
HAL Id: tel-01064597
https://theses.hal.science/tel-01064597v1
Submitted on 16 Sep 2014 (v1), last revised 5 Feb 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Approach for Diagnosability and Diagnosis
of DES Based on Labeled Petri Nets, Untimed and

Timed Contexts
Baisi Liu

To cite this version:
Baisi Liu. An Efficient Approach for Diagnosability and Diagnosis of DES Based on Labeled Petri
Nets, Untimed and Timed Contexts. Signal and Image processing. Ecole Centrale de Lille, 2014.
English. �NNT : �. �tel-01064597v1�

https://theses.hal.science/tel-01064597v1
https://hal.archives-ouvertes.fr


N o d’ordre: 2 4 3
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diagnostic des SED modélisés par Réseaux de Petri labellisés –
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Soutenance prévue le 17 avril 2014 devant le jury d’examen :

Président

Rapporteurs Prof. Jean-Marc Faure SUPMECA - LURPA

Rapporteurs Prof. Michel Combacau Université de Toulouse 3 - UPS - LAAS
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Abstract

This PhD thesis deals with fault diagnosis of discrete event systems in

both untimed and timed contexts using Petri net models. Some on-

the-fly and incremental techniques are developed to reduce the state

explosion problem while analyzing diagnosability. In the untimed con-

text, an algebraic representation for labeled Petri nets (LPNs) is de-

veloped to feature the system behavior. The diagnosability of LPN

models is tackled by analyzing a series of K-diagnosability problems,

where K is increased progressively. Two models called respectively

FM-graph and FM-set tree are developed and built on the fly to record

the necessary information for diagnosability analysis and online diag-

nosis. Finally, a diagnoser is derived from the FM-set tree for online

diagnosis. In the timed context, time interval splitting techniques

are developed in order to generate a state representation of labeled

time Petri net (LTPN) models, for which techniques from the untimed

context can be used to analyze diagnosability and perform online di-

agnosis. Based on this, necessary and sufficient conditions for the di-

agnosability of LTPN models are determined. Moreover, we provide

the solution for the minimum delay ∆ that ensures diagnosability.

From a practical point of view, diagnosability analysis is performed

on the basis of on-the-fly building of a structure that we call ASG

and which holds fault information about the LTPN states. Generally,

using on-the-fly analysis and incremental techniques makes it possible

to build and investigate only a part of the state space. Analysis results

obtained on some chosen benchmarks show the efficiency in terms of

time and memory compared with the traditional approaches based on

state enumeration.

Keywords: Fault diagnosis, Discrete event systems, Labeled Petri



nets, Labeled time Petri nets, On-the-fly analysis, Incremental ap-

proach, Time interval splitting.



Résumé

Cette thèse s’intéresse à l’étude des problèmes de diagnostic des fautes

sur les systèmes à événements discrets dans des contextes atemporel

et temporel sur la base de modèles réseau de Petri. Des techniques

d’exploration incrémentale et à-la-volée sont développées pour com-

battre le problème de l’explosion de l’espace d’état. Dans le con-

texte atemporel, une représentation algébrique pour les réseaux de

Petri labellisés (RdP-L) a été développée pour caractériser le com-

portement du système. La diagnosticabilité de modèles RdP-L est

ensuite abordée par l’analyse d’une série de problèmes d’analyse de

K-diagnosticabilité, où K peut être augmenté progressivement. Con-

crètement, l’analyse de la diagnosticabilité est effectuée sur la base

de deux modèles nommés respectivement FM-graph et FM-set tree

qui sont développés à-la-volée et qui contiennent les informations rel-

atives aux fautes. Un diagnostiqueur peut facilement être dérivé à

partir du FM-set tree pour le diagnostic en ligne. Dans le contexte

temporel, une technique de fractionnement des intervalles de temps a

été élaborée pour développer une représentation de l’espace d’état des

réseaux de Petri labellisés et temporels (RdP-LT) pour laquelle des

techniques d’analyse de la diagnosticabilité du contexte atemporel,

peuvent être exploitées. Sur cette base, les conditions nécessaires et

suffisantes pour la diagnosticabilité de RdP-LT ont été déterminées, et

nous présentons la solution pour le délai minimum ∆ qui assure la di-

agnosticabilité. En pratique, l’analyse de la diagnosticabilité est effec-

tuée sur la base de la construction à-la-volée d’une structure que l’on

appelle ASG et qui contient des informations relatives à l’occurrence

de fautes sur les états du RdP-LT. D’une manière générale, l’analyse

effectuée sur la base des techniques à-la-volée et incrémentale per-



met de construire et explorer seulement une partie de l’espace d’état.

Les résultats des analyses effectuées sur certains benchmarks mon-

trent l’efficacité des techniques que nous avons développées en termes

de temps et de mémoire par rapport aux approches traditionnelles

basées sur l’énumération des états.

Mots clés : Diagnostic des fautes, Systèmes à événements discrets,

Réseaux de Petri labellisés, Réseaux de Petri labellisés et temporels,

Analyse à-la-volée, Approche incrémentale, Fractionnement d’intervalles

temporels.
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Chapter 1

Introduction

This thesis deals with Petri-net-based techniques for fault diagnosis of discrete

event systems. The work is accomplished in the Fault Tolerant Systems’ team

(STF - Systèmes Tolérants aux Fautes) of the LAGIS laboratory (Laboratoire

d’Automatique, Génie Informatique et Signal, UMR CNRS 8219), at the École

Centrale de Lille (EC-Lille), in collaboration with the COSYS/ESTAS (Com-

posants et systèmes / Évaluation des systèmes de transports automatisés et de

leur sécurité) research team at IFSTTAR (Institut français des sciences et tech-

nologies des transports, de l’aménagement et des réseaux). This thesis was super-

vised by Prof. Armand Toguyéni and Dr. Mohamed Ghazel, senior researcher

with IFSTTAR - COSYS/ESTAS.

The current chapter provides an overview of this thesis. Section 1.1 introduces

the background of fault diagnosis problem in the context of discrete event systems.

Section 1.2 presents our research objectives of this thesis. In Section 1.3, we state

the contributions of this thesis. Finally, we give the organization of this thesis in

Section 1.4. Note that the general hypothesis will be given in Section 2.3, after

the introduction of some basic notations.
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1. INTRODUCTION

1.1 Background

1.1.1 Fault Diagnosis

Systems around us are more functional as their structures are more complex. For

complex and critical systems, e.g., aerospace systems, military systems, trans-

portation systems, power systems, manufacturing and production systems, etc.,

the safe and continuous operation is imperative; therefore it is necessary to let

any abnormal behavior be detected and identified as soon as possible, so that re-

configurations can be made to prevent the system from dangerous consequences

[Lin, 1994]. Fault diagnosis is such a field dealing with detecting any fault and

its type, which ensures the safety and availability of systems.

Reviewing the systems mentioned above, we see that they have the following

features:

1. Large-scale and complex systems. In order to fulfill complex functions,some

system structures are designed to be larger and more complex, even though

advanced design ideas have been used [Morel et al., 2007]. Complex struc-

tures also make potential failures more difficult to be detected and located,

since the failure may be long-term underlying anywhere in the system.

2. Safety-critical. In safety-critical systems, a failure may cause serious ma-

terial and/or human damages. In this context, it is important to ensure

that any fault occurred is detected as soon as possible. Moreover, this issue

should be well considered since the design stage.

3. Continuous operation. For large systems, the start-up, shutdown and alter-

nation of operations often consume a lot of time and energy, thus they are

expected and designed to offer high availability. From a practical point of

view, it is not advisable to systematically halt or stop the system to make

a thoroughly examination. This means the diagnostic procedure has to be

performed online and needs to be efficient.

Now let us look at the features of faults. A fault results in a non-desired

deviation of the system or of one of its components from its normal or intended
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behavior. In fault diagnosis, a fault that we study on is often such an “unob-

servable”, “undistinguishable” or “silent ” event (or state), which is difficult to

be detected or distinguished directly, since an “observable” fault can be always

detected by a direct sensor reading.

According to their lasting in time, faults are classified into the following three

categories [D’Angelo et al., 1999; Dugan and Trivedi, 1989; Nelson, 1990], as

shown in Figure 1.1:

1. A transient fault, which is often of finite duration shorter than the stability

time interval of the affected signal, occurs only once and then disappears. It

may be the result of external causes like interferences. Generally, transient

faults are the most common, and they are also hard to detect since they

may disappear after having produced errors.

2. An intermittent fault occurs and disappears repeatedly, making the system

vibrate between normal and faulty states. It can be due to an unstable

device operation.

3. A permanent fault occurs but does not disappear (such that the system

remains in faulty state) until repairing measures are undertaken. Typically

a permanent fault is caused by subsystem failures, physical damage or design

error.

Diagnosis of transient [Schiller et al., 2001], intermittent [Contant et al., 2004;

Jiang et al., 2003a; Soldani et al., 2007] and permanent faults have been studied.

In this thesis, we only consider the diagnostic problems of permanent faults and

a series of works on diagnosis of permanent faults will be reviewed in Section 3.

1.1.2 Discrete Event Systems (DES)

The diagnostic techniques we deal with in the framework of this thesis are model-

based, which means that one has a behavioral model which depicts the system

dynamics. Moreover, we assume that diagnosis analysis can be undertaken in an

abstraction level such that the system behavior can be abstracted as a discrete

event model [Lin, 1994].
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1. INTRODUCTION

Figure 1.1: Transient fault, intermittent fault and permanent fault

A DES [Cassandras and Lafortune, 2007] is informally a discrete-state and

event-driven system. More specifically, the state space of a DES is a discrete

set, e.g., a traffic light has three states: RED, YELLOW and GREEN; a push

button has two states: ON and OFF. The state transition mechanism of a DES

is event-driven, i.e., any state change is driven by an event execution, e.g., the

state of a traffic light changes from RED to GREEN after a permission signal is

sent; the state of a push button changes from OFF to ON after being pressed.

We study the problem of fault diagnosis in the context of DES, since most

industrial systems can be abstracted as a DES model to certain level of abstrac-

tion [Lin, 1994; Sampath et al., 1995], which can be untimed, timed or stochastic.

Note that so many systems around us are Computer-Controlled Systems, whose

state space and event-driven mechanism are based on binary logic, can be nat-

urally treated as DES. This is why the control and diagnosis of DES has been

extensively studied in recent years, as will be shown in the sequel.

In order to characterize DES, different modeling notations have been devel-

oped [Cassandras and Lafortune, 2007]: language and automata, PN theory,

(max,+) algebra, Markov chains and queuing theory, discrete-event simulation,

perturbation analysis, and concurrent estimation techniques. Among them, au-

tomata and PNs are the two most used models in DES-based diagnosis. In this

thesis, we study the DES-based diagnosis both in untimed and timed context,
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using the LPN and LTPN notation.

1.1.3 Problems

Fault diagnosis has been widely studied. Most existing methods can be classified

as follows: fault-tree based methods, quantitative, analytical model-based meth-

ods, expert systems and other knowledge-based methods, model-based reasoning

methods, and DES-based methods.

During the two past decades, DES-based methods have received a lot of at-

tention in industry and academia, since more and more systems are controlled

by computers, and most of them can be abstracted as DES models to a certain

abstraction degree.

DES-based diagnosis is first studied in the framework of automata [Sampath

et al., 1995], which brings the problem of “state explosion”. Afterwards, some

research turns to the PN-based technique [Ushio et al., 1998], since PNs can

provide solutions based on not only state enumeration but also structure analysis.

At this stage, we would like to point out that some notions pertaining to

diagnosis issues can have various meaning according to whether they are used

by continuous automatic community or discrete automatic community, e.g., de-

tection, identification, localization, etc. Let us recall here that when using these

concepts, we refer to the definitions as conventional within the discrete automatic

community.

For DES-based diagnosis, we summarize the main issues as follows:

1. Diagnosability [Jiang et al., 2001; Lin, 1994; Sampath et al., 1995; Yoo

and Lafortune, 2002a]. Informally, diagnosability refers to the ability to

detect and identify any fault within a finite delay after its occurrence. The

diagnosability is the basis of diagnosis, i.e., a fault can be diagnosed only if

the system is diagnosable w.r.t this fault class. Diagnosability is a property

that is analyzed offline, and most of the existing approaches use enumerative

techniques to investigate diagnosability.

2. K-diagnosability. As an extension of diagnosability, K-diagnosability re-

quires that a fault can be diagnosed in a given number of steps after its

5



1. INTRODUCTION

occurrence. This topic is studied as K-diagnosability in untimed con-

text [Basile et al., 2010; Cabasino et al., 2012a; Yoo and Garcia, 2004] and

as ∆-diagnosability in timed context [Tripakis, 2002], as will be presented

in details in this dissertation. Note that, from different points of view, there

are also some other extensions of diagnosability, which will be discussed in

Chapter 3.

3. Online diagnosis. Diagnosis process, strictly speaking, refers to the online

monitoring of the system which aims at detecting any abnormal behavior

and identifying the possible faults behind that. Moreover, detection and

identification need to be performed promptly and generally with as less

interferences with the system as possible. Hence, the objective of online

diagnosis is passively diagnosing a fault, without actively interrupting or

alternating the operation of systems.

4. Active diagnosis. Compared with passive diagnosis wherein the objective

is to observe system behavior and give verdict of potential faults, active

diagnosis is an integrated approach to control and diagnosis [Sampath et al.,

1998]:

• In the early period, the design of systems and the development of

diagnostic tools are decoupled. Fault diagnosis could not be well per-

formed this way, since the system may be undiagnosable. Even if the

system in question is diagnosable, the design and development of the

corresponding diagnostic tool may be difficult, due to the practical lim-

itations of space, environment, etc. The active diagnosis in the sense

of [Sampath et al., 1998] aims at developing a diagnosable system by

early integrating diagnosability analysis since the design phase. In

distributed systems, [Ribot et al., 2007] determines the characteristics

and the modifications which could be useful for designers to improve

and to guarantee some diagnosability objectives.

• For existing systems, one can turn certain sensors ON or OFF as nec-

essary, such that the system can be monitored with a dynamic observer

whose set of observable events varies according to external commands.
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Diagnosis based on dynamic observers permits achieving cost savings

[Cassez and Tripakis, 2008], since certain sensors only operate as nec-

essary.

5. Enhancement of diagnosability [Wen et al., 2006]. Although the active diag-

nosis is a trend on the system design, existing undiagnosable systems have

to be treated in another way. It is possible to let these undiagnosable sys-

tems become diagnosable, by the change of the number, type and placement

of sensors. This has been further studied as the problem of sensor optimiza-

tion [Cabasino et al., 2013b; Debouk et al., 2002; Jiang et al., 2003b; Ru

and Hadjicostis, 2010].

Besides, there are also many other directions on diagnosis study, such as meta-

diagnosis [Belard et al., 2011], robust diagnosis [Carvalho et al., 2012], etc. How-

ever, in this thesis, we will only deal with the first three problems, aiming at

developing new techniques to improve the efficiency of fault diagnosis analysis

on the basis of existing approaches. In the future, we are interested in active

diagnosis and sensor optimization issues.

1.2 Objectives

As will be discussed in Chapter 3, some classic approaches [Cabasino et al., 2012a;

Jiang et al., 2001; Sampath et al., 1995; Yoo and Lafortune, 2002b] for diagnosis

analysis are based on a priori built state space, which suffer from the inherent

state explosion problem. However, these works have developed necessary and

sufficient conditions for diagnosability, and the corresponding results have been

proved in a formal way. Our goal here is to develop new techniques, namely

on-the-fly and incremental techniques, which are able to tackle the state explo-

sion problem in the untimed context on the basis of existing proved results. In

particular, in the timed context, we intend to develop a formulation of the diag-

nosability issue, with the help of the time interval splitting technique, in such a

way to bring the techniques of the untimed context into play.
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1. INTRODUCTION

1.3 Contributions

This work will focus on fault diagnosis using the PN modeling formalism. The

contributions discussed mainly in Chapters 4 and 5 are summarized as follows,

while separating contributions in the untimed context and those dealing with

timed diagnosis.

1. Fault diagnosis of untimed DESs:

(a) Algebraic reformulation of diagnosability analysis:

The structure of a PN as well as its dynamics can be thoroughly de-

scribed by classical mathematical representation with the help of mark-

ings, incidence matrix and state equation. This formulation, however,

is not sufficient for featuring LPN, as there is no characterization of re-

lations between transitions and events. To cope with the above short-

coming, we propose a novel mathematical representation for LPNs,

based on some new notions that will be introduced, namely extended

incidence matrix, event marking and extended state equation, to both

make explicit the mapping relationship between transitions and events

and record event occurrences.

(b) On-the-fly and incremental analysis of K-diagnosability:

Based on several new concepts that we introduce, a tree-like struc-

ture holding both the markings and their related fault information is

elaborated. This structure, called FM-set tree, is computed on the fly

while checking K-diagnosability on the basis of a recursive algorithm

we propose. Thanks to the on-the-fly investigation of diagnosability,

building the whole FM-set tree is not necessarily required. This is a

notable advantage compared with the existing approaches which first

build the reachability graph [Ushio et al., 1998].

(c) On-the-fly analysis of classical diagnosability based onK-diagnosability:

By extension, we solve the classical diagnosability by dealing with a

series of K-diagnosability problems, where K increases progressively.

Compared the existing approaches based on a marking graph or on a
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diagnoser, generally only a part of the state space is generated and

searched.

(d) Online diagnosis:

When the system is diagnosable (or K-diagnosable), the online diag-

nosis is performed on the basis of a diagnoser which is obtained from

the FM-set tree in a straightforward way.

(e) Development of a software tool for K-diagnosability and diagnosabil-

ity analysis:

In order to show the effectiveness of our method, we develop a diag-

nostic tool called On-the-Fly PEtri-Net-based Diagnosability Analyser

(OF-PENDA), and compare our approach with other existing ones

with the help of the Workshop on Discrete Event Systems (WODES)

diagnostic benchmark [Giua, 2007] and our developed LC benchmark.

We thus show that some big models are tractable using the on-the-fly

technique, whereas some existing approaches fail to analyze them, due

to memory limitations.

2. Fault diagnosis of TDES:

(a) We deal with the diagnosability of timed discrete event systems. The

model we use is the LTPN - an extension of time Petri net (TPN),

wherein each transition is associated with an event which can be ei-

ther observable or unobservable. We propose an approach to check

diagnosability and provide the solution for the minimum delay ∆ that

ensures diagnosability. Diagnosability analysis is performed on the ba-

sis of on-the-fly building of a structure that we call ASG and which

carries information about the state of the LTPN.

(b) We develop a labeled timed diagnoser (LTD) for online diagnosis of

LTPNs, on the basis of the developed ASG.

1.4 Organization

This manuscript is organized as follows:
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1. INTRODUCTION

• In Chapter 2, we review some formalisms of DES and TDES, i.e. automata,

Petri nets, timed automata and time Petri nets. In particular, we present

two extensions of Petri nets that will be used in this thesis: LPNs and

LTPNs.

• In Chapter 3, we review the literature on DES-based diagnosis. The existing

works will be classified from different points of view.

• In Chapter 4, we discuss the problem of fault diagnosis of untimed DES.

First, we introduce our mathematical representation of LPNs. Then we

provide the algorithms to check K-diagnosability and classical diagnosabil-

ity. We show how to perform online diagnosis of LPN models. Finally, we

developed a diagnostic tool called OF-PENDA and perform a simulation

with the help of WODES benchmark and the LC benchmark, to show the

effectiveness of our technique.

• In Chapter 5, we study the fault diagnosis problem of TDES. We introduce

a technique based on time interval splitting to reformulate the diagnosis

problem of TDES in such a way to make it possible to apply the classical

diagnosability analysis technique of the untimed context. Some notations

are developed to characterize the features of LTPNs. We propose neces-

sary and sufficient conditions for the diagnosability of TDES, and provide

algorithms to check ∆-diagnosability and diagnosability for TDES.

• In Chapter 6, we give the concluding remarks and draw some future works.
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Chapter 2

Modeling Formalisms for

Diagnosability Analysis of DES

In order to discuss the fault diagnosis problem of DESs, this chapter reviews some

main modeling formalisms of untimed DESs: automata, PNs and LPNs; and of

TDESs: Timed automata, TPNs and LTPNs. Also, we address the diagnosability

of DESs and TDESs while using these above notations.

2.1 Untimed Modeling Formalisms of DES

In the fault diagnosis field, DES-based methodology has been widely investigated

and applied for high level analysis, since most considered systems can be ab-

stracted as a DES model to a certain degree [Cassandras and Lafortune, 2007;

Lin, 1994], using techniques such as language and automata, Petri net theory,

(max,+) algebra, Markov chains and queuing theory, perturbation analysis, con-

current estimation, etc. In our study, we discuss fault diagnosis of DESs while

considering automata and PNs models of the analyzed system.

2.1.1 Automata

An automaton is a graphical structure to describe state space and state transitions

of a DES. In particular, one type of automata, called finite state automaton (or

finite state machine) is very useful in the analysis of finite-state DESs.
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2. MODELING FORMALISMS FOR DIAGNOSABILITY
ANALYSIS OF DES

2.1.1.1 Finite State Automaton

Definition 1 [Cassandras and Lafortune, 2007] A finite state automaton (FSA)

is a 4-tuple G = (X,Σ, δ, x0), where:

• X is a finite set of states;

• Σ is a finite set of events;

• δ : X × Σ→ X is the partial transition function;

• x0 is the initial state of the system.

An automaton can be represented by a graph, where a state is denoted by a

circle, an event is denoted by an arrow from a source state to a destination state,

the initial state is denoted by a circle with an arrow into it and a final state is

denoted by a double circle.

Example 1 Let us look at automaton G = (X,Σ, δ, x0), as shown in Figure 2.1,

1start

2

3

4

5 6

c

a

uo

f

ab b

a a

Figure 2.1: An example of automaton

• The set of states is X = {1, 2, 3, 4, 5, 6};

• The set of events is Σ = {a, b, c, f, uo};

• The initial state is 1;

• δ(1, c) = 2 and δ(5, a) = 5.
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2.1.1.2 Automata Language

The behavior of the system is described by the prefix-closed language L(G) gen-

erated by G. Henceforth, we shall denote L(G) by L. L is a subset of Σ∗, where

Σ∗ is the Kleene closure of set Σ.

In order to deal with the diagnosis problem of DESs in the framework of

automata, a DES is first abstracted as an automaton model including both normal

and faulty behavior. The set of events Σ is partitioned in two disjoint subsets

as Σ = Σo ⊎ Σu, where Σo is the set of observable events and Σu is the set of

unobservable events. Let Σf denote the set of faulty events which are to be

diagnosed. We assume that Σf ⊆ Σu, since it is straightforward to diagnose an

observable faulty event. The set of fault events is partitioned into m disjoint

subsets that represent the set of fault classes:

Σf = ΣF1
⊎ ΣF2

⊎ · · · ⊎ ΣFm

and this partition can be denoted by Πf .

Let us define the projection operator Po : Σ
∗ → Σ∗

o as































Po(ǫ) = ǫ

Po(e) = e if e ∈ Σo

Po(e) = ǫ if e ∈ Σu

Po(se) = Po(s)Po(e) with s ∈ Σ∗, e ∈ Σ

(2.1)

In other words, given a sequence of events s, Po(s) filters all the unobservable

and empty events, leaving a new sequence consisting of only the observable events

in s.

The postlanguage of L after s, denoted by L/s, is defined by:

L/s = {s′ ∈ Σ∗| ss′ ∈ L}

Example 2 For automaton G in Figure 2.1, assume that Σo = {a, b, c} and

Σu = {uo, f}. Given s ∈ L(G), s = cfabauoa, Po(s) = cabaa.
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2. MODELING FORMALISMS FOR DIAGNOSABILITY
ANALYSIS OF DES

2.1.1.3 Observer Automaton

We say a system is “deterministic” in the sense that the next state after the

occurrence of an event is unique. In this context, an automaton as introduced

in Section 2.1.1.1 is not necessarily deterministic, since the function δ permits

transitions from a state to two different states upon the same event. Moreover,

ǫ-transitions are also allowed. However, a nondeterministic automaton G can

be always transformed into a deterministic one Obs(G), which is called observer

automaton. This structure generates and marks the same languages as the orig-

inal nondeterministic automaton. The algorithm of building an observer from a

nondeterministic automaton is introduced in [Cassandras and Lafortune, 2007].

In other terms, an observer state is obtained by regrouping the automata states

that are reached from a given observer state right after the occurrence of the same

observable event. This provides a structure to estimate all possible states after

the occurrence of a sequence of observable events. An observer automaton can

be used as a basis to fault diagnosis.

Example 3 For the automaton in Figure 2.1, assume that the set of observable

events is Σo = {a, b, c}, the set of unobservable events is Σu = {f, uo}, the

observer is built in Figure 2.2.

{1}start {2, 4} {3, 5} {5, 6} {4}

{5}

c a a

b

b

abaa

Figure 2.2: The observer of the automaton in Figure 2.1

2.1.1.4 Diagnoser Automaton

Diagnosis is the process consisting to assign to each observed string of events a

diagnosis verdict, such as “normal”, “faulty” or “uncertain”. The uncertainty may

be reduced by further observations. For G, a plant modeled by an automaton, this
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inference can be done with the help of a diagnoser automaton called Diag(G).

A diagnoser automaton is actually a special observer such that each state is a

subset of X×{N, Y }, where N denotes that the state is reached after a sequence

of events without fault, and Y denotes that the state is reached after a sequence

of events holding a fault.

Given a state x of an automaton G having an entering observable transition,

if it can be reached by two paths having the same observable projection and such

that one path contains the fault f and the other one does not, then there will

exist two pairs (x,N) and (x, F ) in the states of Diag(G).

This also means that the cardinality of Diag(G) is always greater than or

equal to the cardinality of Obs(G).

Example 4 For the automaton in Figure 2.1, assume that the set of unobservable

fault events is Σf = {f}, the diagnoser automaton is given in Figure 2.3.

{1N}start {2N, 4F} {3N, 5F} {5N, 6F} {4F}

{5F}

c a a

b

b

aba
a

Figure 2.3: The diagnoser of the automaton in Figure 2.1

2.1.1.5 Diagnosability of Automata Models

The problem of diagnosability is to determine if the system is diagnosable, i.e., if

once a fault has occurred, it can be detected and identified in a finite number of

steps.

Definition 2 [Sampath et al., 1995] A prefix-closed and live language L is said

to be diagnosable w.r.t the projection Po and w.r.t the partition Πf on Σf if the

following holds:

(∀ i ∈ Πf )(∃ ni ∈ N)[ ∀ s ∈ Ψ(ΣFi
)](∀ r ∈ L/s)[|r| ≥ ni ⇒ D]
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ANALYSIS OF DES

where:

• Ψ(ΣFi
) denotes the set of all traces of L that end in a faulty event belonging

to the class ΣFi
;

• |r| denotes the number of events in trace r;

• the diagnosability condition D is

ω ∈ P−1
o [Po(st)]⇒ ΣFi

∈ ω

In other words, diagnosability requires that each fault event leads to distinct

observations, sufficient to allow the identification of the fault with a finite delay.

Let us now introduce the definition of indeterminate cycle that is fundamental

to test the property of diagnosability in the diagnoser [Sampath et al., 1995].

Let us consider a system G and its diagnoser Diag(G). We say that a cycle

in Diag(G) is an indeterminate cycle if it is composed exclusively of uncertain

states for which there exist:

• a corresponding cycle in G involving only states that carry Y in their labels

in the cycle in Diag(G) and

• a corresponding cycle in G involving only states that carry N in their labels

in the cycle in Diag(G).

The notion of indeterminate cycle is very important because their analysis

gives us necessary and sufficient conditions for diagnosability and gives a method

to testify the property of diagnosability of the system.

Proposition 1 [Sampath et al., 1995] A language L without multiple failures of

the same type is diagnosable if and only if its diagnoser Diag(G) has no indeter-

minate cycles w.r.t. each failure type ΣFi
.

It is important to emphasize that the presence of a cycle of uncertain states

in the diagnoser does not necessarily imply undiagnosability. For example, in the

diagnoser (cf. Figure 2.4(b)) of the automaton in Figure 2.4(a), there exists a cy-

cle of uncertain states composed of {3F, 7N}, {4F, 9F, 11N} and {5F, 10F, 12N}
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w.r.t a feasible sequence (bgd)∗. Actually, this cycle is not an indeterminate cycle

to imply undiagnosability, since there only exists a corresponding cycle of normal

states (7,11 and 12) but no corresponding cycle of faulty states from {3, 4, 5, 9, 10}.

(a) An example of automaton [Cassandras and Lafortune, 2007]

{1N}start {3F, 7N} {4F, 9F, 11N}

{5F, 10F, 12N}

{6F}

a b

g

d

t

t

(b) The diagnoser of the automaton in 2.4(a)

Figure 2.4: An automaton and its diagnoser without a indeterminate cycle

2.1.2 Petri Nets (PNs)

In this dissertation, we use PNs (and their extensions) rather than automata to

model DESs, since PNs have the following advantages [Giua et al., 2007]:
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• PNs give a graphical and mathematical representation of DESs. This helps

to solve problems either by the development and the analysis of graphical

structures or by mathematical calculations.

• PNs can well present concurrent processes, which is also one of the original

objectives to develop such a notation.

• PNs models are quite convenient for composition and decomposition oper-

ations. Compared with automata which is a state transition graph, PNs

describe more directly the natural structure of systems, including the rela-

tion between components and the distribution of resources in the system.

In other words, the process of decomposing a modular system modeled by

PN is more intuitive.

• Thanks to the mechanism of representing states with the distribution of

tokens in places, a PN with a finite structure (with finite number of places

and transitions) can represent an infinite state space.

Here, we review some basics of PNs. For details, please refer to [Murata,

1989].

2.1.2.1 Definition of PN

Petri nets, developed by Carl Adam Petri in the early 1960s, also named Place/

Transition nets or P/T nets, are a graphical and mathematical modeling notation

for DESs.

Definition 3 [Petri, 1962] A PN is a tuple N = (P, T, Pre, Post), where:

• P is a finite set of places (represented by circles in a PN graph);

• T is a finite set of transitions (represented by boxes or bars in a PN graph);

• Pre : P × T → N is the pre-incidence mapping that gives the arcs linking

places to transitions in the net, as well as their corresponding weight;

• Post : P × T → N is the post-incidence mapping that gives the arcs linking

transitions to places in the net, as well as their corresponding weight.
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A state of a PN is called “Marking”, presented by a distribution of tokens

(dots inside the places of the PN graph) in the places of the net. A marking is a

vector M ∈ N|P | that assigns a non-negative integer to each place. We denote by

M the set of reachable markings.

A marked PN (N,M0) is a PN N with an initial marking M0. For simplicity,

we will use the term “PN” to refer to “marked PN” afterwards.

2.1.2.2 Dynamics of PN

The dynamics of a PN corresponds to a movement or redistribution of tokens

according to some firing rules. A transition ti is enabled at marking M if M ≥

Pre(·, ti), denoted by M [ ti >.

We denote by En(M) the set of enabled transitions at M . Formally,

En(M) = {t | t ∈ T,M ≥ Pre(·, t)}. (2.2)

A transition ti enabled at a marking M can fire (here ti is also said to be

firable), yielding to a marking

M ′ = M + C · ~ti (2.3)

where ~ti ∈ {0, 1}
|T | is a vector in which only the entry associated with transition

ti is equal to 1, and

C = Post− Pre (2.4)

is called the incidence matrix.

Marking M ′ is then said to be reachable from marking M by firing transition

ti, also denoted by M [ ti > M ′.

A sequence of transitions σ = t1t2 . . . tk is executable (or achievable) at mark-

ing M , if M [ t1 > M1 [ t2 > · · · Mk−1 [ tk >, and we write it as M [ σ >. The

reached marking M ′ is computed by

M ′ = M + C · π(σ) (2.5)
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p1 p2t1

t2

t3

Figure 2.5: An example of PN

which is called state equation and denoted by M [ σ > M ′, where

π(σ) =
k

∑

i=1

~ti (2.6)

is the firing vector relative to σ.

2.1.2.3 Properties of PNs

A PN (N,M0) is said to be bounded if the number of tokens in each place does

not exceed a finite number m ∈ N, for any marking reachable from M0.

A PN (N,M0) is said to be live if, no matter what marking has been reached

from M0, it is possible to ultimately fire any transition of the net by progressing

through some further firing sequence.

x is an T-invariant iff there exist a firing sequence σ and a marking M such

that M0 [ σ > M and π(σ) = x .

A Petri net is acyclic if there is no direct circuit of transitions in the graph.

Example 5 Consider the example of PN in Figure 3.3.

• The set of places is P = {p1, p2};

• The set of transitions is T = {t1, t2, t3};
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• The initial marking is:

M0 =

[

p1 1

p2 0

]

;

• The pre-incidence mapping is:

Pre =

[

t1 t2 t3

p1 1 0 0

p2 0 1 1

]

;

• The post-incidence mapping is:

Post =

[

t1 t2 t3

p1 1 1 0

p2 0 0 0

]

;

• The incidence matrix is:

C = Post− Pre =

[

t1 t2 t3

p1 0 1 0

p2 0 −1 −1

]

;

• En(M0) = {t1} is the set of enabled transitions at marking M0;

• The PN is without T-invariant, bounded, unlive and not acyclic.

2.1.3 PN Language

A language over an event set Σ is a set of strings (or traces) formed from events

in Σ. In order to represent a language by a PN, each transition of the PN is

associated with an event by a labeling function. Hence, we speak about labeled

Petri net (LPN).
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2.1.4 Labeled Petri Nets (LPNs)

A labeled Petri net (LPN) is a quadruple NL = (N,M0,Σ, ϕ), where

• (N,M0) is a marked PN N with an initial marking M0;

• Σ is a finite set of events for transition labeling;

• ϕ : T → Σ is the transition labeling function, ϕ is also extended to sequences

of transitions, ϕ : T ∗ → Σ∗.

We also define the inverse mapping of ϕ by ϕ−1 : Σ→ 2T :

ϕ−1(e) = {t | t ∈ T, ϕ(t) = e}

A LPN graph is presented as a PN graph in which each transition is labeled

by an event in Σ.

The language generated by LPN NL is

L(NL) = {ϕ(σ) ∈ Σ∗ | σ ∈ T ∗, M0 [ σ >}

where mapping ϕ is extended to transition sequences.

Example 6 Let us consider the example of LPN NL = (N,M0,Σ, ϕ) in Fig-

ure 2.6.

p1 p2t1, a

t2, b

t3, b

Figure 2.6: An example of LPN

• Σ = {a, b} is the set of events;
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• ϕ is the labeling function such that ϕ(t1) = a, ϕ(t2) = ϕ(t3) = b, ϕ−1(a) =

{t1}, ϕ
−1(b) = {t2, t3}.

2.1.5 Diagnosability of LPNs

As we have mentioned in Section 2.1.1.2, event set Σ is partitioned into two

disjoint sets, i.e., Σ = Σo ⊎ Σu and the set of fault events is a subset of Σu

(Σf ⊆ Σu). Accordingly, the set of transitions of a LPN is partitioned into the

sets of observable and unobservable transitions,

T = To ⊎ Tu,

and the set of faulty transitions is a subset of Tu (Tf ⊆ Tu).

We now give the definition of diagnosability of LPNs.

Definition 4 (K-diagnosability of LPNs) [Liu et al., 2013] Given a LPN NL,

∀e ∈ Σf , e is diagnosable if ∀ u ∈ L, u|u| ∈ Σf , u
j 6∈ Σf ∀ 1 ≤ j ≤ |u| − 1 and

∀ v ∈ L/u, ∃ K ∈ N such that if |Po(v)| ≥ K, then

r ∈ P−1
o (Po(uv))⇒ e ∈ r.

We also say here that NL is K-diagnosable.

2.2 Timed Modeling Formalisms of DES

Untimed DES models are built when we consider only the logic features, i.e., the

logical order of event occurrences. This is insufficient for the analysis of some

systems whose behavior is based on quantitative temporal parameters. There-

fore, the classical untimed models for DES have been extended with temporal

features. As examples of such timed notations, one can cite timed transition sys-

tems (TTS), timed automata (TA) [Alur and Dill, 1994], timed Petri nets [Ram-

chandani, 1974], time Petri nets (TPNs) [Merlin, 1974] and labeled time Petri

nets (LTPNs) [Bérard et al., 2005], etc.

In this section, we will review the background of TTS, TA, TPNs and LTPNs,

which will be used afterwards. Some notations are inspired from [Bérard et al.,
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2005; Diaz, 2001; Ghazel et al., 2009; Tripakis, 2002]. For more details, the reader

can refer to these literatures.

2.2.1 Timed Transition Systems (TTS)

Let Σ be a finite set of events, and let R≥0 be the set of non-negative real numbers.

Definition 5 [Henzinger et al., 1992] A transition system S is a 4-tuple (Q, q0,Σ,

→) where:

• Q is the set of the states;

• q0 ∈ Q is the initial state;

• Σ is the set of events;

• →⊆ Q× (Σ ∪ R≥0)×Q is the set of edges.

We use q
a
−→ q′ to denote (q, a, q′) ∈→, which indicates that when the state of

the system is q, it can change to q′ upon a ∈ Σ ∪ R≥0. The edges labeled with

an event of Σ are called discrete edges and the edges labeled with a non-negative

real number are called continuous edges. A path is a finite or infinite sequence of

edges q0
a0−→ q1

a1−→ · · · . A state q′ ∈ Q is reachable from a state q if there exists

a finite sequence q0
a0−→ q1

a1−→ · · ·
an−1

−−−→ qn, such that q0 = q and qn = q′.

Definition 6 [Henzinger et al., 1992] A timed transition system (TTS) S is a

6-tuple (Q, q0,Σ,→, l, u) where:

• (Q, q0,Σ,→) is a transition system;

• le ∈ Q+ is a minimum delay for every transition e ∈ Σ;

• ue ∈ Q+ ∪ {∞} is a maximum delay for every transition e ∈ Σ.

2.2.2 Timed Automata (TA)

Timed automata are finite automata extended with real-valued variables called

clocks to specify timing constraints between occurrences of events. For a detailed

presentation of the fundamental results for timed automata, the reader can refer

to the seminal paper of [Alur and Dill, 1994].
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2.2.2.1 Definition of TA

Definition 7 [Alur et al., 1999] A timed automaton A is a 6-tuple (L,L0,Σ, X,

I, E), where:

• L is a finite set of locations;

• L0 ⊆ L is a set of initial locations;

• Σ is a finite set of labels;

• X is a finite set of clocks;

• I is a mapping that labels each location s with some clock constraint in

Φ(X), where the set Φ(X) of clock constraints ϕ is defined by the grammar

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2, c ∈ Q+;

• E ⊆ L×Σ×2X×Φ(X)×L is a set of transitions. A transition (s, a, ϕ, λ, s′)

represents an edge from location s to location s′ on symbol a. ϕ is a clock

constraint over X that specifies when the transition is enabled, and the set

λ ⊆ X gives the clocks to be reset while firing this transition.

Example 7 Figure 2.7 presents an example of timed automaton.

s0start s1, x < 1 s2, x < 1 s3
a, x := 0 b, y := 0 c

d, y > 2

c

Figure 2.7: An example of timed automaton

• L = {s0, s1, s2, s3};

• L0 = {s0};

25



2. MODELING FORMALISMS FOR DIAGNOSABILITY
ANALYSIS OF DES

• Σ = {a, b, c, d};

• X = {x, y};

• I(s0) = I(s3) = ∅, I(s1) = I(s2) = {x < 1};

2.2.2.2 TA Semantics

The semantics of a timed automaton A is defined as a timed transition system

SA. A state of SA is a pair (s, ν) such that s is a location of A and ν is a clock

valuation for X such that ν satisfies the invariant I(s). The set of all states of

A is denoted QA. A state (s, ν) is an initial state if s is an initial location of

A (s ∈ L0) and ν(x) = 0 for all clocks x. There are two types of transitions in

SA:

• Elapse of time: for a state (s, ν) and a real-valued time increment δ ≥ 0,

(s, ν)
δ
−→ (s, ν + δ) if for all 0 ≤ δ ≤ δ, ν + δ satisfy the invariant I(s).

• Location transition: for a state (s, ν) and a transition (s, a, ϕ, λ, s′) such

that ν satisfies ϕ, (s, ν)
a
−→ (s′, ν[λ := 0]).

Thus, SA is a transition system with label-set Σ ∪ R≥0.

The time-additivity property for TA is defined as:

(q
δ
−→ q′) ∧ (q′

ǫ
−→ q′′)⇒ (q

δ+ǫ
−−→ q′′)

with δ, ǫ ∈ R≥0.

Note that the executability constraints have been omitted here. First, when

the invariant of a location is violated, some outgoing edge must be enabled.

Second, from every reachable state the automaton should admit the possibility

of time to diverge. For example, the automaton should not enforce infinitely

many events in a finite interval of time. Automata satisfying this operational

requirement are called nonZeno.

Example 8 For the timed automaton of Figure 2.7, the state-space of the associ-

ated transition system is {s0, s1, s2, s3}×R2, the label-set is {a, b, c, d}∪R≥0, and

as an example of transition sequence: (s0, 0, 0)
1.2
−→ (s0, 1.2, 1.2)

a
−→ (s1, 0, 1.2)

0.7
−→

(s1, 0.7, 1.9)
b
−→ (s2, 0.7, 0).
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2.2.3 Time Petri Nets (TPNs)

2.2.3.1 Definition of TPN

Definition 8 [Merlin, 1974] A TPN is a 6-tuple (P, T, Pre, Post,M0, SIM) where:

• (P, T, Pre, Post,M0) is a marked PN;

• SIM : T → Q≥0 × (Q≥0 ∪ {∞}) associates a static interval mapping with

each transition, where Q≥0 is the set of non-negative rational numbers.

Example 9 Let us consider the example of TPN in Figure 2.8. Here SIM is

the static interval mapping such that SIM(t1) = [1, 1], SIM(t2) = [0, 2] and

SIM(t3) = [0, 3].

p1 p2t1[1, 1]

t2[0, 2]

t3[0, 3]

Figure 2.8: An example of TPN

The state of a TPN is a pair E = (M, I), where M is the marking of the

net, and I is the firing interval mapping which associates each transition with its

firing interval.

The initial state is defined by E0 = (M0, I0), where M0 is the initial marking,

and I0 is the mapping associating each transition enabled at M0 with its static

firing interval, and the empty interval for all other transitions. Formally, I0 is

defined by:

I0(tj) =







SIM(tj) if tj ∈ En(M0)

∅ otherwise
(2.7)
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2.2.3.2 Dynamics of TPN

Let us look at the state transition of the TPN from a state E = (M, I) towards

state E ′ = (M ′, I ′) following the firing of a transition t with I(t) = [αt, βt]
1, at a

relative time θt. The following rules must be respected:

• t ∈ En(M);

• θt ≥ αt;

• ∀k ∈ En(M), θt ≤ βk.

We write E
(t, θt)
−−−→ E ′ to denote this state transition, and the new state E ′ is

defined as follows:

• M ′ = M − Pre(·, t) + Post(·, t);

• new firing intervals: ∀k ∈ T ,

– if k 6∈ En(M ′), I ′(k) = ∅;

– if k 6= t and k ∈ En(M), and k is not in conflict with t, then:

I ′(k) =







[max(0, αk − θt), βk − θt] if βk 6=∞

[max(0, αk − θt),∞[ otherwise
(2.8)

– I ′(k) = SIM(k), otherwise.

If a transition t remains enabled during its own firing (t is multi-enabled [Diaz,

2001]), then I ′(t) = SIM(t). That means t is considered as to be newly enabled.

2.2.3.3 TPN Semantics

The TTS ST = (Q, q0, T,→) associated with a TPN NT = (P, T, Pre, Post,M0,

SIM) is defined by Q = N|P | × (R≥0)
n with n ≤ |T |, q0 = (M0,~0), and →∈

Q× (T ∪ R≥0)×Q is the set of edges defined by:

1 An interval is denoted by [αt, βt] when βt 6=∞, and [αt, βt[ when βt =∞.
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1. The discrete edges (relative to transitions) are defined by, for all ti ∈ T :

(M, v)
ti−→ (M ′, v′)⇔











































M ≥ Pre(ti) ∧M ′ = M − Pre(ti) + Post(ti)

α(ti) ≤ vi ≤ β(ti)

v′k =



















0 if tk is newly enabled after the firing of

ti at M

vk otherwise

(2.9)

2. The continuous edges (relative to time elapsing) are defined by, for all

δ ∈ R≥0: (M, v)
δ
−→ (M, v′) ⇔ v′ = v + δ, and ∀k ∈ {1, · · · , n}, (M ≥

Pre(tk)⇒ v′k ≤ β(tk)).

The last condition on continuous transitions ensures that the time that elapses

in a marking cannot increase to a value which would disable transitions that are

enabled by the current marking (strong semantics). For TPNs, as for TA, it is not

possible to work directly on the TTS which represents the behavior of the TPN,

because this TTS has infinitely many states (and infinitely many labels). Again,

the use of abstraction methods permit the construction of a transition system

where the labels expressing the passing of time are eliminated and where states

are regrouped into classes on which the reachability analysis can be done. The

state class graph [Berthomieu and Menasche, 1983] and the zone graph [Gardey

et al., 2004] are examples of such approaches which gather the states that are

equivalent up to a time elapsing in macro states. However, these methods do

not always give a result because for a TPN the problems of reachability and

boundedness are undecidable [Berthomieu and Diaz, 1991].

2.2.3.4 State Class

One can note that using notation (M, I) will lead to infinite set of states. State

class has been introduced in order to gather the states which can be obtained

from each other simply by time elapsing.

A state class of a TPN is associated to an achievable firing sequence of tran-
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sitions from the initial state:

(M,D) = {(M, i) | ∃(σ, u) ∈ D,M0 [ σ > M, (M0, i0)
(σ,u)
−−→ (M, i)}.

D is called the firing domain and is the set of vector solutions of the τj-linear

inequaties, where τj stands for the relative firing date of enabled transition tj.

Given tj ∈ T , tj is firable starting from a given class C = (M,D) iff:

• M ≥ Pre(·, tj);

• Inequaties in the firing domain D holds;

• ∀j 6= k, τj ≤ τk. (Condition A)

Consider that from a given class C = (M,D), the system reaches class C ′ =

(M ′, D′) following the firing of transition tj [Diaz, 2001], denoted by C
tj
−→ C ′.

Here C ′ is defined by:

1. M ′ = M − Pre(·, tj) + Post(·, tj);

2. the new firing domain D′ is determined starting from the linear system

associated with D, according to the following algorithm:

(a) Condition A is added to the linear system of C and denotes that

transition tj can be fired first among En(M).

(b) All variables τk associated with transitions tk in conflict with tj are

eliminated from the system.

(c) Each variable τl, l 6= j is replaced by the sum τj + τl. Then, τj is

eliminated from the system.

(d) For each transition tm newly enabled by M ′, a new variable τm framed

by the bounds of the static firing interval of tm is introduced to the

linear system.

The transition C
tj
−→ C ′ can be simply explained as follows: any state in C ′

can be reached from one of the states in C by firing transition tj; or there exists

a subset of C such that any state in this subset can arrive at a state in C ′ by the

firing of tj.
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Given two state classes C and C ′, C ′ is said to be reachable from C if C ′ can

be obtained by firing a sequence σ ∈ T ∗ from C, and we denote it by C
σ
−→ C ′.

Proposition 2 [Diaz, 2001] A TPN is bounded iff the number of state classes

of this net is finite.

2.2.4 Labeled Time Petri Nets (LTPNs)

By associating with each transition of the TPN an event, this TPN is said labeled.

We then speak about labeled time Petri net (LTPN) [Bérard et al., 2005], such

that each firing of transition simultaneously produces the corresponding event.

2.2.4.1 Definition of LTPN

Definition 9 [Bouyer et al., 2006] A LTPN is a tuple (P, T, Pre, Post,M0, SIM,

Σ, ϕ), where:

• (P, T, Pre, Post,M0, SIM) is a TPN;

• Σ is a finite set of events;

• ϕ : T → Σ is the transition labeling function as defined for LPNs.

Informally, we can treat a LTPN as a LPN with temporal constraints on its

transitions, or a TPN whose transitions are labeled with an event. The relation

between LTPN and PN, TPN, LPN is illustrated in Figure 2.9.

PN LPN

TPN LTPN

+ labels

+ intervals

+ labels

+ intervals

Figure 2.9: Relation between LTPN and PN, TPN, LPN
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p1 p2t1, a[1, 1]

t2, b[0, 2]

t3, b[0, 3]

Figure 2.10: An example of LTPN

Example 10 Let us consider the example of LTPN in Figure 2.10. Here ϕ is

the transition labeling function such that ϕ(t1) = a, ϕ(t2) = ϕ(t3) = b.

A state change of a LTPN can be driven either by the firing of some transition

or by time elapsing. Note that, in LTPNs, two different transitions can be labeled

with the same event.

Definitions of state, state class and their corresponding transition mapping

are the same as for TPNs. We denote by M the set of states of LTPN. For

E,E ′ ∈ M, we write E
(t, θt)
−−−→ E ′ to denote this state transition from E to E ′

by the firing of transition t at the relative firing date θt. Besides, most analysis

approaches of TPNs can be extended to LTPNs.

2.2.4.2 Timed Language for LTPNs

A dated firing sequence (DFS) [Diaz, 2001] is a pair (σ, u), where σ ∈ T ∗ is an

achievable firing sequence, and u is the sequence of firing dates of the transitions

in σ. The set of DFSs is denoted by D.

Given a sequence of transition firings (or transition dates) w, we denote by

wj the jth element in w, and |w| the length (number of elements) of w. For

a ∈ T × R≥0 and w ∈ (T × R≥0)
∗, we write a ∈ w if there exists j such that

wj = a. We also write w = w1w2 . . . wn to say that w is the concatenation

of w1, w2, . . . , wn, where w1, w2, . . . , wn are sequences of transitions (or events,

dates).

A state E ′ is said to be reachable from state E by the firing of a DFS (σ, u),
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denoted by E
(σ,u)
−−→ E ′ with |σ| = n, if ∃ E0, E1, · · · , En such that E = E0, En =

E ′ and ∀ 1 ≤ j ≤ n,Ej−1
(σj ,uj)
−−−−→ Ej.

Definition 10 A labeled dated firing sequence (LDFS) of DFS (σ, u) is defined

by (s, u), where s = ϕ(σ), and ϕ is the extended form of the labeling function ϕ

in the usual manner.

We write Dl to denote the set of LDFSs.

Definition 11 The language generated by LTPN NLT is defined by:

L(NLT ) = {(ϕ(σ), u)|∃E ∈M, (σ, u) ∈ D, s.t. E0
(σ,u)
−−→ E}.

For a given LTPN NLT , we use L to denote L(NLT ) for short.

Let us define some projections for timed language. Given a LDFS p and a

set of observable events Σo, Po(p) is the LDFS obtained by erasing from p all the

unobservable events and summing up the relative delays to the delay of the very

following observable event. Define the inverse projection operator P−1
o as

P−1
o (r) = {p ∈ L | Po(p) = r}

for r ∈ (Σo × R≥0)
∗.

Given a language L ⊆ Dl and a string p ∈ L, the post-language of L after p

denoted by L/p, is the language

L/p = {r ∈ Dl | pr ∈ L}.

Example 11 Given Σo = {a, c}, r1, r2 ∈ L, s1, s2 ∈ Σ∗ with r1 = (s1, u1), r2 =

(s2, u2), s1 = abca, u1 = (1, 2, 3, 2), s2 = aba, u2 = (1, 2, 0), then Po(r1) = (s3, u3)

wherein s3 = aca and u3 = (1, 5, 2). Finally, (ca, (3, 2)), (a, 0) ∈ L/(ab, (1, 2)).

2.2.4.3 Diagnosability of LTPN

The diagnosability and ∆-diagnosability of TA has been introduced in [Tripakis,

2002]. Now we will discuss these issues in the framework of LTPNs. Without loss

of generality, we consider only one class of faults.
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Definition 12 [Liu et al., 2013, 2014a] Given a LTPN NLT , we say G is diag-

nosable if ∃∆ ∈ Q≥0 such that ∀(s, u) ∈ L, s|s| ∈ Σf , s
j 6∈ Σf for j < |s| and

∀(w, z) ∈ L/(s, u),
∑|z|

j=1 z
j ≥ ∆, then the following holds:

r ∈ P−1
o (Po(sw, uz))⇒ ∃e ∈ Σf s.t. e ∈ r.

We also say here that G is ∆-diagnosable.

In simple terms, any fault in a diagnosable LTPN can be diagnosed upon a

finite delay after its occurrence. Obviously, there exists ∆min such that, G is

∆-diagnosable for any ∆ ≥ ∆min, and G is not ∆-diagnosable for any ∆ < ∆min.

As we have analyzed, looking for the ∆min of a diagnosable LTPN will be

an interesting issue of practical significance since, in practice, we wish that the

fault can be diagnosed as soon as possible and it is important to determine the

minimum delay upon which we ensure the fault can be diagnosed.

2.3 Hypothesis

This work will deal with fault diagnosis of DESs in both untimed and timed

contexts, on the basis of proved existing results. Thus, we followed the hypothesis

for the classic diagnosis analysis. For clarity, we also make the following remarks:

• The system under consideration can be abstracted as an untimed or timed

DES, which can be modeled by an LPN or an LTPN.

• In the used models LPNs and LTPNs, each transition is associated with

either an observable or an unobservable event, and one event may assign to

multiple transitions.

• No achievable cycle of unobservable transitions exists in the LPN or LTPN.

• During the analysis, the system structure does not change, and the system

behavior does not respond to outside inferences (control commands).

• We consider only permanent faults, i.e., the system remains in faulty state

after the occurrence of fault.
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• The faults considered can be partitioned into multiple disjoint sets.

2.4 Conclusion

In the section, we have reviewed the modeling formalisms of DESs and TDESs,

as will be used in this thesis, i.e., LPNs and LTPNs. We have also introduced

some notations for languages, the definition ofK-diagnosability for untimed DESs

and ∆-diagnosability for TDESs. Finally, we give the basic hypothesis for the

discussion in the sequel.

Before discussing the fault diagnosis issues, in the following chapter we will re-

view the literature concerning existing diagnosis techniques using the DES models

as introduced in the current chapter.
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Chapter 3

Literature Review

This chapter reviews the existing studies on DES-based fault diagnosis. Literature

is summarized and classified by three parts: diagnosability and its extensions,

diagnosis approaches, and diagnostic software tools.

3.1 Overview

Fault diagnosis has been shown to play an essential role in the safe and reliable

operation of industrial systems. This issue has received considerable attention in

the context of DESs. DES diagnosis have been studied from different viewpoints

with the application of various techniques, as shown in Figure 3.1:

• The two most discussed topics are online diagnosis and diagnosability anal-

ysis [Lin, 1994]. In simple terms, diagnosis is performed online to detect

the occurrences of faults and to localize the cause of faults. Diagnosability

refers to the ability to detect and locate any fault within a finite delay after

its occurrence. Diagnosability analysis is performed offline. Logically, a

fault can be eventually diagnosed if the system is diagnosable. Therefore,

offline diagnosability analysis is the basis of online diagnosis.

• The two most used modeling formalisms are automata and PNs. DES-

based diagnosis is first studied in the framework of regular languages and

automata [Lin, 1994; Sampath et al., 1995]. These automata-based ap-

proaches are based on state enumeration, which can induce state explosion
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Figure 3.1: DES-based fault diagnosis

problems. In order to overcome this problem, Some subsequent automata-

based approaches [Jiang et al., 2001; Yoo and Lafortune, 2002b] have been

proposed for reducing the computational complexity, without the construc-

tion of a diagnoser automaton. Besides, a series of works [Aghasaryan and

Fabre, 1998; Basile et al., 2010; Bouyer et al., 2005; Brandin and Wonham,

1994; Cabasino et al., 2010; Genc and Lafortune, 2007; Ghazel et al., 2009;

Haar, 2009; Ru and Hadjicostis, 2009; Ushio et al., 1998; Wen et al., 2005]

concerning the diagnosis and diagnosability of DESs turned to PN model-

ing, thus benefiting from the expressiveness and the well-developed theory

of PNs.

• DES-based diagnosis are investigated in both untimed and timed contexts

[Cassez, 2010; Ghazel et al., 2009; Holloway and Chand, 1994; Jiang et al.,

2006; Liu et al., 2013; Tripakis, 2002; Wang et al., 2011, 2013; Zemouri

and Faure, 2006]. Untimed discrete event models and timed discrete event

models are two abstraction types of real systems. An untimed discrete

event model characterizes the logical behavior of systems, i.e., only the

ordering of events is considered, while a timed discrete event model makes

it explicit the quantitative temporal constraints on the system behavior.

Timing characterizes DESs in a new (time) dimension, so that the system

behavior contains richer information. However, the complexity of dealing
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with such systems is much higher.

We summarize and classify some main works on DES-based diagnosis, from

the viewpoints of modeling formalism, subject investigated and technique used,

as shown in Table 1 in Appendix 6.2.

3.2 Literature on Diagnosability of Discrete Event

Systems (DES)

3.2.1 Classical Diagnosability

DES-based diagnosis has had a growing interest from both academia and in-

dustrial communities during the two past decades. [Sampath et al., 1995] is a

pioneer work on this topic. The authors set a formal definition of diagnosability

for untimed DESs, where the faults are treated as unobservable and classified

into disjoint classes. They also give the necessary and sufficient conditions for

diagnosability. A model called “diagnoser” is then introduced both to test diag-

nosability by examining indeterminate cycles and for online diagnosis by mapping

the online observations on the diagnoser states. The diagnoser-based approach

enumerates all the states and, consequently, suffers from state explosion problem.

Generally, the diagnoser state space is exponential in the number of states of the

original automaton.

Diagnosability of DESs is then introduced in the framework of PNs. In [Ushio

et al., 1998], the language-based diagnosability in [Sampath et al., 1995] is ex-

tended to unbounded PNs, where the net marking is observable and all transitions

are unobservable, and the faults are associated to transitions. A simple ω diag-

noser and sufficient conditions for diagnosability of unbounded PNs are proposed.

For other literature on classical diagnosability, we review the following repre-

sentative works.

In [Jiang et al., 2001], an algorithm based on the parallel composition of an

automaton with itself is proposed. In this approach, no diagnoser is built and the

complexity is polynomial of fourth order in the number of the system states and

linear in the number of the failure types. In [Yoo and Lafortune, 2002b], a com-
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parable polynomial-time algorithm for deciding diagnosability is presented. The

approach is based on the construction of a non-deterministic automaton called

“verifier”. Both methods are based on algorithms which investigate if the system

is diagnosable by seeking some specific cycles. Hence the system is diagnosable if

such cycles do not exist. Although these approaches are more efficient than the

diagnoser approach in terms of time complexity, they are still based on a priori

built state space and suffer from state explosion problem.

In [Xue and Zheng, 2004] and [Cabasino et al., 2012a], a composition net called

verifier is constructed for the analysis of diagnosability for PNs. The practical ver-

ification condition is further given for unbounded PNs based on the coverability

graph of the verifier. The diagnosability of a PN is then transformed as a reach-

ability problem on the verifier model. The verifier net approach is more efficient

compared with traditional diagnoser approach, however, it requires an exhaustive

enumeration of the reachability set of the verifier net, which may be larger than

the reachability set of the original PN. Note that the authors of [Cabasino et al.,

2012a] also deal with the K-diagnosability problem and use the integer linear

programming technique.

In [Wen et al., 2005], the authors propose a sufficient condition for testing

diagnosability by checking the structure of subnet called T-components related

to the T-invariants of the LPN without building a diagnoser. The indeterminate

cycle in the sense of [Sampath et al., 1995] in the LPN is represented by the

existence of two inequivalent T-invariants with the same observable projection.

Thus the system is diagnosable if there exists no two such T-invariants. This

ILP-based approach is of polynomial complexity in the number of nodes for com-

puting a sufficient condition for diagnosability of the LPN. However, the solution

of T-invariants are the firing count vectors which record the number of firing tran-

sitions but without their order. The approach is not suitable for analyzing the

diagnosability of LPNs with the T-invariants of the same observable projection,

e.g., no verdict can be made for the nets in Figure 3.2 and Figure 3.3 where events

a, b are observable and f is the faulty transition.

Note that the above mentioned literature is on the diagnosability of permanent

faults. There are also some works on the diagnosability of intermittent faults as

in [Contant et al., 2004; Jiang et al., 2003a, 2006; Yoo and Garcia, 2004].
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Figure 3.2: A diagnosable LPN with 2 minimal T-invariants w.r.t the same ob-
servable projection

p1p2
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t5, b
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Figure 3.3: An undiagnosable LPN with 2 minimal T-invariants w.r.t the same
observable projection

3.2.2 K-diagnosability of Untimed DESs

The classical diagnosability problem consists in qualitatively determining the ex-

istence of a finite delay upon which any fault (or class of faults) can be detected

and identified. In practice, the diagnosability feature can be insufficient to ensure

a safe operation of the system, namely when we deal with safety-critical systems.

Indeed, this delay could be too long and faults may have dramatic consequences

before being diagnosed and before some reconfiguration actions can be under-

taken. Thus, some “quantitative” versions of diagnosability have been developed,

namely K-diagnosability [Basile et al., 2010, 2012; Cabasino et al., 2012a] which

ensure that any fault (or class of faults) can be determined within a finite delay
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of K observable events upon its occurrence.

Generally speaking, there are two main problems on K-diagnosability. The

first is to analyzeK-diagnosability of a system under a given valueK, i.e., whether

or not any fault (or class of faults) can be detected and identified within K steps

(observable events) after its occurrence. The second is to find the minimum K

for a diagnosable system.

In [Basile et al., 2010], K-diagnosability is discussed in the framework of

general PNs, where K refers to the number of both observable and unobservable

transitions fired after the faulty transition. The K-diagnosability is solved as a

linear programming problem. In [Basile et al., 2012], an extensive approach is

proposed to check K-diagnosability for both unlabeled and labeled PNs. In these

approaches, system behavior is represented by a series of linear equations. The

diagnosability of the PN models can be verified only if the faulty behavior can

be described by a finite number of equations. The approach is efficient when

checking K-diagnosability, however, it is not suitable for classic diagnosability

analysis, since in order to investigate classic diagnosability, new equation systems

may have to be built for eachK, and the existing state space cannot be sufficiently

used.

In [Cabasino et al., 2012a], the authors provide necessary and sufficient condi-

tions for classical diagnosability and diagnosability in K steps (K-diagnosability),

and develop an approach to compute the bound K based on the analysis of the

reachability/coverability graph of a structure called modified verifier net. In this

work the value K refers to the number of observable transitions/events after the

fault, which is a little different from that in [Basile et al., 2010, 2012].

Besides, there are many other studies on the other extensive versions of diag-

nosability for untimed DESs, such as [1, K]-diagnosability in [Jiang et al., 2006;

Yoo and Garcia, 2004], codiagnosability in [Wang et al., 2004], modular diagnos-

ability in [Contant et al., 2004], etc. We do not review these works here, since

the framework is different from the one considered in this thesis.
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3.2.3 Diagnosability and ∆-Diagnosability of TDES

Compared with DES, TDES is an abstraction of the system behavior which con-

siders both the ordering and the occurrence dates of events. With the help of the

absolute occurrence dates of events or the relative duration between two states,

two undistinguishable event sequences may become distinguishable in untimed

context. Consequently, undiagnosable faults in untimed context may become

diagnosable in a timed context, which means that time information can carry

valuable knowledge w.r.t diagnosis issues. This is an important motivation for

considering time information while dealing with these issues.

However, considering temporal information in the diagnosis framework often

leads to much higher computation and memory complexity. Therefore, dealing

with diagnosis in a timed context becomes even more challenging, especially given

that one has to handle infinite state space in this case. In order to face this

challenge, techniques seeking for finite representation of infinite state space of

TDESs, and transforming timed problem into untimed one have been developed.

[Tripakis, 2002] provides algorithms to check ∆-diagnosability for TDESs,

i.e., to diagnose a fault within a delay of at most ∆ time units after its occur-

rence, and gives necessary and sufficient conditions of diagnosability for timed

automata. The developed algorithms are based on standard reachability analysis

of some accepting states or on searching non-zeno runs. [Xu et al., 2010] deals

with diagnosis of TDESs modeled as timed automata. It is shown that the prob-

lem of diagnosability analysis and diagnosis of dense-time system is decidable by

reducing this problem to the untimed setting. These approaches are on the basis

of a known state space. For complex systems, computing the whole state space

(time automata) in the timed context may be rather resource-consuming.

Diagnosis of TDESs are also considered in the framework of TPN. In [Pencolé,

2009], the authors describe faults that can occur during the execution of service

workflows by means of chronicles, and propose a diagnosis algorithm based on

chronicle recognition in the framework of TPNs. In [Jiroveanu et al., 2006], fault

diagnosis of TPN model is discussed based on partial orders (unfoldings). The set

of legal traces in the TPN is obtained solving a system of linear inequalities. Two

methods based on Extended Linear Complementarity Problem and constraint
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propagation are used for the solution. These approaches discuss only the diagnosis

issue but not diagnosability. Besides, no analysis based on a more general model

LTPN can be found.

3.3 Literature on Diagnosis Techniques

3.3.1 Diagnoser Approach

The classical diagnoser based approach [Sampath et al., 1995, 1996] is often re-

ferred as a pioneer work on the DES diagnosis topic. In this approach, the system

behavior is characterized by states with the corresponding fault occurrence infor-

mation. Accordingly, any state is labeled with a tag “Normal”, “F(Fault)-certain”

or “F-uncertain”. “F-uncertain” state can lead to a “Normal”, “F-certain” after

further observations. This approach is based on state enumeration, thus it is not

suitable for unbounded system (the number of system states is infinite). Even for

bounded model, it suffers from state space exploration. Therefore, some other

automata or PN based approaches have been developed, as attempts to tackle

this issue, even partially.

3.3.2 Verifier (Twin plant) Approach

Instead of building a diagnoser, in verifier based approach a new structure de-

rived from the original model under consideration is constructed for diagnosability

analysis. Then the diagnosability problem can be treated by analyzing the struc-

ture of the verifier. The verifier is constructed as the parallel composition of the

plant model (possibly an automaton or a PN) with itself, the composite model

is then called “twin plant”. The aim of building a verifier is indeed to perform

the diagnosability analysis under a lower complexity than for the diagnoser-based

approach.

In [Jiang et al., 2001; Yoo and Lafortune, 2002b], a verifier automaton, instead

of a diagnoser automaton, is built by the parallel composition of the automaton

with fault information and itself. The system is diagnosable if and only if there

exists no such a cycle in the verifier that the fault occurs in one trace but not in
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the other.

In [Cabasino et al., 2012a; Xue and Zheng, 2004], a verifier net obtained by

the parallel composition of the PN and itself under some given rules is built.

The diagnosability problem is then transformed as the reachability/coverability

analysis of the verifier net.

3.3.3 Decentralized/Distributed/Modular Approaches

To overcome the problem of state explosion, approaches of decentralized, dis-

tributed and modular diagnosis [Benveniste et al., 2003; Cabasino et al., 2013a;

Cassez, 2012; Contant et al., 2006; Debouk et al., 2000; Genc and Lafortune, 2007;

Jiroveanu and Boel, 2005; Lafortune et al., 2005; Pencolé, 2009; Provan, 2002;

Qiu et al., 2006] have also been discussed. Although We put these three literally

similar methods together, there are some differences between the terminology [Za-

ytoon and Lafortune, 2013]. Generally speaking, decentralized approaches have

a set of diagnosers, each with different observation capabilities, but all consid-

ering the global system model in their model-based inferencing. In distributed

approaches, the individual diagnosers only use partial (local) system models as

opposed to the global system model.

In [Genc and Lafortune, 2007], the authors develop a distributed (modular)

approach for online diagnosis. The system under consideration is treated as a set

of modules, for each of them a PN diagnoser is built to perform online diagnosis.

Local diagnosis information can be shared between modules modeled by PNs with

some common places, such that the global diagnosis information can be recovered.

3.3.4 Linear Programming Approach

The mathematical representation of PNs allows use of standard tools, such as

integer linear programming (ILP), to solve DES diagnosis problems.

An early study on diagnosability of PNs models can be found in [Wen et al.,

2005]. The authors provide an algorithm of polynomial complexity in the number

of nodes for computing a sufficient condition for diagnosability of PN models. ILP

technique is used to check a specific structure called T-component which is related
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to minimum T-invariants. The proposed algorithm shows the efficiency compared

with state enumeration approaches.

In [Basile et al., 2010, 2012], the authors propose ILP-based approaches to

check K-diagnosability of DESs modeled by PNs and LPNs, which avoids using

a diagnoser. The proposed approach does not require any specific assumption on

the structure of the net induced by the unobservable transitions. Necessary and

sufficient conditions are then given for diagnosability of bounded nets. The main

drawback is that the characterization of a fireable sequence in terms of firing

count vectors may require, in the worst case, a number of firing count vectors

equal to the sequence length.

[Cabasino et al., 2012a] deals with diagnosability of LPN models using a twin

plant called verifier net (VN). ILP technique is used to look for cycles associated

with firable repetitive sequences (upon the firing of a fault transition) in the

coverability graph of the VN.

3.3.5 Unfolding Technique

There are also some diagnosis analysis approaches using unfolding technique [Ben-

veniste et al., 2003; Grabiec et al., 2010; Haar, 2009; Madalinski et al., 2010].

Unfolding is a well-established technique for verifying properties of Petri nets; its

use for this purpose was initially proposed by McMillan [McMillan and Probst,

1995]. The unfolding of a (Petri) net is another net of acyclic structure that

fully represents the state space (reachable markings) of the original net. Because

unfoldings represent behavior by acyclic structures rather than by interleaved ac-

tions, they are often exponentially smaller than the state space of the net, and

never larger than it.

[Grabiec et al., 2010] discusses the on-line diagnosis of distributed systems

using TPN models. We propose to base the method on unfoldings. Given a partial

observation, as a possibly structured set of actions, our method determines the

causal relation between events in the model that explain the observation. It can

also synthesize parametric constraints associated with these explanations. The

method is implemented in the tool Romeo. We present its application to the

diagnosis of the example of a cowshed with pigs.
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[Madalinski et al., 2010] gives an approach to verify diagnosability in the

framework of LPN unfoldings based on the twin plant method. The unfolding

is infinite whenever the LPN NL has an infinite run; however, if NL has finitely

many reachable states then the unfolding eventually starts to repeat itself and

can be truncated without loss of information, yielding a finite representation. A

verier, which compares pairs of paths from the initial model sharing the same

observable behavior, is built check diagnosability.

3.3.6 Model-Checking Based Techniques

Model checking [Clarke et al., 1994] is a formal verification technique for assessing

functional properties of systems, which are written in propositional temporal

logic. The verification procedure is an exhaustive search of the state space to

check whether or not the given model satisfies this property.

Model checking techniques are applied to fault diagnosis because it has the

following advantages [Baier and Katoen, 2008]:

• It is a general verification approach for a wide range of applications such as

embedded systems, software engineering, hardware design, etc.

• It supports partial verification, i.e., properties can be checked individually,

thus allowing focus on the essential properties first. No complete require-

ment specification is needed.

• It provides diagnostic information and counterexamples in case a property

is invalidated, which is useful for fault diagnosis.

In [Cimatti et al., 2003], the authors treat the diagnosability analysis as a

model checking problem. A copy of the system is made to built a twin plant.

The system is undiagnosable if there exist two same observable scenarios in the

original and copy system respectively, such that the one brings the system to a

faulty state and the other brings to the normal.

In [Grastien, 2009], the author presents a symbolic-based approach to test

diagnosability. The search can be performed in a classical forward manner, or

in a backward manner which potentially avoids exploring all the search space of

47



3. LITERATURE REVIEW

the DES. This approach can also be mixed with a decentralised computation,

which allows early detection of diagnosability and reduction of the search space

in general. Thus the approach shows its advantages when comparing with the

existing enumerative approaches.

In [Huang et al., 2004], the authors study diagnosis of DESs modeled in the

rule-based modeling formalism. An attractive feature of rule-based model is its

compactness. A motivation for the work presented is to develop failure diagnosis

techniques that are able to exploit this compactness. In this regard, they develop

symbolic techniques for testing diagnosability and computing a diagnoser. Di-

agnosability test is shown to be an instance of ldt order temporal logic model-

checking. An on-line algorithm for diagnoser synthesis is obtained by using pred-

icates and predicate transformers.

[Peres and Ghazel, 2013] discusses the diagnosis issue using a unique logi-

cal framework called µ-calculus. Diagnosability analysis is performed through

the computing of successive logical relations. The implementation consists of a

DBMS-architecture (Database Management System) where system behavior is

encoded as a set of relational tables and diagnosability investigation is performed

through an ordered sequence of queries on these tables [Ghazel et al., 2012].

As an approach using exhaustive search, model-checking suffers from the state-

space explosion problem, i.e., the number of states needed to model the system

accurately may easily exceed the amount of available computer memory. Models

of realistic systems may still be too large to fit in memory.

3.4 Literature on Diagnosis Software Tools

In this section, we review a few works on the development of diagnostic software

tools for DESs, and the comparisons between them.

UMDES [Lafortune, 2000] is a library of C routines for the study of DESs

modeled by finite-state automata (FSA). The tool provides manipulation of FSA,

operations of supervisory control theory and failure diagnosis. The tool DESUMA

[Ricker et al., 2006] is an integration of the UMDES library with the graphical

environment GIDDES for visualizing discrete event systems. DESUMA allows

the user to perform a variety of manipulations on DES modeled by finite state
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automata, such as model editing, diagnosability analysis, verification, control

under full and partial observation, and decentralized control.

In [Stamp et al., 2006], the authors develop a tool for Discrete-Event Control

And Diagnosis Analysis, called DECADA. DECADA checks diagnosability of an

automaton model under partial observation.

[Cabasino et al., 2011] develops a software platform for the integration of

discrete event systems tools. The objective of this software platform is to integrate

several tools dealing with Petri nets and automata. The purpose is twofold: first

to allow for a rigorous comparison of the methods and algorithms developed by

the DISC project partners, and second to provide a packaged tool which would

facilitate transfer of these techniques to the end users. The interchange format

is compliant to the ISO standard Petri Net Markup Language (PNML). The

platform includes a series of plug-ins and adapters to manipulate/transform the

different file formats supported by the platform.

It is worth noticing that in [Cabasino et al., 2012b], a comparison of three

tools for checking diagnosability is performed: UMDES-LIB, PN DIAG and

PN DIAG UNBOUNDED.

3.5 Conclusion

This chapter has recalled the existing study works on fault diagnosis of DESs in

both untimed and timed contexts. First, it is shown that the approaches based

on existing automata suffer from the inherent state explosion problem. Thus,

we will focus on coping with this problem in the PN framework using on-the-fly

and incremental techniques. Secondly, in the timed context, the diagnosability of

TPNs is still open, which will be discussed in this work.
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Chapter 4

Untimed PN-Based Diagnosis of

DES

In this chapter, we aim at developing on-the-fly and incremental techniques for

fault diagnosis in order to cope with the state explosion problem when dealing

with complex systems. As will be shown in this chapter, analyzing on the basis of a

known automata or building the whole reachability graph is actually unnecessary

in fault diagnosis analysis. Instead, our proposed approach can generally show

more efficiency compared with existing approaches. The motivation for using

these techniques will be illustrated in Section 4.1.

In Sections 4.2 – 4.6, we will discuss the fault diagnosis of DES modeled by

LPNs, where faults correspond to unobservable transitions. Based on several new

concepts that we introduce, a tree-like structure holding both the markings and

their related information of fault occurrences is elaborated. This structure, called

FM-set tree, is computed on the fly while checking K-diagnosability on the basis

of a recursive algorithm that we propose [Liu et al., 2012]. Moreover, by extension,

we transform the classic diagnosability problem into a series of K-diagnosability

problems [Liu et al., 2014b], where K increases progressively. Additionally, when

the system is K-diagnosable, the online diagnosis is performed on the basis of

a diagnoser which is obtained from the FM-set tree in a straightforward way.

Finally, comparative simulation is performed using the OF-PENDA software tool

that we have developed to prove the correctness and the efficiency of our approach.
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

4.1 Motivation

4.1.1 On-the-Fly Analysis Technique

For most of the previous approaches reviewed, diagnosability analysis is composed

of two stages. First, advanced models are developed for extracting the necessary

information for diagnosability analysis from the original model, e.g., diagnoser

automata [Sampath et al., 1995], verifier automata [Yoo and Lafortune, 2002b],

verifier (Petri) nets [Cabasino et al., 2012a], linear inequalities [Basile et al.,

2012], etc. Secondly, diagnosability analysis is tackled based on the structure

analysis of the plant (or by solving mathematical models), e.g., through checking

the existence of certain specific states or cycles, verifying the existence of linear

inequalities solutions, etc. Traditionally, the two stages are proceeded indepen-

dently and sequentially. The analysis of advanced models is performed after their

state spaces have been completely generated. This presents the state explosion

problem when dealing with large systems. Here, we will tackle this problem by

using on-the-fly techniques [Schwoon and Esparza, 2005], since such techniques

have the following advantages:

1. On-the-fly techniques can save memory resources. Generally, on-the-fly

techniques permit us to generate and investigate only a part of the state

space to find solutions, unlike the classic enumerative approaches which have

to build the whole state space a priori. On-the-fly exploration techniques

do not reduce the complexity of the original algorithms, but they do save

memory resources in general, depending on the system structure and on

the searching strategy. For example, using the classic diagnoser approach

to analyze the diagnosability of the automaton in Figure 4.1(a) requires

building a priori the corresponding diagnoser in Figure 4.1(b). Actually,

generating a part of the diagnoser (cf. states {3N} and {2F, 6N} in Figure

4.1(b)) is sufficient to conclude the undiagnosability, since an indeterminate

cycle (the self-loop on diagnoser state {2F, 6N}) is found.

2. On-the-fly techniques can save computing time. On the one hand, on-the-

fly exploration terminates as soon as some specific features are found (cf.

Figure 4.2(b)), which requires less time than investigating the whole state
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space (cf. Figure 4.2(a)). On the other hand, for two-stage analysis, such

as our approaches that will be given in the following sections, the advanced

models can be derived and analyzed step by step as the on-the-fly building

of the basic models (cf. Figure 4.2(c)), rather than being analyzed after

building the whole basic models (cf. Figure 4.2(a) and 4.2(b)), which can

save time from both analysis stages.

1 2

3start 4 5

6 7 8

a

f

b u

a a a

b

b b b

(a) G

{3N}start

{2F, 6N}

{4N}

{7N, 8N}

a

b

a

b b

� normal diagnoser state

� F-uncertain diagnoser state

(b) Diag(G)

Figure 4.1: An automaton G and its diagnoser Diag(G)
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time0

system

step 1 step 2 · · · step n

model generation

step 1 step 2 · · · step n

model analysis

diagnosability verdict

(a) Two-stage enumerative analysis

time0

specific features are foundsystem

step 1 step 2 · · · step n

model generation

step 1 step 2 · · · step n

model analysis

diagnosability verdict

(b) Two-stage on-the-fly analysis

time0

specific features are found

model generation stops as soon as specific features are found
system

step 1 step 2 · · · step n

model generation

step 1 step 2 · · · step n model analysis

diagnosability verdict

(c) Two-stage parallel and on-the-fly analysis

Figure 4.2: Three types of diagnosability analysis procedures
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3. On-the-fly techniques can deal with some unbounded systems, since they

return a verdict as soon as some specific features are found, instead of in-

vestigating the whole state space. Take the unbounded PN in Figure 4.3

(where t1, t2, t4 and t5 are observable transitions and t3 is the only un-

observable fault transition) for example, the PN is diagnosable, since the

occurrence of event b starting from the initial marking proves the occurrence

of fault f without further investing the component (t5) which induces the

unboundedness of the net.

p1

p2 p3

p4

t1, b

t2, a

t3, f

t4, b

t5, a

2

� observable transition

� unobservable faulty transition

Figure 4.3: An unbounded PN

4.1.2 Incremental Analysis Technique

An Incremental method [Koenig et al., 2004] is a search technique that reuses the

information from previous searches when some parameters change. Generally, it

is faster than performing the search for each changed parameter from scratch.

The analysis of the kth step is based on the search result of the (k − 1)th step.

Different from other speeding up searches, it can guarantee finding the shortest

paths.

We will apply this technique in our diagnosability analysis, since it can bring

the following advantages:
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1. It is suitable for the step-by-step analysis in which the current analysis

reuses the previous information. The classic diagnosability can be analyzed

based on incrementally investigating K-diagnosability with increasing the

value of K, and the Kmin value which ensures the diagnosability will be

eventually found (for diagnosable systems), as will be discussed in Sec-

tion 4.4.1. Note that some ILP-based approaches [Basile et al., 2012; Wen

et al., 2005] have to rebuild and solve the equation system (or inequalities)

when seeking out Kmin, without using the previous search results.

2. It is a skillful technique to speed up the search procedure. It should be used

for bounded systems so that the search can terminate well. In particular, it

can be used for unbounded systems when some conditions for terminating

the search exist, as the analysis on unbounded PNs in Section 4.6.1.3.

3. Incremental techniques can be used with on-the-fly analysis to perform an

efficient analysis. Both techniques do not change the computation complex-

ity. However, they improve the searching efficiency when dealing with real

systems, as will be shown in Section 4.6.

4.2 Mathematical Representation of LPNs to

Check Diagnosability

We choose the LPN as the modeling notation in our study, since the LPN presents

more general properties, besides those of the PN mentioned at the beginning of

Section 2.1.2. As illustrated in Example 6, different transitions t2 and t3 can be

associated with the same event b, which implies that, in realty, different behavior

can be monitored using the same sensor. This will be of great significance when

discussing sensor optimization problems in the future. Besides, LPNs can describe

systems in the level of both structure (LPN graph) and state space (reachability

graph). In the contrary, automata depict only the state space of systems, without

the representation in the structure level.

In this section, the structure of a PN, as well as its dynamics, can be thor-

oughly described by classic mathematical representation with the help of mark-
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ings, incidence matrix and state equation. This formulation, however, is insuf-

ficient for featuring LPNs, since there is no characterization of events. In this

context, we propose a novel mathematical representation for LPNs, based on

some new notions that we will introduce, namely event-mapping matrix, event

marking and extended state equation, to both make the mapping relationship

between transitions and events explicit, and record the event occurrences.

4.2.1 Extended Incidence Matrix

In order to characterize the mapping relationship between transitions and events

for LPNs in a mathematical way, we first introduce the so-called event-mapping

matrix.

Let NL = (N,M0,Σ, ϕ) be an LPN, with set Σ′ ⊆ Σ containing only the events

that we are interested in. For example, in event-based diagnosis Σ′ contains all

observable and fault events without considering harmless unobservable events,

since all the harmless unobservable events are useless in the diagnosability analysis

based on ǫ-reduction, as will be discussed in Section 4.2.3.

Definition 13 Let Σ′ = {e1, e2, . . . , e|Σ′|}. An event-mapping matrix is a |Σ′| ×

|T | matrix Ce, where Ce(i, j) = 1 if ϕ(tj) = ei ∈ Σ′, otherwise Ce(i, j) = 0.

When Σ′ = Σ, matrices Ce, P re, Post and initial marking M0, provide a

complete description of the LPN structure. That is, we can rebuild an LPN

by employing the above matrices.

Example 12 Figure 4.4 is an LPN, where Σ = {a, b, u, f1, f2, f3}, ϕ(t1) = f1,

ϕ(t2) = f2, ϕ(t3) = f3, ϕ(t4) = u, ϕ(t5) = ϕ(t7) = ϕ(t10) = a, ϕ(t6) = ϕ(t8) =

ϕ(t9) = b.

We also denote by Σo = {a, b},Σu = {u} ∪ Σf ,Σf = ΣF1
∪ ΣF2

,ΣF1
=

{f1, f3},ΣF2
= {f2},Σ

′ = Σo ∪ Σf , which will be used in the sequel.
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p1 p2

p5 p6

p7

p3 p4

t1, f1 t2, f2

t3, f3 t4, u

t5, a t6, b

t7, a t8, b

t9, b t10, a

� observable transition � unobservable transition

� unobservable faulty transition

Figure 4.4: An LPN

The event-mapping matrix of this LPN is:

Ce =

















t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

a 0 0 0 0 1 0 1 0 0 1

b 0 0 0 0 0 1 0 1 1 0

f1 1 0 0 0 0 0 0 0 0 0

f2 0 1 0 0 0 0 0 0 0 0

f3 0 0 1 0 0 0 0 0 0 0

















(4.1)

Given an LPN, we can obtain a compact representation of both the incidence

matrix and the event-mapping matrix.

Definition 14 An extended incidence matrix Cx is the orderly composition of

the incidence matrix and the event-mapping matrix:

Cx =

[

C

Ce

]

(4.2)
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Example 13 The extended incidence matrix of the LPN in Figure 4.4 is:

Cx =

[

C
Ce

]

=





















































t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

p1 1 0 0 0 −1 0 0 0 0 0

p2 0 1 0 0 0 −1 0 0 0 0

p3 0 0 1 0 0 0 −1 0 0 0

p4 0 0 0 1 0 0 0 −1 0 0

p5 0 0 0 0 1 0 1 0 −1 0

p6 0 0 0 0 0 1 0 1 0 −1

p7 −1 −1 −1 −1 0 0 0 0 1 1

a 0 0 0 0 1 0 1 0 0 1

b 0 0 0 0 0 1 0 1 1 0

f1 1 0 0 0 0 0 0 0 0 0

f2 0 1 0 0 0 0 0 0 0 0

f3 0 0 1 0 0 0 0 0 0 0





















































(4.3)

4.2.2 Event Marking

In the following definition, we assign to a given marking M a vector, called event-

marking, which holds some event occurrences when the system state progresses

from M0 to M through a given sequence σ.

Definition 15 An event marking is a vector EM ∈ N|P |+|Σ′| defined by:

EM =

[

M

E

]

(4.4)

where:

– M ∈ N|P | is a marking such that ∃ σ ∈ T ∗,M0 [ σ > M ;

– E ∈ N|Σ′| is an eventing vector E = Ce · π(σ).

The initial event marking is defined by:

EM0 =

[

M0

E0

]

=

[

M0

~0

]

(4.5)
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We denote by E the set of event markings.

An event marking records the occurrences of events (in Σ′) from M0 to M

through some feasible sequence σ in its component E. Note that for a given

marking M , E is not unique since M may be reached by different sequences, as

will be shown in Example 16.

Example 14 The initial event marking of the LPN in Figure 4.4 is: 1

EM0 = [ 0 0 0 0 0 0 1 | 0 0 0 0 ]τ (4.6)

Note that an LPN structure can be completely specified with Pre, Post,M0

and the event-mapping matrix. In other words, an LPN can be rebuilt using the

given event-mapping matrix and the initial marking, together with Pre and Post

matrices. Besides, these notations can be used to compute the dynamics of LPNs,

as will be introduced in the following section.

4.2.3 Extended State Equation

The extended incidence matrix makes it possible to characterize the dynamics of

an LPN, while giving both the distribution of tokens and the number of event

occurrences.

We compute the successive event markings of EM by:

EM ′ = EM + Cx · π(σ) (4.7)

and we say that EM ′ is reachable from EM upon σ, written as EM [ σ > EM ′.

We denote by R(EM) the set of all event markings reachable from EM . Note

that R(EM) may be infinite for a live and bounded LPN, since the firing of any

transition labeled with an event in Σ′ adds 1 to the corresponding component

in the event marking. Also, the set of event markings can be denoted by E =

R(EM0).

In particular, if we replace Σ′ by T , then we describe the behavior of an

unlabeled PN, where firing any transition does not generate events. In this case,

1Mτ is the transpose of matrix M .
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an event marking

EM =

[

M

E

]

records the firing number of each transition in the sequence σ having lead to M

from M0.

In event-based diagnosis, we focus on the occurrences of observable and fault

events that we are interested in, without considering the harmless unobservable

events. If we take into account m fault classes Σf =
⊎m

j=1 ΣFj
, then Σ′ = Σo⊎Σf .

For the sake of clarity and convenience, let Ce be the orderly composition of

matrices Co and Cf ,

Ce =

[

Co

Cf

]

(4.8)

where:

– Co is a |Σo| × |T | matrix, Co(i, j) = 1 if [ϕ(tj) = ei] ∧ (ei ∈ Σo), otherwise

Co(i, j) = 0;

– Cf is an m× |T | matrix, Cf (i, j) = 1 if ϕ(tj) ∈ ΣFi
, otherwise Cf (i, j) = 0.

Example 15 The extended incidence matrix of the LPN in Figure 4.4, while

considering two classes of faults ΣF1
= {f1, f3} and ΣF2

= {f2}, is then:

Cx =







C
Co

Cf






=















































t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

p1 1 0 0 0 −1 0 0 0 0 0

p2 0 1 0 0 0 −1 0 0 0 0

p3 0 0 1 0 0 0 −1 0 0 0

p4 0 0 0 1 0 0 0 −1 0 0

p5 0 0 0 0 1 0 1 0 −1 0

p6 0 0 0 0 0 1 0 1 0 −1

p7 −1 −1 −1 −1 0 0 0 0 1 1

a 0 0 0 0 1 0 1 0 0 1

b 0 0 0 0 0 1 0 1 1 0

ΣF1
1 0 1 0 0 0 0 0 0 0

ΣF2
0 1 0 0 0 0 0 0 0 0















































(4.9)
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Note that Matrix 4.9 is different from Matrix 4.3, since we combine here f1 and

f3 in the same fault class.

Similarly, we denote an event marking by the orderly composition,

EM =

[

M

E

]

=

[

mark(EM)

event(EM)

]

=







mark(EM)

obs(EM)

fault(EM)






(4.10)

where:

– mark is a marking projection, mark : E→ N|P |,

mark(EM) = [EM1, . . . , EM|P |]
τ ;

– event is a projection relative to the considered events, event : E→ N|Σo|+m,

event(EM) = [EM|P |+1, . . . , EM|P |+|Σo|+m]
τ ;

– obs is a projection relative to the observable events, obs : E→ N|Σo|,

obs(EM) = [EM|P |+1, . . . , EM|P |+|Σo|]
τ ;

– fault is a projection relative to the considered fault classes, fault : E→ Nm,

fault(EM) = [EM|P |+|Σo|+1, . . . , EM|P |+|Σo|+m]
τ .

Example 16 Considering the LPN in Figure 4.4, for sequence σ = t1t5t9t3t7t9,

we have EM0 [ t1 > EM1 [ t5 > EM2 [ t9 > EM3 [ t3 > EM4 [ t7 >

EM5 [ t9 > EM6 and EM6 = EM0 + Cx · π(σ), where the event markings

generated successively are given in Table 4.1.

mark(EM0) = mark(EM3) = [0 0 0 0 0 0 1]τ

obs(EM0) = obs(EM1) = [0 0]τ
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Table 4.1: Event markings in Example 16

i EMi

0 [ 0 0 0 0 0 0 1 | 0 0 | 0 0 ]τ

1 [ 1 0 0 0 0 0 0 | 0 0 | 1 0 ]τ

2 [ 0 0 0 0 1 0 0 | 1 0 | 1 0 ]τ

3 [ 0 0 0 0 0 0 1 | 1 1 | 1 0 ]τ

4 [ 0 0 1 0 0 0 0 | 1 1 | 2 0 ]τ

5 [ 0 0 0 0 1 0 0 | 2 1 | 2 0 ]τ

6 [ 0 0 0 0 0 0 1 | 2 2 | 2 0 ]τ

obs(EM2) = [1 0]τ

fault(EM1) = fault(EM2) = fault(EM3) = [1 0]τ

Note that one can easily deduce if an observable event has been generated

between two successive event markings, just by comparing their obs components.

Example 17 By looking at the event components of the event markings gener-

ated successively in Table 4.1, we can state that a sequence of transitions σ′ =

t′1t
′
2t

′
3t

′
4t

′
5t

′
6 exists, such that EM0 [ t′1 > EM1 [ t′2 > EM2 [ t′3 > EM3 [ t′4 >

EM4 [ t′5 > EM5 [ t′6 > EM6, ϕ(t
′
1), ϕ(t

′
4) ∈ ΣF1

, ϕ(t′2) = ϕ(t′5) = a, ϕ(t′3) =

ϕ(t′6) = b.

As a side note, we can observe that an event marking also provides a suitable

representation for diagnosis based on the observation of both places (markings)

and transitions, as in [Ru and Hadjicostis, 2009].

4.2.4 Homomorphic Structure for Event Markings: LPN

with Event Counters

As presented in the previous section, an event marking records both the marking

and the corresponding event occurrence information. However, event markings

are only an mathematical representation. Actually, an event marking can be

visually presented by the structure that we call event counter.
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Definition 16 Given an LPN NL, an event counter relative to event e ∈ Σ is a

place pe with an input arc from all transitions labeled with e.

In other terms, the number of occurrences of e can be directly read from the

number of tokens in pe.

Definition 17 Given an LPN NL = (P, T, Pre, Post,M0,Σ, ϕ) and a set of

events Σ′ ⊆ Σ, the corresponding LPN with event counters (LPN-EC) is a tuple

NΣ′

L = (P ′, T, Pre, Post′,M ′
0,Σ, ϕ), where:

– P ′ = P ∪ PΣ′

with PΣ′

a finite set of places assigned to Σ′;

– Post′ = Post∪PostΣ
′

with PostΣ
′

: T ×P ′ → {1} is the mapping that gives

the arcs linking transitions to the places in P ′;

– M ′
0 is the initial marking such that M ′

0(p) = M0(p) for p ∈ P and M ′
0(p) = 0

for p ∈ PΣ′

.

Example 18 Consider the LPN-EC with event counters in Figure 4.5, where the

yellow places are the event counters of the original LPN as shown in Figure 4.4.

Initially, each event counter contains no tokens, since there is no occurrence of

any event at the initial marking.

The LPN-EC can reach a new marking upon the firing of a sequence of transi-

tions σ = t1t5t9t3t7t9, yielding to the redistribution of tokens in the event counters,

as shown in Figure 4.6: M(pa) = M(pb) = 2 shows that there are 2 occurrences

of events a and b respectively in the firing of σ. Likewise, there are 2 occurrences

of faults in ΣF1
and no occurrence of faults in ΣF2

.

We now summarize the relation between event markings and event counters:

1. Event markings are the vectors to carry the information of both markings

and event occurrences, in which some components indicate the number of

tokens, and the others indicate the number of event occurrences. An event

counter is a specific place added to the original LPN which translates the

event occurrence information into the number of tokens that it holds. The

marking and the event occurrence information of an LPN under considera-

tion can then be depicted as the marking of the new LPN-EC.
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pa

p3 p4

p5

p7

p6

p1 p2

pb

pF1 pF2

t1, f1 t2, f2

t3, f3 t4, u

t5, a t6, b

t7, a t8, b

t9, b

t10, a

� observable transition � unobservable transition

� unobservable faulty transition

Figure 4.5: A LPN-EC

2. Using event counters requires introducing additional places and the neces-

sary connecting arcs into the LPN under consideration. The liveness of the

LPN will not change after the introduction of event counters. Moreover, a

bounded LPN may become unbounded after the addition of event counters,

as in Example 18.

Note that we can find, for any event marking of an LPN, the same vector

(marking) in its corresponding LPN-EC, since they naturally carry the same

information but in a different structure. Thus, we say that an LPN-EC is an

extended LPN, whose markings represent both markings of the original LPN and

the record of event occurrences. Both event markings and event counters can be

employed for monitoring and diagnosing an LPN model as needed.

As a side note, a similar structure can be found in [Cabasino et al., 2012a].

The authors add a place linked with some transitions (not necessarily labeled

with the same event) to an existing PN (verifier net) in order to record the steps

after a fault for K-diagnosability analysis.
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2pa

p3 p4

p5

p7

p6

p1 p2

2 pb

2pF1 pF2

t1, f1 t2, f2

t3, f3 t4, u

t5, a t6, b

t7, a t8, b

t9, b

t10, a

� observable transition � unobservable transition

� unobservable faulty transition

Figure 4.6: The reached marking of the LPN-EC in Figure 4.5 by the firing of
t1t5t9t3t7t9

4.3 Verification of K-Diagnosability

Before discussing the diagnosability issue, we make the following assumptions:

1. The LPN is live and bounded;

2. No infinite feasible sequence of unobservable transitions exists;

3. Faults are permanent, i.e., when a fault occurs the system remains defini-

tively faulty.

4.3.1 Fault Marking (FM)

By extension, we introduce fault marking for a more compact representation to

check diagnosability of a given class of faults.

Definition 18 A fault marking of event marking EM w.r.t a fault class ΣFi
(1 ≤
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i ≤ m), is a vector FM i ∈ N|P |+1, defined as follows:

FM i(EM) =

[

mark(FM i(EM))

fault(FM i(EM))

]

where:

– mark(FM i(EM)) = mark(EM);

– fault(FM i(EM)) =







1 if [fault(EM)]i > 0

0 otherwise

where for a given vector ~x = [x1, . . . , x|~x|]
τ , [~x]k denotes the kth entry xk.

In other words, fault(FM i) is the tag relative to the occurrence of fault events

belonging to ΣFi
from M0 to marking mark(EM): “0” indicates that no fault in

ΣFi
has occurred and “1” indicates that a fault in ΣFi

has occurred at least once.

The initial fault marking is:

FM i
0 =

[

M0

0

]

(4.11)

We denote by Qi the set of fault markings corresponding to ΣFi
.

Example 19 For the LPN in Figure 4.4, the fault markings corresponding to

fault class ΣF1
are given in Table 4.2.

Compared with event markings, a fault marking carries the following informa-

tion: a marking with its relative occurrence information for a given class of faults,

without containing information relative to the occurrence of observable events.

Therefore, two event markings with different obs components will correspond to

the same fault marking, if their mark and fault components are the same. This

implies that a fault marking may be reached from M0 by different observable se-

quences. For event markings EM1 and EM2 satisfying EM1 [ σ > EM2, σ ∈ T ∗,

we write FM i
1 [ σ > FM i

2, where FM i
1 and FM i

2 are their fault markings relative

to ΣFi
respectively.

Proposition 3 For a bounded LPN, given a fault class ΣFi
, the FM i set is finite.
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Table 4.2: Fault markings corresponding to ΣF1
in Example 19

j FM1
j

0 [ 0 0 0 0 0 0 1 | 0 ]τ

1 [ 1 0 0 0 0 0 0 | 1 ]τ

2 [ 0 0 0 0 1 0 0 | 1 ]τ

3 [ 0 0 0 0 0 0 1 | 1 ]τ

4 [ 0 0 1 0 0 0 0 | 1 ]τ

5 [ 0 0 0 0 1 0 0 | 1 ]τ

6 [ 0 0 0 0 0 0 1 | 1 ]τ

Proof. A bounded LPN NL has a finite marking graph. Assuming the number

of markings of NL is p, then NL has at most 2p fault markings, since a fault mark-

ing relative to ΣFi
is composed of a marking combined with the fault information

corresponding to ΣFi
, namely 0 or 1. �

One can directly guess the utility of introducing fault markings compared

to event markings: to obtain a finite representation suitable for diagnosability

analysis.

4.3.2 FM-Graph

For the purpose of diagnosis, we develop a fault marking graph (hereafter FM-

graph) to record certain specific markings with their respective fault occurrence

information, while dealing with single given class of faults.

Definition 19 The FM-graph relative to fault class ΣFi
and called FM i-graph is

a tuple (N,Σo, δ, FM0), where:

– N ⊆ Qi is a set of FM i nodes (fault markings);

– Σo is the set of observable events;

– FM0 =

[

M0

0

]

is the initial node;
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– δ : Qi×Σo → 2Q
i

is the transition function of fault markings: given FM i
1 ∈

Qi and e ∈ Σo, δ(FM i
1, e) = {FM i

2 | ∃ σ ∈ T ∗ s.t. Po(ϕ(σ)) = ϕ(σ|σ|) =

e,mark(FM i
1) [ σ > mark(FM i

2), fault(FM i
2) = 1 iff [(fault(FM i

1) =

1) ∨ (∃ k, (ϕ(σ))k ∈ ΣFi
)]}, as shown in Algorithm 1.

Algorithm 1 Algorithm for δ function
1: Input: a fault marking FM and an observable event e;
2: Output: F = δ(FM, e);
3: function δ(FM, e)
4: Fcon ← {FM}; ⊲ Fcon is the set of fault markings under consideration.
5: F ← ∅; ⊲ F is the set of fault markings reached from FM immediately

after the occurrence of e.
6: for all y ∈ Fcon do
7: if mark(y) [ t > then ⊲ t is enabled at marking mark(y).
8: if t ∈ To then
9: if ϕ(t) = e then

10: z ← y [ t >; ⊲ z is reached from y by the firing of t.
11: F ← F ∪ {z};

12: else ⊲ If t is an unobservable transition.
13: z ← y [ t >;
14: Fcon ← Fcon ∪ {z};

15: return F;

An FMi-graph is a directed non-deterministic graph. Each node indicates a

given fault marking and each arc indicates an observable event. Note that an

arc from one node to itself is permitted. For a given observable event e and two

nodes FM i
1 and FM i

2, at most one arc labeled with e may link FM i
1 to FM i

2.

Actually, an FMi-graph can be treated as an ǫ-reduced observer automaton with

fault tag. We take the same idea as in [Sampath et al., 1995] but in a different

formulation (using fault marking vectors), in order to use mathematical tools to

solve the problem.

For a bounded LPN, the complete FMi-graph w.r.t ΣFi
can be built by a

finite number of δ functions from the initial fault marking. However, in order

to perform diagnosis analysis efficiently, we do not build the whole FMi-graph in

our approach. Instead, we build the FMi-graph and the FM-set tree on the fly in

parallel, as will be discussed in Section 4.3.6.
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

Example 20 Consider the LPN in Figure 4.4, the FM 1-graph (resp. FM 2-

graph) is given in Figure 4.7(a) (resp. Figure 4.7(b)). The corresponding nodes

of these graphs are given in Table 4.3.

(a) FM 1-graph

(b) FM 2-graph

Figure 4.7: The FM-graphs of the LPN in Figure 4.4

4.3.3 FM-Set

The formal definition of K-diagnosability is introduced in Section 2.1.5. Without

loss of generality, we first discuss the K-diagnosability for one class of faults ΣFi
.

In the sequel, we will always reason about ΣFi
. Thereby, for the sake of clarity,

we will dismiss index i relative to the considered fault class. The generalization
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Table 4.3: Fault markings in Example 20

j FM1
j FM2

j

0 [ 0 0 0 0 0 0 1 | 0 ]τ [ 0 0 0 0 0 0 1 | 0 ]τ

1 [ 0 0 0 0 0 0 1 | 1 ]τ [ 0 0 0 0 0 0 1 | 1 ]τ

2 [ 0 0 0 0 1 0 0 | 1 ]τ [ 0 0 0 0 1 0 0 | 0 ]τ

3 [ 0 0 0 0 0 1 0 | 0 ]τ [ 0 0 0 0 1 0 0 | 1 ]τ

4 [ 0 0 0 0 0 1 0 | 1 ]τ [ 0 0 0 0 0 1 0 | 0 ]τ

5 – [ 0 0 0 0 0 1 0 | 1 ]τ

of our approach can be obtained just by repeating the same process for each class

ΣFi
.

We now introduce the following notations to help describe theK-diagnosability

problem.

Let the FM-set power set be X = 2Q and the initial FM-set x0 = {FM0}.

Definition 20 The FM-set transition mapping λ : X × Σo → X is defined as

follows: given an FM-set x ∈ X and an observable event e ∈ Σo,

λ(x, e) = {FM ′ | ∃ FM ∈ x, σ ∈ T ∗s.t. Po(ϕ(σ)) = ϕ(σ|σ|) = e, FM [ σ > FM ′}

Here, λ(x, e) is the FM-set whose fault markings are reachable from those of

x by executing a sequence of unobservable events (possibly empty) followed by

observable event e. We extend this definition to the set of observable events Σo

by defining the mapping Λ: X→ 2X,

Λ(x) = ∪e∈Σo
{λ(x, e)}

For simplicity, we write x x′ if x′ ∈ Λ(x).

Proposition 4 A bounded LPN has a finite number of FM-sets.

Proof. For a bounded LPN with p markings, the upper bound of its fault

marking number is 2p (cf. Proposition 3). The maximum number of FM-sets will
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

not exceed the number of all fault marking combinations:

C1
2p + C2

2p + · · ·+ C2p
2p

= (C0
2p + C1

2p + C2
2p + · · ·+ C2p

2p)− C0
2p

= 22p − 1

�

Definition 21 The tagging function tag : X→ {F,N, U} is defined as follows:

tag(x) =



















N if ∀ FM ∈ x, fault(FM) = 0

F if ∀ FM ∈ x, fault(FM) = 1

U otherwise

An FM-set x is also said to be normal (resp. F -certain, F -uncertain) if tag(x) =

N (resp. F , U). Here, we use the same idea as in [Sampath et al., 1995].

The propagation of tags between FM-sets is shown in Figure 4.8, where an

arrow indicates an observable event. For x  x′, if tag(x) ∈ {N,U}, we may

have tag(x′) ∈ {F,N, U}; whereas if tag(x) = F then tag(x′) = F , as faults are

assumed to be permanent and, therefore, the F -certain tag is propagated to all

the successive FM-sets. A similar idea has been presented as the fault propagation

function of the diagnoser automata in [Sampath et al., 1995].

Figure 4.8: Fault propagation between FM-sets

Example 21 Considering the LPN in Figure 4.4, for ΣF1
, we have

λ(x0, a) = x1, λ(x0, b) = x2
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and then

Λ(x0) = {x1, x2}

where, referring to Table 4.3:

x0 = {FM1
0}, x1 = {FM1

3}, x2 = {FM1
4}

4.3.4 FM-Set Tree

In order to represent both the reachability and fault propagation of an LPN

model, we introduce a structure called FM-set tree, which is the basis of the

diagnosability analysis.

An FM-set tree is a tree-like structure, where:

– the root node is the initial FM-set x0 = {FM0};

– the subsequent nodes are the FM-sets reachable from x0 by a finite number

of operations of λ function;

– for a given node x, the set of its child nodes (direct successors) is Λ(x).

4.3.5 Conditions for K-Diagnosability

4.3.5.1 Equivalent Indeterminate Cycles in FM-Set Tree

Let us recall that the condition for undiagnosability of an automaton is the exis-

tence of an Fi-indeterminate cycle in its diagnoser model [Sampath et al., 1995].

We will use this condition in the following diagnosability analysis.

While building the FM-set tree on the fly, as shown in Figure 4.9(a) (where

faulty fault markings are indicated by black circles and the normal ones by white

circles), a newly-generated F -uncertain node (here x5) may be equal to one of

its predecessors (here x1). In this case, if two fault markings 1 and 2 exist in

such a node, such that 1 is faulty, 2 is normal, and either of them has a path

to itself in the FM-graph, i.e., 1, 3, 5 and 2, 4, 6 as shown in Figure 4.9(b), then

we determine the existence of an indeterminate cycle and, therefore, the system

is undiagnosable; otherwise, there is no indeterminate cycle, as shown in Figure

4.9(c), since a normal cycle 2, 4, 6 exists, but no faulty cycle exists.
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

(a) FM-set tree

(b) FM-graph

(c) FM-graph

Figure 4.9: Checking an indeterminate cycle
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4.3.5.2 Relation between Undiagnosability and Delay Values

For the sake of analyzingK-diagnosability, we introduce a delay function to record

the number of successive F -uncertain FM-sets as the FM-set tree is processed.

Definition 22 The function delay : X→ N is defined as follows:

– delay(x0) = 0;

– for any newly-generated node x′ ∈ Λ(x), define delay(x′) as shown in Table

4.4;

Table 4.4: Definition of delay function for newly generated node

tag(x) tag(x′) delay(x′)
N N or F 0
N U 1
U N or F 0
U U delay(x) + 1

– in particular, if a newly generated F -uncertain node x′ has been given a

delay value according to Table 4.4, and it also satisfies the following condi-

tion: (x′ = x′′)∧ [delay(x′) > delay(x′′)], where x′′ is an existing node, then

let d = delay(x′)− delay(x′′). For x′′ and each of its successor F -uncertain

FM-sets y, update delay(y) with delay(y)+d. This will be illustrated in the

sequel in Figure 4.10 (cf. nodes x1, x3, x4 and x5).

We do not consider the case where tag(x) = F , since, as will be shown later

when building the FM-set tree, the processing of a branch is stopped as soon as

a faulty node (an FM-set tagged F ) is obtained since, obviously, the subsequent

states will all be faulty (permanent faults) and, online, a diagnosis verdict can

immediately be given.

In simple terms, delay(x) denotes the maximum number of successive F -

uncertain FM-sets until x. In the on-the-fly construction of the FM-set tree,

delay(x) is dynamic, as it is updated while building the FM-set tree (in the case
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

where two equivalent uncertain nodes are met in the same branch). Indeed, when

meeting the relation x = x′, we have to compare delay(x) and delay(x′), and

update delay values of relevant FM-sets.

Example 22 Let us consider the FM-set tree under construction shown in Figure

4.10(a), where each arrow indicates an observable event. x2 (resp. x8) is the

second F -uncertain node after a fault that may have occurred between x0 and x1

(resp. x6 and x7). When x9, the child node of x8, is generated, and as x9 = x2

and delay(x9) > delay(x2), we update the delay value of x2 and x3 as shown in

Figure 4.10(b).

4.3.6 Algorithm for On-the-Fly Checking K-Diagnosability

We now develop our algorithm for checking K-diagnosability based on on-the-fly

building of the FM-set tree.

Algorithm 2 Checking K-diagnosability by on-the-fly building of FM-graph and
FM-set tree in parallel

1: Input: K,NL = (P, T, Pre, Post,Σ, ϕ,M0), To, Tu, Tf .
2: Output: K-diagnosability of NL;
3: N← ∅; ⊲ N is the set of the FM-graph nodes.
4: A← ∅; ⊲ A is the set of the FM-graph arcs.
5: Xv ← {x0}; ⊲ Xv is the set of the FM-sets nodes.
6: Av ← ∅; ⊲ Av is the set of the FM-sets arcs.
7: x← x0;
8: T ← the initial FM-set tree which contains only x0;
9: (T′, y, n)← KDiag(T, x,K); ⊲ cf. Algorithm 3

10: switch n do
11: case 1
12: assert(NL is K-diagnosable;)

13: case 0
14: assert(NL is not K-diagnosable;) ⊲ NL may be K ′-diagnosable for

K ′ > K.
15: case −1
16: assert(NL is not diagnosable;) ⊲ An indeterminate cycle is found.

Proposition 5 For a bounded LPN, KDiag function in Algorithm 3 terminates

and its diagnosability verdict is correct.
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(a) The FM-set tree after generating node x8

(b) The FM-set tree after generating node x9

Figure 4.10: Updating the delay values while generating an FM-set tree
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Algorithm 3 Checking K-diagnosability by on-the-fly building of FM-graph and
FM-set tree in parallel

1: Input: an FM-set x in the FM-set tree T, andK relative toK-diagnosability;
2: Output: a triple (T′, y, n), where T′ is the FM-set tree generated after run-

ning KDiag function, y is the FM-set where the generation of an FM-set tree
branch stops and n is the K-diagnosability verdict;

3: function KDiag(T, x,K)
4: for all e ∈ Σo do
5: x′ ← NextFMset(x, e) ; ⊲ x′ is the child node of x.
6: update T to T′ by adding x′ from x upon e;
7: if (x′ 6= ∅) ∧ [tag(x′) = N ] then
8: if (∀ x′′ ∈ Xv)(x

′ 6= x′′) then ⊲ No equivalent node already exists.
9: Xv ← Xv ∪ {x

′};
10: (T′′, y, n)← KDiag(T′, x′, K);
11: if n 6= 1 then
12: return (T′′, y, n);

13: if (x′ 6= ∅) ∧ [tag(x′) = U ] then
14: if delay(x′) = K then
15: return (T′, x′, 0); ⊲ 0 denotes that NL is not K-diagnosable.
16: ⊲ However, it may be K ′-diagnosable for K ′ > K.
17: else
18: if (∃ x′′ ∈ Xv)(x

′′ = x′) then
19: if x′ is in an indeterminate cycle then ⊲ Use of function
20: ⊲ path exists from the library digraph [Rushton, 2012].
21: return (T′, x′,−1); ⊲ −1 denotes NL is not
22: ⊲ (K-)diagnosable due to the indeterminate cycle.
23: else if delay(x′) > delay(x′′) then
24: d← delay(x′)− delay(x′′);
25: if UpdDelay(x′′, d,K) = FALSE then
26: return (T′, x′, 0); ⊲ cf. Algorithm 5.

27: else
28: Xv ← Xv ∪ {x

′};
29: (T′′, y, n)← KDiag(T′, x′, K − 1);
30: if n 6= 1 then return (T′′, y, n);

31: return (T′, x′, 1); ⊲ 1 denotes that NL is K-diagnosable.

Proof. In Algorithm 3, we proceed, step by step with NextFMset function,

to build the FM-set tree in parallel with the FM-graph, on the fly, for solving

K-diagnosability.
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Algorithm 4 NextFMset(): a subfunction of Algorithm 3 for computing the
next FM-set while building the FM-graph on the fly
1: Input: an FM-set x and an observable event e;
2: Output: FM-set x′ which is reached from x immediately after e;
3: function NextFMset(x, e)
4: x′ ← ∅;
5: for all y ∈ x do
6: x′ ← x′ ∪ δ(y, e); ⊲ Function δ is given in Algorithm 1.
7: N← N ∪ x′; ⊲ N is the set of the FM-graph nodes.
8: for all z ∈ δ(y, e) do
9: A← A ∪ {(y, e, z)}; ⊲ A is the set of the FM-graph arcs.

10: return x′;

Algorithm 5 UpdDelay(): a subfunction of Algorithm 3 for updating delay
values
1: Input: an FM-set x, an integer d and K relative to K-diagnosability;
2: Output: FALSE if NL is not K-diagnosable or TRUE if further investigation

is needed;
3: function UpdDelay(x, d,K)
4: for all node z s.t. x z do
5: if tag(z) = U then
6: delay(z)← delay(z) + d;
7: if delay(z) ≥ K then
8: return FALSE; ⊲ NL is not K-diagnosable.
9: else
10: return UpdDelay(z, d,K);

11: return TRUE;

First, we will prove that the algorithm terminates for a bounded LPN. The

investigation of a branch of FM-set tree is stopped, when:

1. An F -certain FM-set is generated;

2. An F -uncertain FM-set, whose delay value is ≥ K, is generated (Line 14 –

16 and 23 – 26 of Algorithm 3);

3. A new normal FM-set is equal to a previous one (Line 8 of Algorithm 3);

4. A new F -uncertain FM-set is equal to a previous one (Line 18 – 26 of

Algorithm 3).
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In the on-the-fly construction of an FM-set tree, for any branch, one of the above

conditions will be met sooner or later, since we consider live and bounded LPNs

here, which means that the algorithm terminates well.

Secondly, we prove that this algorithm covers all the cases while constructing

the FM-set tree on the fly. For any newly-generated node x′,

1. If x′ is F -certain, it is not necessary to consider its child nodes, as all of them

will be F -certain according to the fault propagation relation illustrated in

Figure 4.8. A fault will be definitively determined when the system is in such

a state. In this case we stop proceeding the FM-set tree along this branch.

Note that this case was consequently omitted in the above algorithm.

2. If x′ is normal and

(a) If there is already an existing node x′′ (in Xv) such that x′ = x′′,

then we stop investigating this branch, since x′ would have the same

branches as x′′, which has already been considered;

(b) Otherwise, we continue investigating this branch (Lines 8 – 12).

3. If x′ is F -uncertain, there are many cases to be handled (Lines 13 – 30).

(a) If delay(x′) = K, it means that until x′ there are already K successive

F -uncertain nodes, and then the fault cannot be detected after K

observable events upon its occurrence. Thus, NL is not K-diagnosable

(Lines 14 – 16 of Algorithm 3);

(b) If delay(x′) < K,

i. If there is an existing node x′′ (in Xv) such that x′ = x′′, (Lines 18 –

26 of Algorithm 3)

A. If x′ is in an Fi-indeterminate cycle, therefore NL is not (K-)

diagnosable (Lines 20 – 22 of Algorithm 3);

B. Otherwise, we update the delay value of the related nodes,

and check if one of these nodes x′′′ satisfying delay(x′′′) ≥ K

exists (by function UpdDelay). If so, NL is not K-diagnosable

(Lines 23 – 26 of Algorithm 3);
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ii. Otherwise, we continue investigating this branch by recallingKDiag

function on the current node (Lines 27 – 30 of Algorithm 3).

Since all the possible cases are considered, and since the number of FM-sets

is finite (cf. Proposition 4), we can be sure that our algorithm terminates well.

�

Example 23 Let us analyze the K-diagnosability of LPN NL in Figure 4.4. As

illustrated through the solution process of Figure 4.11, we can conclude that NL

is 1-diagnosable w.r.t ΣF1
. Similarly, according to Figure 4.12, NL is not 1,2,3-

diagnosable w.r.t ΣF2
.

Figure 4.11: Solution process of K-diagnosability for ΣF1
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Figure 4.12: Solution process of K-diagnosability for ΣF2

4.4 Verification of Diagnosability

4.4.1 Algorithm for Checking Diagnosability

In this section, we show how to investigate classic diagnosability on the basis of

K-diagnosability analysis.

For a K-diagnosable system A, it is obvious that: 1) A is K ′-diagnosable for

any K ′ ≥ K, and 2) Kmin ∈ N exists such that A is Kmin-diagnosable and for

all K ′ < Kmin, A is not K ′-diagnosable. In other words, Kmin is the minimum
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value to ensure diagnosability, i.e., any fault can be diagnosed within at most

Kmin steps (observable events) after its occurrence. Thus, finding Kmin is of great

significance while studying diagnosability.

We extend Algorithm 3 to solve the classic diagnosability problem (cf. Algo-

rithm 6). Our goal here is twofold: first to determine if the system is diagnosable,

and, if so, what the minimum value of K is for which the system is K-diagnosable

and return the last FM-set tree for building the diagnoser in the future (cf. Sec-

tion 4.5).

Algorithm 6 Checking diagnosability

1: Input: NL = (P, T, Pre, Post,M0,Σ, ϕ), To, Tf ;
2: Output: diagnosability verdict and (T′,Kmin) if NL is diagnosable;
3: y ← x0;
4: K ← 0;
5: n← 0;
6: T′ ← the initial FM-set tree which contains only x0;
7: while n = 0 do ⊲ If NL is not K-diagnosable.
8: K ← K + 1;
9: x← y;
10: T ← T′;
11: (T′, y, n)← KDiag(T, x,K); ⊲ cf. Algorithm 3.

12: if n = 1 then
13: return (T′, K); ⊲ NL is Kmin-diagnosable where Kmin = K.
14: ⊲ T′ is used for building the diagnoser, cf. Section 4.5.
15: else ⊲ If n = −1.
16: return 0; ⊲ NL is not diagnosable.

As shown in Algorithm 6, checking diagnosability is performed on the fly

while building the FM-set tree and the FM-graph. A notable advantage of this

method is that, when checking (K+1)-diagnosability, the models (FM-graph and

FM-set tree) generated while investigating K-diagnosability are reused, instead

of completely restarting from scratch.

It should be noted that in Algorithm 6 we do not set a upper bound for

K. It seems that K could be increased to infinity in the incremental research.

Actually, the algorithm can terminate well, since the system under consideration

is bounded and K cannot exceed the number FM-set tree states.
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Example 24 Using Algorithm 6, we have analyzed the diagnosability of LPN NL

in Figure 4.4 w.r.t ΣF2
. We conclude that NL is not diagnosable for ΣF2

since

an F2-indeterminate cycle has been found when 4-diagnosability is investigated,

after NL has been concluded to be not 1, 2 or 3-diagnosable.

4.4.2 Complexity and Effectiveness Analysis

Let us analyze the proposed algorithm in terms of memory complexity. According

to Proposition 1 and 2, for a given class of faults, if the number of markings of

the considered LPN is p (which is also the number of automaton states if we

consider the reachability graph as an automaton), the number of nodes in the

FM-graph will be ≤ 2p, and the number of nodes in the FM-set tree will be

≤ 22p (cf. Proposition 3). In the worst case, when all the possible FM-sets are

generated and investigated, i.e., when the FM-set tree states are enumerated, the

complexity in terms of memory is equal to the diagnoser approach of [Sampath

et al., 1995]. The number of the FM-set tree states is exponential to the number

of LPN markings p.

However, in general, we do not build the whole FM-graph and FM-set tree,

since we build them on the fly and keep only necessary nodes for diagnosis. In

particular, an undiagnosable PN will be identified immediately after an indetermi-

nate cycle is found, rather than continuing generating other FM-sets. Moreover,

as soon as an F -certain node is met, the investigation of the current branch is

stopped, since faults are permanent and, consequently, all the subsequent states

will be faulty as well. The following example will show the difference in memory

complexity between the diagnoser approach and ours.

Example 25 Consider LPN NL in Figure 4.13(a), whose reachability graph can

be treated as automaton G in Figure 4.13(b), where the states in G are given in

Table 4.5.

Using the traditional diagnoser approach, diagnoser Diag(G) (cf. Figure

4.14(b)) can be built based on observer Obs(G) (cf. Figure 4.14(a)) and the sys-

tem is determined to be undiagnosable due to the existence of an indeterminate

cycle (the self loop on diagnoser state {2F, 6N} in Figure 4.14(b)).
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Table 4.5: The markings in Figure 4.13(b)

State of G Marking of NL

1 [ 1 0 0 0 0 0 0 0 ]τ

2 [ 0 1 0 0 0 0 0 0 ]τ

3 [ 0 0 1 0 0 0 0 0 ]τ

4 [ 0 0 0 1 0 0 0 0 ]τ

5 [ 0 0 0 0 1 0 0 0 ]τ

6 [ 0 0 0 0 0 1 0 0 ]τ

7 [ 0 0 0 0 0 0 1 0 ]τ

8 [ 0 0 0 0 0 0 0 1 ]τ

p1

p2

p3

p4 p5

p6 p7 p8

t1, a

t2, f
t3, b t4, u

t5, a t6, a t7, a

t8, b

t9, b t10, b t11, b

(a) NL

1 2

3start 4 5

6 7 8

a

f

b u

a a a

b

b b b

(b) The language equivalent automaton G of
the reachability graph of NL

Figure 4.13: LPN NL and its reachability graph G

The same verdict can be obtained when using our on-the-fly approach. The

on-the-fly analysis requires building the FM-set tree (cf. Figure 4.15(b)) on the

basis of the FM-graph (cf. Figure 4.15(a)), where the fault markings are given

in Table 4.6. Here, we assume that the branches investigated first in the FM-

graph (and accordingly in the FM-set tree) are the ones labeled by a. It is worth
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3start

62 4

7 8

a
a

b

b b
a

a

b b

(a) Obs(G): the observer of G

{3N}start

{2F, 6N}

{4N}

{7N, 8N}

a

b

a

b b

(b) Diag(G): the diagnoser of G

Figure 4.14: The observer and diagnoser of G

3Nstart

2F 6N

a a

b b

(a) The FM-graph of NL

{3N}start

{2F, 6N}

{2F, 6N}

a

b equivalent

(b) The FM-set tree of NL

Figure 4.15: The FM-graph and FM-set tree of NL

noting here that the order of branches investigation will be discussed later on in

the manuscript.

Compare the two methods, the diagnoser approach generates 6 observer states

and 4 diagnoser states, whereas the on-the-fly approach generates 3 FM-graph

states and 2 FM-set tree states. The difference will be shown again in the com-

parative simulation results on the WODES benchmark (cf. Section 4.6.1.2).

Generally speaking, the goal behind using an on-the-fly approach is to avoid,
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Table 4.6: The markings in Figure 4.15

State of FM-graph Fault markings

2F [ 0 1 0 0 0 0 0 0 | 1 ]τ

3N [ 0 0 1 0 0 0 0 0 | 0 ]τ

6N [ 0 0 0 0 0 1 0 0 | 0 ]τ

as much as possible, building the whole state space. However, from an analytical

point of view, we are not able to determine, analytically and in general, the gain

of our on-the-fly approach comparatively to the existing approaches, which are

based on a priori building of intermediate exhaustive models (reachability graph,

diagnoser, etc.). Indeed, this gain largely depends on the analyzed model and

there is no actual worse case on which the complexity computation can be based.

It is worth noticing that our algorithm based on a depth-first search, does

not define priorities in the investigation of branches. We need to define some

heuristics in terms of priority between the branches to be investigated, to make our

algorithm more efficient. This needs to make numerous experiments on different

benchmarks to validate the strategy to be adopted.

Moreover, in order to solve diagnosability for each class of faults ΣFi
, it is

sufficient to perform our algorithm for each ΣFi
respectively. Thus, the compu-

tational complexity will be linear with the number of fault classes (the same as

in the diagnoser and the verifier-based approaches).

4.5 Online Diagnosis

In this section, we develop an approach for online diagnosis of diagnosable LPNs

on the basis of a diagnoser, which is obtained from the FM-set tree in a straight-

forward way. The objective is to determine, from a sequence of observable events,

whether the system is faulty and if so to which class the fault belongs.

An FM-set tree can be used for online diagnosis, because:

1. The node tag indicates the occurrence of fault: “normal” if no fault has
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

occurred, “F -uncertain” if a fault has probably occurred, or “F -certain” if a

fault has occurred;

2. Each branch corresponds to one of the possible sequences of observable

events from the initial marking and ends at a node that is F -certain or is

equal to another existing node.

However, the marking component of a fault marking is useless for diagnosis,

as we perform diagnosis based on sequences of observable events and not on the

basis of markings. In order to perform online diagnosis efficiently, we generate

the diagnosis graph (diagnoser) from the FM-set tree (cf. the return value T′ in

Algorithm 6), by:

1. Merging the equivalent nodes;

2. For each node, keep only the fault tag information.

Actually, a diagnoser is a deterministic graph where each node carries a fault

tag and each arc is tagged with an observable event. Thus for any sequence of

observable events, by following the corresponding path in the diagnosis graph

from the initial node, one can determine the occurrence of a fault, online, by

looking at the tag of the reached node.

The above algorithm considers a single fault type, however in order to deal

with several fault classes, the nodes fault tags must be extended accordingly.

Example 26 Consider the LPN in Figure 4.16 with observable events Σo =

{a, b}. The diagnosis graph for Σf = {f} (cf. Figure 4.18) is generated from

the FM-set tree of Figure 4.17. Letter N (resp. U, F ) indicates “normal” (resp.

“F-uncertain”, “F -certain”).

By looking at this graph, upon the observation of trace “aaa” from the initial

state node “N” is reached. One can state that no fault from Σf has occurred.

Upon “abb” one can conclude that one fault from Σf has occurred, since in the

diagnoser “F” is the only reachable node after “ab” and the last “b” is unnecessary

for giving diagnosis verdict. If “a” is observed, node “U” will be reached, meaning

that a fault has possibly happened and further observation is needed to determine

the system state.
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Algorithm 7 Fault detection using the diagnoser derived from FM-set tree
1: Input: A sequence composed of observable event ej;
2: Output: The fault occurrence information of the current system state;
3: q0 ← N ; ⊲ The system is normal (N) after the initialization.
4: j ← 1;
5: while the system is in operation do
6: Wait for the input observable event ej;
7: qj ← the state from qj−1 upon ej;
8: switch qj do
9: case N

10: assert(No fault belonging to ΣFi
has happened;)

11: case U
12: assert(A fault belonging to ΣFi

has probably happened;)

13: case F
14: assert(A fault belonging to ΣFi

has happened;)

15: case ∅ ⊲ The system arrives at a blocked faulty state “F”.
16: assert(A fault belonging to ΣFi

has happened;)

17: j ← j + 1;

p1 p3 p5 p7

p2 p4 p6 p8

t1, a t4, a t7, a t10, a

t2, a t5, b t8, b t11, b

t3, f t6, b t9, b

Figure 4.16: LPN NL

4.6 OF-PENDA Software Tool

We have developed a tool implementing our various algorithms in C++, which we

called OF-PENDA. In order to show the effectiveness of our method, the WODES

diagnosis benchmark [Giua, 2007] and the LC benchmark are used in the com-
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[ 1 0 0 0 0 0 0 0 | 0 ]τstart
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Figure 4.17: The FM-set tree of NL
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Figure 4.18: The diagnoser of NL

parative simulation using OF-PENDA and the UMDES library [Lafortune, 2000],

with the help of TINA tool [Berthomieu et al., 2004]. Based on the simulation

results, we will point out the similarities and differences between our approach

and some existing DES-based diagnosis approaches.
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4.6.1 Application to the WODES Diagnosis Benchmark

4.6.1.1 WODES Diagnosis Benchmark

The WODES diagnosis benchmark is shown in Figure 4.19 and describes a man-

ufacturing system characterized by three parameters: n,m and k, where:

– n is the number of production lines;

– m is the number of units of the final product that can be simultaneously

produced. Each unit of product is composed of n parts;

– k is the number of operations that each part must undergo in each line.

The observable transitions are indicated by white boxes, and the unobservable

transitions by black boxes. For more details on the benchmark the reader can

refer to [Giua, 2007].

4.6.1.2 Comparative Simulation

We now analyze the diagnosability upon the fault class ΣF1
= {f1, . . . , fn−1}. In

other terms, only one class of faults is considered here. In order to perform a com-

parative simulation with OF-PENDA and the UMDES library, some preparations

are necessary. The UMDES library deals with automata models by importing a

“.fsm” file. Thus, we first generate the reachability graph of the considered PN

with the help of TINA yielding to a “.aut” file, which is then transformed into

a “.fsm” file by a script integrated in OF-PENDA that we have developed. This

ensures that the comparative simulation is performed with the same input.

The simulation has been performed on a PC Intel with a clock of 2.26 GHz

and the results are shown in Table 4.7.

• The first 3 columns titled “m”, “n” and “k” are the basic structural param-

eters of the WODES diagnosis benchmark.

• The 4th column is the stopping value of “K ” obtained with Algorithm 6.

Note that for a diagnosable case (cf. Column 9), this “K ” value is equal to

“Kmin”.
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

Figure 4.19: The WODES diagnosis benchmark

• The 5th column titled “|R|” is the number of nodes in the marking graph

computed by TINA, which is equal to the number of states of the automaton

for building the diagnoser by the UMDES library.

• The 6th column titled “|N|” is the number of the FM-graph nodes.

• The 7th column titled “|Xv|” is the number of the FM-set tree nodes.

• The 8th column titled “|Diag|” is the number of the diagnoser automaton

states generated by UMDES.

• The 9th column titled “DO” is the diagnosability verdict returned by OF-
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PENDA, where “Yes” indicates that the system is diagnosable and “No”

indicates undiagnosable.

All the results are obtained under a simulation time of less than 6 hours. “o.t.”

(out of time) means the result cannot be computed within 6 hours.

The discussion relative to this comparative study is given in the following

section.

4.6.1.3 Discussions

A Finer Version of Diagnosability Both the OF-PENDA and the UMDES

library allow us to check diagnosability for bounded DES. In particular, thanks

to our incremental investigation of diagnosability, our tool also gives Kmin for

diagnosable systems, while the UMDES library [Lafortune, 2000] does not.

It is worthwhile to recall that the K-diagnosability is a finer version of diag-

nosability with the following two main features:

Online, the value ofKmin gives us a valuable piece of information indicating the

minimum number of steps necessary to detect and identify faults for a diagnosable

system. Note that in [Basile et al., 2012], K is considered to be the number of

both observable and unobservable transitions after a faulty transition. While here,

as well as in [Cabasino et al., 2012a] K is the value relative to only observable

events. Modifying our algorithm to compute both observable and unobservable

transitions can be done easily.

Secondly, K-diagnosability allows a meticulous description of the diagnosabil-

ity for multiple faults. It is advisable to discuss the traditional diagnosability

as a series of K-diagnosability problems for each class of faults ΣFi
⊆ Σf . Fur-

ther analysis on K could help to enhance the diagnosability. In order to solve

K-diagnosability for each ΣFi
, it is sufficient to perform our algorithm for each

class of faults ΣFi
iteratively. Thus, the computational complexity will be linear

with the number of fault classes.

An On-the-fly and Incremental Method The UMDES library deals with

diagnosability of systems modeled by automata based on the construction of an

observer and a diagnoser automaton, which requires an exhaustive enumeration

of the state space.
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

Table 4.7: Simulation results

m n k |R| |N| |Diag| |Xv| DD DO K

1 2 1 15 8 4 3 Yes Yes 2

1 2 2 24 10 4 3 Yes Yes 2

1 2 3 35 12 4 3 Yes Yes 2

1 2 4 48 14 4 3 Yes Yes 2

1 3 1 80 52 10 6 Yes Yes 3

1 3 2 159 90 10 6 Yes Yes 3

1 3 3 274 138 10 6 Yes Yes 3

1 3 4 431 196 10 6 Yes Yes 3

1 4 1 495 367 29 17 Yes Yes 4

1 4 2 1200 822 29 17 Yes Yes 4

1 4 3 2415 1533 o.t. 17 o.t. Yes 4

1 4 4 4320 2554 o.t. 17 o.t. Yes 4

1 5 1 3295 2607 o.t. 66 o.t. Yes 5

1 5 2 9691 o.t. o.t. o.t. o.t. o.t. o.t.

2 2 1 96 68 20 9 No No 8

2 2 2 237 137 o.t. 9 o.t. No 8

2 3 1 1484 801 20 12 No No 11

2 3 2 5949 2746 o.t. 12 o.t. No 11

2 4 1 28203 8795 o.t. 15 o.t. No 14

2 4 2 180918 o.t. o.t. o.t. o.t. o.t. o.t.

3 2 1 377 290 66 12 No No 11

3 3 1 12048 5165 o.t. 16 o.t. No 15

3 4 1 484841 o.t. o.t. o.t. o.t. o.t. o.t.

Our approach can solve the diagnosability for both labeled and unlabeled PNs.

We solve the classic diagnosability by handling a series of K-diagnosability prob-

lems, where K increases progressively. In other words, we reuse the state space
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generated while analyzing K-diagnosability to deal with (K + 1)-diagnosability.

This is totally different from the approach in [Basile et al., 2012], since for each

value of K a new system of equations is generated in their technique based on

linear programming. Additionally, by progressively increasing K, it is certain to

find Kmin if the system is diagnosable. A similar idea can be found in the solution

of ∆-diagnosability for timed automata in [Tripakis, 2002].

Thanks to the on-the-fly investigation of diagnosability, building the whole

FM-set tree is not necessary. Actually, for undiagnosable systems, the FM-set

tree building as well as its exploration are stopped as soon as an indeterminate

cycle is found. Moreover, for diagnosable systems, while generating a branch in

the FM-set tree, we stop as soon as an F -certain or an existing node is obtained.

This is a notable advantage compared with the existing approaches [Cabasino

et al., 2010; Sampath et al., 1995] which first build an exhaustive diagnoser or a

reachability graph. The test result using the WODES diagnosis benchmark has

shown this point since we were able to investigate diagnosability on models which

are not tractable using UMDES library.

Relation between Diagnosability and Boundedness of PNs

The UMDES library solves the diagnosability problem based on exhaustive

enumeration of the state space. Therefore, it can only deal with bounded systems

modeled by finite state automata.

It is worth noting that there exist two PN-based approaches for the diagnos-

ability analysis of unbounded models. In [Cabasino et al., 2012a], the authors

check the diagnosability of unbounded PN models by analyzing the structure of

the generated verifier net reachability graph. This approach requires an exhaus-

tive enumeration of the reachability set of the verifier net, which may be larger

than the reachability set of the original PN. In [Basile et al., 2012], the proposed

approach is based on linear programming technique. System behavior is repre-

sented by a series of linear equations. The diagnosability of the unbounded PN

models can be verified only if the faulty behavior can be described by a finite

number of equations.

With the help of the on-the-fly computation, our algorithm can determine

undiagnosability as soon as an Fi-indeterminate cycle is detected. Hence, this

approach can be applied to some unbounded PNs with an Fi-indeterminate cycle.
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4. UNTIMED PN-BASED DIAGNOSIS OF DES

Although an unbounded PN has infinite fault markings, which may result in an

infinite number of FM-sets, the construction of an FM-set tree terminates once

an Fi-indeterminate cycle is detected and a negative diagnosability verdict is

emmitted. From a practical point of view, some thresholds need to be used if our

algorithm is used to deal with unbounded LPNs.

Case of Unlive PNs

Note that we have extended our algorithm to also deal with unlive systems,

while considering the definition of diagnosability relative to unlive DES, given

in [Sampath et al., 1998]. Besides, the WODES diagnosis benchmark we dealt

with is unlive when n ≥ 2, which is against the assumption of liveness in [Sampath

et al., 1995]. Concretely, as the computation of the FM-set tree is performed on

the fly, we have added an additional stopping condition: when some F -uncertain

FM-set containing a deadlock state is obtained. Indeed, in this case, the system

may stay indefinitely in this uncertain state, and no diagnosis verdict can be

emitted.

4.6.2 Application to the Level Crossing Benchmark

In the previous section, we have proved the efficiency of our developed techniques

using WODES benchmark, which is a classic diagnosis benchmark often used in

diagnosis analysis. However, it is not quite suitable for testing diagnosability

analysis approach, since

• The benchmark is live only if n = 1.

• The benchmark is diagnosable only if m = 1.

In order to obtain more general results, we will perform another group of analysis

based on our developed LC benchmark.

4.6.2.1 Level Crossing Benchmark

In this section, we develop an n-line LC benchmark based on the single-line LC

model in [Leveson and Stolzy, 1985]. Different from the original model of [Leveson
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and Stolzy, 1985], our benchmark is live and integrated with the operation princi-

ples for multi-line LC, which can be sufficiently complex for testing diagnosability

analysis approaches.

Figure 7 describes a global LPN model for a signle-line LC with a unidirec-

tional track. Based on this model, a more general model is given in Figure 8 –

involving n railway tracks, which can be obtained from the single-line LC model

while fulfilling the following controlling rules under a nominal situation:

• The LC must be closed if any approaching train is detected in any line;

• The LC can be reopened if there is no train in the “within” or “before”

sections in any line.

In other terms, the above rules eliminate all the possibilities that the collision

between railway and road traffic may take place.

For more about the background of the LC systems and development of the

n-line LC benchmark, the reader can refer to Appendix 6.2.

4.6.2.2 Comparative Simulation

In this section, we will analyze the diagnosability of the LC model while consid-

ering various values of n. Here, we will consider two classes of faults:

– For TF1 = ∪
n
i=1{ti,5}, we consider all the faults ti,5 in each track as belonging

to the same class. Recall that such faults express the fact that trains can

enter the crossing zone while the barriers are not ensured to be down.

– For TF2 = {t6}, this fault class depicts an early lowering of the barriers, i.e.,

before all the trains are ensured to have left the LC.

A comparative simulation with UMDES library is performed on an Intel PC

(CPU: 2.50 GHz, RAM: 3.16 GB) and the results are given in Table 4.8, Fig-

ure 4.20 and Figure 4.21, where:

– n is the number of railway tracks;

– ΣFi is the considered fault class (ΣF1 or ΣF2);

97



4. UNTIMED PN-BASED DIAGNOSIS OF DES

– |P | and |T | are the number of places and transitions of the PN model

respectively;

– |A| and |R|, which are the number of the arcs and the nodes of the reachabil-

ity graph respectively, give the scale of the PN reachability graph computed

by TINA and which serves as the input automaton states for UMDES;

– |N| is the number of (on-the-fly) generated fault markings by OF-PENDA

when the diagnosability verdict is issued;

– |Diag| is the number of diagnoser states generated by UMDES (UMDES)

(the diagnoser approach) which were needed to give the diagnosability ver-

dict.

– |Xv| is the number of (on-the-fly) generated FM-sets by OF-PENDA when

the diagnosability verdict is issued, and corresponds also to the number of

nodes of the diagnoser derived from this FM-set tree when the model is

diagnosable;

– DD, DV and DO are the diagnosability verdicts obtained by diagnoser ap-

proach, verifier approach of UMDES and OF-PENDA respectively, where

“Yes” indicates that the system is diagnosable and “No” indicates undiag-

nosable;

– K is the minimum value ensuring diagnosability computed by OF-PENDA,

if the system is diagnosable; otherwise, it is the last value under which

K-diagnosability is investigated before concluding that the system is undi-

agnosable;

– TT is the time needed to generate the PN reachability graph computed by

TINA, i.e., the time used for preparing the input automaton needed for

UMDES.

– TD, TV and TO are the times needed to obtain the diagnosability verdict

by dcycle.exe (diagnoser approach), verifer dia.exe (verifier approach) of

UMDES and OF-PENDA (on-the-fly approach), respectively.

98



4.6.2.3 Discussions

For the comparative simulation results, we give the following remarks:

1. The UMDES library has been integrated in the DESUMA framework which

also integrates GIDDES for graphical facilities. However, we directly use

the command lines in UMDES library rather than the interface framework

(DESUMA), since the DESUMA takes so much time to load large automa-

ton models.

2. The scale of the PN reachability graph grows quickly (cf. the columns titled

with |A| and |R| in Table 4.8) as n increases. The capability of TINA to

calculate the reachability graph considerably depends on the memory of

the computer, since TINA needs to refer to the already built part of the

reachability graph all along the computation, One can observe that the

generated .aut files become considerable starting from n = 7. For instance,

the size of the .aut files for 1, 2, 3, 4, 5, 6, 7-line LC benchmark is 655b,

11KB, 128KB, 1.2MB, 9.9MB, 74.8MB, 518.6MB, respectively. A Mac with

a RAM of 16GB cannot store the .aut file for 8-line benchmark even if it

can be calculated eventually. For the case of n = 9, the calculation stops

with an error of “out of memory”. Thus, the simulation for the cases with

n ≥ 9 cannot be performed using UMDES.

3. The simulation using UMDES and OF-PENDA are performed on a Win-

dows PC. For ΣF1, some “accidental quits” happen during the running of

dcycle.exe (diagnoser approach in UMDES) for some cases. However, the

diagnosability verdict can be obtained by using the verifier technique (com-

mand verifier dia.exe) in UMDES library. We also meet the same problem

when dealing with fault class ΣF2 under n = 4. Note that the relative

results given by OF-PENDA when an accidental quit happens are the last

outputs before the program’s exit. We do not know exactly the reason for

this problem. The improvement of the source code and using other opera-

tion systems may eliminate the problems.

99



4
.
U
N
T
IM

E
D

P
N
-B

A
S
E
D

D
IA

G
N
O
S
IS

O
F

D
E
S

Table 4.8: Comparative simulation results based on n-line LC benchmark

n ΣFi |P | |T | |A| |R| |N| |Diag| |Xv | DD DV DO K TT TD TV TO

1

ΣF1

13 11 28 24 24 26 15 YES YES YES 3 <1s <1s <1s <1ms

2 17 16 540 216 116 262 18 a.q. NO NO 11 <1s 11s <1s 15ms

3 21 21 6256 1632 173 1924 18 a.q. NO NO 11 <1s 12s 7s 46ms

4 25 26 56704 11008 230 12504 18 a.q. NO NO 11 <1s 32s 21m22s 62ms

5 29 31 442880 68608 287 75722 18 a.q. o.t. NO 11 2s 28m34s o.t. 78ms

6 33 36 3126272 403456 344 a.q. 18 o.t. o.t. NO 11 11s 1h36m o.t. 125ms

7 37 41 20500480 2269184 401 o.t. 18 o.t. o.t. NO 11 140s o.t. o.t. 156ms

8 41 46 127074304 12320768 458 o.t. 18 o.t. o.t. NO 11 29m o.t. o.t. 203ms

9 45 51 o.m. o.m. 515 - 18 - - NO 11 o.m. - - 249ms

10 49 56 o.m. o.m. 572 - 18 - - NO 11 o.m. - - 296ms

20 89 106 o.m. o.m. 1142 - 18 - - NO 11 o.m. - - 1467ms

40 169 206 o.m. o.m. 2282 - 18 - - NO 11 o.m. - - 5460ms

1

ΣF2

13 11 28 24 29 26 15 YES YES YES 7 <1s <1s <1s <1ms

2 17 16 540 216 277 262 207 YES YES YES 10 <1s <1s <1s 453ms

3 21 21 6256 1632 2109 1924 1842 YES YES YES 17 <1s <1s 5s 109s

4 25 26 56704 11008 13353 12504 5670 YES YES a.q. 18 <1s 20s 16m19s 2h4m

5 29 31 442880 68608 o.t. 75722 o.t. YES o.t. o.t. o.t. 2s 27m12s o.t. o.t.

6 33 36 3126272 403456 o.t. o.t. o.t. o.t. o.t. o.t. o.t. 11s o.t. o.t. o.t.

7 37 41 20500480 2269184 o.t. o.t. o.t. o.t. o.t. o.t. o.t. 140s o.t. o.t. o.t.

8 41 46 127074304 12320768 o.t. o.t. o.t. o.t. o.t. o.t. o.t. 29m o.t. o.t. o.t.

9 45 51 o.m. o.m. o.t. - o.t. - - o.t. o.t. o.m. - - o.t.

Note: o.m. = out of memory o.t. = out of time (> 6h) a.q.= accidental quit

�� results obtained by TINA �� results obtained by diag UR.exe and dcycle.exe of UMDES

�� results obtained by verifier dia.exe of UMDES �� results obtained by OF-PENDA
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Figure 4.20: Time cost for the diagnosability analysis on ΣF1

Figure 4.21: Time cost for the diagnosability analysis on ΣF2

4. In order to compare the efficiency in terms of time, we make a record of

the computing time for each case. The time indicated in the columns titled

with TT , TD and TV are obtained by an external timer, since TINA and

UMDES do not output this information. Thus, there is an error margin of

less than 1s. For the OF-PENDA, an automatic timer has been integrated

with an error margin of less than 1ms.
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5. Besides the diagnosability verdict, OF-PENDA also gives the minimum

value of K to ensure diagnosability, which cannot be obtained by UMDES.

6. In these cases, the number of FM-sets generated by OF-PENDA is lower

than the number of diagnoser states given by UMDES. This shows the

advantage offered by our on-the-fly technique. Besides, it is worthwhile

to mention that the FM-sets can be far fewer than the diagnoser states

when an indeterminate cycle exists and is detected early (if the model is

undiagnosable).

7. Our approach spends more computing time, because we generate the FM-

set tree directly from the PN, while the UMDES takes an automaton as

an input which is equivalent to the reachability graph of the PN. In other

words, the inputs for UMDES and OF-PENDA are not the same and we had

to compute the PN reachability graph a priori before performing analysis

via UMDES. On the contrary, the reachable markings are computed on the

fly while investigating diagnosability by OF-PENDA.

8. In different cases, such as the WODES benchmark and the n-line LC bench-

mark, our approach shows a different efficiency level in terms of memory. In

some undiagnosable cases, depending on the model structure, our approach

may save memory resources considerably compared to the enumerative ap-

proaches, as has been shown in Section 4.6.1.2.

9. The results (cf. column TD and TV ) show that the diagnoser approach

is more efficient than the verifier approach while dealing with the n-line

LC benchmark. This does not violate the claim that the verifier approach

is more efficient in terms of time complexity (polynomial for the verifier

approach vs exponential for the diagnoser approach), since the theoretical

complexity is always computed while considering the worst case.

Here, we will give the transition sequences which help to obtain the diagnos-

ability verdict easily, such that the simulation results can be compared with this

theoretical analysis to evaluate their correctness:
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• For the case n = 1 and for ΣF1, the system is normal if in any transition

sequence t1,2 and t1,3 appear alternatively. Otherwise t1,5 must have oc-

curred. Therefore, the system can be diagnosable according to the order of

appearance of t1,2 and t1,3.

• For ΣF1 in the cases of n-line LC (n ≥ 2), fault transition t1,5 can fire or

not right after t1,1 firing. For both cases, a possible followed firing sequence

t1t4t2,1t2,2t2,3t2,4t2t5 exists, which corresponds to an indeterminate cycle.

Therefore, the system is undiagnosable.

• For ΣF2 in the cases of n-line LC (n ≥ 1), t6 can fire or not right after

the firing of sequence ti,1t1t4. Then the system can remain F2-uncertain

for as long as 6 steps during the firing of sequence ti,2ti,3ti,4ti,1t2t1. The

7th observable transition firing will terminate the sequence of F2-uncertain

states, i.e., the system is normal if t4 fires; otherwise the firing of t3 implies

that fault t6 has occurred.

Compared with the diagnoser and verifier approaches, our on-the-fly approach

can deal with some quite complex models that UMDES cannot deal with (e.g., for

the cases ΣF1 when n ≥ 7), especially for some undiagnosable systems, and shows

better efficiency in terms of time and memory. However, for some diagnosable

cases (e.g., for the cases ΣF2), we spend less memory but more time, which is

the limitation of our approach. This shows, again, that the computing efficiency

depends on model structures.

4.7 Conclusion

In this chapter, we have studied fault diagnosis of DES using on-the-fly and incre-

mental techniques to cope with state explosion problems. Algorithms for checking

K-diagnosability, diagnosability and online diagnosis have been developed. The

obtained results through the WODES benchmark are encouraging.

In Section 4.1, the on-the-fly and incremental techniques have been intro-

duced. The on-the-fly techniques allow generating and investigating only a part

of state space to find the solutions. The incremental techniques can reuse histor-

ical information to avoid recomputing works. Compared with traditional state
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enumerative approaches, they have shown the advantages in improving efficiency

of analyzing diagnosis problems.

In Section 4.2, we have developed mathematical representations for LPNs,

namely the extended incidence matrix, event marking and extended state equa-

tion, such that the behavior relative to events can be well presented.

In Section 4.3, notions such as fault marking, FM-graph and the FM-set tree

are introduced to describe the state evolution with fault propagation of the sys-

tem. We have developed an approach to check K-diagnosability based on the

on-the-fly building of FM-graph and the FM-set tree.

In Section 4.4, classic diagnosability was discussed by solving a series of K-

diagnosability. The incremental technique has been used to analyze diagnosability

and seek out Kmin to ensure diagnosability.

In Section 4.5, the diagnoser derived from the FM-set tree has been developed.

Comparisons between the tranditional enumerative approaches and ours were

performed, showing that our diagnoser consumes less memory.

In Section 4.6, a group of comparative simulations on the basis of the WODES

and the LC benchmark have been performed. The obtained results showed that

the on-the-fly and incremental techniques can largely improve the efficiency in

terms of time and memory.
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Chapter 5

Time PN-Based Diagnosis of

DES

In the previous chapter, we have discussed fault diagnosis issue in the untimed

context. Principles in untimed analysis are simple, however, they sometimes re-

quire much resources. Actually, by considering time information, some untimed

analysis can be rather easy. In [Tripakis, 2002], fault diagnosis of timed DESs

has been presented in the framework of timed automata. Necessary and suffi-

cient conditions for diagnosability of timed automata have been given. For the

analysis based on TPNs, it is possible to first transform TPN models into timed

automata using existing techniques, and then to reuse the results of [Tripakis,

2002]. However, the transformation is not practical work, since:

• The TPN is the extension of the PN, thus it inherits the advantages of PNs

compared with automata.

• TPN is more expressive than timed automata and more suitable for model-

ing a real system. In the contrary, generating the whole state space (timed

automata) of real complex timed systems is rather burdensome work.

This chapter deals with fault diagnosis of DESs in a timed context. Besides

the relative ordering of events considered in untimed context, the information

about the event occurrence dates are also used for system modeling and fault

diagnosis analysis.
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The model that will be used here is LTPN – an extension of TPN, in which

each transition is associated with an event which can be either observable or not.

A given label (event) may be assigned to various transitions.

Thanks to a skillful splitting of the time intervals assigned to the LTPN transi-

tions, a deterministic on-the-fly-built structure called ASG can be built for LTPN

models. The observer is enriched with information about fault occurrence, such

that it is sufficient to monitor the system behavior and detect faults reacting to

observable events and their respective occurrence dates. An ASG carries both

the marking reachability and the fault propagation. Based on the ASG which is

built on the fly, the timed diagnosability problem is transformed and analyzed

as in the untimed context. In this case, some existing techniques for untimed

diagnosis analysis can be brought into play in the timed context.

Generally, and as explained in Chapter 4, using on-the-fly analysis makes it

possible to generate and investigate only partially the ASG state space for check-

ing diagnosability. This is a distinct advantage compared with the traditional

enumerative approaches. Furthermore, and in the same way as in the untimed

context, for a diagnosable LTPN the ASG is then used for deriving a diagnoser

called LTD that we develop for performing online diagnosis. As a classical di-

agnoser, an LTD assigns a state (or a set of states) with a tag indicating fault

occurrence: Normal, Fi-certain or Fi-uncertain, while it reacts to a sequence of

observable dated events.

We also discuss the relation between our developed ASG and the event-

recording automata (ERA), which is an existing determinizable subclass of Timed

Automata (TA). It is shown that a determinizable subclass of LTPNs also exists,

whose ASGs shows some equivalence with ERA. The bisimulation between them

makes it possible to bring existing TA-based techniques into PN-based timed fault

diagnosis.
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5.1 Splitting Time Intervals Assigned to LTPN

Transitions

Splitting time intervals assigned to LTPN transitions is a key element in our

technique for timed fault diagnosis analysis of DES. We assume the LTPN to

be live and bounded. This section will give the motivation and introduce some

preliminary concepts that will be used in this technique.

5.1.1 Motivation

First, let us look at the motivation of splitting time intervals with the following

example.

Example 27 Consider the observability problem of the LTPN NLT in Figure 5.1(a),

where t1, t2, t3 ∈ Σo are observable transitions.

Using the classical analytical approach [Berthomieu and Menasche, 1983], we

can compute all the state classes reachable from the initial class C0. A part of

the state class graph is shown in Figure 5.1(b). From state class C0, we have two

reachable state classes C1 and C2 by the firing of transitions t1 at a date in [0, 2]

and t2 at a date in [1, 2] respectively. This is convenient if we do not consider

event labels assigned to the transitions.

However, when dealing with LTPNs, i.e., event based observation, it is possible

that we cannot distinguish between two transitions with the same label, even if

additional time information is available. For example, if event a is observed at

date 0.5 t.u, C1 will be reached with certainty. However, if a is observed at 1.5

t.u, it may correspond either to the firing of transition t1 or the firing of t2 and

it is uncertain whether C1 or C2 is reached.

In order to eliminate this nondeterminism, we want to modify the state class

graph of NLT while considering transition labeling, so that by each observation of

event with its exact occurrence time, we can determine which state (or minimal

set of states) the system can be in. A part of the modified state class graph of NLT

is shown in Figure 5.1(c). We split the time interval associated with transition

t1, i.e., [0, 2], into two disjoint intervals [0, 1[ and [1, 2]. We recompute the state

classes reached from C0, i.e., C1a and C1b, by the firing of t1 at a date belonging
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p1 p2 p3

p4 p5 p6

t1, a[0, 2] t2, a[1, 4] t3, b[3, 5]

(a) The LTPN NLT in Example 27

C0 :
M0 = [ 1 1 1 0 0 0 ]τ

t1[0, 2]
t2[1, 4]
t3[3, 5]

C1 :
M1 = [ 0 1 1 1 0 0 ]τ

t2[0, 4]
t3[1, 5]

C2 :
M2 = [ 1 0 1 0 1 0 ]τ

t1[0, 1]
t3[1, 4]

t1, a[0, 2] t2, a[1, 2]

(b) A part of the state class graph of NLT

C0 :
M0 = [ 1 1 1 0 0 0 ]τ

t1[0, 2]
t2[1, 4]
t3[3, 5]

C1a :
M1 = [ 0 1 1 1 0 0 ]τ

t2]0, 4]
t3]2, 5]

C1b

M1 = [ 0 1 1 1 0 0 ]τ

t2[0, 3]
t3[1, 4]

C2 :
M2 = [ 1 0 1 0 1 0 ]τ

t1[0, 1]
t3[1, 4]

t1, a[0, 1[ t1, a[1, 2] t2, a[1, 2]

(c) A part of the modified state class graph of NLT

Figure 5.1: The state class graph and the modified state class graph for LTPN
NLT
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to these two intervals respectively, using the classical approach for TPNs. In

this case we can state that, if event a is observed at a date belonging to [0, 1[,

C1a is reached with certainty; whereas if a is observed in [1, 2], one of the state

classes belonging to the set {C1b, C2} is reached. Assuming that we rebuild the

state class graph from the initial state class C0 with the time intervals splitting

technique, and regroup all the state classes that are reached from the same state

class (or set of state classes) by a transition firing assigned with the same event

and firing interval, we may solve, even partially, the problem of nondeterminism

in the observation of LTPNs.

Comparing the two previous cases, we generate more state classes in Fig-

ure 5.1(c) than in Figure 5.1(b). However, the state classes obtained in Fig-

ure 5.1(c) are more precise in describing the NLT behavior w.r.t event occurrence.

For example, if a is observed at 0.5, we are certain that C1a is reached and one of

the following firable transitions t2 and t3 can be fired at a relative date belonging

to [0.5, 3.5] and [2.4, 4.5] respectively from C1a, rather than [1, 5] as in class C1

Figure 5.1(b). This means that using the classical state class graph for observing

an LTPN leaves an overestimation on the firing domains. Moreover, this over-

estimation may be propagated and aggravated as the system state moves forward

along the reachable state classes, resulting in a non-optimal evaluation of the sys-

tem state. In summary, our objective here is to develop an efficient deterministic

structure for the observation and diagnosis analysis of LTPNs.

5.1.2 Semi-Interval

In this section we formally discuss how to split time intervals assigned to LTPN

transitions. The goal behind splitting a given finite set of time intervals is to

generate a new set of split intervals that we call basic interval set. For this aim,

let us first introduce some basic notations on time intervals that will be used

afterward.

A time interval [Allen, 1983] is indeed a set of non-negative rational numbers

but may also include infinity:

{[; ]} ×Q≥0 × (Q≥0 × {[; ]} ∪ {+∞[})
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It can be a bounded, unbounded or half-bounded interval, e.g.,

[1, 5] = {x ∈ Q≥0 | 1 ≤ x ≤ 5}

]9, 13[= {x ∈ Q≥0 | 9 < x < 13}

[0,+∞[ = {x ∈ Q≥0 | x ≥ 0}

Definition 23 (semi-interval) A left semi-interval is a left-open interval, defined

by

• a[ = {x ∈ Q≥0 | x < a} = [0, a[ with a ∈ Q≥0, or

• +∞[ = {x ∈ Q≥0} = [0,+∞[, or

• a] = {x ∈ Q≥0 | x ≤ a} = [0, a];

a right semi-interval is a right-open interval, defined by

• ]a = {x ∈ Q≥0 | x > a} =]a,+∞[ with a ∈ Q≥0, or

• [a = {x ∈ Q≥0 | x ≥ a} = [a,+∞[.

Actually, to determine whether it is a left or a right interval, it suffices to note

the position of rational limit (a) relatively to the square bracket: on the left for

left semi-interval and on the right for the right semi-interval.

Obviously, any time interval can be written as an intersection of a left semi-

interval and a right semi-interval. For the previous three time intervals, we have

[1, 5] = {x | x ≥ 1} ∩ {x | x ≤ 5}

]9, 13[= {x | x > 9} ∩ {x | x < 13}

[0,+∞[ = {x | x ≥ 0} ∩ {x | x < +∞}

Formally, we treat a time interval as an intersection of two half-open intervals

that we call semi-intervals.

Given an interval i, the corresponding left (resp. right) semi-interval is de-

noted by left(i) (resp. right(i)), and the complementary set of semi-interval
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α is denoted by α. For β = a] (resp. a[; ]a; [a), we denote bound(β) = a and

border(β) = ] (resp. [; ]; [).

Example 28 Time interval i = [2, 4[, can be written as:

i = left(i) ∩ right(i)

where

right(i) = [2 = {x ∈ Q≥0 | x ≥ 2}

and

left(i) = 4[ = {x ∈ Q≥0 | x < 4}

We can also denote by

right(i) = 2[

bound(right(i)) = 2

border(right(i)) = [

For two left (or two right) semi-intervals α and β, we say α = β, if

• bound(α) = bound(β) and

• border(α) = border(β).

We define an order relation “≺” between semi-intervals as follows:

• α ≺ β, if bound(α) < bound(β);

• c[ ≺ [c ≺ c] ≺ ]c, if bound(α) = bound(β) = c;

• α ≺ +∞[, if α 6= +∞[.

Example 29 For semi-intervals 1[; [1; 1]; ]1; 9[; [9; 9]; ]9 and +∞[, the order rela-

tion between them is as follows:

1[ ≺ [1 ≺ 1] ≺ ]1 ≺ 9[ ≺ [9 ≺ 9] ≺ ]9 ≺ +∞[

The objective of defining this order relation between semi-intervals is to reor-

ganize a set of semi-intervals for further computing basic interval sets, as will be

introduced in Algorithm 8 in the following section (cf. Lines 3 and 8).
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5.1.3 Basic Interval Set (BIS)

In order to eliminate nondeterminism in LTPNs, time interval splitting techniques

[Liu et al., 2014a] will be developed to reassign each observable event with an

interval in the basic interval set, such that each firing of an observable event with

its relative time brings the system to a unique minimal macro state (i.e., the ASC

that will be introduced in Section 5.2.1).

Definition 24 Given a finite time interval set A, the basic interval set (BIS) of

A, denoted by BIS(A), is a set of disjoint nonempty time intervals βj subject to:

1. ∀ k 6= j, βk ∩ βj = ∅;

2. ∀ α ∈ A, ∃ β1, β2, · · · , βm ∈ BIS(A), such that α =
⋃m

j=1 βj;

3. ∀ β1, β2 ∈ BIS(A), β1 6= β2, ∃ α ∈ A, such that β1 ∩ α = ∅, β2 ∩ α 6= ∅.

In particular, for a time interval set A such that its cardinality (the number

of elements in set A) |A| = 1, BIS(A) = A. Here we emphasize that BIS(A) is a

finite and unique set for any finite interval set A, as will be illustrated in details

in Propositions 6 and 8.

About the above definition, we make the following remarks:

• Condition 1 shows that the elements in a BIS must be disjoint from each

other, e.g., {[1, 3]; [2, 4]} cannot be the BIS of any interval set since [1, 3] ∩

[2, 4] 6= ∅.

• Condition 2 indicates that any interval in set A is the union of a finite

number of intervals in BIS(A), e.g., for A = {[1, 4]; [2, 5]}, BIS(A) =

{[1, 2[; [2, 4], ]4, 5]}, we have [1, 4] = [1, 2[∪[2, 4] and [2, 5] = [2, 4]∪]4, 5].

• Condition 3 ensures that BIS(A) is unique and this will be proved in Propo-

sition 8.

Here, the term basic has two meanings. On the one hand, any time interval

assigned to an LTPN transition can be represented by a union of finite disjoint

basic intervals. Some of these basic intervals may also be parts of other time

intervals of A, i.e., basic intervals can be treated as basic components for the
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time intervals of A. On the other hand, Condition 3 of Definition 24 ensures that

BIS(A) is unique and contains as few time intervals as possible to represent all

the elements in A as a union. More illustration will be given in Example 30 at

the end of this section.

Proposition 6 The BIS of a finite interval set is also finite.

Proof. Assume that given a finite interval set A, BIS(A) can be infinite and

BIS(A) =
+∞
⋃

j=1

{βj}

Consider that index j in ∪+∞
j=1{βj} gives the ordering of the intervals’ values, i.e.,

β1 holds the smaller values, and so on, as shown in Figure 5.2.

•
0 +∞

• • • • • •
β1 β2 βk

· · · · · ·

Figure 5.2: Time intervals in BIS(A)

Let us take βi, βi+1 ∈ BIS(A), according to Condition 1 in Definition 24,

βi ∩ βi+1 = ∅

here we have

∀ x ∈ βi, y ∈ βi+1, x < y

According to Condition 3 in Definition 24,

∃ α1 ∈ A such that α1 ∩ βi 6= ∅ and α1 ∩ βi+1 = ∅

Moreover, as intervals βj are ordered from left to right and, given that α1 is an

interval, i.e., contains continuous values,

α1 ∩ βk = ∅ for k ≥ i+ 1 (1)
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In the same way,

∃ α2 ∈ A such that α2 ∩ βi+1 6= ∅ and αi+1 ∩ βi+2 = ∅

Likewise for βi+2, βi+3,

∃ α3 ∈ A such that α3 ∩ βi+2 6= ∅ and αi+2 ∩ βi+3 = ∅

Hereby, α2 6= α3 and α1 6= α3, since from (1), α1∩βk = ∅ for k ≥ i+1. This way,

for two successive intervals βi, βi+1 in BIS(A), a new interval αk is found. Then

as i goes from 1 to +∞, an infinite number of intervals αk is generated, which

means A has an infinite number of intervals and this violates the assumption. �

The BIS of a finite interval set can be computed by Algorithm 8.

Algorithm 8 Computation of BIS
1: Input: A; ⊲ A is a finite interval set.
2: Output: B; ⊲ B = BIS(A)
3: C ← ∅; ⊲ C is an array of semi-intervals ordered according to ≺.
4: for all α ∈ A do
5: C ← C ∪ {left(α)} ∪ {right(α)};

6: reorder C according to ≺;
7: c0 ← c1; ⊲ cj (j = 1, 2, . . .) denotes, in the order of ≺, the jth element of C.
8: C ← C ∪ {c0}; ⊲ Insert c0 into C, then c0 will be the first element of C

instead of the original c1.
9: for j from 1 to (|C| − 1) do ⊲ For all the elements of C except the first and

the last one.
10: if cj−1 is a right semi-interval then
11: α← cj−1; ⊲ α is a right semi-interval.
12: else
13: α← cj−1; ⊲ α is a left semi-interval.

14: if cj is a left semi-interval then
15: β ← cj; ⊲ β is a left semi-interval.
16: else
17: β ← cj; ⊲ β is a right semi-interval.

18: B ← B ∪ {(α ∩ β)};

19: return B;
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In order to prove the unicity of the BIS for a given finite interval set, we

first give the following proposition, which will be used in the demonstration of

Proposition 8.

Proposition 7 Given a finite interval set A, for any α ∈ A and β ∈ BIS(A)

β ∩ α 6= ∅ ⇒ β ⊆ α

Proof. According to Condition 2,

(∃ β1, β2, · · · , βm ∈ BIS(A))(α =
m
⋃

j=1

βj)

and obviously ∀j = 1, · · · ,m, βj ⊆ α.

Now suppose that

(∀ k = 1, · · · ,m)(β 6= βk)

From Condition 1 in Definition 24,

(∀ k = 1, · · · ,m)(β ∩ βk = ∅)

⇒ β ∩ (∪mk=1{βj}) = ∅

⇒ β ∩ α = ∅

This violates β ∩ α 6= ∅ in the propositon, thus

∃ k ∈ {1, 2, · · · ,m} such that β = βk

⇒ β ⊆ α

�

Proposition 8 Given a finite set of time intervals A, BIS(A) is unique.

Proof. Assume that at least two different BIS exist for a finite set of time

intervals A, i.e.,

(∃ B1 = BIS(A), B2 = BIS(A))(B1 6= B2)
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⇒ (∃ β ∈ B1)(∀ γ ∈ B2)(β 6= γ) (1)

or conversely

(∃ γ ∈ B1)(∀ β ∈ B2)(γ 6= β) (2)

According to Condition 3, (∃ α ∈ A)(β ∩ α 6= ∅)

According to Proposition 7, β ⊆ α

Since B2 = BIS(A), according to Condition 2,

(∃ γ′ ∈ B2)(γ
′ ⊆ α, γ′ ∩ β 6= ∅)

(1)⇒ γ′ 6= β

We have already obtained that,

β ⊆ α, γ′ ⊆ α, β 6= γ′, β ∩ γ′ 6= ∅

According to the three possible relations between β and γ′ as shown in Figure

5.3, we have either

(∃ γ′′ ∈ B2, γ
′′ ⊆ α)(γ′′ ∩ (γ′ ∩ β) 6= ∅) (3) (cf. Figure 5.3(a) and 5.3(b))

or

(∃ β′ ∈ B1, β
′ ⊆ α)(β′ ∩ (β ∩ γ′) 6= ∅) (4) (cf. Figure 5.3(b) and 5.3(c))

According to Condition 3 in Definition 24,

(3)⇒ (γ′′ ∩ β 6= ∅) ∧ (∃α′ ∈ A)(γ′ ∩ α′ 6= ∅, γ′′ ∩ α′ = ∅)

β ∩ γ′ 6= ∅, γ′ ⊆ α′ ⇒ β ∩ α′ 6= ∅

⇒ β ⊆ α′
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(c) β ⊆ γ′

Figure 5.3: The relation between β and γ′

This violates (γ′′ ∩ β 6= ∅)∧ (γ′′ ∩ α′ = ∅) The same violations can be obtained if

we consider (3). Therefore, the assumption does not hold.

We can make the same reasoning with (2) to come to the same result. Thus

B1 = B2. �

Example 30 Given a set of time intervals A = {[1, 3]; [2, 4]; [3, 7]; [5,+∞[}, the

solution of BIS(A) according to Algorithm 8 can be obtained as follows:

1. Split all the intervals in A into semi-intervals which are gathered in a new

set C:

C = {[1; 3]; [2; 4]; [3; 7]; [5; +∞[}

2. Reorder the elements of C in the order ≺, i.e.,

[1 ≺ [2 ≺ [3 ≺ 3] ≺ 4] ≺ [5 ≺ 7] ≺ +∞[

3. For each pair of neighboring semi-intervals α and β in the ordering of the

previous step such that α ≺ β, let α′ = α (resp. β′ = β) if α is a left

(resp. β is a right) semi-interval, otherwise α′ = α (resp. β′ = β). Finally,

α′ ∩ β′ will be an element of BIS(A), as shown in Table 5.1.

4. BIS(A) = {[1, 2[; [2, 3[; [3, 3]; ]3, 4]; ]4, 5[; [5, 7]; ]7,+∞[}, according to the

fourth column in Table 5.1.
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Table 5.1: Solution of BIS(A) in Example 30

α ≺ β α′ β′ α′ ∩ β′

[1 ≺ [2 [1 [2 = 2[ [1, 2[

[2 ≺ [3 [2 [3 = 3[ [2, 3[

[3 ≺ 3] [3 3] [3, 3]

3] ≺ 4] 3] =]3 4] ]3, 4]

4] ≺ [5 4] =]4 [5 = 5[ ]4, 5[

[5 ≺ 7] [5 7] [5, 7]

7] ≺ +∞[ 7] =]7 +∞[ ]7,+∞[

A graphical illustration for this solution is given in Figure 5.4.

5.2 Reachability Analysis of LTPNs with Fault

Information

5.2.1 Augmented State Class (ASC)

In order to deal with the fault diagnosis problem using LTPNs, we need to asso-

ciate each state class with a fault tag, from which we can determine whether a

fault has occurred or not from the initial state class to the current one. Without

loss of generality, we will deal with a unique class of fault.

Definition 25 An ASC is a pair x = (C, y), which is associated to an achievable

firing sequence σ ∈ T ∗ such that C0
σ
−→ C, and y is computed by:

y =







F if ∃ j, σj ∈ Tf

N otherwise

The initial ASC is defined by x0 = (C0, N), since we consider there is no fault

in the system initially. Two ASCs x = (C, y) and x′ = (C ′, y′) are equivalent, iff

C = C ′, i.e., C and C ′ have the same marking and the same firing domain [Diaz,

2001], and y = y′.
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(a) Intervals in set A

(b) Splitting intervals of A to compute BIS(A)

Figure 5.4: The computation of BIS in Example 30

LetNASC be the set of ASCs relative to a given LTPN, mapping TASC : NASC×

T ∗ → NASC defines transition between ASCs. We say an ASC x′ = (C ′, y′) is

reachable from x = (C, y) by σ ∈ T ∗, denoted by x
σ
−→ x′, iff:

• C
σ
−→ C ′;

•

y′ =







F if (y = F ) ∨ (∃ j, σj ∈ Tf )

N otherwise
(5.1)
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Consequently, the number of ASCs is at most twice the number of state classes.

Recall that we consider that faults are permanent. Thus, fault propagation follows

the same rules as in the untimed context, as shown in Figure 4.8 of the previous

chapter.

Proposition 9 A bounded LTPN has a finite number of ASCs.

Proof. According to [Diaz, 2001], the number of state classes of a TPN is finite

iff this net is bounded. A state class can be associated with at most two values:

N or F. Therefore, given a bounded LTPN with m state classes, the number of

ASCs will not exceed the number of combinations of state classes and tags, i.e.,

2m. �

5.2.2 Sequence Duration

In the classical state class graph for a given TPN, a time interval assigned to a

transition connecting two state classes, specifies the possible relative firable time

of the transition from the source state class, i.e., the possible delay between the

source and destination state classes. However, when considering the duration

between any two state classes with some intermediate state classes, and due to

diagonal constraints, one cannot simply sum up all the time intervals assigned to

the transitions between them. In this section, we discuss how to compute this

time duration, i.e., how to compute a firing sequence duration in a general way.

Definition 26 Given an ASC x, we shall call a candidate sequence of x any

sequence of transitions σt ∈ T ∗ which is achievable starting from x, where σ ∈ T ∗
u

and t ∈ To.

Note that σ may be empty.

We denote by Can(x) the set of candidate sequences from ASC x. The ASCs

which are reachable upon the firing of such sequences are called candidate ASCs

of x. Formally speaking,

Can(x) =
⋃

σ∈T ∗

uTo

{x′ s.t. x
σ
−→ x′}

120



To each candidate sequence, one assigns a relative framing to its duration

[Ghazel et al., 2009]. This obtained time interval contains all the possible firing

dates of observable transition t relatively to x. Indeed, this duration is evaluated

by solving the set of inequalities composed of the constraints for the intervals

assigned to each transition which brings a state class to another. We use the

notation SD(σ) to denote the duration of a transition sequence σ.

Example 31 Consider the LTPN in Figure 5.5.

p1 p2 p3 p4

t1, a[2, 5] t2, b[0, 3] t3, a[0, 3]

Figure 5.5: The LTPN graph for Example 30

C0 :
M0 = [ 1 0 1 0 ]τ

t1[2, 5]
t3[0, 3]

start

C1 :
M1 = [ 0 1 1 0 ]τ

t2[0, 3]
t3[0, 1]
2 ≤ θ1 + θ3 ≤ 3

C2 :
M2 = [ 0 1 0 1 ]τ

t2[0, 3]
0 ≤ θ3 + θ2 ≤ 3

C3 :
M3 = [ 0 0 1 1 ]τ

t3[0, 3]

C4 :
M4 = [ 0 0 0 2 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

t1, a[2, 3] t3, a[0, 1]

t2b[0, 3]

t3a[0, 3]

Figure 5.6: The state classes following σ for Example 30

One of the achievable firing sequences is σ = t1t3t2t3, with the state classes

generated along σ, i.e., from C0 to C4, as shown in Figure 5.6. Assume the firing

dates of the transitions in σ are respectively θ1, θ3, θ2, θ
′
3 (θ′3 is the relative date of

the second firing of t3). Then SD(σ) is computed by:

SD(σ) = θ1 + θ3 + θ2 + θ′3,where:
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





















































2 ≤ θ1 ≤ 3 constraint of t1 between C0 and C1

0 ≤ θ3 ≤ 1 constraint of t3 between C1 and C2

0 ≤ θ2 ≤ 3 constraint of t2 between C2 and C3

0 ≤ θ′3 ≤ 3 constraint of t3 between C3 and C4

2 ≤ θ1 + θ3 ≤ 3 constraint of C1

0 ≤ θ3 + θ2 ≤ 3 constraint of C2

Here we obtain:

SD(σ) = [2, 9]

which is not simply the sum of intervals associating with each transition in the

sequence (otherwise, we would have obtained [2, 10]).

Example 30 shows that the direct addition of time intervals assigned to tran-

sitions brings overestimation to the actual sequence duration.

5.2.3 ASC-Graph

In order to present both the reachability of ASCs upon observable events and fault

propagation information of an LTPN, we develop a structure called ASC-graph.

As mentioned earlier, without loss of generality, we consider a unique fault class.

Definition 27 An ASC-graph is a digraph (QASCG,AASCG,TASCG, q0), where:

• QASCG ⊆ 2NASC is the set of ASC-graph nodes;

• q0 = (C0, N) is the initial ASC-graph node;

• TASCG : QASCG × Σo → QASCG is the transition mapping between ASC-

graph nodes. Given X ∈ QASCG, e ∈ Σo, TASCG(X, e) = {q′ | ∃ q ∈ X, σ ∈

Can(q), ϕ(σ) = e, q
σ
−→ q′};

• I is the set of time intervals (values in Q≥0);

• AASCG ⊆ QASCG× (Σo× 2I)×QASCG is the set of directed arcs of the ASC-

graph: A = {(q, e, i, q′) | ∃ σ ∈ Can(q), q′ ∈ TASCG(q, e), s.t. SD(σ) =

i, ϕ(σ) = e}, where i denotes the set of possible time intervals.
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The building procedure of the ASC-graph is in fact an augmented (with fault

tag) ǫ-reduction problem on the state graph in which we are interested in the

reachability of fault markings upon observable events. In this ǫ-reduction, only

the fault markings which can be reached right after an observable event are kept;

sequence duration between nodes in the ASC-graph is recomputed if there are

some intermediary erased ASCs between them. In summary, an ASC-graph can

be treated as an ǫ-reduced state class graph enriched by the fault propagation

relation.

The ASC-graph is built a priori based on an existing state class graph, unlike

the construction of the FM-graph in the untimed context which is performed

on the fly, since the building of state class graphs is more complex than the

reachability graph construction in the untimed context. Thanks to the analytical

approach of building the state class graph [Berthomieu and Menasche, 1983] and

the developed tools such as [Berthomieu et al., 2004; Gardey et al., 2005], the

ASC-graph can be derived from the state class graph in a straightforward way.

However, we will consider the on-the-fly building of ASC-graphs or other advanced

models in the future, such that diagnosability analysis can be performed even

more efficiently.

Example 32 Consider the LTPN in Figure 5.7, where Tu = Tf = {t1} and

To = {t2, t3, t4}. As a reference, the state class graph is given in Figure 5.8,

where the grey boxes indicate the state classes reached right after an observable

transition.

p1 p2 p3p4p5 t1, f [1, 4] t2, a[2, 4]t3, a[2, 5]t4, b[0, 3]

Figure 5.7: The LTPN graph for Example 32

We can compute, step by step (from Figure 5.9(a) to 5.9(g)), to obtain its

ASC-graph as shown in Figure 5.9(g):

• Step 1 (cf. Figure 5.9(a)): from the initial ASC (C0, N), determine all the

reachable ASCs, i.e., (C1, F ), (C2, N) and (C3, N).
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C0 :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

C1 :
M1 = [ 0 1 0 1 0 ]τ

t2[2, 4]
t4[0, 2]
1 ≤ θ1 + θ4 ≤ 3

C2 :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

C3 :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

C4 :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

C7 :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

C5 :
M5 = [ 0 1 0 0 1 ]τ

t2[2, 4]

C6 :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

C8 :
M8 = [ 0 0 1 0 1 ]τ

C9 :
M9 = [ 0 0 0 0 2 ]τ

t4, b[0, 3]

t1, f [0, 4] t3, a[0, 4]
t4, b[0, 1]

t2, a[0, 4]
t4, b[0, 0] t2, a[2, 4]

t1, f [1, 3] t4, b[0, 3]
t3, a[2, 3]

t4, b[0, 2] t2, a[2, 2]

Figure 5.8: The state graph of the LTPN in Figure 5.7

• Step 2 (cf. Figure 5.9(b)): for each ASC obtained in Step 1 and reached

from an unobservable transition (denoted by gray boxes in the figures) (here

(C1, N)), compute its reachable ASCs (here (C4, F ) and (C7, F )). For gen-

eral cases, this step will be repeated until each branch arrives at an ASC

reached right after an observable transition.

• Step 3 (cf. Figure 5.9(c)): for any pair of ASCs reached after an observ-

able transition (green boxes in the figures), connect them directly and label

this new path with the observable event in this transition sequence with its

corresponding sequence duration intervals. Here, (C1, F ) is erased with the

addition of b[1, 3] linking (C0, N) and (C4, F ) and a[3, 3] linking (C0, N) and

(C7, F ); t4, b[0, 3] and t3, a[2, 3] are replaced by b[0, 3] and a[2, 3] respectively.

• Step 4 (cf. Figure 5.9(d)): for each new ASC, do as Step 1 and 2.
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(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C1, F ) :
M1 = [ 0 1 0 1 0 ]τ

t2[2, 4]
t4[0, 2]
1 ≤ θ1 + θ4 ≤ 3

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

t1, f [1, 3] t4, b[0, 3]
t3, a[2, 3]

(a) Step 1

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C1, F ) :
M1 = [ 0 1 0 1 0 ]τ

t2[2, 4]
t4[0, 2]
1 ≤ θ1 + θ4 ≤ 3

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

t1, f [1, 3] t4, b[0, 3]
t3, a[2, 3]

t4, b[0, 2] t2, a[2, 2]

(b) Step 2

Figure 5.9: The construction of ASC-graph

• Step 5 (cf. Figure 5.9(e)): for each new pair of ASC reached after an

observable transition, do as Step 3.

• Step 6 (cf. Figure 5.9(f)): repeat Step 1 to obtain ASC (C9, N).

• Step 7 (cf. Figure 5.9(g)): repeat Step 3 to replace t4, b[0, 3] with b[0, 3].

Until now no new ASC is reachable. Thus, the construction of this ASC-
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(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

b[0, 3]
a[2, 3]

b[1, 3]

a[3, 3]

(c) Step 3

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C5, F ) :
M5 = [ 0 1 0 0 1 ]τ

t2[2, 4]

(C6, F ) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F ) :
M8 = [ 0 0 1 0 1 ]τ

b[0, 3]
a[2, 3]

b[1, 3]

a[3, 3]

t1, f [0, 4]
t3, a[0, 4]

t4, b[0, 1]

t2, a[0, 4]
t4, b[0, 0] t2, a[2, 4]

(d) Step 4

Figure 5.9: The construction of ASC-graph (Continued)

126



(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C6, F ) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F ) :
M8 = [ 0 0 1 0 1 ]τ

b[0, 3]
a[2, 3]

b[1, 3]

a[3, 3]

a[0, 4] b[0, 1]

a[0, 4]
b[0, 0]

a[2, 8]

(e) Step 5

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C6, F ) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F ) :
M8 = [ 0 0 1 0 1 ]τ

(C9, N) :
M9 = [ 0 0 0 0 2 ]τ

b[0, 3]
a[2, 3]

b[1, 3]

a[3, 3]

a[0, 4]
b[0, 1]

a[0, 4]
b[0, 0]

a[2, 8]

t4, b[0, 3]

(f) Step 6

Figure 5.9: The construction of ASC-graph (Continued)

127



5. TIME PN-BASED DIAGNOSIS OF DES

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C6, F ) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F ) :
M8 = [ 0 0 1 0 1 ]τ

(C9, N) :
M9 = [ 0 0 0 0 2 ]τ

b[0, 3] a[2, 3]

b[1, 3]

a[3, 3]

a[0, 4]
b[0, 1]

a[0, 4]
b[0, 0]

a[2, 8]

b[0, 3]

(g) Step 7: ASC-graph

Figure 5.9: The construction of ASC-graph (Continued)

graph is terminated.

5.2.4 ASC-Set

In order to determinize an LTPN for state estimation and diagnosability analysis,

we will gather the states reached by the same timed observation (observable event

and its corresponding occurrence date) in some sets called ASC-sets.

An ASC-set is then an element of 2NASC . The initial ASC-set is defined by

{x0}.

Given an ASC-set g, we say e ∈ Σo is a candidate event of g, if ∃ x ∈

g,TASCG(x, e) 6= ∅. We denote by CES(g) the candidate event set of g. The

candidate interval set (CIS) of g relative to e is defined by CIS(g, e) = BIS(Y ),

where Y = {SD(σ) | ∃ x ∈ g, σ ∈ Can(x), s.t. ϕ(σ) = e}.

In other words, CIS(g, e) is the basic interval set relative to the intervals

corresponding to the possible delays for e to occur from an element in g.
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Example 33 Consider the CIS of the initial ASC-set g0 = {(C0, N)} of the

LTPN in Figue 5.7. As shown in Figure 5.9(g), from the only element (C0, N)

in g0, 4 firable transitions a[3, 3], b[1, 3], b[0, 3] and a[2, 3] exist. Therefore, all

the possible firing time of observable event a relative to g0 can be gathered in

the set CIS(g0, a) = {[2, 3[; [3, 3]}. In other words, one can obtain a new ASC

from g0 upon observable event a at a date in [2, 3[; [3, 3] relative to g0. Likewise,

CIS(g0, b) = {[0, 1[; [1, 3]}.

Let G be the set of reachable ASC-sets. Given g ∈ G, e ∈ CES(g) and

i ∈ CIS(g, e), the transition mapping between ASC-sets ξ : G × Σo × I → G is

defined by:

ξ(g, e, i) = {x′ | ∃ x ∈ g, σ ∈ Can(x), ϕ(σ) = e, x
σ
−→ x′ s.t. i ⊆ SD(σ)}, where I

is the set of time intervals.

The ASC-set g is said to be

• normal, if ∀ (C, y) ∈ g, y = N ;

• F-certain, if ∀ (C, y) ∈ g, y = F ;

• F-uncertain, otherwise.

We denote tag(g) = N (resp. F, U), if g is normal (resp. F-certain, F-uncertain).

Example 34 This example shows how to compute the reachable ASC-set from

the initial ASC-set g0 = {(C0, N)} of the LTPN in Figure 5.1(c):

• Step 1 (cf. Figure 5.10(a)): for each ASC in g0, here (C0, N), determine

all the reachable ASCs: (C4, F ), (C7, F ), (C2, N) and (C3, N).

• Step 2: for each candidate event of g0, here a and b, compute its CIS:

CIS(g0, a) = BIS([3, 3]; [2, 3]) = {[2, 3[; [3, 3]}

CIS(g0, b) = BIS([1, 3]; [0, 3]) = {[0, 1[; [1, 3]}

• Step 3 (cf. Figure 5.10(b)): for each ASC in g0, recompute its reachable

ASCs upon each observable event e ∈ Σo with the relative firing interval in

CIS(g0, e).
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(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

b[0, 3]
a[2, 3]

b[1, 3] a[3, 3]

(a) Step 1

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2a, N) :
M2 = [ 1 0 0 0 1 ]τ

t1]0, 4]
t3]0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 4

(C2b, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 3]
t3[0, 4]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 4

(C3a, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

(C3b, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 0]
t′
4
[0, 3]

3 ≤ θ3 + θ4 ≤ 3

(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

b[0, 1[ b[1, 3]

a[2, 3[

a[3, 3]

b[1, 3]

a[3, 3]

(b) Step 3

g0
(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

g1
(C2a, N) :
M2 = [ 1 0 0 0 1 ]τ

t1]0, 4]
t3]0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 4

g2
(C3a, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

g3
(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C2b, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 3]
t3[0, 4]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 4

g4
(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C3b, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 0]
t′
4
[0, 3]

3 ≤ θ3 + θ4 ≤ 3

b[0, 1[ a[2, 3[

b[1, 3] a[3, 3]

(c) Step 4

Figure 5.10: Computation of the reachable ASC-set of the initial ASC-set of
LTPN in Figure 5.7
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• Step 4 (cf. Figure 5.10(c)): collect the ASCs reached after the same label

(observable event and the corresponding firing interval) as a new ASC-set

from g0.

5.2.5 ASC-Set Graph (ASG)

The augmented state class set graph (ASG) is introduced as a deterministic di-

graph which will serve as a basis to check diagnosability. Here the term “deter-

ministic”means that, given an ASC-set and a candidate sequence, we can deduce

with certainty which candidate ASCs the system will be possibly in. In other

words, the ASG can be treated as a timed diagnoser such that, given any timed

trace, it estimates the possible system states, as well as the corresponding fault

information.

The ASG is a digraph (G,R, ξ, g0), where:

• G ⊆ 2NASC is the set of ASG nodes;

• g0 = {x0} = {(C0, N)} is the initial node;

• ξ is the transition mapping between ASC-sets;

• R ⊆ G×Σo× I×G is the set of ASG arcs: R = {(g, e, i, g′) | g′ = ξ(g, e, i)}.

The ASG can be computed by Algorithm 9.

Example 35 The ASG of the LTPN in Figure 5.7 can be computed by Algorithm

9. The main procedure is performed as follows:

• Step 1: select an existing ASC-set. Initially, there is only ASC-set g0.

Compute all the reachable ASC-sets from the selected ASC-set g0, as shown

in Figure 5.10(c).

• Step 2: for each newly obtained ASC-set, repeat Step 1 until no new ASC-

sets can be obtained, which means that the ASG is completed, as shown in

Figure 5.11.
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Algorithm 9 Construction of the ASG

1: Input: the ASC-graph (NASC ,A, γ, x0);
2: Output: the ASG;
3: g0 ← {x0}; ⊲ initialization
4: Gcon ← {g0}; ⊲ Gcon is the set of ASC-sets to be considered.
5: Gvst ← ∅; ⊲ Gvst is the set of ASC-sets that have been considered.
6: while Gcon 6= ∅ do
7: pick a node g ∈ Gcon s.t. g 6∈ Gvst;
8: for all e ∈ CES(g) do
9: Y ← CIS(g, e);
10: for all i ∈ Y do
11: Gcon ← Gcon ∪ {ξ(g, e, i)};

12: Gcon ← Gcon\{g};
13: Gvst ← Gvst ∪ {g};

5.3 Checking Diagnosability

The definition of diagnosability is introduced in Section 2.2.4.3. Without loss

of generality, we first discuss the diagnosability for one class of faults ΣFi
. The

generalization of our approach can be obtained just by repeating the same process

for each class ΣFi
. For the sake of checking diagnosability based on observable

events with their occurrence dates, we will propose a deterministic structure called

ASG on the basis of ASC-sets.

Before discussing the timed diagnosability of DES, we make the following

assumptions, in the same way as in the untimed context:

• The LTPN is bounded;

• No achievable cycle of unobservable transitions exists;

• Faults are permanent, i.e., when a fault occurs the system remains indefi-

nitely faulty.

Note that the liveness condition is relaxed.
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g0
(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

g1
(C2a, N) :
M2 = [ 1 0 0 0 1 ]τ

t1]0, 4]
t3]0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 4

g2
(C3a, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′
4
[0, 3]

2 ≤ θ3 + θ4 ≤ 3

g3
(C4, F ) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C2b, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 3]
t3[0, 4]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 4

g4
(C7, F ) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C3b, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 0]
t′
4
[0, 3]

3 ≤ θ3 + θ4 ≤ 3

g8
(C6, N) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F ) :
M2 = [ 0 0 1 0 1 ]τ

g5
(C8, F ) :
M2 = [ 0 0 1 0 1 ]τ

g6
(C6, N) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

g7
(C9, N) :
M9 = [ 0 0 0 0 2 ]τ

b[0, 1[ a[2, 3[

b[1, 3] a[3, 3]

a[1, 2]

a]4, 7]

a]2, 4]

b[0, 1]

a]3, 7]
a[0, 3]

b[0, 3]

b[0, 3]

Figure 5.11: The ASG for Example 35

5.3.1 Conditions for Undiagnosability

As we have explained earlier, the ASG offers a state representation that distin-

guishes between reachable states, based on an explicit discrimination taking into

account both observable events, and their possible occurrence dates. Defining

such a structure makes it possible to use similar analysis as in the untimed con-

text. However, some other considerations related to time still need to be added,

as will be presented in the following.

Condition 1: indeterminate cycle

Recall that the condition for undiagnosability of an automaton is the existence

of an indeterminate cycle as proved in [Sampath et al., 1995]. We can extend this

condition for the analysis of diagnosability of LTPN on the basis of the ASG,

since our technique, which consists in splitting time intervals, makes it possible

to derive an untimed-diagnoser-like structure, by making the distinction between

sequences on the basis of temporal criteria explicit in the ASG model structure.

By analogy with the untimed context, we define an indeterminate cycle in an

ASG as a cycle composed of finite nodes in the graph, such that for any node g in
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this cycle, there are two ASCs x1, x2 ∈ g, x1 is a faulty ASC in a cycle composed

of faulty nodes in the ASC-graph, while x2 is a normal ASC in a cycle composed

of normal nodes in the ASC-graph.

Proposition 10 The LTPN is undiagnosable if an indeterminate cycle in the

ASG exists.

This is obvious according to the explanation of indeterminate cycle. Note that

a cycle of F-uncertain ASC-sets in ASG (Figure 5.12(a), where the black boxes

are faulty ASCs and the white ones are normal) is not necessarily an indetermi-

nate cycle. If this cycle corresponds to two ASC cycles in an ASC-graph such

that one is a normal cycle (x1, x3) and the other is a faulty one (x2, x4) as in

Figure 5.12(b), then g1 and g2 form an indeterminate cycle. Otherwise, they do

not (Figure 5.12(c)).

(a)

(b) (c)

Figure 5.12: Illustration of indeterminate cycle

Condition 2: infinite sequence duration in certain cases
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Given an ASC-set g (which is not the initial ASC-set) and its predecessor g′,

we define the maximum delay mapping :

mdelay : NASC ×NASC → Q≥0 ∪ {+∞}

by mdelay(g′, g) =

max{SD(σ) | ∃ x′ ∈ g′, x ∈ g, σ′ ∈ (Tu\Tf )
∗, tf ∈ Tf , σ ∈ T ∗

uTo s.t. x′ σ′tfσ
−−−→ x}

In other words, mdelay(g′, g) is the maximum delay between the first possible

occurrence of a fault and g, relatively to a predecessor ASC-set g′.

We also define

fdelay : NASC → Q≥0 ∪ {+∞}

by fdelay(g) =

max{SD(σ) | ∃ x ∈ g, σ′ ∈ (T\Tf )
∗, tf ∈ Tf , σ ∈ T ∗To s.t. x0

σ′tfσ
−−−→ x}. Here

fdelay(g) is the maximum delay between the first occurrence of a fault and g,

relatively to the initial ASC-set {x0}.

We define

SDmax(g
′, g) = max{SD(σ) | ∃ x′ ∈ g′, x ∈ g, σ ∈ T ∗

uTo s.t. x′ σ
−→ x}

Proposition 11 An LTPN is undiagnosable if g′ is the predecessor of ASC-set

g, and

1. mdelay(g′, g) = +∞ or

2. SDmax(g
′, g) = +∞ if tag(g′) = U and tag(g) ∈ {U, F}.

Proof. We prove the above proposition according to the definition of diag-

nosability. For an ASC-set g, it may be normal, F-uncertain or F-certain, i.e.,

tag(g) ∈ {N,U, F}.

• If tag(g) = N , no diagnosability verdict can be concluded and further in-

vestigation is needed.

• If tag(g) = U , for its predecessor g′, tag(g′) ∈ {N,U}.
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– If tag(g) = N , there must be a fault in one of the paths (sequences of

transitions) between an ASC in g′ and an ASC in g. If mdelay(g′, g) =

+∞, the system is undiagnosable. Otherwise, no diagnosability verdict

can be concluded.

– If tag(g) = U and SDmax(g
′, g) = +∞, the system is undiagnosable.

Otherwise, no diagnosability verdict can be concluded.

• If tag(g) = F , for its predecessor g′, tag(g′) ∈ {N,U, F}.

– If tag(g) = N , there must be a fault in one of the paths between

an ASC in g′ and an ASC in g. If mdelay(g′, g) = +∞, the system is

undiagnosable. Otherwise, no diagnosability verdict can be concluded.

– If tag(g) = U and SDmax(g
′, g) = +∞, the system is undiagnosable.

Otherwise, no diagnosability verdict can be concluded. �

Condition 3: dead subset in certain cases

Note that here we also deal with non-live systems. For this, let us introduce

the following definitions. An ASC-set g is said to be:

• undead or nonblocking, if ∀ x ∈ g, ∃ t ∈ T s.t. x
t
−→;

• dead, if ∀ x ∈ g, 6 ∃ t ∈ T s.t. x
t
−→;

• quasi-dead, otherwise.

Given a quasi-dead ASC-set g, we define the dead subset of g as the set of all

dead ASCs in g, which can be formalized as: DS(g) = {x ∈ g | 6 ∃t ∈ T s.t. x
t
−→}.

Example 36 Let us consider the example in Figure 5.11. There are two dead

ASC-sets g6, g7, and a quasi-dead ASC-set g5 with dead subset DS(g5) = {(C8, F )}.

We will now discuss some conditions for undiagnosability w.r.t the liveness of

ASC-sets.

Proposition 12 An LTPN is undiagnosable if a quasi-dead ASC-set g exists,

such that
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3. DS(g) is F-uncertain, or

4. DS(g) is F-certain and a normal successor ASC-set g′ exists such that g′

may be reached upon an infinite delay (+∞).

Proof. For condition (3), an F-uncertain dead subset means that, some ASCs

in this set may be reachable by firing a sequence containing a fault, while others

can be reached without any fault having been occurred. Furthermore, it is not

possible to distinguish them by further observation, since they are all dead and

the system will remain in F-uncertain state forever.

For condition (4), if g′ is reachable upon an infinite delay, one cannot determine

whether the system is blocked in the (faulty) dead subset of g (DS(g)), or it is

still in the way to g′, which means that it is possible that no fault has occurred

in the state g′ or DS(g) in a finite delay after the fault, i.e., we do not know if a

fault has occurred. �

5.3.2 On-the-Fly Checking of Diagnosability

Proposition 13 A bounded LTPN is diagnosable iff none of the conditions in

Propositions 10, 11 and 12 holds.

Proof. (⇒) : This condition is proposed from three perspectives that we

consider:

1. With the help of splitting intervals, the behavior of LTPN is characterized as

in the untimed context, where non-existence of indeterminate cycle has been

proved to be necessary and sufficient condition for diagnosability [Sampath

et al., 1995].

2. This is the restriction from the definition of diagnosability of LTPN.

3. This is the restriction from the perspective of considering non-live TDES.

(⇐) : The negation of these three conditions has been proved to be necessary by

Propositions 10, 11 and 12, since each of the conditions in Propositions 10, 11

and 12 is sufficient for undiagnosability. �
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We have shown that diagnosability can be checked while building ASG. Ac-

tually, building the whole ASG would be similar to the approach based on state

enumeration, often consuming much memory while dealing with large systems,

even if this burdensome work could be performed off line. Yet, there is still a

difference w.r.t this approach, since ASG branch building is stopped as soon as

an F-certain ASC-set is found or if one of the conditions for undiagnosability (cf.

Propositions 10, 11 and 12). In order to tackle this problem, we will propose a

new approach to check diagnosability on the basis of on-the-fly building of the

ASG, as shown in Algorithm 10. Moreover, we determine the minimum value

∆min for which the system is diagnosable. Hence, when the system is diagnosable

and with ∆min being determined, the system is ∆-diagnosable for any ∆ ≥ ∆min

and is not ∆-diagnosable for any ∆ < ∆min.

5.4 Discussion on Bisimulation between ERA

and ASG

The ASG we have developed is a special structure that is similar to a type of TA

called event-recording automata (ERA). In this section, we discuss the similarities

between ASG and ERA and discuss the bisimulation between them under certain

conditions.

Definition 28 [Cassez, 2012] The timed automaton A is said to be deterministic

if

1. there is no ǫ labeled transition in A, and

2. whenever (l, g, a, r, l′) and (l, g′, a, r′, l′′) are transitions of A, g∧g′ ≡ false.

Condition 1, like that in untimed automata, does not allow the existence of

empty event ǫ. Condition 2 is quite different from that for untimed automata.

It implies that the non-deterministic case for untimed automata, such as a state

having two output transitions with the same event, could be deterministic in TA

whenever the two transitions cannot occurr at the same time.
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Algorithm 10 On-the-fly building of ASG, checking diagnosability and comput-
ing ∆min

1: Input: the ASC-graph;
2: Output: diagnosability of G and (if G is diagnosable) ∆min;
3: g0 = {x0};
4: ∆min = 0;
5: Gvst ← ∅;
6: Gcon ← {g0};
7: while Gcon 6= ∅ do pick a node g ∈ Gcon with g 6∈ Gvst;
8: for all e ∈ Σo do
9: I← CIS(g, e);

10: for all i ∈ I do
11: g′ ← ξ(g, e, i);
12: if tag(g′) = U then
13: if ∃ g′′ ∈ Gvst s.t. g

′′ = g′ then
14: if g′ is in an indeterminate cycle then
15: return G is undiagnosable;

16: if (tag(g) = N) ∧ (mdelay(g, g′) = +∞) then
17: return G is undiagnosable;

18: if (tag(g) = U) ∧ (SDmax(g, g
′) = +∞) then

19: return G is undiagnosable;

20: if tag(DS(g′)) = U then
21: return G is undiagnosable;

22: ∆min ← max(∆min, fdelay(g
′));

23: if tag(g′) = F then
24: if (tag(g) = N) ∧ (mdelay(g, g′) = +∞) then
25: return G is undiagnosable;

26: if (tag(g) = U) ∧ (SDmax(g, g
′) = +∞) then

27: return G is undiagnosable;

28: ∆min ← max(∆min, fdelay(g
′));

29: Gcon ← Gcon\{g};
30: Gvst ← Gvst ∪ {g};

31: return G is ∆min-diagnosable;

Unlike an untimed (non-deterministic) automaton, from which a deterministic

automaton observer can always be built, a timed automaton is not always deter-

minizable [Alur et al., 1994]. Moreover, the determinization of a timed automaton

is proved to be undecidable [Tripakis, 2006].
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However, a subclass of determinizable TA exists, which is called Event-Clock

Automata (ECA) [Alur et al., 1994, 1999]. According to the type of clocks, ECA

is further divided into two subclasses: Event-Recording Automata (ERA) and

Event-Predicting Automata (EPA). It is worth discussing the ERA here, since it

has some similarities in the expressiveness as an ASG of LTPN.

Let Σ be a finite set of events. For every event a ∈ Σ, we write xa to denote

the event-recording clock of a. Given a timed word ω = (a0, t0)(a1, t1) . . . (an, tn),

the value of the clock xa at the jth position of ω is tj − ti, where i is the largest

position preceding j such that ai equals a. If no occurrence of a precedes the jth

position of ω, then the value of the clock xa is “undefined”, denoted by ⊥. We

write R⊥ = R ∪ {⊥} for the set of nonnegative real numbers together with the

special value ⊥.

Definition 29 (event-recording clock) [Alur et al., 1994] For all 0 ≤ j ≤ n,

λ(ω, j)(xa) =



















tj − ti if i exists such that 0 ≤ i < j and ai = a

and for all k with i < k < j, ak 6= a,

⊥ if ak 6= a for k with 0 ≤ k < j.

An event-recording automaton (ERA) is a timed automaton with event-recording

clocks. It contains, for every event a, a clock that records the time of the last

occurrence of a. The class of event-recording automata is, on the one hand,

expressive enough to model (finite) timed transition systems and, on the other

hand, determinizable and closed under all boolean operations. The translation

from timed transition systems to event-recording automata, which leads to an

algorithm for checking if two timed transition systems have the same set of timed

behavior, has been presented in [Alur et al., 1994].

It should be noted that our developed ASG for LTPN has the following fea-

tures:

• An ASG is a specific structure for analyzing diagnosability of LTPN. Given

an LTPN, different ASGs may be, in general, built on the fly according

to different search strategies. However, different ASGs result in the same
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diagnosability verdict. In particular, the on-the-fly-built ASG will be the

complete ASG, if all the behavior of LTPN has been investigated.

• An ASG is an observer-like, but not exactly an observer for LTPN, since

it is not necessarily determinizable. The ASG is just the observer only if

the LTPN is determinizable and all the behavior are well considered while

building the ASG.

• There is no strong connection between diagnosability and “determinizabil-

ity” for LTPNs. A diagnosable LTPN may be either determinizable or not;

and a determinizable LTPN may be either diagnosable or not. Given a di-

agnosable LTPN, (at least) the on-the-fly-built ASG is a time deterministic

structure such that any timed behavior corresponds to a state of ASG.

• On the fly technique allows analyzing diagnosability for certain non-determinizable

LTPNs, since the generation of state space of ASG always stops when an

F-certain state is obtained, no matter whether future behavior is deter-

minizable or not.

The general LTPNs can be non-deterministic and not necessarily determiniz-

able. However, a subclass of LTPNs exists which are determinizable and their

ASG is deterministic to be transformed into ERA. For example, the ASG in

Figure 5.11 can be transformed into an ERA as shown in Figure 5.13.

We guess that our developed ASG can always be transformed into a language-

equivalent ERA. However, we do not prove it here and further study on the

bisimulation between the two models will be performed in the future.

5.5 Online Diagnosis

In this section, we discuss how online diagnosis for a diagnosable LTPN model

is performed, using a deterministic structure called LTD that will be developed.

By observing events with their corresponding occurrence dates online, one can

deduce with certainty which state (Normal, F-uncertain or F-centain) the system

can be in and give the verdict pertinent to fault occurrences.
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g0
x ≤ 3

start

x := 0

g1
xa ≤ 7

g2
xb ≤ 1

g3
xa ≤ 7

g4

g8
xb ≤ 3

g5

g6
xb ≤ 3

g7

b, x < 1 a, 2 ≤ x < 3

b, x ≥ 1 a, x ≥ 3

a, 1 ≤ xa ≤ 2

a, xa > 4

a, 2 < xa ≤ 4

b
a, xa > 3

a, xa ≤ 3

b

b

Figure 5.13: A language equivalent ERA for the ASG in Figure 5.11

The LTD is obtained from the ASG by erasing all the information except fault

tags for each node in the ASG and observable events labeling the arcs with their

corresponding intervals. This procedure deletes all the information unnecessary

for diagnosis.

For each F-uncertain quasi-dead node g, a virtual node g′ labeled with “F” is

created as a successor to g, and the arc from g to g′ is labeled with (ǫ, i), where

ǫ is an empty event indicating that no event is observed, i is the interval from

the maximum firing date of the other firable transitions to +∞. Note that, this

virtual component does not belong to the LTD, while it helps to diagnose a fault

when dealing with non-live systems, as will be illustrated through Example 37.

The tags associated with each node in an LTD provide the same information

as that in the ASG:

• “N”means that no fault has occurred;

• “U” denotes that a fault has possibly occurred, and further observation is

needed before being able to give a precise diagnosis verdict;
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• “F” denotes that a fault has occurred with certainty.

Given a system behavior presented by a sequence of observable events with

their corresponding event occurrence dates, one can find whether a fault has

occurred or not, with the help of the LTD. The algorithm for online diagnosis of

LTPNs is given in Algorithm 11.

Algorithm 11 Fault detection using the LTD

1: Input: An LDFS composed of (ej, dj);
2: Output: The current system state;
3: q0 ← N ; ⊲ The system is normal (N) after the initialization.
4: j ← 1;
5: while the system is in operation do
6: Wait for the input observable event ej with its occurrence date dj;
7: qj ← the state from qj−1 upon ej at date dj;
8: switch qj do
9: case N

10: assert(No fault belonging to ΣFi
has happened;)

11: case U
12: assert(A fault belonging to ΣFi

has probably happened;)

13: case F
14: assert(A fault belonging to ΣFi

has happened;)

15: case ∅ ⊲ The system arrives at a blocked faulty state “F”.
16: assert(A fault belonging to ΣFi

has happened;)

17: j ← j + 1;

Example 37 The LTD for the diagnosable LTPN in Figure 5.7 using its cor-

responding ASG (Figure 5.11) is given in Figure 5.14. The part in dashed line

corresponds to the virtual nodes associated to the quasi-dead node (note that the

considered system is non-live). Given two event sequences: s1 = abb with the

event firing relative dates 2.5, 0.5, 2 and s2 = ba with the event firing relative

dates 2, 3, one can conclude that the system is in:

• a normal (blocking) state upon the firing of s1;

• an uncertain state right upon the firing of s2;
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• suppose that no event is observed within 3 t.u upon s2, Then one concludes

that a faulty state has been reached (indicated by the dashed part added to

the diagnoser).

Figure 5.14: Diagnoser of the LTPN in Figure 5.7

5.6 Conclusion

5.6.1 Summary

The first contribution of this chapter is the development of the time interval

splitting technique and the ASG structure which makes it possible to take advan-

tage of the results obtained on the diagnosis of DES under an untimed context.

The considered timed model which depicts the DES behavior is LTPN. The ASG

structure carries necessary information to check diagnosability, and allows for

computing the parameter ∆min that characterizes the minimum delay to ensure

diagnosability.

Our second contribution is the reduction of the overestimation of the firing

domain of an ASC-set graph. Thus, we propose the necessary and sufficient

conditions for diagnosability of LTPN. Note, moreover, that the ASG is built on

the fly, and that the online diagnoser is derived in a straightforward way.
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5.6.2 Perspectives

Example 37 has presented a general diagnoser for LTPN. However, in practice,

this structure can be further simplified to a modified labeled timed diagnoser

(MLTD), as shown in Figure 5.15. For a given node, if an output arc (e, i) is

the only one with an event component e, then we erase the interval component,

e.g., the arc labeled with b[0, 1] in Figure 5.14 can be replaced with b in Fig-

ure 5.15.

Figure 5.15: The MLTD of the LTPN in Figure 5.7

From the implementation viewpoint, the modified LTD takes as few inputs as

possible to deliver diagnosis verdict. As shown in Example 37, one can determine

that the system is normal after the observation of sequence s1 = abb, just by

taking into account the occurrence date of the first event a without that of the

following two bs, since after the occurrence of a at the date 2.5, the following diag-

noser state is unique and must be followed by event b regardless of its occurrence

date.

The developed ASCs, which are derived from state classes, have been used

for describing the state space of LTPNs. However, we note that another notion

called zone graph [Gardey et al., 2004] has been reported to be more efficient than

state classes in presenting TPN state space. Thus, we are interested in using zone

145



5. TIME PN-BASED DIAGNOSIS OF DES

graph to improve our work.

In addition, for the online diagnosis we intend to take into account the actual

occurrence dates of the observable events to make the diagnosis procedure more

efficient. Note however that this would need to perform the same computations

online in order to propagate this actual occurrence dates as additional constraints.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

In this thesis, we are interested in fault diagnosis issues of discrete event systems

modeled by labeled Petri nets. On-the-fly and incremental techniques are used

to cope with state explosion problem. The main contributions of this work can

be summarized as follows:

• In the untimed context, we have developed algebraic representations, namely

the event-mapping matrix and extended state equation for LPNs, to char-

acterize their static and dynamic features w.r.t failure occurrence. The

FM-graph and FM-set tree are built simulataneously and on the fly to an-

alyze diagnosability. Classical diagnosability is analyzed by a series of K-

diagnosability problems, in which K is increased progressively. The incre-

mental search technique is used to make full use of the previous search infor-

mation pertaining to (K-1)-diagnosability, while dealing withK-diagnosability,

which allows us to avoid recomputing the state space from scratch.

• In the timed context, we deal with diagnosis issues using LTPN models.

First, (temporal) determinization for LTPNs is considered on the basis of

a technique that we have developed called Time Interval Splitting (TIS).

Necessary and sufficient conditions for diagnosability are then given based

on on-the-fly building and analysis of the ASG. Finally, online diagnosis can

be performed on the basis of some structures called LTD or MLTD, derived
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from the ASG. Our study shows that for diagnosable LTPNs, the corre-

sponding ASGs have some semantic equivalence with ERA (event-recording

automata)

• The study we have carried out shows the advantages of using an on-the-

fly and incremental technique in tackling diagnosis problems: 1) on-the-fly

techniques have been shown to be an efficient means to tackle the state ex-

plosion phenomenon in some cases. In particular, for diagnosability analysis

we have proved that generating the whole state space is not always neces-

sary. 2) incremental technique avoids recomputing state space from scratch

when dealing with K(resp. ∆)-diagnosability with progressively increas-

ing K(resp. ∆). These computing techniques do not reduce complexity in

terms of time and memory in the worst case. However, in general, only a

part of the state space is investigated. Even when the system is diagnos-

able, the investigation of the whole state space is not necessarily required.

Moreover, the theoretically worst case seems to be rather rare in practice

and the simulation results obtained on some benchmarks show the efficiency

of such techniques.

6.2 Perspectives

Our work on diagnosis of DESs gives rise to some interesting perspectives in the

short and medium terms:

• While analyzing the diagnosability of DESs based on incremental search of

K(resp. ∆)-diagnsoability for LPNs (resp. LTPNs), the value K (resp. ∆)

continues to increase until a diagnosability verdict can be emitted or when

the necessary (but not necessarily the whole) state space is investigated.

For unbounded models, the approach may work as well, depending on the

structure of the model and the search strategy. However, it generally risks

increasing K (resp. ∆) to infinity in such a way that no verdict would

be eventually given. Therefore, it is worth looking for an optimal threshold

value Kopt (resp. ∆opt) such that the diagnosability verdict can be given out

immediately upon Kopt(resp. ∆opt)-diagnosability is investigated. Besides,

148



this would be important also when dealing with bounded models. This

would require investigating some structural features on the PN model. We

intend to investigate this issue in the near future.

• The LPN-EC introduced in Section 4.2.4 is useful for recording event oc-

currences, whereas it is not necessarily bounded even if the original net is

bounded. We intend to modify the LPN-EC structure in such a way as to

ensure boundedness.

• Our approaches use depth-first search to investigate the state space (nodes

in the developed tree-like structures) branch by branch. Moreover, no rules

are defined to select the branch to be built/investigated first, i.e., the order

of branch exploring is arbitrary. The strategy could be improved to direct

the search in such a way as to increase the chances of quickly obtaining a

diagnosability verdict. A similar idea can be found in [Huang, 2013].

• The algebraic representation of LPNs can simplify the description of system

behavior, particularly in the event- and/or state(marking)-based analysis for

LPNs, e.g., [Basile et al., 2012; Ru and Hadjicostis, 2009]. The drawback

of this technique is that event-markings record only occurrence number but

no ordering of events. This could be improved by integrating the ordering

information of events such that the diagnosability of LPNs could be directly

investigated using mathematical representations and their corresponding

tools.

• We are interested in introducing zone graph representation [Gardey et al.,

2004] into our analysis for LTPNs, since test results show that the zone

graph approach is more efficient than the traditional state class graph

[Berthomieu and Menasche, 1983] when dealing with bounded TPNs. This

could improve our analysis process while investigating diagnosability in the

timed context.

• For online diagnosis, we intend to take the actual occurrence dates of the

observable events into account to make the online diagnosis procedure more

efficient. Note, however, that this would require performing the same com-
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putations online in order to propagate the actual occurrence dates as addi-

tional constraints.

• As the on-the-fly approach shows its efficiency in terms of time and memory,

we intend to apply this technique to the verifier approach, which has been

proved to be of low complexity.
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Appendix A: Literature on

DES-Based Diagnosis

Table 1: Literature on DES-based diagnosis
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[Basile et al., 2012] • • • •

[Benveniste et al., 2003] • • •

[Boel and Jiroveanu, 2013] • •

[Cabasino et al., 2010] • •

[Cabasino et al., 2012a] • • • • •

[Cabasino et al., 2013a] • • •

[Contant et al., 2004] • •

[Contant et al., 2006] • • •

[Debouk et al., 2000] • • •

[Dotoli et al., 2009] • • •

[Genc and Lafortune, 2007] • • •

[Ghazel et al., 2009] • •

[Grabiec et al., 2010] • • •
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Table 1 continued
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[Haar, 2009] • • •

[Hashtrudi Zad, 2003] • •

[Hashtrudi Zad, 2005] • •

[Holloway and Chand, 1994] • •

[Jiang et al., 2001] • •

[Jiang et al., 2003a] •

[Jiang and Kumar, 2004]

[Jiang et al., 2006] • •

[Jiroveanu and Boel, 2005] • • •

[Jiroveanu and Boel, 2010] • •

[Lafortune et al., 2005] • • •

[Lai et al., 2008] • •

[Lefebvre and Delherm, 2007] • •

[Lin, 1994] •

[Madalinski et al., 2010] • • •

[Pandalai and Holloway, 2000] • •

[Paoli and Lafortune, 2005] • •

[Pencolé, 2009] • • •

[Provan, 2002] • •

[Qiu et al., 2006] • • •

[Qiu et al., 2009] • •

[Ramirez-Trevino, 2007] • •

[Ramirez-Trevino et al., 2012] • •

[Ru and Hadjicostis, 2009] • •
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[Sampath et al., 1995] • •

[Sampath et al., 1996] • •

[Sampath et al., 1998] •

[Simeu-Abazi et al., 2010] • •

[Sztipanovits and Misra, 1996]

[Tripakis, 2002] • • • •

[Ushio et al., 1998] • • •

[Wang and Girard, 2011] • •

[Wen et al., 2005] • • •

[Xu et al., 2010] • •

[Xue and Zheng, 2004] • •

[Yoo and Lafortune, 2002a] • •

[Yoo and Garcia, 2004] • •
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Appendix 2: Development of the

Level Crossing Benchmark

An LC, is an intersection where a railway line (or multiple railway lines) crosses

a road or path at the same level, as opposed to the railway line crossing over or

under using a bridge or a tunnel.

An Overview on the Case Study

In France, there are more than 18,000 LCs. Every day they are traversed by

an average of 16 million vehicles and nearly 450,000 closing cycles take place for

the passage of trains. LCs are identified as critical safety points in both road

and railway infrastructures [Ghazel, 2009]. On average, 400 people are killed

every year in the European Union [Ćirović and Pamučar, 2013]. In France, 100

collisions happened and 33 people were killed in 2012 [RFF, 2013]. Therefore,

safety of LCs always attracts great attention in railway operation and also in

research area [Ghazel and El Koursi, 2007; Khoudour and Ghazel, 2009; Mekki

et al., 2012].

In this section, we apply our diagnosis techniques to an LC system. We

consider an LC with bidirectional multi-line tracks (or unidirectional single-line

track for the simple case) and a bidirectional road. Generally, an LC plant is

composed of train sensors set on the railway infrastructure, local control system,

sound alarm, road lights and barriers, as shown in Figure 1 [Ghazel and El-

Koursi, 2014]. The LC global dynamics can be depicted while considering three

subsystems, namely the railway traffic, the LC controller and the barriers, which

will be introduced in Section 6.2.
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Figure 1: The construction of a single-line track LC system

The logic of a single-line track LC is as follows: when a train approaching the

LC is detected by the sensors, the barriers are lowered and the road lights show

red. The LC is reopened to road traffic as soon as the train is detected (also by

train sensors) out of the crossing zone. As for a multi-track LC, the control on

barriers depends on the railway traffic on each line:

• The LC is closed when a train approaching the LC from any line is detected

by the train sensors;

• The LC is reopened to road traffic only if no train is still in the crossing

zone.

The LC dynamics will be depicted by means of PN models in the next section.

Modeling of the LC Subsystems

This section introduces the modeling of the LC subsystems, namely the railway

traffic, the LC controller and the barriers. The n-line LC benchmark will be built

based on the single-line LC model of [Leveson and Stolzy, 1985] with some modi-

fications. We will give their corresponding LPN models and operating principles.
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Note that, as a first step, only the normal behavior will be modeled; some failures

will be introduced afterward.

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(a) the train is approaching the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(b) the train is before the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(c) the train is within the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(d) the train has left the LC

Figure 2: The LPN model for a train passing an LC

Railway Traffic

Railway traffic can be modeled as an LPN composed of 4 places and 4 transitions

as shown in Figure 2, where:

• Marked place pi,1 (here the subscript i denotes the track index) denotes that

a train is approaching the LC, as shown in Figure 2(a);

• Marked place pi,2 denotes that the train has come into the section before

the LC, which can be detected by sensor (ti,1, api) (here “ap” denotes “ap-

proaching”), as shown in Figure 2(b);

• Marked place pi,3 denotes that the train has entered the LC, which can

be detected by sensor (ti,2, eni) (here “en” denotes “entering”), as shown in

Figure 2(c);
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• Marked place pi,4 denotes that the train has left the LC, which can be

detected by sensor (ti,3, lvi) (here“lv”denotes“leaving”), as shown in Figure

2(d). The zone delimited by transition ti,1 and ti,3 will be called the crossing

zone;

• Finally, place pi,4 is linked with pi,1 through transition (ti,4, aw4) (here “aw”

denotes that the train is “away” from the LC), which implies that the next

train can approach the LC (when pi,1 is marked) only if the previous train

has left the LC crossing zone (when pi,4 is marked). In other words, there

is no overlapping between successive train passages.

LC Controller

The LC controller is equipment to collect trains position information from the

sensors along the track (in the railway traffic subsystem) and send controlling

commands to the barriers and the road lights. The road lights will be omitted

in the model as their status can be directly deduced from that of the barriers. It

is a processing subsystem between railway traffic and the protection subsystem.

The LPN model pertaining to the LC controller is shown in Figure 3 and the

operating principles are explained below:

• When a train enters the LC crossing zone, an alert signal is sent from sensor

ti,1 to the LC controller (place p1 will be marked). Then (t1, cr) (here “cr”

denotes “closing request”) is fired and a token is added into place p5, which

means that the condition for closing barriers is satisfied. A token is also

added to place p3 upon t1 firing, to store the information about the train

arrival.

• When a train has left the LC crossing zone, its position is detected by

sensor ti,3 and this information is sent to the LC controller (place p4 will be

marked). Then (t2, or) (here “or”denotes “open request”) can be fired and a

token is added into place p6, which means that the condition for reopening

barriers is satisfied.

The LC controller holds, among others, a component called interlock [Leveson

and Stolzy, 1985]. An interlock can be a hardware or a software mechanism for
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p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api ti,3, lvi

LC controller

Figure 3: The LPN model for LC controller

ensuring correct sequences of events.

The LPN model for an interlock is shown in Figure 4. In order to make sure

that t1 has to fire before t2, a new place p5 is added as an output place of t1 and

as an input place of t2, as shown in Figure 4(b). In other words, the introduction

of the interlock (place p5 and its input/output arcs) ensures that the firing of t2

is conditioned by the firing of t1.

p1

p2

p3

p4

t1 t2

(a) without interlock

p1

p2

p3

p4

p5

t1 t2

(b) an interlock

Figure 4: The PN model for an interlock

In a given system, multiple interlocks may exist for ensuring the order of event

in some sequences. For example, two interlocks in the LC controller module exist,

as shown in Figure 3: the one is formed by t1 → p3 → t2 ensuring the firing

priority of t1 over t2; and the other by t2 → p2 → t1 ensuring the firing priority of
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t2 over t1 after t1 has been first fired. Such a double-interlock can make sure that

t1 and t2 fire alternatively. In practice, this means that the LC may be closed

only if it was open and reopened only if it was closed.

Barriers Subsystem

The barriers are a subsystem passively responding to the commands from the

LC controller. The barrier state switches between “up” (place p7 is marked) and

“down” (place p8 is marked), i.e., the intermediary positions are ignored. The

barriers can be set to “down” (resp. “up”) to prevent (resp. permit) the vehicles

from crossing only if the closing (resp. reopening) condition is satisfied. Here

p7 and p8 are mutually exclusive, i.e., they cannot be marked at the same time,

since a barrier can be only up or down. The LPN model for the barrier system

is given in Figure 5, where the labels of t7 and t8 transitions denote “lower” and

“raise” respectively.

p7, up

p8, down

other closing conditions other reopening conditions

t7, lw t8, rs

Figure 5: The LPN model for a barrier system

Single-Line LC Model

After having set up the models for the three LC subsystems, let us now establish

the global single-line LC model depicted in Figure 6.

The railway traffic subsystem“communicates”with the LC controller through

the train sensors which send train position information. The LC controller sends

close or open command to switch the“up”and“down”states of the barriers. Place

p9, together with transitions t4 and ti,2, forms an interlock ensuring that normally
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pi,1 pi,2 pi,3 pi,4

ti,4, awi

p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api ti,3, lvi

p7, up

p8, down

p9

ti,2, ini

t4, lw t5, rs

railway traffic

LC controller

barriers

Figure 6: A single-line LC

the barriers must be well lowered (transition t4 has been fired) before the train

enters the LC (transition ti,2 is fired).

In the LC, there are two classes of faults which are denoted by red colored

transitions in Figure 7: the first one is modeled by transition (ti,5, ig) (here “ig”

denotes “ignore”) indicating that the train may enter the LC crossing zone before

the barriers are ensured to be lowered; the other modeled by transition (t6, bf)

(here “bf” denotes “barrier fault”) indicating a barrier failure that results in a

premature barrier raising. Each of these two faults can induce train-car collision.

Note that compared with Figure 3, there are two more arcs into and out of
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place p9: the arc from ti,2 to p9 ensures that p9 is remarked after the firing of ti,2;

the other arc from p9 to ti,3 takes p9 as one of the conditions for firing ti,3. Both

of the two arcs ensure the boundedness of the LPN model. More precisely, the

LPN here is 1-bounded (or n-bounded for the n-line LC model afterward).

pi,1 pi,2 pi,3 pi,4

ti,5, ig

ti,4, awi

p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api

p7, up

p8, down

p9

ti,3, lvi

t6, bf

ti,2, ini

t4, lw t5, rs

railway traffic

LC controller

barriers

Figure 7: A single-line LC with two classes of faults

In the following section, we will introduce a more general LPN model for the

LC system, while taking into account n railway lines.
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n-line LC Model

Figure 7 describes a global LPN model for a signle-line LC with a unidirectional

track. Based on this model, a more general model is given in Figure 8 – involving

n railway tracks, which can be obtained from the single-line LC model while

fulfilling the following controlling rules under a nominal situation:

• The LC must be closed if any approaching train is detected in any line;

• The LC can be reopened if there is no train in the “within” or “before”

sections in any line.

In other terms, the above rules eliminate all the possibilities that the collision

between railway and road traffic may take place.

Compared with the single-line LC (cf. Figure 7), there are several changes

when generating the n-line LC model:

• Transition t3 is newly added. In the n-line LC model, t3 can be fired if

both places p5 and p8 are marked. This means that if there is an LC

closing request from one of the n lines (place p5 is marked), whereas the

barriers are already in the low position (place p8 is marked) due to a previous

closing command from any other line. Then the barriers shall remain down

(transition t3 fires for clearing the request from (marked) place p5 while

keeping the token in p8).

• Place p2 is marked with n tokens to ensure that at most n closing requests

can be proceeded by the LC controller (place p1 is n-bounded).

• Place p6 is also marked with n tokens and denotes the reopening condition.

Each firing of t1 removes a token from p6 and puts a token into p3, mean-

ing that the LC cannot be reopened when at least one closing request is

proceeded by the LC controller. The LC can be reopened only if p6 is n-

marked, i.e., all the trains have passed the LC and their closing LC requests

have already been treated by the LC controller.

• The two arcs linking t5 and p6 have a weight of n. t5 can be fired only if p6

holds the reopening condition (n tokens), i.e., no train is still in the crossing
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p1,1 p1,2 p1,3 p1,4

pn,1 pn,2 pn,3 pn,4

t1,5, ig

tn,5, ig

t4

tn,4, aw4

p1 np2 p3 p4

p5 n p6

t1, cr t2, or

t1,1, ap1 t1,3, lv1

tn,1, apn tn,3, lvn

p7, up

p8, down

p9

t6, bf

t1,2, in1

tn,2,inn

t4, lwt3, kd t5, rs

n n

railway traffic

· · · · · ·
· · · · · ·
· · · · · ·

LC controller

barriers

Figure 8: n-line LC benchmark

zone. The firing of t5 also returns n tokens to p6 to indicate that at most

n closing requests can be treated (as no train is still crossing on any of n

tracks).
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• The arcs linking ti,2 to p9 and p9 to ti,3 ensure that, whether the train

passes the LC normally (ti,2 is fired) or upon a fault “ig” (ti,5 is fired), the

token in p9 will be removed when the train leaves the LC. This ensures the

boundedness of the LPN model, since, without these two arcs, the LPN will

be unbounded due to the unbounded place p9.

In order to obtain sufficiently large LC models for analysis, one can add as

many “railway traffic” blocks as necessary and connect them with the “LC con-

troller” and “barriers” blocks in the same way.

In this global model, all the transitions are observable, but the faulty transi-

tions, i.e., To = T\Tu and Tu = Tf = {t6} ∪ (∪i{ti,5})

The n-line LPN model can be rather big when n takes great values. The

state space of the corresponding LPN models for the various values of n can be

calculated by the TINA tool [Berthomieu et al., 2004], as shown in Table 2, where:

– n denotes the number of tracks in the n-line LC;

– |P | denotes the number of places in the LPN;

– |T | denotes the number of transitions in the LPN;

– |A| denotes the number of arcs in the reachability graph, i.e., the number

of automaton arcs in the diagnoser approach [Sampath et al., 1995].

– |R| denotes the number of nodes in the reachability graph, i.e., the num-

ber of automaton states when analyzing diagnosability with the diagnoser

approach;

– TT denotes the time used for computing the reachability graph (here the

value of |R| and |A|) of the PN by means of TINA on an Inter Mac (CPU:

2.8 GHz, RAM: 16 GB).

Recall here that not the whole state space will be generated while using our

on-the-fly technique. However, the reachability graphs are generated in order to

transform them into the input file (language equivalent automata) for UMDES.

As shown in Table 2, the size of the reachability graph grows very quickly as

n increases, since places p2 and p6 can hold as many as n tokens, due to which so

many markings exist.
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Table 2: Some figures about the state space of the various LC models

n |P | |T | |A| |R| TT

1 13 11 28 24 <1s

2 17 16 540 216 <1s

3 21 21 6,256 1,632 <1s

4 25 26 56,704 11,008 <1s

5 29 31 442,880 68,608 2s

6 33 36 3,126,272 403,456 11s

7 37 41 20,500,480 2,269,184 140s

8 41 46 127,074,304 12,320,768 29m

9 45 51 o.m. o.m. o.m.

Note: o.m. = out of memory
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Liu, B., Ghazel, M., and Toguyéni, A. (2012). K-diagnosability of labeled Petri
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Titre : Une approche efficace pour l’étude de la diagnosticabilité et le diagnostic des SED

modélisés par Réseaux de Petri labellisés – contextes atemporel et temporel

Cette thèse s’intéresse à l’étude des problèmes de diagnostic des fautes sur les systèmes à événements

discrets en utilisant des modèles réseau de Petri. Des techniques d’exploration incrémentale et à-la-volée sont

développées pour combattre le problème de l’explosion de l’espace d’état lors de l’analyse de la diagnosticabilité.

Dans le contexte atemporel, la diagnosticabilité des modèles Réseaux de Petri labellisés (RdP-L) est abordée

par l’analyse d’une série de problèmes K-diagnosticabilité. Pour ce fait, deux modèles nommés respectivement

FM-graph et FM-set tree sont développés à-la-volée. Un diagnostiqueur peut être dérivé à partir du FM-set

tree pour le diagnostic en ligne. Dans le contexte temporel, des techniques de fractionnement des intervalles

de temps sont élaborées pour développer une représentation de l’espace d’état des Réseaux de Petri labellisés

et temporels (RdP-LT) pour laquelle des techniques d’analyse de la diagnosticabilité du contexte atemporel

peuvent être utilisées. Sur cette base, les conditions nécessaires et suffisantes pour la diagnosticabilité des RdP-

LT ont été déterminées. En pratique, l’analyse de la diagnosticabilité est effectuée sur la base de la construction

à-la-volée d’une structure nommée ASG et qui contient notamment des informations relatives à l’occurrence

de fautes. D’une manière générale, l’analyse effectuée sur la base des techniques à-la-volée et incrémentales

permet de construire et explorer seulement une partie de l’espace d’état. Les résultats des analyses effectuées

sur certains benchmarks montrent l’efficacité de ces techniques en termes de temps et de mémoire par rapport

aux approches traditionnelles basées sur l’énumération des états.

Mots clés : Diagnostic des fautes, Systèmes à événements discrets, Réseaux de Petri labellisés, Réseaux de

Petri labellisés et temporels, Analyse à-la-volée, Approche incrémentale, Fractionnement d’intervalles temporels.

Title: An Efficient Approach for Diagnosability and Diagnosis of DES Based on Labeled Petri

Nets – Untimed and Timed Contexts

This PhD thesis deals with fault diagnosis of discrete event systems using Petri net models. Some on-the-fly

and incremental techniques are developed to tackle the state explosion problem while analyzing diagnosability.

In the untimed context, an algebraic representation for labeled Petri nets (LPNs) is developed for featuring

the system behavior. The diagnosability of LPN models is tackled by analyzing a series of K -diagnosability

problems. For this, two models called respectively FM-graph and FM-set tree are developed and built on the fly

to record the necessary information for diagnosis purpose. Finally, a diagnoser is derived from the FM-set tree

for online diagnosis. In the timed context, time interval splitting techniques are developed in order to generate

a state representation of labeled time Petri net (LTPN) models, for which techniques from the untimed context

can be used. Based on this, necessary and sufficient conditions for the diagnosability of LTPN models are

determined. Moreover, we provide the solution for the minimum delay ∆ that ensures diagnosability. From a

practical point of view, diagnosability analysis is performed on the basis of on-the-fly building of a structure

that we call ASG and which holds fault information about the LTPN states. Generally, using on-the-fly analysis

and incremental technique makes it possible to build and investigate only a part of the state space. Analysis

results obtained on some chosen benchmarks show the efficiency in terms of time and memory compared with

the traditional approaches based on state enumeration.

Keywords: Fault diagnosis, Discrete event systems, Labeled Petri nets, Labeled time Petri nets, On-the-fly

analysis, Incremental approach, Time interval splitting.
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