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Introduction

Signal processing techniques to augment the visual quality of images and videos are nowadays particularly appealing. A rst reason for this assertion is due to the technological progress that has raised the standards and the user expectations when enjoying multimedia contents. The past decade, in fact, has witnessed a revolution in large-size user-end display technology: consumer markets are currently ooded with television and other display systems -liquid crystal displays (LCDs), plasma display panels (PDPs), and many more -, which present very high-quality pictures with crystal-clear detail at high spatial and temporal resolutions. And the trend does not appear to be declining: only a few months ago, on the occasion of the annual Consumer Electronics Show (CES) held in January 2014, the company Seiki announced new 65-inch 4K TV models, which will be possible to buy at aordable prices. The recently adopted new compression standard HEVC, too, considered 4K videos for the tests, even if only on cropped areas.

However, despite the increasing interest towards them, high-quality contents are not always available to be displayed. Video source data are unfortunately often at a lower quality than the desired one, because of several possible causes: spatial and temporal down-sampling that may be necessary, noise degradation, high compression, etc. Moreover, the new sources of video contents, like the Internet or mobile devices, have generally a lower picture quality than conventional TV broadcasting. Lower-quality video sources pose a formidable obstacle to high-denition video display, and unfullled results are paradoxically even more accentuated by the new high-technology display systems. When we consider still images, things seem to be better. Modern cameras, even the handy and cheap ones, allow any user to easily produce breathtaking high-resolution photos.

However, if we consider the past production, there is a tremendous amount of user-produced images collected in the years, that are valuable but may be aected by a poor quality. A need to improve the image quality can then be remarked also in this case.

Apart from the user experience, reasons for the need of augmenting the resolution of a video or an image can also be imposed by the particular application context considered. Many applications, e.g. video surveillance and remote sens-ing, in fact, require the display of images at a considerable resolution, possibly for specic tasks like object recognition or zoom-in operations. Furthermore, compatibility requirements between the dierent video standards can sometimes lead to the necessity of implementing techniques of resolution up-conversion and de-interlacing.

Super-resolution (SR) specically addresses the problem targeted so far, as it refers to a family of methods that aim at increasing the resolution, and thus the quality, of given images, to a greater extent than traditional image processing algorithms. Traditional methods include, among others, analytic interpolation methods, e.g. bilinear and bicubic interpolation, which compute the missing intermediate pixels in the enlarged high-resolution (HR) grid by averaging the original pixel of the low-resolution (LR) grid with xed lters. Once the input image has been upscaled to HR via interpolation, image sharpening methods can be possibly applied. Sharpening methods aim at amplifying existing image details, by changing the spatial frequency amplitude spectrum of the image: in this way, provided that noise is not amplied too, existing high frequencies in the image are enhanced, thus producing a more pleasant and richer output image.

Dierently than traditional methods (image interpolation, sharpening, etc.), the goal of SR is more ambitious: SR methods, in fact, aim at estimating missing high-resolution detail that is not present in the original image, by adding new plausible high frequencies. To pursue this goal, two main approaches to SR have been studied in the literature in the recent years: multi-frame and singleimage super-resolution. Multi-frame SR methods, as the name suggests, rely on the presence of multiple frames, mutually misaligned and possibly originated by dierent geometric transformations, related to the same scene: these multiple frames are conveniently fused together to form a single HR output image. As a result, the formed image will contain an amount of detail that is not strictly present in any of the single input images, i.e. new information will be created.

Single-image SR methods somehow represent an even bigger challenge, as we want here to create new high-frequency information from as little as one single input image. Like in image interpolation, we want to increase the spatial resolution of a LR input image, by making visible, in this case, new high-denition details.

Among single-image SR methods, an important category is represented by algorithms that make use of machine learning techniques. Although covering dierent meanings, machine learning can be generally referred to as that branch of articial intelligence that concerns the construction and study of algorithms that can learn from data. Its origins date back to several decades ago, but only in the nineties it denitely bloomed: since then, many powerful algorithms have been developed to solve dierent problems in a variety of scientic areas.

Interested in the SR approach to the task of increasing the resolution of an image, and intrigued by the eectiveness of machine learning techniques, dur-ing this doctorate we mostly investigated the SR problem and the application to it of learning methods. In particular, we adopted a single-image examplebased scheme, where a single LR image is upscaled by means of a dictionary of training examples. This dictionary of examples, which in this case consist in correspondences of LR and HR image patches, seen within the framework of machine learning, represents the data we have to learn from.

Example-based SR procedures are usually patch-based procedures: the input image itself is partitioned into patches, and, thanks to the correspondences stored in the dictionary, from a single LR input patch a single HR output patch is estimated via learning methods. The whole set of estimated HR patches is then re-assembled to nally build the super-resolved image. Starting from this general procedure, we investigated several algorithmic aspects of it, e.g. how to build the dictionary of patches or how to design the proper patch estimation procedure, by taking into account, from time to time, dierent targets (low complexity, maximization of the output quality, theoretical assessment, etc.). As for the dictionary, in particular, in example-based SR we can mainly have two dierent kinds of dictionary: an external one, when the training patches are extracted from external training images, or an internal one, when the patches are derived from the input image sequence itself. Broadly speaking, internal dictionaries allow to reach the best quality outcomes at the price of a higher computational cost, whereas external dictionaries lead to faster but less performing methods.

In this manuscript, we present novel single-image SR procedures for both kinds of dictionaries, i.e. external and internal, thus coming up with original solutions and competitive results w.r.t. state-of-the-art methods. We also extend our designed algorithm to the video case, i.e. when the task is to augment the resolution of a whole video sequence. This let us to already reach interesting results and to open the door to future work.

Thesis outline

The rest of this manuscript is structured as follows. We start with Chapter 1, where we give a general overview of super-resolution, by classifying it into multiframe and single-image methods and also going deeper into the classication, and discuss the relevant work. Chapter 2 and Chapter 3 present our contributions to single-image SR, by describing novel algorithms employing, respectively, external and internal dictionaries. In particular, the external-dictionary methods presented in Chapter 2 are the result of several elements that brought to the formulation of three novel algorithms, described in distinct publications. The extension to the video case is presented in Chapter 4, where we consider two dierence scenarios (according to whether or not some periodic HR frames are available). Dierent SR procedures (the single-image methods described in the Introduction previous chapters, conveniently adapted to the video case, as well as newly designed procedures) are compared, and an analysis in the video compression context is also carried out. In Chapter 5 we then provide a compendium of some machine learning techniques that we have been studying during this doctorate, with a particular emphasis of their application within the SR techniques considered. Finally, we end the thesis by summarizing our accomplishments, drawing conclusions from them and discussing about future directions.

Chapter 1

Super-resolution: problem denition and review of the state of the art

In this chapter we present the fundamentals of super-resolution, by providing a general denition and classifying it, as conventionally done, into two main categories of algorithms: multi-frame methods and single-image methods.

For these two families of algorithms, principles and main state-of-the-art methods are described, respectively in sections 1.1.1 and 1.1.2. Within single-image super-resolution methods, a particular family of methods that takes the name of example-based super-resolution, on which most of the work of this thesis focuses, is then further analyzed in Section 1.2.

What is super-resolution (SR)

Super-resolution, also spelled as super resolution and superresolution, is a term for a set of methods whose aim is to increase the spatial resolution of videos or images. Terms such as upscale and upsize also describe an increase of resolution in either image processing or video editing. Typical domains of application of super-resolution include medical imaging [1], remote sensing [2,3], target detection and recognition [3,4], radar imaging [5], forensic science [START_REF] Gehani | Super-Resolution Video Analysis for Forensic Investigations[END_REF], and surveillance systems [START_REF] Wang | Super-resolution mosaicking of UAV surveillance video[END_REF].

In general terms, by image resolution it is meant the amount of detail an image holds. The resolution of an image can be described in many dierent ways, according to the particular aspect taken into account; thus, we can speak about spatial resolution, temporal resolution, spectral resolution, optical resolution, etc.

In particular, spatial resolution refers to the level of visual details discernible in an image. In other words, it quanties how close two lines in an image can be 13 to each other and still be visibly resolved. This denition applies to both digital and analogue camera systems and images. As for digital images, where the pixel is the base unit used, there is a connection between spatial resolution and total number of pixels. The number of eective pixels that an image sensor or digital camera has is the count of elementary pixel sensors that contribute to the nal image: the higher this number will be, the higher the resolution will be and the clearer an object in the image will appear. In eect, spatial resolution can be referred to the number of independent pixel values per unit length. In practice, we often take into account simply the total counts of pixels, horizontally and vertically, which dene what is more precisely called pixel resolution, and serve as upper bounds on spatial resolution (unused or light-shielded pixels around the edges might be included). In this case, the convention is to describe the pixel resolution with a set of two positive integer numbers, where the rst number is the number of pixel columns (width) and the second is the number of pixel rows (height), e.g 1920×1080. In this manuscript, which only relates to digital images, the word resolution must be intended as a spatial resolution, unless otherwise specied, and the pixel-wise denition is used. Super-resolution (SR) is not a marketing buzzword, but it is a proper mathematical term used by scientists. The rst work on this topic was published in 1984 [START_REF] Huang | Multiframe image restoration and registration[END_REF] and the term super-resolution itself appeared at around 1990 [START_REF] Irani | Super resolution from image sequences[END_REF]. SR algorithms can be categorized according to the number of input images and output images involved in the process. When a single high-resolution (HR) image is produced from a single degraded low-resolution (LR) image, we refer to single-image single-output (SISO) super-resolution. Possible applications of SISO super-resolution relate to the possibility of achieving resolution enhancements, e.g. to improve object recognition performance and enable zoom-in capabilities.

Other SR algorithms deal with the integration of multiple LR frames to estimate a unique HR image: in this case we speak about multiple-input single-output (MISO) super-resolution. An example application area is in license plate recognition from a video stream to increase the alphanumeric recognition rates. A recent focus on SR research relates to algorithms which aim at reconstructing a set of HR frames from an equivalent set of LR frames. This approach takes the name of multiple-input single-output (MIMO) super-resolution, also known as video-to-video SR. A typical application of these algorithms can be for example the quality enhancement of a video sequence captured by surveillance cameras. Table 1.1 sums up the characteristics of the three SR categories described (SISO, MISO, and MISO), by mentioning for each of them possible application domains.

The rst two categories of SR algorithms (SISO and MISO) give rise to two dierent families of SR methods, each one recalling dierent kinds of procedures: particularly, for SISO super-resolution we speak about single-image SR methods (a single LR image is used as input to estimate an underlying HR image), whereas, SR in the case of MISO super-resolution, we speak about multi-frame SR methods (the information contained within multiple under-sampled LR frames is fused to generate a single HR image). Several algorithms have been developed in the recent years for the two families of methods mentioned. MIMO super-resolution, instead, represents an emerging application, where procedures are not consolidated yet and often follow a sort of mixed approach, by borrowing elements either from SISO and MISO super-resolution algorithms. Thus, in terms of actual methodologies, we can distinguish two main families: single-image SR and multi-frame SR. Figure 1.1 presents a taxonomic diagram of SR according to the classications made and the relations between the dierent categories of SR algorithms.

The principles behind multi-frame and single-image SR methods are deeply dierent. The former uses information from several dierent images to create one single upsized image. Algorithms try to extract and combine real details from every available frame. Single-image SR, instead, refers to more sophisticated methods (the problem is more dicult and necessarily ill-posed), which, starting from as little as one single input image, attempt at articially synthesizing new details. Next two subsections will review these two families of SR algorithms, by presenting, for each of them, the main concepts and techniques involved.

Multi-frame SR methods

The basic premise for increasing the spatial resolution in multi-frame SR techniques is the availability of multiple LR images captured from the same scene.

Multi-frame SR methods work eectively when several LR images contain slightly dierent perspectives of the scene to be super-resolved, i.e. when they represent dierent looks at the same scene. In this case, each image is seen as a degraded version of an underlying HR image to be estimated, where the degradation processes can include blurring, geometrical transformations, and down-sampling. If the geometrical transformations consist in simple shifts by integer units, then each image presents the same content and there is no extra information that can be exploited to reconstruct a common HR image. The best case for these methods to work is then when the LR images have dierent subpixel shifts from each other and thus they actually bring dierent information (each image cannot be obtained from the others).
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The SR problem is usually modeled as an inverse problem, where the source information (the HR image) has to be estimated from the observed data (the LR frames). Solving an inverse problem generally requires rst the construction of a forward observation model. Most imaging devices can be described as a camera lens and aperture that produce blurred images of the scene contaminated by some additional noise. Then, given a HR image with a total number of N pixels (the image can be expressed as a vector x ∈ R N ), the observation model that describes the acquisition of a set of p LR frames y k ∈ R M can be expressed as:

y k = DB k W k x + n k for 1 ≤ k ≤ p (1.1)
where W k is an N × N warp matrix that maps the HR image coordinates onto a new system of distorted coordinates (due to translations, rotations, etc.), B k is an N × N blur matrix modeling various phenomena (e.g. the optical system and the motion during the acquisition process), D is an M × N decimation matrix, and n k represents an ordered noise vector. Therefore, the observed LR images result from warping, blurring, and subsampling operations performed on the same HR image x, which is implicitly considered constant during the whole acquisition process. If the subsampling factor considered is s (the LR images turn to be decimated by a factor of s in each spatial direction), then the dimensional relation that stands between the HR image vector x and the LR image vectors y k is N = s 2 M .

Multi-frame SR methods aim at reversing the observation model (1.1). In order to pursue this goal, many dierent methods have been proposed in the last decades. These methods, due to the diculties in estimating the many parameters involved (e.g. a registration operation is often needed), are shown to be able to produce fairly good upscalings only for small scale factors (typically for factors smaller than 2). Moreover, the assumption for which several dierent frames referring to the same scene are available can be sometimes dicult to meet.

Broadly speaking, multi-frame SR algorithms can be classied according to three main approaches followed:

1. Interpolation-based approach 2. Frequency-domain-based approach

Regularization-based approach

In the following sections we revise the three approaches above mentioned, by presenting some of the most popular methods. Further information can be found in several review papers (e.g. [START_REF] Borman | Super-Resolution from Image Sequences A Review[END_REF][START_REF] Park | Super-Resolution Image Reconstruction: A Technical Overview[END_REF][START_REF] Mancas-Thillou | An Introduction to Super-Resolution Text[END_REF][START_REF] Tian | A survey on super-resolution imaging[END_REF]), which have good overviews on multi-frame SR problems and the main methods employed.

Interpolation-based approach

Interpolation-based SR algorithms construct a HR image by projecting all the acquired LR images to a reference image. All the information available from each image is then fused together, due to the fact that each LR image provides an amount of additional information about the scene, and nally a deblurring process is applied to the obtained image. This procedure is depicted in Figure 1.2. Interpolation-based SR approaches usually consist of the following three stages:

• A registration stage for aligning the LR input images,

• • W k

The three steps of the interpolation-based SR approach can also be conducted iteratively.

In this regard, Irani and Peleg [START_REF] Irani | Super resolution from image sequences[END_REF] proposed an iterative back-projection (IBP) algorithm, where the HR image is estimated by iteratively projecting the dierence between the observed LR images and the simulated LR images. However, this method might not produce an unique solution due to the ill-posed nature of the SR problem. We will discuss further about the IBP algorithm in the next chapters, by employing it in the context of single-image SR.

Another iterative approach to multi-frame SR is given by the Projection onto Convex Sets (POCS) method, which was proposed, among others, by Patti et al. [START_REF] Patti | Superresolution Video Reconstruction with Arbitrary Sampling Lattices and Nonzero Aperture Time[END_REF]. It is a set-theoretic algorithm that aims at producing an HR image that is consistent with the information arising from the observed LR images and a prior image model. According to the method of POCS, incorporating a priori knowledge into the solution can be interpreted as restricting the solution to be a member of a closed convex set C i , which is dened as a set of vectors which satisfy a certain property. Given dierent properties for the HR target image, we then have several constraint sets: the intersection of these sets represents the space of permissible solutions. If the constraint sets have a nonempty intersection, then a solution that belongs to the intersection set C s = m i=1 C i , which is also a convex set, can be found by alternating projections onto these convex set. In fact, any solution in the intersect set is consistent with the a priori constraints and therefore a feasible solution. The method of POCS consists then in projecting an initial estimate of the unknown HR x 0 onto these constraint sets, according to the following recursion:

x n+1 = P m P m-1 • • • P 2 P 1 x n (1.2)
where x 0 is an arbitrary starting point, and P i is the projection operator which projects an arbitrary signal x onto the closed convex set C i . With (1.2), a fairly good solution to the problem can be obtained: although not trivial, this is, in general, much easier than nding P s , i.e. the unique projector, in one step. The method of POCS is easy to implement; however, it does not guarantee the uniqueness of the solution. Furthermore, the computational cost of this algorithm is very high.

Frequency-domain-based approach

A major class of multi-frames SR methods utilizes a frequency domain formulation of the SR problem. The main principle is that clues about high frequencies are spread across the multiple LR images in form of aliased spectral frequencies.

The rst frequency-domain SR method can be credited to Tsai and Huang [START_REF] Huang | Multiframe image restoration and registration[END_REF], who considered SR reconstruction from noise-free LR images. They proposed to rst transform the LR image data into the Discrete Fourier Transform (DFT) domain, and then combine them according to the relationship between the aliased DFT coecients of the observed LR images. The approach is based on the following principles:

1. The shifting property of the Fourier transform, 2. The aliasing relationship between the continuous Fourier transform (CFT) and the DFT of observed LR images, and

3.

The assumption that an original HR image is band-limited.

These properties make it possible to formulate an equation relating the aliased DFT coecients of the observed LR images to a sample of the CFT of an unknown HR image.

Rhee and Kang [START_REF] Rhee | DCT-Based Regularized Algorithm for High-Resolution Image Reconstruction[END_REF] exploited the Discrete Cosine Transform (DCT), instead of DFT, in order to reduce memory requirements and the computational costs.

Woods et al. [START_REF] Woods | Stochastic Methods for Joint Registration, Restoration, and Interpolation of Multiple Undersampled Images[END_REF], instead, presented an iterative expectation maximization (EM) algorithm [START_REF] Dempster | Maximum Likelihood from Incomplete Data via the EM Algorithm[END_REF] for simultaneously performing the registration, blind deconvolution, and interpolation operations.

The frequency-domain-based SR approach has a number of advantages. The rst advantage is its theoretical simplicity: the relationship between the LR input images and the HR image is clearly demonstrated. Thus, frequency-domain-based SR approaches represent an intuitive way to enhance the details of the images by extrapolating the high-frequency information presented in the LR images. Secondly, these approaches have low computational complexity, by also being suitable for parallel implementations. However, frequency-domain-based SR methods are insucient to handle real-world applications, since they require that there only exists a global displacement between the observed images and the linear spaceinvariant blur during the image acquisition process (i.e. B k is supposed to be the same for all the LR images).

Recently, many researchers have begun to investigate the use of the wavelet transform for addressing the SR problem to recover the detailed information (usually the high-frequency information) that is lost or degraded during the image acquisition process. This is motivated by the fact that the wavelet transform provides a powerful and ecient multi-scale representation of the image for recovering the high-frequency information [START_REF] Nguyen | An Ecient Wavelet-Based Algorithm for Image Superresolution[END_REF]. These approaches typically treat the observed LR images as the low-pass ltered sub-bands of the unknown wavelet-transformed HR image. The aim is to estimate the ner scale sub-band coecients, followed by applying the inverse wavelet transform, to produce the HR image. To be more specic, let us take the 2 × 2 SR computation as an example. The LR images are viewed as the representation of wavelet coecients after N levels of decomposition. Then, the HR image can be produced by estimating the (N + 1)-th scale wavelet coecients, followed by applying the inverse wavelet decomposition. In [START_REF] El-Khamy | Wavelet Fusion: a Tool to Break the Limits on LMMSE Image Super-Resolution[END_REF], El-Khamy et al. proposed to rst register multiple LR images in the wavelet domain, then fuse the registered LR wavelet coecients to obtain a single image, and nally perform interpolation to get a higher-resolution image. Ji and Fermüller [START_REF] Ji | Wavelet-Based Super-Resolution Reconstruction: Theory and Al-gorithm[END_REF][START_REF]Robust Wavelet-Based Super-Resolution Reconstruction: Theory and Algorithm[END_REF] proposed a robust wavelet SR approach to handle the error incurred in both the registration computation and the blur identication computation. Chappalli and Bose incorporated in [START_REF] Chappalli | Simultaneous Noise Filtering and Super-Resolution With Second-Generation Wavelets[END_REF], instead, a denoising stage into the conventional wavelet-domain SR framework to develop a simultaneous denoising and SR reconstruction approach. • Deterministic regularization approaches, and

• Stochastic regularization approaches.

Deterministic approaches rely on the fact that, with estimates of the registration parameters, the observation model in (1.1) can be completely specied. The deterministic regularization SR approach then solves the inverse problem in (1.1), by exploiting some prior information about the solution, which can be used to make the problem well posed. A typical method adopted refers to the solution of a constrained least squares (CLS) problem. The CLS problem can be formulated, e.g., by choosing an x to minimize a Lagrangian [START_REF] Katsaggelos | Digital Image Restoration[END_REF], according to the following formulation:

x = arg min x { p k=1 y k -A k x 2 + α Cx 2 } , (1.3) 
where A k is the global matrix that takes into account all the degradation operations on the frame y k , α is the Lagrange multiplier, and C is generally a high-pass lter. In ( 

A T k A k + αC T C x = p k=1 A T k y k , (1.4) 
which leads to the following iteration for x:

xn+1 = xn + β p k=1 A T k (y k -A k xn ) -αC T Cx n , (1.5) 
where β represents the convergence parameter.

Stochastic regularization methods typically adopt a Bayesian approach, according to which the information that can be extracted from the observations (i.e. the LR images) about the unknown signal (i.e. the HR image) is contained in the probability distribution of the unknown. These methods rely then on the possibility that the a posteriori probably density function (PDF) of the original HR image can somehow be established, by exploiting the information provided by both the observed LR images and the prior knowledge of the HR image.

One of the most popular Bayesian-based SR approaches is the maximum a posteriori (MAP) estimation approach [START_REF] Hardie | Joint MAP registration and highresolution image estimation using a sequence of undersampled images[END_REF][START_REF] Tian | Stochastic super-resolution image reconstruction[END_REF][START_REF] Schultz | Extraction of High-Resolution Frames from Video Sequences[END_REF][START_REF] Suresh | Robust and computationally ecient superresolution algorithm[END_REF][START_REF] Belekos | Maximum a Posteriori Video Super-Resolution Using a New Multichannel Image Prior[END_REF][START_REF] Shen | A MAP Approach for Joint Motion Estimation, Segmentation, and Super Resolution[END_REF]. The MAP estimator of x maximizes the a posteriori PDF P (x|y k ) with respect to x, i.e.:

x = arg max

x P (x|y 1 , y 2 , . . . , y p ) .

(1.6)

Taking the logarithmic function and applying the Bayes' theorem to the conditional probability, the MAP optimization can be expressed as:

x = arg max x {ln P (y 1 , y 2 , . . . , y p |x) + ln P (x)} .

(1.7)

Both the a priori image model P (x) and the conditional density P (y 1 , y 2 , . . . , y p |x) are dened by a priori knowledge concerning the HR image x and the statistical information of noise.

Another popular Bayesian-based approach is maximum likelihood (ML) estimation, which is a special case of MAP estimation with no prior term. ML estimation has also been applied to the SR reconstruction problem [START_REF] Tom | Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images[END_REF]. However, due to the ill-posed nature of SR inverse problems, MAP estimation is usually preferred to ML.

Single-image SR methods

Single-image SR is the problem of estimating an underlying HR image, given only one observed LR image. In this case, it is assumed that there is no access to the imaging step so that the starting point is a given LR obtained according to some known or unknown conventional imaging process.

The generation process of the LR image from the original HR image that is usually considered can be written as

I L = (I H * b) ↓ s , (1.8) 
where I L and I H are respectively the LR and HR image, b is a blur kernel the original image is convoluted with, which is typically modeled as a Gaussian blur [START_REF] Baker | Limits on Super-Resolution and How to Break Them[END_REF], and the expression ↓ s denotes a downsampling operation by a scale factor of s. spline interpolation [START_REF] Keys | Cubic convolution interpolation for digital image processing[END_REF]), by computing the missing pixels in the HR grid as averages of known pixels, implicitly impose a smoothness prior. However, natural images often present strong discontinuities, such as edges and corners, and thus the smoothness prior results in producing ringing and blurring artifacts in the output image. The goal of SR is thus to achieve better results, by using more sophisticated statistical priors.

Single-image SR algorithms can be broadly classied into two main categories:

1. learning-based methods, which make use of machine learning techniques and often employ a dictionary generated from an image database;

2. reconstruction-based methods, which do not use a training set but rather dene constraints for the target high-resolution image to improve the quality of the reconstruction.

Reconstruction-based single-image SR includes a variety of methods. Here, the prior information necessary to solve the single-image SR ill-posed problem is usually available in the explicit form of either a distribution or an energy functional dened on the image class. Several algorithms of this kind are edge-focused methods, i.e. they try to reconstruct image details by interpolating the LR input image while focusing on sharpening edges [START_REF] Li | New Edge-Directed Interpolation[END_REF][START_REF] Tappen | Exploiting the Sparse Derivative Prior for Super-Resolution and Image Demosaicing[END_REF][START_REF] Dai | Soft Edge Smoothness Prior for Alpha Channel Super Resolution[END_REF][START_REF] Dai | SoftCuts: A Soft Edge Smoothness Prior for Color Image Super-Resolution[END_REF][START_REF]Image Upsampling via Imposed Edge Statistics[END_REF]. E.g. in the approach of Dai et al. [START_REF] Dai | Soft Edge Smoothness Prior for Alpha Channel Super Resolution[END_REF], the edges of the input image are extracted, in order to enforce their continuity, and blended together with the interpolation result to yield to the the nal super-resolved image. Similarly, in [START_REF]Image Upsampling via Imposed Edge Statistics[END_REF] Fattal proposes a method where edge statistics are used to reconstruct the missing high frequency information. Another approach relates to the attempt to solve the ill-posed problem of SR through regularization methods. E.g. the method in [START_REF] Aly | Image up-sampling using total-variation regularization with a new observation model[END_REF] adds to the problem a total variation (TV) regularization term. Following the theory of compressed sensing, the authors in [START_REF] Sen | Compressive Image Super-resolution[END_REF] propose instead a compressive image super-resolution framework, where they enforce the constraint that the HR image be sparse in the wavelet domain. Some methods proposed by Dong et al. [START_REF] Dong | Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization[END_REF][START_REF] Dong | Sparse Representation based Image Interpolation with Nonlocal Autoregressive Modeling[END_REF] follow a mixed approach: while using dictionaries of patches (that would induce to classify them as learning-based methods), they can still be considered belonging to the reconstruction-based family, as the HR image is computed by solving an optimization problem with several regularization terms. Without following either the edge-focused or the regularization-based approaches, Shan et al.

instead propose in [START_REF] Shan | Fast Image/Video Upsampling[END_REF] a fast image upsampling method with a feedback-control scheme performing image deconvolution.

The distinctive feature of learning-based methods, as said, is the employment of machine learning techniques to locally estimate the HR details of the output image. Learning-based algorithms can consist in pixel-based procedures, where each value in the HR output image is singularly inferred via statistical learning [START_REF] He | Single image super-resolution using Gaussian process regression[END_REF][START_REF] Zhang | Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression[END_REF], or patch-based procedures, where the HR estimation is performed thanks to a dictionary of correspondences of LR and HR patches (i.e. squared blocks of image pixels). The dictionary generated in this way (relating LR patches to HR patches) is then applied to the given LR image to recover its most-likely HR version. Note that this estimated HR version depends on the goodness of the dictionary; therefore, the reconstruction of true (unknown) details is not guaranteed. For this reason these methods are also referred to as image hallucination methods.

Learning-based single-image SR that makes use of patches is also referred to as example-based SR [START_REF] Freeman | Example-Based Super-Resolution[END_REF]. In the upscaling procedure the LR input image itself is divided into patches, and for each LR input patch a single HR output patch is reconstructed, by observing the examples contained in the dictionary. In the original example-based algorithm of Freeman et al., for example, the LR input image is subdivided into the overlapping patches, to form a Markov Random Field (MRF) framework. By searching for nearest neighbors in a LR dictionary, a certain number of corresponding HR candidates is then retrieved. This results in a MRF with a number of HR candidate patches for each node. After associating a data tting cost to each candidate and a continuity cost to the neighboring candidates, the MRF can be solved by using techniques such as belief propagation. One drawback of this scheme is its high computational cost, due to the complex solution and to the necessity of having large dictionaries including a large variety of image patches. As for the rst point, Freeman et al. adopt in [START_REF] Freeman | Example-Based Super-Resolution[END_REF] a sub-optimal one-step approach to solve the global optimization problem. To directly or indirectly face the issue of the dictionary size, instead, many examplebased SR algorithms consisting in dierent procedures have been proposed in the literature in the recent years. Neighbor embedding SR methods [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF][START_REF] Fan | Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds[END_REF][START_REF] Chan | Neighbor embedding based super-resolution algorithm through edge detection and feature selection[END_REF] are characterized by the selection of several LR candidate patches in the dictionary via nearest neighbor search; the HR output patches are reconstructed by combining the HR versions of these selected candidates. In this way, since patch combinations are enabled (i.e. the patch subspace is interpolated thus yielding more patch patterns), the number of image patch exemplars needed can be ideally lowered, while maintaining the same expressive power of the dictionary.

Another family of example-based SR method, sparse coding SR [START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF][START_REF] Wang | Resolution enhancement based on learning the sparse association of image patches[END_REF][START_REF] Zeyde | On Single Image Scale-Up Using Sparse-Representations[END_REF], is based on the concept of sparse representations: the weights of each patch combination are in this case computed by sparsely coding the related LR input patch with the patches in the dictionary. Dictionary learning methods can then be used to train a more compact dictionary (i.e. resulting with a lower number of patch pairs), particularly suitable for sparse representations. The method presented in [START_REF] Gao | Image Super-Resolution With Sparse Neighbor Embedding[END_REF] somehow bridges the neighbor embedding and the sparse coding approaches, by proposing a sparse neighbor embedding algorithm.

In the next section we provide an ample overview of example-based SR, by systematically presenting the main concepts and classifying the techniques used.

Example-based super-resolution

Example-based single-image SR aims at reversing the image generation model (1.8), by means of a dictionary of image examples that maps locally the relation between an HR image and its LR counterpart, the latter obtained with the model (1.8). For general upscaling purposes, the examples used are typically in the form of patches, i.e. squared blocks of pixels (e.g. 3×3 or 5×5 blocks). The dictionary is then a collection of patches, which, two by two, form pairs. A pair specically consists of a LR patch and its HR version with enriched high frequency details.

Example-based SR algorithms comprise two phases:

1. A training phase, where the above-mentioned dictionary of patches is built;

2. The proper super-resolution phase, that uses the dictionary created to upscale the input image.

As for the training phase, in Section 1.2.1 we discuss how to build a dictionary of patches. The dictionary can be of two kinds: an external dictionary, built from a set of external training images, and an internal one, built without using any other image than the LR input image itself. This latter case exploits the so called self-similarity property, typical of natural images, according to which image structures tend to repeat within and across dierent image scales: therefore, patch correspondences can be found in the input image itself and possibly scaled versions of it. To learn these patch correspondences, that specically take the name of self-examples, we can have one-step schemes [START_REF] Freedman | Image and Video Upscaling from Local Self-Examples[END_REF][START_REF] Yang | Fast Image Super-Resolution Based on In-Place Example Regression[END_REF] or schemes based on a pyramid of recursively scaled images starting from the LR input image
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LR input image

HR output image

searches, and sparse coding approaches, which rely on some sparse assumption.

Hereinafter in this manuscript we will use the following notation to indicate the dierent kinds of patches. X l = {x l i } Nx i=1 will denote the set of overlapping LR patches into which the LR input image is partitioned; similarly, X h = {x h i } Nx i=1 will denote the set of reconstructed HR patches, that will form the HR output image.

Each patch is expressed in vector form, i.e. its pixels, or certain features computed on them, are concatenated to form a unique vector. As for the dictionary, Y l = {y l i } Ny i=1 and Y h = {y h i } Ny i=1 will be respectively the sets of LR and HR example patches. In each patch reconstruction, then, the goal is to predict an HR output patch x h i , given the related LR input patch x l i , and the two coupled sets of patches, Y l and Y h , that form the dictionary. Table 1.2 recaps the notation used in this manuscript for the dierent kinds of patches.

X l = {x l i } Nx i=1 LR patch vectors in the LR input image X h = {x h i } Nx i=1 HR patch vectors in the HR output image Y l = {y l i } Ny i=1 LR patch vectors in the dictionary Y h = {y h i } Ny i=1
HR patch vectors in the dictionary 

Types of dictionary

As said, when building a dictionary of patches for example-based SR, we have two possible choices:

• An external dictionary, and • An internal dictionary.

In order to construct an external dictionary, several high-denition natural images are taken as training data. For each training image J H , we generate an LR counterpart J L by following the same image generation process assumed for SR (1.8), i.e.

J L = (J H * b) ↓ s .
(1.9)

LR and HR patches are extracted respectively from J L and J H , or from processed versions of them. Two patches are considered to form a pair when coming from corresponding locations in a pair of training images (the HR original image and its LR counterpart). The dictionary thus formed can be used directly as a training set in the second phase of the algorithm (super-resolution phase).

In example-based SR, when performing the training phase, we speak about an internal learning if, instead of making use of external training images, we derive the patches, directly or indirectly, from the input image itself. Local image structures, that can be captured in the form of patches, tend to recur across dierent scales of an image, especially for small scale factors. We can then use the input image itself, conveniently up-sampled or down-sampled into one or several dierently re-scaled versions, and use pairs of these images to learn correspondences of LR and HR patches, that will constitute our internal dictionary. We call the patches learned in this way self-examples. In this respect, there are two main kinds of learning schemes described in the literature: one-step schemes like in [START_REF] Freedman | Image and Video Upscaling from Local Self-Examples[END_REF][START_REF] Yang | Fast Image Super-Resolution Based on In-Place Example Regression[END_REF], and schemes involving the construction of a pyramid of recursively scaled images [START_REF] Glasner | Super-Resolution from a Single Image[END_REF][START_REF] Yang | Exploiting Self-Similarities for Single Frame Super-Resolution[END_REF][START_REF] Yang | Learning context-aware sparse representation for single image super-resolution[END_REF].

One-step schemes are meant to reduce as much as possible the size of the internal dictionary, i.e. the number of self-examples to be examined at each patch reconstruction, and thus the computational time of the SR algorithm. In fact, from the input image only one pair of training images is constructed and thus taken into account for the construction of the dictionary. This approach is motivated by the fact that the most relevant patches correspondences can be found when the re-scale factor employed is rather small. Only one rescaling is then sucient to obtain a good amount of self-examples. Let D denote an image downscaling operator, s.t. D(I) = (I) ↓ p , where p is a conveniently chosen small scale factor; and let U denote the dual upscaling operator, s.t. U(I) = (I) ↑ p . Let I L still indicate the LR input image. In [START_REF] Freedman | Image and Video Upscaling from Local Self-Examples[END_REF], for example, J L = U(D(I L )), which represents a low-pass ltered version of the LR input image I L , is used as source for the LR patches, whereas the HR example patches are sampled from J H = I L -J L , the complementary high-pass version. In [START_REF] Yang | Fast Image Super-Resolution Based on In-Place Example Regression[END_REF], instead, we have J L = (I L * b) and J H = U(I L ): the LR examples patches are taken again from a low-pass ltered version of I L , obtained by blurring the original image with a Gaussian blur kernel b, and the corresponding HR patches are taken from an upscaled version of I L , which does not alter its frequency spectrum content.

The method described in [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] paved the way to several SR algorithms (e.g. [START_REF] Yang | Exploiting Self-Similarities for Single Frame Super-Resolution[END_REF][START_REF] Yang | Learning context-aware sparse representation for single image super-resolution[END_REF]), based on self-examples derived in an image pyramid. Dierently from onestep learning methods, here several training images are constructed by recursively down-scaling the LR input image, thus forming a sort of overturned pyramid.

Given a LR input patch, all the levels of this pyramid can be used to nd similar self-examples, usually by performing a nearest neighbor search (NNS) (see Fig.

1.4).

To test the eective usefulness of constructing a full pyramid of images, we built a pyramid with 6 sub-levels (the original LR image is recursively down-scaled 6 times). For each LR input patch, then, the K = 9 

M i = M(x l i , Y l i , Y h i ).

Prediction:

The model M i is applied to actually predict the HR output patch.

Among local learning methods, we can distinguish two main reconstruction approach: neighbor embedding (NE) and direct mapping (DM). NE and DM dier in steps 2 and 3 of the local learning procedure above. In NE, the reconstruction model M i consists of a vector of weights w i ∈ R K (where K is the number of neighbors chosen), that identies a linear combination of the LR neighbors Y l i . The weights are computed w.r.t. the LR input patch and its neighbors

(w i = M(x l i , Y l i ))
. In [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], e.g., the single weight w i (j), related to the neighbor y l j found in the pyramid, is an exponential function of the distance between the latter and the LR input patch, according to the non-local means (NLM) model [START_REF] Buades | A Non-Local Algorithm for Image Denoising[END_REF].

w i (j) = 1 C e - x l i -y l j 2 2 t , (1.10)
where t is a parameter to control the decaying speed and C is a normalizing constant to make the weights sum up to one.

In other NE methods, instead, the weights are meant to describe a linear combination that approximates the LR input patch (i.e. x l i ≈ Y l i w i ). In [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF][START_REF] Fan | Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds[END_REF][START_REF] Chan | Neighbor embedding based super-resolution algorithm through edge detection and feature selection[END_REF], e.g., the weights are computed as the result of a least squares problem with a sum-to-one constraint:

w i = arg min w x l i -Y l i w 2 s.t. 1 T w = 1 .
(1.11)

The formula (1.11) recalls the method used in Locally Linear Embedding (LLE) [START_REF] Roweis | Nonlinear Dimensionality Reduction by Locally Linear Embedding[END_REF] to describe a high-dimensional point lying on a manifold through its neighbors, where the sum-to-one constraint is meant to make the weights even more representative of the local geometry of the manifold (it makes them invariant to translations of the data points).

In [START_REF] Bevilacqua | Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding[END_REF], instead, the sum-to-one constraint is replaced by a nonnegative condition, thus enabling only additive combinations of patches:

w i = arg min w x l i -Y l i w 2 s.t. w ≥ 0 .
(1.12)

Once the vector of weights w i is computed, the prediction step (Step 3) of the NE learning procedure consists in generating the HR output patch x h i as a linear combination of the HR neighbors Y h i , by using the same weights: 

x h i ≈ Y h i w i . ( 1 
f i = arg min f ∈H K j=1 y h j -f (y l j ) 2 2 + λ f 2 H , (1.14) 
where H is a desired Hilbert function space and λ ≥ 0 a regularization parameter. Examples similar to x l i and their corresponding HR versions are then used to learn a unique mapping function, which is afterwards simply applied to x l i to predict the HR output patch (Step 3):

x h i = f i (x l i ) (1.15)
Figure 1.7 depicts the scheme of the patch reconstruction procedure also in the DM case.

Sparse coding methods

As another patch reconstruction method for example-based SR, sparse coding methods estimate the HR output patches via sparse representations [START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF][START_REF] Wang | Resolution enhancement based on learning the sparse association of image patches[END_REF]. Here, the patch reconstruction is performed according to the principles of sparsity:

for each LR input patch x l i , we nd a sparse vector α i with respect to the LR dictionary Y l (the length of α i is equal to the number of patches in the dictionary); the elements of the HR dictionary Y h will be combined according to the same coecients to generate the HR output patch x h i . The patch reconstruction procedure of sparse coding methods (for a given LR input patch x l i ) consists then of two steps.

1. Find the sparse representation α i to sparsely approximate the input patch (coding step)

min α i 0 s.t. Y l α i -x l i ≤ .
(1.16)

2. Apply the same coecients to sparsely generate the corresponding HR output patch (synthesizing step)

x h i = Y h α i , (1.17) 
where Y l and Y h are the matrices representing, respectively, the whole LR and HR dictionaries.

Dierently than local learning methods, in sparse coding methods there is no explicit nearest neighbor search, but the selection of the dictionary elements participating in the patch combinations is concurrent with the error minimization process. Moreover, this selection can be adaptive: the number of combining patches (i.e. the number of nonzero elements of the weight vectors α i , α i 0 ) is not necessarily xed, as we have with number of neighbors in the NNS, but can vary according to the approximation error.

A big advantage of sparse coding methods is the possibility to learn a much more compact dictionary based on sparse signal representation, thus limiting the size of the external dictionary, a notable problem for example-based SR.

To this end, Yang et al. propose in [START_REF] Yang | Image Super-Resolution as Sparse Representation of Raw Image Patches[END_REF][START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF] a sparse learning approach, where the dictionary matrix D is seen as a matrix of training signals. This matrix is composed of the initial dictionary patches; the goal is to factor it into the product of a new dictionary matrix D new and a representation matrix A, under the constraint that A has a sparse column-wise form. The two disjointed learning problems, for the LR and HR dictionaries can then be expressed as follow:

D l new = arg min {D l ,A} Y l -D l A 2 2 + λ A 1 D h new = arg min {D h ,A} Y h -D h A 2 2 + λ A 1 . (1.18)
In [START_REF] Yang | Image Super-Resolution as Sparse Representation of Raw Image Patches[END_REF][START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF] the authors propose to perform a joint learning of the two dictionaries, by forcing the LR and HR bases to share the same code. The goal of the joint learning is to enforce the similarity of sparse representations between a LR and HR image patch pair w.r.t. their own dictionaries. The two equations in (1.18) result then in the following unique formulation:

D new = arg min {D,A} Y -DA 2 2 + λ A 1 , (1.19) 
where Y =

1 √ M h Y h ; 1 √ M l Y l is the unied matrix of training signals, and D = 1 √ M h D h ; 1 √ M l D l
is the whole dictionary, with the dictionaries concatenated (M l and M h are the dimensions of, respectively, the LR and HR patch vectors).

To solve the sparse learning problem (1.19), several algorithms in the literature can be employed, e.g. K-SVD (K-singular value decomposition) [START_REF] Aharon | An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[END_REF]. These algorithms typically present a two-step procedure: the basis matrix D and the representation matrix A are alternatively updated to progressively converge towards the desired solution. In the implementation of the algorithm of Yang et al. [START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF], the feature-sign algorithm of [START_REF] Lee | Ecient Sparse Coding Algorithms[END_REF] is used to perform the sparse coding step.

To update the bases of the new dictionary the authors use the Lagrange dual algorithm proposed by the same authors in [START_REF] Lee | Ecient Sparse Coding Algorithms[END_REF]. Once the new dictionary D new is trained, D l new and D h new are retrieved by simply splitting the unique learned matrix, and can be straightly used for SR reconstructions.

Within the work done in order to accomplish this doctorate, we had the chance to also work on dictionary learning problems, not necessarily related to SR applications. In particular, we designed a new algorithm to factor a nonnegative matrix of training signals with a special sparsity constraint on the factor representing the representation matrix, thus learning a nonnegative dictionary suitable for sparse representations. The algorithm, which takes the name of K-WEB, is illustrated in Section 5.3.5. K-WEB is tested for problems related to image approximation and dictionary recovery. As mentioned, in the example-based approach we have a dictionary D = Y l , Y h , formed by several LR/HR patch co-occurrences, where Y l = {y l i } Ny i=1

is a set of LR patch vectors and Y h = {y h i } Ny i=1 is the set related to their HR counterparts. The basic idea of NE is that we can express a LR input patch as the weighted combination of its K K nearest neighbors (K -NN) selected from the dictionary, and then apply the same weighted combination to the corresponding HR patches in the dictionary to reconstruct the HR output patch. All patches, both from the dictionary and the test images, are transformed into feature vectors, by concatenating some features computed on the pixels of the patches. Generally, we can have two distinct feature representations for the LR and the HR patches.

In Section 2.1.2 we revise this aspect of NE-based super-resolution.

When super-resolving a LR input image I L , the rst step is to divide I L into patches of the same size of the LR patches in the dictionary, and convert them into feature vectors, so obtaining the set of LR feature vectors X l = {x l i } Nx i=1 . The goal of the neighbor embedding algorithm is to produce, from each single LR input patch, a HR output patch, by taking into account K patches in the dictionary. Finally, we obtain a set of HR feature vectors X h = {x h i } Nx i=1 , from which we can reconstruct the entire output image. The steps of the NE-based SR approach can be briey summarized as follows.

1. For each LR patch feature vector x l i ∈ X l (a) Find its K-NN in X d in terms of Euclidean distance:

N i = arg min y l j ∈Y l K x l i -y l j 2 . ( 2.1) 
(b) Find a weighted combination that approximates x l i with the selected neighbors, i.e. compute the K weights {w ij } K j=1 such that:

x l i ≈ y l j ∈N i w ij y l j .
(2.2) (c) Apply the same weights for the reconstruction of the output HR patch feature vector x h i with the corresponding neighbors in Y h :

x h i = x h j ∈H(N i ) w ij x h j . (2.3)
where H(N i ) indicates the set of HR feature vectors in the dictionary corresponding to the LR neighborhood N i .

2. Once all the HR patch feature vectors are generated, reverse them back to pixel-based patches, and combine the obtained patches, by simply averaging the pixel values in the overlapping regions, to form the output image.

In the neighbor embedding SR framework there are two main choices to make:

the method applied to perform the neighbor embedding, i.e. compute the common weights of each linear combination, and the feature representations used for the LR and the HR patches. As for the former, in next section we introduce the original neighbor embedding algorithm based on Locally Linear Embedding (LLE), adopted by Chang et al. [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF]. An overview about the concept of patch features is provided in Section 2.1.2.

LLE-based neighbor embedding

As a rst work in NE-based super-resolution, Chang et al. proposed in [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF] a novel SR approach based on neighbor embedding. The basic idea of their algorithm is inspired by a method for data dimensionality reduction called Locally Linear Embedding (LLE) [START_REF] Roweis | Nonlinear Dimensionality Reduction by Locally Linear Embedding[END_REF][START_REF] Saul | Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds[END_REF]. LLE is a manifold learning method: namely, it relies on the assumption that data approximately lie on a lower-dimensional manifold (Figure 2.1); to perform the dimensionality reduction, then, it is sucient to discover" this manifold. To do that, LLE implements a simple geometric intuition: provided that there are sucient data such that the manifold is wellsampled, since the manifold is locally linear, the geometry around a certain point can be well represented by the linear combination of the point itself through its nearest neighbors. The dimensionality reduction is then performed preserving the local relations found, i.e. the weights of each linear combination.

In [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF] Chang et al. adapted the philosophy of LLE to the SR problem: assuming that patches in the LR and HR images form manifolds with similar local geometries (possibly in two feature spaces"), then it is possible to express a given HR output patch as the combination of its neighbors laying on the HR manifold, using the same weights of the linear combination that approximates the corresponding LR patch. The algorithm does not completely apply LLE, since there is no dimensionality reduction performance; it takes from it only the weight computation step, specially constructed to best represent a point from its nearest neighbors, by minimizing the Euclidean norm of the approximation error. The manifold similarity" between LR and HR patches, that was the strong motivation for the authors to use multiple neighbors to reconstruct an output patch, however, is not generally valid, as pointed out in [START_REF] Su | Neighborhood issue in Single-frame Image Super-Resolution[END_REF]: if some LR patches are neighbors each other, their corresponding HR patches are not necessarily in neighborhood anymore. 

of manifold -A manifold of dimension K in R N is a subset of R N which looks locally like an Euclidean subspace R K of R N .
As said, the weights of each linear combination (Step 1b of the procedure presented in the previous section), are computed by minimizing the approximation error of the related LR patch,

ε i = x l i -y l j ∈N i w ij y l j 2 = x l i -Y l i w i 2 .
Minimizing the Euclidean norm of this error leads to a least squares (LS) approximation problem. Computing a linear combination of neighbors to approximate a particular data point is equivalent to learning the hyperplane that locally approximates the manifold. This operation needs to be independent of a particular frame of reference; therefore the weights computed need to be invariant to rotations, rescalings and translations of the data point and its neighbors. The rst two conditions follow immediately from the formulation of the approximation error. As for the invariance to translations, it can be easily proved that this can be achieved by enforcing a sum-to-one constraint for the weights.

We then have the following constrained least squares (LS) minimization problem (SUM1-LS ):

w i = arg min w x l i -Y l i w 2 s.t. 1 T w = 1 . (2.4) 
A solution to (2.4) can be found through the method of Lagrange multipliers, and it is:

w i = G -1 i 1 1 T G -1 i 1 , (2.5) 
where the matrix G -1

i := (x l i 1 T -Y l i ) T (x l i 1 T -Y l i ). The proof of 2.5 is given in Appendix A.
The SUM1-LS weights are used in the original NE-based super-resolution algorithm in [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF], as well as in several other example-based SR algorithms (e.g. [START_REF] Fan | Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds[END_REF][START_REF] Chan | Neighbor embedding based super-resolution algorithm through edge detection and feature selection[END_REF]). In Section 2.2 we propose an alternative criterion to compute the weights of the neighbor embedding and study the issue of the feature representation. This will lead us to the formulation of a new NE-based SR algorithm. The role of the features is double:

• to catch the most relevant part of the LR information in order to have an as much as possible good predictor for the HR patch reconstruction;

• to possibly enforce the similarity between the LR and HR patch manifolds.

In order to pursue the rst purpose, several algorithms in the literature, even not based on neighbor embedding, propose to pre-process the LR images (the LR training images and the LR input image) before extracting the LR patches, so obtaining transformed luminance values. E.g. in [START_REF] Freeman | Example-Based Super-Resolution[END_REF][START_REF] Wang | Resolution enhancement based on learning the sparse association of image patches[END_REF] the LR patches are extracted from a band-passed version of the related LR image (previously interpolated). In [START_REF] Sun | Image hallucination with primal sketch priors[END_REF][START_REF] Fan | Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds[END_REF] image primitive patches, obtained by convolving the LR image with a bank of Gaussian derivative lters, are taken as LR patches. In the original neighbor embedding algorithm [START_REF] Fan | Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds[END_REF] and in [START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF], instead, simple features derived from the rst and second-order gradient are taken into account. In this case, rst and second-order derivatives in both directions are computed for each pixel of the patch (4 values per pixel). The gradient values are computed by simply applying these four 1-D lters to the luminance matrix:

g 1 = [-1, 0, 1], g 2 = g T 1 g 3 = [1, 0, -2, 0, 1], g 4 = g T 3 .
(2.6)

In all cases the idea is that the middle and high-frequency content of the LR patches is the most helpful information to learn the LR-HR patch correspondences. As for the representation of the HR patches, ideally, in accordance with the principle of manifold similarity, we would like to keep the same feature space as for the LR patches. However, the feature representation chosen is constrained to the fact that at the end of the SR algorithm we have to reverse the features back to pixel-based patches. This reversion step is not feasible in the case of gradient feature vectors (we have more unconstrained equations than unknowns) or even more complicated features. Then, the common solution adopted in the literature is to straight use the luminance values of the HR training images, possibly after doing an operation of contrast normalization or mean removal.

Example-based SR via nonnegative neighbor embedding

In this section 3 we present a new neighbor embedding (NE) based algorithm, which reconstructs the HR output image by means of nonnegative combinations of patches taken from an external dictionary. Starting from the original NE-based algorithm of Chang et al. [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF], which makes use of what we called the SUM1-LS weights, and testing it with dierent feature representations, in Section 2.2.1

we deduce the necessity of introducing a dierent weight computation method.

In Section 2.2.2, then, we propose new weights for the SR problem based on non-negative neighbor embedding. The deriving algorithm is fully illustrated in Section 2.2.3, and its results are nally presented in Section 2.2.4.

3. The work described in this section has been presented in two papers of ours, [START_REF] Bevilacqua | Neighbor embedding based single-image super-resolution using Semi-Nonnegative Matrix Factorization[END_REF][START_REF] Bevilacqua | Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding[END_REF].

Analysis of the features and criticality

In order to evaluate the performance of the NE-based SR approach in presence of dierent feature representations, we implemented the original LLE-based neighbor embedding algorithm of Chang et al. [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF] and tested it with the following three feature congurations for the LR patches.

F 1 First order gradient : rst-order derivatives in both directions are computed for each pixel of the patch (2 values per pixel), by applying to the luminance matrix g 1 = [-1, 0, 1] and g 2 = g T 1 as 1-D lters. Let N be the number of pixels in a patch and d the dimension of the LR feature vectors, then d = 2N . F 2 Centered luminance values : the features are obtained by taking the luminance values and subtracting the mean value. This corresponds to remove the DC component of the patch; we can therefore see also this method as providing a low-cut ltered version of the LR patch. In this case, d = N . F 3 F1+F2 : concatenation of F1 and F2 (thus, d = 3N ) as considered in [START_REF] Chan | Neighbor embedding based super-resolution algorithm through edge detection and feature selection[END_REF].

As for the HR patches, as explained, we are obliged to use luminance-based features, in order to make the reconstruction of the patch pixel values possible.

Given this, we choose to use centered features (F2) in any conguration: in this case, the HR features retrieved are revertible, by simply adding the mean value of the corresponding LR patches in the input image. Table 2.1 summarizes the features congurations (LR and HR patches) used in the tests.

LR features HR features

First order gradient (F1) Centered luma values (F2)

Centered luma values (F2) Centered luma values (F2)

F1+F2

Centered luma values (F2) Table 2.1: Feature representations used for LR and HR patches -For the LR patches, we tested three dierent kinds of features; for the HR patches the features used are unique in order to make the re-conversion to luminancebased values possible Among the 3 possible options for the LR features (F1, F2, F1+F2), we expect centered luminance values (F2) to be the most intuitive solution, as the representation for LR and HR patches would be unique. Moreover, this is the cheapest solution in terms of computational time, as the feature vectors contain less entries than for the other feature representations. In [START_REF] Chan | Neighbor embedding based super-resolution algorithm through edge detection and feature selection[END_REF] a performance analysis of the feature representations is given, including gradient features and centered luminance values (norm luminance): the authors conclude that the best solution for the LR features is a weighted concatenation of norm luminance and rst-order gradient values, while purely centered luminance values representing the fourth or fth choice (see Figure 3 in [START_REF] Chan | Neighbor embedding based super-resolution algorithm through edge detection and feature selection[END_REF]). However, this analysis is not performed by considering variations of K (number of neighbors). Figure 2.3 shows that the performance of the algorithm is highly dependent on the number of neighbors K. For all the feature representations, we observe that the curves present an up-down-up behavior; the fall in the case of centered features appears even dramatic. We explain this behavior with the blindness of the NE approach: the weights of the patch combinations are computed on the LR feature vectors and then blindly applied to the corresponding HR vectors.

As we observe, a problem arises at a certain critical point that depends on the dimension of the LR vectors d. For F2, we can make the following observations. Observation 2.2.1 Let d be the dimension of the LR vectors, K the number of neighbors, and r i the rank of the ith neighborhood matrix Y l i . Then, the neighbors (centered) vectors lie on a d -1-dimensional hyperplane, and the rank of the neighborhood matrix is upper-bounded as follows: r i ≤ min(d -1, K). For the dictionary built as in Section 2.2.3, we observe that the upper bound is tight. More precisely, r i = min(d -1, K) with high probability.

Observation 2.2.2 For K = d the SUM1-LS problem is assimilable to the solution of a square linear system, as we have d equations (the d -1 linearly independent equations of x l i ≈ Y l i w i plus the one given by the equality constraint) in K = d unknowns. Here, experimentally we have a drop in the performance.

Intuitively, we explain this criticality with the fact that the LS solution is too tted on the LR data and thus generates undesired bad HR reconstructions. In Nevertheless, we observe that outside the fall region, centered luminance features outperform the other feature representations, thus showing the expected potential. Therefore, we decide to use F2 as unique features for LR and HR patches. In the following section we propose a new criterion for the weight computation, in order to avoid the irregular performance with K and fully exploit the common features.

A nonnegative embedding

In the previous section we pointed out that, for any feature chosen, we have a fall of the performance for a certain critical point, by using SUM1-LS as a NE method.

We believe that this problem can be avoided by replacing the sum-to-one equality constraint by a more relaxed inequality constraint. Therefore, we propose another method for computing the neighbor embedding, derived from a LS problem equivalent to (2.4), but with a non-negativity inequality constraint, according to the intuitive notion of combining parts to form a whole [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF] (only additive combinations of patches are allowed):

w i = arg min w x l i -Y l i w 2 s.t. w ≥ 0 . (2.7)
The problem in (2.7) is known in the literature as non-negative least squares (NNLS); an iterative solution is provided in [START_REF] Charles | Solving Least Squares Problems[END_REF]Ch. 23,p. 161]. The formula experimentally turns out to converge after an average of 2 iterations.

As an alternative and possibly faster solver of (2.7), in [START_REF] Bevilacqua | Neighbor embedding based single-image super-resolution using Semi-Nonnegative Matrix Factorization[END_REF] we also proposed to use Semi-nonnegative Matrix Factorization (SNMF) [START_REF] Ding | Convex and Semi-Nonnegative Matrix Factorizations[END_REF]. In fact, SNMF is a method to perform a factorization of a matrix, where, dierently from full Nonnegative Matrix Factorization (NMF) [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF], only one factor is constrained to have positive values. The aimed factorization is in the form:

X ≈ F G T , (2.8) 
where we restrict G to be nonnegative, while placing no restriction on the signs of F . In the neighbor embedding case, we can reformulate (2.8) as

x l i ≈ Y l i w i ,
where the matrix to be approximated is a patch of the LR input image, the unconstrained factor is the matrix formed by its neighbors (Y l i ), and the nonnegative factor is the weight vector we want to compute.

In [START_REF] Ding | Convex and Semi-Nonnegative Matrix Factorizations[END_REF] an iterative solution to (2.8), that is proved to converge to a local minimum of the Euclidean distance X -F G T 2 , is found. The iterative solution consists of two multiplicative update rules, both for F and G elements. In our case, however, the matrix F , formed by the actual LR patches in the dictionary, is xed and no update rule is needed for it. We then implement only the rule regarding the weight vector, which, with our notation, can be rewritten in the following way:

w ij ← w ij x l i T Y l i + j + w i T Y l i T Y l i - j x l i T Y l i - j + w i T Y l i T Y l i + j , ( 2.9) 
where the positive and negative parts of a matrix A are dened respectively as

A + ik = (|A ik | + A ik )/2 and A - ik = (|A ik | -A ik )/2.
The convergence of the formula, i.e. the non-increase of the approximation error x l i -Y l i w i 2 while updating only the weight vector, can be proved in the same way as in [START_REF] Ding | Convex and Semi-Nonnegative Matrix Factorizations[END_REF]. Thus, (2.9) can be used as an iterative formula to obtain nonnegative weights for each patch combination.

In To further evaluate the goodness of the new nonnegative NE criterion compared to SUM1-LS, we used the distance (in terms of MSE) between the LR weights, resulted by the approximation of a LR test patch with its LR neighbors, and the HR weights, obtained by approximating the corresponding HR test patch with the HR vectors related to the LR neighbors found. This is an index of how the LR weights, i.e. what we can actually compute, reect the ideal HR weights.

We averaged the error over 1000 randomly selected test patches and tested two dierent dictionary of training patches (Figure 2.5).
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NonNegative Neighbor Embedding (NoNNE) SR algorithm

From the analysis undertaken in the previous sections, we can derive a new NE-based SR algorithm: centered luminance values (F2) are taken as features for both LR and HR patches, and the new NE method with nonnegative weights is chosen to compute the patch combinations. Hereafter, we refer to this algorithm as NoNNE (Nonnegative Neighbor Embedding).

An important issue for example-based SR algorithms is represented by the choice of the dictionary. To pursue the aim of realizing a low-complexity algorithm, we decide to adopt a one-step upscaling procedure, whereas other algorithms (e.g. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF][START_REF] Freedman | Image and Video Upscaling from Local Self-Examples[END_REF]) achieve the desired magnication by several upscalings with smaller scale factors (the SR procedure is thus iterated several times). For the dictionary, we have then two possibilities:

1. Build an external dictionary from a set of training images (from the original HR images, generate the LR versions, and extract HR and LR patches, respectively), and 2. Learn the patch correspondences in a pyramid of recursively scaled images, starting from the LR input image, in the way of [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] (see also Figure 1.4).

In Table 2.2 results from the pyramid internal dictionary and two external dictionaries are reported; NNLS with K = 12 is used as the NE method. For both the external dictionaries, a small number of natural images is taken. As we can see from the table, the external dictionary performs signicantly better, since the number of pairs of patches we can derive from the internal pyramid is insucient.

Note, in fact, that in a pyramid of image layers like in Figure 1.4, if the SR procedure must consist of only one step, only the pyramid layers whose distance is equal to the total magnication factor can be coupled and used as training images. Thus, we cannot use many image pairs in the pyramid to build dictionary.

On the other hand, the size of the external dictionary can be tuned to any value, by conveniently choosing the training images. In the following experiments, we build a dictionary of a size s. dictionary).

There is one important parameter left to set in the algorithm: the size of the LR patches taken from the LR input image. From our experiments we found that the optimal size is 3 × 3 with a 2-pixel overlap. As we perform a one-step upscaling, the size and the overlap degree of the HR patches come as consequences of the magnication factor: e.g. with a factor of 4 we will have 12×12 HR patches with a 8-pixel overlap. The reason for choosing largely overlapping HR patches is due to the fact that at the end of the NE algorithm (see Step 2 of the general procedure in Section 2.1) we combine the patches together by simply averaging the related pixel values in the overlapping regions. By having big overlaps, we can in fact implicitly impose smooth properties on the output image. Moreover, as an additional tool used by several SR algorithms (e.g. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF]), we implement a nal operation to assure the super-resolved image to be consistent with the LR input image: an iterative back projection (IBP). Note that the method in [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] uses IBP, that stops on average after 3 iterations, at each step; we use it only once instead. This method consists in back-projecting the obtained HR image ÎH to a corresponding LR image ÎL , by blurring and downsizing it, i.e. in reversing the SR process. This LR image is supposed to be similar to the LR input image I L : therefore, we can compute an error as the dierence between the two images, and use this error to correct the output. IBP is a particularly useful tool in case of mismatch between the blur kernel used to generate the dictionary and the unknown blurring eect the input image has been aected with. We provide a wider insight of IBP in Section 2.4, where this tool is more extensively exploited.

To sum up, starting from the general NE-based SR procedure described in Section 2.1, we derived a new example-based single-image SR algorithm, which we called NoNNE. This is the result of two fundamental changes, concerning the feature system used (centered luminance values both for LR and HR patches) and the weight computation method (the new nonnegative neighbor embedding). IBP is also performed as a last operation in the algorithm. The complete procedure, reported in listing 1, is very simple but stable (the PSNR curve is stricly increasing with K and no fall in the performance is observed). In fact, the only internal parameter to set is the number of neighbor K. However, as shown in Figure 2.6, the NNLS method is not much sensitive to it.

Listing 1 NE-based SR with nonnegative weights and centered features

1: procedure NoNNE(I L ,Y l ,Y h ,K ) 2:
Divide I L into 3 × 3 patches (with a 2-pixel overlap)

3:

X l = {x l i } Nx i=1
Compute centered features 4:

{x l i } Nx i=1
Store mean values of the LR patches 5:

for i ← 1, N x do 6:

N i = arg min y l j ∈Y l K x l i -y l j 2 Find K-NN in Y l 7: w i = arg min w x l i -Y l i w 2 s.t. w ≥ 0
Solve NNLS 8:

x h i = w i Y h i
Compute the HR feature vector 9:

end for 10:

x h i ← x h i + x l i 1 i = 1, . . . , N x
Re-add the stored means 11:

Rearrange the HR vectors into square patches 12:

Combine together the HR patches to form the HR output image ÎH 13:

Iterative back projection to rene ÎH 14: end procedure

Results with NoNNE

In this section some visual results and comparisons between the NoNNE algorithm and other methods in the state of the art are presented. In particular, our algorithm is compared to the original LLE-based NE algorithm of Chang et al. [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF], to the pyramid-based algorithm of Glasner et al. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] (the results are obtained by using a third party implementation), which is currently considered among the most advanced single-image SR algorithms, and to the Kernel Ridge Regression (KRR) method of Tang et al. [START_REF] Tang | Single-image super-resolution via local learning[END_REF]. The algorithms taken into account for the comparison and their characteristics are summarized in Our NoNNE algorithm is implemented using NNLS as the weight computation method and centered luminance values as features, as described in Section 2.2.3, and taking K = 15 neighbors. The original LLE-based algorithm is implemented with the SUM1-LS method and gradient features, as in [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF]; the number of neighbors chosen is K = 5. The results of all comparisons (output PSNR and running time in seconds as an indication of the complexity of the algorithm), for 5 dierent images and 3 magnication factors (2,3,4), are reported in Table 2.4. In the experiments, in order to have a performance metric, we start from a ground-truth image and generate from it the LR input image according to the image generation process of 1.8. The variance of the Gaussian blur is set, from time to time, equal to the square root of the scale factor (e.g., for a scale factor of 3, we have σ 2 = √ 3). When comparing our algorithm to Chang et al. [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF] the visual improvements are evident: our algorithm is able to super-resolve ner details, whereas the results of [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF] are often aected by ringing artifacts. The impression is conrmed by reading the PSNR values. With respect to the local learning method of Tang et al. [START_REF] Tang | Single-image super-resolution via local learning[END_REF], too, the PSNR achieved by our algorithm are always higher. As for the running time, this turns to be in favor of our algorithm in both comparisons, thanks to the low-complexity choice of the features (F2 instead of gradient features). The comparison with the method of Glasner et al. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] is also satisfying: [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] gives generally higher values of PSNR, although our method is better per- forming for a magnication factor equal to 2. Nevertheless, the visual results are fairly comparable. What represents an issue for [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] is the complexity, as the algorithm involves several steps and the dictionary is iteratively updated by taking patches from the image pyramid: although the values provided only serve to give an idea of the complexity, the algorithm clearly requires much more time than ours and the running time grows exponentially with the size of the input image.

( 

Building a compact and coherent dictionary

This section presents a new method to construct a compact and ecient dictionary for example-based super-resolution (SR) algorithms, i.e. also suitable to the NoNNE algorithm we described in Section 2.2. Example-based SR relies on a dictionary of correspondences of low-resolution (LR) and high-resolution (HR)

patches. Having a xed, pre-built, dictionary allows to speed up the SR process, as it does not require any online operation. However a unique dictionary could not be suitable for any input image. To evaluate this problem, we tested the NoNNE algorithm with dierent 5 input images and equally-sized dictionaries (e.g. Figure 2.10 show some of the training images used). Table 2.5 reports the performance results of the algorithm in terms of PSNR of the super-resolved images. As we can see, the results are quite dierent depending on the dictionary chosen, and the best outcomes for each input image are reached not always with the same one.

In Section 2.3.1 we then propose a new strategy to build a dictionary, by detailing all the steps necessary to construct the nal dictionary. The proposed strategy aims at overcoming the problem of the general non-adaptability of external dictionaries, by building a general-purpose dictionary. This strategy also takes into account the fact that LR and HR patches often are not coherent, i.e.

local LR neighborhoods are not preserved in the HR space. Improving the coherence is taken a guiding light in order to perform an intelligent selection of patch pairs. Our designed dictionary construction method takes as input a large dictionary and gives as an output a dictionary with a sustainable size, yet presenting comparable or even better performance. It rstly consists of a partitioning process, done according to a joint k-means procedure, which enforces the coherence between LR and HR patches by discarding those pairs for which we do not nd a common cluster. Secondly, the clustered dictionary is used to extract some salient patches that will form the output set. The clustering step is partially similar to the method proposed in [START_REF] Jeong | Fast Super-Resolution Algorithm Based on Dictionary Size Reduction Using k-Means Clustering[END_REF], where, however, the k-means clustering is done by referring only to the LR patches and is not a joint procedure.

An analysis on the algorithm proposed is provided in Section 2.3.2; Section 2.3.3 shows instead some visual SR results of the dictionary construction procedure applied to the NoNNE algorithm, by enlightening the improvements achieved on the latter. The theory and the results presented in this section have been described in a conference paper. [START_REF] Bevilacqua | Compact and coherent dictionary construction for example-based super-resolution[END_REF].

Procedure proposed

An issue with NN-based SR methods, pointed out e.g. in [START_REF] Li | Locality preserving constraints for superresolution with neighbor embedding[END_REF], is that selected LR neighborhoods are not preserved when passing to the HR domain, i.e. the HR candidates we actually use to generate the HR output patch are not assured to stay neighbors each others. We call it a lack of coherence between the LR and HR patches. This problem is present in any method that requires a NN search, and it is particularly crucial for neighbor embedding based SR methods, where the computed weights are meant to capture the local geometry of the patch neighborhoods.

In Section 2.3.1.1 we propose a new strategy to limit this problem, based on a joint k-means clustering of the initial dictionary. In Section 2.3.1.2 we address the problem of designing a compact general-purpose dictionary, thus coming up with a new ecient way of dictionary learning.
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To implement this idea we adopt a modied version of the traditional Lloyd's algorithm [START_REF] Lloyd | Least squares quantization in pcm[END_REF], with the two alternating steps (cluster assignment and recentering), which can be summarized as follows:

1. Arbitrarily initialize the k centers.

2. (Cluster assignment) For each i ∈ {1, . . . N }, L(i) = j if both c x j and c y j are the closest centers to, respectively, x i and y i ; otherwise L(i) = 0.

3. (Cluster re-centering) For each j ∈ {1, . . . k}, we dene the related cluster C j = {z i s.t L(i) = j} and re-compute the joint center:

c x j = 1 |C j | x i ∈C j x i and c y j = 1 |C j | y i ∈C j y i . 4.
Repeat steps 2 and 3 until L no longer changes.

In the procedure described, L is a vector of labels, which contains, element by element, the index of the assigned cluster. We set L = 0 for those vectors that do not nd any placement, i.e. do not belong to the same neighborhood (cluster) of LR and HR patches. These vectors are temporarily discarded, i.e. they are put in a trash cluster, but they are taken into account again at the next iteration when new centers are computed. At the end of the iterative process, however, the pairs belonging to the trash cluster are removed from the dictionary, thus leading to a rst pruning of the dictionary.

Selection of prototypes as a summary of the dictionary

Table 2.5, as it shows that each dictionary performs more or less well depending on the input image, suggests that we should build the dictionary starting from many images, in order to capture as much variability in the image contents as possible. However, this leads to an increase of the dictionary size, and so of the running time of the SR algorithm. Thus, a strategy to subsequently reduce the dictionary is needed.

We propose to use JKC as a starting point to design such a strategy. The jointly clustering procedure, as said, is performed in order to impose the LR and HR patches to share the same neighborhoods, i.e. to respect a sort of coherency property. We believe that, if we sample the clustered dictionary by taking those pairs of patches that better respect this property, we would be less eected by the pruning eect, i.e. the decrease of performance due to the fact that we would have a smaller dictionary. Therefore, to reduce the size of the dictionary, we rst get rid of the trash cluster, i.e. those pairs of patches that did not nd a placement after the clustering procedure. For these pairs, the related LR and HR patches are not supposed to be in corresponding LR and HR neighborhoods. We assume that, by eliminating these bad pairs, we do not loose too much in terms of nal results. Secondly, to further decrease the dictionary size, we propose to intelligently sample each cluster in order to capture as much variety contained in it as possible. We decide then to adopt the strategy of the K-means++ algorithm [START_REF] Arthur | K-means++: The Advantages of Careful Seeding[END_REF], where, while randomly choosing the initial centers, the further a point is from the already selected centers, the higher its probability to be selected as a new center. The spirit is to promote diversity in the sampling process. M prototypes per cluster are then selected according to the following steps:

1. Select the rst prototype uniformly at random among the cluster elements, 2. Compute, for each remaining element x, the distance D(x), i.e. the distance between x and its nearest prototype, 3. Select one element at random as a new prototype, using a weighted probability distribution where a point x is chosen with probability proportional to D(x) 2 , and 4. Repeat steps 2 and 3 until all the M prototypes have been selected.

As a last step, in order to counter-balance the bad eect of the pruning, we consider some simple geometrical transformations of the patches (see Figure 2.12). These transformations are intended to enrich the dictionary with substantial variations in the patch structures, without giving out the coherence property (if two patches are neighbors, their transformed versions will remain neighbors). The prototypes and their transformed versions are nally used to form a new dictionary, whose size is about 8M k pairs of patches (about because not all clusters may have at least M elements). Once the partitioning of the initial dictionary into K clusters is done, the value of M is then chosen according to the desired size of the nal dictionary.

The so-designed dictionary learning process can be summarized in the following steps:

1. Take as input a large multi-content dictionary, 2. Perform JKC on this large dictionary, 3. Keep only M prototypes per cluster, and 4. Apply the geometrical transformations to the prototypes.

Experimental analysis

To test the dictionary construction strategy described in Section 2.3.1, we start from a large dictionary, concatenation of the 5 dictionaries mentioned in Table 2.5. The size of each single dictionary is 56000 pairs of patches; therefore, the size of the big one is 280000 pairs. The large dictionary is rstly used as an input of the JKC algorithm with k = 750. Some information about the convergence of the JKC clustering procedure applied to the large dictionary, e.g. the cost error value (intended as the dierence between the current centers and those ones at the previous iteration), as well as some other statistics, are reported in As we can see from Table 2.6, the algorithm converges exactly to a solution after 113 iterations. The number of non-assigned patches (those ones in the trash cluster) decreases progressively.

Once the big dictionary has been clustered, the patch selection phase is started: only M = 12 prototypes per clusters are taken, according to the selection strategy described in Section 2.3.1.2. The explained geometrical transformations are also applied. M is chosen such that the size of the nal dictionary is comparable to the one of the starting dictionaries (i.e. around 56000 pairs), so achieving a reduction of the size of the big dictionary of about 1 5

. We run then the NoNNE super-resolution algorithm presented in Section 2.2.3, for several images and two dierent factors (3 and 4). The results for all the dictionaries are reported in Table 2.7, where BIG stands for the concatenated dictionary and FINAL for the nal dictionary we learn from it with our method (JKC + prototype selection). with each of the single 5 input dictionaries, and with the dictionary BIG, concatenation of them.

Dictionaries

As we can see from Table 2.7, the new constructed dictionary performs better than any input dictionary for almost all images, while the size being comparable, conrming its goodness as a general-purpose dictionary. A signicant case is represented by the Eyetest image, to which only one of the input dictionary is suitable (Synth): that means that a really particular image content is required to super-resolve it. Our designed dictionary succeeds also in this case. The good results are conrmed by Figure 2.13, where for 8 images (magnied by 4) we report the results of the worst and best dictionaries, according to each particular image, and our trained dictionary: the latter is always able to match the best performance, even if the best dictionary is dierent for each test image.

In comparison with the big dictionary, our constructed dictionary generally gives even better results, while having a markedly reduced size. The evolution of the PSNR, by considering all the steps between the big dictionary and the one nally constructed is reported in The evolution takes into account all the steps from the big dictionary to the one nally constructed; standard k-means is considered applied to the concatenated LR-HR vectors.

By looking at Table 2.8, we can see that, in the case of JKC, the pruning step usually brings only a slight decrease of the performance. A bigger, but still not dramatic, decrease is brought by the prototype sampling step, as the dictionary size drops severely. This eect is positively counterbalanced by the application of the geometrical transformations, that leads to the nal dictionary. When comparing JKC to the k-means clustering applied to the concatenated vectors, we observe appreciably better results, so proving the eectiveness of the jointly clustering procedure.

Visual results with NoNNE and the newly-built dictionary

After the analysis conducted in Section 2.3.2, in this section we briey look at the visual results of the output images super-resolved with the NoNNE algorithm.

To this end, Figure 2.14 reports the results related to the Bird, Buttey, and Head images, all magnied by a factor of 3. The NoNNE algorithm is compared with the pyramid-based algorithm of [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], which is considered at the top of the state-of-the-art and uses internal information (i.e. self-similarities found in a pyramid of recursively scaled images) instead of an external dictionary. For [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], we report the outputs obtained thanks to a third-party implementation of the algorithm. The NoNNE algorithm, instead, is tested with one of the input dictionaries of Table 2.7 (Esa) and the nal dictionary constructed via the proposed strategy.

As we can see from the gure, the use of the new dictionary appreciably improves the visual results of the NoNNE algorithm (e.g. see the bamboo cane in the bird image). This makes it get closer to the performance of the pyramid-based algorithm of [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], which presents generally less blurred but somehow unnatural images. On the other hand, the algorithm in [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] requires much higher computational times (see Table 2.4). with the nal dictionary (c).

Enhanced interpolation and new patch generation schemes

In this section we present novel ideas that can be used in the framework of neighbor embedding (NE) based super-resolution. In particular, in Section The work described in this section of the manuscript is present in one published paper of ours [START_REF] Bevilacqua | Super-resolution using Neighbor Embedding of Back-projection residuals[END_REF].

IBP and enhanced interpolation

An additional operation, performed by several SR algorithms (e.g. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF][START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF]), once the output super-resolved image ÎH is generated, consists in back-projecting the obtained image. This insures ÎH to be consistent with the LR input image I L . ÎH is then corrected in an iterative fashion, by considering the error between the back-projected LR image ÎL = ÎH * b ↓ m and the original LR image I L .

The update equation for this iterative method, which takes the name iterative back-projection, is

Ît+1 H = Ît H + I L -Ît L ↑ m * p , (2.10) 
where the LR image at iteration t Ît As said, in SR algorithms IBP is often used at the very last stage. However, when the image generation process 1.8 is assumed to be known, and in particular the nature of the Blur kernel underlying it, this information can be already used at the beginning of the algorithm, in order to start with a better guess of the HR output image to be estimated. Let X be a LR input image and I(X) an interpolated version of it at the desired HR size, obtained with any traditional analytic interpolation method. I(X) represents a rough estimation of the unknown HR image. However, we believe that I(X) can be further improved, by applying the IBP algorithm, i.e. by back-projecting it to the LR dimension and consequently correcting it, once the dierential error has been forth-projected.

We call this interpolation correction via IBP enhanced interpolation, the new image being indicated by E(X).

Our intuition can be easily proved by testing the method with an input image. age -The gure shows the evolution from X, a given LR input image, to its interpolated versions I(X) and E(X).

As we can observe from Figure 2.15, the enhanced-interpolated image E(X)

has a denitely better look, as it represents a deblurred and sharpened version of the initially interpolation I(X). In the next section, the concept of enhanced interpolation is exploited also in the training phase, when generating the dictionary of patches.

New patch generation schemes

In example-based SR an important aspect is represented by how the training set is generated. In the case of external dictionaries, we have a HR external image J H , we generate its LR counterpart J L by following image generation model itself (1.8) (i.e J L = (J H * b) ↓ m ), and from them, or processed version of them, we extract the training patch pairs. Precisely, we extract:

• From the processed J H , HR patches to be used in the HR output image reconstruction;

• From the processed J L , LR patches to match the patches from the LR input image.

As a rst scheme (see Figure 2.16), as done in [START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF], we can use directly J H as a source for HR and the bicubic interpolation of J L , I (J L ), as a source for LR patches. Therefore, since the two source images have equal size, we can sample same-size patches (e.g. 5×5 patches) exactly at the same locations. Note that here the acronyms LR and HR assume a wider meaning, as they do not refer to actual dierences in the pixel resolution (the patches have the same size). It would then be more appropriate to talk about low-frequency and high-frequency contents of the patches, but for reasons of uniformity with the rest of the manuscript we decide to keep the usual notation.

In [START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF], the LR patches nally consist of gradient values computed on I (J L ), whereas the HR patches are mean-removed patches directly extracted from J H (we just sample the patches and we subtract the mean value of each single patch to any pixel of it). We prefer, instead, to use mean-removed patches in both cases.

In Section 2.2.1, in fact, we have shown that, in the neighbor embedding scheme, the double choice of mean-removed patches (centered features) is preferable, as it is less complex (i.e. NN search of smaller vectors) and brings better results in terms of nal PSNR.

The second training scheme (Figure 2.17) comes similar to the rst one, but with a substantial dierence: instead of taking the bicubic interpolation I (J L ) as a source for LR patches, we consider an enhanced interpolation E (J L ). This enhanced interpolation is the result of a back-projection operation, by taking the bicubic interpolation as a rst upscaled image to be rened, exactly as explained in Section 2.4.1 for an hypothetical input image. E (J L ) does not contain high frequencies as J H , but it represents a better upscaling of J L than I (J L ), and, since LR patches will be similarly produced starting from the input image I L , a better starting point for the SR process.

In [START_REF] Freeman | Example-Based Super-Resolution[END_REF] the patches used in the reconstruction are obtained by sampling the residual image between J H and an interpolation of J L (what we called I (J L )).

The idea is to use and combine signicant high frequencies, in order to bring to the input image I L real high-frequency (HF) details: (J H -I (J L )) is in fact the high-pass ltered version of J H . Inspired by [START_REF] Freeman | Example-Based Super-Resolution[END_REF], we propose instead to use our enhanced interpolation E (J L ), obtained by bicubic interpolation and backprojection, and compute on that the high-frequency residual image. The new back-projection residual (J H -E (J L )) is an even higher-pass ltered version of Table 2.9 summarizes the three learning schemes described, specifying for each of them the sources for the LR patches and the HR patches.

LR patch source HR patch source Scheme 1

I (J L ) J H Scheme 2 E (J L ) J H Scheme 3 E (J L ) J H -E (J L )
Table 2.9: LR patches and HR patches in the three learning schemes considered -All patches are considered mean-removed, except for the backprojection residuals.

Neighbor Embedding SR algorithm using Enhanced Bicubic interpolation (NEEB)

In this section we dene a new NE-based algorithm using the patch generation schemes described in Section 2.4.2, based on the enhanced interpolation method.

We indicate this new algorithm with the acronym NEEB (Neighbor Embedding SR algorithm using Enhanced Interpolation). As the NoNNE algorithm of Section 2.2, we make use of a nonnegative neighbor embedding procedure. Moreover, given the new dictionary construction procedure based on JKC described in Section 2.3.1, we want to test it in order to further improve the dictionary trained with the new schemes.

Thanks to all the ingredients presented so far, we are then able to design a complete algorithm for example-based SR. Initially, an external dictionary of LR patches and HR patches is formed by taking training images, alternatively according to one of the three training schemes described in Section 2.4.2. The dictionary so formed is then used as input of the dictionary construction process described in Section 2.3.1: the joint k-means clustering procedure helps improving the coherence of the dictionary at the level of local neighborhoods; then a sampling and enrichment strategy reduces the size of it. Finally, the SR task is achieved, by following the neighbor embedding scheme: for each input LR patch approximation, we look for the best nonnegative neighbor embedding, according to the NNLS minimization problem (2.7).

In Listing 2, the nonnegative neighbor embedding SR procedure for the training scheme 3 is reported. We assume that we already have a dictionary of LR patches, as mean-removed patches extracted from enhanced interpolations of LR training images E (J L ), and a dictionary of HR patches, as the corresponding high-frequency back-projection residual patches.

Listing 2 SR by nonnegative NE of back-projection residuals 1: procedure NEEB(I L ,Y l ,Y h ,K )

2:

E (I L )
Enhanced interpolation of the LR input image 3:

Divide E (I L ) into 5 × 5 patches (with a 4-pixel overlap)

4:

X l = {x l i } Nx i=1
Extract the LR input vectors 5:

{x l i } Nx i=1
Store mean values 6:

for i ← 1, N x do 7:

N i = arg min {y l k } K k=1 ∈Y l K K k=1 x l i -y l k 2 Y l i = y l 1 , . . . , y l K , y l k ∈ N i Find K-NN in Y l 8: w i = arg min w x l i -Y l i w 2 s.t. w ≥ 0
Solve NNLS 9:

x h i = w i Y h i
Compute the HR output vectors 10:

end for 11: Combine together the HR patches to form the HR output image ÎH 13:

x h i ← x l i + x l i + y i t i = 1, . . . ,
Iterative back projection to rene ÎH 14: end procedure It is to be noticed that the input image I L is rst upscaled with the enhanced interpolation method described in Section 2.4.1 (step 2 of Algorithm 2). The enhanced interpolation becomes therefore our starting point for the SR process, as the LR patches are extracted from it and the actual HR output patches are computed just by summing to them the averaged HF residual (x h i ). Algorithm 2 is easily adaptable to the other training schemes in Table 2.9, after slight modications.

Analysis of the gain of each contribution

As a rst test, we evaluate our nonnegative NE algorithm with the dierent training schemes reported in Table 2.9. In Scheme 1 the LR patches are extracted from an interpolated version of the LR image I (I L ), whereas the HR patches are mean-removed patches taken from the HR image I H . In Scheme 2, w.r.t. Scheme 1, we just replace the bicubic interpolation with our enhanced interpolation, achieved thanks to an extra IBP step, E (I L ). As for the IBP operation, we choose as back-projection lter p (see equation (2.10)) a Gaussian kernel of variance σ 2 = 2. Scheme 3, in turn, represents a modication of Scheme 2, where we take high-frequency residuals (sampled from I H -E (I L )) as HR patches, instead of directly sampling the HR training images. As the three schemes represent each one a slight variation of the previous one, we can progressively evaluate the contribution of each feature introduced. To Scheme 3, we also add the JSKbased dictionary learning procedure described in 2.3.1, in order to improve the dictionary already formed and contextually reduce its size.

The results are reported in terms of PSNR of the super-resolved images, w.r.t. the ground-truth image. Each LR input image I L is generated from the HR ground truth I H , by blurring the latter with a Gaussian lter of variance σ 2 = 1 and downsizing it. As for the NE procedure, in all experiments we use a number of neighbors K = 15 and the neighbor embedding method described in Section 2.2.2. Tables 2.10 and 2.11 report the results, under the scenarios described, for 5 images magnied by, respectively, a factor of 3 and a factor of 4.

As we can see from the tables, by passing from Scheme 1 to Scheme 2, i.e. by introducing our enhanced interpolating method, we have an appreciable gain in terms of PSNR (between 0.1 and 0.4 dB). No big dierences in terms of performance are, instead, between Scheme 2 and Scheme 3 : the use of HF backprojection residuals instead of mean-removed HR patches seems to work better for higher magnication factors (e.g. 4), but it leads to slightly worse performance in the case of a factor of 3.

A big gain comes instead, in most of the cases (especially for a scale factor of 3), from the JKC -based dictionary learning procedure described in [START_REF] Bevilacqua | Compact and coherent dictionary construction for example-based super-resolution[END_REF], when applied to Scheme 3. The procedure, as explained in Section 2. 3 when upscaling with the NEEB algorithm by a factor of 4 -5 different images are super-resolved; the 3 patch generation schemes described are compared (the JKC -based dictionary construction procedure is also performed on top of the last one).

the end of the clustering process, some pairs of patches may not nd a placement, and so they are discarded. In this test we start from a dictionary of 500000 patches and try to cluster them into K = 450 classes. After the clustering process we have only 115324 patches placed into clusters, i.e. about the 23% of the initial number of patches, fairly below to the percentage presented in Table 2.6 (i.e. 70.1%).

We explain this with the fact that we perform the clustering on high-frequency residuals, which are less correlated to the respective low-frequency patches than the HR full-spectrum patches used in the tests of Section 2.3.2. Therefore, more diverging assignments occur, and the pairs of patches that nally remain are particularly signicant. After JKC, a patch sampling procedure and a dictionary enrichment with geometric transformations are performed, as described in Section 2.3.1.2. The nal size of the dictionary is about 50000 pairs (1/10 of the original one).

In Figure 2.19, super-resolved images, related to the methods in Table 2.10, are reported, for the Buttery image magnied by a factor of 3. The fourth solution (Scheme 3 + JSK -based dictionary learning) is clearly the one presenting the most pleasant visual result (e.g. see the dark stripes on the buttery wings), so justifying the 1 dB gain. 

Results with NEEB

In Section 2.4.4 we showed that Scheme 3 (the enhanced interpolation of the LR image and the back-projection residual used as sources of, respectively, LR patches and HR patches), followed by the JKC -based dictionary learning procedure, gives convincing results.

In this section we compare then our proposed algorithm with other singleimage SR algorithms. In particular, we consider the SR algorithm via sparse representation of Yang et al. [START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF], our nonnegative neighbor embedding algorithm with centered features (NoNNE ) presented in Section 2.2, and the pyramid-like algorithm of Glasner et al. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] (provided by a third-party implementation).

The results, in terms of PSNR of the super-resolved image, for 5 images and scale factors of 3 and 4, are reported in Table 2.12. By looking at the values of the table, our proposed method turns out to be the best one in half the cases (5 out of 10). It always outperforms the sparse method of Yang et al. [START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF] and our previous NoNNE algorithm, with respect to which it represents a substantial improvement. Moreover, it shows to be highly competitive with the method of Glasner et al. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], which requires the SR procedure to be repeated several times by smaller magnications.

Image

The visual results, some of which are reported in Figure 2.20, conrm the good quantitative outcome. In particular, our method appears to be good in avoiding artifacts, while presenting natural and pleasant results (e.g. see the beak of the bird or the or the overall look of Lena).

To sum up, in this section we presented a new algorithm for single-image SR, which we referred to as NEEB, based on external dictionary and nonnegative neighbor embedding as our NoNNE algorithm previously presented. In comparison with NoNNE, the NEEB algorithm takes advantage of new schemes for the patch generation process, which are based on an enhanced interpolation procedure (the given image is rst upscaled and then rened thanks to IBP). The underlying idea is to use IBP, typically employed at the end of the SR process, also at the beginning. This has two advantages. First, we start the SR algorithm with a better guess of the HR image. Second, we can have patches containing very salient high frequencies, by sampling them from the residual between each HR training image and the related enhanced-interpolated LR image. The JKC -based dictionary construction procedure, presented in Section 2.3, is also employed to subsequently optimize the dictionary.

The NEEB algorithm that derives from these new considerations has been 

Conclusion

In this chapter we presented our work on example-based SR using an external dictionary. The employment of an external dictionary goes towards the direction of designing low-complexity algorithms, as the dictionary can be built in advance (no online operations are required) and possibly optimized for the SR problem.

As for the proper SR reconstruction procedure, we decided to adopt the neighbor embedding (NE) approach. Starting from the well-known LLE-based NE algorithm of Chang et al. [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF], which paved the way to NE-based super-resolution, we proposed a new method based on nonnegative NE and chose for it the best feature representation to be adopted when representing the LR and HR patches.

After providing a general overview of NE in Section 2.1, each of the following sections presented a dierent contribution to the problem. In particular:

• In Section 2.2 we introduced the new nonnegative neighbor embedding method and proved the best eciency in using mean-subtracted luminance values as patch features,

• In Section 2.3 we presented a new procedure for constructing a more compact a coherent dictionary based on a joint k-means clustering (JKC ), and • In Section 2.4 we proposed new training schemes to generate the patch data sets, based on the concept of enhanced interpolation.

These three distinct contributions led to the formulation of dierent NE-based procedures. The three algorithms tested, by following each newly-presented contribution, are precisely:

• NoNNE (whose results are presented in Section 2.2.4),

• NoNNE with the JKC -based dictionary construction procedure (whose results are presented in Section 2.3.3), and

• NEEB (whose results are presented in Section 2.4.5).

The results reported in each related section proved the eective improvements brought by each distinct contribution. In particular, the NEEB algorithm, formerly presented in [START_REF] Bevilacqua | Super-resolution using Neighbor Embedding of Back-projection residuals[END_REF], shows the best visual and quantitative results. Compared to other state-of-the-art methods, it proves to be a very interesting algorithm, by generally outperforming other external-dictionary example-based methods, and presenting equally satisfying results w.r.t. more sophisticated methods employing internal dictionaries.

Chapter 3

Single-image SR based on linear mapping and internal dictionary

In this chapter we present a novel example-based SR algorithm, which is somehow symmetrical to the algorithms presented in Chapter 2. Dierent from them, which are based on the neighbor embedding (NE) approach, in fact, this algorithm falls into the category of direct mapping (DM) methods (see Section 1.2.2.1. Each HR output patch is the result of a mapping operation with a function formerly learned and directly applied to the corresponding LR input patch.

As for the other discriminating aspect in example-based SR, the typology of dictionary, here we explore the possibility of having what in Section 1.2.1 we called an internal dictionary, the target being the maximization of the performance.

In particular, the internal dictionary is built via a double pyramid, where the traditional image pyramid of [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] is juxtaposed with a pyramid of interpolated images, and the DM-based reconstruction method consists in the learning of a linear mapping to be applied on the interpolated patches. The interpolation operation is done with the aim of making the computation of the single mapping functions via regression more robust (LR and HR patches, in fact, turn out to have the same sizes). Taking as a reference the well known algorithm of [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], the main contributions are then:

1. The modication of the training and upscaling scheme (i.e. the double pyramid), and 2. The employment of a DM method in the reconstructions, whereas in [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] the HR patches are reconstructed via NE. Section 3.1, then, fully presents our new algorithm, by explaining how the internal dictionary is trained and the whole upscaling procedure. Section 3.2 instead reports some extensive experiments done: the dierent implementation choices are here validated and the algorithm is compared with other state-of-theart methods, by showing visual and quantitative results.

The double-pyramid algorithm

In this section we detail our novel SR algorithm, based on an internal dictionary of self-examples. Starting from the single image pyramid depicted in Figure 1.4, we propose a modied scheme with a double pyramid (Section 3.1.1). The self-examples found in this scheme are used to gradually upscale the LR input image up to the nal super-resolved image, according to the cross-level scale factor chosen for the pyramid. The upscaling procedure employed falls within the local learning based reconstruction methods described in Section 1.2.2. In particular, it is a direct mapping method, where each LR patch is mapped into its HR version by means of a specically learned linear function. The whole upscaling procedure and a summary of the whole algorithm are nally given in Section 3.1.2.

Dictionary construction: building the double pyramid

The goal of our SR algorithm is to retrieve the underlying HR image I H from a degraded LR version I L , which is supposed to be originated according to the image generation model (1.8). We choose the blur kernel B to be a Gaussian kernel with a given variance σ 2 B . The value s is instead an integer scale factor (e.g. 3 or 4), which is the factor by which we want the LR input image I L to be magnied; i.e. if I L is of size N × M , the nal super-resolved image ÎH will have a size of sN × sM .

For complexity reason, the SR algorithm later described is applied only on the luminance component Y of the input image I L (a colorspace transformation from the RGB to the Y IQ model is then possibly performed at the beginning), whereas the color components I and Q are simply upsized by Bicubic interpolation to the nal desired size sN × sM . In fact, since humans are more sensitive to changes in the brightness of the image rather than changes in color, it is a common belief that the SR procedure is worthy to be performed only on Y , so reducing the complexity of the algorithm by one third. Hereafter, then, all the image matrices and patch vectors must be intended as collections of pixel luminance values.

As a starting point for our internal dictionary learning procedure, we take the single pyramid depicted in Fig. 1.4. Here, the top-level is represented by the LR input image itself (I 0 = I L ). From it, a nite number of sub-levels is created, according to the following relation:

I -n = (I L * B n ) ↓ p n , (3.1)
where p, the pyramid cross-level scale factor, is typically a small number (e.g. p = 1.25). The sub-level image I -n is then a particular rescaled version of the original image I L (the total rescale factor amount to p n ). As for the variance of the Gaussian kernel B n to which it is subjected, it can be computed according to the following formula, which is explained in [START_REF] Yang | Exploiting Self-Similarities for Single Frame Super-Resolution[END_REF]: 

σ 2 Bn = n • σ 2 B • log(p)/ log(s) .

Gradual upscalings

Once the LR and HR dictionary sets, Y l and Y h , are formed, by populating them with the correspondences of self-examples found in the double pyramid described in Section 3.1.1, the proper SR reconstruction algorithm starts.

The algorithm consists in a multi-pass procedure, where the input image is gradually magnied by an upscale factor equal to the cross-level scale factor p. Given s as the total scale factor to be achieved, the number of necessary passes it then: N P = log p s .

(3.3)
If s is not a power of p, the image super-resolved after N P passes will be oversized w.r.t. to the targeted dimension (sM × sN ); which means that an extra resizing operation is needed. I 0 will be super-resolved into I 1 , I 1 into I 2 , and so on until obtaining I N P , which will be possibly resized to obtain the SR estimated image ÎH with the desired dimension. The multi-pass SR procedure is illustrated graphically in Fig. 3.2.

When generally upscaling the image I n , this is rst interpolated into the image U(I N ) from which a set of overlapping patches X l = {x l i } Nx i=1 is formed, by scanning it with a sliding window of dimension 3 ). Thanks to these and the corresponding HR neighbors (y h 1 , y h 2 , y h

3 ), a linear func- tion M is meant to be learned to directly map x l i into its corresponding HR output patch x h i .

processed singularly and, after the learning based patch reconstruction procedure, a corresponding HR output patch x h i is produced. By iterating for all patches, we have at the end a set of HR reconstructed patches X h = {x h i } Nx i=1 , which will be nally re-assembled to form the upper-level image I n+1 . In the following paragraph we describe the patch reconstruction method adopted. 

f i (•) = K j=1 a i (j)k(y j , •) . k(x, y) = exp{-σ x -y 2 2 } H H = f (x) = M x | M ∈ R D×D , x ∈ R D
and the regularized empirical error (1.14) can be re-expressed as follows:

M i = arg min M ∈R D×D K j=1 y h j -M y l j 2 2 + λ M 2 F = arg min M ∈R D×D Y h i -M Y l i 2 2 + λ M 2 F , (3.6) 
where Y l i and Y h i are the usual, respectively LR and HR, local training sets related to the patch x l i . In other words, we are looking for a linear transformation (i.e. the matrix M i ) to be directly applied to the LR input patch. This linear transformation is learned by observing the relations between the LR and HR dictionary patches which are neighbors with x l i , according to the machine learning pattern and a regression model, where Y l i is the matrix of the predictor variables or regressors, and Y h i is the matrix of the response variables.

As the response variables are vectors and not scalars, we properly speak about multi-variate regression (MLR) [START_REF] Hyötyniemi | Multivariate regression -Techniques and tools[END_REF]. The solution to (3.6) is known, and can be written in a closed-form formula:

M i = Y h i Y l i T Y l i Y l i T + λI -1 (3.7) 
where I is the identity matrix. The equation (3. x h i = M i x l i .

(3.8) Fig. 3.1 gives a rough depiction of how the DM reconstruction method works in the double pyramid.

Dictionary update

By learning for each input patch x l i ∈ X l a linear function M i with the equation (3.7), and by applying this function to generate the related output patch, we end up with a collection of HR patches X h = {x h i } Nx i=1 that need to be assembled to generate the current upscaling. Before the patch aggregation, the set of reconstructed HR patches X h and the equivalent set of LR patches from which they have been originated, X l , are added to the dictionary as new correspondences of patches to be used in future upscalings: the patches of the two sets, in fact, are equal in number, and a LR-HR relation stands. The update of the dictionary is performed by simple set union, i.e. Y l = Y l ∪ X l and Y h = Y h ∪ X h .

Patch aggregation and IBP

The patches of the input image, and consequently also in the equally-sized output image, are taken with a certain overlap; that means that, when they are re-placed in the original positions, at each pixel location we have a set of dierent candidate values. We can see the image at this stage as a 3-D image, where the multiple values per pixel are the results of dierent local observations of the input image (i.e. dierent patches taken), and therefore contain dierent partial information about the unknown HR image. We obtain a single output image by convexly combining these candidates at each pixel location: the convex combination is done by simply taking uniform weights, i.e. each candidate is weighted by 1/N p , where N p is the number of overlapping patches contributing to that particular position.

After the image of the new level is formed, by overlapping and averaging, before it is used as a starting image for the next upscaling, it is further rened in an iterative fashion by the iterative back-projection (IBP) procedure. IBP is an additional operation adopted by several SR algorithms (e.g. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF][START_REF] Yang | Image Super-Resolution Via Sparse Representation[END_REF]), for which the output super-resolved image, once reconstructed, is back-projected to the LR dimension in order to assure it to be consistent with the LR input image, i.e. to assure it to be a plausible estimation of the underlying HR image, and conveniently corrected if errors are observed.

At iteration t of this rening procedure, the generic reconstructed n-th level I t n is rst back-projected into an estimated LR image Ît L :

Ît L = I t n * B n ↓ p n (3.9)
where B n is a Gaussian blur with variance as expressed in (3.2). The deviation between this LR image found by back-projection and the original LR image is then used to further correct the HR estimated image:

I t+1 n = I t n + I L -Ît L ↑ p n * b , (3.10) 
where b is a back-projection lter that locally spreads the dierential error.

In Listing 3, our proposed SR procedure is described in a simplied manner, by reporting the pseudocode for the two main routines of the algorithm: Internal Learning, where the double pyramid is constructed and the dictionary sets of LR and HR patches are initially formed, and SingleUpscale, that reports the procedure to upscale a generic level I n to the upper level. To be noted, in particular, on line 15 the for loop, which consists of 3 instructions and implements for n ← 1, N L do Create the pyramid levels 3:

σ 2 Bn ← n • σ 2 B • log(p)/ log(s)
4:

I -n ← (I L * B n ) ↓ p n 5: U(I -n ) ← (I -n ) ↑ p 6:
end for 7:

for n ← 1, N L do Populate the internal dict. 

U(I n ) ← (I n ) ↑ p
Upscale the current level 14:

Extract LR patches from U(I n ) → X l = {x l i } Nx 

M i ← Y h i Y l i T Y l i Y l i T + λI - 1 
18:

x h i ← M i x l i 19:
end for 20:

Form I n+1 with the constr. patches 

X h = {x h i } Nx
Y l ← Y l ∪ X l
Update the LR dictionary 23:

Y h ← Y h ∪ X h
Update the HR dictionary 24: end procedure

Experimental Results

In this section we conduct some experiments on the single-image SR algorithm proposed in Section 3.1. In particular, in Section 3. B set to 1 in all experiments. The interpolation method used is Bicubic interpolation.

As for the various parameters of the algorithms, they have been tuned by empirically looking for their optimal values. Notably, the cross-level scale factor p is taken as p = 1.25; as for the patch size, instead, 5 × 5 patches are sampled from the internal images with a 4-pixel overlap. For each input patch, then, K = 12 are selected in the dictionary via NNS.

Evaluation of the dierent contributions

In this section we want to assess the dierent contributions of our algorithm, which have been discussed in Section 3.1. With respect to the well-known singleimage SR algorithm in [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], two main contributions have been presented:

1. The employment of a DM reconstruction method (i.e. MLR), instead of NE;

2. The introduction of a dierent training and upscaling scheme, i.e. the double pyramid.

To singularly evaluate the two ingredients above, we test three dierent procedures (summarized in Table 3.1), which all fall in the category of examplebased single-image SR algorithms employing an internal dictionary. We rst start with an algorithm, where a single pyramid is constructed and NE with non-local means (NLM) weights (1.10) is used as patch reconstruction method (Algorithm 1). This algorithm is very close in the spirit to the method in [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], and thus its implementation can be considered as a reference for the mentioned method, except for possible slight dierences in the code conguration and the choice of the parameters. With respect to Algorithm 1, Algorithm 2 uses a DM patch reconstruction method instead of NE, i.e. the MLR method described in Section 3.1.2 that linearly maps each LR patch into the related HR patch. The nally proposed algorithm introduces then the double pyramid scheme, featuring the side pyramid of interpolated levels. . This gain can be appreciated when observing the output images. Fig. 3.3 shows in fact the visual results obtained with the three dierent procedures, for two super-resolved images.

As we can observe from the zoomed-in areas of the images, with the nally proposed algorithm, we are able to produce ner details (see the branch of the tree behind the bird, or the texture of the hat of the woman). In particular, by observing the woman's hat, we can appreciate a sort of progress in the outcome of the three algorithms: Algorithm 1 gives a pretty blurred result; Algorithm 2, thanks to the use of DM in the place of NE, shows instead more regular structures; the edges and the shapes of these structures look even sharper with the Proposed algorithm, where the DM functions have been computed on the interpolated patches of the double pyramid.

Comparison with state-of-the-art algorithms

In this section we perform a comparative assessment of our method with other single-image SR algorithms in the state-of-the art, by extending the comparison also to SR methods based on external dictionaries. For this purpose, we consider Bicubic interpolation as a reference for traditional analytical interpolation methods, and four other example-based SR algorithms. The characteristic of the latter, as well as those ones of our proposed method, are summarized in Table 3 For the rst three methods in the table, the original code of the respective authors, possibly slightly modied to make the comparison fair, has been used.

For the pyramid method of [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], instead, the third-party code of the authors of [START_REF] Yang | Exploiting Self-Similarities for Single Frame Super-Resolution[END_REF] has been adopted. Table 3 From the visual results presented, we can see that methods based on external dictionaries (LLE-based NE, NN NE, and Sparse SR) often present blurring and ringing artifacts (see e.g. the Bike images in Fig. 3.5). Results for the two algorithms based on an internal dictionary (the pyramid algorithm of [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] and ours), instead, are certainly more pleasant at sight, presenting sharp edges and smooth artifact-free results in the regions with no texture. However, the algorithm of [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] in some cases shows results that look somehow articial, with over-smoothed areas or unnatural edges (see Lena's eye in Fig. 3.6e, whose shape is deformed). Our algorithm succeeds also in avoiding these undesired eects. 

Conclusion

In this chapter we presented a novel single-image SR method, which belongs to the family of example-based SR algorithms, using an internal dictionary of patches in the upscaling procedure. The algorithm originally makes use of a double pyramid of images, built starting from the input image itself, to extract the dictionary patches (thus called self-examples), and employs a regressionbased method to directly map the low-resolution (LR) input patches into their related high-resolution (HR) output patches. When compared to other stateof-the-art algorithms, our proposed algorithm shows the best performance, both in terms of objective metrics and subjective visual results. As for the former, it presents considerable gains in PSNR and SSIM values. When observing the super-resolved images, also, it turns out to be the most capable in producing ne artifact-free HR details. The algorithm does not rely on extra information, since it uses an internal dictionary automatically self-adapted to the input image content. Moreover, it has few parameters that are easy to tune. This makes it a particularly attractive method for SR upscaling purposes, when no complexity constraint Chapter 4

Super-resolution of a video sequence

In this chapter 1 we address the problem of extending to the video superresolution case the theory and the results developed in the previous chapters of this manuscript (particularly, on example-based SR algorithms using either an external or an internal dictionary, respectively in Chapter 2 and Chapter 3).

According to the application-based classication we made in Section 1.1, video super-resolution (or video-to-video SR) corresponds to the third category of SR algorithms, i.e. MIMO (Multi-input multi-output) SR. As said, MIMO superresolution is not directly related to a precise family of actual methodologies, but elements from single-image and multi-frame SR methods are alternatively exploited when trying to solve the problem of upscaling a video sequence. As in this doctorate we mostly focused on designing algorithms belonging to the single-image SR category, we want to adapt these algorithms to the video-tovideo case. The video SR problem will then be addressed from the single-image point of view, where, basically, each frame is separately upscaled. Issues like the temporal consistency between the dierent upscaled frames, though, will still be taken into account.

When upscaling a video sequence, we can consider two scenarios:

1. Scenario A: The video sequence also contains certain HR key frames, appearing with a xed frequency f K (see Figure 4.1).

Scenario B:

The video sequence contains only LR frames (see Figure 4.2).

The two SR problems related to the scenarios considered (Scenario A and Scenario B ) are tackled, respectively, in Section 4.2 and Section 4.3. Before that, in Section 4.1 we introduce a new method for computing the patch reconstruction weights in the case of neighbor embedding SR, that, when upscaling a certain frame, takes into account also previously reconstructed frames. These weights 1. Part of the concepts and methods described in this chapter appeared in two publications [START_REF] Bevilacqua | On Dictionary Learning for Example-Based Super-Resolution[END_REF][START_REF]Video super-resolution via sparse combinations of key-frame patches in a compression context[END_REF] 97 are intended to improve the temporal consistency between frames reconstructed with the single-image approach and can be used in both scenarios.

Weight computation method to provide temporal consistency

In order to upscale the LR frames, a trivial solution to this problem is to simply super-resolve each frame independently by means of a single-image SR algorithm, as done in [START_REF] Shan | Fast Image/Video Upsampling[END_REF]. We would, however, like to add to the framework a motion estimation step as in [START_REF] Hung | Video Super-Resolution Using Codebooks Derived From Key-Frames[END_REF], in order to take advantage of the already reconstructed frames and enforce temporal consistency.

To this end, in Scenario A (Figure 4.1), we can use the original HR key frames as references for performing motion estimation. In Scenario B (Figure 4.2), instead, we do not have such frames: however, we can create a few key frames according to the same frequency f K , by rst super-resolving certain LR frames of the input video sequence, and use these frames to help the upscaling of the intermediate ones.

In the context of neighbor embedding (NE) super-resolution, whose general procedure is described in Section 2.1, a way to promote temporal consistency between frames, while still performing individual upscalings, could be to take into account also the neighbor key frames, every time the reconstruction weights for a given patch are computed. More precisely, when reconstructing the HR version of a certain LR input patch located in an intermediate frames, we could search in the key frames the patches that, in their LR version, look the closest to it and drive the HR reconstructed patch to be similar to these patches. In other words, similar patches must lead to similar reconstructions along neighbor frames.

We then propose a new weight computation method for NE according to the principle described above, where the closest patches are found by motion estimation as in [START_REF] Hung | Video Super-Resolution Using Codebooks Derived From Key-Frames[END_REF]. The motion estimation process is done for every overlapping patch: for a given LR input patch in a non-key frame x l i , we can then nd the two LR patches in the two neighbor key frames, pointed by the motion vectors found, x l i,K1 and x l i,K2 , and, consequently, their corresponding HR versions, x h i,K1

and x h i,K2 . The reconstruction of the patch is done, then, according to the following steps.

1. Find the k-NN of x l i , in the dictionary (external or internal). Let then Y l i be the matrix with these neighbors put as columns, and Y h i the corresponding HR neighborhood matrix.

2. Solve the following optimization problem to nd the vector of weights w i (the second and third terms are meant to impose consistency with the closest patches in the key frames):

w i = arg min w x l i -Y l i w 2 + µ 1 x h i,K1 -Y h i w 2 + µ 2 x h i,K2 -Y h i w 2 s.t.
w ≥ 0 . 3. Reconstruct the HR patch:

x h i = Y h i w i .
The weight computation method resulting from (4.1) corresponds to the solution of a nonnegative least squares (NNLS) problem, as the NNLS problem presented in Section 2.2 when proposing the NoNNE SR algorithm (see Equation

(2.7)). Here, however, we have three terms involved in the minimization: besides the usual LR approximation term, we have in fact two temporal consistency terms that impose the weight vector w to lead to a reconstructed patch similar to the HR patches found in the key frames.

According to the values of µ 1 and µ 2 , more or less importance is given to the temporal consistency terms. Fixed a value of µ tot = µ 1 + µ 2 , we decide to make µ 1 and µ 2 inversely proportional to the Euclidean distances w.r.t. the related LR patches:

µ 1 = µ tot 1 x l i,K1 -x l i 2 1 x l i,K1 -x l i 2 + 1 x l i,K2 -x l i 2 µ 2 = µ tot -µ 1 . (4.2)
We call this procedure motion estimation aided upscaling (MEA upscaling).

The MEA method can be applied, as said, in both scenarios. In next sections, we assess its performance w.r.t. simple single-image upscaling, where each frame is upscaled independently without taking into account the other reconstructed frames.

Upscaling of a video sequence with HR key frames

In this section we deal with the problem of upscaling a video sequence in the case of Scenario A. In this scenario, as we can also see in Figure 4.1, we have a sequence of LR frames interlaced with periodic HR frames, appearing according to a certain frame frequency f K . In Section 4.2.1, we compare dierent procedures implemented to this end, by presenting the PSNR values of the super-resolved frames averaged over several frames and the average processing. Scenario A, by its nature, lends itself to be analyzed in the compression context. Since we have periodic HR frames available, in fact, we can think that the rest of the frames have been intentionally down-scaled to low resolution in order to reduce the amount of data to encode. All frames are then brought back to high resolution on the decoder side, by upscaling the LR frames with a desired SR algorithm.

We call this approach to video coding SR approach, and compare, from a ratedistortion point of view, this scheme to the common case where the HR video source is directly encoded. This analysis is provided in Section 4.2.2, where the SR procedure adopted in the SR approach is the method showing the best performance in Section 4.2.1.

Comparison between dierent procedures

In order to upscale a video sequence with periodic HR key frames, we decide to adopt the neighbor embedding (NE) based SR procedure with nonnegative embedding and centered features described in Section 2.2 (the NoNNE algorithm), since it showed competitive performance and low-complexity characteristics.

Given this choice and an external dictionary, opportunely trained from a set of external images, we then consider three dierent procedures:

Proc. 1 NE-based SR with the external dictionary and the usual NNLS weights (i.e. nonnegative weights resulting from a least squares approximation of each LR patch), Proc. 2 NE-based SR with the same external dictionary and MEA weights (still nonnegative weights, but computed with the motion-estimationaided method described in Section 4.1), and Proc. 3 NE-based SR with an internal dictionary built from the key frames and NNLS weights.

In all cases, the approach adopted is a single-image upscaling approach: each frame is separately super-resolved by means of a SR procedure, according to the principles presented in Section 1.1.2; to upscale N frames, then, N upscaling procedures are required. With Proc. 2, though, as said, the fact that the frames belong to a common video sequence is taken into account, by enforcing similar reconstructions when computing the weights of each patch reconstruction. In Proc. 3, instead, the video case is implicitly considered and exploited, since an internal dictionary of self-examples is built from the key frames, i.e. real HR patches coming from the video sequence itself are combined together to upscale a given patch in an intermediate frame.

The above-mentioned procedures have been tested with several sequences in CIF (Common intermediate format) format (352 × 288 pixels): the original sequence is downsized by a factor of 2 in each direction, i.e. to QCIF (Quarter CIF) format, except for the key frames, which stay in CIF format. The goal of the video SR procedure is to upscale the intermediate frames too to the CIF resolution. Table 4.1 summarizes the results of the simulations, where the columns `Ext, MEA, and Int, refer to the procedures illustrated, in the order in which they have been mentioned. We consider a period of 16 frames (i.e. f K = 1

16

),

where Frame 1 and Frame 17 represent our key frames and the frames in between are those ones that have to be upscaled. As performance metrics, we reported the PSNR values of each super-resolved frame, the average PSNR of the whole group of pictures (GOP), and the average time per frame. The times given are for guidance only: they do not represent a particular achievement, since they are based on simulations conducted in Matlab with a non-optimized code, but they can anyway give an indication of the complexity of each procedure.

For the motion estimation step in the MEA procedure, i.e. to nd the closest patches in the key frames, we adopted the Adaptive Rood Pattern Search (ARPS) algorithm of [START_REF] Nie | Adaptive rood pattern search for fast block-matching motion estimation[END_REF]. The ARPS algorithm is a fast block-matching algorithm, where, given an input image and a reference image, for each overlapping patch in the input image a motion vector (MV) pointing to the closest patch in the reference image is found. It consists of two sequential search stages:

1. an initial search, where we get a rst estimate of the MV as the result of a search performed on macro-blocks, and 2. a rened local search, where a unit-size rood pattern is exploited repeatedly and unrestrictedly, until the nal MV is found.

From the results in Table 4.1, we can observe a clear progression from Proc. PSNR and time per frame for the video upscaling procedures considered in Scenario A -In the three procedures considered, the NoNNE algorithm is employed with, respectively, an external dictionary, the same external dictionary with MEA weights, and internal dictionary derived from the key frames (i.e. frames 1 and 17).

1), the use of the key frames in the weight computation step, as done in the MEA method employed by Proc. 2, brings a consistent improvement (from about 1 to 3dB in average). In Proc. 2, though, we still combine patches coming from an external dictionary. When using actual patches coming from the video sequence itself, which is the case with the internal dictionary built in Proc. 3, we have even better results (a considerable gain, from 1.5 to even 7.7 dB, w.r.t. Proc. 2). As expected, we have the highest gain for those sequences like Akiyo, where there is not much motion and patches in close frames are quite preserved. The advantage in using an internal dictionary can be observed also in Figure 4.3, where the performance of equally-sized (external and internal) dictionaries are reported, in terms of average reconstruction errors for single patch reconstructions, as the number of neighbors K of the NE procedure varies. The average error in the case of internal dictionary is considerably lower; in both cases, however, the error monotonically decreases with K. As for the time performance (see again Table 4.1), the results are opposite.

As expect, Proc. 1 requires the least amount of time, as simple single-image upscalings are performed by using an external pre-built dictionary. In the case of Proc. 2, where the MEA procedure is adopted, the running time of the algorithm increases by about 70%, due to the double weight compensation step: the goal of this step is to compute, for each frame to super-resolve, a double set of MVs, each one referring to one of the two key frames. In the case of Proc. 3, the average running time is even higher (about 250% of the time required by the externaldictionary procedure). Here, the additional complexity is due to the construction of the internal dictionary, an operation that has to be performed online for each GOP.

As an example, Figure 4.4 reports the visual results for a frame of the Container video sequence (Frame 8), by showing the same frame super-resolved with, respectively, Proc. 1, Proc. 2, and Proc. 3.

The images reported in Figure 4.4 conrm the quantitative results of Table 4.1.

With respect to the frame super-resolved with Proc. 1 and Proc. 2, the result of the internal-dictionary procedure (Proc. 3) presents ner high-frequency details and sharper edges (e.g. see the motorboat in the upper left part of the image).

Analysis in the coding context

From the comparisons performed in Section 4.2.1, it is clear that, in the case of Scenario A (the LR video frames are interlaced with periodic HR frames), using an internal dictionary is particularly favorable. For a given LR frame to (a) Proc. be upscaled, the internal dictionary is built from the two neighbor key frames, by sampling pairs of patches from the key frames themselves and down-sampled versions of them.

Among the procedures presented, Proc. 3 is the one that makes use of an internal dictionary. The method is close to the SR algorithm of Hung et al. proposed in [START_REF] Hung | Video Super-Resolution Using Codebooks Derived From Key-Frames[END_REF]. In [START_REF] Hung | Video Super-Resolution Using Codebooks Derived From Key-Frames[END_REF], for a given patch, the search for the closest patches is performed by restricting it to windows positioned on the key frames (the central positions are given by computed motion vectors): the two best matching patches are selected, one for each key frames, and combined according to distance-depending weights. Dierently than [START_REF] Hung | Video Super-Resolution Using Codebooks Derived From Key-Frames[END_REF], we instead proposed with Proc. 3 to perform the neighbor search globally, by considering the dictionary formed by the two current key frames as a whole. This solution leads to a simpler implementation and a complexity decrease. Indeed, no motion estimation is required and since the dictionary is unique for all the patches of an intermediate frame, we can compute the neighbors all at once with fast neighbor search algorithms. Moreover, we believe that, although no motion estimation is taken into account, the temporal consistency between frames is nevertheless respected. The best matches overall are reasonably also those ones we would choose by rst selecting a search area by motion estimation.

Video SR in Scenario A is particularly suitable for being studied in a coding context. As some HR frames are accessible by the end-user, in fact, it is reasonable to think that the HR source is somewhere available. In this case, it means that the video scenario has been intentionally created, since we want to adopt a SR approach to the transmission of a HR video sequence. The approach consists in:

1. Down-sampling large part of the HR sequence, by keeping only a few HR key frames, 2. Encoding and transmitting this mixed sequence (with a lower coding cost), and 3. Subsequently applying SR to retrieve the original sequence.

We then want to evaluate if the SR approach, where Proc. 3 is used as upscaling method, is a convenient solution, rather than directly encoding the HR sequence.

In other words: can SR be a useful tool in video compression?

For making this analysis, we use the innovative High Eciency Video Coding (HEVC) video compression standard [START_REF] Sullivan | Overview of the High Eciency Video Coding (HEVC) Standard[END_REF]. We consider two congurations of HEVC:

• The ecient HEVC random-access prole, with inter coding enabled, and

• The HEVC all-intra conguration, with all frames coded independently in intra mode, corresponding to some particular application proles with a low-delay/low-complexity requirement (e.g. digital cinema).

In our tests we considered HR sequences in CIF format (352 × 288). The group of pictures (GOP), as well as the intra-period in the codec, is composed of 32 frames (2 key frames that serve as reference frames and 30 intermediate frames). We evaluated then the following two cases, in terms of rate-distorsion (RD) performance of the reconstructed sequences.

• Direct HR encoding : the CIF sequence is directly encoded and transmitted.

• SR approach : the CIF sequence is down-sampled to the QCIF format (176× 144); the QCIF sequence is encoded and transmitted, as well as some CIF intra-coded key frames; the proposed video SR algorithm is then applied on the decoded frames to re-upscale to CIF format.

In the rst case, dierent reconstruction qualities are achieved, when varying the quantization parameter (QP) of the encoded CIF sequence, so obtaining a single RD curve. In the SR approach, instead, we have two parameters that we can play with: the QP of the intra-coded CIF key frames and the QP of the encoded QCIF sequence. By xing, from time to time, the quality of the intra-coded key frames, we can draw a set of curves. QP Bit-rate PSNR All the chosen operating points together give an envelope curve that summarizes the performance of the SR approach, which we can compare to the black curve of the HR encoding approach. As we can see, the SR approach gives a slight improvement for low bit-rates, when, while having the same poor encoding, SR can actually helps improving the reconstruction quality. in the two congurations considered (inter coding and all-intra). For this sequence, the performance of the SR approach is worse. We can observe a certain gain for low bit-rates in the all-intra conguration, but the performance is clearly lower than the HR encoding case in the random-access conguration. Apparently, the Foreman sequence is a sequence which is more dicult to super-resolve (the HR details are dicult to retrieve), so the SR benet cannot compensate the loss of quality due to the down-sampling process, while the saving of bit-rate being not so relevant.

Finally, Figure 4.8 reports as an example the visual results for two frames of the Hall sequence, one for each conguration considered: random-access inter (left) and all-intra conguration (right). In both cases, the bit-rates achieved (inter coding enabled) (all-intra) Figure 4.7: RD comparison between direct encoding and SR approach (Scenario A) for the Foreman sequence, HEVC used with two different congurations -For the random-access conguration (left) the SR approach shows worse performance; things get slightly better for the all-intra conguration (right).

(the supposed qualities) for the case of HR direct encoding via HEVC and the SR approach are comparable, or slightly smaller for the SR approach. As we can observe from the images, employing SR on down-scaled frames turns out to produce generally more blurred images. However, the SR approach does not present some compression artifacts, which are instead visible in the case of direct encoding (see the baseboard on the bottom-left corner). Also when playing the whole video sequence, the results of the SR approach are acceptable. As a matter of fact, we did not observe any particular ickering problems, thus meaning that using an internal dictionary built from key frames (and so real patches of the sequence) is already a way to automatically impose a sort of temporal consistency.

The simulation conducted gave some insights, in order to answer the initial question of this section, i.e. whether super-resolution can be a useful tool in video compression. When comparing the SR approach and the direct encoding scheme in terms of rate-distortion performance, the former presents, in fact, a certain gain (for low or mid-range bit-rates) in the all-intra conguration, i.e. when all frames are encoded in intra mode. When adding also inter coding (random-access prole of HEVC), however, this PSNR gains tends to disappear. In terms of visual perception, the frames decoded and subsequently upscaled via SR generally look smoother and contain less artifacts. Moreover, the SR approach can be helpful in reducing the ickering of the video.

Original CIF Original CIF HECV encoding (inter, QP=40) HECV encoding (intra, QP=36)

SR approach (comparable bit-rate) SR approach (comparable bit-rate) 

Upscaling of a video sequence with only LR frames

In this section we deal with the problem of upscaling a video sequence in the case of Scenario B (Figure 4.2), i.e. when we have a set of LR frame to upscale and we cannot take advantage of strategic HR frames, as in Scenario A.

Here too, we adopt a single-image strategy: to upscale a video sequence, no further modications are done to the single-image SR algorithms that we described in the previous chapters, but the same algorithms are applied, frame by frame, to enlarge the resolution of the whole sequence. As pointed out in [START_REF] Freedman | Image and Video Upscaling from Local Self-Examples[END_REF][START_REF] Shan | Fast Image/Video Upsampling[END_REF], in fact, we also observed that, when an output video is stable at its low-frequency component, an overall stability is achieved and no ickering eect occurs.

For the video upscaling problem, we then consider three dierent single-image SR methods:

• Our NoNNE algorithm presented in Section 2.2,

• NoNNE + the MEA weight computation procedure described in 4.1, and

• Our double-pyramid internal-dictionary algorithm presented in Chapter

Table 4.3 summarizes the results of the video uspcalings, where the methods above-mentioned have been employed to super-resolve several QCIF test sequences to the CIF format (enlargement by a factor of 2 in both directions). As performance metrics, we reported again the PSNR values of each super-resolved frame, the average PSNR of the whole GOP, and the average time per frame, as an approximate estimate of the complexity of each method. The columns `Ext, MEA, and Int, indicate the dierent SR methods used, respectively the NoNNE algorithm, NoNNE+MEA, and the double-pyramid algorithm. In the latter, an internal dictionary is built for each frame, according to the doublepyramid structure. The dictionary thus built is inevitably less powerful then the dictionary for the internal procedure in the case of Scenario A (Proc. 3. In this case, in fact, while building the internal dictionary, we do not have real HR patches available: the pairs of patches composing the dictionary are then less ecient in representing the mapping between the LR frames and the unknown HR frames.

As we can see from the results of from the results of Table 2.4, in fact, we could observe that the advantage of using an internal dictionary tends to be less evident for small scale factors). Also the motion-estimation-aided weight computation method does not bring anything to the NE approach. This result was somehow predictable, since with the MEA method we rely upon previous reconstructions, which in this case, dierently than the in Scenario A, are simply obtained with the same SR algorithm and do not contain any more certain information. By also considering the time complexity issue, then, the simple NoNNE algorithm appears to be the most reasonable solution in Scenario B, as it presents similar results while having a considerably lower complexity w.r.t the other two procedures.

Some visual results, related to a frame of the Akiyo sequence (Frame 11)

super-resolved with the dierent methods, are reported in Figure 4.9.

The images showed in NoNNE result and the result obtained with the double-pyramid algorithm, we can however see that the internal-dictionary procedure is able to reconstruct sharper edges (most of the dierences lies along the contours of the woman), that justies the 0.2-dB dierence observable in Table 4.3.

As in Section 4.2.2 we want to analyze video SR of sequences belonging to Scenario B in a compression context. Here too, given an original HR sequence in CIF format, we consider two possible approaches:

• A direct encoding approach, where the CIF sequence is directly encoded and transmitted, and

• A SR approach, where the CIF sequence is down-sampled to the QCIF format, and the built QCIF sequence is encoded, transmitted, and re-upscaled via SR on the decoder side.

In the SR approach, the NoNNE algorithm, which oers slightly worse performance but has been proved to be more favorable to low-complexity purposes, is used.

For each of the approaches, we have a related parameter that we can tune in the encoding phase, thus varying accordingly the video quality and the coding cost: the quantization parameter (QP) of the video coder. In particular, in the direct encoding approach we can vary the QP when encoding the original CIF sequence, while for the SR approach we can act on the QP of the QCIF sequence. By computing the coding cost and the average PSNR of the decoded video sequence (decoded and super-resolved in the case of the SR approach), we obtain the values reported in From what we can observe from Figure 4.10 and the values of Table 4.4, the R-D comparison is totally in favor of the direct encoding approach, although using the all-intra conguration of HEVC and thus a not extremely ecient coder. In this case, with only LR frames available, the SR algorithm does not appear to be able to achieve a satisfactory image quality. 

Conclusion

In this chapter we dealt with the application to the video case of the concepts and the algorithms related to single-image SR, developed in the previous chapters of this manuscript. In particular, we made use of the NoNNE algorithm presented in Section 2.2, based on an external dictionary and a nonnegative neighbor embedding (NE) procedure, and the double-pyramid algorithm described in Section 3.1, based on an internal dictionary. In addition to these methods, we also proposed in Section 4.1 a weight computation method to be used in NE-based procedures, which also takes into account a sort of temporal consistency criterion, by guiding each local reconstruction. We called this method motion-estimation-aided (MEA) procedure, since close patches are found in the key frames via motion estimation, in order them to play as references for a certain patch to super-resolve.

To upscale a video sequence, we then adopted a simple strategy, where a single-image SR procedure is repeated several times in order to obtain, for each frame of the sequence, its HR version. By adopting this strategy, although not optimized in terms of complexity (the similarity of neighbor frames is not exploited in order to possibly upscale a group of frames at once), the fact that for all the frames we adopt the same SR method (and possibly the same dictionary of patch correspondences) makes the reconstructed frames consistent between each other, and a global stability of the output video sequence, at least in terms of low frequencies, is achieved. The same considerations about the adoption of single-image SR procedures for video upscaling are also made in [START_REF] Freedman | Image and Video Upscaling from Local Self-Examples[END_REF][START_REF] Shan | Fast Image/Video Upsampling[END_REF].

We considered two upscaling scenarios:

• A scenario where a sequence of LR frames also contains periodic HR key frames (Scenario A), and

• A scenario where we have a video sequence of only LR frames (Scenario B ).

.

For Scenario A we compared two methods, both based on nonnegative NE, using alternatively an external dictionary (in this case we have then the pure NoNNE algorithm) and an internal dictionary, built from the available HR key frames. For the external-dictionary method we also took into account to have in addition the MEA procedure. In this comparison the internal-dictionary algorithm turned out to be the clear winner. If we have some HR frames of the sequence available, it is in fact totally reasonable to use them, to build a dictionary of patches upon. For Scenario B we instead compared the NoNNE algorithm, with or without the MEA procedure as a feature, and the double-pyramid algorithm, that constructs an internal dictionary of self-examples for each key frames. In this case, the three procedures turned out to give quite similar quality results; the simple NoNNE, then, has to be preferred to the other algorithms for its lower complexity. As for the internal-dictionary algorithm, instead, a more sophisticated way to build the dictionary needs probably to be designed, by merging the pyramids of several frames into a single dictionary that keeps the most meaningful self-examples.

For the two scenarios considered, we also performed an analysis in the coding context, i.e. when the video sequences are encoded for compression purposes. We then compared the case where an original HR sequence is directly encoded, with the ecient and advanced HEVC codec, to the case where the video sequence, before being encoded, is down-scaled (by possibly keeping some HR frames, as in Scenario A). On the receiver side, after decoding the sequence, SR is then employed to bring the whole sequence back to the original HR format. We called this second scheme the SR approach. The coding cost being equal, with the SR approach, since we have a smaller amount of data to encode, we can aord a better encoding quality (i.e. a smaller quantization parameter). The question, then, is: is it better to super-resolve a good-quality LR sequence or to directly have the original HR sequence, although with average quality? While the task of super-resolving a video sequence of only LR frames (Scenario B) turned out to be dicult, interesting results came in the case of Scenario A, especially when HEVC is employed in the all-intra conguration, that still corresponds to some application proles. In this case, the SR approach outperformed for low and mid-range bit-rates the direct encoding approach, thus proving that under certain conditions SR can be eectively used as a compression tool.

Chapter 5

Classication of the learning techniques used in the proposed SR methods

In this last chapter we classify some techniques belonging to the machine learning area, which we studied and used while developing algorithms for superresolution purposes. In particular, after introducing in Section 5.1 some concepts about the learning paradigm, in Section 5.2 we present regression as a method to perform supervised learning, by relating it to the learning-based SR algorithms described in Section 1.2.2.1. Later, in Section 5.3 we provide a compendium of a few unsupervised learning techniques that we particularly studied, notably some methods to perform dictionary learning and clustering. Within the framework of these techniques, we nally present in Section 5.3.5 a new method designed by us, to learn a dictionary of nonnegative atoms particularly suitable for sparse representations. The new method, that we called K-WEB (as it involves the computation of K weighted barycenters), is assessed by performing a comparison with other state-of-the-art methods in Section 5.3.6.

Learning from data

Modern science and engineering are based on rst-principle models to describe physical, biological, and social systems. Such an approach starts with a basic scientic model (e.g. Newton's laws of mechanics), and then builds upon it various applications. Under this approach, experimental data (measurements) are used to verify the underlying rst-principle models and to estimate some of the model parameters that are dicult to measure directly. However, in many applications the underlying rst principles are unknown, or the systems under study are too complex to be mathematically described. • Predictive learning, whose approach, originally developed by practitioners in the eld of neural networks in the late 1980s, focuses on estimating models with good generalization capability (rather than strictly true models as in the case of statistical model estimation), and

• Data mining, which, in its narrowest meaning, attempts to extract a subset of data samples (from a give a large data set) with useful or interesting properties.

In this chapter we present some predictive learning techniques that we had the chance to study during this doctorate. The example-based approach to superresolution described in Section 1.2 can be related to prediction learning too. For each LR patch in the input image to super-resolve, in fact, we want to nd, by exploiting the training samples of the dictionary, an estimating model which is general enough to predict the corresponding HR output patch.

In predictive learning, there are two common types of problems :

• Supervised learning, and

• Unsupervised learning.
Supervised learning is used to estimate an unknown (input, output) mapping from known (input, output) samples. Classication and regression tasks fall into this group. The term supervised denotes the fact that output values for training samples are known (i.e., provided by a teacher or a system being modeled).

Under the unsupervised learning scheme, instead, only input samples are given to a learning system, and there is no notion of the output during learning. The goal of unsupervised learning may be to approximate the probability distribution of the inputs or to discover natural structures (i.e., clusters) in the input data.

In Section 5.2 we debate regression as a broad family of supervised learning techniques, which deal with real-valued outputs (as opposed to categorical output variable, as in the case of classication).

Regression methods

In predictive learning, we have a dierent naming convention for the prediction task, according to the output type. Broadly speaking, regression is when we predict quantitative outputs, and classication when we predict qualitative outputs. An input variable, or predictor, is typically denoted by the letter X; if X is a vector of variables, the notation with a subscript X i indicates one of its components. Quantitative outputs, or responses, are instead indicated by the letter Y .

In the supervised learning scheme we assume that the inputs, which are measured or preset, have some inuence on one or more outputs. We then choose a model to express this inuence, and use a set of training data (x 1 , y 1 ) . . . (x N , y N ) (observed values are written in lowercase) to estimate the parameters of this model.

Once the model is trained, we can use it to predict the response of new inputs.

The problem expressed in this way is closely related to the problem of the single patch reconstructions in example-based SR. In the latter case, the new input-output pairs are represented by a LR test patch in the LR input image and the corresponding HR patch that we want to predict, and the set of training data is given by the whole dictionary or, if a nearest neighbor search is performed, by coupled neighborhoods of LR and HR patches. In the next sections we review some basic regression methods, and relate them to the learning-based reconstruction methods we described in Section 1.2.2.1: neighbor embedding (NE) and direct mapping (DM).

Linear regression

In linear regression we assume that the model is linear in the parameters. Let rst suppose that we have only one output variable Y and a vector of p inputs X T = (X 1 , X 2 , . . . , X p ); the linear regression model has then the form

Y = f 0 + p i=1 X i f i , (5.1) 
where f 0 is the intercept, also known as bias, and {f i } p i=1 is a set of p parameters (we then have p + 1 parameters in total). The model (5.1) can also be expressed in vector form Y = X T f , (5.2) where, for the sake of simplicity, the parameter vector f is a (p + 1)-dimensional vector including the intercept too, and X has been rewritten to include a constant as well, i.e. X T = (1, X 1 , . . . , X p ).

To train the model, we t it to the available set of N training data (x 1 , y 1 ) . . . (x N , y N )

(note that each pair of training data consists in this case of an input vector and a real-valued output), with the popular method of least squares, i.e. by minimizing the sum squared errors

RSS(f ) = N i=1 (y i -x T i f ) 2 = (y -Xf ) T (y -Xf ) , (5.3) 
where X is and N × (p + 1) matrix with in each row an input vector, and y is the N -vector of the outputs in the training set. The solution to (5.3) is easy to derive. If X T X is nonsingular, we have: f = (X T X) -1 X T y .

(

For a new arbitrary input vector x 0 , its predicted response can then be easily computed by using the parameter vector in (5.4), i.e. ŷ(x 0 ) = x T 0 f . If there are multiple outputs, i.e. Y = [Y 1 , Y 2 , . . . , Y m ], the above analysis stays valid, as it can be carried for each output separately. When we collect all the equations of the estimated parameters together, there holds

     f1 = (X T X) -1 X T y 1 . . . fm = (X T X) -1 X T y m , (5.5)
where f1 , . . . , fm are m (p + 1)-dimensional vectors of parameters, each one delegated to predict a single output variable, and y 1 , . . . , y m are m collections of N outputs taken from taken data, each one related to an output variable.

The set of formulas in 5.5 can simultaneously be rewritten in the following compact matrix form:

F = (X T X) -1 X T Y , (5.6)
where F is a (p + 1) × m parameter matrix and Y is a N × m response matrix collecting row by row N m-dimensional output vectors. Given a test input vector x 0 , the estimated response vector ŷ0 will then be in this case: ŷT 0 = x T 0 F .

(5.7)

The multivariate case of the linear regression model, whose solution is given in (5.6), takes the name of multilinear regression (MLR). The prediction equation written in (5.7) is totally similar to the SR patch reconstruction method that in Section 1.2.2.1 we called direct mapping (DM). In a DM reconstruction, given a LR input patch (in this case x 0 ), we nd its related HR output patch (in this case ŷ0 , by applying to the former a direct function. In the double-pyramid algorithm described in Chapter 3, the mapping function chosen was, indeed, linear. Note, in fact, the the equation for the patch reconstructions of the double-pyramid algorithm (3.8) is exactly the same as (5.7), with the only dierence that vectors and matrices are represented symmetrically .

k-nearest neighbor regression

Nearest-neighbor (NN) methods represent another approach to regression.

Here too we suppose to have a training set T = {(x 1 , y 1 ) . . . (x N , y N )}, generally composed by pairs of input and output vectors of variables. Given a input test vector x 0 , the idea is to look for the k closest observations in the input space and use the corresponding known responses to form the output ŷ0 . In the basic case, the output test vector is the result of a simple average:

ŷ0 = 1 k x i ∈N k (x 0 ) y i , (5.8) 
where N k (x 0 ) is the neighborhood of x 0 dened by the k closest points x i in the training set T . The philosophy of the k-NN regression is in the same spirit of the neighbor embedding (NE) approach we described in Section 1.2.2.1. An output vector is not directly derived by its related input vector, but the input vector is used only at a rst stage (in this case to select only the a subset of observations in T ); then this knowledge in transferred to the output (HR) space and only the known responses are used to generate the nal output vector.

In the NE approach we have been using, we do not have a simple average operation but also some weights appear: these weights are computed in the input (LR) space and blindly transferred to the output space. The equation of k-NN regression, in order to formally express the NE-based SR reconstruction method, then becomes:

ŷ0 = x i ∈N k (x 0 ) w i (x 0 , x i ) • y i , (5.9) 
where each known response y i is now weighted by a personal coecient that depends on the corresponding input vector in the training set x i and the input test vector x 0 .

The equation (5.9) corresponds in fact to the equation (2.3) that we gave in Section 2.1, when presenting the general NE procedure for SR. In our designed nonnegative NE method, described in Section 2.2.2, the weights related to the selected observations (the candidates found in the dictionary via NN search) are computed all the once a single weight vector, by solving the following nonnegative least squares problem:

w x 0 = arg min w x 0 -X set w 2 s.t. w ≥ 0 , (5.10) 
where X set is a matrix containing the k neighbors of x 0 selected from the training set.

Some methods for unsupervised learning

In this section we present some unsupervised learning techniques. Unlike supervised learning, here there is no notion of the relation between inputs and outputs, but we only have a data matrix Y (the dierent signals are usually arranged as columns), from which we try to extract some meaningful information.

Clustering and dictionary learning (that we can see as the extraction of relevant atoms from the available data) are typical unsupervised learning problems.

In sections 5.3.1, 5.3.2, and 5.3.3, we quickly revise three well-known learning algorithms, respectively, K-means clustering, K-SVD, and nonnegative matrix factorization (NMF). NMF is then considered with a supplementary sparsity constraint in Section 5.3.4. In Section 5.3.5 we nally present a novel algorithm, as an alternative to the methods described in Section 5.3.4, to learn a dictionary of nonnegative atoms suitable for sparse representations; experimental comparisons are provided in Section 5.3.6.

K-means clustering

Originally conceived as a method of vector quantization (VQ), K-means clustering is a popular technique for cluster analysis. The aim of K-means clustering aims is to partition N observations ( Y = {y i } N y=1 ) into K clusters: to this end, each observation is dened to belong to the cluster with the nearest mean, where each cluster mean (or center) serves as a prototype of the cluster.

Formally, given a set of observation (y 1 , y 2 , . . . , y N ), where each observation is a d-dimensional real vector, K-means clustering aims at partitioning the N observations into K sets (K ≤ N ) {C 1 , C 2 , . . . C K }, in order to minimize the following cost function, i.e. the within-cluster sum of squares (WCSS):

cost(C 1 , . . . , C K ; µ 1 , . . . , µ 2 ) = K j=1 y∈C j y -µ j 2 , (5.11) 
Some methods for unsupervised learning 123 where µ j is cluster center, i.e. the mean of the points contained in C j .

The problem of minimizing (5.11) is computationally dicult (NP-hard); however, there are ecient heuristic algorithms that are commonly employed and converge quickly to a local optimum. Among these, the most common algorithm is the Lloyd's algorithm [START_REF] Lloyd | Least squares quantization in pcm[END_REF], which uses an iterative renement technique. Given an initial set of K means µ

1 , . . . , µ

K , the algorithm proceeds by alternating between two steps:

1. Assignment step Assign each observation to the cluster whose mean yields the least WCSS.

Since the sum of squares is the squared Euclidean distance, this is intuitively the nearest mean.

C (t) i = y p : y p -µ (t) i 2 ≤ y p -µ (t) j 2 ∀j, 1 ≤ j ≤ K , (5.12)
where each y p is assigned to exactly one cluster, even if it could be is assigned to two or more of them.

Update step

Calculate the new means to be the centroids of the observations in the new clusters.

µ (t+1) i = 1 | C (t) i | y j ∈C (t) i y j (5.13) 
Since the arithmetic mean is a least-squares estimator, this also minimizes the WCSS objective (5.11).

The algorithm converges when the assignments no longer change. Since both steps optimize the WCSS objective, and there only exists a nite number of such partitions, the algorithm must converge to a (local) optimum. There is no guarantee, though, that the global optimum is found using this algorithm.

In Section 2.3, we presented a new dictionary learning procedure for our NEbased SR problem, based on K-means clustering. With respect to K-means, however, we introduced two main changes:

• The clustering procedure is performed jointly on the LR and HR patches, to provide coherence between the two spaces, and

• The nal dictionary is not composed by the cluster means, but an ad-hoc sampling of the clusters is done, by taking M elements from each partition.

K-SVD

K-SVD (from SVD -Singular value decomposition) is an algorithm for designing overcomplete dictionaries for sparse representations recently proposed by Aharon et al. [START_REF] Aharon | An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[END_REF].

More precisely, the task of K-SVD is to nd the best dictionary of size K to represent the data samples {y i } N i=1 as sparse compositions, by solving min D,X Y -DX 2 F subject to ∀i, x i 0 ≤ k .

(5.14)

The method proposed to solve (5.14) is an iterative method that alternates between sparse coding of the data samples based on the current dictionary, to update the matrix X, and a process of updating the dictionary atoms to globally reduce the approximation error, that involves the computation of K SVD factorizations. The details procedure can be found in [START_REF] Aharon | An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[END_REF].

K-SVD can be seen a generalization of the K-means algorithm, where Kmeans is a special case of K-SVD with k = 1. In fact, as said in Section 5.3.1, the K-means algorithm can be viewed as a method to perform vector quantization (VQ). Given a set of input signals Y = {y i } N i=1 , the clustering process partition the data into K clusters, each one identied by a mean. We can then see the set of the cluster means as a codebook of K codewords for VQ: each signal is represented by a single codeword according to a nearest neighbor assignment.

The sparse representation problem addressed by K-SVD is then a generalization of the VQ objective, in which we allow each input signal to be represented by a linear combination of codewords, instead of a single one, which represent the dictionary atoms.

In the Section 5.3.5 we will present a novel algorithm in the spirit of K-SVD, i.e. where any input signal is sparsely represented by several elements of the dictionary. We add to the problem also a nonnegative constraint (i.e. the input data matrix as well as the dictionary matrix only contain nonnegative entries).

We will, in fact, compare our algorithm to the nonnegative variant of K-SVD [START_REF] Aharon | K-SVD and its non-negative variant for dictionary design[END_REF].

Nonnegative Matrix Factorization

Dictionary learning methods aim at nding a suitable representation of the data, namely a set of atoms that form a dictionary and possibly make particular structures present in the data explicit. When the learning process is performed by trying to adapt the dictionary to a set of signal examples Y, dictionary learning can be seen mathematically as a matrix factorization problem, where the matrix Y, containing column by column the input data vectors, is factorized into two other matrices such that Y ≈ DX: D is the learned dictionary; X is the representation matrix, in which each column represents the projection of the related input vectors w.r.t. the dictionary found.

Nonnegative Matrix Factorization (NMF) [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF] In the literature not many solutions have been presented to solve the problem (5.18), i.e. to nd, for nonnegative input data, a nonnegative dictionary D and an exactly sparse encoding X w.r.t. the dictionary found. We take as references nonnegative K-SVD (NN K-SVD) [START_REF] Aharon | K-SVD and its non-negative variant for dictionary design[END_REF], the nonnegative adaptation of K-SVD [START_REF] Aharon | An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[END_REF], the well-known method for dictionary learning, and the sparse NMF algorithm of Peharz et al. [START_REF] Peharz | Sparse nonnegative matrix factorization using 0constraints[END_REF].

Nonnegative K-SVD

NN K-SVD, like K-SVD, consists of a 2-step procedure, which is summarized in Algorithm 5.3.1. Once the dictionary D is initialized (usually with random values or by taking K random vectors from the input data set), two steps are iterated until the desired number of iterations is reached: a sparse nonnegative coding stage, where the matrix X is computed, and a dictionary update stage, where the dictionary D is rened. As for the rst step, a sparse coder referred to as NNBP is used. In NNBP, rst the support of X is computed: the NMF formula for X (5.16) is iterated several times, to identify, for each input vector, the salient atoms that we will keep for the sparse representation. For a given column of X, in fact, the k highest coecients are considered to be referred to the important atoms; the remaining (K -k) , instead, are set to zero. The selected coecients are then recomputed by solving a nonnegative least squares problem. The dictionary update is column-wise: for each dictionary atom d j , an error matrix is constructed, as the residual on Y when we exclude d j from the dictionary D. Then, the best rank-1 approximation for it is found through SVD. The factorization performed is used to update both d j and the related row vector of X x r j (which reports the contribution of d j for all the input vectors); therefore, in the second step of NN K-SVD D and X are contextually updated, as specied in Algorithm 5.3.1.

Sparse NMF

The sparse NMF algorithm of Peharz et al. [START_REF] Peharz | Sparse nonnegative matrix factorization using 0constraints[END_REF] presents a double-nested scheme, as reported in Algorithm 5.3.2. After the dictionary initialization, the representation matrix X is computed with a sparse coder called by the authors NMP (Nonnegative Matching Pursuit), a nonnegative version of OMP [START_REF] Pati | Orthogonal Matching Pursuit : recursive function approximation with application to wavelet decomposition[END_REF],

where, when choosing a new atom, we simply discard it if a negative projection results from that. Then, within an inner loop, D and X are iteratively rened by Algorithm 5.3.1: Nonnegative K-SVD [START_REF] Aharon | K-SVD and its non-negative variant for dictionary design[END_REF](Y ) D ← initialization repeat X ← sparsely code Y with D using NNBP with a 0 constraint D, X ← column and row-wise updates with SVD until numIterations = M using the NMF multiplicative rules (5.17) and (5.16). Since the multiplications are element-wise, the sparsity of X is perfectly preserved (zeros remain). All this procedure is repeated several times: a new sparse encoding X is found using NMP, and the factorization is rened again in the NMF inner loop. In this section we present a new nonnegative dictionary learning method 1 to decompose an input data matrix of nonnegative signals into a dictionary of nonnegative atoms, and a representation matrix with a strict 0 -sparsity con- straint. We choose to pose a nonnegative constraint on the dictionary to learn, because, when dealing with pixel-based image patches or nonnegative features, it lets generate meaningful atoms. Moreover, non-negativity can sometimes be a necessary condition (e.g. for the recovery of an originally nonnegative dictionary). The sparse constraint on the representation matrix, which makes each input vector expressible by a limited combination of atoms, instead, is according to the intuition that images and image patches have been shown to follow sparse models in opportune domains.

The method has the same goal as the algorithms described in Section 5.3.4.

As in NN K-SVD and sparse NMF, we want to solve the problem (5.18), i.e. learn a nonnegative dictionary suitable for exactly sparse representations, by nding a factorization of a signal example matrix Y. For this sake, we want to design two methods to update, possibly separately, the two factors:

• a nonnegative sparse coding stage to (re-)compute X;

• a dictionary update stage to update D.

Nonnegative sparse coding In the nonnegative sparse coding stage, we aim at nding, for each input vector y j , the best nonnegative 0 -sparse coding x j w.r.t to a given dictionary:

x j = arg min x≥0 y j -Dx 2 2 s.t.
x 0 ≤ k .

(

Each vector found replace the related column in X.

To solve (5.19), we decide to use the NMP algorithm described in [START_REF] Peharz | Sparse nonnegative matrix factorization using 0constraints[END_REF]. We believe, indeed, that a greedy OMP-like choice of the atoms leads to a better sparse approximation than the NNBP method used in NN K-SVD. In the latter, the atoms, that have the highest coecients according to a rst NMF approximation of X, are chosen, but these atoms are not necessarily those ones which minimize the approximation error. We also believe that the sparse coding stage, and so the computation of the support of X, should be performed as much frequently as possible. Therefore, we choose to adopt the simple 2-step scheme of NN K-SVD (Algorithm 5.3.1), where the identication of the support of X is done at each step of the unique loop, rather than the double-nested one of [START_REF] Peharz | Sparse nonnegative matrix factorization using 0constraints[END_REF].

Dictionary update with K-WEB As for the second step of our algorithm (update of the dictionary), we propose an original way to update D column by column, by considering X xed and not updating it as well, as done in K-SVD.

X and D are therefore updated separately in the two steps of the algorithm. By considering the error matrix E = Y-DX, we can separate the contribution to the matrix approximation due to a particular dictionary atom d j in this way:

E = Y - i =j d i x r i -d j x r j = E -j -d j x r j , (5.20) 
where E -j is the error matrix without considering the contribution of the atom d j .

As our goal is to minimize the norm of E, we would like E -j ≈ d j x r j . In NN K-SVD the matrix E -j , once pruned from those columns for which the related coecients in x r j are zero, is factorized according to SVD. However, SVD, as it performs a full factorization, forces us to update both d j and x r j , which are placed respectively in D and X. We want, instead, to nd d j , by considering x r j xed. The problem to solve is the following:

d j = arg min d j ≥0 E -j -d j x r j 2 2 .
(5.21)

The problem (5.21) is in a quadratic form in any of the coordinates of d j , and has the following closed-form solution:

d j = max N i=1 E -j,i x r j (i) x r j x rT j , 0 , (5.22) 
where E -j,i is the i-th column of the matrix E -j , and the max operator is intended element-wise.

The minimization problem described in (5.21) has a geometric interpretation (see Figure 5.1). Let us rst consider that x r j is a vector of all ones. d j in (5.21) is then the vector that minimizes the sum of all the Euclidean distances, between itself and the column vectors of E -j , i.e. the barycenter of the related set of points. With a given vector of coecients x r j , the solution is the weighted barycenter expressed by (5.22). Therefore, we call this new method for updating the dictionary, which requires the computation of K WEighted Barycenters, K-WEB. The procedure we design is nally summarized in Algorithm 5.3.3. It is a 2-step procedure: NMP is used as a sparse coder to compute X; the new K-WEB method is subsequently used to update the dictionary matrix D. 

Comparison between nonnegative dictionary learning methods for sparse representations

To validate our new nonnegative dictionary learning method with 0 con- straints, presented in the previous section, we apply it to two dierent scenarios in image processing, and compare with the other similar methods described in Section 5.3.4.

Image patch approximation

The rst application is an image patch approximation problem: we want to train a dictionary suitable for sparsely approximating natural image patches.

To do that we take N = 50000 8 × 8 patches (therefore the dimension of the input data vectors d = 64), randomly taken from natural images. The so formed matrix Y is the input of the dictionary learning algorithm, which factorizes it into a dictionary D and a representation matrix X. ror, but our proposed method is able to better recover a higher number of original digits. Namely, 64 digits out of 90 (71. 1%) in the case of our algorithm, whereas the sparse NMF method recovers 57 digits out of 90 (63. 3%). This is conrmed in Fig. 5.2, that shows as images also the recovered dictionaries. With respect to the other methods, our K-WEB algorithm, despite having some problems with certain digits, leads to more accurate recovered patches; the distribution of the digits is also better balanced.

thanks to the employment of the low-cost centered features. The low-complexity feature, combined with the good quality of the super-resolved results, made this algorithm particularly attractive for real-time tasks. As a matter of fact, the business unit of our industrial partner, Alcatel-Lucent, decided to implement the NoNNE algorithm to possibly include it in some of their applications.

The rest of Chapter 2 aimed at lling the performance gap between algorithms using external dictionaries and those ones, like the pyramid-based algorithm of Glasner et al., employing internal dictionaries. A problem observed for the former is that the performance of the external dictionaries are often image-dependent.

A xed dictionary may not be suitable for any input image; in order to make it work fairly well with a variety of inputs, we have to include a large amount of dierent-content image patches, thus ending up with big unsustainable dictionary sizes. To deal with this problem, we then proposed in Section 2.3 a new procedure to construct an external dictionary, that takes as input a big all-inclusive dictionary and subsequently extracts from it relevant pairs of patches. The procedure consists of two original steps:

• A joint k-means cluster (JKC ) stage, that jointly clusters the sets of LR and HR patches by following a neighborhood preservation criterion, and at the same time already discards some bad pairs of patches, and

• A sampling stage, to intelligently select the most salient patches.

The tests made, by using the NoNNE algorithm as a base, proved the goodness of the proposed procedure: the newly built dictionary, while presenting a reduction in size of a factor of 5, gave even better performance than the big dictionary and performed generally well with dierent input images.

A third contribution presented in Chapter 3 concerned the idea of enhanced interpolation, that uses the iterative back-projection (IBP) algorithm to enhance the results of an interpolation process. The new enhanced interpolation procedure can be used wherever in the algorithm an interpolation step is requested, i.e. at the beginning of the algorithm, to obtain a better guess of the HR output image, and in the training phase. We then proposed and evaluated three dierent training schemes to generate the dictionary of patches. The winning one, involving, indeed, enhanced interpolation and the computation of high-frequency-residual images (the JKC -based procedure is also performed to further improve the dictionary), laid the basis for a novel NE-based SR algorithm that we called NEEB (Neighbor Embedding using Enhanced Bicubic interpolation). The NEEB algorithm further improved the results of our previous algorithms, by showing in this case comparable performance w.r.t. the pyramid-based algorithm of Glasner et al. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] and thus nally bridging the gap between external and internal-dictionary methods.

Chapter 3 dealt instead with our contribution as for example-based SR using an internal dictionary. Our goal in this case was to improve the method of Glasner et al.. In [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], NE is employed to combine the self-examples selected throughout the pyramid. We believed instead that, given a LR input patch, since the neighbors that can be found in the pyramid are more relevant to it than any patches we can ever nd in an external dictionary, they are particularly suitable to learn a mapping function to directly map it to the corresponding HR patch. In Chapter 4 we then considered the video case, i.e. the upscaling of a whole video sequence, and provided a systematic analysis of two scenarios: a Scenario A, where LR frames are interlaced with periodic HR key frames, and a Scenario B, where the video sequence is composed only of LR frames. Our contributions to this investigation mainly included:

• The introduction of a new weight computation method, still based on a least squares approximation problem with a non-negativity constraint, but also containing additional terms to enforce temporal consistency between frames,

• The comparison of dierent procedures adapting the single-image SR methods presented in the previous chapters, and

• An analysis in the coding context, where an ad-hoc SR approach to video coding is compared with direct encoding of the original video sequence.

Interesting remarks have been made in particular in the case of Scenario A, where an eective video SR procedure, using an internal dictionary built from the key frames, has been designed. In this case, too, the SR approach to video coding showed promising results, especially for low coding rates: as a matter of fact, the SR algorithm, applied to highly compressed video frames rstly decoded, is able to smooth out some of the compression artifacts, thus producing globally more pleasant images.

Chapter 5, nally, presented more theoretical topics, by taking a look at some techniques related to the machine learning area and placing them within the framework of the SR methods previously debated. Within the family of unsupervised learning techniques, we also proposed a novel algorithm, that we called K-WEB (the acronym stands for K-WEighted Barycenters), to perform the learning of a dictionary of non-negative atoms suitable for sparse representations.

When comparing the proposed algorithm to other similar methods present in the literature, we observed better results in two dierent problems considered. output (MIMO) or video-to-video SR problem is not totally explored and new procedures can be certainly conceived. In Chapter 4 we dealt with the MIMO problem, by basically adopting a single-image strategy. This approach proved to be worthwhile in the case of Scenario A, where we could build an eective dictionary from the key frames: also by performing an analysis in the video coding context, SR has been proved, even surprisingly, to be a possibly useful tool for compression in cooperation with the extremely ecient HEVC codec (further studies in this sense are welcome). Scenario B, however, highlighted the necessity to design new procedures to enhance the video upscaling, by considering several frames at time in a multi-frame fashion (this could also optimize the timecomplexity of the algorithm.

Finally, we think that there are still a few applications in which SR could be used. An example is given by the plenoptic images that can be taken by some recently commercialized ght-eld camera, which consist in a series of small images referring to dierent viewpoints. A drawback of such systems is in fact the low resolution that the nal images have. • A partir de la procédure générale de SR basée NE, décrite dans la Section Quant à l'autre aspect de discrimination des méthodes de SR basée exemples, la typologie du dictionnaire, nous explorons ici la possibilité d'avoir un diction-naire interne, en ayant comme objectif la maximisation de la qualité de sortie.
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En particulier, le dictionnaire interne est construit par une pyramide double, où la pyramide d'images traditionnelle de [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] est juxtaposée avec une pyramide d'images interpolées, et la procédure de reconstruction basée sur un MD consiste en l'apprentissage d'une fonction linéaire qui est appliquée sur les blocs interpolés.

Prenant comme référence l'algorithme bien connu de [START_REF] Glasner | Super-Resolution from a Single Image[END_REF], les principales contributions sont alors :

• La modication du schéma d'apprentissage et de sur-échantillonnage (soit la pyramide double), et

• L'emploi d'une méthode MD dans les reconstructions, alors que dans [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] les blocs HR sont reconstruits par NE. 
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 11 Figure 1.1: Taxonomic diagram of super-resolution -Classication of super-resolution algorithms from the point of view of applications (we distinguish between SISO, MISO, and MIMO super-resolution), and according to the dierent methodologies (in this case, we have single-image and multi-frame SR methods with their related sub-categories).
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 17 Figure 1.7: Scheme of the direct mapping (DM) reconstruction procedure -DM exploits the horizontal relationships between LR and HR patches, by attempting to learn the mapping between the two spaces.
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 21 Figure 2.1: Example of manifold -A manifold of dimension K in R N is a subset of R N which looks locally like an Euclidean subspace R K of R N .
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 12 Feature representation Color images are typically represented by the RGB color model. An alternative representation is to use a luminance-chrominance model, e.g. the Y IQ 2 3-matrix representation used in the NTSC color TV system, where the luminance component Y represents the brightness of the image and the other two components I and Q, called chrominance, convey the color information of the picture. For SR purposes the latter representation is the most convenient. In fact, since humans are more sensitive to changes in the brightness of the image rather than changes in color, only the Y component is super-resolved, so reducing the complexity of the SR algorithm. The chrominance matrices are simply upsized by interpolation.As discussed before, the entire neighbor embedding SR procedure is carried out in a feature space: LR and HR patches are represented by vectors of features, namely some transformations of the luminance values of the pixels of the patch (see Figure2.2 for a schematic representation).
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 22 Figure 2.2: Feature representation of a patch -One ore more features are computed for each pixel of the patch; all features are then concatenated into a vector form.
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 223 Figure 2.3: Comparison between LR feature representations, SUM1-LS used as NE method -For both test images considered, the curves present an up-down-up behavior.

Figure 2 .

 2 Figure 2.3 this point is, in case of F2, at K = d = 9, as we use 3 × 3 LR patches.
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 224 Figure 2.4: Distribution of the NE weights for each value of K -Centered luminance values (F2) are used as LR features.
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 25 Figure 2.5: Distance between LR and HR weights for SUM1-LS and NNLS -The distance, averaged over 1000 patch reconstructions, is measured in terms of MSE of the two weight vectors; two dierent sources of neighbors, i.e. two dictionaries (Esa and Wiki), are taken into account.
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 226 Figure2.5 shows that the new nonnegative embedding method is much more suitable for computing the weights of a common embedding, as the MSE error between the weight vectors is, in any case, below the corresponding one for SUM1-lS. The results are conrmed in Figure2.6, where a comparison between dierent features (in terms of ouput PSNR), while using NNLS, is presented.Compared to Figure2.3, Figure2.6 presents a much more stable performance, as K varies: the PSNR curve is monotonically increasing. Moreover, the PSNR values are generally higher and F2 are clearly the winning features.
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 2 Figures 2.7, 2.8, and 2.9, show the comparative visual results, respectively, for the baby image (magnied by a factor of 4), the bird image (magnied by a factor of 3), and the woman image (magnied by a factor of 2).

Figure 2 . 7 :Figure 2 . 8 :Figure 2 . 9 :

 272829 Figure 2.7: Results with the baby image (×4) for our NoNNE algorithm and other methods -(a) Our algorithm -(b) Chang et al. [49] -(c) Glasner et al. [58] (7 steps) -(d) Tang et al. [65].

Figure 2 . 10 :

 210 Figure 2.10: Training images used -Three of the dictionaries tested and the related HR images used for the training.

Figure 2 . 12 :

 212 Figure 2.12: Geometrical transformations applied to the patches -The transformations considered include 3 rotations (for multiples of right angle) and 4 symmetrical reections.

Figure 2 . 14 :

 214 Figure 2.14: Visual comparisons between the NoNNE algorithm w/ or w/o the new dictionary and the state of the art -For each of the 3 test images we have results from: the pyramid-based algorithm of [58] (a), the NoNNE algorithm with the Esa dictionary (b), and the NoNNE algorithm

L

  is obtained by back-projecting the related HR image Ît H , and p is a back-projection lter that locally spreads the dierential error. IBP can have a fairly important role in example-based algorithms, as our NoNNE algorithms, where the HR output image is obtained by averaging reconstructed HR patches. While this averaging operation inevitably smooths out certain HR details, IBP can then be eective in re-sharpening areas with edges and detailed texture.

Figure 2 .

 2 Figure 2.15 shows the results (normal and enhanced interpolation) for a given test image.

Figure 2 . 15 :

 215 Figure 2.15: Normal and enhanced interpolation of a LR input im-

Figure 2 . 16 :

 216 Figure 2.16: Scheme 1 for the generation of patches -HR patches are sampled from a HR training image J H ; equally-sized LR patches are sampled from its interpolated LR version I (J L ). In both cases, centered features are used.

Figure 2 . 17 :

 217 Figure 2.17: Scheme 2 for the generation of patches -HR patches are sampled from a HR training image J H ; equally-sized LR patches are sampled from the enhanced interpolation of its interpolated LR version E (J L ). In both cases, centered features are used.

Figure 2 . 18 :

 218 Figure 2.18: Scheme 3 for the generation of patches. -LR patches are sampled from the enhanced interpolation of the LR training image E (J L ), and then represented by means of centered features. HR patches, with simple luminance values as features, are sampled from the high-frequency residual J H -E (J L ).

Figure 2 . 19 :

 219 Figure 2.19: Visual comparisons on the buttery image between the dierent patch generation schemes of the NEEB algorithm -The image is super-resolve by a factor of 3 with the following congurations: (a) Scheme 1 (b) Scheme 2 (c) Scheme 3 (d) Scheme 3 + JSK -based dictionary learning.

(3. 2 )

 2 Once the single pyramid is created, we propose now to interpolate each sublevel I -n by the factor p. The so obtained interpolated level U(I -n ), where U is an upscaling operator s.t. U(I) = (I) ↑ p , is an image with the same size as the original non-interpolated level located just above in the pyramid I -n+1 (except for possible 1-pixel dierences, due to the non-integer interpolation factors). We can then consider the pair constituted by U(I -n ) and I -n+1 a pair of, respectively, LR and HR training images, from which derive a set of self-examples. By using all the pairs {U(I -n ), I -n+1 } for n = 1, . . . N L, where N L is the chosen number of sub-levels, and sampling at corresponding locations pairs of, respectively, LR and HR patches of equal size √ D × √ D, we can then form our LR and HR internal dictionary sets: Y l = {y l i ∈ R D } Ny i=1 and Y h = {y h i ∈ R D } Ny i=1 . Fig. 3.1 reports the scheme described, with the double pyramid formed by the traditional image cascade and, next to it, a side pyramid of interpolated levels.

Figure 3 . 1 :

 31 Figure 3.1: Creation of the double pyramid and search of self-examples throughout it -The gure concerns the upscaling of I 0 to I 1 . Given a reference patch in the interpolated version of the starting image U(I 0 ), x l i , 3 LR neighbors are found in the side pyramid of interpolated levels (y l 1 , y l 2 , y l

7 )

 7 corresponds exactly to what we called model generation (Step 2 of the local learning procedure described in Section 1.2.2). The prediction of the HR unknown patch (Step 3) is the straight application of the linear mapping learned:

the 3

 3 steps of the local learning based patch reconstruction procedure described in Section 1.2.2: nearest neighbor search, model generation, and prediction. Listing 3 Single-image SR via linear mapping of interpolated self-examples 1: procedure InternalLearning(I L , N L, s, p, σ 2

  train. sets of x l i by NNS → Y l i , Y h i 17:

4 :

 4 Performance comparison between our double-pyramid algorithm and other state-of-the-art methods -The performance is measured in terms of PSNR and SSIM values, when super-resolving several images for scale factors of 3 and 4. Table 3.4 shows clearly that our method outperforms the other algorithms in terms of objective quality of the super-resolved images, for all the images and the two scale factors considered. The results are conrmed when observing the visual comparisons (Fig. 3.4, Fig. 3.5, and Fig. 3.6).

Figure 3 . 3 :

 33 Figure 3.3: Super-resolved images with zoomed-in areas for the three dierent internal-dictionary procedures -The image and the scale factors considered are: Bird ×4 (left) and Woman ×4 (right).

Figure 3 . 4 :Figure 3 . 5 :Figure 3 . 6 :

 343536 Figure 3.4: Comparative results with zoomed-in areas for Buttery magnied by a factor of 3 -The methods considered are: (a) Bicubic interpolation, (b) LLE-based NE, (c) NN NE, (d) Sparse SR, (e) Pyramid, (f ) Proposed.

Figure 4 . 1 :

 41 Figure 4.1: Scenario A considered in the upscale of a video sequence -Other then LR frames, periodic HR key frames appear in the sequence.

Figure 4 . 2 :

 42 Figure 4.2: Scenario B considered in the upscale of a video sequence -The sequence consists only of LR frames.

Figure 4 . 3 :

 43 Figure 4.3: Average patch reconstruction error for a video frame upscaled by using an external and an internal dictionary -The neighbor embedding (NE) procedure is considered. The reconstruction error is clearly much lower in the case of internal dictionary; moreover, in this case, NE turns out to lead to even sparser representations.

Figure 4 . 4 :

 44 Figure 4.4: Visual results for a frame of the Container video sequence, upscaled within Scenario A. -The super-resolved images for each of the 3 procedures considered are reported in the top row; the two images in the bottom row point out the mutual dierences.

Figure 4 .

 4 Figure 4.5 shows the RD curve for the HR encoded case (in black) and the set of RD curves for the SR approach, for the Hall video sequence, in the inter coding

Figure 4 . 5 :

 45 Figure 4.5: RD comparison between direct encoding and SR approach (Scenario A) for the Hall sequence, HEVC employed in the randomaccess conguration -For the SR approach we have a set of curves, whose "envelope" gives similar results than directly encoding the HR sequence.

Figure 4 .

 4 Figure 4.6 reports similar curves, the black RD curve for the HR encodingcase and the RD envelope for the SR approach, with the all-intra conguration, still for the Hall sequence. Here, since the encoding is not fully ecient, we can actually save much bit-rate with sending the mixed QCIF/CIF sequence and letting SR do part of the job at the decoder. In this case, the SR approach shows better RD performance also for mid-range bit-rate values.

Figure 4 . 6 :

 46 Figure 4.6: RD comparison between direct encoding and SR approach (Scenario A) for the Hall sequence, HEVC employed in the the allintra conguration -The SR approach shows here a certain gain for mid-range PSNR values.

Figure 4 .

 4 Figure 4.7 shows the results in terms of RD curves for the Foreman sequence,

Figure 4 . 8 :

 48 Figure 4.8: Visual comparison between direct HR encoding and SR approach -Two frames of the Hall sequence are considered: frame no. 24 (left) and frame no. 32 (right).

Figure 4 .Figure 4 . 9 :

 449 Figure 4.9: Visual results for a frame of the Akiyo video sequence, upscaled within Scenario B. -The super-resolved images for each of the 3 procedures considered are reported in the top row; the two images in the bottom row point out the mutual dierences.

Figure 4 . 10 :

 410 Figure 4.10: RD comparison between direct encoding and SR approach (Scenario B) for the Hall sequence, HEVC employed in the the all-intra conguration -The SR algorithm, applied to a sequence of only LR frames, does not allow to reach satisfactory PSNR values.
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 2 refers to a few recent techniques designed to perform such factorization, with a nonnegative constraint on all the Our NMF problem (5.15) then becomes the following sparse nonnegative matrix factorization problem: min D≥0,X≥0 subject to ∀i x i 0 ≤ k .

Algorithm 5 . 3 . 2 : 1 5. 3 . 5

 532135 Sparse NMF [92](Y ) D ← initialization repeat X ← sparsely code Y with D using NMP repeat D ← update with (5.17) X ← update with (5.16) until numIterations = M 2 until numIterations = M Proposed algorithm: K-WEB (K WEighted Barycenters)

Figure 5 . 1 :

 51 Figure 5.1: Geometrical interpretation of the computation of the weighted barycenter -While the real barycenter stays the same, the weighted barycenter moves according to the dierent values of the data points.

Algorithm 5 .

 5 3.3: K-WEB algorithm(Y ) D ← initialization repeat X ← sparsely code Y with D using NMP D ← column-wise update with K-WEB until numIterations = M

Figure 5 . 2 :

 52 Figure 5.2: Results of K-WEB and other methods on the dictionary recovery problem -The original dictionary consisting of 90 gures and the dictionaries recovered are shown.

  The use of direct mapping (DM) instead of NE and a new original scheme based on a double pyramid, instead of the single pyramid of Glasner et al. led us to the denition of a new algorithm, whose results turned out to be better than any other state-of-the-art methods considered.

  Les techniques de traitement du signal pour augmenter la qualité visuelle d'images et de vidéos sont aujourd'hui particulièrement intéressantes. Une première raison de cette armation est due au progrès technologique qui a élevé le niveau et les attentes des utilisateurs en bénécient qui bénéciant de contenus multimédias. En fait, la dernière décennie, en fait, a témoigné d'une révolution dans la technologie d'achage en grand format pour l'utilisateur nal : les marchés de consommation sont actuellement inondés de télévisions et autres systèmes d'achage, qui présentent des images de très haute qualité à des résolutions spatiales et temporelles très élevées. en haute résolution (HR) qui ne sont pas présents dans l'image originale, en ajoutant de nouvelles plausibles hautes fréquences. Pour poursuivre cet objectif, deux approches principales ont été étudiées dans la littérature dans ces dernières années : la SR multi-frame et la SR single-image. Les méthodes multi-frame comptent sur la présence de multiples images liées à la même scène : ces multiples images sont fusionnées ensemble de façon appropriée pour former une seule image de sortie en HR. Les méthodes single-image représentent en quelque sorte un dé encore plus grand, car il s'agit de créer de nouvelles informations en haute fréquence à partir d'une seule image d'entrée. Parmi les méthodes de SR single-image, une catégorie importante est représentée par des algorithmes qui utilisent des techniques d'apprentissage automatique. L'apprentissage automatique peut être généralement considéré comme cette branche de l'intelligence articielle qui concerne la construction et l'étude d'algorithmes capables d'apprendre à partir des données. Ses origines remontent à il y a plusieurs décennies, mais c'est seulement dans les années quatre-vingt-dix qu'il est devenu particulièrement populaire. Depuis lors, beaucoup d'algorithmes ont été développés pour résoudre diérents problèmes dans une variété de domaines scientiques. Intéressés par l'approche de la SR pour augmenter la résolution d'une image, et intrigués par l'ecacité des techniques d'apprentissage automatique, nous avons pendant ce doctorat surtout étudié le problème de la SR et l'application de méthodes d'apprentissage automatique à cette n. En particulier, nous avons adopté une approche single-image basée exemples, où une seule image basse résolution (BR) est agrandie au moyen d'un dictionnaire d'exemples. Ce dictionnaire d'exemples, qui dans ce cas consiste en des correspondances de patchs d'images BR et HR, vu dans le cadre de l'apprentissage automatique, représente les données desquelles nous voulons apprendre. Le reste de ce manuscrit est structuré comme suit. Nous commençons avec le Chapitre 1 où nous donnons un aperçu général de la SR, en classant les méthodes multi-frame et les méthodes single-image, et discutons de la pertinence de ces travaux. Les chapitres 2 et 3 présentent nos contributions au sujet de la SR single-image, décrivant de nouveaux algorithmes utilisant, respectivement, des dictionnaires externes et internes. En particulier, les méthodes basées sur un dictionnaire externe, présentées dans le Chapitre 2 sont le résultat de plusieurs éléments qui ont amené à la formulation de trois nouveaux algorithmes, décrits dans des publications distinctes. L'extension de la SR au cas de la vidéo est présentée dans le Chapitre 4, où nous considérons deux diérents scénarios (selon la disponibilité d'images HR périodiques). Diérentes procédures de SR (les méthodes single-image décrites dans les chapitres précédents, adaptés au cas de la vidéo, ainsi que de nouvelles procédures) sont comparées, et une analyse dans le contexte de la compression vidéo est également eectuée. Dans le Chapitre 5, nous proposons ensuite un recueil de certains techniques d'apprentissage automatique que nous avons étudiées durant ce doctorat, en mettant un accent particulier sur leur application dans les méthodes de SR considérées. Enn, nous terminons cette thèse en résumant nos accomplissements, nous tirons des conclusions et nous discutons de possibles orientations futures. Chapitre 1 : Super-résolution, dénition du problème et revue de l'état de l'art Dans le Chapitre 1, nous présentons les principes fondamentaux de la superrésolution, en fournissant une dénition générale et en la classiant. Selon le schéma taxonomique de la Figure A.1, les algorithmes de SR peuvent être classés en fonction du nombre d'images d'entrée et d'images de sortie participant au processus. • Algorithmes SISO (single-input single-output), quand une seule image HR est produite à partir d'une seule image BR, • Algorithmes MISO (multiple-input single-output), quand nous nous occupons de l'intégration de plusieurs images BR pour estimer une unique image HR, et • Algorithmes MIMO (multiple-input multiple-output), également connus comme SR vidéo-à-vidéo, quand nous essayons de sur-échantillonner une séquence vidéo entière. Une autre classication peut être réalisée selon les méthodologies réellement utilisées. Dans ce cas-là, on peut distinguer deux grandes catégories de méthodes : les méthodes multi-frame et les méthodes single-image. Pour ces deux familles d'algorithmes, les principes et les principales méthodes de l'état de l'art sont décrits. Parmi les méthodes de SR single-image, une famille particulière de méthodes qui prend le nom de SR basée exemples, et sur laquelle la plupart du travail de cette thèse se concentre, est ensuite analysée. La SR basée exemples vise à agrandir une image d'entrée BR au moyen d'un dictionnaire d'exemples qui exprime localement la relation entre une image BR et son homologue HR. Les exemples utilisés sont généralement sous la forme de patchs, c'est à dire des blocs carrés de pixels (par exemple 3 × 3 ou 5 × 5). Le dictionnaire est donc une collection de blocs qui, deux par deux, forment des paires. Une paire se compose précisément d'un bloc BR et de sa version HR, qui contient des détails de haute fréquence. Les algorithmes de SR basés exemples se composent de deux phases :

Figure A. 1 : 1 .

 11 Figure A.1: Schéma taxonomique de la super-résolution -Classication des algorithmes de SR d'un point de vue des applications et des méthodologies réellement utilisées.

Chapitre 3 :

 3 SR single-image basée sur des projections linéaires et l'utilisation d'un dictionnaire interne Dans ce chapitre, nous présentons un nouvel algorithme de SR basée exemples, qui est en quelque sorte symétrique aux algorithmes présentés dans le Chapitre 2 . Diéremment de ces derniers, qui sont basés sur l'approche NE, cet algorithme tombe dans la catégorie des méthodes de mappage direct (MD). Chaque bloc de sortie HR est le résultat d'une opération de projection linéaire avec une fonction précédemment apprise, appliquée directement sur le patch d'entrée BR correspondant.

Chapitre 4 :

 4 Figure A.3) Les deux problèmes de SR liés aux scénarios envisagés (Scénario A et Scénario B) sont abordés, respectivement, dans la Section 4.2 et la Section 4.3. Avant cela, dans la Section 4.1, nous introduisons une nouvelle méthode de calcul des poids de reconstruction dans le cas de la SR basée NE qui, en agrandissant une certaine image, prend également en compte les images précédemment reconstruitées. Ces poids sont destinés à améliorer la cohérence temporelle entre les images reconstruites avec une méthode de SR single-image, et peuvent peut être utilisés dans les deux scénarios.

Figure A. 2 :

 2 Figure A.2: Scénario A consideré pour le sur-échantillonnage d'une séquence vidéo -Hormis les images BR, des images HR périodiques apparaissent dans la séquence.

Figure A. 3 :

 3 Figure A.3: Scénario B consideré pour le sur-échantillonnage d'une séquence vidéo -La séquence consiste uniquement d'images BR.

Chapitre 5 :

 5 Classication des techniques d'apprentissage utilisées dans les méthodes de SR proposées Dans ce dernier chapitre, nous classons des techniques appartenant au domaine de l'apprentissage automatique, que nous avons étudiées et utilisées pour le développement d'algorithmes de SR. En particulier, après l'introduction dans la Section 5.1 de concepts basics sur l'apprentissage, dans la Section 5.2 nous présentons la régression comme une méthode d'apprentissage supervisé, en le rapportant à nos méthodes de SR basée exemples. Ensuite, dans la Section 5.3, nous fournissons un recueil de quelques techniques d'apprentissage non supervisé que nous avons particulièrement étudiées, notamment certaines méthodes pour eectuer l'apprentissage de dictionnaire et le partitionnement de données. Dans le cadre de ces techniques, nous présentons enn dans la Section 5.3.5 une nouvelle méthode que nous avons conçue, pour apprendre un dictionnaire d'atomes non négatifs particulièrement adapté pour les représentations parcimonieuses. Cette nouvelle méthode, que nous avons appelée K-WEB (car elle implique le calcul de K WEighted Barycentres), est évaluée en eectuant des comparaisons avec d'autres méthodes de l'état de l'art. sum of squares

Table 1 .

 1 category No. inputs No. outputs Applications 1: Categories of SR algorithms -Dierentiation between the three categories of SR algorithms (SISO, MISO, and MIMO) and some possible applications for each of them.

	SISO	One	One	Image restoration algorithms,
				Object recognition
	MISO	Several	One	Astronomical imaging,
				Medical imaging,
				Text recognition
	MIMO	Several	Several	Video surveillance,
				Video enhancement

  The LR image in then a blurred and down-sampled version of the original HR image.

Single-image SR aims at constructing the HR output image from as little as a single LR input image. The problem stated is an inherently ill-posed problem, as there can be several HR images generating the same LR image. Single-image SR is deeply connected with traditional analytical interpolation, as they share the same goal. Traditional interpolation methods (e.g. linear, bicubic, and cubic

Table 1 .

 1 

2: Notation used for the dierent kinds of patch vectors -The letters x and y indicate the two possible sources of patches (test image or dictionary, respectively); LR and HR patches are present in both cases.

Local learning methods Local learning methods are characterized by the fact that the estimations of the output patches are made by observing locally the dictionary. For each in-

  Model generation: A model M i for the local reconstruction is computed. M i generally depends on both the LR input patch and the local training sets:

	2.	
	𝒙 𝒊 𝒍	
		𝑰 𝟎 (𝑰 𝑳 )
	𝒚 𝟏 𝒍	𝑰 -𝟏
	Figure 1.5: Percentage of selected neighbors for each sub-level of the 𝑰 -𝟐 pyramid -The simple test, performed on two dierent images, shows that,
	while the rst sub-level being the most used one, other sub-levels have a certain
	importance too.	
	𝒚 𝟐 𝒍	
	𝑰 -𝟑 algorithms consist in patch-based procedures, where the HR output image is built
	by means of single patch reconstructions, as many as the number of LR patches
	the LR input image is partitioned into. The goal of each patch reconstruction is
	𝑰 -𝟒 i , with the help of i from the related known LR patch x l to predict a HR patch x h
	the dictionary sets.	
	We can broadly classify patch reconstruction methods for example-based SR
	Figure 1.4: Pyramid of recursively scaled images -The pyramid consists into two categories:
	in this case of 4 sub-levels, where the top level (I 0 ) is represented by the LR • Local learning methods (see Section 1.2.2.1), and input image I L . Given a LR input patch x l i , a desired number of neighbors (y l 1 , y l 2 , . . . ) can be found at any level of the pyramid. • Sparse coding methods (see Section 1.2.2.2).
	the histogram of all the selected neighbors has been drawn, where the histogram classes are the 6 sub-levels of the pyramid. Figure 1.5 presents the histograms of the selected neighbors for two dierent images. 1.2.2.1 put patch x l i , LR and HR local training sets are formed, by performing a nearest As we can observe from Figure 1.5, it is clear that the rst sub-level, i.e. the neighbor search (NNS). A desired number of neighbors of the LR input patch x l i image obtained with only one rescaling operation, is the most relevant source of is searched among the LR self-examples Y l , and consequently an equal number self-examples. Nevertheless, in both cases nearly 35 percent of the neighbors still of HR neighbors is determined. Let Y l i indicate the matrix collecting, column by come from the other sub-levels, which is not a negligible percentage. column, the selected LR neighbors, and let Y h i indicate the matrix of the corre-
	sponding HR neighbors. Thanks to the local sets Y l i and Y h i , the unknown HR 1.2.2 Patch reconstruction methods patch x h i is then predicted. The whole local learning procedure can be summa-
	Once the dictionary of self-examples is built, i.e. we have the two dictionary rized in 3 steps.
	most similar self-examples sets Y l and Y h containing, respectively, LR and HR example patches, the proper 1. Nearest Neighbor Search (NNS): The local training sets Y l i and Y h i
	(the K nearest neighbors) have been searched throughout the whole pyramid, and SR upscaling procedure is ready to start. In this respect, example-based SR are determined.

LR test patches 𝒀 𝒍 : LR training patches 𝑿 𝒉 : HR test patches 𝒀 𝒉 : HR training patches 1. NNS 2. Model generation 3. Prediction

  

	Figure 1.6 depicts the scheme of the patch reconstruction procedure in the NE
	case. The model, i.e. the weights, is totally learned in the LR space, and then
	applied to the HR local training set to generate the HR output patch.
	𝑿 𝒍 : Figure 1.6: Scheme of the neighbor embedding (NE) reconstruction
	procedure -NE exploits the intra-space relationships, by learning a model
	among the LR patches and applying it on the HR patches.
	In direct mapping (DM) methods [57, 65, 66], instead, the model is a re-
	gression function f i that directly maps the LR input patch into the HR output
	patch. The function is learned by taking into account the two local training sets
	(f i = M(Y l i , Y h i )), by minimizing the empirical tting error between all the pairs
	of examples, with possibly a regularization term:
	.13)

Table 2 .

 2 t. the upscaling of a 70 × 70 image by a factor of 4 takes about 5 seconds.

			Internal DB	Ext DB Esa	Ext DB Wiki
	Image	Scale PSNR DB size PSNR DB size PSNR DB size
	Head	4	28.62	525	30.22	56514	30.24	218466
	Baby	4	27.95	2179	30.62	56514	30.32	218466
	Eyetest	3	16.10	3827	18.38	100966	18.10	389232
	Bird	3	27.72	2256	31.37	100966	31.42	389232
	Woman	2	27.29	15044	30.91	229096	30.44	880440

2: Final PSNR and DB size for dierent dictionaries -The DB size is intended as the number of pairs of patches (DB stands for database, i.e.
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	.3.
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 23 

: Summary of the methods compared to our NoNNE algorithm -For each method the main characteristics (kind of procedure, feature representation, and patch reconstruction technique used) are listed.
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	Image	Our algorithm Scale PSNR Time PSNR Time PSNR Time PSNR Time Chang et al. Glasner et al. Tang et al.
	baby	34.64	58	33.42	339	34.66	4083	33.72	425
	bird	34.69	18	32.94	110	34.42	406	33.31	132
	buttery	27.54	17	25.90	77	26.83	265	26.05	82
	head	32.88	18	32.34	145	32.68	367	32.43	151
	woman	30.91	15	29.43	114	30.61	410	29.64	128
	baby	32.44	27	31.00	116	32.94	2188	31.47	111
	bird	31.37	9	29.71	47	32.16	281	30.07	42
	buttery	24.31	9	22.58	34	25.66	232	22.72	25
	head	31.46	12	30.82	68	31.69	370	30.95	54
	woman	27.98	12	26.45	37	28.79	248	26.66	37
	baby	30.62	22	29.27	86	31.41	4381	29.70	81
	bird	28.99	6	27.37	21	30.07	475	27.84	22
	buttery	22.05	7	20.50	18	23.94	315	20.61	13
	head	30.26	6	29.57	26	30.86	379	29.83	28
	woman	25.66	5	24.25	17	26.79	401	24.46	20

4: Results (PSNR and running time in sec.) for dierent images.
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6: Statistics about one run of the JKC algorithm -The algorithm is applied to a dictionary of 280K pairs; the prospect of its convergence is reported, as well as other statistics.
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	Image	Scale ESA Flower Heads Synth Wiki BIG	FINAL
	Bird	3	32.13	32.42	32.17	31.21	31.88	32.27	32.31
	Buttery	3	24.89	24.22	23.77	23.95	24.37	24.94	25.06
	Eyetest	3	18.99	18.64	18.58	20.58	18.62	20.48	20.55
	Head	3	31.86	32.07	31.92	31.73	31.74	31.96	31.75
	Newspaper	3	23.79	23.55	23.73	23.48	23.35	23.78	23.85
	Bird	4	29.51	29.87	29.76	28.81	29.12	29.51	29.90
	Buttery	4	22.45	22.00	21.70	21.57	21.98	22.48 22.46
	Eyetest	4	17.52	17.33	17.20	18.72	17.13	18.74	18.94
	Head	4	30.55	30.85	30.69	30.35	30.42	30.70	30.82
	Newspaper	4	21.93	21.92	22.01	21.88	21.68	22.02	22.06

7: PSNR results of the NoNNE algorithm with the new designed algorithm -The nal results are compared with those ones obtained

Table 2 .

 2 [START_REF] Huang | Multiframe image restoration and registration[END_REF]. The table shows the intermediate results after the rst pruning step (removal of the trash cluster), and after the sampling of M prototypes per cluster (i.e. before the geometrical transformations are applied). The table also shows the results when our dictionary construction strategy is applied to a dictionary clustered via a traditional k-means procedure applied on the concatenated LR-HR vectors, instead of JKC. Figure2.13: Best-, worst-case scenario, and our new constructed dictionary -The performance of our constructed dictionary is presented w.r.t. the best and worst single dictionary for any test image considered.

	Image	Scale BIG	Prun. Sampl. FINAL Sampl. FINAL
	dict. size → 280000 196345 7060	56480	7139	58552
	Bird	4	29.51	29.60	29.35	29.90	29.68	29.72
	Buttery	4	22.48	22.34	21.99	22.46	21.75	21.74
	Eyetest	4	18.74	18.61	18.22	18.94	17.31	17.26
	Head	4	30.70	30.71	30.68	30.82	30.75	30.83
	Newspaper	4	22.02	21.95	21.96	22.06	21.96	22.06

JKC

k-means

Table 2 . 8 :

 28 Evolution of the PSNR, for JKC and standard k-means -

  2.4.1 we introduce a new interpolation method that exploits the iterative backprojection (IBP) algorithm in a two-step procedure. We call this new method enhanced interpolation, as it can be applied to any interpolation method, e.g. bilinear or bicubic interpolation, improving its result. By making use of the proposed enhanced interpolation and the concept of high-frequency residuals, we then propose in Section 2.4.2 new generation schemes for training LR and HR patches to compose an external dictionary for example-based SR.

Thanks to these elements (enhanced interpolation and new patch generation schemes), we can derive a new NE-based single-image super-resolution algorithm.

The algorithm, which we synthetically call NEEB, is fully described in Section 2.4.3. It is a single-image SR algorithm based on nonnegative neighbor embedding, as the NoNNE algorithm presented in Section 2.2. Moreover, it also makes use of the JKC -based dictionary construction procedure illustrated in Section 2.3.1. Therefore, the new NEEB algorithm can be seen as the evolution of the NE-based SR algorithms presented in this chapter, whose results specically appeared in sections 2.2.4 and 2.3.3.

  N x Compute the actual HR patches

12:

Table 2 .

 2 .1, consists initially of a joint k-means clustering of the LR patches and the HR patches; at 10: Comparisons between the dierent training schemes, when upscaling with the NEEB algorithm by a factor of 3 -5 different images are super-resolved; the 3 patch generation schemes described are compared (the JKC -based dictionary construction procedure is also performed on top of the last one).

	Bird 32.66 32.98 32.85 Scheme 3 + JKC 33.37 26.36 Buttery Scheme 1 25.30 Scheme 2 25.46 Scheme 3 25.37	Hat 29.27 29.30 29.26 29.65	Head 32.21 32.30 32.26 32.28	Lena 29.98 30.19 30.13 30.52
	Bird 30.06 30.41 30.45 Scheme 3 + JKC 30.41 23.41 Buttery Scheme 1 22.77 Scheme 2 23.03 Scheme 3 23.12	Hat 27.71 27.80 27.84 27.85	Head 30.90 31.05 31.07 30.92	Lena 28.16 28.41 28.45 28.52

Table 2 .

 2 

11: Comparisons between the dierent training schemes,

Table 2 .

 2 12: Comparative results of the NEEB algorithms with the state of the art -PSNR values of the super-resolved image are provided for our proposed method and three methods in the literature.

		Scale Sparse SR NN-NE Pyramid-like Proposed
	Bird	3	32.91	32.47	32.96	33.37
	Buttery	3	24.92	25.27	26.38	26.36
	Hat	3	29.20	29.34	29.47	29.65
	Head	3	32.21	32.03	32.06	32.28
	Lena	3	30.05	30.03	30.14	30.52
	Bird	4	29.98	29.72	30.37	30.41
	Buttery	4	22.18	22.64	24.41	23.41
	Hat	4	27.31	27.66	28.44	27.85
	Head	4	30.83	30.66	31.02	30.92
	Lena	4	27.97	28.07	28.79	28.52

  Visual comparisons between the NEEB algorithm and other 3 methods in the literature -The images considered are: bird ×3, hat ×3, head ×3, and lena ×4.

	pyramid-based SR algorithm of Glasner et al. [58] in 5 cases out of 10, while pre-
	senting similarly acceptable visual results. The pyramid-based algorithm, how-
	ever, as it progressively reconstruct the SR image in many passes, requires more
	computational time.
	compared with the NoNNE algorithms and other single-image SR methods. The
	results are very encouraging: it outperforms, both visually and in terms of quan-
	titative results, NoNNE and other one-pass algorithms using external dictionaries
	(e.g. the sparse SR algorithm of Yang et al. ), and it also does better than the

Yang et al. NoNNE Glasner et al. NEEB Figure 2.20:

  2.1 we evaluate the dierent contributions, in terms of implementation choices, that led to its nal formulation summarized in Listing 3. In Section 3.2.2, instead, we compare our algorithm with other state-of-the-art methods, by both showing visual comparisons on superresolved images and reporting quantitative results, according to the PSNR and SSIM metrics. PSNR and SSIM values are obtained as measures of the distance between the HR original image, from which the LR input image, for test purposes, has been originated, and the super-resolved image. The image generation model adopted is the one expressed in Equation (1.8), with the variance of the Gaussian blur σ 2

Table 3 .

 3 2 presents the Rec. Method Double pyr. and SSIM values for all the considered algorithms, when tested on seven input images and for two dierent scale factors (s = 3, 4).

		Algorithm 1 NE		No			
		Algorithm 2 DM	No			
		Proposed	DM	Yes		
	Table 3.1: Summary of the internal-dictionary procedures considered
	-The dierent procedures are meant to evaluate each distinct contribution to
	our algorithm.						
			Algorithm 1	Algorithm 2	Proposed
	Image	Scale	PSNR SSIM	PSNR SSIM	PSNR SSIM
	Bike	3	23.13	0.792	23.20	0.796	23.30	0.799
	Bird	3	33.71	0.884	34.06	0.890	34.13	0.890
	Buttery	3	27.08	0.833	27.38	0.840	27.56	0.841
	Hat	3	29.95	0.651	30.11	0.655	30.11	0.655
	Head	3	32.43	0.633	32.47	0.667	32.43	0.668
	Lena	3	30.68	0.770	30.91	0.775	30.89	0.775
	Woman	3	30.33	0.862	30.41	0.866	30.52	0.867
	Avg gain w.r.t. A1 -	-	0.18	0.009	0.23	0.010
	Bike	4	21.58	0.685	21.53	0.688	21.63	0.689
	Bird	4	30.61	0.810	30.89	0.824	31.01	0.826
	Buttery	4	24.68	0.763	24.71	0.772	25.05	0.775
	Hat	4	28.54	0.553	28.60	0.556	28.53	0.555
	Head	4	31.17	0.556	31.28	0.591	31.23	0.590
	Lena	4	29.02	0.681	29.22	0.687	29.28	0.689
	Woman	4	27.60	0.778	27.90	0.793	27.96	0.793
	Avg gain w.r.t. A1 -	-	0.13	0.012	0.21	0.013

PSNR

Table 3 .

 3 2: Performance results of the three dierent algorithms using an internal dictionary -The performance are measured in terms of PSNR and SSIM values, when super-resolving several images for factors of 3 and 4.As we can observe from the table, from Algorithm 1 to the Proposed algorithm we have almost always a progressive consistent improvement in the SR performance, with our nally proposed procedure presenting an average gain of about 0.22 dB w.r.t. to the traditional scheme based on a single pyramid and NE (Algorithm 1)

  .3.

	Method	Reference	Dictionary	Rec. Method
	LLE-based	Chang et al.	External	NE with LLE
	NE	[49]		weights (1.11)
	Nonnegative	Bevilacqua et	External	NE with NN
	NE	al. [82]		weights (1.12)
	Sparse SR	Yang et al. [52]	External	Sparse coding
	Pyramid	Glasner et al.	Internal, single	NE with NLM
		[58]	pyramid	weights (1.10)
	Proposed This paper Internal,	DM via MLR
			double pyr.	
	Table 3.3: Summary of the methods used for the comparison with our
	double-pyramid algorithm -Our method and four other example-based SR
	algorithms are considered in the comparison.	

Table 3 .

 3 .4 reports the performance results of the algorithms considered (PSNR and SSIM values), with the usual set of seven test images, and 3 and 4 as scale factors.

			Bicubic	LLE-based NE	NN NE	Sparse SR	Pyramid	Proposed
	Image	Scale PSNR SSIM PSNR SSIM	PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
	Bike	3	20.84	0.640 22.38	0.754	23.02	0.784 22.71	0.771 22.81	0.772 23.30	0.799
	Bird	3	29.88	0.820 32.11	0.834	33.37	0.864 32.90	0.858 32.18	0.862 34.13	0.890
	Buttery 3	21.75	0.712 24.27	0.774	26.36	0.823 24.92	0.787 26.63	0.825 27.56	0.841
	Hat	3	27.27	0.536 29.24	0.619	29.65	0.632 29.21	0.602 29.66	0.626 30.11	0.655
	Head	3	31.02	0.583 32.05	0.626	32.28	0.638 32.23	0.653 31.69	0.629 32.43	0.668
	Lena	3	28.03	0.670 29.78	0.729	30.52	0.754 30.06	0.738 30.28	0.748 30.89	0.775
	Woman	3	26.17	0.778 28.27	0.806	29.35	0.840 29.02	0.815 29.89	0.857 30.52	0.867
	Average 26.42 0.677 28.30 0.734	29.22	0.762 28.72	0.746 29.02	0.760 29.85	0.785
	Bike	4	19.83	0.536 20.75	0.634	21.26	0.667 20.93	0.651 21.46	0.681 21.63	0.689
	Bird	4	28.09	0.738 29.25	0.741	30.41	0.786 30.00	0.787 30.10	0.803 31.01	0.826
	Buttery 4	20.30	0.637 21.83	0.682	23.41	0.738 22.18	0.701 24.44	0.761 25.05	0.775
	Hat	4	26.30	0.462 27.48	0.505	27.85	0.530 27.31	0.506 28.41	0.544 28.53	0.555
	Head	4	30.07	0.516 30.71	0.537	30.92	0.556 30.85	0.573 30.86	0.575 31.23	0.590
	Lena	4	26.85	0.593 27.84	0.628	28.52	0.670 27.98	0.649 28.70	0.668 29.28	0.689
	Woman	4	24.61	0.697 25.84	0.696	26.76	0.752 26.18	0.732 27.20	0.777 27.96	0.793
	Average 25.15 0.597 26.24 0.632	27.02	0.671 26.49	0.657 27.31	0.687 27.81	0.702

Table 4 .

 4 1 to Proc.3. With respect to the usual NE-based procedure with external dictionary and weights computed to approximate the LR input patches (Proc.

			AKIYO			CITY		CONTAINER
	Frame	Ext	MEA Int	Ext	MEA Int	Ext	MEA Int
	1	-	-	-	-	-	-	-	-	-
	2	37.60	40.83	51.45	30.10	30.86	32.01	28.44	32.18	40.84
	3	37.64	40.73	51.11	30.10	31.06	32.79	28.44	31.85	36.94
	4	37.62	40.73	50.67	30.14	30.96	32.04	28.47	31.57	35.36
	5	37.72	40.80	49.26	30.14	31.10	32.92	28.45	31.47	34.98
	6	37.78	40.77	49.11	29.97	30.81	32.43	28.44	31.71	35.63
	7	37.73	40.75	48.83	29.90	30.57	32.20	28.44	31.91	36.90
	8	37.73	40.75	48.51	29.82	30.60	32.23	28.42	31.98	37.88
	9	37.68	40.67	48.02	29.77	30.65	32.46	28.45	31.94	38.10
	10	37.58	40.43	47.21	29.79	30.79	32.55	28.41	31.95	37.85
	11	37.52	40.34	46.93	29.94	30.71	32.23	28.41	31.83	36.52
	12	37.57	40.39	46.91	29.76	30.80	32.71	28.42	31.59	35.33
	13	37.45	40.21	46.64	30.29	31.09	32.44	28.44	31.49	34.89
	14	37.47	40.28	47.15	30.37	31.32	32.88	28.45	31.65	35.58
	15	37.41	40.18	46.48	30.60	32.02	33.94	28.43	31.94	37.39
	16	37.32	39.94	45.68	30.32	31.20	32.16	28.38	32.09	40.98
	17 Avg PSNR 37.59 40.52 48.26 30.07 30.97 32.53 28.43 31.81 37.01 ---------
	Avg Time	16.3	24.3	40.0	16.8	28.7	44.6	14.2	24.0	36.4

1:

Table 4 .
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	2: Bit-rate (kpbs) and PSNR (dB) for dierent QP values in
	the video coding analysis of Scenario A -The cases considered are: HR
	direct encoding (A); for the four operating points resulting in the SR approach
	(B).

Table 4

 4 

	.3, in the case of Scenario B we

Table 4 .

 4 3: PSNR and time per frame for the video upscaling procedures considered in Scenario B -The three procedures considered are,

	respectively, the NoNNE algorithm, NoNNE+MEA, and the double-pyramid
	algorithm.

Table 4

 4 .4. For this test we considered the best case that we observed in the case of Scenario A, i.e. the use of the all-intra conguration, where all frames are encoded as intra frames, and the Hall video sequence, which have prove to be an easy sequence to super-resolve.

	QP Bit-rate PSNR	QP Bit-rate PSNR
	28	2337.2	39.06	20	1824.7	31.13
	32	1614.6	36.74	24	1294.1	30.83
	36	1116.7	34.23	28	924.6	30.16
	40	760.7	31.50	32	654.2	29.41
	42	615.5	30.08	36	447.8	28.02
	45	436.6	28.00	40	257.7	26.08
		(A)			(B)	

Table 4 .

 4 4: Bit-rate (kpbs) and PSNR (dB) for dierent QP values in the video coding analysis of Scenario B -The cases considered are: direct encoding of the CIF sequence (A), and SR approach (B).

	The values in 4.3, reported visually, originates the plot of Figure 4.10, where
	we have a rate-distortion comparison between the direct encoding approach and
	the SR approach.

  To overcome this problem, in the recent decades a new paradigm has emerged: learning from data. Nowadays, large amounts of data can be easily collected and processed, and we can use

	these readily available data to derive models, by estimating useful relationships
	between input and output variables. We are then witnessing a gradual shift in
	scientic methodology, from the classical modeling based on rst principles (and
	subsequent validation with data) to directly deriving models from data.
	Machine learning is a scientic discipline that concerns the construction and
	study of systems that can learn from data, i.e. the design of algorithms that
	can extract information automatically. The learning process usually consists of
	two stages: a learning/estimation stage, where a model is learned from training
	samples, and a prediction stage, where predictions are made for future or test
	samples on the base of the model learned. As for the learning stage, we can
	basically distinguish three methodologies for learning empirical models from data.
	• Statistical model estimation, which aims at developing adaptive learning al-
	gorithms, by extending the classical statistical and function approximation
	framework,

  The number of atoms chosen is K = 250; the target sparsity level is k = 15, i.e. each column of X contains at most 15 nonzero entries. After the dictionary learning procedure, D is used with other test images: the appropriate sparse coder (NNBP for NN K-SVD, NMP for our proposed algorithm and the sparse NMF method of Peharz et al.) is used to nd a sparse approximation of each input patch of the test image, by taking the atoms of D as bases. Table5.1 reports the performance (p-index ) of the three methods with a set of test images dierent from the training set, in terms of

average MSE (avgMSE ) of the patch reconstructions converted in a PSNR-like

Table 5 .

 5 D, d j , is considered well recovered if we nd in D a vector distant up to a certain threshold (dist j < 0.01).

	Method	Train. error GT error % recovered
	NN K-SVD	0.0139	1.557	61.11 %
	Sparse NMF	0.0129	1.391	63.33 %
	K-WEB	0.0135	1.407	71.11 %
	Table 5.2: Results of K-WEB and other methods on the dictionary
	recovery problem -The training error and other two metrics on the recovery
	delity are taken into account.		

2 

shows that the method of Peharz et al. gives a slightly better GT er-

  2.1, nous proposons une nouvelle procédure basée sur du NE non-negatif (Section 2.2). Nous appelons cette méthode NoNNE (Non-Negative Neighbor Embedding).• Une nouvelle méthode pour construire un dictionnaire plus compact et performant est ensuite présentée dans la Section 2.3. Nous appelons cette nouvelle procédure de construction du dictionnaire JKC (Joint K-means

	Clustering).

• Enn, un nouvel outil d'interpolation améliorée et de nouveaux schémas d'apprentissage pour extraire les blocs sont introduits dans la Section 2.4 L'algorithme, qui utilise ces nouveaux outils ainsi que la procédure JKC, est appelé NEEB (Neighbor Embedding using Enhanced Bicubic interpolation).

The contributions presented in this chapter appeared in the papers[START_REF] Bevilacqua | Neighbor embedding based single-image super-resolution using Semi-Nonnegative Matrix Factorization[END_REF][START_REF] Bevilacqua | Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding[END_REF][START_REF] Bevilacqua | Compact and coherent dictionary construction for example-based super-resolution[END_REF][START_REF] Bevilacqua | Super-resolution using Neighbor Embedding of Back-projection residuals[END_REF].

The luminance-chrominance model is usually denoted as Y U V , where Y U V is the representation for analog TV with slightly dierent weights than Y IQ.

The contribution related to the method described in this section appeared in[START_REF] Bevilacqua | Nonnegative dictionary learning for sparse image representations[END_REF].

Toutefois, malgré l'intérêt croissant à leur égard, les contenus de haute qualité ne sont pas toujours disponibles pour être achés. Les sources de vidéos sont malheureusement souvent d'une qualité inférieure à celle souhaitée, en raison de plusieurs causes possibles : du sous-échantillonnage spatial ou temporel qui peut être nécessaire, d'une dégradation à cause du bruit, d'une haute compression, etc. En outre, les nouvelles sources de contenus vidéo, comme Internet ou les appareils mobiles, ont généralement une moins bonne qualité d'image que la diusion conventionnelle d'émissions télévisées. En dehors de l'expérience utilisateur, les raisons de la nécessité d'augmenter la résolution d'une vidéo ou d'une image peuvent également être imposées par le contexte particulier d'application considéré. En eet, de nombreuses applications, par exemple la surveillance vidéo et la télédétection, nécessitent l'achage d'images à haute résolution, éventuellement pour des tâches spéciques telles que la reconnaissance d'objets ou des opérations de zoom-in. La Super-résolution (SR) s'adresse spéciquement aux problèmes mentionnés ci-dessus, puisqu'elle se réfère à une famille de procédures qui visent à augmenter la résolution, et donc la qualité, d'images données, dans une plus grande mesure que les algorithmes de traitement d'image classiques. Diéremment des méthodes traditionnelles (l'interpolation, l'aiguisage d'images, etc. ) , l'objectif de la SR est plus ambitieux : le méthodes de SR, en fait, visent à estimer des détails

Par le terme super-résolution (SR), nous faisons référence à une classe de techniques qui améliorent la résolution spatiale d'images et de vidéos. Les algorithmes de SR peuvent être de deux types : les méthodes multi-frame, où plusieurs images en basse résolution sont agrégées pour former une image unique en haute résolution, et les méthodes single-image, qui visent à élargir une seule image. Cette thèse a pour sujet le développement de théories et algorithmes pour le problème single-image. En particulier, nous adoptons une approche basée sur exemples, où l'image de sortie est estimée grâce à des techniques d'apprentissage automatique, en utilisant les informations contenues dans un dictionnaire d'exemples. Ces exemples consistent en des blocs d'image, soit extraits à partir d'images externes, soit dérivées de l'image d'entrée elle-même. Pour les deux types de dictionnaire, nous concevons de nouveaux algorithmes de SR présentant de nouvelles méthodes de suréchantillonnage et de construction du dictionnaire, et les comparons à l'état de l'art. Les résultats obtenus s'avèrent très compétitifs en termes de qualité visuelle des images de sortie et de complexité des calculs. Nous appliquons ensuite nos algorithmes au cas de la vidéo, où l'objectif est d'élargir la résolution d'une séquence vidéo. Les algorithmes, opportunément adaptées pour faire face à ce cas, sont également analysés dans le contexte du codage. L'analyse eectuée montre que, dans des cas spéciques, la SR peut aussi être un outil ecace pour la compression vidéo, ouvrant ainsi de nouvelles perspectives intéressantes.
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factors. Therefore, NMF is in all respects a dictionary learning tool. Moreover, the nonnegative property makes it particularly attractive for image processing purposes, where, unless some transformations are applied on the image pixels, we have to deal with nonnegative values. The problem that NMF tries to solve is then the following one: Y ≈ DX s.t. D ≥ 0, X ≥ 0 (5.15) To solve (5.15), the same authors propose in [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF] the following multiplicative rules to alternatively update D and X

)

where (A) ij indicates the element at the i-th row and the j-th column of the matrix A. (5.17) and (5.16) are therefore element-wise multiplicative rules: each element of the matrices D and X is updated by multiplying itself by an appropriate factor. The above mentioned rules are shown in [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF] to lead to a local minimum of the approximation error Y -DX 2

F . NMF can be interpreted as a dictionary learning method. In fact, given a d × N data matrix Y, we learn a dictionary matrix D of dimension d × K, with K ≤ N usually, and a representation matrix X. In other words, we can see each input data vector y j , a column of the matrix Y, as a combination of the atoms of the dictionary, the columns of the matrix D, weighted by the coecients of the respective column x j in the matrix X: y j = K i=1 d i x j (i) .

Nonnegative matrix factorization with 0 sparsity constraints

In the previous section we presented NMF as a method to factor an input matrix into two matrices, with the only constraint that the two factors, as well as the input matrix, contain exclusively nonnegative entries. Now, we want to include in this formulation the concept of sparse representation, by imposing that each input vector y j is represented by a combination of at most k atoms of the dictionary. This implies that a sparsity constraint is put on the representation matrix X, according to the more natural measure of sparseness which is the 0 pseudo-norm: each column x j , which is the encoding of the related input vector y j , is constrained to have at most k nonzero elements.

p-index = 10 log 10 avgMSE -1 , (5.23) where N t is the total number of test patches, y i is a particular patch, and x i is its sparse representation w.r.t. D. As we can seen from the table, our method sensitively outperforms the two methods in the literature.

Dictionary recovery

The second application is a dictionary recovery problem: we have an original dictionary D, with which we generate a data matrix Y, by sparsely combining atoms of it randomly taken (a random sparse matrix X is generated); some Gaussian noise is also added. Thus, Y ≈ DX. Y, used as an input of the dictionary learning process, is factorized in a dictionary D and a coding matrix X, which we compare with the original ones. The goal of this test is to see if the method is suitable for recognizing truly sparse data and possibly retrieve the original dictionary that was actually used to generate them.

The original dictionary is depicted in the rst subplot of Fig. 5.2, and consists of K = 90 8 × 8 patches, then vectored, representing the 10 digits and shifted versions of them. The number of patches generated for Y is N = 2000; k = 5. 

2 , which measure the goodness of the training process itself. The other two parameters better indicate the performance of the test made. The ground truth (GT) error measure the distance between D and D: for each atom of the original dictionary d j , we nd the closest atom in dj and measure the reciprocal distance (dist j = 1 -|d j • dj |); the GT error is the sum of all these Chapter 6

Conclusions and perspectives

The work of this thesis focused on the study of super-resolution (SR) as a technique to augment the spatial resolution, i.e. the total number of independent pixels, of images and videos, to a greater extent than traditional interpolation methods. In particular, we adopted the example-based single-image SR approach, whose aim is to create a high-resolution (HR) output image from as little as a single low-resolution (LR) input image, by means of a dictionary of correspondences of LR and HR patches (i.e. the examples). The dictionary is meant to bring extra information to enrich the original LR image with high-frequency content when upscaling it. The SR procedure follows the machine learning paradigm, where the HR output image is predicted/estimated patch by patch: for each LR input patch we compute a model on the basis of local examples (the closest LR patches in the dictionary and the corresponding HR patches), and we use this model to predict the related HR output patch.

The procedure described is quite general and leaves room for dierent kinds of investigations. Among the aspects that can be analyzed we have in fact:

• How to represent the patches (i.e. which features to use), in order to make the learning process the most eective possible,

• The learning method used for the SR single reconstructions, i.e. how each HR output patch is predicted, given a LR input patches and a set of training examples (pairs of LR-HR patches), and

• The method to construct the dictionary.

In the study conducted, we investigated all these aspects, by having as objective either the quality of the nally super-resolved images or a trade-o between the latter and the computational complexity of the algorithm. This led us to the formulation of the dierent algorithms for upscaling single images that we presented in Chapter 2 and Chapter 3. In Chapter 4, instead, we dealt with the problem of upscaling a whole video sequence, by equally providing new algorithms and analyses. Finally, in Chapter 5, we proposed a classication of the SR techniques considered (patch reconstruction and dictionary learning methods) within the framework of classical learning methods.

In Section 6.1, we detail and comment, chapter by chapter, all the contributions presented. Subsequently, in Section 6.2, we discuss some possible future directions of research related to the work done.

Summary of contributions

In Chapter 1 we formally dened the SR problem and classied the many different methods according to their characteristics and the approaches adopted. In particular, for example-based single-image SR we distinguished methods employing an external dictionary and methods that make use of an internal dictionary. In Chapter 2, then, we presented our work on external-dictionary single-image SR, by using neighbor embedding (NE) as patch reconstruction method. Starting from the original NE-based SR algorithm of Chang et al. [START_REF] Chang | Super-Resolution Through Neighbor Embedding[END_REF], we introduced several modications that led to dierent algorithms showing progressive improvements. The algorithm of Chang et al. is based on a weight computation method derived from the Locally Linear Embedding (LLE) method [START_REF] Roweis | Nonlinear Dimensionality Reduction by Locally Linear Embedding[END_REF][START_REF] Saul | Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds[END_REF], where the weights of a patch reconstruction sum up to one, and uses gradient-based features to represent the LR patches. By performing an analysis of the LLE weights with dierent feature congurations and by varying the number of neighbors K (see Section 2.2.1), we observed that simple mean-removed luminance values (centered features) were the best performing features, except for a drop in the performance occurring for a value of K equal to the dimension of the LR vectors. We explained this with the fact that the weights, computed to approximate each LR input patch with a supplementary equality constraint, were too tted on the LR data. We then proposed two main changes to the original algorithm:

• To use a non-negativity inequality constraint to relax the weight computation,

• To use centered features, instead of gradient-based values, to represent both the LR and HR patches.

The algorithm resulting from these changes is a nonnegative NE-based SR algorithm that we called NoNNE and presented in Section 2.2. The NoNNE algorithm showed good PSNR performance, strictly increasing with the number of neighbors: compared to other state-of-the-art methods, it presented better quality results than other single-pass algorithms using an external dictionary, whereas the comparison was slightly unfavorable in the case of the well-known multi-pass algorithm of Glasner et al. [START_REF] Glasner | Super-Resolution from a Single Image[END_REF] employing an internal dictionary constructed by means of a pyramid of self-produced. As for the computational complexity, the NoNNE algorithm had clearly the best performance (i.e. lower running times),

Comments and perspectives

In this thesis we examined the problem of single-image SR upscaling thoroughly, by presenting dierent algorithms and procedures belonging to the family of example-based SR. Specically, we designed three single-image SR algorithm which we are quite proud of, each one presenting its own pros:

• The NoNNE algorithm, that represents a good trade-o between quality and low-complexity,

• The NEEB algorithm (that also makes use of the JKC-based dictionary construction procedure), which is one the most performing methods among those ones using an external dictionary and has comparable performance than other multi-pass algorithms based on internal dictionaries, and

• The double-pyramid algorithm, for internal dictionary, whose target is to maximize the quality of the super-resolved images.

While the multi-frame branch was particularly prosperous in the previous decade, in the recent years, many algorithms have been developed for the singleimage SR problem, including a large variety of procedures that already show very promising results. We then believe that the attention to this topic should be mostly directed from the conception of new procedures to other important aspects, like the theoretical validation and their practical implementation. As for the former, SR procedures, especially example-based methods, are often the result of an heuristic approach (consider, for example, the hypothesis of manifold similarity of the LLE-based algorithm, not fully supported by the evidence). We then think that some extra studies can be conducted to completely unveil the connection between example-based SR and machine learning, as we partially did in Chapter 5, and thus provide a better theoretical framework to the latter.

Another theoretical aspect to clarify is the use of the image generation model, which considers a blurring stage (where the blur operator is often considered to be Gaussian) and a down-sample operation. In the majority of the algorithm in the literature, the model is assumed to be known; an analysis on how to estimate the parameters of the model directly from a generic LR image taken as input would be therefore useful. As for the practical implementation of single-SR methods, we believe that there is a clear room for single-image SR algorithms to be optimized (e.g. the example-based SR procedure consists of single patch reconstructions that could be carried out via parallelized tasks, thus achieving a considerable speed-up), and nally employed as fast upscaling methods in the same way as analytic interpolation methods.

While the multiple-input single-output (MISO) and single-input single-output (SISO) SR problems have been largely discussed in the literature, giving rise to, respectively, multi-frame and single-image SR methods, the multi-input multi-

Proof of the SUM1-LS solution

In this appendix we provide a proof for the solution to the SUM1-LS problem expressed in (2.4), appearing in the weight computation step of the LLE algorithm [START_REF] Saul | Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds[END_REF] and adopted also in the original neighbor embedding SR algorithm of Chang et al. [START_REF] Fan | Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds[END_REF]. The problem aims at nding the best linear combination of neighbors that approximates a given input data point, with the condition that the weights sum up to one. In the SR problem, we speak about patches (our data points): the weights computed represent in this case a linear combination of LR patches in a dictionary, which are selected in order to approximate a given LR patch of the LR input image.

For each LR input patch x l i we then dene a reconstruction error as (A.1a), and nd the weights by minimizing it, subject to the above-mentioned sum-to-one condition, i.e. j w ij = 1.

The reconstruction error for the data point x l i is so dened:

where

Minimizing (A.1f) leads us to solve a Constrained Least Squares problem, subject to the constraint 1 T w i = 1. The method of Lagrange multipliers can be used to nd a solution to that.

The Lagrangian functional is expressed as follows:

We then compute the gradient of J i with respect to the weight vector and the Lagrange multiplier:

The solution, as written in (A.5), requires an explicit inversion of the matrix G i . If this matrix is singular or nearly singular (as arises, for example, when the chosen number of neighbors is larger than the input dimension), it can be conditioned by adding a small multiple of the identity matrix, e.g.

Chapitre In particular, we adopt the so called example-based approach, where the output image is estimated with machine learning techniques, by using the information contained in a dictionary of image examples. The examples consist in image patches, which are either extracted from external images or derived from the input image itself. For both kinds of dictionary, we design novel SR algorithms, with new upscaling and dictionary construction procedures, and compare them to state-of-the-art methods. The results achieved are shown to be very competitive both in terms of visual quality of the superresolved images and computational complexity. We then apply our designed algorithms to the video upscaling case, where the goal is to enlarge the resolution of an entire video sequence. The algorithms, opportunely adapted to deal with this case, are also analyzed in the coding context. The analysis conducted shows that, in specic cases, SR can also be an eective tool for video compression, thus opening new interesting perspectives.

Résumé