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1
Resumé

1.1 Introduction

Les systèmes d’information de l’entreprise sont, le plus souvent, composés d’un
nombre de composants hétérogènes, responsables de l’hébergement, la création ou
la manipulation d’information critique pour l’opération de l’entreprise. La sécuri-
sation de ces informations est donc une préoccupation essentielle. En ce sens, les
propriétés de disponibilité, confidentialité ou intégrité (parmi beaucoup d’autres
propriétés de sécurité), peuvent être des exigences pour le bon fonctionnement des
données gérées par un système d’information.

Dans le but d’assurer ces propriétés de sécurité, chercheurs et fournisseurs d’outils
ont proposé et développé au cours des dernières décennies une pléthore de mécan-
ismes de sécurité visant à assurer que les données d’un système d’information (et
le système lui-même) sont à l’abri des menaces possibles. En outre, bon nom-
bre de ces mécanismes ont été intégrés dans les composants concrèts des sys-
tèmes d’information (comme les bases de données, les systèmes d’exploitation, les
serveurs web, etc) faisant de la sécurité un élément essentiel d’un grand nombre de
ces composants.

Parmi toutes les propriétés de sécurité qu’un système d’information doit ex-
iger, la confidentialité et l’intégrité, les propriétés de sécurité assurant que: 1)
l’information est disponible seulement aux parties autorisées et 2) l’information est
exacte et cohérente, sont deux des plus critiques. Un défaut de securisation de ces
propriétés quand elles sont nécessaires, conduit à un compromis dans l’information.
Ce compromis, peut causer d’importantes pertes à l’entreprise. En raison de sa rel-
ative simplicité conceptuelle, l’un des mécanismes les plus utilisés dans les com-
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8 CHAPTER 1. RESUMÉ

posants des systèmes d’information pour assurer la confidentialité des données et
l’intégrité est la definition et la mise en œuvre des politiques de contrôle d’accès
(AC). Grosso modo, les politiques de contrôle d’accès établissent pour un système
donné un ensemble de règles indiquant quelles actions un acteur donné peut ef-
fectuer sur une ressource d’information.

Cependant, malgré les quelques méthodes qui tentent d’obtenir ces implémen-
tations de la politique à partir des spécifications de sécurité de haut niveau, la mise
en œuvre d’une politique de contrôle d’accès reste, dans la grande majorité de cas,
complexe et source d’erreurs car elle impose la nécessite de connaître les outils et les
techniques spécifiques de bas niveau et les détails des fournisseurs. En outre, dans
le cas de systèmes complexes, composés d’un certain nombre de sous-systèmes
hétérogènes en interaction, le contrôle d’accès est omniprésente par rapport a cette
architecture. Nous pouvons trouver l’application de politiques de contrôle d’accès
dans les différents composants placés à différents niveaux d’architecture. Par con-
séquent, dans n’importe quel système, un ensemble de politiques de contrôle d’accès
met en œuvre les objectifs de sécurité. Mais ces politiques ne sont pas indépen-
dantes et des relations existent entre elles, de la même façon que des relations exis-
tent entre les composants situés dans les différentes couches de l’architecture.

Étant donné que l’analyse de la politique de un composant dans l’isolement
ne peux pas fournir suffisamment d’informations, idéalement, une représentation
globale de la politique de contrôle d’accès de l’ensemble du système devrait être
disponible. Toutefois, dans les faits, cette politique globale n’existe que d’une
manière implicite et pas toujours cohérente.

Dans ce contexte, la découverte et la compréhension des politiques de sécurité
qui sont effectivement appliquées par le système d’information apparaît comme une
nécessité impérieuse. C’est une condition nécessaire pour la refonte des politiques
actuelles que doivent s’adapter à l’évolution des besoins de l’entreprise et aussi pour
détecter les incohérences entre les politiques appliquées et les politiques souhaitées.
Le principal défi à résoudre est de combler l’écart entre les fonctions de sécurité
dépendant des fournisseurs et une représentation de haut niveau qui exprime ces
politiques d’une manière qui fait abstraction des spécificités des composants du sys-
tème et qui puisse être compris par les experts en sécurité sans aucune connaissance
approfondie des particularités de chaque technologie et fournisseur. Ce modèle
logique nous permettrait également de mettre en œuvre toute opération d’évolution
/ refactoring / manipulation sur les politiques de sécurité, et ce d’une manière réu-
tilisable.
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Figure 1.1: Description du problème

1.2 Description du problème

Comme présenté ci-dessus, la definition et mise en œuvre de politiques de con-
trôle d’accès est souvent le mécanisme de choix pour assurer la confidentialité des
systèmes d’information. Cependant, la mise en œuvre de ces mécanismes reste
complexe et sujette aux erreurs. Dans un système d’information complexe, avec
plusieurs composants appliquant des politiques de contrôle d’accès, deux questions
essentielles se posent:

1. Est-ce que la politique déployée dans un système concret a atteint l’objectif
de sécurité? C’est a dire, est-ce que la politique déployée applique la confi-
dentialité et l’intégrité comme souhaité?

2. Lorsque elles travaillent dans un système complexe dont elles font partie, les
politiques des composants sont-elles compatibles les unes avec les autres de
sorte que 1) L’objectif global de sécurité est atteint et 2) Le fonctionnement
de chaque composant n’est pas touché de façon inattendue par les politiques
des autres composants?

Malheureusement, répondre aux questions ci-dessus est une tâche très com-
plexe. Cela est dû principalement à deux facteurs. 1) Le problème de la compréhen-
sion des politiques mises en œuvre dans des composants concrets 2) Le problème de
l’analyse de toutes les politiques dans un système d’information dans son ensemble.
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En ce qui concerne chaque composant concret, la complexité même des outils
et des techniques de mise en œuvre a un impact important non seulement au mo-
ment de la mise en œuvre, mais aussi quand la politique doit être inspectée pour
être analysée. Les configurations finales sont souvent représentées en utilisant des
représentations de bas niveau, et spécifiques au fournisseur, comme des fichiers
texte ou des tables de dictionnaire dans une base de données. En outre, plusieurs
mécanismes peuvent participer à la mise en œuvre de la politique, ce que implique
la repartition de la politique et, par conséquent, une complexité accrue.

Cependant, les politiques ne peuvent pas être considérées comme isolées, etant
donné que des relations de dépendance existent entre les composants et leurs poli-
tiques. Malheureusement, ces relations entre les composants et leurs politiques
de contrôle d’accès sont rarement explicites, ce qui les empêche d’être analysées
dans leur ensemble. En supposant que le composant Cx dépend du composant Cy

pour fonctionner correctement, le schéma d’autorisations de Cy, tandis que correct
quand on le considere de maniere isolé, peut mettre en danger le composant Cx ou
l’empêcher de fonctionner correctement.

1.3 Framework dirigé par les modèles

Afin de résoudre le problème mentionné ci-dessus, et en raison de son efficac-
ité averée pour la spécification et la réalisation de systèmes complexes, nous pro-
posons la construction d’un mécanisme automatique de rétro-ingenerie dirigée par
les modèles. Ce mechanisme doit etre capable d’analyser les aspects de sécurité
des composants déployées (par exemple, configurations des pare-feu) pour dériver
des modèles abstraits (Platform-independent model (PIM)) représentant la politique
(par exemple, la politique de sécurité du réseau) qui est effectivement appliquée
sur des composants du système. Une fois que ces modèles abstraits sont obtenus,
ils peuvent être conciliés avec les directives de sécurité attendues, afin de vérifier
leur conformité, ils peuvent être interrogés pour tester la cohérence ou utilisés pour
générer des configurations de sécurité correctes. Enfin, ils peuvent être réunis pour
représenter la politique de contrôle d’accès globale en utilisant un modèle des exi-
gences (Computation Independent Model (CIM)) pour recueillir toutes les informa-
tions représentées dans les modèles PIM.

Dans le but de valider notre approche, nous avons choisi de l’appliquer sur trois
systèmes différents et sur le système obtenu par leur combinaison. Concrètement,
nous avons decidé d’appliquer notre approche sur: Les réseaux (concrètement, des
pare-feu de réseaux), les systèmes de gestion de base de données (SGBDRs) et les
systèmes de gestion de contenu (SGCs). Notons cependant que les résultats de cette
thèse peuvent être étendus à d’autres sous-systèmes différents.
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Figure 1.2: Vue d’ensemble du framework proposé

Ces trois systèmes travaillent dans différentes couches de l’architecture et sont
souvent mis en relation pour construire des systèmes plus complexes. En outre,
la mise en œuvre du contrôle d’accès est une caractéristique de base de chacun
d’eux. Les pare-feu fournissent contrôle d’accès aux réseaux en filtrant le trafic
en fonction des conditions données. SGBDRs et SGCs appliquent politiques de
contrôle d’accès sur les données qu’ils stockent (et aussi sur son administration)
en utilisant un certain nombre de règles de contrôle d’accès affirmant ce que les
utilisateurs peuvent faire.

Dans la figure 1.2, nous décrivons la synthèse de l’approche proposée pour
l’extraction et l’analyse des politiques de contrôle d’accès. Dans ce qui suit, nous
allons décrire brièvement les étapes qui la composent.

1.3.1 Modèle technique: Platform specific models (PSMs)

La distance conceptuelle entre la source d’information et les modèles abstraits
est généralement importante, ce qui rend le travail de l’injecteur (l’outil en charge
de transformer les informations d’origine en un modéle) très complexe. Par con-
séquent, la définition des modèles techniques, à savoir les modèles représentant des
informations contenues dans le même niveau d’abstraction que les informations de
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source, peut être nécessaire. Ces modèles font comme un moyen de combler les es-
paces techniques, de sorte que nous passons de l’espace technique de la source
d’information à l’espace technique ModelWare. Une fois dans ModelWare, les
modèles techniques peuvent être transformés en modèles abstraits en utilisant des
outils de transformations de modèles comme ATL [51].

A titre d’exemple, dans le cas des pare-feu, l’information de contrôle d’accès
est stockée sous la forme de fichiers de configuration textuelles écrites à l’aide, nor-
malement, de langages spécifiques au fournisseur avec différentes syntaxes et sé-
mantiques. Afin d’extraire les informations de contrôle d’accès et de les représenter
dans un modèle abstrait, analyseurs et injecteurs sont nécessaires. L’analyseur est
capable de lire la source de l’information alors que l’injecteur utilise les informa-
tions obtenues afin de remplir un modèle avec ces informations. Étant donné que
la variabilité et la distance sémantique des langages pare-feu par rapport au mod-
èle abstrait sont grandes, analyseurs et injecteurs peuvent devenir trop compliqués.
Ainsi, dans le but de simplifier la tâche, les informations sont d’abord extraites à un
modèle technique, spécialement adapté pour la représentation de l’information AC
d’un fournisseur particulier.

Au contraire, si nous jettons un coup d’oeil à l’information du contrôle d’accès
dans les bases de données relationnelles, nous observons une situation contrastée.
Pour l’extraction de l’information du AC stockée dans les tables du dictionnaire, un
modèle PSM n’est pas nécessaire, puisque les concepts sont similaires à ceux du
modèle abstraite. Toutefois, pour l’extraction des informations de contrôle d’accès
contribué par les triggers et les procédures stockées, un PSM représentant le langage
utilisé pour définir les procédures stockées est nécessaire car la distance entre le
modèle abstrait et le code source est grande.

1.3.2 Modèle métier: Platform-independent models (PIM)

L’extraction de modèles PSM crée un pont entre l’espace technique de la source
des informations de configuration et le ModelWare. Avoir les informations de
contrôle d’accès d’un système représentées comme un modèle permet la réutili-
sation des outils de l’ingénierie dirigée par les modèles (IDM). Des générateurs de
l’éditeur, des moteurs de transformation de modèle, etc., deviennent automatique-
ment disponibles.

Cependant, l’information des modèles de PSM est au même niveau d’abstraction
que les informations de la configuration initiale. Ainsi, la étape suivante est d’élever
le niveau d’abstraction de l’information contenue dans ces modèles. Cette informa-
tion est alors représentée dans un modèle métier (PIM), de sorte qu’il puisse être
manipulé sans tenir compte des spécificités des technologies utilisées pour sa mise
en œuvre (remarquons que lorsque nous nous référons ici à un modèle métier, nous
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avons l’intention de souligner que les modèles sont indépendant des spécificités
des fournisseurs concrèts, tout en étant spécifiques au domaine du composant). Au
coeur de cette étape est le développement de méta-modèles spécifiques au domaine
du contrôle d’accès, capables de représenter l’information de contrôle d’accès de
chaque composant de manière abstraite, concise et plus facile à analyser et á com-
prendre.

Une fois que le métamodèle et les modèles PIM sont disponibles, les opérations
d’analyse et de manipulation peuvent être reutilisées. Une application immédiate
serait l’utilisation du langage de requêtes standard OCL[71] (Object Constraint Lan-
guage) pour calculer des métriques intéressantes sur le modèle et effectuer des re-
quêtes avancées sur les règles de contrôle d’accès qui y sont représentées. A titre
d’exemple nous pouvons facilement compter le nombre d’autorisations par sujet,
ainsi qui interroger si un sujet donné dispose d’autorisations sur un objet donné,
etc. Chacune des opérations définies pourraient être appliquées à tout modèle PIM,
peu importe le système d’ou l’information a été extraite. D’autres tâches d’analyse,
comme la détection des erreurs de configuration et des anomalies dans les poli-
tiques, peuvent également être reutilises a ce niveau.

1.3.3 Modèle des exigences CIM

Les modèles PIM représentent des informations d’une manière abstraite, de
sorte que les détails concernant les spécificités de la plate-forme de mise en œu-
vre sont éliminés. Néanmoins, les modèles PIM représentent toujours l’information
par rapport à un domaine donné, c’est à dire qu’ils comprennent les concepts et
les relations qui ne sont pertinents qu’à ce domaine. L’utilisation de ces construc-
tions spécifiques à un domaine facilite la compréhension de la politique de sécurité
lorsqu’elle est analysée dans le contexte du domaine (a titre d’exemple, pour un
expert en sécurité de bases de données, un PIM doit comprendre les concepts de la
table, colonne, etc. et les relations entre eux). Cela facilite la compréhension de la
spécification de contrôle d’accès.

Cependant, bien adaptées à plusieurs domaines différents, les politiques de con-
trôle d’accès sont un mécanisme qui ne dépendent pas d’un domaine concret. Ainsi,
comme un pas additionel, les modèles spécifiques à un domaine, peuvent être ex-
traits vers un modèle de contrôle d’accès générique CIM.

Comme avec la transformation de PSM à PIM, qui a permis de traiter des mod-
èles de contrôle d’accès spécifiques à un domaine d’une manière uniforme sans
tenir compte des spécificités de la mise en œuvre et des fournisseurs, la traduction
de PIM à CIM permet de manipuler des modèles de contrôle d’accès extraits de
différents domaines d’une manière uniforme et réutilisable. Il permet également
l’intégration de tous les modèles PIM en un seul CIM.
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Nous voulons remarquer que, bien que la traduction de PIM à CIM présente
plusieurs avantages pour la manipulation des politiques, elle peut avoir pour con-
séquence que les politiques de domaines concrets soient plus difficiles à compren-
dre, étant donné que les concepts PIM peuvent être perdues dans la traduction.
Idéalement, le language cible CIM doit fournir les mécanismes (parmi les mécan-
ismes possibles nous avons les stéréotypes, les valeurs marquées, l’extension du
modèle, etc) d’intégrer ces concepts spécifiques au domaine, de façon qu’une poli-
tique représentée dans la langue CIM soit à la fois, indépendante de calcul et in-
dépendante du domaine pour les tâches de manipulation et d’analyse, mais aussi
spécifique au domaine, de sorte qu’il soit plus facile à comprendre par les experts
du domaine.

Grace à sa flexibilité (il est capable de représenter les politiques RBAC, mais
aussi des politiques avec d’autres modéles) et a son extensibilité (il peut donc inté-
grer les concepts spécifiques au domaine). Nous croyons que XACML[59], langage
et un framework standard pour la représentation et la gestion des politiques de con-
trôle d’accès, est un bon candidat pour la représentation des politiques issus de
différents composants.

Intégration des politiques de contrôle d’accès

Comme indiqué précédemment, les politiques de contrôle d’accès des com-
posants utilisés pour construire un système complexe doivent collaborer pour at-
teindre des exigences de sécurité. Ainsi, des interactions entre les politiques exis-
tent. Ainsi, la dernière étape de notre framework consiste à combiner les politiques
provenant des différents composants du système, de sorte qu’une information utile
puisse être obtenue et les propriétés, par rapport à une politique globale, puissent
être vérifiées. Nous devons être en mesure de vérifier si une opération qui n’est pas
autorisé dans un composant est autorisé dans un autre ne crée pas une vulnérabil-
ité dans le système. Nous devrions être aussi en mesure d’assurer que lorsqu’un
sujet obtient une autorisation sur un objet donné, tous les composants participent
correctement de sorte que l’objet peut être atteint par le sujet comme souhaité.



2
Introduction

Most company’s information systems are composed by heterogeneous compo-
nents, responsible of hosting, creating or manipulating critical information for the
day to day operation of the company. Securing this information is thus a main
concern, imposing the system to meet diverse security requirements. In this sense,
availability, confidentiality or integrity properties, among many others, may be de-
manded requirements for the proper operation over the data managed by any given
information system.

With the purpose of assuring these security properties, both, researchers and
tool vendors have proposed and developed during the last decades a plethora of se-
curity mechanisms aimed at ensuring that the data of an information system (and the
systems itself) is safe from possible threats. Moreover, many of those mechanisms
have been integrated in concrete information system components (as databases, op-
erating systems, web servers, etc) making security a core component of many of
them.

Among all the security properties an information system must require, confiden-
tiality and integrity, the security properties assuring that 1) information is available
only to authorized parties and 2) Information is accurate and consistent, are two of
the most critical ones. Failing to assure any on those properties when required, will
lead to a compromise in the valuable information asset that may cause important
losses to the company. Due to its relatively conceptual simplicity, one of the most
used mechanisms in information system components to assure data confidentiality
and integrity are access control (AC) policies. Grosso modo, Access-control poli-
cies establish for a given system a set of rules indicating which actions a given actor
in the system can perform on an information resource.

15
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However, and despite the few methods that attempt to derive these policy im-
plementations from high-level security specifications, the task of implementing an
access control security policy in concrete components remains in the vast majority
of cases complex and error prone as it requires knowing low level and vendor spe-
cific tools and techniques. Moreover, in the case of complex systems composed of
a number of interacting heterogeneous subsystems, access-control is pervasive with
respect to their architecture. We can find access-control enforcement in different
components placed at different architectural levels. Therefore, in any system, a set
of different access control policies are enforcing the security goals. But these poli-
cies are not independent and relations exist between them, as relations exist between
components situated in different architecture layers.

Thus, ideally, a global representation of the access-control policy of the whole
system should be available, as analysing a component policy in isolation does not
provide enough information. However, normally, this global policy only exist in an
implicit and not always consistent manner.

In this context, discovering and understanding which security policies are actu-
ally being enforced by the information system comes out as a critical necessity. This
is a necessary condition for the reengineering of the current policies to adapt them
to evolving needs of the company and also to detect inconsistencies between the
enforced policies and the desired policies. The main challenge to solve is bridging
the gap between the vendor-dependent security features and a higher-level repre-
sentation that express these policies in a way that abstracts from the specificities
of specific system components and that can be understood by security experts with
no deep knowledge of the particularities of each technology and vendor. This logi-
cal model would also allow us to implement all evolution/refactoring/manipulation
operations on the security policies in a reusable way.

2.1 Problem description

As introduced above, Access-control policies are often the mechanism of choice
for the purpose of assuring confidentiality in information systems. However, the im-
plementation of such mechanisms remain complex and error prone and therefore,
given a complex information system where several components implement and en-
force access-control policies, two critical questions arise:

1. Does the policy deployed in a concrete system meet the security goal, e.g.,
does the deployed policy enforces confidentiality and integrity as desired?

2. When working in a complex system encompassing them, are the compo-
nent policies consistent with each other so that 1) The security global goal
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Figure 2.1: The discovery problem

is achieved and 2) The functioning of each component is not unexpectedly
impacted by other component’s policies?

Unfortunately, answering the aforementioned questions is a very complex task.
This is due mainly to two factors. 1) The problem of understanding the policies im-
plemented in concrete systems while already deployed 2) The problem of analysing
all the policies in an information system as a whole.

2.1.1 Example

In order to ease the discussion and evidence the aforementioned problems, we
will introduce an example of a simple yet quite common information system where
several components enforce access-control policies.

Figure 2.2 represents a very common information system configuration. It is
composed by a network layer and a number of servers providing diverse services.
Among them, we have a database server, that can work standalone but also serves
as a data back-end for other services in the application layer. In the example, one
prominent element of the application layer is a Content Management System. The
network layer, the database storage back-end and the CMS, all implement access-
control policies in order to protect the data they manage (notice that this example
will be extended in the chapters devoted to the concrete components and system
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Figure 2.2: Information System Example

analysis).

Thus, we have three different components building up an information system
and enforcing access-control policies. In the following, we will show the problems
we face when dealing with them individually and with the information system as a
whole.

2.1.2 The problem of understanding component policies

Regarding each concrete component, the very complexity of the implementa-
tion tools and techniques has a strong impact not only while developing the policy
but also when it needs to be inspected for evaluation. Final policy configurations
are commonly represented by using low-level representations, e.g., text files with
vendor-specific languages, or databases dictionary tables, again following different
data schema’s from one vendor to another. Moreover, several different mechanisms
can participate in the implementation of the policy, scattering the policy and in-
creasing the complexity of the implementation and inspection process.

As a consequence, the errors that may have been introduced during the imple-
mentation phase, making the implemented policy hold differences with respect to
the desired one, are difficult to detect. Furthermore, as security requirements are
rarely static (new application scenarios, new users, etc), frequent modifications of
the security policy implementation are required, what increases the chances of in-
troducing new errors and inconsistencies as it can not be easily analysed.

In order to better illustrate this problem, we analyze here the AC implementation
of the concrete components of our example. In the following, the AC implementa-
tion of networks, RDBMSs and CMSs is briefly explained.
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Network

In the network level, access control is enforced by firewalls. The implemen-
tation of access-control policies in these components remains a complex and error
prone process usually performed by hand relying in the expertise of the system ad-
ministrator.

Listing 2.1: Firewall 2 Netfilter Iptables configuration

iptables −P INPUT DROP

iptables −P FORWARD DROP

iptables −P OUTPUT DROP

iptables −N IntraWeb_HTTP

iptables −A FORWARD −s 1 1 1 . 2 2 2 . 2 . 0 / 2 4 −d 1 1 1 . 2 2 2 . 1 . 1 7 −p tcp −−dport 80 −j
IntraWeb_HTTP

iptables −A IntraWeb_HTTP −s 1 1 1 . 2 2 2 . 2 . 1 −j RETURN

iptables −A IntraWeb_HTTP −s 1 1 1 . 2 2 2 . 2 . 5 4 −j RETURN

iptables −A IntraWeb_HTTP −j ACCEPT

Listing 2.2: Firewall 2 FreeBSD IPFW configuration

# Rule Fw2Policy 3 (global )
"$IPFW" add 40 set 1 drop tcp from 1 1 1 . 2 2 2 . 2 . 1 to 1 1 1 . 2 2 2 . 1 . 0 / 2 4 80
| | exit 1
#
# Rule Fw2Policy 4 (global )
"$IPFW" add 50 set 1 drop tcp from 1 1 1 . 2 2 2 . 2 . 5 4 to 1 1 1 . 2 2 2 . 1 . 0 / 2 4 80
| | exit 1
#
# Rule Fw2Policy 5 (global )
"$IPFW" add 60 set 1 permit tcp from 1 1 1 . 2 2 2 . 2 . 0 / 2 4 to 1 1 1 . 2 2 2 . 1 . 0 / 2 4 80
setup keep−state | | exit 1
#
# Rule fallback rule

# fallback rule

"$IPFW" add 70 set 1 drop all from any to any

| | exit 1

Listing 2.3: Firewall 2 Cisco PIX configuration

!
! Rule Fw2Policy 3 (global )
access−list eth1_acl_in remark Fw2Policy 3 (global )
access−list eth1_acl_in deny tcp host 1 1 1 . 2 2 2 . 2 . 1 1 1 1 . 2 2 2 . 1 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0
eq 80
!
! Rule Fw2Policy 4 (global )
access−list eth1_acl_in remark Fw2Policy 4 (global )
access−list eth1_acl_in deny tcp host 1 1 1 . 2 2 2 . 2 . 5 4 1 1 1 . 2 2 2 . 1 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0
eq 80
!
! Rule Fw2Policy 5 (global )
access−list eth1_acl_in remark Fw2Policy 5 (global )
access−list eth1_acl_in permit tcp 1 1 1 . 2 2 2 . 2 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0 1 1 1 . 2 2 2 . 1 . 0
2 5 5 . 2 5 5 . 2 5 5 . 0 eq 80
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access−group eth1_acl_in in interface eth1

Listings 2.1, 2.2, 2.3 are firewall configuration excerpts showing the rules needed
for managing the ability of sending HTTP requests from the local network through
the first firewall in Figure 2.2. All them implement the same policy, namely, allow-
ing all hosts to send HTTP requests except for an specific admin host (111.222.2.54)
and the firewall interface itself (111.222.2.1) but they are written by using three dif-
ferent packet filter languages. 2.1 uses Netfilter Iptables, 2.2 uses FreeBSD Ipfw
language and 2.3 corresponds to the Cisco PIX filter language.

In order to understand which policy is being implemented, for each kind of
firewall the language used for the implementation of the policy and its execution
semantics need to be mastered. Moreover, as a number of (possible different) fire-
walls can collaborate in enforcing the policy in a given network, the policy may be
scattered with respect to a given network topology, increasing the complexity of the
understanding process, as rules for the same services and hosts can be present in
several different configuration files.

Database Management Systems

Due to the key role Database Management Systems play in information sys-
tems for storing required, often critical information, access-control models and tech-
niques have been early adopted by database vendors. Moreover, the SQL standard
already provides the basic means to manage permission on databases (although not
all vendors strictly follow the standard).

Unfortunately, as in the case of the network layer, understanding which policy
is being implemented is challenging due to a number of reasons:

1. First of all, not all vendors follow the same access-control model. While they
mostly implement Discretionary Access Control (DAC) policies, i.e., the
owner of the resource can delegate the permissions, some of then enhance it
by adding role-based capabilities.

2. Although the SQL standard provides the means to define a basic access-
control policy (e.g., grant and revoke commands), once implemented, it
is normally stored in internal dictionary tables, following a vendor-specific
schema.

3. Several other mechanisms participate in the implementation of the policy.
Concretely, stored procedures and triggers. The latter may be used to imple-
ment fine-grained access-control rules while the former may be used to fac-
torize permissions, following a delegation schema. Both these mechanisms,
are vendor-specific. Different languages and rules are used depending on
the database in hand.
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CMSs

If we take a look to the most used CMSs we can observe that access-control
in CMSs vary largely. Some support roles while other don’t, some provide the
user with an static immutable set of predefined roles while others allow the user to
define his own roles. The level at which permissions can be granted can also vary.
In some systems, the permissions can be granted of object types, while in others,
permissions can be granted in individual objects.

Looking closer to three of the most used CMSs, namely Wordpress, Drupal
and Joomla, we see how the complexity and flexibility of the AC implementation
grows. Wordpress and Drupal present the simplest AC schema, with predefined
roles and permissions at the object type level. Joomla allows through the use of
groups the implementation of an RBAC access-control policy. Moreover, for all the
mentioned CMSs, there exist a vast number of access-control pluggable modules.
These modules provide a wide range of features, from complex RBAC policies to
fine-grained access-control, increasing the complexity and the differences between
the AC implementations of the CMSs.

With all this diversity, and having in mind that migrating from one CMS to an-
other is a common practice, the need for extracting the access-control policy arises
as both, a challenge and a requirement. Once implemented, and given the aforemen-
tioned complexity and diversity, understanding and analysing the policy in order to
asses the absence of errors and facilitate its manipulation is hampered by demanding
a deep component-specific knowledge.

2.1.3 The problem of analysing the access-control policies as a
whole

We have seen how access-control policies are deployed in concrete components.
However, policies can not be regarded as isolated. When working in an encompass-
ing complex systems, concrete components collaborate in order to meet its func-
tional requirements. Thus, the access-control policy on a given component may be
affected by the access-control policy on another component. Together, they are sup-
posed to collaborate to achieve the global security goal. Unfortunately, the relations
between the components and their access-control policies are rarely explicit, what
prevents them to be analysed as a whole. Supposing the component Cx depends
on the component Cy for its functioning, the schema of permissions in Cy, while
correct when analysed in that context, may put at risk the component Cx or prevent
it to work properly.

In our example, dependencies exists between the information system compo-
nents. The Database depends on the network while the CMS depends on both the
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Figure 2.3: Basic Access-Control

network and the Database. In this scenario, the combination of their access-control
policies may lead to unexpected behaviour. Access to a given resource may be un-
expectedly denied (or allowed). As an example, a combination of permissions in
the network and the database policies could lead to the disclosure of CMS data,
supposedly protected by its AC policy.

2.2 Basic Concepts

This thesis aims to solve problems in the domain of information security by ap-
plying model-driven tools and techniques. In order to ease the discussion, in this
section the basic concepts of these domains, relevant to our work, will be summa-
rized. Concretely, we will provide background on access-control policies, model-
driven core concepts and model-driven reverse engineering techniques.

2.2.1 Access-Control

Access-control [86, 19], often simply called Authorization or Secrecy, is a mech-
anism aimed at assuring that the information within a given Information System (IS)
is available only to authorized parties. Therefore access-control it is used in order
to assure two system properties, Confidentiality, but also Integrity, by controlling
that only trusted entities modify or write the data.

In Figure 2.3 the core concepts of access-control, namely Object (or Resource),
Subject, Action and Permission (or Privilege) are depicted. The description of these
concepts is as follow:

— Object: Objects are normally passive entities within systems. They rep-
resent pieces of information such as files in operating system or tables in
relational databases. However, sometimes these object can also represent
running services like HTTP servers, etc. Thus, objects in the context of
access-control are any resource that can be accessed within an Information
System.
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— Subject: Subjects are the active entities in a system. The represent the actors
to which the access to Objects is controlled. Again, as with objects, these
actors could be, not only human users, but also machines or services that
access other services, etc.

— Actions: Actions are any kind of access to the Objects that may be per-
formed by the Subjects in a given IS. From the classical C.R.U.D. (Create
Read, Update, Delete) operations in database systems to sending a HTTP
package in a network.

— Permission: Actions are related to Objects, constituting the permissions. A
permission is thus the right to perform a given Action (or set of actions) on
a given Object (or set of objects). These permission are, in turn, granted or
denied to the Subjects.

Summarizing, access-control is about granting or denying to Subjects in a sys-
tems the Permissions to perform Actions on Objects. The definition of the permis-
sions and its assignation is performed by using two concepts:

— Rule: A rule is the assignation (or denial) of a permission to a given subject.
Generally, access control rules have the following form:

Ri : {conditions} → {decision},

where the subindex i specifies the ordering of the rule, decision can be accept
or deny and conditions is a set of rule matching attributes like the source and
destination addresses, holding roles, but also environments conditions like
time, etc.

— Policy: An access-control security policy is the set of permission assigna-
tions within a given information system. Thus, it is composed of a set of
Rules. This policy constitutes a mere definition of the security requirements
for the system, while the process of implementing the mechanisms to make
the system follow the rules it defines is called enforcement.

The core concepts of access-control described above can be organized in dif-
ferent ways and hold different meanings. Concretely, Access-control policies are
defined conforming to access-control models that define the elements necessary to
construct their contained rules along with their semantics. Due to the efforts of
both, the research and industrial communities, have committed to the subject, di-
verse models have been proposed in the last decades.

In the following, we will briefly describe the most relevant ones.
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Access-control Models

AC Lists: Access Control Lists (ACLs) are the most basic form of access control.
The concept of an ACL is simple: each resource on a system to which access should
be controlled, has its own associated list of mappings between the set of entities re-
questing access to the resource and the set of actions that each entity can take on the
resource. For example, a stateless packet filter firewall follows this model, holding
rules that filter the traffic depending on ip addresses, etc. Also, each file on a file
system might have an associated data structure that holds the list of users that the
operating system as a whole recognizes, along with a flag which indicates whether
each user may read, write, execute, delete, or modify the file (or some combination
of these).

Mandatory AC: [8]: Mandatory Access Control (MAC) is a type of access control
in which access to objects is restricted based on the sensitivity (as represented by a
label) of the information contained in the objects and the formal authorization (i.e.,
clearance) of subjects to access information of such sensitivity. The administrator
defines the usage and access policy, which cannot be modified or changed by users.
The complexity of this model has reduced its implantation to environments with
highly critical information, like military or medical information.

Discretionary AC: Discretionary Access Control (DAC) (also defined in [8]) is a
type of access control in which a user has complete control over all the programs
it owns and executes, and also determines the permissions other users have those
those files and programs. We have examples of DAC implementations in the do-
main of relational databases and file systems where the owner of a table or a file can
grant different permissions on it to other parties.

Role-based AC: Role-based Access Control (RBAC) [85] is a newer access control
model than the ACL, MAC and DAC paradigms. The basic idea behind this model
is the use of roles. Permissions are established based on the functional roles in a
given enterprise and then users are assigned to roles. In other words, the requester’s
role or function will determine whether access will be granted or denied. Being
that roles represent the tasks and responsibilities within an enterprise, they are less
variable than users, simplifying the implementation and administration of the policy.

Depending of which level of the RBAC model is under consideration, it may
include some more advances concepts. Role-hierarchies, sessions, separation of
duties and fine-grained constraints can be found in the highest RBAC model level
(see Figure 2.4).
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Figure 2.4: Attribute-Based Access-Control

Organization based access control: Organization based access control (OrBac)
[9] presents an extension to the RBAC model specially tailored to the definition of
security policies independently of the implementation. Subject, Object and Actions,
the basic access-control concepts are abstracted to, Roles, Views and Activities. In
this manner, the privileges within an organization can be defined by using only the
abstract entities, and then, concrete privileges derived by assigning concrete entities
to the abstract ones. OrBac is also intended to provide support for dynamic scenar-
ios, thus, it introduces the concept of Context so that assigned permissions depend
on the evaluation of context attributes. Finally, OrBac is not limited to permissions
but also includes prohibitions, obligations and recommendations.

Attribute-based AC : Attribute Based Access Control (ABAC)[99] is an access
control model wherein the access control decisions are made based on a set of char-
acteristics, or attributes, associated with the requester, the environment, and/or the
resource itself (see Figure 2.5). Each attribute is a discrete, distinct field that a pol-
icy decision point can compare against a set of values to determine whether or not
to allow or deny access. The attributes do not necessarily need to be related to each
other, and in fact , the attributes that go into making a decision can come from dis-
parate, unrelated sources.

2.2.2 Model Driven Engineering

The Model Driven Engineering (MDE)[23] paradigm emphasizes the use of
models to raise the level of abstraction and automation (of the model manipula-
tion operations) in the development of software. Abstraction is a primary technique
to cope with complexity, whereas automation is an effective method for boosting
productivity (and quality). In MDE, the approach used to increase the level of ab-
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Figure 2.5: Attribute-Based Access-Control

straction is the use of abstract Models, often obtained by defining Domain-Specific
Languages (DSLs) whose concepts closely reflect those of the problem domain,
facilitating the understanding and hiding the details of the implementation tech-
nologies.

The main assumption of MDE is that the model level and not the programming
source code is the right representation level for managing all artifacts within a soft-
ware engineering process. Therefore, models are considered as first-class citizens in
MDE. Models are defined according to a three-level architecture shown in Fig.2.6.
Such architecture is composed by model, metamodel and metametamodel.

Modeling and MetaModeling

conformsTo

Metametamodel

Metamodel

Model

conformsTo

conformsTo

Level 3

Level 2

Level 1

Figure 2.6: Three-level architecture in MDE [35]

A model is a (possibly partial) representation of a system that captures some of
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its characteristics. A model contains elements/entities that represent entities com-
posing software artifacts/concepts in the real world. Such concepts and their associ-
ations (i.e., semantics) are defined in the second modeling level, called metamodel.

A model is related to a metamodel according to a relation of conformance. Such
relation is equivalent to the relation the code written in a given programming lan-
guage has with respect to the grammar of that language. As programs written in
one language must conform to the grammar rules of that language, models defined
according to a metamodel must conform to the rules defined in that metamodel.

Metamodel’s elements/entities and relations are in turn defined by means of the
third modeling level called metametamodel. Similar to the model/metamodel rela-
tionship, a relations of conformance is defined between metamodels and metameta-
models; such that a metamodel is defined using concepts and associations of a given
metametamodel. Again, this relation is equivalent to the relation between the gram-
mar of a given programming language and a language to define grammars (e.g.,
EBNF: Extended Backus-Naur Form).

Finally, models, metamodels and metametamodels may be implemented accord-
ing to different modeling standards. For instance, the Object Management Group
proposes a standard metametamodel called Meta Object Facility (MOF)[72] and
different standard metamodels being, the Unified Modeling Language (UML)[74],
the one with the more widespread use.

Model Transformations
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Figure 2.7: Model transformation [35]

The second feature of MDE is the automatic model manipulation. This manip-
ulation is usually performed by means of model-to-model transformations (M2M)
(see Fig.2.7) that, taking one or more models as input, generate one or more models
as output (note that input and output models not necessarily conform to the same
metamodel) according to mappings defined over the concepts of the input and out-
put metamodels.

The MDE paradigm encourages the rigorous use of models and model manip-
ulations in order the deal with the complexity of systems. However, the MDE
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world needs to collaborate with other existing technologies. This relation is also
performed by means of model transformations. Text-to-Model (T2M) and Model-
to-Text (M2T) transformations aim at bridging the gap between MDE and other
technologies. We call the different technologies we can find when dealing with in-
formation systems, Technical Spaces (TS). The concept of technical space is key
to the works of this thesis and therefore it will be described in detail (based on the
description that can be found on [29]) in the following section.

Technical Spaces

Figure 2.8: Bridging technological spaces [29]

The concept of Technical Space is introduced in [57]. A TS is defined as a
working context with a set of associated concepts, body of knowledge, tools, re-
quired skills, and capabilities. The artifacts of which a software system is com-
posed conform to the TS used to develop them. For example, as introduced before,
the source code of a program conforms to the grammar TS, called grammarware,
whereas XML documents conform to the XML TS, that we can call xmlware. A TS
is defined based on a number of artifacts in different abstraction levels which are
related to each other by means of a conformance relationship (e.g., program/gram-
mar in grammarware, xml document/schema in xmlware and model/metamodel in
modelware).

However, TSs are not isolated and bridges can in fact be defined between two
different TSs. Bridging TSs allows the artefacts created in one TS to be transferred
to another different TS in order to use the best capabilities of each technology,
promoting interoperability between applications.

When bridging the MDE TS, called modelware, with other TSs, two operations
should be supported: (1) the extraction of models from software system artefacts
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defined in the TS considered and (2) the generation of these artefacts from mod-
els. For instance, a bidirectional grammarware-modelware bridge should provide
both a model extractor from source code and a source code generator from models.
t2m and m2t transformations applied to source code files and models enable the
definition of one-way bridges between grammarware and modelware.

In M2M transformations, both the source and target elements of the transfor-
mation are inside the modelware technical space. However both M2T and T2M
must deal with the different artifacts of which a software system is composed, that
is, they must deal with the TS to which the artifact involved in the transformation
are implemented. In the case of M2T transformations, the vast majority of existing
solutions allow these transformations to be defined through the use of templates,
where the text to be generated conforms to a layout which is filled in by model in-
formation. On the other hand, solutions aimed at performing T2M transformations
are normally ad-hoc tools which deal with a specific type of artifacts. The main
difference between M2T and T2M is that template based M2T transformations can
generate any text-based artifact (i.e., source code, XML les, etc) without regarding
the formalism to which such artifact conforms, whereas T2M transformations must
know such formalism to be able to produce correct artifacts (correctness from the
point of view of the conformance relationship).

There exist specific languages for defining M2M and M2T transformations, for
instance, ATL [51], the OMG standard QVT[73], Epsilon 1 for M2M and MOF-
Script 2, JET 3 and XPand 4 for M2T, whereas T2M transformations are normally
performed by handcrafted specific solutions. However, some generative solutions
for specific TSs like grammarware exist, as it is the case of the XTEXT 5 framework,
a tool that generates the required parsers to get models from language instances by
providing the corresponding grammar.

2.2.3 Model Driven Reverse-Engineering

In MDE processes aimed at the creation of new systems, abstract models are
initially built by developers to describe the system, and model transformations are
then in charge of generating artifacts of the new software system. In model-driven
software reengineering[34], a reverse engineering process is first applied to obtain
the initial models, which will later be transformed in order to restructure and gen-
erate the system evolved. A model-driven reverse engineering process is generally
composed of two steps:

1. https://www.eclipse.org/epsilon/
2. http://www.eclipse.org/gmt/mofscript/
3. http://www.eclipse.org/modeling/m2t/?project=jet
4. http://www.eclipse.org/modeling/m2t/?project=xpand
5. http://www.eclipse.org/Xtext/
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1. Extracting low-level models from the existing system artifacts and

2. Transforming the extracted models into high-level ones, which will be used
in the rest of the reengineering process.

SOURCE
REPRESENTATION

PSM

PIM

CIM

Figure 2.9: Model-driven reverse engineering

In Figure 2.9 the classical model-driven reverse engineering steps are depicted.
Starting from the source representation, Platform specific models (PSMs) are ex-
tracted, so that we can move from the original technical space to the modelware
technical space where the modeling tools and techniques become available. These
models are however typically in the same abstraction level of the source represen-
tation. The next step is thus to raise the abstraction level of the PSMs, so that
the concrete implementation details, vendor-specific features, etc., are eliminated.
The results of this process is a Platform-independent model (PIM), able to represent
the information of the domain, disregarding low-level, implementation information.
Normally, operations will be defined at this level, as the reusability is assured by the
platform independence. The abstraction level can be then further abstracted, so that
we get rid not only of the platform concrete information but also of the computation
domain. In this level, we talk about Computation-Independent Models (CIMs) Note
however that it is not mandatory to strictly follow this schema. It is possible to pass
directly from source code to PIM, or to avoid the CIM level, etc.

The model extraction step (injection) is therefore a critical step in modeldriven
software reengineering as it is the step bridging the gap between the existing system
and the modelware.

2.3 State of the art

Our thesis aims to contribute to the domain of security of information systems,
by using model-driven techniques. Concretely, we have focused on a high-level
requirement, data confidentiality. Access control models are the more common
solution for that requirements and as such, we have explored their state of the art
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together with the model-driven approaches related with them. As we are following
a bottom-up or backward approach, we have also studied the general state of the art
of reverse engineering focusing in its interactions with model-driven techniques.

As for the chosen set of initial information system components to work with,
i.e., relational databases, firewalls and content management systems, we have also
investigated the state of the art regarding their implementation of access-control
mechanisms, analysis techniques and reverse engineering approaches.

Finally, the have explored the existing approaches to the problem of integrating
different access-control policies in complex systems.

As a summary, the general classification of the state of the art relevant to this
thesis is as follows:

— Access control, modeling and model-driven engineering
— (Model-driven) Reverse engineering
— Database Access-Control
— Firewall Security
— Content Management Systems Access-control
— Policy Integration

In the following, we will detail relevant works in the aforementioned areas.

2.3.1 Access control and model-driven engineering

Work on access-control models has been profuse. In [8] two of the most pop-
ular access control models: Mandatory Access Control (MAC) and Discretionary
Access Control (DAC) are described. Then, [85] describes the Role-Based Access
Control (RBAC) model and tries to unify the several models used to implement
it by identifying the common features. Important non-standard features are also
described. Then they organise the RBAC proposed model in four cumulative com-
pliance levels: flat RBAC, hierarchical RBAC, constrained RBAC and Symmetric
RBAC. Based in RBAC, in [9] the authors present an extension to the RBAC model
specially tailored to model security policies that are not restricted to static permis-
sions but also include contextual rules related to permissions, prohibitions, obliga-
tions and recommendations. This new model is presented by using a formal lan-
guage based on first-order logic. More recently, in [99] the authors discuss ABAC,
an attribute-based access control model highlighting the flexibility it provides and
its possibilities to overcome problems present in the other access-control models.
In [50], the authors construct an ABAC model that has the features to be configured
to do DAC, MAC and RBAC.

The interaction between security and access-control models with model driven
engineering has lead to prominent works. Among them, in Secure UML is pre-
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sented. [61] It is a modeling language for the model-driven development of secure,
distributed systems based on the Unified Modeling Language (UML). The approach
is based on role-based access control with additional support for specifying autho-
rization constraints. Similar, but with a broader focus, in [52] the authors present
UMLSEC, an extension of UML that allows to express security relevant informa-
tion within the diagrams in a system specification. UMLsec is defined in form of a
UML profile using the standard UML extension mechanisms. In particular, the as-
sociated constraints give criteria to evaluate the security aspects of a system design,
by referring to a formal semantics of a simplified fragment of UML. [17] presents an
approach to automatically generate system architectures from the models, including
complete, configured access control infrastructures [56] proposes a new approach to
developing and analyzing RBAC policies using UML for modeling RBAC core con-
cepts and OCL to realize authorization constraints. Dynamic (i. e., time-dependent)
constraints, their visual representation in UML and their analysis are of special in-
terest.

Regarding formal models for representing security in systems, the efforts of the
research community have been abundant. We discuss here the most relevant ones
with respect to our thesis. [18] formally defines how by means of translation from
OrBAC to B event Method and by refinement of B models, a system satisfying the
given policy can be modeled. Global security needs are mentioned. They work is
aimed at working with Confidentiality, Integrity, Availability and Auditability. In
[82] the authors follow the path opened in [18]. Focusing in network systems, they
intend to validate the deployment of security policies by checking certain security
properties. For instance, they define the following formal properties: Complete-
ness (a path exist and the elements of the path have the required functionality for
the deployment), accessibility, inaccessibility, integrity and confidentiality. These
properties are formally defined for networks and functions to evaluate paths and
tunnels exist.

2.3.2 (Model-driven) Reverse Engineering

Reverse-engineering has been proved an useful technique to the recovery of
knowledge and modernization of systems. A such, it have been largely studied by
the community. Thus, here we list only some representative works, mostly regard-
ing model-driven techniques for performing reverse engineering.

A taxonomy of reverse engineering used terms is presented in [34]. In [87],
authors describe a risk-managed approach to legacy system modernization that ap-
plies a knowledge of software technologies and an understanding of engineering
processes within a business context whereas in [28] an overview of the field of re-
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verse engineering is presented, reviews main achievements and areas of application,
and highlights key open research issues for the future.

More concretely in the field of model-driven reverse engineering, in [83] the au-
thors introduce the use of model driven techniques to overcome the difficulties clas-
sical reverse engineering approaches present such as the lack of standards and time
effort quantification while in [98] the problems raised by the evolution of model-
based software systems themselves are analysed and challenges to be addressed by
research in the area identified. Finally, MoDisco[26], is a prominent model-driven
framework intended to make easier the design and building of model-based solu-
tions dedicated to legacy systems reverse engineering.

2.3.3 Network (firewall) security

Modeling firewall configurations has been a widely studied problem. Nearer to
our domain, in [80] the authors propose a firewall PIM metamodel represented as
an XSD schema. In order to obtain it, features of several firewall vendor languages
are analyzed. A comprehensive related work regarding firewall domain specific
modelling languages is also provided. The same authors extended their preliminary
work and contributed in [81] an improved firewall PIM and a PSM for the Netfil-
ter Iptables packet-filter language. Then, an ATL transformation PIM2PSM and a
model-to-text transformation to configuration files are provided. Thus, a complete
model-driven forward engineering process to generate firewall configurations is pro-
vided. They reuse previous inconsistency and redundancy checking techniques.
Moreover, as future work they propose raising the abstraction level representing
AC Lists in UML.

In [101], the authors describe a platform-independent representation for firewall
rule sets that is used as internal representation for the FWBuilder tool, that generates
concrete firewall configurations form abstract representations.

Cuppens et Al. [38] describe how to use OrBac for describing network policies
and generate firewall rules. They propose an assignation for roles, subjects and ob-
jects whereas each firewall is mapped as a sub-organization. Similarly, in [16] the
authors describe Firmato, a tool for the specification and management of firewall
rule sets.

Other works, also providing modeling of firewall rule sets are more focused in
the analysis of their consistency and correctness. In [100] the authors introduce a
static analysis toolkit for firewall modeling and analysis. It applies static analysis
techniques to check misconfigurations, such as policy violations, inconsistencies,
and inefficiencies, in individual firewalls as well as among distributed firewalls. It
is implemented by modeling firewall rules using binary decision diagrams (BDDs).
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[88] presents a set of techniques and algorithms that provide automatic discovery of
firewall policy anomalies to reveal rule conflicts and potential problems in legacy
firewalls, and anomaly-free policy editing for rule insertion, removal and modifica-
tion. Finally, in [24] the authors model a packet-filter by using the Higher Order
Logic framework, Isabel.

Not providing an explicit model for the representation of firewall configurations
but working with synthetic rules, in [40] the authors describe a complete set of
anomalies for firewall rule sets (namely, shadowing, redundancy and irrelevance)
along with algorithms to detect and correct them.

With respect to the recovery of knowledge from already deployed configura-
tions, in [69] a method and tool to discover and test a network security policy is
proposed. The configuration files along with the description of the network topol-
ogy are used to build an internal representation of the policy that can be verified
by the user through queries in ad-hoc languages. [64] proposes a method and
tool (FANG) to discover and test the global firewall policy. FANG collects and
reads all the relevant configuration files, and builds an internal representation of
the implied policy and network topology. A model of the net topology should
be provided while the configuration files are automatically analysed by parsing.
Fang is intended to simulate the recovered network configuration thought the use
of queries. In [21] (Technical Report) The authors describe a theoretical approach
of the deployment, analysis and recovery of firewall configurations. It applies a bi-
directional method of enforcing and reverse-engineering system and infrastructure
policy. Uses a platform-independent intermediate policy representation in the form
of a byte-code like language (like AST), not focused in any implementation. The
language they propose should be then assembled into machine-dependant specific
commands following this schema: High Level Language IPR configuration com-
mands. Tongaonkar et al., [94] propose a technique that aims to infer the high-level
security policy from low level representation, concretely from the rules on firewalls
(just packet filtering rules). A merging algorithm is used to to extract classes (types)
of services hosts and protocols. They end up with more abstract rules.

Finally, regarding the modeling and analysis of stateful firewalls, some ap-
proaches aim at describing stateful firewall models [46], while others provide straight-
forward adaptations of management processes previously designed for stateless fire-
walls [27]. In [37], the authors uncovered a new type of misconfiguration, denoted
as intra-state rule misconfiguration.
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2.3.4 Database Security

Access-control mechanisms have been early adopted in commercial relational
database engines. In [20] presents a review of security concepts on research and
commercial databases. It is mostly focused on access control mechanism: RBAC,
MAC, DAC and its incorporation into commercial products.

Regarding the deployment of access-control policies for databases from high-
level specifications, [91] represents security aspects at the logical level for dataware-
houses by using the Common Warehouse Metamodel (CWM) metamodel. [70] pro-
poses a method to derive a concrete database-based access control implementation
out of RBAC policies defined by using a graphical interface and [15] proposes a
method to transform temporal RBAC policies, specified in a logic-based notation,
into PL/SQL code.

As for the reverse-engineering approaches on relational databases, a good amount
of works have been contributed. We describe the most relevant ones.

In [62] the authors propose both a general framework and specific techniques
for file and database reverse engineering, i.e. recovering its conceptual schema.
The framework relies on a process/product model that matches formal as well as
empirical design procedures. Chaing et al. [33] present methodology for extracting
an extended Entity-Relationship (EER) model from a relational database through
a combination of data schema and data instance analysis. Also extraction EER
schemas, in [79] the authors describe a technique that supports (EER) schema ex-
traction from an operating relational database. The method starts from the database
schema as stored in the DBMS dictionary, i.e., the relation names, the attribute
names and their basic characteristics (uniqueness of value, not null values). Finally,
semantics extraction is supported by available queries analysis.

Also, bringing the reverse engineered schema to other domains, [14] proposes a
novel approach to reverse engineering of relational databases to ontologies. The ap-
proach incorporates two main sources of semantics: HTML pages and a relational
schema.

Regarding the reverse-engineering of security aspects, in [89] the authors present
an approach to discover and resolve anomalies in MySQL access-control policies
by extracting the access-control rules and representing them in the form of Binary
Decision Diagrams. The access-control policies are extracted from the database
dictionary tables, not including other implementation mechanisms.

2.3.5 Content Management Systems

We can consider the popularity and widespread of Content Management Sys-
tems as a quite recent phenomenon. As a consequence, there are not many works in



36 CHAPTER 2. INTRODUCTION

the literature analysing its security regarding access-control techniques, the model-
ing of the domain or its reverse engineering.

Regarding the modeling approaches, although not focused in CMSs nor in the
access-control aspects, in [32] the authors present a language to define web appli-
cations.

Some tools for checking the configuration of WCMSs have been provided and
analysed by the scientific communities. However, these tools are focused in low-
level security aspects like management of cookies or prevention of SQL injection
vulnerabilities [66, 97]. Nearer to the extraction of high-level model representations
of access-control, an approach for extracting AC information from dynamic web
applications source code is presented in [44, 10].

2.3.6 Policy Integration

The problem of integration of access-control policies belonging to different
components, different architecture layers or different authorization authorities have
been recognized as a challenge by the security research community.

From the formal point of view, In [31] the authors provide the foundations of a
formal framework able to represent policies in different architectural layers and the
dependencies between layers. Similarly, in [22] the authors analyze diverse com-
bination needs for access control policies including the combination of hierarchical
policies through refinement. Algebraic operations for representing and manipulate
these combinations are provided. In [82] Method-B is used to formalize the de-
ployment of access control policies on systems composed by several network com-
ponents. The authors also define and implement security properties to check the
correctness of the deployment process.

Using model-driven techniques, in [39] the authors formalize what they call the
policy continuum model. This model is able to represent policies at different inter-
related abstraction layers.

In [65] the authors describe some interesting results regarding the integration of
policies not belonging to the same authorization entity by relying in the calculation
of policy similarity.

Not focused on access-control, [30] provide an approach to detect conflicts be-
tween different kinds of policies in the same environment A.C policies, copyright
policies, etc.

2.4 Thesis Structure

This thesis is structured as follows. The next chapter presents the objectives and
contributions of our thesis whereas an overview of our proposed our method is pre-
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sented in Chapter 4. Chapter 5 shows the application of this method to the domain
of packet filtering firewalls in networks layers while chapters 6 and 7 do the same
for the domains of relational databases and content management systems respec-
tively. Chapter 8 presents our approach for the integration of the models extracted
from concrete components into a global model along with analysis facilities and
techniques for the detection of multilayer misconfigurations. Chapter 9 discusses
related work. Finally, Chapter 10 presents some conclusions and future work.

Some of the results of this thesis have been already published in [63], [77], [76],
[78] and [43].





3
Objectives and Contributions

As shown in Chapter 2, despite the existence of approaches based on formal
refinement techniques, e.g., using abstract machines grounded on the use of set the-
ory and first order logic, that ensure, by construction, cohesion, completeness and
optimal deployment, the complexity and incompleteness of those methods makes
policies to be often empirically deployed over the concrete components based on
security administrator expertise and flair. This task, requiring often low level and
vendor-specific knowledge, is complex and error prone, evidencing the relevance of
the analysis of the already deployed policies, in order to update, detect and correct
errors, improve quality features, refactor, etc.

Unfortunately, the extraction and reverse engineering of already deployed access-
control policies is also an unsolved challenge. Although a few methods and efforts
exists (for some concrete components), they fall short either when dealing with real
deployed policies (just focusing in the analysis part and disregarding the extraction
step) or by not taking into account complex systems, composed by a number of in-
teracting subsystems.

In this sense, the objectives of this thesis are as follows:

— Choose a number of relevant information system components, lying in dif-
ferent architecture layers and implementing/enforcing access-control poli-
cies.

— Propose a general methodology, applicable and adaptable to any information
system, allowing for the extraction of a component-specific representation
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of the access-control security policy they implement/enforce in a way that
it is easier (for the domain experts) to analyse, understand and manipulate
than the actual implementation.

— For each component: 1) Define the corresponding component-specific ab-
stract and platform independent representation of the policy. 2) with this
extracted access-control policy representation, show how useful tasks can
be performed on it.

— Components collaborating in the achievement of the functionality goals of a
complex information system also collaborate in the enforcing of the security
access-control goal when they implement access-control policies. Thus, one
of the objectives of the thesis is to, starting from the extracted component-
specific policies of each component, provide the means to build a global
representation of the security policy all subsystems help to enforce making
explicit the relations between them.

— The last objective of the present work is to, with the global policy repre-
sentation available, provide the basis (operations, infrastructure, algorithms,
etc) for a global analysis of the access-control enforcement of a given sys-
tem.

In light of the objectives listed above, the first step has been to choose an appro-
priate set of systems implementing and enforcing access-control policies, so that
the framework proposed in this thesis could be demonstrated. For that purpose,
we have chosen three different systems. Networks (concretely, firewalls controlling
networks), database management systems and content management systems. We
want to notice however, that the results of this thesis can be extended to include
other different subsystems.

These three different chosen systems work in different architecture layers and
often are composed to build up more complex systems. As shown in the example in
Chapter 2, a system including firewalls to control and manage the network traffic, a
database as an storage facility for applications and a content management systems
providing direct service to the user is a quite common configuration. Moreover,
access-control implementation/enforcing is a core feature in all of them. Firewalls
provide access-control in networks by filtering the traffic according to given condi-
tions. RDBMS and CMSs enforce access-control over the data they store (and also
over its administration) by storing a number of access-control rules asserting what
users can do.
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With the set of systems to work with chosen, the contributions this thesis pro-
vide are listed below:

For the domain of Access-Control in Networks (see Chapter 5):

1. We have designed a concise platform-independent metamodel able to repre-
sent the access-control information contained in firewall configuration files.

2. We have proposed an automatic model-driven extraction approach that pro-
duces models conforming to the network access-control metamodel described
above. Moreover, we have shown how the design of the metamodel facili-
tates the structural verification (detection of misconfigurations) of the infor-
mation contained in the configuration files.

3. For networks including several firewalls, a (reversible) combination process
aimed to integrate the individual policies in a single model is provided. This
allows the analysis of the network Access-Control policy as a whole.

For the domain of Access-Control in Relational databases (see Chapter 6):

1. We have designed the first platform independent metamodel specially tai-
lored for the representation of access-control policies on databases (see chap-
ter 6). This metamodel includes not only the static information of privi-
lege grants stored in the database dictionary, but also the fine grained con-
straints defined by procedural code (triggers) and the transitive grants ob-
tained through executable code.

2. We have provided an automatic approach for obtaining models correspond-
ing to the database access-control metamodel described above. The ap-
proach complements standard database reverse-engineering approaches by
gathering access-control information from the diverse mechanisms used to
implement and enforce it in relational databases. The source code of exe-
cutable units withing relational databases (triggers and stored procedures) is
also analysed to extract fine grained constraints while heuristics are provided
to prevent irrelevant data (e.g., non security triggers) to polute the extracted
information.

For the domain of Access-Control in CMSs (see Chapter 7):
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1. We have designed the first platform independent metamodel for Access-
control in the domain of CMSs.

2. We have provided a model-driven extraction approach (specially tailored to
the Drupal CMS) that automatically produces models conforming to the de-
fined access-control metamodel.

For the combination of diverse access-control policies in multi-layer architec-
tures (see Chapter 8):

1. We have defined a framework to integrate policies from different concrete
components collaborating in an information system in a single policy. This
framework comprises: 1) The use of a common access-control policy lan-
guage for representing the policies of each component 2) The extension of
the target language to express domain-specific information and 3) the recov-
ery/representation of the implicit dependency relations between them.

2. We provide the means to, starting from the integrated model defined above,
perform useful analysis tasks. Concretely, we show how misconfigurations
stemming from the interaction of the access-control policies of the subsys-
tems composing a complex information system can be detected.



4
Model-driven Framework for the
extraction of AC models

In order to tackle the aforementioned problem, and because of its proved ef-
fectiveness for the specification and realization of complex systems, we propose
the construction of a model-driven automatic reverse engineering mechanism capa-
ble of analyzing deployed security aspects of components (e.g., concrete firewall
configurations) to derive abstract models (Platform-independent Models (PIMs))
representing the policy (e.g., network security policy) that is actually enforced over
system components. Once these abstract models are obtained, they can be recon-
ciled with the expected security directives, to check its compliance, can be queried
to test consistency or used in a process of forward engineering to generate correct
security configurations. Finally, they can be joined to represent the global access-
control policy enforced in the information system by using a Computation Indepen-
dent Model (CIM) able to gather all the information represented in the PIM models.

In Figure 4.1 we depict the overview of the proposed approach for the extraction
and analysis of access-control policies from heterogeneous information systems. In
the following we will briefly describe the steps composing it.

4.1 Platform specific models (PSMs)

The conceptual distance between the source information and the abstract models
is usually important, making the work of the injector very complex. Therefore,
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Figure 4.1: Framework overview

the definition of platform-specific models, i.e., models representing the information
in the same abstraction level as the source information, may be needed. These
models serve as a means to bridge the technical spaces, so that we pass from the
technical domain of the source information to the modelware technical space. Once
in modelware, the platform-specific models can be transformed into the abstract
models by using model transformations tools like ATL[51].

As an example, in the case of firewalls, the AC information is stored in the form
of textual configuration files written using, normally, vendor-specific languages
with different syntax and semantics. In order to extract the AC information and
represent it in an abstract model, parsers and injectors are needed. The parser is
able to read the source of the information whereas the injector uses the obtained
information in order to fill a model with it. Being the variability and semantic dis-
tance of firewall languages w.r.t. to the abstract model big, parsers and injectors
will become too complicated. Thus, in order to simplify the task, the AC informa-
tion is first extracted towards a platform-specific model, specially tailored for the
representation of the AC information of a particular vendor. On the contrary, if we
take a look to the AC information in relational databases we have a mixed situation.
For the extraction of the standard privilege grant information stored in the dictio-
nary tables, there is no need for a PSM, as the concepts are similar to those of the
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abstract model. However, for extraction the AC information contributed by triggers
and stored procedures a PSM representing the language used for defining the stored
procedures is needed, as the distance between the abstract model and the source
code is big.

4.2 Extracting abstract (PIM) models

Extracting PSM models creates a bridge between the technical space of the in-
formation source and modelware. Having the access-control information of a sys-
tem represented as a model, enables the reutilization of well-known, off-the-shelf
MDE tools. Editor generators, model transformation engines, etc. become auto-
matically available.

However, the information, of the PSMs is at the same abstraction level than the
original configuration information. Thus, the next step is to raise the level of ab-
straction of the information contained in those models. This information is then
represented in a Platform Independent Model (PIM), so that it can be manipulated
disregarding the specificities of the concrete technologies used for the implementa-
tion (notice that when we refer here to platform independence, we intend to empha-
size that the models are independent from the concrete vendor-specificities, while
still being component specific). Central to this step is the development of AC do-
main specific metamodels, able to represent the AC information of each component
in a abstract, concise, easy to analyse and understand manner.

Once a PIM metamodel and models conforming to it are available, analysis and
manipulation operations can be performed in a reusable way. An immediate appli-
cation would be the use of the well-known OCL[71] query language to calculate
interesting metrics on the model and perform some advanced queries on the AC
rules represented in it. As an example, we can easily count the number of permis-
sions per subject as well as querying if a given subject has permissions on a given
object, etc. Each of the defined operations could be applied to any PIM, no matter
what was the concrete system the information was extracted from. Other analysis
tasks, like the detection of misconfigurations and anomalies in the policies can also
be defined in this level in a reusable way.

4.3 CIM

PIMs represent information in an abstract way, so that the details regarding
the specificities of the implementation platform are eliminated. Nevertheless, PIM
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models still represent the information w.r.t. a given domain, i.e., they include con-
cepts and relations that are only relevant to that domain. The utilisation of those
domain-specific constructs eases the understanding of the security policy when
analysed in the context of the domain. As an example, for a database security
expert, a PIM including the concepts of table, column, trigger, etc and the relations
between them, eases the comprehension of the access-control specification. Same
with the domain of content management systems and networks.

However, although adapted and tailored to several different domains, access-
control policies is a mechanisms that does not depend of any concrete domain.
Thus, as a further step, PIM, domain-specific models can be abstracted towards
a CIM, generic, access-control model. We want to notice that, as with the PIM
concept, the CIM concept is here adapted to our domain and while it stills represent
a high-lever of abstraction w.r.t. the PIM, CIM models in the present work are meant
to abstract from the components details (and not from the computation details as in
the general case).

As with the translation form PSM to PIM, that allowed to treat domain-specific
access-control models in an uniform way disregarding the specificities of concrete
implementation and vendors, the translation from PIM to CIM allows to manipulate
access-control models extracted from different domains in an uniform and reusable
way. It also enables the integration all PIM models in a single CIM.

We want to notice that, although the translation to a CIM brings several advan-
tages to the manipulation of the policies, it may cause policies of concrete domains
to be more difficult to understand, as PIM concepts may be lost in the translation.
Ideally, the target CIM language should provide the mechanisms (among the possi-
ble mechanisms to do this we have stereotypes, tagged values, model extension, etc)
to integrate those domain specific concepts, so that a policy represented in the CIM
language is both, computational and domain-independent for the manipulation and
analysis tasks, but also domain-specific so that it is easier to understand by domain
experts.

We believe XACML[59], a standardised, abac-capable, language and frame-
work for the representation and management of access-control policies is a good
candidate for the representation of policies coming from different components as it
is very flexible (able to represent RBAC policies but also policies with other prop-
erties like delegation, etc) and extensible (able thus to integrate domain specific
concepts).
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4.3.1 AC Integration

As stated in Chapters 2 and 3, the access-control policies of subsystems compos-
ing a complex system collaborate to achieve the data confidentiality security goal.
Thus, interaction between the policy exist. Thus, the last step of our framework
consist in combining the policies coming from the different system components,
so that useful information can be obtained and properties with respect to a global
policy can be checked. We must be able to check if something not allowed in a
component is allowed in another component creating a vulnerability in the system.
We should be able to check that when a subject gets a permission on a given object,
all components participate properly so that the object can be reached by the subject.





5
Extracting AC Models from
Networks

Firewalls, designed to filter the traffic of a network with respect to a given num-
ber of access-control rules, are key elements in the enforcement of network security
policies.

Although there exist approaches to derive firewall configurations from high-
level network policy specifications[81, 16], these configuration files are still mostly
manually written, using low-level and, often, vendor-specific rule filtering languages.
Moreover, the network topology, that may include several firewalls (potentially
from different vendors), may impose the necessity of splitting the enforcement of
the global security policy among several elements. Due to the complexity of the
process, it is likely that we end up with differences between the implemented policy
and the desired one. Moreover, security policies must be often updated to respond
to new security requirements, which requires evolving the access-control rules in-
cluded in the firewall configuration files.

Therefore, there is a clear need of an easy way to represent and understand the
security policy actually enforced by a deployed network system. At the moment,
this still requires a manual approach that requires, again, low-level and vendor-
specific expertise. Given a network system consisting in several firewalls configured
with hundreds of rules, the feasibility of this manual approach could be seriously
questioned. While the security research community has provided a large number
of works dealing with the reasoning on security policies, succeeding at providing
a good analysis and verification of the low-level firewall rules, we believe they fail
at obtaining a comprehensive solution as they do not provide a high-level, easy
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Figure 5.1: Network example

to understand and manage representation nor take, generally, networks composed
by several heterogeneous firewalls into account. Moreover, the extraction step is
often neglected and the solution presented over synthetic rules without providing
the means to bridge the gap between them and the real configurations.

In this sense, we believe that an integrated solution is missing. We believe such
a solution must have the following features. First, it has to provide independence
from the concrete underlying technology, so that the focus can be put into the secu-
rity problem and not in implementation mechanisms like chains, routing tables, etc.
Second, it has to provide a higher-level representation so that the policy becomes
easier to understand, analyse and manipulate. Third, the solution, to be compre-
hensive, must take into account the contribution of each policy enforcing element
(firewall) to the global policy, as the partial picture given by isolated firewalls does
not provide enough information to understand the network policy.

In this chapter we propose a model-driven approach aimed at covering this gap.
Our approach, first, extracts and abstracts the information of each firewall config-
uration file to models conforming to a Platform-independent metamodel specially
tailored to represent network-access control information in an efficient and concise
way. Then, after performing structural verification of the information in the indi-
vidual models, it combines these models to obtain a centralised view of the security
policy of the whole network. Finally, this global network access-control model can
be analysed and further processed to derive useful information. As en example,
we analyse the structure of its contents to derive the network topology the firewalls
operate on.

We validate the feasibility of our approach by providing a prototype implemen-
tation working for firewalls using the netfilter iptables and Cisco PIX rule filtering
languages. Our prototype can be easily extended to work with any other packet-
filtering languages.
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5.1 Motivation

In order to motivate our approach, we extend here the Information System ex-
ample introduced in Chapter 2, subsection 2.1.1, by introducing a second firewall.
Let us thus consider we have a De-Militarized Zone (DMZ) network architecture
like the one depicted in Figure 5.1.

This is a very common architecture used to provide services both to a local net-
work and to the public untrusted network while preventing the local network to be
attacked. It is composed by the following elements:

— An intranet composed by a number of private hosts where one of the private
hosts acts as an administrator of certain services provided by the network
system.

— A DMZ that contains two servers. A DNS server and a multiserver providing
the following services: HTTP/HTTPS (web), FTP, SMTP (email) and SSH.

— Two firewalls controlling the traffic towards and from the DMZ. The first
firewall controls the traffic between the public hosts (the Internet) and the
services provided by the DMZ. The second firewall controls the traffic be-
tween the intranet and the DMZ.

The two firewalls in charge of enforcing the security policy of our example
network, could be of the same kind. However, following the defense in depth[5]
security strategy, it is highly recommended to use two different firewalls so that
a possible vulnerability does not affect the whole network. In our example, the
firewall 1 is a linux iptables packet-filtering firewall whereas firewall 2 is a Cisco
firewall implementing Cisco PIX filtering.

In Listing 5.9 we show an excerpt of the configuration file of firewall 1 with
respect to the HTTP and SMTP services. It controls the traffic from the public hosts
to the services provided in the DMZ. This sample configuration uses the Netfilter
Iptables[84] rule language. Note that this configuration file is written using the
Iptables custom chains feature, which allows the user to define exclusions to rules
without using drop or deny rules.

First, it states in the first three lines that the global policy for the firewall is the
rejection of any connection not explicitly allowed. Then, the first chain controls
the outcoming SMTP messages towards the public host. It allows them for every
host but for the hosts in the local network. The second chain controls the incoming
SMTP messages to the server. If the request is done through one machine belonging
to the local network, it is rejected while it is allowed for any other machine. The
third rule controls the HTTP requests from the public host. Again, connections are
allowed for any host but for the local ones.



52 CHAPTER 5. EXTRACTING AC MODELS FROM NETWORKS

Listing 5.1: Firewall 1 netfilter configuration
iptables −P INPUT DROP

iptables −P FORWARD DROP

iptables −P OUTPUT DROP

iptables −N Out_SMTP

iptables −A FORWARD −s 1 1 1 . 2 2 2 . 1 . 1 7 −d 0 . 0 . 0 . 0 / 0 −p tcp −−dport 25 −j Out_SMTP

iptables −A Out_SMTP −d 1 1 1 . 2 2 2 . 0 . 0 / 1 6 −j RETURN

iptables −A Out_SMTP −j ACCEPT

iptables −N In_SMPT

iptables −A FORWARD −s 0 . 0 . 0 . 0 / 0 −d 1 1 1 . 2 2 2 . 1 . 1 7 −p tcp −−dport 25 −j In_SMTP

iptables −A In_SMTP −s 1 1 1 . 2 2 2 . 0 . 0 / 1 6 −j RETURN

iptables −A In_SMTP −j ACCEPT

iptables −N NetWeb_HTTP

iptables −A FORWARD −s 0 . 0 . 0 . 0 / 0 −d 1 1 1 . 2 2 2 . 1 . 1 7 −p tcp −−dport 80 −j NetWeb_HTTP

iptables −A NetWeb_HTTP −s 1 1 1 . 2 2 2 . 0 . 0 / 1 6 −j RETURN

iptables −A NetWeb_HTTP −j ACCEPT

Firewall number 2 controls the traffic from the private hosts to the services pro-
vided in the DMZ. Listing 5.2 shows the rules that control the access to the SMTP
and HTTP services. It is written in the Cisco PIX language that does not provide
support to a feature like the iptables custom chains.

Rules one to six, control the SMTP requests to the server. They are all allowed
for the hosts in the private zone discarding only the administrator host, identified
by the IP address 111.222.2.54, and for a free-access host, identified by IP address
111.222.2.53. Rules seven to twelve do the same for the HTTP requests. Again,
HTTP requests are allowed for all the hosts in the private zone discarding only the
administrator host and the free-access host.

Listing 5.2: Firewall 2 Cisco PIX configuration
access−list eth1_acl_in remark Fw2Policy 0 (global )
access−list eth1_acl_in deny tcp host 1 1 1 . 2 2 2 . 2 . 5 4 1 1 1 . 2 2 2 . 1 . 1 7 eq 25

access−list eth1_acl_in remark Fw2Policy 1 (global )
access−list eth1_acl_in deny tcp host 1 1 1 . 2 2 2 . 2 . 5 3 1 1 1 . 2 2 2 . 1 . 1 7 eq 25

access−list eth1_acl_in remark Fw2Policy 2 (global )
access−list eth1_acl_in permit tcp 1 1 1 . 2 2 2 . 2 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0 1 1 1 . 2 2 2 . 1 . 1 7 eq 25

access−list eth1_acl_in remark Fw2Policy 4 (global )
access−list eth1_acl_in deny tcp host 1 1 1 . 2 2 2 . 2 . 5 4 1 1 1 . 2 2 2 . 1 . 1 7 eq 80

access−list eth1_acl_in remark Fw2Policy 5 (global )
access−list eth1_acl_in deny tcp host 1 1 1 . 2 2 2 . 2 . 5 3 1 1 1 . 2 2 2 . 1 . 1 7 eq 80

access−list eth1_acl_in remark Fw2Policy 3 (global )
access−list eth1_acl_in permit tcp 1 1 1 . 2 2 2 . 2 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0 1 1 1 . 2 2 2 . 1 . 1 7 eq 80

access−group eth1_acl_in in interface eth1
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Figure 5.2: Extraction approach

5.1.1 Example Evaluation

Faced with this example, a security expert willing to understand the enforced ac-
cess control rules will have to directly review the configuration files of the firewalls
in the system (disregarding the low-level and often incomplete management tools
provided by the firewall vendors, obviously only valid for the firewalls of that ven-
dor), which in this case, involves two different rule languages. Not even the topol-
ogy picture of the network, provided here with the purpose of easing the discussion,
can be taken for granted but instead needs to be derived from the configuration files
themselves.

Therefore, we can see that the task of extracting the global access control policy
enforced by the set of rules in these two firewalls (that are just minimal excerpts of
what a full configuration policy would be) requires expert knowledge about Netfilter
Iptables and Cisco PIX. Its syntax along with its execution semantics would have to
be mastered to properly interpret the meaning of the configuration files. Moreover,
the information from the two configuration files and the default policies would have
to be combined as they collaborate to enforce the global policy and can not be
regarded in isolation.

In corporate networks potentially composed by up to a thousand firewalls, com-
posed by hundreds of rules and potentially from different vendors using different
configuration languages and execution semantics, the task of manually extracting
the enforced access control policy would become very complex and expensive, se-
riously hampering the analysis and evolution tasks the dynamic environment of cor-
porations impose. This is the challenge our approach aims to tackle as described in
the next sections.

5.2 Approach

This section details our MDE approach to generate a high-level platform-independent
model providing a global view of all access-control rules in a set of firewall config-
urations files.



54 CHAPTER 5. EXTRACTING AC MODELS FROM NETWORKS

Our model-driven reverse engineering approach, that extends the preliminary
one in [63], is summarized in Figure 5.2. It starts by injecting the information
contained in the firewall configuration files into platform-specific models (PSMs).
Afterwards, each PSM is translated into a different network access-control PIM and
an structural analysis to detect misconfigurations is performed. These PIMs are
then aggregated into a global model, representing the access-control policy of the
whole network. Operations are also performed over this global model to classify
the information in “locally” or globally relevant.

5.2.1 Injection

The first step of our approach constitutes a mere translation between technical
spaces where the textual information in the configuration files is expressed in terms
of models. A PSM and a parser recognizing the grammar of each concrete firewall
rule-filtering language present in the network system is required. In Listing 5.3 we
excerpt a grammar for CISCO PIX and in 5.4 the corresponding one for Netfilter
Iptables. In Section 5.5, we show how we use the to obtain the corresponding
parser and PSM (The full definitions are available on the web of the project [7].).
The integration of any other language will follow the same strategy.

Listing 5.3: Cisco grammar excerpt
Model :

rules += Rule* ;
Rule :

AccessGroup | AccessList ;
AccessGroup :

’access−group ’ id=ID ’in ’ ’interface ’ interface=Interface ;
Interface :

id=ID ;
AccessList :

( ’no ’ ) ? ’access−list ’ id=ID
decision=( ’deny ’ | ’permit ’ )
protocol=Protocol
protocolObjectGroup=ProtocolObjectGroup
serviceObjectGroup=ServiceObjectGroup
networkObjectGroup=NetworkObjectGroup ;

ProtocolObjectGroup :
(pogId=ID ) ? sourceAddress=IPExpr sourceMask=MaskExpr ;

ServiceObjectGroup :
targetAddress=IPExpr targetMask=IPExpr ;

NetworkObjectGroup :
operator=Operator port=INT ;

Operator :
name=( ’eq ’ | ’lt ’ | ’gt ’ ) ;

Protocol :
name= ( ’tcp ’ | ’udp ’ | ’ip ’ ) ;

IPExpr :
INT ’ . ’ INT ’ . ’ INT ’ . ’ INT ;

Listing 5.4: Netfilter Iptables grammar excerpt
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Model :
rules += Rule* ;

Rule :
declaration=ChainDeclaration | filter=FilterDeclaration ;

FilterDeclaration :
filter=FilteringSpec ;

FilteringSpec :
FilterSpec ;

FilterSpec :
’iptables ’ option=(’−A ’ | ’−D ’ | ’−P ’ )
chain=Chain (( ’−src ’ | ’−s ’ ) ip=IPExpr ) ?
(’−i ’ interface=Interface ) ? (’−d ’ ipDst=IPExpr ) ?
(’−p ’ protocol=Protocol ) ? (’−m ’ matches=Protocol ) ?
(’−−sport ’ sourcePort=INT ) ? (’−−dport ’ destinationPort=INT ) ?
(’−j ’ ) ? target=Target ;

Interface :
name=ID ;

Protocol :
Tcp | Udp | Icmp ;

Tcp :
’tcp ’ ;

Udp :
’udp ’ ;

Icmp :
’icmp ’ ;

Target :
ID ;

Chain :
chainName = ID ;

CustomChain :
name=[ChainName ] ;

ChainDeclaration :
’iptables ’ ’−N ’ ChainName ;

ChainName :
name=ID ;

IPExpr :
ipByteExpr ’ . ’ ipByteExpr ’ . ’ ipByteExpr ’ . ’ ipByteExpr (IpRangeExpr ) ? ;

ipByteExpr :
INT ;

IpRangeExpr :
’ / ’ INT ;

Note that this step is performed without losing any information and that the
obtained models remain at the same abstraction level as the configuration files.

5.2.2 Platform-specific to Platform-independent model

The second step of our approach implies transforming the PSMs obtained in
the previous step to PIMs so that we get rid off the concrete details of the firewall
technology, language and even writing style. Central to this step is the definition
of a Network access-control metamodel able to represent the information contained
in the PSMs. In the following we present and justify our proposal for such a meta-
model.

Generally, firewall access-control policies can be seen as a set of individual
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security rules of type Ri : {conditions} → {decision}, where the subindex i spec-
ifies the ordering of the rule within the configuration file, decision can be accept or
deny and conditions is a set of rule matching attributes like the source and destina-
tion addresses, the used protocol and the source and destination port.

Such a policy representation presents several disadvantages. First of all, the
information is highly redundant and disperse, so that the details relevant to a given
host or zone may appear, unassociated, in different places of the configuration file
(potentially, containing up to several hundreds of rules). Metamodeling and model-
driven technologies contain a big potential to reduce these issues, however, a proper
representation must be chosen in order to maximize its benefits.

Second, this representation is not suited for representing the firewall policy in a
natural and efficient way. Although firewall policies could be written by only using
positive or negative logic (what leads however to over-complicated and not natural
rule sets, impacting legibility and maintainability) a firewall access-control policy
is better explained by expressing just rules in one sense (either negative or positive)
and then exceptions (see [42] for a detailed study of the use of exceptions in access
control policies) to the application of these rules. This way, in a close policy envi-
ronment (where everything not explicitly accepted is forbidden) it is very common
to define a security policy that accepts the traffic from a given zone and then de-
nies it only for some elements of the zone. Native support for the representation of
exceptions simplifies the representation and management of network policies while
decreasing the risk of misconfiguration. The custom chains mechanism, recently
provided by the linux iptables filter language, evidences the need for such a native
support.

3.2.1. Network Access-control Metamodel.

The platform independent network access-control metamodel we propose here
(see Figure 5.3) provides support for the representation of rules and exceptions.
Moreover, our reverse engineering approach is designed to recover an exception-
oriented representation of network security policies from configuration files disre-
garding if they use a good representation of exceptions like in the Iptables example
in Section 5.1, or not, like in the Cisco PIX example in the same section.

Our metamodel proposal contains the following elements (note that, for sim-
plicity, some attributes and references are not represented in the image):

— Network Element. Represents any subject (source of the access request) or
object (target of the access request) within a network system. It is charac-
terised by its ip address and its network mask.

— Zone, Host, Server and Firewall. Several different types of Network Ele-
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Figure 5.3: Filter PIM

ment may exist in a network environment. For the purpose of this paper,
the relevant ones are: Host, Zone which in turn, contains other Network Ele-
ments, Server and Firewall. However, the list of elements can be extended to
manage different scenarios, like the presence of routers, intrusion detections
systems (IDSs), etc.

— Connection. Represents a connection between Network Elements. Apart
from its source and target Network Elements, it is characterized by the fol-
lowing attributes: source and destination port, identifying the requested ser-
vice; decision, stating if the connections is accepted or denied (our meta-
model can represent open, close and mixed policies); order, reflecting the
rule ordering in the corresponding configuration file; firewall, that identifies
the firewall from where the connections were extracted; isLocal that tells is
the connection is only locally relevant, isShadowed that identifies the con-
nection as not reachable and finally, isRedundant, stating that the connection
can be removed without affecting the policy.

— Exception. A connection may contain several exceptions to its application.
These exceptions are connections with opposite decisions matching a subset
of the elements matched by the containing connection.

3.2.2. PSM-to-PIM transformation.

Our PIM metamodel provides the means for representing network access-control
policies in a concise and organised way. However, a proper processing of the infor-
mation coming from the configuration files is required in order to fully exploit its
capacities (a policy could be represented by using only Connections without using
the Exception element). Therefore, the process of populating the PIM model from
a PSM model is composed by two sub-steps.
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The first sub-step fills our PIM with the information as it is normally found in
configuration files, i.e., in the form of a set of rules representing exceptions with
mixed positive and negative logic. Listings 5.5 and 5.6 show the ATL transforma-
tion performing this step for Iptables and Cisco PIX respectively.

Listing 5.5: Iptables PSM to PIM transformation
1 module IptablesPSM2PIM ;
2 c r e a t e OUT : NetworkAC from IN : IptablesDsl ;
3

4 he lp er def : Rules : Sequence (IptablesDsl !FilterSpec ) =
5 IptablesDsl !FilterSpec .allInstances ( ) ;
6

7 he lp er def : AcceptRules : Sequence (IptablesDsl !FilterSpec ) =
8 IptablesDsl !FilterSpec .allInstances ( )−>select (e | e .chain .chainName = ’FORWARD’

↪→and e .target <> ’ACCEPT’ and e .target <> ’RETURN’ and e .target <> ’DROP’ ) ;
9

10 he lp er def : ConcreteRules : Sequence (IptablesDsl !FilterSpec ) =
11 IptablesDsl !FilterSpec .allInstances ( )−>select (e | e .option = ’-A’ ) ;
12

13 he lp er c o n t e x t IptablesDsl !FilterSpec def : ruleOrder : I n t e g e r =
14 thisModule .Rules−>indexOf (self ) ;
15

16 he lp er def : UniqueIpAddrs : Sequence ( S t r i n g ) =
17 IptablesDsl !FilterSpec .allInstances ( ) .debug ( )−>collect (e | e .ip )−>select (e | not

↪→e .oclIsUndefined ( ) and e <> ’’ )
18 −>union (IptablesDsl !FilterSpec .allInstances ( )−>collect (e | e .ipDst )−>select (e |

↪→not e .oclIsUndefined ( ) and e <> ’’ ) )
19 −>asSet ( )−>asSequence ( ) .debug ( ) ;
20

21 r u l e IptablesModel2NetworkACModel{
22 from
23 s : IptablesDsl !Model
24 to
25 t : NetworkAC !Model (
26 connections <− thisModule .AcceptRules ,
27 elementKinds <− Sequence {firewallKind , serverKind , hostKind , zoneKind} ,
28 networkElements <− thisModule .UniqueIpAddrs−>collect (e | thisModule .

↪→createNetworkElement (e ) )−>append (firewallElement ) ) ,
29 firewallElement : NetworkAC !NetworkElement (
30 kind <− firewallKind , name <− ’IptablesFirewall’ ) ,
31 }
32

33 r u l e ChainSpec2Network{
34 from
35 s :IptablesDsl !FilterSpec (s .chain .chainName = ’FORWARD’ and
36 s .target <> ’ACCEPT’ and s .target <> ’RETURN’ and s .target <> ’DROP’ )
37 to
38 connection : NetworkAC !Connection (decision <− #Accept ,
39 dstPort <− s .destinationPort .toString ( ) ,
40 firewall <− thisModule .resolveTemp (s .refImmediateComposite ( ) .

↪→refImmediateComposite ( ) .refImmediateComposite ( ) , ’firewallElement’ ) ,
41 order <− s .ruleOrder , protocol <− s .protocol ,
42 source <− thisModule .createNetworkElement (s .ip ) ,
43 target <− thisModule .createNetworkElement (s .ipDst ) )
44 }
45

46 r u l e createConnectionFromChain{
47 from
48 chainInit :IptablesDsl !FilterSpec ,
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49 chainFollow :IptablesDsl !FilterSpec (chainInit .target = chainFollow .chain .
↪→chainName and

50 chainFollow .ipDst .oclIsUndefined ( ) and
51 chainFollow .target = ’RETURN’ )
52 to
53 connection :NetworkAC !Connection −>(NetworkAC !Model .allInstances ( )−>first ( ) .

↪→connections ) (
54 decision <− #Deny ,
55 dstPort <− chainInit .destinationPort .toString ( ) ,
56 firewall <− thisModule .resolveTemp (chainInit .refImmediateComposite ( ) .

↪→refImmediateComposite ( ) .refImmediateComposite ( ) , ’firewallElement’ ) ,
57 order <− chainFollow .ruleOrder + chainInit .ruleOrder ,
58 protocol <− chainInit .protocol ,
59 source <− thisModule .createNetworkElement (chainFollow .ip ) ,
60 target <− thisModule .createNetworkElement (chainInit .ipDst ) )
61 }
62

63 r u l e createDestinationConnectionFromChain{
64 from
65 chainInit :IptablesDsl !FilterSpec ,
66 chainFollow :IptablesDsl !FilterSpec (chainInit .target = chainFollow .chain .

↪→chainName and
67 (not chainFollow .ipDst .oclIsUndefined ( ) ) and
68 chainFollow .target = ’RETURN’ )
69 to
70 connection :NetworkAC !Connection −>(NetworkAC !Model .allInstances ( )−>first ( ) .

↪→connections ) (
71 decision <− #Deny ,
72 dstPort <− chainInit .destinationPort .toString ( ) ,
73 firewall <− thisModule .resolveTemp (chainInit .refImmediateComposite ( ) .

↪→refImmediateComposite ( ) .refImmediateComposite ( ) , ’firewallElement’ ) ,
74 order <− chainFollow .ruleOrder + chainInit .ruleOrder ,
75 protocol <− chainInit .protocol ,
76 source <− thisModule .createNetworkElement (chainInit .ip ) ,
77 target <− thisModule .createNetworkElement (chainFollow .ipDst ) )
78 }
79

80 unique l a z y r u l e createNetworkElement{
81 from s : S t r i n g
82 to t : NetworkAC !NetworkElement (ipAddr <− s , name <− s )
83 }

However, this representation can lead to policy anomalies and ambiguities. Con-
cretely, as defined in [40], a firewall rule set may present the following anomalies:

Rule shadowing: a rule R is shadowed when it never applies because another rule
with higher priority matches all the packets it may match.

Rule redundancy: a rule R is redundant when it is not shadowed and removing it
from the rule set does not change the security policy.

Rule irrelevance: a rule R is irrelevant when it is meant to match packets that does
not pass by a given firewall.
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Listing 5.6: CiscoPIX PSM to PIM transformation
1 module CiscoPSM2PIM ;
2 c r e a t e OUT : NetworkAC from IN : CiscoDsl ;
3

4 he lp er def : Rules : Sequence (CiscoDsl !AccessList ) =
5 CiscoDsl !AccessList .allInstances ( ) ;
6

7 he lp er c o n t e x t CiscoDsl !AccessList def : ruleOrder : I n t e g e r =
8 thisModule .Rules−>indexOf (self ) ;
9

10 he lp er def : UniqueIpAddrs : Sequence ( S t r i n g ) =
11 CiscoDsl !AccessList .allInstances ( )−>collect (e | e .protocolObjectGroup .

↪→sourceAddress )−>
12 union (CiscoDsl !AccessList .allInstances ( )−>collect (e | e .serviceObjectGroup .

↪→targetAddress ) )−>
13 asSet ( )−>asSequence ( ) ;
14

15 r u l e CiscoModel2NetworkACModel{
16 from
17 s : CiscoDsl !Model
18 to
19 t : NetworkAC !Model (
20 connections <− s .rules−>select (e | e .oclIsKindOf (CiscoDsl !AccessList ) ) ,
21 elementKinds <− Sequence {firewallKind , serverKind , hostKind , zoneKind} ,
22 networkElements <− thisModule .UniqueIpAddrs−>collect (e | thisModule .

↪→createNetworkElement (e ) )−>
23 append (firewallElement ) ) ,
24 firewallElement : NetworkAC !NetworkElement (
25 kind <− firewallKind ,
26 name <− ’CiscoFirewall’ )
27 }
28

29 r u l e permitRule2Connection{
30 from
31 s : CiscoDsl !AccessList (s .decision = ’permit’ )
32 to
33 t : NetworkAC !Connection (
34 source <− thisModule .createNetworkElement (s .protocolObjectGroup .

↪→sourceAddress ) ,
35 target <− thisModule .createNetworkElement (s .serviceObjectGroup .targetAddress

↪→ ) ,
36 dstPort <− s .networkObjectGroup .port .toString ( ) ,
37 order <− s .ruleOrder , decision <− #Accept , protocol <− s .protocol .name ,
38 firewall <− thisModule .resolveTemp (s .refImmediateComposite ( ) , ’

↪→firewallElement’ ) )
39 }
40

41 r u l e denyRule2Connection{
42 from
43 s : CiscoDsl !AccessList (s .decision = ’deny’ )
44 to
45 t : NetworkAC !Connection (
46 source <− thisModule .createNetworkElement (s .protocolObjectGroup .

↪→sourceAddress ) ,
47 target <− thisModule .createNetworkElement (s .serviceObjectGroup .targetAddress

↪→ ) ,
48 dstPort <− s .networkObjectGroup .port .toString ( ) ,
49 order <− s .ruleOrder , decision <− #Deny , protocol <− s .protocol .name ,
50 firewall <− thisModule .resolveTemp (s .refImmediateComposite ( ) , ’

↪→firewallElement’ ) )
51 }
52

53 unique l a z y r u l e createNetworkElement{
54 from s : S t r i n g
55 to t : NetworkAC !NetworkElement (ipAddr <− s , name <− s )
56 }
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Thus, the second sub-step, refines the initial PIM model and improve its in-
ternal organization to deal with the aforementioned problems. More specifically,
this step applies the algorithm 1 on the PIM model (we describe the process for
closed policies with exceptions, however, a version adapted to open policies would
be straightforward):

1. Collect all the Connection elements C whose decision is Accept.

2. For each retrieved Connection Ci, get Connections Cj with the following
constraints:

(a) Cj decision is Deny

(b) Cj conditions match a subset of the set matched by the conditions of Ci.

(c) Cj ordering number is lower than the Ci ordering number (if not, mark
Cj as shadowed).

Then, for each retrieved Cj create an Exception element and aggregate it to
the Ci. Remove the Cj Connection.

3. For each remaining Connection element Cj whose decision is Deny and is-
Shadowed equals false:

— mark Cj as isRedundant

Algorithm 1
1: C← All Connections
2: Caccept← Ci ∈ C (Ci.decision = Accept)
3: for all Ci ∈ Caccept do
4: Cdeny← CJ ∈ C (Cj .decision = Deny and Matched of Cj ⊆ matched Ci)
5: for all Cj ∈ Cdeny do
6: if Cj .order < Ci.order then
7: Create Exception
8: Remove Cj

9: else
10: Cj .IsShadowed← true
11: end if
12: end for
13: end for
14: Cdeny← Cj ∈ C (Cj .decision=Deny and Cj .isShadowed=false)
15: for all Ci ∈ Cdeny do
16: Cj .IsRedundant← true
17: end for
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The algorithm we have presented is a modification of the one presented in [41],
e.g. to drop the requirement of using as input policy one free of shadowing and
redundancy. On the contrary, it is meant to work on real configurations and helps
to discover these anomalies: shadowed deny rules and redundant deny rules. The
security expert can retrieve them easily from the PIM as any left Connection in the
PIM with decision Deny is an anomaly and as such is marked as isShadowed or as
isRedundant.

This algorithm can be complemented by a direct application of additional algo-
rithms described in [40] to uncover other less important anomalies. Note that the
correction of these anomalies will often require the segmentation and rewriting of
the rules, therefore we consider the correction as an optional step to be manually
triggered by the security expert after analysing the detected anomalies.

5.2.3 Aggregation of individual PIMs

At the end of the previous step we get a set of PIM’s (one per firewall in the
network). Clearly, an individual firewall gives only a partial vision of the security
policy enforced in the whole network. In our example, analyzing one firewall will
yield that the public host can access the SMTP server, however, this server can be
also accessed by the private network with some exceptions. Thus, in order to obtain
a complete representation of the network policy the individual PIM models have to
be combined into one global network access-control model. Note that as we keep
information regarding which firewall contains a given Connection element and the
ordering with respect to the original configuration file, this step would be reversible,
so that the individual policies may be reproduced from the global model.

Listing 5.7: PIM Aggregation transformation
1 module PIMAggregation ;
2 c r e a t e OUT : NetworkAC from IN : NetworkAC , IN1 : NetworkAC ;
3

4 he lp er def : UniqueIpAddrs : Sequence ( S t r i n g ) =
5 NetworkAC !NetworkElement .allInstances ( )
6 −>select (e | not e .ipAddr .oclIsUndefined ( ) )−>collect (e | e .ipAddr )
7 −>asSet ( )−>asSequence ( ) ;
8

9 r u l e Model2AggregatedModel{
10 from
11 s1 : NetworkAC !Model ,
12 s2 : NetworkAC !Model (s1 = NetworkAC !Model .allInstancesFrom (’IN’ )−>first ( ) and
13 s2 = NetworkAC !Model .allInstancesFrom (’IN1’ )−>first ( ) )
14 to
15 t : NetworkAC !Model (
16 elementKinds <− s1 .elementKinds ,
17 connections <− s1 .connections−>append (s2 .connections ) ,
18 networkElements <− thisModule .UniqueIpAddrs−>collect (e | thisModule .

↪→createNetworkElement (e ) )
19 −>append (NetworkAC !NetworkElement .allInstances ( )−>select (e | e .kind−>

↪→first ( ) .oclIsTypeOf (NetworkAC !Firewall ) ) ) )
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20 }
21

22 r u l e CopyConnections{
23 from
24 s : NetworkAC !Connection (s .decision = #Accept )
25 to
26 t : NetworkAC !Connection (decision <− s .decision , dstPort <− s .dstPort ,
27 firewall <− s .firewall , order <− s .order ,
28 protocol <− s .protocol ,
29 source <− thisModule .createNetworkElement (s .source .ipAddr ) ,
30 target <− thisModule .createNetworkElement (s .target .ipAddr ) ,
31 exceptions <− s .exceptions )
32 }
33

34 r u l e CopyExceptions{
35 from
36 s : NetworkAC !Exception (s .decision = #Deny )
37 to
38 t : NetworkAC !Exception (decision <− s .decision , dstPort <− s .dstPort ,
39 firewall <− s .firewall , order <− s .order , protocol <− s .protocol ,
40 source <− thisModule .createNetworkElement (s .source .ipAddr ) ,
41 target <− thisModule .createNetworkElement (s .target .ipAddr ) )
42 }
43

44 r u l e CopyFirewallElement{
45 from
46 s : NetworkAC !NetworkElement (s .kind−>first ( ) .oclIsTypeOf (NetworkAC !Firewall ) )
47 to
48 t : NetworkAC !NetworkElement (
49 kind <− NetworkAC !Firewall .allInstancesFrom (’IN’ )−>first ( ) , name <− s .name )
50 }
51

52 unique l a z y r u l e createNetworkElement{
53 from
54 s : S t r i n g
55 to
56 t : NetworkAC !NetworkElement (ipAddr <− s , name <− s )
57 }

We obtain the global model by performing a model union operation between the
individual models, so that no Network Element or Connection is duplicated. Listing
5.7 shows an ATL transformation performing the aggregation of two PIM models.
As an extra step, a refining transformation is performed to assign the proper type
to the Network Elements. This step is performed by analysing the ip addresses and
the incoming and outgoing connections. This way, we are able to establish if a
network element is a zone or being an individual network element behaves as a
host or a server (a unique firewall element is created upon the initialization of each
PIM model in order to represent the firewall the rules come from). Once we have
obtained the global model, some operations become available.

First of all, local Exceptions and Connections, i.e., Exceptions and Connections

that only make sense in the context of a concrete firewall, can be identified (so that
they can be filtered out when representing the global policy.). Local exceptions are
usually added due to the mechanisms used to enforce the global policy. As en exam-
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ple, in the Listing 5.9 the elements in the network zone 222.111.0.0 are not allowed
to send or receive smtp messages. However, elements in 222.111.2.0 are allowed to
send them regarding the configuration Listing 5.2. This contradiction is due to the
enforcing architecture that imposes the traffic to pass through a certain firewall (in
this case, hosts in the local network are meant to access the DMZ through the sec-
ond firewall). Algorithm 2 detects local Exceptions and Connections and it works
as follows:

1. Collect all the Exceptions E in the aggregated model.

2. For each Exception Ei, L is a set of Connections C with the following con-
straints:

(a) Ci is retrieved from a firewall different that the one containing Ei

(b) Ci conditions , are subset (or equal) of Ei conditions.

If the obtained set of Connections L is not empty:
— Mark Ei as local.
— For each Ci in L, mark Ci as local if it has not been already marked.

Algorithm 2
1: C← All Connections
2: E← All Exceptions
3: for all Ei ∈ E do
4: L← Ci ∈ C (Ci.firewall 6= Ei.firewall and Matched of Ci ⊆ matched Ei)
5: if L 6= ∅ then
6: Ei.IsLocal← true
7: for all Ci ∈ L do
8: Ci.IsLocal← true
9: end for

10: end if
11: end for

This will be also useful when extracting a representation of the network topol-
ogy covered by the firewalls (see next section).

5.3 Applications

Once all the access-control information is aggregated in our final PIM, we are
able to use the model in several interesting security application scenarios.
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Metrics and advanced queries. First of all, having the access-control informa-
tion of a network represented as a model, enables the reutilization of a plethora
of well-known, off-the-shelf MDE tools. Editor generators, model transformation
engines, etc. become automatically available. An immediate application would be
the use of the well-known OCL query language to calculate interesting metrics on
the model and perform some advanced queries on the rules represented in it. In the
following example, we query our model (in the example, the context of self is the
root of our PIM) for the existence of any connection allowing the administrator host
(111.222.2.54) to connect to the server (111.222.1.17):

Evaluating :

self .connections−>exists (e | e .source .ipAddr= ’ 1 1 1 . 2 2 2 . 2 . 5 4 ’ and

e .target .ipAddr= ’ 1 1 1 . 2 2 2 . 1 . 1 7 ’ )

Results :
false

Forward engineering. Our PIM model extracts and abstracts information from
working networks. Nevertheless, the PIM is still rich enough to be able to be used
as starting point for the regeneration of the configuration files if necessary (e.g.
after modifications on the PIM to update the security policy of the network accord-
ing to the new requirements). In that sense, some existing forward engineering
efforts[81, 16] that produce firewall configurations from high level representations
can be reused.

Visualization of the topology. Our PIM can also be used to derive the topology
of the network, i.e., the arrangement of components and how the information flow
through them. For this purpose, a model-driven visualization tool like Portolan 1 can
be used. A transformation from our aggregated PIM towards the Portolan Cartogra-
phy model (Portolan is able to graphically represent any model corresponding to its
Cartography metamodel) has been written. This transformation analyzes the global
PIM to first, extract the Firewall elements and represent them as nodes. Then, repre-
sent the other Network Elements also as nodes and the local containment of Zones.
Finally, it extracts the Connections and build the links between each Connection

source Network Element to the corresponding Firewall element and from the Fire-

wall element to the target Network Element.
In Figure 5.4 we show the visualization the tool provided. In the figure, servers

(element 111.222.1.17), firewalls, zones and contained elements are easily identi-
fiably as well as the enabled connections between them. If we compare this figure

1. http://code.google.com/a/eclipselabs.org/p/portolan/
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Figure 5.4: Extracted network topology

with the figure 5.1 presented in section 5.1, we can see that the topology is accu-
rately represented.

5.4 Analysis of stateful misconfigurations

Firewall configurations are evolving into dynamic policies that depend on proto-
col states. In order to show the flexibility of our approach, in this section we extend
it to the representation and the analysis of stataful firewalls.

The main goal of a firewall is to control network traffic flowing across differ-
ent areas of a given local network. It must provide either hardware or software
means to block unwanted traffic, or to re-route packets towards other components
for further analysis. In the stateless case, the filtering actions, such as accepting
or rejecting packet flows, are taken according to a set of static configuration rules.
These rules only pay attention to information contained in the packet itself, such as
network addresses (source and destination), ports and protocol. The main advan-
tage of stateless firewalls is their filtering operations speed. However, since they do
not keep track of state connection data, they fail at handling some vulnerabilities
that benefit from the position of a packet within existing streams of traffic. Stateful
firewalls solve this problem and improve packet filtering by keeping track of con-
nection status. Indeed, they can block those packets that are not meeting the valid
state machine of a given connection- oriented protocol. As with stateless packet
filtering, stateful filtering intercepts the packets at the network layer and verifies if
they match previously defined security rules. Moreover, stateful firewalls keep track
of each connection in an internal state table.

Stateful firewalls provide fine-grained filtering capabilities to protect networks
against complex attacks. For instance, stateful filtering can be used in order to detect
and drop anomalous behavior in TCP traffic (or for any other connection-oriented
protocol) flows that progress via invalid connection states. Automata can be used
to describe the progression of states based on header flags. This way, illicit scan-
ning activities [67] or brute force termination attacks [12] can be described in the
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Q1	  
(REQUEST)	  

SA	  
Q2	  

(ESTABLISH)	  

S	  |	  SA	  

FA	  |	  R	  	   Q5	  
(CLOSED)	  

Q4	  
(CLOSING)	  

A	   Q3	  
(TRANSFER)	  

A	   A	  |	  F	  |	  FA	  |	  R	  

Q0	  
(LISTEN)	  

S	  

F	  

S	   A	  |	  F	  

(a)

Event	  label	   Flag	  set	   Event	  descrip2on	  

S	   {SYN}	   Request	  to	  open	  connecHon	  

SA	   {SYN+ACK}	   Agree	  to	  open	  connecHon	  

A	   {ACK}	   Acknowledgement	  

F	   {FIN}	   Request	  to	  close	  connecHon	  

FA	   {FIN+ACK}	   Close	  connecHon	  gracefully	  

R	   {RST}	   Tear	  down	  connecHon	  

I	   Set	  of	  all	  other	  invalid	  flag	  combinaHons	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Event	  
State	  

S	   SA	   A	   F	   FA	   R	   I	  

Q0	  (LISTEN)	   Q1	   ⊘	   ⊘	   ⊘	   ⊘	   ⊘	   ⊘	  

Q1	  (REQUEST)	   Q1	   Q2	   Q1	   ⊘	   ⊘	   ⊘	   ⊘	  

Q2	  (ESTABLISH)	   Q2	   Q2	   Q3	   ⊘	   ⊘	   ⊘	   ⊘	  

Q3	  (TRANSFER)	   ⊘	   ⊘	   Q3	   Q4	   ⊘	   ⊘	   ⊘	  

Q4	  (CLOSING)	   ⊘	   ⊘	   Q4	   Q4	   Q5	   Q5	   ⊘	  

Q5	  (CLOSED)	   ⊘	   ⊘	   Q5	   Q5	   Q5	   Q5	   ⊘	  

⊘(INVALID)	   ⊘	   ⊘	   ⊘	   ⊘	   ⊘	   ⊘	   ⊘	  

(b) (c)

Figure 5.5: Progression of a TCP connection exhibiting normal behavior, based
on [95]. (a) Simplified TCP automaton (it represents together the two separate
automata, one for the client and one for the server, of the traditional TCP finite state
machine). (b) Events description. (b) Transition table.

configuration of the stateful firewall, so that albeit of being dropped, such activi-
ties are also reported to the security officer. Assume the simplified automaton in
Figure 5.5(a), in which we describe the progression of a TCP connection exhibit-
ing normal behaviour [95]. As represented by this automaton, a TCP connection
progresses from state to state based on the information contained in the headers of
the TCP packets exchanged between two peers, and specified as the TCP traffic flag
combination in Figure 5.5(a). Based on this approach, the security officer can now
signal invalid transitions, as represented in Figure 5.5(b) by the symbol �. This in-
valid state corresponds to anomalous TCP transitions. Illicit scanning activities and
brute force termination attacks can easily be identified by means of these anoma-
lous transitions. Existing tools such as QueSO [2], NMAP [1] and Trafscrambler

[4] are available on-line in order to conduct such kind of illicit activites. Using the
information in Figure 5.5(b), the security officer can define a list of stateful access
control rules for a specific stateful firewall, e.g., a list of stateful rules for a firewall
based on the Linux operating system.

Netfilter Iptables [3], provides stateful filtering capabilities in order to grant
access to network traffic based on already existing connections. As the implemen-
tation of stateful capabilities differ from one vendor to another, hereinafter, we will
focus in Netfilter Iptables stateful implementations. Notice however that all the
operations we present here are implemented at PIM level, so they are completely
reusable for any other firewall vendor offering similar capabilities.
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This stateful feature of Netfilter is based on the use of the iptables and conntrack

modules. The iptables module defines tables (e.g., filtering tables) and chains (e.g.,
input, forward and output chains) to conduct actions over packets traversing the
network stack. The conntrack module (short for connection-tracking) provides to
Netfilter with the ability for maintaining state information about the packets the
firewall is examining. Therefore, the combination of both modules allows the user
to define stateful filtering rules for connection-oriented protocols.

Suppose the addition of the following rules in the tables of a Netfilter firewall
controlling Internet connections directed towards a network server, and whose de-
fault policy is open (i.e., it accepts all network packets not matching any given rule):

Listing 5.8: Firewall stateful configuration
0 1 : iptables −P FORWARD ACCEPT

0 2 : iptables −N InvRQ

0 3 : iptables −A FORWARD −p tcp −d 5 . 6 . 7 . 8 −−m conntrack −−ctstate NEW !
−−tcp−flags ALL SYN −−ctdir REPLY −j InvRQ

0 4 : iptables −A InvRQ −j LOG −−log−prefix ’InvRQ ’
0 5 : iptables −A InvRQ −j DROP

In the previous example, the main action (cf. line 03) is based on the conntrack

match for iptables, which makes it possible to define filtering rules in a much more
granular way than simply using stateless rules or rules based on the state match (cf.
reference [3] and citations thereof a more extensive description). This is defined
by providing the parameter m conntrack to the rules. The ctstate NEW parameter
is used to instruct the firewall to match those TCP packets in the conntrack table
that are seen for first time. The syn parameter, preceded by the ’!’ symbol, is used
to exclude from such packets, those with the SYN flag activated. Finally, the ctdir

ORIGINAL parameter is used to exclude those packets flowing from the server to
the Internet. As a result, the above rules allow to report and drop those TCP traffic
connections across the forward chain that exhibit the invalid behavior defined in the
first row in Figure 5.5(b), i.e., transitions from the initial state to the invalid one, as
a result of invalid flag combinations. In other words, it corresponds to the discovery
and prohibition of TCP traffic connections that may be associated to illicit scanning
activities.

In order to address the invalid states in the second and third rows in Figure 5.5(b),
we can complement now the previous set of rules with the following ones:

Listing 5.9: Firewall stateful configuration
0 6 : iptables −N InvRP

0 7 : iptables −A FORWARD −p tcp −s 5 . 6 . 7 . 8 −−m conntrack −−ctstate ESTABLISHED

−−ctdir ORIGINAL −−ctstatus SEEN REPLY −j InvRP

0 8 : iptables −A FORWARD −p tcp −d 5 . 6 . 7 . 8 −−m conntrack −−ctstate ESTABLISHED

−−ctdir REPLY −−ctstatus ASSURED −j InvRP

0 9 : iptables −A InvRP −−tcp−flags ALL SYN −j RETURN

1 0 : iptables −A InvRP −−tcp−flags ALL SYN ,ACK −j RETURN

1 1 : iptables −A InvRP −−tcp−flags ALL ACK −j RETURN
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1 2 : iptables −A InvRP −j LOG −−log−prefix ’InvRP ’
1 3 : iptables −A InvRP −j DROP

Equivalent reasoning can be used to complement the set of rules and cover all
the remainder cases of anomalous transitions in Figure 5.5(b). The result shall be
a complete set of stateful rules covering each of the invalid transitions. Notice that
the gain in expressivity that the stateful feature offers to a security officer leads to
error-prone configurations. For instance, in the case of open policies (as assumed in
the above examples), it is possible to end up with incomplete rule sets, so that some
threats are not appropriately covered. Therefore, leading to a weak enforcement of
policies. This can be the case in which some parameters like ctstatus, ctdir, tcp-

flags, etc., are not appropriately used. For instance, the omission (by mistake) of
the ’!’ symbol in line 03 of our previous example would lead to a situation in which
all the anomalous transitions of the first row in Figure 5.5(b) are now allowed by
the firewall, i.e., the firewall allows all those illicit scanning activities associated to
these transitions. In the case of closed policies (i.e., the firewall blocks all network
packets not matching any given rule) potential misconnnection in the inner logic
of the protocol can lead to services not responding as expected (e.g., the firewall is
instructed to accept the initial phase of the connection establishment, but blocks the
remainder phases). Again, the omission of the ’!’ symbol in line 03 would instruct
the firewall to drop the initial connection establishment to the server, and therefore
blocking all potential communication with it. In the general case, in which there
is a combination of open and closed default policies, the definition of rules can
definitively be much more complex than in the normal stateless case. Indeed, it is
required a deep knowledge of the inner logic of the states of the protocols being
dealt with. Otherwise, flawed configurations are likely to happen. In the sequel, we
address this problem and provide an automatic solution to handle it.

5.4.1 Metamodel and Parser extension

To make it able to deal with stateful information as well, the network access-
control metamodel and the Iptables parser needed to be extended.

Regarding the metamodel, State and Event entities have been added. These two
fields correspond to the Transition attribute presented in previous sections, for our
generic stateful filter model. This way, State represents the state a connection is
w.r.t. the finite state machine of a connection-oriented protocol (e.g., TCP, TCP,
DCCP, ATM, Frame Relay, TIPC, SCTP, etc.); and Event represents the triggering
condition for the transitions of such a state machine.

As for the parser, the special conntrack parameters of iptables rules where added
to the grammar, so that the XTEXT framework produces the corresponding Iptables
stateful metamodel and injector. In Listing 5.10 we show the required changes for
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Listing 5.10: Netfilter Iptables grammar extension for Stateful

FilterSpec :
’iptables ’ option=(’−A ’ | ’−D ’ | ’−P ’ )
chain=Chain ( ’−s ’ ip=IPExpr ) ?
(’−i ’ interface=Interface ) ? (’−d ’ ipDst=IPExpr ) ?
(’−p ’ protocol=Protocol ) ?
(’−−sport ’ sourcePort=INT ) ?
(’−−dport ’ destinationPort=INT ) ? (neg ? = ’ ! ’ ) ?
(syn?=’−−syn ’ ) ? (’−−m ’ matches=Match ) ?
(’−−ctstate ’ states+=State ( ’ , ’ states+=State ) * ) ?
(’−−ctdir ’ dir=Dir ) ?
(’−−ctstatus ’ status=Status ) ?
(’−−state ’ states+=State ( ’ , ’ states+=State ) * ) ?
(’−−tcp−flags ’ examFlags+=TCPFlag
( ’ , ’ examFlags+=TCPFlag ) * flags+=TCPFlag
( ’ , ’ flags+=TCPFlag ) * ) ?
(’−j ’ ) ? target=Target
(’−−log−prefix ’ lp=LP ) ?

;

Match :
name=(Conntrack | StateMatch )

;

TCPFlag :
name=(Syn | Ack | Fin | Rst | All | None )

;

the grammar.

5.4.2 Intra-state rule misconfiguration

In [37], the authors uncovered a new type of misconfiguration, denoted as intra-
state rule misconfiguration. Intra-state rule misconfiguration leads to flawed config-
urations in which some stateful actions, according to a connection-oriented proto-
col, are conducted by the firewall, while other related actions are not. They provided
an algorithmic solution to discover and correct explicit conflicting rules, so that the
resulting set gets consistent to the action of those rules with higher priority in order.
In this section, we complement the algorithmic solutions in [37], in order to assist
and guide in the correction of the more complex case, in which intra-state miscon-
figuration is driven by the omission of explicit rules in the set. The principle of our
approach is based on the specification of general automata. Such automata describe
the different states that traffic packages can take throughout the filtering process.

Algorithm audit_rule_set complements the previous intra-state rule misconfig-
uration management process presented in [37]. Its pseudocode is summarised in
Algorithm 1. It uses as input a stateful rule set R, in which each rule specifies an
Action (e.g., ACCEPT or DENY) that applies to a set of condition attributes, such
as SrcAddr, DstAddr, SPort, DPort, Transition, and Protocol. The Protocol attribute
corresponds to a connection-oriented protocol. An automaton A characterising the
progression of a connection for such a protocol is also provided to the algorithm.
Finally, the identifiers for the initial (Q 0 ), final (Q n ) and invalid (B) states are
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(a)

Event	  label	   Flag	  set	   Direc1on	   Event	  descrip1on	  

E1	   {SYN}	   Sender	  path	   Send	  SYN	  

E2	   {SYN}	   Receiver	  path	   Receive	  SYN	  

E3	   {SYN+ACK}	   Sender	  path	   Send	  SYN+ACK	  

E4	   {SYN+ACK}	   Receiver	  path	   Receive	  SYN+ACK	  

E5	   {ACK}	   Sender	  path	   Send	  ACK	  

E6	   {ACK}	   Receiver	  path	   Receive	  ACK	  

E7	   {FIN}	   Sender	  path	   Send	  FIN	  

E8	   {FIN}	   Receiver	  path	   Receive	  FIN	  

E9	   Set	  of	  all	  other	  invalid	  flag	  combinaJons	  (Sender	  path)	  

E10	   Set	  of	  all	  other	  invalid	  flag	  combinaJons	  (Receiver	  path)	  

(b)

Figure 5.6: (a) Automaton of a given protocol P (for simplicity, the invalid state is
not shown). (b) Events description for the automaton.

also used as input parameters. The main steps of the algorithm are:

— Build a set S containing all possible paths of valid transitions connecting the
initial (Q 0 ) and the final (Q n ) states of au- tomaton A (Line 6);

— Build a set T containing all the transitions of automaton A to reach the in-
valid (B) state (Line 7);

— Verify the coverage of either S or T (Lines 8e20), w.r.t. the Action (i.e., AC-
CEPT or DENY) and Transition attributes of all the rules in R;

To build S, the algorithm uses function find_all_paths. Function find_all_paths
recursively performs exhaustive search of automaton A and keeps track of all the
possible paths of valid transitions. Similarly, T is built using function transitions_to_state.
This function starts at B (invalid state) and recursively builds T with all the transi-



72 CHAPTER 5. EXTRACTING AC MODELS FROM NETWORKS

tions it finds over a one- dimensional vector. function cover_with_rules provides a
mapping between the sets of transitions in L, and those in rules of R that are consis-
tent with the attributes of r 1 . extract_missing_rules simply pulls out from C one
series of missing rules.

Algorithm 3 audit_rule_set(A,R,Q0,Qn,�)
Input: A, protocol automaton
Input: R, stateful rule set
Input: Q0, initial state of automaton A
Input: Qn, final state of automaton A
Input: �, invalid state of automaton A

S ← find-all-paths(A,Q0,Qn);
/* S: set of sets, s.t. every element E in S is a set of transitions (i.e., a path)
connecting Q0 and Qn*/

T ← transitions-to-state(A,�);
/* T : set of transitions, s.t. every t in T is a terminal transition in A to reach �
*/

repeat
ri ← next-unvisited-rule(R);

if (ri[Action] = ACCEPT) then
L← prune-paths(S,ri[Transition]);
/* L ⊆ S, such that every path P in L is a set of transitions connecting Q0

and Qn via ri[Transition] */
else if (ri[Action] = DENY) then
L← T ;

end if

C ← cover-with-rules(L,R,ri);
M ← extract-missing-rules(C);
/* M : set of mutually disjoint rules derived from R, s.t. M ∩ R = ∅; let m be
a rule in M , then m[Action] = ri[Action], Address and Port attributes of m
are consistent to rules in R, and m[Transition] is necessary to fully cover the
set of transitions in L */

if (M 6= ∅) then
report(’Anomaly in R due to ri’);
report(’Update R based on rules in M ’);

end if
until no-more-rules-to-visit(R);
/* no-more-rules-to-visit(R) holds true whenever all rules in R but the last are
reported as visited (the last rule is not inspected given that it is just a mark to the
default policy)*/
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Figure 5.7: Extraction approach implementation

5.5 Tool Support

In order to validate the feasibility of our approach, a prototype tool[7], able to
work with two popular firewall filtering languages Linux Iptables and Cisco PIX,
has been developed under the Eclipse 2 environment. Figure 5.7 summarizes the
steps and technological choices we made for the prototype development.

Figure 5.8: Cisco Metamodel

The tool implements the first step of our approach (the injection process) with
Xtext 3, an Eclipse plugin for building domain specific languages. As an input to this
tool we have written simple yet usable grammars for the two languages supported
by our tool. By providing these two grammars the Xtext tool creates for us the
corresponding metamodels depicted in Figures 5.8 and 5.9 along with the parser
and the injector needed to get models out of the configurations files.

2. http://www.eclipse.org/
3. http://www.eclipse.org/Xtext/
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Figure 5.9: Iptables Metamodel

The transformations from the PSMs to the PIM along with the detection of
anomalies have been written using the model transformation language ATL[51],
both in its normal and in-place (for model refining[93]) modes. Same for the PIM’s
aggregation process.

As for the stateful analysis, Figure 5.10 summarises the approach followed by
our prototype to handle misconfigured files.

Figure 5.10: Stateful analysis approach

It comprises the following steps.

— (1) Parsing and injection of already deployed configuration files into models
at the PSM level;

— ( 2) Transformation of models from the PSM level to the PIM level;
— (3) Alignment of models at the PIM level w.r.t. a given protocol automaton;
— (4) Execution of misconfiguration algorithms and reporting of the discov-

ered anomalies;
— (5) Generation of corrective rules.

The implementation of Steps 1 and 2 is similar to those of the stateless case.
However, during step 2, dealing with the transformation of rules from the PSM
level to the PIM level, we also compute step 3, the mapping between the treatment



5.5. TOOL SUPPORT 75

of protocol automata by the specific vendor firewall and the generic one (notice that
the definition of the automata is also performed at the model level as an EMF model
for representing automata have been also developed). We show an excerpt of this
transformation in Listing 5.11 where the rule filterNew2ConnectionsQ0 transforms
Iptables rules towards Connections of our PIM and properly sets the State and Event

w.r.t. to the automata in Figure 5.6.

Listing 5.11: Stateful PSM to PIM transformation
1 r u l e filterNew2ConnectionsQ0{
2 from
3 s1 : Iptables !FilterSpec ,
4 s2 : Iptables !FilterSpec (thisModule .FirstPathRules−>includes (s1 )
5 and s1 .isOfState (’NEW’ , ’SYN’ )
6 and s2 .isOfState (’NEW’ , ’SYN’ )
7 and s2 .ip = s1 .ipDst
8 and s2 .ipDst = s1 .ip )
9 to
10 t : StatefulPIM !Connection −> (StatefulPIM !Network .allInstancesFrom (’OUT’ )−>

↪→first ( ) .connections ) (
11 srcPort <− s1 .sourcePort ,
12 dstPort <− s1 .destinationPort ,
13 kind <− i f s1 .target = ’ACCEPT’ then #ACCEPT e l s e #DENY endi f ,
14 protocol <− s1 .protocol ,
15 states <− state ,
16 setFlags <− event ,
17 desHost <− thisModule .createHost (thisModule .findHost (s1 .ipDst ) ) ,
18 srcHost <− thisModule .createHost (thisModule .findHost (s1 .ip ) )
19 ) ,
20 state : StatefulPIM !State (
21 name <− ’Q0’

22 ) ,
23 event : StatefulPIM !Event (
24 name <− ’E2’

25 ) ,
26

27 t2 : StatefulPIM !Connection −> (StatefulPIM !Network .allInstancesFrom (’OUT’ )−>
↪→first ( ) .connections ) (

28 srcPort <− s2 .sourcePort ,
29 dstPort <− s2 .destinationPort ,
30 kind <− i f s2 .target = ’ACCEPT’ then #ACCEPT e l s e #DENY endi f ,
31 protocol <− s2 .protocol ,
32 states <− state2 ,
33 setFlags <− event2 ,
34 desHost <− thisModule .createHost (thisModule .findHost (s2 .ipDst ) ) ,
35 srcHost <− thisModule .createHost (thisModule .findHost (s2 .ip ) )
36 ) ,
37 state2 : StatefulPIM !State (
38 name <− ’Q0’

39 ) ,
40 event2 : StatefulPIM !Event (
41 name <− ’E1’

42 )
43 }

The application of the audit algorithms presented in is done at the PIM level.
The algorithms themselves have been encoded as ATL transformations. This way,
the application of the algorithms and functions is independent of the specific fire-
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wall. The output of the audit process is a new model that contains all the necessary
feedback to handle the detected misconfiguration, such as the missing rules needed
to handle it.

The visualization of the topology relies on Portolan, and the transformations
between our PIM and the Portolan model on ATL.



6
Extracting AC Models from
Relational Databases

Relational databases are at the core of most companies information systems,
hosting critical information for the day to day operation of the company. Securing
this information is therefore a critical concern. For this purpose, both, researchers
and tool vendors have proposed and developed security mechanisms to ensure the
data within the database system is safe from possible threats. Due to its relative
conceptual simplicity, one of the most used mechanisms within DataBase Manage-
ment Systems (DBMSs) are access control (AC) policies where Role-based access
control (RBAC) [85] is the current trend.

However, and despite the few methods that attempt to automatically derive these
policy implementations from high-level security specifications[70, 17, 15], the task
of implementing an access control security policy remains in the vast majority of
cases a manual process which is time-consuming and error-prone. Besides, sev-
eral database mechanisms may be needed in the implementation of the policy, e.g.,
triggers can be used to add fine-grained control on privileges, scattering the policy
and increasing the complexity of the definition process. Furthermore, as security
requirements are rarely static (new application scenarios, new users, etc), frequent
modifications of the security policy implementation are required, what increases the
chances of introducing new errors and inconsistencies.

In this context, discovering and understanding which security policies are actu-
ally being enforced by the database system comes out as a critical necessity. This
is a necessary condition for the reenginering of the current policies to adapt them
to evolving needs of the company and also to detect inconsistencies between the

77
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enforced and the desired policies. The main challenge for this discovery process is
bridging the gap between the vendor-dependent policy representation and a more
logical model that 1 - express these policies in a way that abstracts them from the
specificities of particular database systems and 2 - that can be understood by se-
curity experts with no deep knowledge of the particularities of each vendor. Rep-
resenting and processing the security policies at this logical level is much easier
than a direct exploration of the database dictionary where the security information
is scattered among different dictionary tables whose structure is unfortunately not
standardised. Additionally, this logical model would also allow us to implement all
analysis/evolution/refactoring/manipulation operations on the security policies in a
vendor-independent and reusable way.

The goal of this chapter is then two-fold. First we provide a means to represent
such logical models for security concerns in relational database systems. Secondly,
we describe a reverse engineering approach that can automatically create this logical
model out of an existing database. Reverse engineering, as a process aimed to
represent running systems at higher abstraction level, has been proved useful in
many domains [28], including database systems [62], [33]. However, these works
have focused on the database structure and ignored the security aspects. We intend
to cover this gap.

Additionally, we discuss possible applications and benefits of using a model-
based representation given the fact that this enables to reuse in the security domain
the large number of model-driven techniques and tools. Model manipulation tech-
niques can then be applied to visualize, analyze, evolve, etc the model. Then, a
forward engineering process could be launched in order to generate the new secu-
rity policy implementation ready to import in the target database system.

6.1 Motivation

Security in databases heavily relies on the implementation of access control
mechanisms that ensure that only authorised users have access to read/modify a
given piece of data.

Access control manages the assignment of privileges or permissions, i.e., the ex-
ecution of operations, on system objects to subjects. It has been largely studied by
the research community and adopted by database tool vendors [20]. Mandatory Ac-
cess Control (MAC), Discretionary Access Control(DAC) and Role-based Access
Control (RBAC) are the most successful models. RBAC (with DAC capabilities) is
currently the most popular one and will be the focus of this chapter.

Such a RBAC-like access control security policy is enforced in a database sys-
tem by using a set of different mechanisms. Moreover, the information of the im-
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plemented policies is scattered around several tables and columns in the internal
database dictionary, making it very difficult to quickly grasp the security constraints
of a database. This section provides an introduction to these security mechanisms
while next one presents the security model as a way to provide a more homogeneous
representation of all of them.

Privileges: We can divide the privileges that can be granted in a DBMSs in five
categories: Database-level privileges, for those privileges that imply creation of
database objects including users and roles. Table-level privileges for those that im-
plies table, columns and index access. Permission-delegation privileges to delegate
permission administration to users and roles. Execute privileges for the executable
elements (stored procedures and functions) and Session privileges. The correspond-
ing privileges for each category are listed below:

— The table level privileges are the following: SELECT, UPDATE, INSERT
and DELETE.

— The database level privileges include CREATE, ALTER and DROP.
— GRANT and REVOKE are the privileges in the permission-delegation cate-

gory. They can be granted to users or roles so that the permission adminis-
tration is delegated.

— The EXECUTE privilege is the only one in the execute category. It is meant
to be granted on procedural code elements.

— SET and CONNECT are the privileges in the session category. They man-
age the ability of a user to access a database and to act as a given role.

The list of privileges that exist within concrete DBMSs is longer than the one
presented here (e.g., Oracle defines more than one hundred privileges to be granted).
However, they are either vendor specific or are meant to be used only in very spe-
cific cases.

Creating and assigning roles. A basic role-based access control policy can be set
by using standard SQL commands [49] to create and assign roles (and permissions),
although not all commercial DBMSs fully support the SQL standard (e.g., MySQL
does not give support to roles so privileges are directly assigned to users). In the
following the relevant SQL commands are showed and explained.

— CREATE / DROP for roles: Those commands enable the creation and dele-
tion of roles from the database.

1 //Creates the role test_role in the database

2 CREATE ROLE test_role
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3 //Removes the role test_role form the database

4 DROP ROLE test_role

— GRANT / REVOKE: The action of these commands is twofold, as they can
be used on privileges but also on roles. When used on privileges they allow
to grant/revoke a given privilege to a user or a role on a specific database
object. When used on roles, it allows to grant/revoke a role to a user or to
another role in DBMSs that supports role hierarchies.

1

2 //Grants select, insert update and delete privileges on test_table to

3 //the test_role role

4 GRANT SELECT, INSERT, UPDATE, DELETE ON test_table TO test_role;

5 //Grants the test_role role to test_user

6 GRANT USER test_user test_role;

7

8 //Revoke the delete privilege from the test_role

9 REVOKE DELETE ON test_table FROM test_role;

10 //Revoke the role test_role form the user test_user

11 REVOKE test_role FROM test_user;

— SET: This command allows the user to choose which role or roles between
the roles she has been granted will be used in the current session. Depending
of the concrete implementation and vendor constraints a dynamic SoD could
be enforced so that a user can not hold at the same time two incompatible
roles.

1 //Set the role test_role as the active role for the user

2 //in the current session

3 SET ROLE test_role;

Some of the explained commands admit the use of modifiers that enhance their
behaviour and their semantics (e.g., granting a role with the GRANT OPTION al-
lows the grantee to, in turn, grant the role to other users). Again, as the basic
commands, they are supported only by certain vendors and just until some extent.

View definitions. Views can be used as a fine-grained access control mechanism.
A view filters table rows and columns with respect to a desired criteria so when a
subject is granted privileges over a view, is actually being granted privileges over a
table or a set of tables but with certain constraints. This actually represents column-

level and content-based (row level) access control.

Functions, stored procedures and triggers. Stored procedures, triggers and func-
tions may also participate in the implementation of an access control policy.

An stored procedure can be executed with two different sets of permissions,
definer’s rights or invoker’s rights. If it is executed with definer’s right this, in fact,
implies the invoker obtains transitive rights on the objects used within the code
of the stored procedure. This constitutes a security feature in several DB system
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as it allows to give very few permissions to application roles and to encapsulate
functionality in the procedures. However, it is important to be able to "see" this
information as it could be a security threat (some user not supposed to insert in
a given table may do it by transitivity). Moreover, if the definer’s set of rights is
important, potentially including administration permissions, a user or role winning
permission on the modification of the procedure could modify it to gain access to
critical information. Making this information easy to grasp, will allow for a better
organization of the policy.

Triggers can also be used to set constraints on granted privileges. This way,
generic privileges granted to users will be further filtered depending on the context
of the access request. Typically, triggers will be defined to monitor the modification
actions on certain tables. Once the trigger is fired, a condition is evaluated to decide
whether to go ahead or not with the action based on contextual information (e.g.
time of the day, values of the modification action,...). As part of the condition a
stored procedure could be called.

Some vendors offer even more sophisticated mechanisms, e.g., Oracle Virtual
Private Databases (VPD)[75], which uses PL/SQL to associate an additional where
clause with SELECT expressions depending on the user/role who launches the SE-
LECT.

6.2 RDBMS Access-Control Metamodel

This section proposes our specific relational database access control metamodel
(RBAC-inspired). Next sections describe how to automatically populate it based
on the actual policies enforced in a particular database and how it can be used to
analyze those policies.

The SQL standard predefines a set of privileges and object types that can be
used in the definition of a relational database. Our metamodel provides a direct
representation of these concepts to facilitate the understanding of the security poli-
cies linking the security elements with the schema objects constrainted by them as
depicted in figure 6.1. In the following, we describe the main elements of the meta-
model.

Database objects: The main objects users can be granted privileges on are the fol-
lowing: tables, columns, views, procedures and triggers. Each one of these elements
is represented in the metamodel by a metaclass inheriting from the SchemaObject

metaclass. We remark that views, as can be seen in metaclass View, can have not
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only columns corresponding to table columns but also derived columns. Databases
include a set of schemas (Schema metaclass) which in turn contain the SchemaOb-

jects.

Privileges: Privileges, divided in five categories as presented in section ??, are de-
picted in the bottom part of figure 6.1. If needed, an extension of this metamodel
(by inheriting from the Operation metaclass) could be provided to deal with vendor-
specific privileges.

Subjects: Subjects executing actions on the DBMS are users and roles and they are,
as such, represented in the metamodel with the corresponding metaclasses User and
Role. The metamodel has to be also able to represent role hierarchies, normally al-
lowed in DBMSs supporting roles. In the metamodel, the metaclass Role inherits
from the metaclass Subject which enables it to become grantee. The User metaclass
also inherits from Subject what means that, privileges, in contrast to pure RBAC,
can be granted to both users and roles 1.

Other elements and constraints: There are several other aspects that have to be
taken into account when developing a domain specific metamodel for access control
in DBMSs.

The execution of privileges may need to be constrained. In DBMSs this is nor-
mally achieved by using triggers and procedural code. The metamodel should per-
mit the representation of the existence of such constraints. The metaclass Constraint

meets that purpose. Typically it points to a Trigger linked to the object and the op-
eration on it that is constrained by the trigger. The Trigger metaclass also includes
the attributes the trigger body and the condition and error message to be displayed
when the trigger execution fails due to any exception.

Another aspect to be taken into account is object ownership as it is the basis
for permission delegation. An association between objects and subjects records this
ownership relationship.

Finally, global permission, i.e., permissions that are granted on all the corre-
sponding elements (e.g., granting SELECT permission on ANY TABLE gives per-
mission to select over all the tables in the schema) also exist in DBMSs and must
be represented. For that purpose, in the metamodel, permissions can be granted on
any object, including the metaclasses Schema and Database. A select permission
granted on Schema or Database represents that the grantee can select all the tables
and views contained in those objects.

1. The model could be simplified by only allowing roles to have privileges and then creating
and assigning a role to each user in the DBMSs. However, we consider better to represent privilege
assignment as it happens in database systems.
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6.3 Reverse Engineering Process

The previous metamodel allows to represent database access control policies
at the logical level. Models conforming to this metamodel express the security
policies in place in a given database in a vendor-independent manner. These models
can be manually created but ideally they should be automatically created as part
of an automatic reverse engineering process that instantiates the model elements
based on the information extracted out of the database. Note that, the extracted
models are vendor-independent but the extraction process is not since each vendor
uses different internal structures (i.e. a different set of tables/columns in the data
dictionary to express this information). In fact, we could regard this “injection”
process as the one that abstracts out the specific product details.

SCHEMA 
Model

SCHEMA Model 
+ Users, roles and privs. 

SCHEMA Model 
+ Users, roles and privs.
+ Triggers
+ Procedures

Procedural
Code

Procedural
Code Model

SQL queries
model refining+ injection

+ injection

+ analysis
model refining

parsing

SQL queries

SQL queries

+ injection

Figure 6.2: Extraction process

Our reverse-engineering approach is summarized in Figure 6.2. It starts by pop-
ulating our security model with the basic schema information (tables, views, etc).
Then this model is refined to add user, roles and privileges information whereas in
a last step, the bodies of triggers and stored procedures are analyzed to complement
the access control policies in the security model.

In the following we will detail the process for the reverse engineering of se-
curity policies over an Oracle 10g DBMS. This same process could be reused for
other DBMSs changing the references to the specific data dictionary tables with the
corresponding ones in that system.

6.3.1 Extracting general schema information

The first step of the reverse engineering process consists in populating the part
of the model that describes the structure of the database itself e.g., schemas, tables
(and columns), views, procedures, etc. In order to do this, an injector (in our ter-
minology, an injector is a software component that bridges technical spaces[57],
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in this case moving information from the database technical space to the modeling
technical space. See section 2.2 in Chapter 2 for more details) is needed. This in-
jector connects to the database and queries the dictionary tables to retrieve all the
necessary information. The selected objects are inserted as model elements in the
security model. In the concrete case of Oracle, our injector has to query the tables
and views in listing 6.1.

View extraction is more challenging since we need to parse the view definition to get
the list of tables (or other views), columns and conditions the view selects. Since the
tables and columns have already been created in the model in the previous step, the
result of the parsing is a set of links between the view object and the other objects
filtered by the view. The where clause will be copied as it is into the condition

attribute of the view metaclass. Moreover, a view can contain derived columns,
e.g., columns that do not exist in any table like sums, avg, etc. To retrieve these
columns, the database dictionary has to be queried to extract the list of colums of
the view and then intersect it with the set of previously obtained columns (i.e., view
columns pointing to table columns). Each column that is not in the intersection set
will be created as a view column in the model.

Listing 6.1: database dictionary tables for general schema information
1 DBA_TABLES / / List all the tables in the database including their definition text

2 DBA_VIEWS / / List all the views in the database including their definition text

3 DBA_TAB_COLS / / List all the columns of all the tables in the database

4 DBA_SCHEMAS / / List all the schemas in the database

5 DBA_PROCEDURES / / List all the stored procedures in the database

6 DBA_TRIGGERS / / List all the triggers in the database

7 DBA_SOURCE / / Source code of procedures and triggers

8

9 / / Access control information

10 DBA_USERS / / List all the users in the database

11 DBA_ROLES / / List all the roles in the database

12 DBA_COL_PRIVS / / Describes all column object grants in the database

13 DBA_ROLE_PRIVS / / Describe all role grants to user or roles

14 DBA_TAB_PRIVS / / Describe all object (tables , views , etc ) grants in the database

6.3.2 Extracting users, roles and privileges

Once the schema information has been already inserted in the database security
model, it is time to add the access control information. In listing 6.1 we show the
tables that have to be queried to obtain all the information regarding users, roles,
assignment of roles and assignment of privileges. As in the precious step, an injector
is needed to query the database and populate the model with the results. After this
step, the general access control information of the database, i.e., subjects, objects
and permissions are already represented in the security model.
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6.3.3 Extracting stored procedures and triggers information

Triggers. Complex security checks can be implemented by means of triggers that
fire to prevent certain actions when performed in a certain context. However, trig-
gers are used for a huge variety of tasks beyond security purposes. In our approach,
all triggers are retrieved and parsed, then, they are analyzed with respect to a number
of heuristic conditions in order to select which of them are implementing security
checks and constraints and discard the rest.

The heuristic conditions analyze the following aspects:

— Trigger kind: Triggers are associated with statements (e.g., a select state-
ment) and fired when the statements are invoked. However, it is possible to
select if the trigger will be executed before or after the statement. BEFORE

STATEMENT triggers are executed before the statement is completed, en-
abling the possibility of evaluating security concerns (e.g., the possibility
to make inserts in certain tables could be enabled only to working days).
Conversely, AFTER STATEMENT triggers are executed once the action of
the statement is performed, so, when involved in security, they are normally
used for logging purposes. Clearly, our focus should be in the BEFORE

STATEMENT triggers.

— Trigger contents: Although the kind of the trigger is an important hint, it
is not enough to decide if it implements a security check or constraint or
any other operation (For example, for each table with an auto-generated pri-
mary key, this will be implemented as a BEFORE STATEMENT insert trig-
ger. Similarly, a number of derived attributes or inter-table check constraints
may be implemented with this kind of trigger). To tackle this problem, we
analyze the contents of the trigger in order to find operations that are likely
to be used when performing security checks like system context information
checks, user information checks, exception raising’s, etc.

As a summary, a trigger will qualify as a security trigger if it fulfills all the
following heuristic conditions:

1. The trigger is a before statement trigger.

2. The trigger contains an exception section that raises an exception.

3. The trigger evaluates conditions on the system (ip address, host, time) or
user information (name, assigned privileges). Note that checking this part is
strongly vendor dependant.
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As an example, listing 6.2 shows two triggers from the well-know Human Re-
sources (HR) 2 schema example privided by Oracle: Secure_employees and Up-

date_job_history. The latter one is an AFTER STATEMENT trigger which directly
disqualifies it as a security enforcement trigger. Conversely, the former fulfils all the
heuristic conditions. It is a BEFORE STATEMENT trigger, it raises and exception
and checks system information (the time) and thus it qualifies as a security trigger.

Listing 6.2: Trigger’s code
1 TRIGGER update_job_history

2 AFTER UPDATE OF job_id , department_id ON employees

3

4 FOR EACH ROW

5 BEGIN

6 add_job_history ( : old .employee_id , :old .hire_date , sysdate ,
7 :old .job_id , :old .department_id ) ;
8 END ;
9

10 TRIGGER secure_employees

11 BEFORE INSERT OR UPDATE OR DELETE ON employees

12

13 BEGIN

14 IF TO_CHAR (SYSDATE , ’HH24 :MI ’ ) NOT BETWEEN ’ 08 :0 0 ’ AND ’ 18 :0 0 ’
15 OR TO_CHAR (SYSDATE , ’DY ’ ) IN ( ’SAT ’ , ’SUN ’ ) THEN

16 RAISE_APPLICATION_ERROR (−20205 ,
17 ’You may only make changes during normal office hours ’ ) ;
18 END IF ;
19 END secure_employees ;

Once a trigger is identified as a security trigger, the constraints imposed by the
trigger need to be extracted and added to the model (see section 6.5).

Stored procedures. As introduced in section 6.2, stored procedures can be executed
with invoker or definer’s rights. In the latter, the invoker role gets transitive access
to certain database objects. The source code of the procedure must be analysed to
obtain such set of transitive permissions. Our approach parses the store procedures
and extracts the accessed database objects. These are then linked to the procedure
in the database security model in order to easily retrieve them later on during the
analysis phase. As an example, the add_job_history procedure in listing 6.3 is
declared to be invoked with definer rights. The table it accesses, Job_history, would
appear linked to this procedure in the security model.

6.4 Applications

The database security model obtained at the end of the previous step can be used
in many different scenarios. In the following we descrime some relevant ones. Note
that the implementation of these scenarios benefits from the fact that at this stage

2. http://docs.oracle.com/cd/B13789_01/server.101/b10771/scripts003.htm
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Listing 6.3: Procedure code
21

22 PROCEDURE add_job_history (
23 p_emp_id job_history .employee_id%type
24 , p_start_date job_history .start_date%type
25 , p_end_date job_history .end_date%type
26 , p_job_id job_history .job_id%type
27 , p_department_id job_history .department_id%type
28 )
29

30 IS
31 BEGIN
32 INSERT INTO job_history
33 (employee_id , start_date , end_date ,
34 job_id , department_id )
35 VALUES (p_emp_id , p_start_date ,
36 p_end_date , p_job_id ,
37 p_department_id ) ;
38 END add_job_history ;

security aspects are expressed at the model level and thus all existing model-driven
techniques can be reused when manipulating them. This model-based representa-
tion also allows us to get rid of all vendor specific knowledge during the abstraction
process. Therefore, these operations can be applied no matter the database system
in place.

In order to illustrate the model analysis and manipulation that follows in this
section, we will use the Human Resources (HR) schema.

The HR schema contains:

— 7 tables: Countries, Departments, Employees, Jobs, Job_history, Locations,
Regions that build up the Human Resources database.

— 1 view: Emp_details_view, that summarizes the employee information con-
tained in all the other tables.

— 2 stored procedures: Add_job_history to insert values into the Job_history

table, and Secure_dml that assures that changes can not be performed out of
the office working hours.

— 2 triggers: Secure_employees that calls Secure_dml to prevent unauthorized
modifications in the employees table and Update_job_history that keeps
Job_history up to date with respect to relevant changes in the employee table.

To that example we have added two roles, HR_MANAGER and HR_TRAINEE
so that we can show the capabilities of our metamodel and reverse-engineering
process to obtain and represent database RBAC security policies. Then, we have
applied our tool to obtain the corresponding database security model, hereinafter
called HR security model.
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Visualization. Visual data is often easier and faster to analyze than textual or tab-
ular data. Using MDE tools we can easily provide a visualization of our database
security model so that the relation between subjects, objects and permissions can be
easily grasp. We have use Portolan 3, a model visualization tool, in order to generate
such visualization.

Figure 6.3: Database security model visualization

In Figure 6.3 we show the visual representation we obtained for the HR secu-
rity model, where each kind of element and relation is shown is a different color.
Thanks to this visualization we can quickly see that HR_MANAGER has privi-
leges in all tables whereas HR_TRAINEE has only privileges on the EMPLOYEES

and DEPARTMENTS tables and on the ADD_JOB_HISTORY stored procedure.
Moreover, the table EMPLOYEES has a constraint implemented by the trigger SE-

CURE_EMPLOYEES (that calls an stored procedure). Finally, we used the portolan
path-discovery feature to see if there is a path between the database user JOHN

and the table JOB_HISTORY. This path exists, as the table is reachable through
the stored procedure ADD_JOB_HISTORY (note that for simplicity and readability,
some information like ownership or system roles is not shown in the diagram).

Complex security queries and metrics. The most basic thing we may want to
do with a security model is to query it to learn more about specific details of the
security policies currently enforced in the database.

This is very complex to do directly on the database itself since this information
is scattered among a number of database dictionary tables which are completely
vendor-specific. Instead, when using our model we can just use a standard model
query language to traverse the information in the extracted model classes. The
model query is defined just once and can be executed on security models extracted
from any relational vendor.

As an example, we have used the Eclipse 4 environment to query the HR security

3. http://code.google.com/a/eclipselabs.org/p/portolan/
4. http://www.eclipse.org
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Listing 6.4: OCL Query Example

Evaluating :

let constrainedPrivileges : Sequence (DBSecurity : : Permission ) =
self .subjects−>select (e | e .name = ’HR_MANAGER ’ )
−>collect (e | e .grantedPrivileges )
−>select (e | not e .constraints−>isEmpty ( ) ) in

constrainedPrivileges
−>collect (e | Tuple{object = e .object ,

operation = e .operation ,
type = e .constraints .executes−>first ( ) } )

Results :

Tuple{object=Table EMPLOYEES , operation=Update , type=Trigger SECURE_EMPLOYEES}
Tuple{object=Table EMPLOYEES , operation=Insert , type=Trigger SECURE_EMPLOYEES}
Tuple{object=Table EMPLOYEES , operation=Delete , type=Trigger SECURE_EMPLOYEES}

model. In listing 8.5 we show a query written in OCL[71], the standard query
language for models. It extracts, for a given role (in this case HR_MANAGER),
all the granted privileges that are subject to constraints (e.g. there is a trigger that
restricts the execution of that privilege). As a result the query show the privilege,
the object and the trigger enforcing the constraint.

In the same way, we can also calculate metrics to learn more about the im-
plemented security policy. A software metric is a measure of some property of
a piece of software or its specifications. Quantitative measurements according to
these metrics could help in several activities, like quality assurance and feature anal-
ysis. Clearly, there are many metrics that may be interesting to evaluate the security
policies of an organization. Measures like counting the average of objects reachable
per subject or how many users are assigned per role can give as one idea of how the
policy is defined. We can discover, by example, that some roles accumulate too
many privileges what could put the system into risk.

In the MDE world, the Object Management Group (OMG) has proposed a stan-
dard metamodel, Software Metrics Metamodel (SMM) to express the metrics and
measurements on a model. SMM is integrated in the model-driven reverse engi-
neering framework MoDisco[26]. Therefore, we can easily define SMM metrics
and evaluate them on a given security model to quickly get some summary infor-
mation. For instance, figure 6.4 shows the (tree-based representation) SMM model
for the metric “calculate the average number of objects accessible per role”. The
metric first counts the select privileges that are granted to roles, then groups them
by role and finally calculates their average number.
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Figure 6.4: SMM Metric Example

In scenarios where an objective policy is provided, using model set operations
can also provide useful information. For instance, model difference [11, 54] is an
operation between two models, M1 and M2 that calculates the differences between
them, giving as a result a model (or any other representation) containing either
elements that are different or elements that only exist in one of the models. The
union of models is the opposite operation and supposes the merge of the elements
of two models. Similar definitions can be obtained for all the typical set operations.

Thanks to these operations we could for instance see if a database Da has more
strict policies that a database Db (e.g. MDb

−MDa would reveal those permissions
in Db not present in Da) or create the security policy for a new database Dc result-
ing from the merge of two databases Da and Db either by stating that the security
policies in the new database are the union of those in Da and Db (Dc would be less
restricted) or their intersection (Dc would become more restricted).

Refactoring of security policies. The complexity and frequent evolution of ac-
cess control security policies may lead to correct but non-optimal definitions. This
problem, can be tackled by using a technique, refactoring, proved useful for quality
improvements in several domains (source code, models, etc).

A refactoring on the database security model will keep the semantics of the
policy, i.e., the same objects will be accessible by the same subjects, while improv-
ing one or more quality attributes of the model. Attributes like brevity, clarity and
breadth (how comprehensive a policy is) of security policies [45] can significantly
impact the quality of the policy as they will ease the task of managing it.

With our approach we could build a library of security refactoring patterns for
databases that would allow designers to improve the security implementation of
any database. As an example, we could envision an IntroduceRole refactoring that
creates a new role grouping a set of users with the same permissions. This refac-
toring does not change the behaviour of the policy (i.e. users do not have more nor
less permissions than before) but will improve its maintainability since now we can
work at the role-level instead of managing every time many individual users.

Refactorings can be implemented with model transformations whereas refactor-
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Listing 6.5: refactoring example
1

2 module refactoring ;
3

4 c r e a t e OUT : SecurityDB r e f i n i n g IN : SecurityDB ;
5

6 r u l e IntroduceRole{
7 from
8 user : SecurityDB !User
9 to
10 modifiedUser : SecurityDB !User (
11 permissions <− Sequence {} ,
12 roles <− user .grantedRoles−>append (newRole ) ) ,
13 newRole : SecurityDB !Role (
14 name <− ’newRole’ ,
15 permissions <− user .permissions )
16 }

ings opportunities (“smells”) can be specified by means of model queries. In listing
6.5 we show a Model-to-Model transformation excerpt implemented in the ATL
transformation language that introduces a new role, assigns to it the permissions of
a given user, remove the permissions from that user and grant her the new role.

Security policy deployment (reengineering). New requirements to be met by the
database security policy may appear. Instead of directly modifying the database
security implementation, what will require vendor-specific knowledge and could
lead to introduce errors as stated in the motivation of this work, the extracted model
can be used to start a model-driven forward engineering process.

First, our reverse engineering process would create the security model out of
the current database implementation. Then, the required changes and validations
will be performed on the security model. Finally, model-to-model transformation
and model-to-text transformations will be used to generate the SQL sentences and
procedural code corresponding to the evolved model.

Our framework can also be used as part of existing forward engineering methods
[70, 17, 91] able to derive policy implementations from high-level security speci-
fications. All these approaches could use our metamodel as a pivot/intermediate
representation in their “code-generation” process to simplify bridging the gap be-
tween the high-level specifications and the vendor specific notation.

6.5 Tool Support

In order to validate the feasibility of our approach, a prototype tool has been
developed and can be found online. 5

The tool has been implemented on top of the Eclipse Modeling Framework

5. http://www.emn.fr/z-info/atlanmod/index.php/DBMS_security_reverse_engineering
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(EMF) [92] the de-facto standard for implementing model-driven techniques in the
Eclipse platform.

More specifically, the proposed security database metamodel has been imple-
mented as a EMF (Ecore) metamodel. For each metamodel, EMF automatically
generates a tree-based model editor and a Java API to manipulate models conform-
ing to that metamodel. A reflective API to manage generic models is also available.

Then, the injectors to generate the security model from the database dictionary
have been implemented in Java as a set of queries to the Oracle 10g database dictio-
nary. The EMF reflective API is used to process the results of the queries and create
the corresponding model elements and links in the security model.

Finally, XText 6, an eclipse-based framework for building domain specific lan-
guages, has been used to parse and inject into models the source code of triggers
and stored procedures based on our grammar for the Oracle PL/SQL language (de-
fined as an extension of a publicly available one 7). To implement the trigger dis-
crimination, condition extraction and condition representation we have used ATL
model-to-model transformations.

6. Xtext. http://www.eclipse.org/Xtext/
7. http://svn.code.sf.net/p/plsql-xtext/code/





7
Extracting AC Models from Content
Management Systems

Web Content Management Systems (WCMSs) is the technology of choice for
the development of millions 1 of Internet sites and increasingly, becoming a frame-
work widely used for the development of Web applications. They provide an inte-
grated environment for the definition of the design, layout, organization and content
management of the application and, because of its relative ease of use, they enable
users with little technical knowledge to develop fully functional systems.

This widespread use highlights the importance of security requirements, as WCMSs
may manage sensitive information whose disclosure could lead to monetary and
reputation losses. Due to the nature of the users, the focus has often been in facili-
tating the WCMSs configuration. Although these systems are easy to use, a proper
configuration is needed to minimize the introduction of vulnerabilities. As a con-
sequence, tools for checking the configuration of WCMSs have been provided and
analysed by the scientific communities. However, these tools are focused in low-
level security aspects like management of cookies or prevention of SQL injection
vulnerabilities [66, 97].

Moreover, despite some approaches for extracting AC information from dy-
namic web applications source code[44, 10], little attention has been brought to
the analysis of how developers use the content protections mechanisms provided
by WCMSs systems. Particularly, Access-control techniques, integrated in most
WCMSs and capable of enforcing confidentiality and integrity of data must be an-
alyzed so that no logical flaws are present in the security policy. Unfortunately

1. http://trends.builtwith.com/cms (15 May 2014)
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knowing if an implemented AC policy on a WCMS provides the required content
protection is a complex and error-prone task as the specificities of each WCMS ven-
dor AC implementation must be mastered (e.g. the set of roles and permissions that
can be defined vary largely among the different WCMSs).

In order to tackle this problem, we propose to raise the level of abstraction of
the AC implementation so that it gets represented acording to a vendor-independent
metamodel. This WCMS security metamodel must be able to represent WCMS
specific information along with AC concerns. We can regard such a metamodel as
an extension of typical AC models specially tailored to the representation of security
in WCMSs.

Ideally, these models should be automatically obtained from existing WCMS
AC configurations. Therefore, here, along with the description of the metamodel
for the representation of WCMS AC policies, we describe the process to automati-
cally extract them from a Drupal[6] WCMS, one of the three most popular WCMSs.
Note however, that the extraction from other WCMSs like Wordpress or Joomla will
follow the same process. Once these models are available, they can be analysed in
a generic way, focusing in the security aspects and disregarding the specificities
of concrete vendors. Moreover, Model-driven tools for querying, performing met-
rics, provide visualizations, etc, become automatically available, easing the analysis
tasks.

Combining the vendor-independent representation and the extraction process,
migration and reengineering tasks are facilitated. Recovered AC policies repre-
sented in our metamodel can be used, after its analysis, correction, etc., as a pivot
representation for automatically generating correct configurations or configurations
for other WCMSs.

7.1 Motivation

WCMSs are Content Management Systems (CMSs) specially tailored to the au-
thoring of content in the Internet. They integrate facilities for the definition of the
design, layout, organization and collaborative content management of web sites and
can also be used, due to the wide range of features they offer, as a framework basis
for the development of web applications. They are, due to its relative ease of use
(they allow users with little knowledge of web markup and programming languages
to create and manage fully functional web sites) and low cost, the technology of
choice for the development of millions of web sites.

In general, they are composed by a back-end, comprising the repository of con-
tents and administrative tools and a front-end that displays this information to web
clients.
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As discussed in the introduction, security is a critical concern in WCMSs as they
may manage sensitive information. Therefore, security mechanisms have been in-
tegrated in most WCMSs where access-control mechanisms play a prominent role.
However, WCMSs users often lack depth technical and security knowledge, so that
the implemented access-control policies may contain security flaws. For instance,
in Drupal, the permission Delete any content of type Article could be, by mistake,
granted to the default role Authorized User. As all user-defined roles inherit by de-
fault from this role, this mistake will give them the capacity of deleting the content
of the application. Furthermore, the frequent need of migrating from one WCMS
to another, also highlights the need for understanding the current security policy so
that it can be accurately translated especially, since the security concepts in each
WCMS differ. Failing at doing so will often imply putting the new system under
risk.

In this scenario, analysing and understanding the security policy enforced by
a WCMSs turns up as a critical necessity. Unfortunately, each WCMSs vendor
provides its own access-control model and management tools so that these analysis
tasks requires in-depth knowledge of the concrete system in hand.

We believe that, in order to tackle this problem, the level of abstraction of the
AC policies enforced in WCMSs needs to be raised, so that the information is rep-
resented in a vendor-independent manner. We propose thus to represent the AC
policies as models corresponding to a WCMS access-control metamodel. In the
rest of the paper, we will detail the proposed metamodel and extraction approach.

7.2 WCMS Access-Control Metamodel

Central to the process of recovering and analysing the access-control informa-
tion of WCMSs is the definition of a metamodel able to concisely represent the
extracted Access-control information in the domain of WCMSs. This metamodel
must also be platform-independent, so that we can analyse the access-control infor-
mation disregarding the especificities of the concrete WCMS security features and
implementation.

Figure 7.1 depicts our proposal for such a metamodel. It is an RBAC-inspired
metamodel, thus, containing all RBAC basic concepts along with WCMS specific
information. It consists basically of four kind of elements. Contents, i.e., the infor-
mation hosted by the system, Actions, i.e., operations that can be performed on the
WCMS, Permissions, i.e., the right of performing these Actions and Subjects, i.e.,
the triggers of Actions. In the following, we will detail the metamodel concepts of
these categories along with its rationale.
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7.2.1 Content

The content of a WCMS is the information it manages. This is represented in our
metamodel by the Content metaclass. Each WCMS defines its own kinds of content.
To be able to represent that eventuality, our Content elements have a ContentType

that identifies its type. This also allows for the representation of fine-grained and
coarse grained access-control. Effectively, some WCMS access-control models al-
low for the definition of different permissions for individual content elements, while
others only allow the definition of global permissions on all the contents of a type.

Then, we provide the users of our metamodel with some predefined kinds of
content. In one side we have Node, representing the principal contents of the
WCMSs. We have specialised them in two subclasses: Page that represents full
content pages (that can contain other pages) and Post that represents individual blog
posts. We also provide a CustomNode metaclass so that additional types of nodes
ca be integrated. On the other side, we have Comments that represents comments
that can be posted in any other content element. We do not represent pages in the
back-end of the WCMS used to administer content. That behaviour will be repre-
sented by permissions of executing administrative operations on the WCMS.

7.2.2 Operations

Operations are the actions than can be performed over the WCMS. We can divide
all operations that can be done over a WCMS between two types, content operations
and administration operations (e.g., operations to manage users and roles). The
latter category is more WCMS specific and as such, we will uniquely represent the
permissions on that category with the metaclass Administration Operation.

W.r.t. the content operations, in our metamodel, all CRUD actions are available:
Create for the creation Content elements; Edit for the modification of already cre-
ated Content elements; Read for reading/viewing created Content elements; Delete

for the deletion of Content elements. The Search operation is also available. It is a
very common action in WCMSs and, as it can be expensive, it is usually restricted
only to certain users (e.g., logged users). Additionally, there are two special actions
the Subjects of WCMSs can perform. Publish and Unpublish. In WCMSs it will
not be surprising to find that some Subjects can create and manage contents using
CRUD operatios while not being authorized to make it publicly available without
revision-moderation from another authorized Subject. These two actions support
this behaviour. Publish is the action of making available some created Content ele-
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ment and Unpublish is the action of removing a piece of Content from its place of
publication without internally deleting it.

Finally, we also consider the possibility of new operations that may appear e.g.,
when extending the WCMS. In order to be able to represent these possible new op-
erations, we provide the Custom Operation metaclass. This way, if the WCMS is
extended with the capability of e.g., doing polls, an eventual new operation, vote,
could be represented by this metaclass.

7.2.3 Permissions

Permissions are the right of performing actions on the WCMS. They can define
constraints that restrict the Permission to execute the corresponding action only
when certain conditions hold. In our metamodel, we have identified two kinds
of Constraints that typically appear in WCMSs: Authorship and NotBlacklisting.
The former expresses that the permission is effective only if the Subject is the au-
thor of the Content whereas the latter restricts the applicability of the permission
to the condition of not being blacklisted. Other conditions may exist and there-
fore, we provide the means to represent them by the GenericCondition metaclass.
It holds in a text field the condition of the Constraint. The nature of the contents
of this text field is left open to the metamodel users, so that in can hold conditions
expressed in natural language or in more formal constraint languages like OCL.
Similarly, in [76] the authors added the constraints to permissions represented by
triggers to a metamodel tailored to represent Relation Database Management Sys-
tems (RDBMS) access-control by adding the source code of the triggers. As in
there, the representation and extraction of the meaning of such custom constraints
will require a further analysis. We leave such analysis as future work.

7.2.4 Subjects

are the elements interacting with the contents of the WCMS by performing ac-
tions (note that a Subject can be the author of a piece of Content and that this may
influence the Access-control of the information. Thus, this is represented in our
metamodel). Following a RBAC approach, in our metamodel we have two kinds of
Subjects: Users and Roles where Users get Roles assigned. However, unlike RBAC
we are more flexible in the permission assignment by allowing both User and Role

to get permissions granted.

Depending of the WCMS at hand, Roles are predefined by the application or can
be defined by the developer. Both cases can be discerned in our metamodel by using
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the predefined attribute of the Role metaclass. Moreover, we have identified two
specific roles that often appear in WCMSs. IdentifiedRole and NotIdentifiedRole

are often present in WCMS to discriminate between not logged and logged users.
As such, we have decided to add them to the metamodel so that this behaviour can
be easily modeled. Finally, role inheritance is also supported.

7.3 Approach

Queries and Metrics

Visualizations

Deployment and Migration

Drupal Database
Back-end

WCMS AC
Model

injection

Applications

Figure 7.2: Drupal AC extraction and analysis approach

Although our metamodel could be manually filled by inspecting the AC infor-
mation using the WCMS administration tools, ideally, it should be filled by an auto-
matic reverse-engineering approach. In the following, we present such an automatic
process for a Drupal WCMS although it can be easily adapted to work with other
WCMSs. The process in depicted in Figure7.2.

In Drupal, contents, along with the corresponding access-control information
(i.e., users, roles and permissions) are stored in a database back-end. Thus, in or-
der to obtain a model conforming to our WCMSs metamodel with this information,
an injection process need to be launched. This process performs SQL queries over
the database back-end while creating, as output, the corresponding model elements.
Note that, additionally, extra access-control rules could be defined or modified pro-
gramatically, in the source code of plugins, etc. Techniques as the ones in [44, 10]
could be used to as a further step to complement our approach.

Note however, that this first step will require a previous step, i.e., the discovery
of the data model of the WCMSs as each WCMS defines its own. For doing so,
we can rely on the WCMS available documentation or in worse cases, to schema
extraction tools. In the case of drupal, the relevant tables are the following ones:
USERS, that contains all system users; ROLE, containing all roles; USER_ROLES
relating users with assigned roles; PERMISSION connecting roles with permis-
sions; COMMENT for the special content of the type comment and NODE for all
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the other content types.

Drupal AC. Extraction evaluation: In drupal, there exist three main kinds of con-
tent, Pages, Articles and Comments and three roles by default, Anonimous, Authen-

ticated and Administrator. By default, any new user-created role, what is allowed,
inherits the permissions from the Authenticated one. Thus, to create roles more re-
stricted than the Authenticated role, the Authenticated role needs to get permissions
removed. Using the default modules, permissions can not be granted in concrete
content, e.g., concrete pages but on content types. This way, permission to edit
content can be granted and all Pages but not on individual pages (apart from the
distinctions made wrt to ownership and publish/unpublished).

Our metamodel is capable of representing the AC information of Drupal by
using an injector performing the mappings summarized in Table 7.1.

DRUPAL WCMS Metamodel
User User
Default Role The Anonymous role to NonIdentified role, Adminis-

trator and Authenticated role to IdentifiedRole with
inheritance relation between the translation of Ad-
ministrator and Authenticated roles

User-defined
Role

IdentifiedRole with inheritance relation to the transla-
tion of the default role Authenticated Role

Page and Article
types

ContentType for Page and Article

Node If the type is page or article, Page with the proper
ContentType. If it is blog post, Post. If there is an-
other type of node, CustomNode

Content actions ContentOperation.
Administrative
actions

AdministrativeOperation.

Comment Comment pointing to the corresponding Content
Permission Permission with the corresponding links to the sub-

ject, object and operation. For content permissions (or
administrative permissions on content), link to Con-
tent or ContentType (for permissions granted on all
content of a given type). For administrative permis-
sions (except for the administrative permissions on
content), link to the WCMS instance.

Table 7.1: Mapping from drupal to our metamodel
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7.4 Applications

Once the injection process is finished, we can start analysing and manipulating
the obtained model in a vendor-independent way.

In order to ease the discussion, we present here a small example on a Drupal
installation intended to work as a blog. Notably, and in order to show , 1) the access-
control capabilities of the the CMS and 2) the ability of our metamodel to capture
the AC implementation on Drupal, custom users and roles have been created.

Concretely, two custom roles have been created. The Editor role, intended to
create contents on the CMS and the Reviewer role, intended only for those autho-
rized roles with the rights of publishing comments. Note that in Drupal, as discussed
in the previous section, all custom roles inherit from the Authorized role. Thus, in
order to be able to give the least privileges possible to our custom role, the autho-
rized role have been configure to hold only the permissions to read content and to
write comments. This way, the Reviewer role will inherit all its privileges through
this inheritance, while the Editor role is explicitly granted the createPost permis-
sion. Then, two users, SiteEditor and SiteReviewer are created and assigned to the
Editor and Reviewer roles respectively.

In the rest of this section, we will summarize some applications of our WCMS
access-control model.

Visualization: Visual data is often easier and faster to analyze than textual or tabu-
lar data. Using MDE tools we can easily provide a visualization of our WCMS AC
model so that the relation between subjects, objects and permissions can be easily
grasp. As we have done in Chapters 5 and 7 for the domains of firewall networks
and relational databases respectively, we have used Portolan in order to obtain vi-
sualizations of our model. Concretely a transformation between our security model
and the Portolan Cartography model have been performed in order to show the in-
formation regarding Users, Roles and Privileges.

In Figure 7.3 we can see the output we have obtained on a model extracted from
our proposed Drupal example (note however that the model have been pruned to
facilitate the discussion, so that only the relevant permissions for the example are
depicted).

By inspecting the obtained graph, we can easily distinguish which roles are the
default ones and which ones are custom created, their inheritance relationships, the
user role assignation and the privilege assignation.

Queries: The most basic thing we may want to do with a security model is to query
it to learn more about specific details of the security policies currently enforced in
the WCMS. As an example, we could want to know what elements can be accessed
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Figure 7.3: WCMS security model visualization

Listing 7.1: OCL Query Example
Evaluating :

let Editor : wcms : : User = self .subjects−>select (e | e .oclIsTypeOf (wcms : : User ) )
−>select (e | e .name = ’SiteEditor ’ )−>first ( ) .oclAsType (wcms : : User ) in

Editor .permissions−>asSequence ( )
−>union (Editor .roles−>closure (e | e .inheritsFrom )−>collect (e | e .permissions )−>

asSequence ( ) )
−>union (Editor .roles−>collect (e | e .permissions ) )

Results :

Permission CreateComment
Permission ReadPost
Permission ReadComment
Permission CreatePost

by a given user, taking into account its assigned roles and also the permissions
inherited from parent roles. This is very complex to do directly on the WCMS
itself since this information is scattered among a number of database tables which
are completely vendor-specific. Instead, when using our model we can just use a
standard model query language to traverse the information in the extracted model
classes. The model query is defined just once and can be executed on security
models extracted from any relational vendor.

In Listing 7.1 we show such an OCL query. Given a concrete user (the SiteEd-
itor user), we obtain all the assigned privileges. We do this by concatenating the
privileges directly granted to the user (what returns and empty list in the case of
Drupal), the privileges granted to the directly assigned roles (for our example, the
CreatePost permission) and the privileges obtained by the inheritance relations of
its assigned roles (for our example, the permissions obtained from the Authorized
role, e.g., the CreateComment, ReadPost and ReadComment permissions).
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WCMS migration: New requirements to be met by the application, discovered se-
curity vulnerabilities, technological choices, etc., may impose the migration from
one WCMS to another. In this scenario, properly migrating the access-control in-
formation (users, roles, permissions) becomes critical. Our metamodel can be used
as a pivot representation. Representing the AC information of the old WCMS in a
model corresponding with our metamodel will facilitate its understanding and anal-
ysis, thus, helping to provide a good translation towards the AC model in the new
WCMS.





8
Integration

8.1 AC Integration for multi-layer systems

As introduced in Chapter 2, Nowadays systems are often composed of a number
of interacting heterogeneous subsystems. Access-control is pervasive with respect
to this architecture, so that we can find access-control enforcement in different com-
ponents placed at different architectural levels. Moreover, the access-control tech-
niques implemented in each different component can follow different models (AC
lists, RBAC, DAC, etc.) in order to best suit the needs of the component. Therefore,
in any system, a set of different access control policies are enforcing the security
goals. But these policies are not independent and relations exist between them, as
relations exist between components situated in different architecture layers. Con-
cretely, dependency relations exist between access-control policies, so that the ef-
fects of rules in a policy will depend on the decisions of rules in another policy.

Thus, ideally, a global policy representing the access-control of the whole sys-
tem should be available, as analysing a policy in isolation does not provide enough
information. However, normally, this global policy only exist in an implicit and
not always consistent manner. Consequently, integration mechanisms are needed in
order to 1) facilitate the analysis of the security status of the whole system and 2)
achieve the global security goal.

The main focus of this chapter is therefore to provide a framework to integrate
policies from different concrete components collaborating in an information system
in a single policy. Two requirements need to be met for achieving the integration
goal: The use of a common access-control policy language for representing the poli-
cies of each component and the recovery/representation of the implicit dependency
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Figure 8.1: Information System Architecture

relations between them.

Translating all the recovered access-control policies to the same policy lan-
guage, thus, representing them in a uniform way, eases the manipulation and reusabil-
ity of analysis operations. However, domain-specific information may be present in
the original policy representation, information that must be kept in order to keep the
expresibility level. To meet both requirements, the flexibility to represent different
policies and the ability to incorporate domain-specific concepts, XACML[59], an
OASIS standardized language has been chosen.

In our approach, the extracted component policies will be translated to the
XACML policy language while domain-specific information is added/kept by the
use of profiles.

While the previous translation process provides advantages on its own, the poli-
cies remain isolated. Thus, we complete the integration framework with a semi-
automatic process for detecting the policy dependencies and to organize the policies
within a single XACML model. This enables us to see the policies in our informa-
tion systems as a whole. We also provide a set of OCL[71] operations making use
of it, so that complex analysis tasks, like inter architecture level anomaly detection,
are eased.

8.2 Motivation

In order to motivate our approach, we reproduce here the Information System
(IS) example introduced in Chapter 2, Section, 2.1.1. It will be used throughout the
rest of the chapter.

As mentioned, the IS depicted in Figure 8.1 is a simple, yet very common in-
formation system. This IS is composed of several components working in different
architecture layers, namely, a network layer, providing networking services and
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enforcing access control through the firewalls (using Rule-based lists implementing
Non-discretionary AC), a database layer, providing storage services and implement-
ing role-based access-control (RBAC) through its built-in permissions schema and
an application level, where a Content Management System (CMS) provides publica-
tion services. This CMS also enforces role-based access-control by using a built-in
permission schema.

As we can see, three different systems enforce access-control. These systems
are not isolated but collaborate to build up the functionality of a global system that
encompasses them. Concretely, and in the case of subsystems located in different
architecture layers, the collaboration relation is a dependency relation where sys-
tems in higher layers depend on services provided by lower layers. Access-control
reproduces this behaviour.

Considering access-control rules as functions where a decision is taken w.r.t. to
a subject accessing a resource to perform a given action under certain conditions
and having the following form:

R(Subject, Resource,Action, [Condition])→ Decision

Let us take a look to the following examples:

Example 1:

RDB(RoleX, TableX,Write,8:00−16:00)→ accept

RFW (Local,DBServer, Send/receive,8:00−14:00)→ accept

In this example, a given role is granted permission to access a table for mod-
ification between 8:00 and 16:00. However, the access to the database server in
constrained by a firewall rule, that only allows local access to the server between
8:00 and 14:00. As the database policy depends on the firewall policy, when the lat-
ter is more restrictive, it prevails. When asking if the role can access the table under
which conditions, both policies need to be taken into account in order to provide a
complete answer.

Example 2:

RCMS(ChineseIP,Admin,Access)→ deny

RDB(CMSRole, CMSSchema,Write)→ accept

RFW (0.0.0.0, DBServer, Send/receive, )→ accept

This last example concerns the three subsystems in our IS. A rule in the CMS
forbids the access to the admin pages to any user located in China as identified
by its IP address. However, the user the CMS uses to connect to the database has
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access for modification to the CMS database backend as stated by the second rule.
Moreover, the third rule, that belongs to the firewall systems, allows to connect to
the database to users in any location. Combining these three rules, a user located
in China may be able to access the admin information on the CMS through the
database backend.

From the examples, we can conclude that Access-control policies can not be
regarded as isolated when they belong to systems situated in different architecture
layers. Analysing the access control rules of a component for the absence of anoma-
lies that may introduce unexpected behaviours, requires information from the AC
policies of other components it depends on. However, this comprehensive analysis
is hampered by two factors: 1) dependencies between components are not explicit,
and thus they must be discovered/gathered by hand (complex and error prone in
complex environments with many interacting components) 2) the AC information
may be represented following a different AC model and stored in different technical
spaces requiring domain experts for its analysis. Thus, and integration process al-
lowing for the different policies to be analysed together as components of a complex
system is required.

8.3 Approach

In order to tackle the problems discussed above, we propose a model-driven ap-
proach that integrates all policies collaborating in the enforcement of access-control
in a single model. Our approach requires three steps (see Figure 8.2):

0. Policy recovery. AC policies are implemented in concrete systems using
a diverse set of mechanisms, often low level and proprietary, like ad-hoc
rule languages, specific database dictionaries, etc. As a previous step for
our approach we require the policies of each component to be represented
in the form of abstract models, from where the complexity arising from the
specificities of a given vendor or implementation technology is eliminated
and only the AC information is present. This requirement is met by several
previous work that investigate the recovery of access-control policies from
diverse components. This step is covered by Chapters 5, 6 and 7.

1. Policy Translation. Taking as input the models described in the preliminary
step, our approach proposes to translate all the policies to the same policy
language. This step includes the description of extensions of the target lan-
guage to make it able to represent component-specific information.

2. Policy Integration With all the models translated to the same language, the
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Figure 8.2: Policy Integration Approach

next step is to integrate them all in a single model, along with the dependen-
cies between them. This step requires the discovery of such dependencies,
normally implicit.

3. Policy Analysis Support. Having all the policies represented in the same
model and the dependencies between them made explicit enables the defini-
tion of complex analysis tasks. Prior to that, the definition of a number of
primitives taking advantage of the model organization is required to ease the
building of those analysis tasks. This fourth step is meant to provide that set
of primitives.

The following sections are devoted to a detailed description of the steps one to
three.

8.4 Policy Translation

All the policies in the IS, potentially conforming to different access-control
models and containing domain specific information need to be translated into the
same language as a previous step for the integration in a single policy. In order to
do so, first, we need to chose a policy language able to represent policies following
different policy models and to represent multiple policies in the same artifact.
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Figure 8.3: XACML Policy Model[59]

8.4.1 XACML Policy Language

XACML[59] is an access control policy language and framework fulfilling these
requirements. It follows the Attribute-based access-control model (ABAC)[99].
ABAC along with its extensibility, provides to XACML enough flexibility to repre-
sent policies following different access-control models. Other approaches [68, 96,
61] describe languages and tools able to produce flexible access-control models.
However, several reason inclined us to chose XACML. First of all, following the
ABAC model, it is able to represent a wider range of security policies (see [50]
for the capabilities of ABAC to cover other AC models). while other extensible
languages like SecureUML will impose the use of RBAC. Secondly, the standard
character of the language, that facilitates its adoption, and, finally, its increasing
popularity in both academic and industrial world, that assures its durability and
future development. In Figure 8.3 the XACML policy language is depicted.

XACML policies are composed by three main elements PolicySet, Policy and
Rule. A PolicySet can contain other PolicySets or a single Policy that is a container
of Rules (Policy and PolicySet also specify a rule-combining algorithm, in order to
solve conflicts between their contained elements). These three elements can spec-
ify a Target that establishes its applicability, i.e., to which combination of Subject,
Resource and Action the PolicySet, Policy and Rule applies. Subject, Resource and
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Action identifies subjects accessing given resources to perform actions. These ele-
ments can hold Attribute elements, that represent additional characteristics (e.g., the
role of the subject). Optionally, a Rule element can hold a Condition that represents
a boolean condition over a subject resource or action. Upon an access request, these
elements are used to get an answer of the type: permit, deny or not applicable.

8.4.2 Translation to XACML and Profiles

Our goal is to translate all the existing policies of the system in hand to XACML
policies. However, the component-specific models (see Figures 7.1, 6.1 and 5.3)
will typically represent the access-control information in a component-specific way,
i.e., they will include concepts of the domain for easing the comprehension and
elaboration of policies by domain experts. Those concepts should be preserved in
order to keep the expressivity of the policy. For that purpose, XACML profiles
need to be defined. These profiles will basically specialize the core concepts of
the XACML policy language. In general, a profile will contribute new attributes
specializing the concepts of Subject, Resource and Action although specializing
other concepts may be necessary mostly when the profile needs to reflect some
special feature of the original policy model (take as an example the XACML RBAC
Profile [60], where the concepts of PolicySet and Police are extended as well as
describing how to arrange these elements in a specific way to achieve the desired
goal).

8.4.3 Profiles definition

In order to demonstrate the process of defining a XACML profile, in the follow-
ing, we describe the development of a XACML profile for the domain of relational
database management systems (RDBMSs). The concepts of the domain are ex-
tracted from our security database metamodel described in Chapter 6.

First of all, note that the domain of relational databases, and thus our rdbms
security metamodel, usually relies on a RBAC model, what should be represented in
the profile. There exists already a XACML profile or RBAC. Therefore, our profile
will complement the use of this profile by contributing domain specific attributes
for Subject, Resource and Action.

We start by defining the profile identifier that shall be used when an identifier in
the form of a URI is required:

urn : oasis : names : tc : xacml : 3 . 0 : rdbms

Regarding the Resources, we will describe the following attributes.

urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : database
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : schema
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urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : table
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : column
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : view
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : procedure
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : trigger

All these attributes are identified by name, as a consequence, their type will be
string 1.

http : / / www . w3 . org / 2 0 0 1 / XMLSchema # string

As for the actions, the contributed attribute identifiers listed in the following
listing, being all of type string.

urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : tableOpt : insert
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : tableOpt : delete
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : tableOpt : select
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : tableOpt : update

urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : dbOpt : alter
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : dbOpt : drop
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : dbOpt : create

urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : permissionOpt : grant
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : permissionOpt : revoke

urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : sessionOpt : set
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : sessionOpt : connect

urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : codeOpt : execute

Finally, and regarding the subjects, the concept of role is already included in the
RBAC profile. We will only add an attribute to identify the database elements owned
by a subject, as this attribute influences the permissions (commonly, in RDBMS,
the owner of a resource has all the permissions and moreover, is allowed to delegate
those permissions to others).

urn : oasis : names : tc : xacml : 3 . 0 : rdbms : subject : owner

This attribute is meant to be included in the requests for permissions and its type
is boolean.

http : / / www . w3 . org / 2 0 0 1 / XMLSchema # boolean

1. http://www.w3.org/2001/XMLSchema-datatypes
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XACML WCMS PIM Metamodel
Policy & PolicySet A PolicySet and Policy containing the rules described by

the CMS model and following the organization prescribed
by the XACML RBAC profile

Rule Each Permission
Subject Subjects (identifies ans in the XACML RBAC profile) in the

CMSs with the given permission granted
Resource Contents in the WCMS metamodel. Attribute identifiers

are created for each kind of content (Node, Page, Post and
Comment)

Action Operations in the WCMS metamodel. Attribute identifiers
are created for each kind of operation (AdministrativeOper-
ation, Create, Read, Edit, Delete, Search, Publish, Unpub-
lish).

Condition Constraints element in the WCMS metamodel.

Table 8.1: WCMS to XACML Mappings

8.4.4 Transformations

Once the profile is available, it is time to create a transformation between the
model recovered from the system and XACML+Profiles. Note that to reflect the
access-control model used in the RDBMS, we have to explicitly create a rule that
in RDBMS is implicit, i.e., the owner has all the rights on the owned element (see
Listing 8.1 for an excerpt of the transformation).

The definition of any other profile and corresponding transformations will fol-
low a similar process. In the case of the information system example in Section 8.2,
the profiles for the CMS and the network system are easily defined following the
same steps. Concretely, for the CMS we will define attributes extending the core
concepts of XACML following the types defined in Chapter 7 and then combining
its use with the use of the RBAC profile. In Table 8.1 we describe the mappings and
attribute identifiers needed for transforming and WCMS model to XACML.

As for the firewalls, several mappings to use as a basis for the profile exists,
including the use of roles [38] or not [77]. For simplicity, we extend the latter (see
Table 8.2) to include domain concepts (as host, zone, protocol, etc), discarding the
discovery/creation of implicit roles.

8.5 Integration

Once we have all the policies represented in the same policy language, the next
step is to organize the policies within a global model representing all the access-
control policies in the IS. Key within this step is to unveil the implicit dependencies
between policies situated at different architecture levels to make them explicit. First
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XACML Filter PIM Metamodel
PolicySet A PolicySet containing a Policy is created for each firewall

in the PIM
Policy All the Connections and Exceptions belonging to a given

firewall
Rule A single connection or Exception
Subject Source NetworkElement address and source port of a given

Connection or Exception
Resource Target NetworkElement address and target port a given

Connection or Exception
Action Not mapped. The action is always the ability of sending a

message.
Condition Protocol field

Table 8.2: Network to XACML Mappings

of all, we need to decide which structure to use in order to represent the policies and
their dependencies in a single XACML resource. The policy of each component,
translated to XACML will be stored in a PolicySet, so that we can use the Policy-
SetIdRef to link it to other policies in the system. Note that some scenarios will
require the policy of the component to be split in several PolicySet and Policy ele-
ments as is the case when using the RBAC profile. For simplicity, in the rest of the
chapter we will consider the policy of a component as the element containing its
rules, disregarding how they are organized using XACML elements. Note also that
the proposed structure is not intended to be deployed as is in a XACML framework
but to enable analysis capabilities. Component policies must be deployed individu-
ally.

Starting from the individual policies, we need a process to discover the depen-
dencies between them, so that the references can be properly set. We propose here
a process based on exploiting context information understanding it as context envi-
ronmental information that helps to relate the system in hand to other systems, e.g.,
a database user in a CMS or its IP address.

We consider this context information relevant not only to unveil the dependen-
cies but also for the analysis of the system. Therefore, it needs to be stored along
with the policy representation in order to have it available when needed. XACML
does not provide a specific place to store this kind of information in the policy lan-
guage. To overcome this limitation and to have the least possible impact we add
this information in the description field of the PolicySet element.

<xs : complexType name =" PolicySetType ">
<xs : sequence >



8.5. INTEGRATION 117

<xs : element ref=" xacml : Description " minOccurs ="0" / >
. . .

<xs : element name =" Description " type =" xs : string " / >

In this field we store a string representing a key, value map with the correspond-
ing environment values for the Policy or PolicySet. This is shown in the example
below.

Context { dbUserName : anonyme ; IpAddress : 1 9 2 . 0 0 0 . 1 1 1 . 0 }

With the context information available, the process to find the dependencies
between policies is described in Algorithm 1. Basically, the algorithm works as
follows:

For each context parameter in a given policy it searches if there is any rule using
that attribute value in any of the other policies. If this is the case, a dependency
exists between both policies and as such is registered. Note that the algorithm has
been optimized by considering that no circular dependencies exist (the set of can-
didate policies, initialized to all the policies in line 3, gets modified in line 13 to
achieve this behaviour). This assumption stems from the nature of multilayer ISs
where normally upper components depend only on components in lower layers.
This optimization can be dropped if necessary for other scenarios.

Algorithm 1
1: P←All Policies
2: for each Pi ∈ P do
3: Dependency[Pi]← ∅
4: Candidates[Pi]←P
5: end for
6: for each Pi ∈ P do
7: C← All Context Attributes in Pi

8: for each Ci ∈ C do
9: for each Pj ∈ Candidates[Pi] do

10: A← All Rule Attributes in Pj

11: if Ci in A then
12: Dependency[Pi]←Dependency[Pi]∪{Pj}
13: Candidates[Pj]←Candidates[Pj]\{Pi}
14: end if
15: end for
16: end for
17: end for

Figure 8.4 shows the result of applying our approach to our IS example. A
policySet element has been created for each of the system components: firewall,
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PolicySet:DB

Policy:DB Dependencies

PolicySet:CMS

Policy:CMS Dependencies

PolicySet:FW

Policy:FW Dependencies

Figure 8.4: Policy Organization

database and CMS. These policySets contain the translated to XACML access-
control policy of each component along with references to its dependencies as cal-
culated by algorithm 1. Considering the following set of context attributes for each
component:

/ / DB context

Context { IpAddress : 1 1 1 . 2 2 2 . 1 . 1 0 }
/ / CMS context

Context { dbUserName : anonyme ; IpAddress : 1 1 1 . 2 2 2 . 1 . 1 2 }
/ / Firewall context

Context {}

the results is that the database policySet holds a dependency on the firewall
policySet (due to the IP address context attribute) while the CMS policySet holds
dependencies to the firewall and de database policySets (due to the database user
and IP address context attributes).

8.6 Policy Analysis Support

Representing all the policies collaborating in enforcing access-control in a sin-
gle model, along with making explicit the dependencies between policies situated
in different layers, enables the possibility of performing analysis and manipula-
tion tasks unavailable when focusing on individual policies. Beyond a number of
common operations, such analysis task differ greatly, thus, here we focus in one
specially critical analysis task, the detection of inter-component anomalies. Prior to
that, we will present a number of basic operations introduced with the purpose of
easing the manipulation of our integrated model.

8.6.1 Basic Operations

Our model can be easily queried to extract useful information by using the OCL
standard query language. However, there is a set of operations that will be com-
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Operation Description
getDependents(p:Policy) : Se-
quence{Policy}

Given a policy P , returns the se-
quence of policies having this pol-
icy as dependency.

getDependencies(p:Policy) :
Sequence{Dependency}

Given a policy P , returns the se-
quence of direct dependencies.

getAllDependencies(p:Policy) :
Sequence{Dependency}

Given a policy P , returns the se-
quence of ALL the dependencies,
direct and indirect.

resolveDependency(d:Dependency) :
Policy

Given a dependency D, returns its
target Policy P .

getDependencySource(d:Dependency) :
Policy

Given a dependency D, returns its
source Policy P .

getContextAttributes(p:Policy) :
Sequence{Tuple{key:String,value:String}}

Given a Policy P , re-
turns a sequence of tu-
ples{key:String,Value:String},
representing the context attributes

getRelevantRules(p:Policy,p2:Policy) :
Sequence{Rule}

Given two policies, Pi and Pj, with
Pi dependent on Pj, returns the
rules in Pj related to the context at-
tributes of Pi, i.e., the set of rules
of Pj Pi depends on

Table 8.3: OCL Operations

monly used and as such, it is worth defining and implementing as a reusable library.
In that sense, we present here a list of operations implemented with OCL that are
basic for working with our model.

Table 8.3 presents a description of this set of basic operations. Basically, we
present operations to work with the dependencies, getDependants, getDependen-

cies, getAllDependencies resolveDependency and getDependencySource; operations
to obtain the context attributes of a policy, getContextAttributes; and operations to
obtain the rules related with context attributes in a dependency relation, getRele-

vantRules.

8.6.2 Instantiating policy similarity

One important analysis task is the detection of anomalies that appear when sev-
eral policies work together. The problems these anomalies cause vary from simple
incrementing the complexity of policies to the introduction of unexpected behaviour
of a component w.r.t. to its defined policy.

In order to be able to detect these anomalies we need to compare rules. This
comparison is done for the purpose of checking if 1) Conditions hold for the same
set or different set of values 2) The rule effects when the conditions hold are con-
flicting or not. This process, which we call rule similarity evaluation following
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the terminology in [65], can be performed following different approaches. Here,
due to the relative simplicity of the syntactical analysis they propose, we adapt the
approach proposed in [65] to the case of policies in different architectural layers.
Other approaches could however be also adapted to our specific case. Note that we
discard to perform a generic policy similarity process. Being in different architec-
tural layers, the policies will be mostly disjoint, with only some overlapping points.
Thus, calculating rule similarity yields enough information.

Therefore, we adapt the approach in [65] in the following way:

1. We restrict the space of comparison between policies to only the relevant
rules as calculated from the dependencies (cf. Section 8.3). Any given rule
will depend only on those rules related to the attributes used to calculate
the policy dependencies so is this concrete subset the one that needs to be
checked in order to detect possible anomalies.

2. We include dependency information during rule similarity calculation, so
that extra information regarding the components involved is available.

3. We instantiate the Rule similarity types for the case of rule situated in differ-
ent architectural layers, one depending on the other. Subsection 8.6.2 details
this instantiation.

Rule Similarity Types

From [65], the possible values to obtain when calculating the similarity between
two rules w.r.t. a given attribute are in the tuple:

{Converges, Diverges, Restricts, Extends, Shuffles}.

Those values have the following definition:

Converge: Two rules ’converge’ if the sets of values are equal with respect to
which their conditions hold.

Diverge: Two rules ’diverge’ if the sets of values do not intersect with respect to
which of their conditions hold.

Restrict and extend: A rule ’restricts’ (or ’extends’) another rule if the sets of
values with respect to which its conditions hold contain (or is contained in) the set
of values computed for the other rule.

Shuffle: Two rules ’shuffle’ if the sets of values for which their conditions hold
intersect, but no one is contained in the other.
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When rules belong to policies situated in different architecture layers and de-
pendencies between them exist, the aforementioned values can be instantiated to
give hints about the possible presence of anomalies. Focusing on the undesired ef-
fects these anomalies may produce and considering ri depending on rj , we propose
to instantiate the similarity values to four values, described as follow:

— Security Risk: The combination of ri and rj may cause a security hole. This
happens when rj allows requests for values ri does not allow. We consider
the risk partial when rj only allows some of the ri denied values. Example 2
in Section 8.2 belongs to this category, as the network layer, combined with
the database layer, allows request the CMS does not.

— Service Risk: The combination of ri and rj may cause the component to
which ri provides access-control not to be able to provide the expected ser-
vice. This happens when rj denies requests for values ri allows. We consider
the risk partial when rj only denies some of the ri allowed values. Example
1 in Section 8.2 shows a partial service risk.

— Redundancy: ri or rj may be eliminated without impact to the behaviour
in the system. This may happen when both rules deny requests for the same
values. Policies containing those rules may be refactored to reduce com-
plexity.

— No Risk: The combination of ri and rj does not generate any risk.

The assignment of these values to the original rule similarity types depends on
the effects (deny, accept) of the rules under analysis. Table 8.4 shows the assignment
for all the possible combination of effects.

We would like to notice here that the actual presence of anomalies between two
rules whose similarity hints to it, depends on the nature of the involved systems and
how they interact between them.

Rule Similarity Calculation

Algorithm 2 describes the process of calculating the similarity of rules over our
infrastructure given a rule and an attribute to check.

Basically, the algorithm iterates over the policies the policy containing the rule
depends on, retrieving relevant rules (lines 9 and 13) and calculating the similarity
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value (line 18) to produce an anomaly report (line 19). It is important to note that
when the dependency is indirect, i.e., the dependency relationship is established
through another policy, we need to get the relevant rules w.r.t. this latter policy
having the direct dependency (line 11 to 15). This is specially important because a
given policy may have both, a direct and an indirect dependency with another pol-
icy, each one yielding a different set of relevant rules. As this information is relevant
for performing further analysis, each rule is tagged with its dependent policy (lines
10 and 14).

Let us take a look of how the similarity is calculated for the examples presented
in Section 8.2.

Regarding the first example, we want to know if given the database rule and the
time attribute there exists any anomaly:

RDB(RoleX, TableX,Write,8:00−16:00)→ accept

Following the proposed algorithm, the policy dependencies are retrieved, that in
this case consists only in a dependency towards the firewall policy. Using the con-
text attributes, the rules in the firewall policy related to the database are retrieved.
Finally, from this set of rules, the ones containing the time attribute are checked
for similarity with the database rule and tagged in consequence. We can then show
only those ones having a similarity implying an anomaly. In that subset we will
have the second rule in the example, as it uses a context attribute, the time attribute
and the calculated similarity has the value of restrict, which may cause an anomaly
as shown in the Table 8.4.

RFW (Local,DBServer, Send/receive,8:00−14:00)→ accept

As for the second example, the process starts in a similar way, by retrieving the
dependencies of the CMS policy containing the rule and attribute to be checked, in
this case, the source IP address.

RCMS(ChineseIP,Admin,Access)→ deny

However, now we will have two kinds of dependencies. The CMS policy de-
pends directly on the database and firewall policies, but it also holds an indirect
dependency to the firewall policy through the database one. Thus, three sets of
rules are retrieved, those of the firewall and database policies related to the CMS
context attributes (IP address and database user) and those of the firewall related
with the context attributes of the database (IP address of the server).
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The policy similarity calculated on the set of retrieved rules we will exhibit not
only the possible anomalies the policy of the CMS has with respect to the database
and the firewall directly, but also those anomalies arising from the combination of
the effects of rules in the database and firewall together. Thus, among other possible
anomalies present in the firewall or database configuration we will retrieve the one
associated with the following rule:

RFW (0.0.0.0, DBServer, Send/receive, )→ accept

It gives access to the database server (back-end of the CMS) to users in a loca-
tion forbidden by the CMS policy. This rule retrieved from the database dependency
and tagged that way, informs us about an anomaly (shadowing) between the CMS
and the firewall involving the database system. The security expert will only need
to retrieve the database relevant rules w.r.t. the CMS to have a complete picture of
the problem.

RCMS(ChineseIP,Admin,Access)→ deny

RDB(CMSRole, CMSSchema,Write)→ accept

RFW (0.0.0.0, DBServer, Send/receive, )→ accept

Obtaining this information will not have been possible without the integration
of the policies and the discovery of their dependencies.

8.7 Tool support

In order to validate the feasibility of our approach, a proof-of-concept proto-
type implementation has been developed under the Eclipse environment by using
Model-driven tools and techniques. Concretely, our implementation is based on
two features:

Model Representation. Our approach takes as input domain-specific access-control
models extracted from different components in order to translate them to XACML
models. To be able to do that, a XACML policy metamodel (models conform to
metamodels, which define the main concepts and relationships of the domain) is
required, so that models conforming to it can be created. We have used, EMF[92],
the de-facto modeling framework standard for that purpose.

Providing the XACML XSD schema 2 as an input to EMF, the framework al-
lowed us to generate the XACML policy metamodel, and in turn, to generate java

2. http://docs.oasis-open.org/xacml/3.0/XSD/cs-xacml-schema-policy-01.xsd



124 CHAPTER 8. INTEGRATION

Rule similarity
type Authorized requests

RAccept
i ,

RAccept
j

RDeny
i ,

RDeny
j

RDeny
i ,

RAccept
j

RAccept
i ,

RDeny
j

RiConvergesRj Ri = Rj No Risk Redundancy Security
Risk

Service
Risk

RiDivergesRj Ri Rj
Service
Risk No Risk No Risk No Risk

RiRestrictsRj Rj Ri No Risk No Risk Security
Risk

Service
Risk

RiExtendsRj Ri Rj

Service
Risk
(Partial)

No Risk
Security
Risk
(Partial)

Service
Risk
(Partial)

RiShufflesRj Ri Rj

Service
Risk
(Partial)

No Risk
Security
Risk
(Partial)

Service
Risk
(Partial)

Table 8.4: Policy rule similarity type instantiated

code plugins for the manipulation of model instances, including a tree-based editor.
Note that these models instances can be, in turn, serialized using a XML syntax.

XACML identifiers, datatypes, etc, are integrated in a similar way i.e., by ex-
tracting a metamodel through EMF and linking it to the XACML metamodel.

Model Query&Transformations.

Listing 8.1: Database model 2 XACML
1 module DB2XACML ;
2 c r e a t e OUT : XACML from IN : SecurityDB , IN2 :DBProfile , IN3 :RBACProfile ;
3 r u l e createDBPolicySet{
4 from
5 root : DBSecurity !Database
6 to
7 policySet : XACML !PolicySetType (
8 policySetId <− ’DatabasePolicy’ ,
9 policySet <− root .subjects
10 −>collect (e | thisModule .CreateRolePolicySet (e ) )
11 −>append (root .subjects
12 −>collect (e | thisModule .CreatePermissionPolicySet (e ) ) ) )
13 }
14 l a z y r u l e CreateRolePolicySet{
15 from
16 dbRole : DBSecurity !Role
17 to
18 rolePolicySet : XACML !PolicySetType (
19 policySetId <− dbRole .name + ’:role’ ,
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Algorithm 2 Calculate similarity
1: r← Initialrule
2: a← Initialattribute
3: P← P/r ∈ P
4: D← getAllDependencies(P )
5: S← getDependencies(P )
6: for each Di ∈ D do
7: Pi← resolveDependency(Di)
8: if Di in S then
9: R← getRelevantRules(P, Pi)

10: tagRules(R,P )
11: else
12: Pj← getDependencySource(Di)
13: R← getRelevantRules(Pj, Pi)
14: tagRules(R,Pj)
15: end if
16: for each ri ∈ R do
17: if a ∈ ri then
18: sim← calculateSimilarity(ri, r, a)
19: reportAnomalyCheck(sim, ri, r, )
20: end if
21: end for
22: end for

20 policySetIdReference <− dbRole .name + ’:permission’ )
21 }
22 l a z y r u l e CreatePermissionPolicySet{
23 from
24 dbRole : DBSecurity !Role
25 to
26 permissionPolicySet : XACML !PolicySetType (
27 policySetId <− dbRole .name + ’:permission’ ,
28 policySet <− Sequence {permissionPolicy}
29 ) ,
30 permissionPolicy : XACML !PolicyType (
31 policyId <− ’Permission for’ + dbRole .name ,
32 " r u l e " <− dbRole .grantedPrivileges
33 −>collect (e | thisModule .CreateRoleRules ( ) ) )
34 }
35 l a z y r u l e CreateRoleRules{
36 from
37 dbPermission : DBSecurity !Permission
38 to
39 xacmlRule : XACML !RuleType
40 . . .
41 }

Listing 8.2: getAllDependencies Helper
1 he lp er c o n t e x t XACML !PolicySet def :getDependencies
2 : Sequence (TupleType (P : S t r i n g , D : S t r i n g ) ) =
3 self .policySetIdReference−>collect
4 (e | Tuple{P = self .policySetId , d = e} ) ;
5

6 he lp er c o n t e x t S t r i n g def :resolvePolicySet
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7 : XACML !PolicySet =
8 XACML !PolicySetType .allInstances ( )
9 −>select (e | e .policySetId = self )−>first ( ) ;
10

11 he lp er c o n t e x t XACML !PolicySet def :getAllDeps
12 : Sequence (TupleType (P : S t r i n g , D : S t r i n g ) ) =
13 self .getDependencies−>append (
14 self .getDependencies−>collect (e | e .d .resolvePolicySet .getAllDependencies )−>

↪→flatten ( ) )−>flatten ( ) .asSet ( ) ;

Once XACML models are available, we can perform the transformations from
the component-specific models to XACML and the operations and algorithms de-
scribed in Sections 8.5 and 8.6. We have used the ATL model-to-model transforma-
tion language for that purpose. Concretely, the following ATL transformation have
been created:

1. A model transformation for each component model to transform it into a
XACML model.

2. A library of helpers, an ATL mechanism to factorize OCL operations, rep-
resenting the basic operations in section 8.6.

3. A model transformation for the integration of all the XACML models fol-
lowing the algorithm in 1.

4. A model query for the detection of anomalies, following the algorithm 2.

Listings 8.1 and 8.2 show examples of such ATL implementations. The former
is an excerpt of the Database security to XACML transformation and the latter a
Helper implementation of the getAllDependencies operation.
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Related Work

9.1 Network AC Reverse-engineering

Several other works tackle the problem of extracting access control policies
from network configurations but they either are limited to analyzing one single fire-
wall component or focus on a specific analysis task and thus they do not generate a
usable representation of the firewall/s under analysis. Moreover, these latter works
require as an additional input the network topology, instead we are able to calculate
it as part of the process.

More specifically, [94] proposes a technique that aims to infer the higher-level
security policy rules from the rules on firewalls by extracting classes (types) of
services, hosts and protocols.

To do so, first rules are flattened, i.e., the set of rules is reorganized in order to
make individual rules independent of the order. As stated in that work, this can be
achieved by following very simple approach approach:

Given a set of rules R, where Ri has higher priority than Rj ⇐⇒ i < j

then a flattened rule set can be obtained by simply replacing Rj by (
∧j−1

i=1 ¬Ri) ∧
Rj, 2 ≤ j ≤ n where n is the total number of rules in the set. However, using
such an approach leads to an explosion in the number of rules that increases the
complexity of the policy. The authors deal with this explosion by proposing a graph
based approach (rules to be generated are paths on the graphs towards and allow or
deny node) that reduces this rule explosion. Once rules are flattened, its number is
reduced by grouping hosts, services and protocols into classes and merging rules
containing same classes of objects.

Transforming a rule set to a flattened rule set is interesting when dealing with

127
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policies mixing positive and negative logic (i.e., policies containing both, accept
and deny rules). In that sense, our network metamodel and our algorithm to fill
it by classifying rules in connections and exceptions achieves a similar result with
less effort and avoiding any kind of rule explosions. Effectively, after applying our
algorithm, connections do not depend of the order while exceptions only need to
keep the order inside their connection. This classification process also reduces the
need for the grouping phase in [94] as, first, the number of rules does not change
w.r.t the original configuration, and second, rules are grouped around parameters
when effects (accept, deny) differ. Further grouping, filtering, etc. can be performed
by using model transformations ans we have showed in Chapter 5 for the calculation
of global relevant rules and the derivation of the topology.

Our example in Chapter 5 (see 5.2), when translated to our exception oriented
model will consist in two connections (independent of the ordering) containing two
exceptions each. This makes a total of 6 rules as in the original file (disregarding
the rules setting the global policy to open or close.). Applying the method in [94]
these six rules are transformed to a graph with many more paths. Note also that
this graph can no be pruned like in their example to eliminate the deny node, as it
will require transforming a policy mixing positive and negative logic to one using
only one of them, what leads to overcomplicated (because of the number of rules)
unnatural rule sets. We want also to notice that their approach works only for one
firewall and is specially tailored to the Netfilter Iptables firewall.

In [64] a method and tool to discover and test a network security policy is pro-
posed. The configuration files along with the description of the network topology
are used to build an internal representation of the policy that can be verified by the
user through queries in ad-hoc languages. The tool is aimed at answering question
of the form does the policy allow service s from a to b?.

In this sense, this tool is equivalent to our approach although it present some
drawbacks and limitations.

First of all, their tool, FANG, requires the user to provide as an input a detailed
model of the topology of the network where all elements enforcing filtering rules
along with their interfaces need to be specified. Conversely, our approach works
only with the configuration files and is able to derive a representation of the topology
of the network as seen in Chapter 5 Section 5.3.

Regarding the queries, our model supports the same kind of querying although
they are performed in quite a different way. While our approach uses an standard
model query language (OCL) over an EMF model, FANG actually simulates the
flux of packages through the network. OCL, being standard is widely known and
has been deeply study by the research community. As a consequence, queries in
OCL can be preformed in a very efficient way (lazy and incremental OCL imple-
mentations have been contributed). Listings 9.1 and 9.2 show a query written in
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OCL and the FANG system respectively. While they are equivalent, the flexibility
of the FANG’s query is limited to the use of wildcards while OCL is a powerful
query language allowing us to perform many different kinds of queries and metrics.

Listing 9.1: OCL query: Can a given host send HTTP requests to the server?

Evaluating :

self .connections−>exists (e | e .source .ipAddr= ’ 1 1 1 . 2 2 2 . 2 . 5 4 ’ and

e .target .ipAddr= ’ 1 1 1 . 2 2 2 . 1 . 1 7 ’ and

e .srcPort = ’8 0 ’ )

Results :
false

Listing 9.2: Fang query: Can a given host send HTTP requests to the server?

struct query {
struct hostgrp *src ;
struct hostgrp *dst ;
struct servicegrp *service ;

} ;

Instantiated to :

query ( 1 1 1 . 2 2 2 . 2 . 5 4 , 1 1 1 . 2 2 2 . 1 . 1 7 , 80) ;

The FANG queries work over an internal model representation, independent
from the concrete firewall vendor but representing the rules in the same abstrac-
tion level. This internal model is not available to the user, and thus in can no be
further manipulated or analyzed. This will prevent the network models to be com-
bined with models in other subsystems, hampering the global analysis of the AC
implementation of a given information system.

In [69] a similar approach is described. The authors use the Margrave tool for
firewall analysis. They model the firewall rules by using first-order logic. Then
they provide the means of querying the build model by using and ad-hoc (inter-
nally, queries are also translated to first order logic) querying system and language.
Although the query language is more flexible that the one in [64], it suffers from the
fact of being tool-specific. This obliges the user to learn the syntax and semantics
of the language.

In Listing 9.3 a Margrave query is showed. This query answer the following
question: What rules deny a connection from the manager’s PC to port 80 some-
where outside our network other than the blacklisted host. As we can see the query
syntax is quite complex and requires still low-level and very specific knowledge
like the firewall interfaces, topology, etc. Our model abstracts from the topology,
showing only connections and exceptions. This way, it can be queried without any
knowledge of the underlying topology.
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Listing 9.3: Margrave Query

EXPLORE prot−TCP = protocol AND

1 9 2 . 1 6 8 . 1 . 2 = fw1−src−addr−in AND

in_lan = fw1−entry−interface AND

out_dmz = fw2−entry−interface AND

hostname−int = fw1 AND

hostname−ext = fw2 AND

fw1−dest−addr−in IN 1 0 . 2 0 0 . 0 . 0 / 2 5 5 . 2 5 5 . 0 . 0
NOT 1 0 . 2 0 0 . 2 0 0 . 2 0 0 = fw1−dest−addr−in AND

port−80 = fw1−dest−port−in AND

internal−result( <reqfull−1>) AND

(NOT passes−firewall( <reqpol−1>) OR

internal−result( <reqfull−2>) AND

NOT passes−firewall( <reqpol−2>) )

UNDER InboundACL

INCLUDE

InboundACL :int−in_lan−line−12_applies
( <reqpol−1>) ,
InboundACL :int−in_lan−line−17_applies
( <reqpol−1>) ,
InboundACL :ext−out_dmz−line−19_applies
(reqpol−2>) ,
InboundACL :ext−out_dmz−line−21_applies
( <reqpol−2>) ,
InboundACL :ext−out_dmz−line−24_applies
( <reqpol−2>)

Also, as in [64], the model remains an internal representation aimed at support-
ing user queries and not intended to be directly used manipulated by the user. Thus,
the representation, although independent from the concrete firewall vendor, lies in
the same abstraction level as the configuration files. As the focus of this thesis is to
extract the abstract access-control model from components, we believe our model
representation and the use of standard MDE tools more suitable for this task, being
approaches like FANG and Margrave more suitable for low level analysis.

[21] proposes a bi-directional method to enforce and reverse engineer firewall
configurations. It promotes the use of an intermediate policy representation but does
not provide a model for such representation nor specific processes to perform the
enforcement and the discovery tasks.

Some other works provide a metamodel for representing firewall configurations.
Nevertheless, a reverse engineering process to populate those models from existing
configuration files is not provided, and in our opinion, the abstraction of the models
level is still too close to the implementation details, therefore limiting their usability.

Concretely, In [101] the authors present a platform independent language for
firewalls in the form of XML (with the syntax specified as a DTD). As we can
observe in the example of Listing 9.4, the language remains quite complex and near
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to the implementation level. In fact, the language is designed as a pivot language
for a code generation tool and it is not supposed to be directly manipulated by users.

Listing 9.4: FWBuilder firewall language
<Firewall hostOS="linux24" id="id47505D0516470" name="MyFirewall" platform="
iptables ">

<Interface dyn="False" id="id47505D0B16470" name=" if0 " unnum="False">
<IPv4 address=" 1 9 2 . 1 6 8 . 1 . 1 " id="id47505D0C16470" name=" MyFirewall :if0 :ip "
netmask=" 2 5 5 . 2 5 5 . 2 5 5 . 0 " / >

<physAddress address= " 0 0 : 1 7 :f2 :ea :ee : 3 5 " id="id47505D3816470"
name=" MyFirewall :if0 :mac " / >
</Interface>

<Interface dyn="True" id="id47505D0D16470" name=" if1 " unnum="False" / >
<Interface dyn="False" id="id47505D0F16470" name=" l0 " unnum="False"
unprotected="False">
<IPv4 address=" 1 2 7 . 0 . 0 . 1 " id="id47505D1016470" name=" MyFirewall :l0 :ip "
netmask=" 2 5 5 . 2 5 5 . 0 . 0 " / >

</Interface>

<Policyid="id47505D0816470">
<PolicyRule action="Deny" comment="" direction="Both" disabled="False"
id="id47505ECE16470" position="0" >
<Src neg="False">

<ObjectRef ref=" sysid0 " / >
</Src>
<Dst neg="False">

<ObjectRef ref="id47505CE816470" / >
</Dst>
<Srv neg="False">

<ServiceRef ref="id47505D0216470" / >
</Srv>
<Itf neg="False">

<ObjectRef ref=" sysid0 " / >
</Itf>
<When neg="False">

<IntervalRef ref=" sysid2 " / >
</When>
</PolicyRule>

</Policy>
</Firewall>

More near to ours, in [81], the authors present a PIM metamodel (see Figure
9.1) for firewalls (They extend the work from the same authors presented in [80]).
Contrarily to our approach, their metamodel is intended to be the starting point for
the specification of firewall policies, being the actual firewall configuration files
generated by a series of model transformation. Although very similar to ours, their
metamodel does not provide support for the representation of exceptions (and mis-
configurations). Moreover, it is intended to model single firewalls as no mechanisms
for the combination of multiple policies is provided (in our metamodel, connection
rules from several firewalls can be represented as firewalls itself are represented
in the model, moreover, each connection holds an attribute identifying the firewall
containing the rule). On the other hand, the metamodel the present supports the
concept of NAT, that is missing in ours. However, our metamodel and approach
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Figure 9.1: CONFIDDENT PIM meta-model [81]

could be easily extended to include NAT without requiring any modification of the
proposed analysis tasks.

As in [69], several approaches have proposed formal models for the represen-
tation of firewall policies. Among them, in [24] the authors present a Higher-order
logic model able to represent and analyze firewall policies. They have also extended
their model to deal with the stateful case in [25]. All these formal representations,
while powerful, are very difficult to use, requiring the user to know not only the
domain of network packet filtering, but also the domain of the formalism of choice,
thus preventing their adoption. Moreover, their main strength, e.g., the automatic
validation and verification of properties, etc, depends in the ability of solvers to
explore the domain of solutions, what it is know to only work in an scalable way
in bounded search. Nevertheless, our model can be used as a pivot language be-
tween the real configuration, the user and these formal models by means of model-
transformations (text-to-model, model-to-model and model-to-text).

9.2 RDBMS AC Reverse-engineering

To the best of our knowledge, ours is the first security metamodel tailored to the
security mechanisms available in relational databases. Our metamodel integrates
RBAC concepts but extends the standard RBAC model to cover the full spectrum of
database security mechanisms useful to express access-control policies. Although
several (extensions to) modelling languages able to model security concerns[52, 61]
have already been proposed, they are aimed to model the security aspects of the
whole information system and thus lack of precision to define in detail database-
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specific access control policies.

Regarding the reverse-engineering of security aspects, in [89] the authors present
an approach to discover and resolve anomalies in MySQL access-control policies
by extracting the access-control rules and representing them in the form of Binary
Decision Diagrams (BDD). Although they do not describe a method for extract-
ing the access-control information from a running database, they provide a formal
model to represent it.

For them, the access-control of a database is composed by rules of the form:

Ri : Ci  PVi

Where Ci is a set of conditions that the rule must hold to obtain the permissions
in the privilege vector PVi

The conditions are modeled as a boolean conjunction of fields:

Ci = f1 ∧ f2 ∧ . . . ∧ fk

Privileges are also modeled as a boolean conjunction:

PV = P1 ∧ P2 ∧ . . . ∧ Pk

Then, permissions and grant tables are modelled as BDDs, so that the evaluation
of access-control requests is enabled.

As fields they consider Host IP, user name, database name and column name.

Our metamodel supports directly all these conditions but the Host IP condition
that is supported by the analysis of triggers (we consider context checks are often
performed by using fine grained constraint defined in procedural code).

Compared to our metamodel, they notably do not model some key access-
control elements. Model views that constitute a case of fine-grained, column-level
and content-level access control mechanism widely used in real databases are not
taken into account. Support for the representation of roles and the association be-
tween roles and privileges and between users and roles is also missing. This limits
the applicability of their model representation to databases not supporting RBAC
(which is the case of MySql but not of other important database vendors like Oracle,
Postgre and Microsoft SqlServer). Ownership is also ignored. Relational databases
usually follow a DAC model, where the owner of an element have total control over
the permissions on his objects. Although this information can be flattened and the
set of permissions obtained by ownership represented as normal grants we consider
that doing so hampers the possibility of analysing the policy as it is by database
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experts. Conversely, the provided model seems to be completely focused in the au-
tomatic analysis of the semantics of the policy, disregarding policy understanding
tasks.

Finally, the contribution of procedural code is also not taken into account. In
Chapter 6 we discussed how procedural code items, e.g., triggers and stored proce-
dures, modify the privileges as described in the database dictionary grants table and
we provided an approach to integrate information extracted from them into models
conforming to our database security metamodel.

Summarizing, compared to us, the approach in [89] do not provide a higher-
level, easier to understand and manipulate representation of the extracted policies
nor take into account the contribution that several other elements like triggers, stored
procedures and views provide to access-control. However, their formal analysis of
consistency and absence of errors based on BDDs could be reused as an extra anal-
ysis task in our approach. Indeed, a transformation from our metamodel towards an
extended version of their formal representation is straightforward and will comple-
ment both approaches.

Finally, there exist plenty of reverse engineering efforts [62], [33], [79],[14]
(among many others) focused in recovering a (conceptual or logical) schema from
a database. Nevertheless, none of them covers security aspects and therefore, they
could benefit from our approach to extract a richer model.

9.3 CMS AC Reverse-engineering

Being the popularity of Content Management Systems relatively recent, it has
not attired to much attention from the research community. To the best of our
knowledge, our is the first metamodel specially tailored to the representation of
access-control information for the domain of CMSs.

Some tools for checking the configuration of WCMSs have been provided and
analysed by the scientific communities. However, these tools are focused in low-
level security aspects like management of cookies or prevention of SQL injection
vulnerabilities [66, 97].

Nearer to the extraction of high-level model representations of access-control,
approaches for extracting AC information from dynamic web applications source
code are presented in [44, 10].

In [44] the authors extract access-control models out the Moodle eLearning
framework. They parse the PHP code and obtain a Control Flow Graph where
access-control patterns (e.g., calls to the has_capability and require_capability func-
tions) that is then translated into an automaton for model checking. In [10], a more
generic approach is presented. SecureUML models are extracted from dynamic
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web applications by applying dynamic ans static analysis techniques. This sec-
ond approach is more similar to as, as they provide a high-level abstract model of
the system representing the domain entities as extracted from the database and the
security information as stereotypes. Nevertheless, the model they provide is not
specifically tailored to CMSs. Conversely, the entities are application specific, what
hampers the implementation of reusable CMS-specific analysis and migration tasks.

Notice also that those approaches are focused in a low level analysis of the
implementation of access-control over web applications. However, as discussed in
Chapter 7, current CMS systems include access-control mechanisms and tools to
set a policy. Once the policy is defined it is stored in the CMS back-end, normally
a database management system. Low level code will thus rely in this back-end to
enforce the Access-control policy. Therefore, we believe than in the case of CMSs,
extracting the information directly from the policy specification back-end provides
enough information as we consider that the code implementation correctly follows
the specification and that providing a better representation and understanding of the
specification remains a necessary step.

9.4 AC Policy Integration

The integration of security policies is a research problem that has attired the
attention of the security research community in the recent years. Consequently,
different approaches to tackle the problem have been proposed.

From a formal focus, in [31] the authors provide the foundations of a formal
framework able to represent policies in different architectural layers and the depen-
dencies between layers. Similarly, in [22] the authors analyze diverse combination
needs for access control policies. Among them, the combination of heterogeneous
policies and the integration of hierarchical policies through refinement. Algebraic
operations for representing and manipulate these combinations are provided. In
[82] Method-B is used to formalize the deployment of access control policies on
systems composed by several (network) components. The authors also define and
implement security properties to check the correctness the deployment process. Fi-
nally, by using model-driven techniques, in [39] the authors formalize what they
call the policy continuum model, representing policies at different inter-related ab-
straction layers although it does not tackle the problem of inter-related architectural
layers.

None of these formalization works provide the bridges necessary to fill the gap
between real policies and the proposed formalisms and they mostly aim at providing
a formal framework to deploy/analyse/manipulate synthetic policies. Conversely,
our approach works the other way round by proposing a more pragmatic approach,
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aimed at providing a solution for the integration of real, already deployed policies.
Moreover, in order to ease its adoptability, we base our approach in the use of
existing standards and off-the-shelf proved model-driven tools.

More similar to us, in [65] they describe some interesting results regarding the
integration of policies not belonging to the same authorization entity. However,
they do not deal with dependencies between policies, what is our focus here. They
propose a similarity process to compare different rules and policies that we have
adapted here for the case of inter-dependent access control policies.

Not focused on access-control, [30] provide an approach to detect conflicts be-
tween different kinds of policies in the same environment A.C policies, copyright
policies, etc.



10
Conclusion

10.1 Conclusion

Building an information system often requires the composition of several collab-
orating subsystems. When security requirements are to be meet, all the subsystems
capable of participating in the security enforcement must be properly configured,
not only to protect the information they manage, but also to collaborate with other
subsystems. Failing to do so will put the system under the risk of unintended data
disclosures, but also under the risk of not being able of function properly.

In the concrete case of data confidentiality and integrity, access-control mech-
anisms have been integrated in a vast diversity of components. This way, it is not
uncommon to find a system where a number of subsystems implement and enforce
access-control policies.

However, despite the few methods intended to automatically generate correct
access-control policies from high level, verified representations, current access-
control implementation in concrete components remains a complex task. Low level,
often vendor-specific technologies used under the expertise and flair of security ad-
ministrators fall short to assure the deployment of correct security policies. More-
over, the relations between the diverse subsystem are not explicitly taken into ac-
count when developing the subsystem policies, leading to unexpected behaviours.

In this scenario, a mechanism to discover the policies already deployed in a
given information system turns up as a critical necessity. Unfortunately, while a
vast amount of works have been devoted to the analysis of access-control policies,
most of then worked on abstract, synthetic policies, disregarding the connection to
the real deployed policies. In the same sense, reverse engineering methods for ex-
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tracting information out of concrete systems have been proposed, however, security
aspects have been traditionally ignored in those methods.

This thesis has presented a method for covering this gap. We have presented a
model-driven reverse engineering approach aimed at extracting access-control poli-
cies from deployed information systems.

Our method is divided in two steps. First, it extracts the access-control pol-
icy deployed in concrete components, raising the level of abstraction so that low-
level and vendor-specific details can be disregarded. Then, analysis task have been
performed at this abstraction level, showing how model-driven techniques help to
manipulate and analyse information in an standard an reusable way.

As a second step, our method gather all the access-control policies being en-
forced in a given system and integrates then in a single model. We do so by unveil-
ing the functional dependencies between the corresponding subsystems, showing
how this dependencies also hold with respect to the access-control policies. Having
all the policies integrated in a single model representation along with their depen-
dencies enables the description and development of analysis tasks, unavailable when
looking to the individual policies as isolated. Concretely, intra-component miscon-
figurations, i.e., combinations of rules in different policies leading to unexpected
behaviours, can be unveiled.

Using model-driven techniques to raise the abstraction level of the deployed
policies we assure the re-usability and uniformity of the analysis and applications
we have proposed. Moreover, it allows us to see our contribution as complementary
to other ones. Our approach can be joined, by model transformation and model
composition, to other model-driven reverse engineering approaches, in order to
complement them with security information. Then, the representations we provide
can serve as a bridge to other representations, enabling the reusability of existing
access-control analysis techniques.
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10.2 Future Work

In this section, we would like to introduce four possible research lines we envis-
age as further research. The first three are intended to extend our work to deal with:
1) More components, lying in different architecture layers, 2) Other sources of in-
formation, like logs and audits and 3) different kinds of policies and not only access-
control policies. The last one pretends to further test the scalability of the models
and operations proposed in this thesis work by applying them to real, industrial-size
scenarios.

Each of this research lines is sketched below.

10.2.1 Adding other components: The SeLinux case

In the present work, access-control policies have been extracted from three dif-
ferent components lying in three different architecture layers. As a future research
line we intend to extend our work to extract access-control policies from other sys-
tems lying in another architecture layer different that the ones already tackled here.
Specially interesting is to analyse the operating system layers, as many other system
depend on these layers. Concretely, we intend to apply our model-driven method
and techniques to the extraction of access-control policies from SeLinux systems.

Security-Enhanced Linux (SELinux) is a Linux kernel security module that
provides the mechanism for supporting access control security policies, including
mandatory access control (MAC)[90]. However, the complexity of the systems pre-
vents users to take advantage of its powerful mechanisms. Among the rules com-
posing a security policy configuration, many relationships occur and it is extremely
difficult to understand their overall effects in the system [102].

Although some formal works try to provide the means to generate and analyze
SeLinux security policies [102], [47] and even some approaches are intended to
recover those policies from deployed systems [103] there is room for applying a
model-driven reverse engineering approach as those solutions are only partial and
moreover, they do not integrate the results into a global model as the one we have
proposed here. By doing so, the SeLinux rules could be taken into account when
analysing misconfigurations between components improving the overall picture of
the multi-layer access-control analysis.

10.2.2 Other sources of informations: Logs and Audits

The access-control models we extract and the integration process we propose al-
lows for the discovery of possible misconfigurations (both, inter and intra-component).
In some cases, the misconfigurations detected will constitute warnings more than er-
rors, as it will depend on the capacity of exploiting the error for it to be categorized
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as such. In this sense, logs and audits are useful tools, as they register the real usage
of the systems, disregarding the policy in place.

Analyzing such information sources, could help to 1) really categorize miscon-
figurations as being exploited configuration errors 2) detect discrepancies between
the enforced policy and the real usage. Thus, it allows for misuse and intrusion de-
tection analysis. Such analysis have been already proved useful for, among others,
the domain of databases [53] and web-based applications[55].

We aim at applying the same method we have used to extract AC models to the
extraction of data from audits and logs. By combining both models, the models
from the policies and the models from the audits we believe useful information can
be obtained. Analysis techniques as the ones mentioned above can be implemented
over the models and what is more interesting, the results of those analysis can be
related to the security policy, so that the conflicting parts can be more easily detected
and modified.

Apart from misuse and intrusion detection, we also believe the analysis of the
policy and the audits together will yield information that could lead to the refactor-
ing of the policy in order to reduce its complexity and improve its efficiency. As
an example, unused roles or privileges could be removed from the system policy or
some other roles could be refactored to have less privileges.

10.2.3 Including different kinds of policies

The work of this thesis have been focused on access-control, secrecy, policies.
However, other kind of policies exists within information systems. Privacy [58],
[13] ( what customer’s data is stored by whom, for what purpose, for what duration,
and with whom it is shared), and Integrity (is the data modified within a workflow
by unauthorized parties?) policies among others.

We believe that our results can be directly applicable to the extraction of these
different kind of policies.

With models representing the deployed policies available, we intent to explore
the possible integration between the different policies. Similar to our analysis in
Chapter 8, we believe that anomalies and misconfigurations could appear when sev-
eral different kinds of policies work together in a given information system.

We propose the following roadmap:

1. Extract integrity privacy and availability policies from different components
using them. This step may include the development of domain-specific mod-
els able to represent the information of a given policy within a given do-
main, abstracting from concrete implementation technologies (such domain-
specific language already exist, like the P3P [36] standard for web sites).
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2. Discovery of possible relations between policies. For that purpose, methods
as the policy similarity calculation in [65] could be extended.

3. With the discovered dependencies, integration of the policies and global
analysis for unveiling conflicts and misconfiguration between policies. Here
it is interesting to remark that XACML, the language we proposed as in-
tegration language have been used for storing privacy policies [48], what
could facilitate our integration goals.

10.2.4 Scalability of the approach

All along this thesis, new languages, visualizations, analysis and integration
algorithms have been provided. In order to validate them, prototype tools have been
developed and examples have been tested on them. Unfortunately, the examples we
tested, while sometimes coming from the real world were partial or small.

The scalability (in computation time, but also in understandability) remain to
be tested. To achieve this goal, the use of real, industrial-size examples arises as a
clear necessity.

While obtaining such examples remains challenging, mostly due to the sensitiv-
ity of the problem in hand, as a next step we intend to contact enterprises interested
in our results to test them in their systems (to that purpose, some consultancy rela-
tions have already been established). As a first step, we are already planning the test-
ing of our network tools on the network configuration files (previously anonymized)
of a big university. With this information available, a cycle of refining of the devel-
oped tools is to be launched.
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Analyse et Reconstruction Automatique de Politiques de Sécurité de
Composants de Sécurité Déployés

Automatic Reconstruction and Analysis of Security Policies from Deployed
Security Components

Résumé
La sécurité est une préoccupation essentielle pour
tout système d’information. Propriétés de sécurité
telles que la confidentialité , l’intégrité et la
disponibilité doivent être appliquées afin de rendre les
systèmes sures. Dans les environnements complexes,
où les systèmes d’information sont composés par un
certain nombre de sous-systèmes hétérogènes,
chaque sous-système joue un rôle clé dans la sécurité
globale du système. Dans le cas spécifique du
contrôle d’accès, politiques de contrôle d’accès
peuvent être trouvées dans différents composants
(bases de données, réseaux, etc.), ces derniers étant
sensés travailler ensemble. Néanmoins , puisque la
plupart de ces politiques ont été mises en œuvre
manuellement et / ou évolué séparément ils
deviennent facilement incompatibles. Dans ce
contexte, la découverte et compréhension des
politiques de sécurité appliquées par le système
d’information devient une nécessité critique. Le
principal défi à résoudre est de combler le fossé entre
les caractéristiques de sécurité dependant du
fournisseur et une représentation de plus haut niveau
que exprime ces politiques d’une manière faisant
abstraction des spécificités de composants concrètes,
et donc, plus facile à comprendre et à raisonner avec.
Cette représentation de haut niveau nous permettrait
également de mettre en œuvre tous les opérations de
évolution / refactoring / manipulation sur les politiques
de sécurité d’une manière réutilisable.
Dans ce travail, nous proposons un tel mécanisme de
rétro-ingénierie et d’intégration des politiques de
contrôle d’accès. Nous comptons sur les technologies
de l’ingénierie dirigée par les modèles pour atteindre
cet objectif .

Abstract
Security is a critical concern for any information
system. Security properties such as confidentiality,
integrity and availability need to be enforced in order to
make systems safe. In complex environments, where
information systems are composed by a number of
heterogeneous subsystems, each subsystem plays a
key role in the global system security. For the specific
case of access-control, access-control policies may be
found in several components (databases, networks
and applications) all, supposedly, working together.
Nevertheless since most times these policies have
been manually implemented and/or evolved
separately they easily become inconsistent.
In this context, discovering and understanding which
security policies are actually being enforced by the
information system comes out as a critical necessity.
The main challenge to solve is bridging the gap
between the vendor-dependent security features and
a higher-level representation that express these
policies in a way that abstracts from the specificities of
concrete system components, and thus, it´s easier to
understand and reason with. This high-level
representation would also allow us to implement all
evolution/refactoring/manipulation operations on the
security policies in a reusable way.
In this work we propose such a reverse engineering
and integration mechanism for access-control policies.
We rely on model-driven technologies to achieve this
goal.

Mots clés
Sûreté, Ingénierie dirigée par les modèles,
Rétro-ingénierie, Contrôle d’accès.

Key Words
Security, Model-driven, Reverse-engineering,
Access-Control.
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