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Habilitation à diriger des recherches
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Chapter 1

Introduction

This thesis addresses the automatic interpretation of dynamic scenes from visual observations. Its
particular focus is on recognition of human actions, objects and human-object interactions. Before
detailed description of the work in Chapters 2-5, this chapter motivates our work, outlines the
challenges, summarizes contributions, and reviews related work in Sections 1.1-1.4.

1.1 Motivation

Data. The amount of video has increased dramatically over recent years and continues to grow.
Striking examples include 4331 years of video uploaded on YouTube in 20111 and millions of CCTV
cameras installed only in the UK. National TV archives also own large amounts of video, such as
British BBC with 600K hours (68 years) of video2 and French INA3 with 900K hours (102 years)
of video and audio content. The introduction of new devices such as wearable cameras and Google
Glass will likely accelerate the growth of video even further. According to Cisco4, video is expected
to dominate Internet traffic by 91% in 2014.

While the growth of video continues, its access becomes critically dependent on efficient search
engines. Current systems partly solve video search with text-based indexing using, e.g., tags
for YouTube videos or program schedules for TV broadcasts. Most of the information in video,
however, remains “hidden”, and its extraction requires new methods for automatic video analysis.

Content. People are the most frequent and, arguably, most important objects in images and
video. A simple test5 reveals that about 35% of screen pixels in movies, TV programs and YouTube
videos belong to people. Photographs on Flickr.com contain about 25% of person pixels. These
numbers indicate that the visual data we tend to produce, share and consume is strongly biased
towards people. Notably, the percentage of “person pixels” in the field of view of our daily life is
only about 4%6. This further indicates that the strong person bias in consumer videos and images

1www.youtube.com/t/press_statistics
2www.bbc.co.uk/archive/tv_archive.shtml
3www.ina-sup.com/collections/linatheque-de-france-1
4http://newsroom.cisco.com/dlls/2010/prod_060210.html
5The test has been done by the author and has involved manual segmentation of people in 100 randomly selected

frames from movies, popular YouTube videos and one month of TV stream.
6The statistics for daily life images was obtained by hand-segmenting people in random frames from the first-

person view wearable camera dataset [43]. Body parts of the person wearing the camera were excluded.

1
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1.2. CHALLENGES

is not natural but is caused by the content production.
The strong bias of video towards people clearly motivates the need of automatic methods that

interpret person pixels. Meanwhile, it is also interesting to identify the origin of this bias and to
understand what information in person pixels is particularly important. Why do people choose to
watch other people? Why do people watch video at all? An answer to a related question “Why
do people read books?” might be that books teach us new patterns of behaviour.7 Indeed, the
experience of our lives is limited by time, geographic location, and surrounding people. Books,
as well as movies, TV series and other types of narrations can be regarded as a shared collective
experience describing possible actions and reactions of people in new situations as well as conse-
quences thereof. Learning how to act and react in new situations by observing other people, hence,
might be a plausible answer to the above questions. Such an answer explains well the strong person
bias in video, and it also implies that human actions are likely to be among the most important
elements of the video content.

Applications. Analyzing people and human actions in video is of high interest for many ap-
plications within entertainment, education, health care, security and other areas. Human motion
capture is widely used to animate human characters in movies and video games. Biometric identi-
fication involves the recognition of people by facial characteristics, finger-prints, iris scans or gate
patterns. Typical video surveillance tasks include detection of intrusion, violence and other abnor-
mal events. Off-line video analytics and recognition of human actions, facial expressions and gaze
patterns can be used to analyze person behaviour in retail applications and sociological studies.
Motion analysis of large groups of people is useful to prevent crowd stampedes, to count partic-
ipants of a demonstration, or to enhance urban planning. Automatic annotation of people and
human actions in video would greatly improve the search capabilities of public and personal video
archives. Recognition of daily activities is becoming important for assisted living and elderly care
applications.

Looking further into the future, I believe computers will be able to analyze and learn from
the immense amount of collective human behaviour. The models of behaviour learned from the
collective experience will stretch far beyond capabilities of individual people. Using these models,
computers will be able to increase our efficiency and enrich our daily lives by, for example, assisting
us in preparing a new meal we have never tasted before, helping us to pose the right questions and
analyze reactions of people at job interviews, instantly instructing us what to do in a car accident,
teaching us how to manipulate a kite-surf, or telling us where we have left the keys yesterday
night when we are about to rush to work in the morning. Before this can happen, however, many
challenges must be addressed.

1.2 Challenges

Representation. Visual data has a huge variability. The appearance of objects and people in
still images and in video is greatly influenced by changes of lighting, camera viewpoints, object
shape and backgrounds, by occlusions, non-rigid object deformations, within-class object varia-
tions, aging, seasonal changes, and many other factors. Specific to video, dynamic appearance is
for example influenced by camera motion, relative object displacements, and non-rigid motions.
Specific to human actions, video content varies greatly due to many existing types of actions

7The answer suggested in the interview with Olga Slavnikova, a contemporary Russian author.
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CHAPTER 1. INTRODUCTION

and interactions, due to different action styles, people clothing, and types of manipulated objects
(Figure 1.1). Modeling of some of these variations (e.g., the shape of an object, the action of a
person) independently of the others (e.g., camera view-points and occlusions) is a major challenge
of computer vision.

actions in movies drinking

smoking

(a) (b)

Figure 1.1: Human actions in movies. (a): Many different activities are depicted in films. (b): Within-class
variations of actions due to different body motions, manipulated objects and clothes.

Learning. Computer vision aims to solve the inverse and ill-posed problem of determining the
cause of visual observations. The relation between visual observations and their cause can some-
times be modeled analytically as, for example, in motion estimation under the assumption of
brightness constancy [40]. In most cases, however, the observation-cause relations are too complex
for analytical modeling. Statistical modeling and machine learning methods can be used instead
in such cases. The relations between visual observations x and underlying properties y can be
modeled in the form of joint distributions p(x, y) (generative models) or conditional distributions
p(y|x) (discriminative models) [55]. Standard methods to estimate (or learn) such distributions,
however, typically require a large number of training samples (xi, yi) where xi, for example, could
be a video depicting some action, and yi the corresponding class label. Given the large variety in
both x and y, manual collection and annotation of sufficiently many training samples (xi, yi) is
prohibitive in general. A major challenge is, hence, to design new learning methods able to derive
p(y|x) or p(y, x) from large amounts of readily-available but incomplete and imprecise supervision
such as the scripts accompanying movies or TV series, images with corresponding image tags and
other types of meta-data.

Action vocabulary. Visual recognition is often regarded as a labeling problem, i.e., assigning
objects and actions in images or video with their class labels such as “airplane”, “cat”, “walk-
ing”, “shaking hands”, etc. While the object vocabulary is well defined for thousands of object
categories [3], a vocabulary of activities for action recognition is much less developed. Scaling up
current action recognition datasets beyond tens of action classes may not be just a practical issue:
On the one hand, action verbs are often quite ambiguous as illustrated by different examples of
“open” action in Figure 1.2. On the other hand, the same type of actions may be expressed in
many different ways, e.g., “he gets out of the Chevrolet”, “she exits her new truck” for “getting
out of car” action.

3



1.2. CHALLENGES

Figure 1.2: Examples of the “open” action illustrate ambiguity of the verb open.

actions depend on manipulated objects actions depend on surrounding scenes

Figure 1.3: Left: Similar body motions (e.g., a twist of a hand) may imply very different actions depend-
ing on the manipulated objects. Right: Similar person-object interactions may imply different actions
depending on the global scene context.

unusual / potentially dangerous actions common action

Figure 1.4: Examples of unusual (left) and common (right) person-scene interactions.

The difficulty of defining an action vocabulary compared to an object vocabulary may have
several reasons. First, many actions have compositional structure and exhibit a large variability
depending on manipulated objects, scene structure, etc., as illustrated in Figure 1.3. Second,
actions typically exist over a limited period of time and never repeat in exactly the same way.
Third, unlike spatial object boundaries, the temporal boundaries of actions may often lack a
precise definition. The challenge of defining an action vocabulary has also been recognized in
natural language processing where recent studies explore e.g., the problem of grounding natural
language to robot control commands [53].

Establishing a proper link between actions and their linguistic descriptions is an important task
since language is frequently used to describe and search images and video. Describing actions by
words, however, may not always be necessary and may make solutions to some visual tasks unnec-
essary complicated. For example, the detection of unusual events (Figure 1.4) could potentially
be solved by analysing human poses, relative positions and orientations of objects and people,
recognizing object function, etc. Finding prototypical linguistic expressions for unusual events, on
the other hand, may not be easy or necessary for this task. Non-linguistic description of actions
by the properties of person-object and person-scene interaction is, hence, another interesting and
challenging topic in action recognition.
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CHAPTER 1. INTRODUCTION

1.3 Contributions

This work addresses several of the challenges outlined above. Its main focus is on recognizing
actions and interactions in realistic video settings such as movies and consumer videos. The first
contribution of this thesis (Chapters 2 and 4) is concerned with new video representations for
action recognition. We introduce local space-time descriptors and demonstrate their potential to
classify and localize actions in complex settings while circumventing the difficult intermediate steps
of person detection, tracking and human pose estimation. The material on bag-of-features action
recognition in Chapter 2 is based on publications [L14, L22, L23]8 and is related to other work by
the author [L6, L7, L8, L11, L12, L13, L16, L21]. The work on object and action localization in
Chapter 4 is based on [L9, L10, L13, L15] and relates to [L1, L17, L19, L20].

The second contribution of this thesis is concerned with weakly-supervised action learning. Chap-
ter 3 introduces methods for automatic annotation of action samples in video using readily-available
video scripts. It addresses the ambiguity of action expressions in text and the uncertainty of tem-
poral action localization provided by scripts. The material presented in Chapter 3 is based on
publications [L4, L14, L18]. Finally Chapter 5 addresses interactions of people with objects and
concerns modeling and recognition of object function. We exploit relations between objects and
co-occurring human poses and demonstrate object recognition improvements using automatic pose
estimation in challenging videos from YouTube. This part of the thesis is based on the publica-
tion [L2] and relates to other work by the author [L3, L5].

1.4 Related work

Video representations for action recognition. The models of video content proposed in this
thesis build on local space-time descriptors for video [L8, L12] extending local descriptors for still
images [51, 54]. Related work [5, 70, 71] has explored the matching of actions based on the local
space-time structure of the video. In particular, Boiman at al. [5] has developed a compositional
model of actions in space-time for detecting unusual events. Our bag-of-features action model in
Chapter 2 is simpler, but enables recognition of diverse actions in realistic settings.

Bag-of-features representations have been successfully applied to image recognition tasks [12,
49, 73, 90]. In video, early statistical action representations have been proposed in [9, 88]. Since
the work presented in [L21], several other methods have explored bag-of-features representations
for action recognition [16, 42, 56]. The work presented in Chapters 2 and 4 was among the first
to address action recognition in realistic settings outside controlled laboratory setups. Since then,
several follow-up studies have been presented. Regarding action classification, [28, 57] have ad-
dressed more elaborated modeling of temporal structure of actions. Action representations in terms
of pre-trained features such as action attributes and “action banks” have been explored in [50, 66].
New local motion descriptors such as short point trajectories and motion boundary histograms [80]
have been shown to provide high recognition results in a number of recent benchmarks. Concerning
action localization, [47] has addressed joint person detection and action localization in movies.

Weakly-supervised learning of actions. Weakly-supervised learning has been addressed in
the context of automatic annotation of still images with keywords [1, 32, 82] or labeling faces with
names in news [2]. Berg et al. [2] label detected faces in news photographs with names of people
obtained from text captions. Recent work has looked at learning spatial relations (such as “on

8References indicated by [L#] point to the work of the author. References [#] point to the work by others.
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1.4. RELATED WORK

top of”) from prepositions [33] or generating entire sentence-level captions for images [21, 60]. A
generative model of faces and poses (such as “hit backhand”) is learnt in [52] from names and
verbs in manually provided captions for news photographs. While the goal of this work is related
to ours, we focus on learning from video with sparse, noisy and imprecise annotations extracted
from a script. To deal with the imprecise temporal localization of actions, Chapter 3 develops a
new discriminative weakly-supervised method for temporal clustering of actions. Action clustering
has been addressed with generative methods, e.g., in [89], but for much simpler setups than ours.
Our weakly supervised clustering is also related to the work on learning object models from weakly
annotated images [10, 48]. The temporal localization of training samples in videos, addressed in
this work, is similar in spirit to the weakly supervised learning of object part locations for object
detection [24] and temporal localization of action parts [28, 57, 76]. In video, manually provided
text descriptions have been used to learn a causal model of human actions in the constrained do-
main of sports events [34]. Others have looked at learning character classifiers from videos with
readily-available text [11, 18, 72], our work described in Chapter 3 was among the first to consider
weakly-supervised learning of actions in video. In parallel to our work, Buehler et al. [6] have
proposed learning sign language from weak TV video annotations using multiple instance learning.

Recognition of object function. The interplay between people and objects has recently at-
tracted significant attention. Interactions between people and objects have been studied in still
images with the focus on improving action recognition [34],[L3], object localization [15, 34, 75] and
discovery [64] as well as pose estimation [86, 87]. In video, constraints between human actions
and objects (e.g., drinking from a coffee cup) have been investigated in restricted laboratory se-
tups [29, 34, 45] or ego-centric scenarios [22]. In both still images and video the focus has been
typically on small objects manipulated by hands (e.g., coffee cups, footballs, tennis rackets) rather
than larger objects such as chairs, sofas or tables, which exhibit large intra-class variability. In
addition, manual annotation of action categories [34, 45] or human poses [86] in the training data
is often required.

Functional scene descriptions have been developed for surveillance setups, e.g., [63, 77, 81], but
the models are usually designed for specific scene instances and use only coarse-level observations
of object/person tracks [77, 81], or approximate person segments obtained from background sub-
traction [63]. In contrast, the method proposed in Chapter 5 generalizes to new challenging scenes,
and uses finer grain descriptors of estimated body configuration enabling discrimination between
object classes such as sofas and chairs.

Recent related work [31, 35] has inferred functions or affordances, i.e., types of actions supported
by objects or scenes (chair: sitting) [30] from automatically obtained noisy 3D reconstructions of
indoor scenes. These methods infer affordance based on the geometry and physical properties of
the space. For example, they find places where a person can sit by fitting a 3D human skeleton
in a particular pose at a particular location in the scene. While people can sit at many places,
they tend to sit in sofas more often than on tables. Moreover, they may sit on sofas in a different
way than on a floor or on a chair. In our work we aim to leverage these observations and focus on
statistical affordances by learning typical human poses associated with each object.

In a setup similar to ours, Fouhey et al. [L5] have looked at people’s actions as a cue for a coarse
3D box-like geometry of indoor scenes. Here we investigate the interplay between object function
and object classes, rather than scene geometry. While in [L5] the geometric person-scene relations
are designed manually, we here learn semantic person-object interactions from data.

6



Chapter 2

Video representations for action
recognition

As discussed in the Introduction, the appearance of actions in video is very variable (Figure 1.1).
Addressing this variability explicitly through detailed understanding of scene structure (e.g., loca-
tions and properties of objects, pose and motion of people, scene geometry, etc.) would have clear
benefits. Unfortunately, the reliable interpretation of scene details from visual data is still a hard
challenge for automatic methods. This chapter addresses the problem from another direction and
attempts to model actions without explicit assumptions on the scene structure. While such an
approach is expected to have some disadvantages, it benefits from being conceptually simple and
direct, for example, by eliminating error accumulation of intermediate steps (person and object
detection, tracking, pose estimations, etc.). The proposed approach currently provides state-of-
the-art results for action recognition in challenging and realistic settings. As shown at the end of
this chapter, our approach permits the gradual introduction of scene structure leading to further
improvements. This chapter is based on the work done in collaboration with students Marcin
Marsza lek, Muneeb Ullah and Heng Wang and was published in [L14, L22, L23].

2.1 Bag-of-features video classification

We represent videos by collections of local space-time patches. The intuition behind the approach
is illustrated in Figure 2.1, where videos of three simple actions are represented with space-time
surfaces obtained by thresholding gray-value. One can observe that each sequence has local space-
time neighborhoods with action-characteristic structure. Building action representations based on
local space-time neighborhoods, hence, has the promise of being both discriminative and resis-
tant to global variations of actions and the background. The method is also closely related to
image representations in terms of local image patches that have been shown successful for image
classification tasks [62, 90].

2.1.1 Space-time features

To select characteristic space-time neighborhoods, we follow our previous work [L8] and detect
interest points using a space-time extension of the Harris operator. Rather than performing scale
selection as in [L8], we use a multi-scale approach and extract features at multiple levels of spatio-
temporal scales (σ2

i , τ
2
j ). The detected interest points are illustrated in Figure 2.1.

7



2.1. BAG-OF-FEATURES VIDEO CLASSIFICATION

To characterize the motion and appearance of local features, we compute histogram descriptors
of space-time volumes in the neighborhood of detected points. The size of each volume (∆x,∆y,∆t)
is related to the detection scales by ∆x,∆y = 2ασ, ∆t = 2ατ . Each volume is subdivided into
a (nx, ny, nt) grid of cuboids; for each cuboid we compute coarse histograms of oriented gradient
(HOG) and optic flow (HOF) [13, 14]. Normalized histograms are concatenated into HOG and HOF
descriptor vectors and are similar in spirit to the well known SIFT descriptor. We use parameter
values α = 9, nx, ny = 3, nt = 2.

Figure 2.1: Examples of space-time interest points (STIP) [L8] extracted for video sequences with two
human actions. One image for each video is shown together with a level-surface of image brightness
illustrating the evolution of actions in space-time. Example space-time patches extracted at STIP locations
are shown to the right of each action.

Feature encoding
e.g. histogram

space-time patches

Extraction of 
Local features

Feature
description

Visual 
vocabulary

Feature
quantization

Classification 
e.g. non-linear 
SVM with χ2

kernel

Input video

Figure 2.2: Left: Space-time interest points detected for two movie samples with “hand shake” and “get
out car” actions. Right: Overview of the bag-of-features action classification pipeline.

2.1.2 Spatio-temporal bag-of-features

Given a set of spatio-temporal features, we build a spatio-temporal bag-of-features (BOF) [12].
This requires the construction of a visual vocabulary. In our experiments we cluster a subset
of 100k features sampled from the training videos with the k-means algorithm. The number of
clusters is set to k = 4000, which has shown empirically to give good results and is consistent with
the values used for static image classification. The BOF representation then assigns each feature
to the closest (we use Euclidean distance) vocabulary word and computes the histogram of visual
word occurrences over a space-time volume corresponding either to the entire video sequence or
subsequences defined by a spatio-temporal grid. If there are several subsequences, the different
histograms are concatenated into one vector and then normalized.

8



CHAPTER 2. VIDEO REPRESENTATIONS FOR ACTION RECOGNITION

To capture the coarse location of local features, we extend the spatial pyramid of [49] and sub-
divide videos using spatio-temporal grids. In the spatial dimensions we use a 1×1, 2×2, 3×3,
horizontal h3×1 as well as vertical v1×3 grids. We have also implemented a center-focused o2×2
grid where neighboring cells overlap by 50%. For the temporal dimension we subdivide the video
sequence into 1 to 3 non-overlapping temporal bins, resulting in t1, t2 and t3 binnings (Figure 2.3).
We have also implemented a center-focused ot2 binning. The combination of six spatial grids
with four temporal binnings results in 24 possible spatio-temporal grids. Each combination of a
spatio-temporal grid with a descriptor, either HOG or HOF, is in the following called a channel.

2.1.3 Action classification

For classification, we use a non-linear support vector machine with a multi-channel χ2 kernel that
robustly combines channels [90]. We use the multi-channel Gaussian kernel defined by:

K(Hi, Hj) = exp
(
−
∑
c∈C

1

Ac
Dc(Hi, Hj)

)
(2.1)

where Hi = {hin} and Hj = {hjn} are the histograms for channel c and Dc(Hi, Hj) is the χ2

distance. The parameter Ac is the mean value of the distances between all training samples for
a channel c [90]. The best set of channels C for a given training set is found based on a greedy
approach. Starting with an empty set of channels, all possible additions and removals of channels
are evaluated until a maximum is reached. In the case of multi-class classification we use the
one-against-all approach.

Results. We test our methods on the task of action classification in the Hollywood-2 dataset
collected from action samples in movies (Section 3.2.1). The dataset contains 12 action classes with
large and natural variability of action samples. The results are illustrated in Table 2.1 in terms of
per-class average precision and overall mean average precision values. While the performance of
individual grid channels is similar to each other, their combination improves the BOF channel by
3.4%. The performance is significantly higher than chance for all action classes.
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mAP 50.7 48.8 48.7 48.6 48.6 48.4 48.3 48.0 48.0 47.5 47.4 47.3 47.1 47.1 46.9 46.3 46.3 45.1 9.2
AnswerPhone 20.9 22.1 23.0 20.7 16.6 23.4 22.5 21.1 12.1 19.4 12.4 15.7 19.8 13.8 15.6 23.3 12.0 19.2 7.2

DriveCar 84.6 83.9 83.2 84.5 84.1 84.2 83.4 83.1 86.3 83.6 86.1 86.6 81.8 85.5 82.1 83.5 84.7 83.5 11.5
Eat 67.0 63.5 63.9 62.6 61.9 62.4 65.1 62.9 63.4 64.0 63.8 59.5 62.9 62.3 62.8 58.7 64.7 57.7 3.7

FightPerson 69.8 69.0 66.3 68.8 66.2 68.6 67.5 66.3 71.7 67.3 69.7 71.1 64.3 69.8 65.7 67.2 68.7 68.0 7.9
GetOutCar 45.7 38.1 44.8 42.2 40.2 44.4 41.8 45.3 34.6 39.0 35.1 29.3 42.2 35.0 37.2 43.7 30.0 37.0 6.4
HandShake 27.8 24.5 23.7 21.3 25.0 20.4 21.4 24.9 21.2 25.6 24.0 21.2 25.2 25.1 25.3 22.1 26.3 20.9 5.1
HugPerson 43.2 38.4 39.5 36.3 40.4 36.0 35.3 37.8 40.4 40.8 37.7 35.8 36.0 38.5 37.0 34.5 37.6 33.3 7.5

Kiss 52.5 50.7 49.0 52.3 52.4 48.7 48.8 46.1 54.4 49.6 52.6 51.5 47.6 50.3 51.4 44.9 52.6 44.3 11.7
Run 67.8 65.7 60.5 67.5 63.2 64.3 62.8 60.8 68.3 63.8 66.4 69.1 57.8 67.3 61.1 63.6 65.5 66.0 16.0

SitDown 57.6 52.8 50.3 54.0 52.6 53.5 53.1 51.5 53.9 51.3 53.4 58.2 53.0 53.1 52.9 50.5 51.6 51.0 12.2
SitUp 17.2 21.5 25.6 17.2 27.2 19.4 20.5 23.1 19.7 14.4 20.7 17.5 21.1 14.6 20.2 10.6 15.4 8.3 4.2

StandUp 54.3 55.6 54.9 56.0 53.1 55.3 57.2 53.1 49.8 51.2 47.6 51.7 53.6 49.3 51.8 53.3 46.6 51.8 16.5

Table 2.1: Results of action classification on the Hollywood-2 dataset (clean training subset). Results
are reported in terms of per-class and per-channel average precision values (%). Mean average precision
(mAP) is shown in the top row. 17 best single channels are shown sorted in the decreasing order of mAP.
Results for the 24-channel combination are shown in the first column. The chance performance is given
in the last column
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2.2. EVALUATION OF LOCAL FEATURES FOR ACTION RECOGNITION
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Figure 2.3: (Left): Examples of spatio-temporal grids. (Right): Sample frames from video sequences of
KTH (top), UCF Sports (middle), and Hollywood-2 (bottom) human action datasets.

2.2 Evaluation of local features for action recognition

Since our work [L8, L14, L21], several variants of local video features have been proposed. This
section evaluates the performance of space-time feature detectors and descriptors presented prior
to the publication of [L23]. We evaluate three spare detectors: Harris3D [L8], Cuboids [16] and
Hessian [83] as well as the “dense detector” corresponding to the uniform sampling of space-time
patches. We also evaluate several local descriptors: HOG, HOF and their concatenation HOGHOF
(see previous section), HOG3D [46], Cuboids [16] and ESURF [83]. The evaluation is performed
on three action datasets: KTH actions [L21], UCF sports [65] and Hollywood-2 [L18] illustrated in
Figure 2.3(Right). We have used BOF histogram feature encoding (no space-time grids) and SVM
with χ2 kernel for classification as described in the previous section.

Results of the evaluation are summarized in Table 2.2. Among the main conclusions we no-
tice that the dense detector outperforms sparse detectors on the realistic UCF and Hollywood-2
datasets, probably due to the action-characteristic information in the background. Among descrip-
tors, we notice the relatively low performance of the HOG descriptor indicating the importance of
motion information captured by other descriptors.

KTH actions dataset
HOG3D HOGHOF HOG HOF Cuboids ESURF

Harris3D 89.0% 91.8% 80.9% 92.1% – –
Cuboids 90.0% 88.7% 82.3% 88.2% 89.1% –
Hessian 84.6% 88.7% 77.67% 88.6% – 81.4%
Dense 85.3% 86.1% 79.0% 88.0% – –

UCF sports dataset
HOG3D HOGHOF HOG HOF Cuboids ESURF

Harris3D 79.7% 78.1% 71.4% 75.4% – –
Cuboids 82.9% 77.7% 72.7% 76.7% 76.6% –
Hessian 79.0% 79.3% 66.0% 75.3% – 77.3%
Dense 85.6% 81.6% 77.4% 82.6% – –

Hollywood-2 dataset
HOG3D HOGHOF HOG HOF Cuboids ESURF

Harris3D 43.7% 45.2% 32.8% 43.3% – –
Cuboids 45.7% 46.2% 39.4% 42.9% 45.0% –
Hessian 41.3% 46.0% 36.2% 43.0% – 38.2%
Dense 45.3% 47.4% 39.4% 45.5% – –

Table 2.2: Results of action classification for various detector/descriptor combinations. Average accuracy
is reported for KTH and UCF datasets. Mean average precision (mAP) is reported for Hollywood-2
dataset. 10



CHAPTER 2. VIDEO REPRESENTATIONS FOR ACTION RECOGNITION
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Figure 2.4: (Left): Schematic illustration of bag-of-features models with non-local cues. (Right): Examples
of object and action regions used in this work.

2.3 Bag-of-features action recognition with non-local cues

Bag-of-features methods represent videos by order-less collections of local patches and, hence, lack
information about the global structure of actions and scenes. The space-time grids introduced in
Section 2.1.2 address this issue and encode rough feature positions in the global coordinate frame
of a video. Here we refine this idea and introduce “semantic coordinate frame” with the aim of
encoding feature positions with respect to particular objects or regions of the scene. We rely on a
set of methods for segmenting the video into regions and compute bag-of-features representations
(channels) separately for each type of such regions. A schematic illustration of our method is
presented in Figure 2.4(Left). We consider four methods of region segmentation as described next.

Foreground/background motion segmentation. Foreground regions are more likely to be-
long to the action. We segment the video into foreground and background regions using motion-
based video segmentation using [58]. We generate four pairs of fg/bg masks by thresholding the
estimated foreground likelihood maps using four threshold values. The resulting regions define
eight feature channels referred to here by Motion8.

Action detection The global appearance of actions in a single frame may provide comple-
mentary cues to local action descriptors. We thus train static detectors for action classes of the
Hollywood-2 dataset using object detector [24]. For each class we collect positive training images
from Internet image search (Figure 2.5). Detection bounding boxes obtained on video frames define
action channels referred to here as Action12.

Person and object detection Similar to action detection, we use still image detectors for
people and objects to define person and object regions in the video. We use the Calvin upper-body
detector [7] to find person regions in the video. We also use object detectors [24] trained on the
Pascal VOC2008 dataset. We apply multiple detection thresholds to each detector type and obtain
person and object regions with the corresponding bag-of-features channels different thresholds to
each detector to obtain bag-of-feature channels denoted by Person12 and Objects12 respectively.

Experimental results. The results of our method are summarized in Table 2.3. We evaluate
action recognition on the Hollywood-2 dataset and present results for different combination of chan-
nels defined above. The first two columns in Table 2.3 correspond to the bag-of-features (BOF) and
space-time grid (STGrid24) baselines presented in Section 2.1. Each type of new channel obtains
slightly better performance compared to STGrid24. Channel combinations using multi-channel
kernel (2.1), on the other hand, result in significant improvements. In particular we note that

11



2.4. SUMMARY

AnswerPhone DriveCar Eat HandShake HugPerson Kiss Run Sitting

Figure 2.5: Sample images collected from the Internet and used to train action detectors.

Channels BOF STGrid24 Action12 STGrid24 STGrid24
+ Action12 + Motion8

+ Action12
+ Person12
+ Objects12

mean AP 0.486 0.518 0.528 0.557 0.553

AnswerPhone 0.157 0.259 0.208 0.263 0.248

DriveCar 0.876 0.859 0.869 0.865 0.881

Eat 0.548 0.564 0.574 0.592 0.614

FightPerson 0.739 0.749 0.757 0.762 0.765

GetOutCar 0.334 0.440 0.383 0.457 0.474

HandShake 0.200 0.297 0.457 0.497 0.384

HugPerson 0.378 0.461 0.408 0.454 0.446

Kiss 0.521 0.550 0.560 0.590 0.615

Run 0.711 0.694 0.732 0.720 0.743

SitDown 0.590 0.589 0.596 0.624 0.613

SitUp 0.239 0.184 0.241 0.275 0.255

StandUp 0.533 0.574 0.549 0.588 0.604

Table 2.3: Per-class AP performance by different channels and channel combinations.

the classification of “hand shake” class improves from 20% (BOF) to 49.7% (STGrid24+Action8).
This improvement correlates with the good performance of the static hand shake detector in our
experiments.

2.4 Summary

This chapter has described an approach to action recognition based on a statistical video repre-
sentation in terms of local features. The method does not rely on the intermediate steps (e.g.,
person detection and tracking), and achieves encouraging results for very challenging video data.
Our evaluation of alternative local features on the final task of action recognition emphasizes the
advantage of densely sampled motion descriptors. While some structural information has been
introduced to bag-of-features representations, the method is still lacking the ability of explicitly
reasoning about the spatial structure and the causality of dynamic scenes. Future extensions in
this direction will likely improve performance of action recognition and will provide interpretations
of people, their motion trajectories, scene layouts, objects, etc.

12



Chapter 3

Weakly-supervised learning of actions

Learning methods for human action recognition described in the previous chapter require many
video samples of human actions with corresponding action labels. The collection of action samples
by recording staged actions has been attempted in the past, e.g., to compose the KTH [L21] and
Weizmann [4] datasets. Such an approach, however, typically fails to represent the rich variety
of actions given the difficulty of sampling many realistic environments and involving many skilled
actors. Existing video resources such as movies, TV series and YouTube, on the other hand, already
contain a large number of realistic action samples which could be used for training. One way to
collect action samples from these resources would be through manual annotation. Unfortunately,
manual video annotation is difficult to scale beyond a few action classes given the rare occurrence
of the majority of the classes. For example, the actions “Hand Shake” and “Answer Phone” appear
only 2-3 times per movie on average1.

This chapter explores the use of video scripts as a source of weak and automatic video supervision.
First, Section 3.1 presents a method for automatic annotation of actions in movies using scripts.
Section 3.2 extends this method to the automatic annotation of scenes and shows the benefit of joint
action and scene recognition. Finally, Section 3.3 addresses the problem of temporal uncertainty in
script-based video annotation and describes a discriminative clustering method for learning human
actions. This chapter is based on the work done in collaboration with students Marcin Marsza lek
and Olivier Duchenne and was published in [L4, L14, L18].

3.1 Learning actions from movie scripts

Video scripts are publicly available for hundreds of popular movies2 and provide text description
of the movie content in terms of scenes, characters, transcribed dialogs and human actions. Scripts
as a mean for video annotation have been previously used for the automatic naming of characters
in videos by Everingham et al. [18]. Here we extend this idea and apply text-based script search
to automatically collect video samples for human actions.

The automatic annotation of human actions from scripts, however, is not straightforward. First,
scripts usually come without time information and have to be aligned with the video. Second,
actions described in scripts do not always correspond with the actions in movies. Third, action
retrieval has to cope with the substantial variability of action expressions in text. We address these
problems in Sections 3.1.1 and 3.1.2 and show action classification results on the automatically
collected video dataset in Section 3.1.3.

1The statistics was obtained by manually annotating “Hand Shake” and “Answer Phone” actions in 69 movies.
2Resources of movie scripts include www.dailyscript.com, www.movie-page.com and www.weeklyscript.com.

13

www.dailyscript.com,
www.movie-page.com
www.weeklyscript.com


3.1. LEARNING ACTIONS FROM MOVIE SCRIPTS

3.1.1 Alignment of actions in scripts and video

Movie scripts are typically available in plain text format and share a similar structure. We use line
indentation as a simple feature to parse scripts into monologues, character names and scene descrip-
tions (Figure 3.1(a),right). To align scripts with the video we follow [18] and use time information
available in movie subtitles that we separately download from the Web. Similar to [18] we first align
speech sections in scripts and subtitles using word matching and dynamic programming. We then
transfer time information from subtitles to scripts and infer time intervals for scene descriptions as
illustrated in Figure 3.1(a). Video clips used for action training and classification in this work are
defined by time intervals of scene descriptions and, hence, may contain multiple actions and non-
action episodes. To indicate a possible misalignment due to mismatches between scripts and sub-
titles, we associate each scene description with the alignment score a. This “a-score” is computed
as the ratio of matched words in the near-by monologues as, a = (#matched words)/(#all words).
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0

0.2

0.4

0.6

0.8

1

a=1.0 a≥0.5

pr
ec

is
io

n

number of samples

Evaluation of retrieved actions on visual ground truth

[1:13:41 - 1:13:45]
A black car pulls up.
Two army officers get out.

(a) (b) (c)

Figure 3.1: (a): Example of matching speech sections (green) in subtitles and scripts. Time information
(blue) from adjacent speech sections is used to estimate time intervals of scene descriptions (yellow). (b):
Precision of script-based action annotation in video evaluated on visual ground truth. (c): Example of a
“get out of car” action which is mentioned in the script but happens outside of the view of the camera.

Temporal misalignment may result from the discrepancy between subtitles and scripts. Perfect
subtitle alignment (a = 1), however, does not guarantee the correct action annotation in video due
to possible discrepancies between scripts and movies. To investigate this issue, we have manually
annotated several hundreds of actions in 12 movie scripts and compared these to the visual ground
truth obtained by manual video annotation. From 147 actions with correct text alignment (a=1)
only ∼70% did match with the video. The rest of the samples either were misaligned in time (∼
10%), were outside the field of view (∼10%) or were completely missing in the video (∼10%). The
misalignment of subtitles (a < 1) further decreases visual precision as illustrated in Figure 3.1(b).
Figure 3.1(c) shows a typical example of a “visual false positive” for the action “GetOutCar”
occurring outside the field of view of the camera.

3.1.2 Text retrieval of human actions

Expressions for human actions in text may have a considerable within-class variability. The fol-
lowing examples illustrate variations in expressions for the “GetOutCar” action: “Will gets out of
the Chevrolet.”, “A black car pulls up. Two army officers get out.”, “Erin exits her new truck.”.
Furthermore, false positives might be difficult to distinguish from real ones, see examples for the
“SitDown” action: “About to sit down, he freezes.”, “Smiling, he turns to sit down. But the smile
dies on his face when he finds his place occupied by Ellie.”. Text-based action retrieval, hence, is

14
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Figure 3.2: Text-based retrieval of action samples from scripts. (a),(b): Precision-Recall for action retrieval
using regular expression matching and regularized perceptron classification. (c): Statistics of action
samples in the automatic training, clean training and test sets of the Hollywood human action dataset.

a non-trivial task that might be difficult to solve by a simple keyword search such as commonly
used for retrieving images of objects, e.g. in [67].

To cope with the variability of natural language descriptions of actions, we adopt a text classi-
fication approach [68]. A classifier labels each scene description in scripts as containing the target
action or not. The implemented approach relies on the bag-of-features model, where each scene
description is represented as a sparse vector in a high-dimensional feature space. As features we use
words, adjacent pairs of words, and non-adjacent pairs of words occurring within a small window
of N words where N varies between 2 and 8. Features supported by fewer than three training
documents are removed. For the classification we use a regularized perceptron [91]. The classi-
fier is trained on a manually labeled set of scene descriptions, and the parameters (regularization
constant, window size N, and the acceptance threshold) are tuned using a validation set.

We evaluate text-based action retrieval on eight classes of movie actions. The text test set
contains 397 action samples and over 17K non-action samples from 12 manually annotated movie
scripts. The text training set was sampled from a large set of scripts different from the test set.
We compare results obtained by the regularized perceptron classifier and by matching regular
expressions which were manually tuned to expressions of human actions in text. The results in
Figures 3.2(a)-(b) clearly indicate the benefit of the text classifier. The average precision-recall
values over all classes are [prec. 0.95 / rec. 0.91] for the text classifier versus [prec. 0.55 / rec. 0.88]
for regular expression matching.

3.1.3 Action classification

Hollywood human actions dataset. Using the video-to-script alignment and text classification
described above, we have constructed Hollywood human actions dataset3 with two training and
one test subsets containing eight classes of actions (see Figure 3.2(c)). Action samples in training
and test subsets come from two non-overlaping sets of 12 and 20 Hollywood movies respectively.
For all subsets we first apply automatic script alignment and script-based action annotation. For
samples in the clean training and test subsets we manually verify and correct action labels. The
automatic training subset contains samples that have been retrieved automatically from scripts
by the text classifier. We limit the automatic training subset to actions with an alignment score
a > 0.5 and a video length of less than 1000 frames. As shown in Figure 3.2(c), the label noise of
the automatic training set is ∼40%.

3The dataset is available from http://www.irisa.fr/vista/actions.
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Figure 3.3: (a): Accuracy of action classification for the KTH dataset using varying fractions of wrong
labels at training time. (b): Average precision (AP) of action classification for the Hollywood dataset
using clean and automatic training subsets.

Robustness to noise in the training data. Given the large amount of label noise in the
automatic training subset, we first test the action classification method (see Section 2.1) on the
simpler KTH dataset under varying amount of label noise. Figure 3.3(a) shows the recognition
accuracy as a function of the probability p of a training sample label being wrong. Different wrong
labelings are generated and evaluated 20 times for each p; the average accuracy and its variance are
reported. The experiment shows that the performance of action classification degrades gracefully
in the presence of labeling errors. At p = 0.4 the performance decreases by around 10%. A
comparable level of resistance to label noise have been observed by the authors of [L14] when
evaluating image classification on the Pascal VOC’07 dataset.

Action recognition in real-world videos. We report action classification results for eight
action classes in 217 test videos of the Hollywood dataset. To measure the effect of noisy labels in
the automatic training set, we train binary action classifiers for the clean and automatic training
subsets. The performance for both classifiers is compared to chance and is reported using per-class
average precision measure in Figure 3.3(b).

The results obtained by the trained classifiers can be regarded as good given the difficulty of
the problem and the relatively small number of training samples. The results obtained for the
automatic training subset are lower compared to the clean training subset, however, for all classes
except “HandShake” the automatic training obtains significantly higher performance than chance.
This shows that script-based action annotation can be used successfully to automatically train
action classifiers and, hence, to scale action recognition to many new action classes. Moreover, as
will be shown in the next section, a further increase in performance can be obtained by increasing
the number of training samples when using additional movies and scripts for training. Explicitly
resolving the noise issue in the automatic training set is another direction for improvement that
will be explored in Section 3.3.

3.2 Joint recognition of actions and scenes

Human actions are frequently constrained by the purpose and the physical properties of scenes and
demonstrate high correlation with particular scene classes. For example, eating often happens in
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CHAPTER 3. WEAKLY-SUPERVISED LEARNING OF ACTIONS

eating, kitchen eating, cafe running, road running, street

Figure 3.4: Video samples from our dataset with high co-occurrences of actions and scenes and automat-
ically assigned annotations.

a kitchen while running is more common outdoors (see examples in Figure 3.4). In this section
we aim to exploit relations between actions and scenes. Using movie scripts as a means of weak
supervision we (a) automatically discover relevant scene classes and their correlation with human
actions, (b) show how to learn selected scene classes from video without manual supervision,
and (c) develop a joint framework for action and scene recognition and demonstrate improved
recognition of both in natural video.

3.2.1 Action and scene retrieval

Actions. To automatically collect video samples for human actions, we follow the approach of
the previous section and automatically annotate twelve frequent action classes in 69 movies using
the corresponding scripts. The training subsets and the test subset are obtained from two non-
overlaping sets of movies. The resulting dataset (Hollywood-24) extends the Hollywood dataset in
Section 3.1 with more action classes and samples as illustrated in Figure 3.5(a).

Scenes. We aim to automatically (i) identify action-related scene types and (ii) estimate co-
occurrence relations between actions and scenes. We use movie scripts and explore scene captions,
i.e., short descriptions of the scene setup, which are consistently present in most movie scripts and
usually provide information on the locations and day times:

INT. TRENDY RESTAURANT - NIGHT
INT. M. WALLACE’S DINING ROOM - MORNING
EXT. STREETS BY DORA’S HOUSE - DAY.

To discover relevant scene concepts, we collect unique words and consecutive word pairs from
the captions. We use WordNet [23] to select expressions corresponding to instances of “physical
entity”. We also use the WordNet hierarchy to generalize concepts to their hyponyms, such as
taxi→car, cafe→restaurant, but preserve concepts which share hyponyms, such as kitchen, living
room and bedroom, that share the room hyponym. We also explicitly recognize INT (interior) and
EXT (exterior) tags. From the resulting 2000 contextual concepts we select 30 that maximize
co-occurrence with action classes in the training scripts. To select both frequent and informative
concepts, we sort them by the entropy computed for distributions of action labels. This results in
an ordered list from which we take the top ten scene concepts (see Figure 3.5(b)).

Figure 3.5(c) illustrates co-occurrences between automatically selected scene classes and actions.
The size of the circles corresponds to the estimated probabilities of scenes for given action classes
and coincides well with intuitive expectations. For example, running mostly occurs in outdoor
scenes while eating mostly does in kitchen and restaurant scenes. Figure 3.5(c) also shows the
consistency of action-scene relations estimated from text and from the visual ground truth.

4The dataset is available from http://www.irisa.fr/vista/actions/hollywood2.
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(a) (b) (c)

Figure 3.5: (a)-(b): Distribution of video samples over action and scene classes as well as different subsets
of the Hollywood-2 dataset. (c): Conditional probabilities p(Scene|Action) estimated from scripts (green)
and ground truth visual annotation (yellow). Note the consistency of high probability values (large
circles) with intuitively expected correlations between actions and scenes. Observe also the consistency of
probability values automatically estimated from text and manually estimated from visual video data.

3.2.2 Classification with context

The goal in this section is to improve action classification based on scene context. We assume we
are given action and scene classifiers ga, gs obtained from automatically generated training samples
as described in the previous section. For a given test sample x, we integrate scene context by
updating the action classification score ga(x) for an action a ∈ A. To the original classification
score we add a linear combination of the scores gs(x) for contextual concepts (scenes) s ∈ S:

g′a(x) = ga(x) + τ
∑
s∈S

wasgs(x) (3.1)

where τ is a global context weight and was are the weights linking concepts a and s. The parameter
τ allows to control the influence of the context. We have observed that the results are not very
sensitive to this parameter and set τ = 2 for all our experiments.

Mining contextual links from scripts. One way to obtain the weights was is by using action-
scene correlations estimated from scripts. As shown in Figure 3.5(c), such correlations correspond
well to our intuition and to the actual action-scene correlations in the video. Let us rewrite the
context model in (3.1) as

ḡ′a(x) = ḡa(x) + τ Wḡs(x) (3.2)

where ḡ′a(x) is the vector of new scores and ḡa(x) is a vector with the original scores for all basic
(action) classes, ḡs(x) is a vector with scores for all context (scene) classes, andW is a weight matrix.
We determine W from scripts of the training set by defining it in terms of conditional probabilities
Wij = p(ai|sj). Wḡs(x) can be interpreted as a vector proportional to (p(a1), ..., p(an))> if we
consider the classification scores ḡs(x) as likelihoods of scene labels.
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SIFT
HOG HOG

SIFT HOF HOF

Action average 0.200 0.324 0.326

Scene average 0.319 0.296 0.351

Total average 0.259 0.310 0.339

Actions
Context mAP

text context 0.352

no context 0.326

context only 0.212

chance 0.125

(a) (b)

Table 3.1: (a): Average precision for the classification of actions and scenes in the Hollywood-2 dataset
using automatic subsets for training and different sets of features. Both actions and scenes classes benefit
from combining static and dynamic features. (b): mean average precision for action classification with
and without scene context.

3.2.3 Experimental results

We represent actions and scenes by histograms of quantized local feature descriptors computed
over videos. In particular, we use local STIP feature detectors in combination with HOG and
HOF descriptors to describe dynamic video content as described Chapter 2. We also use SIFT
descriptors extracted on every 25th frame of a video to represent scene-specific static information.
We use SVM with χ2 kernel to obtain separate action and scene classifiers ga, gs trained for different
subsets of features. Table 3.1(a) presents results for independent action and scene classification
using dynamic and static features as well as their combination.

The results of action classification using scene context are presented in Table 3.1(b). As can be
seen, scene context improves action classification by 2.5% on average. The largest gain of 10% was
observed for action classes SitUp and DriveCar, which have strong correlation with scene classes
Bedroom and Car respectively (see Figure 3.5(c)). Interestingly, using context only, i.e., classifying
actions with only contextual scene classifiers, is still significantly better than chance. This clearly
demonstrates the importance of context for action recognition in natural scenes.

3.3 Weakly-supervised temporal action localization

This section addresses the problem of automatic temporal localization of human actions in video.
We consider two associated problems: (a) weakly-supervised learning of action models from readily
available annotations, and (b) temporal localization of human actions in test videos. As in the
previous sections of this chapter, we use movie scripts as a means of weak supervision. Scripts,
however, provide only implicit, noisy, and imprecise information about the type and location of
actions in video. We address this problem with a kernel-based discriminative clustering algorithm
that locates actions in the weakly-labeled training data. Using the obtained action samples, we
train temporal action detectors and apply them to locate actions in the raw video data.

3.3.1 Automatic supervision for action recognition

Script-based retrieval of action samples. We follow Section 3.1 and automatically collect
training samples with human actions using video scripts. While Section 3.1 uses supervised text
classification to localize human actions in scripts, here we avoid manual text annotation altogether.
We use the OpenNLP toolbox [59] for natural language processing and apply part of speech (POS)
tagging to identify instances of nouns, verbs and particles. We also use named entity recognition
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(NER) to identify people’s names. Given results of POS and NER we search for patterns corre-
sponding to particular classes of human actions such as (*/PERSON .* opens/VERB .* door/NOUN).
This procedure automatically locates instances of human actions in text such as “... Jane jumps up
and opens the door ...”, “... Carolyn opens the front door ...”, “... Jane opens her bedroom
door ...”.

Temporal localization of actions in video. Automatic script alignment described in Sec-
tion 3.1.1 only provides coarse temporal localization of human actions, especially for episodes with
rare dialogues. In addition, incorrect ordering of actions and speech in scripts and errors of script-to-
subtitle alignment often result in unreliable temporal offsets. To overcome temporal misalignment,
we increase the estimated time boundaries of scene descriptions and obtain corresponding videos
denoted here as video clips. Table 3.2 illustrates the accuracy of automatic script-based annotation
in video clips with increasing temporal extents.

Training an accurate action classifier requires video clips with both accurate labels and precise
temporal boundaries. The high labelling accuracy in Table 3.2, however, is bound to the imprecise
temporal localization of action samples. This trade-off between accuracies in labels and tempo-
ral localization of action samples comes from the aforementioned problems with imprecise script
alignment. In this section we target this problem and address visual learning of human actions
in a weakly supervised setting given imprecise temporal localization of training samples. Next,
we present a weakly supervised clustering algorithm to automatically localize actions in training
samples.

3.3.2 Human action clustering in video

To train accurate action models we aim at localizing human actions inside video clips provided
by automatic video annotation. We assume most of the clips contain at least one instance of a
target action and exploit this redundancy by clustering clip segments with consistent motion and
shape. We next formalize the clustering problem and describe a discriminative clustering procedure.
Section 3.3.3 evaluates the effect of the method for weakly-supervised action localization.

Discriminative clustering for video clips. Our goal is to jointly segment video clips con-
taining a particular action—that is, we aim at separating what is common within the video clips
(i.e., the particular action) from what is different among these (i.e, the background frames). Our
setting is however simpler than general co-segmentation in the image domain since we only perform
temporal segmentation. That is, we look for segments that are composed of contiguous frames.

For simplicity, we further reduce the problem to separating one segment per video clip (the
action segment) from a set of background video segments, taken from the same movie or other
movies, and which are unlikely to contain the specific action. We thus have the following learning
problem: We are given M video clips c1, . . . , cM containing the action of interest but at unknown

Clip length (frames) 100 200 400 800 1600

Label accuracy 19% 43% 60% 75% 83%

Localization accuracy 74% 37% 18% 9% 5%

Table 3.2: Accuracy of automatic script-based action annotation in video clips. Label accuracy indicates
the proportion of clips containing labeled actions. Localization accuracy indicates the proportion of
frames corresponding to labeled actions. The evaluation is based on the annotation of three actions
classes: StandUp, SitDown and OpenDoor in fifteen movies selected based on their availability.
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(a) (b)

Figure 3.6: (a): Illustration of the temporal action clustering problem. Given a set of M video clips
c1, . . . , cM containing the action of interest at unknown position, the goal is to temporally localize a
video segment in each clip containing the action. (b): In feature space, positive samples are constrained
to be located on temporal feature tracks corresponding to consequent temporal windows in video clips.
Background (non-action) samples provide further constrains on the clustering.

position within the clip as illustrated in Figure 3.6(a). Each clip ci is represented by ni temporally
overlapping segments centered at frames 1, . . . , ni represented by histograms hi[1], . . . , hi[ni] in
RN . Each histogram captures the `1-normalized frequency counts of quantized space-time interest
points, as described in Chapter 2, i.e. it is a positive vector in RN whose components sum to 1.
We are also given P background video segments represented by histograms hb1, . . . , h

b
P ∈ RN . Our

goal is to find in each of the M clips i one specific video segment centered at frame fi ∈ {1, . . . , ni}
so that the set of M histograms hi[fi], i = 1, . . . ,M form one cluster while the P background
histograms form another cluster as illustrated in figure 3.6(b).

Problem formulation. We formulate the above clustering problem as the minimization of a dis-
criminative cost function [84]. First, let us assume that correct segment locations fi, i ∈ {1, . . . ,M},
are known (i.e., we have identified the locations of the actions in video). We can now consider a sup-
port vector machine (SVM) [69] classifier aiming at separating the identified action video segments
from the given background video segments, which leads to the following cost function

J(f, w, b) = C+

M∑
i=1

max{0, 1 − w>Φ(hi[fi]) − b} + C−

P∑
i=1

max{0, 1 + w>Φ(hbi) + b} + ‖w‖2,

(3.3)

where w ∈ F and b ∈ R are parameters of the classifier and Φ is the implicit feature map from RN

to feature space F , corresponding to the intersection kernel between histograms, defined as [38]

k(x, x′) =
N∑
j=1

min (xj, x
′
j). (3.4)

Note that the first two terms in cost function (3.3) represent the hinge loss on positive and negative
training data weighted by factors C+ and C− respectively, and the last term is the regularizer of the
classifier. Note that training the SVM with locations fi known and fixed corresponds to minimizing
J(f, w, b) with respect to classifier parameters w, b.
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However, in the clustering setup considered in this work, where the locations fi of action video
segments within clips are unknown, the goal is to minimize the cost function (3.3) with respect to
both the locations fi and the classifier parameters w, b, so as to separate positive action segments
from (fixed) negative background video segments. Denoting by H(f) = minw∈F ,b∈R J(f, w, b) the
associated optimal values of J(f, w, b), the cost function H(f) now characterizes the separability of
a particular selection of action video segments f from the (fixed) background videos. Following [41,
84], we can now optimize H(f) with respect to the assignment f .

We use a coordinate descent algorithm, where we iteratively optimize H(f) with respect to
position fi of the action segment in each clip, while leaving all other components (positions of
other positive video segments) fixed. In our implementation, which uses the LibSVM [8] software,
in order to save computing time, we re-train the SVM (updating w and b) only once after an
optimal fi is found in each clip. The Initial histogram h0

i for each video clip ci is set to the average
of all segment histograms hi[fi] within the clip.

The evaluation of the above clustering procedure provides satisfactory results and details of this
evaluation can be found in [L4].

3.3.3 Action localization experiments

We test our full framework for automatic learning of action detectors including (i) automatic
retrieval of training action clips by means of script mining (Section 3.3.1), (ii) temporal localization
of actions inside clips using discriminative clustering (Section 3.3.2) and (iii) supervised temporal
detection of actions in test videos using a temporal sliding-window classifier. To train an action
classifier we use fifteen movies aligned with scripts, and choose two test action classes OpenDoor
and SitDown based on their high frequency in our data. The only manual supervision provided
to the system consists of text patterns for the actions defined as (*/PERSON .* opens/VERB .*

door/NOUN) and (*/PERSON .* sits/VERB .* down/PARTICLE). Matching these text patterns with
scripts results in 31 and 44 clips with OpenDoor and SitDown actions respectively. We use these
clips as input to the discriminative clustering algorithm and obtain segments with temporally
localized action boundaries. The segments are passed as positive training samples to train an
SVM action classifier. We compare the performance of our method with two action classifiers
trained using positive training samples corresponding to (a) entire clips and (b) ground truth
action intervals.

To test detection performance we manually annotated all 93 OpenDoor and 86 SitDown actions
in three movies: Living in oblivion, The crying game and The graduate. Detection results for the
three different methods and two action classes are illustrated in terms of precision-recall curves in
Figure 3.7. The comparison of detectors trained on clips and on action segments provided by the
clustering clearly indicates the improvement achieved by the discriminative clustering algorithm for
both actions. Moreover, the performance of automatically trained action detectors is comparable
to the detectors trained on the ground truth data. We emphasize the large amount (450.000 frames
in total) and high complexity of our test data illustrated with a few detected action samples in
Figure 3.8.

3.4 Summary

This chapter has addressed weakly-supervised learning of human actions in video. Our methods use
readily-available resources such as movie scripts to automatically annotate actions at the training
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Figure 3.7: Precision-recall curves corresponding to detection results for two action classes in three movies.
The three compared methods correspond to detectors trained on ground truth intervals (GT), clustering
output (Cluster) and clips obtained from script mining (Clip). Note that the axes are scaled between 0
and 0.5 for better clarity.

Examples of detected SitDown action Examples of detected OpenDoor action

Figure 3.8: Examples of action samples detected with the automatically trained action detector in three
test movies.

time and, hence, enable scalability of action recognition to many classes. While we have so far
explored the automatic annotation of action and scene types, video scripts contain much of the
additional and detailed information about objects, person-object interactions, person identities,
etc. Using such information will likely support richer modeling of dynamic scenes in the future.
Such modeling, however, will also require more structured representations of both video and text
compared to the bag-of-features methods used here. To overcome uncertainty of script-to-video
alignment and to handle the large variability of corresponding elements in video and text, new
weakly-supervised learning methods are required.
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Chapter 4

Object and action localization

The two previous chapters have addressed the problem of classification and the temporal local-
ization of events in the video without explicitly reasoning about their spatial location. While
classification tasks enable the use of conceptually simple and efficient bag-of-features representa-
tions, modeling spatial location of objects and events is important to reason about the structure
of dynamic scenes, e.g., to identify the people and objects involved in actions and interactions.

This chapter addresses the spatial localization of objects in images and spatio-temporal local-
ization of actions in the video. In contrast to methods described in the two previous chapters,
here we explicitly model the structure of objects and dynamic events in terms of parts. We first
present a method for object detection and then generalize it to the detection of simple actions
(e.g., “Drinking”) by considering actions as space-time objects in the video. This chapter is based
on the work published in [L9, L10, L15].

4.1 Object detection

We address the problem of category-level object localization in still images. We assume a number
of object images are provided for training along with the corresponding bounding box annotations.
To account for slight misalignments of objects within bounding boxes and to increase the size of
the training set, we “jitter” annotations by adding a small amount of noise to the corners of the
original annotations and generate multiple training samples I for each original object image as
illustrated in Figure 4.1(a).

We represent each cropped object sample by the collection of its subregions, or parts. To avoid
a heuristic selection of parts, we consider an exhaustive set of rectangular sub-windows r (see Fig-
ure 4.1(b)(left) and select a small subset of parts at training time. Following the work on SIFT and
HOG image descriptors [13, 51], we represent each part by the l1-normalized histograms of gradient
orientations (HOG). We construct HOG features by discretizing image gradient orientations into
m = 4 bins. To preserve rough location of image measurements within a part, we sub-divide parts
into cells using four alternative grids k and compute four features fk,r(I), k = 1...4 for each part r
as illustrated in Figure 4.1(b)(right).

4.1.1 AdaBoost learning

AdaBoost [26] is a popular machine learning method combining properties of an efficient classifier
and feature selection. The discrete version of AdaBoost defines a strong binary classifier C using

24



CHAPTER 4. OBJECT AND ACTION LOCALIZATION

Crop and 
resize

original training set expanded training set

Expand
annotation 
by adding 

noise Crop and resize

1x1 1x2 2x1 2x2

(a) (b)

Figure 4.1: (a): (Left): Positive training samples are obtained using crop-and-resize procedure applied to
training images with rectangular objects annotations. (Right): The same procedure is applied to training
images using the large number o f automatically generated noisy annotations. Note how annotation noise
adds simulated affine deformations to the novel training samples. (b): Histogram features. (Left): Sample
regions from an exhaustive set of regions defined by different spatial extents and positions within the
object window. (Right): histogram features computed for each region according to four types of spatial
grids.

a weighted combination of T weak learners ht with weights αt as

C(I) = sgn(
T∑
t=1

αtht(I)), h(I) =

{
1 if g(f(I)) > threshold
−1 otherwise

. (4.1)

At each new training round t, AdaBoost selects a weak learner ht associated with a feature ft that
best classifies training samples with high classification error in the previous rounds. In this work
we define weak learners for features fk,r(I) in terms of Fisher Linear Discriminant (FLD) [17]

g = w>f with w = (S(1) + S(2))−1(µ(1) − µ(2)), (4.2)

where µ(1|2) and S(1|2) are means and covariance matrices of fk,r(I) for positive(1) and negative(2)

training examples. As required by AdaBoost, h minimizes the weighted error using the weighted
means and covariance matrices defined for sample weights di as :

µ =
1

n
∑
di

n∑
i

dif(Ii), S =
1

(n− 1)
∑
d2
i

n∑
i

d2
i (f(Ii)− µ)(f(Ii)− µ)>. (4.3)

The optimal threshold for h in (4.1) is obtained by the exhaustive search as in [79].

4.1.2 Evaluation

We evaluate the our method on the PASCAL VOC 2005 and VOC 2006 datasets [19, 20] on the
task of detecting object classes “motorbike”, “bicycle”, people, “car”, “horse” and “cow”. For
the detection we use the standard window scanning technique and apply the classifier to a large
number of image sub-windows with densely sampled positions and sizes. We apply non-maximum
suppression by clustering detections with similar positions and scales, the number of detections
within a cluster is used as a detection confidence. Results are reported by precision-recall curves
and average precision values.
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motorbikes: test1 motorbikes: test2 bicycles: test1 bicycles: test2

people: test1 people: test2 cars: test1 cars: test2

Figure 4.2: PR-curves for eight object detection tasks in PASCAL VOC 2005 Challenge. The proposed
method (Boosted Histograms) is compared to the best performing methods reported in Pascal VOC 2005
Challenge.

Method bicycle cow horse motorbike person
INRIA Douze 0.414 0.212 – 0.390 0.164

INRIA Laptev 0.440 0.224 0.140 0.318 0.114
TKK 0.303 0.252 0.137 0.265 0.039

Table 4.1: Average precision for the three best methods participating in the object detection task 3 of the
PASCAL VOC 2006 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2006/prelimres/index.html.

In Figure 4.2 our method (boosted histograms) demonstrates best results in seven out of eight
detection tasks of VOC 2005. Boosted histograms significantly outperforms results reported in [20]
for people and bicycles. For motorbikes and cars our method has comparable performance to the
best results reported by INRIA-Dalal [13] and TU-Darmstadt [27]. Our method has entered the
object detection competition of PASCAL VOC 2006 for five object classes: bicycle, cow, horse,
motorbike and person. As shown in Table 4.1, the method (INRIA Laptev) has obtained best
results for the classes bicycle and horse and second-best results the three other classes. Object
detection has been improved since VOC 2006 by more recent methods, e.g., [24].

We examine the parameters of our method in Figure 4.3. The method benefits from the increased
number of positive training samples generated by “jittering” original training images as illustrated
in Figure 4.3(left). HOG image features are compared to alternative descriptors for object parts
in terms of histograms of quantized responses of (a) second order derivatives (2Jet), (b)multi-scale
Laplacian filters (MS-Lap) and (c) color values (Color). Figure 4.3(right) illustrates the advantage
of HOG compared to other single descriptors. Enabling the classifier to choose among all four
descriptors (Comb) results in the best performance.
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Figure 4.3: Evaluation of parameters. (Left): Results of motorbike detection in VOC 2005 validation set
with varying number of “jittered” training samples. (Right): Evaluation of alternative local descriptors
for the detection of three object classes in VOC 2006 dataset.
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4.2 Action detection in video

We next address the problem of recognizing and localizing human actions in realistic videos. We
consider “atomic” actions characterized by consistent structure in space-time. Figure 4.4(top)
illustrates examples of such actions with similar space-time patterns in the video. We build upon
the intuition that atomic actions in video can be treated similarly to objects in images, see [78]
for a related discussion in psychology. We also build upon recent advances in object recognition
and extend object detection in still images to action detection in video. We adapt the boosted
histogram object detector described in the previous section and model actions by constellations
of space-time parts as illustrated in Figure 4.5(top). Our features f encode the appearance and
motion of each action part as described next. We define an action classifier in terms of action
features f by replacing static image features of the AdaBoost object classifier in (4.1).

4.2.1 Action modeling and classification

We wish to exploit the appearance and motion of actions for action recognition. Following the
previous section, we use 4-bin histograms of gradients orientations (Grad4), to represent the shape
of action parts. To represent motion, we use 5-bin histograms of optical flow [14] (OF5) with four
bins corresponding to quantized motion directions and the last bin corresponding to no motion.
The Grad4 and OF5 histograms are accumulated in space-time blocks of the normalized action
cuboids as illustrated in Figure 4.5(bottom). We assume a rough alignment of action samples
and their features in space-time. Each feature fθ, θ = (x, y, t, δx, δy, δt, β, ψ) is defined by the

time time timetime

Figure 4.4: Action examples from the movie “Cof-
fee and Cigarettes”. (Top): Examples of drinking
actions and the corresponding space-time slices.
Observe similar structure of actions in time de-
spite variations in viewpoints and actors. (Bot-
tom): Example frames of annotated drinking ac-
tions in the training and test subsets.

Figure 4.5: (Top): action volume in space-time
represented by three frames of a drinking action.
Arrows on the frames correspond to the com-
puted optic flow vectors. Transparent blocks in
red demonstrate some of the space-time features of
a boosted space-time classifier. (Bottom): Three
types of features with different arrangement of his-
togram blocks. Histograms for composed blocks
(Temp-2, Spat-4) are concatenated into a single
feature vector.
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space-time location (x, y, t) and the space-time extents (δx, δy, δt) of the histogram block, by the
type of block β in {Plain,Temp-2, Spat-4} (Figure 4.5(bottom)) and by the type of histogram ψ in
{OF5,Grad4}.

Space-time classifier. To investigate the influence of shape information on action recognition,
we learn two AdaBoost classifiers (4.1), one with optic flow features only (OF5 classifier) and
another one with shape and motion features (OFGrad9 classifier). OF5 classifier is closely related to
the method by Ke et al. [44]. To efficiently compute features, we use integral video histograms and
space-time video pyramids. When training OF5 and OFGrad9 classifiers we randomly subsample
the initially very large set of space-time features.

Keyframe classifier. We also investigate the possibility of recognizing actions from a single
frame. For this purpose we adopt the boosted histogram object classifier from Section 4.1 and
train it using action keyframes as positive samples while using non-action video frames for the pool
of negative examples (see Figure 4.5 and Section 4.2.2 for the definition of action keyframes).

STIP-NN classifier. We also test the performance of a bag-of-features classifier using space-
time interest points (see Chapter 2). We accumulate histograms of STIP features from space-time
volumes of action samples and use Nearest Neighbour (NN) for classification. In contrast to OF5
and OFGrad9 classifiers above, the resulting STIP-NN classifier does not encode the global space-
time structure of actions.

4.2.2 Dataset and annotation

To train and test action detection in realistic dynamic scenes, we use the movies “Coffee and
Cigarettes” (2003) and “Sea of Love” (1989), providing an excellent pool of natural samples for
action classes “drinking” (127 samples) and “smoking” (149 samples). These actions appear in
different scenes, and they are performed by different people while being recorded from different
view points. We split action samples into training and test subsets that share no common actors
nor scenes (see [L15] for details). Figure 4.4 illustrates the large within-class variability of drinking
samples as well as the difference between the training and the test subsets. A few examples of
scenes in Figure 4.7 illustrate the large variability of scales, locations and view-points as well as
the typical “background clutter” with surrounding people acting in various ways.

We use manual annotations of drinking actions both for the alignment of training samples and
for the evaluation of detection performance on the test set. Each drinking action is associated
with a manually-annotated space-time cuboid R = (p,∆p) with location p = (X, Y, T )> and a
spatio-temporal extent ∆p = (∆X,∆Y,∆T )> as illustrated in Figure 4.5(top). We also annotate
a keyframe for each drinking action by the time when the hand reaches the mouth.

4.2.3 Classification results

We study the relative performance of the action classification methods introduced in Section 4.2.1
on the tasks of discriminating drinking actions from (i) smoking actions and (ii) random motion
patterns in the video. In these preliminary classification experiments, all test samples are cropped
and resized to the common rectangular cuboid shapes in space-time. All classifiers are trained using
the same set of positive training samples. The negative training samples for boosted classifiers
correspond to “hard negatives” obtained from training video episodes. For the STIP-NN classifier,
negative training samples correspond to smoking actions.
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(a) (b) (c)

Figure 4.6: Classification of drinking actions vs. (a): smoking actions and (b): random motion patterns.
(c) is a magnified part of (b). ROC curves are obtained by thresholding on the confidence values of test
samples. For boosted classifiers the confidence is defined by the number of passed cascade stages. For
STIP-NN classifier the confidence is the normalized distance to the closest negative training sample.

Classification results for the first experiment are illustrated in Figure 4.6(a) and show the best
performance for the boosted OF5 and OFGrad9 space-time classifiers. The STIP-NN and the
keyframe classifiers have close-to-chance performance in this experiment. The classification per-
formance in the second and simpler experiment is improved for all methods as illustrated in Fig-
ures 4.6(b)-(c). We note that the extension of the OF5 classifier by the shape features in the
OFGrad9 classifier does not improve classification performance in both experiments. On the other
hand, the relatively high performance of all methods in the second experiment suggests that their
combination could be used for further improvements.

4.2.4 Keyframe priming

We wish our action detector to exploit the shape and motion of people. In this work we combine
shape and motion information using keyframe priming as follows. The keyframe detector is first
trained on static keyframes of drinking actions and is then applied to all frames of the training
videos in a low accuracy and high recall mode to ensure detection of all true positive samples. The
output of the keyframe detector is used to bootstrap (or prime) the space-time action classifier
by generating space-time volumes of action hypotheses around each detected keyframe. Keyframe
priming is used to collect action hypotheses for the space-time classifier both at the training and
test times as illustrated in Figure 4.7.

Since the evaluation of the keyframe classifier is less computationally expensive than that of the
space-time classifier, keyframe priming improves the speed of action detection at test time. The
fast rejection of many false action hypotheses with keyframe priming at training time also results
in an improved training error of roughly 10−7 in our experiments. Obtaining a similar training
error with a space-time classifier alone would be difficult due to this high computational cost.

4.2.5 Detection results

We test action detection on two short vignettes from the movie “Coffee and Cigarettes” with 36,000
frames in total. We evaluate the performance of action detection using space-time classifiers with
and without keyframe priming. For OF5 and OFGrad9 classifiers without keyframe priming we
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4.2. ACTION DETECTION IN VIDEO

Figure 4.7: Keyframe priming. (Left): Examples of the training scenes from the movie “Sea of Love”.
False positive detections of the keyframe classifier (red) are used as negative examples for training space-
time action classifiers. Keyframe detections are not shown for positive training samples (cyan). (Right):
Examples of test scenes from the movie “Coffee and Cigarettes”. The keyframe-primed action classifier
correctly classifies drinking hypotheses (cyan) among all detected keyframes (red). Results are shown
before non-maximum suppression step.

generate and evaluate a very large set of space-time windows with different positions and space-time
extents. For action classifiers using keyframe priming, we bootstrap the detection by applying the
keyframe classifier independently on every frame and then using space-time classifiers to evaluate
action hypotheses of different temporal extents and centered on the detected keyframes. For each
method, we cluster multiple action detections with similar positions and sizes in space-time and
use the size of the cluster as detection confidence.

The quantitative performance for the four tested detection methods is illustrated in Figure 4.8(left)
in terms of precision-recall curves and average precision values. The OFGrad9 detector using shape
and motion information outperforms the OF5 detector using motion features only. The largest im-
provement is obtained by the keyframe priming. This gain could be explained by the better training
error of keyframe-primed action classifiers as discussed in the previous section. This improvement
indicates the importance of shape information for action classification and detection.

Qualitative results are illustrated in Figure 4.8(right) by the twelve strongest detections of drink-
ing actions in the test set obtained with the keyframe primed OF5 classifier. Most of the detections
correspond to correct actions despite substantial variations in the appearance and actions of people,
scene clutter and view points in the video. A video with detection results and the dataset used in
this work is available on-line1.

1http://www.di.ens.fr/~laptev/actiondetection.html
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CHAPTER 4. OBJECT AND ACTION LOCALIZATION

Figure 4.8: Results of drinking action detection. (Left): Precision-recall curves illustrating the perfor-
mance of drinking action detection achieved by the four tested methods. (Right): Detections of drinking
actions (yellow: true positives, red: false positives) sorted in the decreasing confidence order and obtained
with the OF5 Keyframe primed event detector.

4.3 Summary

This chapter has presented methods for spatial object detection and spatio-temporal action local-
ization. With the example of drinking actions, we have shown that simple actions can be modeled
as space-time objects and detected using a generalization of object detection methods to video.
We have investigated combinations of shape and motion information for action modeling and have
shown particular benefit of combining static keyframe classifiers with space-time action classifiers.

This work was among the first to address action recognition and localization in realistic settings of
movies. While the obtained results are encouraging, the method leaves much room for improvement.
Our models of actions currently use low level features and may benefit from explicit modeling of
human body parts, body kinematics and person-object interactions. Some of these directions are
explored in the next chapter. While actions in this work are modeled in isolation, the relations
of actions with surrounding objects and scenes as well as the temporal relations between actions
performed in a sequence could be used as constraints for action recognition. Another direction for
future research concerns scalability. While the locations and temporal extents of actions in this
work have been annotated manually, scaling to many action classes will most likely require new
weakly-supervised learning methods overcoming the need of the costly manual annotation.
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Chapter 5

Modeling interactions

Human activities often involve object manipulations (opening a door, sitting down on a chair). In-
versely, objects and scenes can often be described by associated actions (phone: pick up, put down,
talk to; fridge: open, close, put objects inside,...). As mentioned in the Introduction, modeling
and recognizing person-object interactions could be useful, for example, to detect unusual events
(see Figure 1.4), to predict likely human actions or to search objects by their function. Motivated
by these problems, this chapter studies person-object interactions with the aim of learning and
recognizing objects by their functional properties, i.e., what people do with an object and how
they do it.

Object function can be derived from known associations between object categories and hu-
man actions (the mediated perception of function approach [61]), for example chair→sittable,
window→openable. Actions such as sitting, however, can be realized in many different ways which
can be characteristic for some objects but not for others, as illustrated in Figure 5.1. Moreover,
some objects may not support the common function associated with their category: for example,
windows in airplanes are usually not openable. These and many other examples suggest that the
category-level association between objects and their functions is not likely to scale well to the very
rich variety of person-object interactions. Instead, we argue that functional descriptions of objects
should be learned directly from observations of visual data.

In this work, we design object descriptions by learning associations between objects and spa-
tially co-occurring human poses. To capture the rich variety of person-object interactions, we
automatically detect people and estimate body poses in long-term observations of realistic indoor
scenes using the state-of-the-art method of [85]. While reliable pose estimation is still a challenging
problem, we circumvent the noise involved in this process by observing many person interactions

? 

Figure 5.1: Different ways of using objects. While all people depicted on the left are sitting, their sitting
poses can be rather unambiguously associated with the objects on the right. In this paper we build on
this observation and learn object descriptions in terms of characteristic body poses.
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Figure 5.2: Overview of the proposed person-based object description. Input scenes are over-segmented
into super-pixels; each super-pixel (denoted R here) is described by the distribution of co-occurring human
poses over time as well as by the appearance and location of the super-pixel in the image.

with the same instances of objects. For this purpose we use videos from long events (parties, house
cleaning), recorded with a static camera and summarized into time-lapses1. Static objects in time-
lapses (e.g., sofas) can be readily associated with hundreds of co-occurring human poses spanning
the typical interactions of people with these objects (see Figures 5.2-5.4). Equipped with this data,
we construct statistical object descriptors which combine the signatures of object-specific body
poses with the object’s appearance. The model is learned discriminatively from many time-lapse
videos of a variety of scenes. The work in this chapter was done in collaboration with students
Vincent Delaitre and David Fouhey, and was published in [L2].

5.1 Method overview

Our functional object description is limited to larger objects (sofas, tables, chairs) yet, it generalizes
across realistic and challenging scenes and provides significant improvements in object recognition.
To simplify the learning task, we assume that input videos contain static objects with fixed locations
in each frame of the video. Annotating such objects in the whole video can be simply done by
outlining object boundaries in one video frame as illustrated in Figure 5.2. Moreover, person
interactions with static objects can be automatically recorded by detecting people in the spatial
proximity of annotated objects.

We start by over-segmenting input scenes into super-pixels, which will form the candidate object
regions. For each object region R we construct a descriptor vector ~h(R) to be used for subsequent
learning and recognition. A particular novelty of our method is a new descriptor representing an
object region by the temporal statistics ~hP (R) of co-occurring people. This descriptor contains a
distribution of human body poses and their relative location with respect to the object region. We
also represent each object region by appearance features, denoted ~hA(R), and the absolute location

in the frame, denoted ~hL(R).
Given these descriptor vectors, one for each object region, containing statistics of characteristic

poses, appearance and image locations, a linear support vector machine (SVM) classifier is learnt for
each object class from the labelled training data. At test time, the same functional and appearance
representation is extracted from candidate object regions of the testing video. Individual candidate
object regions are then classified as belonging to one of the semantic object classes.

1Time-lapse http://en.wikipedia.org/wiki/Time-lapse_photography is a common media type used to summarize
recordings of long events into short video clips by temporal sub-sampling. We use time-lapses widely available
on public video sharing web-sites such as YouTube, which are typically sampled at one frame per 1-60 seconds.
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5.2. MODELING LONG-TERM PERSON-OBJECT INTERACTIONS

Figure 5.3: Capturing person-object interactions. An object region R is described by a distribution
(histogram) over poses k (left), joints j (middle) and cells c (right). The 3×3 grid of cells c is placed
around each joint to capture the relative position of an object region R with respect to joint j. The pixel
overlap between the grid cell c and the object region R weights the contribution of the jth joint and the
kth pose cluster.

5.2 Modeling long-term person-object interactions

Describing objects by a distribution of poses. We wish to characterize objects by the typical
locations and poses of surrounding people. While 3D reasoning about people and scenes [35] has
some advantages, reliable estimation of scene geometry and human poses in 3D is still an open
problem. Moreover, deriving rich person-object co-occurrences from a single image is difficult
due to the typically limited number of people in the scene and the noise of automatic human
pose estimation. To circumvent these problems, we take advantage of the spatial co-occurrence of
objects and people in the image plane. Moreover, we accumulate many human poses by observing
scenes over an extended period of time.

In our setup we assume a static camera and consider larger objects such as sofas and tables
which are less likely to change locations over time. We describe object region R in the image by
the temporal statistics ~hP of co-occurring human poses. Each person detection d is represented
by the locations of J(= 14) body joints, indexed by j, and the assignment qdk of d’s pose to a
vocabulary of KP discrete pose clusters (see Figure 5.3). To measure the co-occurrence of people
and objects, we define a spatial grid of 9 cells c around each body joint j. We measure the overlap
between the object region R and the grid cell Bd

j,c by the normalized area of their intersection

I(Bj,c, R) =
|Bj,c∩R|
|Bj,c| . We then accumulate overlaps from all person detections D in a given video

and compute one entry hPk,j,c(R) of the histogram descriptor ~hP (R) for region R as

hPk,j,c(R) =
∑
d∈D

I(Bd
j,c, R)

1 + exp(−3sd)
qdk, (5.1)

where k, j, and c index pose clusters, body joints and grid cells, respectively. The contribution of
each person detection in (5.1) is weighted by the detection score sd. The values of qdk indicate the
similarity of the person detection d with a pose cluster k. In the case of the hard assignment of d
to the pose cluster k̃, qdk = 1 for k = k̃ and qdk = 0 otherwise. In our experiments we found that
better results can be obtained using soft pose assignment as described in the next section.
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CHAPTER 5. MODELING INTERACTIONS

Figure 5.4: Pose cluster and detection examples. Left: example cluster means from our pose vocabulary.
Right: person detections in multiple frames of time-lapse videos assigned to the pose clusters on the left.

Building a vocabulary of poses. We represent object-specific human actions by a distribution
of quantized human poses. To compute pose quantization, we build a vocabulary of poses from
person detections in the training set by unsupervised clustering.

In order to build the pose vocabulary, we first convert each detection d in the training video
into a 2J-dimensional pose vector ~xd by concatenating mid-point coordinates of all detected body
joints. We center and normalize all pose vectors in the training videos and cluster them by fitting
a Gaussian Mixture Model (GMM) with KP components via expectation maximization (EM). The
components are initialized by the result of a K-means clustering, and during fitting we constrain
the covariances to be diagonal. The resulting mean vectors ~µk, diagonal covariance matrices ~Σk

and weights πk for each pose cluster k = 1, · · · , KP form our vocabulary of poses (see Figure 5.4).
A pose vector ~xd for a detection d can be described by a soft assignment to each of the ~µk by
computing the posterior probability vector ~qd, where

qdk =
p(~xd|~µk, ~Σk)πk∑KP

j=1 p(~x
d|~µj, ~Σj)πj

. (5.2)

Person detection and pose estimation. We focus on detecting people in three body config-
urations common in indoor scenes: standing, sitting and reaching. We use the person detector
from Yang and Ramanan [85], which has been shown to perform very well at both people detection
and pose estimation, and train three separate models, one for each body configuration. We found
that training 3 separate models improved pose estimation performance over using a single generic
pose estimator. Given the static camera, we use background subtraction and pre-estimated room
geometry [37] to discard some of the false person detections.
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5.3. MODELING APPEARANCE AND LOCATION

5.3 Modeling appearance and location

In addition to the distribution of poses we also model the appearance and absolute position of image
regions. We build on the orderless bag-of-features representation [12] and describe the appearance
of image regions by a distribution of visual words. We first densely extract SIFT descriptors [51]
f ∈ Fk from image patches Bf of multiple sizes sk for k = 1, · · · , S for all training videos and
quantize them into visual words by fitting a GMM with KA components. Each feature f is then
soft-assigned to this vocabulary in the same manner as described in Eq. (5.2). This results in an

assignment vector ~qf for each feature. The KA-dimensional appearance histogram ~hA(R) for region
R is computed as a weighted sum of assignment vectors ~qf

~hA(R) =
S∑
k=1

∑
f∈Fk

s2
kI(Bf , R) ~qf , (5.3)

where s2
kI(Bf , R) is the number of pixels belonging to both object region R and feature patch Bf .

Similar to [39], we also represent the absolute position of regions R within the video frame. This
is achieved by spatially discretizing the frame into a grid of m × n cells, resulting in a (m × n)-

dimensional histogram ~hL(R) for each region R. Here the ith bin of ~hL(R) is simply the proportion
of pixels of the ith cell of the grid falling into R.

5.4 Learning from long-term observations

Obtaining candidate object regions. As described in previous sections, we represent objects
by accumulating statistics of human poses, image appearance and location at object regions R.
Candidate object regions are obtained by over-segmenting video frames into super-pixels using
the method and on-line implementation of [25]. As individual video frame may contain many
people occluding the objects in the scene, we represent each video using a single “background
frame” with (almost) no people obtained by temporal median filtering. Rather than relying on
a single segmentation, we follow [39] and compute multiple overlapping segmentations by varying
the parameters of the segmentation algorithm.

Learning object model. We train a classifier for each object class in a one-versus-all man-
ner. The training data for each classifier is obtained by collecting all (potentially overlapping)
super-pixels, Ri for i = 1, · · · , N , from all training videos. For each region, we extract their cor-
responding pose, appearance and location histograms as described in Sections 5.2 and 5.3. The
histograms are separately L1-normalized and concatenated into a single K-dimensional feature vec-

tor ~xi = [~̃hP (Ri), ~̃h
A(Ri), ~̃h

L(Ri)], where ~̃h denotes L1-normalized histogram ~h. An object label yi
is then assigned to each super-pixel based on the surface overlap with the provided ground truth
object segmentation in the training videos. We ensure that each super-pixel is assigned up to
two ground truth object labels by setting surface overlap threshold of 34%. We train a binary
support vector machine (SVM) classifier with the Hellinger kernel for each object class using the
labelled super-pixels as training data. The Hellinger kernel is efficiently implemented using the ex-
plicit feature map Φ(~xi) =

√
(1/||~xi||1)~xi and a linear classifier. Finally, the outputs of individual

SVM classifiers are calibrated with respect to each other by fitting a multinomial regression model
from the classifiers output to the super-pixel labels [36]. The output of the learning stage is the
K-dimensional weight vector ~wy of the (calibrated) linear classifier for each object class y.
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At test time, multiple super-pixel segmentations are extracted from the background frame of the
test video and the individual classifiers are applied to each super-pixel. This leads to a confidence
measure for each label and super-pixel. The confidence of a single image pixel is then the mean of
the confidences of all the super-pixels it belongs to.

Time-lapse dataset. We extend the dataset of [L5] to 146 time-lapse videos containing a total
of around 400,000 frames. Each video sequence shows people interacting with an indoor scene over
a period of time ranging from a few minutes to several hours. The captured events include parties,
working in an office, cooking or room-cleaning. The videos were downloaded from YouTube by
placing queries such as “time-lapse party”. Search results were manually verified to contain only
videos captured with a stationary camera and showing an indoor scene. All videos are sparsely
sampled in time with limited temporal continuity between consecutive frames. The dataset repre-
sents a challenging uncontrolled setup, where people perform natural non-staged interactions with
objects in a variety of real indoor scenes.

We manually annotated each video with ground truth segmentation masks of eight frequently oc-
curring semantic object classes: ‘Bed’, ‘Sofa/Armchair’, ‘Coffee Table’, ‘Chair’, ‘Table’, ‘Wardrobe/
Cupboard’, ‘Christmas tree’ and ‘Other’. Similar to [37], the ‘Other’ class contains various fore-
ground room clutter such as clothes on the floor, or objects (e.g., lamps, bottles, or dishes) on
tables. In addition to objects, we also annotated three room background classes: ‘Wall’, ‘Ceiling’
and ‘Floor’. As the camera and majority of the objects are static, we can collect hundreds or even
thousands of realistic person-object interactions throughout the whole time-lapse sequence by pro-
viding a single object annotation per video. The dataset is divided into 5 splits of around 30 videos
with approximately the same proportion of labels for different objects. The dataset including the
annotations is available at http://www.di.ens.fr/willow/research/scenesemantics/.

5.5 Experiments

Semantic labeling performance is measured by pixel-wise precision-recall curve and average pre-
cision (AP) for each object class. Table 5.1 shows the average precision for different object and
room background classes for different feature combinations of our method. The performance of
our method is compared to two baselines: the method of [37], trained on our data with semantic
object annotations, and the deformable part model (DPM) of [24] trained over manually defined
bounding boxes for each class. At test time, the DPM bounding boxes are converted to segmen-
tation masks by assigning to each testing pixel the maximum score of any overlapping detection.
Note that combining the proposed pose features with appearance (A+P) results in a significant
improvement in overall performance, but further adding location features (A+L+P) brings little
additional benefit, which suggests that spatial information in the scene is largely captured by the
spatial relation to the human pose. The proposed method (A+L+P) also significantly outperforms
both baselines. Example classification results for the proposed method are shown in Figure 5.5.

We have also evaluated our model on the task of estimating functional surfaces (walkable, sittable,
reachable). For training and testing, we have provided ground truth functional surface masks
for the dataset of [L5]. Our model achieves AP of 76%, 25% and 44% for ‘Walkable’, ‘Sittable’
and ‘Reachable’ surfaces, respectively, averaging a gain of 13% compared to [L5], which could be
attributed to the discriminative nature of our model.
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DPM [24] [37] (A+L) (P) (A+P) (A+L+P)
Wall — 75±3.9 76±1.6 76±1.7 82±1.2 81±1.3
Ceiling — 47±20 53±8.0 52±7.4 69±6.7 69±6.6
Floor — 59±3.1 64±5.5 65±3.6 76±3.2 76±2.9
Bed 31±20 12±7.2 14±5.0 21±5.8 27±13 26±13
Sofa/Armchair 26±9.4 26±10 34±3.3 32±6.5 44±5.4 43±5.8
Coffee Table 11±5.4 11±5.2 11±4.4 12±4.3 17±10 17±9.6
Chair 9.5±3.9 6.3±2.8 8.3±2.7 5.8±1.4 11±5.4 12±5.9
Table 15±6.4 18±3.8 17±3.9 16±7.1 22±6.2 22±6.4
Wardrobe/Cupboard 27±10 27±8.2 28±6.4 22±1.1 36±7.4 36±7.2
Christmas tree 50±3.3 55±12 72±1.8 20±6.0 76±6.2 77±5.5
Other Object 12±6.4 11±1.2 7.9±1.9 13±4.2 16±8.3 16±8.2
Average 23±1.8 31±2.0 35±2.4 30±1.7 43±4.4 43±4.3

Table 5.1: Average precision (AP) for baselines of Felzenszwalbet al. [24] and Hedauet al. [37] compared
to four different settings of our method: appearance and location features (A+L), person features (P),
appearance and person features (A+P), appearance, location and person features combined (A+L+P).

Original frame Ground truth annotation Mean inferred pixel labels

CoffeeTable SofaChair TableCupboardBed Christmas tree

Figure 5.5: Object soft segmentation. Scene background with no people (left). Object ground truth
(middle). Mean probability map for inferred objects (right).

5.6 Summary

This chapter has presented a first attempt at recognizing objects from their use in real unstaged
environments. Despite the diversity of the data and the high level of noise in human pose estima-
tion, our statistical pose descriptor contains significant signal enabling improved object recognition.
This evidence is encouraging and suggest many directions for future work. First, we expect future
improvements in pose estimation to directly improve our current method. As we learn correla-
tions between objects and characteristic human poses, we also expect to improve pose estimation
using knowledge about objects in the scene. While this work has looked at static person-object
interactions, dynamic interactions should provide additional information to improve dynamic scene
understanding in the future.
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Chapter 6

Conclusions and outlook

This thesis has touched upon several problems in action recognition and dynamic scene understand-
ing. The unifying theme of the work is to address the complexity of action recognition in realistic
settings and to break away from controlled laboratory setups. The research area is new and the
present work should be seen as a set of first steps rather than a final solution. The contributions
of the thesis and future research opportunities are shortly summarized below.

Action classification and localization. Video representations introduced in Chapters 2 and 4
enable action recognition in realistic videos from movies, YouTube and television. At the time of
publication [L14, L15] this work was among the first to consider such complex settings and the
approach has been followed by others. Despite several notable improvements, e.g., [80], the accu-
racy of action recognition remains too low for practical applications, especially in the localization
regime (see Section 3.3). Extending current methods towards structured representations in terms
of objects, human poses, temporal order of actions, etc., is a promising and open research direction.

Another related and open problem is scalability. Current methods are limited by the efficiency
to video datasets with tens of hours of video. Such datasets are likely to be too small for sampling
and learning the full variability of actions. Modern applications also require new efficient action
recognition methods that can scale to the processing of hundreds of years of video.

Weakly-supervised learning. Chapter 3 has introduced weakly-supervised learning in video
from readily-available video scripts. While presented results are encouraging, much of the potential
remains unexplored. Video scripts, indeed, provide rich information about people, their social
relations and interactions, object properties, scene structure and the temporal structure of events.
To better use this information, one could, for example, exploit the fact that objects, people and
actions often co-occur. Knowing that “Rick sits down” in a video can help annotating a sitting
down action if we can localize Rick and vice versa. Hence, jointly solving both action recognition
and naming of characters in video could be beneficial. More generally, one could address the
problem of automatic space-time script-to-video alignment. Knowing the alignment would provide
automatic supervision for the learning of visual models of objects, actions and their attributes.
Such models, however, are required to generate the alignment. One challenging research direction
is, hence, to address both problems jointly and to explore redundancy in the large amount of video
data to resolve the alignment and the learning of visual models within a single approach. Yet,
another open problem related to weakly-supervised learning in video is the large variability in
natural language expressions associated with similar kinds of dynamics scenes and events.

39



Recognition of functional properties. Computer vision is concerned with the automated
interpretation of images and video streams. Today’s research is (mostly) aimed at answering
queries such as “Is this a picture of a dog?”, “Is the person walking in this video?” (image
and video categorisation) or sometimes “Find the dog in this photo” (object detection). While
categorisation and detection are useful for many tasks, inferring correct class labels is not the
final answer to visual recognition. The categories and locations of objects do not provide direct
understanding of their function, i.e., how things work, what they can be used for, or how they can
act and react. Neither do action categories provide direct understanding of subject’s intention,
i.e., the purpose of his/her activity. Such an understanding, however, would be highly desirable
to answer currently unsolvable queries such as “Am I in danger?” or “What can happen in this
scene?”.

Addressing the above questions requires recognition of functional properties of objects and the
purpose of human actions from visual observations. In my future work in the ERC project
ACTIVIA I plan to leverage observations of people, i.e., their actions and interactions to auto-
matically learn the use, the purpose and the function of objects and scenes from visual data. The
work presented in Chapter 5 is an initial step in this direction, but many open challenges remain.
In particular, modeling interactions requires new structural video representations beyond bag-of-
features and other available methods. Learning interaction models from the video data also requires
new weakly-supervised learning techniques, since the full manual annotation of large-scale video is
prohibitive. While the functional object recognition is not a new problem and has been studied in
80’s and early 90’s, e.g., in [74], today’s increasing amount of available video data and the recent
progress in visual object and action recognition will likely enable new ways to successfully address
this problem in the future.

From a practical point of view, recognition of functional object properties and intentions of
people will directly support a number of important applications such as the prediction of likely
future events and the alert of abnormal activities. In the future, automatic learning of human
behaviour from large-scale visual observations will enable support of our every-day activities from
assembling IKEA furniture to helping us with educating a child.
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[46] A. Kläser, M. Marsza lek, and C. Schmid. A spatio-temporal descriptor based on 3D-gradients.
In Proc. BMVC, 2008.

44
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