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Introduction

This dissertation discusses some topics and applications in combinatorics.
Combinatorics is a branch of mathematics which concerns the study of

families of discrete objects which are often designed as models for real ob-
jects. The motivations for studying these objects may arise from informatics
(models for data structures, analysis of algorithms, ...), but also from biology
- in particular molecular and evolutive biology [58] - from physics as in [13]
or from chemistry [31].

Combinatorialists are particularly interested in several aspects of a fam-
ily of objects: its diferent characterisations, the description of its properties,
the enumeration of its elements, and their generation both randomly or ex-
haustively, by the use of algorithms, the deinition of some relations (as for
example order relations) between the elements belonging to the same family.
We have taken into consideration two remarkable subields of combinatorics,
which have often been considered in the literature. These two aspects are
closely related, and they give a deep insight on the nature of the combinato-
rial structures which are being studied: enumerative combinatorics and the
study of patterns into combinatorial structures.

Enumerative Combinatorics. An unavoidable step for understanding
the structure of a family of objects is certainly the capability of counting
its elements. Among the many ways of describing sets of objects, the list
of its elements is the basic one and convenient for inite and small sets.
For larger sets this is obviously problematic, and mathematicians developed
this ield in several directions in order to “understand” the meaning of their
observations. Recently in the history of mankind, enumerative combinatorics
emerged as a powerful tool. As enumerative combinatorics deal with inite
families of objects, it is convenient to look for bijections with inite subsets
of integers, in other words counting the number of its elements in an exact
way if possible, and approximate otherwise. Various problems arising from
diferent ields can be solved by analysing them from a combinatorial point of
view. Usually, these problems have the common feature to be represented by
simple objects suitable to enumerative techniques of combinatorics. Given
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a family O of objects and a parameter � on this family, called the size, we
focus on the set On of objects for which the value of the parameter is equal
to �, where � is a nonnegative integer. The parameter � is discriminating if,
for each non negative integer �, the number of objects of On is inite. Then,
we ask for the cardinality �n of the set On for each possible �. Enumerative
combinatorics answers to this question. Only in rare cases the answer will
be a completely explicit closed formula for �n, involving only well known
functions, and free from summation symbols. However, a recurrence for �n
may be given in terms of previously calculated values �k, thereby giving a
simple procedure for calculating �n for any � ∈ N. Another approach is
based on generating functions: whether we do not have a simple formula for
�n, we can hope to get one for the formal power series �(�) = �n�n�

n, which
is called the generating function of the family O according to the parameter
�. Notice that the �-th coeicient of the Taylor series of �(�) is just the
term �n. In some cases, once that the generating function is known, we can
apply standard techniques in order to obtain the required coeicients �n (see
for instance [79, 82]). Otherwise we can obtain an asymptotic value of the
coeicients through the analysis of the singularities in the generating function
(see [69]).

Several methods for the enumeration, using algebraic or analytical tools,
have been developed in the last forty years. A irst general and empirical
approach consists in calculating the irst terms of �n and then try to deduce
the sequence. For instance, one can use the book by Sloane and Ploufe
[103, 114] in order to compare the irst numbers of the sequence with some
known sequences and try to identify �n. More advanced techniques (Brak
and Guttmann [32]) start from the irst terms of the sequence and ind an
algebraic or diferential equation satisied by the generating function of the
sequence itself. A more common approach consists in looking for a construc-
tion of the studied family of objects and successively translating it into a
recursive relation or an equation, usually called functional equation, satisied
by the generating function �(�). The approach to enumeration of combina-
torial objects by means of generating functions has been widely used (see
for instance Goulden and Jackson [79] and Wilf [125]). Another technique
which has often been applied to solve combinatorial problems is the Schützen-
berger methodology, also called DSV [112], which can be decomposed into
three steps. The irst one consists in constructing a bijection between the
objects and the words of an algebraic language in such a way that for every
object the parameter to the length of the words of the language. At the next
step, if the language is generated by an unambiguous context-free grammar,
then it is possible to translate the productions of the grammar into a sys-
tem of functional equations. Finally one deduces an equation for which the
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generating function of the sequence �n is the unique and algebraic solution
(Schützenberger and Chomsky [44]). A variant of the DSV methodology are
the operator grammars (Cori and Richard [51]). These grammars take in
account some cases in which the language encoding the objects is not alge-
braic. The theory of combinatorial species described by Joyal [89], is the
irst unifying presentation of a combinatorial theory of formal power series,
where operations on species relect on the generating functions and vice versa.
A comprehensive exposition can be found in Bergeron, Labelle and Leroux
[16], with numerous examples: arithmetic operations on power series cor-
respond to natural transformations on species, building a powerful calculus
for the decomposition or substitution in species. A variant is the theory of
decomposable structures (Flajolet, Salvy, and Zimmermann [67, 68]), which
also describes recursively the objects in terms of basic operations between
them. These operations are directly translated into operations between the
corresponding generating functions, cutting of the passage to words. A nice
presentation of this theory appears in the book of Flajolet and Sedgewick
[69]. An elegant formalization of decomposable structures was introduced in
[62] by Dutour and Fédou: it is based on the notion of object grammars and
describe objects using very general operators.

A signiicantly diferent way of recursively describing objects appears in
the ECO methodology, introduced by Barcucci, Del Lungo, Pergola, and
Pinzani [9]. In the ECO method each object is obtained from a smaller object
by making some local expansions. Usually these local expansions are very
regular and can be described in a simple way by a succession rule. Then a
succession rule can be translated into a functional equation for the generating
function. It has been shown that this method is very efective on large number
of combinatorial structures. Succession rules (under the name of generating
trees) had however been applied to enumeration problems, previously [9], in
[45] and [123]. We also cite [8] in which we ind an analysis of the links
between the structural properties of the generating trees and the rationality,
algebraicity, or transcendence of the corresponding generating function.

Another approach is to ind a bijection between the studied family of ob-
jects and another one, simpler to count. In order to have consistent enumer-
ative results, the bijection has to preserve the size of the objects. Moreover,
a bijective approach also permits a better comprehension of some properties
of the studied family and to relate them to the family in bijection with it.

Patterns in combinatorial structures. A possible strategy to under-
stand more about the nature of some combinatorial structures and which
provides a diferent way to look at a combinatorial object, is to describe it by
the containment or avoidance of some given substructures, which are com-
monly known as patterns. The concept of pattern within a combinatorial
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structure is central in combinatorics. It has been deeply studied for permu-
tations, starting irst with [98]. More precisely, given a permutation � we
can say that � contains a certain pattern � if such a pattern can be seen as a
sort of “subpermutation” of �. If � does not contain � we say that � avoids
�.

In particular, the concept of pattern containment on the set of all per-
mutations can be seen as a partial order relation, and it was used to deine
permutation classes, i.e. families of permutations downward closed under
such pattern containment relation. So, every permutation class can be de-
ined in terms of a set of avoided patterns, and the minimal of this sets is
called the basis of the permutation class.

These permutation classes can then be regarded as objects to be counted.
We can ind many results concerning this research guideline in the literature.
For instance, we quote two works that collect a large part of the obtained
results. The irst is the thesis of Guibert [83] and the second is the work
of Kitaev and Mansour [93]. In the second, in addition to the list of the
obtained results regarding the enumeration of set of permutations that avoid
a set of patterns, the authors also take into account the study of the number
of objects containing a ixed number of occurrences of a certain pattern and
make an interesting parallel between the concept of pattern on the set of
permutations and the concept of pattern on the set of words.

Concerning the results obtained on the enumeration of classes avoiding
patterns of small size, we mention the work of Simion and Schmidt [113], in
which we can ind an exhaustive study of all cases with patterns of length
less than or equal to three. However, for results concerning patterns of size
four we refer the reader to the work of Bóna [22]. Another remarkable work
of Bóna is [24], in which he studies the expected number of occurrences of
a given pattern in permutations that avoid another given pattern. One of
the most important recent contributions is the one by Marcus and Tardos
[101], consisting in the proof of the so-called Stanley-Wilf conjecture, thus
deining an exponential upper bound to the number of permutations avoiding
any given pattern. Later, given the enormous interest in this area, not only
patterns by the classical deinition were taken into consideration, but also
patterns deined under the imposition of some constraints.

Babson and Steingrímsson [7] introduced the notion of generalised pat-
terns, which requires that two adjacent letters in a pattern must be adjacent
in the permutation. The authors introduced such patterns to classify the
family of Mahonian permutation statistics, which are uniformly distributed
with the number of inversions. Several results on the enumeration of per-
mutation classes avoiding generalised patterns have been achieved. Claesson
obtained the enumeration of permutations avoiding a generalised pattern of
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length three [46] and the enumeration of permutations avoiding two gener-
alised patterns of length three [48]. Another result in terms of permutations
avoiding a set of generalised patterns of length three was obtained by Bernini
et al. in [17, 18], where one can ind the enumeration of permutation avoiding
set of generalised patterns as a function of its length and another parameter.

Another kind of patterns, called bivincular patterns, was introduced in
[26] with the aim to increase the symmetries of the classical patterns. A
bijection between permutations avoiding a particular bivincular pattern was
derived, as well as several other families of combinatorial objects. Finally,
we mention the mesh patterns, which were introduced in [34] to generalise
several varieties of permutation patterns.

Otherwise, from the algorithmic point of view, a challenging problem is
to ind an eicient way to establish whether an element belongs to a per-
mutation class C. More precisely, if we know the elements of the basis of
C, and especially if the basis is inite, this problem consists in verifying if
a permutation contains an element of the basis. Generally the complexity
of the algorithms is high, but there are some special cases in which linear
algorithms have been found, for instance in [98].

Another remarkable problem is to calculate the basis of a given permuta-
tion class. A very useful result in this direction was obtained by Albert and
Atkinson in [1], namely a necessary and suicient condition to ensure that a
permutation class has a inite basis.

As we have previously mentioned, some deinitions analogous to those
given for permutations were provided in the context of many other com-
binatorial structures, such as set partitions [81, 97, 111], words [20, 35],
trees [52, 60, 70, 73, 91, 105, 109, 118], and paths [19].

In the present thesis we examine the two previously quoted general issues,
on a rather remarkable family of combinatorial objects, i.e. the polyominoes.
These objects arise in many scientiic areas of research, for instance in combi-
natorics, physics, chemistry,... (more explicit details are given in Chapter 1).
In particular, in this thesis, we consider under a combinatorial and an enu-
merative point of view families of polyominoes deined by imposing several
types of constraints.

The irst type of constraint, which extends the well-known convexity con-
straint [57], is the �-convexity constraint, introduced by Castiglione and
Restivo [40]. A convex polyomino is said to be �-convex if every pair of
its cells can be connected by a monotone path with at most � changes of di-
rection. The problem of enumerating �-convex polyominoes was solved only
for the cases � = 1, 2 (see [38, 61]), while the case � > 2 is yet open and seems
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diicult to solve. To address it, we have investigated a particular subfamily
of �-convex polyominoes, the �-parallelogram polyominoes, i.e. the �-convex
polyominoes that are also parallelogram.

The second type of constraint extends, in a natural way, the concept
of pattern avoidance on the set of polyominoes. Since a polyomino can be
represented as a binary matrix, we can say that a polyomino � is a pattern of
a polyomino � when the binary matrix representing � is a submatrix of that
representing �. Our attempt is to reconsider the problems treated within
permutation classes for the case of pattern avoiding polyominoes.

Using this idea, we have deined a polyomino class to be a set of polyomi-
noes which are downward closed w.r.t. the containment order. Then we have
given a characterisation of some known families of polyominoes, using this
new notion of pattern avoidance. This new approach also allowed us to study
a new deinition of permutations that avoid submatrices, and to compare it
with the classical notion of pattern avoidance.

In details, the thesis is organized as follows.
Chapter 1 provides the basic deinitions of the most important combi-

natorial structures considered in the thesis and contains a brief state of the
art. In this work we study three main families of objects. The irst one
is the family of �-parallelogram polyominoes, studied from an enumerative
viewpoint. The second one is the family of permutations: in particular we
present the concept of patterns avoidance. The third and last family we have
focused on is the one of partially ordered sets (p.o.sets or simply posets).

In Chapter 2, we deal with the problem of enumerating the subfamily
of �-parallelogram polyominoes. More precisely we provide an unambiguous
decomposition for the family of the �-parallelogram polyominoes, for any
� ≥ 1. Then, we also translate this decomposition into a functional equa-
tion satisied by their generating function for any �. We are then able to
express such a generating function in terms of the Fibonacci polynomials
and thanks to this new expression we ind a bijection between the family
of �-parallelogram polyominoes and the family of rooted plane trees having
height less than or equal to � + 2.

In Chapter 3 we study the concept of pattern avoidance on sets of permu-
tations and polyominoes both seen as matrices. In particular, this approach
allows us to deine these classes of objects as the sets of elements that are
downward closed under the pattern relation, that is a partial order relation.
We then study the poset of polyominoes, from an algebraic and a combinato-
rial viewpoint. Moreover, we introduce several notions of bases, and we study
the relations among these. We investigate families of polyominoes described
by the avoidance of matrices, and families which are not. In this latter case,
we consider some possible extensions of the concept of submatrix avoidance
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to be able to represent also these families.

7



Chapter 1

Polyominoes, permutations and

posets

This thesis studies the combinatorial and enumerative properties of some
families of polyominoes, deined in terms of particular constraints of convexity
and connectivity. Before we discuss these concepts in depth, we need to
summarise the main deinitions and classiications of polyominoes. More
speciically, we introduce the notions of polyomino, permutation and posets
(partially ordered set). The chapter is organised as follows. In Section 1.1 we
briely introduce the history of polyominoes; in Section 1.2 we discuss some
of the most important families of polyominoes; in Section 1.3 we focus on
permutations; Section 1.4 concludes the chapter by discussing posets.

1.1 Polyominoes

The enumeration of polyominoes on a regular lattice is one of the most studied
topics in Combinatorics. The term polyomino was introduced by Golomb in
1953 during a talk at the Harvard Mathematics Club (which was published
one year later [80]) and popularized by Gardner in 1957 [74]. A polyomino
is deined as follows.

Deinition 1. In the plane Z×Z a cell is a unit square and a polyomino is
a inite connected union of cells having no cut point.

Polyominoes are deined up to translations. Polyominoes can be similarly
deined in other two-dimensional lattices (e.g. triangular or honeycomb);
however, in this work we will focus exclusively on the square lattice.

A column (resp. row) of a polyomino is the intersection between the
polyomino and an ininite strip of cells whose centers lie on a vertical (resp.
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horizontal) line. A polyomino is often studied with respect to the following
four parameters: area, width, height and perimeter. The area is the number of
elementary cells of the polyomino; the width and height are respectively the
number of columns and rows; the perimeter is the length of the polyomino’s
boundary.

As we already observed, polyominoes have been studied for a long time
in Combinatorics, but they have also drawn the attention of physicists and
chemists. The former in particular established a relationship with polyomi-
noes by deining equivalent objects named animals [59, 84], obtained by tak-
ing the center of the cells of a polyomino as shown in Figure 1.1. These
models allowed to simplify the description of phenomena like phase transi-
tions (Temperley, 1956 [120]) or percolation (Hammersely, [85]).

(a) (b)

Figure 1.1: A polyomino in (�) and the corresponding animal in (�).

Other important problems concerned with polyominoes are the problem
of covering a polyomino with rectangles [41] or problems of tiling regions by
polyominoes [15, 50].

In this work we are mostly interested in the problem enumerating poly-
ominoes with respect to the area or perimeter. Several important results
were obtained in the past in this ield. For example, in [95] Klarner proved
that, given �n polyominoes of area �, the limit

lim
n→∞

�
1
n

n

tends to a growth constant � such that:

3.72 < � < 4.64 .

Moreover, in 1995 Conway and Guttmann [49] adapted a method previously
used for polygons to calculate �n for � ≤ 25. Further reinements by Jensen
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and Guttman [87] and Jensen [88] allowed to reach respectively � = 46
and � = 56. Despite these important results, the enumeration of general
polyominoes still represents an open problem whose solution is not trivial but
can be simpliied, at least for certain families of polyominoes, by introducing
some constraints such as convexity and directedness.

1.2 Some families of polyominoes

In this section we briely summarize the basic deinitions concerning some
families of convex polyominoes. More speciically, we focus on the enu-
meration with respect to the number of columns and/or rows, to the semi-
perimeter and to the area. Given a polyomino � we denote with:

1. �(� ) the area of � and with � the corresponding variable;

2. �(� ) the semi-perimeter of � and with � the corresponding variable;

3. �(� ) the number of columns (width) of � and with � the corresponding
variable;

4. ℎ(� ) the number of rows (height) of � and with � the corresponding
variable.

Deinition 2. A polyomino is said to be column-convex (row-convex) when
its intersection with any vertical (horizontal) line is connected.

Examples of column-convex and row-convex polyominoes are provided in
Figure 1.2 (�) and (�).

(c)(b)(a)

Figure 1.2: (�): A column-convex polyomino; (�): A row-convex polyomino;
(�): A convex polyomino.
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In [120], Temperley proved that the generating function of column-convex
polyominoes with respect to the perimeter is algebraic and established the
following expression according to the number of columns and to the area:

�(�, �) =
��(1− �)3

(1− �)4 − ��(1− �)2(1 + �)− �2�3
. (1.1)

Inspired by this work, similar results were obtained in 1964 by Klarner
[95] and in 1988 by Delest [55]. The former was able to deine the generating
function of column-convex polyominoes according to the area, by means of
a combinatorial interpretation of a Fredholm integral; the latter derived the
expression for the generating function of column-convex polyominoes as a
function of the area and the number of columns, by means of the Schützem-
berger methodology [44].

In the same years, Delest [55] derived the generating function for column-
convex polyominoes according to the semi-perimeter by means of context-free
languages and using the computer software for algebra MACSYMA1. Such
function is deined as follows:

�(�) = (1− �)

⎛

⎜

⎜

⎝

1− 2
√
2

3
√
2−

︂

1 + �+
︁

(t2−6t+1)(1+t)2

(1−t)2

⎞

⎟

⎟

⎠

. (1.2)

In Equation (1.2), the number of column-convex polyominoes with semi-
perimeter �+2 is the coeicient of �n in �(�); these coeicients are an instance
of sequence �005435 [103], whose irst few terms are:

1, 2, 7, 28, 122, 558, 2641, 12822, · · · ,

and they count, for example, the number of permutations avoiding 13 − 2
that contain the pattern 23− 1 exactly twice, but there is no combinatorial
explanation of this fact. Several studies were carried out in an attempt to
improve the above formulation or to obtain a closed expression not relying on
software, including: a generalisation by Lin and Chang [43]; an alternative
proof by Feretić [66]; an equivalent result obtained by means of Temperley’s
methodology and the Mathematica software2 by Brak et al. [33].

Deinition 3. A polyomino is convex if it is both column and row convex.

1Macsyma (Project MAC’s SYmbolic MAnipulator) is a computer algebra system that
was originally developed from 1968 to 1982.

2See www.wolfram.com/mathematica.
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It is worth noting that the semi-perimeter of a convex polyomino is equiv-
alent to the sum of its rows and columns (see Figure 1.2 (�)).

Bousquet-Mélou derived several expressions for the generating function of
convex polyominoes according to the area, the number of rows and columns,
among which we cite the one obtained in collaboration with Fédou [27] and
the one in [25].

The generating function for convex polyominoes indexed by semi-perimeter
obtained by Delest and Viennot in 1984 [57] is the following:

�(�) =
�2(1− 8�+ 21�2 − 19�3 + 4�4)

(1− 2�)(1− 4�)2
− 2�4

(1− 4�)
√
1− 4�

. (1.3)

The above expression is obtained by subtracting two series with positive
terms, whose combinatorial interpretation was given by Bousquet-Mélou and
Guttmann in [28]. The closed formula for the convex polyominoes is:

�n+2 = (2�+ 11)4n − 4(2�+ 1)

︂

2�

�

︂

, (1.4)

with � ≥ 0, �0 = 1 and �1 = 2. Note that this is an instance of sequence
�005436 [103], whose irst few terms are:

1, 2, 7, 28, 120, 528, 2344, 10416, · · · .

In [43], Lin and Chang derived the generating function for the number
of convex polyominoes with � + 1 columns and � + 1 rows, where �, � ≥ 0.
Starting from their work, Gessel [76] was able to infer that the number of
such polyominoes is:

� + � + ��

� + �

︂

2� + 2�

2�

︂

− 2(� + �)

︂

� + � − 1

�

︂︂

� + � − 1

�

︂

. (1.5)

Finally, in [54] the authors obtained the generating function of convex
polyominoes according to the semi-perimeter using the ECO method [9].

Deinition 4. A polyomino � is said to be directed convex when every cell of
� can be reached from a distinguished cell, called source (usually the leftmost
cell at the lowest ordinate), by a path which is contained in � and uses only
north and east unit steps.

An example of a directed convex polyomino is depicted in Figure 1.3 (�).
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(a) (b) (c) (d)

Figure 1.3: (�): A Ferrer diagram; (�): A stack polyomino; (�): A paral-
lelogram polyomino; (�): A directed convex polyomino which is neither a
parallelogram nor a stack one.

The number of directed convex polyominoes with semi-perimeter �+2 is
equal to �n−2, where �n is the central binomial coeicients:

�n =

︂

2�

�

︂

,

giving an instance of sequence �000984 [103].
The enumeration with respect to the semi-perimeter of this set was irst

obtained by Lin and Chang in 1988 [43] as follows:

�(�) =
�2√
1− 4�

. (1.6)

Furthermore, the generating function of directed convex polyominoes ac-
cording to the area and the number of columns and rows, was derived by M.
Bousquet-Mélou and X. G. Viennot [29]:

�(�, �, �) = �
�1

�0
(1.7)

where

�1 =
︁

n≥1

�n�n

(��)n

n−1︁

m=0

(−1)m�(
m

2 )

(�)m(��m+1)n−m−1

(1.8)

and

�0 =
︁

n≥0

(−1)n�n�(
n+1
2 )

(�)n(��)n
, (1.9)

with (�)n = (�; �)n =
︀n−1

i=0 (1− ��i).
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Deinitions of polyominoes according to cells

It is also possible to discriminate between diferent families of polyominoes
by looking at the sets of cells �,�,� and � uniquely deined by a convex
polyomino and its minimal bounding rectangle, i.e. the minimum rectangle
that contains the polyomino itself (see Figure 1.4). For instance, a polyomino
� is directed convex when � is empty i.e., the lowest leftmost vertex belongs
to � .

A B

C D

Figure 1.4: A convex polyomino and the 4 sets of cells identiied by its
intersection with the minimal bounding rectangle.

In this thesis we consider the following families of polyominoes:

(a) Ferrer diagram, i.e. �, � and � empty;

(b) Stack polyomino,i.e. � and � empty;

(c) Parallelogram polyomino, i.e. � and � empty.

We now review the most important results concerning the enumeration of
the aforementioned sets of polyominoes.

(a) Ferrer diagrams (Figure 1.3 (�)) provide a graphical representation of
integers partitions. The generating function with respect to the area, that
was already known by Euler [64], is:

�(�) =
1

(�)∞
, (1.10)

while the generating function according to the number of columns and rows
is:

�(�, �) =
��

1− �− �
. (1.11)

The generating function of the Ferrer diagrams with respect to the semi-
perimeter can be easily derived by setting all the variables of Equation (1.11)

14



equal to �.

(b) Stack polyominoes (Figure 1.3 (�)) can be seen as a composition of
two Ferrer diagrams. Their generating function according to the number
of columns, rows and area, is [126]:

�(�, �, �) =
︁

n≥1

��n�n

(��)n−1(��)n
. (1.12)

The generating function with respect to semi-perimeter is rational [57]:

�(�) =
�2(1− �)

1− 3�+ �2
=

︁

n≥2

�2n−4�
n , (1.13)

where �n denotes the �th number of Fibonacci. For more details on the
sequence of Fibonacci �000045 the reader is referred to [103]. By deinition,
the irst two numbers of the Fibonacci sequence are �0 = 0 and �1 = 1, and
each subsequent number is the sum of the previous two. Consequently, their
recurrence relation can be expressed as follows:

�n = �n−1 + �n−2 with � ≥ 2 . (1.14)

(c) Parallelogram polyominoes (Figure 1.3 (�)) are a particular family of
convex polyominoes uniquely identiied by a pair of paths consisting only of
north and east steps, such that the paths are disjoint except at their common
ending points. The path beginning with a north (respectively east) step is
called upper (respectively lower) path.

It is known from [116] that the number of parallelogram polyominoes with
semi-perimeter � ≥ 2 is equal to the (�−1)-th Catalan number. The sequence
of Catalan numbers is widely used in several combinatorial problems across
diverse scientiic areas, including Mathematical Physics, Computational Bi-
ology and Computer Science. This sequence of integers was introduced in the
18�ℎ Century by Leonhard Euler in an attempt to determine the diferent
ways to divide a polygon into triangles. The sequence is named after the
Belgian mathematician Eugène Charles Catalan, who discovered the connec-
tion with the parenthesised expression of the Towers of Hanoi puzzle. Each
number of the sequence is obtained as follows3:

�n =
1

�+ 1

︂

2�

�

︂

.

3More in-depth information on the Catalan sequence A000108 is provided in [103].
The reader may also refer to the book by R. P. Stanley [116], where over 100 diferent
interpretations of Catalan numbers addressing various counting problems are provided.
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The generating function of parallelogram polyominoes with respect to the
number of columns and rows is:

�(�, �) =
1− �− � −

︀

�2 + �2 − 2�− 2� − 2�� + 1

2
. (1.15)

The corresponding function depending on the semi-perimeter is straightfor-
wardly derived by setting all the variables equal to �. It is also worth noting
that the function in Equation (1.15) is algebraic.

Delest and Fédou [56] enumerated this set of polyominoes according to
the area by generalising the results of Klarner and Rivest [96] as follows:

�(�) =
�1
�0

, (1.16)

where:

�1 =
︁

n≥1

(−1)n−1�n�(
n+1
2 )

(�)n−1(��)n
(1.17)

and �0 is the same of Equation (1.9).

1.2.1 �-convex polyominoes

The studies of Castiglione and Restivo [40] pushed the interest of the research
community towards the characterisation of the convex polyominoes whose
internal paths satisfy speciic constraints. We recall the following deinition
of internal path of a polyomino.

Deinition 5. A path in a polyomino is a self-avoiding sequence of unit steps
of four types: north � = (0, 1), south � = (0,−1), east � = (1, 0), and west
� = (−1, 0), entirely contained in the polyomino.

A path connecting two distinct cells � and � of the polyomino starts
from the center of �, and ends at the center of � as shown in Figure 1.5.
We say that a path is monotone if it consists only of two types of steps, as
in Figure 1.5 (�). Given a path � = �1 . . . �k, each pair of steps �i�i+1 such
that �i ̸= �i+1 , 0 < � < �, is called a change of direction.

In [40], it has been observed that in convex polyominoes each pair of cells
is connected by a monotone path; therefore, a classiication of convex poly-
ominoes based on the number of changes of direction in the paths connecting
any two cells of the polyomino was proposed.

Deinition 6. A convex polyomino � is said to be �-convex if every pair
of its cells can be connected by a monotone path with at most � changes of
direction. The minimal ℎ ≥ 0 such that � is ℎ-convex is referred to as the
convexity degree of � .

16



(a) (b)

Figure 1.5: (�): A path between two cells of the polyomino ; (�): A monotone
path between two cells of the polyomino with four changes of direction.

For � = 1, we have the �-convex polyominoes, where any two cells can
be connected by a path with at most one direction change. Such objects can
also be characterised by means of their maximal rectangles.

Deinition 7. Let [�, �] be a rectangular polyomino with � rows and � columns,
for every �, � ≥ 1. For any polyomino � we say that [�, �] is a maximal rect-
angle in � if

∀ [�′, �′], [�, �] ⊆ [�′, �′] then [�, �] = [�′, �′] .

Deinition 8. Two rectangles [�, �] and [�′, �′] contained in a polyomino �
have a crossing intersection if their intersection is a non-trivial rectangle
whose basis is the smallest of the two bases and whose height is the smallest
of the two heights, i.e.

[�, �] ∩ [�′, �′] = [min(�, �′),min(�, �′)] .

Some examples of rectangles having non-crossing and crossing intersec-
tions are shown in Figure 1.6.

Proposition 9. A convex polyomino � is �-convex if and only if any two
of its maximal rectangles have a nonempty crossing intersection.

In recent literature, several aspects of the �-convex polyominoes have
been studied: in [39], it has been shown that they are a well-ordering ac-
cording to the sub-picture order; in [36], �-convex polyominoes are uniquely
determined by their horizontal and vertical projections; inally, in [37, 38] the
number �n of �−convex polyominoes having semi-perimeter equal to � + 2
satisies the recurrence relation:

�n+2 = 4�n+1 − 2�n , (1.18)
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(a) (b) (c)

Figure 1.6: (a), (b) Two rectangles having a non-crossing intersection; (c)
Two rectangles having crossing intersection.

with � > 3, �0 = 1, �1 = 2 and �2 = 7. They have a rational generating
function:

�(�) =
1− 2�+ �2

1− 4�+ 2�2
. (1.19)

For � = 2, we have 2-convex (or �-convex) polyominoes, where each pair
of cells can be connected by a path with at most two direction changes. Un-
fortunately, �-convex polyominoes do not inherit most of the combinatorial
properties of �-convex polyominoes. In particular, standard enumeration
techniques cannot be applied to the enumeration of �-convex polyominoes,
even though this problem has been tackled in [61] by means of the so-called
inlation method. The authors were able to demonstrate that the generating
function with respect to the semi-perimeter

�(�) =
2�4(1− 2�)2�(�)

(1− 4�)2(1− 3�)(1− �)
+

�2(1− 6�+ 10�2 − 2�3 − �4)

(1− 4�)(1− 3�)(1− �)
, (1.20)

where �(�) = 1/2(1 − 2� −
√
1− 4�), is algebraic and the sequence asymp-

totically grows as �4n, that is the same growth as the whole family of the
convex polyominoes.

As the solution found for the �-convex polyominoes cannot be directly ex-
tended to a generic �, the problem of enumerating �-convex polyominoes for
� > 2 is yet open and diicult to solve. An attempt to study the asymptotic
behaviour is proposed by Micheli and Rossin in [102]. In this thesis we con-
tribute to this topic by enumerating the particular family of �-parallelogram
polyominoes.
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1.3 Permutations

In this section we describe the family of permutations, which have an impor-
tant role in several areas of Mathematics such as Computer Science ([98, 119,
124]) and Algebraic Geometry ([99]). Even though the existing literature on
permutations is indeed vast, we are particularly interested on the topic of
pattern avoidance (mainly of permutations but also of other families of ob-
jects). Therefore, we provide the deinitions concerning permutations that
will enable us to extend the concept of permutation to the set of polyominoes
in Chapter 3.

The topic of pattern-avoiding permutations (also known as restricted per-
mutations) has raised a some interest in the last twenty years and led to
remarkable results including enumerations and new bijections. One of the
most important recent contributions is the one by Marcus and Tardos [101],
consisting in the proof of the so-called Stanley-Wilf conjecture, establishing
an exponential upper bound to the number of permutations avoiding any
given pattern. Moreover, the study of statistics on restricted permutations
increased recently, in particular towards the introduction of new kinds of
patterns.

1.3.1 Basic deinitions

In the sequel we denote by [�] the set {1, 2, ..., �} and by Sn the symmetric
group on [�]. Moreover, we use a one-line notation for a permutation � ∈ Sn,
that is then written as � = �1�2 · · · �n. There are two common interpreta-
tions of the notion of permutation, which can be regarded as a word � or as
a bijection � : [�] ↦→ [�]. The concept of pattern avoidance stems from the
irst interpretation.

A permutation � of length � can be represented in three diferent ways:

1. Two-lines notation: this is perhaps the most widely used method to
represent a permutation and consists in organizing in the top row the
numbers from 1 to � in ascending order and their image in the bottom
row, as shown in Figure 1.7 (�).

2. One-line notation: in this case only the second row of the corresponding
two-lines notation is used.

3. Graphical representation: it corresponds to the graph

�(�) = {(�, �i) : 1 ≤ � ≤ �} ⊆ [1, �]× [1, �] .

An example of �(�) is displayed in Figure 1.7 (�).
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1 2 3 4 5 6 7

2 1 4 6 53 7

(a)

i=5

π(5)=6

(b)

Figure 1.7: Two-lines representation of the permutation � = 2314675 in (�)
and in (�) the graphical representation of �.

Let � be a permutation; � is a ixed point of � if �i = � and an exceedance
of � if �i > �. The number of ixed points and exceedances of � are indicated
with ��(�) and ���(�) respectively.

An element of a permutation that is neither a ixed point nor an ex-
ceedance, i.e. an � for which �i < �, is called deiciency. Permutations with
no ixed points are often referred to as derangements.

We say that � ≤ � − 1 is a descent of � ∈ Sn if �i > �i+1. Similarly,
� ≤ � − 1 is an ascent of � ∈ Sn if �i < �i+1. The number of descents and
ascents of � are indicated with ���(�) and ���(�) respectively.

Given a permutation �, we can deine the following subsets of points [22]:

1. the set of right-to-left minima as the set of points:

{(�, �i) : �i < �j ∀�, 1 ≤ � < �} ;

2. the set of right-to-left maxima as the set of points:

{(�, �i) : �i > �j ∀�, 1 ≤ � < �} ;

3. the set of left-to-right minima as the set of points:

{(�, �i) : �i < �j ∀�, � < � ≤ �} ;

4. the set of left-to-right maxima as the set of points:

{(�, �i) : �i > �j ∀�, 1 < � ≤ �} .
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(a) (b) (c) (d)

Figure 1.8: (�) Set of right-to-left minima for � = 21546837; (�) set of right-
to-left maxima; (�) set of left-to-right minima; and (�) set of left-to-right
maxima.

An example of each of the sets deined above is provided in Figure 1.8.

Let ���(�) denote the length of the longest increasing subsequence of �,
i.e., the largest � for which there exist indexes �1 < �2 < · · · < �m such that
�i1 < �i2 < · · · < �im .

Deine the rank of �, denoted ����(�), to be the largest � such that �i > �
for all � ≤ �. For example, if � = 63528174, then ��(�) = 1, ���(�) = 4,
���(�) = 4 and ����(�) = 2.

We say that a permutation � ∈ Sn is an involution if � = �−1. The set
of involutions of length � is indicated with In.

1.3.2 Pattern avoiding permutations

The concept of permutation patterns proved useful in many branches of
Mathematics literature, as supported by the several works produced in the
last decades. A comprehensive overview, “Patterns in Permutations”, has
been proposed by Kitaev in [92].

Deinition 10. Let �,� be two positive integers with � ≤ �, and let � ∈ Sn

and � ∈ Sm be two permutations. We say that � contains � if there exist
indexes �1 < �2 < · · · < �m such that �i1�i2 · · · �im is in the same relative
order as �1�2 · · · �m (that is, for all indexes � and �, �ia < �ib if and only if
�a < �b). In that case, �i1�i2 · · · �im is called an occurrence of � in � and
we write � 4S �. In this context, � is also called a pattern.

If � does not contain �, we say that � avoids �, or that � is �-avoiding. For
example, if � = 231, then � = 24531 contains 231, because the subsequence
�2�3�5 = 451 has the same relative order as 231. However, � = 51423 is
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231-avoiding. We indicate with ��n(�) the set of �-avoiding permutations
in Sn.

Deinition 11. A permutation class is a set of permutations C that is down-
ward closed for 4S: for all � ∈ C, if � 4S �, then � ∈ C.

In other terms, a family of permutations is a permutation class if it is an
order ideal of the poset (S,4S). We remark that a permutation class is also
known as a closed class, or pattern class, or simply class of permutations, see
for example in [1, 4].

It is a natural generalisation to consider permutations that avoid several
patterns at the same time. If B ⊆ Sk, � ≥ 1, is any inite set of patterns,
we denote by ��n(B), also called B-avoiding permutation, the set of permu-
tations in Sn that avoid simultaneously all the patterns in B. For example,
if B = {123, 231}, then ��4(B) = {1432, 2143, 3214, 4132, 4213, 4312, 4321}.
We remark that for every set B, ��n(B) is a permutation class.

The sets of permutations pairwise-uncomparable with respect to the order
relation (4S) are called antichains.

Deinition 12. If B is an antichain, then B is unique and is called basis of
the permutation class ��n(B). In this case, it also true that

B = {� /∈ ��n(B) : ∀� 4S �, � ∈ ��n(B)} .

Proposition 13. Let be C = ��n(B1) = ��n(B2). If B1 and B2 are two
antichains then B1 = B2.

Proposition 14. A permutation class C is a family of pattern-avoiding per-
mutations and so it is characterised by its basis.

One can ind more details and in particular the proofs of the previous
propositions in [22].

Even though the majority of permutation classes analysed in literature
are characterised by inite bases, there exist permutation classes with ininite
basis (e.g. the pin permutations in [30]). Deciding whether a certain per-
mutation class is characterised by a inite or ininite basis is not an entirely
solved problem; some hints on the decision criteria can be found in [1, 5].

Results on pattern avoidance

Deinition 15. Two patterns are Wilf equivalent and belong to the same
Wilf class if, for each �, the same number of permutations of length � avoids
the same pattern.
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Wilf equivalence is a very important topic in the study of patterns. The
smallest example of non-trivial Wilf equivalence is for the classical patterns
of length 3; all six patterns 123, 321, 132, 213, 231, and 312 are Wilf equiv-
alent; each pattern is avoided by �n permutations of length �, where �n is
the Catalan number 1

n+1

︀

2n
n

︀

, see for example [108, 113, 123].

By extension, we can deine the strongly Wilf equivalence as follows.

Deinition 16. Two patterns � and � are strongly Wilf equivalent if they
have the same distribution on the set of permutations of length � for each
�, that is, if for each nonnegative integer � the number of permutations of
length � with exactly � occurrences of � is the same as that for �.

For example, � = 132 is strongly Wilf equivalent to � = 231, since the
bijection deined by reversing a permutation turns an occurrence of � into
an occurrence of � and conversely. On the other hand, 132 and 123 are not
strongly Wilf equivalent, although they are Wilf equivalent. Furthermore, the
permutation 1234 has four occurrences of 123, but there is no permutation
of length 4 with four occurrences of 132.

A thoroughly investigated problem is the enumeration of elements in a
given permutation class C for any integer �. Recent results in this direction
can be found in [83, 92] (respectively, 1995 and 2003). However, such an
enumeration problem was already known since 1973 thanks to the work of
Knuth [98], where permutations avoiding the pattern 231 were considered.

As for the case of patterns of length three, for length four we can reduce
the problem by considering the seven symmetrical classes in order to obtain
the sequences of enumeration. Some results relatively to these patterns ap-
pear in [22]. Only the problem of enumerating permutations avoiding 4231
(or 1324) remains unsolved.

In 1990, Stanley and Wilf conjectured that, for all classes C, there exists a
constant � such that for all integers � the number of elements in Cn = C∩Sn

is less than or equal to �n. In 2004, Marcus and Tardos [101] proved the
Stanley-Wilf conjecture. Before that result, Arratia [3] showed that, being
Cn = ��n(�), the conjecture was equivalent to the existence of the limit:

�� (�) = lim
n→∞

��n(�) ,

which is called the Stanley-Wilf limit for �.
The Stanley-Wilf limit is 4 for all patterns of length three, which follows

from the fact that the number of avoiders of any one of these is the �th
Catalan number �n, as mentioned above. This limit is known to be 8 for
the pattern 1342 (see [23]). For the pattern 1234, the limit is 9; such limit
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was obtained as a special case of a result of Regev [107, 106], who provided a
formula for the asymptotic growth of the number of standard Young tableaux
with at most � rows. The same limit can also be derived from Gessel’s general
result [77] for the number of avoiders of an increasing pattern of any length.
The only Wilf class of patterns of length four for which the Stanley-Wilf
limit is unknown is represented by 1324, although a lower bound of 9.47 was
established by Albert et al. [2]. Later, Bóna [21] was able to reine this bound
by resorting to the method in [47]; inally, Madras and Liu [100] estimated
that the limit for the pattern1324 lies, with high likelihood, in the interval
[10.71, 11.83]4.

Finally, considering a permutation as a bijection we can look at notions
such as ixed points and exceedances. This new way to see a permutation
makes relevant the study of statistics together with the notion of pattern
avoidance. There is a lot of literature devoted to permutation statistics (see
for example [63, 72, 75, 78]).

1.3.3 Generalised patterns and other new patterns

Babson and Steingrímsson [7] introduced the notion of generalised patterns,
which requires that two adjacent letters in a pattern must be adjacent in
the permutation, as shown in Figure 1.9 (�). The authors introduced such
patterns to classify the family of Mahonian permutation statistics, which are
uniformly distributed according to the number of inversions.

(a) (b) (c) (d)

Figure 1.9: (�) Classical pattern 3− 1− 4− 2; (�) Generalised (or vincular)
pattern 3 − 1 − 42: (�) Bivincular pattern (3142, {1}, {3}); and (�) Mesh
pattern (3142, �).

A generalised pattern is written as a sequence wherein two adjacent el-
ements may or may not be separated by a dash. With this notation, we
indicate a classical pattern with dashes between any two adjacent letters of

4This result was obtained by using Markov chain Monte Carlo methods to generate
random 1324-avoiders.
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the pattern (for example, 1423 as 1 − 4 − 2 − 3). If we omit the dash be-
tween two letters, we mean that the corresponding elements of � have to
be adjacent. For example, in an occurrence of the pattern 12 − 3 − 4 in a
permutation �, the entries in � that correspond to 1 and 2 are adjacent. The
permutation � = 3542617 has only one occurrence of the pattern 12− 3− 4,
namely the subsequence 3567, whereas � has two occurrences of the pattern
1− 2− 3− 4, namely the subsequences 3567 and 3467.

If � is a generalised pattern, ��n(�) denotes the set of permutations inSn

that have no occurrences of � in the sense described above. Throughout this
chapter, a pattern represented with no dashes will always denote a classical
pattern, i.e. one with no requirement about elements being consecutive,
unless otherwise speciied.

Several enumerative results on permutations classes avoiding generalised
patterns have been achieved. Claesson obtained the enumeration of permuta-
tions avoiding a generalised pattern of length three [46] and of permutations
avoiding two generalised patterns of length three [48]. Another result in
terms of permutations avoiding a set of generalised patterns of length three
was obtained by Bernini et al. in [17, 18], where the enumeration of permu-
tations avoiding sets of generalised patterns as a function of its length and
another parameter.

Another kind of patterns, called bivincular patterns, was introduced by
Bousquet-Mélou et al. in [26] with the aim to increase the symmetries of the
classical patterns. A bijection between permutations avoiding a particular
bivincular pattern was derived, as well as several other families of combina-
torial objects.

Deinition 17. Let � = (�,�, � ) be a triple where � is a permutation of
Sn and � and � are subsets of {0} ∪ [�]. An occurrence of � in � is a
subsequence � = (�i1 , · · · , �ik) such that � is an occurrence of � in � and, with
(�1 < �2 < · · · < �k) being the set {�i1 , · · · , �ik} ordered (so �1 = ���m�im

etc.), and �0 = �0 = 0 and �k+1 = �k+1 = �+ 1,

�x+1 = �x + 1 ∀� ∈ � and �y+1 = �y + 1 ∀� ∈ � .

Bivincular patterns are graphically represented by graying out the corre-
sponding columns and rows in the Cartesian plane as shown in Figure 1.9 (�).
Clearly, bivincular patterns (�, ∅, ∅) coincide with the classical patterns, while
bivincular patterns (�,�, ∅) coincide with the generalised patterns (hence,
we refer to them as vincular in the sequel).

We now give the deinition of Mesh patterns, which were introduced in
[34] to generalise multiple varieties of permutation patterns. To do so, we
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extend the above prohibitions determined by grayed out columns and rows
to graying out an arbitrary subset of squares in the diagram.

Deinition 18. A mesh pattern is an ordered pair (�,�), where � is a permu-
tation of Sk and � is a subset of the (�+1)2 unit squares in [0, �+1]×[0, �+1],
indexed by they lower-left corners.

Thus, in an occurrence of (3142, �) in a permutation �, where � =
{(0, 2), (1, 4), (4, 2)}) in Figure 1.9 (�), for example, there cannot be a letter
in � that precedes all letters in the occurrence and lies between the values
of those corresponding to the 1 and the 3. This is illustrated by the shaded
square in the leftmost column. For example, in the permutation 425163,
5163 is not an occurrence of (3142, �), since 4 precedes 5 and lies between 5
and 1 in value, whereas the subsequence 4263 is an occurrence of this mesh
pattern.

The reader may ind an extension of mesh patterns in [121], where are
characterised all mesh patterns in which the mesh is superluous.

The results on Wilf equivalent classes have then been extended to bivincu-
lar patterns and mesh patterns. For example there is in [104] the classiication
of all bivincular patterns of length two and three according to the number of
permutations avoiding them, and a partial classiication of mesh patterns of
small length in [86].

1.4 Partially ordered sets

In this section we recall the basic notions and the most important deinitions
on partially ordered sets (posets). For a more in-depth presentation, the
interested reader may consult [115].

Deinition 19. A partially ordered set or poset is a pair � = (�;≤) where
� is a set and ≤ is a relexive, antisymmetric, and transitive binary relation
on �.

� is referred to as the ground set, while ≤ � is a partial order on �.
Elements of the ground set � are also called points. A poset is inite if the
ground set is inite.

In our work, we consider only inite posets. Of course, the notation � < �
in � means � ≤ � in � and � ̸= �. When a poset does not change throughout
some analysis, we ind convenient to abbreviate � ≤ � in � with � ≤P �. If
�, � ∈ � and either � ≤ � or � ≤ �, we say that � and � are comparable in
� ; otherwise, we say that � and � are uncomparable in � .
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Deinition 20. A partial order � = (�;≤) is called total order (or linear
order) if for all �, � ∈ �, either � ≤ � in � or � ≤ � in � .

Deinition 21. Let �, � be two generic elements in �. A partial order � =
(�;≤) is called lattice when there exist two elements, usually denoted by �∨�
and by � ∧ �, such that:

❼ � ∨ � is the supremum of the set {�, �} in �

❼ � ∧ � is the inimum of the set {�, �} in � ,

i.e. for all � in �

� ≥ � ∨ � ⇐⇒ � ≥ � and � ≥ �

� ≤ � ∧ � ⇐⇒ � ≤ � and � ≤ � .

Deinition 22. Given �, � in a poset � , the interval [�, �] is the poset {� ∈
� : � ≤ � ≤ �} with the same order as � .

Deinition 23. Let � = (�,≤) be a poset and let � and � be distinct points
of �. We say that “� is covered by �” in � when � < � in � , and there is
no point � ∈ � for which � < � in � and � < � in � .

In some cases, it may be convenient to represent a poset with a diagram
of the cover graph in the Euclidean plane. To do so, we choose a standard
horizontal/vertical coordinate system in the plane and require that the ver-
tical coordinate of the point corresponding to � be larger than the vertical
coordinate of the point corresponding to � whenever � covers � in � . Each
edge in the cover graph is represented by a straight line segment which con-
tains no point corresponding to any element in the poset other than those
associated with its two endpoints. Such diagrams, called Hasse diagrams,
are deined as follows.

Deinition 24. The Hasse diagram of a partially ordered set � is the (di-
rected) graph whose vertices are the elements of � and whose edges are the
pairs (�, �) for which � covers �. It is usually drawn so that elements are
placed higher than the elements they cover.

The Boolean algebra �n is the set of subsets of [�], ordered by inclusion
(� ≤ � means � ⊆ � ). Generalising �n, any collection � of subsets of a ixed
set � is a partially ordered set ordered by inclusion. Figure 1.10 displays the
diagram obtained with � = 3.

In particular, Hasse diagrams are useful to visualize various properties of
posets.
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{O}

{1,2,3}

{1,3} {2,3}

{3}{2}{1}

{1,2}

Figure 1.10: The Hasse diagram of �3.

Deinition 25. A linear extension of a poset � = (�,≤), where � has
cardinality |�|, is a bijection � : � → {1, 2, · · · , |�|} such that � < � in �
implies �(�) < �(�).

Deinition 26. If � = (�,≤) is a poset and � ⊆ �, then

�P (� ) = {� ∈ � : ∀� ∈ �, � > �} and �P (� ) = {� ∈ � : ∀� ∈ �, � < �}

are called respectively the ilter and the ideal of � generated by � .

An ideal or ilter is principal when it is generated by a singleton. Then

DP = {�P ({�}) : � ∈ �} and UP = {�P ({�}) : � ∈ �}

are respectively the set of principal ideals of � and the set of principal ilters
of � .

An equivalence relation ≡ on X is built as follows:

� ≡ � ⇐⇒ �� ({�}) = �� ({�}) and �P ({�}) = �P ({�}) .

1.4.1 Operations on partially ordered sets

Given two partially ordered sets � and �, we deine the following new par-
tially ordered sets:

1. Disjoint union. �+� is the disjoint union set � ∪�, where � ≤P+Q �
if and only if one of the following conditions holds:

❼ �, � ∈ � and � ≤P �

❼ �, � ∈ � and � ≤Q �
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The Hasse diagram of � +� consists of the Hasse diagrams of � and
� drawn together.

2. Ordinal sum. � ⊕� is the set � ∪�, where � ≤P⊕Q � if and only if
one of the following conditions holds:

❼ � ≤P+Q �

❼ � ∈ � and � ∈ �

Note that the ordinal sum operation is not commutative: in � ⊕ �,
everything in � is less than everything in �.

The posets that can be described by using the operations ⊕ and +
starting from the single element poset (usually denoted by 1) are called
series parallel orders [115]. This set of posets has a nice characterisation
in terms of subposet avoiding.

3. Cartesian product. � ×� is the Cartesian product set {(�, �) : � ∈
�, � ∈ �}, where (�, �) ≤P×Q (�′, �′) if and only if both � ≤P �′ and
� ≤Q �′. The Hasse diagram of � ×� is the Cartesian product of the
Hasse diagrams of � and �.

Deinition 27. A chain of a partially ordered set � is a totally ordered subset
� ⊆ � , with � = {�0, · · · , �} with �0 ≤ · · · ≤ �l. The quantity � = |�| − 1
is the length of the chain and is equal to the number of edges in its Hasse
diagram.

If 1 denotes the single element poset, then a chain composed by � elements
is the poset obtained by performing the ordinal sum exactly � times:

1⊕ 1⊕ · · · ⊕ 1

.

Deinition 28. A chain is maximal if there exist no other chain strictly
containing it.

Deinition 29. The rank of � is the length of the longest chain in � .

The set of all permutations forms a poset � with respect to classical
pattern containment. That is, a permutation � is smaller than � (written
� 4S �) if � occurs as a pattern in �. This poset is the underlying object of
all studies on pattern avoidance and containment.
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Chapter 2

�-parallelogram polyominoes:

characterisation and enumeration

In this chapter we consider the problem of enumerating a subfamily of �-
convex polyominoes. We recall (see Section 1.1 for more details) that a
convex polyomino is �-convex if every pair of its cells can be connected by
means of a monotone path, internal to the polyomino (see Figure 2.1 (�)
and (�)), and having at most � direction changes. In the literature we ind
some results regarding the enumeration of �-convex polyominoes of given
semi-perimeter, but only for small values of �, precisely � = 1, 2, see again
Chapter 1 for more details.

As counting �-convex polyominoes seems diicult, we tackle the problem
of counting the set Pk of �-parallelogram ones. Figure 2.1 (�) shows an
example of convex polyomino that is not parallelogram, while Figure 2.1 (�)
depicts a 4-parallelogram (non 3-parallelogram) polyomino.

(a) (b) (c)

Figure 2.1: (�) A convex polyomino; (�) a monotone path between two cells
of the polyomino with four direction changes; (�) a 4-parallelogram.

The family Pk of �-parallelogram polyominoes can be treated in a simpler
way than �-convex polyominoes, since we can use the fact that a parallelo-
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gram polyomino is �-convex if and only if there exists at least one monotone
path having at most � direction changes running from the lower leftmost cell
to the upper rightmost cell of the polyomino. Indeed, this property is used to
partition the family Pk into three subfamilies, namely the lat, right, and up
�-parallelogram polyominoes, and we will provide an unambiguous decom-
position for each of them. Doing so we obtain the generating functions of
the three families and then of �-parallelogram polyominoes. An interesting
fact is that, while the generating function of parallelogram polyominoes is al-
gebraic, for every � the generating function of �-parallelogram polyominoes
is rational. Moreover, we are able to express such generating function as
continued fractions, and then in terms of the known Fibonacci polynomials.
Since we are able to express the generating function of Pk in terms of Fi-
bonacci polynomials, we have been able to ind a simpler proof, using rooted
plane trees. More precisely, in [53] it is proved that the generating function of
plane trees having height less than or equal to a ixed value can be expressed
using Fibonacci polynomials and so we found a bijection between these two
objects. Some of the topics of this chapter have been treated in [12].

To our opinion, this work is a irst step towards the enumeration of �-
convex polyominoes, since it is possible to apply our decomposition strategy
to some larger families of �-convex polyominoes (such as, for instance, di-
rected �-convex polyominoes).

2.1 Classiication and decomposition of P�

Let us start by ixing some terminology which is useful in the rest of the
section.

Following Deinition 5 in Section 1.1 we can represent an internal path as
a sequence of cells.

Deinition 30. Let be � and �′ two distinct cells of a polyomino; an internal
path from � to �′, denoted �AA′, is a sequence of distinct cells (�1, · · · , �n)
such that �1 = �, �n = �′ and every two consecutive cells in this sequence
are edge-connected.

Henceforth, since polyominoes are deined up to translation, we assume
that the center of each cell of a polyomino corresponds to a point of the plane
Z×Z, and that the center of the lower leftmost cell of the minimal bounding
rectangle (denoted by m.b.r.) of a polyomino corresponds to the origin of the
axes. In our case, since we work with parallelogram polyominoes, the lower
leftmost cell of the m.b.r belongs to the polyomino. So, according to the
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respective position of the cells �i and �i+1, we say that the pair (�i, �i+1)
forms:

1. a north step � in the path if (�i+1, �i+1) = (�i, �i + 1);

2. an east step � in the path if (�i+1, �i+1) = (�i + 1, �i);

3. a west step � in the path if (�i+1, �i+1) = (�i − 1, �i);

4. a south step � in the path if (�i+1, �i+1) = (�i, �i − 1).

Moreover, since our polyominoes are also convex, for obvious reasons of sym-
metry, we will deal only with monotone paths using steps � or �.

Deinition 31. Let � be a parallelogram polyomino and � an internal path.
We call side every maximal sequence of steps of the same type into �.

Remark 32. Let � be a parallelogram polyomino. We denote by � and �
the lower leftmost cell and the upper rightmost cell of � , respectively.

Deinition 33. The vertical (horizontal) path �(� ) (respectively ℎ(� )) is an
internal path -if it exists- running from � to �, and starting with a step �
(respectively �), where every side has maximal length (see Figure 2.3).

From now on, in the graphical representation, the path will be represented
using lines rather than cells. In practice, to represent the path we use a line
joining the centers of the cells, more precisely a dashed line to represent
�(� ) and a solid one for ℎ(� ). Observe that our deinition does not work
if the irst column (resp. row) of � is made of one cell, and in this case by
convention �(� ) and ℎ(� ) coincide (Figure 2.3 (�)). Henceforth, if there are
no ambiguity we write � (resp. ℎ) in place of �(� ) (resp. ℎ(� )). So, by
deinition, a cell �i of � (or �i of ℎ) could correspond to one of two possible
types of direction changes, more precisely

- to a change e-n if (�Vi
+ 1, �Vi

) /∈ � (resp. (�Hi
+ 1, �Hi

) /∈ � );

- to a change n-e if (�Vi
, �Vi

+ 1) /∈ � (resp. (�Hi
, �Hi

+ 1) /∈ � ).

These two paths distinguish two types of cells into the polyomino at
every direction change. So, considering ℎ(� ) = (�1 = �, · · · , �n = �)
(respectively �(� ) = (�1 = �, · · · , �n = �)), we can characterise each cell of
� that is not in ℎ(� ) (or �(� )) as follows: for every cell � ∈ � , � /∈ ℎ(� )
(resp. � /∈ �(� )), there exists an index �, 1 < � ≤ �, such that

�B < �Hi
and �B = �Hi

or �B > �Hi
and �B = �Hi
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(resp. �B > �Vi
and �B = �Vi

or �B < �Vi
and �B = �Vi

).

We say that in the irst case � is a cell of type left-top, and in the second
case that � is a cell of type right-bottom. The reader can observe in Figure
2.2 that the cell � is an example of cell right-bottom, in fact �B < �V4 and
�B = �V4 and that �′ is an example of cell left-top, in fact �B′ > �V8 and
�B′ = �V8 .

V8

V4

E

S

B’

B

Figure 2.2: An example of 4-parallelogram polyomino and the internal path
� = (�1 = �, �2, · · · , �20 = �).

Now, we are ready to prove the following important property.

Proposition 34. The convexity degree of a parallelogram polyomino � is
equal to the minimal number of direction changes required to any path running
from � to �.

Proof. Let � be a polyomino and let be � the minimal number of direction
changes among ℎ and �. We want to prove that for every two cells of � , �
and �′ diferent from � and �, exists a path �AA′ having at most � direction
changes. We have to take into consideration three diferent cases.

1. Both � and �′ belong to � (or ℎ).
This case is trivial because the path running from � to �′, �AA′ , is a
subpath of � (or ℎ), so the number of direction changes is less than or
equal to �.

2. Only one between � and �′ belongs to � (or ℎ).
We can assume without loss of generality that �′ is the cell that belongs
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to � (or ℎ) and that � is a cell of type left-top. Then, there exists an
index � such that �A > �Vi

and �A = �Vi
(or �A < �Hi

and �A = �Hi
),

so with �Vi
− �A (or �Hi

− �A) steps � (or �) we can reach the path �
(or ℎ) with only one direction change but after � (or ℎ) have changed
its direction at least once. At this point it is easy to see that the path
�AA′ has at most � direction changes, the irst to reach the path � (or
ℎ) and the subsequent ones are those made by the subpath of � (or of
ℎ) to reach the cell �′.

3. Neither � nor �′ belong to � (or ℎ).
The proof is similar to that one of the previous case.

Proposition 35. The number of direction changes that ℎ and � require to
run from � to � may difer at most by one.

The proof is similar to the proof above and it is left to the reader. Also
the following property is straightforward.

Proposition 36. A polyomino � is �-parallelogram if and only if at least
one among �(� ) and ℎ(� ) has at most � direction changes.

We begin our study with the family Pk of �-parallelogram polyominoes
where the convexity degree is exactly equal to � ≥ 0. Then the enumeration
of Pk will readily follow, in fact Pk = ∪k

i=1Pi. According to our deinition,
P0 is made of horizontal and vertical bars of any length.

In any given parallelogram polyomino � , let �(� ) (briely, �) be the
earliest point in the two paths ℎ and � such that the tails coincide (see
Figure 2.3 (�), (�)). Clearly � may even coincide with � (see Figure 2.3 (�))
or with �. Figure 2.3 depicts the various positions of � into a parallelogram
polyomino.

From now on, unless otherwise speciied, we always assume that � ≥ 1.
Let us give a classiication of the polyominoes in Pk, based on the position
of the cell � inside the polyomino.

Deinition 37. A polyomino � in Pk is said to be

1. a lat �-parallelogram polyomino if � coincides with �. The family of
these polyominoes is denoted by Pk;

2. an up (resp. right) �-parallelogram polyomino, if � is distinct from �
and ℎ and � end with a step � (resp. �). The family of up (resp. right)
�-parallelogram polyominoes is denoted by PU

k (resp. PR
k ).
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(a) (c) (d)(b)

Figure 2.3: The paths ℎ (solid line) and � (dashed line) in a parallelogram
polyomino, where the cell � has been highlighted; (�) a polyomino in P3; (�)
a polyomino in PU

3 ; (�) a polyomino in PR
4 ; (�) a polyomino in PU

3 where �
coincides with �.

Figure 2.3 (�) depicts a polyomino in Pk, while Figures 2.3 (�), (�), and (�)
depict polyominoes in PU

k and PR
k . According to this deinition all rectangles

having width and height greater than one belong to P1.

Now we present a unique decomposition of polyominoes in Pk, based on
the following idea: given a polyomino � , we are able to detect – using the
paths ℎ and � – a set of paths on the boundary of � , that uniquely identify
the polyomino itself.

More precisely, let � be a polyomino of Pk; the cells of the path ℎ (resp.
�) that correspond with a direction change have at least one edge on the
boundary of � . In particular if a cell corresponds to a direction change e-n
(resp. n-e) then it individuates an � (resp. �) step on the upper (resp. lower)
path of � . So we can say that the path ℎ (resp. �) determines � (resp. �′)
steps where � (resp. �′) is equal to the number of direction changes of ℎ
(resp. �) plus one. To refer to these steps we agree that the step encountered
by ℎ (resp. �) for the �th time is called �i or �i according if it is a horizontal
or vertical one (see Fig. 2.4).

We point out that if � is lat all steps �i and �i are distinct, otherwise
there may be some indices � for which �i = �i+1 (or �i = �i+1), and this
happens precisely with the steps determined after � (see Fig. 2.5 (�), (�)).
The case � = � can be seen as a degenerate case where the initial sequence
of steps � (resp. �) of � (resp. ℎ) has length zero and we have to give an
alternative deinition of these steps, see Figure 2.5 (�):

i) if the irst column is made of one cell, i.e. � coincides with ℎ, we set �1 to
be equal to the leftmost step � of the upper path of � , and �2, �3, . . .
are determined as usual by ℎ;
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Figure 2.4: Decomposition of a polyomino of PU
4 .

ii) if the lowest row is made of one cell, i.e. ℎ coincides with �, we set �1 to
be equal to the leftmost step � of the lower path of � , and �2, �3, . . .
are determined as usual by �.
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Figure 2.5: (�) A polyomino � ∈ P3 in which �1 and �1 are lat and each
other path is non empty and non lat. (�) A polyomino � ∈ PU

3 where: �3

is empty, �2 is empty and �1 is equal to a step �. (�) A polyomino � ∈ PU
3

where �3 is lat, �2 is empty and �1 is equal to a step �.
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Our aim is now to provide a unique decomposition of the upper (resp.
lower) path of a parallelogram polyomino. To do this, we adopt the following
notation: given two steps on the upper (resp. lower) path of � , �1 and �2, �2

not preceding �1, by �1�2 we denote the subpath running from the start of
�1 to the end of �2. To indicate the path �1�2 from which we have removed
the initial (resp. inal) step �1 (resp. �2) we write �1�2 (resp. �1�2).

Using this convention we decompose the upper (resp. lower) path of � in
� (possibly empty) subpaths �1, . . . , �k (resp. �1, . . . , �k) using the following
rule:

❼ �1 = �k�k+1 (resp. �1 = �k�k+1);

❼ let us consider now the �−1 (possibly empty) subpaths. For � = 2 . . . �
we have �i = �k+1−i�k+2−i (resp. �i = �k+1−i� k+2−i).

We observe that these paths are ordered from the right to the left of � . For
simplicity we say that a path is lat if it is composed of steps of just one type.
Moreover, we remark that for all � ≥ 1, if �i (resp. �i) is lat then |�i|n = 0
(resp. |�i|e = 0). Furthermore, from our deinition of the two paths ℎ and �,
it follows directly that:

Remark 38. for all � ≥ 2

- the steps �i and �i−1 lie on cells having the same abscissa;

- the steps �i and �i−1 lie on cells having the same ordinate.

As a consequence of this remark we can write:

|�i�i+1|e = |�i−1�i|e + 1 and |�i�i+1|n = |�i−1�i|n + 1 , (2.1)

|�i�i+1|e = |�i� i+1|e + 1 and |�i�i+1|n = |�i� i+1|n , (2.2)

|�i�i+1|e = |�i� i+1|e and |�i�i+1|n = |�i� i+1|n + 1 . (2.3)

The following proposition provides a characterisation of the polyominoes
of Pk in terms of the paths �1, . . . , �k, �1, . . . , �k (see Figure 2.4).

Proposition 39. A polyomino � in Pk is uniquely determined by a sequence
of (possibly empty) paths (�1, . . . , �k, �1, . . . , �k). Moreover, these paths have
to satisfy the following properties:

- |�i|e = |�i+1|e, for every � ̸= 1; if � = 1, then �1 is always non empty
and |�1|e = |�2|e + 1;
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- |�i|n = |�i+1|n, for every � ̸= 1; if � = 1, then �1 is always non empty
and |�1|n = |�2|n + 1;

- if �i (resp. �i) is non empty then it starts with a step � (resp. �),
� > 1. In particular, for � = 1, if �1 (�1) is diferent from a unit step
� (resp. �), then it must start and end with a step � (resp. �).

Proof. For this proof we use 2.1 in Remark 38, and the deinition of �i and
�i. We only show how we get the irst statement of this proposition, the
other ones can be proved in a similar way. Thus, for every � ̸= 1 we have:

|�i|e = |�k+1−i�k+2−i|e = |�k+1−i�k+2−i|e − 1 =

= |�k+1−(i+1)�k+2−(i+1)|e = |�k+1−(i+1)� k+2−(i+1)|e = |�i+1|e .

If � = 1 then:

|�1|e = |�k�k+1|e = |�k−1�k|e + 1 = |�k−1� k|e + 1 = |�2|e + 1 .

Observe that the semi-perimeter of � is obtained as the sum |�1|+ |�2|e+
. . . + |�k|e + |�1| + |�2|n + . . . + |�k|n, and that follows directly from our
construction.

The reader can see an example of the decomposition of a polyomino of
PU
4 in Figure 2.4. It is then natural to encode every � ∈ Pk by the two

sequences of paths (�1, . . . , �k), and (�1, . . . , �k) corresponding to the upper
and the lower path of � , respectively. For clarity sake, we need to remark
the following consequence of Proposition 39:

Corollary 40. Let � ∈ Pk be encoded by the two sequences of paths (�1, . . . , �k),
and (�1, . . . , �k). Then:

- for every � > 1, �i (�i) is empty if and only if �i+1 (�i+1) is empty or lat;

- �1 = � (resp. �1 = �) if and only if �2 (�2) is empty or lat.

Proof. Let us consider �i = �k+1−i�k+2−i, for every � ≥ 2. If |�i| = 0 then
the step �k+1−i coincides with the step �k+2−i. Based on Remark 38 we can
deduce that the steps �k+1−(i+1) and �k+2−(i+1) lie on the same cell or on cells
having the same abscissa. In the irst case we have |�k+1−(i+1)� k+2−(i+1)| =
|�i+1| = 0. In the second case we have |�i+1|e = 0 but |�k+1−(i+1)� k+2−(i+1)| =
|�i+1| ≥ 1, then �i+1 is lat.
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On the other side, let us assume that �i+1 = �k+1−(i+1)� k+2−(i+1) is empty
or lat. This means that �k+1−(i+1) and �k+2−(i+1) lie on the same cell or on
cells having the same abscissa. From Remark 38 we know that in both cases
the steps �k+1−i and �k+2−i coincide, and then |�k+1−i�k+2−i| = |�i| = 0.
The case � = 1, i.e. �1 = �k�k+1, difers from the one just seen, just because
the inal step �k+1 is included in the path �1. For the paths �i the procedure
is similar.

Figure 2.5 (�) shows the decomposition of a lat polyomino, 2.5 (�) shows
the case in which � = �, so we have that �3 is empty, then �2 is empty,
hence �1 is a step �. Figure 2.5 (�) shows the case in which ℎ and � coincide
after the irst direction change, then �3 is lat, therefore �2 is empty and �1

is equal to a step �.
Now we provide another characterisation of the families of lat, up, and

right polyominoes of Pk which follows directly from Corollary 40 and will be
used for the enumeration of these objects.

Proposition 41. Let � be a polyomino in Pk. We have:

i) � is lat if and only if �1 and �1 are lat and they have length greater than
one.

ii) � is up (right) if and only if �1 (�1) is lat and �1 (�1) is non lat.

It follows from Corollary 40 that in a lat polyomino, for � = 2, . . . , �, �i

and �i are non empty paths.
The reader can see examples of the statement of Proposition 41 i) in

Figure 2.5 (�), and of Proposition 41 ii) in Figure 2.5 (�) and (�).

Proof. Let us proceed to prove Proposition 41 ii) (the proof of Proposition
41 i) is quite similar). Let � be a polyomino belonging to PU

k (resp. PR
k ).

From Deinition 37 � is distinct from �, and one among ℎ and � makes �+1
direction changes. Let us assume, without loss of generality, that the path
ℎ determines � + 2 steps on the boundary of � . More precisely, the steps
determined by ℎ and � are:

�1, �2, . . . , �k+1, �k+2, �1, �2, . . . , �k, �k+1

(resp. �1, �2, . . . , �k, �k+1, �1, �2, . . . , �k+1, �k+2 ).

We know that the steps after � coincide and in particular:

�k+1 = �k+2 (resp. �k+1 = �k+2 ),

and �1 = �k�k+1 (resp. �1 = �k�k+1) contains at least a step � (resp. �).
From �k+1 = �k+2 (resp. �k+1 = �k+2) and from Remark 38 we know that
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�k and �k+1 (resp. �k and �k+1) lie on cells having the same abscissa (resp.
ordinate), then �1 (resp. �1) is lat. Moreover, the cell on which the step �k+1

(resp. �k+1) lies, is diferent from �, otherwise �k+2 (resp. �k+2) would not
exist against the hypothesis. For this last consideration and from Remark 38
we can deduce that the cells having�k and�k+1 (resp. �k and �k+1) as edges
are not at the same ordinate (resp. abscissa), then |�1|n = |�k�k+1|n ̸= 0
(resp. |�1|e = |�k�k+1|e ̸= 0), i.e. �1 (resp. �1) non lat.
On the other side, let us assume that �1 (resp. �1) is lat, and �1 (resp. �1)
is not lat. We can express the hypothesis as follows:

|�1|e = |�k�k+1|e = 0 (resp. |�1|n = |�k�k+1|n = 0) , and

|�1|n = |�k�k+1|n ̸= 0 (resp. |�1|e = |�k�k+1|e ̸= 0 .

The irst implies that the cells having �k and �k+1 (resp. �k and �k+1)
as edges have the same abscissa (resp. ordinate). The second one implies
that the cells having �k and �k+1 (resp. �k and �k+1) as edges are not at
the same ordinate (resp. abscissa). From Remark 38 and from the above
considerations we can prove that the cells having �k+1 and �k+1 as edges are
not at the same ordinate but they have the same abscissa, then � belongs
to PU

k (resp. PR
k ).

As a consequence of Proposition 39, from now every polyomino � ∈ Pk

is encoded with the two sequences:

A(� ) = (�1, �2, �3, . . . , �k) ,

with � = � if � is odd, otherwise � = �, and

B(� ) =
︀

�1, �2, �3, . . . , �k
︀

,

where � = � if and only if � = �. We set the dimension of A (resp. B) to be
equal to |�1|+ |�2|n + |�3|e + . . . (resp. |�1|+ |�2|e + |�3|n + . . .). It follows
that the semi-perimeter of � is obtained by summing the dimensions of A
and B. In particular, if � = � and � is an up (resp. right) polyomino then
B(� ) = (�1, ∅, . . . , ∅), (resp. A(� ) = (�1, ∅, . . . , ∅)) where �1 (resp. �1) is
the step � (resp. �).

2.2 Enumeration of the family P�

This section is organized as follows: irst, we describe a method to pass from
the generating function of the family Pk to the generating function of Pk+1,
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for every � > 1. Then, we provide the enumeration of the trivial cases, i.e.
� = 0, 1, and inally apply the inductive step to determine the generating
function of Pk. The enumeration of Pk is readily obtained by summing all
the generating functions of the families Ps, � ≤ �.

2.2.1 Generating function of the family Pk

The following theorem establishes a criterion for translating the decomposi-
tion of Proposition 39 into generating functions.

Theorem 42.

i) A polyomino � belongs to P2 if and only if it is obtained from a polyomino
of P1 by adding two new paths �2 and �2, which cannot be both empty, where
|�2|n = |�1|n − 1, and |�2|e = |�1|e − 1.

ii) A polyomino � belongs to Pk, � > 2, if and only if it is obtained from a
polyomino of Pk−1 by adding two new paths �k and �k, which cannot be both
empty, where |�k|n = |�k−1|n and |�k|e = |�k−1|e.

Proof. The reason why we have considered separately the two cases � = 2
and � > 2, follows directly from our decomposition and from Proposition
39. In particular, Proposition 39 states that the diference between the two
cases is due to the exclusion of the inal step in the subpaths �i and �i ,
for � > 2. Let us assume that � is a polyomino belonging to PR

2 (the cases
� ∈ PU

2 and � ∈ P2 are similar). Using our decomposition we are able to
identify, on the upper and the lower path of � , the four subpaths �1, �2, �1,
and �2. These subpaths have the properties described in Proposition 39, in
particular �2 and �2 are never both empty at the same time. Furthermore
|�2|n = |�1|n − 1 and |�2|e = |�1|e − 1. We denote with � ′ the polyomino
obtained by removing �2 and �2 from � , and joining �1 and �1 in such a
way that the cell � of � ′ has the same ordinate (resp. abscissa) of the cell
with �2 (resp. �2) as an edge. Our construction guarantees that � ′ belongs
to PR

1 .
On the other side, if we have a polyomino � of PR

1 and two paths �2

and �2 not both empty at the same time and such that |�2|n = |�1|n − 1
and |�2|e = |�1|e − 1, we can obtain a polyomino � ′ ∈ PR

2 by adding �2 and
�2 to � . From Proposition 41 we know that �1 is lat and �1 is not lat,
then |�1|n ≥ 2 and as a consequence |�2|n ≥ 1. Moreover, �2 contains at
least a step � by deinition, more precisely the initial step that we call �0.
We construct � ′ by joining �2 and �2 in such a way that the cell � of � ′

has the same abscissa of the cell with �0 as an edge. Also in this case, our
construction guarantees that � ′ belongs to PR

2 .
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We can see an example of the statement i) of Theorem 42 in Figure 2.6.
In (�) we have a polyomino � ∈ PR

2 obtained adding to � ′ ∈ PR
1 a path �2

such that |�2|e = 3 and a path �2 such that |�2|n = 2. While, in (�) we have
a polyomino � ∈ PR

2 obtained adding to � ′ ∈ PR
1 a lat path �2, and a path

�2 such that |�2|n = 2. Let us observe that in this last case �2 could also be
empty.

β1

1α

β1

α2

β2

α2 β2

α2

β2

α2 β2

1α

(a) (b)

Figure 2.6: (�) A polyomino � ∈ PR
2 in which �1 is lat and �1 are lat and

every other path is non empty and non lat. (�) A polyomino � ∈ PR
2 in

which �1 is equal to step �.

We would like to point out that if � belongs to Pk, then neither �k nor
�k can be empty or lat.

Following the statement of Theorem 42, to pass from � ≥ 1 to � + 1 we
need to introduce the following generating functions:

i) the generating function of the sequence A(� ). Such a function is denoted
by �k(�, �, �) for up, and by �k(�, �, �) for lat �-parallelogram poly-
ominoes, respectively, and, for each function, � + � keeps track of the
dimension of A(� ), and � keeps track of the width of �k if � is odd and
of the height of �k if � is even.

ii) the generating function of the sequence B(� ). Such a function is de-
noted by �k(�, �, �) for up, and by �k(�, �, �) for lat �-parallelogram
polyominoes, respectively, and here � + � keeps track of the dimension
of B(� ), and the variable � keeps track of the height of �k if � is odd
and of the width of �k if � is even.
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By Proposition 39, the generating functions ��U
k (�, �, �, �),

��R
k (�, �, �, �) and ��k(�, �, �, �), of the families PU

k , P
R
k , and Pk, respectively,

are obtained as follows:

��U
k (�, �, �, �) = �k(�, �, �) · �k(�, �, �) (2.4)

��k(�, �, �, �) = �k(�, �, �) · �k(�, �, �) (2.5)

��k(�, �, �, �) = ��U
k (�, �, �, �) +��R

k (�, �, �, �) +��k(�, �, �, �)(2.6)

Then, setting � = � = � = �, we have the generating functions according
to the semi-perimeter. Since ��U

k (�, �, �, �) = ��R
k (�, �, �, �), for all �, then

from now on we restrict the study to the lat and the up families.
To encode the path components of the sequences A(� ) and B(� ) we

use regular expressions,which are then used to pass to the corresponding
generating functions, via standard methods, such as, for instance, the so
called Schützenberger methodology [44].

The case � = 0. The family P0 is made of horizontal and vertical bars of
any length. We keep this case distinct from the others since it is not useful for
the inductive step, so we simply use the variables � and �, which keep track
of the width and the height of the polyomino, respectively. The generating
function is equal to

��0(�, �) = �� +
�2�

1− �
+

��2

1− �
,

where the term �� corresponds to the unit cell, and the other terms to the
horizontal and vertical bars, respectively.

The case � = 1. Following our decomposition and Figure 2.7, we easily
obtain

�1(�, �, �) =
�2�

(1− � − �)(1− �)
, �1(�, �, �) = �+

�2

1− �
.

We point out that we have written �1 as the sum of two terms because,
according to Corollary 40, we have to treat the case where �1 is equal to a
step � separately from the other cases. To this aim, we set �̂1(�, �, �) =

t2

1−t
.

Moreover, we have

�1(�, �, �) =
�2

1− �
, �1(�, �, �) =

�2

1− �
.
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t
+

z+ z*

t*

y(z+y)*

(a) (b)

z z

t

t

z

Figure 2.7: (�) A polyomino ∈ PU
1 and (�) a polyomino in P1.

According to (2.4) and (2.5), we have

��U
1 (�, �, �, �) =

���2

(1− �)(1− �)(1− � − �)
�� 1(�, �, �, �) =

�2�2

(1− �)(1− �)
.

Now, according to (2.6), and setting all variables equal to �, we have the
generating function of 1-parallelogram polyominoes

��1(�) =
�4(2�− 3)

(1− �)2(1− 2�)
.

The case � = 2. Now we can use the inductive step, recalling that the
computation of the case � = 2 is slightly diferent from the other cases, as
explained in Theorem 42. Using the decomposition in Figure 2.8 we calculate
the generating functions

�2(�, �, �) = � · �1

︂

�, �,
�

1− �

︂

=
�2��

(1− �− � − � + ��)(1− �− �)

�2(�, �, �) =
�

1− �
+ � · �̂1

︂

�, �,
�

1− �

︂

=
� − �2

(1− � − �)
= � +

��

1− � − �

�2(�, �, �) = � · �1

︂

�, �,
�

1− �

︂

=
�2�

(1− �)(1− �− �)

�2(�, �, �) = � · �1

︂

�, �,
�

1− �

︂

=
�2�

(1− �)(1− � − �)
.
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y

x

x

x

x
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Figure 2.8: (�) A polyomino in P2, (�) a polyomino in PU
2 in which �1 has at

least two steps � and (�) a polyomino in PU
2 in which �1 is equal to a step �.

We observe that the performed substitutions allow us to add the contri-
bution of the terms �2 and �2 from the generating functions obtained for
� = 1. Then, using formulas (2.4), (2.5) and (2.6), and setting all variables
equal to �, it is straightforward to obtain the generating function according
to the semi-perimeter:

��2(�) =
�5(2− 5�+ 3�2 − �3)

(1− �)2(1− 2�)2(1− 3�+ �2)
.

The case � > 2. The generating functions for the case � > 2 are obtained
in a similar way. Here, for simplicity sake, we set �̂k(�, �, �) = �k(�, �, �)−�;
this trick allows to separately carry out the case �1 = �. Then we have

�k(�, �, �) =
�

1− �
· �k−1

︂

�, �,
�

1− �

︂

(2.7)

�k(�, �, �) =
�

1− �
· �k−1

︂

�, �,
�

1− �

︂

(2.8)

�k(�, �, �) =
�

1− �
· �k−1

︂

�, �,
�

1− �

︂

(2.9)

�k(�, �, �) =
�

1− �
+

�

1− �
· �̂k−1

︂

�, �,
�

1− �

︂

. (2.10)

We remark that (2.7), (2.8), (2.9) and (2.10) slightly difer from the respective
formulas for � = 2, according to the statement of Theorem 42.

The performed calculations and in particular the substitutions suggest
that the above formulas can be also written using continued fractions [71],
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which is a less compact way, but can give a diferent combinatorial interpre-
tation to these formulas. For example, instead of (2.7) we can write:

�k(�, �, �) = �k� ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

1− x

1−
.
.
.

1− x
1−z

⎫

⎪

⎬

⎪

⎭

(k − 2)-times

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2

· 1

1− x

1−
.
.
.

1− x
1−z

⎫

⎪

⎬

⎪

⎭

(k − 1)-times

.

The other expressions are quite similar.

2.2.2 A formula for the number of �-parallelograms

The formulas found in the previous section allow us in principle to obtain an
expression for the generating function of Pk(�), for all � > 2. However, the
continued fractions representation suggests to express the generating function
of the sequences �k, �k, �k and �k as a quotient of polynomials, using the
Fibonacci polynomials.

First we need to give the following recurrence relation:

Deinition 43.
⎧

⎨

⎩

�0(�, �) = �1(�, �) = 1
�2(�, �) = 1− �
�k(�, �) = �k−1(�, �)− ��k−2(�, �) .

Remark 44. Let us observe that the use of three initial conditions instead of
two is required to obtain the desired sequence �0, �1, · · · . In particular setting
only �0 = �1 = 1 we would have �2 = 1−� instead of 1−� and we also need
of the term �0 because it appears in the inal expression of the generating
function.

These polynomials are already known as Fibonacci polynomials [53]

Remark 45. To avoid any confusion, let us recall that Fibonacci polynomials
are perhaps more often seen as

︂

�0(�) = �1(�) = 1
�k(�) = �k−1(�) + ��k−2(�) .
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In the sequel, unless otherwise speciied, we write �k(�, �) for �k. Notice
that �k(−1,−1) gives the �th Fibonacci number.

The closed formula for �k is obtained by using standard methods:

�k =
�(�)k+1 − �(�)k+1

√
1− 4�

,

where �(�) and �(�) are the solutions of the equation �2 −� + � = 0, i.e.

�(�) =
︁

1−
√
1−4x
2

︁

and �(�) =
︁

1+
√
1−4x
2

︁

.

These polynomials have been widely studied, and have several combinato-
rial properties. Below we list just a few of these properties, the ones that are
necessary to provide alternative expressions for formulas �k, �k, �k and �k.

Proposition 46. For any � ≥ 1 the following relations hold

� 2
k − �� 2

k−1 = �2k

�k+1 − ��k−1 = F2k+1

Fk

� 2
k−1 = �k+1 + �k�k+2

Fk

Fk+1
= 1

1− x

1−

...
1− x

1−z























(k − 1)-times

.

Proof. These identities are obtained by performing standard computation,
and using the following:

⎧

⎨

⎩

�(�) + �(�) = 1
�(�)− �(�) =

√
1− 4�

�(�) · �(�) = � .

Thus, we only show how we get the irst equality, then the other ones can be
proved in a similar way. For brevity sake we write � instead of �(�) and �
instead of �(�).

� 2
k − �� 2

k−1 = (bk+1−ak+1)2

(
√
1−4x)2

− � · (bk+1−ak+1)2

(
√
1−4x)2

=

= b2k+2+a2k+2−2bk+1+2xbkak−xb2k−xa2k

1−4x
=

= b2k+1(b−a)−a2k+1(b−a)
1−4x

=

= b−a√
1−4x

· b2k+1−a2k+1
√
1−4x

= �2k .
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In order to express the functions �k, �k, �k, and �k in terms of the
Fibonacci polynomials we need to state the following lemma:

Lemma 47. For every � ≥ 1

�k

︂

�,
�

1− �

︂

=
�k+1(�, �)

1− �
.

Proof. The proof is easily obtained by induction.
Basis: We show that the statement holds for � = 1.

�1

︂

�,
�

1− �

︂

= 1 =
1− �

1− �
=

�2(�, �)

1− �
.

Inductive: Assume that Lemma 47 holds for � − 1. Let us show that it
holds also for �, i.e.

�k

︂

�,
�

1− �

︂

=
�k+1(�, �)

1− �
.

Using the deinition of �k(�, �) the left-hand side of the above equation can
be rewritten as

�k−1

︂

�,
�

1− �

︂

− ��k−2

︂

�,
�

1− �

︂

.

Now, using the induction hypothesis, we obtain:

�k(�, �)

1− �
− �

�k−1(�, �)

1− �
=

�k(�, �)− ��k−1(�, �)

1− �
=

�k+1(�, �)

1− �
.

Letting � = �, we can write �1(�, �) = xz2

F2(x,z)F3(x,z)
. Now, iterating

Formula (2.7), and using Lemma 47, we obtain

�k(�, �) =
��k+1

�k+1(�, �)�k+2(�, �)
.

Performing the same calculations on the other functions we obtain:

�k(�, �) =
��k

�k+1(�, �)

�k(�, �) = �k(�, �) =
��k

�k(�, �) · �k+1(�, �)
.
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From these new expressions for the functions �k, �k, �k, and �k, by setting
all variables equal to �, we can calculate the generating function of the family
Pk in an easier way:

��k(�) = 2�k(�, �)�k(�, �) + (�k)
2(�, �)

��k(�) =
2�k+3�k

� 2
k+1�k+2

+
�2k+2

� 2
k�k+1

.

Then we have the following:

Theorem 48. The generating function of �-parallelogram polyominoes Pk

is given by

�k(�) =
k︁

n=0

��n(�) = �2 ·
︂

�k+1

�k+2

︂2

− �2 ·
︂

�k+1

�k+2

− �k

�k+1

︂2

.

As an example, for the irst values of � we have:

�0(�) =
x2(1+x)
1−x

�1(�) =
x2(1−2x+2x2)
(−1+x)2(1−2x)

�2(�) =
x2(1−x)(1−4x+4x2+x3)

(1−2x)2(1−3x+x2)
�3(�) =

x2(1−2x)(1−6x+11x2−6x3+2x4)
(1−x)(1−3x)(1−3x+x2)2

The coeicients of �1 are an instance of sequence �000247 [103], whose irst
few terms are:

0, 3, 10, 25, 56, 119, 246, 501, 1012, · · · .

As one would expect we have the following corollary:

Corollary 49. Let �(�) = 1−
√
1−4x
2x

be the generating function of Catalan
numbers, we have:

lim
k→∞

�k(�) = �(�) .

Proof. We know that �(�) satisies the equation �(�) = 1 + ��2(�), and
�(�)�(�) = �, �(�) = ��(�), so we can write

�k =
1− �k+1�2(k+1)(�)

�k+1(�)
√
1− 4�

.

Now we can prove the following statements:

lim
k→∞

�k

�k+1

= �(�) , (2.11)

lim
k→∞

�k
2

�k+1
2 =

�(�)− 1

�
, (2.12)

lim
k→∞

�k

�k+2

=
�(�)− 1

�
. (2.13)
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Using the previous identities we can write in an alternative way the ar-
gument of Limit 2.11

lim
k→∞

1−xk+1C2(k+1)(x)

Ck+1(x)
√
1−4x

1−xk+2C2(k+2)(x)

Ck+2(x)
√
1−4x

= lim
k→∞

�(�) · 1− �k+1�2(k+1)(�)

1− �k+2�2(k+2)(�)
,

and so Equation 2.11 holds. In a similar way one obtains Equations 2.12 and
2.13.

From Theorem 48, and using the above results, we obtain the desired
result.

2.3 A bijective proof for the number of

�-parallelogram polyominoes

In [53] it is proved that � · Fk

Fk+1
is the generating function of rooted plane

trees having height less than or equal to �+1. Hence, the generating function
obtained for �k(�) in (2.11) can be expressed as the diference between the
generating functions of pairs of rooted plane trees having height at most �+2,
and pairs of rooted plane trees having height exactly equal to � + 2.

We recall that a rooted plane tree is a rooted tree embedded in the plane
so that the relative order of subtrees at each branch is part of its structure.
Henceforth we shall say simply tree instead of rooted plane tree. Let � be a
tree, the height of � , denoted by |� |, is the number of nodes on a maximal
simple path starting at the root. Figure 2.9 depicts the seven trees having
exactly 6 nodes and height equal to 5.

Figure 2.9: The seven trees with 6 nodes and height 5.

Our aim is now proceed trying to provide a combinatorial explanation to
this fact, by establishing a bijective correspondence between �-parallelogram
polyominoes and trees having height less than or equal to a ixed value;
irst we show how to build the tree associated with a given parallelogram
polyomino � and then we show what is the link between the convexity degree
of � and the corresponding tree.
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2.3.1 From parallelogram polyominoes to rooted plane

trees

In the following is presented the construction of the bijection based on [6].
Given a parallelogram polyomino � we begin by labelling:

- each step � of the upper path of � with the integer numbers from 1 to
the width of � and moving from right to left;

- each step � of the lower path of � with marked integer numbers from
1 to the height of � and moving from top to bottom.

The labelling is depicted in Figure 2.10 (�). Observe that the labelling
of a polyomino is uniquely determined by construction and that every label
� (resp. �) identiies a column (resp. a row) into � .

1

2

4

3

5

6

7

8

1 42 3

5 6

7 8

123

4

6

9

5

7

8

1011

(a) (b)

1

2 3 4 5 6 7

9 10 11

8

Figure 2.10: (�) A polyomino in PU
4 and in (�) its corresponding tree.

Let � be a parallelogram polyomino. We denote by �(1) the array of
labels (except for the label 1), which are an edge of a cell belonging to the
row determined by 1. For every label � ≥ 1 (resp. � ≥ 2) we take into
consideration the column (resp. the row) determined by it. We denote by
�(�) (resp. �(�)) the array of labels which corresponds to an edge of a cell
belonging to this column (resp. row). Note that each label in the array �(�)
(resp. �(�)) corresponds to a step � (resp. �) on the lower (resp. upper) path
of � .

51



For instance in Figure 2.10 we have:

�(7) = (5, 6) and �(5) = (9, 10, 11) .

At this point we are able to construct the corresponding tree called � (� )
as follows (see Figure 2.10 (�)):

- we associate to any label of � one node in � (� ), in particular the root
will be the node labelled with 1;

- the children of the node 1 are exactly the ones labelled with the labels
in �(1), ordered from left to right. In general the children of a node
with label � (resp. �) are exactly the ones labelled with the labels �(�)
(resp. �(�)), ordered from left to right.

Let Pn and Tn be respectively the sets of parallelogram polyominoes with
semi-perimeter � and of trees with � nodes. The following proposition holds.

Proposition 50. The function T which maps a polyomino � ∈ Pn into
� (� ) is a bijection.

Proof. The injectivity directly follows from our construction. T is also sur-
jective. The number of nodes of � (� ) is equal to the semi-perimeter of � .
In fact, the number of nodes is equal to the number of labels, that is, equal
to the sum of steps � on the upper path and of steps � on the lower path of
� . Since we are considering parallelogram polyominoes which are irst of all
convex polyominoes, such a sum corresponds exactly to the semi-perimeter
of � . Therefore, given a tree � we build the corresponding parallelogram
polyomino, denoted by � (� ), in the following way. We start from a ixed
point of the plane and we proceed to construct the upper path and the lower
path of � (� ) in two diferent phases:

1. we start with a step � which corresponds to the root. For every node
labelled with �, with � ≥ 1, we draw as many steps � as the number of
its children and one step �.

2. For every node labelled with �, with � ≥ 1, we draw as many steps � as
the number of its children and one step �.

This construction guarantees that the upper path and the lower path of � (� )
have the same length and they are disjoint except at their common endpoints,
otherwise � would not be a tree.

Moreover, observe that:
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- in every tree obtained by our correspondence, the root labelled with 1
has at least the node labelled with 1 as a child;

- the nodes labelled with � and � are at alternate levels;

- the labelling is uniquely determined as in the case of parallelogram
polyominoes. So, from now on, when we deal with trees, we mean
labelled trees.

2.3.2 The link between the �-convexity degree and the

height of a tree

We want to highlight that in our construction given a polyomino � and its
associated tree � (� ), the node with the largest label � (resp. �) corresponds
to a cell in � in which the path � (resp. ℎ) takes the irst direction change.
Let � be a tree having height equal to �. According to the parity of � we
deine two sequences of nodes.

❼ case � (odd):
we call �T (resp. ℎT ) the sequence of nodes of the simple path starting
from the rightmost node at the height � (resp. �− 1) and ending when
reaching either the node 1 or 1.

❼ case � (even):
we call ℎT (resp. �T ) the sequence of nodes of the simple path starting
from the rightmost node at the height � (resp. �− 1) and ending when
reaching either the node 1 or 1.

For example, let � be the tree in Figure 2.10 (�). |� | is equal to 6,
so we are in the even case, and following the previous deinition we have
ℎT = (8, 10, 5, 7, 3, 1) and �T = (11, 5, 7, 3, 1).

The sequences �T and ℎt have an important property: the nodes of ℎT

(resp. �T ) correspond to the cells of � (� ) in which ℎ (resp. �) makes a
direction change. Hence, there are exactly the � (resp. �′) steps determined
by the path ℎ (resp. �) that we denoted, in our decomposition 2.1, �i or �i

depending on whether it is a horizontal or vertical one (see Fig. 2.4). Thus,
the convexity degree of � (� ) is equal to the minimal number of nodes among
the two paths ℎT (P ) and �T (P ) minus one.

In general, the height of � is closely related to the number of nodes of
ℎT and �T and by deinition ℎT and �T can be referred to the node 1 or 1.
Then, the height of � is equal to the maximal number of nodes among the
two paths plus one, and the following proposition holds.
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Proposition 51. Let � be a polyomino in Pk. The height of � (� ) is less
than or equal to � + 3.

The proof follows directly from our construction.
As we said before, Equation (2.11) suggests to consider a pair of trees.

Consequently, we identify every tree � (� ) with a pair of trees �1 and �2,
denoted by (�1, �2). They are the ones obtained taking the subtree of � (� )
having the node labelled with 1 as a root, and the remaining subtree of � (� )
having the node labelled with 1 as a root, respectively. Formally: Let �1 and
�2 be a pair of trees. We denote with � = (�1, �2) the tree obtained putting
�1 as a left subtree of �2. In general the pairs � = (�1, �2) and � ′ = (�2, �1)
correspond to distinct trees. Figure 2.11 depicts the decomposition of the
tree of Figure 2.10 (�).

1

2 3

42 3

5 6

7 8

1

4 5 6 7

9 10 11

8

(b)(a)

Figure 2.11: The pair (�1, �2) of trees corresponding to the tree depicted in
Figure 2.10, in particular �1 in (�) and �2 in (�).

Now we provide a bijective proof of the combinatorial explanation of
Equation (2.11).

Proposition 52. The number of �-parallelogram polyominoes is equal to the
number of pairs of trees having height less than or equal to � + 2 minus the
number of pairs of trees having height equal to � + 2.
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Proof. Let � be a polyomino of Pk with � ≥ 0. We start with the assump-
tion that � is even (for the odd case the procedure is similar). Based on
Proposition 51 we have |� (� )| ≤ � + 3. According to Deinition 2.11 in
general for each tree � = (�1, �2) with |� | ≤ � + 3 we have:

|�1| ≤ � + 2 and |�2| ≤ � + 3 .

The set Pk contains all the polyominoes having convexity degree less than
or equal to �. We restrict our analysis by assuming that � has convexity
degree exactly equal to �. Hence

� + 1 ≤ |�1| ≤ � + 2 and � + 1 ≤ |�2| ≤ � + 3 .

Given the above condition and previous considerations, we have to consider
only these four cases:

1. |�1| ≤ � + 2 and |�2| ≤ � + 3.
We take into account the borderline case |�1| = � + 2, |�2| = � + 3,
and |� (� )| = |(�1, �2)| = � + 3 (even). Both nodes with the greatest
labels � and � belong to �2. Then the number of nodes of ℎT (P ) is equal
to � + 3 and the number of nodes of �T (P ) is equal to � + 2. As we
said before, the convexity degree of � is equal to the minimal number
of nodes among ℎT (P ) and �T (P ) minus one. For this case the convexity
degree of � is equal to

min(� + 3, � + 2)− 1 = � + 1

consequently � belongs to Pk+1 and not to Pk against the hypothesis.

To illustrate this case see Figure 2.12 where � = 3, |�1| = 5, |�2| = 6,
|� | = |(�1, �2)| = 6, and

ℎT = (16, 11, 10, 7, 4, 1) and �T = (11, 10, 7, 4, 1) .

So, the convexity degree of � (� ) is equal to min(6, 5)− 1 = 4 = � + 1
(see Figure 2.13).

2. |�1| ≤ � + 2 and |�2| ≤ � + 2.
Here, the borderline case is |�1| = � + 2, |�2| = � + 2, and |� (� )| =
|(�1, �2)| = �+3. Since the height of � is even we deduce that the node
with the greatest label � belongs to �1. Then, the number of nodes of
ℎT is equal to � + 3. The node with the greatest label � belongs to �2,
and the number of nodes of �T is equal to �+2. As we said before, the
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(b)(a)

Figure 2.12: Case 1. (�) A pair of trees �1 and �2 and its corresponding tree
� = (�1, �2) in (�).

convexity degree of � is equal to the minimal number of nodes among
ℎT and �T minus one, this means

min(� + 3, � + 2)− 1 = � + 1

and so � belongs to Pk+1 and not to Pk against the hypothesis. An
example of case 2. is depicted in Figure 2.14 and in Figure 2.15.

3. |�1| ≤ � + 1 and |�2| ≤ � + 2.
As in the previous cases, we analyse the borderline situation |�1| =
� + 1, |�2| = � + 2, and |� | = |(�1, �2)| = � + 2.

Both nodes with the greatest labels � and � belong to �1. It is possible
to inspect such a situation in Figure 2.16. According to the parity of
|� (� )| (odd), we know that the number of nodes of �T is equal to �+2
and the number of nodes of ℎT is equal to �+1. The convexity degree
of � is equal to the minimal number of nodes among ℎT and �T minus
one, then

min(� + 1, � + 2)− 1 = � ,

so � belongs to Pk (see Figure 2.17).

4. |�1| ≤ � + 2 and |�2| ≤ � + 1.
Also here we take into consideration the borderline case, |�1| = � + 2,
|�2| = �+1, and |� (� )| = |(�1, �2)| = �+3. We know that both nodes
with the greatest label � and the greatest label � belong to �1. Since
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11 12 13 14 15 16

(a) (b)

Figure 2.13: Case 1. (�) The tree � = (�1, �2) and in (�) its corresponding
parallelogram polyomino � (� ).

the height of � is even the number of nodes of ℎT is equal to �+2, and
the number of nodes of �T is equal to � + 1. As before, the convexity
degree of � is equal to the minimal number of nodes among ℎT and �T
minus one

min(� + 2, � + 1)− 1 = �

so, as in the previous case, � belongs to Pk (see Figure 2.19).

Therefore, we have shown that in cases 3. and 4. � is a �-parallelogram
polyomino according to the hypothesis. While in cases 1. and 2. � is a
parallelogram polyomino which is exactly (� + 1)-parallelogram and this is
a contradiction. We conclude that the number of polyominoes in �k(�) will
be given by considering only the cases 3. and 4.. Then we have the claim.
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Figure 2.14: Case 2. (�) A pair of trees �1 and �2 and its corresponding tree
� = (�1, �2) in (�).
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Figure 2.15: Case 2. (�) The tree � = (�1, �2) and in (�) its corresponding
parallelogram polyomino � (� ).

Given a tree � = (�1, �2) we can deduce some properties of � (� ). Let us
consider �T = (�1, · · · , �j) and ℎT = (ℎ1, · · · , ℎj′), where � = �′ or |�−�′| = 1.
We remark that �1 and ℎ1 are equal to the greatest label of type � and �,
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Figure 2.16: Case 3. (�) A pair of trees �1 and �2 and its corresponding tree
� = (�1, �2) in (�).
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Figure 2.17: Case 3. (�) The tree � = (�1, �2) and in (�) its corresponding
parallelogram polyomino � (� ).

respectively. Based on � and �′ we have:

- � = �′ then � (� ) is a lat �-parallelogram polyomino;

- � ̸= �′ and � odd (resp. �′ is even) then � (� ) is an up �-parallelogram
polyomino;

59



1

2 3 4

5 6 7 8 9

1

1

3 4 5 6 7

8

2

9

10

131211

1

(b)(a)

Figure 2.18: Case 4. (�) A pair of trees �1 and �2 and its corresponding tree
� = (�1, �2) in (�).
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Figure 2.19: Case 4. (�) The tree � = (�1, �2) and in (�) its corresponding
parallelogram polyomino � (� ).

- � ̸= �′ and � even (resp. �′ is odd) then � (� ) is a right �-parallelogram
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polyomino.

Suppose that we are in the second or in the third case, in particular when
� = �′ + 1 (resp. �′ = � + 1). There exists an index �, 2 ≤ � ≤ � (resp.
2 ≤ � ≤ �′), such that starting from the �th and the (� − 1)th element of
�T and ℎT (resp. of ℎT and �T ), respectively, the sequences coincide. In
particular, the node with the label �c−1 (resp. ℎc−1) corresponds to the cell
� (deined in Section 2.1) in � (� ).

For example if we consider that � is the tree in Figure 2.10 (�), we have

�T = (11, 5, 7, 3, 1) and ℎT = (8, 10, 5, 7, 3, 1)

then � = 5 and �′ = 6. Starting from the second and the third element of
�T and ℎT respectively, the sequences coincide. As a consequence, the node
with the label ℎT (2) = 10 corresponds in � (� ) to the cell �, as we can see
in Figure 2.10 (�). Therefore, we are in the case where � is odd then � (� )
is an up �-parallelogram polyomino.

2.4 Further work

We have extended some of our previous results for the family of �-parallelogram
polyominoes to another remarkable subfamily of convex polyominoes, the �-
convex polyominoes which are also directed polyominoes. We call them for
short �-directed polyominoes, denoted by Dk.

More precisely, we were able to apply our decomposition, explained in
Section 2.1, to the set of �-directed polyominoes. This is due mainly to the
fact that we have an analogous of Proposition 34 holding also for this new
considered family. Indeed, to ind out the convexity degree of a directed
convex polyomino � it is suicient to check the direction changes required to
any path running from the source � to the “furthest cells” of � . Then, giving
a �-directed polyomino � , we can provide a deinition of two paths ℎ(� )
and �(� ), which is analogous to that of Deinition 33. These two paths - as
shown in Figure 2.20 - identify some vertical/horizontal steps on the bound-
ary of � . These steps are called, analogously to the case of �-parallelogram
polyominoes (see 2.1), �i or �i depending on whether it is a horizontal or
vertical one. Furthermore, we can apply the same decomposition technique,
which is graphically shown in Figure 2.20.

Remark 53. Let � be a �-directed polyomino. We can prove that the cells
of � which require the maximal number of direction changes to be reached
are the ones on the right of the step �k and over the step �k. These cells are
the ones shaded in Figure 2.20.
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Figure 2.20: (�) A polyomino � ∈ �3. (�) A polyomino � ∈ �3. (�) A
polyomino � ∈ �3 in which the uppermost cells of � are on the left of �3,
and the rightmost cells of � are above �3. (�) A polyomino � ∈ �3 in which
the uppermost cells of � are on the right of �3, and the rightmost cells of �
are below �3.

The next step is to give a classiication of the polyominoes of Dk based on
the position of the steps �k and �k. A polyomino � belongs to the family:

- �k if at least one of the uppermost cells of � is on the right of �k, and at
lest one of the rightmost cells of � is above �k, see Figure 2.20 (�) ;

- �k if the uppermost cells of � are on the left of �k (except the one
containing �k itself), and the rightmost cells of � are below �k (except
the one containing �k itself), see Figure 2.20 (�);
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- �k otherwise, see Figure 2.20 (�) and (�).

The three families have to be enumerated separately. Then the generating
function of Dk can be obtained by summing the three generating functions.

Unfortunately, unlike the case of �-parallelogram polyominoes, each of
these families has to be split in several subfamilies in order to consider all
possible conigurations which can occur. It follows that the obtained formulas
have a rather complex expression. In particular, we have not been able to
express them using the Fibonacci polynomials, as it was for parallelogram
polyominoes.

Another problem, that remains to be explored, is to determine the asymp-
totic behaviour of the family of �-parallelogram polyominoes. Starting from
our expression of the generating function, given in Theorem 48, and basing
on some results from [69], we have conidence that it is possible to obtain a
general solution for all �.
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Chapter 3

Permutation and polyomino

classes

The concept of a pattern within a combinatorial structure plays an important
role in combinatorics. It has been deeply studied for permutations, starting
irst with [98]. Analogous deinitions were provided in the context of many
other structures, such as set partitions [81, 97, 111], words [20, 35], trees [52,
109], and paths [19], see Section 1.3.

In the following section we recall some important deinitions that allow
to better understand the work described in this chapter. Moreover, we have
already studied some of the topics discussed below in [11].

3.1 Permutation classes and polyomino classes

The relation of containment 4S is a partial order relation on the set S of all
permutations. Moreover, properties of the poset (S,4S) have been described
in the literature [117]. We recall some of the most well-known here: (S,4S)
is a well founded poset (i.e. it does not contain ininite descending chains),
but it is not well ordered, since it contains ininite antichains (i.e. ininite
sets of pairwise uncomparable elements); moreover, it is a graded poset (the
rank function being the size of the permutations).

Deinition 54. A permutation class is a set of permutations C that is down-
ward closed for 4S: for all � ∈ C, if � 4S �, then � ∈ C.

We remark that a permutation class is also known as a closed class, or
pattern class, or simply class of permutations, see for example in [1, 4].

For any set B of permutations, denoting ��S(B) the set of all permuta-
tions that avoid every pattern in B, we have that ��S(B) is a permutation
class. The converse statement is also true.
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Proposition 55. For every permutation class C, there is a unique antichain
B such that C = ��S(B). The set B consists of all minimal permutations
(in the sense of 4S) that do not belong to C.

The reader can ind more details about this proposition in Section 1.3.2.
In the usual terminology, B is called the basis of C. Here, we shall rather

call B the permutation-basis (or �-basis for short), to distinguish it from
other kinds of bases that we introduce later.

Notice that because (S,4S) contains ininite antichains, the basis of a
permutation class may be ininite, as in the case of pin permutations intro-
duced in [10].

Actually, Proposition 55 does not hold only for permutation classes, but
for all well-founded posets, which are important for our purpose. First of all
we recall the notion of well-founded poset:

Deinition 56. A poset (X,4) is called well-founded, if X has no ininite
descending chain {�0, �1, · · · , �n, · · · } with �0 > �1 > · · · > �n > · · · .

Proposition 57. For any well-founded poset (X,4), for any subset C of X
that is downward-closed for 4, there exists a unique antichain B of X such
that C = ��X(B) = {� ∈ X : for all � ∈ B, � 4 � does not hold}. The set B
consists of all minimal elements of X (in the sense of 4) that do not belong
to C.

Proof. Let C be a subset of X that is downward closed for4. The complement
X ∖ C of C with respect to X is upward closed for 4. Let us deine B to be
the set of minimal elements of X ∖ C: B = {� ∈ X ∖ C | ∀� ∈ X ∖ C, if � 4

� then � = �}. This is equivalent to characterising B as the set of minimal
elements of X (in the sense of 4) that do not belong to C. Because X is
well-founded, we have that � ∈ X ∖ C if and only if ∃� ∈ B such that � 4 �.
By contraposition, we immediately get that C = ��X(B). In addition, by
minimality, the elements of B are pairwise uncomparable, so that B is indeed
an antichain.

To further ensure uniqueness, it is enough to notice that for two diferent
antichains B and B′ the sets C = ��X(B) and C′ = ��X(B

′) are also diferent.

Permutation classes have been extensively studied from the Seventies un-
til now, see Section 1.3. Nowadays, the research on permutation classes is
being developed into several directions. One of them is to state analogous of
Deinition 10 (see Section 1.3.2) for other combinatorial objects, and to ind
out which of the nice properties of permutation classes, or of the order 4S,
or of the associated poset (S,4S), . . . extend to a more general setting. The
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work presented here goes into this direction, and it is speciically focused on
matrix patterns in polyominoes and in permutations.

3.1.1 Permutation matrices and the submatrix order

Permutations are in (obvious) bijection with permutation matrices, i.e. bi-
nary matrices with exactly one entry 1 in each row and in each column. To
any permutation � of Sn, we may associate a permutation matrix �σ of di-
mension � by setting �σ(�, �) = 1 if � = �(�), and 0 otherwise. Throughout
this work we adopt the convention that rows of matrices are numbered from
bottom to top, so that the 1 in �σ are at the same positions as the dots in
the diagram of � – see an example on Figure 3.1.

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

(a) (b)

Figure 3.1: (�) Graphical representation (or diagram) of the permutation
� = 521634. (�) The permutation matrix corresponding to �.

Let M be the family of binary matrices (i.e. with entries in {0, 1}). We
denote by 4 the usual submatrix order on M, i.e. � ′ 4 � if � ′ may be
obtained from � by deleting any collection of rows and/or columns.

Whenever � 4S �, we have that�π is a submatrix of�σ. Notice however
that not all submatrices of �σ are permutation matrices, and we discuss in
Subsection 3.2 some consequences of this fact in the study of permutation
classes.

Another consequence of the matrix representation of permutations is that
we may rephrase the deinition of classes as follows: a set C of permutations
is a class if and only if, for every � ∈ C, every submatrix of � which is
a permutation is in C. This does not say much by itself, but it allows to
deine analogues of permutation classes for other combinatorial objects that
are naturally represented by matrices, like polyominoes.
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3.1.2 Polyominoes and polyomino classes

A polyomino � may be represented by a binary matrix � whose dimensions
are those of the minimal bounding rectangle of � : drawing � in the positive
quarter plane, in the unique way that � has contacts with both axes, an
entry (�, �) of � is equal to 1 if the unit square [� − 1, �]× [�− 1, �] of Z×Z
is a cell of � , 0 otherwise (see Figure 3.2). Notice that, according to this
deinition, in a matrix representing a polyomino the irst (resp. the last) row
(resp. column) contains at least a 1.

0 0 0 0 1 0 0

0 0 1 1 1 0 1

1 1 1 1 1 1 1

0 0 1 0 1 1 1

0 0 1 0 0 1 0

0 0 0 0 0 1 1

(a) (b)

Figure 3.2: A polyomino and its representation as a binary matrix.

Let us denote by P the set of polyominoes, viewed as binary matrices
as explained above. We can consider the restriction of the submatrix order
4 on P. This deines the poset (P,4P) and the pattern order between
polyominoes: a polyomino � is a pattern of a polyomino � (which we denote
� 4P �) when the binary matrix representing � is a submatrix of that
representing �.

We point out that the order 4P has already been studied in [39] under the
name of subpicture order. The main point of focus of [39] is the family of �-
convex polyominoes deined by the same authors in [40]. But [39] also proves
that 4P is not a partial well-order, since (P,4P) contains ininite antichains.
We remark also that (P,4P) is a graded poset (the rank function being the
semi-perimeter of the bounding box of the polyominoes).

This implies in particular that (P,4P) is well-founded.
Notice that these properties are shared with the poset (S,4S) of permu-

tations. This allows to introduce a natural analogue of permutation classes
for polyominoes:

Deinition 58. A polyomino class is a set of polyominoes C that is downward
closed for 4P: for all polyominoes � and �, if � ∈ C and � 4P � , then
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� ∈ C.

The reader can exercise in inding simple examples of polyomino classes,
such as, for instance: the family of polyominoes having at most three columns,
the family of polyominoes having a rectangular shape, or the whole family of
polyominoes. Some of the most famous families of polyominoes are indeed
polyomino classes, like the convex polyominoes and the �-convex polyomi-
noes. This will be investigated more precisely in Section 3.5. However, there
are also well-known families of polyominoes which are not polyomino classes,
like: the family of polyominoes having a square shape, the family of poly-
ominoes having exactly three columns, or the family of polyominoes with no
holes (i.e. polyominoes whose boundary is a simple path). Figure 3.3 shows
that a polyomino in this family may contain a polyomino with a hole.

1 1 1 1 1

1 0 0 1 1

1 0 0 0 0

1 1 1 1 0 1 1 1

1 0 1

1 1 1

(a) (b)

Figure 3.3: (�) A polyomino � with no holes; (�) A polyomino � ′ 4P �
containing a hole.

Similarly to the case of permutations, for any set B of polyominoes, let us
denote by ��P(B) the set of all polyominoes that do not contain any element
of B as a pattern. Every such set ��P(B) of polyominoes deined by pattern
avoidance is a polyomino class. Conversely, as in the case of permutation
classes, every polyomino class may be characterised in this way.

Proposition 59. For every polyomino class C, there is a unique antichain
B such that C = ��P(B). The set B consists of all minimal polyominoes (in
the sense of 4P) that do not belong to C.

Proof. Follows immediately from Proposition 57 and the fact that (P,4P)
is a well-founded poset.

As in the case of permutations we call B the polyomino-basis (or �-basis
for short), to distinguish it from other kinds of bases.
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Recall that (P,4P) contains ininite antichains [39], then there are poly-
omino classes with ininite �-basis. We will show an example of a polyomino
class with an ininite �-basis in Proposition 86. However, we are not aware
of natural polyomino classes whose �-basis is ininite.

3.2 Classes with excluded sub-matrices

We have noticed in Subsection 3.1.1 that not all submatrices of permutation
matrices are themselves permutation matrices . More precisely:

Remark 60. The submatrices of permutation matrices are exactly those that
contain at most one 1 in each row and each column. We call such matrices
quasi-permutation matrices in the rest of this section.

For polyominoes, it also holds that not all submatrices of polyominoes
are themselves polyominoes. However, the situation is very diferent from
that of permutations:

Remark 61. Every binary matrix is a submatrix of some polyomino.

Indeed, for every binary matrix � , it is always possible to add rows and
columns of 1 to � in such a way that all 1 entries of the resulting matrix
are connected.

From Remarks 60 and 61, it makes sense to examine sets of permuta-
tions (resp. polyominoes) that avoid submatrices that are not themselves
permutations (resp. polyominoes).

Deinition 62. For any set M of quasi-permutation matrices (resp. of bi-
nary matrices), let us denote by ��S(M) (resp. ��P(M)) the set of all
permutations (resp. polyominoes) that do not contain any submatrix in M.

In Deinition 62, in the case of permutations, we may as well consider sets
M containing arbitrary binary matrices. But from Remark 60, excluding a
matrix � which is not a quasi-permutation matrix does not actually intro-
duce any restriction: no permutation contains � as a submatrix. Therefore,
in our work, when considering ��S(M), we always takeM to be a set of quasi-
permutation matrices. Figure 3.4 illustrates Deinition 62 in the polyomino
case.

The followings facts, although immediate to prove, will be useful in our
work:

Remark 63. When M contains only permutations (resp. polyominoes),
these deinitions of ��S(M) and ��P(M) coincide with the ones given in
Section 3.1.
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1 0

10

0 0 0 0 1 0 0

0 0 1 1 1 0 1

1 1 1 1 1 1 1

0 0 1 0 1 1 1

0 0 1 0 0 1 0

0 0 0 0 0 1 1

0 0 0 0 1 0

0 0 1 1 1 1

1 1 1 1 1 1 1

0 0 1 1 1 1

0 0 1 0 0 1 0

0 0 0 0

1

1

1

1 0 0

S  =
1

(a) (b) (c)

Figure 3.4: (�) a matrix �1; (�) a polyomino that contains �1 as a submatrix,
hence does not belong to ��P(�1); (�) a polyomino that does not contain �1,
i.e. that belongs to ��P(�1).

Remark 64. Denoting ��M(M) the set of binary matrices that do not have
any submatrix in M, we have

��S(M) = ��M(M) ∩S and ��P(M) = ��M(M) ∩P.

Remark 65. Sets of the form ��S(M) are downward closed for 4S, i.e. are
permutation classes. Similarly, the sets ��P(M) are polyomino classes.

We reckon it is quite natural to characterise some permutation or poly-
omino classes by avoidance of submatrices. We provide several examples
in Sections 3.4 and 3.5. In the present section, we investigate further the
description of permutation and polyomino classes by avoidance of matrices,
and in particular we focus on how canonical and concise such a description
can be.

Remark on a diferent notion of containment/avoidance of binary
matrices in permutation matrices.
To avoid any confusion, let us notice that another deinition of containment
of a binary matrix in a permutation matrix (diferent from the submatrix
containment) has been around in the permutation patterns literature. It
has been used in particular in the Marcus-Tardos proof of the Stanley-Wilf
conjecture [101], and it should be read as follows: a binary matrix � = (�i,j)
is contained in a permutation matrix � if � contains a submatrix � = (�i,j)
of the same dimension as � such that �i,j = 1 as soon as �i,j = 1.

This notion of containment of binary matrices in permutations is dif-
ferent, but related to the classical submatrix containment. Indeed, � being
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contained in � in the Marcus-Tardos sense means that � contains a subma-
trix that is either � or some � ′ obtained from � by replacing some 0 entries
in � by 1. Actually, from Remark 60, this statement can be restricted w.l.o.g.
to matrices � ′ obtained from � by replacing some uncovered 0 entries in �
by 1. By uncovered 0 entry, we mean a 0 entry which does not have any
entry 1 in the same row nor in the same column.

Speciically, the set of permutations that avoid all the binary matrices in
the set B in the Marcus-Tardos sense is a permutation class, which may be
described by the set of excluded submatrices B′, where B′ = {� ′ obtained
from � ∈ B by replacement of some (uncovered) 0 entries by 1}. In this
work, we view the Marcus-Tardos deinition of avoidance of a matrix as a
shortcut to indicate avoidance in the submatrix sense of a set of matrices.
From now on, we focus on the (usual) notion of submatrix avoidance.

3.2.1 Matrix bases of permutation and polyomino classes

We have seen in Propositions 55 and 59 that for each permutation (resp.
polyomino) class C, the set of excluded permutation (resp. polyomino) pat-
terns that characterises C is uniquely determined. In view of Proposition 57,
it is not hard to associate with every permutation (resp. polyomino) class C
a set M of matrices such that C = ��S(M) (resp. C = ��P(M)). Given a
class C, we can deine such a set M in a canonical way (see Deinition 66).
However, we shall see in the following that for some permutation (resp. poly-
omino) classes C, there exist several antichains M′ such that C = ��S(M

′)
(resp. C = ��P(M

′)).

Deinition 66. Let C be a permutation (resp. polyominoe) class. Denote by
C+ the set of matrices that appear as a submatrix of some element of C, i.e.

C+ = {� ∈ M | ∃� ∈ C, such that � 4 �}.

Denote by M the set of all minimal matrices in the sense of 4 that do not
belong to C+. M is called the canonical matrix-basis (or canonical �-basis
for short) of C.

Of course, the canonical �-basis of a class C is uniquely deined, and is
always an antichain for 4. Moreover, Proposition 67 shows that it indeed
provides a description of C by avoidance of submatrices.

Proposition 67. Let C be a permutation (resp. polyominoe) class, and de-
note by M its canonical �-basis. We have C = ��S(M) (resp. C = ��P(M)).
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Proof. Working in the poset (M,4), Proposition 57 ensures that C+ =
��M(M). And since C = C+ ∩ S (resp. C = C+ ∩ P), Remark 64 yields
the conclusion.

Example 68. For the (trivial) permutation class T = {1, 12, 21}, we have

T+ =

︂

︀

0
︀

,
︀

1
︀

,
︀

1 0
︀

,
︀

0 1
︀

,

︂

1
0

︂

,

︂

0
1

︂

,

︂

1 0
0 1

︂

,

︂

0 1
1 0

︂︂

and the canonical �-basis of T is

︂

︀

0 0
︀

,

︂

0
0

︂︂

.

Example 69. Let A be the permutation class ��S(321, 231, 312). The canon-
ical �-basis of A is {�1, �2}, with

�1 =

⎡

⎣

1 0
0 0
0 1

⎤

⎦ and �2 =

︂

1 0 0
0 0 1

︂

.

Indeed, it can be readily checked that �1 and �2 do not belong to A+ and are
minimal for this property. Conversely if M /∈ A+ then � contains one of
the permutation matrices of 321, 231 and 312, and hence contains �1 or �2

(and actually contains both of them).

Example 70. Let V be the polyomino class made of exactly one column (i.e.
vertical bars). The canonical �-basis of V is {

︀

0
︀

,
︀

1 1
︀

}.

Example 71. Let R be the polyomino class of rectangular shape. The canon-
ical �-basis of R consists only of the matrix

︀

0
︀

.

There is one important diference between �-basis and canonical �-basis.
Every antichain of permutations (resp. polyominoes) is the �-basis of a class.
On the contrary, every antichain M of binary matrices describes a permuta-
tion (resp. polyomino) class ��S(M) (resp. ��P(M)), but not every such
antichain is the canonical �-basis of the corresponding permutation (resp.
polyomino) class – see Examples 73 to 76 below. Imposing the avoidance
of matrices taken in an antichain being however a natural way of describing
permutation and polyomino classes, let us deine the following weaker notion
of basis.

Deinition 72. Let C be a permutation (resp. polyominoe) class. Every
antichain M of matrices such that C = ��S(M) (resp. ��P(M)) is called a
matrix-basis (or �-basis) of C.
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Examples 73 to 76 show several examples of �-bases of permutation and
polyomino classes which are diferent from the canonical �-basis.

Example 73. Consider the set M consisting of the following four matrices:

�1 =

︂

1 0
0 0

︂

, �2 =

︂

0 1
0 0

︂

, �3 =

︂

0 0
1 0

︂

, �4 =

︂

0 0
0 1

︂

.

We may check that every permutation of size 3 contains a matrix pattern
� ∈ M, and that it actually contains each of these four �i. Moreover, M is
an antichain, and so is obviously each set {�i}. Therefore, T = ��S(M) =
��S(�i), for each 1 ≤ � ≤ 4, even though these antichains characterising T

are not the canonical �-basis of T (see Example 68).

Example 74. As explained in Example 69, A = ��S(�1) = ��S(�2) even
though the canonical �-basis of A is {�1, �2}.

Example 75. Recall from Example 70 that the canonical �-basis of the class
V of vertical bars is {

︀

0
︀

,
︀

1 1
︀

}. But, we also have ��P
︀︀

1 1
︀︀

= V.

Example 76. Consider the sets

M1 =

︂

︀

1 0
︀

,
︀

0 1
︀

,
︀

0 0
︀

,

︂

0
0

︂

,

︂

1
0

︂

,

︂

0
1

︂︂

and

M2 =

︂

︀

1 0
︀

,
︀

0 1
︀

,

︂

1
0

︂

,

︂

0
1

︂︂

We may easily check that M1 and M2 are antichains, and that their avoidance
characterise the rectangular polyominoes of Example 71: R = ��P(M1) =
��P(M2).

Examples 73, 74 and 75 show in addition that the canonical �-basis is
not always the more concise way of describing a class of permutations or
of polyominoes by avoidance of submatrices. This motivates the following
deinition:

Deinition 77. Let C be a permutation (resp. polyominoe) class. A minimal
�-basis of C is an �-basis of C satisfying the following additional conditions:

(1.) M is a minimal subset subject to C = ��S(M) (resp. ��P(M)),
i.e. for every proper subset M′ of M, C ̸= ��S(M

′) (resp. ��P(M
′));

(2.) for every submatrix � ′ of some matrix � ∈ M, we have
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�. � ′ = � or

��. with M′ = M ∖ {�} ∪ {� ′}, C ̸= ��S(M
′) (resp. ��P(M

′)).

Condition (1.) ensures minimality with respect to inclusion, while Con-
dition (2.) ensures that it is not possible to replace a matrix of the minimal
�-basis by another one of smaller dimensions. For future reference, let us
notice that with the notations of Deinition 77, the statement C ̸= ��S(M

′)
(resp. ��P(M

′)) in Condition 2.��. is equivalent to C  ��S(M
′) (resp.

��P(M
′)), since the other inclusion always holds.

To illustrate the relevance of Condition (2.), consider for instance the
�-basis {�1} of T (see Example 73), with

�1 =

︂

1 0
0 0

︂

.

Of course it is minimal (w.r.t. inclusion), however noticing that

T = ��S
︀︀

0 0
︀︀

= ��S

︂︂

0
0

︂︂

,

with these excluded submatrices being submatrices of �1, it makes sense not
to consider {�1} as a minimal �-basis. This is exactly the point of Con-

dition (2.). Actually,
︀︀

0 0
︀︀

and

︂︂

0
0

︂︂

both satify Conditions (1.)

and (2.), i.e. are minimal �-basis of T.
This also illustrates the somewhat undesirable property that a class may

have several minimal�-bases. This is not only true for the trivial class T, but
also for instance for A: the �-bases {�1} and {�2} of A (see Example 74)
are minimal �-bases of A. We can see in the following some examples of
polyomino classes in which the minimal �-basis is not unique.

Example 78 (Injections). Let I be the family of injections, i.e. polyominoes
having at most one zero entry for each row and column such as, for instance

1101

0111

1110

1011

11

01

11

11

1

1

1

11

11

01

The set I is a polyomino class, and its �-basis is given by the minimal
polyominoes which are not injections, i.e. the twelve polyominoes on the top
of Fig. 3.5. An �-basis of I is given by set

M =

︂

︀

0 0
︀

,

︂

0
0

︂︂

.
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Moreover, consider the sets

M1 =

⎧

⎨

⎩

︀

0 1 0
︀

,
︀

1 0 0
︀

,
︀

0 0 1
︀

,

⎡

⎣

0
1
0

⎤

⎦ ,

⎡

⎣

0
0
1

⎤

⎦ ,

⎡

⎣

1
0
0

⎤

⎦

⎫

⎬

⎭

and

M2 =

⎧

⎨

⎩

︀

0 1 0
︀

,
︀

1 0 0
︀

,
︀

0 0 1
︀

,

⎡

⎣

0
1
0

⎤

⎦ ,

⎡

⎣

0
0
1

⎤

⎦ ,

⎡

⎣

1
0
0

⎤

⎦ ,

⎡

⎣

0
0
0

⎤

⎦

⎫

⎬

⎭

We may easily check that M1 and M2 are antichains (see Fig. 3.5), and that
their avoidance characterises injections: I = ��P(M1) = ��P(M2). So, also
M1 and M2 are �-bases.

0 0

0

1

0

1 1

1

10

0

1

1

1 1

0

01

1

11

0

01

1

1 1

0

0

1

1

1

1

0

0

0

0

1

1

0

0

0 0 1001

00

1

1
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1

1

0 1 1 1

10 0

0 1 0

1

1 1 1

0 0

0

0

0

01

0

110

1

111 1

10

0

111

Figure 3.5: The �-basis and some �-bases of I.

However, the minimal �-bases of a class are relatively constrained:

Proposition 79. Let C be a permutation (resp. polyominoe) class and let
M be its canonical �-basis. The minimal �-bases of C are the subsets B of
M that are minimal (for inclusion) under the condition C = ��S(B) (resp.
��P(B)).

Proof. For simplicity of the notations, let us forget the indices and write
��(B) instead of ��S(B) (resp. ��P(B)).

Consider a subsetB ofM that is minimal for inclusion under the condition
C = ��(B), and let us prove thatB is a minimal�-basis of C. B is an�-basis
of C satifying Condition (1.). Assume that B does not satisfy Condition (2.):
there is some � ∈ B and some proper submatrix � ′ of � , such that C =
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��(B′) for B′ = B ∖ {�} ∪ {� ′}. By deinition of the canonical �-basis,
� ′ ∈ C+ (or � would not be minimal for 4), so there exists a permutation
(resp. polyomino) � ∈ C such that � ′ 4 � . But then � /∈ ��(B′) = C

bringing the contradiction that ensures that B satisies Condition (2.).
Conversely, consider a minimal �-basis B of C and a matrix � ∈ B,

and let us prove that � belong to M. Because of Condition (1.), this is
enough to conclude the proof. First, notice that � /∈ C+. Indeed, otherwise
there would exist a permutation (resp. polyomino) � ∈ C such that � 4 � ,
and we would also have � /∈ ��(B) = C, a contradiction. By deinition,
C+ = ��M(M), so there exists � ′ ∈ M such that � ′ 4 � . Since B is a
minimal �-basis we either have � = � ′, which proves that � ∈ M, or
we have ��(B′)  C for B′ = B ∖ {�} ∪ {� ′}, in which case we derive a
contradiction as follows. If��(B′)  C, then there is some permutation (resp.
polyomino) � ∈ C which has a submatrix in B′. It cannot be some submatrix
in B ∖ {�}, because C = ��(B). So � ′ 4 � , which is a contradiction to
� ∈ C = ��(M).

Example 80. On our running examples, Proposition 79 ensures that both T

and A each have two minimal �-basis, namely
︀︀

0 0
︀︀

and

︂︂

0
0

︂︂

, and

{�1} and {�2} respectively. The polyomino class V (resp. R) has however
a unique minimal �-basis:

︀︀

1 1
︀︀

(resp.
︀︀

0
︀︀

).

A natural question is then to ask for a characterisation of the permutation
(resp. polyomino) classes which have a unique minimal �-basis. In this
direction we give the following remark.

Remark 81. Given a permutation (resp. polyominoe) class C, if the �-basis
of C is a minimal �-basis of C, then the condition of Proposition 79 trivially
holds and so the �-basis is the unique minimal �-basis of C. This happens,
for instance, in the case of the class V of vertical bars (see Example 75) or
in the case of parallelogram polyominoes (in Section 3.5).

3.3 Relations between the �-basis and the �-

bases

3.3.1 From an �-basis to the �-basis

A permutation (resp. polyomino) class being now equipped with several
notions of basis, we investigate how to describe one basis from another, and
focus here on describing the �-basis from any �-basis.
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Proposition 82. Let C be a permutation (resp. polyomino) class, and let M
be an �-basis of C. Then the �-basis of C consists of all permutations (resp.
polyominoes) that contain a submatrix in M, and that are minimal (w.r.t.
4S resp. 4P) for this property.

Proof. By Proposition 55 (resp. 59), the �-basis of C is the set of minimal
permutations (resp. polyominoes) that do not belong to C and are minimal
w.r.t. 4S (resp. 4P) for the property. The conclusion then follows by
deinition of M being an �-basis of C: permutations (resp. polyominoes) not
belonging to C are exactly those that contain a submatrix in M.

Example 83. Figures 3.6 and 3.7 give the �-basis of the classes A and R of
Examples 69 and 71, and illustrate its relation to their canonical �-basis.

1

0

1

0

0

0

p−basis

canonical m−basis

1 00

0

01

1 0 1

0 10

0 0

0 0 1 0 0 1

1 0 0

0 1 0

0

Q = Q =
1

0 10

0 0

2 1

Figure 3.6: The �-basis and the canonical �-basis of A = ��S(321, 231, 312).

In the case of permutation classes, Proposition 82 allows to compute the
�-basis of any class C, given a �-basis of C. Indeed, the minimal permuta-
tions (in the sense of 4S) that contain a given matrix pattern � are easily
described:

Proposition 84. Let � be a quasi-permutation matrix. The minimal per-
mutations that contain � are exactly those that may be obtained from �
by insertions of rows (resp. columns) with exactly one entry 1, which should
moreover fall into a column (resp. row) of 0 of � .

In particular, if � has � rows, � of which are rows of 0, and ℓ columns,
� of which are columns of 0, then minimal permutations containing � have
size � + � = ℓ+ �.
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0

p−basis

canonical m−basis

1

1 0

1

1

1

1

0

1

1

1

0

0

0

00
1

0

010 1

1

0

1

1

0

1

Figure 3.7: The �-basis and the canonical �-basis of the class R of polyomi-
noes having rectangular shape.

It follows from Proposition 84 that the �-basis of a permutation class C
can be easily computed from an �-basis of C. Also, Proposition 84 implies
that:

Corollary 85. If a permutation class has a inite �-basis (i.e. is described by
the avoidance of a inite number of submatrices) then it has a inite �-basis.

The situation is more complex if we consider polyomino classes. The de-
scription of the polyominoes containing a given submatrix is not as straight-
forward as in Proposition 84, and the analogue of Corollary 85 does not hold
for polyomino classes.

Proposition 86. The polyomino class C = ��P(�) deined by the avoidance
of

� =

︂

1 0 0 1
1 1 0 1

︂

has an ininite �-basis.

Proof. It is enough to exhibit an ininite sequence of polyominoes containing
� , and that are minimal (for 4P) for this property. By minimality of its
elements, such a sequence is necessarily an antichain, and it forms an ininite
subset of the �-basis of C. The irst few terms of such a sequence are depicted
in Figure 3.8, and the deinition of the generic term of this sequence should
be clear from the igure. We check by comprehensive veriication that every
polyomino � of this sequence contains � , and additionaly that occurrences
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of � in � always involve the two bottommost rows of � , its two leftmost
columns, and its rightmost column. Moreover, comprehensive veriication
also shows that every polyomino � of this sequence is minimal for the con-
dition � 4P � , i.e. that every polyomino � ′ occurring in such a � as a
proper submatrix avoids � . Indeed, the removal of rows or columns from
such a polyomino � either disconnects it or removes all the occurrences of
� .

.....

1 1 1 0 0

1 0 1 1 0

1 0 0 1 1

1 1 0 0 1

1 1 1 0 0 0

0

0 0

0 0

0

1

1

1

1

1 0

1

10

1

01

0

0

1

01

1

1 1 1 0 0 0 0

0 0 0 0 1

11

01

0

0 1 1 0 0 0

0 0 1 1 0

0 0 0 1

0 0 0 0

1

1

1

1

1 1

Figure 3.8: An ininite antichain of polyominoes belonging to the �-basis of
��P(�).

3.3.2 Robust polyomino classes

Deinition 87. A class is robust when all �-bases contain the �-basis.

For instance, the class I of injections, considered in Example 78, is not
robust, since there are �-bases disjoint from the �-basis.

The �-basis of a robust class has remarkable properties.

Proposition 88. Let C be a robust class, and let P be the �-basis. Then, P
is the unique minimal �-basis.

Proof. The proof directly follows by Deinition 77.

Remark 89. We notice that if P is the �-basis of a robust class C, as a
consequence of Proposition 88, P is also the minimal �-basis of C.

Example 90. Let be C = ��P(�, �
′), where �, � ′ are depicted in Figure 3.9.

The class C is not robust, in fact there is an �-basis � disjoint from the
�-basis:

In practice, � and � ′ are precisely the minimal polyominoes which contain
� as a pattern, then by Proposition 82, ��P(�, �

′) = ��P(�). We also
notice that the meet of � and � ′ in the poset of polyominoes, denoted � ∧� ′,
is {�,�1, �2}, but ��P(�1, �2)  C.
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1

1 10

1 0
1

1

1

0

1

0

1 0

1 1

1 0

0 1

1 1

0 1

P =

1D = =D 2

P’ = p−basis

M=

Figure 3.9: A non robust class.

In this section, we try to establish some criteria to test the robustness of
a polyomino class. First, we prove that it is easy to test robustness of a class
whose basis is made of just one element:

Proposition 91. Let � be a pattern. Then, ��P(�) is robust if and only
if � is a polyomino.

Proof. If � is not a polyomino, then its �-basis is clearly diferent from � ,
so ��P(�) is not robust. On the other side, let us assume that � is a
polyomino and that ��P(�) is not robust. Let us assume that an �-basis of
��(�) is made of a (non polyomino) matrix � ′ such that � ′ 4P � . Since
� ′ is not a polyomino then it contains at least two disconnected elements �
and �, and there are at least two possible ways to connect � and � (by rows
or by columns). So, there exists at least another polyomino � ̸= � such
that � ′ 4P � , and � belongs to the �-basis of ��P(� ′). Thus, ��P(�) ⊆
��P(�

′). The same technique can be used to prove that an �-basis of
��(�) cannot be made of more than one matrix.

Thus, according to Proposition 91, the class ��P

︂

1 1
0 1

︂

is robust.

Now, it would be interesting to extend the previous result to a generic set
of polyominoes, i.e. ind suicient and necessary conditions such that, given
set of polyominoes P, the class ��P(P) is robust.

Proposition 92. Let be �1, �2 two polyominoes and let be C = ��P(�1, �2).
If for every element � in �1 ∧ �2 we have that:

(�1) � is a polyomino, or
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(�2) every chain from � to �1 (resp. from � to �2) contains at least a
polyomino � ′ (resp. � ′′), diferent from �1 (resp. �2), such that � 4P

� ′ 4P �1 (resp. � 4P � ′′ 4P �2),

then C is robust.

One can ind a graphical representation of the conditions of the above
proposition in Figure 3.10.

P

P

P1 2

P1

polyominoes

 

PP1 2

M

P2

matrix

P Ps r

M

1

2

(b  )

(b  )

Figure 3.10: A graphical representation of the conditions of Proposition 92.

Proof. Condition (1.) follows directly by Proposition 82. Let us assume that
Condition (2.) does not hold, i.e. there exists a proper submatrix � ′ of some
matrix � ∈ P such that C = ��P(P

′), with P′ = P ∖ {�} ∪ {� ′}. So we
have that P′ 4P P and P′ is an �-basis of C. Since C is a robust class we have
that P 4P P′ and then P = P′, in particular � = � ′. Suppose that there
exists another �-basis M ̸= P satisfying (1.) and (2.). By Proposition 82,
every pattern of M is contained in some pattern of P, thus P contains M.
Since C is a robust class, then P ⊆ M, so P = M.

Example 93. Let us consider the class C = ��P(�1, �2), where �1 and �2

are the polyominoes depicted in Figure 3.11.
Here, as shown in the picture, �1 ∧ �2 contains six elements, and four of

them are not polyominoes. However, one can check that, for each item � of
these four matrices, there is a polyomino in the chain from � to �1 (resp.
from � to �2). Thus, by Proposition 92, the class C is robust.

However, the statement of Proposition 92 cannot be inverted, as we can
see in the following example.
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1

1

0

1

0
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0 1
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0 1
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1 1

. . .. . . 1

0

1

10 1
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1

0

P =
2

P =
1

1

10 1

1 0

1 1 1

0 1 1 1

0

0 1

1 0

1

0 1

1

1 1 1 0 1
P       P

2

Figure 3.11: A robust class.

Example 94 (Parallelogram polyominoes). It is possible to prove (applying
the same strategy used for directed-convex polyominoes 99) that parallelogram
polyominoes can be represented by the avoidance of the submatrices:

�1 =

︂

1 0
1 1

︂

, �2 =

︂

1 1
0 1

︂

.

These two patterns form a �-basis for the class P of parallelogram polyomi-
noes, and

�1 ∧�2 =

︂

︀

1 1
︀

,

︂

1
1

︂

,
︀

0
︀

︂

.

If P is not robust, then � =
︀

0
︀

would belong to an �-basis of P; precisely,
we would have ��P(�) = P. But this is not true, since ��P(�) is the class
of rectangles. Thus, P is robust. Observe that the set {�1,�2, [ 1 0 1 ]} forms
an �-basis of the class, but it is not minimal w.r.t. set inclusion.

3.4 Some families of permutations deined by

submatrix avoidance

Many notions of pattern avoidance in permutations have been considered
in the literature. Nevertheless, we have considered yet another notion of
submatrix avoidance. In this section, we start by explaining how it relates
to other notions of pattern avoidance. Then, using this approach to pattern
avoidance, we give simpler proofs of the enumeration of some permutation
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classes. Finally, we show how these proofs can be brought to a more general
level, to prove Wilf-equivalences of many permutation classes.

3.4.1 Submatrix avoidance and generalised permutation

patterns

A irst generalisation of pattern avoidance in permutations introduces ad-
jacency constraints among the elements of a permutation that should form
an occurrence of a (otherwise classical) pattern. Such patterns with adja-
cency constraints are known as vincular and bivincular patterns, see Section
1.3.3, and a generalisation with additional border constraints has recently be
introduced by [122].

In some sense, the avoidance of submatrices in permutation is a dual
notion to the avoidance of vincular and bivincular patterns. Indeed, in an
occurrence of some vincular (resp. bivincular) pattern in a permutation �,
we impose that some elements of � must be adjacent (resp. have consecutive
values). Whereas if there is a column (resp. row) of 0 in a quasi-permutation
matrix � , then an occurrence of � in � is an occurrence of the largest
permutation contained in � in � where some elements of � are not allowed
to be adjacent (resp. to have consecutive values).

For instance,

❼ ��S

⎛

⎝

⎡

⎣

0 0 1 0
1 0 0 0
0 0 0 1

⎤

⎦

⎞

⎠ denotes the set of all permutations such that

in any occurrence of 231 the elements mapped by the 2 and the 3 are
at adjacent positions;

❼ ��S

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 0 1 0
1 0 0 0
0 0 0 0
0 0 0 1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

denotes the set of all permutations such that

in any occurrence of 231 the elements mapped by the 2 and the 3 are at
adjacent positions, and the elements mapped by the 1 and the 2 have
consecutive values;

❼ ��S

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 0 0
0 1 0
1 0 0
0 0 1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

denotes the set of all permutations such that in

any occurrence of 231 the element mapped by the 3 is the maximum
of the permutation.
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As noticed in Remark 65, sets of permutations deined by avoidance of
submatrices are permutation classes. On the contrary, sets of permutations
deined by avoidance of vincular or bivincular patterns are not downward
closed for in general. This shows that, even though they are very useful
for characterising important families of permutations, like Baxter permu-
tations [14], the adjacency constraints introduced vincular and bivincular
pattern do not it really well in the study of permutation classes. The
above discussion suggests that, with this regard, it is more convienent to
introduce instead non-adjacency constraints in permutation patterns, which
corresponds to rows and columns of 0 in quasi-permutation matrices.

Let us consider now another generalisation of permutation patterns, the
Mesh patterns. It has itself been generalised in several way, in particular by
Úlfarsson who introduced in [122] the notion of marked mesh patterns. It
is very easy to see that the avoidance of a quasi-permutation matrix with
no uncovered 0 entries can be expressed as the avoidance of a special form
of marked-mesh pattern. Indeed, a row (resp. � consecutive rows) of 0 in a
quasi-permutation matrix with no uncovered 0 entries corresponds to a mark,
spanning the whole pattern horizontally, indicating the presence of at least
one (resp. at least �) element(s). The same holds for columns and vertical
marks. Figure 3.12 shows an example of a quasi-permutation matrix with no
uncovered 0 entries with the corresponding marked-mesh pattern.

0 0 0 0 0

0 0 0 010

1 0 0000

1

(b)(a)

12

Figure 3.12: A quasi-permutation matrix with no uncovered 0 entries and
the corresponding marked-mesh pattern.

3.4.2 A diferent look at some known permutation classes

Several permutation classes avoiding three patterns of size 3 or four patterns
of size 4 that have been studied in the literature (and are referenced in Guib-
ert’s catalogue [83, Appendix A]) are easier to describe with the avoidance of
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just one submatrix, as we explain in the following. For some of these classes,
the description by submatrix avoidance also allows to provide a simple proof
of their enumeration.

In this paragraph, we do not consider classes that are equal up to sym-
metry (reverse, inverse, complement, and their compositions). But the same
results of course apply (up to symmetry) to every symmetry of each class
considered.

The class F = ��S(123, 132, 213). This class was studied in the Simion-
Schmidt article [113], about the systematic enumeration of permutations
avoiding patterns of size 3. An alternative description of F is

F = ��S(�F ) where �F =

︂

0 0 1
1 0 0

︂

.

It follows immediately since 123, 132 and 213 are exactly the permutations
which cover �F in the sense of Propositions 82 and 84.

[113] shows that F is enumerated by the Fibonacci numbers. Of course,
it is possible to use the description of F by the avoidance of �F to see that
every permutation � ∈ F decomposes as � = �1 ·�2 · · · �k, where the sequences
�i are either � or �(�+1) for some integer �, and are such that for � < � the
elements of �i are larger that those of �j. And from this description, an easy
induction shows that F is enumerated by the Fibonacci numbers. However,
this is just rephrasing the original proof of [113].

The class G = ��S(123, 132, 231). This class is also studied in [113], where
it is shown that there are � permutations of size � in G. The enumeration
is obtained by a simple inductive argument, which relies on a recursive de-
scription of the permutations in G.

For the same reasons as in the case of F, G is alternatively described by

G = ��S(�G) where �G =

︂

0 1 0
1 0 0

︂

.

Any occurrence of a pattern 12 in a permutation � can be extended to an
occurrence of�G, as long as it does not involve the last element of �. So from
this characterisation, it follows that the permutations of G are all decreasing
sequences followed by one element. This describes the permutations of G
non-recursively, and give immediate access to the enumeration of G.
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The classesH = ��S(1234, 1243, 1423, 4123), J = ��S(1324, 1342, 1432, 4132)
and K = ��S(2134, 2143, 2413, 4213). These three classes have been stud-
ied in [83, Section 4.2], where it is proved that they are enumerated by the
central binomial coeicients. The proof irst gives a generating tree for these
classes, and then the enumeration is derived analytically from the correspond-
ing rewriting system. In particular, this proof does not provide a description
of the permutations in H, J and K which could be used to give a combinato-
rial proof of their enumeration. Excluded submatrices can be used for that
purpose.

As before, because the �-basis ofH, J andK are exactly the permutations
which cover the matrices �H , �J and �K given below, we have

H = ��S(�H) where �H =

⎡

⎢

⎢

⎣

0 0 0
0 0 1
0 1 0
1 0 0

⎤

⎥

⎥

⎦

,

J = ��S(�J) where �J =

⎡

⎢

⎢

⎣

0 0 0
0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

,

K = ��S(�K) where �K =

⎡

⎢

⎢

⎣

0 0 0
0 0 1
1 0 0
0 1 0

⎤

⎥

⎥

⎦

.

Similarly to the case of G, any occurrence of a pattern 123 (resp. 132,
resp. 213) in a permutation � can be extended to an occurrence of �H

(resp. �J , resp. �K), as long as it does not involve the maximal element of
�. Conversely, if a permutation � contains �H (resp. �J , resp. �K), then
there is an occurrence of 123 (resp. 132, resp. 213) in � that does not involves
its maximum. Consequently, the permutations of H (resp. J, resp. K) are
exactly those of avoiding 123 (resp. 132, resp. 213) to which a maximal
element has been added. This provides a very simple description of the
permutations of H, J and K. Moreover, recalling that for any permutation
� ∈ S3 ��S(�) is enumerated by the Catalan numbers, it implies that the
number of permutations of size � inH (resp. J, resp. K) in �×�n−1 =

︀

2n−2
n−1

︀

.
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3.4.3 Propagating enumeration results and

Wilf-equivalences with submatrices

The similarities that we observed between the cases of the classes G, H, J and
K are not a coincidence. Indeed, they can all be encapsulated in following
proposition, which simply pushes the same idea forward to a general setting.

Proposition 95. Let � be a permutation. Let �τ,top (resp. �τ,bottom) be the
quasi-permutation matrix obtained by adding a row of 0 entries above (resp.
below) the permutation matrix of � . Similarly, let �τ,right (resp. �τ,left) be
the quasi-permutation matrix obtained by adding a column of 0 entries on
the right (resp. left) of the permutation matrix of � . The permutations of
��S(�τ,top) (resp. ��S(�τ,bottom), resp. ��S(�τ,right), resp. ��S(�τ,left))
are exactly the permutations avoiding � to which a maximal (resp. minimal,
resp. last, resp. irst) element has been added.

Proof. We prove the case of �τ,top only, the other cases being identical up to
symmetry.

Consider a permutation � ∈ ��S(�τ,top), and denote by �′ the permu-
tation obtained deleting the maximum of �. Assuming that �′ contains
� , then � would contain �τ,top, which contradicts � ∈ ��S(�τ,top); hence
�′ ∈ ��S(�).

Conversely, consider a permutation �′ ∈ ��S(�), and a permutation �
obtained by adding a maximal element to �′. Assume that � contains �τ,top,
and consider an occurrence of �τ,top in �. Regardless of whether or not this
occurrence involves the maximum of �, it yields an occurrence of � in �′, and
hence a contradiction. Therefore, � ∈ ��S(�τ,top).

Proposition 95 has two very nice consequences in terms of enumeration.
When the enumeration of the class is known, it allows to deduce the enu-
meration of four other permutation classes. Similarly, for any pair of Wilf-
equivalent classes (i.e. of permutation classes having the same enumeration),
it produces four other pairs of Wilf-equivalent classes.

Corollary 96. Let C be a permutation class whose �-basis is B. Let M =
{�τ,top | � ∈ B}. Denote by �n the number of permutation of size � in C.
The permutation class ��S(M) is enumerated by the sequence (� · �n−1)n.
The same holds replacing �τ,top with �τ,bottom, �τ,right or �τ,left.

Corollary 97. Let C1 and C2 be two Wilf-equivalent permutation classes
whose �-basis are respectively B1 and B2. Let M1 = {�τ,top | � ∈ B1} and
M2 = {�τ,top | � ∈ B2}. The permutation classes ��S(M1) and ��S(M2)
are also Wilf-equivalent. The same holds replacing �τ,top with �τ,bottom,
�τ,right or �τ,left.
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3.5 Some families of polyominoes deined by

submatrix avoidance

In this section, we show that several families of polyominoes studied in the
literature can be characterised in terms of submatrix avoidance. For more
details on these families of polyominoes we address the reader to Section 1.2.
We also use submatrix avoidance to introduce new classes of polyominoes.

3.5.1 Characterising known families of polyminoes by

submatrix avoidance

There are plenty of examples of families of polyominoes that can be described
by the avoidance of submatrices. We provide a few of them here, however
without giving detailed deinitions of these families. Figure 3.13 shows ex-
amples of polyominoes belonging to the families that we study.

(a) (b) (c)

(d) (e)

Figure 3.13: (�) A convex polyomino; (�) A directed polyomino; (�) A
directed-convex polyomino; (�) A parallelogram polyomino; (�) An �-convex
polyomino.

Convex polyominoes. These are deined by imposing one of the simplest
geometrical constraints: the connectivity of rows/columns.
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Figure 3.13(�) shows a convex polyomino. The convexity constraint can
be easily expressed in terms of excluded submatrices since its deinition al-
ready relies on some speciic conigurations that the cells of each row and
column of a polyomino have to avoid:

Proposition 98. Convex polyominoes can be represented by the avoidance

of the two submatrices � = [ 1 0 1 ] and � =

︃

1

0

1

︃

.

More precisely, the avoidance of the matrix � (resp. � ) indicates the
ℎ-convexity (resp. �-convexity). Because removing columns (resp. rows)
preserves the ℎ-convexity (resp. �-convexity), {�, � } is the canonical �-
basis, and hence by Proposition 79 the unique minimal �-basis, of the class
of convex polyominoes. From Proposition 82, it is also possible to determine
the �-basis of this class: it is the set of four polyominoes {�1, �2, �1, �2}
depicted in Figure 3.14.

p−basis

canonical m−basis

V =
1

V =
2

1

1

11

1

0 1

1

1

0

1

1

1 0 1

V =

1

1

0101

1 1 1 1 0 1

1 1 1

H = H =
1

H =

2

Figure 3.14: The �-basis and canonical �-basis of the class of convex poly-
ominoes.

We advise the reader that, in the rest of the section, for each polyomino
class, we provide only a matrix description of the basis. Indeed, in all these
examples the �-basis can easily be obtained from the given �-basis with
Proposition 82, like in the case of convex polyominoes.

Directed-convex polyominoes. Directed-convex polyominoes are deined
using the notion of internal path to a polyomino. An (internal) path of a poly-
omino is a sequence of distinct cells (�1, . . . , �n) of the polyomino such that
every two consecutive cells in this sequence are edge-connected; according to
the respective positions of the cells �i and �i+1, we say that the pair (�i, �i+1)
forms a north, south, east or west step in the path, respectively.

Figure 3.13(�) depicts a directed polyomino. The reader can check that
the set of directed polyominoes is not a polyomino class. However, the set of
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directed-convex polyominoes (i.e. of polyominoes that are both directed and
convex – see Figure 3.13(�)) is a class.

Proposition 99. The family D of directed-convex polyominoes is charac-

terised by the avoidance of the submatrices � = [ 1 0 1 ], � =

︃

1

0

1

︃

and

� =

︂

1 1

0 1

︂

.

Proof. Let us prove that D = ��P(�, �,�).
First, let � ∈ ��P(�, �,�). � is a convex polyomino and avoids the

submatrix �. Let � be its source, necessarily the leftmost cell at the lower
ordinate. Let us proceed by contradiction assuming that � is not directed,
i.e. there exists a cell � of � such that all the paths from � to � contain
either a south step or a west step. Let us consider one of these paths � with
minimal length (deined as the number of cells), say �, and having at least a
south step (if � has at least a west step, a similar reasoning holds). If � lies
at the same ordinate as � or below it, then the presence of a south step in �
implies that there exist two cells �i and �j of � , with 1 ≤ � < � ≤ �, where �
crosses the ordinate of � with a north and a south step, respectively. Since
� is minimal, then the row of cells containing �i and �j is not connected,
contradicting that � is ℎ-convex. Otherwise, � lies above �, and there exists
a point �i ̸= � with 1 < � < �, having the same ordinate as �, and such that
it forms with the cell �i+1 a south step. So, the four cells �, �i, �i+1 and the
empty cell below � form the pattern �, giving the desired contradiction.

Conversely, let � be a directed convex polyomino. We proceed by con-
tradiction assuming that � contains the pattern �. Let �1 and �2 be the
cells of � that correspond to the upper left and to the lower right cells of
�, respectively. Two cases have to be considered: if the source cell � of �
lies above �2, then each path leading from � to �2 has to contain at least one
south step, which contradicts the fact that � is directed. On the other hand,
if � lies in the same row of �2 or below it, then each path leading from � to
�1 either runs entirely on the left of �1, so that � contains the pattern �,
which is against the ℎ-convexity of � , or it contains a west step, which again
contradicts the fact that � is directed.

Parallelogram polyominoes. Another widely studied family of polyomi-
noes –that can also be deined using a notion of path, this time of boundary
path– is that of parallelogram polyominoes.

Parallelogram polyominoes (see Figure 3.13(�)) form a polyomino class.
The proof of this fact mimics that of Proposition 99.
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Proposition 100. Parallelogram polyominoes are characterised by the avoid-

ance of the submatrices:

︂

1 0

1 1

︂

and

︂

1 1

0 1

︂

. This is also the �-basis of

the class of parallelogram polyominoes.

�-convex polyominoes. Parallelogram polyominoes and directed-convex
polyominoes form subfamilies of the family of convex polyominoes that are
both deined in terms of paths. The relationship between these two notions
is closer than it may appear.

Let us consider the 1-convex polyominoes are more commonly called �-
convex polyominoes, (see Figure 3.13(�)).

Here, we study how the constraint of being �-convex can be represented
in terms of submatrix avoidance. In order to reach this goal, let us present
some basic deinitions and properties from the ield of discrete tomography
[110]. Given a binary matrix, the vector of its horizontal (resp. vertical)
projections is the vector of the row (resp. column) sums of its elements. In
1963 Ryser [110] established a fundamental result which, using our notation,
can be reformulated as follows:

Theorem 101. A binary matrix is uniquely determined by its horizontal

and vertical projections if and only if it does not contain �1 =

︂

1 0

0 1

︂

and

�2 =

︂

0 1

1 0

︂

as submatrices.

Now we show that the set L of �-convex polyominoes is a polyomino
class.

Proposition 102. �-convex polyominoes are characterised by the avoidance
of the submatrices �, �, �1 and �2. In other words, L = ��P(�, �, �1, �2).

Proof. First, let � be a convex polyomino that avoids the submatrices �1

and �2. Let us proceed by contradiction assuming that � is not �-convex.
It means that there exists a pair of cells �1 and �2 of � such that all the
paths from �1 to �2 are not �-paths, i.e. they have at least two directions
changes. Suppose that �2 lies below �1, on its right (if not, similar reasonings
hold). Consider the path from �1 that goes always right (resp. down) until
it encounters a cell �′ (resp. �′′) which does not belong to � . This happens
before reaching the abscissa (resp. ordinate) of �2, otherwise by convexity
there would be a path from �1 to �2 with one direction change. By convexity,
all the cells on the right of �′ (resp. below �′′) do not belong to � , so the four
cells having the same abscissas and ordinates of �1 and �2 form the pattern
�1, giving the desired contradiction.
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Conversely, let � be an �-convex polyomino. By convexity, � does not
contain the submatrices � and � . Moreover, in [36] it is proved that an
�-convex polyomino is uniquely determined by its horizontal and vertical
projections, so by Theorem 101 it cannot contain �1 or �2.

3.6 Generalised pattern avoidance

Unfortunately not all the families of polyominoes are a polyomino class. Un-
like �-convex polyominoes, 2-convex polyominoes do not form a polyomino
class. Indeed, the 2-convex polyomino in Figure 3.15(�) contains the 3-but-
not-2-convex polyomino (�) as a submatrix. Similarly, the set of �-convex
polyominoes is not a polyomino class, for � ≥ 2.

(a) (b)

0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 0

1 1 1 0 0

0 1 1

1 1 0

1 0 0

0

Figure 3.15: (�) a 2-convex polyomino � ; (�) a submatrix of � that is not a
2-convex polyomino.

In practice, this means that 2-convex polyominoes cannot be described in
terms of pattern avoidance. In order to be able to represent 2-convex poly-
ominoes we extend the notion of pattern avoidance, introducing the gener-
alised pattern avoidance. Our extension consists in imposing the adjacency of
two columns or rows by introducing special symbols, i.e. vertical/horizontal
lines: being � a pattern, a vertical line between two columns of �, �i and
�i+1 (a horizontal line between two rows �i and �i+1), will be read as �i and
�i+1 (respectively �i and �i+1) must be adjacent. When the vertical (resp.
horizontal) line is external, it means that the adjacent column (resp. row)
of the pattern must touch the minimal bounding rectangle of the polyomino.
Moreover, we use the * symbol to denote 0 or 1 indiferently.

Proposition 103. The family of 2-convex polyominoes can be described by
the avoidance of the following generalised patterns:
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1

0

11 0 1 *

0

0

0

1

0

1

1

0

*0

*

1

1

1

0

0

*

0*

0

1

1

1

0

0

*

1 * 0 0

* 1 * 0

0 * 1 *

0 0 * 1

0 0 * 1

0 * 1 *

* 1 * 0

1 * 0 0

0

0*

*

0

1

0

1

1

Before providing the proof of Proposition 105 we need to recall some
useful facts.

Remark 104. In a 2-convex polyomino, due to the convexity constraints,we
have that for each two cells, there is a monotone path connecting them, which
uses only two types of steps among �, �, �, �, see Section 1.2.1. More pre-
cisely, after the irst direction change the two types of steps are determined.

Another important fact is that, given two cells of a polyomino �1 and �2,
the minimal number of direction changes to go from �1 to �2 can be obtained
studying two paths, the ones starting with a vertical/horizontal step, in which
every side has maximal length.

Proof. Let M be the set of generalised patterns of Proposition 105 and let �
be a polyomino.
(⇒) If � is a 2-convex polyomino then � avoids M.

Let us assume by contradiction that � is a 2-convex polyomino but it
contains one of the patterns of M. � avoids the two patterns � and �
otherwise it would not be a convex polyomino. For simplicity sake, we can
consider only two patterns of M, for instance

�1 =

⎡

⎣

0 * 1
* 1 0
1 0 0

⎤

⎦ and �2 =

⎡

⎢

⎢

⎣

0 0 * 1
0 * 1 *
* 1 * 0
1 * 0 0

⎤

⎥

⎥

⎦

,

since the remaining patterns are just the rotations of the previous ones.
If � contains �1 then it has to contain a submatrix � ′ of this type

0 * . . . . 1
* 1 . . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
1 0 . . . . 0

,
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where the 0, 1, * are the elements of �1 and the dots can be replaced by 0, 1
indiferently, in agreement with the convexity and polyomino constraints.

Among all the polyominoes which can be obtained from � ′, the one having
the minimal convexity degree is that, called � ′, where we have replaced any
dot with a 1 entry. So, given

� ′ =

0 1 1 1 1 1 1
1 1 1 1 1 1 0
1 1 1 1 1 1 0
1 1 1 1 1 1 0
1 1 1 1 1 1 0
1 0 0 0 0 0 0

,

it is possible to verify that the minimal number of direction changes requested
to run from the leftmost lower cell of � ′ to the rightmost bottom cell of � ′

is three, so � ′ is a 3-convex polyomino, then we reach our goal.
Similarly, If � contains �2 then it has to contain a submatrix � ′ of this

type

0 . . . 0| * . . . 1
. . . . . . . . . .
. . . . . . . . . .
0| . . . * 1 . . *
* . . . 1 * . . . 0|
. . . . . . . . . .
. . . . . . . . . .
1 . . . * 0| . . . 0

,

where the vertical/horizontal lines have been drawn to mean that in this
position there is a direction change. Also in this case we can consider the
polyomino � ′, in which we have replaced any dot with a 1 entry. It is possible
to verify that the minimal number of direction changes requested to run from
the leftmost lower cell of � ′ to the rightmost bottom cell of � ′ is three, so � ′

and as consequence � are a 3-convex polyominoes against the hypothesis.

(⇐) If � avoids M then � is a 2-convex polyomino.
Let us assume that, on the contrary, � avoids M but it is a 3-convex

polyomino, i.e. there exist two cells of � , �1 and �2, such that any paths
from �1 to �2 requires at least three direction changes.

Let us take into consideration the two paths, deined in Remark 104,
which use only steps of type � and � to prove that � contains at least one
of the patterns of M. We have to analyse the following situations:

- the two paths running from �1 to �2 are distinct, see Figure 3.16 (�);
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- one of the paths running from �1 to �2 does not exist, see Figure 3.16 (�);

- the two paths running from �1 to �2 coincide after the irst direction
change, see Figure 3.16 (�);

- the two paths running from �1 to �2 coincide after the second direction
change, see Figure 3.16 (�).

(a)

(c) (d)

(b)

0

0

0

0

0

0

0

0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0 0

0 0

0

0

0

Figure 3.16: The possible monotone paths connecting the cells �1 and �2,
those cells are the ones greyed. (�) the two paths are distinct; (�) one of the
paths does not exist; (�) the two paths running from �1 to �2 coincide after
the irst direction change;(�) the two paths running from �1 to �2 coincide
after the second direction change.

Here, we consider only the irst situation (which is the most general),
because in all the other cases we can use an analogous reasoning.

So, we have that the two cells �1 and �2 are connected by two distinct
paths, see Figure 3.16 (�), then � have to contain a submatrix � ′ of the
following type
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0 . . . 0 1 . . . 1
. . . . . . . . . .
. . . . . . . . . .
0 . . . 1 1 . . . 1
1 . . . 1 1 . . . 0
. . . . . . . . . .
. . . . . . . . . .
1 . . . 1 0 . . . 0

,

where the horizontal and vertical lines, which indicate the adjacency con-
straints, have been placed to impose the direction changes.

The submatrix obtained from � ′, deleting all the rows and columns con-
taining dots, is one among the various that we can obtain replacing appro-
priately the symbol * in the pattern �2. Thus, � contains �2 against the
hypothesis.

We remark that the pattern �1, and its rotations, can be obtained from
the pattern �2 (or its rotation) replacing appropriately the * entries, but
we need to include them to consider them in order to exclude the 3-convex
polyominoes having three rows or columns.

We can point out that the pattern �1, and its rotation, can be obtained
from the pattern �2 (or its rotation) replacing appropriately the * entries.
We need to consider them in order to exclude the 3-convex polyominoes of
dimension �×�, with one among � and � less than 4.

Let us just observe, referring to Fig. 3.17, that the pattern (�) is not
contained in the 2-convex polyomino (�), but it is contained in the 3-convex
polyomino (�).

It is possible to generalise the previous result and give a characterisation
of the family of �-convex polyominoes, with � > 2, using generalised patterns.

As we observed in 3.5.1 it is not possible to describe the set of directed
polyominoes in terms of submatrix avoidance, but also in this case the intro-
duction of generalised patterns will be useful.

Proposition 105. The family of directed polyominoes can be represented as
the class of polyominoes avoiding the following patterns

1

0

0 1

0*

Proof. We can reach our goal using reasonings analogous to Proposition 105
based on the deinition of directed polyomino and recalling the proof of
Proposition 99.
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(a) (b) (c) (d)

0

0 0

0

1

11

1

1

0

01

1

0

1

0

1

1

Figure 3.17: (�) a 2-convex polyomino � ; (�) a pattern of � that is not a
2-convex polyomino; (�) a generalised pattern, which is not contained in (�),
but is contained in the 3-convex polyomino (non 2-convex) (�).

We would like to point out that there are families of polyominoes which
cannot be described, even using generalised pattern avoidance. For instance,
one of these families is that of polyominoes having a square shape.

3.7 Deining new families of polyominoes by

submatrix avoidance

In addition to characterising known families, the approach of submatrix
avoidance may be used to deine new families of polyominoes, the main ques-
tion being then to give a combinatorial/geometrical characterisation of these
families. We present some examples of such families, with simple character-
isations and interesting combinatorial properties. These examples illustrate
that the submatrix avoidance approach in the study of families of polyomi-
noes is promising.

�-polyominoes. Proposition 102 states that �-convex polyominoes can be
characterised by the avoidance of four matrices: � and � , which impose the
convexity constraint; and �1 and �2, which account for the �-property, or
equivalently (by Theorem 101) indicate the uniqueness of the polyomino w.r.t
its horizontal and vertical projections. So, it is quite natural to study the class
��P(�1, �2), which we call the class of �-polyominoes. From Theorem 101,
it follows that:

Proposition 106. Every �-polyomino is uniquely determined by its hori-
zontal and vertical projections.
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From a geometrical point of view, the �-polyominoes can be characterised
using the concept of (geometrical) inclusion between rows (resp. columns)
of a polyomino. For any polyomino � with � columns, and any rows �1 =
(�1;1 . . . �1;n), �2 = (�2;1 . . . �2;n) of the matrix representing � , we say that �1
is geometrically included in �2 (denoted �1 6 �2) if, for all 1 ≤ � ≤ � we
have that �1;i = 1 implies �2;i = 1. Geometric inclusion of columns is deined
analogously. Two rows (resp. columns) �1, �2 (resp. �1, �2) of a polyomino �
are said to be comparable if �1 6 �2 or �2 6 �1 (resp. �1 6 �2 or �2 6 �1).
These deinitions are illustrated in Figure 3.18.

The avoidance of �1 and �2 has an immediate interpretation in geometric
terms, proving that:

Proposition 107. The class of �-polyominoes coincides with the set of the
polyominoes where every pair of rows (resp. columns) are comparable.

(a) (b)

1 2

r

2r

1r

3

c c

Figure 3.18: (�) a �-polyomino, where every pair of rows and columns are
comparable; for instance, �1 6 �2; (�) an example of a polyomino which is
not an �-polyomino, where the row �1 is not comparable both with rows �2
and �3.

We leave open the problem of studying further the class of �-polyominoes,
in particular from an enumerative point of view (enumeration w.r.t. the area
or the semi-perimeter).

The class ��P(�
′, � ′) with � ′ =

︃

0

1

0

︃

and � ′ = [ 0 1 0 ].
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By analogy1 with the class of convex polyominoes (characterised by the
avoidance of � and � ), we may consider the class C′ of polyominoes avoiding
the two submatrices � ′ and � ′ deined above. In some sense these objects
can be considered as a dual class of convex polyominoes. Figure 3.19(�)
shows a polyomino in C′.

11111

111

1 0

1 1

0

00

01

1

1

1

0

0

1

1

0111

1

1

1

1 1

10

11

1

1

1

1

1

1

1

1

1

1 1 1

111

1 1 1

1

1

1

1

1 1 10

1

1

0

1

00

0

1

0 0 0

0

10 0 0 0

0 0 0 0

(a) (b)

Figure 3.19: (�) a polyomino in C′ and its decomposition; (�) the correspond-
ing quasi-permutation matrix.

The avoidance of � ′ and � ′ has a straightforward geometric interpreta-
tion, giving immediately that:

Proposition 108. A polyomino � belongs to C′ if and only if every connected
set of cells of maximal length in a row (resp. column) has a contact with the
minimal bounding rectangle of � .

The avoidance of � ′ and � ′ also ensures that in a polyomino of C′ every
connected set of 0s has the shape of a convex polyomino, which we call –
by abuse of notation – a convex 0-polyomino (contained) in � . Each of
these convex 0-polyominoes has a minimal bounding rectangle, which deines
an horizontal (resp. vertical) strip of cells in � , where no other convex 0-
polyomino of � can be found. Therefore every polyomino � of C′ can be
uniquely decomposed in regions of two types: rectangles all made of 1s (of
type �) or rectangles bounding a convex 0-polyomino (of type �). Then,
we can map � onto a quasi-permutation matrix as follows: each rectangle of
type � is mapped onto a 0, and each rectangle of type � is mapped onto a
1. See an example in Figure 3.19(�).

1The analogy essentially consists in exchanging 0 and 1 in the excluded submatrices
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Although this representation is non unique, we believe it may be used for
the enumeration of C′. For a start, it provides a simple lower bound on the
number of polyominoes in C′ whose bounding rectangle is a square.

Proposition 109. Let �′n be the number of polyominoes in C′ whose bounding
rectangle is an �× � square. For � ≥ 2, �′n ≥ ⌊n

2
⌋ ! .

Proof. The statement directly follows from a mapping from permutations of
size � ≥ 1 to polyominoes in C′ whose bounding rectangle is an 2� × 2�
square, and deined as follows. From a permutation �, we replace every entry
of its permutation matrix by a 2× 2 matrix according to the following rules.
Every 0 entry is mapped onto a 2× 2 matrix of type �.

The 1 entry in the leftmost column is mapped onto

︂

0 1

0 0

︂

.

The 1 entry in the topmost row (if diferent) is mapped onto

︂

0 0

1 0

︂

.

Every other 1 entry is mapped onto

︂

1 0

0 0

︂

.

This mapping (illustrated in Figure 3.20) guarantees that the set of cells
obtained is connected (hence is a polyomino), and avoids the submatrices � ′

and � ′, concluding the proof.
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(a) (b)

Figure 3.20: (�) a permutation matrix of dimension 4; (�) the corresponding
polyomino of dimension 8 in C′.
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Polyominoes avoiding rectangles. Let �m,n be set of rectangles – binary
pictures with all the entries equal to 1 – of dimension � × � (see Figure
3.21 (�)). With � = � = 2 these objects (also called snake-like polyominoes)
have a simple geometrical characterisation.

(a) (b)

Figure 3.21: (�) a snake-like polyomino; (�) a snake.

Proposition 110. Every snake-like polyomino can be uniquely decomposed
into three parts: a unimodal staircase polyomino oriented with respect to two
axis-parallel directions �1 and �2 and two (possibly empty) �-shaped polyomi-
noes placed at the extremities of the staircase. These two �-shaped polyomi-
noes have to be oriented with respect to �1, �2.

We have studied the classes ��P(�m,n), for other values of�,�, obtaining
similar characterisations which here are omitted for brevity.

Snakes. Let us consider the family of snake-shaped polyominoes (briely,
snakes) – as that shown in Fig. 3.21 (�):

Proposition 111. The family of snakes is a polyomino class, which can be
described by the avoidance of the following polyomino patterns:

Hollow stacks. Let us recall that a stack polyomino is a convex poly-
omino containing two adjacent corners of its minimal bounding rectangle
(see Fig. 3.23 (�)). Stack polyominoes form a polyomino class, described by
the avoidance of the patterns:
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0 1101 0 1

111 1

A hollow stack (polyomino) is a polyomino obtained from a stack polyomino
� by removing from � a stack polyomino � ′ which is geometrically contained
in � and whose basis lies on the basis of the minimal bounding rectangle of
� . Figure 3.23 (�), (�) depicts two hollow stacks.

(a) (b) (c)

Figure 3.22: (�) a stack polyomino; (�), (�): hollow stacks.

Proposition 112. The family H of hollow stack polyominoes forms a poly-
omino class with �-basis given by:

Rectangles with rectangular holes. Let R be the family of polyominoes
obtained from a rectangle by removing sets of cells which have themselves
a rectangular shape, and such that there is no more than one connected set
of 0’s for each row and column. The family R can easily be proved to be a
polyomino class, and moreover:

Proposition 113. The class R can be described by the avoidance of the
patterns:

︀

0 1 0
︀

,

⎡

⎣

0
1
0

⎤

⎦

︂

1 0
0 0

︂ ︂

0 1
0 0

︂ ︂

0 0
1 0

︂ ︂

0 0
0 1

︂

.
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Figure 3.23: A rectangle with rectangular holes.

3.8 Some directions for future research

Our work opens numerous and various directions for future research. We in-
troduced a new approach of submatrix avoidance in the study of permutation
and polyomino classes.

In both cases permutation and polyomino classes, we have described sev-
eral notions of bases for these classes: �-basis, �-basis, canonical �-basis,
minimal �-basis. Section 3.3 explains how to describe the �-basis from any
�-basis. Conversely, we may ask how to transform the �-basis into an “ei-
cient” �-basis. Of course, the �-basis is itself an �-basis, but we may wish
to describe the canonical one, or a minimal one.

Many questions may also be asked about the canonical and minimal �-
bases themselves. For instance: When does a class have a unique minimal�-
basis? Which elements of the canonical �-basis may belong to a minimal �-
basis? May we describe (or compute) the minimal�-bases from the canonical
�-basis?

Finally, we can study the classes for which the �-basis is itself a minimal
�-basis of the class (see the examples of the polyomino classes of vertical
bars, or of parallelogram polyominoes).

Submatrix avoidance in permutation classes has allowed us to derive a
statement (Corollary 97) from which ininitely manyWilf-equivalences follow.
Such general results onWilf-equivalences are rare in the permutation patterns
literature, and it would be interesting to explore how further we can go in
the study of Wilf-equivalences with the submatrix avoidance approach.

The most original concept of this work is certainly the introduction of
the polyomino classes, which opens many directions for future research.

One is a systematic study of polyomino classes deined by pattern avoid-
ance. As enumeration is the biggest open question about polyominoes, we
should study the enumeration of such classes, and see whether some inter-
esting bounds can be provided. Notice that the Stanley-Wilf-Marcus-Tardos

103



theorem [101] on permutation classes implies that permutations in any given
class represent a negligible proportion of all permutations. We don’t know if
a similar statement holds for polyomino classes.

As we have reported in Section 3.1.2, the poset (P,4P) of polyominoes
was introduced in [39], where the authors proved that it is a ranked poset,
and contains ininite antichains. There are however some combinatorial and
algebraic properties of this poset which are still to explore, in particular w.r.t.
characterising some simple intervals in this poset.

Finally, we have used binary matrices to import some questions on per-
mutation classes to the context of polyominoes. But a similar approach could
be applied to any other family of combinatorial objects which are represented
by binary matrices.
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