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Résumeé

Les objectifs de cette these concernent la caractérisation des polymeres a I’état fondu via la
rhéologie non linéaire dans les modes de cisaillement ou en élongationnel et les procédés faisant
intervenir de fortes élongations tel que 1’électrospinning en voie solvant et en voie fondue. Pour
atteindre le premier objectif, nous nous sommes concentrés sur la caractérisation des polymeres
fondus enchevétrés dans les régimes viscoélastiques linéaires et non linéaires. L’influence de la
masse moléculaire, M, et de sa distribution MWD, la présence de longues chaines branchées
(LCB) ou encore I’addition de nanoparticules dans la matrice de polymere a 1’état fondu ont été
étudiées en utilisant des techniques rhéologiques en cisaillement et en élongationnel. Dans le cas
des écoulements de cisaillement oscillatoires a grandes amplitudes (LAOS), nous avons proposé
de nouveaux parametres mécaniques qui ont permis de définir les relations structure-propriétés

des différents systémes étudiés.

Pour étudier I’influence de la masse moléculaire, des polystyrene (PS) monodisperse atactique
ont été synthétisés par voie anionique. Les mesures de cisaillement oscillant ont été effectuées a
petites et grandes déformations. La contrainte résultante en grandes déformations a été analysée
par la méthode de rhéologie par transformation de Fourier (FT). Dans le régime viscoélastique
linéaire, la viscosité au plateau de cisaillement, 79, a ét€ mesurée et utilisée pour caractériser
les effets des enchevétrements sur le poids moléculaire. En outre, les propriétés viscoélastiques
linéaires des PS a I’état fondu ont été simulées a I’aide du modéle de Likthmann-McLeish. Pour
le régime viscoélastique non linéaire, un nouveau parametre non linéaire, caractérisant la non-
linéarité a taux de cisaillement nul, y, a été introduit. Ce nouveau parametre présente une plus
grande sensibilité a la masse moléculaire que 7n9. En outre, les propriétés viscoélastiques non-
linéaires ont été simulées en utilisant le modéle de Giesekus. Pour étudier I’influence de la distri-
bution du poids moléculaire, des mélanges de PS monodisperses ont été préparés. Dans le régime
viscoélastique linéaire, le comportement qualitatif des modules élastique et visqueux en fonc-

tion de la fréquence de sollicitation [G'(w) et G”(w)] était similaire pour les mélanges et les PS
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monodisperses. Cependant, deux pics distincts attribués des dynamiques de relaxation des chaines
de polymere ont été observés dans le cas des spectres du parametre non linéaire Qy(w) obtenu par
FT. Il a été conclu que le parametre viscoélastique non linéaire, Q(w), est plus sensible a la distri-
bution de masse moléculaire que les parametres obtenus généralement par viscoélasticité linéaire.
Pour étudier I’influence des ramifications le long des chaines de polyméres, des mélanges de
polyoléfines ramifiées linéaires et branchées ont été utilisés. Pour les expériences de cisaillement
oscillatoire en petites et grandes déformations, la contrainte normale a été mesurée en plus de la
contrainte de cisaillement. De nouveaux parametres ont été introduits via 1’analyse par rhéologie
par transformation de Fourier FT et par la méthode de décomposition de la contrainte (SD). En
outre, des mesures d’extension uniaxiale ont été effectuées et comparées aux résultats de simu-
lation obtenus par le modele de fonction de contrainte moléculaire (MSF). Différents comporte-
ments ont été observés pour les mélanges de polyéthylenes branchés (PE) et de polypropylenes
branchés (PP). L’utilisation des nouveaux parametres décrits dans le présent travail permettent une
meilleure compréhension de la relation structure- propriété des matériaux industriels présentant
des taux de branchement (LCB) différents. Pour étudier I’influence de 1’ajout de nanoparticules
(nanotubes de carbone) dans une matrice polymere, des mélanges de polyéthylene (PE) et des
nanotubes de carbone (CNT) ont été préparés en utilisant un processus en deux étapes pour une
dispersion uniforme de particules. Les mesures ont été effectues en petites et grandes déformation
sous écoulement de cisaillement oscillatoire. La formation d’un réseau de percolation des CNT
a été étudiée dans les deux régimes viscoélastiques linéaires et non lin€aires. Un minimum est
observé lorsque la non-linéarité intrinseque, Q, est tracée en fonction de la fraction en masse
¢, des nanotubes (MWCNT). Ce minimum correspond au seuil de percolation pour les compos-
ites PE / MWCNTs. La formation du réseau de percolation a présenté une forte incidence sur le
régime viscoélastique non linéaire par rapport au régime viscoélastique linéaire. Ainsi, le tracé
de la courbe Qy(¢,,) fournit une meilleure sensibilité pour la détection du seuil de percolation par
rapport aux méthodes décrivées des mesures en viscoélasticité linéaire.

Le second objectif de la these a concerné le procédé d’électrospinning permettant 1’élaboration
d’échafaudages (scaffolds) nano/micro-fibreux trouvant des applications dans le domaine de I’'ingénierie
tissulaire. Nous avons étudié le procédé en voie solution et en voie fondue. Ce procédé, visant
a former les nanofibres sous 1’action d’un champ électrostatique intense, est généralement re-
connu pour obtenir des scaffolds de faible épaisseur (pas plus de 100 microns). Cependant, pour
certaines applications, telle que la régénération osseuse, il est nécessaire de faire des scaffolds

nanofibreux ayant une épaisseur de I’ordre du cm et présentant des pores de grandes tailles per-
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mettant une infiltration des cellules osseuses. Nous avons démontré pour la premiere fois la ca-
pacité de produire par électrospinning des mousses de poly(e-caprolactone) nanofibreuses dont
I’épaisseur est de I'ordre du cm. Ces échafaudages ont été obtenus grace a 1’auto-assemblage
dynamique des nanofibres sous la forme de motifs en nid d’abeille. Ceci entrane une structura-
tion hiérarchique dans 1’épaisseur du scaffold sous la forme de colonnes poreuses dont la taille
varie de quelques microns a quelques centaines de microns. Nous avons aussi montré que cette
morphologie colonnaire spécifique conduit a des propriétés mécaniques adaptée a la manipula-
tion et a I’'implantation in vivo. Pour atteindre notre objectif final, un procédé original permettant
I’électrospinning en voie fondue, et donc sans solvant, a été développé. Ceci a été motivé par le
fait que la présence de solvant résiduel, méme 1’état de trace, peut affecter la croissance cellulaire
dans le cas d’applications pour 1’ingénierie tissulaire. Avec le nouveau dispositif, il a été possi-
ble de fabriquer des scaffolds sans solvant. L’influence des divers parametres de procédé sur le
diametre des fibres et la morphologie des scaffolds a été étudiée. La tension appliquée a été iden-
tifié comme le parametre le plus important qui influe sur le diametre de la fibre. La température
du collecteur, a quant a lui, affecté la morphologie globale des scaffolds. En particulier, des mor-
phologies a porosité ouverte tout a fait originales ont pu étre développées grace au controle de la

rupture des fibres au moment de leur dép6t sur le collecteur.
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Zusammenfassung

Die Ziele dieser Doktorarbeit sind die Charakterisierung von Polymerschmelzen durch die Be-
nutzung von hauptséchlich nichtlinearen scherrheologischen und Dehnrheologischen Techniken,
die Herstellung von ,,Gewebegersten* mit hervorragenden physikalischen und mechanischen Eigen-
schaften mit Hilfe des Losungs-Elektrospinnen, um dies bei der Gewebekonstruktion anzuwen-
den, und die Entwicklung eines Schmelzen-Elektrospinn Aufbaus zur Herstellung von 16sungsmi-

ttelfreien ,,Gewebegeriisten®.

Um das erste Ziel zu erreichen, fokussierten wir uns auf die Charakterisierung von verzweigten
Polymerschmelzen im linear und nicht-linearem viskoelastischen Bereich. Der Einfluss von dem
Molekulargewicht M,, der Molekulargewichtverteilung (MWD), der Langkettenverzweigung (LCB)
und das Hinzufgen von Partikel zur Polymermatrix auf die Eigenschaften der Polymerschmelzen
wurde untersucht mittels von scherrheologischen und dehnrheologischen Techniken. Die re-
sultierenden Struktur-Eigenschaft Beziehungen wurden etabliert durch die Benutzung von neu
eingefiihrten mechanischen Parametern in oszillierenden Scherstromungen mit groer Amplitude

(LAOS).

Um den Einfluss des Molekulargewichts festzustellen wurden anionisch synthetisierte monodis-
perse ataktische Polystyrol (PS) schmelzen gewihlt. Oszillatorische Schermessungen wurden bei
kleinen und groBen Deformationen durchgefiihrt. Die Antwort der Schubspannung bei grof3en De-
formationen wurde analysiert mit der bekannten Technik der Fourier Transformations (FT) Rhe-
ologie. Im linear viskoelastischen Bereich wurde die Null-Scherraten-Viskositit 1, gemessen und
benutzt, um den Effekt der Verzweigungen auf das Molekulargewicht zu analysieren. Im Weiteren
wurden die linear viskoelastischen Eigenschaften der PS-schmelzen mit Hilfe des Likthmann-
McLeish Modells simuliert. Im nichtlinearen viskoelastischen Bereich wurde ein neuer nicht-
linearer Materialparameter die Null-Scherraten Nichtlinearitt y, eingefiihrt. Dieser neue Ma-

terialparameter zeigte eine groflere Sensitivitdt beziiglich des Molekulargewichts relativ zu 7.



Zusammenfassung

Weiterhin wurden die nichtlinearen viskoelastischen Eigenschaften mittels des Giesekus Models
simuliert. Um den Einfluss der Molekulargewichtsverteilung zu untersuchen wurden Mischun-
gen von monodispersen PS durch Mischen in Losung hergestellt. Im linear viskoelastischen
Bereich war das qualitative Verhalten des linearen dynamischen Spektrums [G’(w) und G (w)]
der Mischungen hnlich wie das der monodispersen PS schmelzen. Jedoch wurden zwei klare
Frequenzspitzen welche zu den Kettendynamiken der langen und der kurzen Ketten gehoren im
nichtlinearen Frequenzspektrum Qy(w) beobachtet. Daraus wurde gefolgert, dass der nicht-lineare
viskoelastische Materialparameter Qy(w) mehr sensitiver ist beziiglich der Unterscheidung zwis-
chen monodispersen PS Schmelzen und bindren Mischungen von PS Schmelzen verglichen mit
anderen linearen viskoelastischen Materialparametern. Um den Einfluss der Langkettenverzwei-
gung zu untersuchen wurden Mischungen von linearen und langkettenverzweigte Polyolefine be-
nutzt. Bei oszillierenden Scherstromungen mit kleiner und groer Amplitude wurden auch die
Normalspannung zusitzlich zu den Schubspannungen gemessen. Neue Materialparameter wur-
den eingefiihrt basierend auf der FT-Rheologie und der Spannungszerlegung (Stress Decomposi-
tion SD) Analyse der Normal- und Schubspannungsmessungen. Desweiteren wurden einachsige
Dehnungsmessungen durchgefiihrt und verglichen mit Simulation mit dem Molecular Stress Func-
tion (MSF) Modell. Es wurden verschiedene Verhalten beobachtet fiir PE und PP Mischungen,
von welchen angenommen wird, dass sie von den verschiedenen Arten der Langkettenverzwei-
gung (LCB) der jeweiligen Systeme stammen. Die Verwendung der in dieser Arbeit vorgeschlage-
nen und beschriebenen Materialparameter hat das Potential ein besseres Verstindnis der Struktur-

Eigenschaft Beziehungen in industriellen LCB Materialien zu ermoglichen.

Um den Einfluss des HHinzufiigens von Nanopartikeln (Kohlenstoffnanoréhrchen) zur Poly-
mermatrix zu untersuchen, wurden Mischungen von Polyethylen (PE) und Kohlenstoffnanorhrchen
(CNT) mittels eines zwei Stufen Prozesses, um eine gleichmifige Verteilung der Partikel zur
gewihrleisten, hergestellt. Oszillatorische Schermessungen wurden bei kleinen und grof3en Defor-
mationen durchgefhrt. Die Formierung von Perkolation Netzwerken wurde in beiden im linearen
und im nichtlinearen viskoelastischen Bereich studiert. Ein Minimum wurde beobachtet wenn
die intrinsische Nichtlinearitdt Q als eine Funktion des Massenanteils an Vielwandigen Kohlen-
stoffnanorhrchen (MWCNTs) ¢, aufgetragen wurde. Dieses Minimum von Qy(¢,,) korrespondiert
mit der Perkolationgrenze der PE/MWCNT’s Gemische. Die Entwicklung des Perkolationsnet-
zwerkes scheint einen groen Effekt auf den nichtlinearen viskoelastische Bereich zu haben relativ

gesehen zum linear viskoelastischen Bereich. Wir erwarten, dass die Verwendung der Qy(¢,,)

vi
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Kurve eine bessere Sensitivitit bei der Detektion der Perkolationsgrenze liefern wird im Vergleich

zu den linearen viskoelastischen Eigenschaften.

Um das zweite Ziel beziiglich der Herstellung von Gewebegeriiste zu erreichen wurde eine ein-
schritt Losungs-Elektrospinntechnologie benutzt. Aus dem Elektrospinnen resultieren normaler-
weise Gewebegeriiste die eine hundert Mikrometer dick sind und Porengréen im Bereich von
Mikrometern haben. Jedoch ist es fiir einige Anwendungen, Gewebeherstellung eingeschlossen,
notwendig cm dicke nanofibrillen Gewebegeriiste mit groen Porengroflen , welche die Infiltration
von Zellen erlauben, herzustellen. Wir zeigen iin dieser Arbeit zum ersten Mal die Fahigkeit biore-
sorbierbare poly(e- caprolacton) nanofibrille cm dicke Schidume herzustellen durch die Benutzung
des Losungselektrospinntechnik. Diese Gewebegerste wurden erhalten durch die dynamische
Selbstordnung der elektrogesponnenen Nanofasern in Bienenwabenmustern, welche eine einma-
lige sdulenartige hierachische Struktur erzeugte mit sowohl Mikroporen und Mesoporen mit bis zu
einigen hundert Mikrometern Groé8e. Diese spezifische Morphologie hatte auch die mechanischen
Eigenschaften von dicken Gewebegeriisten und war deswegen brauchbar fiir die Handhabung und

Implantierung in vivo.

Um das letzte Ziel zu erreichen, wurde ein einmaliger Schmelze-Elektrospinnversuchsaufssbau
entwickelt. Die Motivation Gewebegeriiste ohne Losemittel herzustellen ist hergeleitet von der
Tatsache, dass fiir einige Anwendungen in der Gewebekonstruktion sogar die Prsenz von eini-
gen ppm von restlichen Losemittel das Wachstum von Gewebe auf den Gewebegersten beein-
flussen kann. Mit dem neu entwickelten Aufbau ist es moglich Gewebegeriiste ohne Losemittel
herzustellen. Der Einfluss von mannigfaltigen Prozess- und Materialparametern auf den Faser-
durchmesser und die Fasermorphologie wurden untersucht. Die angelegte Spannung wurde als
wichtigster Parameter identifiziert, um den Faserdurchmesser zu beeinflussen und die Kollek-

tortemperatur hatte den grof3ten Effekt auf die resultierende Morphologie.

Wir erwarten, dass die neu eingefiihrten Parameter (Null-Scherraten intrinsische Nichtlinearitit
durch die Analyse der oszillatorischen Schubspannung und die Null-Scherungs intrinsische Nicht-
linearitét berechnet aus der ersten Normalspannungsdifferenz) unter oszillierende Scherstromungen
mit groBer Amplitude fiir eine breite Menge an komplexen Fluiden benutzt werden kann. Die
neue Selbstordnungstechnik, um hierarchische 3D cm dicke Gewebegeriiste mittels Losungs-

Elektrospinnen herzustellen eréffnet neue Moglichkeiten fiir Anwendungen der Gewebekonstruk-
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tion. Die ermutigenden Resultate bei der Entwicklung von l1osemittelfreien Gewebegeriisten durch
die Nutzung der Schmelzen-Elektrospinnentechnologie ermoglichen aufregende neue Moglichkeiten

fiir Anwendungen bei der Gewebeherstellung.
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Abstract

The goals of this thesis are the characterization of polymer melts using mainly non-linear shear
and extensional rheological techniques, the fabrication of scaffolds with excellent physical and
mechanical properties using the solution electrospinning technology for tissue engineering ap-
plications and the development of melt electrospinning equipment to facilitate the fabrication of
solvent free scaffolds. To achieve the first goal, we focused on the characterization of entan-
gled polymer melts in the linear and nonlinear viscoelastic regimes. The influence of molecular
weight, M,,, molecular weight distribution (MWD), long-chain branching (LCB) and addition of
particles to the polymer matrix on polymer melt properties were investigated using shear and ex-
tensional rheological techniques. The resulting structure-property relationships were established
using newly introduced mechanical parameters under large amplitude oscillatory shear (LAOS)

flow.

To investigate the influence of the molecular weight, anionically synthesized, monodisperse
atactic polystyrene (PS) melts were chosen. Oscillatory shear measurements were performed at
small and large deformations. The stress response at large deformation was analyzed using well
established Fourier Transformation (FT) rheology technique. In the linear viscoelastic regime, the
zero shear-rate viscosity, 19, was measured and used to characterize the entanglements effects on
the molecular weight. Furthermore, the linear viscoelastic properties of PS melts were simulated
using the Likthmann-McLeish model. In the non-linear viscoelastic regime, a new non-linear
material parameter, the zero shear-rate nonlinearity, yy, was introduced. This new material pa-
rameter displayed a higher sensitivity to the molecular weight relative to the 7y. Furthermore,
the non-linear viscoelastic properties were simulated using the Giesekus model. To investigate
the influence of molecular weight distribution, blends of monodisperse PS were prepared using
solution mixing. In the linear viscoelastic regime, the qualitative behaviour of the linear dynamic
frequency spectrum [G (w) and G (w)] for the blends was similar to the monodisperse PS melts.

However, two distinct peaks belonging to the large and small polymer chain dynamics were ob-

X



Abstract

served in non-linear frequency spectrum [Qg(w)]. It was then concluded that the non-linear vis-
coelastic material parameter, Qy(w), is more sensitive to differentiate between monodisperse PS
melt and binary blends of PS melts compared to other linear viscoelastic material parameters.
To investigate the influence of long-chain branching, blends of linear and long-chain branched
polyolefins were used. Normal stresses were measured in addition to shear stresses at small and
large deformation amplitudes under oscillatory shear flow. New material parameters were intro-
duced based on FT-Rheology and Stress Decomposition (SD) analysis of normal and shear stress
measurements. Furthermore, uniaxial extensional measurements were performed and compared
to simulation results using the Molecular Stress Function (MSF) model. Different behaviours
were observed for the PE and PP type blends, which are believed to arise from the different types
of long chain branching (LCB) present in each of the systems. The use of the new material pa-
rameters proposed and described within the present work has the potential to allow for a better
understanding of structure-property relationship in industrial LCB materials. To investigate the
influence of the addition of nano-particles (carbon nanotubes) to the polymer matrix, blends of
polyethylene (PE) and carbon nanotubes (CNTs) were prepared using a two-step process for a
uniform dispersion of particles. The measurements were performed at small and large deforma-
tion amplitudes under oscillatory shear flow. The influence of the percolation network formation
were studied in both the linear and non-linear viscoelastic regimes. A minimum is observed when
the intrinsic nonlinearity, Q,, was plotted as a function of the weight fraction of multi-walled car-
bon nanotubes (MWCNTS), ¢,,. The minimum in Qy(¢,,) corresponds to the percolation threshold
for the PE/MWCNTSs composites. The formation of the percolation network have large effect on
the nonlinear viscoelastic regime relative to the linear viscoelastic regime . We anticipate, the use
of Qy(¢)-curves will provide a better sensitivity in detecting the percolation threshold compared

to other linear viscoelastic properties.

To achieve the second goal related to scaffold fabrication, single-step solution electrospinning
technology was used. Electrospinning usually results in the formation of scaffolds that are a few
hundred microns in thickness with pore sizes in the micron range. However for some applica-
tions including tissue engineering, it is necessary to make cm-thick nanofibrous scaffolds with
large pore sizes that allow for cell infiltration. Here, we demonstrated for the first time the ability
to produce of bioresorbable poly(e-caprolactone) nanofibrous cm-thick foams using the solution
electrospinning technique. These scaffolds were obtained through the dynamic self-assembly of

electrospun nanofibers into honeycomb patterns, which resulted in a unique columnar hierarchi-
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cal structure with both micropores and mesopores of up to several hundreds of microns in size.
This specific morphology also had the mechanical properties of thick scaffolds and are, therfore,

suitable for handling and implanting in vivo.

To achieve our final goal, a unique melt electrospinning set-up was developed. The motivation
to fabricate the scaffolds without solvent is derived from the fact that for some applications in
tissue engineering even the presence of a ppm amount of residual solvent can affect the cell
culture growth on the scaffolds. With the newly developed set-up, it was possible to fabricate
the scaffolds without solvent. The influence of various process and material parameters on the
fiber diameter and fiber morphology were investigated. The applied voltage was identified as the
most important parameter influencing the fiber diameter. The collector temperature had the largest

effect on the resulting morphology.

We anticipate, the new introduced parameters (zero shear-rate intrinsic nonlinearity calculated
by the analysis of oscillatory shear stress, and zero strain intrinsic nonlinearity calculated by the
analysis of first normal stress difference) under large amplitude oscillatory shear flow can be
applied to the wide range of complex fluids. The novel self-assembling technique to fabricate
the hierarchical 3-dimensional cm-thick scaffolds using solution electrospinning opens up new
possibilities for tissue engineering applications. The encouraging results obtained in developing
solvent free scaffolds using melt electrospinning technology enables new possibilities for tissue

engineering applications.

xi
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Chapter 1

Introduction

Polymeric materials brought a paradigm shift for the development of pioneering innovations to
meet society’s biggest challenges. This fact can be realized by the growth in cumulative global
consumption over the last six decades. The yearly worldwide plastic production has exploded
from 1.5 million tonnes in 1950 to 300 million tonnes in 2011%. Worldwide the drivers of growth
in the demand for plastics are manifold. Economic growth, population growth and the increasing
wealth in newly industrialized and in developing countries play an important role. The share of
plastics has been increasing at the expense of the other bulk materials. This is partly a result
of new needs, which can best be fulfilled by plastics (e.g., safety devices such as airbags, mulch
films for agriculture and certain medical devices and fabrication of scaffolds for tissue engineering
applications). Another important driver is material substitution, e.g. the replacement of glass by
polymers in consumer goods such as computer screens and inroads made by plastics into the
traditional applications of paper/board in packaging and metals (e.g. in consumer goods and
buildings). Here, the costs for production and processing of the competing materials play an

important role.

Polymeric materials are commonly classified into three categories: thermoplastics, elastomers,
and thermosets. This categorization is based on the thermo-mechanical properties of the polymeric
materials as a consequence of their molecular structure. Thermoplastics are linear or branched
polymers that become fluid when heat is applied. They can be molded and transformed using the
processing techniques such as injection molding and extrusion. Currently, this class occupy the
major proportion of polymeric materials used in industry. Thermoplastics can be further classified
into crystalline and amorphous. Elastomers are cross-linked polymers with a low density of cross-

linking points that can be easily deformed, reaching extensions of up to ten times their original
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Chapter 1. Introduction

dimensions and rapidly recovering their original size when the applied tension is released. The
cross-linking restricts their ability to flow, though cross-linking provides the ability to recover into
their original size when the applied tension is released. Thermosets are rigid materials with a high
density of cross-linking which severely restricts the chain movements. This work is focused only
on the characterization and processing of the thermoplastics [polyethylene (PE), polypropylene

(PP), polystyrene (PS) and poly(e-caprolactone)].

It is utmost important for the polymer industries to tune the thermoplastic polymeric material
properties depending on the processing techniques and applications. The most frequent ways
in the industry to tailor the properties of the thermoplastics polymeric materials are to change
the (i) molecular size, M, (ii) molecular weight distribution (MWD), (iii) branching [short chain
branching (SCB) and long chain branching (LCB)] and (iv) addition of nanofillers to the polymeric

matrix (polymer nanocomposites).

e Molecular Weight and Molecular Weight Distribution (MWD): Many properties of
polymers depend on their size, which is expressed in term of molecular weight, M. In
general, polymers do not have a unique molecular weight. Instead, they have a distribution
of molecular weights. The distribution of molecular weights can be characterized in terms of
different molecular weight averages. The most basic average is the number-average molec-

ular weight, M,,:

_ M,
- 2N

where n; is the fraction of molecules having the molecular weight, M;. Generally, the pre-

M,

(1.1)

ferred way to describe the composition of a mixture is in term of weight fractions (w;) rather
than the number fractions of molecules. This motivated the use of weight-average molecular
weight, M, :

2 wiM;

M, = o (1.2)

Higher moments can also be used to provide additional information about the shape of dis-

tribution. The next two after M, are:

M
= 2 wiM; (1.3)
2 wiM;
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ZLU,Ml3
MZ+1 = ZwMZ (1~4)

1

For distributions with a single maximum, M, is normally close to the maximum. M, is
always greater than M,,, except for a monodisperse polymer where all molecules have the
same molecular weight and M,, = M,. The ratio M, /M, is known as the polydispersity
index (PDI) which provides a measure of the width of the distribution. The width of the
number-average molecular weight distribution, expressed as its standard deviation, o, is

related to the ratio M,,/M, as follows:

Ohn _ Mw
M, M,

-1 (1.5)

Figure shows the log-normal distribution and all the averages which are used to describe
the typical distributions. The average molecular weight, M,,, is 100 kg/mol and PDI is 3. It
could be observed that the higher moments provide the information about higher molecular

weight and always greater than the M,,.

M_= 30 kg/mol, PDI = 3 PDI = Mwan

., = 100 kg/mol, PDI =3

-~ -- '
-_—- - .

0 100000 200000 300000
M [g/mol]

Figure 1.1: log-normal distribution with mean vM,M,,, and standard deviation of +/log(PDI),
where M,, = 100 kg/mol and PDI = 3.

e Branching: Polymers can be synthesized with the different topologies of macromolecules
(Fig. [I.2). The most important structural variable influencing the properties of polymers

after the molecular weight and its distribution is branching. The branching can be cate-
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gorized into two categories: short-chain branching (SCB) [branches with fewer than six
carbon atoms] and long-chain branching (LCB). The short-chain branching is well known
to be particularly critical in its effects on the morphology and solid-state properties of semi-
crystalline polymers such as polyethylene, while long-chain branching has a profound effect

on melt rheology™.

Linear Star Comb
Pom-Pom Random Branching

Figure 1.2: Sketches illustrating various structures: linear, star, comb, Pom-Pom, and randomly

branched polymers.

e Polymer Nanocomposites: The mixing of nanofillers with polymers has opened up a new
pathways for engineering flexible composites that exhibit advantageous electrical, optical,
or mechanical properties. Different types of nanofillers are utilized to improve the prop-
erties of polymeric materials, e.g. graphene, carbon nanotubes, graphite platelets, carbon

nanofibers, natural fibers (hemp or flex)~.

It is crucial for the polymer industries to understand the effects of above discussed parameters
(M, PDI, LCB, and addition of nanofillers) on the properties of polymer melts. This motivated
the development of numerous methods to characterize the influence of these parameters, such as
Size Exclusion Chromatography (SEC)®, Nuclear Magnetic Resonance (NMR)?® and rheological

9l4

methods®*. Among these techniques, the rheological methods are widely used in the polymer
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industry because of two reasons. First, rheological properties are both very sensitive to certain
aspects of the structure and much simpler to use than analytical methods such as SEC and NMR.
Second, it is the rheological properties that govern the flow behaviour of polymers when they are
processed. Consequently, the rheological properties helps in establishing the structure-processing

relationship which is of significant interest to the polymer industry.

Rheology is the science of deformation and flow. The rheology has a key position in polymer
research, being an important link in the so-called chain of knowledge reaching from the production
of polymers to their end-use properties'’. The rheological methods are used to perform the quality
control on polymers used as raw material, consistency monitoring and troubleshooting of products,
fingerprinting of different structures, new material development, product performance prediction,

design and optimization of different processing techniques.

Many processing techniques are used to produce the day-to-day products using the polymeric
materials, e.g, electrospinning, melt spinning, blow moulding, film casting, melt extrusion and
thermoforming™*. Generally, this thesis is focused to the characterization of polymeric materials
for industrial processes. However, a particular attention is focused to the electrospinning process

to fabricate the scaffolds for the tissue engineering applications.

Electrospinning or electrostatic spinning’*!#'# technology enables the production of contin-
uous polymer micro/nano fibers from either a polymer solution or melt using high electric field.
The electrospinning technology has its roots almost 300 years ago. In 1745, Bose described
aerosols generated by the application of high electric potentials to drops of fluids'>. Then, in
1882, Lord Rayleigh investigated the question of how many charges were needed to overcome the
surface tension of a drop'®. Next, Morton received the first US patent for the electrospinning of
artificial fibers in 1902"7. Finally, in 1934, Formhals patented the electrospinning of plastics®.
However, the practice of electrospinning technology remained latent until the 1970. In the early
1980, Larrondo and Manley"® demonstrated the feasibility of electrospinning a polymer melt in-
stead of a solution. A melt extruder was used to deliver a polyethylene melt to a charged capillary.
The electrospun fibers were about 10 um in diameter. In the 1990, great interest in electrospinning
research was generated when Doshi and Reneker? reintroduced this technique as a facile way to
fabricate submicron fibers. Since then, it has been shown that almost all materials that can be spun

from melt or solution by conventional methods can be electrospun into fibers. One of the reasons
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for the interest in this subject is the combination of both fundamental and application-oriented re-
search from different branches of science and engineering. The scope of possibilities presented by
electrospinning encompasses a multitude of new and interesting concepts, which are developing

at exponential rate.

The recent developments towards large scale productions combined with the simplicity of the
process enables this technology very attractive for many applications, e.g. filters?!, tissue engi-
neering applications“*, regenerative medicine?, microfluidic cell incubators or immunoassays=*,
photovolotic devices??, catalyst supports®, composite reinforcements#” and photonic devices®.
Other alternative techniques for the production of ultrathin polymer fibers include, most notably,
melt blown and multicomponent processes?’. Both these methods use polymers to make fibers
with diameter of less than 500 nm. In the melt-blown technique, polymer melts are pushed, under
relatively high pressure, through an array of nozzles. Fibers are formed from the melt under rapid
cooling in the countercurrent. Multicomponent fibers, which consist of segments of different poly-
mers, are fabricated by extrusion techniques, for example, by handling with water jets. Although
both methods have significantly higher productivity than electrospinning and yield finer fibers
from the melt, electrospinning is much more flexible in terms of achieving controlled fiber diame-
ters and for processing of all kinds of polymers and additives. As a result of this, several industries
are already using electrospinning technology to deliver consumer products, e.g. Donoldson Cor-
poration (filtration solutions), Cella Energy (use electrospun fibers for hydrogen storage in clean
energy applications). Furthermore, electrospinning provides many interesting possibilities for the

nanostructuring of materials.

1.1 Main Objectives

The objectives of the thesis were:

e The influence of entanglements on the linear and non-linear viscoelastic material properties
at small and large deformations under oscillatory shear flow for monodisperse PS melts and

its blends.

e The influence of long-chain branching on the linear and non-linear viscoelastic material
properties at small and large deformations under oscillatory shear and uniaxial extensional

flow for industrial polyolefin.
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e The influence of percolating network on the linear and non-linear viscoelastic material prop-
erties at small and large deformations under oscillatory shear for polymer composites of PE

with carbon nanotubes.

e Fabrication of hierarchical cm-thick scaffolds for tissue engineering applications using the

single-step solution electrospinning technology.

e The development of melt-electrospinning set-up, and fabrication of scaffolds without resid-

ual solvent.

1.2 Organization of Thesis

In the following section, first a brief introduction to essential tensors needed to understand the
rheological methods were described. In addition, supplementary characterization techniques prin-
ciple for polymer melts and fabricated scaffolds were discussed. In chapter 2, various constitu-
tive equations are presented for the prediction of linear and non-linear viscoelastic properties of
polymer melts. In chapter 3, different techniques are introduced to analyse the Large Amplitude
Oscillatory Shear (LAOS) flow response. Furthermore, the LAOS responses (shear stress and first
normal stress) are simulated using the Giesekus Model and analyzed using various techniques
available in the literature. In chapter 4, linear viscoelastic and nonlinear viscoelastic properties
are discussed under oscillatory shear flow for the monodisperse polystyrene (PS) and blends of
the monodisperse polystyrene (PS) melts. In chapter 5, the characterization of long-chain branch-
ing using oscillatory shear and extensional rheology is discussed. Particularly, normal stresses
were measured at large deformation oscillatory shear for the first time and analysed using a FT-
Rheology and Stress-Decomposition (SD). Many new parameters were introduced based on the
FT-Rheology analysis of oscillatory shear and first normal stress. In chapter 6, a new analysis is
proposed to characterize the percolation threshold in polymer composites of carbon nanotubes us-
ing FT-Rheology. Chapter 7 describes a new method to fabricate the 3D cm-thick scaffolds which
has tremendous potential for tissue engineering applications. In chapter 8, a melt electrospinning
set-up design is discussed, which was built within this theis. The processing and material param-
eter (viscosity) were optimized to obtain the desired fiber morphology. In chapter 9, the summery

and future perspective of this thesis are presented.
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1.3. Flow Kinematics and Stress Tensor of Deformable Bodies

1.3 Flow Kinematics and Stress Tensor of Deformable Bodies

A mathematical description of arbitrary deformations is required to understand and develop con-

stitutive equations for describing the flow of polymeric materials. This purpose has been achieved

with the introduction of deformation gradient and the velocity gradient tensors. To understand

these tensors we consider a three-dimensional material body before and after an arbitrary de-

formation as shown in Figure [[.3] Consider a vector is embedded in the material. The vector

coordinates is represented by r before the deformation. On applying the deformation, the vector

is rotated and stretched such that its new coordinate are given by r'. A quantity that provides com-

plete information about the relative displacement of any material element in a very small volume

of the fluid is called deformation gradient tensor, F.
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Figure 1.3: The deformation gradient, 1: for an arbitrary three-dimensional deformation.

The time derivative of F~! is equal to:

0
o=

—F'=F"'.Vy

(1.6)

where Vv is a velocity gradient. The velocity gradient describes the steepness of velocity variation

as one moves from point to point in the flow at a given instant in time.

The stress tensor arises as a result of applied deformation on the material. The physical sig-

nificance of stress tensor may be illustrated best by considering the three forces acting on three
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1.3. Flow Kinematics and Stress Tensor of Deformable Bodies

faces (one force on each face) of a small cube element of fluid, as schematically shown in Figure
[1.4] The force acting on each face with a arbitrary direction may be resolved in three components
directions. The total stress tensor, T, of incompressible fluids under deformation or in flow can be

divided into two parts:

T=-ps+o (1.7)

where 9 is the unit tensor, o is a extra stress tenor that vanishes in the absence of deformation or
flow, and p is the isotropic pressure. Note in Eq. [I.7]that p has a negative sign since it acts in the

direction opposite to a normal stress, which by convention is chosen as pointing out of the cube.

Figure 1.4: Stress components on a cube.

1.3.1 Simple Shear

Simple shear is a common flow in nature, for example the flow of water down a pipe consists
locally of shear flow. Likewise, the flow of a polymer melt though an extruder and a die is shear. A
fluid between two plates experiences simple shear if the top plate is moved with constant velocity
(Fig. [1.5). The viscosities of polymer melts and solutions are always quantified by a shear flow.

The extra stress tensor under simple shear is given as:

Oy Oy =0y 0
T=| O =0y Oyy 0
0 0 lo
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Figure 1.5: Shear flow: The element has a force applied to its top surface in the x-direction.
Newtonian flow in a pipe is an example of local shearing flow due to the parabolic velocity profile

through the pipe.

The shear stress is shear flow is just o,. The 1 normal stress difference and 2" normal stress

difference are defined:
Ny = 0y — 0y, Ny =0y -0, (1.8)

respectively. The first normal stress difference can be visualised as tension in the streamlines.
A melt being stirred can produce a force towards the centre of the container causing the famous

rod-climbing phenomena-.

1.3.2 Uniaxial Extension

In an uniaxial extension the sample is elongated at both ends with a constant velocity in the
direction of deformation x to generate a steady uniaixal extension (Fig. [I.6). A material line
oriented along any axis of the cube is stretched or compressed but not rotated. Thus, deformation
tensor and velocity tensor only contain diagonal elements. The extra stress tensor under uniaxial

extension is given as:

o 0 0
g= 0O o4 O
0 0 o,

1.4 Supplementary Characterization Techniques

The supplementary techniques which were used in this study include:

e Differential Scanning Calorimetry (DSC)
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1.4. Supplementary Characterization Techniques

c—l--l—by—>

Figure 1.6: Uniaxial extension: The element is stretched in the x-direction causing a reduction of

element size in the y and z directions.

e Light Scattering
e Gel Permeation Chromatography (GPC)

e Scanning Electron Microscopy (SEM)

1.4.1 Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry is a thermo-analytical technique that records changes in heat
flow as a function of time or temperature®!. This technique is most often used for characterizing
the T, (glass transition temperature) , T, (melting temperature) , T, (crystallization temperature) ,
and heat of fusion of polymers. The sample and a reference are exposed to a temperature program,
usually a linear ramp with or without plateaus, and the heat flow is adjusted in such a way that the
temperature 7 , of the sample and reference coincide at all times. In contrast to other calorimetric
techniques, the temperature difference, AT , between the sample and reference is always zero,
yet the heat flow is different for the sample when a thermodynamic transition occurs. Usually
the first order phase transitions like melting or freezing processes appear in the thermogram as
peaks, while second-order transitions, like the glass transition, leads to steps in the baseline. It
is important to note that the glass transition is not a second order transition in the conventional
Ehrenfest sense since it is not an equilibrium transition!. Yet a change in heat capacity is typically

associated with the glass transition, which is why it appears step-like in a DSC experiment.

1.4.2 Light Scattering

The determination of the weight average molecular weight is done using light scattering. The ba-
sic principle is that light passing through a polymer solution is scattered by the polymer molecules,

which are large enough to cause significant scattering, but still small compared to the wavelength
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of the light. It is necessary to choose a solvent having a refractive index that is sufficiently dif-
ferent from that of polymer. The Low Angle Laser Light Scattering (LALLS) is useful for the
absolute determination of molecular weight, while MutliAngle Laser Light Scattering (MALLS)
can determine the mean-square radius of gyration and the second virial coefficient. While light
scattering can measure over a wide range of molecular weight, it is less sensitive to low-molecular

weight material.

1.4.3 Gel Permeation Chromatography (GPC)

Gel permeation chromatography (GPC) is a widely used method to obtaining information about
the molecular weight and its distributions®?. Generally, a mixture of different constituents dis-
solved in a solvent, the eluent, is pressed through a column of densely packed filler particles, the
stationary phase, which are able to undergo certain interactions with the solutes. In GPC sam-
ple fractions are separated with respect to their different molecular size or more specifically to
their hydrodynamic volume, V,, . The stationary phase consists of particles with a particular pore
size. Due to diffusion into these pores, small solute molecules remain in the column for a longer
time. The time is called the retention time and depends on the hydrodynamic volume and thus
on the size of the macromolecule. Using a calibration curve for which the experimental relation
between the hydrodynamic volume and molecular weight has been determined based on polymer
standards, a sample of unknown molecular mass can be analyzed. GPC is a relative but straight
forward technique that yields the full molecular weight distribution for polymers, specifically the
first moments of this distribution (M,,, M,,, M,). The detection of short-chain branching such as
those resulting from the use of an a—olefin co-monomer with ethylene, is difficult because short-
chain branches have only a moderate effect on the size of the molecule and thus on the GPC
separation. However, by combining GPC with infrared spectrometry=? or with nuclear magnetic
resonance”* short-chain branching could be revealed. For architectures with long chain branching,
the analysis is made complicated by the fact that the size of a molecule depends on the branching
structure as well as on the molecular weight. The combination of GPC with MALLS along with a
UV detector has been used to study the long chain branching in isotactic polypropylene=> and in

polyethylene™®.
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1.4.4 Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM)?’

uses electrons instead of light to create highly magnified
images of a specimen. SEM has distinct advantages over traditional light microscopes in terms of
resolution and depth of field. The resolution of a light microscope is about 400 nm which is due to
the wavelength limitation of visible light (400-800 nm). Electrons have much smaller wavelength
according to the De Broglie relationship (Eq. and are capable to give a clear discrimination

in the range of nano meters.
h

m,V

1=

(1.9)

where £ is the Planck constant 6.63 = 107>* J - s and m, is the mass of a electron and V is the

velocity of the electrons.

A pictorial description of a typical SEM is shown in Figure The filament is heated resis-
tively by a current to achieve a temperature between 7 = 2000-2700 K. This results in an emission
of thermionic electrons from a tungsten cathode. Then, the electron are accelerated towards an
anode with a set energy typically ranging from a few hundred to 100,000 eV. The electron beam
is focused by one or two condenser lenses into a spot sized 1 to 5 nm. On its trajectory the beam
passes through pairs of scanning coils, which deflect the beam horizontally and vertically, such
that it scans in a raster fashion over a rectangular area of the sample surface. The electrons that
come in contact with the sample surface lose energy by repeated scattering and absorption over an
area extending from less than 100 nm to around 5 yum on the specimen surface. Energy exchange
between the electron beam and the sample results in emission of secondary and backscattered
electrons as well as emission of electromagnetic radiation from the sample. The secondary and
backscattered electrons detected are then amplified by a photomultiplier tube to produce an im-
age; secondary electrons are good for obtaining morphological information from sample surface,
while backscattered electrons are useful for illustrating contrasts in composition in multiphase
samples?’. The combination of higher magnification, large depth of focus, greater resolution, and
ease of sample preparation makes the SEM one of the most commonly used technique for fibre

analysis.
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Figure 1.7: Pictorial illustration of the principles and constructions of SEM (figure is taken from

webpage™l).
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Chapter 2

Constitutive Models to Predict the Linear
and Nonlinear Viscoelastic Response of

Polymer Melts

A material subjected to mechanical loading may respond by storing energy (elastic deformation),
dissipating energy (viscous deformation), or a combination of the two (viscoelastic deformation).
The response of ideal elastic solid to deformation (pure elastic deformation) can be modeled by
Hooke’s model. The stress response is proportional to the imposed strain, y and is independent
of the strain-rate, 7 . In contrast, the stress response of ideal viscous liquid is proportional to
the imposed strain-rate [Newtonian model] and the total strain is irrelevant. Polymer materials,
amongst others, shows the viscoelastic behavior, i.e., the stress response is a function of both im-

posed strain and strain-rate.

Hook’s model: o = Gyy (2.1)
Newtonian model: o=ny (2.2)

where G and 7 are intrinsic material properties.

In the linear viscoelastic regime, the viscosity is independent of shear rate. Polymer melts
exhibit this behaviour at very low shear rates, and the limiting value at low shear-rate of the vis-
cosity is called zero shear-rate viscosity, 7o . This material parameter plays an important role in
polymer rheology, both as an indicator of molecular weight and as a key parameter in molecular

theories. The most interesting feature of 1ny(M,) is its strong dependence on molecular weight.
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Based on n9(M,) dependence on molecular weight, polymer melt systems are divided into two
categories: (i) unentangled polymer systems (ii) entangled polymer systems. For unentangled
polymer systems 1o(M,,) is proportional to molecular weight, but for entangled polymer systems,
a steep increase is observed in a exponent where 79(M,,) o< M>#73¢. This dramatic change hap-
pens after a critical molecular weight, M., for each polymers®. This significant increase in the
dependence of molecular weight is attributed to entanglement coupling of polymers chains, which
takes effect when the molecules become sufficiently long (after M.) that they seriously impede

motions of each other. In this work, our studies is focused to entangled polymer systems.

In the nonlinear viscoelastic regime, the polymer melts display extensional hardening in exten-
sion and shear thinning in shear. The extensional hardening helps to stabilize the processes and
shear thinning leads to improved processability. These remarkable properties of polymer melts
above entanglement molecular weight make polymers an important class of material for process-

ing applications.

The aim of theoretical rheology is to develop constitutive equations that relate stress within
the material to its deformation history. Constitutive equations together with mass and momentum
conservation can be used to predict the flow of the material. Molecular rheology aims to derive and
understand these constitutive equations from the underlying microscopic physics of the material.
The topology of the chain can vary from a simple linear chain to a complex branched structure.
Chemically identical materials with the same molecular weight but different topologies often have
radically different rheology. Conversely, materials with different chemistries but with molecules
of globally the same shape often exhibit evidence of universal behaviour. In this thesis, our focus

is mainly on entangled polymeric systems.

The dynamics of the entangled polymeric systems can be modeled by the two approaches. The
first treats the physics as collective effects, without seeking to capture the topological nature of
constraints explicitly. Starting with the Rouse theory™®, collective corrections introduced to the
monomer mobility lead both to slowing down and to local anisotropy. An example is the approach

of Williams and co-workers=>.

The second approach treats the entanglements phenomenologi-
cally, but as serious topological constraints. The most successful of these has been the fube model.
The basic idea is to convert a many-body problem into a single-body problem (test chain) in an

effective field (tube like region). The tube is invoked to represent the sum of all topological non-
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crossing constraints active with neighbouring chains, and the tube radius, a, is of the order of
the end-to-end length of a chain of molecular weight M, (entanglement molecular weight). In
this way, only chains of higher molecular weight than M, are strongly affected by the topological
constraints (Fig. . The tube was first invoked by Edwards*” in an early model for the trapped
entanglements in a rubber network. The consequences of this idea towards melt dynamics were
first explored by de Gennes*", again in the context of networks. A free chain in a network would
be trapped by the tube of radius a defined by its own contour. This would suppress any motion
perpendicular to the tube’s local axis beyond a distance of a, but permit both local curvilinear
chain motions and centre-of-mass diffusion along the tube. De Gennes coined the term ‘reptation’
for this snake-like wriggling of the chain under Brownian motion. The theory gives immediately
a characteristic timescale for full disengagement from the tube by curvilinear centre-of-mass dif-
fusion. This disengagement time 7, is proportional to the cube of the molecular weight of the
trapped chain. This arises from combining the Fickian law of diffusive displacement of length L
with time 7, , T, ~ L?, recognizing that path length L ~ M,,; with one extra power arising from

the proportionality of the total drag to molecular weight*2.

Figure 2.1: A tube-like region of constraint arises around any selected polymer chain in a melt

due to the topological constraints of other chains (small circles) in its neighbourhood.

2.1 Constitutive Models for the prediction of Linear Viscoelas-

tic Properties

The advantages of performing the experiments in the linear viscoelastic regime are, (i) experiments
in this regime are relatively easy to realise, (ii) an isotropic material response is often insensitive

to the geometry of the deformation and (ii1) the experiments can probe polymer materials over a
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wide range of timescale. The most fundamental rheological experiment for a viscoelastic material
is step shear-strain test, i.e, relaxation-test. In this test, a sample is subjected to a step shear strain
of magnitude, y,, at time ¢ = 0. The shear stress is measured as a function of time, and the ratio

of the stress to the applied strain defines the relaxation modulus, G().

Gt =a®/y (2.3)

Figure [2.2|shows the typical stress relaxation curve for a highly entangled, monodisperse linear
homopolymer. The distinct relaxation mechanism can be observed for the polymer melt. At short
times there is a glassy zone in which the polymer is very stiff and has very high ‘glassy modulus’,
G, . The typical value for polymer melts lies around G, ~ 10° Pa. In this regime the dynamics of
polymer melts is governed by fragmental relaxation time, 7, . This is followed by ‘transition zone’
in which additional mechanisms of relaxation come into play (entanglement relaxation time, 7.) ,
and this leads to plateau zone, in which very little relaxation occurs (Rouse relaxation time, 7x) .
Finally, at long times, a new mechanisms of relaxation take place (reptation relaxation time, 7,),
and in this ‘terminal zone’, the stress falls towards zero, which it must finally do in any liquid.
The value of G(¢) in the zone of constant modulus is called the plateau modulus, GY,. The typical

value for the plateau modulus lies in the range G% ~ 10° — 10° Pa.

z=M_ IM,

~10° - 10° Pa

log(G) [Pa]
S

L5 T ‘P,

Tr Ta

log(1) [s]

Figure 2.2: Stress relaxation curve for a linear, entangled, monodisperse polymer sample.

In the linear viscoelastic regime, using the Boltzmann superposition principle®, the stress re-

sponse can be expressed as:

o) = f G(t—1)dy(t) = f G(t -1 )y(t)df (2.4)

[Se] —00
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where dy(f) is the shear strain that occurs between ¢ and, df, and 7 is the shear rate during this
period. Next, two classes of models were discussed. At first, a phenomenological model and then

the models based on tube theory=%42,

2.1.1 Maxwell Model

The Maxwell model is the simplest realization of the viscoelastic liquids where a spring is con-
nected in series with a dashpot (Fig. [2.3)). For a step experiment, the applied deformation (y) and

7
o
U

G,

0

Figure 2.3: Maxwell liquid where a Newtonian subunit (dashpot) and an elastic subunit (spring)

are arranged in series.

deformation rate (y) can be obtained as:
Y =Ys T Vap (25)

’5/ = ’)'/s + 'jldp (26)

At time t > 0, ¥ = 0. Using the Newtonian and Hook laws respectively for pure viscous and
elastic response, the equation [2.6]can be written as:
o o

0=2,7 2.7)
Go 7

The expression of stress can be determined by solving the differential equation as:

o(t) = Goyexp (—%Z) — G(t) = Goexp (—%t) (2.8)

By introducing the oscillatory deformation rate, y = yyw; cos(w;?), and relaxation modulus
expression from the Maxwell model into the stress expression (Eqn. [2.4). The expression of

elastic modulus G, and viscous modulus G, can be calculated as :

. Golwr)?
’” _ G()(L)T
G @ = 5 o (2.10)
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At low frequency, G* « w? and G~ o« w which points towards validity of the Maxwell model in

terminal regime for polymer melts (see in chapter-4).

2.1.2 Models Based on the Tube Theory

To interpret the linear viscoelastic data, one needs a quantitative molecular theory that can relate
the rheological properties of a polymer to its molecular structure. Here, at first, we have described
the basic mechanisms of relaxation that have been found to be most essential in developing models
capable of predicting the linear viscoelastic properties of linear polymer melts. Moreover, the
repation model®® and Likhtman-McLeish model*® were described for qualitative and quantitative

prediction of the linear viscoelastic properties of linear polymer melts.

o Reptation: The tube model can be used to provide predictions for the linear viscoelastic
properties. This is achieved by assuming that shortly after a step strain the polymer stress is
due to chains trapped in oriented tube segments. A tube segment orientation is completely

renewed when a free end of the chain passes through it. This relaxation process is illustrated

in Figure

a)

Figure 2.4: Pictorial description of the reptation process. The polymer chain escapes its tube by a

snake-like diffusion process.

Immediately after the deformation all the chains are trapped in deformed tube (Fig. [2.4p).
As the chain begins to move one chain end passes through some tube segments and these
sections of oriented tube are lost (Fig. [2.4b). Since the new configurations taken by the

emerging chain end are chosen without any constraint on their direction, they carry no stress.
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The tube segments are destroyed from both ends as the chain moves back and forth due to

diffusion (Fig. 2.4k).

e Contour Length Fluctuations: Since the tube diameter is much wider than the di-
ameter of the chain, and the chain meanders within the tube, the chain is *wrinkled up’
within its tube as shown in Fig. [2.5b. The degree of wrinkling changes constantly, due to
Brownian motion. When the chain gets slightly unwrinkle, it pushes its ends out again, but
these ends emerge into new, randomly created, tube segments, and the stress associated with
the now-vacated, end tube segments is lost (Fig. [2.5c). Thus, the occupied tube (contour
length or primitive path) fluctuates in length due to the Brownian motion of the polymer

molecules, and stress is thereby relaxed.

a) b) c)

Figure 2.5: Pictorial description of contour length fluctuation. (a) the polymer chain in tube, (b)
the chain ends contract due to thermal fluctuations and some tube is lost, and (c¢) the chain expand

again and they are free to explore new directions.

o Constraint Release: While reptation and contour length fluctuation is considered for
the chain motion of a chosen single chain (the test chain), the surrounding chains are under-
going similar motions. Thereby, constraints via entanglements on the test chain are released
by the movement of surrounding chains and vice versa (Fig. [2.6). This effect is called con-
straint release (CR) and is especially important for branched or polydisperse linear poly-
mers. This is because short chain can relax constraints much faster via diffusion than long

chain via reptation®.
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Figure 2.6: Pictorial description of constraint release, the tube is confined by the constraints of the
surrounding chains. By the motion of surrounding chains (filled black sphere) the entanglement

are released.

Repation model

The relaxation modulus of polymers can be predicted in the framework of the tube model. The
first model to describe the linear polymer dynamics in the linear regime was the reptation model=®.
This model was based on the concept of reptation theory developed by de Gennes*!' and Doi and
Edwards*®. The reptation model consists of three main assumptions: first is that all other chains
surrounding one particular chain are replaced by an effective field (the mean field), which acts
as a tube around the particular chain and prohibits its motion in directions perpendicular to the
primitive path. The second assumption is that longitudinal motion along the tube is allowed via
reptation, which is simultaneous motion of all monomers; i.e., the polymer chain is replaced by
the flexible rod with fixed length and only one degree of freedom. The third is that chain ends
are not affected by topological constraints from other chains and, via reptation, occupy new tube
segments selected from an isotropic distribution. Using these assumptions, Doi and Edwards~®
derived the following expression for the relaxation modulus:

G(t) = Gy i % exp (—p—Zt) 2.1

p°r

p odd Td

where p represents the number of mode and 7, is known as the reptation time. Although, the
reptation model is successful in predicting the qualitative behaviour in linear viscoelastic regime,
quantitative prediction requires incorporation of several missing relaxation processes from the

reptation model.
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Likhtmann-McLeish model

The Likhtman-McLeish (LM) model* incorporated several missing relaxation processes from the
reptation model such as (i) contour length fluctuation (ii) constraint release (iii) longitudinal stress
relaxation along the tube. The validity of the developed theory was shown by describing the linear
viscoelastic response of several linear polystyrene (PS) and polybutadine (PB) polymers. The
proposed expression of relaxation modulus where all the relaxation processes were combined:

4 18 (P4 1 2p?
G() =G g,u(t)R(t)+—Zexp( P t)+zzexp(—ﬂ)} (2.12)

57 ol TR =z TR

In this expression, the first term contains u(f) which is equal to the fraction of the tube segments
that was not visited by a chain end during time, ¢, and constraint release described by R(#). The
second term consists of the longitudinal modes relaxation, and the third represents the fast Rouse
motion inside the tube. The detailed illustration of each term could be found elsewhere?. In the
chapter 4, the linear viscoelastic response of monodisperse linear polystyrene (PS) is fitted with
a REPTATE software**, which implemented the full LM-model. In the software, the following
model parameters should be chosen carefully: (i) Rouse time of entanglement segment, 7., (ii)
plateau modulus, G., (iii) entanglement molecular weight, M,, (iv) constraint release parameter,
¢y, where ¢, = 0 means there is no constraint release. The Rouse relaxation time (1) and reptation

relaxation time is calculated by the following equations where Z (number of entanglements) is

equal to M,/M,:
T = 7,2° (2.13)
2, C, C
. (1 2.2, szz) (2.14)

with the following constants C; = 1.69, C, = 4.17 and C3 = —1.55. The following constants
value were proposed by Likhtman and McLeish*® in order to obtain a reasonable description of

the linear viscoelastic properties for polymeric systems.

2.2 Constitutive Models for Prediction of the Non-linear Vis-
coelastic Properties

The stress response of the polymer melts to a large or rapid deformation is nonlinear. This implies
that the deformation exceeds the limit of linear viscoelasticity, and the polymer chains start to

disentangle and orient along the flow. Therefore, material response is a function of the applied
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deformation, deformation rate and the kinematics of the deformation. Thus, the Boltzmann su-
perposition principle is no longer valid, and nonlinear viscoelastic behaviour cannot be predicted
from linear properties. The understanding and development of constitutive equations to describe
the nonlinear viscoelastic properties is important because in most industrial processes, polymer
materials are subjected to large or rapid deformations in shear and elongation. The applied large
or rapid deformations in elongation leads to extensional hardening which helps to stablize the pro-
cesses, and at the same time shear thinning is observed. Therefore, to optimize industrial processes
and tailor the material properties, an elaborate knowledge of flow behaviour at large deformations
is necessary. In the following, two classes of models, one based on dumbbell theory and second

based on tube theory (molecular rheology) are described.

2.2.1 Dumbbell Theory: Giesekus Model

The Giesekus equation belongs to a class of constitutive models based on anisotropic drag®. It

constitutes an extension of the dumbbell theory for dilute solutions efficiently described by the

14, Tt incorporates the contribution of the surrounding

upper-convected Maxwell (UCM) mode
oriented molecules to the dumbbell relaxation in the UCM equation by introducing an empirical

parameter « associated with the magnitude of the anisotropic drag. The Giesekus equation reads:

T+ Gﬁa-azzGor (2.15)

O:_

. . v . o
in which the o~ denotes the upper-convected time derivative of the stress tensor o defined as

o5

(o

= koK (2.16)
r —

o

:E-i_
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B
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B

where v is the velocity field tensor and « = (Vv)T is the transpose of the velocity gradient tensor.
The parameter a determines the magnitude of the anisotropic drag and 0 < @ < 1. For @ = 0,
the UCM model is recovered. Gy and 7 are obtained from linear viscoelastic data. The rate of

deformation tensor D is defined as:

D= (V; ; (Vg)T) 2.17)

2.2.2 Models Based on the Tube Theory

To incorporate nonlinear rheological effects into the tube model, one must include the effects

of large deformations on molecular configuration. The most important effects that influence the

24



Chapter 2. Constitutive Models to Predict the Linear and Nonlinear Viscoelastic Response of Polymer Melts

2.2. Constitutive Models for Prediction of the Non-linear Viscoelastic Properties

non-linear viscoelastic response are orientation of tube segments, retraction of the tube segments
within the tube and finally the convective constraint release caused by flow induced movement of

chains relative to each other resulting in loss of entanglements between chains (Fig. [2.7).

N ¢
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Figure 2.7: Typical relaxation processes within a nonlinear deformation.

o Retraction: The relaxation that is unique to the nonlinear regime is retraction within the
tube. The retraction relaxation process is illustrated in Fig. A large deformation induces
a large tension on the test and matrix chains. The test chain can relieve some of this tension
rather quickly by crinkling up within the deformed tube. This crinkling, or retraction, is
rapid because it does not require the test chain to escape the tube. This means it requires
only a Rouse-like motion, but not reptation. The longest relaxation time which describes

the retraction process is called retraction time or stretch relaxation time, 7.

a) b)

Figure 2.8: The chain relaxes its contour length towards equilibrium through retraction along the

tube, driven by the chain’s entropic spring force.

e Convective Constraint Release: In the linear viscoelastic regime, the constraint

release occurs when the matrix chains relax by the same mechanisms as the test chains,
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thereby releasing constraints on the test chains. In the nonlinear viscoelastic regime, a new
relaxation for the test chain appears, that of chain retraction. Since the matrix chains also
undergo chain retraction, this too must lead to constraint release. Because the flow convects
the matrix chains past the test chain, and so releases the constraints imposed by the matrix
chains on the test chain at a rate proportional to the flow rate (Fig. . Hence, Marrucci’

who first recognized the importance of this phenomenon and modeled successfully called

this nonlinear process convective constraint release (CCR).

a)

Figure 2.9: As the test chain retracts it releases the constraints that it was imposing on neighbour-

ing chains.

Doi-Edwards Model

The kinetic theory of Doi and Edwards*® model incorporates the entanglement interaction for en-
tangled linear polymer melts via the tube concept. In this model, the relaxation of polymer chains
occurs by two mechanisms the first is chain retraction by equilibration along the tube contour,
which is supposed to be a fast process governed by the Rouse time, 7, of the chains, where the
Rouse time is proportional to the square of the molar mass. The second relaxation process is the
chain diffusion by reptation out of the tube with a reptation or disengagement time, 7,, which is
proportional to the third power of the molar mass. Doi and Edwards“® noticed that since 7, = 275
is expected to be much smaller than the reptation time, 7, then for flows that are fast compared
to the rate of reptation 1/7,, but slow compared to the rate of retraction 1/7y, one can assume
that the chains remain completely retracted during flow, means there is no chain stretch. Under

this assumption Doi and Edwards"® derived the famous constitutive equation that bears their name:

o = [ m(t — z’)g Z‘E(t/)dt' (2.18)

(%Y
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where, the S ;AE(t') denotes the strain measure of the Doi-Edwards theory with the independent

alignment assumption:
/ 15 u'u
1A _uu
S ) =743

(2.19)

where u’ is the length of the deformed unit vector u = (u,, u,, u;) and { ) denotes an average over

all possible orientations. A highly accurate approximation for this strain measure was proposed

by Currie:
5 5
A = B| - 22
iDE (J — 1:) [(J — 1)L, + 13/4)112 ¢ (2.20)
where
J=1, +2(I, + 13/4)'? (2.21)

where [} and I, are the Finger tensor two scaler invariants. For monodisperse polymer melts and
solutions, the Doi-Edwards model seems to give an acceptable description of material behaviour
in step-shear experiments. The biggest failure of the Doi-Edwards model is in steady-state shear
flow where it predicts excessive shear thinning. In addition, in extensional flow, the DE theory pre-
dicts extensional thinning, rather than the extensional thickening often observed experimentally.
The Doi-Edward model also leads to an incorrect prediction of the dependence of the zero-shear

viscosity on the polydispersity“®434,

Molecular Stress Function (MSF) Model

The MSF model***"~!'is a single tube segment model which quantitatively describes the nonlinear
rheology of linear and LCB polymer melts. According to the MSF model, which allows not only
for chain orientation as described by the orientation tensor, but also for chain stretching, the strain
measure is expressed as product of the square of relative stretch, f2, and the respective orientation

DE :
tensor components S;;° as given by

£MSF — fQSDE (222)

—IA
In the MSF model, chain stretch is considered as a consequence of the tube diameter decreasing
from its equilibrium value ao to a value a(z,f) with increasing deformation and the molecular
stress function f = f(¢,¢) is inversely proportional to the tube diameter a (Fig. :

dao
a(t,t’)

fltt)= (2.23)
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Figure 2.10: Influence of uniaxial deformation on the tube diameter a.

Assuming constraint release (CR) a dissipative process, a more general form of evolution equa-

tion of f? was proposed>~1

aft _ Bf? 1
—— = (k:S)——=——-CR (2.24)
o 1+fz|= = -1

where £ is a nonlinear parameter of the model. For the case of irrotational flows such as uniaxial,

biaxial, and planar extension, the time evolution equation for f2 can be written as 2%>1:

o f2 2 2_1
a_fl“ :G% Sll +m522—(1+m)S33—];—_1\/Sn +m2S22+(1+m)2S33 (225)

7 max

where m = —0.5 for uniaxial, m = 1 for equibiaxial and m = O for planar deformations.

Pom-Pom Model

McLeish and Larson°# developed a nonlinear viscoelastic theory for Pom-Pom molecular archi-
tecture which are idealized branched polymers with multiple branches, but only two branch points
(Fig. [2.T1). The motivation behind the development of this model was to capture the intricate be-
havior of polymers at large deformations in extension and shear simultaneously, which had been
the challenge until this point. In this model, the two dominant relaxation processes, backbone
re-orientation and backbone stretch relaxation, are determined from the branch disentanglement
time. The re-orientation relaxation time, 74, is the average time it takes the backbone to reptate via
its branch points diffusing along the backbone tube, out of a tube of unstretched length. The back-
bone stretch relaxation time, 7y, is the time necessary for the path length of the backbone to return
from some displaced length to its equilibrium length. The original differential form of McLeish
and Larson®? was improved with the flow induced local branch-point displacement correction®?
and modification of backbone reorientation time for very fast non-linear flows*%. Therefore, the

revised Pom-Pom model equations are as follows:
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branching
. points

backbone

Figure 2.11: Pom-Pom molecule.

stress : o = Gy 2(DS (1)
orientation : S =A/trA
. 1
A-x-A-A-x=-—(4-1)
DAt 1
stretch : D(t ) =AMk : S — —[A2) = 1] exp(v*(A(?) — 1))
pu— — TS
. 5 1 75 o 261
time scales : T, = Eqsbqﬁ‘; T, Ty = Rqsiqbb T,
1
1 — forl<A<g
reversing flow correction: — = Tld 1
Ta —+/—l—5:§ ford <1

Td
where S, and S, are the dimensionless molecular weights of the backbone and arms, respectively,

7, 1s the arm relaxation time, ¢, is the backbone fraction in the Pom-Pom molecule, v* = 2/(g—1)

[see McLeish**] and 8 = 2.

2.3 Concluding Remarks on Various Constitutive Models Dis-

cussed in the Chapter 2

Various constitutive models used to predict the linear and nonlinear viscoelastic properties of
polymer melts were discussed in this chapter. For the linear viscoelastic properties, Maxwell
model provides the adequate prediction but no molecular insights can be revealed. This motivated
the development of molecular theories, where the viscoelastic properties could be correlated with
the macromolecule characteristics. The repation model was the first attempt to develop such

theory, which predicted the qualitative behavior of linear polymer dynamics over a wide frequency
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range. However, because of several missing relaxations, quantitative prediction is not possible.
The Likhtman-McLeish model has incorporated the other possible mechanism of relaxation to

predict quantitatively the linear viscoelastic response of linear polymers.

To predict the non-linear viscoelastic properties, one of the simplest description has been pro-
vided by the Giesekus model which is a phenomenological model. To understand the non-linear
phenomena from macromolecule perspective, molecular theories were developed by incorporat-
ing large deformation effects on the dynamics of polymer chains. The Doi-Edwards model was
the first detailed molecular theory for the nonlinear rheology of polymer melts. Since then, it
serves the basis for almost all theories for the dynamics and rheology of entangled polymers. The
Doi-Edwards model fails to capture commonly observed phenomena at large deformation, such

as extensional hardening, excessive shear thinning in steady state shear flow.

The shortcomings of Doi-Edwards model are successfully overcome by the Pom-Pom and
Molecular Stress function (MSF) models. Both incorporates, retraction of chain and convec-
tive constraint release along with the repation of polymer chains. The MSF model is more robust
to predict the uniaxial and shear properties of model as well as industrial polymeric systems.
However, MSF model is an integral model which is computational expensive. In contrast, the
Pom-Pom model has a molecular parameter (branching, g) embedded in its formulation which

makes it possible to study the effect of branching on various types of flows.
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Chapter 3

FT-Rheology and Stress-Decomposition
Techniques For the Analysis of Large
Amplitude Oscillatory Shear Responses

Dynamic oscillatory shear tests are common in rheology to investigate the wide range of complex
fluids. The oscillatory shear tests have many advantages over other rheological methods, such
as the viscous and elastic mechanical properties can be simultaneously probed, oscillatory shear
does not involve any sudden jumps in the shear-rate, therefore, a relatively easy flow to generate.
The oscillatory shear tests broadly divided into two regimes on the basis of a stress response,
small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) regime.
In the SAOS regime, the stress is proportional to the applied deformation and rate of deformation.
Whereas, in the LAOS regime, the stress is a nonlinear function of the applied deformation and
rate of deformation. More specifically, the SAOS tests are employed frequently for probing the
linear viscoelastic properties of complex fluids because of the easy estimation of the length and
time scale of polymer melts. However, most processing operations are carried out at a large or

rapid deformations. This facilitated the development of test protocols for the LAOS regime.

Recently, LAOS has been frequently used to characterize the nonlinear viscoelastic properties
of soft matters>>~%>"8, The renewal of tremendous interest in exploring the LAOS flow response
is due to the development of high sensitivity Fourier Transform (FT) rheology>?°¥6162 The de-
velopment and use of extremely sensitive detection method was successful in overcoming the

software and hardware limitations. Especially, the use of ‘oversampling’ with high performance
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Analog-to-Digital Converter (ADC) card, electrical and mechanical shielding, and special FT al-
gorithm®. The combination of all these improvements led to exceptionally high signal to noise

ratio S/N ~ 107 as demonstration by Wilhelm et al.>”,

The Giesekus model simulations were performed to simulate the oscillatory shear responses
under SAOS and LAOS flows. In the SAOS regime, the stress response is sinusoidal with the
excitation frequency of w/2m and the first normal stress difference response is sinusoidal with the
twice of excitation frequency (Fig. [3.1). However, in the LAOS regime (y, = 10, w; = 0.1 Hz),
the responses are complex but periodic. In addition, the elastic storage modulus, G, and viscous
dissipation modulus, G, variation as a function deformation amplitude, vy, is displayed in Figure
3.1} The elastic and viscous modulus are independent of applied deformation amplitudes in the
SAOS regime. Whereas, both the material parameters displayed a dependance on the applied de-
formation amplitude in the LAOS regime. In addition, it should be kept in mind that in the LAOS
regime the complete stress response cannot be represented by the elastic and viscous modulus, but

the higher order harmonics contribution should be incorporated.

Numerous methods were developed to quantify the nonlinearity in the LAOS shear stress re-
sponse. The methods involve FT-Rheology®, Lissajous-Bowditch curves (stress vs strain or
stress vs strain rate) 1°% decomposition into characteristic waveforms®?, generalized ‘storage’ and
‘loss’ modulus when decomposing the nonlinear stress data®, Chebyshev polynomials using de-
composing stress data® and further development of Chebyshev polynomials by®®, dimensionless
graphs®” and LAOS response decomposition into Sequence of Physical Process (SPP)®®. Next,
a detailed description of the FT-Rheology and Stress-Decomposition are provided for the LAOS
responses analysis. Furthermore, the nonlinear material parameters derived from the FT-Rheology

and Stress-Decomposition are discussed to quantify the nonlinearity under LAOS flow.

3.1 FT-Rheology

The FT-Rheology is based on Fourier transformation of oscillatory shear stress and first normal
stress differences. The Fourier transformation of any real or complex time signal, s(¢), and the
corresponding inverse transform of a frequency dependent spectrum S (w) are usually defined in

the following way:

S(w) = foo s(t) exp ™' dt, s(t) = % fm S (w) exp™™ dw (3.1)

(%Y (%Y
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Figure 3.1: The simulated stress and first normal stress difference response using Giesekus Model

where =15, w; =0.1rad/s,a =0.5,and G = 1 Pa.

To implement FT-Rheology, a half-sided, discrete, complex Fourier transformation is applied
to the shear stress signal o(#). To obtain highly resolved, artifact-free spectra with a low noise
level, the time signal has to be acquired with sufficient care. In particular, mechanical and elec-
trical shielding are typically used in combination with data oversampling techniques to increase
significantly the quality of the raw time data~2/¢U0162,

In general the Fourier transformation is an invertible, linear, complex transformation over the
infinite interval from —oo to +oco. The Fourier transformation is a linear mathematical transforma-
tion defined on any signal s(#) which we use to quantify mechanical nonlinearities. By supplying a
“monochromatic” or single input frequency, w;/2m, we ensure that any output from the system at
frequencies other than w, /27 is associated with nonlinearity in the system response. These two as-

pects should be clearly separated. Any linear superposition of different signals in the time domain
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will also lead to a linear superposition in the frequency domain since a Fourier transformation is

a mathematically linear operation.

In the case of discrete and digitized sampling, the data is taken point by point with a fixed
increment 74, (the dwell time, or inverse sampling rate) over a total acquisition time t,, = fg,N.
Thus, both time and amplitude have discrete values. Since the peaks in the FT-Rheology spectrum
are in principle infinitely narrow, a long acquisition time f,, over multiple cycles will decrease the
observed line width and increases the signal-to-noise (S/N) ratio. The S/N-ratio can be defined
as the ratio of the amplitude of the highest peak (="signal”) divided by the standard deviation of
the noise (="noise”). The noise level is the average value measured in a spectral window where
no peak is anticipated. Typically about 5-50 cycles of the fundamental deformation frequency
are acquired at a given strain amplitude, to achieve high S/N ~ 107. This leads to a number of
acquired time data points N in the range of 1000-10,000. In most experiments, the time data s()
is not measured continuously but discretely after fixed time steps and is then digitized via a k-bit
analog-to-digital converter (ADC) having 2* discrete values for representing the measured signal.

Typically a 100-200 kHz, 16-bit ADC prior to oversampling is used for FT-Rheology experiments.

A fast Fourier transformation (FFT) is a very common and particularly fast algorithm for dis-
crete Fourier transformation (DFT) but is not suitable for FT-Rheology. While the more general
discrete FT algorithm is formulated for an arbitrary numbers of points N, the simplest and most
common FFT algorithms, e.g. the butterfly, require N = 2" data points. This restriction leads to
fixed discrete values for the acquisition time 7,, and thus for the spectral resolution Av = 1/1,,. As
a result, the fundamental frequency v, = w;/2x or the odd multiples at (2k + 1)w; /2 are rarely
located exclusively at a single data point having the precise frequency corresponding to integer
multiples of the fundamental excitation within the FT-Rheology spectra. The application of a but-
terfly FFT can therefore introduce misleading results for the intensities and phases of the spectral
intensities. For example the intensity of a higher harmonic cannot be read out at exactly the ex-
pected frequency value. A maximum error of up to a factor 2 might be introduced this way. More
advanced FFT-algorithms exist that can provide an FT for arbitrary number of data points, and
the most fundamental discrete Fourier transform (DFT) algorithms also allow for arbitrary data
points. It is therefore important to report if the applied algorithm does simple zero-filling to gen-

erate artificially 2" temporal data points prior to the transformation into frequency space>?'¢061i62,
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3.1.1 Shear Stress

An adequate mathematical representation for a time-dependent oscillatory shear stress response
is a Fourier series, and the term FT-Rheology refers to the practice of representing the periodic

oscillatory stress response as:

(o)

o (t; W, ¥0) = Yo Z |G, (w.v0) sin(nwr) + G, (w, o) cos(nwr) | (3.2)

n

This FT framework is mathematically robust and reduces to the linear viscoelastic framework in
the limit of small deformations. Figure 4.7| shows Fourier transformations of the stress responses
simulated using the Giesekus model at the applied deformation amplitudes of y, = 107> and 10'.
On applying the Fourier transformation on stress response at the applied deformation amplitude
of yo = 107, only the fundamental Fourier intensity, /;/;, is observed. This implies the stress
response is proportional to the applied deformation and deformation-rate. This is the typical
Fourier spectrum of material response in the SAOS regime (linear viscoelasticity). However, the
appearance of multiple odd Fourier harmonics are observed at the applied deformation amplitude
of vy = 10%. Obviously, such a large amount of higher harmonics contribution can lead to complex

interpretation.

Hyun et al.%” subdivided the nonlinear oscillatory shear tests into two sub-regimes, Medium
Amplitude Oscillatory Shear (MAOS) and LAOS. The MAOS is an intermediate regime between
the SAOS and LAOS. In this regime, the following scaling law, /,,/; o yg‘l , 1s valid for odd natural
number (n = 3,5,...). The validity of this scaling law for the I5,,(y,) was reported for both the
viscoelastic constitutive equations [Giesekus model”’, Molecular Stress Function (MSF) model Y,
Pom-Pom model”?] and experiments®'7374,

The Giesekus model is used to simulate the shear stress as a function of y, at Deborah number
(De = wt) equal to one. Then, the FT-Rheology technique is applied to analyze the shear stress
response. Figureillustrates the variation of odd higher harmonics, 13,1 (o), I5/1(yo) and 17,1 (o)
as a function of . All the odd harmonics displayed the scaling 1,/; o y;~' over the deformation
amplitude range of vy = 0.1 — 1, i.e, the MAOS regime. This is followed by the deviation from

the scaling, i.e, the LAOS regime.

The third higher harmonic, 13,1 (yy), is frequently used to quantify the nonlinearity in the nonlin-

ear viscoelastic regime™>°"8, In the Giesekus model simulations the sensitivity for the detection
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Figure 3.2: The Fourier transformation of simulated shear stress response using the Giesekus
model at applied deformations, y, = 0.000001 (SAOS), yo = 10 (LAOS), with following parame-
ters: 7=1s,w; =0.1rad/s, ¢ =0.5,and G = 1 Pa.

of higher harmonic is S /N ~ 10~'* (Fig. . However, for the experimental measurements using
the ARES G2 rheometer (TA Instruments) the typical sensitivity is S /N ~ 107>. The influence of
the difference in signal-to-noise ratio between the simulations and experiments can be realized by
comparing a experiment and a simulated strain sweep (Fig. [3.4). The significant difference is ob-
served at the lower limit of deformation amplitudes. In the lower limit of deformation amplitudes,
the experimental data are noisy and linearly regretted data follow the scaling I3/1(yo) « y;'. How-
ever, the simulated I3/, (yo) follow the scaling I3, (yp) « 73. This difference in scaling exponent
can be explained by the difference in the signal-to-noise ratio of experiments and simulations. In
experiments, no I3(yp) was detected below I3/, < 1075. However, I; is detectable and following

the scaling, I; o . As a result the scaling exponent of -1 is obtained.

Motivated by the square scaling law 731 (yo) o ¥ Hyun and Wilhelm” introduced a new non-

linear parameter Q(y,) which is defined as follows:

I
0(yo) = - (3.3)
Yo
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Figure 3.3: The variation of I5,;(yo), Is;1(y0), and I7,,(7yo) as a function of applied deformation
amplitudes, y,, where the stress response is simulated using the Giesekus model with following

parameters: 7 = 1 s, w; = 1 rad/s, @ = 0.5, and G = 1 Pa.

By convention, the absolute strain amplitude value used in Eq. [3.3] not the % strain amplitude.
Figure [3.5] illustrates the variation of I3,,(y) and Q(y,) as a function of applied strain ampli-
tudes, yp, and nonlinear parameter (Giesekus model), @. One of the advantage of plotting the
QO(yo) instead of the I3/, (o) as a function of yj is the qualitative similarities with the well known
rheological quantities, viscosity, () or first normal stress coefficient, ¢! (). Similar to these rhe-
ological quantity, the Q(y,) also approaches to a constant value at small deformation limit (Fig.
). As in the case of 17(y) and ' (¥), the limiting value at small shear-rate, ¥, are called zero
shear-rate viscosity, 7o, and zero shear-rate first normal stress coefficient, ), respectively. Simi-
larly, the limiting value at small strain was named zero strain nonlinearity or intrinsic nonlinearity,

Qo, which is defined as follows”?

Qo(w) = ylolino O(y0, w) (3.4)

The zero strain intrinsic nonlinearity, Qy(w), is frequently used to characterize the nonlinear

viscoelastic effects in soft matters. For examples, the characterization of the topology (linear

73175

and comb) in PS melts”*” polydispersity in industrial linear PE melts’®, droplet size in dilute
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107 10™ v [] 10’ 107
0

Figure 3.4: The variation of I3,;(yo) as a function of applied deformation amplitudes, y,, for the
experiment and simulation at T=180°C. The following parameters were used for the Giesekus

model simulation: G) =2 10° Pa, 7 = 1.5 s, w; = 1 rad/s, @ = 0.3.

monodisperse emulsions’, droplet size distribution in polydisperse emulsions>® and the polymer

composites of PCL/MWCNTSs*..

Recently, a interesting analytical solution for Qy was proposed in terms of tube model param-

eters using the MSF model

. The authors showed that the zero strain intrinsic nonlinearity is
proportional to Qg o (ap,; — ), where ap,; is the tube orientation parameter, and S is the back-
bone stretching parameter. One of the interesting result coming out of their study was that only
the terminal relaxation of the backbone and, if present, the terminal relaxation of the entangled

branches were related to the nonlinearity Q.

Hyun and Wilhelm” observed striking differences between the linear and comb PS melts by
measuring the Qy(w). One of the remarkable difference was the appearance of two maximums in
case of comb polymer melts. Whereas, the linear polymer only showed a single maximum. Kempf
et al.” correlated the two maximums in case of the comb polymer melts to the backbone and arm
relaxation time. In addition, corresponding frequency belongs to the minimum (between the two
maximums) was correlated with Rouse relaxation time of backbone. Here, the Giesekus model

is used to simulate the zero strain intrinsic nonlinearity Qy as a function of angular frequency, w
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Figure 3.5: The variation of I5/,(yy) and Q(y) as a function of applied deformation amplitudes,
7o, and Giesekus model nonlinear parameter, «, for following model parameters: 7=1s, w; = 1

rad/s, and G =1 Pa.

and « (Fig. [3.6p). The qualitative behaviour is similar at all the & and quantitatively a increase
in the « leads to a increase in Qyp(w). This implies the Giesekus model parameter, @, which is a
measure of degree of anisotropy in the flow, has a inverse relation with the backbone stretching
in the tube model [Qy « (ap,; — B)]. The appearance of only one maximum implies its ability
to simulate the polymer melts whose response is only dominated by largest relaxation time scale.
In addition, at the small frequency limit a square scaling, Qy o« w?, and at the large frequency

limit a inverse scaling, Qy o w™!

are observed. The square scaling at the small frequency limit
using the Doi-Edwards model was derived by Pearson and Rochefort’®. Motivated by the scaling
law Qy o w? at low frequencies, we introduced a new nonlinear parameter u which is defined as

follows:

M= % 3.5)

Figure[3.6b shows the nonlinear parameter u as a function of w and «. In the low frequency limit
the nonlinear parameter u is approaching a constant value and at high frequencies u-thinning is
observed. The u-thinning is defined as the decreases of y-parameter as the frequency is increased.
The limiting value at low frequencies is called zero shear-rate intrinsic nonlinearity, y, which is

defined as follows:

Mo = gglou(w) (3.6)
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Figure 3.6: The variation of Qy(w) and u(w) as a function of applied angular frequency, w, and

Giesekus model nonlinear parameter, @, for following model parameters: 7=1s and G = 1 Pa.

Figure |31] illustrates the variation of maximum zero strain intrinsic nonlinearity, Of'**, and zero
shear-rate intrinsic nonlinearity, uy, as a function of @ (Giesekus model nonlinear parameter).
The following extracted power law relations Q7" = 0.05a"® and uy = 0.102*"* are displayed.
The higher scaling exponent for the Q" compared to the uy illustrate the higher sensitivity for

determining the nonlinear parameter, .
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Figure 3.7: The variation of QJ“*(De = 1) and yq as a function of Giesekus model nonlinear

parameter, «, for following model parameters: 7 =1 s and G = 1 Pa.
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3.1.2 Normal Stress Difference

Until now most of the focus was on the analysis of shear stress under LAOS flow. Whereas, the
analysis of normal stress difference were ignored. This is often due to lack of accurate measure-
ments of the normal stress difference during oscillatory shear. However, the normal stress may
become larger than shear stress at high deformations, and thus it is important that we have a good
understanding of the normal stress behaviour. Furthermore, with the advancement in the instru-
mentation, it has become possible to get more reliable data under oscillatory shear. For polymeric
materials, the normal stress oscillates with a frequency that is twice the imposed frequency with
a non-zero mean value™®", Figure shows the first normal stress difference responses and re-
spective Fourier spectrums. In the linear regime, the first normal stress difference shows only the
fundamental harmonic at the twice of excitation frequency. However, in the nonlinear regime,
the resulting response is distorted and higher order even harmonics are observed in the Fourier

spectrum.
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Figure 3.8: The Fourier transformation of simulated first normal stress response using the
Giesekus model at applied deformations, v, = 0.000001 (SAOS), and y, = 10 (LAOS) with fol-

lowing parameters: 7 = 1 s, w; = 1 rad/s, @ = 0.5, and G = 1 Pa.
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The normal stress differences under oscillatory shear condition can be written as the sum of
constant term and an oscillating term with a phase angle (6,,). The normal stress differences in

time domain can be represented by Fourier series as follows:

N; = Ny + N;, sinQwt) + N;, cosQw?) + N, sin(4wt) + N;, cos(4wt) + ...... (3.7)

where i is either the first (i = 1) or second (i = 2) normal stress difference. It is well known that
the second normal stress difference (i = 2) in steady shear flow is typically smaller than the first
(i = 1) by roughly an order of magnitude and its difficult to measure®. In the SAOS regime, the
first normal stress can be calculated from the shear properties (G, G ) by the phenomenological

models as follows®!:
Nip

—= =G (w) (3.8)
0
v
— = [G”(w) - 1G"(zw)] (3.9)
Yo 2
N
— = [—G’(w) + 1G’(zw)] (3.10)
% 2

Figure @}a shows the fourth higher harmonic relative to fundamental harmonic, Ny, as func-
tion of applied deformation amplitudes, o, and @. The square scaling, Na/» o 7y;, is observed at
low deformation amplitudes limit and at the higher deformation amplitudes N4/, deviates from the
scaling. The Ny, increases with @ over the simulated deformation amplitude range. Motivated by
the square scaling we proposed Q™' which is defined as follows:

_ Nup

oM
%

(3.11)

Figure shows the QM as a function of applied deformation amplitudes, y,, and a. At the
low deformation limit the Q™ is independent of applied deformation amplitudes. This motivated

us to introduce a new intrinsic nonlinearity Qf)v " which is defined as follows:

' (@) = lim 0" (y0, ) (3.12)

Figure e illustrates the variation of ng "(w) as a function of w and a@. The maximum is
observed at w = 1 s and a square scaling law is observed, Qév '(w) < w?, at the small frequency

limit. The qualitative behavior is similar to the simulated intrinsic nonlinearity Qg(w) except at
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Figure 3.9: The variation of N4/ (o) and O"(yp) as a function of applied deformation amplitudes,
70, and Giesekus model nonlinear parameter, «, for following model parameters: 7=1s, w; =1

rad/s, and G = 1 Pa.

the large frequency limit. At the large frequency limit Qy(w) displayed the scaling law [Qy(w)
w1, but in the case of Qf)v '(w) the value seems to converge to one constant value for simulated
a. Motivated by the square scaling in the low frequency limit, we introduced a new nonlinear
parameter 4™ which is defined as follows:

N1
v, Qo (W)
- 2

(3.13)

w

Figure [3.10p illustrates the variation of u"!(w) as a function of w and a. The u"'(w) displayed
a increase with @ over the simulated deformation amplitudes range. In the low frequency limit
1V (w) is independent of applied frequency. This motivated us to introduce a intrinsic zero shear-

1

rate nonlinearity, ,uf)v ', by the analysis of first normal stress measurements. The ,uév is defined as

follows:

K = lim p () (3.14)

Figure illustrate the variation of QQ{ | and ugv " as a function of @. The QS{ 1 displayed a

monotonically increasing trend with . The ,uf)v " displayed a increasing trend but the changes in

the parameter is significantly small in the range @ = 0.5 — 1.
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Figure 3.10: The variation of Qf)v "(w) and ,ug’ '"(w) as a function of applied angular frequency, w,
and Giesekus model nonlinear parameter, «, for following model parameters: 7=1s and G = 1

Pa.

3.2 Stress Decomposition

In the SAOS regime (linear viscoelastic regime), the material is commonly characterized by the
viscoelastic moduli G (w) and G”(w) which has clear physical meaning. However, these linear
viscoelastic moduli are not uniquely defined once the material response become nonlinear®6+62,
Although the FT framework is mathematically robust and reduces to the linear viscoelastic frame-
work in the limit of small deformations, it suffers from two drawbacks. First, although FT-
Rheology is a very sensitive indicator of nonlinearity, as quantified by the I/;(yo, w)®%, the FT
framework does not result in a clear physical interpretation of the higher-order coefficients. Sec-
ond, the use of the first harmonic coefficients G'1 (y0, w) and G’l' (v0, w) as measures of the viscoelas-

tic moduli in the nonlinear regime (and which is often the output of commercial rheometers) is

arbitrary and often fails to capture the rich nonlinearities that are apparent in the raw data signal=.

The decomposition of stress response into characteristic response functions was the first step
towards the physical interpretation of complex nonlinear response®’. Klein et al.® used sine,
square, and triangular waveforms as a set of ’basis functions’ and represented stress response
as a superposition of different physical phenomena. One of the shortcoming of using the basis
functions was their non-orthogonality. Similarly, the so-called geometrical interpretation (also
referred to as stress decomposition) introduced by Cho et al.®* also suffers from non-orthogonality

of the resulting material measures.
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Figure 3.11: The variation of Q; (De = 1) and ,uf)v ' as a function of Giesekus model nonlinear

parameter, «, for following model parameters: 7 =1 s and G = 1 Pa.

To interpret LAOS data in a meaningful way, Ewoldt et al.® improved the method of stress de-
composition which uses symmetry arguments to decompose the generic nonlinear stress response
into superposition of an elastic stress o (x), where x = /v, = sin(wt), and viscous stress o (),
where y = y/wyy, = cos(wt). The total oscillatory stress is the sum of the two contributions,
o =0 (t)+0 (7). This decomposition is based on the idea that the elastic stress o should exhibit
odd symmetry with respect to x and even-symmetry with respect to y, whereas viscous stress o
should exhibit even-symmetry with respect to x and odd-symmetry with respect to y. The elastic

and viscous stresses are related directly to the Fourier decomposition as follows:

ST —20(—7, V) _ - Z G, (w,y0) sin(nwt) (3.15)
n odd

s o(y,7) —20' (y,—¥) = Yo Z G, (w,y0) cos(nwt) (3.16)
n odd

Thus, in contrast to the closed loops formed by the total stress o vs. y or o vs. ¥ (Fig. [3.12)),
plotting elastic stress o vs. x or viscous stress o vs. y produces single-valued functions of ap-
plied deformation and deformation-rate (Fig. [3.13)). Fig. [3.13|illustrates this stress decomposition
using the simulated LAOS response using the Giesekus model. Cho et al.** suggested a polyno-
mial regression fit to these lines of elastic and viscous stress. However, the material properties
represented by the polynomial coefficients are not unique since they depend on the order of the

polynomial arbitrarily chosen by user. For example, given an unknown smooth function F(x), a
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regression fit to a first order polynomial F = ay + a;x will always result in different coefficients
ap, a; than a regression fit to the higher order polynomial F = ay+a;x+a,x>+... except in the limit
of x < 1 or if the unknown function is itself a linear function. Thus, fitting higher order terms
affects the values of lower order terms, and a polynomial regression fits do not result in unique
values for quantifying nonlinearity. A framework which breaks down beyond the limit x < 1 is

not suitable for quantifying a nonlinear (viscoelastic) response.
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Figure 3.12: The simulated stress response at yp = 1, 3, and 10, and w; = 1 rad/s using the

Giesekus model with following parameters: 7=1s, a =0.5,and G =1 Pa,

Ewoldt et al.®> chosen the Chebyshev polynomials of first kind among the various available
orthogonal polynomial basis functions (Laguerre, Hermite, Jacobi, Legendre, and Chebyshev of
the first and second kind). The particular choice exhibit (i) orthogonality over a finite domain (ii)
odd symmetry about x = 0 and (iii) a bounded range for higher-order contributions. Laguerre and
Hermite polynomials are eliminated because of their limits of orthogonality ([0,c0] and [—coc0]),
which contradicts the finite domain criteria. Jacobi polynomials are not appropriate, as they do not
have symmetry about x = 0 . Ultraspherical and Chebyshev (second kind) are ill-suited for LAOS
due to their values at x = +1. Finally, Legendre polynomials are eliminated because they are

not directly related to the time-domain Fourier coefficient, thus implementation with previously
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Figure 3.13: The simulated stress response at yy, = 10, and w; = 1 rad/s using the Giesekus model
with following parameters: 7 =1 s, @ = 0.5, and G = 1 Pa, (a) the total stress, o, and elastic
stress, 0, as a function deformation, vy, (b) the total stress, -, and viscous stress, o, as a function

deformation-rate, y.

reported LAOS data and comparison with other LAOS interpretations would be unnecessarily
complicated. Using this basis set, the elastic and viscous contributions to the measured stress re-

sponse can be written as:

70 =70 ). enlw, 0)Tu(x) (3.17)
n: odd
o) = yow D valw, ¥0)Tu(®) (3.18)
n: odd

where T,(x) is the n"*-order Chebyshev polynomial of the first kind, and x = y/yo, y = ¥/Yow
provide the appropriate domains of [-1,+1] for orthogonality. The functions at each order are
orthogonal and therefore the coefficients e, v, are independent of each other. The e,(w, yy) is the

elastic Chebyshev coefficients and v,(w, yo) is the viscous Chebyshev coefficients.

In the linear regime, the equations [5.4] [5.5] recover the linear viscoelastic result such that
e; = G and v, —» 7 = G Jw. The interpretation of any deviation from linearity, i.e. the n = 3
harmonic, as follows. A positive contribution of the third-order polynomial T5(x) = 4x° — 3x
results in a higher elastic stress at the maximum dimensionless deformation, x — 1 than is repre-
sented by the first-order contribution alone. Thus e; > 0 corresponds to intra-cycle stain-stiffening
of the elastic stress, whereas e; < 0 indicates strain-softening. Similarly, a positive value for v;

represents intra-cycle shear-thickening of the viscous stress, and v < 0 describes shear-thinning.
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These physical interpretations are not apparent in the time-domain (Fourier coefficients) but be-
come immediately apparent from the sign of the Cheybyshev coefficients. The deliberate use of
Chebyshev polynomials allowed the coefficients e, and v, to be calculated from the Fourier coef-
ficients. The relationships between the Chebyshev coefficients in the strain or strain-rate domain

and the Fourier coefficients in the time domain are thus given by:
e, =G (-1)T  n:odd (3.19)

Vo =G, lw n:odd (3.20)

Figure illustrates the variation of e3;;(yo, w) as a function of applied deformation am-
plitudes, yp, and a. The es;;(yp, w) is negative at the small deformation amplitudes limit y, =
1072 — 10° and positive at the large deformation amplitudes. The e3,;(yp, w) < 0 implies a elastic
softening and e3;(yp, w) > 0 a elastic thickening. In the low deformation amplitude limit the
viscoelastic material exhibit the elastic softening and at large deformation it exhibit the elastic
thickening at the applied frequency of w/2x. In the low deformation limit the square scaling
e3/1(yo, w) « )/3 is observed. This motivated us to introduce the a nonlinear parameter Q¢ which is

defined as follows:
_ 63/1(70, w)

o 5 (3.21)
Yo
The Q¢ at low deformation limit would approach a constant value similar to Q and Q"'. This

motivated us to introduce intrinsic elastic nonlinearity Qg which is defined as follows:

Q¢ = lim Q° (3.22)
Yo—0

Figure [3.15] illustrates the variation of v3;(yp,w) as a function of applied deformation am-
plitudes, vy, and @. The v3)(yy, w) was positive at the small deformation amplitudes limit,
¥o = 107 — 10" and negative at the large deformation amplitudes. The v3,1(yo, w) < 0 implies a
viscous thinning and v3,;(yy, w) > 0 a viscous thickening. In the low deformation amplitude limit
the viscoelastic material exhibit the viscous thickening and at large deformation it exhibit the vis-
cous thinning at the applied frequency of w/2n = 1/2x Hz. In the low deformation limit the
square scaling v3,;(yo, w) o« yg is observed. This motivated us to introduce a nonlinear parameter

Q” which is defined as follows:
v31(Y0, W)

Q" =
%

(3.23)
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Figure 3.14: The variation of simulated e3/,(yo) as a function of vy, at applied angular frequency

of w; = 1 rad/s. The following Giesekus model parameters were used for simulation: 7=1s, @ =

0.5,and G =1 Pa.

The Q” at low deformation limit would approach a constant value similar to Q and Q"'. This

motivated us to introduce intrinsic elastic nonlinearity Qf which is defined as follows:

Q0 = lim Q’ (3.24)

Y0—0

Figure illustrates the variation of Qy(w), Of(w) and Qf(w) as a function of applied angular
frequency, w. The curves are shown only for one particular value of @ = 0.5 (Giesekus model non-
linear parameter) because qualitative behaviour was similar for all the @ values. The viscoelastic
material in the simulated angular frequency range can be divided into four regime based on the

sign of intrinsic elastic and viscous nonlinearity.
e Regime I: Qf > 0 (elastic stiffening) and Qf < 0 (viscous thinning)
e Regime II: Qf > 0 (elastic stiffening) and Qf > 0 (viscous thickening)
e Regime III: Qf < 0 (elastic softening) and Qf > 0 (viscous thickening)

e Regime IV: Qf < 0 (elastic softening) and Qy < 0 (viscous thinning)
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Figure 3.15: The variation of simulated vs;;(yy) as a function of y, at applied frequency of w; = 1
rad/s. The following Giesekus model parameters were used for simulation: 7=1s, @ = 0.5, and

G =1 Pa.

Recently, Ewoldt and Bharadwaj®? proposed four intrinsic measures ([e;], [v], [e3] and [v3])

derived from the SD analysis in MAOS regime:

e1(70, ) = G (W) + [e1)(W)yg + 0(¥;) (3.25)
i, ) = G (@) + [ l(W)yg + 0(¥;) (3.26)
e3(y0, ) = [es](W)yg + 0(¥}) (3.27)
v3(70, ) = [v3l()yg + 0(vy) (3.28)

The proposed intrinsic nonlinearity in this chapter are directly correlated with the intrinsic mea-

sures proposed by Ewoldt and Bharadwa;j®*:

€31 [es](w)yg + o(y;) 1
‘Yo, w) = —5 = — 3.29
Q00O =0 = ) + [l @+ 00) 72 5:29)
V31 [vsl(w)yg + o(vy) 1
"o, w) = — = — 3.30
0o @) v G'(w)+ nlw)y; +o(vy) va (3-30)
e _ [63]((“))
Oy(w) = G (@) (3.31)
vy ilw)
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Figure 3.16: The variation of Qy(w), Qf(w, and Qf as a function of w.

Figure illustrates the variation of Qf(w) and Qf(w) as a function of & at De = 1 where
De = wt. The Qf(w) is negative and decreasing with increasing @. However, Qf(w) displayed
following power law Qf(w) o a. The scaling exponent for Qy is higher than the QF“* and wy,

which implies the highest sensitivity for nonlinear parameter determination.

3.3 Conclusions of Chapter 3

Large Amplitude Oscillatory Shear (LAOS) responses (shear and first normal stress difference)
were simulated using the Giesekus model. The responses were analyzed using the FT-Rheology
and Stress-Decomposition techniques. The zero strain intrinsic nonlinearity, Qy(w), observed to
follow the scaling, Qy(w) o w?, at the limit of small frequencies. Furthermore, at large frequency
limit the following scaling, Qy(w) o« w™! was observed. Motivated by the square scaling at the low
frequency limit, we introduced a new zero shear-rate nonlinearity, uo. The y is only a function
of nonlinear parameter, independent of applied strain and frequency. The y( is monotonically

increasing with nonlinear parameter, «.

The nonlinearity in first normal stress difference response were quantified using the fourth or-
der higher Fourier harmonic relative to fundamental Fourier harmonic, Ny/,. At small deforma-

tion amplitudes, yp, limit the following scaling, N, o y(z), was observed. Motivated by this
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Figure 3.17: The variation of Qf and Q as a function of nonlinear parameter, a, at Deborah

number equal to one, (a) Of vs. @, (b) Of vs. a.

scaling, a new zero strain intrinsic nonlinearity, QO‘”Z(w), was introduced. Furthermore, this zero
strain intrinsic nonlinearity at small frequency limit also observed to follow the square scaling,

Naj2

) (w) o w?

. Similar to zero shear-rate nonlinearity, yy, a new zero shear-rate nonlinearity,

N. ..
1,"”, based on the first normal stress measurement is introduced.

The shear stress response were also analyzed using the Stress-Decomposition method. The
Chebyshev elastic third order harmonic relative to Chebysheyv elastic fundamental harmonic, ez (o, w),
and Chebyshev viscous third order harmonic relative to Chebyshev viscous fundamental har-
monic, vs;1(yo, w), also observed to follow the square scaling with applied deformation ampli-
tudes. The square scaling motivated the introduction of zero strain intrinsic elastic nonlinear-
ity, Q%(w), and zero strain intrinsic viscous nonlinearity, Q,”'(w). Interestingly, the Oy (w)
as a function of Giseksus model nonlinear parameter, @, observed to follow the power law,

Vi

o (tw = 1) < @ at Deborah number equal to one. This can be used to predict the nonlinear

parameter, @, with one single strain sweep at the angular frequency of w = 1/7.
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Chapter 4

Linear and Non-linear Viscoelasticity of
Monodisperse Polystyrene Melts and its
Blends using F'T-Rheology

The effects of entanglement on the viscoelastic properties of flexible linear polymers is an active
area of research in polymer physics*#¥#2. One of the significant influences of entanglement is the
zero shear-rate viscosity, 179, dependence on molecular weight, M,,, where the following power law
1o o< M>4736 holds for the entangled linear polymer melts®. The reptation theory=* qualitatively
predicts the dynamics of entangled monodisperse linear polymers in the linear viscoelastic regime.
However, for quantitative prediction of the linear viscoelastic properties, Likhtman and McLeish*?
added several missing relaxation mechanisms (contour-length fluctuations and constraint release)

in the reptation theory (details were described in chapter-2).

In addition to the molecular weight, molecular weight distribution is one the key parameter
which has an influence on rheological properties. Remarkable progress has been made in inter-
connecting the viscoelastic properties with the molecular weight and molecular weight distribu-
tion®#838087  While most of the scientific literatures focuses on the linear viscoelasticity, in this
study, the nonlinear viscoelasticity of linear polymers (polystyrene) and blends of monodisperse

linear polymers are investigated under the Large Amplitude Oscillatory Shear (LAOS) flow.

The Fourier-Transform (FT)-Rheology technique is used to analyze the stress response un-
der LAOS flow. In FT-Rheology, the intensity of third Fourier harmonic relative to fundamen-

tal Fourier harmonic, I3/, has been frequently used to quantify the nonlinear viscoelasticity.
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In LAOS, for a range of applied deformation amplitudes, a square scaling law, I5;; o yg, was

observed both experimentallyZ?~®

and by simulation of various nonlinear constitutive equations
(Giesekus model”’, Pom-Pom model”%, Molecular Stress Function (MSF) model’l). Motivated
by this scaling law Hyun and Wilhelm”* introduced a new nonlinear parameter Q(yo, w) = I3;1/73.
At low deformation amplitudes limit, the Q-parameter converges to a constant value which they
called zero strain intrinsic nonlinearity, Qy(w) := lim, o Q(yo, w) = lim, 03 /1/7(2). The zero

strain intrinsic nonlinearity, Qy(w), was used to characterize the branching effects for linear and

comb polystyrenes (PS)7* and polydispersity effects in industrial polyethylene (PE)7.

To study the effect of entanglement on the nonlinear viscoelasticity, the zero strain intrinsic
nonlinearity, Qy(w), is measured for monodisperse linear PS and its blends. The non-linear pa-
rameter, u(w) = Qo(w)/w?, at small frequency limit is observed to be independent of frequency
for linear monodisperse PS polymer melts. This facilitated the experimental measurements of
zero shear-rate intrinsic nonlinearity, 1y, a new material parameter which was introduced in the
previous chapter using the Giesekus model simulations. Similar to the zero shear-rate viscosity
scaling, g o« M>#73%_a interesting scaling is observed for the intrinsic zero shear-rate nonlinear-

ity, Uy MS).SSiO.lS

. Furthermore, the nonlinear viscoelastic master-curve, Qy(arw), was found
to be a more effective way to detect the relaxation processes of long and short chains in binary

blends relative to linear viscoelastic master-curve [G (arw) and G~ (arw)].

4.1 Materials and Methods

4.1.1 Materials

The monodisperse PS with various molecular weights were synthesized by Dr. Kempf (member
of our lab, currently working at 3M Germany) using anionic polymerization. The mixtures were
prepared for the study of polydispersity effect by solution mixing using the THF (tetrahydrofuran).
After mixing, excess amount of methanol was added for precipitation of the polymers. Methanol
of 800 ml was added to every PS/THF solution of 100 ml. The precipitated polymers were filtered
and dried at 50°C for 24 hours in the vacuum oven. For the prepared binary blends bi-model
molecular weight distribution (Fig. [.1p) were observed. The molecular weight distribution for
quaternary blend is shown in Fig. 4.Tb. For the polymer synthesized by radical polymerizatio