
HAL Id: tel-01064992
https://theses.hal.science/tel-01064992

Submitted on 17 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Deterministic Parallel Graph Exploration
Dominik Pajak

To cite this version:
Dominik Pajak. Algorithms for Deterministic Parallel Graph Exploration. Distributed, Parallel, and
Cluster Computing [cs.DC]. Université Sciences et Technologies - Bordeaux I, 2014. English. �NNT :
�. �tel-01064992�

https://theses.hal.science/tel-01064992
https://hal.archives-ouvertes.fr

THÈSE

présentée pour obtenir la grade de

DOCTEUR

L’UNIVERSITÉ BORDEAUX

École Doctorale de Mathémathiques et Informatique de Bordeaux

SPÉCIALITÉ : INFORMATIQUE

par

Dominik PAJĄK

Algorithms for Deterministic Parallel
Graph Exploration

Soutenue le 13 Juin 2014 au Laboratoire Bordelais de Recherche en Informatique (LaBRI)

Aprés avis de rapporteurs:

Pierre Fraigniaud Directeur de Recherche CNRS à Université Paris Diderot (France)

Tomasz Radzik Reader à King’s College London (Angleterre)

Peter Widmayer Professeur à ETH Zürich (Suisse)

Devant la commission d’examen composée de :

Examinateurs

Philippe Duchon Professeur à l’Université Bordeaux (France)

Rapporteurs

Pierre Fraigniaud Directeur de Recherche CNRS à Université Paris Diderot (France)

Tomasz Radzik Reader à King’s College London (Angleterre)

Peter Widmayer Professeur à ETH Zürich (Suisse)

Directeurs de thèse

Ralf Klasing Directeur de Recherche CNRS à Université Bordeaux (France)

Adrian Kosowski Chargé de Recherche Inria à Université Paris Diderot (France)

ii

Acknowledgements

First of all, I would like to thank my PhD advisors Ralf Klasing and Adrian Kosowski

for their patience, friendship and support.

The work included in this thesis was performed during my 3-year PhD studies at the

LaBRI in Bordeaux. Additional results, some of which are not included in the thesis, are

the product of research visits to Perugia, Liverpool, Ottawa and Wroclaw. I would like to

thank all my collaborators and co-authors. I had a pleasure working with (in alphabetical

order): Evangelos Bampas, Jurek Czyzowicz, Yann Disser, Leszek Gąsieniec, Thomas

Gorry, Marcin Kardas, Ralf Klasing, Marek Klonowski, Adrian Kosowski, Evangelos

Kranakis, Russell Martin, Alfredo Navarra, Eduardo Pacheco, Cristina Pinotti, Thomas

Sauerwald, Najmeh Taleb, Przemysław Uznański and Kamil Wolny.

Thanks to my friends, my stay in Bordeaux was very enjoyable. My thanks go to

Abbas, Agnieszka, Anna, Andjela, Carlos, Cedric, Charlotte, Clement, Elham, Farhad,

Florent, Ikram, Ipsita, Jesus, Juan Angel, Lorenzo, Lorijn, Maxime, Meropi, Petru,

Przemysław, Sagnik, Sri and Zuzanna. I would like to especially thank Zuzanna and

Agnieszka for preparing the reception after my defence. I am very grateful to Jakub who

helped me with translating the abstract of the thesis to French.

I am particularly grateful to the referees Pierre Fraigniaud, Tomasz Radzik and Peter

Widmayer for agreeing to take on their commitment and for reading this manuscript.

Some of their comments have already been taken into account when preparing the final

version of the thesis.

I gratefully acknowledge the financial support received from Inria (through the project

teams CEPAGE and RealOpt in Bordeaux), from l’Agence Nationale de la Recherche

(projects ALADDIN and DISPLEXITY).

Finally I would like to thank my family: my father Andrzej, my mother Krystyna,

my brother Krzystof and my sister Karolina for their support and encouragement.

Résumé

Nous étudions dans cette thèse le problème de l’exploration parallèle d’un graphe à l’aide

des multiples, synchronisés et mobiles agents. Chaque agent est une entité individuelle

qui peut, indépendamment des autres agents, visitez les sommets du graphe ou parcourir

ses arêtes. Le but de ensemble des agents est de visiter tous les sommets de graphe.

Nous étudions d’abord l’exploration du graphe dans un modèle où chaque agent

est équipé de mémoire interne, mais les nœuds n’ont pas de mémoire. Dans ce modèle

les agents sont autorisés à communiquer entre eux en échangeant des messages. Nous

présentons des algorithmes qui s’exécutent dans un minimum de temps possible pour

polynomiale nombre d’agents (polynomiale en nombre de sommets du graphe). Nous

étudions aussi quelle est l’impacte de différent méthodes des communications. Nous

étudions des algorithmes où les agents peuvent se communiquer à distance arbitraire,

mais aussi où communication est possible seulement entre les agents situés dans le même

sommet. Dans les deux cas nous présentons des algorithmes efficaces. Nous avons aussi

obtenu des limites inférieures qui correspondent bien à la performance des algorithmes.

Nous considérons également l’exploration de graphe en supposant que les mouvements

des agents sont déterminés par le soi-disant rotor-router mécanisme. Du point de vue

d’un sommet fixé, le rotor- router envoie des agents qui visitent les sommet voisins dans

un mode round-robin. Nous étudions l’accélération défini comme la proportion entre le

pire des cas de l’exploration d’un agent unique et des plusieurs agents. Pour générales

graphes, nous montrerons que le gain de vitesse en cas de multi-agent rotor-router est

toujours entre fonction logarithmique et linéaire du nombre d’agents. Nous présentons

également des résultats optimaux sur l’accélération de multi-agent rotor-router pour

cycles, expanseurs, graphes aléatoires, cliques, tores de dimension fixé et une analyse

presque optimale pour hypercubes.

Finalement nous considérons l’exploration sans collision, où chaque agent doit explorer

le graphe de manière indépendante avec la contrainte supplémentaire que deux agents

ne peuvent pas occuper le même sommet. Dans le cas où les agents sont donnés le

plan de graphe, on présente un algorithme optimal pour les arbres et un algorithme

asymptotiquement optimal pour générales graphes. Nous présentons aussi des algorithmes

dans le cas de l’exploration sans collision des arbres et des générales graphes dans la

situation où les agents ne connaissent pas le graphe.

Nous fermons la thèse par des observations finales et une discussion de problèmes

ouverts liés dans le domaine de l’exploration des graphes.

Mots clés: exploration de graphes, équipe d’agents mobiles, algorithme, marche

déterministe, rotor-router modèle, marches aléatoires parallèles, exploration collabo-

rative, algorithme d’apprentissage incrémental

Abstract

In this thesis we study the problem of parallel graph exploration using multiple

synchronized mobile agents. Each mobile agent is an entity that can, independently of

other agents, visit vertices of the graph and traverse its edges. The goal of the agents is

to visit all vertices of the graph.

We first study graph exploration in the model where agents are equipped with internal

memory but no memory is available at the nodes. Agents in this model are also allowed

to communicate between each other by exchanging messages. We present algorithms

working in a minimal possible time for a team of polynomial size (in the number of

vertices of the graph). We also study the impact of the available range of communication

by analysing algorithms for agents which can communicate at arbitrary distance, or only

with other agents located at the same node. We present efficient algorithms and lower

bounds that almost match our positive results in both communication models.

We also consider graph exploration when movements of agents are determined

according to the so-called rotor-router mechanism. From the perspective of a fixed

node, the rotor-router sends out agents which visit the node along its outgoing edges, in

a round-robin fashion. We study the speedup which is the ratio between the worst-case

exploration of a single agent and of multiple agents. We first show that the speedup

for general graphs for the multi-agent rotor-router is always between logarithmic and

linear in the number of agents. We also present a tight analysis of the speedup for

the multi-agent rotor-router for cycles, expanders, random graphs, cliques, constant

dimensional tori and an almost-tight analysis for hypercubes.

Finally we consider collision-free exploration, where each agent has to explore the

graph independently with the additional constraint that no two agents can occupy the

same node at the same time. In the case when agents are given the map of the graph, we

show an optimal algorithm for trees and an asymptotically optimal algorithm for general

graphs. We also present algorithms for collision-free exploration of trees and general

graphs in the case when agents have no initial knowledge about the graph.

We close the thesis with concluding remarks and a discussion of related open problems

in the area of graph exploration.

Keywords: graph exploration, team of agents, algorithm, deterministic walk, rotor-

routor model, parallel random walks, collaborative exploration, online algorithm

LaBRI,

Universite Bordeaux,

Unité Mixte de Recherche CNRS (UMR 5800),

351, cours de la Libération

33405 Talence Cedex (FRANCE)

v

Résumé étendu

Nous étudions dans cette thèse le problème de l’exploration parallèle d’un graphe à l’aide

des multiples, synchronisés et mobiles agents. Chaque agent est une entité autonome qui

n’est pas contrôlée par aucune autorité centrale. Des agents mobiles dans un graphe sont

capables de visiter les sommets du graphe et traverser ces arêtes. Pendant la visite a un

nœud, l’agent recueille certaines informations (type de l’information dépend du modèle),

effectue un calcul selon l’algorithme exécuté et décide à son prochain mouvement.

L’agent mobile dans un graphe peut servir comme une représentation théorétique

de certains importantes concepts pratiques. Ainsi, les programmes informatiques qui

peuvent traverser des liens dans un réseau social sont utilisés pour classer les nœuds

ou d’obtenir des échantillons homogènes de certains sous-ensembles. Programmes qui

peuvent voyager dans un réseau informatique peuvent effectuer la maintenance du réseau

ou détecter les nœuds défectueux.

Le problème de l’exploration d’un graphe est, étant donné un graphe G = (V,E) avec

n = |V | nœuds et m = |E| arêtes, de visiter par les agents mobiles tous les n nœuds du
graphe. La question de l’exploration est l’un des problèmes les plus fondamentaux de

la théorie des agents mobiles. Elle peut aussi servir comme une sous-procédure pour

résoudre des tâches plus complexes comme la création du carte de graphe ou patrouille

perpétuel.

Nous allons considérer deux variantes de l’exploration: collaborative et exclusive. Dans

le variante de l’exploration collaborative, les agents peuvent être considérés comme une

équipe, pour compléter l’exploration chaque nœud doit être visité par l’agent quelconque.

Dans le second cas de l’exploration exclusive, chaque agent doit visiter tous les sommets

du graphe de façon indépendante. Notre objectif est de réduire le temps d’exploration.

Nos algorithmes sont:

Déterministes Nous se contcentrons uniquement sur les solutions déterministes. Cepen-

dant parfois nous comparons nos résultats avec des résultats analogues pour les

algorithmes randomisés.

Parallèle La majorité des études existantes sur le problème de l’exploration d’un graphe

assume un unique agent. Dans cette thèse, nous proposons des solutions efficaces

pour les équipes de k agents se déplaçant en parallèle. Dans le cas de l’exploration

collaborative nous attendons que plusieurs agents accomplirons l’exploration plus

rapidement qu’un seul. L’objectif est de coordonner les mouvements en telle façon,

que les agents différents explorent différentes parties du graphe. Nous sommes

intéressés spécialement par l’exploration effectuer par nombreux équipes d’agents.

Afin d’explorer un graphe effectivement, les agents ont besoin d’avoir un certain accès

à la mémoire. Cette mémoire peut être soit la mémoire interne d’agent ou la mémoire

interne des nœuds, modifiable par les agents. Dans cette thèse, nous considérons tous

les deux cas. Pour permettre la parallélisation déterministe, les agents doivent interagir

vi

entre eux. Ce interaction peut être directe ou indirecte. Un exemple d’une méthode

indirecte de communication est la capacité des agents à interagir avec l’environnement,

par exemple en laissant des messages au niveau des nœuds. Dans le cas de communication

directe les agents peuvent échanger des messages directement entre eux.

Dans l’introduction de la thèse nous discutons les plus importants modèles des agents

mobiles présents dans la littérature. Ensuite, nous définissons notre modèle et présentons

les différences et les similitudes avec les modèles existants. Ensuite, nous présentons les

sujets de recherche lies à aux problèmes d’exploration des graphes.

Dans la première partie technique de la thèse on analyse l’exploration de graphe

dans le modèle où les agents sont équipés de mémoire interne, mais la mémoire n’est pas

disponible au niveau des nœuds. Dans ce modèle les agents sont également autorisés à

communiquer entre eux en échangeant des messages. De plus on suppose que tous les

agents commencent à le même sommet r. Contrairement aux résultat existantes, dans ce

modèle nous étudions les algorithmes pour des nombreux équipes d’agents. Nous étudions

aussi l’impact de différent variants de communication par l’analyse des algorithmes où

les agents peuvent se communiquer à distance arbitraire (communication globale), ou

seulement avec d’autres agents situés dans le même nœud (communication locale). Les

algorithmes présentés assume polynomiale nombre des agents (compare au nombre de

sommets du graphe). Minimal nombre d’agents k requis par notre algorithme est k

≥ D∗n1+ǫ, où D∗ est la distance de r a le nœud le plus éloigné du graphe, et ǫ > 0 est

une constante positive. Première solution présenté, de même que les résultats établi pour

un plus petit nombre d’agents, fonctionnent bien pour les arbres. Le premier algorithme

utilise la communication globale et travaille en temps D∗ (1 + 1
c + o(1)

)
pour k ≥ D∗nc

agents. Nous montrons comment on peut modifier la première solution pour obtenir

un algorithme fonctionnant dans le modèle de communication locale. Nous obtenons

un algorithme fonctionnant en temps D∗ (1 + 2
c + o(1)

)
pour k ≥ D∗nc. Étonnamment

notre algorithme s’étend facilement aux graphes généraux. Ceci montre que la difficulté de

cette formulation réside dans l’exploration des arbres. Nous confirmons cette intuition en

construisant une famille spécifique d’arbres qui montre les limites inférieures dans les deux

modèles de communication qui répondent à près à nos résultats positifs. Nous montrons

que chaque algorithme utilisant d’agents a besoin de temps au moinsD∗
(
1 + 1

c−1 − o(1)
)

dans modèle de communication globale et de temps D∗
(
1 + 2

c−1 − o(1)
)
dans le modèle

de communication locale. Nos bornes inférieures et supérieures dans les deux modèles de

communication présentent une importante différence entre ces deux modèles. Cependant,

la différence dans le temps optimale de l’exploration, dans ces deux modèles de communi-

cation, n’est pas grande. Ce nous amène à la conclusion que pour les équipes nombreux,

la communication à longue distance n’est pas nécessaire pour efficace ’exploration. Plus

forts moyens de communication, comme laisser des messages au niveau des nœuds ou la

communication à longue distance, sont nécessaire pour efficace solution du problème en

cas des petites équipes d’agents. Nous fermons ce chapitre en formulant les problèmes en

suspens concernant directement ce modèle.

vii

Nous considérons également le cas des agents qui n’ont pas de mémoire interne, mais

la mémoire est seulement disponible au niveau des nœuds. Coordination des mouvements

des agents se fait selon la dite rotor-router mécanisme. Du point de vue d’un nœud fixe,

le rotor router envoie des agents qui visitent les nœuds voisin, dans un mode round-robin.

Cumulativement au cours du temps, chaque nœud envoie approximativement le même

nombre d’agents à chaque arête sortant. Un tel mécanisme peut être considéré comme

un dé randomisation de la marche aléatoire, où chaque nœud envoie au fil du temps, en

moyenne, le même nombre d’agents dans chaque direction. Le temps d’exploration de

l’ensemble rotor-router avec un agent unique est bien examiné. Il a été montré dans les

travaux existants que pour chaque graphe, le temps de l’exploration dans le pire des cas

est Θ(mD), où m est le nombre d’arêtes et D est le diamètre du graphe. Dans cette thèse,

nous nous concentrons sur le temps d’exploration par multiples agents qui interagissent

avec le système rotor-router. Nous considérons le temps de l’exploration collaborative du

multi-agent rotor-router modèle. Les progrès récents dans l’analyse de la durée de la

couverture de plusieurs marches aléatoires indépendantes nous permet de comparer nos

résultats à ceux sur les marches aléatoires et observer des similarités intéressantes. Nous

comparons le gain de vitesse: la proportion entre le temps de couverture d’un agent unique

et de plusieurs agents. Notre analyse du rotor-router modèle contemple généralement le

pire des cas d’exécution. Nous comparons la performances du pire cas de rotor-router

avec le résultat attendu par les marches aléatoires. Premièrement on développe des

techniques qui nous permettent de analyser le multi-agent rotor-router modèle. Une

technique particulièrement utile, appelé déploiement tardif consiste à arrêter un certain

nombre d’agents pour un nombre de tours. Nous montrons dans le ralentissement lemme

que si le nombre de tours pendant lesquelles les agents sont arrêtés n’est pas trop grand,

le temps de couverture du déploiement tardif correspond à la durée de la couverture

de l’ensemble rotor-router sans retard. En utilisant le ralentissement lemme de nous

montrons que le temps de couverture de graphe quelconque par k agent rotor-router est

toujours O
(

mD
log k

)
et Ω

(
mD
k

)
. Cela signifie que l’accélération pour générales graphes dans

le multi-agent rotor-router modèle est toujours comprise entre fonction logarithmique et

linéaire du nombre d’agents. Le résultat analogue pour les marches aléatoires est une

conjecture formulée par Alon et al.en 2008. Ensuite, nous montrons que l’accélération

logarithmique de pire cas se produit sur le cycle, en montrant un estimation précise

Θ
(

n2

log k

)
sur la durée du pire cas de la couverture d’un cycle. Nous avons constaté que

les agents du rotor-router partage le cycle dans une collection de domaines. Pendant

ce processus, chaque agent patrouille son domaine et, éventuellement, l’entende par la

conquête de nouveaux nœuds. Une analyse scrupule de l’évolution des tailles de domaines

nous a permis d’obtenir des limites étroites sur le temps de couverture du multi-agent

rotor-router sur le ring pour différents schèmes d’initialisation d’agents (le pire des cas et

le meilleur des cas). Nous calculons également le temps entre deux visites d’un nœud

donné après suffisamment nombreux mouvements (temps de retour). Nous comparons

ces trois résultats (temps de couverture dans le cas de meilleur initialisation, temps

viii

de couverture dans le cas de pire initialisation et le temps de retour) pour multi-agent

rotor-router et plusieurs marches aléatoires, et observons des similarités frappantes. Il

s’avère que le temps de couverture dans le cas de meilleur initialisation et le temps

de retour sont les mêmes, et le temps de couverture dans le cas de pire initialisation

diffère par un polylogarithmique (en nombre d’agents) facteur. Nous continuons l’étude

du multi-agent rotor-router modèle en montrant des limites étroites sur le temps de

couverture pour expanseurs, graphes aléatoires, cliques, tores de dimension fixé et une

analyse presque optimale pour hypercubes. Tous obtenir ce résultats nous avons élaborer

une autre technique. Nous relions la différence entre le nombre total de visites à un

nœud donné dans le multi-agent rotor-router modèle et l’attendu nombre des visites par

plusieurs marches aléatoires. Notre analyse de la multi-agent rotor-router montre un

lien fondamentale au processus de plusieurs indépendantes marches aléatoires. Toutefois,

pour le rotor-router, nous avons prouvé des résultats qui reste des conjectures pour les

marches aléatoires. Le plus étonnant est le fait que pour le rotor-router, l’accélération

est au moins logarithmique pour chaque graphe pendant que pour les marches aléatoires

même une accélération superconstante est encore une question ouverte.

Enfin, nous examinons de nouveau le modèle où les agents sont équipés de mémoire

interne, mais ne sont pas autorisés à interagir avec l’environnement. Dans ce modèle,

nous considérons l’exploration sans collision, où chaque agent doit explorer le graphe

d’une façon indépendante avec une contrainte supplémentaire que deux agents ne peuvent

pas occuper le même nœud en même temps. De plus, dans ce scenario les agents doivent

retourner à leurs positions de départ après avoir terminé l’exploration. D’abord nous

considérons l’exploration d’un arbre, dans le cas où les agents ont la carte de l’arbre.

Dans ce cas, nous montrons un algorithme de complexité n∆, où ∆ est le degré maximal.

Ensuite nous prouvons que n∆ étapes sont nécessaires pour n’importe quel algorithme

sur graphe quelconque. Ensuite, nous étendons ce résultat pour les arbres et obtenons

un asymptotiquement optimal algorithme. Plus intéressant, nous avons obtenu que cette

complexité est asymptotiquement optimal, en montrant un Ω(n∆∗) borne inférieure.

Dans le cas des agents qui n’ont aucune a priori connaissance de graphe nous avons établi

un algorithme fonctionnant en temps O(n2) pour les arbres et O(n5 log n) pour graphes

quelconques. Une conclusion intéressante de ce chapitre est le fait que la question est

résoluble pour tout les graphes même si au départ chaque nœud contient un agent.

Nous fermons la thèse par des observations finales et une discussion de problèmes

ouverts liés à au domaine de l’exploration des graphes. Nous présentons un plan de

future recherche dans un modèle hybride dans la mémoire est disponible à la fois au

niveau des nœuds et des agents.

ix

Extended abstract

In this thesis we study the problem of parallel graph exploration using multiple synchro-

nized mobile agents. Each mobile agent is an autonomous entity that is not controlled

by any central authority. Mobile agents in a graph are capable of visiting nodes of the

graph and traversing its edges. While being located at a node, the agent gathers some

information (type of the information depends on the model), performs a computation

according to the executed algorithm and decides about its next move.

The mobile agent in a graph can serve as a theoretical representation of some

important practical concepts. For example computer programs that can traverse links

in a social network are used to rank nodes or to get uniform samples of nodes from

some subset. Programs that can travel in a computer network can perform network

maintenance or detect faulty nodes.

In the graph exploration problem, the goal of the agents is, given a graph G = (V,E)

with n = |V | nodes and m = |E| edges, to visit all n nodes of the graph. The problem of
exploration is one of the most fundamental problems in the mobile agent theory, which

can also serve as a subprocedure for solving more complex tasks like map drawing or

perpetual patrolling.

We will consider two variants of exploration: collaborative and exclusive. In the

collaborative exploration problem, the agents can be seen as a cooperating team, and

in order to complete the exploration, each node needs to be visited by some agent. In

the latter case of exclusive exploration, each agent has to visit all vertices of the graph

independently. In this thesis our objective is to minimize the time of exploration.

Our algorithms are:

Deterministic We focus solely on deterministic solutions. However sometimes we

compare our results with analogous results for randomized algorithms.

Parallel Most of the existing studies on the graph exploration problem focus on single-

agent exploration. In this thesis we propose efficient solutions for teams of k agents

moving in parallel. In the case of collaborative exploration we want to benefit from

having multiple agents by completing the exploration more quickly than in the

case of a single agent. The goal will be to coordinate the movements of the agents

so that different agents explore different parts of the graph in parallel. We are

particularilly interested in exploration with large teams of agents.

In order to explore a graph efficiently, the agents need to have access to some memory.

The memory can either be the internal memory of an agent that remains intact when

the agent traverses an edge or it can be an internal memory at each node that is

modifiable by the agents. In this thesis we consider both cases. To achieve parallelisation

deterministically, the agents also need to interact with each other directly or indirectly.

An example of an indirect method of communication is ability of the agents to interact

with the environment, for example by leaving messages at the nodes. In the direct

communication agents can exchange messages between each other.

x

In the introduction to the thesis we present all the most important models of mobile

agents present in the literature. Then we define our setting and highlight the differences

and similarities with the existing models. Then we present a survey of the related work

in the graph exploration problems and some related problems.

In the first technical part of the thesis we study the graph exploration in the model

where agents are equipped with internal memory but no memory is available at the nodes.

Agents in this model are also allowed to communicate between each other by exchanging

messages. Additionally we assume that all agents start at the same position r. Compared

to the existing solutions, in this model we study algorithms for larger teams of agents. We

also study the impact of the available range of communication by analysing algorithms

for agents which can communicate at arbitrary distance (global communication), or

only with other agents located at the same node (local communication). We present

algorithms working for a team of polynomial size (in the number of vertices of the graph).

The minimal team size k required by our algorithm is k ≥ D∗n1+ǫ, where D∗ denotes

distance from r to the most remote node of the graph and ǫ > 0 is any constant. Our

first solution, similarly as the existing work for smaller number of agents, works for trees.

The first algorithm uses the global communication and works in time D∗ (1 + 1
c + o(1)

)

for k ≥ D∗nc agents. We show how to modify the first solution to obtain an algorithm

working in the local communication model. We obtain an algorithm working in time

D∗ (1 + 2
c + o(1)

)
for k ≥ D∗nc in the local communication. Surprisingly our algorithm

easily, and without any overhead, extends to general graphs which shows that most of

the difficulty in this formulation of the exploration problem lies in the tree exploration.

We confirm this intuition by constructing a specific family of trees that shows lower

bounds in both communication models that almost match our positive results. We show

that any algorithm using D∗nc agents needs time at least D∗
(
1 + 1

c−1 − o(1)
)
in the

global communication and D∗
(
1 + 2

c−1 − o(1)
)
in the local communication model. Our

lower and upper bounds in both communication models show a separation between

these two models. However, the difference in the optimal exploration time in these

two communication models is not big which leads to the conclusion that for such large

teams of agents, the long-distance communication is not necessary for efficient graph

exploration. Stronger means of communication like leaving messages at nodes or the

long-distance communication might be necessary for solving the problem efficiently by

smaller teams of agents. We close the chapter with open problems related directly to

exploration in this model.

We also consider agents which have no internal memory but the memory is available

at the nodes. Coordination of movements of the agents is made according to the so-

called rotor-router mechanism. From the perspective of a fixed node, the rotor-router

sends out agents which visit the node along its outgoing edges, in a round-robin fashion.

Cumulatively over time, each node is sending approximately the same number of agents to

every outgoing edge. Such a mechanism can be seen as a derandomization of the random

walk where each node is sending over time, on average, the same number of agents in

xi

every direction. The exploration time of the rotor-router with a single agent is well

understood. It has been shown in the existing works that for any graph, the worst-case

exploration time is Θ(mD), where m denotes number of edges and D, the diameter of

the graph. In this thesis we focus on the exploration time of multiple agents interacting

with the same rotor-router system. We consider the collaborative exploration time (or

the cover time) of the multi-agent rotor-router. Recent progress in the analysis of the

cover time of multiple independent random walks allows us to compare our results to the

results about random walks and observe some interesting similarities. We compare values

of speedup which is the ratio between the cover time of a single agent and of multiple

agents. Our analysis of the rotor-router usually assumes the worst-case initialization of

the system. We compare the worst-case performance of the rotor-router to the expected

case in the random walks. First we develop techniques that allow us to analyse the

multi-agent rotor-router. A particularly useful technique, called delayed deployment

consists in stopping some number of agents for some number of rounds. We show in

the slow-down lemma that if the number of rounds in which agents are stopped is not

too big, then the cover time of the delayed deployment corresponds to the cover time of

the undelayed rotor-router. Using the slow-down lemma we show that the worst-case

cover time for any graph of k agent rotor-router is always O
(

mD
log k

)
and Ω

(
mD
k

)
. This

means that the speedup for general graphs for the multi-agent rotor-router is always

between logarithmic and linear in the number of agents. An analogous claim for random

walks is a conjecture made by Alon et al. in 2008. Then we show that the logarithmic

speedup occurs for the worst-case initialization on the cycle by showing a tight bound

Θ
(

n2

log k

)
on the worst-case cover time on a cycle. We observed that agents following

the rotor-router on the cycle partition the cycle between themselves into a collection of

domains. During the process, each agent is patrolling its domain and possibly extending

its size by capturing new nodes. Careful analysis of the evolution of sizes of domains

allows us to obtain tight bounds on the cover time of the multi-agent rotor-router on the

ring for different initialization of agents (worst-case and best-case). We also show what

is the time between two visits at a given node after sufficiently many steps (return time).

We compare all these three values (cover time in the best case initialization, cover time

in the worst case initialization and the return time) for multi-agent rotor-router and

multiple random walks and observe striking similarities. It turns out that the cover time

in the best case and the return time are the same and the best-case cover time differs

by a polylogarithmic (in the number of agents) factor. We continue the study on the

multi-agent rotor-router by showing tight bounds on the cover time of the multi-agent

rotor-router for expanders, random graphs, cliques, constant dimensional tori and an

almost-tight bounds for hypercubes. To show these results we develop another useful

technique. We bound the discrepancy between the total number of visits at a given

node in the multi-agent rotor-router and the expected total number of visits by multiple

random walks. Our analysis of the multi-agent rotor-router shows how closely this

process is linked to the process of multiple independent random walks. However for the

xii

rotor-router we proved some results that remain a conjecture for the random walks. Most

surprisingly we show that a for the rotor-router, the speedup is at least logarithmic for

any graph and for random walks even a superconstant speedup for any graph is still an

open question.

Finally we consider again the model in which agents are equipped with memory but

are not allowed to interact with the environment. In this model we consider collision-free

exploration, where each agent has to explore the graph independently with the additional

constraint that no two agents can occupy the same node at the same time. Moreover, in

this problem agents are required to return to their starting positions after finishing the

exploration. We first consider tree exploration in the case when agents are given the map

of the tree. In such a case we shown an algorithm with time complexity n∆, where ∆

denotes the maximum degree. Then we show that n∆ steps are needed for any algorithm

on any graph. Then we extend the result for trees and obtain an asymptotically optimal

for general graphs working in time O(n∆∗), where ∆∗ denotes the maximum degree of

the minimum degree spanning tree of the considered graph. Interestingly we show that

this complexity is asymptotically optimal by showing a Ω(n∆∗) lower bound on any

graph. For the case in which initially agents have no knowledge about the graph we show

an algorithm working in time O(n2) for trees and O(n5 log n) for general graphs. An

interesting conclusion from this chapter is the fact that the problem is solvable for any

graph even if initially each node contains an agent.

We close the thesis with concluding remarks and a discussion of related open problems

in the area of graph exploration. Presented directions of future work involve graph

exploration in a hybrid model in which memory is available both at the nodes and at the

agents.

Contents

1 Introduction 1

1.1 Modelling a mobile agent . 2

1.2 Studied aspects of the graph exploration problem 6

1.3 Overview of the thesis and results . 7

1.4 State-of-the-art on the exploration problem 8

1.5 Related problems for mobile agents . 18

2 Exploration with communicating agents 25

2.1 The team exploration model . 26

2.2 Tree exploration . 29

2.3 General graph exploration . 37

2.4 Lower bounds . 41

2.5 Conclusions . 43

3 Exploration with the Rotor-Router system 45

3.1 The rotor-router model . 46

3.2 The delayed deployment technique for the multi-agent rotor-router 53

3.3 Upper bound on cover time for general graphs 55

3.4 Lower bound on cover time for general graphs 64

3.5 Cover time on the ring . 67

3.6 Return time on the ring . 86

3.7 Discrepancy between the rotor-router and random walk 88

3.8 Cover time on graphs with small mixing time 92

3.9 Cover time on the ring revisited . 96

3.10 Cover time on the torus . 97

3.11 Cover time on the hypercube . 101

3.12 Conclusions . 103

4 Collision-free exploration 105

4.1 Model and definitions . 107

4.2 Network exploration with a map . 109

4.3 Local network exploration . 116

4.4 Conclusions . 121

xiii

xiv CONTENTS

5 Conclusions 123

Bibliography 125

Publications included in this thesis 136

Chapter 1

Introduction

Autonomous, unmanned, mobile robots are capable of performing many operations that

were previously done by humans. Progress in electronics and robotics has allowed mobile

robots to become sufficiently inexpensive to appear on the mass market. Domestic robots

nowadays perform certain household tasks like vacuuming or gardening. In hazardous

environments, such as minefields [17] or damaged buildings [125], deploying mobile robots

reduces risk of human casualties. A team of robots can also perform a surveillance and

reconnaissance mission in a dynamic urban environment [101].

Study on mobile robots is not restricted to physical robots. There is a broad spectrum

of applications of multiple mobile software agents that can perform tasks in computer

networks. Such agents can collect information, perform network maintenance, or rank

nodes in a web of information. Mobile agents have the ability to react dynamically,

which makes them suitable for heterogeneous, dynamically changing, or faulty environ-

ments [119]. In a communication network, instead of transmitting large amounts of data

between hosts, it is often more efficient to transfer a mobile agent that can perform an

operation in the target node. This can lead to reduced communication load and latency

in the network. A similar application are web crawlers that traverse links in the Internet

in order to create an index of web pages (e.g. Googlebot). In social networks, where

nodes represent users and connections represent friendship relations, crawler agents can

also be used to obtain uniform samples of users [96].

The main principle in designing both physical robots and software agents is simplicity,

due to limited available resources or price of the device. Entities are subject to a number

of constraints such as limited memory, speed and range of communication. Nevertheless,

a large team of even very weak devices executing simple algorithms can often perform

tasks that are very hard for centralized systems.

The problem on which we will focus the most in this thesis is exploration. In this

task the goal of an agent or a group of agents is to visit the whole of the accessible

environment. Exploration of an unknown terrain is a fundamental problem in robotics

as it is one of the most natural applications of multiple mobile entities. It is also a basic

subtask in many more complex problems like patrolling or map drawing.

1

2 Chapter 1 Introduction

1.1 Modelling a mobile agent

A mobile agent is an entity equipped with some operational memory and computational

power. The agent can operate in a discrete environment (modelled as a graph) or in

a continuous environment (modelled for example as a subset of the plane). The agent

operating in a graph is capable of traversing edges and visiting nodes of the graph.

Upon traversing edges, the memory of the agents remains intact. When visiting a node,

the agent can gather new information about the graph (e.g., the degree of its host

node), perform computations, and decide about its next move. An agent is allowed to

perform computations and possibly modify its memory only when located at a node.

The agent deployed in the continuous environment can move along a continuous curve

within available subset of the plane. In the following we give a brief overview of different

features of the models of the mobile agents considered in the literature.

1.1.1 Properties of mobile agents

Memory. When considering the amount of operational memory available to agents,

three cases are considered in literature. Results for agents with unbounded memory

usually focus on minimizing the time of completion of the task. The second case is that of

agents with bounded memory. Here, the studied aspect is the feasibility of performing the

task subject to the given memory constraint or the tradeoff between time and memory.

Finally, for the case of agents with no memory (oblivious agents), most of the research

effort focuses on the feasibility of performing the given task.

Vision. In order to perceive the environment, the agents are endowed with visibility

sensors. As the power of the sensors may vary, we distinguish between different models of

view ranges of the agents. With global vision, agents can see the whole environment. If

agents are deployed in a graph, then in this model, each agent receives information about

the topology of the graph, its own position in the graph, and sometimes the positions

of other agents. In one special case, well-studied in the literature under the name of

multiplicity detection, an agent receives information if there is one or more agents located

at a given node of the graph. With local vision, each agent receives only local information.

For example if agents are operating in a graph, they receive the degree of currently

occupied node, they may receive information about other agents occupying the same

node or about identifiers of the neighboring nodes.

Knowledge of global parameters. The knowledge of certain global parameters of

the graph can sometimes be essential when deciding the solvability and efficiency of

certain tasks. Thus, often agents operating in the visibility model are given the values of

the size of the graph, the diameter of the graph, or the whole topology. Revealing this

information can significantly reduce the complexity of the problem.

Chapter 1 Introduction 3

Interactions. Other properties that may be considered in mobile agent computing

include the capability of agents to interact with each other and with the environment.

Interactions between agents include exchange of information by agents located at the

same node (local communication) or at arbitrary locations (global communication).

Another indirect method of communication between agents is through their interaction

with the environment. A large number of different variants of such interaction have been

studied in literature. Agents may write arbitrary information on nodes (whiteboards),

or may leave movable or immovable tokens. In some models, agents may also interact

with the environment and each other by influencing values of counter, pointers and other

variables stored on nodes and edges of the system. In one significant part of this thesis

we will study a method of interaction with the environment known as the rotor-router.

In the rotor-router, each node maintains a cyclic ordering of its outgoing arcs, and during

successive visits of the agents, propagates it along arcs chosen according to this ordering

in round-robin fashion.

Symmetry breaking. When multiple agents are deployed in the same graph in order

to perform some task, we assume that they operate in a distributed setting, i.e. are not

coordinated by any centralized authority and have to make decisions autonomously. It is

also assumed that all agents are executing the same algorithm. Breaking the symmetry

between the agents is frequently an essential part of solving the agents’ task, and can

be achieved in a number of ways. Agents may have distinct identifiers which are a part

of the input for the algorithm executed by the agents (labeled agents). By contrast,

agents without identifiers are referred to as anonymous agents. Symmetry for anonymous

agents can be broken by placing agents in different starting positions. Finally, we may

also consider agents which have access to some source of randomness and can make

probabilistic choices, and e.g. use random coin tosses to break symmetries.

Synchronization. Regardless of the specific setting, an algorithm executed by the

mobile agent can be seen as a sequence of Look-Compute-Move cycles. In one cycle, an

agent takes a snapshot of the current configuration (Look), makes a decision (Compute)

to stay idle or to move. A potential move is made in the third phase of the cycle (Move).

Three main models of synchronization of these cycles are considered in literature. In the

synchronous model, agents have access to a global clock and in every round all agents

execute each phase of each cycle simultaneously. Another model of synchronization is the

semi-synchronous ATOM model [142], in which each agent executes the Look-Compute-

Move cycle independently at unpredictable time instants. In the ATOM model, the

whole Look-Compute-Move cycle is atomic, i.e. is performed instantaneously. In the last

model, the asynchronous Look-Compute-Move model, the delays between each phase

may be arbitrarily long and hence, agents may move based on significantly outdated

perceptions. Sometimes a model in which not only delays between phases are arbitrary

long but also each of three phases Look-Compute-Move can last for any number of time

steps are considered [31]. Most results for asynchronous models assume global visibility.

4 Chapter 1 Introduction

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

Figure 1.1: An example of a port labelled graph.

Faults. Since mobile agent models assume simple, cheap and relatively weak devices,

one cannot assume fail-proof software or hardware, in particular when such agent systems

are deployed in hazardous environments. Thus, an important line of study concerning

the theory of algorithms for mobile agents deals with aspects of fault tolerance. Two

types of faults are prevalent in the literature: crashes and Byzantine faults. When an

agent crashes, it simply stops executing the algorithm, does not take any further action,

and remains stationary indefinitely. By contrast, a Byzantine fault can be seen as an

adversary taking control over an agent. Such an agent can behave in an arbitrary way,

at times pretending to be operating correctly, at others possibly disrupting the work of

other agents. In this thesis, we will assume the fault-free models and leave the problems

of faulty agents as possible directions of further study in the topic of the thesis.

1.1.2 Model definition and notation

In this thesis we focus on exploration of discrete environments. The environment in

which the agents are deployed is defined simply as an undirected1 graph G = (V,E). In

order to allow for the agents to distinguish among incident edges, each node of the graph

admits a local labelling (port labelling). For every node v ∈ V this local edge labelling

is defined as a function λv : {(v, w) ∈ E} → {0, 1, . . . , deg(v)− 1}, where deg(v) is the
degree of v (see Figure 1.1 for an example). We will use the following notation. We will

denote the number of nodes of graph G by n = |V |, the number of its edges by m = |E|.
By D we will denote the diameter of G. The set of neighbors of a vertex v ∈ V is denoted

by Γ(v). When each node of the graph has a unique label id : V → {1, 2, . . . , n′}, for
some n′ ≥ n, we will say that the graph is labelled. In the literature usually the case of

bijective labelling is considered, i.e., the case of n′ = n. If a labelling is not available we

will say that the graph is anonymous.

Behaviour of an agent. A mobile agent is defined as an automaton which is capable

of both performing computations and traversing edges of the graph G. The agent has

some number of states. The number of states of an agent may depend on the size of

1This thesis studies only undirected graphs but some aspects of exploration of directed graphs are

also considered.

Chapter 1 Introduction 5

the graph and thus is potentially infinite. We will say that an agent equipped with b

bits of local memory has 2b states. We will assume that an agent while being located at

a node can use additional memory for local computation but when traversing an edge

it can carry only b bits. The agent starts at some node of G in some state s. During

successive time steps the agent can change its position by traversing edges and moving

to a neighboring node and also can change the state of its local memory. Time is divided

into steps and in each step t every agent performs the following:

1. The agent gathers available information about the graph or other agents, depending

on the model. It learns the degree of the current node v, and depending on the

model, it may communicate with other agents or interact with the environment.

2. Based on the gathered information, its local memory state, and according to the

executed algorithm, the agent performs its computation.

3. As the result of its computation, the agent can modify its local memory.

4. The output of the computation is either a label of an edge incident to v leading to

one of the neighbours of v or an idle move.

5. If the agent chooses a label, we say that it traverses the corresponding edge. At

the end of time step t, it appears at the neighbouring node. Otherwise, if the agent

chooses an idle move, it remains in v.

1.1.3 Our focus

Different assumptions in mobile agent computing theory give rise to a large number of

models. Here, we define properties of the model which will be common to all results

presented in this thesis.

Discrete vs. continuous setting. The first important assumption we make is about

the environment in which the agents are deployed. In general, the environment can

either be continuous (modelled, for example, as a subset of the plane) or discrete

(modelled as a graph). In this thesis, we focus only on discrete environments,

modelled as an undirected graph.

Deterministic vs. randomized algorithms. The other assumption concerns the way

agents can move. Their choices can either be randomized or deterministic. In the

randomized model it is assumed that each agent has access to an independent

source of randomness. In this thesis, we will assume that such sources are not

available and we will consider only deterministic strategies.

Synchronized vs. asynchronous agents. A different aspect of the model is synchro-

nization. We will assume that agents move in synchronous rounds as if they had

access to a global clock. In one round every agent can traverse one edge. We will

also assume that all agents start executing the algorithm at the same moment. This

6 Chapter 1 Introduction

can be contrasted with the asynchronous setting, where delays between operations

made by each agent can be arbitrary as if they were decided by an adversary.

Time vs. space efficiency. Finally, we can consider different objectives. We may

want to minimize time of exploration, memory of each agent or the tradeoff between

time and memory. In this thesis, we will focus only on minimizing the time. We

will always assume that the time of internal computations made by the agents is

negligible and thus by the runtime of the algorithm we will understand the number

of rounds of the global clock at the time moment when the agents have achieved

their objective.

As we are working in the synchronous model, all steps are done by agents in parallel.

In particular, agents are making their observations and choices at the same time at the

beginning of each round. During each round, all agents that chose to move are traversing

edges in parallel.

Local model with memory on agents. In Chapters 2 and 4, we are using the

following model. We will assume that nodes of the graph are uniquely labelled, but no

memory at nodes is available for the agents. Thus agents cannot use whiteboards and

cannot mark nodes in any way. Agents have local visibility and each agent can perceive

the identifier of the currently occupied node v and the identifiers of all the neighbors of

v. Moreover, each agent is equipped with internal memory that remains intact while the

agent traverses an edge. We do not make any assumptions about the size of the internal

memory of each agent.

Local model with memory on nodes. By contrast, in Chapter 3, the agents have

no internal memory and the whole mechanism determining the movements of the agents

is provided by the environment. In such a model the nodes have states, but not the

agents. Each node in this model has some state and the next move of an agent located

at node v depends on the state of v. Each visit of an agent at a node modifies the state

of the node. We assume that agents are labelled and upon visiting a node, each agent

receives identifiers of other agents located at the same node. With this assumption it is

possible for agents located at the same node to move to different neighbors.

1.2 Studied aspects of the graph exploration problem

In the graph exploration problem, an agent or group of agents is placed on a node of a

graph and moves between adjacent nodes, with the goal of visiting all the nodes of the

graph. An exploration strategy for G is a sequence of moves performed independently by

the agents.

Collaborative exploration time. We will say that an agent visits a node v in step

t if it is located at v at the beginning of step t. A node v is explored in step t if an agent

Chapter 1 Introduction 7

is located in v in the end of step t and no agent was located in v before t. Graph G

is said to be explored by step t if all nodes of G are explored in or before step t. The

exploration time (or cover time) of an exploration strategy for G (or an exploration

algorithm) controlling the mobility of the agents is the smallest time t such that G is

explored by step t.

Collision-free exploration time. An agent is said to explore graph G if it visits all

nodes of the graph. The collision-free exploration time of an algorithm for a team of agents

is the smallest time t such that until the end of time step t each agent, independently of

other agents, explores the graph G with the additional constraint that no two agent can

occupy the same node at the same time.

Exploration with stop. The problem of exploration with stop is considered to be

completed by time t, if t is the smallest time such that the considered exploration is

completed by time t, all agents are aware of this fact and do not make any more moves

for any time step bigger than t.

Exploration with return. The time of exploration with return is the smallest time t

such that the considered exploration task is completed by time t and all agents are once

again located at their starting positions at time moment t.

Formulations of our problems. In Chapters 2 and 3 we will consider the collab-

orative exploration problem. We will assume that agents do not need to stop after

completion of the task and are not even required to be aware that the exploration has

been finished.

By contrast, in Chapter 4 we will study the collision-free exploration problem with

return. In this problem each agent has to explore the graph without meeting other agents

and moreover after completing the task each agent has to return to its starting location.

1.3 Overview of the thesis and results

In this thesis, we will study the exploration problem in three different settings.

In Chapter 2, we will consider the model where agents are allowed to interact

between each other. We will study exploration in two different communication models:

global communication, where agents can exchange information at any time, and local

communication, where agents can interact only while being simultaneously present at the

same node. We will study exploration using a large team of agents (i.e., of size polynomial

in the size of the graph) as opposed to [67, 85] where the authors considered smaller

number of agents. In both communication models, we will propose efficient algorithms

for exploration for a large team of agents as well as almost matching lower bounds.

In Chapter 3, we will consider exploration by agents guided by a specific mechanism

provided by the environment called the rotor-router model. In this model, each node

8 Chapter 1 Introduction

of the graph maintains a pointer to one of its neighbors and a cyclic sequence of its

neighbors. Each agent during each time step, follows the pointer and traverses the

corresponding edge. The pointer is then advanced to the next neighbor in the sequence.

We will study the cover time (i.e. time until each nodes has been visited by at least

one agent) of the system of multiple agents propagated by the rotor-router mechanism.

We will study the exploration time (= the cover time) of multiple agents interacting

with the same rotor-router system. We will study the speedup, i.e., the ratio between

the cover time for single agent and for multiple agents. We will completely characterize

the possible range of speedups for general graphs. Surprisingly, the range of speedups

for multi-agent rotor-router turns out to be exactly the same as the conjectured range

of speedups for multiple random walks [7]. We will also derive the precise values of

cover time for multi-agent rotor-router for many graph classes like for example cycles,

multidimensional tori and random graphs. Our results can be compared to those obtained

by Elsässer and Sauerwald [71] in an analogous study of the cover time of k independent

parallel random walks in a graph; for the rotor-router, we obtain tight bounds in a

slightly broader spectrum of cases.

In Chapter 4, we study graph exploration in the model where agents cannot commu-

nicate between each other nor interact with the environment. Agents in this model are

not aware of the number nor the positions of the other agents. We consider the problem

of collision-free graph exploration, i.e., a task in which each agent has to visit every node

of the graph and in no round may two agents occupy the same node. We consider two

scenarios: one in which each mobile agent knows the map of the graph, as well as its

own initial position and the second in which the graph is unknown in advance. In the

first scenario we provide tight (up to a constant factor) lower and upper bounds on the

collision-free exploration time in general graphs, and the exact value of this parameter

for trees. For our second scenario, we also propose collision-free exploration strategies

for tree networks and for general graphs. The collision-free exploration problem turns

out to be solvable for any graph even if each node is initially occupied by an agent.

In Chapter 5 we conclude the thesis, presenting perspectives for further research in

mobile agent graph exploration.

1.4 State-of-the-art on the exploration problem

The study of graph exploration is closely linked to central problems of theoretical

computer science, such as the question of deciding if two nodes of the graph belong to

the same connected component (st-connectivity).

Recent progress in the graph exploration problem has resulted in a large number of

results, which due to a multitude of models and assumptions, are sometimes hard to

compare. Here we will try to organize results presented in the literature and highlight

the main features of the models for which they have been established.

Chapter 1 Introduction 9

Whereas our focus will be on the case in which the graph is not known in advance to

the exploring agents (the online scenario), we start our discussion with a broader and to

some extent historical overview of related work, which also includes the offline scenarios

with complete knowledge.

1.4.1 State-of-the-art on deterministic exploration

Single-agent exploration of labelled graphs. For a given known graph, the prob-

lem of deciding whether there exists an exploration strategy using a given number of

edge traversals is NP -hard. Indeed, a n-node graph admits exploration in n− 1 steps if

and only if it contains a Hamiltonian path starting at the initial location of the agent.

There do exist however simple and efficient exploration strategies.

One of the simplest deterministic exploration algorithms is Depth-First Search (DFS),

which was first investigated in the context of escaping from a maze by Charles Pierre

Trémaux in the 19th-century [73]. In DFS, the agent performs exploration of a spanning

tree of the graph G rooted at the starting position of the agent. An agent located at

node v moves to an arbitrary unexplored neighbor of v, if such a neighbor exists. If all

neighbors of v have been explored, then the agent backtracks, i.e., moves to a parent

of v in the spanning tree. To perform such an algorithm, the agent needs to be able

to distinguish between visited and unvisited nodes, thus some form of node labels is

necessary. It also needs to remember at least the path in the spanning tree between

its current location and the starting position. Thus, exploration with the simple DFS

algorithm requires time at most 2m and space O(n). An improvement in the time

complexity in this scenario was made by Panaite and Pelc in [131] where an algorithm

requiring time m+ 3n is shown, which improves the time of DFS provided that m > 3n.

A different approach is to study exploration using agents whose moves are restricted

in some way. Such a related setting is studied by Duncan et al. [64], where an agent

has to explore a graph while being attached to the starting point by a rope of restricted

length or has to return regularly to the starting point, for example for refuelling. In this

model, the authors show an asymptotically optimal algorithm with Θ(m) edge traversals.

In the case when the graph is not known in advance (also known as the online case),

one of the measures of efficiency of an algorithm is its competitive ratio, understood as

the worst-case ratio between the time of the online algorithm and time of the optimal

offline algorithm, i.e., the optimal algorithm for an agent working with full knowledge of

the graph. For unknown undirected graphs, DFS can be considered as an online strategy,

which achieves a competitive ratio of at most 2, because it traverses every edge at most

twice. Dessmark and Pelc [51] studied the competitive ratio of algorithms assuming

different initial knowledge about the graph. If a map of the graph with marked starting

position of the agent is given, then the optimal competitive ratio is 7/5 for lines and 3/2

for trees. For a map without a starting position it is shown that the optimal competitive

ratio for lines is
√
3 and that it is less than 2 for trees (thus DFS is not optimal).

10 Chapter 1 Introduction

The problem becomes more difficult for directed graphs, as an agent may not be

able to backtrack its moves. Deng and Papadimitriou [49] proposed an algorithm with

competitive ratio δO(δ), where δ is the minimum number of edges that must be added

to make the graph Eulerian (the deficiency of the graph). They also conjectured that

there exists a poly(δ)-competitive algorithm. The conjecture was proven by Fleischer

and Trippen [78] where a O(δ8)-competitive algorithm was presented.

Memory-efficient graph exploration. When considering the problem of minimizing

the required space needed by an agent to explore any graph, a first natural question would

be if an agent with a constant number of states (equivalent to a finite automaton) can

explore any graph. The question was answered negatively by Rollik [140], who showed

that even a team of finite cooperating automata cannot explore graphs of arbitrary size.

A sequence G1,G2,G3, . . . , where Gi is the set of all regular graphs that can be explored
by a finite automaton with i states was studied by Fraigniaud et al. [87]. They showed

that there exists a polynomial f : N→ N such that Gi is strictly included in Gf(i). The
question whether for all i > 0, Gi is strictly included in Gi+1 is a conjecture that has

been proven for i = 1, 2 [87].

The problem of exploring the graph is related to the problem of deciding whether

a given pair of nodes s, t belong to the same connected component of some undirected

graph (st-connectivity, USTCON). This problem is of central importance in complexity

theory due to the fact that USTCON is complete in the class of problems solvable on a

log-space Symmetric Nondetermistic Turing Machine (SL). If we model vertices of the

network as states of a given Turing Machine and directed edges as possible transitions

between the states, then st-connectivity on such a graph is equivalent to the question

whether the considered Turing Machine starting from state s can finish computation

in an accepting state t. USTCON can be solved by a log-space Nondeterministic

Turing Machine and thus by Savitch’s theorem [141] it can be solved deterministically

in space O(log2 n). Progress towards reducing this space complexity took almost three

decades. Nisan et al. [127] made the first improvement over Savitch’s algorithm in

terms of space showing that USTCON can be solved in O(log3/2 n) space. Later this

complexity was reduced to O(log4/3 n) by Armoni et al. [13]. Finally Reingold [139]

showed that USTCON solvable in logarithmic space, which implies that SL = L (where

L is the class of problems solvable on a log-space Turing Machine and SL – on a

log-space Symmetric Turing Machine). A (possibly) more difficult, directed version

of st-connectivity (STCON) can be shown to be a complete problem in the class of

all problems solvable on a log-space Nondeterministic Turing Machine (class NL). It

can also be solved deterministically in space O(log2 n) [126]. Until now it is the most

space-efficient solution to this problem.

In the context of graph exploration with mobile agent the universal traversal/ex-

ploration sequences use port-labels but do not need node identifiers. The existence of

polynomial-size universal sequences shows that an agent with O(log n) bits of memory

Chapter 1 Introduction 11

and knowledge of n, can deterministically explore any port-labelled anonymous graph of

size n. As we do not consider time or memory complexity of local computations, the

agent can construct the lexicographically smallest sequence in each step. The O(log n)

bits are needed for the counter that keeps track of the position in the sequence. Fraig-

niaud et al. [86] showed that Ω(log n) bits of memory are sometimes required. When

expressing the number of bits as a function of diameter D and maximum degree ∆, it

is possible to show that Θ(D log∆) bits are sufficient, and necessary for graphs with

arbitrarily large values of D and ∆ [86]. For the specific case of trees, O(log∆) bits are

sufficient for perpetual exploration and Ω(log log log n) bits are required for exploration

with stop [54]. For exploration of trees with return Θ(log n) bits are necessary [54]

and sufficient [11], regardless of whether or not the agent knows n. A lower bound on

memory size for a team of k agents executing a possibly different algorithm was presented

in [88]. If agents are not allowed to communicate then to explore any graph of size n

deterministically, each agent needs Ω(log(n/k)) bits of memory [88].

The results for st-connectivity can also be studied in a weaker computational model

called Jumping Automaton for Graphs (JAG) proposed by Cook and Rackoff [32]. Such

an automaton is equipped with P pebbles and Q memory states thus its memory usage

is P log n+ logQ (when considered as a Turing machine). A JAG controls pebbles and

can either move a pebble along an edge to an adjacent vertex or jump it to another

vertex containing a pebble. The authors in [32] show that there is a JAG which can solve

STCON in storage O(log2 n) and any JAG needs space Ω(log2 n/ log log n). This result

is strong indication that STCON is probably not in L.

For more detailed surveys of anonymous graph exploration, we refer the interested

reader to [95,107].

Exploration assisted by the environment. An important line of research is devoted

to strategies in which the agent has no operational memory and the whole process of

propagation is performed by the environment. We will discuss two such mechanisms, the

rotor-router and the basic walk.

In the rotor-router model, introduced by Priezzhev et al. [136], the behaviour of the

agent is fully controlled by the undirected graph in which it operates. The edges outgoing

from each node v are arranged in a fixed cyclic order known as a port ordering, which

does not change during the exploration. Each node v maintains a pointer which indicates

the edge to be traversed by the agent during its next visit to v. The initial position

of the pointer can be chosen at random [63] or can be controlled by an adversary [15].

The next time when an agent enters node v, it is directed along the edge indicated by

the pointer, which is then advanced to the next edge in the cyclic order of the edges

adjacent to v (see Figure 1.2). Each agent propagated by the rotor-router is a memoryless

entity and the system requires no special initialization as its state at any moment of

time is a valid starting state for the process. Studies of the rotor-router started with

works of Wagner et al. [143] who showed that in this model, starting from an arbitrary

12 Chapter 1 Introduction

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

0
1

2

1
2
0

0
1

3
2

2
3

01

1

0

2 0
1 3

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

Step 1
Step 2

Step 3 Step 4

Step 5

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

Step 6

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

Step 7

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

Step 8

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

Step 9

0
1

2

1
2
0

0
1

3
2

2
3

01

1
0

2 0
1 3

Step 10

Figure 1.2: An example of graph exploration with the single-agent rotor-router
(the agent is marked with the circle), assuming that the cyclic ordering of the edges

corresponds to the port labeling.

Chapter 1 Introduction 13

1
2

3
4

5

1

1

2

1
2

1
2 1

2

Figure 1.3: An example of graph exploration with the basic walk.

configuration (arbitrary cyclic orders of edges, arbitrary initial values of the port pointers

and an arbitrary starting node) the agent covers all edges of the graph within O(nm)

steps. Bhatt et al. [19] showed later that within O(nm) steps the agent not only covers

all edges but enters (establishes) an Eulerian cycle. More precisely, after the initial

stabilisation period of O(nm) steps, the agent keeps repeating the same Eulerian cycle of

the directed symmetric version ~G of graph G (see the model description for a definition).

Subsequently, Yanovski et al. [144] and Bampas et al. [15] showed that the Eulerian cycle

is in the worst case entered within Θ(Dm) steps in a graph of diameter D. Considerations

of specific graph classes were performed in [91]. Robustness properties of the rotor-router

were further studied in [16], who considered the time required for the rotor-router to

stabilize to a (new) Eulerian cycle after an edge is added or removed from the graph.

Regarding the terminology, we note that the rotor-router model has also been referred to

in the literature as the Propp machine [15] or the Edge Ant Walk algorithm [143,144],

and has also been described in [19] in terms of traversing a maze and marking edges with

pebbles.

The rotor-router can be also seen as a strategy in which an agent chooses a neighboring

edge for which the most time has elapsed since its last traversal in the directed symmetric

version ~G of graph G. Such a strategy is sometimes referred to as the Oldest-First

strategy. on ~G [34]. By contrast it turns out that in undirected graph, such an Oldest-

First strategy can lead to exponential cover time [34]. On the other hand a strategy

in which an agent chooses a neighboring edge with the smallest number of traversals

(Least-Used-First) in undirected graphs always achieves a cover time of O(mn) [34].

Another simple strategy for movement in a graph is the basic walk, sometimes referred

to as a walk following the right-hand rule (see Figure 1.3 for an example). In the basic

walk, an agent who entered a node via port p is propagated in the next step via port p+1

(modulo the degree of the node). The basic walk can also be seen as a traversal using

a Universal Exploration Sequence with all values in the sequence equal to 1. Contrary

14 Chapter 1 Introduction

to the rotor-router which is a valid exploration strategy regardless of initialization, the

basic walk is not guaranteed in general to explore every graph, and may be e.g. easily

stuck in a short cycle. Consequently, the question studied for the basic walk consists in

finding a specific port labelling which leads to a cycle that visits all nodes of the graph.

Kosowski and Navarra [112] proved that there always exists a port labelling resulting in

a tour of length 4n− 2, while Czyzowicz et al. [40] showed that for some graphs a tour of

length 2.8n is necessary. A modification of a basic walk introduced by Ilcinkas [103] is to

equip the agent with a constant number of bits of memory. In such setting Ilcinkas [103]

showed an algorithm for port setting and an algorithm for the agent resulting in a tour

of length 4n− 2. This length was later improved by Gąsieniec et al. [94] to 3.75n− 2

and finally to 3.5n− 2 by Czyzowicz et al. [40].

Exploration of continuous environment. Exploration of a geometric polygon, in

a continuous environment, is considered in [43,99]. The authors study two scenarios: the

unlimited vision, in which the agent situated at a point p of the terrain explores (sees)

all points q of the polygon for which the segment pq belongs to the polygon, and the

limited vision, when we require additionally that the distance between p and q be at

most 1. The task of the agent is to see all points. In [99] the authors propose algorithm

for the case with unlimited vision with a competitive ratio of 1.219 for general simple

polygons and of 1.167 for rectilinear simple polygons. For unlimited vision, in [43] the

authors show a O(P +DH) algorithm, where P is the total perimeter of the terrain, D

is the diameter of the convex hull, and H is the number of holes. For limited vision they

propose an algorithm with running time O(P + C +
√
CH) where C is the area of the

terrain (excluding obstacles) and show a family of polygons for which Ω(P + C +
√
CH)

time is required for every algorithm with limited vision.

Multiple agents. In the problem of collaborative graph exploration with multiple

agents, the exploration is completed when every vertex has been visited by at least one

agent. As for the case of a single agent, we can consider the offline and online scenarios.

The problem of optimal offline collective exploration is NP -hard even if we restrict it

only to the case of trees [85]. It is, however, easy to show that an asymptotically optimal

algorithm in the offline case takes Θ(D + n/k) steps (see Proposition 2.1).

The competitive ratio for any online exploration algorithm is defined just as for

a single agent, as the ratio between the cover time of the algorithm and the cover

time of the optimal offline algorithm. Collaborative online graph exploration has been

intensively studied for the special case of trees. In [85], a strategy was given which

completes collaborative exploration with return of any tree with a team of k agents in

O(D + n/ log k) time steps, using a communication model with whiteboards at each

vertex that can be used to exchange information. This corresponds to a competitive ratio

of O(k/ log k) with respect to the optimum exploration time of Θ(D+ n/k) in the offline

scenario. In [100] the authors show that the competitive ratio of the strategy presented

in [85] is precisely k/ log k and can be modified to work in local communication model.

Chapter 1 Introduction 15

Another DFS-based algorithm, given in [22], has an exploration time of O(n/k +Dk−1)

time steps, which provides an improvement for graphs of small diameter and small

teams of agents, k = O(logD n). For a special subclass of trees called sparse trees, [66]

introduces online strategies with a competitive ratio of O(D1−1/p), where p is the density

of the tree as defined in that work. The best currently known lower bound on competitive

ratio is much lower: in [67], it is shown that any deterministic exploration strategy with

k <
√
n has a competitive ratio of Ω(log k/ log log k), even in the global communication

model. A stronger lower bound of Ω(k/ log k) holds for so-called greedy algorithms [100].

In [122] a lower bound of Ω(D1/(2c+1)) on the competitive ratio is shown to hold for a

team of k = nc agents, which holds only for the class of so-called rebalancing algorithms

i.e. algorithms which keep all agents at the same height in the tree throughout the

exploration process.

The same model for online exploration is studied in [130], in the context of geometric

graphs, inspired by real-world tasks known as milling and lawn-mowing problems. A

strategy is proposed for exploring graphs which can be represented as a D × D grid

with a certain number of disjoint rectangular holes. The authors show that such graphs

can be explored with a team of k agents in time O(D log2D + n logD/k), i.e., with a

competitive ratio of O(log2D), since the optimal offline strategy performs in Θ(D+n/k)

steps. By adapting the approach for trees from [67], they also show lower bounds

on the competitive ratio in this class of graphs: a lower bound of Ω(log k/log log k)

for deterministic strategies, and a lower bound of Ω(
√
log k/log log k) for randomized

strategies. These lower bounds also hold in the model with global communication of

agents.

Collaborative exploration has also been studied not only in the context of cover time,

but also with different optimization objectives. An exploration strategy for trees with

global communication is given in [67], achieving a competitive ratio of (4 − 2/k) for

the objective of minimizing the maximum number of edges traversed by an agent. The

limited range of an agent or robot can be motivated by energy constraints, resulting from

limited battery capacity. In [65] a corresponding lower bound of 3/2 is provided.

Multiple oblivious agents. Most of the aforementioned results considered the case

of agents equipped with some internal memory. However, sometimes the assumption that

agents can carry some memory along the edges is unrealistic. It is thus desirable to study

exploration also in the case of oblivious agents. In such models usually the case of the

weakest possible agents is considered. Agents are not only oblivious but also asynchronous

and they cannot communicate between each other nor interact with the environment.

The only capability of the agents is vision i.e., they can perceive the graph and the

positions of the other agents. In contrast to the local models which we predominantly

deal with, in the context of oblivious robots, the assumed capability of vision is usually

global. With such weak robots, most of the results focus on feasibility of solving the

exploration task. Exploration of a ring in the asynchronous Look-Compute-Move model

16 Chapter 1 Introduction

was studied by Flocchini et al. [80] who showed that if k (the number of agents) divides n

(the size of the ring), then exploration is impossible for some initial placements of agents.

They also presented an algorithm working for any initial configuration if k and n are

co-prime and k ≥ 17. Characterization of pairs (n, k) for which exploration is possible

was further studied by Lamani et al. [118], who showed that exploration is feasible for

all co-prime pairs (n, k) if k ≥ 5 and is infeasible for k < 5 if the size of the ring is

even. It was also shown in [80] that O(log n) agents are always sufficient to explore an

n-node ring and Ω(log n) agents are sometimes required. In the more powerful relaxed

semi-synchronous ATOM model with randomized agents, four agents are sufficient and

necessary to explore a ring [52].

Tree exploration in the asynchronous model was studied by Flocchini et al. [79], where

the authors show that for trees with maximum degree 3 a team of size O(log n/ log log n)

can always explore the tree and Ω(log n/ log log n) agents are sometimes required. For

completely anonymous and unlabelled trees with maximum degree 4 surprisingly a team

of Ω(n) agents is necessary [79]. The problem becomes slightly easier when the graph has

locally distinct edge labels (port labelling). In such setting Chalopin et al. [29] showed

that for k = 4 and for any odd k ≥ 5 exploration is feasible for any asymmetric initial

configuration.

1.4.2 State-of-the art on randomized exploration

Deterministic strategies, like DFS, work only for agents with big number of bits of local

memory and sometimes require node identifiers. Exploration of anonymous graphs with

very little memory (o(log n) bits) can be achieved using randomized strategies.

Randomized exploration with a single agent. When considering randomized

strategies with a single walker, the first idea might be to deploy a random walk. In

such a strategy, in every step, an agent located at vertex u ∈ V chooses a neighbor of u

uniformly at random and moves to that vertex. In other words, the transition probability

puv from u to any of its neighbours v is puv = 1
deg(u) , where deg(u) denotes the degree of

u. The transition matrixM of the random walk is a |V | × |V | matrix having in the u-th
row and v-th column the value puv. As the number of steps of the random walk tends

to infinity, in any non-bipartite graph, the probability of the agent to be located at a

specific node u, at any given moment of time converges to the stationary distribution.

The stationary distribution of the random walk π is a vector such that πu = deg(u)
2m . This

means that the random walk visits the nodes with high degree more often. For bipartite

graphs, a stationary distribution can be achieved by adding self-loops, i.e. at any step

the agent can stay at a node with some probability.

The cover time Crw(G, v) of the random walk on graph G starting from node v is the

expected number of steps until an agent starting from v visits all nodes of G. The cover

time Crw(G) of graph G is the maximum of Crw(G, v) taken over all v ∈ V . It is easy

to determine the cover time for some graph classes. For example, if G is a clique, then

Chapter 1 Introduction 17

Graph class Result Reference

General graph
Crw(G) ≥ (1− o(1))n lnn [74]
Crw(G) ≤ (1 + o(1)) 4

27n
3 [75]

Crw(G) ≤ 2m(n− 1) [6]

Regular graph Crw(G) ≤ 2n2 [76]

Random d-regular graphs (d ≥ 3) Crw(G) ≤ (1 + o(1))d−1
d−2n lnn (w.h.p.) [33]

Two dimensional grid Crw(G) = Θ(n log2 n) [30, 146]
d-dimensional grid (d ≥ 3) Crw(G) = Θ(n log n) [4]

Table 1.1: Known bounds on the cover time of the random walk.

the cover time of G is Crw(G) = n(lnn+O(1)) since the random walk on the clique is

closely linked to the coupon collector problem [123]. Known bounds of the cover time for

different graph classes are presented in Table 1.1.

The main drawback of the random walk as a strategy for graph exploration is the

worst-case cover time of Θ(n3), achieved for example for lollipop graphs [123], where a

lollipop is defined as a path of length roughly n/3 connected to a clique on 2n/3 nodes.

An approach to reduce the Θ(n3) maximum cover time for a randomized exploration

strategy consists in using biased random walks. In such walks, the transition matrix M

is modified with respect to the simple (unbiased) random walk. In general, the reduction

of the cover time is achieved by increasing the probability of transition to a node of lower

degree. Transition probabilities that yield a cover time O(n2 log n) for any graph are

shown by Ikeda et al. [102]. However, implementing such a strategy requires access at

every node to topological information about the degrees of the neighbors. They also

showed that for any transition matrix the cover time on the path is Ω(n2). A refined

strategy [128] based on the so-called Metropolis walks, also achieves O(n2 log n) cover

time, without requiring such extra topological information. Kosowski [111] showed how

to implement this idea to obtain an algorithm for mobile agent with O(log log n) bits of

memory exploring any graph in expected time O(n2 log n).

Multiple agents. Deploying multiple random walks is another idea to decrease the

cover time. When deploying k independent random walks, the cover time is the expected

number of steps until each node has been visited by at least one random walk (assuming all

agents move simultaneously in synchronised steps). Broder et al. [23] considered k random

walks where the initial position of each walk was chosen according to the stationary

distribution of the random walk. The cover time in such a setting is O(m2 log3 n/k2).

More recently, multiple walks have been studied in a worst-case starting scenario i.e.,

for initial positions of agents that yield the biggest cover time. Alon et al. [7], Efremenko

and Reingold [70], and Elsässer and Sauerwald [71] have studied the notion of the speedup

lnn denotes the natural logarithm and log n the logarithm at base 2.

18 Chapter 1 Introduction

of the random walk for an undirected graph G, defined as the ratio between the cover

time of a single-agent walk in G starting from a worst-case initial position and that of k

walks in G for worst-case initial positions of agents, as a function of k. A characterization

of the speedup has been achieved for many graph classes, for random graphs, and graphs

with special properties, such as small mixing time compared to cover time. However, a

central question posed in [7] still remains open: what are the minimum and maximum

values of speedup of the random walk in arbitrary graphs? The smallest known value of

speedup is Θ(log k), attained e.g. for the cycle, while the largest known value is Θ(k),

attained for many graph classes, such as expanders, cliques, and stars.

An interesting problem of searching for a treasure hidden in a grid at distance D from

the starting position of the team of k probabilistic agents is studied in [72,77]. When

agents cannot communicate but know the value of k (or a constant approximation), the

optimal expected time necessary and sufficient to solve the problem is Θ(D +D2/k) [77].

Authors in [77] also show an algorithm with the optimal competitive ratio in the case

when agents do not know k. If agents are able to exchange constant-size messages while

being at the same location then the problem can be solved in time Θ(D +D2/k) w.h.p

even if the agents have a constant-size memory and have no knowledge of k [72].

1.5 Related problems for mobile agents

In mobile agent computing, the exploration problem is sometimes a subtask for more

complex problems. In other problems only part of the available environment needs to

be explored. In this section we want to briefly describe some problems, different than

exploration, for multiple mobile agents and recall recent results on these problems.

1.5.1 Rendezvous and Gathering

Another widely studied problem in the mobile agent domain is the gathering problem,

also known as rendezvous (typically for the case of 2 agents). In this problem, two or

more agents have to meet, for example to exchange data which they have collected,

or to coordinate further actions. The vast literature on this problem includes three

surveys [9, 116, 134] and two books [10, 115], and contains numerous results in various

models of gathering. Herein, we provide a brief overview of some results in the area.

The gathering in port-labelled networks in the synchronized, deterministic model

for agents with distinct identifiers was studied by Dessmark et al. [50] and Kowalski

and Malinowski in [114]. If we assume that agents present at the same location at

the same time are aware of the fact that they have met then the problem of gathering

for an arbitrary number of agents is asymptotically no harder than the special case

of gathering two agents [114]. For general graphs there exists a gathering algorithm

with time complexity polynomial in n, and log l, where l is the value of the smaller

identifier [114]. This algorithm works also if the start of agents is not simultaneous, in

which case the time of the algorithm is measured between the start of the last agent and

Chapter 1 Introduction 19

completion of the gathering. The authors of [50,114] also give results for trees and cycles.

When agents have distinct identifiers, gathering is even possible in the asynchronous

model [46].

For anonymous agents, the problem of minimizing space instead of time was considered

in [44,89]. Czyzowicz et al. [44] showed that it is possible to perform gathering of two

agents in any graph if the agents are equipped with memory O(log n), even with arbitrary

delays between the start of the agents. They also showed that Ω(log n) memory is needed

even if start is simultaneous. The lower bound is already achieved for rings and thus it

shows a large gap between the space necessary to complete gathering and exploration

(for example for exploration of a port-labeled ring, constant space is sufficient). For trees

Fraigniaud and Pelc [89] proved that Θ(log n) memory is needed for arbitrary delays and

for simultaneous start it is Θ(logL + log log n), where L is the number of leafs in the

tree showing that there is a significant difference between simultaneous and delayed start.

Results from [89] work under the assumption that the starting positions of the agents

are not perfectly symmetrizable i.e., there does not exist a port-labelling µ of the tree

and an automorphism of the tree preserving µ that carries the starting position of one

agent on the starting position of the other.

Chalopin et al. [25] showed an algorithm for map construction of anonymous undi-

rected, port-labelled graphs, which can be used by two anonymous agents to meet if

they are allowed to mark their starting positions. Gathering using the algorithm for map

construction is also possible with arbitrary delays and in the asynchronous model.

Gathering has also been considered for directed anonymous port-labelled graphs [28].

The authors show an algorithm for gathering in the model with whiteboards, working for

all feasible initial configurations.

In geometric scenarios, gathering of k agents on the plane has received a lot of

attention due to its applications in robotics. Ando et al. [12] considered this problem

in the synchronous model in which each agent observes the other robots and moves

simultaneously and instantaneously in discrete time slots. They proposed an algorithm

for oblivious agents with limited visibility. This algorithm was shown to work in O(k2)

steps by Degener et al. [48], who also showed the corresponding lower bound Ω(k2).

In the asynchronous Look-Compute-Move model for oblivious agents with unlimited

visibility and with multiplicity detection, the gathering problem on the plane can be

solved using an algorithm proposed by Cieliebak et al. [31]. If agents share a common

sense of direction i.e., the agents share the same coordinate system, the problem can

be solved even with limited visibility [82]. A negative result by Prencipe [135] shows

that without multiplicity detection, gathering agents that do not have common sense

of direction is impossible. In discrete environment, on the ring, characterisation of the

initial configurations which admit a gathering for agents with unlimited visibility and

multiplicity detection is given in [108,109].

Gathering on the plane with faulty agents was studied by Agmon and Peleg [1]. They

showed that in the semi-synchrounous model it is possible to gather k ≥ 3 agents in the

20 Chapter 1 Introduction

presence of one crash fault. In the presence of f Byzantine faults an algorithm in the

fully-synchronous model is presented (assuming that k ≥ 3f + 1).

1.5.2 Black hole search

The exploration problem with mobile agents is often studied from the perspective of

applications in robotics. In practical scenarios, agents are often required to explore

dangerous zones. Thus, a variant of graph exploration that has gained a lot of attention

from theoreticians in recent years is the exploration of a graph with black holes, i.e.,

nodes that destroy any entering agent. The objective in this problem is usually the

minimization of the number of agents necessary to complete the task. The only way to

locate the black hole is to enter the node containing it. The agent which enters the black

hole disappears without leaving any trace. Since the other agents must locate the hole,

the model must provide some means of communication or some form of visibility, so that

the disappearing agent can somehow notify other agents before entering the black hole.

The problem of locating a single black hole is considered in different communication

models.

One model of communication is the whiteboard model, in which agents can leave

messages at nodes. For undirected networks and asynchronous agents communicating

by means of whiteboards, Dobrev et al. [60] showed that ∆ + 1 agents are necessary

and sufficient and number of time steps to complete the task is Θ(n2), where ∆ is the

total number of edges leading into the black hole in the graph. If the agents are given

the map of the graph, and the goal is to identify which of the nodes on the map is

the black hole, then the problem can be solved for any graph using only two agents

in time O(n log n) [60]. This complexity cannot be improved for the case of the ring

as Dobrev et al. [61] showed a Ω(n log n) lower bound. However, the problem can be

solved in time Θ(n) for many graph classes like hypercubes, cube-connected cycles, star

graphs, wrapped butterflies, chordal rings, multidimensional meshes and tori of restricted

diameter [59].

A weaker model of communication allows agents to leave tokens at nodes instead

of writing to whiteboards. However, if the topology of the graph is known, then

weakening the communication model does not make the problem harder as in such a

scenario Θ(n log n) moves are sufficient even if each agent has only one pebble [81].

A more difficult scenario, where agents are initially located at different positions and

are equipped with a constant number of bits of memory, was studied in rings [27] and

tori [26].

The black hole search task is also feasible if agents cannot communicate but operate in

the synchronous model and are aware if there is any other agent at the same node at the

same step. The problem of searching for one black hole with two agents in the synchronous

model assuming that the map of the graph is given to the agents in advance is considered

in [36, 45, 110]. The goal in such a setting is a time-efficient algorithm for locating

the black hole. For synchronous agents in trees, Czyzowicz et al. [45] proved that two

Chapter 1 Introduction 21

agents suffice to identify the location of the black hole by showing a 5/3-approximation

algorithm. For general graphs the problem was shown to be APX-hard [110] and a

33
8 -approximation was presented in [36]. For a more general problem, where agents are

also given a subset of nodes of the network initially known to be safe, Klasing et al. [110]

showed that for general undirected graphs, the problem is not approximable within any

constant factor less than 389
388 and showed a 6-approximation algorithm.

Locating b holes with k agents which can communicate when being located at the

same node of an undirected graph is considered in [35, 37]. In [35] authors show that

time O((n/k) log n/ log log n+ bDb), where Db is the maximum diameter of the graph

after removing at most b nodes, is always sufficient, and that Ω(n/k +Db) is sometimes

necessary to locate all black holes. Cooper et al. [37] considered the model with an

additional feature that an agent entering the black hole disappears but also repairs the

black hole. When the graph contains at most k/2 black holes, the authors showed that

O(n/k +D log f/ log log f) steps, where f = min{n/k, n/D}, are always sufficient and
Ω(n/k +D log f/ log log f) steps are sometimes necessary to repair all black holes.

To locate a single black hole in the synchronous model, there is an exponential gap in

the necessary number of agents between the case of directed and undirected graphs. For

undirected graphs ∆+ 1 agents are always sufficient, where ∆ is the degree of the black

hole [60]. For directed graphs considerably more agents are needed as Czyzowicz et al. [41]

showed that 2∆ agents are sometimes required, whereas Kosowski et al. [113] showed

that ∆2∆ agents always suffice.

1.5.3 Graph searching

A very widely studied problem in the context of mobile entities in a graph is the graph

searching problem. This problem is a game between a team of searchers and a fugitive.

The goal of searchers is to find the fugitive who is trying to escape.

The first formal formulation of this problem was made by Parson [133]. In this

formulation, the fugitive is assumed to be infinitely fast thus the problem can be seen as

graph cleaning. Initially the fugitive can be at any place and thus each edge is considered

as contaminated. Searchers are allowed to clean edges by traversing them. However, if at

any time there exists an unguarded path (i.e., without a searcher located at some node

of the path) between some contaminated edge and a clean edge, then the clean edge

immediately becomes contaminated again. The edge search number of a graph G is the

smallest number of searchers that guarantee to clear all edges. It was shown in [120] that

for any graph there exists a strategy using the minimum number of searchers in which

recontamination does not occur. Finding the edge search number for a given graph is

shown to be NP-complete [124], however it can be computed efficiently for trees [124].

One of the variants of graph searching is called the cops and robbers problem. This

variant is a two-player game with complete information. At the beginning of the game,

players freely choose their starting vertices, with the cops choosing first and the robber

second. During the game, players make moves alternatively. In the cops’ move, each

22 Chapter 1 Introduction

cop can remain idle or move to an adjacent vertex, likewise in the robber’s move, the

robber can either stay or move to adjacent vertex. The goal of the cops is to capture

the robber by moving at least one cop to a vertex occupied by the robber. The goal of

the robber is to remain uncaptured forever. The problem of deciding which player has

the winning strategy was recently shown to be EXPTIME-complete by Kinnersley [106].

For a given graph G, the minimum number of cops which guarantees the cops’ winning

strategy, is called the cop number of G. All the graphs with cop number equal to 1

were characterized independently by Nowakowski and Winkler [129] and Quilliot [137].

However, a characterization of graphs with cop number k for k > 1 remains open. The

cop number was shown to be at most 3 for all planar graphs [2]. A vast bibliography on

this topic has been organized by Fomin and Thilikos [84].

1.5.4 Pattern formation

A highly relevant problem for mobile agents on the plane is that of pattern formation. In

this problem, a team of agents has to organize themselves, usually without synchronization,

to form a specific pattern. This problem can be seen as a generalization of the gathering

problem, because gathering is simply forming a single point by all agents. Usually the

agents considered in this context are oblivious and unable to communicate directly.

The pattern formation problem was studied in the case when agents share the

knowledge of the chirality of the system (i.e., clockwise/counterclockwise orientation)

by Suzuki and Yamashita [142] for agents with unbounded memory. They showed an

algorithm for forming a circle and gave a characterization of patterns that can be formed.

Défago and Souissi [47] in the same model showed an algorithm for circle formation

for agents without memory. Dieudonné and Petit [53] showed the same result for fully

asynchronous agents without memory.

Flocchini et al. [83] studied the problem of formation of an arbitrary pattern in the

asynchronous model and with oblivious agents. They showed that when agents share the

knowledge of the direction and orientation of both axes (North-South and East-West),

the problem can be solved for any pattern. In contrast, if no common direction is known

to the agents, the general problem cannot be solved in that model. They also studied the

case when robots know the direction and orientation of one single axis. Then pattern

formation can be accomplished whenever the number of agents is odd.

1.5.5 Polygon mapping

In the problem of polygon mapping, the task of the mobile agent is to construct the

visibility graph of the polygon in which the agent is deployed. Nodes of the visibility

graph correspond to nodes of the polygon and edges of the visibility graph connect pairs

of nodes which can be connected by a line segment without crossing any side of the

polygon. The feasibility of solving the problem depends on capabilities of sensors with

which the agent is equipped. The agent is endowed with a visibility sensor and can see

Chapter 1 Introduction 23

all visible points of the polygon (a point p is visible if a segment connecting p and the

current position of the agent does not cross the border of the polygon).

When the agent can also measure angles between visible vertices of the polygon, the

problem is solvable even if the agent can walk only on the border of the polygon [57, 58].

When the agent can walk inside the polygon, the ability of the agent to tell if the

visible angle is convex or reflex is sufficient to solve the problem if the agent is given

an approximation on the number of vertices of the polygon [24]. Also, Disser et al. [56]

showed that such an approximation allows the agent equipped with a compass to solve

the problem. However, the question whether an agent which can measure distances to all

visible vertices of the polygon can reconstruct the visibility graph, remains open. More

results on polygon mapping in various models can be found in [55].

1.5.6 Patrolling

Patrolling of a continuous environment is a natural task for multiple autonomous mobile

agents. Patrolling problems can be seen as a task of perpetual exploration of a terrain,

with the goal of detecting potential intruders. A typical objective is to minimize the so-

called idle time of a patrolling strategy, i.e., the maximum time between two consecutive

visits to any point of the environment. In this context, the problem of patrolling an

interval was considered in [42,104]. The proportional strategy proposed in [42] involves

partitioning the interval into disjoint parts monitored by individual agents. Such a

strategy is optimal for agents with equal speeds and for at most 3 agents with different

speeds [104]. Surprisingly, the proportional strategy turns out not to be optimal for at

least 6 agents with different speeds [104]. For a more general overview of exploration-type

problems in robotics applications we refer the reader to [68].

Chapter 2

Exploration with communicating

agents

In this chapter, we will consider collaborative exploration using a team of agents that

are allowed to interact between each other in order to coordinate their decisions. Agents

have unique identifiers, which allow agents located at the same node and having the same

exploration history to differentiate their actions. Agents are initially placed at the same

node r. The considered model is the same as in [67, 85], but a smaller number of agents

was assumed there. We consider two communication models: one in which all agents

have global knowledge of the state of the exploration (global communication), and one in

which agents may only exchange information when simultaneously located at the same

vertex (local communication). As the main result of this chapter, we provide a strategy

which performs exploration of a graph with n vertices and diameter D, in time O(D),

using a team of agents of polynomial size k = Dn1+ǫ < n2+ǫ, for any ǫ > 0. The strategy

works in the local communication model, without knowledge of global parameters such

as n or D. We also obtain almost-tight bounds on the asymptotic relation between

exploration time and team size, for large k. Let D∗ be the distance from the starting

vertex r to the most distant vertex of the graph. For any constant c > 1, we show that

in the global communication model, a team of k = D∗nc agents can always complete

exploration in D∗(1 + 1
c−1 + o(1)) time steps, whereas at least D∗(1 + 1

c − o(1)) steps

are sometimes required. In the local communication model, D∗(1 + 2
c−1 + o(1)) steps

always suffice to complete exploration, and at least D∗(1 + 2
c − o(1)) steps are sometimes

required. This shows a clear separation between the global and local communication

models. Interestingly, the presented algorithms achieve a constant competitive ratio and

therefore show that the lower bound Ω(log k/ log log k) on the competitive ratio given in

[67] does not hold for large number of agents.

The results presented in this chapter were published in [T2].

25

26 Chapter 2 Exploration with communicating agents

2.1 The team exploration model

Exploring an undirected graph-like environment is relatively straightforward for a single

agent. Assuming the agent is able to distinguish which neighboring vertices it has

previously visited, there is no better (in terms of the exploration time) systematic

traversal strategy than a simple depth-first search of the graph, which takes 2(n − 1)

moves in total for a graph with n vertices. The situation becomes more interesting if

multiple agents want to collectively explore the graph starting from a common location.

If arbitrarily many agents may be used, then we can generously send nD∗
agents through

the graph.

While the cases with one agent and arbitrarily many agents are both easy to under-

stand, it is much harder to analyze the spectrum in between these two extremes. Of

course, we would like to explore graphs in as few steps as possible (i.e., close to D∗),

while using a team of as few agents as possible. In this chapter we study this trade-off

between exploration time and team size. A trivial lower bound on the number of steps

required for exploration with k agents is Ω(D + n/k) (see Proposition 2.1). We look

at the case of larger groups of agents, for which D is the dominant factor in this lower

bound. This complements previous research on the topic for trees [66,85] and grids [130],

which usually focused on the case of small groups of agents (when n/k is dominant).

Another important question when considering collaborating agents concerns the model

that is assumed for the communication between agents. We need to allow communication

to a certain degree, as otherwise there is no benefit from using multiple agents for

exploration [85]. We may, for example, allow agents to freely communicate with each

other, independent of their whereabouts, or we may restrict the exchange of information

to agents located at the same location, or we may make a compromise between the two.

In this chapter, we also study this tradeoff between global and local communication.

2.1.1 The collaborative online graph exploration problem

We are given a graph G = (V,E) rooted at some vertex r. By D we denote the diameter

of the graph and by D∗ we denote the distance from r to the most distant vertex in the

graph. Note that D∗ ≤ D ≤ 2D∗, thus when using asymptotic notation O or Ω we do

not need to distinguish between D and D∗. But when bounding the precise number of

steps in the algorithm, we need to make that distinction. The number of vertices of the

graph is bounded by n. Initially, a set A of k agents is located at r. We recall that a
strategy collaboratively explores the graph G in t time steps if for all v ∈ V there exists

a time step s ≤ t and an agent g ∈ A, such that g is located at v in step s. Our goal

is to find an exploration strategy which minimizes the time it takes to collaboratively

explore a graph in the worst case, with respect to the parameter D∗. We assume that

vertices have unique identifiers that admit a total ordering. In each step, an agent visiting

vertex v receives a complete list of the identifiers of the nodes in Γ(v), where Γ(v) is the

neighborhood of v. Time is discretized into steps, and in each step, an agent can either

Chapter 2 Exploration with communicating agents 27

stay at its current vertex or slide along an edge to a neighboring vertex. Agents have

unique identifiers, which allow agents located at the same node and having the same

exploration history to differentiate their actions. We do not explicitly bound the memory

resources of agents, enabling them in particular to construct a map of the previously

visited subgraph, and to remember this information between time steps.

We distinguish between the following communication models.

Global communication In this model, we assume that, at the end of each step s,

all agents have complete knowledge of the explored subgraph i.e., the subgraph

which has been visited by agents up to step s inclusive. In particular, in step s all

agents know the number of edges incident to each vertex of the explored subgraph

which lead to unexplored vertices, but they have no information on any subgraph

consisting of unexplored vertices.

Whiteboards In this scenario, robots can communicate by writing previously acquired

information at the currently visited node and reading information available at this

node.

Local communication In this model, two agents can exchange information only if they

occupy the same vertex. The information that is exchanged includes the subgraph

that each of these agents has explored itself and the information it has received

from other agents prior to the current meeting. Thus, each agent g has its own

view on the vertices that were explored so far, based only on the knowledge that

originates from the agent’s own observations and from other agents that it has met

so far.

No communication In this model, agents are not allowed to communicate or to interact

with the environment in any way.

All these communication models are present in the literature [67, 85]. In this chapter

we will consider only global and local communication. Observe that global communi-

cation is the strongest model because, given global communication, it is possible to

simulate all other models. In the model with whiteboards it is possible to simulate local

communication, thus whiteboards are the second strongest model. Clearly the model

without communication is the weakest model but Fraigniaud et al. [85] showed that in

this model there is no parallelization for some graph classes. Thus, local communication

is the weakest known communication model in which collaborative exploration can be

performed faster than single-agent exploration.

The main contribution of this chapter is an exploration strategy for a team of

polynomial size to explore graphs in an asymptotically optimal number of steps. More

precisely, for any ǫ > 0, the strategy can operate with D∗n1+ǫ < n2+ǫ agents and takes

time O(D). It works even under the local communication model and without prior

knowledge of n or D.

28 Chapter 2 Exploration with communicating agents

Communication Model Upper bound Lower bound

Global communication:
D∗ · (1 + 1

c−1 + o(1))

Theorem 2.9

D∗ · (1 + 1
c − o(1))

Theorem 2.11

Local communication :
D∗ · (1 + 2

c−1 + o(1))

Theorem 2.9

D∗ · (1 + 2
c − o(1))

Theorem 2.11

Table 2.1: Our bounds on the time required to explore general graphs using D∗nc

agents. The same upper and lower bounds hold for trees. The lower bounds use graphs
with D∗ = no(1).

We first restrict ourselves to the exploration of trees (Section 2.2). We show that

with global communication, trees can be explored in time D∗ · (1 + 1/(c− 1) + o(1)), for

any c > 1, using a team of D∗nc agents. Our approach can be adapted to show that

with local communication trees can be explored in time D∗ · (1 + 2/(c− 1) + o(1)), for

any c > 1, using the same number of agents. We then carry the results for trees over to

the exploration of general graphs (Section 2.3). For graph exploration with D∗nc agents

we obtain precisely the same asymptotic time bounds as for the case of trees, under both

communication models. The limit of our approach in terms of the smallest allowed team

of agents is a team of k = (2 + ǫ)nD∗ agents exploring graphs in time Θ(D log n), with

local communication, for any constant ǫ > 0.

Finally, we provide lower bounds for collaborative graph exploration that almost

match our positive results (Section 2.4). More precisely, we show that, in the worst case

and for any c > 1, exploring a graph with D∗nc agents takes at least D∗ · (1+ 1/c− o(1))

time steps in the global communication model, and at least D∗ · (1 + 2/c− o(1)) time

steps in the local communication model. Table 2.1 summarizes our upper bounds and

corresponding lower bounds.

We remark that in the offline case, the optimal collaborative exploration algorithm

works in time Θ(D + n/k), hence the smallest team which explores a graph in Θ(D∗)

steps in the offline model has Θ(n/D) agents. We include the proof of this fact for

completeness.

Proposition 2.1. An optimal offline collaborative exploration of a graph G and diameter

D, using k agents located initially at the same node r requires time Θ(D + n/k).

Proof. To prove the lower bound Ω(D+n/k) observe that there exists a node at distance

at least D∗ from r, thus time Ω(D) is necessary. Since we have k agents, at most k new

nodes can be explored in any time step. Thus, time Ω(n/k) is also necessary.

To prove the upper bound we construct the following algorithm. First, find the

BFS (Breadth First Search) tree T of graph G, rooted at r. Next, construct a cycle of

edges traversing every edge of tree T twice (i.e. Eulerian traversal of T with all edges

doubled). Since tree T has n − 1 edges, such cycle will have 2(n − 1) edges. Each

agent selects a destination vertex on the cycle such that the destination vertices are

Chapter 2 Exploration with communicating agents 29

equidistant on the cycle. By equidistant we mean that the distance on the cycle between

two consecutive destination vertices is ⌈2(n − 1)/k⌉ or ⌊2(n − 1)/k⌋. Note that since
some nodes of the graph appear multiple times in the cycle, some agents may have the

same destination. Next, each agent moves to its destination. Since each vertex is at

distance at most D∗ from r, this can be achieved in time at most D∗. Next, each agent

follows the cycle for ⌈2(n− 1)/k⌉ steps in the same direction. Since destination vertices
are at most ⌈2(n− 1)/k⌉ edges apart on the cycle, agents will traverse all edges of the
cycle. Since the cycle contains each node of the graph at least once, such an algorithm

will explore every node of the graph. The total number of required time steps is bounded

by D∗ + ⌈2(n− 1)/k⌉

2.2 Tree exploration

We start our considerations by designing online exploration strategies for the special case

when the explored graph is a tree T rooted at a vertex r.

For any exploration strategy, the set of all encountered vertices (i.e., all visited vertices

and their neighbors) at the beginning of step s = 1, 2, 3, . . . forms a connected subtree

of T , rooted at r and denoted by T (s). In particular, T (1) is the vertex r together with

its children, which have not yet been visited. For v ∈ V (T) we write T (s)(v) to denote

the subtree of T (s) rooted at v. We denote by L(T (s), v) the number of leaves of the

tree T (s)(v). Note that L(T (s), v) ≤ L(T (s+1), v) because each leaf in T (s)(v) is either a

leaf of the tree T (s+1) or the root of a subtree containing at least one vertex. If v is an

unencountered vertex at the beginning of step s, i.e., its parent was not yet visited, we

define L(T (s), v) = 1.

2.2.1 Tree exploration with global communication

We are ready to give the procedure TEG (Tree Exploration with Global Communication).

The pseudocode uses the command “move(s)”, describing the move to be performed by

each agent, specifying the destination at which the agent appears at the start of time step

s+1. Since the agents can communicate globally, the procedure can centrally coordinate

the movements of each agent. For simplicity we assume that x agents spawn in r in each

time step, for some given value of x. Then, the total number of agents used after l steps

is simply lx.

30 Chapter 2 Exploration with communicating agents

Procedure TEG (tree T with root r, integer x) at time step s:

Place x new agents at r.

for each v ∈ V (T (s)) which is not a leaf do: { determine moves of the agents located at v }
Let A(s)

v be the set of agents currently located at v.

Denote by v1, v2, . . . , vd the set of children of v.

Let i∗ := argmaxi{L(T (s), vi)}. { vi∗ is the child of v with the largest value of L }
Partition A(s)

v into disjoint sets Av1 ,Av2 , . . . ,Avd
, such that:

(i) |Avi
| =

⌊
|A(s)

v
|·L(T (s),vi)

L(T (s),v)

⌋
, for i ∈ {1, 2, . . . , d} \ {i∗},

(ii) |Avi∗
| = |A(s)

v | −
∑

i∈{1,2,...,d}\{i∗} |Avi
|.

for each i ∈ {1, 2, . . . , d} do for each agent g ∈ Avi do move
(s) g to vertex vi.

end for

end procedure TEG.

The following lemma provides a characterization of the tradeoff between exploration

time and the number of agents x released at every round in procedure TEG. In the

following, all logarithms are in base 2 unless a different base is explicitly given.

Lemma 2.2. In the global communication model, procedure TEG with parameter x explores

any rooted tree T in at most D∗ · (1 + logn
log(x/n)) time steps, for x > n.

Proof. Fix any leaf f of the tree T . We want to prove that procedure TEG visits the leaf

f after at most D∗ · (1 + logn
log(x/n)) time steps. Take the path F = (f0, f1, f2, . . . , fDf

)

from r to f in T , where r = f0,f = fDf
, and Df ≤ D∗. We define the wave of agents

ws starting from r at time s and traversing the path F as the maximum sequence of
the non-empty sets of agents which leave the root in step s and traverse edges of F
in successive time steps, i.e., ws = (A(s)

f0
,A(s+1)

f1
, . . .), where we use the notation from

procedure TEG. The size of wave ws in step s+ t is defined to be |A(s+t)
ft
|, i.e., the number

of exploring agents located at vertex ft at the beginning of time step s+ t; initially, every

wave has size |A(s)
f0
| = x. Note that each agent in A(s+i)

fi
, 0 ≤ i < Df , is located at r at

the start of time step s. We denote the number of leaves in the subtree of T (i) rooted at

fj by λ
(i)
j = L(T (i), fj). Recall that if fj is not yet discovered in step i, by definition of

the function L, we have λ
(i)
j = 1. In general, 1 ≤ λ

(i)
j ≤ n. We define

αi = x
λ
(i)
1

λ
(i)
0

λ
(i+1)
2

λ
(i+1)
1

· · ·
λ
(i+Df−1)
Df

λ
(i+Df−1)
Df−1

.

We define the value α∗
i as the number of agents of the i-th wave that reach the leaf

f , i.e., the size of the i-th wave in step i+Df . If α
∗
1 = α∗

2 = · · · = α∗
i−1 = 0 and α∗

i ≥ 1

for some time step i, then we say that leaf f is explored by the i-th wave. Before we

proceed with the analysis, we show the following auxiliary claim.

Claim (*). For every i, if αi ≥ 1 then α∗
i > αi − 1, and thus αi − 1 is a lower bound

on the number of agents reaching f in step i+Df − 1.

Chapter 2 Exploration with communicating agents 31

Figure 2.1: Illustration of proof of Lemma 2.2: computation of the value of αi for a
wave of agents descending in tree T

Proof (of the claim). We define cj = λ
(i+j)
j+1 /λ

(i+j)
j for j = 0, . . . , Df − 1. For i ≥ 1

we have

αi = x

Df−1∏

j=0

cj .

Since cj ≤ 1 for all j and since αi ≥ 1, there exist at most log x different j such that

cj ≤ 1/2. Denote the set of all such j by J , with |J | ≤ log x. Also, denote the size of

wave wi in step i+ s by as (for s = 0, 1, 2, . . .), in particular a0 = x.

Consider some index s for which cs > 1/2. We have λ
(i+s)
s+1 /λ

(i+s)
s > 1/2, thus more

than half of all leaves of the tree T (i+s)(fs) also belong to the tree T
(i+s)(fs+1). But

then, in time step i+ s+ 1, agents are sent from fs to fs+1 according to the definition

in expression (ii) in procedure TEG. Thus, we can lower-bound the size of wave wi in

step i + s + 1 by as+1 ≥ ascs. Otherwise, if cs ≤ 1/2 (i.e., if s ∈ J), then agents are
sent according the definition in expression (i) in procedure TEG, and hence as+1 ≥ ⌊ascs⌋.
Note that these bounds also hold if there are no agents left in the wave, i.e., as = as+1 = 0.

Thus, we have:

as+1 ≥ ascs − δs, where δs =




1, if s ∈ J ,
0, otherwise.

Denote consecutive elements of J , s1 < s2 < s3 < · · · < s|J |. In this way we expand the

expression for α∗
i = aDf

:

α∗
i = aDf

≥ aDf−1cDf−1− δDf−1 ≥ . . . ≥ (...((a0c0− δ0)c1− δ1)c2− . . .)cDf−1− δDf−1 =

= x

Df−1∏

j=0

cj −
Df−1∑

j=0


δj

Df−1∏

p=j+1

cj


 ≥ αi −

|J |∑

i=1

Df−1∏

p=si+1

cp ≥ αi −
|J |∑

i=1

2−|J |+i−1 > αi − 1,

32 Chapter 2 Exploration with communicating agents

where in the last transformations we have taken into account that in the product
∏Df−1

p=si+1 cp there are |J | − (i+ 1) elements cp belonging to the set of indices J , which
are less or equal than 1/2. We have obtained α∗

i > αi − 1, which completes the proof of

the claim.

We now show that if the number of waves a in the execution of the procedure is

sufficiently large, then there exists an index i ≤ a, such that αi ≥ 1. Thus, taking into

account Claim (*), leaf f is explored at the latest by the a-th wave.

Take a waves and consider the product
∏a

i=1 αi. Note that λ
(s)
Df

= 1 for every s.

Thus, simplifying the product of all αi by shortening repeating terms in numerators and

denominators, and using 1 ≤ λ
(i)
j ≤ n, we get

a∏

i=1

αi = xa
a∏

i=1

Df−1∏

j=0

λ
(i+j)
j+1

λ
(i+j)
j

= xa
∏a

i=1

∏Df−1
j=0 λ

(i+j)
j+1

∏a
i=1

∏Df−1
j=0 λ

(i+j)
j

= xa
∏a−1

i′=0

∏Df

j′=1 λ
(i′+j′)
j′

∏a
i=1

∏Df−1
j=0 λ

(i+j)
j

=

= xa

(∏Df

j′=1 λ
(j′)
j′

)(∏a−1
i′=1

∏Df−1
j′=1 λ

(i′+j′)
j′

)(∏a−1
i′=1 λ

(i′+Df)
Df

)

(∏a
i=1 λ

(i)
0

)(∏a−1
i=1

∏Df−1
j=1 λ

(i+j)
j

)(∏Df−1
j=1 λ

(a+j)
j

) ≥ xa

nanDf−1
≥ xa

na+D∗ .

(2.1)

We want to find a, such that
a∏

i=1

αi ≥ 1.

Taking into account (2.1), it is sufficient to find a satisfying

xa

na+D∗ ≥ 1,

which for x > n can be equivalently transformed by taking logarithms and elementary

arithmetic to the form

a ≥ D∗ log n
log(x/n)

.

Hence, for a = ⌈D∗ logn
log(x/n)⌉, we have that there exists some i such that αi ≥ 1. For the

same i we have α∗
i > αi − 1 ≥ 0, by Claim (*), which implies that α∗

i ≥ 1, since α∗
i is an

integer. Thus, a waves are sufficient to explore the path F . This analysis can be done for
any leaf f , thus it is enough to send a waves in order to explore the graph G. Considering

that a wave wi is completed by the end of step D
∗ + i− 1, the exploration takes at most

D∗ + a− 1 time steps in total. Thus, the exploration takes at most D∗ · (1 + logn
log(x/n))

time steps.

We remark that in the above lemma, the total number of agents used throughout all

steps of procedure TEG is x ·D∗ · (1 + logn
log(x/n)). For any c > 1, by appropriately setting

x = Θ(nc), we obtain the following theorem.

Chapter 2 Exploration with communicating agents 33

Theorem 2.3. For any fixed c > 1 and known n, the online tree exploration problem

with global communication can be solved in at most D∗ ·
(
1 + 1

c−1 + o(1)
)
time steps

using a team of k ≥ D∗nc agents.

In the following we propose a strategy for tree exploration under the local communica-

tion model. In the implementation of the algorithm we assume that whenever two agents

meet, they exchange all information they possess about the tree. Thus, after the meeting,

the knowledge about the explored vertices and their neighborhoods, is a union of the

knowledge of the two agents before the meeting. Since agents exchange information only

if they occupy the same vertex, at any time s, the explored tree T (s) may only partially

be known to each agent, with different agents possibly knowing different subtrees of T (s).

In order to obtain a procedure for the local communication model, we modify proce-

dure TEG from the previous section. Observe that in procedure TEG, agents never move

towards the root of the tree, hence, in the local communication model, agents cannot

exchange information with other agents located closer to the root. The new strategy is

given by the procedure TEL (Tree Exploration with Local Communication).

Procedure TEL (tree T with root r, integer x) at time step s:

Place x new agents at r in state “exploring”.

for each v ∈ V (T (s)) which is not a leaf do: { determine moves of the agents at v }
if v 6= r then for each agent g at v in state “notifying” do move(s) g to the parent of v.

if v contains at least two agents in state “exploring” and agents at v do not have

information of any agent which visited v before step s then:

{ send two new notifying agents back to the root from newly explored vertex v }
Select two agents g∗, g∗∗ at v in state “exploring”.

Change state to “notifying” for agents g∗ and g∗∗.

move(s) g∗ to the parent of v. { g∗∗ will move to the parent one step later }
end if

Let A(s)
v be the set of all remaining agents in state “exploring” located at v.

Denote by v1, v2, . . . , vd all children of v, and by δ the distance from r to v.

s′ :=
⌊
δ+s
2

⌋
. { s′ is a time in the past such that T (s′)(v) is known to the agents at v }

Let i∗ := argmaxi{L(T (s′), vi)}. { vi∗ is the child of v with the largest value of L }
Partition A(s)

v into disjoint sets Av1
,Av2 , . . . ,Avd , such that:

(i) |Avi
| =

⌊
|A(s)

v
|·L(T (s′),vi)

L(T (s′),v)

⌋
, for i ∈ {1, 2, . . . , d} \ {i∗},

(ii) |Avi∗
| = |A(s)

v | −
∑

i∈{1,2,...,d}\{i∗} |Avi
|.

for each i ∈ {1, 2, . . . , d} do if |Avi | ≥ 2 then for each agent g ∈ Avi
do move(s) g to vi.

for each i ∈ {1, 2, . . . , d} do if |Avi | = 1 then change state to “discarded” for the agent in Avi
.

end for

for each v ∈ V (T (s)) which is a leaf do move(s) all agents located at v to the parent of v.

end procedure TEL.

In procedure TEL, all agents are associated with a state flag which may be set either

to the value “exploring”, “notifying” or “discarded”. Agents in the “exploring” state

34 Chapter 2 Exploration with communicating agents

act similarly as in global exploration, with the requirement that they always move to a

vertex in groups of 2 or more agents. Every time a group of “exploring” agents visits a

new vertex, it detaches two of its agents, changes their state to “notifying”, and sends

them back along the path leading back to the root. These agents notify every agent they

encounter on their way about the discovery of the new vertices. Although information

about the discovery may be delayed, in every step s, all agents at vertex v know the

entire subtree T (s′)(v) which was explored until some previous time step s′ ≤ s. The

state flag also has a third state, “discarded”, which is assigned to agents no longer used

in the exploration process.

The formulation of procedure TEL is not given from the perspective of individual

agents, however, based on its description, the decision on what move to make in the

current step can be made by each individual agent. The correctness of the definition of

the procedure relies on the following lemma, which guarantees that for a certain value s′

the tree T (s′)(v) is known to all agents at v.

Lemma 2.4. Let T be a tree rooted at some vertex r and let v be a vertex with distance

δ to r. After running procedure TEL until time step s, all agents which are located at

vertex v at the start of time step s know the tree T (s′)(v), for s′ =
⌊
δ+s
2

⌋
.

Proof. Suppose the claim of the lemma holds until time step s− 1, i.e., procedure TEL is

well defined until time step s− 1.

Assume that agents following procedure TEL discover vertex v∗ in the subtree of v

at distance δ∗ from v at the beginning of time step s∗ ≤ s. This means that the parent

of v∗ is visited at the beginning of s∗ and notifying agents sent from the parent of v∗

carry knowledge about v∗ towards the root. We need to prove that that if s∗ ≤ s′ (i.e., if

v∗ ∈ V (T (s′))), then agents located at v at time s know of v∗. It suffices to show that, by

the start of time step s, these agents have met a notifying agent (as defined in procedure

TEL) coming from the parent of v∗.

Since the distance from the root to the parent of v∗ is δ+δ∗−1, we have s∗ ≥ δ+δ∗−1.
Thus:

δ + s

2
≥ s′ ≥ s∗ =⇒ s ≥ 2s∗ − δ ≥ s∗ + δ∗ − 1.

Since s ≥ s∗ + δ∗ − 1, the first of the notifying agents for v∗ (agent g∗ sent out from

parent of v∗ at time s∗) reached vertex v on the path to the root by the start of time step

s, and then continued its walk on the path to the root. The second of the corresponding

notifying agents, g∗∗, is exactly one step further from the root. Suppose that g ∈ A(s)
v 6= ∅.

By the construction of procedure TEL, agent g has been descending along a path from

root r to vertex v in consecutive time steps, reaching v at the start of time step s. It

follows that g has encountered at some vertex on the path from r to v exactly one of the

notifying agents g∗, g∗∗ (passing the other on an edge), and so the claim holds.

Lemma 2.5. In the local communication model, procedure TEL with parameter x explores

any rooted tree T in at most D∗ · (1+ 2 logn+log x/κ(x)
log(x/(2nκ(x)))) time steps, for x > 2nκ(x) for any

positive nondecreasing integer function κ(x).

Chapter 2 Exploration with communicating agents 35

Proof. As in the proof of Lemma 2.2, we consider any leaf f and the path F =

(f0, f1, . . . , fDf
) from r to f . As before, we denote the number of leaves in the subtree of

T (i) rooted at fj by λ
(i)
j = L(T (i), fj). Recall that if fj is not yet discovered in step i,

we have L(T (i), fj) = 1. We adopt the definition of a wave from Lemma 2.2. We define

the values αi differently, however, to take into account the fact that the procedure relies

on a delayed exploration tree, and that some waves lose agents as a result of deploying

notifying agents:

αi = x
λ
(⌊ i

2⌋)
1

λ
(⌊ i

2⌋)
0

λ
(⌊ i

2⌋+1)
2

λ
(⌊ i

2⌋+1)
1

· · ·
λ
(⌊ i

2⌋+Df−1)
Df

λ
(⌊ i

2⌋+Df−1)
Df−1

.

We call a wave that discovered at least κ(x) new nodes (or equivalently, a wave whose

agents were the first to visit at least κ(x) nodes of the tree) a discovery wave. Thus,

there are at most ⌊ Df

κ(x)⌋ discovery waves, each of which explores at least one node of the
considered path. Observe that if a wave is not a discovery wave, then the number of

notifying agents it sends out is at most 2κ(x)− 2.

We define by α∗
i the number of agents of the i-th wave that reach leaf f . We now

prove that the following analogue of Claim (*) from the proof of Lemma 2.2 holds for

non-discovery waves.

Claim (**). Let i be a time step for which αi ≥ 1 and wi is not a discovery wave

then, α∗
i > αi − 2κ(x), and thus αi − 2κ(x) is a lower bound on the number of agents

reaching f in step i+Df − 1.

Proof (of claim). We define cj = λ
(⌊ i

2
⌋+j)

j+1 /λ
(⌊ i

2
⌋+j)

j for j = 0, . . . , Df − 1. Then

αi = x

Df−1∏

j=0

cj .

Since cj ≤ 1 for all j and since αi ≥ 1, there exist at most log x different j such that

cj ≤ 1/2. Denote the set of all such j by J , with |J | ≤ log x. Denote by Q the set
of all such indices s that wave wi sends two notifying agents from vertex fs. By the

assumption of the claim, we have that wi is not a discovery wave thus |Q| ≤ κ(x)− 1.

Also, denote the size (number of agents) of wave wi in step i+ s by as (s = 0, 1, 2, . . .),

where a0 = x. Finally, let R be the set of indices s such that as ≥ 2 and as+1 = 0; note

that R has at most one element.
Consider an index s /∈ R for which cs > 1/2 and assume that wave wi does not send

notifying agents from vertex fs (i.e. s /∈ Q). We have λ(i+s)
s+1 /λ

(i+s)
s > 1/2, thus more

than half of all leafs of the tree T (i+s)(fs) also belong to the tree T
(i+s)(fs+1). But then,

in time step i + s + 1, agents are sent from fs to fs+1 according to the definition in

expression (ii) in the pseudocode of procedure TEL. Thus, we can lower-bound the size

of wave wi in step i + s + 1 as: as+1 ≥ ascs. Otherwise, if s /∈ R ∪ Q and cs ≤ 1/2

(i.e., if s ∈ J), then agents are sent according the definition in expression (i) in the

pseudocode, and then as+1 ≥ ⌊ascs⌋. Finally, if s ∈ Q then in vertex fs wave wi reduces

36 Chapter 2 Exploration with communicating agents

by 2 notifying agents, while if s ∈ R then the wave may be reduced by one more agent
(as+1 = 0 instead of as+1 = 1, since agents are always deployed in groups of two or more),

and after that we can perform a similar analysis. Eventually, depending on which of the

sets J ,Q,R node s belongs to, we obtain:

as+1 ≥ ascs − δs, where δs = δ(j)s + δ(q)s + δ(r)s ,

and

δ(j)s =




0, if s /∈ J
1, if s ∈ J

, δ(q)s =




0, if s /∈ Q
2, if s ∈ Q

, δ(r)s =




0, if s /∈ R
1, if s ∈ R.

Denote consecutive elements of J , s1 < s2 < s3 < · · · < s|J |. In this way we expand the

expression for α∗
i = aDf

:

α∗
i = aDf

≥ aDf−1cDf−1− δDf−1 ≥ . . . ≥ (...((a0c0− δ0)c1− δ1)c2− . . .)cDf−1− δDf−1 =

= x

Df−1∏

j=0

cj −
Df−1∑

j=0


δj

Df−1∏

p=j+1

cj


 ≥ αi −

Df−1∑

j=0


(δ

(j)
j + δ

(q)
j + δ

(r)
j)

Df−1∏

p=j+1

cj




≥ αi −
Df−1∑

j=0


δ

(j)
j

Df−1∏

p=j+1

cj


−

Df−1∑

j=0

(δ
(q)
j + δ

(r)
j) ≥ αi −

|J |∑

i=1

Df−1∏

p=si+1

cp − 2|Q| − |R|

≥ αi −
|J |∑

i=1

2−|J |+i−1 − 2|Q| − |R| > αi − 1− 2(κ(x)− 1)− 1 = αi − 2κ(x).

We have α∗
i > αi − 2κ(x), which completes the proof of the claim.

It is left to prove that if the number of waves a in the execution of the procedure is

sufficiently large, there exists an index i ≤ a, such that wave wi is not a discovery wave

and αi ≥ 2κ(x). Note that we can set κ(x) to an arbitrary nondecreasing function (even

a constant). We again consider the product

a∏

i=1

αi = xa
a∏

i=1

Df−1∏

j=0

λ
(⌊ i

2⌋+j)

j+1

λ
(⌊ i

2⌋+j)

j

=

= xa
∏a

i=1

∏Df−1
j=0 λ

(⌊ i
2⌋+j)

j+1

∏a
i=1

∏Df−1
j=0 λ

(⌊ i
2⌋+j)

j

= xa
∏a−2

i′=−1

∏Df

j′=1 λ
(
⌊

i′

2

⌋

+j′)

j′

∏a
i=1

∏Df−1
j=0 λ

(⌊ i
2⌋+j)

j

=

= xa

(∏Df

j′=1 λ
(j′−1)
j′

)(∏Df

j′=1 λ
(j′)
j′

)(∏a−2
i′=1

∏Df−1
j′=1 λ

(i′+j′)
j′

)(∏a−2
i′=1 λ

(
⌊

i′

2

⌋

+Df)

Df

)

(
∏a

i=1 λ
(
⌊

i′
2

⌋

)

0

)(∏a−2
i=1

∏Df−1
j=1 λ

(i+j)
j

)(∏Df−1
j=1 λ

(⌊a−1
2 ⌋+j)

j

)(∏Df−1
j=1 λ

(⌊a2⌋+j)

j

) ≥

≥ xa
1(Df−1)·(a−1)

na+2Df−2
≥ xa

na+2D∗ . (2.2)

Chapter 2 Exploration with communicating agents 37

We now choose a so as to guarantee that there exists at least one non-discovery

wave αi ≥ 2κ(x). Since there are at most ⌊ D∗

κ(x)⌋ discovery waves, we require that the(
⌊ D∗

κ(x)⌋+ 1
)
-st biggest value αi is at least 2κ(x). Observe that since we have αi ≤ x, it

suffices to choose a so that:

a∏

i=1

αi ≥ x
⌊ D∗

κ(x)
⌋
(2κ(x))a.

Taking into account (2.2), it is sufficient to find a satisfying

xa

na+2D
≥ x

D∗

κ(x) (2κ(x))a,

which holds for sufficiently large x (we assume that x > 2nκ(x)) for a = ⌈2D∗ logn+D∗ log x/κ(x)
log(x/(2nκ(x)) ⌉.

Now, we have that there exists some index i ≤ a such that αi ≥ 2κ(x) and wave wi

is not a discovery wave. For the same i we have α∗
i > αi − 2κ(x) ≥ 0, by Claim (**),

which implies that α∗
i ≥ 1, since α∗

i is an integer. Thus, a waves are sufficient to

explore the path F . This analysis can be done for any leaf f , thus it is enough to send
a waves in order to explore the graph G. We obtain that exploration takes at most

D∗ + a− 1 ≤ D∗ · (1 + 2 logn+log x/κ(x)
log(x/(2nκ(x))) time steps.

By setting x = nc and κ(x) = ⌈log x⌉ in Lemma 2.5 we obtain a strategy for online
exploration of trees in the model with local communication.

Theorem 2.6. For any fixed c > 1, the online tree exploration problem can be solved

in the model with local communication and knowledge of n using a team of k ≥ D∗nc

agents in at most D∗
(
1 + 2

c−1 + o(1)
)
time steps.

2.3 General graph exploration

In this section we develop strategies for exploration of general graphs, both with global

communication and with local communication. These algorithms are obtained by modi-

fying the tree-exploration procedures given in the previous section.

Given a graph G = (V,E) with root vertex r, we call P = (v0, v1, v2, . . . , vm) with

r = v0, vi ∈ V , and {vi, vi+1} ∈ E a walk of length ℓ(P) = m. Note that a walk may

contain a vertex more than once. We introduce the notation P [j] to denote vj , i.e., the

j-th vertex of P after the root, and P [0, j] to denote the walk (v0, v1, . . . , vj), for j ≤ m.

The last vertex of path P is denoted by end(P) = P [ℓ(P)]. The concatenation of a vertex

u to path P , where u ∈ Γ(end(P)) is defined as the path P ′ ≡ P + u of length ℓ(P) + 1

with P ′[0, ℓ(P)] = P and end(P ′) = u.

Let P be the set of walks P in G having length 0 ≤ ℓ(P) < n. We introduce a

linear order on walks in P such that for two walks P1 and P2, we say that P1 < P2

if ℓ(P1) < ℓ(P2), or ℓ(P1) = ℓ(P2) and there exists an index j < ℓ(P1) such that

38 Chapter 2 Exploration with communicating agents

P1([0, j]) = P2([0, j]) and P1([j + 1]) < P2([j + 1]). The comparison of vertices from V is

understood as comparison of their identifiers in G.

We now define the tree T with vertex set P, root (r) ∈ P, such that vertex P ′ is

a child of vertex P if and only if P ′ = P + u, for some u ∈ Γ(end(P)). We first show

that agents can simulate the exploration of T while in fact moving around graph G.

Intuitively, while an agent is following a path from the root to the leaves of T , its location

in T corresponds to the walk taken by this agent in G.

Lemma 2.7. A team of agents can simulate the virtual exploration of tree T starting

from root (r), while physically moving around graph G starting from vertex r. The

simulation satisfies the following conditions:

(1) An agent virtually occupying a vertex P of T is physically located at a vertex end(P)

in G.

(2) Upon entering a vertex P of T in the virtual exploration, the agent obtains the

identifiers of all children of P in T .

(3) A virtual move along an edge of T can be performed in a single time step, by moving

the agent to an adjacent location in G.

(4) Agents occupying the same virtual location P in T can communicate locally, i.e.,

they are physically located at the same vertex of G.

Proof. We define the simulation so that claims (1-4) hold for all time steps. Initially,

claim (1) is trivially true since end((r)) = r. Suppose that at the start of some step s,

an agent occupies some virtual location P in T , and its corresponding physical location

is end(P). Claim (2) holds for this step, since the set of children of P in T is given

as {P + u ∈ P : u ∈ Γ(end(P))}, P is stored in the agents memory (as the identifier
of its location in T), and the neighborhood of end(P) in G is accessible to the agent

by definition. When required to move to a virtual location P ′ adjacent to P in T , the

agent performs a move to vertex end(P ′) ∈ V . Note that if P ′ is the child of P in T ,

then end(P ′) ∈ Γ(end(P)) by definition of T , whereas if P ′ is the parent of P in T , then

end(P ′) = P [ℓ(P)− 1] ∈ Γ(end(P)) from the definition of walk P . After such a move,

claim (1) is immediately satisfied, and claims (2-3) follow by induction on time. Claim

(4) is a trivial consequence of claim (1).

We remark that the number of vertices of tree T is exponential in n. Hence, our

goal is to perform the simulation with only a subset of the vertices of T . For a vertex

v ∈ V , let Pmin(v) ∈ P be the minimum (with respect to the linear order on P) walk
ending at v. We observe that, by property (1) in Lemma 2.7, if, for all v ∈ V , the vertex

Pmin(v) of T has been visited by at least one agent in the virtual exploration of T , the

physical exploration of G is completed. We define Pmin = {Pmin(v) : v ∈ V }, and show
that all vertices of Pmin are visited relatively quickly if we employ the procedure TEG (or

TEL) for T , subject to a simple modification. In the original algorithm, we divided the

Chapter 2 Exploration with communicating agents 39

Figure 2.2: Illustration of exploration of general graphs: (a) The explored graph
G, (b) The virtually explored tree of walks T , with highlighted nodes belonging to
Pmin, (c) An example of a subtree T

(s) ⊆ T with highlighted nodes which are counted
when computing function L (this tree T (s) does not correspond to a real execution of

procedure TEL on T).

agents descending to the children of the vertex according to the number of leaves of the

discovered subtrees. We introduce an alternate definition of the function L(T (s), v), so

as to take into account only the number of vertices in T (s) corresponding to walks which

are smallest among all walks in T (s) sharing the same end-vertex.

Lemma 2.8. Let T (s) ⊆ T be a subtree of T rooted at (r). For P ∈ V (T (s)), let

L(T (s), P) be the number of vertices v of G, for which the subtree of T (s) rooted at P

contains a vertex representing the smallest among all walks contained in T (s) which end

at v:

L(T (s), P) =
∣∣∣V (T (s)(P)) ∩

⋃

v∈V

{
min{P ′ ∈ V (T (s)) : end(P ′) = v}

} ∣∣∣,

and for P ∈ P \V (T (s)), let L(T (s), P) = 1. Subject to this definition of L, procedure TEG

with parameter x > n (procedure TEL with parameter x > 2nκ(x) for any nondecreasing

function κ(x)) applied to tree T starting from root (r) visits all vertices from Pmin within

D∗ · (1 + logn
log(x/n)) (respectively, D

∗ · (1 + 2 logn+log x/κ(x)
log(x/(2nκ(x)))) time steps.

Proof. The set Pmin spans a subtree Tmin = T [Pmin] in T , rooted at (r). We can perform

an analysis analogous to that used in the Proofs of Lemmas 2.2 and 2.5, evaluating

sizes of waves of agents along paths in the subtree Tmin. We observe that for any

P ∈ Pmin which is not a leaf in Tmin, we always have L(T
(s), P) ≥ 1. Moreover, we have

L(T (s), P) ≤ |V (T (s)(P))|, and so L(T (s), P) ≤ n. Since these two bounds were the only

required properties of the functions L in the Proofs of Lemmas 2.2 and 2.5, the analysis

from these proofs applies within the tree Tmin without any changes. It follows that each

vertex of Pmin is reached by the exploration algorithm within D∗ · (1 + logn
log(x/n)) time

steps in case of global communication, and within D∗ · (1 + 2 logn+log x/κ(x)
log(x/(2nκ(x))) time steps

in case of local communication.

40 Chapter 2 Exploration with communicating agents

We recall that by Lemma 2.7, one step of exploration of tree T can be simulated by

a single step of an agent running on graph G. Thus, appropriately choosing x = Θ(nc)

and κ(x) = ⌈log x⌉ in Lemma 2.8, we obtain our main theorem for general graphs.

Theorem 2.9. For any c > 1, the online graph exploration problem with knowledge of n

can be solved using a team of k ≥ D∗nc agents:

• in at most D∗ ·
(
1 + 1

c−1 + o(1)
)
time steps in the global communication model.

• in at most D∗ ·
(
1 + 2

c−1 + o(1)
)
time steps in the local communication model.

For the case when we do not assume knowledge of (an upper bound on) n, we provide

a variant of the above theorem which also completes exploration in O(D) steps, with a

slightly larger multiplicative constant.

Theorem 2.10. For any c > 1, there exists an algorithm for the local communication

model, which explores a rooted graph of unknown order n and unknown diameter D using

a team of k agents, such that its exploration time is O(D) if k ≥ Dnc.

Proof. Let c′ = c+1
2 , 1 < c′ < c. For a graph G, the algorithm proceeds by assuming

geometrically increasing upper bounds D̄ = 1, 2, 4, . . . , on the value of D∗. For a fixed

value of D̄, we set n̄ = ⌊(k/D̄)1/c
′⌋, and perform exploration of the graph using the

algorithm from Theorem 2.9 with parameter c′, assuming that the explored graph has

at most n̄ vertices, and using D̄n̄c′ ≤ k agents. After at most D̄ ·
(
1 + 2

c′−1 + o(1)
)

time steps (where the asymptotic o(1) value follows from Theorem 2.9) exploration is

interrupted, and all agents return to the root vertex in at most O(D̄) steps. If exploration

of G has been completed, then the algorithm stops. This can be detected since the

agents are aware which vertices still have unexplored neighbors. If the exploration has

not been completed, we continue for a doubled value of D̄, until the bound n̄ = 0 is

reached. Finally, if exploration has been unsuccessful so far, we perform an arbitrary

valid exploration algorithm, e.g. Depth First Search (DFS) with a single agent.

The algorithm always completes exploration successfully in finite time. Observe that

if in the stage with D̄ = 2⌈log2 D
∗⌉ and n̄ = ⌊(k/D̄)1/c

′⌋ we have n̄ ≥ n, then exploration

is completed successfully in this stage, and the total time of all exploration stages is

O(D∗). Observe that we have D̄ < 2D∗ ≤ 2D and k ≥ Dnc, and so it suffices that

⌊(nc/2)1/c
′⌋ ≥ n. This holds for sufficiently large n. If the condition k ≥ Dnc does

not hold or n is too small, then the algorithm reaches the final phase in which DFS is

executed, resulting in a correct exploration of the graph in finite time.

We remark that by choosing κ(x) = 1 and x = (2 + ǫ)n for any constant ǫ > 0 in

Lemma 2.4, we can also explore a graph using k = (2 + ǫ)nD∗ agents in time Θ(D log n),

with local communication. This bound is the limit of our approach in terms of the

smallest allowed team of agents.

Chapter 2 Exploration with communicating agents 41

2.4 Lower bounds

In this section, we show lower bounds for exploration with D∗nc agents, complementary

to the positive results given by Theorem 2.9. The graphs that produce the lower bound

are a special class of trees. The same class of trees appeared in the lower bound from [85]

for the competitive ratio of tree exploration algorithms with small teams of agents. In

our scenario, we obtain different lower bounds depending on whether communication is

local or global.

Theorem 2.11. For all n > 1 and for every increasing function f , such that log f(n) =

o(log n), and every constant c > 0, there exists a family of trees Tn,D∗, each with n

vertices and height D∗ = Θ(f(n)), such that

(i) for every exploration strategy with global communication that uses D∗nc agents

there exists a tree in Tn,D∗ such that the number of time steps required for its

exploration is at least D∗ (1 + 1
c − o(1)

)
,

(ii) for every exploration strategy with local communication that uses D∗nc agents there

exists a tree in Tn,D∗ such that the number of time steps required for exploration is

at least D∗ (1 + 2
c − o(1)

)
.

Proof. We prove the theorem assuming that the number of agents is nc, rather than

D∗nc. The asymptotic form of the bounds in claims (i) and (ii) remains unchanged since

D∗ = no(1) by assumption, and D∗nc = nc+o(1). In previous sections we assumed that a

certain number of agents spawned in the root r every round. Here we assume that all nc

agents are available in the first round.

(i) First we define the family of trees Tn,D∗ . It is possible to find D∗ = Θ(f(n)) such

that for any n there exist integers ∆ and κ such that n = D∗∆+κ+1 and 0 ≤ κ ≤ D∗−1.

Note that ∆ = n−(κ+1)
D∗ . Given a vector q = (q1, . . . , qD∗) ∈ {1, . . . ,∆}D∗

, we define T (q)

as the tree rooted at r with vertex set

V (T (q)) = {r} ∪
D∗⋃

i=1

Vi ∪W,

where Vi = {vi1, . . . , vi∆} is the set of nodes at distance i from the root r and W =

{w1, w2, . . . , wκ} is the set of additional nodes attached to the root. For convenience, we
set v0q0 = r, and we define the edge set by

E(T (q)) =
D∗⋃

i=1

{
{vi−1

qi−1
, vij}

∣∣ j = 1, . . . ,∆
}
∪
{
{r, wj}

∣∣ j = 1, 2, . . . κ
}
,

which means that one specific vertex vi−1
qi−1
from level i− 1 is connected to all vertices

on level i. We set Tn,D∗ = {T (q)
∣∣ q ∈ {1, . . . ,∆}D∗}. Since we are interested in lower

bounds we will not consider vertices from W , we assume that exploration is finished

when all vertices from sets Vi are explored.

42 Chapter 2 Exploration with communicating agents

D

Δ
Figure 2.3: An example of a tree in Tn,D∗ .

We prove that each exploration strategy that uses at most nc agents needs at least

D∗(1 + 1
c − o(1)) steps to explore some tree in Tn,D∗ .

Let S be any exploration strategy that uses at most nc agents. We select a tree

from Tn,D∗ based on the behavior of S in the class of trees Tn,D∗ . More precisely, let

T ∈ Tn,D∗ be such that, for each i = 1, . . . , D∗ − 1, if s is the first step in which a vertex

in Vi is visited, then one of the vertices in Vi holding the minimum number of agents in

step s is the one having the vertices in Vi+1 as children. In the following we bound the

number of steps of S while exploring T . We say that S makes progress in time step s if
for some i ∈ {1, . . . , D∗}, some vertex in Vi is not visited in step s− 1 and all vertices in

Vi are visited at the start of step s. If only a strict non-empty subset of vertices of Vi are

visited in some step s, then, by the choice of T , the vertex in Vi that has ∆ children is

among those not visited in step s. We have nc agents in v0q0 in step 1. In step 2 at most

nc/∆ agents reach v1q1 . In step 3 at most n
c/∆2 agents reach v2q2 , and so on. Thus, S

exploring tree T can make progress in at most ⌊log∆ nc⌋ consecutive time steps. This is
due to the choice of T .

Let p be the number of maximal sequences of consecutive time steps in which S
makes progress. Let si, i = 1, . . . , p, be the length of the i-th such sequence. By the

above, we obtain that si ≤ ⌊log∆(nc)⌋ for each i = 1, . . . , p. Since the strategy S explores
the entire tree T , the total number of steps in which S makes progress equals D∗, the

height of the tree T . We obtain D∗ =
∑p

i=1 |si| ≤ p⌊log∆ nc⌋. Thus we can lower bound
the value p

p ≥ D∗

⌊c log∆ n⌋ ≥ D∗ log∆

c log n
= D∗ log(n− (κ+ 1))− logD∗

c log n
= D∗

(
1

c
− o(1)

)
, (2.3)

because logD∗ = Θ(log f) = o(log n) and log(n− (κ+ 1))/ log n = 1− o(1). Each pair

of maximal sequences of consecutive time steps in which S makes progress has to be
separated by at least one step in which S makes no progress in tree T . Thus there are at
least p− 1 steps without progress and at most D∗ steps with progress. Let s′ be the first

Chapter 2 Exploration with communicating agents 43

step in which all vertices are visited when executing S in T . By (2.3) and by the choice
of T ,

s′ ≥ p−1+D∗ ≥ D∗
(
1

c
− o(1)

)
−1+D∗ = D∗

(
1 +

1

c
− 1

D∗ − o(1)

)
≥ D∗

(
1 +

1

c
− o(1)

)
,

where 1
D∗ = o(1) because f is increasing. This completes the proof of (i).

(ii) We use the same family of trees T as in (i). Let S be any exploration strategy
with local communication that uses at most nc agents.

We select a tree from Tn,D∗ based on the behavior of S in the class of trees Tn,D∗ . If

step s is the first step in which a vertex in Vi is visited, then, since communication is

local, agents located in vertex vi−1
qi−1
have no knowledge about the degrees of the vertices

in Vi in step s. Since no agent comes back from Vi in step s, agents in vi−1
qi−1
have the

same knowledge in steps s− 1 and s. We select T ∈ T in such a way that a vertex in
Vi for which the sum of the number of agents in steps s and s+ 1 is minimized, is the

vertex viqi . Now, similarly as in (i), we lowerbound the number of steps.

We have nc agents in v0q0 in step 1. Together, in steps 2 and 3, in total at most n
c/∆

agents reach v1q1 . In steps 3 and 4 at most n
c/∆2 agents reach v2q2 , and so on. Thus in

the first ⌊log∆ nc⌋+ 2 time steps, there are two steps in which the algorithm does not

make progress in terms of levels explored. Similarly as in previous part of the theorem

the number of time steps without progress can be lowerbounded by D∗ (2
c − o(1)

)
. Thus

the exploration takes at least D∗ (1 + 2
c − o(1)

)
steps.

2.5 Conclusions

In this chapter we studied the collaborative online graph exploration problem by agents

endowed with communication capabilities. We showed that even a short-range commu-

nication (local communication) allows for a polynomial team of agents to explore any

graph in the asymptotically shortest possible time O(D). We also studied the tradeoff

between the optimal exploration time and the size of the team of agents. Our analysis

showed that for the case of known n, the optimal exploration time converges to D∗ and

the convergence rate corresponds to logn k.

When looking at the problem of minimizing the size of the team of agents, our

work (Theorem 2.10) shows that it is possible to achieve asymptotically-optimal online

exploration time of O(D) using a team of k ≤ Dn1+ǫ agents, for any ǫ > 0. For

graphs of small diameter, D = no(1), we can thus explore the graph in O(D) time

steps using k ≤ n1+ǫ agents. This result almost matches the lower bound on team

size of k = Ω(n1−o(1)) for the case of graphs of small diameter, which follows from the

trivial lower bound Ω(D + n/k) on exploration time (cf. Proposition 2.1). The question

of establishing precisely what team size k∗ is necessary and sufficient for performing

exploration in O(D) steps in a graph of larger diameter remains open. The lower bound

Ω(D + n/k) shows that k∗ = Ω(n/D) and our algorithm shows that k∗ = O(Dn1+ǫ). A

44 Chapter 2 Exploration with communicating agents

similar open problem is the problem of finding the smallest number of agents k′ for which

it is possible to design an algorithm with constant competitive ratio. The lower bound

from [67] shows that k′ = Ω(
√
n) and our algorithm shows that k′ = O(Dn1+ǫ).

Another question would be to generalize the model in some way. If we consider

crashes or Byzantine faults in the local communication model will it be still possible

to explore graphs (or trees) efficiently? Our analysis of algorithms in this chapter is

robust and it should be possible to generalize it to the model with faults. For example if

we consider a model where the first agent entering a node disappears then almost the

same algorithm works and the proof holds after small modifications. Another possible

extension would be to consider dynamic graphs.

We did not consider space complexity of the algorithms presented in this chapter.

It would be interesting to study how many bits of internal memory of the agents are

necessary to execute the presented algorithms. Decreasing the available memory should

result in time-space tradeoffs as agents can keep approximation on the sizes of subtrees

(e.g. keep ⌈logL⌉ instead of L).

Chapter 3

Exploration with the

Rotor-Router system

In this chapter, we perform an extensive study of the cover time of collaborative explo-

ration of the multi-agent rotor-router. The rotor-router mechanism was introduced by

Priezzhev et al. [136] as a deterministic alternative to the random walk in undirected

graphs. In this model, a set of k identical agents is deployed in parallel, starting from

a chosen subset of nodes, and moving around the graph in synchronous steps. During

the process, each node maintains a cyclic ordering of its outgoing arcs, and successively

propagates agents which visit it along its outgoing arcs in round-robin fashion, according

to the fixed ordering. Thus the rotor-router system can be seen as a model in which

agents are interacting with the environment as opposed to Chapter 2 where agents

were interacting between each other. We propose new techniques which allow us to

perform a theoretical analysis of the multi-agent rotor-router model, and to compare it

to the scenario of parallel independent random walks in a graph. Using these techniques

we provide tight bounds on the cover time of k agent rotor-router system. We show

that this cover time in the worst case initialization is at most Θ(mD/ log k) and at

least Θ(mD/k) for any graph, which corresponds to a speedup of between Θ(log k) and

Θ(k) with respect to the cover time of a single walk. Both of these extremal values of

speedup are achieved for some graph classes. We prove that the speedup of Θ(log k) is

achieved in the worst case initialization of agents for the ring. We show that on the ring,

depending on the initial locations of agents admits the cover time of between Θ(n2/k2)

in the best case and Θ(n2/ log k) in the worst case. The corresponding expected value

of cover time for k random walks, depending on the initial placement of the agents, is

proven to belong to a similar range, namely between Θ(n2/(k2/ log2 k)) and Θ(n2/ log k).

Then we develop a relation linking the cover time of the rotor-router to the mixing

time of the random walk and the local divergence of a discrete diffusion process on the

considered graph. Using this relation we determine the precise asymptotic value of the

rotor-router cover time for the worst-case initial placement of agents, for all values of

k for degree-restricted expanders, random graphs and constant-dimensional tori. For

45

46 Chapter 3 Exploration with the Rotor-Router system

hypercubes, we also resolve the question precisely, except for values of k much larger

than n. For constant-dimensional tori we observe an interesting phenomenon where

linear speedup is achieved for k up to a threshold value k1. Adding more agents above

k1 gives only logarithmic speedup i.e. for k > k1 the cover time decreases with log(k/k1).

Finally when k is increased beyond the second threshold, then we observe no speedup

and adding more agents no longer decreases the cover time.

This chapter contains results which have appeared in conference publications [T3-T5].

3.1 The rotor-router model

The study of deterministic exploration strategies in agent-based models of computation

is largely inspired by considerations of random walk processes. For an undirected graph

G = (V,E), exploration with the random walk has many advantageous properties: the

expected arrival time of the agent at the last unvisited node of the graph, known as the

cover time C(G), can in general be bounded as, e.g., C(G) ∈ O(D|E| log |V |), where D
is the diameter of the graph. The random walk also has the property that in the limit

it visits all of the edges of the graph with the same frequency, traversing each edge, on

average, once every |E| rounds. In this chapter, we consider a specific deterministic model
of walks on graphs, known as the rotor-router. The rotor-router model, introduced by

Priezzhev et al. [136] and further popularised by James Propp, provides a mechanism for

the environment to control the movement of the agent deterministically, whilst retaining

similar properties of exploration as the random walk.

In the rotor-router model, the agent has no operational memory and the whole routing

mechanism is provided within the environment. The edges outgoing from each node v

are arranged in a fixed cyclic order known as a port ordering, which does not change

during the exploration. Each node v maintains a pointer which indicates the edge to

be traversed by the agent during its next visit to v. If the agent has not visited node v

yet, then the pointer points to some initial edge adjacent to v. The next time when the

agent enters node v, it is directed along the edge indicated by the pointer, which is then

advanced to the next edge in the cyclic order of the edges adjacent to v.

The behavior of the rotor-router for a single agent is well understood. Studies of the

rotor-router started with works of Wagner et al. [143] who showed that in this model,

starting from an arbitrary configuration (arbitrary cyclic orders of edges, arbitrary initial

values of the port pointers and an arbitrary starting node) the agent covers all m edges of

an n-node graph within O(nm) steps. Bhatt et al. [19] showed later that within O(nm)

steps the agent not only covers all edges but enters (establishes) an Eulerian cycle. More

precisely, after the initial stabilization period of O(nm) steps, the agent keeps repeating

the same Eulerian cycle of the directed symmetric version ~G of graph G. Subsequently,

Yanovski et al. [144] and Bampas et al. [15] showed that the Eulerian cycle is in the

worst case entered within Θ(mD) steps in a graph of diameter D. Considerations of

specific graph classes were performed in [91]. Robustness properties of the rotor-router

Chapter 3 Exploration with the Rotor-Router system 47

were further studied in [16], who considered the time required for the rotor-router to

stabilize to a (new) Eulerian cycle after an edge is added or removed from the graph.

Regarding the terminology, we note that the rotor-router model has also been referred

to as the Propp machine [15] or Edge Ant Walk algorithm [143,144], and has also been

described in [19] in terms of traversing a maze and marking edges with pebbles.

Our work deals with the problem of exploring a graph with the multi-agent rotor-

router, i.e., a rotor-router system in which more than one agent is deployed in the same

environment. Due to the interaction of the agents, which move the same set of pointers

at nodes, this can be seen as an example of a deterministic interacting particle system.

In the first work on the topic, Yanovski et al. [144] showed that adding a new agent

to a rotor-router system with k agents cannot increase the cover time, and showed

experimental evidence suggesting that a speedup does indeed occur. In this chapter

we completely resolve the question of the possible range of speedups in the worst-case

initial setting of the parallel rotor-router model in a graph, showing that its value is

between Θ(log k) and Θ(k), for any graph. Both of these bounds are tight. We also

determine the precise asymptotic value of the rotor-router cover time for all values of k

for degree-restricted expanders, random graphs, constant-dimensional tori and cycles.

For hypercubes, we also resolve the question precisely, except for values of k much larger

than n. For cycles we provide the result describing the structure of the process. This

allows us to bound the cover time as well as to describe the limit behavior of the system.

In this chapter, we also perform a comparative case study of two seemingly different

scenarios: deterministic exploration with interacting particles in the rotor-router model

vs. randomized exploration with non-interacting particles in the random walk, showing

certain similarities between them. We compare our results with the so-called parallel

random walk, achieved by deploying independent agents performing random walks in a

graph independently and without any form of coordination.

Recent work on the area of parallel random was initiated by Alon et al. [7] who

introduced the notion of the speedup of k independent random walks as the ratio of

the cover time of a single walk to the cover time of k random walks. The speedup

may sometimes be as low as log k [7], and sometimes as high as exponential in terms

of k [7] depending on graph topology and the initial positions of the agents. Speedup

in the worst-case initial placement was shown to be k for many graph classes, such as

complete graphs [7], d-dimensional grids [7, 71], hypercubes [7, 71], expanders [7, 71],

and different models of random graphs [7,71]. For the cycle, the worst-case speedup is

equal to log k [7]. For general graphs, an upper bound min{k log n, k2} on the worst-
case speedup was obtained by Efremenko et al. [70]. The k log n upper bound was

shown independently by Elsässer et al. [71]. The speedup for parallel random walks

for the worst-case initial placement of agents is conjectured to be between log k and

k for any graph [7]. Interestingly, the multi-agent rotor-router, which can be seen

as a derandomization of multiple random walks, achieves the range of speedups that

corresponds to the conjectured range for multiple random walks.

48 Chapter 3 Exploration with the Rotor-Router system

Another measure studied by Efremenko et al. [70] concerns the speedup with respect

to a different exploration parameter — the maximizing hitting time, i.e., the maximum

over all pairs of nodes of the graph of the expected time required by the walk to move

from one node to the other. For this parameter, they show a bound on speedup of O(k),

mentioning that it is tight in many graph classes.

In the context of graph exploration, before the work presented in this thesis, the only

study of the multi-agent rotor-router was performed by Yanovski et al. [144], who showed

that adding a new agent to the system cannot slow down exploration, and provided

some experimental evidence showing a nearly-linear speedup of cover time with respect

to the number of agents in practical scenarios. They also show that the multi-agent

rotor-router eventually visits all edges of the graph a similar number of times. Beyond

this, a characterization of the behavior of the k-agent rotor-router in general graphs

remained an open question.

In Section 3.2 we introduce the techniques used in the analysis of the multi-agent

rotor-router system. The basic tool is applicable to general graphs and gives us an

algorithmic perspective for analysis of the rotor-router through delayed deployments,

allowing the occasional stopping of some of the agents without affecting asymptotic cover

time.

In Section 3.3, we prove that the cover time of multi-agent rotor router system in

any graph is in O(mD/ log k), when k < 216D. We then extend this result to the case

of k ∈ O(poly(n)), i.e., k < nc for some absolute constant c. The main part of our

proofs relies on a global analysis of the number of visits to edges in successive time steps,

depending on the number of times that these edges have been traversed in the past. We

first prove a stronger version of local structural lemmas proposed by Yanovski et al. [144],

and apply them within a global amortization argument over all time steps and all edges

in the graph.

In Section 3.4, we show a complementary lower bound on the cover time of the k-agent

rotor-router in worst case initialization, namely, that the cover time is in Ω(mD/k). As

a starting point, the proof uses a decomposition of the edge set of a graph, introduced

by Bampas et al. [15], into a “heavy part” containing a constant proportion of the edges

and a “deep part”, having diameter linear in D. The main part of the analysis is to

show that an appropriate initialization of k agents in the heavy part takes a long time to

reach the most distant nodes of the deep part. The argument also takes advantage of

the delayed deployment technique. We close the section by remarking that a cover time

of Θ(mD/k) is, in fact, achieved for some graphs, such as stars.

In Section 3.5, for the specific case of the rotor-router on the ring (cycle), we describe

states in the evolution of the system in which particular agents cover nearly disjoint,

dynamically changing parts of the graph, known as agent domains. We also introduce a

continuous time approximation of the evolution of the system on the ring, which allows us

to postulate an asymptotic description of the behavior of the agents on the ring. Formal

proofs of correctness are obtained through an analysis of the motion of agents within

Chapter 3 Exploration with the Rotor-Router system 49

Model
Cover time Return time

for worst placement for best placement

k-agent rotor-router
Θ(n2/ log k)

Thm 3.15, 3.17

Θ(n2/k2)

Thm 3.25, 3.28

Θ(n/k)

Thm 3.33

k random walks (expectations)
Θ(n2/ log k)

[7]

Θ
(
n2
/

k2

log2 k

)

Thm 3.32

Θ(n/k)

e.g. [5]

Table 3.1: The cover time of the multi-agent roter-router on the ring compared to
multiple random walks, depending on the initial placement of the agents.

their domains in delayed deployments of the rotor-router. We show that for a k-agent

rotor-router system in a graph G with n nodes, m edges and diameter D, the cover time

is between Θ(n2/k2) and Θ(n2/ log k), depending on the initial placement of the agents

in the rotor-router. The first bound is achieved, in particular, for agents distributed

uniformly on the ring, while the latter for agents initially located on the same node of the

ring. The return times for the ring of the k-agent rotor-router is determined in Section 3.6

as Θ(n/k). Summary of results from Sections 3.5 and 3.6 is organized in Table 3.1. We

remark that for a single agent, the rotor-router on the ring deterministically achieves a

cover time of Θ(n2), which matches that of the random walk. As the number of agents k

increases, the speedup of the rotor-router with respect to a single-agent system is seen

from our results as between Θ(log k) and Θ(k2), depending on the initialization. These

results are comparable with the corresponding speedup of the random walk, which is

between Θ(log k) and Θ(k2/ log2 k). The speedup in terms of return time is Θ(k), in

both cases. By showing that the cover time for the ring in the worst case is Θ(n2/ log k)

we prove that the lower bound O(log k) on speedup (Section 3.3) cannot be improved.

In Section 3.7 we outline the technique which we subsequently use to bound the

cover time in different graph classes. The main theorem of Section 3.7 captures the

link between the cover time of the k-rotor-router system, the mixing time MIX1/4 of the

random walk process in the graph, and a graph parameter known as its discrepancy

Ψ [18, 138], in its simplest form.

We recall that for k = 1, the worst-case cover time of the rotor-router is Θ(mD),

and note that for sufficiently large k (k > n∆D for a graph of maximum degree ∆), the

cover time of the rotor-router is equal to precisely D, since the graph can be flooded

with agents starting from a fixed node initially having ∆D agents. Above this threshold

(k > n∆D), adding new agents to the system does not speed up exploration. The results

presented in Section 3.8 show that for complete graphs, random graphs, and expanders,

a cover time of Θ(D) is attained already for much smaller teams of agents. These graphs

also display dichotomous behaviour: up to a certain threshold value of k1 = Θ(m), the

cover time decreases linearly with the number of agents, and above this threshold, the

cover time remains fixed at Θ(D).

50 Chapter 3 Exploration with the Rotor-Router system

Graph k Cover time Reference

General graph ≤ poly(n)
O
(

mD
log k

)
Thm. 3.6, 3.10

Ω
(
mD
k

)
Thm. 3.11

Cycle
< 2n Θ

(
n2

log k

)
Thm. 3.15 3.39

≥ 2n Θ(n)

d-dim. torus
< n1−1/d Θ

(
n1+1/d

k

)
Thm. 3.41

∈ [n1−1/d, 2n
1/d

] Θ
(

n2/d

log(k/n1−1/d)

)
Thm. 3.41

> 2n
1/d

Θ(n1/d)

Hypercube

< n logn
log logn Θ

(
n log2 n

k

)
Cor. 3.42

∈
[
n logn
log logn , n2

log1−ε n
]

Θ(log n log log n) Thm. 3.43

(for any ε > 0)

> n2log
1−ε n O(log n log log n) Thm. 3.43

> (log2 n)
log2 n Θ(log n)

Complete
< n2 Θ

(
n2

k

)
Thm. 3.38

≥ n2 Θ(1)

Expander
< n log n Θ

(
n log2 n

k

)
Thm. 3.38

≥ n log n Θ(log n)

Random graph
< n log n Θ

(
n log2 n

k

)
Thm. 3.38

≥ n log n Θ(log n)

Table 3.2: Worst-case cover time of the k-agent rotor-router system for different values
of k in a n-node graph with m edges and diameter D. The results for d-dimensional tori
are presented for d constant. The result for expanders concerns the case when the ratio
of the maximum degree and the minimum degree of the graph is O(1). The result for
random graphs holds in the Erdős-Renyi model with edge probability p > (1 + ε) logn

n
,

ε > 0, a.s.

In Section 3.9 we extend the results for the ring from Section 3.5. We show that

the logarithmic speedup is attained for all k < 2n. Thus the cover time of the ring is

Θ(n2/ log k) for k < 2n, and of Θ(n) for k ≥ 2n.

In Section 3.10, we prove that the d-dimensional torus for constant d (with D = n1/d)

admits precisely two threshold values of k (cf. Table 3.2). For k < k1 = n1−1/d, the

speedup is linear with k; for k1 ≤ k < k2 = 2n
1/d
, the cover time further decreases with

log(k/k1), and above k2, the cover time is asymptotically fixed at Θ(n1/d). We remark

that the for parallel random walks, the situation appears to be similar, however the

question of obtaining a complete characterization remains open.

Finally in Section 3.11 we also prove threshold behaviour for the speedup of the

k-agent rotor-router for the hypercube, showing that there exist at least three threshold

values of k (linear speedup for small k, a flat period with no speedup for k slightly larger

than n, a further period of slow growth, and finally a flat period for extremely large

Chapter 3 Exploration with the Rotor-Router system 51

k). We also completely characterize the cover time of the hypercube for k up to a point

beyond the first threshold.

Table 3.2 contains a summary of all our results on the cover time of the k-agent

rotor-router.

3.1.1 Definitions and notation

Let G = (V,E) be an undirected connected graph with n nodes, m edges and diameter D.

We denote the neighborhood of a node v ∈ V by Γ(v). The directed graph ~G = (V, ~E) is

the directed symmetric version of G, where the set of arcs ~E = {(v, u), (u, v) : {v, u} ∈ E}.
We will refer to the undirected links in graph G as edges and to the directed links in

graph ~G as arcs. We will denote arc (v, u) by v → u. We will also keep using an arrow

on the top of a symbol, as in ~G and ~E, to stress that we refer to directed graphs and

arcs. For a node v ∈ V , d(v) denotes the degree of v in G.

We consider the rotor-router model (on graph G) with k ≥ 1 indistinguishable agents,

which run in rounds, synchronized by a global clock. In each round, each agent moves

in discrete steps from node to node along the arcs of graph ~G. A configuration at the

current step is defined as a triple ((ρv)v∈V , (πv)v∈V , {r1, . . . , rk}), where ρv is a cyclic
order of the arcs (in graph ~G) outgoing from node v, πv is an arc outgoing from node

v, which is referred to as the (current) port pointer at node v, and {r1, . . . , rk} is the
(multi-)set of nodes currently containing an agent. For each node v ∈ V , the cyclic order

ρv of the arcs outgoing from v is fixed at the beginning of exploration and does not

change in any way from step to step (unless an edge is dynamically added or deleted as

discussed in the previous section). For an arc (v, u), let next(v, u) denote the arc next

after arc (v, u) in the cyclic order ρv.

The exploration starts from some initial configuration and then keeps running in

all future rounds, without ever terminating. During the current round, first each agent

i is moved from node ri traversing the arc πri , and then the port pointer πri at node

ri is advanced to the next arc outgoing from ri (that is, πri becomes next(πri)). This

is performed sequentially for all k agents. Note that the order in which agents are

released within the same round is irrelevant from the perspective of the system, since

agents are indistinguishable. For example, if a node v contained two agents at the

start of a round, then it will send one of the agents along the arc πv, and the other

along the arc (v, next(πv)). In some considerations, we will also assign explicit labels

{0, 1, . . . , deg(v) − 1} to the ports adjacent to v, in such a way that initially πv = 0,

and next(v, i) = (v, (i+ 1)mod deg v). Then, at the completion of any round, the total

number of traversals of agents along an arc (v, u) is equal to
⌈
ev−portv(u)

deg(v)

⌉
, where ev is

the total number of times agents exited node v until the completion of the round and

portu(v) denotes the label of the port leading from v to u.

In all our considerations, we will assume that the initialization of ports and pointers

in the system is performed by an adversary. In particular, when studying a best-case

scenario of initial agent locations, we assume that the ports and pointers have been set

52 Chapter 3 Exploration with the Rotor-Router system

by the adversary so as to maximize the studied parameter (e.g., cover time). For the

case of the ring, there exists only one cyclic permutation of the two neighbors of each

node, hence only the initial pointer arrangement (and not the configuration of ports) is

relevant.

In our work we will consider both the unmodified k-agent rotor-router system R[k]

and its delayed deployments, in which some agents may be stopped at a node, skipping

their move for some number of rounds. A delayed deployment D of k agents is formally

defined as a function D : V ×N→ N, where D(v, t) ≥ 0 represents the number of agents

which are stopped in vertex v in round t of the execution of the system. (The rotor-router

system R[k] corresponds to the deployment R[k](v, t) = 0, for all v and t). Delayed

deployments may be conveniently viewed as algorithmic procedures for delaying agents,

and are introduced for purposes of analysis, only.

We will say that a node is visited by an agent in round t if the agent is located at this

node at the start of round t+ 1. Let nD
v (t) denote the total number of visits of agents

to node v during the interval of rounds [1, t] for agents following some (possibly delayed)

deployment D, and let CD
rr(G) be the cover time of this deployment. The notation nD

v (0)

refers to the number of agents at a node directly after initialization (at the start of round

1). We will denote by aDe (t) the number of agents traversing directed arc e ∈ ~E during

step t + 1. Let mD
e (t) denote the total number of traversals of arc e ∈ ~E during the

interval of rounds [1, t], mD
e (t) =

∑
t′∈[0,t) a

D
e (t

′). Let eDv (t) denote the total number of

traversals of arcs outgoing from v during the interval of rounds [1, t] in deployment D.

For a node v ∈ V , let rDv (t) = minw∈Γ(v){mD
v→w(t)} be the number of fully completed

rotations of the rotor at node v at the end of step t. For undelayed deployment R[k] we

will use notation nv(t) = n
R[k]
v (t), mv→w(t) = m

R[k]
v→w(t), ev(t) = e

R[k]
v (t), rv(t) = r

R[k]
v (t)

and ee(t) = e
R[k]
e (t). We note that for any arc u→ v ∈ ~E, 0 ≤ nu→v(t)− ru(t) ≤ 1 [144].

We recall that multiple agents traversing one arc e ∈ ~E in the same time step t are

considered to move simultaneously. We also denote V (t, i) = {v ∈ V : nv(t) ≤ i} and
E(t, i) = {e ∈ ~E : me(t) ≤ i}. N+ denotes the set of positive integers, and N = N+ ∪ {0}.
We will denote by A the set of all agents.

Symbol Description

n
D
v (t) total number of visits to node v up to time t

m
D
e (t) total number of traversals of arc e up to time t

e
D
v (t) total number of traversals of arcs outgoing from v up to time t

a
D
e (t) number of agents traversing arc e during step t+ 1

r
D
v (t) number of completed rotations of the rotor at v at the end of step t

Table 3.3: Explanation of the notation. All symbols are for some (possibly delayed)
deployment D.

We also introduce compact notation for discrete intervals of integers: [a, b] ≡ {a, a+

1, . . . , b}, and [a, b) ≡ [a, b− 1], for a, b ∈ N. Given a graph G = (V,E) and a subset X ⊆
V , G[X] denotes the subgraph of G induced by X, G[X] = (X, {{u, v} ∈ E

∣∣ u, v ∈ X}).

Chapter 3 Exploration with the Rotor-Router system 53

3.2 The delayed deployment technique for the multi-agent

rotor-router

We start by showing that by delaying more agents in a deployment, one cannot increase

the number of visits to nodes at any time. We assume that all considered deployments

start from the same (arbitrarily chosen) initial configuration.

Lemma 3.1. Let D1 and D2 be two delayed deployments of the k-agent rotor-router

system, such that for all vertices v ∈ V and rounds t, D1(v, t) ≥ D2(v, t). Then, for all

vertices v ∈ V and rounds t, we have nD1
v (t) ≤ n

D2
v (t).

Proof. For t = 0, the claim holds, since by definition:

n
D1
v (0) = n

D2
v (0) = n

R[k]
v (0) , for all v ∈ V. (3.1)

Recall that eD1
v (t) and e

D2
v (t) denotes the total number of traversals of arcs outgoing

from v during the interval of rounds [1, t] for executions D1 and D2, respectively. For an

arbitrary agent, the difference between the number of times the agent leaves v in rounds

[1, t+ 1] and the number of times it enters node v in rounds [0, t] is equal to either −1 or
0, depending on whether the agent is delayed at v in round t+ 1 or not. Summing over

all agents, we obtain:

e
Di
v (t+ 1) = n

Di
v (t)−Di(v, t+ 1), i ∈ {1, 2} (3.2)

The rest of the proof proceeds by induction on time t. Suppose that for some t > 1,

n
D1
v (t− 1) ≤ n

D2
v (t− 1) holds for all v ∈ V . Then, we have from (3.2):

e
D1
v (t) +D1(v, t) ≤ e

D2
v (t) +D2(v, t)

and since D1(v, t) ≥ D2(v, t):

e
D1
v (t) ≤ e

D2
v (t), for all v ∈ V. (3.3)

Now, fix an arbitrary node u and observe that the number of visits to node u within the

interval [1, t+ 1] is equal to the sum of the number of agents placed at u in round 1, and

the number of times an agent exited one of its neighbors v ∈ Γ(u) along an arc (v, u) in

rounds [1, t]:

n
Di
u (t+ 1) = n

Di
u (0) +

∑

v∈Γ(u)

⌈
e
Di
v (t)− portv(u)

deg(v)

⌉
, (3.4)

where we took into account that agents leaving a node v exit along the ports adjacent

to v in round-robin fashion. Combining expressions (3.1), (3.2), and (3.4) we obtain

n
D1
u (t+ 1) ≤ n

D2
u (t+ 1). Since u ∈ V was arbitrarily chosen, the inductive claim

follows.

54 Chapter 3 Exploration with the Rotor-Router system

We remark that the above lemma immediately implies that n
R[k−1]
v (t) ≤ n

R[k]
v (t),

since the (k− 1)-agent rotor-router R[k− 1] is equivalent to a deployment of the k-agent

rotor-router with one agent permanently stopped. (This observation is due to [144].)

Lemma 3.2. Let D be a delayed deployment of the k-agent rotor-router system. Let T

be any fixed time round, and let τ be the number of rounds in the interval [1, T] such that

all the agents are active in D, i.e., τ = |{t ∈ [1, T] : ∀v∈V D(v, t) = 0}|. Then, for all
vertices v, we have: n

R[k]
v (τ) ≤ n

D
v (T) ≤ n

R[k]
v (T) .

Proof. The right inequality follows directly from Lemma 3.1. To prove the left inequality,

we rewrite for round t ≥ 1 the sets of recurrence equations (3.2) and (3.4) on the number

of visits and exits to each node v for deployment D:





e
D
v (t) = n

D
v (t− 1)−D(v, t),

n
D
v (t) = n

D
v (0) +

∑
w∈Γ(v)

⌈
e
D
w (t−1)−portw(v)

deg(w)

⌉
,

n
D
v (0) = n

R[k]
v (0) , e

D
v (0) = 0.

Consider a function f : [1, τ]→ [1, T], with f(i) being the i-th time round in which all

agents are active in delayed deployment D. Denote by F ⊆ [1, T] the image of f . Taking

into account that D(v, t) = 0 for all t ∈ F and that the counters eDv and n
D
v are always

non-decreasing in time, we obtain the following set of inequalities by restricting evolution

to moments of time t = f(i), with i ∈ [1, τ]:





e
D
v (f(i)) = n

D
v (f(i)− 1)−D(v, f(i)) ≥ n

D
v (f(i− 1))− 0 = n

D
v (f(i− 1)) ,

n
D
v (f(i)) = n

D
v (0) +

∑
w∈Γ(v)

⌈
e
D
w (f(i)−1)−portw(v)

deg(w)

⌉
≥

≥ n
D
v (f(0)) +

∑
w∈Γ(v)

⌈
e
D
w (f(i−1))−portw(v)

deg(w)

⌉
,

n
D
v (f(0)) = n

R[k]
v (f(0)) , e

D
v (f(0)) = 0,

where we put f(0) = 0 for convenience of notation. By comparing the above with the

corresponding equations for the undelayed rotor-router R[k], written for round i ∈ [1, τ]:





e
R[k]
v (i) = n

R[k]
v (i− 1) ,

n
R[k]
v (i) = n

R[k]
v (0) +

∑
w∈Γ(v)

⌈
e
R[k]
w (i−1)−portw(v)

deg(w)

⌉
,

e
R[k]
v (0) = 0.

it follows by induction that nD
v (f(i)) ≥ n

R[k]
v (f(i)). Putting i = τ , we obtain the sought

inequality nD
v (T) ≥ n

R[k]
v (τ).

Observe that by the above lemma, we have that if node v is visited for the first time

after T rounds in a delayed deployment D, i.e., nD
v (T) = 0 and n

D
v (T + 1) = 1, then

n
R[k]
v (τ) = 0 and n

R[k]
v (T + 1) ≥ 1. From this, we directly obtain the key lemma for the

approach we use to analysing the cover time of k-rotor-router systems in this chapter.

Chapter 3 Exploration with the Rotor-Router system 55

Lemma 3.3 (the slow-down lemma). Let R[k] be a k-rotor router system on any

graph G with an arbitrarily chosen initialization, and let D be any delayed deployment of

R[k]. Suppose that deployment D covers all the vertices of the graph after T = CD
rr(G)

rounds, and in at least τ of these rounds, all agents were active in D. Then, the cover

time C
R[k]
rr (G) of the system can be bounded by:

τ ≤ CR[k]
rr (G) ≤ T.

If the deployment D is defined so that agents in D are delayed in at most a constant

proportion of the first CD
rr(G) rounds, then the above inequalities lead to an asymptotic

bound on the value of the undelayed rotor-router, C
R[k]
rr (G) = Θ(CD

rr(G)). This is the

case, e.g., in the proof of Theorem 3.15.

3.3 Upper bound on cover time for general graphs

In this section, we will show that a k-agent parallel rotor-router system explores a graph

in O(mD/ log k) steps, regardless of initialization. We start by providing an informal

intuition of the main idea of the proof. After some initialization phase of duration t0, but

before exploration is completed at time Ck
rr(G), we consider a shortest path connecting

some arc of the graph which has already been visited many times at time t0, with an

arc which will remain unvisited at time Ck
rr(G). We look at the number of visits to

consecutive arcs on this path. It turns out that the rotor-router admits a property which

can be informally stated as follows: if, up to some step t of exploration, an arc el+1 of

the considered path has been traversed more times than the next arc el on the path

by some difference of δ, then in the next step t + 1 of exploration, at least δ − O(1)

agents will traverse arcs which have, so far, been visited not more often (up to a constant

additive factor) than el. In this way, the larger the discrepancy between the number of

visits to adjacent arcs, the more activity will the rotor-router perform to even out this

discrepancy, by traversing under-visited arcs. This load-balancing behavior of the system

will be shown to account for the (log k)-speedup in cover time with respect to the case of

a single agent.

We start by proving two structural lemmas which generalize the results of Yanovski

et al. [144, Theorem 2]. The first lemma establishes a connection between the existence

of an arc entering a subset of nodes S ⊆ V that has been traversed more times than all

arcs outgoing from S, and the number of agents currently located within set S.

Lemma 3.4. For any time t ∈ N and d ∈ N, consider the partition of the set of nodes

V = S ∪ T such that each node in set S (set T) has completed at most d (more than d)

full cycles of if its rotor, S = V
(t)
d and T = V \ S. Suppose that for some nodes v ∈ S,

u ∈ T , and some δ ∈ N, there exists an arc u → v, such that mu→v(t) ≥ d+ δ. Then,

56 Chapter 3 Exploration with the Rotor-Router system

the set of arcs having their tail at a node of S will be traversed by at least δ− 1 agents in

total in step t+ 1.

Proof. Denote by S → T (resp., T → S) the set of arcs connecting nodes from S with

nodes from T (resp., nodes from T with nodes from S), and let l = |S → T | = |T → S|.
By the basic property of the rotor-router process, all arcs outgoing from some node w

have been traversed either rw(t) or rw(t) + 1 times by the end of step t. It follows the

definition of sets S and T that any arc outgoing from S was traversed at most d+1 times

and any arc outgoing from T was traversed at least d+1 times. The arc u→ v ∈ T → S

was traversed d+ δ times. Hence:

∑

e∈S→T

me(t) ≤ l · (d+ 1),

∑

e∈T→S

me(t) ≥ (l − 1) · (d+ 1) + d+ δ ≥
∑

e∈S→T

me(t) + δ − 1.

Thus, at least δ − 1 more agents moved from T to S than in the opposite direction until

the end of step t. So, at the end of time step t, we have at least δ − 1 agents located at

nodes from set S. It follows that during step t+ 1, at least δ − 1 agents traverse arcs

outgoing from nodes from the set S.

By an application of the above lemma, we obtain the key property of a pair of

consecutive arcs which have a different number of traversals at time t.

Lemma 3.5. Let G = (V,E) be any undirected graph and let e2 = u→ v, e1 = v → w

be two consecutive arcs of ~G. Fix a time step t ∈ N+. Then, for any x ≥me1(t) + 1, the

number of agents that traverse arcs from set E(t, x) in time step t+ 1 satisfies:
∑

e∈E(t,x) ae(t) ≥me2(t)−me1(t)− 1.

Proof. We can assume that me2(t) −me1(t) ≥ 2, otherwise the claim is trivial. By

the definition of the rotor-router, we know that 0 ≤ me1(t) − rv(t) ≤ 1 and ru(t) ≥
me2(t) − 1 ≥ me1(t) + 1 ≥ rv(t). We now apply Lemma 3.4 for r = rv(t), putting

S = V (t, rv(t)) and T = V \ S. Note that v ∈ S, u ∈ T , and mu→v(t) = r + δ for

δ = me2(t) − rv(t) ≥ me2(t) −me1(t). It follows from the Lemma that during step

t+ 1, at least me2(t) −me1(t) − 1 agents traverse arcs outgoing from nodes from the

set S. Since S = V (t, rv(t)), all arcs e
∗ outgoing from nodes from set S have a number

of traversals which satisfies me∗(t) ≤ rv(t) + 1 ≤ me1(t)) + 1, so e∗ ∈ E(me1(t) + 1, t).

Thus, me2(t) −me1(t) − 1 agents in step t+ 1 traverse edges in E(t,me1(t) + 1), and

moreover E(t,me1(t) + 1) ⊆ E(t, x) for all x ≥me1(t) + 1.

The property of the rotor-router captured by the above lemma is, in fact, sufficient

to prove the main results of the section, following the general approach outlined at the

beginning of the section. To show a bound of Ck
rr(G) ∈ O(mD/ log k), we will apply

two separate arguments, first one for the range of relative small k (k ∈ 2O(D), which

Chapter 3 Exploration with the Rotor-Router system 57

corresponds to Ck
rr(G) ∈ Ω(m)), and then one for values of k which are larger, but

polynomially bounded with respect to n.

Theorem 3.6. Let G = (V,E) be any undirected graph with arbitrary initialization

of pointers and let D be the diameter of G. If k ≤ 216D, then a team of k agents

performing in parallel the rotor-router movement explores G in less than 500mD/ log k

steps, regardless of the initial positions of agents.

Proof. First, assume that k > 2160 and fix b = ⌊(log k)/2⌋. Consider the first t0 steps,
where t0 = ⌈2b+1mD/k⌉. Since in every step exactly k arcs are traversed by agents, the
total number of arc traversals during the first t0 steps is at least 2

b+1mD. We have 2m

arcs in total. Thus, there exists an arc e′ such that me′(t0) ≥ 2bD. These first t0 steps

we will call as a form of setup stage, after which we begin to analyze the behavior of the

rotor-router process.

Denote by Ck
rr(G) the cover time of G with k agents for a given initialization. We

will assume that Ck
rr(G) > t0, i.e., at least one arc of the graph has not been explored

at time t0; otherwise, C
k
rr(G) ≤ t0 = ⌈2b+1mD/k⌉ ≤ ⌈2mD/

√
k⌉, since b = ⌊(log k)/2⌋,

and the claim of the theorem holds for all k.

Take e′′ ∈ ~E to be an arc which is explored for the first time in step Ck
rr(G),

i.e., such that d(C
k
rr(G)−1)(e′′) = 0. Since the diameter of G is D, there exists a path

P = 〈e′′ = e1, e2, . . . eD′ = e′〉 such thatD′ ≤ D+2, and for each l ∈ [1, D′], el = vl+1 → vl

where vl, vl+1 ∈ V .

Fix a time step t ∈ [t0, C
k
rr(G)). We will place some of the arcs of path P in groups

(buckets) I1, I2, . . . , Ib, such that all arcs in bucket Ii have been traversed between 2
i−1D

and 2iD times until step t. Formally, denote:

Ii =
{
l : mel(t) ∈ [2i−1D, 2iD)

}
⊆ [1, D′], for i ∈ [1, b].

We now analyze which buckets successive arcs of the path P fall into. For l ∈ [1, D′),

define

∆l =




[mel(t),mel+1

(t)), if mel(t) < mel+1
(t),

∅, otherwise.

Note that the union of all ∆l covers the interval [0, 2
bD), since for any x ∈ [0, 2bD) there

exists l∗ ∈ [1, D′) such that x ∈ ∆l∗ because me1(t) = 0 and meD′ (t) ≥ 2bD (see Fig. 3.1

for an illustration). The intuition of the proof is now as follows: Since there are at most

D′ non-empty intervals ∆l spanning the total range [0, 2
bD) of all buckets I1, I2, . . . , Ib,

in a constant proportion of all buckets Ii, the average length of an intervals ∆l starting

in bucket Ii will be at least |Ii|b/D = 2i−1b, up to a constant factor. The existence of

such long intervals ∆l beginning in Ii will allow us to exploit Lemma 3.5 to show that

arcs el, el+1 differ in the number of traversals by a constant times 2
i−1b. This implies

that for the considered bucket indices i, the number of agents active at time t on edges

from buckets I1, . . . , Ii will be at least 2
i−1b, up to constant factors and minor shifts at

bucket boundaries. We now proceed to formalize the above arguments.

58 Chapter 3 Exploration with the Rotor-Router system

Figure 3.1: An illustration of sets Ii and ∆l in the proof of Theorem 3.6.

For i ∈ [1, b], denote by Xi the set of intervals ∆l beginning in bucket Ii: Xi =⋃
l∈Ii ∆l . Consider any x ∈ [0, 2bd), and let l∗ be such that x ∈ ∆l∗ . We have mel∗ (t) ≤

x < 2bD, hence l∗ ∈ Ii∗ , for some i
∗ ∈ [1, b], and x ∈ Xi∗ . It follows that:

[0, 2bD) ⊆
⋃

i∈[1,b]
Xi. (3.5)

For i ∈ N, denote by ai(t) the number of agents that traverse arcs from set E(t, 2iD) in step

t+1, ai(t) ≡
∑

e∈E(t,2iD) ae(t), and let a
(t)
−1 = 0. (We remark that E(t, 2iD) ⊇ I1∪. . .∪Ii.)

First, note that for all i ∈ [1, b] and for l ∈ Ii, we have mel(t) < 2iD. So, by Lemma 3.5:

ai(t) ≥mel+1
(t)−mel(t)− 1 = |∆l| − 1 =⇒ |∆l| ≤ ai(t) + 1. (3.6)

Now, observe that for any i ∈ [1, b]:

maxXi = max
l∈Ii

(max∆l) ≤ max
l∈Ii

(mel(t) + |∆l| − 1) < 2iD + ai(t), (3.7)

where we took into account inequality (3.6) and that mel(t) < 2iD for l ∈ Ii.

Next, we will show that for all i ∈ [1, b]:

2i−1D − ai−1(t) ≤ |Xi| ≤ |Ii|(ai(t) + 1). (3.8)

The right inequality in (3.8) is proved as follows: |Xi| ≤
∑

l∈Ii |∆l| ≤ |Ii|(ai(t) + 1),

where the latter inequality is a consequence of (3.6).

We now prove the left inequality in (3.8). If ai−1(t) ≥ 2i−1D, then the bound is

trivial. In the case when ai−1(t) < 2i−1D, we will first prove that:

[2i−1D + ai−1(t), 2
iD) ⊆ Xi. (3.9)

To this end, take any x ∈ [2i−1D + ai−1(t), 2
iD) and observe that by (3.5), there exists

some j ∈ [1, b] such that x ∈ Xj . Moreover, note that:

1. For any j < i, x /∈ Xj , because, by (3.7), maxXj < 2jD+aj(t) ≤ 2i−1D+ai−1(t) ≤
x.

Chapter 3 Exploration with the Rotor-Router system 59

2. For any j > i, x /∈ Xj , because: minXj = minl∈Ij ,∆l 6=∅min∆l = minl∈Ij ,∆l 6=∅mel(t) ≥
2j−1D ≥ 2jD > x.

Thus, x ∈ Xi, and (3.9) follows. Equation (3.9) implies that |Xi| ≥ 2i−1D − ai−1(t),

which completes the proof of (3.8). Next, by (3.8),

|Ii| ≥
2i−1D − ai−1(t)

ai(t) + 1
for all i ∈ [1, b].

The buckets I1, I2, . . . , Ib are pairwise disjoint by definition and contain at most D
′

elements altogether, which gives:

D + 2 ≥ D′ ≥
b∑

i=1

|Ii| ≥
b∑

i=1

2i−1D − ai−1(t)

ai(t) + 1
≥

b∑

i=1

2i−1D

ai(t) + 1
− b,

where in the last inequality we used the fact that ai(t) ≥ ai−1(t) for i ∈ [2, b]. Dividing

the sum in the last inequality by bD, we get the following expression for the arithmetic

average:

1

b

b∑

i=1

2i−1

ai(t) + 1
≤ D + b+ 2

bD
=

1

b
+

1 + 2/b

D
<

9.2

b
,

where in the last inequality we took into account that k ≤ 216D and b ≤ (log k)/2 by

assumption, hence D ≥ (log k)/16 ≥ b/8, and that b = ⌊(log k)/2⌋ ≥ 80. All the elements

of the considered sum are positive, hence by Markov’s inequality, there exists a subset of

indices S(t) ⊆ [1, b], with |S| ≥ b/2, such that for all j ∈ S(t) we have:

2j−1

aj(t) + 1
≤ 2 · 1

b

b∑

i=1

2i−1

ai(t) + 1
≤ 18.4

b
.

This implies that for all j ∈ S(t):

aj(t) ≥
b

18.4
· 2j−1 − 1 >

b

25
· 2j−1, (3.10)

where we again took into account that b ≥ 80.

Fix t1 = ⌈100mD/b⌉. We now prove that

Ck
rr(G) ≤ t0 + 2t1 + 4m. (3.11)

Suppose, by contradiction, that Ck
rr(G) > t0 + 2t1 + 4m. We will say that an index

j ∈ [1, b] is good after time t if j ∈ S(t). Since for all t ∈ [t0, C
k
rr(G)) we have |S(t)| ≥ b/2

and S(t) ⊆ [1, b], by the pigeon-hole principle there must exist an index j∗ that is good

in at least (Ck
rr(G)− t0)/2 = t1 + 2m steps in [t0, C

k
rr(G)); we will call these steps good

steps.

For an arc e of the graph, we denote by te the so called exit time step for arc e, after

which the total number of visits to arc e of the graph for the first time exceeds 2j
∗
D:

60 Chapter 3 Exploration with the Rotor-Router system

me(te) ≤ 2j
∗
D < me(te + 1). The set of all exit time steps, taken over all arcs of the

graph, is denoted T̂ = {te : e ∈ ~E}. Note that e ∈ E(t, 2j
∗
D) if and only if t ≤ te, and

therefore we may write:

∑

t∈[0,Ck
rr(G))\T̂

aj∗(t) =
∑

t∈[0,Ck
rr(G))\T̂

∑

e∈E(t,2j
∗
D)

ae(t) ≤
∑

e∈ ~E

te−1∑

t=0

ae(t) =
∑

e∈ ~E

me(te) ≤ 2m·2j∗D.

(3.12)

Now, recall that there are at least t1 + 2m good time steps t ∈ [t0, C
k
rr(G)) for which

index j∗ satisfies (3.10), and that |T̂ | ≤ 2m. It follows that:

∑

t∈[0,Ck
rr(G))\T̂

aj∗(t) > t1 ·
b

25
· 2j∗−1 =

⌈
100mD

b

⌉
b

25
· 2j∗−1 ≥ 2m · 2j∗D,

a contradiction with (3.12). Thus, we have proved (3.11).

By (3.11), we obtain

Ck
rr(G) ≤ t0 + 2t1 + 4m =

⌈
2b+1mD

k

⌉
+ 2

⌈
100mD

b

⌉
+ 4m ≤

≤ mD

log k

(
2b+1 log k

k
+

200 log k

b
+

4 log k

D
+

3 log k

mD

)
(3.13)

Taking into account that b = ⌊(log k)/2⌋, k ≤ 216D, and k > 2160, we obtain that the

expression in the above bracket can be bounded by a constant, giving: Ck
rr(G) < 500 mD

log k .

This completes the proof for the case k > 2160.

Suppose now that k ≤ 2160. Yanovski et al. [144] showed that a single agent explores

the graph in at most 2mD steps regardless of the initialization, and moreover, that

adding agents cannot decrease the number of traversals on any edge. We thus trivially

obtain the claim: Ck
rr(G) ≤ 2mD < 500 mD

log k .

We now consider the case when k ≥ 216D. Here, we first make the additional

assumption that each agent starts from a distinct node. We show that additional

assumption implies that no arc is traversed by more than one agent in a single step. The

proof then proceeds along similar lines as that of Theorem 3.6, and we show that in

many time steps t, there exists a pair of arcs el+1, el in P with a large difference in the
number of traversals up to time t. However, instead of counting the number of long arcs

on path P belonging to a bucket Ii, in this proof we take advantage of the fact that the
length of the path D′ ≤ D + 2 is small compared to log k, which can be used to infer the

existence of the sought arc pairs.

Lemma 3.7. Let G = (V,E) be any undirected graph with arbitrary initialization of

pointers and let D be the diameter of G. If k ≥ 216D, then a team of k agents performing

parallel rotor-router movement, with each agent starting from a distinct node of the graph,

explores G in time 16mD/ log k.

Chapter 3 Exploration with the Rotor-Router system 61

Proof. We first prove that in every step t ∈ N of the exploration, every arc is traversed

by at most one agent. Assume, to the contrary, that t∗ ∈ N is the first step when two

agents traverse the same arc, and let this arc be e = u → v. Then, by virtue of the

rotor-router principle, the number of agents located at u at the end of step t∗ − 1 must

have been at least deg(u) + 1. This in particular implies that t∗ > 1. Since there are

exactly deg(u) incoming arcs to u, one of them was traversed by more than one agent in

step t∗ − 1. This contradicts the minimality of t∗. Thus, we have ae(t) ≤ 1, for all e ∈ ~E

and t ∈ N.

Denote by Ck
rr(G) the cover time of graph G. For i ∈ N+, let X =

⌊
k1/(2D+6)

⌋
and

let Yi =
∑i−1

j=0X
j = Xi−1

X−1 . Note that since k ≥ 216D, we have:

X ≥ 2 and Yi < Xi for all i ∈ N. (3.14)

Similarly as in proof of Theorem 3.6, we first consider a setup phase, consisting of steps

[1, t0) of exploration, this time defining t0 as:

t0 = 2
⌈
mX2D+5/k

⌉
≤ 2⌈m/X⌉. (3.15)

During the setup stage, the total number of edge traversals is at least 2mX2D+5. Thus,

there exists an arc e′ such that me′(t0) ≥ X2D+5. There also exists an arc e′′ such that

me′′(C
k
rr(G)− 1) = 0. Thus, for each t ∈ [t0, C

k
rr(G)),

me′′(t) = 0 and me′(t) ≥ X2D+5 > Y2D+5. (3.16)

Since D is the diameter of G, there exists a path P = 〈e′′ = e1, e2, . . . , eD′ = e′〉, such
that D′ ≤ D + 2 and for all i ∈ [1, D′), ei = vi → vi+1 where vi, vi+1 ∈ V .

For each time step t and i ≥ 2, let ai(t) be the number of agents that during step

t+ 1 traverse those arcs which were traversed at most Yi times until the end of step t,

ai(t) ≡
∑

e∈E(t,Yi)
ae(t). We have for any i ≥ 2:

Ck
rr(G)−1∑

t=t0

ai(t) ≤ 2m(Yi + 1) < 3mYi, (3.17)

because otherwise we would have an arc e that contributes at least Yi + 2 to the above

sum. Then, since in each time step t ∈ N each arc is traversed at most once, there

exist steps t0 < t1 < t2 < · · · < tYi+2 ≤ Ck
rr(G) in which e is traversed, and moreover

e ∈ E(tYi+2 − 1, Yi). However, till the end of step tYi+2 − 1 ≥ tYi+1 the arc e has

been traversed Yi + 1 times, so, e /∈ E(tYi+2 − 1, Yi), and we obtain a contradiction,

proving (3.17).

We now prove that

Ck
rr(G) ≤ t0 + 6

⌈
m

X − 1

⌉
. (3.18)

62 Chapter 3 Exploration with the Rotor-Router system

Suppose, by contradiction, that Ck
rr(G) > t0 + 6⌈m/(X − 1)⌉. For each time step t, we

will call the set of arcs E(t, Yi) \ E(t, Yi−1) the i-th zone at time t, for i ≥ 2.

Each zone that does not contain any arc of path P in a given time step is called free.
The path P has at most D′ arcs and hence at least D′ zones with indices in the interval

[2, 2D′ + 1] are free in each time step. Thus, by the pigeonhole principle, during the time

period [t0, C
k
rr(G)) there must exist an index i∗ ∈ [2, 2D′ + 1] such that the i∗-th zone is

free during a set of time steps T ⊆ [t0, C
k
rr(G)), with:

|T | ≥ (Ck
rr(G)− t0)/2 > 3⌈m/(X − 1)⌉.

By (3.16), the arc e′ belongs to a zone with index at least 2D + 6 ≥ 2D′ + 2 in each

time step t ∈ T , while arc e′′ belongs to zone 1. Since the i∗-th zone is free at time t, by

following path P from arc e′ to e′′, we will necessarily encounter an index j ∈ [1, D′),

such that mej+1(t) ≥ Yi∗+1 + 1 and mej (t) ≤ Yi∗ , which gives:

mej+1(t)−mej (t) ≥ Y i∗+1 + 1− Y i∗ = Xi∗ + 1.

By Lemma 3.5, for each t ∈ T , at least Xi∗ agents traverse arcs from set E(t, Yi∗) in step

t+ 1, i.e., ai∗(t) ≥ Xi∗ . Thus,

∑

t∈T
ai∗(t) ≥ |T |Xi∗ ≥ 3

⌈
m

X − 1

⌉
Xi∗ > 3mYi∗ .

This contradicts (3.17), completing the proof of (3.18). Note that:

X =
⌊
k1/(2D+6)

⌋

By (3.18), (3.15), and the definition of X, we have:

Ck
rr(G) ≤ 2

⌈m
X

⌉
+ 6

⌈
m

X − 1

⌉
≤ 8

m

X − 1
+ 8 ≤ mD

log k

(
log k

D(k1/(8D) − 2)
+ 8

)
.

Observe that for fixed D, the expression in the above bracket is strictly decreasing with k

for k > 28D, and for k = 216D takes a value of 16. Knowing that k ≥ 216D, we therefore

obtain Ck
rr(G) < 16 mD

log k .

It remains to consider the case not covered by the above lemma, when not all agents

start from distinct positions. In fact, we will reduce such a case to the one already

considered by making use of the concept of delayed deployments discussed in Section 3.1.1.

Lemma 3.3 has the following direct corollary.

Lemma 3.8. Let R and R′ be two starting configurations of the k-agent rotor-router

system with cover times Ck
rr(G) and t′C , respectively. Suppose that there exists a delayed

deployment D of R whose execution transforms the starting configuration of R into the

starting configuration of R′ in t̂ time steps. Then, Ck
rr(G) ≤ t̂+ t′C .

Chapter 3 Exploration with the Rotor-Router system 63

Proof. Observe that the concatenation of the execution of deployment D for t̂ steps and

R′ for t′C steps is a delayed deployment of R which explores the graph in C
k
rr(G) ≤ t̂+ t′C

steps. The claim follows by Lemma 3.3.

The next lemma provides an upper bound on the time of transforming a rotor-router

configuration with at most n agents into one in which agents occupy distinct starting

nodes.

Lemma 3.9. For any initialization R of the rotor-router system with k agents, k ≤ n,

there exists a delayed deployment D of R which terminates in a configuration in which

all agents occupy distinct positions after t̂ ≤ k4 steps.

Proof. In deployment D, we release agents sequentially from their starting positions in

R, moving one agent only at a time until it is located at a node unoccupied by another

agent. Consider the phase in which we move a fixed agent a in this deployment. In

the worst case, a has to explore the graph induced by all nodes occupied to date. The

agent acts a single-agent rotor router system with respect to this graph. Recall that the

cover time of a graph with m edges and diameter D by a single agent is at most 2mD,

regardless of the initial configuration [144]. Since in the considered system there are at

most k occupied nodes with at most k2/2 edges between them, and the graph of occupied

nodes has diameter at most k, a finds an unoccupied node within 2 · k2/2 · k = k3 steps.

This has to be done by each of k agents, thus total time of all phases of the delayed

deployment is t̂ ≤ k4.

When 1 < k ≤ ⌈n1/5⌉, we can bound the time t̂ in the above lemma as: t̂ ≤ k4 ≤
32n/k ≤ 64m/k ≤ 128 mD

log k .

Combining the above result with Lemmas 3.7 and 3.8, we obtain that for any rotor

router initialization with k agents, k ≤ ⌈n1/5⌉ and k ≥ 216D, exploration is completed

within time Ck
rr(G) = t̂+ t′C ≤ 128 mD

log k + 16 mD
log k = 144 mD

log k . On the other hand, when

k < 216D, by Theorem 3.6, the cover time is Ck
rr(G) ≤ 500 mD

log k . It follows that the bound

Ck
rr(G) ≤ 500 mD

log k holds for all starting configurations with k ≤ ⌈n1/5⌉.
When k > ⌈n1/5⌉, we can make use of a result of Yanovski et al. [144], stating that

the worst-case initialization of a rotor-router system with k agents cannot have greater

cover time than the worst-case initialization of a system with k′ < k agents. Putting

k′ = ⌈n1/5⌉, for any k > ⌈n1/5⌉ we obtain: Ck
rr(G) ≤ 500 mD

log k′ ≤ 2500 mD
logn . Finally,

combining the results for k ≤ ⌈n1/5⌉ and k > ⌈n1/5⌉ gives the following theorem.

Theorem 3.10. Let G = (V,E) be any undirected graph with arbitrary initialization of

pointers and let D be the diameter of G. A team of k agents performing in parallel the

rotor-router movement explores G in time max{500mD/ log k, 2500mD/ log n}, regardless
of the initial positions of agents. In particular, if k ≤ nc for some c > 0, then the cover

time is at most 2500c ·mD/ log k.

Theorems 3.6 and 3.10 imply that the cover time of the rotor-router is O(mD/ log k)

for all graphs, whenever k ∈ 2O(D) or k ∈ O(poly(n)). On the other hand, the cover time

64 Chapter 3 Exploration with the Rotor-Router system

Figure 3.2: Graph decomposition used in the proof of Theorem 3.11.

of the rotor-router is trivially lower-bounded as Ω(D) for a team of agents starting from

a single node, regardless of the number of agents. It follows that it is not possible to

extend the bound of O(mD/ log k) on cover time beyond the range k ∈ 2O(n). We leave

as open the question of whether the considered bound can be achieved for the (rather

special) range of values of k not covered by Theorems 3.6 and 3.10.

3.4 Lower bound on cover time for general graphs

In this section we show that for any graph G there exists an initialization of the k-

agent rotor-router system that results in cover time of Ω(mD/k). This means that the

rotor-router does not admit a synergy effect in the worst case initialization.

Theorem 3.11. Let G = (V,E) be any undirected graph of diameter D. There exists a

port labeling of the edges of G, an initialization of pointers and an assignment of starting

positions to a team of k agents, such that the exploration performed in parallel with the

rotor-router movement has cover time Ck
rr(G) ≥ 1

4mD/k.

Proof. If k > m, we make all agents start from an arbitrarily chosen single node, and

choose an arbitrary pointer initialization. In such a scenario, the exploration will be

completed after time at least D > mD
k . Thus, we can safely assume that k ≤ m.

For any graph G = (V,E), as shown in [15, Theorem 2], there exists a partition of

the edge set E = E1 ∪ E2, such that (see Fig. 3.2 for an illustration):

(i) |E1| ≥ m
2 ,

(ii) there exist V1 ⊆ V and V2 ⊆ V such that the subgraphsH1 = G[V1] andH2 = G[V2]

are connected and their edge sets are E1 and E2, respectively,

(iii) there exists a node v ∈ V2 being at distance at least
D
2 from each node of H1.

Denote by F ⊂ E2 the set of edges incident to some node from H1.

Now, let C = {e1, e2, . . . , e2|E1|} be a directed Eulerian cycle in ~H1 (the bidirected

subgraph corresponding to H1) traversing every edge in E1 exactly once in each direction.

To simplify notation, let ∆ =
⌊
2|E1|
k

⌋
.

Chapter 3 Exploration with the Rotor-Router system 65

We choose an arbitrary set of indexes 1 = j1 < j2 < . . . < jk ≤ 2|E1| such that they
are spread (almost-)equidistantly in {1, . . . , 2|E1|}, that is:

∀1≤i<k ji+1 − ji ∈ {∆,∆+ 1} and j1 − jk + 2|E1| ∈ {∆,∆+ 1} .

This is possible because, due to (i), 2|E1| ≥ k.

We partition the set of arcs ~E1 corresponding to edges from E1 into ∆ sets ~S1, . . . , ~S∆ of

size k:

~Si+1 = {ej1+i, ej2+i, . . . , ejk+i} , for 0 ≤ i < ∆,

and one set for all remaining edges: ~R = ~E1 \
⋃∆

t=1
~St.

We choose the starting positions of k agents, the port assignment, and the initialization

of pointers for the arcs in ~E1 such that in their first ∆+ 1 steps, the k agents traverse

all arcs in ~E1 in the following delayed deployment: for each t ∈ {1, . . . ,∆}, in the t-th
step, exactly the edges in ~St are traversed, whereas in the (∆ + 1)-th step we delay

some agents so that exactly the edges in ~R are traversed. We achieve this by setting

outgoing ports so that, for every node u in H1, we order the arcs in ~E1 incident to u by

assigning smaller ports to edges in ~St than to the edges in ~St+1, for each t ∈ {1, . . . ,∆},
where ~S∆+1 = ~R. Such a port ordering is enough to explore the graph H1, with delayed

deployment, with the property that every edge is visited once every ∆+ 1 steps.

Now we assign ports to the set of arcs ~F corresponding to edges from F . To this

end, we consider the subgraph of G, denoted by G̃, consisting of the edges in E1 ∪ F .

In other words, we take H1 (together with the port assignment obtained above) and we

add the edges in F , obtaining G̃. Note that, by (ii), each edge in F has one endpoint in

V1 and the other endpoint in V \ V1. The ports on the arcs of F outgoing from V1 are

determined by analyzing the behavior of agents in the graph G̃ in the delayed deployment

described above. Whenever any set of agents are about to leave H1 and traverse any arcs

from ~F , we select a single agent in a deterministic way (for example, by choosing the

agent located on a node with the smallest index, having indexes assigned to nodes). We

stop all other agents and perform traversals only with the selected agent, until it returns

to H1. We set the ports of the arcs in ~F so that whenever an agent leaves H1 through

an arc (v → u) ∈ ~F (v ∈ V1, u /∈ V1), it returns to H1 through the arc (u→ v) (we call

this property the property of return). Having the property of return, we achieve that

the agents patrol E1, and whenever an agent is about to leave H1, the other agents are

delayed until the agent returns to the same node. Since the selection of agents is done

deterministically, the edges in F are always traversed in separated periods of time (when

one agent is traversing edges from F , all other agents are stopped) in a cyclic fashion,

i.e., the sequence of traversal of the arcs in ~F is
(
f1, f

′
1, f2, f

′
2, . . . , f|F |, f

′
|F |

)∗
, where f ′

means the reversed arc to an arc f , i.e., if f = (u → v), then f ′ = (v → u). Denote

fi = (ui → vi) for each i ∈ {1, . . . , |F |}.
It remains to assign port labels to the arcs in ~E2 \ ~F , where ~E2 is the arc set of the

set of edges E2, and to initialize the pointers for the nodes in V \ V (G̃). This is done

66 Chapter 3 Exploration with the Rotor-Router system

by first constructing a multigraph G′ and then by analyzing a single agent movement

in G′. The node set of G′ is {h} ∪ (V \ V1). For each (u→ v) ∈ E2 \ F , let (u→ v) be

an edge of G′, and for each i ∈ {1, . . . , |F |}, let (h, vi) and (vi, h) be the edges of G′. In

other words, we construct G′ by taking G, leaving the edges in E \E1 untouched, and

contracting (identifying) the nodes of H1 into the single node h. (The loops at h formed

by the edges in E1 are discarded.) For each i ∈ {1,|F |}, the ports of (h→ vi) and

(vi → h) equal the ports of (ui, vi) and (vi, ui), respectively.

We set the remaining ports in G′ and pointer initialization so that a single agent that

starts at h explores G′ in the following way:

(a) The arcs from ~F are traversed according to the order

(
(h→ v1), (v1 → h), (h→ v2), (v2 → h), . . . , (h→ v|F |), (v|F | → h)

)
.

Later on, we use the port labeling of G′ to assign port labels to the arcs in ~E2 in G,

and the above allows us to maintain the return property in G.

(b) The agent requires at least (D/2− 1) traversals through each of the arcs in ~F . This

follows from the fact that, due to (iii), there exists a node in G′ being at distance at

least D/2 from h.

The above process assigns port labels to the arcs in ~E2 and sets initial values of all pointers

in G′, which completes the construction of G and the initial setup of the rotor-router.

Now we analyze the delayed deployment performed by the k agents in G. We divide

the exploration of G into phases. The i-th phase starts in the step in which each edge

in ~S1 is traversed for the i-th time, and ends in the step preceding the beginning of the

(i+ 1)-th stage. Note that each stage contains at least ∆ steps in which all agents move

simultaneously. By (a), the property of return holds in G, and therefore each arc in ~F

is traversed exactly once in each phase, except the first phase, when no arc from ~F is

traversed. (This first phase comes from the fact that arcs from ~E1 have smaller port

numbers than arcs from ~F , in common vertices.) Thus, by (b), at least D/2 phases are

required in the delayed deployment to explore G. This means that we need τ steps in

which all agents move simultaneously to fully explore the graph G, where:

τ ≥ ∆ ·D/2 =

⌊
2|E1|
k

⌋
·D/2 ≥

⌊m
k

⌋
·D/2 ≥ 1

4
mD/k

We can now apply Lemma 3.3 for the considered deployment, obtaining that the cover

time of G is Ck
rr(G) ≥ τ ≥ 1

4mD/k.

The bound in Theorem 3.11 is asymptotically tight for some graph classes, for example

for stars. We leave the following simple observation without proof.

Proposition 3.12. Let G be a star on n nodes. A team of k ≤ n agents covers G in

time Ck
rr(G) ≤ 2⌈n/k⌉, for any initialization of the rotor-router and any initial positions

of agents.

Chapter 3 Exploration with the Rotor-Router system 67

3.5 Cover time on the ring

For a given (possibly delayed) deployment of the k-rotor-router system, such that no two

agents ever occupy the same node at the same time, and a fixed round t, we consider the

partition of the node set into so called domains. We set V (t) = V0(t)∪ V1(t)∪ . . .∪ Vk(t),

where V0(t) denotes the set of nodes which have not yet been visited until round t, and

Vi(t), 1 ≤ i ≤ k, is the set of all nodes such that the i-th agent was the last agent visiting

the node until round t, inclusive. When the considered graph is a ring, we have the

following simple characterization of the structure of the domains of particular agents in

deployments in which agents never meet. We will denote the i-th agent by ai. We state

the following simple properties without proof.

Lemma 3.13. Consider a deployment in which no two agents ever meet at a node,

and let vi(t) ∈ Vi(t) be the location of the agent ai at a given round t, 1 ≤ i ≤ k. The

following properties hold:

• Vi(t) induces a sub-path of the ring.

• The pointers of all nodes u ∈ Vi(t) point away from vi(t), i.e., not along the arc on

the path leading from u to vi(t) in Vi(t). In particular, if vi(t) is an end-point of

the path induced by Vi(t), then all the pointers of Vi(t) \ {vi(t)} point in the same
direction.

• In each round, Vi(t) loses or gains at most one node at each end of the path. In

particular, |Vi(t+ 1)⊕ Vi(t)| ≤ 2.

To provide an asymptotic description of the behavior of agent domains in time, we

introduce the continuous-time approximation of the agents’ behavior. This is useful

under the assumption that the sizes of all the domains are sufficiently large, i.e., that

the change of size of Vi(t) in the number of rounds of the order |Vi(t)| is negligible with
respect to |Vi(t)|.
Suppose that the domains of the agents are ordered along the ring as V0(t), V1(t), . . . , Vk(t).

Assuming that only the i-th agent is moving, the agent will reach each of the endpoints of

its domain every 1/(2|Vi(t)|) rounds. Consequently, within T rounds, the agent enlarges
its domain by approximately T/(2|Vi(t)|) to the left, and T/(2|Vi(t)|) to the right, thus
by about T/|Vi(t)| in total. This movement is counteracted by the moves of the adjacent
agents occupying domains Vi−1 and Vi+1. Consequently, we define the continuous-time

approximation of the rotor-router through the set of differential equations:

dνi(t)

dt
=

1

νi(t)
− 1

2νi−1(t)
− 1

2νi+1(t)
, for 1 ≤ i ≤ k,

where νi(t) = |Vi(t)|, for all 1 ≤ i ≤ k. The interpretation of ν0(t) and νk+1(t) depends

on whether the whole ring has already been covered: if so, then νk+1(t) ≡ ν1(t) and

ν0(t) ≡ νk(t); if not, i.e., if |V0(t)| > 0, then we put ν0(t) = νk+1(t) = +∞.

68 Chapter 3 Exploration with the Rotor-Router system

Whereas the above differential model provides the basic intuition for many of

the proofs, the main difficulty lies in taking into account the differences between the

continuous-time model and the real rotor-router. In particular, we have to consider the

position of the agent within its domain, the discrete changes of the domain size in time,

and the initial pointer arrangement in the unvisited part of the ring.

The following lemma introduces a sequence {ai}k+1
i=0 , useful in analyzing initial place-

ments in which all agents start from the same point of the ring. It corresponds to a normal-

ized solution to the continuous-time model of the rotor-router (i.e., ai(t) = νi(t)/
∑

j νj(t)),

subject to the constraint that the proportions of domain sizes do not change in time (i.e.,
dai(t)
dt = 0), and specific boundary conditions.

Lemma 3.14. For any k > 3 there exists a sequence of positive real numbers

(a0, a1, . . . , ak, ak+1) which satisfies the following properties:

(1) a0 = +∞,

(2) ak+1 = ak < ak−1 < . . . < a1,

(3)
∑k

i=1 ai = 1,

(4) ai · a1 = 2
ai
− 1

ai−1
− 1

ai+1
, for all 1 ≤ i ≤ k,

(5) 1
4(Hk+1) ≤ a1 ≤ 1

Hk
, where Hk = 1+ 1

2 + . . .+ 1
k denotes the k-th harmonic number,

(6) 1
4i(Hk+1) ≤ ai, for all 1 ≤ i ≤ k.

Proof. For a fixed c > 0, consider the recursively defined sequence {bi(c)}+∞
i=0 : b0 = 0,

b1 = c, bi+1 = 2bi − bi−1 − 1
bi
, where we write bi ≡ bi(c) to simplify notation. Let

di = bi − bi−1. Then, d1 = c, and di+1 = di − 1
bi
. Expanding this recurrence, we have:

di+1 = c−
(

1

b1
+ . . .

1

bi

)
.

bi+1 = c−
(

1

b1
+ . . .

1

bi

)
+ bi = (i+ 1)c−

(
i

b1
+

i− 1

b2
+ . . .+

1

bi

)
.

First, by a simple inductive argument we observe from the above that for sufficiently

large values of c = b1, arbitrarily many of the initial elements of sequences {bi(c)} and
{di(c)} are positive.
Next, fix i ≥ 3 and suppose that dj > 0, for all 1 ≤ j ≤ i. Then:

bi ≤ ic.

Thus:

di+1 ≤ c−
(
1

c
+ . . .

1

ic

)
= c− Hi

c
.

From the relation di+1 > 0, we obtain Hi < c2, so i < ec
2+1. This implies that by

adjusting c ∈ (0,+∞), we can arbitrarily choose the number of positive initial elements

Chapter 3 Exploration with the Rotor-Router system 69

of sequence {di(c)}. Taking into account that di(c), for any fixed index i, is a continuous
function of the parameter c, by the intermediate value theorem, there must exist a value

of c such that dk+1(c) = 0, or equivalently, that bk+1 = bk. From now on, we use this

value of c, only. Observe that dk+1 = 0 implies that c =
∑k

i=1 1/bi.

Now, define ai ≡ 1/(cbi), for all 0 ≤ i ≤ k + 1. Such a sequence {ai} immediately
satisfies conditions (1), (2), and (3). Condition (4) is obtained directly by observing that

a1 =
1
c2
and applying the replacement bi = 1/(cai) to the defining recursion of {bi}.

Condition (5) may be restated as Hk ≤ c2 ≤ 4(Hk + 1). We have already established

that the first of these relations holds, since otherwise we would have dk+1 < 0.

We will first show by induction that di > c− 2Hi−1

c for all 1 ≤ i ≤ ec
2/4. Indeed, the

claim holds for i = 1. Suppose it holds for all 1 ≤ j ≤ i. Then:

bj =

j∑

l=1

dl > cj − 2

c

j∑

l=1

Hl−1 = cj − 2

c
(jHj − j),

di+1 = c−
i∑

l=1

1

bl
> c−

i∑

l=1

1

cl − 2
c (lHl − l)

.

Since i < ec
2/4, then for any l < i we have:

Hl < log l + 1 <
c2

4
+ 1,

2

c
(lHl − l) < l

c

2
.

Thus

di+1 > c−
i∑

l=1

1

cl − l c2
= c− 2Hi

c
,

and the inductive claim holds. Now if i < e
c2

4
−1, then:

di > c− 2Hi−1

c
> c− 2 log i+ 2

c
> c− c2

2c
=

c

2
.

Thus k > e
c2

4
−1, and we have:

c2 ≤ 4(log k + 1) ≤ 4(Hk + 1).

Since bi ≤ ic then ai ≥ 1/(ic2) thus sequence {ai} satisfies condition (6).

We are now ready to analyse a specific initialization, for which the k-agent rotor-router

covers the ring particularly slowly.

Theorem 3.15. In the case when all the agents are initially placed at the same node v,

a group of k agents explores the ring of size n in time Θ(n2

log k) when k < n1/11, when all

pointers are initialized along the shortest path to v.

70 Chapter 3 Exploration with the Rotor-Router system

Proof. Consider a scenario with K agents on an N -node ring. Since C
R[K−1]
rr (G) ≥

C
R[K]
rr (G) ≥ C

R[K+1]
rr (G), and the cover time is also monotonous with respect to the size

of the ring, without affecting asymptotic bounds we can assume that K is even an N

is odd, i.e., K = 2k and N = 2n − 1. By induction, we can show that the number of

agents at node v will be even at all times, and the arrangement of pointers on the ring

(except for node v) is symmetric with respect to the axis of symmetry passing through v.

Consequently, the cover time for the N -node ring with K agents is asymptotically the

same as the cover time of a n-node path with k agents, starting from an initial placement

of all agents on one of the end-points v of the path.

Let R[k] be this deployment on the path Pn. We now propose a delayed deployment

D of R[k] in which, starting from a certain moment in time, the domains of all agents are

separate. Let the domains be ordered along the path according to decreasing numbers,

i.e., the agent with domain Vk is the one located closest to the starting point v, while

the agent with domain V1 is the furthest from v, i.e., it is the only agent to explore

previously unvisited nodes of the path. The goal of the formalization below is to define

the delayed deployment so that the ratios of domain sizes satisfy |Vi| ∼ ai, for k ≥ i ≥ 1,

throughout time.

We will identify the path Pn with the integer interval [1, n] (with v = 1), and domains

with subsets of this interval. For k ≥ i ≥ 1, let pi =
∑k

j=i ai. For a given value S,

n ≥ S > 0, we will call a configuration of agents and pointers on the path a desirable

configuration of length S if it has the following properties:

• The position of the i-th agent on the path is vi = ⌊piS⌋.

• Each agent is at the right endpoint of its domain, i.e., Vk = [1, vk] and Vi =

[vi+1 + 1, vi] for k − 1 ≥ i ≥ 1.

• For all the nodes on the path (including those containing agents), except for node
1, the pointer points to the left (towards node 1).

The evolution of the delayed deployment D is defined in two phases, as follows:

• Phase A. Form a desirable configuration with S0 = n√
k log k

. To achieve this, release

the agents one-by-one, starting from agent 1 to agent k, and perform exactly

(⌊piS0⌋ − 1)2 moves with each agent, so that each agent i occupies position ⌊piS0⌋
and all pointers on the path point to the left.

• Phase B. For successive j = 0, 1, . . ., iterate the following procedure, until the path

has been covered. Starting from an initial desirable configuration of some length

Sj , form a new desirable configuration of length Sj+1 = Sj +
⌈
k4a1ak

⌉
+ 12k as

follows:

B1. Starting from the current desirable configuration, release all agents simultane-

ously for
⌈
2k4akSj

⌉
rounds.

Chapter 3 Exploration with the Rotor-Router system 71

a1Sj a2Sj a3Sj akSj

Phase B1

Sj

Phase B2

 . . .

S'

Sj+1

. . .
a1S'
±O(1)

a2S'
±O(1)

a3S'
±O(1) akS'±O(1)

a2Sj+1a1Sj+1 a3Sj+1 akSj+1. . .

Figure 3.3: An iteration of Phase B of delayed deployment D (proof of Theorem 3.15)

B2. Adjust the positions of the agents, so as to reach the desirable configuration

of length Sj+1. To achieve this, release the agents one-by-one, starting from

agent 1 to agent k, allowing each agent i to move until it has reached position

⌊piSj+1⌋.

We denote by T the cover time of deployment D, by A, the total number of rounds of

Phase A, by B1, the total total number of rounds of Phase B1, and by B2, the total

number of rounds of Phase B2. We also remark that during Phase B1 none of the agents

is delayed, hence, by Lemma 3.3 we have:

B1 ≤ Ck
rr(G) ≤ T = A+B1 +B2.

We begin by bounding time A. The agents are released sequentially in Phase A. The

number of rounds required for each agent to reach its position is less than n2

k log k . Thus,

A < n2

log k .

72 Chapter 3 Exploration with the Rotor-Router system

We now proceed to Phase B (see Fig. 3.3 for an illustration). The size of the smallest

domain in configuration S0 is:

⌊
n√

k log k
ak

⌋
≥
⌊

n√
k log k

1

4(Hk + 1)k

⌋
≥
⌊

k11

k3/2 log k (4 log k + 8)

⌋
≥ k9,

where the last inequality holds for k ≥ 106. Consider now the j-th step of the phase,

starting from length S = Sj , and the change of the configuration within part B1 of

this step. The number of rounds used in part B1 of the step is 2akSk
4. Let |Vi|j =

⌊piS⌋ − ⌊pi+1S⌋ ≥ aiS − 1 be the size of the domain of the i-th agent at the beginning

of the j-th step, and let |Vi|j + gi be its size after completion of part B1 of this step.

In order to increase the size of its domain, the i-th agent needs to perform at least gi

traversals of its domain (such that during these traversals the size of this domain is at

least |Vi|j), where a traversal is understood as starting and ending at the right endpoint of
the domain. These traversals require more than aiSgi rounds, whereas the total duration

of part B1 of the j-th step is
⌈
2akSk

4
⌉
, hence we obtain gi < 2k4. Since the total size of

all domains is non-decreasing in time, it follows that
∑k

i=1 gi ≥ 0, and so:

−2k5 ≤ gi < 2k4.

We now proceed to refine this bound on gi. Initially, the size of the i-th domain is between

aiS − 1 and aiS + 1. Thus, for the i-th agent, the number of completed traversals ci of

its domain during the considered part B1 is:

2akSk
4

aiS + 1 + 2k4
≤ ci ≤

2akSk
4 + 1

aiS − 1− 2k5
.

If the i-th node performed ci complete traversals, then it reached each of the boundaries

of its domain at lest ci times and one boundary could be reached ci + 1 times. Thus,

considering the change in size of domain gi during the traversals of agents i, i− 1 and

i+ 1, we have:

2ci − ci−1 − ci+1 − 2 ≤ gi ≤ 2ci + 1− ci−1 − ci+1

and introducing the bounds on ci, ci−1, ci+1 to the

2akSk
4

(
2

aiS + 1 + 2k4
− 1

ai−1S − 1− 2k5
− 1

ai+1S − 1− 2k5

)
− 2 ≤ gi

gi ≤
(
2akSk

4 + 1
)(2

aiS − 1− 2k5
− 1

ai−1S + 1 + 2k4
− 1

ai+1S + 1 + 2k4

)
+ 1.

2akSk
4

(
2

aiS

(
1− 2k4 + 1

aiS + 1 + 2k4

)
− 1

ai−1S

(
1 +

2k5 + 1

ai−1S − 1− 2k5

)
− 1

ai+1S

(
1 +

2k5 + 1

ai+1S − 1− 2k5

))
−2 ≤ gi

gi ≤ 2akSk
4

(
2

aiS

(
1 +

2k5 + 1

aiS − 1− 2k5

)
− 1

ai−1S

(
1− 2k4 + 1

ai−1S + 1 + 2k4

)
− 1

ai+1S

(
1− 2k4 + 1

ai+1S + 1 + 2k4

))
+2

Chapter 3 Exploration with the Rotor-Router system 73

We know that aiS ≥ k9 and ak ≤ ai

2akk
4

(
2

ai

(
1− 2

k5

)
− 1

ai−1

(
1 +

2

k4

)
− 1

ai+1

(
1 +

2

k4

))
− 3 ≤ gi

gi ≤ 2akk
4

(
2

ai

(
1 +

2

k4

)
− 1

ai−1

(
1− 2

k5

)
− 1

ai+1

(
1− 2

k5

))
+ 3

2akk
4

(
2

ai
− 1

ai−1
− 1

ai+1

)
− 11− 8

k
≤ gi ≤ 2akk

4

(
2

ai
− 1

ai−1
− 1

ai+1

)
+ 11 +

8

k

2aiakk
4a1 − 11− 8

k
≤ gi ≤ 2aiakk

4a1 + 11 +
8

k

The above analysis shows that the position of the i-th agent after Phase B1 is upper-

bounded by:

⌊piS⌋+
k∑

l=i

gl < ⌊piS⌋+
k∑

l=i

(ala1akk
4 + 11 + 8/k) ≤

≤ piS + pia1akk
4 + 11k + 8 ≤ ⌊piSj+1⌋ − k + 9 < ⌊piSj+1⌋.

and lower-bounded by:

⌊piS⌋+
k∑

l=i

gl ≥ ⌊piS⌋+
k∑

l=i

(ala1akk
4 − 11− 8/k) ≥ piS + pia1akk

4a1 − 11k − 9 ≥

≥ ⌊piSj+1⌋ − 23k − 9 > ⌊piSj+1⌋ − 24k.

Now, consider the duration of the Phase B2. Each agent must adjust its position to

the right, by a distance of at most 24k. First, the right-most agent (agent 1) has to

perform at most 24k traversals of its domain. As a result, the size of the domain of

the penultimate agent (agent 2) can decrease by at most 24k, hence it must perform at

most 24k + 24k = 48k traversals to reach its position at the end of the step. In general,

agent i has to perform at most 24ki ≤ 24k2 traversals of its domain. The size of the i-th

domain during Phase B2 is at most aiS + 2k4 + 48k2. Thus, the duration of Phase B2 is

bounded by:

k∑

i=1

(
aiS + 2k4 + 48k2

)
24k2 < 24Sk2 + 48k7 + 1152k5.

Observe that the duration of part B1 of the step was 2akSk
4 ≥ 2

4k(Hk+1)Sk
4 > 24Sk2

for k > 103, because ak ≥ 1
4k(Hk+1) from Lemma 3.14. Thus, overall we have that the

execution of B1 dominates the complexity of the algorithm, B1 ∈ Ω(B2) and B1 ∈ Ω(A).

It follows that C
R[k]
rr (G) = Θ(B1). Now, in order to bound time B1, observe that the

j-th step of Phase B results in the increase of Sj , the number of already covered nodes,

by Θ(k4a1ak), which means that Phase B consists of Θ
(

n
k4a1ak

)
steps. Since more than

half of these steps are performed for n/2 < Sj < n, we obtain a tight bound on the

74 Chapter 3 Exploration with the Rotor-Router system

cover time B1 ∈ Θ(n
2

a1
). Noting that a1 = Θ(1

Hk
) by Lemma 3.14, we eventually obtain

B1 ∈ Θ(n2

log k). Thus, C
R[k]
rr (G) ∈ Θ(n2

log k).

We now show that the initialization considered above, with all agents starting from

one node and all ports pointing to the left, is indeed asymptotically the worst possible.

The proof of this theorem proceeds in two steps, first by considering agents starting from

one node with an arbitrary placement of pointers on the ring, and then by extending

this result to the general case through the application of delayed deployments.

Lemma 3.16. In the case when all the agents are initially placed at the same node v, a

group of k agents explores the ring of size n in time O(n2

log k) when k < n1/11, regardless

of the initial placement of pointers.

Proof. We extend the proof of the upper bound from Theorem 3.15 to different initial-

izations of pointers. We consider the case of the rotor-router deployment R[k] on the

n-node path with all agents initially positioned at the left endpoint of the path (but with

arbitrary pointer initialization along the path). As in the proof of Theorem 3.15, we

consider a delayed deployment with similarly defined Phases A and B, using the same set

of desirable configurations of length Sj . Note that in a desirable configuration, all the

pointers along the path point to the left for all nodes which have already been visited

by an agent at least once. In Phase A, agents are released one-by-one, until the i-th

agent reaches position ⌊piS0⌋, after which the agent is stopped (this may happen after a
smaller number of steps than in the proof of Theorem 3.15). In the j-th step of Phase

B, the only difference concerns the definition of part B1, where we add the condition

that, upon reaching position ⌊piSj+1⌋ for the first time, the i-th agent stops and waits
for the other agents to complete part B1 of the step. By induction, one can show that

for i > 1, agent i will only stop moving in part B1 after agent i− 1 has stopped moving,

and consequently, it may never happen that a moving agent meets a stationary agent.

The analysis of the time spent within parts A, B1 and B2 is performed as before, and we

obtain C
R[k]
rr (G) = A+B1 +B2 = O(n2

log k).

The analysis on the ring proceeds by a modification of the argument for a path,

treating the ring as two sub-paths connected at the common node 1. In Phase B, the

deployments on both sub-paths are synchronized so that the agents ak of the respective

deployments arrive at node 1 simultaneously. If agent ak of one of the sub-paths, say

the left one, arrives before the agent ak of the right sub-path, then all the agents of the

left sub-path are stopped at their current locations until the other agent ak arrives at

node 1. (Note that the two sub-paths do not have to be performing the same step j of

Phase B at the same time.) This transformation of the deployment on the path does not

affect asymptotic analysis, hence the cover time of the deployment on the ring is also

O(n2

log k).

Theorem 3.17. For any initialization of the k-agent rotor-router system on the ring,

the cover time is O(n2

log k), for k < n1/11.

Chapter 3 Exploration with the Rotor-Router system 75

Proof. Let R[k] be a deployment of the rotor-router on the ring. Fix a subset P ⊂ V of

P = k2/3 points on the ring which are evenly spaced, i.e., G[V \ P] is a set of disjoint

paths of length at most n/k2/3. Consider a delayed deployment of R[k], which begins

with a Phase in which the agents of R[k] are activated and moved one by one, stopping

each agent as soon as it has reached a node from P . Since the cover time of a path of

length O(n/k2/3) for a single agent is O(n2/k4/3), the duration of this Phase is at most

O(n2/k1/3). After this initial phase, by the pigeon-hole principle, there must exist a node

v ∈ P which contains k′ ≥ k1/3 agents. We now continue the delayed deployment by

releasing k′′ = min{k1/3, n1/11} agents which are located at v, and permanently stopping
(removing) all other agents. By Theorem 3.15, the path will be covered by the delayed

deployment within O
(

n2

log k′′

)
rounds. By summing the duration of the two phases and

using the slow-down lemma, we obtain the claim: C
R[k]
rr (G) ∈ O

(
n2

k1/3
+ n2

log k′′

)
= O(n2

log k),

for k < n1/11.

The following three lemmas provide a partial characterization of the changes of size

of domains during the runtime of a deployment. We first define the borders and interiors

of the domains. If we consider the dynamics of the set of domains Vi(t) in time then we

can observe that an agent i making a cycle in his domain Vi will always capture one node

of both the neighboring domains i− 1 and i+1. Thus some nodes will frequently change

their membership in domains. The goal of defining borders and interiors is to obtain a

more ”stable” process which will allow us to analyze its behaviour in time. Borders are

defined in a fixed moment in time Tbor and for any time moment t > Tbor are defined

recursively based on the positions of borders in step t − 1 and positions of agents in

step t.

Definition 3.18. (1) For time Tbor the border Bai,aa+1(Tbor) between agents ai and

ai+1 is defined as a set of two nodes: such a node from Vi(Tbor) that has a neighbor

in Vi+1(Tbor) (since we work on ring and we have more than 2 agents then there can

be only one such node) and a node from Vi+1(Tbor) that has a neighbor in Vi(Tbor).

(2) For time t > Tbor

(i) If vi(t) ∈ Vi+1(t− 1) \Bai,ai+1(t− 1) (i.e. ai captured a node v belonging in

time t− 1 to the domain of ai+1 and node v was not an element of the border

Bai,ai+1(t− 1)) then the border Bai,ai+1(t) moves. It is reset according to the

rule (1).

(ii) If vi+1(t) ∈ Vi(t− 1) \Bai,ai+1(t− 1) then the border Bai,ai+1(t) moves in the

opposite direction. It is reset according to the rule (1).

(iii) If none of (i), (ii) happened in time t then the border does not move

Bai,ai+1(t) = Bai,ai+1(t− 1).

Borders are defined between all pairs of consecutive domains. We have borders

Ba1,a2(t), Ba2,a3(t), . . . Bak−1,ak(t). If time Texp is a moment of exploration of the ring

76 Chapter 3 Exploration with the Rotor-Router system

(i.e. V0(Texp) = ∅ and V0(Texp − 1) 6= ∅) then the border Bak,a1 between agent a1

and agent ak is defined as in Definition 3.18(1). Thus we have Bak,a1(t) = ∅ for
t = Tbor, Tbor + 1, . . . , Texp − 1 and in step Texp border Bak,a1 is defined and from

that moment of time on it can be moved according to Definition 3.18. Denote by

B(t) =
⋃k−1

i=1 Bai,ai+1(t) ∪Bak,a1(t) the set of all border nodes in step t.

We will say that agent visits the border Bai,ai+1(t) if it visits at least one of the nodes

of the border. We will say that if the rule (2)(i) from the definition 3.18 is applied then

the border between agents ai and ai+1 is moved by agent ai. Symmetrically if the rule

(2)(ii) is applied then we say that the border is moved by agent ai+1. In both cases the

border is moved by two nodes. Observe that border Bai,ai+1 can be moved by ai only if

the agent visits it twice and between these two visits there was no visit by ai+1. This

observation will be used in the following analysis of the evolution of the domains.

Definition 3.19. Define the interior Iai(t) of the domain of agent ai as the domain

without border nodes Iai(t) := Vi(t) \B(t) for i = 1, 2, . . . k.

Every domain Vi of an agent ai consists of an interior Iai and potentially the left

border Bai−1,ai and the right border Bai,ai+1 . Thus, the difference between the size of

the domain and the size of the interior is at most 4.

Lemma 3.20. Assume that unexplored part of the ring V0 has negatively initialized

pointers (i.e. the first agent entering from a node u to a node v ∈ V0 will be sent back to

u). If k ≥ 6 and at time Tbor the interior of every domain has size at least 22k, then for

any t such that Tbor ≤ t < Texp:

(1) if a, b, c are any three agents with consecutive domains (i.e. (a, b, c) = (ai, ai+1, ai+2)

or (a, b, c) = (ai+2, ai+1, ai) for any 1 ≤ i ≤ k − 2), if |Ia(t)| − 7 > |Ib(t)| and
|Ib(t)| ≤ 2|Ic(t)|, then in step t+ 1 the border Ba,b will not be moved by agent a,

(2) if (a, b) = (ak−1, ak) or (a, b) = (a2, a1) if |Ia(t)| − 7 > |Ib(t)|, then in step t+1 the

border Ba,b will not be moved by agent a,

(3) the size of the interior of any domain is at least 11k.

Proof. We will prove this lemma by induction on time. First, take time Tbor. In time

Tbor + 1 no border can move, because Tbor is the time of initialization of the borders and

an agent has to visit the border twice to move it.

We will prove three implications to prove the lemma. Fix any t > Tbor. Assume that

conditions (1), (2) are true for Tbor, Tbor + 1, . . . , t and initially every interior has size

at least 22k. We want to prove that condition (3) is true for t+ 1. We define for any

t∗ ∈ [Tbor, t] a function imin(t
∗) = minα∈A{|Iα(t∗)|} and jα(t∗) = min{|Iα(t∗)|, 22k} for

all α ∈ A. We want to show, that imin(t+ 1) ≥ 11k.

Take any step t∗ ∈ [Tbor, t]. By the inductive claim imin(t
∗) ≥ 11k thus if for some

agents a, b with adjacent domains ja(t
∗)− jb(t

∗) ≥ 8, then |Ib(t∗)| < 22k − 8 ≤ 2|Ic(t∗)|,
because by the inductive claim |Ic(t∗)| ≥ 11k. Thus in step t∗ + 1 the border between a

Chapter 3 Exploration with the Rotor-Router system 77

and b cannot move in the direction of the smaller interior. If |ji(t∗)− ji+1(t
∗)| = 7, then

the border can still move in the direction of the smaller interior thus the difference can

increase up to 11. Since initially for every α ∈ A, |Iα(Tbor)| ≥ 22k, then jα(Tbor) = 22k.

Consider the configuration that yields the minimum possible value of function jα for some

agent α. The configuration is ja1(t
∗) = 22k, ja2(t

∗) = 22k − 11, . . . jak(t
∗) = 11k + 11. It

is true for any t∗ ∈ [Tbor, t+ 1]. Thus the minimum size of the interior of any domain in

step t+ 1 is at least 11k.

Now we will prove the second implication. Take any time step t ≥ Tbor. We want to

prove, that the condition (3) for Tbor, Tbor + 1, . . . , t implies conditions (1) and (2) for

t. Assume, by contradiction, that agent a moves the border between Bi in step t+ 1.

So, in step t, agent a is located at the extremal point of the border of domains a and

b, having completed a cyclic exploration of its domain. Let us denote the mentioned

extremal point of border by vb. Let t
∗ < t be time step, when a previously visited vb. If

such t∗ does not exist, then either a is making first cycle after domains were defined or

node vb was not visited by a in previous cycle. In both cases a cannot move the border

in step t+1. Thus such t∗ exists. Note, that since in time t+1 agent a moves the border

then b had not visited vb in time interval [t
∗ + 1, t]. It is however possible, that in time

t∗ both a and b were located in vb.

Consider what is the minimum time tb > t∗ for agent b to arrive at the border Bai,ai+1 .

Agent b has to get to the border with c (in time |Ib(t∗)| or less) then it can move the
border Bai+1,ai+2 at most once which takes time 5 and then again |Ib(t∗)| to arrive at
node vb. Thus tb ≤ t∗ + 2|Ib(t∗)| + 6. Since b had not arrived at vb until time t then

tb > t and t− t∗ ≤ 2|Ib(t∗)|+ 5.

On the other hand agent a made a full cycle in the interval [t∗, t]. In this cycle a had

to visit all nodes from Ia(t) twice and both nodes from border Bai,ai+1 twice and at least

one node from the other border once. If i = 1 then there is no other border but then

case agent a captures at least one previously unexplored node. Thus t− t∗ ≥ 2|Ia(t)|+ 4.

We obtained lower and upper bound on t− t∗ but in the upper bound we have size of

the Ib in time t
∗. In the interval [t∗, t] agent c could capture some nodes of the interior

of b. In the following we want to bound the number of nodes that could be captured by

c in the interval [t∗, t]. We denote ic = mins∈[t∗,t]{|Ic(s)|} which is the minimum size of
interior of domain of agent c in time interval [t∗, t]. We will consider two cases. First

assume, that ic > |Ib(t∗)|/3, thus t− t∗ ≤ 2|Ib(t∗)|+ 5 ≤ 6ic + 5 and c can make at most

3 complete cycles of its domain. Thus b can lose at most 6 nodes to c in time interval

[t∗, t], thus |Ib(t∗)| − 6 ≤ |Ib(t)|. We have,

t− t∗ ≤ 2|Ib(t∗)|+ 5 ≤ 2|Ib(t)|+ 17 ≤ 2|Ia(t)|+ 3 < t− t∗,

which leads to a contradiction.

Now consider case, when ic ≤ |Ib(t∗)|/3. This means that agent c during interval
[t∗, t] increased size of his interior from at most |Ib(t∗)|/3 to at least |Ib(t)|/2. To
increase size of the interior from ic to ic + 2 agent c has to make at least one full

78 Chapter 3 Exploration with the Rotor-Router system

cycle of his interior and visit border twice thus 2ic + 4 steps are needed. Similarly

to increase from ic to ic + 2δ, we need at least 2δ(ic + δ + 1). Thus to increase

from ic to |Ic(t)| at least 2
⌊
|Ic(t)|−ic

2

⌋(
ic +

⌊
|Ic(t)|−ic

2

⌋
+ 1
)
steps are needed. Thus

t− t∗ ≥ 2
⌊
|Ic(t)|−ic

2

⌋(
ic +

⌊
|Ic(t)|−ic

2

⌋
+ 1
)
. On the other hand since t− t∗ ≤ 2|Ib(t∗)|+5.

We also assume in the condition (1) that |Ib(t)| ≤ 2|Ic(t)| We have

2|Ib(t∗)|+ 5 ≥ t− t∗

≥ 2

⌊ |Ic(t)| − ic
2

⌋(
ic +

⌊ |Ic(t)| − ic
2

⌋
+ 1

)

≥ 2

(|Ic(t)| − ic
2

− 1

)(
ic +

|Ic(t)| − ic
2

)

= |Ic(t)|(|Ic(t)| − 2)/2− i2c/2− ic

≥ 16/33|Ic(t)|2 − i2c/2− ic

≥ 4/33|Ib(t)|2 − |Ib(t∗)|2/18− |Ib(t∗)|/3

Where we used the fact that |Ic(t)| ≥ 11k ≥ 66 thus 2 ≤ 1/33|Ic(t)|. Thus we have

|Ib(t∗)|2/6 + 7|Ib(t∗)|+ 15 ≥ 4/11|Ib(t)|2 (3.19)

Since a made one cycle in time [t∗, t] then all nodes that b lost during this interval were

taken by agent c. Thus agent c had to make at least 2ic(|Ib(t∗)| − |Ib(t)|) steps. Since,
by the inductive assumption ic ≥ 11k:

2|Ib(t∗)|+ 5 ≥ t− t∗ ≥ 2ic(|Ib(t∗)| − |Ib(t)|) ≥ 132(|Ib(t∗)| − |Ib(t)|),

Which gives us

132|Ib(t)|+ 5 ≥ 134|Ib(t∗)|. (3.20)

By combining inequalities (3.19) and (3.20) and the fact that |Ib(t∗)| ≥ 66 we obtain a

contradiction. Thus the second implication is also true. The last implication, that the

condition (3) for Tbor, Tbor +1, . . . , t implies condition (2) for t can be proven similarly as

the second implication. Since the unexplored region has negatively initialized pointers, it

can be seen as a domain of an agent c who never moves any border of its domain.

Now we will formulate an analogue of Lemma 3.20 for the case of t ≥ Texp.

Lemma 3.21. If k ≥ 6 and at time Tbor the interior of every domain has size at least

22k, then for any t ≥ Texp:

(1) if a, b, c are any three agents with consecutive domains and if |Ia(t)| − 7 > |Ib(t)|
and |Ib(t)| ≤ 2|Ic(t)|, then in step t+ 1 the border Ba,b will not be moved by agent

a,

(2) the size of the interior of any domain is at least 11k.

Chapter 3 Exploration with the Rotor-Router system 79

Proof. Analogical to the proof of Lemma 3.20 (1) and (3).

We now show two auxiliary lemmas which allow us to conclude that the sizes of all

domains will eventually even out in time.

Lemma 3.22. Assume that the unexplored part of the ring V0 has negatively initialized

pointers or is empty. Let a and b be two agents with consecutive domains (i.e. (a, b) =

(ai, ai+1) or (a, b) = (ai+1, ai)). If k ≥ 6 and initially the interior of every domain has

size at least 22k and |Ia(t)| > 1.1|Ib(t)|, then for any t ≥ Tbor, in step t+ 1 the border

Ba,b will not be moved by agent a.

Proof. Assume by contradiction, that agent a moves the borders in step t+ 1. Let t∗ be

the last time step, when agent b visited its other border. Using the same argument as in

the proof of Lemma 3.20, we have 2|Ia(t)|+ 4 ≤ t− t∗ ≤ 2|Ib(t∗)|+ 5. It is possible, that

|Ib(t∗)| > |Ib(t)| if b lost some nodes during the time interval [t∗, t]. But this number of
nodes is limited since the size of every domain is at least 11k (by Lemmas 3.20,3.21).

Thus agent b loses at most 2 nodes once every 22k time steps. Thus during 2|Ib(t∗)|+ 5

time steps, b lost at most 2|Ib(t∗)|+5
11k + 2 nodes. Thus

|Ib(t)| ≥ |Ib(t∗)|
(
1− 2

11k

)
− 5

11k
− 2,

|Ib(t∗)| ≤
(
|Ib(t)|+

5

11k
+ 2

)(
1 +

2

11k − 2

)
.

Since k ≥ 6, and |Ib(t)| ≥ 11k ≥ 66, then |Ib(t∗)| ≤ |Ib(t)|
(
1 + 5

11k|Ib(t)| +
2

|Ib(t)|

)(
1 + 2

11k−2

)
<

1.08|Ib(t)|. Thus

t− t∗ ≤ 2|Ib(t∗)|+ 5 < 2.16|Ib(t)|+ 5 < 2.18|Ib(t)|+ 4 < 2|Ia(t)|+ 4 ≤ t− t∗.

And we obtain a contradiction.

Lemma 3.23. Assume that unexplored part of the ring V0 has negatively initialized

pointers or is empty. If |Ia(t∗)| − 4 > |Ib(t∗)| holds for 2n2 consecutive time steps

t∗ = t, t+ 1, t+ 2, . . . , t+ 2n2 − 1 for some t ≥ Tbor, then border between a and b will be

moved by b once in the interval [t, t+ 2n2 − 1].

Proof. Any full cycle of agent a takes at least 2|Ia(t∗)|. Any full cycle of b takes at most
2|Ib(t∗)| + 6 (visiting the whole interior twice and both borders) time steps. Thus if

2|Ia(t∗)| > 2|Ib(t∗)|+ 8, then the cycle of b is shorter by at least two steps. Thus after a

sufficiently large number of time steps (after time at most 2n2), b will visit the border

twice in some time interval [t1, t2] and a will not visit the border in this time interval.

Thus, b will move the border towards a and gain two nodes.

From our considerations, we obtain the lemma which will prove crucial in character-

izing the limit behavior of the rotor-router on the ring.

80 Chapter 3 Exploration with the Rotor-Router system

Lemma 3.24 (agent domains). If at some time step t every domain has size at least

22k+2 and k ≥ 6, then after a sufficiently large number of steps the interiors of adjacent

domains will differ by at most 7.

Proof. If domains have sizes at least 22k + 2 in step Tbor = t, then we can define

interiors and borders so that every interior has size at least 22k. We already know from

Lemmas 3.20 3.21 that if initially every interior has size at least 22k, then during the

deployment every domain will have size at least 11k. If a and b are neighbors and at time

t∗ |Ia(t∗)| ≥ 2|Ib(t∗)|, then we will say that there is a significant difference between a and
b. If there is a significant difference between two adjacent domains of a and b, then by

Lemma 3.22, the border will never move towards the smaller domain and by Lemma 3.23,

the border will eventually move towards the bigger domain. Thus, significant differences

will eventually disappear. Now, if there is no significant difference between any interiors

of neighboring domains, then by Lemmas 3.20 3.21, the border can move in the wrong

direction (towards the smaller domain) only if the difference is at most 7. On the other

hand, by Lemma 3.23, if the difference is at least 4 for a sufficiently large number of

consecutive time steps, then the border will move towards the bigger domain. Thus, if

the difference between the sizes of two adjacent interiors is at least 8, then the border

cannot move in the wrong direction and will eventually move in the correct direction.

Thus, finally if the sizes of each domain are initially at least 22k + 2, then after some

number of time steps, the interiors of adjacent domains will differ by at most 7.

3.5.1 Best-case initial placement

We start by proposing the initialization with agents equally spaced along the path as a

candidate for (asymptotically) best-case initial placement with O
(
(nk)

2
)
cover time. The

proof is straightforward in the case if we assume that the adversary initially directs all

pointers towards the nearest agent, so as to block it. However, the adversary may apply

a different strategy, and there do indeed exist port arrangements which deflect agents

from some section of the ring, leading to a larger value of cover time. In our proof we

show such actions of the adversary do not affect the asymptotics of the cover time.

Theorem 3.25. Consider an initialization of the rotor-router system on the ring with

agents starting on a set of points P = {p1, p2, . . . , pk}, such that G[V \ P] is a set of

paths of length at most n/k. Then, the system covers all of the nodes of the ring in time

O
(
(nk)

2
)
, regardless of the initial pointer arrangement.

Proof. W.l.o.g, let 1 ≤ p1 < p2 < . . . < pk ≤ n. Given a fixed initial pointer arrangement,

let x ∈ [1, n] be the node which is visited last by the rotor-router. To prove the claim, by

the slow-down lemma, it suffices to construct a delayed deployment D of the rotor-router

such that point x is visited by some agent within O
(
(nk)

2
)
rounds. We define deployment

D as follows. Initially, we release all agents simultaneously, so that each agent moves left

while the pointer of its current node points to the left, and stops as soon as it encounters

a node whose pointer points to the right. Let qi denote the position of the agent starting

Chapter 3 Exploration with the Rotor-Router system 81

from pi after this phase is complete; we have pi−n/k ≤ qi ≤ pi, hence the duration of this

phase is at most n/k. We also have |qi+1 − qi| ≤ 2⌈n/k⌉. After this initialization phase,
the deployment proceeds in steps of duration 4⌈n/k⌉. The deployment is defined so that
at the start of each step, agent i is located at point qi. We describe the deployment

through the following procedure, performed simultaneously by each agent i. The agent

moves (to the right), stopping when it has either reached point qi+1, or a node whose

pointer points to the left. It then waits until the end of the 2⌈n/k⌉-th round of the step
to synchronize with other agents, and then returns to node qi, where it waits until the

end of the step.

We observe that in each step such that agent i does not reach qi+1, it reaches a node

on the path [qi, qi+1] which has not previously been visited by any agent. Suppose that

i is such that qi < x < qi+1. It follows that node x will be visited by agent i within

|qi+1− qi| ≤ 2⌈n/k⌉ steps. Since the duration of each step is 4⌈n/k⌉, the second phase of
the delayed deployment takes at most 8⌈n/k⌉2 round. Overall, point x is covered within
O
(
(nk)

2
)
rounds from the start of the process, and the claim follows.

To prove that the equally-spaced initialization is the best possible, we provide a

general case lower-bound of Ω
(
(nk)

2
)
on cover time for all initializations. To do this, we

introduce an auxiliary notion of a good vertex for an initialization of the rotor-router.

Such vertices are shown to always exist (in fact, to be in the majority in the vertex set)

and take a long time to cover, regardless of the initial placement of agents.

Definition 3.26. For any placement of the k agents let S = {s1, s2, . . . , sk} be the k
not necessarily distinct starting vertices. We will consider the subset of good vertices of

the cycle, defined as all nodes v which satisfy the following two constraints:

1. For all 1 ≤ r ≤ k,
∣∣[v, v + r n

10k

]
∩ S
∣∣ ≤ r.

2. For all 1 ≤ r ≤ k,
∣∣[v, v − r n

10k

]
∩ S
∣∣ ≤ r.

The following lemma concerning the relation between good vertices and the starting

positions of the agents, and proves useful in the analysis of the k-agent rotor-router, as

well as the k-agent random walk.

Lemma 3.27. For any initial placement S = {s1, s2, . . . , sk} of the k agents, there are
at least 0.8n− o(n) good vertices.

Proof. Let V1 and V2 be the sets of vertices which satisfy constraints 1 and 2 above,

respectively. We first show that |V1| ≥ 0.9n− o(n). Consider an algorithm which starts

from vertex 0 and scans the cycle in the increasing order of vertex numbers, as follows:

82 Chapter 3 Exploration with the Rotor-Router system

v ← 0

B ← ∅
while (v < n− (n/10k)) do

if v 6∈ V1 then

Let r be the smallest positive integer such that |[v, v + r(n/k)) ∩ S| > r

B ← B ∪ [v, v + r(n/10k))]

v ← v + r(n/k)

else v ← v + 1

end if

end while

By the construction of set B, each new interval of the form [v, v + r(n/10k)), of length

r(n/10k) which is added to it, contains more than r elements of set S. Consequently:

|B ∩ S| > 10k|B|/n, so |B| < 0.1n|S|/k = 0.1n. On the other hand, we observe that for

v < n − (n/10k), v 6∈ B =⇒ v ∈ V1, and so |V1| ≥ n − o(n) − |B| ≥ 0.9n − o(n). By

a similar argument, we show that |V2| ≥ 0.9n− o(n). From here, we obtain the sought

bound on the number of good vertices: |V1 ∩ V2| ≥ 0.8n− o(n).

Theorem 3.28. If n ≥ 440k2 + 40 and k ≥ 6, then for any set of initial locations of k

agents, there exists an initial arrangement of pointers on the ring such that the cover

time of the rotor-router system is Ω
(
(nk)

2
)
.

Proof. Without affecting the asymptotic claim, we assume k ≥ 5. Let S = {s1, s2, . . . , sk}
be the k not necessarily distinct starting vertices. Let ri be the number of vertices initially

between si and si+1, and rk be the number of vertices between sk and s1. Obviously∑
i ri ≥ n − k. Thus

∑
{i:ri≥n−k

2k
} ri ≥ n−k

2 . If we take two middle quarters from each

interval of length at least n−k
2k then totally we will obtain at least

n−k
4 nodes. Thus at

least n/4− o(n) nodes are at distance at least n−k
8k to the closest agent. If n ≥ 9k then

n−k
8k ≥ n

9k . Thus from Lemma 3.27 there are at least 0.05n− o(n) good nodes at distance

at least n
9k to the closest starting point of an agent. For sufficiently large n such node

will exist. We will call this node v. Now we will use Lemma 3.1 and construct a delayed

deployment D1. We will block all but one or two agents to ensure that each agent will

have a domain of size at least n
20k and at least

n
10k nodes will not be explored. We initiate

all pointers negatively – in each node the pointer points away from the closest agent. We

will describe the procedure in one direction. In the other direction procedure will be

the same. Firstly we release the closet agent at the left of v until it reaches the node at

distance n
20k from v. Then we block the agent. Since the closest node to v is at distance

at least n
9k then after this procedure in interval [v +

n
20k , v +

n
10k] there will be only one

agent. Then we take the next closest agent at the left of v and release it until it reaches

node v + n
10k . Again since v is a good node there will be only one agent in interval

[v + n
10k , v +

n
5k]. Then for i-th closest agent at the left of v for i ≥ 2 we release it until

it reaches node v + (i− 1) n
10k . It is possible, that the agent will go to the other side of

the ring. Then we block it at the node v + n
2 and continue procedure. We do the same

Chapter 3 Exploration with the Rotor-Router system 83

procedure to the left and right from v. We end up with some agents at node v + n
2 . We

release them one-by-one. Assume that such agent a went to the left from v. We block

him, when he is at distance n
10k from the last agent placed to the left of v. Now each

agent has a domain of size at least n
20k . Now we release all agents simultaneously. By

Lemmas 3.20 and 3.21 size of any domain will not drop below Ω(n
20k). Assumptions of

Lemmas 3.20 and 3.21 are satisfied, because n
20k ≥ 22k+2 and the pointers are initialized

negatively. We also have a group of n
20k not explored nodes. Since this group will be

explored by agents having domains of sizes at least Ω
(

n
20k

)
it will take at least Ω

(
n2

400k2

)

time steps. Number of steps in D1 when all agents are released simultaneously is Ω
(
n2

k2

)
,

thus from Lemma 3.1 the cover time of not delayed k agents in the rotor-router model in

this case will also be Ω
(
n2

k2

)
.

3.5.2 Comparison with the Random Walk

The question of the cover time of random walks starting from a worst-case initial

placement has already been resolved in the literature. On the one hand, it is known that

the speedup of cover time for a k-agent random walk with respect to the single agent

case is Ω(log k) for any graph whose cover time is asymptotically equal to the maximum

hitting time [7], regardless of the initial placement of agents. Since this is clearly the case

for the ring [5], we have that the cover time of the k-agent random walk is O(n2/ log k).

On the other hand, the adversary may choose to place all agents at one node of the ring.

Such an all-one-one initialization has a cover time of precisely Θ(n2/ log k) [7]. Thus, the

cover time for k random walks on the ring with worst-case initialization is Θ(n2/ log k).

In order to give a complete picture of the relation between multi-agent rotor-router and

random walk we would like to compare the cover time in the best-case initial placement

of agents. The remaining part of this section will focus on analyzing the best-case cover

time for k random walks on a ring.

To establish an upper bound for the best-case scenario, we consider k random walks

with initial positions given with equal spacing, i.e., with offsets 0, n/k, 2(n/k), . . . , (k −
1) (n/k) relative to some node. (For simplicity, we assume here that k divides n.) The

following lemma implies that in this case the cover time is O((n/k)2 log2 k).

Lemma 3.29. Let α ≥ 20, k ≥ 2 and let t := α2(n/k)2 log2 k. Then, with probability at

least 1− k1−α/20, k random walks starting from initial positions with equal spacing cover

all the vertices of the ring within t steps.

Proof. Recall that t = α2 · (n/k)2 · log2(k). Since the maximum hitting time of a single
random walk on a path with 1

5

√
t+ 1 nodes is at most 1

25 t (cf. [123]), we conclude from

Markov’s inequality that a single random walks on the ring with n vertices visits a vertex

which is at least 1
5 ·
√
t to the right of its starting vertex within t steps with probability at

least 1/4. Note that for any vertex u ∈ V = {0, . . . , n−1}, there are at least x−1 random

walks with distance between (n/k) and at most x · (n/k) to u. Putting x = 1
10 ·
√
t/(n/k)

84 Chapter 3 Exploration with the Rotor-Router system

we obtain the following upper bound for the event that u will not be covered:

(
1− 1

4

) 1
10

·
√
t/(n/k)−1

=

(
1− 1

4

) α
10

·log(k)−1

≤ k−α/20.

Now note that if for any vertex u of the set S := {0, n/k, 2(n/k), . . . , (k − 1) (n/k)}
there is a random walk that is initially placed to the left of u with distance at most
1
10 ·
√
t/(n/k) and which traverses at least 1

5 ·
√
t steps to the right within the first t steps,

then all vertices of the ring are covered after t steps. Hence by taking the union bound

over the set S we conclude that all vertices of the ring are covered with probability at

least

1− k · k−α/20 = 1− k1−α/20.

We now prove a corresponding lower bound on the cover time in the best-case scenario,

showing that the position with equal spacing is asymptotically the best possible. We

first prove an auxiliary result which relies on the notion of good vertices introduced in

the previous section.

Lemma 3.30. Let t = 10−4 · (n/k)2 · log2(k), k = ω(1), and let u be any good vertex at

distance at least n
10k from the starting points of all random walks. Then, with probability

at least k−1/2, u is not covered after t steps by any of the k random walks.

Proof. Consider first a random walk with distance (n/k)/10 ≤ d ≤ 4 ·
√
t to u. The

probability that the random walk reaches a point with distance at least 4 ·
√
t to u

without visiting u before is equal to

d

4 ·
√
t
.

Once the random walk has distance 4 ·
√
t to u, the probability that it does not visit u

within t steps is at least 1/2. Combining these insights, we obtain that a random walk

with distance d ≤ 4 ·
√
t does not visit the vertex u within t steps with probability at

least
d

4 ·
√
t
· 1
2
.

Consider now all random walks with distance less than 4 ·
√
t. The number of these

random walks is 4 ·
√
t/(n/k) = (1/25) log k. The probability that none of these random

Chapter 3 Exploration with the Rotor-Router system 85

walks covers u is at least

(1/25) log k−1∏

j=0

n
10k + j · n

10k

4 ·
√
t

· 1
2
≥ 4−(1/25) log k

(1/25) log k∏

j=1

j · n
10k√
t

≥ 4−(1/25) log k ·
(1/25) log k∏

j=1

j

(1/10) log k

≥ 10−(1/25) log k ·
(1/25) log k∏

j=1

j

(1/25) log k

≥ 10−(1/25) log k · ((1/25) log k)!

((1/25) log k)(1/25) log k

≥ 10−(1/25) log k · e−(1/25) log k,

where the last line follows from Stirling’s approximation.

For a random walk with distance d = c ·
√
t, c ≥ 4 to u, the probability to visit u is

at most e−c/2. Hence the probability that u is visited by none of the random walks with

distance at least 4 ·
√
t is lower bounded by

k∏

j=(1/25) log k

(
1− e

− j·n
k√
t
· 1
2

)
=

k∏

j=(1/25) log k

(
1− e

− j
1

100 log(k)
· 1
2

)

=
k∏

j=(1/25) log k

(
1− e

− 50j
log(k1)

)

=
k∏

j=(1/25) log k

(
1− e

− 50j
log(k)

)e
50j

log(k) ·e−
50j

log(k)

≥ e−
∑k

j=(1/25) log k e
− 50j

log(k)

≥ e
− e

− 2
log(k)

1−e−50/ log(k)

≥ e−
log(k)

50 = k−1/50.

Hence none of the k random walks will visit u with probability at least

10−(1/25) log k · e−(1/25) log k · k−1/50 ≥ k−1/2

The lower bound on cover time is completed when we prove the existence of a

good vertex satisfying the conditions of Lemma 3.30. We do this taking into account

Lemma 3.27.

Lemma 3.31. For arbitrary starting positions of k random walks, we need at least

Ω((n/k)2 log2 k) steps to visit all n vertices with probability at least 1/2.

86 Chapter 3 Exploration with the Rotor-Router system

Proof. Let S = {s1, s2, . . . , sk} be the k not necessarily distinct starting vertices. Fix
t = 10−4 · (n/k)2 · log2 k. We define intervals Ii, 0 ≤ i < k/ log2 k, of the form Ii =

[(i − 1)(n/k) log2 k, i(n/k) log2 k). The length of the union of all intervals with even

indices is I =
⋃

0≤j<k/2 log2 k I2j , and |I| = 0.5n− o(n).

If F is the set of good vertices, then by Lemma 3.27, |F | ≥ 0.8n− o(n). Let H be the

set of all nodes at distance at least (n/k)/10 to node from S; we have |H| ≥ 0.8n. Thus

|I ∩ F ∩H| ≥ 0.1n− o(n) and |I ∩ F ∩H| ≥ 0.09n for sufficiently large n. Since each

interval Ii is of length (n/k) log
2 k, at least 0.09k/ log2 k intervals with even indices must

contain a good vertex satisfying assumptions of Lemma 3.30. We pick one such vertex

from each interval. In this way, we obtain set S of 0.09k/ log2 k vertices, at pairwise

distances of at least (n/k) log2 k from each other.

We denote by Y the event that none of random walks reached a distance more than

40 ·
√
t log k to its origin. We note that Pr [Y] ≥ 1 − k−40. We also denote by X the

event, that every vertex in S is explored in time t by k random walks. Note, that

Pr [X|Y] ≤
(
1− k−1/2

) k
1
10 log2 k because if event Y happened, then each vertex s ∈ S

remains uncovered with probability at least k−1/2 and these events are independent for

different vertices in S. Hence

Pr [X] ≤ Pr [Y]Pr [X|Y] + 1−Pr [Y] ≤
(
1− k−1/2

) k
9

100 log2 k + k−40 ≤ 1/2

The last inequality holds for k > 1.

Now, the characterization of the cover time of k random walks in the best-case

scenario follows directly from Lemmas 3.29 and 3.31.

Theorem 3.32. The cover time of k random walks on the ring for best-case initial

placement is Θ((n/k)2 log2 k).

3.6 Return time on the ring

The considerations of the rotor-router in the previous section concerned the time required

to cover all nodes in the initialization phase. As a deterministic system with a finite

number of states, the rotor-router eventually reaches its limit behavior, cycling through a

finite number of configurations. In this section, we characterize this limit behavior of the

rotor-router on the ring using the concept of return time, i.e. the maximum over v ∈ V

of the length of the longest time interval during which v is not visited by any agent of

the rotor-router system in its limit behavior. We show that this performance parameter

of the rotor-router on the ring achieves the best possible value of Θ(nk), regardless of the

initial placement of the agents.

Theorem 3.33. If k ∈ O
(
n1/6

)
then after a sufficiently large number of time steps, the

k-agent rotor-router system will visit every node of the n vertex ring once every Θ(nk)

time steps.

Chapter 3 Exploration with the Rotor-Router system 87

Proof. In this proof we will make use of delayed deployments of agents. When analyzing

delayed deployments, we apply a different definition of a domain: for each agent ai, we

define its domain V (ai) as the union of the two maximal sub-paths of the ring adjacent

to the location v(ai), consisting only of nodes whose pointers point towards v(ai). Note

that, once the whole ring has been explored, for k > 1, this definition is equivalent to

the definition of domains for the undelayed deployment R[k], and is indistinguishable

from the point of view of its future evolution in time. In particular, all the lemmas from

Section 3.5 bounding evolution of domains hold unchanged.

We will denote the undelayed deployment by R[k] and a specific delayed deployment

by D. The considered deployment D consists of two phases. In the first phase, we

selectively release (and delay) agents until the whole ring has been covered, and each

agent has a domain of size at least 22k + 2; details of the construction are provided later.

In the second phase, we release all agents. By Lemma 3.24, the size of every domain

will eventually converge to O
(
n
k

)
. Thus, in deployment D every node will eventually be

visited once every O
(
n
k

)
time steps.

It remains to be shown that the same holds for the undelayed deployment R[k].

Let θ be the total number of rounds during which not all agents are active in D. The

construction of D will be such that θ ∈ O
(
n
k

)
. Now, let t be a time step such that

after t every node is visited at least once every cnk time steps by some agent following

deployment D, for some constant c > 0. Take any t∗ > t. We have that in D, every node

is visited at least once in the time interval
[
t∗, t∗ + cnk

]
. By Lemma 3.3 we have that for

any v, n
R[k]
v (t∗ − θ) ≤ n

D
v (t∗), and nR[k]

v

(
t∗ + cnk

)
≥ n

D
v

(
t∗ + cnk

)
> n

D
v (t∗). Thus, for

any time t∗, some agent following R[k] visits v within the time interval [t∗ − θ, t∗ + cnk],

which contains t∗ and is of duration O
(
n
k

)
. It follows directly that the refresh time of

R[k] is O
(
n
k

)
.

It remains to describe the construction for the first phase of deployment D to achieve

domains of size at least 22k + 2, so that not all agents are active at the same time in at

most O
(
n
k

)
rounds. We proceed as follows. First, we release all agents until all nodes of

the ring have been covered. Next, we release agents one by one, progressing the agent

until it has reached a point located a distance of at least 44k + 6 from the nearest agent.

Since the longest sub-path consisting of agents, which do not have a gap of length at

least 2(44k + 6) + 1 between them, is 88k2 + 13k, and the moving agent is equivalent to

a single-agent rotor-router system, the agent will reach the endpoint of such a sub-path

(and complete its movements) within (88k2 + 13k)2 steps. In total, the moves of all

agents in this stage of the construction require O(k5) rounds. In the next stage, we

deploy the agents one by one, so that each agent is moved until it is located at a distance

of precisely 22k+2 from its location at the beginning of this stage. By a similar analysis,

the duration of this stage is O(k3). Note that during this stage no two agents meet or

pass each other on an edge, and so each agent is adjacent to a path of length 22k+2 with

ports arranged towards its current location. Hence, we have achieved |V (ai)| ≥ 22k + 2

within a total of O(k5) steps, which is O(n/k) for k ∈ O
(
n1/6

)
.

88 Chapter 3 Exploration with the Rotor-Router system

No strong analogue of the above theorem holds for a system with k random walks. The

only property which can be bounded is the expected time between two successive visits

to a node, which is precisely equal to n/k on the ring (since the stationary distribution of

each of the k walks is uniform with probability 1/n on each node). However, the random

variable which describes the expected time between successive visits to a node has high

variance.

3.7 Discrepancy between the rotor-router and random walk

In the two previous sections we studied the behavior of the k-agent rotor-router on the

ring. Now we would like to analyze the asymptotic cover time for different graph classes.

However multi-agent rotor-router on more complex graphs probably does not admit such

structural behavior (domains, continuous time approximation) as for the case of the

ring. Thus in the next few sections we will try a different approach. We will bound the

discrepancy between rotor-router and a well-known process of continuous diffusion.

In contrast to the case of parallel random walks, in the rotor-router system multiple

agents interact with the same set of pointers at nodes, and the agents cannot be considered

independent. However, the link between the multi-agent rotor-router and the parallel

random walk processes becomes more apparent when the number of agents is extremely

large (k ≫ n), so that multiple agents are located at each node of the graph. Then, a

fixed node v of degree d in the graph, which contains av(t) agents at a given moment

of time t, will send them out along outgoing links in the next step of the rotor-router

process, propagating the pointer at each step, so that each of its neighbours receives

either ⌊av(t)/d⌋ or ⌈av(t)/d⌉ agents. In an analogous parallel random walk process, the
expected number of agents following each of the outgoing links of a node v containing

at(v) agents will be av(t)/d. In fact, both the random walk and the rotor-router can

be seen as different forms of discretization of the continuous diffusion process, in which

a node having real-valued load av(t) sends out precisely av(t)/d load to each of its

neighbours in the given time step. Discrete diffusion processes appear in research areas

including statistical physics and distributed load balancing problems, and some studies

of rotor-router-type systems have also been devoted to their diffusive properties. It is

known, in particular, that, at any moment time, the difference of the number of agents

located at a node between the rotor-router system and that in continuous diffusion

is bounded by Θ(d log nµ−1) for d-regular graphs with eigenvalue gap µ [138], given

identical initialization. This difference can even be bounded by constant for the case of

lines [38] and grids [62]. Some other results in the area can also be found in [3, 105]. In

this chapter, we observe that, somewhat counter-intuitively, the link between continuous

diffusion and the rotor-router can also be exploited for small values of k (k ≪ n), for

which agents as a rule occupy distinct nodes (av(t) = 1), and rounding av(t)/d up or

down to the nearest integer makes a major difference.

Chapter 3 Exploration with the Rotor-Router system 89

A variant of the multi-agent rotor-router mechanism has been extensively studied in a

different setting, in the context of balancing the workload in a network. The single agent

is replaced with a number of agents, referred to as tokens. Cooper and Spencer [39] study

d-dimensional grid graphs and show a constant bound on the discrepancy, defined as the

difference between the number of tokens at a given node v in the rotor-router model and

the expected number of tokens at v in the random-walk model. Subsequently, Doerr

and Friedrich [62] analyze in more detail the distribution of tokens in the rotor-router

mechanism on the 2-dimensional grid. Akbari and Berenbrink [3] showed an upper

bound of O(log3/2 n) on the discrepancy for hypercubes and a bound of O(1) for a

constant-dimensional torus.

Notation. We introduce some auxiliary notation related to random walks and diffusion

on the graph. We will denote by Pv,u(t) the probability that a simple random walk,

starting at node v of the graph, is located at u after exactly t steps of the walk, t ≥ 0.

The transition matrix of the random walk will be denoted by M. For a node u ∈ V , u

will denote a vector of length n with u(u) = 1 and all other entries 0. We recall that the

cells of the t-th power of this matrix satisfy the following relation: u⊺
M

t
v = Pv,u(t) [5].

The mixing time after which the random walk on the graph G reaches a total variation

distance of at most 1/4 from its stationary distribution will be denoted by MIX1/4(G).

MIX1/4(G) = max
v∈V

min

{
t : ‖Pv,·(t)− π‖TV ≤

1

4

}
,

where π denotes the vector of the stationary distribution of the random walk. By Pv,·(t)

we denote the vector of probability distribution of the t-step random walk starting from v.

For vector Pv,·(t)− π, the value ‖Pv,·(t)− π‖TV is the total variation distance defined as

follows:

‖Pv,·(t)− π‖TV =
1

2

∑

u∈V
|Pv,u(t)− πu|

This definition can be compared with the following definition of the mixing time used

in [71]. We will denote the mixing time defined according to this second definition by

MIX∗
1/2(G).

MIX∗
1/2(G) = max

v∈V
min

{
t : ∀u∈V

3πu
2
≥ Pv,u(t) ≥

πu
2

}

In our considerations we will use a similar value t1/2(G), which satisfies slightly

relaxed constraints:

t1/2(G) = max
v∈V

min
{
t : ∀u∈V Pv,u(t) ≥

πu
2

}
,

which denotes time after which probability of being at any node is at least half of the

stationary probability regardless of the starting node of the random walk.

Clearly t1/2(G) ≤ MIX∗
1/2(G), and thus we can use results from [71], where authors

present upper bounds on the value of MIX∗
1/2(G) for some graph classes.

90 Chapter 3 Exploration with the Rotor-Router system

3.7.1 The main technique

To bound the cover time of the rotor-router, for any moment of time t, we will estimate

the difference between the number of visits of the rotor-router to a node x ∈ V up to

time t, and the corresponding expected number of visits of parallel random walks, starting

from the same initial placement of agents in the graph, to the same node x. (The latter

notion can be equivalently interpreted as the total amount of load arriving in rounds 1

to t in a similarly initialized continuous diffusion process in load balancing.) It turns out

that the difference (discrepancy) between these two processes is bounded. As soon as

the expected total number of visits of parallel random walks to x up to t has exceeded

the maximum possible discrepancy with respect to the rotor-router, we can be sure that

node x has been visited by the rotor-router at least once up to time t. This is captured

by the following lemma.

Lemma 3.34. Take any graph G. Let t∗ be such a time moment that

∀x∈V
t∗∑

τ=0

(Mτ
n0)x > Ψ(t∗)

where

Ψ(t) = max
v∈V

t∑

τ=0

∑

(u1,u2)∈
−→
E

|Pu1,v(τ)− Pu2,v(τ)|.

Then, the cover time of the k-agent rotor-router with arbitrary initialization on graph G

satisfies Ck
rr(G) ≤ t∗.

Before proceeding to prove the lemma, we remark that Mτ
n0 is a vector describing

the expected number of agents at nodes after τ steps of independent random walks on

G. Vector Mτ
n0 is of size n, and by (M

τ
n0)x we denote its x-th coordinate, for any

x ∈ V . The expression
∑t∗

τ=0 (M
τ
n0)x on the left-hand side of the inequality is the

before-mentioned expected total number of visits of random walks to x up to time t

starting from initial agent placement. The expression Ψ(t∗) is a generalization of the

so-called 1-discrepancy Ψ of the graph, Ψ = limt→+∞Ψ(t), introduced in [138]. The

measure of 1-discrepancy is often applied when comparing a continuous and discrete

process at a fixed moment of time t [18,90], whereas herein we compare the total distance

of two processes over all steps up to time t.

Proof. Consider the total number of visits nu(t) at vertex u until step t by the rotor-

router. It may be expressed as the sum of the number of agents initially located in u and

the number of agents that entered to u from its neighbors (see Section 3.1.1 for details of

the argument):

nu(t) = nu(0) +
∑

v∈Γ(u)

⌈
nv(t− 1)− port(v, u)

deg(v)

⌉
, (3.21)

where port(v, u) ∈ {0, 1, . . . deg(v)− 1} denotes the label of the port leading from v to u.

Chapter 3 Exploration with the Rotor-Router system 91

We can rewrite equation (3.21) as follows

nu(t) =
∑

v∈Γ(u)

nv(t− 1)

deg(v)
+ nu(0) + ξu(t), (3.22)

where ξ(t) is an “error vector” defined as:

ξu(t) =
∑

v∈Γ(u)
αv,u(t), (3.23)

with

αv,u(t) =

(⌈
nv(t− 1)− port(v, u)

deg(v)

⌉
− nv(t− 1)

deg(v)

)
.

Note that the values α
(v,u)
t are defined over directed arcs of the graph, (v, u) ∈ −→E , satisfy-

ing |αv,u(t)| ≤ 1 and
∑

u∈Γ(v) αv,u(t) = 0. Consequently, we have
∑

(v,u)∈−→E αv,u(t)v = 0,

and:

ξt =
∑

(v,u)∈−→E

α
(v,u)
t u =

∑

(v,u)∈−→E

α
(v,u)
t · (u− v) .

Now, we rewrite (3.22) as follows:

n(t) = M · n(t− 1) + (n(0) + ξt), (3.24)

where M is the transition matrix of the random walk on G. Expanding (3.24) we have:

n(t) =
t∑

τ=0

M
τ
n(0) +

t∑

τ=0

M
τξt−τ . (3.25)

We will now bound the absolute value of the maximum element of the vector
∑t

τ=0M
τξτ−t.

We have

∥∥∥∥∥

t∑

τ=0

M
τξτ−t

∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥

t∑

τ=0


M

τ ·
∑

(v,u)∈−→E

α
(v,u)
t−τ · (u− v)




∥∥∥∥∥∥∥
∞

≤

≤

∥∥∥∥∥∥∥

t∑

τ=0

∑

(v,u)∈−→E

α
(v,u)
t−τ M

τ · (u− v)

∥∥∥∥∥∥∥
∞

Note that since |α(u,v)
t−τ | ≤ 1

∥∥∥∥∥

t∑

τ=0

M
τξτ−t

∥∥∥∥∥
∞
≤

∥∥∥∥∥∥∥

t∑

τ=0

∑

(v,u)∈−→E

|Mτ · (u− v)|

∥∥∥∥∥∥∥
∞

. (3.26)

92 Chapter 3 Exploration with the Rotor-Router system

We rewrite the above in terms of probability distributions of of random walk on G after

τ steps:

(Mτ · (u− v))w = Pu,w(τ)− Pv,u(τ), (v, u) ∈ −→E . (3.27)

In this way, we obtain for any x ∈ V :

∣∣∣∣∣nx(t)−
t∑

τ=0

(Mτ
n(0))x

∣∣∣∣∣ =
∣∣∣∣∣

t∑

τ=0

(Mτξτ−t)x

∣∣∣∣∣ ≤ max
w∈V

t∑

τ=0

∑

(v,u)∈−→E

|Pu,w(τ)− Pv,w(τ)| = Ψ(t).

(3.28)

Thus, at time t any node the total number of visits in multi-agent rotor-router deviates

from expected number of visits by multiple random walks by at most Ψ(t). Since at time

t∗ at any node the expected number of visits by random walk is more than Ψ(t∗) by

assumption, all nodes have been visited at least once by the rotor-router.

3.8 Cover time on graphs with small mixing time

Theorem 3.35. The cover time Ck
rr(G) of a k-agent rotor-router with arbitrary initial-

ization on any non-bipartite graph G satisfies

Ck
rr(G) ≤ t1/2(G) +

2∆

δ

n

k
Ψ.

Proof. In order to apply Lemma 3.34, we want to find such a time step t that for any

x ∈ V ,
∑t

τ=0 (M
τ
n0)x > Ψ ≥ Ψ(t).

Since G is not bipartite then Pu,v(t) converges to πv as t goes to infinity. Thus since

Pu,v(t1/2(G)) ≥ πv/2, we have for τ ≥ t1/2(G)

Pτ (u, v) ≥
πv
2
≥ deg(v)

4m
≥ δ

2∆n
,

where π is the stationary distribution of the random walk on G (recall πv = deg(v)/2m).

When considering k independent random walks (‖n0‖1 = k), for τ ≥ t1/2(G) we

obtain (Mτ
n0) (x) ≥ kδ

2∆n . Thus

t1/2(G)+ 2∆n
kδ

Ψ∑

t=0

(Mτ
n0)x > Ψ.

Thus, by Lemma 3.34, within time t1/2(G) + 2∆n
kδ Ψ all nodes of G have been visited by

the k-agent rotor-router.

In order to apply Theorem 3.35 to special graph classes, we provide convenient bounds

on the value of Ψ which hold for regular graphs.

Proposition 3.36. For any d-regular graph G:

(i) Ψ ≤ 4
∑MIX1/4(G)

t=0 maxv∈V
∑

{u1,u2}∈E |Pu1,v(t)− Pu2,v(t)|

Chapter 3 Exploration with the Rotor-Router system 93

(ii) Ψ = O(dMIX1/4(G)).

Proof. We want to approximate the value |Pu1,v(t)− Pu2,v(t)|. Let M be the transition
matrix for the random walk on G and for any node u let u be a vector of length n with

u(u) = 1 and all other entries 0 and let u⊺ be its transposition. We have

|Pu1,v(t)− Pu2,v(t)| =
∣∣u⊺

1M
t
v − u

⊺

2M
t
v
∣∣ =

∣∣(u1 − u2)
⊺ ·Mt

v
∣∣ . (3.29)

Set t = τ + aMIX1/4(G) in the equation (3.29).

|Pu1,v(t)− Pu2,v(t)| =
∣∣∣(u1 − u2)

⊺ ·Mτ ·
(
M

aMIX1/4(G) · v
)∣∣∣ . (3.30)

VectorMaMIX1/4(G) ·v is the distribution of position of random walk starting from v after

aMIX1/4(G). Let 1

n be vector of size n with all values 1/n. Then

M
aMIX1/4(G) · v = 1

n + err
v
a,

where errva is the vector of deviations from stationary distribution for random walk of

length aMIX1/4(G) starting at v. Since G is regular then 1

n is its stationary distribution.

From the properties of mixing time of random walk [121] we have that
∑

w∈V |errva(w)| ≤
2−a+1. We transform the equation (3.30)

|Pu1,v(t)− Pu2,v(t)| =
∣∣(u1 − u2)

⊺ ·Mτ ·
(
1

n + err
v
a

)∣∣

=
∣∣(u1 − u2)

⊺ ·Mτ · 1n + (u1 − u2)
⊺ ·Mτ · errva

∣∣ .

Vector 1

n is an eigenvector of matrixM thusM
τ · 1n = 1

n . Clearly (u1 − u2)
⊺ · 1n = 0. We

have

∑

{u1,u2}∈E
|Pu1,v(t)− Pu2,v(t)| =

∑

{u1,u2}∈E
|(u1 − u2)

⊺ ·Mτ · errva|

≤




∑

{u1,u2}∈E
|(u1 − u2)

⊺ ·Mτ |


 · |errva|

≤

∥∥∥∥∥∥

∑

{u1,u2}∈E
|(u1 − u2)

⊺ ·Mτ |

∥∥∥∥∥∥
∞

·
∑

w∈V
|errva(w)|

≤ 2−a+1max
v∈V

∑

{u1,u2}∈E
|Pu1,v(τ)− Pu2,v(τ)|,

94 Chapter 3 Exploration with the Rotor-Router system

where |err| for a vector err denotes the vector of absolute values of elements. Now we
can bound the value of Ψ

Ψ = max
v∈V

∞∑

t=0

∑

{u1,u2}∈E
|Pu1,v(t)− Pu2,v(t)| ≤

∞∑

t=0

max
v∈V

∑

{u1,u2}∈E
|Pu1,v(t)− Pu2,v(t)|

≤
∞∑

a=0

MIX1/4(G)−1∑

τ=0

max
v∈V

∑

{u1,u2}∈E
|Pu1,v(τ + aMIX1/4(G))− Pu2,v(τ + aMIX1/4)|

≤
∞∑

a=0

MIX1/4(G)−1∑

τ=0

2−a+1max
v∈V

∑

{u1,u2}∈E
|Pu1,v(τ)− Pu2,v(τ)|

= 4

MIX1/4(G)−1∑

τ=0

max
v∈V

∑

{u1,u2}∈E
|Pu1,v(τ)− Pu2,v(τ)|,

which finishes the proof of (i). To prove (ii) observe that

∑

{u1,u2}∈E
|Pu1,v(τ)− Pu2,v(τ)| ≤

∑

{u1,u2}∈E
(Pu1,v(τ) + Pu2,v(τ)) =

∑

u∈V
dPu,v(τ) = d,

because for regular graphs, Pu,v(τ) = Pv,u(τ).

By combining Theorem 3.35 and Proposition 3.36, we will obtain upper bounds on

the cover time of the rotor-router in regular graphs. At this point we provide an auxiliary

result, which allows us to extend all our considerations to almost-regular graphs, as well

as to show that our bounds on cover time hold regardless of whether the considered

graph has self-loops or not. The proof relies on a variant of the delayed deployment

technique for the rotor-router, introduced in Section 3.1.1.

Proposition 3.37. Consider a graph G′ constructed from G by adding self-loops to

vertices, so that in the port ordering at any vertex there are at most x consecutive

self-loops. Then, Ck
rr(G

′)/(x+ 1) ≤ Ck
rr(G) ≤ Ck

rr(G
′).

Proof. It suffices to compare a pair of rotor-router systems in which all agents are

initialized at the same positions in G and G′, and the port orderings of G and G′ are

identical, when disregarding self-loops of G′, establishing the relation between cover times

of such a pair of systems.

The proof that Ck
rr(G

′) ≤ Ck
rr(G) follows directly from Lemma 3.3, since we can

construct a delayed deployment D for graph G which simulates the self-loops as in

G′. Movements of agents in D on G will be exactly the same as in undelayed k-agent

rotor-router operating on G′.

To prove the bound Ck
rr(G

′)/(x + 1) ≤ Ck
rr(G), we prove by induction, that more

generally for any time t and vertex v

nv(t) ≤ n
′
v ((x+ 1)t) ,

Chapter 3 Exploration with the Rotor-Router system 95

where nv(t) and n
′
v ((x+ 1)t) is the total number of visits at vertex v until time t for

rotor-router on graphs G and G′ respectively (where visits of an agent coming in from a

self-loop of v do not count towards n′
v (t)).

Since agents are initialized at the same positions then the claim is true for t = 0.

Assume that it is true for some t ≥ 0. Let for any e ∈ −→E denote by rt(e) and r′t(e) the
total number of traversals of edge e for rotor-router in G and G′ respectively until time t.

In G all agents that entered some node v until step t left v until step t+ 1. On the other

hand in G′ all agents that entered v until step (x+1)t, left until step (x+1)(t+1). Since

the order of pointers when considering only arcs from
−→
E is the same in both graphs, for

any arc e ∈ −→E we have
rt+1(e) ≤ r′(x+1)(t+1)(e)

Since this holds for every arc e ∈ −→E , we have

nv(t+ 1) ≤ n
′
v ((x+ 1)(t+ 1)) ,

which completes the inductive proof. The above relation immediately implies that

Ck
rr(G) ≥ (x+ 1) ≤ Ck

rr(G
′), which completes the proof.

Taking into account Theorem 3.35 and Propositions 3.36 and 3.37, we obtain an upper

bound of O(mD/k) on the cover time of the rotor-router in a wide class of almost regular

graphs with small mixing time. The complementary lower bound Ck
rr(G) = Ω(mD/k) was

shown in Section 3.4. These bounds hold for all k, until the trivial bound Ck
rr(G) = Ω(D)

is reached, for k = Ω(m).

Theorem 3.38. For any graph G such that t1/2(G) = O(D), MIX1/4(G) = O(D), and

∆/δ = O(1), the cover time of the k-agent rotor-router in the worst-case initialization of

the system is:

Ck
rr(G) = Θ

(
max

{
mD

k
,D

})
.

Proof. Note that we only need to consider the case of k = O(m) and show Ck
rr(G) =

Θ(mD/k). The lower bound Ck
rr(G) = Ω(mD/k) was shown in Section 3.4. We will

focus on the upper bound. Consider a ∆-regular graph G′ constructed from G by adding

self-loops to vertices. Since ∆/δ = 1 then adding self-loops to G increases the mixing

time by no more than a constant factor, thus MIX1/4(G
′) = O(D) and t1/2(G

′) = O(D).

By Theorem 3.35 and Proposition 3.36 cover time Ck
rr(G

′) of rotor-router on G′ is

Ck
rr(G

′) ≤ t1/2(G) +O

(
∆n

kδ
Ψ(G′)

)
≤ O(D) +O

(
ndD

k

)
= O

(
max

{
mD

k
,D

})
.

Thus, taking into account Proposition 3.37, deployment D will also cover graph G in

time O
(
max

{
mD
k , D

})
.

Theorem 3.38 immediately implies the results stated in Table 3.2 for the case of

complete graphs, degree-constrained expanders, and Erdős-Renyi graphs with edge

96 Chapter 3 Exploration with the Rotor-Router system

probability p > (1 + ε) lognn . For cliques it is easy to see that t1/2(G) = O(1). For

degree-constrained expanders, and Erdős-Renyi graphs, a bound on value t1/2(G) can be

found in [71] (t1/2(G) is upper-bounded by the mixing time MIX∗
1/2(G)).

The classes of tori, cycles, and hypercubes require more careful analysis; we consider

them in the following sections.

3.9 Cover time on the ring revisited

The general case result shown in Section 3.3 allows us to upper-bound the cover time

of the k-rotor-router system on the cycle by O
(
max{ n2

log k , n}
)
, for any k ≥ 1. On the

other hand, the structural result from Section 3.5 is showing lower bound of Ω
(

n2

log k

)

only for k < n1/11. In the following, we extend this lower bound to arbitrary values of

k. The proof relies on a modification of the approach used in the proof of Lemma 3.34:

whereas Lemma 3.34 can only be used to upper bound cover time, this time we perform

a different transformation of (3.25) for a specific initialization of agents starting from a

single node on the ring, for which we can show that the “error term” associated with

vector ξt−τ is negative. Intuitively, this behaviour is due to an initialization of pointers

which delays progress of the agents going along the path to the most distant node of the

ring. We eventually obtain the following result.

Theorem 3.39. If G is a cycle of size n then cover time of k-agent rotor-router is

Ck
rr(G) = Θ

(
max

{
n2

log k
, n

})
.

Proof. The upper bound is a direct consequence of Theorem 3.6 and the fact that adding

more agents cannot slow down exploration. The lower bound is for k ≤ n1/11 is shown in

Theorem 3.15.

To prove the lower bound for k > n1/11, we consider for simplicity a cycle of even

length, with n′ = n/2, and we divide the cycle into two subpaths of length n′ along

an axis of symmetry crossing a pair of edges. We then perform an initialization of the

rotor-router system which is symmetric with respect to this axis (see Section 3.5 for an

explanation why this argument is correct and sufficient). In all further considerations,

we will restrict our attention to only one of the subpaths of the cycle. We will number

its nodes u1, . . . , un′ , with u1 = v and un′ = w being its endpoints. We now initialize the

rotor-router on the considered path so that all agents are located at vertex v, all ports

along the shortest path to v get label 0, and the port leading away from v gets label 1.

We will show that it takes the agents in the considered system a long time to reach node

w.

Fix a moment of time t, and suppose that none of the agents has reached w until the

end of round t− 1 inclusive. We will now show that if the condition t < n′2/(12 log k) is

satisfied, then none of the agents will reach w at time t either, i.e., nw(t) = 0.

Chapter 3 Exploration with the Rotor-Router system 97

We rely on some of the techniques from the proof of Lemma 3.34. We have from (3.25):

nt(w) =
t∑

τ=0

w
⊺
M

τ
n(0) +

t∑

τ=0

w
⊺
M

τξt−τ . (3.31)

Consider a pair of nodes ui, ui+1, where we recall that ui+1 is the neighbor of ui that is

further from v (and closer to w). Then, due to the chosen port initialization, we have

α
(ui,ui+1)
t−τ = (⌈(nui(t− τ − 1)− 1)/2⌉ − nui(t− τ − 1)/2) ≤ 0. (3.32)

Since the considered graph has degree 2, we have α
(ui,ui−1)
t−τ + α

(ui,ui+1)
t−τ = 0, and we may

write by rearranging the definition of ξt−τ :

ξt−τ =

n′−1∑

i=1

(α
(ui,ui−1)
t−τ ui−1 + α

(ui,ui+1)
t−τ ui+1) =

n′−1∑

i=1

α
(ui,ui+1)
t−τ (ui+1 − ui−1).

In the above sum, u0 should be interpreted as the mirror reflection of u1 in the other

subpath of G, whereas index n′ was discarded from the sum since node w = un′ was not

visited before time t by assumption.

Introducing the above into (3.31), taking into account that n0 = kv, and expanding,

we obtain:

nw(t) =
t∑

τ=0

w
⊺
M

τkv +
t∑

τ=0

(
w

⊺
M

τ
∑n′−1

i=1
α
(ui,ui+1)
t−τ (ui+1 − ui−1)

)
= (3.33)

= k
t∑

τ=0

Pw,v(τ) +
t∑

τ=0

n′−1∑

i=1

α
(ui,ui+1)
t−τ (Pw,ui+1(t− τ)− Pw,ui−1(t− τ)) ≤ k

t∑

τ=0

Pw,v(τ),

where the last inequality holds because α
(ui,ui+1)
t−τ ≤ 0 by equation (3.32), whereas

Pw,ui+1(T) ≥ Pw,ui−1(T) holds for any time moment T , by the basic properties of a

random walk on the cycle starting from vertex w.

In order to show that nt(w) = 0, it suffices to show that nt(w) < 1, since this value

is an integer. Taking into account (3.33) we only need to show that
∑t

τ=0 Pw,v(τ) < 1/k.

We apply the following standard bound based on normal approximation of Pw,v(τ),

recalling that the distance between w and v is n′ − 1, t < n′2/(12 log k), and k > n′1/11:

t∑

τ=0

Pw,v(τ) < t · 1√
t
e−n′2/t =

√
t · e−n′2/t < n′k−12 = k−1(n′k−11) < k−1,

which completes the proof.

3.10 Cover time on the torus

For the d-dimensional torus, Theorem 3.38 is not applicable, since the mixing time of the

torus is MIX1/4(G) = Θ(n2/d) [121], for constant d, whereas its diameter is D = Θ(n1/d).

98 Chapter 3 Exploration with the Rotor-Router system

To bound the cover time for k > n1−1/d, in view of Proposition 3.37, we can

equivalently consider the torus with d self-loops added on each node. We will now rely

on Lemma 3.34, taking into account tighter bounds on Ψ(t) for small values of t. The

following bound can be shown by a straightforward Markovian coupling argument.

Lemma 3.40. If graph G is a d-dimensional torus with d self-loops at each node, then

Ψ(t) ≤ 24d
√
t.

Proof. We apply the Markovian coupling technique to bound values |Pu1,v(τ)−Pu2,v(τ)|,
where u1 and u2 are neighbors. To construct a coupling on G

′, consider three random

walks. Let walk W1 start from u1, and let walks W2 and W3 start from u2. We will view

the random walk on G′ in every step as choosing one among 2d edges and traversing it

with probability 1/2.

Walk W1 is a standard random walk on G
′ and W2 will be constructed based on W1.

When W1 in a step chooses an edge, W2 in the same step chooses the same edge.

Nodes u1 and u2 have the same coordinates in d− 1 dimensions and differ by 1 in

one dimension. Denote by d∗ the dimension on which u1 and u2 differ.

IfW1 chooses a dimension different from d∗ thenW2 makes the same choice whether to

traverse the chosen edge or not. Thus, the positions of walks W1 and W2 will never differ

on a dimension different from d∗. Consider the distance betweenW1 andW2 in dimension

d∗. If W1 chooses an edge from d∗ then when choosing whether to traverse it, W2 makes

the opposite choice (if W1 traverses it, W2 does not). Thus, whenever W1 chooses

dimension d∗, the distance between these walks decreases by 1 with probability 1/2 and

increases by 1 with probability 1/2. Denote by T the random variable denoting the time

of meeting of walksW1 andW2. WalkW3 followsW2 in steps 0, 1, . . . , T and then follows

W1. The pair (W1,W3) forms a coupling. Using the theory of coupling [121, Theorem

5.2], since P{T > τ} is the probability that walks W1 and W3 have coupled after time τ ,

we obtain
1

2
‖Pu1,·(τ)− Pu2,·(τ)‖1 ≤ P{T > τ}, (3.34)

where ‖Pu1,·(τ)− Pu2,·(τ)‖1 =
∑

v∈V |Pu1,v(τ)− Pu2,v(τ)|.
Since the initial distance between the walks is 1, by [121, Theorem 2.17] we obtain

for τ > 0

P{T > τ} ≤ 12/
√
τ (3.35)

By equations (3.34), (3.35) we have

∑

v∈V
|Pu1,v(τ)− Pu2,v(τ)| ≤

24√
τ

(3.36)

Let G′ be a d-dimensional torus with n vertices and d self-loops at each node. We have

12dn√
τ
≥

∑

{u1,u2}∈E

∑

v∈V
|Pu1,v(τ)− Pu2,v(τ)| =

∑

v∈V

∑

{u1,u2}∈E
|Pu1,v(τ)− Pu2,v(τ)|

Chapter 3 Exploration with the Rotor-Router system 99

Observe that by the symmetry of G′, for every v the value
∑

{u1,u2}∈E |Pτ (u1, v) −
Pτ (u2, v)| is the same, thus for any v

12dn√
τ
≥ n

∑

{u1,u2}∈E
|Pu1,v(τ)− Pu2,v(τ)|

We obtain

Ψ(t) = max
v∈V

t∑

τ=0

∑

{u1,u2}∈E
|Pu1,v(τ)− Pu2,v(τ)| ≤ d/2 + 12d

t∑

τ=1

τ−1/2

≤ d/2 + 12d

(
1 +

∫ t

1
x−1/2dx

)
≤ 24d

√
t

which completes the proof.

Introducing the above bound into Lemma 3.34 and taking into account properties of

the random walk in the torus, for k = k′n1−1/d (k′ > 1), we eventually obtain a bound

on cover time of the form O
(

D2

log k′

)
, Somewhat surprisingly, this bound is tight, and we

propose an initialization of the rotor-router system which achieves this bound precisely.

The proof of tightness relies on the bound on cover time for the ring introduced in

Sections 3.5 and 3.9. In this way, we obtain a complete characterization of the speedup

of the rotor-router on the torus.

Theorem 3.41. If G is a torus of constant dimension then cover time of k-agent

rotor-router is

(i) Ck
rr(G) = Θ

(
mD
k

)
, for k ≤ n1−1/d,

(ii) Ck
rr(G) = Θ

(
max{ D2

log k′ , D}
)
, for k = k′n1−1/d, k > n1−1/d.

Proof. We start by proving (i). We want to show that for tori t1/2(G) = O(n2/d). For

sufficiently large n, the distribution of the random walk on the infinite d-dimensional

grid can by approximated by the normal distribution Nd(0, σ
2), where Nd is a product

of d independent normal distributions and σ =
√
t/d is the standard deviation in each

dimension. Hitting probabilities Pu,v(t) on the infinite grid lower-bound the hitting

probabilities for the corresponding pair u, v on torus G. Thus, it is sufficient to bound

the hitting probabilities on the infinite grid for points at distance at most Θ(n1/d) in

every dimension from the starting point.

In the infinite grid, the minimum probability will be achieved for the point which is

at the maximum distance in every dimension from the starting point. This probability

satisfies

Pu,v(t) ≥ (1 + o(1))

(
1

σ
√
2π

e
−n2/d

σ2

)d

= Θ(1)t−d/2e
−d3n2/d

t , (3.37)

where Pu,v(t) is the probability of being in v after t steps of a random walk on the torus

G starting from u. If we set t = cn2/dd2/ log(d/
√
2π), where c is an appropriately chosen

100 Chapter 3 Exploration with the Rotor-Router system

constant, we obtain Pt(u, v) ≥ n−1/2. This means that for tori we have t1/2(G) = O(n2/d).

In the range of k ≤ n1−1/d, we can apply Theorem 3.35, taking advantage of a known

tight bound on Ψ = Θ(n1/d) [138]. In this way, we obtain: Ck
rr(G) = O

(
n2/d + n1+1/d

k

)
=

O
(
mD
k

)
. Moreover, the complementary lower bound Ck

rr(G) = Ω(mD/k) holds for all

graphs by Theorem 3.11. This resolves the case of k ≤ n1−1/d.

Now we want to prove (ii). We first show the lower bound. We want to construct

an initialization of the rotor-router that will lead to the desired cover time. Take a set

of all nodes that have coordinate 0 in the first dimension. There are n1−1/d such nodes.

Assume that k is divisible by n1−1/d and place all agents evenly on these nodes. In each

node we have k/n1−1/d agents. Now we initiate the pointers. The initial position of the

pointer is on the edge in the first dimension that is along the shortest path to the closest

node with coordinate 0 on the first dimension. Initialization of the cyclic order of the

arcs can be arbitrary but the same on every node. With such initialization if we take

all nodes with the same coordinate in the first dimension then we will always have the

same number of agents on these nodes. Thus we can see the exploration of the torus

as the exploration of the ring. We know that the exploration of a cycle of length n1/d

using k/n1−1/d takes time Θ
(

n2/d

log(k/n1−1/d)

)
. If the number of agents k is not divisible by

n1−1/d we can again use Lemma 3.3 to observe that exploration with k agents will not

be faster than exploration with k′ = n1−1/d⌈k/n1−1/d⌉ agents.
Now we want to prove the upper bound. By Lemma 3.40 we know that Ψ(t) ≤ 24d

√
t.

Thus we can use Lemma 3.34 if we find such t∗, that

∀x∈V
t∗∑

τ=0

(Mτ
n(0))x ≥ 48d

√
t∗

It is sufficient to find such t∗ such that for all t ∈ [t∗/2, t∗] all elements of vector Mt
n(0)

are at least equal to 96d/
√
t∗. Vector n0 is non-negative with sum k thus it is sufficient

to find t∗, such that all elements of matrix Mt∗/2 are at least 96d/(k
√
t∗). We want to

find t′ = t∗/2 such that for any u, v ∈ V

Pu,v(t
′) ≥ 96d/(k

√
2t′).

We can use equation (3.37) again. We want to find t such that

Θ(1)t−d/2e−
d3n2/d

t ≥ Θ(1)t−1/2/k

If we take k = n1−1/dk′ and t = n2/d/x then we obtain

x(d−1)/2e−d3x ≥ Θ(1/k′)

log(k′/c) ≥ d3x− (d− 1)/2 log x,

where c is a constant. Thus, if x = log(k′/c)/d and k′ > c, then the inequality is

Chapter 3 Exploration with the Rotor-Router system 101

satisfied. Thus, for k > cn1−1/d agents, we have the cover time Θ
(

d3n2/d

log(k/(cn1−1/d))

)
=

Θ
(

D2

log(k/n1−1/d))

)
, which completes the proof.

3.11 Cover time on the hypercube

For the hypercube with n = 2d vertices, the value of Ψ has been precisely derived in [18].

The corresponding asymptotic formula is Ψ = Θ(log2 n). The value of t1/2(G) was shown

to satisfy t1/2(G) = O(log n log log n) [71, Lemma 5.2]. Using these results in combination

with Theorem 3.35, we obtain the following corollary.

Corollary 3.42. If G is a hypercube with n vertices then Ck
rr(G) = Θ

(
n log2 n

k

)
=

Θ
(
mD
k

)
, for k ≤ n logn

log logn .

The behavior of the rotor-router on the hypercube for k > k1 = n logn
log logn is not

completely understood. For k = k1, the value of cover time is O(log n log log n). Inter-

estingly, we can show that there exists a flat “plateau” region above k1 in which the

asymptotic cover time of the hypercube is precisely Θ(log n log log n). The proof proceeds

along slightly more complex lines than the proof of Theorem 3.39. We show that in

the considered range of k, Θ(log n log log n) time is required for k agents starting at one

corner of the hypercube to reach the opposite corner, given an arrangement of ports at

each node in which the pointer first traverses all ports leading the agent towards the

starting vertex.

Theorem 3.43. If G is a hypercube of size n = 2d then the cover time of k-agent

rotor-router with k ≤ n · 2log1−ε n agents is Ck
rr(G) > ε

10 log n log log n, where ε ∈ (0, 1) is

an arbitrary fixed constant.

Proof. We identify each vertex with a d = log2 n bit vector of coordinates, with v = 0d

and w = 1d being antipodal vertices. We partition set V into layers L0, . . . , Ld, such that

all vertices belonging to layer Li have exactly i ones in their binary representation. Now,

for each vertex u ∈ Li, 0 ≤ i ≤ d, the port labeling of u is set so that ports 0, 1, . . . , (i−1)

point to the i neighbours of u belonging to layer Li−1 in arbitrary order, while ports

i, (i+1), . . . , (d−1) point to the d− i neighbours of u belonging to layer Li+1 in arbitrary

order. The system is initialized with k agents placed on node v.

Acting in a similar way as in the proof of Theorem 3.39, we will show that for all

t ≤ ǫ
10 log n log log n, we have nw(t) = 0. Once again, we consider equality (3.31), and

we prove that each of the summed expressions w⊺
M

τξt−τ is negative, for all 0 ≤ τ ≤ t.

We can represent vector ξt−τ as follows:

ξt−τ =
d∑

i=0

∑

u∈Li




∑

(u,u-)∈
−→
E

u-∈Li−1

α
(u,u-)
t−τ u

- +
∑

(u,u+)∈
−→
E

u+∈Li+1

α
(u,u+)
t−τ u

+


 .

102 Chapter 3 Exploration with the Rotor-Router system

Due to the fact that for each node u from layer Li, all the ports pointing to layer Li−1

are always visited before those in layer Li+1, and that there are no other ports adjacent

to u, we have: ∑

(u,u+)∈
−→
E

u+∈Li+1

α
(u,u+)
t−τ = −

∑

(u,u-)∈
−→
E

u-∈Li−1

α
(u,u-)
t−τ ≤ 0.

Moreover, by the symmetry of the random walk with respect to coordinates of the binary

vector representation of the node, we have that for all nodes x belonging to a layer j,

the probability that a walk starting at w is located at x after τ steps is the same, and

denoted as Pw,x(τ) = P
(j)
w (τ).

Combining the above observations, we obtain:

w
⊺
M

τξt−τ =

d∑

i=0

∑

u∈Li




∑

(u,u-)∈
−→
E

u-∈Li−1

α
(u,u-)
t−τ Pw,u-(τ) +

∑

(u,u+)∈
−→
E

u+∈Li+1

α
(u,u+)
t−τ Pw,u+(τ)


 =

=

d∑

i=0

∑

u∈Li


P (i−1)

w (τ)
∑

(u,u-)∈
−→
E

u-∈Li−1

α
(u,u-)
t−τ + P (i+1)

w (τ)
∑

(u,u+)∈
−→
E

u+∈Li+1

α
(u,u+)
t−τ


 =

=

d∑

i=0

∑

u∈Li



(
P (i+1)
w (τ)− P (i−1)

w (τ)
) ∑

(u,u+)∈
−→
E

u+∈Li+1

α
(u,u+)
t−τ


 ≤ 0,

where in the last inequality we took into account that for all moments of time T ,

P
(i+1)
w (T) ≥ P

(i−1)
w (T), by the properties of the random walk on the hypercube (recall

that w = 1d).

Acting as in the derivation of (3.33), we obtain:

nw(t) ≤ k

t∑

τ=0

Pw,v(τ) = k

t∑

τ=0

P (0)
w (τ).

A derivation of an upper bound on
∑t

τ=0 P
(0)
w (τ) is obtained in [71] (the authors of [71]

consider the lazy random walk on a hypercube with d self-loops at each node, but the

same result can be applied to the hypercube without self-loops, after relaxing time bounds

by a constant factor of 4):

nw(t) ≤ k

t∑

τ=0

P (0)
w (τ) ≤ 4tk

n

(
1−

(
1− 1

log n

)4t
)logn

.

Substituting k ≤ n · 2log1−ε n and t ≤ ε
10 log n log log n, we obtain nw(t) < 1, which

completes the proof.

Chapter 3 Exploration with the Rotor-Router system 103

We leave the question of the cover time of the rotor-router on the hypercube for

k > n · 2log1−ε n as open, noting that, in view of our results, it can be bounded as between

O(log n log log n) and Ω(log n).

3.12 Conclusions

We have shown that the worst-case speedup on many graph classes is equal for both

the k-agent random walk and the k-agent rotor-router, even though this speed up has

a different explanation in both cases. For the random walk, it is a consequence of the

properties of probability distributions of independent Markovian processes, while for the

rotor-router, it results directly from the interactions between different agents and the

pointers in the graph. It is particularly interesting that the range of speedups for the

multi-agent rotor-router turned out to correspond precisely to the conjectured range for

multiple random walks.

In this chapter we also formalized the intuition about similarities between rotor-

router and the continuous diffusion process. Intuitively, the rotor-router can be seen as

discretization of the continuous diffusion process. We showed that it is possible to bound

the difference in cumulative loads between these two processes and obtain asymptotically

tight values of the cover time of the rotor-router for many graph classes.

An interesting question related to this chapter is the following generalization. Consider

a problem of exploration with oblivious mobile agents of a port-labelled graphs with

whiteboards. Agents are oblivious, thus cannot carry any memory while traversing edges

but can leave some information on the whiteboards. Such agents clearly can simulate

the rotor-router process. We may ask the following questions:

• Is there any more efficient algorithm in such generalized model than the rotor-
router?

• What happens if we allow agents to carry, for example, a constant number of
memory bits while traversing an edge?

Finally, we remark that most of our considerations are done for the worst-case initialization

and a possible line of study is the case of randomly initialized pointers. Note that such

a scenario has been studied for the single-agent rotor-router [63]. It would also be

interesting to see examples of graphs where the rotor-router achieves speedup different

than log k or k even for a small number of agents.

Chapter 4

Collision-free exploration

In this chapter we consider graph exploration with multiple agents in a different setting.

The agents are required to synchronously move along the network edges in a collision-free

way, i.e., in no round may two agents occupy the same node. In each round, an agent may

choose to stay at its currently occupied node or to move to one of its neighbors. An agent

has no knowledge of the number and initial positions of the other agents. We are looking

for the shortest possible time required to complete the collision-free network exploration,

i.e., to reach a configuration in which each agent is guaranteed to have visited all network

nodes and has returned to its starting location. It is a different objective than that in

previous chapters where agents were supposed to explore the graph collaboratively.

In this chapter we will consider two scenarios. We first consider the scenario when

each mobile agent knows the map of the network, as well as its own initial position.

In the second scenario, the network is unknown to the agents. In both scenarios we

propose algorithms for collision-free exploration of trees and general graphs. The results

presented in this chapter were published in [T1].

We want to study the graph exploration problem in which two agents may never visit

the same node of the graph at the same time. This property of the model, which we

call collision avoidance, is motivated by the fact that the processes executed by mobile

agents (software agents or physical robots) sometimes require exclusive access to network

resources. Such a setting can be motivated, for example by applications related to mobile

software agents which may need exclusive access to a node’s resources when updating

its data. In another application area, robots (or nano-robots) distributing interacting

chemical or pharmacological agents within a battlefield or a human body must avoid

being simultaneously present at a small distance from each other. Likewise, individuals,

one of which is highly infectious or socially conflicting should avoid a meeting.

In our considerations, time is divided into synchronous rounds. Initially, each agent

is placed at a different node and in each round it may choose to move to a neighboring

node or to stay motionless. The agents are independent in the sense that they cannot

communicate and none of them knows the number of other agents, their initial placement

in the graph, nor is aware of the current location of the other agents. The agents move

independently, and each of them executes the same algorithm. The effectiveness of the

105

106 Chapter 4 Collision-free exploration

algorithm is measured in terms of the collision-free exploration time, i.e., the number of

rounds until all potentially existing agents are certain to have completed the exploration

and returned to their initial location. Details of our model are discussed in Section 4.1.

The only results on exactly the same problem are due to Herman and Masuzawa [98],

who obtained an asymptotically tight bound for trees (with a priori known topology).

Herein, we provide our own analysis of this case for the sake of completeness. Our

analysis for trees allows us to derive an exact number of required steps.

The offline setting of our question is related to the following problem (cf. [8]), which

was studied in the context of routing. Each vertex of a given graph is initially occupied by

a “pebble”, which has to be moved to a destination, so that the destinations of different

pebbles are different. In every synchronous round a set of edges is selected and the

pebbles at each edge endpoints are interchanged. [8] attempts to minimize the number

of rounds so that all pebbles reach their destination, giving lower and upper bounds

for different classes of graphs. The routing model of [8] inherently implies the usage

of matchings - the technique that we choose to apply in some results of this chapter.

The 3n upper bound for trees given in [8] was improved to 1
2n+O(log n) in [145]. [117]

and [132] independently extended this model to allow more than one pebble per origin

and destination node. Although the matching model of routing was also considered in

the online setting (e.g. [132]), this is unrelated to this chapter. Indeed, in online routing

the distributed decisions are made by the network nodes on the basis of local information

concerning incoming packets, while in exploration, the mobile agents determine their

subsequent moves while learning a piece of information about the network structure.

We consider two scenarios, differing in the amount of global information about the

network topology which is available to each agent. Our results are summarized in

Table 4.1.

For the first scenario, considered in Section 4.2, we assume that a map of the network

is a priori known to the agents. We show that a collision-free exploration strategy exists

for any graph, and provide efficient solutions for trees and general graphs. We start

by considering the case of trees, proposing a strategy which involves the simultaneous

activation of agents located at the endpoints forming a matching in some optimal

edge-coloring of the tree. This strategy is shown to yield optimal exploration time.

We then extend this approach from the case of trees to the case of general graphs,

by requiring that the agents perform exploration using only the edges of a well-chosen

spanning tree of the graph. Somewhat surprisingly, it turns out that this approach

is asymptotically the best possible, i.e., within a constant factor of the optimum. To

prove the corresponding lower bound on the collision-free exploration time in graphs, we

establish a tight connection between our problem and the fractional relaxation of the LP

formulation of the minimum-degree spanning tree problem.

In the second scenario, discussed in Section 4.3, we deal with synchronous agents

possessing only local knowledge about the graph to explore. In particular, no knowledge of

the size of the graph is assumed. We suppose that each agent executes a local, distributed

Chapter 4 Collision-free exploration 107

Scenario Tree General graph

With complete map:
n∆(G)

Thm. 4.4

Θ(n∆∗(G))
Thm. 4.6

With local knowledge:
O(n2)
Thm. 4.12

O(n5 log n)

Thm. 4.13

Table 4.1: The time of optimal collision-free graph exploration. ∆(G) denotes the
maximum degree of a node in graphG, and∆∗(G) = ∆(T), where T is a minimum-degree

spanning tree of G.

algorithm, in every round making a decision based on the information concerning the

currently occupied node and the identifiers of the neighboring nodes. For this scenario,

we show that a collision-free exploration is always feasible in finite time and we give

algorithms for trees and general graphs. Our collision-free exploration strategies are

of length O(n2) for trees and O(n5 log n) for arbitrary graphs, and make use of the

application of universal exploration sequences. Throughout the chapter, we assume that

the strategies for collision-free exploration are required to return the agents to their initial

location. This assumption allows us to see our strategies as an analogue of the classical

Travelling Salesman Problem with mutually-exclusive salesmen on an unweighted graph,

and also allows the agents to engage in perpetual (periodic) exploration of the graph.

After minor modification of the proofs, all the results presented in Table 4.1 also hold up

to constant factors for the variant of the problem in which agents may end exploration

at an arbitrary node of the graph.

The problem of graph exploration without collisions was also studied in the case

when two agents also collide when traversing one edge in opposite directions. In that case

exploration is not always possible. In [14] the authors study the maximal number of agents

that can explore graph without collisions in synchronous setting. The asynchronous

Look-Compute-Move model is considered in [21] where the authors study the maximal

and minimal number of agents that are necessary and sufficient to solve the problem for

a ring. In both these papers it is assumed that each agent can observe (or compute) the

positions of the other agents. Collision avoidance in the Look-Compute-Move was also

studied in the context of graph searching [20].

4.1 Model and definitions

We assume that the nodes of each n-node network have unique identifiers in {1, . . . , n}.
The identifier of a node v is denoted by id(v). Several agents are initially located at

pairwise different nodes of the network. The initial position of each agent λ is denoted

by home(λ). Each agent is unaware of the number and initial positions of the other

agents, and all agents are given the same algorithm that determines their behavior in

the subsequent rounds.

108 Chapter 4 Collision-free exploration

Each agent can perceive the identifier id(v) of the currently occupied node v and can

perceive the identifiers of all neighbors of v. Moreover, the agent can distinguish the

edges incident to v according to the identifiers of the nodes located at the endpoints of

the edges. The latter assumption is necessary to properly perform the navigation in a

node labeled network.

The agents are synchronous and hence the time is divided into rounds of equal

duration. Each round is divided into two stages. In the first stage each agent λ makes a

decision (by executing its algorithm) that determines its behavior in the second stage of

the round. The decision can be three-fold: it may decide to stay in this particular round

at the currently occupied node, to move from the currently occupied node to one of its

neighbors, or decide that its exploration is completed. In the second stage of the round,

all agents simultaneously perform the action corresponding to their decision. If, as a

result, two agents located at some adjacent nodes u and v decide to move from u to v

and from v to u, respectively, then they traverse the same edge in this round, but remain

unaware of this event, i.e., the two agents do not communicate and do not perceive each

other. We require that the algorithm given to the agents ensures the following:

• at the end of each round no two agents are present on the same node of the network,

• by the end of some round t ≥ 0, all the agents have decided that the exploration is

completed,

• each agent has visited each node of the network in one of the rounds 1, . . . , t,

• each agent λ is present at home(λ) at the end of round t.

Note that, in this setting, the execution of the agent’s algorithm (and thus the behavior

of the agent) only depends on the input to the algorithm and on the identifiers of the

nodes visited by the agent. Thus, in particular, an agent is unable to ever discover the

initial or current position of any other agent or the number of agents in the network.

With respect to additional information available to the agents, we study two scenarios

in this work: either the agents have no prior knowledge of network topology and no

knowledge of global parameters, or the complete map of the network is given to all agents.

In the latter case the map consists of node identifiers, but provides no information on

the locations of other agents. Note that if, together with a complete map of the network,

all agents receive as an input information on the initial positions of all agents, then

our exploration problem becomes similar to the off-line routing problems considered e.g.

in [8, 132,145].

Let us introduce the notation used in this chapter. Let G = (V (G), E(G)) be any

graph. For any node v of G let ΓG(v) be the set of neighbors of v. We use the symbol

∆(G) to denote the degree of G, defined as ∆(G) = max{|ΓG(v)| : v ∈ V (G)}. (|ΓG(v)|
is called the degree of v.) Given a set of edges X ⊆ E(G), define G[X] to be the

network with nodes in V (G) and edges in X, G[X] = (V (G), X). Note that G[X]

is not necessarily connected. A connected network H such that V (H) ⊆ V (G) and

Chapter 4 Collision-free exploration 109

E(H) ⊆ E(G) is called a connected component of G if there exists no connected network

H ′ such that V (H) ⊆ V (H ′) ⊆ V (G) and E(H) ⊆ E(H ′) ⊆ E(G) and H 6= H ′.

Any sequence R = (v0, v1, . . . , vl) of nodes of a network G is called a route in G if

vi = vi−1 or {vi, vi−1} is an edge of G for each i = 1, . . . , l. We say that l is the length of

R and we write Ri = vi for each i = 0, . . . , l. The route R covers G if for each node v of
G there exists i ∈ {0, . . . , l} such that v = Ri. The route R is closed if R0 = Rl, where

l is the length of R. Let λ be an agent. We say that the route R of length l is a route of
λ if: (i) R0 = home(λ) and λ is present at Ri at the end of round i, i = 1, . . . , l, and (ii)

λ does not move in any round r > l.

We say that a route R of length l is an exploration strategy for λ if (i) R is a route
of λ, (ii) R is closed, (iii) R covers G. Two routes R and R′ of length l are collision-free

if Ri 6= R′
i for each i = 0, . . . , l. Let A = {λ1, . . . , λk}, 1 ≤ k ≤ n, be the set of agents

that are initially located at the nodes of G. Let R(λ) be the exploration strategy for
each agent λ ∈ A. We say that R(λ1), . . . ,R(λk) are collision-free if R(λi) and R(λj)

are collision-free for each i, j ∈ {1, . . . , k}, i 6= j. Let t be the minimum integer such

that for each set of agents placed arbitrarily on the nodes of G there exist collision-free

exploration strategies, each of length at most t, for the agents. Then, t is called the

collision-free exploration time of G.

4.2 Network exploration with a map

In this section we consider the problem of collision-free exploration in the case when each

agent is given a complete map of the network to be explored. We start by discussing the

simpler case of tree networks and then we generalize our approach from trees to arbitrary

networks, showing its asymptotic optimality by proving a corresponding lower bound.

We start with some additional notation and two lemmas that are the main tool in

the analysis of the algorithm given in this section.

Given a tree network T , we say that a function c : E(T) → {1, . . . , d} is a d-edge-
coloring of T if c(e) 6= c(e′) for any two adjacent edges in T .

Let d be an integer, let c be a d-edge-coloring of G, and let v be any node of G.

Define T (v, d, c) = (v0, v1, v2, . . .) to be an infinite route in G starting at v such that:

(i) if c({vi−1, u}) 6= 1 + (i− 1)mod d for each neighbor u of vi−1 in G, then vi = vi−1,

(ii) if c({vi−1, u}) = 1 + (i− 1)mod d for some neighbor u of vi−1, then vi = u.

Then, define T l(v, d, c), l ≥ 0, to be the prefix of T (v, d, c) of length l, and T l
i (v, d, c) to

be vi for each i = 0, . . . , l.

(See Figure 4.1 for an example of T dn(v, d, c) computed for a tree network T on

n = 15 nodes. Figure 4.1(a) gives T and a 6-edge-coloring c of T , thus, d = 6 in this

example.)

We now give two lemmas in which we prove that if u and v are two distinct nodes

of T , then the routes T dn(u, d, c) and T dn(v, d, c) are collision-free, and each of them is

closed and covers the tree network.

110 Chapter 4 Collision-free exploration

3

1

(a)

v

1

2

3

45

6

1

4

6

2

2
5 9−13

14

19

20

2836−40

35

41

48

49

56

27

76−78

80

86

81−85

1

8

58

59−63

64

66

67−71

72

65,73−74

15−16,90

89

17

79

55

42

21

34
22−26

29−33

43−47

50−54

57

75

18,87−88

7

2−6(b)

Figure 4.1: (a) a 15-node tree network T with a 6-edge-coloring c; (b) the route
T dn(v, d, c) = T 90(v, 6, c) = (v0, . . . , v90) encoded as follows: an integer i that is a label
of an arc going from u to v indicates that vi = v and vi−1 = u; an integer label i of a

node u of T means that vi = vi−1 = u.

Lemma 4.1. Let T be a tree network. If c is a d-edge-coloring of T , then for any two

distinct nodes u and v of T the routes T l(u, d, c) and T l(v, d, c) are collision-free for each

l ≥ 0.

Proof. Let l ≥ 0 be fixed arbitrarily. Denote T l(u, d, c) = (u0, u1, . . . , ul) and T l(v, d, c) =

(v0, v1, . . . , vl).

We prove by induction on i = 0, . . . , l that T i(u, d, c) and T i(v, d, c) are collision-free.

By assumption, u 6= v and by definition, T 0(u, d, c) = (u) and T 0(v, d, c) = (v). Hence,

the claim follows for i = 0.

Assume that the claim holds for some i ∈ {0, . . . , l − 1} and we prove it for i+ 1. If

ui = ui+1 and vi = vi+1, then the proof is completed. Thus, ui 6= ui+1 or vi 6= vi+1 and

assume without loss of generality that the former occurs. By construction of T (u, d, c),
c({ui, ui+1}) = 1 + (imod d). If ui+1 = vi, then from the construction of T (v, d, c) we
obtain that vi+1 = ui and consequently ui+1 6= vi+1 as required. If ui+1 6= vi, then

vi+1 6= ui+1, because ui 6= vi and c is an edge-coloring of T .

Lemma 4.2. Let T be a tree network and let d be an integer. If c is a d-edge-coloring

of T and v is a node of T , then the route T dn(v, d, c) is closed and covers T .

Proof. Consider T to be rooted at v and let Tu to be a subtree of T induced by u and

all its descendants for each u ∈ V (T). Assume without loss of generality that T consists

of at least two nodes. Denote T dn(v, d, c) = (v0, v1, . . . , vdn).

We prove by induction on the subtree size that for each u ∈ V (T), if i ∈ {0, . . . , dn}
is the minimum index such that vi = u, then (vi, . . . , vi+s) is closed and covers Tu, where

s = |V (Tu)|d− 1.

We first consider the case of a single node tree Tu. Since |V (T)| > 1, u has a parent u′.

By the definition of T (v, d, c), c({u, u′}) = 1 + (i− 1)mod d. Let s ≥ 0 be the maximum

index such that vi = vi+1 = · · · = vi+s. Clearly, vi+s+1 = u′. We obtain that s ≥ d− 1,

Chapter 4 Collision-free exploration 111

because otherwise 1 + (i+ s)mod d = c({vi+s, vi+s+1}) = c({u, u′}) = 1 + (i− 1)mod d,

and hence (s + 1)mod d = 0, which is a contradiction. Moreover, vi+d = u′, because

1 + (i+ d− 1)mod d = 1 + (i− 1)mod d. Hence, s = d− 1 as required.

Consider any rooted subtree Tu, |V (Tu)| > 1, and suppose that the claim holds for

any subtree with less than |V (Tu)| nodes. We first consider the case when u 6= v.

Let u1, . . . , up, p ≥ 1, be the children of u in Tu. By the definition of edge-coloring,

d ≥ ∆(T), and hence p ≤ d. Let u′ be the parent of u in T , and assume without loss of

generality that for some 1 ≤ q ≤ p

c({u, u′}) < c({u, u1}) < · · · < c({u, uq}) and c({u, uq+1}) < · · · < c({u, up}) < c({u, u′}).
(4.1)

Let ij be the minimum index such that vij = uj , j = 1, . . . , p. By the induction

hypothesis, R(uj) = (vij , . . . , vij+sj) is closed and covers Tuj , where sj = |V (Tuj)|d− 1,

for each j = 1, . . . , p.

First we prove that for each j = 1, . . . , p it holds vij+sj+1 = u. Let j ∈ {1, . . . , p} be
selected arbitrarily. By the choice of ij , vij 6= vij−1. Since v0 is the root of T , u = vij−1.

This implies that

c({u, uj}) = c({vij−1, vij}) = 1 + (ij − 1)mod d. (4.2)

Note that

1 + (ij + sj)mod d = 1 + (ij + |V (Tuj)|d− 1)mod d = 1 + (ij − 1)mod d. (4.3)

By the fact that R(uj) is closed, uj = vij+sj . Hence, by (4.2) and (4.3),

c({uj , u}) = c({vij+sj , vij+sj+1}) = c({uj , vij+sj+1}).

Since, c is an edge-coloring of T , vij+sj+1 = u as required.

Let C(uj) be the maximal subsequence of T dn(v, d, c) starting with vij+sj+1 and with

all elements equal u, j = 1, . . . , p. By (4.1) and by construction of T (v, d, c),

C(uj) = (vij+sj+1, . . . , vij+1−1) for each j = 1, . . . , p− 1. (4.4)

Define C(u0) and C(up) to be the maximal subsequences of T dn(v, d, c) starting with

vi and vip respectively, with all elements equal u. Note that the definition of C(u0) is
correct, because vi = u. By (4.4),

(vi, . . . , vi+s) = C(u0),R(u1), C(u1),R(u2), C(u2), . . . ,R(up), C(up),

where

s =

p∑

j=0

|C(uj)|+
p∑

j=1

|R(uj)| − 1 = 2p+

p∑

j=0

(|C(uj)| − 1) +

p∑

j=1

(|V (Tuj)|d− 1). (4.5)

112 Chapter 4 Collision-free exploration

The sum
∑p

j=0(|C(uj)| − 1) equals, informally speaking, the number of two consecutive

appearances of u in (vi+1, . . . , vi+s). By (4.1), this sum equals d− p− 1, because c is a

d-edge-coloring of T and u is not the root of T . Hence, by (4.5),

s = d− 1 +

p∑

j=1

|V (Tuj)|d = d(1 +

p∑

j=1

|V (Tuj)|)− 1 = |V (Tu)|d− 1.

Finally, if u = v, then the proof is analogous, and the fact that u has no parent

implies that
∑p

j=0(|C(uj)| − 1) = d − p. Hence, we obtain that s = dn when u is the

root, which completes the proof.

It remains to observe that the considered routes can be implemented as exploration

strategies. Indeed, each agent λ is able to construct some d-edge-coloring c of T (the

same for all agents, e.g., lexicographically first with respect to some chosen ordering of

all colorings) with d = ∆(T), and hence it is able to ‘follow’ T n∆(T)(home(λ),∆(T), c).

We formulate this strategy in the form of the algorithm below.

Algorithm Tree-Exploration(T)

Input: A node-labeled tree network T .

begin

Let v be the initial position of the executing agent.

Compute the lexicographically first ∆(T)-edge-coloring c of T

for each round r ← 1 to n∆(T) do

if there exists an edge {v, u} such that c({v, u}) = 1 + (r − 1)mod∆(T)

then move from v to u in round r, set v ← u.

else stay at v in round r.

end Tree-Exploration

For an agent λ following Algorithm Tree-Exploration, its route is of length n∆(T),

and given as Rn∆(T)(λ) = T n∆(T)(home(λ),∆(T), c), where c is the ∆(T)-edge-coloring

computed in the Algorithm. Consequently, taking into account Lemmas 4.1 and 4.2, we

have the following.

Proposition 4.3. Let T be a tree network and let λ1, . . . , λk, 1 ≤ k ≤ n, be the

agents initially located at pairwise different nodes of T . Suppose that the agent λi uses

Algorithm Tree-Exploration to compute its route Rn∆(T)(λi), for each i = 1, . . . , k. Then,

Rn∆(T)(λ1), . . . ,Rn∆(T)(λk) are exploration strategies, and are collision-free.

It turns out that there exist no shorter collision-free exploration strategies than those

constructed with Algorithm Tree-Exploration.

Theorem 4.4. The collision-free exploration time of any n-node tree network T is

precisely equal to n∆(T).

Chapter 4 Collision-free exploration 113

Proof. The upper bound follows from Proposition 4.3. Now, we prove the lower bound,

i.e., that the collision-free exploration time of T is at least n∆(T). Let u be a fixed node

of degree ∆(T) in T . First assume that there are n agents in T . We say that an agent λ

is active in round r if λ goes from v to u in round r for some v ∈ ΓT (u). In each round

at most one agent is active. For each agent λ there exist at least ∆(T) rounds in which

λ is active, because the route of λ needs to be closed and T is a tree. Since there are

n agents in total, we obtain that there are at least n∆(T) rounds in which an agent is

active. This proves that there exists an agent λ that is active in round n∆(T), and hence

its exploration strategy is of length at least n∆(T). Finally, observe that λ constructs

the same route regardless of the number of agents present in the network. This is due to

the fact that T and id(home(λ)) is the entire input to the algorithm that λ executes.

We finish this section by remarking on the complexity of Algorithm Tree-Exploration.

For any tree network T on n nodes, there exists a ∆(T)-edge-coloring of T and it can be

computed in O(n)-time. Consequently, the total time of an agent’s local computations

when running Algorithm Tree-Exploration is O(n∆(T)).

We say that T is a spanning tree of G if T is a tree such that V (T) = V (G) and

E(T) ⊆ E(G). Then, T is a minimum degree spanning tree of G if T is a spanning

tree of G and the degree of T is minimum over the degrees of all spanning trees of G.

Define ∆∗(G) = ∆(T), where T is a minimum degree spanning tree of G. We propose

the following solution to the collision-free exploration problem.

Algorithm Network-Exploration(G)

Input: A node-labeled network G.

begin

Compute the lexicographically first minimum-degree spanning tree T ∗ of G.

Call Algorithm Tree-Exploration(T ∗).

end Network-Exploration

The next proposition follows from the formulation of Algorithm Network-Exploration

and from Proposition 4.3.

Proposition 4.5. Let G be a network and let λ1, . . . , λk, 1 ≤ k ≤ n, be the agents

initially located at pairwise different nodes of G. Suppose that the agent λi uses Algo-

rithm Network-Exploration to compute its route R(λ), i = 1, . . . , k. Then, R(λ1), . . . ,

R(λk) are collision-free exploration strategies of length n∆
∗(G).

Now, the following theorem implies that our result is asymptotically tight, i.e., it

implies that Algorithm Network-Exploration constructs exploration strategies whose length

is within a constant factor from the optimum.

Theorem 4.6. The collision-free exploration time of any network G is Θ(n∆∗(G)).

Proof. The fact that the collision-free exploration time of G is O(n∆∗(G)) follows from

Proposition 4.5.

114 Chapter 4 Collision-free exploration

Now, we prove the lower bound of Ω(n∆∗(G)). Observe that if ∆∗(G) ≤ 3, then the

theorem follows, because each exploration strategy must be of length Ω(n). To finish the

proof, suppose that there exist exploration strategies for the agents, such that the length

of each exploration strategy is at most n(∆∗(G)− 3)/2.

For each node v of G let Ev = {{v, u} : u ∈ ΓG(v)}. Consider the following linear
program (LP) with variables (xe : e ∈ E(G)), which satisfies the following set of constraints

[69,97]:

∑

e∈E(G)

xe = n− 1 (4.6)

∑

e∈E(G[S])

xe ≤ |S| − 1, for each S ⊆ V (G) (4.7)

∑

e∈Ev

xe ≤ t, for each v ∈ V (G) (4.8)

0 ≤ xe ≤ 1, (4.9)

where t is an integer and n is the number of nodes of G. Any solution to the above

problem is called a fractional spanning tree of degree t of G. Informally speaking, if

(xe : e ∈ E(G)), is a solution to (4.6)-(4.9), then xe is the ‘fraction’ of the edge e that is

included in the resulting fractional spanning tree. Note that any integer solution, i.e. the

one in which xe ∈ {0, 1} for each e ∈ E(G), is a spanning tree of degree at most t of G.

Suppose that n agents λ1, . . . , λn are present in the network G. Let R(λ1), . . . ,R(λn)

be some collision-free exploration strategies for the agents. Suppose that the length

of each exploration strategy is at most nt/2. Based on these exploration strategies,

we now construct a solution to the LP in (4.6)-(4.9). For each i = 1, . . . , n, let Ti be

any spanning tree of G such that if e ∈ E(Ti), then there exists a round r such that

e = {Rr−1(λi),Rr(λi)} (in other words, λi traverses e in some round). Such a Ti exists,

because R(λi) covers G, i = 1, . . . , n. Define:

fi(e) =




1/n, if e ∈ E(Ti)

0, if e /∈ E(Ti)
and xe =

n∑

i=1

fi(e) for each e ∈ E(G). (4.10)

Now, we prove that xe’s defined in (4.10) form a solution to the LP in (4.6)-(4.9).

First note that
∑

e∈E(G) fi(e) = (n− 1)/n for each i = 1, . . . , n, because fi assigns

1/n to exactly n− 1 edges of G, which follows from the fact that Ti is a spanning tree of

G, i = 1, . . . , n. Thus, (4.6) holds.

Now, let S ⊆ V (G) be selected arbitrarily. For each i = 1, . . . , n, |E(Ti)∩E(G[S])| =
|E(Ti[S])| ≤ |S| − 1, because Ti[S] is, by definition, a collection of node-disjoint trees on

set S. Hence, (4.7) follows.

Chapter 4 Collision-free exploration 115

Let v be any node of G and let X = Ev ∩ (E(T1) ∪ · · · ∪ E(Tn)). For each r there

exist at most two edges in X traversed by an agent in round r. Hence,

∑

e∈X

n∑

i=1

fi(e) ≤
nt

2
· 2
n
= t.

Note that if e ∈ Ev \X, then
∑n

i=1 xe = 0. This proves that (4.8) holds.

Finally, (4.9) follows directly from (4.10).

We have proved that the existence of exploration strategies of length nt/2 implies

the existence of a solution to (4.6)-(4.9). Moreover, we have the following.

Claim ([97]). If there exists a solution to (4.6)-(4.9), then there exists an integer

solution to (4.6),(4.7),(4.9) with the additional constraint

∑

e∈Ev

xe ≤ t+ 2 for each v ∈ V (G)

which replaces (4.8).

We remark that such an integer solution defines a spanning tree of G, given by the

set of edges {e ∈ E(G) : xe = 1}.
In view of the definition of xe’s in (4.10), it follows that if there exist exploration strate-

gies of length at most nt/2 for the n agents, then there exists a spanning tree T ∗ of G, and

the degree of T ∗ is at most t+2. By assumption, there exist in G exploration strategies of

length at most n(∆∗(G)−3)/2, hence, putting t = ∆∗(G)−3, it follows that G has a span-
ning tree of degree at most ∆∗(G)− 1, a contradiction with the definition of ∆∗(G).

We finish this section with a complexity remark. Finding a minimum-degree spanning

tree is in general an NP-hard problem. We can, however, modify the approach to obtain

an exploration strategy of length n(∆∗(G) + 1) that can be computed efficiently. We

make use of a O(mnα(m,n) log n)-time algorithm that for a given G finds its spanning

tree T of degree ∆(T) ≤ ∆∗(G)+1, where m and n are, respectively, the number of edges

and nodes of G, and α is the inverse Ackermann function [92]. By using the tree T in

Algorithm Network-Exploration instead of T ∗ we obtain an exploration strategy of length

n(∆∗(G) + 1) for agent λ, and this strategy is computed in time O(mnα(m,n) log n).

On the other hand, computing the precise value of collision-free exploration time is a

hard problem.

Proposition 4.7. The problem of deciding, for a given network G and integer l, whether

the collision-free exploration time of G is at most l, is NP-complete.

Proof. We prove that the problem is NP-complete already for the special case of l = n,

where n is the number of nodes of G. The proof is by reduction from the Hamiltonian

cycle problem [93]. We argue that there exists a Hamiltonian cycle of G if and only if

the collision free exploration time of G is n.

If such a Hamiltonian cycle C = v1-v2-· · · -vn exists, then one can construct an
exploration strategy R(λ) for an agent λ with home(λ) = vi by taking R(λ) =

116 Chapter 4 Collision-free exploration

(vi, vi+1, . . . , vn, v1, . . . , vi−1, vi). Clearly, R(λ) is a route of length n in G, because

C is a cycle. Also, R(λ) is closed and covers G. Moreover, if for another agent λ′ we

have home(λ′) 6= vi, then R(λ) and R(λ′) are collision-free.

Now suppose that the collision-free exploration time of G equals n. Let λ be any

agent initially occupying any node of G and take an exploration strategy R(λ) of length
n for λ. Since R(λ) covers G, Ri(λ) 6= Ri−1(λ) for each i = 1, . . . , n. By the fact that

R(λ) is closed, R0(λ) = Rn(λ). Hence, R(λ) is a cycle of length n in G as required.

4.3 Local network exploration

In this section we consider the problem of collision-free exploration in the setting when

the agents do not receive any information about the network in which they operate.

Recall that we assume, that each node v ∈ V is equipped with a unique identifier

id(v) ∈ {1, 2, . . . , n}, and each agent located at v is only aware of the identifier id(v) and
the identifiers of the neighbors of v at the endpoints of respective edges incident to v. In

Section 4.3.1 we consider tree networks, and in Section 4.3.2 we show how any network

can be explored.

Let G be any network. For the purposes of this section we introduce an edge-labeling

function id′ defined as

id′({u, v}) = id(u) + id(v) for each {u, v} ∈ E(G). (4.11)

We recall without proof the following essential property of function id′.

Lemma 4.8. Let G be any n-node network. Then, id′ is a 2n-edge-coloring of G.

4.3.1 Local exploration of tree networks

In this section we provide an algorithm which defines collision-free routes of agents, and is

guaranteed to perform exploration if the explored network is a tree. For any integer b ≥ 2

define the following sequence of integers U(b) = (1, . . . , 2b, . . . , 1, . . . , 2b), where

1, . . . , 2b is repeated b times, and let Ui(b), i ∈ {1, . . . , 2b2}, be its i-th element.

Chapter 4 Collision-free exploration 117

Algorithm Local-Tree-Exploration

begin

Let v be the initial position of the executing agent.

b← 2

r ← 0

while not all nodes have been visited so far do {start a new phase}
for s← 1 to |U(b)| in round r + s do

if there exists an edge {v, u} such that id(u) ≤ b

and id(v) ≤ b and id′({v, u}) = Us(b)

then move from v to u {in round r + s}; set v ← u.

else stay at v. {in round r + s}
end for

r ← r + |U(b)|
b← 2b

end while

Backtrack all previous moves, i.e., λ moves from v to u in round r+ i if and only

if λ moved from u to v in round r − i+ 1 for each i = 1, . . . , r.

end Local-Tree-Exploration

Define phase p, p ≥ 1, as the sequence of rounds (1+
∑p−1

j=1 |U(2j)|, . . . ,∑p
j=1 |U(2j)|)

and denote by ℓ(p) = |U(2p)| the number of rounds of phase p. Note that

ℓ(p) = 22p+1 for each p ≥ 1, (4.12)

and that phase p consists of the rounds in which the behavior of any agent λ is determined

in the p-th iteration of the ‘while’ loop of its execution of Algorithm Local-Tree-Exploration,

whenever p does not exceed the total number of iterations executed. Denote by R(λ, p)
the route of an agent λ restricted to its moves in phase p, p ≥ 1.

We denote by Tp the subgraph of T induced by all edges e whose endpoints have

identifiers at most 2p, Tp = T [{{u, v} ∈ E(T) : id(u) ≤ 2p ∧ id(v) ≤ 2p}].
Finally, define ℓ = 2

∑⌈log2 n⌉
p=1 ℓ(p).

We now prove that each agent λ moves in phase p ‘inside’ the connected component

T ′ of Tp that contains the vertex occupied by λ at the beginning of phase p.

Lemma 4.9. Let p ≥ 1 be an integer, let T be a tree network and let λ be an agent. Let

v be the vertex occupied by λ at the beginning of phase p. Then, R(λ, p) is a route in the
connected component of Tp that contains v, and R(λ, p) = T ℓ(p)(v, 2p+1, id′).

Proof. First we argue that R(λ, p) is a route in the connected component T ′ of Tp that

contains the node v. The agent λ performs its moves in phase p as a result of the

execution of the p-th iteration of the ‘while’ loop of Algorithm Local-Tree-Exploration.

The value of the variable b in this p-th iteration equals 2p. Hence, if λ decides to move

from a node v to a node u in some round of phase p, then id(u) ≤ 2p and id(v) ≤ 2p.

Thus, {u, v} is an edge of Tp, and therefore {u, v} ∈ E(T ′).

118 Chapter 4 Collision-free exploration

To conclude that R(λ, p) = T ℓ(p)(v, 2p+1, id′), note that, by Lemma 4.8, id′ restricted

to T ′ is a 2p+1-edge-coloring of T ′. Thus, the lemma follows from the definition of T and
from the formulation of Algorithm Local-Tree-Exploration.

Note that the length of the route R(λ, p) of λ in phase p is bounded by ℓ(p), hence
is, in general, ‘unrelated’ to the number of nodes of T ′. For this reason, T ′ need not

be completely explored. However, by the definition of Tp, we have that Tp = T (and

T ′ = T) if and only if p ≥ ⌈log2 n⌉. We use this observation to show that all agents
perform backtracking and stop after exactly the same phase p = ⌈log2 n⌉, and that in
this phase each of them visits all nodes of T .

Lemma 4.10. Let T be a n-node tree network. For each agent λ the number of iterations

of the ‘while’ loop of Algorithm Local-Tree-Exploration executed by λ equals ⌈log2 n⌉.
Moreover, R(λ, ⌈log2 n⌉) covers T .

Proof. If p ∈ {1, . . . , ⌈log2 n⌉ − 1}, then Tp 6= T . Hence, Tp is not connected and, by

Lemma 4.9, R(λ, p) does not cover T . The agent λ determines this fact, e.g., by recording,
in a set X, the identifiers of all nodes adjacent to the nodes of its route in phase p,

R(λ, p). Then, due to the connectedness of T , X contains an identifier such that the
corresponding node is not in R(λ, p) and consequently λ starts executing the (p+ 1)-st

iteration of the ‘while’ loop of Algorithm Local-Tree-Exploration.

Now, let p = ⌈log2 n⌉, and so Tp = T . Due to Lemma 4.9, R(λ, p) = T ℓ(p)(u, 2p+1, id′),

where u is the node occupied by λ at the beginning of phase p. By the formulation

of Algorithm Local-Tree-Exploration and by (4.12), ℓ(p) = 22p+1 ≥ 2n2 ≥ 2n∆(T). By

Lemma 4.2, R(λ, p) covers T , because, due to Lemma 4.8, id′ is a 2n-edge-coloring of
T .

We now argue that the agents will never meet while moving during any given phase

p.

Lemma 4.11. Let λ and λ′ be any two agents, let T be a tree network, and let p ≥ 1 be

an integer. The routes R(λ, p) and R(λ′, p) are collision-free.

Proof. Let u and u′ be the nodes occupied by λ and λ′, respectively, at the beginning

of phase p. By the formulation of Algorithm Local-Tree-Exploration, the moves of both

agents in phase p are determined in the p-th iteration of the ‘while’ loop of their executions

of Algorithm Local-Tree-Exploration. If u and u′ belong to different connected components

of Tp, then due to Lemma 4.9 the routes R(λ, p) and R(λ′, p) are collision-free. Hence,

assume that u and v are in the same connected component T ′ of Tp. By Lemma 4.9, the

routes in T ′ are given as R(λ, p) = T ℓ(p)(u, 2p+1, id′) and R(λ′, p) = T ℓ(p)(u′, 2p+1, id′).

Thus, the proof is complete in view of Lemma 4.1.

Taking into account the above lemmas, we obtain our main result for local exploration

of trees.

Chapter 4 Collision-free exploration 119

Theorem 4.12. Let T be a tree network and let λ1, . . . , λk, 1 ≤ k ≤ n, be the agents

initially located at pairwise different nodes of T . Suppose that the agent λi uses Algo-

rithm Local-Tree-Exploration to compute its route Rℓ(λi), for each i = 1, . . . , k. Then,

Rℓ(λ1), . . . ,Rℓ(λk) are collision-free exploration strategies of length O(n2).

Proof. By Lemma 4.10, each route Rℓ(λi), i = 1, . . . , l covers T in at least one phase.

Since the route performed by each agent is closed due to the backtracking steps included

in Algorithm Local-Tree-Exploration, Rℓ(λi) is an exploration strategy for λi. Taking

into account that the phases of all agents are perfectly synchronized in each phase, and

that the agents perform backtracking and stop after exactly the same phase ⌈log2 n⌉, it
follows from Lemma 4.11 that their exploration strategies are collision-free. Finally, from

the definition of ℓ we have ℓ = O(n2).

4.3.2 Local exploration of general networks

For the purposes of analysis, we introduce some auxiliary notation concerning the so-

called anonymous graph model. In this model nodes are anonymous, and each edge has

two port numbers assigned, each to one of its endpoints, in such a way that the ports at

edges incident to any node form a set of consecutive integers, starting from 1. An agent

located at a node v can only perform its next move based on the local port numbers.

Before continuing, we provide several comments and informal intuitions concerning

this model. First note that a collision-free exploration is, in general, impossible in

arbitrary anonymous port-labeled networks. (This is the case, for example, for two agents

located initially in symmetric, and thus indistinguishable, positions at the endpoints

of a 3-node path.) However, we will overcome this difficulty by designing an auxiliary

port-labeled network A(G) based on the node-labeled network G, that has the property

that each edge has identical port numbers at both of its endpoints, and in such a case the

collision-free exploration will be guaranteed to exist. The behavior of an agent can be

seen as navigating in our node-labeled network G by navigating in the underlying ‘virtual’

port-labeled network A(G). In particular, the function id′ defined in (4.11) provides both

port numbers for each edge. Hence, each agent, while present at any node v can compute

the port number of the edges incident to v. Then, the agent ‘simulates’ its next move

in the port-labeled network and, based on that, performs the move in the node-labeled

network.

As a tool for our analysis we use the theory of universal sequences (formal definitions

are provided below) that has been developed for regular port-labeled networks. Such

a universal sequence, once computed by all agents, is then used to find a collision-free

exploration strategy in the port-labeled network. In view of our earlier comment, the

latter results in the collision-free exploration strategy in the node-labeled network.

We say that a network is d-regular if all nodes of the network have degrees equal

to d. Given a port-labeled network A and a node v of A, we say that an agent λ

initially located at v follows a sequence of integers U = (x1, . . . , xl), with 1 ≤ xi ≤ d for

i = 1, . . . , l, if for each i = 1, . . . , l, in round i the agent λ performs a move along the

120 Chapter 4 Collision-free exploration

edge with port number xi at its current node. By a slight extension of notation, we allow

a port-labeled network to have self-loops (with exactly one port number assigned to the

loop); a traversal of the self-loop is assumed not to change the location of the agent.

We recall the concept of universal sequences defined in Chapter 1. We say that

a sequence U of integers is (n, d)-universal if for each node v of each regular n-node

network A of degree d, an agent initially placed at v visits each node of A by following U .

Aleliunas et al. [6] have shown non-constructively that for each n > 0 and d > 0, there

exists a (n, d)-universal sequence of length O(d2n3 log n) for networks with self-loops.

Note that a (n, d)-universal sequence can be computed (rather inefficiently) by examining

all sequences of the considered length and for each such candidate sequence one can

generate all n-node port-labeled regular networks of degree d. Once a sequence U and a

network A are selected, it can be tested if following U from each node of A results in

visiting all nodes of A.

Given a node-labeled network G, we define the corresponding port-labeled network

A(G) so that there exists a bijection ϕ : V (G) → V (A(G)) such that {u, v} ∈ E(G) if

and only if {ϕ(u), ϕ(v)} ∈ E(A(G)), and for each {u, v} ∈ E(G) the port numbers at

both endpoints of edge {ϕ(u), ϕ(v)} ∈ E(A(G)) are equal to id′({u, v}). Since, according
to Lemma 4.8, id′ is an edge-coloring of G, no two edges of A(G) sharing a node have

the same port number at this node. Then, for each node u ∈ V (G) we add 2n− |NG(u)|
loops at ϕ(u) in A(G). As a result, the degree of each node of A(G) is 2n, and the length

of the universal sequences constructed following [6], which we will use when exploring

A(G), will not exceed O(n5 log n). In what follows, we will identify exploration of G with

exploration of A(G).

Theorem 4.13. There exists an algorithm that allows any set of agents located initially

at distinct nodes of any network G, and having no information about G, to compute

collision-free exploration strategies of length O(n5 log n).

Proof. Consider an execution of Algorithm Local-Tree-Exploration such that the sequence

U(b) defined in Section 4.3.1 is replaced by a (b, 2b)-universal sequence. By [6], such a

sequence exists and is of length O(n5 log n). We argue that for this modified algorithm,

the route R(λ) of each agent λ is a collision-free exploration strategy of G.
First, observe that R(λ) is a well-defined route, because, due to the formulation of

Algorithm Local-Tree-Exploration, the agent λ does check if an edge {v, u} exists before
moving from v to u in any round. Now we argue that R(λ) covers G. Consider phase
p = ⌈log2 n⌉ that consists of the rounds in which the moves of λ are determined in the p-th
iteration of the ‘while’ loop of Algorithm Local-Tree-Exploration. We have that id(v) ≤ b

for each node v of G, because b ≥ n in this particular iteration. Let λ′ be an agent that

follows U(b) in A(G), starting at the node ϕ(v′) such that v′ is the node occupied by λ

at the beginning of phase p. By the formulation of Algorithm Local-Tree-Exploration, the

agent λ moves from v to u in round s of phase p if and only if id′({u, v}) = Us(b). By the

definition of A(G), the port number of {ϕ(u), ϕ(v)} at ϕ(v) is Us(b). Hence, λ goes from

v to u in round s of phase p if and only if λ′ goes from ϕ(v) to ϕ(u) in A(G) in round s.

Chapter 4 Collision-free exploration 121

Since U(b) is (b, 2b)-universal and b ≥ n in phase p, the route of λ in phase p covers G,

regardless of the position of λ at the beginning of phase p. Finally, the fact that R(λ)
is closed is due to the formulation of Algorithm Local-Tree-Exploration (λ backtracks its

moves performed during the execution of the ‘while’ loop).

Let λ and λ′ be two agents initially placed at distinct nodes of G. We prove that their

routes R(λ) and R(λ′) are collision-free. Similarly as in the proof of Lemma 4.10 one

can argue that the number of phases for each agent equals ⌈log2 n⌉. Hence, it is enough
to analyze the moves of λ and λ′ in an arbitrarily selected phase p ∈ {1, . . . , ⌈log2 n⌉}.
Suppose that λ moves from v to u in round s of phase p. This implies that id′({u, v}) =
Us(b). If λ

′ is located at u at the beginning of this round, then λ′ moves from u to v

in round s of phase p, because it also verifies that id′({u, v}) = Us(b). Also, two agents

cannot simultaneously move from v to u and from v′ to u for two different nodes v and

v′, because id(v) 6= id(v′) and therefore id′({v, u}) = id(v) + id(u) 6= id(v′) + id(u) =

id′({v′, u}).
To complete the proof, observe that for each agent λ the length of its route is at most

2

⌈log2 n⌉∑

i=1

|U(2i)| =
⌈log2 n⌉∑

i=1

O(25i log 2i) = O(n5 log n).

4.4 Conclusions

We have shown that, in our model, a solution to the collision-free exploration problem

is always feasible, even when the agents only have local knowledge. This should be

sharply contrasted with asynchronous variants of the problem (when agents do not have

synchronized clocks or may perform an asynchronous meeting in the middle of an edge),

in which a solution is not always feasible. This is the case even for the fully symmetric

scenario on the two-node line, where two agents starting from the two nodes cannot

complete exploration without swapping, thus implying the possibility of asynchronous

meeting.

Chapter 5

Conclusions

In this thesis we have studied algorithms for graph exploration with mobile agents. Most

of the results present in the literature concerned the case of a single agent. In this

thesis, we focused on studying time-efficient algorithms for multiple mobile entities in

several different models. In the considered scenarios, we showed in what way and to what

extent exploration with multiple agents is more efficient than single-agent exploration. In

particular, we considered tradeoffs between team size and exploration time. In Chapter 2,

devoted to team exploration, we were considering agents equipped with memory whereas

in Chapter 3, devoted to the rotor-router model, some memory was available at the

nodes. Finally, in the collision-free model studied in Chapter 4 we showed that it is

possible to perform efficient exploration with every agent not meeting any other agent

operating in the graph.

When comparing time-efficiency of exploration in a team we can observe that making

good use of the communication capabilities of agents is essential when designing an

efficient exploration strategy. In Chapter 2 we showed that it is possible to explore any

graph in time proportional to the diameter of the graph using a team of polynomial

number of communicating agents. On the other hand, for the rotor-router considered

in Chapter 3, for some graph classes we need exponentially many agents to achieve the

same exploration time. Interestingly, the case where the rotor-router turned out to be

more efficient is the case of expanders. Our analysis shows that efficient exploration of

expanders can be performed using the multi-agent rotor-router with a smaller number

of agents than that needed by the algorithm from Chapter 2. We note that the ability

of agents to exchange information is a very powerful feature of the model allowing for

sophisticated algorithms, whereas the rotor-router rule is rather simple.

Our analysis of the multi-agent rotor-router concerned both the general case and a

number of important graph classes, and was tight (or almost tight) for any number of

agents. On the other hand, our results from Chapter 2 worked for any graph but only

for a large number of agents.

An interesting research perspective is to consider scenarios in which agents have

internal memory and at each node there is a whiteboard with some number of bits of space.

Two optimization criteria of interest in this context are the size of the internal memory

123

124 Chapter 5 Conclusions

of each agent and the size of the whiteboard at each node. In future work it would be

interesting to establish the weakest possible model for which it is possible to explore

graphs in time O(D) using a team of polynomial size. The multi-agent rotor-router often

needs an exponential number of agents but perhaps it is possible to decrease the cover

time by adding some number of bits of memory to the agents and adapting the rules

of the agents accordingly. In such a model, agents would no longer be propagated by

the environment (as was the case in the rotor-router model) but could make ”conscious”

decisions. An interesting direction of study is to consider tradeoffs between the number

of bits given to the agents and sizes of whiteboards on each node that allow for the

polynomial team of agents to explore graphs in optimal time. Such tradeoffs may also

depend on graph topology, since we showed in Chapter 3 that exploration of expanders

with agents with no internal memory is possible in time O(D) using polynomial number

of agents.

Another important question concerns the values of speedup of exploration in the

communicating agent model (Chapter 2). If we look at the speedup as a function of

k (team size) then the question would be whether in this model the optimal speedup

admits threshold behaviour i.e., if its dependence on k can be split into several ranges,

with different asymptotic behaviour. In Chapter 3, we observed such thresholds for the

multi-agent rotor-router for several graph classes.

Bibliography

[1] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous

mobile robots. SIAM J. Comput., 36(1):56–82, 2006.

[2] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied

Mathematics, 8(1):1–12, 1984.

[3] H. Akbari and P. Berenbrink. Parallel rotor walks on finite graphs and applications

in discrete load balancing. In SPAA, pages 186–195. ACM, 2013.

[4] D. Aldous. On the time taken by random walks on finite groups to visit every state.

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 62(3):361–374,

1983.

[5] D. Aldous and J. Fill. Reversible markov chains and random walks on graphs.

http://stat-www.berkeley.edu/users/aldous/RWG/book.html, 2001.

[6] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks,

universal traversal sequences, and the complexity of maze problems. In FOCS,

pages 218–223. IEEE Computer Society, 1979.

[7] N. Alon, C. Avin, M. Koucký, G. Kozma, Z. Lotker, and M. R. Tuttle. Many

random walks are faster than one. Combinatorics, Probability & Computing,

20(4):481–502, 2011.

[8] N. Alon, F. R. K. Chung, and R. L. Graham. Routing permutations on graphs

via matchings. In STOC, pages 583–591, 1993; also SIAM J. Discrete Math. 7(3):

513-530, 1994.

[9] S. Alpern. Rendezvous search: A personal perspective. Operations Research,

50(5):772–795, 2002.

[10] S. Alpern and S. Gal. The Theory of Search Games and Rendezvous. International

Series in Operations Research & Management Science. Springer, 2003.

[11] C. Ambühl, L. Gąsieniec, A. Pelc, T. Radzik, and X. Zhang. Tree exploration with

logarithmic memory. ACM Transactions on Algorithms, 7(2):17, 2011.

125

126 BIBLIOGRAPHY

[12] H. Ando, I. Suzuki, and M. Yamashita. Formation and agreement problems for

synchronous mobile robots with limited visibility. In Intelligent Control Proceedings

of the IEEE International Symposium on, pages 453–460, Aug 1995.

[13] R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou. An O(log(n)4/3) space

algorithm for (s, t) connectivity in undirected graphs. J. ACM, 47(2):294–311,

2000.

[14] R. Baldoni, F. Bonnet, A. Milani, and M. Raynal. Anonymous graph exploration

without collision by mobile robots. Information Processing Letters, 109(2):98–103,

2008.

[15] E. Bampas, L. Gąsieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and A. Kosowski.

Euler tour lock-in problem in the rotor-router model. In DISC, volume 5805 of

Lecture Notes in Computer Science, pages 423–435. Springer, 2009.

[16] E. Bampas, L. Gąsieniec, R. Klasing, A. Kosowski, and T. Radzik. Robustness

of the rotor-router mechanism. In OPODIS, volume 5923 of Lecture Notes in

Computer Science, pages 345–358. Springer, 2009.

[17] Y. Baudoin and M. Habib. Using Robots in Hazardous Environments: Landmine

Detection, De-Mining And Other Applications. Woodhead Publishing in Mechanical

Engineering. Elsevier, 2010.

[18] P. Berenbrink, C. Cooper, T. Friedetzky, T. Friedrich, and T. Sauerwald. Random-

ized diffusion for indivisible loads. In SODA, pages 429–439. SIAM, 2011.

[19] S. N. Bhatt, S. Even, D. S. Greenberg, and R. Tayar. Traversing directed eulerian

mazes. J. Graph Algorithms Appl., 6(2):157–173, 2002.

[20] L. Blin, J. Burman, and N. Nisse. Perpetual Graph Searching. Technical Report

RR-7897, INRIA, 2012-02.

[21] L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring

exploration without chirality. In DISC, volume 6343 of Lecture Notes in Computer

Science, pages 312–327. Springer, 2010.

[22] P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. Multirobot tree and graph

exploration. IEEE Transactions on Robotics, 27(4):707–717, 2011.

[23] A. Z. Broder, P. Raghavan, R. W. Taylor, A. R. Karlin, A. R. Karlin, E. Upfal,

and E. Upfal. Trading space for time in undirected s-t connectivity. In STOC,

pages 543–549, 1991.

[24] J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer. Telling convex from

reflex allows to map a polygon. In STACS, volume 9 of LIPIcs, pages 153–164.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

BIBLIOGRAPHY 127

[25] J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anonymous graph:

Applications of universal sequences. In OPODIS, volume 6490 of Lecture Notes in

Computer Science, pages 119–134. Springer, 2010.

[26] J. Chalopin, S. Das, A. Labourel, and E. Markou. Black hole search with finite

automata scattered in a synchronous torus. In DISC, volume 6950 of Lecture Notes

in Computer Science, pages 432–446. Springer, 2011.

[27] J. Chalopin, S. Das, A. Labourel, and E. Markou. Tight bounds for black hole

search with scattered agents in synchronous rings. Theoretical Computer Science,

509:70–85, 2013.

[28] J. Chalopin, S. Das, and P. Widmayer. Rendezvous of mobile agents in directed

graphs. In DISC, volume 6343 of Lecture Notes in Computer Science, pages 282–296.

Springer, 2010.

[29] J. Chalopin, P. Flocchini, B. Mans, and N. Santoro. Network exploration by silent

and oblivious robots. In WG, volume 6410 of Lecture Notes in Computer Science,

pages 208–219, 2010.

[30] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. The

electrical resistance of a graph captures its commute and cover times. Computational

Complexity, 6(4):312–340, 1997.

[31] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots

gathering problem. In ICALP, volume 2719 of Lecture Notes in Computer Science,

pages 1181–1196. Springer, 2003.

[32] S. A. Cook and C. Rackoff. Space lower bounds for maze threadability on restricted

machines. SIAM J. Comput., 9(3):636–652, 1980.

[33] C. Cooper and A. M. Frieze. The cover time of random regular graphs. SIAM J.

Discrete Math., 18(4):728–740, 2005.

[34] C. Cooper, D. Ilcinkas, R. Klasing, and A. Kosowski. Derandomizing random

walks in undirected graphs using locally fair exploration strategies. Distributed

Computing, 24(2):91–99, 2011.

[35] C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults in a network

using multiple agents. In OPODIS, volume 4305 of Lecture Notes in Computer

Science, pages 320–332. Springer, 2006.

[36] C. Cooper, R. Klasing, and T. Radzik. A randomized algorithm for the joining

protocol in dynamic distributed networks. Theoretical Computer Science, 406(3):248–

262, 2008.

[37] C. Cooper, R. Klasing, and T. Radzik. Locating and repairing faults in a network

with mobile agents. Theor. Comput. Sci., 411(14-15):1638–1647, 2010.

128 BIBLIOGRAPHY

[38] J. N. Cooper, B. Doerr, J. H. Spencer, and G. Tardos. Deterministic random walks

on the integers. Eur. J. Comb., 28(8):2072–2090, 2007.

[39] J. N. Cooper and J. Spencer. Simulating a random walk with constant error.

Combinatorics, Probability & Computing, 15(6):815–822, 2006.

[40] J. Czyzowicz, S. Dobrev, L. Gąsieniec, D. Ilcinkas, J. Jansson, R. Klasing, I. Lignos,

R. Martin, K. Sadakane, and W.-K. Sung. More efficient periodic traversal in

anonymous undirected graphs. Theoretical Computer Science, 444:60–76, 2012.

[41] J. Czyzowicz, S. Dobrev, R. Královic, S. Mikĺık, and D. Pardubská. Black hole

search in directed graphs. In SIROCCO, volume 5869 of Lecture Notes in Computer

Science, pages 182–194. Springer, 2009.

[42] J. Czyzowicz, L. Gasieniec, A. Kosowski, and E. Kranakis. Boundary patrolling

by mobile agents with distinct maximal speeds. In ESA, volume 6942 of Lecture

Notes in Computer Science, pages 701–712. Springer, 2011.

[43] J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc. Worst-case optimal exploration

of terrains with obstacles. Information and Computation, 225:16–28, 2013.

[44] J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet when you forget: log-space

rendezvous in arbitrary graphs. Distributed Computing, 25(2):165–178, 2012.

[45] J. Czyzowicz, D. R. Kowalski, E. Markou, and A. Pelc. Searching for a black

hole in synchronous tree networks. Combinatorics, Probability & Computing,

16(4):595–619, 2007.

[46] J. Czyzowicz, A. Pelc, and A. Labourel. How to meet asynchronously (almost)

everywhere. ACM Transactions on Algorithms, 8(4):37, 2012.

[47] X. Défago and S. Souissi. Non-uniform circle formation algorithm for oblivious

mobile robots with convergence toward uniformity. Theoretical Computer Science,

396(1-3):97–112, 2008.

[48] B. Degener, B. Kempkes, T. Langner, F. Meyer auf der Heide, P. Pietrzyk, and

R. Wattenhofer. A tight runtime bound for synchronous gathering of autonomous

robots with limited visibility. In SPAA, pages 139–148. ACM, 2011.

[49] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of Graph

Theory, 32(3):265–297, 1999.

[50] A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic rendezvous

in graphs. Algorithmica, 46(1):69–96, 2006.

[51] A. Dessmark and A. Pelc. Optimal graph exploration without good maps. Theo-

retical Computer Science, 326(1-3):343–362, 2004.

BIBLIOGRAPHY 129

[52] S. Devismes, F. Petit, and S. Tixeuil. Optimal probabilistic ring exploration by

semi-synchronous oblivious robots. Theoretical Computer Science, 498:10–27, 2013.

[53] Y. Dieudonné and F. Petit. Swing words to make circle formation quiescent. In

SIROCCO, volume 4474 of Lecture Notes in Computer Science, pages 166–179.

Springer, 2007.

[54] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little

memory. J. Algorithms, 51(1):38–63, 2004.

[55] Y. Disser. Mapping Polygons. PhD thesis, 2011.

[56] Y. Disser, S. Ghosh, M. Mihalák, and P. Widmayer. Mapping a polygon with holes

using a compass. In Algorithms for Sensor Systems, volume 7718 of Lecture Notes

in Computer Science, pages 78–89. Springer Berlin Heidelberg, 2013.

[57] Y. Disser, M. Mihalák, and P. Widmayer. A polygon is determined by its angles.

Comput. Geom., 44(8):418–426, 2011.

[58] Y. Disser, M. Mihalák, and P. Widmayer. Mapping polygons with agents that

measure angles. In WAFR, volume 86 of Springer Tracts in Advanced Robotics,

pages 415–425. Springer, 2012.

[59] S. Dobrev, P. Flocchini, R. Kralovic, P. Ruzicka, G. Prencipe, and N. Santoro.

Black hole search in common interconnection networks. Networks, 47(2):61–71,

2006.

[60] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole

in arbitrary networks: optimal mobile agents protocols. Distributed Computing,

19(1):1–18, 2006.

[61] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black

hole in an anonymous ring. Algorithmica, 48(1):67–90, 2007.

[62] B. Doerr and T. Friedrich. Deterministic random walks on the two-dimensional

grid. Combinatorics, Probability & Computing, 18(1-2):123–144, 2009.

[63] B. Doerr, T. Friedrich, and T. Sauerwald. Quasirandom rumor spreading. In

SODA, pages 773–781. SIAM, 2008.

[64] C. A. Duncan, S. G. Kobourov, and V. S. A. Kumar. Optimal constrained graph

exploration. ACM Transactions on Algorithms, 2(3):380–402, 2006.

[65] M. Dynia, M. Korzeniowski, and C. Schindelhauer. Power-aware collective tree

exploration. In ARCS, volume 3894 of Lecture Notes in Computer Science, pages

341–351. Springer, 2006.

130 BIBLIOGRAPHY

[66] M. Dynia, J. Kutylowski, F. Meyer auf der Heide, and C. Schindelhauer. Smart

robot teams exploring sparse trees. In MFCS, volume 4162 of Lecture Notes in

Computer Science, pages 327–338. Springer, 2006.

[67] M. Dynia, J. Lopuszanski, and C. Schindelhauer. Why robots need maps. In

SIROCCO, volume 4474 of Lecture Notes in Computer Science, pages 41–50.

Springer, 2007.

[68] K. Easton and J. Burdick. A coverage algorithm for multi-robot boundary inspection.

In ICRA 2005. Proceedings of the 2005 IEEE International Conference on Robotics

and Automation., pages 727–734, April 2005.

[69] J. Edmonds. Matroids and the greedy algorithm. Math. Programming, 1:127–136,

1971.

[70] K. Efremenko and O. Reingold. How well do random walks parallelize? In

APPROX-RANDOM, pages 476–489, 2009.

[71] R. Elsässer and T. Sauerwald. Tight bounds for the cover time of multiple random

walks. Theoretical Computer Science, 412(24):2623–2641, 2011.

[72] Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer. Ants: Mobile finite state

machines. CoRR, abs/1311.3062, 2013.

[73] S. Even. Graph Algorithms. Cambridge University Press, 2011.

[74] U. Feige. A tight lower bound on the cover time for random walks on graphs.

Random Struct. Algorithms, 6(4):433–438, 1995.

[75] U. Feige. A tight upper bound on the cover time for random walks on graphs.

Random Struct. Algorithms, 6(1):51–54, 1995.

[76] U. Feige. Collecting coupons on trees, and the cover time of random walks.

Computational Complexity, 6(4):341–356, 1997.

[77] O. Feinerman, A. Korman, Z. Lotker, and J.-S. Sereni. Collaborative search on the

plane without communication. In PODC, pages 77–86. ACM, 2012.

[78] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In ESA,

volume 3669 of Lecture Notes in Computer Science, pages 11–22. Springer, 2005.

[79] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without memory:

Tree exploration by asynchronous oblivious robots. Theoretical Computer Science,

411(14-15):1583–1598, 2010.

[80] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without com-

municating: Ring exploration by asynchronous oblivious robots. Algorithmica,

65(3):562–583, 2013.

BIBLIOGRAPHY 131

[81] P. Flocchini, D. Ilcinkas, and N. Santoro. Ping pong in dangerous graphs: Optimal

black hole search with pebbles. Algorithmica, 62(3-4):1006–1033, 2012.

[82] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous

oblivious robots with limited visibility. In STACS, volume 2010 of Lecture Notes

in Computer Science, pages 247–258. Springer, 2001.

[83] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern

formation by asynchronous, anonymous, oblivious robots. Theoretical Computer

Science, 407(1-3):412–447, 2008.

[84] F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph

searching. Theoretical Computer Science, 399(3):236–245, June 2008.

[85] P. Fraigniaud, L. Ga̧sieniec, D. R. Kowalski, and A. Pelc. Collective tree exploration.

Networks, 48(3):166–177, 2006.

[86] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a

finite automaton. Theoretical Computer Science, 345(2-3):331–344, 2005.

[87] P. Fraigniaud, D. Ilcinkas, and A. Pelc. Impact of memory size on graph exploration

capability. Discrete Applied Mathematics, 156(12):2310–2319, 2008.

[88] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, and S. Tixeuil. The reduced automata

technique for graph exploration space lower bounds. In Essays in Memory of

Shimon Even, volume 3895 of Lecture Notes in Computer Science, pages 1–26.

Springer, 2006.

[89] P. Fraigniaud and A. Pelc. Delays induce an exponential memory gap for rendezvous

in trees. ACM Transactions on Algorithms, 9(2):17, 2013.

[90] T. Friedrich, M. Gairing, and T. Sauerwald. Quasirandom load balancing. SIAM

J. Comput., 41(4):747–771, 2012.

[91] T. Friedrich and T. Sauerwald. The cover time of deterministic random walks.

Electr. J. Comb., 17(1), 2010.

[92] M. Fürer and B. Raghavachari. Approximating the minimum-degree steiner tree

to within one of optimal. J. Algorithms, 17(3):409–423, 1994.

[93] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[94] L. Gasieniec, R. Klasing, R. A. Martin, A. Navarra, and X. Zhang. Fast periodic

graph exploration with constant memory. J. Comput. Syst. Sci., 74(5):808–822,

2008.

[95] L. Gasieniec and T. Radzik. Memory efficient anonymous graph exploration. In

WG, volume 5344 of Lecture Notes in Computer Science, pages 14–29, 2008.

132 BIBLIOGRAPHY

[96] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou. Practical recommendations

on crawling online social networks. Selected Areas in Communications, IEEE

Journal on, 29(9):1872–1892, October 2011.

[97] M. X. Goemans. Minimum bounded degree spanning trees. In FOCS, pages

273–282. IEEE Computer Society, 2006.

[98] T. Herman and T. Masuzawa. Self-stabilizing agent traversal. In WSS, volume

2194 of Lecture Notes in Computer Science, pages 152–166. Springer, 2001.

[99] Y. Higashikawa and N. Katoh. Online exploration of all vertices in a simple polygon.

In FAW-AAIM, volume 7285 of Lecture Notes in Computer Science, pages 315–326.

Springer, 2012.

[100] Y. Higashikawa, N. Katoh, S. Langerman, and S.-i. Tanigawa. Online graph

exploration algorithms for cycles and trees by multiple searchers. Journal of

Combinatorial Optimization, pages 1–16, 2012.

[101] A. Hsieh and S. Lacroix, editors. Special Issue: Special Issue on Multi Autonomous

Ground-robotic International Challenge (MAGIC), volume 29 of Journal of Field

Robotics, 2012.

[102] S. Ikeda, I. Kubo, N. Okumoto, and M. Yamashita. Impact of local topological

information on random walks on finite graphs. In ICALP, volume 2719 of Lecture

Notes in Computer Science, pages 1054–1067. Springer, 2003.

[103] D. Ilcinkas. Setting port numbers for fast graph exploration. Theor. Comput. Sci.,

401(1-3):236–242, 2008.

[104] A. Kawamura and Y. Kobayashi. Fence patrolling by mobile agents with distinct

speeds. In ISAAC, volume 7676 of Lecture Notes in Computer Science, pages

598–608. Springer, 2012.

[105] S. Kijima, K. Koga, and K. Makino. Deterministic random walks on finite graphs.

In ANALCO, pages 16–25. SIAM, 2012.

[106] W. B. Kinnersley. Cops and Robbers is EXPTIME-complete. arXiv:1309.5405v1,

Sept. 2013.

[107] R. Klasing. Efficient exploration of anonymous undirected graphs. In IWOCA,

volume 8288 of Lecture Notes in Computer Science, pages 7–13. Springer, 2013.

[108] R. Klasing, A. Kosowski, and A. Navarra. Taking advantage of symmetries:

Gathering of many asynchronous oblivious robots on a ring. Theoretical Computer

Science, 411(34-36):3235–3246, 2010.

[109] R. Klasing, E. Markou, and A. Pelc. Gathering asynchronous oblivious mobile

robots in a ring. Theoretical Computer Science, 390(1):27–39, 2008.

BIBLIOGRAPHY 133

[110] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation bounds for

black hole search problems. Networks, 52(4):216–226, 2008.

[111] A. Kosowski. Time and Space-Efficient Algorithms for Mobile Agents in an Anony-

mous Network. Hdr, Université Sciences et Technologies - Bordeaux I, Sept. 2013.

[112] A. Kosowski and A. Navarra. Graph decomposition for memoryless periodic

exploration. Algorithmica, 63(1-2):26–38, 2012.

[113] A. Kosowski, A. Navarra, and M. C. Pinotti. Synchronous black hole search in

directed graphs. Theoretical Computer Science, 412(41):5752–5759, 2011.

[114] D. R. Kowalski and A. Malinowski. How to meet in anonymous network. Theoretical

Computer Science, 399(1-2):141–156, 2008.

[115] E. Kranakis, D. Krizanc, and E. Markou. The Mobile Agent Rendezvous Problem

in the Ring. Synthesis Lectures on Distributed Computing Theory. Morgan &

Claypool Publishers, 2010.

[116] E. Kranakis, D. Krizanc, and S. Rajsbaum. Mobile agent rendezvous: A survey. In

SIROCCO, volume 4056 of Lecture Notes in Computer Science, pages 1–9. Springer,

2006.

[117] D. Krizanc and L. Zhang. Many-to-one packed routing via matchings. In COCOON,

volume 1276 of Lecture Notes in Computer Science, pages 11–17. Springer, 1997.

[118] A. Lamani, M. G. Potop-Butucaru, and S. Tixeuil. Optimal deterministic ring

exploration with oblivious asynchronous robots. In SIROCCO, volume 6058 of

Lecture Notes in Computer Science, pages 183–196. Springer, 2010.

[119] D. B. Lange and M. Oshima. Seven good reasons for mobile agents. Commun.

ACM, 42(3):88–89, Mar. 1999.

[120] A. S. LaPaugh. Recontamination does not help to search a graph. J. ACM,

40(2):224–245, Apr. 1993.

[121] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times.

American Mathematical Society, 2006.

[122] J. Łopuszański. Tree exploration (in Polish). Tech-report, Institute of Computer

Science, University of Wrocław, Poland. 2007.

[123] L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdos is

Eighty, 2(1):1–46, 1993.

[124] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou. The

complexity of searching a graph. In FOCS, pages 376–385, Oct 1981.

134 BIBLIOGRAPHY

[125] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada,

S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, and S. Tadokoro.

Collaborative mapping of an earthquake-damaged building via ground and aerial

robots. Journal of Field Robotics, 29(5):832–841, 2012.

[126] N. Nisan. RL ⊆ SC. Computational Complexity, 4:1–11, 1994.

[127] N. Nisan, E. Szemerédi, and A. Wigderson. Undirected connectivity in O(log(n)3/2)

space. In FOCS, pages 24–29, 1992.

[128] Y. Nonaka, H. Ono, K. Sadakane, and M. Yamashita. The hitting and cover times

of metropolis walks. Theoretical Computer Science, 411(16-18):1889–1894, 2010.

[129] R. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete

Mathematics, 43(2–3):235 – 239, 1983.

[130] C. Ortolf and C. Schindelhauer. Online multi-robot exploration of grid graphs with

rectangular obstacles. In SPAA, pages 27–36. ACM, 2012.

[131] P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algo-

rithms, 33(2):281–295, 1999.

[132] G. E. Pantziou, A. Roberts, and A. Symvonis. Many-to-many routings on trees via

matchings. Theoretical Computer Science, 185(2):347–377, 1997.

[133] T. Parsons. Pursuit-evasion in a graph. In Theory and Applications of Graphs,

volume 642 of Lecture Notes in Mathematics, pages 426–441. Springer Berlin

Heidelberg, 1978.

[134] A. Pelc. Deterministic rendezvous in networks: A comprehensive survey. Networks,

59(3):331–347, 2012.

[135] G. Prencipe. On the feasibility of gathering by autonomous mobile robots. In

SIROCCO, volume 3499 of Lecture Notes in Computer Science, pages 246–261.

Springer, 2005.

[136] V. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy. Eulerian walkers as a

model of self-organized criticality. Phys. Rev. Lett., 77(25):5079–5082, Dec 1996.

[137] A. Quilliot. Problemes de jeux, de point fixe, de connectivité et de représentation sur

des graphes, des ensembles ordonnés et des hypergraphes. These d’Etat, Université

de Paris VI, 1983.

[138] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of Markov chains and

the analysis of iterative load balancing schemes. In FOCS, pages 694–705. IEEE

Computer Society, 1998.

[139] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

BIBLIOGRAPHY 135

[140] H.-A. Rollik. Automaten in Planaren Graphen. Acta Inf., 13:287–298, 1980.

[141] W. J. Savitch. Relationships between nondeterministic and deterministic tape

complexities. Journal of Computer and System Sciences, 4(2):177 – 192, 1970.

[142] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of

geometric patterns. SIAM Journal on Computing, 28:1347–1363, 1999.

[143] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed covering by ant-

robots using evaporating traces. IEEE Transactions on Robotics and Automation,

15:918–933, 1999.

[144] V. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant algorithm for

efficiently patrolling a network. Algorithmica, 37(3):165–186, 2003.

[145] L. Zhang. Optimal bounds for matching routing on trees. SIAM J. Discrete Math.,

12(1):64–77, 1999.

[146] D. Zuckerman. A technique for lower bounding the cover time. SIAM J. Discrete

Math., 5(1):81–87, 1992.

136 BIBLIOGRAPHY

Publications included in this thesis

[T1] J. Czyzowicz, D. Dereniowski, L. Gąsieniec, R. Klasing, A. Kosowski, and

D. Pająk. Collision-free network exploration. In LATIN, pages 342–354, 2014.

[T2] D. Dereniowski, Y. Disser, A. Kosowski, D. Pająk, and P. Uznański. Fast

Collaborative Graph Exploration. In ICALP (2), pages 520–532, 2013, journal

version accepted to Information and Computation.

[T3] D. Dereniowski, A. Kosowski, D. Pająk, and P. Uznański. Bounds on the Cover

Time of Parallel Rotor Walks. In STACS, pages 263–275, 2014.

[T4] R. Klasing, A. Kosowski, D. Pająk, and T. Sauerwald. The Multi-Agent Rotor-

Router on the Ring: A Deterministic Alternative to Parallel Random Walks. In

PODC, pages 365–374, 2013.

[T5] A. Kosowski andD. Pająk. Does Adding More Agents Make a Difference? A Case

Study of Cover Time for the Rotor-Router. http://hal.inria.fr/hal-00950743,

accepted to ICALP, 2014.

http://hal.inria.fr/hal-00950743

	1 Introduction
	1.1 Modelling a mobile agent
	1.2 Studied aspects of the graph exploration problem
	1.3 Overview of the thesis and results
	1.4 State-of-the-art on the exploration problem
	1.5 Related problems for mobile agents

	2 Exploration with communicating agents
	2.1 The team exploration model
	2.2 Tree exploration
	2.3 General graph exploration
	2.4 Lower bounds
	2.5 Conclusions

	3 Exploration with the Rotor-Router system
	3.1 The rotor-router model
	3.2 The delayed deployment technique for the multi-agent rotor-router
	3.3 Upper bound on cover time for general graphs
	3.4 Lower bound on cover time for general graphs
	3.5 Cover time on the ring
	3.6 Return time on the ring
	3.7 Discrepancy between the rotor-router and random walk
	3.8 Cover time on graphs with small mixing time
	3.9 Cover time on the ring revisited
	3.10 Cover time on the torus
	3.11 Cover time on the hypercube
	3.12 Conclusions

	4 Collision-free exploration
	4.1 Model and definitions
	4.2 Network exploration with a map
	4.3 Local network exploration
	4.4 Conclusions

	5 Conclusions
	Bibliography
	Publications included in this thesis

