband

polaritons dates back to 2003 in the mid infrared range (140 meV) [14]. These results

are plotted in figure 1.6. The linewidths of the bare intersubband bright excitation
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and the cavity TM mode are respectively 5 meV and 15 meV. At the anti-crossing,

they average and polariton linewidths are around 10 meV. As a comparison, the

splitting at resonance, corresponding to twice the Rabi frequency, is 14 meV, which

is enough to resolve the two picks.

Since then, other similar realizations have been developed and intersubband

polaritons have been extensively studied.

Tuning the light-matter coupling

Some devices have been designed to test the influence of the number of electrons

on the coupling [58, 66, 67] in the mid infrared. The number of electrons can be

varied thanks to electrical gating, charge transfert in double quantum well structures

or temperature variation. In the first case [58, 68], one of the mirror is metallic

and can be used as Schottky gate as shown in figure 1.7a. By applying a gate

voltage, the number of electrons in the quantum wells, and , thus, the coupling

strength, can be varied (figure 1.7b). In the second case [66], the structure is very

similar but the confinement of the electrons is achieved by two asymmetric coupled

quantum wells (figure 1.8a). Only the largest well is doped while the thinner well

transition is resonant with the cavity field. By applying a gate voltage, the well

lowest subbands can be brought to resonance to populate the thin well’s ground

state and vary the light-matter coupling (figure 1.8b). It is a priori also possible to

create a charge oscillation between the two wells to modulate the coupling strength

at the rate of the resonant-tunneling process. Compared to the first case, much

higher modulation speed can be reached, since the capacitance of the device is not a

limiting factor anymore. In the third case [67], wells are doped such that the Fermi

energy lies between the first and second excited subbands. Electrons involved in

the light-matter coupling are in the first excited subband intead of the lowest one.

Then, by increasing the temperature, electrons are promoted from the lowest to the

first excited subband, thus increasing the coupling. Results are consistent with the

theory.

In practice, non-adiabatic switch on and off of the light-matter coupling has been

achieved [41, 69, 42]. In the first case, the system is initially undoped and is, thus,

not coupled. Electrons from the valence band can then be optically injected in the

lowest conduction subband thanks to an ultra-short pulse—12 fs as compared to a

cavity cycle around 40 fs. Injection happens so fast that the coupling can be switched

on within less than a period of the cavity (figure 1.9a), and, thanks to a THz probe,
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(a) (b)

Figure 1.7: (a) Schematic of a cavity with top metallic mirror. The mirror is also
used as an electric contact, thus allowing to change the number of electrons in
the wells. The ligth-matter coupling can then be tuned. (b) Coupling versus gate
voltage. Figures taken from Ref. [58].

the system can be monitored during this short time interval. In particular, it is

possible to observe the conversion of coherent photons into cavity polaritons or the

evolution of the band structure in a photonic crystal. The reverse switching is also

possible by optically exciting electrons from the lowest conduction subband to the

first excited one thanks to a 100 fs pulse [42]. The electron gas is then depleted, thus

reducing the light-matter coupling. When the intensity of the incident pulse is high

enough, the system enters the weak coupling regime and polaritons are bleached

(figure 1.9b). Such realisations are good candidates for the generation of entangled

photons pairs from the ground state of the ultra-strongly coupled system [59].

Towards optoelectronics devices

Efforts have also been made to realize photovoltaic probes [44] and electrolumines-

cent devices [45, 46, 47]. The heterostructure is then turned into a quantum cascade

to allow electrical extraction or injection of polaritons (figure 1.10). In such systems,

electrons tunnel from one well to another through tunneling minibands and are se-

lectively extracted from or injected into upper or lower polariton states by varying

the bias. The influence of the cavity has been studied, confirming its importance

to reach the strong coupling regime [70]: when missing, the electroluminscent sig-

nal is the one of the bare intersubband transition (figure 1.11b); when present, its

main contribution comes from the polaritonic states (figure 1.11a). The secondary
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(a) (b)

Figure 1.8: (a) Band profile and energies of confined states in a double asymmetric
well at zero bias. The transition occurs between the left well’s two levels (thick
black lines) while the electrons are in the right well’s ground state (green line). By
applying a bias, the two well ground states can be resonant. (b) Reflectance spectra
at a given angle for different applid biases. Figures taken from Ref. [66].

feature in figure (1.11a) comes from the coupling between intersubband excitations

and higher photonic modes [71, 72].

Coherent scattering of polaritons due to optical phonons was also studied [50] in

such systems. Upper polaritons are electrically injected and then relax to the lower

branch by emitting phonons (figure 1.12). It is then a priori possible to observe

stimulated scattering of polaritons [48].

Increasing the light-matter coupling

Other studies focused on the ultra-strong coupling regime for THz transtions by

changing the shape of the heterostructure [73, 74] or of the cavity [51, 75]. In

the first case, the multi-quantum wells structure mimics a parabolic confinement

along the growth direction (figure 1.13a). The transition is not blue-shifted by

the Coulomb interaction even for high doping [76], making it possible to increase

the Rabi frequency without increasing the transition frequency. The ultra-strong

coupling regime is thus favored and a Rabi frequency of 27% of the intersubband

energy was reported. In the second case, a double metal cavity is used to better

confine the electromagnetic field and the TM0 mode is used (figure 1.13b). As

mentioned above, this results to the current highest ratio with a Rabi frequency of
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(a) (b)

Figure 1.9: Experimental results from Refs. [41] (left) and [42] (right). (a) Re-
flectance spectra of the cavity for different delay times tD. A 12 fs pulse arrives
at tD = 0. Blue and red arrows indicate respectively positions of the bare cavity
mode and of the two polaritonic branches. Switching from the weak to ultra-string
coupling is abrupt: less than a cavity cycle. (b) Spectra of the 100 fs pulse after inter-
acting with the cavity for increasing intensity (top to bottom). The incident spectra
is also reported at the very top. As the intensity increases, more and more electrons
are excited to higher subbands and the light-matter coupling thus decreases. At
high enough intensities, polaritonic modes merge into a single bare photonic mode.
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Figure 1.10: Band diagram of the quantum cascade structure reported in Ref. [70]
for 6 V bias. Fundamental (1), excited (2) and injection (inj) states are also plotted.
Minibands corresponds to the grey-shaded zones.

(a) (b)

Figure 1.11: Measured electroluminescence reported in Ref. [70]. (a) With the
cavity. The main contribution comes from the lower polariton mode. There is
also a feature at the energy of the bare transition due to coupling with higher
cavity modes. (b) Without the cavity. Electroluminescence comes from the bare
intersubband excitations.
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Figure 1.12: Experimental data from Ref. [50]. Electroluminescence maxima
(crosses) compared with polaritonic dispersion (solid lines). Electrons are injected in
upper polariton states and relax to lower polariton states by emitting a LO-phonon.

48% of the transition.

In the mid infrared, the ultra-strong coupling has been reached in highly doped

quantum wells where up to four subbands are populated (figure 1.14a). Dipolar os-

cillators with different frequencies are phase locked by the Coulomb interaction, re-

sulting in an intersubband plasmon concentrating all the oscillator strength. The ab-

sorption spectrum shows a narrow resonant peak, the plasmon, instead of a patch of

overlaping peaks corresponding to independent incoherent oscillators (figure 1.14b).

Moreover, the plasmon peak is blue-shifted with respect to the independent oscil-

lators peaks because of the depolarization shift. Notice that the linewidth of the

plasmon does not increase with temperature, making it a good candidate for room

temperature operating devices. Embedded in a double metal cavity, this structure

allows to reach a ratio of 33%, the highest in the mid infrared at room temperature.
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(a) (b)

Figure 1.13: (a) Band diagram of the heterostructure (gray line) with harmonic-like
trapping (black line) reported in Ref. [74]. (b) Schematic of a double metal cavity.
The width of the cavity can be much smaller than the wavelength of the photonic
mode. The confinement of the mode is better so the light-matter coupling is higher.
The coupling to the external electromagnetic field is improved thanks to the grating
of the top layer. Figure taken from [77]

(a) (b)

Figure 1.14: (a) Schematic of the quantum well with six bound states associated
subbands considered in Ref. [52]. Dashed line indicates the position of the Fermi en-
ergy, which is between the fourth and fifth subbands. (b) Experimental absorption
spectrum at 77 K (black) and 300 K from Ref. [52]. Blue curve is the asborption ex-
pected from the independent electrons picture. From left to right, peaks correspond
to transitions 1 → 2, 2 → 3, 3 → 4 and 4 → 5.
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Chapter 2

Hamiltonian models for

intersubband polaritons

In this chapter, we will present three second-quantized Hamiltonians to describe our

system. We will start with the most general one, describing the electromagnetic field

interacting with an assembly of electrons in the Coulomb gauge. This Hamiltonian

is derived in Appendix B. Because the system consists of electron-hole excitations

interacting with photons, it will combine both bosonic and pairs of fermionic oper-

ators. Moreover, because electrons interact with each other through the Coulomb

interaction, it is quartic in fermionic operators. The final Hamiltonian is then too

complicated to be diagonalized exactly. However, some approximations can be intro-

duced to simplify it. Only a small subspace of the initial Hilbert space is necessary

to capture the physics described in the first chapter. First, all electronic degrees of

freedom outside the Fermi sea in the first subband are irrelevant for our purpose,

so we remove them. We can, thus, write a second Hamiltonian whose fermionic

part is written solely in terms of electrons in the second subband and holes in the

Fermi sea. This Hamiltonian will be used in Chapter 3. Second, the space can be

truncated to conserve only bright intersubband excitations. Moreover, these excita-

tions introduced are almost bosonic. Based on simple physical considerations, it is

then possible to write an effective bosonic Hamiltonian. Because this Hamiltonian

is quadratic, it can be diagonalized exactly. It is, however, limited to the linear

regime.
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2.1 Fermionic Hamiltonians

2.1.1 Electron-Electron Hamiltonian

The Hamiltonian of the system can be split into five contributions,

H = HCav +HElec +HI1 +HI2 +HCoul, (2.1)

whereHCav is the free cavity field Hamiltonian, HElec is the free quasi two-dimensional

electron gas Hamiltonian, HI1 and HI2 are light-matter coupling terms and HCoul is

the Coulomb interaction between electrons.

Free photons and electrons

Hamiltonian HCav is obtained from the free electromagnetic field to which we add

the boundary conditions corresponding to the cavity [78],

HCav =
∑

q

~ωcav,q

(

a†qaq +
1

2

)

, (2.2)

where aq is annihilation operator for photons satisfying

[

aq, a
†
q′

]

= δq,q′ . (2.3)

Hamiltonian HElec describes the dynamics of a free electron gas subject to the

confining potential of the quantum wells,

HElec =
∑

n,k

(

~ωn +
~
2k2

2m∗

)

c†n,kcn,k, (2.4)

where cn,k is the annihilation operator for an electron in the conduction subband n

with wave vector k satisfying the fermionic anticommutation rule,

{

cn,k, c
†
n′,k′

}

= δn,n′δk,k′ . (2.5)

It is the kinetic energy operator of the quasi two-dimensional electron gas.

Consistently with chapter 1, we consider only the first photonic mode and the

first two electronic conduction subbands. We also omit the polarization, since only

the TM mode is relevant here. To simplify the notations, spin and quantum well

indices are not mentioned. Electrons have the same spin and well index and there



2.1. FERMIONIC HAMILTONIANS 37

is an implicit sum over them.

Light-matter couplings

The two ligth-matter terms HI1 and HI2 in Eq. (2.1) correspond to the absorption

and emission of photons by electron-pairs, and scattering of photons on the electron

gas.

Hamiltonian HI1 is given by

HI1 =
∑

k,q

~χq

(

aq + a†−q

)(

c†2,k+qc1,k + c†1,kc2,k−q

)

, (2.6)

where χq is the coupling between a single electron and a cavity photon,

~χq =

√

~e2 sin(θ)2

ǫ0ǫrm∗2SLcavωcav,q

p12, p12 =

∫ L

0

dz χ2(z) pz χ1(z). (2.7)

This coupling is proportional to the quantum fluctuations of the field in the cav-

ity [79]. It is then inversely proportional to the square root of the volume of the

microcavity SLcav. It is also proportional to the electric dipole moment of the

transition, which yields the geometrical factor p12, encoding selection rules of the

transition. Again, the two fermionic operators act on the same quantum well and

summation over the wells is implicit. This interaction is also spin conserving and sum

over spins is implicit too. Hamiltonian HI1 has two different contributions. First,

resonant terms describing absorption (emission) of photons by creation (recombina-

tion) of electron-hole pairs. Second, non resonant terms where two excitations can

be created or annihilated simultaneously. Because they do not conserve the energy,

they are negligeable in the weak and strong coupling regime. They, however, become

important in the ultra-strong coupling regime where they change the nature of the

ground-state [38].

Hamiltonian HI2 is given by

HI2 =
∑

k,q

nQWNel|~χq|2
~ω12

(

a−q′ + a†q′

)(

aq + a†−q

)

. (2.8)

A comparison with Eq. (B.20) shows that only the A2-term from Hamiltonian HI2

has been conserved. This is justified by the fact the scattering part (see Eq. (B.20))

gives a negligeable compared to the A2-term. Also, a coefficient was omited in

the expression of the Hamiltonian. This introduces a minor correction in the case
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of an infinite quantum well and is exact for a parabolic one. As for the previous

light-matter term, anti-resonant terms become significant only in the ultra-strong

coupling regime.

Coulomb interaction

The Coulomb interation is given by

HCoul =
1

2

∑

k,k′,q 6=0
µ,µ′,ν,ν′

V µνν′µ′

q c†µ,k+qc
†
ν,k′−qcν′,k′cµ′,k. (2.9)

Notice first that the sum does not contain the troublesome terms q = 0 [80, 81]. Once

again, electrons in different wells are not coupled, the interaction is spin conserving

and sums over wells and spins are implicit.

The Coulomb coefficients are given by

V µνν′µ′

q =
e2

2ǫ0ǫrSq
Iµνν

′µ′

q , (2.10)

Iµνν
′µ′

q =

∫

dz dz′ χµ(z)χν(z′)e−q|z−z′|χν′(z
′)χµ′(z).

First factor in Eq. (2.10) is the Coulomb interaction for a true two-dimensional

electron gas. The geometrical factor Iµνν
′µ′

q is due to the spatial confinement of

the electrons in the wells and introduces some selection rules: For symmetric wells,

the coefficient is non zero only if the wavefunction products χµχµ′ and χνχν′ have

the same parity. As we limit ourselves to the first two subbands, this corresponds

to cases where the sequence µνν ′µ′ contains an even number of 1 and 2 indices.

Moreover, some of them are equal,

V 1122
q = V 1212

q = V 2121
q = V 2211

q ,

V 1221
q = V 2112

q , (2.11)

leaving us with only four distinct coefficients V 1111
q , V 2222

q , V 1221
q and V 1212

q .

These four coefficients correspond to four different processes (figure 2.1), which

we can divide into two categories depending on their impact on intersubband excita-

tions. In the first three cases, electrons in subbands µ and ν interact with each other

and are scattered inside the same subbands. They, thus, cannot create or annihilate

intersubband excitations. We can, however, expect them to scatter pairs of intersub-
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band excitations [21]. In the last case, electrons are scattered to the other subbands,

thus creating or annihilating electron-hole pairs. These terms are responsible for the

depolarization shift [54, 55]. In the following, we will refer to these two categories

respectively as the intrasubband and intersubband Coulomb interactions. As we

shall see, they have a different impact on the physics of intersubband polaritons.

For the moment, we can see that they have a very different behavior in the

long-wavelength limit (figure 2.1). In the absence of screening, the intrasubband

Coulomb terms diverge, like for a true two-dimensional electron gas [80, 81], while

the intersubband Coulomb interaction does not.

Screened Coulomb interaction

The dense two-dimensional electron gas in the first electronic subband screens the

Coulomb interaction. In order to take this into account, we will replace the bare

Coulomb interaction V µνν′µ′

q in Eq. (2.10), with its static RPA-screened version

Ṽ µνν′µ′

q . These coefficients obey the Dyson equation [82, 83]

Ṽ µνν′µ′

q = V µνν′µ′

q +
∑

α,β

V µβαµ′

q Παβ(q, ω = 0) Ṽ ανν′β
q , (2.12)

where Παβ(q, ω) is the RPA polarization function for the α → β transition

Παβ(q, ω) = lim
δ→0

1

~

∑

k

fα,k+q − fβ,k
ωα,|k+q| − ωβ,k − ω − iδ

, (2.13)

where fi,k is the occupation number in the subband i. We assume that the matter

part of the unperturbed system—free electrons—is in its ground state with all elec-

trons in the Fermi sea. The polarization function for 2 → 2 transition is then zero.

The screened interactions, thus, take the form

Ṽ 1νν1
q =

V 1νν1
q

1 − V 1111
q Π11(q, 0)

, (2.14)

Ṽ 2222
q =

V 2222
q + [(V 1221

q )2 − V 1111
q V 2222

q ]Π11(q, 0)

1 − V 1111
q Π11(q, 0)

,

Ṽ 1212
q =

V 1212
q

1 − V 1212
q [Π12(q, 0) + Π21(q, 0)]

,

where ν = {1, 2}. Screening of intrasubband and intersubband processes is, thus,

different and can be encoded respectively in the dielectric functions ǫ(q) and ǫ12(q),
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Figure 2.1: The different Coulomb processes. The left column present a schematic
of the four relevant processes. The right column shows the wave vector dependency
of the Coulomb coefficients in Eq. (2.10) in the THz range with ~ω12 = 15 meV
and electronic density in the wells nel = 3 × 1011 cm−2. Solid line: RPA-screened
Coulomb interaction. Dashed line: bare Coulomb interaction.
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where

ǫ(q) = 1− V 1111
q Π11(q, 0), (2.15)

and

ǫ12(q) = 1− V 1212
q [Π12(q, 0) + Π21(q, 0)]. (2.16)

Notice that the dielectric function for the intrasubband processes is very similar to

the one for a true two-dimensional electron gas.

We can then write the analogue of Eq. (2.10) with screening

Ṽ µννµ
q =

e2

2ǫ0ǫrǫ(q)Sq
Ĩµννµq ,

Ṽ 1212
q =

e2

2ǫ0ǫrǫ12(q)Sq
Ĩ1212q . (2.17)

In Eq. (2.17), all geometric factors Iµνν
′µ′

remain the same except for I2222q .

As already mentioned in the first chapter, only the long-wavelength limit is

relevant to study the electronic part of the system. We thus consider the q → 0

limit of the above expressions. The dielectric function for the intra- and intersubband

Coulomb processes is [82]

ǫ(q → 0) = 1 +
κ

q
I1111q , (2.18)

ǫ12(0) = 1 +
20(kFL)2κL

27π4
, (2.19)

where κ is the Thomas-Fermi wave vector

κ =
m∗e2

2π~2ǫ0ǫr
. (2.20)

The geometrical factor I2222q is modified as follows

Ĩ2222q = I2222q +
5κL

16π2
. (2.21)

For the intrasubband Coulomb processes screening removes the divergence. When

the wave vector q tends to zero, the geometrical factor I1111q tends to one and the

dielectric function of the true two-dimensional electron gas is found. For the in-
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tersubband Coulomb process, screening only renormalizes the bare interaction (fig-

ure 2.1).

2.1.2 Simplified electron-hole Hamiltonian

We now know the different terms of the Hamiltonian but it is too complicated to be

diagonalized exactly. Before going any further, we need to simplify it. To do so, we

can remove some irrelevant terms, thus reducing the size of the Hilbert space. For

convenience and consistence with the electron-hole pair concept, we also introduce

the hole operators. This allows us to simplify the calculation of matix elements,

which will the quantity of interest in chapter 3.

Ground state

As defined in the first chapter, the ground state is

|F 〉 =
∏

k<kF

c†1,k |0〉 , (2.22)

where state |0〉 is the vacuum, with no photons nor electrons. What we call here

ground state is in fact the ground state of the system with no Coulomb interaction

and no light-matter coupling. This state has no photon in the cavity and a Fermi

sea in each quantum well. Remember, however, that when the Coulomb interaction

and the light-matter coupling are turned-on and large enough, it is not the ground

state of the system anymore [38]. However, in this case, the true ground groud state

can be easily expressed in terms of |F 〉 [84]. State |F 〉 will, thus, serve as a reference

and be the starting point of all the following calculations: all excitations are created

on such a state, by applying creation operators.

Truncating the Hibert space

Remember that we are interested in intersubband excitations and that these excita-

tions are composed of a hole in the Fermi sea and an electron in the second subband.

What happens in the first subband outside the Fermi is not relevant when studying

such excitations, so it is tempting to conserve only terms acting in the Fermi sea.

In Eqs. (2.4), (2.6), (2.8) and (2.9), we truncate all sums to k < kF in the first sub-

band. Doing so, we cannot describe intrasubband excitations in the first subband

corresponding to the lowest continuum in figure 1.2b. We have thus removed some
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unnecessary degrees of freedom.

In chapter 3, quantities of interest will be matrix elements between states contain-

ing intersubband excitations created from the ground state. In the normal ordered

Hamiltonian, all c1,k with |k| > kF will not contribute to such matrix elements, so

it is indeed reasonable to remove them.

Electron-hole formalism

We saw that intersubband excitations are electron-hole pairs, i.e., promotion of an

electron from the Fermi sea to the second subband, leaving behind a hole. But

for now the Hamiltonian is not expressed in terms of hole operators. It is then

advantageous, and coherent with the language used so far, to introduce the hole

creation and annihilation operators. In the Hamiltonian, we replace the annihilation

of an electron in the Fermi sea with wave vector k by the creation of a hole with

wave vector −k,

c1,k 7→ h†−k, (2.23)

and we normal order the new Hamiltonian with respect to the hole operators. The

ground state |F 〉 now behaves like the vacuum—it is annihilated by any annihilation

operator—which is convenient for the calculation of matrix elements.

The electron-hole Hamiltonian is then

H = HCav +HElec +HI1 +HI2 +HIntra +HDepol, (2.24)

where HCav is unchanged and Coulomb Hamiltonian has been split into its intra-

subband and intersubband contributions. The new expression of the kinetic energy

operator is, up to a constant shift,

HElec =
∑

k

~ω̃2,k c
†
2,kc2,k −

∑

|k|<kF

~ω̃1,k h
†
−kh−k, (2.25)

where ω̃1,k and ω̃2,k are hole and electron dispersions renormalized by the screened

Coulomb interaction

~ω̃1,k = ~ω1,k −
∑

|k′|<kF

Ṽ 1111
|k−k′|

~ω̃2,k = ~ω2,k −
∑

|k′|<kF

Ṽ 1212
|k−k′|. (2.26)
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These renormalizations are the same as the one obtained by diagrammatic method

in the Hartree-Fock approximation [54, 55]. Hartree-Fock terms are larger for the

holes than for the electrons in the second subband, so the renormalization globally

blue-shifts the energy of the transition. Because of these terms, the two subbands

are not parallel anymore. We, however, define an averaged intersubband transition

energy ~ω̃12.

The light-matter coupling term HI1 is

HI1 =
∑

q

~χq

(

aq + a†−q

)

∑

k<kF

(

c†2,k+qh
†
−k + h−kc2,k−q

)

, (2.27)

while Hamiltonian HI2 is unchanged. In Hamiltonian HI1, it is now more appearant

that photons are coupled to a symmetric linear superposition of electron-hole pairs,

∑

k<kF

c†2,k+qh
†
−k, (2.28)

like the one obtained in the simplified model of the first chapter.

Coulomb terms are

HIntra =
1

2

∑

k,k′,q

Ṽ 2222
q c†2,k+qc

†
2,k′−qc2,k′c2,k

+
1

2

∑

k,k′,q

Ṽ 1111
q h†−k−qh

†
−k′+qh−k′h−k

−
∑

k,k′,q

Ṽ 1221
q h†−k−qc

†
2,k′−qc2,k′h−k, (2.29)

and

HDepol =
1

2

∑

q

V 1212
q

∑

k,k′

(

2 c†2,k+qh
†
−k h−k′+qc2,k′

+c†2,k+qh
†
−k c

†
2,k′−qh

†
−k′ + h−k+qc2,k h−k′−qc2,k′

)

, (2.30)

where terms q = 0 are removed and sums are truncated to the Fermi sea. In Hamil-

tonian HDepol, the same electron-hole pairs superpositions as in Hamiltonian (2.27)

are present. Because we will treat this part of the Coulomb interaction exactly, we

do not use the screened coefficient.
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2.2 Intersubband excitations and bosonic Hamil-

tonian

In the previous section, we wrote a simplified Hamiltonian in terms of electrons in

the second subband and holes in the Fermi sea and we saw that only a particular

superposition of electron-hole pairs is coupled to the electromagnetic field. We are

now in good position to define more precisely the notion of intersubband excita-

tion, so we can further simplify our Hamiltonian. As we will see, these excitations

are almost bosonic, so it is possible to write an effective purely bosonic Hamilto-

nian to describe the system. Here, we present only the physical ideas behind this

transformation and let the details for the next chapter.

2.2.1 Definition

Consider the light-matter Hamiltonian as written in Eq. (2.27). As explained above,

it is clear that photons are coupled only to a symmetric linear superposition of

electron-hole pairs,

b†0,q =
1

√

nQWNel

∑

k

ν∗0,k c
†
2,k+qh

†
−k, (2.31)

where ν0,k = Θ(kF − k) and Θ is the Heaviside function,
√

nQWNel is a normal-

izing constant, and electrons and holes have opposit spins. Again, the summation

is implicit over the spin and quantum well indexes. The choice of the index 0 will

be explained later. Equation (2.31) defines a creation operator for a collective ex-

citation, which we will name bright intersubband excitations. Hamiltonian HI1 can

then be further simplified

HI1 =
∑

q

~Ωq

(

aq + a†−q

)(

b†0,q + b0,−q

)

, (2.32)

where Ωq =
√

nQWNel χq is the Rabi frequency. As explained in the simple model in

the first chapter, the light-matter coupling is collectively enhanced by the presence

of the electron gas in the first subband.

Intersubband excitation operators can also be directly injected in Hamiltonian

HDepol,

HDepol =
Nel

2

∑

q

V 1212
q

(

2b†0,qb0,q + b†0,qb
†
0,−q + b0,qb0,−q

)

. (2.33)

The intersubband Coulomb interaction, thus, only couples bright intersubband ex-
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citations with each other. Notice that it is also enhanced by the presence of the

electron gas, but, contrary to the light-matter coupling, this enhancement depends

only the number of electrons per quantum well. Indeed, the Coulomb interaction

couples only electrons inside the same well.

Other similar excitations can be constructed by an orthonormalization procedure

b†i,q =
1

√

nQWNel

∑

k

ν∗i,k c
†
2,k+qc1,k, (2.34)

where index i runs from 1 to nQWNel − 1 and the ν coefficients have support over

the Fermi sea and satisfy the orthonormality relation

1

nQWNel

∑

k

ν∗i,kνj,k = δi,j. (2.35)

However, none of these new collective excitations is coupled to the microcavity

photon field. We, thus, call them dark intersubband excitations. Moreover, these

dark excitations are not affected by the depolarization shift. They are, thus, not

resonant with bright intersubband excitations. They correspond to the remaining

electron-hole continuum shown in Figure 1.2c. We could also define spin-carrying

excitations, i.e., electrons and holes have the same spin but, because the light-matter

coupling is spin conserving, they are not coupled to the cavity field. Contrary to the

excitons [21], the spin index is not a relevant dynamical variable for intersubband

excitations.

2.2.2 Simple effective bosonic Hamiltonian

We have, thus, written in a more compact and explicit form two terms of our Hamil-

tonian, and we would like to do the same with the other terms. Unfortunately, the

remaining terms cannot be simplified so easily. It is, however, possible to write an

effective purely bosonic Hamiltonian to describe the system [85], as it was done in

the case of exciton-polaritons [86, 22]. To do this, we limit ourselves to the sub-

space of the bright intersubband excitations and express the Hamiltonian in this

subspace. This amounts, once again, to truncating the Hilbert space to relevant de-

grees of freedom. Moreover, intersubband excitations are almost bosonic. We now

give some simple physical arguments to justify this and derive the traditional effec-

tive bosonic Hamiltonian for bright excitations [38, 49]. We postpone all calculations

to chapter 3.
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Bosonicity

We first explain why it is reasonable to treat intersubband excitations as bosons.

The commutation rule for bright intersubband excitations is

[

b0,q, b
†
0,q′

]

≈ δq,q′ , (2.36)

where the exact meaning of ≈ will be discussed in chapter 3.

We can understand this point with a simple consideration. An intersubband

excitation is a collective mode containing one electron-hole pair equally spread over

nQWNel states, where nQWNel is the number of electrons in the system. The prob-

ability for the electron or the hole to be in a given state is, thus, 1/nQWNel. If a

second intersubband excitations is injected, the probability that the two electrons

or the two holes are in conflict for the same state is of the order of 1/nQWNel.

More generally, if Nexc intersubband excitations are present in the system, there are

Nexc(Nexc−1)/2 pairs of electrons and the same number of pairs of holes, which can

potentially be in conflict. The dominant Pauli blocking contribution, thus, scales

like Nexc(Nexc − 1)/nQWNel. This is negligeable when Nexc/nQWNel ≪ 1, so we ex-

pect intersubband excitations to behave like bosons in the low density regime. This

simple combinatorial argument even gives the correct scaling for the correction to

the bosonicity (see section 3.4).

In Hamiltonians HI1 and HDepol, we then replace intersubband excitation oper-

ators by bosonic one

b†0,q 7→ B†
q,

[

Bq, B
†
q′

]

= δq,q′ , (2.37)

Because we will deal only with brigh excitations, we neglected the index in the

definition of the bosonic operator Bq.

Free electron gas Hamiltonian

We saw that an intersubband excitation is an electron-hole pair. To such an ex-

citation, Hamiltonian HElec associates an energy ~ω̃12 corresponding to the energy

difference between the two subbands, where we considered an averaged effect of the

Hartree-Fock terms. For this assumption to be valid, the two renormalized subbands

must be almost parallel. Thus, we propose a simplified expression for HElec in terms



48 CHAPTER 2. HAMILTONIAN MODELS

of the bosonized bright intersubband excitations

HB
Elec =

∑

q

~ω̃12B
†
qBq. (2.38)

We added the superscript B to insist on the fact that this Hamiltonian is bosonic.

Once again, this substitution is equivalent to truncating the Hilbert space to the

relevant degrees of freedom. Dark excitations, corresponding to the electron-hole

continuum in figure 1.2b cannot be treated. There is also an implicit cut-off to

small wave vectors.

A2-term

To simplify the notation, we replace the bare intersubband transition energy ~ω12

by the renormalized one in the denominator in Eq. (3.18). Doing so, we only in-

troduce a minor correction. Notice that, as the intersubband Coulomb interaction,

it is collectively enhanced by the electron gas. Its contribution is then of the or-

der of ~Ωq
2/ω̃12, which is non negligeable only in the ultra-strong coupling regime.

Hamiltonian HI2 can, thus, be written

HB
I2 =

∑

q

~Ωq
2

ω̃12

(

a−q + a†q
)

(

aq + a†−q

)

, (2.39)

and can be omitted when the system is not in the ultra-strong coupling regime.

Coulomb interaction

The intrasubband Coulomb interaction is already expressed in terms of intersubband

excitations. We, thus, only have to replace intersubband excitation operators by

their bosonic counter part. To simplify the notations and to be consistent with the

litterature [87], we truncate the sum in the intrasubband Coulomb interaction in

Eq. (2.33) to small wave vectors. It can then be put in the simpler form

HB
Depol =

~ωP
2

4ω̃12

∑

q

(

2B†
qBq +B†

qB
†
−q +BqB−q

)

, (2.40)

where ωP is the plasma frequency for an infinite quantum well,

ωP
2 =

e2nel

ǫ0ǫrm∗L

5ω̃12

3ω12

. (2.41)
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This Hamiltonian is the same as in Ref. [87], up to a geometrical factor. This

factor is interpreted as an image contribution to the Coulomb interaction due to the

boundary conditions of the electric field on the cavity mirrors. It becomes important

for double metal microcavities where the photon confinement is high. We could take

it into account by considering the Coulomb interaction in a cavity instead of in free

space. Since we do not consider double metal cavities, we do not consider this

correction. When necessary, it can obtained from experimental results.

We saw in Eq. (2.40) that the intersubband Coulomb interaction is collectively

enhanced. As a comparison, the intrasubband terms are not. We thus neglect them,

as we neglected the second part of Hamiltonian HI2. However, by analogy with the

excitons [88], we expect a contribution to the energy of intersubband excitations.

We do not know how to compute it yet but we can include it in the definition of the

energy ~ω̃12.

Bosonic Hamiltonian

Thanks to previous approximations, we can write a simple bosonic Hamiltonian to

describe the system,

H̃B =
∑

q

~ωcav,q a
†
qaq +

∑

q

~Ωq
2

ω̃12

(

a−q + a†q
)

(

aq + a†−q

)

+
∑

q

~ω̃12B
†
qBq +

~ωP
2

4ω̃12

∑

q

(

2B†
qBq +B†

qB
†
−q +BqB−q

)

+
∑

q

~Ωq

(

aq + a†−q

)

(

B†
q +B−q

)

. (2.42)

This Hamiltonian is quadratic and can, thus, be diagonalized by an Hopfield-Bogoliubov

transformation [65]. It is very similar to the one obtained in Ref. [87].

2.2.3 Bogoliubov transformation

To find the energies of the eigenmodes of the Hamiltonian in Eq. (2.42), we write

the evolution equations verified by intersubband excitation and photon operators,

i
d

dt













aq

Bq

a†−q

B†
−q













= L













aq

Bq

a†−q

B†
−q













, (2.43)
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where L is the Bogoliubov matrix,

L =













ωcav,q + 2Ωq
2

ω̃12
Ωq 2Ωq

2

ω̃12
Ωq

Ωq ω̃12 + ωP
2

2ω̃12
Ωq

ωP
2

2ω̃12

−2Ωq
2

ω̃12
Ωq −ωcav,q − 2Ωq

2

ω̃12
Ωq

Ωq − ωP
2

2ω̃12
Ωq −ω̃12 − ωP

2

2ω̃12













. (2.44)

Eigenvalues of L are {±ωL,q,±ωU,q}, where subscripts L and U refer, respectively, to

lower and upper polaritons and eigenmodes of the system are linear superpositions

of intersubband excitations and photons,

pj,q = wj,qaq + xj,qBq + yj,qa
†
−q + zj,qB

†
−q, (2.45)

where j ∈ {L,U}, and are bosonic,

[

pi,q, p
†
j,q′

]

= δi,jδq,q′ . (2.46)

A complete solution of the problem in the ultra-strong coupling regime, including

a discussion on the nature of the new ground state of the system, can be found in

Ref. [38].

Notice that if we neglect antiresonant terms in the bosonic Hamiltonian H̃B,

Eqs. (2.43) and (2.44) are simplified,

i
d

dt

(

aq

Bq

)

= L′

(

aq

Bq

)

, L′ =

(

ωcav,q + 2Ωq
2

ω̃12
Ωq

Ωq ω̃12 + ωP
2

2ω̃12

)

. (2.47)

Notice that L′ is, up to a change of the photon and intersubband transition energy,

the same matrix as in Eq. (1.11). In this approximation, polariton dispersions and

expressions are then given by Eqs. (1.12), (1.13) and (1.14). There is, thus, a strong

similarity between our one-excitation model from chapter 1 and Hamiltonian (2.42).

This point will be discussed in chapter 3 and emphasizes the relevance of the simple

model presented in chapter 1. Of course, we should not make this assumption if

we want to invistigate the caracteristic features of the ultra-strong coupling regime,

namely the squeezed ground state [38] or dynamical Casimir effects [39]. However,

polaritonic dispersions obtained from Eq. (2.47) are qualitatively correct and quan-

titatively close to the exact values.

In figure 2.2, we plot the polariton dispersion with (solid lines) and without

(dashed lines) the antiresonant terms for in the mid infrared (left) and in the THZ
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(a) (b)

Figure 2.2: Polaritonic dispersions in the mid infrared (figure (a)) and the THZ
(figure (b)). Solid lines: Dispersions obtained from Eq. (2.44). Dashed lines: Dis-
persions obtained by neglecting the antiresonant terms. The bare intersubband
transition energies are 140 meV and 15 meV for the mid infrared and THz range,
respectively, and the electron densities are nel = 1012 cm−2 and nel = 3×1011 cm−2.

Figure 2.3: Hopfield coefficients of the lower polaritonic mode in the THz regime,
from q = 0 (left) to higher wave vectors (right). Solid line: Obtained from Eq. (2.44).
Dashed line: Obtained from Eq. (2.47) with no antiresonant terms. Hopfield coeffi-
cients yL,q and zL,q are very close to zero and are negligeable compared to wL,q and
xL,q even at resonance.
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(right) range with bare intersubband transition 140 meV and 15 meV and electron

densities in the wells nel = 1012 cm−2 and nel = 3 × 1011 cm−2 respectively. The

renormalized energy ~ω̃12 was considered to be the bare one ~ω12 because we did not

show how to compute the electron-hole Coulomb intrasubband contribution yet. The

Rabi frequencies at resonance are around 10% of the intersubband transition energy.

As explained in the section 1.3, because the Rabi frequency vanishes for q = 0, the

polariton gap [73, 51] is missing. The discrepancy between the exact and approxi-

mated dispersions are due to the fact that the plasma frequency is overestimated in

the absence of the antiresonant terms: ω̃12 +ω2
P/2ω̃12 instead of

√

ω̃2
12 + ω2

P. This is

visible in the THz range (figure 2.2b), which translates the resonance to higher wave

vectors, and negligeable in the mid infrared range (figure 2.2a). Moreover, Hopfield

coefficients yj,q and zj,q remain small compared to wj,q and xj,q (see Ref. [38] and

figure 2.3), so the nature of the polaritons is not dramatically altered. This approx-

imation is, thus, good enough to obtain valuable information about intersubband

polaritons and we will use it in the next chapters.

The agreement with experimental results [14, 51, 89] justifies the assumptions we

made. However, these results correspond to probing experiments where the number

of excitations injected in the system remains low. At the exception of polariton

bleaching [42], nothing is known about the physics of intersubband polaritons at

higher densities of excitations. Is the Hamiltonian in Eq. (2.42) still valid to in-

vestigate this regime? It is very unlikely. First, when the number of excitations

increases, the number of available electrons in the Fermi sea decreases. Pauli block-

ing becomes important and intersubband excitations are less and less bosonic. The

transformation defined in Eq. (2.37) is less and less relevant, so deviations from

Hamiltonian (2.42) are expected. Second, terms we have neglected in HI2 (see

Eq. (B.20)) and HIntra can have non negligeable contributions. They both scatter

holes in the Fermi sea or electrons in the second subband, so they should become

relevant when the number of electrons and holes increases. For these two reasons,

nonlinear effects are expected as the number of excitations in the system increases.

However, the Hamiltonian in Eq. (2.42) is quadratic and is, thus, limited to the

linear regime.

In the next chapter, we will show how to keep advantage of the bosonic framework

while taking nonlinear effects into account.



Chapter 3

Polariton-polariton interactions

In chapter 2, we presented the most general Hamiltonian of the system, which

cannot be diagonalized exactly. Then, some approximations were made, the key one

being the introduction of bosonized intersubband excitations. We were then able to

derive an effective bosonic Hamiltonian, to diagonalize it, and we obtained results

in agreement with the experiments in the linear regime, i.e., when the number

of intersubband excitations is much smaller than the number of electrons in the

Fermi sea. Because it is only quadratic in the bosonic operators, this effective

Hamiltonian fails to describe polariton-polariton interactions and is, thus, limited

to this linear regime. In this chapter, starting from the electron-hole Hamiltonian

derived in section 2.1, we will develop a rigorous method to calculate the polariton-

polariton interactions. Our method consists in computing matrix elements in the

subspace generated by bright intersubband excitations and then forcing the initial

and effective Hamiltonians to have the same matrix elements. We will then be able

to add quartic terms to our effective Hamiltonian and to describe the nonlinear

physics of intersubband polaritons. In addition, it gives a rigorous justification to

the derivation of the quadratic Hamiltonian in section 2.2.

First, we will describe the composite boson approach to the case of intersubband

excitations. This method, initially developed to describe excitons [90] and general-

ized to any fermion pairs [91, 92], yields all the commutation relations needed to

compute the fermionic Hamiltonian’s matrix elements. Then, we will compute ma-

trix elements and properly normalize them [93]. Here, we limit ourselves to states

with one or two excitations but the method can be generalized to any arbitrary num-

ber of them. We will show that, thanks to this method, we are able to derive a refined

version of Hamiltonian (2.42) More important, we will be able to include quartic
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terms to study nonlinear effects. These nonlinearities have two origins—fermion ex-

change between intersubband excitations and fermions pair interaction—which are

two manifestations of the non-bosonicity of intersubband excitations. We will also

see that, even if we limited ourselves to matrix elements between states with one

or two excitations, we are able to describe the physics of the system to first or-

der in the dimensionless parameter Nexc/nQWNel when Nexc is grower than two. In

other words, we will determine a controled perturbative expansion in the Coulomb

interaction and the non-bosonicity.

3.1 Intersubband excitations commutator formal-

ism

The dynamics of the system is determined by the set of all commutators. In this

section, we thus derive commutation rules for the intersubband excitation opera-

tors [94, 92]. Matrix elements will be treated in section 3.2. To this end, we recall

the general definition of these operators given in Eq. (2.34)

b†i,q =
1

√

nQWNel

∑

k<kF

ν∗i,k c
†
2,k+qh

†
−k, (3.1)

where ν0,k = Θ(kF−k) and the other νi,k satisfy orthogonality relations in Eq. (2.35).

This expression defines a change of basis from electron-hole pairs to intersubband

excitations, which can be inverted thanks to the following relation

c†2,k+qh
†
−k =

1
√

nQWNel

∑

n

νn,k b
†
n,q, (3.2)

where the sum runs over all modes n ∈ {0, 1, . . . , nQWNel − 1}, 0 being the only

bright mode.

3.1.1 Non-bosonicity and Pauli blocking term

In chapter 2, we treated intersubband excitations as bosons and said that this ap-

proximation holds only in the diluted regime. To make this statement clear, we

compute their commutator,

[

bm,q′′ , b†i,q

]

= δmq′′,iq −Dmq′′,iq, (3.3)
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where

Dmq′′,iq = D
(1)
mq′′,iq +D

(2)
mq′′,iq, (3.4)

D
(1)
mq′′,iq =

1

nQWNel

∑

k

νm,kν
∗
i,k+q′′−q h

†
−k−q′′+qh−k, (3.5)

D
(2)
mq′′,iq =

1

nQWNel

∑

k

νm,kν
∗
i,k c

†
2,k+qc2,k+q′′ . (3.6)

The first part of the commutator is the Kroenecker function, reminiscent of the

bosonic behavior of intersubband excitations. The second part is the deviation from

bosonicity and consists of two operators, involving, respectively, holes in the Fermi

sea and electrons in the second subband. They annihilate the ground state |F 〉
but can become significant if the number of excitations in the system is important.

Indeed, if |φ〉 is a state with Nexc intersubband excitations, the mean value of the

commutator is

〈φ|
[

bm,q′′ , b†i,q

]

|φ〉 = δmq′′,iq +O
(

Nexc

nQWNel

)

, (3.7)

which makes it clear that, at low density of excitations Nexc ≪ nQWNel, the com-

mutator is bosonic.

Notice that Eq. (3.3) has not a closed form: the commutator of two intersubband

operators does not depend only on intersubband excitation operators. Nevertheless,

by commuting this result with another intersubband creation operator, we can close

the relation,

[

D
(1)
mq′′,iq, b

†
j,q′

]

=
1

nQWNel

∑

n

λn,jm,i(q
′′ − q) b†n,q+q′−q′′ , (3.8)

[

D
(2)
mq′′,iq, b

†
j,q′

]

=
1

nQWNel

∑

n

λm,j
n,i (q′′ − q′) b†n,q+q′−q′′ , (3.9)

where

λn,jm,i(q
′′ − q) =

1

nQWNel

∑

k

νm,kν
∗
i,k+q′′−qνn,k+q′′−qν

∗
j,k (3.10)

is called Pauli blocking term. It is an effective scattering [95] induced by the in-

discernability principle and the fermionic nature of the elementary parts of inter-

subband excitations—electrons and holes. For this reason, it was also called Pauli

scattering in the case of the excitons [92]. Indeed, λn,jm,i(q) looks like the amplitude

of a pair interaction process where i and j are the initial modes and m and n the
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q

kF

(a) (b)

Figure 3.1: (a) The Pauli blocking term λ0,00,0(q) for bright intersubband excitations
in Eq. (3.10) is a four bright excitations overlap. It is the area of the gray-shaded
surface. If q is larger than 2kF, then the two Fermi seas do not overlap and Pauli
blocking term vanishes. (b) Pauli coefficient λ0,00,0(q) dependence over the wave vector
q normalized to the Fermi wave vector.

final ones (figure 3.2). This process corresponds to an exchange of fermions between

two intersubband excitations. A wave vector q is exchanged during the process,

while global momentum conservation is ensured. This coefficient is, thus, the four

excitations overlap. It is plotted in figure 3.1. It manifests itself when there are

at least two holes and two electrons in the system and is due to the fact that, in

this situation, there are two ways of pairing them to construct intersubband ex-

citations. Similarly, if there are Nexc electrons and holes in the system, there are

Nexc(Nexc − 1)/2 ways of pairing them. This effective scattering, thus, scales with

the number of excitations as any pair interaction. In figure 3.2, we give a graphical

representation of such a process using Shiva diagrams [96]. Here, we will not use

these diagrams for computational reasons, but only as visualization tool. We will,

thus, not explain how to use them.

Now that we know the commutations rules for intersubband excitations, we

can apply them to compute commutators between HI1 or HDepol and intersubband

excitation operators. The case HElec, HI2 and HIntra will be treated in the next

sections.
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b†
0,q�

b†0,q

b0,q�

b0,q

−

b†n,q�−p

b†m,q+p

b0,q�

b0,q

Figure 3.2: Graphical representation of Eqs. (3.3), (3.8) and (3.9) with a special
class of Feynman diagrams (Shiva diagram [96]). Solid lines correspond to electrons
and dashed lines to holes. These lines are grouped by pairs because intersubband
excitations are electron-hole pairs. Left: Term corresponding to the bosonic part
of intersubband excitations. A similar term should be added for symmetry reasons.
Right: Term coming from the indiscernability principle. There are two ways of
pairing two electrons and two holes, which describes an exchange of fermions between
two excitations.

3.1.2 Free electron gas

To see how this Hamiltonian acts on intersubband excitations, we commute it with

an intersubband excitation [94],

[

HElec, b
†
i,q

]

=
1

√

nQWNel

∑

k

(

~ω̃2,|k+q| − ~ω̃1,k

)

ν∗i,k c
†
2,k+qh

†
−k. (3.11)

If we now assume that the (renormalized) subbands are parallels and that inter-

subband excitations’ wave vectors are small compared to the Fermi wave vector kF,

that is

ω̃2,|k+q| ≈ ω̃2,k ≈ ω̃1,k + ω̃12, (3.12)

previous expression can be simplified into

[

HElec, b
†
0,q

]

= ~ω̃12 b
†
0,q. (3.13)

Here, ~ω̃12 is the energy of the transition, renormalized by Hartree-Fock terms.

Notice that this commutator is the same as the one obtained from Hamiltonian H̃B

with bosonized intersubband excitations.

Validity of Eq. (3.13)

To obtain this Hamiltonian, we made two crucial approximations. There validity is

well established and has been succesfully tested in many experiments [67, 89, 44, 46,

41, 50]. However, they oblige us to neglect a certain number of phenomena, like the

interplay between non parabolicity and Coulomb interaction [97], or the scattering
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Energy

In-plane wavevector

�ω̃12

Figure 3.3: Dispersions of intersubband excitations for HElec only, without approxi-
mation Eq. (3.12). Conduction subbands are parallel but we do not neglect photonic
wave vectors anymore. A comparison with Fig. 1.2b shows that the electron-hole
continuum is composed of the dark modes. In the presence of the Coulomb interac-
tion, the bright mode is blue-shifted (depolarization shift), and we recover Fig. 1.2b

toward electron-hole pairs at large wavevectors, that is known to be an important

factor in the thermalization and dynamics of exciton polaritons [98, 99]. We may,

thus, wonder how the previous commutator is affected when we do not make those

approximations. Here, we present only the case of parallel subbands and we take

into account their parabolicity. The case of non parallel subbands can be treated in

a very similar way.

We consider the case of parallel parabolic subbands but we do not neglect the

intersubband excitation’s wave vector compared to the Fermi wave vector anymore.

Instead, in Eq. (3.12), we develop the energy of the second subband and inject it in

Eq. (3.11)

[

HElec, b
†
i,q

]

=
1

√

nQWNel

∑

n,k

(

~ω̃12 + αk.q + βq2
)

ν∗i,k c
†
2,k+qh

†
−k, (3.14)

where α = 2β = ~
2/m∗. As in the previous case, we then replace the electron-hole

pair by its expression in terms of intersubband excitations to obtain

[

HElec, b
†
i,q

]

= ~ω̃12,i,q b
†
i,q +

∑

n 6=0

γi,n,q b
†
n,q, (3.15)
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where

~ω̃12,i,q = ω̃12 + βq2 + αq.

(

∑

k

k
|νi,k|2
nQWNel

)

, (3.16)

γi,n,q = αq.

(

∑

k

k
ν∗0,kνn,k

nQWNel

)

, (3.17)

are deviation operators. As in the previous case, we obtain a quasi continuum with

modes couples with each other. But now the broadness of the continuum is zero for

q = 0 and it increases linearly with q, as well as the couplings. Also, the dispersion

is not flat anymore but parabolic (figure 3.3). What we are describing is in fact the

general dispersion of the electron-hole continuum presented in figure 1.2b.

Notice that the bright intersubband excitations acquired a finite lifetime even in

the absence of any relaxation process. It is of course not possible to compute all

energies and couplings. Instead, we can complete the commutator for a bright mode

given in Eq. (3.13) by adding a phenomenological coupling to dark modes and/or

the parabolic dispersion.

3.1.3 Photon scattering

In this section we consider the whole Hamiltonian HI2 in Eq. (B.20),

HI2 =
∑

k,q

|~Ωq|2
~ω12

(

a−q + a†q
)

(

aq + a†−q

)

+
∑

k,q,q′

~χq ~χ
∗
q′

~ω12

(

c†2,k+q−q′c2,k − h†−k−q−q′h−k

)(

a−q′ + a†q′

)(

aq + a†−q

)

, (3.18)

instead of the simplified A2-term in Eq. (2.8). The first line has no matter part and,

thus, commutes with any intersubband operator. The second line, however, contains

hole-hole and electron-electron pairs of operators, just as deviation operators in

Eqs. (3.5) and (3.6), and should, a priori, scatter intersubband excitations. Using

Eqs. (3.1), (3.2) and (3.18), we obtain

[

HI2, b
†
i,q

]

=
∑

q′ 6=q′′

~χq′ ~χq′′

~ω̃12

(

b†i,q+q′′−q′ −
∑

m

σi,m(q′′ − q′) b†m,q+q′′−q′

)

×
(

a−q′′ + a†q′′

)(

aq′ + a†−q′

)

, (3.19)
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where

σi,m(q) =
1

nQWNel

∑

k

ν∗i,k+qνm,k, (3.20)

is the overlap between the initial and final modes’ wavefunctions. As expected,

intersubband excitations are scattered by this Hamiltonian. However, in the long

wavelength limit, the overlap coefficient reduces to a simple scalar product between

orthogonal modes and vanishes for i 6= m. The commutator then vanishes too,

[

HI2, b
†
i,q

]

= 0, (3.21)

so, for small wave vectors, Hamiltonian HI2 cannot scatter intersubband excitations.

It can scatter both holes and electrons but these effects compensate each other.

Therefore, the second part of Eq. (3.18) is irrelevant for our purpose and the more

traditional A2-term (first part of Eq. (3.18)) should be used.

3.1.4 Intrasubband Coulomb interaction

By analogy with excitons, we would expect the Coulomb correlation to lower the

energy of the electron-hole pair [88] and to scatter pairs of intersubband excita-

tions [21].

We start by calculating its commutator with an intersubband excitation creation

operator

[

HIntra, b
†
i,q

]

= −
∑

j

γi,j b
†
j,q + Vi,q, (3.22)

where

γi,j =
∑

q

Ṽ 1221
q σi,j(q), (3.23)

and Vi,q is called the creation potential operator [92],

Vi,q =
∑

Q,m

(

Ṽ 2222
Q δm,i − Ṽ 1221

Q σi,m(Q)
)

× b†m,q+Q

∑

k

c†2,k−Qc2,k

+
∑

Q,m

(

Ṽ 1111
Q σi,m(Q)− Ṽ 1221

Q δm,i

)

× b†m,q+Q

∑

k

h†−k+Qhk. (3.24)

The coefficient γi,j for i 6= j is a coupling between different modes. In particu-
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Figure 3.4: Direct interaction coefficient for bright modes only. Notice that it does
not vanishes for small wave vectors.

lar, the intrasubband Coulomb interaction couples bright excitations with all dark

modes. Since we cannot compute all these terms, we incorporate them in a phe-

nomenological coupling, like we did to treat realistic electron-hole dispersions. For

i = j, coefficient γi,i is a renormalization of the intersubband transition energy due

to the electron-hole interaction [54, 100, 55]. This is the analog of the binding of

a conduction electron with a valence hole in the case of excitons. There is, how-

ever, an important difference between intersubband excitations and excitons on this

point. Excitons are bound states [88] while intersubband excitations are not and

can be defined even in the absence of the intrasubband Coulomb interaction [38].

As explained in section 2.2, the term i = j = 0 is included in the definition of the

energy of a bright intersubband excitation ~ω̃12,

~ω̃12 ← ~ω̃12 − γ0,0. (3.25)

Like the deviation operators in Eqs. (3.5) and (3.6), the creation potential oper-

ator contains hole-hole and electron-electron pairs of operators. Relation (3.22) is,

thus, not closed. We, thus, commute the creation potential with an intersubband

operator as we did for deviation operators,

[

Vi,q, b
†
j,q′

]

=
1

nQWNel

e2nel

2ǫ0ǫr

∑

m,n,Q

ξn,jm,i(Q)

Qǫ(Q)
b†m,q+Qb

†
n,q′−Q, (3.26)

where the term Q = 0 has to be removed, nel is electronic density in each quantum
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well and

ξn,jm,i(Q) = δm,iδn,j Ĩ
2222
Q + σi,m(Q) σ∗

j,n(Q)I1111Q

−δm,i σ
∗
n,j(Q)I1221Q − δn,j σi,m(Q)I1221Q , (3.27)

is called direct scattering. This is an electrical dipole interaction: Intrasubband

Coulomb interaction induces a pair interaction between intersubband excitations.

This interaction is the combination of the non-bosonicity—intersubband excitations

are pairs of fermions, not bosons—and a pair interaction between these fermions. It

is plotted in figure 3.4. The singularity for q = kF is due to the fact that coefficient

σ0,0(0) vanishies at this point. Since the screening has not the same effect for all

intrasubband Coulomb processes, the direct scattering does not vanish in the long

wavelength limit, contrary to excitons [21, 92].

To sum this up, the intrasubband Coulomb interaction has three effects. First,

it renormalized the energies of the intersubband excitations. For bright excitations,

this contribution is encoded in the coefficient γ0,0. Second, it mixes bright and dark

modes. Third, it yields a dipole-dipole interaction between intersubband excitations.

3.2 Matrix elements

In this section, we compute matrix elements of the Hamiltonian of the system be-

tween states with one or two excitations—photons and bright intersubband excita-

tions. As we do not deal exclusively with bosons, special care should be taken with

the normalization of these states. We, thus, first compute scalar products of one-

and two-excitation states. To compute these two quantities, we commute operators

that annihilate the ground state all the way to the right. From Eq. (3.21), we can see

that matrix elements of Hamiltonian HI2 between states containing at least one in-

tersubband excitation are all zero. We can, thus, discard its fermionic part. Also, we

do not need to compute matrix elements involving only photonic operators because

Hamiltonian HCav and the photonic part of HI2 are already known. Hamiltonians

HI1 and HDepol are already expressed in terms of intersubband excitation operators

but, because of the normalization subtleties treated below, we have to compute their

matrix elements anyway.



3.2. MATRIX ELEMENTS 63

3.2.1 Scalar products and normalization

The states we are considering are constructed by successive application of creation

operators and, thus, have to be normalized. When excitations are bosonic, the

normalizing constant can be easily computed thanks to the bosonic commutation

rule. In the case of photons, e.g., we obtain

〈F | aNexc
q a†Nexc

q′ |F 〉 = δq,q′ Nexc!. (3.28)

In the case of intersubband excitations the calculation is trickier: The first contri-

bution of Eq. (3.3) is bosonic, so we expect the term Nexc! to be present, but the

deviation from the bosonicity should bring a significant correction when Nexc ≫ 1.

In the following, we will need the normalizing constant for Nexc equals to one and two

so we focus on these two cases. We will also present the computation for large Nexc

in some simple cases. Even if we need matrix elements for bright excitations only, we

will present the computation of these scalar products for any kind of intersubband

excitations.

One-excitation states

To compute scalar products between states with one intersubband excitation, we

only need the commutator from Eq. (3.3). We commute the annihilation operator

to the right and, because bm,q and Dmq,iq′ annihilate the ground state |F 〉, we obtain

〈F | b′′m,q b
†
i,q |F 〉 = δmq′′,iq. (3.29)

This result is the same as for elementary bosons, so one-intersubband-excitation

states form an orthonormal basis.

Two-excitation states

We now apply the same method to compute two-excitation scalar products. We first

commute the annihilation operators all the way to the right,

〈F | bn,q′′′bm,q′′ b†i,qb
†
j,q′ |F 〉 = δmq′′,iqδnq′′′,jq′ + δmq′′,jq′δnq′′′,iq

− 〈F | bn,q′′′ Dmq′′,iq b
†
j,q′ |F 〉 , (3.30)
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where we again used the fact that bm,q and Dmq,iq′ annihilate |F 〉. The first two

terms yield the symmetric result expected for elementary bosons, while the third

one is the correction due to the deviation from bosonicity. The non-bosonicity, thus,

starts to play a role when there are at least two excitations in the system. We

now commute Dmq,iq′ to the right to make it act on |F 〉 and annihilate it. From

Eqs. (3.8) and (3.9), we obtain

〈F | bn,q′′′b′′m,q b
†
i,qb

†
j,q′ |F 〉 = δmq′′,iqδnq′′,jq′ + δmq′′,jq′δnq′′′,iq − δq′′+q′′′,q+q′

× 1

nQWNel

(

λn,jm,i(q
′′ − q) + λm,j

n,i (q′′ − q′)
)

. (3.31)

The Pauli blocking term is a slow varying function on the scale of optical wavevec-

tors, so we consider the long wavelength limit of the previous equation,

〈F | bn,q′′′bm,q′′ b†i,qb
†
j,q′ |F 〉 = δmq′′,iqδnq′′′,jq′ + δmq′′,jq′δnq′′′,iq

− δq′′+q′′′,q+q′

2

nQWNel

λn,jm,i(0). (3.32)

Therefore, there is a correction of the order of 1/nQWNel on the scalar product due

to the fermionic statistics of the elementary constituents of the intersubband excita-

tions. This correction might seem irrelevant since states will be normalized anyway.

However, it appears that, due to this correction, states with pairs of intersubband

excitations with the same total momentum are no longer orthogonal. The family

{b†i,qb†j,q′ |F 〉} is not orthogonal. It is also overcomplete in the two-excitation space.

To see this, we write the product of two creation operators in terms of electron and

holes using Eq. (3.1) and pair the fermions in a different way,

b†i,qb
†
j,q′ =

1

nQWNel

∑

k,k′

ν∗i,kν
∗
j,k′ c

†
2,k+qh

†
−k c

†
2,k′+q′h

†
−k′ ,

= − 1

nQWNel

∑

k,k′

ν∗i,kν
∗
j,k′ c

†
2,k′+q′h

†
−k c

†
2,k+qh

†
−k′ . (3.33)

We then use Eq. (3.2) and the total momentum conservation to express the result

in terms of intersubband excitations,

b†i,qb
†
j,q′ = − 1

nQWNel

∑

m,n,q′′,q′′′

λn,jm,i(q
′′ − q) b†m,q′′b

†
n,q′′′ . (3.34)
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Any two-excitation state is coupled through Pauli blocking term to all other two-

excitation states with same global momentum. In particular, it can be expressed in

terms of all the others,

b†i,qb
†
j,q′ = − nQWNel

1 + nQWNel

∑

m,n,q′′,q′′′

6=i,j,q,q′

λn,jm,i(q
′′ − q′) b†m,q′′b

†
n,q′′′ . (3.35)

As explained in section 3.1, this comes from the fact that there are two ways of

pairing two electrons and two holes.

Since the non-orthogonality and the overcompleteness of the two- and, more

generally, many-excitation states, there is no exact mapping between intersubband

excitations and bosons [101]. It is, however, still possible to derive some effective

bosonic Hamiltonian capable of reproducing the dynamics of the system in the long

wavelength limit and at low density of excitations [102].

Many-excitation states

We now compute the analog of Eq. (3.28) for intersubband excitations. The method

we used to treat the two-excitation case can be generalized to any situation but

the computation is cumbersome for arbitrary states. We therefore limit ourselves to

cases where all excitations are in the same mode, or in a limited number of them,

for which simple rules can be derived [93, 96]. The scalar product reads

〈F | bNexc
i,q b†Nexc

i,q |F 〉 = Nexc!FNexc , (3.36)

where FNexc is the deviation from bosonicity contribution. This scalar product is

computed through a recursive procedure: We commute the rightmost annihilation

operator all the way to the right until it annihilates the ground state |F 〉. Doing so,

we leave behind Nexc deviation operators Dmq,mq, which we commute to the right

too. We finally obtain

〈F | bNexc
i,q b†Nexc

i,q |F 〉 = Nexc 〈F | bNexc−1
i,q b†Nexc−1

i,q |F 〉 − Nexc(Nexc − 1)

2

×
∑

n

2
λm,i
i,i (0)

nQWNel

〈F | bNexc−1
i,q b†m,qb

†Nexc−2
i,q |F 〉 . (3.37)

First term is linear in the number of excitations because there are Nexc ways to

associate an annihilation operator to a creation one. Similarly, there are Nexc(Nexc−
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1)/2 ways to associate a pair of creation operators to an annihilation one, each of

these associations yielding a linear superposition of creation operators weighted by

the appropriate Pauli blocking term. Using Eqs. (3.10) and (3.36), we obtain a

recursive relation for FNexc ,

FNexc

FNexc−1

= 1− Nexc − 1

nQWNel

, (3.38)

with the initial condition is F0 = 1. The FNexc factor, thus, decreases extremely

fast. However, at low density of excitations, i.e., Nexc/nQWNel ≪ 1, it can be

approximated by

FNexc ≈ 1− Nexc(Nexc − 1)

2nQWNel

. (3.39)

Notice that, for Nexc = nQWNel + 1, the recursion relatio vanishes FnQWNel+1 = 0.

This is due to the fact that only nQWNel intersubband excitations can be created

from the Fermi sea.

We can apply the same procedure to states where two modes are macroscopically

populated,

〈F | bN2

j,q′b
N1+1
i,q b†N1+1

i,q b†N2

j,q′ |F 〉 = N2!(N1 + 1)!FN1+1,N2 , (3.40)

where N1 + N2 = Nexc. To compute the normalization factor, we commute an

annihilation operator acting on mode (i,q) to the right. There are N1 ways to

associate it with a creation operator acting on the same mode, each weighted by 1,

and N2 ways to associate it with a creation operator acting on the other mode, each

weighted by δiq,jq′ = 0. There are also N1(N1 + 1)/2 possible associations with a

pair of creation operators acting on the same mode (i,q), N2(N1 + 1) with a pair

acting on different modes and N2(N2 − 1)/2 with a pair acting on (j,q′). Using

Eq. (3.10), we finally obtain,

FN1+1,N2

FN1,N2

≈ 1− N1 + 2N2

nQWNel

, (3.41)

where we kept only dominant terms. Equation (3.41) can be generalized to any

number of populated modes.

Analogously, the many-excitation states {b†i,qb†j,q′ . . . |F 〉} are not orthogonal and

form an overcomplete family.
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b†0,q b0,q b†0,q aq

�ω̃12 +
�ωP

2ω̃12
�Ωq

B†
q

Bq B†
q

aq

Figure 3.5: Top: Graphical representation of Eqs. 3.42 and (3.43) with Shiva dia-
grams. Bottom: Equivalent process for bosonized excitations. Because there is only
one intersubband excitation, Pauli blocking term is irrelevant and only the bosonic
part contributes. The link between Shiva diagrams and traditional Feynman dia-
grams for bosons is, thus, straightforward.

3.2.2 One-excitation subspace

We have just seen that the one-excitation states form an orthonormal basis, so we

do not have to worry about their normalization. The two relevant matrix elements

are

〈F | b0,q′′ H b†0,q |F 〉 = δq,q′′

(

~ω̃12 +
~ωP

2

2ω̃12

)

, (3.42)

〈F | b0,q′′ H a†q |F 〉 = δq,q′′ ~Ωq. (3.43)

Equation (3.42) shows that the energy of a bright intersubband excitation has three

contributions: The first one is the energy of a free electron-hole pair modified by

the Hartree-Fock renormalization and the excitonic effect. The second one is the

depolarization shift due the intersubband Coulomb interaction and the collective

nature of intersubband excitations. As expected, Eq. (3.43) shows that the only

contribution to the light-matter coupling is Hamiltonian HI1 and that this coupling

is the Rabi frequency. These processes are represented in figure 3.5, as well as their

bosonic counterpart (see section 3.3).

3.2.3 Antiresonant terms

Hamiltonians HI1 and HDepol have antiresonant terms coupling the ground state

to two-excitation states. We, thus, consider states of the form b†0,q′a
†
q′′′ |F 〉 and

b†0,q′b
†
0,q′′′ |F 〉.

The first one is coupled to the ground state by Hamiltonian HI1,

〈F | aq′′′b0,q′′ H |F 〉 = δq′′+q′′′,0 ~Ωq, (3.44)
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which, again, yields the Rabi frequency. The calculation involves only scalar prod-

ucts in the one-excitation subspace and can be performed as if all excitations were

bosonic.

The second one is coupled to the ground state by Hamiltonian HDepol and reduces

to a sum of two-excitation scalar products. Because the sum runs over the whole

Fermi sea, instead of being limited to small wave vectors , we need to consider the

general expression of the intersubband Coulomb interaction and the scalar product,

〈F | b0,q′′′b0,q′′ H |F 〉 =
Nel

2

∑

q

V 1212
q 〈F | b0,q′′′b0,q′′ b†0,qb

†
0,−q |F 〉 (3.45)

= δq′′+q′′′,0Nel

(

V 1212
q′′ − 1

2nQWNel

(3.46)

×
∑

q

V 1212
q

(

λ0,00,0(q
′′ − q) + λ0,00,0(q

′′ + q)
)

)

.

The two states are, thus, coupled through the creation of pairs of virtual bright

intersubband excitations carrying arbitrary wave vectors q. Wave vectors q′′ and

q′′′, however, are carried by real intersubband excitations so we can neglect them

when compared to q. The matrix element, thus, reads

〈F | b0,q′′′b0,q′′ H |F 〉 = δq′′+q′′′,0
~ωP

2

2ω̃12

(1− ζ) , (3.47)

where
~ωP

2

2ω̃12

ζ =
1

nQWNel

∑

q

NelV
1212
q λ0,00,0(q). (3.48)

As such, it is not normalized, so we have to divide it by
√

1− 2/nQWNel according

to Eq. (3.32).

3.2.4 Two-excitation subspace

In section 3.1, we have seen that pair interactions come from the Pauli (non-

bosonicity) and direct (intrasubband Coulomb interaction) scatterings defined in

Eqs. (3.10) and (3.27). From Eqs. (3.8), (3.9) and (3.26), we can see that these

contribution are of the order of 1/nQWNel. More generally, it can be shown that

n-body interactions scale like (1/nQWNel)
n−1 [92]. Because two-excitation matrix

elements can only describe the one- and two-body physics, we have to truncate all

our results to first order in 1/nQWNel. Higher order terms are irrelevant and should
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be discarded. Therefore, we are computing the first two terms of a perturbation

series in the non-bosonicity and the intrasubband Coulomb interaction.

Orthonormalization trick

We have also seen that states b†0,qb
†
0,q′ |F 〉 form a non-orthogonal overcomplete family

and, because of this mathematical subtlety, we cannot compute matrix elements

in a standard way. To understand this point, let’s call the ket the initial state,

and the bra the final state. If they are overlapping, their matrix element contains

information about transition rates from the initial state to the final one and to itself

too. To remove this self-coupling, a solution is to orthonormalize our basis but

this is untractable. It is also not necessary and can be replaced by a much simpler

procedure. Because matrix elements involve only two states, only the final state has

to be orthonalized with respect to the initial one,

〈F | b0,q′−pb0,q+p 7→ 〈F | b0,q′−pb0,q+p P⊥, (3.49)

where P⊥ is the orthogonal projector with respect to b†0,qb
†
0,q′ |F 〉. If the initial and

final states are the same, i.e., p = 0 or p = q′ − q, there is nothing to change and P⊥

is replaced by the identity operator. This partial orthogonalization, together with

a normalization, has to be performed for each matrix element, so we can compute

relevant physical quantities without looking for the real orthonormal basis of the two-

excitation subspace. To simplify the notation, we define the normalizing constant

for states with two bright intersubband excitations,

Nq,q′ = 〈F | b0,q′b0,q b
†
0,qb

†
0,q′ |F 〉 = 1 + δq,q′ − 2

nQWNel

. (3.50)

Because the scalar product between b†0,qb
†
0,q′ |F 〉 and b†0,q+pb

†
0,q′−p |F 〉 is of the order

of 1/nQWNel, the normalizing constant Nq+p,q′−p is not affected by the orthogonal-

ization procedure to first order in 1/nQWNel.

Different types of matrix elements

We have to consider two kinds of two-excitation states, namely with (i) two bright

intersubband excitations or (ii) one bright intersubband excitation plus one photon.

Notice that the latter already constitute an orthonormal family and are orthogonal

to the former. The orthonormalization trick from the previous paragraph is, thus,
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not necessary to compute matrix elements involving them. Combining these two

kinds of states, we obtain three matrix elements. First, there is a photon in both

he initial and final states. The matrix elements involve only states of the second

form and, as mentioned above, the orthonormalization trick is not needed. Second,

a photon is absorbed (emitted) and a bright excitation is created (annihilated).

These matrix elements involves states of both the first and second form. Again,

we do not need to orthonormalize the states. Third, there is no photon in both

the initial and final states. Corresponding matrix elements involves only states of

the first, which must be orthonormalized. These three kinds of matrix elements are

computed below.

1. A photon is present in both the initial and final states. It is just the sum of the

one-excitation matrix elements, so it brings no additional information about

the system and can be obtained from Eqs. (2.2) and (3.42),

〈F | b0,q′−paq+pH a†qb
†
0,q′ |F 〉 = δp,0

(

~ωcav,q + ~ω̃12 +
~ωP

2

2ω̃12

)

. (3.51)

2. A photon is absorbed (emitted) and a bright excitation is created (annihilated)

while there is already a bright intersubband excitation in the system. Only

Hamiltonian HI1 contributes and, from Eqs. (2.32) and (3.32), we obtain

〈F | b0,q′−pb0,q+pH a†qb
†
0,q′ |F 〉 = ~Ωq

(

δp,0 + δp,q′−q −
2

nQWNel

)

. (3.52)

Normalizing the state with two bright intersubband excitations according to

Eq. (3.50), we obtain, to first order in 1/nQWNel,

〈F | b0,q′−pb0,q+pH a†qb
†
0,q′ |F 〉

√

Nq+p,q′−p

= ~Ωq

×















√
2
(

1− 1
2nQWNel

)

if q = q′, p = 0,

1− 1
nQWNel

if q 6= q′, p = 0 or p = q′ − q,

− 2
nQWNel

if q 6= q′, p 6= 0 and p 6= q′ − q.

(3.53)

In the first two cases in Eq. (3.53), we recognize the stimulated emission factor√
n+ 1 where n ∈ {0, 1} is the number of bright intersubband excitations in

the mode absorbing the photon. This confirms that these excitations are

approximately bosonic. The other coefficient is the bosonicity factor [48],
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Figure 3.6: Graphical representation of Eq. (3.53) with Shiva diagrams (top panel)
and its bosonic counterpart (bottom panel). The combination of Pauli blocking term
and photon absorption induces an effective two-body interaction between bosonized
excitations. Coefficient Gq,q′,p in bottom panel is given in Eq. (3.70).

truncated to first order in 1/nQWNel, due to the Pauli blocking term. It

describes the saturation of the light-matter coupling triggered by the Pauli

exclusion principle.

Terms of the order of 1/nQWNel cannot be obtained from the one-excitation

matrix elements only, so we interpret them as an effective two-body interaction

between photons and intersubband excitations. This interaction is the combi-

nation of photon absorption/emission and the Pauli blocking term: Once the

photon is absorbed, the resulting intersubband excitations pair is scattered to

any other two-excitation state with the same global momentum (figure 3.6).

This results, for example, in the saturation of the Rabi frequency as shown in

section 3.4.

3. No photon is present in the initial nor in the final states. To compute these

matrix elements, we need the general expression of the matrix elements before
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any orthonormalization procedure,

〈F | b0,q′−pb0,q+pH b†0,qb
†
0,q′ |F 〉 = 2~ω̃12

(

δp,0 + δp,q′−q −
2

nQWNel

)

+
~ωP

2

ω̃12

(

δp,0 + δp,q′−q −
4− 2ζ

nQWNel

)

+
1

nQWNel

e2nel

2ǫ0ǫrκ

(

ξ0,00,0(p) + ξ0,00,0(q′ − q− p)
)

− 1

nQWNel

e2

2ǫ0ǫr

√

nel

2π
(x(p) + x(q′ − q− p)) . (3.54)

To obtain this expression, we used the long wavelength limit of the electron

gas dielectric function qǫ(q) → κ. Because of the absence of the q = 0 term in

the Coulomb interaction in Eq. (2.9), the direct scattering in the third line is

set to zero if its argument is the null vector. Otherwise, we consider its long

wavelength limit, which we denote ξ0,00,0(0+). The coefficient x(p) in the fourth

line is the exchange Coulomb interaction,

x(p) =
1

nQWNel

∑

m,n,Q 6=0

kF
Qǫ(Q)

λ0,n0,m(Q− p)ξn,0m,0(−Q), (3.55)

and results from the interplay between the intrasubband Coulomb interaction

and the non-bosonicity: two intersubband excitations exchange their fermions

before interacting via the direct interaction. Since it is a slow varying function

of p, we replace it by its long wavelength limit x = x(0).

We then apply the orthogonalization trick. If the initial and final states are the

same, we just replace the orthogonal projector P⊥ by the identity in Eq. (3.49)

and it remains unchanged. If the final state is different from the initial state,

its orthogonalized version is

〈F | b0,q′−pb0,q+p P⊥ = 〈F | b0,q′−pb0,q+p −
〈F | b0,q′−pb0,q+p b

†
0,qb

†
0,q′ |F 〉

Nq,q′

〈F | b0,q′b0,q, (3.56)

and, as stated above, its norm is unchanged to first order in 1/nQWNel. Af-

ter the proper normalization of both the initial and final states according to
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Eq. (3.50), the matrix elements are given by

〈F | b20,qH b† 20,q |F 〉
Nq,q

= 2

(

~ω̃12 +
~ωP

2

2ω̃12

)

− 1

nQWNel

(

~ωP
2

ω̃12

(1− ζ) +
e2

2ǫ0ǫr

√

nel

2π
x

)

, (3.57)

and

〈F | b0,q′b0,qH b†0,qb
†
0,q′ |F 〉

Nq,q′

= 2

(

~ω̃12 +
~ωP

2

2ω̃12

)

− 2

nQWNel

(

~ωP
2

ω̃12

(1− ζ)− e2nel

4ǫ0ǫrκ
ξ0,00,0(0+) +

e2

2ǫ0ǫr

√

nel

2π
x

)

, (3.58)

if the initial and final states are the same. If they are different, the matrix

element is

〈F | b0,q−p′b0,q+p P⊥H b†0,qb
†
0,q′ |F 〉

√

Nq+p,q′−pNq,q′

= − 2

nQWNel

(

~ωP
2

ω̃12

(1− ζ)

− e2nel

2ǫ0ǫrκ
ξ0,00,0(0+) +

e2

2ǫ0ǫr

√

nel

2π
x

)

. (3.59)

From Eq. (3.42), we can see that the first part in Eqs. (3.57) and (3.58) is the

energy of two independent bright intersubband excitations. The other terms

yield a correction, which is interpreted as an effective two-body interaction.

This interaction has three contributions. The first one is the interplay be-

tween the Pauli blocking term and plasmonic effects. Like what was observed

in Eq. (3.53), this is a saturation term. The second one, if present, is the di-

rect intrasubband Coulomb interaction, i.e., a dipole-dipole interaction. The

third one is the exchange Coulomb interaction between dipoles. A graphical

interpretation of these terms is given in figure 3.7.

Equations (3.53) and (3.59) show that these effective two-body interactions can

scatter pairs of excitations, which makes our system a potential candidate for para-

metric amplification [24].



74 CHAPTER 3. POLARITON-POLARITON INTERACTIONS

−

b†
0,q�

b0,q�

b†0,q b0,q

b†
0,q�−p

b0,q�

b†0,q+p
b0,q

−

b†
0,q�−p

b0,q�

b†0,q+p
b0,q

b†
0,q�−p

b0,q�

b†0,q+p
b0,q

�ω̃12 +
�ωP

2ω̃12

−

Uq,q�,p

nQWNel

B†
q�

Bq�

B†
q

Bq

B†
q�−p

Bq�

B†
q+p

Bq

Figure 3.7: Graphical representations of Eqs. (3.57) to (3.59) and their bosonic
counterparts. Top panel: one-body interaction affecting one intersubband excita-
tions (left) while another is not affected. The two excitations can also exchange
their fermions (right). Middle panel: Coulomb interaction between two intersub-
band excitations. On the left, direct Coulomb interaction given in Eq. (3.27), i.e.,
dipole-dipole interaction. On the right combination of the direct Coulomb interac-
tion with Pauli blocking term, namely the exchange Coulomb interaction. Bottom
panel: in the bosonic framework, there is a one body contribution and an effective
two-body interaction. Coefficient Uq,q′,p is given in Eq. (3.68).

Figure 3.8: Graphical representation of a process involving three intersubband ex-
citations (left). A first pair interact through direct Coulomb interaction. A second
pair then exchange their holes. Because the diagram is connected, this interac-
tion cannot be separated into one- and two-body effective interactions. It is, thus,
an effective three-body interaction between bosonized excitations (right). Because
it involves two 1/nQWNel contributions, it is of order (1/nQWNel)

2. This can be
generalized to higher order process, provided the graph is connected.
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3.2.5 Generalization to higher numbers of excitations

It is of course possible, even if tedious, to generalize the above calculations (fig-

ure 3.8). To identify n-body interaction between intersubband excitations and pho-

tons, we have to compute all matrix elements containing up to n excitations. Doing

so, the overcompleteness and non-orthogonality of the families of vectors must be

carefully taken into account. Finally, all results are truncated to the (n−1)-th order

in 1/nQWNel.

The highest order theoretically achievable is n = nQWNel. This is indeed the

maximum number of intersubband excitations which can be injected in the system.

However, there is no reason to push the calculation so far. Indeed, the concept of

almost bosonic intersubband excitation developed here loses its meaning when the

number of excitations is high. We, thus, have to limit ourselves to low number of

excitations Nexc ≪ nQWNel. Moreover, to study a situation where there are Nexc

excitations, where 1≪ Nexc ≪ nQWNel, we do not need to compute Nexc-excitation

matrix elements. We will see in Sec. 3.4 that one- and two-body effective interactions

are enough to correctly decribe the physics of the system in this limit.

3.3 Effective bosonic Hamiltonian

In this section, we construct an effective bosonic Hamiltonian capable of reproducing

the physics of intersubband polaritons. We explain our method and give some

numerical results.

3.3.1 Method

In section 3.2, we have computed matrix elements of the Hamiltonian between states

with one excitation (Eqs. (3.42) and (3.43)), two excitations (Eqs. (3.53) and (3.57)

to (3.59)) as well as anti-resonant terms (Eqs. (3.44) and (3.47)). In the case of

two-excitation matrix elements, we have seen that our results, truncated to first

order in 1/nQWNel, contain the two-body physics of the system.

We now show how to construct an effective bosonic Hamiltonian capable of

reproducing the dynamics of the system. Such an Hamiltonian must have a quadratic

and a quartic part to respectively encode the one- and two-body interactions. Its

general form is

HB = HPhoton +HB
ISB +HB

lm, (3.60)
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where superscript B indicates that intersubband excitations have been bosonized.

Hamiltonian HPhoton is the photonic part of the Hamiltonian, coming from HCav and

HI2,

HPhoton =
∑

q

~ωcav,q a
†
qaq +

∑

q

~Ωq
2

ω̃12

(

a−q + a†q
)

(

aq + a†−q

)

. (3.61)

It has already been fully determined in chapter 2 and appendix B. Hamiltonian HB
ISB

and HB
lm are, respectively, the bosonized matter part of the system,

HB
ISB =

∑

q

Kq B
†
qBq +

∑

q

Qq BqB−q + H.c.

−1

2

1

nQWNel

∑

q,q′,p

Uq,q′,pB
†
q+pB

†
q′−pBq′Bq, (3.62)

and its coupling to photons,

HB
lm =

∑

q

~Ω̃q aqB
†
q + ~Ω̄q a

†
−qB

†
q + H.c.

− 1

nQWNel

∑

q,q′,p

Gq,q′,pB
†
q+pB

†
q′−pBq′aq + H.c. (3.63)

We are only interested in the dynamics of bright excitations, so we omitted the cor-

responding index. As explained in chapter 2, the spin of the electrons is conserved

during the absorption or emission of photons. Bright intersubband excitations are,

thus, electron-hole pairs with opposite spins. Also, we consider here only TM po-

larization of the cavity field, so the spin and polarization indices are irrelevant and

we omitted them. This implies that there is no spin/polarization dependence of the

polariton-polariton interaction in the intersubband case, as one could expect from

a naive comparison with excitons [21, 103, 104, 105].

Coefficients of Hamiltonian HB can be found by imposing that it has the same

matrix elements than HB in the one- and two-excitation subspaces,

〈G|Tq′−pTq+pH
B T †

qT
†
q′ |G〉

√

NB
q+p,q′−pN

B
q,q′

=
〈F | tq′−ptq+pH t†qt

†
q′ |F 〉

√

Nq+p,q′−pNq,q′

, (3.64)

where tq ∈ {I, aq, b0,q}, Tq ∈ {I, aq, Bq}. The normalizing constant Nq,q′ is defined

in Eq. (3.50) for two-excitation states and is, otherwise, equal to one and NB
q,q′ is
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its bosonic counter part.

Quadratic part

The quadratic part of the Hamiltonian is obtained by comparison with fermionic

one-excitation matrix elements and antiresonant terms, which yields

Kq = ~ω̃12 +
~ωP

2

2ω̃12

, (3.65)

Qq =
~ωP

2

4ω̃12

(1− ζ) , (3.66)

Ω̃q = Ω̄q = Ωq. (3.67)

In the expression of coefficient Qq, the effect of the normalization in Eq. (3.47)

is negligeable. The quadratic part of Hamiltonian HB is very similar to H̃B in

Eq. (2.42). The only difference is the renormalization of the antiresonant terms in the

intersubband Coulomb interaction and we will see that they only have a limited effect

on the physics of intersubband excitations and polaritons (figure 3.11). Moreover, if

we neglect the antiresonant terms, the two Hamiltonians are the same. In addition,

we now know how to calculate the contribution of the electron-hole attraction to the

energy ~ω̃12 thanks to Eq. (3.23). We, thus, confirmed the relevance of our method

to find quadratic effective Hamiltonians and describe the system in the linear regime.

This also explains the similitude between H̃B and the simple model in section 1.3:

The latter is precisely a simplified one-excitation model.

Quartic part

The quartic part of Hamiltonian HB is obtained from the fermionic two-excitation

matrix elements. The purely matter part coefficient is

Uq,q′,p =
~ωP

2

ω̃12

(1− ζ)− fq′−q,p

e2nel

2ǫ0ǫrκ
ξ0,00,0(0+) +

e2

2ǫ0ǫr

√

nel

2π
x, (3.68)

where

fq′−q,p =



















0 if p = 0 and q′ − q− p = 0,

1/2 if p = 0 xor q′ − q− p = 0,

1 else.

(3.69)

Coefficient Uq,q′,p encodes all sources of intersubband excitations pair interaction

described in section 3.2, i.e., combination of the Pauli blocking term and the in-
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i,q
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q,q�,p
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j,q�−p

Bq
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Figure 3.9: Non resonant interaction between bright and dark intersubband excita-
tions given in Eqs. (3.72) and (3.73).

tersubband Coulomb interaction, and direct and exchange intrasubband Coulomb

interaction between intersubband excitations’ fermionic constituents. The quartic

light-matter coupling coefficient is

Gq,q′,p = gq′−q,p ~Ωq, (3.70)

where

gq′−q,p =







1/2 if p = 0 or p = q′ − q,

1 else.
(3.71)

It encodes the interplay between the Pauli blocking term and the light-matter cou-

pling. To compute these coefficients, we assumed that they were invariant under the

exchange of q and q′ and change of p into q′ − q− p.

Notice that Uq,q′,p and Gq,q′,p are not continuous functions of the wave vectors.

This is relevant in situations where one, or a few, modes are macroscopically popu-

lated, as it is the case in optical pumping by a coherent source. For example, this

situation is encountered in parametric amplification and oscillation [24]. When the

distribution of population is diluted over many modes, this discontinuity is irrele-

vant (see section 3.4) and can be removed by making fq′−q,p and gq′−q,p constant

and equal to one. Coefficients Uq,q′,p and Gq,q′,p are then constant too.

Coupling to dark excitations

Hamiltonian HB neglects all kinds of couplings between bright excitations and the

electron-hole continuum (dark excitations). We give some examples of such cou-

plings and show that our Hamiltonian is valid as long as the bright and dark exci-

tations are not resonant and the population in dark modes remains negligeable.

First, as explained in section 3.1, such couplings can be due to electronic dis-

persion (see Eq. (3.15)) or the intrasubband Coulomb interaction (see Eq. (3.22)).
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nQWNel
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q
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Figure 3.10: Graphical representation of the mean-field treatment of the interaction
between bright and dark intersubband excitations given in Eq. (3.75). The loop
corresponds to the sum over all modes.

They yield a one-body interaction, in the sense of bosonized excitations,

HB
Dark,1 =

∑

i 6=0,q

γ0,iB
†
i,qBq, (3.72)

mixing bright and dark excitations. This is a coupling between bright excitation

and the electron-hole continuum. Second, generalizing calculations of section 3.2

to include dark excitations, we can see that bright excitations can interact with

another excitation—photon or intersubband excitation—to create two dark excita-

tions. These are two-body sources of decoherence of the form

HB
Dark,2 = − 1

nQWNel

∑

U i,j,k
q,q′,pB

†
i,q+pB

†
j,q′−pBk,q′Bq, (3.73)

where indices i and j denote dark modes. A similar term can be written for the

quartic ligth-matter part. However, because of the depolarization shift and the light

matter coupling, intersubband polaritons are shifted away from dark excitations.

Equations (3.72) and 3.73 describe non-resonant processes, so bright and dark ex-

citations are decoupled. As long as bright intersubband excitations/polaritons are

not resonant with the electron-hole continuum, contributions like (3.72) and (3.73)

can be neglected. If they are resonant, these couplings cannot be neglected anymore

and shorter lifetime of polaritons is expected. These processes are represented in

figure 3.9

However, two-body interaction mixing bright and dark excitations can be reso-

nant,

HB
Dark,3 = − 1

nQWNel

∑

U i,j
q,q′,pB

†
q+pB

†
i,q′−pBj,q′Bq, (3.74)

and can, thus, affect the dynamics of polaritons. A mean-field treatment of Eq. (3.74)
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(a) (b)

Figure 3.11: Intersubband plasmon energy EISBT for a bare energy ~ω12 = 140 meV
(figure (a)) and 15 meV (figure (b)) as a function of the electron density in the
wells. Solid line: result obtained from Eq. (3.76). Dashed line: result obtained
while neglecting the intrasubband Coulomb interaction and ζ.

yields,

HB
Dark,MF = − 1

nQWNel

∑

q

(

∑

i,q′

U i,i
q,q′,0Nexc,i,q′

)

B†
qBq, (3.75)

where Nexc,i,q′ is the number of excitations in mode (i,q′). This shows that the

energy of bright excitations/polaritons depends on the population in all modes,

including dark ones. However, as long as the population in the latter remains low,

this effect is well described by Hamiltonian HB
ISB as given in Eq. (3.62) and terms

like (3.74) can be neglected. Hamiltonian HB is, thus, adapted to descibe optical

injection of polaritons. In the case of electrical pumping, population in the dark

modes can become significant and contributions like (3.74) should be added to the

Hamiltonian.

3.3.2 Numerical results

We now provide the numerical values of the coefficients of the effective bosonic

Hamiltonian HB, highlighting the dependence over the main parameters.
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Intersubband excitation energy

We start by evaluating the difference between Hamiltonian H̃B of chapter 2 and

the quadratic part of HB. Remember that in Hamiltonian H̃B, the energy ~ω̃12 is

not renormalized by the Coulomb correction γ0,0 and that coefficient ζ is missing

in the antiresonant terms. Since the quadratic light-matter coupling is the same in

both Hamiltonians, we focus only on the matter part of the system. Performing a

Bogoliubov transformation on the first line of Eq. (3.62), we obtain the renormalized

energy of the intersubband excitation (plasmon),

EISBT =

√

(

~ω̃12 +
~ωP

2

2ω̃12

)2

−
(

~ωP
2

2ω̃12

(1− ζ)

)2

. (3.76)

In Fig. (3.11) we plot the dispersion of the intersubband transition energy consid-

ering a GaAs quantum well of length LQW = 11 nm (left panel) and LQW = 39 nm

(right panel), corresponding to bare transitions ~ω12 of 140 meV [14, 41] and 15 meV

[51] respectively. The solid line depicts the intersubband transition energy calcu-

lated from Hamiltonian HB. The dashed line represents the same quantity obtained

from Hamiltonian H̃B, i.e., with ζ = 0 and no renormalization of the energy ~ω̃12

by γ0,0. Notice that the renormalized intersubband energy EISBT converges to the

bare transition energy ~ω12 for vanishing doping.

As expected, there is no significant difference between the two results. The

behavior is qualitatively the same and the maximum relative difference between the

two curves is of the order of 3%. Since Hamiltonian H̃B is already known to give

correct results in the linear regime, this confirms the validity of the quadratic part

of Hamiltonian HB and of our method, at least in the one-excitation subspace.

Interaction energy between intersubband excitations

We now consider the quartic part of Hamiltonian HB
ISB. More precisely, we consider

the interaction energy per particle Nexc/nQWNel × Uq,q′,p/nQWNel for the matter

part or Nexc/nQWNel × Gq,q′,p/nQWNel for the light-matter part. We will show

in the next section that this is, indeed, the relevant quantity when dealing with

nonlinear processes.

In Fig. 3.12, we plot the energy Uq,q′,p (thick solid line) for a mid-infrared

transition (left panel) and a THz transition (right panel). The other lines depict the

individual contributions of the three terms in Eq. (3.68) (see caption for details).

For the considered realistic parameters, the interaction energy grows with increasing
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(a) (b)

Figure 3.12: Thick solid line: Effective interaction energy Uq,q′,p between intersub-
band excitations including all the contributions in Eq. (3.68) for ~ω12 = 140 meV
(figure (a)) and ~ω12 = 15 meV (figure (b)) as a function of the electron density in
the wells. Dashed-line: First term in Eq. (3.68) corresponding to the intersubband
Coulomb interaction. Thin red line: Absolute value of the second term in Eq. (3.68),
namely the direct Coulomb interaction. Note that this term is negative, thus pro-
ducing a red-shifted contribution. Dash-dotted line: Third term in Eq. (3.68), due
to the exchange Coulomb interaction.
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electron doping density almost linearly in both cases. Notice that, contrary to

excitons [21, 92], the direct scattering contributes, so intersubband excitations are

subject to dipole-dipole interactions. As explained in section 3.1, this is due to the

fact that electron-electron and hole-hole interactions are screened differently by the

Fermi sea [82].

For a doping density in the range of a few 1011 cm−2, coefficient Uq,q′,p is of the

order of few meV both for the cases of THz and mid-infrared transitions. Coefficient

Gq,q′,p, despite a different dependence over the electron density, is of the same order

of magnitude. The interaction energy per particle can, thus, reach values close to

the meV when the density of excitations in the system becomes significant. This is

rather promising, since as shown in the case of exciton-polaritons [29, 98, 24], very

interesting nonlinear polariton physics occurs when the interaction energy becomes

comparable to the linewidth of the polariton modes. For THz polaritons, state-of-

the-art samples [51] exhibits polariton linewidth as low as 1 meV.

3.4 Testing the quartic part of the Hamiltonian

We have seen that our method allows us to find the correct quadratic effective

Hamiltonian. In this section, we now check on some examples that the quartic part

is correct too. We also show that Hamiltonian HB correctly describes the system

when more than two excitations are present. Physical quantities can, indeed, be

expressed as a perturbation series in the density of excitations Nexc/nQWNel whose

leading terms come from the one- and two-body interactions. More precisely, the

contribution of the two-body interactions is proportional to the interaction energy

per particle defined in the previous section. As long as higher order terms in the

perturbation series are not required, i.e., if Nexc/nQWNel is small enough, we do

not need to include n-body terms (n > 2). Therefore, we do not need to compute

n-excitation matrix elements.

3.4.1 Saturation of the light-matter coupling

We focus here on the Rabi frequency, but similar calculation can be performed to

study the saturation of the depolarization shift. We consider the absorption of a

photon by the system while Nexc bright intersubband excitations are already present

in a single mode, with Nexc > 2. We make the calculation both with the fermionic

and effective bosonic Hamiltonians.
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In this particular case, the calculation in the fermionic framework yields an exact

result. The unnormalized matrix element is

〈F | bNexc+1
0,q H b†Nexc

0,q a†q |F 〉 = ~Ωq (Nexc + 1)!FNexc+1, (3.77)

where FNexc+1 was defined in Eq. (3.36) and, thanks to the recursive relation (3.38),

we finally obtain

〈F | bNexc+1
0,q H b†Nexc

0,q a†q |F 〉
√

(Nexc + 1)!Nexc!FNexc+1FNexc

= ~Ωq

√

Nexc + 1

√

1− Nexc

nQWNel

. (3.78)

With the bosonic Hamiltonian, the normalized matrix element is

〈G|BNexc+1
q HBB†Nexc

q a†q |G〉
√

(Nexc + 1)!Nexc!
= ~Ωq

√

Nexc + 1

(

1− Nexc

2nQWNel

)

. (3.79)

Developing Eq. (3.78) to first order in density of excitations, we can check that

results are identical. This shows that there is no need to include additional effective

n-body interactions, with n ∈ [3, Nexc], in the bosonic Hamiltonian to correctly

describe the system in the low density limit. In this limit, all the information we

need is encoded in the effective one- and two-body interactions. Notice that two-

body contribution is, as expected, proportional to the interaction energy per particle

Nexc/nQWNel ×Gq,q′,p.

Equations (3.78) and (3.79) show a saturation of the light-matter coupling when

the number of intersubband excitations increases. This is responsible for the po-

lariton bleaching, which was observed recently [42]. In the bosonic picture, this

saturation is due to the effective two-body light-matter interaction. In the fermionic

picture, it is due to the depletion of the Fermi sea and Pauly blocking in the excited

subband. When the number of intersubband excitations increases, the number of

available electrons in the Fermi sea decreases. The collective effects, like the Rabi

frequency and the depolarization shift, are then altered.

Notice, however, that the saturation does not behave as expected [42], i.e., as

the square root of the population difference between the two electronic subbands.

Indeed, to first order in the density of excitations, the saturation should behave

as 1 − Nexc/nQWNel instead of 1 − Nexc/2nQWNel. As pointed out in section 3.3,

this problem is due to discontinuity of the coefficient Gq,q′,p and disappears if we

consider a situation where the Nexc excitations are spread over a large number n of
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modes,

〈G|BNn

q(n) · · ·BN2

q′ BN1+1
q HB B†N1

q B†N2

q′ · · ·B†Nn

q(n) a
†
q |G〉

√

(N1 + 1)N1! · · ·Nn!

= ~Ωq

√

N1 + 1

(

1− N1 + 2N2 + · · ·+ 2Nn

2nQWNel

)

≈ ~Ωq

√

N1 + 1

(

1− Nexc

nQWNel

)

, (3.80)

where N1 + N2 + · · · + Nn = Nexc. Of course, the same result is obtained with the

fermionic Hamiltonian H using a generalization of Eq. (3.41).

3.4.2 Transition probabilities, Fermi Golden Rule

We now calculate the transition probabilities for processes involving pairs of inter-

subband excitations using both the effective bosonic Hamiltonian approach and the

fermionic formalism. We show, again, that the two approaches yield the same re-

sult to the lowest order in the density of excitations Nexc/nQWNel. However, we do

not obtain the same result for the Fermi Golden Rule, due to the overcompleteness

of the many-excitation states. This discrepancy was pointed out [106] and can be

effectively corrected by dividing the density of states in the bosonic framework by

two.

Fermionic case

In this section, we use the commutator formalism and a first-order time-dependent

perturbation theory to calculate the transition probability between an initial state

|ψi〉 and a final state |ψf〉. The lifetime of the former is then calculated thanks

to the Fermi golden rule as in Ref. [96]. Here, the two-body interactions are the

perturbations. The calculations are detailed in appendix C.

The particular event we want to describe is the scattering of an initial pump

beam of arbitrary intensity into a signal and an idler mode. We will, thus, consider

initial and final states, respectively, to be

|ψi〉 ∝ b†Nexc

0,q |F 〉 , (3.81)

|ψf〉 ∝ b†0,q+pb
†
0,q−pb

†Nx−2
0,q |F 〉 . (3.82)
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The transition probability is [96]

Pp,fer(t) =
∣

∣

∣
〈ψf

∣

∣ψ̃t〉
∣

∣

∣

2

, (3.83)

where
∣

∣

∣
ψ̃t

〉

= Ft(H − 〈ψi|H |ψi〉)P⊥H |ψi〉 . (3.84)

As in section 3.2, P⊥ is the projector over the subspace orthogonal to |ψi〉, and Ft

verifies

|Ft(E)|2 =
2πt

~
δt(E), (3.85)

where δt converges to the Dirac delta function for long times. Taking into account

the normalization, we obtain the transition probability from the initial to the final

state

Pp,fer(t) =
2πt

~

Nexc(Nexc − 1)

n2
QWN

2
el

|Uq,q,p|2 δt(∆Ep) +O

(

[

Nexc

nQWNel

]4
)

, (3.86)

where ∆Ep is the energy difference between the initial and final states. In Eq. (3.86),

it can be clearly seen that the strength of nonlinear processes is related to the

interaction energy per particle Nexc/nQWNel × Uq,q,p.

Because of the overcompleteness of the two-excitation states, we cannot directly

use the matrix elements and the Fermi Golden Rule to obtain the lifetime of the

initial state. With the same notations as in the previous paragraph, it is given

by [96]

1

T
=

1

2

∑

p

lim
t→+∞

Pp,fer(t)

t
, (3.87)

where it is implicitly assumed that the summation is restricted to small wavevectors.

This result is very similar to the usual Fermi golden rule despite the presence of the

counterintuitive 1/2 factor. This coefficient comes from the overcompleteness of the

composite boson basis.

Bosonic case

In this paragraph we calculate the same quantities as in the previous one using

Hamiltonian HB. In this case we can use a traditional Fermi golden rule.

We start with the transition probability between two states. In this case the
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initial and final states are

|ψi〉 ∝ B†Nexc
q |G〉 , (3.88)

|ψf〉 ∝ B†
q+pB

†
q−pB

†Nexc−2
q |G〉 .

The transition probability is, thus, given by

Pp,bos(t) =
2πt

~

Nexc(Nexc − 1)

n2
QWN

2
el

|Uq,q,p|2 δt(∆Ep). (3.89)

A comparison with Eq. (3.86) shows that Pp,fer(t) = Pp,bos(t) up to third order in

Nexc/(nQWNel). The two approaches are therefore equivalent as long as we calculate

probabilities of transition in the first-order time-dependent perturbation theory.

We now compute the lifetime of the initial state using the Fermi golden rule

1

T
=

∑

p

lim
t→+∞

Pp,bos(t)

t
, (3.90)

where the summation is again restricted to small wavevectors. A comparison with

Eq. (C.17) shows that this method underestimates the true lifetime by a factor

two. This is coherent with the results in Ref. [96], which show how an effective

Hamiltonian giving the correct transition probabilities needs to take into account

an ad hoc factor 1/2 when calculating lifetimes, due to the overcompleteness of the

composite boson basis. This is, of course, simply implies a renormalization of the

composite boson density of states and can be corrected easily when one wants to

use the bosonic approach.

3.4.3 General argument

We now give an argument to generalize the above observation: all many-excitation

matrix elements can be developped as a perturbation series in the densities of exci-

tations. The dominant terms of this development come from the one- and two-body

interactions, giving contributions of zero-th and first order, respectively.

To see this, recall from section 3.2 that effective n-body interactions scale like

(nQWNel)
1−n. Moreover, there are Nexc(Nexc − 1) . . . (Nexc − n + 1)/n! ≈ Nn

exc/n!

ways of associating Nexc excitations through a n-body interaction. The n-body

interactions contribution to the Nexc-excitation matrix elements, thus, scale like

Nexc (Nexc/nQWNel)
n−1. Dominant terms, indeed correspond to n equals to one and
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two, i.e., to one- and two-body interactions.

Matrix elements, and thus all relevant quantities, obtained from the bosonic

Hamiltonian HB are then first order approximations of the exact matrix elements.

3.5 Polariton Hamiltonian

In this section, we consider the interactions in the polariton basis. For simplicity,

we neglect antiresonant terms. A Bogoliubov transformation of the quadratic parts

of H and HB gives the expression of the polaritonic operators (see Eq. (1.12)),

(

pUq

pLq

)

=

(

wU,q xU,q

wL,q xL,q

)(

aq

Bq

)

, (3.91)

where pUq and pLq are polaritonic operators of the upper and lower branch, respec-

tively. Hopfield coefficients wj,q and xj,q are given in Eq. (1.13) where ωcav,q and ω12

have to replaced by ωcav,q + 2Ωq
2/ω̃12 and ω̃12 + ωP

2/2ω̃12, respectively.

We can now use the reverse transformation to express the bosonic Hamiltonian

in the polaritonic basis,

(

aq

Bq

)

=

(

wU,q wL,q

xU,q xL,q

)(

pUq

pLq

)

. (3.92)

Because of the quartic terms in Hamiltonian HB, polaritons interact with each other

through their matter part and can scatter. The polaritonic Hamiltonian, thus, has

a quartic part too,

HB =
∑

j,q

~ωj,q p
†
j qpj q +

1

2

1

nQWNel

∑

i,j,k,ℓ
q,q′,p

V ijkℓ
q,q′,p p

†
iq+pp

†
j q′−ppk q′pℓq, (3.93)

where indices i, j, k and ℓ belong to {L,P}. In the following, we will focus on the

lower branch. The two-body interaction between lower polaritons is then

HLP-LP =
1

2

1

nQWNel

∑

q,q′,p

Vq,q′,p p
†
Lq+pp

†
Lq′−ppLq′pLq, (3.94)

where we have omitted the superscripts for clarity. Using Eq. (3.92), the effective
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interaction energy between lower polaritons is

Vq,q′,p = xL,|q′−p|xL,q′

×
(

2
(

xL,|q+p||wL,q|+ |wL,|q+p||xL,q
)

Gq,q′,p − xL,|q+p|xL,q Uq,q′,p

)

. (3.95)

Notice that, contrary to the case of exciton polaritons [29, 24], the different two-

body interactions give opposite contributions. Moreover they are of the same order

of magnitude. Therefore, by modifying the shape of the wells, the cavity and tuning

the electron density, it is a priori possible to change the sign of polariton-polariton

interaction energy, or even to turn it off.

As an example, we now consider the case where the lower branch is pumped at a

wavevector qp so that the system is in the state p†Nexc

Lqp
|G〉 /

√
Nexc!. This Hamiltonian

allows us to describe single-mode (Kerr) and multimode (parametric) coherent non-

linearities [29, 24]. Notice that a detailed treatment of these effects requires to

describe the coupling to the environment and to the external pump, for example

through quantum Langevin equations. Here we just calculate the relevant matrix

elements. For the parametric case, one has to consider the following interaction

interaction channel

p†Nexc

Lqp
|G〉 → p†Lqp+pp

†
Lqp−pp

†Nexc−2
Lqp

|G〉 . (3.96)

Pairs of polaritons scatter from the pumped mode into signal-idler pairs. As for the

case of exciton-polaritons we expect that the maximum efficiency of this parametric

processes is achieved when the energy conservation condition is fulfilled [107]. A

mean-field approach of the problem[24, 29] shows that the matrix element between

the initial and the final states is the relevant quantity to consider and has to be

compared with the lifetime of the excitations. For high pump intensity, i.e., Nexc ≫ 1

this matrix element is

Mqp,p =
Nexc

nQWNel

Vqp,qp,p. (3.97)

As discussed in section 3.3 and shown in figure 3.12, polaritons nonlinear interaction

energies of the order of a the meV (thus comparable to THz polariton linewidths)

can be achieved in the THz range. This results paves the way to a very interesting

coherent nonlinear physics for this kind of composite excitations.
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Conclusion

Intersubband polaritons are excitations in microcavity embedded doped quantum

wells. They result from the strong coupling between a collective excitation of the

Fermi sea (a linear superposition of electron-hole pairs) and the cavity field. In the

diluted regime, i.e., when the number of excitations is much lower than the number

of electrons in the Fermi sea, they obey an approximate bosonic statistics. There-

fore, it is possible to describe intersubband polaritons thanks to an effective bosonic

Hamiltonian. Up to now, only quadratic Hamiltonians have been used, from which

correct results and prediction were obtained. The reason for this success is that,

so far, the number of excitations in experiments remained low (in the sense given

above). In this limit, the physics of intersubband polaritons is dominated by one-

body interactions, which can be reproduced by a bosonic quadratic Hamiltonian.

However, when the number of excitations increases, two-body interactions become

significant and polaritons are less and less bosonic. A quadratic Hamiltonian cannot

reproduce these effects. Therefore, in this work, we presented a mathematically rig-

orous method to derive an effective bosonic Hamiltonian with quartic contributions.

These terms correspond to an effective polariton-polariton interaction encoding both

the screened Coulomb processes and the nonbosonicity.

In chapter 1, we gave an overview of the physics of intersubband polaritons in

the low density regime. In chapter 2, we presented different Hamiltonian models de-

scribing intersubband polaritons. In particular, we explained why these excitations

can be considered as bosons in this limit and we showed, based on simple physical

arguments, how it is possible to derive an effective bosonic quadratic Hamiltonian.

This Hamiltonian is capable of reproducing all experimental results obtained so far.

However, it is limited to the low density regime where the physics is linear. In

chapter 3, using a microscopic composite boson commutator approach, we derived

the polariton-polariton interactions. We were then able to determine a new bosonic

Hamiltonian encoding this two-body interaction in quartic terms. Relevant physical

quantities can then be expressed as a perturbation series in the Coulomb interaction
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and the non-bosonicity. In our case, this development is truncated to the first lead-

ing order, but it can be pushed further if necessary. To this end, we explained how

our method can be extented to include higher order contributions in the effective

Hamiltonian corresponding to effective n-body interactions (n > 2). Using realistic

set of parameters, we determined the strength of the interactions between intersub-

band polaritons and we found that significant polariton-polariton interactions occur,

especially for transitions in the THz range.

This work paves the way to promising future studies of nonlinear quantum optics

in semiconductor intersubband systems such as quantum cascade devices. Using our

quartic effective Hamiltonian and previous work on exciton polaritons, one should

be able to predict and design new nonlinear devices operating in the mid infrared

to THz range. Moreover, our approach is not limited to intersubband polaritons

and can extended to any system whose excitations result from the strong coupling

between pairs of fermions and a bosonic field. For example, it could be applied to

the recently discovered magnetopolaritons, obtained by strongly coupling a cavity

mode to the cyclotron transition of a two-dimensional electron gas under magnetic

field [108, 109, 110]. Like intersubband polaritons, these excitations were modeled by

a quadratic effective bosonic Hamiltonian and only the low density regime has been

explored so far. By applying our method to magnetopolaritons, it should be possible

to take into account the polariton-polariton interaction, so that the nonlinear regime

could be explored too.

Moreover, in the case of graphene, it has been shown that the system should

undergo a quantum phase transition similar to the one occuring in the Dicke model

when varying the electron density [110, 111]. It is then legitimate to ask how this

phase transition is modified in presence of polariton-polariton interactions.



Appendix A

Details about the formalism

In this appendix, we give the explicit notations for Hamiltonian H and intersubband

excitation operators with quantum well and spin indexes. Electronic wavefunctions

are localized in quantum wells and we neglect electronic tunneling from one well to

another. We thus neglect Coulomb interaction between electrons in different wells,

which are sufficiently apart. Hamiltonian H and bright intersubband excitations

can then be written with all indexes,

HElec =

nQW
∑

j=1

∑

k,σ,µ

~ωµ,k c
(j) †
µ,k,σ c

(j)
µ,k,σ (A.1)

HI1 =

nQW
∑

j=1

∑

k,q,σ

~χq (c
(j) †
2,k+q,σ c

(j)
1,k,σ + c

(j) †
1,k+q,σ c

(j)
2,k,σ) (aq + a†−q)

HCoul =
1

2

nQW
∑

j=1

∑

k,k′,q,σ,σ′

µ,µ′,ν,ν′

V µνν′µ′

q c
(j) †
µ,k+q,σ c

(j) †
ν,k′−q,σ′ c

(j)
ν′,k′,σ′ c

(j)
µ′,k,σ,

and,

b†0,q =
1

√

nQWNel

nQW
∑

j=1

∑

k,σ

ν∗0,j,k c
(j) †
2,k+q,σ c

(j)
1,k,σ, (A.2)

where ν0,j,k = Θ(kF − k) for all j, k is a wavevector such that k < kF , σ, σ′ ∈
{↓, ↑} and µ, µ′, ν, ν ′ ∈ {1, 2}. Bright intersubband excitations are, thus, linear

superposition of pairs of fermions with the same spin. We could generalize Eq. (A.2)

by allowing the two fermions to have different spins but the resulting collective

excitation would be dark and thus not relevant if we consider only polariton.
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Appendix B

Second-quantized Hamiltonian

In this appendix, we show details concerning the derivation of the second-quantized

Hamiltonian of the system. We focus, here, only on the matter and light-matter

part, considering that the free photonic part is already second-quantized.

The Hamiltonian, in Coulomb gauge, describing an ensemble of electrons trapped

in the heterostructure potential, interacting with each other and with the electro-

magnetic field is given by [79]

H = HCav +

nQWNel
∑

j=1

1

2m∗
(pj + eA(rj, zj))

2 + VQW(zj) +HCoul, (B.1)

where the spins indexes have been omitted and e is the absolute value of the electron

charge. In this expression, pj, (rj, zj) and A are respectively the momentum and

position of the jth electron and the transverse vector potential of the electromagnetic

field. The first term is the Hamiltonian of the electromagnetic field in the cavity

without the electron gas.

HCav =
∑

q

~ωcav,q

(

a†qaq +
1

2

)

, (B.2)

where aq is annihilation operator for photons satisfying

[

aq, a
†
q′

]

= δq,q′ . (B.3)

The second term describes the dynamics of free electrons interacting with the elec-

tromagnetic field of the cavity. The third term is the heterostructure potential,

confining the electrons in the quantum wells. The fourth term is the Coulomb inter-
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action containing not only electron-electron pair interaction terms but also electron-

ion and ion-ion terms. Contrary to the electromagnetic field, ions of the lattice

are treated as an external potential and there is no degree of freedom associated to

them. We consider here the three-dimensional Coulomb potential, decreasing as 1/r.

The reason is that, even if the quantum well is a quasi two-dimensional structure,

the electric field lines are present in both the wells and the barriers. The Coulomb

Hamiltonian thus describes the dynamics of a quasi two-dimensional electron gas

subject to three-dimensional Coulomb interactions. Notice that Eq. (B.1) is already

a simplification of a more general Hamiltonian. Indeed, electromagnetic field has

been truncated to its lowest TM mode as explained in the first chapter and spin

interactions have been omitted [79].

Terms of the Hamiltonian can be grouped in a different way

H = HCav +HElec +HI1 +HI2 +Hcoul, (B.4)

where HCav was given above and

HElec =
∑

j

pj
2

2m∗
+ VQW(zj),

HI1 =
∑

j

e

m∗
pj.A(rj, zj),

HI2 =
∑

j

e2

2m∗
A(rj, zj)

2,

HCoul =
∑

i 6=j

qiqj
8πǫ0ǫr

1
√

(ri − rj)2 + (zi − zj)2
. (B.5)

In the Coulomb Hamiltonian, qi,j are particle charges, −e for electrons and e for

ions. For electrons, r and z are variables whereas for ions they are external pa-

rameters. Also, self-interaction terms have been omitted. We will now give the

second-quantized versions of these terms.

B.1 Quasi two-dimensional gas of independent elec-

trons

The second term in Eq. (B.4) is the Hamiltonian for the electrons trapped in the

potential created by the semiconductor heterostructure without electromagnetic field
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and not subject to the Coulomb interaction. Since it is a one-body interaction, its

second quantized version is given by [112]

HElec =

∫

dr dzΨ†(r, z)

(

p2

2m∗
+ VQW(z)

)

Ψ(r, z). (B.6)

Operators Ψ and Ψ† are fermionic field operators

Ψ(r, z) =
∑

n,k

ψn,k(r, z) cn,k, (B.7)

where ψn,k(r, z) is the one-electron wavefunction given in Eq. (1.1) and cn,k is

the fermionic annihilation operator for mode (n,k). These operators satisfy the

fermionic anti-commutation rules,

{

cn,k, c
†
n′,k′

}

= δk,k′ δn,n′ . (B.8)

The creation field Ψ† is the Hermitian conjugate. In this basis the Hamiltonian is

diagonal, so it takes the simple form

HElec =
∑

n,k

(

~ωn +
~
2k2

2m∗

)

c†n,kcn,k, (B.9)

which is the kinetic energy operator of quasi two-dimensional electron gas. As men-

tioned in the first chapter, the sum over n is restricted to the first two subbands for

our purpose. In our model, electrons in different wells are not coupled, so operators

in Eq. (B.9) create and annihilate electrons in the same well. Here, the index for

the well and the sum over this index are implicit.

B.2 Light-matter coupling

In this section we will treat terms coming from the light-matter coupling HI1 and

HI2. The first one describes absorption or emission of photons by the electron gas.

The second one describes scattering of photons on the electron gas, which yields the

A2-term.
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B.2.1 Absorption and emission of photons

Here, we will present the calculation in the case of a perfect cavity. Such a cavity

supports a TM0 mode which we will not treat for the reason given in the first chapter.

Despite this fact, the physics is the same for more realistic cavities.

The second-quantized expression of the transverse vector potential in the TM

mode (other than the TM0) is [78]

A(r, z) =
∑

q

√

~

ǫ0ǫrSLcavωcav,q

(

aquq + a†qu
∗
q

)

, (B.10)

where the polarization vector uq is

uq = eiq.r (i sin(qzz) cos(θ) e1 + cos(qzz) sin(θ) ez) . (B.11)

Vectors e1 and ez are normalized and respectively in the plane of the cavity and

parallel to the z axis, qz is the quantized z component of the photonic wave vector,

Lcav is the width of the cavity and and ǫr is the dielectric constant of the cavity

(without the electron gas). The angle θ between the total photonic wave vector and

ez (figure 1.3a) is related to the in-plane wave vector by the following relation

sin(θ) =
q

√

q2 + qz2
. (B.12)

Because the wells are much thinner than the cavity and the potential vector varies

smoothly on a scale Lcav, it can be considered constant in the wells. To simplify the

problem even further, we assume that all the wells are close to the mirrors of the

cavity, at z = 0 and z = Lcav. The dependence over z can then be removed and, in

this configuration, the vector potential is parallel to the z axis.

Since the photonic part is already second-quantized, only the electronic part

needs to be transformed. Because HI1 is also a one-body operator for the electrons,

an expression similar to Eq. (B.6) can be used. If we denote pz and Az the z

components of the impulsion and the vector potential, we obtain

HI1 =

∫

dr dzΨ†(r, z)
( e

m∗
pzAz(r)

)

Ψ(r, z), (B.13)
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which gives

HI1 =
∑

q

√

~e2 sin(θ)2

ǫ0ǫrm∗2SLcavωcav,q

×
∑

n,n′,k,k′

1

S

∫

dr ei(k+q−k′).r

∫

dz χn′(z) pz χn(z) c†n′,k′cn,k aq + h.c. (B.14)

The integral over r yields a delta function δk′,k+q resulting from the momentum con-

servation: the photonic wave vector is transfered to a pair of fermions. The integral

over z determines the selection rules and the strength of the coupling between the

electromagnetic field and the electrons. For symmetric quantum wells, it is non zero

only if m and n have a different parity—in this case (m,n) = (1, 2) or (2, 1)—so,

the electric field couples electrons from the lowest subband to the first excited one,

thus creating or destroying electron-hole pairs.

We said in the first chapter that only the z component of the electric field

(vector potential) couples to the intersubband excitations. Previous calculation

is, thus, still valid if the vector potential has non-zero components in the plane.

Without loss of generality, assume that it has an x component. We obtain a term

similar to Eq. (B.14) where pz is replaced by px, which acts on the integral over

r. The integral over z reduces to a scalar product between χn and χm and is non-

zero only for m = n. This justifies that the in-plane vector potential couples only

to intrasubband excitations. Also, when θ = 0, the coupling vanishes. In this

configuration the photonic mode “propagates” along the normal to the cavity and

the electric field is in the plane of the cavity. Accordingly, it cannot couple to

intersubband excitations.

We finally obtain

HI1 =
∑

k,q

i~χq

(

aq + a†−q

)(

c†2,k+qc1,k − c
†
1,kc2,k−q

)

, (B.15)

where

~χq =

√

~e2 sin(θ)2

ǫ0ǫrm∗2SLcavωcav,q

p12, p12 =

∫ L

0

dz χ2(z) pz χ1(z). (B.16)

For sake of simplicity, we will consider a real light-matter coupling. This is obtained

by a simple redefinition of the photonic operators.
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B.2.2 Photon scattering and A2-term

The fourth term in Eq. (B.4) also results from the light-matter coupling. We use

the same expression and hypotheses for the vector potential than in the previous

section and the derivation is very similar. We obtain

HI2 =
∑

k,q,q′

~e2 sin(θ) sin(θ′)

2ǫ0ǫrm∗SLcav
√
ωcav,qωcav,q′

(

c†1,k+q−q′c1,k + c†2,k+q−q′c2,k

)

×
(

a−q′ + a†q′

)(

aq + a†−q

)

. (B.17)

This expression can be simplified by using the light-matter constant ~χq previously

defined, the energy of the intersubband transition ~ω12 and the oscillator strength

of the quantum wells intersubband transitions f1j

HI2 =
∑

k,q,q′

∑

j f1j

f12

~χq ~χ
∗
q′

~ω12

(

c†1,k+q−q′c1,k + c†2,k+q−q′c2,k

)

×
(

a−q′ + a†q′

)(

aq + a†−q

)

. (B.18)

The oscillator strengths satisfy

f1j =
2|p1j|2
m0~ω12

, and
∑

j

f1j =
m0

m∗
, (B.19)

where m0 is free electron’s mass. For an infinite quantum well, f12 = 256/27π2 ×
m0/m

∗ ≈ 0.96m0/m
∗ and for a parabolic quantum well, it is equal to one.

It is now advantageous to perform the electron-hole transformation described in

Eq. (2.23),

HI2 =
∑

q

∑

j f1j

f12

nQWNel|~χq|2
~ω12

(

a−q + a†q
)

(

aq + a†−q

)

+
∑

k,q,q′

∑

j f1j

f12

~χq ~χ
∗
q′

~ω12

(

c†2,k+q−q′c2,k − h†−k−q−q′h−k

)(

a−q′ + a†q′

)(

aq + a†−q

)

.

(B.20)

The first term is the A2-term. The second term is the scattering part of the term

HI2. It describes the scattering of photons on the electron gas. Because it involves

only electron pairs in the same subband, it cannot induce intersubband transitions.
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Electrons scatter in the same subband and absorb the energy and wave vector dif-

ferences between initial and final photonic states.

B.3 Coulomb interaction

As explained at the beginning of the appendix, the Coulomb interaction has three

different contributions: electrons interacting with each other, with the ions of the lat-

tice and ions interacting with each other. Moreover, the lattice is treated as a static

distribution of positive charges, which then induces an external potential acting on

the electrons. Because we consider a homogeneous medium, it is a homogeneous

distribution (jellium model) over the whole volume of each quantum wells.

The second-quantized Hamiltonian for the three dimensional Coulomb interac-

tion is derived in Refs. [81] and [80]. The main point of this calculation is that, to

ensure the neutrality of the system, the ion-ion and electron-ion interactions com-

pensate the electron-electron one for q3D = 0. Our starting point is, thus, this three

dimensional Coulomb interaction in the jellium model,

HCoul =
1

2

∑

k,k′,q3D 6=0

V 3D
q3D

c†k+q3D
c†k′−q3D

ck′ck, (B.21)

V 3D
q =

4πe2

ǫ0ǫrSLq2
. (B.22)

Though correct, these expressions are not convenient because they are expressed

in the wrong basis. To express the previous result in the proper basis, we need to

calculate the Coulomb interaction between confined electrons. We first perform a

one-dimensional Fourier transform along the z direction,

Vq(z) =
∑

qz

V 3D
q3D

eiqzz

=
2e2

ǫ0ǫrS

∫

dqz
eiqzz

q2 + qz2

=
2πe2

ǫ0ǫrSq
e−qz, (B.23)

where q and qz are the in-plane and z component of the wave vector q3D and

2πe2/ǫ0ǫrSq is the Coulomb potential for a true two-dimensional electron gas. We

can now compute the matrix elements of the Coulomb interaction in the proper
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basis,

HCoul =
1

2

∑

k,k′,q 6=0
µ,µ′,ν,ν′

V µνν′µ′

q c†µ,k+qc
†
ν,k′−qcν′,k′cµ′,k, (B.24)

V µνν′µ′

q =
2πe2

ǫ0ǫrSq
Iµνν

′µ′

q , (B.25)

where the geometrical factor is

Iµνν
′µ′

q =

∫∫

dz1dz2 χµ(z2)χν(z1) e−q|z2−z1| χν′(z1)χµ′(z2). (B.26)

We now give the expression of this geometrical factor for an infinite square quan-

tum well. As explained in section 2.1, there are only four relevant coefficients to

compute divided into two categories—intrasubband and intersubband—depending

on whether electrons are scattered into the same subband or not.

Coefficients for the intrasubband processes are

Iµννµp =
32µ2ν2π4(e−pL − 1 + pL) + 2(pL)5 + 8π2(µ2 + ν2)(pL)3

(pL2) [(pL)2 + 4π2µ2] [(pL)2 + 4π2ν2]

+ δµ,ν
(pL)5 + 4π2µ2(pL)3

(pL2) [(pL)2 + 4π2µ2]2
. (B.27)

These coefficients tend to one as q tends to zero. Intrasubband Coulomb processes

are, thus, divergent in 0 and tend to a true two-dimensional Coulomb interactions.

Remember, however, that the divergence is removed by the absence of the term

q = 0 in Eq. (B.24).

Coefficient for intersubband processes is

I1212q = 2qL
45π6 − 64π4qL

(

e−qL + 1
)

+ 59π4(qL)2 + 15π2(qL)4 + (qL)6

(9π4 + 10π2(qL)2 + (qL)4)2
, (B.28)

and the divergence in zero is removed in the long wavelength limit,

I1212q ≈ qL
10

9π2
. (B.29)
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Calculation with the Fermionic

Hamiltonian

In this appendix, we show the details of the calculation of section 3.4. We will need

the following relation

H b†Nexc

0,q |F 〉 = Nexc b
†Nexc−1
0,q

[

H, b†0,q

]

|F 〉

+
Nexc(Nexc − 1)

2
b†Nexc−2
0,q

[[

H, b†0,q

]

, b†0,q

]

|F 〉 . (C.1)

C.1 Transition probabilities

The transition probability between two (properly normalized) states

|ψi〉 ∝ b†Nexc

0,q |F 〉 , (C.2)

|ψf〉 ∝ b†0,q+pb
†
0,q−pb

†Nexc−2
0,q |F 〉 , (C.3)

is given by the scalar product between the final state and the time evolved initial

state [96, 106]. Because of the overcompleteness of the two-excitations states, we

need to use the orthonormalization trick described in section 3.2,

Pp,fer(t) =
∣

∣

∣〈ψf

∣

∣ψ̃t〉
∣

∣

∣

2

, (C.4)

where
∣

∣

∣ψ̃t

〉

= Ft(H − 〈ψi|H |ψi〉)P⊥H |ψi〉 . (C.5)



104 APPENDIX C. FERMIONIC HAMILTONIAN

The operator P⊥ is the projector over the subspace orthogonal to |ψi〉, and Ft verifies

|Ft(E)|2 =
2πt

~
δt(E), (C.6)

where δt converges to the Dirac delta function for long times. In the following, we

will develop Eq. (C.4) to first order in the density of excitations Nexc/nQWNel.

Using Eqs. (C.1), (3.3) to (3.9), (3.13) and (3.22) to (3.24), we make the fermionic

Hamiltonian act on the initial state,

H b†Nexc

0,q |F 〉 = Nexc

(

(

~ω̃12 +
~ωP

2

2ω̃12

)

b†Nexc

0,q |F 〉 −
∑

i 6=0

γ0,i b
†
i,qb

†Nexc−1
0,q |F 〉

)

+
Nexc(Nexc − 1)

2nQWNel

e2nel

2ǫ0ǫr

∑

m,n,Q

ξm,0
n,0 (Q)

Qǫ(Q)
b†m,q+Qb

†
n,q−Qb

†Nexc−2
0,q |F 〉

− Nexc(Nexc − 1)

nQWNel

∑

m,Q

NelV
1212
Q λm,0

0,0 (Q− q) b†0,Qb
†
m,2q−Qb

†Nexc−2
0,q |F 〉 . (C.7)

To project the resulting state on the subspace orthogonal to the initial state, we

need the following matrix element,

〈ψi|H |ψi〉 = Nexc

(

~ω̃12 +
~ωP

2

2ω̃12

)

− Nexc(Nexc − 1)

2nQWNel

Uq,q,0, (C.8)

where Uq,q,0 is given in Eq. (3.57). The projection is then

P⊥H b†Nexc

0,q |F 〉 = −Nexc

∑

i 6=0

γ0,i b
†
i,qb

†Nexc−1
0,q |F 〉+

Nexc(Nexc − 1)

2nQWNel

Uq,q,0 b
†Nexc

0,q |F 〉

+
Nexc(Nexc − 1)

2nQWNel

e2nel

2ǫ0ǫr

∑

m,n,Q

ξm,0
n,0 (Q)

Qǫ(Q)
b†m,q+Qb

†
n,q−Qb

†Nexc−2
0,q |F 〉

− Nexc(Nexc − 1)

nQWNel

∑

m,Q

NelV
1212
Q λm,0

0,0 (Q− q) b†0,Qb
†
m,2q−Qb

†Nexc−2
0,q |F 〉 . (C.9)

The first term in the first line comes from the coupling to the dark intersubband

excitations. Because this process is non resonant, we neglect it as explained in

section 3.3. The second term will give a second order contribution in Nexc/nQWNel so

we neglect it too. Remaining terms are all of first order in the density of excitations.

We now apply Ft to the final state. Because the previous projection is already

of first-order in the perturbation parameter, we can consider only its zero-th order
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contribution, i.e, we do as if intersubband excitations were exact eigenstates of H.

We obtain

〈F | bNexc−2
0,q b0,q−pb0,q+p Ft(H − 〈ψi|H |ψi〉) ≈ Ft(∆Ep) 〈F | bNexc−2

0,q b0,q−pb0,q+p,

(C.10)

where ∆Ep is the energy difference between the initial and final states. Taking into

account the normalization, which brings an additional factor Nexc(Nexc − 1) ot the

denominator, we finally obtain the transition probability from the initial to the final

state,

Pp,fer(t) =
2πt

~

Nexc(Nexc − 1)

n2
QWN

2
el

|Uq,q,p|2 δt(∆Ep) +O

(

[

Nexc

nQWNel

]4
)

. (C.11)

C.2 Fermi Golden Rule

With the same notations, the contribution of the many-body physics to the lifetime

of the initial state is [96, 106]

t

T
=

〈

ψ̃t

∣

∣

∣
ψ̃t

〉

−
∣

∣

∣
〈ψi

∣

∣ψ̃t〉
∣

∣

∣

2

. (C.12)

The second term can be calculated using the same method as for the transition

rate and is found to contribute only to higher orders in the perturbation. We, thus,

neglect it.

The first term is

〈

ψ̃t

∣

∣

∣
ψ̃t

〉

∝ 〈F | bNexc
0,q H P⊥ |F (H − 〈ψi|H |ψi〉)|2 P⊥H b†Nexc

0,q |F 〉 . (C.13)

We use Eq. (C.9) to replace the ket by its expression. To avoid useless complication,

we remove the coupling between bright and dark excitation because we already know

that they yield non resonant contributions. We also notice that the second term of

the first line is orthogonal to 〈F | bNexc
0,q H P⊥, so it does not contribute at all. We,
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thus, obtain

1

T
∝ Nexc(Nexc − 1)

2nQWNel

e2nel

2ǫ0ǫr

∑

m,n,Q 6=0

δt(∆EQ)
ξn,0m,0(Q)

Qǫ(Q)

× 〈F | bNexc
0,q HP⊥ b†m,q+Qb

†
n,q−Qb

†Nexc−2
0,q |F 〉

− Nexc(Nexc − 1)

nQWNel

∑

n,Q 6=0

δt(∆Eq−Q)NelV
1212
Q λn,00,0 (Q− q)

× 〈F | bNexc
0,q HP⊥ b†0,Qb

†
n,2q−Qb

†Nexc−2
0,q |F 〉 , (C.14)

where indices m and n and the wave vector Q are all non zero. We also made Ft act

at zero-th order. We now replace state 〈F | bNexc
0,q H P⊥ by its expression from which

we, again, remove the first line,

1

T
∝ Nexc(Nexc − 1)

2nQWNel

e2nel

2ǫ0ǫr

∑

Q

δt(∆EQ)
ξ0,00,0(Q)

Qǫ(Q)
Uq,q,Q

− Nexc(Nexc − 1)

nQWNel

∑

Q

δt(∆Eq−Q)NelV
1212
Q λ0,00,0(Q− q)Uq,q,Q. (C.15)

Here, the sum over the wave vector Q has been implicitely truncated to small wave

vectors. We conserved only resonant terms, so we do not consider processes where

bright excitations are scattered to dark states. These processes are, indeed, non

resonant (see section 3.3).

The previous expression, despite correct, does not look like traditional Fermi

Golden Rule. It is, however, possible to simplify it by using the overcompleteness of

the two-excitation states. We use Eq. (3.34) to express b†m,q+Qb
†
n,q−Q and b†0,Qb

†
n,2q−Q

in a different way and do the calculation again,

1

T
∝ −Nexc(Nexc − 1)

2nQWNel

e2nel

2ǫ0ǫr

∑

Q,Q′

δt(∆EQ)
λ0,n0,m(Q′)ξn,0m,0(Q)

nQWNelQǫ(Q)
Uq,q,Q+Q′

+
Nexc(Nexc − 1)

nQWNel

∑

Q,Q′

δt(∆Eq−Q)NelV
1212
Q

λ0,n0,0 (Q′)λn,00,0 (Q− q)

nQWNel

Uq,q,Q+Q′ . (C.16)

We now take the mean of these two expression and normalize our result,

1

T
=

1

2

∑

p

lim
t→+∞

Pp,fer(t)

t
, (C.17)
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where it is implicitly assumed that the summation is restricted to small wavevectors.

This result is now very similar to the usual Fermi golden rule despite the presence

of the counterintuitive 1/2 factor. This coefficient comes from the overcompleteness

of the composite boson basis.
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