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A mes parents 



Abstract 

The design of curves and surfaces in C.A.D. systems has many ap-
plications in car, plane or ship industry. Because they offer more 
flexibility, rational functions are often prefered to polynomial func-
tions to modelize curves and surfaces. 
In this work, several methods to generate rational Bezier curves and 
surfaces which minimize some functionals are proposed. The func-
tionals measure a technical smoothness of the curves and surfaces, 
and are related to the energy of beams and plates in the sense of the 
elasticity theory. 
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0 Introduction 

CAD systems deal not only with simple geometric forms like cubes, cylinders or conics. 
They also have to modelize complex curves or surfaces, such as a car hood, or plane's 
wings. 

The purpose of Computer Aided Geometric Design (CAGD) is to define some mathe-
matical modelization of such curves and surfaces, to study their properties, and to improve 
their quality. 

In this introduction, an overview of the main mathematical models is given, and the 
curves and surfaces used in this work are introduced. In a second part, the historical 
background is presented. This enables to point out the innovation of this work. In a third 
part, the content of the chapters is decribed. Eventually, an essential result used in several 
chapters ends this introduction. 

In the middle 60's, S. Coons develop at the M.l.T. the so-called Coons patches [C0067]. 
These are rectangular patches, which interpolate a mesh of curves of any kind. They were 
included in the first CAD system : SKETCHPAD, written by A. Sutherland also at the 
M.l.T. 

Slightly later, Paul Bezier develop the Bezier curves and surfaces, for the CAD system 
UNISURF at Renault. These curves and surfaces have the advantage for the designer to 
be controlled by a small number of points. 

The B-splines appear in the 70's in CAGD. with the works of Cox [OOX71] and de 
Boor [DEB72]. They contain the Bezier schemes as a special case. But while moving a 
control point in the Bezier case modify the entire curve or surface, it only induce a local 
modification in the B-spline case. 

Coons, Bezier and B-spline surfaces consist of rectangular patches. The rectangular 
topology is naturally related to the cartesian system of coordinates, and is sufficient in 
almost all cases. Yet it is not the best appropriate in some critical cases. Although 
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triangular patches are less natural than rectangular one, they are sometimes necessary. 
Triangular Bezier patches are introduced in their actual form in the field of CAGD by 
G. Farin. 

The wish to give always more freedom to the designer has resulted in the generalization 
of the polynomial schemes with the use of rational functions. 

Although these functions are first introduced by S. Coons in CAGD, their practical use 
begins later in the 70's, with the success of the rational B-splines, (also called NURBS, for 
non uniform rational B-splines), which are becoming a standard in C'.AD systems. 

The flexibility of these curves and surfaces is achieved through the adjunction of a scalar 
- called weight - to each control point. If a weight increases while the others remain con-
stant, the curve or surface is pulled in the direction of the corresponding control point. 

The win of flexibility (in particular the ability to describe exactly the conics) has re-
sulted in an increasing complexity of already known algorithms, (for ex. the evaluation of 
derivatives), but has also brought new algorithms (for instance the reparametrization of 
rational curves introduced by G. Farin [FAR88]). 

The present work deals with the rational counterpart of the Bezier schemes : the rational 
Bezier curves (chapter 2 and 3), the rational rectangular Bezier patches (chapter 4 and 5), 
and the rational triangular Bezier patches (chapter 6). 

In the amount of works that aim to improve the quality of the mathematical modelization 
of curves and surfaces, two classes may be seen : algorithms for continuity and algorithms 
based on the minimization of a functional. 

The continuity between curves and between rectangular patches is an area of intensive 
research since the beginning of CAGD. Fewer articles deal with the continuity between 
triangular patches ([HA G86]). 

The algorithms based on the minimization of a functional appear in the middle 50's. 
Holladay minimizes the integral J llf"(t)ll 2 dt to to produce a C1 curve that interpolates 
a set of given points [HOL57]. He uses this integral as an approximation of the bending 
energy of a curve. The resulting curves are called spline curves. 

Nielson in [NIE74] introduces the polynomial spline curves in tension. These are C1 

polynomial curves that interpolate a set of points (x;,y;), and minimize the integral 
J llf"(t)ll 2 dt +I:., v;llf"(t)ll 2 ( y = f(x) is the equation of the curve). The tension 
parameters v; allow a control of the shape of the curve. This result is extended by Hagen, 
who minimizes the integral J llf"(t)ll 2 dt+ I:., T;llf"(t)ll 2 +I:., v;llf"(t)ll 2

• The resulting 
curves are called T-splines and are both curvature and torsion continuous. 

A least square condition is sometimes more suitable than the interpolation condition. 
Hagen and Santarelli use the minimization of the integral J allX"(t)ll 2 + ,BllX"'(t)ll 2dt 
together with a least square constraint, to obtain Bezier and B-spline polynomial curves 
(X(t) = [x(t),y(t),z(t)]T is a parametric equation of the curve) [HAG92a]. 
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They extend this result to the surface case [HAG92b], and apply it in practical cases for 
the company HELLA. 

Nowacki (NOW83] uses the minimization of the functional J l\;i + l\;~ds to construct ship 
hull surfaces, that interpolate a mesh of curves. None of these minimization algorithms 
are dedicated to rational functions. 

In the present work, new functionals are introduced, that can be used as minimization cri-
teria to produce rational Bezier curves, rational rectangular patches or rational triangular 
patches. 

The keypoint is that the only allowed variable parameters in the variational process of 
minimization are the weights. Doing this, the control points can be given directly by a 
user, and are not affected by the variational process. 

The presentation is organized as follows : 

In chapter 1, after the mathematical notations, a brief overview of the elasticity theory is 
given. This results in a physical interpretation of the functional J l\;i + l\;~ds, the so called 
strain energy of a surface. 

In all the following chapters, new results are presented. 
In Chapter 2, a functional related to the bending energy of a curve is introduced, and is 

minimized in the case of cubic rational Bezier curves. 
Two functionals derived from the integral J o:llX"ll 2 + /3llX"'ll 2 used by Hagen and San-

tarelli are presented in chapter 3. Their minimization is achieved in the case of rational 
Bezier curves of any degrees. 

Chapter 4, 5 and 6 are dedicated to rational surfaces. 
In chapter 4, the strain energy is used to find rational rectangular Bezier patches with 

twists of minimum energy. 
Another minimization criterion for the design of the same patches is the subject of 

Chapter 5. This criterion tends to minimize the norm of the second derivatives in all 
directions. 

Eventually, a functional related to the second and third derivatives in the three directions 
of a rational triangular Bezier patch serves as a minimization criterion in chapter 6. 

All the results of this work involve the evaluation of the derivatives of rational curves 
and surfaces. It was already said in the introduction that this evaluation is much more 
complicate than in the polynomial case. An important idea, used in chapter 3,5 and 6, is 
to find an appropriate reparametrization for which the curve (or the surface) and all its 
derivatives become a polynomial function in the weights, at a particular parameter point. 
This result is quite independent of the results of the present work, and could be used in 
other problems involving derivatives of rational curves and surfaces. 



Mein besonderer Dank gilt meinem Lehrer Herrn Prof. Dr. Hans Hagen. 
Er hat es mir nicht nur ermi:iglicht, an seinem Institut meine Doktorar-
beit anfertigen zu ki:innen, sondern stand mir stets mit vielen fruchtbaren, 
wissenschaftlichen Aussprachen zur Seite. 
Auch bei allen Mitarbeitern der Arbeitsgruppe Hagen, Mady, Philip, Rolf, 
Thomas, Heiko, Frank und vor allem Stefanie, mi:ichte ich mich bedanken 
fiir ihre Unterstiitzung wahrend meiner drei Jahre Aufenthalt in Deutsch-
land. 
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1 Fundamentals 

1.1 Notations 

• The real n-tuples are denoted by bold characters : 

a = ( a1, ... , an) 

• Rn is the n-dimensional euclidian space of all real n-tuples, with the scalar product 
n 

< a,b >= :L:;a;b;. 
i=l 

• II · II denotes the norm induced by the scalar product : Jlall = v'< a, a>· 
• lv1, ... , Vn I denotes the determinant of the n vectors V1, ... , Vn of R n. 

• [ · , ·] denotes the cross product in JR. 3 : 

• L( Rn, Rm) denotes the set of all linear mappings from JR.n into JR.m. 
• A domain of JR. n is an open connected subset of JR. n. 

• Kd[:v1, ... , :vn] is the vector space of the polynomials in the unknowns :v1, ... , Xn, with 
the monom's coefficient in the body K, and total degree lower or equal than d. 

k . . 

Kd[:v1, ... ,:vn] = {:L:;.\;:vf~ ···:V~~ / k EN; (pf + ···p~ :<::: d j ip) 2 0 j \liVj} 
i=O 
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1.2 Differential Analysis 

Definition 1.1 

Let U be an open subset of Rn, f be a continuous mapping from U into Rn, and x0 

be an element of U. f is called differentiable in x0 , if there exists a linear mapping 
d'f L(JRn JRm) h th t /' f(•o+h)-f(•o)-df, 0 (h) •o E , sue a imllhll~o llhll = 0. 
If f is differentiable in all x 0 E U, f is said to be differentiable in U, and df is the following 
mapping: 

dj: U -t L(JRn,Rm) 

Xo 1--+ dfxo 

f is called a mapping of class C 0 if f is continuous. 
f is called an mapping of class cr(r 2': 1) if and only if f is differentiable and df is a 
mapping of class cr-1. 

Definition 1.2 

Let 'u, V be two open subsets of Rn. A mapping T : U -> V is called a diffeomorphism of 
class er ( r 2: 1) if and only if 
(i) T is a one-to-one mapping 
(ii) T and 7-l are mappings of class Gr. 

Proposition 1.3 

Let f be a C2 mapping from an open subset U of JRn into JR. Let x0 EU. 
(i) If xo is a local extremum off, then df, 0 = 0 

(ii) If df •o = 0 and d2 f •o is a positive definite matrix, then f has a local minimum in xo. 

Remark 1.4 

The equation df • = 0 represent a system of n equations in n real unknowns. In the 
following we call it the resolving system of the problem f ---> min. 

1.3 Differential Geometry of Curves 

Definition 1.5 
Let I be an open interval of R. A parametric curve in JRn is a mapping X from I into lRn 
of class er (r 2: 1). 
X is called regular, if dft ( t) =/= 0 for all t E I. 
t is called the parameter value of the point X(t). 
I is called the parameter interval of the curve X. 



Chapter 1: Fundamentals 7 

Remark 1.6 

In the following, we only deal with Bezier curves. These curves are defined on bounded 
intervals. Therefore, the parameter interval can be extended to its closure, and become a 
·closed interval of R. 

a 

Definition 1. 7 

t • 

X(a) 

b 
Fig. 1 

If J and I are two open intervals of R, then the diffeomorphisms <I> from J into I, of class 
er, are called parameter transformations of curves of class er. 
If X : I ---+ lRn is a parametric curve of class er and <I> : J ---+ I a parameter transformation 
of class er, then X := X o <I> : J ---+Rn is also a parametric curve of class er. Moreover, 
X is regular if and only if X is also regular. 

A set or property related to the curve, which is invariant under parameter transformation 
of the curve is called a geometric invariant. The image X(I) of the parametric curve X is 
an example of geometric invariant. 

Definition 1.8 

An arc X([a, b]) of a parametric curve is called rectifiable if and only if the set of lengths 
of all interpolating polygons to X([a, b]) has an upper bound. In this case, the length of 
the arc X([a, b]) is defined to be the least upper bound of this set. 

X(a) ----x X(b) 
----P' 
----P 

Fig. 2 



8 Chapter 1: Fundamentals 

Theorem 1.9 

Let X : [a, b] -+ Rn be a regular parametric curve. The following holds : 
(i) X is rectifiable. 

(ii) if Lis the length of X([a, b]), there exists a unique parameter transformations from 
I into [O,L] such that for all t 0 ,t1 E [O,L] the length of the arc X([t0 ,t1 ]) is equal to 
s(ti) - s(to). 

(iii) Vt E [a,b], s(t) = J: 11 dd_:; lldt. 
s is called the arc length parametrization. 

Remark 1.10 
The arc length parametrization is a geometric invariant of a curve and is therefore also 
called the natural parametrization. 

Definition 1.11 

A parametric curve is said to be naturally parametrized if and only if llX'(s)ll = 1, Vs E 
]O,L[. 

y 
y (x) 

y 

0 x x+dx x 

Fig. 3 

In the future we will denote s the natural parameter and t the general parameter. The 
derivative along s will be marked with 1 : ~; = X' and the derivative along t with : 
~_:; =X. 
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Definition and Theorem 1.12 

Let X be a regular and naturally parametrized curve of class C 3, in JR3. 

such that JJX"(s)JJ =/=- o Vs E]D,L[. 

X : [O, L] --+ JR3 

s1->X(s) 

V1 ( s) := X' ( s) is called tangent vector of X in s 
v2(s) := / 1 :i'.:~;\ 11 is called principal normal vector of X ins 
v3(s) := v1(s),v2(s)J is called binormal vector of X ins. 

{ v1(s ), v2(s), v3(s)} form an orthonormal basis of R 3 called the frenei frame of X in s. 
And the following holds : 
(a) {vi,v2,v3} are mappings of class C1 

(b) V1 1 = IW2 

+rv3 
Vg 1 = -TV2 

where 

11:(s) = JJX"(s)JJ 
JX'(s), X"(s),X"'(s )J 

r(s) = JJX"(s)JJ (1.1) 

11:, r are mappings of class C 1 and C 0 respectively called curvature and torsion of X. 

(c) If X(t) is a general parametrization of X then 

() JX,X,XJ 
rt = IJ[x,x112 (1.2) 

Fig. 4 

Fundamental Theorem 1.13 

Let 11:, r be two mappings from [O,LJ into R of class C1 and c0 resp., such that 11:(s) > 0 
for all s in [O, L]. There exists only one naturally parametrized curve X : [O, L] --+ R 3 such 
that 11: and rare the curvature and the torsion of X. 
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1.4 Differential Geometry of Surfaces 

Definition 1.14 

Let U be a domain of 1R2
• A parametric surface is a mapping X from U into JR3 of class 

er {r ::,, 1). X is called regular if for all u EU, dXu is an inversible linear mapping. 
The elements u = ( u, v) of U are called parameter values of the surface. 
U is called the parameter domain of the surface. 
The two partial derivatives of X in u are denoted by X,,(u) and X.(u). 

X(u, v) 
• 

v 

u 

Fig. 5 

Definition 1.15 

Let U, V be two domains of JR2 • The diffeomorphisms from V into U of class er are called 
parameter transformations of surfaces of class er. 
If X : U -+ JR3 is a parametric surface of class er and ill : V -+ U a parameter transfor-
mation of class er, then X := X o ill : V -+ R 3 is also a parametric surface of class er. 
Moreover, X is regular if and only if X is also regular. 

A set or property related to the surface, which is invariant under parameter transformation 
of the surface is called a geometric invariant. The image X(U) of the parametric surface 
X is an example of geometric invariant. 

Definition 1.16 

Let X be a regular parametric surface, with parameter domain U. Let u EU. 
The affine subspace TuX := { X( u) +.AX,,( u) +µXv( u) / (.A,µ) E 1R2

} is called tangential 
plane of X in u. 
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Nu:= 11[i:;i:j 11 is called the unit normal vector of X in the point Xu. 
The mapping N 

N :U ---t JR3 

u 1-+ Nu 

is called the unit normal vector field of the surface X. 

Definition 1.17 

The bilinear symmetric form Iu, 

Iu : TuX x TuX ---t 1R 
(:v,y) 1-+< :v,y > 

is called the first fundamental form of the surface X. 
Its matrix in the basis (X,,( u ), Xv( u )) of TuX is denoted G = (9ij )(i,j)E{l,2}" 

Definition 1.18 

[
91! 912] = [< x,,,x,, > 
921 922 <Xv, Xu> 

Let X be a C 2 regular surface with parameter domain U. Let u EU. 
The linear mapping Lu, 

Lu :TuX ---t TuX 
:v 1-+ -dNu o dX1.J: 1 (:v) 

is called the Weingarten map. 
The bilinear symetric form flu defined on TuX by: 

IIu(:v,y) =< Lu(:v),y >, 

is called the second fundamental form of the surface X. 
Its matrix in the basis (X,,(u),Xv(u)) of TuX is denoted H = (hij)(i,j)E{l,2}" 

Remark 1.19 

< -N,,,Xv >] = [< N,X,,,, > 
< -Nv,Xv > < N,Xvu > 

< N,Xuv >] 
< N,Xvv > 

The matrix HG-1 of the Weingarten map Lu is symetric and real, and therefore has two 
real eigenvalues, with corresponding orthogonal eigenvectors. 
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Definition 1.20 

The two real eigenvalues of the Weingarten map are called principle curvatures of the 
surface X in u, and are denoted 11:1 , K. 2 • Their corresponding directions are called principle 
directions. 

Definition 1.21 

The product of the principle curvatures K = ,,,1 · ,,,2 is called the Gaussian curvature, the 
mean sum M = !("'1 + /1:2) is called the mean curvature. 

Remark 1.22 

• K and M can be calculated in term of the fundamental forms : 

K='-3:_ 
g 

M = hng22 - 2h12Y12 + h22Y11 , 
2g 

with g = det G and h = detH. 
• The quantity "'I + "'L which will be of interest later in this work, is given in term of 

the fundamental forms by : 

(1.3) 

1.5 Bezier Curves and Surfaces 

The aim of this chapter is to give the basic definitions and notations about Bezier curves 
and surfaces needed in this work, and not to present the whole theory of this topic. A 
complete presentation is given in [FAR88] and [HOS89J. 

Definition 1.23 

Let n,i EN, with i ~ n. 
The polynomial Bf defined by 

is called i-th Bernstein polynom of degree n. 
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Remark 1.24 

• I:~=O Bf(t) = 1 

• Bf ( t) ::'.'. 0, t E [O, 1] . 

Definition 1.25 

Let n EN, (bo, ... , bn) be n + 1 points in JR3, and [u0, u1] be an interval of R . 
The parametric curve X defined by 

X : [uo, u1] --+ 1R3 

n ( ) 
u-uo 

u r-+ X(u) = L b;Bf --
i=O U1 -- Uo 

is called Bizier curve of degree n, with control points (b 0 , ••• , bn)· 
The polygon with vertices (b 0 , .•• , bn) is called the control polygon of the curve X. 

Proposition 1.26 

Let n EN, and (b0 , ••• , bn) be the control points of the Bezier curve X parametrized over 
[uo,u1]. 
Let u E [uo,u1]. 
If bi( u) is recursively defined by : 

then b~(u) is the point with parameter value u on the curve X. 

Remark 1.27 

bi(u) is a convex combination of the points bi- 1 (u) and bi.+l(u). 

This result, known as the de Casteljau algorithm, is illustrated in Fig. 6. 
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Fig. 6 

Definition 1.28 

Let n EN, (bo, ... , bn) be n + 1 points in JR.3 , and (wo, ... , wn) be n + 1 scalars. 
Let [u0 , u1] be an interval of JR.. 
The parametric curve X defined by 

is called rational Bizier curve of degree n, with control points (b 0 , ... , bn) and control 
weights (wo, ... ,wn)· 

Remark 1.29 

• For clarity purpose, the Bezier curves defined in 1.25 are often called non-rational 
Bezier curves. 

• An advantage of the rational curves is that they can describe exactly the conic curves. 
These curves are used by almost all CAD-systems. A second advantage is that by 
changing the weights of a rational curve, one is allowed to control the shape of the 
curve, without having to move the control points. The geometric effect of such a 
change is easy to expect : if all other weights are fixed, then an increasing value of the 
ith weight pulls the curve in the direction of the i.th control point. 
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Definition 1.30 

Let m,n EN, and (b;;)•=o, ... ,m be (n + l)(m + 1) points in 1R 3
• 

let [uo,u1] X [vo,v1] be ~=;q;;=re in R 2. 
The parametric surface X defined by 

is called tensor product Bizier surface of degree (m,n), with control points (b;j)· 

Remark 1.31 

These surfaces are called "tensor product", because the basis functions Bf'(B )Bj(t) are 
the product of the curve's basis functions Bf'(B) and Bj(t). 
More precisely, the parameter lines u ,_, X(u,v) (resp. v ,_, X(u,v)) are the Bezier 

curves of degree m (resp. n), with the control points (2=J=O b;;Bj ( v",-::_"v"a)) i=O, ... ,m , 

(resp. (2=::o b;;Bi (:
1
-::_1:,0

0
)) ._ ), parametrized over [uo,u1] (resp. [v0,v1]). 

J-0, ... ,n 
Thus, the de Casteljau algorithm for curves can be applied in each direction to evaluate 
the points of the surface, as illustrated in Fig. 7. 

Fig. 7 
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Definition 1.32 

Let m,n EN, (b;j) ;_=o, ... ,= be (m+l)(n+l) points in R 3 , and (w;j) ;=o, ... ,= be (m+l)(n+l) 
J=0 1 ... ,n J=O, ... ,n 

scalars. 
let [u0,u1] x [v0,v1] be a square in R 2. 
The parametric surface X defined by 

is called rational tensor product Bezier surface of degree ( m, n ), with control points (b;j) 
and control weights (w;j)· 

Remark 1.33 
Although the basis functions 

are not product of the rational Bezier curve's basis functions, the parameter lines ( u H 

X(u,v)) ans (v H X(u,v)) are still rational Bezier curves. This is why these rational 
surfaces are called "tensor product" surfaces, which is not quite correct. 

Definition 1.34 

Let n,i,j,k EN, such that i + j + k = n. 
The polynoms Bfjk in the three unknowns u,v,w are defined by: 

Definition 1.35 

n _ n! i j k Bijk(u,v,w)-T-ikluvw, i+j+k=n 
i.J . . 

Let n EN, (bijk) ;,;,•~o be (n + l)(n + 2)/2 points in R 3 , and T be the triangle with 
i+i+k=n 

vertices d 0 , di, d2 in R 2 • 

Let u,v,w be the barycentric coordinates in the triangle T. 

The parametric surface X defined by : 

x: T--+ R 3 

udo+vd1+wd21-> 2.:: bijkBi'jk(u,v,w) 
i+i+k=n 
i,j,k~O 
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is called triangular Bezier patch of degree n, with control points (bijk)· 

Definition 1.36 
Let n EN, (bijk) ;,;,k~o be the control points of the triangular Bezier patch X, parame-

1+;+k=n 
trized over the triangle T with vertices d 0 , d1 , d2 . 

let ud0 + vd1 + wd2 be a point in T. 

If bijk(u,v,w) is recursively defined by: 

• b~jk=bijk, i+j+k=n,i,j,k20 

• bijk(u,v,w) = ub';+f,j,k +vbi,}!i,k +wb';,jJ.+i• where r = 1,. .. ,n; i + j + k = n-r 
and i,j,k 2 O, 

then b~00 (u,v,w) is the point with parameter value ud0 + vd1 + wd2 on the triangular 
Bezier patch, and is illustrated in Fig. 8. 

Fig. 8 
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Definition 1.37 

Let n EN, (bijk) _;,;,•~o be (n+I)(n+2)/2 points in JR. 3 , (wijk) ;,!,k~o be (n+l)(n+2)/2 
i+J +k=n 1+3 +k=n 

scalars and T be the triangle with vertices d 0 , d1 , d2 in R 2 • 

Let u,v,w be the barycentric coordinates in the triangle T. 

The parametric surface X defined by : 

X: T -7 JR.3 

is called rational triangular Bezier patch of degree n, with control points (bijk) and control 
weights ( W;j k). 

1.6 Strain Energy of a Surface 

A complete presentation of the theory of elasticity is given in [TIM34]. This chapter is 
based on the results of this book, and use the same notations. 

Consider a thin rectangular elastic plate in equilibrium under the action of external forces. 

Let er• and <ry denote the normal stresses in the direction x and y respectively, and Tzy 

denotes the shearing stress. 

Let u, v be the displacement components of the plate. 

The strains in the directions x and y are respectively denoted by c:, and c:y, and the 
shearing strain by "f•y· 

The components of strain are related to the displacement coordinates by : 

OU 
C::v=-ox 

ov 
E:y = -oy 

OU OV 
"(zy = oy +ox 

Fig. 9 illustrates the meaning of the strain components. 



B 

dy 
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1--~~~u'--~---<'"""=--~~~~~~~~~--' 

A' 
dV 
axdx 

1t 
P' 

2 v 

p dx 

du 
dx+ axdx 

A 

Fig. 9 
The Hook's law gives the components of strain in term of the stress components : 

Proposition 1.38 Hook's Law 

1 
ex= E(u. - V<Ty) 

1 
cy = E(uy - V<Tx) 

r.y 
'Y•Y = G, 

where 
• E is the modulus of elasticity in tension 

• v is the Poisson's ratio 

• G = 2(l~v) is the modulus of elasticity in shear, or modulus of rigidity. 

Proposition 1.39 

The amount of work per unit area, done by the forces during loading is equal to : 

In term of the strain components, V is given by: 

W = J J V dxdy is called the strain energy of the plate. 
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Proposition 1.40 

Consider a small rectangular plate of dimensions dx, dy under a deformation 'P(x,y). 
This deformation induces the following displacement and strain components (see Fig. 10): 

aq; 
u=-

Bx 
aq; 

v=-
8y 
a2q; 

Ex:::::: 8x2 
a2q; 

E:y = 8y2 

a2q; 
"/.y = 8x8y · 

And the strain energy per unit area due to the deformation ip is equal to : 

V = E (azq; + azq; + 2v B'P B'P) + Q_ azq; 
2(1 - v2) 8x2 8y2 Bx By 2 8x8y 

V can be rewritten if the modulus of rigidity G is replaced by its value zci!v) : 

E [ a2q, a2q; 2 a2q; a2q; azq; z ] 
V= 2(1-v2) (axz + ay2) - 2(l-v)(ax2 8y2 -(8x8y)) 

If the Poisson's ratio vanishes, then 

dy 1t 

I\ 2 

dx 

Fig. 10 

n a2<I> 
----dxdy 
2 oxoy 
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Proposition and Definition 1.41 
Let X be a parametric surface of class 0 2: 

X: [uo,u1] x [vo,v1]-+ R 3 

(u,v) 1-> X(u,v) 

Let Up= (up,vp) be a parameter point. 
In the affine basis with origin X(up) and base vectors (Xu(up),Xv(up),N(up)), the sur-
face has locally the following parametric equation : 

Y(ii) = ( ~ ) , 
f(u, v) 

where f(O,O) = *(O,O) = ~(O,O) = 0. 
And the following holds : 

Thus t;;~ + t;;~ represents the work done on the area dudv by the deformation f ( u, v), if the 
Poisson's ratio vanishes. Therefore, by analogy with the theory of elasticity, the quantity 

!.'"!."' W = uo vo (/'bi + l'b~) ,j9dudv 

is called strain energy of the surface X. 
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2 Variational Design of Rational Bezier Curves based 
upon Local Minimization of the Bending Energy 

2.1 Restriction of the Problem 

Given a control polygon of a rational Bezier curve of degree n, we want to find values of 
the weights for which the sum of the local bending energy in some parameter values is 
minimized. The vanishing of the first partial derivatives of this criterion function gives a 
system of equations for the weights. The degree of this system depends on the parameter 
values in which the local bending energy in minimized. In this chapter, we will find out the 
parameter values of the curve which ensure a low degree polynomial system of equations 
for our problem. 

The local bending energy in any parameter value u of a parametric curve ( u >--+ X(u)) 
is equivalent to 

~2(u)llX'(u)ll = ll[X'(u),X"(u)Jll2 
llX'(u)ll 5 

(2.1) 

If X is a segment of a rational Bezier curve of degree n, (2.1) is a function of the weights 
w0 , ••. ,wn. The vector functions X'(u), X"(u) are rational functions of these weights. 
Thus the local bending energy in u is a rational function of these weights if and only if 
llX'(u)ll is also rational. If not, llX'(u)ll contains a square root term and the degree of the 
resolving system is multiplyed by two. The next proposition gives the parameter values in 
which llX'(u)ll is rational. 
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Proposition 2.1 

Let X be a segment of a rational Bezier curve of degree n, parametrized over 
[u0 , u 1 ], with control points b0 , · · ·, bn and control weights w 0 , · · ·, Wn. 

llX'(u)ll is a rational function of the weights wo, · · ·, Wn if and only if 
(u = u0 or u = u1 or b0 , ... , bn are lying on a straigh line). 

Proof: 
We write X(u) =~where 

p(u) = Lw;b;Bf(t), 
i=O 

n 

w(u) = Lw;Bf(t), 
i=O 
U- Uo 

t=---. 
U1 -Uo 

The first derivative of X is equal to 

X '( ) = p1(u)w(u) - p(u)w'(u) 
u w(u)2 . 

This equation shows that llX' II is a rational function of wo, · · · , Wn if and only if llp'w -w'pll 
is a polynomial function of w0 , ••• ,wn. 

Calculating p'w - w'p we get 

=? p'w - w'p = -
1-t tw;wj(b; - bj)Bi' (t)Bj(t) 

U1 - Uo i=O j=O 

If p1w - w'p is a polynomial function of w0 , · · · ,wn then 

n n 

/ llp'w - w'pll = L L °'ijWiWj 
i=O j=O 
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The last two equations gives us two different equations of llp'w - w'pll 2 • Therefore we get 
necessary conditions on the coefficients ( ltij) <=o,. .. ,n: 

J=O, ... ,n. 

Vi,j 'Vk, l °'ii°'kl =< b; - bj, bk - bz > Bi' (t)Bi:' (t)Bj(t)B!'(t) (2.2) 

For k = i and l = j, the last equation yields 

°'~i = lib; - bill 2 [Bi' (tf [Bj(t)] 2 

=? °'ii = ±lib; - bi II Bi' (t)Bj(t) 
Inserting these values in the condition (2.2) for i = 0 and k = 0, the following necessary 
conditions on the control points is obtained : 

< bo - bi> bo - b1 > B"[;' (t) 2 Bj(t)B!'(t) = llbo - bill* llbo - bdJB~' (t) 2 Bj(t)B!'(t) 

Now, the common coefficient B'[;' (t) 2 Bj(t)BI'(t) on both sides of this equation vanishes if 
and only if u = uo or u = u1. 
Therefore, if u f uo and u f u1, then 

<bo-bj,bo-b1>=llbo-bjllllbo-bill 'Vj,l=O, .. ·,n 
i.e. 

(bj-bo) iscolinearto (b1-bo) 'Vj,l=l, .. ·,n 

D 

Conclusion 2.2: 
To reduce the degree of the resulting system of equations of our problem, we must take 
u = u 0 or u = u 1 • 

Our aim is now the following one : given a control polygon of a rational Bezier curve, 
find the values of the weights, for which the sum of the local bending energies in the 
endpoints of each segment of the curve is minimized. This sum is the new criterion 
function. 

2.2 Calculus of the Local Bending Energy 

We will first calculate the local bending energies in the endpoints of one segment of a 
rational Bezier curve. 



Chapter 2: Variational Design of Rational Bezier Curves 25 

Proposition 2.3 

Let X be a segment of a rational Bezier curve of degree n, parametrized over 
[u0 , u 1], with control points b0 , • · ·, bn and control weights w0 , · · ·, Wn· 

Proof: 
The first and the second order derivatives of X in uo are given in Prop 3.1: 

X'(uo) = n · Wi (bi - bo) 
(u1 - uo) Wo 

X"(uo) = ( n )2 · -; [2(wow1 - nwi}(b1 - bo) + (n - l)wow2(b2_ - bo)] 
U1 - Uo Wo 

The vector product of these two vectors is equal to: 

Taking the square norm of this last vector, and dividing it by llX'(uo)ll 5 , we get the first 
equation of our proposition. 

To proove the second equation, we change the variable u into u = u 0 + (u1 - u). The 
reparametrized curve Y(u) := X(u) is the rational Bezier curve with control points 
bn, · · ·, b0 and control weights wn, · · · , w0 • Its curvature in u 0 is equal to the curvature 
of X in u 1 and is given by the first equation of our proposition. 

D 
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Proposition 2.4 

Let X be a C0 rational Bezier curve of degree n, with p segments. Let 
{bni+k , 0 :::; i :::; p - 1 , 0 :::; k :::; n} be the control points of X, and 
{wni+k , 0 :::; i :::; p - 1 , 0 :::; k :::; n} the control weights of X. Let 
u 0 < u1 < · · · < up be (p + 1) scalars such that the i-th segment of X is 
parametrized over ]u;, U;+1 [. 

The sum of the local bending energies in the endpoints of each segment of X 
is equal to : 

II [(bni+l - bn;),(bni+2 - bni)] 11

2 

ll(bni+l - bn;)ll 5 where 

II [(bni-1 - bn;), (bni-2 - bni)] 11

2 

ll(bni-1 - bni)ll 5 

Proof: 
Because X is not supposed to b.e C2 , the local bending energy has a different limit in the 
right and the left of u; : 

1~, K,
2 (u)llX'(u)ll := K,

2 (ut)llX'(ut)ll # K-
2(ui)llX'(ui)ll := 1~, K-

2 (u)llX'(u)ll 
u>-ui -u<1ti 

Proposition 2.3 applied to the i-th segment of X yields : 

D 
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2.3 Minimization of the Criterion Function in the Cubic Case 

The function (2.3) for a rational Bezier curve of degree 3 is equal to : 

(2.4) 

If the weights (w; );E{0, .. ., 3p+I} minimize (2.4), then the partial derivatives of (2.4) must 
vanish in these weights. In particulary, the partial derivative of (2.4) along w3; should 
vanish: 

(2.5) 

But the scalars Dt and Di are positive, and w3;_1 , w3;+1 must be positive. Therefore, 
the condition (2.5) implies 

For these values of the weights, the curve X is the polygon line with vertices (b3;)i9:o;p, 
for which in fact, the local bending energy vanishes everywhere. 
To find a non-trivial solution, we impose the following conditions on the weights : 

ViE{O, ... ,p-1} 
(2.6) 

ViE{l, ... ,p} 

These conditions are compatible with the C1-continuity in the sense that if the non rational 
Bezier curve with control points (ba;+k)i=O, ... ,p-I is C1 , so is the rational Bezier curve with 
the same control points and weights fulfilling the conditions (2.6). But the main advantage 
of the conditions (2.6) is that they transform the minimization of the function (2.4) into a 
linear problem, with a unique solution. 
To see this, we introduce the new unknowns 

ViE{O, ... ,p-1}. 

If the first weight wo is given, the p scalars a 0, ... , °'p-I and the conditions (2.6) determines 
uniquely the 3p weights w1, ... , W3p+l • 

With these new notations, the function (2.4) is equal to : 

(2.7) 
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Minimizing (2.7) is equivalent to minimize the p functions F;, 

F;=Dta;+D;+ 1 _.:!:._ iE{O, ... ,p-1}. 
a; 

The first order derivative of F; gives the variations of the function F; 

dF; _ n+ D;+1 
do:; - i - a~ (2.8) 

If the control polygon of the curve is non-degenerate, then Dt i= 0 and (2.8) has the 

unique root ~· In this case, the variations of the function F; can be represented as 

follows: 

a; 0 ~ i' 
I 

.<!Ei. 
dai 

- 0 

+oo 
F; "' 2JDtD;+1 

We see that F; reaches a global minimum for a; = ~· 
Proposition 2.5 resumes the results of chapter 2.3 : 

Proposition 2.5 

+ 

/' 

Let X be a rational Bezier curve of degree 3 with p segments, 
control weights{ w3;+k , 0 S i S p - 1 , 0 S k S 3 }, 

+oo 

+oo 

and a non-degenerate control polygon { bai+k , 0 Si S p - l , 0 S k S 3 }. 
The sum of the local bending energies of X in the endpoints of each segment, under 
the conditions 

is minimal if and only if 

Vi E {O,. . .,p-1} 
Vi E {1,. . .,p}, 
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Remarks 2.6: 
(a) To calculate all the weights, one weight must be choosen arbitrarily. Anyway, the 

curve doesn't depend on this choice. 
(b) The global minimum is reached if and only if the local bending energy is the same in 

both end points for each segment : 

ViE{O, .. .,p-1} 

Examples: 

In the following examples, each curve ( u r-> X ( u)) is drawn togdher with the curve 
(u, r-> X( u)+ f(u)N(u)), where N is the normal of X at the point X(u) anf f is proportional 
to the local bending energy K;

2 (u)llX'(u)ll · The sum of the distances between the two curves 
at the endpoints of each segment is proportional to the function that we have to minimize. 
Remark (b) of proposition 2.5 implies that the distances between the two curves must be 
the same in both endpoints of each segment, for our solution. 

In Fig.11, we compare a cubic segment with all weights equal to one (at the top), with 
the curve given by Prop. 2.5 (at the bottom). 

Fig.12 shows (at the top) a cubic curve with four segments. The curve given by Prop. 
2.5 is drawn at the bottom. 
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Fig. 11 
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Fig. 12 



32 Chapter 3: Stiffness Degree Concept 

3 Stiffness Degree Concept 

In the previous chapter we try to minimize quantities related to the bending energy of a 
curve: J ,,;2 (t)llX'(t)lldt 

As mentioned in the introduction, other integral criterions were successfully used in the 
literature of CADG ([HOL57], [CLI74], [NIE74], [HAG84]). 
Recently, Hagen and Santarelli [H-892] minimized the functional 

a· J llX"(t)ll2dt + (3 · J llX"'(t)ll 2dt (3.1) 

a+f3=1 

over the set of non-rational quintic 0 2-Bezier curves or non-ration.J B-Spline curves, to-
gether with a least square constraint. In this chapter, we will adapt this criterion for our 
problem: find weights for a rational Bezier curve whose control polygon is given by a user. 
We will first explain why we use a local criterion instead of an integral one. This new local 
criterion will be applied in the parameter values of the Bezier curve corresponding to the 
endpoints of each segment. In the last part we will show that it is possible to apply the 
criterion in any parameter value. 

3.1 A Local Criterion 

3.1.1 Derivatives of a rational Bezier curve 

Let 
X(t) = p(t) 

w(t) 
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be a parametric equation of a segment of a rational Bezier curve of degree n, with p E 
R~[t];wERn[t]. 
Rewriting the parametric equation of X as 

p(t) = X(t) w(t), 

and deriving it d times, we get 

This equation can be solved for X(n) : 

We will use (3.2) as a recurrence relation to compute the derivatives of the curve. 

Equation (3.2) shows that the derivatives of X are of the form 

(3.2) 

(3.3) 

where qd(w;, t) E JR~d- 2 [ t J for any fixed wo, ... , Wn and qd(w;, t) E R~+1 [w;] for any fixed 
t. 

3.1.2 The criterion 

The function (3.1) introduced by Hagen and Santarelli [H-892] is, for a rational Bezier 
curve, the integral of a rational function. To minimize this function, we would have to 
calculate it as a function of the weights. This requires first to find the roots of w as 
functions of the weights (which is impossible if the degree of the curve is greater or equal 
than 5), and then to calculate the simple form of the fractional function equal to the 
integrand of (3.1), integrate it in the variable t, and derivate it in term of the weights. 
This is theoretically possible, but leads, even for degree 2 curves, to a non polynomial 
system of equations. 

Therefore, we replace the integral (3.1) by a quadrature formula : 

La; ( allX"(t;)ll 2 + ,BllX"'(t;)ll 2
), (3.4) 

where the (t;) are parameter values, and the (a;) are scalars. 
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Our aim is to minimize the functional (3.4) over the set of all rational 

Bezier curves with a given control polygon ( bni+k) •=o,. .. ,p-i. 

k=O,.,.,n 

Because the derivatives of X are rational, minimizing (3.4) leads to a non polynomial 
system of equations for the weights. But, the degree of the resolving system is in general 
very high. (degree 9 x m if m is the maximal number of parameter values in a same 
segment). 
However, as we will see in chapter 3.2, if the (ti) are the parameter values of the endpoints 
of each segment, the degree of the system is reduced to 3 if (3 = O, and 5 if (3 =fa 0. This 
result will be generalized in chapter 3.3: If at most two parameter values (t;) per segment 
are choosen, the degree of the system is reduced to 5 if (3 = O, and 7 if (3 =fa 0. 

3.2 Minimization in the Endpoints 

3.2.1 The resolving system of equations 

Let us first recall that the G1 -continuity at a common point of two segments just depends 
on the control points, so that moving the weights of one segment independently of those 
of the second segment doesn't disturb the G1-continuity. Therefore, the sum (3.4) will be 
minimized independently for each segment. 

Our aim is yet to minimize the functional 

where 
• X is a segment of a rational Bezier curve parametrized over Ju 0 , ui[, 
• ao, a1 are scalars, 
• a,(3 are scalar values with a+ (3 = 1. 
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Proposition 3.1 

Let X : [u0 , ur] -+ JR3 be a segment of a rational Bezier curve of degree n, 
with control points b0 , ••• , bn and control weights Wo, ... , Wn· 

The first three derivatives of X in u 0 are given by : 

X'(uo) = __ n __ · Wr (br - bo) 
(ur - uo) Wo 

(3.6a) 

X"(uo) = ( n )2 · ~ · [2(wowr -nwf)(br - bo) ur - uo Wo 

+ (n - l)wow2 (b2 - bo)] (3.6b) 

X "'( ) n 1 Uo = ( )3. g. ur - uo Wo 

[ 3 ( 2w~wr - 4nwowf - n(n - 1) WoWiW2 + 2n2wi) (br - bo) 

+ 3( 2(n - l)w~w2 - n(n - l)wowrw2 )Cb2 - bo) (3.6c) 

+ (n - l)(n - 2)w~w3 (bs - bo)] 

Proof: 
To calculate the derivatives of X, we use the recurrence formula (3.2). First of all we 
have to calculate the derivatives of the denominator wand the nominator p of X. p and 
w are non-rational Bezier curves; their derivatives are calculated with the de Oasteljau 
algorithm: 

p(uo) = wobo w(uo) = Wo 

p'(uo) = -( -~)(wrbr -wobo) 
Ur -Uo 

w'(uo) = ( n ) (w1 - wo) 
Ur -Uo 

"() n(n-1)( b b b) p uo = ( )2 w2 2 - 2wr 1 + wo o ur - uo 
"( ) n(n-l) ( ) w uo = ( )2 w2 - 2wr + wo ur - uo 

"'( ) n(n-l)(n-2)( b p uo = ( ) 3 w3b3 - 3w2 2 ur - uo 
"'( )-n(n-l)(n-2)( _ 3 w uo - (ur -uo)3 W3 W2 

+ 3wr - wo) 
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Inserting these values in the recurrence formula (3.2) ford= 1, we get the first derivatives 
of X in uo : 

X'(uo) = w(~o) [p'(uo) - X(u 0 )w'(uo)] 

<=? X'(u 0 ) = ( n ) _!_[(w1b1 -wobo)- bo(w1 -wo)] 
Uj - Uo Wo 

<=? X'(uo)=( n )w1(b1-bo) 
U1 - Uo Wo 

This value is inserted into the same recursive formula, for d = 2 gives : 

X"(uo) = w(~o) [p"(uo)-2X'(uo)w'(uo) -X(u0 )w"(uo)] 

<=? X"(uo) = ( n )2 \ [(n - l)(w2b2 - 2w1b1 + wobo)wo 
Uj - Uo Wo 

- 2nw1(b1 - bo)(w1 -wo) - wobo(n - l)(w2 - 2w1 + wo)j 

We rewrite X"( u0 ) as a linear combination of the vectors (b1 - b0 ), (b2 - bo) : 

X"(uo) = ( n )2 ~ [(n - l)wow2(b2 - bo) - 2(n - l)wow1(b1 - bo) 
U1 - Uo Wo 

+ 2n(wow1 - wrnb1 - bo)] 

Additing the coefficients of (b1 - b0 ), we get (3.6b) 

Eventually, the third order derivative is equal to : 

X'"(uo) = :
0 

[p"'(uo) - 3X"(uo)w'(uo) - 3X'(uo)w 11 (uo) - X(uo)w"'(uo)] 

X'"(u0 ) = ( n ) ~ [(n - l)(n - 2)wg(w2b3 - 3w2b2 + 3w1b1 + wobo) 
u1 - uo 3 w0 

- 3n( 2(wow1 - nwi)(b1 - bo) 

+ (n - l)wow2(b2 - bo)) (w1 - wo) 

- 3n(n - l)wow1(b1 - bo)(w2 - 2w1 + wo) 

(n - l)(n - 2)wgbo(w3 - 3w2 + 3w1 - wo)] 
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To simplify this expression, we rewrite it as a linear combination of the vectors b1 - b0 , 

b2 - bo and b3 - bo : 

X"'(uo) = ( n )3 \ [(n - l)(n - 2)w5w3(b3 - bo) 
U1 - Uo Wo 

- 3(n - l)(n - 2)w5w2(b2 - bo) 
+ 3(n - l)(n - 2)w5w2(b1 - bo) 
- 6n(wow1 - nwi)(b1 - bo) 
- 3n(n - l)wow2(w1wo)(b1 - bo) 

- 3n(n - l)wow1(w2 - 2w1 + wo)(b1 - bo) J 

Additing the two coefficients of (b2 - b0 ) and the three coefficients of (b1 - bo) we get the 
final formula for the derivatives of X in u 0 • 

To calculate the derivatives of X in u1 , we use the reparametrized curve Y(u) = X(u1 + 
u 0 - u). Y is the rational Bezier curve with the control polygon (bn, ... ,b0 ) and the 
weights (wn, ... ,wo), and 

Y'(uo) = -X'(u1) 
Y"(uo) = x" (u1) 

Y"'(uo) = -x'" (u1) 

Thus by changing the indices i of the weights and control points by (n - i) in (3.6), and 
take the opposite for the first and third derivatives, we get the derivatives of X in u 1 . 

D 

The derivatives of X in the endpoints are still rational. To avoid this, we will use the 
standard form of the rational Bezier curves : 
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Proposition 3.2 

Let X be a rational Bezier curve of degree n parametrized over [u 0 ,u1 ], with 
control points (bo, ... , bn), and positiv control weights (wo, ... ,wn)· 
There exists a unique rational linear reparametrization cp such that 
(i) 

cp(uo) = uo 
cp(u1) = UJ 

cp([uo,u1]) = [uo,u1] 
(3.7) 

(ii) The reparametrized curve X ( cp) is a rational Bezier curve with control 
points (bo, ... ,bn) and control weights (wo, ... ,wn), and 

wo = 1 

Wi > 0 

Wn = 1. 

Proof: The conditions (3.7) imply that cp is of the form: 

() pu1(u-uo)+puo(u1-u) 
'Pu = p(u - uo) + p(u1 - u) 

where p and p are two positive scalar values. 

The reparametrized Bernstein polynomials are equal to : 

Bn(cp(u)-uo) ( U1-Uo )n i'n-iBn(u-uo) . = pp . --- ' ' u1-uo p(u-uo)+p(u1-u) ' u1-uo 

so that the reparametrized curve X has the following parametric equation : 

with Wi = pi µn-iw;, i = O, ... , n. 



(ii) is fulfilled if and only if 

This system has the unique solution 
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pnwo = 1 

pnWn = 1 

p, p > 0 

1 

ii= w;;• 
_J. 

p=Wn n 

D 

The effect of such repararnetrization is shown in figure 13. 

Fig. 13 
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The curve at the top has the weights (1,1,1,20) and is parametrized over ]O,l[. The 
new weights are (1, 0.37, 0.14, 1 ). The points on the curve correspond to uniformly spaced 
parameter values. 

Remark 3.3: 
Our criterion function (3.5) depends on the parametrization. Two different parametriza-
tions of the same segment give two different values of this function. Assuming that the 
segments are reparametrized as it is done in Proposition (3.2) is an arbitrary but natural 
choice, because it is compatible with the non-rational case. Indeed, other rational linear 
reparametrizations would lead, for a non-rational curve, to a rational curve with weights 
not equal to one. 

Proposition 3.4 

Let X : (u0 , u1 ] -> JR.3 be a segment of a rational Bezier curve of degree n with 
control points (bo, ... ,bn) and control weights (1,wi, ... ,wn-1, 1). 

• llX"(uo)Jl 2 ( resp. llX"(u1)ll 2 ) is a polynomial of total degree 4 in w1,w2 

(resp. Wn-1, Wn-2), partial degree 4 in w1 ( resp. Wn-1 ), partial degree 2 in 
w2(resp. Wn-2 ). 

• llX'"(uo)ll 2 ( resp. llX"'(ui)ll 2 ) is a polynomial of total degree 6 in w1, w2, 

W3 ( resp. Wn-3, Wn-2, Wn-1 ), partial degree 6 in W1 ( resp. Wn-1 ), partial 
degree 2 in w2 , ( resp. Wn- 2 ) and partial degree 2 in w3 , ( resp. Wn- 3 ). 

• The extremal values of the functional (3.5) with respect to the weights w1 , 

w2, wa, Wn-3, Wn-2, Wn-1 are solutions of a polynomial system of degree 3 if 
/3 = 0, and degree 5 if (J =/= 0. 

Proof: Obvious with the formulas of Prop. 3.1 

Remarks 3.5: 

D 

(a) If the degree of the rational curve is greater or equal than 4, the partial derivatives 
of (3.5) along W2 and Wn-2 are linear in W2 and Wn-2 (this is no longer true for cubic 
rational curves, because in this case we have W1 = Wn-2 and W2 = Wn-1). Suppose 
now that the degree is greater or equal than 4, and that the weights w1, Wn-1 are fixed 
(with 0 1-continuity conditions for example), then the minimization of the function 
(3.5) for /3 = O, with respect to the weights w2 , Wn- 2 leads to a linear system of 
equations. 
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Moreover, if the degree of the curve is greater than 5, then minimizing (3.5) for any 
j3 with respect to the weights w2 , w3 , Wn- 3 , Wn- 2 also leads to a linear system of 
equations. 

(b) If an extremal value w1 , ... , Wn-l of the function (3.5) is found, the jacobian matrix 
in this value is calculated. This extremum is a minimum if an only if this matrix is 
positive. 

( c) The functional (3.5) has a unique global minimum reached in W1 ... = Wn-1 = 0. 

3.2.2 Examples 

In the first example, X is a rational Bezier curve of degree 4, with control points 

bo=(O,O,O) 

b1 = ( 0 ) 1 ' 1.2 ) 
b2 = ( 0 ) 2) 0.8 ) 

b3 = ( 0) 3) 1) 
b4 = ( 0' 4) 0) 

parametrized over JO, l[. 
The second and third order derivatives of X in 0 and 1 are the following polynomials in 
the unknowns w1 , W2, W3 : 

d2 X dt
2 

(0.0) = + (0.00, -32.00, -38.40)wi + (0.00, 8.00, 9.60)w1 + (0.00, 0.00, 0.00) 

+ (0.00, 24.00, 9.60)w2 

d;t~ (0.0) = + (0.00, 384.00, 460.80)wf + (0.00, -192.00, -230.40)wi 

+ (o.oo, 24.00, 28.80)w1 + (o.oo, -432.00, -288.00)w1w2 

+ (0.00, 0.00, 0.00) + (0.00, 144.00, 57.60)w2 

+ (0.00, 72.00, 24.00)w3 

~x 2 -(1.0) = + (o.oo, o.oo, o.oo) + (o.oo, -8.00, 8.00)w3 + (o.oo, 32.00, -32.00)w3 dt 2 

+ (0.00, -24.00, 9.60)w2 

d3 X 2 -(1.0) = + (O.OO, o.oo, o.OO) + (o.oo, 24.00, -24.00)w3 + (o.oo, -192.00, 192.00)w3 dt3 

+ (0.00, 144.00, -57.60)w2 + (o.oo, 384.00, -384.00)wi 

+ (0.00, -432.00, 259.20)w2w3 + (0.00, 72.00, -28.80)w1 
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The functional (3.5) for ao = a1 = t, a = 0.8, (3 = 0.2 is equal to : 

0.8/2 (11 d;t-; (0)11 2 + 11 d;t-; (1)11 2) + 0.2/2 (11 d;t-; (0)11 2 + 11 d;t-; (1)11 2) = 

+ (29491.20)w~ + (-29491.20)wg + (-53084.l6)w2wi + (ll878.40)wi 

+ ( 42024.96)w2wi + (7741.44)w1wi + (-2252.80)wi + (25380.86)wiwi 
+ (-11919.36)w2wi + (-3870. 72)w1wi + (742.40)wi + (-15427.58)w~w3 
+ (-15316.99)w1w2W3 + (3532.80)w2w3 + (7741.44)wiw3 + (-3870.72)wiw3 
+ (967.68)w1w3 + (26956.80)wiu.'i + (-15759.36)w1wi + (5345.28)wi 

+ (-59719.68)wfw2 + ( 46227.45)wiw2 + (-12825.60)wiw2 + (3655.68)w1w2 
+ (35979.26)w~ + (-35979.26)wf + (14491.65)wf + (-2748.42)wi 

+ (804.35)wi 

For the non-rational curve with control points b0 , ... , b4 ( w; = 1, i = O, ... , 4), this func-
tional take the value 695.8 

A partial minimum is reached in 
W1 = 0.73 

W2 = 0.65 
W3 = 0.72 

In these weights the functional (3.5) is equal to 53.27 

If the weights w1 and w3 are fixed to one, the minimization of the functional leads to a 
linear equation in w2 , as it is said in the remark 3.3(a). The solution of this equation is 
w2 = 1.08. In the weights (1, 1, 1.08, 1, 1) the functional is equal to 510.4. 

Figure 14 shows the 3 curves with the control points b0 , .•. , b4 and control weights re-
spectively (1,1,1,1,1); (1,0.73,0.65,0.72,1); (1,1,1.08,1,1) (at the bottom). Each curve 
(u H X(u)) is drawn together with the curve (u H X(u) + f(u) · N(u), where N(u) 
is the normal of the curve at the point X(u), and f(u) is proportional to the functional 
o:llX"(u)ll 2 + f311X'"(u)ll 2

• 
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Fig. 14 
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Figure 15 shows two closed rational Bezier curves with four segments each. The first 
segment (at the top of each curve) has degree five, the second and the third (to the right 
and at the bottom) have degree 4, the fourth segment (to the left) has degree 5. 
The first curve (at the top) has all weights equal to one. 
We use the functional (3.5) with a0 = a1 = t; a = 0.8; f3 = 0.2 for each segment and find 
the new weights : 

(1, 0.69, 0.53, 0.52, 0.61, 1) for the first segment 
(1,0.62,0.57,0.62, 1) for the second segment 

(1, 0.60, 0.58, 0.60, 1) 
(1, 0.64, 0.51, 0.51, 0.64, 1) 

The value of the functional (3.5) is 

for the third segment 
for the fourth segment 

15667.2 for the first curve 
626.0 for the second one. 

Fig. 15 
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3.3 Minimization in any two Parameter Values 

3.3.1 Reduction of the degree of the resolving system 
We find in the previous chapter that the degree of the resolving system of our problem (see 
3.1.2 for the statement of this problem) can be reduced if our criterion function (3.4) is 
minimized in the endpoints of each segment. This has been done using a reparametrization 
of the rational curves, which sets the first and the last weights to one, thus transforming 
the derivatives of the curve in the endpoints into polynomial functions of the weights. 

More precisely, if the rational Bezier curve X(u) is equal to ~' then the denominator 
of X(dl(u) is equal to wd+ 1(u) (see (3.3)). In u = u0 ( resp. u = u1 ) this denominator is 
equal to wg+i ( resp. w~+l ), and the reparametrization of the proposition 3.2 sets these 
denominators to one. To generalize this result for any two parameter values a, bin [u0 , u1], 

we shall find a reparametrized curve X = p/w, such that 

w(a)=w(b)=l. 
This is the object of the next proposition. 

Proposition 3.6 · 

Let (bo,. . .,bn) and (w 0 , •• .,wn) E ll'.f_ be the control points and control 
weights of a rational Bezier curve X of degree n parametrized over Ju0 , u 1 [. 

Let a, b be two parameter values in [u0 , u1 ] with a < b. 
There exists a rational linear function cp such that 

cp( uo) = uo 
cp(u1) = U1 

cp([uo, u1]) = [uo, u1] , 

(3.8) 

that the control points of the reparametrized curve u t---t X(u) = X(cp(u)). are 
the (b;), and the control weights (w 0 , ••• ,wn) of X verify 

n ( ) 
a-u0 Lw;Bf --- =1 

i=O U1 - Uo 

(3.9) 

~ ( b-uo) L.. w;Bf --- = 1 
i=O U1 - Uo 
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Proof: 
The conditions (3.8) imply that <p is of the form : 

() pu1(u-uo)+puo(u1-u) 
'Pu = p(u - uo) + p(u1 - u) 

where p and p are two non zero scalar values with the same sign, so that the denominator 
doesn't vanish. 

We already see in the proof of Prop. 3.2 that the reparametrized curve X has the following 
parametric equation : 

with w; = pi_pn-iw;, i = o, ... ,n. 
Dividing the two equations (3.9) by _pn and writing a= p/ p, we find the following equiva-
lent conditions to (3.9). 

3 a> 0 / taiw; [Bi (~)-Bi(~)]= 0 
i=O U1 - Uo Uj - Uo 

Let us call f the left member of the first of these three equations.· f(a) is a polynomial 
of degree n, with constant and degree-n coefficients of opposite sign (because wo, W1 are 
positive, B 0 is a strictly decreasing function, B~ a strictly increasing function, and a < b). 
So f must have at least one positive root. 

D 

Figure 16 shows the effect of such reparametrization. The curve at the top (same as in 
Fig. 13) has the weights (1, 1, 1, 20) and is parametrized over [O, 1]. 
We reparametrize this curve with 

a= 0.8 

b = 1.0 

The new weights are (16.20, 2.36, 0.34, 1.00). The points on the curves correspond to 
uniformly spaced parameter values. 
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Fig. 16 
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The consequences of such a reparametrization on the degree of the resulting system of our 
problem are the object of the next proposition. 

Proposition 3.7 
Let ( bo, ... , bn) and ( w0 , ••• , wn) E ( lR+ )n be the control points and -weights 
of a rational Bezier curve X of degree n, parametrized over ]u0 , u 1 [. 

Let a, b be two parameter values, u 0 < a < b < u 1 • 

We suppose that 

n ( ) 
a-u0 Lw;Bi --- =1 

i=O U1 - Uo 

(3.10) 

n n ( b- uo ) Lw;B; -- =1 
i=O U1 - UQ 

The following hold: 

i) For all 0 ::; i 0 < i 1 ::; n, the system of equations (3.10) has a unique 
solution in w;0 , w;,. 

ii) if w;0 , w;, are replaced by the solution given in i), then 

Proof : 

ao ( aJJX"( a)JJ 2 + ,BJJX"'(a)JJ 2
) + a1 ( aJJX"(b)JJ 2 + ,BJJX"'(b)JJ 2

) 

is a polynomial function in the unknowns Wo, · · · , w;0 -1, w;0 +1, · · · 
· · · , w;, -1, w;, +i, · · · , Wn ; with total degree 6 if ,B = O, 8 if ,B f 0. 

Let a= a-Uo and b = ~. 
u1-u.o ui-u.o 

To proove i) we must prove that the following determinant doesn't vanish : 

BI:,(a) 
BI:,(b) 

This determinant vanishes if and only if 

Bf; (a) I 
Bi'; (b) . 
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B t th f t . (Bf,(t) _ (,~) (1-t)i1-io) u e unc 10n Bfo(t) - (,~) t is a strictly increasing function in JO, 1[, and 

O<a<b<l. 
To proove ii), we use the recursive formula (3.2) giving the derivatives of X. 
Let X(t) = I!S!l then w(t)' 

xCdl = -
1
-. [P(dl(t) - ~ (~)xCil(t)wCd-il(t)] . 

w(t) i=O i 

The conditions (3.10) on the weights are equivalent to w(a) = w(b) = 1. Replacing Wi 0 and 
w;, by the solution found in i), we see that p(a) and p(b) are two affine functions of the 
weights wo, · · · ,wi0 -1,w;0 +1, · · · ,wi,-i,wi,+1, · · · ,wn. The recursive formula applied in a 
and b shows that X(dl(a) and X(d)(b) are polynomial functions of degree total d + 1 in the 
same unknowns. 

D 

Remark: 
A natural choice for i 0 (resp. i 1 ) is to take the closest bezier ordinate ~ to a (resp. the 
closest bezier ordinate ~ to b). 

3.3.2 Implementation 

In chapter 3.2.1 we calculate explicitly the derivatives of a rational Bezier curve X = ~ of 
degree b, in the endpoints of a segment. We get (after the reparametrization) a polynomial 
function with a low number of monomials. But the calculus of the derivatives of X in any 
two parameter values a and b of a segment, after the reparametrization of proposition 3.6 
leads to a polynomial with much more monomials. To do this calculus, we use polynomial's 
routines (addition, scalar product, multiplication) for polynomials with (n - 2) unknowns 
and coefficients in JR3 or R, and we program the de Casteljau algorithm for non-rational 
Bezier curves with control points in JR4 [w0 , · · ·, Wi0 -1, w;0 +1, · · · , w;, -1, w;, +1 > • • • , wn]. 
We apply the deCasteljau algorithm in a and b with the control points 

Wo (bo) ... w· (bio) ... w· (b;,) ... w (bn) 
l ' ' io l ' ' t1 l ' ' n l 

where Wo, · · · , w;0 -1, w;0 +1, · · · , Wi, -1, w;1 +i, · · · , Wn are unknowns, and Wi0 and w;, are the 
affine functions in these unknowns, defined in i) of proposition (3.7). This gives us the 
derivatives of p and win a and b. Eventually, we apply d-times the recursive formula (3.2) 
to find the d-th derivatives of X in a and b. 
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3.3.3 Examples 

In the next example, X is a rational Bezier curve of degree 3, with control points 

bo = (O,O,O) 

bi=(0,1,1) 
b2 = (0,2,5) 
bs = (0,3,0) 

parametrized over JO, 1[. 

We compare, for these control points, the result given by chapter 3.2 and chapter 3.3. In 
both cases we minimize the functional (3.5) for two parameter values, with a0 = a 1 = !; 
a = 0.8 and f3 = 0.2. 
For the first method, the two parameter values are 0 and 1, and the polynomials are : 

d2X 
dt 2 (0.0) = + (0.00, -18.00, -18.00)wi + (0.00, 6.00, 6.00)w1 +(0.00,0.00, 0.00) 

+ (0.00, 12.00, 30.00)w2 

d;t~ (0.0) = + (0.00,162.00, 162.00)wf + (0.00, -108.00, -108.00)wi 

+ (0.00, 18.00, l8.00)w1 + (0.00, -162.00, -324.00)w1W2 
+ (0.00, 18.00, 0.00) + (0.00, 72.00, 180.00)w2 

d2X 
dt 2 (LO) = + (0.00, 0.00, 0.00) + (0.00, -6.00, 30.00)w2 

+ (0.00,18.00, -90.00)wi + (0.00, -12.00, 6.00)w1 
d3 X 
dt3 (LO) = + (o.oo, 18.00, o.oo) + (o.oo, 18.00, -90.00)w2 

+ (o.oo, -108.00, 540.00)wi + (o.oo, 72.00, -36.00)w1 
+ (o.oo, 162.00, -810.00)w~ + (o.oo, -162.00, 324.00)w1w2 

(
d2X d2X ) (d3 X d3 X ) o.8/2 II dt2 (0)112 +II dt2 (1)112 + o.2/2 II dt3 (0)112 +II dt3 (1)112 = 

+ (68234.40)w~ + (-90979.20)w~ + (-57736.80)w1wi + ( 48859.20)wi 
+ ( 46656.00)wiw~ + (-11772.00)w~ + (26244.00)wiwi 
+ (-26460.00)wiwi + (5004.00)wi + (-l5746.40)w{w2 

+ (18662.40)wfw2 + (-12463.20)wiw2 + (1051.20)w1w2 
+ (324.00)w2 + (5248.80)w~ + (-6998.40)wf 

+ (3758.40)wi + (-367.20)wr + ( 424.80)wi 
+ (324.00)w1 + (64.80) 
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For w1 = w2 = 1, the value of this last polynomial is equal to 2332.80. 
We find a partial minimum for the weights 

W1 = 1.000000 
Wz = 1.000000 

In these weights the polynomial is equal to 415,90. 

With the second method, we minimize the functional (3.4) for the two parameter values 
a = 0.2 and b = 0.64. (0.64 is the parameter value in which the non-rational Bezier 
curve with control points (b0 , ••• , b4 ) takes its highest curvature value). The polynomials 
involved are the following : 

d;t-; (0.2) = + (0.00, -0.14, -0.62)wi + (0.00, -0.45, -2.97)wi 

+ (0.00, -1.62, -5.40)w0wi + (0.00, 2.62, 4.88)w3 

+ (0.00, 9.90, 19.38)w0w3 + (0.00, -6.48, -13.39)w~wa 

+ (0.00, 0.00, 0.00) + (0.00, -42.00, -48.00)wo 

+ (0.00,46.80, 56.64)w~ + (0.00, -8.64, -6.91)wg 

d
3
X )4 )a dt3 (0.2) = + (0.00, -0.30,-1.40 W3 + (0.00,-0.84,-5.91 w3 

+ (0.00, -4.86, -17.74)wowi + (0.00, 6.84, 16.41)wi 

+ (0.00, 30.38, 70.20)w0wi + (0.00, -29.16, -78.73)wJwi 

+ (0.00, 2.34, -11. 72)w3 + (0.00, -108.38, -142.12)w0wa 

+ (0.00, 283.50, 537.30)w~w3 + (0.00, -77.76, -136.08)wgwa 

+ (0.00, 0.00, 0.00) + (0.00, 600.00, 600.00)wo 
+ (0.00, -1218.00, -1488.00)w~ + (0.00, 594.00, 648.00)wg 
+ (0.00, -77.76, -62.2l)wt 

d
2
X ( ) a ( ) 2 --(0.8) = + 0.00, 8.64, -48.38 w3 + 0.00, -46.80, 204.48 w3 dt2 

+ (0.00, 6.48, -15.12)w0w; + (0.00, 42.00, -192.00)wa 

+ (0.00, -9.90, 15. 78)w0w3 + (0.00, 1.62, 1.51 )wJw3 

+ (0.00, 0.00, 0.00) + (0.00, -2.62, -8.62)w0 

+ (0.00, 0.45, 2.19)wJ + (0.00, 0.13, 0.57)wg 
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d
3 x ( ) - ( ) 4 ( 3 dt3 0.8 - + 0.00, -77.76, 435.46 w3 + 0.00, 594.00, -2808.00)w3 

+ (0.00,-77.76, 244.94)w0wg + (0.00, -1218.00, 5280.00)wi 

+ (0.00, 283.50, -677.70)w0 wi + (0.00, -29.16, 20.4l)w5wi 
+ (0.00, 600.00, -3000.00)w3 + (0.00, -108.38, 431.62)w0w3 
+ (0.00, 30.37, -l0.80)w5w3 + (0.00, -4.86, -8.50)wgw3 

+ (0.00, 0.00, 0.00) + (0.00, 2.34, 2.34)w0 + (0.00, 6.84, 23.72)w5 

+ (0.00, -0.84, -4.22)wg + (0.00, -0.30, -1.28)wt 

0.8/2(11 d;t~ (0.2)11 2 + 11 d;t~ (o.8)11 2
) + 0.2;2 (11 d;t~ (0.2)11 2 + 11 d;t~ (o.8)112) = 

+ (19567.05)w~ + (22547.03)w0w~ + (-253788.23)wJ + (8893.22)w5wg 

+ (-210228.77)w0wg + (1303518.75)wg + (1138.75)wgwg 
+ (-54297.27)w5wg + (731681.56)w0wg + (-3388805.25)wg 

+ (964.63)wtwi + (-5084.38)wgwi + (117871.34)w5wi 
+ (-1199216.25)w0 wi + ( 4717641.50)wi + (2828.40)wgw; 
+ (-14143.8l)wtwi + (18327.41)wgw; + (-112940.15)w5wi 

+ (925985.31 )w0wg + (-3347188.25)wi + (3895.65)w8wi 

+ (-33913.58)wgw; + (84297.98)wtwi + (-64059.95)wgwi 

+ (61339.09)w5wi + (-270847.19)wowi + (951477.88)wi 

+ (2904.84)wJw3 + (-37958.81 )w8w3 + (166180.48)wgw3 
+ (-286455.4l)wtw3 + (172153.98)wgw3 + (-41568.92)w5w3 

+ (-1288.78)w0w3 + (-0.12)wa + (991.82)w8 + (-17298.91)wJ 
i + (114773.91)wg + (-354996.84)wg + (521578.19)wt 

+ (-328469.25)wg + (73660.86)w5 + (-0.0l)wo 

For w0 = w3 = 1 the last polynomial is equal to 1669.48, and we find a partial minimum 
in the weights 

Wo = 0.924456 
W3 = 1.132421 

In these weights the polynomial to minimize is equal to 647.52. 
Eventually, the condition i) of proposition (3. 7) gives us the value of the other weights 

W1 = 1.15 
W2 = 1.13 

Figure 17 shows, at the top, the non-rational curve, in the middle of the page, the curve 
found by the first method, and at the bottom, the curve found with the second method. 
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Each curve ( u >--+ X ( u)) is represented twice, to the left together with the curve ( u >--+ 

X(u)+ f(u)N(u)) where f(u) = 11:2 JJX"(u)ll, and to the right taking/( u) = 028 llX"(u )11 2 + 
o22 llX"'(u)IJ2. 

Fig. 17 
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4 Rational Tensor Product Bezier Patches with 
Twist of Minimum Energy 

In chapter 2, we locally minimized the bending energy of a curve. The equivalent of the 
bending energy of a curve for a surface S, is the strain energy fs "i + 11;~ds (see 1.6). 

Hagen and Farin find an optimal value of the normal component of the twist vector, for 
which the quantity ( "i + 11;Dds is minimized. They apply this result to non-rational tensor 
product surfaces. The object of this chapter is to use this optimal component of the twist 
vector, to find values for the inner-weights of a rational tensor product Bezier patch. 

In paragraph 4.1, we recall the result of Hagen and Farin [FAR90], while in paragraph 4.2 
we apply this result to rational tensor product patches. 

4.1 An Optimal Normal Component of the Twist Vector 

Theorem 4.1 (Farin, Hagen) 

· Let X : U -+ R 3 be a regular parametric surface of class 0 3 • 

· Let (g;3), (h;3) be the first and second fundamental forms of X. 
(i) There exists a function f : U x lR-+ R of class 0 1 such that 

(ii) The partial derivative off along h12 vanishes if and only if 

h12 = 912 (911 h22 + 922 hll) . 
911922 - Yi2 

(4.1) 
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Proof: 

(i) As a consequence of (1.3), it follows : 

and the function f 

f:UxlR-+R 

( u, v, X) f-t [ ( g11h22 - 2g~2X + g22h11) 
2 

_ 2 ( h11h2; - w
2
)] Vi 

is of class 0 1 because the surface x is of class 0 3 . 

(ii) is proved by calculating the partial derivative of/ow 

of -4,fi 2 -;:;-(u,v,x) = --2 - [(-2g12 - g) w + 912 (g11h22 + 922h11)] ux g 

Now, X is regular implies that g is positiv, and all the more so g+2gr2 • Therefore, dividing 
by - 4 (9" and 2gr2 + g leads to the necessary and sufficient condition. g 

D 

4.2 Minimum Energy Twist Weights 

Farin and Hagen applied this theorem to non-rational tensor product surfaces in the follow-
ing way: They supposed that all the data (i.e. Bezier control points for a Bezier patch, par-
tial derivatives in the corners for a generalized Coons patch) except the normal component 
of the twist vectors in the corners (i.e. normal component of b11, bm-1,1, b1,m-1, bm-1,m-1 

for a Bezier patch and normal component of d~~v in the corners for a generalized Coons 
patch) are fixed. Then they applied the condition ( 4.1) in the four corners of the patch to 
find the rest of the data. 
Therefore they find the unique patch, which interpolates the fixed data, and minimizes the 
local strain energy in each corner. 

In paragraph 4.2 we apply theorem 4.1 in an analogous sense, to rational tensor product 
Bezier patches. We supposed that all the data, except the four weights w11, W1 ,m-1, 

Wm-1,1, Wm-l,m-1, are fixed, and we find the unique values of these weights, for which the 
strain energy of flexure and torsion is locally, in each corner of the patch, minimized. 
We call these weights the "minimum energy twist weights". 
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4.2.1 The first and second fundamental form in the corners of a rational 

tensor product Bezier patch 

Proposition 4.2 
Let X be a rational tensor product Bezier patch of degree (m, n) parametrized 
over [u 0 ,u1] X [vo,v1]. 
Let (b;j)•E{o, ... ,mJ and (w;j)iE{o,. .. ,mJ be the control points and -weights of X. 

jE{O, ... ,n} jE{O,. .. ,n} 

The first fundamental form (9ij) •~i.2 in ( uo, vo) is given by : 
J=l,2 

m2 wfo 2 
g11(uo,vo) = ( )2 - 2- llb10 - boo II u1 - uo Woo 

2 2 
922(uo,vo) = ( n )2 w~

1 llbo1 - booll 2 

v1 - Vo Woo 
mn W10Wo1 

g12(uo,vo) = ( )( ) - 2- < bio - boo,bo1 - boo>, U1 - Uo V1 - Vo Woo 
921(uo,vo) = 912(uo,vo) 

and the second fundamental form ( h;j) •~i.2 in ( u0, v0) is given as follows : 
;=1,2 

m(m-1) w20 
h11(uo,vo) = ( )2 - < b2o - boo,N> u1 - uo woo 

n(n - 1) wo2 
h22(uo,vo)= ( )2 - <bo2-boo,N> v1 - Vo Woo 

mn w11 
h12(uo,vo) = - < bu - boo,N> (u1 - uo)(v1 - vo) Woo 
h21 ( uo, vo) = h12 ( uo, vo) 

Proof: 
The first and second order derivatives in ( u 0 , v 0 ) are given in Prop. 5.2. Prop. 5.2, together 
with the definitions (1.17) and (1.18) of the first and second fundamental forms yields 
Prop. 4.2. D 
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Remark 4.3: 
• For symmetry reasons, the first and second fundamental forms in ( u 1 , v0 ) ( resp. ( u 0 , v1 ), 

(u1,v1) ) are given by Prop. 4.2, after changing the indices (i,j) of the weights and 
control points by (m -i,j) ( resp. (i,n - j), (m - i, n - j)) and taking the opposite sign 
for N(u1,vo) (resp. opposite sign for N(uo,v1), same sign for N(u 1,v1)). 

4.2.2 The weights for the optimal normal component of the twist vectors 

Proposition 4.4 

Let X be a rational tensor product Bezier patch of degree ( m, n ). 
Let (b;j);E{o, .. .,mJ and (w;j)<E{o,. . .,mJ be the control points and -weights of X. 

iE{O,. .. ,n} iE{0 1 ... ,n} 

If m 2: 3, n 2: 3 and if boo, blo ,b0i, bu are not coplanar then 

i) (K.f + ~DJY(u0 ,vo) is a polynom of degree 2 in w11 (degree 0 in w1,n-1, 
Wm-1,1 7 Wm-1,n-1) 

ii) ( K.f + K.DJY( uo, Vo) is minimum if and only if 

< bio - boo,bo1 - boo> 
wu = < bn - boo,N > 

(4.2) 
m(n- l)wf0w20 llb10 -boo ll 2<bo2 -boo ,N>+n{_m-l)w~1wo2 llbo1-boo ll 2<b20-boo,N> 

llb10 - booll 2llbo1 - booll 2+ < blo - boo,bo1 -boo > 2 

where N = b10-boo,bo1-boo 
[b10-boo ,bo1 -boo] 

i) and ii) are also true in (u1,vo) (resp. (uo,v1), (u1,v1) after changing the 
indices (i,j) of the weights and control points in (m - i,j) ( resp. (i,n - j), 
(m-i,n-j)). 

Proof: 
The conditions m 2: 3, n 2: 3 imply that the patch has actually four "twist" weights 
W1,i, Wm-1,1' W1,n-1, Wm-1,n-1 · Equation (1.3) together with Prop. 4.2 prooves that 
( "'f + ~DJY( u 0, v0) is a polynom of degree 2 in w1 ,1 if and only if the leading coefficient 
(i.e.< b11 - b00 ,N >)doesn't vanish. This is ensured by the condition b00 , b10,bo1, b11 
not coplanar. 
Replacing the values given by Prop. 4.2 in the equation ( 4.1) leads to the solution ( 4.2). 

D 
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Remark 4.5: 
• One has to be careful with the fact that the weights given by Prop. 4.4 only ensure the 

minimization of (11:r + 11:Dyg in the corners of the patch. This choice of weights can be 
inconvenient for the rest of the patch. 
If, for example, bn - b00 is almost orthogonal to the normal N ( < b11 - b00 , N >~ O), 
( 4.2) can lead to a negative value of w1 ,1 , for which the surface X is not defined over 
the whole parameter domain [uo, u1] x [v0, v1]. However, in this case, there still exists a 
neighbourhood of ( u 0 , v0 ) in which X is defined, and the strain energy is still minimized 
in (uo,vo)· 

4.2.3 Example 

We choose a rational Bezier patch with high curvatures at the four corners to visualize 
the results of Prop. 4.4. Fig. 18 shows at the top the original patch, and at the bottom 
the rational patch with the minimum energy "twist" weights resulting from Prop. 4.4. 
Each surface X (X ---+ X(u,v)) is represented together with the surface Y (Y(u,v) ---+ 
X(u,v) + f(u,v) · N(u,v)), where f(u,v) is proportional to the local bending energy 
(11:r +11:~)ygin the point X(u,v) and N(u,v) is the normal to the surface X at this point. 
Thus, the distances between the two surfaces X and Y at the corners, are a measure of 
the function that we want to minimize. 
Although Prop. 4.4 only ensured in general a minimization of the local energy in the 
corners (s. Remark 4.5), Fig. 18 shows that, the strain energy is minimized over the entire 
patch in this example. 
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Fig. 18 



60 Chapter 5: Rational TP Bizier Patches with Locally Minimum Norm of Derivatives 

5 Rational Tensor Product Bezier Patches with 
Locally Minimum Norm of Derivatives 

The generalization of classical spline functions for functions of two variables was first 
introduced by Atteia in 1966 [ATT66]. He minimized the integral 

(5.1) 

over all the surfaces X interpolating a given set of points in R 3 • Other analogous criteria 
are successfully used by Harder and Desmaray [HAR72], Duchon [DUC77] and Franke 
[FRA85]. 

For the same reasons as in chapter 3, we replace the integral by a quadrature formula : 
we minimize the sum of the scalar values llXuu 11 2 + 2llXuv 11 2 + llX •• 11 2 in the corners of a 
rational tensor product Bezier patch, which control points are given by a user. 

In chapter 3 we used the standard reparametrization of the Bezier curves (Prop. 3.2) to 
reduce the degree of the resolving system. In paragraph 5.1, we will see that such a 
rational linear reparametrization, setting the corner weights to one while remaining the 
control polygon, doesn't always exist in the case of rational tensor product Bezier patches. 
Anyway, the condition that the four corner weights are equal to one can be imposed. In this 
case, the degree of the resolving system is reduced, with the drawback that the criterion 
function is minimized over a smaller set : The set of rational tensor product Bezier patches 
with corner weights equal to one (and the users given control structure). 

In paragraph 5.2, we use this condition to resolve our problem and present an example. 
In paragraph 5.3, we find out other stronger but useful conditions on the weights, which 
allow to minimize the function 11Xuull 2 + 2llXuvll 2 + llX •• 11 2 in other parameter points of 
the boundary curves. 
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5.1 Standard Reparametrization for Rational Tensor Product 
Bezier Surfaces 

Proposition 5.1 

Let X be a rational tensor product Bezier patch of degree m, n parametrized 
over [uo,u1] X [vo,v1], with control points (bij);E{o, ... ,=J and positive control 

iE {o, ... ,1i} 

weights ( Wij) ;E {o, ... ,=J • 
jE{o, ... ,n) 

There exists a rational linear reparametrization <p such that 
ii) cp(u;,v;) = (u;,v;) cp([u0,u1] x [vo,v1]) = [uo,u1] x [vo,v1] (5.2) 
i) the reparametrized patch X( <p) is a rational tensor product Bezier patch 

with the same control points as X and with control weights (wij) ;E{o, ... ,=J 
jE{O, ... ,n} 

such that 

Wij > 0 

(5.3) 

Woo = Wmo = Won = Wmn = 1 

if and only if the following condition holds : 
iii) 

(5.4) 
Woo Won 

Proof: 

The proof is analogous to the proof of Prop. 3.2. The conditions (5.2) imply that <p is of 
the following form : 

'P = (puu1(u - uo) + Puuo(u1 - u) , Pvv1(v - vo) + Pvvo(v1 - v)) 
Pu(u - uo) + Pu(u1 - u) Pv(v - vo) + Pv(v1 -v) 

where Pu,Pu,Pv,Pv are four positive scalars. 

The reparametrized surface X ( cp) is equal to : 

.._,m .._,n i •m-i j 'n-j . ·b·. Em( )En(t) X( (u v)) = L..,i=O Dj=O Pu Pu P.v ~v ~'J '1 ; s j 
'P ' .._,m .._,n i •m-i J ·n-3 Em( )En(t) 

L..,i=O Dj=O Pu Pu Pv Pv Wij ; S j 
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X(cp) is the rational tensor product Bezier surface with the same control points as X and 
with the control weights (w;j);E{o, ... ,mJ 

iE{o, ... ,n} 

The conditions (5.3) are equivalent to : 

•m•n 1 PuPv = -woo 
m•n 1 Pu Pv = --

Wmo 
•m n 1 Pu Pv = --

Won 

1 
P"':P~ = --

Wmn 

(5.5.1) 

(5.5.2) 

(5.5.3) 

(5.5.4) 

Dividing (5.5.1) by (5.5.2) and (5.5.3) by (5.5.4) leads to the necessary condition (5.4). 

Now if (5.4) is fullfilled. then taking 

•n _ (-1 )~ Pu - ' Woo 
1 ~ 

Pu= CmJ ' 
/J. = 1, 

_(woo);; Pv -
Won 

yields a reparametrization cp such that i) and ii) are true. 
D 

Remark 5.2: 
• In the curve case we saw (Prop. 3.2) that all rational Bezier segments with a given control 

polygon can be reparametrized with a rational linear function such that the endpoint 
weights are changed into one. Prop. 5.1 shows that the equivalent for the surfaces is no 
longer true: For any control polygon, there exist some rational tensor product Bezier 
surfaces for which no rational linear reparametrization change the corner weights into 
one. 
This will have consequences in paragraph 5.2. 
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Fig. 19 

Example: 

We choose a plane bicubic rational Bezier patch to focus the attention on the parameter 
lines, and not on the surface, which is not modified by the reparametrization. The control 
points are (i,j) ;=o, ... ,3. The control polygon is represented to the left of Fig. 19. 

J=0, ... ,3 

The weights of the upper right patch are equal to one, except the bottom left and upper 
right corner weights, which are respectively equal to 8 and 1/8. Thus the condition iii) of 
Prop. 5.1 is verified, and the upper right patch can be reparametrized. The result of this 
reparametrization is the buttom right patch. 
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5.2 The Resolving System 

5.2.1 The derivatives of a rational tensor product Bezier patch in the 
corners 

Proposition 5.2 

Let X be a rational tensor product Bezier patch of degree m, n parametrized 
over [uo,u1] x [v0,v1], with control points (b;j)iE{o, ... ,mJ and control weights 

jE{o, ... ,n) 

(Wij)iE{O, ... ,m.} • 
jE{O, ... ,n} 

The second partial derivatives of X in ( u 0 , v0 ) are given by : 

82 X m 1 [ 2 -8 2 (uo,vo) = ( ) 2 2 2(wooW10 - mw10)(b10 - boo)+ u u1 - uo w00 

(m + l)wooW2o(b20 - boo)] (5.6.a) 

82X mn 1 [ 
-8 [) (uo,vo) = ( )( ) 2 Woow11(b11 - boo)-u v U1 - Uo Vo - V1 Woo 

W10Wo1 ((b10 - boo)+ (bo1 - boo))] (5.6.b) 

82 X n 1 [ 2 -8 2 (uo,vo) = ( )2 2 2(wo0Wo1 - nw01 )(bo1 - boo)+ v v1 - vo w00 

(n + l)wo0Wo2(bo2 - boo)] (5.6.c) 

Proof: 
• (u ---7 X(u,v0 )) (resp. (v ---7 X(u 0 ,v)) is the rational Bezier curve with control points 

(boo,. . .,bmo) (resp. (boo, .. .,bon)) and control weights (woo,. . .,wmo) (resp. (woo,. . ., 
Won)). Therefore, the partial derivatives ~.,..If (uo,vo) and ~'.f (uo,vo) are given by Prop. 
3.1. 

• Let us write as usual X = E. 
w 2 

The equivalent of the recurrence formula (3.2) in the surface case gives for ;.,.:. ( uo, Vo) : 
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The partial derivatives of the right member are given by the de Casteljau algorithm and 
by Prop. 3.1 : 

8 2 p mn 
-8 a (uo,vo)= ( )( ) ·(w11b11-W1ob10-Wo1bo1+Wooboo) u v Uj - Uo V1 - Vo 
8 2w mn 

-8 a (uo,vo) = ( )( ) · (w11 - WjO - Wo1 +Woo) u v U1 - Uo Vj - Vo 
aw m 
-8 (uo,vo) = ( ) · (w10 - woo) 

U U) - Uo 

aw( ) n ( - uo,vo = ---- · Wo1 -w00 ) av (v1 - vo) 
8X m W10 -8 (uo,vo) = ( ) · (b10 - boo) 

u u1 - uo woo 
8X n Wo1 
-8 (uo,vo) = ( ) · (bo1 - boo) 

v v1 - Vo woo 

Inserting these formulas in ( 5. 7), we get : 

a2x mn 1 [ -8 a (Uo,Vo)= ( )( ) ·-2- Woo(w11b11-W1ob10-Wo1bo1+Wooboo) 
u v U1 - Uo V1 - Vo Woo 

-- W10 ( Wo1 - Woo)( bio - boo) 

- Wo1(w10 -woo)(bo1 - boo) 

- woo(w11 - w10 - Wo1 + Woo)boo] 

We rewrite i~;;,,(uo,vo) as a linear combination of the vectors (b11 - bo~), (b10 - boo), 
(bo1 - boo) : 

a2x mn 1 [ 
-8 a (uo,vo) = ( )( ) · - 2- WooW11(b11 - boo) u v Uj - Uo V1 - Vo Woo 

- woow10(b10 - boo) 

- WooW01(bo1 - boo) 

- w10(wo1 - woo)(b10 - boo) 

-Wo1(w10 - woo)(bo1 - boo)] 

Additing the two coefficients of (b10 - b00 ) and (bo1 - boo) we get (5.6.b). 
D 

5.2.2 Degree of the resolving system 

Our aim in chapter 5 is to minimize the sum of the scalar functions JJXuuJJ 2 + 2JJXuvlJ 2 + 
JJXvv JJ 2 in the corners of a rational tensor product Bezier patch which control points are 
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given by a user. Prop. 5.3 shows that the second partial derivatives are rational functions 
of the weights of total degree 2, with denominator equal to +, +, +, --}-. 

Woo WTnO Won wmn 

In the curve case, we could set without lost of generality the endpoint weights to one, so 
that the degree of the resolving system was reduced. 

In the surface case, we still have to fix the value of the corner weights (if not, the degree of 
the resolving system would be 16 !), but this implies now a restriction of the set of patches 
in which we minimize the criterion function : We only can minimize this function over 
patches fullfilling condition iii) of Prop. 5.1. This proposition says that if the condition 
iii) is veryfied, then there exists a reparametrization transforming the corner weights in 
one. With this restriction, the degree of the resolving system is reduced to 3, because the 
second partial derivatives become polynomial functions of the weights with total degree 2. 

5.3 Other Criterions 

In paragraph 5.2.2, we make a restriction to solve our problem : we consider only patches 
such that the corner weights can be fix to one. Now, it is possible to set arbitrary other 
weights to one. The set of patches in which the criterion function is rninimized become 
smaller, buth further applications are possible. 

In the following, we dicuss two possible applications : 

• If the boundary weights are equal to one, the denominator of the parametric equation 
is identically equal to one along the boundaries. In other words, the boundary curves 
are non rational curves. Therefore, the second partial derivatives in the points of the 
boundary curves are polynomial functions of the weights, with low degree. 
This allows to use the following criterion function : 

where {( u;, v;), i E J} is a set of parameter points of the boundary curves. 
This criterion function is a polynomial function of the inner weights. 

(5.8) 

• For surfaces with adjacent patches, the Q1-continuity between two adjacent patches 
depends on the weights (this is not the case for the G1-continuity between two consecutive 
curve segments). The necessary and sufficient Q1 -continuity conditions between two 
adjacent patches with same control-points and -weights along a common boundary curve 
of degree n consists of l6·n linear homogeneous equations with 12n+ 1 arbitrary constants 
(see [LUl90]). In our configuration, the points are not unknowns, they are given by a 
user and may not move. Therefore, the number of unknowns is 3 x ( n+ 1) : the 2 x ( n + 1) 
weights on each side of the boundary curve, and the ( n + 1) weights on this curve. This 
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means that the degrees of freedom (the {12n + 1) arbitrary constants and the 3(n + 1) 
weights) are less than the number of equations. Moving these 3( n+ 1) weights doesn't give 
enough degrees of freedom to reach the G1-continuity. Therefore we decide to leave these 
3(n + 1) weights unchanged during the variational process, and move only the weights, 
which do not affect the G1-continuity. This implies that to have a G1 -continuous solution, 
the control points given by a user must define a G1-continuous non rational surface. 

The colorplate 20 illustrates the results of chapter 5 on a biquintic Bezier surface with four 
patches. 

t.p. B.ezler 
<Xuu,Xuu>+:Z<Xuv,Xuv,,.+<Xvv,Xvv> 

~.ro 

,oo.oo 

•• ('ll 

w::: 
I ll.lll 

Fig. 20 

At the upper right corner is the control polygon of the surface. The corresponding non-
rational Bezier surface is represented at the bottom of the colorplate. The surface drawn in 

the middle of plate 20 is the result of the minimization of the sum of II~',/[ 11
2 
+ 211:~:,,11

2 

+ 
II 8;.;; 11

2 
in the corners of the four patches. At the top is represented the surface with the 

same control points after minimization of the sum of II~~;; 11
2 

+ 211:~:,,11
2 

+ II ~'.:; 11
2 

in the 
middle parameter points of the 10 boundary curves. 
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During the variational process we only allowed the weights w22 , w23 , w32 , W33 of the four 
patches to move. Thus the three surfaces of plate 20 are C1-continuous. 
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6 Stiffness Degree for Rational Triangular 
Bezier Patches 

Triangular Bezier patches are a more natural generalization of Bezier curves than are tensor 
product surfaces. Therefore, some results, true for Bezier curves, can be generalized for 
triangular Bezier patches, but do not find direct equivalent for tensor product Bezier 
surfaces. Among such results is the so called standard reparametrization. 

While in paragraph 5.1, we saw that, for some tensor product Bezier patches, no ratio-
nal linear reparametrization transform the four corner weights in one, we will prove in 
paragraph 6.1, that for any triangular Bezier patches with positive weights, there exists 
a unique rational linear reparametrization changing the three corner weights in one, and 
remaining the positive sign of the other weights. 

This will enable us to generalize the results of chapter 3 to triangular Bezier patches : we 
will minimize the following criterion function : 

In paragraph 6.2.1 the second and third derivatives are calculated, and in paragraph 6.2.3 
two examples are presented. 

6.1 Standard Reparametrization for Rational Triangular Bezier 
Patches 

The next proposition is the direct equivalent of Prop. 3.2 for rational triangular Bezier 
patches. 
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Proposition 6.1 

Let X be a rational triangular Bezier patch of degree n, parametrized over the 
domain T(a,b,c) with the control points (bijk)<+i+•=n, and positive control 

i,j,k?_O 

weights ( Wijk) <+i+•=n. 
i,j,k?_O 

There exists a unique rational linear reparametrization <p such that 
i) <p(a) = <p(b) = <p(c) , <p(T(a,b,c)) = T(a,b,c) 

ii) The parametrized Bezier triangle X(<p) has the same control points, but 
new conrol weights (wijk) <ti.+•=n with 

t,y,k?_O 

Wnoo = Wono =Woon = 1 

Wijk > 0 

Proof: 
Let ( u, v, w) be the affine coordinates of the parameter point au+ bv +cw in T( a, b, c). 
A rational linear reparametrization cp fulfilling the condition i) must transform u, v and w 
in: u = --~P_a_u __ _ 

PaU + PbV + PcW 
v= ___ P_bv_ 

PaU + PbV + PcW 
PcW W==-------

PaU + PbV + PcW 
where Pa, Pb, Pc are three positiv scalars. 
The reparametrized generalized Bernstein polynomials Bijk are equal to : 

i j k 
E n (- - -i - PaPbPc B" ( ) i3'k u,v,w -- ( ) . i3'k u,v,w 

PaU + PbV + PcW n 
i+j+k=n 

And the parametric equation of the reparametrized surface X(<p) is now: 

X( ( ) 
L.;i+i+k=nP~PlP~WijkbijkBijk(u,v,w) 

cp u,v,w = .. 
L.;i+ i+k=n p~p~p~WijkBijk ( u, v, W) 

We see that X ( <p) has the same control points as X, but new control weights (wijk) <ti.+•=n 
i,3,k?_O 

Wijk = P~PlP~Wijk , i + j + k = n 
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The condition ii) is equivalent to : 

( 1 )* Pa= 
Wnoo 

Pb= (WolnJ * 
Pc= ( l ) * 

Woon 

The effect of such a reparametrization is shown on Fig. 21 

Fig. 21 

D 
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The control polygon of a plane cubic triangular Bezier patch is represented to the left of 
Fig. 21. 

The control points are : ( i, j, k) •+;+k=a. The weights of the upper right patch are equal to 
i,j,k~O 

one, except the bottom left and bottom right corner weights, which are respectively equal 
to 10 and 5. 
The bottom right patch is the same surface, after the reparametrization. 
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6.2 The Resolving System 

6.2.1 The derivatives of a rational triangular Bezier patch in the corners 

Proposition 6.2 

Let X be a rational triangular Bezier patch of degree n, parametrized over the 
domain triangle T( a, b, c) with control points (bijk) 'fHk=n, and control weights 

i,1,k~O 

(wijk) ifi.+k=n. 
t 1J,k~O 

The derivatives of X in bnoo in the direction u = c - bare the following rational 
functions in the weights : 

1 

n " . Xu= -- L. .. /-1/wn-l,1-i,i(bn-l,1-i,i - bnoo) 
Wnoo i=O 

(6.2.a) 

1 

X,.,. = w~ [-2n(wn-l,l,O - Wn-1,0,1) L(-l)iwn-l,l-i,i(bn-l,l-i,i - bnoo) 
nOO i=O 

+ (n - l)wnoo ~(-l)i G)wn-2,2-i,i(bn-2,2-i,i - bnoo)] 

Xuuu = w~ [3n(2n(wn-l,l,O - Wn-1,0,1)2 
nOO 

(6.2.b) 

- (n - l)wnoo(Wn-2,2,0 - 2Wn-2,1,1 + Wn-2,0,2)) 
1 

· L(-l)iwn-l,l-i,i(bn-l,l-i,i - bnoo) 
i=O 

- 3n(n - l)wnoo(wn-1,1,0-Wn-1,o,i) t(-l)i G)wn-2,2-;,;(bn-2,2-i,i-bnoo) 
i=O 

+ (n - l)(n - 2)w~00 ~(-l)i G)wn-3,3-i,i(bn-3,3-i,i-bnoo)] (6.2.c) 

The derivatives of X in the direction v in bono, and in the direction w in boon 
follow from symmetry. 

Proof: 
The proof is based on the de Casteljau algorithm and on the recurrence formula (3.2). 
Although (3.2) is written for a function of one variable, it remains true if the d-th derivative 
is replaced by the d-th directional derivative of a function of several variables. 
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The directional derivatives of the numerator p and the denominator w of X in bnoo is given 
by the triangular de Casteljau algorithm : 

p = Wnoobnoo 

Pu == n(wn-1 11,obn-1,1,o - Wn-1 10,1bn-1,0 11) 

Puu == n(n - l)(wn-2,2 1obn-2,2,o -2Wn-2,1,1bn-2,1,1 +wn-2,0 12bn-2,o,2) 

Puuu = n(n - l)(n - 2)(wn-3,3,obn-3,3,0 - 3wn-3,2,1bn-3,2,1 + 3Wn-3,1,2bn-3,1,2 

-- Wn-3,o,3bn-3,o,3) 

w = Wnoo 
Wu= n(wn-1,1,0 - Wn-1 10,1) 

Wuu == n(n - l)(wn-2 12 10 - 2Wn-2,I,1 + Wn-2,0,2) 

Wuuu == n(n - l(n - 2)(wn-3,3,0 - 3wn-3,2,1 + 3Wn-3,1,2 - Wn-3 10,s) 

These derivatives depend not only on the boundary weights, but also on the interior weights 

For the first derivative, (3.2) yields : 

1 
Xu= -[pu - WuX] 

w 
::::>Xu= ~ [(wn-1,1,obn-1,1,0 - Wn-1,o,1bn-1,o,1) - (wn-1,1,0 - Wn-1 1011)bnoo] 

Wnoo 

Rewriting Xu as a linear combination of the vectors (bn-1,1,0-bn,o,o) and (bn-1,0,1-bn,o,o), 
we get (6.2.a). 

The second derivative is equal to : 

1 
Xuu = -[Puu - 2wuXu - WuuX] 

w 

=? Xuu = w~ [(n - l)wnoo I)-l)i (~)Wn-2,2-i,ibn-2,2-i,i 
nOO i=O 

- 2n(Wn-1,1,0 - Wn-1,0,1) 2:(-l)iwn-1,1-i,i(bn-1,1-i,i - bnoo) 
i=O 

2 

. (2) -(n-l)wnoot-;(-1)' i Wn-2,2-i,ibnoo] 

Additing the monoms corresponding to Puu and -WuuX, we get (6.2.b). 
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The calculus of the third derivative is similar : 

1 
X,,,,,,,,, = -[p,,,,,,,,, - 3w,,,X,,,,,, + 3wuuXu - WuuuX] w 

_ n [ 2 ~ i(3) =} X,,,,,,,,, - ~ (n - l)(n - 2)wnoo L..,(-1) i Wn-3,3-i,ibn-3,3-i,i 
nOO i=D 

1 

+ 6n2(wn-1,1,o - Wn-1,0,1) 2 L(-l)iwn-I,I-i,i(bn-1,I-i,i - bnoo) 
i=O 

2 ·(2) - 3n(n - l)wnoo(Wn-1,1,0 -Wn-1,0,1) ~(-1)' i Wn-2,2-i,i(bn-2,2-i,i - bnoo) 
i=O 

I 

- 3n(n - l)wnoo(Wn-2,2,0 - 2Wn-2,1,1 + Wn-2,0,2) L(-l)iwn-I,I-i,i(bn-1,I-i,i - bnoo) 

We get (6.2.c) after additing the coefficients of (bn-1,1,0 -bnoo) and (bn-1,0,1 - bnoo), and 
the monoms corresponding to Pu.u.u. and -Wuu.u.X. 

D 

Remark 6.3 

Prop. 6.2 only gives the cross derivatives in each corner. The derivatives .parallel to the 
edges of the triangle follow directly from Prop. 3.1. 

6.2.2 The degree of the resolving system 

The criterion function (6.1) depends on the parametrization of the triangular patch. We 
make now the assumption that the rational triangular Bezier patches are reparametrized 
such as in Prop. 6.2. This has two consequences. First, the same corner weights are set 
to one, and the criterion function (6.1) became a polynomial function in the weights, with 
total degree 4 if (3 = 0, degree 6 if (3 of= 0. Second, a unique value of the function (6.1) is 
associated to each rational triangular Bezier patch. 

Figure 22 shows the result of the minimization of (6.1) on a cubic triangular patch for 
a= 0.8. The values of the criterion function (6.1) and of the energy function (11:~ + 11:~)yg 
are represented with the help of a color map. To the left of the picture is the original 
triangle (with all weights equal to one), and to the right the triangle with the weights 
minimizing the criterion function (6.1). The value of (6.1) for the original triangle is 
814.45. 
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We find a minimum for the weights 

WJOO = 1.0 

W2JO = 0.727 W201 = 0.732 

WJ20 = 0.728 WJJI = 0.650 WJ02 = 0.731 

WQ30 = 1.0 Wo2J = 0.731 WQJ2 = 0.730 

In these weights, (6 .1) takes the value 494 .17. 

rat. Bez. Triangle 
0,8•C<Xuu,Xuu>+<Xvv,Xvv>+<Xww.Xww>) 

+o.2•(<Xuuu.Xuuu>+<Xvvv,Xvvv>+<Xwww.xwww>) 

·~.ro 

rns.w 

{k1*k1+k2•k2h(112 
Jfl~ 

~
<J.$10 

. 

·~-10 

, t0 

0.00 

Fig. 22 

wooa = 1.0 
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