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Résumé 

Depuis plusieurs décennies, l’environnement arctique est en proie à de nombreux changements 

notamment dus à l’activité humaine. L’Arctique est en effet très sensible aux espèces polluantes 

issues de l’industrie de masse ainsi qu’au réchauffement global accéléré par les émissions 

anthropogéniques. Leurs impacts sur les écosystèmes boréaux, visibles dès les années 1970, 

(Schindler et Smol, 2006) ont motivé de nombreuses études. Ainsi a été démontrée l’importance des 

sources ponctuelles et du transport atmosphérique longue distance sur la pollution des zones 

arctiques. 

Un des composants clés de l’écosystème arctique est le manteau neigeux saisonnier, car en directe 

interaction avec l’atmosphère, le sol et les systèmes aquatiques. La neige contient de nombreuses 

espèces chimiques, microorganismes, particules et impuretés qui en font un milieu chimiquement et 

biologiquement dynamique, siège de réactions et d’interactions diverses. L’important interface 

atmosphère – neige (milieu poreux) donne notamment lieu à de nombreuses réactions 

d’oxydoréduction photo-induites impliquées dans des cycles chimiques complexes. Néanmoins, peu 

de choses sont connues sur l’interaction entre les différentes espèces contenues dans le manteau 

neigeux, et si on sait désormais que les microorganismes y ont une activité significative, on ignore 

tout ou presque des interactions chimiques éventuelles. Lors de la fonte du manteau neigeux, ce 

sont toutes les espèces qui y ont été stockées et formées in situ qui seront libérées dans 

l’écosystème aquatique. Ainsi le manteau neigeux saisonnier constitue un réservoir et réacteur 

crucial d’espèces chimiques, biologiques et contaminantes pour l’environnement arctique. 

Le cycle du mercure est dominé par deux systèmes de réactions majeurs : 1) l’oxydo-réduction 

(Hg0           Hg2+) ; et 2) la méthylation-déméthylation (Hg2+          CH3Hg+          CH3HgCH3). Les espèces 

formées par méthylation sont le monométhylmercure CH3Hg+ (aussi appelé méthylmercure, noté 

MMHg) et le diméthylmercure CH3HgCH3 (noté DMHg). Dans les régions polaires, le mercure 

élémentaire gazeux atmosphérique est rapidement oxydé et déposé en très grande quantité lors 

d’épisodes appelés AMDEs (Atmospheric Mercury Depletion Events) survenant au printemps polaire 

(Schroeder et al., 1998; Steffen et al., 2008). Durant ces épisodes, la neige se comporte comme une 

« éponge » à mercure et retient des concentrations en mercure très élevées (de l’ordre de la 

centaine de ng/L). Plusieurs campagnes de terrain ont montré que le mercure pouvait être soit oxydé 

soit réduit dans le manteau neigeux (Lalonde et al., 2002; Dommergue et al., 2003; Poulain et al., 

2004) bien qu’il soit admis que la plus grande partie du mercure divalent déposé dans le manteau 

neigeux est réduit puis réémis dans l’atmosphère (Poulain et al., 2004; Kirk et al., 2006). Le mercure 



stocké par le manteau neigeux est libéré dans les eaux de fontes en période de réchauffement, en 

partie sous forme monométhylée (MMHg) (Loseto et al., 2004; St. Louis et al., 2005). Un récapitulatif 

de la chimie du mercure ainsi que de sa réactivité en arctique et dans le manteau neigeux est 

présenté en chapitre introductif de cette thèse. 

L’objectif des travaux présentés dans ce manuscrit est de clarifier l’influence de la chimie du manteau 

neigeux saisonnier arctique sur la réactivité du mercure qu’il contient, en particulier celle de sa forme 

méthylmercure. Comment s’y retrouve-t-il ? Est-il transporté dans la neige ou s’y forme-t-il à partir 

d’autres espèces mercurielles ? Quel rôle joue le manteau neigeux sur la boucle méthylée du cycle du 

mercure ? Les résultats présentés ci-après exploitent les données d’échantillons de neige 

saisonnière, collectés entre avril et juin 2011 autour du site côtier de Ny-Ålesund, dans la région du 

Kongsfjorden (Svalbard). 

La thèse est divisée en six parties, subdivisées en chapitres. La première partie présente les 

connaissances de la biogéochimie du mercure ainsi que de la physico-chimie du manteau neigeux 

nécessaires à la compréhension des parties de développement qui suivent.  

La deuxième partie présente les différentes méthodes analytiques utilisées pour obtenir notre jeu de 

données à partir des échantillons de terrain. Il comprend aussi la description d’un dispositif de 

dosage d’ultra-traces de MMHg que nous avons développé au laboratoire, bien qu’il n’ait pas eu 

l’aboutissement nécessaire pour analyser nos échantillons. Ce travail de développement analytique 

fait partie intégrante du travail de thèse et a mobilisé beaucoup de temps et de moyens ; il permet 

aujourd’hui un dispositif fonctionnel dont les performances doivent encore être précisées. La mise en 

place de ce dispositif est décrite de manière très complète en abordant un point de vue très pratique 

sur problèmes rencontrés et leurs solutions. Suit un court mais indispensable chapitre de description 

du site d’étude, de la méthodologie de terrain et des conditions géochimiques et météorologiques du 

milieu étudié. 

Dans la troisième partie, dédiée à l’étude de la chimie de la neige, nous commencerons par quelques 

observations sur la dynamique du mercure dans le manteau neigeux avant d’aborder dans un 

deuxième chapitre la chimie du manteau neigeux saisonnier avec une méthodologie nouvelle dans ce 

domaine, impliquant des rapports de concentrations d’espèces chimiques (Robinson et al., 2006). 

Cette approche a permis d’identifier les principales sources d’espèces chimiques dans le manteau 

neigeux côtier, et notamment d’y identifier les principales sources de MMHg. Le troisième chapitre 

de cette partie s’appuie sur les résultats sur la chimie de la neige pour discuter de la nature de la 

source principale de MMHg, en raisonnant sur la chimie globale de la neige et des traceurs de source. 

Nous y développons une nouvelle explication de l’apport de MMHg dans la neige étudiée – basée sur 



nos résultats et étayée par une littérature fournie – clarifiant ainsi le faisceau d’hypothèses 

habituellement évoqué pour expliquer la présence de MMHg dans le manteau neigeux. Nous 

n’identifions pas de formation de MMHg in situ dans le manteau neigeux côtier étudié. 

En réponse et en complément à la partie précédente, la quatrième partie traite de la dynamique du 

MMHg dans la neige et l’eau de fonte. Dans un premier chapitre sont présentés les résultats d’une 

étude d’un puits de neige sur le glacier Kongsvegen (une année d’accumulation), un site éloigné de la 

côte du Kongsfjorden. En utilisant la même méthodologie que précédemment, nous observons un 

processus chimique reliant  le MMHg à d’autres espèces chimiques, qui est certainement identifiable 

uniquement en raison des faibles concentrations et de la stabilité de ce manteau neigeux dans le 

temps. En se basant sur les résultats d’une étude de laboratoire sur la formation de MMHg 

(Gåardfeldt et al., 2003), nous attribuons les relations entre ces espèces chimiques à une réaction de 

méthylation du mercure in situ. L’importance de cette réaction dans le budget de MMHg du manteau 

neigeux ainsi que les implications potentielles de cette observation préliminaire y sont évaluées et 

discutées. Un dernier chapitre présentera les observations concernant le méthylmercure dans l'eau 

de fonte, en complément des résultats présentés plus tôt. 

Les cinquième et sixième parties sont constituées respectivement d’une discussion conclusive et des 

annexes. 
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3 i. The mercury element 

i.	The	mercury	element	

 

Mercury is a chemical element with the symbol Hg and atomic number 80. It is commonly known as 

quicksilver and was formerly named hydrargyrum (from Greek "hydr-" water and "argyros" silver). 

Mercury belongs to the IIb group (or group 12 in the modern IUPAC numbering) of the periodic table, 

together with zinc and cadmium. Group 12 elements are all soft divalent metals, and have the lowest 

melting points among all transition metals. 

Elemental mercury Hg0 is the only metal to be liquid at room temperature (melting point: -38.8 °C, 

see Figure 1a). Indeed, because of relativistic effects lowering the energy of its valence 6s orbital 

(Hg: [Xe]4f145d106s2), elemental mercury is less ionizable (thus oxidizable) than other transition 

metals. Moreover, its non-polar characteristic prevents all Coulombian interactions; it is therefore 

almost never associated with polar chemical species. Elemental mercury has also little solubility in 

polar liquids (including water) and no interactions with the usual complexing agents of transition 

metals. However, ligands showing great affinity with divalent mercury (HgII) can favor Hg0 oxidation 

to HgII to form the [HgIILn]2-n complex (Yamamoto, 1995). Generally, Hg0 behaves as a noble gas and 

mainly establishes weak Van der Waals type interactions; it is incidentally the only element 

(excepting the noble gases) to exist in the form of monoatomic vapors. This weak reactivity of Hg0 

explains its very low boiling point, its volatility and its estimated residence time in the atmosphere (6-

18 months). The great majority of atmospheric mercury is Hg0. 

Mercury in the oxidation degree I is very rare in the environment, it was proposed as intermediate of 

photolytic oxidations of Hg0 into HgII (Zhang, 2006). Because of its electronic structure, HgI only exists 

as mercurous ion Hg2
2+. 

Divalent mercury HgII (oxidation degree II) is the main form of mercury in the environment, excluding 

the atmosphere (see example in Figure 1b). Unlike Hg0, HgII reactivity is similar to the one of oxidized 

forms of other transition metals. Considered as a soft acid considering the HSAB (Hard and Soft Acids 

and Basis) theory, it interacts preferentially with soft nucleophiles, such as thiols– often called 

“mercaptans” because of their affinity with HgII – or (thio/dithio)carboxylic acids (Dong et al., 2011; 

Ravichandran, 2004). The “inorganic” term can be wrong, as the range of HgII species in aqueous 

systems includes more than the pH-predicted [HgCln(OH)m]2-n-m (n+m < 5) inorganic mercuric 

complexes (Morel et al., 1998), such as organic complexes or organomercuric species (containing one 
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or two HgII – C bonds)(Dong et al., 2010). Organic mercuric complexes can have a stabilizing effect on 

HgII, but can also be the precursors to chemical reactions: 

•  The photoinduced reduction (solar radiations), mainly studied in aqueous systems 

(water, snow), produces Hg0 that can evade to the atmosphere (Dommergue et al., 

2003; Lalonde et al., 2002). Divalent mercury can also be reduced via a microbial 

pathway when it is bioavailable (Barkay et al., 1997). 

•  The formation of very toxic organomercuric species, such as (mono)methylmercury 

(CH3Hg+,X- ; noted MMHg or MeHg), generated either via biotic or abiotic processes, and 

that biomagnifies along the trophic food chain. The formation and the toxicity of MMHg 

are further detailed in the following. 

 

Whereas group 11 (or Ib group in the old IUPAC numbering) elements (Cu, Ag, Au) can lose one or 

two d electrons resulting in ions or complexes in the oxidation degree +II and +III, this is not possible 

for group 12 elements, which oxidation degree cannot overpass +II. Indeed, the 5d orbitals of the 

mercury atom do not play any role in the Hg – X bonds formation; consequently mercury is not really 

considered as a transition metal, although it has some analogies with them, particularly the ability to 

form various coordination complexes. 

 

 

 

Figure 1. Picture of elemental mercury (a) and cinnabar HgS (b). 

a b 
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ii.	An	overview	of	the	global	mercury	

cycle	

 

1. Atmospheric emissions 

 

The industrial and urban activity causes atmospheric emissions of 2320 t/year of mercury (Pirrone et 

al., 2010). In 2005, the principal processes involved in these anthropogenic emissions were: fossil fuel 

combustion (40%), artisanal and industrial gold production (17%), non-ferrous metal production 

(13%), cement industry (10%), waste combustion (8%) and caustic soda production (7%). The relative 

importance of each source varies widely according to the regions, but fossil fuels are generally the 

major contributors all around the globe. Only the emissions of Indonesia, Colombia and Brazil are in 

majority due to gold mining (Pirrone et al., 2010). However, recent estimations assess gold 

production as the first source of mercury emission even at global scale (UNEP, Global Mercury 

Assessment, 2013). The geographical distribution of anthropogenic atmospheric mercury emissions is 

presented in Figure 2. 

Annual mercury emissions diminished between 1990 and 2005 (Figure 3), with a substantial decrease 

in developed countries (European Union, North America and Russia), a strong increasing trend in 

Figure 2. Distribution of anthropogenic atmospheric mercury emissions on a latitude/longitude 0.5° x 0.5° grid. 

Modified from the Arctic Monitoring and Assessment Programme, 2011. 
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Asia, and a slight increase in developing countries (Africa, South America) and Oceania (Arctic 

Monitoring and Assessment Programme, 2011). In 2005, the main contributors to mercury emissions 

were Asia (60%, 40% from China only) followed by North America (8.3%), European Union (7.9%), 

South America (7.3%), Africa (5.5%), Russia (3.9%) and Oceania (2.1%). Beyond demographic and 

economic concerns, the decrease of anthropogenic mercury emissions is a matter of political will 

(UNEP, Global Mercury Assessment, 2013). 

 

Natural mercury emissions are nowadays estimated to be around 5200 t/year, which represents 

around 70% of total emissions (Pirrone et al., 2010). Mercury is present in the terrestrial crust, 

mainly in the cinnabar form (HgIIS), it is delivered to the environment by wet and dry deposition 

following erosion and volcanic and geothermic activities, which are the primary sources of mercury. 

In addition to these sources, mercury can be reduced to Hg0 by photochemical or biological 

processes and reemitted back to the atmosphere. These reemissions occur from soil and vegetation 

as well as from oceans, and are considered as secondary sources of mercury (Pirrone et al., 2010). 

The oceans are the major contributors to the total mercury emissions (36%), followed by Hg 

remobilization by biomass burning (9%), erosion of desert and non-wooded metal-bearing regions 

(7%), and tundras and grasslands (6%). The relative contribution of terrestrial areas to the total 

mercury emissions is 47%, versus 53% for aquatic areas, and compared to their respective surface 

Em
is

si
o

n
s 

[t
] 

Africa Asia Europa Russia North 
Am. 

Oceania South 
Am. 

Figure 3. Estimations of anthropogenic atmospheric mercury emissions from 

different continents/subcontinents. Modified from the Arctic Monitoring and 

Assessment Programme, 2011. 
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(respectively 3.49 and 1.46 x 108 km² for oceans and continents), the emission rate of terrestrial 

surfaces is roughly 2.7 times higher than the one of oceans. Biomass burning represents 28% of 

terrestrial mercury emissions, while 23% are due to deserts and non-wooded metal-bearing regions, 

18% to tundras and grasslands and 14% to forests. Primary sources of mercury account for only 4% of 

terrestrial mercury emissions (Pirrone et al., 2010). 

2. Long-range transport 

 

The long distance transportation of mercury mainly occurs in the atmosphere, where mercury is 

mainly in the Hg0 form (≈ 98%) but also in minority in the HgII form, either in a reactive free phase or 

in a particulate one (Particulate Mercury, PM). Atmospheric mercury background level in the 

northern hemisphere  – mean concentration in remote area – was estimated to be 1.4 ng/m3 in 2009 

(Ebinghaus et al., 2011). This background level is considered as uniform and is constantly diminishing 

after a peak in the 70’s, at a rate of 1.6 - 2.0% per year between 1996 and 2009 (Ebinghaus et al., 

2011; Fain et al., 2009; Lindberg et al., 2007). This moderate diminution is the result of the conjugate 

effects of both absorption of mercury by the oceans (Soerensen et al., 2012) and the drastic mercury 

emission reductions from the European Union and North America (Wängberg et al., 2007). However, 

these are almost totally offset by a sharp increase of these emissions in the developing countries 

(Pacyna et al., 2010) and . As explained previously, Hg0 has a relatively long residence time in the 

atmosphere (6 - 18 months) that allows a long-range transport (at the hemispheric level) within a few 

days (Arctic Monitoring and Assessment Programme, 2011). 
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iii.	The	chemical	properties	of	mercury:	

the	consequences	on	its	cycle	

 

1. Reactivity 

 

a. Methylation 

 

Methylmercury can be formed according to two different kinds of process (Celo et al., 2006): 

microbial metabolisms (biotic processes) and chemical methylation (abiotic processes). Microbial 

methylation is the only methylation process recognized in the environment, although abiotic 

processes cannot be excluded. 

Biotic mercury methylation in the environment is an anaerobic process occurring in sediments and 

anoxic water columns (Pongratz and Heumann, 1999, 1998). The sulfate reducing bacteria (SRB) and 

iron reducing bacteria (IRB) are known to show a mercury methylation potential in such media 

(Fleming et al., 2006; Kerin et al., 2006). The methylation rate depends on the microbial 

concentration and activity, as well as mercury bioavailability, both depending on several 

environmental parameters such as temperature, pH, redox potential and the concentrations of 

organic ligands for mercury (Barkay and Wagner-Döbler, 2005; Barkay et al., 2003, 1997; Golding et 

al., 2007). Bacteria are also able to form dimethylmercury (DMHg), a volatile compound susceptible 

to decompose into MMHg (Barkay and Wagner-Döbler, 2005; Pongratz and Heumann, 1999). It has 

been shown that biotic mercury methylation was possible via methylation of mercuric monocysteine 

by methyltransferase, following the same reaction than the methylation of cysteine to methionine 

(Siciliano and Lean, 2002) or by a mechanism involving a ferredoxin as the methyl donor (Parks et al., 

2013). Mercury methylation by methylcobalamine (B12 vitamin derivative) has also been evidenced 

and could be involved in methylmercury formation in the environment, given the importance of the 

B12 vitamin in the biota (Chen et al., 2007; Choi et al., 1994). However, this reaction could take place 

in cellulo (and be considered as biotic) or ex cellulo (and be considered as abiotic). 

Abiotic methylation in the environment is photo-mediated and requires the presence of suitable 

methyl donors, which include small organic molecules such as acetic acid or dimethylsulfoxide, as 

well as macromolecules such as cobalamines or humic acids (Gåardfeldt et al., 2003; Siciliano et al., 
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2005; Yin et al., 2012). Even if some of the potential methyl donors are of biological origin, the 

methylation is considered as abiotic as soon as the reaction occurs outside any living organism. In the 

field of molecular chemistry, the reactivity and the chemical properties of mercury are well 

described, and whereas it tends to be replaced by less toxic species, it has been widely used in 

organic synthesis (Larock, 1978). The known mechanisms of reactions between mercury and organic 

compounds (and that are environmentally consistent) are described in the following; all of them lead 

to the formation of a C – HgII bond from an inorganic HgII salt. 

The most trivial known reaction allowing the formation of a C – HgII bond is transmetallation, used in 

synthesis chemistry to access various organomercurials (Larock, 1978), and suspected to be 

responsible for some mercury methylation in the environment (Celo et al., 2006; Minganti et al., 

2007). 

Equation 1 

R–M + HgX2 → R–HgX + X–M 

 

This reaction is favored by the reactivity of the organometallic species R – M (e.g. M = Li, MgX…) and 

by the created M – X bond strength. 

Divalent mercury alkylation or arylation can also occur by decarboxylation of mercuric carboxylate 

complexes (Pesci reaction). 

Equation 2 

(RC(O)O)2Hg → R–HgO(O)CR + CO2
 

 

This mechanism is mentioned to explain the formation of MMHg in the environment, notably in rain 

waters (Gåardfeldt et al., 2003).  

The oxidative addition reaction of Hg0 with alkyl halides (insertion into the carbon – halogen bond) 

has been studied from both the theoretical and experimental point of view (Maynard, 1932; Castro 

et al., personal communication). 

Equation 3 

Hg0 + R–X → R–HgII–X 
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Both approaches agree on the big activation energy necessary for this reaction to proceed, hence 

leading to a kinetically disfavored reaction. This oxidative addition reaction is therefore unlikely to 

form MMHg in environmental conditions. 

Methylcobalamine (B12 vitamine) is a known methylating agent for HgII (Chen et al., 2007). The 

associated mechanism involves a methylide (CH3
- carbanion) transfer from the methylcobalamine to 

the mercuric ion. Sulfate reducing bacteriae use this reaction to methylate mercury (Choi et al., 

1994), but as the reaction can take place ex cellulo, it could also be the source of abiotic formation in 

the environment. 

Equation 4 

Hg2+ + CH3B12 → H3C–Hg+ + B12
 

 

The previous examples emphasize that mercury methylation often involves the principle of a 

nucleophilic addition of CH3
- on HgII as electrophile. The CH3

- moiety never exists formally as a free 

carbanion, but in chemical species containing C – X bond where the electronic density is rather lying 

on the carbon, thus allowing the C – X bond heterolytic cleavage in favor of a nucleophile carbon. 

Such species need therefore to be identified and preferentially studied in environmental contexts. In 

addition, several studies mentioned a second mechanism involving radicals, which is nonetheless 

likely in very minority (Gåardfeldt et al., 2003; Yin et al., 2012). Radical species are often produced by 

light, and ever if the importance of radical mechanism is modest, the UV radiations still have a 

complex impact on mercury methylation (Malinovsky and Vanhaecke, 2011; Whalin et al., 2007). 

•  Positive impact: by providing the activation energy necessary for the reaction, or by 

inducing homolytic cleavages (formation of radicals);  

•  Negative impact: photodegradation of the produced MMHg and photoreduction of the 

substrate HgII. 

The reaction of HgII with acetates – which is the most studied reaction between HgII and a small 

organic molecule – is not favored by UV light radiation (which rather favors MMHg decomposition) 

and does not show evidences of radical mechanism (Gåardfeldt et al., 2003; Yin et al., 2012). Larger 

molecules, such as humic and fulvic acids (30 to 300 kDa) have also showed a methylation potential 

in the environment (Hammerschmidt et al., 2007; Siciliano et al., 2005), although the implied 

mechanisms remain unknown at the molecular scale. Given their omnipresence in aquatic and 

terrestrial environments (Coble, 1996) as well as their intrinsic nature – mixture of organic molecules 
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with lots of complexing chemical functions – fulvic and humic acids are of a great interest for 

mercury biogeochemistry. Their role is however complex – methylation, complexation, reduction 

(Bartels-Rausch et al., 2011; Dong et al., 2010; Gu et al., 2011; Ravichandran, 2004; Siciliano et al., 

2005) – and often related to photochemistry (Black et al., 2012). 

Although the majority of the studies have been led in aqueous media in function of pH and salinity, 

they often do not take into account neither the very important dilution in the environment, nor the 

whole complexity of environmental chemistry, which could be susceptible to change mercury 

complexation (thus availability). Indeed, as mentioned earlier, mercury tends to bind preferentially to 

organic matter (Dong et al., 2010; Ravichandran, 2004), which is not fully taken into account in 

studies on the speciation of mercury. This complexation and its effect on reactivity and bioavailability 

of mercury are still widely unknown given the wide variety and complexity of natural organic matter. 

However, the complexation of HgII with methyl donors is considered to be the first step of HgII 

methylation (Gåardfeldt et al., 2003). Generally, one should be very cautious before extrapolating 

the mechanisms presented above to environmental contexts. 

 

b. Demethylation 

 

Two microbial mechanisms lead to MMHg demethylation: oxidative and reductive demethylations. 

Oxidative demethylation is characterized by a production of HgII together with CO2 (and traces of 

CH4), whereas reductive demethylation produces Hg0 and CH4 only (Barkay and Poulain, 2007; Barkay 

and Wagner-Döbler, 2005). Organisms possessing the mer operon (mercury resistance gene) proceed 

via reductive demethylation, while the oxidative one occurs according to various biochemical 

processes (Oremland et al., 1991). The predominance of each mechanism depends on the redox 

potential of the medium, mercury concentration and speciation; reductive demethylation is however 

favored in oxic media and at high mercury concentrations (and inversely for oxidative 

demethylation). Previous studies suggest that the mer expression is inhibited in arctic waters 

(Poulain et al., 2004a; Schaefer et al., 2004). Thus reductive demethylation would not be expected to 

be dominant in Arctic snow. Oxidative demethylation is also responsible for degradation of small 

methyl-containing molecules – acetates or methylbromide (Hines et al., 1998) – which is rarely 

observed in arctic soils (Hines et al., 2001). Hence the likelihood of MMHg degradation in arctic 

environments is low. However, the occurrence of such biotic demethylating processes in snow and in 

the Arctic needs to be further addressed (Barkay and Poulain, 2007). 
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Abiotic mercury demethylation can be promoted by UV light and is responsible for the HgII reduction 

to Hg0 and its subsequent evasion in the atmosphere (Bartels-Rausch et al., 2011; Chen et al., 2003). 

This reduction reaction is further detailed in the next paragraph. An interesting case of 

desalkylation(-arylation, -allylation) of organomercuric species in presence of acyle chloride has been 

observed (Larock and Bernhardt, 1976). 

Equation 5 

R2Hg + ClC(O)R’ → RHg–Cl + R–C(O)R’ 

 

This reaction highlights the “carbanion donor” character of organomercuric species. However the 

stability of acyl chlorides in the environment and particularly in aqueous media is likely poor, thus the 

mechanism proposed above is probably not environmentally relevant. Photodegradation of HgII is the 

dominant mercury reduction pathway in aquatic environments (Barkay and Poulain, 2007), and has 

even been shown to be the sole mechanism involved in mercury evasion from an arctic highly 

oligotrophic freshwater lake (Hammerschmidt and Fitzgerald, 2006). 

 

c. Reduction 

 

Several biotic mercury reduction mechanisms have been discovered. Bacteria possessing the mercury 

resistance mer operon are able to reduce HgII into Hg0, while the other showed mercury reduction by 

a process depending on FeII and the cytochrome oxidase enzyme (Barkay et al., 2003; Iwahori et al., 

2000; Sugio et al., 2003). 

Abiotic mercury reduction is generally photo-mediated and proceeds via organic radicals produced 

by photolysis of organic molecules (Zhang, 2006). This reaction can take place as well with small 

organic molecules (benzophenone, C2 – C4 carboxylic diacids…etc.) as in complex organic mixtures 

(fulvic and humic acids) (Bartels-Rausch et al., 2011; He et al., 2012; Si and Ariya, 2008). Thiols – as 

excellent ligands for HgII and inclined to form disulfide bridges – favor HgII reduction according to the 

following mechanism (Gu et al., 2011; Si and Ariya, 2011): 

Equation 6 

RS–HgII–SR’ → Hg0 +RS–SR’ 
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Reaction products analysis showed that a radical mechanism can also be responsible for MMHg 

demethylation (Chen et al., 2003; Si and Ariya, 2008). An example illustrating the diversity and 

complexity of involved reactions is showed in Figure 4. The reaction constants depend on the 

temperature, salinity of the medium (Cl- ions being able to compete with organic ligands for HgII 

complexation), pH (influences ligands protonation) and the presence of oxygen, which react with 

formed radicals and slower the reaction (Gu et al., 2011; Si and Ariya, 2008). 

In the snowpack, photo-induced chemical reactions can also lead to HgII reduction (Dommergue et 

al., 2007). Photoreduction results in the evasion of almost all the HgII (in the form of volatile Hg0) 

deposited on snow, hence the snow can punctually be a source of Hg0 for the atmosphere (Kirk et al., 

2006; Poulain et al., 2004b). It has been recently suggested that the quasi-liquid-layer surrounding 

snow grains (more about this in the next I.iv section) could be the priority area where redox 

reactions of mercury occur (Ferrari et al., 2005), highlighting the potential role of snow physics on 

mercury chemistry in snow. 

Intramolecular 

2e
- 
transfer 

Affected by Cl
-
 

Figure 4. Schematic representation of the reaction mechanism between Hg
II
 and C2 – C4 dicarboxylic acids. Compounds in 

bold have been identified. Adapted from Si and Ariya, 2008. 
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2. Health and environmental issues 

 

Mercury is present in the environment in three main key forms: elemental mercury Hg0, divalent 

mercury HgII and the main organomercuric species: (mono)methylmercury MMHg. The latter is of the 

utmost importance, as it is highly neurotoxic, even at low doses (Ullrich et al., 2001; Yee and Choi, 

1994). It can cause neurological troubles (sense altering, balance disorders…), muscular weaknesses, 

growth and fertility disorders as well as fetal and cerebral lesions, eventually leading to death in case 

of prolonged exposure (Castoldi et al., 2001; Harada, 1995; Weiss et al., 2002; Yokoo et al., 2003). 

Methylmercury is highly toxic for the ecosystem, as it biomagnifies along aquatic food chains 

(Campbell et al., 2005; Wren, 1986). The most exposed species are therefore high trophic level ones, 

for which MMHg represents up to the totality of the mercury accumulated (Schultz and Newman, 

1997; Wagemann et al., 1996). It should yet be noted that the mercury concentration (as well as the 

MMHg proportion of it) can vary according to the species, the size and the age of the considered 

individual (Dietz et al., 2009).  

The mercury concentration in the human body is mainly due to food consumption, notably sea-food 

(Castoldi et al., 2001; Ratcliffe et al., 1996). Human exposure is limited by a strict legislation, 

imposing threshold concentrations in the majority of consumed fishes: the World Health 

Organization (WHO) imposes a mercury concentration below 1 µg/g in the dorsal muscle of 

predatory fishes (0.5 µg/g in  non-predatory ones) destined to the food market (Joint FAO/WHO 

Expert Committee on Food Additives, 2007). Some populations of the Arctic are big fish and high 

trophic level mammals (seal, beluga, polar bear…) consumers (e.g. Inuits) and can overpass by far the 

threshold concentration fixed by the WHO (300 µg/week, including a maximum of 200 as 

MMHg)(Arctic Monitoring and Assessment Programme, 2011). 
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The Arctic is very sensitive to contaminants and pollutants originating from mid-latitudes, and 

particularly to mercury. The presence of MMHg has been well observed and documented, but 

although many hypothesis exist to explain it (further description below), it remains undefined (see 

review by Barkay and Poulain, 2007). The analysis of different biological tissues (teeth, liver, brain, 

hair…) of many arctic species (marine birds, polar bears, belugas…) shows a steep increase of the 

mercury concentrations in the arctic wildlife since the beginning of the industrial era (Figure 5). 

During this time, the mercury concentration in the hair of Greenland inhabitants increased from 3 to 

6 times (Dietz et al., 2009). 

 

3. Mercury deposition in the Arctic 

 

Mercury deposition in the environment is due to its oxidation from atmospheric Hg0 to HgII – as 

Reactive Gaseous Mercury (RGM) and Particulate Mercury (PM) – and its subsequent removal from 

the atmosphere by precipitations, while dry deposition of mercury can also occur (Mowat, 2010; 

Rutter et al., 2011). Given the cyclic nature of mercury transformation (emission – transportation – 

deposition – reemission), it can be deposited then reemitted several times before reaching remote 

regions such as the Arctic (Ariya et al., 2004). In the Arctic, the high surface specific area of snow 
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Figure 5. Historical trend of Hg concentrations in different species of the Arctic biota, 

expressed as a percentage of today values. Adapted from Dietz et al., 2009. 
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could play an important role in RGM adsorption, while PM is suspected to help the nucleation of 

snow grains (Douglas, 2005). 

During arctic springtime (between March and May), events of massive atmospheric Hg0 oxidation 

called AMDEs (Atmospheric Mercury Depletion Events) occur simultaneously with ozone depletion 

events (Schroeder et al., 1998; Steffen et al., 2008). These oxidation events involve mainly Br. and 

BrO. radicals, which result from the photodegradation of marine halogenated species (Br2, BrCl…) and 

their subsequent reaction with ozone (Stephens et al., 2012). These punctual AMDEs are 

characterized by the almost-total loss of atmospheric Hg0 together with formation and massive 

deposition of HgII (RGM and PM) onto the snow, soil and sea surface (Figure 6). 

A recent study showed that the tropospheric layer affected by AMDEs could be up to 1 km thick, with 

a substantial difference between terrestrial and marine surfaces (Mao et al., 2011). Although it is 

commonly accepted that most of the HgII deposited onto snow is rapidly reduced and reemitted back 

to the atmosphere (Kirk et al., 2006; Poulain et al., 2004b), the remaining fraction can potentially 

undergo various transformations. The average mercury reemission at Alert (Canadian Arctic) over a 

14-days long period of time offsets 59% of deposited mercury during the same time lapse (Brooks et 

al., 2006), versus more than 75% following a strong deposition event (St. Louis et al., 2005). The 

mercury stored in seasonal snow is delivered to the aquatic ecosystem during the snowmelt, partially 

as MMHg (Loseto et al., 2004; St. Louis et al., 2005). This whole process contributes to the MMHg 

pool that biomagnifies in aquatic food chains, leading to significant mercury concentrations 

measured in the arctic wildlife, although the Arctic is remote from any mercury emission area (Arctic 

Monitoring and Assessment Programme, 2011). 
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Figure 6. Schematic representation of the mechanisms involved in the mercury cycling in 

arctic, including Hg
II
 deposition during photo-mediated AMDEs, and Hg

0
 evasion from 

open surfaces. 
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As MMHg is of great concern regarding environmental and health issues in the Arctic, the objective 

of the present manuscript is to clarify the mercury cycle in arctic snow, and particularly regarding the 

presence of MMHg. The following section presents an overview of the knowledge needed for this 

purpose. A solid knowledge of the known aspects of the biogeochemistry of mercury – such as its 

sources and reactivity – is indispensable but not sufficient. In order to fully consider the potential 

reactivity of mercury in snow, one shall be aware of the intrinsic properties of snow, which appears 

more and more to be a dynamic reactor for many chemical reactions, including those involving 

mercury. The next section starts with a global picture of what is a snowpack. The characteristic of 

snow are not reported fully and with every detail, as this is not the purpose here; however, it should 

provide sufficient knowledge on how a snowpack behaves and how its characteristics affect or could 

affect its chemical content and reactivity. Current knowledge of the artic MMHg biogeochemical 

cycle will then be presented. 
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iv.	The	problematic	of	methylmercury	in	

arctic	snow	

 

1. Physic-chemistry of the snowpack 

 

The formation of the snowpack is mainly due to discontinuous precipitations resulting in a structure 

of horizontal layers superposition (Colbeck, 1991). Other processes are involved, such as rain events 

(rain water freezes once in the snowpack) and condensation of atmospheric water vapor on surface 

snow, forming surface hoar (Cabanes et al., 2002). Moreover, the snow cover perpetually 

experiences physical changes, as the structure of the snow grains changes according to the 

atmospheric conditions. These changes – called snow metamorphism – are due to moisture transfers 

between bottom and surface snow (sublimation – condensation) as well as mechanical compaction 

and erosion phenomena, mainly due to wind (Colbeck, 1983). These phenomena vary with the 

temperature profile of the snowpack, and are responsible for significant changes in the different 

physical parameters of the snowpack, among which: 

•  The density, representing the air/ice ratio of the snowpack, and which varies typically 

between 0.2 and 0.4 g/cm3. The compaction phenomena, for instance, tend to increase 

the density. The typical density values indicate that apart from potential ice layers, 

snowpacks are mainly made of air (Domine et al., 2008). 

•  The surface specific area (SSA), representing the surface of the air – ice interface per unit 

of mass. Typical values can vary widely according to the snow type, from 80 cm²/g for 

depth hoar to 1600 cm²/g for fresh snow (Domine et al., 2008). 

Snow metamorphism leads to a constant evolution of snow crystals shape, depending on their 

location in the snowpack and the temperature gradient in it. As a consequence, the snowpack shall 

be divided in layers differing from each other by the morphological properties of the snow grains 

(see examples in Figure 7). The moisture transfer processes also impact chemistry in the snowpack: 

sublimation or melting of the surface of a grain can uncover species previously located deeper in the 

grain, whereas water vapor condensation can inversely trap species previously located at the surface 

of the grain. 
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Despite that the snowpack is often integrally porous, the 50 to 100 top centimeters are considered as 

the most important regarding snow chemistry, as exchanges with the atmosphere are more 

important there, notably because of wind-forced convection (Albert et al., 2002; Domine, 2002). The 

10 to 20 top centimeters constitute the photic area, where the incoming solar radiations are the 

most important, favoring therefore photo-induced chemical reactions (Simpson et al., 2002; 

Perovich, 2007). Many redox reactions are observed in this photic area: nitrate photolysis, for 

instance, plays an important role in the nitrogen species (NOX) cycle (Domine, 2002; Honrath et al., 

2000; Moller et al., 2010; Simpson et al., 2002a, 2002b). At a smaller scale, the surface of snow 

crystals shows a more disordered molecular H2O network than the one of their inside, with 

properties between those of ice and liquid water. This disordered surface layer, called the quasi-

liquid layer (QLL), is possibly the privileged area for multiphasic reactions, as it marks the snow – air 

interface (Ferrari et al., 2005; Jacobi and Hilker, 2007; Thomas et al., 2011). 

The chemical species contained in a snowpack originate either from the atmosphere or from other 

sources relatively close to the snowpack. During the formation of ice crystals in the troposphere by 

water condensation (Kuhn, 2001), many gaseous species are co-condensed and trapped in 

snowflakes; aerosols and various particles participating to the grains nucleation are additional 

sources of chemicals (Andreae and Rosenfeld, 2008)(Toom-Sauntry and Barrie, 2002; Douglas and 

Sturm, 2004; De Caritat et al., 2005; Krnavek et al., 2012). Hence fresh snow already has a complex 

Figure 7. Photochromatographs of metamorphic crystals commonly encountered in snowpacks: (a) depth hoar; (b) 

faceted crystals; (c) dense melt-refreeze crust; (d) melt-refreeze polycrystal originated from a low density melt-refreeze 

crust(0.11 g/cm
3
); (e) mid-sized grains originated from a quasi-basal layer (density = 0.35 g/cm

3
); (f) mixt crystal with 

rounded shapes and facets. White bars represent 1 mm (reproduction from Domine et al., 2008). 
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chemical composition by the time of its deposition. Other sources can participate – as for example 

marine surface at coastal sites, geological erosion or anthropogenic activity – and be susceptible to 

alter the chemistry of the snowpack (de Caritat et al., 2005; Douglas and Sturm, 2004; Krnavek et al., 

2011; Toom-Sauntry and Barrie, 2002). In addition, the snow in constantly exchanging with the 

atmosphere through adsorption, desorption and diffusion of 1) air streams into the snowpack (wind 

convection); and 2) chemical species into the ice material. The presence in snow of aerosols and 

particles containing microorganisms – 200 - 5000 cells/mL (Alfreider et al., 1996; Carpenter et al., 

2000; Segawa et al., 2005) – suggest that biological activity may be possible, producing bioorganic 

(macro)molecules that participate to the chemical diversity of snow (Alfreider et al., 1996; Carpenter 

et al., 2000). The current state of analytical techniques allows for an overview of the whole chemical 

content of a snowpack, but a discrete, detailed and complete chemical composition remains illusory. 

Indeed, the chemical content of snow is too rich and varied, and analytical methods are sometimes 

not sensitive enough and/or allow access to values corresponding to mixtures of different species, 

e.g. total organic carbon (TOC, see the “Materials and Methods” chapter), or humic-like substances 

(HULIS). Finally, the chemical characterization of snow always requires a melting, which can change 

the concentrations of volatile species (by addition or removal) and which excludes any spatial 

resolution of the chemicals repartition at the grain scale. A recent comparison of the pH of ice before 

and after melting (and inversely before and after freezing) confirmed that the act of melting can 

induce analytical discrepancies (Wren and Donaldson, 2012). 

2. The snowmelt: a transfer of contaminants to the arctic 

ecosystem 
 

The snowmelt is a metamorphic process due to positive temperatures and intense solar radiations, 

that occurs sometimes at negative temperatures (Kuhn, 1987). Superficial layers of snow grains melt 

first and the resulting meltwater percolates down to the basis of the snowpack through melt – 

refreeze cycles. In moderate melting conditions, liquid water is retained in concave cavities of snow 

crystals and in interstitial gaps; the refreeze of these liquid pockets is responsible of the changes in 

snow grains shape. Water can fill between 5 and 10% of the total interstitial space before percolating 

deeper (Colbeck, 1981, 1979). The meltwater runoff at the surface of snow grains – in addition to the 

metamorphic consequences – leads to the dissolution and mobilization of chemical species. As a 

result, these species are eluted away from both the melting snow grains and the surface of the snow 

grains crossed by meltwater streams. Simultaneously and consequently, the meltwater stream gets 

richer in eluted chemical species when percolating toward the bottom of the snowpack. If the 
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atmospheric conditions allow it, snowmelt water can refreeze in the middle of the snowpack and 

form high density layers (close to ice), but in strong melting conditions, meltwater reaches the 

ground before refreezing as an ice layer (Kuhn, 2001). 

As they follow the path of meltwater streams, chemical compounds are re-concentrated in 

interstitial spaces and cavities of the snow grains first, then in the ice layer formed by meltwater 

refreezing at the bottom of the snowpack. The chemicals are eluted according to their solubility in 

water: inorganic ions first and the most hydrophobic organic molecules at last (Eichler et al., 2001; 

Meyer et al., 2009, 2006), while particles usually remain trapped in snow until the last step of the 

snowmelt (Berry Lyons et al., 2003; Meyer et al., 2006). The rain events, whether they happen during 

or before the melting periods, favor the elution process the same way that percolating meltwater 

does (Daly and Wania, 2004). Chemical species are rapidly removed from the snowpack, as roughly 

80% of them are eluted by the first third of meltwater, with variations according to the snow type 

(Kuhn, 2001). The meltwater streams hence deliver as a pulse the majority of the chemical species 

contained in the snowpack to the tributary ecosystems: soils, swamps, fjords. The shorter the 

melting season, the more concentrated the pulse is; in the Arctic, the melting season is usually very 

short (around 2 weeks), which exposes the arctic ecosystems to a very strong chemical pulse at the 

end of arctic spring (Daly and Wania, 2004). 

3. The sources of MMHg in arctic snow 

 

As described above, the snowpack is a dynamic, heterogeneous and complex medium. Its physical 

properties and chemical composition are not yet fully understood. Mercury is in constant exchange 

between snow and atmosphere, via redox cycling. Once in the interstitial air of the snowpack, Hg0 

can be oxidized to HgII (Maron et al., 2008; O’Concubhair et al., 2012) and deposited in snow but also 

reemitted back following HgII reduction (see the I.iii section). However, in this manuscript, our main 

focus is the dynamics of MMHg in the snowpack, which require knowledge of the previous studies on 

this topic, presented in the following. 

Methylmercury is present in snow at the tenth of picogram per liter (of melted snow) range. Given its 

high neurotoxicity and ability to biomagnify in the trophic chain, it constitutes a danger when 

delivered to aquatic ecosystems during the snowmelt (Loseto et al., 2004). A few phenomena are 

suspected to explain the presence of MMHg in snow: 

•  An atmospheric source for MMHg, suspected to be due to the evasion of 

dimethylmercury from leads and polynyas where it may be formed by phytoplankton in 
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the water column (Pongratz and Heumann, 1999, 1998), and its subsequent atmospheric 

photodegradation to monomethylmercury chloride (Niki et al., 1983; Waring and Pellin, 

1967) and deposition. 

•  Biotic or abiotic in situ methylation. Once in snow, HgII is likely mainly bound to organic 

molecules, despite the presence in majority of competing inorganic ligands (Cl-, HO-

…etc.)(Dong et al., 2011; Ravichandran, 2004). Microorganisms present in snow – and 

which show evidences of biological activity (Alfreider et al., 1996; Carpenter et al., 2000) 

– can also metabolize or incorporate by diffusion the deposited HgII, according to its 

bioavailability. The biotic and abiotic complexes formed can favor the methylation by 

methyl transfer from the ligand -or a third methyl-donating species) to HgII. Biochemical 

reactions involved in the sulfur cycle have been recently suspected to lead to in situ 

methylation of bioavailable mercury (Larose et al., 2011, 2010). For more information 

about the possible mechanisms, refer to the “Methylation” paragraph of the I.iii section. 

•  Mercury methylation in the atmosphere at the surface of aerosols, which showed a 

potential as biochemical reactors (Ariya and Amyot, 2004; Ariya, 2002). Particles 

participating to the snow nucleation or adsorbed at the surface of the snow crystals will 

contribute to the chemical content of the snowpack after deposition. 

The current overview of the MMHg input pathways in snow is presented in Figure 8. All the 

mechanisms proposed in Figure 8 have been observed and described in other contexts (Bartels-

Rausch et al., 2011; Black et al., 2012; Chen et al., 2003; Gåardfeldt et al., 2003; Larose et al., 2010; 

Malinovsky and Vanhaecke, 2011; Maron et al., 2008; O’Concubhair et al., 2012; Stephens et al., 

2012; Whalin et al., 2007; Yamamoto, 1995) and all are susceptible to occur in snow. The biotic and 

abiotic contributions to these mechanisms remain undefined. Based on the knowledge presented in 

this last introductive section, the following chapters propose a new insight on the origin of MMHg in 

snow using a novel analytical approached of snow chemistry. 
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Figure 8. Summary of the mechanisms possibly involved in the MMHg (in red) cycling in snow: (1) reductive 

elimination; (2) oxidative addition; (3) transmethylation from a methyldonor to Hg
II
; (4) transmethylation from MMHg 

(demethylation of Hg
II
) and (5) transmetallation (methyltransfer from a metal to Hg

II
, M = Sn, Pb…). 
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Résumé 

Dans un premier chapitre, cette partie a pour but de décrire la totalité de l’instrumentation 

manipulée lors de ce travail de thèse. Tout d’abord, une présentation très détaillée et exhaustive du 

travail de développement analytique d’un dispositif de mesure du MMHg par hydruration-GC-CVAFS 

est faite, incluant autant de détails que possible sur les problèmes pratiques rencontrés. Le but de 

cette description poussée est de favoriser à l’extrême la reconstruction par le lecteur en l’informant 

de tous les écueils susceptibles de le ralentir. Les performances analytiques de ce dispositif n’étant 

pas encore pleinement définies, ces informations seront certainement d’un grand secours à son futur 

opérateur. 

En continuant sur la description de l’instrumentation utilisée, nous décrivons les dispositifs 

opérationnels auxquels nous avons eu recours pour acquérir notre jeu de données, notamment la 

méthode de mesure du MMHg par double dilution isotopique, grâce à un couplage GC-ICP-MS. Les 

méthodes de mesure de la chromatographie ionique, du carbone organique total, des particules ainsi 

que du mercure total sont aussi décrites. Toutes ces analyses et leurs préparations, sans exception, 

font partie intégrante du travail de cette thèse. 

Le deuxième chapitre présente les conditions de la campagne de terrain. Le but de ce chapitre est 

non-seulement de décrire le site d’étude et la méthodologie d’échantillonnage appliquée, mais aussi 

les conditions géochimiques et météorologiques durant les 9 semaines de la campagne. En effet, 

nous listons les épisodes de précipitations, qui (de par piégeage des contaminants atmosphériques) 

ont un effet potentiel sur la chimie du manteau neigeux. Un épisode de tempête induisant des 

dépôts de sprays marins sur le manteau neigeux côtier est aussi recensé et décrit, ainsi qu’une brève 

description préliminaire des AMDEs. 

Le régime venteux est aussi d’un grand intérêt considérant la chimie du manteau neigeux, car de 

nombreux contaminants, notamment Hg
0
, peuvent être transportés sur de longues distances avant 

leur dépôt. Les retro-trajectoires sur 24h des masses d’air arrivant au site d’étude sont présentées 

pour chaque jour de la campagne, et montrent une grande variabilité dans leurs origines. Le régime 

venteux à l’échelle du Kongsfjorden, au contraire, est très marqué par des vents dirigés entre ses 

deux extrémités (le glacier Kongsvegen et l’ouverture sur le large), le plus souvent depuis le glacier 

Kongsvegen. Les vents issus du large sont associés aux épisodes d’AMDE. 

Un épisode d’apport massif de particules a été enregistré dans le manteau neigeux côtier dans le 

dernier mois de la campagne. Il ne semble relié à aucune origine de masse d’air particulière, à aucun 

changement de direction du vent à l’échelle locale, ni à aucun autre événement recensé (AMDE, 
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précipitation ou tempête). Le déclin de cet événement (diminution du nombre de particules dans la 

neige) semble cependant corrélé avec la fonte du manteau neigeux. La source de ces particules et 

leur impact sur la chimie de la neige côtière sont discutés dans un chapitre suivant. 

En plus de tous ces événements géochimiques et météorologiques, une hausse de température 

anticipée a été observée et son impact sur le manteau neigeux est décrit brièvement. Les résultats 

montrent une forte hausse de la température à 2 m dans la première moitié de la campagne, avant 

un retour à des conditions de température plus conservatives pour le manteau neigeux, puis 

finalement la fonte saisonnière attendue. En conséquence, le manteau neigeux est fortement 

modifié dès les premières semaines de la campagne et montre notamment des signes visibles de 

fonte dès la fin avril. L’impact de cette fonte prématurée sur la chimie de la neige est discuté dans un 

chapitre suivant. 

Outre un intérêt purement descriptif de la méthodologie et des événements géochimiques et 

météorologiques, cette partie permet d’identifier les processus qui s’avèrent (dans la suite de la 

thèse) être critiques concernant la chimie du manteau neigeux. En particulier, les résultats présentés 

dans ce chapitre permettront l’identification des sources principales des différentes espèces 

chimiques du manteau neigeux, incluant le MMHg. 
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1. Toward a reliable and mobile system for MMHg measurement  

 

Various MMHg titration methods have been reviewed (Berzas Nevado et al., 2011) among which a 

few are sensitive enough to allow for the measurement of MMHg at the pg/L level in melted snow. 

These methods are developed for sea-water samples, which contain MMHg concentrations in the 

same range than melted snow samples. The first step is always a derivatization of MMHg to a volatile 

species. Most of the methods use ethyl group donors to transform MMHg into the volatile 

methylethylmercury, while the most sensitive ones proceed via hydride generation to obtain the 

volatile methylmercury hydride. The latest allow very low detection limits (< 5 pg/L) in aqueous 

samples with low DOC content, which made it our reference method for the development of our own 

MMHg measuring device. 

Hydride generation occurs via addition of a mild reactive hydride donor (sodium borohydride NaBH4) 

in the sample. Once NaBH4 added, hydrides react with Hg species, yielding as follows: 

MeHg+ + NaBH4 + 3 H2O → MeHgH + 3 H2 + H3BO3 + Na+ 

Hg2+ + 2 NaBH4 + 6 H2O → HgH2 + 6 H2 + 2 H3BO3 + 2 Na+ 

Hg2+ + 2 NaBH4 → Hg0 +B2H6 + 2 Na+ + H2 

The generated Hg0 HgH2 and MeHgH are volatile species and can be purged out by helium flux into a 

chromatographic column immersed in liquid nitrogen (-196 °C), where they are trapped by 

adsorption. Emerging the column and subsequent warming to room temperature in appropriate 

helium flux allow for the trapped species to 1) undergo thermal desorption; 2) be pulled by the 

helium flux and 3) be separated along the column. Once separated, the Hg species are converted to 

Hg0 to be detectable by a cold vapor atomic fluorescence spectrometer (CVAFS). This process allows 

for the quantitative detection of generated Hg hydrides, in roughly 10-12 min per sample. 

In summary, the four critical steps of the method are 1) the Hg hydride generation; 2) their 

adsorption onto the cold trap; 3) their thermal desorption/elution and 4) their measurement by 

CVAFS. The major advantages of using this method are critical regarding environmental MMHg 
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monitoring in Arctic snow. It is the suitable compromise between sensitivity, cost-effectiveness and 

handling ability. Particularly, the derivatization-purge-and-trap methods are the only one that can be 

brought on the field and thus allow real-time monitoring with every deriving advantage. Other 

methods can be as sensitive as the one presented here but often require heavy sample 

preparation/extraction and extremely expensive devices (e.g. the double spike method in the part 2 

of the present section). 

For the development of our own apparatus, we chose to start from the existing procedure descri bed 

in (Tseng et al., 1998) using parameters from Cossa and coworkers (personal communication), who 

use the purge and trap method for years on a daily basis. However, the optimal setting of each 

parameter happens to vary from one assembly to another, as well as overtime. This is mainly due to 

the differences (even the tiniest) existing between two different assemblies, but also to some 

changes happening to a given assembly over use. Although we were aware of many analytical 

parameters and suspected a few more, time and experimentation made us discover empirical issues 

that can affect the quality of the result. Hence, while it is quite easy to obtain a working apparatus, 

the optimization necessary to the sensitivity and the reproducibility of the result is a lot more time 

consuming and uncertain. The following is a description of the issues we encountered durin g the 

optimization process. 

 

a. System description 

 

A schematic overview of the assembly is presented in Figure 1. It consists in a helium line made of 

Teflon (PFA) passing successively through: 

- A golded sand trap, for helium purification of possible Hg0 traces; 

- A four-way pinch electrovalve, allowing the helium to flow either to the sample reactor (60 

mL braun borosilicate glass, coated with DMCS (CH3)2SiCl2) or directly to the rest of the 

assembly; 

- A U-shaped silanised (coated with DMCS (CH3)2SiCl2) borosilicate glass column (6 mm ext. ø, 4 

mm int. ø, Verre Labo Mula, France) filled with WAW-DMCS (60/80 mesh impregnated with 

15% OV-3, Interchim, France) and wrapped in a Ni-Cƌ ƌesistoƌ ;ϱ Ω/ŵ, CoŶƌad, FƌaŶĐeͿ ; 

- A 25 cm long quartz tube (Verre Labo Mula, France) heated to 800 °C in a tubular-cavity oven 

(Carbolite, Switzerland). 
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- A three-way pinch electrovalve, allowing the helium to flow either to the atmosphere via a 

ball flowmeter A (Aalborg, USA), or to the following ; 

- A Tekran 2500 CVAFS mercury analyzer (Tekran Inc., Canada); 

- A ball flowmeter B (Aalborg, USA). 

The sample reactor is a brown borosilicate glass unique bottle in which the sample is transferred at 

the beginning of the analyzing procedure. The reactor has a gas input (from the gold trap), a NaBH4 

(VWR SAS, France) solution input and a gas output (to the column). A peristaltic pump designs the 

NaBH4 throughput to the sample. All the tubing between the different parts is made of Teflon (PFA), 

or food-processing silicone tubing (at the pinch valves). The assembly is built so that the line is as 

short as possible. All chemical and equipment, if not speci fied, were purchased from Fischer Scientific 

SAS, France. 

 

The analysis of one sample proceeds as follows: 

1) Trap cooling: the liquid nitrogen bath is lifted up to immerse the column. The helium 

flows directly to the column and is released to the atmosphere after the oven (without 

passing through the CVAFS). The efficient trapping of Hg derivative depends on the 

temperature of the column after this cooling step. If this step is too short, the trapping is 

NaBH4 

1% w/w 

He 

1.8 bar 

Gold trap 

Peristaltic pump 

AFS 

A B 

flowmeters 

Piloting unit 

N2 
Magnetic 

stirrer 

oven 

U-shaped  

column 

4-way PV 
2-way PV 

Ni-Cr 
resistor 

Figure 1. Schematic representation of the derivatization-purge-and-trap-GC-CVAFS assembly. 
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not quantitative. The optimal time required for a complete cooling is 90 s (Tseng et al., 

1998; Cossa, personal communication). 

 

2) Hydride generation 

 

a) The 40 mL sample is stirred while adding a 1% w/w aqueous solution of NaBH4 

(prepared daily) at 0.4 mL/min for 3 min. As NaBH4 readily reacts with H2O, a slow 

addition of a large excess of NaBH4 (with respect to Hg species) is preferred. This step 

allows the reactions described above, and strongly depends on the pH of the sample, 

Tseng et al. suggesting an optimal pH of 1-2 (Tseng et al., 1998). We determined 

empirically the optimal volume of suprapur HCl necessary to yield the largest MMHg 

peak (in synthetic samples, matrix: milliQ water, pH around 6)(Figure 2). As this 

method was originally designed for sea-water samples, we tried the effect of salinity 

on the MMHg peak area, with visible improving results up to 2 g of NaCl  (no visible 

effect for larger additions). The addition of NaCl and NaBH4 often induces HgII 

contamination at significant levels regarding the sensitivity of the method. This 

means that HgII cannot rigorously be determined with this method, and also that a 

too large excess of NaBH4 as well as too much NaCl can induce an overwhelming Hg II 

peak and therefore deteriorate the MMHg peak detection. 
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Figure 2. Effect of HCl addition during the hydride generation step on the final MMHg peak area. 
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b) Simultaneously to NaBH4 addition, the helium flux is redirected to purge the sample 

before going to the column, aiming to withdraw all the volatile Hg species (and 

particularly MeHgH) from the sample via water-gas exchanges at the wall of the helium 

bubbles. This step requires a homogeneous purging of the total volume of the sample, as 

well as optimal water-helium exchange conditions. This can be achieved by using a 

borosilicate glass frit (pore size: 16-40 µm) and by stirring the sample. The porosity of the 

gas delivering glass frit is important regarding the water-helium exchanges: the smaller 

the bubbles, the higher the water-helium interface, and then the more effective the 

water-helium exchanges. However, if the glass frit porosity is too small, the hindrance to 

the helium flux (2 bar) is too strong, hence the system is too pressurized, eventually 

leading to explosions at the different junction points of the assembly. The other 

important parameter regarding the Hg hydride purge efficiency is the helium flow rate, 

as it determines the bubble speed in the sample: the lower the speed of the bubble, the 

longer its residence time in the sample, the longer (thus more effective) the water-

helium exchange window. This also explains the slender shape of the reactor, helping 

maximizing the residence time of the bubbles between the bottom (gas delivery) and the 

surface of the water sample (bubble evasion). Purged species are trapped by adsorption 

in the column immersed in liquid nitrogen. 

 

3) Additional purge with helium in the conditions of 2)b) but without NaBH4 input 2)a) 

anymore. A quantitative purge of all the generated Hg hydrides is achieved for a total 

helium/sample volume ratio of 15:1. Our observations on the factors determining the 

purge efficiency (see paragraph 2)b) above) would suggest a very long purge time with 

very low helium flow rate as the optimal purge. However the simultaneous purge of 

water vapor and its subsequent condensation upstream of the column – as both liquid 

and ice – can form an obstructing plug to the helium stream, leading to overpressures 

and possible subsequent explosions. In addition, this water can be caught by the helium 

flux during the following elution step, enter the detector and deteriorate the 

chromatogram quality: baseline lift, fluorescence scattering. The optical cell of the CVAFS 

detector, once contaminated with water condensation, is hard and tricky to clean. 

Therefore, to avoid water condensation as much as we can, some restrictions should be 

applied to the overall purge time (reminding the 15:1 helium/sample ratio): not too long 

but with moderate helium stream. The optimal conditions were empirically found to be a 

7.5 min purge (steps 2) and 3)) with a 350 mL/min helium flow (flowmeter A). However, 
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it is not possible to completely avoid water condensation, which remains the main issue 

of the method. 

 

4) Thermal desorption and elution step: the liquid nitrogen container is pulled down, 

allowing the column to warm gradually to room temperature, under a continuous helium 

flux directed toward the CVAFS spectrometer inlet. Each Hg species is desorbed from the 

column at a given temperature (depending on its volatility and affinity with the static 

phase) and carried by the helium flux. The Hg species are then separated while flowing 

out of the column (Hg0 being less retained than MeHgH) and converted to Hg0 at 800 °C 

to allow detection by the CVAFS spectrometer (Figure 3). The main parameters 

influencing the optimization of this step are the helium flow rate and the column 

warming gradient. The higher helium throughput, the thinner the peaks; however the 

helium throughput also defines the residence time of Hg species in both the oven and 

the detector optical cell. A too short residence time in the oven would meant non-

quantitative conversion of Hg species into Hg0, while a too short residence time in the 

optical cell would meant a non-quantitative detection of Hg0. The latter happens to be 

the most limiting factor to the helium flux and does not allow higher throughputs than 

125 mL/min (flowmeter B). Lower throughputs induce rapidly very large peaks and 

deteriorate therefore the chromatogram quality, hence an helium flux of 125 mL/min is 

considered as optimal during the elution step. The column warming is also crucial, as a 

quicker warming would result in closer desorption instants, thus in smaller peak 

separations. As shown on Figure 3, peaks corresponding to HgII and MMHg are well 

separated, and one could expect a quicker warming to be much more time -effective 

while still allowing a very good peak separation. This is true, however the problem here 

comes once again from the water condensate upstream of the column, which liberates 

water vapors as the column is warmed. If the warming is only induced by the air 

temperature, this water remobilization can be controlled, but for any quicker warming it 

can happen before MeHgH is desorbed. As water vapor enters the optical cell of the 

CVAFS, it can scatter both emitted and reemitted UV light, thus lead to a non-

quantitative Hg0 detection and to a baseline shift. If oversaturation allows water to 

condensate in the optical cell, the analysis shall be stopped and the cell cleaned. 
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5) Drying of the column: the Ni-Cr resistor wrapped around the column is fed with 24 V 

poǁeƌ, up to ϭϰϱ °C foƌ a ϮϬ Ω ƌesistoƌ ;ϰ ŵ loŶgͿ. This step aiŵs to ǀapoƌize the iĐe aŶd 

water formed upstream of the column (and possibly in the column itself) and to reject it 

in the atmosphere (via flowmeter A). The helium throughput – for obvious practical 

reasons – is set to the same value as during the sample purge, and allows a total drying 

of the assembly after 6 min. 

 

b. Empirical issues 

 

The care brought to the building of the assembly itself is at least as important as the parameter 

optimization described above. Indeed, these parameters are rather fine tuning and are worth 

optimizing only once several key building features are respected to allow the assembly to physically 

work properly. This is of course the trickiest part of the development, as a lot of key-factors for the 

building of the assembly are often non-obvious and unexpected. What follows is a list of these key-

factors, identified through troubleshooting of all the dysfunctions encountered during the daily work 

on the assembly. 

 

0           1      2        min 

Figure 3. Typical chromatogram obtained for 10 pg of MMHg. 
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A. The tubing: its nature and its length are of great importance in order to have a working 

asseŵďlǇ. The loŶgeƌ the aŶalǇtiĐal liŶe, the higheƌ the ƌisk of ĐoŶdeŶsatioŶ spots ;͞Đold 

spots͟Ϳ. This is the ŵain concern in our case: at the current knowledge of the assembly and 

giǀeŶ the Ŷuŵďeƌ of paƌaŵeteƌs to test, ǁe ĐaŶŶot affoƌd to ďe uŶĐeƌtaiŶ aďout ͞Đold 

spots͟. HeŶĐe ǁe ƌeŵoǀed all the supeƌfluous tuďiŶg doǁŶstƌeaŵ the ϰ-way pinch valve and 

upstream the 2-way one, and connected directly the different parts together. The silicone 

tubing of the 4-way pinch valve is connected to the column, which is connected directly to 

the quartz tube passing through the oven. All the tubing upstream of the 4-way pinch valve, 

downstream the 2-way one and in the reactor is made of 1/16 inches Teflon tubing. 

 

B. The connections: this parameter is commonly considered by analytical chemists. Indeed, 

connections are the location where most of the leaks occur. For the purpose of an extremely 

short line, industrial connections are not the best solution in our case. The connections 

between the reactor and the AFS detector need to be flexible to avoid tensions on the 

glass/quartz parts, and to allow the angles of the connection to be  other than 90° or 180°. In 

addition, connections up- and downstream of the column should not allow rapid and 

important heat transfer, as we want the temperature to be as steady as possible at a given 

point of the analytical line (except the column of course). Finally, we do not exclude to use 

heating strips on some parts of the line to have a better control on the temperature, and this 

requires thin easy-to-heat connections. All these conditions are best filled by simple food-

processing silicone tubing, despite the regular change of a silicone connection exposed to 

thermal stretches is sometimes needed. Besides, up- and downstream the pinch valves, small 

T- or Y-shaped polyethylene connections are used to split or to reunify the line. As the 

assembly can require many manipulations for trouble-shooting or maintenance reasons, 

connections shall be thought to be easy to plug/unplug. The connections between 1/8 Teflon 

tubing and 1/8 silicone tubing are therefore made with linear polyethylene connections, as 

shown on Figure 4. This might seem just like a complication of the direct connection, but it is 

actually much easier to plug/unplug without any stretch or tension. Such connections can be 

used in all the assembly but not directly downstream of the column, as the strong heating 

during the drying step would cause the polyethylene part to melt. Silicone connections shall 

be changed when becoming opaque – which is a sign of thermal degradation – otherwise 

they risk a rupture. At the pinch valves, the required silicone tubing shall be checked on a 

regular basis for pinch persistence. This is particularly true for the tube directed to the 

atmosphere in the 2-way valve, which experiences strong humidity during the drying step 
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and tends rapidly to remain pinched. If no care is taken, the water expulsed during the next 

drying step will be forced to the AFS detector and cause severe harm to the optical cell.  

 

 

C. Leakproof qualities of the cap of the reactor: it seems obvious that any leak from the 

reactor will possibly lead to a loss of MeHgH during the purging step. However, there is to 

our knowledge no 3-way transfer cap available on the market for the thin reactor we use. 

Waterproof caps made of Teflon and with Teflon tubing passing through are an option. The 

Teflon tubing requires an external silicone coating – actually the Teflon tube is plugged into a 

silicone one and forced through a tiny hole in the Teflon cap. Another option was to use a 

septum on the cap and to force Teflon tubing through, however this does not allow full 

waterproof qualities for larger tubing than 1/32 inches (we use 1/8), and the ageing of the 

septum can induce hole stretching and porosity over time. For long term use, as we want the 

most reliable cap, we decided not to use septum-equipped caps, and for practical reasons, 

we decided to use the caps provided with the reactor as a working basis (24-400 Teflon-

coated polyphenol caps). Although polyphenol is much more rigid than Teflon, it was 

possible to force Teflon tubing with silicone coating through a tapped polyphenol cap; 

however this causes too much stretching constraint to the silicone coating and eventually a 

rupture over time and use. The best solution was achieved by forcing Teflon tubing directly 

through a polyphenol cap and by using silicon at the external junction to ensure the 

4-way valve 

2-way 

valve 

oven 

U-shaped column 

PE connection 

1/8 silicone tubing 

1/8 teflon tubing 

1/4 silicone tubing 

Glass / quartz tubing 

AFS detector 

Figure 4. Schematic view of the different connections used. 

oven 
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waterproof qualities. The internal side of the cap shall remain untouched, and the Teflon 

tubing should be forced through the cap from the internal to the external side, to avoid the 

internal Teflon coating removal. The obtained 3-way transfer cap (Figure 5) offers the best 

performances in our case. 

 

 

D. The column is glass-made as it shall support wide thermal stretches and must be neutral 

regarding Hg species (which could not be the case for metallic columns). It is filled with 

WAW-DMCS (60/80 mesh impregnated with 15% OV-3) up to 2 cm below the inlet of the 

tube and up to the top at the outlet. Quartz wool plugs are used to prevent the WAW-DMCS 

phase to be pushed out of the columns by the gas fluxes: one is placed after the phase and 

the other one before the phase (the brutal flux decrease during the elution step often causes 

the phase to flux backward) in order to hold it tight. It is advised to let 2 cm free of any filling 

before the phase, as this is where water condensation during the purging step usually occurs, 

and any filling would increase the risk of obstruction. Both the glass column and the quartz 

wool are silanized with DMCS (CH3)2SiCl2 prior assembling to provide a uniform Si(CH3)2 

coating corresponding to the WAW-DMCS phase – the oxygen of the glass/quartz surface 

replace the Cl on the Si. With time and use, the phase gets tighter as it gets pushed by 

successive runs, and the quartz wool plug is forced out of the column. Although this plug 

usually stays stuck in the silicone connection downstream of the column (thus preventing the 

phase to be expulsed from the column) the use of a glass column with a tightening at the 

outlet gives better results. Indeed, this offers a better control on the packing of the phase by 

PE 

connection 
1/8 silicone 

tubing 
1/8 teflon 

tubing 
Silicone coating 

Teflon coating 
Polyphenol cap 

Figure 5. Schematic view of the  3-way transfer cap 
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immobilizing the quartz wool plug at the outlet of the column, as well as easy conditions for 

changing the silicone connection downstream of the column. 

Another critical factor regarding the column is its immersion in liquid nitrogen. For some 

reasons the MMHg peak area is larger when the column is only immersed up to half -height. 

Data presented in Figure 6 is the result of several successive analysis of 10 pg of MMHg 

without adjusting the level of liquid nitrogen to keep it constant from one run to the next. It 

shows that the peak area increases when the liquid nitrogen level decreases, down to half -

height of the column, where this effect stops. This could be because the portion of the 

column downstream the immersed part stays warmer and hence retains less MMHgH during 

the elution step. In other words, only a small portion of the phase would act as the cold trap  

(and should thus be immersed), while the part downstream would act as the separating part, 

and would be more efficient when not too cold (so would take advantage of not being 

immersed in liquid nitrogen). 

 

E. The quartz tube passing through the oven. This is where the Hg species are reduced to Hg0 

by pyrolysis at 800 °C. The use of a quartz wool filling is suggested (Cossa, personal 

communication) to have a more efficient warming of the helium flux, but this did not result 

in any improvement in our case. From one batch to another, the quartz wool does not always 

resist to the very high temperature very well, and partial to total melting of the wool can 

occur, eventually leading to the obstruction of the tube. In addition, we suspect that the 

quartz wool is subject to slow degradation at 800°C, as a yellow brown deposit appears over 
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Figure 6. Effect of the liquid nitrogen imersion level on the final MMHg peak area. 
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use at the exit of the tube when filled with quartz wool. Finally, the use of quartz wool causes 

the evasion of barely visible quartz wool fragments in the helium flux that can adsorb on the 

walls of the analytical line, and to the optical cell of the AFS detector. As such quartz dust is 

very difficult to clean away, we finally chose not to fill our tube with quartz wool, which did 

not induce any change in the chromatogram. The tube should be long enough to allow its 

end to be cold enough for connections, depending on the oven radiations. In our case, 3 cm 

upstream of the oven and 5 cm downstream were enough to prevent the connections from 

any rupture (silicone) or melting (polyethylene). The oven cavity is 17 cm long, which allows 

(given the helium flow rate) a residence time of the Hg species long enough for quantitative 

reduction to Hg0 (Cossa et al., internal IFREMER file). 

 

F. The chromatography interface hardware settings need to be optimized in order to enhance 

the quality of the chromatograms. Using our method, the peaks are rather broad compared 

to common gas chromatography techniques (they can last 20 seconds), thus a low acquisition 

rate of the chromatography interface hardware would result in low baseline noise while still 

allowing very good peak definition. The acquisition frequency of 1 sec -1 allows for a perfect 

peak shape while reducing the baseline noise to undetectable levels.  

 

G. The Tekran 2500 CVAFS detector settings. One should be careful while installing one from 

the ŵid ϮϬϬϬ’s, as TekƌaŶ ĐhaŶged the ŵaiŶ ĐiƌĐuit ďoaƌd aŶd soŵetiŵes pƌoǀided ǁith Ŷeǁ 

generation detectors the notice for the old one. Both versions look almost the same but 

require very different settings, which can induce very bad performances in case of confusion. 

The global functioning of the detector depends on the UV intensity reaching the optical cell, 

which is set constant by a photodiode (fed with a Dout voltage) adjusting the lamp voltage. 

This UV intensity depends on 1) the orientation of the lamp, which should be oriented 

perfectly toward the optical cell; and 2) the ageing of the lamp. Once the lamp correctly 

oriented, its ageing should be the only parameter changing the intensity it delivers: the o lder 

the lamp, the lower the intensity and – in response from the photodiode – the higher the 

lamp voltage. The two critical parameters are the UV lamp voltage and the Dout voltage. The 

deteĐtoƌ iŶ ƌuŶ iŶ ͞ auto͟ ŵode, ǁhiĐh ŵeaŶs that the laŵp ǀoltage is adjusted automatically 

to deliver a constant intensity to the optical cell, measured by the photodiode, fed with Dout 

negative voltage. This parameter varies with the lamp orientation and should be set in 

͞fiǆed͟ ŵode, ǁheƌe Ŷo auto adjustŵeŶt of the laŵp ǀoltage will compensate the rotation of 

the lamp to a less effective position. We remarked that Dout affects the sensitivity of the 

detector, in a way presented in Figure 7: the higher |Dout|, the larger the peak area. Despite 
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the UV lamp voltage is subject to slow increase overtime (as explained previously), it should 

be set to 8.0 V for a new lamp, and higher if 1) the lamp is old and/or 2) the user wants to 

boost the signal over lamp longevity. Because the MMHg levels we want to measure are in 

the lower detection range of the Tekran 2500 detector, we chose to boost the signal by 

setting the lamp voltage at 9.6 V. 

 

H. The Tekran 2500 optical system (cell and filter): as this is the part that restitutes to the 

photomultiplier the fluorescence radiations emitted by Hg0 desexcitation, it should be kept in 

perfect working conditions. This first means that both the optical cell and the filter should be 

perfectly clean of any dust or deposition. The filter is not meant to be manipulated and 

should thus remain clean, but the optical cell can be exposed to water condensation or to 

particulate impurities carried by the helium flux. Although the optical cell is obviously hidden 

of any light pollution (hence not visible), its alterations are easily visible in real time on the 

chromatograms. If any harm is suspected, the optical cell should be removed and cleaned to 

recover its transparency. The manipulation of the quartz-made optical cell requires care, as it 

is easily breakable while moving it from- or to its tight cavity. We tried to change the optical 

system of the detector for a more efficient one, including a mirror-equipped optical cell and 

a new filter, resulting in a 30-fold increase of the signal with signal/noise reduction. 

 

I. The quality of the stationary phase. Given the artisanal nature of the assembly, the user 

might logically attribute bad performances to variations of any of the parameters described 

above, before blaming the quality of the industrial WAW-DMCS phase. However, our 
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Figure 7. Effect of the Dout voltage setting on the final MMHg peak area. 
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experience attests that the features of the peaks (height and retention time) mainly result 

from the stationary phase. If the assembly is set as described all along this chapter, the 

chromatogram should qualitatively look like the one presented in Figure 3. If any major 

change occurs – like disappearance of a peak or incomplete peak separation – it is probably 

due to the WAW-DMCS phase. Sometimes, when working on the assembly optimization, 

such change can occur simultaneously with the (sometimes involuntary) change of one or 

several parameters and confuse the user. In our case, we changed the phase batch (because 

of the exhaustion of the previous batch) a few days after the addition of a soda lime trap to 

the assembly, and imputed the very bad performances to the ageing of the soda lime first, 

then to conjugate effects of many parameters, while they simply resulted of bad phase 

quality. It is therefore useful to be aware that despite the stationary WAW-DMCS phase is 

industrially manufactured and checked, some batches can have a very poor quality for any 

analytical use. This can save the user from heavy time consuming tests and manipulations, 

which can sometimes be counterproductive given the fragility of some parts of the assembly. 

We were advised (Cossa, personal communication) to change the stationary phase in the 

column every 250-300 runs. Doing so, we never noticed any change imputable to the phase 

ageing over use. 

 

J. Potential water removal solutions. As previously mentioned, the water and ice condensation 

upstream of the column is one of the main issues concerning the assembly, as it is sometimes 

important enough to obstruct the helium flux and to cause overpressures and subsequent 

explosions. In addition, it has to be removed by a strong heating of the column which 

damages the silicone connections and possibly the stationary phase. During this drying step, 

accidental redirection of the helium flux to the optical cell of the detector sometimes occur 

due to silicone tubing degradation, leading to water condensation in the optical cell. It would 

therefore be a significant step forward to be able to suppress this water condensation. We 

tried two different common desiccants used in chemical analysis that are supposed to be 

inert to Hg species: soda lime and 3 Å molecular sieves. The modification to the assembly 

consisted in the addition of a roughly 10 cm3 desiccant-containing trap (1/2 inches glass or 

Teflon tubing) between the 4-way valve and the column. Molecular sieves consist in inert 

porous ceramic balls that absorb (in a reversible way) the chemical species of the same size 

than the pore. The 3 Å molecular sieves are designed to trap the water molecule. It is difficult 

to assess a priori whether MeHgH should be adsorbed or not (as it size should be in the range 

of 3 Å), but Hg0 having a smaller radius than the pore size (1.3 vs 3 Å) it should not be 

absorbed. Indeed, Hg0 is not adsorbed but MeHgH and water are quantitatively trapped. The 
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second option was soda lime, which we already use for the same purpose (water removal 

from the gas stream) in THg analysis. Soda lime is alkaline, and therefore would be expected 

to be inert with respect to any Hg hydride while reactive with water and acids. As the helium 

stream may purge acidic species (we add HCl in the sample), soda lime would be twice as 

interesting as molecular sieves. However it acts in an irreversible way and is therefore 

subject to ageing. The first tests lead to a small increase in baseline stability with soda lime, 

but with performances rapidly decreasing with time, as the soda lime gets hydrated over use 

(within 15-20 runs). We chose to avoid soda lime use as the benefit was minimal for a 

substantial consumption of desiccant (almost 1 trap/day). We did not consider any additional 

option, as the other common desiccants would either be expected to interact with Hg 

hydrides, or are not compatible with gas purification. In the literature, soda lime traps are 

sometimes used for similar MMHg measurements (not with Hg hydrides though), but for 

much larger samples, hence much larger quantities of water condensates (Bowman and 

Hammerschmidt, 2011). 

 

c. Conclusion and perspectives 

 

During this thesis work, we managed to build an assembly for MMHg measurement at the ultra-trace 

level (< 100 pg/L). This process took months of tests and issues identification to result in an operating 

device and a wide self-taught knowledge of the assembly. Although this consists in the biggest part of 

the development of a routine MMHg analysis, further work is needed to validate and characterize 

the method. By comparison with one of the only similar setup with low volume samples (30-40 mL) 

based at the IFREMER laboratory in Nantes, we know that we are in the same detection limit range 

(10-20 pg/L), although we still have to confirm it. However, there is a more urging need for a more 

reliable and performing assembly, which we think can be accomplished through better control on the 

purge and trap system. 

The actual system consists in a simple U-shaped column acting as both cold trap and 

chromatographic column. The drawback of this system is that it is not possible to uncouple thermic 

conditions for the trap and the column, which are always decoupled in performing analytical devices. 

On one hand, this would allow the column temperature to be controlled separately and therefore a 

much better control on the peak separation and shape. On the other hand, this would allow a better 

control on the trap and particularly the possibility to try other materials than the WAW-DMCS phase 

as adsorbing surface. For this purpose, we designed new borosilicate glass pieces to allow this trap-
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column uncoupling (see Figure 8). The first one (A) is a small J-shaped column, which shorter side is 

the downstream side and should be totally immersed in liquid nitrogen; the second piece is a regular 

straight glass tube (B). Both have a shrinking at the downstream as a stop for the quartz wool plugs. 

A third piece is designed as a junction between the two others (C), and is re levant for two main 

reasons: 

- The column (B) needs to be a bit away from the trap to be isothermal. Indeed the cold 

helium stream coming from the trap (A) freezes the two first centimeters downstream while 

warming up. This warming should occur as much as possible before the stream enters the 

column, to avoid any strong uncontrolled thermic gradient during the elution. In order to 

maximize this effect, the (C) part is warmed by a heating strip. 

 

- An insert into the upstream end of the column (B) is required to pack its content and prevent 

it from unpacking when the helium flow sharply decreases for the elution step. This 

phenomenon causes the packing of the stationary phase to change from one run to the next. 

As the packing changes, the porosity of the column changes too, therefore its retention and 

separation properties. A satisfying control of these parameters is achieved through the (C) 

junction piece and the downstream shrinking of (B). The whole (A-C-B) assembly could have 

been simplified to two pieces by merging (A) and (C), but the (A-C-B) option is physically 

more flexible. This is crucial in this case, as this part of the system often requires 

maintenance, or is exposed to physical stretching due to handling of other parts.  

 

By building the trap-column assembly this way, we verified the two assumptions made above. We 

were allowed to heat the (B) and (C) parts constantly event when the trap (A) was immersed in liquid 

nitrogen, and controlled perfectly the packing of the stationary phase. Although a better control of 

the trap-column settings was visible, we were unable to assess the analytical performances of this 

system, as the WAW-DMCS phase used during the tests was of very poor quality. However, no 

change was observed on the chromatogram between the U-shaped column solution and the (A-C-B) 

one, using the same poor stationary phase batch for both. Further tests are needed with a good 

quality WAW-DMCS phase to acquire a full picture of the benefits (if any) of this (A-C-B) system. For 

now, the preliminary results and observations suggest that this solution should be at least as 

performing as the previous one. 
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In order to obtain MMHg data for our samples, as the present method was not ready, we 

collaborated with GET Toulouse on a highly sensitive MMHg measurment method involving GC-

ICPMS. 

Figure 8. Scheme of the three-pieces solution designed for a better control of the trap-column settings. 
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2. Methylmercury measurement by species-specific isotope-

dilution analysis 
 

a. Material and reagents 

 

The sample preparation is processed in 120 mL narrow-necked glass bottles dedicated to this use. 

After each use, they are triple-rinsed with ultra-pure water and scorched at 500 °C overnight to purge 

away organic and Hg adducts. Solutions of 199HgCl2 (91.7% abundance, ISC-Science®, Spain) and 

MM201HgCl (96.5% abundance, ISC-Science®, Spain) were used as isotopic spikes. Other reagents 

necessary to sample preparation include ultra-grade glacial acetic acid (CH3COOH, 99%, Avantor™, 

The Netherlands), hexane and ammonia, which was stored at 4 °C. Sodium tetra-n-propylborate 

(98%, packed under argon, Merseburger Spezialchemikalien®, Germany) solutions were prepared 

daily and stored at -18 °C. 

 

b. Sample preparation 

 

A known volume of melted snow (ideally between 110 and 115 mL) is added to the 120 mL bottle 

and spiked with the speciated isotopic standard solutions – 199HgCl2 (10 ppb) and MM201HgCl (0.1 

ppb). The concentration of MMHg in the sample can be calculated from the observed isotope ratios 

when the natural and enriched isotope ratios and the masses of  both sample and spike are known. 

The spike volume of MM201HgCl solution to add is determined using the following calculation: 

 Re = 0.87 is the natural 201/202 isotopic ratio 

 Rs = 40.85 is the spike 201/202 isotopic ratio 

 Rm = (Re x Rs)1/2 is the 201/202 ratio in the sample + spike mixture 

Considering M = Rm(Rs-Re)/[(Rm-Re)(Rs-Rm)] in function of Rm, the method is accurate and 

valid for Rm values determined for M close to its minimum (Figure 9). 

R = 1/Rm correspond to the 202/201 isotopic ratio in the sample once the spike is added, and 

shall be in the range allowed by the Rm validity. This is a value of interest to validate or 

discard single measurements. The spike volume is chosen to fit the R validity range (which is 

http://www.chemspider.com/21377657
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intrinsically a bit flexible), which requires to anticipate to some extent the MMHg content of 

the samples. 

 

In our case, the method is valid for R ranging from 0.20 to 0.70, allowing us to estimate the MMHg 

content of our sample with roughly a factor 3 (0.70/0.20) maximum difference. This would have been 

arbitrary (and way too much time-consuming) to make this estimation on each sample, so we chose 

to differentiate samples using their physical type (coastal snow, glacier snow, sea-water, 

ŵeltǁateƌ…etĐ.Ϳ aŶd the pƌeǀious ƌesults of ouƌ teaŵ. As MMHg iŶ AƌĐtiĐ spƌiŶgtiŵe sŶoǁ ĐaŶ ǀaƌǇ 

over wider ranges than a factor 3 (Larose et al., 2010), the risk was to misestimate the MMHg 

content of some of our samples before analysis hence to finally discard too many outlier pieces of 

data. The volume of 199HgCl2 spike is chosen using the same method (with R = 202/199), and as we 

chose to focus on MMHg, the HgCl2 spike was set to 100 µL per 100-115 mL for all the samples.  

After spike addition, the samples are stirred for homogenization and let 1 hour at least for 

equilibration. Isotope dilution is based on the addition of a known amount of the enriched isotope to 

a sample. Equilibration of the spiked isotope with the natural  element/species (MMHg in our case) in 

the sample alters the isotope ratio that is measured and used for calculation. At the end of the 

equilibration, spiked and natural MMHg should be integrated in the sample matrix in the same way 

and in the same proportions. In practice, the achievement of effective equilibrium of the enriched 

spike and the sample is not easy to obtain, but it is critical for the accuracy of the results. In our case, 

in samples containing low DOC, the equilibration was achieved quite rapidly (within 1 hour).  
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Figure 9. Graphical representation of M in function of Rm, displaying a visual estimation of 

the Rm validity range. 
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After the equilibration step, the samples were buffered with 5 mL of a 0.1 M acetic acid-sodium 

acetate buffer (pH = 3.9) and adjusted, if needed, to pH = 3.9 with ammonia. Then, 500 µL of 0.5% 

w/w sodium tetrapropylborate and 200 µL of hexane were added to derivatize and extract the 

dialkylated compounds formed (MeHgPr and HgPr2). This derivatization step is strongly pH 

dependent (Monperrus et al., 2003, 2004), hence one should not forget to adjust the pH before 

adding tetrapropylborate to the sample. After 10 min of manual shaking, the organic layer was 

manually collected and transferred to a glass vial capped with septum-equipped caps and stored at -

18 °C until until analysis. 

 

c. Analytical system and operating conditions 

 

The analytical system consists in a coupling between a gas chromatography device (or GC, Thermo 

Scientific® Trace Ultra) and a high-resolution inductively coupled plasma mass spectrometer (or HR-

ICPMS, Thermo Scientific® Element-XR) in the Geoscience Environment Toulouse (GET) laboratory 

(Toulouse, France). These two elements are linked by a 0.5 m heated transfer line. A picture of the 

coupled system is presented in Figure 10 (courtesy of J. Sonke). 

Figure 10. Picture of the GC-HR-ICPMS equipment at GET. Courtesy of J. Sonke. 
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The glass vials containing the samples (dialkylated Hg derivatives in hexane) are placed on the 

autosampler rack. The autosampler syringe rinses three times with hexane, three times with 2 µL of 

the sample and injects 10 µL of the sample into the GC. This procedure is repeated three times for 

each sample (analytical triplicates). As the GC-ICPMS coupling is just physical, the operating 

conditions of the GC and the ICPMS can only be set up separately. These operating conditions are 

described below in Table 2. 

 

Table 1. GC and ICPMS parameters used in isotopic-dilution-GC-ICPMS analytical method 

GC conditions ID-GC-ICPMS 

Column RTX®-5MS fused silica 30 m 

  id 0.25 mm, D.f. 0.25 µm 

Injection port PTV Splitless 

  Injection port temperature 250 °C 

  Injection volume 2 µL 

  Carrier gas flow He 0.8 mL/min 

  Make-up gas flow Ar 0.7 L/min 

Oven program    

  Initial temperature 40 °C 

  Initial time 1.5 min 

  Ramp rate 50 °C/min 

  Final temperature 250 °C 

  Hold time 1.5 min 

Transfer line    

  Temperature 250 °C 

  Length 0.5 m 

ICPMS conditions   

  Rf power 1200 W 

  Gas flow   

  Cool 16 L/min 

  Auxiliary 0.8 L/min 
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  Nebulizer 0.45 L/min 

  Isotopes/dwell times   

  
Hg : 196, 198, 199, 200, 201, 202, 

204 (40ms) 

  Tl : 203, 205 (30ms) 

 

Each run produces four chromatograms for Hg species: for the 199, 200, 201 and 202 isotopes (198 

interacts with Pt, 204 with Pb). Each chromatogram shows one first peak for MeHgPr (or MMHg in 

the sample) and a second one for HgPr2 (or Hg2+ in the sample). First, the samples for which MMHg 

peaks are too small (compared to the baseline noise) and do not allow peak integration are 

discarded. Then, as mentioned previously, samples where R (202/201 isotopic ratio) outranges its 

validity range (Figure 9) are discarded too. 

The MMHg concentration can be calculated for the remaining samples, knowing for both the sample 

and the spike 1) their mass; 2) the 202 and 201 isotopic abundances; and 3) the relative mercury 

atomic mass. The R ratio in the [sample + spike] mixture is also needed for MMHg determination and 

is calculated by comparing MM202Hg and MM201Hg peak areas on the chromatogram. A brief 

description of the isotopic dilution principle and the equation providing the MMHg concentration in 

the sample are presented in Figure 11. 
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Figure 11. Principle of the isotopic dilution for MMHg measurement in natural samples 
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3. Ion chromatography 

 

a. Sample preparation 

 

Samples for ion chromatography were directly sampled in Coulter polycarbonate Accuvettes© sealed 

with polyethylene caps and melted in a class 100 clean room at LGGE-CNRS laboratory (Grenoble, 

France). They were then transferred into Dionex glass vials previously rinsed with ultra-pure Millipore 

water (conductivity > 18.2 mΩ, TOC < 10 ng/g) and analyzed less than 24 hours after melting. 

Analyses were performed by conductivity-suppressed ion chromatography using a Dionex ICS 3000© 

apparatus and a Dionex AS40© autosampler placed in the clean room facilities. 

 

b. Analytical conditions 

 

The Dionex ICS3000© equipment allows for the simultaneous analysis of anions and cations by 

injecting an aliquot of the same sample into the injection loop of each chromatographic module. The  

remnant was left in the cuvette, refrozen and stored as a reserve for complementary analyses.  Due 

to the large number of samples, the analyses were run 24 hours per day with stops only  during 

weekends. The operating conditions are presented in Table 1. 

Table 2. Operating conditions for the ion chromatograph Dionex ICS 3000© for the analyses of Arctic snow and water 

samples. 

Conditions Anions Cations 

Injection system Autosampler Autosampler 

Separation column AS11-HC 2 mm CS16 2 mm 

Guard column AG11-HC 2 mm CG16 2 mm 

Suppressor ASRS-300 2 mm CSRS-300 2 mm 

Injected volume [µL] 300 300 

Eluent KOH MSA 

Eluent flow rate 

[mL/min] 

0.38 0.50 
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Eluent concentration 

[mM] 

Gradient from 3 to 30 Isocratic, first 30 and 

later diminished to 24 

Regenerant H2O H2O 

Temperature [°C] 37 37 

Run time [min] 23 15 but increased to fit 

the anions run time 

 

 

c. Control and validation 

 

Calibration 

The detector signal (conductivity in S) is proportional to the ionic concentration in the sample. To 

determine the relationship between conductivity and ion concentrations,  we established daily 

calibration curves using mixed solutions of known concentrations, called standard solutions. The 

standard solutions were prepared in two steps: a first dilution was made  from concentrated solutions 

(500-1000 mg/g) to prepare intermediate solutions (0.4-20 mg/g), and then a second dilution from 

the intermediate solutions was made to prepare the final standard solutions used for calibration (0.2-

20 ng/g for minor ions 1-100 ng/g  for major ions). 

While intermediate solutions are renewed twice or three times per month for inorganic ions, they 

are weekly renewed for organic ions, the latter to prevent losses by bacterial contamination  or 

gaseous exchanges. Standard solutions were prepared daily. The uncertainty related to the  

preparation of standard solutions is in average less than 1%. Uncertainty ranges corresponding to 

highest and lowest concentrations in standard solutions are [0.7-3.0%] for F- and Br-; [0.8-3.6%] for 

oxalate, succinate, pyruvate, lactate, propionate and glutarate; [0.4-1.8%] for acetate and formate; 

[0.4-0.6%] for MS and Mg2+; [0.7-0.9%] for K+ and NH4
+; and [0.3-0.4%] for Na+, Cl-, Ca2+, NO3

-
 and 

SO4
2-. Intermediate solutions were monitored at the beginning and at the  end of daily set of analysis 

to verify that no losses took place during storage and also allowed to test the stability of the column. 

Each calibration curve consisted of 6 points and was fitted by a linear function (for Na+, F-, Cl-, Br-, 

NO3
-, SO4

2-, lactate, acetate, formate, oxalate) or quadratic (for other ions), passing or not through 

the origin. Some calibration curves showed a positive Y-intercept at the origin (F-, Ca2+, acetate, 

formate, oxalate). The concentration to be added to the theoretical values of the standards to 

compensate this intercept was determined graphically and the calibration curve offset was then 
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forced to zero (dashed line in Figure 12). This initial offset value is generally very close to the value of 

the procedure blanks. It corresponds either to contamination related to standard preparation or to 

contamination produced inside the autosampler or the analytical equipment. It was deduced from 

final concentrations only in this last case. 

 

 

Procedure blanks 

Every day, various procedure blanks consisting in a few milliliters of ultra-pure Millipore water were 

prepared and analyzed in exactly the same way as the samples. This procedure accounts for the 

influence on measurements of water impurity content, and contamination occurring during sample 

transfer and analysis. Blank concentrations usually fit Y-intercept of calibration curves (Figure 12). 

A significant decrease of procedure blanks are observed for F-, acetate, formate and Ca2+ when the 

injection is done manually (i.e., when samples are directly injected with a syringe into the injection 

port without using the autosampler). Acetate, oxalate and Ca2+ blank values tended to decrease 

gradually the longer the equipment was used mostly due to the progressive rinsing of autosampler 

loops and injection lines leading to significantly lower desorption from plastic tubings. For instance, 

Ca2+ contamination was higher for the first 10-12 samples analyzed after a weekend off and also in 

samples analyzed just after more concentrated samples. The origin of the F- blank is uncertain: it is 
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Figure 12. Schematic representation of a calibration curve with a Y-intercept (continuous grey 

line). After adding the graphically determined concentration, the offset is forced to be zero 

(dashed line). The graphically-determined  concentrations were close to the procedure blank 

values obtained by injecting ultrapure water in the chromatograph. 
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probably due to an interference with an organic ion desorbed by PEEK (polyetherehetketone) Dionex 

connections. It remained constant during all our measurements. 

Blanks of formate and acetate are due to gaseous contamination. Once placed on the autosampler 

rack, samples remained between a few minutes and more than 12 hours within the  autosampler 

enclosure before the injection into the chromatograph lines. Contamination is higher for samples 

stored for longer time in the autosampler, very likely due to slow air penetration through the pre-

pierced septa of the Dionex vials. A slight gaseous contamination may also occur when water 

microdroplets remain in vials once rinsed. Based on all these observations,  blanks are minimized by 

improving the techniques of vial rinsing (in particular by avoiding inner wet residues), by renewing 

the vials and septa after every four to five uses and by analyzing the anions before the cations (so the 

septum will be pierced first for the gaseous contamination sensible samples). Contamination for 

formate is thus significantly reduced, but it is not possible to avoid acetate increase during one batch 

duration. However, considering that values were close to the detection limit, acetate concentrations 

were not corrected for this progressive increase in the dataset produced, as major peaks of these 

species would be noticeable, if any. 

In conclusion, to correct daily measurements of formate, acteate, oxalate and Ca2+, we subtracted 

the corresponding values daily measured for procedure blanks from sample concentrations.  

Instrument Detection Limit 

The instrument detection limit (DL) is the lowest concentration of a species that is just 

distinguishable from zero. It was calculated from the equation: 

DL = 3s x b 

where b is the value of background noise and s is the standard deviation of a system blank. A system 

blank corresponds to the passage of the eluent alone, without injection of water or sample. Both b 

and s are determined between the start and the end time where the peak of a given analyte must be 

located. Missing data and unexplainable outliers were replaced by DL values, as they are indicators of 

the uncertainty of the measurements. 
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4. Dust concentration and size distribution measurement 

 

a. Sample preparation 

 

We use the same samples than for the ionic chromatography, which have been originally  sampled in 

accuvettes© then melted and subsampled in a class 100 clean room at LGGE for ion analysis. We 

added pure formaldehyde (1 mL) to the accuvettes© just after subsampling for ion chromatography 

to avoid any microorganism growth (which would induce particle contamination). The samples were 

all prepared, stored and analyzed in the same class 100 clean room. 

The laboratory blanks were carefully checked before and during each series of measurements and 

represented always <1 ppb of total dust. They consist of MilliQ water and the dust content of the 

accuvettes. 

 

b. The measurement: principle, handling and limitations 

 

The measurements of dust concentration and size distribution were performed using a Coulter 

Counter (CC) Multisizer IIe© set up in a class 100 clean room. The instrument works on the basis of 

the detection of the electric signal generated by the particles that are forced to flow through a small 

aperture tube (50 ʅm in diameter). The melted snow sample is made conductive by addition of a pre-

filtered 20% NaCl electrolyte solution giving a 1% concentration in the final solution. Melted samples 

were continuously stirred (mechanically) before the analysis in order to prevent dust sedimentation 

in the accuvettes©. At least three consecutive measurements were performed on each sample. After 

each sample a blank solution (ultra-pure water added with the electrolyte) was measured for 

cleaning the orifice tube, and checked through a single measurement.  

The instrument was set for measurements of particles with diameters from 0.7 to 20 ʅm in 256 

channels on a logarithmic scale. The particle size is expressed by the diameter of a sphere of 

equivalent volume, and the mass was calculated from the measured volume assuming an average 

crustal density for particles of 2.5 g/cm3. These two assumptions constitute the main limit of the 

method. Actually, the particles present in Arctic snow are not always regular and isometric. The 
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density is also adopted arbitrarily, considering that clays and quartz are the most abundant mineral 

phases of long-range transported particles. 
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5. Total organic carbon (TOC) measurement 

 

a. Sample preparation 

 

Samples for TOC measurement were collected in 100 mL acid washed glass bottles and melted in the 

dark at +4 °C prior to analysis. The samples are filtrated on an ultra-pure water washed Acrodisc© 

0.2 µm filter. The resulting filtrate is transferred in a 50 mL glass bottle and injected in the input 

capillary of a 700 TOC (OI Analytical) equipment. The analyzer has up to 8 input capillaries and can 

therefore autosample up to 8 samples. Every manipulation is handled wearing clean nitrile 

protection gloves under a laminar flux hood. 

 

b. The measurement 

 

The method used is based on the conversion of the total dissolved carbon into CO2 and its 

subsequent detection by infrared detection. In order to discriminate the total inorganic- and organic 

carbon (TIC and TOC), the TIC is first transformed in CO2 by acidification (pH = 2.2) at 100 °C (addition 

of 200 µL of a 5% phosphoric acid solution) purged out of the sample and analyzed. While the TIC is 

being analyzed, an excess of sodium persulfate (1 mL of a 100 g/L solution) is added to the sample to 

oxidize the TOC to CO2. The following TOC analysis proceeds as for the TIC by infrared detection, 

giving the carbon content of 2 mL of sample. The whole process is automated. 

In our case, as air-sample CO2 exchanges probably occurred (and altered the TIC content) during both 

melting and storage of the sample, we discarded the TIC data. Each sample was analyzed in triplicate. 

 

c. Control and validation 

 

Calibration 

The area of the peak provided by the detector is proportional to the carbon concentration of the 

sample. The determination of TOC concentration in our samples requires a daily  external calibration, 

to test the repeatability of the sample preparation. The calibration consists in the analysis of  362 µL 
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of 5 standard solutions of known concentrations, from the less to the more concentrated. The 

standards are prepared daily from a concentrated sucrose solution (4.20 mgC/mL) and range from 75 

to 1125 µgC/mL. The calibration curve equation allows for the determination of the the carbon 

content of a 2 mL sample. Figure 13 shows the calibration curve constructed from all the values 

measured during our daily calibrations. The positive Y-intercept at the origin is due to small sample 

contamination during the exposure to the atmosphere of the laboratory. The low variance of the 

results assess for the good repeatability of the operator manipulation.  

 

Blanks 

Every day, ultra-pure water was directly analyzed to determine its carbon content as for regular 

samples (2 mL collection). In addition, filtrated ultra-pure water – following the conditions of sample 

preparation – was also analyzed. The difference between filtrated and unfiltrated blanks corresponds 

to the carbon residue of the Acrodisc filters, which was usually very low. As our samples are filtrated, 

it is more consistent to consider the filtrated blanks as procedure blanks. The blank values are 

presented in Figure 14. 
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Figure 13. Representation of the four different calibration curves obtained during the TOC 

analysis. 
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Figure 14. Repartition of the blank (open diamonds) and filtration blank (open squares) values 
around their median value (displayed in red). 
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6. Total mercury measurement 

 

a. Sample preparation 

 

The samples were melted in the dark and spiked with BrCl (see US EPA method 1631 reagent 

preparation, 5 mL per liter of sample) and let to react overnight. During this time, all the mercury 

species contained in the sample are converted to Hg2+ (de-alkylation and/or oxidation). Just before 

the analysis, hydroxyl ammonium chloride is added to the sample (see US EPA method 1631 reagent 

preparation, 5 mL per liter of sample) to neutralize the BrCl excess, and roughly 50 mL of the 

resulting sample are put in a disposable falcon on the autosampler rack of a Tekran© 2600 analyzer 

(Tekran© Inc., Canada). Once in the autosampler rack, a sample is analyzed within 3 hours. 

 

b. The measurement 

 

The Tekran© 2600 analyzer allows for the determination of THg concentration by coupling Hg0-

preconcentration, thermal desorption and Hg0 measurement by cold vapor atomic fluorescence 

spectroscopy (CVAFS). In our case, the US EPA 1631 method is used for reagent preparation and 

sample analysis. The samples are directly injected in the instrument tubing together with a SnCl 2 

solution (see US EPA method 1631 reagent preparation), which reduces the Hg2+ of the sample into 

volatile Hg0. The resulting mixture passes through a phase separator where the Hg0 is removed from 

the aqueous phase by a continuous ultra-pure argon flux. Two gold traps are mounted in series on 

the gas line downstream of the phase separator to trap Hg0 by metallic amalgamation. The heating of 

these traps to 600 °C under ultra-pure argon stream allows Hg0 thermal desorption and subsequent 

transportation through an optical cell. Mercury atoms are excited by UV radiations to produce 

fluoƌesĐeŶĐe eŵissioŶs ;ʄ = Ϯϱϯ.ϳ ŶŵͿ ŵeasuƌed ďǇ a photoŵultiplieƌ.  

The autosampler settings are driven via software interface and do not need daily reset. The 

instrumental settings (i.e. argon, sample and SnCl 2 throughputs) are reset daily directly on the 

Tekran© 2600 equipment. As some of the instrumental settings can barely be exactly reproduced 

every day, a daily external calibration is required. A daily work schedule always includes: 

i. A cleaning run, to purge the instrument from the Hg contamination overnight; 
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ii. Several (usually 3) ͞ ǁash statioŶ͟ ďlaŶks: runs with ultra-pure water as analyte (see below). 

This step is repeated as soon as the results are stable. 

iii. Several (usually 3) reagent blanks (see below): 50 mL of ultra-pure water added with 250 µL 

of BrCl and NH2OH.HCl solutions. 

iv. A calibration folloǁed ďǇ oŶe oƌ tǁo ͞ǁash statioŶ͟ ďlanks; 

v. Sample analysis in triplicate. Each triplicate is separated from the next one by one or two 

͞ǁash statioŶ͟ ďlaŶks. A NI“T Đeƌtified staŶdaƌd solutioŶ is aŶalǇzed eǀeƌǇ ϱ saŵples.  

vi. A cleaning run; 

vii. “eǀeƌal ƌiŶsiŶg ƌuŶs: ͞ǁash statioŶ͟ ďlaŶks oƌ aĐidified  ultra-pure water. 

The analyzer is very sensitive to constant Hg contamination (continuous Hg0 diffusion from the 

ambient air inside the tubing). In addition, the samples – once on the autosampler rack – are 

susceptible to be contaminated by deposition of Hg-containing particles (Hg0 solvation from the 

ambient air is negligible). To avoid these contaminations as much as possible, the Tekran 2600© 

analyzer is operated under a laminar flux hood (in the field facilities), or in a class 10000 clean room 

at the LGGE. 

 

c. Control and validation 

 

Calibration 

The Hg content of the sample is proportional to the area of the peak detected by the 

photomultiplier. A daily calibration was run by analyzing HgII NIST SRM-3133 standards between 0.5 

and 100 ng/L, and showed always a very strong linearity (0.99985 < r² < 0.99999). The standards are 

prepared by spiking the adequate amount of Hg II working solution ([HgII] = 4.60 µg/L, prepared 

monthly) in exactly 50 mL of ultra-pure water previously spiked with 250 µL of BrCl solution and the 

same amount of NH2OH.HCl solution. The BrCl and NH2OH.HCl shall be added in the same proportion 

than in the real samples during their preparation step. An example of calibration curve i s displayed in 

Figure 15. 
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Blanks 

The ͞ ǁash statioŶ͟ teƌŵ ƌefeƌs to a part of the autosampler where the autosampling tube is rinsed in 

a continuous ultra-puƌe ǁateƌ stƌeaŵ. The ͞ ǁash statioŶ͟ ďlaŶks theƌefoƌe ƌefeƌ to ƌuŶs ǁheƌe oŶlǇ 

ultra-pure water from the wash station is analyzed. They indicate the cleanness of the tubing and 

shall be as low and as stable as possible, thus their stabilization (step ii in the 6.b paragraph) indicates 

that the equipment is as clean as possible. ͞Wash statioŶ͟ ďlaŶks aƌe also ƌeƋuiƌed to rinse the 

system after samples or standards (once or twice depending on the concentration), or at the end of 

the analysis schedule. 

The reagent blanks are prepared as the calibration standards but without any Hg II addition. They 

indicate the bias on the peak area due to the addition of the reagents (BrCl and NH2OH.HCl), in other 

words the THg contained in these reagents. The value of the reagent blanks is therefore subtracted 

to the one of the samples analyzed during the same day. 

Detection limit 

The instrument detection limit was calculated from the equation: 

DL = 3.33s 

where s is the standard deviation of a reagent blank, determined daily and before any sample 

analysis. Missing data and unexplainable outliers were replaced by DL values, which never exceeded 

0.1 ng/L. 
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Figure 15. Example of a calibration curve of the Tekran© 2600 analyzer (method 1631). 
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ii.	Field	conditions	and	methodology	

 

1. Description 

 

a. Study site 

 

The research campaign was held between April 13th and May 7th, 2011 at Ny-Ålesund in the 

Spitsbergen island of Svalbard archipelago, Norway (76°56’N, 11°52’E). The sampling site is a 200 m² 

area with restricted access to limit human induced contaminations. It is located on the south coast of 

the Kongsfjorden, which is SE-NW oriented and opened on the sea on its west side (Figure 1). This 

fjord was free of persistent sea-ice during the field campaign, but experienced several punctual 

refluxes of floating ice due to tide streams. 

 

Figure 1. Svalbard and Kongsfjorden map. Sampling sites are displayed in red (coastal snow), blue (glacier snow) and 

green (meltwater). 

 

 

20 km 
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b. Snow and meltwater sampling 

 

Snow was collected daily on the study site for surface samples, and every three days from pits. Snow 

samples were also collected from pits dug in two surrounding glaciers: Kongsvegen (78°45’N, 

13°20’E, 670 m) and Midre Lovénbren. Meltwater was collected continuously on a secondary site 

located between Ny-Ålesund and the Zeppelin station, because of a much thicker snow cover. The 

sampling apparatus consisted in six half-tubes of acid-washed black PVC disposed with a slight angle 

at three different depths through a 1 x 1 m (height x horizontal thickness) snow wall (Figure 2). An 

acid-washed 1 L borosilicate glass bottle with aluminum external coating (to avoid photo-induced 

reactions) was placed open at the lower end of each channel, and daily sampled (if enough material 

collected). Samples for MMHg and THg were collected in acid-washed 250 mL borosilicate glass or 

Teflon FEP bottles. Samples for major ions and particles were collected in 30 mL sterile acuvettes. 

Samples for DOC and aldehydes were collected in acid-washed glass bottles of different volumes. All 

samples were stored frozen (-20 °C) and in the dark until analysis. 

A              B 

1 2 

3 4 

5 6 
Top 

Middle 

Bottom 

Figure 2. Scheme of the meltwater sampling system. The bottles are coated with aluminum sheet on their external side. 
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c. Sea water sampling 

 

Surface sea water was collected every 5 days at both 100 and ca. 1000 m offshore. Sea water was 

also collected on several transects (perpendicular to the south coast) along the fjord, between the 

front of Kongsvegen glacier (east end of the fjord) and Ny-Ålesund. Samples for MMHg were 

collected in acid-washed FLPE bottles and frozen before analysis. Samples for THg were collected in 

disposable falcons previously triple-rinsed with MQ water (ρ = 18.18 MΩ·cm) and stored in the cold 

(4 °C) before analysis (usually in the following day). 

 

2. Geochemical and meteorological data 

 

Figure 3 outlines the main geochemical and meteorological event during the field campaign. This 

allows differentiating several sample groups: 

- Strong wind occurred punctually several times from April 15th until a strong windstorm on 

April 20th (Figure 3), leading to an important deposition of sea water and visible organic 

materials (algae). Snow sampled during this event and in the following days hence shows a 

strong marine chemical signature (Figure 4). This period is referred to as “storm event” in the 

text below, and includes the storm event. 

 

- From the end of April until mid-May, the snowpack encounters several strong melts due to 

warm temperatures, affecting both the physical (thickness, stratigraphy) and measured 

chemical parameters. Samples from this period may show chemical signatures of preferential 

elution (of a species over another) and therefore may not be representative of chemical 

inputs to the snowpack (Figure 4).  

 

- Between mid-May until early June, we observe a massive particle input to the surface snow. 

Particle number reaches a plateau on May 23th and starts to decrease as of May 26th, when 

snow starts to melt with increasingly positive temperature. During this event, surface snow 

shows a specific chemical signature (Figure 4). This period is referred to as “particle event” in 

the following. 
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Figure 4. Classification of surface snow samples based on empirical observations. The green box represents 
samples with strong sea-sprays influence (called in the following “storm event”), the blue box samples under the 
chemical influence of particles input, and orange areas the samples chemically impacted by snowmelt. The 
thickness of the snowpack is indicated as a grey line. 
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Figure 3. Outline of the main geochemical and meteorological events of the field campaign. Air temperature is 
displayed as a grey line, particle number in grey dots with error bars, fresh snow precipitations in blue, rainfall in 
red, and periods of interrupted strong winds (speed > 20 m/s) in green. The boxed green area represents the 
strongest wind experienced (wind storm). 
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a. Wind regime 

 

The local wind regime in the Kongsfjorden is driven by its SE-NW orientation: the wind comes either 

from the open ocean (NW) or the Kongsvegen glacier (SE). This pattern is observable during our field 

campaign for winds of moderate speed and above (> 7 m/s) as displayed on Figure 5. Below this 

threshold value of 7 m/s, this SE-NW directional pattern becomes unclear, while it disappears 

completely for low speed winds (< 4 m/s). Interestingly winds with speed > 7 m/s coming from the 

open ocean are not observed, except during an AMDE event on May 8th and 9th. This is in agreement 

with the current knowledge of AMDEs, initiated by reactive bromine species (such as BrO or Br2), 

thus related to marine bromine explosions. It is however clear that winds arriving to Ny-Ålesund – 

except during AMDEs – originate locally from the Kongsvegen glacier direction. 

The large scale wind regime, as shown on the backward trajectory of air masses (Figure 6) doesn’t 

show any trend. The only observable trend is a global clockwise rotation of the origin of air masses 

from week to week during the field campaign, from S (mid-April) gradually to NW (mid-May) and 

finally to N-NE (early June). There is no correlation between the origin of air masses and any 

observable singular event, such as the storm or the particle event in the second half of May. 

However, as an exception, the aforementioned AMDE event (on May 8th and 9th) is clearly due to air 

masses from the high Arctic Ocean (north of Greenland) having probably travelled over sea-ice-

covered areas. 
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Figure 5. Local wind regime in Ny-Ålesund during the field campaign, above the threshold value 
of 7 m/s. Each data point represents one-hour average of wind speed and direction. 
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Figure 6. Backward trajectories (24 h) of air-masses ending at Ny-Ålesund. Excerpt (a) for the first week, (b) for the 
second week, etc… For each week, backward trajectory for day 1 is displayed in blue, day 2 in yellow, day 3 in 
purple, day 4 in light blue, day 5 in green, day 6 in dark blue and day 7 in red. 
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b. Snowpack dynamics 

 

The whole snowpack was very dynamic during the field campaign, as the warming in late April caused 

its anticipated melting and important thinning (Figure 4). In addition, because of spatial variability, 

the snowpack was twice deeper at the place we measured its thickness as it was on the adjacent 

sampling field, and mainly consisted in a 20-30 cm thick porous and homogeneous melted snow 

layer. In consequence, we have very few samples of non-surface snow, and considered surface snow 

only when estimating external input of chemical species to the snowpack. 
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Résumé 

Cette partie présente les données de neige de surface acquises sur le site côtier tout au long de la 

campagne. Un premier chapitre présente les données de mercure total dans la neige côtière. Bien 

qu’elle contienne une brève discussion, le but essentiel de ce chapitre est de présenter les données 

acquises, sans revendiquer un quelconque impact sur les implications scientifiques du présent 

manuscrit. 

Dans un deuxième chapitre, nos données sont analysées en utilisant des rapports de concentrations 

molaires plutôt que les concentrations directes, afin d’accéder à plus d’information (Robinson et al., 

2006). Ce faisant, nous identifions pour la quasi-totalité deux sources majeures pour expliquer la 

chimie de la neige côtière. Si la première – les sprays marins – était attendue, la deuxième est reliée 

à un événement particulier observé dans la neige et décrit dans la section II.ii. Avant même de 

discuter de ces sources, nous évaluons leur contribution à la chimie de la neige pour chaque espèce 

mesurée, reliant les sprays marins aux principaux ions marins, et la deuxième source à un apport 

accru en calcium, magnésium, petites molécules organiques et en MMHg. 

En troisième chapitre (distingué du premier pour des raisons de confort de lecture uniquement), 

nous discutons de la nature de cette seconde source. Les apports additionnels en calcium suggèrent 

en premier lieu un apport terrigène, en cohérence avec le début de la fonte sur les zones rocheuses. 

Cependant, cette hypothèse est jugée incompatible avec la présence accrue de petites molécules 

organiques et de MMHg ainsi qu’avec la grande stabilité de la composition chimique de la source 

(pas de variations visibles sur 3 semaines). 

Une hypothèse  alternative est développée, impliquant des aérosols organiques d’origine marine, qui 

sont décrits dans la littérature et contiennent habituellement des fragments calcaires et des dérivés 

biochimiques et biologiques maintenus en cohésion par un gel bio-organique. Cette composition est 

davantage en accord avec les caractéristiques chimiques de cette seconde source que nous 

observons : du calcium et du magnésium (le premier dû aux fragments calcaires, les deux servant de 

coagulants aux gels organiques), des petites molécules organiques et du MMHg, en tant que 

(sous)produits d’activité biologique marine. Cette théorie suggère une source constante et proche du 

site d’étude (situé à 10-20 m du fjord). 

L’origine de l’événement important de dépôt de ces aérosols dans la neige de surface côtière est 

aussi discutée. Nous suggérons que le bloom marin printanier – un épisode de densification 

biologique des eaux des fjords arctiques – et la sénescence qui s’en suit sont une source abondante 

des composants élémentaires des aérosols organiques marins. En effet, l’explosion de l’activité 
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biologique ainsi que son déclin peuvent générer d’importantes quantités de produits et débris bio-

organiques, ainsi que des squelettes calcaires planctoniques. En raison de l’absence de données 

disponibles sur le bloom du Kongsfjorden, son timing et ses implications sur la biologie marine au 

printemps de notre campagne, il reste impossible de confirmer cette théorie. 

Finalement, nous replaçons ces résultats dans le contexte bibliographique en les comparant aux 

travaux existants. Bien que la question des sources de MMHg dans la cryosphère arctique soit posée 

depuis une dizaine d’années, elle reste ouverte depuis. Plusieurs assertions sont cependant 

communément acceptées, impliquant une source marine, une source atmosphérique et la 

méthylation in situ, théories qui trouvent un écho, un soutien et des explications dans cette partie 

(cependant nous reconnaissons la méthylation in situ comme négligeable dans notre manteau 

neigeux côtier). En effet, notre théorie n’est pas seulement compatible avec les hypothèses avancées 

jusque-là, mais elle détaille et identifie des processus qui n’avaient pour lors été qu’évoqués. La 

raison en est sans doute, au-delà de toute autre considération, l’utilisation d’une méthodologie 

d’analyse des données encore embryonnaire dans le monde de la chimie environnementale, mais qui 

permet un accès à des informations supplémentaires sur la chimie du milieu étudié. 

Nous espérons qu’au-delà des résultats propres de cette étude, le lecteur retiendra la méthodologie 

appliquée et l’envisagera pour enrichir ses futurs travaux. 
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i.	Considerations	of	the	input	of	THg	in	

arctic	snow	

 

The net input of Hg in snow is generally much smaller than the deposition fluxes, as a large majority 

is reemitted back to the atmosphere. As potential precursors to MMHg – which is the main focus of 

the present manuscript – the dynamics of both HgII and Hg0 shall be considered. For this purpose, we 

measured THg daily on our coastal study site as a temporal record of Hg reactivity. In snow, THg is 

expected to be mainly (>98%) in its stable oxidized form HgII (not methylated), but a negligible 

proportion of volatile Hg0 may be present as well as MMHg (Arctic Monitoring and Assessment 

Programme, 2011). Methylmercury barely exceeds a few percent of HgII, and often represents less 

than 1% in snow. Hence THg concentrations are assimilated to those of HgII in our snow samples in 

the following section and for the rest of the present study. 

 

1. THg deposition on snow 

 

The evolution of THg concentrations in surface snow is presented in Figure 1. The THg background 

concentration decreases during the field campaign with important noise due to small temporal and 

spatial variations. Total Hg concentrations decrease down to around 2 ng/L and less between the 24th 

and the 29th of April and at the end of the campaign (after the 1st of June), when strong melting of 

the snowpack occurs (see “Field condition and methodology” section). The main deposition events 

are distinguishable on the 14th of April, on the 10th of May and on the 14th of May. The first one 

corresponds to a snowing event, the second one is dry deposition during a strong AMDE event with 

clear sky, and the last one is a snowing event during an AMDE (for more information about AMDEs, 

refer to the “Introduction” part, or to Schroeder et al., 1998; Steffen et al., 2008). As low atmospheric 

Hg0 can result of the arrival of already Hg-depleted air-masses, the AMDE events are identified by 

simultaneous atmospheric Hg0 decrease and snow THg increase. However, as observed in previous 

studies (Dommergue et al., 2007; Kirk et al., 2006; Poulain et al., 2004; St. Louis et al., 2005) all these 

deposition events are immediately offset by following reemission events – owing to HgII 

photoreduction – resulting in negligible net input of THg in snow. 
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2. THg dynamics in the snowpack 

 

Figure 2 displays the THg concentrations in both surface and basal (snow layer directly lying on the 

ground) snow, put in the same timescale (pits were dug every 3 or 4 days). Basal THg concentrations 

are very low until the 22th of April and unrelated to surface THg concentrations until the 2nd of May. 

This period corresponds to the early strong melting of the snowpack, during which a thin melt-

refreeze ice layer (≈ 1-2 cm) separating the basal snow from upper layer completely melted. As 

depicted in the “Field condition and methodology” section, the snowpack resulting from this melting 

event was around 30% thinner (up to 50% in some cases) and consisted of a porous and almost 

uniform snowpack (2 layers). As a result, surface and basal snow were no longer isolated from each 

other and both show similar trends in THg concentrations until the end of the campaign. 

Interestingly, except samples from the two melting events, THg is always lower in basal snow than in 

surface one. 

0

20

40

60

80

100

120

13/4 23/4 3/5 13/5 23/5 2/6

T
H

g
 [

n
g

/L
]

Date

*

*

*

Strong
melting

Strong 
melting 

precip. 
AMDE + precip. 

AMDE 

Figure 1. Evolution of THg concentration in surface coastal snow. Stars represent the main 

deposition events and arrows point the first day of strong melting periods (see “Field 

Campaign” section for more details). The red line shows the background [THg] trend (excluding 

the deposition peaks). 
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Our observations show that Hg transfers occur in the snowpack, from surface to basal snow and 

inversely. As Hg0 in the interstitial air is greatly linked with Hg in snow by redox transformations 

(Dommergue et al., 2003; Fain et al., 2006; Lalonde et al., 2002; Poulain et al., 2004), we suggest that 

the difference between Hg concentrations in basal and surface snow can be due to Hg adsorptive 

diffusion in the snowpack (Domine et al., 2008). This diffusion probably affects mainly gaseous Hg0, 

as the HgII depositing during the AMDE on the 10th of May mainly affected surface snow (50 fold 

increase in Hg concentration) while only moderately basal snow (3 to 4 fold increase in Hg 

concentration). We suggest that small increases in Hg concentrations are probably due to changes in 

atmospheric conditions (temperature, chemical concentrations…), allowing for more oxidation of Hg0 

in the interstitial air of snow, and eventually for adsorption of the produced HgII on ice grains. The 

decreases in Hg concentrations would inversely be due to changes in atmospheric conditions favoring 

HgII reduction and the evasion of the produced Hg0 to the interstitial air and eventually to the 

atmosphere. These photoinduced mercury redox reactions are not expected to be as effective in 

deep snow as in the very first centimeters of snow (Poulain et al., 2004), as the light flux in snow is 

divided by e every 20 cm roughly, depending on snow physics (Domine et al., 2008; Simpson et al., 

2002). Moreover, the redox transformations of Hg imply other reactants (see the “Chemical 

properties of mercury” section of the “Introduction” chapter) that are probably also subject to 

adsorptive diffusion and which concentration might depend on the chemical content of snow. In 

addition, if the redox transformations of mercury occur at the snow-air interface (as suggested by 

Ferrari et al., 2005), the physical properties of snow (and particularly its SSA) could also affect the 

reaction rates. Finally, the metamorphism of snow should affect the fate of Hg adsorbed on the 
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Figure 2. Evolution of THg concentration in surface (black line) and basal (grey line) coastal snow. 
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surface of snow grains, thus induce Hg transfers between the different layers of a snowpack (Domine 

et al., 2008; Larose et al., 2010; Mann et al., 2011). All these parameters could possibly explain that 

Hg redox reactions are less efficient in depth snow, leading to lower Hg concentrations in basal snow 

than in surface one. As snow physics and chemistry as well as Hg transformations in snow are only 

partially known, the picture of Hg dynamic in snow remains unclear. However, although the reasons 

of such Hg transfer through the snowpack remain undefined, it is clearly observed in our snowpack 

(Figure 2). 

Figure 3 shows the difference of THg concentration between the surface and the bottom snow layers 

(surface-bottom) and the 2m air temperature along the whole field campaign. The difference is 

always positive (for negative temperatures), except during the melting events where air temperature 

is above 0 °C. This highlights the transfer of Hg to lower layers of the snowpack during melting 

events, likely via mobilization by percolating meltwater and partial re-adsorption onto deeper snow 

grains (Mann et al., 2011; Meyer et al., 2009). This is an example of Hg remobilization by snow 

metamorphism, regarding melting as a strong metamorphic process. 

The results briefly presented in the present section allow us to emphasize a few features of THg 

dynamics in snow at our coastal sampling site: 

- Hg background concentrations in surface snow fluctuate between 5 and 20 ng/L roughly, 

with both spatial and temporal variations, in agreement with other studies (Arctic 

Monitoring and Assessment Programme, 2011); 

- Strong Hg deposition event (AMDEs) do not affect the long term THg background level; 
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- Hg concentrations are lower in basal snow but follow the trends observed in surface snow. 

We suggest it can be due to Hg diffusion in the snowpack and/or to decreasing rates of Hg 

redox transformations with increasing depth; 

- The influence of snow metamorphism on Hg dynamics in the snowpack is unknown. As a 

clue, melting induces a downward flux of Hg. 

These observations are useful for our knowledge of the study site, but shall be applied to other 

snowpack with great caution. There is to our knowledge only one other study about Hg dynamics in 

an arctic snowpack over a two month time period, and the authors do not identify any link between 

Hg concentrations in basal and surface snow (Larose et al., 2010). In the present study, the studied 

snowpack rapidly collapsed to a thin partially melted snow cover on which we made our 

assumptions, and which could be representative of this particular case only. Future research on Hg 

dynamics in snow should focus on more stable snowpacks overtime and include depth profiles of 

gaseous Hg as well as snow grain characterization (in relation to metamorphic processes). 
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ii.	Assessing	the	sources	of	major	ions	

using	ratio/ratio	plots	

 

The goal of this section is to determine the sources of major ions and Hg species in the surface 

snowpack (as mentioned previously, surface snow collected daily is considered). For this purpose, we 

propose a general methodology that will be applied to all the measured chemical species. 

1. Methodology 

 

a. Sea-salt tracers: Na and Cl 

 

Sodium and chloride are known to be good tracers of sea-salt in snow, despite they can be subjects 

to post-deposition processes, such as precipitation of mirabilite (Na2SO4) or HCl condensation 

(Krnavek et al., 2011). In our samples, these processes are not discernible and Na and Cl correlate at 

the sea-salt stoichiometry: [Na]/[Cl] = 0.9, r² > 0.99, n = 50 (Figure 1). In the following, Na and Cl will 

then be used as sea-salt tracer, respectively for cations and anions. 
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Figure 1. Correlation plot of Na with respect to Cl. Black diamonds represent the particle input 

event, open diamonds represent samples with strong sea-spray influence (including the strong 

storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. The solid line represents empirical sea-salt dilution. 
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b. Calcium as a multiple source tracer 

 

Among the major cations present in snow (Na, Mg, Ca, K, Li), all are known to be related to sea water 

chemistry. However, Ca can originate from non-marine sources (likely terrestrial mineral dust) to a 

non-negligible extent (Fischer et al., 2007; Jacobi et al., 2012; Kang et al., 2001; Krnavek et al., 2011; 

Ruth et al., 2008; Ström et al., 2003). 

 

Figure 2 shows the correlation plot of Ca with respect to Na in our samples. Only the samples from 

the sea-spray event fit the sea-salt dilution line, while systematic Ca enrichment is observed in other 

samples. The highest enrichment is observed in samples collected during the particle event. The 

highest concentrations of Ca in surface snow (except the outlier storm event) are due to this particle 

input. Non-sea-spray Ca (nss-Ca) is graphically represented on Figure 2 by the distance from the 

empirical sea-salt dilution line and is calculated as follows: 

nss-Ca = Cameasured – [Na x (Casea-sprays/Nasea-sprays)], the sea-spray sample with the lowest [Ca]/[Na] is 

chosen as reference. 
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Figure 2. Correlation plot of Ca with respect to Na (as a sea-salt tracer). Black diamonds represent 

the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares 

samples possibly chemically impacted by the snowmelt. The solid line represents empirical sea-salt 

dilution. 
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In the following, the proportion of non-sea-spray Ca (nss-Ca) will be considered as the relative 

contribution of non-sea-spray sources to the snow chemistry, and will be calculated as follows: 

non-sea-spray contribution: Kd = nss-Ca/Cameasured 

Interestingly, the time evolution of nss-Ca in surface snow is strongly correlated with several 

atmospheric events (Figure 3). Indeed snow surface experienced important nss-Ca inputs during 

1) the storm event in late April; and 2) the input of particles during the second half of May. Table 1 

shows the features of surface snow regarding Ca and particles during these event. Results presented 

in Table 1 and Figure 3 suggest that the particle input of May brings additional Ca than sea-sprays 

and becomes the main source for Ca in samples from the particle input event. 

 

Table 1. Chemical signature of Ca and particles in surface snow during the storm event and the particle input event. The 

[nss-Ca]/[Ca] molar ratio is calculated from data presented in Figure 2. 

a reference sample for nss-Ca calculation 

 

 n Median particle count 

[mL-1] 

(min ; max) 

Median nss-Ca 

[µM] 

(min ; max) 

Median [nss-Ca]/[Ca] 

[%] 

(min ; max) 

Sea-spray event 9 57 756 (15 161 ; 215 090) 1.4 (0a ; 35.0) 4.7 (0a ; 27.9) 

Particle event 15 1 109 789 (458 861 ; 2 409 240) 

 

45.0 (31.6 ; 65.3) 95.2 (93.1 ; 98.0) 
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As being present in sea-sprays as well as in other sources, Ca is a relevant species to estimate the 

different sources contributions in surface snow. Indeed, the [nss-Ca]/[Ca] ratio is a good proxy for 

estimating the contribution of non-sea-sprays sources of chemicals in snow.  

 

c. Tracking of multiple sources 

 

For a given species X, its concentration [X] is plotted versus the concentration of the appropriate sea-

salt tracer; if sea-sprays (source A on Figure 4) are the major source for X in the samples,  data points 

will be depicted by a straight line representing  the ideal dilution of the sea-salt source (y = x in Figure 

4). If a second source B exists for X, some of the data points will move away from this straight line 

towards the ideal dilution straight line of the source B (Figure 4). Because of multiple source 

contribution and/or chemical altering of snow (i.e. melting), most of the samples will be located in-

between all dilution lines. However, when one source is in great majority (often for high 

concentrations), every chemical species is expected to fit its dilution (source A in Figure 4). 
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Figure 3. Particle number (dots) and nss-Ca (line) evolution during the field campaign. The black box represents the 

AMDE event, the green box samples with strong sea-sprays influence storms? and the blue box samples under the 

chemical influence of particles input. 
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Using this approach, we can have an overview at the different sources contributions to the chemical 

content of snow. Some chemical species can have other sources or sinks, which might be 

unobservable on dilutions graphs such as Figure 4. In this case, the use of a second graphical tool is 

needed to further describe this third source. 

Figure 5 is a plot displaying the variations of [X]/[Z] and [Y]/[Z] molar ratios, X, Y and Z being different 

chemical species. Each source of these cations is plotted as a define dot A, B or C, which are defined 

either because their content in X, Y and Z is known, or because of data points with clear signatures. In 

the latter case, the location of each source on the graph is determined empirically by using a 

particular sample or cluster of samples. Straight lines between all the sources define either a line (if 

two sources) or a polygon (if three or more sources) containing all the sample plots, in which side AB 

represents the mixing line between source A and source B. The math and mechanics under 

ratio/ratio plots have been well described elsewhere (Robinson et al., 2006). The representation of a 

given sample is determined by 1) the contribution of each source to its [X]/[Z] and [Y]/[Z] ratios; 2) 

possible enrichment or loss processes, which may shift its position following linear ways (Figure 5). A 

detailed description of ratio/ratio plots is available elsewhere (Robinson et al., 2006). 
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Figure 4. Display of different sources on a [X] versus [Tracer] plot. Source A is defined by the y=x line (solid 

line), and examples of enriched and depleted sources (respectively B and C) are represented respectively as 

small  and large dash line. Blue diamonds are an example of distribution for X having A as a main source and B 

as a secondary one. 
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In the following section, [Ca] – as a multiple source tracer – will always be chosen as denominator, 

and abscissa will always be the [nss-Ca]/[Ca] molar ratio. This way, the horizontal axis of the plot will 

represent the nss-Ca source contribution expressed in %. As a consequence, the ordinate at 0% will 

represent the [X]/[Ca] in sea-sprays, while the ordinate at 100% will represent [X]/[Ca] in the pure 

nss-Ca source. The storm event samples – which contain very high concentrations of all the 

measured chemical species that decreased rapidly (within a few days) to expected normal values 

(based on empirical observation) (in green on Figure 6) – will be displayed as part of the “samples 

with strong sea-spray influence” (see legend of Figure 2) to help the design of the sea-salt dilution 

line (on [X] versus [Tracer] plots) or of the sources mixing line (on ratio/ratio plots). The latter will be 

Figure 6. Time series of Na and Ca during the field campaign. Snow samples 

impacted by the storm event are displayed in a green box, and the concentration 

values for all the species will be considered as outliers. 
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by the position of sources A, B and C. Any point can be shifted by various enrichment or 
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drawn as linear regressions of samples from the storm event (open diamonds on all ratio/ratio plots) 

together with samples from the particle event (full diamonds on all ratio/ratio plots). 

In summary, the two steps described above will allow determining (for each species) the number of 

sources and their importance in terms of input to snow. Depletion processes (or sinks, in opposition 

to sources) can possibly be identified if they are substantial enough to induce anomalies on the 

graphs. Preferential melting processes (of X versus Y, or particulate versus non-particulate species for 

example) can alter snow chemistry, thus one could expect melting snow to be sometimes 

unrepresentative of all external quantitative inputs it encountered. It is therefore crucial to consider 

the timing of geochemical and meteorological events for an extended comprehension of our dataset, 

as both can have a great impact on the concentrations of chemicals in snow (Figure 6). 



 
102 III. Identification of the primary sources of methylmercury in a coastal arctic snowpack 

2. Magnesium 

 

Figure 7 shows the correlation plot of Mg with respect to Na. Magnesium and Na are linearly 

correlated and their molar ratio follows the sea-salt composition ([Mg]/[Na] = 0.113). However, 

substantial enrichments and depletions are seen for concentrations below 60 µM. Samples from the 

particle input event are enriched in Mg, while samples from melting snow are systematically 

depleted. The majority of the samples (94%) contain Mg at concentrations below 65 µM, while 

higher concentrations (up to 3488.7 µM) are observed in samples from the sea-spray storm only 

(three samples among the sea-spray event), outlining this storm as an outlier event, as explained in 

paragraph 1.c of this section. These observations are the same that the ones drawn from the Ca 

versus Na plot (Figure 2). 

Figure 8 shows the molar ratio/ratio plot of [Mg]/[Ca] with respect to [nss-Ca]/[Ca]. A mixing line 

(linear regression) is drawn for each cation, between the nss-Ca source (samples from the particles 

event) and the sea-spray source (samples from the sea-sprays event). All the samples fit this mixing 

line except the melting snow samples, which are systematically located below. The estimated 

[Mg]/[Ca] ratio in the nss-Ca source is estimated to be 0.403. 
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Figure 7. Correlation plot of Mg with respect to Na (as a sea-salt tracer). Black diamond represent 

the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares 

samples possibly chemically impacted by the snowmelt. The solid line represents empirical sea-salt 

dilution. 
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Magnesium behaves like a sea-salt compound but is however substantially enriched compared to 

sea-salt during the particle event. The same trend was observed for Ca, but with a higher 

enrichment. Similarly to Ca,  Mg is a major ion which is present in both sea-salt and late spring 

particles, considering both the Mg enrichment (Figure 7) and the [Mg]/[Ca] ratio estimated in late 

spring particles (0.403, see Figure 8). In melting snow samples, the systematical Mg exhaustion (open 

squares on Figure 7) together with the low [Mg]/[Ca] anomaly (open squares on Figure 8) suggest a 

preferential elution of Mg over Ca at the beginning of the snowmelt. This assessment is however 

hard to explain considering the chemical properties of Mg and Ca, which are very close. 
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Figure 8. Ratio/ratio plot of [Mg]/[Ca] with respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total Ca).  

Black diamond represent the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. The solid line represents the mixing line between sea-sprays and the nss-Ca 

source. The ordinate for x = 0% represents [Mg]/[Ca] ratio in sea-sprays, for x = 100% [Mg]/[Ca] in the nss-Ca source. 
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3. Species related to sea-sprays chemistry: K and Li 

 

Figure 9 shows the correlation plot of K with respect to Na. Potassium versus K  follows the sea-salt 

composition ([K]/[Na] = 0.021) with small scatter for low concentrations, corresponding to melting 

snow samples (open squares on Figure 9). Such scattering is probably due to small source 

fractionation (minor contribution of another source), visible only for low concentrations of K 

(< 2 µM). The majority of the samples (84%) show a K concentration of less than 7 µM, while higher 

concentrations (up to 651.9 µM) are all encountered in the samples from the sea-spray event only.  

Figure 10 shows the correlation plot of Li with respect to Na. Similarly to K, Li is correlated with sea-

salt with scattering for concentrations below 20 nM. The majority of the samples (83%) contain Li at 

20 nM or less, while higher concentrations (up to 1627.9 nM) are measured in samples from the sea-

spray event only. The scattering observed occurs only toward Li enrichment compared to sea-salt, 

with no regards to sample type. The molar ratio [Li]/[Na] in sea-salt is 4.97 10-5. 
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Figure 9. Correlation plot of K with respect to Na (as a sea-salt tracer). Black diamond represent the 

particle input event, open diamonds represent samples with strong sea-spray influence (including 

the strong storm event), grey squares represent fresh snow samples and open squares samples 

possibly chemically impacted by the snowmelt. The solid line represents empirical sea-salt dilution. 
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Figure 11 shows the molar ratio/ratio plot of [K]/[Ca] with respect to [nss-Ca]/[Ca]. A mixing line is 

drawn for each cation, between the nss-Ca source (samples from the particles event) and the sea-

spray source (samples from the sea-sprays event). All the samples fit this mixing line, with small 

scattering for samples with the lower concentrations (melting snow). The estimated [K]/[Ca] in the 

nss-Ca source is 0 (calculation from Figure 11 gives a negative value). 

Figure 12 shows the molar ratio/ratio plot of [Li]/[Ca] with respect to [nss-Ca]/[Ca]. All the melting 

snow samples show a [Li]/[Ca] increase compared to the mixing line, confirming the Li enrichment 

observed on Figure 10 for samples with the lowest concentrations. Estimated [Li]/[Ca] ratio in the 

nss-Ca source is 0. 
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Figure 10. Correlation plot of Li with respect to Na (as a sea-salt tracer). Black diamond represent 

the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares 

samples possibly chemically impacted by the snowmelt. The solid line represents empirical sea-salt 

dilution. 
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Figure 12. Ratio/ratio plot of [Li]/[Ca] with respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total Ca).  

Black diamond represent the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. The solid line represents the mixing line between sea-sprays and the nss-Ca 

source, as the linear regression of the (sea-spray + late spring particle event) sample ensemble. The ordinate for x = 0% 

represents [Li]/[Ca] ratio in sea-sprays, for x = 100% [Li]/[Ca] in the nss-Ca source. 
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Figure 11. Ratio/ratio plot of [K]/[Ca] with respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total Ca).  

Black diamond represent the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. The solid line represents the mixing line between sea-sprays and the nss-Ca 

source, as the linear regression of the (sea-spray + late spring particle event) sample ensemble. The ordinate for x = 0% 

represents [K]/[Ca] ratio in sea-sprays, for x = 100% [K]/[Ca] in the nss-Ca source. 
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The source fractionation observed at lower concentrations for both K and Li are mainly observed in 

melting snow samples. In the case of Li, the fractionation suggests that when snow melts, both Na 

and Ca are primarily removed from snow by percolating water (positive Li anomaly in Figure 10 and 

Figure 12 for samples of melting snow). For K, the fractionation is smaller and do not show any 

obvious trend: it can be attributed to minor processes such as small inputs of dust (different from the 

late spring particles) or small removal by snow melting. As a summary, both Li and K strongly 

correlate with sea-salt tracer and [K]/[Ca] and [Li]/[Ca] ratio are close to zero in the nss-Ca source 

(estimated from Figure 11 and Figure 12). It clearly suggests that these species are mainly due to sea-

sprays deposited onto surface snow. 
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4. Species related to sea-sprays and atmospheric chemistry: 

sulfates and Br 

 

Figure 13 shows the correlation plot of sulfates with respect to Cl. Sulfate is correlated with sea-salt 

([Sulfates]/[Cl] = 0.051), with a visible enrichment for concentration below 50 µM (which is more 

visible in fresh snow). Some data scattering occur for melting snow samples, at concentrations below 

4 µM. As for sea-related species described above, 82% of the samples contain sulfates at a 

concentration below 25 µM, while higher concentrations (up to 1764.8 µM) are measured in the 

samples from the sea-spray event only. 

The correlation plot of Br with respect to Cl (Figure 14) is close to sea-salt species such as K (Figure 9). 

However, fresh snow samples are systematically depleted in Br. The majority of the samples (86%) 

show Br concentrations below 500 nM, while higher concentrations (up to 50.5 µM) are observed 

during the sea-spray event only. The molar ratio [Br]/[Cl] in sea-salt is 1.55 10-3. 
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Figure 13. Correlation plot of sulfate with respect to Cl (as a sea-salt tracer). Black diamond 

represent the particle input event, open diamonds represent samples with strong sea-spray 

influence (including the strong storm event), grey squares represent fresh snow samples and open 

squares samples possibly chemically impacted by the snowmelt. The solid line represents empirical 

sea-salt dilution. 
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Figure 14. Correlation plot of Br with respect to Cl (as a sea-salt tracer). Black diamond represent the 

particle input event, open diamonds represent samples with strong sea-spray influence (including 

the strong storm event), grey squares represent fresh snow samples and open squares samples 

possibly chemically impacted by the snowmelt. The solid line represents empirical sea-salt dilution. 
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Figure 15. Ratio/ratio plot of [Sulfate]/[Ca] with respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total 

Ca). Black diamond represent the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. The solid line represents the mixing line between sea-sprays and the nss-Ca 

source, as the linear regression of the (sea-spray + late spring particle event) sample ensemble. The ordinate for x = 0% 

represents [Sulfate]/[Ca] ratio in sea-sprays, for x = 100% [Sulfate]/[Ca] in the nss-Ca source. 
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Figure 15 shows the molar ratio/ratio plot of [Sulfates]/[Ca] with respect to [nss-Ca]/[Ca]. A mixing 

line is drawn for each cation, between the nss-Ca source (samples from the particles event) and the 

sea-spray source (samples from the sea-sprays event). For sulfates, samples from sea-spray and 

particles events fit this mixing line, while samples of melting snow globally show higher [Sulfate]/[Ca] 

ratios. Interestingly, fresh snow samples have a distinctly lower [Sulfate]/[Ca] ratio than expected on 

the mixing line. The estimated [Sulfate]/[Ca] molar ratio in the nss-Ca source is 0.043. 

The molar ratio/ratio plot of [Br]/[Ca] with respect to [nss-Ca]/[Ca] (Figure 16) has the same pattern 

than sulfate (Figure 15), nevertheless fresh snow samples have higher [Br]/[Ca] ratios and are less 

distinct from the other samples. The estimated [Br]/[Ca] molar ratio in the nss-Ca source is 0. 

 

Sulfates and Br behave like sea-salt related species; however both show a particular fractionation in 

fresh snow samples (Figure 15 and Figure 16). It is clear that [Sulfate]/[Ca] is lower in fresh snow, 

possibly outlining a source fractionation during the atmospheric process of fresh snow formation, or 

a third source for sulfates in fresh snow (different from sea-sprays or the nss-Ca source). Melting 

snow samples are enriched in sulfates with regards to Ca, hence do not fit the mixing line. It could be 
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Figure 16. Ratio/ratio plot of [Br]/[Ca] with respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total Ca).  

Black diamond represent the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. The solid line represents the mixing line between sea-sprays and the nss-Ca 

source, as the linear regression of the (sea-spray + late spring particle event) sample ensemble. The ordinate for x = 0% 

represents [Br]/[Ca] ratio in sea-sprays, for x = 100% [Br]/[Ca] in the nss-Ca source. 



 
111 ii. Assessing the sources of major ions using ratio/ratio plots 

due to the net effect of preferred elution of Ca over sulfates during snow melting or sulfate 

enrichment processes by atmospheric deposition of sulfuric acid, ammonium sulfate or mirabilite 

(Krnavek et al., 2011). In addition, Figure 13 shows a depletion of sulfate with regards to Cl in the 

same melting snow samples. It could suggest a preferred elution of sulfates over Cl, or 

degradation/disparition processes (i.e. hypothetical microbial transformations or sulfuric acid 

volatilization). In summary, sulfate is mainly brought by sea sprays, with additional atmospheric 

additions, most importantly during precipitations (Figure 13 and Figure 15). The nss-Ca source is only 

responsible for minor inputs of sulfate to surface snow (no enrichment on Figure 13, very low 

[Sulfate]/[Ca] on Figure 15). 

Bromide can experience both atmospheric removal and inputs in surface snow. Activation of Br by 

atmospheric oxidation (to BrO
.
, Br2) leads to removal of Br, while the reaction of activated Br species 

with aldehydes and VOCs generates HBr, which can undergo deposition on snow surfaces. As the 

same snow probably experiences continuous exchange of Br with the atmosphere via these 

processes, the global picture of Br in snow is clouded, even for high concentration samples 

(Figure 14). Fresh snow samples are depleted in Br compared to Cl (full squares in Figure 14), thus, 

besides not being an additional input media for Br, fresh snow is likely to experience more important 

Br activation (removal). However, fresh snow samples are not clearly differentiated from the others, 

hence such assessment shall be taken with caution. Generally, Br is added to surface snow mainly by 

sea-sprays, and subject to continuous exchange with the atmosphere, with possible dominant 

removal for fresh snow. The nss-Ca source does not bring any additional Br to the snowpack (no 

enrichment on Figure 14, [Br]/[Ca] = 0 on Figure 16). 
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5. Species weakly related to sea-sprays: small organic acids and F 

 

Figure 17 shows the correlation plots of acetates, oxalates, formates and fluorides with respect to Cl. 

The sea-spray dilution is represented by the black straight line and is empirical (based on sea-spray 

samples) for all species. However, except the samples from the sea-spray event, the samples do not 

fit the sea-spray dilution line at all, but rather seem to roughly fit another dilution (red line). Small 

organic species can undergo dynamic exchanges between the ice and the snow phases (Legrand and 

De Angelis, 1995), which likely explain their cloudy overall picture. It is noticeable that for all species 

on Figure 17, samples from different origin are organized with the same pattern along a second 

dilution line (in red). Samples from the late spring particle event are the “less diluted”, followed by 

fresh snow samples and melting snow samples. 
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Figure 17. Correlation plot of acetate (a), oxalates (b), formates (c) and F (d) with respect to Cl (as a sea-salt 

tracer). Black diamond represent the particle input event, open diamonds represent samples with strong sea-

spray influence (including the strong storm event), grey squares represent fresh snow samples and open squares 

samples possibly chemically impacted by the snowmelt. The solid line represents empirical sea-salt dilution. 
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Figure 18 shows the molar ratio/ratio plots of [Acetates]/[Ca], [Formates]/[Ca], [Oxalates]/[Ca] and 

[F]/[Ca] with respect to [nss-Ca]/[Ca], with the mixing line between the sea-spray and the late spring 

particle sources. Here again, all the species show the same trend: a similar enrichment ([X]/[Ca]) for 

both sources and a substantial enrichment in fresh snow. For all species, melting induces a 

fractionation toward higher enrichment, suggesting that melting causes a preferential elution of Ca. 

 

As shown in Figure 19, the alkalinity of snow (= cationic charge – anionic charge) is positively 

correlated with nss-Ca except for sea-sprays sample. Surface snow becomes more alkaline during the 

particle event. These changes in the alkalinity of snow will likely alter the stability of dissolved 

species, chelation equilibrium and exchanges processes at the snow-air interface. In particular, it 

could affect gas phase equilibrium of small organic monoacids (such as acetic acid and formic acid) 

(Legrand and De Angelis, 1996, 1995). However, we notice that these processes do not affect our 
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Figure 18. Ratio/ratio plot of [acetates]/[Ca] (a), [oxalates]/[Ca] (b), [formates]/[Ca] (c) and [F]/[Ca] (d) with 

respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total Ca).  Black diamond represent the 

particle input event, open diamonds represent samples with strong sea-spray influence (including the strong 

storm event), grey squares represent fresh snow samples and open squares samples possibly chemically 

impacted by the snowmelt. The solid line represents the mixing line between sea-sprays and the nss-Ca 

source, as the linear regression of the (sea-spray + late spring particle event) sample ensemble. The ordinate 

for x = 0% represents [X]/[Ca] ratio in sea-sprays, for x = 100% [X]/[Ca] in the nss-Ca source. 
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samples, as data points from both the late spring particle and the sea-spray events organize into 

narrowed clusters on Figure 18. This indicates that these points are gathered around the source 

mixing line, because other possibilities (such as processes) would cloud the overall picture, thus 

unlikely result in such tight clusters (for example, the snowmelt induces a very cloudy picture on 

Figure 18). We suggest that changes in [X]/[Ca] ratios observed in the late spring particle samples are 

not due to changes in alkalinity but rather directly result from the contribution of the late spring 

particles. Finally, Figure 17 suggests that [X] in surface snow is a dilution of highly concentrated 

material that is initially provided by the late spring particles. 
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Figure 19. Correlation of alkalinity (net ionic charge of cations – anions) with respect to the nss-Ca 

concentration. Black diamonds represent the particle input event, open diamonds represent 

samples with strong sea-spray influence (including the strong storm event) and open squares 

samples possibly chemically impacted by the snowmelt. The solid line represents the linear 

regression excluding samples of strong sea-spray influence (open diamonds). 
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6. Methylmercury 

 

Figure 20 shows the correlation plot of MMHg with respect to Na. Alike small organic acids, the 

majority of the data points do not fit the sea-spray dilution (assessed by the samples from the sea-

spray event, not drawn), but rather fit a second dilution line (black line). On this second dilution line, 

samples from the late spring particle event are the “less diluted” while samples from melting snow 

are “more diluted”. The only measured fresh snow sample has the second highest MMHg 

concentration (after the strong storm sample) and does not fit none of the two dilution straight lines. 

Generally, the highest concentrations of MMHg are measured during the late spring particle event. 

 

Figure 21 shows the molar ratio/ratio plot of [MMHg]/[Ca] with respect to [nss-Ca]/[Ca]. Samples 

from the sea-spray event and the late spring particle event indicates their respective source 

fractionation, with similar and very low [MMHg]/[Ca] ratio. Interestingly, the only fresh snow sample 

is clearly enriched in MMHg compared to all other samples, as reported in a previous study (surface 

snow data from the 21th and 27th of May 2008 in Larose et al., 2010). Melting snow samples are close 
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Figure 20. Correlation plot of MMHg with respect to Na (as a sea-salt tracer). Black diamond 

represent the particle input event, open diamonds represent samples with strong sea-spray 

influence (including the strong storm event), grey squares represent fresh snow samples and open 

squares samples possibly chemically impacted by the snowmelt. The solid line represents empirical 

dilution observed. 
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to both the late spring particle source and fresh snow (in the triangle between fresh snow and the 

two sources). It suggests that MMHg in surface snow majorly results from fresh snow and late spring 

particle inputs and is barely related to sea-sprays inputs. This is consistent with results from Figure 

20, suggesting that MMHg in surface snow is a dilution of material brought by the late spring 

particles (as for the small organic acids). 
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Figure 21. Ratio/ratio plot of [MMHg]/[Ca] with respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total 

Ca). Black diamond represent the particle input event, open diamonds represent samples with strong sea-spray 

influence (including the strong storm event), grey squares represent fresh snow samples and open squares samples 

possibly chemically impacted by the snowmelt. The solid line represents the mixing line between sea-sprays and the 

nss-Ca source, as the linear regression of the (sea-spray + late spring particle event) sample ensemble. The ordinate for 

x = 0% represents [MMHg]/[Ca] ratio in sea-sprays, for x = 100% [MMHg]/[Ca] in the nss-Ca source. 
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7. Species related to atmospheric processes: THg, MSA and nitrates 

 

Figure 22 shows the correlation plot of MSA with respect to Cl. As for small organics and MMHg, the 

data points are not distributed around a sea-salt dilution line. MSA rather follows another dilution 

line (drawn in black, excluding samples from the sea-spray event), on which several samples from the 

late spring particle event are the “less diluted” while samples of melting snow are the “more 

diluted”. In addition, an important MSA enrichment is present in one sample of fresh snow, 

corresponding to the AMDE + precipitation event. 

 

Figure 23 shows the correlation plot of THg with respect to Na. The overall picture of THg is too 

cloudy to be as clearly depicted as for MSA, but four samples are distinct from the others because of 

their high THg concentration (> 120 ng/L): two precipitation events (one precipitation event and one 

AMDE + precipitation event, respectively on the 14th of April and the 14th of May) and two samples 

from the late spring particles, corresponding to the strong AMDE event of the 10th of May.  
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Figure 22. Correlation plot of MSA with respect to Cl (as a sea-salt tracer). Black diamond represent 

the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares 

samples possibly chemically impacted by the snowmelt. The solid line represents empirical dilution 

observed. Red circles highlight AMDE events. 
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Figure 24 shows the molar ratio/ratio plot of [MSA]/[Ca] with respect to [nss-Ca]/[Ca]. Interestingly, 

as the data points do not fit a dilution line involving sea-sprays, they can be excluded as significant 

source of MSA. Fresh snow has not the same MSA fractionation ([MSA]/[Ca] ≈ 0.15) than in snow 

from the late spring particle event ([MSA]/[Ca] close to 0). It suggests the existence of two input 

pathways for MSA in snow: one involving late spring particles, and one involving fresh snow 

(probably atmospheric scavenging by falling snow). The fresh snow sample from the strong AMDE + 

precipitation event (14th of May) is highly enriched in MSA (and brings a high MSA concentration in 

snow, see Figure 22), implying that fresh snow scavenged twice as much as MSA as during 

precipitations without AMDE. This could be evidence that MSA is formed to a greater extent in the 

atmosphere during AMDEs. Although MSA concentrations can be high (> 700 nM) in some samples 

from the particle event (see Figure 22), these samples correspond to snow samples between the 8th 

and the 13th of May during the strong AMDE event, thus cannot be attributed to the input of 

particles. Hence we do not consider the particle event as a significant source of MSA in our samples. 

Actually, as MSA is a product of marine dimethylsulfide atmospheric oxidation, we suggest that the 

strong oxidative properties of the atmosphere during AMDEs particularly favor MSA formation. 

Precipitation during an AMDE would enhance the formed MSA deposition by atmospheric washing 

(scavenging by fresh snow). We do not observe the same trends for sulfates, which are the end 
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Figure 23. Correlation plot of THg with respect to Na (as a sea-salt tracer). Black diamond represent 

the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares 

samples possibly chemically impacted by the snowmelt. Red circles highlight AMDE events. 
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product of dimethylsulfide atmospheric oxidation. The oxidative species responsible for MSA 

formation during AMDEs is not reactive enough to fully oxidize dimethylsulfide into sulfates.  

Figure 25 shows the molar ratio/ratio plot of [THg]/[Ca] with respect to [nss-Ca]/[Ca]. Samples from 

the sea-spray event and the late spring particle event indicates their respective source fractionation, 

with similar and very low [THg]/[Ca] ratio. However, fresh snow samples and samples from the 

strong AMDE are enriched in THg, suggesting the contribution of a third source linked to atmospheric 

processes occurring during snow precipitation, which are not AMDEs (displayed in red on Figure 25). 

The strong AMDE occurs at the beginning of the particle event and induces a > 10-fold increase of 

THg concentration. However, the simultaneous particle event induces an increase in Ca 

concentration, resulting in a lower [THg]/[Ca] increase (6-fold) than expected from the > 10-fold 

increase in THg concentration only. As a result, samples corresponding to AMDEs do not show a clear 

singular chemical signature. Thus we do not consider AMDEs as a significant source of THg in our 

snow. 
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Figure 24. Ratio/ratio plot of [MSA]/[Ca] with respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total Ca). 

Black diamond represent the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. The solid line represents the mixing line between fresh snow and the nss-Ca 

source, as the linear regression of the (fresh snow + late spring particle event) sample ensemble. The ordinate for 

x = 0% represents [MSA]/[Ca] ratio in sea-sprays, for x = 100% [MSA]/[Ca] in the nss-Ca source. Red circles highlight 

AMDE events. 
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In summary, Figure 23 and Figure 25 show that except four measurements, the THg concentration in 

coastal surface snow is generally below 0.10 nM and do not show any significant difference whether 

the main source is sea-sprays or late spring particles (which have the same [THg]/[Ca] fractionation). 

Consequently, we believe that the primary source of THg (which explains the background THg 

concentration > 0.10 nM) cannot be observed. The absence of clear source suggests that Hg in snow 

does not originate from defined chemical sources but rather from a thermodynamic equilibrium 

between snow and the atmosphere. We think that Hg rapidly exchanges with the atmosphere (via 

oxidation and photoreduction cycling) and that the snow-air equilibrium (leading to the THg 

observed in snow) is driven by a net contribution of both the oxidative properties of the atmosphere 

and the photoreductive potential (UV radiation, presence of reductive agents… etc). The extreme 

examples of this theory would be the AMDEs (predominance of the oxidative potential versus the 

photoreductive one), and inversely the following strong emission events (AMEEs). In other words the 

Hg background concentration and its small variations could be attributed to the contribution of 

“micro-AMDEs” and “micro-AMEEs” constantly adjusting the Hg snow-air equilibrium, which slightly 

varies with atmospheric physical and chemical conditions. The strong AMDE events observed would 

be due to a brutal change of the snow-air equilibrium (because of strong oxidative properties of the 

atmosphere), and the following AMEEs would result of the opposite. This is in agreement with the 
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Figure 25. Ratio/ratio plot of [THg]/[Ca] with respect to [nss-Ca]/[Ca] (as contribution of the nss-Ca source to total Ca). 

Black diamond represent the particle input event, open diamonds represent samples with strong sea-spray influence 

(including the strong storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. The solid line represents the mixing line between sea-sprays and the nss-Ca 

source, as the linear regression of the (sea-spray + late spring particle event) sample ensemble. The ordinate for x = 0% 

represents [THg]/[Ca] ratio in sea-sprays, for x = 100% [THg]/[Ca] in the nss-Ca source. Red circles highlight AMDE 

events. 
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results discussed in section III.i and the literature pointing the redox transformations of Hg in the 

interstitial air of the snowpack as critical regarding the Hg concentration in snow (Dommergue et al., 

2003; Fain et al., 2006; Lalonde et al., 2002; Poulain et al., 2004). 
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8. Summary of the results 

 

Considering the results presented and discussed above, the chemistry of our snow samples has three 

main contributors: 1) sea-sprays; 2) the late spring input of particles; and 3) atmospheric depositions 

(dry and wet). The ratio/ratio plots allow to estimate the [X]/[Ca] ratios for each species and both 

sea-sprays and particle sources. The estimated [X]/[Ca] in the sea-sprays and the late spring particles 

are summarized in Table 2. 

Table 2. Chemical features of sea-sprays and late spring particles. 

 Sea-sprays Late spring particles 

X [X]/[Ca] Mean [X] in snow** (n = 5) [X]/[Ca] Mean [X] in snow (n = 9) 

Na 48.08 537.5 ± 49.6 µM 0a 120.4 ± 55.1 µM 

nss-Ca 0b 2.0 ± 1.5 µM 1b 46.3 ± 11.3 µM 

Li 0.0024 30.2 ± 3.8 nM 0 7.8 ± 2.9 nM 

K 1.011 11.4 ± 1.1 µM 0 2.2 ± 1.1 µM 

Mg 5.251 61.7 ± 5.3 µM 0.403 31.9 ± 8.6 µM 

Br 0.076 720.4 ± 207.3 nM 0 206.9 ± 106.9 nM 

Cl 51.38 517.7 ± 36.2 µM 0 133.5 ± 61.0 µM 

F 0.0063 56.1 ± 12.4 nM 0.0024 125.3 ± 48.6 nM 

Sulfates 2.87 36.5 ± 3.0 µM 0.043 (≈ 0) 8.8 ± 6.6 µM 

Nitrates* 0.076 1.9 ± 0.9 µM 0.035 1.8 ± 1.7 µM 

Acetates* 0.010 171.3 ± 62.4 nM 0.013 780.1 ± 256.7 nM 

Formates* 0.028 394.9 ± 80.7 nM 0.055 3073.6 ± 1094.0 nM 

Oxalates* 0.001 24.4 ± 3.9 nM 0.006 343.1 ± 157.0 nM 

THg* 3 10-6 49.0 ± 32.5 pM 2.4 10-6 26.0 ± 14.0 pM 

MMHg* 5 10-9 42.5 ± 18.0 fM 6 10-9 298.0 ± 91.5 fM 

Particles - 42 966 ± 61 401 mL-1 - 1 184 250 ± 580 072 mL-1 

*species with a comparable [X]/[Ca] ratio in both sea-sprays and late spring particles (with overlapping [X]/[Ca] 

ranges) 

**except samples from the storm event 

a
 as sea-sprays tracer 

b
 as late spring particles tracer (calculated from [Na], see equation) 
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Based on data summarized in Table 2 and observations from paragraph 7 of the present section 

concerning the atmospheric contribution to surface snow chemistry, we address a simplified picture 

of the chemical composition of each source as presented in Table 3. 

Table 3. Qualitative overview of the chemical composition of the different sources types observed in our samples
a
. 

 Sea-sprays “Atm.  deposit.” Late spring particles 

Primary source 

for 

Na, Li, K, Mg, 

Cl, Br, Sulfates 

Nitrate, MSA Ca, MMHg, 

Acetates, Formates, Oxalates, F 

Secondary source 

for 

Ca Br, Sulfates Mg 

Sporadic source 

for 

Everything but THg, 

Oxalate, Nitrate, MSA 

MMHg, THg, 

 

- 

a
 If a source A induces a significant higher concentration [X] in the selected samples than the other source B (the 

two concentration ranges should not overlap), source A will be considered as the main source for X. A secondary 

source for X can be a source inducing visible anomaly on the correlation plot of [X] with respect to [Na] or [Cl] 

(see above) without inducing the highest absolute concentrations [X]. Every event bringing X for a short period 

of time or on an exceptional basis (on extrema events such as the sea-spray storm) will be considered as a 

punctual source for X. 

The sea-sprays, as showed by our results summarized in Table 2 and Table 3, induce surface snow 

chemistry following the sea water dilution. Small sea-water droplets are formed and withdrawn from 

surface sea waters by the wind and undergo further trapping by surface snow (Domine et al., 2004) 

which is known to occur only on the first centimeters of the snowpack. Sea-sprays mainly deposit 

sea-salt species (Na, Li, K, Mg, Ca, Br, Cl, Sulfates). Deposition of traces of small organics and mercury 

species (THg, MMHg) are exceptionally observable in our samples due to the storm event. 

An important feature of the late spring particle event is the particular size-distribution of particles 

deposited on surface snow. Figure 26 displays the numerical fraction of particles depending on size, 

for the late spring particle event. The particle profile shows a more important contribution of 

particles of diameter comprised between 4 and 7 µm, with a Gaussian-like repartition, which is not 

observable on the other particle profiles. In addition, particles collected in snow from the late spring 

particle event show a particular fingerprint that is visible for particle size of around 0.8 and 1.9 µm. 

This is further proof that this late spring particle event consists in an input of the same kind of 

particles during all its duration. 
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At this stage, we know about this late spring particle event as much as our analysis allows, with a 

good knowledge of physical and chemical properties of the particles. The first observation is that 

these properties are quite stable with time (daily samples on a two-week period have similar 

properties). Concerning chemistry, these particles directly bring on surface snow (= contain) Ca, Mg, 

acetates, formates, oxalates, F and MMHg. Interestingly, the [X]/[Ca] molar ratio (X being one of the 

species mentioned) are close to the one encountered in sea-sprays, except [Mg]/[Ca] which is much 

lower in the particles. Concerning physical properties, these particles differentiate by a particular size 

distribution and fingerprint. This represents an additional input compared to the particles observed 

in the other samples. 

The next section of this manuscript aims to discuss the origin of these late spring particles, based on 

the results presented in the present section. It provides a new insight into arctic coastal snow 

chemistry, with a particular focus on the origin of MMHg in the arctic coastal snowpack. 
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Shoulder 

Depletion 

a 

b 

Shoulder 

Depletion 

Figure 26. Differential number (a) and differential volume (b) of particles from the late spring particle event, displayed 

daily. The bold red curve represents the profile range for particles which are not from the late spring particle event. 
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iii.	Discussion	on	the	MMHg	sources	

 

Particles from the late spring particle event have been identified as a critical contributor to the 

surface snow composition including ions, small organics and MMHg. Our results indicate that the 

snow chemistry resulting from this particle input depicts the chemistry of the particle source rather 

than in situ processes. In addition, the data presented in Figure 4 from section II.ii (showing a parallel 

diminution of particle number and snowpack thickness at the end of the observation period) suggest 

that snowmelt causes the decrease of the net particle concentration in snow. The first observation 

about the late spring particles is that their properties are quite stable with time (daily samples on a 

two-week period have similar properties). Concerning chemistry, these particles are responsible for 

additional input of Ca, Mg, acetates, formates, oxalates, F and MMHg in snow. Concerning physical 

properties, these particles differentiate by a particular size distribution and fingerprint. In facts, their 

input could remain important even after the snow season, and be a source for MMHg on all open 

surfaces. 

1. A mineral source for nss-Ca ? 

 

In the literature, nss-Ca inputs in snow are often provided by mineral dust particles formed by 

weathering and erosion (Fischer et al., 2007; Jacobi et al., 2012; Kang et al., 2001; Ruth et al., 2008; 

Ström et al., 2003). Mineral dust aerosol formation is more efficient in semi-arid regions, where 

weathering conditions are strong enough and soil moisture sufficiently low to allow for dust 

mobilization (Fischer et al., 2007). Mineral dust in snow or ice cores can originate from long range 

transportation in sites where dust mobilization is low (e.g. inland regions of Antarctica and 

Greenland)(Fischer et al., 2007; Ruth et al., 2008), and/or from regional erosion (e.g. northern 

Tibetan plateau or the Arctic)(Jacobi et al., 2012; Kang et al., 2001). 

The timing of the observed late spring particle event coincides with the snowmelt on the steepest 

area of the fjord: a significant increase of open rocky surfaces is visible between mid-April and mid-

May, as displayed by the photographic comparison on Figure 1. Thus erosion could have taken place 

gradually from the end of April and released an increasing number of dust particles on the surface 

snow we sampled. 
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Mineral particles are chemically recognizable, as they contain the main metallic and semi-metallic 

constituents of the Earth crust – such as silicon (Si) or aluminum (Al) – as well as alkali and alkaline 

earth metals, such as Ca, Mg, Na or K for instance (Hans Wedepohl, 1995). We were not able to 

perform Si or Al analysis on our samples, so we cannot include them in the discussion. The late spring 

particles bring additional Ca and Mg in our samples and the estimated [Mg]/[Ca] in the particle 

source ratio is 0.403. However, they do not contain any K, as their estimated [K]/[Ca] ratio is 0 

(Figure 11 in section III.ii). Despite the lack of knowledge concerning the impact of the eroding 

processes on mineral dust chemistry (potential fractionation), we compared this [K]/[Ca] ratio to the 

ones described in the literature. The estimated mean [K]/[Ca] ratio for the continental crust 0.88 

(Hans Wedepohl, 1995) might not be relevant considering Svalbard geology (Elvevold et al., 2007; 

Nejbert et al., 2011). A recent study investigates the chemical composition of dolerites from east and 

central Svalbard (Nejbert et al., 2011), describing very low [K]/[Ca] ratios (around 0.04), and 

[Mg]/[Ca] around 0.7-0.9. Nevertheless, our data suggest that the nss-Ca containing particles do not 

bring additional K, as even small [K]/[Ca] ratios could have been observable given the accuracy of the 

ratio/ratio plot of [K]/[Ca] with respect to [nss-Ca]/[Ca] used for estimation (Figure 11 in section 

III.ii). More importantly, all the terrestrial sources contain substantial amount of Na as Na2O (Hans 

Wedepohl, 1995; Rudnick et al., 2004), hence deposition of soluble mineral dust on surface snow 

should result in anomalies on the [Na]/[Cl] ratio, which is not the case here (Figure 1 in section III.ii).  

Another crucial result concerning these particles is their organic content. As previously described in 

section III.ii, small organic acids concentrations in surface snow are increasing with the nss-Ca 

particle input and our data suggest that this increase is directly due to the particles chemical 

composition. This is supported by the direct correlation of each organic with nss-Ca during the late 

spring particle event, as shown on Figure 2. In this case, if considering that these particles are of 

mineral origin, one should assume that the presence of these organics is due to their adsorption onto 

Figure 1. Pictures of a given section of the north coast of Kongsfjorden taken from the study site in mid-April (left) and 

mid-May (right). Uncovered bedrock area are highlighted in red. 
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the mineral aerosols – although there is to our knowledge no description of such phenomenon. As 

one would expect this phenomenon to vary overtime, it would then be very unlikely to observe direct 

positive correlations between nss-Ca and each small organic acid in samples collected over a two-

week long period (Figure 2). In other words, there is no reason to observe very close [X]/[Ca] ratios in 

all the samples from the late spring particle event if X and Ca in these particles do not have the same 

source. The chemical composition of these particles is therefore likely to be brought by a single 

source. The hypothesis of a mineral source would thus be in disagreement with the presence of small 

organic acids, which are expected to be totally absent from any mineral medium. Consequently, 

although mineral dust inputs could easily explain the nss-Ca composition of our surface snow 

samples, there are chemical anomalies strongly suggesting an alternative source for the nss-Ca. 

 

2. A (paradoxal) marine source for nss-Ca ? 

 

Previous studies reported the formation of sea-salt depleted aerosols made of biogenic 

exoploysaccarides (EPS) bound to divalent cations (Ca, Mg…) to form organic gels (Bigg and Leck, 

2008; Keith Bigg et al., 2004; Leck, 2005, 2002). These aerosols, formed by bubble bursting above the 

surface marine layer, withdraw organic and biological species (Bigg and Leck, 2008; Gao et al., 2012). 
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Figure 2. Correlation of [X] (X = oxalates, formates, acetates or F) with respect to [nss-Ca] in snow 

samples from the late spring particle event. Linear regressions pass through the origin. 
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The process of bubble formation requires EPS as surfactant to allow their stability, and their 

implosion leads to a separation of saline hydrophilic and hydrophobic species (EPS, organics, 

insoluble materials…) and therefore to the formation of organic aerosols, whose chemistry can have 

no apparent correlation with sea-salt (Bigg and Leck, 2008). Their atmospheric lifetime depends on 

the photo-induced cleavage of EPS into smaller polysaccharides and finally monosaccharides, and 

barely exceeds a few days (Bigg and Leck, 2008). Other aerosols containing organics without sea-salt 

have been observed, formed with proteinaceous material or fragments of calcareous phytoplankton 

(Hawkins and Russell, 2010), the latter containing substantial amount of Ca as well as an organic gel 

coating. Recently, such aerosols have been proposed to explain Ca enrichment compared to sea-salt 

in arctic snow (Krnavek et al., 2011). The common factor in all these kinds of marine organic aerosols 

is the presence of a macro-organic gel coating. The chemical definition of a gel is the formation of a 

semi-rigid network in a chemical media by polymerization, either by covalent bounding or by other 

chemical bounds involving complexation with multivalent cations or metals. Polysaccarides and 

macroorganics in organic aerosols need multivalent cations to assemble into gels via bridge 

connections between different macromolecules. The formation of such gels from marine dissolved 

organic matter (DOM) has been observed with Ca and Mg (Chin et al., 1998). The authors suggest 

that if such gels assemble into Ca-saturated particles, they should contribute to sedimentation and 

aerosol formation. 

We were only able to collect a few samples for dissolved organic carbon (DOC) determination, and 

we have no data for the late spring particle event. However, the small organics observed in these 

particles are probably part of a high DOM content which should mainly consist in macromolecules. As 

explained above, the close [X]/[Ca] in all the samples from the late spring particle event suggests a 

common source for Ca and the small organics. This would be in agreement with the hypothesis of the 

formation of non-sea-salt-related marine organic aerosols described above. 

The chemical features of such organic marine aerosols are also consistent with our observations of 

Ca and Mg enrichment in the late spring particles. Magnesium is enriched compared to sea-salt, as 

observable on the correlation plot of [Mg] with respect to [Na] (Figure 7 in section III.ii), but far less 

than Ca, as highlighted by the low [Mg]/[Ca] ratio estimated in the particles compared to sea-sprays 

(0.403 and 5.251 respectively). The enrichment of these two multivalent cations, in parallel with no 

enrichment of any monovalent cation (such as Na, Li or K) is consistent with the enrichment of Ca 

and Mg during the process of formation of organic gels (Chin et al., 1998). The difference between 

the moderate enrichment of Mg and the substantial enrichment of Ca is consistent with the fact that 

they do not have the same affinity with macromolecules (Ca would then be the preferred substrate 

for gel formation). A higher enrichment for Ca is also consistent with the fact that marine organic 
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aerosols can contain calcareous phytoplankton fragments (Hawkins and Russell, 2010). The presence 

of these pure Ca fragments (as CaCO3) even in low amounts, are likely to be responsible for the main 

proportion of Ca in marine organic aerosols. Concerning the Arctic, there is to our knowledge only 

one study investigating organic marine aerosols, that describes exclusively proteinaceous and 

polysaccharides particles, with 74% (n = 47) of particles larger than 2 µm, which would correspond to 

the main size range of particles from the late spring event in our samples (Figure 26 in section 

III.ii)(Hawkins and Russell, 2010). As previously explained, such aerosols are degraded in the 

atmosphere by photo-cleavage of the organic macromolecules into smaller units. Because the late 

spring particles we observe have a large diameter (> 4 µm), their residence time in the atmosphere is 

expected to be short. It would indicate that their formation occurs at a very regional scale (in the 

fjord for instance). Furthermore, MMHg concentrations in surface snow during the late spring 

particle event are high and do not diminish within a few hours or days (like high concentrations from 

fresh snow or sea-sprays do). This could be due to a continuous input of MMHg containing particles 

and/or to a less effective photo-reduction of MMHg because of its chemical environment. Despite 

this cannot be determined by our data, organic complexation has been proven to affect MMHg 

photo-reduction, either favoring or hindering (Hammerschmidt and Fitzgerald, 2006; Oh et al., 2011; 

Ribeiro Guevara et al., 2008; Siciliano et al., 2005). Anyway, this late spring particle event induces 

higher and steadier concentrations of MMHg in surface snow. 

3. Discussion on MMHg dynamic in the Arctic 

 

At this point, having considered the two possible hypotheses to explain the additional input of Ca by 

the late spring particle event (either terrestrial mineral dust or marine organic aerosols), the 

formation of organic aerosols from the marine surface layer (Bigg and Leck, 2008) is the most likely 

to explain the results from our data. Indeed the organic content of the late spring particles, as well as 

the Ca and Mg enrichment are in favor of the formation of organic polymers gels able to withdraw 

organic and biological material from the surface marine layer by bubble bursting (Chin et al., 1998; 

Gao et al., 2012). The mineral dust particle hypothesis is not likely to explain this organic content, as 

well as the absence of enrichment for other cations ordinary present in the mineral crust, both at 

global and regional scale, such as K or Na. It doesn’t seem straightforward to explain such a strong 

terrestrial contribution (up to 93-99% of Ca during the particle event) by mineral dust input on a 

sampling site located ten meters away from open sea-waters. In addition, the estimated [X]/[Ca] 

ratios in the late spring particles (X being any of the measured small organics and MMHg) are close to 
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the one observed in sea-sprays, which would be in agreement with a primary marine source of 

particles made of Ca and organic species. 

We suggest that the late spring particles in our samples result from the formation of aggregates of 

hydrophobic chemical and/or biological materials and possibly calcareous fragments, held together 

by organic polymer gels retaining Ca and Mg. The MMHg in these particles is probably produced in 

the water column prior to scavenging by DOM and incorporated to the subsequent organic particles. 

This type of particles is rapidly photo-degraded in the atmosphere; hence the fact that the particles 

we observe contain a substantial amount of MMHg (which is highly photo-degradable) suggests that 

they were rapidly deposited after their formation, accounting for a fjord-scale production. The 

scavenging of these marine organic particles by precipitations can also contribute to the particular 

fractionation observed in fresh snow for the organic species and MMHg (Figures 18 and 21 in section 

III.ii). Indeed, a large proportion of the emitted marine organic aerosols can remain and travel in the 

troposphere, undergo degradation of organic species (by oxidation) and photo-degradable material 

(including MMHg) and further scavenging by precipitations. It is however insufficient to explain the 

very high [MMHg]/[Ca] ratio observed in our fresh snow sample. 

In summary, MMHg in Arctic seasonal surface snow would be of marine origin, with two different 

pathways. First, the deposition of small wind-blown sea-water droplets (sea-sprays) on surface snow 

leads to a snow chemistry following sea-water content dilutions, hence with high concentrations of 

sea-salt species but low concentrations of organics and MMHg. Storm events can lead to abnormal 

sea-water deposition, including visible fragments of bio-organic material (algae) thus high 

concentrations of organics and MMHg, which undergo rapid degradation or volatilization (within a 

few hours to a few days). A second source of MMHg highlighted by our results is Ca-containing 

particles. The data invalidate a mineral origin for such big and calcareous particles, but rather suggest 

a marine particle origin. These particles are made of hydrophobic organic gels (inducing Ca and Mg) 

and potentially biological material and/or calcareous phytoplankton fragments. Such particles are 

strongly believed to form in the surface marine layer and to contribute to a large part of the 

tropospheric aerosols in oceanic regions (such as Svalbard) and provide the suitable chemical 

conditions for MMHg withdrawal from surface sea-waters and atmospheric transportation. These 

particles are mainly observed during a strong and gradual particle input between mid-May and early 

June, and contribute to continuously high concentrations of MMHg over this time period. Algal 

blooms are known to occur in Kongsfjorden in spring, depending on both sunlight and nutrient 

content of the sea-water column (Rokkan Iversen and Seuthe, 2010; Seuthe et al., 2010). The 

consequences of such blooms are not well known, but the biological activity and the following 

senescence could provide abnormally high amounts of bio-organic molecules and biological 
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fragments favoring the formation of the aforementioned marine organic particles (Leu et al., 2006). 

Anyway, assuming that the Ca-, organics- and MMHg-containing particles are of marine origin, their 

strong input in snow during the late spring event has to be correlated with surge of their marine 

production. 

A commonly mentioned source for MMHg in arctic coastal snow is related to marine production and 

evasion of MMHg or DMHg (dimethylmercury) prior deposition on snow surfaces (Loseto et al., 2004; 

Pongratz and Heumann, 1999, 1998; St. Louis et al., 2005). However, if DMHg (as a gaseous species) 

can readily volatilize from surface sea-waters and undergo subsequent atmospheric degradation to 

MMHgCl (Niki et al., 1983), the evasion pathway of MMHg is unclear. The MMHg that we measured 

in snow from the late spring particle event does not derive from atmospheric demethylation of 

DMHg. It would be inconsistent with the clustered positioning of [MMHg]/[Ca] data points on Figure 

21 of the III.ii section.  

Internal sources are also proposed for MMHg in arctic snowpacks. Many studies using bioreporters 

indicate that a substantial proportion of Hg in snow is bioavailable (Larose et al., 2011; Scott, 2001). 

Furthermore, arctic snow contains 200-5000 cells/mL, some of them being active at in situ 

temperatures (Alfreider et al., 1996; Barkay and Poulain, 2007; Carpenter et al., 2000; Segawa et al., 

2005), together with organic species as potential carbon sources. If some of the active 

microorganisms in snow could methylate Hg (which remains speculative), then an internal biotic 

source of MMHg in oxic conditions would be possible (Larose et al., 2010). In addition to this, 

evidences of abiotic Hg methylation by DOC in freshwater systems were found (Ribeiro Guevara et 

al., 2008; Siciliano et al., 2005). Our results however suggest that such internal mechanisms (if any) 

do not contribute significantly to the MMHg content of surface snow. We were unable to investigate 

MMHg dynamics in deeper snow at the same sampling site, as the snowpack experienced strong 

melting early during the field campaign, resulting in a thin porous uniform snow layer. As optimal 

conditions for studying internal Hg related process, we recommend a thick and stable snowpack, 

over space and overtime. 

Recent studies reported very high MMHg concentrations in fresh snow and rainwater (Hall et al., 

2005; Rose et al., 2013). The authors suggested the scavenging of MMHg-containing aerosols to 

explain the presence of MMHg in precipitations, without excluding Hg methylation. This question of 

Hg methylation in the atmosphere remains an open question, as the first abiotic mechanism 

described in laboratory conditions (Gåardfeldt et al., 2003) was successively considered as a potential 

source for MMHg (Hammerschmidt et al., 2007) or as not likely to take place (Bittrich, 2011). Despite 

our results do not identify the source for MMHg in precipitations, the [MMHg]/[Ca] ratio in our fresh 
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snow sample indicates that the two MMHg source we identified in the III.ii section (sea-sprays and 

late spring particles) cannot be the only contributors to MMHg concentrations in fresh snow. 

Therefore, our results also suggest the existence of 1) a third source for MMHg in the atmosphere; 

and/or 2) an atmospheric MMHg generating process. 
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Résumé 

La partie précédente a conclu à une contribution négligeable de la méthylation in situ dans le budget 

global de MMHg dans la neige de surface côtière. En complément de ces résultats, la partie qui suit 

présente en premier lieu une étude menée sur un manteau neigeux éloigné du fjord, représentant 

une accumulation d’un an proche du sommet du glacier Kongsvegen. Les concentrations en THg en 

MMHg diminuent avec l’âge de la couche de neige considérée, indiquant la dégradation de MMHg et 

HgII en Hg0 et son évasion du manteau neigeux avec le temps comme le mécanisme principal 

affectant la dynamique des espèces mercurielles. En utilisant la même méthodologie que 

précédemment (Robinson et al., 2006), nous mettons en évidence un mécanisme chimique 

impliquant MMHg, ammonium et acétates ainsi que le vieillissement du sel marin dissous dans la 

neige. 

Les concentrations en acétate, ammonium et MMHg sont positivement corrélées sur toute 

l’épaisseur du manteau neigeux, sauf dans une couche (que nous excluons pour cause de 

contamination en acétates). De plus, nous observons deux anti-corrélations entre la proportion de 

mercure méthylée (MMHg/THg) et acétates ou ammonium. En outre, moins la couche de neige 

contient de THg et de MMHg (et d’acétates et d’ammonium), plus le rapport MMHg/THg est élevé. 

Enfin, plus le sel marin montre des signes de vieillissement atmosphérique (Cl/Na diminue), plus 

MMHg est enrichi (MMHg/Na très faible dans le sel de mer augmente fortement) dans les couches 

ayant subi le plus fort vieillissement atmosphérique, MMHg est enrichi entre 1000 et 10000 fois 

malgré de très faibles concentrations. Les corrélations présentées ci-avant sont fortes (R² > 0,70 et 

souvent R² > 0,90) et visibles dans toutes les couches d’un manteau neigeux qui s’est formé sur une 

période d’un an, ce qui renforce l’hypothèse d’un procédé chimique commun à toutes les couches. 

Ainsi nous émettons l’hypothèse que si la dégradation des espèces mercurielles est le processus 

dominant dans ce manteau neigeux, une méthylation abiotique minoritaire y a lieu qui affecte le 

rapport MMHg/THg. Nous pensons que le mécanisme est le même que celui observé dans une étude 

de laboratoire précédente (Gåardfeldt et al., 2003), impliquant donc un transfert de méthyle d’une 

molécule d’acétate vers le mercure, après formation d’un complexe mercure – acétates (dont les 

conditions sont discutées). Cette réaction est dépendante de l’acidité de la neige (que nous 

montrons dépendre de la concentration en ammonium) et consomme toujours des acétates avec le 

temps. 

Ayant établi notre théorie, nous discutons de l’importance et des implications de cette méthylation 

abiotique in situ. Dans notre cas, la méthylation a un impact très faible sur la concentration en 
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MMHg : celle-ci diminue jusqu’à des concentrations extrêmement basses (< 5 pg/L). Il est probable 

que dans des manteaux neigeux plus proches de sources directes ou plus prompts au 

métamorphisme (comme notre manteau neigeux côtier d’étude), les concentrations en espèces 

chimiques sont trop hautes et trop fluctuantes pour pouvoir identifier un quelconque processus de 

méthylation aussi faible que celui que nous observons. Il est donc possible d’affirmer qu’un tel 

processus de méthylation ne peut vraisemblablement pas être à l’origine d’une proportion 

importante de MMHg dans une quelconque neige arctique. 

Cependant, la corrélation entre l’enrichissement en MMHg (MMHg/Na) et le vieillissement 

atmosphérique du sel marin contenu dans la neige (Cl/Na) dans toutes les couches observées ne 

ferme pas les portes à un processus atmosphérique. En effet, nul ne peut s’avancer à  déterminer à 

quel stade du cycle de la neige (stockage, dépôt, formation ou même transport des aérosols servant 

à sa nucléation) la méthylation abiotique prend place. Il est tout à fait plausible que cette réaction 

prenne place dès que les conditions de formation de complexes mercure – acétates sont remplies, 

peut-être même avant la formation des cristaux de neige et leur dépôt. Il est aussi possible que cette 

réaction soit pour une quelconque raison cinétique accélérée dans les nuages ou lors de la nucléation 

des grains de neige. Nous émettons cette possibilité pour expliquer les très fortes concentrations en 

MMHg mesurées dans les précipitations, notamment très récemment dans la neige écossaise (Rose 

et al., 2013) et dans notre seul échantillon de neige fraîche. 

Plus généralement, nous pensons que la méthylation abiotique du mercure par les acétates est 

désormais à considérer davantage dans les milieux environnementaux remplissant les conditions 

adéquates de formation de complexes mercure – acétates. Le mercure et les acétates étant deux 

espèces chimiques très largement présentes dans les écosystèmes, il est très probable que d’autres 

milieux soient réacteurs pour ces deux espèces. De plus, il est possible que certains de ces milieux 

favorisent même la méthylation abiotique dans des proportions où sa contribution à la quantité de 

MMHg ne serait plus négligeable, voire même prépondérante. 

Dans un deuxième et dernier chapitre, nous étudierons l’élution du MMHg lors de la fonte du 

manteau neigeux. Les données suggèrent une élution tardive de MMHg comparée à l’élution des ions 

majeurs, que nous pensons due à la co-élution du MMHg et des particules organiques marines 

présentes dans la neige (identifiées en section III.iii). En effet nous retrouvons la signature chimique 

de ces particules dans l’eau de fonte, même si leur signature de taille n’y est pas visible (voir 

section III.ii). 
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i.	Evidences	of	HgII	methylation	by	

acetates:	a	case	study	

 

We have previously identified the sources for MMHg in coastal surface snow, on a site located a few 

meters away from the open waters of the fjord. We collected snow that accumulated during one 

season in a pit dug near the summit of Kongsvegen glacier (78°77’N, 13°28’E) on April 18th. Eight 

layers were identified based on grain morphology and collected integrating the whole thickness of 

each layer. Samples were analyzed for major ions and Hg species (THg and MMHg). This site is 

located 27 kilometers away from the open fjord, at an altitude around 700 m and the topology is 

highway flat. The fact that we sampled early in the season avoided the early melting as well as the 

organic particle input observed in coastal snow, respectively in late April and between mid-May and 

early June. Although this sampling site is not totally remote from open sea-waters, it is remote 

enough to avoid strong marine interferences (important sea-sprays storms) and has a quite steady 

snowpack over time and space. It is therefore suitable to study the fate of snow, weeks and months 

after its deposition. 

1. Preliminary discussion on the chemistry of the snow pit 

 

The chemical composition of a given snow layer is driven by the initial composition of the 

precipitation, and post-depositional processes including chemical and microbial transformations as 

well as metamorphism. The influence of post-depositional processes on snow chemistry is logically 

expected to be greater with time. Moreover, chemical correlations could be observable along the 

whole profile, in snow layers of different initial composition, but ageing the same way. If the initial 

composition of snow is the main factor governing the chemical composition of each layer, any 

chemical correlation between two different layers would be purely coincidental. This is only true 

assuming that fresh snow never forms the same way, thus never traps the same chemicals at the 

same amounts and proportions. In a given snow pit, the composition of surface snow layers would be 

mainly ruled by initial composition, while the composition of deeper (thus older) snow would show 

increasing evidences of internal processes (if any). 
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For these reasons, ratio/ratio plots (as presented in previous section III.ii) are once again useful, as 

they allow identifying non-obvious chemical correlations. For instance, Figure 1 shows the molar 

ratio/ratio plots of [MMHg]/[Na] with respect to [Cl]/[Na] and [MMHg]/[Ca] with respect to 

[NH4
+]/[Ca] for all the layers of the snow pit. Considering the samples with [Cl]/[Na] close to the sea-

salt value ([Cl]/[Na] ≈ 1.17), the [MMHg]/[Ca] ratio is very low, in the same range than the one 

previously estimated in sea-sprays (5.10-9, see section III.ii). The [Cl]/[Na] ratio is expected to 

diminish in sea-salt aerosols with Cl displacement by atmospheric chemicals, such as sulfates 

(Legrand and Delmas, 1988; Toom-Sauntry and Barrie, 2002). Hence [Cl]/[Na] can be a proxy of the 

quantitative impact of atmospheric chemistry on the snow: the lower [Cl]/[Na] in snow, the greater 

the atmospheric ageing. Results from Figure 1 could mean that MMHg enrichment in snow 
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([MMHg]/[Na] ratio, assuming Na cannot be observably removed from the snowpack) is positively 

correlated with atmospheric ageing. The ratio correlations presented here imply different snow 

layers from a whole year accumulation snowpack, hence snow formed in very various atmospheric 

conditions. Illustrating what we emphasized in the previous paragraph, chemical correlations 

between all the different snow layers of a one-year accumulation pit are rather due to processes 

than to an original uniformity of all the samples, which is clearly unlikely. A further evidence of the 

implication of processes is that the [MMHg], [NH4
+], [Ca], [Cl] or [Na] concentrations are not directly 

correlated – except [Cl] and [Na], both coming from sea-salt – while their enrichment [X]/[Na] are. 

This means that the snow layers are originally chemically different from each other (as the 

concentrations do not correlate) and that something else should explain the ratio correlations: 1) 

chemical processes; or 2) analytical artifacts. Concerning the latter, snow for MMHg determination 

was sampled in a different bottle than snow for ion chromatography, and MMHg determination by 

GC-ICP-MS prevents from interferences with non-metallic species. It is therefore very unlikely to 

explain correlations between MMHg and other species by analytical artifacts. Considering ionic 

chromatography, the method used is well known and is set up so that analytical interferences 

between the different ionic species are negligible and controlled. Thus the existence of the ratio 

correlations presented in Figure 1 testifies the existence of a given process involving MMHg, NH4
+ 

and Cl which is the same in all the snow layers of the pit. It is possible to further assess that this 

process is either quite fast and/or takes place even before deposition, as even the “youngest” snow 

layers are concerned. In addition, there is no link between the concentration [X] and the enrichment 

[X]/[tracer], suggesting that the quantitative impact of this process is very modest, hence invoking 

rather a slow process. 

2. Mercury dynamics in the snow pit 

 

The snow pit was 2.1 m deep and consisted of 8 different layers. The deepest layer was a 27 cm thick 

melt-refreeze layer from the last summer that showed high chemical concentrations (up to 3 orders 

of magnitude higher than the values in overlaying layers). This layer represents the melting of the 

snow accumulated during and before the summer of 2010, and was therefore discarded. The profiles 

of MMHg and THg are presented in Figure 2. Both profiles are characterized by their overall shape: a 

rapidly increasing concentration with depth in the first layers. After a maximum is reached, the 

concentrations decrease with depth. The major difference between MMHg and THg profiles is that 

the maximum is reached next to the surface for MMHg, while maximum THg is reached deeper than 

20 cm. 
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This depth profile can be divided in two distinct parts: 1) surface layers (3 upper layers), where THg 

and MMHg concentration do not vary the same way; 2) deeper layers, where THg and MMHg 

concentrations vary following the same trends. We suggest that the parallel decrease of MMHg and 

THg in deep layers is rather due to post-depositional processes. The commonly accepted mechanism 

for HgII degradation is photo-reduction by light, UV light being the most efficient. Light penetration is 

commonly described by the e-folding depth (depth over which the actinic flux is divided by e), which 

is in the order of 10-20 cm in snow (Simpson et al., 2002; Domine et al., 2008). Applied to our snow 

pit, this would mean that less than 0.005% of the actinic flux reaches depth down to 2 m. This 

percentage could be underestimated, as higher e-folding depth have been reported (Warren et al., 

2006), and e-folding depth increases below 1 m depth in snow (Warren et al., 2006; Domine et al., 

2008). The small amount of light radiations could reduce HgII, even at a much lower speed, but it is 

also possible that degradation of Hg species still occurs in dark areas of the snowpack, by non-photo-

induced reduction. Recently, some small organics where shown to allow very slow Hg reduction in 

the dark (Figure 1A in He et al., 2012). As snow is porous, volatilized Hg0 can evade to overlaying 

snow layers and finally be reemitted back to the atmosphere. This would explain the decrease of 

both MMHg and THg. 

Condensations as well as re-oxidation processes (as described in Maron et al., 2008; Castro et al., 

2009) and possible methylation processes can partially offset Hg0 evasion. As a consequence, the 

concentration of Hg species in a given snow layer (below surface layers) could be depicted as the net 

yield of 1) degradation in this layer (as a removal process) and 2) re-condensation, re-oxidation and 

possibly methylation of Hg species degraded in the same layer and in deeper ones (as input 

processes). The yields and kinetic of such processes, as well as the speed of Hg0 evasion are likely 
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influenced by numerous chemical and physical properties of the snow. For instance, surface specific 

area (SSA) is relevant when considering interfacial exchanges and reactions in snow, and could hence 

affect condensations and oxidations at the snow-air interface. Another example would be the 

porosity, which could affect Hg0 evasion. We measured density for every snow layer, but there is no 

sufficient knowledge of Hg dynamics in snowpack to discuss it. 

3. Discussion on the acidity of snow 

 

The pH of snow is usually measured after melting in open atmosphere by a regular pH-meter. 

However, as the snow melts, CO2 solvation or evasion can occur to equilibrate the sample with the 

ambient air. The resulting variation of dissolved CO2 (H2CO3) has an impact on the pH of the sample, 

as it equilibrates in solution with HCO3
- (one deprotonation) and/or CO3

2- (two deprotonations). 

Furthermore, all the samples did not melt at the same speed, the effects of the CO2 equilibration 

with the ambient air are therefore suspected to vary from a sample to the next (as all the samples 

were not exposed to the ambient air for the same duration). In consequences, the pH measured in 

the melted sample can be only loosely related to the one in the original snow sample. In addition, the 

sample-to-sample heterogeneity of the equilibration effects – which is more problematic – prevents 

anyone to make inter-sample comparison. However, the acidity is a crucial chemical parameter, so 

we identify in the following pNH4
+ as a more accurate proxy for acidity than pH. 

In order to assess the acidity of snow, we considered the Cl/Na ratio of our samples. Indeed, Cl in 

snow can be replaced by the conjugate base of stronger acids than HCl (HNO3 or H2SO4). These acids 

are all present in the atmosphere and their reaction with sea-salt is known to lower the Cl/Na ratio in 

the aerosol as well as increasing their acidity (Legrand and Delmas, 1988; Toom-Sauntry and Barrie, 

2002). However, Cl/Na is not a concentration and can therefore only be related to other X/Na ratios 

and not to concentrations (which would take the dilution by snow into account). 

We first attempted to use the displaced HCl (= HCl replaced by HNO3 or H2SO4) as a proxy for acidity, 

as the displaced HCl is proportional to the atmospheric input to the aerosol. The displaced HCl is the 

Cl amount missing in the sample to reach the sea-salt ratio (1.18), and is calculated as follows: 

[Cl]d = (1.18 – [Cl]/[Na]) x [Na] 
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However, we do not observe any correlation between [Cl]d and [SO4
2-], [NO3

-] or the pH, suggesting 

that [Cl]d is not a good proxy for acidity in our samples. This is certainly because small uncertainties in 

Cl/Na ratios induce large [Cl]d uncertainties for important Na concentrations (Figure 3). 

Our second approach was to investigate the correlations between Cl/Na and other X/Na ratios. We 

found that Cl/Na and NH4
+/Na are negatively correlated (NH4

+/Na = -0.26[Cl/Na] + 0.32, r² = 0.94, 

n = 7), suggesting a NH4
+ enrichment during atmospheric acidification. In addition, [NH4

+] is strongly 

correlated with [SO4
2-]+[NO3

-] (Figure 4a), the conjugate bases of atmospheric acids. This suggests 

that the acidification of aerosols causes an increase of the NH4
+ concentration (probably by partial 

neutralization with gaseous NH3), establishing a link between aerosol acidity and NH4
+ concentration. 

Furthermore, by comparing pNH4
+ and pH we obtain a cloudy positive correlation (Figure 4b), 

probably because of the clouding effect of CO2 solvation on the pH of melted samples. Based on 

these observations, we consider in the following NH4
+ as a proxy for the acidity in our samples. 
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4. Evidences of in situ methylation 

 

Figure 5 show a positive correlation between acetates and MMHg and a negative correlation 

between acetates and the MMHg/THg ratio in all snow layers, except the subsurface one. Both 

MMHg and THg in the snowpack can be reduced to Hg0 which can be subsequently involved in a cycle 

of oxidations and reductions, HgII having the potential to be methylated in snow. Divalent Hg and 

acetates have been proven to from ploy-acetate mercuric complexes [Hg(OAc)n]2-n, which are 

required precursors to the reaction forming MMHg and CO2 which is known to happen in synthetic 

aqueous media, even in the dark (Gåardfeldt et al., 2003). In our snowpack, reduction would be the 

major reaction taking place, lowering both THg and MMHg concentrations, but a small amount of 
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methylation could artificially compensate to some extent the net MMHg reduction rate with respect 

to THg. The link we outlined above between NH4
+ and acidity suggests that the methylation process 

depends on the acidity of snow. It is consistent with the results from Gåardfeldt et al. who identified 

the pH-dependent formation [Hg(OAc)n]2-n as the critical step toward HgII methylation. As a result, in 

the deep layers of the snowpack both MMHg and THg concentrations decrease while MMHg/THg 

ratio increases with decreasing acidity of the snow layer. The less acidic the snow layer (or the less 

NH4
+ it contains), the more efficient the methylation, as shown on Figure 6. 

This hypothesis is consistent with the correlations presented in Figure 5Figure 6. On one hand, the 

more efficient re-methylation (depending on acidity), the higher MMHg/THg. On the other hand, the 

older (or deeper) snow, the lower THg and MMHg (due to degradation over time). Acetate 

concentration decreases with time (and with increasing MMHg/THg) as it is consumed by re-

methylation (Figure 5b). The supposed mechanism is schematized in Figure 7. 

The effect of snow acidity is primordial considering the mechanism in Figure 7. As mentioned above, 

the critical step is likely to be the formation of the [Hg(OAc)n]2-n complexes, particularly [Hg(OAc)3]
- 

which is suspected to be the precursor of MMHg. For a given ligand L-, the formation of [HgLn]2-n 

complexes is thermodynamically favored if a) the acidity allows L- to be the main form of the LH/L- 

couple; b) [L-]>>[HgII]; c) the stability constant of [HgLn]2-n is high; d) the number of competitive 

ligands is low. If conditions a) and b) are achieved in our snow samples for acetates (pKa AcOH/AcO- 

= 4.75; [AcO-]>>10000[THg]), a lot of competitive ligands exist in snow. The DOC content of the snow 

pit in surface and depth snow (n = 2) is described in Table 1, highlighting that a large part of the DOC 
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is unknown. This unknown organic fraction contains chemical binding sites of high affinity for HgII 

(thiols, thioacids, carboxylic acids, alcohols, amines…etc). 

 

 

Table 1. Overview of the DOC content and constitution (in weight percent) of snow from the Kongsvegen pit. 

 

Acetate has a low affinity for HgII compared to several usual organic molecules (Ravichandran, 2004; 

Dong et al., 2010, 2011), hence if the formation of [Hg(OAc)n]2-n complexes is readily observed in 

synthetic aqueous media, it is less obvious in snow where lots of ligands with a high affinity for HgII 

  Subsurface snow (n = 1) Depth snow (n = 1) 

DOC [ppb] 501,2 425,5 

Acetates  5,8% 0,6% 

Formates 0,4% 0,7% 

Oxalates 0,7% 0,6% 

Lactate 0,4% 0,2% 

Propionate 0,7% 0,3% 

Glutarates - - 

Succinates - - 

Identified DOC 8,0% 2,4% 

Figure 7. Qualitative mechanism of Hg dynamics in the snowpack, as hypothesized from our data. 
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are present, among which some are probably better than acetates. Thus the optimal pH range for 

mercuric acetate complexes formation is likely very narrow compared to the one observed in 

Gåardfeldt et al., and even in this range [Hg(OAc)n]2-n complexes could be in minority among other 

HgII complexes. However, even in minority, such complexes would lead to the formation of MMHg. 

The rate of MMHg production would depend on the proportion of HgII bound as [Hg(OAc)n]2-n, 

namely R = [Hg(OAc)n]2-n/HgII. A qualitative trend of R with acidity is depicted in Figure 8. 

A recent study identified [Hg(OAc)n]2-n complexes as a very minor part of HgII complexes in rain 

waters (Bittrich, 2011), thus assuming that MMHg in these waters is probably not due to Hg 

methylation via [Hg(OAc)n]
2-n complexes. Contrastingly, another recent study assessed dissolved 

organic matter as the main ligand for Hg2+ and MMHg (Dong et al., 2010). Matching this theory, 

Hammerschmidt et al. (2007) proposed HgII methylation in rain waters as a MMHg source, based on 

equilibrium calculation. The yield of a chemical reaction does not depend on the formation rate of 

the reactive species (here [Hg(OAc)n]2-n, R in Figure 8), but on its reactivity. This is the key concept of 

catalysis, where tiny amounts of catalytic species allow rapid and total reactions (note: this is an 

example, the reaction of Hg with acetates is not catalytic). Consequently, even if the active 

[Hg(OAc)n]2-n complexes are in extreme minority, it does not imply that MMHg formation from these 

complexes is negligible. Nevertheless, the formation rate of the [Hg(OAc)n]2-n is expected to affect the 

speed of the reaction. 
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+
, compared with MMHg/THg (data from Figure 6). 
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As shown in the present chapter, methylation has a visible impact only on the very diluted (MMHg < 

10 pg/L) and stable snow (overtime) from the Kongsvegen glacier, which does not undergo strong 

additional inputs and melts as snow from the coastal site. The small changes in MMHg/Ca induced by 

methylation are undetectable in our coastal snow, which experiences various inputs and meltings 

during the season, as highlighted in section II.ii. If changes in MMHg/Ca are significant and cannot be 

attributed to source fractionation, one could propose methylation processes such as the one 

described in Figure 7 to explain it. Such mechanism could contribute to the high concentrations 

previously observed in rain (Hall et al., 2005; Hammerschmidt et al., 2007), fresh snow (Rose et al., 

2013) as well as the high MMHg/Ca enrichment observed in our fresh snow sample. 

Interestingly, the correlations on which we base our reasoning are observable in each snow layer 

from the Kongsvegen pit including surface, suggesting that the process of methylation in snow 

initially starts either rapidly after deposition or even prior to its deposition. Indeed, the process 

considered in Figure 7 could take place in clouds first. Thus, despite methylation only has a minor 

effect on the post-depositional fate of MMHg in our snowpack, it could be a good candidate to 

explain both high amounts of MMHg and high MMHg/Ca enrichment in fresh snow. At the current 

state of knowledge of the MMHg cycle, this remains hypothetical and further investigation on the 

chemical composition of fresh snow or clouds are needed to assess the impact of methylation on the 

MMHg content of fresh snow. 

5. Concluding remarks 

 

The present chapter highlights the existence of an abiotic methylation pathway for HgII by acetates. 

This is the first time that an abiotic mechanism is observed in environmental samples, as well as the 

first evidences of an environmental HgII methylation mechanism in oxic conditions. As described in 

Gåardfeldt et al. this reaction involves the formation of mercuric acetates [Hg(OAc)n]2-n complexes, 

and is thus pH dependent. In addition, as soon as the [Hg(OAc)n]2-n complexes can be formed, even in 

low proportions, significant amounts of MMHg could be formed. These results imply that such 

mechanism can occur in numerous environmental media, as soon as chemical conditions are 

gathered to allow the formation of [Hg(OAc)n]2-n complexes, especially mild acidity. The chemistry of 

Hg and its particular deposition-reemission cycle allow its presence in all types of environmental 

media of the hydro-, cryo-, geo- and biospheres (Pirrone et al., 2010; Sprovieri et al., 2010; Mason et 

al., 2012). Natural and anthropogenic sources of acetates have been proposed but their nature and 

their respective importance are not established. Globally, acetates (or acetic acid) are the products of 
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the degradation of heavier organic molecules, such as sugars (fermentation)(Drake et al., 2006) or 

volatile organic molecules (volatile organic carbons, or VOCs) present in the atmosphere (Keene and 

Galloway, 1986; Seinfeld and Pandis, 1998). Mainly because acetic acid is present in the atmosphere 

and deposited in precipitations all over the globe, it is an omnipresent chemical species in the 

environment, such as Hg. It is therefore crucial to know that the abiotic HgII methylation by acetates 

is environmentally relevant, as suggested before (Gåardfeldt et al., 2003; Hammerschmidt et al., 

2007) and as evidenced here. Indeed, among all the environmental matrices, a lot would be expected 

1) to contain both Hg and acetates; and 2) to allow their complexation to [Hg(OAc)n]2-n, hence the 

following reaction yielding MMHg. Here we emphasize that although this reaction is only responsible 

for ultra-trace amounts of MMHg in the present case of the Kongsvegen glacier, it could be a much 

greater contribution to the MMHg budget in other media where high amounts of MMHg remain 

unexplained, for example in precipitations. 
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ii.	Elution	of	methylmercury	from	a	

melting	snowpack	

 

The snowmelt is a critical step toward MMHg entering the Arctic aquatic food chain, as it could 

deliver all the MMHg contained in snow to meltwater streams flowing directly to the fjord. It is 

therefore critical to follow the fate of MMHg simultaneously in snow and meltwater, in order to 

understand how it is delivered and how snowmelt affects its dynamics. A recent study from our team 

(field campaign in 2008) reported increasing concentrations of MMHg in melt water while decreasing 

in the snowpack (Larose et al., 2010). During our field campaign, a strong early melting occurred at 

the end of April before the final snowmelt in late May. We were not able to sample snowmelt water 

during the first melting event, but we sampled snowmelt water from a thicker snowpack (800 m 

away from the shore) during the late May snowmelt, using the equipment described in section II.ii 

(see reminder Figure 1). 

A              B 

1 2 

3 4 

5 6 

Figure 1. Scheme of the meltwater sampling system. The bottles are coated with aluminum sheet on their external side. 

Top 

Middle 

Bottom 
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The elution profile of THg is presented in Figure 2a. Data suggest that the THg elution peak  occurred 

earlier in the season (more about the snowmelt elution in the “Introduction” part), as we observe 

what seems to be a peak tail between the 25th and the 28th of May. All the major ions show the same 

“end-of-elution” profile (see Appendix). Data for MMHg is available from the 28th of May and do not 

allow the observation of the tail of an elution peak, if any (Figure 2b). However, MMHg concentration 

increases substantially in percolating water from the top and the middle of the snowpack from the 

last days of May, with a small delay (from the 29th for “top” samples, from the 2nd of June for 

“middle” samples). This MMHg concentration increase is not reflected in the “bottom” meltwater 

samples, where the MMHg concentration slightly decreases from 57.9 to 27.8 pg/L between the 28th 

of May and the 8th of June.  
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This increase of MMHg concentration delayed with depth suggests a slow elution process, although 

further meltwater collection would have been needed to confirm the existence of this MMHg elution 

peak as well as the percolation of MMHg-rich water to the bottom snow layer. Figure 3a presents the 

relationship between the MMHg concentration and the mean particle mass (in ng/unit) in snowmelt 

water. Interestingly, both seem to be positively correlated in “top” and “middle” samples (full circles 

in Figure 3a), the ones experiencing the MMHg elution. No correlation is observed in “bottom” 

samples, were no MMHg elution peak is observed (Figure 2b). The same observations are true for 

MMHg/Ca with respect to the mean particle mass, suggesting that the bigger the particles, the higher 

the MMHg enrichment (Figure 3b). Hence we suggest that MMHg in snow is bound to large particles, 

thus later eluted by percolating water than soluble species (major sea-salt ions) because particle 

coagulation and snow densification render the melting snowpack an efficient filter trapping the 

particles (Meyer et al., 2009). A minor soluble fraction of MMHg is probably eluted with other soluble 

species, which would explain the MMHg concentration in the “bottom” samples; however, MMHg 

data prior to the 28th of May would have been needed to verify this assessment. The MMHg 

concentrations measured in the “bottom” samples are between 57.9 and 27.8 pg/L and not 

negligible as the snow meltwater is enriched when percolating down through a thick snowlayer. 
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The hypothesis of MMHg bound to large particles is consistent with our observations concerning the 

late spring particles observed in coastal surface snow. These particles are in the fraction of the bigger 

particles observed during the field campaign (see section III.ii) and that we believe to contain MMHg 

(see section III.iii). These particles have a common size signature (Figure 26 in section III.ii) but their 

mean size can vary between 4 and 8 µm. We did not find this size signature of late spring particles in 

our meltwater samples. It can be explained by the location of the snowmelt water sampling site 

which is 800 m away from the fjord while the coastal snow sampling site is only 10-20 m away. It is 

possible that the signature of the late spring particles is due to particles that deposit very rapidly, and 

that are therefore present only in locations very close to the fjord, their primary source (see section 

III.iii). Such particles could also fractionate into smaller ones and be deposited further from their 

original sea source, losing thereby their particular size signature. It is also possible that this particular 
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size signature is lost as these large late spring particles observed in coastal surface snow dissolve to 

some extent in meltwater. 

 

Furthermore, the data suggest that the chemical species (including MMHg) in our meltwater samples 

and MMHg in coastal snow (see part III) originate from the same sources. Indeed, the meltwater 

samples fit the “late spring particles/sea-sprays” mixing line on the ratio/ratio plots (presented in 

0

1

2

3

4

5

6

0% 20% 40% 60% 80% 100%

[M
g

]/
[C

a
]

[nss-Ca]/[Ca]

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0% 20% 40% 60% 80% 100%

[K
]/

[C
a

]

[nss-Ca]/[Ca]

0,0E+00

2,0E-02

4,0E-02

6,0E-02

8,0E-02

1,0E-01

1,2E-01

0% 20% 40% 60% 80% 100%
[B

r]
/[

C
a

]

[nss-Ca]/[Ca]

0,0E+00

5,0E-08

1,0E-07

1,5E-07

2,0E-07

2,5E-07

3,0E-07

3,5E-07

4,0E-07

4,5E-07

5,0E-07

0% 20% 40% 60% 80% 100%

[M
M

H
g

]/
[C

a
]

[nss-Ca]/[Ca]

 

Figure 4. Meltwater samples (crosses) reported on the X/Ca ratio/ratio plots presented in section III.ii for Mg. The mixing line 

between the late spring particles and the sea-sprays is drawn in black; all other mixing lines are in red. Other signs stand for coastal 

snow samples: black diamonds represent the particle input event, open diamonds represent samples with strong sea-spray 

influence (including the strong storm event), grey squares represent fresh snow samples and open squares samples possibly 

chemically impacted by the snowmelt. 
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section III.ii) or distribute around it the same way as snow samples do. The clearest examples are 

presented on Figure 4. Particularly, Figure 4d shows the repartition of meltwater samples on the 

ratio/ratio plot of MMHg/Ca with respect to nss-Ca/Ca. Almost all the samples fit the sources mixing 

triangle between late spring particles, sea-sprays, and fresh snow. The two outlier samples are 

probably due to the late elution of MMHg when all the other major ions (including Ca) are almost 

totally eluted from the snowpack, leading therefore to very high MMHg/Ca ratio. Our data confirm 

that for “top” and “middle” melwater samples, MMHg/Ca increases as the melting season progresses 

(Figure 5), as all the major ions (including Ca) are almost totally eluted from snow (see Appendix). 

 

The present results suggest that MMHg is eluted lately from the snowpack compared to other ionic 

species (including THg). In addition, particles described as late spring particles in section III.ii are 

present in the meltwater samples and seem to be correlated with their MMHg content. Indeed, the 

chemical signature of the late spring particles is clearly recognizable here, although their physical one 

is not. We believe that the latter is due to the atmospheric ageing of these singular large marine 

particles into a fraction of smaller particles and of a much broader and equalized size range. This 

ageing would not have been noticeable on coastal snow sampled just next to the fjord (10-20 m away 

from it) showing a clear size signature (Figure 26 of section III.ii). This is consistent with our previous 

results concerning snow chemistry and the origins of MMHg in the coastal snowpack, discussed in 

section III.iii. 
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Conclusion	et	perspectives	

 

Grace à une politique volontaire dans les pays développés (Amérique du Nord, Union Européenne et 

Japon), les émissions atmosphériques de mercure sont en baisse depuis les années 70, bien que les 

émissions des pays en développement soient en forte augmentation (Arctic Monitoring and 

Assessment Programme, 2011). Les dernières estimations prévoient que les émissions globales de 

mercure pourraient augmenter à nouveau dans un futur proche si ces pays ne restreignent pas leurs 

émissions (UNEP, Global Mercury Assessment, 2013). Dans cette optique, des discussions en cours 

depuis plus de trois ans ont donné lieu à une convention devant être signée à l'automne 2013 (traité 

de Minamata), ayant pour but de réduire l'exposition de chacun au mercure, du mineur artisanal aux 

populations arctiques (source : site web de l'UNEP). Ce traité prévoit en outre des aides aux pays en 

voie de développement afin de limiter leurs émissions de mercure. 

Contrairement aux émissions de HgII, qui induisent une pollution locale, les émissions de mercure 

atmosphérique (> 98% de Hg0) peuvent affecter des zones très éloignées de leur lieu d'émission. En 

effet, Hg0 est très stable dans l'atmosphère et peut donc y résider assez longtemps pour être 

transporté jusqu'aux régions les plus reculées du globe avant d'y être déposé (Arctic Monitoring and 

Assessment Programme, 2011; Ariya et al., 2004). Une fois déposé sous sa forme oxydée HgII, le 

mercure peut intégrer la chaîne alimentaire et s'y bioaccumuler en fonction du niveau trophique des 

espèces, principalement sous sa forme la plus neurotoxique, MMHg. Bien que les concentrations de 

MMHg dans les cryo- et hydrosphères soient au niveau picomolaire, la contamination en MMHg peut 

atteindre des niveaux critiques dans les poissons et mammifères du haut de la chaîne alimentaire, 

particulièrement en Arctique (Arctic Monitoring and Assessment Programme, 2011). Dans le monde 

entier, de nombreuses personnes sont de grands consommateurs de poisson, principalement pour 

raisons culturelles, et peuvent de ce fait être victimes d'empoisonnement au mercure. L'histoire de 

Richard L. Gelfond en est un exemple saisissant. Ce new-yorkais était autrefois adepte d'un régime à 

base de poissons de haut niveau trophique (thon, espadon...etc.) qui a causé chez lui un fort 

empoisonnement en MMHg, induisant des effets psychomoteurs irréversibles (Gelfond, ICMGP 2011, 

Halifax). Pour l'heure, la tendance à la baisse des émissions de mercure observée ces dernières 

années n'est pas suivie d'une baisse du niveau de mercure dans les populations animales arctiques 

(Arctic Monitoring and Assessment Programme, 2011). La présence de MMHg a été documentée 

dans tous les milieux de l'environnement arctique, depuis la neige jusqu'aux grands prédateurs (ours 

polaires, belugas), en passannt par les eaux douce et marine. Pourtant, la présence de MMHg dans la 
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neige – un important réservoir de MMHg en Arctique – reste mal comprise et inexpliquée. Quelques 

études émettent des hypothèses afin d'expliquer la présence de MMHg dans le manteau neigeux, 

bien qu'aucune d'entre elles n'ait été démontrée à ce jour (Barkay and Poulain, 2007; Larose et al., 

2010). De plus, l'existence d'un mécanisme de méthylation du mercure in situ (dans la neige) reste 

purement spéculative. 

Dans ce contexte, cette thèse avait pour but d'explorer la dynamique du MMHg dans la neige 

arctique. Pour cela, nous avons étudié le manteau neigeux saisonnier dans la région de  Ny-Ålesund, 

Svalbard (Kongsfjorden). La côte du Kongsfjorden est un site de choix pour l'étude de contaminants 

présents dans la neige et qui peuvent être transferés lors de la fonte aux écosystèmes aquatiques du 

fjord, comme le MMHg. L'utilisation d'une méthode de mesure du MMHg extrêmement sensible 

ainsi qu'une étude étendue de la chimie de la neige nous a permis d'établir un jeu de données 

extrêmement complet, couvrant quotidiennement une période de plus de deux mois. Grâce à une 

nouvelle approche analytique, nous avons eu l'opportunité de fournir une nouvelle lecture de la 

chimie de la neige et d'éclaircir les sources et la chimie du MMHg dans le manteau neigeux arctique. 

Notre étude de la chimie de la neige de surface côtière a montré la contribution de deux sources 

principales de chimie dans la neige: 1) les sprays marins ; 2) des  particules volumineuses non-

corrélées au sel de mer. Les sprays marins ont logiquement la composition du sel de mer, avec très 

peu d'espèces organiques et de MMHg, et sont seulement responsables d'un modeste apport de 

MMHg dans la neige. Inversement les particules non-correllées au sel de mer sont substantiellement 

enrichies en Ca, Mg, organiques et MMHg. Nous suggérons que ces particules ne sont pas d'origine 

terrigène – comme souvent pour des particules contenant Ca – mais plutôt d'origine marine: 

fragments de phytoplancton calcaire aggloméré à des gels organiques (formés de macromolécules 

organiques et de cations divalents, tels Ca2+ et Mg2+). Cette hypothèse est cohérente avec la forte 

augmentation du nombre de ces particules dans la neige à la fin du printemps arctique, suivant le 

timing attendu du bloom planctonique du Kongsfjorden (aucune donnée disponible). En effet, un 

bloom planctonique augmenterait la production de gels bio-organiques, et la sénéscence de ce 

bloom résulterait en l'accumulation de grandes quantités de fragments calcaires et bio-organiques. Il 

s'agit de conditions optimales pour la formation de volumineux aérosols contenant principalement 

Ca, Mg et des espèces organiques. Nous pensons que ces particules peuvent très probablement 

séquestrer le MMHg marin, de par leur nature organique, ce qui expliquerait l'augmentation de la 

concentration de MMHg dans la neige lorsque le nombre de ces particules augmente. Nos données 

d'eau de fonte, issue d'un site situé plus éloigné de la côte, ainsi que nos données du glacier 

Kongsvegen (reculé de toute influence marine directe) suggèrent que ces particules sont déposées 

principalement très proche du fjord, et sont dégradées petit-à-petit en sous-unités plus petites 
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lorsqu'elles résident dans l'atmosphère. De telles particules organiques contenant MMHg pourraient 

être émises de la surface du fjord même après la saison de neige, et donc contribuer à l'évasion de  

MMHg du fjord aux surfaces terrestres avoisinantes. Dans le cas particulier de la neige, une 

proportion substantielle de ces particules organiques marines pourrait être redélivrée aux eaux du 

fjord, compensant partiellement l'évasion du MMHg marin. Cette compensation pourrait être un 

facteur critique de la contamination en MMHg dans les écosystèmes aquatiques entourés de zones 

enneigées, qui sont très fréquents en Arctique. 

En plus de ces résultats, les données du puits de neige au sommet du glacier Kongsvegen – reculé de 

toute influence marine – montrent les marques d'un processus chimique impliquant MMHg, NH4+ et 

acetates. Plus la neige est vieille, moins elle contient de MMHg (à cause de sa dégradation), mais plus 

le mercure est sous forme de MMHg (MMHg/THg augmente), en relation avec le contenu en 

acétates de la neige ainsi que son acidité. En nous basant sur ces données, et sur les résultats d'une 

précédente étude sur la méthylation abiotique de HgII par les acétates en milieu aqueux (Gåardfeldt 

et al., 2003), nous suggérons que HgII est méthylé par les acétates dans nos échantillons de neige de 

glacier. Cette méthylation est cependant très modeste et nous pensons qu'elle ne fait que 

compenser partiellement (donc ralentir artificiellement) la dégradation du MMHg déposé par la 

neige fraîche. Aucun processus chimique similaire n'a pu être observé dans la neige côtière. En effet, 

plusieurs fontes et de forts événements d'apport chimique (tempête, particules organiques...) – 

induisant une instabilité du manteau dans le temps et des concentrations en MMHg trop variables – 

cachent ce mécanisme de formation du MMHg, si toutefois il existe dans ce type de neige. Nous 

pensons que ce processus de méthylation ne peut vraisemblablement être identifié que dans un 

manteau neigeux très stable et éloigné de toute source directe de contaminants (dans une neige 

donc très “diluée”). En ce qui concerne l'impact de la méthylation in situ sur le cycle du MMHg en 

Arctique, nos données suggèrent que si cette réaction a lieu dans la neige, elle ne l'enrichit pas 

significativement en MMHg. La méthylation empêcherait plutôt la dégradation de la totalité du 

MMHg en maintenant par une très faible production une concentration minimum de MMHg dans la 

neige (quelques pg/L). De plus, il est possible que ce processus ait lieu avant même le dépôt de la 

neige fraîche, à la surface d'aérosols (dans le nuage) qui sont séquestrés par (ou adsorbés sur) la 

neige fraîche. Cela pourrait être dans ce cas à l'origine des enrichissements et hautes concentrations 

en MMHg observées dans la neige fraîche (Larose et al., 2010; Rose et al., 2013; cette thèse). 

Cependant dans notre cas MMHg semble être répidement dégradé après son dépôt via la neige 

fraîche. 

Sur la base de ces résultats, nous proposons un schéma du cycle détaillé du MMHg en Figure 1 (voir 

version anglaise ci-après), prenant en compte les connaissances établies sur le MMHg dans la neige 
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arctique enrichies de la contribution de cette thèse. Le rôle du manteau neigeux comme milieu de 

stockage du MMHg marin y est souligné, avant une diffusion dans la chaîne alimentaire lors de la 

fonte. Notre étude clarifie les sources de MMHg dans la neige arctique, approfondissant les 

hypothèses évoquées dans la littérature (et résumées dans Barkay and Poulain, 2007) et donne une 

vue d'ensemble des processus impliqués dans le cycle du MMHg en Arctique. 

Les résultats de cette thèse sont issus d'études de terrain et requièrent de plus amples confirmations 

en laboratoire ou en expériences de terrain contrôlées. Le site de terrain doit être choisi avec soin 

selon les aspects du cycle du MMHg étudiés (sources ou processus). De plus, un dispositif flexible de 

mesure du MMHg serait une grande amélioration pour les études de terrain, en permettant des 

observations en temps réel donc plus de réactivité vis-à-vis d'événements particuliers. Nous avons 

effectué le premier pas dans cette direction en construisant un dispositif mobile de mesure du 

MMHg à des concentrations de l'ordre de la dizaine de pg/L dans des échantillons aqueux de 30-40 

mL. Le produit de cette thèse – fut-il matériel ou connaissances scientifiques – procure des outils 

additionnels pour des études plus précises et plus focalisées sur le cycle biogéochimique du MMHg 

dans les environnements polaires. De futures recherches sont indispensables afin de détailler les 

processus responsables de la formation et de l'évasion d'aérosols marins organiques et leur impact 

sur la chimie de la neige, et particulièrement sur le cycle du MMHg. Les efforts à venir doivent aussi 

porter sur la compréhension de l'origine de la présence en si grande concentration de MMHg dans la 

neige fraîche (Larose et al., 2010; Rose et al., 2013; cette thèse). L’analyse isotopique, par 

l’identification de fractionnements isotopiques du mercure, serait un outil de choix pour 1) retracer 

l’origine géochimique du mercure ; ou 2) observer certaines réactions chimiques dont le mercure est 

substrat. En effet, le mercure peut avoir une signature isotopique particulière à son milieu d’origine 

(sédiments, biota…)(Bergquist and Blum, 2009) et qui évolue de façon particulière (fractionnement 

isotopique dépendant / indépendant de la masse) lors de certaines réactions, notamment lors de sa 

photo-réduction (Bergquist and Blum, 2007; Kritee et al., 2009, 2008; Malinovsky and Vanhaecke, 

2011). Nous recommandons également l'utilisation à bon escient des diagrammes ratio/ratio pour 

observer les corrélations chimiques au-delà des corrélations directes “évidentes” (et souvent 

absentes) et d'identifier les sources de contaminants dans un milieu donné (Robinson et al., 2006). 

En effet, cette approche peut permettre l'observation de processus (Robinson et al., 2006) ce qui a 

permis dans notre cas de suspecter la méthylation abiotique de HgII par les acétates dans nos 

échantillons. Nous ne doutons pas qu'une telle méthodologie peut trouver un grand nombre 

d'applications dans l'étude de la réactivité du mercure environnemental.  



 
173  

Conclusion	and	perspectives	

 

Thank to voluntary policies in the developed countries (North America and European Union), the 

global atmospheric emissions of mercury are decreasing since the 1970’s, although emissions from 

the fast developing countries are sharply increasing (Arctic Monitoring and Assessment Programme, 

2011; Fain et al., 2009). The latest forecasts claim that global mercury emissions could increase again 

in the future if these countries do not restrain their emissions (UNEP, Global Mercury Assessment, 

2013). For this purpose, a convention is in debate for more than three years and expected to be 

ratified this autumn as the Minamata treaty, that aims to decrease the Hg exposure for everyone, 

from small-scale gold-miners to arctic populations (source: UNEP website). This treaty will also 

provide help to developing countries in order to limit their growing Hg emissions. 

Unlike HgII emissions, which induce local and regional pollution, atmospheric mercury emissions 

(> 98% as Hg0) are likely to show effects at a global scale, as Hg0 is stable enough in the atmosphere 

to reach (and deposit) even in the most remote areas of the world (Arctic Monitoring and 

Assessment Programme, 2011; Ariya et al., 2004). Once deposited as HgII, mercury enters the aquatic 

food chains and biomagnifies with growing trophic level, mainly as its highly neurotoxic form MMHg. 

Although the MMHg levels in the cryo- and hydrosphere are fairly modest, MMHg contamination can 

reach critical levels in high trophic level fishes and mammals, particularly in the Arctic (Arctic 

Monitoring and Assessment Programme, 2011). Around the globe, many human populations are 

culturally avid fish consumers, and experience mercury poisoning because of this diet. A stunning 

example of how fish consumption can affect health is the story of Richard L. Gelfond, a Manhattanite 

who chose a diet rich in high trophic fishes (tuna, swordfish…etc.) inducing with time severe MMHg 

poisoning with irreversible psychomotor effects (Gelfond, ICMGP 2011, Halifax). So far, the 

decreasing trend of mercury emissions is not followed by a mercury decrease in the arctic wildlife 

(Arctic Monitoring and Assessment Programme, 2011). The presence of MMHg has been 

documented in all the compartment of the arctic environment from the snow, marine and 

freshwaters to the largest animals such as polar bears or belugas. Yet, there is a poor understanding 

on the presence of MMHg in snow which is one of the primary reservoirs of MMHg in the Arctic. 

Several studies raise hypotheses in order to explain the presence of MMHg in the snowpack, 

although none of them has ever been clearly identified and demonstrated (Barkay and Poulain, 2007; 

Larose et al., 2010). In addition, there are no clear evidences on pathways leading to MMHg 

formation. 
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In this context, the present thesis sights to explore the MMHg dynamics in arctic snow. The seasonal 

arctic snowpack was studied over two months at the Ny-Ålesund area (Kongsfjorden), Svalbard. The 

Kongsfjorden shore is of the greatest interest to investigate the cycling of contaminants present in 

snow, which can be transferred to the aquatic ecosystem of the fjord during snowmelt, such as 

MMHg. The use of an extremely sensitive MMHg measurement method as well as an extended study 

of the chemistry of snow provided us with a very complete dataset, with daily monitoring during 

more than two months. Thanks to a novel analytical approach of snow chemistry, we were able to 

provide a new insight into snow chemistry as well as a further understanding of MMHg dynamics in 

arctic snow. 

Our study of the chemistry of coastal surface snow showed the contribution of two main sources to 

the chemical content of snow: 1) sea-sprays aerosols; and 2) sea-salt-unrelated large particles. As 

expected, sea-sprays have composition of sea-salt, with very low organics and MMHg and are 

responsible for a modest MMHg input in snow. Inversely, the sea-salt-unrelated particles are 

substantially enriched in Ca, Mg, organics and MMHg. We suggest that such particles were not of 

terrestrial origin – as often assessed for Ca containing particles – but rather of marine origin, as 

fragments of calcareous phytoplankton together with organic gels (formed with organic 

macromolecules and divalent cations such as Ca2+ and Mg2+). This hypothesis is consistent with the 

steep increase of the number of these particles in snow at the end of the snow season, following the 

expected planktonic bloom of the Kongsfjorden (no data available). Indeed, a planktonic bloom 

would induce a substantial increase of bioorganic gels production, as well as the senescence of this 

bloom would lead to large amounts of calcareous and bioorganic fragments; these are the optimal 

conditions for the formation of large particles containing mainly Ca, Mg and organics. We believe 

that these particles are more likely to scavenge marine MMHg due to their intrinsic organic nature, 

which explains the increase of MMHg concentrations in snow with the increasing number of these 

particles. Our meltwater data, at a site located further from the shore, as well as our data from the 

Kongsvegen glacier (remote from sea influence) suggest that these particles deposit mainly very 

close to the fjord, and are gradually degraded to smaller particles with increasing atmospheric 

residence time. Such organic MMHg containing particles could be emitted from open sea even after 

the snow season, and thus contribute to the MMHg evasion of the fjord to the surrounding 

terrestrial surfaces. In the singular case of snow, a substantial fraction of the deposited marine 

particles could be delivered back to the fjord in meltwater streams, thus possibly offsetting the 

MMHg evasion from open sea waters. This offset could be a critical factor of MMHg contamination in 

aquatic ecosystems surrounded by snow, which are frequent in the Arctic. 



 
175  

In addition to these results, our data from the summit of the Kongsvegen glacier top – a study site 

remote from sea influence – highlighted evidences of a chemical process involving MMHg, NH4
+ and 

acetates. The older the snow, the less MMHg it contains (because of degradation overtime), but the 

more mercury is in the MMHg form (MMHg/THg increases), in relationship with the acetate content 

and the acidity of snow. Based on this data and on a previous study on the abiotic methylation of HgII 

by acetates in synthetic rain waters (Gåardfeldt et al., 2003), we suggested that HgII is methylated by 

acetates in our glacier snow samples. This methylation is however very modest and we believe it to 

only partially compensate (hence artificially slower) the degradation of the MMHg deposited by fresh 

snow. Such chemical processes could not be identified in the coastal snow pack. Indeed, several 

thaws and strong chemical input events (storms, late spring particles…) – leading to unstable 

snowpack overtime and too high and varying MMHg concentrations – hide this mechanism (if 

existing) of MMHg formation. We believe that this process is likely to be identified only in very stable 

snowpacks overtime and remote from contaminant sources (hence very “diluted” compared to other 

sites). Concerning the impact on the MMHg cycling in the Arctic, our data suggest that if such 

methylation happens in snow, it does not significantly enrich the snowpack in MMHg. Methylation 

would rather prevent all the MMHg to be degraded in snow by maintaining a very low MMHg 

background level (a few pg/L). Moreover, it is possible that this methylating process takes place even 

prior to snow deposition, at the surface of aerosols (in cloud) that are scavenged by or adsorbed on 

fresh snow. It could be in this case responsible for the high MMHg enrichment observed in fresh 

snow, as well in this study as in recent ones (Larose et al., 2010; Rose et al., 2013). However, in our 

case, MMHg seems to be rapidly degraded after its deposition in fresh snow. 

Based on these results, we propose a detailed MMHg cycle in Figure 1. It integrates the current 

knowledge on MMHg in arctic snow as well as the contribution of the present thesis. It also 

emphasizes the role of the snowpack as a storage medium for marine MMHg, which eventually 

returns to some extent MMHg back to the fjord at the melting season. The present study clarifies 

previous assumptions about the sources of MMHg in arctic snow (reviewed in Barkay and Poulain, 

2007) and gives a global overview of the processes involved in the MMHg chemical cycling in the 

Arctic. 
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Figure 1. Description of the MMHg cycle in the Arctic detailed and updated with the results from the present study. 
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The results of this thesis are all derived from field studies, and need to be further confirmed by 

laboratory or controlled field experiments. The field campaign site shall be chosen with care 

according to the aspect of the MMHg cycling studied (biogeochemical sources or in situ processes). 

Moreover, a flexible MMHg measuring device would be a great improvement for field studies, as it 

would allow real-time observations and more reactivity to singular events. We did the first steps 

toward this direction by building a mobile assembly allowing the determination of MMHg at the 

tenth of pg/L level in 30-40 mL aqueous samples. Thus the product of this thesis – be it material or 

scientific knowledge – procures additional tools for more focused and accurate studies of the MMHg 

biogeochemical cycle in polar environments. Further research is needed to detail the processes 

responsible for the formation and evasion of organic marine aerosols and their impact on snow 

chemistry, and particularly on the MMHg cycle. Incoming efforts should also be put on a better 

understanding of the origin of MMHg in fresh snow, which has recently been showed to be highly 

enriched in MMHg (Larose et al., 2010; Rose et al., 2013; this thesis). Isotopic analysis, by identifying 

Hg isotopic fractionation, is a tool of choice for 1) investigating the geochemical origin of Hg; and 2) 

observing chemical reactions involving Hg as a substrate. Indeed, Hg can have a particular isotopic 

fractionation according to its origin medium (sediments, biota…)(Bergquist and Blum, 2009), which 

evolves by further Hg mass-dependent or mass-independent fractionation that occurs during 

chemical reactions, especially during HgII photo-mediated reduction (Bergquist and Blum, 2007; 

Kritee et al., 2009, 2008; Malinovsky and Vanhaecke, 2011). We would also like to promote the 

wittingly use of ratio/ratio plots to observe correlations between chemicals beyond the “obvious” 

direct one, as well as the source fractionation of chemicals in any medium (Robinson et al., 2006). 

Indeed, this approach can lead to the observation of processes (Robinson et al., 2006), which allowed 

in our case to suspect the abiotic methylation of HgII by acetates in our samples, and which can surely 

find new applications in investigating the reactivity of mercuric species in the environment. 
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Coastal surface snow time series for major ions 
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Meltwater data for major ions 
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The determination of the solvation shell of Hg(II)-containing molecules and especially the

interaction between Hg(II) and water molecules is the first requirement to understand the

transmembrane passage of Hg into the cell. We report a systematic DFT study by stepwise

solvation of HgCl2 including up to 24 water molecules. In order to include pH and salinity effects,

the solvation patterns of HgClOH, Hg(OH)2 and HgCl3
� were also studied using 24 water

molecules. In all cases the hydrogen bond network is crucial to allow orbital-driven interactions

between Hg(II) and the water molecules. DFT Born–Oppenheimer molecular dynamics

simulations starting from the stable HgCl2–(H2O)24 structure revealed that an HgCl2–(H2O)3
trigonal bipyramid effective solute appears and then the remaining 21 water molecules build a

complete first solvation shell, in the form of a water-clathrate. In the HgCl2, HgClOH,

Hg(OH)2–(H2O)24 optimized structures Hg also directly interacts with 3 water molecules from an

orbital point of view (three Hg–O donor–acceptor type bonds). All the other interactions are

through hydrogen bonding. The cluster-derived solvation energies of HgCl2, HgClOH and

Hg(OH)2 are estimated to be �34.4, �40.1 and �47.2 kcal mol�1, respectively.

I. Introduction

Mercury (Hg), one of the most toxic substances on Earth,

exists naturally in small amounts in the environment. How-

ever, human activities including fossil fuel combustions,

metallurgy, manufacturing industries have contributed to

increase Hg levels in soil, sediments and aquatic ecosystems

worldwide.1 Even in remote and pristine areas high Hg levels

have been detected in biota such as in fish, birds, mammals

and humans.2,3 These elevated levels of Hg are driven, in large

part, by the long range transport of mercury in the atmosphere

and its bioaccumulation and biomagnifications along the food

chains. In spite that environmental concentrations are generally

lower than levels encountered around contaminated sites they

may have significant adverse effects on humans and the

ecosystems. Some large-scale epidemiologic studies on a large

cohort of populations consuming sea fishes and sea mammals

showed the evidence of fetal neurotoxicity of mercury, even at

low concentrations of exposure to Hg-containing molecules.4–7

Mercury reaches remote ecosystems mainly as elemental gaseous

mercury (Hg(0)). Once oxidized to more water soluble forms,

Hg can be deposited after atmospheric scavenging by wet and

dry deposition. The deposition velocity is readily enhanced in

polar regions during springtime due to the episodic existence

of Atmospheric Mercury Depletion Events (AMDEs) that

oxidize Hg(0) and deposit Hg(II) species onto polar environ-

mental surfaces more rapidly than anywhere else.8,9 In order to

understand the mechanisms of food chain contaminations in

remote areas, the question of the chemical and biological fate

of deposited Hg species is of utmost importance. As can be

expected, the Hg2+ ion is not inert once deposited. Hg2+

complexes can be easily photo-degraded or reduced by com-

pounds produced via photochemical reactions10 and reemitted

back to the atmosphere as Hg(0) from various environmental

matrices including soil,11 fresh water,12 sea water13 and snow.14

The bioavailability of deposited Hg is followed by an important

biochemical step in which Hg will cross a cell membrane by

passive or active diffusion. The bioavailability is a critical issue

in determining Hg toxicity, the potential for Hg accumulation

and for the production of organo-mercurial species such as

monomethylmercury. The bioavailability of Hg can be assessed

in environmental samples by using biochemical tools such as

biosensors.15–17 However, measurements of Hg bioavailability

are to be carefully discussed due to the complex nature of

environmental samples. Hg bioavailability will depend on pH
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variations that facilitate Hg uptake, changes in the proportion

of ligands, and changes in the concentration of other metal

ions that compete with Hg.18

Among the many possibilities of Hg-complexes, the neutral

closed-shell HgCl2 molecule together with hydroxo complexes

appears to be one of the most abundant species in oxic

environments if organic complexation is not considered.19,20

Using laboratory-synthesized lipid bilayer membranes

(lecithin–cholesterol–tetradecane), Gutknecht21 studied the

permeability of HgCl2, HgCl3
�, HgCl4

2�, HgOHCl and

Hg(OH)2, of which three are non-ionic species and, therefore,

more likely to pass across lipid bilayers and biological

membranes. Based on the results of this study, lipid

membranes are highly permeable to HgCl2 with a permeability

about 20 times higher than the permeability to water and more

than a million times higher than the permeabilities to Na+,

K+ and Cl�. Barkay et al.22 obtained similar results with

uncharged HgCl2 being more bioavailable than anionic forms

of mercuric chloride. However, they also reported permeability

at significant rates for other non-ionic forms of Hg, such

as Hg(OH)2 and HgClOH, in contrast with the findings of

Gutknecht.21

In spite of a large body of quantitative information, the

understanding of the mechanisms is limited due to a large

number of uncontrolled environmental parameters, the use of

inadequate analytical tools and the lack of detailed theoretical

information to elucidate the molecular processes at work.

From the biochemical and biophysical points of view, new

studies are aimed at tackling both, the relative stability of

Hg-containing (neutral and charged) molecular species and the

molecular processes involved in the trans-membrane passage

of Hg-containing molecules into the cell.21–23 We shall con-

centrate here on specific questions related to the last issue from

the molecular perspective of abundant Hg-containing species

in aqueous environments. Therefore, several questions appear

and are related to the bioavailability of HgCl2 molecules:

(a) how is this stable species solvated? (b) how many water

molecules can it hold in its first solvation shell and what is the

interaction energy with its water environment? (c) can this

species be considered as a water-dressed molecule for trans-

membrane transport making it available to the cell interior?

For the latter question, it should be noticed that this is an open

issue, especially important for microorganisms that have not

developed any resistance mechanism to Hg(II) contamination.

Answering these questions would represent a crucial step

forward, because this knowledge will allow us to propose

new molecular-based models to explain the passage of this

very common Hg-species through the cell membrane. Here we

emphasize that a recent study on the solvation pattern of

arsenious acid, As(OH)3, has allowed us to better understand

how this neutral molecule can go through the cell membrane

via aquaglyceroporines due to its singular amphipathic solva-

tion pattern.24 In particular, detailed information about its

specific solvation pattern (tight or soft, with few or many

water molecules in the first solvation shell) as occurs for other

toxic metalloids such as As(III) can be used by experimentalists

to provide new insights into the type of trans-membrane

protein channels used for cellular uptake of this abundant

Hg species.

We report here the first step of our research program, as in

the case of As(III), which is the study of the aqueous solvation

of abundant Hg(II)-containing molecules through cluster

models.

II. Computational details

Mercury25 and chlorine atoms26 were treated with the

Stuttgart–Dresden relativistic effective core potentials (RECP)

in combination with their adapted valence basis sets, aug-

mented by a set of polarization functions (f for Hg and d

for chlorine).27,28 Oxygen and hydrogen atoms have been

described with a 6-31G(d,p) double-z basis set.29 The DFT

calculations were carried out using the restricted Kohn–Sham

scheme with the hybrid B3PW91 functional.30,31 Geometry

optimizations were carried out without any symmetry restric-

tions and the nature of the minima was verified with analytical

frequency calculations. Gibbs free energies were obtained at

T = 298.15 K within the harmonic approximation. DFT

calculations were carried out with the Gaussian03 program.32

Finally, the electronic density (at the DFT level) of selected

structures has been analyzed using the Natural Population

Analysis (NPA) and the Natural Bond Orbital (NBO)

schemes.33

The interaction of HgCl2 with water was studied via step-

wise solvation by adding a number (n) of water molecules to

the system, with n = 1, 2, 3. . ., 24. Special care was taken in

order to insure that the O–Hg–O–O dihedral angles were

properly sampled. The stability of the optimized structures

with the largest number of water molecules was then verified

using Born–Oppenheimer (BO) molecular dynamics at the

DFT level (B3PW91). The BO DFT molecular dynamics

simulations (BO-DFT-MD) were carried out with the

Geraldyn2.1 code,34 which has been coupled to the electronic

structure modules of the Gaussian03 code.32 The BO-DFT-MD

algorithm in Geraldyn uses the velocity-Verlet integration

scheme.35 The simulation time was 15 ps with a time step of

0.5 fs. A Nosé–Hoover chain of thermostats36,37 was used to

control the temperature at 1000 K. Electronic structure as well

as the energy gradient calculations were performed at the same

level of theory (B3PW91, RECPs and basis sets) as that used in

the static approach. The trajectory was simulated starting

from the optimized equilibrium structure of HgCl2–(H2O)24
without any preferred velocity vector other than the thermal

energy. The 15 ps simulation took 70 days on a QuadCore

dual-processor@2.8GHz running the Linux versions of

Geraldyn2.1-G03. The production run was started following

an initial thermalization period which was achieved after 5 ps

of simulation, so that the Hg–O radial distribution function

was extracted from the last 10 ps of the simulation.

III. Results and discussion

1. Solvation of HgCl2

Bare HgCl2 is a quasi-linear molecule (178.21) with a Hg–Cl

bond distance of 2.30 Å. The NPA charges are +1.10 for Hg

and �0.55 for both chlorine atoms. From the NBO analysis,

Hg–Cl bonds show a slight ionic character (26% participation
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of the 6s orbital of Hg and 74% participation of sp3 orbitals of

Cl), in agreement with the high electronegativity of chlorine.

This shows that, although the Hg–Cl bonds are somewhat

ionic, the quasi linear geometry leads to practically zero dipole

moment, therefore making it hard for the molecule to interact

with the dipole moments of the surrounding water molecules

through non-bonded interactions.

The solvation of HgCl2 was studied by incremental addi-

tions of water molecules in the HgCl2 environment. The main

optimized geometrical parameters and NPA charges are given

in Tables 1 and 2, respectively. Gibbs free energies of solvation

are given in Table 3.

When a single water molecule is added around the HgCl2
optimized structure (see Fig. 1) the geometry looks like the one

computed by Shepler et al.38 at the MP2/aVDZ level of theory.

An interaction is found between Hg and the oxygen (2.62 Å),

inducing a T-shape geometry around mercury. The Cl–Hg–Cl

angle decreases by 4.6 degrees compared to HgCl2 in the gas

phase, mainly because of electrostatic repulsions between the

charged oxygen (�0.99) and both chlorine atoms (�0.60 and

�0.58). The Hg–Cl bond lengths slightly increase but Hg–Cl

dissociation is not reached (and will not be reached, even with

24 water molecules, see afterwards) because of the covalent

nature of the Hg–Cl bond. Thus, HgCl2 is not a real salt like

NaCl or CaCl2. Since Hg–Cl bonds are longer, their polarity

increases as well. The nature of the Hg–O interaction is found

to be merely electrostatic, although an oxygen lone pair points

toward mercury. The interaction energy is only �2.7 kcal mol�1,

which compares well with the MP2 results of Shepler et al.38

A second water molecule is then added in such a way that two

Hg–OH2 interactions are formed at the beginning but the

optimization does not maintain this structure (Fig. 2, left). The

structure resembles again the one computed by Shepler et al.38

at the MP2/aVDZ level of theory. The new H2O molecule is

stabilized by two hydrogen bonds, one between its hydrogen

and a chlorine atom and one with the first water molecule. The

solvation energy is �4.0 kcal mol�1.

Addition of a third water molecule, in such a way that three

Hg–OH2 interactions are formed at the beginning, leads to the

growth of the hydrogen bond network (Fig. 2, right). This

structure does not look like the one calculated by Shepler

et al.38 at the MP2/aVDZ level of theory. A second optimi-

zation was thus realized starting with the optimized geometry

of Shepler et al.38 but this leads to a less stable structure (by

only 0.9 kcal mol�1), very close to the starting geometry. This

is consistent with the fact that Shepler et al.38 also obtained

another geometry very close to the one shown in Fig. 2, less

stable than their most stable one by only 0.7 kcal mol�1.

These results (involving such small energetic differences)

show that the use of different theoretical methods can reverse

the stability of these two geometries. The alternate structure is

given in the ESI.wWhen a fourth water molecule is then added

in such a way that four Hg–OH2 interactions are formed at the

beginning, a second Hg–O orbital interaction is maintained

(Fig. 3, left) in the optimized cluster.

Table 1 Optimized geometrical parameters of gaseous and solvated
HgCl2 systems. The oxygen atoms are those directly linked to Hg

Water
molecules

Hg–Cl
d1/Å

Hg–Cl
d2/Å

Cl–Hg–Cl
angle/1

Hg–O
d1/Å

Hg–O
d2/Å

Hg–O
d3/Å

0 2.30 2.30 178.2 — — —
1 2.32 2.32 173.6 2.62 — —
2 2.35 2.32 167.7 2.50 — —
3 2.36 2.34 164.3 2.47 — —
4 2.38 2.35 163.6 2.48 2.48 —
6 2.45 2.40 144.3 2.35 2.52 —
8 2.45 2.41 151.8 2.52 2.53 2.62
12 2.45 2.45 142.0 2.44 2.48 2.66
24 (equatorial) 2.60 2.51 125.1 2.27 2.45 2.51
24 (apical) 2.52 2.47 176.2 2.36 2.42 2.65

Table 2 Calculated NPA charges of Hg, Cl and O (directly linked to
Hg) atoms in gaseous and solvated HgCl2 systems. Tag numbers for Cl
and O correspond to those in Table 1

Water molecules Hg Cl 1 Cl 2 O 1 O 2 O 3

0 +1.10 �0.55 �0.55 — — —
1 +1.15 �0.60 �0.58 �0.99 — —
2 +1.17 �0.62 �0.59 �1.03 — —
3 +1.17 �0.62 �0.61 �1.03 — —
4 +1.19 �0.65 �0.63 �1.03 �1.03 —
6 +1.24 �0.70 �0.66 �1.06 �1.07 —
8 +1.22 �0.69 �0.69 �1.06 �1.07 �1.00
12 +1.24 �0.72 �0.70 �1.07 �1.11 �1.00
24 (equatorial) +1.31 �0.77 �0.75 �1.07 �1.07 �1.05
24 (apical) +1.27 �0.71 �0.67 �1.08 �1.09 �1.09

Table 3 Solvation energies, calculated as: DGo
solv = [Go n water

molecules) � nGo(H2O) � Go(HgCl2)]

Water molecules DGo
solv/kcal mol�1

1 �2.7
2 �4.0
3 �6.1
4 �8.6
6 �12.4
8 �14.3
12 �14.9
24 (equatorial) �31.3
24 (apical) �34.4

Fig. 1 Optimized geometry of HgCl2–H2O.

Fig. 2 Optimized geometries of HgCl2 solvated by 2 (left) and 3 (right)

water molecules.
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The H2O–Hg–OH2 angle is 89.21. It is a rather small angle

which allows the participation of every water molecule into a

small hydrogen bond network. The formation of this network

seems more favorable than the Hg–O interactions, since only

one interaction was found in the HgCl2–(H2O)2 system, while

two Hg–O interactions could have been built at least. With six

water molecules (Fig. 3, right), the water network expands but

no other Hg–O interaction is found. The trends are the same

as previously: the Cl–Hg–Cl angle decreases (144.31 with six

H2O molecules) due to a shorter Hg–O distance (2.35 Å), the

Hg–Cl bond lengths increase (up to 2.45 Å) as well as the Hg

(+1.24) and Cl charges (up to �0.70). The solvation energies

are calculated to be �8.6 kcal mol�1 and �12.4 kcal mol�1

with four and six water molecules, respectively.

The system of HgCl2 with 8 water molecules was then

optimized in such a way that four Hg–OH2 interactions are

formed at the beginning (Fig. 4, left). In this case a third water

molecule directly interacts with Hg (64.31 with the closest

water molecule) and participates in the hydrogen bond

network. This third molecule brings electronic density to

mercury. It is the reason why the shortest Hg–O bond distance

of the previous system (2.35 Å) relaxes and extends (2.52 Å).

As a consequence, the Cl–Hg–Cl angle increases (151.81) and

the free energy of solvation is now�14.3 kcal mol�1. Then, the

system of HgCl2 with 12 water molecules was optimized

(Fig. 4, right). The four new water molecules simply extend

the hydrogen bond network, and this happens irrespective of

their initial positions relative to the previously optimized

cluster. The distance and charge trends are the same as

previously. The free energy of solvation is nearly unchanged,

�14.9 kcal mol�1. The four new water molecules do not bring

any supplementary stability to the system, because of their

peripheral positions.

Finally, the HgCl2 system with 24 water molecules was

computed in order to form a complete first solvation shell

around HgCl2. Two different stable geometries were found.

Both of them exhibit a trigonal bipyramid pattern around

mercury, but they differ by the position of chlorine atoms. It is

noteworthy that this structured geometry appears exclusively

once the full surrounding hydrogen bond network is achieved.

To summarize, water molecules have created their own network

(which provides the highest gain of stability to the system) and

then the favorable interactions between water and mercury

appear.

In the first orientation, which we shall call ‘‘equatorial’’

(Fig. 5), chlorine atoms form a part of the triangular base.

Hg–Cl distances are rather long (2.60 and 2.51 Å). Hg and Cl

charges are higher too (+1.24 for Hg, �0.77 and �0.75 for Cl).

From the second-order NBO analysis, it is noteworthy that

oxygen atoms directly linked to Hg bring electronic density

to Hg–Cl antibonding orbitals (27, 17 and 13 kcal mol�1

for oxygen atoms 1, 2 and 3 respectively). Thus, the formation

of a triangular bipyramid around mercury allows orbital

interactions between mercury and oxygen atoms, whereas

the interactions were mostly electrostatic in the previous cases.

The solvation energy of this structure is �31.3 kcal mol�1

(with respect to HgCl2 + 24H2O), which shows the importance

of the formation of the complete hydrogen bond network

and of the orbital interactions between Hg and three water

molecules.

In the second orientation (labelled ‘‘apical’’ in the tables;

Fig. 6), chlorine atoms are in apical positions of the triangular

bipyramid pattern (Cl–Hg–Cl angle of 176.21). From the

second order NBO analysis, oxygen atoms bring electronic

density to Hg–Cl antibonding orbitals (7, 17 and 21 kcal mol�1

for oxygen atoms 1, 2 and 3 respectively) and the solvation

energy is found to be �34.4 kcal mol�1. An estimate of the

solvation energy with a continuum model is �44.9 kcal mol�1,

where no orbital interactions are taken into account, showing

that the cluster model which considers only the first solvation

shell yields 78% of that value. The difference of solvation

energies between both orientations is only 3.1 kcal mol�1,

thus, the formation of both structures are nearly equally

favorable. This fact allows us to think that HgCl2 may have

a non-negligible dipole moment in water due to the presence of

Fig. 3 Optimized geometries of HgCl2 solvated by 4 (left) and

6 (right) water molecules.

Fig. 4 Optimized geometries of HgCl2 solvated by 8 (left) and

12 (right) water molecules.

Fig. 5 Optimized geometry of HgCl2 solvated by 24 water molecules,

‘‘equatorial’’ structure.
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the first geometry possessing a Cl–Hg–Cl angle of 125.11. In

this view one can think of an effective Sol–(H2O)21 structure

where Sol is the HgCl2–(H2O)3 moiety (as we shall see below,

this model is supported also by molecular dynamics results at

finite temperature). Dipole moments were thus computed by

single point calculations for both HgCl2–(H2O)3 structures

(with only the three directly interacting water molecules frozen

at the equatorial and apical optimized configurations). As

expected, the dipole moments of the nearly isoenergetic

HgCl2–(H2O)3 structures are quite different, 7.68 D and 1.03 D

for the equatorial and the apical orientations, respectively.

This could account for the ability of HgCl2 to easily cross

membranes, as reported for As(OH)3 by Hernández-Cobos

et al.24

In order to check the validity of this cluster approach,

a Born–Oppenheimer molecular dynamics simulation was

carried out at the DFT level (B3PW91) starting from the

most stable HgCl2–(H2O)24 structure imposing a rather high

temperature of 1000 K to check for the thermodynamic

stability of this solvated structure in the gas phase. After

5 ps of thermalization, a 10 ps trajectory has been computed

with the Geraldyn code to obtain the radial distribution

function (g(r)) (Fig. 7).

First of all, analysing the trajectory, we found that the three

direct Hg–OH2 interactions remain during the entire trajec-

tory. However, it is noteworthy that exchanges occur between

water molecules in the network and the water molecules

directly interacting with Hg (during the 10 ps simulation,

54 exchanges were observed). This phenomenon explains the

shape of the g(r) curve. Indeed, the mean Hg–O distance

(4.50 Å) is longer than the shortest Hg–O distances found

with the cluster approach (2.52 Å), in line with the afore-

mentioned exchanges. Moreover, the shape of the ensuing

Hg–O radial distribution function also shows the relatively

low structuration around Hg, and this result is in excellent

agreement with the EXAFS experiment reported by Akesson

et al. (Fig. 8).39

It is possible to estimate the energy gain supplied by the

interactions between HgCl2 and 24 water molecules, for

instance, in the apical optimized structure. For that purpose,

three other calculations were done: (i) a frequency calculation

of a frozen geometry of the 24 water molecules cluster (also

called clathrate). The frozen clathrate geometry is the same as

in the optimized geometry of HgCl2 solvated by 24 water

molecules in apical orientation. HgCl2 has just been removed

from the entire system. This new system is called the ‘‘frozen

clathrate’’. (ii) The optimization of this 24 water molecules

clathrate (Fig. 1 in ESIw). (iii) A frequency calculation of a

frozen geometry of HgCl2. This frozen geometry is the same as

in the optimized geometry of HgCl2 solvated by 24 water

molecules in the apical orientation.

One can estimate the energy cost of the opening of the

optimized clathrate in order to create the required cavity to

host the HgCl2 molecule by eqn (1). This energy cost is

calculated to be 52.6 kcal mol�1. It is also possible to estimate

Fig. 6 Optimized ‘‘apical’’ structure of HgCl2 solvated by 24 water

molecules.

Fig. 7 Hg–O radial distribution function for HgCl2–(H2O)24 at 1000 K.

Fig. 8 Diagram of energy levels of different molecular systems.
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the energy gain supplied by the orbital and electrostatic

(including hydrogen bonds with chlorine atoms) interactions

between HgCl2 and the surrounding water molecules using

eqn (2). This stabilization is equal to �63.8 kcal mol�1.

Energy cost = Go(frozen clathrate) � Go(optimized clathrate)

(1)

DGo
stabilization = Go(optimized HgCl2 with 24 water molecules)

� Go(frozen clathrate) � Go(frozen HgCl2)

(2)

The interactions between HgCl2 and water molecules compensate

the energy lost due to the opening of the water network and give

additional stability to the system (around 11 kcal mol�1).

2. Influence of pH

When pH increases, an equilibrium takes place between

HgCl2, HgClOH and Hg(OH)2. Solvations of HgClOH and

Hg(OH)2 were thus taken into account too. HgClOH and

Hg(OH)2 were solvated directly with 24 water molecules. Both

the equatorial and apical orientations previously observed for

HgCl2 were found as stable structures for the two molecules.

Globally, structural and energetic differences between

HgCl2–(H2O)24 and HgClOH–(H2O)24 are small. The Hg–OH

bond is found to be mainly covalent in HgClOH in the gas

phase, as the Hg–Cl one, and same trends appear during the

solvation (i.e., bond elongations). The solvation energies are

�38.6 kcal mol�1 and �40.1 kcal mol�1 for the equatorial and

the apical orientations, respectively, thus slightly larger than

for HgCl2. This better solvation is due to the presence of the

OH group which forms hydrogen bonds by two different ways

(through the O and the H atoms) whereas the Cl group can

only establish Cl� � �H bonds with the surrounding waters. For

the apical system, the energy of opening of the water clathrate

is 52.1 kcal mol�1 and the stabilization brought in by the

interaction between HgClOH and the water molecules is

�67.0 kcal mol�1. For Hg(OH)2, same trends are found again;

as expected, the energies of solvation are larger due to

the presence of two OH groups (�42.5 kcal mol�1 and

�47.2 kcal mol�1 for the equatorial and the apical orienta-

tions, respectively). The energy of opening of the water

clathrate is 51.1 kcal mol�1 and the stabilization brought in

by the interaction between Hg(OH)2 and the water molecules

is �69.6 kcal mol�1.

In conclusion, there are no relevant structural differences

between the solvation patterns of HgCl2, HgClOH and Hg(OH)2.

However, from the energetic point of view, solvation is more

favorable when the number of OH groups linked to Hg

increases, because of their ability to build hydrogen bonds

by two different ways.

3. Influence of salinity

The salinity of an aqueous solution of HgCl2 exerts an

influence on the relative amount of different inorganic mercury

species (Hg2+, HgCl+, HgCl2, HgCl3
�, [HgCl4]

2�). Since

different levels of salinity exist in aqueous environments, it

was interesting to take it into account and we focused on

HgCl3
�. The solvation of HgCl3

� was again simulated by

incremental additions of water molecules in its environment.

As shown below, the geometry of this molecule leads to a

smaller number of water molecules (12) needed to build the

first solvation shell as compared to the previous cases. Calcu-

lated geometrical parameters and Gibbs free energies of

solvation are introduced in Tables 4 and 5 respectively.

First, HgCl3
� was optimized in the gas phase. It is a

triangular molecule with a Hg–Cl bond distance of 2.46 Å.

From the NBO analysis, Hg–Cl bonds are covalent, with

a slight ionic character (15% participation of sp2 orbitals of

Hg and 85% participation of sp3 orbitals of Cl), in agreement

with the high electronegativity of chlorine. Then three water

molecules were added and the structure was optimized (Fig. 9,

left). The three molecules are positioned in order to make

hydrogen bonds with the chlorine atoms, but no network is

built between them. With six water molecules, two of them

interact with mercury in apical positions. These interactions

form the same triangular bipyramid pattern that is found for

HgCl2 with 24 water molecules. This pattern is already

achieved with only six water molecules in the case of HgCl3
�

because of its triangular geometry and the lack of space

around mercury. Water molecules can only interact through

both apical positions. Moreover, the hydrogen bond network

is preserved, thanks to the presence of three chlorine atoms.

Table 4 Calculated geometrical parameters in gaseous and solvated
HgCl3

� systems. The oxygen atoms are those directly linked to Hg

Water
molecules

Hg–Cl
d1/Å

Hg–Cl
d2/Å

Hg–Cl
d3/Å

Hg–O
d1/Å

Hg–O
d2/Å

0 2.46 2.46 2.46 — —
3 2.46 2.47 2.54 — —
6 2.51 2.55 2.59 2.53 2.56
9 2.50 2.58 2.61 2.47 2.65
12 2.50 2.58 2.64 2.50 2.54

Table 5 Solvation energies, calculated as: DGo
solv = [Go(system with

n water molecules) � nGo(H2O) � Go(HgCl3
�)]

Water molecules DGo
solv/kcal mol�1

3 �0.9
6 �10.4
9 �20.1
12 �29.0

Fig. 9 Optimized geometries of HgCl3
� solvated by 3 (left) and

6 (right) water molecules.
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From this system, additional water molecules only contribute

to the hydrogen bond network since the definitive geometrical

pattern around mercury is already established. This has been

confirmed by studying the systems with 9 and 12 water molecules

(Fig. 10).

IV. Conclusions

This study is only the first step of a long-term research

program, which aims at identifying the molecular processes

involved in the cellular uptake of Hg-containing molecules. As

already mentioned, the determination of the solvation patterns

of Hg(II)-containing molecules and, more specifically, achieving a

detailed understanding of the interaction between Hg(II)-

containing species and the surrounding water molecules is

the first requirement to build molecular models that explain

the transmembrane passage of Hg into the cell. In this work we

report a systematic study by stepwise solvation of HgCl2
including up to 24 water molecules. In order to include pH

effects, the solvation patterns of HgClOH and Hg(OH)2 were

also studied using 24 water molecules. In all cases the cohesion

of the hydrogen bond network is important to allow orbital-

driven interactions between Hg(II) and the water molecules.

One has to include at least 20 water molecules to have a

reasonable view of the first solvation shell, which is found to

derive from a water-clathrate. In both HgCl2–(H2O)24 optimized

structures Hg directly interacts with 3 water molecules from an

orbital point of view (three Hg–O donor–acceptor type

bonds). All the other interactions (either between the ligand

coordinated to Hg(II) and the water molecules or in between

the water molecules) are mainly electrostatic (hydrogen bonding).

The cluster-derived solvation energies of HgCl2, HgClOH

and Hg(OH)2 are estimated to be around �34.4, �40.1 and

�47.2 kcal mol�1, respectively. We have also shown, through

DFT Born–Oppenheimer molecular dynamics simulations,

that the optimal HgCl2–(H2O)24 clusters are stable in the gas

phase at temperatures even as high as 1000 K. Perhaps even

more important, these simulations starting from the stable

HgCl2–(H2O)24 structure revealed that an HgCl2–(H2O)3 trigonal

bipyramid effective solute appears and then the remaining

21 water molecules build a complete first solvation shell, in

the form of a water-clathrate. These simulations allow us to

estimate a high exchange rate of 5.4 � 1010 exchanges

per second at T = 1000 K between the water molecules

directly bonded with Hg and those of the immediate environ-

ment, although this rate could be significantly lower in solution

due to competition of exchange between the first–second and

the second–third solvation shells in the liquid phase.

The next step in our research program involves the solvation

of these Hg-containing molecules in the condensed phase.

However, as for the toxic As(OH)3 molecule, the understanding

of the solvation of HgCl2 in the condensed aqueous phase

requires the use of sophisticated classical Hg(II)–water,

Cl–water and HgCl2–water–water non-additive interaction

potentials in conjunction with Monte Carlo or molecular

dynamics simulations for the solution. Work is already in

progress in that direction.
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